Rearrangement of F -Phosphinoyl-O-sulphonylhydroxylamines
and
o-Bromomethylphosphonamidates:
A Stereochemical study

```
Thesis submitted for the Degree of
Doctor of Philosophy
at the University of Leicester
```

by

Ramesh Sreedharan-Menon
Department of Chemistry
University of Leicester

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U554360
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Acknowledgements

I would like to give special thanks to Martin Harger, whose help and guidance has been invaluable throughout the past four years.

I would like to thank Dr. John Fawcett and Dr。 David. R Russell for performing the X-ray crystallography, and especially for solving those awkward crystal structures.

I would also like to thank everyone in the Organic Labs, especially those who were in my year, for moral support, and the rest of the Academic staff and the technicians in the department for all their help.

Finally I would like to thank the SERC for their funding.

Q-Bromomethylphosphonamidates: A stereochemical study

Part 1
The diastereoisomerically enriched N-phosphinoyI-O-sulphonylhydroxylamines PhCHMeP(O)(Ph)NHOX [$\mathrm{X}=$ methanesulphonyl (Ms) or p-nitrobenzenesulphonyl (Ns)] react with MeNH_{2} and $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ (neat, 1.0 M , and 0.1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the expected diamide rearrangement products PhCHMEP(O) (NHPh)NHR (R $=$ Me or $B u^{t}$). The rearrangement proceeded with high stereospecificity for all concentrations of MeNH_{2} and for neat $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$. Single crystal X-ray analysis revealed that rearrangement with MeNH_{2} proceeded largely with retention of configuration at phosphorus. Stereochemical and competition studies on PhCHMEP(O) (Ph)NHOX ($\mathrm{X}=\mathrm{Ms}$ or Ns) and studies on the enantiomers of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NHOS}(\mathrm{O})_{2}$ Camphor have provided strong evidence for phosphonamidicosulphonic mixed anhydride $R P(O)(N H P h) O X(X=M s$ ox $N s)$ involvement in the rearrangement. MeNH_{2} and $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ also reacted with PhCHMeP(O)(Ph)NHOMs $\left(S_{N} 2\right.$ at N) giving the hydrazides PhCHMeP(O)(Ph)NHNHR ($R=$ Me or $B u^{t}$). This was more important for $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ and competition studies with (Me- $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}\right)_{2} \mathrm{P}(\mathrm{O})$ NHONs using equimolar mixtures of $\mathrm{Bu}^{t} \mathrm{NH}_{2}-\mathrm{Bu}{ }^{t} \mathrm{MeNH}$ and $\mathrm{Bu}^{t} \mathrm{NH}_{2}-\mathrm{Pr}_{2}{ }_{2} \mathrm{NH}$ showed that ButMeNH was 11.5 times better than $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ for hydrazide formation while $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ was only slightly bettex than $\mathrm{Pr}^{i}{ }_{2} \mathrm{NH}$.

Part 2
The diastereoisomers of the α-bromomethylphosphonamidate $\mathrm{BrCH}_{2} \mathrm{P}(\mathrm{O})\left(\mathrm{NHBu}^{t}\right.$) OMenthyl react with $\mathrm{PhCH}_{2} \mathrm{~N}^{+} \mathrm{Me} \mathrm{S}_{3}$-OMe (QOMe) to give the aminomethylphosphonate $\mathrm{Bu}^{t} \mathrm{NHCH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OMe})$ OMenthyl and phosphoramidate ButMenP(O)(OMe)OMenthyl products resulting from the bxeakdown of an azaphosphixidine oxide intermediate. Single crystal X-ray analysis revealed that the aminomethylphosphonate was formed with invexsion of configuration at phosphorus and that the phosphoramidate was formed very largely with retention of configuration at phosphorus, prove iding further evidence for azaphosphiridine oxide involvement. The α-bromomethylphosphonamidates $\mathrm{BrCH}_{2} \mathrm{P}(\mathrm{O})\left(\mathrm{NHBu}^{t}\right) \mathrm{OR}$ (R $=$ Me, Cyclohexyl, or Bu^{t}) react with QOMe and KOBut to give the corresponding aminomethylphosphonate and phosphoramidate reaxrangement products. It was found that bulky OR groups in the substrate and bulky alkoxides enhance the yield of the aminomethylphosphonate product.

Contents

Part I

Chapter 1: Introduction

The Curtius, Hofmann, and Lossen Rearrangements 1

Phosphinic Azides 3
N-Halogenophosphinic Amides 4
N-Phosphinoyl-O-sulphonylhydroxylamines 5

Chapter 2: The Lossen-hike Rearrangement of O-Sulphonyl
 hyouroxylamine

Preparation of the Phosphinic Chloride 16

Preparation of the N-Phosphinoylhydroxylamine 17

Preparation of the N-Phosphinoyl-O-sulphonylhydroxylamines 20

Preparation of the Phosphonamidic Chloride 22

Reaction of the Methanesulphonate with Amines 23

Stereochemistry of the Rearrangement 28
Chaptex 3: Further Studies on $17-P h o s p h i n o y 1-O-s u l p h o n y 1-$ hydroxylamines
Competition Studies 41
Stereochemical studies on Optically Active N-Diphenylphos-phinoyl-0-Camphor-10-sulphonylhydroxylamine43
Spectroscopic Evidence for the Mixed Anhydride 50
The Rearrangement 53
A Brief Investigation of Hydrazide Formation 67
Paxt III
Chapter 1: Introduction
$\alpha-H a l o g e n o k e t o n e s ~ a n d ~ \alpha-H a l o g e n o s u l p h o n e s$ 71
$\alpha-$ Halogenocarboxamides 72
$\alpha-$ Halogenophosphonic Amides 73
Chapter 2: The Base Induced Reamrangement of (- - - Renthyl
$P-(B r o m o m e t h y I)-N-t e x t-b u t y I p h o s p h o n a m i d a t e$
Preparation of the Bromomethylphosphonamidate 79
Reaction of the Bromomethylphosphonamidate with Methoxide 81
Stereochemistry of the Rearrangement 85

Chapter 3: The Base Induced Rearrangement of Alkyl
P-(Browomethyl)-N-text-butylphosphonamidates

Preparation of Alkyl Bromomethylphosphonamidates

Appendix 1

Appencixiz 2

References

List of Abbreviations

THF	Tetrahydrofuran
DMF	$N, N-$-Dimethylformamide
Ms	Methanesulphonyl
Ns	$p \sim$ Nitrobenzenesulphonyl
$\mathrm{CammSO} \mathrm{S}_{3}-$	Camphor-10-sulphonyl
Men	Menthyl
Me	Methyl
Et	Ethyl
$\mathrm{Pr}^{\text {i }}$	Isopropyl
Bu	Butyl
$B u^{t}$	tert-Butyl
Cy	Cyclohexyl
Ar	Aryl
Ph	Phenyl
Q	Benzyltrimethylammonium

Part I; Chapter 1: Introduction

The Curtius, Hofmann, and Lossen Rearrangements

(1)

RNH_{2}

(4)

(3)

Scheme 1

Acyl azides (1) undergo the Curtius rearrangement on heating. ${ }^{1.2}$ The substituent on the carbonyl group migrates to the acyl nitrogen, with concerted elimination of nitrogen, to give the isocyanate (2). The isocyanate may be isolated in high yield ${ }^{2}$ and reacted further with a nucleophile such as methanol to give the carbamate (3); the carbamate is normally hydrolysed to the amine (4) (acid hydrolysis followed by treatment with base) (Scheme 1).

Acyl amides (5) react with aqueous sodium hydroxide and bromine (sodium hypobromite in situ) to give N-bromocarboxamides (6). Deprotonation of an N-bromocarboxamide at nitro-
gen by sodium hydroxide gives the unstable salt (7) which undergoes the Hofmann rearrangement to the isocyanate (2). ${ }^{3}$ The isocyanate may be isolated under special conditions but it is normally hydrolysed by excess sodium hydroxide to the amine (4) (Scheme 2).

Scheme 2

O-Acyl derivatives of hydroxamic acids (8) give stable salts (9) when treated with base at low temperatures. On heating, these salts undergo the Lossen rearrangement," eliminating the o-acyl group, to give isocyanates (2) (Scheme 3). The isocyanates may be isolated and reacted with a nucleophile of choice, such as methanol to give the carbamate (3), but generally the Curtius rearrangement is preferred for this, since acyl azides are more readily accessible than hydroxamic acid derivatives.

(8)
(9)
$-\mathrm{R}^{\prime} \mathrm{CO}_{2}^{-}$

Scheme 3

Phosphinic Azides

(10)

(11)

Phosphinic azides (12) undergo a Curtius-like rearrangement on photolysis to give the phosphorus equivalent of the isocyanate, the monomeric metaphosphonimidate (10).5.6 A monomeric metaphosphonimidate, like monomeric metaphosphate (11). ${ }^{7}$ is a planar three-co-ordinate pentavalent species and a powerful electrophile which would polymerise if it were not trapped by a nucleophile, such as methanol to give the phos-
phonamidate (13) (Eq. 1). There is some evidence for thermal rearrangement of phosphinic azides ($T>200{ }^{\circ} \mathrm{C}$), ${ }^{8}$ but the metaphosphonimidates have not been trapped. Studies on the thermal rearrangement are of limited value since the azide group is prone to nucleophilic displacement from phosphorus at temperatures much lower than those required to bring about rearrangement. ${ }^{5}$

Eq. 1

N-Halogenophosphinic Amides

(14)

Eq. 2
N-Halogenophosphinic amides (14), unlike their carbon analogues, N-halogenocarboxamides, do not rearrange on treatment with base but act as halogenating agents instead (Eq. 2).

N-Phosphinoyl-O-sulphonylhydroxylamines

Scheme 4

The possibility that derivatives of N-phosphinoylhydroxylamines (18), the phosphorus analogues of hydroxamic acids, might undergo a Lossen-like rearrangement has been considered. However, the preparation of N-phosphinoylhydroxylamines (18) is not as straightforward as might be expected. Unlike the reactions of hydroxylamine with acyl and sulphonyl chlorides, ${ }^{10,11}$ which give the N-substituted hydroxylamines, the reaction of phosphinic chlorides (15) with hydroxylamine gives the 0 -phosphinoylhydroxylamines (16) (Scheme 4). ${ }^{12}$ However, N-phosphinoylhydroxylamines (18) can be prepared by treating phosphinic chlorides (15) with O-trimethylsilylhydroxylamine and triethylamine, ${ }^{13}$ giving N-phosphinoyl-
-O-trimethylsilylhydroxylamines (17), followed by treatment with methanol to remove the o-silyl blocking group (Scheme $4)$.

Scheme 5

The O-acyl derivatives of N-phosphinoylhydroxylamines, unlike their carbon counterparts, do not rearrange when treated with base. 14,15 However, the O-sulphonyl derivatives (19) do undergo Lossen-like rearrangement; ${ }^{13}$ treatment with sodium methoxide in methanol at room temperature gives phosphonamidates (20) (Scheme 5), and rearrangement is seen even with weak bases, such as tert-butylamine giving phosphonic diamides (21).

Initial experiments were confined to aryl migration, but rearrangement is not restricted to substrates containing aryl substituents; further study showed that the migratory aptitudes of the groups attached to phosphorus are in the order PhNH, $\mathrm{Me}_{2} \mathrm{~N} \gg \mathrm{Ar} \gg$ benzyl $>$ alkyl. ${ }^{16-20}$ Amino groups migrate exclusively over everything else while aryl groups migrate exclusively over alkyl and benzyl groups; oxygen migration is not seen. ${ }^{21}$ Substituents on the phenyl group also affect migration, ${ }^{14}$ with electron releasing groups promoting migration and electron withdrawing groups having the reverse effect.

(24)

Scheme 6

The reaction of the N-phosphinoyl-O-sulphonylhydroxylamines (22) ($\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{i}$, and Ph) with an equimolar mixture of isopropylamine and tert-butylamine (no solvent) under competitive conditions showed little selectivity. ${ }^{22}$ By contrast, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$ showed complete selectivity (> 99%) for the less hindered isopropylamine nucleophile. ${ }^{22}$ This clearly suggested that the hydroxylamine derivatives do not react by an associative mechanism like that prevailing for the phosphinic chloride substitution reactions - the rearrangement does not
proceed through the phosphorane (23) (Scheme 6; top pathway). Furthermore the N-phosphinoyl-O-sulphonylhydroxylamines (22; $R=M e)$ and (22; $R=P r^{i}$) reacted at similar rates with methylamine, and with sodium methoxide in methanol. 17 The reactions of the hydroxylamine derivatives are therefore insensitive to steric congestion in the substrate, as well as in the nucleophile, whereas associative nucleophilic substitution at phosphoryl centres is greatly hindered. ${ }^{23}$ These observations were thought to point to a mechanism involving the metaphosphonimidate (24). In its rate limiting formation, the reagent would act as a base, not as a nucleophile, and steric effects in the substrate would be of little consequence. In its reactions, because it is both sterically accessible (three-co-ordinate and planar) and a powerful electrophile, it would be unlikely to discriminate between the nucleophiles.

Scheme 7

The metaphosphonimidate might be formed (after initial deprotonation of the substrate at nitrogen by base) either by a group migrating from phosphorus to nitrogen, with displacement of the leaving group (Scheme 6; bottom pathway) or by rearrangement of a singlet nitrene (25) (Scheme 7). The reaction of the methanesulphonate (22; $R=P h$) with tert--butylamine in dimethyl sulphide (solvent and nitrene trap ${ }^{24}$)

Abstract

gave some of the sulphilimine (26), the by-product expected for nitrene addition to dimethyl sulphide. ${ }^{25}$ However, the methanesulphonate (22; $R=P h$), normally stable in solution, reacted with dimethyl sulphide in the absence of base to give the salt (27) (nucleophilic displacement at nitrogen), which, on treatment with tert-butylamine, was immediately converted into the sulphilimine (26). This showed that the sulphilimine could be formed by a non-nitrene pathway which might even be competitive with the base induced rearrangement. Furthermore, the nosylate (28), which reacted very much faster with tert--butylamine in dimethyl sulphide, gave none of the sulphilimine by-product. Changing the nature of the leaving group should not influence the ability of dimethyl sulphide to trap a nitrene, but for a non-nitrene mechanism the more electronegative nosylate leaving group could enhance deprotonation at nitrogen with respect to nucleophilic attack at nitrogen (salt formation) and rearrangement would proceed much faster, i.e. sulphilimine by-product formation would be less competitive. For these reasons the rearrangement is thought not to involve a nitrene mechanism.

(26)

(27)

(28)

When the reactions of the N-phosphinoyl-O-sulphonylhydroxylamines (22; $R=M e, E t, \mathrm{Pr}^{i}$, and Ph) with an equimolar mixture of isopropylamine and tert-butylamine were examined in
dichloromethane solution they exhibited increasing selectivity for the less hindered nucleophile with increasing dilution. ${ }^{22}$ This unexpected behaviour is clearly not consistent with a free metaphosphonimidate as the reaction intermediate. A similar increase in selectivity with dilution was also found for the phosphonamidic chlorides (29; $R=M e, E t, \mathrm{Pr}^{i}$, Bu^{t}, Ph , and o-tolyl) with the same amine mixture. ${ }^{26}$ Kinetic studies on the phosphonamidic chloride (29; $R=P h$), ${ }^{26}$ with isopropylamine and tert-butylamine, showed that reaction was second order in amine at high amine concentrations and first order in amine at low amine concentrations.

If a metaphosphonimidate is generated from the phosphonamidic chloride, and it has an extremely short life span, such that it cannot diffuse into the bulk solvent, it will only be able to react with the nucleophile if it is alxeady in position; otherwise, it will merely revert to starting material (Scheme 8; top pathway). To achieve substitution, preassociation of the nucleophile with the phosphonamidic chloride (or its conjugate base) will therefore be required. ${ }^{27}$ Then, since the nucleophile is already present when the metaphosphonimidate is formed, it can react to give the substitution product (21) (Scheme 8; bottom pathway). This preassociation elimination-addition mechanism will be second order in amine (base and nucleophile) and will be important, relative to first oxder $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$, at high amine concentrations Since the reactive species in the elimination-addition pathway will be the metaphosphonimidate, the observed low selectivity at high amine concentrations can be understood. At lower concentrations, $S_{N} 2(P)$ will be more important, and
greater selectivity will be observed. If the metaphosphonimidate could exist as the free species, preassociation would not be necessary and elimination-addition would, like $S_{N} 2(P)$, be first order in amine. Then the relative contributions of elimination-addition and $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$ would not depend on the concentration of the amine, and the observed selectivity (or lack of it) would not change on dilution.

Scheme 9

(22)

(31)

Owing to the similarities in the selectivities of the reactions of the phosphonamidic chlorides (29) and the N-phosphinoyl-O-sulphonylhydroxylamines (22), it was suggested that the reaction intermediate for the latter was the phosphonamidic-sulphonic mixed anhydride (30). ${ }^{22}$ This could be formed either by combination of the sulphonate leaving group with the metaphosphonimidate, or directly (after deprotonation at nitrogen) by a concerted rearrangement of the conjugate base of the substrate (Scheme 9). The observed increase in selectivity for the less hindered nucleophile with dilution could then be explained if the mixed anhydride were to behave like the analogous phosphonamidic chloride (31). The postulated phosphonamidic-sulphonic mixed anhydride (30) was not detected spectroscopically, but this could be attributed to it having very high reactivity. The case for its formation was strengthened by a study which showed that the conjugate base of the N, O-diphosphinoylhydroxylamine
(32), formed from reaction of (32) with potassium tert-butoxide in tert-butanol, rearranged to the phosphonamidic-phosphinic mixed anhydride (33) (Eq. 3). ${ }^{28}$

Eq. 3

Knowledge of the stereochemistry of the rearrangement of an N-phosphinoyl-O-sulphonylhydroxylamine would be useful in determining the nature of the reaction intermediate. To obtain this, we need to observe the change in configuration at a chiral phosphorus centre. Ideally one would study enantiomers, but the precursor to an enantiomer of an N-phosphinoylhydroxylamine is an enantiomer of a phosphinic chloride (34). This would be difficult to obtain in an optically pure form and would readily racemise in the presence of chloride ions (Eq. 4). Separation of the enantiomers at the later stages of synthesis would not be feasible and analysis of substrate and product would require the use of chiral chromatography columns and NMR shift reagents.

Unlike the Lossen rearrangement, where there is only one group that can migrate, the phosphorus equivalent has two potential migrating groups. If these are different, the phosphorus will be chiral, and if one of the groups is itself chiral, then the compound will exist as diastereoisomers. The advantages of using diastereoisomers would be the relatively easy separation of stereoisomers at the N-phosphinoylhydroxylamine stage, or at the final stage of synthesis, and the relatively straightforward analysis of substrates and products by conventional GLC and ${ }^{1} H$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. Furthermore, if the chiral group on phosphorus did not migrate, its configuration could not change; it would then be possible to determine any change of configuration at phosphorus relative to this chiral reference group.

It is known that benzyl does not migrate when it is in direct competition with a phenyl group, ${ }^{19}$ and it was ancicipated that an α-methylbenzyl group would probably behave similarly. Since only the change of configuration at phosphorus is required, relative to the fixed configuration of the reference group, it is not necessary to know the absolute configuration of the α-methylbenzyl reference group. Indeed, the study can be conducted on racemic diastereoisomexs.

A minor disadvantage of using diastereoisomers is that the outcome of nonmstereospecific reaction cannot be (quantitatively) predicted. If the reaction proceeds through a free planar monomeric metaphosphonimidate, both diastereoisomers of substrate will give product having the same stereochemistry (complete non-stereospecificity), but this need not be a 1 : 1 mixture of diastereoisomers; the faces of the meta-
phosphonimidate are diastereotopic, and its reaction may proceed with asymmetric induction (stereoselectivity). Therefore, both diastereoisomers (or enriched mixtures) must be studied, to see if a common diastereoisomer ratio for the product is obtained; this would be the equivalent of racemisation for a reaction performed with enantiomers. Thus, for example, a $3: 1$ mixture and $a 1: 3$ mixture of the diastereoisomers of the substrate should both react to give, say, a 45 : 55 mixture of the diastereoisomers of the product if the reaction is completely non-stereospecific but slightly stereoselective. If the reaction proceeds through the phos-phonamidic-sulphonic mised anhydride, there exists the possibility that the rearrangement leading to it could take place with some degree of stereospecificity; reaction of the mised anhydride with a non-bulky nucleophile at low concentrations [$S_{N} 2(P)$ mechanism] would transfer this stereochemical information to the final product.

A more serious disadvantage of using diastereoisomers is that they may, in principle, behave rather differently. This point will be considered later.

Part 1; Chapter 2: The Lossen-Like Rearrangement of O-Sulph-

 onyl Derivatives of $N-[\alpha-M e t h y l b e n z y 1$ (phenyl)phosphinoyl]hydroxylaminePreparation of the Phosphinic Chloride

Scheme 10

The known ester (36), ${ }^{29} \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 40.1$, was prepared cleanly from the Arbuzov reaction of diethyl phenylphosphonite (35) with benzyl chloride (1.2 mol equiv.). ${ }^{30}$ Treatment of the ester (36) with n-butyllithium (1.0 mol equiv.) in THF-hexane at $-70{ }^{\circ} \mathrm{C}$, followed by reaction with iodomethane (2.0 mol equiv.) gave the ester (37), $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 44.3$ and 43.4 , in high yield, as a 47 : 53 mixture of diastereoisomers (Scheme 10). The more direct route to the ester (37), by the Arbuzov reaction of diethyl phenylphosphonite with α-methylbenzyl bromide, was less satisfactory. It gave two additional prod-
ucts, believed to be EtPhP(O)OEt, $\delta_{p} 45$ (3%), resulting from reaction of the phosphonite with ethyl chloride (generated in the reaction), and $H P h P(O) O E t, \delta_{p} 24$ (21 \%), resulting from reaction with HBr (believed to be generated by the thermal decomposition of α-methylbenzyl bromide).

Eq. 5

Acid hydrolysis of the ester (37) gave the phosphinic acid (38), ${ }^{31} \delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 44.8$, and treatment with oxalyl chloride gave the phosphinic chloride (39), $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 59.6$ and 59.2, as a mixture of comparable amounts of the two diastereoisomers (Eq. 5).

Preparation of the N-Phosphinoylhydroxylamine

The reaction of the phosphinic chloride (39) with o-trimethylsilylhydroxylamine and triethylamine (1.0 mol equiv.) in dichloromethane gave rise to a series of peaks in the ${ }^{31} p$ NMR spectrum, $\delta_{p} 41.5-40.5(\sim 90 \%) .{ }^{13}$ These were believed to be due to the phosphinic anhydride (40), but they could conceivably have been the diastereoisomers of the N-phosphin-oyl-O-silylhydroxylamine (42) and their desilylated analogues (43). In the hope that the latter was the case, methanol was added to complete the desilylation process. However, this produced a new compound, $\delta_{\mathrm{p}} 31$.

(40)

(41)

It seemed possible that the phosphinic chloride (39) was hindered enough to slow down nucleophilic substitution at phosphorus by o-trimethylsilylhydroxylamine to the extent that desilylation of the O-trimethylsilylhydroxylamine by the phosphoryl group occurred. The liberated hydroxylamine would then compete as a nucleophile with its silylated precursor. This would give the 0 -phosphinoylhydroxylamine (41), which, if unstable under the reaction conditions, could decompose to the salt of the phosphinic acid (38). The salt would react further with the phosphinic chloride to give the phosphinic anhydride (40).

If desilylation of o-trimethylsilylhydroxylamine was the problem, then replacing it by $N, O-b i s(t r i m e t h y l s i l y l) h y d r-$ oxylamine should give better results since the N-silyl group, being more reactive, would be expected to be removed first. The reaction of a phosphinic chloride with N, O-bis(trimethYlsilyl)hydroxylamine has, in fact, recently been reported, ${ }^{18}$ and it has been shown that the expected product was formed, along with trimethylsilyl chloride as a volatile by-product.

The reaction of the phosphinic chloride (39) with $N, O-b i s-$ (trimethylsilyl)hydroxylamine in dichloromethane gave the N-phosphinoyl-O-silylhydroxylamine (42), $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 41.7$ and
40.7, as a mixture of comparable amounts of the two diastereoisomers, and a by-product, $\delta_{p} 33.7$ (ca. 10-20 \%; variable) (Eq. 6). Fortuitously, the highfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer of the N-phosphinoyl-O-silylhydroxylamine (42) was less soluble and precipitated from the reaction mixture, to give essentially one diastereoisomer and a mother liquor enriched in the other diastereoisomer. The highfield diastereoisomer (42), $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 42.0$, was completely characterised and showed incorporation of $\mathrm{NHOSiMe}_{3}: \mathrm{NH}, \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $5.30(1 \mathrm{H}, \mathrm{S})$ and $v_{\max .}(\mathrm{Nujol}) 3130 ; \mathrm{OSiMe}_{3}, \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.11$ (9 H, s) ; it decomposed at or below its melting point.

Eq. 6

Desilylation of the enriched mother liquor (see above) with methanol went cleanly and gave the N-phosphinoylhydroxylamine (43), $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 41.9$ and 40.1 , as a $4.5: 1$ mixture of diastereoisomers (sample A) (Eq. 6). Crystallisation of a portion of sample A gave an analysis sample that was entirely the lowfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer. Similar desilylation of the precipitated N-phosphinoyl-O-silylhydroxylamine (42) gave, essentially pure, the highfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer of the N-phosphinoylhydroxylamine (43) (sample B) (Eq. 6). The ${ }^{1} \mathrm{H}$ NMR spectra of the two diastereoisomers showed the expected OH signals $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.5$ or 8.1 (samples A and B respectively) and the NH signals $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.30$ or $5.961(\mathrm{~d}$;
samples A and B respectively), the coupling to phosphorus for sample $A\left(J_{\mathrm{PH}} 11.5\right)$ being 30% larger than that for sample B (J_{PH} 8.8). A more striking difference between the diastereoisomers was evident in their IR spectra where, the pure diastereoisomer A showed two bands for NH absorption, $v_{\max }$ (Nujol) 3260 and 3220 , instead of one for sample B, $v_{\max }$ (Nujol) 3160 .

The preparation of the N-phosphinoyl-O-trimethylsilylhydroxylamine (42) was also performed without separation of the diastereoisomers. Treatment of the mixture with methanol, followed by trituration with ether, gave the N-phosphinoylhydroxylamine (43) as an ca. 1 : 1 mixture of diastereoisomers.

Preparation of the N-Phosphinoyl-O-sulphonylhydroxylamines

[^0]and sample B, very largely the sparingly soluble highfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer (ratio $3: 97$), as determined by ${ }^{31} \mathrm{P}$ and ${ }^{1} H$ NMR spectroscopy. The ${ }^{1} H$ NMR spectra of the methanesulphonates showed diastereoisomeric NH signals, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 8.45 and 7.199 (d; samples A and B respectively), with the coupling to phosphorus for sample $A\left(J_{\mathrm{PH}} 7\right.$) being almost twice that for sample $B\left(J_{\mathrm{PH}} 3.7\right)$. The spectra also showed the characteristic $\mathrm{PhP}(\mathrm{O})$ signals, diastereoisomeric α-methyl signals, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.70$ and $1.550\left(\mathrm{dd}, J_{\mathrm{PH}} 16\right.$ or $17.9, J_{\mathrm{HH}} 7.5$; samples A and B respectively), showing coupling to the α-hydrogen and phosphorus, and two widely separated diastereoisomeric S-methyl singlets, $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 3.10$ (for sample A) and 2.701 (for sample B).

The 1 : 1 mixture of diastereoisomers of the N-phosphinoylhydroxylamine (43) was similarly converted into the methanesulphonate (44). Trituration with dichloromethane-ether gave the methanesulphonate as a 39 : 61 mixture of diastereoisomers. To give a 50 : 50 mixture, for use in studies with competing nucleophiles, a calculated amount of the minor diastereoisomer (A) was added to the mixture.

Eq. 8

The reaction of $\mathbf{a} 1: 4$ mixture of diastereoisomers of the N-phosphinoylhydroxylamine (43) (diastereoisomer B in excess) with p-nitrobenzenesulphonyl (nosyl) chloride (1.4 mol equiv.) and triethylamine (1 mol equiv.) in dichloromethane (Eq. 8) was almost quantitative, according to the ${ }^{31} P$ NMR spectrum, but the nosylate (45), $\delta_{p}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 42.3$ and 39.5 (diastereoisomers), was isolated in only about 60% yield. Crystallisation gave very largely the sparingly soluble highfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer (3 : 97 mixture of diastereoisomers by ${ }^{31} \mathrm{P}$ NMR spectroscopy). A second preparation gave a similar sample (diastereoisomer ratio 4 : 96) for use in studies with competing nucleophiles.

Preparation of the Phosphonamidic Chloride

Eq. 9

The phosphonamidic chloride (48) was required for the competition study and the preparation of authentic samples of the expected phenyl-migration rearrangement products. Treatment of the phosphonic acid (46), ${ }^{32,33} \delta_{p}\left(\mathrm{SOCl}_{2}\right) 34.9$, with thionyl chloride and a catalytic quantity of DMF (0.03 mol equiv.) gave the phosphonic dichloride (47), $\delta_{p}\left(\mathrm{SOCl}_{2}\right) 54.1$. Reaction of this with aniline (2 mol equiv.) in benzene gave the phosphonamidic chloride (48) as a mixture of diastereoisomers ($\delta_{\mathrm{p}} 41.7$ and 41.3) in a ratio ca. 1 : 2 (Eq. 9).

Crystallisation from ether containing benzene gave product having a similar ratio (30:70), but crystallisation overnight from a similar solvent mixture gave the pure ${ }^{31} \mathrm{P}$ NMR highfield diastereoisomer.

Reaction of the Methanesulphonate with Amines

The methanesulphonate (44) (samples \mathbb{A} and \mathbb{B}) was allowed to react with neat tert-butylamine and methylamine and also with 1.0 M and 0.1 M solutions in dichloromethane. The products were the diastereoisomeric N-tert-butylphosphonic diamides (49), $\delta_{\mathrm{P}} 21.8$ and 21.5 , or N-methylphosphonic diamides (50), $\delta_{\mathrm{P}} 26.7$ and 26.4 . The crude products were investigated by ${ }^{31} \mathrm{P}$ NMR spectroscopy in order to obtain their diastereoisomer ratios. The diamides were isolated by partitioning between dichloromethane and water, so that their diastereoisomer ratios could be re-examined by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy, and so that their identities could be confirmed.

The ${ }^{1} \mathrm{H}$ NNR spectra of the reaxrangement products contained the expected $N H$ and $N B u^{t}$ or NMe signals, showing incoxporation of the amine. They also revealed the absence of the characteristic $\operatorname{PhP}(O)$ signals, although the aromatic integrals showed no loss of phenyl, and the α methyl groups still showed coupling to phosphorus $\left[J_{\mathrm{PH}} 17.3\right.$ or 17.4 for the diastereoisomers of the \mathbb{N}-tert-butyl-diamide (89), and 17.3 for both diastereoisomers of the N-methyl-diamide (50)]. These features indicated phenyl migration to nitrogen (Scheme 11), and further evidence of this was provided by the mass spectra, which showed $m / z 93$ attributable to $\mathrm{PhNH}_{2}{ }^{+}$. Compar-
ison of the spectroscopic properties of the products with those of authentic samples, prepared from the phosphonamidic chloride (48) and the appropriate amine (Scheme 11), confirmed their identities.

(50)

Scheme 11

It was clear that the reactions of the methanesulphonate (44) with tert-butylamine and methylamine gave largely the products of phenyl migration. To ascertain whether any α-methylbenzyl migration had occurred, authentic samples of these alternative rearrangement products were prepared. Treatment of N-tert-butyl-N'-phenylphosphonamidic chloride $(51)^{34}$ with an excess of (\pm)- α-methylbenzylamine gave an authentic sample of the diamide $(52), \delta_{p}\left(\mathrm{CDCl}_{3}\right) 17.3$ and 16.5
(diastereoisomers), the products that would result from α-methylbenzyl migration in the with N-tert-butylamine (Eq. 10). The diamide (53), $\delta_{p}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 20.2$ and 19.8 (diastereoisomers), that would result from α-methylbenzyl migration in the reaction with methylamine was prepared from phenylphosphonic dichloride and (\pm)- α-methylbenzylamine (2 mol equiv.), followed by an excess of methylamine (Eq. 11). The ${ }^{1} H$ NMR spectra of these compounds showed the characteristic PhP(O) signals, and the α-methyl signals were simply doublets, showing coupling to the α-hydrogen but not to phosphorus. Spectroscopic comparison of the rearrangement reaction mixtures with these authentic α-methylbenzyl-migration products showed that they had not been formed in the reaction (1 \% would have been detected).

Eq. 10

Eq. 11

The reaction of the methanesulphonate (44) with tert-butylamine gave a by-product (23% for $0.1 \mathrm{M} \mathrm{Bu}^{t} \mathrm{NH}_{2}$), δ_{p} 33.6. This could be isolated by extraction into aqueous acid ($\delta_{p} 41.5$),
neutralisation, and back-extraction into dichloromethane; it was identified as the hydrazide (54). The identity was confirmed by comparison with an authentic sample prepared from the phosphinic chloride (39) and an excess of tert-butylhydrazine in dichloromethane. This hydrazide by-product was presumably formed by nucleophilic displacement of the sulphonate group from nitrogen by the amine, and its formation was seen to be more prominent in the rearrangement reactions using the lower concentrations of amine. The reaction with methylamine also gave a by-product, $\delta_{\mathrm{p}} 33.8$ - presumably the hydrazide (55) - but in lower yield. This seemed surprising, since competition to the base-induced rearrangement from nucleophilic attack at nitrogen might be expected to be moxe extensive for the less hindered (more nucleophilic) amine. It therefore seemed worthwhile to look briefly at the reaction of the methanesulphonate (4A). with N-methyl-tert-butylamine。 This secondary amine is more hindered than either methylamine or text-butylamine, yet it formed substantially more hydre azide $(56), \delta_{p}\left(\mathrm{CDCl}_{3}\right) 31.1\left(40 \%\right.$ with 1.0 M amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; the expected diamide reaxrangement product (57), $\delta_{\mathrm{p}} 28.2$ and 25.9 (diastereoisomer ratio 42 : 58), was also formed (50\%). Perhaps nucleophilic attack at nitrogen is not susceptible to stexic effects in the nucleophile, and larger or more numerous groups in the amine serve only to enhance its nucleophilicity (+ I effect)。

(54)

(55)

(57)

Hydrazide formation was generally important for the highfield diastereoisomer of the methanesulphonate (44) (sample B), but was only significant for the lowfield diastereoisomer A at low amine concentrations (0.1 M). This demonstrates a potential pitfall of using diastereoisomers, namely their ability to undergo reactions and side-reactions at different rates. This will not be a problem when working with pure diastereoisomers or mixtures of diastereoisomers if there are no side reactions. If, however, one of the diastereoisomers in the mixture is consumed relatively quickly by side reactions, the diastereoisomer composition of the substrate that is converted into product will not be precisely the same as the diastereoisomer composition of the substrate used for doing the experiment.

Other minor by-products having ${ }^{31} \mathrm{P}$ NMR chemical shifts similar to those of the hydrazides were also evident; they were tentatively identified as the diastereoisomers of the phos-
phinic amide (58) by comparison with (${ }^{31} \mathrm{P}$ NMR) an authentic sample of (58) prepared from the phosphinic chloride (39) and an excess of ethereal ammonia (Eq. 12).

Eq. 12

Stereochemistry of the Rearrangement

The diastereoisomer ratios of the products from the reactions of the methanesulphonates (44) (samples A and B) with tert-butylamine and methylamine (neat, 1.0 M , or 0.1 M in dichloromethane) were determined by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. The observed ratios will be affected to some extent by the side reactions that diastereoisomer B preferentially undergoes, since the diastereoisomer composition of the substrate that is converted to product will differ somewhat from the initial ratio in the substrate. The side reactions became more extensive on dilution, so the product diastereoisomer ratios observed at lower concentrations of amine must be interpreted with particular care.

Table 1; Reaction of the methanesulphonate (44) with tert-butylamine: diastereoisomer ratios of substrate (A \quad ($)$ and rearrangement product (\mathbf{A}^{\prime} : \mathbf{B}^{\prime}).

| $A: B$ | $B u^{t} \mathrm{NH}_{2}$ | $A^{\prime}: B^{\prime}$ |
| :---: | :---: | :---: | :---: |
| $30: 97$ | neat | $10: 90$ |
| 30 | | |
| $30: 97$ | $1.0 M^{b}$ | $30: 70$ |
| $80: 20$ | in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $67: 33$ |
| $30: 97$ | $0.1 \mathrm{M}^{\mathrm{b}}$ | $41: 59$ |
| 80 | in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $57: 43$ |

- Neat amine (> 20-fold excess) added to substrate.
b Diastereoisomer B undergoes extensive side reaction.

The reaction of the methanesulphonate with neat tert-butylamine was quite stereospecific; as the concentration of amine was reduced it became less stereospecific, though it still showed appreciable stereospecificity even with 0.1 M tert--butylamine (Table 1). The reaction with methylamine differed dramatically, in that it proceeded with near constant stereospecificity at all three concentrations of amine (Table 2). If we are to understand the mechanistic significance of the stereospecificity, we must know whether it corresponds to inversion or retention of configuration at phosphorus.

Table 2; Reaction of the methanesulphonate (44) with methylamine: diastereoisomer ratios of substrate (A : B) and rearrangement product (\mathbf{A}^{\prime} : \mathbf{B}^{\prime}).

A : B	MeNH2	A^{\prime} : B^{\prime}
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	neat ${ }^{\text {a }}$	$\begin{array}{r} 7: 93 \\ 79: 21 \end{array}$
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	$\begin{gathered} 1.0 \mathrm{M}^{\mathrm{b}} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\begin{array}{r} 8: 92 \\ 82: 18 \end{array}$
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	$\begin{gathered} 0.1 \mathrm{M}^{\mathrm{c}} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\begin{array}{r} 8: 92 \\ 83: 17 \end{array}$

a $150 \mu 1$ neat amine added to substrate at -6 to $-10{ }^{\circ} \mathrm{C}$.
${ }^{b}$ Diastereoisomer B undergoes some side reaction.
c Diastereoisomer B undergoes extensive side reaction.

A portion of the 3 : 97 methanesulphonate (sample B) was crystallised from dichloromethane to give a crystal of the major diastereoisomer for single crystal X-ray analysis (Fig. 1). That this crystal was indeed the major diastereoisomer was checked, after the x-ray study, by reduction to the phosphinic amide with sodium tetrahydridoborate, and comparison of this (GLC) with the phosphinic amides obtained by reduction of both diastereoisomers of the methanesulphonate. The product formed from the methanesulphonate sample B with neat methylamine was crystallised to give pure diastereoisomer B^{\prime} (determined by ${ }^{1} H$ NMR spectroscopy) and then recrystallised from toluene gave a crystal suitable for single crystal X-ray analysis (Fig. 2). TLC examination of the crystal after X-ray analysis confirmed that it was indeed the diastereoisomer B^{\prime} of the product. By comparison of the two
stereostructures it can be seen that, in the case of methylamine, the major diastereoisomer of the product was formed from the methanesulphonate with retention of configuration at phosphorus (Eq. 13). ${ }^{35}$

Eq. 13
For the reaction with tert-butylamine, the sense of the
stereospecificity was determined indirectly. The phosphon-
amidic chloride (48) (${ }^{31 P}$ NMR highfield diastereoisomer)
reacted with neat methylamine and neat tert-butylamine to
give the lowfield diastereoisomers of the diamides (49) and
(50) respectively. Assuming that both reactions proceed with
the same stereochemistry at phosphorus, then the lowfield
diastereoisomers of the two diamides must have the same con-
figuration. The rearrangement reactions of the methanesul-
phonate sample B with the two (neat) amines both gave largely
the highfield diastereoisomer; by implication, these have the
same configuration, so the rearrangement with tert-butylamine
must also proceed with retention of configuration at phos- phorus.

Fig. 1; The structure of p-[α-methylbenzyl(phenyl)phosphinoyl]--O-methanesulphonylhydroxylamine (44) (diastereoisomer B) as determined by single crystal x-ray analysis; relative configuration at phosphorus and carbon. Selected bond lengths (A) and bond angles $\left(^{\circ}\right): \mathrm{P}-\mathrm{C}(1) \quad 1.824(3), \quad \mathrm{P}-\mathrm{C}(21) \quad 1.786(2), \mathrm{P}-\mathrm{N} \quad 1.690(2), \mathrm{N}-\mathrm{O}(2)$ 1.459(3), C(1)-P-C(21) $109.8(1), \quad \mathrm{C}(21)-\mathrm{P}-\mathrm{N} \quad 109.4(1), \quad \mathrm{N}-\mathrm{P}-\mathrm{C}(1)$ 98.6(1), $\mathrm{C}(1)-\mathrm{P}-\mathrm{O}(1) \quad 115.0(1), \mathrm{C}(21)-\mathrm{P}-\mathrm{O}(1) \quad 111.4(1), \quad \mathrm{N}-\mathrm{P}-\mathrm{O}(1)$ 111.9(1), P-N-O(2) 111.3(2).

Fig. 2; The structure of N-methyl-N'-phenyl-P- α-methylbenzylphosphonamidate (50) (major diastereoisomer) as determined by single crystal X -ray analysis; relative configuration at phosphorus and carbon. Selected bond lengths (\AA) and bond angles ($\left(^{\circ}\right.$): P-C(2) 1.825(5), P-N(1) $1.624(6), \quad \mathrm{P}-\mathrm{N}(2) \quad 1.653(5), \mathrm{N}(1)-\mathrm{C}(1) \quad 1.477(8)$, $\mathrm{N}(2)-\mathrm{C}(11) \quad 1.414(5), \quad \mathrm{C}(2)-\mathrm{P}-\mathrm{N}(1) \quad 108.8(3), \mathrm{N}(1)-\mathrm{P}-\mathrm{N}(2) \quad 108.4(3)$, $\mathrm{N}(2)-\mathrm{P}-\mathrm{C}(2) \quad 100.0(2), \mathrm{C}(2)-\mathrm{P}-\mathrm{O} \quad 114.4(2), \mathrm{N}(1)-\mathrm{P}-\mathrm{O} \quad 109.1(3), \mathrm{N}(2)-\mathrm{P}-\mathrm{O}$ 115.6(2), P-N(1)-C(1) 124.4(5), P-N(2)-C-(11) $128.6(4)$.

The reaction of the nosylate (45) with methylamine was cleaner than the corresponding reaction of the methanesulphonate (44), with only a small quantity of the hydrazide being formed even at lowest amine concentration (0.1 M). The rearrangement products were again formed largely with retention of configuration at phosphorus, for all three amine concentrations, but the reaction was not as stereospecific as for the methanesulphonate. Curiously, the stereospecificity increased (marginally) at lower concentrations (Table 3).

Table 3; Reaction of the nosylate (45) with methylamine: diastereoisomer ratios of substrate (A : B) and rearrangement product (A' : B').

$A: B$	MeNH $_{2}$	$A^{\prime}: B^{\prime}$
$3: 97$	neata	$14: 86$
$3: 97$	1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$12: 88$
$3: 97$	0.1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$10: 90$

* Neat amine added to substrate at -4 ${ }^{\circ} \mathrm{C}$.

(44)
(59)

Scheme 12

If the reaxrangement proceeds through a free monomexic metaphosphonimidate (59), a planar species, both diastereoisomers of the substrate will give the same mixture of diastereoisomers of the product the stereospecificity observed for the rearrangements is therefore not consistent with a free metaphosphonimidate intermediate. If the metaphosphonimidate reacts with the amine before it diffuses away from the leaving group, then the leaving group may shield one face and impose some stereospecificity - presumably with retention of configuration at phosphorus (Scheme 12). At lower amine (nucleophile) concentrations the metaphosphonimidate would have more time to diffuse away from the leaving group before reacting, thus reducing the stereospecificity of product formation. This was indeed observed for the reaction with text-butylamine, but not with methylamine This mechanism is therefore not consistent with the stereochemical results either However, it should be recalled that this type of stereochemical behaviour was previously observed for the phosphonamidic chloride $\operatorname{PhP}(O) N H B u^{t} C l ;{ }^{26}$ at lower amine concentrations, substitution showed increasing stereospecificity with isopropylamine as the nucleophile, but loss of stereospecificity with the more hindered text-pentylamine. The behaviour of the methanesulphonate (4.4) and the nosylate (45) would therefore be consistent with the formation of a phos-phonamidic-sulphonic mixed anhydride (60) - analogous to the phosphonamidic chloride (48) - as long as the mised anhydride were formed with high stereospecificity, and its behaviour resembled that of a phosphonamidic chloride.

(60)

(45)

(48)
(61)

(62)
Scheme 13
Evidence for phosphonamidic-sulphonic mixed anhydride
involvement came from two minor rearrangement products that
were formed in the reactions of the methanesulphonate (44)
with amine [these products were also seen, in much lower
yield, in the reaction of the nosylate (45) with 0.1 M
methylamine]. The first minor product, $\delta_{p} 18$, isolated after
protonation by extraction in dichloromethane, was identified
as the salt of the phosphonamidic acid (61) by comparison of
the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of the isolated free acid with
those of an authentic sample. The authentic sample was
prepared from the phosphonamidic chloride (48) by treatment

```
with aqueous sodium hydroxide, then hydrochloric acid (Scheme
13). Further evidence of the identity of this product was
obtained by comparison of the GLC retention time of the
methyl ester formed on treatment of the isolated acid with
diazomethane, with that of an authentic sample of (62),
prepared either from the phosphonamidic chloride (48) and
sodium methoxide, or from the phosphonamidic acid (61) and
diazomethane (Scheme 13).
    The second minor product displayed a series of very close
peaks in the }\mp@subsup{}{}{31}\textrm{P}\mathrm{ NMR spectrum, }\mp@subsup{\delta}{\textrm{p}}{}\mathrm{ 24.4-23.5. It was apparently
the phosphonamidic anhydride (64), as on prolonged standing
in the reaction mixture it was slowly converted into the
phosphonamidate salt (63). Moreover, the *'P NNR spectrum
compared well with that of an authentic sample of the phos-
phonamidic anhydride (64), prepared from the phosphonamidic
chloride (48) and the tert-butylammonium phosphonamidate (63)
```

(Eq. 14).

(48)

Eq. 14

The conversion of the phosphonamidic anhydride (64) into the phosphonamidate salt was slow, and most occurred only on standing in the reaction mixture, long after the rearrange= ment was complete However, some of the salt was already present at the end of the reaxrangement [accompanied by much more of the anhydride (64)]。 This suggests that the salt is probably formed first, and is converted into the anhydride during the reaction, but the anhydride is subsequently hyd. rolysed by adventitious water on standing. The phosphonamidate is formally the result of addition of water to the metam phosphonimidate, and in accord with this, it (or the derived phosphonamidic anhydride) became more prominent on dilution, when moisture would be more likely to compete with amine for the metaphosphonimidate (Scheme 14). However, with 1.0 M $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ in dichloromethane the amount of watex relative to amine is expected to be small, yet the phosphonamidate (or the phosphonamidic anhydride) seemed to be disproportionately large. If the reactive species were the metaphosphonimidate, the amount of product due to water would be expected to reflect its propontion in the reaction medium. If, on the other hand, the substrate rearranges to the phosphonamidic--sulphonic mixed anhydride, a reasonable explanation can be Found. Now the phosphonamidate ion can be formed from the mixed anhydride not only by reaction with water at phosphorus $\left[S_{N} 2(P) ; ~ i n c r e a s i n g\right.$ selectivity at lowex amine concentrations (cif behaviour of phosphonamidic chlorides)], but also by reaction of the amine at sulphur $\left[\mathrm{S}_{\mathrm{N}} 2(\mathrm{~S})\right.$ or sulphene mechan ism] (Scheme 15). In either case, the phosphonamidic anhyd=

```
ride (64) would be the result of the phosphonamidate ion
reacting further with the mixed anhydride by nucleophilic
attack at phosphorus (Scheme 14).
```


(44)

Scheme 14

Scheme 15

Part 1; Chapter 3: Further Studies on N-Phosphinoyl-O-sulph-

 onylhydroxylaminesCompetition Studies

(44)

(45)

(48)

If phosphonamidic-sulphonic mixed anhydrides are formed in the rearrangements of N-phosphinoyl-O-sulphonylhydroxylamines it would be interesting to compare their behaviour with that of a suitable model, such as the phosphonamidic chloride (48). With this in mind the methanesulphonate (44) (a 50 : 50 mixture of diastereoisomers), the nosylate (45) (diastereoisomer ratio $4: 96 ; B$ in excess), and the phosphonamidic Chloride (48) (ratio $30: 70 ;{ }^{31} \mathrm{P}$ NMR highfield diastereoisomer in excess) were allowed to react with an equimolar mixture of methylamine and tert-butylamine at three concentrations (neat, 1.0 M , and 0.1 M ; total amine concentration in dichloromethane). The N-methyl/N-tert-butyl product ratios were determined by ${ }^{31} P$ NMR spectroscopy (Table 4). This showed that for all three substrates the selectivity of the reaction increased on dilution. The reactions of the methanesulphonate and the phosphonamidic chloride were remarkably similar, reinforcing the argument for the mixed anhydride. The nosylate was substantially less selective than the methanesulphonate, in agreement with previous work where
a nosylate was found to exhibit lower selectivity than the corresponding methanesulphonate. ${ }^{22}$ This may also be considered as further evidence of mixed anhydride formation, since changing the leaving group in the substrate should not influence the selectivity of the reaction if all it does is just leave.

Table 4; Reaction of different substrates with 1 : 1 methylamine--tert-butylamine under competitive conditions: product ratios as determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Substrate \quad| $M=$ methanesulphonate $(44)^{\circ}$ |
| :--- |
| $P=$ phosphonamidic chloride $(48)^{\text {b }}$ |
| |
| $N=$ nosylate $(45)^{c}$ |

Substrate	$\left[\mathrm{MeNH}_{2}+\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}\right.$]	$N-\mathrm{Me}: N-\mathrm{Bu}^{\text {t }}$
M	neat ${ }^{\text {d }}$	$86: 14$
P		$90: 10$
N		$75: 25$
M	$\begin{gathered} 1.0 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$95: 5$
P		94 : 6
N		$75: 25$
M	$\begin{gathered} 0.1 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\geq 99: 1$
P		$\geq 99: 1$
N		89 : 11

a 50 : 50 mixture of diastereoisomers
b 30 : 70 mixture of diastereoisomers

- 4 : 96 mixture of diastereoisomers
${ }^{d}$ Neat amine added to substrate at $0{ }^{\circ} \mathrm{C}$.

Stereochemical Studies on Optically Active N-Diphenylphos-phinoyl-O-camphor-10-sulphonylhydroxylamine

If the reaction intermediate is a phosphonamidic-sulphonic mixed anhydride, then an N-phosphinoyl-O-sulphonylhydroxylamine achiral at phosphorus but with a chiral leaving group will, on rearrangement, give the mixed anhydride as a mixture of diastereoisomers. These diastereoisomers will be formed via diastereoisomeric transition states, so there should be the possibility of asymmetric induction.

Eq. 15

To test this idea the enantiomeric camphor-10-sulphonates (67), $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 29.6$, were prepared, in high yield, by reaction of N-(diphenylphosphinoyl)hydroxylamine (66) ${ }^{13}$ with (+)or (-)-camphor-10-sulphonyl chloride (1.35 mol equiv.) in pyridine (Eq. 15). ${ }^{13}$

The (-)-camphor-10-sulphonate (66) was allowed to react with tert-butylamine (neat, $3.0 \mathrm{M}, 1.0 \mathrm{M}, 0.3 \mathrm{M}$, and 0.05 M in dichloromethane) (Scheme 16). The enantiomer ratios of the known diamide (68), ${ }^{13} \delta_{p} 11.2$, were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with the aid of (-)-methylphenylphosphinothioic acid (70) ${ }^{36,37}$ (1 mol equiv.) as a chiral shift reagent. In all cases some asymmetric induction was seen (Table 5).

Scheme 16

Table 5; Reaction of the (-)-camphor-10-sulphonate (67) with tert-butylamine: enantiomer ratios L : H [lowfield : highfield ratio of the $N B u^{t}$ peaks in the presence of the ${ }^{2} H$ NMR shift reagent (70)] of the rearrangement product.

$\mathrm{Bu}^{\text {t }} \mathrm{NH}_{2}$	L : H
Neat ${ }^{\text {a }}$	$53: 47$
$\begin{gathered} 3.0 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	53 : 47
$\begin{gathered} 1.0 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$55: 45$
$\begin{gathered} 0.3 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	56 : 44
$\begin{gathered} 0.05 \mathrm{M} \\ \text { in } \mathrm{CH}_{3} \mathrm{Cl}_{2} \end{gathered}$	$55: 45$

a Neat amine (> 20-fold excess) added to the substrate

(70)

(71)

The (+)-camphor-10-sulphonate (67) and the achiral methanesulphonate $(69)^{13}$ were also allowed to react with 1.0 M tert--butylamine in dichloromethane (Scheme 16). Examination of the resulting diamide (68) revealed asymmetric induction, in the opposite sense, for the former, but no asymmetric induction in the latter (Table 6 and Fig. 3).

Table 6; Reaction of various sulphonates with 1.0 M tert-butylamine or 1.0 M methylamine in dichloromethane: enantiomer ratios $L \quad H$ [lowfield : highfield ratio in the presence of the ${ }^{1} H$ NMR shift reagent (70) or (71)] of the rearrangement products.

$$
\text { Substrate: } \quad \begin{aligned}
(+) \text {-Camphor } & =(+) \text {-Camphor-10-sulphonate }(67) \\
\text { Mesylate } & =\text { Methanesulphonate }(69) \\
(-) \text {-Camphor } & =(-) \text {-Camphor-10-sulphonate }(67)
\end{aligned}
$$

[^1]Fig. 3; ${ }^{1} \mathrm{H}$ NMR spectra (NBu ${ }^{t}$ peaks) showing asymmetric induction in the rearrangement of the camphor-10-sulphonate (67) and its absence in the rearrangement of the methanesulphonate (69) with 1.0 M tert-butylamine in dichloromethane $[a \quad$ and c are product peaks derived from the (+) and (-) enantiomers of (67) respectively, while b is for the product from (69)].

The reactions of both enantiomers of the camphor-10-sulphonate (67) with 1.0 M methylamine in dichloromethane gave the diamide (72), ${ }^{22} \delta_{\mathrm{p}} 16.4$, (Eq. 16). Investigation of the enantiomer ratios of the product by ${ }^{1} \mathrm{H}$ NMR spectroscopy, with the aid of (+)-tert-butylphenylphosphinothioic acid (71) (1.3 mol equiv.) as a chiral shift reagent, ${ }^{37,37}$ again showed some asymmetric induction (Table 6 and Fig. 4).

(67)

(72)

Eq. 16

Fig. 4; ${ }^{1} \mathrm{H}$ NMR spectra (NMe peaks) showing asymmetric induction in the rearrangement of the camphor-10-sulphonate (67) with 1.0 M methylamine in dichloromethane $[a$ and b are the product peaks derived from the (-) and (+) enantiomers of (67) respectively].

Abstract

If the rearrangement of the camphor-10-sulphonate (67) proceeded through a free metaphosphonimidate intermediate there would be no asymmetric induction, since the two faces of the metaphosphonimidate (73) are enantiotopic and the nucleophile is achiral. The source of asymmetry in the reaction is the chiral sulphonate, and asymmetric induction will occur if it was involved in some way in product formation. In principle, the chiral leaving group could influence product formation by merely being present in the reaction medium, but this was not the case since the product ratios remained unaltered when the reaction was repeated with the (-)-camphor-10-sulphonate ion (1.0 mol equiv.) already present in the reaction medium.

(73)

The chiral leaving group could influence product formation if it remained close to phosphorus when the nucleophile attacks (the two faces of the metaphosphonimidate will then be diastereotopic). Rearrangement through the metaphosphonimidate involves migration of phenyl to nitrogen with the expulsion of the leaving group. If the line of departure of the leaving group places it close to phosphorus the faces of the metaphosphonimidate would be diastereotopic. There is no reason why this should occur unless the sulphonate leaving group is interacting in some specific way with phosphorus, i.e. bonding. This being the case, the most reasonable ex-

Abstract

planation is that rearrangement not only involves the migration of phenyl from phosphorus to nitrogen but also involves the transfer of the sulphonate group from nitrogen to phosphorus to give the phosphonamidic-sulphonic mixed anhydride (74) as a mixture of diastereoisomers. Whether this transfer is synchronous with phenyl migration will be discussed later. Since the mixed anhydride is diastereoisomeric, the diastereoisomers may, in principle, be formed in unequal amounts, and if they reacted stereospecifically with the nucleophile their configurational inequality would be transferred to the product, i.e. an unequal quantity of enantiomers.

Diastereoisomers of (74)

The observed asymmetric induction was small but only a small difference in the energies of the transition states leading to the mixed anhydride can be reasonably be expected. The very fact of asymmetric induction provides further useful support for the formation of the phosphonamidic-sulphonic mixed anhydride.

(44)

(65)

A ${ }^{31} \mathrm{P}$ NMR investigation of the reaction of the methanesulphonate (44) (sample A; diastereoisomer ratio 80 : 20) with 0.21 M tert-butylamine in dichloromethane showed that the substrate was initially converted into a species with a chemical shift in the region expected for rearrangement, δ_{p} 27.7 and 27.5 (~ 80 : 20 mixture of diastereoisomers) (Fig. 5). This species was not the final product but a short-lived reaction intermediate; the expected phosphonic diamide rearrangement product was formed at its expense. This reaction intermediate is believed to be the phosphonamidic-sulphonic mixed anhydride (65), and the $\sim 80: 20$ ratio of its diastereoisomers implies that it is formed with a high degree of stereospecificity. A similar investigation of sample B of the methanesulphonate (diastereoisomer ratio 3 : 97), but with 0.1 M tert-butylamine in dichloromethane showed that formation of the hydrazide by-product competed with mixed anhydride (65) formation.

Fig. 5; Detection of a reaction intermediate (${ }^{31} \mathrm{P}$ NMR spectroscopy) in the rearrangement of the methanesulphonate (44) with 0.21 M tert--butylamine in dichloromethane.

In an attempt to recreate the reaction intermediate, the tert-butylammonium phosphonamidate (63) was treated with methanesulphonyl chloride. The reaction was followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy, which showed the salt being converted into the pyrophosphate (64) (Eq. 17). The phosphonamidic-sulphonic mixed anhydride was not detected, presumably because it reacts too quickly with the phosphonamidate anion.

(64)

Attempts to synthesise the mixed anhydride with methanesulphonic anhydride and either from the imidazolide (75), prepared from the phosphonamidic chloride and trimethylsilylimidazole, ${ }^{38}$ or the O-silyl ester (76) of the phosphonamidate, prepared from the methyl phosphonamidate (62) and trimethylsilylbromide, ${ }^{39}$ were unsuccessful (Scheme 17).40

Scheme 17

The Rearrangement

It is clear that rearrangement of the N-phosphinoyl-O-sulphonylhydroxylamine directly to the monomeric metaphosphonimidate is not a major reaction pathway, since, contrary to the observed results, both diastereoisomers of the methanesulphonate (44) would be expected to give the same ratio of diastereoisomeric products. The evidence for phosphonamidic--sulphonic mixed anhydride (77) formation, however, is strong. The existence of asymmetric induction in the reactions of the camphor-10-sulphonates (67) practically demands mixed anhydride formation, while the persistence of asymmetric induction with all concentrations of tert-butylamine (Table 5), and the high stereospecificity of the reactions of the methanesulphonate (44) and the nosylate (45) with methylamine shows that mixed anhydride formation occurred at all concentrations.

(77)

(31)

If the N-phosphinoyl-O-sulphonylhydroxylamine, on treatment with base, rearranged to the phosphonamidic-sulphonic mixed anhydride (77), it is the way that this then reacts with the nucleophile that will determine the outcome of the reaction. It is reasonable to expect the mixed anhydride (77) to behave like the phosphonamidic chloride (31). Phosphonamidic chlorides have been shown to react with amines by three mechanisms namely, ${ }^{26}$ i) $S_{N} 2(P)$, being stereospecific and first order in amine and showing high selectivity for the less bulky nucleophile, ii) preassociation elimination-addition, ${ }^{27}$ being second order in amine and showing low selectivity, though its stereospecificity can vary, the reaction being anything from completely stereospecific to non-stereospecific, and finally iii) limiting elimination-addition, which is first order in amine and completely non-stereospecific and non-selective. The reaction can therefore be influenced by the nucleophile, in that bulky nucleophiles will disfavour $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$, and high nucleophile concentrations will favour preassociation elimination-addition; for competing nucleophiles, the phosphonamidic chloride will show increasing selectivity for the less hindered nucleophile as the nucleophile concentration is lowered.

In order to understand the behaviour of the substrates it is necessary to examine the competition and stereochemical studies more closely. Consider the competition study (Table 4). If the phosphonamidic-sulphonic mixed anhydride was formed, there will be a preference for methylamine over text-butylamine for a reaction proceeding by an $S_{N} 2(P)$ pathway. The reaction of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$, by an $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$ mechanism (it cannot react by an elimination-addition mechanism), with an equimolar misture of isopropylamine and tert-butylamine gives an $\mathrm{NPx}^{i} / \mathrm{NBu}^{t}$ product ratio of $>99: 1 \mathrm{o}^{22}$ For methylamine this ratio would be much greater, and tert-butylamine will not compete with methylamine for the mixed anhydride by an $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$ pathway. If any $N B u^{t}$ product was formed under competitive conditions it would be due eliminationmaddition. For the reaction of the methanesulphonate (4A) with neat amine the ratio was $86: 14$ (Table 4), the $14 \% \mathrm{NBu}^{t}$ product must be due to elimination-addition. At least a further 14. \% of the substrate must have also reacted with methylamine by a similar mechanism, since methylamine could hardly be a less efficient trap than tert-butylamine; the $S_{N} 2(P)$ component for methylamine would be $72 \%(100-14-14=72)$. However, an elimination-addition mechanism need not be truly non-selective. Consider, for example, $\operatorname{Pr}^{i} P(O) N H B u^{t} C l$ reacting by an elimination-addition mechanism with an equimolar mixture of isopxopylamine and text-butylamine in dichloromethane, non--selectivity is 1.4 : 1 favouring isopropylamine, ${ }^{41}$ showing that bulk on the nucleophile does affect its trapping ability to some degree. For $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})$ NHONs with 1 : 1 methylamine and tert-butylamine non-selectivity is axound 2.5 : 1 favouring methylamine, ${ }^{22}$ and for the reaction of nosylate (45) with the
neat amine mixture, assuming the reaction proceeds entirely by an elimination-addition mechanism, it cannot be more than 3 : 1 (Table 4). Taking non-selectivity as $2.5: 1$, and applying this to our 86 : 14 ratio we get the elimination--addition contribution by methylamine as $35 \%(2.5 \times 14=35)$ and $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$ for methylamine as $51 \%(100-35-14=51)$. The other values in Table 4 were similarly manipulated and the results are shown in Table 7.

Table 7; Derived from Table 4: reaction of different substrates with 1 : 1 methylamine/tert-butylamine under competitive conditions showing the $\%$ contribution of $S_{\mathrm{N}} 2(P)$ and elimination-addition (assuming non-selectivity is 2.5 : 1 favouring MeNH_{2}).

Substrate $\quad M=$ methanesulphonate (44)
$\mathrm{P}=$ phosphonamidic chloride (48)
$\mathrm{N}=$ nosylate (45)

Substrate	$\begin{gathered} \mathrm{MeNH}_{2} \\ \stackrel{+}{\mathrm{Bu}^{t} \mathrm{NH}_{2}} \end{gathered}$	$\begin{gathered} \% \mathrm{~S}_{\mathrm{N}} 2(\mathrm{P}) \\ \mathrm{MeNH}_{2} \end{gathered}$	\% EA	
			MeNH2	$\mathrm{Bu}^{\text {t }} \mathrm{NH}_{2}$
M	neat	51	35	14
P		65	25	10
N		12.5	62.5	25
M	$\begin{gathered} 1.0 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	82.5	12.5	5
P		79	15	6
N		12.5	62.5	25
M	$\begin{gathered} 0.1 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	>96.5	< 2.5	<1
P		>96.5	<2.5	<1
N		61.5	27.5	11

```
For the stereochemical study it would be useful to know how each diastereoisomer behaved. The stereochemical study was conducted on enriched mixtures of both diastereoisomers, but the behaviour of each diastereoisomer can easily be determined by solving the two following simultaneous equations:
```

$$
\begin{aligned}
3 \mathbf{A}+97 \mathbf{B} & \longrightarrow a \mathbf{A}^{\prime}+b \mathbf{B}^{\prime} \\
80 \mathbf{A}+20 \mathbf{B} & \longrightarrow \alpha \mathbf{A}^{\prime}+\beta \mathbf{B}^{\prime}
\end{aligned}
$$

The solutions being:

Table 8; Reaction of the methanesulphonate (44) with tert-butylamine: calculated product diastereoisomer ratios (A' : B') from substrate ($\mathbf{X}=$ diastereoisomer \mathbf{A} or \mathbf{B}).

A : B	$\mathrm{Bu}^{\text {t }} \mathrm{NH}_{2}$	$100{ }^{\circ} \mathrm{X} \longrightarrow \mathbf{A}^{\prime}: \mathbf{B}^{\prime}$	d.e.
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	neat	$\begin{aligned} & \mathrm{B} \longrightarrow 7.5: 92.5 \\ & \mathbf{A} \longrightarrow 91.9: 8.1 \end{aligned}$	85.0 83.8
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	$\begin{gathered} 1.0 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\begin{aligned} & B \longrightarrow 28.6: 71.4 \\ & A \longrightarrow 76.6: 23.4 \end{aligned}$	42.8 53.2
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	$\begin{gathered} 0.1 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{B} \longrightarrow 40.4: 59.6 \\ & \mathrm{~A} \longrightarrow 61.2: 38.8 \end{aligned}$	19.2 22.4

Table 9; Reaction of the methanesulphonate (44) with methylamine: calculated product diastereoisomer ratios (A' : B') from substrate ($\mathbf{X}=$ diastereoisomer \mathbf{A} or \mathbf{B}).

A : B	MeNH2	$100 \% \mathrm{X} \longrightarrow \mathrm{A}^{\prime}: \mathrm{B}^{\prime}$	d.e.
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	neat	$\begin{aligned} & \mathrm{B} \longrightarrow 4.2: 95.8 \\ & \mathrm{~A} \longrightarrow 97.7: 2.3 \end{aligned}$	$\begin{aligned} & 91.6 \\ & 95.4 \end{aligned}$
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	$\begin{gathered} 1.0 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\begin{aligned} & \mathbf{B} \longrightarrow 5.1: 94.9 \\ & \mathbf{A} \longrightarrow 97^{a}: 3^{a} \end{aligned}$	$\begin{aligned} & 89.8 \\ & 94 \end{aligned}$
$\begin{array}{r} 3: 97 \\ 80: 20 \end{array}$	$\begin{gathered} 0.1 \mathrm{M} \\ \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{B} \longrightarrow 5.1: 94.9 \\ & \mathrm{~A} \longrightarrow 97^{\mathrm{a}}: 3^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 89.8 \\ & 94 \end{aligned}$

[^2]
Abstract

Examination of Table 7 clearly shows that in all cases selectivity for the less hindered nucleophile (methylamine) increased with dilution. This behaviour is exactly what is expected for a phosphonamidic chloride, indicating that the substrates are behaving like phosphonamidic chlorides. Furthermore, the behaviour of the methanesulphonate (44) reinforced this view by closely paralleling the behaviour of the phosphonamidic chloride (48). The reactions of the phosphonamidic-sulphonic mixed anhydrides may be rationalised as detailed below.

(44)

(65)

(48)

The mixed anhydride (65), once formed, could react further at high amine concentrations by a preassociation eliminat-ion-addition mechanism. ${ }^{27}$ This pathway would not discriminate much between competing nucleophiles, since the product forming species would be the metaphosphonimidate (planar and highly reactive); it may be responsible for the reduced selectivity seen in the competition study (Tables 4 and 7). Both diastereoisomers of the methanesulphonate (44) reacted with tert-butylamine with high stereospecificity at high amine concentration but with low stereospecificity at low amine concentrations (Table 8). In this case preassociation elimination-addition for the phosphonamidic-sulphonic mixed anhydride (65) seems to go with a fairly high degree of
stereospecificity, and it could be that the leaving group blocked one face of the metaphosphonimidate. At lower amine concentrations preassociation elimination-addition becomes less important (proportional to [amine] ${ }^{2}$); $S_{N} 2(P)$ and, if the metaphosphonimidate could exist as a free species, limiting elimination-addition can compete more ably. From the competition study we saw that tert-butylamine competed with methylamine by an elimination-addition mechanism: Since $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$ is very much faster for methylamine than for tert-butylamine, and since elimination-addition for tert-butylamine could compete with $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$ for methylamine, it follows, as expected, that elimination-addition is vexy much greater than $S_{N} 2(P)$ for tert-butylamine. The reaction of the mixed anhydride with low concentrations of tert-butylamine would proceed through a non-stereospecific elimination-addition pathway involving the free metaphosphonimidate, explaining the loss of stereospecificity seen in the reaction (Table 8). The reaction of the methanesulphonate (44) with tert-butylamine, however, was not completely non-stexeospecific, even for the 0.1 M amine, but the remaining stereospecificity could be due to a residual preassociation elimination-addition pathway with, perhaps, an $\mathrm{S}_{\mathrm{N}} 2(\mathrm{P})$ contribution。

The reaction of the diastereoisomers of the methanesulphonate (4) with methylamine, in contrast with their reaction with text-butylamine, showed only a small reduction in stereospecificity on dilution (Table 9). The stereospecificity of the reaction with neat methylamine would be due to contributions by both the fairly highly stereospecific preassociation elimination-addition pathway and the stereospec-
ific $S_{\mathrm{N}} 2(P)$ pathway, which accounted for roughly half of product formation (Table 7). At lower methylamine concentrations the preassociation elimination-addition mechanism would be expected to be replaced by a stereospecific $S_{N} \mathbf{2}(P)$ mechanism, resulting in continued high stereospecificity. The observed small decrease in stereospecificity could be due to competition from the non-stereospecific limiting eliminat-ion-addition mechanism.

Table 10; Reaction of the nosylate (45) with methylamine: calculated product diastereoisomer ratios (A^{\prime} : B^{\prime}) from substrate B. The values were calculated assuming that the 3 of substrate diastereoisomer A made no contribution to product diastereoisomer B^{\prime}, then B^{\prime} $=\left(B^{\prime}\right.$ from Table 3)/97 and $A^{\prime}=100-B^{\prime}$.

MeNH	$100 \% \mathrm{~B} \longrightarrow \mathrm{~A}^{\prime}: \mathrm{B}^{\prime}$	d.e.
neat	$11.3: 88.7$	77.4
1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$9.3: 90.7$	81.4
$0.1 \mathrm{M}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$7.2: 92.8$	85.6

When compared to the methanesulphonate (44), the nosylate (45) showed a marked reduction in the preference for methylamine over tert-butylamine at all concentrations (Table 7), showing that preassociation elimination-addition was much more dominant for the nosylate-containing mixed anhydride (78). This is perhaps due to the more electronegative nosylate leaving group enhancing the acidity of the N-hydrogen, ${ }^{42}$ encouraging elimination-addition. The rearrangement with

```
methylamine also proceeded with lower stereospecificity than the methanesulphonate but this could simply be due to the lower \(S_{N} 2(P)\) contribution; the stereospecificity of the preassociation elimination-addition pathway for the mixed anhydride (78) is presumably similar to that of the mixed anhydride (65). On the whole, though, the nosylate (45) showed increasing selectivity and, interestingly, increasing stereospecificity on dilution.
```


(45)

(78)

A curious feature of the reaction of the nosylate (45), under competitive conditions, was that the selectivity with neat and 1.0 M amine mixture was the same. However, the elimination-addition contribution at the two concentrations must be different, but indistinguishable within experimental error, since the stereochemical study showed a slight increase in stereospecificity, due to a greater $\mathrm{S}_{\mathrm{w}} 2(\mathrm{P})$ contribution. The small increase in stereospecificity for the nosylate with methylamine could simply be due the increasing importance of the $S_{N} 2(P)$ reaction pathway on dilution.

The behaviour of the N-phosphinoyl-O-sulphonylhydroxylamines is consistent with rearrangement to the phosphonamidic--sulphonic mixed anhydride at all concentrations, but there remains the possibility that rearrangement directly to the
metaphosphonimidate (59) may have a small role. For the methanesulphonate (44) with 0.1 M amine in the competition study elimination-addition accounts for $\sim 4 \%$ of the reaction (Table 7). If all the elimination-addition was attributable to rearrangement proceeding directly through the metaphosphonimidate (59) then this mechanism will account for no more than 4 \% of the rearrangement with 0.1 M amine. Since the metaphosphonimidate (59) and the phosphonamidic-sulphonic mixed anhydride (65) are both formed from the conjugate base of the methanesulphonate (44) it might be reasonable to expect that the ratio of the two rearrangement pathways will remain roughly constant at all concentrations of amine, so the metaphosphonimidate could account for 4% of reaction at all concentrations. However, in the reaction of the phosphonamidic chloride (48) under the same conditions, elimin-ation-addition also accounts for 4% of the reaction. Since the phosphonamidic chloride (48) is already a 'rearranged' species, and bearing in mind the striking similarity in the behaviours of the methanesulphonate (44) and the phosphonamidic chloride (48) under competitive conditions, we would expect the mixed anhydride (65) to also show ~ 4% eliminat-ion-addition; this must mean that rearrangement directly through the metaphosphonimidate (if any) occurs in even less than 4% and suggests that rearrangement to the mised anhydride is probably the only pathway.

(59)

Scheme 18

Abstract

The rearrangement of the substrates to the mixed anhydrides could proceed either by i) a two step process in which a metaphosphonimidate recombines with the sulphonate leaving group or, ii) a concerted mechanism (Scheme 18). If the metaphosphonimidate had a very short lifetime (such that it could not diffuse into the bulk solvent) and the nucleophile was not already present we would expect it to recombine immediately with the sulphonate (with inversion of configuration at phosphorus). The short life time of the metaphosphonimidate would enforce a preassociation elimination--addition mechanism at all concentrations and the stereochemistry of the methanesulphonate (44) with tert-butylamine would be constant. This was not the case, and, in fact, the loss of stereochemistry, on dilution, suggested that the metaphosphonimidate could exist as a free species.

If the metaphosphonimidate could exist as a free species, it would be more able to diffuse into the bulk solvent at lower amine concentrations. However, the metaphosphonimidate would be less likely to recombine with the sulphonate leaving group, to give the mixed anhydride, and more likely to react directly with amine to give the product (the concentration of amine ≥ 20 times that of sulphonate). since the metaphosphonimidate would be the reactive species, low stereospecificity and low selectivity would be expected for the reaction of the methanesulphonate with methylamine, but the opposite was observed and this suggested that mixed anhydride formation was not a two-step process.

The stereochemical results (and the ${ }^{31} \mathrm{P}$ NNR study) of the rearrangement imply that the mised anhydride was formed directly (after deprotonation) from the substrate by a concerted mechanism, with a high degree of (if not complete) stereospecificity. The optically active study also suggested that the mixed anhydride was formed dixectly from the substrate. The reaction of the (+)-camphor-10-sulphonate (67) with 1.0 M text-butylamine in dichloromethane, containing text-butylamonium (-)-camphor-10-sulphonate (1 mol equiv.), showed no change in the enantiomer ratio of the product, when compared with the reaction without added salt (Table 6). This showed that no inter-molecular exchange of the sulphonate occurred and suggested that the mised anhydride was formed by an intramolecular rearrangement (Fig. 6).

Fig. 6

The rearrangement of the methanesulphonate (44) with methylamine was shown to go with retention of configuration at phosphorus. This result could be explained as rearrangement to the mixed anhydride proceeding largely (or completely) with inversion of configuration at phosphorus, perhaps by a intra-molecular process (Fig. 6), followed by stereospecific displacement of the leaving group by methylamine with inversion of configuration at phosphorus $\left[S_{N} 2(P)\right.$ at low concentrations or stereospecific preassociation elimination--addition at high concentrations]. The overall retention of configuration at phosphorus, seen in the final product, would then be the result of two inversions (Eq. 18).

Eq. 18

A Briex Investigation of Hydrawide roxmation

Hydrazide formation occurred to some extent in the reactions of the methanesulphonate (sa) with amines. This became more prominent at lower amine concentrations, suggesting that rearrangement to the mised anhydride (65) may proceed by a mechanism that is of a higher oxder in amine than is the conversion to hydrazide. More curious, as noted earlier, was that hydrazide formation was more prominent for more hindered amines. If the hydrazide is formed by $\mathrm{S}_{\mathrm{N}} 2$ attack at nitrogen, then this behaviour is contrary to what is normally encountexed for $\mathrm{S}_{\mathbb{N}} 2$ (at carbon), namely that less hindered nucleophiles are more able nucleophiles. It is conceivable that hydrazide formation is enhanced with hindered amines, relative to rearrangement, simply because the bulls of the amine affects the reaxrangement process more than it affects nucleophilic substitution at nitrogen (hydrazide formation). This seems unlikely, howevex, if the rearrangement to the mixed anhydride only requires the amine to act as a base in the rate limiting formation of the phosphonamidic-sulphonic mised anhydxide.

To explore hydrazide formation more closely, the nosylate (79) ${ }^{43}$ was allowed to react with a range of amines (0.5 M) in dichloromethane. Both the low concentration of amine and the relatively small migratory aptitude of the benzyl group in the substrate should encourage hydrazide formation. ${ }^{84}$ The reaction of the nosylate (79) with methylamine gave several products and, as a result, methylamine was excluded from the
study. The reactions with tert-butylamine, diisopropylamine, and N-methyl-tert-butylamine gave mainly the hydrazides (80), (81), and (82) respectively.

(79)

(81)

(80)

(82)

The nosylate (79) was then subjected to a competition study, by using an equimolar mixture of either tert-butylamine and diisopropylamine or tert-butylamine and N-methyl-tert-butylamine in dichloromethane (0.5 M total amine) (Table 11).

Table 11; Reaction of the nosylate (79) with 0.5 M amine mixtures in dichloromethane under competitive conditions: hydrazide product ratios.

Amine: $\quad A=1: 1$ tert-butylamine-N-methyl-tert-butylamine
$B=1$: 1 tert-butylamine-diisopropylamine

Amine	$-\mathrm{NBu}^{\mathrm{t}}:-\mathrm{NR}^{1} \mathrm{R}^{2}$
A	$8: 92$
B	$55: 45$

Some previous work on nucleophilic substitution at nitrogen has shown that steric hindrance is not very important, ${ }^{45}$ but a (loose) correlation of reduced nucleophilicity with increased steric hindrance was found in protic solvents. ${ }^{45}$ In the competition study with the nosylate (79), a mixed result was obtained; the reaction with the tert-butylamine-N-methyl--tert-butylamine mixture gave the opposite of what might be expected (i.e. the more hindered amine was the more effective nucleophile), while the reaction with the tert-butylamine--diisopropylamine mixture gave a normal result (i.e. the less hindered amine was the more effective nucleophile), albeit that diisopropylamine competed remarkably well.

[^3]
Abstract

more alkylated amine the more efficient nucleophile. If this was indeed the case N-methyl-tert-butylamine would be expected to be a better nucleophile than text-butylamine and would be responsible for the major product, as seen. simm ilarly one would expect diisopropylamine to be the more efficient nucleophile, but here textobutylamine proved to be marginally better. It could be then that steric effects are now sufficiently important for diisopropylamine so as to moderate its overall nucleophilicity, such that tert-butylamine is now the (slightly) more efficient nucleophile.

Part II: Chapter 1: Introduction

α-Halogenoketones and α-Halogenosulphones

Scheme 19
α-Halogenoketones (83) when treated with base undergo a reaction known as the Favorskii rearrangement giving esters (85). ${ }^{46}$ The first step is deprotonation at the α-carbon, followed by ring closure giving the cyclopropanone (84) as an intermediate; ${ }^{47}$ nucleophilic addition to the carbonyl group by alkoxide followed by the displacement of the most stable carbanion (and protonation) completes the rearrangement (Scheme 19). α-Halogenosulphones (86) undergo the Ramberg--Backlund rearrangement when treated with base, ${ }^{48}$ forming episulphones (87) which are analogous to the cyclopropanones in the Favorskii rearrangement. An episulphone, however, does
not undergo simple ring opening but breaks down by cheleotropic elimination of sulphur dioxide to give an alkene (88) predominantly as the cis-isomer (Eq. 19).

Eq. 19
α-Halogenocarboxamides

α-Halogenocarboxamides (89) eliminate hydrogen halide in the presence of base to give α-lactams (90),49 analogues of the cyclopropanones in the Favorskii rearrangement (Eq. 20). α-Lactams are relatively stable species and may be prepared optically pure from α-amino acids. ${ }^{50}$

Treatment of α-lactams with protic reagents gives products unlike those from the Favorskii rearrangement, since nucleophilic displacement of nitrogen from the α-carbon occurs, giving α-substituted amides (92) (Scheme 20). However treat-
ment with anionic nucleophiles effects substitution at the carbonyl centre, with displacement of the most stable anion, usually nitrogen, giving the α-amino acid derivatives (91) (Scheme 20); products derived from $C-C$ bond scission have been observed when the α-carbon bears two phenyl groups.

Scheme 20

α-Halogenophosphonic Amides

Eq. 21

In 1977 Petrov et a^{51} observed that when the α-chlorophosphonic diamide (93) was treated with base it underwent a reaction that was superficially similar to the Favorskii rearrangement, giving the α-aminophosphonamidate (94) as the product (Eq. 21). Subsequently, other workers ${ }^{52}$ found that α-halogenophosphonamidates (95) behaved similarly, to give α-aminophosphonamidates (96) (Eq. 22).

Eq. 22

(97)

Eq. 23
This rearrangement could proceed through a phosphorane (97), with addition of the nucleophile to phosphorus, followed by expulsion of halide as the amino group migrates to the α-carbon (Eq. 23). Comparable phosphorane rearrangements, with migration of an alkyl or aryl group, have been reported. ${ }^{53}$ Alternatively, deprotonation at nitrogen and ring closure may give an azaphosphiridine oxide (98) (originally proposed by Petrov et $a l^{51}$) which then experiences nucleophilic displacement of nitrogen from the phosphorus centre (Eq. 24).

An azaphosphiridine oxide is an example of a three membered ring containing the $\mathrm{P}=0$ group. Related species, such as the phosphirane oxides (99), (100), and (101) ${ }^{54}$ have been suggested as short-lived intermediates in reactions, and in certain cases, such as the diazaphosphiridine oxide (102) ${ }^{55}$ and the phosphirane oxides (103) ${ }^{56}$ and (104) ${ }^{57}$, they have been isolated. However, azaphosphiridine oxides have not yet been detected, let alone isolated, and must be expected to react rapidly with nucleophiles.

(99)

(100)

(101)

(102)

(103)

(104)
$R=H, O A C$
Recent evidence favours the azaphosphiridine oxide pathway, since i) alkyl substituents at the α-carbon enhance the rate of reaction, ${ }^{52}$ which is not consistent with rate-limiting associative nucleophilic attack at phosphorus, and ii) more important, when the N-substituent is an alkyl group, phosphoramidate products (106) may be formed as well as α-aminomethylphosphonates (107).58 Phosphoramidate formation is not easily accounted for with the phosphorane mechanism
but is easily explained by nucleophilic displacement of the α-carbon from phosphorus in an azaphosphiridine oxide (105) (Scheme 21). As would be expected, alkyl substituents on the α-carbon discourage P-C bond cleavage and phosphoramidate formation. ${ }^{58,52}$

Scheme 21

Abstract

An important difference between the α-halogenophosphonamidate reaction and the Favorskii rearrangement is that, whereas the carbonyl group is trigonal, a phosphoryl group is tetrahedral; rearrangement may, therefore, have stereochemical consequences that can furnish further mechanistic details. In order to study the stereochemistry it would be necessary to establish the relative configuration at phosphorus for the substrate and the products. Ideally the substrate should be one that gives both types of product ($\mathrm{P} \nvdash \mathrm{N}$ and $\mathrm{P} \not \subset \mathrm{C}$ bond scission) and since, in this case, the stereochemistry of rearrangement would be determined by single crystal x-ray analysis the chosen substrate and its products (or their derivatives) must be crystalline. The methyl α-chloromethylphosphonamidate (108) ${ }^{58}$ could be a useful starting point for the study, and replacing the α-chlorine with bromine should allow the reaction to proceed under milder conditions, thereby reducing the risk of unwanted stereoisomerisation.

(108)

Scheme 22

One approach would be to prepare a single enantiomer of the alkyl α-bromomethylphosphonamidate (109), and study its rearrangement. Preparation from the appropriate optically active phosphonic halide or phosphonamidic halide (Scheme 22) would almost certainly be hampered by racemisation, resulting from halide exchange (Eq. 25), and in any case, preparation of optically active acid halides would be difficult. Preparation of the racemic alkyl α-bromomethylphosphonamidate should be straightforward but subsequent resolution would be required, and it is not obvious how that could be achieved.

Eq. 25

An alternative approach would be to prepare a substrate (110) that exists as diastereoisomers, by incorporating a chiral, non-migrating, alkyl group (Eq. 26), and establishing the configuration at phosphorus relative to this chiral group. The chiral group need not be optically pure, as the study could be conducted on a pair of racemic diastereoisomers. With an ideal alkyl group the diastereoisomers would be easily separable and the reaction could be readily monitored by GLC and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. In this work the alkyl group derived from menthol was chosen, and owing to its cheapness and availability in optically pure form, the study was conducted on single enantiomers of the pair of diastereoisomers. A disadvantage of using diastereoisomers is that they may, in principle, behave differently, and the reaction must therefore be performed on both diastereoisomers (or enriched mixtures of both).

Eq. 26

Part II; Chapter 2: The Base Induced Rearrangement of

 (-)-Menthyl P-(Bromomethyl)-N-tert-butylphosphonamidatePreparation of the Bromomethylphosphonamidate

Eq. 27

In principle the bromomethylphosphonamidate (112) could be prepared from the phosphonamidic bromide (111) and (-)-menthol in the presence of base (Eq. 27). However, the phosphonamidic bromide approach was not pursued because of evidence that during its attempted synthesis, from the bromomethylphosphonic dibromide (113) ${ }^{59}$ and tert-butylamine, it underwent further reaction with tert-butylamine, ${ }^{60}$ probably by an elimination-addition mechanism, 41 to give the diamide (114) (Eq. 28).

Instead, the bromomethylphosphonamidate (112) was prepared by first reacting the bromomethylphosphonic dibromide (113) with (-)-menthol (1.05 mol equiv.) and triethylamine (1.0 mol
equiv.). This gave the menthyl phosphonobromidate (115), δ_{p} 19.0 and 17.0 (diastereoisomers) [accompanied by a small quantity of the dimenthyl phosphonate ($\delta_{p} 15.7$; ca. 15%)] which was then treated with an excess of tert-butylamine (Eq. 29). The crystalline product was formed as a 54 : 46 mixture of diastereoisomers with the ${ }^{31} \mathrm{P}$ NMR lowfield diastereoisomer dominant. Careful crystallisation from aqueous ethanol and then light petroleum gave sample A, the pure highfield ${ }^{31} P$ NMR diastereoisomer $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 18.0$ (determined by GLC and ${ }^{31} \mathrm{P}$ NMR spectroscopy) and crystallisation of one of the mother liquors from light petroleum gave sample B, a $60: 40$ mixture of diastereoisomers (determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy) with the lowfield ${ }^{31} \mathrm{P}$ NMR diastereoisomer, $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 18.3, in excess.

Eq. 29

Reaction of the Bromomethylphosphonamidate with Methoxide

Each sample of the bromomethylphosphonamidate was treated with 0.2 M benzyltrimethylamonium methoxide (QOMe) in THF-methanol (9:1 v/v) at room temperature and the progress of the reaction was followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. This showed that the substrate ($\delta_{\mathrm{p}} 18.8$; for A and 18.7 for B) was gradually converted into the aminomethylphosphonate (116), δ_{p} 27.1 and 26.8 , and the N-methylphosphoramidate (117), $\delta_{p} 10.4$ and 9.3 (Eq. 30); both products were formed as mixtures of diastereoisomers, but the diastereoisomer ratios were very different for the reactions of the two samples of substrate. As the reaction neared completion some demethylation of the P-methoxy group of the aminomethylphosphonate was apparent (δ_{P} 17.2; ca. 3 \%) (Eq. 31) ; ${ }^{61}$ the substrate was completely consumed in 4.5 h .

Eq. 31

The two types of product were separated by treatment of the mixture with dilute hydrochloric acid (the aminomethylphos= phonate passes into the acidic aqueous portion): the products were isolated as oils and were completely characterised (the aminomethylphosphonate was further characterised as the picrate). The phosphoramidate structuxe was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, which showed incorporation of methoxide, diastereoisomeric PoMe signals $\left(\Delta \delta 0.016, d, J_{\mathrm{PH}} 11.3\right.$ ox 11.4), and P-C bond scission, indicated by the diastereoisomeric PNMe signals ($\Delta \delta 0.004, d, J_{\mathrm{PH}} 9.7$ or 9.5), while the IR spectrum showed no NH absorption. Confirmation of the aminomethylphosphonate structure was also achieved by ${ }^{1} \mathrm{H}$ NMR spectroscopy which showed diastereoisomeric pome signals ($\Delta \delta$ $0.026, d, J_{\mathrm{PH}} 10.6$ or 10.8) resulting from incorporation of methoside. The signals for the $\mathrm{PCH}_{2} \mathrm{~N}$ structure, indicative of $P-\mathbb{N}$ bond cleavage, were quite different for the two diastereoisomexs; for the major product from sample A, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.922\left(2 \mathrm{H}, \mathrm{ABP}, J_{\mathrm{AB}} 13.9, J_{\mathrm{AP}} 14.9\right.$, and J_{BP} 15.7), and for the major product for sample $B, \delta_{H}\left(\mathrm{CDCl}_{3}\right) 2.920$ (2 H , d. J_{PH} 15.2). The expected NH signals were hidden under the menthyl residue but they were evident in the IR spectrum.

Table 12; Reaction of menthyl P-(bromomethyl)-N-tert-butylphosphonamidate (112) with benzyltrimethylammonium methoxide: diastereoisomer ratio of substrate (B : A) and ratio of aminomethylphosphonate ($P \wedge N$) and phosphoramidate ($P \not \subset C$) rearrangement products as determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

B : A (Substrate)	P孔N : P孔C
$60: 40$ $($ Sample B)	$83: 17$
$0: 100$ $($ Sample A)	$84: 16$

In principle the two diastereoisomers of the substrate could react with different rates and give different product ratios, but examination of the reaction of sample B at 86% completion (${ }^{31} \mathrm{P}$ NMR spectroscopy) showed that the remaining substrate was still in $\sim 3: 2$ diastereoisomer ratio, implying that there is no appreciable difference in the rates of reaction of the diastereoisomers. Also, both samples of substrate gave the two types rearrangement product in a ratio of about $5: 1$ (Table 12), implying no significant difference in their pro-duct-forming behaviour.

Table 13; Reaction of menthyl P-(bromomethyl)-N-tert-butylphosphonamidate (112) with benzyltrimethylamonium methoxide: diastereoisomer ratios of substrate (B : A) and rearrangement products ($\mathrm{P} \neq \mathrm{N}, \mathrm{A}^{\prime}$: $B^{\prime} ; P^{\prime} C, A^{-}: B^{-}$) as determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

\mathbf{B} : \mathbf{A}	$\begin{gathered} A^{\prime}: B^{\prime} \\ (P \neq N) \end{gathered}$	$A_{(P \not C C)}^{:}$	Reaction Time ${ }^{\text {a }}$
$\begin{aligned} & 60: 40 \\ & \text { (Sample B) } \end{aligned}$	$45: 55$	41 : 59	4.5 h
$\begin{gathered} 0: 100 \\ \text { (Sample A) } \end{gathered}$	$96: 4{ }^{\text {b }}$	$95: 5^{\text {c }}$	4.5 h
	$99: 1^{\text {b }}$	$95: 5^{\text {c }}$	16 min
	$88: 12^{\text {b }}$	$95: 5^{\text {d }}$	6 h

a This is the time that the substrate spent in the reaction mixture before quenching with ammonium chloride.
${ }^{b}$ This ratio became evident only after the reaction mixture was worked up, and was determined by ${ }^{1} H$ NMR spectroscopy after isolation. c Confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{d}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy after isolation.

The ratio of the diastereoisomers of the N-methylphosphoramidate (117) ($\left.A^{(N}: B^{* \prime}\right)$ reflected closely the ratio in the substrate for the reaction of sample B (Table 13), but the diastereoisomer ratio of the aminomethylphosphonate (116) (A' : $B^{\prime \prime}$) was slightly less than the 60 : 40 of the substrate (sample B), possibly because the major diastereoisomer experienced more demethylation. For sample A a small difference was evident in the diastereoisomer ratio of both products, suggesting that reaction is not completely stereospecific. To check whether the lack of complete stereospec-
ificity of the rearrangement for sample A was inherent or due to stereochemical equilibration of the products, the reaction with sample A was repeated; in one case reaction was quenched before it reached completion (93 \% complete in 16 min), in another it was allowed to continue for 6 h before quenching. This established that the diastereoisomer ratio of the N-methylphosphoramidate (117) remained constant for all three experiments (95:5), but the ratio of the diastereoisomers of the aminomethylphosphonate (116) was greater (99:1) than originally observed (96 : 4) for the shorter reaction time, and less (88 : 12) for the longer time (Table 13). This implies that the aminomethylphosphonate (but not the phosphoramidate) experiences some stereochemical equilibration by methoxide exchange (Eq. 32), and suggests that the deviation from the expected ratio of $3: 2$ for sample B is also due to this, rather than to demethylation.

Eq. 32

Stereochemistry of the Rearrangement

A portion of sample A of the bromomethylphosphonate (112) was recrystallised from dichloromethane-light petroleum and then aqueous ethanol to produce a crystal suitable for single
crystal X-ray analysis (Fig. 7). 62 Comparison of this stereostructure with those of the rearrangement products would give the stereochemistry of the reaction.

The aminomethylphosphonate from the rearrangement of substrate sample A was easily converted into its picrate salt, $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right)$ 16.4. Crystallisation from ether-light petroleum removed the small amount of the minor diastereoisomer, leaving just the major diastereoisomer (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR) and recrystallisation of this sample from ether-light petroleum afforded a crystal suitable for single crystal X-ray analysis (Fig. 8). 62 Comparison of this stereostructure with that of the substrate revealed that the aminomethylphosphonate (116) was formed by cleavage of the $\mathrm{P}-\mathrm{N}$ bond with inversion of configuration at phosphorus.

(112)

(116)

(117)

The N-methylphosphoramidate (117), being an oil but also being unamenable to derivatisation, presented more of a problem. The first approach was to synthesise one diastereoisomer of the N-hydrogen analogue (120) of the N-methylphosphoramidate, with a view to determining its x-ray structure, and relating it to the N-methyl rearrangement product (117). The phosphoramidate (120) was prepared by first treating phosphoryl chloride with (-)-menthol and triethylamine (1 mol
equiv.). This gave the phosphorodichloridate (118) which was treated with tert-butylamine (2 mol equiv.), giving the chloramidate (119), and then an excess of sodium methoxide (Scheme 23). The phosphoramidate (120) was formed as a 60 : 40 mixture of diastereoisomers, $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 7.2$ and 6.7. Crystallisation from light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) at $-40{ }^{\circ} \mathrm{C}$ failed to give crystals further enriched in one diastereoisomer; it gave crystals that were a 53 : 47 mixture of diastereoisomers and an enriched mother liquor instead. However, repeated chromatography of the $60: 40$ mixture eventually gave a sample that was >96 \% the lowfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer. Unfortunately, owing to its high solubility and its tendency to form clumps, a crystal suitable for X-ray study could not be obtained. It was therefore necessary to consider derivatisation of the phosphoramidate (120).

Scheme 23

\mathcal{N}-(Bromomethyl)phthalimide

(124)

Treatment of the phosphoramidate (120) with tert-butyl hypochlorite gave the N-chloro analogue (121) which was, 63,9 unfortunately, an oil (Eq. 33). Treatment with sodium hydride in DMF gave the nitrogen anion ${ }^{64}$ which was allowed to react with p-methoxybenzyl chloride, p-cyanobenzyl bromide, ${ }^{65}$ and N-bromomethylphthalimide ${ }^{66}$ to give the N-substituted phosphoramidates (122), (123), and (124) (Scheme 24), but these were a semisolid, a glass, and an oil respectively, and in the last two cases the yield was low (competing electron addition reactions ${ }^{67}$). It was clear that straightforward N-substitution was unpromising, and that a more radical approach would be required.

Scheme 25

The Wadsworth-Emmons reaction ${ }^{68}$ is widely used in organic chemistry to prepare imines from carbonyl compounds. In the reaction, the anion of a phosphorus amide reacts with the carbonyl (or $C=S$) group, exchanging the amido group for oxygen (or sulphur), forming the imine and a phosphorus by-
-product (Scheme 25). Of particular importance, this reaction has been shown to proceed with complete retention of configuration at phosphorus,69,70 the mechanism probably being similar to that of the wittig reaction (Scheme 26), and it has recently been used to synthesise optically pure phosphorothioates from phosphoramidates. ${ }^{71}$

Scheme 26

The phosphoramidate (120) (60 : 40 mixture of diastereoisomers) was treated with sodium hydride in DMF, giving the nitrogen anion, and then with carbon disulphide to give the phosphorothioate sodium salt as a mixture of diastereoisomers. Treatment with hydrochloric acid gave the crude phosphorothioic acid (125) as a solid (Scheme 27). Owing to the high solubility of the acid, it was purified as the

Abstract

ammonium salt (the tert-butylammonium and anilinium salts were also prepared, but were oils), either by precipitating the salt (gelatinous) from dichloromethane by addition of light petroleum (b.p. $40-60^{\circ} \mathrm{C}$), or by washing an aqueous solution of the salt with ether (non-ionic impurities pass into ether).

(126)

Scheme 27

The conversion of the phosphorothioic acid into its ammonium salt, $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 58.3$ and 58.0 (diastereoisomers), revealed the presence of a phosphorus containing by-product (~15\%), $\delta_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 0.3. This is believed to be the salt of phosphoric acid (126) resulting from reaction of the amidate anion with CO_{2} instead of CS_{2} (Scheme 27). The by-product could be removed by washing a solution of the triethylammonium salts in dichloromethane with water, the salt of the phosphorothioic acid remaining in the organic phase. The phosphorothioic acid, $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 61.0$ and 60.6 (diastereoisomers), could be crystallised from light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$) at
$-20^{\circ} \mathrm{C}$, but this gave clumps of crystals of poor quality, not suitable for X-ray studies. In the hope of obtaining a crystalline derivative, a portion of the acid was treated with p-nitrobenzyl bromide and triethylamine in THF to give the S-alkylated derivative (127) (Eq. 34), $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 26.5$ and 26.1 (diastereoisomers); this, unfortunately, could not be crystallised.

Eq. 34

(128)

Finally, treatment of the phosphorothioic acid with dicyclohexylamine afforded the corresponding salt (128), $\delta_{p}\left(\mathrm{CDCl}_{3}\right)$ 56.7 and 56.0 (diastereoisomers), which gave well formed crystals from light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$). Encouraged by this, the enriched phosphoramidate (120) (> 96% one diastereoisomer; see p. 87) was converted, as above, into the sodium phosphorothioate (some unreacted phosphoramidate was recovered for use later), then into the free acid, and then into the dicyclohexylammonium salt. This was crystallised to give a sample that was $\geq 99.5 \%$ one diastereoisomer $\delta_{p}\left(\mathrm{CDCl}_{3}\right)$

```
55.9, and this was recrystallised from a mixture of ether, dichloromethane, and light petroleum to give a sample for single crystal X-ray analysis (Fig. 9). \({ }^{62}\)
```


Abstract

The unreacted phosphoramidate (120) recovered above, being the same material that was converted into the phosphorothioate salt for X-ray analysis, was treated with sodium hydride in DMF and then methyl iodide to give a sample of the N-methylphosphoramidate (117) that was found to be the lowfield ${ }^{31} \mathrm{P}$ NMR diastereoisomer (98 \%) (Eq. 35). To confirm that this was indeed the lowfield diastereoisomer (and not the highfield diastereoisomer, with an even more highfield impurity) a sample was treated with a small portion of a mixture of both diastereoisomers [${ }^{31} \mathrm{P}$ NMR lowfield diastereoisomer in excess; prepared as above from a 60 : 40 mixture of diastereoisomers of the phosphoramidate (117)] and the mixture was re-examined. This showed, as it should, an enhancement of the highfield signal (from 2% to 15%), and confirmed that the phosphoramidate (120) had indeed been transformed into the ${ }^{31} p$ NMR lowfield diastereoisomer of the N-methylphosphoramidate (117). This diastereoisomer was also the dominant one formed in the rearrangement of sample A of the bromomethylphosphonamidate. Since the phosphorothioate salt will have been formed from the phosphoramidate (120)

with retention of configuration at phosphorus, and conversion of the phosphoramidate (120) into the N-methylphosphoramidate (117) does not affect the configuration at phosphorus, it follows, that the configuration of the lowfield N-methylphosphoramidate formed in the rearrangement is the same as that of the phosphorothioate salt examined by X-ray crystallography. The N-methylphosphoramidate rearrangement product must therefore be formed with retention of configuration at phosphorus (Eq. 36).

Fig. 7; The structure of menthyl P-(bromomethyl)-N-tert-butylphosphonamidate (112) as determined by single crystal X-ray analysis; configuration at phosphorus. Selected bond lengths (\AA) and bond angles (${ }^{\circ}$): $\mathrm{P}-\mathrm{C}(1) \mathrm{I} .837(20), \mathrm{P}-\mathrm{N} 1.618(16), \mathrm{P}-\mathrm{O}(1) 1.424(14), \mathrm{P}-\mathrm{O}(2)$ $1.573(13), \quad C(1)-P-N \quad 105.8(9), \quad C(1)-\mathrm{P}-\mathrm{O}(1) \quad 112.5(9), \quad \mathrm{C}(1)-\mathrm{P}-\mathrm{O}(2)$ $98.7(9), \mathrm{N}-\mathrm{P}-\mathrm{O}(1) 115.5(9), \mathrm{N}-\mathrm{P}-\mathrm{O}(2) 104.8(8), \mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2) 117.7(8)$.

Fig. 8; The structure of menthyl methyl (tert-butylamino)methylphosphonate (116) as determined by single crystal X-ray analysis of its picrate salt (picrate anion not shown); configuration at phosphorus. One of four unique formula units, each having different conformations but all having the same configuration at phosphorus. Selected bond lengths (\AA) and bond angles ($\left(^{\circ}\right.$) for this particular formula
 1.559(15), $\mathrm{C}(1)-\mathrm{P}-\mathrm{O}(1) \quad 119.3(8), \mathrm{C}(1)-\mathrm{P}-\mathrm{O}(2) 100.2(8), \mathrm{C}(1)-\mathrm{P}-\mathrm{O}(3)$ $100.1(8), \quad \mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2) \quad 116.7(7), \mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3) \quad 110.9(7), \mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$ 107.8(8).

Fig. 9; The structure of dicyclohexylammonium o-menthyl O-methyl phosphorothioate (128) as determined by single crystal X-ray anal$y s i s$ (dicyclohexylammonium cation and diethyl ether of crystallisation not shown); configuration at phosphorus. Selected bond lengths (\AA) and bond angles $\left(^{\circ}\right): ~ P-O(1) 1.577(7), p-O(2) 1.543(9)$, $\mathrm{P}-\mathrm{O}(3)$ $1.483(8), \quad \mathrm{P}-\mathrm{S} \quad 1.932(3), \mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2) \quad 99.1(6), \quad \mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3) \quad 105.6(4)$, O(2)-P-O(3) 109.2(6), O(1)-P-S $113.2(3), \quad O(2)-P-S \quad 111.4(4), \quad O(3)-P-S$ 116.8(3).

Part II: Chapter 3: The Base Induced Rearrangement of Alkyl

P-(Bromomethyl)-N-tert-butylphosphonamidates

Preparation of Alkyl Bromomethylphosphonamidates

The 5 : 1 aminomethylphosphonate : phosphoramidate product ratio seen for the reaction of the menthyl bromomethylphosphonamidate (112) is very different to that previously observed for the methyl chloromethylphosphonamidate (108) (ca. 2 : 3), ${ }^{58}$ also with QOMe in THF-methanol. Such a difference was not expected, and must result from either changing the leaving group from chlorine to bromine, or, more plausibly, changing the o-methyl group to o-menthyl. To clarify the picture, and in particular to assess the importance of steric factors, the investigation of the menthyl bromometh-
ylphosphonamidate (112) was extended to include its O-methyl, O-cyclohexyl, and O-tert-butyl analogues (129), (130), and (131).

The O-methyl bromomethylphosphonamidate (129), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 22.6, was prepared by first treating the corresponding phosphonic dibromide with methanol and triethylamine (1 mol equiv.) at $-30^{\circ} \mathrm{C}$. This gave the methyl phosphonobromidate (132), $\delta_{p} 22.1$ [accompanied by a small quantity of the dimethyl phosphonate ($\delta_{\mathrm{p}} 20.3$; ca. 10%)], which was then allowed to react with an excess of tert-butylamine (Scheme 28). The product, which was crystalline, was also prepared by first treating the bromomethylphosphonic dichloride (134), prepared from the dimethyl ester (133) and PCl_{5} (Scheme 28), ${ }^{72}$ with tert-butylamine (2 mol equiv.). This gave the phosphonamidic chloride (135), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 29.5$, which was then treated with sodium methoxide (Scheme 28).

Scheme 28

The O-cyclonexyl analogue (130), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 19.9$, was prepared at room temperature from the phosphonic dibromide (113) and cyclohexanol and triethylamine (1 mol equiv.); this gave a mixture containing the cyclohexyl phosphonobromidate (136) and the dicyclohexyl phosphonate ($\delta_{\mathrm{p}} 17.8$ and 16.9; ratio ca. 2 : 1) [and several anhydrides (ca. 50\%), probably due to inadequate drying of the cyclohexanol] which was treated with an excess of tert-butylamine (Eq. 37). The product was purified by chromatography followed by crystallisation.

The o-tert-butyl analogue (131) could, in principle, be prepared from the phosphonic dibromide (113) with potassium tert-butoxide, then tert-butylamine (Eq. 38). However, the phosphonobromidate (137) would be unlikely to react with tert-butylamine because of steric hindrance at phosphorus, ${ }^{23}$ so this approach was not adopted. Instead, the N-tert-butylphosphonamidic chloride (135) (see Scheme 28) was treated with potassium tert-butoxide (1.0 mol equiv.) in tert-butan-
ol. This gave a mixture consisting of the starting material, $\delta_{\mathrm{P}} 28.8$, the required product, $\delta_{\mathrm{P}} 15.1$, and a by-product, δ_{P} 18.6. The by-product resulted from further reaction of the required product with potassium tert-butoxide, and was believed to be the aminomethylphosphonate (138) rearrangement product (Eq. 39). To achieve complete consumption of the starting material, more potassium tert-butoxide (0.8 mol equiv.) was added gradually, in small portions; this appeared to limit by-product formation (ca. 40% at completion). The by-product was removed by careful extraction into dilute hydrochloric acid and the o-tert-butyl bromomethylphosphonamidate, $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 16.4$, was purified by crystallisation.

Eq. 39

Reaction of Alkyl Bromomethylphosphonamidates

The 0 -methyl compound (129) was treated with 0.2 M QOMe in THF-methanol (9:1 v/v) at room temperature and the progress of the reaction was monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy. This showed that the substrate, $\delta_{p} 21.5$, was converted into the aminomethylphosphonate (139), $\delta_{\mathrm{p}} 28.8$, and the phosphoramidate (140), $\delta_{p} 11.8$, in a ratio of ca. $1: 1.3$ over a period of 2 h (see Table 14 and Eq. 40). Demethylation of the aminomethylphosphonate (139) appeared early on in the reaction and was more prominent ($\delta_{\mathrm{p}} 20.0$; ca. 9% after 40 min) than in the reaction of the o-menthyl substrate (112). The products were separated by extraction of the aminomethylphosphonate into dilute hydrochloric acid, and they were characterised by comparison of their spectroscopic data with that already published. ${ }^{58}$

Eq. 41

The O-cyclonexyl analogue (130), δ_{p} 19.0, reacted with QOMe over a period of $2 h$ to give the aminomethylphosphonate (141), $\delta_{p} 26.9$, and the phosphoramidate (142), $\delta_{\mathrm{p}} 9.6$, in a ratio of ca. 1.3 : 1 (see Table 14 and Eq. 41), with not more than 2% demethylation of the aminomethylphosphonate. The products were isolated and characterised, and the aminomethylphosphonate was further characterised as the salt with picric acid, $\delta_{\mathrm{p}}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ 17.3. Likewise, the o-tert-butyl substrate (131), $\delta_{p} 15.5$, was transformed over 2.5 h into the aminomethylphosphonate (143), $\delta_{\mathrm{p}} 24.1$, and the phosphoramidate (144), $\delta_{p} 5.9$, in a ratio of ca. $2: 1$ (Table 14), with virtually no demethylation of the aminomethylphosphonate (Eq. 42). These products were also formed in the reaction of the O-methyl substrate (129) with potassium tert-butoxide, and were isolated later (see below).

The alkyl bromomethylphosphonamidates were also allowed to react with 0.2 M potassium tert-butoxide in THF-tert-butanol ($9: 1 \mathrm{v} / \mathrm{v}$), the 10% alcohol (tert-butanol) being included for the sake of consistency with the previous experiments which used THF-methanol. For the O-methyl analogue (129), $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 22.6$, on treatment with $0.2 \mathrm{M} \mathrm{KOBu}^{t}$ in THF-Bu ${ }^{t} \mathrm{OH}$, reaction appeared to be instantaneous, with KBr precipitating on mixing; the reaction was certainly complete within 5 min.

The aminomethylphosphonate (143), $\delta_{p} 23.8$, and the phosphoramidate (144), $\delta_{\mathrm{p}} 5.9$, were formed in a ratio of ca. $3: 1$ (Table 14), the products being the same as those from the reaction of the O-tert-butyl compound (131) with QOMe (Eq. 43 cf. Eq. 42).

The two rearrangement products had to be separated by chromatography and not by extraction with dilute hydrochloric acid, as was used earlier, as even slight acidity was found to decompose the aminomethylphosphonate (143). Thus, the aqueous acid extract, when basified with sodium hydroxide, yielded no product on attempted back-extraction into organic solvents. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(C D_{3} O D\right)$ of the material in aqueous solution revealed the absence of an OBu ${ }^{t}$ group, but showed $\mathrm{NCH}_{2} P\left(d, J_{\mathrm{PH}} 15\right)$, $\operatorname{POMe}\left(\mathrm{d}, J_{\mathrm{PH}} 10.5\right)$, and ButN signals. Clearly acidification had removed the tert-butyl group from oxygen, giving the parent amino-acid (145), perhaps by loss of butene (Eq. 44). A similar acid-catalysed debutylation of $\mathrm{RP}(\mathrm{O})\left(\mathrm{OBu}^{\mathrm{t}}\right)_{2}$ has been reported using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} .{ }^{73}$ Because of their sensitivity to acid all products containing the POBu ${ }^{\text {t }}$ group were isolated by chromatography.

Eq. 44

(145)

(146)

When the above reaction was performed using KOBu^{t} that had not been freshly sublimed, two further products were formed, $\delta_{p} 20.4$ and $\delta_{p} 7.7$ (ratio ca. $1: 3$). These were believed to be the potassium salts of the aminomethylphosphonate (145) and the phosphoramidate (146), formed by reaction with hydroxide impurity instead of tert-butoxide. Hydroxide, being very much more nucleophilic than tert-butoxide, will inevitably give rise to a disproportionately large amount of the total product if there are traces of hydroxide in the potassium tert-butoxide or water in the tert-butanol. To confirm that water was responsible for these two additional products the reaction was repeated with a little added water $(0.3$ mol equiv.); examination of the reaction mixture showed that the two additional products were indeed formed in enhanced yield.

The reaction of the 0 -cyclohexyl analogue (130), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 19.9, with $K^{\prime} \mathrm{Ku}^{t}$ was almost instantaneous and produced the aminomethylphosphonate (147), $\delta_{\mathrm{p}} 21.9$, and the phosphoramidate (148), $\delta_{\mathrm{p}} 3.6$, in a ratio of ca. 11.5 : 1 (see Table 14 and Eq. 45). The products were separated and fully characterised.

Eq. 46

The reaction of the o-tert-butyl analogue (131), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 16.4, with KOBut was also almost instantaneous and gave predominantly the aminomethylphosphonate (138), δ_{p} 18.98, the phosphoramidate (149), $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 0.9$, being detected only after work up of the reaction (ratio ca. 32 : 1; see Table 14 and Eq. 46). The ease of this reaction, the chemical shift of its major product, and the almost complete absence of the phosphoramidate (149) reinforced the view that the major product here was also the by-product formed in the preparation of the substrate (131) (see p. 101).

Table 14; Reaction of the alkyl P-(bromomethyl)-N-tert-butylphosphonamidate (129), (130), or (131) with benzyltrimethylammonium methoxide or potassium tert-butoxide: product ratios (PAN : P\&C) as determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

a Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{b}$ This ratio is for sample A (100 \%).

The reactions of the three substrates and the two alkoxide reagents show that steric effects are important as far as product ratios are concerned. In particular, it seems that hindered substrates favour formation of the aminomethylphosphonate (P, N), and hindered nucleophiles also favour formation of the aminomethylphosphonate (Table 14). The fact that the 0 -menthyl substrate (112), bearing a secondary alkyl group, behaves as though it is sterically more encumbered than the o-tert-butyl substrate (131) is noteworthy (Table 14). This is unlikely to be due to the effect of the ring in the menthyl group - the O-cyclohexyl compound (130) shows the

[^4]
Part II; Chapter 4: The Intermediate

Scheme 29

The alkyl bromomethylphosphonamidates (112), (129), (130), and (131) reacted with alkoxides to give aminomethylphosphonate and phosphoramidate rearrangement products. The products are probably formed through the azaphosphiridine oxide (150) (Scheme 29) but it is also possible that the aminomethylphosphonate (151) could be formed from the phosphorane (152) (Scheme 30). Since nucleophilic substitution at 4-co-ordinate phosphorus is highly sensitive to steric hindrance we would expect a bulky substrate to react with a bulky nucleophile only with some difficulty, ${ }^{23}$ so some relative enhancement of the product arising from P-C bond scission could be expected if the phosphorane (152) does contribute to formation of the aminomethylphosphonate (P-N scission). However, the O-tert-butyl compound (131) reacted with potassium
tert-butoxide much faster than it did with benzyltrimethylammonium methoxide and gave almost entirely the aminomethylphosphonate (138), the product that would be formed by the phosphorane pathway (Scheme 30; $R=R^{\prime}=B u^{t}$). This, in spite of the fact that phosphorane formation must be particularly difficult for such a hindered system. It therefore seems more likely that both products are formed from the azaphosphiridine oxide. Also, the product ratios for the O-methyl compound (129) (ca. $1: 1.3$) and the corresponding chloromethylphosphonamidate (108) (ca. 1 : 1.6) ${ }^{58}$ with methoxide are very similar, and possibly the same within experimental error, and this could be considered evidence of a common intermediate, i.e. an azaphosphiridine oxide quenched, in both cases, by methoxide (Scheme 31).

Once the azaphosphiridine oxide has been formed the nucleophile could react with it in two different ways; i) it could directly displace the nitrogen or carbon moiety from phosphorus by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism, resulting in inversion of the configuration at phosphorus for both products (Scheme 32), or ii) it could add to the phosphoryl group to give a phosphorane (Scheme 33), with less obvious stereochemical consequences for the products.

Scheme 32

For nucleophilic substitution proceeding through a phosphorane intermediate, the nucleophile will add to the phosphoryl group to form a phosphorane in which the nucleophile occupies an apical position, and the leaving group will depart from an apical position to give the product. ${ }^{74}$ The nucleophile need not attack opposite the leaving group, but if the nucleophile did add opposite the leaving group, sub-
stitution would occur with inversion of configuration at phosphorus; if the phosphorane was a transition state, instead of an intermediate, the substitution would be equiv= alent to an $S_{N} 2$ displacement. There are, however, certain rules that govern phosphoranes, a) that the most electronegative group - oxygen in this case - prefers to be apical, 75 and b) that a small ring involving phosphorus will span the apical-equatoxial positions. ${ }^{76}$ the second of these generally overorules the first. If rule 'a)" applied, the threesmembered ring would have to ocoupy the equatorial plane with an ideal bond angle of about 120° at phosphorus a twice the preferred value for a three-membered ring. If the ring spanned apical-equatorial positions it would have an ideal bond angle of 90° at phosphorus, and eurthexmore, going from a tetranedral azaphosphiridine oxide, bond angle ~ 109° at phosphoxus, to the phosphorane would lead to a reduction in ring strain; addition of the nucleophile would in this case be expected to proceed rapidly. 77 Thus, the nucleophile would be expected to add to the azaphosphiridine oxide opposite nitrogen, the more electronegative of the ring elements, to give the phosphoxane (153) (apical nitrogen). Cleavage of the $P \rightarrow \mathbb{N}$ bond would then give the aminomethylphosphonate product with invexsion of configuration at phosphorus (Scheme 33), as observed for the 0 menthyl compound (112).

Retention
(154)

Scheme 33

Once the phosphorane (153) has been formed it can pseudorotate, ${ }^{76,76}$ whereby an equatorial bond assumes the role of a 'pivot'. The two remaining equatorial bonds and the apical bonds deform, by converging on their counterparts, to give a tetragonal structure in which the 'pivot' is apical and the other four bonds are positionally equivalent. This structure may return to the original phosphorane by reversing the above process, or may generate a new phosphorane by placing the two formerly apical bonds in equatorial positions (Scheme 34). If the phosphorane (153) underwent a pseudorotation, to make a new phosphorane (154) with carbon apical (the nucleophile would now occupy an equatorial position), rupture of the $P-C$
bond would then result in a phosphoramidate being formed with retention of configuration at phosphorus (Scheme 33); this was observed for the O-menthyl compound (112).

Scheme 34

Phosphoranes prefer electronegative elements to be apical but there is evidence that the preference of nitrogen over carbon is not great, ${ }^{74,79}$ so attack opposite the $P-C$ bond could be possible. If this was the case we would expect to see some of the phosphoramidate formed with inversion of configuration at phosphorus. For the O-menthyl compound (112) some of the phosphoramidate (117) was formed with inversion of configuration (5 \% ; ~ 1% of total products). This could occur by direct nucleophilic displacement of carbon from phosphorus (Scheme 32), or by the breakdown of the phosphorane (155) (apical carbon) formed by addition of the nucleophile to the azaphosphiridine oxide opposite the $P-C$ bond (Scheme 35). If the latter occurred, the phosphorane (155) could undergo pseudorotation to (156), and then break down to give the aminomethylphosphonate with retention of configuration at phosphorus (Scheme 36). Although some of the menthyl aminomethylphosphonate (116) was apparently formed with retention of configuration, it was found that when the reaction of the menthyl compound (112) with methoxide was quenched early (16 min) it was in the region of 1%, and for
reaction quenched after 6 h it was about 12%. This is most probably due to stereochemical equilibration of the product, by methoxide exchange in the reaction mixture (Eq. 47); it is, therefore, not possible to say whether there is any genuine retention of configuration in the formation of the aminomethylphosphonate.

Scheme 35

Eq. 47

Abstract

Further experiments revealed a definite trend in the reaction, namely that hindered nucleophiles and hindered substrates both favour formation of the aminomethylphosphonate. Owing to the absence of stereochemical information for the reactions of the alkyl bromomethylphosphonamidates (129), (130), and (131) it is not known whether the phosphoramidate products were formed largely with retention of configuration, as in the case of the omenthyl analogue (112), or with inversion, due to nucleophilic attack opposite the p-C bond. If the course of nucleophilic attack is dependent on the apicophilicities of carbon versus nitrogen,74,79 and the stexic interactions in the two competing phosphoranes (Schemes 33 and 35), ${ }^{79}$ it becomes apparent that attack oppose ite the $P-C$ bond is favoured on steric grounds as the NBut group would then be placed equatorial where it would have two nearest neighbours instead of three. However, the hydrogens on the apical carbon will eclipse two equatorial bonds and may also project into the equatorial alkoxy group, if it is large, causing severe interactions. These interactions could remove any steric benefit gained by placing the NBut group equatorial, and the small preference for apical nitrogen could then prevail, i.e. a large o-alkyl group in the substrate disfavours the phosphorane (155) (apical carbon).

We know that the phosphorane (155), formed by the addition of the nucleophile opposite the $P-C$ bond, accounted for at least 0.8% of the reaction for the O-menthyl substrate (112) (as the phosphoramidate formed with inversion of configuration accounted for 0.8% of the total products), and we would expect that as the 0 -alkyl group decreases in size, from

O-menthyl to O-methyl, this phosphorane would become more important due to less severe interactions between the equatorial O-alleyl group and the hydrogens on the apical carbon, i.e. the yields of the phosphoramidate formed with inversion of configuration should increase as the size of the O-alkyl group in the substrate decreases.

It could be, then, that attack opposite the $P-N$ bond is the first step, but pseudorotation gives rise to a more open structure which is favoured on steric grounds if the O-alkyl group (now apical) and the nucleophile (now equatorial) axe small (Scheme 33). Although carbon is now apical, and perhaps not as preferred as nitrogen, it could be that the difference in the apicophilicities of carbon and nitrogen is small and that lower steric intexactions outweigh the preference for apical nitrogen. If the OR group is large it will be reluctant to occupy an apical position, as this will increase steric interactions (three, instead of two nearest neighbours), and the phosphorane (153) (apical nitrogen) will be favoured. Also, if the nucleophile is laxge, the intexactions with the hydrogens on the apical carbon could offset any benefit obtained by pseudorotation, and the preference for apical nitrogen would be espected to prevail.

The relative apicophilicities of the competing groups on phosphorus affect pseudorotation. In the case of $\mathrm{Me}_{2} \mathrm{PF}_{3}$ the preference for apical fluorine is large and pseudorotation, putting one methyl group apical, is not seen at room temperature. ${ }^{75,76}$ However, with the phosphorane (157) ${ }^{76}$ the preference for orsygen over carbon is not as large and pseudorotation is fast on the NMR time scale at room temperature.

The difference in the apicophilicities of nitrogen and carbon is smaller still, and inter-conversion of the two phosphoranes (153) and (154) could be sufficiently rapid that they equilibrate before they collapse to product.

(157)

A factor that must surely influence the product ratio is the leaving ability of nitrogen relative to carbon. If pK_{a} values of amines and alkanes are taken as a measure of leaving ability we would expect nitrogen to be the better leaving group (Cf. $\mathrm{NH}_{3}, \mathrm{pK}_{\mathrm{a}}=38$, and $\mathrm{CH}_{4}, \mathrm{pK}_{\mathrm{a}}=48^{\mathrm{B0}}$) and the transition state leading to $P-N$ bond cleavage to be more accessible than that leading to $P-C$ bond cleavage. It could be that for the phosphorane with apical carbon (resulting either from pseudorotation or addition opposite the $P-C$ bond) the energy required to cleave the $P-C$ bond is lower than the total energy required to pseudorotate and cleave the $P-N$ bond (Fig. 10): if the two phosphoranes have equilibrated, the product ratios may reflect the thermodynamic ratio of the two phosphoranes.
ΔG
Fig. 10

It is interesting to note that the phosphorane (155), from nucleophilic addition of the alkoxide to the azaphosphiridine oxide opposite the $P-C$ bond, and the phosphorane (154), derived from pseudorotation of the phosphorane (153) (apical nitrogen), are the same in the case of the o-methyl compound (129) with methoxide, and in the case of the o-tert-butyl compound (131) with tert-butoxide (Schemes 33 and 35; $\mathrm{OR}=\mathrm{Nu}$ $=\mathrm{OMe}$ or OBu^{t}). In the former, if the phosphorane (154), derived from pseudorotation of the phosphorane (153) is favoured, then it is conceivable that nucleophilic attack opposite the $P-C$ bond may be significant, perhaps even more important than attack opposite the $P-N$ bond, and the phosphoramidate (140) may be substantially formed with inversion of configuration at phosphorus. In the latter, where the phosphorane (153) (apical nitrogen) is expected to be favoured, the phosphoramidate (149) would be formed largely with retention of configuration.

Experimental

M.p.s. were determined using a Kofler hot-stage apparatus, IR spectra were recorded with a Perkin-Elmer 298 instrument, ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 90 MHz with a Varian EM390 or a JEOL JNM-FX900 spectrometer, and, where specified, at 300 MHz with a Bruker AM 300 spectrometer. ${ }^{31} \mathrm{p}$ NNR spectra (${ }^{1} \mathrm{H}$-decoupled) were recorded at 24 MHz or 36 MHz with a JEOL JNM-FX60 or a JEOL JNM-FX90Q spectrometer respectively; positive chemical shifts were measured downfield from external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ 。 For NMR data where the solvent is not specified the reaction medium was used. Where product ratios were determined by ${ }^{31} \mathrm{p}$ NMR the peak heights or integrals were used unless otherwise specified. Routine mass spectra (EI at 70 eV) were obtained with a V. G. Micromass 16B spectrometer or a Kratos Concept and high resolution mass spectra were recorded by the SERC Mass Spectrometry Sexvice at Swansea. GLC analyses were recorded on a Pye Unicam PU\&500 chromatograph (column; OV 17011μ film, $15 \mathrm{~m} \times 0.53 \mathrm{~mm}$) or capillary chromatograph (column $\operatorname{BP} 50.25 \mu$ film, 25 mx 0.22 man: equivalent to SE 54), in both cases helium was used as the carrier gas, TLC was performed on silica gel $60 \mathrm{~F}_{254}, 0.2$ \min film on aluminium foil (Merck), and optical rotations were obtained from a Perkin-Elmer 141 polarimeter.

Methanol and ethanol were purified by distillation from their magnesium salts, cyclohexanol and tert-butanol were dried over powdered 3A molecular sieves. Tetrahydrofuran (THF) was distilled from sodium/benzophenone and was stored over 3A/4A molecular sieves and under nitrogen. It was redistilled immediately prior to use. $N / N \sim \omega D i m e t h y l f o r m a m i d e$
（DMF）was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under reduced pressure and stored over molecular sieves and under nitrogen，amines were dried over potassium hydroxide unless otherwise specified， potassium tert－butoxide was sublimed before use and light petroleum refers to the fraction b．p． $60-80{ }^{\circ} \mathrm{C}$ unless other－ wise indicated．O－Trimethylsilylhydroxylamine was prepared by a published procedure．${ }^{13}$

N，O－Bis（trimethylsilyl）hydrosylamine。－Based on the method of Bottaro ${ }^{81}$ et al，finely ground and dried hydroxylamine hydrochloride（ $11.57 \mathrm{~g}, 0.167 \mathrm{~mol}$ ）was added to a stirred solution（powerful magnet）of dry ethylenediamine（15．03 9 ， 0.25 mol ）in dichloromethane（ 130 ml ）。The flask was stopm pered and left stirring until two distinct liquid phases were present（～ 8 h ）。 A long reflus condenser was fitted and chlorotximethylsilane $(38.52 \mathrm{~g}, 0.35 \mathrm{~mol})$ was added dropwise over 30 min．When spontaneous reflus had ceased the reaction mixture was stoppered and left stirring for 24 h ．Unexpect－ edly，the reaction stopped at the monosilyl product $\left(\mathrm{H}_{2} \mathrm{NOSiMe}_{3}\right), R_{\mathrm{t}} 2.6 \mathrm{~min}\left(10 \% \mathrm{E} 30,80{ }^{\circ} \mathrm{C}\right)$ ；an authentic sample of the bismsilyl product had $R_{t} 7.8 \mathrm{~min}$ and refluxing for a further 3 h produced no change．Howevex，when tri－ ethylamine（ $16.87 \mathrm{~g}, 0.167 \mathrm{~mol}$ ）in ether（ 30 ml ）was dripped in over 30 min ，the reaction was mildly exothermic and much solid was formed．More chlorotrimethylsilane（ca． $4 \mathrm{ml}, 3.42$ g， 31 mol）was added and the mixture was refluxed for a further 2 h to give the desired product（ $R_{\mathrm{t}} 7.8 \mathrm{~min}$ ）．The reaction mixture was filtered under nitrogen and the solid （amine hydrochloride）was washed with light petroleum spirit （b．p．40－60 ${ }^{\circ} \mathrm{C}$ ）（70 ml）．Solvents were removed from the
filtrate by fractional distillation and the residue was dis－ tilled in a spaltrohr apparatus giving N, O obis（trimethyl－ silyl）hydroxylamine， $13.9 \mathrm{~g}(4.7 \%) ; \mathrm{b} . \mathrm{p} .92-93^{\circ} \mathrm{C}$ at 150 mmHg （lit．，${ }^{81} 131-140{ }^{\circ} \mathrm{C}$ at 700 mmHg ）；$v_{\max }$（film） $3280 \mathrm{~cm}^{-1}$（NH）。

Diethyl Phenylphosphonite（35）${ }^{\text {B2．}}$ ．A mixture of dichloro－ phenylphosphine（ $26.9 \mathrm{~g}, 0.15 \mathrm{~mol}$ ），anhydrous pyridine（ 24.5 9． 0.31 mol ），and light petroleum（ 70 ml ）was stirred undex nitrogen and cooled in ice．A mixture of anhydrous ethanol （13．8 $9,0.30 \mathrm{~mol})$ and light petroleum（ 5 ml ）was added dropwise，and the reaction was left stirring at room temper－ ature overnight．The precipitated pyridine hydrochloride was filtered off under nitrogen and washed with a small quantity of light petroleum．The filtrate was concentrated and diso tillation afforded diethyl phenylphosphonite（35）（12．7 9， 43 $\%$ ）：b．p． $60-62{ }^{\circ} \mathrm{C}$ at 0.05 mang（ 1 it．${ }^{33} 99-100{ }^{\circ} \mathrm{C}$ at a maHg）； $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 156.1$ 。

Ethyl Benzyl（phenyl）phosphinate（36）${ }^{29}$ ．－Diethyl phenylphos－ phonite（3）（12．0 $9,60.5 \mathrm{mmol}$ ）was stirred under nitrogen and heated to $100{ }^{\circ} \mathrm{C}$（bath temperature）．Benzyl chloride（ 9.2 9， 72.7 mmol ）was added dropwise，then the bath temperature was xaised to $200{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir for a further 3 ho Distillation at ca． $150{ }^{\circ} \mathrm{C}$ at 0．4． $\operatorname{mmHg}\left(1 i t .,^{s} \operatorname{b.p.~} 198-202{ }^{\circ} \mathrm{C}\right.$ at 6 mmHg ）gave ethyl benzyl－ （phenyl）phosphinate（36）（11．8 $9,75 \%$ ），$\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 40．1； $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.7-7.0(10 \mathrm{H}, \mathrm{m}), 3.94(2 \mathrm{H}, \mathrm{m}), 3.25\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}}\right.$ 18），and $1.25\left(3 \mathrm{H}, 亡, J_{\mathrm{HH}} 7\right)$ 。

Ethyl α-Methylbenzyl(phenyl)phosphinate (37).- (a) ${ }^{33}$ A mixture of diethyl phenylphosphonite (35) (496 mg, 2.5 mmol) and 1-bromoethylbenzene ($463 \mathrm{mg}, 2.5 \mathrm{mmol}$) was stirred in a gentle stream of nitrogen, and the flask (fitted with an air condenser) was placed in an oil bath, pre-heated to $155{ }^{\circ} \mathrm{C}$, for 75 min. The resulting mixture contained not only the required phosphinate (35), $\delta_{\mathrm{p}} 43.3$ and 42.6 (diastereoisomers) ($\sim 75 \%$) but also two other products, $\delta_{\mathrm{p}} 45.0$ (4%) and $\delta_{\mathrm{P}} 24.0$ (21%), probably Phetp(O)OEt and PhHP(O)OEt respectively. Because this reaction was not clean an alternative approach (see below) was adopted.
(b) A solution of ethyl benzyl(phenyl)phosphinate (36) (7.6 g, 29.1 mol) in THF (50 mI) was stirred at $-70{ }^{\circ} \mathrm{C}$ (bath temperature) while a solution of n-butyllithium in hexane ($2.5 \mathrm{M}: 12 \mathrm{ml}, 30 \mathrm{mmol}$) was added dropwise over a period of 20 min . After a further 30 min at $-70^{\circ} \mathrm{C}$, iodomethane (8.3 g , 60 mol) in THF (10 ml) was added dropwise and the mixture was allowed to warm slowly to room temperature. All solvent was removed and the residue was dissolved in ether (70 ml). The resulting solution was washed twice with water (50 ml , then 20 ml), dried, and concentrated to yield crude ethyl $\alpha \odot$ methylbenzyl(phenyl)phosphinate (37) (7.2 g, 90% as a mixture of diastereoisomers, $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 43.0$ and 42.4. A small portion was distilled, b.p. $130{ }^{\circ} \mathrm{C}$ (oven) at 0.3 mmHg ; $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 4.4 .3$ and 43.4 (major) in a $47: 53$ ratio (impurity at $47.1 \mathrm{Ca} .5 \%$) ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.61-7.04(10 \mathrm{H}, \mathrm{m})$, 4.19-3.76 ($2 \mathrm{H}, \mathrm{m}$), 3.288 and 3.230 (major) (total 1 H ; both $\mathrm{dq}, J_{\mathrm{PH}} 18.2$ or $16.9, J_{\mathrm{HH}} 7.4, \mathrm{PCHM}$), 1.594 and 1.502 (major) (total 3 H ; both dd, $J_{\mathrm{PH}} 16.9$ or $17.5, J_{\mathrm{HH}} 7.4$, PCHMe), and
1.308 and 1.201 (major) (total 3 H ; both t, $J_{\text {HH }} 7.0$) ; $\mathrm{m} / \mathrm{Z} 274$ $\left(\mathrm{M}^{+}, 40 \%\right), 170\left(\mathbb{M}^{+}-\operatorname{PhCH}=\mathrm{CH}_{2}, 40\right), 169\left(\mathrm{M}^{+}-\operatorname{PhCHMe}, 30\right)$, $142\left(\mathrm{M}^{+}-\mathrm{PhCH}=\mathrm{CH}_{2}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}, 20\right), 141\left(\mathrm{M}^{+}-\mathrm{PhCHM}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right.$, 100), and 105 (PhCHMe,$~ 50$) ; $v_{\text {max. }}$ (film) $1220 \mathrm{~cm}^{-1} \quad(\mathrm{P}=0$) (Found: $\mathrm{M}^{+}, 274.1123 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ requires $M, 274.1123$). The bulk of the product was used without further purification.
α-Methylbenzyl(phenyl)phosphinic Acid (38).- The ester (37) (7.0 9.25 .7 mmol) was stirred and heated under reflus (bath temperature $140{ }^{\circ} \mathrm{C}$) in concentrated hydrochloxic acid (25 ml) for 14 h . The mixture was diluted and the product was extracted into dichloromethane and dried. Evaporation of the solvent gave a syrup, which on txituration with ether followed by cxystallisation from dichloromethane-ether yielded $\alpha-m e t h y l b e n z y l(p h e n y l) p h o s p h i n i c ~ a c i d(38)(4.1 ~ g, 65 \%)$, m.p. 136-137 ${ }^{\circ} \mathrm{C}$ (from ethyl acetate) (1it., ${ }^{33} 133-135{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 44.8 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 12.90(\mathrm{~s}, \mathrm{OH}), 7.6-7.0(5 \mathrm{H}, \mathrm{m})$, $7.08\left(5 \mathrm{H}_{\mathrm{g}} \mathrm{br} \mathrm{s}\right), 3.10\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{pH}} 18, J_{\mathrm{HH}} 7\right.$), and 1.42 (3 H, dd, $J_{\mathrm{PH}} 17, J_{\mathrm{HH}} 7$) ; $v_{\max .}$ (Nujol) 2650, 2250, 1660 (all br $\mathrm{OH}), 1170(\mathrm{P}=\mathrm{O})$, and $950 \mathrm{~cm}^{-1}$ (Found: $\mathrm{C}, 68.0: \mathrm{H}, 5.9$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 68.3 ; \mathrm{H}, 6.1 \%$)
$\alpha-$ Methylbenzyl(phenyl)phosphinic Chloride (39).- The phosphinic acid (38) was stirred in dichloromethane (ca. 2 ml per mol) and to it oxalyl chloride (2 mol equiv.) was added. When the reaction was complete ($\delta_{\mathrm{p}} 58.8$ and 58.5, diastereo isomers) volatile material was removed, and remaining traces of osalyl chloride were removed by addition and evaporation of solvent several times, followed by pumping at 0.4 mafg ($>$ 2 hours). The crude α methylbenzyl(phenyl)phosphinic chloride (39) was obtained as a mixture of diastereoisomers (47:53),
$\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 59.6$ and $59.2 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.7-6.9(10 \mathrm{H}, \mathrm{m})$ ， 3.577 and 3.566 （total 1 H ；both dq，$J_{\mathrm{PH}} 14.5, J_{\mathrm{HH}} 7.3$ ），and 1.798 （major）and 1.626 （total 3 H ；both dd，$J_{\mathrm{PH}} 20.1$ or 20．9，$J_{H H} 7.3$ ）；$v_{\max }($ Nujol $) 1225(\mathrm{P}=0)$ ．A portion was crystal－ lised from ether－light petroleum to give a sample（b．p．40－60 ${ }^{\circ} \mathrm{C}$ ）（90 \％the diastereoisomer $\delta_{\mathrm{P}} 59.6$ ；highfield resonance） having mop． $108-111{ }^{\circ} \mathrm{C} ; \mathrm{m} / \mathrm{z} 266,264\left(\mathbb{M}^{+}, 25 \%\right.$ ，ratio 1 ： 3 ）， 162， $160\left(\mathrm{M}^{+}-\mathrm{PhCH}=\mathrm{CH}_{2}\right.$ ，12，ratio 1 ：3），and 105 （PhCHMe ${ }^{+}$， 100）（Found： $\mathrm{M}^{*}, ~ 264.0471$ 。 $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClOP}$ requires $M, 264.0471$ ）。 The bulk of the material was used without purification．

N－［o－Methylbenzyl（phenyl）phosphinoyl］－0－trimethylsilylhydr－ oxylamine（42）．－（a）N，O－Bis（trimethylsilyl）hydroxylamine （1．95 g， 11 mol）was added ${ }^{18}$ to a stirred solution of α－methylbenzyl（phenyl）phosphinic chloride（39）（2．26 9， 8.6 monol）in dichloromethane（ 7.7 ml ）（slight effervescence）．The vessel was stoppered in such a way that any excess pressure would be released，and the temperature was maintained at ca． $35{ }^{\circ} \mathrm{C}$ for 24 h ．Some solid was precipitated（see below）but was not removed．All volatile material was evaporated（no heat），and（to remove the last traces of Mesicl）light petroleum was added to，and evaporated from，the residue． Washing with ethex afforded the solid N－［ α－methylbenzyl－ （phenyl）phosphinoyl］－0－trimethylsilylhydroxylamine（42）（1．63 $9,57 \%$ ）as a comparable mixture of the two diastereoisomers， $\delta_{\mathrm{H}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 41.7$ and 40.7 。
（b）In a similar experiment the precipitated solid was fil－ tered off and washed with ether；it was found to be essent－ ially a single diastereoisomer of the N－phosphinoyl－O－silyl－ hydroxylamine（42）（18 \％）A portion crystallised from di－
chloromethane-light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) had m.p. $140-142{ }^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) \quad 42.0 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ 7.96-7.88 ($2 \mathrm{H}, \mathrm{m}$), $7.61-7.26(8 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{S}, \mathrm{N} H)$, $3.72\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 11.8, J_{\mathrm{HH}} 7.5\right), 1.45\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 17.0, J_{\mathrm{HH}}\right.$ 7.5), and $-0.11(9 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{Z} 333\left(\mathrm{M}^{+}, 30 \%\right), 318\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 15), 245 [PhCHMe(Ph)P(O) $\mathrm{NH}_{2}{ }^{+}$, 15], 120 (80), and 105 (PhCHMe*, 100): $v_{\max .}$ (Nujol) 3130 (NH), 1185 ($\mathrm{P}=0$), and 850 (several maxima) Cm^{-1} (Found: C , 60.85; $\mathrm{H}, 7.4 ; \mathrm{N}$, 4.05. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{PSi}$ requires $C, 61.2 ; \mathrm{H}, 7.25 ; \mathrm{N}, \mathrm{A} .2 \%$) The filtrate contained both this diastereoisomer ($\delta_{\mathrm{P}} 4.0$) and the other ($\delta_{\mathrm{p}} 42.0$) in a 1 : 2.5 ratio, together with a by-product ($\delta_{\mathrm{p}} 34.0, \mathrm{ca} .20$ \%) ; removal of volatile material (rotary evaporator) and washing of the residue with ether-light petroleum gave a solid that was desilylated as described below.
$\mathbb{N}-[\alpha-M e t h y l b e n z y 1(p h e n y l)$ phosphinoyl]hydrosylamine (43)..(a) The N-phosphinoyl-O-silylhydrosylamine (42) (1.63 $9,4.9$ mol) from (a) in the above experiment was dissolved in dichloromethane (24 ml) and methanol (1.2 ml, 6 mol equiv.) was added. The reaction was monitored by ${ }^{31} \mathrm{p}$ NMR spectroscopy $\left[\delta_{p}\right.$ 43.7, 42.5 (diastereoisomers) $\rightarrow-\infty 42.1,40.2]$. After 86 h all volatile material was removed (rotary evaporator) and the residue was triturated with ether to give the N-phosphinoylo hydroxylamine (43) (1.24 $9,97 \%$) as a mixture (ca. 1 : 1) of diastereoisomers, $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 41.9$ and 40.1.
(b) The silylated materials from (b) above were similarly desilylated (complete in ca. 24 h), and the residues triturated and washed with ether to give two samples of $N=[\alpha-m e t h-$ ylbenzyl(phenyl)phosphinoyl]hydxoxylamine (43): sample \mathbb{B} (derived from the precipitated material), essentially one
diastereoisomer，m．p． $130-132{ }^{\circ} \mathrm{C}$（decomp．）after crystal－ lisation from chloroform－light petroleum；$\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 40．1； $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 8.1(\mathrm{br}, \mathrm{OH}), 7.73-7.37(5 \mathrm{H}, \mathrm{m}), 7.20$（5 $\mathrm{H}, \mathrm{m}), 5.961\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 8.8, \mathrm{NH}\right), 3.407\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 15, J_{\mathrm{HH}}\right.$ 7．5），and 1．432（3 H，dd，$\left.J_{\mathrm{PH}} 16.9, J_{\mathrm{HH}} 7.5\right) ; \mathrm{m} / \mathrm{Z} 261\left(\mathbb{N}^{+}, 5\right.$ \％）， 245 ［PhCHMe（Ph）P（O） $\left.\mathrm{NH}_{2}{ }^{*}, 40\right]$ ， 141 ［PhCHMe（Ph）P（O） $\mathrm{NH}_{2}{ }^{+}-$ PhCH＝CH ${ }_{2}$ ，45）， 140 ［PhCHMe（ Ph ） $\mathrm{P}(\mathrm{O}) \mathrm{NH}_{2}{ }^{*}=$ PhCHMe＊，100）， 120 （10），and 105 （PhCHMe＊，65）；$v_{\text {max．}}$（Nujol） 3160 （NH）， 1155 （ $\mathrm{P}=0$ ），and $1115 \mathrm{~cm}^{-1}$ ；sample（derived from the filtrate），a mixture of diastereoisomers，$\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 4.19$ and 40.1 （ratio ca． $4.5: 1)$ ．A small sample of the major diastereoisomer of sample was obtained by crystallisation from dichlorometh－ ane，m．p． $142.5-144.5{ }^{\circ} \mathrm{C}$（decomp。）；$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.50$（1 H, br $\mathrm{s}, \mathrm{OH}), 7.55-7.0(10 \mathrm{H}, \mathrm{m}), 6.30\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 11.5, \mathrm{NH}\right), 3.72$ （1．H，dq，$\left.J_{\mathrm{PH}} 19.5, J_{\mathrm{HH}} 7.5\right)$ ，and $1.57\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 16.5, J_{\mathrm{HH}}\right.$ $7.5): m / Z 261\left(M^{+}, 6 \%\right) ; v_{\text {max．}}$（NUjol） 3260,3220 （NH）， 1170 （ $\mathrm{P}=0$ ），and $1120 \mathrm{~cm}^{-1}$（Found： C ，64．4； $\mathrm{H}, 6.3 ; \mathrm{N}, 5.55$ 。 $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5.4 \%$ ）。
$\mathrm{N}-[\alpha-$ Methylbenzyl（phenyl）phosphinoyl］－0－methanesulphonyl－ hydroxylamine（4）．－A suspension of the N－phosphinoylhydr－ oxylamine（43）（sample $\mathbb{B})(496 \mathrm{mg}, 1.90 \mathrm{mmol})$ in dichloro－ methane（ 8 ml ）was stirred and cooled in ice．Triethylamine $(192 \mathrm{mg}, \mathrm{L} .90 \mathrm{mmol})$ was added，followed immediately by methanesulphonyl chloride（ $300 \mathrm{mg}, 2.60 \mathrm{mmol}) \mathrm{o}^{18,85}$ After 20 min，the mixture was allowed to warm to room temperature．It was diluted with dichloromethane（12 ml）and washed with water（ $2 \times 4 \mathrm{ml}$ ），some solid that separated being redissolved by addition of more solvent and warming．The warm solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated．Crystallisation from
dichloromethane-light petroleum afforded $N-[\alpha-M e t h y] b e n-$ zyl(phenyl)phosphinoyl]-0-methanesulphonylhydroxylamine (44) (sample B) ($395 \mathrm{mg}, 61 \%$ \% 97% one diastereoisomer), $\delta_{\mathrm{p}}\left(\mathrm{CDCI}_{3}\right) \quad 38.1 ; \delta_{\mathrm{H}}\left(\mathrm{CDCI}_{3}, 300 \mathrm{MHz}\right) 7.92-7.85$ (2 $\left.\mathrm{H}, \mathrm{m}\right)$, $7.69-7.52(3 \mathrm{H}, \mathrm{m}), 7.45-7.30(5 \mathrm{H}, \mathrm{m}), 7.199\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}}\right.$ $3.7, \mathrm{NH}), 3.627\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}_{\mathrm{PH}} 11.8, J_{\mathrm{HH}} 7.5\right), 2.701(3 \mathrm{H}, \mathrm{s})$, and $1.550\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 17.9, J_{\mathrm{HH}} 7.5\right)$ [small pealks at 3.136 (s) and 1.725 (dd) due to the other diastereoisomer (3 \%)]; $\mathrm{m} / \mathrm{Z} 339\left(\mathrm{~N}^{+}, 2 \%\right), 324\left(\mathrm{M}^{+}-\mathrm{Me}, 2\right), 245$ [PhCHMe(Ph)P(O)NH${ }_{2}{ }^{+}$, 25]. 141 [PhCHMe(Ph)P(O) $\left.\mathrm{NH}_{2}{ }^{+}-\quad \mathrm{PhCH}=\mathrm{CH}_{2}, \quad 40\right]$, 140 [PhCHME(Ph)P(O) $\mathrm{NH}_{2}{ }^{*}$ - PhCHMe^{+}, 95], and 105 (PhCHMe ${ }^{+}$, 100) : $\mathrm{m} / \mathrm{Z}(\mathrm{CI}) 340\left(\mathrm{M}+\mathrm{H}^{+}, 40\right)$ and $246\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{MeSO}_{3} \mathrm{H}\right.$, 100): $v_{\text {max. }}$ (Nujol) $3060(N H)$ and $1185 \mathrm{~cm}^{-1}(\mathrm{P}=0)$. A sample further purified by recrystallisation from dichloromethane-light petroleum had m.p. 177-179 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 53.1; H, 5.3; $\mathrm{N}, 4.1 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{PS}$ requires $\mathrm{C}, 53.1 ; \mathrm{H}, 5.35 ; \mathrm{N}, 4.1 \%$) Crystallisation from dichloromethane afforded a sample (major diastexeoisomex, $\mathbb{B})$ for single crystal $X-r a y$ analysis. The crystal was glued to a glass filament. Data were measured on a Stöe STADI-2 Weissenberg diffractometex with graphite monochromated $M o-K_{\alpha}$ radiation $(\lambda 0.7107 \&)$ using an ω-scan technique. The data were corrected for Lorentz and polarisation effects.

Crystal data for (4.4) (racemate): $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4} P \mathrm{PS}, \mathrm{M}=339.35$. Monoclinic, space group $12 / a, a=20.132(16), b=10.396(2)$, $c=17.814(14) \AA, \beta=117.8(1)^{\circ}, U=3299(5) \AA^{3}, Z=8, \mu=$ $2.62 \mathrm{~cm}^{-1}, \vec{F}(000)=1424, D_{\mathrm{c}}=1.37 \mathrm{~g} \mathrm{~cm}^{-3}, T=293 \mathrm{~K}$. The structure was solved by direct methods. The phenyl and methyl hydrogen atoms were included in calculated positions with
isotropic thermal parameters refined as groups. The remaining hydrogen atoms were refined as isotropic atoms and all other atoms were refined with anisotropic thermal parameters. Full-matrix least squares refinement of 187 parameters gave R $=0.047$ and $R_{w}=0.049$ for 2324 unique reflexions with $I>$ $3 \sigma(I)$. For complete details see Appendix 1.

Samples of the N-phosphinoylhydroxylamine (43) having other diastexeoisomer compositions were similarly converted into the methanesulphonates. In particular, sample \mathbb{A} gave the methanesulphonate (44) (sample A) as a $4: 1$ mixture of diastereoisomers, m.p. $154-157.5{ }^{\circ} \mathrm{C} ; \mathrm{\delta}_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 39.6$ (major) and $38.4 ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 8.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 7\right.$, NH$), 7.63-6.85(5 \mathrm{H}$, m), $7.12(5 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.66\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 15, J_{\mathrm{HH}} 7.5\right), 3.10$ (major) and 2.73 (total 3 H ; both s), and $1.70\left(3 \mathrm{H}\right.$, dd, J_{PH} 16. $J_{\mathrm{HH}} 7.5$) m / Z (CI) $340\left(\mathrm{NH}+\mathrm{H}^{+}, 35 \%\right.$) and 246 (100); $v_{\max .}$ (Nujol) 3020 (NH) and $1180 \mathrm{~cm}^{-1}(\mathrm{P}=0)$. Also, a 1 : 1 mixture of diastereoisomers of the N-phosphinoylhydroxylamine (43) was similarly converted into the methanesulphonate (44). Trituration with dichloromethane-ether gave a 39 : 61 mixture of diastereoisomers, but treatment with a calculated amount of the minor diastereoisomer (A) gave a 50 : 50 misture of diatereoisomers for use in the competition study.
$\mathrm{N}-[\alpha-M e t h y 1 b e n z y 1$ (phenyl) phosphinoyl]-O-p-nitrobenzenesulphonylhydroxylamine (45).- A suspension of the N-phosphin oylhydroxylamine (43) ($107 \mathrm{mg}, 0.41 \mathrm{mmol}$) [20: 80 mixture of
diastereoisomers, $\delta_{p}\left(\mathrm{CDCl}_{3}\right) \quad 40.1$ in excess*] in dichloromethane (2 ml) was stirred and cooled in ice. Triethylamine ($41 \mathrm{mg}, 0.41 \mathrm{mmol}$) was added, followed by p-nitrobenzenesulphonyl (nosyl) chloride (128 mg, $0.58 \mathrm{mmol} ; 1.4 \mathrm{~mol}$ equiv.). ${ }^{18}$ Cooling was continued for a further 2 min and the mixture was then allowed to warm to room temperature. All volatile material was removed (rotary evaporator) and the residue was washed with ether. The resulting solid was mixed thoroughly with iced water (5 ml) and the crude product was collected by filtration. Further washing with water and then ether gave N-[α-methylbenzyl(phenyl)phosphinoyl $]-0-p-n i t r o-$ benzenesulphonylhydroxylamine (45) (112 mg, 61 \%), which crystallised from chloroform as a $3: 97$ mixture of diastereoisomers, $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 42.3$ and 39.5 (majox). A small sample was further purified (crystallisation from chloroform--light petroleum), m.p. 162-163 ${ }^{\circ} \mathrm{C}$ (decomp.) ; $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right)$ 40.9; $\delta_{H}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 8.1-7.7$ (4 H, $\mathrm{AA}^{\rho} \mathrm{BB}^{\circ} ; \delta_{\mathrm{A}} 8.07, \delta_{\mathrm{B}} 7.76, J_{\mathrm{AB}}$ 8.9), $7.65-7.3(10 \mathrm{H}, \mathrm{m}), 7.08\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 0.7\right.$, NH ; exchanges with $\mathrm{D}_{2} \mathrm{O}$), $3.520\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}_{\mathrm{PH}} 10.3, J_{\mathrm{HH}} 7.5\right)$, and $1.392(3 \mathrm{H}$, dd, $\left.J_{\mathrm{PH}} 18.0, \quad J_{\mathrm{HH}} \quad 7.5\right) ; \quad \mathrm{m} / \mathbb{Z} 446$ ($\mathrm{M}^{*}, \quad 1 \quad \%$) 245 [PhCHMe (Ph) $\mathrm{P}(\mathrm{O}) \mathrm{NH}_{2}{ }^{+}$, 30], $243\left(\mathrm{M}^{+} \quad-\quad \mathrm{AxSO}_{3} \mathrm{H}, 25\right)$, 141 [PhCHMe(Ph)P(O) $\left.\mathrm{NH}_{2}{ }^{+}-\mathrm{PhCH}=\mathrm{CH}_{2}, 40\right], 140 \quad\left[\mathrm{PhCHMe}(\mathrm{Ph}) \mathrm{P}(\mathrm{O}) \mathrm{NH}_{2}{ }^{+}-\right.$ PhCHMe, 100], and 105 ($\mathrm{PhMeCH}^{*}, 55$) ; m / z (FAB; NOBA matrix)

[^5]$447\left(\mathrm{M}+\mathrm{H}^{+}, 80 \%\right), 289$（100），and 246 ［PhCHMe（Ph）P（O）NH $+\mathrm{H}^{+}$， 80）：$v_{\max .}$（Nujol）3200－2500（NH），and $1190(\mathrm{P}=\mathrm{O}) \mathrm{cm}^{-1}$ ．The analysis sample was not obtained entirely free of chloroform ［Found： $\mathrm{C}, ~ 51.4 ; \mathrm{H}, ~ 4.1 ; ~ \mathrm{~N}, ~ 5.5$（m．p． $159-161{ }^{\circ} \mathrm{C}$ ）。 $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PS} .0 .2 \mathrm{CHCl}_{3}$ requires C ， $51.6 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.0 \%$ 。 Found： $\mathrm{C}, 48.0$ ； $\mathrm{H}, \mathrm{3} .7$ ； $\mathrm{N}, ~ 5.25$（m．p． $162-163{ }^{\circ} \mathrm{C}$ ）。 $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PS} .0 .6 \mathrm{CHCl}_{3}$ requires C ， $\left.47.8 ; \mathrm{H}, 3.8 ; \mathrm{N}, 5.4 \%\right]$ ． A second preparation of the nosylate（45）gave a $4: 96$ mixture of diastereoisomers（ ${ }^{31} \mathrm{P}$ NMR highfield diastereoisomer in excess）for use in the competition study．
α－Methylbenzylphosphonic Dichloride（47）．－The phosphonic acid（46）${ }^{32.33}, \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 34.6$（broad），prepared from the Arbuzov reaction of $P(O E t)_{3}$ with 1 －bromoethylbenzene， followed by acid hydrolysis of the resulting ester，was stirred in thionyl chloride（ 20 mol equiv．）with a catalytic quantity of dimethylformamide（ 0.03 mol equivo）at $90{ }^{\circ} \mathrm{C}$ （bath temp．）until the ${ }^{31} \mathrm{P}$ NMR spectrum contained only one important peak，$\delta_{\mathrm{p}}\left(\mathrm{SOCl}_{2}\right)$ 54．1（ca． 3 h ）．All volatile material was removed and the residue was maintained at ≤ 0.2 mmHg for 1.5 h ．The resulting α－methylbenzylphosphonic dichloride（ 87$)^{06}$ was used without further purification．

N－Phenyl－P－（ α－methylbenzyl）phosphonamidic Chloride（48）．－ $\alpha-$ Methylbenzylphosphonic dichloride（47）（2．27 g， 10.2 mol） was stirred（powerful magnet）with aniline（1．90 9，20．4 mol）in benzene（ 6 ml ）at $25{ }^{\circ} \mathrm{C}$ for 24 hours（ $\delta_{\mathrm{p}} 4.1 .7$ and 41．3，diastereoisomers；ratio ca． 1 ：2）．Much solid was precipitated．The mixture was diluted with benzene（ 10 ml ） and the insoluble material（ $\mathrm{PhNH}_{3} \mathrm{Cl}$ ）was removed by filtration．The filtrate was reduced in volume and ether was
added. On standing (overnight), crystals of one of the diastereoisomers of $N-$ phenyl-P-(α-methylbenzyl)phosphonamidic chloride (a8) ($0.98 \mathrm{~g}, 34 \%$) were obtained, m.p. $146-148{ }^{\circ} \mathrm{C}$ [from dichloromethane-light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$)]: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 42.3 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.27(5 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.3-7.15$ ($2 \mathrm{H}, \mathrm{m}$), $7.07-6.98(3 \mathrm{H}, \mathrm{m}), 5.747\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{\mathrm{pH}} 9.4, \mathrm{NH}\right)$, $3.650\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 17.0, J_{\mathrm{HH}} 7.4\right)$, and $1.778\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}}\right.$ 22.5, $J_{\mathrm{HH}} 7.4$) ; $m / z 281,279\left(\mathrm{M}^{*}, 25 \%\right.$; ratio 1 : 3), 177, 175 $\left(\mathrm{M}^{+}-\mathrm{PhCH}=\mathrm{CH}_{2}, 15\right.$; ratio 1 : 3), and 105 (PhCHMe $\left.{ }^{+}, 100\right)$; $v_{\max }$ (Nujol) $3170(\mathrm{NH})$ and $1210 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O})$ (Found: $\mathrm{C}, 60.0 ; \mathrm{H}$, $5.3 ; \mathrm{N}, 4.7$. $\mathrm{C}_{14} \mathrm{H}_{15}$ ClNOP requires $\mathrm{C}, 60.1 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.0 \%$) A similar preparation, ${ }^{87}$ but with most of the benzene being removed from the filtrate prior to the addition of ether, gave the phosphonamidic chloride (83 \%) as a mixture of diastereoisomers [in a $30: 70$ ratio, $\delta_{p}\left(\mathrm{CDCl}_{3}\right) 43.3$ and 42.7 (major)].

N-Phenyl-P-(α-methylbenzyl)phosphonamidic Acid (61).- The phosphonamidic chloride (88) ($110 \mathrm{mg}, 0.39 \mathrm{mmol}$) was heated with 1 M aqueous sodium hydroxide (1 ml) on a steam bath for 1 h . The cooled solution was filtered and acidified to pH 1 by addition, with stirring, of 2 M hydrochloric acid. The mixture was extracted with dichloromethane and the dried extract was concentrated. Trituration with ether gave N-phenyl-P- $(\alpha$-methylbenzyl)phosphonamidic acid (61) (79 mg, 77 \%) ; m.p. $125.5-127{ }^{\circ} \mathrm{C}$ (from dichloromethane-light petroleum); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 30.3 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.5(2 \mathrm{H}$, very broad, OH and $\mathrm{NH}), 7.4-6.6(5 \mathrm{H}, \mathrm{m}), 7.10(5 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.23\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{pH}}\right.$
 $\nu_{\max }$ (Nujol) $3235(\mathrm{NH}), 2700,2360,1650 \mathrm{br}(\mathrm{OH})$, and $1155 \mathrm{~cm}^{-1}$
($\mathrm{P}=\mathrm{O}$) (Found: C , 64.2; $\mathrm{H}, 6.2 ; \mathrm{N}, 5.5 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{P}$ requires C , 64.4; H, 6.2; N, 5.4 \%)。 This material was used to assist identification of the tert-butylammonium $\mathrm{N}-$ phenyl- $\mathrm{p}-(\alpha-m e t h \infty$ ylbenzyl)phosphonamidate $(63), \delta_{p} 18.0$, formed in the reaction of the methanesulphonate (\&) (sample A) with 0.1 M tert-loutylamine in dichloromethane. [The salt was extracted into water, the extract acidified ($\mathrm{pH} \leq 1$), and the free acid back-extracted into dichloromethane: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 30.6; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.4-6.8(5 \mathrm{H}, \mathrm{m}), 7.18(5 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.6-5.8(>1 \mathrm{H}, \mathrm{very}$ broad, $N H$ and $O H)$, $3.27\left(1 H_{p} d q, J_{\mathrm{PH}} 20, J_{\mathrm{HH}} 7.5\right)$, and 1.50 ($3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 18, J_{\mathrm{HH}} 7.5$)]。

Methyl $\mathrm{N}-$ Phenyl-p-($\alpha-$ methylbenzyl)phosphonamidate (62).- The phosphonamidic chloride $(48)(73 \mathrm{mg}, 0.26 \mathrm{mmol}$; a mixture of diastexeoisomers), was added to sodium methoxide (0.4 mol) in methanol (1.0 ml) and the misture was stirred for 20 min. The excess methoxide was quenched with ammonium chloride and methanol was removed in vacuo. The residue was partitioned between ether and water and the organic portion was dried (MgSO_{4}) and concentrated. Crystallisation from light petroleum containing a very small quantity of dichloromethane afforded methyl N-phenyl-P-($\alpha-$ methylbenzyl)phosphonamidate (62) (50 mg, 69%) (a mixture of diastereoisomers), m.p. $101.5-103{ }^{\circ} \mathrm{C} ; \quad \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) \quad 31.0$ and 30.8 (major); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) $7.43-6.81(10 \mathrm{H}, \mathrm{m}), 6.184$ (major) and 5.800 (total 1 H ; both d, $J_{\mathrm{pH}} 5.3$ or $5.0, \mathrm{NH}$), 3.757 and 3.605 (majox) (total 3 H ; both $\mathrm{d}, J_{\mathrm{PH}} 11.0$, OMe), 3.417 and 3.353 (major) (total 1 H ; both dg, $J_{\mathrm{PH}} 19.2$ or $19.3, J_{\mathrm{HH}} 7.4$), and 1.646 and 1.515 (major) (total 3 H ; both dd, $J_{\mathrm{PH}} 18.1$ or $18.9, J_{\mathrm{HH}} 7.4$, CMe): $m / Z 275\left(\mathrm{~N}^{+}, 100 \%\right), 171\left(\mathrm{M}^{+}-\mathrm{PhCH}=\mathrm{CH}_{2}, 18\right), 170\left(\mathrm{~N}^{+}-\right.$

PhCHMe, 23), 105 (PhCHMe ${ }^{+}$, 72), and $93\left(\mathrm{PhNH}_{2}{ }^{+}, 43\right)$; $\nu_{\max .}$ (Nujol) $3140,3080(\mathrm{NH})$, and $1210 \mathrm{~cm}^{-1}(\mathrm{P}=0) ; R_{\mathrm{t}} 5.7$ and 6.4 (major) min (OV 1701, $230{ }^{\circ} \mathrm{C}$), (Found: N^{+}, 275.1073. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{P}$ requires $M, 275.1075$) 。 This matexial was used for identification of the tert-Butylammonium N-phenyl-Po (α methylbenzyl)phosphonamidate (63), $\delta_{\mathrm{P}} 17.2$, foxmed in the reaction of the methanesulphonate (44) (sample B) with 0.1 M tert-butylamine in dichloromethane. [The salt was extracted into water, the extract acidified ($\mathrm{pH} \leq 1$), and the free acid back-extracted into dichloromethane; treatment with diazomethane then gave the methyl phosphonamidate (62) as a 1 : 1 mixture of diastereoisomers, $R_{t} 5.7$ and 6.4 min (conditions as above)].
$\mathrm{N}=$ Phenyl-Pa($\alpha-m e t h y l b e n z y l)$ phosphonamidic Anhydride (64) - A solution of the phosphonamidic acid (61) in the minimum quantity of ether was treated with tert-butylamine to give a precipitate of the tert-butylammonium salt (63), $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 18.2. The salt was added to a solution of the phosphonamidic chloride (48) in dichloromethane to give N-phenyl- $\mathrm{P}-(\alpha-m e t h-$ ylbenzyl)phosphonamidic anhydride (64) as a mixture of diastereoisomers, $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 23-24 (several peaks); crystallised from dichloromethane-light petroleum, m.p. 155-161 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 25.5,25.0$ and $24.6 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.4-6.7$ (20 H, m), $6.25-5.35$ (total 2 H ; a sexies of 7 multiplets, exchangeable with $\mathrm{D}_{2} \mathrm{O}$, NH), $3.6-3.15(2 \mathrm{H}, \mathrm{m}, \mathrm{PhMeCH})$, and $1.74-1.22$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{PhMeCH}$) ; $\mathrm{m} / \mathrm{Z} 504$ ($\mathrm{M}^{+}, 20 \%$), 489 ($\mathrm{M}^{+}-\mathrm{Me}$, 5) $412\left(\mathrm{M}^{+}-\mathrm{NHPh}\right.$, 15) $105\left(\mathrm{PhCHMe}^{+}, 100\right)$, and $93\left(\mathrm{PhNH}_{2}{ }^{+}\right.$,
60): $v_{\text {max. }}$ (Nujol) 3170 br (NH), 1240 ($\mathrm{P}=\mathrm{O}$), and $950 \mathrm{~cm}^{-1}$ (several maxima) ($\mathrm{P} \rightarrow \mathrm{O}-\mathrm{P}$) (Found: C , 66.4; $\mathrm{H}, 6.05 ; \mathrm{N}, 5.7$. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2}$ requires $\mathrm{C}, 66.7$; $\mathrm{H}, 6.0$; $\mathrm{N}, 5.55 \%$)。
α-Methylbenzyl(phenyl)phosphinic Amide (58).- A solution of the phosphinic chloride (39) (146 mg, 0.55 mol) in dichloromethane was added to an excess of anhydrous ammonia dissolved in ether. Volatile material was evaporated and the residue was partitioned between dichloromethane and water. The organic layer was separated, dried, and concentrated. Crystallisation from dichloromethane-light petroleum afforded ormethylbenzyl(phenyl)phosphinic amide (58) (66 mg, 49%) as a mixture of diastereoisomers, mop. $140-142{ }^{\circ} \mathrm{C}$ (resolidifies and melts again at $\left.151-153{ }^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 35.1$ and 32.9 (major): $\quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) \quad 8.0-6.9 \quad(10 \mathrm{H}, \mathrm{m}), \quad 3.5-2.9 \quad(1 \quad \mathrm{H}, \mathrm{m}$, PhMecti), $2.80\left(2 \mathrm{H}\right.$, bx s , NH_{2}; exchanges with $\mathrm{D}_{2} \mathrm{O}$), and 1.48 and 1.40 (total 3 H ; both dd, $J_{\mathrm{PH}} 17, J_{\mathrm{HH}} 7$) ; $m / Z 24.5$ ($\mathrm{M}^{+}, 55$ \%) , $141\left(\mathrm{M}^{+}-\mathrm{PhCH}_{\mathrm{CH}}=\mathrm{CH}_{2}, 45\right), 140\left(\mathrm{M}^{+}-\mathrm{PhCHMe}, 100\right)$, and 105 (PhCHME ${ }^{+}$, 60): $\nu_{\max }$ (Nujol) $3330,3240,3130$ (NH), and 1175 $\mathrm{Cm}^{-1}(\mathrm{P}=\mathrm{O})$ (Found: C , $68.4 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5.7 . \mathrm{C}_{14} \mathrm{H}_{16}$ NOP requires C, 68.6; H, 6.6; N, 5.7 \%) 。

N-tert-Butyl-N \mathbb{N}^{\prime} [α-methylbenzyl (phenyl) phosphinoyl]hydrazine (54).-A solution of the phosphinic chloride (39) (455 mg, 1.85 mol) in dichloromethane (1 ml) was mixed with a solution of tert-butylhydrazine (ca. 6 mmol) in dichloromethane (6 ml). After 30 min all volatile material was evaporated and the residue was partitioned between ether and water. The organic portion was extracted with 0.5 M hydrochloric acid, the aqueous extract was basified ($\mathrm{pH} \geq 11$), and the liberated phosphinoylhydrazide was back-extracted into dichloromethane.

The crude product (310 mg, 55%) was crystallised from dichloromethane-light petroleum to give N-tert-butyl-N'-- [α-methylbenzyl(phenyl)phosphinoyl]hydrazine (54) as a mixture of diastereoisomers, m.p. 170-171 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 36.9$ (major) and 35.3 (Ca. 2 : 1): $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$) 7.93-7.06 $(10 \mathrm{H}, \mathrm{m}), 4.134$ and 3.912 (total 1 H ; both d , $J_{\mathrm{PH}} 14.5$ or 13.3, NH), 3.604 and 3.446 (total 1 H ; both dq, $J_{\mathrm{PH}} 16.6$ or 13.2, $\left.J_{\mathrm{HH}} 7.4\right), 3.061$ and 2.936 (total 1 H ; both br s, NH), 1.661 and 1.408 (total 3 H ; both dd, $J_{\mathrm{pH}} 16.0$ or $16.8, J_{\mathrm{HH}}$ 7.4), and 1.073 and 0.870 (total $9 H ;$ both $s) ; m / z 316\left(M^{+}, 25\right.$ $\%), 301\left(\mathbb{M}^{+}-\mathrm{Me}, 30\right)$, and $105\left(\right.$ PhCHMe $\left.^{+}, 100\right) ; \mathrm{m} / \mathrm{Z}$ (CI) 317 $\left(\mathrm{NH}+\mathrm{H}^{+}, 100 \%\right) ; \quad v_{\max }$ (Nujol) 3150 (NH) and $1185 \mathrm{~cm}^{-1} \quad(\mathrm{P}=\mathrm{O})$ (Found: C, 67.7; $\mathrm{H}, 7.9$; $\mathrm{N}, ~ 8.75 ; \mathrm{M}^{+}$, 316.1705. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OP}$ requires $C, 68.3 ; \mathrm{H}, 8.0 ; \mathrm{N}, 8.85 \%$ \% M, 316.1705)。 This compound was also formed in the reaction of the methanesulphonate (AA) (sample B) with 0.1 M tert-butylamine in dichloromethane. The isolated material (acid extraction of the product, $\delta_{\mathrm{p}} 4.1 .5$) was not pure, but was seen to be a single diastexeoisomex, $\left[\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) \quad 35.3 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)\right.$ 7.96-7.85 (2 H, m), 7.60-7.24 (8 H, m), 3.918 (1 H, d, J $\mathrm{JH}_{\mathrm{PH}}$ $13.4 \mathrm{NH}), 3.445\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{pH}} 13.3, J_{\mathrm{HH}} 7.4\right), 1.408(3 \mathrm{H}, \mathrm{dd}$, $J_{\mathrm{PH}} 16.8, J_{\mathrm{HH}} 7.4$), and $0.869(9 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z}$ as above].

In the reaction of the methanesulphonate ($4 \mathbb{A}$) (sample \mathbb{B}) (24 mg , 0.07 mol) with 1.0 M solution of N -methyl-tert-butylamine (1.4 mol, a 20 -fold excess) in dichloromethane at 20 ${ }^{\circ} \mathrm{C},{ }^{31} \mathrm{P}$ NMR spectroscopy revealed an important by-product (δ_{p} 29.6; 40%) in addition to the expected rearrangement products (57) \{diastereoisomers, $\delta_{\mathrm{p}} 28.2$ and 25.9 , ratio 42 : 58, 50% [pealks assigned by comparison with a mixture, δ_{p}
28.4 and 26.0 , resulting from the reaction of the phosphonamidic chloride (48) (mixture of diastereoisomers) with N-methyl-tert-butylamine]\}. The by-product was extracted into 1 M hydrochloric acid ($\delta_{\mathrm{p}} 39.1$), and was back-extracted into dichloromethane after basification (2 M NaOH). It was identified as N -tert-butyl-N-methyl-N $\mathrm{N}^{\prime}-[\alpha-$ methylbenzyl(phenyl)phosphinoyl]hydrazine (56) (a single diastereoisomer), and crystallised from ethyl acetate-light petroleum, no clear m.p. (changes without melting above $160^{\circ} \mathrm{C}$; gradually liquifies above $\left.180{ }^{\circ} \mathrm{C}\right) ; \quad \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) \quad 31.1 ; \quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \quad 300 \mathrm{MHz}\right)$ 7.95-7.85 (2 H, m), 7.60-7.25 (8 H, m), $3.323\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}}\right.$ 11.7, $J_{\mathrm{HH}} 7.4$), $3.280\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 17.2\right.$, NH; exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.331(3 \mathrm{H}, \mathrm{s}), 1.366\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 16.8, J_{\mathrm{HH}} 7.4\right)$, and $0.794(9 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{Z} 330\left(\mathrm{M}^{+}, 25 \%\right), 315\left(\mathrm{M}^{+}=\mathrm{Me}, 15\right), 245\left(\mathrm{M}^{+}\right.$ - $\mathrm{H}_{2} \mathrm{C}=\mathrm{NBu}^{\mathrm{t}}$, 15), 244 (20), and 105 (PhCHMe ${ }^{+}$, 100): $v_{\text {max. }}$ (Nujol) 3200 (NH) and $1190 \mathrm{~cm}^{-1}$ ($\mathrm{P}=\mathrm{O}$) (Found: N^{+}, 330.1861。 $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OP}$ requires $M, 330.1861$)。

N-Alkyl-N ${ }^{\prime}-p h e n y l-P-(\alpha-m e t h y l b e n z y l) p h o s p h o n i c ~ D i a m i d e s .-~$ These compounds were produced in the reactions of the methanesulphonate (44) with methylamine or tert-butylamine.
$\mathrm{N} \sim$ Methyl-N $\mathrm{N}^{\prime}-$ phenyl-P-($\alpha-$ methylbenzyl $)$ phosphonic diamide (50). (a) A pure sample of one diastereoisomex (product \mathbb{B}) of the phosphonic diamide (50) was obtained by crystallisation of the product from the reaction of the methanesulphonate (44) (sample B) with methylamine (neat or 1.0 M solution in dichloromethane): m.p. $132-133{ }^{\circ} \mathrm{C}$ (unusual softening at 120-122 ${ }^{\circ} \mathrm{C}$) (from dichloromethane-light petroleum); $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 25.7 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.45-6.85(10 \mathrm{H}, \mathrm{m}), 4.660(1 \mathrm{H}, \mathrm{d}$, $J_{\mathrm{PH}} 10.1$, NHPh; exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.24 .7\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 17.3\right.$,
$\left.J_{\mathrm{HH}} 7.4, \mathrm{CHMePh}\right), 2.698\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} \sim 12, J_{\mathrm{HH}} \sim 6\right.$, NHMe ; exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.589\left(3 \mathrm{H}\right.$, dd, $J_{\mathrm{PH}} 11.4, J_{\mathrm{HH}} 5.6$, NHMe; simplifies to d when treated with $\mathrm{D}_{2} \mathrm{O}$), and $1.616(3 \mathrm{H}, \mathrm{dd}$, $\left.J_{\mathrm{PH}} 17.3, J_{\mathrm{HH}} 7.4, \mathrm{CHMePh}\right) ; \mathrm{m} / \mathrm{Z} 274\left(\mathbb{M}^{+}, 35 \%\right), 169\left(\mathrm{M}^{+}-\right.$ CHMePh, 100), 105 ($\mathrm{PhMeCH}^{+}, 35$), and $93\left(\mathrm{PhNH}_{2}{ }^{+}, 40 \%\right.$) ; $v_{\max .}$ (Nujol) 3220, 3190 (NH), and $1170 \mathrm{~cm}^{-1}(\mathrm{P}=0) \quad[$ Found: C , 65.2; $\mathrm{H}, 6.5 ; \mathrm{N}, 10.0$ (approx; very small sample); $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}$ requires $C, 65.7 ; \mathrm{H}, 7.0 ; \mathrm{N}, 10.2 \%$]. A sample recrystallised from toluene was used for single crystal X-ray analysis. The crystal was glued to a glass filament. Data were measured on a Stöe STADI-2 Weissenberg diffractometer with graphite monochromated Mo- K_{α} radiation ($\lambda 0.7107$ A) using an ω-scan technique The data were corrected for Lorentz and polarisation effects.

Crystal data for (50) (racemate): $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}, M=274.3$. Monoclinic, space group $P 2_{1} / a, a=10.450(2), b=13.204(14)$, $C=10.755(11) \&, \beta=97.17(6)^{\circ}, U=1472(3) \mathbb{A}^{3}, Z=4, \mu=$ $1.41 \mathrm{~cm}^{-1}, \overrightarrow{ }(000)=584, D_{c}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}, T=293 \mathrm{~K}$. The structure was solved by direct methods. The phenyl and methyl hydrogen atoms were included in calculated positions with a single fixed thermal parameter. The remaining hydrogen atoms were refined as isotropic atoms and all other atoms were refined with anisotropic thermal parameters. Full-matrix least squares refinement of 166 parameters gave $R=0.056$ and $R_{\mathrm{v}}=0.059$ for 1221 unique reflexions with $I>3 \sigma(I)$. For complete details see Appendix 1.
(b) A sample of the phosphonic diamide (50) having a predominance of the other diastereoisomer (product \mathbb{A}) (diastereoisomex ratio ca. 5 : 1 ratio) was obtained by
distillation of the product from the reaction of the methanesulphonate (4a) (sample A) with methylamine (neat or 1.O M solution in dichloromethane): b.p. $150{ }^{\circ} \mathrm{C}$ (oven temp.) at 0.03 mmHg; $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 26.2$ (majox component); $\delta_{\mathrm{H}}\left(\mathrm{CDCl} \mathrm{Cl}_{3}, 300\right.$ MHz) $7.45-6.85(10 \mathrm{H}, \mathrm{m}), 5.697$ (1 $\mathrm{H}_{\mathrm{p}} \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 6.3$, NHPh: exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $3.290\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}_{\mathrm{PH}} 16.4, J_{\mathrm{HH}} 7.4\right.$, CHMEPh), $2.512\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 11.6, J_{\mathrm{HH}} 5.8\right.$, NHMe; simplifies to d with $\mathrm{D}_{2} \mathrm{O}$), 2.281 (1 H, dq, $J_{\mathrm{pH}} \sim 12$, $J_{\mathrm{HH}} \sim 5.5$, NHME; exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and $1.558\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 17.3, J_{\mathrm{HH}} 7.3\right.$, CHMePh) (smaller signals for diastereoisomer B also present) $m / Z 274\left(M^{*}, 40 \%\right), 169(100), 105(60)$, and 93 (50) (Found: $M^{+}, 274.1235 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}$ require $M, 274.1235$).
(c) An authentic sample of the phosphonic diamide (50) was obtained as a mixture of diastereoisomers (by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR; $\mathbb{A}: \mathbb{B} \sim 2: 1)$ by treatment of N-phenyl- $P=(\alpha$-methylbenzyl) phosphonamidic chloride (\&8) with methylamine: m.p. 126-130 ${ }^{\circ} \mathrm{C}$ (from benzene-light petroleum). The two diastereoisomers could not be separated GLC but were separable by TLC (silica; elute with ethyl acetate).

$N-t e x t-B u t y l-N^{\prime}-p h e n y l-P-(\alpha-m e t h y l b e n z y l) p h o s p h o n i c ~ d i a m i d e$

 (49). (a) A sample of the phosphonamidic diamide (49) (product \mathbb{B} dominant in $9: 1$ ratio before recrystallisation) was obtained from the reaction of the methanesulphonate (44) (sample \mathbb{B}) with neat tert-butylamine: mop. $120-124{ }^{\circ} \mathrm{C}$ (from dichloromethane-light petroleum) (diastereoisomers in ca. 1 : 1 ratio after recrystallisation), for product \mathbb{B} (major) $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 22.5 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) 7.40-6.85(10 \mathrm{H}, \mathrm{m}), 4.71$ (1 $\left.\mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 8, \mathrm{NHPh}\right), 3.246\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} \sim 18, J_{\mathrm{PH}} \sim 7.5\right.$, CHMEPh), $2.46\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 14, \mathrm{NHBu}{ }^{t}\right), 1.622\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}}\right.$17.4, $\left.J_{\mathrm{HH}} 7.4, \mathrm{CHMePh}\right)$, and $1.304(9 \mathrm{H}, \mathrm{s})$; for product \mathbb{A} (minor) $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 22.75 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.40-6.85$ (10 H , $\mathrm{m}), 5.11\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 6, \mathrm{NHPh}\right), 3.227\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} \sim 17, J_{\mathrm{HH}} \sim\right.$ 7.5, CHMePh), $2.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 13, \mathrm{NHBu}^{\mathrm{t}}\right), 1.529(3 \mathrm{H}, \mathrm{dd}$, $\left.J_{\mathrm{PH}} 17.3, J_{\mathrm{HH}} 7.3, \mathrm{CHMePh}\right)$, and $1.190(9 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{Z} 316\left(\mathrm{M}^{+}\right.$, $25 \%), 301\left(\mathbb{M}^{+}-\mathrm{Me}, 5\right), 260\left(\mathbb{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{3}, 10\right), 211\left(\mathrm{M}^{+}-\right.$ CHMEPh, 45), $155\left(\mathbb{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}-\mathrm{CHMEPh}, 100\right), 105\left(\mathrm{PhMeCH}^{+}, 45\right)$, and $93\left(\mathrm{PhNH}_{2}{ }^{+}, 50\right)$; $v_{\text {max }}$ (Nujol) 3390 (free NH), 3210 (NH), and $1190 \mathrm{~cm}^{-1}(\mathrm{P}=0)$; $R_{\mathrm{t}} 8.3$ and 9.5 (major) min (OV 1701, 230 $\left.{ }^{\circ} \mathrm{C}\right)$. [The data from the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum belongs to the 1 : 1 mixture of diastereoisomers obtained after crystallisation. The assignments were made using the 90 MHz spectra of the $9: 1$ mixture and of a $3: 1$ misture (product A dominant) obtained from the reaction of sample a with tert-butylamine. The $\mathrm{N}-\mathrm{H}$ data are from the 90 MHz spectra.]
(b) Samples of the phosphonamidic diamide (49) in which diastereoisomer B was less dominant were obtained from other reactions of the methanesulphonate ($\& 2$) with tert-butylamine。
(C) An authentic sample of the phosphonic diamide (49) was obtained as a mixture of diastereoisomers ($\mathbb{A}: \mathbb{B} \sim$ 3 : 2) by treatment of N-phenyl- $P-(\alpha$-methylbenzyl) phosphonamidic chloride (48) with tert-butylamine: mop. 122-123.5 ${ }^{\circ} \mathrm{C}$ (from ether-1ight petroleum) (Found: C, 68.1; H, 8.1; N, 8.85. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OP}$ requires $\mathrm{C}, 68.3$; $\mathrm{H}, 8.0$; $\mathrm{N}, 8.85 \%$).

$\mathrm{N}-A \operatorname{lky}-\mathrm{N}^{\prime}-(\alpha$-methylbenzyl)-p-phenylphosphonic Diamides.-

 Authentic samples of these compounds were required to confirm that they were not formed in the reactions of the methanesulphonate (44) with methylamine and tert-butylamine。 They were prepared as detailed below.$\mathbb{N}-$ Methyl $-\mathbb{N}^{\prime}-(\alpha-m e t h y l b e n z y l)-$ p-phenylphosphonic diamide (53). (土) $-\alpha$ Methylbenzylamine in benzene (1 mol per ml; 2 mol equiv.) was added to a stirred (powerful magnet) solution of phenylphosphonic dichloride in benzene (0.5 mol per ml) over 20 min in a nitrogen atmosphere. After 2.5 h the mixture was diluted with ether and insoluble material (amine hydrochloride) was removed by filtration under nitrogen. The siltrate containing $N=(\alpha-m e t h y l b e n z y l)-p-p h e n y l p h o s p h o n a m i d i c$ chloride, $\delta_{\mathrm{p}} 32.9$ and 31.3 (diastereoisomers), was treated with an excess of methylamine (4-5 mol equiv.): much solid (amine hydrochloride) precipitated. Solvent was removed (rotary evaporator) and the residue was partitioned between dichloromethane and water. The organic portion was dried (MgSO_{4}) and concentrated to give $\mathrm{N}-$ methyl-N $\mathrm{N}^{\theta}-(\alpha-$ methylbenz-Yl)-pophenylphosphonic diamide (53), $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 20.2$ (major) and 19.8, diastereoisomer ratio ~55: 45. Crystallisation from chloroform-light petroleum gave an almost pure (97 \%) sample of the major diastereoisomer, m.p. 133-136 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.82-7.71(2 \mathrm{H}, \mathrm{m}), 7.52-7.36(3 \mathrm{H}, \mathrm{m})$, $7.34-7.17(5 \mathrm{H}, \mathrm{m}), 4.339\left(1 \mathrm{H}, \mathrm{ddq}, J_{\mathrm{PH}} \sim 9, J_{\mathrm{HH}} \sim 9\right.$ and 6.8 , NHCHMEPh; simplifies to dq with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.866\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J_{\mathrm{PH}} \sim\right.$ $J_{\mathrm{HH}} \sim 9$, NHCHMePh; exchanged mith $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.522\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}}\right.$ 12.1, $J_{H H} 5.8$, NHMe; simplified to d with $\mathrm{D}_{2} \mathrm{O}$), $2.38(1 \mathrm{H}$, br m , NHMe; exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and $1.440\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{HH}} 6.8\right.$,

CHMePh) [small signals for the minor diastereoisomer at 2.633 (dd, $\left.J_{\mathrm{PH}} 11.8, J_{\mathrm{HH}} 5.8, \mathrm{NHMe}\right)$ and $\left.1.480\left(\mathrm{~d}, J_{\mathrm{HH}} 6.8, \mathrm{CHMePh}\right)\right]$; $m / Z 274\left(\mathrm{M}^{+}, 12 \%\right), 259\left(\mathrm{M}^{+}-\mathrm{Me}, 25\right), 154\left(\mathrm{M}^{+}-\mathrm{NHCHM}^{2} \mathrm{MPh}\right.$, 35), and 120 ($\mathrm{PhCHMENH}^{+}, 100$); $v_{\text {max }}$ (Nujol) 3290, 3240 (NH), and $1180 \mathrm{~cm}^{-1}(\mathrm{P}=0)$ (Found: $\mathrm{C}, 65.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 10.25$. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}$ requires $\mathrm{C}, 65.7$; $\mathrm{H}, 7.0$; $\mathrm{N}, 10.2 \%$)。
N-text-Butyl-N $N^{\prime}-(\alpha-m e t h y l b e n z y l)-\mathrm{P}-\mathrm{phenylphosphonic}$ diamide (52). (士) $-\alpha-$ Methylbenzylamine ($363 \mathrm{mg}, 0.39 \mathrm{ml}, 3.0$ monol) was added to a stirred solution of N-tertmbutyl-pmphenylphose phonamidic chloride (51) ${ }^{34}(231 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dichloro methane (3 ml). After 30 min the mixture was diluted with dichloromethane and washed first with dilute aqueous sodium hydroxide (to remove any anhydride), then with dilute hydrochloric acid (HCl added until pH just less than 7) to remove the excess amine, and finally with water. The organic portion was dried $\left(\mathrm{MgSO}_{1}\right)$ and concentrated to give $N=t e r t-b u t y l-N^{\prime} D_{0}$ -(α-methylbenzyl)-pophenylphosphonic diamide (52), b.p. 128 ${ }^{\circ} \mathrm{C}$ (oven temp.) at $0.02 \mathrm{mmHg} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 17.3$ and 16.5 (di= astereoisomers; ratio ca. 1 : 1) ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.90-7.15$ ($10 \mathrm{H}, \mathrm{m}$), 4.62 and 4.29 (total 1 H ; both ddq, $J_{\mathrm{PH},} J_{\mathrm{HH}}, J_{\mathrm{HH}}$ all ~ 7-9, NHCHMePh), 2.81 and 2.71 br (total 1 H ; both dd, $J_{\mathrm{PH}} \sim 9, J_{\mathrm{HH}} \sim 7.5, \mathrm{NHCHM} \mathrm{Ph}$) , 2.42 and 2.24 (total 1 H ; both d, $J_{\mathrm{PH}} 7$ or $8.5, \mathrm{NHBu}^{\mathrm{t}}$), 1.47 and 1.41 (total 3 H ; both $\mathrm{d}, J_{\mathrm{HH}}$ 6.8, CHMePh), and 1.23 and 1.13 (total 9 H ; both s) ; $\mathrm{m} / \mathrm{Z} 316$ $\left(\mathbb{N}^{+}, 20 \%\right), 301\left(\mathbb{N}^{+}-\mathrm{Me}, 85\right), 197\left(\mathbb{N}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CHPh}, 45\right)$, $140\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}-\mathrm{NHCHMEPh}, 60\right), 120\left(\mathrm{PhCHMENH}^{+}, 100\right)$, and 105 (PhCHMe ${ }^{+}, 70$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3400$ (NH), 1225, 1200, and 1120 Cm^{-1} (Found: \mathbb{M}^{+}316.1704. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OP}$ requires $M, 316.1705$).

Stereochemical studies.- In general the methanesulphonate (4.4) (sample \mathbb{A} or sample B) ($27 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added to a large excess of the amine ($\geq 20 \mathrm{~mol}$ equiv.), neat or as a solution in dichloromethane (1.0 or 0.1 M), at room temperature $\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}\right)$ or below $\left(\mathrm{MeNH}_{2} ; 0{ }^{\circ} \mathrm{C}\right)$. In the case of neat methylamine, the amine was added to the methanesulphonate at -5 to $-10{ }^{\circ} \mathrm{C}$. Similar experiments were carried out using the nosylate (45) [3: 97 ratio, highfield diastereoisomer (${ }^{31} \mathrm{P}$ NMR) in excess] with methylamine.

After a preliminary examination of the reaction mixture by ${ }^{31} \mathrm{P}$ NMR spectroscopy, volatile material was evaporated and the residue was partitioned between dichloromethane and water (to remove $\mathrm{RNH}_{3}{ }^{*}$-oms). The organic layer was dried (MgSO_{1}), and the diastereoisomer ratio of the phosphonic diamide rearrangement product (49) or (50) was determined by ${ }^{31} \mathrm{p}$ NMR spectroscopy (Tables 1 and 2, and Table 3 for the nosylate) and confixmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In some cases the rearrangement product was purified by distillation and/or crystallisation and further characterised. In one case, using the methanesulphonate (sample \mathbb{A}) with 0.21 N tert-butylamine, the reaction was followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy which revealed the presence of a reaction intermediate $\delta_{\mathrm{p}} 27.7$ (major) and 27.5 (diastereoisomers) (see Fig. 5).

The phosphonic diamide (49) or (50) was formed cleanly in the reaction with neat amine, but side reactions were significant with 1.0 M solutions $(3-20 \%)$ and extensive with 0.1 M solutions ($15-50 \%$) The side reactions were more pronounced with tert-butylamine than with methylamine, and for diastereoisomer B of the substrate than for diastereoisomer
A. In one case (substrate sample \mathbb{B} with $0.1 \mathrm{M} \mathrm{Bu} \mathrm{NH}_{2}$) a by--product was isolated by extraction from dichloromethane into aqueous acid and back-extraction into dichloromethane after basification: it was characterised as N-tert-butyl-N'-$-[\alpha$-methylbenzyl(phenyl)phosphinoyl]hydrazine (54) by comparison with the authentic sample (see p. 135). The phosphonamidic acid salt $\mathrm{PhMeCHP}(\mathrm{O})(\mathrm{NHPh}) \mathrm{O}^{-}{ }^{+} \mathrm{NH}_{3} \mathrm{Bu}^{\mathrm{t}}$ (63) ($\delta_{\mathrm{p}} \sim 17-18$; variable) present in the water wash from a worked-up reaction mixture (substrate sample \mathbb{A} or B with $0.1 \mathrm{M} \mathrm{Bu}^{t} \mathrm{NH}_{2}$) was isolated as the free acid (61) or its methyl ester (62) and compared with authentic samples (see pp. 132 and 133). Other by-products were tentatively identified only by comparison of their ${ }^{31} \mathrm{P}$ NMR chemical shifts in the reaction mixture with those of authentic samples (pp. 134 and 135), i.e. $\alpha-$ methylbenzyl (phenyl)phosphinic amide (58) ($\delta_{\mathrm{p}} \sim 33$, two diastereoisomers; signals very close to those of the phosphinoyl hydrazine) and the phosphonamidic anhydride [PhMeCHP (O)NHPh] $]_{2} \mathrm{O}$ (64) (δ_{p} 24.4-23.5, several diastereoisomers). The by-product believed to be (64) was converted into the phosphonamidate salt (63) on prolonged standing (96 h) in the reaction medium, strengthening the evidence for its identity as the phosphonamidic anhydride (64).

No attempt was made to correct the observed diastereoisomer ratios of the phosphonic diamide rearrangement product (Tables 1 to 3) to allow for the fact that the non--rearrangement side reactions consumed diastereoisomer B more quickly than diastereoisomer \mathbb{A} (i.e. the rearrangement'product was formed from a substrate that became slightly more enriched in diastereoisomer A as reaction proceeded), or for
the possibility that side reactions involving rearrangement (e.g. reaction with traces of water rather than with RNH_{2}) could, in principal, have diminished the formation of one of the diastereoisomers of the phosphonic diamide more than the other.

Competition Experiments.- The methanesulphonate (44) (1 : 1 mixture of diastereoisomers) (0.07 mmol) was allowed to react with a large excess ($\geq 20 \mathrm{~mol}$ equiv.) of an equimolar mixture of methylamine and tertmbutylamine, neat (at $0{ }^{\circ} \mathrm{C}$) or in dichloromethane $\left(1.0\right.$ or 0.1 M total amine, at $\left.12{ }^{\circ} \mathrm{C}\right)$. The relative amounts of the N-methyl phosphonic diamide (50) (two diastereoisomexs) and the N-tert-butyl phosphonic diamide (a9) (two diastereoisomers) were determined from the ${ }^{31} \mathrm{P}$ NMR spectra of the reaction mixtures (relative peak areas; Table 4) 。

Similar experiments were carried out using the nosylate (45) (ratio 4: 96; ${ }^{31} \mathrm{P}$ NNR highfield diastereoisomer in excess) and the phosphonamidic chloride (88) (30:70 mixture of diastereoisomers) (Table 4). In the latter case both the N-methyl and N-tert-butyl phosphonic diamides were formed as mixtures of diastereoisomers in which the lowfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer was in excess.
(-)-N-Diphenylphosphinoyl-0-(camphor-10-sulphonyl)hydroxylamine (67).- Powdered Nodiphenylphosphinoylhydroxylamine (66) ${ }^{13, a 7}(144 \mathrm{mg}, 0.62 \mathrm{mmol})$ was stirred in an ice bath at 5 ${ }^{\circ} \mathrm{C}$ (bath temperature) and pyridine (0.6 ml) was added, ${ }^{13}$ followed immediately by (-)-camphor-10-sulphonyl chloride ${ }^{\text {aB }}$ (209 mg, $0.83 \mathrm{mmol}, 1.35 \mathrm{~mol}$ equiv.). The resulting paste was
stixred fox 10 min at $5-10{ }^{\circ} \mathrm{C}$, during which time it became much more mobile. The reaction was quenched with ice water (8 ml) and the precipitated solid was filtered off and was washed first with water and then with light petroleum. Crystallisation from aqueous ethanol afforded (-)-N-Diphenyl-phosphinoyl-0-(camphor-10-sulphonyl)hydroxylamine (67) (196 mg, 71%, mop. $153-155{ }^{\circ} \mathrm{C}$ (decompo); $[\alpha]_{D}-11.3^{\circ}$ (c $8.5 ~ x$ 10^{-3} in methanol; limited solubility); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 29.6; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 8.836\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 3.9\right.$, NH ; exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 8.03-7.89(4 \mathrm{H}, \mathrm{m}), 7.64-7.46(6 \mathrm{H}, \mathrm{m}), 3.38(2 \mathrm{H}, \mathrm{AB}$, $\left.\delta_{\mathrm{A}} 3.698, \quad \delta_{\mathrm{B}} \quad 3.064, \quad J_{\mathrm{AB}} \quad 15.3, \quad \mathrm{SCH}_{2}\right), 2.44-2.26 \quad(2 \mathrm{H}, \mathrm{m})$, $2.15-1.91(3 \mathrm{H}, \mathrm{m}), 1.78-1.65(1 \mathrm{H}, \mathrm{m}), 1.49-1.39(1 \mathrm{H}, \mathrm{m})$, $1.037(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $0.833(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m / z(\mathrm{FAB}$; NOBA matrix) $470\left(\mathrm{~N}+\mathrm{Na}^{+}, 12 \%\right)$ and $448\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; $v_{\max .}(\mathrm{Nujol})$ $3050(\mathrm{NH}), 1750(\mathrm{C}=\mathrm{O}), 1220,1210,1200$, and $1180 \mathrm{~cm}^{-1}(\mathrm{P}=0)$. The analysis sample, recrystallised from aqueous ethanol had m.p. 250-152 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 59.5; H, 5.95; N, 3.2. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{5}$ PS requires $\mathrm{C}, 59.05 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.1 \%$) The other enantiomer $(67),[\alpha]_{D}+11.2^{\circ}$ (c 8.5 ss 10^{-3} in methanol), was prepared as above but using (+)-camphor-10-sulphonyl chloride。
N^{\prime}, P-Diphenyl-N-tert-butylphosphonic Diamide (68).m The combined products from the reactions of tert-butylamine with the (-)-camphor-10-sulphonate (67) (see stereochemical studies below were dissolved in dichloromethane and the solution was washed with dilute aqueous sodium hydroxide (to remove the NMR chiral shift reagent) and water. The organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated and the residue was crystallised from dichloromethane-light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$)
to give the phosphonic diamide (68), m.p. $176-179{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13}$ m.p. 176-178 ${ }^{\circ} \mathrm{C}$) ; $[\alpha]_{\mathrm{D}}-0.66^{\circ} \quad(\mathrm{c} \quad 0.035$ in chloroform); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 12.7 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.03-7.35(5 \mathrm{H}, \mathrm{m}), 7.25-6.78(5 \mathrm{H}$, $\mathrm{m}), 5.12\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 7.5, \mathrm{NHPh}\right), 2.80\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 10\right.$, NHBu ${ }^{t}$), and $1.33(9 \mathrm{H}, \mathrm{s})$; $m / z 288\left(\mathrm{M}^{+}, 100 \%\right)$; $v_{\max .}$ (Nujol) $3380,3240(\mathrm{NH})$, and $1200 \mathrm{~cm}^{-1}(\mathrm{P}=0)$.
N^{\prime} "P-Diphenyl-N-methylphosphonic Diamide (72).- The combined products from the reaction of methylamine with the camphor--10-sulphonate (67) (both enantiomers) were dissolved in dichloromethane and the solution was washed with dilute aqueous sodium hydroxide (to remove the NMR chiral shift reagent) and water. The organic portion was dried (MgSO_{1}) and concentrated. Trituration with ether-light petroleum gave the phosphonic diamide (72), m.p. $156-160{ }^{\circ} \mathrm{C}$ (lit., ${ }^{22}$ m.p. 156-158 $\left.{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 17.4 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.08-7.34(5 \mathrm{H}, \mathrm{m}), 7.21-6.74$ $(5 \mathrm{H}, \mathrm{m}), 5.29(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 3.03-2.33(1 \mathrm{H}, \mathrm{br})$, and 2.64 ($3 \mathrm{H}_{g} \mathrm{dd}, J_{\mathrm{PH}} 12, J_{\mathrm{HH}} 5$); $\mathrm{m} / \mathrm{Z} 246\left(\mathrm{M}^{+}, 83 \%\right.$) ; $v_{\max }$ (Nujol) 3220 (NH) and $1175 \mathrm{~cm}^{-1}(\mathrm{P}=0)$ 。

Stereochemical studies.- (a) The (-)-camphor-10-sulphonate (67) ($31 \mathrm{mg}, 0.07 \mathrm{mmol}$) was added to a solution of tert-butylamine (20 mol equiv。) in dichloromethane ($0.05,0.3,1.0$, or 3.0 M) at room temperature. Also neat tert-butylamine (> 20 mol equiv.) was added to the substrate at room temperature. When reaction was complete all volatile material was removed and the residue was partitioned between dichloromethane and water. The organic portion was dried (MgSO_{4}) and all of the solvent removed. The cxude product was dissolved in CDCl_{3} and investigated by ${ }^{1} \mathrm{H}$ NMR spectroscopy using (-) -methylphenylphosphinothioic acid (70) ${ }^{36}$ (1 mol equiv.) as
a chiral shift reagent, to determine the enantiomer composition of the phosphonic diamide rearrangement product (Table 5) 。
(b) The (+)-camphor-10-sulphonate (67) (31 mg, 0.07 mmol$)$ was added in one case to a 1.0 M solution of tert-butylamine (20 mol equiv.) in dichloromethane at room temperature and in the other to $1.0 \mathbb{M}$ solution of tert-butylamine (20 mol equiv.) in dichloromethane containing tert-butylamonium $(-)$-camphor-10-sulphonate (1 mol equiv.) at room temperature. When reaction was complete, the mistures were treated as described in (a) above (Table 6)。
(c) The methanesulphonate (69) ${ }^{13,07}$ ($22 \mathrm{mg}, 0.07 \mathrm{mmol}$) was added to a 1.0 M solution of tert-butylamine (20 mol equiv.) in dichloromethane at room temperature. When the reaction was complete, the mixture was treated as described in (a) (Table 6)
(d) For both enantiomers, the camphor-10-sulphonate (67) (31 mg, 0.07 mmol) was added to a 1.0 M solution of methylamine (20 mol equiv.) in dichloromethane at $0{ }^{\circ} \mathrm{C}$. When the reaction had gone to completion, the mixture was treated as described in (a) except that (+)-phenyl-tert-butylphosphinothioic acid (71) ${ }^{36.87}$ (1.3 mol equiv.) was used as the NNR chiral shift reagent (Table 6).

The Reaction of $\mathbb{N}-[B i s(4-m e t h y l b e n z y 1) p h o s p h i n o y 1]-0 \cdots-n i t-$ robenzenesulphonylhydroxylamine (79) with Amines.- The nosylate (79) ${ }^{\text {a3 }}$ ($33 \mathrm{mg}, 0.07 \mathrm{mmol}$) was added to a 0.5 m solution of the appropriate amine (10 mol equiv.; tert-butylamine, N-methyl-tert-butylamine, or diisopropylamine) in dichloro-
methane at room temperature. When the reaction had gone to completion all volatile material was removed and the residue was partitioned between dichloromethane and water. The organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated to give the crude hydrazide, which was purified and concentrated as detailed below.

Hydrazide (80).- The crude hydrazide was dissolved in ether and extracted into dilute hydrochloric acid. The acidic solution was treated with dilute aqueous sodium hydroxide and the regenerated free hydrazide was back-extracted into dichloromethane. The solution was dried (MgSO_{4}) and concentro ated, and the residue was triturated with light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$) to give N-[bis(4-methylbenzyl)phosphinoyl]-$-N^{\prime}-t e r t-b u t y l h y d r a z i n e ~(80), ~ m 。 p . ~ 80-85 ~{ }^{\circ} \mathrm{C} \quad$ (1it., ${ }^{19} \mathrm{mop}$ 。 $\left.88-90{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 42.5$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.08(8 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.83$ (1 $\left.\mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 13, \mathrm{~N} H\right), 3.07\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 15\right.$; slight non-equivalence of diastereotopic hydrogens apparent), $2.29(\sim 6 \mathrm{H}, \mathrm{s}$, $\mathrm{p}-\mathrm{Me}$ and $\sim 2 \mathrm{H}, \mathrm{br}, \mathrm{N} H$ and water), and $1.03(9 \mathrm{H}, \mathrm{s})$.

Hydrazide (82).- Trituration of the crude hydrazide with light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) gave $\mathrm{N}-[$ bis (4-methylbenzyl)phosphinoyl] $-\mathbb{N}^{\prime}-m e t h y l-N^{\prime}-t e r t-b u t y l h y d r a z i n e ~(82), ~ m . p . ~$ $46-50{ }^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) \quad 36.2 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \quad 300 \mathrm{MHZ}\right)$ $7.20-7.07(8 \mathrm{H}, \mathrm{m}), 3.284\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} \sim 15, \mathrm{NH}\right), 3.248(2 \mathrm{H}$, $\left.\mathrm{dd}, J_{\mathrm{PH}} \sim J_{\mathrm{HH}} \sim 15, \mathrm{PCHHAr}\right), 2.946\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} \sim J_{\mathrm{HH}} \sim 15\right.$, PCHHAr), $2.498(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.320(6 \mathrm{H}, \mathrm{s}, \mathrm{p}-\mathrm{Me})$, and 1.003 ($9 \mathrm{H}, \mathrm{s}$) ; m/Z $358\left(\mathrm{M}^{+}, 30 \%\right), 343\left(\mathrm{M}^{+}-\mathrm{Me}, 10\right), 273$ [$\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{NH}_{2}{ }^{+}$, 55], and 105 ($\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}$, 100); $v_{\max .}$ (Nujol) 3155 (NH) and $1150 \mathrm{~cm}^{-1} \quad(\mathrm{P}=0)$ (Found: M^{+}, 358.2168. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OP}$ requires $M, 358.2174$).

Hydrazide (81).- The crude product was triturated, then crystallised from light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) giving N -[bis(4-methylbenzyl)phosphinoyl]-N ${ }^{\prime}, N^{\prime}$-diisopropylhydrazine (81), m.p. $50-52{ }^{\circ} \mathrm{C} ; \quad \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) \quad 35.4 ; \quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \quad 300 \mathrm{MHz}\right)$ 7.23-7.08 ($8 \mathrm{H}, \mathrm{m}), 3.544\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 20.4, \mathrm{NH}\right), 3.225(2 \mathrm{H}$, $\mathrm{dd}, J_{\mathrm{PH}} 17.6 J_{\mathrm{HH}}$ 14.7, ArCHHP), 3.049 ($2 \mathrm{H}, \mathrm{sep} t, J_{\mathrm{HH}} 6.5$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right), 2.999\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} \sim 15, J_{\mathrm{HH}} 14.7\right.$, ArCHHP),2.319(6) $\mathrm{H}, \mathrm{s}, \mathrm{p}-\mathrm{Me})$, and $0.982\left(12 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{HH}} 6.5, \mathrm{Me} \mathrm{CH}\right) ; \mathrm{m} / \mathrm{Z} 372\left(\mathrm{M}^{+}\right.$, $100 \%), 357\left(\mathrm{M}^{+}-\mathrm{Me}, 20\right), 315\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{CH}_{2}=\mathrm{CHMe}, 70\right)$, and 105 ($\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{*}, 75$); $v_{\max }$ (Nujol) 3190 (NH) and $1170 \mathrm{~cm}^{-1}(\mathrm{P}=0)$ (Found: N^{+}, 372.2365. $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OP}$ requires $M, 372.2331$).

Competitive Reactions of the N -[Bis(4-methylbenzyl)phos-phinoyl]-0-p-nitrobenzenesulphonylhydroxylamine (79) with Amines.- The nosylate (79) (33 mg, 0.07 mmol) was added to a solution of the two amines (0.5 M total amine) in dichloromethane at room temperature. The two amines were in a $1: 1$ ratio (5 mol equiv. each) and wexe either tert-butylamine and N-methyl-tert-butylamine or tert-butylamine and diisopropylamine. When reaction was complete the ratio of the two hydrazide products was determined by ${ }^{31} \mathrm{P}$ spectroscopy (Table 11).

Menthyl P-(Bromomethyl)-N-tert-butylphosphonamidate (112).A mixture of dried (-)-menthol ($2.55 \mathrm{~g}, 16.3 \mathrm{mmol} ; 1.05 \mathrm{~mol}$ equiv.) and triethylamine ($1.58 \mathrm{~g}, 15.6 \mathrm{mmol}$) in dichloromethane (15 ml) was added dropwise at room temperature, over 10 min , to a stirred (powerful magnet) solution of bromomethylphosphonic dibromide (113) ${ }^{59}$, $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.5$, (4.68g, 15.6 mmol) in dichloronethane (15 ml), with moisture excluded. After 20 min more (-)-menthol ($0.12 \mathrm{~g}, 0.78 \mathrm{mmol}, 5 \mathrm{~mol}$ \%) and triethylamine ($79 \mathrm{mg}, 0.78 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added and the mixture was left stirring for a further 30 min. tert-Butylamine ($4.66 \mathrm{~g}, 63.9 \mathrm{mmol} ; 4.1 \mathrm{~mol}$ equiv.) was added dropwise (exothermic) and when the reaction mixture had cooled (ca. 20 min) [$\delta_{\mathrm{p}} 18.4$ (major) and 18.1 (mixture of diastereoisomers, ratio 54 : 46) ; yield ~ 62 \% (calc. 3.56 g) (several by-products)] all volatile material was removed and the residue was partitioned between toluene and water. The organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated; crystallisation from 90% aqueous ethanol (20 ml) gave a mircture of diastereoisomers [1.53 g, yield 27 \%; 46 : 54 ratio, highfield ${ }^{31} \mathrm{P}$ NMR resonance now in excess]. Recrystallisation from 92% aqueous ethanol (10 ml ; overnight refrigeration) gave some material (374 mg) with a diastereoisomer ratio of 3 : 97 which was recrystallised from light petroleum (20 ml) to give the pure highfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer of menthyl $\mathrm{P}-($ bromomethyl)-N-tert-butylphosphonamidate (112) (sample $\mathbb{A})$ m.p. $155-155.5{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 18.0 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 4.225$ (1 $\mathrm{H}, \mathrm{ddt}, J_{\mathrm{PH}} 8.0, J_{\mathrm{HH}} 4.5$ and 10.6$), 3.278\left(2 \mathrm{H}, \mathrm{ABP}, \delta_{\mathrm{A}} 3.341\right.$, $\left.\delta_{\mathrm{B}} 3.211, J_{\mathrm{AB}} 13.0, J_{\mathrm{AP}} 10.3, J_{\mathrm{BP}} 7.1, \mathrm{PCH}_{2} \mathrm{Br}\right), 2.646(1 \mathrm{H}, \mathrm{d}$, $J_{\mathrm{pH}} 6.9$, NH ; exchanges with $\mathrm{D}_{2} \mathrm{O}$), $2.287(1 \mathrm{H}, \mathrm{m}), 2.077(1 \mathrm{H}$, d sept., $J_{\text {н }} 2.5$ and 7.0), $1.663(2 \mathrm{H}, \mathrm{m}), 1.55-0.75$ (14 H),
and $1.355\left(9 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 0.6, \mathrm{NBu} \mathrm{t}^{t}\right): \mathrm{m} / \mathrm{Z}$ (no M^{+}) $354,352\left(\mathrm{M}^{+}-\right.$ Me, 7%; ratio 1 : 1), 232, 230, (33; ratio 1 : 1), and 216, $214\left(\mathrm{~N}^{+}-\mathrm{Me}-\mathrm{C}_{10} \mathrm{H}_{18}, 100\right.$; ratio 1 : 1$) ; \mathrm{m} / \mathrm{z}$ (CI) 387,385 $\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{*}, 1 \%\right.$ ratio $\left.1: 1\right), 370,368\left(\mathrm{M}+\mathrm{H}^{+}, 5 ;\right.$ ratio $\left.1: 1\right)$, 290 (30), and 74 (100); $v_{\max }$ (Nujol) 3220 (NH) and $1245 \mathrm{~cm}^{-1}$ $(\mathrm{P}=0): R_{\mathrm{t}} 14.7 \mathrm{~min}\left(\mathrm{BP} 5,210{ }^{\circ} \mathrm{C}\right.$) (Found: $\mathrm{C}, 48.85 ; \mathrm{H}, 8.1$; $\mathrm{N}, 3.8$ 。 $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{BrNO}_{2} \mathrm{P}$ requires C , $48.9 ; \mathrm{H}, 8.5 ; \mathrm{N}, 3.8 \%$) A portion of this diastereoisomer (100% by GLC) was recrystallised from dichloromethane-light petroleum and then slowly from aqueous ethanol to produce a sample for single crystal X-ray analysis. The crystal was glued to a glass filament. Data were measured on a Stöe STADI-2 Weissenberg diffractometex. All data were collected using graphite monochromated Mo- K_{α} radiation ($\left.\lambda 0.7107 \mathrm{~A}\right)$ at 293 K using an $\omega-s c a n$ technique. The data were corrected for Lorentz and polarisation effects.

Crystal data for (112): $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{BrNO}_{2} \mathrm{P}, \mathrm{M}=368.3$. Hexagonal, space group $P 6_{1}, a=10.581(2), c=30.345(25) \AA, U=2942(3)$ $\AA^{3}, Z=6, \mu=2.18 \mathrm{~mm}^{-1}, \vec{F}(000)=1164, D_{c}=1.248 \mathrm{~g} \mathrm{~cm}^{-3}$ 。 An absorption correction was applied to the data, maximum and minimum transmission factors 0.757 and 0.250 respectively. 1732 Unique reflexions were measured with 687 having $I>$ $3 \sigma(I)$ regarded as observed. The structure was solved by direct methods and difference Fourier techniques. The bromine and phosphorus were refined as anisotropic, all other non-hydrogen atoms were refined with isotropic thermal parameters. The hydrogen atoms were included in calculated
positions．The final R and R_{w} values are 0.085 and 0.065 respectively for 90 variables，$(\Delta / \sigma)_{\max }=0.001$ ．See Appendix 2 for complete details．

The material from one of the mother liquors of the bromomethylphosphonamidate（112）was crystallised from light petroleum to give a mixture of the diastereoisomers of（112） （sample \mathbb{B} ），m。p． $113-115{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 18.3$（major）and 18.0 ， ratio $60: 40 ; \delta_{H}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 4.34-4.17$（1 H ， m ）， 3．39－3．17（2 H，m），2．731（major）and 2.650 （total 1 H ；both $\mathrm{d}, \mathrm{J}_{\mathrm{PH}} 7.2$ or $\left.7.5, \mathrm{~N} H\right), 2.34-2.03(2 \mathrm{H}, \mathrm{m}), 1.72-1.62(2 \mathrm{H}$, m）， $1.55-0.75(14 \mathrm{H})$ ，and 1.355 and 1.351 （major）（total 9 H ； both $d, J_{\mathrm{PH}} 0.7$ ）； m / Z as above；$v_{\max }$（Nujol） 3300,3260 （ NH ）， and $1235 \mathrm{~cm}^{-1}(\mathrm{P}=0) ; R_{\mathrm{t}} 14.3$（major）and $14.7 \mathrm{~min}(\mathrm{BP} 5,210$ ${ }^{\circ} \mathrm{C}$ ）。

Menthyl Phosphorodichloridate（118）${ }^{\circ 9}$ ．－A mixture of $(-)$ menthol（3．13 g， 20 mmol ）and triethylamine（2．02 g， 20 mmol）in light petroleum（ 25 ml ）was added dropwise over 20 min to a cooled（ice bath）and stirred solution of phosphoryl chloride（3．07 g， 20 monol）in light petroleum（15 ml），with moisture excluded．After addition，the mixture was stirred at room temperature for 3.5 h and the precipitated amine hydro－ chloride was removed by filtration under nitrogen．The filtrate was concentrated to give menthyl phosphorodichlor－ idate（118）（5．06 $\mathrm{g}, 93 \%$ ）$\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 5．5；$v_{\max }$（film） 1290 $(\mathrm{P}=0), 990$ ，and $970 \mathrm{~cm}^{-1}(\mathrm{P}-\mathrm{O}-\mathrm{C})$ ；this was used without further purification．（N．B．An ampouled sample blackened within two weeks at roon temperature。）

Menthyl N-tert-Butylphosphorochloramidate (119).- tert-Butylamine ($2.66 \mathrm{~g}, 36.4 \mathrm{mmol}$) in benzene (5 ml) was added dropwise over 5 min to a cooled (ice bath) and stirred solution of the phosphorodichloridate (118) (4.97 9, 18.2 mmol) in benzene (20 ml), with moisture excluded. After 10 min the mixture was warmed to room temperature and stirred for a further 2 h . The precipitated amine hydrochloride was removed by filtration and the filtrate was concentrated to give menthyl N-tert-butylphosphorochloramidate (119) (5.35 9, 95 $\%$) as an oil (slowly solidified), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 10.5$ (major) and 9.8 (diastereoisomers; ratio $65: 35$) and an impurity (9 $\%$) ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.63-4.13(1 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, $2.43-0.70(18 \mathrm{H})$, and $1.33(9 \mathrm{H}, \mathrm{s})$. This material was used without any further purification.

Menthyl Methyl N-tert-Butylphosphoramidate (120).- To a cooled (ice bath), stirred solution of the phosphorochlore amidate (119) (4.3 $9,14 \mathrm{mmol})$ in light petroleum (b.p. 40-60 $\left.{ }^{\circ} \mathrm{C}\right)(8 \mathrm{ml}), 2 \mathrm{M}$ sodium methoxide (14 ml, 28 mmol ; 2 mol equiv.) in methanol was added. After 10 min the excess metho oxide was quenched with ammonium chloride (1.5 9, 28 mol) and volatile material was removed. The residue was partitioned between light petroleum and water, and the organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude product (3.6 $9,85 \%$), $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 7.2$ (major) and 6.7 (diastereoisomers; ratio $60: 40$) . Crystallisation from light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) at $-40{ }^{\circ} \mathrm{C}$ gave menthyl methyl N-tert-butylphosphoramidate (120), m.p. 73-76 ${ }^{\circ} \mathrm{C}$ (diastereoisomer ratio now 53 : 47, lowfield ${ }^{31} \mathrm{P}$ NNR resonance still dominant $) ; \delta_{H}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 4.22-4.09(1 \mathrm{H}, \mathrm{m}), 3.683$ and
3.670 （major）（total 3 Hi both $\mathrm{d}, J_{\mathrm{PH}} 11.3$ or 11．4，OMe）， 2.483 and 2.436 （major）（total 1 H ；both d ，$J_{\mathrm{HH}} 7.3$ or 7.1 ， NH：exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.39-2.08(2 \mathrm{H}, \mathrm{m}), 1.72-1.59(2 \mathrm{H}$ ， $\mathrm{m}), 1.54-0.77(14 \mathrm{H})$ ，and 1.275 （major）and 1.271 （total 9 H ， both $d, J_{\mathrm{PH}} 0.7$ or 0.8$) ; m / Z 305\left(\mathbb{M}^{+}, 1 \%\right), 290\left(\mathbb{M}^{+}-\mathrm{Me}, 8\right)$ ， $168\left(\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{17}, 50\right), 152\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{10} \mathrm{H}_{18}, 100\right)$ ，and $112\left(\mathrm{M}^{+}\right.$ $-\mathrm{C}_{10} \mathrm{H}_{17}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 60$ ）：$v_{\max }$（Nujol） 3220 （NH）and $1240 \mathrm{~cm}^{-1}$ （ $\mathrm{P}=0$ ）（Found： C ，58．9； $\mathrm{H}, ~ 10.3 ; \mathrm{N}, 4.4 ; \mathrm{M}^{+}$．305．2127． $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{P}$ requires $\mathrm{C}, 59.0 ; \mathrm{H}, 10.6 ; \mathrm{N}, 4.6 \% ; \mathrm{M}, 305.2120$ ）。 Chromatography of a 60 ： 40 mixture of diastereoisomers ［rotating silica layer（chromatatron），eluent 1 ： 1 ethyl acetate－light petroleum（b．p． $40-60{ }^{\circ} \mathrm{C}$ ）］followed by the repeated chromatography of enriched fractions afforded a small sample that was $>96 \%$ the lowfield（ ${ }^{31} \mathrm{p}$ NMR）di－ astereoisomer（3\％yield）．

Derivatives of Menthyl Methyl N－tert－Butylphosphoramidate （120）．－Although the phosphoramidate（120）was crystalline， all attempts to grow crystals suitable x－ray studies were unsuccessful．Several derivatives were prepared as summarised below，but none of these wexe obtained in a crystalline form． （a）tert－Butyl hypochlorite ${ }^{90}(87 \mathrm{mg}, 0.8 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1$ ml）was added to a cooled（ice bath）and stirred solution of the phosphoramidate（120）（mixture of diastereoisomers）（197 $\mathrm{mg}, 0.65 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.9 \mathrm{ml}) 。 9.63$ After 3 h at room temperature，removal of volatile material afforded menthyl． methyl N－tert－butyl－N－chlorophosphoramidate（121）as an oil， $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 6.6$（majox）and 6.5 （diastereoisomers；ratio 53 ： 47）；$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.43-3.90(1 \mathrm{H}, \mathrm{m}), 3.72\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 10\right.$ ， OMe$)$ ， $2.60-0.67(18 \mathrm{H}, \mathrm{m})$ ，and $1.40(9 \mathrm{H}, \mathrm{s})$ 。
(b) The phosphoramidate (120) (mixture of diastereoisomers) (153 mg, 0.5 mmol) was stirred with sodium hydride (31 mg , 1.3 mmol; 2.6 mol equiv.) in DMF (1 ml) at room temperature. After $1.3 \mathrm{~h}, \mathrm{p}$-methoxybenzyl chloride $(235 \mathrm{mg}, 1.5 \mathrm{mmol}, 3$ mol equiv.) was added and the mixture was stirred for a further 30 min. The excess sodium hydride was quenched with methanol ($60 \mu \mathrm{l}$) and all solvent was removed. The residue was partitioned between ether and watex and the organic portion was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography [silica layer; 1 : 3 ethyl acetate-light petroleum (40-60 $\left.{ }^{\circ} \mathrm{C}\right): R_{\mathrm{f}}$ 0.21] to remove any remaining p-methoxybenzyl chloride, afforded menthyl methyl N-p-methorybenzyl-N-text-butylphosphoramidate (122) (171 mg, 79%) as a semi-solid (completely molten above $50{ }^{\circ} \mathrm{C}$) : $\delta_{\mathrm{P}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 11.9$ (major) and 10.8 ($\mathrm{di}-$ astereoisomer; ratio $60: 40) ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 7.07\left(4 \mathrm{H}, \mathrm{AA}^{8} \mathrm{BB}^{\circ}\right.$; $\left.\delta_{A A}, 7.32, \delta_{B B}, 6.82, J_{A B} 9\right), 4.5-3.9(1 \mathrm{H}, \mathrm{m}), 4.20\left(2 \mathrm{H}\right.$, br d_{A} $\left.J_{\mathrm{PH}} 13, \mathrm{PNCH}_{2} \mathrm{Ar}\right), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{p}-\mathrm{OMe}), 3.63\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 11\right.$, POMe), $2.5=0.8(18 \mathrm{H})$, and 1.30 (major) and 1.28 (total 9 H ; both $\left.s, N B u^{t}\right) ; m / z 425\left(N^{+}, 1 \%\right), 369\left(M^{+}-H_{2} C=C M e_{2}, 5\right)$, and $230(100) ; m / Z(C I) 426\left(\mathrm{M}+\mathrm{H}^{+}, 11 \%\right), 288\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{C}_{10} \mathrm{H}_{18}, 17\right)$, and 230 (100): $v_{\text {max. }}$ (Nujol) $1240 \mathrm{~cm}^{-1}(\mathrm{P}=0)$. (N_{\circ} B. p-Methoxybenzyl chloride was used without drying; a portion left over molecular sieves for 24 h decomposed.).
(c) Similar alkylation of the phosphoramidate (120) (misture of diastereoisomers) ($153 \mathrm{mg}, 0.5 \mathrm{mmol})$ with p-cyanobenzyl bromide ${ }^{65}$ ($196 \mathrm{mg}, 1$ mol; 2 mol equiv.) gave, after chromatography, menthyl methyl Nop-cyanobenzyl-N-text-butylphosphoramidate (123) (17 \% yield by ${ }^{31} \mathrm{P}$ NMR spectroscopy) as a glass, $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 11.4$ and 10.4 (diastereoisomers; 1 : 1 mix-
ture）；$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.51(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.42$ and 4.40 （total 2 H ； both $\mathrm{d}, \mathrm{J}_{\mathrm{PH}} 12$ or $\left.13, \mathrm{PNCH}_{2} \mathrm{Ar}\right), 4.10(1 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{d}$ ， $J_{\mathrm{PH}} 11$, POMe）， $2.45-0.65(18 \mathrm{H})$ ，and 1.29 and 1.27 （total 9 $\mathrm{H}, \operatorname{both} \mathrm{s}) ; m / Z 420\left(\mathbb{N}^{+}, 1 \%\right), 405\left(\mathbb{N}^{+}-\mathrm{Me}, 9\right), 283\left(\mathbb{M}^{+}-\right.$ $\left.\mathrm{C}_{10} \mathrm{H}_{17}, 14\right), 267\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{10} \mathrm{H}_{18}, 100\right)$ ，and $227\left(\mathbb{M}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}\right.$ $\left.-\mathrm{C}_{20} \mathrm{H}_{17}, 15\right) ; \mathrm{m} / \mathrm{Z}(\mathrm{CI}) 421\left(\mathbb{N}+\mathrm{H}^{+}, 80 \%\right), 405\left(\mathrm{M}^{+}-\mathrm{Me}, 17\right)$ ， $365\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 10\right), 306(36), 283\left(\mathrm{~N}+\mathrm{H}^{+}-\mathrm{C}_{10} \mathrm{H}_{18}, 100\right)$ ， $267\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{10} \mathrm{H}_{18}, 75\right), 244$（21），and $227\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}-\right.$ $\mathrm{C}_{10} \mathrm{H}_{18}, 24$ ）；$v_{\text {max．}}$（film） $2220(\mathrm{C} \equiv \mathrm{N})$ and $1240 \mathrm{~cm}^{-1}(\mathrm{P}=0)$ 。
（d）Similar alkylation of the phosphoramidate（120）（mix－ ture of diastereoisomers）（ $99 \mathrm{mg}, 0.32$ mol）with N （bromo－ methyl）phthalimide ${ }^{\sigma \sigma}$（ 259 mg ， 1.08 mol； 3.4 mol equiv。） （reaction proceeded overnight）gave，aftex chromatography， （silica layer；ethyl acetate；$R_{⿷} 0.52$ ），menthyl methyl N－tert－butyl－N－（phthalimidomethyl）phosphoramidate（12a）（59 $\mathrm{mg}, 39 \%$ ）as an oil；$\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 10.8$（major）and 9.9 （di－ astereoisomers；ratio $63: 37$ ）：$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(4 \mathrm{H}, \mathrm{m})$ ， $5.34-5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{~N}\right), 4.22(1 \mathrm{H}, \mathrm{m}), 3.74\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}}\right.$ 12，POMe）， $2.47-0.55(18 \mathrm{H})$ ，and 1.42 （major）and 1.40 （total $9 \mathrm{H} ;$ both s$) ; \mathrm{m} / \mathrm{Z}(\mathrm{CI}) 465\left(\mathrm{M}+\mathrm{H}^{+}, 65 \%\right), 449\left(\mathrm{M}^{+}-\mathrm{Me}, 20\right)$ ， $409\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 8\right), 327\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{C}_{10} \mathrm{H}_{18}, 69\right)$ ， $311 \cdot\left(\mathrm{M}^{+}-\mathrm{Me}\right.$ $=\mathrm{C}_{10} \mathrm{H}_{18}$ ，100），and $271\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}-\mathrm{C}_{10} \mathrm{H}_{18}\right.$ ，55）； $v_{\max }$（film） $1770,1710(\mathrm{C}=0)$ ，and $1250 \mathrm{~cm}^{-1}(\mathrm{P}=0)$ ．

O－Menthyl O－Methyl Phosphorothioate（125）．－The phosphor－ amidate（120）（mixture of diastereoisomers）（765 mg， 2.5 mmol）was stirred with sodium hydride（ 103 mg ， $4.28 \mathrm{mmol} ; 1.7$ mol equiv．）in DMF（ 4.6 ml ）at room temperature。After 1.7 h ， carbon disulphide（ 0.76 g ， $10 \mathrm{mmol} ; 4$ mol equiv．）was added （deep red colour）and the mixture was left overnight．${ }^{69}$ The
excess sodium hydride was quenched with methanol (100 $\mu \mathrm{l}$). All solvent was removed and the residue was partitioned between water and ether. The aqueous portion was acidified (HCl) to $\mathrm{pH} \leq 1$ and the liberated free acid was extracted into light petroleum. The crude acid (125) was purified by crystallisation of its ammonium salt from dichloromethane--light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) and then regenerated. The required acid was accompanied by an impurity [the impurity (~ 15%), $\delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.3$ (triethylammonium salt), was evident in the salt of (125), $\% \delta_{\mathrm{p}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 58.3$ and 58.0 (diastereoisomers; triethylamonium salt), and was probably the dialkyl phosphate salt of (126) resulting from reaction with CO_{2} instead of $\left.\mathrm{CS}_{2}\right]$ which was removed by partitioning the triethylamonium salt of the impure product between dichloromethane and water (1 : 1; impurity passes into water). The required acid (125) (545 mg , 82%) was recovered from the organic portion and crystallised from light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$) at $-20{ }^{\circ} \mathrm{C}$ to give 0 -menthyl 0 -methyl phosphorothioate (125) m.p. 65-75 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 61.0$ and 60.6 (diastereoisomers; 1 : 1 mixture) : $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 7.57\left(1 \mathrm{H}\right.$, bre $\mathrm{s}_{\text {。 }}$ OHI), 4.53-4.05 (1 H, m), $3.73\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 13, \mathrm{OMe}\right)$, and $2.40-0.67(18 \mathrm{H}) ; v_{\max }$ (Nujol) $3600-1800$ (several maxima; OH) and $820 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{S})$ 。

A portion of the phosphoramidate (120) having $>96 \%$ the lowfield diastereoisomer (${ }^{31 \mathrm{P}}$ NMR) (52 mg, 0.17 mmol$)$ was treated as above to give the acid (125) [> 96% of the diastereoisomer $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 61.2] and some unreacted substrate (12 mg) which was used later (see p. 162).

[^6]O-Menthyl O-Methyl S-p-Nitrobenzyl Phosphorothioate (127).A mixture of the phosphorothioic acid (125) (48 mg, 0.18 mol), p-nitrobenzyl bromide ($53 \mathrm{mg}, 0.25 \mathrm{mmol} ; 1.4 \mathrm{~mol}$ equiv.) and triethylamine ($25 \mathrm{mg}, 0.25$ mol; 1.4 mol equiv.) in THF (2 ml) was stirred at $50{ }^{\circ} \mathrm{Cos}$ After 1 h the solvent was removed and the residue was partitioned between ether and water and the organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Chromatography afforded O-menthyl 0-methyl S-p-nitrobenzyl phosphorothioate (127) (51 mg, 71%) as an oil; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 26.5$ and 26.1 (diastereoisomexs; ~ 1 : 1 misture); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.84$ (4.H, $\mathrm{AA}^{\wedge} \mathrm{BB}^{\rho}, \delta_{\mathrm{AA}}, 8.15, \delta_{\mathrm{BB}}, 7.54, J_{\mathrm{AB}}$ 9), 4.45-3.88(1 H, m), $4.11\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 16, \mathrm{SCH}_{2} \mathrm{Ar}\right), 3.62$ (3 $\left.\mathrm{H}, \mathrm{d}, \quad J_{\mathrm{PH}} 12, \mathrm{OMe}\right)$, and $2.38-0.65(18 \mathrm{H}) ; \mathrm{m} / \mathrm{Z}$ (CI) 419 $\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{*}, 30 \%\right), 402\left(\mathrm{M}+\mathrm{H}^{+}, 15\right), 281\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{*}-\mathrm{C}_{10} \mathrm{H}_{18}, 100\right)$, and 264. $\left(\mathbb{N}+\mathrm{H}^{+}-\mathrm{C}_{10} \mathrm{H}_{18}, 10\right)$; $v_{\max }$. (film) $1525\left(\mathrm{NO}_{2}\right),-1360\left(\mathrm{NO}_{2}\right)$, and $1270 \mathrm{~cm}^{-1}(\mathrm{P}=0)$. A crystalline sample could not be obtained.

Dicyclohexylamonium O-Menthyl O-Methyl phosphoxothioate (128)." The phosphorothioic acid (125) was treated with dicyclohexylamine in light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$) to give its salt. Crystallisation from light petroleum (b.p. 40-60 $\left.{ }^{\circ} \mathrm{C}\right)$ gave dicyclohexylammonium 0 -menthyl o-methyl phosphoro thioate (129), m.p. 151-154 ${ }^{\circ} \mathrm{Ci} \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 56.7$ and 56.0 (diastereoisomers; 1 : 1 mixture) ; $\delta_{H}\left(\mathrm{CDCl}_{3}\right.$, 300 MHZ) 8.85 (2 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}{ }^{+}$) $4.144(1 \mathrm{H}, \mathrm{m}), 3.612$ and 3.600 (total 3 H ; both $\mathrm{d}, J_{\mathrm{PH}} 13.2$ or 13.0 , OMe), $3.12-2.93(2 \mathrm{H}, \mathrm{m})$, and $2.47-0.77(38 \mathrm{H}) ; \mathrm{m} / \mathrm{Z}$ [Negative ion FAB (NOBA matrix); $\mathbb{N}=\mathrm{X}^{+}$ $\left.\mathrm{Y}^{-}\right] 265\left(\mathrm{Y}^{-}, 100 \%\right) ; v_{\max }$ (Nujol) 3200-2140(NH) cm^{-1} (Found: C , 61.6; H, 10.1; $\mathrm{N}, 3.0 . \mathrm{C}_{23} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{PS}$ requires $\mathrm{C}, 61.7$; $\mathrm{H}, 10.4$; N, 3.1%) 。

The phosphorothioic acid (125) [> 96% the diastereoisomer $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 61.21$ was similarly converted into the dicyclohexylammonium salt and crystallisation from light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$) afforded a sample that was at least 99.5% one diastereoisomer, $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 55.9 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 8.82$ (very broad, NH_{3}^{+}), $4.117\left(1 \mathrm{H}\right.$, dddd, $J_{\mathrm{PH}} \sim 10, J_{\mathrm{HH}} \sim 10,10$, and 4.3), $3.612\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 13.3, \mathrm{OMe}\right), 3.11-2.95(2 \mathrm{H}, \mathrm{m})$, $2.49-2.38(1 \mathrm{H}, \mathrm{m}), 2.256(1 \mathrm{H}, \mathrm{m}), 2.17-2.04(4 \mathrm{H}, \mathrm{m})$, $1.89-1.76(3 \mathrm{H}, \mathrm{m})$, and $1.75-0.79(29 \mathrm{H})$. This sample was allowed to crystallise slowly from a mixture of ether, dichloromethane, and light petroleum to give a crystal suitable for single crystal X-ray analysis. The cxystal was glued to a glass filament. Data were measured on a siemens pe difo fractometer. All data were collected using graphite monochromated $M o-\mathbb{K}_{\alpha}$ radiation $(\lambda 0.7107$ A) at 293 K using an $\omega-s c a n$ technique. The data were corrected for Lorentz and polarisation effects.

Crystal data for (128): $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{PS}^{-} \quad \mathrm{C}_{12} \mathrm{H}_{2 \Lambda} \mathrm{~N}^{+}{ }^{1} /{ }_{2} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, \quad M=$ 484.7. Monoclinic, space group $C 2, a=18.218(10), b=$ 9.892(6), $C=15.851(9) \&, \beta=90.27(3)^{\circ}, U=2856(3)$ 为 $^{3}, Z=$ 4, $\mu=0.20 \mathrm{~mm}^{-1}, \overrightarrow{ }(000)=1068, D_{\mathrm{c}}=1.127 \mathrm{~g} \mathrm{~cm}^{-3} .1478$ Unique reflexions were measured with 1274 having $I>2 \sigma(I)$ regarded as observed. The structure was solved by direct methods and difference Fourier techniques. All non-hydrogen atoms except those of the solvent molecule were refined as anisotropic. The hydrogen atoms bonded to nitrogen were located from diffexence Fourier maps and the positional parametexs refined; all other hydrogen atoms were included in
calculated positions．The final R and R_{v} values are 0.0583 and 0.0629 respectively for 277 variables，$(\Delta / \sigma)_{\max }=0.52$ ． See Appendix 2 for complete details．

Menthyl Methyl N－tert－Butyl－N－methylphosphoramidate（117）．－ The phosphoramidate（117）was isolated from the reaction of the bromomethylphosphonamidate（112）（sample B）with benzyl－ trimethylamonium methoxide：b．p． $74{ }^{\circ} \mathrm{C}$（oven temp．）at 0.2 manHg；$\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 11.5$ and 10.5 （major）（diastereoisomers； ratio 41 ：59）；$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 4.20-4.08$（1 $\left.\mathrm{H}, \mathrm{m}\right), 3.628$ （major）and 3.612 （total 3 H ；both $\mathrm{d}, J_{\mathrm{PH}} 11.3$ or 11．4，OMe）， 2.665 （major）and 2.661 （total 3 H ；both $d, J_{\mathrm{PH}} 9.7$ and 9.5 ， NMe）， $2.34-2.10(2 \mathrm{H}, \mathrm{m}), 1.71-1.58(2 \mathrm{H}, \mathrm{m}), 1.54-0.74$（14． $\mathrm{H})$ ，and $1.315(9 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{Z} 319\left(\mathrm{~N}^{+}, 1 \%\right), 304\left(\mathbb{M}^{+}-\mathrm{Me}, 3\right)$ ， $182\left(\mathbb{N}^{+}-\mathrm{C}_{10} \mathrm{H}_{17}, 12\right), 166\left(\mathbb{M}^{+}-\mathrm{Me}-\mathrm{C}_{10} \mathrm{H}_{18}, 68\right)$ ，and 95 （100）； $\mathrm{m} / \mathrm{Z}(\mathrm{CI}) 320\left(\mathrm{~N}+\mathrm{H}^{+}, 48 \%\right), 264\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 13\right), 182$ $\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{C}_{10} \mathrm{H}_{18}, 100\right), 166\left(\mathrm{~N}^{+}-\mathrm{Me}-\mathrm{C}_{10} \mathrm{H}_{18}, 59\right)$ ，and $126\left(\mathrm{M}+\mathrm{H}^{+}\right.$ $-\mathrm{C}_{10} \mathrm{H}_{18}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CME}_{2}, 68$ ）；$\nu_{\max }$ ．（film） $1250 \mathrm{~cm}^{-1}$（ $\mathrm{P}=\mathrm{O}$ ）（Found： C ， 59．4；H，10．4；N，4．4； $\mathrm{N}+\mathrm{H}^{*}, 320.2355$ 。 $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{P}$ requires C ， 60．2；H，10．7；N，4．4\％； $\mathrm{H}+\mathrm{H}, 320.2355$ ）。

A sample of the phosphoramidate（117）was also isolated from the reaction of the bromomethylphosphonamidate（112）（sample A）with benzyltrimethylamonium methoxide：$\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 11.5$ （major）and 10.5 （diastereoisomers；ratio $95: 5$ ）；$\delta_{H}\left(\mathrm{CDCl}_{3}\right.$ ， 300 MHz ）for major component： 4.137 （ 1 H ，dddd，$J_{\mathrm{PH}} 7.5, J_{\mathrm{HH}} \sim$ $11,10.6,4.5), 3.614\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 11.4, \mathrm{OMe}\right), 2.663(3 \mathrm{H}, \mathrm{d}$ ， $J_{\mathrm{PH}} 9.6$ ， NMe$), 2.31-2.11(2 \mathrm{H}, \mathrm{m}), 1.70-1.60(2 \mathrm{H}, \mathrm{m})$ ， $1.53-1.23(3 \mathrm{H}, \mathrm{m}), 1.314(9 \mathrm{H}, \mathrm{s})$ ，and $1.15-0.79(11 \mathrm{H}, \mathrm{m})$ ； $v_{\max }$（film） $1250 \mathrm{~cm}^{-1} \quad(\mathrm{P}=0)$ 。

An authentic sample of the $N-m e t h y l p h o s p h o r a m i d a t e ~(117) ~ w a s ~$ prepared as follows: the phosphoramidate (120) (mixture of diastereoisomers) ($98 \mathrm{mg}, 0.32 \mathrm{mmol}$) was stirred with sodium hydride ($18 \mathrm{mg}, 0.75 \mathrm{mmol}$) in DMF (0.75 ml) for 2.7 h . Methyl iodide ($136 \mathrm{mg}, 60 \mu \mathrm{l}, 0.96 \mathrm{mmol}, 3 \mathrm{~mol}$ equivo) was then added. After 1 h , volatile material was removed and the residue was partitioned between light petroleum and water. The organic portion was dried $\left(\mathrm{MgSO}_{1}\right)$ and concentrated to give the product [mixture of diastereoisomers; ratio $58: 42$, lowfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomer dominant]. The phosphore amidate (120) (12 mg, 0.04 mmol) $\left[>96 \%\right.$ the lowfield (${ }^{31} \mathrm{P}$) diastereoisomer] that was recovered unchanged from the preparation of the dialkyl phosphorothioate (125) (p. 158) was similarly treated, giving the phosphoramidate (117) having a diastereoisomer ratio 98 : 2 with the lowfield (${ }^{31} \mathrm{P}$ NMR) diastereoisomex dominant.

Menthyl Methyl (tert-Butylamino)methylphosphonate (116).The (text-butylamino)methylphosphonate (116) was isolated from the reaction of the bromomethylphosphonamidate (112) (sample with benzyltrimethylamonium methoxide: $\delta_{p}\left(\mathrm{CDCl}_{3}\right)$ 28.4 and 28.1 (major) (diastereoisomers; ratio 1 : 1.3) : $\delta_{H}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 4.33-4.21(1 \mathrm{H}, \mathrm{m}), 3.791$ (major) and 3.765 (total 3 H ; both $d, J_{\mathrm{PH}} 10.6$ and 10.8 , OMe), 2.922 and 2.920 (major) [total 2 H ; ABP or $\mathrm{d}_{\mathrm{y}} \quad \mathrm{J}_{\mathrm{PH}}$ 15.2, $\mathrm{PCH} \mathrm{H}_{2} \mathrm{~N}$], $2.22-2.07(2 \mathrm{H}, \mathrm{m}), 1.72-1.61(2 \mathrm{H}, \mathrm{m}), 1.51-1.28(2 \mathrm{H}, \mathrm{m})$, $1.26-0.68(13 \mathrm{H}$; includes $N H)$, and 1.085 (major) and 1.078 (total $9 \mathrm{H}, \mathrm{both} \mathrm{s}$) : m/Z $319\left(\mathrm{M}^{+}, 13 \%\right), 304\left(\mathrm{M}^{+}-\mathrm{Me}, 39\right)$, $182\left(\mathbb{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{17}, 18\right)$, and $166\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{10} \mathrm{H}_{18}, 100\right)$; $v_{\text {max. }}$ (film) 3280 (NH) and $1245 \mathrm{~cm}^{-1}$ ($\mathrm{P}=0$) 。 Treatment with
picric acid in benzene and crystallisation from dichloro－ methane－ether－light petroleum afforded the picrate，m．p． 158－163 ${ }^{\circ} \mathrm{C} ; \quad \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 17．0（major）and 16.2 （diastereo－ isomers）：$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 8.886(2 \mathrm{H}, \mathrm{s}), 4.37-4.16(1 \mathrm{H}$ ， $\mathrm{m}), 3.676$（major）and 3.649 （total 3 H ；both $\mathrm{d}, \mathrm{J}_{\mathrm{pH}} 11.3$ or 11．4，OMe）， $3.50-3.30(2 \mathrm{H}, \mathrm{m}), 2.12-1.84(2 \mathrm{H}, \mathrm{m}), 1.70-0.69$ $(16 \mathrm{H})$ ，and $1.475(9 \mathrm{H}, \mathrm{s}) ; v_{\max .}$（Nujol） $3200-2300 \mathrm{~cm}^{-1}$（NH） （Found： $\mathrm{C}, 48.3 ; \mathrm{H}, 6.7 ; \mathrm{N}, 10.1 . \quad \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{P}$ requires C ， $48.2 ; \mathrm{H}, 6.8 ; \mathrm{N}, 10.2 \%)$ 。

A sample of the aminomethylphosphonate（116）was also isolated from the reaction of the bromomethylphosphonamidate （112）（sample \mathbb{A} ）with benzyltrimethylammonium methoxide： $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 28.4$（major）and 28.1 （diastereoisomers；ratio 19 ： 1）：$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ major diastereoisomer： 4.273 （1 H ， dddd，$J_{\mathrm{PH}} 6.9, J_{\mathrm{HH}} \sim 11,10.7$ ，and 4.5$), 3.765\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}}\right.$ 10．8，OMe）， $2.922\left(2 \mathrm{H}, \mathrm{ABP}, \delta_{\mathrm{A}} 2.941, \delta_{\mathrm{B}} 2.903, J_{\mathrm{AB}} 13.9, J_{\mathrm{AP}}\right.$ 14．9，$\left.J_{\mathrm{BP}} 15.7, \mathrm{PCH}_{2} \mathrm{~N}\right), 2.26-2.06(2 \mathrm{H}, \mathrm{m}), 1.73-1.60(2 \mathrm{H}$, m）， $1.58=0.75(15 \mathrm{H}$ ；includes $N H$ ），and $1.076(9 \mathrm{H}, \mathrm{s})$ ； $v_{\max }$（film） 3290 （NH）and $1245 \mathrm{~cm}^{-1}$（ $\mathrm{P}=0$ ）。 Treatment with picric acid in benzene afforded one diastereoisomer of the picrate after crystallisation from ether－light petroleum， m．p． $118.5-120.5{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 16.4 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 8.889$ $(2 \mathrm{H}, \mathrm{s}), 4.259\left(1 \mathrm{H}, \mathrm{dddd}, J_{\mathrm{PH}} 6.8, J_{\mathrm{HH}} \sim 11, \sim 11\right.$ ，and $\left.\sim 5\right)$ ， 3.692 （ $3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 11.3$ ，OMe） $3.360\left(2 \mathrm{H}, \mathrm{ABP}, \delta_{\mathrm{A}} 3.391, \delta_{\mathrm{B}}\right.$ 3．329，$\left.J_{\mathrm{AB}} \sim J_{\mathrm{AP}} \sim J_{\mathrm{BP}} \sim 15\right), 2.13-2.02(1 \mathrm{H}, \mathrm{m}), 1.916(1 \mathrm{H}$ ， $\mathrm{m}), 1.72-1.58(2 \mathrm{H}, \mathrm{m}), 1.30-0.70(14 \mathrm{H})$ ，and $1.470(9 \mathrm{H}, \mathrm{s})$ ： $v_{\text {max．}}$（Nujol） $3140-2300 \mathrm{~cm}^{-1}$（NH）。A portion of this diastereo－ isomer was allowed to crystallise slowly from from ether－ －light petroleum to give a sample suitable for single crystal

X-ray analysis. All crystals examined were found to be non--single. A relatively simple twin with the c axes of both components aligned and the a^{*} and b^{*} axes of one crystal component aligned with $-a *$ and $-b *$ of the other component was glued to glass filament and used for data collection. The relative intensities of the two components were measured and the coincident hko reflexions scaled accordingly. Data were measured on a Stöe STADI-2 Weissenberg diffractometer. All data were collected using graphite monochromated Mo- K_{α} radiation ($\lambda 0.7107 \AA$) at 293 K using an ω-scan technique. The data were corrected for Lorentz and polarisation effects.

Crystal data for the picrate of (116): $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{P}^{*} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$, M $=548.5$. Triclinic, space group P1, $a=20.935(20), b=$ 13.210(13), $C=10.618(3) \AA, \alpha=91.80(6), \beta=95.2(1), \gamma=$ $94.5(1)^{0}, U=2913(4) A^{3}, Z=4, \mu=0.15 \mathrm{~mm}^{-1}, \quad r(000)=1168$, $D_{\mathrm{c}}=1.25 \mathrm{~g} \mathrm{~cm}{ }^{-3}$ 。 7415 Unique reflexions were measured with 4.703 having $I>2 \sigma(I)$ regarded as observed. The structure was solved by direct methods and difference Fourier techniques; it consists of four unique formula units. No hydrogen atoms were located and all atoms were refined as isotropic. The final R and R_{v} values axe 0.132 and 0.142 respectively for 543 variables, $(\Delta / \sigma)_{\max }=0.53$. Although the final R factor is high due to problems of possible overlap of reflexions and lack of sufficient data for full refinement, the essential details of the structure are unambiguous. See Appendix 2 for complete details.

Stereochemical Studies.- A solution of the diastereoisomerically enriched bromomethylphosphonamidate (112) (sample \mathbb{A} or B) ($48 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{THF}(0.45 \mathrm{ml})$ was added to a mixture
of methanolic benzyltrimethylamonium methoxide ($40 \% \mathrm{w} / \mathrm{w}$) ($0.1 \mathrm{ml}, 0.2 \mathrm{mmol}$) and THF (0.45 ml) (reaction medium 0.2 M methoxide in $9: 1$ THF-methanol). After 4.5 h at room temperature the reaction was quenched with ammonium chloride. The mixture was then examined by ${ }^{31} p$ NMR spectroscopy (peak areas) to determine the ratio of the two rearrangement products (Table 12) and for each, the ratio of the diastereoisomexs (Table 13). Volatile material was removed and the residue was partitioned between ether and water. To separate the crude products, the ether layer was washed with 1 M sodium hydrowide solution, water, 1 M hydrochloric acid (acid wash retained), and finally water (final water wash retained). The organic portion was dried (MgSO_{4}) and concentrated to give the phosphoramidate (117). The acid wash and the final water wash were combined and basified with 2 M sodium hydroxide; the liberated (tert-butylamino)methylphosphonate (116) was then extracted into ether, dried (MgSO ${ }_{4}$), and isolated by evaporation of the solvent. The isolated products were further investigated by ${ }^{31} \mathrm{p}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Table 13).

Similar experiments were also performed (sample only) in which (a) the reaction was quenched before completion (16 min; 93% completion), and (b) the reaction was allowed to continue for 6 h before quenching (Table 13).

Bromomethylphosphonic Dichloride (134) ${ }^{92}$. Phosphorus pentachloride $(6.36 \mathrm{~g}, 30.5 \mathrm{mmol})$ was added ${ }^{72}$ to dimethyl bromomethylphosphonate (133) ${ }^{93}, \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 21.3,(2.62 \mathrm{~g}, 12.9$ mol) at room temperature over 10 min with stirring. After 30 min the mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 3.5 h . Additional
phosphorus pentachloride（ $546 \mathrm{mg}, 2.6 \mathrm{mmol})$ was added and heating was continued for a further 30 min．Volatile material $\left(\mathrm{POCl}_{3}\right)$ was removed（rotary evaporatox）and the residue was distilled to give bromomethylphosphonic dichloride（134） （1．54 g， 56% some product lost during manipulation），b．p． $68{ }^{\circ} \mathrm{C}$（oven temp．）at $0.2 \mathrm{mmHg} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 35.1$ ；$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.95$ （d，$J_{\mathrm{PH}} 6, \mathrm{CH}_{2}$ ）。
$\mathrm{p}-($ Bromomethyl）$-\mathrm{N}-$ tert－butylphosphonamidic Chloride（135）．－ tert－Butylamine（ 876 mg ， $12.0 \mathrm{mmol} ; 2 \mathrm{~mol}$ equiv。）in dichloromethane（ 6 ml ）was added to a stirred solution of bromomethylphosphonic dichloride（134）（1．27 g， 6.0 mol）in dichloromethane（ 7 ml ）at $0{ }^{\circ} \mathrm{C}$ over 5 min．The mixture was then allowed to warm to room temperature．After 30 min it was diluted with light petroleum（ 5 ml ）and the precipitated amine hydrochloride was removed by filtration．The solvent was evaporated to give p－（bromomethyl）－N－tert－butylphosphon－ amidic chloride（135）（1．39 9 ， 93% ，$\delta_{p}\left(\mathrm{CDCl}_{3}\right)$ 29．5； $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.45(1 \mathrm{H}, \mathrm{OR}, \mathrm{NH}), 3.55\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{pH}} 7.5, \mathrm{PCH}_{2} \mathrm{Br}\right)$ and $1.41(9 \mathrm{H}, \mathrm{s})$ 。

Methyl $\mathrm{P}-($ Bromomethyl）$-\mathrm{N}=$ text－butylphosphonamidate（129）．－A mixtuxe of methanol（ $55 \mathrm{mg}, 1.73 \mathrm{mmol}$ ）and txiethylamine（ 174. mg， 1.73 momol）in dichloromethane（ 3.5 ml ）was added ${ }^{53}$ dropwise over 20 min to a stirred solution of bromomethylphosphonic dibromide（113）（509 mg， 1.69 momol）in dichloromethane（ 4 ml ）at -30 to $-20^{\circ} \mathrm{C}$ under a nitrogen atmosphere．The mixture was allowed to warm to room temperature．After 40 min ，it was cooled to $0{ }^{\circ} \mathrm{C}$ and text－butylamine（ $273 \mathrm{mg}, 3.7$ mol； 2.2 mol equiv．）in dichloromethane（ 2 ml ）was added over 2 min ．After 50 min at
room temperature, volatile material was removed and the residue was partitioned between ether and water. The organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude product ($273 \mathrm{mg}, 66 \%$). Chromatography [silica layer; 70 : 30 ethyl acetate-light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$), $R_{\mathrm{f}} 0.16$] followed by crystallisation from ether-light petroleum (40-60 ${ }^{\circ} \mathrm{C}$) gave methyl P -(bromomethyl)-N-tert-butylphosphonamidate (129), m。p. $71.5-73{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 22.6 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$) $3.738\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 11.1, \mathrm{OMe}\right), 3.306\left(2 \mathrm{H}, \mathrm{ABP}, \delta_{\mathrm{A}} 3.346, \delta_{\mathrm{B}}\right.$ $\left.3.264, J_{\text {AB }} 13.2, J_{\text {AP }} 9.6, J_{\mathrm{BP}} 8.1, \mathrm{PCH}_{2} \mathrm{Br}\right), 2.78\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{\mathrm{PH}}\right.$ 6, NH), and $1.352\left(9 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 0.7, \mathrm{NBu} \mathrm{t}^{t}\right) ; \mathrm{m} / \mathbb{Z}\left(\mathrm{no} \mathrm{M}^{+}\right), 230$, $228\left(\mathrm{M}^{+}-\mathrm{Me}, 100 \%\right) ; \mathrm{m} / \mathrm{Z}$ (CI) 263, $261\left(\mathrm{M}_{\mathrm{H}}+\mathrm{NH}_{4}{ }^{+}, 20 \%\right.$, ratio 1 : 1), 246, 244 ($\mathrm{M}^{+} \mathrm{H}^{+}$, 49, ratio 1 : 1), 230, 228 ($\mathrm{M}^{+}-\mathrm{Me}$, 18, ratio 1 : 1), 183 (15), 166 (100), and 150 (26); $v_{\max }$ (Nujol) $3220(\mathrm{NH}), 1240$, and $1215 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O})$ (Found: C , 29.5; $\mathrm{H}, 6.0 ; \mathrm{N}, 5.7 . \mathrm{C}_{6} \mathrm{H}_{15} \mathrm{Br}^{2} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 29.5 ; \mathrm{H}, 6.2 ; \mathrm{N}$, 5.7%) 。

The bromomethylphosphonamidate (129) was also prepared (almost quantitatively by ${ }^{31} \mathrm{p}$ NMR spectroscopy) by treating bromomethylphosphonic dichloride (134) in dichloromethane (1 ml per mol) with tert-butylamine (2 mol equivo) in dichloromethane (0.5 ml per mol) at $0{ }^{\circ} \mathrm{C}$ (amine added over 5 min) followed by sodium methoside in methanol.
tert-Butyl \quad-(Bromomethyl)-N-tert-butylphosphonamidate (131).- Potassium tert-butoxide ($263 \mathrm{mg}, 2.35 \mathrm{mmol} ; 1.1 \mathrm{~mol}$ equiv.) was added (gradually, in small portions) to a stirred solution of the bromomethylphosphonamidic chloride (135) (54.5 mg , 2.2 mmol) in tert-butanol (4 ml). Examination of the reaction mixture by ${ }^{31} \mathrm{P}$ NMR spectroscopy revealed the
presence of starting matexial, $\delta_{\mathrm{p}} 28.8(26 \%)$, and two products, $\delta_{p} 15.1$ (the desired product; 42%) and $\delta_{p} 18.6$ (32 $\%$; believed to be the product of tert-butoxide-induced rearrangement of the desired product). More potassium tert-butoxide ($77 \mathrm{mg}, 0.7 \mathrm{mmol}$) was added in small portions, giving the desired product and the by-product in a $3: 2$ ratio. After quenching with amonium chloride volatile material was removed. The residue was dissolved in ether and was washed with water, very dilute hydrochloric acid (to remove the by-product), and with water again. The organic portion was dried $\left(\mathrm{MgSO}_{1}\right)$ and concentrated to give the crude product (290 mg, 46%) . Chromatography [silica layer; 1 : 1 ethyl acetate-1ight petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$), $R_{\mathrm{f}} 0.18$; possibly some decomposition during chromatogxaphy] and crystallisation from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) afforded tert-butyl $\mathrm{p}-(b x o m o m e t h y l)-N-t e x t-b u t y l p h o s p h o n a m i d a t e ~(131) ~$ (181 mg, 29%), m.p. $94-95{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 16.4 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$ MHZ) $3.236\left(2 \mathrm{H}, \mathrm{ABP}, \delta_{\mathrm{A}} 3.273, \delta_{\mathrm{A}} 3.197, J_{\mathrm{AB}} 12.9, J_{\mathrm{AP}} 9.5, J_{\mathrm{BP}}\right.$ 7.5, $\left.\mathrm{PCH}_{2} \mathrm{Br}\right), 2.687\left(1 \mathrm{H}\right.$, br $\mathrm{d}, J_{\mathrm{PH}} 5.7$, NH ; exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.532\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OBu} u^{t}\right)$, and $1.336\left(9 \mathrm{H}, \mathrm{d}, J_{\mathrm{pH}} 0.6, \mathrm{NBu} u^{t}\right)$; m / Z (no $\left.\mathbb{M}^{+}\right)$272, $270\left(\mathbb{M}^{+}-\operatorname{Me}, 30 \%\right.$, ratio 1 : 1) and 216, $214\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CME}_{2}, 100\right.$, ratio 1 : 1); m / z (CI) 305, 303 $\left(\mathrm{M}_{\mathrm{H}} \mathrm{NH}_{4}{ }^{+}, 14 \%\right.$, ratio 1 : 1), $288,286\left(\mathrm{M}+\mathrm{H}^{+}, 38\right.$, ratio 1 : 1$)$, 249, $247\left(\mathrm{M}+\mathrm{NH}_{8}{ }^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CME}_{2}, 38\right.$, ratio 1 : 1), and 208 (100); $v_{\max }$ (Nujol) 3220 (NH), 1235 , and $1210 \mathrm{~cm}^{-1}(\mathrm{P}=0$) (Found: C , $37.8 ; \mathrm{H}, 7.3 ; \mathrm{N}, 4.9 . \mathrm{C}_{9} \mathrm{H}_{21} \mathrm{Br}^{2} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 37.8 ; \mathrm{H}, 7.4 ; \mathrm{N}$, 4. 9%) 。

Cyclohexyl p-(Bromomethyl)-N-tert-butylphosphonamidate (130).-A mixture of cyclohexanol ($335 \mathrm{mg}, 3.34 \mathrm{mmol} ; 1.1 \mathrm{~mol}$ equiv.) and triethylamine ($304 \mathrm{mg}, 3 \mathrm{mmol}$) in dichloxomethane (3 ml) was added to a stirred solution of bromomethylphosphonic dibromide (113) (903 mg, 3 mmol$)$ in dichloromethane (3 m1) at room temperature. After 1 h , tert-butylamine (866 mg , 12 mol: 4 mol equiv.) was added and the mixture was stirred for 10 min. All volatile material was removed and the residue was partitioned between ether and water. Chromatography of the organic poxtion [silica layer; 1 : 1 ethyl acetate-light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$), R_{f} 0.20] followed by crystalIisation from light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$) afforded cyclohexyl P -(bromomethyl)-N-tert-butylphosphonamidate (1.30) (336 mg, 36%), m.p. $77-79{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right)$ 19.9; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) 4.498 (1 H, dtt, $J_{\mathrm{PH}} \sim 9, J_{\mathrm{HH}} \sim 9$ and 4.3, POCH), 3.327 ($2 \mathrm{H}, \mathrm{ABP}, \delta_{\mathrm{A}} 3.363, \delta_{\mathrm{B}} 3.290, J_{\mathrm{AB}} 13.1, J_{\mathrm{AP}} 9.5, J_{\mathrm{BP}} 7.7$, $\left.\mathrm{PCH}_{2} \mathrm{Br}\right), 2.77\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{\mathrm{PH}} 7, \mathrm{NH}\right), 2.08-1.93(2 \mathrm{H}, \mathrm{m})$, 1.87-1.73 (2 H, m) , $1.68-1.51(2 \mathrm{H}, \mathrm{m}), 1.49-1.22$ (4 H, m), and $1.392\left(9 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 0.6, \mathrm{NBu} \mathrm{t}^{t}\right) ; \mathrm{m} / \mathrm{Z}\left(\mathrm{no}^{+}\right) 298,296\left(\mathrm{M}^{+}-\right.$ Me, 30%, ratio $1: 1$) and $216,214\left(\mathbb{M}^{*}-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{10}, 100\right.$ 。 ratio $1: 1) ; m / z(C I) 314,312\left(\mathbb{M}+\mathrm{H}^{+}, 11 \%\right.$, ratio $\left.1: 1\right)$, 234 (58), and $74\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{3}{ }^{+}, 100\right)$; $v_{\max }$ (Nujol) 3210 (NH), 1235, and $1215 \mathrm{~cm}^{-1}(\mathrm{P}=0)$ (Found: C , 42.4; $\mathrm{H}, 7.2 ; \mathrm{N}$, 4.6. $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{P}$ requires $\mathrm{C}, 42.3 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.5 \%$) 。

Reactions of Alkyl Bromomethylphosphonamidates with Alk-oxides.- The alkyl bromomethylphosphonamidate (129) to (131) (0.13 mol) was dissolved in THF (0.45 ml) and treated with either methanolic benzyltrimethylamonium methoxide (0.2 mmol, 0.1 ml$)$ in THF (0.45 ml) or potassium tert-butoxide
(22.5 mg, 0.2 mmol) in tert-butanol (0.1 ml) and THF (0.45 m1) at room temperature (reaction medium 0.2 M alkoxide $9: 1$ THF-alcohol). When the reaction was complete (2-3 h with methoxide; within 5 min for tert-butoxide) the excess alkoxide was quenched with ammonium chloride and the ratio of the rearrangement products was determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy (pealr areas) (Table 14). Volatile matexial was removed and the residue was dissolved in dichloromethane and washed with watex. In general, the aminomethylphosphonate product (139) and (141) was then extracted from the dichloromethane solution with aqueous hydrochloric acid (pH just less than 7), leaving the phosphoramidate product (140) and (102) in the organic solution; the aminomethylphosphonate was recovered by basification of the aqueous solution and back-extraction into dichloromethane. The organic portions wexe dried (MgSO_{4}) and evaporation of solvent gave the two separated products.

In the case where a $p-O B u^{t}$ group (acid labile) was present, the products (138), (143), (144), (147), (148), and (149) were separated by chromatography [rotating silica disc (chromatatron): ethyl acetate, diluted initially with light petroleum; phosphoramidate eluted firstl. The following were obtained:

From (129) with methoside: dimethyl (tert-butylamino)methylphosphonate $(139)^{58}, \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 30.2 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.80(6 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{PH}} 11, \mathrm{OMe}\right), 2.96\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 15, \mathrm{PCH}_{2} \mathrm{~N}\right)$, and $1.09(10 \mathrm{H} ; \mathrm{s}$, $\mathrm{NBu}{ }^{t}$ and br s, NH); $\nu_{\max }$ (film) $3300(\mathrm{NH})$ and $1235 \mathrm{~cm}^{-1}(\mathrm{P}=0)$; and dimethyl N -tert-butyl-N-methylphosphoramidate (180) ${ }^{58}$,
$\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 13.1 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.66\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 11, \mathrm{OMe}\right), 2.72(3$ $\left.\mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 10, \mathrm{NMe}\right)$, and $1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NBu} \mathrm{t}^{t}\right) ; \nu_{\max }(\mathrm{film}) 1240$ $\mathrm{Cm}^{-1}(\mathrm{P}=\mathrm{O})$ 。

From (129) with tert-butoxide: tert-butyl methyl (tert-butylamino)methylphosphonate (143), $\quad \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) \quad 25.3 ; \quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.76\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 11, \mathrm{OMe}\right), 2.88\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 15.5 \mathrm{PCH}_{2} \mathrm{~N}\right)$, 1.63 ($\sim 2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H$ and water), 1.52 ($9 \mathrm{H}, \mathrm{s}, \mathrm{OBu} \mathrm{t}^{t}$), and $1.08\left(9 H, s, N B u^{t}\right) ; \mathrm{M} / \mathrm{Z}$ (CI) $238\left(\mathrm{M}+\mathrm{H}^{+}, 48 \%\right), 182\left(\mathrm{~N}+\mathrm{H}^{+}=\right.$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 100$) , 166 ($\mathbb{M}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CME}_{2}-\mathrm{Me}, 11$), and 86 (58); $v_{\max }$ (film) 3300 (NH) and $1255 \mathrm{~cm}^{-1} \quad(\mathrm{P}=0)$ (Found: $\mathrm{N}+\mathrm{H}^{+}$, 238.1572. $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}$ requires $M+\mathrm{H}$, 238.1572); and tert-buty1 methyl N-text-butyl-N-methylphosphoramidate (144), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ $7.2 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 3.599\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 11.5, \mathrm{OMe}\right), 2.686$ ($\left.3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 9.8, \mathrm{NMe}\right), 1.472\left(9 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 0.3, \mathrm{OBu}{ }^{t}\right)$, and 1.298 ($9 \mathrm{M}, \mathrm{S}, \mathrm{NBu}^{t}$) : M / Z (CI) $238\left(\mathrm{M}+\mathrm{H}^{+}, 18\right), 222\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 4). $199\left(\mathrm{MN}_{1}+\mathrm{NH}_{4}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CME}_{2}, 8\right), 182\left(\mathrm{M}_{2}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 100\right), 166$ $\left(\mathbb{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 71\right), 143\left(\mathrm{M}_{2}+\mathrm{NH}_{4}{ }^{+}-2 \mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 10\right)$, and 126 ($\mathrm{MH}+\mathrm{H}^{+}-2 \mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 35$) ; $v_{\max .}$ (film) $1260 \mathrm{~cm}^{-1}$ ($\mathrm{P}=0$) (Found: $\mathrm{M}+\mathrm{H}^{*}$, 238.157。 $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}$ requires $\mathrm{M}+\mathrm{HI}, 238.157$). A mixture of these two products was also obtained from the reaction of (131) with methoxide. [All attempts to isolate the (aminomethyl)phosphonate by extraction into aqueous hydrochloric acid were unsuccessful; after basification the product could not be back-extract into dichloromethane and had $\delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $20.8 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.58\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 10.5\right.$, OMe$), 2.74\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}}\right.$ 15, $\left.\mathrm{PCH}_{2} \mathrm{~N}\right)$, and $1.13(9 \mathrm{H}, \mathrm{s}, \mathrm{NBu})$. The absence of an OBu^{t} signal suggested instability in acid ($-\mathrm{OBu}^{\mathrm{t}} \rightarrow-\mathrm{OH}+$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}$), and prompted the use of chromatography to separate the products.] [The reaction of (129) with KoBut that was not
freshly sublimed gave two additional products, $\delta_{\mathrm{p}} 20.4$ and 7.7, believed to be the salts of the phosphonic acid (145) and the phosphoramidic acid (146) respectively, formed from hydroxide competition. This was confirmed by repeating the reaction with an added quantity of water ($0.7 \mu \mathrm{l} ; 0.3 \mathrm{~mol}$ equiv.) which showed great enhancement in the yields of these products.]

From (131) with tert-butoxide: a mixture (separation not attempted) dominated by di-tert-butyl (tert-butylamino)methylphosphonate (138), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 20.1; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 2.794$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 15.3, \mathrm{PCH}_{2} \mathrm{~N}\right), 1.515\left(19 \mathrm{H} ; \mathrm{s}, \mathrm{OBu}^{t}\right.$ and br NH), and $\left.1.072(9 \mathrm{H}, \mathrm{S}, \mathrm{NBu})^{t}\right) ; \mathrm{m} / \mathrm{Z} 279\left(\mathbb{M}^{*}, 10 \%\right), 264\left(\mathbb{M}^{*}-\mathrm{Me}\right.$, 12), $208\left(\mathbb{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 25\right), 166\left(\mathbb{M}^{+}-\mathrm{Bu}^{\mathrm{t}}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}\right.$, 24), and $152\left(\mathbb{N}^{+}=\mathrm{Me}-2 \mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 100\right)$; $v_{\max }$ (film) 3280 (NH) and $1250 \mathrm{~cm}^{-1}(\mathrm{P}=0)$ (Found: M^{+}, 279.196。 $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}$ requixes M, 279.196), with di-tert-butyl Notert-butyl-N-methylphosphoramidate (14.7), $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 0.9 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHZ}\right) 2.631(3 \mathrm{H}$, d, $J_{\mathrm{PH}} 10.0$, NM) , $1.456\left(18 \mathrm{H}, \mathrm{s}, \mathrm{OBu} \mathrm{t}^{t}\right)$, and $1.290(9 \mathrm{H}, \mathrm{s}$, $N B u^{t}$), as the minor component.

From (130) with methoxide: cyclohexyl methyl (text-butylamino)methylphosphonate (121), $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 28.2; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \quad 300\right.$ MHz) $4.463\left(1 \mathrm{H}, \mathrm{dt} \mathrm{t}_{,} J_{\mathrm{PH}} \sim 9, J_{\mathrm{HH}} \sim 9\right.$ and 5 , POCH), 3.766 (3 $\mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 10.7$, OMe), $2.922\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 15.1, \mathrm{PCH}_{2} \mathrm{~N}\right)$, 2.03-1.88 ($2 \mathrm{H}, \mathrm{m}$) , 1.83-1.68 ($2 \mathrm{H}, \mathrm{m}$), $1.61-1.45$ ($3 \mathrm{H}, \mathrm{m}$), 1.43-1.01 (4. H, mi includes $N H$), and $1.080\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NBu}{ }^{t}\right)$; $m / z 263\left(\mathbb{M}^{+}, 6 \%\right), 248\left(\mathbb{M}^{+}-\mathrm{Me}, 38\right)$, and $166\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{10}\right.$, 100) ; $v_{\max .}($ film $) 3300(\mathrm{NH})$ and $1240 \mathrm{~cm}^{-1}(\mathrm{P}=0)$; picrate, m.p. 200-201.5 ${ }^{\circ} \mathrm{C}$ (decomp.) (from methanol); $\delta_{\mathrm{p}}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 17.3$ (Found: C, $43.7 ; \mathrm{H}, 5.8 ; \mathrm{N}, 11.4 . \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{P}$ requires C ,
43.9; H, 5.9; N, 11.4 \%) and cyclohexyl methyl N-tert-but-YI-Nmethylphosphoramidate (142), b.p $99{ }^{\circ} \mathrm{C}$ (oven temp.) at $0.1 \mathrm{mmHg} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 10.8 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 4.315$ (1 H, dtt, $J_{\mathrm{PH}} \sim 8, J_{\mathrm{HH}} \sim 8$ and $\left.4, \mathrm{POCH}\right), 3.626\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 11.3\right.$, OMe), $2.705\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{pH}} 9.6, \mathrm{NME}\right), 2.02-1.87(2 \mathrm{H}, \mathrm{m}), 1.81-1.67$ $(2 \mathrm{H}, \mathrm{m}), 1.61-1.44(3 \mathrm{H}, \mathrm{m}), 1.42-1.16(3 \mathrm{H}, \mathrm{m})$, and 1.312 (9 H, s, $N B u^{t}$) ; $m / z 263\left(\mathbb{N}^{+}, 3 \%\right), 248\left(M^{+}-M e, 17\right)$, and 166 $\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{10}, 100\right) ; v_{\text {max. }}$ (film) $1255 \mathrm{~cm}^{-1} \quad(\mathrm{P}=\mathrm{O})$ (Found: N^{+}, 263.165. $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}$ requixes $\mathrm{M}, 263.165$).

From (130) with tert-butoxide: tert-butyl cyclohexyl (tert--butylamino)methylphosphonate (147), $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right)$ 23.2; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) 4.440\left(1 \mathrm{H}, \mathrm{dtt}, J_{\mathrm{PH}} \sim 9, J_{\mathrm{HH}} \sim 9\right.$ and $\left.5, \mathrm{POCH}\right), 2.826$ (2 $\mathrm{H}_{\mathrm{p}} \quad \mathrm{ABP}, \delta_{\mathrm{A}} 2.841, \delta_{\mathrm{B}} 2.814, J_{\mathrm{AB}} 13.8, J_{\mathrm{AP}} 14.8, \quad J_{\mathrm{BP}} 15.8$, $\left.\mathrm{PCH}_{2} \mathrm{~N}\right), 2.05-1.91(2 \mathrm{H}, \mathrm{m}), 1.82-1.68(2 \mathrm{H}, \mathrm{M}), 1.62-0.99$ (7 H, m; includes $N H$), $1.513(9 \mathrm{H}, \mathrm{s}, \mathrm{OBu})^{t}$, and 1.067 (9 H , s, $\left.\mathbb{N B u}^{t}\right) ; m / Z 305\left(\mathbb{N}^{+}, 5 \%\right), 290\left(M^{+}-M_{2}, 26\right), 234\left(\mathbb{N}^{+}-\mathbb{M e}-\right.$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{CME}_{2}$, 62), and $152\left(\mathrm{M}^{+}-\mathrm{Me} \Rightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{CME}_{2}-\mathrm{C}_{6} \mathrm{H}_{10}\right.$, 100): $v_{\max }$ (film) $3280(\mathrm{NH})$ and $1245 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O})$ (Found: $\mathrm{M}^{+}, 305.2120$. $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{P}$ requires $\left.M, 305.2120\right)$; and tert-butyl cyclohexyl N -text-buty $-\mathrm{N}=\mathrm{methylphosphoxamidate} \quad(148), \quad \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) \quad 4.9$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHZ}\right) 4.258\left(1 \mathrm{H}, \mathrm{dtt}, J_{\mathrm{PH}} \sim 8, J_{\mathrm{HH}} \sim 8\right.$ and 4, POCH), $2.657\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 10.0\right.$, NMe), $2.01-1.85(2 \mathrm{H}, \mathrm{m})$, $\left.1.79-1.64(2 \mathrm{H}, \mathrm{m}), 1.60-1.16(6 \mathrm{H}, \mathrm{m}), 1.459(9 \mathrm{H}, \mathrm{s}, \mathrm{oBu})^{t}\right)$, and $1.299\left(9 \mathrm{H}, \mathrm{S}, \mathrm{NBu}{ }^{t}\right) ; \mathrm{m} / \mathrm{Z} 305\left(\mathrm{M}^{+}, 2 \%\right), 290\left(\mathrm{M}^{+}-\mathrm{Me}, 7\right)$, $234\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CiMe}_{2}, 31\right)$, and $152\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}_{2}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{10}, 100$): $\quad V_{\max }$ (film) $1250 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O})$ (Found: M^{+}, 305.212. $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{P}$ requires $M, 305.212$).

Appendix 1

X-ray crystallography. Unit cell parameters were determined by least squares refinement of ω measurements for different layers. ${ }^{94}$ A Stöe STADI-2 Weissenberg diffractometer was employed, with monochromated $\mathrm{MO}-\mathrm{K}_{\alpha}$ radiation using an ω-scan technique. Structures were solved using the TREF option of SHELXS86.95 All subsequent calculations were carried out using the computer programme SHELX76.96

Crystal data for $N-[\alpha$-methylbenzyl(phenyl)phosphinoyl]--O-methanesulphonylhydroxylamine (44) (racemate) (Fig. 11): $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{PS}, M=339.35$. Monoclinic, space group $I 2 / a, a=$ 20.132(16), $b=10.396(2), c=17.814(14) A, \beta=117.8(1)^{\circ}, U$ $=3299(5) \AA^{3}, Z=8, \mu=2.62 \mathrm{~cm}^{-1}, \lambda\left(M O-K_{\alpha}\right)=0.7107 \AA$, $F(000)=1424, D_{\mathrm{c}}=1.37 \mathrm{~g} \mathrm{~cm}^{-3}, T=293 \mathrm{~K}$ 。 The intensities of 3379 unique reflexions with $2 \theta<54^{\circ}$ and (th, $+k,+1$) were measured and the data corrected for Lorentz and polarisation effects to yield 2324 reflexions with $I>3 \sigma(I)$. The phenyl and methyl hydrogen atoms were included in calculated positions $(C-H=1.08 ~ A)$ with isotropic thermal parameters refined as groups. The remaining hydrogen atoms were located on a difference Fourier map and were refined as isotropic atoms. All other atoms were refined with anisotropic thermal parametexs. Final cycles of refinement employed a weighting parameter $g(0.0004)\left\{W=1 /\left[\sigma^{2} F+g F^{2}\right]\right\}$ and gave the final residual indices $R\left\{=\Sigma\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|\right\} 0.047$ and $R_{\mathrm{w}}\{=$ $\left.\left[\Sigma W\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma W\left|F_{o}\right|^{2}\right]^{1 / 2}\right\}$ 0.049. The final difference Fourier was featureless and an analysis of the weighting scheme over $\left|F_{0}\right|$ and $\sin \theta / \lambda$ was satisfactory.

Crystal data for the N-methyl- N^{\prime}-phenyl-P-(α-methylbenzyl)phosphonic diamide (50) (racemate) (Fig. 12): $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}, \mathrm{M}=$ 274.3. Monoclinic, space group $P 2_{1} / a, a=10.450(2), b=$ 13.204(14), $C=10.755(11) \AA, \beta=97.17(6)^{\circ}, U=1472(3) \AA^{3}$, $Z=4, \mu=1.41 \mathrm{~cm}^{-1}, \lambda\left(\mathrm{MO}_{\mathrm{K}}=\mathrm{K}_{\alpha}\right)=0.7107 \AA, \vec{A}(000)=584, D_{\mathrm{c}}=$ $1.24 \mathrm{~g} \mathrm{~cm}{ }^{-3}, T=293 \mathrm{~K}$. The intensities of 2498 unique reflexions with $2 \theta<52^{\circ}$ and $(t h,+k, \pm 1)$ were measured and the data were corrected for Lorentz and polarisation effects to yield 1221 reflexions with $I>3 \sigma(I)$. Although hydrogen atoms were located on the difference Fourier map, the hydrogen atoms of the methyl and phenyl groups were included in calculated positions $(C-H=108$ A) and employed a single fixed thermal parameter. The positional and isotropic themal parameters of the remaining hydrogen atoms were refined. All other atoms were refined with anisotropic thermal parameters. Final cycles of refinement employed a weighting parameter g (0.0007) $\left\{W=1 /\left[\sigma^{2} F+g F^{2}\right]\right\}$ and gave the final residual indices $R\left\{=\Sigma\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|\right\} 0.056$ and $R_{\mathrm{w}}\left\{=\left[\Sigma W\left(\left|F_{\mathrm{o}}\right|-\right.\right.\right.$ $\left.\left.\left.\left|F_{c}\right|\right)^{2} / \Sigma W\left|F_{o}\right|^{2}\right]^{1 / 2}\right\}$ 0.059. The final difference Fourier was featureless and an analysis of the weighting scheme over $\left|F_{o}\right|$ and $\sin \theta / \lambda$ was satisfactory.

FIG. 11

Table2 Selected Bond Angles (${ }^{\circ}$)
for $N-(-1$ methylbenzyl) phenylphosphinyl-o-methanesulphonyl
hydroxylamine

$N-P-O(1)$	$111.9(1)$	$C(1)-P-O(1)$	$115.0(1)$
$C(1)-P-N$	$98.6(1)$	$C(21)-P-O(1)$	$111.4(1)$
$C(21)-\mathrm{P}-\mathrm{N}$	$109.4(1)$	$C(21)-\mathrm{P}-\mathrm{C}(1)$	$109.8(1)$
$O(3)-S-O(2)$	$109.3(1)$	$O(4)-S-O(2)$	$102.6(1)$
$O(4)-S-O(3)$	$119.6(2)$	$C(3)-S-O(2)$	$103.3(1)$
$C(3)-S-O(3)$	$110.2(2)$	$C(3)-S-0(4)$	$110.5(2)$
$N-O(2)-S$	$109.7(2)$	$O(2)-N-P$	$111.3(2)$
$H n(1)-N-P$	$114.7(19)$	$H n(1)-N-O(2)$	$107.9(19)$
$H(1)-C(1)-P$	$106.5(19)$	$C(2)-C(1)-P$	$109.9(2)$
$C(2)-C(1)-H(1)$	$108.5(18)$	$C(11)-C(1)-P$	$109.8(2)$
$C(11)-C(1)-H(1)$	$107.2(17)$	$C(11)-C(1)-C(2)$	$114.6(3)$

Atom	x	y	2
P	$0.47635(4)$	$0.15954(6)$	0.73491 (4)
5	0.67941 (4)	$0.07945(8)$	$0.78421(6)$
O(1)	0.50247 (11)	$0.29506(17)$	$0.74884(12)$
O(2)	$0.59073(11)$	0.07410(19)	0.71916 (13)
O(3)	$0.69958(14)$	-0.02973(23)	$0.83768(17)$
O(4)	$0.71171(14)$	$0.09781(26)$	$0.72902(18)$
N	$0.54857(13)$	$0.05472(23)$	$0.76624(15)$
Hn(1)	$0.5350(17)$	-0.030(3)	$0.7615(18)$
C(1)	$0.43681(16)$	$0.1035(3)$	$0.80272(19)$
H(1)	$0.4349(16)$	$0.014(3)$	$0.7987(18)$
c(2)	$0.35640(18)$	$0.1549(5)$	$0.76958(23)$
C(3)	$0.68849(21)$	$0.2188(4)$	$0.84302(25)$
c(11)	$0.48958(10)$	$0.13712(19)$	$0.89468(10)$
C(21)	0.41144(11)	$0.13053(17)$	$0.62621(10)$

The methyl and phenyl groups were refined as rigid groups with $C-E=1.08 A$ and $C-C=1.38 A$. The positional parameters of the methyl carbons $C(2)$ and $C(3)$ were refined as were the first phenyl carbon atoms $C(11)$ and $C(21)$

Table 4 Atomic thermal parameters (x10**4) of refined atoms for N-(-1methylbenzyl)phenylphosphinyl-0-methanesulphonyl
hydroxylamine

Atom	U or U11	022	U33	423	013	012
P	322(4)	286(4)	332 (4)	-12(3)	114(3)	-21(3)
5	367 (4)	494(5)	$589(6)$	29(4)	$205(4)$	
O(1)	470(12)	279(10)	507(13)	-28(9)	$183(10)$	$43(8)$
O(2)	376(11)	480(12)	403(12)	38(9)	$175(10)$	
O(3)	491(15)	675(16)	807(18)	277(14)	157(13)	127(11)
O(4)	623(16)	817(19)	969(21)	30(15)	554(16)	-6(13)
N	356(13)	329(13)	412(14)	33(10)	177(11)	10)
En(1)	$450(86)$					
C(1)	$378(17)$	457(18)	402(18)	-23(14)	162(14)	-62(13)
E(1)	453 (85)					
C(2)	365(19)	1205(36)	550(23)	74(22)	205(17)	-1(19)
C(3)	544(22)	721(24)	770 (26)	-272(21)	$253(20)$	-189(18)
c(11)	390(16)	493(17)	398(16)	-36(13)	222(14)	-65(12)
c(12)	554(21)	693(24)	408(19)	53(16)	199(16)	$57(16)$
c(13)	574(24)	1165(37)	452(22)	145(22)	$186(19)$	-58(22)
C(14)	808(31)	1251 (40)	463(22)	-216(25)	$331(22)$	-424(27)
C(15)	866 (30)	884(30)	669(27)	-307(23)	$480(24)$	-272(24)
C(16)	593(21)	631(23)	582(22)	-117(17)	$356(18)$	-80(17)
C(21)	297(14)	418(16)	368(16)	5(12)	122(12)	25(11)
C(22)	406(17)	572(20)	489(19)	151(15)	$180(15)$	55(14)
C(23)	422(20)	1071(32)	$482(21)$	$282(21)$	$150(17)$	133(19)
C(24)	467(22)	1369 (42)	398(21)	-95(24)	82(17)	$163(24)$ $137(21)$
C(25)	529(24)	1034(32)	636(26)	-409(24)	-18(20)	137(21)
c(26)	517(21)	588(21)	486(20)	-157(17)	9(17)	102(16)

Table 5 Bond lengths (A)
for $\quad N-(-1 m e t h y l b e n z y l) p h e n y l p h o s p h i n y l-o-m e t h a n e s u l p h o n y l ~$
hydroxylamine

$O(1)-P$	$1.484(2)$	$N-P$	$1.690(2)$
$C(1)-P$	$1.824(3)$	$C(21)-\mathrm{P}$	$1.786(2)$
$O(2)-S$	$1.614(2)$	$O(3)-S$	$1.414(2)$
$O(4)-S$	$1.422(3)$	$C(3)-S$	$1.747(4)$
$N-O(2)$	$1.459(3)$	$H n(1)-N$	$0.91(3)$
$H(1)-C(1)$	$0.93(3)$	$C(2)-C(1)$	$1.538(4)$
$C(11)-C(1)$	$1.521(3)$	$H(2) A-C(2)$	$1.080(0)$
$H(2) B-C(2)$	$1.080(0)$	$H(2) C-C(2)$	$1.080(0)$
$H(3) A-C(3)$	$1.080(0)$	$H(3) B-C(3)$	$1.080(0)$
$H(3) C-C(3)$	$1.080(0)$	$C(12)-C(11)$	$1.400(0)$
$C(16)-C(11)$	$1.402(0)$	$C(13)-C(12)$	$1.398(0)$
$H(12)-C(12)$	$1.085(0)$	$C(14)-C(13)$	$1.402(0)$
$H(13)-C(13)$	$1.084(0)$	$C(15)-C(14)$	$1.400(0)$
$H(14)-C(14)$	$1.083(0)$	$C(16)-C(15)$	$1.398(0)$
$H(15)-C(15)$	$1.085(0)$	$H(16)-C(16)$	$1.084(0)$
$C(22)-C(21)$	$1.401(0)$	$C(26)-C(21)$	$1.086(0)$
$C(23)-C(22)$	$1.403(0)$	$H(23)-C(23)$	$1.085(0)$
$C(24)-C(23)$	$1.401(0)$	$H(24)-C(24)$	$1.082(0)$
$C(25)-C(24)$	$1.398(0)$	$H(25)-C(25)$	$1.086(0)$
$C(26)-C(25)$	$1.085(0)$		
$H(26)-C(26)$			

$\begin{aligned} & \text { for } \quad \mathrm{N}-(-1 \mathrm{me} \\ & \text { hydroxylamine } \end{aligned}$	Bond Ang nzyl)phen	phosphinyl-0-met	honyl
N-P-O(1)	111.9(1)	$\mathrm{C}(1)-\mathrm{P}-\mathrm{O}(1)$	115.0(1)
$\mathrm{C}(1)-\mathrm{P}-\mathrm{N}$	98.6(1)	$C(21)-\mathrm{P}-\mathrm{O}(1)$	$111.4(1)$
$\mathrm{C}(21)-\mathrm{P}-\mathrm{N}$	109.4(1)	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(1)$	109.8(1)
0 (3)-S-O(2)	109.3(1)	$O(4)-5-O(2)$	102.6(1)
0 O(4)-S-O(3)	119.6(2)	C(3)-S-O(2)	103.3(1)
C(3)-S-O(3)	$110.2(2)$	$\mathrm{C}(3)-5-0(4)$	$110.5(2)$
$\mathrm{N}-\mathrm{O}(2)-\mathrm{S}$	$109.7(2)$	$\mathrm{O}(2)-\mathrm{N}-\mathrm{P}$	111.3(2)
$\mathrm{Hn}(1)-\mathrm{N}-\mathrm{P}$	114.7(19)	$\mathrm{Hn}(1)-\mathrm{N}-\mathrm{O}(2)$	107.9(19)
$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{P}$	106.5(19)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{P}$	109.9(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	108.5(18)	$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{P}$	$109.8(2)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{B}(1)$	107.2(17)	$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	114.6(3)
$\mathrm{H}(2) \mathrm{A}-\mathrm{C}(2)-\mathrm{C}(1)$	109.5 (2)	$\mathrm{H}(2) \mathrm{B}-\mathrm{C}(2)-\mathrm{C}(1)$	109.5(2)
$\mathrm{H}(2) \mathrm{B}-\mathrm{C}(2)-\mathrm{H}(2) \mathrm{A}$	$109.5(0)$	$\mathrm{H}(2) \mathrm{C}-\mathrm{C}(2)-\mathrm{C}(1)$	109.5(2)
H (2) $\mathrm{C}-\mathrm{C}(2)-\mathrm{H}(2) \mathrm{A}$	109.5(0)	H(2) C-C (2)-H(2)B	$109.5(0)$
H (3) A-C (3)-S	109.5(1)	$\mathrm{H}(3) \mathrm{B}-\mathrm{C}(3)-\mathrm{S}$	$109.5(1)$
H (3) $\mathrm{B}-\mathrm{C}(3)-\mathrm{H}(3) \mathrm{A}$	$109.5(0)$	$\mathrm{B}(3) \mathrm{C-C}(3)-\mathrm{S}$	109.5(1)
$\mathrm{H}(3) \mathrm{C}-\mathrm{C}(3)-\mathrm{H}(3) \mathrm{A}$	109.5(0)	H(3) C-C (3)- $\mathrm{H}(3) \mathrm{B}$	$109.5(0)$
$\mathrm{c}(12)-\mathrm{c}(11)-\mathrm{c}(1)$	$118.7(1)$	$C(16)-C(11)-C(1)$	$121.2(1)$
$\mathrm{c}(16)-\mathrm{c}(11)-\mathrm{c}(12)$	$120.1(0)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$119.9(0)$
H(12)-C(12)-C(11)	$120.1(0)$	$\mathrm{g}(12)-\mathrm{C}(12)-\mathrm{c}(13)$	120.0 (0)
c(14)-C(13)-C(12)	120.0 (0)	H(13)-C(13)-C(12)	119.9(0)
H(13)-C(13)-C(14)	$120.1(0)$	c(15)-C(14)-C(13)	$120.1(0)$
H(14)-C(14)-C(13)	$120.0(0)$	H(14)-C(14)-C(15)	$119.9(0)$
$\mathrm{c}(16)-\mathrm{c}(15)-\mathrm{c}(14)$	$119.9(0)$	H(15)-C(15)-C(14)	$120.1(0)$
H(15)-C(15)-C(16)	120.0 (0)	$\mathrm{c}(15)-\mathrm{C}(16)-\mathrm{c}(11)$	$120.0(0)$
H(16)-C(16)-C(11)	$120.1(0)$	$\mathrm{H}(16)-\mathrm{C}(16)-\mathrm{C}(15)$	$119.9(0)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{P}$	118.8(1)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{P}$	$120.9(1)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	$120.2(0)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$119.9(0)$
$\mathrm{B}(22)-\mathrm{C}(22)-\mathrm{C}(21)$	$120.2(0)$	$\mathrm{H}(22)-\mathrm{C}(22)-\mathrm{C}(23)$	120.0 (0)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.0 (0)	$\mathrm{H}(23)-\mathrm{C}(23)-\mathrm{C}(22)$	$119.9(0)$
$\mathrm{H}(23)-\mathrm{C}(23)-\mathrm{C}(24)$	$120.2(0)$	$C(25)-C(24)-C(23)$	$120.2(0)$
$\mathrm{H}(24)-\mathrm{C}(24)-\mathrm{C}(23)$	$120.0(0)$	$\mathrm{H}(24)-\mathrm{C}(24)-\mathrm{C}(25)$	$119.9(0)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$119.9(0)$	$\mathrm{H}(25)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.2(0)$
日 H^{25})-C(25)-C(26)	$120.0(0)$	$c(25)-C(26)-c(21)$	$120.0(0)$
H(26)-C(26)-C(21)	$120.2(0)$	$\mathrm{H}(26)-\mathrm{C}(26)-\mathrm{C}(25)$	119.9(0)

O（2）．．．P	2.602	Hn（1）．．．P		2.232
H（1）．．．p	2.270	$\mathrm{C}(2) \ldots \mathrm{P}$		2.757
C（11）．．．P	2.742	$\mathrm{C}(22) \ldots \mathrm{P}$		2.751
C（26）．．．P	2.781	N．．．S		2.514
H（3）A．．．S	2.340	H（3）8．．．S		2.340
H（3）C．．．s	2.340	N．．．O（1）		2.633
C（1）．． 0 （1）	2.796	C（21）．．．0（1）		2.707
$\operatorname{Hn}(1) . .0(1)$	1.945	2．1．0000，	－1．0000，	1.0000
H（26）．．．O（1）	2.348	2，1．0000，	－1．0000，	1.0000
o（3）．．． 0 （2）	2.473	O（4）．．． $0(2)$		2.372
$\operatorname{Hn}(1) \ldots \mathrm{O}$（2）	1.945	$C(3) \ldots O(2)$		2.638
$0(4) \ldots 0(3)$	2.451	c（3）．．．O（3）		2.599
C（3）．．．O（4）	2.609	$\mathrm{C}(1) \ldots \mathrm{N}$		2.665
C（21）．．．N	2.837	E（2）A．．．C（1）		2.153
H（2）B．．．c（1）	2.154	日（2）C．．．C（1）		2.153
c（12）．．．c（1）	2.513	$C(16) \ldots C(1)$		2.547
c（2）．．． H （1）	2.035	C（11）．．．H（1）		2.003
c（11）．．．c（2）	2.573	日（2）B．．． $\mathrm{B}(2) \mathrm{A}$		1.763
H（2）C．．．${ }^{\text {（2）}}$（2）	1.763	H（2）C．．． H （2）B		1.764
	2.006	$2,0.5000$ ，	－0．5000，	0.5000
H（3）B．．． H （ 3 ） A	1.764	E（3）C．．．H（3）A		1.764
H（3）C．．．E（3）B	1.764	$C(13) \ldots C(11)$		2.422
C（14）．．．c（11）	2.796	C（15）．．．c（11）		2.425
H（12）．．．c（11）	2.159	日（16）．．．c（11）		2.159
c（14）．．．c（12）	2.425.	$C(15) \ldots . . C(12)$		2.803
c（16）．．．c（12）	2.427°	E（13）．．．C（12）		2.154
c（15）．．．c（13）	2.428	$C(16) \ldots \mathrm{C}(13)$		2.800
H（12）．．．C（13）	2.156	E（14）．．．C（13）		2.157
C（16）．．．c（14）	2.422	$\mathrm{H}(13) \ldots \mathrm{C}(14)$		2.159
H（15）．．．C（14）	2.159	H（14）．．．C（15）		2.155
H（16）．．．C（15）	2.154	H（15）．．．c（16）		2.156
H(22)...H(12)	1.995	2，1．0000，	0．0000，	1.0000
$c(23) \ldots c(21)$	2.423	$C(24) \ldots C(21)$		2.797
$c(25) \ldots c(21)$	2.425	E（22）．．．C（21）		2.162
H(26)...c(21)	2.162	$C(24) \ldots . . C(22)$		2.425
C（25）．．．c（22）	2.805	C（26）．．．c（22）		2.430
H（23）．．．C（22）	2.155	$C(25) \ldots C(23)$		2.430
C（ 26 ）．．．．c（23）	2.803	H（22）．．．C（23）		2.157
H（24）．．．C（23）	2.158	$C(26) \ldots . . C(24)$		2.423
H（23）．．．C（24）	2.162	日（25）．．．c（24）		2.162
H（24）．．．C（25）	2.155	$\mathrm{B}(26) \ldots \mathrm{C}(25)$		2.155
H（25）．．．C（26）	2.157			

Table 8 Eractional atomic co-ordinates
for $N-(-1$ methylbenzyl) phenylphosphinyl-0-methanesulphonyl hydroxylamine

Atom	x	Y	z
P	$0.47635(4)$	$0.15954(6)$	$0.73491(4)$
S	0.67941 (4)	0.07945 (8)	$0.78421(6)$
O(1)	$0.50247(11)$	0.29506 (17)	$0.74884(12)$
O(2)	$0.59073(11)$	$0.07410(19)$	0.71916 (13)
O(3)	$0.69958(14)$	-0.02973(23)	$0.83768(17)$
O(4)	$0.71171(14)$	0.09781 (26)	$0.72902(18)$
N	$0.54857(13)$	$0.05472(23)$	$0.76624(15)$
Hn(1)	$0.5350(17)$	-0.030(3)	$0.7615(18)$
C(1)	$0.43681(16)$	$0.1035(3)$	$0.80272(19)$
H(1)	0.4349 (16)	$0.014(3)$	$0.7987(18)$
C(2)	$0.35640(18)$	$0.1549(5)$	$0.76958(23)$
H(2)A	0.35769(18)	0.2586 (5)	0.77388 (23)
H(2)B	0.33200(18)	$0.1159(5)$	$0.80735(23)$
H(2) C	$0.32304(18)$	$0.1264(5)$	$0.70423(23)$
C(3)	$0.68849(21)$	$0.2188(4)$	$0.84302(25)$
H (3) A	$0.67295(21)$	0.3014 (4)	0.80156 (25)
H(3) B	$0.74598(21)$	0.2287 (4)	0.89161 (25)
H(3) C	$0.65213(21)$	$0.2124(4)$	0.87226 (25)
C(11)	$0.48958(10)$	$0.13712(19)$	$0.89468(10)$
C(12)	$0.54773(10)$	$0.05172(19)$	$0.94286(10)$
C(13)	$0.59605(10)$	$0.07879(19)$	$1.02810(10)$
C(14)	$0.58619(10)$	0.19126 (19)	$1.06516(10)$
c (15)	$0.52802(10)$	$0.27667(19)$	$1.01699(10)$
C(16)	$0.47971(10)$	$0.24958(19)$	$0.93175(10)$
H(12)	$0.55537(10)$	-0.03535(19)	$0.91417(10)$
H(13)	$0.64108(10)$	$0.01269(19)$	$1.06541(10)$
H(14)	$0.62360(10)$	0.21224 (19)	$1.13117(10)$
H(15)	0.52041 (10)	$0.36374(19)$	1.04567(10)
H(16)	$0.43470(10)$	$0.31569(19)$	$0.89443(10)$
C(21)	$0.41144(11)$	$0.13053(17)$	$0.62621(10)$
C(22)	$0.37348(11)$	$0.23527(17)$	$0.57444(10)$
C(23)	$0.32597(11)$	$0.21618(17)$	$0.48796(10)$
C(24)	$0.31641(11)$	$0.09231(17)$	$0.45323(10)$
C(25)	$0.35437(11)$	-0.01245(17)	$0.50497(10)$
C(26)	$0.40188(11)$	$0.00666(17)$	0.59146 (10)
H(22)	$0.38087(11)$	$0.33118(17)$	$0.60135(10)$
H H^{3})	$0.29659(11)$	$0.29728(17)$	$0.44790(10)$
H(24)	$0.27963(11)$	$0.07752(17)$	$0.38628(10)$
H(25)	0.34696 (11)	-0.10836(17)	$0.47808(10)$
H(26)	$0.43129(11)$	-0.07445(17)	$0.63150(10)$

Table for hydroxy	Atomic thermal parameters (x10**4) N -(-1methylbenzyl) phenylphosphinyl-0-me thanesulphonyl					
Atom	U or U11	U22	U33	U23	U13	U12
P	322 (4)	286(4)	332(4)	-12(3)	114(3)	-21(3)
S	$367(4)$	494(5)	589(6)	29 (4)	205 (4)	7 (3)
O(1)	470(12)	279(10)	507(13)	-28(9)	$183(10)$	-43(8)
O(2)	376 (11)	$480(12)$	403(12)	$38(9)$	175(10)	14 (9)
O(3)	491 (15)	675 (16)	807(18)	$277(14)$	157(13)	$127(11)$
O(4)	623 (16)	817 (19)	969 (21)	$30(15)$	$554(16)$	-6(13)
N	356(13)	329(13)	412(14)	33 (10)	177(11)	-2(10)
Hn(1)	450 (86)					
C(1)	378 (17)	457(18)	402(18)	-23(14)	162(14)	-62(13)
H(1)	453 (85)					
C(2)	365 (19)	1205(36)	550(23)	74(22)	205(17)	-1(19)
H(2)A	1149(91)					
H (2) B	1149(91)					
H(2) C	1149(91)					
C(3)	544(22)	721(24)	770 (26)	-272(21)	253(20)	-189(18)
H(3)A	1173(93)					
H(3) B	1173(93)					
H(3) C	$1173(93)$					
C(11)	390(16)	493(17)	398(16)	-36(13)	222(14)	-65(12)
C(12)	$554(21)$	693 (24)	$408(19)$	53 (16)	199(16)	$57(16)$
C(13)	$574(24)$	1165(37)	452(22)	$145(22)$	186(19)	-58(22)
C(14)	808 (31)	1251(40)	463(22)	-216(25)	331 (22)	-424(27)
C(15)	866(30)	884(30)	669(27)	-307(23)	480(24)	-272(24)
c(16)	$593(21)$	631 (23)	582(22)	-117(17)	356(18)	-80(17)
H(12)	1045(65)					
H(13)	1045 (65)					
H(14)	1045(65)					
H(15)	1045(65)					
H(16)	1045(65)					
C(21)	297(14)	418(16)	368(16)	5(12)	122(12)	25 (11)
C(22)	406(17)	572(20)	489(19)	151 (15)	$180(15)$	55(14)
C(23)	$422(20)$	1071(32)	$482(21)$	282(21)	150(17)	$133(19)$
C(24)	467(22)	1369(42)	398(21)	-95(24)	$82(17)$	163 (24)
C (25)	529 (24)	1034(32)	$636(26)$	-409(24)	-18(20)	$137(21)$
C(26)	$517(21)$	588(21)	486 (20)	-157(17)	9(17)	102(16)
H(22)	$1030(64)$					
H(23)	$1030(64)$					
H (24)	$1030(64)$					
\% (25)	$1030(64)$					
H(26)	$1030(64)$					

FIG. 12

Table1 Fractional atomic co-ordinates of refined atoms
for N-methyl-N-(1-methylbenzyl)-P-Phenylphosphondiamide $\left(C_{15} \mathrm{H}_{19} \mathrm{~N}_{2}\right.$ Op)

P	$0.18279(13)$	$0.70910(11)$	$0.93152(12)$
O	$0.0427(3)$	$0.72247(28)$	$0.9371(3)$
$\mathrm{N}(1)$	$0.2235(6)$	$0.5940(5)$	$0.9724(5)$
$\mathrm{H}(1) \mathrm{n}$	$0.183(6)$	$0.555(5)$	$0.981(6)$
$\mathrm{N}(2)$	$0.2785(4)$	$0.7880(4)$	$1.0189(4)$
$\mathrm{H}(2) \mathrm{n}$	$0.343(5)$	$0.798(4)$	$0.992(4)$
$\mathrm{C}(1)$	$0.3566(6)$	$0.5545(5)$	$0.9840(6)$
$\mathrm{C}(2)$	$0.2334(6)$	$0.7347(4)$	$0.7782(5)$
$\mathrm{H}(2)$	$0.322(4)$	$0.730(3)$	$0.796(4)$
$\mathrm{C}(3)$	$0.1796(7)$	$0.6546(5)$	$0.6815(5)$
$\mathrm{C}(11)$	$0.2791(3)$	$0.81185(25)$	$1.14715(23)$
$\mathrm{C}(12)$	$0.3880(3)$	$0.85825(25)$	$1.21080(23)$
$\mathrm{C}(13)$	$0.3925(3)$	$0.88063(25)$	$1.33804(23)$
$\mathrm{C}(14)$	$0.2881(3)$	$0.85659(25)$	$1.40162(23)$
$\mathrm{C}(15)$	$0.1791(3)$	$0.81019(25)$	$1.33797(23)$
$\mathrm{C}(16)$	$0.1746(3)$	$0.78782(25)$	$1.21072(23)$
$\mathrm{C}(21)$	$0.2001(4)$	$0.84316(23)$	$0.7373(3)$
$C(22)$	$0.2967(4)$	$0.91673(23)$	$0.7492(3)$
$C(23)$	$0.2672(4)$	$1.01656(23)$	$0.7141(3)$
$C(24)$	$0.1411(4)$	$1.04283(23)$	$0.6671(3)$
$C(25)$	$0.0445(4)$	$0.96927(23)$	$0.6552(3)$
$C(26)$	$0.0740(4)$	$0.86944(23)$	$0.6902(3)$

Table 2 Atomic thermal parameters (x10**4) of refined atoms for $N-m e t h y l-N-(1-m e t h y l b e n z y l)-P-P h e n y l p h o s p h o n d i a m i d e ~\left(C_{15} \mathrm{H}_{1} 9^{N_{2}} \mathrm{OP}\right.$)

Atom	U or U11	$\mathbf{U 2 2}$	U33	U23	U13	U12
\mathbf{P}	321 (8)	506(9)	408(8)	21(8)	92(6)	12(8)
0	335(21)	709 (27)	567 (23)	-3(20)	141(17)	38(19)
N(1)	510(35)	494(37)	690(38)	123(28)	154(26)	-21(29)
H (1) n	641(252)					
N(2)	338(28)	692(34)	373(25)	-1(25)	144(21)	-3(27)
$\mathrm{H}(2) \mathrm{n}$	287 (147)					
C(1)	526 (40)	$604(41)$	793 (44)	98(35)	140(33)	141(33)
C(2)	362(36)	626(42)	375(30)	-20(27)	106(25)	-4(29)
H(2)	205(119)					
C(3)	889(50)	649 (42)	514(39)	-79(33)	191(35)	-36(37)
C(11)	459(34)	398(34)	427(30)	31 (25)	129(25)	68(26)
C(12)	477(36)	602(39)	517(36)	-82(30)	91(28)	$51(30)$
C(13)	743 (47)	767 (46)	542 (39)	-203(33)	-27(34)	34(36)
C(14)	910(55)	801(48)	422(35)	-31(35)	152(36)	$155(42)$
C(15)	733(47)	677 (47)	603(40)	62(34)	291(35)	105 (36)
C(16)	523 (35)	608(37)	456 (31)	16(31)	170(26)	-2(32)
C(21)	$483(35)$	554(37)	249(27)	20(26)	$156(24)$	-6(30)
C(22)	452 (34)	556 (39)	461 (32)	-60(30)	$63(25)$	-64(31)
C(23)	708(48)	604(45)	556(39)	-49 (31)	107(33)	-149(34)
$C(24)$	$774(50)$	$605(43)$	678(43)	94(35)	$89(36)$	88(40)
C(25)	538 (41)	804(49)	658(41)	173 (37)	$29(32)$	122(38)
C(26)	488(39)	692(45)	466(35)	82(31)	90(28)	-56(31)

Table3 Selected Bond lengths (A)
for $N-$ methyl-N-(1-methylbenzyl)-P-Phenylphosphondiamide
$\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}\right.$)
$O-P$
$N(2)-P$
$H(1) n-N(1)$
$H(2) n-N(2)$
$\mathrm{H}(2)-\mathrm{C}(2)$
$\mathrm{C}(3)-\mathrm{c}(2)$

$1.483(3)$	$N(1)-\mathrm{P}$
$1.653(5)$	$\mathrm{C}(2)-\mathrm{P}$
$0.67(6)$	$\mathrm{C}(1)-\mathrm{N}(1)$
$0.78(5)$	$\mathrm{C}(11)-\mathrm{N}(2)$
$0.93(4)$	C
$1.540(7)$	$\mathrm{C}(21)-\mathrm{C}(2)$
$1.395(0)$	

Phenyl and methyl groups refined as rigid groups $(C-C=1.395 A$ and $C-H=1.08 \AA)$

Table4 Selected Bond Angles (${ }^{\circ}$)

for N-methyl-N-(1-methylbenzyl)-P-Phenylphosphondiamide
$\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}\right.$)

$109.1(3)$	$\mathrm{N}(2)-\mathrm{P}-\mathrm{O}$
$108.4(3)$	$\mathrm{C}(2)-\mathrm{P}-\mathrm{O}$
$108.8(3)$	$\mathrm{C}(2)-\mathrm{P}-\mathrm{N}(2)$
$127(6)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{P}$
$108(6)$	$\mathrm{H}(2) \mathrm{n}-\mathrm{N}(2)-\mathrm{P}$
$128.6(4)$	$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{H}(2) \mathrm{n}$
$108.7(3)$	$\mathrm{H}(1) \mathrm{b}-\mathrm{C}(1)-\mathrm{N}(1)$
$109.5(0)$	$\mathrm{H}(1) \mathrm{C}-\mathrm{C}(1)-\mathrm{N}(1)$
$109.5(0)$	$\mathrm{H}(1) \mathrm{C}-\mathrm{C}(1)-\mathrm{H}(1) \mathrm{b}$
$101.0(25)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{P}$
$111.3(25)$	$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{P}$
$108.4(26)$	$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(3)$
$110.2(3)$	$\mathrm{H}(3) \mathrm{B}-\mathrm{C}(3)-\mathrm{C}(2)$
$109.5(0)$	$\mathrm{H}(3) \mathrm{C}-\mathrm{C}(3)-\mathrm{C}(2)$
$109.5(0)$	$\mathrm{H}(3) \mathrm{C-C}(3)-\mathrm{H}(3) \mathrm{b}$
$118.7(2)$	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{N}(2)$
$119.4(3)$	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(2)$

115.6(2)
$114.4(2)$
100.0(2)
124.4(5)

113(4)
115(4)
115(4) (3)
$103.7(3)$
$115.8(3)$
109.5(0)
111.1(4)
110.7(3)
$110.7(3)$
$113.5(4)$
$113.5(4)$
$104.4(3)$
113.7(3)
109.5(0)
121.2(2)
120.6(3)

Table5 Fractional atomic co-ordinates
for N-methyl-N-(1-methylbenzyl)-p-Phenylphosphondiamide

Atom	x	Y	$z^{\left(C_{15}\right.}{ }^{H}$
P	0.18279 (13)	0.70910 (11)	$0.93152(12)$
0	$0.0427(3)$	$0.72247(28)$	0.9371 (3)
N(1)	$0.2235(6)$	0.5940 (5)	$0.9724(5)$
H (1) n	$0.183(6)$	$0.555(5)$	0.981 (6)
N(2)	$0.2785(4)$	0.7880(4)	$1.0189(4)$
$\mathrm{H}(2) \mathrm{n}$	0.343 (5)	$0.798(4)$	$0.992(4)$
C(1)	$0.3566(6)$	$0.5545(5)$	$0.9840(6)$
H(1)a	$0.3590(6)$	0.4816 (5)	$1.0300(6)$
H(1) b	$0.4111(6)$	$0.6086(5)$	1.0446 (6)
H (1) C	0.3986 (6)	$0.5479(5)$	0.8976 (6)
C(2)	$0.2334(6)$	$0.7347(4)$	$0.7782(5)$
H(2)	$0.322(4)$	0.730 (3)	$0.796(4)$
C(3)	$0.1796(7)$	0.6546 (5)	$0.6815(5)$
$\mathrm{H}(3) \mathrm{a}$	$0.2185(7)$	$0.5809(5)$	$0.7083(5)$
$\mathrm{H}(3) \mathrm{b}$	$0.2141(7)$	$0.6782(5)$	$0.5955(5)$
H (3) C	$0.0756(7)$	$0.6508(5)$	$0.6677(5)$
C(11)	$0.2791(3)$	$0.81185(25)$	1.14715(23)
C(12)	$0.3880(3)$	$0.85825(25)$	1.21080(23)
c(13)	0.3925 (3)	$0.88063(25)$	1.33804(23)
C(14)	$0.2881(3)$	0.85659(25)	1.40162(23)
C(15)	0.1791 (3)	$0.81019(25)$	1.33797(23)
C(16)	0.1746 (3)	$0.78782(25)$	1.21072(23)
H(12)	$0.4689(3)$	$0.87686(25)$	$1.16158(23)$
H(13)	0.4769(3)	$0.91656(25)$	1.38733(23)
H(14)	0.2916 (3)	$0.87391(25)$	1.50012(23)
H(15)	0.0983(3)	$0.79158(25)$	1.38718(23)
H(16)	0.0903 (3)	$0.75189(25)$	$1.16144(23)$
C(21)	0.2001 (4)	0.84316 (23)	$0.7373(3)$
C(22)	$0.2967(4)$	$0.91673(23)$	$0.7492(3)$
C(23)	$0.2672(4)$	1.01656(23)	0.7141 (3)
C(24)	$0.1411(4)$	1.04283(23)	$0.6671(3)$
c(25)	$0.0445(4)$	$0.96927(23)$	$0.6552(3)$
C(26)	$0.0740(4)$	$0.86944(23)$	$0.6902(3)$
H(22)	$0.3943(4)$	0.89639(23)	$0.7856(3)$
H(23)	$0.3419(4)$	$1.07350(23)$	$0.7234(3)$
$\mathrm{H}(24)$	$0.1182(4)$	$1.12012(23)$	$0.6399(3)$
H(25)	-0.0531(4)	0.98960 (23)	$0.6188(3)$
H(26)	-0.0007(4)	0.81248(23)	$0.6810(3)$

Table6 Atomic thermal parameters (x10**4) for $N-m e t h y l-N-(1-m e t h y l b e n z y l)-p-P h e n y l p h o s p h o n d i a m i d e ~\left(C_{15} H_{19} \mathrm{~N}_{2} \mathrm{OP}\right)$

Atom	U Or U11	U22	U33	U23	U13	U12
P	321 (8)	506 (9)	408(8)	$21(8)$	$92(6)$	12 (8)
0	335(21)	709(27)	567 (23)	-3(20)	141 (17)	$38(19)$
N(1)	510(35)	494(37)	690(38)	123(28)	154(26)	-21(29)
H (1) n	641(252)					
N(2)	$338(28)$	692(34)	373(25)	-1(25)	144(21)	-3(27)
$\mathrm{H}(2) \mathrm{n}$	$287(147)$					
C(1)	526 (40)	604(41)	793(44)	98 (35)	$140(33)$	141 (33)
H(1)a	$500(0)$					
H(1) b	$50010)$					
$\mathrm{H}(1) \mathrm{c}$	500(0)					
C (2)	362(36)	626(42)	375(30)	-20(27)	106(25)	-4(29)
H(2)	$205(119)$					
C(3)	$889(50)$	649(42)	514(39)	-79(33)	191(35)	-36(37)
H(3)a	500(0)					
H(3) b	$500(0)$					
$\mathrm{H}(3) \mathrm{c}$	500(0)					
C(11)	459(34)	398(34)	$427(30)$	$31(25)$	129(25)	
C(12)	477(36)	602(39)	517(36)	-82(30)	91(28)	51(30)
C(13)	743 (47)	767 (46)	542 (39)	-203(33)	-27(34)	$34(36)$ $155(42)$
C(14)	$910(55)$	$801(48)$	422(35)	-31(35)	$152(36)$ $291(35)$	$155(42)$ $105(36)$
C(15)	733 (47)	$677(47)$	$603(40)$	$62(34)$	291(35)	105(36)
C(16)	523(35)	608(37)	456(31)	16(31)	170(26)	-2(32)
H (12)	500 (0)					
H(13)	$500(0)$					
H(14)	500 (0)					
H(15)	500(0)					
H(16)	500(0)					
C(21)	483 (35)	554(37)	249(27)	20(26)	156(24)	$-6(30)$
C(22)	452(34)	556(39)	461(32)	-60(30)	63 (25)	-64(31)
C(23)	708(48)	604(45)	556(39)	-49 (31)	107(33)	-149(34)
C(24)	774(50)	$605(43)$	678(43)	94(35)	$89(36)$	$88(40)$ $122(38)$
C(25)	$538(41)$	804(49)	658(41)	$173(37)$	29(32)	$122(38)$
C(26)	488(39)	692(45)	466(35)	82 (31)	90(28)	-56(31)
H (22)	500 (0)					
H(23)	500 (0)					
H(24)	500 (0)					
H(25)	500(0)					
H(26)	$500(0)$					

Table7 Bond lengths (A)
for N-methyl-N-(1-methylbenzyl)-P-Phenylphosphondiamide
$\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}\right.$)

O-P	1.483(3)	N(1)-P	1.624(6)
$\mathrm{N}(2)-\mathrm{P}$	1.653(5)	$C(2)-P$	$1.825(5)$
$\mathrm{H}(1) \mathrm{n}-\mathrm{N}(1)$	0.67 (6)	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.477(8)$
$\mathrm{H}(2) \mathrm{n}-\mathrm{N}(2)$	0.78 (5)	$C(11)-N(2)$	$1.414(5)$
$\mathrm{H}(1) \mathrm{a}-\mathrm{C}(1)$	1.080(0)	$\mathrm{H}(1) \mathrm{b}-\mathrm{C}(1)$	$1.080(0)$
$\mathrm{H}(1) \mathrm{c}-\mathrm{C}(1)$	$1.080(0)$	$\mathrm{H}(2)-\mathrm{C}(2)$	0.93 (4)
C (3)-c(2)	$1.540(7)$	$C(21)-C(2)$	$1.525(6)$
$\mathrm{H}(3) \mathrm{a}-\mathrm{C}(3)$	$1.080(0)$	$\mathrm{H}(3) \mathrm{b}-\mathrm{c}(3)$	$1.080(0)$
$\mathrm{H}(3) \mathrm{c}-\mathrm{C}(3)$	1.080(0)	$\mathrm{c}(12)-\mathrm{C}(11)$	$1.395(0)$
C(16)-c(11)	$1.395(0)$	C(13)-C(12)	$1.395(0)$
$\mathrm{H}(12)-\mathrm{C}(12)$	1.080(0)	$C(14)-C(13)$	$1.395(0)$
$\mathrm{H}(13)-\mathrm{C}(13)$	$1.080(0)$	C(15)-C(14)	$1.395(0)$
$\mathrm{H}(14)-\mathrm{C}(14)$	$1.080(0)$	C(16)-C(15)	$1.395(0)$
H(15) - C (15)	1.080 (0)	$\mathrm{H}(16)-\mathrm{C}(16)$	$1.080(0)$
C(22)-C(21)	1.395(0)	$C(26)-C(21)$	$1.395(0)$
C(23)-C(22)	1.395(0)	$\mathrm{H}(22)-\mathrm{C}(22)$	$1.080(0)$
C(24)-C(23)	1.395(0)	$\mathrm{H}(23)-\mathrm{C}(23)$	$1.080(0)$
C(25)-c (24)	1.395(0)	$\mathrm{H}(24)-\mathrm{C}(24)$	$1.080(0)$
$\mathrm{C}(26)-\mathrm{C}(25)$	1.395(0)	$\mathrm{H}(25)-\mathrm{C}(25)$	1.080 (0)
H(26)-C(26)	1.080(0)		

Table 8 Bond Angles (${ }^{\circ}$)
for N-methyl-N-(1-methyibenzyl)-P-Phenylphosphondiamide
$\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OP}\right.$)
N(1) $-\mathrm{P}-0$
$\mathrm{N}(2)-\mathrm{P}-\mathrm{N}(1$
$\mathrm{C}(2)-\mathrm{P}-\mathrm{N}(1)$
$\mathrm{H}(1)-\mathrm{n}-\mathrm{N}(1)-\mathrm{P}$
$C(1)-N(1)-H(1) n$
$C(11)-N(2)-P$
$\mathrm{H}(1) \mathrm{a}-\mathrm{C}(1)-\mathrm{N}(1)$
$\mathrm{H}(1) \mathrm{b}-\mathrm{C}(1)-\mathrm{H}(1) \mathrm{a}$
$\mathrm{H}(1) \mathrm{c}-\mathrm{C}(1)-\mathrm{H}(1) \mathrm{a}$
$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{P}$
$C(3)-C(2)-H(2)$
$C(21)-C(2)-\mathrm{H}(2)$
$\mathrm{H}(3) \mathrm{a}-\mathrm{C}(3)-\mathrm{C}(2)$
$\mathrm{H}(3) \mathrm{b}-\mathrm{C}(3)-\mathrm{H}(3) \mathrm{a}$
$\mathrm{H}(3) \mathrm{c}-\mathrm{C}(3)-\mathrm{H}(3) \mathrm{a}$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(2)$
$C(16)-C(11)-C(12)$
$\mathrm{H}(12)-\mathrm{C}(12)-\mathrm{C}(11)$
$C(14)-C(13)-C(12)$
$\mathrm{H}(13)-\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{H}(14)-\mathrm{C}(14)-\mathrm{C}(13)$
$C(16)-C(15)-C(14)$
$\mathrm{H}(15)-\mathrm{C}(15)-\mathrm{C}(16)$
$\mathrm{H}(16)-\mathrm{C}(16)-\mathrm{C}(11)$
$C(22)-C(21)-C(2)$
$C(26)-C(21)-C(22)$
$\mathrm{H}(22)-\mathrm{C}(22)-\mathrm{C}(21)$
C(24)-C(23)-C(22)
$\mathrm{H}(23)-\mathrm{C}(23)-\mathrm{C}(24)$
$\mathrm{H}(24)-\mathrm{C}(24)-\mathrm{C}(23)$
$C(26)-C(25)-C(24)$
$\mathrm{H}(25)-\mathrm{C}(25)-\mathrm{C}(26)$
$\mathrm{H}(26)-\mathrm{C}(26)-\mathrm{C}(21)$

109.1(3)	$\mathrm{N}(2)-\mathrm{P}-\mathrm{O}$	115.6(2)
108.4(3)	$C(2)-P-0$	$114.4(2)$
108.8(3)	$\mathrm{C}(2)-\mathrm{P}-\mathrm{N}(2)$	100.0(2)
127(6)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{P}$	124.4 (5)
108(6)	$\mathrm{H}(2) \mathrm{n}-\mathrm{N}(2)-\mathrm{P}$	113 (4)
128.6(4)	$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{H}(2) \mathrm{n}$	115(4)
108.7(3)	$\mathrm{H}(1) \mathrm{b}-\mathrm{C}(1)-\mathrm{N}(1)$	103.7(3)
109.5 (0)	$\mathrm{H}(1) \mathrm{c}-\mathrm{C}(1)-\mathrm{N}(1)$	115.8(3)
$109.5(0)$	$\mathrm{H}(1) \mathrm{c}-\mathrm{C}(1)-\mathrm{H}(1) \mathrm{b}$	$109.5(0)$
101.0(25)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{P}$	$111.1(4)$
111.3(25)	$C(21)-C(2)-P$	$110.7(3)$
108.4(26)	$C(21)-C(2)-C(3)$	113.5 (4)
110.2(3)	$\mathrm{H}(3) \mathrm{b}-\mathrm{C}(3)-\mathrm{C}(2)$	104.4(3)
109.5(0)	$\mathrm{H}(3) \mathrm{c}-\mathrm{C}(3)-\mathrm{C}(2)$	$113.7(3)$
109.5(0)	$\mathrm{H}(3) \mathrm{c}-\mathrm{C}(3)-\mathrm{H}(3) \mathrm{b}$	$109.5(0)$
118.7(2)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{N}(2)$	121.2(2)
120.0 (0)	$C(13)-C(12)-C(11)$	$120.0(0)$
120.0 (0)	$\mathrm{H}(12)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.0(0)$
120.0 (0)	$\mathrm{H}(13)-\mathrm{C}(13)-\mathrm{C}(12)$	120.0(0)
120.0 (0)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.0(0)$
120.0 (0)	$\mathrm{H}(14)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.0(0)$
120.0 (0)	$\mathrm{H}(15)-\mathrm{C}(15)-\mathrm{C}(14)$	$120.0(0)$
$120.0(0)$	$C(15)-C(16)-C(11)$	$120.0(0)$
120.0(0)	$\mathrm{H}(16)-\mathrm{C}(16)-\mathrm{C}(15)$	120.0 (0)
119.4(3)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(2)$	120.6 (3)
120.0 (0)	$C(23)-C(22)-C(21)$	$120.0(0)$
$120.0(0)$	$\mathrm{H}(22)-\mathrm{C}(22)-\mathrm{C}(23)$	$120.0(0)$
120.0 (0)	$\mathrm{H}(23)-\mathrm{C}(23)-\mathrm{C}(22)$	$120.0(0)$
120.0 (0)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$120.0(0)$
$120.0(0)$	$\mathrm{H}(24)-\mathrm{C}(24)-\mathrm{C}(25)$	120.0 (0)
$120.0(0)$	$\mathrm{H}(25)-\mathrm{C}(25)-\mathrm{C}(24)$	120.0 (0)
$120.0(0)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$120.0(0)$
120.0(0)	$\mathrm{H}(26)-\mathrm{C}(26)-\mathrm{C}(25)$	120.0(0)

Appendix 2

X-Ray experimental data for menthyl P-(bromomethyl)-Notert--butylphosphonamidate (112): The crystals were colourless needles. The crystal used for data collection had the dimensions $0.83 \times 0.16 \times 0.16 \mathrm{~mm}$. The crystal was glued to glass filament. Accurate unit cell parameters were determined using the optimised setting angles of 338 zero and upper layer reflexions. The intensities of 1732 unique reflexions were collected at 293 K on a stöe STADI-2 Weissenberg diffractometer with graphite monochromated Mo $-\mathrm{K}_{\alpha}$ radiation (λ $=0.7107$ A) using an omega scan technique \{range $7 \leq 2 \theta \leq$ $50^{\circ} ;-10 \leq h \leq 10,0 \leq k \leq 11,0 \leq 1 \leq 36 ;$ scan width $[1.4+$ $\left.0.7 \sin (m u) / t a n(u p s)]^{\circ}\right\}$; check reflexions monitored every 50 reflexions indicated no cxystal decay. The data were corrected for Lorentz and polarisation effects to yield 687 reflexions with $I>3 \sigma(I)$. An absorption correction was applied to the data, maximum and minimum transmission factors 0.757 and 0.250 respectively.

Crystal data for the α-bromomethylphosphonamidate (112) (Fig. 13): $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{BrNO}_{2} \mathrm{P}_{\mathrm{f}}, M=368.3$. Hexagonal, space group $P 6_{1}$, $a=10.581(2), C=30.345(25) A, U=2942(3) \AA^{3}, Z=6$, $\mu\left(\mathrm{MO}_{\mathrm{K}}-\mathrm{K}_{\alpha}\right)=2.18 \mathrm{~mm}^{-1}, F(000)=1164, D_{\mathrm{c}}=1.248 \mathrm{~g} \mathrm{~cm}^{-3}$ 。

The structure was partially solved by direct methods using the TREF option of SHELXS86;95 the positions of the bromine, phosphorus, and a carbon atom was found. Including these atoms in cycles of least squares gave an R factor of 0.28 and located the positions of remaining atoms on a difference Fourier map. All refinement used the programme SHELX76.96 The

X-Ray experimental data for the picrate salt of menthyl methyl (tert-butylamino) methylphosphonate (116): The crystals were yellow needles. All crystal of the compound selected for X-xay examination were found by oscillation and Weissenberg photographs to be non-single A relatively simple twin crystal (dimensions $0.88 \times 0.32 \times 0.18 \mathrm{~mm}$) in which the c asses of the two components were aligned and the $a \%$ and $b *$ axes of one crystal component were aligned with -a* and -b* of the other component was glued to a glass filament and used for data collection. The hko reflexions of the two components were coincident, but Weissenberg photographs of the higher 1 layers showed sufficient resolution of the two diffraction patterns to allow data to be collected from the major crystal component. The relative intensities of the two components were measured to be approximately $2: 1$ and the overlapping data were scaled accordingly. The setting angles of the upper layer reflexions from the two components were calculated and
compared in order to identify possible pairs of ovexlapping reflexions. However, examination of the data set collected from the major component indicated no consistent evidence of interference from the minor component in these regions and no action was talsen.

Accurate unit cell parameters were determined from the optimised setting angles of 352 zero and upper layer reflexs ions. Data were collected at 293 K on a stöe STADI-2 Weissenberg diffractometer with graphite monochromated Mo $-\mathrm{K}_{\alpha}$ radiation ($\lambda 0.7107$ \&) using an omega scan technique (range $7 \leq 2 \theta \leq 4.6^{\circ} ;-23 \leq h \leq 23,-14 \leq k \leq 14,0 \leq 1 \leq 14 ;$ scan width $\left.[1.8+0.7 \sin (m u) / t a n(u p s)]^{\circ}\right\}$. Check reflexions evexy 50 reflexions indicated no crystal decay. The intensities of 7415 unique reflexions were measured. The data were corrected for Lorentz and polarisation effects to yield 4703 reflexions with $I>2 \sigma(I)$. No absorption correction was applied to the data.

Crystal data for the picrate of (116) (Figs. 14 to 19): $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{P}^{+} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}, M=548.5$. Triclinic, space group $P 1, a=$ 20.935(20), $b=13.210(13), C=10.618(3) \AA, \alpha=91.80(6), \beta$ $=95.2(1), \gamma=94.5(1)^{\circ}, U=2913(4) \AA^{3}, Z=4, \mu\left(\mathrm{MO}_{2}-\mathrm{K}_{\alpha}\right)=$ $0.15 \mathrm{~mm}^{-1}, F(000)=1168, D_{c}=1.25 \mathrm{~g} \mathrm{~cm}^{-3}$ 。 The cxystal was found to be triclinic and as the compound is optically active the non-centric space group $P 1$ is unambiguous. From the unit cell volume a Z value of 4 was indicated and the structure solution therefore required the location of 144 non-hydrogen atoms. The structure was solved by direct methods using the TREF option of SHELXS86, and by difference Fourier methods using SHELX76. The direct methods tangent refinement
programme gave several possible solutions of approximately equal figure of merit. All of these possible solutions gave partially recognised fragments and were investigated by cycles of least squares refinement and difference fourier maps. One of the possible solutions located further acceptable atom positions and was pursued as the correct solution. With 85 atoms included in refinement cycles an R factor of 0.28 was obtained and most of the remaining atoms located. No hydrogen atoms were included in the refinement and all atoms were refined with isotropic thermal parameters. The final R and R_{w} values are 0.132 and 0.142 respectively $\left[\mathrm{W}=1 / \sigma^{2} F+\right.$ $\left.0.0168 F^{2}\right]$ for 543 variables, $(\Delta / \sigma)_{\max }=0.53$. The final Fourier map was featureless (largest peaks $+0.72,-0.82 e^{-3}$) and the weighting scheme over $\left|F_{0}\right|$ and $\sin \theta / \lambda$ was satisfactory. The R factor is high due to possible overlap of reflexions and lack of sufficient data to allow anisotropic thermal parameters and inclusion of hydrogen atoms; however, the essential details of the four unique formula units are unambiguous.

X-Ray experimental data for dicyclohexylammonium o-menthyl O-methyl phosphorothioate (128): The crystals were pale yellow hexagonal plates. The crystal used for data collection measured $0.41 \times 0.34 \times 0.14 \mathrm{~mm}$ and was glued to a glass filament. Accurate unit cell parameters were determined by least squares refinement of the optimised setting angles of 25 reflexions in the range $10^{\circ} \leq 2 \theta \leq 25^{\circ}$. The intensities of 1478 unique reflexions were collected at 293 K on a Siemens P4 diffractometer with graphite monochromated Mo- K_{α}. radiation ($\lambda 0.7107 \AA$) using an omega scan technique (range
$\left.4 \leq 2 \theta \leq 42^{\circ} ; 0 \leq h \leq 16,0 \leq k \leq 9,-15 \leq 1 \leq 15\right)$. Three standard check reflexions monitored every 100 reflexions indicated no crystal decay. The data were corrected for Lorentz and polarisation effects to yield 1274 data having I $>2 \sigma(I)$ regarded as observed. No absorption correction was applied to the data.

Crystal data for the phosphorothioate (128) (Fig. 20): $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{PS}^{-} \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}^{+} .{ }^{1} /{ }_{2} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, M=484.7$. Monoclinic, space group C2, $a=18.218(10), b=9.892(6), \quad c=15.851(9) \AA, \beta=$ 90.27(3) ${ }^{\circ}, U=2856(3) A^{3}, Z=4, \mu\left(M O-K_{\alpha}\right)=0.20 \mathrm{~mm}^{-1}, F(000)$ $=1068, D_{\mathrm{c}}=1.127 \mathrm{~g} \mathrm{~cm}^{-3}$ 。

The structure was solved by direct methods using the TREF option of shelxTL, 97 and refined by full-matrix least squares using the programue SHELX76. Refinement of all non-hydrogen atoms with isotropic thermal parameters gave an R factor of 0.17. The hydrogen atoms bonded to nitrogen were located and refined as normal atoms. The hydrogen atoms of the solvent molecule were not located or included in refinement cycles. All other hydrogen atoms were included in calculated positions $(\mathrm{C}-\mathrm{H}=0.95 \mathrm{~A})$. With the exception of solvent atoms all non-hydrogen atoms were refined with anisotropic themmal parameters. The final R and R_{w} values are 0.0583 and 0.0629 respectively [where $w=1 / \sigma^{2} F+0.0089 F^{2}$] for 277 variables, $(\Delta / \sigma)_{\max }=0.52$. The final Fourier map was featureless (largest peaks $+0.34,-0.26 \mathrm{e}^{-3}$) and an analysis of the weighting scheme over $\left|F_{0}\right|$ and $(\sin \theta) / \lambda$ was satisfactory.

Fig. 13
$(S)_{\mathrm{P}}(1 R, 2 S, 5 R)$-Menthyl P-(bromomethyl)- N -t-butylphosphonamidate

Br	0.19828 (29)	0.0318 (3)	$0.07900(0)$	$0.1074(19)$	
N	-0.1987(18)	-0.0260(19)	0.1526 (5)	$0.062(5)$	*
O(1)	-0.1386(14)	0.0145 (14)	$0.0698(5)$	$0.060(4)$	
O(2)	-0.1494(14)	-0.2031(14)	$0.1106(3)$	0.049 (4)	*
P(1)	-0.1150(7)	-0.0403 (6)	$0.10995(22)$	$0.052(3)$	
C(1)	0.0789(22)	$0.0495(26)$	$0.1252(7)$	0.075 (8)	*
C(2)	-0.2619(26)	$0.0697(28)$	$0.1572(8)$	0.080(8)	*
C (3)	-0.143(3)	0.231 (4)	$0.1488(9)$	$0.158(13)$	*
C(4)	-0.388(4)	0.051 (4)	$0.1315(11)$	0.210(18)	*
C(5)	-0.302(4)	0.076 (4)	$0.2034(10)$	$0.194(17)$	*
C (6)	-0.2777(19)	-0.3174(19)	0.0890(6)	$0.038(5)$	*
C(7)	-0.3369(21)	-0.4532(21)	0.1156 (6)	0.049 (6)	*
C (8)	-0.4519(21)	-0.5843(22)	$0.0892(7)$	$0.067(7)$	*
C(9)	-0.4192(26)	-0.5981(27)	$0.0401(8)$	0.091 (8)	*
C(10)	-0.3699(27)	-0.4579(25)	$0.0162(6)$	$0.066(7)$	*
C(11)	-0.2361(22)	-0.3246(22)	0.0425 (7)	0.057 (6)	*
C(12)	-0.3171(28)	-0.466(3)	-0.0300(8)	0.116 (11)	*
C(13)	-0.3698(23)	-0.4483(20)	$0.1639(6)$	0.046 (6)	*
C(14)	-0.3917(24)	-0.5784(24)	0.1916 (7)	$0.077(8)$	*
C(15)	-0.5077(27)	-0.4330(28)	$0.1663(7)$	$0.106(10)$	*
H (6)	-0.3644(19)	-0.3117(19)	$0.0880(6)$	$0.0500(0)$	*
日(7)	-0.2732(21)	-0.4912(21)	$0.1195(6)$	$0.0500(0)$	*
H(10)	-0.4176(27)	-0.4021(25)	$0.0150(6)$	$0.0600(0)$	*
H(13)	-0.2871(23)	-0.3883(20)	0.1817 (6)	$0.0500(0)$	*
H(1)a	0.1090(22)	$0.1504(26)$	0.1261 (7)	$0.0700(0)$	*
H (1) b	0.0409(22)	$0.0068(26)$	$0.1531(7)$	$0.0700(0)$	*
H(3)a	-0.070(3)	0.247 (4)	$0.1701(9)$	$0.1100(0)$	*
H(3) b	-0.188(3)	0.286 (4)	0.1566 (9)	$0.1100(0)$	*
H (3) C	-0.098(3)	0.261 (4)	0.1207 (9)	$0.1100(0)$	*
H (4) a	-0.343(4)	0.094 (4)	0.1043 (11)	$0.1200(0)$	*
H (4) b	-0.466(4)	0.070 (4)	$0.1369(11)$	$0.1200(0)$	*
H(4) c	-0.426(4)	-0.051(4)	$0.1303(11)$	$0.1200(0)$	*
H(5)a	-0.226(4)	$0.064(4)$	$0.2152(10)$	$0.1200(0)$	*
H(5) b	-0.394(4)	-0.007(4)	$0.2104(10)$	$0.1200(0)$	*
H(5) c	-0.297(4)	0.161 (4)	$0.2157(10)$	$0.1200(0)$	*
H(8)a	-0.5260(21)	-0.5657(22)	$0.0791(7)$	$0.0600(0)$	*
H (8) b	-0.4939(21)	-0.6675(22)	$0.1079(7)$	$0.0600(0)$	*
H(9)a	-0.3241(26)	-0.5787(27)	$0.0478(8)$	$0.0900(0)$	*
H(9) b	-0.4643(26)	-0.6812(27)	0.0214 (8)	$0.0900(0)$	*
H (11) a	-0.2071(22)	-0.2665(22)	$0.0166(7)$	$0.0600(0)$	*
H(11) b	-0.1789(22)	-0.3703(22)	$0.0458(7)$	$0.0600(0)$	*
H(12)a	-0.4174(28)	-0.499(3)	-0.0354(8)	$0.0900(0)$	*
H(12) b	-0.2977(28)	-0.543(3)	-0.0354(8)	$0.0900(0)$	*
H (12) c	-0.2590(28)	-0.386(3)	-0.0491(8)	$0.0900(0)$	*
H(14)a	-0.3930(24)	-0.5701(24)	$0.2228(7)$	$0.0900(0)$	*
H (14) b	-0.3250(24)	-0.6098(24)	$0.1837(7)$	$0.0900(0)$	*
H(14) c	-0.4866(24)	-0.6475 (24)	0.1816 (7)	$0.0900(0)$	*
H (15) a	-0.5038(27)	-0.3971(28)	$0.1952(7)$	$0.0900(0)$	*
H(15) b	-0.5692(27)	-0.5360(28)	$0.1660(7)$	$0.0900(0)$	*
H(15) c	-0.5456(27)	-0.3900(28)	$0.1467(7)$	$0.0900(0)$	*

[^7]

Atom	U11	U22	U33	U23	U13	U12
Br	562(20)	954 (25)	1394(24)	59 (23)	37(19)	
P(1)	654 (47)	282(37)	515(36)	57 (33)	-21(37)	149(38)

Table 1. hydrogen atom Fractional atomic co-ordinates
for menthyl-N-tbutyl bromomethylphosphonamidate

At	x	$\mathrm{y}^{\mathbf{y}}$	${ }^{2}$	Ueq	
H(6)	-0.3644(19)	-0.3117(19)	0.0880 (6)	$0.0500(0)$	
H(7)	-0.2732(21)	-0.4912(21)	0.1195 (6)	$0.0500(0)$	
H(10)	-0.4176(27)	-0.4021(25)	0.0150(6)	$0.0600(0)$	
H (13)	-0.2871(23)	-0.3883(20)	0.1817 (6)	$0.0500(0)$	
H(1)a	0.1090(22)	0.1504(26)	0.1261 (7)	$0.0700(0)$	
H(1) b	0.0409(22)	0.0068(26)	$0.1531(7)$	$0.0700(0)$	
H(3)a	-0.070(3)	0.247 (4)	0.1701 (9)	$0.1100(0)$	
H(3) b	-0.188(3)	0.286 (4)	0.1566 (9)	$0.1100(0)$	
H(3) c	-0.098(3)	0.261 (4)	$0.1207(9)$	$0.1100(0)$	
H(4)a	-0.343(4)	$0.094(4)$	0.1043 (11)	$0.1200(0)$	
H(4) b	-0.466(4)	0.070 (4)	$0.1369(11)$	$0.1200(0)$	
H(4) c	-0.426(4)	-0.051(4)	$0.1303(11)$	$0.1200(0)$	*
H(5)a	-0.226(4)	0.064 (4)	$0.2152(10)$	0.1200 (0)	
H(5)b	-0.394(4)	-0.007 (4)	$0.2104(10)$	$0.1200(0)$	
H(5) c	-0.297(4)	0.161 (4)	$0.2157(10)$	$0.1200(0)$	
H (8) a	-0.5260(21)	-0.5657(22)	0.0791 (7)	$0.0600(0)$	
H(8) b	-0.4939(21)	-0.6675 (22)	$0.1079(7)$	$0.0600(0)$	*
H (9) a	-0.3241(26)	-0.5787(27)	0.0478 (8)	0.0900(0)	*
H (9) b	-0.4643(26)	-0.6812(27)	0.0214 (8)	$0.0900(0)$	*
H(11)a	-0.2071(22)	-0.2665(22)	0.0166 (7)	$0.0600(0)$	*
H(11) b	-0.1789(22)	-0.3703(22)	$0.0458(7)$	$0.0600(0)$	
且(12)a	-0.4174(28)	-0.499(3)	-0.0354(8)	$0.0900(0)$	
H(12) b	-0.2977(28)	-0.543(3)	-0.0354(8)	$0.0900(0)$	
H(12) c	-0.2590(28)	-0.386(3)	-0.0491(8)	$0.0900(0)$	
H(14) a	-0.3930(24)	-0.5701(24)	0.2228 (7)	$0.0900(0)$	
H(14) b	-0.3250(24)	-0.6098(24)	$0.1837(7)$	$0.0900(0)$	
H(14) c	-0.4866(24)	-0.6475 (24)	0.1816 (7)	$0.0900(0)$	
H(15) a	-0.5038(27)	-0.3971(28)	0.1952 (7)	$0.0900(0)$	
H(15) b	-0.5692(27)	-0.5360(28)	$0.1660(7)$	$0.0900(0)$	
H(15) c	-0.5456(27)	-0.3900(28)	0.1467 (7)	0.0900(0)	

FIG. 14

FIG. 15

FIG. 16

FIG. 17

Fig. 18

(a)

(c)

(b)

(d)

FIG. 19

(S)p $(1 R, 2 S, 5 R)$-Menthyl methyl (t-butylamino)methylphosphonate, picric acid sait

Atom	\times	y	z	Ueq	
Ueq $=$	trace of the	orthogonal	d U		
P (1) a	$0.87010(0)$	$0.93830(0)$	$0.32170(0)$	0.0332(11)	*
O(1) a	0.8480 (6)	0.9213 (9)	$0.4504(12)$	0.044 (3)	*
0 (2) a	0.8917 (6)	1.0456(10)	0.2932(13)	0.054 (3)	*
0 (3) a	$0.8169(8)$	0.8980(12)	$0.2158(15)$	0.074 (4)	*
N(1) a	0.9271 (6)	$0.7578(10)$	$0.2870(13)$	0.034 (3)	*
C (1) a	$0.9382(9)$	$0.8721(14)$	0.2727 (18)	0.046 (5)	*
C (2) a	$0.9750(9)$	0.6999(14)	0.2215 (18)	0.045 (5)	*
C (3) a	0.9583 (10)	0.5881(16)	0.2548 (21)	$0.060(6)$	*
C (4) a	0.9581 (12)	0.7159(20)	0.0747 (25)	$0.076(7)$	*
C (5)a	1.0415 (11)	$0.7378(17)$	0.2702(22)	$0.063(6)$	*
C (6) a	$0.8857(10)$	1.1415 (15)	0.3649 (20)	0.055 (5)	*
C (7) a	$0.9302(10)$	1.2217(15)	$0.3078(20)$	0.055 (5)	\star
C (8) a	$0.9184(12)$	1.3215(19)	$0.3752(26)$	0.076 (7)	*
C (9)a	0.8483 (14)	1.3469(21)	0.3631 (29)	0.090(8)	*
C(10) a	$0.8039(12)$	1.2636(19)	0.4170(26)	$0.078(7)$	*
c (11) a	$0.8136(12)$	1.1610(19)	0.3591 (25)	0.074 (7)	*
C(12)a	0.7355 (15)	1.2832(24)	0.410 (3)	0.106 (9)	*
C (13)a	$0.9983(12)$	1.1991(19)	$0.3138(24)$	0.076 (7)	*
C (14) a	1.0409(17)	1.2166(27)	0.446 (4)	0.116 (11)	*
C(15) a	$1.0356(18)$	1.2608(29)	$0.205(4)$	$0.129(12)$	*
C (16) a	$0.7494(16)$	0.8882(25)	0.226(3)	$0.107(10)$	*
$P(1) b$	$0.50397(24)$	$0.7202(4)$	0.9345 (5)	$0.0437(12)$	*
0 (1) b	$0.5259(7)$	0.7461 (11)	1.0698(14)	0.059 (4)	
0 (2) b	$0.4730(9)$	$0.6111(15)$	0.8944 (20)	0.097 (5)	*
0 (3) b	0.5588 (7)	0.7414 (11)	0.8469(14)	0.064 (4)	*
$N(1) \mathrm{b}$	$0.4472(7)$	$0.8994(11)$	0.8931 (14)	0.042 (4)	*
C (1) b	0.4385 (10)	0.7911 (16)	$0.8639(20)$	0.055 (5)	*
C (2) b	$0.3999(10)$	0.9583(16)	$0.8098(20)$	0.054 (5)	*
$\mathrm{C}(3) \mathrm{b}$	$0.4074(12)$	$0.9378(19)$	0.6706 (25)	0.074 (7)	*
C (4) b	$0.4138(12)$	1.0703(19)	0.8570(25)	$0.077(7)$	*
c (5) b	0.3281 (12)	0.9160(18)	0.8369 (24)	0.072 (6)	*
C (6) b	0.4914 (11)	0.5146 (18)	0.8776 (23)	0.066 (6)	*
c (7) b	0.4345 (18)	0.4421(29)	0.856 (4)	$0.120(11)$	*
c (8) b	$0.4527(22)$	0.334 (3)	0.837 (5)	0.146 (14)	*
C (9) b	.0.4939(16)	0.3269(26)	0.719 (4)	$0.109(10)$	*
$\mathrm{C}(10) \mathrm{b}$	$0.5529(16)$	0.4040(25)	0.748 (3)	0.106 (9)	*
$\mathrm{c}(11) \mathrm{b}$	$0.5400(13)$	0.5070(22)	0.7730 (29)	0.090 (8)	*
$\mathrm{c}(12) \mathrm{b}$	0.6027 (23)	0.395 (4)	0.646 (5)	$0.160(16)$	*
$\mathrm{C}(13) \mathrm{b}$	$0.3852(22)$	0.453 (3)	0.968 (5)	$0.143(14)$	*
$\mathrm{C}(14) \mathrm{b}$	0.321 (4)	0.422 (6)	0.917 (9)	0.26 (3)	*
$\mathrm{C}(15) \mathrm{b}$	$0.4036(28)$	0.414 (5)	$1.090(7)$	$0.201(22)$	*
$\mathrm{C}(16) \mathrm{b}$	0.6221(13)	0.7668(21)	0.8900(27)	0.085 (7)	*

(continued)

Atom	x	y	z	Ueq	
$P(1) C$	$0.92382(23)$	$0.6658(4)$	-0.3578(5)	0.0392(12)	
O(1) c	0.9517 (6)	0.7166 (9)	-0.4559(12)	0.045 (3)	
0 (2) c	0.9697 (6)	$0.6372(9)$	-0.2447(11)	0.0419 (29)	*
O(3) c	0.8827 (6)	$0.5686(10)$	-0.4089 (12)	0.052 (3)	
$N(1) c$	$0.8783(7)$	$0.8504(11)$	-0.3036(14)	0.060 (4)	
C(1) c	$0.8695(9)$	$0.7383(14)$	-0.2804 (18)	0.045 (5)	
C(2) c	0.8305 (9)	$0.9200(14)$	-0.2427(18)	0.043 (5)	
C (3) c	$0.7625(13)$	$0.8842(20)$	-0.3097(26)	$0.080(7)$	
C(4) c	0.8523 (11)	1.0291(18)	-0.2652(23)	$0.069(6)$	
C (5) c	0.8331 (11)	0.9000(18)	-0.0966(23)	$0.070(6)$	*
C (6) c	$1.0234(10)$	0.5689(16)	-0.2613(21)	0.058 (5)	*
C (7) c	1.0846 (10)	$0.6188(15)$	-0.1757(20)	0.053 (5)	*
C (8) c	1.1375(12)	$0.5493(19)$	-0.1857(26)	0.079 (7)	*
C (9) c	1.1165(13)	0.4357 (20)	-0.1509 (27)	0.084 (7)	*
$\mathrm{C}(10) \mathrm{c}$	1.0621(13)	0.3946 (21)	-0.2345 (27)	0.087 (8)	*
$\mathrm{C}(11) \mathrm{c}$	1.0026(11)	$0.4697(17)$	-0.2267(22)	0.065 (6)	*
$\mathrm{c}(12) \mathrm{c}$	1.0381(18)	0.2835 (29)	-0.194(4)	$0.126(12)$	*
$\mathrm{C}(13) \mathrm{c}$	1.1022(12)	0.7239(19)	-0.2120(24)	0.076 (7)	*
C(14) c	1.1529(14)	0.7770(22)	-0.1045 (29)	0.091 (8)	
$\mathrm{c}(15) \mathrm{c}$	1.1299(14)	0.7389(22)	-0.3418(29)	0.093 (8)	*
C(16) c	$0.8430(11)$	0.5024(18)	-0.3278(23)	$0.069(6)$	*
P(1)d	$0.43989(24)$	0.9896(4)	1.2485 (5)	0.0418(12)	*
O(1)d	$0.4121(7)$	0.9325 (10)	1.1372(14)	$0.059(4)$	*
O(2)d	0.3947 (5)	$1.0178(8)$	1.3492(11)	$0.0360(27)$	
O(3)d	0.4765 (8)	1.0891(12)	1.2109(16)	0.077 (4)	
N(1)d	0.4933 (7)	0.8098(12)	$1.3067(15)$	0.049 (4)	
C(1) d	0.5011 (9)	0.9256(14)	$1.3433(19)$	0.047 (5)	
C(2)d	0.5401 (9)	$0.7469(14)$	1.3903(18)	0.043 (5)	*
c (3) d	$0.5220(13)$	$0.6387(21)$	1.3466 (27)	0.084 (7)	
C(4)d	0.6081 (11)	$0.7892(17)$	1.3591(22)	0.063 (6)	
c(5)d	$0.5300(11)$	0.7685(18)	1.5261(23)	0.066 (6)	
C(6)d	0.3360(10)	1.0796(15)	$1.3160(20)$	$0.053(5)$	*
C(7) d	0.2817 (10)	1.0322(15)	$1.3688(20)$	0.054 (5)	
C(8)d	0.2220(10)	1.1007(17)	$1.3394(22)$	$0.063(6)$	
C(9)d	$0.2408(13)$	1.2055(21)	1.4046(28)	0.087 (8)	
C(10)d	0.3015 (14)	1.2550(22)	$1.3464(29)$	0.091 (8)	
C(11)d	0.3593 (13)	1.1855(20)	1.3781(27)	$0.082(7)$	
C(12)d	0.3281 (23)	1.361(4)	1.417 (5)	$0.163(17)$	
C(13) d	0.2605 (12)	0.9178(18)	1.3175 (24)	$0.072(6)$	
C(14) d	0.2119(12)	0.8666 (20)	$1.4044(26)$	$0.079(7)$	
C(15) d	0.2329(15)	0.9084 (23)	1.178(3)	$0.099(9)$	
$c(16) d$	0.5151(13)	1.1523(21)	1.3072(27)	$0.084(7)$	

Atom	x	y	2	Ueq	
O(4) a	0.8116 (8)	$0.6693(12)$	$0.1722(16)$	0.077 (4)	*
0 (5) a	0.7288 (8)	$0.6301(13)$	0.5031 (17)	0.081 (5)	
0 (6) a	$0.8069(8)$	0.7048 (12)	$0.4198(16)$	0.078 (5)	\star
0 (7) a	$0.5844(10)$	$0.3387(17)$	$0.1007(23)$	$0.112(6)$	
0 (8) a	$0.5728(9)$	$0.3898(14)$	0.2940 (19)	0.095 (5)	
0 (9) a	$0.8214(15)$	$0.5814(22)$	-0.046(3)	$0.155(10)$	
O(10)a	$0.7278(16)$	0.5272 (25)	-0.142(4)	$0.177(12)$	*
N (2) a	$0.7588(8)$	$0.6456(13)$	0.4142 (17)	0.056 (4)	
N(3)a	$0.5992(11)$	$0.3945(18)$	0.1941 (24)	0.088 (6)	
N(4)a	0.7561 (15)	0.5715 (21)	-0.056(3)	0.114 (8)	*
C(17)a	$0.7599(5)$	0.6076 (9)	$0.1814(11)$	0.045 (5)	*
C (18) a	$0.7335(5)$	0.5920 (9)	$0.2959(11)$	0.044 (4)	*
C(19)a	$0.6802(5)$	0.5224 (9)	0.3007 (11)	0.056 (5)	*
C (21)a	$0.6532(5)$	0.4686 (9)	0.1911 (11)	$0.060(6)$	*
C(20)a	$0.6796(5)$	0.4842 (9)	0.0766 (11)	0.055 (5)	*
C(22)a	$0.7330(5)$	0.5537 (9)	0.0718 (11)	0.056 (5)	*
0 (4) b	$0.5630(7)$	0.9876(11)	$0.8193(15)$	0.068 (4)	*
0 (5) b	$0.5703(10)$	0.9691 (16)	$1.0669(21)$	0.107 (6)	*
$0(6) \mathrm{b}$	$0.6451(10)$	1.0668(16)	1.1818(22)	$0.109(6)$	*
0 (7) b	$0.7849(16)$	1.3021(26)	1.012 (4)	$0.183(12)$	*
0 (8) b	0.7970 (14)	1.3001(22)	0.805 (3)	$0.156(10)$	*
0 (9) b	$0.6496(14)$	1.0503(20)	0.5359 (29)	$0.142(9)$	*
$0(10) b$	$0.5503(15)$	1.0744(22)	0.587 (3)	$0.152(9)$	*
$N(2) b$	$0.6143(11)$	1.0339(16)	$1.0806(22)$	$0.083(6)$	*
$N(3) b$	0.7676(16)	1.2740(24)	0.903 (4)	$0.133(10)$	*
$\mathrm{N}(4) \mathrm{b}$	$0.6119(11)$	1.0679(17)	$0.6120(22)$	0.086 (6)	*
$\mathrm{C}(17) \mathrm{b}$	$0.6372(7)$	1.0845(11)	$0.9683(11)$	$0.063(6)$	*
$\mathrm{C}(18) \mathrm{b}$	$0.6891(7)$	1.1578(11)	0.9886 (11)	$0.077(7)$	*
$\mathrm{C}(19) \mathrm{b}$	$0.7160(7)$	1.2018(11)	$0.8857(11)$	$0.052(5)$	*
$\mathrm{c}(20) \mathrm{b}$	$0.6909(7)$	1.1725(11)	0.7626 (11)	0.075 (7)	*
$\mathrm{C}(21) \mathrm{b}$	$0.6389(7)$	$1.0992(11)$	$0.7424(11)$	$0.055(5)$	*
C (22) b	$0.6120(7)$	1.0552(11)	$0.8452(11)$	0.065 (6)	*

Atom	x	y	z	Ueq
0 (4) c	0.9893 (6)	0.9187 (9)	0.8211 (12)	0.045 (3)
0 (5) c	0.9859 (8)	0.9715 (12)	$0.5685(16)$	0.075 (4)
$0(6) \mathrm{c}$	1.0783 (10)	$0.9601(15)$	$0.5028(20)$	0.102 (6)
0 (7) c	1.2541 (10)	1.1578(16)	$0.9579(22)$	0.107 (6)
0 (8) c	1.2539(9)	1.1485(14)	$0.7564(20)$	0.096 (6)
0 (9) c	1.0757 (9)	$0.9994(13)$	1.1513(18)	0.087 (5)
$0(10) \mathrm{c}$	0.9816 (8)	1.0217(13)	1.0512(16)	0.077 (4)
$\mathrm{N}(2) \mathrm{c}$	1.0429 (8)	$0.9728(12)$	$0.5883(16)$	0.049 (4)
$\mathrm{N}(3) \mathrm{c}$	1.2287 (9)	1.1365(14)	$0.8529(20)$	0.071 (5)
N(4) c	1.0410 (8)	1.0138(12)	$1.0572(17)$	0.055 (4)
$C(17) c$	1.0434 (4)	0.9843 (9)	$0.8228(11)$	0.045 (5)
$\mathrm{C}(18) \mathrm{c}$	$1.0752(4)$	0.9988 (9)	0.7141 (11)	0.044 (5)
C(19) c	1.1362 (4)	1.0507 (9)	0.7227 (11)	$0.050(5)$
$c(20) c$	$1.1654(4)$	$1.0880(9)$	0.8400 (11)	$0.052(5)$
c (21) c	$1.1336(4)$	$1.0734(9)$	0.9488 (11)	0.049 (5)
C (22)c	1.0726(4)	1.0216(9)	$0.9402(11)$	0.038 (4)
$0(4) \mathrm{d}$	$0.3801(7)$	$0.7334(11)$	1.3932(14)	0.064 (4)
$0(5) \mathrm{d}$	0.3876 (8)	$0.6919(12)$	1.1423(15)	0.071 (4)
0 (6) d	0.2973 (8)	$0.6927(13)$	1.0322(17)	0.085 (5)
$0(7)$ d	$0.1164(10)$	$0.4855(16)$	1.3987(22)	0.107 (6)
08d	0.1161 (9)	$0.5018(15)$	1.2038(20)	$0.098(6)$
0(9) d	0.3843 (9)	$0.6357(14)$	1.6116(18)	0.087 (5)
O(10)d	0.2917 (13)	$0.6529(20)$	$1.6836(28)$	0.140 (9)
N(2)d	0.3318 (10)	$0.6803(14)$	1.1334(19)	0.068 (5)
N(3)d	$0.1420(10)$	0.5156(15)	1.3089(22)	0.076 (5)
N(4) d	$0.3303(12)$	$0.6419(16)$	1.5940(21)	0.081 (6)
$C(17) d$	$0.3275(4)$	$0.6702(9)$	1.3675 (11)	0.035 (4)
c (18) d	0.2971 (4)	$0.6532(9)$	1.2454 (11)	0.047 (5)
C(19) d	$0.2363(4)$	$0.6009(9)$	1.2267 (11)	0.063 (6)
c (20)d	$0.2058(4)$	0.5656 (9)	1.3302(11)	0.051 (5)
C(21)d	0.2361 (4)	0.5827 (9)	$1.4524(11)$	0.050 (5)
C(22)d	0.2970 (4)	0.6349 (9)	1.4710(11)	0.043 (4)

Bond Lengths (\AA) for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{P}$			
O(1) $\mathrm{a}-\mathrm{P}(1) \mathrm{a}$	1.500(13)	$0(1) c-P(1) c$	1.404(13)
O(2)a-P(1)a	1.502(13)	0 (2) $c-P$ (1) c	1.544(12)
0 (3) $a-P(1) a$	1.559(15)	0 (3) $c-P$ (1) c	1.543(13)
C (1) $a-P(1) a$	$1.836(20)$	C (1) $c-P(1) c$	1.784(20)
C (6)a-0(2)a	1.477(24)	C (6) $\mathrm{c}-0$ (2) c	1.515(25)
C (16)a-0 (3) a	1.42(4)	$\mathrm{C}(16) \mathrm{c}-0(3) \mathrm{c}$	1.504 (27)
$C(1) a-N(1) a$	1.524(23)	$\mathrm{C}(1) \mathrm{c}-\mathrm{N}(1) \mathrm{c}$	1.509(23)
C (2) $a-N(1) a$	1.513(24)	C (2) $c-N(1) c$	1.577(24)
C (3) a-c (2)a	1.549(28)	C (3) $c-C$ (2) c	1.56(3)
C (4) $a-C$ (2) a	1.59(3)	C (4) c-C (2)c	1.509 (29)
C (5) $a-C$ (2) a	1.484 (27)	C (5) $c-C$ (2) c	1.58(3)
$c(7) a-C(6) a$	1.531(29)	C (7) c-C (6)c	1.587(27)
C(11) a-c (6)a	1.55(3)	$\mathrm{C}(11) \mathrm{c}-\mathrm{C}(6) \mathrm{c}$	1.42(3)
C(8)a-C(7)a	1.53(3)	$\mathrm{C}(8) \mathrm{c}-\mathrm{C}(7) \mathrm{c}$	1.50(3)
$C(13) a-C(7) a$	1.48 (3)	C (13) c-C (7) c	1.48 (3)
C(9)a-C(8)a	$1.52(4)$	C (9) c-C (8) c	1.59 (4)
$C(10) a-C(9) a$	1.54 (4)	$C(10) c-C(9) c$	1.44 (4)
c (11) a-c (10)a	1.51 (4)	$\mathrm{C}(11) \mathrm{c}-\mathrm{C}(10) \mathrm{c}$	1.66 (4)
C(12) a-C (10)a	1.47 (4)	$\mathrm{C}(12) \mathrm{c}-\mathrm{C}(10) \mathrm{c}$	1.60(5)
c(14)a-c(13)a	1.59(4)	$\mathrm{C}(14) \mathrm{c}-\mathrm{C}(13) \mathrm{c}$	1.59(4)
c(15)a-c(13)a	1.65(5)	C(15)c-C(13) c	1.55(4)
$0(1) b-P(1) b$	1.488(15)	$0(1) d-P(1) d$	1.434(14)
$0(2) b-P(1) b$	1.563(19)	0 (2) $\mathrm{d}-\mathrm{P}$ (1) d	1.546(13)
0 (3) $b-P(1) b$	1.557(16)	O(3)d-P(1)d	1.550(17)
$c(1) b-P(1) b$	1.837 (22)	$C(1) d-P(1) d$	1.834(20)
$c(6) b-0(2) b$	1.37 (3)	C (6)d-0(2)d	1.549(23)
$\mathrm{c}(16) \mathrm{b}-0(3) \mathrm{b}$	1.38(3)	C(16)d-0(3)d	1.44 (3)
$\mathrm{c}(1) \mathrm{b}-\mathrm{N}(1) \mathrm{b}$	1.448(25)	$\mathrm{C}(1) \mathrm{d}-\mathrm{N}(1) \mathrm{d}$	1.558(24)
$C(2) b-N(1) b$	1.540(26)	C(2)d-N(1)d	1.566(24)
$c(3) b-C(2) b$	1.52(3)	$C(3) d-C(2) d$	1.50(3)
$c(4) b-c(2) b$	1.54 (3)	C (4)d-C(2)d	1.556(29)
$c(5) b-c(2) b$	1.62(3)	C (5)d-C(2)d	1.50(3)
$c(7) b-c(6) b$	1.47 (4)	$\mathrm{C}(7) \mathrm{d}-\mathrm{C}(6) \mathrm{d}$	1.423(29)
$\mathrm{c}(11) \mathrm{b}-\mathrm{c}(6) \mathrm{b}$	1.58 (4)	$C(11) \mathrm{d}-\mathrm{C}(6) \mathrm{d}$	1.55(3)
$\mathrm{c}(8) \mathrm{b}-\mathrm{c}(7) \mathrm{b}$	1.51(6)	$\mathrm{C}(8) \mathrm{d}-\mathrm{C}(7) \mathrm{d}$	1.61(3)
$\mathrm{C}(13) b-c(7) b$	1.65(6)	C(13)d-C(7)d	1.61 (3)
$C(9) b-c(8) b$	1.59(6)	$\mathrm{C}(9) \mathrm{d}-\mathrm{C}(8) \mathrm{d}$	1.53(4)
$c(10) b-c(2) b$	1.54 (5)	$\mathrm{C}(10) \mathrm{d}-\mathrm{C}(9) \mathrm{d}$	1.57 (4)
$\mathrm{c}(11) \mathrm{b}-\mathrm{c}(10) \mathrm{b}$	1.43 (5)	$C(11) d-C(10) d$	1.59 (4)
$c(12) b-c(10) b$	1.57 (6)	$\mathrm{C}(12) \mathrm{d}-\mathrm{C}(10) \mathrm{d}$	1.61(6)
$c(14) b-c(13) b$	1.42(9)	$\mathrm{C}(14) \mathrm{d}-\mathrm{C}(13) \mathrm{d}$	1.56 (4)
$\mathrm{c}(15) \mathrm{b}-\mathrm{c}(13) \mathrm{b}$	1.44(8)	C(15) d-C(13)d	1.54 (4)

(continued)

Table 2. Bond Lengths (\dot{A}
$C(17) a-0(4) a$
$N(2) a-0(5) a$
$N(2) a-0(6) a$
$N(3) a-0(7) a$
$N(3) a-0(8) a$
$N(4) a-0(9) a$
$N(4) a-0(10) a$
$C(18) a-N(2) a$
$C(21) a-N(3) a$
$C(22) a-N(4) a$
$C(18) a-C(17) a$
$C(22) a-C(17) a$
$C(19) a-C(18) a$
$C(21) a-C(19) a$
$C(20) a-C(21) a$
$C(22) a-C(20) a$
$c(22) b-0(4) b$ $N(2) b-0(5) b$ $\mathrm{N}(2) \mathrm{b}-0(6) \mathrm{b}$ $N(3) b-0(7) b$ $N(3) b-0(8) b$ $N(4) b-0(9) b$ $N(4) b-0(10) b$ $C(17) b-N(2) b$ $C(19) b-N(3) b$ $c(21) b-N(4) b$ $c(18) b-c(17) b$ $C(22) b-C(17) b$ $c(19) b-c(18) b$ C(20)b-C(19)b $c(21) b-c(20) b$ $c(22) b-C(21) b$

for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}$	
C(17) c-0(4) c	1.368(15)
$N(2) c-0(5) c$	1.191(23)
$\mathrm{N}(2) \mathrm{c}-0(6) \mathrm{c}$	1.239(28)
$N(3) c-0(7) c$	1.21(3)
$N(3) c-0(8) c$	1.20(3)
$\mathrm{N}(4) \mathrm{c}-0(9) \mathrm{c}$	1.210(25)
$N(4) c-0(10) c$	1.251(24)
$\mathrm{C}(18) \mathrm{c}-\mathrm{N}(2) \mathrm{c}$	1.459(19)
C(20)c-N(3)c	1.418(21)
$\mathrm{C}(22) \mathrm{c}-\mathrm{N}(4) \mathrm{c}$	1.462(21)
$C(18) c-C(17) c$	1.395(16)
$C(22) c-C(17) c$	$1.395(15)$
C(19) c-C(18) c	$1.395(13)$
C (20)c-C(19)c	$1.395(15)$
C (21) c-C (20)c	1.395(16)
$\mathrm{C}(22) \mathrm{c}-\mathrm{C}(21) \mathrm{c}$	1.395(13)
C(17) d-0 (4)d	1.332(17)
$\mathrm{N}(2) \mathrm{d}-0(5) \mathrm{d}$	1.161(26)
$\mathrm{N}(2) \mathrm{d}-0(6) \mathrm{d}$	1.262(26)
$\mathrm{N}(3) \mathrm{d}-0(7) \mathrm{d}$	1.20(3)
$N(3) d-08 d$	1.20(3)
$\mathrm{N}(4) \mathrm{d}-0(9) \mathrm{d}$	1.14 (3)
N(4)d-0(10)d	1.32 (4)
C(18)d-N(2)d	1.486(24)
C(20)d-N(3)d	1.438(21)
$\mathrm{C}(22) \mathrm{d}-\mathrm{N}(4) \mathrm{d}$	1.420(24)
$\mathrm{C}(18) \mathrm{d}-\mathrm{C}(17) \mathrm{d}$	1.395(15)
$\mathrm{C}(22) \mathrm{d}-\mathrm{C}(17) \mathrm{d}$	1.395(16)
$\mathrm{C}(19) \mathrm{d}-\mathrm{C}(18) \mathrm{d}$	1.395(13)
C(20)d-C(19)d	1.395(16)
C(21)d-C(20)d	1.395(15)
C(22)d-C(21)d	1.395(13)

(continued)

Table 3. Bond Angles (${ }^{\circ}$)

$0(2) a-p(1) a-0(1) a$

 $0(3) a-p(1) a-0(1) a$ $0(3) a-P(1) a-0(2) a$ C (1) $a-P(1) a-0(1) a$ $C(1) a-P(1) a-0(2) a$ $C(1) a-P(1) a-0(3) a$ $C(6) a-0(2) a-P(1) a$ $C(16) a-0(3) a-P(1) a$ $C(2) a-N(1) a-C(1) a$ $\mathrm{N}(1) \mathrm{a}-\mathrm{C}(1) \mathrm{a}-\mathrm{P}(1) \mathrm{a}$ $C(3) a-C(2) a-N(1) a$ $C(4) a-C(2) a-N(1) a$ $C(4) a-C(2) a-C(3) a$ $C(5) a-C(2) a-N(1) a$ $C(5) a-C(2) a-C(3) a$ $C(5) a-C(2) a-c(4) a$ $C(7) a-C(6) a-0(2) a$ $C(11) a-C(6) a-0(2) a$ $C(11) a-C(6) a-C(7) a$ $c(8) a-C(7) a-C(6) a$ $c(13) a-c(7) a-c(6) a$ $C(13) a-c(7) a-c(8) a$ $c(9) a-c(8) a-c(7) a$ $C(10) a-C(9) a-C(8) a \quad 111.9(23)$ $C(11) a-C(10) a-C(9)$ a $110.3(23)$ $\mathrm{C}(12) \mathrm{a}-\mathrm{C}(10) \mathrm{a}-\mathrm{C}(9) \mathrm{a} 115.0(24)$ $C(12) a-C(10) a-C(11)$ a $112.0(22)$ $C(10) a-C(11) a-C(6)$ a $111.8(19)$ $C(14) a-C(13) a-C(7)$ a 118.3 (23) $C(15) a-C(13) a-C(7) a 110.5(22)$ $c(15) a-c(13) a-c(14) a$ 108.6(23)$116.7(7)$ $110.9(7)$ $107.8(8)$
$119.3(8)$ $100.2(8)$ 100.1 (8) $129.8(13)$ $126.4(18)$ $112.0(13)$ 111.2(12) 103.6(15) 104.9(16) 111.1(16) 109.9(15) $112.4(17)$ $114.1(18)$ 105.6(16) 108.4(16) 116.6(18) 104.4(18) 114.4(18) 114.6(18) $114.7(18)$ $114.4(20)$ $11.9(23)$

(continued)

Table 3. Bond angles	$\left({ }^{\circ}\right)$
0 (2) $\mathrm{b}-\mathrm{P}(1) \mathrm{b}-0(1) \mathrm{b}$	119.9(10)
0 (3) b-P (1) b-0 (1) b 1	112.0 (8)
0 (3) b-P (1) b-0 (2) b	$105.7(10)$
$\mathrm{C}(1) \mathrm{b}-\mathrm{P}(1) \mathrm{b}-0$ (1) b	$116.2(9)$
$\mathrm{C}(1) \mathrm{b}-\mathrm{P}(1) \mathrm{b}-0$ (2) b	97.4(10)
$\mathrm{C}(1) \mathrm{b}-\mathrm{P}(1) \mathrm{b}-0$ (3) b	103.6(9)
$\mathrm{C}(6) \mathrm{b}-0(2) \mathrm{b}-\mathrm{P}(1) \mathrm{b}$	139.2(17)
$\mathrm{c}(16) \mathrm{b}-0(3) \mathrm{b}-\mathrm{P}(1) \mathrm{b}$	124.1(16)
$\mathrm{c}(2) \mathrm{b}-\mathrm{N}(1) \mathrm{b}-\mathrm{C}(1) \mathrm{b}$	112.0(14)
$\mathrm{N}(1) \mathrm{b}-\mathrm{C}(1) \mathrm{b}-\mathrm{P}(1) \mathrm{b}$	$113.8(13)$
$\mathrm{c}(3) \mathrm{b}-\mathrm{c}(2) \mathrm{b}-\mathrm{N}(1) \mathrm{b}$	110.5(18)
$\mathrm{c}(4) \mathrm{b}-\mathrm{C}(2) \mathrm{b}-\mathrm{N}(1) \mathrm{b}$	105.0(16)
c (4) b-c (2)b-c (3) b 1	115.4(19)
c (5) $\mathrm{b}-\mathrm{c}(2) \mathrm{b}-\mathrm{N}(1) \mathrm{b}$	107.0(16)
C (5) b-C (2)b-c (3)b	108.1(17)
c (5) b-c (2) b-c (4) b 1	$110.5(19)$
$\mathrm{c}(7) \mathrm{b}-\mathrm{c}(6) \mathrm{b}-0(2) \mathrm{b}$	$110.0(23)$
$\mathrm{C}(11) \mathrm{b}-\mathrm{c}(6) \mathrm{b}-0$ (2) b 1	112.6 (21)
$\mathrm{C}(11) \mathrm{b}-\mathrm{C}(6) \mathrm{b}-\mathrm{c}(7) \mathrm{b}$	113.6 (24)
$\mathrm{c}(8) \mathrm{b}-\mathrm{c}(7) \mathrm{b}-\mathrm{c}(6) \mathrm{b}$	112 (3)
$\mathrm{c}(13) \mathrm{b}-\mathrm{c}(7) \mathrm{b}-\mathrm{c}(6) \mathrm{b}$	111.6(29)
$\mathrm{C}(13) \mathrm{b}-\mathrm{C}(7) \mathrm{b}-\mathrm{C}(8) \mathrm{b}$	113 (3)
$\mathrm{c}(9) \mathrm{b}-\mathrm{c}(8) \mathrm{b}-\mathrm{c}(7) \mathrm{b}$	110 (4)
$c(10) b-c(9) b-c(8) b \quad 10$	$106.0(29)$
$\mathrm{c}(11) \mathrm{b}-\mathrm{c}(10) \mathrm{b}-\mathrm{c}(9) \mathrm{b} 1$	116.4(28)
$\mathrm{C}(12) \mathrm{b}-\mathrm{C}(10) \mathrm{b}-\mathrm{c}(9) \mathrm{b} 1$	112 (3)
$c(12) b-c(10) b-c(11) b$	112 (3)
$\mathrm{c}(10) \mathrm{b}-\mathrm{C}(11) \mathrm{b}-\mathrm{c}(6) \mathrm{b} 1$	111.4(25)
$\mathrm{c}(14) \mathrm{b}-\mathrm{c}(13) \mathrm{b}-\mathrm{c}(7) \mathrm{b} 1$	109(5)
$\mathrm{c}(15) \mathrm{b}-\mathrm{c}(13) \mathrm{b}-\mathrm{c}(7) \mathrm{b} 1$	118 (4)
$\mathrm{c}(15) \mathrm{b}-\mathrm{c}(13) \mathrm{b}-\mathrm{C}(14) \mathrm{b}$	115 (5)

for $\mathrm{C}_{22} \mathrm{~B}_{37} \mathrm{~N}_{4}{ }^{\mathrm{O}}{ }_{10} \mathrm{P}$
$0(2) \mathrm{d}-\mathrm{P}(1) \mathrm{d}-0(1) \mathrm{d} 118.0(8)$
$0(3) \mathrm{d}-\mathrm{P}(1) \mathrm{d}-0(1) \mathrm{d} 110.0(9)$ $0(3) \mathrm{d}-\mathrm{P}(1) \mathrm{d}-0(2) \mathrm{d} 107.9(8)$ $\mathrm{C}(1) \mathrm{d}-\mathrm{P}(1) \mathrm{d}-0(1) \mathrm{d} 114.2(9)$ C(1)d-P(1)d-0(2)d 101.7(8) C(1)d-P(1)d-0(3)d 104.0(9) $\mathrm{C}(6) \mathrm{d}-\mathrm{O}(2) \mathrm{d}-\mathrm{P}(1) \mathrm{d} 121.5(11)$ $\mathrm{c}(16) \mathrm{d}-0(3) \mathrm{d}-\mathrm{P}(1) \mathrm{d} 119.5(16)$ c(2)d-N(1)d-C(1)d 113.0(13) N(1)d-C(1)d-P(1)d 109.1(12) C(3)d-C(2)d-N(1)d 104.6(16) $\mathrm{C}(4) \mathrm{d}-\mathrm{C}(2) \mathrm{d}-\mathrm{N}(1) \mathrm{d}$ 103.7(15) c(4)d-c(2)d-c(3)d 114.4(18) C(5)d-C(2)d-N(1)d 107.9(16) C(5)d-C(2)d-C(3)d 113.7(19) $c(5) d-c(2) d-c(4) d 111.6(16)$ $\mathrm{c}(7) \mathrm{d}-\mathrm{c}(6) \mathrm{d}-0(2) \mathrm{d} 108.6(16)$ c(11)d-C(6)d-0(2)d 102.0(15) $\mathrm{c}(11) \mathrm{d}-\mathrm{C}(6) \mathrm{d}-\mathrm{c}(7) \mathrm{d} 113.5(19)$ $\mathrm{c}(8) \mathrm{d}-\mathrm{c}(7) \mathrm{d}-\mathrm{C}(6) \mathrm{d} 107.9(17)$ $\mathrm{c}(13) \mathrm{d}-\mathrm{c}(7) \mathrm{d}-\mathrm{c}(6) \mathrm{d} 115.2(19)$ $\mathrm{c}(13) \mathrm{d}-\mathrm{C}(7) \mathrm{d}-\mathrm{c}(8) \mathrm{d} 108.7(16)$ $\mathrm{C}(9) \mathrm{d}-\mathrm{C}(8) \mathrm{d}-\mathrm{C}(7) \mathrm{d} 107.3(17)$ $\mathrm{c}(10) \mathrm{d}-\mathrm{C}(9) \mathrm{d}-\mathrm{C}(8) \mathrm{d} 108.8(23)$ c(11)d-c(10)d-C(9)d 107.8(22) $\mathrm{c}(12) \mathrm{d}-\mathrm{c}(10) \mathrm{d}-\mathrm{c}(9) \mathrm{d} 112.1$ (28) $\mathrm{c}(12) \mathrm{d}-\mathrm{C}(10) \mathrm{d}-\mathrm{C}(11) \mathrm{d} 102.5(25)$ C(10)d-C(11)d-C(6)d 105.3(19) C(14)d-C(13)d-C(7)d $109.7(20)$ $c(15) d-c(13) d-c(7) d$ d $14.4(20)$ $\mathrm{c}(15) \mathrm{d}-\mathrm{C}(13) \mathrm{d}-\mathrm{c}(14) \mathrm{d} 110.7(20)$

(continued)

Table 3. Bond Angles (${ }^{\circ}$)

$0(6) a-N(2) a-O(5) a$	$122.7(18)$
$C(18) a-N(2) a-O(5) a$	$116.1(15)$
$C(18) a-N(2) a-0(6) a$	$121.2(17)$
$0(8) a-N(3) a-0(7) a$	$124.9(23)$
$C(21) a-N(3) a-0(7) a$	$117.9(22)$
$C(21) a-N(3) a-0(8) a$	$117.2(20)$
$0(10) a-N(4) a-0(9) a$	$120(3)$
$C(22) a-N(4) a-0(9) a$	$109.4(24)$
$C(22) a-N(4) a-0(10) a$	$117.3(29)$
$C(18) a-C(17) a-0(4) a$	$122.6(12)$
$C(22) a-C(17) a-0(4) a$	$117.3(12)$
$C(22) a-C(17) a-C(18) a$	$120.0(10)$
$C(17) a-C(18) a-N(2) a$	$123.2(11)$
$C(19) a-C(18) a-N(2) a$	$116.8(12)$
$C(19) a-C(18) a-C(17) a$	$120.0(10)$
$C(21) a-C(19) a-C(18) a$	$120.0(11)$
$C(19) a-C(21) a-N(3) a$	$121.1(14)$
$C(20) a-C(21) a-N(3) a$	$118.9(14)$
$C(20) a-C(21) a-C(19) a$	$120.0(10)$
$C(22) a-C(20) a-C(21) a$	$120.0(10)$
$C(17) a-C(22) a-N(4) a$	$123.0(14)$
$C(20) a-C(22) a-N(4) a$	$116.9(14)$
$C(20) a-C(22) a-C(17) a$	$120.0(11)$

$0(6) b-N(2) b-0(5) b \quad 127.6(25)$ $C(17) b-N(2) b-0(5) b \quad 119.7(20)$ $\mathrm{C}(17) \mathrm{b}-\mathrm{N}(2) \mathrm{b}-0(6) \mathrm{b} \quad 112.7(19)$ $0(8) b-N(3) b-0(7) b \quad 125(3)$ $\mathrm{C}(19) \mathrm{b}-\mathrm{N}(3) \mathrm{b}-0(7) \mathrm{b}$ $c(19) b-N(3) b-0(8) b \quad 118(3)$ $0(10) b-N(4) b-0(9) b \quad 126.2(27)$ $\mathrm{C}(21) \mathrm{b}-\mathrm{N}(4) \mathrm{b}-0(9) \mathrm{b}$ 117.3(22) $\mathrm{C}(21) \mathrm{b}-\mathrm{N}(4) \mathrm{b}-\mathrm{O}(10) \mathrm{b} 115.9(23)$ $\mathrm{C}(18) \mathrm{b}-\mathrm{C}(17) \mathrm{b}-\mathrm{N}(2) \mathrm{b} 117.6(12)$ $\mathrm{C}(22) \mathrm{b}-\mathrm{C}(17) \mathrm{b}-\mathrm{N}(2) \mathrm{b} 122.2(14)$ $\mathrm{C}(22) \mathrm{b}-\mathrm{c}(17) \mathrm{b}-\mathrm{c}(18) \mathrm{b} 120.0(12)$ $\mathrm{c}(19) \mathrm{b}-\mathrm{c}(18) \mathrm{b}-\mathrm{c}(17) \mathrm{b} 120.0$ (11) $\mathrm{C}(18) \mathrm{b}-\mathrm{C}(19) \mathrm{b}-\mathrm{N}(3) \mathrm{b} 121.1(20)$ $\mathrm{C}(20) \mathrm{b}-\mathrm{C}(19) \mathrm{b}-\mathrm{N}(3) \mathrm{b} 118.9(21)$
$\mathrm{C}(20) \mathrm{b}-\mathrm{C}(19) \mathrm{b}-\mathrm{C}(18) \mathrm{b}$ 120.0(13)
$\mathrm{C}(21) \mathrm{b}-\mathrm{C}(20) \mathrm{b}-\mathrm{C}(19) \mathrm{b} 120.0$ (12)
$\mathrm{C}(20) \mathrm{b}-\mathrm{C}(21) \mathrm{b}-\mathrm{N}(4) \mathrm{b} 120.3(14)$
$\mathrm{c}(22) \mathrm{b}-\mathrm{C}(21) \mathrm{b}-\mathrm{N}(4) \mathrm{b} 119.7$ (14)
$\mathrm{C}(22) \mathrm{b}-\mathrm{C}(21) \mathrm{b}-\mathrm{C}(20) \mathrm{b}$ 120.0(11)
$\mathrm{c}(17) \mathrm{b}-\mathrm{c}(22) \mathrm{b}-0(4) \mathrm{b} 123.3(14)$
$\mathrm{c}(21) \mathrm{b}-\mathrm{c}(22) \mathrm{b}-0(4) \mathrm{b} 116.8(12)$
$\mathrm{c}(21) \mathrm{b}-\mathrm{c}(22) \mathrm{b}-\mathrm{C}(17) \mathrm{b}$ 120.0(13)
for $\mathrm{C}_{22} \mathrm{~B}_{37} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{P}$
$0(6) c-N(2) c-0(5) c 122.4(18)$
$\mathrm{C}(18) \mathrm{c}-\mathrm{N}(2) \mathrm{c}-\mathrm{O}(5) \mathrm{c} 121.2(16)$
$C(18) c-N(2) c-0(6) c 116.2(15)$ $0(8) c-N(3) c-0(7) c 125.1(21)$ $C(20) c-N(3) c-0(7) c 118.6(20)$ $\mathrm{C}(20) \mathrm{c}-\mathrm{N}(3) \mathrm{c}-0(8) \mathrm{c} 116.2(18)$ $0(10) c-N(4) c-0(9) c 126.4(19)$
$\mathrm{C}(22) \mathrm{c}-\mathrm{N}(4) \mathrm{c}-0(9) \mathrm{c} 115.6(16)$
$\mathrm{C}(22) \mathrm{c}-\mathrm{N}(4) \mathrm{c}-0(10) \mathrm{c} 118.1(15)$ C(18)c-C(17)c-0(4) c $121.1(10)$ C(22)c-C(17)c-0(4) c $117.9(10)$ $C(22) c-C(17) c-C(18) c 120.0(9)$ C(17)c-C(18)c-N(2)c $121.4(10)$ $C(19) c-C(18) c-N(2) c 118.1(11)$ $C(19) c-C(18) c-C(17) c 120.0(10)$ $C(20) c-C(19) c-C(18) c 120.0(10)$ $\mathrm{C}(19) \mathrm{c}-\mathrm{C}(20) \mathrm{c}-\mathrm{N}(3) \mathrm{c} 121.4$ (12) $C(21) c-C(20) c-N(3) c 118.5(12)$ C(21)c-C(20)c-C(19) c $120.0(9)$ $C(22) c-C(21) c-C(20) c 120.0(10)$ $\mathrm{C}(17) \mathrm{c}-\mathrm{C}(22) \mathrm{c}-\mathrm{N}(4) \mathrm{c} 123.0(10)$ $C(21) c-C(22) c-N(4) c 116.9(11)$ c(21)c-C(22)c-C(17) c $120.0(10)$
$O(6) \mathrm{d}-\mathrm{N}(2) \mathrm{d}-\mathrm{O}(5) \mathrm{d} 123.1(21)$ $C(18) d-N(2) d-0(5) d 120.4(17)$ C(18)d-N(2)d-0(6)d $116.5(17)$ 08d-N(3)d-0(7)d 121.2(21) $C(20) \mathrm{d}-\mathrm{N}(3) \mathrm{d}-0(7) \mathrm{d} 118.2(19)$ $C(20) d-N(3) d-08 d 120.6(20)$ $0(10) \mathrm{d}-\mathrm{N}(4) \mathrm{d}-0(9) \mathrm{d} 124.5(24)$ $\mathrm{C}(22) \mathrm{d}-\mathrm{N}(4) \mathrm{d}-0(9) \mathrm{d} 122.9(22)$ $\mathrm{C}(22) \mathrm{d}-\mathrm{N}(4) \mathrm{d}-0(10) \mathrm{d} 112.5(21)$ c(18)d-c(17)d-0(4)d $122.5(11)$ c(22)d-C(17)d-0(4)d 116.6(11) c(22)d-c(17)d-C(18)d $120.0(9)$ $C(17) \mathrm{d}-\mathrm{C}(18) \mathrm{d}-\mathrm{N}(2) \mathrm{d} 120.6(10)$ $\mathrm{C}(19) \mathrm{d}-\mathrm{C}(18) \mathrm{d}-\mathrm{N}(2) \mathrm{d} 119.1$ (11) $C(19) d-C(18) d-C(17) d 120.0(10)$ $C(20) d-C(19) d-C(18) d 120.0(10)$ C(19)d-C(20)d-N(3)d 118.9(12) $\mathrm{C}(21) \mathrm{d}-\mathrm{C}(20) \mathrm{d}-\mathrm{N}(3) \mathrm{d} 121.0(13)$ C(21)d-C(20)d-C(19)d 120.0(9) $C(22) d-C(21) d-C(20) d 120.0(10)$ C(17)d-C(22)d-N(4)d 120.3(12) $\mathrm{C}(21) \mathrm{d}-\mathrm{C}(22) \mathrm{d}-\mathrm{N}(4) \mathrm{d} 119.4$ (13) C(21)d-C(22)d-C(17)d 120.0(10)

Table 4. Non-bonded Contacts
$N(1) a \ldots P(1) a$
C(6)a...P(1)a
$\mathrm{C}(16) \mathrm{a} . . \mathrm{P}(1) \mathrm{a} \quad 2.663$
$\begin{array}{ll}0(2) a \cdots o(1) a & 2.556\end{array}$
$0(3) \mathrm{a} \ldots 0(1) \mathrm{a} \quad 2.521$
$0(3) a \ldots 0(2) a \quad 2.473$
c(1)a...o(2)a 2.570
$\mathrm{c}(7) \mathrm{a} \ldots 0(2) \mathrm{a} \quad 2.396$
c(11)a...O(2)a
c(1)a...o(3)a
$C(3) a \ldots N(1) a$
$C(4) a \ldots N(1) a$
c(5)a...N(1)a
0(4)a...N(1)a
c(2)a...c(1)a
C(4)a...C(3)a
C(5)a...C(3)a
c(5)a...c(4)a
$c(8) a \ldots c(6) a$
$c(9) a \ldots c(6) a$
c(10)a...c(6)a
c(13)a...c(6)a
$\mathrm{c}(9) \mathrm{a} . . \mathrm{c}(7) \mathrm{a}$
C(11)a...C(7)a
c(14)a...c(7)a
c(15)a...c(7)a
c(10)a...c(8)a
C(13)a...c(8)a c(11)a...C(9)a
$\mathrm{c}(12) \mathrm{a} . . \mathrm{c}(9) \mathrm{a}$
c(12)a...c(11)a
c(15)a...c(14)a
$N(1) b \ldots P(1) b$
$\mathrm{c}(6) \mathrm{b} \ldots \mathrm{P}(1) \mathrm{b}$
$\mathrm{c}(16) \mathrm{b} \ldots \mathrm{P}(1) \mathrm{b}$
$0(2) b \ldots 0(1) b$
0 (3)b...o(1)b
$0(3) \mathrm{b} \ldots 0(2) \mathrm{b}$
c(1)b...0(2)b
c(7)b...0(2)b
$c(11) b \ldots o(2) b$
$\mathrm{c}(1) \mathrm{b} \ldots \mathrm{O}(3) \mathrm{b}$
$\mathrm{c}(3) \mathrm{b} \ldots \mathrm{N}(1) \mathrm{b}$
$\mathrm{C}(4) \mathrm{b} \ldots \mathrm{N}(1) \mathrm{b}$
$c(5) b \ldots N(1) b$ $c(2) b \ldots c(1) b$ $\mathrm{c}(4) \mathrm{b} \ldots \mathrm{C}(3) \mathrm{b}$ $c(5) b \ldots c(3) b$ $c(5) b \ldots c(4) b$ c(8)b...c(6)b $c(10) b \ldots c(6) b$ $c(13) b \ldots c(6) b$ C(9)b...C(7)b $\mathrm{c}(10) \mathrm{b} . . \mathrm{c}(7) \mathrm{b}$ $\mathrm{c}(11) \mathrm{b} \ldots \mathrm{c}(7) \mathrm{b}$ $\mathrm{c}(14) \mathrm{b} . . \mathrm{c}(7) \mathrm{b}$ $\mathrm{c}(15) \mathrm{b} . . \mathrm{c}(7) \mathrm{b}$ $c(10) b \ldots c(8) b$ $c(13) b \ldots c(8) b$ $\mathrm{c}(11) \mathrm{b} . . . \mathrm{c}(9) \mathrm{b}$
(A) for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{4}{ }^{\mathrm{O}}{ }_{10} \mathrm{P}$

C(12)b...C(9)b	2.575
$\mathrm{C}(12) \mathrm{b} . . . C(11) \mathrm{b}$	2.494
$\mathrm{C}(15) \mathrm{b} . . . c(14) \mathrm{b}$	2.406
$\mathrm{N}(1) \mathrm{c} \ldots \mathrm{P}(1) \mathrm{c}$	2.751
C(6)c...P(1) c	2.674
$\mathrm{C}(16) \mathrm{c} . . \mathrm{P}(1) \mathrm{c}$	2.682
O(2)c...0(1) c	2.516
O(3)c...0(1) c	2.431
C(1)c... 0 (1) c	2.674
$0(3) c . .0(2) c$	2.499
C(1)c...0(2)c	2.581
C (7)c...0(2)c	2.482
C(11)c...0(2)c	2.376
C(1)c...0(3) c	2.634
C(3)c...N(1) c	2.494
C(4)c...N(1)c	2.493
C(5)c...N(1)c	2.558
$0(4) c \ldots N(1) c$	2.647
1, 0.0000, 0.0000,	1.0000
$\mathrm{C}(2) \mathrm{c} . . \mathrm{C}(1) \mathrm{c}$	2.625
C(4)c...C(3)c	2.576
C(5)c...C(3)c	2.580
C(5)c...c(4)c	2.547
C(8)c...C(6) c	2.486
C(10)c...c(6)c	2.516
C(13)c...c(6)c	2.536
C(9)c...C(7) c	2.575
$\mathrm{C}(11) \mathrm{c} . . . \mathrm{C}(7) \mathrm{c}$	2.520
C(14)c...C(7)c	2.494
C(15)c...C(7) c	2.601
$C(10) c . . . C(8) c$	2.494
$C(13) c . . . C(8) c$	2.494
C(11)c...C(9) c	2.525
C(12)c...C(9) c	2.497
C(12)c...C(11)c	2.649
$\mathrm{C}(15) \mathrm{c} . . \mathrm{C}(14) \mathrm{c}$	2.549
N(1)d...P(1)d	2.768
C(6)d...P(1)d	2.701
C(16)d...P(1)d	2.587
O(2)d...0(1)d	2.555
O(3)d...0(1)d	2.445
C(1)d...0(1)d	2.752
O(3)d...0(2)d	2.503
C(1)d...0(2)d	2.627
C(7)d...0(2)d	2.415
$\mathrm{C}(11) \mathrm{d} . . .0(2) \mathrm{d}$	2.410
C(1)d...0(3)d	2.673
C(3)d...N(1)d	2.424
C(4)d...N(1)d	2.455
C(5)d...N(1)d	2.476
O(4)d...N(1)d	2.748
C(2)d...C(1)d	2.604
C(4)d...C(3)d	2.567
C(5)d...C(3)d	2.508
C(5)d...C(4)d	2.526
C(8)d...C(6)d	2.457
$\mathrm{C}(9) \mathrm{d} \ldots \mathrm{C}(6) \mathrm{d}$	2.896
$\mathrm{C}(10) \mathrm{d} . . . \mathrm{C}(6) \mathrm{d}$	2.501
C(13)d...C(6)d	2.558
C(9)d...C(7)d	2.536
$C(11) \mathrm{d} . . . C(7) \mathrm{d}$	2.489
C(14)d...C(7)d	2.591

$\mathrm{c}(15) \mathrm{d} . . . \mathrm{c}(7) \mathrm{d}$	2.640
$\mathrm{c}(10) \mathrm{d} . . . \mathrm{c}(8) \mathrm{d}$	2.523
$\mathrm{c}(13) \mathrm{d} . . . \mathrm{c}(8) \mathrm{d}$	2.617
$\mathrm{c}(11) \mathrm{d} . . . \mathrm{c}(9) \mathrm{d}$	2.555
$\mathrm{C}(12) \mathrm{d} . . . \mathrm{C}(9) \mathrm{d}$	2.636
$\mathrm{c}(12) \mathrm{d} . . \mathrm{c}(11) \mathrm{d}$	2.496
c(15)d...c(14)d	2.550
O(6)a...0(4)a	2.668
O(9)a...0(4)a	2.589
C(18)a...0(4)a	2.378
c(22)a...0(4)a	2.315
0(6)a...0(5)a	2.119
C(18)a...0(5)a	2.254
c(19)a...0(5)a	2.619
c(18)a...0(6)a	2.337
0(8)a...0(7)a	2.181
C(21)a...0(7)a	2.279
c(20)a...0(7)a	2.693
C(19)a...0(8)a	2.733
C(21)a...0(8)a	2.290
o(10)a...0(9)a	2.183
C(22)a...0(9)a	2.336
C(20)a...0(10)a	2.672
C(22)a...0(10)a	2.276
C(17)a...N(2)a	2.509
C(19)a...N(2)a	2.430
C(19)a...N(3)a	2.468
C(20)a...N(3)a	2.441
C(17)a...N(4)a	2.546
C(20)a...N(4)a	2.470
c(19)a...c(17)a	2.416
C(21)a...c(17)a	2.790
C(20)a...c(17)a	2.416
c(21)a...c(18)a	2.416
C(20)a...c(18)a	2.790
C(22)a...C(18)a	2.416
C(20)a...C(19)a	2.416
c(22)a...c(19)a	2.790
C(22)a...c(21)a	2.416
$0(5) \mathrm{b} \ldots$. 0 (4) b	2.640
$\mathrm{N}(4) \mathrm{b} \ldots .0(4) \mathrm{b}$	2.721
C(17)b...0(4)b	2.381
$\mathrm{C}(21) \mathrm{b} . . .0(4) \mathrm{b}$	2.304
$0(6) \mathrm{b} . . .0(5) \mathrm{b}$	2.199
$\mathrm{C}(17) \mathrm{b} \ldots$. 0 (5) b	2.326
$\mathrm{C}(17) \mathrm{b} \ldots 0(6) \mathrm{b}$	2.278
$\mathrm{c}(18) \mathrm{b} . . .0(6) \mathrm{b}$	2.613
$0(8) \mathrm{b} . . .0(7) \mathrm{b}$	2.239
$\mathrm{C}(18) \mathrm{b} . . .0(7) \mathrm{b}$	2.644
$\mathrm{c}(19) \mathrm{b} \ldots 0$. 0 ($\mathrm{l}^{\text {b }}$	2.209
c (19) b...0(8) b	2.299
C(20)b...0(8) b	2.676
$0(10) \mathrm{b} . . .0(9) \mathrm{b}$	2.239
C (21) b...0(9) b	2.301
$\mathrm{C}(21) \mathrm{b} . . .0(10) \mathrm{b}$	2.361
$\mathrm{C}(18) \mathrm{b} . . . \mathrm{N}(2) \mathrm{b}$	2.463
$\mathrm{c}(22) \mathrm{b}$...N(2) b	2.520
$\mathrm{c}(18) \mathrm{b} . . . \mathrm{N}(3) \mathrm{b}$	2.415
$\mathrm{c}(20) \mathrm{b} \ldots \mathrm{N}(3) \mathrm{b}$	2.389
$\mathrm{C}(20) \mathrm{b} \ldots \mathrm{}$. (4) b	2.494
$\mathrm{C}(22) \mathrm{b} \ldots \mathrm{N}(4) \mathrm{b}$	2.487
$\mathrm{c}(19) \mathrm{b} . . \mathrm{C}(17) \mathrm{b}$	2.416

$\mathrm{c}(20) \mathrm{b} . \mathrm{Cc}(17) \mathrm{b}$	2.790
$\mathrm{c}(21) \mathrm{b} . . \mathrm{c}(17) \mathrm{b}$	2.416
$\mathrm{C}(20) \mathrm{b} . . \mathrm{C}(18) \mathrm{b}$	2.416
$\mathrm{c}(21) \mathrm{b} . . \mathrm{c}(18) \mathrm{b}$	2.790
$\mathrm{c}(22) \mathrm{b}$...c(18) b	2.416
$\mathrm{C}(21) \mathrm{b} . . \mathrm{C}(19) \mathrm{b}$	2.416
$\mathrm{c}(22) \mathrm{b} . . \mathrm{c}(19) \mathrm{b}$	2.790
$\mathrm{c}(22) \mathrm{b}$...c(20) b	2.416
c(18)c...0(4)c	2.406
c(22)c...0(4)c	2.368
O(6)c...0(5) c	2.130
c(18) c...0(5)c	2.312
$c(18) c . . .0(6) c$	2.294
c(19)c...0(6)c	2.727
0(8)c...0(7) c	2.139
c(20)c...0(7) c	2.259
c(21)c...0(7) c	2.668
C(19)c...0(8)c	2.680
c(20)c...0(8)c	2.230
0(10)c...0(9)c	2.197
C(21)c...0(9)c	2.733
C(22)c...0(9)c	2.265
C(22)c...0(10) c	2.330
C(17)c...N(2) C	2.489
c(19)c...N(2)c	2.448
C(19)c...N(3)c	2.453
$\mathrm{C}(21) \mathrm{c} . . . \mathrm{N}(3) \mathrm{c}$	2.418
C(17)c...N(4)c	2.512
$\mathrm{c}(21) \mathrm{c} . . . \mathrm{N}(4) \mathrm{c}$	2.435
C(19)c...C(17) c	2.417
c(20)c...c(17) c	2.790
C(21)c...c(17) c	2.416
C(20)c...C(18) c	2.416
C(21)c...C(18) c	2.790
C(22)c...c(18) c	2.416
C(21)c...C(19)c	2.416
C(22)c...c(19) c	2.790
C(22)c...c(20)c	2.416
$0(5) \mathrm{d} . . .0(4) \mathrm{d}$	2.724
0(9)d...0(4)d	2.688
$\mathrm{N}(4) \mathrm{d} . . .0(4) \mathrm{d}$	2.733
C(18)d...0(4)d	2.391
C(22)d...0(4)d	2.320
$0(6) \mathrm{d} . . .0(5) \mathrm{d}$	2.131
c(17)d...0(5)d	2.815
C(18)d...0(5)d	2.304
$\mathrm{c}(18) \mathrm{d} . . .0(6) \mathrm{d}$	2.339
c(19)d...0(6)d	2.786
08d...0(7)d	2.088
c(20)d...0(7)d	2.267
c(21)d...0(7)d	2.728
c(19)d...08d	2.729
c(20)d...08d	2.293
0(10)d...0(9)d	2.172
C(17)d...0(9)d	2.817
$\mathrm{c}(22) \mathrm{d} . . .0(9) \mathrm{d}$	2.251
c(21)d...0(10)d	2.722
c(22)d...0(10)d	2.276
C(17)d...N(2)d	2.503
c(19)d...N(2)d	2.485
c(19)d...N(3)d	2.440
c(21)d...N(3)d	2.467

```
C(17)d...N(4)d
    2.441
    2.430

FIG. 20


Dicyclohexylammonium \((R)_{\mathrm{p}}-\mathrm{O}-[(1 R, 2 S, 5 R)\)-menthyl \(]-O\)-methylphosphorochioate

the hydrogen atoms on the nitrogen were located and refined all other hydrogen atoms were included in calculated positions with \(C-H=0.95 \AA\). fixed isotropic thermal parameters were empoyed for all hydrogen atoms.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & hydrogen & \multicolumn{4}{|c|}{\(\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{PS}\)} \\
\hline Atom & x & y & \(z\) & Ueq & \\
\hline Hn (1) & 0.247 (6) & \(0.574(11)\) & -0.013(7) & \(0.0700(0)\) & \\
\hline Hn (2) & 0.198 (6) & \(0.487(14)\) & 0.034 (7) & \(0.0700(0)\) & \\
\hline H(1) & \(0.1242(5)\) & \(0.1304(11)\) & 0.2763 (6) & \(0.0600(0)\) & \\
\hline H (2) & \(0.1709(5)\) & \(0.3603(12)\) & \(0.3582(6)\) & \(0.0600(0)\) & \\
\hline H(5) & \(0.2043(7)\) & -0.0106(15) & 0.3791 (7) & \(0.0600(0)\) & \\
\hline H(7) & \(0.0619(7)\) & \(0.3901(13)\) & 0.2790 (7) & \(0.0600(0)\) & \\
\hline H (12) & 0.2248 (5) & \(0.7460(11)\) & 0.0842 (6) & \(0.0600(0)\) & \\
\hline H(18) & \(0.0918(5)\) & \(0.6020(11)\) & 0.0074 (6) & \(0.0600(0)\) & \\
\hline H (3) a & 0.1040 (6) & \(0.1381(13)\) & 0.4317 (5) & \(0.0600(0)\) & \\
\hline H (3) b & \(0.1230(6)\) & \(0.2698(13)\) & 0.4803 (5) & \(0.0600(0)\) & \\
\hline H(4)a & \(0.2458(6)\) & \(0.2286(15)\) & 0.4581 (8) & 0.0600(0) & \\
\hline H (4) b & \(0.2117(6)\) & \(0.1056(15)\) & 0.5043 (8) & 0.0600(0) & \\
\hline H (6)a & \(0.2673(6)\) & \(0.2156(14)\) & \(0.3052(7)\) & \(0.0600(0)\) & \\
\hline H (6) b & 0.2476 (6) & \(0.0840(14)\) & \(0.2569(7)\) & \(0.0600(0)\) & \\
\hline H (8) a & 0.0913 (8) & \(0.5427(16)\) & 0.3868 (8) & \(0.0600(0)\) & \\
\hline H(8) \({ }^{\text {b }}\) & 0.0468 (8) & \(0.4532(16)\) & 0.4485 (8) & 0.0600(0) & \\
\hline H (8) c & \(0.0067(8)\) & \(0.5319(16)\) & 0.3773 (8) & \(0.0600(0)\) & \\
\hline H (9) a & \(0.0036(7)\) & \(0.1948(17)\) & 0.3093 (9) & \(0.0600(0)\) & \\
\hline H(9) b & -0.0473(7) & \(0.3153(17)\) & 0.3316 (9) & \(0.0600(0)\) & \\
\hline H (9) c & -0.0072(7) & \(0.2366(17)\) & 0.4028 (9) & \(0.0600(0)\) & \\
\hline H(10) a & \(0.3150(8)\) & -0.0382(19) & 0.4486 (10) & \(0.0600(0)\) & \\
\hline H(10) b & \(0.3469(8)\) & \(0.0844(19)\) & \(0.4001(10)\) & \(0.0600(0)\) & \\
\hline H(10) c & 0.3264 (8) & -0.0469(19) & \(0.3519(10)\) & \(0.0600(0)\) & \\
\hline H(11)a & -0.0429(7) & 0.2462 (21) & \(0.1178(10)\) & \(0.0600(0)\) & \\
\hline H(11) b & -0.0034(7) & \(0.1172(21)\) & \(0.1502(10)\) & \(0.0600(0)\) & \\
\hline H(11) c & -0.0002(7) & \(0.1550(21)\) & \(0.0554(10)\) & \(0.0600(0)\) & \\
\hline H(13)a & 0.3240 (5) & \(0.6021(12)\) & 0.0962 (6) & \(0.0600(0)\) & \\
\hline H(13) b & \(0.2769(5)\) & \(0.5030(12)\) & 0.1492 (6) & \(0.0600(0)\) & \\
\hline H(14)a & \(0.3480(7)\) & \(0.6277(15)\) & 0.2411 (7) & \(0.0600(0)\) & \\
\hline H(14) b & \(0.3155(7)\) & \(0.7595(15)\) & 0.2033 (7) & \(0.0600(0)\) & \\
\hline H (15) a & \(0.2565(7)\) & \(0.7132(12)\) & \(0.3269(7)\) & \(0.0600(0)\) & \\
\hline H(15) b & 0.2347 (7) & \(0.5714(12)\) & 0.2933 (7) & \(0.0600(0)\) & \\
\hline H (16) a & 0.1841 (7) & \(0.8124(15)\) & 0.2284 (7) & \(0.0600(0)\) & \\
\hline H(16) b & 0.1365 (7) & \(0.7115(15)\) & \(0.2792(7)\) & \(0.0600(0)\) & \\
\hline H(17) a & 0.1410 (6) & \(0.5642(11)\) & 0.1725 (6) & \(0.0600(0)\) & \\
\hline H(17) b & \(0.1152(6)\) & 0.7016 (11) & 0.1356 (6) & \(0.0600(0)\) & \\
\hline H(19)a & 0.1674 (6) & \(0.5325(12)\) & -0.1369(6) & \(0.0600(0)\) & \\
\hline H(19) b & 0.1254 (6) & \(0.4243(12)\) & -0.0853(6) & \(0.0600(0)\) & \\
\hline H(20)a & \(0.0185(6)\) & 0.5325 (16) & -0.1191(8) & \(0.0600(0)\) & \\
\hline H (20) b & \(0.0570(6)\) & \(0.4823(16)\) & -0.2004 (8) & \(0.0600(0)\) & \\
\hline H(21)a & \(0.0152(7)\) & \(0.7021(15)\) & -0.2143(7) & \(0.0600(0)\) & \\
\hline H(21) b & \(0.1000(7)\) & 0.6993 (15) & -0.2229(7) & \(0.0600(0)\) & \\
\hline H(22)a & \(0.0705(7)\) & \(0.8713(15)\) & -0.1374(9) & 0.0600(0) & \\
\hline H(22) b & \(0.0255(7)\) & \(0.7760(15)\) & -0.0798(9) & \(0.0600(0)\) & \\
\hline H(23)a & 0.1396 (7) & 0.8180(11) & -0.0168(8) & \(0.0600(0)\) & \\
\hline H(23) b & \(0.1768(7)\) & \(0.7602(11)\) & -0.0969(8) & \(0.0600(0)\) & \\
\hline
\end{tabular}
* Isotropic thermal parameter

Table 2. Bond Lengths ( \(\AA\) ) for \(\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{PS}\)
\begin{tabular}{|c|c|c|c|}
\hline O(1)-P & \(1.577(7)\) & \(\mathrm{C}(8)-\mathrm{C}(7)\) & 1.512(17) \\
\hline O(2)-P & 1.543(9) & C(9)-C(7) & 1.516(18) \\
\hline 0 (3)-P & 1.483(8) & c(13)-C(12) & 1.494(14) \\
\hline \(\mathrm{Hn}(1)-\mathrm{N}\) & 1.01(12) & c(17)-C(12) & 1.485(14) \\
\hline \(\mathrm{Hn}(2)-\mathrm{N}\) & \(0.89(14)\) & C(14)-C(13) & 1.520(14) \\
\hline \(\mathrm{C}(12)-\mathrm{N}\) & 1.498(12) & \(\mathrm{C}(15)-\mathrm{C}(14)\) & 1.490 (16) \\
\hline \(\mathrm{C}(18)-\mathrm{N}\) & 1.509(12) & C(16)-C(15) & \(1.486(16)\) \\
\hline \(\mathrm{C}(1)-0\) (1) & 1.413(11) & C(17)-C(16) & 1.464 (16) \\
\hline \(\mathrm{C}(11)-0(2)\) & 1.299(17) & C(19)-C(18) & 1.487(14) \\
\hline C (2)-C(1) & \(1.491(14)\) & C(23)-C(18) & 1.501(15) \\
\hline \(\mathrm{c}(6)-\mathrm{C}(1)\) & \(1.497(14)\) & C(20)-C(19) & 1.482(15) \\
\hline c(3)-c(2) & 1.531(14) & c(21)-C(20) & 1.497(19) \\
\hline \(\mathrm{C}(7)-\mathrm{C}(2)\) & \(1.539(16)\) & C(22)-C(21) & \(1.459(17)\) \\
\hline C(4)-C(3) & \(1.494(15)\) & C(23)-C(22) & 1.520(16) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(4)\) & 1.526(18) & C(26)-0(4) & 1.37 (5) \\
\hline \(\mathrm{c}(6)-\mathrm{C}(5)\) & 1.486(16) & C(26)-C(25) & 1.36 (5) \\
\hline c(10)-C(5) & 1.499(18) & S-P & 1.932 (3) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & \(\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{PS}\) \\
\hline \(\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(1)\) & 99．1（6） & \(\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{N}\) 113．3（8） \\
\hline \(0(3)-\mathrm{P}-0(1)\) & 105．6（4） & \(\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{H}(12) 106.1(6)\) \\
\hline \(0(3)-\mathrm{P}-\mathrm{O}(2)\) & 109．2（6） & \(\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13) 111.8(8)\) \\
\hline \(\mathrm{Hn}(2)-\mathrm{N}-\mathrm{Hn}(1)\) & 98（10） & H（13）a－C（13）－C（12）109．9（5） \\
\hline \(\mathrm{C}(12)-\mathrm{N}-\mathrm{An}(1)\) & 105（6） & H（13）b－C（13）－C（12）109．5（5） \\
\hline \(\mathrm{C}(12)-\mathrm{N}-\mathrm{Hn}(2)\) & 109（8） & \(\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12) 110.5(9)\) \\
\hline \(\mathrm{C}(18)-\mathrm{N}-\mathrm{Hn}(1)\) & 115（6） & C（14）－C（13）－E（13）a 110．0（6） \\
\hline \(\mathrm{C}(18)-\mathrm{N}-\mathrm{En}(2)\) & 110（8） & \(\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{B}(13) \mathrm{b} 107.4(6)\) \\
\hline \(\mathrm{C}(18)-\mathrm{N}-\mathrm{C}(12)\) & 118．5（8） & B（14）a－C（14）－C（13）110．0（7） \\
\hline \(\mathrm{C}(1)-0(1)-\mathrm{P}\) & 125.0 （6） & H（14）b－C（14）－C（13）107．7（6） \\
\hline \(\mathrm{C}(11)-0(2)-\mathrm{P}\) & 131．3（11） & \(\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13) \cdot 110.6(9)\) \\
\hline \(\mathrm{H}(1)-\mathrm{C}(1)-0(1)\) & 109．9（5） & C（15）－C（14）－8（14）a 109．9（6） \\
\hline \(\mathrm{C}(2)-\mathrm{C}(1)-0(1)\) & 109．3（8） & C（15）－C（14）－⿴囗十（14）\({ }^{\text {b }} 109.1\)（7） \\
\hline \(\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)\) & 108．1（5） & H（15）a－C（15）－C（14）109．2（6） \\
\hline \(\mathrm{C}(6)-\mathrm{C}(1)-0(1)\) & 108．7（8） & H（15）b－C（15）－c（14）109．1（7） \\
\hline \(\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)\) & \(110.7(6)\) & C（16）－C（15）－C（14）110．9（9） \\
\hline \(\mathrm{c}(6)-\mathrm{c}(1)-\mathrm{C}(2)\) & 110．2（8） & C（16）－C（15）－H（15）a \(109.5(6)\) \\
\hline \(\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(1)\) & \(107.6(5)\) & C（16）－C（15）－H（15）b \(108.7(7)\) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)\) & 109．4（9） & \＃（16）a－C（16）－C（15）107．9（7） \\
\hline \(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)\) & 106．3（5） & \(\mathrm{B}(16) \mathrm{b}-\mathrm{C}(16)-\mathrm{C}(15) 109.3(6)\) \\
\hline \(\mathrm{c}(7)-\mathrm{c}(2)-\mathrm{c}(1)\) & 114．0（8） & C（17）－C（16）－C（15）112．9（10） \\
\hline \(\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{H}(2)\) & 105．5（6） & C（17）－C（16）－H（16）a 107．3（7） \\
\hline \(\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)\) & 113．5（8） & C（17）－C（16）－E（16）b 109．9（6） \\
\hline H（3）a－C（3）－C（2） & \(108.5(5)\) & \(\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12) 112.5(9)\) \\
\hline 日（3）b－c（3）－c（2） & 108.8 （6） & \＃（17）a－C（17）－C（12）109．8（6） \\
\hline \(\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)\) & 111．3（8） & 日（17）a－C（17）－C（16）107．8（7） \\
\hline C（4）－C（3）－H（3）a & 108．4（7） & 日（17）b－C（17）－C（12）107．9（6） \\
\hline \(\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3) \mathrm{b}\) & \(110.3(6)\) & \(\mathrm{B}(17) \mathrm{b}-\mathrm{C}(17)-\mathrm{c}(16) 109.4(7)\) \\
\hline H（4）a－C（4）－C（3） & 108．5（7） & 日（18）－C（18）－N 105．9（5） \\
\hline H（4）b－C（4）－C（3） & 109．5（6） & \(\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{N} \quad 108.4\)（8） \\
\hline \(C\)（5）－C（4）－C（3） & 111．1（9） & \(\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{B}(18) 111.3(5)\) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{B}(4) \mathrm{a}\) & 108．8（7） & \(\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{N} \quad 111.7(8)\) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4) \mathrm{b}\) & 109．5（7） & \(\mathrm{C}(23)-\mathrm{C}(18)\)－ \(\mathrm{B}(18) 109.3(7)\) \\
\hline H（5）－C（5）－C（4） & 107．2（7） & \(\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)\) 110．1（8） \\
\hline \(\mathrm{c}(6)-\mathrm{c}(5)-\mathrm{c}(4)\) & 108．0（11） & \(\mathrm{B}(19) \mathrm{a}-\mathrm{C}(19)-\mathrm{C}(18) 106.2(5)\) \\
\hline \(\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{B}(5)\) & 110．3（7） & H（19）b－C（19）－C（18）112．7（5） \\
\hline \(\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)\) & 111．2（10） & \(\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18) 111.8(9)\) \\
\hline C（10）－C（5）－H（5） & 108．8（9） & C（20）－C（19）－H（19）a \(107.1(6)\) \\
\hline \(\mathrm{c}(10)-\mathrm{C}(5)-\mathrm{C}(6)\) & 111．3（11） & C（20）－C（19）－H（19）\({ }^{\text {b }} 109.4(7)\) \\
\hline C （5）－C（6）－C（1） & 114．2（9） & \(\mathrm{H}(20) \mathrm{a}-\mathrm{C}(20)-\mathrm{C}(19) 106.7(6)\) \\
\hline H（6）a－C（6）－C（1） & 107．5（6） & H（20）b－C（20）－C（19）110．2（7） \\
\hline H（6）a－C（6）－C（5） & 108．8（7） & C（21）－C（20）－C（19）110．6（11） \\
\hline B（6）b－c（6）－c（1） & 109．0（6） & \(\mathrm{C}(21)\)－ \(\mathrm{C}(20)\)－ \(\mathrm{B}(20) \mathrm{a} 108.2(7)\) \\
\hline \(\mathrm{B}(6) \mathrm{b}-\mathrm{C}(6)-\mathrm{C}(5)\) & 107．8（7） & C（21）－C（20）－H（20）b \(111.6(7)\) \\
\hline H（7）－C（7）－C（2） & 107．1（5） & 日（21）a－C（21）－C（20）107．1（7） \\
\hline c （8）－C（7）－C（2） & 113．3（10） & H（21）b－C（21）－C（20）108．8（7） \\
\hline \(\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)\) & 109．0（7） & \(\mathrm{c}(22)-\mathrm{C}(21)-\mathrm{C}(20) 111.4(10)\) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(2)\) & 112．7（11） & \(\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{B}(21) \mathrm{a} 110.4(7)\) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{B}(7)\) & 106．4（7） & \(\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{B}(21) \mathrm{b} 109.6(7)\) \\
\hline \(\mathrm{c}(9)-\mathrm{C}(7)-\mathrm{C}(8)\) & 108．1（10） & 日（22）a－C（22）－C（21）108．4（7） \\
\hline 日（8）a－C（8）－C（7） & 108．8（7） & 日（22）b－C（22）－C（21） 109.6 （7） \\
\hline H（8）b－C（8）－C（7） & 107．6（7） & \(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21) 112.2(11)\) \\
\hline \(\mathrm{H}(8) \mathrm{c}-\mathrm{C}(8)-\mathrm{C}(7)\) & 111．9（7） & \(\mathrm{C}(23)-\mathrm{C}(22)\)－ \(\mathrm{H}(22)\) a \(109.0(7)\) \\
\hline H（9）a－C（9）－C（7） & 107．1（7） & \(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22) \mathrm{b} 108.1\)（8） \\
\hline H（9）b－C（9）－C（7） & 109．9（8） & \(\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18) 109.0(10)\) \\
\hline H（9）c－C（9）－C（7） & 111．4（7） & 日（23）a－C（23）－C（18）112．3（6） \\
\hline H（10）a－C（10）－C（5） & 110．3（8） & H（23）a－C（23）－C（22）111．3（7） \\
\hline
\end{tabular}
\begin{tabular}{llll}
\(\mathrm{H}(10) \mathrm{b}-\mathrm{C}(10)-\mathrm{C}(5)\) & \(109.6(9)\) & \(\mathrm{H}(23) \mathrm{b}-\mathrm{C}(23)-\mathrm{C}(18)\) & \(106.5(7)\) \\
\(\mathrm{H}(10) \mathrm{c}-\mathrm{C}(10)-\mathrm{C}(5)\) & \(108.5(8)\) & \(\mathrm{B}(23) \mathrm{b}-\mathrm{C}(23)-\mathrm{C}(22) 108.0(8)\) \\
\(\mathrm{H}(11) \mathrm{a}-\mathrm{C}(11)-0(2)\) & \(109.0(9)\) & \(\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{O}(4)\) & \(126(5)\) \\
\(\mathrm{H}(11) \mathrm{b}-\mathrm{C}(11)-0(2)\) & \(112.8(10)\) & \(\mathrm{C}(26)-\mathrm{O}(4)-\mathrm{C}(26)\) & \(135(6)\) \\
\(\mathrm{H}(11) \mathrm{c}-\mathrm{C}(11)-0(2)\) & \(106.6(9)\) & \(0(1)-\mathrm{P}-\mathrm{S}\) & \(113.2(3)\) \\
\(\mathrm{H}(12)-\mathrm{C}(12)-\mathrm{N}\) & \(109.4(5)\) & \(0(2)-\mathrm{P}-\mathrm{S}\) & \(111.4(4)\) \\
\(\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}\) & \(106.8(8)\) & \(0(3)-\mathrm{P}-\mathrm{S}\) & \(116.8(3)\) \\
\(\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)\) & \(109.4(5)\) & &
\end{tabular}

Table 4. Anisotropic thermal parameters (x10**4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Atom & U11 & U22 & U33 & U23 & U13 & U12 \\
\hline P & 389(15) & 317 (15) & 489(15) & 40(14) & 13(11) & 10(13) \\
\hline S & 764(20) & 318(15) & 668(18) & -24(14) & 131(15) & 80(14) \\
\hline N & \(398(50)\) & 325 (44) & 480 (50) & -12(38) & 9(40) & -54(39) \\
\hline 0(1) & 968(57) & 329(36) & 327 (39) & -30(31) & 168 (35) & 4(36) \\
\hline O(2) & 352(55) & 754 (66) & 2839(150) & -548(83) & -326(65) & 146 (45) \\
\hline 0 (3) & 1169(68) & 497 (49) & 470 (43) & 43 (37) & 79 (41) & -248(45) \\
\hline C(1) & 482 (61) & 509 (62) & 394(59) & 107(51) & 60(45) & 33 (54) \\
\hline C(2) & 365 (60) & 547 (63) & 615 (69) & -66(56) & 48 (49) & -72(50) \\
\hline C(3) & \(759(75)\) & 722 (73) & 259(52) & 44 (57) & 3 (46) & -191(71) \\
\hline C(4) & 600(77) & \(984(102)\) & 704(81) & 187 (74) & -177(61) & -27(70) \\
\hline C(5) & 806(89) & 873(92) & 639(82) & -13(73) & -223(68) & 118(73) \\
\hline C (6) & 548 (70) & 684 (75) & 575(69) & -71(66) & -6(53) & 76(66) \\
\hline C(7) & 784(89) & 812(89) & 354(59) & -44(61) & 127 (56) & 59(74) \\
\hline C (8) & 881 (98) & 1042(116) & 831 (89) & -159(83) & 226(76) & 128(85) \\
\hline C(9) & 802(93) & 1199(132) & 827 (90) & -205 (90) & 47 (70) & 198(97) \\
\hline C(10) & 1163 (129) & \(1011(117)\) & \(1217(118)\) & -50(106) & -450(99) & \(394(107)\) \\
\hline C(11) & 626 (102) & 1584(182) & 1241(122) & -283(120) & 106(81) & 261(106) \\
\hline C(12) & 539 (66) & 408(63) & 389 (58) & -18(45) & -26(49) & -53(49) \\
\hline C(13) & 521 (65) & 624 (78) & 505 (61) & 55 (54) & 1(52) & -132(56) \\
\hline C(14) & 898(94) & 931 (105) & 549 (75) & 135 (64) & -180(68) & -290(75) \\
\hline C(15) & 1132(103) & 523 (73) & 329(63) & 33 (47) & -255 (66) & -185(67) \\
\hline C(16) & 1111 (96) & 667 (78) & 455(64) & \(5(75)\) & 243 (65) & 7 (86) \\
\hline C(17) & 701 (75) & 404 (66) & 483 (64) & -18(51) & 122 (55) & 104(53) \\
\hline C(18) & 377 (55) & \(539(72)\) & 415 (54) & 97 (57) & 49 (44) & -92(54) \\
\hline C(19) & 540(68) & 469 (62) & 495(59) & -29(57) & 17 (50) & 49(55) \\
\hline C(20) & 539 (74) & 1013(109) & 700(74) & -29(82) & -100(61) & -167(76) \\
\hline C(21) & 532 (70) & 1135(117) & 531 (73) & 172 (72) & -144(54) & -216(69) \\
\hline C(22) & 766 (95) & 728 (90) & 937 (103) & 223(82) & -286(80) & 65(71) \\
\hline C(23) & 752 (79) & 329 (67) & 932 (87) & -4(61) & -185 (65) & 79(57) \\
\hline
\end{tabular}

The anisotropic displacement parameter has the form:
expl-2pi*2(U11h*2a**2+...+2U12hka*b*)]
\begin{tabular}{|c|c|c|c|c|c|}
\hline C（1）．．．P & 2.653 & & & & \\
\hline H（1）．．．P & 2.703 & & & & \\
\hline C（11）．．．P & 2.591 & & & & \\
\hline H（11）b．．．P & 2.866 & & & & \\
\hline H（11）c．．．P & 2.813 & & & & \\
\hline O（1）．．．S & 2.935 & & & & \\
\hline O（2）．．．S & 2.880 & & & & \\
\hline 0（3）．．．S & 2.918 & & & & \\
\hline C（1）．．．S & 3.299 & & & & \\
\hline H（1）．．．S & 2.963 & & & & \\
\hline 日（6）b．．．S & 3.025 & & & & \\
\hline C（11）．．．s & 3.214 & & & & \\
\hline H（16）a．．．S & 2.997 & 1 ， & 0．0000， & 1．0000， & 0.0000 \\
\hline H（23）a．．．S & 2.853 & 1, & 0.0000 ， & 1.0000 ， & 0.0000 \\
\hline N．．．s & 3.357 & 2 ， & 0.5000, & 0.5000 ， & 0.0000 \\
\hline En（1）．．．\({ }^{\text {S }}\) & 2.359 & 2 ， & 0．5000， & 0.5000 ， & 0.0000 \\
\hline 0（3）．．．N & 2.680 & & & & \\
\hline 日（12）．．．N & 2.022 & & & & \\
\hline C（13）．．．N & 2.402 & & & & \\
\hline H（13）a．．．N & 2.574 & & & & \\
\hline H（13）b．．．N & 2.577 & & & & \\
\hline C（17）．．．N & 2.493 & & & & \\
\hline H（18）．．．N & 1.992 & & & & \\
\hline C（19）．．．N & 2.431 & & & & \\
\hline H（19）a．．．N & 2.592 & & & & \\
\hline H（19）b．．．N & 2.614 & & & & \\
\hline C（23）．．．N & 2.490 & & & & \\
\hline Hn（2）．．． Hn （1） & 1.437 & & & & \\
\hline C（12）．．．En（1） & 2.016 & & & & \\
\hline C（13）．．． Hn （1） & 2.455 & & & & \\
\hline H（13）a．．． Hn （1） & 2.235 & & & & \\
\hline C（18）．．． \(\mathrm{Hn}(1)\) & 2.146 & & & & \\
\hline O（3）．．． Hn（2）\(^{\text {（ }}\) & 1.798 & & & & \\
\hline C（12）．．． \(\operatorname{Cn}\)（2） & 1.972 & & & & \\
\hline C（13）．．．tin（2） & 2.495 & & & & \\
\hline C（18）．．．\({ }^{\text {（nn }}\)（2） & 1.992 & & & & \\
\hline  & 2.539 & & & & \\
\hline 0（2）．．．0（1） & 2.374 & & & & \\
\hline 0（3）．．．0（1） & 2.439 & & & & \\
\hline H（1）．．．0（1） & 1.952 & & & & \\
\hline C（2）．．．0（1） & 2.369 & & & & \\
\hline H（2）．．．0（1） & 2.535 & & & & \\
\hline C（6）．．．0（1） & 2.365 & & & & \\
\hline E（6）a．．．0（1） & 2.509 & & & & \\
\hline H（6）b．． 0 （1） & 2.560 & & & & \\
\hline C（7）．．．0（1） & 2.895 & & & & \\
\hline 日（7）．．．0（1） & 2.455 & & & & \\
\hline \(0(3) \ldots 0(2)\) & 2.467 & & & & \\
\hline H（11）a．．．0（2） & 1.842 & & & & \\
\hline H（11）b．．．0（2） & 1.883 & & & & \\
\hline H（11）c．．．0（2） & 1.815 & & & & \\
\hline H（2）．．．C（1） & 1.996 & & & & \\
\hline C（3）．．．C（1） & 2.467 & & & & \\
\hline H（3）a．．．c（1） & 2.649 & & & & \\
\hline C（4）．．．C（1） & 2.899 & & & & \\
\hline C（5）．．．C（1） & 2.505 & & & & \\
\hline H（6）a．．．c（1） & 2.000 & & & & \\
\hline H（6）b．．．C（1） & 2.017 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline c（7）．．．c（1） & 2.542 \\
\hline H（7）．．．c（1） & 2.587 \\
\hline c（2）．．．日（1） & 2.002 \\
\hline c（3）．．．\({ }^{\text {（1）}}\)（1） & 2.663 \\
\hline \(\mathrm{c}(6) \ldots \mathrm{H}(1)\) & 2.036 \\
\hline H（3）a．．．c（2） & 2.042 \\
\hline H（3）b．．．c（2） & 2.045 \\
\hline c（4）．．．c（2） & 2.498 \\
\hline 日（4）a．．．c（2） & 2.675 \\
\hline c（5）．．．c（2） & 2.943 \\
\hline c（6）．．．c（2） & 2.450 \\
\hline H（6）a．．．c（2） & 2.625 \\
\hline H（7）．．．c（2） & 2.033 \\
\hline \(\mathrm{c}(8) \ldots . \mathrm{c}(2)\) & 2.549 \\
\hline c（9）．．．c（2） & 2.543 \\
\hline 日（9）a．．．c（2） & 2.670 \\
\hline C（3）．．．日（2） & 2.015 \\
\hline c（4）．．．日（2） & 2.632 \\
\hline c（6）．．．\({ }^{\text {（2）}}\) ） & 2.602 \\
\hline c（7）．．．日（2） & 2.013 \\
\hline \(\mathrm{C}(8) \ldots\) ．．．\({ }^{\text {（2）}}\) & 2.576 \\
\hline H（4）a．．．c（3） & 2.008 \\
\hline H（4）b．．．c（3） & 2.020 \\
\hline c（5）．．．c（3） & 2.491 \\
\hline H（5）．．．c（3） & 2.667 \\
\hline c（6）．．．c（3） & 2.845 \\
\hline c（7）．．．c（3） & 2.567 \\
\hline c（9）．．．c（3） & 2.983 \\
\hline H（3） b ．．．t \(\mathrm{H}^{\text {（3）}} \mathrm{a}\) & 1.551 \\
\hline c（4）．．．H（3）a & 2.007 \\
\hline c（5）．．．．\({ }^{\text {（3）}}\) a & 2.665 \\
\hline c（4）．．． H \(^{\text {（3）}} \mathrm{b}\) & 2.029 \\
\hline H（5）．．．c（4） & 2.022 \\
\hline \(\mathrm{c}(6) \ldots \mathrm{c}(4)\) & 2.437 \\
\hline B（6）a．．．c（4） & 2.621 \\
\hline \(\mathrm{c}(10) \ldots \mathrm{C}(4)\) & 2.495 \\
\hline 日（10）a．．．c（4） & 2.678 \\
\hline B（4） b ．．\({ }^{\text {B（4）}} \mathrm{a}\) & 1.551 \\
\hline \(\mathrm{C}(5) \ldots \mathrm{B}(4) \mathrm{a}\) & 2.041 \\
\hline C（6）．．．．\({ }^{\text {（4）}}\) a & 2.631 \\
\hline C（10）．．．\({ }^{\text {（ }}\)（4） a & 2.663 \\
\hline \(\mathrm{C}(5) \ldots \mathrm{B}(4) \mathrm{b}\) & 2.049 \\
\hline H（6）a．．．c \({ }^{(5)}\) & 2.005 \\
\hline H（6）b．．．c（5） & 1.993 \\
\hline H（10）a．．．C（5） & 2.033 \\
\hline 日（10）b．．．c（5） & 2.026 \\
\hline H（10）c．．．c（5） & 2.012 \\
\hline C（6）．．．日（5） & 2.023 \\
\hline \(\mathrm{C}(10) \ldots \mathrm{H}(5)\) & 2.017 \\
\hline c（10）．．．c（6） & 2.464 \\
\hline H（10）b．．．c（6） & 2.644 \\
\hline H（10）c．．．c（6） & 2.642 \\
\hline H（6） b ．．． \(\mathrm{H}(6) \mathrm{a}\) & 1.551 \\
\hline C（10）．．． \(\mathrm{H}(6) \mathrm{a}\) & 2.630 \\
\hline C（10）．．．tr（6）b & 2.623 \\
\hline H（8）a．．．c \({ }^{\text {（7）}}\) & 2.028 \\
\hline H（8） \(\mathrm{b} . . . c(7)\) & 2.015 \\
\hline H（8）c．．．c（7） & 2.064 \\
\hline H（9）a．．．c \({ }^{\text {（7）}}\) & 2.012 \\
\hline H（9）b．．．c（7） & 2.044 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline H(9)c...C(7) & 2.061 & & & & \\
\hline C(8)... H (7) & 2.031 & & & & \\
\hline C(9)...H(7) & 2.003 & & & & \\
\hline H(9)a...H(7) & 2.257 & & & & \\
\hline C(9)...C(8) & 2.450 & & & & \\
\hline H(9)b...C(8) & 2.617 & & & & \\
\hline H(9)c...C(8) & 2.669 & & & & \\
\hline H(8)b... \(\mathrm{H}(8) \mathrm{a}\) & 1.551 & & & & \\
\hline H(8)c... H (8) a & 1.551 & & & & \\
\hline \(\mathrm{H}(8) \mathrm{c}\). . \(\mathrm{H}(8) \mathrm{b}\) & 1.551 & & & & \\
\hline C(9)... H (8) b & 2.601 & & & & \\
\hline c(9)... \(\mathrm{H}(8) \mathrm{c}\) & 2.653 & & & & \\
\hline H(9) b... \(\mathrm{H}^{\text {(9) }} \mathrm{a}\) & 1.551 & & & & \\
\hline H(9)c... H (9)a & 1.551 & & & & \\
\hline H(9) c...H(9) b & 1.551 & & & & \\
\hline H(10)b... H (10)a & 1.551 & & & & \\
\hline H(10)c. . H (10)a & 1.551 & & & & \\
\hline H(10)c... H (10) b & 1.551 & & & & \\
\hline H(11)c...C(11) & 2.662 & 2 , & 0.0000, & 0.0000, & 0.0000 \\
\hline H(11)b...H(11)a & 1.551 & & & & \\
\hline H(11)c... H (11)a & 1.551 & & & & \\
\hline H(11) c...H(11) \(b\) & 1.551 & & & & \\
\hline H(11)c...日(11) c & 1.755 & 2 , & 0.0000, & 0.0000, & 0.0000 \\
\hline H(13)a...C(12) & 2.026 & & & & \\
\hline H(13)b...C(12) & 2.020 & & & & \\
\hline C(14)...C(12) & 2.476 & & & & \\
\hline H(14) b...c(12) & 2.658 & & & & \\
\hline c(15)...c(12) & 2.885 & & & & \\
\hline C(16)...c(12) & 2.453 & & . & & \\
\hline H(16)a...C(12) & 2.653 & & & & \\
\hline H(17)a...C(12) & 2.016 & & & & \\
\hline H(17)b...c(12) & 1.993 & & & & \\
\hline C(18)...c(12) & 2.584 & & & & \\
\hline C(23)...C(12) & 3.097 & & & & \\
\hline C(13)... \(\mathrm{H}(12)\) & 2.020 & & & & \\
\hline C(14)... \(\mathrm{H}^{(12)}\) & 2.675 & & & & \\
\hline C(16)... H \(^{(12)}\) & 2.646 & & & & \\
\hline C(17)... H (12) & 1.973 & & & & \\
\hline H(17) b... H (12) & 2.203 & & & & \\
\hline H(14)a...c(13) & 2.050 & & & & \\
\hline H(14) b...c(13) & 2.023 & & & & \\
\hline C(15)...C(13) & 2.475 & & & & \\
\hline 日(15) b...c(13) & 2.676 & & & & \\
\hline C(16)...C(13) & 2.874 & & & & \\
\hline C(17)...C(13) & 2.467 & & & & \\
\hline H(13) b... H (13)a & 1.551 & & & & \\
\hline C(14)... H (13)a & 2.050 & & & & \\
\hline C(14) ... H (13)b & 2.019 & & & & \\
\hline C(15)... H(13) \(^{\text {b }}\) & 2.654 & & & & \\
\hline H(15)a...c(14) & 2.014 & & & & \\
\hline H(15)b...c(14) & 2.013 & & & & \\
\hline C(16)...C(14) & 2.450 & & & & \\
\hline H(16)a...C(14) & 2.639 & & & & \\
\hline C(17)...C(14) & 2.877 & & & & \\
\hline H(14) b... H (14) a & 1.551 & & & & \\
\hline C(15)... H (14) a & 2.021 & & & & \\
\hline C(15) ... \(\mathrm{H}^{(14) ~ b ~}\) & 2.012 & & & & \\
\hline C(16)... H \(^{\text {(14) }}\) b & 2.648 & & & & \\
\hline H(16)a...C(15) & 1.994 & & & & \\
\hline H(16)b...C(15) & 2.011 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline C（17）．．．C（15） & 2.459 \\
\hline H（15）b．．． H （15）a & 1.551 \\
\hline \(\mathrm{C}(16) \ldots \mathrm{H}\)（15）a & 2.013 \\
\hline C（16）．．． \(\mathrm{H}^{\text {（15 }}\) ）b & 2.003 \\
\hline c（17）．．． H （15）b & 2.680 \\
\hline H（17）a．．．c（16） & 1.974 \\
\hline H（17）b．．C（16） & 1.992 \\
\hline H（16）b ．．且（16）a & 1.551 \\
\hline C（17）．．． H （16）a & 1.968 \\
\hline H（17）b．．． \(\mathrm{H}(16) \mathrm{a}\) & 2.220 \\
\hline \(\mathrm{C}(17) \ldots \mathrm{H}(16) \mathrm{b}\) & 1.998 \\
\hline H（17）a．．． \(\mathrm{H}(16) \mathrm{b}\) & 2.234 \\
\hline \(c(18) \ldots c(17)\) & 3.076 \\
\hline H（17）b．．． H （17）a & 1.551 \\
\hline H（19）a．．．C（18） & 1.976 \\
\hline H（19）b．．．c（18） & 2.051 \\
\hline c（20）．．．c（18） & 2.459 \\
\hline H（20）a．．．c（18） & 2.616 \\
\hline C（21）．．．c（18） & 2.878 \\
\hline C（22）．．．C（18） & 2.459 \\
\hline H（22）b．．．c（18） & 2.650 \\
\hline H（23）a．．．c（18） & 2.059 \\
\hline H（23）b．．．C（18） & 1.991 \\
\hline C（19）．．． H（18）\(^{\text {（18 }}\) & 2.035 \\
\hline C（22）．．． H （18） & 2.673 \\
\hline C（23）．．． \(\mathrm{H}^{(18)}\) & 2.024 \\
\hline H（20）a．．．C（19） & 1.977 \\
\hline H（20）b．．．C（19） & 2.018 \\
\hline C（21）．．．c（19） & 2.450 \\
\hline H（21）b．．．c（19） & 2.671 \\
\hline C（22）．．．C（19） & 2.847 \\
\hline C（23）．．．c（19） & 2.449 \\
\hline H（23）b．．．c（19） & 2.587 \\
\hline H（19）b ．．且（19）a & 1.551 \\
\hline C（20）．．． H （19）a & 1.982 \\
\hline C（21）．．． H（19）\(^{\text {a }}\) & 2.596 \\
\hline C（23）．．． H（19）\(^{\text {a }}\) & 2.570 \\
\hline C（20）．．． E \(^{\text {（19）}}\) b & 2.008 \\
\hline H（21）a．．．C（20） & 1.995 \\
\hline H（21）b．．．C（20） & 2.015 \\
\hline c（22）．．．c（20） & 2.442 \\
\hline H（22）b．．．C（20） & 2.658 \\
\hline C（23）．．．C（20） & 2.892 \\
\hline H（20）b ．．且（20）a & 1.551 \\
\hline C（21）．．． \(\mathrm{B}^{(20) a}\) & 2.008 \\
\hline H（21）a．．． \(\mathrm{H}^{\text {（20）}}\) a & 2.257 \\
\hline C（22）．．．\({ }^{\text {（ }}\)（20） a & 2.628 \\
\hline C（21）．．． \(\mathrm{H}^{\text {（20）}} \mathrm{b}\) & 2.047 \\
\hline H（22）a．．．C（21） & 1.977 \\
\hline H（22）b．．．c（21） & 1.990 \\
\hline C（23）．．．c（21） & 2.472 \\
\hline H（23）b．．．c（21） & 2.638 \\
\hline H（21）b．．H（ 21 ）a & 1.551 \\
\hline C（22）．．． H （21）a & 1.999 \\
\hline C（22）．．． \(\mathrm{H}^{\text {（21）}}\) b & 1.990 \\
\hline H（22）a．．． \(\mathrm{H}^{\text {（21）}} \mathrm{b}\) & 2.241 \\
\hline H（23）a．．．C（22） & 2.064 \\
\hline H（23）b．．．C（22） & 2.027 \\
\hline H（22）b．．． H （22）a & 1.551 \\
\hline C（23）．．． H \(^{\text {（22）a }}\) & 2.038 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\mathrm{C}(23) \ldots \mathrm{H}(22) \mathrm{b}\) & 2.027 \\
\(\mathrm{H}(23) \mathrm{b} \ldots \mathrm{H}(23) \mathrm{a}\) & 1.551 \\
\(\mathrm{C}(25) \ldots 0(4)\) & 2.430 \\
\(\mathrm{C}(26) \ldots \mathrm{C}(26)\) & 2.528
\end{tabular}

\footnotetext{
2, \(1.0000,0.0000,1.0000\)
}

\section*{Refexences}

1）D．V．Banthorpe in Patai，The Chemistry of the Azido Group，1971，Interscience，London，p． 397.

2）P．A．S．Smith，Org．Reactions，1946，3， 337.

3）E．S．Wallis and J．F．Lane，Org．Reactions， \(1946,3,267\).

4）L．Bauer and O．Exner，Angew．Chem．Internat．Edit．，1974， 13， 376 。

5）M．J．P．Harger and M．A．Stephen，J．Chem．Soc．，Perkin Trans．1，1981，736；M．J．P．Harger and S．Westlake，Tetra－ hedron，1982，38，1511．

6）G．Bertrand，J．\(-P\) ．Majoral，and A．Baceiredo，Tetrahedron Lett。 1980，21，5015．

7）F．H．Westheimer，Chem．Rev。，1981，81，313；M．Regitz and G．Mas，Top．Curr．Chem．，1981，97，71．

8）F．Weissbach and W．Jugelt，J．Pralkt．Chem．，1975，317， 394；W．T．Reichte，Inorg．Chem．，1964，3，402．

9）M．J．P．Harger and M．A．Stephen，J．Chem．Soco，Perkin Trans．1，1980，705．

10）H．L．Yale，Chem。Revo，1943，33， 209.

11）K．Brink，W．Gombler，and C．Bliefert，Z。Anorg。 Allg。 Chem．1977，429，255i．U．Hermann，M．Yaktapour，and C． Bliefert，Naturforsch Teil \(B, 1978\) ，33，574；H．Metzger in Houben－Weyl，＇Methoden der Organischen Chemie＇，G．Thieme Verlag，stuttgart，1968，Band 10／4，p． 215.

12）Mo J．P．Harger，Jo Chem。 Soc。，Perkin Trans 1，1981， 3284 。

13）M．J．P。 Harger，Jo Chem。 Soc。，Perkin Trans．1，1983， 2699。

14）Mo J．P．Harger and A．Smith，Jo Chem．Soc．，Perkin Trans．1，1985，1787．

15）M．J．P．Harger，J．Chem．Soc．，Chem．Commun．，1979，930．

16）M．J．Po．Harger and A．Smith，J．Chem。Soc．，Perkin Trans 1，1986，2169。

17）M．J．P．Harger and A．Smith，J．Chem．Soc．，Perkin Trans 1，1987，683。

18）Mo J．P．Haxger and A．Shimmin，Tetrahedron，1992，48， 7539 。

19）M．J．P．Harger and A．Smith，J．Chem．Soc．，Pexkin Trans 1．1990，1447。

20）M．J．P．Harger，Jo Chem．Res．（S），1993，176．

21）M．J．P．Haxger and A．Smith，Jo Chem。Soco，Perkin Trans 1，1985，2651。

22）M．J．P．Harger and A．Smith，J．Chem．Soc．，Perkin Trans 1，1990，2507。

23）R．F．Hudson，Structure and Mechanism in Organophosphorus Chemistry，Academic Press，London，1965，p． 259.

24）L．Horner and A．Christmann，Chem。Ber．，1963，96，388； W．Ando，No Ogino，T．Migita，Bull．Chem．Soc．Jpn．，1971， 44，2278；Y．Hayashi and D．Swern，Tetrahedron Lett．，1972， 1921；D．C．Appleton，D．Co Bull，J．McKenna，and A．R． Walley，Jo Chem．Soc．，Perkin Trans 2，1980，385；T．L． Gilchrist and C．J．Moody，Chem Rev．，1977，77，409．

25）M．J．P．Hargex and A．Smith，J．Chem．Soc．，Perkin Trans．1，1986，377。

26）S．Freeman and Mo J．P．Harger，Jo Chem．Soc．，Pexkin Trans 2，1988，81。

27）W．P．Jencks，Acc．Chem。Res．，1980，13，161；Chem．Soc． Rev．，1981，10，345．

28）M．J．P．Haxger，Tetrahedron Lett．，1990，31，1451．

29）L。 Horner，Ho Hoffmann，W．Klink，Ho Ertel，and V．Go Toscano，Chem．Ber．，1962，95，581．

30）Arbuzov，Pure Appl．Chem．，1964，9，307；A．K． Bhattachaxya and G．Thyagarajan，Chem．Rev．，1981，81，415．

31）M．Epstein and S．Buckler，Tetrahedron，1962，18，1231．

32）Prepared by M．J．P．Harger essentially as E．Kagan，R． D．Birkenmeyer，and R．E．Strube，J．Am。Chem．Soc．，1959， 81，3026。

33）G．M．Kosolapoff，J．Am。Chem。Soc．，1945，67，2259．

34）Prepared by S．Freeman；see S．Freeman and M．J．P． Harger，J．Chem．Soc．，Pexkin Trans．1，1987， 1399

35）Preliminary communication；J。 Fawcett，Mo Jo P。 Harger， and R．Sreedharam－Menon，J．Chem．Soc．，Chem．Commun．，1992， 227.

36）M．J．P．Harger，J．Chem．Soc．，Perkin Trans 2，1978， 326。

37）M．J．P．Harger，J．Chem。 Soc．，Perkin Trans 2，1980， 1505。

38）W．Dablkowski，J．Michalski，C．Radziejewski，and Z． Skrzypczynslui，Chem。Ber．，1982，115，1636。

39）L．Wozniak and J．Chojnowski，Tetrahedron，1989，45， 2465 。

40）W．Dabkowski，J．Michalski，and Z．Skrzypczynski，Chem。 Ber．，1985，118，1809．

41）M．J．P．Harger，J．Chem．Soc．，Perkin Trans．1，1983， 2127。

42）J．March，Advanced Organic Chemistry，4th edition，1992， John Wiley and Sons Inc．，New York，p．263－264．

4．3）Prepared by M．J．P．Harger；unpublished results．

44）A．Shimmin；unpublished results．

45）F．Yamamoto and S．Oae，Bull．Chem．Soc．Jap．，1975，48， 77 。

46）A．S．Kende，Organic Reactions，1960，11，261；P．J． Chenier，J．Chem。Educ．，1978，55， 286.

47）R．B．Loftfield，J．Am．Chem。Soc．，1950，72，632；1951， 73，4707．

48）L．A．Paquette，Organic Reactions，1977，25，1．

49）I．Lengyel and J．C．Sheehan，Angew．Chem．，Int．Ed． Engl．，1968，7，25；G。 L＇abbe，Angew．Chemo，Int。Ed．Engl．， 1980，19，276。

50）H．Quast and H．Leybach，Chem．Ber．，1991，124，849．

51）K．A．Petrov，V．A．Chauzov，T．S．Erokhina，and I。V。 Pastukhova；Jo Gen。 Chem。 USSR（Engl。 Trans．），1977，47， 2501．

52）M．J．P．Harger and A．Williams，Jo Chem．Soc．，Perkin Trans．1，1986，1681。

53）S．E．Fishwick，J．Flint，W。Hawes，and S．Trippett，Jo Chem．Soc．，Chem．Commun．，1967，1113；H．Hellman and J． Bader，Tetrahedron Lett．，1961， 724.

54）P。 Burns，G．Capozzi，and P。Haake，Tetrahedron Lett。， 1972，925；A．J．Fry and L．－L．Chung，Tet．Lett，1976，645； K．A．Petrov，V．A．Chauzov，T．S．Erolkhina，and I．V． Pastukhova，Jo Gen。 Chem．USSR（Engl。 Trans．），1976，46， 2387 。

55）H．Quast，M．Heuschmann，and M．O．Alodel－Rahman，Angew． Chem．，Int．Ed．Engl．，1975，14，486．

56）H．Quast and M．Heuschmann，Angew．Chem．，Int．Ed．Engl．， 1978，17，867。

57）T．Oshikawa and M．Yamashita，Bull．Chem．Soc．Jpn．， 1986，59（10），3293．

58）No Jo Po Hargex and A．Williams，Jo Chem．Soc．，Perkin Trans。1，1989，563．

59）Prepared by \(\mathbb{M}\) ．J．P．Harger and J．Trafford；see J．A。 Cade，J．Chem．Soc．，1959， 2266.

60）J．Trafford，undergraduate research project，University of Leicester，1990．

61）M．D．M．Gray and D．J．H．Smith，Tetrahedron Lett．， 1980，21，859；P．Sutter and C．D．Weis，Phosphorus Sulphur， 1978，\＆，335。

62）J．Fawcett，Mo J．P．Harger，D．R．Russell，and R． Sreedharan－Menon，J．Chem．Soc．，Chem．Commun．，1993，in the press（3／04762／CCC）。

63）B．Altenkirk and \(S . S\) ．Israelstam，J．Org．Chem．，1962， 27．4532．
64) CI. S. Coulton, G. A. Moore, and R. Ramage, Tetrahedron Lett., 1976, 4005.
65) F. H. Case, J. Am. Chem. Soc., 1925, 47, 1143. Prepared by H. Silkowski (undergraduate research project, University of Leicester, 1992), method adapted from L. M. Harwood and C. J. Moody, Experimental Organic Chemistry, Blaclswell Scientific Publications, Oxford, 1989, p. 482.
66) Prepared by \(M_{0} J_{0}\) P. Harger; see \(O\). Mancera and \(O\). Lemberger, J. Org. Chem, 1950, 15, 1253.
67) See J. March, Advanced Organic Chemistry, 4th edition, 1992, John Wiley and Sons Inc., New York, p. 307; E. C. Ashby, Acc. Chem. Res., 1988, 21, 414.
68) W. S. Wadsworth, Jr., and W。 D. Emmons, Jo Orgo Chemo, 1964, 29, 2816; W. S. Wadsworth, Jx., Oxganic Reactions, 1977, 25, 73.
69) W. J. Stec, Acc. Chem. Res., 1983, 16, 411.
70) D. Bouchu, F. Tardy, M. Moreau, J. Dxeux, A. Skowronska, and J. Michalsui, Tetrahedron Lett., 1985, 26, 443.
71) B. Krzyzanowska and \(W\). J. Stec, Heteroatom Chem., 1991, 2, 123.

72 ) R。 C. Grabiak, J. A. Miles, and G. M. Schwenzer, Phosphorus Sulphur, 1980, 9, 197.
73) J. W. Perich and R. B. Johns, Aust. J. Chem., 1991, 4.4, 503.

74）G．R．J．Thatcher and R．Kluger，Adv．Phys．Org．Chem．， 1989，25，99．

75）E．L．Muerrerties，W．Mahler，and R．Schmutzler，Inorg。 Chem．，1963，2，613．

76）F．H．Westheimer，Acc．Chem．Res．，1968，1， 70.

77）R．F．Hudson and C．Brown，Acc．Chem．Res．，1972，5，204； C．R．Hall and T．D．Inch，Tetrahedron，1980，36，2059．

78）R．S．Berry，J。 Chem。 Phys．，1960，32，933；I．Ugi，D． Marquarding，H．Kluscek，G．Gokel，and P。 Gillespie，Angew。 Chem．，Int．Ed．Engl．，1970，9，705；

79）S．Trippett，Phosphorus Sulphur，1976，1，89．

80）J．March，Advanced Organic Chemistry，3rd edition，1985， John Wiley and Sons，New York，p． 222.

81）J．C．Bottaro，C．D．Bedford，and A．Dodge，Synth． Commun．，1985，15，1333．

82）N．Thomas，undergraduate research project，University of Leicester， 1978.

83）E．A．Chernyshev，E．F．Bugerenko，N．A．Nikolaeva and A． D．Petrov，Dokl．Akad．Nauk SSSR，1962，147，117．

84）H．G．Henning，J．Prakt．Chem．1965，29，93；Chem． Abstra．，1965，63，7036．

85）R．K．Crossland and K．L．Servis，J．Org。Chem．，1970， 35（9），3195；G．Opitz，Angew．Chem．，Int．Ed．Engl．，1967，6， 107.

86）R．S．Edmundson and E．W．Mitchell，J．Chem．SoC．（C） 1968，16，2091；this describes a different method of prep－ aration。

87）Prepared by M．J．P．Harger．

88）Prep \(M\) ．J．P．Harger as Organic Synthesis collective Volume V，John Wiley and Sons Inc．，London，p． 878.

89）R．J．W．Cremlyn，R．M．Ellam and N．Akhtar，Phosphorus Sulphur，1978，5，1。

90）Organic Syntheses collective Volume \(I V\) ，John wiley and Sons Inc．，London，p． 125.

91）Method gleaned from J．March，Advanced Organic Chemistry， 3rd edition，1985，John Wiley and Sons，New York，p．360；E． E．Reid，Organic Chemistry of Bivalent Sulphur，Vol．2，1960， Chemical Publishing Co．，Inc．，New York，p． 24.

92）CAS No［66167－74－6］：see Chem．Abstra．，1978，88， P153546z。

93）Prepared by M．J．P．Harger；see W．R．Griffiths and J． C．Tebby，Phosphorus Sulphur，1978，5，101－6．

94）W．Clegg and G．M．Sheldrick，Z．Kristallogr．，1984，167， 23.
95) G. M. Sheldrick, SHELXS86 Programe for Crystal Structure Solution, University of Göttingen, Germany, 1986.
96) G. M. Sheldrick, SHELX76 Programe for Crystal Structure Determination, University of Cambridge, 1976.
97) SHELXTL, PC version 4.2, Programme package for structure solution and refinement, Siemens Analytical Instruments Inc., Madison, WI, 1990.```


[^0]:    Samples $A$ and $B$ of the $N$-phosphinoylhydroxylamine (43) were converted into their methanesulphonates (44), $\delta_{p}\left(C D C l_{3}\right) 39.6$ and 38.4 respectively, in high yield (> 90\%; ~ $60 \%$ after crystallisation), by treatment with methanesulphonyl chloride (1.4 mol equiv.) and triethylamine (1.0 mol equiv.) in dichloromethane (Eq. 7). ${ }^{18}$ Crystallisation gave sample $A$, mainly the ${ }^{31} \mathrm{P}$ NMR lowfield diastereoisomer (ratio $80: 20$ ),

[^1]:    - This is the ratio of the $N B u^{t}$ or $N M e$ peaks for rearrangement with $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ or $\mathrm{MeNH}_{2}$ respectively.
    ${ }^{b}$ This value was also obtained in a similar reaction with 1 mol equiv. of tert-butylammonium (-)-camphor-10-sulphonate present in the $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}$ solution before the addition of the substrate.

[^2]:    - No sensible solution was obtained from the simultaneous equations for this diastereoisomer at this concentration. This value was obtained by extrapolation, assuming that there is no significant difference between the diastereoisomers, then $\mathbf{A}^{\prime}=(97.7 / 95.8) \mathrm{x}$ $94.9=96.8$, and $B^{\prime}=100-A^{\prime}=3.2$.

[^3]:    Normally, progressive alkylation of an amine should reduce its efficiency as a nucleophile (steric hindrance), but where steric factors are unimportant, as would appear to be the case for nitrogen, this same alkylation may serve to enhance the nucleophilicity of the amine ( $+I$ effect), thus making the

[^4]:    expected behavioux, intermediate between the $O$-methyl and O-tert-butyl compounds - but is most probably due to the 2-isopropyl group; this will increase the steric impact of the O-menthyl group at the phosphorus centre, malsing menthyl, in effect, more bulky than tert-butyl.

[^5]:    : The ${ }^{31} \mathrm{p}$ NMR lowfield diastereoisomer of the $N$-phosphinoylhydroxylamine (A3) was found to be sparingly soluble in ethyl acetate. Crystallisation of a 1 : 1 mixture of diastereoisomers of (43) from hot ethyl acetate gave a sample that was highly enriched in the ${ }^{31} \mathrm{p}$ NMR lowfield diastereoisomer and a 20 : 80 mixture of diastereoisomers ( ${ }^{31} \mathrm{P}$ NMR highfield diastereoisomer in excess) in the mother liquor. Recrystallisation of the mother did not improve the diastereoisomer ratio and this material was used in the preparation of the nosylate (45). Recrystallisation of the sample enriched in the ${ }^{31} \mathrm{P}$ NMR lowfield diastereoisomer from ethyl acetate gave. the pure lowfield diastereoisomer of (43).

[^6]:    * The sodium salt, $\delta_{\mathrm{p}} 1.3$, was evident in the reaction mixture.

[^7]:    * Isotropic thermal parameter

