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STATISTICAL METHODS FOR THE SIMULTANEOUS 
ANALYSIS OF QUALITY OF LIFE AND SURVIVAL DATA

Lucinda Billingham

Abstract

The aim of the thesis is to critically review, apply and where appropriate develop 
statistical methodology for the analysis of longitudinal quality of life data 
collected as part of a clinical trial where survival is also a key endpoint on which 
treatments are being compared.

The thesis focuses on methods that simultaneously analyse quality of life and 
survival data, partly in order to provide an overall assessment of the treatments in 
terms o f both endpoints and partly as a means to overcome the problem of missing 
data that results from patients dropping out of the quality of life study due to 
death. The thesis also extends the methodology to deal with the additional dropout 
o f patients from the quality of life study prior to death. Three key methods are 
considered: quality-adjusted survival analysis, multistate modelling and joint 
modelling.

Quality-adjusted survival analysis compares treatments in terms of a composite 
measure of quality and quantity of life, created by down-weighting survival time 
according to the reduction in quality of life experienced by patients. Multistate 
models describe the movement of patients between various health states, defined 
by levels o f quality of life and death, and explore how treatments differ in terms 
o f the transition rates between health states. Joint models describe the change in 
quality o f life over time and the time to death as two interlinked models.

The key pursuit is the practical application of methods to data and the thesis 
makes use o f two real datasets, from the MIC trial in lung cancer and the ESP AC 
trial in pancreatic cancer, that encompass the typical problems faced by analysts 
tflr.lrling this type of data in the real world. The results from this research provide 
statisticians analysing quality of life data with a variety of possible methods for 
the analysis of such data that should yield unbiased results.
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CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION

1.1 Aims of the Thesis

The aim of the thesis is to critically review, apply and where appropriate develop 

statistical methodology for the analysis of longitudinal quality of life data collected as 

part of a clinical trial where survival is also a key endpoint on which treatments are 

being compared.

The thesis focuses on methods that can be used to simultaneously analyse quality o f life 

and survival data, partly in order to provide an overall assessment of the treatments in 

terms of both endpoints and partly as a means to overcome the problem of missing data 

that results from patients dropping out of the quality of life study due to death. The 

thesis also extends the methodology to deal with the situation when patients may 

additionally drop out from the quality of life study prior to death.

Three key methods for the simultaneous analysis of quality of life and survival data are 

considered; quality-adjusted survival analysis, multistate modelling and joint modelling. 

Quality-adjusted survival analysis has already been established for use with quality of 

life and survival data but the methods have not been widely applied to longitudinal 

quality of life data collected in clinical trials. This thesis provides a complete critical 

review of all methods in terms of their application to longitudinal quality of life data 

and develops the methods to deal with dropout prior to death. The methods of multistate 

modelling and Bayesian joint modelling have only received limited attention in relation 

to quality of life and survival data and this thesis develops their application in this field.

The key pursuit is the practical application of methods to data, using both classical and 

Bayesian approaches, and the thesis makes use of two real datasets that encompass 

many of the typical problems faced by analysts dealing with this type of data in cancer 

clinical trials. Although the focus here is on clinical trial data, specifically in the field of 

cancer, the methods can be generalised to other contexts.

1



CHAPTER 1: INTRODUCTION

1.2 Background

The ideal context for evaluating any new treatment for a disease is a randomised phase 

m  clinical trial. In this, the new treatment is compared to the 'standard9 treatment using 

a number of pre-defined clinically relevant outcomes. In the field of cancer, the primary 

outcome measure is usually length of survival and increasingly quality of life is being 

included as a secondary outcome. The role of quality of life in cancer clinical trials has 

become more prominent as improvements in survival due to treatment are either 

unlikely to be dramatic or likely to be made at the expense of quality of life. In general, 

the context for the thesis is randomised phase m  clinical trials in cancer but many of the 

issues will be applicable to other scenarios.

A clinical trial will follow patients over time until they are observed to die or until the 

time of analysis. During this period of study, the patient's quality of life is measured at 

various time points, usually via a patient-completed questionnaire designed for the 

purpose. If the study aims to assess quality of life over a fixed period of time then, the 

death of a patient during this time will result in the early cessation of assessments and 

patients are said to 'drop out of the quality of life study due to death9. In studies where 

patients are sufficiently ill for length of survival to be an outcome, subjects will often 

drop out of the quality of life study prior to death due to illness.

The assessment of treatments in terms of quality of life is usually based on their effect 

on this outcome over time. Standard longitudinal analysis assumes that any missing data 

within the time frame of the analysis, which could be a fixed length or defined by the 

longest individual follow-up time, are missing at random. In studies of quality of life, all 

measures that are missing after death within the time frame of the analysis will not be 

missing at random. In addition, measures that are missing due to dropout prior to death 

are likely to be health-related and thus non-randomly missing. Application of standard 

methods to longitudinal quality of life data could therefore give biased results.

Issues relating to the assessment and analysis of quality of life data in clinical trials and 

the problems of dealing with the non-random missing data were originally highlighted 

during the late 19809s and early 19909s (Fayers and Jones 1983, Olschewski and

2



CHAPTER 1: INTRODUCTION

Schumacher 1990, Schumacher et al 1991, Pocock 1991, Cox et al 1992, Fletcher et al 

1992, Hopwood et al 1994). The field has been developing ever since with workshops 

dedicated specifically to the subject (Nayfield et al 1992, Bernhard and Gelber 1998, 

Everitt et al 2002) and research projects on the subject being sponsored by the National 

Health Service Health Technology Assessment Programme (Billingham et al 1999). 

More recently, books dealing with the subject have been published (Staquet et al 1998, 

Fayers and Machin 2000, Fairclough 2002).

13 Rationale for Simultaneous Analysis

If longitudinal quality of life data are analysed without in any way accounting for any 

missing data due to dropout or death, then the results at any point in time will represent 

the quality of life of patients, conditional on them being alive and well enough to 

complete a quality of life assessment. If the aim of a study is to compare changing 

quality of life for two different treatments and survival or dropout rates differ for the 

two treatment arms then at any point in time, the comparison of quality of life is not 

comparing like with like. The only way to make a fair comparison of treatments in 

terms of quality of life over time is to model the unconditional distribution, i.e. that 

which represents the quality of life o f all patients, including those that have died. This 

inclusion of all patients at all time points could be considered equivalent to doing an 

‘intention-to-treat analysis’ which is recognised as the only truly unbiased form of 

analysis in clinical trials.

In a number of early reviews, simultaneous analysis of quality of life and survival data 

was suggested as an appropriate approach for the analysis of such data (Fayers and 

Jones 1983, Olschewski and Schumacher 1990, Schumacher et al 1991, Cox et al 1992). 

A simultaneous approach allows a more valid assessment of quality of life, since 

adjusting for the survival data in the longitudinal analysis of quality of life will account 

for data that are missing within the study time frame as a result of informative dropout 

due to death. The methods also have the potential to be extended to allow for 

informative dropout from the quality of life study prior to death, resulting in a further 

improvement in the validity of the quality of life analysis. As well as the potential to 

provide a more valid analysis of quality of life, simultaneous analysis may also give

3



CHAPTER Is INTRODUCTION

better information to health decision makers. Informed clinical decisions regarding 

treatment require the quantification and interpretation of differences between treatments 

in terms of both survival time and change in quality o f life measures. Simultaneous 

analysis enables the assessment o f the treatment effect in terms o f the two endpoints 

independently to be supplemented with an assessment in terms of the net effect. This 

decision may also need to be made in conjunction with other outcomes such as toxicity 

and cost.

There has been some discussion as to whether the simultaneous analysis o f quality of 

life and survival is appropriate since some argue that it makes no sense to want to 

estimate the quality o f life o f patients who are no longer alive (Shih and Quan 1997). 

The following simple example, illustrated in Figure 1.1, illustrates why simultaneous 

analysis is necessary for a fair comparison of treatments.

Figure 1.1: Simple example comparing changing quality of life in treatment groups 
with differential survival rates

1.0

0.9

0.8

M 0.7 
6

a 0-6 
n 0.5

•  B (All)
Q 0.4 
o
L 0.3

0.2

0.1

0.0
Pre—treatment Post—treatment

Assessment Time
Numbers In analysis:
A 160 100
B 100 50

Suppose two treatments are being compared, treatment A and treatment B, and 

treatment A is superior in terms of its effect on survival. Suppose that the aim o f the
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CHAPTER 1: INTRODUCTION

analysis is to compare treatments in terms of quality of life measured on a 0 to 1 scale at 

a single fixed time post-treatment and at this time all patients that were originally 

randomised to treatment A are still alive, including the poorer performance patients, 

whilst a half of patients on treatment B have died. In general it is the poorer 

performance patients that will die, leaving the better patients to be assessed for their 

post-treatment quality of life. For this reason, the post-treatment quality of life of 

patients on treatment B appears to be better than that on treatment A and, conditional on 

surviving, it is. However this does not give a true reflection of the comparison of 

treatments since no account has been made for the differential survival. The only way to 

truly compare treatments is to include all patients in the estimate of post-treatment 

quality of life, even those that have died. Simultaneous analysis of quality of life and 

survival will allow this. Simplistically, the dead patients can be included in the analysis 

by allocating them the worst quality of life score of 0 for their post-treatment 

assessment (red dotted line in Figure 1.1). The intention to treat analysis, which 

includes all patients on both treatment arms, then shows that in fact treatment A is 

superior to treatment B.

1.4 Methods for Simultaneous Analysis

The most widely used approach for the simultaneous analysis of quality of life and 

survival in clinical research is quality-adjusted survival analysis. This approach 

compares treatments in terms of a composite measure of quality and quantity of life, 

created by down-weighting survival time according to the reduction in quality of life 

experienced by patients (Gelber and Goldhirsch 1986, Goldhirsch et al 1989, Glasziou 

et al 1990). This method was not originally devised for the application to quality of life 

data collected via questionnaire in clinical trials and this thesis investigates further the 

methodology in this context. More recently, methods have been proposed that directly 

incorporate the longitudinal quality of life data collected on patients with the survival 

data (Glasziou et al 1998) and this thesis develops this methodology further to enable 

additional dropout prior to death to be accommodated in the analysis.

Multistate modelling was advocated in a number of the early reviews and discussions on 

quality of life as a possible means of analysing quality of life and survival

5
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simultaneously (Fayers and Jones 1983, Schumacher et al 1991, Cox et al 1992, Abrams 

1992a, Olschewski et al 1992). Multistate models describe the movement of patients 

between various health states, defined by levels of quality of life and death, and explore 

how treatments differ in terms of the transition rates between health states. The 

application of this method to longitudinal quality of life and survival data measured in a 

clinical trial has not previously been explored in detail and this thesis investigates the 

validity of the approach in this context and develops the methodology to deal with the 

problem of additional dropout prior to death.

There is an increasing literature on the joint modelling of longitudinal and event-time 

data. The application of joint models to quality of life and survival data has been 

developing within a classical framework (Fairclough et al 1998a, Ribaudo et al 2000, 

Curran et al 2002, Michiels et al 2002, Fairclough 2002, Pauler et al 2003). The change 

in quality of life over time and the time to death can be considered as two simultaneous 

processes occurring in patients, and can be modelled as such. The Bayesian approach to 

joint modelling has been described by a number of authors (Berzuini 1995, Faucett and 

Thomas 1996, Carpenter et al 2002, Xu and Zeger 2001, Wang and Taylor 2001) but 

until recently this approach has not been considered for quality of life and survival data 

(Wang et al 2002). The application of Bayesian joint models to quality of life and 

survival data is developed in this thesis and the method is extended to accommodate 

additional dropout prior to death.

1.5 The Need for a Bayesian Approach to the Analysis

There are two general approaches to statistical analysis, one is known as classical or 

ffequentist and the other as Bayesian (Bland and Altman 1998). Simplistically, 

statistical analysis is generally interested in estimating an unknown quantity, say 9. 

Conventional statistical analysis uses a classical approach, which would typically 

produce an estimate and confidence interval for 9 and a probability, known as p-value, 

associated with comparing the data with a hypothesised value of 6. The alternative 

Bayesian approach, based on Bayes’ theorem, combines prior knowledge regarding the 

value of 9 with the likelihood of the data to produce an estimate of the posterior 

probability distribution of 9  on which all inferences are made. Further details on

6



CHAPTER 1: INTRODUCTION

Bayesian methodology for clinical trials are given elsewhere (Spiegelhalter et al 2003) 

and are summarised in Chapter 2.

In estimating an unknown quantity, there are a number of reasons why one may choose 

to take a Bayesian approach. Some may use it because it allows prior information about 

9  to be included in the estimation process, with the prior density for 0 based on either 

subjective beliefs or external evidence (from other studies) or a combination of the two. 

Others use it because, with the results being in the form of a posterior distribution, it 

allows direct probability statements about the unknown quantity to be made thus giving 

more clinically relevant conclusions. In many situations it is used because it allows 

complex analyses to be carried out in a relatively straightforward manner. 

Computational advances have facilitated the practical application of the Bayesian 

approach (Gilks et al 1994). In this thesis no attempt is made to include informative 

prior information since the primary aim for using a Bayesian analysis is to overcome 

technical difficulties with some of the more complex analyses. Classical approaches to 

such analyses are generally possible and will be discussed but it is believed that a 

Bayesian approach provides a more user-friendly and flexible environment with easier 

implementation via readily available software.

1.6 Background to the Example Datasets

Data from two different trials are used to illustrate and investigate the methodology 

under consideration. The background to these two trials and the associated quality of 

life studies are described below. Further details on the measures of quality of life and 

the timing of the quality of life assessments are given in Chapter 4, whilst the extent of 

missing data in the quality of life studies is described in Chapter 5.

1.6.1 The MIC Trial

In 1988, two phase El trials were initiated at the Cancer Research UK Clinical Trials 

Unit in Birmingham to evaluate the role of mitomycin, ifosfamide and cisplatin (MIC) 

chemotherapy in the treatment of non-small cell lung cancer. The trials were run 

concurrently and had identical designs and eligibility criteria except for stage of disease,

7
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with the MIC1 trial recruiting patients with localised disease and the MIC2 trial 

recruiting those with extensive stage disease. The results from both trials are reported 

elsewhere (Cullen et at 1999) and this thesis uses quality of life and survival data from 

just the MIC2 trial, henceforth referred to here as the MIC trial.

In the MIC trial, patients were randomly allocated to receive either standard palliative 

treatment for the relief of symptoms, usually radiotherapy (the PAL arm), or MIC 

chemotherapy, up to a maximum of 4 courses, followed by standard palliative care (the 

CT arm). The aim of the trial was to compare treatments in terms of both survival and 

quality o f life. Quality of life was an important endpoint because both treatments were 

considered largely palliative and MIC chemotherapy was considered by some clinicians 

to be highly toxic.

The trial closed in March 1996, at which time 351 eligible patients had been 

randomised. The median survival time for patients in the trial was approximately 6 

months. For practical reasons associated with the availability of the research nurse, the 

quality of life component of the study was carried out only on a subset of trial patients, 

essentially consisting of patients treated at three main oncology centres. Quality of life 

data were collected on 109 patients from the trial, 67 on the chemotherapy arm and 42 

on the palliative care arm. A questionnaire designed specifically for the trial yielded a 

global quality of life score derived from the mean of the responses to the 12 questions 

on the questionnaire. Quality of life was only assessed during the treatment phase of the 

trial at a maximum of five time points, at approximately 3-weekly time intervals. In 

total 392 questionnaires were available for analysis.

1.6.2 The ESPAC Trial

The first trial undertaken under the auspices of the European Study Group for 

Pancreatic Cancer (ESPAC) was a phase m  trial investigating the use of both adjuvant 

(i.e. post-operative) chemotherapy and adjuvant chemoradiotherapy in patients with 

resectable pancreatic cancer and is referred to here as the ESPAC trial. The trial closed 

in April 2000 at which point 541 eligible patients with resected pancreatic cancer had 

been recruited. The primary endpoint for the trial was survival, which was defined as 

time from surgery to death from any cause. The interim results from the trial, showing a
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potential survival benefit for chemotherapy (hazard ratio of 0.66 with 95% confidence 

interval 0.52 to 0.83), have been published (Neoptolemos et al 2001) and final analysis 

of the trial is currently being prepared for publication.

Quality of life was considered an important secondary endpoint in the trial and data was 

collected from trial entry to death on a subgroup of patients who agreed to participate in 

the study. Some preliminary analysis of the quality of life data was published in the 

main trial paper (Neoptolemos et al 2001). The data included in this thesis consist of 

patients from the chemotherapy versus no chemotherapy comparison only and are taken 

from an early version of the quality of life data. The results included in this thesis will 

therefore not be properly representative of the trial results and should not be used for 

clinical evaluation but since the data are from a questionnaire that is one of the most 

commonly used in cancer clinical trials, they are appropriate for illustrating the 

methodology in the thesis.

Quality of life data were available for 175 patients, 87 who were randomised to receive 

chemotherapy (the CT arm) and 88 randomised to no chemotherapy (the NoCT arm). 

Chemotherapy consisted of 6 cycles of 5-FU plus D-L folinic acid taken monthly. 

Quality of life was measured using a questionnaire designed by the European 

Organisation into Research of Treatment for Cancer called the EORTC QLQ-C30 

(Aaronson et al 1993). This yields 15 different measures of quality of life including a 

global health status score, which will be the focus here. Questionnaires were completed 

at approximately 3-monthly intervals from trial entry to death. The quality of life over 

time will be affected initially by the patients’ recovery from surgery and then by the 

effect of up to 6 months of chemotherapy for those patients randomised to this arm. In 

total 710 questionnaires were available for analysis.

1.6J Rationale for Inclusion of Specific Examples in the Thesis

Data from the MIC trial and the ESPAC trial are used to illustrate and investigate the 

methodology under consideration. The design of a quality of life study and the 

associated analytical issues vary depending on the disease site and treatment under 

investigation. The trials here relate to the treatment of chemotherapy in two different 

types of cancer, non-small cell lung cancer and pancreatic cancer. Both trials investigate
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the use of a treatment that is likely to have a major impact on patients’ quality of life 

and both involve patients with a disease that, despite treatment, has the potential to 

progress rapidly resulting in illness and relatively short survival times (median survival 

time of approximately 6 and 16 months for MIC and ESPAC respectively). This is the 

typical setting for the inclusion of quality of life as an important endpoint.

The two studies are very different in terms of their design and hence the type of quality 

of life data for analysis. The MIC study assesses quality of life using a non-standard 

instrument whose overall mean score provides a reasonably continuous measure of 

quality of life for analysis. The ESPAC study uses one of the most widely used quality 

o f life questionnaires in cancer clinical trials, the EORTC QLQ-C30 (Aaronson et al 

1993), whose global health status score provides a measure of quality of life with a 

more discrete distribution. The MIC study assesses quality of life for a maximum of five 

time points during a fixed period of time of 15 weeks, the treatment phase of the trial, 

whilst in contrast the ESPAC study investigates quality of life every three months from 

trial entry to death.

1.7 Outline of Thesis

The basic methodology for Bayesian analysis and survival analysis are given in 

Chapters 2 and 3 respectively, as background information for the reader. Chapters 4 and

5 discuss the nature of quality of life data and the specific problem being addressed 

here, that of missing data. Chapter 6 considers standard methods for the analysis of 

longitudinal quality of life data with the focus on the possible models for quality of life 

data over time. These methods could give biased results in the presence of missing data 

and this is discussed in the latter part of the chapter. Chapter 7 discusses the possible 

models that could be used to model the survival data and considers the inclusion of 

quality of life in such models as a covariate that may explain some of the variation in 

the survival data. Chapters 8, 9 and 10 are the key chapters in the thesis relating to the 

three different approaches to simultaneous analysis of quality of life and survival; 

quality-adjusted survival analysis, multistate modelling and joint modelling. These 

chapters use the models for quality of life and survival that were introduced in Chapters

6 and 7. The final chapter summarises and discusses the findings from the research and
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describes the potential for further work. All key methodology is illustrated using data 

from the two different studies.
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CHAPTER 2: PRINCIPLES OF BAYESIAN ANALYSIS 

2.1 Introduction

Some of the models considered for the quality of life and survival data in this thesis are 

fitted to the data using a Bayesian as well as a classical approach. The aim of this 

chapter is not to provide a comprehensive review of Bayesian methods but to provide 

the reader with the fundamental knowledge needed for the understanding of later 

chapters. There is a wide range of literature that describes Bayesian methods in greater 

detail (Lee 1989, Bernardo and Smith 1994).

The fundamentals of a Bayesian analysis, as described by others (Bland and Altman 

1998, Spiegelhalter et al 1999), are as follows. Given that there is an unknown quantity 

of primary interest relating to a population, say 0, classical methods regard 9  as a fixed 

unvarying quantity whilst Bayesian methods are based on the idea that since the true 

value of 0 is unknown, it has a probability distribution. A Bayesian analysis combines 

prior information on 0, in the form of a probability distribution, with the likelihood of 

the data given 0, to produce a posterior probability distribution for 9. This result is 

obtained using Bayes theorem. These essential elements of Bayesian analysis are 

described in Sections 2.2, 2.3 and 2.4. Making inferences about the value of 9  requires 

integration of the posterior distribution, which is often difficult, and in most cases 

impossible, to evaluate analytically. One option is to use Monte Carlo integration and 

in particular Markov chain Monte Carlo integration and this is described in Section 2.5

2.2 Likelihood

Suppose that observed data Y = {yl,y 2,...,yn}are known to be random, independent 

observations from a specific type of probability distribution p(Y) but the parameter (or 

vector of parameters) of the distribution, represented by 0, are unknown. Then, since the 

observations are independent, the probability of observing the given data is given by:

p(Y 19) = p(y,, y 2>•••> y . \9 )  = p(y, 19)p(y2 I 9)...p(y, 19) [2.1 ]
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This is the known as the ‘likelihood’ and since the data values (i.e. y l,y2,—>yn) are 

known, it is a function of 0and is therefore often represented by L(9) .

The likelihood function expresses the extent to which different values of dare supported 

by the data (Spiegelhalter et al 2003). The maximum likelihood estimate of 9 is the 

value of dthat maximises the likelihood, i.e. it is the value of dthat makes the observed 

data most likely. Ranges of values that are best supported by the data are also desirable 

and these are given in the form of classical confidence intervals or Bayesian credible 

intervals.

23 Prior Distributions

To be able to estimate the posterior distribution for a parameter, specification of the 

prior distribution for that parameter is required. If possible, it is convenient to choose 

the prior distribution to be one that is ‘conjugate’ to the likelihood function, i.e. one that 

when combined with the likelihood produces a posterior distribution from the same 

family as the prior. For example, if  a normally distributed prior is used for the unknown 

mean of a normally distributed likelihood then the posterior distribution will also be 

normal and if a gamma prior is used for the unknown mean of a Poisson likelihood then 

the posterior will be gamma.

The prior distribution may be the personal opinion of a single individual, may represent 

the beliefs of a community, may be a summary of existing evidence, or may be a 

combination. Here vague priors (also called reference, non-informative or flat priors) 

are the distribution of choice, that is prior distributions that cover such a wide range of 

possible values that they provide virtually no information about the unknown parameter. 

The choice of priors will be discussed in the context of specific models. With a vague 

prior distribution and a sufficiently large sample, the amount of information contributed 

by the prior relative to the likelihood is negligible and thus the posterior distribution 

will be similar to the likelihood function and hence the Bayesian results will be 

comparable to the classical results (Spiegelhalter et al 2003).
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Choosing a vague prior is not necessarily straightforward and different choices could 

lead to different results, particularly in terms of the variance components of a model and 

with small amounts of data (Lambert et al 2003a). As recommended by Lambert et al 

(2003a), priors have been chosen to be vague within a realistic range and sensitivity 

analysis has been used to assess the influence of the choice of prior on the results.

2.4 Bayesian Inference Derived from Bayes Theorem

Bayes theorem, which is used widely in diagnostic testing, is derived from the basic 

rules of probability and essentially reverses conditional probabilities. For two events a 

and b, the theorem states:

m a ) = p ^ r n m  [ 2 .2 ]

P(a)

So for parameter (or vector of parameters) given by 9 and observed data Y,

[2.3]
p(V)

In equation [2.3], p(6 \ Y) is the posterior distribution of 9, p(Y \ 6) is the likelihood

and p{6) is the prior distribution. The quantity p{Y) = J/?(T 1Q)p(0)dQ in the

denominator of [2.3] is the marginal distribution of the data and is not generally of 

interest since it does not contain 6, it just ensures that p{9 \Y) is a proper probability

distribution in that J/?(01 Y) dO = 1 . The fact that p { 9 1 Y) oc p(Y  19)p{9) means that

the posterior distribution has the same shape as the likelihood times the prior 

distribution and this forms the basis for all Bayesian inference.

Bayesian inference essentially involves estimating features, such as mean and variance, 

of the posterior distribution. These can all be expressed in terms of posterior 

expectations of functions of 9 (Gilks et al 1996). The posterior expectation of a function 

g(9)  is given by:
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E[g(0) | Y] = \g (6 )p {9 1 Y)dO = ^ 9 ) p ( y \0 ) p ( O )  dQ [2A]

So for example to estimate the mean of the posterior distribution for 9 requires the 

following calculation:

E [01 Y]= f& p ( 0 1 Y)d0 = [2.5]

and the variance of the posterior distribution for 0 requires:

Var[0 \Y] = £[02 | 7 ] -  (E[01 K])2

= rO1p (Y \0 )p {0 )dc  c 0 p (Y \0 )p (0 )JC P.6]
J p(Y) J p(Y)

The posterior distribution for 6 enables direct probability statements to be made about 

the value of the unknown parameter relative to some clinically relevant value c, i.e.

p (0 > c \Y )  = ) p ( 0 1 Y)dO = )  P{Y^ {6)d0  [2.7]

Interval estimation should supplement point estimates in Bayesian analysis as 

confidence intervals do in classical analysis. A 100(1 -a)% (usually a=0.05) credible 

interval (CrI) is an interval in which 9 lies with probability (1-a). The lower and upper 

bounds of the interval (cl, cu) are usually estimated from the posterior distribution such 

that

p{9 < cL | Y) = a /2  and p{9 > cv | Y) -  a /2

y Y \ 0 M 0)d0 m y ( Y \ 0 ) P(0)d e =
i  P(Y) I  P(Y)
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For skewed posterior distributions it may be preferable to use a highest posterior density 

(HPD) interval whose values are calculated without assuming equal areas in each tail 

but such that the values contained within the interval have the highest posterior densities 

compared to those outside the interval (Spiegelhalter et al 2003). CrI and HPD have a 

meaning that is often incorrectly ascribed to classical confidence intervals, i.e. they are 

intervals within which ^ lies with 100(l-a)%.

These integrations required for Bayesian inference are often difficult, and in most cases 

impossible, to evaluate (Gilks et al 1996). Most analyses will involve multi-parameter 

problems, in which interest is focused on estimating the marginal likelihood for each 

parameter and therefore the other ‘nuisance’ parameters need to be integrated out. This 

integration is usually impossible to evaluate analytically and an alternative approach is 

required. One option is to use Monte Carlo integration and in particular Markov chain 

Monte Carlo integration as discussed below.

2.5 Markov Chain Monte Carlo

As described elsewhere (Gilks et al 1996), Monte Carlo integration evaluates £[g(#)] 

by drawing samples {6t ; t = 1 ,...m) from the posterior distribution and then the 

population mean of the function g(0)  is estimated by the sample mean as follows:

I s m

E [ g m  = M   [2.9]m

In Markov chain Monte Carlo each value is sampled from a distribution that depends 

only on the previous value, thus 0t is sampled from the distribution p(Bt | 6t.i, Y). The 

process starts with an arbitrary initial value Bo and continues for enough iterations to 

allow the process to converge to a unique ‘stationary’ distribution, which should be the 

posterior distribution for 0. The values sampled during this initial period known as the 

‘burn-in’ are discarded. Once the stationary distribution has been reached, the sampling 

process continues and enough samples taken to give an accurate estimate of the 

posterior distribution. Estimates of E[g{6 )] can be calculated from these retained
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sampled values using equation [2.9] which enable features of the posterior distribution 

to be estimated.

The choice of starting values should not influence the stationary distribution but may 

influence the speed and ease of convergence to it. The length of the burn-in period 

required depends on the rate of convergence. Sensitivity analysis should be carried out 

to assess the influence of starting values and length of the burn-in period. There are a 

variety of tests to assess convergence but visual inspection of the plot of the sampled 

values (the trace) is the most commonly used method (Gilks et al 1996). Ideally the 

trace should move smoothly around a focused range of values without ‘sticking’ in any 

one area. Autocorrelations between sampled values at increasing lags should be checked 

to establish if the sampling process is moving around the stationary distribution 

adequately. With high autocorrelations a larger number of samples may be needed to 

fully represent the posterior distribution. Otherwise re-parameterisation of the model to 

centre covariates may be used to overcome the problem or thinning the chain by 

sampling values at regular intervals (Gilks et al 1996).

Gibbs sampling is a Markov chain Monte Carlo approach to numerical integration 

(Gelfand and Smith 1990). It is a technique for sampling from the joint posterior 

distribution of the unknown quantities in a statistical model (Gilks et al 1994). The 

Gibbs sampling algorithm is based on the fact that for a given a set of unknown 

parameters 0\, 02, #5,..., Ok , as the number of iterations approach infinity, the marginal 

distributions are uniquely determined by the full conditional distributions (Gelfand and 

Smith 1990). The full conditional distribution of an unknown parameter 0t ( i- l, ...,£) is 

its conditional distribution conditioning on the values of all other unknown parameters 

in the model, that is f(0i\0\, Oi, ..., 1, #+1, ..., Ok).

The Gibbs sampler is an algorithm for extracting the marginal distributions from these 

full conditional distributions. Given an arbitrary starting value 0° = (0°,0°,...,0%), the

Gibbs sampler then successively makes random drawings from the full conditional 

distributions such that for the rth iteration (*=1,2,3,...) the sampled values of the 

parameters 0 ‘ = {0[ , 0\ ,..., 0[) are obtained by sampling:
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o[ from 

9[ from f ( 0 2

o[ from m\0;,0‘2,0‘4-\...,0n
0[ from f ( 0 k I 6[,Q[,Q[,...,9tk_x')

Repeated iterations of this cycle produces a sequence of sampled values { 0 ° , 0 \ 0 2,...} 

which will converge to the true joint posterior distribution. Once in the stationary phase 

the Gibbs sampler will yield correlated samples from this distribution. It should be 

noted that when the parameters relate to models with covariates, the covariates should 

be centred to reduce the posterior correlations between parameters and hence the 

number of iterations required by the Gibbs sampler (Gilks et al 1996). In this thesis, 

WinBUGS software (Spiegelhalter et al 2000) is used to estimate posterior distributions 

of model parameters using Gibbs sampling.

2.6 Summary

Given a model with a set of related unknown parameters, a classical analysis is 

interested in the estimating the fixed value of each of the parameters. In a Bayesian 

analysis, the aim is to estimate the posterior distribution for each parameter, given the 

data and any prior information. The fact that the posterior distribution is proportional to 

the likelihood times the prior forms the basis for all Bayesian inference. Gibbs sampling 

can be used to estimate the posterior distribution of each parameter by sampling each 

from its full conditional distribution. The aim of this thesis is to fit specific models to 

the data using a Bayesian approach and not necessarily to compare different models in 

terms of adequacy of fit in the Bayesian framework, although this is possible using 

Bayes factors, the Deviance Information Criterion and model averaging (Spiegelhalter 

et al 2003).

In all the analyses included in this thesis, prior distributions for parameters are intended 

to be vague, an approach referred to as a ‘reference Bayes approach’ (Spiegelhalter et al 

2003) and sensitivity analysis to the choice of specific prior is included. The use of
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vague priors will be considered by some purists to not be a proper Bayesian analysis. 

The main aim however of introducing a Bayesian approach to the analysis here is to 

allow complex models to be estimated in a relatively straightforward way. Although it 

is not the aim of the thesis to incorporate prior information into the analysis, the 

methodology could be extended to do this if so desired.
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CHAPTER 3: BASIC SURVIVAL ANALYSIS

3.1 Introduction

The aim of this chapter is to summarise the basic methods for investigating survival 

data that will be relevant to later chapters. In particular, the definition and estimation of 

survivor and hazard functions, either parametrically or non-parametrically, is applicable 

to the models for survival data that are considered both separately and in simultaneous 

analysis with quality of life.

Measurements of the time between two events, an initial occasion and an endpoint of 

interest, are generally known as survival or time-to-event data. In a clinical trial, the 

initial occasion will usually be defined as the same event for all individuals, such as 

date of randomisation, date of starting treatment or date of diagnosis. The endpoint of 

interest will depend on the nature of the disease and treatments under investigation, but 

is often death or relapse from a period of disease remission. This thesis is specifically 

interested in the analysis of quality of life and survival data, where by survival we mean 

time to death, however we are also interested in the time to other events and specifically 

time to dropout from the quality of life study.

Survival data are different from other types of continuous data because during the 

period of a study the endpoint of interest is not necessarily observed in all subjects. This 

may occur because: (i) some patients are lost-to-follow-up, i.e. are not followed to the 

end of the study and when last seen have not experienced the event of interest; or (ii) the 

event has not occurred in some patients by the time the study closes for analysis. Such 

data are referred to as censored survival times and are different from missing data in 

that they provide a lower bound for the actual non-observed survival times. Any 

analysis carried out on survival data should use statistical methods that do not disregard 

censored data, and indeed make the fullest possible use of it to avoid loss of 

information.

Most analytical methods used for survival data with censored observations are only 

valid if censoring is non-informative. This means that the censoring is not related to any
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factors associated with the actual survival time, i.e. the actual survival time, t, o f an 

individual is independent o f any mechanism which causes that individual's survival time 

to be censored at time c, where c<t (Collett 1994). When the censoring mechanism is 

not independent o f  survival time, informative censoring occurs and standard methods 

used for survival analysis are invalidated. Informative censoring is a particular problem 

when analysing individual measures summarising a patient’s quality o f life data over 

time and specifically for subject-based approaches to quality-adjusted survival analysis 

and will be discussed further in Chapters 6 and 8.

There is a large literature describing methods for the analysis o f survival data (e.g. 

Kalbfleisch and Prentice 1980, Collett 1994, Parmar and Machin 1995). The aim o f this 

chapter is to summarise the basic methods for investigating survival data that will be 

relevant to later chapters, in particular Chapters 7-10. Section 3.2 introduces the 

survivor and hazard functions, which form the basis for all survival analysis. These 

functions can be estimated non-parametrically as described in Sections 3.3 and 3.4 or 

parametrically when the data are believed to follow a known distribution as described in 

Section 3.5. All o f these sections give an initial insight into the survivor and hazard 

functions for the MIC and ESP AC data. Section 3.6 provides a summary o f the chapter 

and highlights the relevance o f findings to later chapters. Models for survival data, 

which give most flexibility and will be most useful in the simultaneous analysis, are 

described later in Chapter 7.

3.2 Survivor and Hazard Functions

Survival data is generally described and modelled in terms o f two related functions, the 

survivor function and the hazard function. The survivor function, S(t), represents the 

probability that an individual survives from the time origin to some time beyond t. It is 

given by:

S(t) = p (T > t)  = l -  Fit) = 1 -  f  f(u )  du [3.1]Ju=0
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where T is the random variable representing survival time, and the distribution o f  

survival times is described by fit), the probability density function, and F(t), the 

associated cumulative distribution function.

The hazard function, h (t\  is defined as:

lim
m = A .

Ar —> 0
f P { t  <t < t + At \ t <t)^ 

A t
[3.2]

It represents the instantaneous death rate for an individual surviving to time t and is 

linked to the probability density function and survivor function by:

h(t) = i m  = - — \0g S (t)  [3.3]
S(t) dt 1

The survivor function and hazard function can be estimated from observed data. If the 

form o f f(t) is not specified then non-parametric procedures can be used, otherwise 

parametric models can be fitted to the data.

3.3 Non-Parametric Estimation of the Survivor Function

3.3.1 Kaplan-Meier Method

The survivor function can be estimated non-parametrically from observed data, both 

censored and uncensored, using the Kaplan-Meier method. This method is also called 

the product-limit method and is based on maximum likelihood estimation (Kaplan and 

Meier 1958). Suppose deaths occur at distinct times t l<t2<..:<t<...<tn then the Kaplan- 

Meier estimate o f the survivor function is given by

f
m =n

> 1

d A
1— J-  

n
for all t k< t [3.4]

J
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where nj is the number individuals alive just before time tj and dj is the number o f deaths 

at time tj. Survival times censored at time tj are assumed to occur immediately after the 

death time when computing the values o f the tj. Confidence intervals for the survivor 

function can be calculated using a variety o f different methods (Collett 1994, Parmar 

and Machin 1995).

The calculation o f Kaplan-Meier estimates is based on the assumption that the deaths o f  

the individuals in the sample occur independently o f one another. This allows the 

probabilities o f surviving one interval to the next to be multiplied together to give the 

survivor function. It should also be noted that the Kaplan-Meier method gives the 

maximum likelihood estimate o f  the survivor function only if  deaths and censoring are 

independent (Kaplan and Meier 1958). Thus, for unbiased Kaplan-Meier estimates, it is 

necessary for the censoring mechanism to be non-informative.

Kaplan-Meier estimates o f  the survivor function S(t) can be plotted against time t as a 

survival curve. The survival curve is a stepped plot with the survivor function dropping 

instantaneously at each time o f death and remaining level between successive death 

times. These provide a useful summary o f the data and can be used to determine 

summary statistics. Median survival time is the value o f t for which S(t)=0.5 whilst 

mean survival time is given by the area under the curve. The value for mean survival 

time is biased if  the largest observed survival time is censored. By restricting the area 

under the curve to a specific time period whose upper limit is less than or equal to the 

largest observed death time, then the mean within this time period will be unbiased. In 

SAS, the LEFETEST procedure (SAS Institute 1992) calculates Kaplan-Meier estimates, 

plots survival curves and gives summary statistics.

3.3.2 Non-Parametric Comparison of Survivor Functions

Plotting Kaplan-Meier survival curves for different groups o f patients can be used to 

compare the groups descriptively, along with the summary statistics such as the median. 

A more formal comparison o f survivor functions can be made using various non- 

parametric tests. Survival in two or more groups o f patients can be compared by using a 

non-parametric test such as the log-rank test, also called the Mantel-Cox test (Parmar
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and Machin 1995, Collett 1994). This is the most widely used method for comparing 

survival curves.

The method essentially calculates at each death time, for each group, the expected 

number o f deaths under the null hypothesis o f no difference between groups. These are 

then summed to give the total expected number o f deaths in each group, say £, for group 

i. The log-rank test compares the observed number o f deaths in each group, say for 

group /, to the expected number by calculating the test statistic

and comparing it to a chi-square distribution with g - 1 degrees o f freedom where g  is the 

number o f groups.

Alternatively the Mantel-Haenszel version o f the log-rank test and weighted Mantel- 

Haenszel versions may be more suitable than the log-rank test when the number o f  

events is small or the assumption o f proportional hazards is not valid for the alternative 

hypothesis (Parmar and Machin 1995).

3.3.3 Non-Parametric Estimation of Survivor Functions in the MIC Study

Survival time in the MIC trial was defined as time from date o f entry to trial to date o f  

death from any cause. Of the 351 patients in the MIC trial, all except 7 patients were 

dead at the time o f analysis. The Kaplan-Meier estimates o f the survivor function for all 

patients (N=351) on each treatment arm in the MIC trial is shown in Figure 3.1. The 

curves suggest that chemotherapy is beneficial to survival. The median survival time for 

chemotherapy was 6.7 months (95% confidence interval (Cl): 5.4 to 8.0) compared to 

4.8 months (95%CI: 4.0 to 5.7) for standard palliative care. A log-rank test shows that 

this difference in survival is statistically significant at the 5% significance level 

(p=0.03).

This thesis is specifically interested in the patients in the quality o f life study (n=109). 

The Kaplan-Meier survival curves for these patients are shown in Figure 3.2a. All
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patients in the analysis are dead except two with censored survival times greater than 36 

months. The medians were 7.9 months versus 4.2 months for CT and PAL respectively 

and a log-rank test showed the difference in survival to be statistically significant at the 

5% level (p=0.003). The subgroup of patients in the quality of life study had a more 

extreme treatment difference in terms of survival than the overall trial. Quality o f life 

data were only collected during the treatment phase of the trial, that is the first 15 weeks 

from entry (see Section 4.5), and therefore the survival during this time is particularly 

important. Figure 3.2b shows the Kaplan-Meier curves for the first 15 weeks o f the trial. 

During this time all patients had full follow-up in terms of survival and 28 patients died, 

12 on CT and 16 on PAL. The curves suggest that survival is superior on the CT arm 

during this time. Medians were not reached but the mean survival time within 15 weeks 

was 13.9 (standard error = 0.35) for the CT arm and 12.8 (standard error = 0.56) for the 

PAL arm. If all patients with survival greater than 15 weeks are censored at 15 weeks 

then a log-rank test shows this difference to be statistically significant at the 5% level

(p=0.02).

Figure 3.1 Kaplan-Meier survivor functions for all MIC trial patients (N=351; 
circles indicate censored survival times)
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Figure 3.2 Kaplan-M eier survivor functions for patients in MIC quality of life 
study (N=109)
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3.3.4 Non-Parametric Estimation of Survivor Functions in the ESPAC Study

Survival time in the ESPAC trial was defined as time from date of surgery to date of 

death from any cause. O f the 175 patients in the ESPAC study, 126 (72%) patients were 

dead at the time o f analysis o f which 105 died within 2 years of surgery. The Kaplan- 

Meier estimates o f the survivor function for each treatment arm are shown in Figure 3.3, 

with censored survival times shown by circles. Some patients are censored relatively 

early on in the trial, with 9 censored within 1 year (4 on CT and 5 on NoCT) and 22 

censored within 2 years (10 on CT and 12 on NoCT). The curves suggest that 

chemotherapy is beneficial to survival. The median survival time for CT was 19.7 

months compared to 13.5 months for NoCT. Mean survival within 24 months was 17.3 

(standard error=0.79) for CT compared to 15.0 (standard error=0.78) for NoCT. A log- 

rank test showed the difference in survival to be statistically significant at the 5% 

significance level (p=0.02) as it was in the main trial (p=0.0005; Neoptolemos et al 

2001).

Figure 3.3 Kaplan-Meier survivor functions for patients in the ESPAC study 
(circles indicate censored survival times)
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3.4 Non-Parametric Estimation of the Hazard Function

3.4.1 Method and Application to the MIC and ESPAC Data

The hazard function can be estimated non-parametrically by dividing time into a series 

o f time intervals and estimating the hazard rate in each interval. The hazard rate for a 

specific time interval is the risk o f death within the interval given survival to the start o f  

the interval. It is estimated by dividing the number o f deaths by the total exposure to the 

risk o f death within the interval. The total exposure to the risk o f death can be calculated 

exactly by summing the individual follow-up times within the interval.

In the Kaplan-Meier method for the estimation o f the hazard function (Collett 1994), the 

time intervals are defined by the actual death times. Suppose deaths occur at distinct 

times t ]<t2<...<t<...<tn then the Kaplan-Meier estimate o f the hazard function at time t 

where tj < t<  tj+\ is given by

d
h(t) = — — for t j < t <  tJ+1 [3.6]

rijTj

where rij is the number at risk at time tj, dj is the number o f deaths in the interval and Tj 

is the width o f the interval. This assumes the hazard function remains constant between 

successive death times and that patients who are censored within the interval are 

actually at risk for the whole interval. These are the same assumptions that are made 

when calculating the equivalent Kaplan-Meier estimate o f the survivor function.

Estimates o f the hazard function for the MIC and ESPAC studies are calculated using 

the Kaplan-Meier method and fixed-width time intervals (see Figures 3.4 and 3.5). The 

hazard functions for the MIC study are shown for the first 15 weeks from trial entry. 

During this time the hazard is generally higher for PAL compared to CT and seems to 

rise over time for PAL and remain relatively constant for CT. For the ESPAC study the 

hazard functions are shown for 24 months from trial entry. Hazards on both arms rise 

initially with the NoCT arm rising to a higher level. The hazard then seems to reach a 

plateau for the CT arm and reduce slightly for the NoCT arm.
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Figure 3.4: Estimates of the hazard functions for the MIC study within 15 weeks of 
entry’ to trial (see Figure 3.2b for relevant numbers at risk over time)

(a) Kaplan-M eier estimate

t  ( W M M

(b) Based on weekly hazard rates
h(i>
0.13: 

0.12 

0.111 

0.10 

0.09 

0.08 

0.07! 

0.06 

0.05 

0.04 

0.03 

0.02 
0.01 

0.00
0 1 2 3 4 5  6 7  6 9 t ) T 1 1 2 1 3 1 4 1 5

t (WMki)

(c) Based on 3-weekly hazard rates
h ( l )

0.06

0.04

0.03

0.02

0.01

0.00
0 1 2 3  4 5 6 7 8 9 1 0  11 1 2 1 3 1 4 1 5

t  ( W N k l )

29



CHAPTER 3: BASIC SURVIVAL ANALYSIS

Figure 3.5: Estimates of the hazard functions for the ESPAC study within 24 
months from time of surgery (see Figure 3.3 for relevant numbers at risk over 
time)
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3.4.2 Hazard Ratio

The hazard function can be estimated for different groups of patients. At any time t, the 

hazard ratio for two groups of patients is the ratio of the hazard rates at this time and is a 

measure of the relative survival experience in the two groups. Many survival analysis 

techniques assume proportional hazards i.e. that this hazard ratio is constant over time. 

In the situation when the survival for two groups is being compared, the log-rank test is 

testing the null hypothesis that the ratio of the hazard rates in the two groups is equal to 

1.

Using the total number of deaths and the total exposure to the risk of death over the 

whole follow-up period, the overall hazard rates in two groups can be estimated and 

these can be divided to give a crude estimate of the hazard ratio. More formally hazard 

ratios are generally estimated as follows:

HR = Ox! Ex 
O il Ei

with SE (log HR) = 1 1
—  +  —  

Ex E
[3.7]

Where 0\ and O2 are the observed numbers of deaths in groups 1 and 2 and E\ and E2 

are the expected number of deaths in each group of patients calculated using the log- 

rank method. An alternative Mantel-Haenszel version of the hazard ratio and associated 

standard error is also available which may be preferable when the number of events is 

small (Parmar and Machin 1995).

In the MIC study the crude estimates of the hazard rates over the whole study period 

were 0.0211 on CT and 0.0370 on PAL, giving an estimated hazard ratio of 0.57. This is 

very similar to that calculated using the log-rank method given in equation [3.7], which 

gives a hazard ratio of 0.56 (95% Cl: 0.37 to 0.86). The crude estimates of the hazard 

rates over the first 15 weeks were 0.0129 for CT and 0.0298 for PAL giving an 

estimated hazard ratio of 0.43, comparable to that using the log-rank method of 0.42 

(95% Cl: 0.19 to 0.90). These are all more extreme than the hazard ratio in the whole 

trial of 0.79 (95% Cl: 0.64 to 0.98).
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In the ESPAC study the crude estimates of the hazard rates over the whole study period 

were 0.0331 on CT compared to 0.0488 on NoCT giving an estimated HR of 0.68. This 

is very similar to that calculated using the log-rank method of 0.66 (95% Cl: 0.47 to 

0.95).

The validity of the assumption of proportional hazards can be assessed using a log 

cumulative hazard plot. This is a graph of log(-log[S(/)]) against log t where S{t) is the 

survivor function estimated by Kaplan-Meier. If the hazards are proportional then the 

curves for the two groups should be approximately parallel. In the MIC study, the 

hazards were reasonable proportional but less so in the early phase (see Figure 3.6a) and 

similarly for the ESPAC data (see Figure 3.6b).
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Figure 3.6: Log cumulative hazard plots for the MIC and ESPAC studies
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3.5 Parametric Approach to Estimation

In some situations it may be appropriate to assume a parametric distribution fory(/), the 

probability density function of the survival time. The most common distributions used 

to model survival data are the exponential and Weibull distributions; the exponential 

being a special form of Weibull distribution. This thesis only considers these two 

distributions but in general, other distributions such as log-normal, log-logistic and 

gamma may be more appropriate (Collett 1994).

If survival times follow an exponential distribution then

f[t) = X exp (-X t) for A>0 [3.8]

and the survivor function is given by

S(t) = exp (-X t) [3.9]

and the hazard function is given by

h(i) = X [3.10]

Thus, an exponential distribution assumes that the hazard rate is constant over time.

If a constant hazard rate is not a valid assumption then a Weibull distribution may be a 

more appropriate distribution for survival times. In this case

fit) = X y trX exp (-X tY) for A, y> 0  [3.11]

and the survivor function is given by

S{t) = exp (-X tY) [3.12]
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and the hazard function is given by

h ( t)= X y f ' [3.13]

The parameters y  and k  determine the shape and scale of the hazard function and are 

thus called the shape and scale parameters respectively. In the special case of y=\, the 

distribution of survival times is exponential and the hazard is constant. If y>\, the 

hazard increases with time and if 0<}<\ then the hazard decreases monotonically.

The suitability of these parametric distributions can be assessed using a log-cumulative 

hazard plot as described in Section 3.4. If a Weibull distribution is appropriate then the 

line will be approximately linear, with the slope of the line giving an estimate of the 

shape parameter for the distribution. If an exponential distribution is appropriate then 

the slope of the line will be approximately equal to one. The plots for both the MIC and 

ESPAC studies shown in Figure 3.6 are approximately linear but with slopes greater 

than 1, indicating that a Weibull may be a more appropriate distribution for the data 

than an exponential. Examining the plots of the survivor and hazard functions may also 

give some insight into which parametric distribution may be appropriate for the data. 

The hazard functions plotted in Figures 3.4 and 3.5 do not appear to be constant over 

time, indicating that an exponential distribution may not be appropriate for these data.

The parameters for a distribution are estimated from the survival data using the method 

of maximum likelihood. In SAS, the LIFEREG procedure (SAS Institute Inc 1989) fits 

parametric models to survival data. Modelling survival data is considered further in 

Chapter 7 but here parametric distributions are estimated for each treatment group 

separately in the MIC and ESPAC studies to illustrate the distributions discussed. In the 

MIC study estimation relates to just the first 15 weeks from trial entry with all survival 

times greater than this censored at 15 weeks, whilst estimation for the ESPAC study 

relates to the whole follow-up time. For each study, the exponential and Weibull 

distributions that best fit the data in each treatment group are shown in Figures 3.7 and 

3.8. In particular the Kaplan-Meier survivor function is overlayed with the parametric 

survivor functions. In both studies, the Weibull appears be more consistent with the data 

than the exponential. The parameter estimates together with their associated 95%
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confidence intervals are shown in Table 3.1. The 95% confidence intervals for the 

Weibull shape parameters for the PAL group in MIC study and both treatment groups in 

the ESPAC study do not include the value 1 further indicating that the Weibull may be a 

more appropriate distribution for the data than the exponential.

Table 3.1: Estimates (and 95% confidence intervals) for parameters of exponential 
and Weibull distributions for MIC and ESPAC survival data by treatment

Study Distribution Parameter CT PAL/ NoCT
MIC Exponential X 0.0129 

(0.0056, 0.0202)
0.0298 

(0.0152, 0.0444)
Weibull X (scale) 0.0021 

(-0.0032, 0.0075)
0.0025 

(-0.0035, 0.0085)
y (shape) 1.68 

(0.75, 2.60)
1.95 

(1.05, 2.84)
ESPAC Exponential X 0.0331 

(0.0247, 0.0416)
0.0488

(0.0371,0.0605)
Weibull X (scale) 0.0107 

(0.0004, 0.0210)
0.0112 

(0.0014, 0.0210)
y (shape) 1.35 

(1.07, 1.62)
1.49 

(1.22, 1.76)
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Figure 3.7: Param etric survival curves within 15 weeks of trial entry for each 
treatm ent group in the MIC data (CT — ; PAL — )
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Figure 3.8: Parametric survival curves for each treatment group in the ESPAC 
study (CT — ; NoCT — )
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3.6 Summary and Discussion

This chapter introduced the basic issues and methodology for analysing survival data. 

Examining the survivor functions gives some indication as to the differential dropout of 

patients from the quality o f life study due to death. In addition, examining hazard 

functions and cumulative log hazard plots gives some insight into the appropriate 

models that can be used for the survival data in the simultaneous analysis with quality 

o f life.

Survival analysis o f the patients in the MIC quality o f life study focused on the 15 

weeks from trial entry, the time period during which the quality o f life data are being 

collected. During this time, 28 (26%) patients died and therefore dropped out o f the 

quality o f life study, which could cause problems for any standard analysis o f quality of  

life data. The problem is exacerbated by the fact that there appears to be a higher death 

rate and therefore greater dropout on the PAL arm compared to the CT arm. This 

indicates that simultaneous analysis o f quality o f life and survival data are required for 

an unbiased analysis o f the data. It should also be noted from the survival analysis that 

all patients have full follow-up in terms o f survival for the 15-week period from entry to 

trial and therefore there are no censored survival times within this time period. This will 

be beneficial in the subject-based approaches to quality-adjusted survival analysis 

discussed in Chapter 8. In terms o f modelling, the hazard does not appear to be constant 

over the 15-week period, with a Weibull distribution appearing to adequately represent 

the data, and the assumption o f proportional hazards could be considered to be valid.

In the ESPAC study, quality o f life is assessed until death and the time frame for the 

longitudinal quality o f life analysis is defined by the longest survival time, which is a 

censored survival time o f 55 months. All deaths that occur prior to this time will cause 

problems for any standard analysis o f the longitudinal quality o f life data. Also, with 

deaths occurring early in the trial, it is not possible to restrict the analysis to a time 

interval during which no patients die. In addition, as with the MIC study, there is a 

differential rate o f dropout due to death in the two treatment arms. All o f these facts 

indicate that, as with the MIC study, simultaneous analysis o f quality o f life and 

survival data are required for an unbiased analysis o f the quality o f life data. Note that
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in this study some patients have survival times censored relatively early and these will 

cause problems in the subject-based approaches to quality-adjusted survival analysis 

discussed in Chapter 8. As with the MIC study, in terms of modelling, the hazard does 

not appear to be constant with a Weibull distribution appearing to adequately represent 

the data, and the assumption of proportional hazards could be considered to be valid.

The analysis described in this chapter is extended in Chapter 7 to consider models for 

the survival data. Models that make no assumptions about the distribution of the data 

are considered in addition to those that assume parametric distributions such as 

exponential, Weibull and piecewise exponential. Model parameters are estimated using 

both a classical and Bayesian approach.
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CHAPTER 4: ASSESSMENT OF QUALITY OF LIFE

4.1 Introduction

The aim of this chapter is to summarise the issues relating to the assessment of quality 

of life in a longitudinal study that are relevant to the analysis presented in later chapters. 

In particular, the type of measures used to reflect quality of life, the multivariate nature 

of the data and the timings of the assessments, are all issues that will impact on the 

appropriate analysis of the data.

Quality of life in its most general context is a concept incorporating all factors that 

might impact on an individual’s life. In health service research it is more usual to 

consider health-related quality of life, which includes only those factors that affect an 

individual’s health. There is no general agreement regarding the identification of such 

factors (Aaronson 1989, Schumacher et al 1991).

The World Health Organisation defines health as 4 a state of complete physical, mental 

and social well-being, and not merely the absence of disease and infirmity’ (World 

Health Organisation 1947). Quality of life is often referred to in these terms. For 

example, the dimensions comprising quality of life have been specified as follows 

(Schumacher et al 1991):

• symptoms of disease and side-effects of treatment (e.g. nausea, pain, anorexia)

• physical and functional status (e.g. mobility, self-care, fatigue)

• emotional status (e.g. anxiety, depression, satisfaction with care)

• social functioning (e.g. family interaction, work/recreation, time with friends)

In this thesis a pragmatic view is taken and quality of life is accepted as any measure 

that purports to reflect health-related quality of life or some aspect of it.

There are many issues to consider when attempting to measure quality of life, such as 

what questions should be asked, how should responses be recorded, when should 

questions be asked, of whom should questions be asked and who should do the asking. 

These and other aspects of measuring quality of life data in clinical trials have been
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extensively reviewed and discussed elsewhere (Fayers and Jones 1983, Aaronson 1989, 

Fitzpatrick et al 1992, Osoba 1998, Fayers and Machin 2000).

In this chapter, the different methods for measuring quality of life in patients and 

options for dealing with the multivariate data that are produced are described in 

Sections 4.2 and 4.3, with specific details of the measures in the MIC and ESP AC 

studies detailed in Section 4.4. The issues relating to the timing of quality of life 

assessments, with specific reference to the illustrative studies, are described in Section 

4.5. Although some studies may only be interested in the assessment of quality of life at 

a single time point, in this thesis the interest is on quality of life data that are collected 

on a number of points over time. Section 4.6 summarises the issues and the relevance to 

later chapters in the thesis.

4.2 Quality of Life Measures

4.2.1 Instruments for Measuring Quality of Life

The quality of life of a patient is usually measured using an instrument in the form of a 

questionnaire designed for patient completion. The questionnaire generally comprises 

sets of questions or items relating to the various dimensions of quality of life, such as 

the physical, psychological or social. Responses may be ‘yes/no’, a series of ordered 

categories or on a linear analogue scale.

Many instruments are used in the assessment of quality of life (Bowling 1991, Bowling 

1996, Fallowfield 1990, Campbell and Gibbard 1998), such as the Rotterdam Symptom 

Checklist, Nottingham Health Profile, Sickness Impact Profile, Hospital Anxiety and 

Depression Scale and SF36. Generic quality of life instruments measure general aspects 

of quality of life and are applicable in a wide range of research settings, whilst non

generic instruments are relevant for a specific disease or treatment. Some questionnaires 

are dimension-specific in that they only ask questions relating to a particular aspect of 

quality of life e.g. Hospital Anxiety and Depression Scale. Some questionnaires allow 

the individual to choose and rate the specific aspects of quality of life that are important
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to them. The self-evaluation inventory for quality of life (SEIQOL) is an example of 

such an instrument (Waldron et al 1999).

Much work has been done to test the adequacy of such instruments. The adequacy is 

determined by a number of different criteria (Fitzpatrick et al 1998) including for 

example validity and reliability. An instrument is valid if it is actually measuring what it 

is designed to measure and it is reliable if, all things being equal, it measures 

consistently from one occasion to the next. There has been much discussion regarding 

the requirements of quality of life measures and methods for assessing such 

requirements, including the use of Cronbach alpha coefficients and factor analysis 

(Hays et al 1993, Fitzpatrick et al 1998, Hays et al 1998, Fayers and Machin 1998a, 

Fayers and Machin 2000).

The questionnaires described so far yield descriptive measures of quality of life, also 

called profile or psychometric measures. Some questionnaires yield a special type of 

quality of life measure called a utility. The responses to the questionnaire enable the 

patient to be allocated to a health state for which a utility value has been pre-determined 

(see Section 4.2.3). The relationship between descriptive and valuational approaches has 

been explored (Bosch et al 1996, Revicki and Kaplan 1993, Kaplan 1998) and measures 

from each approach are discussed in more detail in Sections 4.2.2, 4.2.3 and 4.2.4 

below.

4.2.2 Descriptive Measures

Descriptive measures of quality of life may take various forms (binary, ordinal, discrete 

or continuous) for which a variety of distributional assumptions are appropriate. 

Responses to each item on a questionnaire may yield binary data from a yes/no 

response, ordinal data from a categorical scale, discrete data such as how many times a 

patient has vomited or how many pills for pain relief a patient has taken or continuous 

data such as from a linear analogue scale. The aggregation of items, to give a global 

measurement of a dimension or of overall quality of life, results in data that is usually 

treated as continuous, despite the fact that the global measure may take only values 

from a restricted range. The distribution of quality of life variables as measured from a 

linear analogue scale or as an aggregated global score may or may not be normally
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distributed. Sometimes data may be transformed to create normally distributed data for 

analysis, but on other occasions (e.g. when there is a dominance of a particular response 

value, perhaps corresponding to 'no problem') this may be difficult.

4.2.3 Utility Measures

The health states experienced by an individual during the course of their disease and 

treatment are each associated with a quality of life. Each can be assigned a value that 

measures the preference of the individual for a health state relative to other states. The 

value reflects the quality of life in that health state. The value generally lies between 0 

representing death and 1 representing perfect health, although it can be negative, 

representing health states judged to be worse than death. Technically, these values are 

utilities when they are measured under conditions such that an individual is making 

decisions with uncertain outcomes (von Neumann and Morgenstem 1953), but they may 

approximate to utilities when measured under other conditions (Torrance 1986).

In a quality of life study, questionnaires determine which health state the patient is in 

and the corresponding pre-determined utility value can be attached. The utility values 

associated with health states are measured by questioning a sample of subjects and 

eliciting their relative preferences for health states. The subjects could be patients, 

health professionals or the general public. Methods such as time trade-off and standard 

gamble (Torrance 1986, 1987) are commonly used methods for evaluating utilities of 

health states. There are a number of utility-based questionnaires used in quality of life 

studies but one of the most widely used examples is the EQ-5D (Rabin and de Charro 

2001). The EQ-5D consists of 5 questions each with three possible responses and the 

different combinations of the 5 responses define 243 different health states, each of 

which has a utility value determined from a previously conducted large-scale valuation 

study.

The advantage of a utility-based questionnaire is that it generally yields a single value 

as a measure of quality of life. The fact that the measure is bounded at each end by a 

value with a clear clinical meaning facilitates the interpretation of the score. In addition 

the utility has the advantage of being the measure needed in quality-adjusted survival
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analysis (see Chapter 8). The utility measure is also necessary when costs of treatment 

are balanced against quality of life and survival in a cost-utility analysis.

4.2.4 Translating Descriptive Measures Into Utility-Type Measures

Many quality of life studies use instruments that yield descriptive measures rather than 

utility measures. Some of the methods for simultaneous analysis require utility 

measures. Ideally, the proposed method of analysis should be determined at the design 

stage of a study and appropriate measures chosen accordingly. Otherwise it may be 

desirable to estimate utility values from the descriptive measures that are recorded in the 

study. For some instruments, it may be possible to convert the descriptive measure into 

a proper utility measure (Brazier et al 2002, Chancellor et al 1997). If no validated 

conversion is available, the descriptive measure can be translated onto a 0 to 1 scale to 

create a pseudo-utility measure and may be treated like a utility. It should be noted 

however that these translated scores are not proper valuations of quality of life, they 

merely reflect the level of quality of life of the patient on a 0 to 1 scale. Methods of 

analysis that are based on utility values, such as quality-adjusted survival analysis 

described in Chapter 8, can be performed with pseudo-utilities but the results require 

cautious interpretation.

4.3 Handling the Multivariate Nature of the Quality of Life Endpoint

The quality of life data measured in a longitudinal study is generally multivariate in 

nature. At one extreme, quality of life can be measured by a single global measurement 

such as the Kamofsky Index (Kamofsky and Burchenal 1949), whilst at the other 

extreme, assessment is made via a questionnaire containing a multitude of items 

measuring a variety of conceptual dimensions. The Sickness Impact Profile for example 

measures 12 dimensions of quality of life via a questionnaire containing 136 items 

(Bergner et al 1981). The fact that quality of life can be considered in terms of 

individual items or in terms of separate dimensions means that as an endpoint, it is 

potentially multivariate in nature. In some situations it may be desirable to consider 

each item or dimension as a separate quality of life endpoint. In a descriptive analysis 

this will only cause problems in terms of presentation and overall decisions regarding
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the optimal treatment may be difficult if the different items or dimensions give 

conflicting conclusions. If hypothesis testing is involved, analysis of multiple endpoints 

will lead to the problem of multiple testing, where the probability of a false positive 

finding increases as the number of tests carried out increases.

In some studies it may be possible to limit the amount of hypothesis testing by 

specifying in advance a few key quality of life measures on which hypotheses will be 

tested, leaving the remaining variables to be analysed purely descriptively (Cox et al 

1992, Pocock 1991, Nayfield et al 1992, Fletcher et al 1992). If this approach is not 

practical or desirable then the analysis will need to account for the multivariate nature 

of the quality of life endpoint.

There are a variety of ways of handling multiple endpoints in clinical trials (Zhang et al 

1997). One approach is to combine multiple endpoints to create global scores before 

analysis. Another approach is the post-analysis combination of results from the 

univariate analysis of each separate endpoint. The application of such approaches to 

quality of life data has been discussed (Schumacher et al 1991, Pocock 1991) and some 

methods have been applied and compared in the analysis of quality of life data (Tandon 

1990). An alternative to these methods is to use a hierarchical approach to the analysis 

and this has been considered for quality of life data (Beacon 1996, Beacon and 

Thompson 1996). The essentials of each of these approaches are considered below. In 

this thesis multiple endpoints are handled using global scores and by restricting analysis 

to a single global measure of quality of life. The extension of methods to accommodate 

the multivariate nature of quality of life data is discussed throughout the thesis.

4.3.1 Combining Multiple Endpoints to Create Global Scores

For each individual, the values of the items that make up a quality of life endpoint can 

be combined in some way to form a global score. In some cases the items within each 

quality of life dimension may be combined to create dimension-specific global scores, 

whilst in other cases an overall quality of life global score may be created either by 

combining all items on a questionnaire or by combining dimension-specific global 

scores. Use of a single global quality of life score simplifies statistical analysis and 

should be aimed for when sensible and justifiable (Olschewski and Schumacher 1990).
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If treatments are likely to affect dimensions differently then combining dimensions into 

a global score may not be sensible (Fletcher et al 1992).

Global scores can be calculated using either an unweighted or a weighted sum. It is 

suggested that unweighted sums should only be used to combine items that are highly 

positively correlated (Olschewski and Schumacher 1990). On the other hand, a 

weighted sum may make interpretation difficult and the weights used may be 

controversial (Fletcher et al 1992). Weights can be determined either from the data 

using scores from a factor analysis, from decision theory using utility analysis 

techniques or arbitrarily (Cox et al 1992). Aggregation using data-oriented procedures 

has been recommended (Olschewski and Schumacher 1990). Most validated 

questionnaires give specific instructions on how to combine items to form global scores 

(for example Aaronson et al 1993).

A method for calculating global scores proposed by O'Brien (O’Brien 1984) has been 

applied to quality of life data (Tandon 1990, Tandon et al 1989). It is a non-parametric 

approach and creates global scores from the ranks of the item values rather than the 

actual data values. The data for all treatment groups are pooled and, for each variable in 

the multivariate quality of life endpoint, the values across all individuals are ranked. A 

global score is created for each individual by summing the ranks for all variables.

Calculating global scores can be problematic if data are missing on some of the items 

within a score (Fayers et al 1998). Patients will fail to respond to single items on an 

otherwise complete questionnaire for a number of different reasons; in some cases the 

question will have been omitted unintentionally, in other cases it might be that the 

question was not applicable and in other situations the patient may perceive the question 

to be too intrusive. If such missing data can be assumed to be missing at random then 

they will not be a major problem. This assumption would be untenable in situations 

where consistent non-response to an item suggests that the question is inappropriate or 

difficult to answer and hence is not missing at random.

A possible solution to this problem is to impute the missing values. This is only feasible 

if they are limited in number. In a longitudinal study, if a subject has a missing value for 

an item then the value could reasonably be imputed from:
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• values of other items within the dimension for that subject;

• values of other items in the subject's questionnaire;

• values of the item on the subject's questionnaires at time points on either side of the

missing value;

• baseline patient characteristics and survival;

• clinical measures that may relate to quality of life taken over time

In general the formula for calculating global scores can incorporate missing data by 

adjusting for the number of items involved in the calculation. Using a mean rather than 

a sum allows accommodation of missing values into the global score since the mean can 

be calculated for a reduced number of items. Alternatively, expressing the sum as the 

percentage of the maximum achievable score (Fletcher et al 1992) allows for the 

possibility of a reduced number of items. This approach is indirectly imputing the 

missing value using the other items within the dimension. If too many of the items 

within the global score are missing or if the assumption of missing at random is 

untenable, then the global score should be recorded as missing if any item within it is 

missing.

4.3.2 Combining Results from Univariate Tests on Multiple Endpoints

The simplest method for testing a global null hypothesis of no treatment effect, using 

the results from multiple univariate tests, is to use a Bonferroni-type adjustment. The p- 

values from the multiple univariate tests are adjusted by multiplying each p-value by the 

number of tests carried out. Each endpoint can be assessed using these adjusted p-values 

or a global null hypothesis can be assessed using the minimum p-value. This method 

has been recommended for use with quality of life data (Cox et al 1992) and has been 

applied and compared to other methods in a quality of life setting (Tandon 1990). The 

main drawback with the global null hypothesis approach is that it confines attention to 

the smallest p-value and may be too conservative.

A parametric method for combining results from multiple univariate t-tests, originally 

proposed by O'Brien (O’Brien 1984) but developed by others (Pocock et al 1987), has
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been applied to quality of life data (Tandon 1990; Tandon et al 1989). The following 

test statistic can be used to assess a global null hypothesis of no treatment effect:

f s ‘ t / ( f s ‘ j f  [4.1]

where J is a vector of l's, S is an estimated correlation matrix for the multiple measures 

and / is a vector of t-statistics from the separate univariate t-tests. The test statistic given 

in [4.1] has an asymptotic standard normal distribution.

The main drawback of these methods is that they do not give an estimate of the 

treatment effect, they just provide a test statistic. Such methods will not be pursued 

further in this thesis.

4.3.3 Hierarchical Approach

Multilevel models have been advocated for the analysis of data that have a hierarchical 

structure (Goldstein 1995). Longitudinal data can be thought of as hierarchical data with 

level one of the hierarchy being observations over time within a subject and level two 

being the subject. Multilevel models have been used to analyse longitudinal quality of 

life data (Beacon 1996, Beacon and Thompson 1996) and their application is discussed 

in more detail in Chapter 6. The hierarchical approach provides a means of handling the 

multivariate nature of the quality of life endpoint (Beacon 1996, Beacon and Thompson 

1996). The multiple dimensions that constitute quality of life can simultaneously be 

analysed in a multilevel model by adding an extra level to the standard longitudinal data 

model, with the lowest level representing the various quality of life dimensions.

Multilevel models have the advantage over methods discussed previously that they 

provide estimates of the treatment effect as well as test statistics. Treatment effects are 

estimated for each dimension separately and, if appropriate, an overall summary 

estimate may be obtained. The model also allows the correlation between the measures 

over time for different dimensions to be estimated. Multilevel models are flexible in that 

they can cope with situations where some of the dimension scores may be missing for 

some patients. The application of multilevel models to quality of life data in general 

however is problematic since the method assumes the missing data mechanism is
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ignorable, which may not be true for quality of life data. Extending such hierarchical 

models to include a model for survival data in a joint model as described in Chapter 10 

overcomes some of the problems of non-ignorable missing data.

4.4 Quality of Life Measures in the MIC and ESPAC Studies

4.4.1 MIC Study

Quality of life was assessed in a subgroup of 109 of the 351 patients in the trial. Quality 

of life was assessed using questionnaires completed by the patients with help when 

needed from a dedicated quality of life research nurse. The questionnaire was designed 

specifically for the trial but was based on the lung cancer module of the quality-of-life 

questionnaire designed by the European Organisation for Research and Treatment of 

Cancer (EORTC), called the EORTC QLQ-LC13 (Aaronson et al 1993).

The questionnaire consisted of 12 questions evaluating various physical and 

psychological aspects of a patient’s quality of life, including a general question on 

malaise (see Table 1). Responses were given on a four-level ordered categorical scale, 

‘none’, ‘a little’, ’quite a bit’ and ‘very much’, and for analytical purposes were coded 

from 0 to 3 respectively.

Table 4.1: Questions from the MIC quality of life questionnaire

ITEM QUESTION
Cough Do you have a cough?
Severe Dyspnoea Do you get breathless on mild activity like dressing?
Moderate Dyspnoea Do you get breathless when walking on the flat?
Mild Dyspnoea Do you get breathless on stairs or walking uphill?
Haemoptysis Have you coughed blood?
Pain How much pain are you getting?
Appetite Have you noticed any loss of appetite?
Anxiety Have you been worrying?
Depression Have you been depressed?
Dysphagia Have you any difficulty swallowing?
Nausea Did you feel sick during or since your last treatment? (CT) 

Have you been feeling sick? (PAL)
Malaise Have you been feeling generally ill?
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A single measure that summarises all responses from the questionnaire was created by 

taking the mean of the responses to the 12 individual questions (MQS). In the case of 

questionnaires with missing responses, MQS was calculated as the mean of those 

questions with a response. Of the 392 questionnaires, 349 (89%) were completed fully, 

33 (8%) had one response missing, 8 (2%) had two missing responses and the remaining 

2 questionnaires had four and five missing.

MQS ranges from the best possible score of 0 (i.e. all symptoms rated as ‘none’) to the 

worst possible score of 3 (i.e. all symptoms rated as ‘very much’). In order to create a 

utility-type measure, this mean score was transformed to give a measure on a 0 to 1 

scale. The transformed score is calculated such that at one extreme, an MQS score of 0 

is translated to a value of 1 representing ‘best possible health’ and at the other extreme 

an MQS value of 3 is translated to a value 0.25, allowing all time after death to be 

scored as 0. This choice of transformation was subjective and results should be checked 

for their sensitivity to this definition. The transformed score, henceforth referred to as 

the global quality of life score (GQS), was calculated as follows:

GQS = [4.2]

The method for creating a global quality of life score using [4.2] follows the general 

principles specified by the EORTC for their quality of life questionnaire (Aaronson et al 

1993).

The full analysis of the data presented for a clinical audience includes a descriptive 

analysis of all individual questions in addition to testing hypotheses about GQS and the 

malaise question (MAL) (Billingham et al 1997). In this thesis, the analyses focus just 

on GQS and MAL as single global measures of quality of life. Despite the fact that GQS 

is made up of ordered categorical responses, the large number of questions contributing 

to the score results in a variable that is continuous in nature with a slightly skewed 

distribution over all questionnaires (see Figure 4.1a). The distribution of the ordinal 

variable MAL over all questionnaires also has a skewed distribution (See Figure 4.1b). 

There is an association between the values of GQS and MAL with mean GQS reducing
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for increasing values of MAL (mean GQS is 89, 79, 66, 53 for categories 0, 1, 2, 3 

respectively).

Figure 4.1 Distribution of global measures of quality of life in the MIC study 
across all assessments
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4.4.2 ESPAC Study

The quality of life instrument used in the ESPAC study was the core module of the 

cancer-specific questionnaire designed and validated by the European Organisation for 

Research into Treatment for Cancer called the EORTC QLQ-C30 (Aaronson et al 

1993). This contains 30 different questions measuring 15 different dimensions of 

quality of life. An additional questionnaire designed, specifically for pancreatic cancer, 

was also used. The main analysis of the study analysed all quality of life dimensions 

assessed by these questionnaires (Neoptolemos et al 2001). In this thesis, however, a 

single measure of quality of life known as the ‘global health status score’ is selected as 

the variable for analysis and, although simplistic, it nonetheless illustrates the essential 

elements of the various methods for simultaneous analysis and allows insight into the 

associated problems. The global health status score (GHSS) is constructed from 2 

questions each with a 7-level ordinal response (see Figure 4.2). If one of the questions is 

missing the score is calculated from the single non-missing response (Aaronson et al 

1993). Of the 710 questionnaires returned in the ESPAC study, 7 had a missing 

response for one of the two questions.
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Figure 4.2: Global health status score (GHSS) from the EORTC QLQ-C30

Q29: How would you rate your overall 
physical condition during the past week?

Q30: How would you rate your overall 
quality of life during the past week?

GHSS = Mean 1 xlOO

Very poor Excellent

1 2 3 4 5 6 7

1 2 3 4 5 6 7

>  100

where Mean = (029 + g30)/2

Values for GHSS range from 0 to 100 and take 13 equally-spaced possible values in this 

range. The distribution of the values in the ESPAC study (see Figure 4.3a) is affected by 

the fact that patients are more likely to give the same response to both questions (i.e. 

scores of 0, 16.67, 33.33, 50, 66.67, 83.33, 100) rather than different responses. By 

combining scores into a 7-level ordinal variable, the distribution of GHSS becomes 

more normal (see Figure 4.3b).

Figure 4.3 Distribution of GHSS in the ESPAC study
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4.5 Timing of Quality of Life Assessments

Quality of life data is generally longitudinal in nature. Some studies assess quality of 

life at one time point only or take a baseline measure and a follow-up measure, but 

generally quality of life is recorded at more than two time points during the course of a 

study. There can be any number of time points and these will not necessarily be evenly 

spaced or consistent across individuals.

4.5.1 Planned Versus Actual Timing

In most studies, the timing of the quality of life assessments will be planned for specific 

time points; sometimes assessments are planned for fixed times from date of entry to the 

trial e.g. 3 months, 6 months, 9 months etc, implying a pre-defined fixed time between 

assessments but often they are planned to relate to the timing of treatment and follow-up 

visits. In the first case, for administrative reasons or maybe due to delays by the patient 

in responding to the questionnaire, the actual timings may vary considerably from what 

was planned. In the latter situation, although theoretically patients should all receive 

treatment and be followed-up at approximately the same time points, the reality is that 

patients may differ greatly in these timings and consequently in the timings of the 

quality of life assessments. Delays in chemotherapy mean that timing in relation to date 

of entry to trial may be variable, but in relation to timing of treatment then the 

assessments may conform exactly to what was planned e.g. day 1 of each cycle.

One option is to allocate assessments to specific planned time points according to 

whether the actual timing falls within the pre-defined ‘window’ for that time point. This 

process is not straightforward. For example, more than one assessment may fall within a 

certain window and since only one assessment is required per time point, a subjective 

choice needs to be made as to which one to discard and which one to keep, or 

alternatively an average value could be used. The choice of window needs to be wide 

enough to minimise exclusions but narrow enough to give a true reflection of quality of 

life at that time point.
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Examining plots that show actual timing of each assessment for each patient in terms of 

time since entry to trial together with the planned times, will show how much variability 

there is in the actual timings around the planned ones. Examples are given for the MIC 

and ESPAC studies (see Figures 4.4 and 4.6 respectively) and for other studies 

(Fairclough 2002). This type of plot can also be produced to show timings in relation to 

timing of treatment received (see Figure 4.5).

4.5.2 Time Frame for the Quality of Life Study

The assessment of treatments in terms of quality of life is usually based on their effect 

on this outcome over time. Some studies, may be interested in the effects during a fixed 

time frame of interest, such as the treatment period or the first year from entry to trial 

for example. This can be defined at the design stage of the study such that quality of life 

data is only collected during this time or can be defined at the analysis stage in order to 

minimise the amount of missing data in the analysis. In other studies the focus may be 

on the quality of life during a patient-related time frame, such as from entry to trial until 

disease progression or death. In this case, the length of study will vary for each patient 

but the overall time frame of the longitudinal analysis will be defined by the longest 

individual study time. For both the fixed and overall patient-related time frame, even 

though patients may have a complete set of quality of life measures until death, a 

standard longitudinal analysis of the quality of life outcome will treat the non-existent 

data at all times within the time frame after death as missing and will assume that they 

are missing at random. Clearly because they are missing due to death this assumption is 

invalid and any longitudinal analysis should account for this. Patients who die within 

the fixed or overall patient-related time frame are said to have ‘dropped out’ of the 

quality of life study and because the resulting missing data are not missing at random, 

the dropout is said to be ‘informative’.

For a fixed time frame of interest, variability in the actual timings of questionnaires may 

result in some occurring after the fixed time frame of the study. Although any analysis 

will generally focus purely on making inferences about the quality of life within the 

fixed time frame, it is possible to use data from beyond the end of the study period to 

make inferences regarding quality of life within the study period. This raises the issue of 

how to deal appropriately with these post-study assessments, and specifically whether
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they should contribute to any analysis of the data. By including these assessments, 

potential biases could be introduced. The responses post-study are conditional on 

patients surviving long enough to give additional Tate’ information and even for the 

longer survivors, there is a possibility that the patients who answered later 

questionnaires were different in some way to those that did not and hence the inclusion 

of these data could bias the results. It may be that the values recorded at post-study time 

points are reasonably consistent with the values recorded during the study period but in 

some cases the values may be highly influential on the resulting models. The option 

therefore that causes least bias is to ignore all assessments that occurred after the fixed 

time frame of the study. However, if treatment delays and administrative errors cause 

some assessments to fall just a short way outside the time frame then one may still wish 

to include them in the analysis, especially if they are the only measure of say post- 

treatment quality of life. It will generally be desirable to exclude those that fall a 

considerable time after the end of the study period. The MIC study had assessments that 

fell outside the fixed time frame of the study and these are discussed in Section 4.5.3.

4.5.3 Timing of Assessments in the MIC Study

The MIC study was designed to assess quality of life during the treatment phase of the 

trial. For patients on the CT arm, assessments were planned to be taken on the first day 

of each cycle of chemotherapy. In addition one post-treatment questionnaire was to be 

taken. The first cycle of chemotherapy was expected to occur soon after randomisation 

and cycles were 3 weekly, thus the expected timings of the questionnaires were 0, 3, 6, 

9 and 12 weeks after entry to trial. Assessments on the palliative arm were planned to be 

0, 3, 6 and 9 weeks from entry to trial, in expectation that these times would match 

those for patients on the chemotherapy arm. For some reason five questionnaires were 

planned on the chemotherapy arm and only four on the palliative care arm.

The quality of life study period was defined as 15 weeks from entry to trial. The choice 

of 15 weeks from entry to trial as a cut-off to the quality of life study is subjective. It 

was necessary to choose a time that was early enough to minimise the length of time 

from the scheduled last assessment (12 weeks for CT patients and 9 weeks for PAL 

patients) to the end of the study period but needed to be late enough to minimise the 

number of assessments that fell outside the study period. In total 6 assessments out of
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392 fell outside the study period. Delays to chemotherapy resulted in 6 patients having 

their first post-treatment assessment a short time after the 15-week cut-off (actual times 

ranged from 15.1 to 17.3 weeks from date of entry). It is not desirable to ignore this 

information, especially when they occurred so close to the 15-week cut-off and 

therefore these assessments were included in the subsequent analysis.

The actual timings of the questionnaires varied considerably around the planned times. 

Summary measures for the distribution of actual timings in relation to trial entry, 

previous assessment and chemotherapy cycles are given in Table 4.2. The actual 

timings of the questionnaires in relation to time of randomisation are plotted for each 

patient in each treatment group in Figure 4.4. In addition the timings in relation to each 

cycle of chemotherapy are plotted for the CT arm in Figure 4.5. On average the patients 

conformed reasonably well to the scheduled time points (see Table 4.2) especially in 

terms of timing in relation to previous assessment time and timing in relation to 

treatment time but there was some variability. The pattern in Figure 4.4 shows that the 

rationale for timing in the early part of the study was to time questionnaires in relation 

to trial entry whilst Figure 4.5 shows that the latter patients were scheduled according to 

treatment times and hence their questionnaires were more variable in terms of the time 

from trial entry. Notice the 6 patients in Figure 4.4 with questionnaires outside the 15- 

week study period.
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Table 4.2: Timing of assessments (Al to A5) in the MIC study in weeks in relation 
to trial entry, previous assessment and treatment - median (minimum, maximum)

(a) CT arm (N=67)

Al A2 A3 A4 A5
Scheduled time in 
relation to trial entry

0 3 6 9 12

Actual time in relation 
to trial entry

0.9 
(0, 2.7)

4.0 
(1.9, 6.9)

7.2 
(5.7, 9.4)

10.3 
(8.7, 14.3)

13.0 
(10.9, 17.3)

Actual time in relation 
to previous assessment

- 3.0 
(1.1, 6.0)

3.0 
(2.6, 6.0)

3.0 
(2.0, 6.9)

3.0 
(1.0, 6.0)

Scheduled time in 
relation to treatment

Prior to 
cycle 1

Prior to 
cycle 2

Prior to 
cycle 3

Prior to 
cycle 4

Post 
cycle 4

Actual time in relation 
to day 1 of that cycle

0
(-4.1, 0.4)

0
(-2.3, 0.7)

0
(-2.1, 0.4)

-0.1 
(-2.3, 0.4)

3
(0.7, 6.0)

(b) PAL arm (N=42)

Al A2 A3 A4
Scheduled time in 
relation to trial entry

0 3 6 9

Actual time in relation 
to trial entry

0.0 
(0, 2.9)

3.6 
(3.0, 5.6)

7.1 
(5.4, 9.0)

9.9 
(8.7, 13.3)

Actual time in relation 
to previous assessment

- 3.0 
(2.0, 4.0)

3.0 
(2.4, 4.4)

3.0 
(2.0, 5.1)
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Figure 4.4: Timing of each assessment in the MIC study in terms of entry to trial 

(a) CT arm  (N=67)
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(b) PAL arm (N=42)
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Figure 4.5: Timing of each questionnaire on the CT arm of the MIC study in 
relation to the time of its associated cycle of chemotherapy
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4.5.4 Timing of Assessments in the ESPAC Study

In the ESPAC study, the baseline quality o f life assessment was planned to be taken 

after surgery and before the start of adjuvant treatment. Further assessments were 

planned every 3 months from baseline until death. Summary measures for the 

distribution o f actual timings in relation to time of surgery are given in Table 4.3. The 

actual timings of the questionnaires 1 to 9 in relation to time of surgery are plotted for 

each patient in each treatment group in Figure 4.6. These show that on average the 

questionnaires conform approximately to their expected schedule but for each 

assessment there is considerable variation around the scheduled time. The variability 

was similar for both treatment arms.
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Table 4.3: Summary measures for timings of assessments (in months) in the 
ESPAC study in relation to time of surgery

Assessment
Number

N Scheduled
Time

Actual Time
Median Minimum Maximum

No CT
1 75 0 0.9 0 3.7
2 67 3 3.5 2.2 6.7
3 53 6 6.5 5.2 9.8
4 39 9 9.4 8.3 12.7
5 22 12 12.3 11.3 14.5
6 19 15 15.5 14.4 16.4
7 12 18 18.3 16.7 20.3
8 12 21 21.6 20.2 23.2
9 7 24 24.2 23.8 28.0
10 4 27 27.6 26.9 28.5
11 3 30 30.2 30.0 30.2
12 3 33 33.5 33.0 34.2
13 1 36 35.7 35.7 35.7
14 2 39 39.4 38.9 40.0
15 1 42 41.9 41.9 41.9
16 0 45 - - -

17 1 48 48.4 48.4 48.4
CT

1 81 0 1.0 0.0 4.0
2 66 3 3.5 2.2 7.7
3 54 6 6.4 5.2 9.4
4 40 9 9.5 8.1 13.5
5 38 12 12.5 11.3 15.7
6 22 15 16.0 13.8 17.9
7 21 18 18.6 14.6 20.6
8 16 21 21.4 19.9 23.6
9 13 24 24.6 23.3 25.9
10 11 27 27.6 26.3 28.9
11 8 30 30.4 30.0 33.9
12 6 33 33.7 33.0 36.6
13 5 36 37.2 33.4 40.4
14 3 39 40.0 39.5 40.6
15 3 42 43.3 43.3 44.5
16 1 45 46.5 46.5 46.5
17 1 48 49.6 49.6 49.6
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Figure 4.6 Timing of first 9 assessments in the ESPAC study in relation to time of 
surgery

(a) NoCT group (N=88)
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4.6 Summary

Quality of life of patients is generally measured via questionnaires. These 

questionnaires could yield descriptive or utility measures. In some types of analysis 

such as quality-adjusted survival analysis (see Chapter 8), utility measures are required 

and it may be necessary to transform descriptive measures to utility-type measures in 

order to be able to perform such an analysis. The measures of quality of life chosen for 

analysis for the MIC and ESPAC studies are typical of the types of measure collected in 

cancer clinical trials.

A major issue with quality of life data is the fact that instruments can yield multiple 

measures of quality of life. Although in this chapter an overview of possible approaches 

for handling the multivariate nature of quality of life data has been given, the issue of 

multiple endpoints in this thesis is not directly addressed. Full consideration of the issue 

however is given in the discussion section for each method of analysis in terms of 

extending the method to deal with multiple endpoints. Throughout the thesis the 

methods of analysis assume a single measure of quality of life. This could be a single 

item from a questionnaire, a score created from a number of items or a utility measure 

yielded by a questionnaire. This assumes that either the analysis would be restricted to 

one key endpoint, probably a global measure of quality of life or the analysis would 

need to be repeated for each of a number of key endpoints.

Quality of life assessments will generally be scheduled for a number of fixed points 

over time either in relation to trial entry or treatment but there could be a considerable 

amount of variation in the actual timing of assessments around these scheduled 

assessment times. For some types of analysis that are based on the scheduled time 

points, the level of variability may be important but if the analysis uses the actual 

timings of the assessments rather than the scheduled times then this variability may not 

be so relevant.

Studies of quality of life will relate either to a fixed time frame of interest or a patient- 

related time frame where the overall time frame for the study is defined by the longest 

individual study time. In both cases, even though all patients may have complete quality
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of life data until death, the dropout of patients within the study time period creates non- 

random missing data and this needs to be accounted for in any analysis. Simultaneous 

analysis of quality of life and survival is the best approach to deal with the problem of 

informative dropout due to death and these methods are developed in Chapters 8, 9 and 

10.
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CHAPTER 5: PROBLEM OF MISSING QUALITY OF LIFE DATA

5.1 Introduction

The aim of this chapter is to discuss the types of missing data that occur in quality of 

life studies and the mechanisms that create them. The problems caused by missing data 

will be highlighted and the possible approaches for dealing with them will be discussed. 

The extent of missing data in the MIC and ESPAC studies is reported.

The occurrence of missing data is one of the main problems in analysing longitudinal 

quality of life data. Missing data do not only reduce the amount of information for 

inference and cause imbalance in the data structure, in terms of the number of measures 

per patient, but may cause the results from an analysis to be biased. It is therefore 

important to assess and report the extent and possible causes of missing data prior to 

any analysis. This enables the results from any analysis that ignores the missing data to 

be interpreted with the appropriate amount of caution and provides some indication for 

the need to use methods that make some account for the missing data.

The issues relating to missing data in studies of quality of life are discussed routinely in 

any publication on quality of life but have been the specific focus for some (Fairclough 

et al 1998b, Simes et al 1998, Curran et al 1998a and c, Fayers et al 1998, Troxel et al 

1998). Some of the concepts relating to missing data are introduced in Section 5.2 and 

the potential bias caused by missing data is described in Section 5.3. The extent of 

missing data in the MIC and ESPAC studies is reported in Section 5.4. There are a 

number of different approaches for dealing with missing data and these are outlined in 

Section 5.5. Missing data can occur within a returned quality of life questionnaire. This 

can cause problems in calculating global scores or could cause problems if the missing 

data relate to an item on the questionnaire that has been chosen as one of the variables 

to be analysed. The problems relating to missing items has been discussed elsewhere 

(Fayers et al 1998) and was discussed earlier in Section 4.3.1 in the context of global 

scores. The focus here is on missing whole questionnaires. There are three different 

types of missing questionnaires that are considered; those resulting from late entry of 

patients to the trial, those that occur intermittently and those that result from a patient
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‘dropping out’ of the quality of life study prior to the end of study. These are each 

considered in turn in Sections 5.6-5.8 with specific reference to the MIC and ESP AC 

studies. Section 5.9 provides a summary and discussion of the issues and the relevance 

for later chapters in the thesis.

5.2 Concepts of Missing Data

5.2.1 Definition of Missing Data

In the context of quality of life studies, missing data can mean two different things and 

it is important to clarify what we mean by ‘missing data’. Within the time frame of the 

quality of life study (see Section 4.5.2), values that are not observed at scheduled 

assessment times are deemed as missing and will be treated as such in any standard 

analysis. There is a distinction however between missing data that the study never 

planned to collect and data that one would not expect to be missing. When a patient 

dies, the unrecorded responses to quality of life questionnaires that occur after death but 

within the time frame of the quality of life study are expected. The design of the study 

might also be that quality of life assessments cease at time of disease progression or at 

end of treatment for example and thus unrecorded data after these times but within the 

time frame of the study are also expected.

Whether the missing data are expected or unexpected, standard analysis does not 

distinguish between the two. The advantage of simultaneous analysis of quality of life 

and survival data is that the unobserved quality of life data after death will not be 

treated as missing data. These methods can be extended so that other expected 

unobserved values are not treated as missing. If the analysis is considering quality of 

life over time on a continuous rather than a discrete time scale then one could argue that 

the data at all time points between the actual assessment times are missing.

5.2.2 Types of Missing Data

The study period for each patient within the time frame of the quality of life study can 

be split into in three phases (see Figure 5.1). The on-study phase is the time during
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which the patient participates in the quality of life study and is defined by the first and 

last questionnaire that the patient completes. If the patient enters the quality of life study 

late this may result in missing questionnaires prior to the on-study period (e.g. patient 5 

in Figure 5.1). During the on-study phase the patient may have missing questionnaires 

at scheduled time points between two completed questionnaires and these are called 

intermittent missing questionnaires. If a patient ceases participation in the quality o f life 

study prior to all the scheduled questionnaires being completed then they are said to 

dropout o f the quality of life study (e.g. patients 1, 2 and 5 in Figure 5.1). Time of 

dropout can be defined in a number of ways (see Section 5.8). If the time of dropout is 

defined as the time of the first missed scheduled assessment for example and death 

occurs prior to this time then it can be said that the dropout occurs directly due to death 

and the patient does not actually enter the dropout phase (e.g. patient 3 in Figure 5.1). If 

however death occurs some time after the time of dropout then the patient can be said to 

enter a dropout phase prior to death. The problems associated with each form of missing 

data and the ways o f handling them are discussed in Sections 5.6 to 5.8.

Figure 5.1: Illustration of the three stages in the study of quality of life for 5 
different patients (black shaded area indicates phase when patient not on study)

< ------------------  Time frame for quality of life study  )

Patient 1 On-study Dropout Death

Patient 2 On-study Dropout Death

Patient 3 On-study Death

Patient 4 On-study

Patient 5 On-Study Dropout Death

5.2.3 Missing Data Mechanisms

The validity of the analysis o f data with missing values is dependent on the mechanism 

associated with the missing data. A quality of life assessment missing at a particular 

time point may be categorised in three ways (Little and Rubin 1987, Laird 1988): 

missing completely at random (MCAR), when the probability of non-response is 

independent of all observed and unobserved quality of life values; missing at random
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(MAR), when the probability of non-response depends on observed quality of life 

values but not on any unobserved values; missing not at random (MNAR), when the 

probability of response depends on unobserved quality of life values and possibly on 

observed values as well. Note that if the probability of non-response depends on certain 

known covariates such as patient characteristics or treatment group then the missing 

data can still be MCAR.

The extent to which the missing data can be ignored depends on the inferential 

framework (Rubin 1976, Laird 1988). With classical inference, only MCAR is 

ignorable for least squares but both MCAR and MAR are ignorable under maximum 

likelihood. With Bayesian inference both MCAR and MAR are ignorable. In all cases 

MNAR is non-ignorable in the sense that if it is ignored it will result in biases.

Determining if the mechanism is not MCAR is relatively straightforward since one can 

use the observed data to investigate any dependencies. Distinguishing between MAR 

and MNAR is much more difficult and requires assumptions which are at best only 

partially verifiable (Curran et al 1998a). With quality of life data, testing the mechanism 

is usually redundant since dropout due to death is known to be MNAR and in many 

cases dropout prior to death can often be assumed to be MNAR. Investigating the 

dropout mechanism is discussed further in Section 5.8.

5.3 Bias Caused by Missing Data

The bias caused by missing quality of life data is discussed by Curran et al (1998c). 

They show that the bias for all patients at any scheduled time point is given by:

Bias = (1 - P)(Mnr -Mr)  [5-1]

where P is the proportion of responders, (inr is the mean response for the non-responders 

and fir is the mean response for the responders. Clearly the value of Hnr will not be 

known but one can conclude that the amount of bias is dependent on the proportion of 

non-responders and the size of difference in means between the responders and non

responders. Thus, the missing data will only cause bias if the non-responders are
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expected to have the different mean response to the responders and the greater the 

difference the greater the bias.

Another important observation that Curran et al (1998c) make is regarding the 

difference between two treatment arms. They show that, at a specific time point, the 

bias in the mean difference in response between treatments is given by the difference in 

the bias observed on each treatment arm. Thus, a treatment comparison is unbiased if 

the bias is the same in both treatment arms. Therefore it could be argued that if the non

response rate and reasons for non-response are equivalent on both treatment arms then 

the bias is likely to be similar and thus the treatment comparison will be unbiased. One 

can never be sure however that this is really the case and accounting for the missing 

data rather than ignoring them will always be a more appropriate approach. Also with 

the more common and complex scenario of longitudinal data with missing data at each 

successive time point then the assumption of equivalent bias on both treatment arms is 

less likely to be valid.

5.4 Reporting the Extent of Missing Data

The extent of missing data should be reported in conjunction with any analysis of the 

data to enable the readers to judge for themselves the effect the missing data may have 

on the results (Hopwood et al 1994). For each treatment arm, the amount of missing 

data that occurs over time should be reported. The levels of missing data resulting from 

late entry, intermittent missing and dropout should be distinguished. In some trials the 

reasons for non-response, when it occurs, are collected as part of the data and this 

information should also be reported if available. Other clinical data collected in the trial, 

such as recurrence or toxicity data, may give some indication as to the reason for the 

missing data.

The missing data are often reported in terms of the actual number of questionnaires that 

are returned at each scheduled time point in the study compared to the expected number 

(Hopwood et al 1994, Machin and Weeden 1998). The expected number at every 

scheduled time point could be the taken as the total number of patients in the study and 

non-response due to death and other reasons reported as a percentage of this. Some
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authors adjust the expected number of questionnaires over time to reflect the reduction 

in patients due to death as this is an allowable reason for non-completion. If other 

reasons for non-completion have been defined in the study protocol such as disease 

progression or end of treatment then the expected number of questionnaires may be 

adjusted for this. Calculation of expected numbers in this way is not always 

straightforward because of the variation in the actual timing compared to the scheduled 

time. For example, a patient may complete the required questionnaire earlier than 

scheduled and then die prior to the scheduled time so that in terms of the expected 

number of assessments at the scheduled time they would not be included but they would 

be included in the actual number.

5.4.1 Extent of Missing Data in the MIC Study

In the MIC study a fixed number of assessments were scheduled, 5 on the CT arm and 4 

on the PAL arm and the numbers of returned questionnaires diminishes over time 

(Table 5.1). By investigating the patterns of returned questionnaires the extent of the 

missing data can be determined (see Table 5.2).

Table 5.1: Number of returned questionnaires at each scheduled assessment time 
(Al to A5) in the MIC study

Al A2 A3 A4 A5 Total
CT (N=67) 66 62 52 43 36 263
PAL (N=42) 37 33 33 24 - 129

Table 5.2 Patterns of returned questionnaires in the MIC study

CT (N=67) PAL (N=42)
Complete 31 20

Complete but with intermittent missing 4 1
Complete but with late entry 1 3

Dropout with no intermittent missing 29 15
Dropout with intermittent missing 2 1

Dropout with late entry 0 2
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There were 6 patients in total with late entry (1 on CT and 5 on PAL) and 8 patients 

with intermittent missing (6 on CT and 2 on PAL). On the CT arm, 31 (46%) patients 

returned all planned questionnaires with a further 5 (7%) patients completing the full set 

apart from some intermittent missing or late entry. The remaining 31 (46%) patients 

dropped out of the study early, 2 of which also had intermittent missing. On the PAL 

arm, 20 (48%) patients returned all planned questionnaires with a further 4 (9%) 

patients completing the full set apart from some intermittent missing or late entry. The 

remaining 18 (43%) patients dropped out of the study early, 3 of which also had 

intermittent missing or were late entries. Further investigation of the patients who 

dropped out of the study showed that 6 (9%) patients on the CT arm and 4 (10%) on the 

PAL arm dropped out as a direct result of death, i.e. they died within 3 weeks of their 

last recorded assessment.

In terms of questionnaires (see Table 5.3), 386 (77%) of the 503 scheduled assessments 

were returned. The missing rate was similar on both treatment arms. Of the 117 missing 

questionnaires, the majority (86%) were missing due to dropout. The problem of late 

entry and intermittent missing is negligible in this study. The dropout rate of 20% of all 

scheduled questionnaires was equivalent on both treatment arms. By assuming that the 

timings of the missing questionnaires would have been at 3-weekly intervals from the 

last recorded assessment, it was possible to determine which questionnaires were 

missing as a direct consequence of death. If the timings of the missing questionnaires 

occurred after death then these were categorised as missing as a result of death. In total 

35 (7%) questionnaires were missing as a result of death and the rate was similar on 

both treatment arms.

Table 5.3: Missing questionnaires in the MIC study

CT
(N=67x5=335)

PAL
(N=42x4=168)

Total
(N=503)

Scheduled assessments: 
Returned 

Missing
259 (77%) 
76 (23%)

127 (76%) 
41 (24%)

386 (77%) 
117(23%)

Missing due to late entry 1 6 7
Missing due to intermittent 7 2 9

Missing due to dropout: 
Total 

Due to Death 
Other

68 (20%) 
21 (6%) 

47

33 (20%) 
14 (8%) 

19

101 (20%) 
35 (7%) 

66
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5.4.2 Extent of Missing Data in the ESPAC Study

In the ESPAC study patients were required to complete questionnaires every 3 months 

from trial entry to death. In total the 175 patients in the study completed 710 

questionnaires with patients completing assessments up to the 17th scheduled time point 

at 48 months, with later assessments being more frequent for the CT arm (see Table 

5.4).

Table 5.4: Number of returned questionnaires at each scheduled time point in the 
ESPAC study

Assessment CT NoCT Total
1 81 75 156
2 66 67 133
3 54 53 107
4 40 39 79
5 38 22 60
6 22 19 41
7 21 12 33
8 16 12 28
9 13 7 20
10 11 4 15
11 8 3 11
12 6 3 9
13 5 1 6
14 3 2 5
15 3 1 4
16 1 0 1
17 1 1 2

Total 389 321 710

On both treatment arms more than 50% of patients completed all assessments prior to 

dropout. A high proportion of patients had intermittent missing assessments and some 

had missing assessments due to late entry to the study. These patterns are summarised in 

Table 5.5 and discussed in further detail in Sections 5.6-5.8.
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Table 5.5: Patterns of response for patients in the ESPAC study

(a) CT arm (N=87)

Censored
follow-up

Dropout 
due to 
death

Dropout 
prior to 
death

Dropout 
prior to 

censoring

Total

Complete 3 19 21 5 48 (55%)
With Intermittent 

Missing
8 7 10 8 33 (38%)

With Late Entry 1 0 2 1 4 (5%)
With Intermittent 
Missing and Late 

Entry

1 0 0 1 2 (2%)

Total 13 (15%) 26 (30%) 33 (38%) 15 (17%) 87

(b) NoCT arm (N=88)

Censored
follow-up

Dropout 
due to 
death

Dropout 
prior to 
death

Dropout 
prior to 

censoring

Total

Complete 1 26 21 3 51 (59%)
With Intermittent 

Missing
11 4 5 4 24 (28%)

With Late Entry 1 6 4 1 12 (14%)
With Intermittent 
Missing and Late 

Entry

0 0 1 0 i (i%>

Total 13 (15%) 36 (41%) 31 (35%) 8 (9%) 88

5.5 General Approaches for Dealing with Missing Data

5.5.1 Complete Case Analysis

This is the simplest approach to missing data. The analysis is restricted only to those 

patients who have a complete set of values over time. This enables standard methods 

for complete data to be used but there are a number of problems with this. The sample 

size for the study will be reduced and if, for example, there are a large number of 

patients with just the odd intermittent missing questionnaire then the sample size could 

be dramatically reduced despite only a small proportion of the total data being missing. 

Not only does this reduce the power to detect differences in treatment but also it is 

wasteful of the data that has been collected on the incomplete cases. Further to this,

73



CHAPTER 5: PROBLEM OF MISSING QUALITY OF LIFE DATA

patients who complete all assessments must be survivors and compliers and hence 

probably are a ‘healthy’ subgroup of all patients in the quality of life study, not a 

random sample, and the analysis will result in over-estimates of quality of life. The 

longer the quality of life study period, the greater the level of attrition and the more 

reduced, and possibly more biased, the sample for complete case analysis will be. This 

may be the case even if the treatment groups are comparable in terms of the amount of 

missing data and the causes. Complete case analysis is not recommended unless the 

proportion of patients with missing data is very small, say less than 5% (Fayers and 

Machin 2000).

5.5.2 Available Case Analysis

Many standard methods of analysis do not require complete data and can be used to 

analyse all available data on all patients. This is preferable to complete case analysis but 

in general these methods assume that the missing data are missing at random and in 

some cases missing completely at random. Much of the missing data in quality of life 

studies are likely to be missing not at random and therefore the standard methods for 

available case analysis will give biased results. If the reasons for missing data are 

incorporated into the analysis then using the available quality of life data should give 

valid results and indeed this is the main approach that is adopted in this thesis.

Standard methods of analysis make use of the Expectation-Maximisation (EM) 

algorithm (Dempster et al 1977). The EM algorithm is a widely used iterative procedure 

for maximum likelihood estimation in the presence of missing data. The process iterates 

between an expectation step and a maximisation step. In the expectation step the 

conditional expectation of the missing data given the observed data and current 

parameter estimates are estimated. The maximisation step updates the parameter 

estimates by maximising the complete data log-likelihood as though the missing data 

had been filled in. It is not the purpose of the EM algorithm to fill in the missing values 

but to fill in the functions relating to the missing data in the complete data likelihood 

(Little and Rubin 1987). The algorithm proceeds until convergence.
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5.5.3 Imputation

An alternative approach to complete or available case analysis is to fill-in the missing 

data with plausible values, a process called imputation (Little and Rubin 1987). The use 

of imputation for quality of life data has been discussed (Curran et al 1998b, Fayers and 

Machin 2000). Plausible values are estimated using available quality of life data and 

other information that may be accessible about the patient. The artificial complete data 

set can then be analysed in a standard way.

The information that can be used for imputation is extensive. Quality of life data are 

generally longitudinal and multidimensional and so for a missing item on a given 

patient at a given time point, imputation could be based on values for other items on the 

same questionnaire, values for the same item at the same time point but for other 

individuals or values for the same item and the same individual but at other time points. 

In addition there are baseline patient characteristics, survival data and other clinical data 

collected in the trial that may be informative for imputation. Clinical trials will often 

collect clinician-assessed performance status and weight regularly throughout the trial 

and also details of treatment-induced toxic events. These longitudinal clinical data may 

all be related to the quality of life of the patient at any time.

There are a number of methods that replace missing data values with a single imputed 

value. Simple mean imputation replaces the missing value with the mean for patients 

with observed values. Regression imputation replaces the missing value with a 

predicted value from a regression model that quantifies the relationship between the 

quality of life measure and a number of covariates in those with observed data. Last 

value carried forward replaces the missing value by the previously observed value or 

similarly first value carried back replaces the missing value with the next observed 

value. By assuming a linear change between observed values on either side of a missing 

value, linear interpolation can be used to impute the missing value. If the quality of life 

values are a limited set of ordinal values then Markov chain imputation can be used. In 

this approach, using the probabilities of transition between pairs of values estimated 

from the observed data and the values observed on either side of the missing value, a 

randomly generated value is imputed.
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In some situations it may be preferable to impute values less formally than any of the 

above approaches. If information is known about why values for a patient are missing 

then sensible values could be imputed for those data. The most extreme example of this 

is death. If a patient has missing data because they have died then it may be sensible to 

give them the worst quality of life value for all the assessments after death. Indeed if the 

quality of life measure is a utility then a value of 0 is valid. This approach is often used 

without necessarily being referred to as imputation. Similarly, if it is known that a 

patient has not responded to a questionnaire because of poor health then an appropriate 

poor quality of life value can be imputed for that missing data. Sensitivity analysis can 

be used to investigate the effect of allocating extreme values to all missing data.

In all cases, when missing values are replaced by single imputed values, the variability 

of data will be underestimated in any analysis since the imputed values will be treated in 

exactly the same way as the observed values and no account is taken of the uncertainty 

in the imputation. Multiple imputation is an alternative approach to single value 

imputation that attempts to overcome these problems (Rubin 1987, Schafer 1997). In 

multiple imputation, each missing value is replaced by a number of plausible values. A 

small number, say 5, is usually sufficient to represent the uncertainty adequately. Each 

of the artificial complete datasets is analysed using standard methods and estimates are 

combined using Rubin’s rules (Rubin 1987) such that the variability between the 

estimates from the different data sets is accounted for as well as the variability within 

each of the datasets. For this reason multiple imputation is generally a more valid 

approach than single value imputation and although standard software is available to 

perform multiple imputation such as the MI procedure in SAS, the approach may not be 

feasible for quality of life data. The longitudinal nature of the data also needs to be 

accounted for in the multiple imputation as well as other variables that may be 

predictive of the missing data creating a complex model for multiple imputation 

(Schafer 2001). If the data are missing not at random then it may not be possible to 

predict the missing values using observed data. In addition when complex methods of 

analysis are being used to analyse the data, combining estimates from the multiple 

datasets is not necessarily straightforward.
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5.6 Dealing with Late Entry of Patients into the Quality of Life Study

If a patient enters the quality of life study late, it means that at a minimum they have not 

completed a baseline questionnaire. In addition their entry may have been so late as to 

miss other early questionnaires. Probably the most common reason for late entry into 

the study and certainly for missing baselines will be administrative. Eligibility criteria 

for entry to trial will usually include a requirement for the patient to be fit enough to 

participate in the trial and willing and able to participate in the quality of life study. 

Thus, in general, providing the patient conformed to eligibility criteria for entering the 

study, late entry of patients to the quality of life study should not be due to the health of 

the patient. For this reason it is likely that the data from the missing questionnaires will 

be MAR and possibly even MCAR.

Missing baseline data will not be a problem for methods of analysis that are based on 

modelling the quality of life data over time (see Sections 6.4, 8.7 and Chapter 10) as 

long as they are MAR. For other methods of analysis such as summary measures 

analysis (see Section 6.3), subject-based approaches to quality-adjusted survival 

analysis (See Sections 8.4 and 8.5) and multistate modelling of quality of life and 

survival (see Chapter 9), the baseline values of quality of life for all subjects are 

required. Omitting patients with missing baseline data will provide unbiased results if 

the data are MCAR, but is wasteful of information if the patients have completed the 

remainder of their questionnaires. It may therefore be preferable to impute values for 

the missing baseline data. Having imputed missing baseline values, any other 

subsequent missing questionnaires due to late entry will become intermittent missing 

values and should be dealt with accordingly (see Section 5.7).

Missing values could be replaced by the mean baseline value for all patients in the trial. 

This approach is fairly crude and does not account for the fact that baseline quality of 

life may be associated with survival time. It may therefore be preferable to impute a 

value based on the known survival time of the patients. Baseline values may also be 

associated with other baseline patient characteristics such as age or stage of disease and 

these could also be used for imputation. These approaches do not account for the fact 

that baseline values will also be related to later values in the patients’ series and maybe
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also to how the values change over time. Replacing missing values with the patients’ 

first recorded value, i.e. first value carried backwards, is a crude way of imputation but 

at least makes some account of the value in the series which is likely to be most highly 

correlated with the baseline value. A more sophisticated approach would be to use all 

the known information on a patient to impute a baseline value. Imputing just a single 

value however will not account for the uncertainty in the imputation and hence multiple 

imputation based on all known information would give the most valid results.

Decisions as to which approach to use in dealing with missing baselines will be based 

on the extent of the problem. If the number of missing baselines is relatively small then 

it may not be worthwhile employing the more sophisticated approaches, as the imputed 

data should not have a large influence on the overall results. The effect of the decision 

on the overall results could be examined in a sensitivity analysis. Missing baseline 

values are not the focus of this thesis and hence relatively simple approaches are 

adopted to overcome the problem.

The methods of analysis mentioned above that require baseline values of quality of life, 

require not only a baseline value but also more specifically a value of quality of life at 

time of entry into the study, i.e. time 0. In some studies, the administration of 

questionnaires may be such that the baseline questionnaire is taken prior to treatment 

but not necessarily at time of entry to study, for example baseline questionnaires may be 

administered on the first day of the first cycle of chemotherapy, which may be a week 

or so after trial entry. Thus, even though a patient may have a baseline questionnaire, 

they may still cause problems in such an analysis if the timing of the questionnaire is 

not at entry to study. Imputation of the quality of life values in such patients at time 0 is 

required. The simplest approach and the one that is generally used here is to use first 

value carried backwards. This approach is generally adequate when the time delay 

between entry and baseline assessment is short as it is unlikely the health status of the 

patient will change much in this short time span before treatment, but the imputation is 

less valid for greater delays. The extent of this problem in the MIC and ESPAC studies 

is discussed further below.
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5.6.1 Late Entry of Patients in the MIC Study

Of the 109 patients in the MIC study, 6 patients (1 CT and 5 PAL) entered the study late 

and therefore had missing baseline questionnaires. It is believed that these are likely to 

be missing purely for administrative reasons and with such a small number of patients it 

would be feasible just to omit these patients. The size of the study however is relatively 

small and the omission would have the greatest impact on the PAL arm, which already 

has a reduced number of patients compared to the CT arm and therefore it was decided 

that these patients should be included. Missing baseline values for GQS were replaced 

by a single imputed value based on a regression model of baseline GQS with age, sex, 

performance status, survival time and GQS at second assessment. This does not take 

account of the full series of quality of life values and will underestimate the variability 

but with so few missing values it provides an adequate means to overcoming the 

problem.

In the remaining 103 patients who completed a baseline questionnaire, 37 (18 on CT 

and 19 on PAL) were completed on day of entry to study. The timings of questionnaires 

in the MIC study were described previously in Section 4.5.3. On the CT arm 44 (67%) 

patients completed baselines within 1 week from trial entry with maximum time 2.7 

weeks. On the PAL arm 23 (62%) patients completed baselines within 1 week with 

maximum 2.9 weeks. Thus in the majority of cases the use of first value carried 

backwards to time of trial entry will be adequate as the period of imputation is generally 

short.

5.6.2 Late Entry of Patients in the ESPAC Study

Of the 175 patients in the ESPAC study there were 19 (11%) patients with missing 

baseline questionnaires (see Table 5.5). The incidence was greater on the NoCT arm 

compared to the CT arm (15% versus 7%). As with the MIC study, it is believed that 

these are likely to be missing purely for administrative reasons and as such these will be 

treated as MCAR. Since the timings (see Section 4.5.4) of some of the baseline 

questionnaires are not dissimilar to the timings of the second questionnaires for these 

patients with missing baselines it was decided to use the same method of imputation for 

both missing baselines and delayed baselines. Thus, when the analysis requires values
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of GHSS at time of entry to study, then a first value carried back will be used in all 

cases.

The timings of questionnaires in the ESPAC study were described previously in Section 

4.5.4. On both treatment arms, baseline questionnaires on average were completed 

within approximately 1 month of trial entry, with a maximum delay of 4 months. Thus, 

in the majority of cases, the use of first value carried backwards to time of trial entry 

will be adequate, as the period of imputation is relatively short and is prior to treatment. 

The imputation may not be so appropriate for those with a long delay between trial 

entry and baseline assessment nor for those whose first questionnaire occurs at the 

second scheduled assessment after treatment has started.

5.7 Dealing with Intermittent Missing Quality of Life Questionnaires

An intermittent missing questionnaire occurs when a patients does not complete a 

questionnaire at a scheduled time point but has completed questionnaires at scheduled 

time points before and after the missing form. The occurrence of intermittent missing 

questionnaires will often be due to administrative reasons and in such cases it may be 

possible to assume that these data are missing completely at random. An intermittent 

missing questionnaire however could occur because the patient felt too ill on that 

occasion to participate in the study, especially if they are undergoing active treatment, 

or conversely because the treatment worked so well that the patient felt that quality of 

life was no longer relevant. In such cases the probability of response may depend on 

covariates, such as treatment, or may depend on the quality of life experienced at that 

time, in which case it would be invalid to assume that missing data mechanism was 

ignorable. Methods for dealing with such missing data are complex (Diggle et al 1994). 

Intermittent missing values are not the focus of this thesis and hence in all cases the 

missing data mechanism is assumed to be ignorable.

In the MIC study, of the 503 scheduled assessments, there were only 9 intermittent 

missing questionnaires that occurred in 8 patients (6 on CT of which 1 has two 

consecutive intermittent values and 2 on PAL). These are likely to have occurred for 

administrative reasons. Intermittent missing questionnaires therefore are not a problem
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in the MIC study and assuming such data to be MAR should not have a great influence 

on the conclusions.

In the ESPAC study, 35% of patients had at least one intermittent missing questionnaire 

(see Table 5.5). The incidence of intermittent missing questionnaires is to be expected 

because the study was over a longer period of time and the longer the series of 

questionnaires, the greater the chance of an intermittent missing questionnaire 

occurring. The incidence was greater on the CT arm compared to the NoCT arm (40% 

versus 29%) and this could have been because patients on the CT arm generally had 

longer series of questionnaires. No details are available as to the reason for these 

questionnaires being missing. The majority of them are likely to be missing for 

administrative reasons and all intermittent missing questionnaires will be assumed 

MAR.

5.8 Dealing with Dropout from the Quality of Life Study

If a quality of life study aims to collect data at scheduled points over a fixed time frame, 

such as 1 year from trial entry, then a patient who ceases to participate in the study 

before completing all scheduled assessments is defined as a dropout. Patients may drop 

out prior to the fixed end-of-study time for a number of reasons including death, disease 

progression, illness, early cessation of treatment, lack of treatment effect, lost to follow- 

up or patient choice. In addition, if a patient is still on-study at the time of analysis then 

they will appear as a dropout in the analysis, as their quality of life assessments will 

cease prior to the fixed end-of-study time. If the quality of life study aims to collect data 

at scheduled points over a patient-related time frame, such as until death or disease 

progression, then even if a patient completes all scheduled assessments within their time 

frame, in terms of analysis they are still deemed to have dropped out at the time of the 

event such as death that defines their end-of-study time (see Section 4.5.2).

Once a patient has dropped out of a study, no more information on quality of life is 

available from that point onwards. Quality of life information could be considered as 

censored at the date of dropout. This term can cause confusion as the censoring of the 

survival times may be at a different time to the censoring of the quality of life data. In
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terms of analysis, dropouts cause problems because they create missing data. In studies 

where survival, as well as quality of life, is an endpoint, patients are generally severely 

ill and therefore dropout due to death or illness will be a common occurrence. In such 

situations, the dropout process may depend on the unobserved measurements (i.e. those 

measurements that would have been observed had the patient not dropped out) and the 

incomplete follow-up of subjects is called informative (or non-ignorable) dropout 

(Diggle and Kenward 1994). The missing quality of life data after dropout will be 

MNAR and needs to be accounted for in any analysis of the data.

The dependence of the probability of dropout on previously observed values can be 

assessed by splitting the patients into different groups according to their dropout time 

and then plotting the mean quality of life scores over time for each of these groups 

(Hopwood et al 1994, Curran et al 1998c). Similarly, means over time can be plotted 

according to whether patients complete their next scheduled assessment or not 

(Carpenter et al 2002). If a relationship is observed, then the missing data cannot be 

MCAR and must be either MAR or MNAR. See Figures 6.6 and 6.7 for examples of 

these types of plots given for the MIC and ESPAC data.

If the reasons for dropout have been collected as part of the study or if clinical data are 

available that may indicate the reasons for dropout then this information can be used in 

any analysis. Dropouts that occur for different reasons may be treated differently. At a 

minimum it should be possible to categorise the reason for dropout as death or non

death, although determining if a dropout is directly attributable to death is not 

necessarily straightforward. If a patient dies then they drop out of the study at their time 

of death and since assessments occur at discrete points in time, their last assessment will 

invariably be some time prior to death. It will be necessary to define the maximum time 

that can have elapsed between last assessment and death for the reason for dropout to be 

given as death. If the reason for dropout is known to be unrelated to the health of the 

patient then the missing data for these individuals can be treated as missing at random.

One way of dealing with missing data from dropouts is to impute values to replace the 

missing data, from data that already exists. There is a variety of methods for doing this 

(see Section 5.5.3) but it may be difficult if there is a large amount of missing data and 

only valid if data are missing at random. In general therefore imputation will not be
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appropriate and the methods of analysis must allow for informative dropout. Methods 

that simultaneously analyse quality of life and survival data overcome the problems of 

missing data associated with dropout due to death, but additional informative dropout 

prior to death may also need to be considered in any analysis.

One way to deal with dropout prior to death is to simultaneously analyse time to 

dropout with quality of life instead of time to death and this is considered in Chapters 8, 

9 and 10. In all methods, the time to dropout needs to be defined. The exact dropout 

time is not usually known or recorded and therefore needs to be estimated. The only 

information that is available is the first missed scheduled assessment. The time of this 

missed scheduled assessment could be taken as the time of dropout or, if assessments 

are scheduled at regular time intervals, then the time of dropout for an individual could 

be this amount of time after their last recorded assessment. If the reason for dropout is 

known to be unrelated to the health of the patient then the time of dropout could be 

treated as a censored observation of their true dropout time (Henderson et al 2000, 

Hogan and Laird 1997a). More complex approaches to estimating dropout time have 

been considered where each dropout time is imputed from a uniform distribution over 

the appropriate time interval between last observed and first missed assessment time 

(Henderson et al 2000). Sensitivity analysis can be used to determine if the definition of 

time to dropout has any effect on the conclusions.

Time to dropout can be compared for each treatment group in a clinical trial using 

standard survival analysis techniques such as Kaplan-Meier survival curves and log- 

rank tests (see Chapter 3). If there is no difference between the groups in terms of time 

to dropout then it could be argued that dropout will not bias the treatment comparison 

(see Section 5.3). The survivor function for the dropout event, that includes both 

dropout prior to death in addition to dropout directly due to death, can be thought of as 

dropout-free survival. This is a comparable concept to outcomes such as disease-free 

survival and progression-free survival, which are commonly used in cancer clinical 

trials. In these endpoints the event is some clinical indication that the cancer has 

returned or is progressing, which in some cases will be death. Here dropout is taken to 

be an event that indicates worsening health, which at the extreme is indicated by death.
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5.8.1 Dropout in the MIC Study

In the MIC study, patients who did not complete the final scheduled questionnaire (5th 

on CT and 4th on PAL) were defined as dropouts. As discussed earlier, there were 31 

dropouts on the CT arm and 18 on the PAL arm. If a patient died within 3 weeks of the 

last recorded assessment then the time of dropout was defined as the time of death and 

the dropout was attributed directly to death. There were 6 dropouts due to death on the 

CT arm and 4 on the PAL arm. For the remaining patients who dropped out, the time of 

dropout was defined as 3 weeks after the last recorded assessment. The time of dropout 

for 4 patients on the CT arm was after the 15-week study period and thus the dropout 

time was censored at 15 weeks. For those patients who did not drop out (36 on CT and 

24 on PAL), their time of dropout was censored 3 weeks after their final scheduled 

assessment time or at 15 weeks, whichever came first. Patients were censored prior to 

the end-of-study even though they continued on follow-up during this time because had 

they been obliged to complete further assessments then they may have refused to 

participate because of illness. On the CT arm only 4 patients were censored for dropout 

prior to 15 weeks with the earliest censored at 13.9 weeks, whilst on the PAL arm, 

because only 4 assessments were required, 17 patients were censored prior to 15 weeks 

with the earliest at 12 weeks. If a non-dropout died within 3 weeks of their last 

assessment then the time of dropout was recorded as an event at their time of death (2 

patients on CT arm). This choice was made because had further assessments been 

required then it is known that dropout would have occurred at this time.

The details of dropouts and survival are given in Table 5.6 and dropout-free survival 

function on each treatment arm is shown as Kaplan-Meier survival curves in Figure 5.2. 

The curves suggest that time to dropout or death tended to be earlier on the PAL arm 

compared to the CT arm but a log-rank test showed that this difference was not 

statistically significant at the 5% level (p=0.22). Nevertheless, the observed difference 

between treatment arms in terms of dropout may have an impact on the comparison of 

treatments in terms of quality of life.
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Table 5.6: Details of dropout and survival within 15-week study period in the MIC 
study

CT
(N=67)

PAL
(N=42)

Non
dropouts

Died w ithin 15 weeks 0 3
Survived 15 weeks 36 21

Dropouts Censored dropout time within 15 weeks 4 0
Direct result of death 6 4
Died after dropout within 15 weeks 6 9
Survived after dropout until 15 weeks 15 5

Figure 5.2 Kaplan-M eier curves for dropout-free survival within 15 weeks in the 
MIC study (censored values shown by circles)
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5.8.2 Dropout in the ESPAC Study

In the ESPAC study patients are required to complete assessments at three-monthly 

intervals until death and the definition of time to dropout therefore is more 

straightforward than for the MIC study. For those patients who die within 3 months of 

their last recorded assessment, the time of dropout is recorded as an event at their time 

of death and the reason for dropout is attributed directly to death. For those patients
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whose last recorded assessment was more than 3 months prior to their last survival 

follow-up (whether alive or dead), the time of dropout was recorded as an event 3 

months after their last recorded assessment. For those patients whose survival time is 

censored within 3 months of their last recorded assessment, the time of dropout is 

censored at this time too.

From Section 5.4.2 it can be seen that on the NoCT arm 36 patients dropped out of the 

study directly due to death, 31 prior to death and 8 prior to censoring with the remaining 

13 patients censored for dropout at their last follow-up time. On the CT arm 26 patients 

dropped out of the study directly due to death, 33 prior to death and 15 prior to 

censoring with the remaining 13 patients censored for dropout at their last follow-up 

time. Kaplan-Meier curves for dropout-free survival are shown in Figure 5.3 with 

censored dropout times shown by circles. Dropout on the NoCT arm tended be earlier 

than the CT arm and a log-rank test showed this to be statistically significant at the 5% 

level (p=0.05). This differential dropout may have an impact on the comparison of 

treatments in terms of quality of life and should be accounted for in any analysis.

Figure 5.3 Kaplan-Meier curves for dropout-free survival in ESPAC study 
(censored values shown by circles)
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5.9 Summary and Discussion

Missing data are a common occurrence in longitudinal studies of quality of life. In 

general, missing data cause problems in terms of unbalanced data and reduced precision 

in estimation but, in quality of life studies, the additional issue that the some of the 

missing data are likely to be missing not at random causes particular problems for 

analysis. If missing data are not missing at random then standard analyses will produce 

biased results.

There are a number of different types of missing data that occur in quality of life 

studies. Missing data that occur due to patients entering a study later than planned will 

often be missing for administrative reasons and it is therefore feasible to either impute 

missing values or ignore the missing data in the analysis. Similarly, it will often be valid 

to assume that non-compliance to an assessment in a series of completed assessments 

will produce intermittent missing data that are missing at random. The key problem 

with quality of life studies and the focus of this thesis is missing data that occur due to 

dropout.

The definition of dropout will be specific to a quality of life study and relates to the time 

frame of the study. In terms of analysis, whatever the design of the study, deaths that 

occur during the analysis period cause non-ignorable missing data for all time from 

death onwards. The missing data caused by dropout due to death should therefore be 

accounted for in any analysis of the quality of life data to ensure unbiased results. The 

methods for simultaneous analysis of quality of life and survival discussed in Chapters 

8, 9 and 10 all deal with informative missing data resulting from dropout due to death.

In addition, patients may dropout prior to death. The time period between last 

assessment and last survival follow-up that defines when a patient drops out of the study 

needs to be specified. In general, a patient will be deemed as a dropout prior to death at 

the first missed scheduled assessment time after their last recorded assessment. If 

dropout is believed to be due to poor health, which may often be the case in studies of 

quality of life, then the dropout is informative and the missing data are non-ignorable 

and this should be accounted for in any analysis of the data. Methods of simultaneous
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analysis of quality of life and survival are extended in Chapters 8, 9 and 10 to account 

not only for death but also for additional dropout prior to death. Methods of 

simultaneous analysis that are based on health states, such as some forms of quality- 

adjusted survival analysis and multistate modelling, enable death and dropout prior to 

death to be considered as two separate states. Other forms of quality-adjusted survival 

analysis and also joint modelling treat death and dropout prior to death as equivalent 

events, which may not always be appropriate. Methods may need to account for 

different reasons for dropout when these are available to ensure that those patients who 

drop out of the quality of life study for non-health related reasons are treated differently 

from those who drop out due to illness for example.

Dropout rates in both the MIC and ESPAC studies appeared to differ between the 

treatment arms, with dropout occurring earlier on the control arms compared to the 

chemotherapy arms. This differential dropout may have an impact on the comparison of 

treatments in terms of quality of life and should be accounted for in any analysis. In all 

subsequent analysis, because the reasons for dropout are not known, dropout is assumed 

to occur for reasons of ill health. This is likely to be a valid assumption for the majority 

of patients and provides conclusions in terms of a ‘worst-case scenario’.

In summary, the extent of missing data in studies of quality of life should always be 

reported in conjunction with any analysis of the data to enable the reader to assess the 

validity of the analysis and associated results. The key problem for analysis will be the 

informative dropout of patients from the quality of life study due to death and possibly 

the additional dropout of patients prior to death for reasons related to health. Standard 

methods of longitudinal analysis will provide biased results for such data. Methods for 

the simultaneous analysis of quality of life and either survival or dropout-free survival, 

that are described and developed in Chapters 8, 9 and 10, will provide an unbiased 

comparison of treatments in terms of quality of life.

88



CHAPTER 6: ANALYSIS OF QUALITY OF LIFE DATA USING STANDARD METHODS

CHAPTER 6: ANALYSIS OF QUALITY OF LIFE DATA USING 
STANDARD LONGITUDINAL METHODS

6.1 Introduction

The aim of this chapter is to describe and illustrate some of the standard methods of 

analysis for longitudinal data and discuss the problems of their application to quality of 

life data. In general, the aim of any analysis of longitudinal quality of life data is to 

evaluate the change in quality of life over time and the effect of covariates, especially 

treatment, on this change. All methods discussed in this chapter are standard approaches 

to analysing longitudinal data and all assume that the mechanism that gives rise to any 

missing data is ignorable. Application of these methods to longitudinal quality of life 

data, which typically include non-ignorable missing data, will therefore generally give 

biased results. The methods however provide an initial starting point in the analysis of 

quality of life data, provided that the potentially biased results are highlighted and 

interpreted with caution. In the context of this thesis, the methods give some initial 

insight into the quality of life data for the MIC and ESPAC studies introduced in 

Chapter 4 and provide background material to later chapters.

Measures of quality of life may be continuous, ordinal or binary (see Section 4.2). For 

continuous measures, such as those derived from a linear analogue scale or an 

aggregated global score, the appropriateness of parametric or non-parametric methods 

depends on whether the data can be considered to be normally distributed. It may be 

possible to normalise a distribution of a continuous measure using a transformation, 

such as log or square root, and then compare treatments using a parametric approach on 

the transformed variable (Armitage and Berry 1987). It could be argued that since the 

continuous measures have truncated distributions, parametric methods will always be 

inappropriate (O’Brien et al 1987) but this view is not adopted here. In addition, since 

aggregated global scores are usually made up of a number of ordinal responses, the 

variable will often only take a restricted number of values on the continuous scale, again 

compromising the validity of treating the measure as continuous.
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The analysis of longitudinal quality of life data should begin descriptively. Section 6.2 

discusses exploratory analysis, which provides an initial impression of the data using 

graphical methods. It investigates the distribution of the data, highlights outliers and 

examines trends over time and hence possible appropriate models. The simplest method 

of analysis is to summarise the longitudinal data for each patient in the form of a 

summary measure, which can then be analysed using standard non-longitudinal 

methods. These methods are discussed in Section 6.3 but since this approach does not 

make full use of the data, modelling approaches are generally preferable and form the 

main focus of this chapter. Models for the data are discussed in Section 6.4. Models are 

applied to the MIC and ESPAC data in Section 6.5 using a classical approach to 

parameter estimation, whilst a Bayesian approach is discussed in Section 6.6. All 

analyses include only observed quality of life data and the implications of the missing 

data on the analysis are discussed throughout the chapter and specifically in Section 6.7, 

which summarises the chapter.

6.2 Exploratory Data Analysis

The interpretation of longitudinal quality of life data can be difficult and an initial 

exploratory analysis often gives an insight into the data before any formal testing or 

modelling is carried out. Descriptive methods of analysis do not have the problems 

associated with multiple testing and hence the quality of life data can be explored as 

extensively as desired. This section discusses the variety of ways to graphically explore 

the data both at the patient level and the treatment group level. Descriptive methods for 

analysing quality of life data have been reviewed in detail elsewhere (Fayers and Jones 

1983, Beacon 1996, Machin and Weeden 1998, Fayers and Machin 1998b).

6.2.1 Patient Profiles

Patient profiles can be examined by plotting individual patient scores over time. They 

may reveal a consistent pattern across patients, give some indication to the distribution 

of the data and will highlight errors, outliers and patterns of missing data. The values of 

quality of life can be plotted as single points at the appropriate times. Often the quality 

of life study is designed to assess patients at scheduled time points but there is usually
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some variation in the timings of the actual assessments around these scheduled times 

and a choice needs to be made whether the scheduled or actual assessment times are 

most appropriate. Usually these points are joined so that a patient’s quality of life, 

measured at a number of discrete time points, is described by a ‘curve’ over continuous 

time. By connecting measures at discrete time points in this way, all quality of life 

values between the actual assessment times are effectively being imputed.

Each option for joining the points is associated with an inherent underlying assumption 

and choices should be made that are appropriate to the situation. A step function can be 

used if it is thought that the quality of life remains constant until the next measure. In 

some cases it may be appropriate to assume that the change happens midway between 

two time points. Another option is to assume that there is a linear change from one time 

point to the next. If there are intermittent missing assessments, a decision needs to be 

made as to whether it is reasonable to assume that such missing data are missing at 

random. If so, then the missing data can be ignored and the quality of life values on 

either side can be connected as normal. If not, then gaps should be left in the curve at 

these times. A profile ending early will signify a patient dropout.

Figure 6.1: Patient profiles of GQS over time in the MIC study
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In the MIC and ESP AC studies, quality of life profiles were created by plotting the GQS 

and GHSS scores against the actual assessment times, assuming a linear change between 

assessments and ignoring intermittent missing values (see Figures 6.1 and 6.2). The
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patient profiles for the ESP AC study are shown for 24 months from date of entry to 

trial, as the data are very sparse after this time. In each study, individual profiles were 

overlayed on one graph for each treatment group separately to enable patterns in each 

treatment group to be compared. An alternative method of display is to plot the profiles 

for each patient as a set of mini-graphs (Beacon and Thompson 1996). It is often 

impractical to display data from large numbers of patients using overlayed graphs or 

mini-graphs and one alternative is to plot a simple random sample of the patients in a 

study (Beacon 1996).

Figure 6.2: Patient profiles of GHSS over 24 months from randomisation in the 
ESPAC study

(a) CT Group (N=88) (b) NoCT Group (N=87)
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The graphs for the MIC study do not show any obvious pattern in change over time or 

any clear differences between the two treatment groups. At any point in time, the scores 

are slightly skewed towards the upper end of the range, particularly in the CT group. In 

the ESPAC study the patient profiles are extremely noisy with no clear trend over time 

in either of the treatment groups and no apparent differences between the groups.

For binary data or ordinal data with a small number of categories, it may be preferable 

to plot each patient’s profile in the form of a line over time that varies in style 

depending on the value of a quality of life variable at that time. The patient profiles are 

usually ordered by date of entry to study. For ordinal data, several different types of line 

can be used to represent the different levels of the variable, but the diagram becomes
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difficult to interpret as the number o f levels increases. Continuous and ordinal level data 

can be adapted for this type of presentation by grouping the values into a small number 

of levels, ideally two.

Patient profiles showing time spent with malaise (MAL=\, 2 or 3) or without malaise 

(MAL=0) were plotted for the MIC Study (see Figure 6.3). The value o f malaise 

measured at each assessment is assumed to carry over to the next recorded assessment 

and the last recorded value is carried over for one week post-assessment (to enable this 

last value to be displayed). As with GQS, the graphs do not show any obvious pattern in 

change over time or any clear differences between the two treatment groups.

Figure 6.3: Patient profiles of MAL over time in the MIC study

(a) CT Group (N=67) (b) PAL Group (N=42)
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Patient profiles can be grouped and overlayed according to differing lengths o f follow- 

up and also, possibly, differing reasons for shortened follow-up, giving possible insight 

into the association o f the dropout process with previous quality o f life (see Section

6.2.2 for further details on this approach relating to group profiles).

6.2.2 Group Profiles

After examining individual patient profiles o f quality o f life, it is often necessary to 

summarise the experience o f patients within each treatment group to enable the 

treatments to be compared more clearly in relation to their effect on quality o f life over
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time. Group summary measures can only be calculated and plotted if the data relate to 

scheduled assessment times. Plots of group profiles over time, overlayed on the same 

graph, enable a clear visual comparison of groups.

There are two main types of group summary statistic that can be plotted over time, the 

mean or median value of quality of life or a proportion with a certain level of quality of 

life. The choice depends on the type of quality of life measure being summarised. The 

mean or median quality of life scores in each group can be plotted over time. Bars at 

each time point representing 95% confidence intervals for the mean or median should 

be included. This is the most useful way to represent continuous data. For ordinal data, 

the use of means is not theoretically correct, but will often be more informative than the 

median especially with floor or ceiling effects and may be considered if the ordinal 

scale is long. If the data are binary then the proportion with a symptom or side-effect 

can be plotted over time. Bars at each time point representing 95% confidence intervals 

for the proportion should be included. If the data are ordinal or continuous then the 

proportion reaching or exceeding a certain level of quality of life over time can be 

plotted but detail on the severity of the symptom or side effect will be lost.

Summarising the quality of life of patients in each treatment group over time is 

complicated by the problem of missing data. Group summary measures at each time 

point can be calculated and plotted either for the subgroup of complete cases or for all 

available data. As discussed in Section 5.5, the patients included in a complete case 

analysis are unlikely to be a representative subset of the overall sample and the group 

summary values will probably be over-estimates of the true values. Also, due to the 

reduced sample size, the confidence intervals will be wide. If all available data are used 

then the reduction in the sample size over time should be made clear in any graph or 

table by specifying the number contributing to the descriptive measure at each time 

point. The confidence intervals should also reflect the decreasing sample size by their 

increasing width. Interpretation of such data needs caution since a comparison of results 

at different time points compares different groups of patients. Subjects contributing to 

summary measures at later time points are likely to be the ‘healthier’ members of the 

original group. Available data analysis is not incorrect but should be interpreted as a 

conditional analysis. Plotting all available data shows the mean quality of life at each
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time point conditional on the patient being alive and well enough to complete an 

assessment.

For each treatment group in the MIC study, the mean GQS score at each scheduled 

assessment time together with the 95% confidence interval are plotted and group 

profiles created by assuming a linear change from one assessment to the next (Figure 

6.4a). The reduction in the numbers of patients over time is shown to aid judicious 

interpretation. Conditional on patients being alive and well enough to complete 

questionnaires, there does not appear to be a change over time in the two treatment 

groups although a slight initial improvement in the CT group and a slight deterioration 

in the PAL group results in a difference at the third assessment.

The proportions of patients with malaise (MAL= 1,2,3) together with the associated 95% 

confidence intervals are also plotted over time for each treatment group (Figure 6.4b). 

This shows the extent of malaise in the two groups is relatively high at around 60% and 

the profiles are reasonably comparable over time. In both groups the extent of malaise 

reduces initially but then increases.
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Figure 6.4: Group profiles for the MIC study: summary statistics together with 
95% confidence intervals at each scheduled assessment time
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For each treatment group in the ESPAC study, the mean GHSS score at each scheduled 

assessment time together with the 95% confidence interval are plotted and group 

profiles created by assuming a linear change from one assessment to the next (Figure 

6.5). The reduction in the numbers of patients over time is shown to aid judicious 

interpretation. Although some patients were assessed at scheduled time points after the 

ninth scheduled assessment, the numbers of patients were too small for a reliable 

estimation o f the mean GHSS at those times and therefore have been excluded. 

Conditional on patients being alive and well enough to complete questionnaires, there 

does not appear to be any difference between the treatment groups, with both groups 

improving in quality of life initially and then fluctuating over time with no obvious 

trend.

Figure 6.5: Group profiles of mean GHSS and 95% confidence intervals over time 
in the ESPAC study
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Another useful exploratory plot of group summary measures over time is to split 

patients into subgroups according to differing lengths of follow-up. Subgroups can be 

formed according to number of completed assessments (Hopwood et al 1994) or a more 

detailed breakdown based on different reasons for dropout, such as censoring, death or
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lost to follow-up could be used (Cox et al 1992). Quality of life over time can be 

compared across subgroups to establish its association with the dropout process. If there 

are no obvious differences between the subgroups then it may be valid to combine the 

data for analysis (Hopwood et al 1994). The quality of life study needs a large number 

of participants for subgroups to contain adequate numbers of subjects for this type of 

analysis. Pattern mixture modelling described in Chapter 10 is based on this type of 

approach of dividing patients into subgroups according to their dropout pattern and 

modelling the longitudinal values in each group separately. The method provides a 

means for analysing longitudinal quality of life whilst accounting for informative 

dropout.

For the MIC and ESPAC studies, the mean GQS and GHSS are plotted over time for 

dropout groups defined by the number of their last scheduled assessment (see Figures 

6.6 and 6.7). In the MIC study, there were 6 dropout groups: those who dropped out 

after 1 assessment (N=8), 2 assessments (N=15) or 3 assessments (N=16), those on the 

CT group who dropped out after 4 assessments (N=10), those on the PAL group who 

completed all 4 scheduled assessments (N=24) and those on the CT group who 

completed all 5 scheduled assessments (N=36). In general, observed quality of life 

appeared to deteriorate prior to dropout. In the ESPAC study there were 10 dropout 

groups defined by the last assessment time between 1 and 9 (N=16, 31, 26, 31, 15, 14, 

9, 7, 9 for times 1 to 9 respectively) and those who completed an assessment at a later 

time point than the 9th assessment and therefore did not dropout within this 24 month 

time period (N=17). All profiles increase to a peak and then decrease over time prior to 

dropout.

Frequency distribution plots of the individual quality of life values over all time points 

(see Chapter 4, Figures 4.1 and 4.3) give an initial indication of the distribution of the 

data, which will guide what analysis may be appropriate. Distributions can also be 

plotted by scheduled assessment time (see Figure 6.8). Box and whisker plots of data at 

each scheduled time point gives an indication on the distribution of data at each time 

point. The decrease in sample size over time can be reflected by making the width of the 

box proportional to the number of subjects at that time point (Cnaan et al 1997).
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Figure 6.6 Mean GQS over time by dropout group in the MIC study (red lines 
indicate groups of patients who have dropped out; black lines represent 
completers; dotted lines represent CT group only; solid black line represents PAL 
only)
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Figure 6.7 Mean GHSS over time by dropout group in the ESPAC study (red lines 
indicate groups who have dropped out prior to or at the 9th assessment; black line 
indicates group who went on to complete assessments after the 9th)
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6.2.3 Autocorrelations and the Covariance Matrix

Another important aspect of the quality of life data to explore is the correlations 

between measures taken at different time points. These are known as autocorrelations 

or serial correlations. This can only be done when the data relate to scheduled 

assessment times and the variation around the scheduled time is not too large. If there 

are T scheduled time points for quality of life assessment and pki (k=l,2,...,T and 

/=1,2,...,7) represents the correlation between a specific quality of life measure at time 

point k with those at time point I then these autocorrelations can be expressed in the 

form of a T x T  symmetric matrix where the diagonal elements equal 1 and pki = pik for 

all values of k and / (kd). Since pu = Gu /  g,\cri, where Gu is the covariance and g \ and

g ]  are the variances of measurements taken at time points k and /, the autocorrelation

matrix has a direct relationship with the covariance matrix. The scatter plots of values 

taken at each pair of time points can be plotted in a matrix. The types of structure that 

the covariance matrix takes is important for modelling the quality of life data and this is 

discussed further in Section 6.4.2.

Although there is some variation in the timing around the scheduled assessment times in 

the MIC Study (see Section 4.5.3), it is possible to examine the association between 

measures of GQS taken at different time points. The associations are examined for both 

treatment groups combined. Figure 6.8 shows a matrix of scatter plots, with frequency 

distributions on the diagonal to indicate variability and Table 6.1 shows the associated 

correlation coefficients, variances and covariances. The correlation between successive 

measures is high and generally decreases slightly as the time between measures 

increases, as might be expected.

Scatter plots of the GHSS scores at different time points in the ESPAC study is not 

informative as, with a limited set of 13 possible discrete values for GHSS, many of the 

points are superimposed. Also with the larger number of scheduled assessment times the 

matrix of scatter plots become less manageable. The correlations, variances and 

covariances for the first 9 scheduled assessment times are given in Table 6.2. The 

pattern of the covariance matrix is less clearly defined than that for the MIC study.
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Table 6.1 Matrix of Pearson correlation coefficients (below diagonal) for 
association of GQS at different assessment times (A1-A5) in the MIC study and 
associated variance and covariance terms (on diagonal and above)

Al A2 A3 A4 A5
A l 142.44 100.52 102.09 68.22 70.02
A2 0.64 174.33 140.83 99.31 74.31
A3 0.57 0.71 223.48 146.86 85.30
A4 0.48 0.64 0.83 139.04 71.42
A5 0.62 0.59 0.60 0.64 89.72

Table 6.2: Matrix of Pearson correlation coefficients (below diagonal) for 
association of GHSS at different assessment times (A1-A9) in the ESPAC study 
and associated variance and covariance terms (on diagonal and above) for the first 
9 assessments

Al A2 A3 A4 A5 A6 A7 A8 A9
Al 489.35 100.79 64.05 105.32 -12.00 135.96 6.79 42.95 -157.79
A2 0.22 437.14 207.61 166.88 149.68 80.69 13.31 231.60 -93.18
A3 0.13 0.46 466.89 241.39 165.91 125.59 69.01 277.07 220.42
A4 0.18 0.31 0.43 672.67 314.72 446.84 111.02 441.25 316.73
A5 -0.02 0.27 0.29 0.46 696.72 316.90 102.12 75.79 13.82
A6 0.22 0.14 0.21 0.63 0.44 759.06 413.01 623.08 355.83
A7 0.01 0.03 0.13 0.18 0.16 0.62 589.23 541.61 319.65
A8 0.08 0.43 0.50 0.66 0.11 0.87 0.86 669.00 320.66
A9 -0.34 -0.21 0.48 0.57 0.02 0.61 0.62 0.58 452.49

6.3 Summary Measures Analysis

Using summary measures has been promoted as the simplest method for analysing 

longitudinal data (Matthews et al 1990, Matthews 1993). It reduces the repeated 

measures over time for an individual to a single summary measure, which can then be 

analysed using standard non-longitudinal statistical methods such as for treatment group 

comparisons. The choice o f summary measure needs to be clinically meaningful and 

will depend on the nature o f the measure together with the disease and treatment under 

investigation.

There is a wide range o f summary measures that could be chosen to represent 

longitudinal quality of life data. For example, the mean, median, minimum or maximum
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value measured over time or last score may be appropriate. Alternatively, the change in 

quality of life between two time points or the slope representing change over time for 

each individual or the area under the curve could be computed (Lydick et al 1995, 

Hollen et al 1997). Time to the occurrence of a quality-of-life-related event could be the 

summary measure of choice. Some of the more widely used summary measures for 

quality of life data are discussed in more detail below. If the data are highly imbalanced 

with respect to the number of repeated observations per patient, then for some patients 

the summary measure will be based on a large number of observations and for others it 

may be based on very few. In a simple summary measures analysis, no account is taken 

of how many measures contributed to the summary outcome, the uncertainty in each 

summary outcome and the length of time over which the summary is taken. In addition 

if the calculation of the summary measure involves missing data or it is not possible to 

calculate the summary measure because of missing data and the missing data are non- 

ignorable then the results from the summary measures analysis may be biased.

6.3.1 Palliative Indicators

Simple binary indicator summary measures can be used to define palliation (Stephens 

and Hopwood 1995, MRC Lung Cancer Working Party 1991 and 1992). For example, 

an indicator may be set to show whether an individual experienced a decrease in the 

level of severity of a particular symptom or in overall quality of life at any time 

compared to baseline, or alternatively whether an individual experienced total 

disappearance of a symptom at any time. Other summary measures include duration of 

palliation and percentage of patient survival time during which there was palliation 

(MRC Lung Cancer Working Party 1991, 1992). These summary measures will only be 

valid if all patients have died, otherwise they should be restricted to a set follow-up time 

for which all patients in the study have been followed. The problems in defining 

palliation have been discussed (Stephens et al 1999) and problems with using these 

types of summary measures are discussed further elsewhere (Billingham and Cullen 

2003; see Appendix I).
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6.3.2 Time to the Occurrence of a Quality-of-Life-Related Event

Longitudinal quality of life data can be summarised by a single value representing the 

time to the occurrence of a quality-of-life-related event. The most widely used clinical 

endpoint, which in some situations will be quality-of-life-related, is relapse-free 

survival, i.e. time from study entry to disease relapse. Time to first occurrence of an 

important clinical adverse event or disease progression (Nabholtz et al 1996) and time 

until first occurrence of Kamofsky index of less than 60 (Rosenman and Choi 1982) 

have both been considered as quality-of-life-oriented endpoints and used as summary 

measures on which to compare treatments. Time to first improvement or time to first 

worsening of quality of life from baseline have also been suggested as summary 

measures, with times for patients not achieving such targets being censored (Hopwood 

et al 1994). Time to palliation of various symptoms, in those patients with the symptom 

present pre-treatment, has also been used as a summary measure for treatment 

comparison (MRC Lung Cancer Working Party 1996).

Once a quality-of-life-oriented endpoint has been defined, standard survival analysis 

techniques can be used to analyse the data. One advantage of this method is that patients 

who do not achieve the endpoint because of either death or dropout prior to death would 

still be included in the analysis as a censored data point, thus dealing with the problem 

of informative dropout. However, because the censoring mechanism may be related to 

the time-to-event, standard survival analysis techniques may be invalidated by 

informative censoring. Another advantage of this summary measure is that it can be 

used in situations where quality of life has been assessed at varying time points. 

However, if quality of life is assessed at only a few widely spaced time points, then the 

summary measure will be very crude.

An additional issue with the approach is that the potential for change, whether in terms 

of improvement or worsening, depends on the baseline value. For example, the worse a 

patient is at baseline, the greater the potential for improvement, so patients who do not 

experience a symptom at baseline are not able to improve and are therefore excluded 

from the analysis. This will only be a problem in the comparison of treatments if the 

treatment groups differ with respect to baseline symptoms. The fact that a treatment
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may prevent a symptom from starting may be important in itself and would not be 

assessed by this type of endpoint.

6.3.3 Area Under the Curve

A standard summary measure used for longitudinal data is area under the curve (AUC). 

For each individual, the quality of life measures over time can be plotted as a curve as 

discussed in section 6.2.1. The AUC for each individual can be calculated and used as a 

summary measure (Lydick et al 1995, Hollen et al 1997, Fairclough 1997). If the 

measure of quality of life is a utility then the AUC is the quality-adjusted survival time 

for that individual for the period of assessment. This will be discussed in more detail in 

Chapter 8.

If the length of time over which quality of life is assessed differs across individuals then 

this needs to be adjusted for in the calculation of the summary measure. Some authors 

divide the area by the length of the observation time from trial entry to last assessment 

and compare treatments using a standardised area under the curve (SAUC) (Qian et al 

2000, Fayers and Machin 2000, Bailey et al 1998). This is effectively an analysis of the 

distribution of quality of life during the time that they participate in the study. The 

problem with this approach is that individuals with short follow-up time will have equal 

weighting to those with long follow-up time (Ganiats et al 1995). In particular, if death 

is not accounted for then, for example, an individual with a quality of life value of 0.7 

for 3 months who then dies will be treated with equal weight as someone who survives 

say for 3 years with a quality of life value of 0.7. An alternative approach is to choose a 

time period for which all individuals have completed all assessments and calculate the 

AUC for this fixed time period. This may not always be possible and may require 

imputation to complete curves for individuals within the fixed time period. This is 

discussed further in relation to the subject-based approach to quality-adjusted survival 

analysis in Sections 8.4 and 8.5.

6.3.4 Summary Measures Analysis for the MIC and ESPAC Studies

For both the MIC and ESPAC studies, two different summary measures were chosen for 

analysis; the change in quality of life between the third and first questionnaire and the
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standardised area under the curve (SAUC). The third questionnaire was chosen for 

analysis in both studies as it was a clinically relevant time point and the choice of an 

earlier rather than later questionnaire minimises the number of dropouts. For the MIC 

study the third questionnaire represents the time when patients on the CT arm are half 

way through treatment and patients on the PAL arm will be approximately 6 weeks 

from entering the study. In the ESPAC study the third questionnaire is taken 

approximately 6 months from surgery and patients on the CT arm should have 

completed their chemotherapy by this time. The AUC summary measure needed to be 

standardised as there was considerable variation between patients in terms of their 

length of follow-up due to death, censoring and dropout. The results are given in Tables

6.3 and 6.4 for the MIC and ESPAC studies respectively.

For the change in quality of life summary measure, patients who do not have a third 

questionnaire or a baseline questionnaire are omitted from the analysis. This is a 

considerable number for the ESPAC study (see Table 6.4). In both studies, the majority 

of patients with a missing third questionnaire are due to dropout prior to the third 

questionnaire and this is likely to bias the results. However, for those patients who are 

alive and well enough to complete quality of life assessments, there is a statistically 

significant difference between CT and PAL in the MIC study in terms of 0- to 6-week 

change in GQS with patients improving on average on the CT arm and deteriorating on 

the PAL arm over this time (see Table 6.3). There was no evidence of difference 

between treatments in terms of 0- to 6-month change in GHSS in the ESPAC study (see 

Table 6.4).

For the SAUC, only those patients with a single assessment are excluded from the 

analysis. In the MIC study, there was evidence that the treatment groups differed in 

terms of this summary measure with CT patients having greater values and thus better 

quality of life over their follow-up time than PAL patients. In the ESPAC study there 

was no evidence of any difference between the treatment groups in terms of SAUC. 

Again these results are conditional on patients being alive and well enough to complete 

quality of life assessments.
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Table 6.3: Summary measures analysis of GQS in the MIC study: number with 
summary measure, means, standard errors (SE), medians and interquartile (IQ) 
ranges for each summary measure

Summary
Measure

Statistic CT (N=67) PAL (N=42) P-value

0- to 6-week Number 52 33
change Mean 2.02 -4.88 0.01

(SE) (1.46) (2.43) (Students t-test)
Median 2.60 -2.75 0.005

(IQ range) (-4.17, 7.67) (-10.98, 2.08) (Wilcoxon)
SAUC Number 66 36

Mean 81.23 76.14 0.03
(SE) (1.26) (2.19) (Students t-test)

Median 82.81 78.13 0.07
(IQ range) (74.48, 89.89) (65.09, 87.87) (Wilcoxon)

Table 6.4: Summary measures analysis of GHSS in the ESPAC study: number 
with summary measure, means, standard errors (SE), medians and interquartile 
(IQ) ranges for each summary measure

Summary
Measure

Statistic CT (N=88) NoCT (N=87) P-value

0- to 6-month Number 50 43
change Mean 14.83 14.15 0.91

(SE) (4.22) (4.27) (Students t-test)
Median 16.67 16.67 0.90

(IQ range) (0, 33.33) (0, 33.33) (Wilcoxon)
SAUC Number 78 78

Mean 63.45 62.12 0.63
(SE) (1.93) (1.96) (Students t-test)

Median 63.36 62.86 0.77
(IQ range) (50, 78.44) (51.47, 73.71) (Wilcoxon)

6.4 Models For Longitudinal Data

6.4.1 Introduction

Exploratory data analysis (as described in 6.2) gives some insight into how quality of 

life changes over time and whether there are any salient differences between treatments 

with regards to these changes. In modelling the longitudinal quality of life data, the aim 

is to quantify these observed patterns. Modelling must account for the possible
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correlation between the successive measures taken on each patient. There is a 

considerable literature on modelling longitudinal data (Diggle et al 1994, Hand and 

Crowder 1996, Lindsey 1994) and such methods are considered here in terms of their 

application to quality of life data.

Longitudinal quality of life studies usually give rise to data that are unbalanced in terms 

of the number and timing of assessments per subject, which in part will be due to 

missing data. The impact of different types of missing data mechanisms on longitudinal 

data analysis has been discussed (Laird 1988) and is discussed further in Section 6.7 but 

for the moment we only consider the problem it causes in terms of unbalanced data. 

Analysis of longitudinal quality of life data requires modelling techniques that capture 

the dynamic nature of the data and can cope with the unbalanced structure. Models for 

normally distributed continuous quality of life measures will be the focus in the 

following sections but consideration will be given to other types of measures in Section 

6.7.

6.4.2 Covariance Matrix

In modelling the quality of life data it is necessary to specify a structure for the 

covariance matrix that is being assumed. Although the covariance matrix is not 

necessarily of direct interest, the structure chosen will affect the estimation of the 

regression coefficients in the model. The exploratory analysis of the observed 

autocorrelations in a dataset (see Section 6.2.3) may give some insight into the likely 

covariance structure that should be used in modelling that data.

Given a vector of data Q = (Q u , Q n, Q\t, Q ii, Q22 , ...,62* Qnu Qn2, •••,Qnt) of 

length nt where Qy represents the observed quality of life of patient i (i = 1,...,«) at time 

point j  (j = 1,...,/). The covariance matrix for Q will be of size n tx n t . Observations on 

different subjects are assumed to be independent and therefore the covariance matrix 

has a block diagonal structure with all off-diagonal blocks as zero matrices. The t x t  

blocks on the diagonal represent the individual covariance matrices each reflecting 

variation between the times within the individual. All individuals are assumed to have 

the same covariance matrix. In specifying the structure for the covariance matrix of Q 

therefore it is sufficient to specify the structure of the individual covariance matrix. The
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possible structures are detailed elsewhere (Burton et al 1998) but some of the possible 

structures are summarised in Table 6.5. The simple structure assumes that all 

assessment times have the same variance (o2) and that there is no correlation between 

values at different assessment times. This is unlikely to be valid for repeated measures 

data. A compound symmetric structure assumes that there is a correlation between the 

values at different assessment times (p) but the correlation is the same whatever the 

distance between the assessments. The autoregressive structure allows the correlation to 

diminish as the distance between the assessments increases. The unstructured 

covariance matrix assumes different variability of measurements at different assessment 

times and does not assume any relationship between the correlations.

Table 6.5 Possible covariance structures for modelling longitudinal quality of life 
data

VaiiQij) for patient 
i and time point j

Cov(Qij, Qn) for 
patient i and time 

points./, k (j*k)
Simple a 2 0

Compound Symmetric a 2 cr2p
Autoregressive (order 1) a 2 a 2p lJ~k]

Unstructured

6.4.3 Repeated Measures Analysis of Variance Model

When the assessments relate to a small number (say <3) of fixed scheduled time points 

that are common to all patients and with rarely missing values then it may be 

appropriate to model the data using a repeated measures analysis of variance model 

(Diggle et al 1994). With this approach, time is treated as a categorical variable rather 

than as a continuous measure such that the quality of life for a patient is given by the 

mean for the combination of levels of treatment and time. The quality of life for patient 

i in treatment group g  at scheduled time point j  is given as follows:

Q ij^  V + ccg +Pj+sIJg [6.1]
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where /i is the overall mean and Og represents the effect of treatment group g, pj 

represents the effect of time point j  and eyg represents remaining variation around this 

mean. The model assumes that %  are normally distributed with mean 0 and covariance 

matrix E. The fact that the data are repeated measures can be accommodated by 

specifying an appropriate structure for the covariance matrix Z.

Missing data for any of the scheduled assessment times causes the data to be 

unbalanced. One strategy to enable the use of repeated measures analysis of variance in 

this situation is to undertake a complete case analysis (see Section 5.5.1), where only 

patients with complete data are used to compare treatments. Problems of reduced 

numbers for analysis and potential bias make this approach problematic and so an 

alternative strategy that allows all available data to be included is preferable for quality 

of life data (Zwinderman 1992). The GLM procedure in SAS will perform this type of 

analysis as long as the data consist of one record per patient per repeated measure 

(Zwinderman 1992). This model is also called a cell means model and has been applied 

to quality of life data using the MIXED procedure in SAS with a REPEATED statement 

included to specify the structure of the covariance matrix (Fairclough 2002). This 

approach however is still based on the assumption that missing data are missing at 

random and this will generally not be a valid assumption for quality of life data.

6.4.4 Random Effects Models

Many studies assess quality of life at four or more scheduled time points, as do the MIC 

and ESPAC studies considered in this thesis. In many cases assessments will be 

irregularly spaced and it may be more useful to model the data using the actual timing 

of the assessment rather than allocating the assessment to a scheduled time point. In 

general therefore it will be more useful to consider time as continuous and model 

quality of life over continuous time.

Measures of quality of life over time can be described by a polynomial function of time 

as follows:

Qu = a \ + a i t ij + + -  +  £# [6.2]
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Qij is the measure of quality of life for the zth patient taken at they'th assessment and ty is 

the time that the yth assessment was taken for the zth patient in relation to some fixed 

time origin, usually date of entry to trial. In some cases, when assessments relate to 

scheduled time points the ty for a given j  will be the same for all patients i.e. the ty can 

be replaced by tj in the model. The regression parameter a\ represents the mean quality 

of life at time 0 and the parameters «2, «3, .... represent the mean change over time for 

the population. The variation of the observation for the zth patient taken at the yth 

assessment around the mean is represented by £y.

More complex polynomial functions are not always easy to interpret and hence where 

possible it is generally preferable to model the data using a linear function. If the change 

over time is not linear then it may be possible to transform either the quality of life 

measure or time scale to create a linear relationship (Carpenter et al 2002). Alternatively 

a piecewise linear model may be preferable to fitting a complex polynomial function 

(Fairclough 2002). Given cut points at increasing values of time given by 

Co=0>Ci>C2>... > Cm the piecewise linear model is given as:

Qa =  “ i + a 2t f  +  a j f  + ... +  a ^ 2‘ lr n +  s a t 6 -3!

where for jc=l,...,m

t f  = max[(min(*.. ,C ,)~  Cx_, ),0] and = max(*„, Cm) -  Cm

In this model, the data between each pair of cut points Cp and Cp+\ are modelled as a 

linear function with slope given by a ^ \. This type of model has been applied to quality 

of life data using a slightly different but equivalent parameterisation (Fairclough 2002). 

The form of the model presented here provides direct estimates of the slopes for each 

piece of the model.

With repeated measures data, the random terms Sy are unlikely to be independent. The 

dependence can be modelled either by specifying an appropriate covariance structure or 

by extending the model to include random effects as well as fixed effects in a mixed 

model. Mixed models allow population average effects to be measured whilst allowing
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for within-patient correlation. The model is made up of a fixed part and a random part, 

with the fixed part estimating the population change over time and the random part 

estimating the departure of individuals from the population average. The simplest model 

to fit is a linear random-effects model over time as below (Laird and Ware 1982).

Q» = «i + a ih  + «u + « 2 f t  + eij [6-4]

The subject-specific intercept and slope terms are assumed to have a joint normal 

distribution as follows:

\ a 2iJ
MVN

fr 0\ <7
<7

w
12 
2
2 J J

[6.5]

The covariance structure of the data for each individual is now defined by the 

covariance matrix for the random effects part of the model and the covariance matrix for 

the error term. Although other structures can be considered, the covariance matrix for 

the random effects will usually be of the unstructured form as specified in [6.5] where 

the variability between the individual intercepts is assumed different to the variability 

between the individual slopes and some correlation between the intercepts and slopes is 

expected. The unstructured option is the least restrictive in terms of assumptions about 

the structure of the data and generally is feasible to estimate with only 3 unknown 

parameters. With the autocorrelations now incorporated into the random effect part of 

the model, it will often be adequate to assume the errors Sy to be normally distributed 

with mean 0 and covariance matrix ct82I. Alternative structures for the covariance matrix 

as specified in Table 6.5 can also be considered.

The errors not only represent measurement error but also the departure of the true curve 

from linearity. If a linear model does not seem appropriate, higher order terms for time, 

such as quadratic or cubic can be introduced but these terms should also include random 

effect terms. Alternatively a piecewise linear model as specified in [6.3] can be 

estimated with random effects for the time intervals.
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The model can be extended to include other covariates either as random or fixed effects. 

Here the model in [6.4] is extended to include a covariate for treatment group G, as a 

fixed effect. Within-subject variances and covariances are assumed to be the same for 

both treatment groups. Assuming mean quality of life follows a linear function of time, 

the effect of treatment can be investigated by including treatment as a covariate in the 

model together with a treatment by time interaction as follows:

Qn = «, + a 2tt + a u + a 2ltt + <?, G, + S2 (G, x t ) ) + etj [6.6]

With treatment included as a fixed effect, the Sj regression coefficient measures the 

effect of treatment on the overall intercept of the linear function and measures the 

effect of treatment on the overall slope. If this model is estimated for the quality of life 

data alone, any missing data are assumed to be missing at random and hence no account 

is made of informative dropout due to death.

Estimates of the parameters in a random effects model can be obtained using maximum 

likelihood methods. Maximum likelihood estimates can be computed using the EM 

algorithm (Laird and Ware 1982; see also Section 5.5.2) or using numerical techniques 

such as the Newton-Raphson Algorithm (Lindstrom and Bates 1988; see also Section 

7.3). Restricted maximum likelihood estimation (REML) may give better parameter 

estimates than maximum likelihood when sample sizes are small and similar results if 

samples are large (Diggle et al 1994) and hence REML is used here. Most standard 

software is now able to estimate such models. The adequacy of different models can be 

assessed using formal model fitting techniques that compare nested models by assessing 

the change in minus twice log likelihood and compare non-nested models using model- 

fit criteria such as Akaike’s Information Criterion (AIC). Parameter estimation can also 

be carried out using a Bayesian approach as described in Section 6.6.
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6.5 Models for the MIC and ESPAC Data

6.5.1 Linear Random Effects Model for GQS in the MIC Study

As discussed in Section 4.4.1, although GQS is not strictly speaking a continuous 

measure the range of values it can take means that it could be considered as such. The 

distribution of GQS in general is not normally distributed (Figure 4.1a and Figure 6.8) 

but since the distributions are only slightly skewed and no transformations of the 

outcome appear to improve the normality of the distribution, GQS will be assumed to be 

normally distributed.

Examination of the individual profiles over time (Figure 6.1) indicates that although the 

responses for some individuals are far from linear and others only have one or two 

measures on which to base a model, on the whole a linear model is a reasonable model 

to consider for the change in quality of life over time and hence the values for GQS over 

time were modelled using a linear random effects model as specified in [6.6], i.e.

Q,j = «1 + + a,/ + a 2,tf + 8 , G, + S2 (G, x /„) + s t [6.7]

where

'a , , '

\ a 2 i J

MVN
f f o \  ( _  Vi  0 w (jj crl2

w °;
and sij ~ N(0, a ] )

The time and treatment covariates, ty and G„ used in this model are centred round 0 to 

enable a direct comparison of results with those from the Bayesian approach in the next 

section. So Gf=0.5 represents the CT group and G/=-0.5 represents the PAL group and 

the time origin is 6 weeks from trial entry.

The PROC MIXED procedure in SAS (Littell et al 2000, Singer 1997) is used to fit 

linear random effects models to the longitudinal quality of life data. SAS calculates 

restricted maximum likelihood estimates of the model parameters using the Newton- 

Raphson procedure. Wald tests are used to assess the statistical significance of the 

parameters.
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Table 6.6 Parameter estimates for the linear random effects model for quality of 
life over time in the MIC study including treatment and treatment by time 
interaction

Parameter 
estimates 

using REML

Standard
error

p-value

ai 78.12 1.14 <0.0001
oti -0.06 0.13 0.63
Si 5.71 2.28 0.01
Si 0.45 0.26 0.08

111.88 18.40 <0.0001

<*\ 0.41 0.27 0.06

crl2 1.93 1.53 0.21

*1 51.11 5.70 <0.0001

The intercept estimates, a\ and <51, are not of direct interest but show that the mean GQS 

score at 6 weeks was 80.98 on CT and 75.26 on PAL and this difference was 

statistically significant. The estimate for ai suggests that the slope representing overall 

change in quality of life over time was not significantly different from zero but the 

estimate for Si indicates that there was some evidence of borderline statistical 

significance that the change over time differed for the two treatment groups. Combining 

the estimates gives an estimated slope for the CT group of 0.17 compared to that of 

-0.29 for the PAL group. This suggests that on average the quality of life of the CT 

group improves over time whilst that for the PAL group deteriorates. Estimates of the 

variance and covariance show that there is a significant variability between the 

individual intercepts (i.e. value at 6 weeks) and some evidence of variability between 

the individual slopes. There is no evidence of a correlation between the individual 

intercepts and slopes.

6.5.2 Piecewise Linear Random Effects Model for GHSS in the ESPAC Study

As discussed in Section 4.4.2, GHSS is essentially a discrete variable with 13 distinct 

values. This number of values is deemed sufficient to consider modelling the variable as 

a continuous measure. The alternative options of treating it as an ordinal variable would 

ideally require reducing the measures to a manageable number of categories in which 

some of the detail in the data would be lost. The distribution of GHSS is not normally
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distributed (Figure 4.3) but since no transformation of the outcome appears to improve 

the normality of the distribution, GHSS for the purposes of this section will be assumed 

to be normal.

Examination of the individual profiles over time (Figure 6.2) indicates that the 

responses are very variable and some individuals only have one or two measures on 

which to base a model. The group profiles indicate that a linear model is probably not 

appropriate. A quadratic model and a piecewise linear model with a change-point at 6 

months were considered as alternatives and the piecewise linear model was found to 

provide the best fit to the data (AIC had smallest value). The values for GHSS over time 

were therefore modelled using a piecewise linear random effects model as follows:

Q„ = «1 + « 2  41' + + a U + a 2itV] + a 3.421 + Sl Gi + S2 (G, x ) + S3(G, x /‘21) + SiJ

[6.8]

where

t f 1 = min(^y ,6) and t f ] = max{ttj ,6) -  6

and

f a  }li
f (

&12 (7l3
a 2i ~ MVN 0 9 CTn <*\ &23

U \ A ^ 2 3 ^3 J)

and Gy ~ N(0, a] )

The treatment covariate G„ used in this model is centred round 0 to enable a direct 

comparison of results with those from the Bayesian approach in the next section. So 

G{= 0.5 represents the CT group and Gf=-0.5 represents the NoCT group.

The PROC MIXED procedure in SAS (Littell et al 2000, Singer 1997) is used to fit the 

piecewise linear random effects models to the longitudinal values of GHSS. The 

Newton-Raphson procedure is used to calculate REML estimates for the parameters. 

Wald tests are used to assess significance of parameters.
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Table 6.7 Parameter estimates for the piecewise linear random effects model for 
GHSS over time in the ESPAC study with change-point at 6 months and including 
treatment and treatment by time interaction

Parameter 
estimates 

using RE ML

Standard
error

p-value

ax 51.05 1.98 <0.001
CC2 2.81 0.48 <0.001
a3 -0.87 0.21 <0.001
Si -1.01 3.97 0.800
Si 0.32 0.95 0.740
s. 0.50 0.42 0.238

225.27 78.84 0.002
11.18 4.38 0.005
1.18 0.66 0.037

<j 12 -27.82 16.49 0.092
cr13 -12.42 4.97 0.013

^23 1.71 1.07 0.109
283.15 23.25 <0.001

The estimates of a\ and Si show that the mean value of GHSS at baseline (time=0) was 

approximately 51 and the intercepts for both treatment arms were equivalent (p=0.80). 

The estimates of ai and a3 together with Si and Si show that on average GHSS 

significantly increases over the first 6 months indicating an initial improvement in 

quality of life but significantly decreases from 6 months onwards and there is no 

significant difference between the treatment groups in terms of this pattern over time. 

Estimates of the variances and covariances show that there is a significant variability 

between the individual intercepts and between the individual slopes in both the early 

and late phase. There is some evidence of a correlation between the individual 

intercepts and slopes in the post 6-month period.

6.6 Bayesian Analysis of Longitudinal Quality of Life Data

In the previous section, the parameters in the models for quality of life over time for the 

MIC and ESPAC studies were estimated using maximum likelihood methods. The same 

model parameters can be estimated using a Bayesian approach in WinBUGS. This 

requires specification of the likelihood and prior distributions for the parameters. For
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the purposes of this thesis, vague prior distributions will be used, though in theory 

external prior evidence could be included.

6.6.1 Linear Random Effects Model for GQS in the MIC Study

To estimate the parameters in the linear random effects model specified in equation 

[6.7] for the MIC data from a Bayesian approach, we specify the likelihood as follows:

Qij ~ N fa j, a]  ) [6.9]

Mu =0U +02itij +$x G, +S2(Gl x t lj)

The time and treatment covariates were centred to aid convergence. The individual 

intercepts and slopes were assumed to have a bivariate normal distribution with mean a  

and covariance matrix 2  as follows:

MVN
\®\2

a
a

12
2
2 ) )

Prior distributions were specified for each of the unknown parameters. It was intended 

that vague prior distributions be used in all cases. For the fixed regression parameters, 

normal distributions with relatively large variances were used as follows:

ecu «2, Si ~N (0,10000)

The prior distribution for <j2e was specified in terms of its inverse, representing the 

precision, which was allocated a Gamma prior distribution as follows:

—  Gamma(0.001, 0.001)
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The most difficult part is specifying a prior distribution for the covariance matrix 2. 

One option is to use a Wishart distribution (Spiegelhalter et al 1995), a multivariate 

extension of a chi-square distribution, as a prior for the precision matrix 2*1:

2 '1 ~ Wishart(R, p)

where R is an initial prior estimate at the magnitude of the covariance matrix and p is 

the number of degrees of freedom. The smallest possible value that p  can take is the 

rank of 2, which in this case is 2, and this will represent vague prior knowledge and 

mean that the choice for R is not crucial. We chose R with 100 and 0.5 on the main 

diagonal and 0 on the off diagonal. The elements of the main diagonal were chosen so 

that the relative scale of the variance of the intercepts compared to slopes that was 

observed in the classical analysis was maintained here.

Because of the difficulties of specifying the parameters of a Wishart prior distribution, 

an alternative approach to specifying a prior distribution for 2  is to use a product normal 

formulation (Spiegelhalter et al 1995). In this approach the bivariate normal model is 

reformulated as two inter-related univariate normal models as follows:

0u o ,2)

0U ~ N (m  m?) [6.10]

where pi,= A\ + X2 On

Here the individual intercepts are assumed to have a univariate normal distribution and 

the individual slopes have a univariate normal distribution conditional on the value of 

the individual’s intercept.

Vague prior distributions can be specified for the A's and inverse o f's as follows:

Ah A2 ~N(0, 10000)

~ Gamma{0.001, 0.001)
cox co2
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Gamma prior distributions of this form have been shown to work well as vague priors 

for precision parameters (Spiegelhalter et al 1995) but other options were also 

considered for the precision parameters as part of a sensitivity analysis. A uniform 

distribution over a relatively large interval for the standard deviations was considered 

i.e.

(Oi, coz, cre ~ Uniform(0, 10000)

A half normal distribution (i.e. truncated at zero) with a relatively large variance for the 

standard deviations was also considered i.e.

coi ,  coi, cre~N(0 ,  10000)7(0,)

The original parameters in the bivariate normal distribution can be obtained by back- 

transforming as follows:

=Mi

a 2 ~ A + ̂ 2^1

a \= co \  [6.11]

o'l =co 2 + \co\

(J  j  2 >̂ «2

Starting values for the parameters were based on results from the classical parameter 

estimates. The model allowed a ‘burn-in’ of 50,000 iterations and posterior estimates 

were based on 50,000 sampled values. WinBUGS code can be found in Appendix II as 

part of the joint model discussed in Chapter 10 and the results of fitting the different 

models are given in Table 6.8 and are compared to the classical estimates obtained in 

Section 6.5.1.
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Table 6.8: Bayesian estimates of parameters (and standard errors) in linear 
random effects model for GQS over time in the MIC study with different vague 
prior distributions

Classical 
(RE ML)

Bayesian Bayesian -  product normal brmulation
Wishart 
prior on 
precision 

matrix

Gamma 
priors on 
precisions

Half normal 
priors on 
standard 
deviations

Uniform 
priors on 
standard 
deviations

a\ 78.12 78.10 78.11 78.11 78.12
(1.14) (1.14) (1.13) (1.17) (1.16)

a2 -0.0635 -0.0563 -0.0521 -0.0681 -0.0602
(0.1312) (0.1311) (0.124) (0.1404) (0.1258)

Si 5.71 5.84 5.86 5.78 5.71
(2.28) (2.27) (2.22) (2.36) (2.31)

Si 0.4542 0.46 0.4587 0.465 0.4625
(0.2623) (0.2573) (0.2504) (0.2686) (0.2604)

o \ 111.88 112.4 111.9 115.3 114.2
(18.40) (18.80) (19.14) (19.19) (19.02)

o \ 0.4091 0.3399 0.2605 0.4552 0.3459
(0.2683) (0.2039) (0.2362) (0.2760) (0.2924)

1.93 1.71 1.80 2.11 1.85
(1.53) (1.48) (1.55) (1.58) (1.55)

O*. 51.11 53.35 54.88 52.45 54.01
(5.70) (5.55) (5.90) (5.76) (6.15)

All forms of prior distribution give broadly similar answers, which are comparable to 

the classical estimates. The conclusions from the Bayesian model are therefore the same 

as those given for the classical estimates in Section 6.5.1. Although the different forms 

of prior distribution gave comparable results, the model performance varied. The model 

with the Wishart prior distribution was the most efficient in terms of speed. There were 

problems with the Gamma and Uniform priors in that the estimate for the slope 

parameter and hence the variance and covariance parameters on a few occasions 

sampled repeatedly at around zero for a number of iterations. This could potentially lead 

to underestimates of the variability of these parameters.

6.6.2 Piecewise Linear Random Effects Model for GHSS in the ESPAC Study

To estimate the parameters in the piecewise linear random effects model specified in 

equation [6.8] for the ESPAC data from a Bayesian approach, we specify the likelihood 

as follows:
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Q y - N fo .  a \ )

M9 =0u + 02i t f  + O JP  + SxGt + S2(G, x t\J]) + £3(G, X i f  )

The treatment covariate G„ used in this model is centred round 0 to aid convergence 

with Gi = 0.5 representing the CT group and G, = -0.5 representing the NoCT group. The 

individual intercepts and slopes were assumed to have a bivariate normal distribution 

with mean a  and covariance matrix 2  as follows:

Ou

vA  j

MVN a .

(  2
^ 1 2 * 1 3

<Ji2 ^ 22 * 2 3

^ 1 3 <t 23 * 32

\ \

JJ

The prior distributions specified for each of the parameters in the model were very 

similar to those chosen for the linear random effects model in the MIC study. Vague 

prior distributions were used in all cases. For the fixed regression parameters, normal 

distributions with large variances were used as follows:

a\9 ai, «3, Si, ~N(0,10000)

The prior distribution for o \  was specified in terms of its inverse, representing the 

precision and the precision was allocated a Gamma prior as follows:

- L  ~ Gamma(0M\, 0.001)
a .

A Wishart distribution was specified as a prior distribution for the precision matrix Z"1: 

Z’1 ~ Wishart(R, p)

where R was chosen with 200, 10 and 1 on the main diagonal and 0 on the off diagonal 

to maintain the relative scale of the variances that was observed in the classical analysis. 

The smallest possible value of 3 was chosen for p  to represent vague prior knowledge
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and means that the choice for R is not crucial. The product normal formulation could be 

considered as an alternative to the Wishart distribution although it would be more 

unmanageable with 3 random effects, but a sensitivity analysis on the Wishart prior 

distribution was preferred, as described below.

Starting values for the parameters were based on results from the classical parameter 

estimates. The model allowed a burn-in of 50,000 iterations and posterior estimates 

were based on 50,000 sampled values. WinBUGS code can be found in Appendix II as 

part of the joint model presented in Chapter 10 and the results of fitting the model are 

given in Table 6.9. Alternative versions of the model were also run in a sensitivity 

analysis. The base model (as specified above) was altered as follows: (i) R was defined 

with values of 10,10 and 10 on the main diagonal and 0 on the off-diagonal (ii) 200,000 

values were sampled (iii) 200,000 iterations with every 10th value sampled. These latter 

two options were included to overcome the problem of high autocorrelations observed 

in the base model.
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Table 6.9: Bayesian estimates of parameters (and standard errors) in piecewise 
linear random effects model for GHSS over time in the ESPAC study with 
different vague prior distributions

Classical
(REML)

Bayesian
Base model R with (10, 

10,10) on 
diagonal

200,000
sampled
values

Sample 
every 10th 
value in 
200,000

a\ 51.05 51.05 50.86 51.03 51.05
(1.98) (1.20) (1.91) (1.97) (1.97)

a2 2.81 2.82 2.94 2.82 2.82
(0.48) (0.49) (0.48) (0.48) (0.48)

a3 -0.87 -0.87 -1.04 -0.86 -0.87
(0.21) (0.28) (0.31) (0.27) (0.27)

« -1.01 -0.97 -0.90 -0.95 -0.96
(3.97) (3.94) (3.79) (3.95) (3.95)

Si 0.32 0.32 0.27 0.31 0.31
(0.95) (0.94) (0.94) (0.94) (0.94)

s. 0.50 0.47 0.53 0.48 0.48
(0.42) (0.44) (0.52) (0.43) (0.43)

a i 225.27 203 20 159.1 203.1 203.1
(78.84) (69.86) (86.37) (69.03) (68.99)

g \ 11.18 9.75 9.01 9.71 9.70
(4.38) (3.48) (3.88) (3.49) (3.46)

g] 1.18 1.20 2.29 1.20 1.20
(0.66) (0.57) (0.84) (0.57) (0.57)

°\2 -27.82 -22.83 -16.18 -22.7 -22.68
(16.49) (13.55) (16.03) (13.56) (13.5)

°"l3 -12.42 -10.14 -8.62 -10.36 -10.37
(4.97) (4.60) (5.40) (4.44) (4.45)
1.71 1.52 0.82 1.55 1.55

(1.07) (0.92) (1.16) (0.89) (0.89)
a] 283.15 293.10 292.1 292.9 293.0

(23.25) (22.84) (25.97) (22.47) (22.43)

The Bayesian parameter estimates from the base model are comparable to the classical 

estimates, especially the fixed parameters. The conclusions therefore that were made in 

Section 6.5.2 apply here. The autocorrelations were high for all parameters in the base 

model. Sampling for 200,000 iterations rather than 50,000 did not greatly affect the 

results, nor did thinning the chain and therefore the sample of 50,000 values appeared to 

be sufficient to ensure that posterior distributions were adequately estimated. The model 

using the different estimate for R also gave reasonably comparable results to the base 

model, indicating that the results were not sensitive to this choice in relation to the prior 

distribution.
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6.7 Discussion

In general, the aim of a quality of life study is to examine the change in quality of life 

over time and determine any differences between treatments. To achieve this, the 

observed quality of life data could be analysed using standard methods for longitudinal 

data analysis. This includes plotting patient and group profiles to give an initial 

impression of the nature of the data and highlight the possible trends over time and any 

differences between treatments. A summary measures analysis and more formal 

modelling when appropriate may follow this descriptive analysis.

The application of standard methods to longitudinal quality of life data however will be 

problematic because of missing data. This is due partly to the unbalanced data that 

results when missing data are present but more importantly because in general the 

missing data will not be missing at random. Standard methods of analysis all assume 

that any missing data are ignorable and thus application to quality of life data with 

informative dropout could give biased results. The standard methods actually provide a 

conditional analysis, that is they provide inferences on the quality of life of over time 

conditional on patients being alive and well enough to complete quality of life 

assessments. As discussed in Chapter 1, for an unbiased comparison of treatments, all 

patients at all time points should be included in any longitudinal analysis in an 

intention-to-treat type of approach.

The method of summary measures is attractive due to its simplicity and interpretability. 

The analysis, however, can be inefficient in highly unbalanced data when there is 

considerable variation between patients in terms of the number of repeated measures 

(Albert 1999). Summary measures may be difficult to calculate when informative 

dropout is present in the data, and the analysis in such situations may give biased 

results. It therefore may not be ideal for quality of life data. It may be possible to 

accommodate dropouts into the analysis by replacing all missing data with appropriate 

imputed values prior to analysis, but full allowance of corresponding uncertainty is 

ideally required. In particular, the worst value of quality of life could be assigned to all 

time points after death (for example Hollen et al 1997). One of the most widely used 

summary measures is area under the curve and the application of this summary measure
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to the quality of life data over time in conjunction with the survival data is one of the 

simplest approaches to quality-adjusted survival analysis. For this type of area-under- 

the-curve analysis, quality of life must be measured on a 0 to 1 scale, where 0 represents 

quality of life equivalent to death and patients who dropout of the quality of life study 

due to death are included in the analysis by allocating them a quality of life score of 

zero for all time after death. This type of analysis is discussed further in Chapter 8.

Modelling the quality of life data over time will provide a more accurate analysis than 

the method of summary measures, as long as there is some underlying measurable trend 

to the data. Random effects models in the form of multi-level models have been used 

before to model longitudinal quality of life data (Beacon 1996, Beacon and Thompson 

1996). They have the advantage that they can be extended to a further level to enable 

more than one quality of life outcome measure to be modelled at the same time (see 

Section 4.3.3). The application of these models however to observed quality of life data 

will generally give biased results as any missing data are assumed missing at random. 

As with the summary measures, one approach to dealing the problem of informative 

dropout may be to impute appropriate values of quality of life for all time points after 

dropout prior to analysis. An alternative and potentially more appealing approach would 

be to combine the model for quality of life over time with the probability of survival in 

a quality-adjusted survival analysis, as demonstrated in Chapter 8. Alternatively by 

jointly modelling the quality of life and survival data, the informative dropout due to 

death is accounted for in the estimation of the parameters in the random effects model 

for quality of life over time. This approach is discussed further in Chapter 10.

The models considered here are simplistic in the sense that they only include a 

treatment covariate. Other covariates such as age and performance status for example 

could influence quality of life over time and the models considered here could be 

extended to include these additional baseline covariates. From a classical viewpoint, the 

statistical significance of different covariates could be assessed using formal model 

fitting techniques that compare nested models by assessing the change in minus twice 

log likelihood. From a Bayesian viewpoint, different models could be compared using 

Bayes factors or model averaging (Spiegelhalter et al 2003). Bayesian estimation of 

parameters in the models for longitudinal quality of life data may be of interest in its
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own right, but the main reason for including a Bayesian approach to parameter 

estimation here is in preparation for the joint modelling carried out in Chapter 10.

The models considered in this thesis assume the quality of life outcome is normally 

distributed. If the distribution of a continuous measure is not normal then it may be 

possible to normalise it using an appropriate transformation such as log or square root 

and then model the transformed variable instead of the original. If the measure is an 

ordinal variable with a large number of levels then the assumption of normality may not 

be unreasonable, however as the number of categories decreases so the assumption 

becomes more untenable.

Approaches for non-normally distributed measures are based on the theory of 

generalised linear models (Dobson 1990) and allow the analysis of binary, ordinal or 

continuous response variables. As such, the expected response is related to the 

explanatory variables in the model via a ‘link’ function. With normally distributed 

outcomes the model directly predicts the expectation of the response variable and this is 

a generalised linear model with an identity link. For non-normally distributed outcomes, 

the model can be defined to predict a function of the expectation of the response where 

the function, known as the link function, depends on the type of response variable. For 

example, a logit or probit link may be appropriate for binary responses, cumulative logit 

link for ordinal responses and log link for counts. This type of model could be 

considered for quality of life outcomes, for which the assumption of normality is not 

tenable, by specifying an appropriate link function and modelling a function of the 

expectation of the variable rather than the expectation itself. These types of models have 

been applied to quality of life outcomes (Beacon 1996).

The standard methods of analysis applied to the MIC quality of life data showed that in 

terms of GQS there may be a small benefit for chemotherapy compared to standard 

palliative care. The summary measures analysis showed that on average in terms of 0- 

to 6-week change, patients on CT improve whilst those on PAL deteriorate, conditional 

on patients being alive and well enough to complete an assessment at the 6-week time 

point. This difference was statistically significant (p=0.005). In addition, the 

standardised area under the curve analysis demonstrated that the mean quality of life 

score for those alive and well enough to complete quality of life assessments was
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greater on CT compared to PAL and this was of borderline statistical significance 

(p=0.07). Although there was a large variation in individual patient profiles, the overall 

trend in quality of life over the 15-week study period was approximately linear with 

patients on CT improving on average from baseline and those on PAL deteriorating. 

The difference in linear change over time between treatments was of borderline 

statistical significance (p=0.08). Again this is conditional on patients being alive and 

well enough to complete assessments.

The standard methods of analysis applied to the ESPAC quality of life data showed that 

in terms of GHSS there did not appear to be any difference between CT and NoCT in 

terms of quality of life over time. The summary measures analysis showed that on 

average, in terms of 0- to 6-month change, patients on both treatment arms improve 

conditional on patients being alive and well enough to complete an assessment at the 6- 

month time point. There was no difference between the treatment arms in terms of the 

level of improvement. In addition, the area under the curve analysis demonstrated that 

the mean quality of life score for those alive and well enough to complete quality of life 

assessments was equivalent on both treatment arms. The individual patient profiles were 

very noisy and the data are not ideal for modelling. The group profiles indicated that a 

piecewise linear model with one cut-point at 6 months from surgery may be an 

appropriate model. This model showed that, conditional on patients being alive and well 

enough to complete assessments, quality of life on average initially improves in both 

treatment groups up to 6-months from surgery and then deteriorates from that point. 

There was no statistically significant difference between treatments in terms of these 

trends over time (p=0.74 for interaction of treatment with initial slope and p=0.24 for 

interaction of treatment with second slope). The non-normality of the GHSS outcome 

could be accommodated by grouping values into a limited number of categories and 

using a proportional odds model to model the change in scores over time.

In summary, the application of standard longitudinal methods of analysis to quality of 

life data provides an initial insight into the data and provides inferences on quality of 

life over time conditional on patients being alive and well enough to participate in the 

study. For an unbiased comparison of treatments, the analysis of quality of life should 

be based on an intention-to-treat principle which means including in the analysis all 

patients at all points in time of the quality of life study period, but informative dropout
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often precludes this in practice. The simultaneous analysis of quality of life and survival 

will enable this and therefore is the recommended approach for the analysis of 

longitudinal quality of life data with informative dropout.
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CHAPTER 7: MODELLING SURVIVAL DATA

7.1 Introduction

The aim of this chapter is describe the models that can be considered for survival data. 

The models will first include treatment as a fixed covariate and then be extended to 

include quality of life as a time dependent covariate. The models considered in this 

chapter are relevant for all three approaches that simultaneously analyse quality of life 

and survival.

The variation in survival data can be explained by means of a regression model. 

Variables that could potentially affect the survival time of a patient can be included as 

covariates in the model. The key covariate of interest will usually be treatment. In 

addition to treatment, covariates may include demographic variables such as age and 

sex, physiological variables such as white blood cell count or disease-related variables 

such as type of tumour or stage of disease at entry to study. Covariates that keep the 

same value for the duration of the study are called fixed, whilst those with possibly 

changing values over time are called time-dependent (Collett 1994). In this chapter, as 

well as being interested in the effect of treatment on survival as a fixed covariate, the 

inclusion of quality of life as a time-dependent covariate in the model enables the 

association between survival and the changing values of quality of life over time to be 

examined.

There are two types of regression model that can be considered. The first, which is 

generally referred to as a Cox regression model or more specifically a Cox proportional 

hazards regression model, models the hazard function (Cox 1972) whilst the second, 

generally called an accelerated failure time model, models the survivor function (Collett 

1994). In general, Cox regression models are used when no distributional form is 

assumed for the survival data and accelerated failure time models are used when the 

data take on a specific distributional form, although either can be used in both 

situations. For the exponential and Weibull distributions, there is a direct link between 

the parameters of the two types of model. For the purposes of fitting the models to the 

data, it will sometimes be necessary to consider the models in the form of an accelerated
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failure time model but in all cases, results will be reported in terms of the Cox 

regression model parameters.

There is much literature describing methods for modelling survival data (Collett 1994, 

Parmar and Machin 1995, Hosmer and Lemeshow 1999). This chapter summarises 

those methods that will be relevant in analysing quality of life and survival data 

simultaneously and thus provides a background to later chapters in this thesis. 

Modelling the survival data gives insight into the survival process in the MIC and 

ESPAC studies in preparation for analysing it simultaneously with quality of life. For 

this reason, the analysis is carried out only on the patients included in the quality of life 

study and only for the quality of life study period. Within these restrictions, the survival 

analysis will estimate the effect of treatment on survival and will also explore the 

relationship between quality of life and survival. Consideration is given in the joint 

modelling presented in Chapter 10 to extending the method to allow the inclusion of 

survival data from all trial patients. Estimation is considered from both a classical and 

Bayesian point of view. There is some literature discussing the Bayesian approach to 

survival analysis (Abrams 1992b, Abrams 1998, Ibrahim et al 2001) but these have not 

been widely applied to clinical trial data.

The chapter starts in Section 7.2 by describing the Cox regression model and 

considering the different forms that the baseline hazard can take. Classical estimation of 

the model parameters is described in Section 7.3 and these methods are applied to a 

simple model for the survival data in the MIC and ESPAC studies with just treatment as 

a fixed covariate in Section 7.4. The model is extended in Section 7.5 to include quality 

of life as time-dependent covariate. The alternative Bayesian approach to the estimation 

of the parameters in this model is given in Section 7.6. The problems related to 

including quality of life as a time-dependent covariate are discussed in Section 7.7, 

highlighting the need for a joint modelling approach, which is considered in Chapter 10.

131



CHAPTER 7: MODELLING SURVIVAL DATA

7.2 Cox Regression Model

7.2.1 Basic Form of the Cox Regression Model

The Cox regression model (Cox 1972) allows the variation in survival, as expressed by 

the hazard function, to be explained by certain covariates. The hazard function for 

patient z, ht{i) is modelled as:

^.(0 = /io (O e x p (^ )  [7.1]

where ho(t) is the underlying baseline hazard function, £  is a vector of fixed covariates 

for patient z and £  is a vector of regression coefficients. In this thesis, a Cox regression 

model always refers to the form of the model given by Cox (1972) as specified in [7.1] 

where the baseline hazard can be either arbitrary or parametric.

This model is based on the assumption that the hazard for different patient groups 

defined by the covariate values are proportional and the ratio of the hazards is 

approximately constant over time and hence this model is often called a proportional 

hazards regression model. The Cox regression model can be extended to incorporate 

time-dependent covariates (see Section 7.5).

7.2.2 Alternative Formulation of Cox Regression Model

An alternative formulation of the Cox model involves the consideration of the data in 

terms of a counting process (Andersen and Borgan 1985, Andersen et al 1993, Abrams 

1998). Each patient z has a counting process Nt{t) counting the number of events that 

occur up to time t and an at-risk process Yt{t) which is 1 if patient z is at risk of the event 

at time t and 0 otherwise. The rate of change of the counting process is known as the 

intensity process a,{t) and this can modelled using a multiplicative intensity model 

which has the following form:

a, ( 0  =  Yi (0 « o  ( 0  e x p ( £ * , )
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where ao(t) is the baseline intensity process and is a vector of the regression 

parameters measuring the effect of the covariates Xj on the baseline intensity. The 

inclusion of the indicator variable Y^t) in the model ensures that patients only contribute 

to the likelihood when they are at risk of the event.

If the event is death, then the intensity process is equivalent to the hazard function and 

the multiplicative intensity model is equivalent to a Cox proportional hazards model. So 

in counting process notation we can re-write the model specified in [7.1] as:

hi(t) = Yi(t)h0(t)QxV(/?Xi) [7.2]

Considering the Cox model in this counting process formulation enables more complex 

scenarios such as multiple events per patient and patients moving in and out of different 

health states to be modelled using a reasonably straightforward and coherent approach.

7.2.3 Form for the Baseline Hazard

In general, the model does not assume any particular form of probability distribution for 

the survival times and thus the underlying baseline hazard is allowed to be arbitrary. 

For this reason, the Cox model is often referred to as a semi-parametric model. In some 

circumstances, however, if survival times follow a particular distribution then it may be 

more efficient to assume a parametric form for the underlying baseline hazard. 

Assuming a parametric form for the baseline hazard has the advantage of being able to 

report an estimate of the hazard of death as well as the effect of covariates on this 

hazard and enables prediction when required. In this thesis, as well as allowing the 

baseline hazard in the Cox regression model to be completely arbitrary, three other 

forms are considered; piecewise exponential, exponential and Weibull. Although the 

piecewise exponential model is a parametric form, it has close links with the non- 

parametric form for the baseline hazard, as described in 7.2.5.
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7.2.4 Exponential and Weibull Models

If survival times are assumed to follow an exponential distribution then the baseline 

hazard function is constant over time (see Section 3.5) and the hazard for patient i at any 

point in time given by the Cox regression model is:

hi = /Uxp(/rx,.) [7.3]

If survival times are assumed to follow a Weibull distribution then the baseline hazard 

function has a known form (see Section 3.5) and the Cox regression model becomes:

hi(t) = X ytr~' e x . [7.4]

In the parametric modelling of survival times 7, the accelerated failure time model for 

patient i has the general form:

log(7; ) = M + al*, + &£i [7.5]

where Xj is a vector of covariates, a  is a vector of unknown regression coefficients, cris 

an unknown scale parameter, ju is an unknown intercept parameter and 3 is an error 

term where errors are assumed to follow a particular distribution. If survival times are 

assumed to follow a Weibull distribution then there is a direct correspondence between 

the parameters under an accelerated failure time model (//, cr and a  in [7.5]) and those 

under a proportional hazards model (A, /and @ in [7.4]). The parameter estimates can be 

transformed using the following formulae (Collett 1994):

A

A = exp

 ̂
< 

1 1
, / = -  P= MA

Aa [7.6]
 ̂ cr 0  ~ )

Using the Taylor series approximation to the variance of a function of random variables 

(Collett 1994), the estimates of the variance of i , /  and the kth element of the vector of
A

regression coefficients J3k, are given by:
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Var(X) » - ^ (& 2Var{p) + p 2Var{&) -  2/u6Cov(/j,a))
G

N r ) 4 M  [7.7]
G

Var(Pk) » [<j2Var(ak) + a\Var(G) -  2ak6Cov(ak,<r))
G

For an exponential distribution, all of the above follows with g  = 1 and thus the 

conversion is as follows:

i  = exp(-/>), Var(A) = A2Var(fi) , Pk = - a k, ) = Var(ak) [7.8]

7.2.5 Piecewise Exponential Model

Instead of allowing the baseline hazard in the Cox regression model to be completely 

arbitrary, it may be preferable to split time into a number of intervals and assume that 

the baseline hazard varies for different time intervals but is constant within each time 

interval, i.e. survival times follow different exponential distributions within each time 

interval.

Suppose the time scale is divided into J intervals (0,ai], (<2i, <22], ...» (aj-1,°°) where the 

yth interval is given by {aj. 1, aj\. These time intervals can be defined in numerous ways 

and whilst they do not have to be the same length, they should be chosen so that the 

assumption of constant hazard of death within each interval is not unreasonable. The 

choice should also be such that ideally there are approximately equal numbers of deaths 

in each interval and at least one death in each time interval is needed for adequate 

modelling of the baseline hazard in that time interval. The choice of time intervals is 

arbitrary and sensitivity analysis should be used to assess the effect of the choice of 

divisions on the results. As the time intervals become narrower, so the results from the 

piecewise exponential model will approach the results from the fitting the Cox model 

with an arbitrary baseline hazard. In the limit, where the ai, 02, aj-\ are the distinct 

death times of the individuals, the piecewise exponential model is equivalent to the Cox 

model with arbitrary baseline hazard.
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Given the J  time intervals, the hazard of death for patient i within they'th time interval is 

given by:

h,j = J-j- exp(/3Tx : ) [7.9]

If the model is estimated within an accelerated failure time model framework then:

then the parameters in the accelerated failure time model (//, a  in [7.10]) can be 

transformed to the parameters in the Cox model (Aj, Q  in [7.9]) as follows:

7.3 Classical Estimation of Parameters in Survival Models

The regression parameters, Q, and the underlying baseline hazard function are estimated 

using maximum likelihood estimation. Maximum likelihood estimators are consistent, 

asymptotically efficient and asymptotically normal. The likelihood function is given by 

the probability of the observed data under the model (see Section 2.2). Let U represent 

the survival time for patient i and d,■ represent whether that survival time is uncensored 

(di =1) or censored (dt =0). Let fit) represent the probability density function for the 

survival times and S(t) represent the associated survivor function. For uncensored data, 

the probability of an observed survival time U is given by fit!) and for censored data, the 

probability of an observed survival time U is given by S(ti), the probability of surviving 

to time tu The full likelihood function for a sample of n independent observations (U, di) 

with /= 1 to n, is therefore given by

log(T,) = ti + M j+alx,+£i [7.10]

Xj =exp ( - f i - f i j ) ,

Var(Xj ) « X* (Var(fi) + Var(fij ) + 2Cov(ji, jiJ)) 

Var(Pk) = Var(at )

[7.11]
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L = f l  fc/ft )]**[Sft)],' 0  [7-12]
i = l

Using the relationship between the hazard function and the probability density and 

survivor function (see [3.2]), [7.12] can be written as

i=i

i.e. Z = n  { m ) Y ‘ x i f c l )
M

From the relationship given in [3.2],

5(0 = exp -  \h(u)du
V U =0

and hence under the assumption of a Cox model

S(0 = (So(0)“p</,')

Thus, under the assumption of a Cox model the likelihood function is

£ = f l ( [A 0f t ) exP ^ < x C5" f t )i=l

and the log-likelihood is given by

ln(I) = £  (d, ln[A0 (<,.)] + d,Jk, + exp(A,) ln[S„ (/,)]) [7.13]
1=1

If the survival times follow a particular distribution such as exponential or Weibull then 

the hazard and survivor functions for these distributions (see Section 3.5) can be 

substituted into the log likelihood in [7.13] and this can then be maximised with respect
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to all the parameters. If no distributional form is being assumed for the survival data 

then it is not possible to maximise the full likelihood.

As an alternative to the full likelihood, Cox (1972) proposed using a function called the 

partial likelihood. The partial likelihood is the likelihood of just the observed events. 

The likelihood of the death that occurs to patient i at time U is given by:

'  “ I* A >
jeRUi)

where Rfa) represents the set of patients who are at risk of death at time U and includes 

patient z.

Under the Cox regression model and with the arbitrary baseline hazard cancelling out in 

both the numerator and denominator, this likelihood becomes:

exp(£x,.) 

£ exP (£ * ,)
jeR(tt)

The partial likelihood function is the product of the likelihoods for the events and is 

given by:

PL(p) = n
/=i

exp(/Tx,.) 
Z exp(/Txy)

\ j * R ( t i )  J

[7.14]

Since this partial likelihood function contains only the j3 regression parameters, the 

distribution of the survival times can be ignored and the function can be maximised 

with respect to Q. Values of J3 that maximise the partial likelihood would also maximise 

the full likelihood. These maximum partial likelihood estimates are consistent and 

asymptotically normal but not fully efficient; the standard errors are slightly larger than 

they would be under the full likelihood function (Allison 1995, Cantor 1997).
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The partial likelihood given in [7.14] assumes that there are no tied values amongst the 

observed survival times, which in general will not be the case. An exact expression for 

the partial likelihood with tied data has been suggested (Kalbfleisch and Prentice 1980) 

and although some standard software may provide an option of using this, it is not 

easily computed and approximations may be preferable (Breslow 1974, Efron 1977). 

The approximation advocated by Breslow is used here.

Determining the values of the parameters that maximise the full or partial likelihood 

function usually requires an iterative numerical method. Here we use the Newton- 

Raphson algorithm as follows (Collett 1994). If U(J3) is the px  1 vector of first 

derivatives of the log likelihood with respect to (the vector of efficient scores) and 

I(J3) is the pxp matrix of negative second derivatives of the log likelihood evaluated at Q 

(the Hessian matrix or observed information matrix) with inverse I  A{J3) then at the 

(/+l)th iteration:

Starting values for j3 are taken as least squares estimates with censored treated as 

uncensored. Iterations are repeated until estimates for @ converge. Once values for 

have been determined, the square root of the diagonal elements of the information 

matrix will give estimates of the standard errors for the parameter estimates.

The Wald statistic is calculated as [ft/SE{f$)f and by comparing this value to a chi- 

squared distribution on 1 degree of freedom it can be used to assess whether the 

estimate is statistically significantly different from zero.

7.4 Survival Models with Treatment as Fixed Covariate

7.4.1 Method

The simple Cox regression model that assesses the effect of the single fixed covariate 

treatment group on survival is as follows:
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hi(t) = h0(t)exp(/3Gi) [7.15]

where G, is the treatment group for patient i.

This model is applied to both the MIC and ESPAC survival data under the assumption 

that the baseline hazard is either arbitrary, exponential, Weibull or piecewise 

exponential. A classical approach to parameter estimation is used in this section.

The PHREG procedure in SAS (SAS Institute Inc 1992) was used to fit the model with 

an arbitrary baseline hazard to the data. The data for analysis consists of one line per 

patient with the survival time, an indicator variable to denote if the survival time is 

censored or not and the value of the treatment group covariate. SAS uses a Newton- 

Raphson iterative algorithm to estimate the value of ft  that maximises the partial 

likelihood as described in Section 7.3.

The LIFEREG procedure in SAS (SAS Institute Inc 1989) was used to fit the models 

with exponential and Weibull baseline hazards to the data using the 

DIST=EXPONENTLAL and DIST=WEIBULL option in the MODEL statement. The 

format for the data is the same as for the PHREG procedure. SAS models the survival 

time as an accelerated failure time model rather than modelling the hazard as in a Cox 

model and therefore the regression coefficients given by SAS were transformed so that 

they correspond to the regression coefficients for a Cox model by using the formulae 

given in [7.6], [7.7] and [7.8]. SAS uses the Newton-Raphson algorithm to estimate the 

values of the parameters that maximise the full likelihood given in [7.13],

The piecewise exponential model required some data manipulation before it could be 

applied to the data. The first step was to decide on the time intervals for analysis. Then 

for each subject one record was created for every time interval during which the subject 

was at risk of death. A variable representing the time interval to which each record 

related was included in the data. Time was reset to 0 at the beginning of each time 

interval. If a subject did not die in the interval then survival time variable is assigned the 

full length of the time interval and censoring indicator is set to 0. If a subject died 

within the interval then the survival time variable was assigned the length of time from
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the start o f the interval to death and the censoring indicator was set to 1. If a subject was 

last observed alive within the time interval then the survival time variable was assigned 

the length o f time from the start o f the interval to the last observation time and the 

censoring indicator was set to 0. The value o f the fixed treatment covariate was 

replicated for each interval. The LIFEREG procedure in SAS with the 

DIST=EXPONENTIAL option in the MODEL statement was then used to fit the 

piecewise exponential model to the data. The variable representing the time interval was 

declared as a categorical variable and included in the model as a covariate. SAS sets up 

an indicator variable for each interval, the value for the last interval is set to zero and all 

other intervals are compared to this. The hypothesis o f no difference between the 

hazards for the intervals was assessed using the Wald test for the overall interval 

variable. The regression coefficients for the accelerated failure time model given by 

SAS were translated into the regression coefficients for a Cox model using [7.11].

7.4.2 Application to the MIC Study

The analysis focuses on the difference in survival between the two treatment arms 

within the first 15 weeks from entry to trial, the time during which quality o f life data is 

collected. There were 28 deaths (12 on CT and 16 on PAL) occurring at 24 distinct 

times during this period and the remainder o f patients had full follow-up and are 

therefore censored at 15 weeks in the analysis. In Chapter 3, the Kaplan-Meier survival 

curves (see Figure 3.2b) suggested that the CT arm had superior survival and a log-rank 

test showed the difference to be statistically significant (p=0.02). The aim here is to 

estimate the effect o f treatment on survival within the first 15 weeks from entry using 

the Cox regression model specified in [7.15] where Gj = 0.5 if  patient i is in the CT arm 

or G,= -0.5 for the PAL arm. These values were chosen for the covariate in order to 

correspond to the Bayesian analysis in which the covariate is centred round zero to aid 

convergence.

In fitting a piecewise exponential model, time intervals had to be chosen in accordance 

with the requirements outlined in 7.2.5. One option was to use the most extreme form of 

the model with intervals defined by the 24 distinct death times, which should give 

equivalent results to the model with arbitrary baseline hazard. Alternatively it seemed 

clinically sensible to choose 3-weekly time intervals as this corresponds to the timing of
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cycles of chemotherapy and of quality of life assessments. Estimates of the hazard 

function are shown in Figure 3.4 and it does not seem unreasonable to assume constant 

hazard within 3-weekly intervals from study entry. Since the first death did not occur 

until just after 3 weeks, the first time interval needed to be greater than 3 weeks. Thus 

time intervals of (0,6], (6,9], (9,12] and (12,15] were used for the piecewise exponential 

model. The maximum likelihood estimates (and associated standard errors) for the 

parameters in each of the models are given in Table 7.1.

Table 7.1: Maximum likelihood estimates (and standard errors) for survival 
models with treatment as fixed covariate in the MIC study

Form of baseline hazard Parameter MLE (SE)
Arbitrary P -0.8796 (0.3822)
Arbitrary (alternative*) P -0.8799 (0.3822)
Exponential A 0.0196 (0.0037)

P -0.8376 (0.3819)
Weibull X 0.0022 (0.0020)

y 1.8249 (0.3294)

P -0.8792 (0.3821)
Piecewise Exponential ^0-6 0.0126 (0.0045)

X e-9 0.0211 (0.0086)
^9-12 0.0258 (0.0098)

■^12-15 0.0292 (0.0111)

P -0.8640 (0.3822)
* fit as a piecewise exponential with 24 time intervals defined by death times

The estimate of /? under an arbitrary baseline hazard shows that chemotherapy 

significantly reduces the risk of death (p=0.02). The hazard ratio is estimated as 0.41 

(95% Cl: 0.20 to 0.88). The results from the piecewise exponential version of this 

model are virtually identical. The estimates of p  under an exponential, Weibull and 

piecewise exponential baseline hazard are similar to this with the exponential being the 

most different. The exponential model estimates the constant hazard over time as 

0.0126 in the CT group and 0.0304 in the PAL group, which are comparable to the 

estimates of the hazard calculated in Section 3.4.2. The estimates of the constant hazard 

in each time interval of the piecewise exponential model shows the baseline hazard 

increasing over time, although the Wald test for the time interval variable showed that 

there was no statistically significant difference between the hazards for the four 

intervals (p=0.37). The estimate of the shape parameter y  for the Weibull model is
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significantly greater than 1 indicating that the hazard increases over time, and therefore 

an exponential distribution appears inappropriate.

7.4.3 Application to the ESPAC Study

Simple survival analysis o f the ESPAC study in Chapter 3 suggested that the CT arm 

had superior survival to the NoCT arm (Figure 3.3; log-rank test p=0.02). The aim here 

is to estimate the effect o f treatment on survival using the Cox regression model 

specified in [7.15] where, similar to the MIC study, G, = 0.5 if  patient i is in the CT arm 

or Gi = -0.5 for the NoCT arm. The maximum follow-up time is approximately 54 

months and 126 deaths had occurred at the time o f analysis. Since the numbers included 

in the analysis reduce to 30 and 18 in the CT and NoCT groups respectively by 24 

months, the analysis is repeated for survival within 24 months as well as for the full 

follow-up period. There were 105 deaths within 24 months from surgery and the 48 

patients still alive and on follow-up at 24 months were censored at this time. Three- 

monthly time intervals were chosen for the piecewise exponential model i.e. (0,3], 

(3,6],...,(21,24], (24,27], (27,oo) as this tied in with the timing of the quality o f life 

questionnaires and were such that at least one death happens in each interval. Estimates 

of the hazard rates on the two treatment arms are shown in Figure 3.5c and the 

assumption o f constant hazard within 3-monthly time intervals does not seem 

unreasonable. The number o f deaths occurring after 27 months (6 in CT group and 3 in 

NoCT group) was too few for any sensible time intervals after this time. The parameter 

estimates for each o f the models are given in Table 7.2. Note that the alternative form of 

the model with arbitrary baseline hazard that was used for the MIC study was not 

feasible here as the number o f distinct death times was too large for a manageable form 

o f the piecewise exponential model.
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Table 7.2: Maximum likelihood estimates (and standard errors) for survival 
models with treatment as fixed covariate in the ESPAC study

Form of baseline hazard Parameter Over Whole FU Within 24 Months
Arbitrary P -0.4180 (0.1807) -0.3925 (0.1971)
Exponential A 0.0402 (0.0036) 0.0393 (0.0039)

P -0.3873 (0.1785) -0.3502 (0.1963)
Weibull X 0.0107 (0.0036) 0.0058 (0.0024)

7 1.4221 (0.1000) 1.6640 (0.1392)

P -0.5074 (0.1807) -0.4363 (0.1969)
Piecewise Exponential 0̂-3 0.0037 (0.0026) 0.0037 (0.0026)

3̂-6 0.0252 (0.0070) 0.0252 (0.0070)
6̂-9 0.0541 (0.0111) 0.0542 (0.0111)

Ag.\2 0.0691 (0.0141) 0.0692 (0.0142)
1̂2-15 0.0536(0.0138) 0.0536(0.0138)
1̂5-18 0.0619(0.0165) 0.0619(0.0165)
1̂8-21 0.0274 (0.0122) 0.0274 (0.0122)
2̂1-24 0.0534 (0.0189) 0.0534 (0.0189)

A24-27 0.1081 (0.0312) -
0.0262 (0.0088) -

P . -0.4222 (0.1806) -0.3963 (0.1970)

The estimate of p  under an arbitrary baseline hazard shows that chemotherapy 

significantly reduces the risk of death (p=0.02). For the full follow-up period, the hazard 

ratio is estimated as 0.66 (95% Cl: 0.46 to 0.94). The estimates of ft under an 

exponential, Weibull and piecewise exponential baseline hazard are reasonably similar 

to this with the piecewise exponential being most comparable. For the full follow-up 

period, the exponential model estimates the constant hazard over time as 0.0331 in the 

CT group and 0.0488 in the NoCT group, which are the same as the estimates of the 

hazard calculated in Section 3.4.2. The estimates of the constant hazard in each time 

interval of the piecewise exponential model shows the baseline hazard fluctuating over 

time and the Wald test for the time interval variable showed that these differences were 

statistically significant (p<0.0001 for full follow-up and p=0.002 for within 24 months). 

The estimate of the shape parameter /  for the Weibull model is significantly greater than 

1 indicating that the hazard increases over time and therefore an exponential distribution 

would appear not to be appropriate. In all models the reduction in hazard of death by 

chemotherapy is slightly less when the analysis is restricted to within 24 months from 

surgery, although the results are reasonably comparable.
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7.5 Extending Model to Include Quality of Life as a Time-Dependent 
Covariate

7.5.1 Cox Regression Model with Time-Dependent Covariates

The Cox regression model specified in [7.1] can be extended to incorporate time- 

dependent covariates. The model for the hazard function can be written as:

hi(t) = h0( OexpC/Tx,. + fl/z  ,■(/)) [7.16]

where zjjt) is a vector o f time-dependent covariates for patient i with associated 

regression coefficients 0 ). The variables in z,{t) represent successive measures o f a 

binary, ordinal or continuous covariate. When time-dependent variables are included in 

the model the relative hazard becomes time-dependent and so the model ceases to be a 

proportional hazards model.

In a Cox regression model with fixed covariates it is possible to consider a parametric 

form for the baseline hazard and in the previous section exponential and Weibull 

models were considered. Such parametric models however cannot easily accommodate 

time-dependent covariates (Petersen 1986). In fitting the Cox regression model with 

quality of life as a time-dependent covariate the assumption o f an exponential or 

Weibull distribution for the survival times is no longer considered. The only alternative 

that we consider to the Cox regression model with arbitrary baseline hazard is the 

piecewise exponential model which, although it is based on an underlying parametric 

assumption, can incorporate time-dependent covariates.

Suppose the death times of the n individuals in a study are t\<t2<—<tt<  and

suppose R(ti) is the set o f individuals at time U that are at risk o f death. The partial 

likelihood specified in [7.14] is still applicable but the covariates become time- 

dependent and thus to maximise the partial likelihood with a time-dependent covariate 

z(t), the true value o f the covariate z(/z) at each death time is needed for all individuals 

in the risk set R(ti), including the individual who dies at that time. In practice, the 

covariate is measured at discrete time points that in general do not coincide with event
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times and the covariate is measured with error, which may be substantial (see Section 

7.7 for further discussion). The usual method is to impute the values o f the covariate at 

the event times (Collett 1994). The most common approach is to impute the value o f the 

covariate at time t to be the last recorded value prior to t. In situations where there are 

recorded values either side o f the time o f interest, then it may be preferable to use either 

the value at the closest time or, for continuous variables, a linearly interpolated value. 

Alternative more sophisticated options have been suggested such as using a ‘window 

approach’, where by defining what is a proximate value to a failure time, only these are 

used as covariate values (Gail 1981).

During a study, a patient may experience changes in quality o f life as time passes. This 

could be described either by a changing quality o f life score or by the movement in and 

out o f various quality o f life health states. The change in score or pattern o f movement 

between states may help to explain survival differences and can be considered for 

inclusion in any survival model as a time-dependent covariate. The inclusion o f such a 

covariate however is not necessarily straightforward. As described above, a quality o f  

life value is required for all patients still alive and on follow-up at each death time. The 

difficulties o f estimating values at each death time when few or no patients have values 

actually measured at that time are exacerbated by the additional problem o f patients 

dropping out o f the quality o f life study despite having continued follow-up for survival, 

resulting in non-ignorable missing covariate values for all time after dropout.

7.5.2 Model with Quality of Life as a Time-Dependent Covariate

The Cox regression model with treatment as a fixed covariate as specified in [7.14] is 

extended to include quality o f life as time-dependent covariate as follows:

ht(t) = h0 (t) exp(/? Gt + co Qt (t)) [7.17]

where Ql{t) is the quality o f life o f patient i at time t.

This model is fitted to the MIC and ESPAC data with an arbitrary and a piecewise 

exponential baseline hazard function.
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The aim here is to illustrate the application o f standard methods to the quality o f life and 

survival data and thus standard methods for imputation o f quality o f life values at death 

times, as described below, are used. These methods will generally be inadequate as they 

take no account o f measurement error and do not account for the fact that the missing 

data after dropout will not be missing at random but alternative methods that overcome 

these problems are discussed in Section 7.7 and developed in Chapter 10. For the 

arbitrary baseline hazard, the values o f quality o f life at each death time that are 

required to maximise the partial likelihood are estimated using the last observed value 

carried forward. This assumes that patients remain in steady state from one assessment 

to the next and from the last assessment to death. For a piecewise exponential model, 

time-dependent covariates are assumed to be constant for each interval and the model 

requires the value o f the covariate for each interval for all patients at risk at the start o f  

the interval. The last observed value prior to the start o f the interval is used as the 

covariate value for the interval. As an alternative for a continuous covariate, the mean 

value for the interval is estimated as the mean o f the values at the start and end o f the 

interval, calculated by linear interpolation o f the observed values. If a patient dies or is 

censored within the interval then the last observed quality o f life value within the 

interval is used. For all analyses, dropout is accommodated by carrying the last 

observed value forward to either death, last survival follow-up or end o f study time. All 

time points prior to the first assessment are imputed by carrying the first value 

backwards to time 0.

The PHREG procedure in SAS (SAS Institute Inc 1992) was used to fit the model with 

an arbitrary baseline hazard to the data. As before, the data for analysis consists o f one 

line per patient but in addition to the survival data and treatment covariate, the quality 

o f life data per patient is attached as a series o f variables representing the successive 

assessment times and the corresponding quality o f life values. Data statements within 

the PHREG procedure allow the values included at each death time to be that previously 

observed.

7.5.3 Application to the MIC Study

In modelling the survival within 15 weeks for patients in the MIC study, quality o f life 

was included as a time-dependent covariate as both GQS and MAL. Patients’ successive
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values for these variables were included as time-dependent covariates in the Cox 

regression model. GQS was included in terms o f the changing value over time whilst 

MAL was included in terms of the movement between two different health states: well 

(MAL=0) and ill (MAL= 1,2,3). Time spent in the well health state was allocated the 

value 0 and the ill state was allocated the value 1. The values o f GQS and MAL at each 

death time for the arbitrary baseline hazard or for each time interval in the piecewise 

exponential model are calculated using last value carried forward. Also the values of 

GQS for each time interval in the piecewise exponential model are included as an 

interval mean, calculated as specified in Section 7.5.2. In all cases, the time from study 

entry to the first assessment is allocated the value o f quality o f life at the first 

assessment, i.e. first value carried backwards. The maximum likelihood estimates o f the 

model parameters are given in Table 7.3.

In the model with an arbitrary baseline hazard, the regression coefficients for the quality 

of life covariates suggest that there is a significant relationship between the changing 

values o f both GQS and MAL and survival within 15 weeks (Wald chi-square p<0.0001 

and p=0.01 respectively). The hazard ratio for GQS is estimated as 0.94 (95% Cl: 0.92 

to 0.97) suggesting that increasing values o f GQS (i.e. improving quality o f life) are 

associated with a reduced hazard o f death. The hazard ratio for MAL is estimated as 

3.60 (95% Cl: 1.37 to 9.47) suggesting that moving into the ill state is associated with 

an increased hazard o f death. The regression coefficients for treatment show that after 

adjusting for the effect o f changing values o f GQS over time, survival within 15 weeks 

is no longer significantly different between treatments (p=0.13), whereas treatment 

remains significant after adjusting for the effect o f MAL (p=0.02). The alternative 

version o f the model with arbitrary baseline gives very similar results.

In the piecewise exponential model, the values for the baseline hazard are comparable 

across the three different models and all show the hazard to increase with time but in all 

cases the Wald chi-square statistic for the interval variable showed no significant 

difference between the intervals (p>0.25). The estimates o f the regression parameters 

are similar to those from the model with arbitrary baseline hazard. The relationship 

between quality o f life and survival is significant in all models, particularly when the 

interval mean value for GQS is used (P<0.0001) and the effect o f treatment is reduced 

with the inclusion o f GQS but remains significant with the inclusion o f MAL.
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Table 7.3: Maximum likelihood estimates (and standard errors) for survival 
models with treatment and quality of life as covariates in the MIC study

Form of baseline 
hazard

Values for QoL 
covariate

Parameter MLE (SE)

Arbitrary GQS p -0.5853 (0.3906)
LVCF CO -0.0577 (0.0127)

Arbitrary GQS p -0.6030 (0.3898)
(alternative*) LVCF CO -0.0562 (0.0127)

Piecewise GQS ^0-6 0.0104 (0.0039)
Exponential LVCF At-9 0.0173 (0.0073)

A,9-12 0.0212 (0.0085)
>2-12-15 0.0264 (0.0102)

P -0.6518 (0.3908)
CO -0.0415(0.0128)

GQS Aq-6 0.0091 (0.0035)
Interval mean ^6-9 0.0153 (0.0066)

^9-12 0.0188 (0.0078)
>2-12*15 0.0237 (0.0094)

P -0.4964 (0.3999)
CO -0.0549 (0.0133)

Arbitrary MAL P -0.9306 (0.3827)
LVCF CO 1.2802 (0.4939)

Arbitrary MAL p -0.9306 (0.3827)
(alternative*) LVCF CO 1.2903 (0.4939)

Piecewise MAL Ao-6 0.0083 (0.0034)
Exponential LVCF Afi-9 0.0151 (0.0068)

A 9.12 0.0186 (0.0079)
>2-12-15 0.0209 (0.0088)

P -0.9137(0.3827)
CO 1.5569 (0.5407)

* fit as a piecewise exponential with 24 time intervals defined by death times

7.5.4 Application to the ESPAC Study

Successive values of GHSS were included as a time-dependent covariate in the Cox 

regression model for survival in the ESPAC study. With so few subjects completing 

quality of life assessments after 24 months, the survival analysis was restricted to this 

24-month period from surgery. The values of GHSS at each death time for the arbitrary 

baseline hazard or for each time interval in the piecewise exponential model are 

calculated using last value carried forward. Also the values of GHSS for each time 

interval in the piecewise exponential model are included as an interval mean, calculated
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as specified in Section 7.5.2. In all cases, the time from study entry to the first 

assessment is allocated the value of quality of life at the first assessment, i.e. first value 

carried backwards. The maximum likelihood estimates o f the model parameters are 

given in Table 7 4.

Table 7.4: Maximum likelihood estimates (and standard errors) for survival 
models with treatment and quality of life as covariates in the ESPAC study

Form of baseline 
hazard

Values for QoL 
covariate

Parameter Within 24 Months

Arbitrary GHSS p -0.4766 (0.1983)
LVCF CO -0.0325 (0.0042)

Piecewise GHSS ^ 0-3 0.0027 (0.0019)
Exponential LVCF 2 -3-6 0.0188 (0.0055)

A6-9 0.0511 (0.0106)
Ag-12 0.0688 (0.0142)

2 -12-15 0.0533 (0.0139)
2 - 15-18 0.0633 (0.0170)
2 -18-21 0.0270 (0.0121)
^ 21-24 0.0583 (0.0206)

P -0.4645 (0.1977)
CO -0.0237 (0.0043)

Piecewise GHSS 2<)-3 0.0026 (0.0019)
Exponential Interval mean

^ 3-6 0.0212 (0.0060)
2 6 -9 0.0454 (0.0097)
M-\2 0.0572 (0.0123)

2 -12-15 0.0437(0.0117)
2 -15-18 0.0547 (0.0149)
2 -18-21 0.0246 (0.0111)
2-21 -24 0.0517(0.0184)

P -0.4112(0.1975)
CO -0.0335 (0.0045)

All models give similar estimates for the treatment and quality of life regression 

coefficients and the estimates of the constant baseline hazard under both piecewise 

exponential models are similar to those calculated previously in the model with just the 

treatment covariate. Regression coefficients for treatment show that after adjusting for 

the effect of changing values of GHSS over time, survival within 24 months is still 

significantly different between treatments (p=0.02). From the model with arbitrary 

baseline hazard the hazard ratio is estimated as 0.62 (95% Cl: 0.42 to 0.92) compared to 

0.66 without the quality of life covariate. The regression coefficients for the quality of
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life covariate suggest that there is a very strong relationship between the changing 

values o f GHSS and survival within 24 months (pO.OOOl). From the model with 

arbitrary baseline hazard the hazard ratio is estimated as 0.97 (95% Cl: 0.96 to 0.98), 

which suggests that increasing values of GHSS (i.e. improvement in quality o f life) are 

associated with a reduction in the hazard o f death.

7.6 Bayesian Approach to Parameter Estimation in Survival Models

The parameters in a Cox regression model can be estimated using Bayesian inference 

(Abrams 1998). The aim is to determine a posterior distribution for each o f the 

unknown parameters given the data and prior distributions for the parameters. Vague 

prior distributions are used here, which should give approximately equivalent results to 

maximum likelihood estimation. As with the classical approach, different forms for the 

baseline hazard can be considered. By necessity, all models fitted using Bayesian 

inference are parametric. It is however still possible to fit the equivalent o f a model with 

an arbitrary baseline hazard by considering it as an extreme form of a piecewise 

exponential model (as discussed in 7.2.5). The aim of this section is to estimate the 

parameters in the Cox regression model with treatment and quality o f life as covariates 

as specified in [7.17]. Therefore only an arbitrary and piecewise exponential baseline 

hazard will be considered, with the arbitrary form just being an extension o f the 

piecewise exponential model.

Any random variable that equals the number o f times an event occurs in a given interval 

of time can be modelled as a Poisson distribution. Thus, given any time interval (q/_i,q/], 

the number of times a death occurs in this interval can be modelled as a Poisson 

distribution. The number of deaths for patient i in time interval (aj.i, aj\ has a Poisson 

distribution with mean fUy where, given a constant hazard o f death hy within the interval,

u  =  r - h• U IJ IJ

where ry is the length o f time patient i is at risk of death within the interval. Using the 

Cox model for the hazard o f death as specified in [7.17] with piecewise exponential 

baseline hazard gives:
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Mg = r,Aj exP (^G,+t»Qt ) [7.18]

By setting Aj=exp(j3oj) the model can be written as:

logOi,) = log(ri,) + Poj +0G,+e> Qij [7.19]

Thus to estimate the parameters in [7.17] from a Bayesian approach the likelihood is 

specified as dy ~ Poisson(py)t where dy is the number of deaths per patient per time 

interval which can only be 0 or 1 and the model for /Mj is given in [7.19]. The data must 

also include for each patient and each time interval the actual time that the patient is at 

risk during the interval, r,y, and the values of the covariates G, and Qy, ideally centred to 

aid convergence.

Prior distributions for pq/ needed to be specified as well as for p  and co. Vague priors 

were used for all parameters to produce equivalent results to the maximum likelihood 

estimates from the classical piecewise exponential model. Normal distributions with 

large variances were used as follows:

P o j ,P , ( o ~ N ( 0 ,10000)

If the time scale for the data is divided into intervals (0, a{\t (a\t <22], ••• a]\ such

that a\, aj are the distinct observed death times then the piecewise exponential 

model will be equivalent to the Cox model with an arbitrary baseline hazard. Since the 

deaths that occur in an interval all occur at the end, the length of time at risk within each 

interval is the same for all subjects, that is all patients are at risk for the width of the 

time interval wj (j=\,2,..P) and the model given in [7.18] can be simplified as:

Mg = WjAj exp(0G t +a>Qg)
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By setting wy^=exp(/fy) the model can be written as:

logOy) = P0j +PGi +co Qy [7.20]

In this model, patients who are censored within the time interval are assumed to survive 

the whole time interval, which is not an unreasonable assumption to make when the 

time intervals are short and one that is also indirectly made in any classical analysis. 

The results for ft  and co from this model with vague priors are equivalent to the 

maximum likelihood estimates for the Cox model with arbitrary baseline hazard.

If the data being analysed has a large number of deaths, then the number of observed 

distinct death times is large and therefore the number of time intervals and 

corresponding f a  are also large and this model may not be computationally feasible. In 

this case a piecewise exponential model with wider time intervals but in which the 

actual time at which deaths occur during the interval is used to estimate the model 

parameters may be a more preferable option.

WinBUGS software (Spiegelhalter et al 2000) was used to fit the piecewise exponential 

models described here to the MIC and ESPAC data. The form of the piecewise 

exponential model equivalent to fitting an arbitrary baseline hazard was only feasible 

for the MIC study. In all cases a burn-in of 50000 iterations was used and estimates of 

the posterior distributions for the parameters were based on samples of 50000. The 

models were all checked for convergence by examining the trace plots and 

autocorrelations and all appeared to be adequate. In both the MIC and the ESPAC 

studies, the Bayesian estimates of the regression coefficients and underlying baseline 

hazard were very similar to those obtained using maximum likelihood estimation (see 

Tables 7.5 and 7.6).
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Table 7.5: Comparison of Bayesian versus classical parameter estimates (and 
standard errors) for survival models in the MIC study

Form of baseline Values for Parameter Classical Bayesian
hazard QoL covariate

Arbitrary GQS p -0.5853 (0.3906) -
LVCF CO -0.0577 (0.0127) -

Arbitrary GQS p -0.6030 (0.3898) -0.6161 (0.3967)
(alternative*) LVCF CO -0.0562 (0.0127) -0.0560 (0.0128)

Piecewise GQS J<)-6 0.0104 (0.0039) 0.0105 (0.0038)
Exponential LVCF Jo-9 0.0173 (0.0073) 0.0168 (0.0072)

A9.12 0.0212 (0.0085) 0.0206 (0.0083)
Jl2-15 0.0264 (0.0102) 0.0257 (0.0099)

P -0.6518(0.3908) -0.6559 (0.3973)
CO -0.0415 (0.0128) -0.0414(0.0129)

GQS 0.0091 (0.0035) 0.0089 (0.0034)
Interval mean Jo-9 0.0153 (0.0066) 0.0149 (0.0065)

A9.12 0.0188 (0.0078) 0.0183 (0.0076)
Jl2-15 0.0237 (0.0094) 0.0230 (0.0091)

P -0.4964 (0.3999) -0.5001 (0.4070)
CO -0.0549 (0.0133) -0.0549 (0.0134)

Arbitrary MAL p -0.9306 (0.3827) -
LVCF CO 1.2802 (0.4939) -

Arbitrary MAL p -0.9306 (0.3827) -0.9378 (0.3891)
(alternative*) LVCF CO 1.2903 (0.4939) 1.3620 (0.5162)

Piecewise MAL Jo-6 0.0083 (0.0034) 0.0080 (0.0033)
Exponential LVCF Jo-9 0.0151 (0.0068) 0.0144 (0.0066)

Jo-12 0.0186 (0.0079) 0.0176 (0.0076)
J\2-\5 0.0209 (0.0088) 0.0198 (0.0086)

P -0.9137 (0.3827) -0.9226 (0.3885)
CO 1.5569 (0.5407) 1.6630 (0.5739)

* fit as a piecewise exponential with 24 time intervals defined by death times
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Table 7.6: Comparison of Bayesian versus classical parameter estimates (and 
standard errors) for survival models in the ESPAC study

Form of baseline 
hazard

Values for QoL 
covariate

Parameter Classical Bayesian

Arbitrary GHSS
LVCF

P -0.4766 (0.1983) -

CO -0.0325 (0.0042) -

Piecewise
Exponential

GHSS
LVCF

^0-3 0.0027 (0.0019) 0.0027 (0.0019)
M-6 0.0188 (0.0055) 0.0188 (0.0054)
M - 9 0.0511 (0.0106) 0.0507 (0.0106)
A9-U 0.0688 (0.0142) 0.0683 (0.0141)
^12-15 0.0533 (0.0139) 0.0529 (0.0137)
^15-18 0.0633 (0.0170) 0.0628 (0.0169)
^18-21 0.0270 (0.0121) 0.0267 (0.0120)
M1 -24 0.0583 (0.0206) 0.0580 (0.0205)

P -0.4645 (0.1977) -0.4661 (0.1989)
CO -0.0237 (0.0043) -0.0236 (0.0043)

Piecewise
Exponential

GHSS 
Interval mean

M -3 0.0026 (0.0019) 0.0026 (0.0019)
M-6 0.0212(0.0060) 0.0210 (0.0060)
M - 9 0.0454 (0.0097) 0.0452 (0.0096)
M-12 0.0572 (0.0123) 0.0568 (0.0123)

^12-15 0.0437(0.0117) 0.0434 (0.0117)
-^15-18 0.0547 (0.0149) 0.0543 (0.0148)
^18-21 0.0246 (0.0111) 0.0244 (0.0110)
M l -24 0.0517(0.0184) 0.0515 (0.0183)

P -0.4112(0.1975) -0.4114(0.1979)
CO -0.0335 (0.0045) | -0.0335 (0.0045)

7.7 Summary and Discussion

The focus of this chapter has been to consider the possible model options for survival 

data. These models will be relevant for all three approaches that simultaneously analyse 

survival and quality of life data. Models with just treatment as a fixed covariate are 

particularly relevant for the multistate modelling in Chapter 9. Survival models are the 

simplest form of a multistate model, describing the movement of patients from an alive 

state to a dead state. In Chapter 9 this simple two-state model is extended to incorporate 

several different health states and the models described here with just treatment as a 

covariate illustrate the forms that are considered for modelling the transition rates 

between health states. The models that incorporate quality of life as a time-dependent 

covariate as well as treatment are particularly relevant for the joint modelling of quality
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of life and survival in Chapter 10. In this later chapter, joint modelling is achieved by 

allowing the survival model illustrated here to include modelled values of quality of life 

rather than observed values. Since a Bayesian approach to joint modelling is taken, the 

models that include quality of life as a time-dependent covariate are considered here 

from a Bayesian as well as a classical viewpoint.

The model with piecewise exponential baseline hazard turns out to be the only practical 

option for modelling survival data with quality of life as a time-dependent covariate in 

both a Bayesian and classical framework. A Cox regression model with a piecewise 

exponential baseline hazard using a reasonable number of time intervals should 

generally be a good approximation to that with an arbitrary baseline hazard. Problems 

may occur when there are no early deaths since the first interval may have to be 

particularly wide and changes in quality of life that occur over this wide time interval 

which may be related to survival will not be incorporated into the model.

The analysis presented here also gives further insight into the underlying hazard of 

death and the effect of treatment on this hazard in the two illustrative studies. More 

importantly it also provides an initial look at the relationship between changing quality 

of life and survival. In both studies the models with just the treatment covariate showed 

that the underlying hazard was changing over time and chemotherapy significantly 

reduced the hazard of death. The inclusion of the quality of life covariate in all formats 

showed strong evidence of an association between quality of life and survival, with 

improving quality of life associated with a decreased hazard of death.

Although treatment and quality of life are the only covariates that are included in the 

models here, the models could easily be extended to include other covariates. These 

simplistic models however enable the key covariates to be investigated and are adequate 

for illustrating the methodology, with both fixed and time-dependent covariates being 

represented. Since the aim of the modelling was not to find the set of covariates that 

best explained the variation in the survival or the form of the underlying baseline hazard 

that best fit the data, consideration has not been given to model adequacy but all the 

standard methods apply. From a classical perspective, changes between nested models 

in minus twice log likelihood can be used to assess the significant contribution of 

covariates to the model. For non-nested models the Akaike Information Criterion (AIC)
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can be used, with smaller values of AIC indicating better models. Discrimination 

between an arbitrary baseline hazard and a parametric form is not always easy but the 

model that yields the smaller standard errors for the regression parameters indicates a 

more efficient model. Model adequacy can be checked using plots of residuals (Collett

1994). From Bayesian perspective Bayes factors can be used to compare models 

although this is not straightforward as it requires an informative prior for the baseline 

hazard (Abrams 1998).

One of the key aims in this chapter has been to include quality of life as a tune- 

dependent covariate in the Cox model, enabling the relationship between quality of life 

and survival to be investigated. Including quality of life as a time-dependent covariate 

however is problematic as values are required for all patients in the risk set at each 

death time. Since covariate values are generally not available at these specific times, 

simple methods of imputation are normally used to estimate the required values. Last 

value carried forward is probably the simplest and most widely used option and is used 

here. Linear interpolation can also be used to estimate covariate values at death times 

but cannot be applied for the period of follow-up time after the last assessment. For the 

piecewise exponential model the value of the covariate is fixed for each interval and 

using the last observed value prior to the interval as the value for that interval may be 

very unrepresentative, especially if the interval is long, as it ignores any changes in 

quality of life during the interval. Using an estimate of the mean quality of life for the 

interval as the covariate as used here may therefore be preferable but again this cannot 

be applied to the intervals after the last assessment and last value carried forward is still 

used for all time on follow-up after the last assessment. Clearly these methods of 

imputation are inadequate for quality of life data where missing data after dropout will 

generally not be missing at random and where the dropout period may be of 

considerable length. In addition, maximising the partial likelihood requires the value of 

quality of life of patients at their own actual death time and this will be estimated as 

their last observed value, which will clearly be wrong. The value of quality of life at 

death could be imputed as the worst value, which may be zero if the measure is a utility 

or utility-type measure but this induces a strong relationship between quality of life and 

survival, which defeats one of the objectives of the analysis, which is to investigate such 

a relationship.
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The imputed covariate values of quality of life will be treated in the model as true 

values and no account is made for measurement error. It has been shown that the 

presence of measurement error in the covariate values will cause the estimated 

parameters to be biased towards the null (Prentice 1982). One option to reduce this bias 

is to use a two-stage model (Tsiatis et al 1995) where the covariate values included at 

each death time are updated estimates of the true values based on a random effects 

model for all information prior to the death time. With new random effects models 

being fitted for every death time, this is a computationally complex method. In addition 

this two-stage model does not use any survival information in the modelling of the 

covariate process and thus a joint modelling approach would be preferable (Wulfsohn 

and Tsiatis 1997, Faucett et al 1998). Approaches to joint modelling are discussed in 

Chapter 10.
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CHAPTER 8: QUALITY-ADJUSTED SURVIVAL ANALYSIS

8.1 Introduction

The aim of this chapter is to review in detail the different methods for quality-adjusted 

survival analysis in terms of their applicability to longitudinal quality of life data 

collected on patients. The methodology is developed to deal with the additional 

informative dropout of patients from quality of life studies prior to death.

Quality-adjusted survival analysis is the most widely used approach in clinical research 

for the simultaneous analysis of quality of life and survival data. The approach combines 

the amount of time patients spend in a number of different health states with weights 

reflecting the quality of life of those health states to create a composite measure of 

quality and quantity of life. The method was originally devised for health states defined 

using clinical data (Gelber and Goldhirsch 1986) and has not been widely used for the 

analysis of quality of life data collected on patients in a clinical trial. More recently 

methods have been proposed that directly incorporate the longitudinal quality of life 

collected on patients with the survival data (Glasziou et al 1998) and this alternative to 

the health-state based method is far more disposed to the analysis of longitudinal data 

collected in clinical trials.

There are two main approaches to quality-adjusted survival analysis depending on the 

level of aggregation of the quality of life and survival data. The subject-based approach 

combines quality of life and survival at the subject level, thus creating a single endpoint 

for each individual on which to compare treatments. The group-based approach 

aggregates quality of life and survival at a group level, such as treatment group. For both 

levels of aggregation there are two different approaches to using the longitudinal quality 

of life data; either the quality of life data can be used to determine the time that patients 

spend in different health states over time and then quality weights are attached to these 

times or the values of quality of life measured over time, as long as they are utility-type 

measures, can be used directly to ‘down-weight’ the survival time.
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In this thesis all methods for quality-adjusted survival analysis will be reviewed in terms 

of their applicability to longitudinal quality of life data collected on patients. The 

application of all the different approaches to longitudinal quality of life data has not 

been demonstrated previously and this thesis allows the methods to be reviewed in 

detail. The methods are developed to deal with the problem of informative dropout (see 

Chapter 5). The thesis introduces the concept of survival-adjusted quality-of-life, which 

reflects the fact that the method adjusts for the dropout of patients due to death in the 

analysis of quality of life. By interpreting quality-adjusted survival analysis in this way, 

the extension of the methodology to deal with additional dropout prior to death can be 

meaningfully interpreted as dropout-adjusted quality-of-life.

Quality-adjusted survival analysis is based on the concept of quality-adjusted life years 

(QALYs) and QALY models, particularly TWiST and QTWiST, are described in 

Section 8.2. The different approaches to combining quality of life are introduced in 

Section 8.3 and then the following Sections 8.4 to 8.7, illustrate in detail the four 

different approaches: subject- and group-based aggregation based on either health-states 

or direct inclusion of values. The MIC and ESPAC studies are used in all cases to 

illustrate the methodology and the extension of the methods to deal with dropout prior 

to death is considered in each section. The final section 8.8 provides a critical review of 

the methods for the application to longitudinally collected quality of life data.

8.2 QALY Models

8.2.1 The General QALY Model

Quality-adjusted survival analysis is based on the concept of quality-adjusted life years 

(QALYs) (Glasziou et al 1990) where quality and quantity of survival are combined into 

a single composite measure. To calculate QALYs, years of life are multiplied by a 

fraction, the quality-adj ustment fraction, which expresses the impairment in quality of 

life experienced during this time. The quality-adj ustment fraction ranges from 0 to 1, 

with 0 representing quality of life equivalent to death and 1 representing perfect health. 

Negative values can be used if the quality of life is thought to be worse than death. 

These weights are intended to reflect the relative desirability of the state and are usually
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referred to as ‘health state utilities’ (Torrance 1987), as described earlier in Section 

4.2.3.

If the patient experiences or is expected to experience a series of health states Hj (/=1 to 

J), with different levels of quality of life as measured by utilities uj (/= 1 to J) and the 

time spent in each state Hj is given by tj (j- 1 to J), then the conventional approach to 

calculating QALYs is to sum the weighted times spent in the different states. This gives 

the following standard form for the QALY model:

QALY = ± u jtj [8.1]

Glasziou et al (1990) discuss the assumptions which the QALY model is based on, 

which are as follows:

• utility independence - the utility value for a health state does not depend on the time 

spent in that state;

• context independence - the utility value assigned to a health state is independent of 

previous or future quality of life or the amount of remaining life;

• risk neutrality - all life years are valued equivalently.

The risk neutrality assumption means that time is included in the model as a linear term, 

t, rather than as a non-linear function of time, i.e. fit). More general models, that include 

different forms of discounting or risk-adjustment, have been suggested (Glasziou et al 

1990).

8.2.2 The TWiST Model

A special QALY endpoint for comparing therapies, that incorporates both length and 

quality of survival into a single measure, was developed in a subject-based approach to 

quality-adjusted survival analysis (Gelber et al 1989). The endpoint that they devised, 

TWiST (Time spent Without Symptoms of disease and Toxicity of treatment), was 

developed as a measure of the ‘good’ quality time experienced by the patient. It was 

originally developed to assess treatments for breast cancer (Gelber and Goldhirsch 1986,
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Gelber et al 1987, Gelber et al 1989) and has also been used in the assessment of 

treatments for ovarian cancer (Willemse et al 1990, Willemse et al 1992).

TWiST is calculated for each patient by subtracting from overall survival those periods 

of time during which treatment or disease reduce their quality of life. This is equivalent 

to calculating QALYs for a patient with utility values of 0 for times with symptoms and 

toxicity, and utility values of 1 otherwise. The definitions of time with symptoms of 

disease and time with toxicity of treatment can be adjusted for different clinical 

situations depending on the disease and treatment under study. Defining the untoward 

events that can occur and determining the importance attached to each one, in terms of 

the amount of time subtracted from total survival, are of paramount importance in 

creating a meaningful TWiST measure (Feldstein 1991).

The definitions of TWiST in the literature have in general been based on clinical criteria 

rather than patient-based measures of quality of life. Quality of life data collected via 

questionnaires at repeated assessments over time could however be used to define 

TWiST. For example in one study, researchers gave a quality weighting of 1 to the 

survival time during which a patient had either an unchanged high quality of life and no 

signs of symptomatically progressive disease or improvement in quality of life estimates 

without being hospitalised; all other survival time was weighted as zero (Glimelius et al 

1995). Further examples use survival time spent with ‘normal’ quality of life scores, as 

defined by the quality of life instrument, as the definition of TWiST (Beacon 1996, 

Allen-Mersh et al 1994). In the MIC study, patients are never strictly speaking in a 

TWiST state as they are never without disease and in many cases are undergoing 

treatment throughout the quality of life study period. In Section 8.4.2 we give an 

example of a TWiST-type analysis using the MIC data by interpreting all time without 

malaise (MAL=0) as a TWiST-type state and allocating it a utility of 1, whilst allocating 

all other time a value of 0.

The TWiST model is a simplistic way of incorporating quality of life into a survival- 

type endpoint. The model has been criticised for many reasons including the fact that the 

amounts of time deducted from overall survival to create the TWiST endpoint are 

arbitrary and that the model does not account for the quality-of-life experienced during
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these times (Brunner 1989). Is was recognised that time with toxicity and symptoms 

could be added with appropriate weights to TWiST to avoid equating these periods of 

time to death (Gelber et al 1989) and this forms the basis for the Q-TWiST model 

described below in Section 8.2.3.

8.2.3 The Q-TWiST Model

The Q-TWiST (Quality-adjusted Time Without Symptoms of disease and Toxicity of 

treatment) endpoint is a natural extension of the quality-of-life oriented endpoint 

TWiST and an adaptation of the general QALY model. The TWiST model is extended 

so that periods of time spent with toxicity or relapse are included in the analysis but are 

weighted to represent their quality value relative to TWiST. Thus, overall survival is 

scaled downwards by arbitrarily giving survival during treatment or symptoms a reduced 

value.

The Q-TWiST model was originally developed and used to assess the effects of 

adjuvant therapy in women with breast cancer (Glasziou et al 1990, Goldhirsch et al 

1989, Gelber and Goldhirsch 1989, Gelber et al 1991). In the original breast cancer 

application (Goldhirsch et al 1989) the following health states were defined:

TOX time having subjective toxic side-effects 

TWiST time without symptoms or toxicity

REL time following systemic relapse (this includes time spent recovering from 

treatment for local recurrence)

The clinical criteria which defined the sections of a patient’s follow-up time that would 

fall into these health states were fully specified.

The model used for Q-TWiST is a QALY model with weights for TOX and REL 

representing the quality values of each health state relative to TWiST’ which has a value 

of 1. The original form of the Q-TWiST model is given as (Goldhirsch et al 1989):

Q-TWiST = ut TOX + TWiST + ur REL [8.2]
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where TOX is the time spent with toxicity from treatment, REL is the time spent with 

symptoms of disease and ut and ur are the utilities associated with these periods of 

survival time. Note that values of (uh ur) equal to (1,1), (1,0) and (0,0) gives overall 

survival, disease-free survival and TWiST respectively.

Applications of the Q-TWiST model tend to use either the same health states as the 

original breast cancer example with slightly different definitions or a slightly modified 

version. For example the original breast cancer states have been modified to include an 

additional ‘recovery’ state (Feldstein 1991). It has been suggested that in some trials, it 

may be necessary, in addition to TOX, to define a second period of toxicity to represent 

the late toxic effects of treatments on a patient’s quality of life (Gelber et al 1991). The 

model has been applied to other cancers such as lung (Rosenthal et al 1992), lymphoma 

(Cole et al 1995) and rectal (Gelber et al 1996) and in other disease settings such as 

AIDS (Gelber et al 1992). In this ADDS application, patients could move from TWiST to 

a state where first adverse events were experienced and then on to a state of disease 

progression. Further work is being undertaken to develop Q-TWiST so that it can be 

applied to neurological diseases such as multiple sclerosis (Schwartz et al 1995a) and 

epilepsy (Schwartz et al 1995b). Applications of Q-TWiST models have almost entirely 

been such that the health states are defined using clinical criteria, but patient-assessed 

quality of life data has been used (Beacon 1996). In this model, three progressive states 

were defined relating to the quality of life data collected: (i) treatment-related abnormal 

quality of life, (ii) normal quality of life, and (iii) quality of life deterioration.

Essentially Q-TWiST is a particular type of QALY model. When the model was 

originally introduced from both a clinical viewpoint (Goldhirsch et al 1989) and a 

mathematical one (Glasziou et al 1990) and in a more recent overview (Gelber et al

1995), the method of partitioned survival analysis (see Section 8.6) was proposed as the 

appropriate methodology for calculating Q-TWiST. This methodology has therefore 

become synonymous with the Q-TWiST model and is often referred to as the ‘Q-TWiST 

method’ when in fact it can be applied to any QALY model. This group-based approach 

to quality-adjusted survival analysis is therefore not discussed here in terms of the Q- 

TWiST model but is discussed later in Section 8.6 in terms of general QALY models. It 

should be noted here that the method of partitioned survival analysis requires
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progressive health states and therefore Q-TWiST models are generally defined in terms 

of progressive health states, which are not always feasible (for example Schwartz et al 

1995a and b). In this thesis, the application of partitioned survival analysis to quality of 

life data, which is demonstrated in Section 8.6, provides an illustration of the ‘Q-TWiST 

method’ in this context.

8.3 Possible Approaches to Combining Quality of Life and Survival

8.3.1 Defining the Four Possible Approaches

The different approaches to quality-adjusted survival analysis can be summarised into 

four distinct categories, depending on whether the quality of life and survival data are 

combined at the subject or the group level and depending on whether the actual values 

of quality of life data collected on patients over time are used directly in the analysis or 

indirectly by using them to allocate patients to different health states for periods of their 

follow-up time. Table 8.1 provides a summary of these four approaches and further 

details are given below.

Quality of life and survival data can be combined in a QALY model either at the subject 

level or at the group level. The subject-based approach calculates a QALY value for 

each subject from their quality of life and survival data and uses standard methods of 

analysis to compare treatment groups in terms of this composite endpoint. This is a 

particular type of summary measures analysis that was introduced in Section 6.3. The 

group-based approach estimates group values for quality of life and survival and 

aggregates them into a QALY at the group level. Although the subject-based approach is 

generally more straightforward, it can be problematic when there are censored survival 

times, as discussed below in Section 8.3.2, in which case the group-based approach may 

be preferable.

In both the subject-based approach and the group-based approach, there are two 

different ways to use the longitudinal quality of life data in the analysis. The first uses 

longitudinal quality of life data collected on patients to determine the amount of time 

spent in a number of different health states and then, given utility values for those states
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derived externally, the QALYs can be calculated. These health states can be defined in 

any way that is appropriate to the study and clinically relevant, and in some cases may
v

conform to the health states defined in the Q-TWiST model. In the group-based 

approach there is the added proviso that the heath states must be progressive. The 

second method uses the actual values of quality of life collected over time on patients to 

determine the QALYs. This method ideally requires the quality of life measures to be 

utility values but if utilities are not available then utility-type measures can be used to 

give QALY-type results.

Table 8.1: Summary of the four different approaches to quality-adjusted survival 
analysis

Subject-based approaches Group-based approaches
Using health 

states
■ Survival time for a subject 

partitioned into a series of 
health states

■ Times in states for subject 
combined with associated 
external utility values

■ Requires full follow-up of 
patients in terms of survival for 
analysis period

■ Section 8.4

■ Partitioned survival analysis
■ Requires progressive health 

states
■ Mean times in states for group 

combined with external utility 
values

■ Deals with censored survival 
times

■ Section 8.6

Using actual 
values

■ Area under subject quality-of- 
life curve

■ Ideally requires utility measure
■ Requires full follow-up of 

patients in terms of survival for 
analysis period

■ Section 8.5

■ Integrated quality-survival 
product (IQSP)

■ Quality of life function for 
group combined with survivor 
function for group

■ Deals with censored survival 
times

■ Ideally requires utility measure
■ Section 8.7

8.3.2 Issues Relating to Subject-Based Approaches

If all patients in the study are followed up until death and quality of life is assessed for 

the full duration of this time, then a QALY can be calculated for each patient. 

Treatments can be compared using standard univariate analytical methods such as t- 

tests, Wilcoxon tests, analysis of variance or regression analysis depending on the
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distribution of the outcome and the research question being investigated. In general, 

however, all subjects will not be followed up until death and for those patients with 

censored survival times, their QALY will also be censored. It would seem sensible to 

analyse such censored QALY data using standard survival analysis techniques, but the 

use of quality weightings in calculating the QALY endpoint creates an informative 

censoring and thus renders such methods invalid (Glasziou et al 1990). Survival time for 

patients with poor quality of life will receive a lower weighting than that for patients 

with good quality of life. Patients with poor quality of life will therefore accumulate 

QALYs at a slower rate and will therefore be censored earlier on the QALY timescale 

than those with good quality of life, thus resulting in informative censoring (Glasziou et 

al 1990).

One option is to restrict the period of study, say to time L, such that all subjects either 

die within this time or are known to survive this time and hence, in all cases, survival 

times within the restricted period will be uncensored. The QALYs gained within this 

study time, QALY(L), can be calculated and as long as quality of life values are available 

for the full duration of each patient’s survival time, there will be no censored values of 

QALY(L) and the comparison of treatments in terms of this measure using standard 

analytical methods will be valid (Ganiats et al 1995). If, for some patients, quality of life 

values are not available for the full duration of the survival time because they have 

dropped out of the study prior to death, then to avoid censored values of QALY(L) it will 

be necessary to impute quality of life values for the periods of survival with no 

measures. Further details of dealing with dropout are given for each specific method in 

Sections 8.4 and 8.5.

If there are a number of survival times censored at an early time point then choosing a 

fixed time period with no censored survival times may not be a practical approach and 

using survival analysis techniques even with just a small number of censored values 

could give biased results (Gelber et al 1989). An alternative option is therefore to 

replace the censored QALYs with imputed values and analyse using standard statistical 

methods for non-censored data. Censored data can be replaced with a range of possible 

values (Gelber et al 1989). The minimum possible QALY would occur if the patient 

died immediately after the last follow-up. The maximum possible QALY would occur if
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the patient survived the rest of the study period with perfect quality of life. A mean 

value is obtained by assuming the patient survived the rest of the study period with 

quality of life valued at 0.5 (Gelber et al 1989). This is illustrated and discussed further 

in Section 8.5.3, A more appropriate solution to overcome the problem of censored 

QALYs is to use a group-based approach.

8.3.3 Issues Relating to Group-Based Approaches

In the group-based approach, rather than combining quality of life and survival into a 

composite QALY measure for each subject and averaging them across each treatment 

group, average quality of life and survival are combined at the group level. In the QALY 

model, the mean amount of time a group spends in each health state can be calculated 

using partitioned survival analysis (Glasziou et al 1990). This method requires the 

health states to be progressive. The QALY is then calculated by combining this time 

with utilities reflecting the average quality of life of the group in each health state. The 

analysis generally uses utilities obtained from external valuational studies or considers 

the full range of possible values in a threshold utility analysis (see Section 8.6). The 

application of partitioned survival analysis in a QALY model using quality of life data 

to define the progressive health states is demonstrated in Section 8.6. This method, 

however, is based on the ability to define a clinically meaningful set of progressive 

health states and this is often not possible with quality of life data. A simple 

methodology that directly combines longitudinal quality of life data with survival data at 

a group level has been proposed by a number of authors (Ganiats et al 1995, Hwang et al 

1996, Glasziou et al 1998) and has been referred to as the integrated quality-survival 

product (Beacon 1996). It is comparable to that proposed for the analysis of censored 

cost data (Lin et al 1997). The method is described in Section 8.7. The problem of 

dealing with additional dropout prior to death in these group-based approaches is 

discussed in Sections 8.6 and 8.7 in relation to the specific methodologies.

8.3.4 Approaches for the MIC and ESPAC Studies

The MIC study lends itself well to subject-based quality-adjusted survival analysis. The 

quality of life study is restricted to 15 weeks from trial entry for reasons of data
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availability, and during this time all patients have full survival follow-up. There are 

therefore no censored survival times within 15 weeks and consequently no censored
V

quality-adjusted survival times within this period. Thus having calculated the number of 

quality-adjusted life weeks within 15 weeks (QALW{\5)) for each individual, the 

analysis of this outcome is straightforward.

Methods for calculating QALW( 15) for each individual are not so straightforward and 

two different approaches are considered. The malaise variable is ideal for defining two 

health states: well (MAL=0) and ill (MAL=\, 2 or 3) and the time spent in each of these 

states can be calculated for each subject and combined with appropriate utilities for 

these health states to form QALW( 15) (see Section 8.4.2). Alternatively for each 

individual the values of GQS over time can be considered as a utility-type outcome and 

the area under the curve defined by the values of GQS gives the QALW( 15) for the 

individual (see Section 8.5.2).

With no censored values for QALW( 15) there is no real need for a group-based approach 

to the analysis but it is included for comparative purposes. Firstly, using the health states 

defined by the malaise variable, the method of partitioned survival analysis is used to 

calculate QALW( 15) in each treatment group (see Section 8.6.3). This method requires 

progressive health states and as the example will show, it will not generally be 

appropriate for quality of life data collected over time and the alternative method of the 

integrated quality-survival product is far more amenable to the MIC data (see Section 

8.7.2).

In the ESPAC study, the subject-based approach is problematic because of the censored 

survival times and therefore the group-based approach is the ideal method for this data. 

The subject-based approach (see Section 8.5.2) however is carried out in order to 

illustrate methods for dealing with the censored data and in order to compare the results 

with those from the group-based approach (see Section 8.7.2). The analysis is restricted 

to 24 months from trial entry to reduce the amount of censored data in the subject-based 

approach and to ensure that the estimation in the group-based approach is based on a 

reasonable number of patients. In both approaches the quality-adjusted life months 

within 24 months from trial entry (QALM(24)) are estimated by considering the actual
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values of GHSS measured over time as a utility. The health-state methods would require 

health states to be defined based on the values of GHSS and although this is possible, 

there is no obvious choice for the health states and therefore the subject and group-based 

approaches that use the values of GHSS over time are the preferred options.

8.4 Subject-Based Approach Using Health States

8.4.1 Method

The values of quality of life collected on a patient over time can be used to partition the 

subject’s survival time into a series of health states (see Figure 8.1). The patient can 

move in and out of J  different health states Hu Hi, Hj in any order before finally 

moving to a death state (£>). The definition of the health states should be based on the 

quality of life data being collected. The choice of questions and cut-off values that 

define the health states will be subjective, but the health states should be clinically 

meaningful and ideally should relate to states with known utility values, although this is 

generally not possible. The total time spent in each health state can be calculated and for 

patient i is given as tu, tu,..., tju If the utility values for these health states u\,ui, . . .,uj  

have been established from an external valuational study then for each patient they can 

be combined with the times in the usual QALY model as specified in [8.1] to give a 

value for the individual as follows:

QALY, = j r u jtjl [8.3]
7 = 1

If utility values are not known then QALYi can be calculated in terms of a variety of 

possible utility values in a sensitivity analysis. Having calculated QALYi for each 

patient, the outcome can be compared using standard statistical methods as described in 

Section 8.3.2. If there are censored survival times within the period of analysis then 

these should be analysed using methods described in Section 8.3.2.
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Figure 8.1: Example of partitioning survival time for patient # into a series of 
health states and calculating Q A L Y i

*4—  Patient’s survival time from trial entry----------^
Health states h 2 Hi h 2 H3 D

Utility values for 
health states

U2 Ul u2 u3 0

Time spent in 
health state*

t m2i h i t[2]2i hi

* [1], 121 indicates first and second visit to the same state

QALY, = = (“i x *w) + ( “ 2 x (4/1 +4(1)) + ( « 3  x hi)

Establishing the amount of time that each subject spends in each health state from the 

longitudinal quality of life data is not necessarily straightforward. Various assumptions 

are necessary in order to estimate at what point in time a subject moves from one state to 

another. If subject i is in health state Hj at the assessment taken at time T* and is in 

health state Hk (*Hj) at a subsequent assessment taken at time Trii then there are a 

number of options to determine the time of transition. The subject could move to Hk 

either (a) at tune Tqî  or (b) at tune or (c) somewhere between Tq> and TH, say mid

way at time Tqi+  [ (  Tri - Tq i ) / 2]. This choice will be subjective and may depend on the 

time-frame to which the quality of life questionnaire relates.

In general it is assumed that subjects remain in a given health state until the subsequent 

assessments indicate otherwise. If there are large time gaps between assessments, either 

due to the design of the study or due to intermittent missing data then this assumption 

may be questionable. The assumption means that patients remain in the health state 

recorded at the last assessment until death. Again this assumption becomes more 

tenuous the larger the time gap between the last assessment and death and especially if 

the last recorded health state was a ‘good’ one. In particular if the patient drops out of 

the study then it will generally be invalid to assume that the last value carries forward. If 

a patient drops out of the quality of life study then the QALY could be censored at the 

time of the last assessment or time of dropout (in whatever way that is defined). This 

approach is generally not recommended since, as discussed previously in Section 8.3.2,
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censored individual QALYs are problematic to analyse and their occurrence should be 

minimised. It is therefore preferable to consider imputing the health states from the last 

assessment to death, ideally using a method other than last value carried forward.

If the health states that the patient experiences during the dropout time can be 

ascertained from other clinical information such as clinically-assessed performance 

status then this may enable the QALY to be estimated. Alternatively, ‘dropout’ could be 

considered as a health state that occurs prior to death and as such allocated an 

appropriate utility value. The patient moves into this health state at the time of dropout 

(in whatever way that is defined). Different utility values could be considered in a 

sensitivity analysis. For example in Figure 8.1, if patient i dropped out of the study at 

time t2i + tu, then the health state Hi could represent the dropout state with utility value 

1/3. If dropout occurs for different reasons and these reasons are recorded then the 

analysis could include several dropout states, each with a different utility value. This 

approach is illustrated in Section 8.4.2 in relation to the MIC study.

8.4.2 Application to the MIC Study

For each individual in the MIC study, the responses to the malaise question at 

assessments over the quality of life study period are used to determine the health states 

experienced. The QALY model is defined with two possible health states, well (MAL=0) 

and ill (MAL=l,2,3). The analysis is restricted to 15 weeks from study entry for reasons 

of quality of life data availability and the number of quality-adjusted life weeks for 

patient i within the 15-week study period is given as follows:

Q A L W 15) = uwtm + Ujtn [8.4]

where uw and ui are the utility values for the well and ill states respectively and tm and tn 

represent the length of time that patient i spends in the well and ill states respectively 

within the 15 week analysis period.

For each patient, the time spent in each health state, twi and tn, can be determined from 

the longitudinal values of the malaise variable. Changes in health state are assumed to
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occur on the day of the assessment at which the change in state is recorded and patients 

are assumed to remain in steady state until the next observed change. As discussed in 

Section 8.3.4, all patients have full follow-up in terms of survival over the 15-week 

analysis period and therefore, using the assumption of steady state from one assessment 

to the next, the values for tm and tn within 15 weeks can be completely determined. 

Initially, dropout prior to death is ignored and last value carried forward is used for time 

from dropout to death or 15-week cut-off. The model is also extended to include a 

dropout state as follows:

QALW'i(15') = uwtm + Ujtfi + uDtDi [8.5]

where uD is the utility value for the dropout state and tm represents the length of time 

that patient i spends in the dropout state within the 15-week analysis period. A patient 

can only move into the dropout state if they have not completed the full schedule of 

questionnaires and the time that a patient moves into the dropout state is calculated as 3 

weeks after the last assessment (see Section 5.8.1 for further details on dropout in the 

MIC study).

Since known utility values for the health states in models [8.4] and [8.5] are not 

available, QALWt{\5) is calculated for a variety of different utility values in a sensitivity 

analysis. The utility values chosen are purely subjective and represent a range of 

possible values. For the two-state model, the following pairs of values for (uw, w/) are 

considered: (1,1) representing standard survival analysis within 15 weeks; (1,0) 

representing a TWiST-type analysis; (1, 0.8) and (1, 0.5) representing perfect health in 

the well state and reduced quality of life in the ill state; (0.8, 0.5) representing reduced 

quality of life in both states. When the additional dropout state is included the following 

values are considered for (uw, uj, ud): (1,0,0), (1, 0.8, 0.4), (1, 0.8, 0.2), (1, 0.5, 0.2), 

(0.8, 0.5, 0.2). In all these choices, the dropout state is assumed to have worse quality of 

life than the ill state.

Since there are no censored survival times within the 15-week analysis period, the 

QALW( 15) outcome can be analysed using standard statistical methods. The distribution 

of the outcome is not normally distributed and therefore the treatments were compared
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using a Wilcoxon two-sample test. The means and standard errors (SE) for each 

treatment group together with the median and inter-quartile (IQ) range are shown in
v

Table 8.2.

Table 8.2 Summary statistics for QALW(15) for each treatment group in the MIC 
study for various utility values in the two- and three-state models

CT PAL p-value
from

Wilcoxon
test

Mean
(SE)

Median 
(IQ range)

Mean
(SE)

Median (IQ 
range)

Two-State Model
(1,1) 13.90

(0.35)
15.00

(15.00,15.00)
12.80
(0.56)

15.00 
(11.43,15.00)

0.01

(1,0) 5.67
(0.64)

4.43 
(0, 10.00)

5.75
(0.87)

5.86
(0,11.00)

0.95

(1,0.8) 12.25
(0.34)

12.89 
(12.00,14.00)

11.39
(0.53)

12.00 
(10.49,13.80)

0.16

(1,0.5) 9.78
(0.41)

9.71 
(7.50,12.50)

9.27
(0.59)

9.14 
(7.50,12.79)

0.42

(0.8,0.5) 8.65
(0.30)

8.83 
(7.50,10.50)

8.12
(0.44)

7.99 
(7.50,10.56)

0.30

Three-State Model
(1,0,0) 5.37

(0.62)
4.00 

(0, 9.86)
5.54

(0.86)
4.71 

(0, 9.57)
>0.99

(1,0.8,0.4) 11.58
(0.36)

12.00 
(10.66,13.46)

10.81
(0.57)

12.00 
(8.91,13.80)

0.42

(1,0.8,0.2) 11.27
(0.39)

12.00 
(9.69,13.46)

10.55
(0.60)

12.00 
(7.29,13.80)

0.46

(1,0.5,0.2) 9.17
(0.43)

9.36 
(7.24,11.50)

8.77
(0.63)

8.46 
(5.57,12.00)

0.59

(0.8, 0.5,0.2) 8.10
(0.32)

8.40 
(6.86, 9.90)

7.66
(0.48)

7.50 
(5.57,10.20)

0.47

The first row in Table 8.2 illustrates the overall survival comparison as was seen in 

Chapter 3, with the CT group having longer survival within 15 weeks compared to the 

PAL group, which was statistically significant at the 5% level. The TWiST-type models 

with utility values of (1,0) and (1,0,0), which only count time in the well state, show no 

difference between the CT and PAL group. In the remaining models, the trend is for the 

CT group to have a greater QALW{\5) on average than the PAL group but the difference 

is relatively small and in all cases not statistically significant at the 5% level. This 

analysis indicates that although there is a difference between the treatment groups in

174



CHAPTER 8: QUALITY-ADJUSTED SURVIVAL ANALYSIS

terms of survival within 15 weeks, the difference diminishes after adjusting for the 

quality of life experienced during this time and the analysis suggests that there is no
v

evidence of a difference between treatments in terms of quality-adjusted survival within 

15 weeks.

8.5 Subject-Based Approach Using Actual Values

8.5.1 Method

The simplest approach to quality-adjusted survival analysis is to use the actual values of 

quality of life collected over time to calculate the number of QALYs for each subject 

(Ganiats et al 1995, Korn 1993). The measures of quality of life taken at discrete points 

over time for an individual can be used to create a ‘curve’ that describes the quality of 

life from entry to trial to either death or to a fixed end-of-study time. By connecting 

measures at discrete time points in this way, all quality of life values between the actual 

assessment times are effectively being imputed. When the quality of life measure is a 

utility, the area under this curve represents the QALYs for that subject. If the quality of 

life measure is not a utility then it may be possible to transform it to a 0 to 1 scale, to 

create a ‘pseudo utility’ (see Section 4.2.4), and the resulting area under the curve may 

be interpreted like a QALY.

There are a number of practical issues to consider when describing a patient’s quality of 

life, measured at a number of discrete time points, by a curve in continuous time. Some 

of the issues, such as using actual or scheduled assessment times and using a step 

function or assuming a linear change between assessments, were discussed in Section 

6.2.1. In addition, for an unbiased analysis individual curves need to all relate to the 

same length of follow-up (Ganiats et al 1995) and therefore to be able to calculate 

QALYs for each individual, the curve needs to be complete from trial entry to either 

death or fixed end-of-study time. Various assumptions need to be made to achieve this 

and these are described below and illustrated using specific examples of patients’ 

longitudinal values of GHSS (divided by 100 for a 0 to 1 scale) in the ESPAC study (see 

Figure 8.2).
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Figure 8.2: Examples of quality of life curves for the ESPAC study (red dots 
indicate imputed values)

(a) Death within the 2-year study period (b) Censored within the 2-year study period
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Value at Trial Entry

If actual assessment times are being used and the first assessment is some time after the
V.

trial entry time, then the value of quality of life at entry needs to be imputed and 

connected to the value at the first assessment. The simplest approach is to carry the first 

value back to the trial entry time. All examples in Figure 8.2 have imputed values at trial 

entry.

Intermittent Missing Values

If the assessments are made at scheduled times and there are intermittent missing 

assessments, a decision needs to be made as to whether it is reasonable to assume that 

such missing data are missing at random. If so, then the missing data can be ignored and 

the quality of life values on either side can be connected as normal. If not, then an 

approach that accounts for informative intermittent missing data needs to be used, such 

methodology however is not well developed (Diggle et al 1994). In Figure 8.2(d), values 

between baseline and 9 months are indirectly imputed by assuming a linear change 

between the observed values.

Values Between Last Assessment and Death

If a patient dies then their measure on the utility-type scale becomes zero from that point 

onwards. The curve between the last measure before death and the zero measure can be 

completed either as a step function or as a linear decline (see Figure 8.2(a)).

Values Between Last Assessment and Censored Survival Time

If a patient’s survival time is censored then the quality of life curve will stop at the point 

when the patient was last known to be alive and the QALY will be censored. This can 

cause problems for the analysis as discussed in Section 8.3.2. The curve between last 

assessment and censored survival time can be completed using last value carried 

forward (see Figure 8.2(b)).

Completing Curves Within Fixed Study Periods

The quality of life analysis will often be restricted to a fixed study time, either because 

that is the period of data collection or in order to minimise the number of patients with 

censored survival times (as discussed in Section 8.3.2). If a patient is known to survive
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the full duration of this quality of life study period, then the curve must be completed 

within this time by connecting the last measure taken within the study period to the 

fixed end-of-study time. This can be done in a number of ways depending on the nature 

of the post-study information. In some situations, it may be necessary or desirable to use 

purely the information within the study period for the analysis but if post-study 

information is available then it may enable the values imputed by the quality of life 

curve at the end of the study period to be more accurate in the following way. If a post

study quality of life assessment is available then the last measure before the fixed cut-off 

can be connected to the first measure after the cut-off using either a step function or 

linear change (see Figure 8.2(c)). Otherwise if there is no post-study quality of life data 

available but the date of death is known, the last measure can be connected to the value 

zero at the time of death in the most appropriate way (see Figure 8.2(d)). In both cases 

the part of the curve within the study period completes the quality of life curve, with the 

value at the cut-off time calculated using interpolation. If a linear decline is assumed 

between last assessment and death and death occurs a long time after the end-of-study 

time then decline will be shallow and the interpolated value at the fixed end-of study 

time will be similar to a value using last value carried forward. If neither of these events 

occur then the curve between the last measure and the cut-off time can be completed by 

carrying the last value forward (see Figure 8.2(e)).

Dealing With Dropout Prior to Death

If a patient drops out of the quality of life study but has continued follow-up in terms of 

survival then either the curve could stop at the last recorded assessment giving a 

censored QALY, which as discussed in 8.3.2 can cause problems in the analysis, or the 

curve could continue to the last survival follow-up point (whether it be dead or alive) by 

imputing the missing values. There are a number of options available for imputation 

(Fayers and Machin 2000, Fairclough 2002 and see Section 5.5.3), the validity of which 

may be compromised if the time from last quality of life assessment to last survival 

follow-up is very long. The simplest approach is to carry the last value forward. 

Alternatively, the worst or best value could be carried forward from some appropriate 

point after the last assessment. If the approximate health state of the patient during the 

dropout time can be ascertained from other clinical information such as clinically- 

assessed performance status then, at some appropriate point after the last assessment, the
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curve could take on a value that reflects the estimated health state of the patient. If the 

time of death of the patient is known then the curve could linearly decrease to zero over
v

the dropout time. More sophisticated methods such as multiple imputation could also be 

considered for imputing values at the scheduled times after dropout (whenever that is 

defined to be) for the formation of the quality of life curves.

The approach taken here is to assume a linear decline in quality of life from the value at 

the last assessment to the value of zero at death for patients who have a known death 

time. This assumes that a patient who drops out has progressively deteriorating quality 

of life over the dropout period, which in most cases will be an appropriate assumption. 

In both studies most patients have a known death time, but in the few patients with 

censored survival, dropout is dealt with by using last value carried forward. This may be 

a valid assumption, especially in those with a long survival time, as the fact that they 

have not died may be some indication that the dropout may not have occurred due to ill 

health. An alternative more extreme approach for dealing with dropout prior to death is 

actually to treat dropout prior to death as an event equivalent to death and to assume 

they have a value of zero at the point when they dropout. In this way, the quality of life 

curves can be completed by assuming a linear decrease from the value at the last 

assessment to the value of zero at the dropout time. This is an equivalent approach to 

that used for the group-based method using actual values, when the dropout-free 

survivor function is used instead of the survivor function in the integrated quality- 

survival product (see Section 8.7.4).

8.5.2 Application to the MIC and ESPAC Studies

In both studies, the quality of life curves for each subject were created by plotting the 

values of GQS for MIC and GHSS for ESPAC (both divided by 100 to put the measure 

on a 0 to 1 scale) against actual assessment times, assuming a linear change between 

assessments and ignoring intermittent missing values. Any values between the actual 

assessment times are effectively imputed by the formation of the quality of life curve. 

Although GQS and GHSS are not proper utility measures, they are scaled like a utility 

and therefore the area under the curves that they trace over time will give QALY-type 

measures. For reasons of data availability, the analysis for the MIC study was restricted
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to the 15-week period from entry to trial. For the ESPAC study, the analysis was 

restricted to 24 months from trial entry in order to reduce the censoring. Quality of life
V.

curves need to be defined completely for this analysis period.

The value of quality of life at time of entry to study was imputed using first value carried 

backwards (see Section 5.6). For those that die within the analysis period (28 in MIC and 

105 in ESPAC), a linear decrease in quality of life was assumed from the value at the 

last assessment to the value of zero at the time of death (regardless of the time span). For 

patients with censored survival times within the analysis period (0 for MIC and 22 for 

ESPAC), values of quality of life at the last assessment were carried forward until the 

time last seen alive (regardless of the time span). For those patients that have survival 

follow-up greater than the analysis period, post-study information in terms of quality of 

life where available and survival otherwise was used to complete the curves within the 

analysis period. For these patients, the 15-week value for MIC or 24-month value for 

ESPAC is interpolated from the linear change between the two values that straddle the 

end-of-study cut-off time. When post-study quality of life values were available (6 in 

MIC and 22 in ESPAC) then the value at the last assessment within the analysis period 

was joined to the first value outside the period. Otherwise, if time of death was known 

(73 in MIC and 17 in ESPAC) then the value at the last assessment within the analysis 

period was joined to zero at the time of death. If the survival time was censored after the 

analysis period (2 in MIC and 9 in ESPAC) then the value at the last assessment was 

carried forward to the end-of-study cut-off time.

For each subject, the area under the quality of life curve within the analysis period was 

calculated to give the quality-adjusted life weeks achieved within 15 weeks for MIC 

{QALW{\5)) and quality-adjusted life months achieved within 24 months for ESPAC 

(QALM(24)). For the MIC study there were no censored QALW{\5) within the analysis 

period and thus the outcome can be analysed using standard statistical methods. The 

means together with standard errors and medians with inter-quartile ranges are given for 

QALW(15) on each treatment arm in Table 8.3. The difference between treatment arms 

in terms of this outcome was assessed using Student t-tests and Wilcoxon tests. In the 

ESPAC study, there were 22 (10 on CT and 12 on NoCT) censored QALM(24) values 

which were dealt with by (i) retaining them as censored values and using Kaplan-Meier
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estimates, and (ii) imputing extreme and average values for them. These individual

QALM(24) were compared across the two treatment arms and statistically tested using
\

log-rank for (i) and Wilcoxon two-sample tests for (ii) (Table 8.4).

Table 8.3: Quality-adjusted life weeks within 15 weeks, QALW( 15), by treatment 
group in the MIC study calculated using subject-based approach

CT (N=67) PAL (N=42) P-values
Mean 10.71 8.81 0.006

(standard error) (0.40) (0.57) (t-test)
Median 11.97 9.33 0.002

(IQ range) (9.83,13.38) (6.55,11.98) (Wilcoxon test)

In the MIC study, patients gain on average approximately 2 extra quality-adjusted life 

weeks within the 15 weeks from trial entry on CT compared to PAL. This difference 

between treatment arms was shown to be statistically significant at the 1% level.

Table 8.4: Quality-adjusted life months within 24 months, QALM(24), by treatment 
group in the ESPAC study calculated using subject-based approach

CT (N=87) NoCT (N=88) P-values
Using Kaplan-Meier estimates: 

Mean (standard error) 
Median (95% Cl)

10.19 (0.70) 
9.80 (7.11-11.84)

8.97 (0.69) 
6.38 (5.59-9.62)

0.29
(log-rank)

Using best values for censored 
patients:

Mean (standard error) 
Median (IQ range)

10.67 (0.73) 
9.86(4.81-16.51)

9.48 (0.72) 
6.46 (3.93-15.66)

0.22
(Wilcoxon)

Using worst values for 
censored patients:

Mean (standard error) 
Median (IQ range)

9.43 (0.64) 
8.44 (4.81-13.42)

8.12 (0.60) 
5.87 (3.80-11.81)

0.13
(Wilcoxon)

Using average values for 
censored patients:

Mean (standard error) 
Median (IQ range)

10.05 (0.65) 
9.86(4.81-14.79)

8.80 (0.64) 
6.38 (3.93-14.52)

0.18
(Wilcoxon)

In all cases the chemotherapy arm achieved, in terms of means, between 1 and 1.5 extra 

quality-adjusted life month within 24 months, whilst the medians showed a difference of 

between 2.5 and 3.5 months between the treatment arms. None of these differences were 

statistically significant at the 5% level. None of these approaches deal with the censored
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data adequately and the alternative group-based approach, shown in Section 8.7, is 

preferred.
‘v

8.6 Group-Based Approach Using Health States: Partitioned Survival 
Analysis

8.6.1 Method

The subject-based approach to calculating QALYs by dividing a patients follow-up into 

the time spent into different health states was described in Section 8.4. This approach 

becomes problematic when patients have censored survival times within the analysis 

period as this causes the individual QALY values to be censored. Application of 

survival analysis techniques to the QALY endpoint is not valid as the censoring is 

informative (see Section 8.3.2) and therefore in such situations a group-based approach, 

which overcomes such difficulties, is preferable.

Partitioned survival analysis was proposed as a group-based approach to quality- 

adjusted survival analysis (Glasziou et al 1990) and provides a means of handling the 

problem of informative censoring. The method requires a set of progressive health states 

Hj (/'= 1 to J) to be defined that completely describe the series of health states 

experienced by patients from trial entry to death. Overall survival is partitioned into the 

time spent in each health state and the mean duration in each state for each group are 

combined as a weighted sum according to the QALY model as given in [8.1]. Thus the 

QALY model for group G is given by:

QALYa = [8.6]
7=1

where tjo represents the mean time that group G spend in health state j  and Uj is the 

utility for that state which is assumed to be the same for all groups. Weighting the time 

spent in each health state by the utility at the group level rather than the subject level
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avoids the need to weight individual censored survival times and thus overcomes the 

problem of informative censoring.

The method is ideal for the Q-TWiST model for which the defined health states are 

progressive and it has been widely used in this context (Goldhirsch et al 1989, Gelber et 

al 1991, Rosenthal et al 1992, Gelber et al 1995, Gelber et al 1996). Defining 

progressive health states using longitudinal quality of life data however is problematic 

and therefore examples of the use of partitioned survival analysis in this context are 

limited (Beacon 1996). The application of partitioned survival analysis to the MIC data 

in Section 8.6.3 provides an illustration of the problems.

To estimate QALYq for each group the mean time spent in each state needs to be 

estimated from the data. The date of exiting each successive health state is regarded as 

an endpoint and Kaplan-Meier estimates are calculated for the survival function from a 

fixed origin, such as date of entry to trial, to each endpoint. If the exit time from one 

health state is censored at time t for a patient, then all subsequent exit times will be 

censored at time /. If a state Hj is skipped, then the exit time for Hj will be the same as 

that for Hj.\. Kaplan-Meier survival curves corresponding to each transition time can be 

overlayed on one graph to show the partitioning of overall survival. These are called 

partitioned survival plots and separate graphs should be produced for each treatment 

group (see Figure 8.3 relating to the MIC data).

Estimating the time of exiting each state from the longitudinal quality of life data 

requires a number of assumptions to be made. These were discussed in relation to the 

subject-based approach using health states (Section 8.4.1) and are explicitly stated for 

the analysis of the MIC data in Section 8.6.3. In addition, the problem of dealing with 

dropout needs to be considered. If a subject is assumed to remain in the health state that 

they occupied at the last assessment until death, censoring or end-of study time then this 

may not be appropriate if this time span is long. In such circumstances, it may be 

preferable to assume that patients move to a ‘dropout’ state prior to death and include 

this as the final state in the series of progressive health states. This method of dealing 

with dropout is applied to the MIC study in Section 8.6.4.
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In general, for survival time T, the area under a survival curve defined by the survivor 

function S(t) provides an estimate of the mean survival time and is given by:

The areas under the survival curves for successive endpoints can therefore be estimated 

and used to compute the areas between the curves giving estimates of the mean duration 

of each health state. If the last observed survival time is censored, then the entire 

survival curve cannot be estimated and so these areas can only be calculated if a 

specified time from randomisation is chosen as the upper time limit for the analysis, i.e. 

the upper limit of the integral will be this time limit rather than infinity. This may be the 

upper limit of observation or could be based on the follow-up time of the study cohort. 

Alternatively if a parametric version of the survivor function is assumed then no upper 

limit is required.

Mean times from randomisation to exiting each health state, restricted to the upper time 

limit, are calculated from the area beneath each estimated survivor function from 0 to 

the chosen finite limit. In practice, the area under a survivor function is estimated by 

summing the rectangular areas under the Kaplan-Meier curve using the following 

formula:

where each U (z=l to L-1) is a death time, with to defined to be zero and ti defined to be 

the chosen upper time limit. The mean survival time given by SAS in their LIFETEST 

procedure (SAS Institute Inc 1989) gives the area under the survival curve and can be 

calculated for the restricted time period defined by upper time limit L by setting all 

survival times greater than L to be equal to this time and uncensored.

Differences between successive restricted means for time from randomisation to exiting 

each health state give the restricted mean duration in each state. The restricted mean

oo

[8.7]

L

[8.8]
z'=0
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quality-adjusted survival is estimated by combining the restricted mean durations as a 

weighted sum according to the QALY model. Restricted means based on the product 

limit method are asymptotically unbiased and normally distributed (Breslow and 

Crowley 1974). Consequently statistical inferences for quality-adjusted survival can be 

based on the asymptotic normality of the estimates and require the calculation of 

standard errors of the estimates. The variance for quality-adjusted survival can be 

estimated from the vector of utility weights and the variance-covariance matrix for the 

mean times in each state (Glasziou et al 1990) as follows:

Var(QALYG) = tYWGu [8.9]

where u is the Jx 1 vector of utilities defined in model [8.6] and WG is the JxJ  variance- 

covariance matrix for t jG (j= 1 to J), the estimates of the mean time that group G spend 

in each health state.

There is no simple expression for the covariance terms when dealing with restricted 

means and hence the variance-covariance matrix is estimated using a bootstrap method 

(Glasziou et al 1990). The bootstrap method is carried out as follows (Hinkley 1988, 

Efron and Tibshirani 1993). A new sample of patients of size N  is created by repeatedly 

sampling with replacement from the N  individuals in the study. This process is repeated 

thousands of times to obtain a whole series of new data sets. Restricted means for times 

spent in each state are calculated for each data set to produce an empirical sampling 

distribution, called a bootstrap sampling distribution, for the statistic. The variances and 

covariances computed from these values are used as the variance-covariance estimates. 

Variance-covariance estimates have previously been based on a series of 1000 new data 

sets (Gelber et al 1991).

8.6.2 Comparing Treatments in Terms of QALYs

In some situations it may be possible to compare the QALYs for treatment groups using 

specific utility values in the QALY model. Values may be chosen arbitrarily if no 

patient-derived information is available or they could be based on a time trade-off or
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standard gamble study, for example (Torrance 1986, 1987). For example, in a study of 

patients with small cell lung cancer, the researchers justified their arbitrary choice of 

utility coefficients in a Q-TWiST model for their final conclusions (ut = 0.75 and ur = 

0.25) as those which they perceived to most closely resemble the clinical experience of 

the patients (Rosenthal et al 1992). They compared their Q-TWiST results to those from 

a comparable study, who obtained their utility coefficients (ut = 0.57 and ur = 0.15) 

from a proxy group of patients and health professionals (Goodwin et al 1988).

In most cases, utility weights will be unknown. Treatments can be compared in terms of 

QALYs using a spectrum of utility values. For the Q-TWiST model specified in [8.2] 

with two unknown utility values ut and wr, a commonly used approach is to carry out a 

threshold utility analysis, a form of sensitivity analysis, in which the trial data is used to 

determine the utility values which would give no difference between treatments, i.e. 

where the restricted mean quality-adjusted survival times in the two treatments is equal. 

When there are two unknown utility coefficients, the set of values that give equal 

quality-adjusted survival is described by a straight line on a two dimensional plot. 

Confidence limits can be calculated for this ‘threshold line’ by finding the pairs of 

utility coefficient values for which the confidence interval for the treatment effect 

captures zero (Glasziou et al 1990, Gelber et al 1995). Such sensitivity analysis becomes 

more difficult when there are more than two unknown utilities, which may occur when 

an additional dropout state is included in the model.

In general, threshold utility analysis determines the values of uj such that for two groups 

A and B :

k.QALY) = QALYA-QALYB = £ « , ( ? * - i jB) = 0 [8.10]
y=i

If d represents the 7x1 vector of estimates of differences in mean times between the 

two groups A and B, i.e. dj = tjA - t jB for j= 1 to 7, and u represents the 7x1 vector of 

utilities and the 7x7 matrix W represents the sum of the variance-covariance matrices for
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the two groups Wa and Wb then the or-level confidence limits for the threshold utility 

values are given by:

tS_ (tl„ W -dd ')u  = 0 [8.11]

where ta/i is the value of the t distribution relating to the all percentage.

8.6.3 Partitioned Survival Analysis of the MIC Data

The main problem with carrying out a partitioned survival analysis on the MIC data 

concerns defining progressive health states. Progressive health states had to be 

considered that could be derived from the data and were also clinically meaningful. The 

malaise variable expressed as a two level variable, no malaise {MAL-0) and malaise 

(MAL=\,2 or 3) was used to define well and ill quality of life states respectively. 

Various sequences of well (W) and ill (I) quality of life periods were experienced by 

patients within the 15 weeks from study entry and these were explored to help define the 

progressive sequence of health states (see Table 8.5).

Table 8.5 Sequences of well (W) and ill (I) quality of life states observed within 15 
weeks of trial entry in the MIC study

Sequence Frequency
W 18
WI 19

WIW 3
WIWI 2

I 38
IW 17
IWI 10

IWIW 2

To incorporate the sequences experienced by all patients (i.e. to include both IWTW and 

WIWI), the definition of progressive health states would need to include 5 progressive 

health states (i.e. IWIWI or WIWIW). This was considered to be beyond both the limit of 

intelligibility and the limited amount of data. Thus, although a few patients would need

187



CHAPTER 8: QUALITY-ADJUSTED SURVIVAL ANALYSIS

to be excluded from the analysis, a definition consisting of 4 progressive health states 

was considered to be preferable.

Having decided on a definition consisting of 4 progressive health states, there were two 

possible sequences to consider; WIWI or IWIW. The first option would exclude the 2 

patients with an IWTW sequence and the second option would exclude the 2 patients 

with a WIWI pattern. In general, given several options for a definition, the final choice 

should be based on what is most clinically meaningful. In this case, neither option 

seemed clinically preferable to the other and there was no clear clinical explanation for 

the potential continued fluctuation between the two health states. The decision, 

therefore, to use the second option described above (i.e. IWIW), was arbitrary but was 

based on the assumption that patients were more likely be an ill rather than a well state 

on entry to trial. Sensitivity analysis should be performed to determine if using a 

different definition affects the conclusions of the analysis. The following analysis 

therefore excludes 2 patients from the chemotherapy arm.

The progressive health states were defined as I lll, Weill, H12 and Well2 where the 

numbering of the states indicates the first and second visits to the ‘same’ health state. 

With this definition of progressive health states, where a patient returns to a health state 

previously visited, the degree to which the first and second visit to the state are similar 

needs to be considered. For example, the ill quality of life state visited after the patient 

has been in an well state (i.e. 1112) might describe a very different experience to the ill 

quality of life state visited first (i.e. Illl).

Having defined the 4 progressive health states, the date of exit from each health state 

formed successive endpoints for analysis. The time from entry to study to each endpoint 

was calculated for each patient, with exit times from a state set equal to the exit time 

from the previous state if the state was skipped. For example, if a patient was in a well 

state on entry to the study, then they were assumed to have skipped the first state, and 

their exit time from Illl was set to be zero. Also, for example, if a patient exited Weill 

at 15 weeks and therefore did not experience the other two states within the 15-week 

analysis period, then exit times from 1112 and Well2 were both set at 15 weeks. Kaplan-
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Meier survival curves for successive endpoints were calculated and overlayed to give a 

partitioned survival plot for each treatment group (see Figure 8.3).

Figure 8.3 Partitioned survival analysis of the MIC data 
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The area under each curve, with an upper time limit o f 15 weeks, was obtained from 

SAS (corresponding to [8.8]) and gave the restricted mean survival times from date of 

entry to trial to each endpoint. The differences between successive means gave the mean 

time spent in each health state (see Table 8.6). Standard errors for these times were 

obtained from 1000 bootstrap samples.

Table 8.6 Restricted mean survival times (and standard errors) in weeks spent in 
each health state in the MIC study

Health State CT arm 
(N=65)

PAL arm 
(N=42)

III1 5.95 (0.72) 5.70 (0.95)
Weill 5.31 (0.61) 5.61 (0.90)
1112 2.33 (0.45) 1.34 (0.41)

Weill 0.28 (0.16) 0.14(0.14)

The QALY model for each treatment group in the MIC data was defined as follows:

QALW( 15) = u/\ tm\ + twein + «72 tm2 + twein [8.12]

where the utility values uj\ and un (0 < un < 1, 0 < un. < 1) are unknown and reflect the 

reduction in quality o f life during the first and second visits respectively to the ill quality 

of life state. This model assumes that the quality o f life in the well state, whether at first 

or second visit, was equivalent to ‘perfect health’. It also assumes that the quality o f life 

experienced in the ill state differed depending on whether it was the first or second visit.

Utility values for the ill states are not known and a sensitivity analysis to specific chosen 

values of utilities was chosen in preference to a threshold utility analysis. The values 

considered for (w/i, un) were: (0.8, 0.8) to reflect equal utility in both ill states; (0.8, 0.5) 

to reflect the second ill state being of worse quality o f life than the first; and (0.5, 0.8) to 

reflect the first ill state being worse than the second. The mean QALW( 15) for each 

treatment group was calculated using [8.12] with these utility values and the mean times 

spent in states given in Table 8.6. The results are given in Table 8.7, with standard 

errors and 95% confidence intervals obtained from 1000 bootstrap samples.
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Table 8.7: Mean QALW{ 15) on each treatment arm of the MIC study with 
standard errors and 95% confidence intervals for different utility values

CT (N=65) PAL (N=42)
Utility
values

Mean
QALW{IS)

Standard
Error

95%
Confidence

Interval

Mean
QALW(15)

Standard
Error

95%
Confidence

Interval
(0.8, 0.8) 12.21 0.34 11.55-12.88 11.39 0.53 10.35-12.41
(0.8, 0.5) 11.51 0.34 10.85-12.19 10.98 0.52 9.97-11.99
(0.5, 0.8) 10.42 0.43 9.57-11.27 9.68 0.64 8.42-10.92

The CT aim consistently has greater quality-adjusted survival time within 15 weeks than 

the PAL arm but 95% confidence intervals for the two treatment arms overlap and thus 

these observed differences are not statistically significant at the 5% level.

8.6.4 Dealing with Dropout in the MIC Analysis

As previously discussed in Section 8.6.1, in the above analysis a subject is assumed to 

remain in the health state that they occupied at the last assessment until death, censoring 

or end-of study time. This may not be appropriate if the patient is a dropout, especially 

the time span is long. The analysis is therefore re-run with patients who drop out of the 

quality of life study being moved to a dropout state prior to death three weeks after their 

last assessment. The definition of dropout and time to dropout for the MIC study is 

given in Section 5.8.1. This dropout state is included as the final state in the series of 

progressive health states and the QALY model given in [8.12] is extended as follows:

QALW{\5) = un tjin + tweiix + un tna + twein + ud toropout [8.13]

where the toropout is the mean time spent in the dropout state estimated from the 

partitioned survival analysis and ud is the unknown utility value associated with this 

state. Mean times spent in each health state with the dropout state included were 

estimated using partitioned survival analysis and results for each treatment arm given in 

Table 8.8. These means were combined with the same utility values for (w/i, un) that 

were considered previously i.e. (0.8,0.8), (0.8, 0.5) and (0.5,0.8) and a utility value of 

0.2 was assumed for the dropout state. The mean QALW{\5) for each treatment group
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were estimated from these utility values and the means given in Table 8.8 using [8.13] 

and the results are given in Table 8.9. Standard errors and 95% confidence intervals 

were obtained from 1000 bootstrap samples.

Table 8.8 Restricted mean survival times (and standard errors) in weeks spent in 
each health state in the MIC study

Health State CT arm 
(N=65)

PAL arm 
(N=42)

m i 5.35 (0.66) 4.91 (0.84)
Weill 5.00 (0.60) 5.39 (0.88)
77/2 1.64 (0.33) 1.02 (0.30)

Welti 0.28 (0.16) 0.14 (0.14)
Dropout 1.60 (0.35) 1.33 (0.42)

Table 8.9: Mean QALW( 15) on each treatment arm of the MIC study with 
standard errors and 95% confidence intervals, for different utility values with 
dropout state included (up=0.2)

CT (N=65) PAL (N=42)
Utility 
values 

for 
(w/i, un)

Mean
QALW(15)

Standard
Error

95%
Confidence

Interval

Mean
QALW(15)

Standard
Error

95%
Confidence

Interval

(0.8, 0.8) 11.19 0.40 10.42-11.97 10.55 0.60 9.36-11.73
(0.8, 0.5) 10.70 0.39 9.94-11.46 10.24 0.59 9.09-11.40
(0.5, 0.8) 9.59 0.44 8.71-10.45 9.07 0.67 7.76-10.39

In comparison to the results given in Table 8.7, the inclusion of the dropout state 

reduces the mean quality-adjusted survival times gained by patients within 15 weeks 

from trial entry on both treatment arms. The comparison between treatment arms is 

similar to that without the dropout state with CT on average having greater quality- 

adjusted time than PAL. The difference between treatment groups appears to be reduced 

with the inclusion of the dropout state and thus remains statistically non-significant at 

the 5% level.
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8.7 Group-Based Approach Using Actual Values: Integrated Quality- 
Survival Product

8.7.1 Method for Quality of Life and Survival Data

An alternative method that directly combines longitudinal quality of life data with 

survival data at a group level has been proposed by a number of authors, each 

advocating the same model but suggesting alternative approaches to estimation 

(Glasziou et al 1998, Ganiats et al 1995, Hwang et al 1996). The method has been 

referred to as the integrated quality-survival product (IQSP) and applied to data from 

cancer clinical trials (Beacon 1996). It is comparable to that proposed for the analysis of 

censored cost data (Lin et al 1997).

The method multiplies the survivor function S(t) by the quality of life function Q(t) for 

the group, where S(t) is the proportion of subjects that survive to time t and Q(t) is a 

summary measure of the quality of life of those survivors. In this way a quality-adjusted 

survival curve is created for the group. The area under this curve, usually calculated for 

a restricted time period, say up to time L, gives the mean QALY for the group for this 

period, thus

L

QALY(L) = jQ(t)S(t)dt [8.14]
0

The key decision is what estimators to use for the quality of life and survivor functions, 

Q(t) and S(t) respectively in [8.14]. The survivor function can be estimated from the 

sample of survival data using standard methods such as the Kaplan-Meier product-limit 

estimator, the life-table method or by fitting a parametric model. There are a number of 

options for the quality of life function. One option is to estimate it using a model for 

quality of life over time fitted to the observed data. For example, a simple linear 

regression model fitted to all the available data could be used as an estimate of the 

quality of life function (Beacon 1996). Alternatively a lowess or kernel-type smoother 

could be applied to the sample to estimate mean quality of life for the group over time
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(Hwang et al 1996, Beacon 1996). A similar, but simpler approach, is to calculate the 

mean quality of life of survivors at the scheduled assessment times and the quality of 

life function over continuous time can be created by connecting these estimates using 

either a step function or by assuming a linear change (Glasziou et al 1998). If quality of 

life assessments are not taken at scheduled times, or the use of actual rather than 

scheduled assessment times is preferable, then the quality of life curves for each 

individual can be used to determine the quality of life at any time point tj and the mean 

of these values across all individuals that are alive and uncensored at this time gives an 

estimate of the quality of life function at time tj , that is

Q(tJ) = y n J Y j qi(,l ) [8.15]
«=1

where qt{tj) is the estimate of quality of life at time tj for surviving and uncensored
A

individual i (7=1 to nj). Having used individual values to calculate Q{tj ) at a number of 

discrete time points, it is still necessary to join these values using say a step or linear
A

function so that Q(t) is a continuous function over time.

Having estimated the survivor and quality of life functions, the quality-adjusted survival 

curve is created by calculating their product and the area beneath this curve gives an 

estimate of the mean QALY(L). Clearly if the estimators for both survival and quality of 

life are simple functions of time then they can be multiplied and the integral of the 

quality-survival product can be calculated for time from 0 to L to give an estimate of the 

mean QALY(L). However, the most obvious estimator for the survival function is the 

Kaplan-Meier estimate, which is non-parametric and cannot be expressed as a simple 

function of time. The Kaplan-Meier method estimates the survival function S(tj) at each 

death time tj ( /- l to k) and connects these estimates using a step function, i.e. it assumes 

the survival function remains constant until the next death time. With this as a survival 

function, the estimator for QALY(L) becomes:
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QALY(L) = £
7 = 0

[8.16]

where to=0 and tk+\=L.

If the estimator for the quality of life function is also piecewise constant between death 

times tj, then the estimator for QALY(L) becomes

QALY(L) = X [s ( /; )2(/,)(V , - ' / ) ]  [8-17]
7 = 0

Thus having established the death times tj (j= 1 to k) of the patients, individual quality of 

life curves can be used to estimate the quality of life at each death time ql{tj) (/'= 1 to k),
A

with values set to missing for all patients who died at this time or previously. Q(t.) can

then be estimated as the mean of the values for the survivors at these times and by 

assuming a step function, the quality of life estimator will be piecewise constant 

between death times. A valid alternative to using step functions would be to assume a 

linear change between time points for both of the functions (Hwang et al 1996).

The standard error for the mean QALY(L) is mathematically complicated and 

bootstrapping is recommended as the method for estimation (Glasziou et al 1998, 

Hwang et al 1996), enabling confidence intervals to be calculated and hypothesis tests to 

be carried out. The method of bootstrapping (Hinckley 1988, Efron and Tibshirani 

1993) was described earlier in Section 8.6.1.

8.7.2 Application to the MIC and ESPAC Studies

In the MIC study, the aim of the analysis was to estimate the mean quality-adjusted life 

weeks within 15 weeks of entry to the trial, QALW( 15), for each treatment arm using the 

IQSP. In the ESPAC study, quality-adjusted life months could theoretically be estimated 

for the whole follow-up period but with the small number of patients contributing to the 

survivor and hazard functions in the later stages it was decided to restrict the analysis to
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24 months from date of entry and estimate QALM(24) on each treatment arm. At this 

point the number of patients still included in estimation of the survivor and quality of 

life functions was 48 (30 CT and 18 NoCT) and 20 (13 CT and 7 NoCT) respectively.

For both studies, a non-parametric survivor function was chosen to be combined with 

the quality of life function in the IQSP. Kaplan-Meier estimates of the survival function 

were calculated for each death time and, in the standard way, these estimates were 

assumed to remain constant until the next death time creating a stepped function. The 

survivor functions for the two treatment arms in the MIC study are shown in Figure 3.2b 

and those for the ESPAC study are shown in Figure 3.3. In the MIC study, within 15 

weeks from trial entry, there were 12 deaths occurring at 10 distinct times on the CT 

arm and 16 deaths occurring at 15 distinct times on the PAL arm. In the ESPAC study, 

there were 47 deaths occurring at 45 distinct times within the 24-month analysis period 

on the CT arm and 58 deaths occurring at 55 distinct death times on the NoCT arm.

The non-parametric Kaplan-Meier survivor function was combined in the IQSP with 

quality of life functions estimated from the observed values of GQS and GHSS over 

time for the MIC and ESPAC studies respectively. Although these measures are not 

utilities, they can be transformed onto a 0 to 1 scale by dividing the measures by 100 

and treated as utilities in the analysis (see Section 4.2.4). The quality of life function 

was estimated from a series of mean quality of life values determined from either (a) the 

mean quality of life at each scheduled time point, or (b) the mean quality of life at each 

death time determined from individual patient quality of life curves.

In option (a), the means at scheduled time points were simply calculated from the 

observed values available at each of those times. The quality of life function for each 

treatment arm is estimated by assuming linear changes between the means. These were 

shown earlier in Figure 6.4a for the MIC study and Figure 6.5 for the ESPAC study. The 

quality of life function needs to be a continuous function over the full analysis period 

and as can be seen in Figure 6.4a, this is not available for the MIC study. The last 

scheduled time point was 12 weeks for the CT arm and 9 weeks for the PAL arm. To 

complete the functions during the 15-week study period, the means at these last 

scheduled time points were carried forward to the 15-week cut-off time. This
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assumption has greater impact on the PAL arm than the CT arm.

In option (b), the mean quality of life at each death time within each treatment group 

was estimated from the individual values obtained from the patient quality of life curves 

as shown in Figures 6.1 and 6.2 for the MIC and ESPAC studies respectively. The 

individual curves include only observed values of quality of life over time with linear 

changes assumed between values. The individual curves are curtailed at the patients’ 

final assessment. The means at each death time are joined using a step function, such 

that the steps coincide with those on the Kaplan-Meier survivor function.

In both options (a) and (b), although patients remain in the analysis during the time 

between their last assessment and death, they do not contribute to the quality of life 

function during this time. This method essentially assumes that the missing data during 

this period are missing at random. If the dropout of patients from the quality of life 

study prior to death is believed to be informative, then this approach will give biased 

results. Methods for dealing with dropout prior to death, in addition to dropout directly 

due to death, are discussed in Section 8.7.4 and may be more appropriate than the 

approach taken here.

The quality-adjusted survival functions for each treatment group were created by 

multiplying the survivor and quality of life functions together and calculating the areas 

under these curves to give for each group the estimated mean QALW( 15) in the MIC 

study and QALM{24) in the ESPAC study. For option (a), the area was calculated using 

[8.16], whilst for option (b) calculations were based on [8.17]. To estimate the standard 

error of the mean quality-adjusted survival time, 1000 bootstrap samples were taken 

from the observed data on each treatment arm and standard errors were estimated from 

the distribution of bootstrap sample means. There is no standard software available for 

performing quality-adjusted survival analysis using IQSP and data manipulation and 

analysis was programmed in SAS (SAS Institute Inc 1989) with bootstrapping carried 

out using a SAS macro. The results are given in Tables 8.10 and 8.11 for MIC and 

ESPAC studies respectively.
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Table 8.10: Mean QALW( 15) (and standard errors) for each treatment arm of the 
MIC study using Kaplan-Meier survivor function, unadjusted for quality of life 
and adjusted for two different quality of life functions

Survivor
Function

Quality of Life 
Function

CT
Mean QALW( 15) 
(standard error)

PAL 
Mean QALW( 15) 
(standard error)

Kaplan-Meier No adjustment for 13.90 12.80
estimates stepped quality of life (0.35) (0.56)

Mean GQS at 11.47 9.90
scheduled time points 

- linear changes
(0.34) (0.54)

Mean GQS at death 11.09 9.66
times from individual 

curves -  stepped
(0.67) (0.74)

Table 8.11: Mean QALM(24) (and standard errors) for each treatment arm of the 
ESPAC study using Kaplan-Meier survivor function, unadjusted for quality of life 
and adjusted for two different quality of life functions

Survivor
Function

Quality of Life 
Function

CT
Mean QALM(24) 
(standard error)

NoCT 
Mean QALM{24) 
(standard error)

Kaplan-Meier No adjustment for 17.29 15.02
estimates stepped quality of life (0.79) (0.78)

Mean GHSS at 11.41 9.64
scheduled time points 

- linear changes
(0.71) (0.68)

Mean GHSS at death 11.01 9.52
times from individual 

curves -  stepped
(0.65) (0.68)

In Table 8.10, the results for the MIC study include the area under the unadjusted 

Kaplan-Meier survivor function giving the mean survival time within 15 weeks, which 

was previously presented in Section 3.3.3 and shows that patients on the CT arm have 

greater mean survival time than those on the PAL arm. After adjusting these estimates 

for the quality of life experienced during this time, the CT arm still has superior quality- 

adjusted survival compared to the PAL arm but 95% confidence intervals overlap 

indicating that this difference is statistically non-significant at the 5% level. The 

estimates of mean QALW{ 15) are slightly higher with this group-based approach in 

comparison to the subject-based approach (see Table 8.3) and the difference between
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treatment groups slightly less (1.57 and 1.43 compared to 1.90).

In Table 8.11, the results for the ESPAC study show that on both treatment arms there is 

a reduction of approximately 6 months when adjusting the survival time over 24 months 

for the quality of life experienced. The results for the two different forms of quality of 

life function were similar. The mean QALM(24) was greater for the CT group compared 

to the NoCT group, with chemotherapy giving patients on average between 1.5 and 2 

extra quality-adjusted life months within the 24 months from entry to trial but 95% 

confidence intervals overlap indicating that this difference is not statistically significant 

at the 5% level. In this example, the results obtained with the group approach give 

slightly higher estimates for mean QALM(24) than those obtained using the subject- 

based approach (see Table 8.4) and with slightly greater differential between treatments.

8.7.3 Alternative Interpretation of Quality-Adjusted Survival Analysis

The IQSP has been interpreted as a method for calculating quality-adjusted survival 

time, in the sense that the quality of life function in [8.14] is considered as a weight for 

the survivor function. This enables the mean survival time for a group of patients to be 

down-weighted for the quality of life experienced. The survivor function however in the 

IQSP, which is on a 0 to 1 scale, could be considered as a weight for the quality of life 

function. In this way, the IQSP could be considered as calculating the survival-adjusted 

quality-of-life. This interpretation reflects the fact that the method adjusts for the 

dropout of patients due to death in the analysis of quality of life, which is often the key 

aim of simultaneous analysis of the two endpoints. By interpreting the IQSP in this way, 

the extension of the methodology to deal with dropout prior to death can be 

meaningfully interpreted as dropout-adjusted quality-of-life (see Section 8.7.4).

Only one simple adjustment is required to the methodology to enable this alternative 

interpretation. The IQSP calculates the mean survival-adjusted quality-of-life score over 

the whole follow-up period. The survival-adjusted quality-of-life score would be more 

easily interpreted if it were expressed as a proportion of the maximum obtainable score 

during this time, which is lxL, i.e. survived the whole study period with perfect quality 

of life. Thus the mean survival-adjusted quality-of-life (SAQL) within a restricted time
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period defined by L is given by:

SAQL(L) = j\Q {t)S (t)d t  [8.18]
L 0

The mean survival-adjusted quality-of-life and standard errors, restricted to the 

appropriate time period, were estimated for each treatment arm in the MIC and ESPAC 

studies using the two different forms of the quality of life function that were considered 

in Section 8.7.2. The area under the quality of life function, unadjusted for survival was 

also calculated for comparison purposes. This unadjusted analysis is comparable to the 

standardised area under the curve (SAUC) summary measures analysis presented in 

Section 6.3.4. The results for the two studies are given in Tables 8.12 and 8.13

Table 8.12: Mean SAQLQS) (and standard errors) for each arm of the MIC study 
using two different quality of life functions, unadjusted for survival and also 
adjusted for the Kaplan-Meier survivor function

Quality of Life Survivor CT PAL
Function Function Mean SAQL{ 15) Mean SAQLQS)

(standard error) (standard error)
Mean GQS at Unadjusted for 0.83 0.78

scheduled time points survival (0.0120) (0.0215)
- linear changes Kaplan-Meier 0.76 0.70

estimates - stepped (0.0227) (0.0357)
Mean GQS at death Unadjusted for 0.80 0.67

times from individual survival (0.0482) (0.0453)
curves - stepped Kaplan-Meier 0.74 0.64

estimates - stepped (0.0444) (0.0490)

Using the quality of life function defined by the means at scheduled time points and 

without adjusting for dropout due to death, patients on the CT arm of the MIC study on 

average achieved 83% (95% Cl: 81-85) of their maximum attainable quality of life 

during 15 weeks from entry whilst those on the PAL arm on average achieved 78% 

(95% Cl: 74-82) of their maximum during this time. This comparison is biased by the 

informative dropout of patients from the quality of life study due to death. Adjusting 

these results for dropout due to death by weighting the quality of life function by the 

survivor function reduces these values and increases the standard error to give 76% 

(95% Cl: 72-80) on the CT arm and 70% (95%CI: 63-77) on the CT arm. The mean
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SAQL( 15) are further reduced and the standard errors are further increased using the 

alternative form o f the quality o f life function based on the individual curves. For both 

forms o f the quality o f life function, patients on the CT arm achieve a greater proportion 

o f their maximum attainable quality o f life than those on the PAL arm, although 95% 

confidence intervals overlapped each other.

Table 8.13: Mean SAQL(24) (and standard errors) for each arm of the ESPAC 
study using two different quality of life functions, unadjusted for survival and also 
adjusted for the Kaplan-Meier survivor function

Quality of Life Survivor CT NoCT
Function Function Mean SAQL( 24) Mean SAQL(24)

(standard error) (standard error)
Mean GHSS at Unadjusted for 0.66 0.64

scheduled time points survival (0.0265) (0.0290)
- linear changes Kaplan-Meier 0.48 0.40

estimates - stepped (0.0295) (0.0282)
Mean GHSS at death Unadjusted for 0.64 0.64
times from individual survival (0.0280) (0.0355)

curves - stepped Kaplan-Meier 0.46 0.40
estimates - stepped (0.0270) (0.0282)

In the ESPAC study, using the quality o f life function defined by the means at scheduled 

time points and without adjusting for dropout due to death, patients on the two treatment 

arms achieved very similar proportions of their maximum attainable quality o f life 

during 24 months from entry. On average, patients on the CT arm achieved 66% (95% 

Cl: 61-71) whilst those on the PAL arm achieved 64% (95% Cl: 58-70). This 

comparison is biased and adjusting for dropout due to death reduces the mean on both 

arms to 48% (95% Cl: 42-54) and 40% (95% Cl: 34-46) on the CT and NoCT arms 

respectively. The results using the alternative form of the quality o f life function based 

on the individual curves are comparable to these results. Unlike the MIC study, the 

standard errors are similar for adjusted compared to unadjusted and for the two different 

forms o f quality o f life function.
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8.7.4 Dealing with Dropout Prior to Death

Estimating the quality o f life function over time for a group o f patients using only the 

observed quality o f life data assumes that all missing data are missing at random. In 

Section 8.7.3 the missing data that occur due to death is accounted for by weighting the 

quality o f life function by the survivor function. Patients however that drop out o f the 

quality o f life study prior to death will be included in the analysis until the point that 

they die but will not contribute to the quality o f life function during the time between 

their last assessment and death. The estimation of the quality o f life function therefore 

assumes that the missing data between dropout and death are missing at random. If this 

is not a valid assumption and it is assumed that patients generally drop out due to poor 

health then the results that adjust only for dropout due to death will be biased and the 

dropout prior to death should be accounted for in the analysis.

Choosing how to deal with the missing data between last assessment and death or end of  

study is not a trivial issue and may have implications on the results. One approach may 

be to impute values o f quality o f life for the dropout period. For example, assuming a 

linear change between the value at the last assessment and the value o f zero at death 

may provide adequate imputed values for the dropout period. Imputing single values for 

missing data has the advantage o f being a simple approach but underestimates the 

variability in the data and although methods such as multiple imputation would help to 

address this, they may overcomplicate the analysis.

One option, which has not previously been proposed, is to calculate the IQSP using 

dropout or death, whichever occurs first, as the event rather than death alone. Thus the 

dropout-free survivor function (as described in Section 5.8) is used in place o f the 

survivor function in the IQSP given in [8.18]. The mean dropout-adjusted quality-of-life 

(DAQL) within the restricted time period defined by L is given by:

1 1
DAQL(L) = -  \Q(t)DFS(t)dt [8.19]

L o

where DFS is the dropout-free survivor function.
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The dropout-free survivor function for the MIC study was defined in Section 5.8.1 and 

Kaplan-Meier estimates of the function for each treatment group are shown in Figure 

5.2. In summary, if  a patient does not complete their final scheduled assessment (5th 

assessment on CT arm and 4th on PAL arm) then they are defined as having an event 

three weeks after their last recorded assessment, providing they survive this time. Any 

patient who dies within 3 weeks of the last recorded assessment is defined as having an 

event at their time o f death. All other patients have censored dropout times either 3 

weeks after their last completed assessment or at 15 weeks from trial entry, whichever is 

first. Given this definition o f a dropout event, there were 27 events on the CT arm 

occurring at 22 distinct times and 20 events on the PAL arm occurring at 17 distinct 

times. The dropout-free survivor function is combined with the two different forms of 

quality of life function using [8.19] and the results are presented in Table 8.14. For 

comparison purposes, the previous results from Section 8.7.3 for the unadjusted quality- 

of-life and the survival-adjusted quality-of-life are also included.

Table 8.14: Mean DAQL( 15) (and standard errors) for each arm of the MIC study 
using two different quality of life functions, adjusted for Kaplan-Meier dropout- 
free survivor function in comparison to unadjusted and adjusted for survivor 
function

Quality of Life 
Function

Adjustment
Function

CT
Mean DAQL(15) 
(standard error)

PAL 
Mean DAQL( 15) 
(standard error)

Mean GQS at Unadjusted 0.83 0.78
scheduled time points (0.0120) (0.0215)

- linear changes Kaplan-Meier 0.76 0.70
estimates for 

survival
(0.0227) (0.0357)

Kaplan-Meier 0.69 0.59
estimates for 
dropout-free 

survival

(0.0273) (0.0400)

Mean GQS at death Unadjusted 0.80 0.67
times from individual (0.0482) (0.0453)

curves - stepped Kaplan-Meier 0.74 0.64
estimates for 

survival
(0.0444) (0.0490)

Kaplan-Meier 0.66 0.53
estimates for 
dropout-free 

survival

(0.0264) (0.0401)
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Adjusting for dropout in addition to death in the MIC study, further reduces the mean 

quality o f life experienced over 15 weeks. The results from the two different quality of  

life functions are comparable. In both cases the CT arm has an additional 10% of their 

maximum attainable quality o f life compared to the PAL arm. The difference between 

treatments becomes larger as dropout due to death and then additional dropout prior to 

death are adjusted for in the analysis.

The dropout-free survival function for the ESPAC study was defined in Section 5.8.2 

and Kaplan-Meier estimates o f the function for each treatment group are shown in 

Figure 5.3. In summary, i f  the last recorded assessment for a patient is more than 3 

months prior to their last survival follow-up then the patient is recorded as having a 

dropout event 3 months after their last recorded assessment. For those patients who die 

within 3 months o f their last recorded assessment, the event is recorded at their time of 

death. The remaining patients are recorded as having censored dropout times at their last 

survival follow-up. Since the analysis is restricted to 24 months from trial entry, all 

events that occur after this time are censored at 24 months. Given this definition o f a 

dropout event, there were 62 events on the CT arm occurring at 61 distinct times and 68 

events on the NoCT arm occurring at 67 distinct times. The dropout-free survivor 

function is combined with the two different forms o f quality o f life function using 

[8.19] and the results are presented in Table 8.15. For comparison purposes, the 

previous results from Section 8.7.3 for the unadjusted quality-of-life and the survival- 

adjusted quality-of-life are also included.

Adjusting for dropout in addition to death in the ESPAC study, further reduces the mean 

quality o f life experienced over 24 months. The results from the two different quality of  

life functions are comparable. In both cases the difference between treatments is small 

with the CT arm having an additional 6% of their maximum attainable quality o f life 

compared to the NoCT arm.
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Table 8.15: Mean DAQL(24) (and standard errors) for each arm of the ESPAC 
study using two different quality’ of life functions, adjusted for Kaplan-Meier 
dropout-free survivor function in comparison to unadjusted and adjusted for 
survivor function

Quality of Life 
Function

Adjustment
Function

CT
Mean DAQL( 24) 
(standard error)

NoCT 
Mean DAQL( 24) 
(standard error)

Mean GHSS at Unadjusted 0.66 0.64
scheduled time points (0.0265) (0.0290)

- linear changes Kaplan-Meier 0.48 0.40
estimates for 

survival
(0.0295) (0.0282)

Kaplan-Meier 0.40 0.34
estimates for 

dropout and death
(0.0274) (0.0243)

Mean GHSS at death Unadjusted 0.64 0.64
times from individual (0.0280) (0.0355)

curves - stepped Kaplan-Meier 0.46 0.40
estimates for death (0.0270) (0.0282)

Kaplan-Meier 0.39 0.33
estimates for 

dropout and death
(0.0253) (0.0230)

8.8 Discussion and Critical Review of Quality-Adjusted Survival 

Analysis

Quality-adjusted survival analysis provides a relatively straightforward approach for the 

simultaneous analysis o f quality o f life and survival data. Although this type of analysis 

has been widely used in clinical research, its application has almost entirely related to 

health states defined using clinical criteria and the application to quality of life data 

collected on patients in a clinical trial is limited (Allen-Mersh et al 1994, Beacon 1996). 

This thesis provides the most comprehensive review to date of the different approaches 

to quality-adjusted survival analysis in their specific application to longitudinal quality 

o f life data collected on patients in a clinical trial.

The different approaches to quality-adjusted survival analysis can be summarised into 

four distinct categories, depending on whether the quality of life and survival data are 

combined at the subject or the group level and depending on whether the actual values
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o f quality o f life data collected on patients over time are used directly in the analysis or 

indirectly by using them to allocate patients to different health states for periods o f their 

follow-up time. These four different approaches each have their own advantages and 

disadvantages and each are more appropriate for some situations than others, as 

discussed in detail in this section.

All approaches are based on the concept o f combining quality o f life and survival data in 

a QALY model, with the well-known TWiST and Q-TWiST models being special forms 

o f the general model. The general form of the QALY model that has been used in this 

thesis is based on a number o f assumptions: the independence o f the utility value for a 

health state to the time spent in the health state; the independence o f the utility value for 

a health state to previous or future health states and to remaining amount o f life; and the 

equivalent valuation o f all follow-up time. These assumptions have been discussed in 

relation to a Q-TWiST model (Till and de Haes 1991, Gelber and Goldhirsch 1991). A  

more general form for the model combining quality o f life and survival data has been 

discussed (Cole et al 1994) and may overcome some o f the assumptions o f the QALY 

model. One o f the advantages o f the approaches discussed in this thesis is that no 

distributional assumptions are required for the quality o f life or survival data although 

the IQSP can be partly or fully parametric if  desired.

The approaches that directly incorporate the actual values o f quality o f life with survival 

either at a subject or group level ideally require the quality o f life measures over time to 

be utilities. Questionnaires that yield utility values for patients over time are not widely 

used in clinical trials but the approaches can be applied to any measure from a quality of 

life instrument provided that it is transformed onto a 0 to 1 utility-type scale. The choice 

o f transformation will generally be linear but in some cases it may be more appropriate 

to use one that is non-linear (Beacon 1996). The interpretation o f the resultant measure 

as a QALY however may be questionable if  the quality o f life measures are not true 

utilities. As the methods described in this chapter become more widely used, so clinical 

trials will more routinely use questionnaires that can allocate utility values to patients 

over time as well as or instead o f questionnaires that yield descriptive measures, and the 

application o f the actual value approaches will be more valid.
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If the longitudinal quality o f life outcome for analysis is not a utility and cannot easily 

be translated into a utility then the approaches using actual values will not be applicable. 

In such situations the health state approaches, in which the values o f quality o f life over 

time are used purely to allocate patients to certain health states during their follow-up 

time, will be preferable. This approach lends itself well to categorical outcomes and to 

situations where multiple measures o f quality o f life are relevant, since the health states 

can be defined in terms o f any values for any number o f measures. For valid QALY 

outcomes the utilities for the quality-of-life-defined health states need to be known. This 

may be possible if  an external valuation study is carried out. If however the utilities are 

not known then the range o f utilities can be investigated in a sensitivity analysis. The 

greater the number o f different utilities in the QALY model, the more unmanageable the 

sensitivity analysis becomes.

The subject-based approach o f combining quality and quantity o f life into individual 

QALYs either using actual values or health states is the simplest form of quality- 

adjusted survival analysis. The method is straightforward to understand and implement 

and is therefore accessible for clinicians. It is a type o f summary measures analysis and 

as such has the advantage that having calculated the QALY for each subject, standard 

univariate methods o f analysis can potentially be applied to the QALY endpoint to 

determine differences between treatment groups for example. If the analysis contains 

censored survival times then the QALY endpoint will also be censored and, since 

standard survival techniques would be invalidated for the QALY endpoint due to 

informative censoring, the analysis becomes problematic. In some situations it may be 

possible to restrict the period o f analysis to one in which all patients have full survival 

follow-up thus eliminating the censored survival times but if  this is not desirable or 

possible then a subject-based approach may not be a valid option. The choice o f an 

upper time limit is subjective, and the possible inclusion of available quality o f life and 

survival information after this time in the calculation o f the QALY within the analysis 

period needs to be considered carefully to ensure that no bias is introduced. In many 

studies restricting the analysis to an upper time limit will merely minimise, rather than 

eliminate, the number o f censored QALYs and in this case, although imputing values for 

the censored QALYs in a sensitivity analysis is an option, in general a subject-based 

approach is not advisable if  censored data are present. The alternative to a subject-based
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approach is a group-based approach and since, in general, censored survival times are 

likely to be present in any analysis, this approach will be the most applicable. One 

problem with the group-based approach is the difficulty in calculating standard errors, 

although software to perform bootstrapping is becoming more readily available.

A number o f assumptions need to be made to create subject-based utility-type curves 

over time from which QALYs can be calculated. Different assumptions will produce 

different curves and give different results (Ganiats et al 1996) and the assumptions may 

be questionable if  the time spans between assessments are large. Although the method 

deals with the problem o f missing quality o f life data due to death by allocating a value 

of zero to all time beyond death, there are a number o f options for dealing with missing 

data resulting from dropout from the quality o f life study prior to death. Values for these 

missing data can be imputed, in particular if  the reasons for dropout are known or 

clinical data are available an appropriate value can be allocated to the time spent as a 

dropout to reflect the quality o f life during that time. Other simple methods o f  

imputation such as last value carried forward may not be adequate and more 

sophisticated methods such as multiple imputation need to be considered and their use 

within this context needs to be assessed. By assuming a linear decrease from the value at 

the last assessment to the value o f zero at death, as in this thesis, the method is indirectly 

accounting for dropout, since it is assuming that patients gradually deteriorate during 

their course o f their dropout time. Some authors who use an area under the curve 

approach to analyse longitudinal quality of life data, deal with dropout, including that 

due to death, by dividing the area by the length o f the observation time from trial entry 

to last assessment and compare treatments using a standardised area under the curve 

(Qian et al 2000) This is effectively an analysis o f the distribution o f quality o f life 

during the time that they participate in the study. The problem with this approach is that 

individuals with a short follow-up time will have equal weighting to those with a long 

follow-up time (Ganiats et al 1995). In particular, if  death is not accounted for then, for 

example, an individual with a quality of life value o f 0.7 for 6 months and then dies will 

be treated with equal weight as someone who survives for the whole 2 year analysis 

period with a quality o f life value o f 0.7.
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Partitioned survival analysis is generally difficult to apply to longitudinal quality o f life 

data because o f the need for progressive health states. It may be possible to overcome 

this problem by specifying different phases o f the same state, as was done in the MIC 

study, but this can become clumsy and may lose clinical meaning. There is no unique 

way to divide the survival time o f patients into periods o f differing quality o f life and 

the accuracy depends on the frequency o f quality o f life assessments. Different divisions 

should be considered as part o f a sensitivity analysis. Additional dropout prior to death 

can easily be accounted for by incorporating the time spent as a dropout into the model 

with an appropriate weighting to reflect quality o f life.

In general, methods for quality-adjusted survival analysis require the analysis to be 

restricted to an upper time limit, as methods are based on the calculation o f areas under 

curves. In some situations, as with the MIC study, the quality o f life data may only be 

collected for a limited amount o f time, and the period o f analysis will automatically be 

restricted to an upper time limit. Otherwise, the effect o f imposing an upper time limit 

should be investigated using a sensitivity analysis. Such methods have been proposed 

specifically in relation to the Q-TWiST model (Glasziou et al 1990, Gelber et al 1995). 

A parametric approach to quality-adjusted survival analysis as suggested by Cole et al 

(1994) may overcome this limitation. The group-based approaches both allow 

parametric forms for the functions under which areas need to be calculated and this may 

enable the analysis to be unrestricted in terms o f time.

The IQSP provides a simple method for combining quality o f life and survival data at 

the group level whilst dealing with censored survival times. It is preferable to the 

method o f partitioned survival analysis since it is not based on progressive health states, 

which generally are difficult to define in relation to quality o f life data. Instead the 

method directly incorporates longitudinal quality o f life data collected on patients in a 

quality-adjusted survival analysis. The inclusion o f covariates in the analysis has not 

been considered and further research is required to extend the method to incorporate 

covariates.

There are number o f choices to be made when implementing the IQSP, in particular 

estimates for the quality o f life and survival functions need to be chosen and the analysis
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in general will need to be restricted to an upper time limit. Sensitivity analysis is 

recommended to assess the robustness o f the results to these choices. The method is 

flexible in terms o f the choice of functions with either or both being non-parametric or 

parametric. The use o f parametric functions for quality o f life and survival may enable 

quality-adjusted survival for the whole follow-up period to be calculated rather than just 

for a fixed period o f time. The most obvious choice for the survival function is the 

Kaplan-Meier survival curve. For the quality o f life function, using individual’s 

functions o f quality o f life over time to estimate the average quality o f life o f survivors 

at a number o f given time points is the most flexible approach in that it allows for 

differing assessment times. For both the quality o f life and survival functions, 

assumptions are required to realistically map the values estimated at discrete time points 

to their estimated course in continuous time. The method does not fully account for the 

uncertainty in the estimation o f the two functions and in particular the increase in 

uncertainty in the estimation o f the functions over time that is related to the reduction in 

patient numbers.

By interpreting the results from the IQSP as mean survival-adjusted quality-of-life rather 

than mean quality-adjusted survival time, the results can be expressed as the proportion 

of the maximum obtainable quality o f life during the period which may be more 

clinically intuitive than quality-adjusted survival time. In addition, the method can easily 

be extended to deal with dropout by including the dropout-free survivor function rather 

than the survivor function. Unlike the subject-based approach, the individual utility-type 

curves only need to include the observed data and this reduces the need for imputation. 

The method o f quality-adjusted survival analysis using IQSP is a relatively new 

methodology and research in this thesis has shown that it is a useful approach for the 

simultaneous analysis o f quality o f life and survival. This thesis has developed the 

method to deal with additional dropout prior to death, which further indicates the 

potential o f the method for the analysis of quality o f life data with informative dropout.
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CHAPTER 9: MULTISTATE MODELS FOR QUALITY OF LIFE 
AND SURVIVAL DATA

9.1 Introduction

The aim of this chapter is to describe the method of multistate modelling and develop 

the methodology for application to the simultaneous analysis o f quality o f life and 

survival data. Multistate models were first proposed for use in a medical context in 1951 

(Fix and Neyman 1951) and have more recently been advocated in a number o f reviews 

and discussions regarding the analysis o f quality o f life data, as a possible means of 

analysing quality o f life and survival data simultaneously (Fayers and Jones 1983, 

Schumacher et al 1991, Cox et al 1992, Abrams 1992a, Olschewski et al 1992). Some 

authors have discussed in more detail the use of this approach for the analysis o f quality 

of life data in cancer clinical trials (Olschewski and Schumacher 1990) but there is little 

evidence o f its application to such data.

The statistical background to multistate survival analysis is derived from the analysis of 

event-history data (Clayton 1988, Andersen and Keiding 2002) and stochastic processes 

(Cox and Miller 1965, Chiang 1980). Many o f the theoretical aspects o f multistate 

models fall within a counting process framework (Andersen and Borgan 1985, Fleming 

and Harrington 1991, Andersen et al 1993). The study o f events occurring in individuals 

over time generates event-history data. In studies such as these, individuals can be 

thought o f as occupying one o f a finite number of states at any point in time and the 

movement between states can be described by conditional probabilities or transition 

rates. This dynamic process is known as a stochastic process. Quality o f life assessment 

in clinical trials generates event-history type data, with events being defined as entry 

and exit from pre-defined health states. The movement o f individuals between quality of 

life states can then be considered as a stochastic process and modelled accordingly.

Multistate modelling requires the definition o f a finite number o f health states, including 

death, that patients experience during the study. Defining these health states and the 

possible transitions between them describes the multistate model. The transition rates, 

which describe the movement between health states, can then be modelled, possibly
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using covariates. In this way the time-dependent structure and dynamic nature o f quality 

o f life data can be incorporated into an analysis comparing treatments and the effect of 

explanatory variables on transition rates from one state to another can be investigated. 

Multistate models do not require any distributional assumptions about the quality o f life 

data and may therefore provide a convenient approach for non-normally distributed or 

categorical quality o f life measures, although defining states is not necessarily 

straightforward.

Multistate models have been applied in a variety o f clinical settings such as diabetes 

(Andersen 1988, Marshall and Jones 1995), rheumatoid arthritis (Young et al 1999), 

liver transplantation (Hansen et al 1994), liver cirrhosis (Andersen et al 2000), bone 

marrow transplantation (Klein et al 1993, Klein and Shu 2002), heart transplantation 

(Kay 1982, Wu 1982), breast cancer (Kay 1984, Perez-Ocon et al 2001a and b), prostate 

cancer (Myers et al 1980), leukaemia (Chevret et al 2000) and HIV (Gentleman et al 

1994, Sypsa et al 2001). The applications, however, all use clinical criteria rather than 

quality o f life data to define health states. There are limited examples o f applications of 

multistate models to quality o f life data (Olschweski 1984, Abrams 1992b, 

Charlesworth and Skene 1997).

This thesis applies multistate models to the quality o f life and survival data collected in 

the MIC and ESPAC studies, allowing the feasibility o f the methodology for such data 

to be investigated. In addition, the development o f such models to include a ‘dropout’ 

state may provide a means for overcoming the problem of informative dropout from the 

quality o f life study. This approach for dealing with dropout in a longitudinal study has 

not previously been considered and is investigated here for the MIC and ESPAC 

studies. The multistate models that are considered for the MIC and ESPAC data are 

described in Section 9.2 and Section 9.3. These models are applied to quality o f life and 

survival data in the MIC and ESPAC studies in Section 9.4. The models are extended in 

Section 9.5 to include a dropout state with application to the MIC and ESPAC data. A 

discussion and critical review o f the use o f multistate modelling for the simultaneous 

analysis o f quality o f life and survival is given in Section 9.6, with areas o f potential 

future research highlighted.
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9.2 Defining the Model

9.2.1 Health States

The set o f health states chosen for the model should be clinically meaningful and fully 

describe the experiences o f the patients. They should be mutually exclusive and 

exhaustive. The number o f states should be restricted so that the model does not become 

overcomplicated and to ensure that the number o f patients passing from one state to 

another is sufficient for adequate estimation of parameters in the model.

There are two main types o f health states. A transient state is one that a patient can pass 

through during the course o f their follow-up and an absorbing state is one that a patient 

cannot leave once it has been entered. The standard model for survival analysis 

corresponds to the simplest multistate model, where the patient can be in one o f two 

possible states, a transient ‘alive’ state or an absorbing ‘death’ state. The competing 

risks model (David and Moeschberger 1978) is an extension o f this two-state survival 

model and forms a multistate model with one transient alive state and several absorbing 

death states corresponding to different causes of death. In terms o f modelling quality of 

life data it is more relevant to extend the simple two-state survival model so that there 

are several transient alive states and a single absorbing death state.

The simplest version o f a multistate model for quality o f life is the three-state illness- 

death model (also called the ‘three-state disability model’), where there are two 

transient alive states: well and ill, and one absorbing death state. This model was used 

for the MIC and ESPAC data (see Figure 9.1).
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Figure 9.1 Three-state illness-death model for the MIC and ESPAC studies

Dead

Alive 
and 111

Alive 
and Well

In the MIC study, two different models were considered, one where the patients’ health 

states were determined from the global quality o f life score (GQS) and one where they 

were determined from the malaise question (MAL). The GQS outcome was continuous 

in nature and to define health states, appropriate cut-off values needed to be determined. 

Patients were categorised as being in the well state if  the patient had a value o f GQS 

greater than 83, the median value over all questionnaires at all time points, and were 

categorised as being in the ill state if  the patient had a value o f GQS less than or equal to 

83. For the second model, patients were defined as well if  they had no malaise (MAL=0) 

and were defined as ill i f  they had malaise at any level (MAL= 1, 2 or 3). For the ESPAC 

data the global health status score (GHSS) was used to define the health states with 

patients categorised as well i f  the patient had a value greater than 50 and ill if  they had a 

value less than or equal to 50. The value o f 50 was chosen to represent a clinically- 

determined cut-off rather than a data-driven one as was used in the MIC study. A score 

of 50 is obtained when a patient’s overall physical condition and overall quality o f life 

on average are rated half way between very poor and excellent (see Section 4.4.2).

For both studies, the health states used in the model could have been defined using 

different cut-offs or could have been based on other questions asked in the study, 

possibly multiple questions. More complex models with more than two alive states 

defined by quality o f life values were considered, but in both studies such a formulation 

would have meant that there were too few transitions for adequate modelling o f the 

data. The addition o f a dropout state to the above models is considered in Section 9.5.
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9.2.2 Health State Transitions

The movement between states can be described using either a transition probability or a 

transition rate. A transition probability is the likelihood o f an individual moving from 

one state to another within a specified time period; a transition rate is the instantaneous 

potential o f transition at any point in time (Miller and Homan 1994). Whilst the 

transition probability can take values between 0 and 1, the transition rate, sometimes 

called transition intensity, has no upper bound. In the simple two-state survival model, 

the transition rate from a transient alive state to an absorbing death state is the standard 

hazard rate function for the survival time distribution (see Section 3.2).

The two measures are related (Miller and Homan 1994) and, when the instantaneous 

transition rate r remains constant during a period o f time, say t\ to t2, a transition 

probability p  can be estimated using:

p  = 1 - exp [ - r ( t 2 - t \ )  ] [9.1]

In some situations, patients in the trial may experience ‘recovery’ during the follow-up 

time and in these circumstances the model may need to include reverse transitions, 

allowing the ability to return to a state previously occupied. For example, in a three- 

state illness-death model for the data from a liver cirrhosis trial (Andersen et al 1991), 

the authors allow patients with low prothrombin index to recover and return to the ‘alive 

with normal prothrombin index’ state and thus incorporate reverse transitions in their 

model. If reverse transitions are possible then repeat transitions may occur, that is a 

patient may experience a particular transition more than once during their follow-up. In 

some circumstances, such as when it is thought that the transition rate would be 

different for a repeat transition compared to an initial transition, it may be preferable to 

model repeat and initial transitions as separate events (Islam 1994). This would only be 

possible if  the number o f subjects experiencing repeat transitions was large enough for 

adequate modelling.

In the MIC and ESPAC studies, patients could move either way between the transient 

health states, sometime several times, until finally moving to the absorbing state of
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death. The model therefore included reverse and hence repeat transitions as shown in 

Figure 9.1 by arrows in both directions between the alive states.

9.2.3 Assumptions of Underlying Stochastic Process

In the most general model, the transition rates would depend on the whole history o f the 

patient. However, it is often reasonable to assume that at any time point the state 

currently occupied by a patient contains all the information relevant to a patient’s future 

course. Under this assumption the model represents a Markov process. If the transition 

rates from each state are conditional on the duration o f time spent in the state, often 

called the sojourn time, then the model represents a semi-Markov process (Clayton 

1988).

It may be necessary to define the health states o f the model so that the Markov 

assumption is valid. For example, in a three-state illness-death model, if  the transition of  

patients between the well and death states depended on whether the patient had 

originally been in the ill state, then it would be necessary to create two well states: an 

‘always been well’ state and a ‘was ill but now well’ state. In this way the validity o f the 

Markov assumption could be retained.

If the transition rates remain constant over time, i.e. are independent o f time, then the 

process is time-homogeneous, otherwise if  they vary over time, i.e. are functions o f  

time, then the process is time-nonhomogeneous. In some situations the transition rates 

may be piecewise constant such that they are constant over defined subdivisions o f the 

follow-up time.

9.3 Modelling the Transition Rates

9.3.1 Cox Regression Model for Transition Rates

In a standard survival model, the transition rate from the alive state to the dead state is 

commonly represented by a Cox regression model (Cox 1972) as described in Chapter 

7. The application o f Cox regression models to the more general multistate framework
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which allows several transient disease states between entry to study and death has been 

discussed (Kay 1982, Hsieh et al 1983, Cox 1984, Prentice et al 1981, Islam and Singh 

1992). The exact times o f transition from one state to another, or estimates o f them, are 

needed for this type o f analysis. Cox regression models have been used to model the 

transition rates in various multistate survival analysis applications (Wu 1982, Kay 1984, 

Andersen 1988, Klein et al 1993, Hansen et al 1994, Islam 1994, Young et al 1999, 

Andersen et al 2000, Chevret et al 2000, Perez-Ocon et al 2001a and b).

The transition rate from state k to state / for patient z, hi\u\{t) can be modelled using a 

Cox regression model as follows:

[ki] (0  = ho[ki] (0 cxp(/? ^  ) [9.2]

where /zo[*/](0 is a baseline transition rate for the transition from k to /, x$ja\ is a vector of 

covariates specific to that transition and /3yd] is a vector o f unknown regression 

coefficients specific to that transition. The model could be generalised to include time- 

dependent covariates by replacing x^i] with XQjd\(t).

9.3.2 Markov or Semi-Markov

When modelling the transition rates, consideration needs to be given to whether the 

process is Markov or semi-Markov. Semi-Markov processes have been discussed in 

relation to multistate models (Lagakos et al 1978, Prentice et al 1981, Wu 1982, Hsieh 

et al 1983, Cox 1984, Chevret et al 2000, Andersen et al 2000). In a Markov process, as 

discussed in Section 9.2.3, the transition rate to another state depends only on the 

present state occupied, whilst in a semi-Markov process the transition rate is also 

dependent upon the duration o f time in the present state (Andersen et al 1993).

The type o f process is related to the time scale on which time in the model for a 

transition rate is measured, i.e. it relates to the ‘time at which the clock starts’. If, in 

modelling the transition rate from state k to state /, time t is measured from the time of 

entry to the study (i.e. /=0), then the model represents a Markov process, since duration 

o f time in state k is not included. Otherwise, if  time is measured in the model from time
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o f entry to state k, say w in relation to study entry time, then time is included in the 

model as t-w  rather than t and, with sojourn time now included, the model represents a 

semi-Markov process (Kay 1984). In a semi-Markov process, the clock is effectively 

‘reset to zero’ every time a state is entered (Clayton 1988). An alternative way to fit a 

semi-Markov model is to model t but include sojourn time as a time-dependent 

covariate in the model (Kay 1984, Andersen et al 2000).

Information regarding the history o f the process prior to entering state k may be 

included as covariates. In particular, when individuals can experience the same 

transition more than once, the transition rate from state k to state / may depend on 

aspects such as whether state k has been occupied before, the number o f times state k 

has been visited before and the total time previously spent in state k. If the covariates in 

the model do not include information regarding states prior to the current one, then the 

model implicitly assumes that the state changes form a Markov process (Kay 1982). The 

time from study entry to entry to state k could also be included as a covariate (Kay 

1984). When the time origin is taken as date o f entry to study, then the covariates 

containing information on history prior to entering state k will be time-dependent, whilst 

if  the origin is taken as date o f entry to state k, then the history is already determined at 

the origin and the information will be included as fixed covariates.

9.3.3 Form of Underlying Baseline Transition Rate

In modelling the transition rates the underlying baseline transition rate may be 

considered to be arbitrary (Kay 1982). In some circumstances, however, i f  transition 

times follow a particular distribution then it may be more efficient to assume a 

parametric form for the underlying baseline transition rate. The most commonly used 

distributions for survival data are the exponential and Weibull distribution, the 

exponential being just a special form of Weibull distribution (see Section 3.5). These 

distributions have been assumed for the baseline transition rates in multistate models 

(Beck 1979, Lagakos 1976, Young et al 1999), as well as piecewise versions o f them 

(Wu 1982, Perez-Ocon et al 2001b).

If an exponential distribution is assumed for the transition times from state k to state / 

then the underlying baseline transition rate is constant:
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ho[ki](t) ~ [̂M] [9.3]

and the model is thus time-homogeneous, whilst for a Weibull distribution the 

underlying baseline transition rate takes the form:

ho[ki\(t) = \kt] y[U] t [9.4]

and the model is time-nonhomogenous. If an exponential distribution is assumed for the 

transition times then, since the underlying transition rate is not dependent on time, the 

models under the assumption o f a either a Markov or a semi-Markov process will be 

equivalent. This, however, is not the case for other distributions such as Weibull, since 

the baseline transition rate changes over time.

9.3.4 Estimating Parameters

Estimation o f the ^ i \  regression parameters in model [9.2] is achieved using the ideas 

o f partial likelihood as described in Section 7.3 and introduced by Kay (1982). If 

t\ < ti < h <. . .< tr represents the T ordered transition times and transition time tj 

represents the time when the subject with covariate vector xj moves from state k to state 

/, then the likelihood for this event is given by:

exp(/?[W] x j)
v -  ±rJ I '
^  ®XP(^[W ] — s[W])

seR(tj,k)

where R(tj, k) represents the subjects who are in state k at time tj and therefore at risk of 

transition to state /.

The partial likelihood is the likelihood o f the observed events, which is the product of 

the likelihoods for the T events. Since each element that makes up the partial likelihood 

(as specified in [9.5]) only contains the regression parameters for a specific transition, 

the partial likelihood can be factorised into a partial likelihood function for each 

transition. The partial likelihood function for the transition from k to / is given by:
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pLd tu?= n
jeT[kl] 2  exp(y?r'

\ s e R ( t j , k )
[ « ] £ * [ « ]

[9.6]

where T[kf] represents the set of times at which transitions from state k to state / 

occurred.

Thus the partial likelihood for a transition from state k to state / is identical to the partial 

likelihood for the standard Cox regression model, with transitions from k to states other 

than / treated as censored data (Kay 1982). Thus, for each transition in the model, 

estimates of the p  regression coefficients are obtained by maximising the relevant 

partial likelihood. In situations where individuals may experience the same transition 

more than once, the partial likelihood is still valid (Kay 1982) but the likelihood 

function assumes that the events are independent. A time-dependent covariate can be 

included in the model to account for the number of times previously in the state.

Significance testing and confidence intervals for the p  parameters can be based either on 

the asymptotic normality of the distribution of the estimators or on the large sample 

likelihood ratio test for nested models (Kay 1982), where changes in minus twice the 

log likelihood are compared to a chi-square distribution. Akaike’s information criterion 

(AIC) can be used to compare non-nested models (Collett 1994). AIC is calculated as:

AIC = —2 log L + ccq [9.7]

where L is the maximised likelihood, q is the number of unknown p regression 

parameters in the model and a  is a pre-determined constant with a value of 3 being 

equivalent to a 5% significance level. The smaller the value of AIC, the better the 

model.

If a parametric form is assumed for the underlying transition rate then the parameters 

can be estimated by maximising the full likelihood (see Section 7.3). As with the partial 

likelihood, the full likelihood factorises into the terms for each transition. The
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parameters for each transition can therefore be estimated separately by maximising the 

relevant part of the full likelihood with transitions to states other than the one of interest 

being censored for that transition (Andersen et al 1993).

9.4 Modelling Transition Rates in the MIC and ESPAC Studies

9.4.1 Translating the Longitudinal Quality of Life Data into Health State 

Transitions

Three-state illness-death models were used to describe the quality of life and survival 

data in the MIC and ESPAC studies (see Figure 9.1 and Section 9.2.1). In the MIC 

study, quality of life data were only collected during the treatment period of the trial and 

hence the analysis was restricted to the 15-week period from study entry (see Section 

4.5.3) with all patients still alive at 15 weeks censored at this time. The ESPAC study 

collected quality of life from trial entry to death and therefore in theory the model could 

be applied to the whole follow-up period. Quality of life data however become sparser 

over time and were available on only a few patients after 24 months and hence the 

analysis was restricted to 24 months from study entry. All patients with survival follow- 

up longer than 24 months were censored at this time and all quality of life assessments 

after 24 months were excluded from the analysis.

Quality of life was assessed at distinct time points and assumptions were necessary to 

infer values over continuous time in order to estimate the exact transition date from one 

health state to another. Measures of quality of life were assumed to remain constant 

from one assessment to the next. If the value at an assessment reflected a different 

health state to the previous one then the time of the transition to that new health state 

was taken as the time of that assessment. This enabled the exact dates of transition 

between the two alive states to be estimated. Dates of death for patients in both studies 

were known and so exact dates for transitions to death were available. In general, 

sensitivity analysis should be used to assess the impact of the assumptions on the 

conclusions of the analysis. Other options considered included (i) assuming the change 

happened mid-way between assessments and (ii) for continuous measures of quality of
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life assuming a linear change from one assessment to the next and estimating the time of 

transition using linear interpolation.

Another issue was how to deal with missing assessments due to dropout. Patients who 

dropped out of the quality of life study because of death were not a problem since their 

transition to death was included in the model. However, patients who dropped out prior 

to death were a problem, since the health states that they occupied between their last 

assessment and death or end of study time were not known. The easiest option was to 

assume that patients remained in the health state that they occupied at their last 

assessment until their death or end of study time and this is the approach we adopt here. 

This is equivalent to imputing values after dropout using a ‘last value carried forward’ 

approach. Other methods of imputation (see Section 5.5.3) could also be considered. An 

alternative strategy to imputation for patients who dropped out for reasons other than 

death is to censor the transition times at the date of dropout (see Section 5.8 for 

definitions of date of dropout). With the dropout generally informative, this is likely to 

result in informative censoring which would invalidate the models and hence this was 

not considered further. Another alternative strategy is to include dropout as a state in the 

model and this is considered in Section 9.5.

9.4.2 Models Fitted to the Data

In the MIC study, during the 15-week period from study entry, 85 transitions in total 

were experienced using the GQS variable and 102 using the MAL variable (see Table 

9.1). In the ESPAC study, during the 24 months from study entry, 265 transitions in 

total were experienced based on GHSS (see Table 9.2). These are the data used to model 

the four transition rates. For each transition from a state, the number at risk is the 

number of occasions when patients are in that health state and at risk of transition to 

another. For example, in the ESPAC study, there were 163 at risk in the well state, 

which included 121 patients who occupied the state only once, 18 who occupied it on 

two separate occasions and 2 who occupied it three times (see footnotes to Tables 9.1 

and 9.2). The number of transitions from well to ill and from ill to well, include a small 

number of patients who experience that transition more than once (see footnotes to 

Tables 9.1 and Table 9.2).
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Table 9.1 Frequency of transitions in the 3-state model for the MIC data

Transition Number at Risk Number of Transitions
Total CT PAL Total CT PAL

<7(?5-DefIned Health States
Well->I11 78a 53 25 28c 21 7
Ill->Well

A00oo 57 31 29d 22 7
Well-»Dead 78a 53 25 4 0 4

Ill->Dead

a0000 57 31 24 12 12
MAL-Defined Health States

Well->I11 78e 52 26 38g 27 11
Ill-»Well 1051 69 36 36h 27 9

Well-»Dead 78e 52 26 5 2 3
Ill->Dead 1051 69 36 23 10 13

a 66 patients occupying state once and 6 occupying twice 

b 64 patients occupying once and 12 occupying twice (1 occasion had 0 duration) 

0 26 patients with one transition and 1 with two 

d 25 patients with one transition and 2 with two 

e 64 patients occupying once and 7 occupying twice 

f 77 patients occupying once and 14 occupying twice 

8 34 patients with one transition and 2 with two 

h 32 patients with one transition and 2 with two

Table 9.2 Frequency of transitions in the 3-state model for the ESPAC data

Transition Number at Risk Number of Transitions
Total CT NoCT Total CT NoCT

GHSS-Defined Health Stal:es
Well->I11 1631 81 82

*©oo 42 38
Ill->Well 172J 94 78 80* 46 34

Well->Dead 1631 81 82 37 15 22
Ill->Dead 172J 94 78 68 32 36

1121 patients occupying once, 18 twice and 2 three times (1 occasion had 0 duration)

J 110 patients occupying once, 20 twice, 6 three times and 1 four times (3 occasions had

0 duration)

k 57 patients with one transition, 10 with two and 1 with three

1 61 patients with one transition, 8 with two and 1 with three
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For both studies, the transition rates were modelled using Cox regression models as 

specified in [9.2] with only a covariate for treatment included as follows:

hi[ki] (0 = ho[ki] (0 exP (A**] ) [9-8]

where Gz represents the treatment group for patient i with Gz= l representing the 

chemotherapy arm (CT in MIC and ESPAC) and Gz=0 representing the arm with no 

chemotherapy (PAL in MIC and NoCT in ESPAC).

For illustrative purposes a variety of models were fitted, all adaptations of the basic Cox 

regression model according to whether the process was assumed to be Markov or semi- 

Markov and whether a parametric form for the underlying baseline transition rate was 

specified (see Table 9.3).

The transition rates were analysed one at a time. When modelling the transition rate 

from state k to state /, only individuals who occupied state k at some point during the 

analysis period contributed to the model, whilst individuals who passed out of state k at 

some point and then returned back to it later contributed twice to the model. If an 

individual was in state k, then they were ‘at risk’ for the state k  to state / transition. If 

they moved to state m rather than state /, then the time for the k  to / transition was 

censored at the time of passing to state m. If they did not move from state k  before the 

end-of-study time, then the k to / transition time was censored at that time (15 weeks for 

the MIC study and 24 months for the ESPAC study).
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Table 9.3 Models fitted to transition rates in the MIC and ESPAC studies

Model Distribution for 
transition times

Process Model for transition rate from state k 
to state I

1 Arbitrary Markov h[k^(t\ty=ho[ici](t)exp(J3[kf]G)Y[k[](i) 
ho[ki\(t) is baseline transition rate; 
fi[kr) is the regression parameter for 
treatment;
Y[U](t) is the ‘at risk’ process -  if an 
individual is in state k  at time t and 
therefore at risk for transition to state I 
then 7[jt/](0=l, otherwise 7[*/](£)=0; 
t represents time from study 
entry.

2 Arbitrary Semi-Markov h[kt](t\G, tk)=ho[ki\(t-tk)exp(fi[ki]G) 
ho[ki\{t-tk) is the baseline transition rate; 
J3[kr\ is the regression parameter for 
treatment;
tk represents time from study entry to 
entry to state k.

3 Exponential
Time-
homogeneous 
i.e. transition 
rates assumed to 
be constant over 
time

Not-applicable
(Markov 
equivalent to 
semi-Markov)

Z[U] is the constant baseline transition 
rate;
P[u\ is the regression parameter for 
treatment;
t can be either the time from study entry 
or the time from entry to state k.

4 Weibull
Time non- 
homogeneous 
i.e. transition 
rates assumed to 
vary over time

Markov h[w(t\G)=A^ki\y[ki]t*k̂ ~lexp(J}[kr] G ) T [ * / ] ( 0  
and y[ki\ are the scale and shape 

parameters for the Weibull distribution; 
J3[kr\ is the regression parameter for 
treatment;
Y[u\(t) is the ‘at-risk’ process as described 
in Model 1;
t represents time from study 
entry.

5 Weibull
Time non- 
homogeneous 
i.e. transition 
rates assumed to 
vary over time

Semi-Markov h[id)(t\G, tk)= îki]/[k[](t-tk)^k[]Aexp($*/] G) 
A[ia] and j\ki] are the scale and shape 
parameters for the Weibull distribution; 
/?[*/] is the regression parameter for 
treatment;
tk represents time from study entry to 
state k.
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The PHREG procedure in SAS (SAS Institute Inc. 1992) was used to fit the Cox 

regression models with arbitrary baseline transition rate and the LIFEREG procedure 

(SAS Institute Inc 1989) was used for models with exponential and Weibull baseline 

transition rates. The LIFEREG procedure models the transition rates as accelerated 

failure time models but if transition times are assumed to follow an exponential or 

Weibull distribution then there is a direct correspondence between the parameters under 

an accelerated failure time model and those under a Cox regression model (see Sections

7.2.4 and 7.2.5). The results here are reported as parameters from a Cox regression 

model.

The PHREG procedure was able to fit Markov and semi-Markov models but the 

LIFEREG procedure was only able to fit semi-Markov models as it does not allow 

subjects to move in and out of the risk set. STATA software (StatCorp 2002) was 

therefore used to fit Weibull models under the Markov assumption. The set-up of the 

data for analysis was different depending on whether the model being fitted was 

Markov or semi-Markov. In all cases the data for the transition from state k to state / 

consisted of one line per patient per visit to state k. Each line also consisted of an 

indicator variable that was 1 for an exit to state /, representing an actual event, and 0 for 

either an exit to state m or an exit time censored at end-of-study time or last survival 

follow-up. For the Markov model, each line consisted of the time of entry to and exit 

from state k in relation to trial time, which determined the periods of time in their 

follow-up that they were in the risk set for the transition. For the semi-Markov model, 

each line consisted of the duration of time spent in state k  on that visit. The data set up 

for the time-homogeneous model (Model 3) was the same as that for a semi-Markov 

model.

9.4.3 Results for Treatment Comparison

The models with arbitrary baseline transition rates (Models 1 and 2) give estimates only 

for the treatment regression parameter, whilst the parametric models (Models 3, 4 and 

5) also give estimates for the parameters of the underlying distributions for the 

transition times. The effect of treatment on each transition rate is the main interest and 

thus the estimates of the treatment regression parameter from each model are given here 

(see Tables 9.4 and 9.5). Regression parameters represent the log hazard ratio and
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negative values indicate that the hazard of transition for the chemotherapy arm is less 

than that for the non-chemotherapy arm. Parameter estimates for the exponential and 

Weibull distributions have not been given but a comparison of models is discussed in 

the text.

Table 9.4: Treatment regression parameters (with standard errors) in the 3-state 
model for the MIC study

Model 1:
Arbitrary
Markov

Model 2:
Arbitrary

Semi-Markov

Model 3:
Exponential 

Markov / 
Semi-Markov

Model 4:
Weibull
Markov

Model 5:
Weibull

Semi-Markov

(j&S-Defined Health States
Well
-►111

0.41 (0.44) 0.40 (0.44) 0.42 (0.44) 0.41 (0.44) 0.43 (0.44)

111
-►Well

0.73 (0.43)+ 0.72 (0.43)+ 0.72 (0.43)+ 0.71 (0.43)+ 0.75 (0.43)+

Well
-►Dead

- - - - -

111
-►Dead

-0.45 (0.41) -0.39 (0.41) -0.43 (0.41) _0.44 (0.41) -0.38 (0.41)

AL4L-Defined Health States
Well
-►111

0.43 (0.36) 0.51 (0.36) 0.45 (0.36) 0.42 (0.36) 0.51 (0.36)

111
-►Well

0.49 (0.39) 0.43 (0.39) 0.48 (0.38) 0.47 (0.39) 0.50 (0.39)

Well
-►Dead

-0.76 (0.92) -0.79 (0.91) -0.86 (0.91) -0.88 (0.91) -0.79 (0.91)

111
-»Dead

-0.94 (0.42)" -0.87 (0.42)" -0.89 (0.42)" -0.93 (0.42)" -0.83 (0.42)+

+ statistically significant at the 10% level 
* statistically significant at the 5% level

In the MIC study, although the numbers of subjects is relatively small there were 

adequate subjects and events to model all transitions except for the well to dead 

transition defined by GQS, but the small study size is reflected in the relatively large 

standard errors. The treatment parameter estimates for the five models are comparable 

for both the GQS and MAL models. The results suggest that, compared to PAL, CT 

increases the hazard of transition between the two different quality of life states but 

decreases the hazard of transition to death from both the well and ill states. The increase 

in the relative hazard of transition from ill to well is greater for the GQS model than the 

MAL model with regression parameters statistically significant at the 10% level. There
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is a greater reduction in relative hazard of death from the ill state for the MAL model 

compared to the GQS model, with regression parameters statistically significant at the 

5% level.

The Markov models give very similar results in general to the semi-Markov models and 

comparison of AIC for the two different forms with arbitrary baseline suggest Markov 

generally fit better than semi-Markov. This implies that taking account of duration of 

time in a state in this study has relatively little impact on the effect of treatment on 

transition rates out of the state. Also the models with parametric baseline hazards gave 

very similar results to those with an arbitrary baseline hazard indicating that assuming 

such underlying distributions for the transition times between states does not greatly 

influence the treatment effect on the transition rates. Examining changes in minus twice 

log likelihood suggest that the exponential is a satisfactory model for all transitions 

except ill to dead for which the underlying transition rate may not be homogeneous over 

time.

Table 9.5: Treatment regression parameters (with standard errors) in the 3-state 
model for the ESPAC study

Model 1:
Arbitrary
Markov

Model 2:
Arbitrary

Semi-Markov

Model 3:
Exponential 

Markov / 
Semi-Markov

Model 4:
Weibull
Markov

Model 5:
Weibull

Semi-Markov

Well
-*111

0.05 (0.22) 0.11 (0.22) 0.08 (0.22) 0.03 (0.22) 0.06 (0.22)

111
-»Well

0.10(0.23) -0.01 (0.23) -0.02 (0.23) -0.05 (0.23) -0.07 (0.23)

Well
-*Dead

-0.47 (0.34) -0.45 (0.34) -0.41 (0.33) -0.50 (0.34) -0.46 (0.34)

111
-*Dead

-0.48 (0.25)+ -0.43 (0.24)+ -0.44 (0.24)+ -0.59 (0.24)’ -0.47 (0.24)+

+ statistically significant at the 10% level 
* statistically significant at the 5% level

In the ESPAC study, the results from all five models were reasonably comparable and 

all gave similar inferences. The results show that chemotherapy appears to have very 

little effect on the relative hazard of transition between quality of life health states 

defined by GHSS but does reduce the relative hazard of transition to death from both 

quality of life states but particularly the ill state for which the regression parameters are
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statistically significant at the 10% level. This treatment effect was greatest in the 

Weibull Markov model. The arbitrary Markov model suggested an opposite treatment 

effect to the other models for the ill to well transition but this is probably due to random 

fluctuation around a zero effect. Comparison of AIC for the arbitrary Markov and semi- 

Markov models suggest that for all transitions the Markov is a better fit for the data than 

the semi-Markov. This implies that the duration of time spent in a health state does not 

have an effect on the relative hazard of transition. Comparison of exponential and 

Weibull using change in minus twice log likelihood suggests that the Weibull is a better 

fit for the data than the exponential and thus the hazard of transition is non- 

homogeneous over time.

9.5 Extending Models to Include Dropout State

Patients who drop out of the longitudinal quality of life study due to death i.e. who die 

prior to the next scheduled assessment are assumed to move from the health state they 

occupied at the last assessment to the dead state at the time of death. In general, this will 

be a reasonable assumption to make. Patients who drop out prior to death need to be 

dealt with adequately in any analysis. In the previous section we have used a last value 

carried forward approach to impute the time between the last assessment and death or 

end-of-study time or last survival follow-up. This may be a reasonable assumption when 

the time gap is small, but for those who drop out early this may lead to unrealistic 

estimation of transition times.

An alternative, and perhaps more appropriate, option might be to consider dropout as a 

type of health state and include this as an extra transient alive state in the multistate 

model. Patients will only move to death from this state. If dropout is believed to be due 

to illness then this could be regarded as a state worse than the ill state i.e. their ill state 

was so bad as to cease participation in the quality of life study. If dropout is believed to 

be due to different reasons then it may be preferable to include a number of different 

dropout states. This is especially important if some patients drop out for reasons of poor 

health and others drop out for reasons of good health. By including a dropout state, 

patients are effectively being taken out of the risk sets for the transitions in the three- 

state model at the point when they drop out of the quality of life study. In the MIC and
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ESPAC studies, it is assumed that all patients dropout due to poor health (see section

5.8.1 and 5.8.2) and therefore one dropout state was added to illness-death model, as 

shown in Figure 9.2.

Figure 9.2 Illness-death model with dropout state

Dropout

Dead

Alive and 111Alive and Well

In the MIC study patients were defined as dropouts if they did not return their final
t l i  tlischeduled assessment (5 assessment for CT arm and 4 assessment for PAL) and in 

the ESPAC study they were defined as dropouts if their last assessment was more than 3 

months prior to their last survival follow-up, whether that be dead or alive (see Section 

5.8 for more details on dropouts). Patients who drop out were assumed to move to the 

dropout state at the time when the next planned assessment was due i.e. 3 weeks after 

the last recorded assessment in the MIC study and 3 months after the last recorded 

assessment in the ESPAC study, provided this was within their survival follow-up and 

within the analysis period (i.e. within 15 weeks for MIC and 24 months for ESPAC). 

Note that in the MIC study, patients who completed all scheduled assessments remain at 

risk of transition to dropout for all follow-up time after their last assessment despite the 

fact that the definition of dropout in this study precludes them from entering this state. 

An alternative option that may address this problem is to censor the transition to dropout 

three weeks after the last assessment, if the patient is still on follow-up at this time.

The amount of data contributing to the model for each transition rate is shown in Tables 

9.6 and 9.7. With the increased complexity of the model, the amount of data for each 

transition is reduced. As with the three-state model, there are not sufficient data in the 

MIC study to adequately model the well to dead transition when these states are defined 

by GQS.
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Table 9.6 Frequency of transitions in the dropout model for the MIC data

Transition Number at Risk Number of Transitions
Total CT PAL Total CT PAL

(/giS-Defined Health States
Well-rtll 78 53 25 28 21 7
Ill->Well 88 57 31 29 22 7
Well-»Dropout 78 53 25 14 8 6
Ill->Dropout 88 57 31 21 13 8
Well->Dead 78 53 25 1 0 1
Ill->Dead 88 57 31 12 6 6
Dropout->Dead 35 21 14 15 6 9
M4£-Defined Health States
Well-»I11 78 52 26 38 27 11
Ill-*WelI 105 69 36 36 27 9
Well-»Dropout 78 52 26 8 5 3
Ill->Dropout 105 69 36 27 16 11
Well-»Dead 78 52 26 2 1 1
Ill->Dead 105 69 36 11 5 6
Dropout->Dead 35 21 14 15 6 9

Table 9.7 Frequency of transitions in the dropout model for the ESPAC data

Transition Number at Risk Number of Transitions
Total CT PAL Total CT PAL

GflSS-Defined Health States
Well-»I11 163 81 82 80 42 38
111^Well 172 94 78 80 46 34
Well—̂ Dropout 163 81 82 40 18 22
Ill->Dropout 172 94 78 34 21 13
Well->Dead 163 81 82 13 5 8
Ill-»Dead 172 94 78 43 18 25
Dropout—>Dead 74 39 35 49 24 25

The 7 different transition rates can be modelled as before using Cox regression models. 

Models with arbitrary, exponential and Weibull baseline hazards under both a Markov 

and semi-Markov assumption were estimated for each transition and the results for the 

treatment regression parameter are shown in Tables 9.8 and 9.9. As before, regression 

parameters represent the log hazard ratios and negative values indicate that the hazard 

of transition for the chemotherapy arm is less than that for the non-chemotherapy arm.

231



CHAPTER 9: MULTISTATE MODELS FOR QUALITY OF LIFE AND SURVIVAL DATA

Table 9.8: Treatment regression parameters (with standard errors) in the dropout 
model for the MIC study

Model 1:
Arbitrary
Markov

Model 2:
Arbitrary

Semi-Markov

Model 3:
Exponential

Model 4:
Weibull
Markov

Model 5:
Weibull

Semi-Markov
GOS-Defined Health States
Well
-►111

0.34 (0.44) 0.35 (0.44) 0.36 (0.44) 0.33 (0.44) 0.35 (0.44)

111
-►Well

0.78 (0.44)+ 0.81 (0.43)+ 0.78 (0.43)+ 0.80 (0.43)+ 0.85 (0.43)+

Well
-►Dead

- - - - -

111
-►Dead

-0.31 (0.58) -0.33 (0.58) -0.36 (0.58) -0.33 (0.58) -0.32 (0.58)

Well
-►Dropout

-0.44 (0.54) -0.43 (0.54) -0.45 (0.54) -0.53 (0.54) -0.48 (0.54)

111
-►Dropout

0.19 (0.45) 0.20 (0.45) 0.12(0.45) 0.15 (0.45) 0.21 (0.45)

Dropout
-►Dead

-0.63 (0.57) -0.72 (0.54) -0.93 (0.53) -0.75 (0.53) -0.92 (0.53)

M4L-Defined Health States
Well
-►111

0.43 (0.36) 0.52 (0.36) 0.45 (0.36) 0.44 (0.36) 0.53 (0.36)

111
-►Well

0.45 (0.39) 0.44 (0.39) 0.45 (0.38) 0.44 (0.39) 0.33 (1.42)

Well
-►Dead

-0.32 (1.42) -0.38(1.41) -0.44(1.41) -0.47 (1.41) -0.48 (0.39)

111
-►Dead

-0.87 (0.61) -0.83 (0.61) -0.83 (0.61) -0.87 (0.61) -0.79 (0.61)

Well
-►Dropout

0.14(0.73) 0.09 (0.73) 0.07 (0.73) 0.04 (0.73) 0.14(0.73)

111
-►Dropout

-0.29 (0.39) -0.27 (0.39) -0.27 (0.39) -0.32 (0.39) -0.24 (0.39)

Dropout
-►Dead

-0.63 (0.57) -0.72 (0.54) -0.93 (0.53) -0.75 (0.53) -0.92 (0.53)

+ statistically significant at the 10% level 
* statistically significant at the 5% level

In the MIC study, as with the three-state model, the results for the five different models 

are comparable. The addition of the dropout state has not greatly changed the 

conclusions from the previous 3-state model, with chemotherapy still increasing the 

relative hazard of transition between well and ill states but reducing the relative hazard 

of transition to death. The hazard of death from dropout is reduced with chemotherapy. 

In the G(2S-defined dropout model, chemotherapy can now be seen to reduce the
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relative hazard of transition to dropout from the well state but increase it from the ill 

state. Treatment has the opposite effect on these transitions in the AL4Z-defined dropout 

model, indicating that the conclusions are not robust to the definition of the health 

states.

As with the 3-state model, comparison of AIC for the Markov and semi-Markov models 

under an arbitrary baseline indicates that the Markov model fits the data better, which 

suggests that in this dropout model, duration of time in a state does not affect the 

relative hazard of transition to other states. Examination of changes in minus twice log 

likelihood between exponential and Weibull models suggested that Weibull was a better 

fit for the GOS-defined well to dropout and ill to dropout transitions and for the MAL- 

defined well to ill, ill to well and ill to dropout transitions. For all transitions to death the 

exponential was an appropriate model suggesting that the underlying hazard of 

transition to death from any state is constant over time.

Table 9.9: Treatment regression parameters (with standard errors) in the dropout 
model for the ESPAC study

Model 1:
Arbitrary
Markov

Model 2:
Arbitrary

Semi-
Markov

Model 3:
Exponential 

Markov / 
Semi-Markov

Model 4:
Weibull
Markov

Model 5:
Weibull

Semi-Markov

Well
-►111

-0.02 (0.23) 0.05 (0.23) 0.04 (0.22) -0.05 (0.23) 0.00 (0.22)

111
-►Well

0.13 (0.23) 0.06 (0.23) 0.03 (0.23) -0.00 (0.23) 0.01 (0.23)

Well
-►Dead

-0.58 (0.57) -0.54 (0.57) -0.53 (0.57) -0.63 (0.57) -0.57 (0.57)

111
-►Dead

-0.58 (0.31)+ -0.58 (0.3I f -0.60 (0.3i f -0.72 (0.3 I f -0.60 (0.31)

Well
-►Dropout

-0.35 (0.32) -0.27 (0.32) -0.26 (0.32) -0.38 (0.32) -0.32 (0.32)

111
-►Dropout

0.07 (0.36) 0.17(0.35) 0.21 (0.35) 0.07 (0.36) 0.18(0.35)

Dropout
-►Dead

-0.19 (0.29) -0.26 (0.29) -0.17 (0.29) -0.17 (0.29) -0.17(0.29)

+ statistically significant at the 10% level 
* statistically significant at the 5% level
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In the ESPAC study, as with the three-state model, the results from all five models are 

reasonably comparable and as before the results imply that chemotherapy has very little 

effect on the hazard of transition between well and ill states but reduces the relative 

hazard to death from both of these states, significantly so from the ill state. The 

inclusion of a dropout state in the model has therefore not affected the conclusions here 

regarding the effect of treatment on these transitions. The estimates suggest that 

chemotherapy reduces the relative hazard of transition to dropout from a well state but 

possibly increases it from an ill state. The relative hazard of transition to death from 

dropout is reduced with chemotherapy,

Comparison of AIC for the arbitrary Markov and semi-Markov models suggested that, 

as in the three-state model, for all transitions the Markov model is a better fit for the 

data than the semi-Markov. This implies that the duration of time spent in a health state 

does not have an effect on the relative hazard of transition. Comparison of exponential 

and Weibull using change in minus twice log likelihood suggested that the Weibull is a 

better fit for the data than the exponential for the transitions between alive states but 

exponential is better for the transitions to death. This implies that, after adjusting for 

dropout, the hazard of transition to death is constant whilst the hazard of transition from 

one alive state to another is non-homogeneous over time.

9.6 Discussion and Critical Review of Multistate Modelling

Although multistate modelling has been recognised as a potential approach for the 

simultaneous analysis of quality of life and survival data (Fayers and Jones 1983, 

Olschewski and Schumacher 1990, Schumacher et al 1991, Cox et al 1992, Abrams 

1992a, Olschewski et al 1992), applications have been very limited (Olschweski 1984, 

Abrams 1992b, Charlesworth and Skene 1997). This thesis develops the method of 

multistate modelling for quality of life and survival data, applying the methodology to 

two different datasets and thus allowing the application of such models in this field to 

be investigated. In addition, the methodology is extended to deal with informative 

dropout by including a dropout state in the model. This approach for dealing with 

informative dropout in a longitudinal study has not previously been considered.
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Multistate modelling provides a flexible approach for the simultaneous analysis of 

quality of life and survival data. One of the major advantages of multistate modelling is 

that no distributional assumptions regarding the quality of life outcome are needed and 

the method can be applied to any type of quality of life outcome whether continuous, 

ordinal or binary. The models considered here define health states in terms of a single 

quality of life outcome. In practice there may be more than one quality of life outcome 

of interest. The definition of health states can be based on responses to more than one 

measure thus providing a simple option for accommodating multiple quality of life 

outcomes into the analysis. Multivariate models for the transition rates could be 

considered as a means for dealing with multiple outcomes and this has been attempted 

for a model with health states based on two clinical outcomes using a bivariate 

exponential model (Young et al 1999).

Defining health states for a multistate model however is not necessarily straightforward. 

The definitions based on quality of life data are subjective and different definitions need 

to be considered as part of a sensitivity analysis. The investigator has to make decisions 

on the quality of life variable to be used, the number of health states to be included and 

the cut-off values used to discriminate between health states. At one extreme, the model 

needs to be complex enough to be clinically meaningful and to ensure information from 

the data is utilised to a maximum. At the other extreme a simple model is needed to 

allow an adequate number of transitions between health states, enabling transition rates 

to be estimated with sufficient precision and also to ease the interpretation of the 

analysis.

Definition of the health states may be such that clinically important information is lost. 

The most clinically important transition may not be able to be included in the model 

because of the small number of participants in the study experiencing it. For example, in 

the MIC study the moderately ill (MAL=2) to severely ill (MAL=3) transition could not 

be modelled because of a lack of numbers but this could be a very important transition 

from a clinical viewpoint. Also the transition between health states may be as a result of 

very small changes in quality of life whilst large changes in quality of life are not 

reflected in the model. For example, in the MIC study when a GQS value of 83 is used 

to discriminate between the well and ill states, then a small change in quality of life 

from 82 to 84 would result in a transition whilst a large change from say 30 to 80 would
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not be reflected in the model. This could be addressed by defining health states in terms 

percentage reduction in quality of life score. In addition, the measurement error in the 

quality of life outcome is not accounted for when determining transitions between 

states. Smoothing techniques and random effects models have been considered for the 

longitudinal data that determines the transitions (Sypsa et al 2001) and ‘adhoc 

smoothing’ which required subjects to be in a new state for two consecutive 

measurements for a proper transition was found to be the best approach.

The data requirements for the approaches to multistate modelling described in this 

chapter are strict, with not only dates of entry, death and censoring needed, but also 

‘exact’ dates of transition between health states. In prospective studies of quality of life 

and survival, although the exact time of transition to death will generally be known, it is 

not possible to observe the actual transitions of patients from one quality-of-life health 

state to another, all that is known for a patient is the health state occupied at each 

scheduled assessment time. Thus, if the health state of a patient changes from one 

assessment to the next then the actual time of transition is not known, just that it 

occurred somewhere between the two assessments. The transition times in such a 

situation are interval-censored (Collett 1994). The approach that has been used in this 

thesis is to estimate the exact transition times from the data. The most widely used 

approximations to exact transition dates are the actual follow-up dates, as used here, or 

the mid-point between follow-up dates. The accuracy of estimation is determined by the 

frequency of the quality of life assessments. If the assessments are widely spaced then 

these estimates may not be very accurate and it has been shown that estimates of 

transition rates obtained from approximated data will not always be correct (Andersen et 

al 1991). Thus, when quality of life assessment times are limited and widely spaced, 

alternative approaches to modelling transition rates that do not require exact transition 

times may be more appropriate (Kay 1986, Hillis 1986, Longini et al 1989, Andersen 

1991, Gentleman et al 1994, Lu and Stitt 1994, Marshall and Jones 1995, Gottschau and 

Hogh 1995) but these methods are not readily accessible to researchers since specialised 

software is required.

Multistate modelling requires a relatively large amount of data to ensure that transitions 

rates have sufficient patients for adequate modelling and to ensure that there is 

sufficient power to detect real differences between treatments in terms of the transition
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rates between states. The amount of data in the MIC study was not really sufficient for 

multistate modelling and some transitions may not be adequately modelled. The results 

were not robust to the choice of quality of life variable chosen to define the health states 

and this may have been a result of small study size. With the increase in importance of 

quality of life in clinical trials, the collection of data will be given greater priority and 

the problem of lack of data should be less of an issue (Abrams 1992a). Further, if 

multistate models are proposed at the design stage of a clinical trial, then the collection 

of data can be planned so it yields adequate and appropriate data.

The models illustrated in this chapter have been in the form of a Cox regression model 

but other forms such as accelerated failure time models could be considered (Cole et al

1994). Parametric and semi-parametric models have been illustrated under both Markov 

and semi-Markov assumptions. In general, the conclusions in these studies have been 

reasonably robust to these choices. The models have only included treatment as a 

covariate but with sufficient data additional covariates could easily be included with, if 

appropriate, different covariates included for different transitions. The usual methods 

for model fitting can be applied with changes in minus twice the log likelihood used to 

assess the statistical significance of different covariates within each transition. Repeat 

transitions have been treated as independent events in the analysis here but this may not 

always be deemed appropriate and if the number is not inconsiderable then the violation 

of the assumption may invalidate the results. Covariates could be included in the model 

to account for the non-independence of repeat events by, for example including a time- 

dependent covariate to represent the number of times a patient has previously visited the 

current health state (Kay 1982).

The analysis here was restricted to fixed time periods. In the case of the MIC study this 

was because the data collection was restricted to a fixed time period. In the case of the 

ESPAC study the analysis was restricted because of sparse data but theoretically if the 

quality of life study collects data over the full follow-up period then the models could 

be unrestricted in terms of the period of analysis.

The inclusion of a dropout state in the model removes the need to impute values of 

quality of life from the last assessment to death, censor date or fixed end-of-study time. 

This is particularly relevant when the length of period for imputation is long. By
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including a dropout state in the model, subjects are removed from the risk sets for 

transitions to other health states at the time of dropout. This may provide more valid 

estimates of the transition rates between the quality of life states and death. In the 

illustrative studies presented here, the inclusion of a dropout state in the model did not 

greatly affect the conclusions regarding the relative hazards of transition between well, 

ill and dead states for the two treatment groups but it allowed the dropout process to be 

investigated. In the ESPAC study the results suggested that if a patient is in a well state 

then chemotherapy is better at keeping them there. The method does not make any 

assumption about what type of health the patients have in the dropout state, just that all 

patients in the dropout state have the same level of health. If patients are dropping out 

for different reasons, some related to poor health and others for administrative reasons 

for example, then different dropout states can be included for different reasons.

Methods discussed in this chapter have been based on a classical approach and, 

although there has been some work on Bayesian approaches to multistate modelling 

(Abrams 1992b, Charlesworth and Skene 1997), further development in this field would 

be beneficial. Although complex models such as multivariate multistate models can be 

fit using a classical approach, a Bayesian analysis may provide a more flexible 

framework. A specific example of a complex model involving multistate modelling that 

has been proposed using a classical approach but may be better implemented in a 

Bayesian framework is the parametric method for quality-adjusted survival analysis 

proposed by Cole et al (1994). The method uses the results from a parametric multistate 

model and simulation to estimate the time spent in different health states for 

incorporation into a QALY-type model. Parameter estimation in such a complex model 

may be more easily achieved in a Bayesian analysis.

Multistate models with clinically-defined health states have been advocated as being 

preferable to an overall survival model since a greater biological insight may be gained 

by analysing the steps in a disease/treatment process (Andersen 1988). Similarly 

multistate models with quality-of-life-defined health states provide insight into the 

quality of life process with the ability to investigate the effects of different covariates on 

different transitions. The inclusion of a death state in the model overcomes the problem 

of dropout due to death in the analysis of quality of life data and the further inclusion of 

a dropout state overcomes the problem of dropout prior to death. The inclusion of the

238



CHAPTER 9: MULTISTATE MODELS FOR QUALITY OF LIFE AND SURVIVAL DATA

dropout state enables the dropout process to be explored and more than one dropout 

state can be included if appropriate. Given sufficient data, multistate modelling, despite 

being previously neglected, would appear to provide a practical and clinically intuitive 

option for the simultaneous analysis of quality of life and survival data.
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CHAPTER 10: JOINT MODELLING OF QUALITY OF LIFE AND 
SURVIVAL DATA

10.1 Introduction

The aim of this chapter is to describe the types of model that have been considered for 

the joint modelling of repeated measures and time-to-event data, highlighting those that 

have been applied to quality of life and survival or dropout data, and to develop a 

Bayesian approach to joint modelling for application to such data. Although the classical 

approach to joint modelling has been emerging as a useful method for the analysis of 

quality of life and survival or dropout data, the application of the Bayesian approach for 

this type of data has until recently not previously been undertaken and this is therefore 

the focus for this chapter.

There is an increasing literature on the joint modelling of repeated measures and time- 

to-event data. The majority of examples have used classical approaches (Wu and Bailey 

1988 and 1989, Wu and Carroll 1988, Diggle and Kenward 1994, Little 1995, 

Schluchter 1992, Pawitan and Self 1993, Wulfsohn and Tsiatis 1997, Hogan and Laird 

1997a and b, Henderson et al 2000) and there are a number of recent examples of the 

application of such methods to longitudinal quality of life data (Fairclough et al 1998a, 

Ribaudo et al 2000, Curran et al 2002, Michiels et al 2002, Fairclough 2002, Pauler et al 

2003). The Bayesian approach to joint modelling has been described by a number of 

authors (Berzuini 1995, Faucett and Thomas 1996, Carpenter et al 2000, Xu and Zeger 

2001, Wang and Taylor 2001) but there is only one recent example of the application of 

such an approach in the field of quality of life (Wang et al 2002).

In some studies, the aim of joint modelling may be to deal with the problem of non- 

ignorable missing data in the analysis of repeated measures over time. By jointly 

modelling the event that causes dropout from the longitudinal study with the repeated 

measures data, the estimation of parameters in the repeated measures model are 

‘adjusted’ to allow for the informative dropout. In other studies the aim may be to 

provide more valid estimates of the relationship between the repeated measures and the
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time to an event by modelling the repeated measures covariate that is included in the 

time-to-event model. In some situations, both questions will be of interest.

The change in quality of life over time and the time to death can be considered as two 

simultaneous processes occurring in patients, and can be modelled as such. Models for 

analysing quality of life data and survival data as two separate processes were discussed 

in Chapters 6 and 7 respectively and these are developed within a joint model here. Joint 

modelling of quality of life and survival data will account for the dropout due to death in 

the model for changing quality of life over time and will provide a more appropriate 

estimate of the relationship between the two processes. By jointly modelling quality of 

life and time to dropout or death, the model can also account for other reasons for 

dropout as well as death and can provide some insight into the dropout process.

The classical approaches to joint modelling are reviewed in Section 10.2 with particular 

reference to applications to quality of life data. The Bayesian approach is described in 

Section 10.3 and its specific application to the quality of life and survival data in the 

MIC and ESP AC studies are described in Section 10.4. Modelling quality of life and 

survival data only deals with the problem of missing data that results from death and the 

problem of informative dropout prior to death is discussed in Section 10.5 and dealt 

with by modelling time to dropout or death rather than time to death. A critical review 

of the methodology is given in Section 10.6, in which the limitations and issues for 

further research are discussed.

10.2 Classical Approaches to Joint Modelling

10.2.1 General Review

In the classical approach to joint modelling, the joint density can be factorised in two 

ways. The two different forms of factorisation give rise to two different types of models 

usually referred to as mixture models and selection models. There is an extensive 

literature discussing these types of models for longitudinal data in the presence of 

informative dropout (Little 1995, Hogan and Laird 1997a and 1997b, Kenward and 

Molenberghs 1999). If Y represents the longitudinal data, D represents the dropout
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process that gives rise to the missing data, X  represent covariates of interest such as 

treatment, 6 and (j) represent the unknown parameters relating X  with Y and D 

respectively, then the joint density/ (  Y, D \ X, 0 , $) can be factorised either as

/ (  Y,D\X,  0, f  ) = / (  Y \D ,X ,  0 ) f ( D  \X,  0) [10.1]

or as

/ (  Y ,D \X 9 9 , </> ) = f ( D \  Y,X, f  ) / (  Y\ X90 )  [10.2]

The first factorisation in [10.1] is the form of a mixture model and the second 

factorisation in [10.2] is the form of a selection model. In the mixture model, the model 

for the longitudinal data is conditional on the dropout process whilst in the selection 

model, the model for the dropout process is conditional on the longitudinal data. In both 

cases the majority of the literature focus on the repeated measures being a normally 

distributed outcome. As such, the most commonly used model for the repeated measures 

over time is a random effects model (Laird and Ware 1982), usually in a linear form. 

The dropout process can be expressed in a number of different ways. If dropout 

specifically due to death is of interest then death rather than dropout will be the event of 

interest. In either case the occurrence of the event or the time to the event may be 

modelled.

Early literature on dealing with the problem of informative dropout in the analysis of 

repeated measures uses a form of mixture model (Wu and Bailey 1988, 1989). A 

conditional linear random effects model is assumed for the repeated measures over time 

such that the individual slopes are linear functions of the total follow-up time. Two 

methods for estimating the population slope based on a weighted least squares approach 

were suggested: the linear minimum variance unbiased estimator and the linear 

minimum mean squared errors estimator. This methodology was developed further 

using empirical Bayes inference to enable not only the population slope parameter to be 

estimated but also individual slope parameters (Mori et al 1992). Further extensions of 

the approach included the individual intercepts and slopes in a linear random effects 

model being functions of the time to a censoring event, with time-to-event modelled as a 

Weibull distribution (Pawitan and Self 1993).
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The problem with the conditional linear model approach is that at least two 

measurements per subject are needed and the method assumes that the potential follow- 

up time is the same for all subjects and thus methods were developed to overcome this 

(Schluchter 1992). Schluchter’s model assumes a linear random effects model for the 

repeated measures over time and assumes that the individual intercept, slope and a 

transformation of the dropout time, generally a log transformation, follow a trivariate 

normal distribution. Maximum likelihood estimates of the model parameters are 

obtained using the EM algorithm, which enables censored dropout times to be 

accommodated. Applications of the method have been demonstrated (Schluchter et al 

2001, Schluchter et al 2002) but the approach is computationally complex, may require 

large amounts of data and is based on an entirely parametric model.

The properties of a multivariate normal distribution mean that Schluchter’s model can 

be considered as both a mixture model and a selection model. On the one hand, the 

conditional expected values of the parameters from the random effects model given the 

transformed dropout times can be expressed as a linear function of the transformed 

dropout times, whilst on the other the mean of the transformed dropout times can be 

expressed as linear function of the random intercept and slope (Schluchter et al 2001). In 

this way both the question of examining the change in the repeated measure over time 

whilst accounting for informative dropout and the question of examining the 

relationship between the repeated measure and the risk of dropout can be addressed 

simultaneously. In that sense the approach by Schluchter is similar to the Bayesian 

approach described and developed in Section 10.3.

A more general form of the model has been described (De Gruttola and Tu 1994) and 

the model has also been adapted to use residuals from an accelerated failure time model 

for the survival times rather then the log survival times themselves in the trivariate 

normal model (Touloumi et al 1999). In this adaptation of the model, the method of 

restricted iterative generalised least squares is used to estimate parameters within the 

maximisation step of the EM algorithm. A mixture model that does not assume any 

parametric form for the event-time distribution has also been described (Hogan and 

Laird 1997a). Further details on pattem-mixture models are discussed in Section 10.2.2 

in relation to their application to quality of life data.
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Selection models have also been proposed as a method for modelling repeated measures 

over time with missing data caused by informative dropout. In these joint models the 

model for the dropout process, however defined, is conditional on the change over time 

in the repeated measures. In one of the earliest applications, a probit model is assumed 

for the probability of dropout with the probability conditional on the individual intercept 

and slope from the linear random effects model for the repeated measures over time 

(Wu and Carroll 1988). A more general approach to the problem of informative dropout 

using selection models proposed a linear logistic regression model for the probability of 

dropout conditional on the observed measures of the repeated outcome prior to the 

dropout time and the value of the repeated outcome that would have been observed at 

the dropout time had the subject not dropped out (Diggle and Kenward 1994). A 

simplex algorithm was used to maximise the log-likelihood but the EM algorithm may 

also be applicable. This model has been criticised for its sensitivity to the model 

assumptions, which are difficult to assess (Kenward 1998).

Rather than modelling the probability of dropout, the time to dropout can be modelled in 

a selection model. Wulfsohn and Tsiatis (1997) use a linear random effects model for 

the longitudinal data and a Cox regression model for survival data and include the 

modelled value of the longitudinal variable as a time-dependent covariate in the survival 

model. The EM algorithm is used to estimate the parameters. The selection model 

proposed by Henderson et al (2000) is given in a generic form such that it incorporates 

many of the specific models proposed by other researchers and specifies that the joint 

distribution of repeated measurements and time to dropout in each subject is modelled 

via a ‘latent zero-mean bivariate Gaussian process’ defined as follows. The model for 

repeated measures for subject i contains a latent variable Wu{t) and the model for the 

time to dropout contains a latent variable t) such that there is a link between these 

latent variables. For example setting Wait) = Uu+Ux t where Uu and Ux are subject- 

specific intercept and slope in a linear random effects models and W2i{t)=yW\l{t) gives a 

model used by a number of other researchers (Faucett and Thomas 1996, Wulfsohn and 

Tsiatis 1997). This general model formulation by Henderson et al (2000) and more 

specifically that proposed by Wulfsohn and Tsiatis (1997) most closely resembles the 

models developed and discussed in the Bayesian approach in Section 10.3.
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10.2.2 Application to Quality of Life Studies

The joint modelling of quality of life and dropout from a classical point of view has 

been emerging as a means of overcoming the problems of missing quality of life data 

resulting from informative dropout (Fairclough et al 1998a, Ribaudo et al 2000, Curran 

et al 2002, Michiels et al 2002, Fairclough 2002, Pauler et al 2003). The two key types 

of joint model that have been applied to longitudinal quality of life data are the selection 

model and the pattem-mixture model.

Various forms of mixed model have been used for the quality of life data. In a pattem- 

mixture model, this model for quality of life over time is conditional on the dropout 

pattern whereas the selection model is interested in the marginal density for quality of 

life. Models for dropout have either been in terms of probability of dropout (Curran et al 

2002, Michiels et al 2002, Pauler et al 2003) or the time of dropout (Fairclough et al 

1998a, Ribaudo et al 2000)

Ribaudo et al (2000) simultaneously analyses the quality of life and survival data using 

the model originally proposed by Schluchter (1992) in which the intercept and slope 

from a linear random effects model of quality of life over time together with the log 

survival time are assumed to follow a trivariate normal distribution. Estimation of the 

parameters of this joint distribution is problematic when the data includes censored 

survival times, but these difficulties are overcome by using the EM algorithm. 

Fairclough et al (1998a) also illustrate the use of Schluchter’s model for quality of life 

and dropout. This method could be extended to encompass a more complex random 

effects model, but convergence problems for parameter estimation could occur unless 

there are a large number of subjects (Fairclough et al 1998a). Also the performance of 

the model may deteriorate as the degree of censoring in the data increases (Ribaudo et al 

2000).

Joint modelling of quality of life and dropout data has also taken the form of a selection 

model in which the quality of life data is modelled using a mixed model and the 

probability of dropout is modelled using a logistic regression model (Curran et al 2002, 

Michiels et al 2002). Pattem-mixture models have been shown to be a useful approach
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as they are clinically intuitive (Fairclough et al 1998a, Curran et al 2002, Michiels et al 

2002, Pauler et al 2003). The use of pattem-mixture models for quality of life data has 

been described in detail elsewhere (Fairclough 2002) and the methodology is 

summarised as follows. If the quality of life data are subject to informative dropout then 

the patients can be stratified according to p  different dropout patterns. The regression 

parameters and covariance matrix in the model for quality of life over time are estimated 

separately for each missing data pattern. The population estimates for the model 

parameters are given by the weighted average of the estimates from the p  dropout 

patterns where the weights are determined by the proportion of patients with that 

missing data pattern. So given a parameter p  from a model for the longitudinal data, the 

population estimate of this parameter is given by:

f i t 10-3]
V p

where n p is the proportion of patients that are in the pih dropout pattern and ff  is the 

estimate of the p  parameter in the pih dropout pattern.

One of the key advantages of the method is that a model for the dropout process does 

not need to be specified. There are however a number of practical problems in applying 

the methodology. Specification of the dropout patterns is subjective and patterns need to 

be defined in order to ensure that the number of patients in each stratum is sufficient for 

adequate modelling of the data. The most simplistic categorisation is to create two 

strata, one consisting of ‘completers’ and a second of dropouts at any time. This may too 

crude and ideally, depending on the number of subjects available, additional strata can 

be added according to time of, and reason for, dropout. Patterns may have small 

numbers of patients if the total number of patients in the study is small or there are a 

large number of time points at which a patient can drop out. For some patterns it may 

not be possible to estimate the model parameters and further assumptions may be 

required in order to be able to fit the model to all strata. For example, if a linear model is 

assumed for the quality of life data over time then at least two observations per patient 

are required to be able to estimate the intercept and slope. Thus, for patients who drop 

out after their baseline assessment, it may be necessary to assume that their slope is the
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same as that for the patients who drop out after the second assessment. An alternative 

approach is to place assumptions on the model parameters using the time of dropout as a 

covariate (Fairclough 2002).

The ‘mixing’ of the parameters from the separate dropout patterns could be achieved 

using multilevel models rather than just using a weighted summation as described 

above. De Stavola and Christensen (1996) proposed a method for dealing with the 

problem of informative dropout in longitudinal studies using multilevel models. 

Overlapping risk sets are created such that for a series of time points Ti,..,7^the risk set 

at time 7* (k=l,...,£) consists of all subjects still alive at time 7* and multilevel models 

can be fit to the data with level 1 as the repeated measures over time, level 2 as the 

subjects, level 3 as the last risk set to which the subject belongs. This method has not 

been considered for quality of life data but may be a good approach as multilevel 

models have been shown to be good way of dealing with multidimensionality of quality 

of life data (Beacon and Thompson 1996).

10.3 Bayesian Approach to Joint Modelling

A Bayesian approach to joint modelling of repeated measures and time-to-event data 

was first described in detail by Faucett and Thomas (1996) and is summarised as 

follows. As with the classical approaches, models are specified for the repeated 

measures data (called the ‘covariate tracking model’ by Faucett and Thomas) and the 

time-to-event data (called the ‘disease risk model’ by Faucett and Thomas). Joint 

modelling is achieved through linking the models by including the modelled value of the 

repeated measure as a covariate in the time-to-event model. This model formulation 

specified by Faucett and Thomas (1996) is analogous to a selection model and is 

described in more detail below.

A measurement error model is assumed for the repeated measures data, with a linear 

random effects model assumed for the true values over time. If z,y represents the value of 

the repeated measure on they'th occasion for subject i taken at time % then
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zif =*((<») + *# [10.4]

where *,{%) is the value of the true unobserved repeated measure at time ty and Sy are 

independent normally distributed errors with zero mean and constant variance and

xi(t) = a i + p it [10.5]

where the random effects (% and Pi have a bivariate normal distribution with unknown

mean vector jj and unknown covariance matrix 2.

A Cox proportional hazards model is specified for the time-to-event data such that the 

hazard of death for subject i at time t, Mt)  is modelled using:

4- (0 = K  (0 exPl> ,  (0] [10.6]

where Ao(t) represents the underlying baseline hazard function and y  is the regression 

coefficient for the true value of the repeated measures covariate. The baseline hazard is 

modelled as a piecewise exponential model.

Faucett and Thomas (1996) use Gibbs sampling (see Chapter 2) to fit the models in a 

single analysis. This gives the joint posterior distribution for all unknown parameters in 

both models. The advantages of Gibbs sampling for estimating complex models in a 

variety of medical contexts was highlighted in the early 1990s and was promoted as “a 

way of reducing the problem of dealing with a large number of related unknown 

parameters and missing data into a simpler problem dealing with one unknown quantity 

at a time, sampling each from its full conditional distribution” (Gilks et al 1993). In fact 

one of the medical contexts that was highlighted in this paper was the joint modelling of 

repeated measures over time and time-to-event data in the context of modelling serial 

CD4 counts and the onset of AIDS.

The method proposed by Faucett and Thomas (1996) is flexible in that it allows for 

unequally spaced and missing repeated measures data with varying numbers of
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observations per subject and it allows for censored event times. Simulation to compare 

results from modelling each process separately with results from the combined model 

showed the separate models underestimated parameters whilst the combined model 

virtually eliminated the bias (Faucett and Thomas 1996).

The model proposed by Faucett and Thomas (1996) has been extended and adapted for 

application to various scenarios in which all have focused on using the joint model as a 

method for examining the effect of a time-dependent covariate on survival. (Faucett et al 

1998, Xu and Zeger 2001, Wang and Taylor 2001, Taylor and Wang 2002, Pauler and 

Finkelstein 2002). The approach has been modified for a binary time-dependent 

covariate in order to examine the effect of post-operative smoking status over time on 

lung cancer recurrence and survival (Faucett et al 1998). In an application investigating 

the use of PANS S (positive and negative symptoms scale) as a marker for disease status 

in schizophrenia, the simple measurement error model that was originally proposed has 

been extended to a generalised linear model for the repeated measures data and this 

underlying true value or latent variable is modelled as a random effects model with 

covariates and serial autocorrelation (Xu and Zeger 2001). Wang and Taylor (2001) 

extend the model to give a more general form of the random effects model that includes 

a random effect called the integrated Omstein-Uhlenbeck stochastic process, which 

accounts for the random fluctuation of the variable around the population average. They 

also include additional covariates in each part of the model and point out that by 

including a covariate in both parts of the model the joint model allows the effects of a 

covariate on the repeated measures process to be distinguished from its effect on the 

hazard of death or dropout. They use MCMC to fit the model and for some parameters 

use Metropolis-Hastings sampling because sampling directly from the full conditional 

distribution was not feasible. The potential of their model for the investigation of 

longitudinal biomarkers as surrogate endpoints has also been examined (Taylor and 

Wang 2002). Joint Bayesian models have been used to predict prostate cancer 

recurrence from serial measures of a tumour marker (Pauler and Finkelstein 2002). 

Piecewise linear random effects model are used with an individually-defined single 

change-point for the longitudinal measures of a tumour marker and a Cox regression 

model with a piecewise exponential baseline hazard for the time to prostate cancer 

recurrence. The models are linked by including functions of the longitudinal parameters
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as covariates in the Cox model, in particular whether or not a change-point has occurred.

A comparable approach to that proposed by Faucett and Thomas (1996) for the joint 

modelling of serial measurements of disease markers and failure time data has been 

proposed in which the time scale is divided into a series of intervals or ‘slots’ (Berzuini

1995). The measurements of disease markers over time are modelled in terms of the 

time slots rather than continuous time using a linear random effects model. 

Simultaneously, the hazard of failure within a slot is modelled using a Cox regression 

model with constant baseline hazard assumed for each slot. A discrete-time 

approximation to the baseline hazard function of Cox is used which, unlike the 

piecewise exponential model, does not include the time of the event within the interval 

in the model.

There are a few examples where the aim of the Bayesian joint modelling is to adjust for 

the missing data, resulting from dropout, in the model for the repeated measure over 

time (Best et al 1996, Carpenter et al 2002, Wang et al 2002) with one specifically 

relating to quality of life data (Wang et al 2002). In the early example, joint modelling 

was used to estimate parameters in a selection model for repeated measures data taken 

on two occasions with dropout (Best at al 1996). The response at a second time point 

was modelled using a simple regression model including first response as a covariate 

and a logistic regression model was used for the probability of non-response conditional 

on the measured (not modelled) value of the response at the second time point. 

Informative priors were used to estimate the posterior distributions in a fully Bayesian 

analysis. Carpenter et al (2002) in a similar manner used a selection model formulation 

similar to that proposed by Diggle and Kenward (1994) in order to jointly model serial 

measures of forced expiratory volume (FEV) with the probability of dropout in a clinical 

trial of treatments for asthma. The logistic regression model for the probability of 

dropout includes a covariate for the measured (not modelled) value for FEV and rather 

than estimating the regression parameter for this covariate, the model is estimated using 

specifically chosen values for the regression parameter.

There is one recent example of joint modelling of quality of life data and survival data 

using a Bayesian approach applied to data collected in a heart failure trial (Wang et al
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2002). The proposed methodology recognises that quality of life data usually consists of 

multiple ordinal responses designed to measure an underlying latent trait of quality of 

life. Rather than analysing the single score that is derived from summing these items, 

the model analyses the multiple item responses. A proportional odds model is used to 

jointly model the response frequencies from the multiple quality of life items making up 

the latent variable of quality of life. A Cox regression model is used to model the 

survival data and includes a covariate representing the latent variable for quality of life. 

Parameter estimation uses the Metropolis-Hastings algorithm rather than Gibbs 

sampling.

The method described by Faucett and Thomas (1996) was recognised for its potential 

for the analysis of quality of life and survival data (Billingham et al 1999, Billingham 

and Abrams 2002 -  see Appendix I). Joint modelling should improve the parameter 

estimates in the quality of life model because the estimation will account for informative 

dropout due to death. At the same time, the estimates in the survival model will also be 

improved because the quality of life covariate values are estimated from the model for 

quality of life data over time fitted to all subjects and are adjusted for covariate 

measurement error. The method has been developed for application to quality of life and 

survival data and investigated through its application to the MIC and ESP AC data. To 

apply the methodology to quality of life and survival data a mixed model that adequately 

describes the pattern of quality of life over time should be considered for the quality of 

life process, as discussed in Section 6.4. For the survival process, Cox regression 

models or accelerated failure time models, either semi-parametric or parametric and 

possibly piecewise, as described in Chapter 7 could all be considered.

10.4 Joint Model for the MIC and ESP AC Studies

10.4.1 Model Specification

Suppose Q{ty) represents the value of quality of life for patient i at theiry'th time point fy, 

then the likelihood for the data is specified as follows:
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Q{tij) ~ N{j4tij), g] )

where f4ty) represents the true unobserved value of quality of life at time ty and an 

appropriate model is chosen for this latent variable. Appropriate models for longitudinal 

quality of life data were discussed in Section 6.4.

For the MIC study a linear random effects model with a fixed treatment covariate was 

chosen as the most appropriate model to represent the true underlying value of GQS 

over time (see Section 6.5.1 and 6.6.1) and the model is specified as follows:

K h j  ) = 0\i + @2ihj + Gi + $ 2 (Gi x t ij) [10-7]

where G, represents the treatment group for patient i (0.5 for CT, -0.5 for PAL) and Si, 

Si are fixed unknown regression parameters for treatment and treatment by time 

interaction. The individual intercepts and slopes are assumed to have a bivariate normal 

distribution with unknown mean a  and covariance matrix 2  as follows:

f*u)
((a  ^

MVN
\ \ a 2 j

cr,

For the ESP AC study a piecewise linear random effects model with a fixed change-point 

at 6 months was chosen as the most appropriate model to represent the true underlying 

value of GHSS over time (see Section 6.5.2 and 6.6.2) and the model is specified as 

follows:

M(!9) = 0 u + +  O j f  + Si Gt + S 2(G, x t f )  + * 3(G, x t f )  [10.8]

where t\j] = min(^y ,6), t f ] = max(/iy ,6) -  6, G, represents the treatment group for

patient i (0.5 for CT, -0.5 for NoCT) and Si, Si, Si are fixed unknown regression 

parameters for treatment and treatment by time interactions. The individual intercepts 

and slopes are assumed to have a trivariate normal distribution with unknown mean a
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and covariance matrix Z as follows:

f* “ ]
f

a \ ' ( _ 2 C7n <rl3

*21 ~M VN j C7n <*\ ( J 23

A > \ ^13 C 22 <?32

At the same time as modelling the quality of life data, the hazard of death for subject i is 

modelled using a piecewise exponential model as described in Section 7.6. In the MIC 

study an initial six-week time interval and 3 further three-week time intervals were used 

i.e. (0,6], (6,9], (9,12], (12,15] with all patients surviving after 15 weeks censored at this 

time. In the ESP AC study three-monthly time intervals up to 24 months were chosen 

(0,3], (3,6], (6,9], ..., (18,21], (21,24] with all patients that are known to survive longer 

24 months censored at this time. The likelihood for the data dot, the number of deaths for 

patient i in time interval k (which can only be 0 or 1) is specified as follows:

dik ~ Poisson(rjik)

where rjik, the mean number of deaths for patient i in time interval k, is modelled as:

l°g(%l ) = log(rjt) + A *  + P G ,  +caQik [10.9]

In this model, r,* is the length of time that patient i is at risk during interval fc, Gi is the 

treatment covariate taking the same values as specified for the quality of life model with 

unknown regression parameter fiok is the unknown underlying constant hazard in time 

interval k; Qik is the time-dependent covariate representing the quality of life of patient i 

in time interval k with associated unknown regression parameter co. This model was 

fitted to the survival data in Chapter 7 and values for Qik were estimated from the 

observed data using imputation. Here the values included in the survival model are a 

function of the true unobserved value of quality of life estimated from the model for 

quality of life over time. Note that the inclusion of the treatment covariate in both parts 

of the joint model enables treatment to have not only a direct effect on the hazard of 

death but also an indirect effect through its effect on quality of life.
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With the Ath time interval defined as (dk-i, a*], the options considered for Qik for both 

the MIC and ESPAC studies are as follows:

■ The underlying value at the start of the interval: Qik = p{ak_x)

■ The underlying mean of the values at each end of the interval:

In addition for the MIC study, a third option was considered:

■ The underlying slope over time: = 02i + S2Gi

Thus by replacing Qik in [10.9] by either the start, mean or slope value as defined above, 

this provides a link between the model for quality of life and the model for survival 

enabling the parameters in both models to be jointly estimated.

Prior distributions need to be specified for all unknown parameters in both models. 

Vague prior distributions were used for the separate modelling of quality of life and 

survival in Chapters 6 and 7 and the same prior distributions are considered here in the 

joint model.

In the quality of life model, normal distributions with relatively large variances are used 

for the fixed regression parameters as follows:

ap,Sp~ N(0, 10000) p= 1,2 for MIC and p= 1,2,3 for ESPAC

For both studies a Wishart distribution was used as a prior for the precision matrix S '1 as 

specified Section 6.6 with a Gamma distribution used as the prior for the inverse of <?e 

as follows:

~ Gamma(0.001, 0.001)
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For the MIC study, the product normal formulation was considered as an alternative 

approach to specifying a Wishart prior distribution for S'1 as part of a sensitivity 

analysis. As described in Section 6.6.1, three different forms were considered for the 

variance terms; gamma prior distributions on the inverse variances (as specified for 

cre2 above); half normal prior distributions with large variances on the standard

deviations or uniform distributions over a wide range for the standard deviations. For 

the ESPAC study, the sensitivity analysis carried out in Section 6.6.2 showed that the 

model with the Wishart prior referred to as the base model (R with diagonal terms 200, 

10, 1 and off-diagonal terms 0 and p=  3) was robust and this is used here in the joint 

model.

For the parameters in the survival model, normal distributions with large variances were 

used as follows:

fy ,  f r a -  N(0,10000) 7=1,2,3,4 in MIC and 7=1,2,..,8 in ESPAC

The marginal posterior distribution of all parameters in the joint model, given the data 

and the vague prior distributions, were obtained using Gibbs sampling. As described in 

Chapter 2, this process samples values from the full conditional distributions of each 

parameter given the data and the current values of all other parameters. WinBUGS was 

used to perform the analysis and the process was run for 50,000 iterations before 

retaining the next 50,000 sampled values as estimates from the posterior distributions. 

The WinBUGS code for the models for the MIC and ESPAC data is given in Appendix

n.

10.4.2 Results for the MIC Data

The results from the separate modelling of quality of life and survival in the MIC study 

using a Bayesian approach are given in Sections 6.6.1 and 7.6 respectively. In the 

separate modelling, the Bayesian approach with vague priors gave comparable estimates 

of model parameters to those obtained with a classical approach. Table 10.1 therefore 

includes the parameter estimates from the separate modelling obtained using a Bayesian
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approach for comparison with those from the Bayesian joint model.

The performance of the models with the start, mean and slope values as the covariate in 

the survival model was similar. Examination of the trace plots from running each model 

showed that for the product normal formulation the process on occasions appeared to 

become trapped in a certain part of the density i.e. successive iterations had the same 

value, which occasionally produced non-standard shaped posterior densities (see 

example in Figure 10.1). This problem did not occur using the Wishart prior 

distribution, although the autocorrelations were generally high for some parameters with 

this form of the model, especially that with the slope value as the covariate in the 

survival model (see example in Figure 10.2 and output in Appendix IHC). Taking a 

large number of sampled values i.e. 50,000 should overcome the problem of high 

autocorrelations. Despite the differences in performance, all the different forms of prior 

distributions gave comparable estimates of the parameters. To reduce the quantity of 

results presented, the parameter estimates obtained using a Wishart prior distribution are 

given here. The means and standard errors from the posterior marginal distributions for 

each parameter for all versions of the joint model (i.e. that with either the start, mean or 

slope value as covariate in the survival model) are given in Table 10.1 and with output 

from WinBUGS given in Appendix HLA-D.
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Figure 10.1: Trace plot and posterior density for a2 and g \  in the joint model for 
the MIC data with start value as the covariate in the survival model and product 
normal formulation with gamma prior distributions on the precision parameters
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Figure 10.2: Trace plot and autocorrelations for 81 , P and go in the joint model for the MIC data with start value as covariate in survival 
model and Wishart prior distribution on the precision matrix
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Table 10.1: Parameter estimates (and standard errors) from separate and joint modelling of quality of life (GQS) and survival data in 
the MIC study using a Bayesian approach with Wishart prior distribution; quality of life covariate values in survival model taken as 
value at start of interval, mean for interval and slope for change in GQS over time

Joint Model for GQS and SurvivalModel for SurvivalModel for
GQS Mean value as 

covariate
Slope value as 

covariate
Slope with 
interaction

Start value as 
covariate

Mean value as 
covariate

Start value as 
covariate

77.82 77.44
( 1.20)

78.10Intercept

Time

Treatment 
(on GQS)

Treatment by 
time

123.60
(20.59)

Variance 
Intercept (I)

112.40
(18.80)

115.70
(19.22)

116.30
(19.38)

122.10
(20.42)

Variance
Slope (S)

— — —Covariance 
I and S
Error 53.35 53.59

Treatment 
(on survival)

-0.05
(0.0134)(0.0129) (0.0199) (0.0201)

Treatment by 
GQS
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The key purpose for this analysis is to adjust for the informative dropout due to death in 

the model for quality of life. The comparison of the separate and joint model parameter 

estimates for the quality of life model is therefore the key focus (see Table 10.1). The 

separate model for GQS showed that the on average GQS decreased slightly over time. 

In the joint model, as a result of accounting for the informative dropout due to death, the 

decrease over time becomes appreciably larger, particularly when the slope value is used 

as the covariate in the survival model. The standard errors show that the 95% credible 

intervals for these parameter estimates measuring change in GQS over time all contain 

zero. Despite having an effect on the overall change in GQS over time, the joint model 

does not appear to have an impact on the estimate for the treatment by time interaction. 

Even after adjusting for dropout due to death, the effect of treatment on the change in 

GQS over time remains the same, with CT on average improving quality of life over 

time (slopes for change in GQS range from 0.13 to 0.04 depending on the model) and 

PAL leading to deteriorating quality of life over time (slopes for change in GQS range 

from -0.35 to -0.46 depending on model). Standard errors show that zero falls just 

inside the 95% credible intervals for these parameters. The intercept, treatment effect, 

variance and covariance estimates for the joint model were in broad agreement with 

those from the separate model.

In terms of survival, the joint models with start value and mean value of modelled GQS 

used as the quality of life covariate are directly comparable to the separate models that 

use these values of GQS as a time-dependent covariate (see Table 10.1). Comparison 

shows that the effect of treatment on survival is reduced slightly with joint modelling. 

This may be because some of the effect of treatment on survival is now taken up 

through its effect on quality of life. The relationship between quality of life and survival 

in the joint model is comparable to that in the separate models but the standard errors 

are larger, as measurement error in GQS is now included in the model.

The joint model that includes the modelled slope value of GQS over time as a covariate 

in the survival model is more complex to interpret. It is not directly comparable to the 

models estimated for survival alone because the separate models measure the 

relationship between quality of life value and survival not change in quality of life and 

survival. When the model specified in [10.9] was applied to the data the treatment effect
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changed in direction suggesting that after adjusting for the effects o f change in quality of 

life on survival, chemotherapy increased the relative hazard of death. This unexpected 

result suggested that there might be an interaction between treatment and change in 

quality o f life on survival and this term was added to the model. The results (final 

column in Table 10.1) showed that after including an interaction term, the treatment 

effect on survival returned to being negative. The negative regression coefficients for all 

terms in the model suggest that chemotherapy reduces the hazard o f death and 

improving quality o f life also reduces the hazard of death but the combination of 

improving quality o f life on chemotherapy further contributes to the reduction in the 

hazard o f death. The standard error for the effect o f GQS slope value on survival was 

much greater than that for the effect o f start and mean value o f GQS on survival. This 

may be because the individual slopes for GQS over time were more variable across 

individuals than the predicted actual values, and this uncertainty is propagated through 

both models.

10.4.3 Results for the ESPAC Data

The results from the separate modelling of quality o f life and survival in the ESPAC 

study from a Bayesian approach are given in Sections 6.6.2 and 7.6 respectively. In the 

separate modelling, the Bayesian approach with vague prior distributions gave 

comparable estimates o f model parameters to those obtained with a classical approach. 

Table 10.2 therefore includes the parameter estimates from the separate modelling 

obtained using a Bayesian approach for comparison with those from the Bayesian joint 

model.

The performance o f the two models with the start and mean values as the covariate in 

the survival model was similar. Examination of the trace plots and the autocorrelations 

showed that for all o f the parameters except the regression parameter for treatment on 

survival (J3) and the underlying constant baseline hazards, there were large 

autocorrelations at every lag (see examples in Figure 10.3 and output from WinBUGS in 

Appendix IV). The parameter estimates from 20,000 sampled values after a burn-in of 

20,000 were compared to those from 50,000 sampled values after a burn-in o f 50,000 

and the values were very comparable suggesting that, despite the high autocorrelations,
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the parameter estimates are reasonably robust. The means and standard errors from the 

posterior marginal distributions for each parameter in both versions o f the joint model 

(i.e. that with either the start or mean value as covariate in the survival model) are given 

in Table 10.2 with output from WinBUGS given in Appendix IV.
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Figure 10.3: Trace plot and autocorrelations for a 3, 5\ and p in the joint model for the ESPAC data with mean value as covariate in 
survival model
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Table 10.2: Parameter estimates (and standard errors) from separate and joint 
modelling of quality of life (GHSS) and survival data in the ESPAC study using a 
Bayesian approach; quality of life covariate values in survival model taken as 
value at start of interval and mean for interval

Model for Model for Survival 
GHSS

Joint Model for GHSS 
and Survival

Start Mean 
value as value as 
covariate covariate

Start 
value as 
covariate

Mean 
value as 
covariate

Intercept a\
(h io )  MB1 50.99

(2.05)
51.28
(2.03)

TimeO-6 a2 (oS) h h b  ill 2.78
(0.51)

2.68
(0.52)

Time6 + a3

P 
6

 
£ 

00 -1.77
(0.39)

-1.96
(0.44)

T reatment 
(on GHSS)

S
(30 94)

-1.33
(3.82)

-1.37
(3.80)

Treatment by 
TimeO- 6

Si
( S  8WBiiBll| 0.30

(0.91)
0.31

(0.93)
Treatment by 

Time6 +
Si

d 
d 0.83

(0.50)
0.96

(0.53)
Variance 

Intercepts (I) m m  MlfffllW! 210.4
(66.19)

223.9
(72.19)

Variance
Slope(S)0-6 oaI)

10.22
(3.50)

11.31
(4.07)

Variance
Slope(S)6 + «X57) ^

2.66
( 1 . 1 4 )

3.20
(1.39)

Covariance 
I and SO- 6

°X2 -25.11
( 13 . 1 6 )

-27.60
(14.88)

Covariance 
I and S6 + ' ( \ m

-12.54
(5.81)

-14.52
(5.81)

Covariance 
SO- 6  and S6 +

2̂3 HI)
2.89

(1.30)
3.07

(1.35)
Error

(223840) U M i B B H
283.20
(22.47)

277.6
(22.00)

Treatment 
(on survival)

P -0.47 -0.41 
(0.20) (0.20)

-0.39
(0.24)

-0.31
(0.26)

GHSS CO -0.02 -0.03 
(0.0043) (0.0045)

-0.06
(0.0136)

-0.07
(0.0134)

In the separate model for quality of life, GHSS on average increases over the first 6 

months and then decreases over time from 6 months onwards. After adjusting for 

dropout due to death in the joint model (see Table 10.2), the initial slope is comparable 

but the decrease from 6 months onwards is more severe for both versions of the model.
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In the separate model, the treatment by time interaction for the second period is such 

that the CT arm has less severe deterioration in quality of life than the NoCT arm and in 

both versions of the joint model this treatment effect is larger. The variance and 

covariance parameters are reasonably comparable across models.

In the survival model, the treatment effect on survival, which shows that CT reduces the 

relative hazard of death, is reduced in both versions of the joint model, possibly because 

some of the treatment effect is now taken up indirectly through the quality of life 

covariate (see Table 10.2). In fact the 95% credible interval for the treatment regression 

parameter does not include zero in the separate model but does in the joint model. The 

relationship between GHSS and survival is slightly increased in both versions of the 

joint model and has an increased standard error reflecting the fact that the model now 

incorporates measurement error.

10.5 Dealing with Dropout Prior to Death

In section 10.4, quality of life data was jointly modelled with survival data. In this joint 

model, the model for quality of life over time accounts for the dropout of patients from 

the quality of life study due to death, such that all missing data after death is no longer 

treated as missing at random in the quality of life model. The problem of dropout prior 

to death still remains an issue, as all missing data between the last recorded assessment 

and death will be treated as missing at random. For some patients this may be a valid 

assumption but in many cases the dropout will occur due to poor health.

One option is to impute the missing data between last assessment and death. This may 

be possible using other clinical data such as recorded toxicity, performance status or 

evidence of disease relapse. Alternatively an appropriate value of quality of life could be 

allocated to time points after dropout that reflect the assumed quality of life of the 

patients during this time. If the reasons for dropout are available then this could 

contribute to the imputation. The problem with these approaches is that the imputed 

values will be treated as observed values in the model. Multiple imputation provides an 

alternative approach that accounts for the uncertainty of the imputation but methods are 

complex and assume the missing data are missing at random (Schafer 2001).
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An alternative approach is to model the time to dropout or death, whichever occurs first, 

instead of time to death and this will account for all missing data due to dropout or 

death. The approach of including other reasons for dropout as well as death in the joint 

model was advocated by Lindsey (1997) who modelled time to dropout with a survival 

model with patients who did not drop out being uninformatively censored. The model 

will treat all dropouts in the same way and thus assume the reason for dropout is the 

same for all patients. In particular it will treat dropout due to death equivalently to 

dropout prior to death. If the reason for dropout was known for some patients to be 

random such as administrative errors then these patients could be excluded from the 

dropout process until the point where they drop out due to death. In this thesis, since the 

reasons for dropout are not recorded, all dropouts are treated identically. The definition 

of time to dropout is subjective and was discussed in Section 5.8. The definitions, which 

differ slightly for the two studies are reiterated here for each of the studies.

10.5.1 Joint Modelling of Quality of Life and Time to Dropout for the MIC Study

The time to dropout was examined for the MIC study in Section 5.8.1. In the MIC study 

patients were required to complete a fixed number of quality of life assessments (5 on 

CT arm and 4 on PAL arm) within the 15-week study period, which makes the 

definition of time of dropout slightly more complex. For those patients who complete all 

scheduled assessments, the time of dropout is either (i) censored three weeks after their 

last completed assessment if they survive this time, or (ii) censored at 15 weeks if their 

last assessment is less than or equal to 3 weeks prior to the end of study, or (iii) recorded 

as an event at their time of death if they die within 3 weeks of their last assessment. For
fh fhthose patients who do not complete the final scheduled assessment (i.e. 5 on CT and 4 

on PAL) the time of dropout is either (i) recorded as an event three weeks after their last 

completed assessment if they survive this time, or (ii) censored at 15 weeks if the last 

recorded assessment is less than 3 weeks prior to the end of study, or (iii) recorded as an 

event at their time of death if they die within 3 weeks of their last assessment.

Section 5.8.1 presents an analysis of time to dropout. Of the 109 patients, 47 dropped 

out within the 15-week analysis period (27 on CT and 20 on PAL). These are a 

combination of dropouts prior to death and dropouts directly due to death. Kaplan-Meier
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curves showed a trend for patients on the PAL arm to dropout earlier than those on the 

CT arm but a log-rank analysis showed that this was not significant at the 5% level

(p=0.22).

The same joint models that were specified in Section 10.4 are re-run with time to 

dropout (as defined above) used instead of time to death. As with the joint quality of life 

and survival model various forms of prior distribution were used in a sensitivity 

analysis. All forms gave comparable estimates for parameters. The results using a 

Wishart prior distribution are shown in Table 10.3. Three versions of the joint model are 

given for the different forms of quality of life covariate included in the dropout model: 

(i) GQS at start of each time interval, (ii) mean GQS for interval (iii) slope for GQS over 

time. Each version of the model is compared to the equivalent joint model of quality of 

life and survival that was presented in Section 10.4, which only accounts for dropout 

due to death.

Examination of the trace plots and autocorrelations showed that for the start and mean 

value versions of the model, the performance was similar to that with the survival data 

with the key issue being high autocorrelations. The trace plots for the slope version of 

the model indicated that the model occasionally sampled extreme values for a parameter 

but this was a rare occurrence and examining means and medians showed that these 

extreme values appear to have little influence on the final results.
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Table 10.3: Parameter estimates (and standard errors) from joint modelling of quality of life (GQS) and time to dropout compared to the 
joint model with time to death in the MIC study using a Bayesian approach with a Wishart prior distribution

Start value as covariate Mean value as covariate Slope value as covariate
Death Dropout Death Dropout Death Dropout

Intercept a x 77.87
(1.17)

77.91
(1.15)

77.82
(1.17)

77.82
(1.17)

77.45
(1.21)

77.15
(1.23)

Time a2 -0.11 -0.10 -0.13 -0.13 -0.21 -0.30
(0.14) (0.14) (0.14) (0.14) (0.13) (0.16)

Treatment 5.88 5.72 5.80 5.83 5.91 5.95
(on GQS) (2.33) (2.31) (2.28) ( 2 .2 6 ) _ ( 2 . 3 7 ) (2.28)

Treatment by Si 0.48 0.43 0.48 0.44 0.50 0.49
time (0.26) (0.26) (0.27) (0.27) (0.26) (0.27)

Intercept 115.70 114.30 116.30 115.80 123.60 123.90
variance (19.22) (18.96) (19.38) (19.32) (20.59) (21.01)

Slope <j\ 0.43 0.43 0.48 0.50 0.37 0.48
variance (0.23) (0.26) (0.26) (0.26) (0.22) (0.28)

Covariance (X u 2.19 1.97 2.28 2.27 3.63 3.51
(1.56) (1.52) (1.65) (1.68) (1.51) (1.68)

Error 52.02 52.08 51.33 51.02 53.21 51.45
(5.49) (5.53) (5.51) (5.49) (5.23) (5.35)

Treatment p -0.49 -0.11 -0.42 -0.05 -0.78 0.59
(on event) (0.42) (0.32) (0.43) (0.32) (1.86) (1.16)

GQS CO -0.06 -0.04 -0.06 -0.04 -4.36 -2.51
(0.02) (0.01) (0.02) (0.01) (2.09) (1.22)

Treatment by 
GQS

</> -2.73
(2.40)

-0.47
(1.19)
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For the start and mean value versions of the joint model, modelling time to dropout 

rather than time to death has very little effect on the parameter estimates in the quality of 

life part of the model. When slope is included as a covariate in the dropout model, the 

reduction in GQS over time is further reduced after accounting for dropout, although the 

treatment by time interaction remains stable. In the dropout part of the model with start 

and mean values as covariates, the parameter estimates for the treatment covariate 

indicate that chemotherapy reduces the relative hazard of dropout, although in all cases 

the 95% credible interval contains zero. Also the hazard of dropout is reduced for 

increased values of GQS (95% credible interval -0.07 to -0.01) confirming that dropout 

is informative. The estimates for the dropout part of the model with the slope as the 

covariate are more unexpected and very different to the results from the survival model. 

In this model, treatment appears to have an opposite effect on dropout with 

chemotherapy increasing the hazard of dropout. The model was re-run excluding the 

interaction term but the regression parameter for the treatment effect on time to dropout 

remained positive. The parameter estimates are relatively small with large standard 

errors so this discrepancy between models for survival and dropout could be merely an 

effect of the estimates being close to zero.

10.5.2 Joint Modelling of Quality of Life and Time to Dropout for the ESPAC 

Study

The time to dropout was examined for the ESPAC study in Section 5.8.2. Since patients 

are required to complete assessments at three-monthly intervals until death, the 

definition of time to dropout is more straightforward than the MIC study. For those 

patients whose last recorded assessment was more than 3 months prior to their last 

survival follow-up, the time of dropout was recorded as an event 3 months after their 

last recorded assessment. For those patients who die within 3 months of their last 

recorded assessment, the time of dropout is recorded as an event at their time of death. 

For those patients whose survival time is censored within 3 months of their last recorded 

assessment, the time of dropout is censored at this time too. Section 5.8.2 shows an 

analysis of time to dropout. In addition to the 62 patients who dropped out due to death, 

a further 87 dropped out prior to death, with the remaining 26 having censored dropout 

times at their last follow-up time. Kaplan-Meier curves showed a trend for patients on
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the NoCT arm to dropout earlier than those on the CT arm and a log-rank analysis 

showed that this was just statistically significant at the 5% level (p=0.05). The analysis 

here is restricted to 24 months from trial entry and if a patient’s dropout time is greater 

than 24 months then their time of dropout is censored at 24 months.

As with the MIC study, the same joint model that was specified in Section 10.4 is re-run 

with time to dropout used instead of time to death, with start and mean values of GHSS 

included as covariates in the dropout model. The results are shown in Table 10.4 with 

each version of the model compared to the equivalent joint model of quality of life and 

survival that was presented in Section 10.4, which only accounts for dropout due to 

death. Examination of the trace plots and autocorrelations showed that the performance 

of the joint model with dropout was similar to that with the survival function.
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Table 10.4: Parameter estimates (and standard errors) from joint modelling of 
quality of life (GHSS) and time to dropout compared to the joint model with time 
to death in the ESPAC study using a Bayesian approach

Start value as covariate Mean value as covariate
Death Dropout Death Dropout

Intercept a\ 50.99 50.82 51.28 51.13
(2.05) (2.04) (2.03) (1.93)

TimeO-6 a2 2.78 2.97 2.68 2.82
(0.51) (0.51) (0.52) (0.49)

Time6+ ob -1.77 -2.39 -1.96 -2.77
(0.39) (0.50) (0.44) (0.52)

Treatment Si -1.33 -3.05 -1.37 -2.08
(on GHSS) (3.82) (3.88) (3.80) (3.90)

Treatment by Si 0.30 0.88 0.31 0.54
TimeO-6 (0.91) (0.92) (0.93) (0.93)

Treatment by 0.83 1.02 0.96 1.31
Time6+ (0.50) (0.60) (0.53) (0.63)

Variance G \
210.4 205.4 223.9 212.4

Intercepts (I) (66.19) (61.09) (72.19) (63.52)
Variance < j\ 10.22 10.18 11.31 10.69

Slope(S)0-6 (3.50) (3.46) (4.07) (3.36)
Variance g \ 2.66 4.03 3.20 4.88

Slope(S)6+ (1.14) (1.64) (1.39) (1.86)
Covariance -25.11 -25.52 -27.60 -25.43
I and SO-6 (13.16) (12.66) (14.88) (12.45)
Covariance * 1 3 -12.54 -19.31 -14.52 -22.22
I and S6+ (5.81) (6.99) (5.81) (7.47)

Covariance * 2 3 2.89 4.17 3.07 4.63
SO-6 and S6+ (1.30) (1.55) (1.35) (1.68)

Error a 2 283.20 287.7 277.6 284.1
(22.47) (22.34) (22.00) (22.06)

Treatment P -0.39 -0.26 -0.31 -0.16
(on event) (0.24) (0.22) (0.26) (0.24)

GHSS CD -0.06 -0.07 -0.07 -0.07
(0.01) (0.01) (0.01) (0.01)

When time to dropout is modelled in the ESPAC data, rather than time to death, the 

reduction in GHSS over the second time period from 6 months onwards time is further 

reduced after accounting for dropout. The interaction of treatment with both the slope 

prior to 6 months and the slope after 6 months is also increased slightly, indicating an 

increased effect of treatment on change in quality of life after adjusting for dropout. In 

the dropout part of the model, the parameter estimates for the treatment covariate 

indicate that chemotherapy reduces the relative hazard of dropout, although in all cases
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the 95% credible interval contains zero. Also the hazard of dropout is reduced for 

increased values of GHSS confirming that dropout is informative.

10.6 Discussion and Critical Review of Joint Modelling

Joint modelling of quality of life and survival data enables the estimates in the model for 

quality of life to account for dropout due to death and thus any missing data that occurs 

due to death will not be treated as missing at random. At the same time the modelling of 

survival data with quality of life as a time-dependent covariate is enhanced since 

covariate values are estimated from the model for quality of life data over time fitted to 

all subjects. By modelling time to dropout rather than survival time the approach can 

overcome the problem of informative dropout prior to death in the quality of life model 

and examine the relationship between the true underlying value of quality of life and 

time to dropout.

Classical approaches to joint modelling have been successfully applied to quality of life 

data (Fairclough et al 1998a, Ribaudo et al 2000, Curran et al 2002, Michiels et al 2002, 

Pauler et al 2003) but the methods can be problematic. Selection models can be 

computationally intensive and require specialised software and large amounts of data 

(Hogan and Laird 1997a). Pattern mixture models require a subjective stratification of 

patients into subgroups according to their dropout pattern. The numbers of patients in 

each subgroup may not be sufficient for adequate modelling if the study is relatively 

small and assumptions may be required to fit the model in subgroups with sparse data.

In general, the Bayesian approach to joint modelling allows a greater degree of 

flexibility. The models for each process can be as complex as required, though a balance 

has to be maintained between complexity and ease of interpretation. Gibbs sampling 

simplifies the estimation of parameters in complex models (Gilks et al 1993). 

Availability of WinBUGS software has made such methods more accessible to 

researchers although caution is required to ensure that WinBUGS is not used as a ‘black 

box tool for statistical analysis’ (Best et al 1996). Convergence may be a problem, 

especially with small numbers. Examination of trace plots, autocorrelations and density 

plots are essential to assess model convergence and sensitivity analysis should be carried
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out to ensure that choice of starting values, length of burn-in, length and thinning of 

sampled chain does not affect the results. Analysis should also be carried out to assess 

the sensitivity of the results to choice of prior distribution including the type of 

distribution and the level of vagueness. Such analysis can be very time-consuming 

especially with more complex models that may take some time to run. Although the 

analysis here used vague prior distributions, the method also provides a means for 

including external data sources as prior information in the estimation of parameters 

(Spiegelhalter et al 2003). Bayesian joint models have been compared indirectly to the 

classical approach by comparing the classical and Bayesian parameter estimates for each 

part of the model but further work is required to compare the Bayesian joint modelling 

approach directly to the classical approach.

Unlike quality-adjusted survival analysis where quality of life needs to be a utility-type 

measure, the joint modelling approach does not restrict the quality of life variable to any 

particular scale, however, the distribution of the variable is relevant. In the joint models 

considered here the focus has been on models that assume the repeated measures of 

quality of life follow a normal distribution. This assumption will often be plausible, 

especially if the quality of life measure for analysis is a global measure. In some 

circumstances, an appropriate transformation of the quality of life outcome may improve 

the normality of the data and the transformed variable can be modelled instead of the 

original quality of life variable. In some cases the assumption of normality will be 

untenable, especially if the outcome is an ordinal variable with few categories. The 

Bayesian approach however could easily be adapted to be applicable to any type of 

distribution. By using general linear mixed models, non-normal quality of life data can 

also be accommodated (Xu and Zeger 2001).

The repeated measures data, in a joint model with time-to-event data, is generally 

modelled using a mixed effects model and in particular a linear random effects model 

(for example Wu and Bailey 1988, Schluchter 1992, Berzuini 1995, Faucett and Thomas 

1996, Wulfsohn and Tsiatis 1997, Pauler et al 2003). The assumption of a linear trend in 

quality of life over time will often be plausible or it may be possible to transform either 

the quality of life variable or the time variable to ensure that it is (Carpenter et al 2000). 

Modelling the change in quality of life over time as a linear function provides the most
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easily interpreted results from a clinical viewpoint. In circumstances where a linear 

trend is inappropriate a higher order polynomial function could be considered for the 

model or, as implemented here for the ESPAC data, a piecewise linear random effects 

model may be applicable (De Stavola and Christensen 1996, Ribaudo et al 2000, Pauler 

and Finkelstein 2002). The latter will generally be more easily interpreted from a 

clinical point of view than a complex polynomial function. The piecewise linear random 

effects model implemented here assumed a single fixed pre-defined change-point. In 

general, any number of change-points can be used that are appropriate for the clinical 

situation and the given data. The change-points can be included in the model as fixed 

effects or as random effects such that the values are allowed to vary between individuals 

(Pauler and Finkelstein 2002). The random effects models considered in most papers on 

joint modelling, and in this thesis, assume that the random effects are normally 

distributed. Joint models that do not put any restrictions on the distribution the random 

effects have been developed (Tsiatis and Davidian 2001). An alternative form of the 

random effects model, which has been shown to be more appropriate for modelling CD4 

counts over time and has been used in a joint modelling framework using Bayesian 

estimation, includes an integrated Omstein-Uhlenbeck stochastic process (Wang and 

Taylor 2001). Instead of including a random effect for the slope, the model includes a 

fixed effect for the slope representing the population average rate of change in the 

dependent variable and a subject-specific function of time that allows for the random 

fluctuation around the population average.

The joint modelling considered in this chapter assumes that there is a single measure of 

quality of life for which there are repeated measures over time. Often there are several 

measures of quality of life, such as different dimensions measured by an instrument, that 

may require analysis. One option is to repeat the joint modelling for each outcome 

independently and make separate inferences relating to each one. This however does not 

account for the correlations between the measures. The random effects models 

considered in this thesis are simple univariate forms of a hierarchical model with 

repeated observations at the lowest level nested within patients at a second level. The 

advantage of these models in the quality of life setting is their ability to be extended to a 

third level to enable two or more quality of measures to be considered in a single model 

and allowing the relationship between the measures to be investigated (Beacon 1996,
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Beacon and Thompson 1996). This methodology has recently been extended to jointly 

model measures of quality of life with survival using Schluchter’s model in a classical 

approach (Ribaudo et al 2000). The pattem-mixture type of approach using multi-level 

models suggested by De Stavola and Christensen (1996) provides a potentially useful 

approach for quality of life data as these models can be extended to incorporate more 

than one quality of life outcome.

The event in the time-to-event data is often death, disease progression or dropout. For 

the time-to-event component of the joint model, a Cox regression model has been 

widely used both in the classical setting (Wulfsohn and Tsiatis 1997, Henderson 2000) 

and particularly the Bayesian setting (Faucett and Thomas 1996, Faucett et al 1998, Xu 

and Zeger 2001, Wang and Taylor 2001, Wang et al 2002, Pauler and Finkelstein 2002). 

In the classical approach to joint modelling an arbitrary baseline hazard is usually 

assumed but with the Bayesian approach to joint modelling it is not possible to assume 

an arbitrary baseline hazard since a fully parametric approach is required. The piecewise 

exponential baseline hazard is the closest alternative and the most flexible form for the 

baseline hazard. This is the form of the model that is generally used in the Bayesian 

setting and is the model that is used in this thesis. The model requires at least one death 

in each interval and thus if there are no early deaths then the first interval in the 

piecewise exponential model will be wide and the details of the changes in quality of 

life over this interval will be lost.

Other parametric models could be used for the survival data although this would be 

more difficult in a selection model formulation, as the incorporation of time-dependent 

covariates in parametric survival models is not well developed (Petersen 1986). If the 

slope from a linear random effects model representing a subject’s change in quality of 

life over time is used as the covariate in the survival model then this ceases to be time- 

dependent and a fully parametric form for the model rather than a piecewise exponential 

can be considered.

In the joint models used in this thesis, some measure of the underlying value of quality 

of life is included as a covariate in the survival model. The covariate value at a given 

point in time is determined from the model for quality of life to which values previous
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to and after the given time point have contributed. In this way the survival model is 

conditioning on future events. This may be a problem if the model was to be used for 

predictive purposes.

The joint models considered here have only included treatment as a covariate in each 

part of the model. Other covariates that are thought to explain the variation in quality of 

life over time and survival could be included in either or both parts of the joint model. 

With a Bayesian approach, model averaging over several different models with different 

covariates could be considered (Draper 1995) or Bayes factors could be used to compare 

models (Spiegelhalter et al 2003). One of the advantages of the joint model illustrated in 

this thesis is that the inclusion of the same covariate in both parts of the model enables 

the direct effect of the covariate on the hazard of death to be estimated in addition to the 

indirect effect via the effect of quality of life on the hazard (Wang and Taylor 2001).

In this thesis the time to dropout has been modelled jointly with quality of life to adjust 

for missing data resulting from informative dropout. Lindsey (1997) believes that the 

dropout process should be modelled together with the longitudinal measurements 

process since it is an integral part of the phenomenon under study. In this analysis, 

dropout prior to death and dropout due to death are treated as equivalent events, such 

that once a patient drops out prior to death, their time of death after dropout is not 

accounted for in the model. It may be appropriate to consider the two forms of dropout 

as separate types of event, and which both need to be accounted for in the joint model. It 

may be possible to incorporate a model for the dropout process to account for data 

missing for reasons other than death (Lambert et al 1999). Further to this, it may be 

appropriate to account for more than one type of dropout prior to death if the different 

reasons for dropout have been recorded. The need to distinguish between dropout due to 

death and dropout prior to death has been addressed (Pauler et al 2003). In a pattem- 

mixture model approach, the parameter estimates in the model for quality of life over 

time are combined across the dropout patterns but remain conditional on survival. The 

authors concede that it results in a non-randomised comparison of treatment arms in 

terms of quality of life outcome, which is exactly what the joint modelling is trying to 

address. Shih and Quan (1997) raise concerns about modelling the hypothetical 

complete data marginal distribution for quality of life suggesting that it does not make
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clinical sense to make inferences about quality of life for those who have died. As 

Pauler et al (2003) highlight, this is the only way to provide an unbiased comparison of 

treatment arms.

Unlike some forms of quality-adjusted survival analysis, joint modelling does not 

necessarily require the analysis to be restricted to a specific time period. If the quality of 

life data is collected during a fixed time period then it may be wise to restrict the 

survival data also to this period so that the model for quality of life fitted to the data is 

not extrapolated outside the period of data collection. It may also be preferable to fix the 

time period for the analysis as the data becomes sparse as the time from entry increases. 

In restricting the analysis to a fixed time period, values of quality of life that fall outside 

that time period could still contribute to the estimation of the model for quality of life 

over time even though only the values of quality of life within the fixed time period will 

be included as covariates in the survival model. For example in the MIC study there 

were 7 values of quality of life that fell just outside the 15-week cut-off period and as 

with other analyses in this thesis, they were included in the estimation of the quality of 

life model as they were the only estimates of post-treatment quality of life available for 

those patients. In other studies it may be more appropriate to exclude the values 

measured outside the fixed analysis period.

The application of joint modelling of quality of life and survival data to the MIC and 

ESPAC studies showed that by adjusting for informative dropout due to death, the 

deterioration in quality of life over time that was observed in the unadjusted model 

becomes more severe. In these examples adjusting for dropout prior to death as well as 

directly due to death further increased the severity of the deterioration. The treatment 

effects in these examples were not greatly affected by the joint modelling. The inclusion 

of the slope as the covariate in the survival model produced more extreme results than 

just including the actual value of quality of life over time. This indicates that modelling 

the relationship between the change in quality of life and time to death or dropout in the 

joint model has a greater impact on the conclusions. With the patient profiles for quality 

of life over time being relatively noisy, using the individual slopes as the covariate in the 

survival model may not provide stable results. Joint modelling also had an effect on the 

relationship between quality of life and survival measured in the survival model with
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standard errors for the regression parameters being increased due to accounting for 

measurement error. The impact of joint modelling on the data is similar to that has been 

previously observed in simulations (Faucett and Thomas 1996).

In summary, the Bayesian approach to joint modelling has been shown to be a practical 

methodology for the simultaneous analysis of quality of life and survival data. 

Sensitivity analysis is crucial to assess the effect of model assumptions on the results. 

The validity of inferences from the joint model relies on appropriateness of models used 

and methods for assessing the fit of joint models requires further research (Faucett et al 

1998).
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CHAPTER 11: CONCLUSIONS AND DISCUSSION

11.1 Summary of Research

In the assessment of treatments in clinical trials, particularly those in cancer, quality of 

life is often an important endpoint alongside length of survival. Quality of life data are 

usually collected via patient-completed questionnaires in a longitudinal study. The key 

problem in the analysis of the longitudinal quality of life data is that patients drop out of 

the quality of life study due to death and all missing data after death will not be missing 

at random. In addition, in studies where patients are sufficiently ill for length of survival 

to be an outcome, subjects will often drop out of the quality of life study prior to death 

due to illness. In such circumstances the missing data resulting from dropout prior to 

death will also not be missing at random. Standard methods for longitudinal analysis 

that assume missing data are missing at random will give biased results and methods for 

the simultaneous analysis of quality of life and survival or dropout that provide an 

unbiased analysis were investigated.

Three different approaches have been investigated for the simultaneous analysis of 

quality of life and survival. Quality-adjusted survival analysis compares treatments in 

terms of a composite measure of quality and quantity of life. Multistate modelling 

explores how treatments differ in terms of the transition rates between various health 

states defined by levels of quality of life and death. Joint modelling describes the quality 

of life and survival data in terms of two interlinked models enabling treatments to be 

compared in terms of each endpoint but adjusted for the influence of the other. Methods 

were applied to data from two clinical trials, one in patients with non-small cell lung 

cancer and one in patients with pancreatic cancer. These are typical of the quality of life 

studies generally encountered in cancer clinical trials. Application of the methods to the 

data from these trials provides insight into the practical issues associated with such 

approaches. The direct comparison of these three methods for the simultaneous analysis 

of quality of life and survival data has not previously been undertaken, neither has the 

extension of these methods to deal with additional dropout prior to death
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There a four key methods for quality-adjusted survival analysis defined by whether the 

aggregation of quality of life and survival is at the subject or the group level and 

whether the longitudinal values of quality of life data are used directly to down-weight 

survival time or used to determine the time spent in specific health states used in the 

model. The application of all four methods to longitudinal quality of life data that is 

carried out in this thesis has not been demonstrated previously and enables the methods 

to be reviewed and compared in detail. In addition, the methodology is extended to deal 

with the problem of informative dropout prior to death. In particular, in relation to the 

group-based approach using actual values of quality of life known as the integrated 

quality-survival product, the thesis recognises that quality-adjusted survival can be 

interpreted as survival-adjusted quality-of-life. This new concept reflects the fact that 

the method adjusts for the dropout of patients due to death in the analysis of quality of 

life. By interpreting the quality-adjusted survival analysis in this way, the extension of 

the methodology to deal with informative dropout prior to death can be meaningfully 

interpreted as dropout-adjusted quality-of-life.

Multistate modelling has been advocated as a possible means for analysing quality of 

life and survival data simultaneously and although this approach has been applied to 

data with health states defined by clinical criteria, there are limited examples of 

applications of multistate models to quality of life data. In this thesis, multistate models 

under a variety of different modelling assumptions were applied to the illustrative 

examples, allowing the feasibility of such methodology to be investigated. In addition 

the development of the method to include a specific dropout state provided a means of 

overcoming the problem of informative dropout from the quality of life study prior to 

death. This approach for dealing with dropout in a longitudinal study has not previously 

been considered.

Joint modelling of repeated measures and time-to-event data has been an expanding 

area of development. The majority of the research is based on classical approaches and 

some of these classical approaches have been applied to longitudinal quality of life data 

together with survival or dropout data in order to overcome the problem of informative 

dropout. The Bayesian approach to joint modelling has been described by a number of 

authors but the application of such an approach in the field of quality of life has, until 

recently, not previously been undertaken and was therefore chosen as the focus for
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research. This thesis develops Bayesian joint modelling for application to quality of life 

and survival data and extends the method to account also for dropout prior to death.

11.2 Discussion of Findings

11.2.1 Separate Versus Simultaneous Analysis

Simultaneous analysis of quality of life and survival provides an overall assessment of 

the treatments in a clinical trial in terms of both endpoints. Simultaneous analysis could 

be said to supplement the separate analysis of each endpoint but in fact separate analysis 

of quality of life in general should not be considered. The analysis of survival as a 

single endpoint is not a problem and will often be considered as the primary endpoint in 

cancer clinical trials for example but the analysis of quality of life as a separate endpoint 

is problematic. Analysing longitudinal quality of life data that is subject to informative 

dropout due to death will provide inferences on the quality of life over time conditional 

on patients surviving but this does not provide an unbiased comparison of treatments 

since at any point in time it is not comparing like with like. The only truly unbiased 

comparison is an intention-to-treat type analysis in which all patients at all time points 

are included in the analysis. This unbiased comparison can only be achieved by the 

simultaneous analysis of both endpoints. Some have questioned the meaning of such 

simultaneous analysis especially in the context of joint modelling, suggesting that it 

does not make clinical sense to make inferences about the quality of life for those who 

have died (Shih and Quan 1997). Simultaneous analysis of quality of life and survival 

however is necessary to provide an unbiased comparison of treatments.

11.2.2 Overall Comparison of the Three Simultaneous Methods

The health state methods for quality-adjusted survival analysis are based on a similar 

methodology to multistate modelling and hence both have similar advantages and 

disadvantages and both deal with the problem of dropout prior to death in a similar way. 

In both approaches, health states are defined by the quality of life outcomes being 

measured and the longitudinal quality of life data are used to estimate the time of 

transition from one state to the next. In the quality-adjusted survival analysis these
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transition times are used to estimate the time spent in each state for combining with 

appropriate utility values whereas in multistate modelling the transition times are used 

to model the hazards of transition from one health state to the next. Methodology has 

been proposed that combines the methods in a single analysis, using multistate 

modelling to estimate the time spent in different health states for incorporation into a 

quality-adjusted survival analysis (Cole et al 1994). Further research into this approach, 

possibly within a Bayesian framework is required.

The advantage of these health state methods is the fact that no distributional 

assumptions are required about the quality of life outcome. The method can be applied 

to any type of outcome and can incorporate multiple outcomes into the definition of the 

health states. The definition of health states however is not straightforward. The choice 

is subjective and choosing states that are clinically meaningful and at the same time 

include sufficient data for adequate estimation may not always be possible. Sensitivity 

analysis should be used to assess the robustness of the results to the definition. The 

health state approach may be problematic when there are censored survival times within 

the analysis period as the group-based approach of partitioned survival analysis that 

overcomes the problem of censoring requires progressive health states which will often 

not be easy to define in terms of quality of life. The main advantage of multistate 

modelling over the group-based approach to quality-adjusted survival analysis, is that 

the health states in the model do not need to be progressive. The other potential problem 

with quality-adjusted survival analysis is that utility values are required for the different 

health states in order to be able to combine the results into a composite measure.

The health state methods both deal with dropout prior to death in a similar way. Patients 

are assumed to move to a dropout state at an appropriately defined time, such as the 

time when the next assessment was due. In the quality-adjusted survival analysis, the 

time spent in the dropout state can be allocated a utility value that reflects the expected 

quality of life in that state. In the multistate modelling, the transition rates to the dropout 

state and from the dropout state to death can all be explicitly modelled. The health state 

methods allow dropout prior to death to be treated differently to dropout due to death by 

treating them as two separate states in the model. Given sufficient patients in a study it 

would also be possible to extend this to have different dropout states relating to
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different reasons. These would need to be progressive for partitioned survival analysis 

but not for multistate modelling.

Quality-adjusted survival analysis is a more straightforward method than multistate 

modelling. The results are expressed in terms of a composite measure of quality and 

quantity of life and are therefore likely to be more clinically intuitive. The methods 

involve the familiar simple concept of area under a curve and are therefore accessible to 

statisticians and clinicians. Multistate modelling requires more assumptions than 

quality-adjusted survival analysis in order to be able to model the transition rates. 

Multistate modelling decomposes the quality of life and survival processes, which may 

be more difficult to interpret but may provide a better insight into clinical pathway of 

patients. In addition the models may be used to provide insight into the missing data 

mechanism by comparing the risk of death from the dropout state with that from other 

health states in the model.

The group-based method for quality-adjusted survival analysis that directly uses the 

longitudinal values of quality of life in an integrated quality-survival product (IQSP) is 

comparable to the joint modelling. In the IQSP the function for quality of life over time 

is multiplied by the survivor function to give a quality-adjusted survivor function or 

survival-adjusted quality-of-life function whereas in the joint modelling the parameters 

in the models for quality of life over time and survival are estimated simultaneously.

One advantage of the IQSP is that the method does not require parametric forms for the 

quality of life and survivor functions whereas the joint modelling is a fully parametric 

approach. The IQSP approach however does require the quality of life measure ideally 

to be a utility measure although transformation of a descriptive measure to a utility-type 

measure enables the method to be applied to other measures. The interpretability of the 

results when the quality of life outcome is not a true utility, just a measure on a 0 to 1 

scale, is debatable. As the method of IQSP becomes more widely known, quality of life 

studies will be designed to collect utility measures either alongside or instead of 

descriptive measures of quality of life enabling the results from IQSP to be more valid.

The parametric nature of joint modelling more readily allows the inclusion of covariates 

in the analysis and has greater scope for development to more complex scenarios,
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especially within a Bayesian framework. Possible extensions include the incorporation 

of cost data in a cost-utility analysis and multiple measures of quality of life and the 

feasibility to deal with the issue of quality of life only collected in a subgroup of trial 

patients (see Section 11.3). The Bayesian rather than the classical approach to joint 

modelling was pursued as it allows complex models to be fit in a relatively 

straightforward way and the methodology had not previously been considered in the 

area of quality of life research. Vague prior distributions were used as it was not the aim 

of the thesis to include prior information into the analysis, but the methodology could be 

extended to incorporate external evidence, such as results from other studies on quality 

of life in similar patient populations, if so desired. Bayesian joint models have been 

compared indirectly to the classical approach by comparing the classical and Bayesian 

parameter estimates for each part of the model but further work is required to compare 

the Bayesian joint modelling approach directly to the classical approach.

Both IQSP and joint modelling deal with dropout prior to death by analysing the 

dropout-free survivor function rather than the survivor function. Patients are defined as 

dropping out of the quality of life study either at their time of death or at the time of 

dropout, however that is defined, if dropout occurs prior to death. Unlike the health state 

approach, this does not distinguish between dropout prior to death and dropout directly 

due to death. This may not always be appropriate and further research to extend the 

joint models to incorporate a model for the dropout prior to death process as well as the 

death process is required.

11.2.3 Overall Conclusions from the MIC Study

The analysis of the MIC study was restricted to 15 weeks from entry to trial as this was 

the period of time during which quality of life data were collected. This study design 

does not permit inferences regarding the long-term effect of treatments on quality of life 

but enables the treatments to be compared during probably the most crucial part of their 

survival time. Even during this short period of time, the number of deaths was large 

enough to potentially create a biased treatment comparison in terms of quality of life, 

especially since the hazard of death was greater with standard palliative care than 

chemotherapy. In addition, examining dropout-free survival showed a differential 

dropout rate between the two treatment arms. Simultaneous analysis of quality of life
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and survival was essential to provide a more unbiased treatment comparison and 

extending the analysis to dropout-free survival should reduce the potential bias further.

The analysis of the MIC study considered two different global measures of quality of 

life; the overall mean response to all items on the study questionnaire, GQS, and the 

single item that assesses patient malaise, MAL. Although GQS is made up of a number 

of ordinal responses it is reasonably continuous and is treated as such in the analysis 

presented. Each method of simultaneous analysis makes different assumptions about the 

measure. Quality-adjusted survival analysis assumes that GQS is a utility measure, 

multistate modelling assumes that summary measure values will differentiate patients 

into distinct health states and the joint modelling presented here assumes that GQS is 

normally distributed. All of these assumptions are potentially valid but debatable. As an 

ordinal variable, MAL lends itself to the more health-state based approaches and the 

analysis here applies the health-state based approaches to quality-adjusted survival 

analysis and multistate modelling to this measure of quality of life. The joint modelling 

presented in this thesis could be extended to accommodate ordinal variables such as 

MAL. Due to the small numbers of patients in the MIC study, the frequencies for the 

higher levels of malaise were small and the measure was treated as a binary variable and 

as such, the detail about the level of malaise that the patient experienced was not 

included. In terms of quality-adjusted survival analysis, the key problem was that utility 

values were not available for the health states defined by malaise.

The analysis of quality of life data as a separate endpoint suggested that quality of life 

improved slightly over time on chemotherapy and deteriorated slightly with standard 

palliative care. The summary measures analysis, using 0- to 6-week change in GQS and 

standardised area under the curve, and random effects modelling showed that this 

difference between treatments was of borderline statistical significance at the 5% level. 

This treatment comparison however is potentially biased due to the differential rates of 

informative dropout. Quality-adjusted survival analysis showed that the quality-adjusted 

survival time gained during the first 15 weeks from trial entry was greater on the 

chemotherapy arm than the standard palliative arm and these differences were 

statistically significant at the 5% level. Survival-adjusted and dropout-adjusted quality- 

of-life showed a trend for chemotherapy to give higher levels of quality of life than 

standard palliative care but this was not statistically significant. Multistate modelling
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suggested that compared to standard palliative care, chemotherapy increased the hazard 

of transition from both a well to an ill state and also an ill to a well state, with the hazard 

of transition from ill to well being statistically significant at the 10% level. 

Chemotherapy was also shown to significantly reduce the hazard of death from the ill 

state compared to standard palliative care. In the joint models for quality of life and 

either survival or dropout-free survival, the rates of change of quality of life over time 

were reduced, but the difference between treatments that gave an advantage for 

chemotherapy remained stable with 95% credible interval for the treatment by slope 

interaction term just containing zero. In conclusion, simultaneous analysis of quality of 

life and either survival or dropout-free survival continued to show a trend for a benefit 

of chemotherapy for quality of life.

11.2.4 Overall Conclusions from the ESPAC Study

The design of the ESPAC study was such that quality of life data were collected 

routinely from trial entry to death. As the time from trial entry increases however, the 

quality of life data become more sparse, partly due to the overall reduction in patients 

due to death but also because compliance is reduced for those still alive. The analysis 

was therefore restricted to 24 months from trial entry, which will still provide useful 

inferences as most patients will not survive longer than this period. As with the MIC 

study, the hazard of death or dropout during this time was greater for the control arm 

than for chemotherapy and this differential dropout from the quality of life study needs 

to be accounted for in any analysis. Simultaneous analysis of quality of life with either 

survival or dropout-free survival was required to provide an unbiased treatment 

comparison.

The analysis of the ESPAC study considered a single global measure of quality of life 

that is widely used in cancer clinical trials, the global health status score (GHSS) from 

the EORTC QLQ-C30 questionnaire. The measure is derived from two items with 7- 

level ordinal responses and this produces a measure with 13 possible distinct values 

whose distribution is non-normal with scores of discordant pairs having low frequencies 

compared to scores of matching responses. Also in this study the individual patient 

profiles were very erratic with no clear trend at the individual level and this makes 

GHSS a difficult outcome to model. The distribution is likely to be a generally true of
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this response in any study but changes over time may be clearer in other studies making 

modelling more feasible. Although joint modelling was feasible, the assumption of 

normality is likely to be invalid and methods of analysis that do not make any 

parametric assumptions about GHSS may be preferable. Multistate modelling may mask 

the finer detail in the data by categorising patients into a limited number of health states. 

Quality-adjusted survival analysis using the integrated quality-survival product may be 

the best approach as it makes full use of the data and does not require any distributional 

assumptions, although the method assumes GHSS is a utility measure.

The analysis of quality of life data as a separate endpoint suggested that quality of life 

improved initially up until 6 months from trial entry and then deteriorated slightly over 

time but there was no evidence of a difference between treatment arms in terms of this 

trend. This treatment comparison however is potentially biased due to the differential 

rates of informative dropout. Quality-adjusted survival analysis showed a trend for a 

greater number of quality-adjusted life years on chemotherapy compared to control and 

also better survival-adjusted and dropout-adjusted quality-of-life but these differences 

were relatively small. Multistate modelling showed virtually no difference between 

treatments in terms of hazards of transitions between the alive states defined by quality 

of life but there was consistent evidence of a reduction in hazard for chemotherapy 

compared to control in terms of the transition from ill to dead. Joint modelling gave an 

increased effect of treatment on the deterioration in quality of life from 6 months 

onwards with deterioration greater for the control arm compared to chemotherapy but 

the 95% credible interval for the estimated treatment effect contained zero. In 

conclusion, although the trend in the results is generally in favour of chemotherapy, 

compared to control, in terms of the effect on quality of life, the differences are small 

with considerable associated uncertainty.

11.3 Further Research

11.3.1 Extension of Methods to Multiple Quality of Life Measures

One of the key features about quality of life data, especially that collected in clinical 

trials is that they are multivariate in nature. The questionnaires used to assess quality of
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life generally yield measures on a number of different dimensions of quality of life, in 

some cases a large number. In this thesis, the analysis has assumed a single measure of 

quality of life. This may be valid for some situations such as those where only one 

measure of quality of life is available for analysis or those which pre-specify a single 

measure as the focus of analysis, with the remaining measures analysed descriptively as 

secondary endpoints. In other situations, where a small number of quality of life 

outcomes require analysis, it may be feasible to analyse and report conclusions on each 

outcome separately. Problems of multiple testing will occur and no acknowledgement is 

made in such an analysis of the possible correlation between the different measures. The 

extension, therefore, of the methods presented in this thesis to accommodate multiple 

measures of quality of life are required.

The health-state based approaches can incorporate multiple measures by basing the 

health state definitions on the outcomes to multiple measures. This approach is 

relatively crude and does not properly account for the correlation between measures or 

the measurement error. Further research is required to develop a more sophisticated 

approach, particularly for multistate models. It may be possible to extend the methods 

of IQSP and joint modelling to accommodate multiple measures by using multilevel 

models for the quality of life function. This approach has previously been shown to be 

useful for modelling multiple measures of quality of life over time (Beacon 1996, 

Beacon and Thompson 1996) but inclusion of such models in IQSP and joint models for 

quality of life and survival requires further research.

11.3.2 Quality of Life Studies in Subgroups of Patients

Many clinical trials include quality of life as a secondary endpoint for treatment 

comparison and due to the labour intensive nature of data collection and limited 

resources, quality of life studies are often only carried out on a subgroup of trial 

patients. It is essential that the quality of life subgroup is representative of trial patients 

as a whole as this may invalidate any inferences and this should always be checked 

prior to any analysis. With the reduced number of patients, there may be problems with 

reduced statistical power to detect differences between treatments in terms of quality of 

life. Simultaneous analysis of quality of life and survival presented in this thesis uses 

the survival data for the quality of life patients only. Survival data however are available
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for all trial patients and it may be preferable to include the survival data on all patients 

in order to maximise the amount of the data included in the simultaneous analysis and 

providing an improved estimation of the survival. In terms of IQSP, the extension of the 

method to combine the survivor function for all trial patients with the quality of life 

function for just the subgroup seems feasible but requires further investigation. The 

potential to extend the joint modelling within a Bayesian framework to incorporate 

survival data for all trial patients has already been demonstrated for a cost-effectiveness 

analysis, in which cost data are collected on just a subgroup of trial patients (Lambert et 

al 2003) and this approach should naturally extend to the situation with quality of life.

11.3.3 Integration of Quality of Life and Survival Data with Cost Data

In assessing which treatments should be routinely used in clinical practice, health-care 

decision makers are required to balance the clinical effectiveness against the costs in a 

cost-effectiveness analysis. Effectiveness can be measured in terms of survival benefits 

but often quality of life is also accounted for as part of the effectiveness measure by 

comparing treatments in terms of cost per quality-adjusted life year.

It is becoming more commonplace for clinical trials to collect resource use data on 

patients as part of the data collection. These resource use data can be combined with 

unit costs to give a total cost per patient. This cost data can be analysed as an outcome 

in its own right (Barber and Thompson 2000) or can be integrated into an analysis with 

the survival data collected in the trial in a cost-effectiveness analysis (Briggs and Gray 

1998) and further integration with quality of life data for a cost-utility analysis. Methods 

for the simultaneous analysis of quality of life and survival data need to be extended to 

also incorporate the patient-level cost data.

A study of costs was carried out for patients in the MIC trial. Data was retrospectively 

collected on a subgroup of the trial patients to determine the health care resources used 

by patients from trial entry to death. Unit costs were allocated to these data to give a 

cost endpoint for each patient. Chemotherapy was shown to be more costly with a mean 

increased cost of approximately £3000, which for 2 months additional survival time 

may be considered by some to be cost effective (Billingham et al 2002). Missing data 

was a problem with the cost outcome and methods of imputation have been investigated
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to overcome the problem (Burton et al 2003). In addition, using a Bayesian approach to 

simultaneously model the cost and survival (Lambert et al 2003b) has not only provided 

a means for overcoming the problem of missing data within the subgroup of patients in 

the cost study and but has also enabled the survival data from all trial patients to be 

incorporated with the cost data from just the subgroup. The extension of this 

methodology to incorporate the quality of life data in a cost-utility analysis requires 

further research. The analysis is complicated by the fact that the quality of life and cost 

data are collected on different but overlapping subgroups of trial patients and the 

survival data are collected on all patients. The aim will be to incorporate the Bayesian 

joint model for quality of life and survival developed in this thesis with the Bayesian 

cost-effectiveness model to provide inferences about cost-utility for all trial patients, 

taking into account informative dropout.

11.4 Conclusions

In clinical trials, the collection of quality of life data in conjunction with survival has 

become widespread. Although practitioners are aware of the problem of informative 

dropout in such studies, the appropriate method for analysis is still not clear. The results 

from this research provide statisticians analysing quality of life data with a variety of 

possible methods for the analysis of such data that should yield unbiased results.

Quality-adjusted survival analysis is the simplest and most accessible approach for the 

simultaneous analysis of quality of life and survival data. In particular, the more 

recently proposed integrated quality-survival product formulation provides a means of 

directly combining longitudinal quality of life and survival data collected on patients. It 

has the flexibility to be completely non-parametric, partly parametric or fully 

parametric. It produces clinically intuitive results in the form of either quality-adjusted 

life years or survival-adjusted quality-of-life and can be used also to estimate dropout- 

adjusted quality-of-life. This is likely to become a standard approach for the analysis of 

quality of life data in clinical trials.

Multistate modelling and joint modelling provide more sophisticated methods for 

analysis, allowing greater insight into the quality of life, survival and dropout processes
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and facilitating the inclusion of covariates. The Bayesian joint modelling approach in 

particular offers an attractive future direction for simultaneous analysis of quality of life 

and survival giving greater scope for development to accommodate multiple measures 

of quality of life in a single analysis and extension to cost-utility analysis. It may also 

provide a means of analysing quality of life data from a subgroup of trial patients with 

the survival data from all patients. Such models can also be generalised to other 

situations where time-to-event and longitudinal data, such as tumour markers, need to 

be analysed simultaneously. Further research in this emerging area to address some of 

the salient points identified in this thesis should be pursued.
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Mitomycin, Ifosfamide, and Cisplatin in Unresectable 
Non-Small-Cell Lung Cancer: Effects on Survival and 

Quality of Life

By M.H. Cullen, L.J. Billingham, C.M. W oodroffe, A.D. Chetiyaw ardana, N.H. Gower, R. Joshi, D.R. Ferry, R.M. Rudd, 
S.G. Spiro, J.E. Cook, C. Trask, E. Bessell, C.K. Connolly, J. Tobias, and  R.L. Souhami

Purpose: Chem otherapy for non-small-cell lung can
cer (NSCLC) rem ains controversial. We describe the tw o 
largest reported, random ized, parallel trials designed 
to determ ine w hether the addition of chem otherapy 
influences duration and  quality of life in localized, 
unresectable (mitomycin, ifosfamide, cisplatin [MIC]1 
trial) and  extensive (MIC2 trial) d isease.

Patients and Methods: Am bulatory patients with 
NSCLC, aged  75 years or younger, with localized disease, 
w ere random ized in MIC1 to receive up to  four cycles of 
chem otherapy (CT: mitomycin 6  m g/m 2, ifosfamide 3 
g /m 2, and  cisplatin 50 m g /m 2) every  21 days, followed 
by radical rad iotherapy (CT + RT) o r rad io therapy  (RT) 
alone. Extensive-stage patients w ere  random ized in 
MIC2 to identical chem otherapy plus palliative care 
(CT + PC) or palliative care (PC) alone. Short-term change 
in quality of life (QOL) w as  assessed  in a  subgroup of 
patients. Data from the tw o trials w ere  combined to 
allow multivariate and  stratified survival analyses.

Results: Seven hundred ninety-seven eligible pa
tients w ere randomized, 446 in MIC1 and  351 in MIC2. 
MIC CT improved survival in both trials (significantly in 
MIC2). The median survival time in MIC1 w as 11.7 
months (CT + RT) versus 9 .7  months (RT alone) (P = .14); 
w hereas in MIC2, median survival time w as 6.7 months 
(CT + PC) com pared with 4 .8  m onths (PC alone) 
(P = .03). QOL, assessed in 134 patients from start of 
trial to w eek 6, showed improvement with chemother
apy  and deterioration with standard treatm ent. In the 
combined analysis of 797 randomized patients, the 
positive effect of MIC on survival w as significant overall 
(P = .0 1 ) and after adjusting for prognostic factors 
(P = .0 1 ).

Conclusion: MIC chemotherapy prolongs survival in 
unresectable NSCLC without compromising QOL

J Clin Oncol 17:3188-3194. © 1999 by American 
Society of Clinical Oncology.

DESPITE SOME EVIDENCE supporting a role for 
chemotherapy (CT) in inoperable non-small-cell lung 

cancer (NSCLC), routine management practice varies widely 
across the developed world. In the United States, for 
example, the use o f CT is standard for good-performance- 
status patients with stage III or IV disease, whereas in the 
United Kingdom and much o f mainland Europe, CT is still 
not routinely offered, even in stage III disease. Instead, 
radical radiotherapy (RT) alone is used for the minority o f  
patients with localized disease, and palliative care (PC) 
alone is used for those with more advanced or metastatic
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disease. Some trials evaluating CT have shown no survival 
benefit.1’2 However, others, particularly trials including 
cisplatin, have demonstrated an advantage.3’4 These trials 
have been small and, hence, lacked the power to effect a 
widespread change in management practice across the 
developed world.5 Furthermore, the side effects o f treatment 
have been regarded by many as outweighing the benefit o f a 
modest extension o f life.6 In 1995, a meta-analysis of trials 
concluded that cisplatin-based CT does confer a small 
survival benefit.7 However, meta-analyses have been criti
cized on a number o f counts8; they give no clear guidance on 
choice o f regimen, toxicity, and quality-of-life (QOL) out
comes and are no substitute for large, randomized trials.

In 1988, we reported a phase II study o f mitomycin, 
ifosfamide, and cisplatin (MIC) in NSCLC, with a high 
objective response rate, good side-effect profile, and improve
ment in performance status (PS) in responding patients.9 In 
two parallel phase III trials (MIC1 and MIC2), we have 
compared for our study, MIC chemotherapy plus standard 
treatment (ST) with ST alone in 820 randomized patients 
with unresectable NSCLC to examine the effects primarily 
on survival but also, in a subgroup o f trial patients, QOL. In 
the United Kingdom, ST consists o f RT for patients with 
localized unresectable disease (MIC1 trial) and PC for 
patients with extensive disease (M1C2 trial). The trials had 
identical design, were conducted at the same time by the
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same collaborative groups, and, apart from stage o f disease, 
had identical eligibility criteria. As well as reporting the 
trials separately, the data were combined to enable the 
overall effect o f CT in unresectable NSCLC to be assessed in 
comparison with nonchemotherapeutic treatment.

PATIENTS AND METHODS

Eligibility

Trial patients w ere required to have p reviously untreated, unresecta
ble, h isto logically  or cy to log ica lly  proven N SC L C  (squam ous, adeno-, 
or large-cell carcinom a) that cou ld  be m easured or assessed. Patients 
were 75 years o f  age or less, w ith  World H ealth Organization  
performance scores o f  0 , 1, or 2. Patients w ith  sym ptom atic superior 
vena caval obstruction, cerebral m etastases, previous m alignancy, 
spinal cord com pression , or im paired renal function  (glomerular 
filtration rate <  70 m L/m in or serum  creatinine > 1 1 5  m m ol/L ) w ere 
excluded. Patients with no clin ical ev idence o f  m etastatic d isease  
(except ipsilateral supraclavicular lym phadenopathy) and no pleural 
effusion and tumors encom passable in a radical RT vo lu m e w ere 
eligib le for the MIC1 trial; the remainder w ere e lig ib le  for the M IC2  
trial. Staging w as essentia lly  clin ical, based on history, physical 
examination, chest radiograph, b lood  chem istry profile, and full blood  
count. More detailed staging investigations w ere perform ed w hen  
indicated. For instance, patients w ith  sym ptom s suggesting skeletal 
metastases had bone scans, and those w ith  biochem ical evidence o f  
liver secondary tumors had com puted tom ography or ultrasound scans.

Treatment
C T  (M IC! a n d  M IC 2 trials). The treatment regim en is listed  in Table

1. In the early years o f  the trial, antiem etic therapy consisted  o f  
high-dose m etoclopram ide via intravenous infusion w ith  intravenous 
dexamethasone. After the introduction o f  5-hydroxytryptam ine-3 antago
nists, the m etoclopram ide w as replaced b y a sin gle intravenous dose o f  
granisetron 3 m g or ondansetron 8 m g.

CT treatment cyc les  w ere repeated every  21 days, w ith  a m axim um  o f  
four cycles. CT w as discontinued i f  there w as progressive d isease at any 
stage, static d isease after tw o cyc les , unrelieved local sym ptom s, or 
unacceptable toxicity. During the period o f  these trials, CT w as rarely 
used in advanced N SC LC  in the U nited  K ingdom . H ence, it w as  
regarded as quite ethical and scientifica lly  desirable not to  a llow  its use  
at any stage in the control arms, and second-line or nonprotocol CT w as  
not permitted.

Table 1. MIC Schedule

Dexamethasone 4  mg IV bolus 
Granisetron 3 mg IV bolus 
Mitomycin 6 m g/m 2 IV bolus
Ifosfamide 3 g /m 2 plus mesna 1 g /m 2 in 1 L 0.9% saline IV over 3 hours 
1 LO.9% saline plus 20 mmol KCl IV over 3 hours 
Mesna 500  m g/m 2 in 50  mL 0.9%  saline IV over 15 minutes 
Dexamethasone 4  mg IV bolus
Cisplatin 50 m g/m 2 IV in 250  mL 0.9%  saline IV over 1 hour 
1 L 0.9% saline plus 20  mmol KCl IV over 6  hours 
M esna 500  m g/m 2 in 50  mL 0.9% saline IV over 15 minutes 
Dexamethasone 4  mg IV bolus

Abbreviation: IV, intravenous.

R T  (MIC1 trial). D ose and fractionation schedules for RT in limited  
N SC LC  vary in  different United Kingdom centers. To encourage 
maximum participation, a single dose/ftactionation schem e w as not 
specified, but patients w ere required to receive a total dose equivalent to 
not less than 40  G y in 15 fractions. In the control arm, RT was 
com m enced after randomization and planning. In the CT arm, RT was 
com m enced 3 w eeks after com pletion o f  four courses o f  MIC but could  
be given early i f  CT failed. Patients w ho developed distant metastatic 
disease w ere withdrawn from further protocol treatment but continued  
on trial follow-up, receiving palliative therapy, including, where 
appropriate, RT.

Pallia tive  care, (M IC2 trial). PC, including RT, antibiotics, cough  
suppressants, analgesics, and so on, w as g iven  to all patients without 
restriction according to the standard practice o f  the collaborating 
centers. After treatment, all patients w ere seen for routine review  with  
chest radiograph at 2-month intervals until the end o f  the first year after 
diagnosis and 3-month intervals, thereafter.

Response Criteria

Objective response assessm ent w as based on physical examination  
and chest radiograph. Routine rescanning w as not required because 
response rate w as not a primary outcom e. It is possib le that response 
defined in this w ay m ay g ive a higher value than w hen the definition  
requires rescanning, as in phase II studies. The decision  to continue with  
a second and subsequent cycles o f  MIC w as further supported by  
subjective assessm ent o f  symptom atic improvement and toxicity.

Final response to CT w as assessed  on com pletion o f  all CT treatment, 
however many courses patients had received. A ssessable and measur
able lesions were considered for treatment response.10 R esponse was 
defined as follows: com plete response, com plete clinical and radiologic 
disappearance o f  measurable or assessable lesions; partial response, 
greater than 50% reduction in size o f  measurable lesions or regression  
o f  assessable lesions.

Trial Design

Both trials were multicenter, prospective, randomized studies. The 
Birmingham and London Lung Cancer Groups collaborated in the 
MIC1 trial. The MIC2 trial involved on ly  the Birm ingham  Group. The 
designs o f  the tw o trials were deliberately identical and ran concurrently 
to enable a prospective pooling o f  the data. Random ization was by 
telephone call to one o f  the tw o randomization centers, the CRC Trials 
Unit (Birmingham, United Kingdom ) or the Clinical Trials O ffice o f  the 
London Lung Cancer Group. In M IC1, randomization w as stratified by 
radiotherapist to ensure that variation in clin ical practice w as distributed 
evenly between the tw o arms. The primary end point for the studies was 
survival, with toxicity, response to treatment, and QOL as secondary 
end points. Patient sample sizes o f  5 00  (M IC1) and 300 (M IC2) were 
planned on the basis o f  detecting an im provement from 5% to 10% in 
the 5-year survival rate for MIC1 and from 10% to 20% in the 1-year 
survival rate for MIC2, with 80% power and 5% significance level.

QOL Study Design

QOL data were collected in an unselected subgroup o f  trial patients. 
These were from three centers where a QOL research nurse was 
available to m inim ize noncom pliance and m axim ize com pleteness o f  
data. The QOL research nurses w ere based in clin ics where CT was 
administered, w hich facilitated access to patients in the CT arms. 
Consequently, there w ere more CT patients in the QOL study than 
controls. The questionnaire, based on the lung cancer m odule o f  the 
European Organization for Research and Treatment o f  Cancer (EORTC)
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QOL questionnaire (EORTC Q L Q -L C 13),11 had 12 questions assessing  
sym ptom s and toxicity, cough, breath lessness (at three different exer
cise  levels), h em optysis, pain, appetite, anxiety, depression, dysphagia, 
nausea, and m alaise. R esponses w ere g iven  on a category-rated scale, as 
none, a little, quite a bit, and very m uch, and w ere scored 0 , 1 ,  2 , and 3, 
respectively. Patients com pleted  questionnaires at approxim ately 3-w eek  
intervals from  the first pretreatment questionnaire to a m axim um  o f  five 
on the C T arm and four on ST. A  m inim um  o f  3  w eek s w as allow ed  after 
radical RT in MIC1 for the 6 -w eek  assessm ent.

Statistics

M eth odo logy f o r  tr ia l data. R espon se rates w ere com pared using a 
X2 test and w ere calculated for assessab le patients and those unassess- 
able because o f  d isease or treatm ent-related factors (ie , d ied  before CT 
started). Survival w as m easured from the date o f  random ization to 
either the date o f  death (all causes), censor date for the analysis (January 
1, 1997), or, i f  not observed up to  that tim e, date last seen  alive. The 
Kaplan-M eier12 m ethod w as used to estim ate survival curves, and 
differences betw een treatm ents w ere assessed  u sin g the log-rank test. In 
the survival analysis o f  the com bined  data, treatm ent com parisons were 
adjusted for the separate effects (stratified log-rank tests) and com bined  
effects (C ox proportional hazards regression) o f  various patient charac
teristics, ie, sex , age, PS, h isto log ic  d iagnosis, and trial (representing  
stage o f  d isease).13

M eth odology f o r  Q O L study. A  m ean Q O L score w as calculated for 
each individual from  responses to  the questionnaire. The first and third 
questionnaires w ere used to calcu late the 0 - to  6-w eek  change in  QOL  
score. Treatment groups w ere com pared u sin g t tests together with  
multiple regression analysis to adjust for im balances in distribution o f  
sex, PS, age, and h isto log ic d iagnosis.

RESULTS

Patient Characteristics

Between March 1988 and March 1996, 820 patients were 
randomized, 461 in MIC1 and 359 in MIC2. Fifteen patients 
in M1C1 and eight in MIC2 were ineligible. These patients

were excluded, and sensitivity analysis confirmed that the 
conclusions were unaffected. MIC1 protocol violations included 
two RT patients given CT, seven patients who received nonproto
col RT (all nine excluded from response to RT), and 10, mainly 
RT patients, who had CT on relapse (included in all analyses). In 
MIC2, two patients had CT on progression (included in all 
analyses). The treatment groups in both trials were well balanced 
with respect to patient characteristics (Table 2).

CT Treatment Details and Response

Sixty-two percent o f eligible patients (138 of 222; one 
protocol violation) in MIC1 and 50% of eligible patients (88 
of 175) in MIC2 had four courses o f MIC. CT was 
discontinued early in 35 patients in MIC1 and in 34 in MIC2 
as a result o f nonresponse. Toxicity contributed to early 
cessation of CT in 28 and 24 patients in MIC1 and MIC2, 
respectively. In addition, four patients in MIC1 and three in 
MIC2 requested early discontinuation o f CT. No treatment- 
related deaths occurred in MIC2, but there were three 
CT-related deaths (all with neutropenic sepsis, one compli
cated by renal failure) and three deaths from the combined 
effects of CT + RT in MIC1 (pneumonitis in three patients, 
complicated by infection in one).

Of the potentially delayable (ie, second, third, and fourth) 
CT cycles, only 13% (65 o f 491) and 9% (27 o f 315) in 
MIC1 and MIC2, respectively, were postponed by more than 
2 days. Delays were mainly because o f hematologic toxicity 
or infection. Early cessation and treatment delays (as 
indicators o f tolerance to CT) were observed no more 
frequently in patients with a PS o f 2 than in patients with 
better PS scores.

Table 2 . Patient Characteristics on Entry to Study

Characteristic

MIC1: CT + RT (n = 223) MIC1: RT (n = 223) MIC2: CT + PC (n = 175) MIC2: PC (n = 176)

No. of Patients % No. of Patients % No. of Patients % No. of Patients %

Sex
Male 170 76 175 78 132 75 122 69
Female 53 24 48 22 43 25 54 31

Histologic diagnosis
Squamous 151 68 158 71 94 54 103 59
Adenocarcinoma 34 15 25 11 51 29 42 24
Large-cell undifferentiated 34 15 34 15 19 11 6 3
NSCLC unspecified 4 2 6 3 11 6 25 14

PS
0 90 40 93 42 41 23 28 16
1 97 44 101 45 65 37 85 48
2 34 15 25 11 55 31 45 26
Unknown 2 1 4 2 14 9 18 10

Age, years
Median 6 4 64 62 64

Interquartile range 57-68 58-68 56-68 58-69

Full range 37-75 35-75 41-75 47-75
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Objective response to CT was assessed in 88% o f patients 
in MIC1 and 89% in MIC2. The remainder o f  patients either 
had missing or inassessable x-rays, refused CT, violated 
protocol, or died from nondisease/nontreatment-related cause 
before assessment. O f the assessable patients, the objective 
response rates (complete response plus partial response) were 
54% (105 of 196; 95% confidence interval [Cl], 47% to 61%) in 
MIC1 and 32% (49 o f 155; 95% Cl, 24% to 39%) in MIC2, with 
10% and 2% complete responses in each trial, respectively.

RT Treatment Details and Response

In the MIC1 trial, 68% o f patients (152 o f 223) on the 
CT + RT arm received their planned radical dose o f RT 
compared with 85% (189 o f 223) on the RT arm. Patients did 
not receive radical RT because they were too sick, developed 
progressive disease, or died. Although the proportions of  
patients having radical RT were different on the two arms, 
the received doses and schedules were very similar (Table 3).

Eighty-three percent o f  CT 4- RT patients and 81% o f RT 
patients in MIC1 were assessable for response after all 
treatment. The objective response rate to CT +  RT was 53% 
(98 o f 185; 95% Cl, 46% to 60%) on the combined-modality 
arm and 45% (83 o f 185; 95% Cl, 38% to 52%) on the RT 
alone arm (x2 =  2.43, P  =  .12), with 20% and 9% complete 
responses in each arm, respectively.

In the MIC2 trial, 40% (70 o f 175) o f patients on the CT +  PC 
arm compared with 68% (120 o f 176) on the PC arm received 
RT, which was thoracic in 51 and 99 patients, respectively. The 
median thoracic RT dose of 30 Gy and interquartile range of 20 
Gy to 35 Gy were identical for the two arms o f the trial.

Survival

On January 1, 1997, eight patients were lost to follow-up. 
O f the remainder, 33 patients in MIC1 were still alive 
(median follow-up, 31 months; range, 12 to 102 months) and 
six in MIC2 remained alive (median follow-up, 26 months; 
range, 17 to 45 months).

In both trials, survival was longer on the CT arm 
compared with ST (Fig 1; Table 4). The median survival in 
MIC1 was 11.7 months (95% Cl, 9.5 to 14.0) on the CT +

Table 3. Thoracic Radical RT Received in MIC1 Trial

a  + RT RT

Dose, Gy
M edian 50 50

Range 40 -60 40-64

Fractions, n
Median 15 15

Range 10-30 12-32

Duration, days
Median 28 26

Range 19-52 18-56

RT arm compared with 9.7 months (95% Cl, 8.0 to 11.4) on 
RT alone, while in MIC2 median survival was 6.7 (95% Cl, 
5.4 to 8.0) months (CT + PC) compared with 4.8 months 
(95% Cl, 4.0 to 5.7) on PC alone. In MIC 1, the differences in 
survival did not reach conventional levels o f statistical 
significance ( \ 2 =  2.20, P — .14), but they were statistically 
significant in MIC2 (x2 = 4.87, P  =  .03).

Combined Analysis o f  Survival

The two concurrently ran trials, in a stage continuum of 
797 patients with inoperable NSCLC, had identical designs 
that involved randomization between ST alone versus MIC 
plus ST. Furthermore, because the observed treatment effect 
is very similar in the two trials, combining the data is valid. 
When combined, survival was statistically superior on the 
CT arm compared with ST (x2 = 6.66, P  =  .01). Trial (ie, 
stage: localized or extensive), PS, and histology were 
significant prognostic factors for survival; sex and age were 
not (Table 5). Cox regression analysis showed that trial, PS, 
and histology were independent prognostic factors for 
survival, and after adjusting for these, the effect o f MIC was 
still significant (P =  .01), with a 21% (95% Cl, 4% to 41%) 
increased hazard o f death on ST (Table 6).

QOL

The QOL subgroup comprised 67 patients from MIC1 (42 
from CT + RT arm and 25 from RT arm) and 109 patients 
from MIC2 (67 from CT + PC arm and 42 from PC arm). 
The number of patients in the MIC1 and MIC2 trials 
responding to the third questionnaire at 6 weeks from 
baseline was reduced to 50 and 84, respectively, with similar 
dropout rates on both arms o f the trials (29% compared to 
20% for CT + RT and RT arms, respectively, in MIC1, and 
22% compared to 24% for CT +  PC and PC arms, respec
tively, in MIC2). In MIC1, the mean 0- to 6-week change in 
QOL score was —0.22 (95% Cl, —0.36 to —0.08) on the CT 
arm compared with 0.28 (95% Cl, 0.03 to 0.53) on ST, 
whereas in MIC2 the corresponding QOL figures were 
-0 .0 9  for CT (95% Cl, -0 .21  to 0.03) and 0.20 for ST (95% 
Cl, 0.01 to 0.4). Negative values imply that the level of 
symptom scores reduced, on average, over the 0- to 6-week 
time period, thus indicating an improvement in QOL. 
Positive values indicate deterioration. The results for both 
trials show that, during the 6 weeks from starting treatment, 
QOL improved on CT (significantly in MIC1) but deterio
rated on ST (significantly in both trials). The difference 
between treatment arms was statistically significant 
(P =  .0002 for MIC1 and P  =  .007 for MIC2) and, after 
adjusting for imbalances in patient characteristics between
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MIC1 CT+RT
MIC1 RT
M1C2 CT+FC

0  H-------------------
0

........... ............ 1-----
12

¥' ........

24
..................... . ,MIC2 PC

36
Numbers at Risk. TIME (MONTHS)

CT »RT 223 108 42 22
RT 223 89 33 12

CT+PC 175 43 7 6
PC 176 30 6 1

Fig 1. Survival by treatment in each trial.

the treatment groups, remained highly significant for MIC1 
and became borderline significant for MIC2 (P  =  .0003 for 
MIC1 andP =  .06 for MIC2).

DISCUSSION

Real interest in CT for NSCLC began in the early 1980s 
with the demonstration that several cisplatin-based regimens 
could induce objective responses in up to 50% o f cases.14 
The next step was to quantify the clinical value, if  any, o f  
such intervention. Attempts so far have focused largely on 
duration o f life in randomized trials, which frequently have

Table 4 . Survival in MIC 1 and MIC2 Trials

Survival Time

Median 1 Year 95% 2 Years 3 Years
Trial Arm (months) (%) Cl (%) (%)

MIC1 CT + RT 11.7 49 43-56 20 12

MIC1 RT 9.7 41 35-48 16 8

MIC2 CT +  PC 6.7 25 18-32 5 4

MIC2 PC 4.8 17 12-23 4 1

Table 5. Survival by Potential Prognostic Factors 
in Combined Group (n =  797)

Characteristic
No. of 
Patients

Observed/
Expected
Deaths

Median
Survival

Time
(months) 95% Cl X2 P

Sex
Male 599 1.01 7 .7 6.8-8.8 0 .10 .75
Female 198 0.98 8.1 72-9.5

Age
<  65 years 446 0.95 8.2 72-9.4 2.18 .14
65 +  years 351 1.06 7.4 6 .3-8.5

PS
0 252 0.81 11.2 9 .4-12.3 33.0 .0001
1 348 1.01 7.8 6 .8-9.0
2 159 1.46 5.1 4.0-6.8

Histologic diagnosis
Squamous 506 0 .94 9.0 7 .7-10.4 9.20 .01
Adenocarcinoma 152 1.25 5.8 4.6-7 .7
Large-cell 93 1.04 7.9 6.7-9 .9

Trial
MIC1 446 0 .79 11.0 9 .0-11 .9 76.1 .0001
MIC2 351 1.46 5.6 4.8-6.5
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Table 6 . Results From Cox Regression Analysis*

Hazard Ratio 95% a P

Trial, MIC 1 vMIC2 1.74 1.48-2 .04 .0001
Performance status, 0  v 1 v 2 1.20 1.08-1 .34 .0008
Histology, squamous v nonsquam ous 1.25 1.07-1 .47 .006
Treatment, MIC v ST 1.21 1.04-1.41 .01

*n =  731 with complete data .

been too small to detect the modest improvements likely with 
current regimens. In our two large trials, MIC has been simulta
neously evaluated in terms o f both quantity and quality o f life. 
Mitomycin, ifosfamide, and cisplatin are three o f the most active 
single agents in NSCLC, and phase II data for the MIC 
combination were first reported in the late 1980s.9,15 Since then, 
MIC has been tested and its activity confirmed in various 
contexts in randomized trials in stage IIIA,16 IIIB, and IV 
disease.17 The objective response rates o f 54% in localized, 
unresectable disease and 32% in extensive disease imply that 
MIC is among the most effective regimens in NSCLC and is at 
least as active as more recently described combinations like 
paclitaxel/carboplatin,18 gemcitabine/cisplatin,19 and vinorelbine/ 
cisplatin.20 The objective response rate in the control arm of the 
MIC1 trial is similar to that reported by others for radical RT in 
localized, inoperable NSCLC 21,22

In localized disease (MIC1), we found no statistically 
significant survival advantage with the addition o f  MIC, 
although there was a trend in favor o f  CT. This result is 
almost identical to that reported by Le Chevalier et al23 in the 
only other trial o f similar design with more than 300 cases. 
Survival at 1 year was 41% for RT alone in both trials compared 
with 50% and 49% in the French and MIC trials, respectively, in 
the CT + RT arms. At 2 years, the corresponding figures for RT 
alone were 14% (French trial) and 16% (MIC) compared with 
21% and 20%, respectively, for CT +  RT in the two trials. A later 
analysis of the French trial reported a statistically significant 
benefit for CT +  RT versus RT alone.24 Preliminary results from 
an intergroup trial in the United States, which included only 
good-risk patients, also show a benefit from the addition of 
cisplatin-based chemotherapy.25

In advanced disease (MIC2), the picture is clearer, with a 
significant prolongation o f life in the CT arm. Other smaller 
trials with cisplatin-based CT have come to a similar 
conclusion,4,26 but there has not been widespread adoption 
of CT for the management o f  stage IV NSCLC. Raby et al6 
reported that, although a majority o f Canadian clinicians 
involved in lung cancer therapy believed CT prolonged 
median survival in stage IV NSCLC, only 20% would 
recommend it for an asymptomatic patient. The authors believed 
that, although randomized trials may demonstrate that a treat
ment works, they often fail to show that it is worthwhile.
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Toxicity is frequently cited as a reason to withhold CT. 
The QOL component of the present trials was incorporated 
to quantify symptom relief and toxicity formally. A short
term assessment was chosen to minimize the effect of 
subject dropout, which complicates QOL analyses in situa
tions where patients deteriorate rapidly and allows evalua
tion o f rapid symptom relief, which is vital in patients with 
short life expectancy. Drop out rates were similar in both 
arms of each trial, validating treatment comparisons. These 
comparisons showed an improvement in QOL in patients 
undergoing CT, implying palliation outweighed short-term 
toxicity as well as a deterioration in patients on ST. A more 
detailed analysis examining other time points, with similar 
overall conclusions, will be reported separately.

Others have reported symptom improvement resulting 
from CT treatment in NSCLC, even in the absence of 
objective tumor response.27 In an interesting, recent Ameri
can study, NSCLC patients who had experienced cisplatin- 
based CT were asked to indicate the minimum survival 
benefit required to accept the side effects o f CT for advanced 
disease. For a realistic survival benefit of 3 months, only 22% 
chose CT against supportive care. However, 68% chose CT 
if  it substantially reduced symptoms without prolonging life.28

The identical basic design and similar treatment effects of 
these trials permitted amalgamation o f the survival data, 
allowing a comparison o f MIC with ST in almost 800 ran
domized patients with unresectable NSCLC. In common 
with other trials, we found PS, stage, and histologic diagnosis 
to be independent prognostic factors for survival,29 and, hav
ing adjusted for the effects o f these, the positive impact of 
MIC on survival remained significant. An examination of CT 
effect across strata defined by a number o f pretreatment pa
tient characteristics is being prepared for separate publication.

There is now a considerable body o f evidence that 
supports a small beneficial effect o f cisplatin-based CT on 
survival in advanced NSCLC. The results presented here, 
from the two largest reported trials o f one o f the most active 
regimens,30 are fully consistent with the meta-analysis o f 
smaller trials.7 The effect o f MIC on survival, seen in each 
trial separately, is reinforced by the consistently significant 
treatment effect observed in the combined data. We have also 
shown that the treatment effect is not achieved at the expense of 
short-term QOL. Thus, MIC is an important comparator candi
date for future trials aiming to identify regimens with greater 
impact on duration of life, without compromising quality.
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APPENDIX
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Sim ultaneous analysis of quality of life and 
survival d a ta
LJ Billingham Cancer Research Campaign Trials Unit, Institute for Cancer Studies, The 
Medical School, University of Birmingham, Birmingham, UK and KR Abrams Department 
of Epidemiology and Public Health, University of Leicester, Leicester, UK

In many phase III clinical trials, particularly in the field of cancer, the comparison of treatments is based on 
both length o f survival and quality o f life. Subjects are followed over time until death and during this 
period, quality of life is assessed on a number of occasions. Simultaneous analysis of these two outcomes 
supplements the com parison of treatments in terms of each outcome independently with an assessment of 
the net effect. In addition, it provides a means of accounting for the informative dropout due to death of 
patients w ithin the time frame of the quality of life study. The methods also have the potential to be 
extended to allow  for informative dropout from the quality of life study prior to death. There are a number 
of broad approaches for the simultaneous analysis of quality of life and survival data. The most widely 
used approach in clinical research is quality-adjusted survival analysis, where treatments are compared in 
terms of a com posite measure of quality and quantity of life. The paper reviews the different techniques for 
quality-adjusted survival analysis, illustrating the methodology by application to data from a phase III 
clinical trial in pancreatic cancer. In addition, alternative approaches using multistate survival analysis and 
joint modelling methods are also discussed.

1 Introduction

The ideal context for assessing a new treatment is a randomized phase IH clinical trial. 
The new treatment is compared to the ‘standard’ treatment using a number of pre
defined clinically relevant outcomes. In the field of cancer, the primary outcome 
measure is usually length of survival, with quality of life often included as a secondary 
outcome. Patients are followed over time until they are observed to die or until the time 
of analysis. The patient’s quality of life is measured at various points during this period 
of study.

Quality of life is generally measured using a patient-completed questionnaire. There 
are a number of standard instruments available for this purpose.1 The choice of 
instrument depends on the disease and treatment being studied and the aspects of 
quality of life that are of particular interest. The instruments generally measure a 
number of different dimensions of quality of life. Methods of analysis that deal with the 
issue of multiple dimensions are discussed elsewhere.2 For the purposes of this paper we 
assume that there is one, ideally generic, measure of quality of life for analysis. The 
application of methods outlined in this paper in a multiple dimensions setting is 
addressed in the discussion.
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The assessment of treatments in terms of quality of life is usually based on their effect 
on this outcome over time. Some studies may be interested in the effects during a fixed 
time frame of interest, such as the treatment period or the first year from entry to trial, 
for example. In other studies the focus may be on the quality of life during a patient- 
related time frame, such as from entry to trial until death. In this case, the length of 
study will vary for each patient but the overall time frame of the longitudinal analysis 
will be defined by the longest survival time. For both the fixed and overall patient- 
related time frame, even though patients may have a complete set of quality of life 
measures until death, a standard longitudinal analysis of the quality of life outcome will 
treat the non-existent data at all times within the time frame after death as missing and 
will assume that they are missing at random. Clearly, because they are missing due to 
death this assumption is invalid and any longitudinal analysis needs to account for this. 
Patients who die within the fixed or overall patient-related time frame are said to have 
‘dropped out’ of the quality of life study and because the resulting missing data are not 
missing at random, the dropout is said to be ‘informative’.

Within both types of quality of life study time frame, patients can also drop out of the 
study prior to death for a number of reasons. Dropout could be purely random or may 
be due to reasons related to disease or treatment. In longitudinal studies where patients 
are sufficiently ill for length of survival also to be an outcome, subjects will often drop 
out due to illness. In this case, since the reason for dropping out is directly related to 
what is being measured, the dropout is informative and the resulting missing values are 
not missing at random. Application of standard longitudinal data analysis in this 
context could give biased results. The point at which a patient ceases to be a participant 
in the quality of life study and instead becomes a dropout will not necessarily be clear- 
cut and the choice will be subjective.

The analysis of quality of life and survival data simultaneously has a number of 
advantages. Firstly, it supplements the comparison of treatments in terms of each 
outcome independently with an assessment of the net effect, which will assist the clinical 
decision regarding the choice of treatment for patients. This decision may also need to 
be made in conjunction with other outcomes such as toxicity and cost. Secondly, it 
allows a more valid assessment of quality of life since the longitudinal analysis of 
quality of life data can account for data that are missing within the study time frame as 
a result of informative dropout due to death. Thirdly, the methods have the potential to 
be extended to allow for informative dropout from the quality of life study prior to 
death, resulting in a further improvement in the validity of the quality of life analysis.

There are a number of different broad approaches that can be used to analyse quality 
of life and survival data simultaneously. The most widely used approach in clinical 
research is quality-adjusted survival analysis. This approach combines the amount of 
time patients spend in a number of different health states with weights reflecting the 
quality of life of those health states to create a composite measure of quality and 
quantity of life. More recently methods have been proposed that directly incorporate 
the longitudinal quality of life collected on patients with the survival data and this 
alternative to the health-state based method is far more disposed to the analysis of data 
collected in clinical trials.

Other methods of simultaneous analysis include multistate survival analysis and joint 
modelling. Multistate survival analysis models the movement of patients between
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various health states, defined by levels of quality of life and death, and explores how 
treatments differ in terms of the transition rates between health states. Joint modelling 
considers quality of life and survival as two simultaneous processes occurring in 
patients and describes the data in terms of two inter-linked models.

The paper reviews in detail the different methods for quality-adjusted survival 
analysis, illustrating the methodology by application to data from a phase HI clinical 
trial in pancreatic cancer. In addition, the alternative approaches of multistate survival 
analysis and joint modelling are also discussed.

2 Quality-adjusted survival analysis

Quality-adjusted survival analysis is based on the concept of quality-adjusted life years 
(QALYs)3 where quality and quantity of survival are combined into a composite 
measure. In the general QALY model, survival time is split into periods spent in 
different health states where different quality of life is experienced. QALYs are 
calculated, as shown in (1), by summing these times, £/(7 = 1 , . . . , / ) ,  over the J  
different time periods with weights, Uj (;  = 1 , . . . , / ) ,  attachea to each period reflecting 
the quality of life experienced during that time.

J
QALY = J2 Ujtj (1)

;=i

The weights range from 0 to 1, with 0 representing quality of life equivalent to death 
and 1 representing perfect health. Negative weights can be used if the quality of life is 
thought to be worse than death. These weights are intended to reflect the relative 
desirability of the state and are usually referred to as ‘health state utilities5.4 The most 
widely used QALY models are TWiST (Time Without Symptoms or Toxicity)5,6 and Q- 
TWiST (Quality-adjusted TWiST).7,8 For TWiST, all periods of survival time with 
symptoms of disease or toxicity resulting from treatment are given a weight of 0 whilst 
all other time periods are given a weight of 1, so that, as the term suggests, TWiST 
counts only time without symptoms or toxicity. With the Q-TWiST endpoint, originally 
developed for a breast cancer application,7 periods of survival time spent with 
symptoms of disease and toxicity resulting from treatment are each given weights 
between 0 and 1, rather than being ignored as they are in TWiST.

The periods of time that patients spend in the health states involved in the Q-TWiST 
model are generally determined using clinical outcomes collected in trials, rather than 
quality of life data. In many studies of quality of life, the Q-TWiST model is not 
relevant because patients never experience the TWiST health state. For example, in 
studies of palliative care where quality of life is an important outcome in its own right, 
the patients are never in a disease-free state and are therefore generally never without 
symptoms. In other situations, quality of life studies will often focus on the experience 
of patients during treatment, and in this case patients are generally never in a toxicity- 
free state. The inapplicability of the Q-TWiST model to longitudinal quality of life data 
collected in clinical trials has been recognized and alternative methods have been
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developed that directly incorporate the patients’ quality of life data in a quality-adjusted 
survival analysis.9 It is these methods that are reviewed here.

There are two main approaches to quality-adjusted survival analysis depending 
whether the level of aggregation of the quality of life and survival data is at the subject 
or the group level. The subject-based approach combines quality of life and survival at 
the patient level, thus creating a single endpoint for each subject on which to compare 
treatments. The group-based approach aggregates quality of life and survival at a (pre
defined) group level. Both approaches will be discussed and illustrated using data from 
a previously conducted phase DI trial in pancreatic cancer.

2.1 Background to the pancreatic cancer trial
The aim of the trial was to investigate the use of chemotherapy compared to a control 

in patients with pancreatic cancer in terms of both length of survival and quality of life. 
For practical reasons, quality of life was assessed in only a subgroup of trial patients. 
The results from the trial are currently unpublished and hence, for the purposes of this 
paper, the trial will be anonymous.

Quality of life was measured using the EORTC QLQ-C30, the standard instrument 
developed by the European Organisation for Research and Treatment of Cancer,10 
which measures 15 different dimensions including a measure of ‘global health status’. 
This single measure of quality of life is selected as the variable for analysis and, 
although simplistic, it nonetheless illustrates the essential elements of the various 
methods for quality-adjusted survival analysis and allows insight into the associated 
problems. The global health status score, which is constructed from two questions each 
with a seven-level ordinal response (see Figure 1), ranges from 0 to 100 and takes 13 
equally spaced possible values in this range.

The quality of life study was designed to assess patients every 3 months from trial 
entry to death. In practice, there was some variation in the timing of assessments and 
this paper uses actual assessment times rather than planned ones in the analyses that 
follow. In addition, many of the patients were not followed up until death and the 
length of follow-up in terms of quality of life and survival is variable across patients. In 
an attempt to equalize and at the same time maximize the length of follow-up for 
quality of life and survival for all patients, the analysis is restricted to the 2 year period 
from entry to trial. The reason that equal follow-up is important is discussed later. The 
data used in this paper is from 140 patients who all had a baseline quality of life 
measure and at least one other quality of life assessment during this time period.

Q29: How would you rate your overall 
physical condition during the past week?

Q30: How would you rate your overall 
quality of life during the past week?

Score = { [ mean -  I ] / 6  } x 100

Very poor Excellent

1 ----------------------► 7

0  ► 100

Figure 1 Global health status score from the EORTC QLQ-C30 [where mean=(Q29+Q30)/2].
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Figure 2 shows both the longitudinal quality of life in terms of global health status 
score and the survival data of patients over the first 2 years. Note that the graph of 
quality of life values over time assumes a linear change between assessments (see below 
for further discussion of plotting curves of quality of life over time). All except 18 
patients had full follow-up in terms of survival for the 2 years from entry, resulting in 
just 18 patients with a censored survival time during the 2 year study period. Eighty 
patients died within 2 years of entry to the trial, resulting in a large number of dropouts 
due to death within the 2 year time frame for the quality of life study, thus making it a 
realistic example with which to illustrate the simultaneous analysis of quality of life and 
survival data.

2.2 Subject-based approach
The simplest approach to quality-adjusted survival analysis is to use the quality of life 

data collected over time to calculate the number of QALYs for each subject.11,12 The 
measures of quality of life taken at discrete points over time for an individual can be 
used to create a ‘curve’ that describes the quality of life from entry to trial to either 
death or to a fixed end-of-study time. When the quality of life measure is a utility, the
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Figure 2 Global health status score (GHSS) interpolated over time and Kaplan-Meier survival curve for all 
patients in the pancreatic cancer study (censored survival times shown by dashes).
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area under this curve represents the QALYs for that subject. If the quality of life 
measure is not a utility then it may be possible to transform it to a 0-1 scale, to create a 
pseudo utility, and the resulting area under the curve may be interpreted like a QALY. 
There are a number of practical issues to consider when describing a patient’s quality of 
life, measured at a number of discrete time points, by a curve over continuous time.

•  The measures at discrete time points can be connected in a number of ways. A step 
function can be used if it is thought that the quality of life remains constant until the 
next measure. In some cases it may be appropriate to assume that the change 
happens midway between two time points. Another option is to assume that there is 
a linear change from one time point to the next (see examples in Figure 3). By 
connecting measures at discrete time points in this way, all quality of life values 
between the actual assessment times are effectively being imputed.

•  Often the quality of life study is designed to assess patients at fixed time points but 
there is usually some variation in the timings of the actual assessments around these 
fixed time points. The quality of life curve can be defined using either the planned 
fixed timings or the actual timings (latter used in examples in Figure 3).

•  If actual assessment times are being used and the first assessment is some time after 
the trial entry time, then the value of quality of life at entry needs to be imputed and 
connected to the value at the first assessment. The simplest approach is to carry the 
first value back to the trial entry time (see examples in Figure 3).

•  If the’ assessments are made at fixed times and there are intermittent missing 
assessments, a decision needs to be made as to whether it is reasonable to assume 
that such missing data are missing at random. If so, then the missing data can be 
ignored and the quality of life values on either side can be connected as normal (as 
done for example in Figure 3d). If not, then an approach that accounts for 
informative intermittent missing data needs to be used; however, such methodology 
is not well developed13 for applications in this context.

•  If a patient dies then their measure on the utility-type scale becomes zero from that 
point onwards. The curve between the last measure before death and the zero 
measure can be completed either as a step function or as a linear decline (see 
example in Figure 3 a).

•  If a patient’s survival time is censored then the quality of life curve will stop at the 
point when the patient was last known to be alive and the QALY will be censored 
(see Figure 3b). This can cause problems for the analysis as discussed later.

•  If quality of life is being studied for a fixed period of time and a patient is known to 
survive the full duration of the quality of life study period, then the curve must be 
completed by connecting the last measure taken within the study period to the fixed 
end-of-study time. This can be done in a number of ways depending on the nature 
of the post-study information. In some situations, it may be necessary or desirable to 
use purely the information within the study period for the analysis but if post-study 
information is available then it may enable the values imputed by the quality of life 
curve at the end of the study period to be more accurate in the following way. If a 
post-study quality of life assessment is available then the last measure before the 
fixed cut-off can be connected to the first measure after the cut-off using either a step 
function or linear change (see Figure 3c). Otherwise, if there is no post-study quality
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(a) Death within the 2 y study period

GHSS/100
1.0

6 9 12 15 18 21 24

TIME FROM ENTRY TO TRIAL (MONTH8)

(b) Censored survival within the 2 y study period

GHS8/100 
1J0

0 3 6 9 12 15 *  21 24 27 30

TIME FROM ENTRY TO TRIAL (MONTHS)

Figure 3 Examples of curves describing the transformed global health status score (GHSS/100) over time 
within 2 years of entry to trial for patients in the pancreatic cancer study (squares around dots indicate 
imputed values), (a) Death within the 2 year study period, (b) Censored survival within the 2 year study period, 
(c) Survival greater than 2 years with post-2 year quality of life assessment, (d) Death after the 2 year study 
period, (e) Censored survival greater than 2 years.

of life data available but the date of death is known, the last measure can be 
connected to the value 0 at the time of death in the most appropriate way (see Figure 
3d). In both cases the part of the curve within the study period completes the quality 
of life curve, with the value at the cut-off time calculated using interpolation. If 
neither of these events occur then the curve between the last measure and the cut-off 
time can be completed by carrying this value forward (see Figure 3e).
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(c) Survival greater than 2 y with post-2 y quality of life assessment

GHSS/100
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(d) Death after the 2 y study period

GHS8/100
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Figure 3 (continued)

If a patient drops out of the quality of life study but has continued follow-up in 
terms of survival then either the curve could stop at the last recorded assessment 
giving a censored QALY, which as discussed later can cause problems in the 
analysis, or the curve could continue to the last survival follow-up point (whether it 
be dead or alive) by imputing the missing values. There are a number of options 
available for imputation,14 the validity of which may be compromised if the time 
from last quality of life assessment to last survival follow-up is very long. The
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(e) Censored survival greater than 2 y
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Figure 3 (continued)

simplest approach is to carry the last value forward. Alternatively, the worst or best 
value could be carried forward from some appropriate point after the last assess
ment. If the approximate health state of the patient during the dropout time can be 
ascertained from other clinical information such as clinically assessed performance 
status then, at some appropriate point after the last assessment, the curve could take 
on a value that reflects the estimated health state of the patient. If the date of death 
of the patient is known then the curve could linearly decrease to zero over the 
dropout time. More sophisticated methods such as multiple imputation should be 
considered for imputing values at the scheduled times after dropout (whenever that 
is defined to be) for the formation of the quality of life curves.

If all patients in the study are followed up until death and quality of life is assessed for 
the full duration of this time, then a QALY can be calculated for each patient and 
treatments can be compared using standard analytical methods. In general, however, 
not all subjects will be followed up until death and for those patients with censored 
survival times, their QALY will also be censored. It would seem sensible to analyse such 
censored QALY data using standard survival analysis techniques, but the use of quality 
weightings in calculating the QALY endpoint creates an informative censoring and thus 
renders such methods invalid.3

One option is to fix the period of study, say to time L, such that all subjects either die 
within this time or are known to survive this time and hence, in all cases, survival times 
within the restricted period will be uncensored. The QALYs achieved within this study 
time, QALY(L), can be calculated and as long as quality of life values are available for 
the full duration of each patient’s survival time, there will be no censored values of 
QALY(L) and the comparison of treatments in terms of this measure using standard 
analytical methods will be valid.11 If, for some patients, quality of life values are not 
available for the full duration of the survival time then to avoid censored values of
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QALY(L) it will be necessary to impute quality of life values for the periods of survival 
with no measures of quality of life in the way described in the last bullet point given 
above.

If there are a number of survival times censored at an early time point then choosing a 
fixed time period with no censored survival times may not be a practical approach but 
using survival analysis techniques even with just a small number of censored values 
could give biased results.5 An alternative option is therefore to replace the censored 
QALYs with imputed values and analyse using standard statistical methods for non
censored data. Censored data can be replaced with a range of possible values.5 The 
minimum possible QALY would occur if the patient died immediately after the last 
follow-up. The maximum possible QALY would occur if the patient survived the rest of 
the study period with perfect quality of life. A mean value is obtained by assuming the 
patient survived the rest of the study period with quality of life valued at 0.5. This is 
illustrated and discussed further in the pancreatic cancer example. A more appropriate 
solution to overcome the problem of censored QALYs is to use a group-based approach 
as discussed later.

2.3 Subject-based approach illustrated with data from the pancreatic 
cancer study

In the pancreatic cancer study, the quality of life curves for each subject were created 
by plotting the global health status score (divided by 100 to put it on a 0-1 scale) 
against actual quality of life assessment times, assuming a linear change between 
assessments and ignoring intermittent missing values. A linear decrease in quality of 
life was assumed from the value at the last assessment to the value of 0 at the time of 
death (regardless of the time span). For patients with censored survival times, values of 
quality of life at the last assessment were carried forward until the time last seen alive 
(regardless of the time span).

Quality of life curves were restricted to the 2 year study period and post-study 
information in terms of quality of life where available and survival otherwise was used 
to complete the curves within the analysis period. For all subjects with survival follow- 
up greater than the study period, the 2 year value is interpolated from the linear change 
between the two values that straddle the 2 year cut-off. Examples of subjects’ quality of 
life curves illustrating some of these assumptions are shown in Figure 3 and the 
formation of curves based on these assumptions allows the quality of life at all times 
during an individual’s survival time to be estimated. Any values between the actual 
assessment times are effectively imputed by the formation of the quality of life curve.

Table 1 shows five different categories of patient in the study according to follow-up 
in terms of both survival and quality of life. The table shows the amount of time 
between the last quality of life assessment and the 2 year cut-off for those who survive 
the 2 year study time, and between the last quality of life assessment and the last 
survival follow-up time for those who die or are censored within this period. From this 
the dropouts from the quality of life study can be subjectively defined. Of the 140 
patients, 23 had a post-2 year quality of life assessment and therefore, despite the fact 
that some had a long period of time with no assessments within the 2 year study time, 
they were not deemed to have dropped out of the quality of life study. O f the remaining 
117 patients, 19 were known to have survived the 2 year study time, but only six of
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Table 1 Distribution of time from last quality of life (QoL) assessm ent to either 2 year cut-off for the 2 year 
survivors or last survival follow-up for those who died or were censored within 2 years (dropouts underlined)

Time from last QoL assessm ent Total

<3

COViCO 6 -< 1 2 12+

To 2 year cut-off for those who:
• survived 2 years and had post 2 year QoL assessm ent 15 4 2 2 23
• survived 2 years, had no post 2 year QoL assessm ent 5 1_ 3 4 13

but had known death date
• survived 2 years, had no post 2 year QoL assessm ent 1 0 2 3 6

or known death date

To last survival follow-up for those who:
•  died within 2 year study period 46 17 13 4 80
• censored within 2 year study period 13 3 I 2 18

Total 80 25 21 14 140

these were considered to be non-dropouts as they had a quality of life assessment within 
3 months prior to the 2 year cut-off. This leaves 111 patients who dropped out of the 
quality of life study within the 2 year analysis period. Of these, 46 could be attributed 
directly to death in that they died within 3 months of the last completed assessment and 
13 directly due to censoring. The reason for dropout in the remaining 52 was not 
known, although dropout within 3-6  months of dying could probably be attributed to 
illness. There were 60 patients whose curves between the last assessment and either the 
last survival follow-up or the fixed end-of-study time were based on imputed values for 
greater than 3 months and 14 of these had values imputed for greater than one year 
(Table 1). The imputed quality of life values become more questionable the larger the 
time span.

For each subject, the area under the quality of life curve within 2 years was calculated 
to give quality-adjusted life months achieved within this time, i.e., QALM(24). There 
were 18 censored QALM(24) values which were dealt with by (i) retaining them as 
censored values and using Kaplan-Meier estimates of QALM(24), and (ii) imputing 
extreme and average values for them and using standard estimates of QALM(24). These 
individual QALM(24) were compared across the two treatment arms (Table 2). In all 
cases the chemotherapy arm achieved, in terms of means, approximately one extra 
month quality-adjusted survival time within 2 years, whilst the medians showed a 
difference of 2-3 months between the treatment arms. None of these approaches deals 
with the censored data adequately and the alternative group-based approach, shown 
below, is preferred.

2.4 Group-based approaches
In the group-based approach, rather than combining quality of life and survival into 

a composite QALY measure for each subject and averaging them across each treatment 
group, average quality of life and survival are combined at the group level. In the Q- 
TWiST model, the mean amount of time a group spends in each health state is 
calculated using partitioned survival analysis. The amount of Q-TWiST is then
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Table 2 Quality-adjusted life months within 2 years by treatment group

Control arm 
(n= 67)

Chemotherapy arm 
(n= 73)

Subject-based approach using Kaplan-Meier estimates
Median 7.7 10.0
Mean (standard error) 9.7 (0.79) 10.7 (0.72)

Subject-based approach using best values for censored data
Median 8.0 10.4
Mean (standard error) 10.1 (0.80) 11.1 (0.74)

Subject-based approach using worst values for censored data
Median 6.8 9.5
Mean (standard error) 8.8 (0.68) 10.0 (0.67)

Subject-based approach using average values for censored data
Median 7.4 10.4
Mean (standard error) 9.4 (0.71) 10.6 (0.67)

Group-based approach
Mean (standard error) 9.4 (0.73) 10.4 (0.65)

cal-culated by combining this time with utilities reflecting the average quality of life of 
the group in each health state. The analysis generally uses utilities obtained from 
external valuational studies or considers the full range of possible values in a threshold 
utility analysis.3 The application of partitioned survival analysis in a Q-TWiST-type 
model using quality of life data to define the progressive health states has been 
illustrated and discussed elsewhere.15 This method, however, is based on the ability 
to define a meaningful set of progressive health states and this is often not possible with 
quality of life data. A simple methodology that directly combines longitudinal quality of 
life data with survival data at a group level has been proposed by a number of authors, 
each advocating the same model but suggesting alternative approaches to estima
tion.9,11,16 The method has been referred to as the integrated quality-survival product 
and applied to data from cancer clinical trials.17 It is comparable to that proposed by 
I in and colleagues to analyse censored cost data.18

The method multiplies the survival function S{t) by the quality of life function Q(t) 
for the group, where S(t) is the proportion of subjects that survive to time t and Q(f) is 
the quality of life of those survivors. In this way a quality-adjusted survival curve is 
created for the group. The area under this curve, usually calculated for a restricted time 
period, say up to time L, gives the mean QALY for the group for this period, thus

Q A LY(L)  = f  Q(t)S(t)dt (2)
Jo

The key decision is what estimators to use for the quality of life and survival functions, 
Q(t) and S(t)> respectively, in (2). The survival function can be estimated from the 
sample of survival data using standard methods such as the Kaplan-Meier product- 
limit estimator, the life-table method or by fitting a parametric model. There are a 
number of options for the quality of life function. One option is to estimate it using a 
model for quality of life over time fitted to the observed data. For example, a simple 
linear regression model fitted to all the available data could be used as an estimate of the 
quality of life function.17 Alternatively a lowess or kernel-type smoother could be
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applied to the sample to estimate mean quality of life for the group over time.16,17 A 
similar but simpler approach is to calculate the mean quality of life of survivors at the 
fixed assessment times and the quality of life function over continuous time can be 
created by connecting these estimates using either a step function or by assuming a 
linear change.9 If quality of life assessments are not taken at fixed times or the use of 
actual rather than fixed assessment times is preferable then the quality of life curves for 
each individual, as formed for the subject-based analysis, can be used to determine the 
quality of life at any time point tj and the mean of these values across all individuals that 
are alive and uncensored at this time gives an estimate of the quality of life function at 
time tjy that is

Q(tj)= l /nj  E  (3)
Z -  1

where qiitf) is the estimate of quality of life at time tj for surviving  ̂and uncensored 
individual i (i = 1 to nf). Having used individual values to calculate Q(tj) at a number 
of discrete time points, it is still necessary to join these values using say a step or linear 
function so that Q(£) is a continuous function over time.

Having estimated the survival and quality of life functions, the quality-adjusted 
survival curve is created by calculating their product and the area beneath this curve 
gives an estimate of the mean QALY(L). Clearly if the estimators for both survival and 
quality of life are simple functions of time then they can be multiplied and the integral of 
the quality-survival product can be calculated for time from 0 to L to give an estimate of 
the mean QALY(L). However, the most obvious estimator for the survival function is 
the Kaplan-Meier estimate, which is non-parametric and cannot be expressed as a 
simple function of time. The Kaplan-Meier method estimates the survival function S(£;) 
at each death time tj ( j  = 1 to k)  and connects these estimates using a step function,
i.e., it assumes the survival function remains constant until the next death time. With 
this as a survival function, the estimator for QALY(L) becomes

Q A L Y (L )  = E  % )
j=o I

where £0 = 0 and £̂ +1 = L.
If the estimator for the quality of life function is also piecewise constant between 

death times tj, then the estimator for QALY(L) becomes

Q A L Y (L )  = E  fS{tj)Q(tj)(tj+, -  £y)l (5)
M  L J

Thus having established the death times £; ( /  = 1 to k) of the patients, individual 
quality of life curves can be used to estimate the quality of life at each death time 
q^tj) ( j  -  1 to k) and Q(£y) can then be estimated as the mean of the values for the 
survivors at these times and, by assuming a step function, the quality of life estimator 
will be piecewise constant between death times. A valid alternative to using step 
functions would be to assume a linear change between time points for both of the 
functions.16 Combining the stepped quality of life function with the stepped Kaplan-

7+1

Q(t)dt (4)
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Meier survival function in the integrated quality-survival product given in (5) gives 
quality-adjusted survival time for the group as illustrated in the next section.

In calculating the quality of life function, the problem of missing values of quality of 
life for survivors that have dropped out needs to be considered and dealt with 
appropriately. If the missing data are missing at random then they can be ignored 
and the quality of life function estimated from the survivors with observed data will be 
unbiased. Otherwise, as with the creation of individual quality of life curves in the 
subject-based approach, the unobserved values of quality of life from the last assess
ment time to the last survival follow-up can be imputed. Choosing how to deal with 
these missing data is not a trivial issue and may have implications on the results. 
Imputing single values for missing data has the advantage of being a simple approach 
but underestimates the variability of parameter estimates and methods such as multiple 
imputation would help to address this and may therefore be preferable.

The standard error for the mean Q ALY(L)  is mathematically complicated and 
bootstrapping is recommended as the method for estimation,9,16’19 enabling confidence 
intervals to be calculated and hypothesis tests to be carried out.

2.5 Group-based approach illustrated with data from the pancreatic 
cancer study

The integrated quality-survival product was calculated for each treatment arm 
separately to give the estimated mean QALM(24) for each treatment. The Kaplan- 
Meier estimate of the survival function was calculated for each death time and, in the 
standard way, these estimates were assumed to remain constant until the next death 
time creating a stepped function as shown in Figure 4a. There were 41 distinct death 
times within the 2 year analysis period on the control arm and 37 on the chemotherapy 
arm. The quality of life at each death time within each group was calculated on an 
individual basis using their quality of life curves as defined for the subject-based 
approach previously described. The mean quality of life at each death time was then 
calculated from the estimates of those individuals who are known to be alive and 
uncensored at that time. Due to the various assumptions made to create the individual 
quality of life curves, all patients who are known to be alive at a particular time point 
will have a value even if they have dropped out of the quality of life study for some 
reason. The quality of life function over continuous time was estimated by assuming the 
quality of life remained constant between death times, thus creating a stepped function 
as shown in Figure 4b. The quality-adjusted survival functions for each group, as 
shown in Figure 4c, were created by multiplying the survivor and quality of life 
functions together and the areas under these curves calculated using (5) give the 
estimated mean QALM(24) for each group.

To estimate the standard error of mean QALM(24) for each treatment arm, 500 
bootstrap samples were taken from the observed data on each treatment arm and the 
mean QALM(24) was estimated for each sample. From the distribution of sample 
means, the standard errors were estimated.

The mean QALM(24) for the chemotherapy arm was 10.4 (standard error = 0.65) 
compared to 9.4 (standard error = 0.73) for the control group, so within 2 years of 
entry to the trial, chemotherapy gives patients on average one extra quality-adjusted life
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Figure 4  Group-based approach to quality-adjusted survival analysis for chemotherapy arm (solid line) and 
control arm (dotted line) in the pancreatic cancer study, (a) Survival functions, (b) Quality of life functions, 
(c) Quality-survival product.
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month. In this example, the results obtained with the group approach are comparable 
to the results obtained using the subject-based approach (Table 2).

3 Alternative approaches

3.1 Multistate survival analysis
Multistate survival models have been advocated as a possible means for analysing 

quality of life and survival data simultaneously.20,21 Although they have been applied in 
a variety of clinical settings,22-26 they have not been widely used for quality of life data.

The multistate model is defined by a finite number of health states, including death, 
together with the possible transitions between them. The health states can be described 
in terms of the nature and levels of quality of life experienced by patients during the 
study and should be defined such that the number of patients passing from one state to 
another is sufficient for adequate modelling of the data. The inclusion of death as a 
health state in the model deals with the situation when a patient ceases participation in 
the quality of life study due to death. In addition, the inclusion of a ‘dropout’ state 
allows the model to incorporate the time when patients drop out of the quality of life 
study prior to death and enables the dropout process to be explored. When the reasons 
for dropout are known, it may be appropriate to include a number of different dropout 
states related to the different reasons.

The movement of patients between health states is governed by transition rates. A 
transition rate is the instantaneous potential of transition at any point in time and is 
equivalent to the standard hazard rate function for a survival time distribution. The 
transition rates in a multistate model can be represented by Cox regression models27 
where the underlying baseline transition rate may be left unspecified or modelled 
parametrically by assuming the transition times follow a specific distribution. The most 
commonly used distributions are the exponential and the Weibull distributions, the 
exponential being a special form of Weibull distribution. If an exponential is assumed, 
then the underlying baseline transition rate is assumed to be constant, ie time- 
homogeneous, otherwise for a Weibull distribution, or in fact any distribution in 
which the hazard is a function of time, the underlying baseline transition rate is allowed 
to change over time, ie time-inhomogeneous. In modelling the transition rate from one 
state to another, simplifying assumptions that may be made include (a) a Markov 
process or (b) a semi-Markov process. In a Markov process the transition rate from 
state to state is dependent only upon the present state occupied; in a semi-Markov 
process the transition rate is also dependent upon the duration of time in that state.28

Model parameters are estimated using the observed transition times for patients. 
Exact transition times tend to be available for the transition to death but transition 
times from one alive state to another need to be estimated from the timing of the quality 
of life assessments. When a dropout state is included in the model as a transient state on 
the way to death, the time after their last quality of life assessment at which a patient is 
deemed to enter this state needs to be defined.

The application of such models to quality of life data has been illustrated elsewhere.15 
Multistate survival analysis allows the effect of treatments on different health state 
transitions to be explored. If a single overall statement of the superior treatment is
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required explicitly then some sort of trade-off between the separate results would be 
needed.

3.2 Joint modelling
The change in quality of life over time and the time to death can be considered as two 

simultaneous processes occurring in patients, and can be modelled as such. Models are 
assumed for each process and the parameters can be estimated simultaneously in a 
single analysis. There is an increasing literature on the joint modelling of repeated 
measures and survival outcomes.29-32 The majority of examples have used classical 
approaches, such as selection models and pattern-mixture models, and there are only a 
limited number of examples of the application of such methods to longitudinal quality 
of life data.

One example33 simultaneously analyses the quality of life and survival data using a 
selection model originally proposed by Schluchter34 in which the intercept and slope 
from a linear random effects model of quality of life over time together with the log 
survival time are assumed to follow a trivariate normal distribution. Estimation of the 
parameters of this joint distribution is problematic when the data includes censored 
survival times, but these difficulties may be overcome by using the EM algorithm. This 
method could be extended to encompass a more complex random effects model, but 
convergence problems for parameter estimation could occur unless there is a large 
number of subjects.35

Fairclough and colleagues35 not only illustrate the use of Schluchter’s model in a 
quality of life and survival application but also implement a pattern-mixture model. In 
this latter approach patients are stratified according to different missing data patterns 
and within each strata the parameters in the model of quality of life over time are 
estimated. These individual strata estimates are then combined in a weighted average to 
give estimates of the overall population parameters. Types of missing data patterns need 
to be defined such that there are sufficient patients within each stratum for adequate 
modelling of the parameters. The most simplistic categorization is to create two strata, 
one consisting of ‘completers’ and a second consisting of dropouts at any time. 
Depending on the number of subjects available, additional strata can be added 
according to time of, and reason for, dropout. An alternative, and arguably more 
clinically relevant approach (see Discussion), has been proposed that uses the pattern- 
mixture models in a composite approach rather than averaging the parameter estimates 
over the different dropout patterns.36

A Bayesian approach to simultaneous modelling of repeated measures and survival 
data has also been considered37,38 and the application of these methods to longitudinal 
quality of life has recently been illustrated.39 As with the classical approaches two inter
linked models are specified for the quality of life and survival processes. For the survival 
process, Cox regression models, accelerated failure time models and parametric models, 
either over all time or piecewise, should all be considered. For the quality of life process, 
a mixed model that adequately describes the pattern of quality of life over time should 
be considered. Markov Chain Monte Carlo methods, in particular Gibbs sampling, can 
then be used to fit the models within a single analysis. This gives the joint posterior 
distribution for all unknown parameters in both models. In this way, the parameter
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estimates in the quality of life model will account for informative dropout due to death 
and the parameter estimates in the survival model will be based on the true underlying 
value of quality of life and will thus allow for potential measurement error. By using 
general linear mixed models, non-normal quality of life data can also be accommo
dated.39

The joint modelling approach offers an attractive future direction for the simulta
neous analysis of quality of life and survival data and further research in this area is in 
progress.

4 D iscussion

4.1 Missing data and multiple measures
In clinical trials where quality of life and survival are both important outcomes, it 

may be advantageous to assess treatments in terms of both outcomes simultaneously. 
The analysis and reporting of quality of life and survival as separate outcomes is 
important to allow any conflict between them in terms of treatment effect to be 
apparent,20 but the simultaneous analysis can supplement this and allow the net benefit 
to be assessed. The reporting of quality of life as a separate outcome, however, needs 
considerable care as the problem of informative dropout will generally need to be 
accounted for and simultaneous analysis of quality of life with survival can at least 
account for the informative dropout due to death of the patients within the quality of 
life study time frame. One view held is that the time-dependent structure of the 
individual quality of life process can best be accounted for when quality and quantity 
of survival are analysed simultaneously.21

The simultaneous analysis of quality of life and survival addresses the issue of missing 
data within the quality of life study time frame beyond death, but the problem of 
missing data due to dropout from the quality of life study prior to death has not been 
fully addressed here. Imputation may be one approach that could be adopted to deal 
with the missing data or it may be preferable to consider the dropout time as a quality 
of life health state (or maybe several) that is experienced prior to death. As well as 
deciding how to deal with the missing data created by dropout, a decision as to how to 
define when a patient becomes a dropout needs to be made and different definitions 
may result in different conclusions.

The problem of intermittent missing quality of life data is a further issue that needs 
consideration. In many cases the intermittent missing data will be missing at random 
and therefore ignorable, but if the reason for missingness is known to be related to the 
health of the patient then an analysis that ignores this may give biased results. 
Methodology for dealing with informative intermittent missing values is not well 
developed. One simple option could be to impute values such that, if the patient is 
known to have missed quality of life assessments due to illness, an appropriate quality 
of life value that reflects this could be used to impute the missing values.

Other missing data issues that have not been addressed are the problem of missing 
baseline values and how to handle the situation when a patient has completed only one 
quality of life assessment. In the illustrative example used here we excluded such 
patients but this could introduce bias and approaches, such as the imputation of missing
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data or the use of model-based approaches, which allow these patients to be included 
should be considered.

The methods for simultaneous analysis are generally based on a single measure of 
quality of life. In reality, there will be a number of quality of life measures, and there are 
a number of approaches that can be taken to deal with the multiple outcomes. It may be 
appropriate to analyse a single quality of life measure, either in the form of a summary 
score created from various measures, or some global score used as a summary measure 
or a single measure identified as the one of particular relevance, ideally decided at the 
study design stage. Other measures could undergo a purely descriptive analysis. 
Alternatively, if several measures are of interest the simultaneous analysis could be 
repeated for each one. This obviously causes problems of multiple testing, takes no 
account of correlations between quality of life measures, and conflicting conclusions 
could prove difficult to interpret. Multi-level modelling has been proposed to analyse 
multiple measures of quality of life over time2 and this approach has been extended to 
incorporate survival.33 Further work is needed to extend the methods discussed in this 
paper to account for multiple quality of life outcomes.

4.2 Quality-adjusted survival analysis
Quality-adjusted survival analysis provides a relatively straightforward approach for 

the simultaneous analysis of quality of life and survival data. Ideally it requires the 
quality of life measures over time to be utilities but the approach is applicable to any 
measure from a quality of life instrument provided that it is transformed onto a 0-1 
scale. The choice of transformation will generally be linear but in some cases it may be 
more appropriate to use one that is non-linear.17 The interpretation of the resultant 
measure as a QALY however may be questionable if the quality of life measures are not 
true utilities.

The subject-based approach of combining quality and quantity of life into individual 
QALYs using the area under the utility-type curve is the simplest form of quality- 
adjusted survival analysis. A number of assumptions need to be made to create a quality 
of life curve over time from which QALYs can be calculated. Different assumptions will 
produce different curves and give different results40 and the assumptions may be 
questionable if the time spans between assessments are large. Although the method 
deals with the problem of missing quality of life data due to death by allocating a value 
of 0 to all time beyond death, it does not deal with missing data resulting from dropout 
from the quality of life study prior to death. Values for these missing data can be 
imputed, in particular if the reasons for dropout are known or clinical data are available 
an appropriate value can be allocated to the time spent as a dropout to reflect the 
quality of life during that time. Other simple methods of imputation such as last value 
carried forward and linear interpolation that have been used here may not be adequate 
and more sophisticated methods such as multiple imputation need to be considered and 
their use within this context needs to be assessed. Some authors who use an area under 
the curve approach to analyse longitudinal quality of life data, deal with dropout, 
including that due to death, by dividing the area by the length of the observation time 
from trial entry to last assessment and compare treatments using a standardized area 
under the curve.41 This is effectively an analysis of the distribution of quality of life
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during the time that they participate in the study. The problem with this approach is 
that individuals with a short follow-up time will have equal weighting to those with a 
long follow-up time.11 In particular, if death is not accounted for then, for example, an 
individual with a quality of life value of 0.7 for 6 months who then dies will be treated 
with equal weight as someone who survives for the whole 2 year analysis period with a 
quality of life value of 0.7.

The subject-based approach may be problematic if there are subjects with censored 
survival times. This may be overcome by restricting the analysis to an upper time limit, 
which may automatically happen if the collection of quality of life data is restricted to a 
limited time period. The choice of upper time limit is subjective, and the possible 
inclusion of available quality of life and survival information after this time needs to be 
considered carefully to ensure that no bias is introduced. In many studies restricting the 
analysis to an upper time limit will merely minimize, rather than eliminate, the number 
of censored QALYs and in this case, although imputing values for the censored data in 
a sensitivity analysis is an option, in general a group-based approach will be preferable 
if censored data are present.

The integrated quality-survival product provides a simple method for combining 
quality of life and survival data at the group level whilst dealing with censored survival 
times. It is preferable to the method of partitioned survival analysis that was 
recommended for Q-TWiST analysis since it is not based on progressive health 
states, which are generally difficult to define in relation to quality of life data. Instead 
the method directly incorporates longitudinal quality of life data collected on patients in 
a quality-adjusted survival analysis.

There are number of choices to be made when implementing this method, in 
particular estimates for the quality of life and survival functions need to be chosen 
and the analysis in general will need to be restricted to an upper time limit. Sensitivity 
analysis is recommended to assess the robustness of the results to these choices. The 
most obvious choice for the survival function is the Kaplan-Meier survival curve. For 
the quality of life function, using individual’s functions of quality of life over time to 
estimate the average quality of life of survivors at a number of given time points is the 
most flexible approach in that it allows for differing assessment times. The problems 
associated with creating individual quality of life curves in the subject-based approach 
are applicable here. For both the quality of life and survival functions, assumptions are 
required to realistically map the values estimated at discrete time points to their 
estimated course in continuous time. The major problem with the group-based 
approach is the difficulty in calculating standard errors, although software to perform 
bootstrapping is becoming more readily available.

4.3 Multistate survival analysis
Multistate survival analysis provides a flexible approach for the simultaneous 

assessment of quality of life and survival data, and may provide a greater insight into 
the effect of treatments on quality of life than quality-adjusted survival analysis. The 
method, however, can be problematic since it requires a number of simplifying 
assumptions to be made and extensive data for adequate modelling of the transition 
rates.
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The method can be used with any quality of life instrument, providing they can be 
used to define meaningful health states. The quality of life measures do not need to be 
utilities, and for multidimensional instruments, combinations of values for the different 
dimensions could be used to define the health states. Defining health states using quality 
of life data is subjective, and the effects of using different definitions should be 
considered as part of a sensitivity analysis. Definitions will differ depending on the 
single quality of life variable or combinations of variables to be used, the number of 
health states to be included, and the cut-off values used to discriminate between health 
states. At the one extreme, the model needs to be sufficiently complex in order to be 
clinically meaningful and to also ensure that information from the data is utilized to a 
maximum. At the other extreme, a simple model is needed to ease the interpretation of 
the analysis and to allow a sufficient number of transitions between health states for 
adequate estimation of transition rates.

There are a num ber of choices to be made regarding the appropriate model for the 
transition rates. The Cox regression model is an attractive option due to its lack of 
assumptions regarding the baseline transition rates, but it requires that the hazards of 
transition are proportional, and this should be checked. If the assumption of a 
particular probability distribution for the data is valid then a parametric model may 
be a more appropriate choice, but the goodness-of-fit should be checked. A choice also 
has to be made as to whether the underlying process is Markov or semi-Markov.

To be able to model the transition rates accurately, the ‘exact’ times of transition 
between health states are required. These can be estimated and the accuracy is 
determined by the frequency of the quality of life assessments. Alternative methods 
that do not require exact transition times are available,42 but these methods require 
specialized software tha t is not readily accessible to researchers.

One of the advantages of the method is that it provides a means of dealing with the 
problem of informative dropout. The inclusion of death as a health state in the model 
deals with dropout from the quality of life study due to death and the inclusion of one 
or more dropout states allows dropout prior to death to be incorporated and enables 
the dropout process to be explored.

4.4 Joint modelling
Joint modelling is the most complex approach but enables the separate quality of life 

and survival processes to be modelled whilst accounting for the other process and 
allows the interrelationship between the two processes to be examined. The appro
priateness of both selection and pattern mixture models for jointly modelling quality of 
life data over time with survival has been questioned since the aim of these analyses is to 
estimate the hypothetical complete-data marginal means, that is the quality of life that 
would have been observed had the patients not died. This is not clinically relevant and a 
composite approach has been proposed that estimates more relevant measures, namely 
the conditional mean of the completers together with the probability of completion.36

Joint modelling, unlike quality-adjusted survival analysis and multistate survival 
analysis, requires distributional assumptions for the quality of life measures. The 
majority of examples of joint modelling for repeated measures over time and survival 
assume that the repeated measures have a normal distribution, which will often not be 
appropriate for quality of life outcomes. The Bayesian approach, however, could easily
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be adapted to be applicable to any type of distribution. In general, the Bayesian 
approach to joint modelling allows a greater degree of flexibility. The models for each 
process can be as complex as required, though a balance has to be maintained between 
complexity and ease of interpretation, and it may be possible to incorporate a model for 
the missing data process to account for data missing for reasons other than death.43 
There is also potential to extend the method to include models of a hierarchical nature 
that would account for the multidimensionality of quality of life data.

5 Summary

In summary, quality-adjusted survival analysis is the simplest and most accessible 
approach for the simultaneous analysis of quality of life and survival data. In particular 
the more recently proposed integrated quality-survival product formulation provides a 
means for directly combining longitudinal quality of life and survival data collected on 
patients. We believe that this will probably become the standard approach for quality- 
adjusted survival analysis in clinical trials. Although quality-adjusted survival analysis 
overcomes the problem of missing quality of life data due to death, it does not 
adequately deal with missing data resulting from dropout from the quality of life 
study prior to death. Alternative modelling-based approaches, such as multistate 
survival analysis or joint modelling, may provide the means to model the dropout 
processes explicitly. Currently, these methods have not been developed fully for quality 
of life data and their application in this field needs further evaluation. We believe that 
the joint modelling approach in particular offers an attractive future direction for the 
simultaneous analysis of quality of life and survival data and further research in this 
emerging area is actively being pursued.
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Editorial Comment

Potential hazards in the analysis of symptom improvement1̂

So far systemic treatments for non-small cell lung 
cancer (NSCLC) have yielded only small survival 
benefits. Consequently, the balance between additional 
quantity of life and the quality o f that added survival is 
critical. Treatment for advanced lung cancer can influ
ence quality of life (QL) both positively through 
alleviation of symptoms and negatively through toxicity. 
Monitoring these effects and analysing and interpreting 
the data collected are far more difficult than the 
relatively standard examinations of survival within 
clinical trials.

In studies of QL, assessments are generally made at a 
number of time points during a patient’s follow-up 
giving rise to what are commonly known as longitudinal 
data. A simple approach to the analysis of such data is 
to summarise each patient’s results over time into one 
single summary measure [2]. One measure that could be 
used is the occurrence or not o f some QL-related event 
during their follow-up. For example, Vansteenkiste et al. 
[1] use the occurrence of symptom improvement as their 
endpoint on which to compare treatments. There are a 
number of problems that can occur when analysing such 
an endpoint and these are discussed below.

The definition of any QL-related event is subjective 
and potentially problematic and this should always be 
acknowledged in the reporting of results. For example, 
Vansteenkiste et al. define symptom improvement as a 
‘lower score sustained for at least 8 weeks’. This 
definition can encompass a wide range of different 
possibilities. On the one hand, a patient could have a 
fractionally lower score for 8 weeks, possibly just as a 
result of variability in how they mark the visual 
analogue scale, and this would be deemed an improve
ment. On the other hand, someone could have a 
substantial decrease sustained for 7 weeks and 6 days 
and this would not be deemed to be an improvement. 
The variability of patient outcomes within the definition 
of symptom improvement should be checked and 
reported. Also, the analysis should be re-run using 
alternative definitions to assess if the results are sensitive 
to the definition of symptom improvement.

It is widely known that the only truly unbiased way to 
compare treatments in a clinical trial is to use an
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intention-to-treat analysis. This means that all rando
mised patients should be included in the analysis [3]. 
Intention-to-treat analysis for the survival endpoint is 
reasonably straightforward and hence commonplace but 
such an analysis is problematic and rarely used for the 
QL endpoint. For this reason QL analyses may give 
biased results. In particular, with the occurrence of 
symptom improvement as an endpoint, patients are 
excluded for a number of different reasons, each of 
which causes possible bias.

In studies of symptom improvement patients may be 
excluded from entry or from analysis if they do not 
exhibit specific symptoms at baseline. This denies the 
possibility of showing treatment: (i) preventing or 
delaying the onset of symptoms; and (ii) causing new 
symptoms. Furthermore, this practice may lead to bias. 
In the Vansteenkiste study, for example, the analysis of 
each symptom excludes patients who do not have that 
symptom at baseline. The exclusion of such patients 
could cause bias if the treatment groups differ with 
respect to the presence of baseline symptoms. Patients 
with missing baseline assessments could also cause 
problems for analysis. In addition, since patients with 
the most extreme symptom levels at baseline have 
greater potential for improvement, any differences 
between treatment groups in terms of baseline symptom 
levels could give biased results.

When using longitudinal data to determine whether or 
not patients have experienced a symptom improvement, 
the opportunity to observe the event is related to the 
length of follow-up time and hence in order to handle all 
patients equivalently, they need to have been followed- 
up for exactly the same amount of time. Certainly, the 
follow-up time on the two treatment arms, which should 
always be reported, needs to be comparable for an 
unbiased treatment comparison. This is particularly 
important when the definition of symptom improvement 
also requires the patient to maintain the improvement 
for a specified period of time. For example, in the 
Vansteenkiste study, patients who have a symptom 
improvement but do not have a further 8 weeks of 
follow-up do not conform to the definition of symptom 
improvement and are excluded from the analysis. This 
exclusion of patients could cause bias.
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Differential follow-up is caused by the early dropout 
of patients from the study. The number of patients who 
dropout over time and if possible the reason for dropout 
should be reported. If a patient drops out due to death 
or disease progression prior to obtaining a symptom 
improvement then they can be included in the analysis 
by categorising their outcome as no symptom improve
ment. If a patient drops out for other or unknown 
reasons then it may be more difficult to include these 
patients. The inclusion of all patients in an intention-to- 
treat analysis would require the outcomes for these 
patients to be imputed by using other known clinical 
data or by making assumptions about such patients. If 
the dropout rate and the reasons for dropout are 
comparable for the different treatment arms then the 
exclusion of such patients may not bias the treatment 
comparison. Otherwise, more complex statistical meth
ods that analyse the longitudinal data whilst accounting 
for the dropout of patients should be employed [4].

The exclusion of patients not only lead to bias but 
also results in small numbers for analysis, and hence less 
precise estimates and reduced power to detect treatment 
differences. In addition, the conclusions will only be 
valid for the specific group included. For example, the 
analysis presented b y  Vansteenkiste et al. in Figures 1 
and 2 relates to a very select and small group of patients. 
The confidence intervals for the estimates shown will be 
wide and inferences from the analysis can only be made 
to those patients who are well enough to undergo the 
full duration of treatment.

In general, a quality of life questionnaire assesses a 
number of different symptoms and the analysis will 
often consider each symptom separately. This can result 
in large numbers of hypothesis tests. For example, 
Vansteenkiste et al. analyse nine different measures of 
quality of life. The hazards of multiple testing are well 
known [5], with the chance of incorrectly rejecting the 
null hypothesis increasing as the number of tests 
increases. Methods, such as Bonferroni adjustments, 
are available to adjust for multiple testing [6] and, at a 
minimum, the implications of multiple testing should be 
discussed in any report.

The detailed reporting of QL data from clinical trials, 
such as the paper by Vansteenkiste et al. included in this 
journal, is important in aiding clinical decisions about 
treatments. The analysis of longitudinal QL data is 
notoriously difficult and will usually entail many 
challenging decisions regarding the most appropriate 
methods. Here we have discussed the possibility of 
summarising the data as the occurrence or not of

symptom improvement, which creates a simple outcome 
on which to compare treatments but can still be 
problematic to analyse. The exclusion of patients, which 
can reduce numbers for analysis and create less gen- 
eralisable and possibly biased results, is one of the 
greatest problems. An intention-to-treat analysis, which 
includes all randomised patients, will always guarantee 
an unbiased comparison of treatments but is not always 
possible without making sweeping assumptions or 
employing complex statistical methods. The difficulties 
and potential biases should always be acknowledged in 
the analysis, reporting and interpretation of QL data.
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APPENDIX II

WINBUGS CODE FOR JOINT MODELLING OF 
QUALITY OF LIFE AND SURVIVAL DATA 

FROM THE MIC AND ESPAC STUDIES



MIC Quality of Life Study
Joint model for quality of life and survival or dropout 
Linear random effects for GQS over time 
Piecewise exponential for survival or dropout

MODEL

Using Product Normal formulation
model
{
for Q in 1:NQ0L){ 

score[j] ~ dnorm(muD],tau)
muO] <- theta[pat[j],1] + theta[pat[j],2]*timeG] + deltal*trt|j] + delta2*trt[j]*time[j]
}

for (i in 1:N) { 
theta[i, 1 j ~ dnorm(mu.thetal ,tau 1) 
theta[i,2] ~ dnorm (mu.theta2[i],tau2) 
mu.theta2[i] <- lambdaO + Iambda1*(theta[i,1] - 78)
}

mu.alpha1 <- mu.thetal
mu.alpha2 <- lambdaO + Iambda1*(mu.theta1 - 78) 
var.alpha1 <- 1/tau1
var.alpha2 <- (1/tau2) + (var.alpha1*pow(lambda1,2)) 
cov.a1a2 <- Iambda1*var.alpha1 
var <- 1/tau

mu.thetal ~ dnorm(0.0,0.0001) 
lambdaO ~ dnorm (0,0.0001) 
lambdal -  dnorm (0,0.0001) 
deltal ~ dnorm (0,0.0001) 
delta2 ~ dnorm (0,0.0001)

# Gamma priors for precision 
taul -  dgamma(0.001,0.001) 
tau2 ~ dgamma(0.001,0.001) 
tau -  dgamma(0.001,0.001)

# Half normal priors for standard deviations 
taul <-1/pow(sigma1,2)
tau2<-1 /pow(sigma2,2) 
tau<-1/pow(sigma,2) 
sigmal -dnorm (0,0.0001) I (0,) 
sigma2~dnorm(0,0.0001)1(0,) 
sigma-dnorm (0,0.0001) I (0,)

# Uniform priors for standard deviations
# taul <-1/pow(sigma1,2)
# tau2<-1/pow(sigma2,2)
# tau<-1/pow(sigma,2)
# sigmal ~dunif(0,10000)
# sigma2~dunif(0,10000)
# sigma-dunif(0,10000)

for (p in 1:NSURV) {

# Choice of predictive value for QOL
score.start[p] <- theta[patid[p],1] + theta[patid[p],2]*tlmest[p] + deltal*trtarm[p] +delta2*trtarm[p]*timest[p]



score.end[p] <- theta[patid[p],1] + theta[patid[p],2]*timeend[p] + deltal*trtarm[p] 
+ delta2*trtarm[p]*timeend[p] 

score.pred[p] <- score.start[p] -78 
# score.pred[p] <- ((score.start[p]+score.end[p])/2)-78
# score.pred[p] <- (theta[patid[p],2] + delta2*trtarm[p])+0.06 

dintv[p] ~ dpois(nu[p]) 
log(nu[p]) <- offset[p] + gammaO[nintv[p]] + gamma1*trtarm[p] + gamma2*score.pred[p] 
offset[p] <-log (su rvtim e[p])
}

for (k in 1:F) { 
gammaO[k] ~ dnorm(0,0.0001) 
hO[k]<- exp(gammaO[k])
}

gammal ~ dnorm(0,0.0001) 
gamma2 ~ dnorm (0,0.0001)
}

Using Wishart Prior
model
{
for (j in 1:NQOL) { 

scoreO] ~ dnorm(muQ],tau)
muQ] <- theta[pat[j],1] + theta[pat[j],2]*time[j] + deltal*trt[j] + delta2*trt[j]*time[j]
}

for (i in 1 :N){ 
theta[i,1:2] ~ dmnorm(mu.alphan, R[J)
}

tau ~ dgamma(0.001,0.001) 
var <- 1Aau
deltal ~ dnorm (0,0.0001) 
delta2 ~ dnorm (0,0.0001)

mu.alpha[1] ~ dnorm (0,0.0001) 
mu.alpha[2] ~ dnorm(0,0.0001)

R[1:2 , 1:2] -  dwish(Omega[, ], 2)

for (k in 1:2) { 
for (I in 1:2){

COV[k,l]<-inverse(R[,],k,l)
}

}

for (pin 1 :NSURV) {

# Choice of predictive value for QOL
score.start[p] <- theta[patid[p],1] + theta[patid[p],2]*timest[p] + deltal*trtarm[p] +delta2*trtarm[p]*timest[p] 
score.end[p] <- theta[patid[p],1] + theta[patid[p],2]*timeend[p] + deltal*trtarm[p]

+ delta2*trtarm[pj*timeend[p]
# score.pred[p] <- score.start[p] -78
# score.pred[p] <- ((score.start[p]+score.end[p])/2)-78 

score.pred[p] <- theta[patid[p],2] + delta2*trtarm[p]

dintv[p] ~ dpois(nu[p])
log(nu[p]) <- offsetfp] + gammaO[nintv[p]] + gammal*trtarm[p] + gamma2*score.pred[p]

+ gamma3*score.pred[p]*trtarm[p]



offset[p]<-log(survtime[p])
}

for (k in 1:F) { 
gammaO[k] ~ dnorm(0,0.0001) 
hO[k]<- exp(gammaO[k])
}

gammal ~ dnorm(0,0.0001) 
gamma2 ~ dnorm (0,0.0001) 
gamma3 ~ dnorm (0,0.0001)
}

DATA

QOL Data for all models

list(NQOL=392,N=109)

patQ trtQ timefl scoreQ 
1 0.5 -5 77.083 
1 0.5 -2 80.208 
1 0.5 1 87.5
1 0.5 4 95.833
1 0.5 7 81.25

Extra QOL data for Wishart prior
list(Omega = structure(.Data = c(100, 0, 0, 0.5), .Dim = c(2,2)))

Survival data
list(F=4, NSU RV=393)

patidQ trtarmD dintvD nintvQ timestQ timeendQ survtimeD
1 0.5 0 1 -6 0 6
1 0.5 0 2 0 3 3
1 0.5 0 3 3 6 3
1 0.5 0 4 6 9 3
2 -0.5 0 1 -6 0 6
2 -0.5 0 2 0 3 3
2 -0.5 1 3 3 6 1.8571
3 0.5 0 1 -6 0 6
3 0.5 0 2 0 3 3

n a n 7, A

Dropout data
list(F=4,NSURV=349)

patidD trtarmD dintvQ nintvQ
1 0.5 0 1 -6 0 6
1 0.5 0 2 0 3 3
1 0.5 0 3 3 6 3
1 0.5 0 4 6 9 3
2 -0.5 0 1 -6 0 6
2 -0.5 0 2 0 3 3
2 -0.5 1 3 3 6 1.8571
3 0.5 0 1 -6 0 6

INITIAL VALUES



Inital values for Product-Normal formulation
Iist(mu.theta1 = 78, lambdaO = -0.06, Iambda1=0, deltal =6, delta2=0.5)

With Gamma priors on precision 
list(tau = 0.02, taul = 0.01, tau2 = 2.4)

With Half Normal and Uniform priors on sds
list(sigma = 7, sigmal = 10, sigma2 = 0.6)

Inital values for Wishart prior formulation
list(mu.alpha=c(78, -0.06), deltal =6, delta2=0.5, tau=0.02, R = structure(.Data = c(0.01,0,0,2.4), .Dim 
c(2,2)))

Initial values for all models from classical estimates of random 
effects
theta[,1] theta[,2]
80.92 0.21
82.62 -0.54
81.12 -0.22 
80.08 0.24
85.06 0.87
* 7 0  A 4 n  O f i

For piecewise exponential with 4 time intervals
Iist(gamma0 = c(-4,-4,-4,-4), gammal =0, gamma2=0) 
list(gamma0 = c(-4,-4,-4,-4), gammal =0, gamma2=0, gamma3=0)



ESPAC Quality of Life Study 
Joint model for quality of life and survival or dropout 
Piecewise linear random effects model for GHSS over time 
Piecewise exponential model for survival

MODEL

Using Wishart Prior
model
{
for (j in 1:NQOL) {

score[j] ~ dnorm(muD],tau)
muQ] <- theta[pat[j],1] + theta[patG],2]*timeint1[j] + theta[pat[j],3]*timeint2[j]

+ deltal *trt[j] + delta2*trt[j]*timeint1 [j] + delta3*trt[i]*timeint2Q]
}

for (i in 1 :N){
theta[i,1:3] ~ dmnorm(mu.alphaD, R[,])
}

tau ~ dgamma(0.001,0.001) 
var <- 1Aau
deltal ~ dnorm (0,0.0001) 
delta2 ~ dnorm(0,0.0001) 
delta3 ~ dnorm (0,0.0001)

mu.alpha[1] ~ dnorm(0,0.0001) 
mu.alpha[2] -  dnorm(0,0.0001) 
mu.alpha[3] ~ dnorm(0,0.0001)

R[1:3 , 1:3] ~ dwish(Omega[, ], 3)

for (k in 1:3) { 
for (I in 1:3){

COV[k,l]<-inverse(R[,],k,l)
}

}
for (pin 1 :NSURV) {

# Choice of predictive value for QOL
score.start[p] <- theta[patid[p],1] + theta[patid[p],2]*timest1[p] + theta[patid[p],3]*timest2[p]

+ deltal *trtarm[p] + delta2*trtarm[p]*timest1[p] + delta3*trtarm[p]*timest2[p] 
score.end[p] <- theta[patid[p],1] + theta[patid[p],2]*timeend1[p] + theta[patid[p],3]*timeend2[p] 

+ deltal *trtarm[p] + delta2*trtarm[p]*timeend1[p] + delta3*trtarm[p]*timeend2[p] 
score.pred[p] <- score.start[p]-62

# score.pred[p] <- ((score.start[p]+score.end[p])/2)-62

dintv[p] ~ dpois(nu[p])
log(nu[p]) <- offset[p] + gamma0[nintv[p]] + gamma1*trtarm[p] + gamma2*score.pred[p] 
offset[p]<-log(survtime[p])
}

for (k in 1:F) {
gamma0[k] ~ dnorm (0,0.001) 
h0[k]<- exp(gamma0[k])
}

gammal ~ dnorm(0,0.001) 
gamma2 ~ dnorm(0,0.001)
}



DATA

QoL data for models

list(NQ0L=710,N=175)

patfl trtfl timeintlfl
i 0.5 1.1184 0
1 0.5 2.5987 0
1 0.5 5.6908 0
1 0.5 6 19.625
1 0.5 6 22.8487
1 n 5 fi 75 57 AQ

timeint2Q scoreQ
83.3333
58.3333 
41.6667  
50

50
5n

Extra data for Wishart prior

list(Omega = structure(.Data = c(200, 0, 0, 0, 10, 0, 0, 0, 1), .Dim = c(3,3)))

Survival within 24 months 
list(F=8, NSURV = 950)

T ag T"? 0^0 3®mestl|l timest2[] ta r t ,, #raend20 survfims(]

1 0.5 0 2 3 0 6  0 3
1 0.5 0 3 6 0 6 3 3
1 0-5 0 4 6 3  6  6  3
1 0.5 0 5 6 6  6 9  3
1 0.5 0 6 6  9  6 12 3
1 0.5 0 7 6 12 6 15 3
1 0.5 0 8 6 15 6  18 3
2 -0.5 0 1 0  0  3 0 3
2 -0.5 0 2 3 0 6 0 3
2 -0.5 0 3 6 0 6  3 3
2 -0.5 0 4 6 3 6  6 3
2 -0.5 1 5 6 6 6  9 1.4539

Dropout within 24 months

imest2 timeendl timeend2 survintrnd
id trtc eventint interval timestl ti
1 0.5 0 1 0 0 3 0 3
1 0.5 0 2 3 0 6 0 3
1 0.5 0 3 6 0 6 3 3
1 0.5 0 4 6 3 6 6 3
1 0.5 0 5 6 6 6 9 3
1 0.5 0 6 6 9 6 12 3
1 0.5 0 7 6 12 6 15 3
1 0.5 0 8 6 15 6 18 3
2 -0.5 0 1 0 0 3 0 3
2 -0.5 0 2 3 0 6 0 3
2 -0.5 0 3 6 0 6 3 3
2 -0.5 0 4 6 3 6 6 3
2 -0.5 1

A
5 6 6 6 9 0.4408

INITIAL VALUES

Inital values for Wishart prior formulation

list(mu.alpha=c(51,2.8,-0.9), delta1=-1,delta2=0 3 delta3-0«; d0.09, 0, 0, 0, 0.8), .Dim = c(3,3))) **83-0.5, tau-0.01, R = structure(.Data = c(0.01,0,0,0,



Initial values for all models from classical estimates of random effects
theta[,1] theta[,2] theta[,3]
-0.6251 -1.1075 0.7908
-2.0914 -1.9224 -0.02311
-20.743 5.4189 1.2106
5.1243 -2.1766 -0.451
11.3461 0.869 -0.4925
6.2172 -0.6869 -0.341

Survival/Dropout within 24 months
list(gammaO = c(-3,-3,-3,-3,-3,-3,-3,-3), gammal =0, gamma2=0)



APPENDIX III A

OUTPUT FROM JOINT MODELLING OF 
MIC DATA IN WINBUGS

Linear random effects model for GQS over time 
with treatment and treatment by time covariates 

and Wishart prior distribution on precision matrix

Piecewise exponential model for survival 
with treatment and GQS at start of interval as covariates
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APPENDIX III B

OUTPUT FROM JOINT MODELLING OF 
MIC DATA IN WINBUGS

Linear random effects model for GQS over time 
with treatment and treatment by time covariates 

and Wishart prior distribution on precision matrix

Piecewise exponential model for survival 
with treatment and mean GQS for interval as covariates
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APPENDIX III C

OUTPUT FROM JOINT MODELLING OF 
MIC DATA IN WINBUGS

Linear random effects model for GQS over time 
with treatment and treatment by time covariates 

and Wishart prior distribution on precision matrix

Piecewise exponential model for survival 
with treatment and slope o f GQS over time as covariates
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APPENDIX III D

OUTPUT FROM JOINT MODELLING OF 
MIC DATA IN WINBUGS

Linear random effects model for GQS over time 
with treatment and treatment by time covariates 

and Wishart prior distribution on precision matrix

Piecewise exponential model for survival 
with treatment and slope of GQS over time 

and interaction between treatment and slope as covariates
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APPENDIX IV

OUTPUT FROM JOINT MODELLING OF 
ESPAC DATA IN WINBUGS

Piecewise linear random effects model for GHSS over time 
with treatment and treatment by time covariates 

and Wishart prior distribution on precision matrix

Piecewise exponential model for survival 
with treatment and GHSS at start of interval as covariates
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