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F o r m a l  L a n g u a g e s  a n d  t h e  W o r d  P r o b l e m  in

G r o u p s

Duncan W. Parkes 

A b str a c t

We consider some interactions between the theory of groups and the the­
ory of formal languages.

For any group G  and generating set X  we shall be primarily concerned 
with three sets of words over X : the word problem, the reduced word prob­
lem, and the irreducible word problem. We explain the relationships between 
these three sets of words and give necessary and sufficient conditions for a 
language to be the word problem (or the reduced word problem) of a group.

We prove that the groups which have context-free reduced word problem 
with respect to some finite monoid generating set are exactly the context- 
free groups, thus proving a conjecture of Haring-Smith. We also show that, 
if a group G  has finite irreducible word problem with respect to a monoid 
generating set X , then the reduced word problem of G  with respect to X  is 
simple. In addition, we show that the reduced word problem is recursive (or 
recursively enumerable) precisely when the word problem is recursive.

The irreducible word problem corresponds to the set of words on the left 
hand side of a special rewriting system which is confluent on the equivalence 
class containing the identity. We show that the class of groups which have 
monoid presentations by means of finite special [A]-confluent string-rewriting 
systems strictly contains the class of plain groups (the groups which are free 
products of a finitely generated free group and finitely many finite groups), 
and that any group which has an infinite cyclic central subgroup can be 
presented by such a string-rewriting system if and only if it is the direct 
product of an infinite cyclic group and a finite cyclic group.



Chapter 1

Introduction

Given a group G  with a generating set X , we define the word problem of G  

with respect to X  to be the set of words in X * which are equal to the identity 

in G. This definition gives a natural link between group theory and the theory 

of formal languages, and presents us with the question of what relationship 

exists between the complexity of the word problem as a formal language and 

the algebraic structure of the group.

W ith any family of languages T ,  we can associate the class of groups 

which have some finite generating set with respect to which the word problem 

is in T \  an interesting task is to try to find algebraic descriptions of these 

classes of groups. While, in general, the fact that the word problem lies in T  

may depend on our choice of finite generating set, it is well known that this 

is not the case if T  is closed under inverse homomorphism: in this case, if 

the word problem with respect to any finite generating set lies in T ,  then the

5



CHAPTER 1. INTRODUCTION  6

word problem with respect to every finite generating set lies in T  (see [14] 

for example).

There have been several such characterizations of the groups having word 

problem in a particular class of languages. One early characterization, by 

Anisimov [1 ], is that the class of groups which have regular word problem is 

the class of finite groups. In [21] the class of accessible groups with context- 

free word problem was shown to coincide with the virtually free groups (ac­

cessibility is a technical condition which we shall not define, and which can 

be removed thanks to the result of [8 ], that all finitely presented groups are 

accessible). In fact, if the word problem of a group is context-free, then it is 

deterministic context-free [2 2 ].

One further family of languages that has been considered is the one- 

counter languages. Herbst shows in [1 2 ] that a group has one-counter word 

problem if and only if it is a finite extension of a cyclic group (or, to put 

this another way, a group has a one-counter word problem if and only if it is 

either finite or is a finite extension of an infinite cyclic group). As in the case 

of the context-free languages, if the word problem of a group is a one-counter 

language, then it is necessarily a deterministic one-counter language. Herbst 

also shows that the class of groups with word problem in C, where C is a 

cone in between the regular languages and the context-free languages, must 

be either the finite or the one-counter groups. While there are, of course, 

interesting families of languages which are not cones, these results do suggest 

that the one-counter groups are also of special interest.
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In [10] Haring-Smith defines the reduced word problem of a group to be 

the subset of the word problem consisting of those non-empty words which 

have no non-empty proper prefix equal to the identity, and proves that a 

group has simple reduced word problem, with respect to some generating set 

which contains inverses, if and only if it is a free product of finitely many 

finite groups and a finitely generated free group (where the free factor may 

be trivial); he calls this class of groups the plain groups. In the same paper 

he made the following suggestion as to what happens when the reduced word 

problem is strict deterministic:

C on jectu re  1 .0 . 1  ([1 0 ]) A finitely generated group G has a presentation 

whose reduced word problem is a strict deterministic language if  and only 

if G is a finite extension of a plain group.

Another subset of the word problem introduced in [10] is the irreducible 

word problem, the set of all non-empty words w in the word problem such 

that no non-empty proper subword of w  represents the identity. The irre­

ducible word problem corresponds to the set of words on the left hand side 

of a special rewriting system which is confluent on the equivalence class con­

taining the identity, and we shall use this to cast some light on an intriguing 

question raised by Madlener and Otto in [20] about the groups with word 

problem describable by such rewriting systems.

In Chapter 2 we give some definitions from formal language theory, and 

fix notation: in general, formal language definitions may be found in [1 1 ] 

or [15]. In the first few sections of Chapter 3 we give some definitions from
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combinatorial group theory. We then go on to describe in more detail some 

of the ways in which groups have been classified using formal languages and 

string-rewriting systems.

We start Chapter 4 by spelling out the relationships between the word 

problem and the reduced word problem, and then between the word problem 

and the irreducible word problem. In Sections 4.2 and 4.3 we give sets of 

conditions which characterize when a language is respectively the word prob­

lem, and the reduced word problem, of a group. In the last section of this 

chapter we look at how the solvability of the word problem and the reduced 

word problem of a group are related.

Chapter 5 is devoted to syntactic monoids. We start off by pointing 

out that there is no hope of a characterization of any class of languages 

which is closed under inverse homomorphism and which strictly contains the 

regular languages by means of syntactic monoids alone, even amongst those 

languages whose syntactic monoids are groups. In Section 5.2 we go on to 

consider word problems of syntactic monoids.

In Chapter 6  we consider the reduced word problem in more detail. 

Firstly, in Section 6.1 we prove the conjecture of Haring-Smith that a group 

has strict deterministic reduced word problem with respect to some gener­

ating set if and only if it is a finite extension of a plain group, by proving 

that both classes coincide with the context-free groups (Theorem 6.1.1). In 

the second section we consider simple reduced word problems with respect 

to monoid generating sets, and prove that if a group has finite irreducible
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word problem with respect to some monoid generating set then it has simple 

reduced word problem with respect to that generating set (Theorem 6.2.2), 

a generalization of one direction of Theorem 3.7.1.

We then move on to the irreducible word problem. In Chapter 7 we 

consider groups which have finite irreducible word problem with respect to 

some finite monoid generating set. In the first section we prove the obser­

vation (implicit in [2 0 ]) that a group may be presented by a finite special 

[A]-confluent string-rewriting system if and only if it has finite irreducible 

word problem with respect to some monoid generating set. In Section 7.2 we 

exhibit a monoid generating set for the group C 00 x Cn with respect to which 

it has finite irreducible word problem: thus the class of groups which may 

be presented by finite special [A]-confluent string-rewriting systems strictly 

contains the class of plain groups. In Section 7.3 we show that the groups of 

the form Coo x  Cn are the only ones which which have such a presentation 

and which have an infinite cyclic central subgroup. In the last section of this 

chapter we give some further examples of groups which may be presented by 

finite special [A]-confluent string-rewriting systems.

Finally, in Chapter 8 , we consider groups which have infinite irreducible 

word problem for any generating set. In the first section we note that, if the 

irreducible word problem of a group with respect to some generating set is 

regular, then it must be finite (Proposition 8.1.1). In the last two sections 

we consider groups which have context-free and one-counter irreducible word 

problem with respect to some generating set.



Chapter 2

Formal Languages

2.1 Languages

Let E be a finite set or alphabet The set of all finite words (or strings) over E 

(including the empty word A) is denoted E*. The subsets of E* are known 

as languages over E.

If L is a language then L*, the Kleene closure of L, is the submonoid of E* 

generated by L, i.e. the set all words which can be made by concatenating 

together a finite (possibly empty) sequence of words from L. Similarly, L + is 

the subsemigroup generated by L , i.e. the set all words which can be made 

by concatenating together a finite non-empty sequence of words from L.

The set {w\W 2  : u)\ G L \,u ) 2  G L 2 } will be denoted ZqZ^; if Li or L2 is 

a singleton, we may omit the braces and write, for example, L\X instead 

of Li {x } . We shall denote the complement in E* of the language L by Lc.

10



CHAPTER 2. FORMAL LANGUAGES  11

If v and w  are words over an alphabet E then we shall use the expression 

v =  w  to mean that v and w are identical as strings of symbols. If w  =  uv, 

where u ,v  6  E*, then u is said to be a prefix of w, and v is said to be a 

suffix of w.

Let L be a language. The prefix closure of L is the set of all prefixes of 

words in L. The language L is said to be prefix-closed if is is equal to its prefix 

closure. The terms suffix closure and suffix-closed are defined similarly.

Given a language L, the set of words in L which have no non-empty 

proper prefix in L is denoted m i n ( L ) .  A language L is said to be prefix-free 

if L =  m i n  (L).

We shall write \w\ for the length of the word w, and \w\x for the number 

of occurrences in w  of the symbol x.

2.2 Regular Expressions

The regular expressions R  over an alphabet E, and the languages L(R)  they 

denote, are defined recursively as follows:

•  0 is a regular expression with L(0 ) =  0 ;

•  A is a regular expression with L(X) =  {A};

•  For each a G E, there is a regular expression a with L(a) =  { a } ;

•  If R  is a regular expression then R* is a regular expression denot­

ing L(R)*;
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•  If R i  and R 2 are regular expressions then (Ri U R 2 ) is a regular ex­

pression denoting L(Ri)  U L (R 2) and (R 1 R 2 ) is a regular expression 

denoting L (R i)L (R 2 ).

A language is said to be regular if it is denoted by some regular expression. 

In addition, we use R + to stand for R R *, so that L (R +) =  L (R )+ . The class 

of regular languages will be denoted 1 Z.

2.3 Finite Autom ata

An alternative characterization of the regular languages is provided by finite 

automata.

A (non-deterministic) finite automaton M  is a quintuple (Q , E, 6 , qo, F), 

where Q  is a finite set of states , E is another finite set (the input alphabet), 

the transition relation 5 is a subset of Q  x (E U {A}) x Q , the start state qo 

is a special element of Q , and the set F  of accept states is a subset of Q.

The transition relation 8  may be extended inductively to a subset of 

Q x E* x Q  in the following way.

•  Let (q , A, q) be in 8* for each q € Q.

•  If (9i , x, q-i) €  c5 then let >̂) be in 6 *.

•  If (9i , w , q 2 ) 6  8 * and {q2 ,x,qs)  6  8  then let (q i , w x , q 3 ) €  5*.

We say that M  accepts a word w £  E* if (qo,w,qf)  G 8 * for some qj  G F.
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The set of words from £* which are accepted by M  is denoted L(M) ,  and is 

known as the language accepted by M.

A finite automaton is said to be deterministic if for each pair (q, x) G 

Q  x X  there is at most one state q1 G Q  such that either (q, x, q') G S 

or ( q , \ , q ' )  G 8. In fact, any language which can be accepted by a non- 

deterministic finite automaton can be accepted by a deterministic finite 

automaton:

T h eo rem  2 .3 .1  If L C  £ *  then the following are equivalent:

•  L can be accepted by a non-deterministic finite automaton;

•  L can be accepted by a deterministic finite automaton; and

•  L is denoted by some regular expression.

The following lemma is a useful tool for showing that a language is not 

regular.

L em m a 2 .3 .2  (T h e  P u m p in g  L em m a for R egu lar L an gu ages) Let L

be a regular language over an alphabet E, and let w G L. Then there exists a

constant N  such that if  \w\ >  N  then w =  U1 VU2 with \u\v\ <  N , v  ̂  A and

U\VXU2  G L for all i ^  0.

2.4 Pushdown Automata

We now extend the concept of a finite automaton by adding a stack: the 

resulting machine is known as a pushdown automaton.
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A pushdown automaton (PDA) M  is a septuple (Q, E, T, 5, q0, Z0, F), 

where Q  is a finite set of states, E is a finite set called the input alpha­

bet, T is another finite set called the stack alphabet, the transition relation 8  

is finite subset of Q x (E U {A}) x T x Q  x T*, the start state q0 is a special 

element of Q, the start symbol Z 0  is a special element of T, and F  C Q is 

the set of accept states.

We call the set Q x E* x T* the set of configurations of M, and write 

(<7i, xw, Z 7 ) (#2 , w, fi'y) if (<71, x, Z, ^ 5  fi) ^ We write for the reflexive

transitive closure of If ^  (^/, A, /?) for some accept state qf

and some /?, then we say that M  accepts w. The set of words accepted by M  

is denoted L(M) ,  and a language is said to be context-free if it is accepted 

by some pushdown automaton. We shall denote the class of context-free 

languages CF.

The method of acceptance described here is known as acceptance by final 

state. It is also possible to define acceptance by empty stack, where M  is said 

to accept a word w  G E* if (qQ, w, Zq) (q, A, A) for some q G Q  (there is no 

need here for the set of accept states). The classes of languages which are 

accepted by pushdown automata by final state and by empty stack are the 

same (see, for example, [15]).

The following result is a version of Ogden’s Lemma, which, in the same 

manner as the Pumping Lemma in the case of regular languages, can be used 

to show that certain languages are not context-free.

L em m a  2 .4 .1  Let L C E* be a context-free language. Then there exists a
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constant N  such that i f w t z L ,  and N  or more letters in w are marked, then 

w =  U1 V1 U2 V2 U3 with V\V2  containing at least one marked position, V1 U2 V2 

containing at most N  marked positions, and u\ViU 2 V2 %u3 G L for all i ^  0.

If M  is a pushdown automaton such that, for any configuration, there 

is at most one possible move (in particular, <5 must be a partial function 

from Q  x (E U  {A}) x T to Q  x T*), then M  is said to be a deterministic 

pushdown automaton (DPDA), and L ( M)  is then said to be a deterministic 

context-free language. The class of deterministic context-free languages will 

be denoted VCT.

For deterministic pushdown automata, acceptance by final state and ac­

ceptance by empty stack are no longer equivalent. The languages which are 

accepted by deterministic pushdown automata by empty stack are exactly 

those which are accepted by final state and which are prefix-free. These lan­

guages are known as the strict deterministic languages.

2.5 One-Counter Automata

Let M  be a pushdown automaton. The start symbol Z 0 is said to be a bottom 

marker for the stack if it appears once at the very bottom of the stack, and 

nowhere else. In fact, Zq is a bottom marker if 6  has the following properties:

(iq, x, Zq, r, 7 )  G 6 => 7  G ( r  \  {Zo})*Zo;

and,

Z  ^  Z 0 and (q , x, Z,  r, 7 )  G 6 7  G (T \  {Z 0})*-
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A pushdown automaton (accepting by final state) is said to be one- 

counter if the stack alphabet contains a bottom  marker and just one other 

symbol. The languages accepted by such automata are known as the one- 

counter languages (proofs of properties of the one-counter languages may be 

found in [6 ]). The deterministic one-counter languages are those languages 

accepted by one-counter automata which are deterministic. We shall de­

note the class of one-counter languages O C , and the class of deterministic 

one-counter languages DOC.

2.6 Grammars

Another characterization of the regular languages and the context-free lan­

guages is provided by grammars.

An (unrestricted) grammar Q =  (V,E, P, S) consists of a finite set V  

of non-terminal symbols, a finite set E of terminal symbols, a finite set 

P  C ((V  U E)* \  E*) x { V U  E )* of productions, and a special symbol S  G V  

called the start symbol, where the sets V  and E are required to be disjoint.

Let /A, fh £  (V  U E)*. We write if ol\ —>■ a 2 is in P ,

and then extend by reflexive transitive closure to The language L(Q) 

generated by Q is {w  6  E* : S  w} .  A language is recursively enumerable 

if and only if it can be generated by an unrestricted grammar. We shall 

denote the class of recursively enumerable languages R £ .  A language is 

recursive if and only if it is recursively enumerable and its complement is
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recursively enumerable. (These definitions are equivalent to other machine- 

based definitions.)

The grammar Q is said to be left-linear if every rule is of the form A  —» B w  

or A —> w, where A  and B  are non-terminals and w  is a string of terminals. 

The languages which can be generated by such grammars are exactly the 

regular languages.

If the elements of P  are of the form A  —> a , where A  is a non-terminal, 

and a  is a (possibly empty) string of terminals and non-terminals, then the 

grammar Q is said to be context-free. A language is context-free if and only 

if it can be generated by a context-free grammar.

A context-free grammar in said to be in Greibach normal form  if ev­

ery production is of the form A —> aa, where A is a non-terminal, a is 

a terminal, and a  is a (possibly empty) string of non-terminals, or is the 

production S —> A. Every context-free language can be generated by a gram­

mar in Greibach normal form.

A grammar in Greibach normal form is said to be simple if, whenever 

A  —» aa  and A  -»  a/3 are in P , then we must have that a  =  (3, and, if S  —)• A 

is in P ,  then it is the only production. A language which is generated by a 

simple grammar is said to be simple. The simple languages are exactly those 

which are accepted by empty stack by deterministic pushdown automata with 

only one state, and are thus a subclass of the strict deterministic languages 

(the deterministic context-free languages which are prefix-free).

Lastly, a grammar is said to be context-sensitive if, for any rule
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a  —> p  in P , we must have \/3\ ^  |of|; the languages which can be generated 

by such grammars are said to be context-sensitive. The context-sensitive 

languages will be denoted CS.

2.7 Closure Properties

Let F  be a family of languages. Then T  is said to be closed under homo­

morphism if

L C  £*, L e  T ,  (j>: £ *  —> T* a  m o n o i d  h o m o m o r p h i s m  => Left e  J7.

Similarly, T  is said to be closed under inverse homomorphism if

L C T*, L €  T ,  4>: S* —> T* a monoid homomorphism =» L $ ~ l 6  T .

We say that T  is closed under intersection with regular languages if

L, V  C E*, L G T, U  G n  => L fl L' e T.

A family of languages which is closed under homomorphism, inverse ho­

momorphism and intersection with regular languages is known as a cone 

(in [15], a cone is known as a full trio).

T h e o r e m  2 .7 .1  (See [6 ], for exam p le) The classes of regular languages, 

context-free languages, one-counter languages, and recursively enumerable 

languages are all cones.
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We say that T  is closed under union if

L, U  C  E*, L, L' G T  =* L U U  G T ,

and that T  is closed under Kleene star  if

A f a m i l y  o f  l a n g u a g e s  T  i s  s a i d  t o  b e  closed under the operator M IN  i f

L G T  => m i n ( L )  g  T .

We shall make use of the following result in our proof of Theorem 6.1.1 

(see [15] for a proof):

L em m a 2 .7 .2  (S ee  [6 ], for e x a m p le ) The deterministic context-free lan­

guages and the deterministic one-counter languages are closed under the op­

erator M IN .

We contrast this result with the situation for the context-free languages:

E x a m p le  2 .7 .3  There is a context-free language L such that M I N (L) is not 

context-free.

Proof  Let E =  {a, A, b, B }  and let L be the language 

{ a  G E* : | a | fl =  \ol\a  or |a : |b  =  | o ; | j^ } .

Then L  is certainly context-free.
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Let P  =  M IN  (L) and let J  be the regular language denoted by the regular 

expression a+b+ A +B +. If P  were context-free, then K  =  P  D J  would be 

context-free, by Theorem 2.7.1. Now

allP AkB l € K  j  =  I >  0 and i >  k >  0, 

so that K  =  {au+kb>AkB^ : u, j , k >  0}.

We now use Ogden’s lemma (Lemma 2.4.1) to prove that K  is not context- 

free. If K  were context-free, then there would exist a constant N  such that, 

if we pick any word w  in K  and mark N  or more positions in w , then we can 

write w  as U1 V1 U2 V2 U3 in such a way that V1 V2  contains at least one marked 

position, V1 U2 V2  contains at most N  marked positions, and uiVirU2 V2 rus €  K  

for all r ^  0 .

Consider the word w  = a N + l bN A N B N in K  with all the instances of b 

and A  marked. W ith u i, v\, U2 , u2 and U3 as above, let wr =  uiVirU2 V2 rU3 

for r ^  0. In order that the wr are in K  we must have that each of v\ and u2 

consists of a repetition of a single letter (i.e. each is of the form a \  b \ A 1 

or B %). If V2  is of the form B l , then V\ must be b% (else \w2\b 7  ̂ |n ;2 |b) 

and then v \u2 u2 contains more than N  marked positions. If v2 is of the 

form A \  then v\ must be a1 (else \wr\a ^  |w t \a  for some r >  1 ), and v \u2 v2 

contains more than N  marked positions. If v 2  is of the form b\  we do not 

have \w2 \b =  and, if v2 is of the form az, then v iv 2  does not contain

a marked position. In all cases we have a contradiction to the conclusion of 

Ogden’s lemma, and therefore K  cannot be context-free. □
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A generalized sequential machine (GSM for short) is defined to be a sex­

tuple M  =  ( Q, E,A, S, qo ,F)  where Q  is a finite set of states, E is the input 

alphabet, A  is the output alphabet, 6  is a function from Q x (E U {A}) to the 

set of finite subsets of Q x A*, go is the start state, and F  is the set of accept 

states.

As for finite automata, 6  may be extended to a function 6 * with domain 

Q x E* by inductively defining S*(q, A) to be {(q,  A)} and, for u G E* and 

a G E, defining S*(q,ua) to be the set of all (p,vw)  such that, for some p', 

we have (p',v) G S*(q,u) and (p, w)  G S*(p,,a).

For u G E*, let M(u)  be the set of words w  G A* such that ( / ,  w)  G 

5*(q0 ,u)  for some accept state / ,  and let M(L)  =  (J{M(u)  : u G L}.  We 

now have a mapping from the set of languages over E to the set of languages 

over A; this is the GSM-mapping defined by M.

P r o p o s it io n  2 .7 .4  Any class of languages which is a cone is closed under 

GSM-mappings.

There is a useful table showing which classes of languages are closed under 

what operations at [15, pages 280-281].

2.8 Insertions and Deletions

Let L  be a language over an alphabet E. Then i n s ( L )  is defined to be the 

set of words which, when inserted at any point into a word from L, result in
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another word from L, i.e.

i n s ( L )  =  {w  G E* : uv  G L => uwv  G L}.

L e t  s u b ( L )  b e  t h e  s e t  o f  s u b w o r d s  o f  L ,  s o  t h a t

S U B ( L )  =  {w  G E* : uwv  G L for some u ,v  G E*}.

Then D E L ( L )  is defined to be the set of words from S U B ( L )  which, when 

deleted from any word in L, always result in another word from L, i.e.

D E L (L) =  {w  G S U B ( Iz )  : uwv  G L => uv G L}.

The subsets i n s ( L )  and d e l (L) are defined and studied in [17].

For two languages L\  and L2 over the alphabet E, the dipolar dele­

tion L\ ^  L2 is defined by the equation:

Li ^  L2 =  {x  G E* : u =  ax(3, v =  a(3, u G L i , v  G L 2}.

The following result from [17] gives the relationships between i n s ( L ) ,  

d e l ( L )  and L\  t—- L2-

P r o p o s it io n  2 .8 . 1  Let L be a language over E. Then

i. IN S (L) =  (L c ^  L)c, and 

a. d e l ( l )  =  (l ^  l °)c n s u b ( l ) .

If L  C  E* is a language, then L is said to be insertion closed if, whenever 

u, v  and w  are words in E* such that v G L  and uw G L, then uvw  G L.

We will need the following result from [17]:
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P r o p o s it io n  2 .8 .2  Let E be a finite alphabet and L C E*. Then:

i. there is a unique smallest insertion closed language K  in E* contain­

ing L;

ii. if L is context free, then K  is context-free.

The language K  in Proposition 2.8.2 is known as the insertion closure of L 

in E*. Note that it is not true that the insertion closure of a regular language 

must be regular.

Let L C E* be an insertion closed language. Then the insertion base of 

L is the set of non-trivial words from L  which are not of the form u v w , with 

uw and v non-trivial elements of L.

2.9 Syntactic M onoids

The syntactic congruence ~ L of a language L C E* is the coarsest congruence 

on E* such that L is a union of congruence classes. We shall denote the 

congruence class of a word w under the syntactic congruence by [w]. Proofs 

of properties of the syntactic congruence (and syntactic monoids) may be 

found in [16].

The following is an alternative characterization of the syntactic congru­

ence.

P r o p o s it io n  2 .9 .1  Let L be a language over E. The syntactic congru­
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ence is given by

O i W2) Vw, v E T,*(uwiv E L &  UW2V E L).

The syntactic monoid M i  of L is the quotient of the free monoid £* by 

and the syntactic morphism rfr is the canonical homomorphism from £* 

onto M i,  i.e. rfc : w y-+ [w\. A monoid is said to be syntactic if it is the 

syntactic monoid of some language.

Since any congruence on £* which has L  as a union of congruence classes 

must also have Lc as a union of congruence classes, the following proposition 

is clear.

P r o p o s it io n  2 .9 .2  The syntactic monoid of a language L C  E* is equal to 

the syntactic monoid of its complement L c.

The syntactic monoid M l is, in a sense, the smallest monoid M  onto 

which there is a homomorphism such that the images of L  and L c are disjoint. 

The following definition allows one to formalize the sense in which it is the 

smallest.

D e fin it io n  2 .9 .3  Let Mi and M 2 be monoids. Then M\ is said to divide M 2  

if  M\ is a homomorphic image of some submonoid of M 2 .

We then have the following:

P r o p o s it io n  2 .9 .4  Let L C  £* be a language, let M  be a monoid and let 

(f>: £* —)■ M  be such that L =  A(f)~l for some A  C  M . Then M l  divides M .
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It is useful to have a word to describe the situation where a subset of a 

monoid is the image of some language which has that monoid as its syntactic 

monoid.

D e fin it io n  2 .9 .5  Let M  be a monoid. A subset A of M  is said to be dis­

junctive, or syntactic, if there is no nontrivial congruence on M  such that A  

is a union of congruence classes.

In particular, the image of a language in its syntactic monoid is disjunctive. 

In fact, if you have a language L  C  E*, a monoid M ,  and a surjective 

homomorphism 4>: E* —»• M  such that L =  A(f)~l for some disjunctive subset 

A  of M  then M  is isomorphic to the syntactic monoid of L.

We shall need one further result, a proof of which may be found in, for 

example, [16].

T h eo rem  2 .9 .6  A language is regular if and only if it has finite syntactic 

monoid.

Quite a lot of work has been done to classify subclasses of the regular lan­

guages by means of syntactic monoids, but we shall not look at this here. A 

survey of what is known in this area can be found in [25].

2.10 String-Rewriting Systems

Given a finite alphabet E, a string-rewriting system R  over E is a set of 

rules u —» v, where u ,v  G E*; we shall only be interested in finite string- 

rewriting systems here. The domain dom (R) of R  is the set of all u €  E*
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such that there exists a rule u  -> v  in R  for some v  £ E*; similarly, the 

ran ge  ran(R) of R  is the set of all such that there exists a rule u  —> v

in R  for some u  £ E*.

We define the reduction relation = > r  to be the reflexive transitive closure 

of = > r ,  where W1UW2 = > r  W1VW2 if W \,W 2  £ E* and u —> v  £  R. We 

shall say u reduces to v  under R  if u = £ r  v .  The transitive symmetric 

closure of = > r  will be written as <=>r, and is called the Thue congruence 

of R. The congruence class of a word w  is then denoted by [u;].

A rule u  —> v  is said to be le n g th -re d u c in g  if \u\ >  |u|, and a string- 

rewriting system R  is said to be len g th -re d u c in g  if every rule in R  is length- 

reducing. A length-reducing string-rewriting system R  is said to be m o n a d ic  

if ran(R) C E U {A}, and s p e c ia l  if ran(R) =  {A}.

A string-rewriting system R  over E is said to be con f lu en t  ([A]-co n f lu en t)  

if, whenever u , w i , W 2  £  El* (u, w i , W 2  £ [A]) with u = > r  w \  and u =>R w 2, 

then there exists v  £ E* ( v  £ [A]) such that W\ = > r  v  and w 2 = £ r  v .



Chapter 3

Classifications of Groups

3.1 Generating Sets

A set X , where each i G l  represents an element of a group G , is said to 

be a monoid generating set for G  if every element of G is represented by a 

word from X*. Let X -1 be a new set of symbols {x~ l : x £  X } , where x~l 

represents the inverse of x. Then X  is said to be a group generating set for G  

if X  U X -1 is a monoid generating set for G.

3.2 Presentations

A group presentation  (X  : R) for a group G  consists of a group generating 

set X  for G , and a set R  of words over X  U X -1 . If we let Y  denote the 

set X U X -1 then every element of G can be written as a word in Y* and G  is

27
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isomorphic to Y* /  where «  is the congruence on Y* generated by all pairs 

of the form (w , A) with w G R, together with all pairs of the form (xx-1 , A) 

and (x~l x, A) with x G l .

The free group with generating set X  is the group with presentation (X  : ) 

(the trivial group can be thought of as the free group generated by the empty 

set). A virtually free group is a finite extension of a free group, i.e. a group 

with a free subgroup of finite index.

Let G i and G2 be groups with presentations (A i : R i)  and (X 2 : R 2) 

(where X \  and X 2 are disjoint). Then the free product G \  * G 2 is the group 

with presentation (A i U X 2 : R\  U R 2).

Given groups G =  (X  : R) and H  =  (Y  : S), where X  and Y  are 

disjoint sets, subgroups A =  ({ui : i G I } )  ^  G and B =  ({u* : i G I } )  ^  H , 

where each Ui is an element of A"* and each Vi is an element of Y*, and 

an isomorphism <j> : A  —> B  such that Ui<j> =  Vi for i G / ,  the free product 

of G and H  with A and B  amalgamated is the group with presentation 

(X  U Y  : R U  S O  { U iV f1 : i G / } ) .  We shall often identify A  and B , and we 

then write G  * ,4  H  for this group.

3.3 Cayley Graphs

When we refer to the Cayley graph of a group we shall mean the right Cayley 

graph, that is, for a group G  with monoid generating set A , the graph T 

whose vertices are the elements of G, and which has an edge labelled by
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x E X  from vertex g\ to vertex # 2  exactly when g\X =  <72- For each vertex 

g of T, any word w  £ X*  labels a path starting at g. The path labelled by 

the word w  (or sometimes the word itself) is said to be closed if it starts and 

ends at the same vertex (closed paths are also known as loops) and simple if 

no non-empty proper subword of w  labels a loop.

It is noted in [10] that a non-empty word w labels a simple loop in the 

Cayley graph of G  with respect to X  if and only if it is in the irreducible 

word problem of G with respect to X .

3.4 Word Problems

Given a monoid generating set X  for a group G , the word problem, W x { G ), 

of G  with respect to X  is the set of all words from X* which are equal to the 

identity in G.  The word problem of G  with respect to a group generating 

set X ,  denoted W gx (G), is W x u X - 1 (^)- The set of non-empty words from the 

word problem which have no non-empty proper prefix in the word problem 

is called the reduced word problem of G  with respect to X ,  and is denoted by 

R x { G ), if X  is a monoid generating set, or by R gx (G), if X  is a group gener­

ating set. Lastly, the set of non-empty words from the word problem which 

have no non-empty proper subword which is in the word problem is called 

the irreducible word problem and is denoted I™(G), or I gx {G ), depending on 

whether we are considering X  as a monoid or as a group generating set.

We shall sometimes talk about W™{M)  where M  is a monoid which is
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not a group. It should be noted that in this case knowing how to decide 

whether or not a word is in W™(M) does not give a solution to the full word 

problem for M.

Another way of thinking of the word problem is the following. Let X  

be a finite alphabet, and let f x  '• X* >■ G  be a surjective homomorphism. 

Then A  is a finite monoid generating set for G , and the word problem of G  

with respect to X  is the kernel of <px-

3.5 ^-Subsets

Let T  be a class of languages which is closed under inverse homomorphism, 

and let M  be a finitely generated monoid. A subset A  of M  is said to be an 

T-subset if for any alphabet X  and surjective homomorphism f  : X*  —» M, 

we have A(p~l E  T . The set of ^-subsets of the monoid M  will be denoted 

by T ( M ) .

The independence of this concept with respect to generating set and sur­

jective homomorphism is provided by the following result.

L em m a 3 .5 .1  ([26]) Let M  be a finitely generated monoid, E and T finite 

alphabets, 0  : E* - $  M  a homomorphism, ip : T* -*  M  a surjective homo­

morphism. Then there is a homomorphism x  • E* -»  T* such that x'fi =  <!>•

Let A  be an ^"-subset of a monoid M ,  so that there is a monoid gener­

ating set X  and a surjective homomorphism f  : X* —> M ,  with A(f>~1 E  T .  

If Y  and ip : Y* -* M  are respectively another alphabet and surjective



CHAPTER 3. CLASSIFICATIONS OF GROUPS  31

homomorphism then, by Lemma 3.5.1, there is a homomorphism x  such 

that — 4>- We then have Aip~l =  A(j)~1x~ 1, so that A ,ip~1 is an in­

verse image of A<frl , and thus Aty~l G T  by the closure of T  under inverse 

homomorphism.

Herbst writes extensively on ^-subsets in [12] and [13]. We shall use the 

following results from these papers.

T h eo rem  3 .5 .2  ([13]) Let G be a finitely generated group, and let A be a 

finite, non-empty, disjunctive subset of G such that A  G 1Z£(G) (respec­

tively, A  G CS(G)). Then every finite subset of G is recursively enumerable 

(context-sensitive).

T h eo rem  3 .5 .3  ([13]) Let M  be a finitely generated cancellative monoid, 

and let T  be a finite non-empty context-free subset of M . Then every finite 

subset of M  is context-free.

If T  is closed under inverse homomorphism and the word problem of G 

with respect to a finite monoid generating set X  is in T  then {1} is an 

.F-subset of G. Thus W y i G )  G T  for any finite monoid generating set Y . 

In other words:

P r o p o s it io n  3 .5 .4  Let X  and Y  be finite monoid generating sets for a 

group G, and let T  be a class of languages which is closed under inverse 

homomorphisms. IfW™(G)  G T  then W y i G )  G T .

In the light of this result, if T  is a class of languages which is closed under 

inverse homomorphism, and the word problem of a group G  with respect to
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some finite monoid generating set X  lies in T ,  then we may say that the 

word problem of G  is in T  (W  (G ) € T )  without reference to any particular 

generating set, and that G  is an ^-group.

3.6 The Word Problem

With any family of languages T , which is closed under inverse homomor­

phism, we can associate the class of groups whose word problem is in T \  

an interesting task is to try to find algebraic descriptions of these classes of 

groups.

There have been several such characterizations of the groups having word 

problem in a particular class of languages. One early such was by Anisimov 

in [1]

T h eo rem  3 .6 .1  ([1]) Let G be a finitely generated group. Then W( G )  is 

regular if and only if G is finite.

Anisimov also proved several closure properties for the class of groups 

which have context-free word problem, including Proposition 3.5.4 in the 

case of the context-free languages, but he was unable to give an algebraic 

description of this class of groups.

In [21] the class of groups which have context-free word problem and 

which are accessible (a technical condition which we shall not define) was 

shown to coincide with the virtually free groups (the accessibility condition 

here can be removed thanks to the result of [8], that all finitely presented
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groups are accessible). In fact, if the word problem of a group is context-free, 

then it is deterministic context-free (see [22]). Putting these results together 

gives the following theorem:

T h eo rem  3 .6 .2  ([21, 22]) Let G be a finitely generated group. The follow­

ing are equivalent:

i. W(G)  G C T  (i.e. G is a context-free group);

ii. W( G)  G V C T ;

Hi. G is virtually free.

One further family of languages that has been considered is the class of 

one-counter languages. Herbst showed in [12] that a group has one-counter 

word problem if and only if it is a finite extension of a cyclic group (or, to put 

this another way, a group has a one-counter word problem if and only if it is 

either finite or is a finite extension of an infinite cyclic group). As in the case 

of the context-free languages, if the word problem of a group is a one-counter 

language, then it is necessarily a deterministic one-counter language.

T h eo rem  3 .6 .3  ([12]) Let G be a finitely generated group. The following 

are equivalent:

i. W ( G )  G OC (i.e. G is a one-counter group);

ii. W ( G )  G VOC;

Hi. G  is a finite extension of a cyclic group.
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Several more equivalent conditions are given in [12] and [14].

Herbst also shows that the class of groups with word problem in C, 

where C is a cone in between the regular languages and the context-free 

languages, must be either the finite or the one-counter groups. While there 

are, of course, interesting families of languages which are not cones, these 

results do suggest that the one-counter groups are also of special interest.

3.7 The Reduced Word Problem

The concepts of reduced word problem and irreducible word problem were 

introduced by Haring-Smith in [10], where he proved the following results:

T h eo rem  3 .7 .1  Let G be a group, and let X  a finite group generating set 

for G. Then R gx {G) is a simple language if and only if IX (G) is finite.

T h eo rem  3 .7 .2  Let G be a finitely generated group. The following are equiv­

alent:

i. There is a finite group generating set X  for G such that R gx {G) is a 

simple language;

ii. G  is the free product of a finitely generated free group and finitely many  

finite groups.

On account of the previous theorem, Haring-Smith named the class of groups 

which are the free product of a finitely generated free group and finitely many
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finite groups the plain groups. Note that, by Theorem 3.7.1, condition (i) in 

Theorem 3.7.2 is equivalent to there being a finite group generating set X  

for G  such that I gx {G) is finite.

3.8 String-rewriting system s

In this section we shall give a short survey of some of the things that are 

known about the presentation of groups by finite string-rewriting systems. 

Much of this material is derived from [20] which gives a general account of 

the subject.

A string-rewriting system R  over E is said to present the monoid

(E : {u  =  v : u —> v in # } ) ,

which is isomorphic to E*/ <=>r . We are interested here in the case where 

the monoid presented by R  is a group.

Several interesting results have been proved giving algebraic character­

izations of the groups which can be presented by certain classes of finite 

string-rewriting system; we will only mention a few of them here. The first 

such result was proved by Cochet in [7]:

T h e o r e m  3 .8 .1  A finitely generated group G has a presentation by a finite 

special confluent string-rewriting system if and only if  it is a free product of 

finitely many (finite or infinite) cyclic groups.

A string-rewriting system R  over a set X  is said to provide inverses of
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length one for every letter if, for each x  G X ,  there exists y G X  such that 

xy =>r A and yx =>R A.

In [20] Madlener and Otto prove the following:

T h eo rem  3 .8 .2  A finitely generated group can be presented by a finite spe­

cial [A]-confluent string-rewriting system which provides inverses of length 

one if and only if it is a plain group.

But the question as to which groups may be presented by finite special string- 

rewriting systems which do not necessarily provide inverses of length one is 

left open:

Q u estio n  3 .8 .3  Which groups may be presented by finite [A\-confluent spe­

cial string-rewriting systems?

We shall return to this question in Chapter 7.

There is at present no known algebraic characterization of the class of 

groups which may be presented by finite monadic confluent string-rewriting 

systems. In [9], Gilman makes the following conjecture:

C o n jec tu re  3 .8 .4  ([9]) A finitely generated group can be presented by a 

finite monadic confluent string-rewriting system if and only if  it is plain.

This has been shown to be true for finite monadic confluent string-rewriting 

systems which provide inverses of length one [4], and for finite two-monadic 

confluent string-rewriting systems [5] (a monadic string-rewriting system R  

is said to be two-monadic if dom (R) C  £ 2), but remains open in general.
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The following result, from [19], provides an easy way to show that some 

groups can not be presented by finite monadic confluent string-rewriting 

systems,

T h eo rem  3 .8 .5  Let G be a group which can be presented by a finite monadic 

confluent string-rewriting system. Then each finitely generated abelian sub­

group of G is either finite or infinite cyclic.

Autebert, Boasson and Senizergues have shown in [3] that the groups pre­

sented by finite monadic [A]-confluent string-rewriting systems which provide 

inverses of length one are exactly the context-free groups, and it is shown 

in [20] that this continues to be true if the condition on inverses is dropped. 

This provides yet another equivalent condition for Theorem 3.6.2:

T h eo rem  3 .8 .6  ([20]) Let G be a finitely generated group. Then G has a 

presentation by a finite monadic [A\-confluent string-rewriting system if and 

only if G is is a context-free group.
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Characterizations

4.1 Relationships

The relationship between the reduced word problem and the word problem 

of a group is summed up in the following pair of results:

P r o p o s it io n  4 .1 .1  The word problem of a group with respect to a monoid 

generating set is the Kleene closure of its reduced word problem with respect 

to that generating set.

Proof  Let G  be a group, X  a finite monoid generating set for G, R  =  Rx { G)  

and W  =  W x ( G ) .  Let w  be an element of R*. Since w  is a product of 

elements from R , and R  C W,  we have that w is in W.  So R* C W.

Conversely, suppose that W  is not contained in R*, and let w  be a word 

of minimal length in W  \  R*. If w =  A then clearly w  £  R *; so we may 

assume that there is a non-empty prefix u of w which is in R.  Then w =  uv

38
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where v G W  and | u |  < | i u | .  By the minimality of w, v G R *, and hence 

w € R*, a contradiction. □

Proposition 4.1.2 If W  is the word problem of a group with respect to a 

monoid generating set X  and R  is the reduced word problem with respect 

to X ,  then R  =  m i n ( W )  fl X + .

Proof. Since R  C W  and R  is prefix-free, we certainly have that R  is a 

subset of m i n ( W ) ;  since, by definition, R  does not contain the empty word, 

R  is a subset of m i n ( W )  PlX + . On the other hand, if a  G m i n ( L L )  and a  ^  A 

then a  is a non-empty word in W  such that no proper prefix of a  lies in W ,  

so that a  G R  by definition. □

The following two results give the relationship between the word problem  

and the irreducible word problem.

Proposition 4.1.3 If G is a group and X  is a monoid generating set for G ,  

then W x ( G )  is the insertion closure of Ix (G)  U {A} in X*.

Proof. Let W  =  W x ( G )  and I  =  Ix(G)-  Let K  be the insertion closure 

of I U {A} in X*.

If u, v and w are words such that v G W  and uw G W,  then v and uw  

represent the identity of G,  and so uvw  represents the identity of G , giving 

that uvw  G W . So W  is an insertion closed language containing I U  {A}, and 

therefore K  C W  by definition of K.
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Suppose that W  is not contained in K , and let w  be a word of minimal 

length in W  \  K .  If w  G I  or w =  A, then w G K  by definition; so we 

may assume that w =  usv  for some words u and v with \uv\ >  0 and some 

non-empty word s G I. Since uv G W  and \uv\ <  |tu|, we have that uv €  K .  

Since s G I  C K  and K  is insertion closed, we have that w  =  usv  G K ,  a 

contradiction. □

Proposition 4.1.4 If G is a group and X  is a monoid generating set for G, 

then I x ( G)  *5 the insertion base o f W x ( G )  in X*.

Proof. By Proposition 4.1.3, the word problem is insertion closed. The 

result follows easily from the definitions. □

4.2 The Word Problem

We now give a pair of conditions which characterize when a language W  is 

the word problem of a group:

Proposition  4.2.1 Let W  C E*. Then W  is the word problem of a group if 

and only if  it satisfies the following conditions:

(W l) if  a  G £ *  then there exists p  G S *  such that a j 3  G W ;

(W2) if  a  and uav  G W  then uv G W .

Proof. We first show that, if W  is the word problem of a group, then W  

satisfies (W l) and (W2).
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Let a  G £* and suppose that a  represents g G G. Let /? be a word 

representing g~l \ then a/3 represents gg -1 , and so a/3 G IT. Therefore IT 

satisfies (W l).

If a  G W  and uav  G IT then a  =  u av  =  1 in G, so that uv =  1 in G, 

and so uv G IT. Therefore IT satisfies (W2).

Conversely, suppose that IT satisfies (W l) and (W2); we want to show 

that IT is the word problem of a group.

Suppose that a  G IT and that u a v  £  IT. By (W l), there exists /3 G £* 

with G IT. Since a  G IT and uav/3 G IT, we have that uv(3 G IT 

by (W2). If uv G IT, then we have uv G IT and uv(3 =  Auu/3 G IT, so 

that A/? =  (3 G IT by (W2). Then, since f3 G IT and uav/3X G IT, we have 

w a u A  =  u a u  G IT by (W2), a contradiction. So we have deduced:

(W3) if a  G IT and u av  $  W  then uv  0  IT.

Now let ~  denote the syntactic congruence of IT, i.e. ~  is the congruence 

on £* defined by:

(<*i a 2) <=> {uot\v G IT u a 2v G IT Vu, v G £*).

Let M  be the syntactic monoid £ * / so that we have the natural homomor­

phism (f): £* —> M .  Recall that by standard properties of syntactic monoids, 

IT is a union of congruence classes of Since if a \  G IT and a 2 G X* such 

that a i  ~  a 2 (noting that IT is non-empty by (W l)), then

(ai a 2) => (u a iv  G IT <=> u a 2v G IT)

=r> ( A a i A  =  a \  G IT 4=̂  Acv2 A =  a 2 G IT)
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and we must have a 2 G W.

In addition, in our situation, we have:

(ua\V G W  <=$ uv G W  \
by (W2) and (W3)

u a 2v e W  J
=> au ~  a 2.

Thus W  consists of a single conguence class of ~ .

We have shown that W  is equal to a congruence class of By (W 2 ), if 

we pick a  G W ,  we have that XaX G W ,  so that AA =  A G W .  Thus W  =  

{o: G E* : a  ~  A} and then W  =  14>~l .

If m  G M, choose a  G S* with acj) =  m, and then (using (W l)) choose 

(3 G £* such that a(3 G W. If n =  /30, then m n =  (a0)(/?0) =  (ct/3)<j> =  1. 

So every element of M  has a right inverse, which is a sufficient condition for 

the monoid M  to be a group. Since W  =  we have that W  is the word 

problem of the group M  as required. □

4.3 The Reduced Word Problem

We may now give a set of conditions which characterize when a language R  

is the reduced word problem of a group:

Proposition 4.3.1 Let R  C  E*. Then R  is the reduced word problem of a 

group if and only if it satisfies the following conditions:

(R l) j /q G E *  then there exists (3 G £* such that a(3 G R*;
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(R2) if a  G R  and uav  G R* then uv G R*;

(R3) A $ R;

(R4) if a  G R  then there is no P G R  such that a  =  P'y and 7  ^  A.

Proof Suppose that R is the reduced word problem for a group G. By 

Proposition 4.1.1, W  =  R* is the word problem of G. Given this, the fact 

that R  satisfies (R l) and (R2 ) follows immediately from Proposition 4.2.1. 

The properties (R3) and (R4) follow immediately from the definition of R.

We now want to show that a language which satisfies (R 1)-(R 4) must be 

the reduced word problem of a group. Assume that R  satisfies (R 1)-(R 4).

If a  =  Qfi. . .  a n G R*, where each a* is in R , then (R2) gives

uav  G R* => u o l \  . . . a nv G R* => u a 2 . . .  a nv G R *

=> • • • => u a nv G R* => uv £ R*.

Since (R l) is just (W l) with W  replaced by /?*, we now know that R* 

satisfies (W l) and (W2), and is therefore the word problem of a group G , 

by Proposition 4.2.1. Let W  =  R* =  W™(G);  then we are finished if we can 

show that R  =  min(W) D E+ .

Suppose that a  G R,  with a  =  Ay, ft G W, 7  ^  A, and p  ^  A. Since 

W =  iT , we have p  =  A . . .  An with Pi € R- So a  e  ^ 7 ', with Pi e  R  

and 7 '  ^  A, contradicting (R4). N oting that the empty word is not in R , we 

have that I? C min(W ) fl E + .

Conversely, let a  G m i n ( W ' )  f l  E + . Since a  G I f  =  1?*, we have a  =  

a i . . . a n with G R .  Since a \  €  R  C  W ,  and a  G m i n ( W ) ,  we know
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that a  =  ax, and thus that a  G R. Thus m i n (V L) f l  E+ C  R, and so 

R  =  m i n ( W )  f l  £ + is the reduced word problem of G. □

4.4 Solvability

One would expect that solvability of the word problem for a group is closely 

linked to the solvability of the reduced word problem. This is indeed the 

case, and we have:

T h eo rem  4 .4 .1  If W  is the word problem of a group with respect to a 

monoid generating set X  and if R  is the reduced word problem with respect 

to X ,  then the following are equivalent:

(51) R is recursive;

(52) R is recursively enumerable;

(53) W is recursive.

Proof The fact that (SI) implies (S2 ) is clear; it remains to show that (S2 ) 

implies (S3) and that (S3) implies (SI).

Let us assume that R  is recursively enumerable. Let q g S * .  If no prefix 

of a  lies in R , choose P of minimal length such that a p  G W \ we see that we 

must have a(3 G R. So

a  G £* => either there is a prefix of a  in R

or there is a non-empty word p  such that a p  G R  (4.1)
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We have a procedure V  which, when given as input a word 7  6  S*, will 

terminate if and only if 7  E  R. We will outline an algorithm A  which, given 

a word a  in £*, will terminate with “yes” if a  E  W  and with “no” otherwise.

(AI) We set V  going on every non-empty prefix of a. If V  terminates on 

some such prefix 77, say a  =  rj9, then 77 represents the identity, so that 

a  E  W  if and only if 9 E  W.  We delete 77 and restart A  completely 

with 9 in place of a.  Note that, if a  =  77 and 9 =  A, then a  E  W  and 

we have finished.

(A2 ) Whilst doing (AI), we enumerate words of the form a/3 which have a  

as a proper prefix. For each such word a/3, we run V  on that word. 

If V  terminates on such a word a/3, we know that a/3 E  R  with /3 

non-empty, and so a  0  W.  Note that, if we find a prefix 77 of a  in R  

via (AI), then these procedures in (A 2 ) are all abandoned when we 

restart A  with 9 in place of a .

By (4.1), our algorithm A  either terminates with the empty word whilst 

performing (A l), in which case a  E  W,  or else we find, in (A2), a word 

uv E  R,  such that u and v are non-empty, and our original a  is wu,  for some 

w E  W\  but then a  — u W .  So W  is recursive.

Lastly, suppose that W  is recursive. Given a word a , we test a  and all 

its proper non-empty prefixes for membership of W.  We have that a  E  R  if 

and only if a  E  IF and no proper non-empty prefix of a  lies in W.  So R  is 

recursive as required. □
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It is interesting to note that there are no groups where the reduced word 

problem is recursively enumerable but not recursive, and so any language 

satisfying the conditions of Proposition 4.3.1 that is recursively enumerable 

is necessarily recursive.



Chapter 5

Syntactic M onoids

5.1 Characterizations of Languages

As has been noted in [24], it is not possible to give a characterization of 

the context-free languages using syntactic monoids in the same way as has 

been done for the regular languages, since languages which are very different 

in terms of position in the Chomsky Hierarchy can have the same syntac­

tic monoid. For example, the context-free languages are not closed under 

complementation, and, by Proposition 2.9.2, a language always has the same 

syntactic monoid as its complement; therefore there are monoids which are 

the syntactic monoids of languages which are context-free and of languages 

further up the hierarchy. In fact, there is little hope of such a characteriza­

tion for any class of languages which is closed under inverse homomorphism  

and which strictly contains the regular languages.

47



C H A PTE R  5. SY N T A C T IC  M O N O ID S  48

Theorem  5.1.1 Let G be a finitely generated non-periodic group and let T  

be a family of languages which is closed under inverse homomorphisms and 

intersections with regular languages such that there exists K  C  { a } *  with 

K  T . Then G  =  M l for some L  ^ T .

Proof. Let a  be an element of G  of infinite order. Let X  be a group 

generating set for G  containing a ,  let £  =  X  U X -1 , and let </> : £* —>■ G be 

the natural homomorphism.

Let K  be a subset of { a } *  such that K  £ E ,  and let I  =  { i  : a% G K } .  

If K  U {A} G P ,  then (K  U {A}) n  {a }+ =  K  G T ,  a contradiction. So we 

may assume without loss of generality that A G K ,  and thus that 0 G I. 

Let S  =  {a 1 : i G 1}  C  G  (since 0 G X , we must have 1 G S), and let 

L =  S(f>-\

If L € P ,  then K  — L C I { a } *  G a contradiction; so L £ P .

In order to show that G =  M l  we must show that there is no non-trivial 

congruence on G  such that S' is a union of congruence classes. Let ~  be a 

non-trivial congruence on G. Suppose that a1 and are in 5, with i > j, 

and that aJ ~  a1. Then ~  1 G S, and G S  with j  -  i <  0, a 

contradiction. □

In the light of the problems with using syntactic monoids to classify lan­

guages above the regular languages in the Chomsky Hierarchy, Sakarovitch 

suggests in [27] the framework of syntactic pointed monoids, effectively, that 

languages should be classified by the structure of the syntactic monoid and
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the image of the language in that monoid.

It would therefore be useful to have methods of finding out whether or not 

a particular subset of a monoid is disjunctive. Since the set of congruences 

on a group is in bijective correspondence with the set of normal subgroups 

we have that, in the case of groups, a subset A  of a group G  is disjunctive if 

there is no non-injective homomorphism cp from G  onto a group G' such that 

A  is the full inverse image of a subset B  of G'.

It the subset that we are considering is a subgroup, then we have the 

following result.

P r o p o s it io n  5 .1 .2  Let G be a group, and H  a subgroup of G. Then H  

is a disjunctive subset of G  if  and only if  it contains no non-trivial normal 

subgroup of G.

Proof  Assume H  is not a disjunctive subset of G. Then there is some 

homomorphism (p from G  onto G ', say, such that H  is the inverse image of 

some subset B C G ' .  Since the identity element of G  is in H,  and H  is the 

inverse image of some subset of G ', H  must contain Ker{cp),  a non-trivial 

normal subgroup of G.

Conversely, assume H  contains a non-trivial normal subgroup N  of G.  

Consider the natural homomorphism, ip, from G  onto G / N .  By the First 

Isomorphism Theorem, ip gives a bijective correspondence between the set of 

subgroups of G  containing N  and the set of subgroups of G / N .  Hence there 

is a subgroup Hip of G / N  such that (Hip)ip~l =  H.  □
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An im m ediate corollary of Proposition 5.1.2 is the following well-known 

observation.

P r o p o s it io n  5 .1 .3  A group is the syntactic monoid of its word problem.

Proof. Let G  be a group. Then { 1 } is a subgroup of G which contains no 

non-trivial normal subgroup of G. By the previous result, { 1 } is a disjunctive 

subset of G , and thus G  is the syntactic monoid of its word problem. □

This gives us another proof of the following result of [2].

C oro llary  5 .1 .4  The groups with regular word problems are exactly the finite  

groups.

Proof. A finite group G  is the syntactic monoid of its word problem which 

must therefore be regular, by Theorem 2.9.6. If G  has regular word problem  

then it is the syntactic monoid of a regular language and hence is finite, 

again, by Theorem 2.9.6. □

5.2 W ord Problem s

We note that, given a language L C X * ,  the word problem of the syntactic 

monoid M l of L  with respect to the the generating set X  is the set of words 

over X  which are equal to the identity, i.e. the congruence class [A] of the 

empty word under the syntactic congruence.
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The following lemma allows us to assume, when considering the syntactic 

monoid of a language L from a class of languages which is closed under inverse 

homomorphism, that our alphabet contains inverses.

Lemma 5.2.1 Let T  is a class of languages which is closed under inverse 

homomorphism, and let L  C  X* be a language in T . If M l ,  the syntac­

tic monoid of L, is a group G, then G  is also the syntactic monoid of a 

language V  over the generating set T, =  X  U X ~ l , with V  E T .

Proof  Let S  be the image of L  in G  under t]l , the syntactic morphism  

(note that L =  S t]l ~1)- Let </> be the monoid homomorphism from E* to G, 

which maps each x E X  to xtjl, and each x~ l E X ~ l to (rrr^)-1 . Since t)l is 

surjective, <j> must also be surjective.

Let K  be the inverse image of S  under (j>. Since S  is a disjunctive subset 

of G, we know that G  is the syntactic monoid of K .  By Lemma 3.5.1, we 

must have K  E IF. □

It will be useful to note the following characterization of the word problem 

of the syntactic monoid of a language.

Lem m a 5.2.2 Let L be a language over an alphabet X .  Then the word 

problem W  of the syntactic monoid of L is I  n D , where I  =  INS(L) and 

D  =  D E L  ( L ) .

Proof. We observe that 

U e W  =  [X] O  (wiW2 E L <=> W\UW2 E L)
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( w \W 2 G L  => W 1 UW2  G L ) a n d  (w \U W 2 G L = >  W 1W 2 G L )  

u  e  I  a n d  u  G D

which is exactly what we wanted. □

Suppose E =  I U  X -1 , and define -1 : £* -»  £* inductively by:

•  A " 1 =  A;

•  if a G X  then (a a )_1 =  a -1 a_1;

•  if a G X -1 then (a a )-1 =  a _16 where a =  6_1, and b G X .

If A and B  are subsets of £*, then

(A ^  B )~ l =  {x  G £ *  : 3 a , /3 G E*(u =  ax/3 G A  and v  =  a/3 G B )} -1  

=  { x _1 G £* : 3 a , /3 G £*(u  =  ax/3 G X and u =  a/3 G .B )}  

=  { x - 1 G E* : 3 a -1 , /3_1 G E * ^ " 1 =  ^ x ^ a " 1 G A "1 

and u_1 =  /3_1a _1 G B -1)}

=  { y  G £* : 3 7 , 6 G £ * ( 7 ?/<5 G A"1 a n d  7 6  G B -1 )}

=  (A -1 ^  B ~ l )

and

( A c) _1 =  { x  €  E *  : x  i  A } ~ 1 =  { a r 1 e  E •  x  t  A }

=  { x _1 €  E* : x ~ l  £  A - 1 } =  { y  e  E *  : y  <£ ,4 - 1 }

=

and we have the following lemma:
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Lemma 5.2.3 Let A and B  be subsets o /E * . Then

i. (A ^  B )~ l =  (A -1 ^  B - 1); and

ii. (A c)_1 =  (A ~ l )c.

We can now show the following:

Proposition 5.2.4 Let L be a language over the alphabet E =  X  U X ~ l , 

such that M l  is a group G, the function  -1 is defined as above, and X  is 

a group generating set fo r  G. Let I  =  i n s ( L )  and D  =  d e l ( L ) .  Then 

D =  I -1 =  i n s ( L _ 1 ) .

Proof We must have a a ~ l £  W™(G) for any a  G E*, so that a a -1 £ I D D  

for any a  E  E* by Lemma 5 . 2 . 2 .

Let a  E  I. Then u a ~ lv  E  L  implies that u a a ~ l v E  L (since a  E  I),  and 

thus uv E  L (since a a -1 E  D ), and we see that a -1 E  D.

Let a -1 E  D.  Then uv  E  L  implies that u a a ~ l v E  L (since a a -1 E  J), 

and thus wau E  L  (since a -1 E  D ), and we have a  £ I.

We now have that D  =  { a -1 E  E* : a  E  / }  =  / -1 , and thus,

D  = r 1 =  [ ( L c ^  L ) T l = {( L - 1)0 ^  ( T - 1 )]°  =  i n s ( L _ 1 )

by Lemma 5.2.3 and Proposition 2.8.1. □

In particular, given Lemma 5.2.2, we have

Corollary 5.2.5 If L — L~l is a language over the alphabet E =  I U X  

the syntactic monoid of L is a group G, the function _1 is defined as above, 

and X  is a monoid generating set for G, then W™(G) = i n s ( L )  =  D E L ( L ) .
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One general question which we shall look at is the following:

Q u e stio n  5 .2 .6  Given a language L  C  E*, from a family T  which is closed 

under inverse homomorphism, such that the syntactic monoid of L is a group, 

is the word problem of the syntactic monoid of L in T 9

More generally:

Q u estio n  5 .2 .7  Given a language L from family T ,  what can we say about 

the word problem of M l ?

Lemma 5.2.1 tells us that, when trying to answer Question 5.2.6, we may 

assume without loss of generality that the alphabet E* contains inverses.

We can now give the answer to Question 5.2.6 when T  is the class of 

regular langages.

T h eo rem  5 .2 .8  If L is a regular language with syntactic monoid M  then 

the word problem of M  is a regular language.

Note that this theorem in the case where M  is a group follows immediately 

from Theorem 2.9.6 and Corollary 5.1.4.

Proof. Let M. =  (Q, E, 5, qo, F)  be the minimal complete deterministic finite 

automaton recognizing L. For each state q G Q, consider the language Lq C  

E* of all words w e E *  for which 5(q, w) =  q. We claim that Lq is the 

word problem W  of M .  By Lemma 5.2.2 we know that W  =  iNs(L)flDEL(L).

Suppose u G PiqeQ^q and that w i ,w 2 G E*. Since u G f ] qeQLq, we 

have 5(qo,wiW2) =  8(q0,w iu w 2) and hence W \ W 2 G w \u w 2 e  L , and

u G INS(L) fl DEL(L) =  W .
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Conversely, suppose that u £ f]^eQ L q: that is, there exists r  G Q  with 

u i  Lr . By completeness and minimality we can choose w\ G E* such that 

S(q0iw i)  =  r. Since u £ L r, 8(r, u) ^  r .  Let 8(r,u) =  r'. By minimality 

there exists w 2 G E* such that 5 (r ,w 2) G F  and 6(r',w2) ^ F, or vice versa. 

We have shown that there exist w\ and w 2 in E* such that 5(qo, WiW2) G F  

and 8(q0,w iu w 2) £  F , or vice versa. Hence W\W2 G L and w iuw 2 £  L, or 

vice versa, and we cannot have u G W . □

Theorem 3.5.3 gives a partial positive answer to Question 5.2.6 in the 

case of context-free languages where the syntactic monoid is assumed to be 

cancellative:

C oro llary  5 .2 .9  Let L be a context-free language with cancellative syntactic 

monoid M . I f  the image of L in M  is finite then M  has a context-free word 

problem.

Proof. Assume that L  ^  0. Then the image of L in M l  is a finite non­

empty context-free set, and by Theorem 3.5.3 all finite subsets of M l  are 

context-free; in particular {1} G C F (M L).

If L  is em pty then its syntactic monoid is the trivial group, which has 

context-free word problem. □

In general, the word problem of a group which is the syntactic monoid 

of a context-free language need not be context-free. A particular example 

from [28] is the group Coo x Coo-
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E x a m p le  5 .2 .1 0  ([28]) Let E =  { a ,b ,c ,d } ,  and let

L =  {w  E  E* : \w\a =  \w\b or \w\c =  |iu|d}.

Then L is a context-free language with syntactic monoid isomorphic to 

Coo x Coo-

In the case of deterministic context-free languages, the answer to Ques­

tion 5.2.6 is unknown.

The following conjecture was made in [12].

C o n jec tu re  5 .2 .1 1  Let L C  E* be a deterministic context-free language 

with syntactic monoid a group G. Then G is a context-free group.

This reduces to our Question 5.2.6 for deterministic context-free languages, 

since, by Theorem 3.6.2 the word problem of a context-free group is always 

deterministic context-free. It is noted in [12] that if Conjecture 5.2.11 could 

be proved then it would lead to a proof of the conjecture of Sakarovitch ([26, 

29]), that the thin syntactic monoids are exactly the deterministic monoids, 

in the special case of groups.

We finish this chapter by looking at the syntactic monoids of recursive 

languages.

P r o p o s it io n  5 .2 .1 2  Let L be a recursive language with syntactic monoid M .  

Then the complement of the word problem of M  is recursively enumerable.

Proof. We shall assume that L is infinite: were L finite it would be regular, 

and thus the word problem of M  would be regular, and hence certainly
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recursive. Since L is recursive we can assume the existence of a Turing 

machine 71 which enumerates the words of L, and a machine %  which, upon 

reading a word of £*, always terminates, and gives the answer yes if and only 

if the word is in L. We construct a machine T  which, when given input u, 

halts if and only if u is in the complement of the word problem of M.

Our machine T  uses a copy of 71 to enumerate words of L. For each word 

w =  X1 X2 . . .  x n E L, T  inserts u into w  in the n +  1 possible places in turn 

and checks for each one, using a copy of T2 that the resulting word is in L. 

If one of these words fails to be in L , then T  halts.

For each occurrence of u as a subword X{ . . .  Xj of w, T  uses a copy of T2  

to see if X\ . . .  X i- \X j+ i . . .  x n is in L. If this is not the case then T  halts.

Having checked to see if u can be inserted or deleted at any point in w in 

such a way that we finish up with a word not in L, T  goes back to its copy 

of 71 and starts the process again with a new w. Since L is infinite, T  will 

never run out of words to work on. □

Combining Theorem 3.5.2 and the previous result gives:

P r o p o s it io n  5 .2 .1 3  Let T  be the context-sensitive languages, the recursive 

languages, or the recursively enumerable languages. If G is a finitely gener­

ated group and A  is a finite, nonempty, disjunctive, T-subset of G, then the 

word problem of G  is in T .

Proof. If T  is the context-sensitive languages or the recursively enumerable 

languages, then by Theorem 3.5.2 every finite subset of G  is an ^-subset,
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and in particular {1} is a ^"-subset.

If T  is the recursive languages then A  is an 7^£-subset of G  and thus {1} is 

also an 7££-subset. By Proposition 5.2.12, G \ { 1 }  is recursively enumerable. 

So {1} is recursive. □

We now have a partial answer to Question 5.2.6 in the case of recursive 

languages.

P r o p o s it io n  5 .2 .1 4  Let L  C  £* be a recursive language, with syntactic 

monoid a group G, and suppose that the image of L under the syntactic 

morphism is finite. Then G  has a recursive word problem.

Proof. The image L  under its syntactic morphism is always disjunctive. If L 

is nonempty, then its image in G  is nonempty and we may apply Proposi­

tion 5.2.13. If L  is empty then its syntactic monoid is the trivial group. □



Chapter 6

R educed Word Problems

6.1 H aring-Sm ith’s Conjecture

The purpose of this section is to prove Theorem 6.1.1, which includes (as the 

equivalence of parts i and vi) the conjecture of Haring-Smith that a group has 

strict determ inistic reduced word problem for some monoid generating set if 

and only if it is a finite extension of a plain group. Saying that a reduced 

word problem is strict deterministic is equivalent to just saying that it is a 

deterministic context-free language (since it is prefix-free by definition).

T h e o r e m  6 .1 .1  Let G be a finitely generated group. The following are equiv­

alent:

i. fo r  some monoid generating set X ,  the reduced word problem of G with 

respect to X  is deterministic context-free;

59
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ii. fo r  some monoid generating set X ,  the reduced word problem of G with 

respect to X  is context-free;

Hi. G is a context-free group;

iv. for  every monoid generating set X ,  the reduced word problem of G with 

respect to X  is deterministic context-free;

v. for  every monoid generating set X ,  the reduced word problem o fG  with 

respect to X  is context-free;

vi. G is a finite extension of a plain group.

Proof. It is clear that part i implies ii. Next we prove that part ii implies 

part iii.

Let X  be a monoid generating set for a group G , such that -R™(G) is 

context-free. Since the class of context-free languages is closed under Kleene 

star, and WjP(G) =  R x(G )* ,  by Proposition 4.1.1, W x {G )  is context-free, 

and we have shown that part ii implies part iii.

Let G  be a context-free group, and let X  be a finite monoid generating set 

for G, so that, by Theorem 3 . 6 . 2 ,  WjP(G) is deterministic context-free. Since 

R™(G) =  m i n ( W ™ ( G )  f l  X + ) by Proposition 4 . 1 . 2 ,  it must be deterministic 

context-free, by the closure of the deterministic context-free languages under 

intersections with regular sets, and Lemma 2 .7 . 2 .  We have proved that part 

iii implies part iv, and it is immediate that part iv implies part v.
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If part v is true, take X  to be any monoid generating set for G. Since 

R x (G )  is context free, W x (G) =  Rx(G )*  is context-free, and so W x {G )  

is determ inistic context-free by Theorem 3.6.2, and R x{G )  is deterministic 

context-free by Lemma 2.7.2 and the closure of the deterministic context-free 

languages under intersections with regular sets. So we have shown that parts 

i, ii, iii, iv and v are equivalent. It therefore only remains to show that part vi 

is equivalent to these five conditions.

A context-free group G  is a finite extension of a free group, and, since a 

free group is certainly plain, G  must be a finite extension of a plain group, 

and so we have proved that part iii implies part vi. Let G  be a finite extension 

of a plain group H .  Since H  is plain, by Theorem 3.7.2, it has simple reduced 

word problem for some generating set. A simple language is certainly context- 

free, and, by the equivalence of parts ii and iii, we know that H  is a context- 

free group. The class of context-free groups is closed under taking finite 

extensions, so that G  must also be context-free. □

An obvious extension of the work of Haring-Smith would be to classify the 

groups with reduced word problem in other classes of languages. In the case 

of the one-counter languages, Herbst’s characterization of the one-counter 

groups can play much the same role as Muller and Schupp’s characterization 

of the context-free groups. Substituting one-counter for context-free through­

out, and using Theorem 3.6.3 in place of Theorem 3.6.2 we see that the proof 

of the equivalence of parts i, ii, iii, iv and v of Theorem 6.1.1 works equally
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well, and so we have:

T h e o r e m  6 .1 .2  Let G be a finitely generated group. The following are equiv­

alent:

i. fo r  some m onoid generating set X , the reduced word problem of G with 

respect to X  is deterministic one-counter;

ii. fo r  some m onoid generating set X ,  the reduced word problem o fG  with 

respect to X  is one-counter;

iii. G  is a one-counter group;

iv. for  every monoid generating set X , the reduced word problem of G with 

respect to X  is deterministic one-counter;

v. for  every m onoid generating set X ,  the reduced word problem of G with 

respect to X  is one-counter;

6.2 M onoid Generating Sets

In this section we shall look at the analogue of Theorems 3.7.1 and 3.7.2 in 

the case of m onoid generating sets.

We start by constructing a grammar T from the finite irreducible word 

problem of a group G  with respect to monoid generating set X .  The con­

struction is the same as that in [10].



C H A P T E R  6. R ED U C ED  W O R D  PROBLEM S  63

Let I  =  {w 1} iu2, . . . ,  wn}, where Wi =  aiAa^2 . . .  aitni for i e  { 1 , . . . ,  n}, 

be the irreducible word problem of G  with respect to X \  let Is be the suffix 

closure of I.

The set of terminals for our grammar shall be X .  The set of non-terminal 

symbols, V ,  will consist of a symbol A g for each g G G  which is represented 

by an element of I s. Since the identity element of the group is represented 

by the em pty word, which is in / s , there is a symbol A\ corresponding to it. 

This symbol will be the start symbol for our grammar, and we shall therefore 

write S  in place of A \.  We note that for each a G X ,  there must be a symbol 

A a- 1 G V,  since there must be a word starting with a which is equal to 

the identity, and a minimal such word must be in I. We now have a set of 

terminals, a set of non-terminals, and a start symbol; so all that remains to 

be defined is the set of productions. This is constructed in the following way:

•  S  ->• aiti A aitl- i  G P  for i G { 1 , . . . ,  n};

•  if there is a word in Is \  {A} representing the (non-identity) group 

element a -1 #, then A g —>• aA a- \ g G P;

•  if a~l g is the identity element, then A g —>■ a G P;

•  if a -1 g is not represented by a word in / s, then A g —> aAa- i A g G P .

Since, for each pair of one terminal a, and one non-terminal A, we have 

constructed exactly one rule of the form A  —>• aa, our grammar is simple.
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Lem m a 6.2.1 The language of the grammar we have just constructed is

R $ (G ) .

Proof. We prove by induction that the words derived from each non­

terminal A g all represent g in the group. In a derivation Ag —> a of length 

one, we have, by definition, that a~lg =  1, and thus that a =  g. Let us 

assume that we have proved that every word which can be derived from a 

symbol A g using a derivation of length less than or equal to m, where m  ^  1, 

is equal in the group to g , for every non-terminal symbol Ag e  V. Let w 

be a word which can be derived from A g with a derivation of length m  +  1. 

The derivation of w  must start in one of the following ways:

•  A g —>• a A a- i g\

•  A g —> aA a-lA g.

The lengths of the derivations from the non-terminals on the right hand 

sides of the rules above must in all cases be less than or equal to m. So in 

the first case, A a- i g derives a word u which is equal to a~lg. In this way Ag 

derives au =  aa~l g =  g.

In the second case, A a-\  derives a word u equal to a -1 , and the A g on the 

right hand side derives, in fewer than m  moves, a word v which is equal to g. 

Thus the A g on the left hand side of the production derives auv =  aa~lg =  g.

In particular, we have shown that every word which can be derived from 

S  =  A \  is equal to 1, and therefore that L(r) C W x (G ) .  Since the gram­

mar T is simple, L(T) is prefix-free, and thus L(T) C Rf&G).
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To com plete the proof of the Lemma we need to show that every word 

which is in R™(G) is also in L(T). This follows from the fact that for every 

non-terminal A, and terminal a, there is exactly one rule of the form A aa  

in P .  Given a word w =  we construct a leftmost

derivation of w  in T in the only possible way. Assume that we have already 

constructed the first m  moves of the derivation S  A  a \ . . .  amA(3, where 

m  <  k. The next letter of w  is am+1 , so the next production must be of the 

form A am+i a , and in m  +  1 moves, we derive the string a \ . . .  amam+ia{3. 

If a(3 is em pty then the string a i . . .  am+\ is in L(r) C R™(G), so this can 

only happen if m  =  k — 1, and our derivation cannot come to an end before 

the end of w. If m  =  k — 1, and a(3 is not the empty string, then we have 

derived the string a \ . . .  dka/3 =  waf3. There must be a non-empty string u 

which derives from ot/3, and so we have that S  A  wu, where u is non-empty. 

This cannot happen, since we would have wu  £ L(r) C R x{G )  with a non­

empty proper prefix w  £  R x {G ) .  So we know that our derivation does finish 

at the end of u>. □

The previous lem m a (together with the preceding discussion) gives a proof 

of the following theorem:

T heorem  6.2 .2  If  a group G has finite irreducible word problem with respect 

to a m onoid generating set X ,  then G has simple reduced word problem with 

respect to X . □
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In contrast to the situation for group generating sets, the converse of 

Theorem 6.2.2 remains open.

Q u e st io n  6 .2 .3  I f  a group G has simple reduced word problem with respect 

to some m onoid generating set X , does the irreducible word problem of G  

with respect to X  have to be finite?



C hapter 7 

Finite Irreducible Word 

Problem s

7.1 Prelim inaries

The following observation, im plicit in [20], tells us that the groups presented 

by finite special [A]-confluent string-rewriting systems and the groups which 

have finite irreducible word problem with respect to some monoid generating 

set are in fact one and the same.

P r o p o s it io n  7 .1 .1  Let G  be a group, and X  a finite monoid generating 

set for  G. Then G  can be presented by a finite special [A]-confluent string- 

rewriting sys tem  over X  if  and only if  it has finite irreducible word problem 

with respect to X .

67
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Proof. Let R  be a finite special [A]-confluent string-rewriting system over X  

which presents G. If w  €  /  =  I x ( G ) then, since w  € W x (G ),  there is a rule 

u —» A which can be applied to w. Now u is a non-empty subword of w  which 

is equal to the identity, so u =  w. We have shown that, for any w G / ,  there 

must be a rule w  —>> A in R. Since R  has only finitely many rules, I  must be 

finite.

Conversely, let G  be a group with finite monoid generating set X  such that 

I  =  I x ( G )  is finite. Then {w  —>■ A : w  G 1}  is a finite special [A]-confluent 

string-rewriting system  which presents G. □

7.2 Special R ew riting for C00 x Cp;

We know from [20] that a group can be presented by a finite special [A]- 

confluent string-rewriting system  which provides inverses of length one for 

each generator if and only if it is a plain group, but it is left open there as 

to whether or not this continues to be the case if the condition on inverses 

is dropped. Our task here is to give an example to show that this is not the 

case.

P r o p o s it io n  7 .2 .1  Let G  be the direct product of the infinite cyclic group 

and a finite cyclic group. Then G can be presented by a finite special [A]- 

confluent string-rewriting system, but G  is not plain.

Proof. Firstly, we note that G  cannot be plain, since a group cannot be both 

a non-trivial direct product and a non-trivial free product: see for example 

[18, page 177].
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•  — / - > ■  •  — / - > ■ •  — •  —  / - ►  •  —  / - * .  •  — •

•  —  / - ►  •  — / - ►  •  —  / - ►  •  — / - ►  •  —  / - ►  •  —  / - ►  •

Figure 7.1: The Cayley graph of Coo x C/- =  ( /  : ) x (a : aA) with respect to the 

monoid generating set { / ,# } ,  where g =  a / -1 .

The standard group presentation for G  is ( /  : ) x (a : ak). Let X  — { / ,  g }, 

where g =  a / - 1 . The Cayley graph of G  with respect to X  is shown in 

Figure 7.1. We claim that X  is a monoid generating set for G  with respect 

to which the irreducible word problem of G  is finite.

Any elem ent of G  can be written in terms of the symbols / ,  f ~ l and a. 

Since /  G X ,  a =  f g  and / _1 =  f k~lgk, we see that X  is a monoid generating 

set for G.

A word w  is in LF™(G) if and only if it satisfies \w\j =  \w\g and \w\g =  

0 mod k. Together these conditions give that \w\f =  \w\g =  nfc, and \w\ =  

2nk, for some n  ^  0. We shall show that if n >  1 then w  cannot be 

in I  =  I x { G ) ,  so that I  is just the set of words which contain exactly k
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instances of /  and k instances of g , and is thus a finite set.

Assume that w =  Z\...Z2nk  £  I  and that n >  1. Consider the word 

Z i . . . Z 2 k- This subword of w  must contain different numbers of instances 

of /  and g , or else it would be equal to the identity in G.  We may therefore 

assume w ithout loss of generality that it contains more instances of /  than it 

does of g. Now suppose that, for some i, the subword Z{. . .  z ^ k - i  contains 

more instances of /  than of g. The difference between \z{ . . .  Zi+2k-i\f  and 

\z{+ i . . .  z i+2k\f must be at most 1, and so \zi+i . . .  z i+2k\f ^  k. We cannot 

have \ z i+ i . . .  Z{+2k\f =  k because this would mean that Zi+ \ . . .  Zi+2k is equal 

to the identity; so \zt+ i . . .  Zi+2k\f >  k. By induction we see that every 

subword of w  consisting of 2k consecutive symbols contains more instances 

of /  than it does instances of g. Since |iu| is a multiple of 2k, we may 

consider w  as the concatenation of n  words of 2k symbols, and it is clear 

that |tu|/ >  \w\g, a contradiction. □

A group of the form Coo x  Cn has a finitely generated abelian subgroup 

which is neither finite nor infinite cyclic and thus by Theorem 3.8.5, cannot be 

presented by a finite monadic confluent string-rewriting system. We therefore 

have exam ples of groups which can be presented by finite special [A]-confluent 

string-rewriting system s, but which cannot be presented by a finite monadic 

confluent string-rewriting system. It is not known whether or not there exists 

a group which can be presented by a finite monadic confluent system, but 

not by a finite special [A]-confluent system: such a group would, of course, 

be a counter-example to Conjecture 3.8.4.
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7.3 Infinite Cyclic Central Subgroups

Having dem onstrated that the class of groups which may be presented by 

finite special [A]-confluent string-rewriting systems strictly contains the plain 

groups, the obvious question is:

Q u e s t io n  7 .3 .1  Which groups can be presented by finite special [A\-confluent 

string-rewriting sy s tem s?

We shall answer this question for groups which have an infinite cyclic central 

subgroup. We start w ith two lemmas.

L em m a  7 .3 .2  Let X  be a finite monoid generating set for the group G. 

Suppose there are a finite se t S  C G, an element g G G, and an infinite 

set P  of pairs of words over X  such that, for  all (iq, U2 ) € P , both iq and iq 

have no non-em pty subwords equal to the identity, iqpiq € S, an d u +gu _ =  1 

implies u+ =  u .̂ =  A whenever u+ is a suffix of iq and u_ is a prefix of iq. 

Then I x { G )  is infinite.

Proof. For each s G S,  let the word vs represent a simple path in the Cayley 

graph T of G  connecting s  to 1 so that vs =  s -1 . Since S  is finite, there 

is an integer B  such that the length of each such path does not exceed B. 

Let C  =  |vg\, where vg is a word representing g.

Suppose I x { G )  were finite. By Proposition 7.1.1 there is then a finite 

special [A]-confluent string-rewriting system R  presenting G.  Let M  be larger 

than the length of the left hand side of any rule in R.  Observe that an
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application of any R -rule to the label of any path in T corresponds to the 

removal from that path of a loop of length less than M.

Fix an arbitrary integer L  ^  M.  Since P  is infinite, there must be a 

pair (« i,w 2) £ P  with |u i| +  |w2| ^  L. Consider the word U\vgU2 Vs, where 

U\VgU2  =  s  £  S  so that U\vgU2 Vs =  1. By the assumptions on (1 1 1 , 1 12) and L, 

the application of any 72-rule to (any 72-descendant of) the word UiVgU2 Vs 

must remove at least one edge of the loop U\VgU2 Vs outside the subpaths 

labelled by U\ and u2. Therefore one reaches an 72-irreducible descendant w 

of U\VgU2 Vs in at m ost B  +  C  steps. We have w — 1 and

|iu| ^  \u\VgU2Vs \ — M ( B  +  C)  ^  L — M (B  +  C).

Since this holds for all L  ^  M , we see that there are non-trivial 72-irreducible 

words in W™(G) .  This contradicts the fact that 72 is special and [A]-confluent, 

and com pletes the proof. □

Lemma 7.3.2 has the following consequence:

Lem m a 7.3 .3  Let X  be a finite monoid generating set for the group G. 

Suppose there are a finite set S  C G and an infinite set U of words over X  

such that no u €  U has a non-empty proper subword equal to the identity, 

and every u G U is equal in G to an element of S. Then 7™(G) is infinite.

Proof. We may clearly assume that no element of U  is equal to the identity. 

Then Lemma 7.3.2 applies with g =  1 and P  =  { (A, u): u e  U }. □
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We may now characterize the groups which may be presented by finite 

special [A]-confluent string-rewriting systems amongst those groups which are 

split extensions with infinite cyclic quotient and finite kernel.

P r o p o s it io n  7 .3 .4  A group G which is of the form H  x F, where H  is a 

finite normal subgroup o fG  and F  is an infinite cyclic group, can be presented 

by a finite special [A]-confluent string-rewriting system if and only if  G =  

H  x F  and H  is cyclic.

Proof  Proposition 7 . 2 . 1  tells us that the “if” part the theorem is true.

To prove the “only if” direction, we shall assume that G  is not of the 

form H  x  F  for any finite cyclic group H ,  and deduce that G  has infinite 

irreducible word problem w ith respect to any monoid generating set.

Let X  be a finite monoid generating set for G. We may assume that there 

are no redundant elements in X , since if I x ( G)  is infinite, then adding more 

elements to X  is certainly not going to make it finite.

Fix a generator /  (not necessarily in X )  of the infinite cyclic group F  

and let <j> : G  —► F  be the natural projection of G  onto F.  We start by 

partitioning X  into three sets, P , N , and Z , where P  =  {x  e  X  : x(/> =  

/* and i >  0}, N  =  { x  G X  : x(/> =  /* and i <  0}, and Z  =  {x  G X  : x$  =  

1} =  X  D H .  We must have ?  /  0 and N  ^  0 in order that we have in X*  

both words which are equal to /  and words which are equal to / -1 .

We shall split the proof that I x ( G)  is infinite into several cases.
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C ase  1 Z  /  0.

Fix a G Z,  x  G P  and y  G N.  We shall construct a sequence (wr : r ^  0 )  of 

distinct words which satisfy the following conditions:

i. w r G H  \  { 1 } ;

ii. w r has no non-em pty proper subword which is equal to the identity;

iii. every x  in w r occurs to the left of the first y.

Let ra, n  >  0  be minimal such that xmy n G H. We cannot have both 

xmy n =  1 and x ma yn =  1, since a would then be redundant. We may 

therefore choose wq to be either x my n or xmayn so that it satisfies condition i. 

The m inim ality of m  and n  tells us that satisfies condition ii, and it is 

clear that wq satisfies condition iii.

Assume that we have constructed w r which satisfies conditions i, ii and iii. 

We cannot have both x mw ry n =  1 and x mwrayn =  1, so we may choose wr+1 

to be x mw ry n, if this is not the identity, and xmwrayn otherwise, so that 

wr+1 satisfies condition i. Condition iii for w r , and the fact that all of the 

new instances of x  are introduced on the left, and all of the new instances 

of y  on the right, ensure that w r+1 satisfies condition iii. Our construction is 

com plete if we can show that w r+1 satisfies condition ii.

By conditions i and ii for w r , we know that there is no non-empty sub­

word of w r which is equal to the identity. Since a</> =  wr<j) =  1, we have 

(x iw ray^)(j) =  (x lw ryj )(l) =  {xly )̂(j). But m  and n are minimal such that
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(xmy n)4> =  1, and hence no subword of w r+i the form x lwryi or x lw ra y i , 

with 0 <  i <  m  and 0 <  j  <  n, is equal to the identity. By condition iii 

for wr , any word v which is a suffix of wr or of wra , must satisfy v(f) =  f k, for 

some k ^  0. Thus any word of the form v y % with i >  0, and v a suffix of wr or 

of w ra, must satisfy (vy l)<f) =  /* ,  for some k <  0, and thus cannot be equal 

to the identity. The situation is similar for words of the form xlu , where u 

is a prefix of w ra , and i >  0. The only remaining possibility for a subword 

of w r+1 being equal to the identity is where we have wr+1 =  x mwrayn (and 

hence xmw ry m =  1), and the subword is wra. But then y nxmwr =  1, and we 

have y nx m =  y nx mw ra — a, and a is redundant.

We have constructed an infinite sequence of words wr of increasing length 

which are equal to elem ents of the finite group H  and which have no 

non-empty subword equal to the identity, and we may therefore appeal to 

Lemma 7.3.3 to see that I x { G )  is infinite.

C a se  2 \P\ =  |iV| =  1, Z =  0.

Let P  =  {a;} and N  =  { y }  so that X  =  {x,  y} .  If x  and y  commute, then G 

is the direct product of an infinite cyclic group and a finite cyclic group, so 

we may assume that they do not commute. Let i >  0 and j  <  0 be such that 

x(j) =  /* and ycj) =  f J.

We shall split this case into three subcases. In Cases 2.1 and 2.2 we shall 

construct a sequence (vr : r  ^  0) of words with the following properties:

i. vry  =  x~ Sr for some sr >  0;
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ii. s r >  s r _ 1  for r >  0;

iii. vry  has no non-empty subword equal to the identity;

iv. vr has no non-em pty prefix equal (in G) to a negative power of x.

The set { w r =  x Srvry  : r ^  0} is then an infinite subset of /™((j).

C a s e  2 . 1  |z | ±  | j | .

We assume, w ithout loss of generality, that |z| >  \j\.

We shall require vr to satisfy one further condition

v. vr =  y to~l x y tl~l x . . .  x y tr~l with all tk >  0 (so that vr =  ur_ ix y tr~l 

for r  >  0).

in addition to conditions i to iv.

It is easily seen that there exist s >  0 and t >  0 such that x sy t =  1. 

Let s0 and t 0 be the m inim al such s and t , and then let vQ be y to~l . Clearly v0 

satisfies properties i to v. Assume that we have constructed vq to vr satisfying 

conditions i to v.

If there is no k >  0 such that vrx y k is equal to a negative power of x then 

no word of the form x lv rx y k with I >  0 and k ^  0 is equal to the identity. 

Elementary arithm etic involving i, j ,  and sr shows that for each k >  0 there is 

an lk >  0 satisfying x lkvrx y k € U\m\^ ifmH- Therefore Lemma 7.3.2 applies 

with S  =  U |m |< i/m^ ’ 9 =  xvrx, and P  =  { { x lk~l , y k) : k >  0} to establish 

that I™{G)  is infinite.
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We may therefore assume that there exists k ^  0 such that vrx y k is 

equal to a negative power of x. Let t r + 1 be the least such k. If t r+i were 

equal to  zero, then we would have vrx =  x ~l , for some I >  0 , and hence 

vr =  x~ l~1, a contradiction. Since t r + 1  ^  0, we may let vr+i be vrx y tr+l~l . 

By construction, iv+ i clearly satisfies conditions i, iv and v.

Next, we check that vr + 1  satisfies condition ii. If s r + 1 were equal to sr, 

then we would have vry =  vrx y tr+1, and thus x y tr+l~l =  1 , a contradiction 

since x  and y  do not commute. If s r were greater than sr+i, then vry x Sr =  

1 =  vr+i y x Sr+1 =  vrx y tr+1x Sr+1, and thus

y X S r - 8 r  +  l  =  x y t r  + (7<1)

If we consider the projection of these words onto F , we see that f j+(sr-sr+i)i _  

p+tr+ij^ which im plies that i ( s r — s r + 1 — 1 ) =  j ( t r + 1 — 1 ) and thus that

1,71(1 t r+1) — |̂ |(<5r 1  S f _)_i j .

Since sr+i ^  s r — 1, both sides of this equation must be non-negative, and 

thus we must have t r + 1  ^  1. We have already shown that t r + 1 /  0, so the 

only possibility is t r + 1  =  1 , and hence |i |(sr — 1 — sr+i) =  0  and sr+i =  sr — 1 . 

Substituting these values into (7.1) gives us yx  =  xy,  a contradiction. We 

have shown that we cannot have sr =  sr + 1 or sr > sr+1 , so condition ii is 

satisfied.

By condition v for vr , the word vr+i we have constructed is of the form 

vrx y tr+1~l =  y to~lx y tl~lx . . .  x y tr~lx y tr+1~l .
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By condition iii for vr and the fact that x  and y do not commute, the 

only subwords of vr+\ y  which can be equal to the identity are those of the 

form v x y k , where vr =  uv,  v is non-empty and 0 ^  k ^  £r+1. If such 

a word v x y k is equal to the identity, then u =  uvxyk =  vrx y k and hence 

u y tr+1~k =  vrx y tr+1 =  x~8r+l. Now let ru be the least n such that u is a 

prefix of vn. We know that u is a prefix of vr , so ru must be less than or 

equal to r.

If ru >  0 then we have u =  vTu- \ x y l, for some I ^  0. If ru =  0, then 

u =  y l for som e 0 ^  I <  t0- In either case,

x ~ 8r* =  vVuy  =  uytru~l =  vrx y k+tru~l (7.2)

and k +  t Tu — / ^  t r+1 by the m inim ality of t r+i.

On the other hand, x~Sr+1 =  vrx y tr+1 which together with (7 .2 ) implies 

that

x~ Sr+1y~ tr+1 =  vrx  =  x ~Srvy~(k+tTu~l\

Since sr+i >  s ru by ii, we have t r+1 >  k +  tTu—l, which contradicts the earlier 

inequality. We have thus shown that vr+i satisfies condition iii.

C a s e  2 .2  \i\ = \j\ and x 2y 2 /  1.

Note that if |z[ =  \j\ then we must have | i |  =  \j\ =  1 or we would not have a 

word in X *  representing / .

We again construct a sequence of words vr which satisfies the properties i 

to iv, and which also satisfies a new condition v:
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v. vr =  y t°~1x y tl~1x . . .  x y tr~l with all tk >  2  (so that vr =  ur_ ix y tr~l 

for r >  0 ).

Let to be the least k such that x ky k =  1 (by assumption t 0 is greater than 

two) and let v0 =  y tQ~l . It is clear that u0 satisfies conditions i to v with 

So =  to- Assum e that we have constructed vq to vr which satisfy conditions i 

to v.

If there is no k ^  0 such that vrx y k is equal to a negative power of x 

then, just as in Case 2.1, an application of Lemma 7.3.2 shows that m o )  

is infinite.

We may therefore assume that there is some k ^  0 such that vrx y k is 

equal to a negative power of x. Let t r+i be the least such k, and let vr+i be 

vrx y tr+1~1. In order to do this, we need to know that t r+i is not equal to zero. 

If t r+1 were equal to zero then we would have vrx =  x~p and thus vr =  x~p~x, 

for some p  >  0, contradicting condition iv for vr . Our construction clearly 

implies that conditions i and iv are satisfied by vr+\.

Since a word in X  can be equal to the identity only if it contains the 

same number of instances of x  as it does instances of y  it is easy to see 

that sr+i =  s r +  t r+ 1 — 2. If t r+1 were equal to one then we would have 

sr =  sr+i +  1. Now vrx y  =  vr+iy  =  x~Sr+1 and vry =  x~Sr =  x~Sr+1~l . Hence 

vrx y  =  x ~ Sr+1 =  vry x , which implies that xy  =  yx,  a contradiction. If tT+i 

were equal to two then we would have sr — sr+i. Now vrx y 2 =  vr+iy  =  

x ~sr+i =  x ~Sr =  vry , which implies that xy — 1, a contradiction. We can 

therefore say that t r+1 is greater than two: this, and the fact that vr satisfies
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condition v, im ply that vr+i satisfies condition v. Since sr+i =  sr +  t r+i — 2  

and t r + 1 >  2 , we see that sr+i >  sr and vr+i also satisfies condition ii.

The only condition we have left to check is iii. By condition v the word 

vr+i that we have constructed is of the form

vr+i =  vrx y t r + 1 ~ 1 =  y t°~1x y tl~1x . . .  x y tr~l x y tr+l~l ,

where for 0 ^  n  ^  r +  1 we know that t n — 1 ^  2. By the inductive hypothesis 

we know that no subword of vr is equal to the identity, so the only words 

we need to consider to show that vr+iy  has no non-empty proper subwords 

which are equal to the identity are those of the form vxy1, where v is a non­

empty suffix of vr and 0 ^  ^  t r+\- Any proper subword of vr+\y  which is

equal to the identity must contain the same number of instances of x  as it 

does instances of y.  Since t n — 1  ^ 2 fo r 0 ^ n ^ r  +  l ,  the only possibility is 

x y tr~1x  =  1, w ith t r =  3, which would imply that x 2y 2 =  1, a contradiction.

C a s e  2 .3  x 2y 2 =  1.

Let w r =  x ry x y r . We shall show that w r ^  1 for all r ^ 0. Given this, since 

any non-em pty subword of wr which is in H  must be equal to wn for some 

n ^  r, no w r has a non-em pty subword equal to the identity. Clearly wr e  H  

for every r ^  0, and we may apply Lemma 7.3.3 with U =  { w r : r  ^  0} and 

S' =  H  to show that /J (G )  is infinite.

If wo =  y x  =  1 then x  and y  commute, a contradiction. We know that 

x 2y 2 =  1 , and thus x y y x  =  1. If w x =  xyxy  =  1 then xy =  y x , and again, x 

and y  com m ute. Assume that r ^  0 is minimal such that xry x y r =  1 (we have
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shown that r  ^  2 ). Since x 2y 2 =  1 , we have x r~2yxyr~2 =  1, contradicting 

the m inim ality of r and thus there is no r ^  0  such that xry x y r =  1 .

C a s e  3 |P | -  l ,  \N\ ^  2, Z  =  0.

Let P  =  { # } , w ith x(/> =  } l and i >  0. We construct inductively a sequence 

(wr : r ^  0 ) o f words such that no prefix of wr is equal to a negative power 

of x. Let Wo be a single letter word consisting of an element of N  which is 

not equal to a negative power of x. Such an element must exist, since if each 

element of N  is equal to a power of x  then G  must be generated by the set 

{x , x -1 }, which clearly cannot be the case. Let wr+\ be wry  where y  is an 

element of N  such that x lw ry ^  1 for all I ^  0. Such a y must exist, since 

there are at least two elem ents in N ,  and if y± and y2  are elements of N ,  and l\ 

and l2 are natural numbers, with l2 ^  h,  such that xllwryi =  x l2wry2 =  1 , 

then y \ x l lw r =  y 2x l2w r , and thus yi  =  y2x l2~l\  and yi is redundant. There 

can therefore be only one element y' of N  such that x lwry r =  1 for some 

I ^  0, and the other elem ents of N  must be suitable candidates for y. Note 

that w r e  N% so that w r is simple.

For each w r , let t r ^  0 be minimal such that (x trw r)(j) =  / J with j  ^  0. 

Clearly each word x trw r is simple, and for any r ^  0 we have x trwr G f kH  

with i >  k ^  0, and we may apply Lemma 7.3.3 with S  =  U o^ < i f kH  to 

settle this case.

C a s e  4 |P | ^  2, |7V| =  1, Z  =  0.

This case is sim ilar to Case 3.
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C ase  5 |P | ^  2, \N\ ^  2.

We construct words w r inductively as follows; each wr will be of the form uv 

with u e  P* and v €  N*.  Let Wo =  x, for some x  E P.  If wr(f) =  f l with 

i ^  0, then let w r+1 =  w ry  for some y € N  such that wry  has no suffix equal 

to 1. If w r<f) =  f % w ith i <  0, then let wr+1 =  xw r for some i G P  such that 

x w r has no prefix equal to 1 . We must now check that we can do this. If y\ 

and 2/2 are d istinct elements of N  such that vy\  =  1 for some suffix v of wri 

and u vy 2  =  1 for some suffix uv  of w r, then yi =  y%u, where u G P*, and yi 

is redundant. The situation is similar when we prefix wr by an element of P.

We now have an infinite set { w r : r ^  0} of words, none of which has a 

subword equal to the identity, and each of which is equal to an element of the 

finite set S  =  U | / | ^ m  where M  is minimal such that X  C  U | z| ^ m  f lH.  

We may therefore apply Lemma 7.3.3.

This case com pletes the proof of Proposition 7.3.4. □

We shall need the following observation; for completeness we include a 

proof.

L em m a  7 .3 . 5  If  G  is a virtually free group containing an infinite cyclic 

central subgroup Z , then G  is a semi-direct product H  x F  where H  is a 

finite normal subgroup of G  and F  is an infinite cyclic subgroup.

Proof. By definition, G  contains a free subgroup F  of finite index. Since G 

is infinite, F  is non-trivial.
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If F  is non-cyclic, then Z (F )  =  1 , so that F f ) Z  =  1 (as F  D Z  ^  Z(F)) .  

But then G  contains the subgroup F  x  Z,  contradicting the fact that F  has 

finite index in G.  So F  is infinite cyclic and then G  is virtually cyclic.

By Theorem 5.4 of [14], G  has a finite normal subgroup H  such that 

G / H  is isomorphic to C Q0  or to C<i * C2 . In the latter case, G / H  would have 

trivial centre, contradicting the fact that Z H / H  must be an infinite central 

subgroup of G / H .  So G / H  is isomorphic to C 00 •

Choose a to be an element of infinite order in G  such that G / H  =  (a H ); 

thus G  =  {H, a). Let F  =  (a), so that G =  H F .  Since F  has no non-trivial 

finite subgroups, we have that H  n F  =  1 and so G is the semi-direct product 

H  xi F  as required. □

We are now in a position to prove the main result of this section:

Theorem  7.3.6 A group G which has an infinite cyclic central subgroup 

can be presented by a finite special [A\-confluent string-rewriting system if 

and only if  G  =  H  x  F, where H  is finite cyclic and F  is infinite cyclic.

Proof. A string-rewriting system is said to be monadic if every rule is of 

the form u —> v,  where \u\ >  |u|, and |v| ^  1. It is shown in [20] that 

the groups which can be presented by finite monadic [A]-confluent string- 

rewriting system s are exactly the virtually free groups, so any group which 

can be presented by a finite special [A]-confluent string-rewriting system is 

certainly virtually free.
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If G  can be presented by a finite special [A]-confluent string-rewriting 

system then, by Lemma 7.3.5, G  is of the form H  x F  where i f  is a finite 

normal subgroup of G  and F  is infinite cyclic. By Proposition 7.3.4, G  is the 

direct product of a finite and an infinite cyclic group.

The converse follows directly from Proposition 7.3.4. □

7.4 Further Exam ples

In this section we shall give several more examples of groups which may 

be presented by finite special [A]-confluent string-rewriting systems. The 

following example shows that there are non-abelian groups which are not 

plain and which can be presented by such a system.

E x a m p le  7 .4 .1  The group *ck C 2 k can be presented by a finite special 

[A}-confluent string-rewriting system.

Proof. The Cayley graph of *cfc C^k =  (a, b : a2k, a 2b~2) with respect to 

the monoid generating set {a, b} (pictured in Figure 7.2) is isomorphic as an 

unlabelled graph to the Cayley graph of Coo x Ck — ( f  : ) x (a : ak) with 

respect to { / , # } ,  where g =  a f ~ l (pictured in Figure 7.1). The number of 

closed sim ple loops through any point in the two graphs must therefore be 

the same. □

The next proposition gives us a way of constructing a new group which 

can be presented by a finite special [A]-confluent string-rewriting system from
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•  — c l— 0 — b— 0 — ci— 9 — b— > -  9 — a—>■ 0 — b—>■ 0

Figure 7.2: The Cayley graph of *cfc =  {a, b : a2k,a2b 2) with respect to 

the monoid generating set {a,b}.

a group which has finite irreducible word problem with respect to a monoid 

generating set which contains a generator of order two.

P rop osition  7.4.2 Let G  be a group with a subgroup C  =  (c) of order two 

and suppose that I x ( G )  is finite and that c E X . Let D  be a cyclic group (d) 

of order four and let P  =  G *c D  (where c is identified with d2). Then 

J“ u{<i}(p ) ^  finite-

Proof. Let the word w  represent a simple loop in the Cayley graph of P  

with respect to X  U {d } .  If the only symbol in w  is d then clearly |iu| ^  4. 

If w  contains any letters other than d then we may assume, by taking a cyclic 

perm utation of w  if necessary, that the last letter of w  is not d.
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Now, if ^  contains a subword of the form dd then the word obtained 

by replacing an occurrence of dd  by c in w  still is a simple loop. Applying 

similar replacements to the resulting word we eventually arrive at a word v 

with length at least half that of w  and such that v does not contain any 

subwords of the form dd.

If d  occurs in v  then v  has the form du\du2 . . .  dun, where the Ui are non­

empty words over X .  By the normal form theorem for amalgamated free 

products at least one of U{ has to  satisfy Ui €  C  because v =  1 . As v is a 

simple loop, Ui /  1 . Hence Ui =  c and therefore duid =  1. Since v is simple, 

this implies n =  1. But du\  /  1 ; thus d does not occur in v. So v €  X*  and 

therefore |u| is bounded, as is |tu| ^  2\v\. □

We give one further set of examples of groups with finite irreducible word 

problem. W hile the generator c in the following example is redundant, its 

presence both brings the situation under the scope of Proposition 7.4.2 and 

simplifies the proof.

E x a m p le  7 .4 .3  The direct product P  =  (c : c2) x ( f u / 2, . . . ,  /„  : ) ~  C2 x 

Fn has finite irreducible word problem with respect to the monoid generating 

set { / i , . . . ,  f n, c, gu  . . . ,  gn} where g{ =  f i ^ c .

Proof. Let w  be (the label of) a simple loop in the Cayley graph of P.  

Replace each occurrence of gifi and figi in w  by c and call the resulting 

word v. Since gifi =  figi =  c, v is a simple loop. Observe that v has no 

proper subwords of the form cc for otherwise it cannot be simple.
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Consider the word v obtained by deleting from v all occurrences of c and 

replacing each occurrence of gi by the symbol f C l . Since v v corresponds 

to the projection C 2  x Fn —>■ Fn and v =  1, we must have v =  1. If v is 

empty then v =  c c s o  |iy| ^  2\v\ =  4. Otherwise v must contain a subword 

of the form f i f f 1 or Since neither gifi nor figi nor cc can occur in v

as (proper) subwords, a subword of the form ficgi or gicfi does. However 

fccgi =  gicfi =  1 which, in view of the simplicity of v implies |u| ^  3 and



Chapter 8 

Infinite Irreducible Word 

Problem s

8.1 Regular Irreducible Word Problem

Having considered groups whose irreducible word problem is a finite language, 

the next class of languages which we would naturally consider is the regular 

languages. It is an easy consequence of the pumping lemma that we must 

look further than this class of languages if we wish to find a wider class of 

groups.

P r o p o s it io n  8 .1 .1  Let G  be a group with finite monoid generating set X .  

If  the irreducible word problem of G with respect to X  is regular then it is 

finite.

88
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Proof. Suppose that I  =  (G ) is regular. By the Pumping Lemma (2.3.2) 

there is a constant N  such that, if z  G /  with \z\ ^  N , then there exist words 

it, v and it; with 2? =  im u, |v| <  N  and uvlw  G I  for all i G N.

If we now consider u , u and w  as elements of G, we have that uw =  uvw =  

1 and hence that v =  1. But u is a proper subword of u v w , a contradiction. 

Thus any word in I  has length less than N ,  and so there can be only finitely 

many of them. □

8.2 Context-Free Irreducible Word Problem

Next we consider the groups which have context-free irreducible word prob­

lem with respect to some group generating set. We start with an example of 

a group which is in this class, but is not a plain group.

Figure 8.1: The Cayley Graph of ( /  :) x (a : a2) with respect to the group 

generating set { / ,  a}.

E x a m p le  8 .2 . 1  The irreducible word problem of the group G defined by the 

presentation  ( /  : ) x (a : a2) with respect to the group generating set {a, / }  

is context-free but not finite.
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Proof. We write A  for a - 1  and F  for / _1; note that a and A  represent the 

same element of G.

A word w  in the symbols {a, A,  / ,  F }  is equal to the identity in G  if and 

only if it contains an even number of instances of elements of {a, A }  and, in 

addition, we have that \w\f =  \w \f - Let L be the language consisting of the 

words of the following forms, all of which are equal to the identity in G  and 

are simple:

•  / F ,  F / ,  a A , A a , aa, and AA;

•  f lb iF j b2f k, where bi,b2 G {a, A }  and i +  k =  j ,  j  >  0, k ^  0;

•  F lb \ f ib 2F k, where &i, b2 G {a, A }  and i +  k =  j ,  j  >  0, k ^  0.

L is a union of context-free languages and is therefore context-free.

We shall show that any word from the word problem which contains more 

than two instances of elements of {a, A }  cannot be simple, and hence that L 

is the irreducible word problem I  of G  with respect to the group generating 

set { a , / } .

Assum e, for a contradiction, that there is a word w in I  of the form 

9 in big2 2b2g313. . .  g n - i n~l bn- \ g n n,

where n >  3, each gj is either /  or F , each bi is a or A, and where ij >  0 

for each j  such that 2 ^  j  ^  n -  1. At least one of i\ and in must be 

non-zero, otherwise, by removing bi and bn- 1 from w, we would produce a 

proper subword of w  equal to the identity.
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We assume that i\ >  0 and that g\ is /  (the other cases are similar). 

If in >  0, then gn must also be /  (otherwise we could remove the first and last 

symbol of w  to leave a proper subword equal to the identity). We must have 

gj =  gj + 1 for 2  ^  j  ^  n -  1 , otherwise, ii+1bj+1 would contain a

proper subword equal to the identity. Thus g2 = <73 =  • • • = gn- 1 = F.  So we 

now have that w  must be of the form

f H i F ' b z F * * . . .  F*n-1&n_i/*n,

where ij >  0 for each j  such that 1 ^  j  ^  n — 1. We must have that i\  <  i2 in 

order to prevent } n b \Fl2b2 from having a subword equal to the identity, and, 

similarly, we must have that 1 >  in. From this we deduce that i\  +  in <  

1 2  +  • • • +  in - 1 ? a contradiction, since we must have i\ +  in =  i2 +  • • • +  zn_ 1 

for w  to be in the word problem. □

The previous example shows us that it is possible for a group to have ir­

reducible word problem, with respect to some monoid generating set, which 

is context-free, but not finite. We already know however that the group in 

question has finite irreducible word problem with respect to another gener­

ating set. The question remains as to whether there is a group which has 

context-free irreducible word problem with respect to some monoid or group 

generating set which does not have finite irreducible word problem with re­

spect to any monoid generating set.

Having shown that the plain groups are a proper subclass of the class of 

groups with context-free irreducible word problem for some group generating
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set, our next task must be to put some bound on how complex these groups 

can be. It turns out that, even if we allow monoid generating sets, such 

groups must be context-free:

P r o p o s it io n  8 .2 .2  If  G is a group with a finite monoid generating set X , 

and if I x ( G )  is context-free, then W™(G) is context-free.

Proof. If I x { G )  is context-free, then I x ( G )  U {A} is context-free, and the 

result follows from Propositions 4.1.3 and 2.8.2. □

The converse of Proposition 8.2.2 is false, as the following example shows. 

In fact, we will subsequently prove that all infinite context-free groups have 

non-context-free irreducible word problem with respect to some finite group 

generating set.

E x a m p le  8 .2 .3  Let G  =  ( /  : ) be the free group on one generator, and let 

a =  f , b =  / 2 and c =  / 6. Then G has non-context-free irreducible word 

problem with respect to the group generating set X  =  {a ,b ,c } .

Proof. We let I  =  I 9X {G) and W  =  W x(G ) ,  and let A, B  and C  denote 

a -1 , b~l and c - 1  respectively. Let Y  be the language denoted by the regular 

expression abc* BC*Bc*bAC*  and let L =  I  n  Y.  If L can be shown not to 

be context-free then it follows that I  is not context-free, since the class of 

context-free languages is closed under intersection with regular sets.



C H A P T E R  8. INFINITE IRREDUCIBLE W ORD  PROBLEM S  93

Consider a typical element w  =  abc%B & B c kbACl of Y.  We need to find 

conditions which tell us exactly when such an element of Y  is also in I. 

Firstly, we must have that i +  k =  j  +  I in order that w  is in W .  We also 

need to make sure that no subword of w  is in W .

Since any instance of b, B,  c or C  in w  is equivalent to an even number 

of instances of / ,  the instance of a can only cancel out with the instance 

of A.  So any subword of w  which is equal to the identity in G  and which 

contains the instance of a must also contain the instance of A  and vice-versa, 

and hence must be the entire word w.  So we need only consider subwords 

of bc'BC*Bckb. There are not enough instances of b and B  in this subword 

to cancel out an instance of c or C; so, in any subword which is equal to the 

identity, the instances of b must cancel with those of B , and the instances 

of c must cancel with those of C.

Hence any proper subword of bclBC^Bckb which is equal to the identity 

must be either a subword of bc'BCJ or a subword of C^Bckb\ so, to make 

sure there are no such subwords, we must have that i >  j ,  j  <  k and that 

% +  k 7  ̂ j .  If % >  j  and j  <  k then i +  k >  j ,  so this last condition may be 

dropped, and the language L  we need to consider is

{abc1 B C j B c kbACl : i +  k =  j  +  l , i  >  j  and j  <  k}.
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Let M  =  ({go, Qi, Q2, Q3,44, Qs}, {a,  b, c, A,  B ,  C } ,  { x , y ,  z } ,  6, q0, {q5})  be the 

GSM, where

% o ,a )  =  {(<?i, A)}, 5 {qu b) =  {(g 2 ,A )}, % 2 ,c) =  {(g2 ,z ) } ,

% 2 , £ )  =  { f e ,A ) } ,  6 f a , C )  =  { (q3, y ) } ,  % 3 ,B )  =  { fe ,A )} ,

% 4 , c) =  {(g4, z ) } ,  % 4, b) =  { (q5, A)},

S(q, d ) =  {(g5, A)} for all other (q, d).

The image of L  under M  is the language V  =  { x ly j z k : i >  j  and j  <  k}.  

If we can prove that L' is not context-free then it follows that L  is not context- 

free, as the class of context-free languages is closed under GSM-mappings.

We use Ogden’s Lemma (Lemma 2.4.1) to prove that II  is not context- 

free. If L' were context-free, then there would exist a constant N  such that, 

if we pick any word w  in L' and mark N  or more positions in w , then we can 

write w  as U1 V1 U2 V2 U3  in such a way that V1 V2  contains at least one marked 

position, V1 U2 V2  contains at most N  marked positions, and, for all r ^  0, 

UlUirU2 ^2r^3 € L'.

Consider the word w  =  x N+2y N+1z N+2 in L' with all the instances of y 

marked. In order that W2  =  UiVi2 u2 V2 2 U3  6  L' we must have either that v\ 

is a subword of x N+2 or y N+1 and u2 is a non-empty subword of y N+1, or else 

that v\  is a non-empty subword of y N+1 and u2 is a subword of y N+1 or z N+2. 

In the first case \w2\y ^  \w2 \z1 in the second case \w2\y ^  \w2\x- So the 

word w  does not satisfy the conclusion of Ogden’s Lemma, and therefore I! 

cannot be context-free. □
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Given this result, we have:

C o r o lla r y  8 .2 .4  Every infinite context-free group has non-context-free irre­

ducible word problem for some finite group generating set.

Proof. By Theorem 3.6.2 every infinite context-free group G  contains the 

free group ( /  : ) as a subgroup. Let a, 5, c, A , B  and C  be as in Exam­

ple 8.2.3, and then choose a finite group generating set Z  for G  which includes 

a, b and c. We now consider the intersection of I Z(G) with {a, b, c, A, B , C}*. 

This set was shown not to be context-free in Example 8.2.3; since the in­

tersection of a context-free set and a regular set is necessarily context-free, 

I gz {G ) cannot be context-free. □

It is interesting to note that we now have three generating sets for the 

group ( /  : > x (a : a2):

•  a monoid generating set with respect to which the irreducible word 

problem is finite (Proposition 7.2.1);

•  a group generating set with respect to which the irreducible word prob­

lem is context-free, but not finite (Example 8.2.1); and

•  a group generating set with respect to which the irreducible word prob­

lem is not context-free (Corollary 8.2.4).

Although every infinite context-free group has a finite group generating 

set w ith respect to which its irreducible word problem is non-context-free,
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there is som ething we can say about the irreducible word problem for any 

monoid generating set: it must have a context-free complement.

P r o p o s it io n  8 .2 .5  Let G  be a group with finite monoid generating set X .  

I f W x ( G )  is context-free then the complement in X* of I™{G) is context-free.

Proof. Let I  =  I x { G )  and W  =  W x ( G ) .  The complement X * \  I  of I  is 

the union of the complement of W  and the set Y  of all words which contain 

a proper subword which is in W .  Now Y  =  X * W X + U X +W X *  is context- 

free since the class of context-free languages is closed under concatenation 

and union. The complement of W  is context-free since W  is deterministic 

context-free by Theorem 3.6.2. Thus the complement of I  must be context- 

free as it is the union of two context-free languages. □

Propositions 8.2.2 and 8.2.5 together with Proposition 3.5.4 give us the 

following piece of information about which context-free languages can be the 

irreducible word problems of groups:

C o r o lla r y  8 .2 . 6  Let G  be a group with context-free irreducible word problem 

fo r  some finite monoid generating set. Then the complement of the irreducible 

word problem o f G  is context-free with respect to any finite monoid generating 

set.

The problem remains of finding alternative characterizations of the class 

of groups which have context-free irreducible word problem with respect to 

some monoid or group generating set. We have not yet ruled out the pos­

sibility that every context-free group has a finite group generating set with



C H A P T E R  8. INFINITE IRREDUCIBLE W ORD PROBLEM S  97

respect to which it has context-free irreducible word problem, although this 

seems unlikely.

8.3 One-Counter Irreducible Word Problem

Proposition 8.2.5 and Corollary 8.2.6 carry across to the one-counter groups. 

For instance, we have:

C o ro lla ry  8 .3 .1  Let G be a group with finite monoid generating set X .  

I f W x i G )  £  OC then the complement in X* of I™(G) is one-counter.

On the other hand, the analogue of Proposition 8 .2 . 2  in the one-counter 

case fails. The free group on two generators provides a simple example of a 

group which has a set of generators for which the irreducible word problem 

is finite, and therefore certainly one-counter, but the word problem is not 

one-counter. This reflects the fact that, unlike the case of the context-free 

languages, the insertion closure of a one-counter language need not be one- 

counter.
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