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Abstract

Guilt aversion has been shown to play an important role in economic decision-making. In this

paper, we take an axiomatic approach to guilt by deducing a utility representation from a list of

easily interpretable assumptions on an agent’s preferences. It turns out that our logarithmic rep-

resentation can mitigate the problem of multiplicity of equilibria to which psychological games are

prone. We apply the model in three well-known games and show that its predictions are consistent

with experimental observations.
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1 Introduction

Guilt is the experience of discomfort that follows when we violate a personal or social standard. If an

action raises income but disappoints our own or other individuals’ expectations of us, it may trigger

our guilty conscience. Any individual who is sufficiently averse to this discomfort may therefore refrain

from taking the action in the first place. Guilt aversion is able to explain a vast array of behaviors,

including cooperation (Miettinen and Suetens, 2008), altruism (Andreoni and Rao, 2011), conformism

(Khalmetski, 2015), group favoritism (Güth et al., 2009) and reciprocity (Chang et al., 2011), and eco-

nomic experiments indicate that it is indeed an important determinant in a variety of different situations

(Ketelaar and Au, 2003; Charness and Dufwenberg, 2006; Hopfensitz and Reuben, 2009; Geng et al.,

2011; Battigalli et al., 2013). More recently, guilt averse behavior has also made its way into macroeco-

nomic modeling. Thus Ahrens and Snower (2014) incorporates guilt and envy into a dynamic stochastic

equilibrium model and shows that when these emotions are experienced by workers, a Phillips curve

relationship between inflation and output can be generated.

A popular way to model emotions, including guilt, is to include them as inputs in agents’ utility func-

tions. Particularly important for experimental work are linear utility representations with money and

guilt as the inputs (Battigalli and Dufwenberg, 2007; López-Pérez, 2010; Chang et al., 2011; Battigalli

et al., 2013; Miettinen, 2013; Khalmetski et al., 2015).1 This paper’s main theoretical objective is to

axiomatize utility representations of guilt-averse preferences. Specifically, axioms are presented that are

necessary and sufficient for (i) the linear representation mentioned a moment ago, (ii) a representation

that is logarithmic in money and linear in guilt, and (iii) a general additively separable utility represent-

ation of money and guilt. Call the sacrifice ratio between money and guilt (“how much money an agent

is willing to pay to lower guilt by one unit”) the price of a clear conscience (PCC). For well-behaved

preferences we find that (i) obtains if and only if the PCC is constant for all money-guilt combinations;

(ii) holds if and only if for any two levels of income the relative PCC equals the relative income, and (iii)

derives whenever a suitably redefined “double cancellation condition” (Debreu, 1960) is satisfied.

By tracing specific utility representations to the level of preferences, we are able to shed light on

the deeper psychological conditions that they entail vis-a-vis the previously mentioned personal or social

standards. In doing so, we quickly end up concluding that the assumptions about an agent’s moral

compass embodied in (i) are problematic. While (iii) is not subject to this critique, it has — as will

become clear from the following discussion — too many degrees of freedom to provide a useful alternative

in strategic settings. This motivates our introduction of (ii) as the simplest realistic alternative — and

it is important to stress, this is not an ad hoc alternative but one grounded in moral/psychological

considerations. With this in hand we then — in what is arguably the paper’s main contribution to

existing literature — reanalyze a number of famous laboratory games, namely the Dictator game, the

Public Good Provision game, and the Prisoners’ Dilemma. This exercise provides further support for

model (ii), but we postpone the specifics until section 4.

To the best of our knowledge, the only existing paper concerned with the axiomatization of guilt-

1Miettinen (2013) considers a linear utility over money and guilt in the main text of his paper. In the appendix he
studies a more general function with a weakly convex guilt component, which he adopts for technical convenience but finds
difficult to justify. The alternative functional form proposed in this paper also implies convex preferences over money and
guilt, but is grounded in deep psychological considerations.
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income representations is López-Pérez (2010). López-Pérez (2010) proposes a utility function exhibiting

guilt aversion and provides axiomatic foundation for it. The study also features a discussion of the

psychological foundation of guilt and shame and links the feeling of guilt to internalization of a social

norm. The paper differs from ours in a number of ways, however, most importantly in the definition of

guilt. In López-Pérez (2010), guilt is binary (-1 if the social norm was breached and 0 otherwise), and

for the value of guilt to be determined, an exogenous social norm must be specified. By contrast, in our

setting guilt is a real number with the standard interpretation as the difference between an opponent’s

actual and expected payoff (see e.g. Battigalli and Dufwenberg (2007) as well as the discussion in section

2). Finally, the properties of the preference relation in López-Pérez (2010) depend on what other players

do, hence any given representation is only defined within a specific game. By contrast, our preference

relation is set on an abstract guilt-money space and thus can be applied to both decision and game

theory. An axiomatic approach to the broader field of other-regarding preferences has been pursued

by several authors, most notably Neilson (2006) and Sandbu (2008). Both papers axiomatize general

function forms: Additively separable reference-dependent utility in the former and CES-utility in the

latter. What sets these studies apart from the results of the current paper is our focus on specific

functional forms with few enough free parameters to be testable in the laboratory.

The rest of the paper proceeds as follows. Section 2 introduces money-guilt utility functions. Section

3 develops a theory of moral choice and presents our axiomatization results. Section 4 studies the

experimental evidence in the three games mentioned above as well as further discussion. The Appendix

contains proofs.

2 Existing Literature and the Logarithmic Alternative

The first formal model of guilt aversion was proposed by Battigalli and Dufwenberg (2007). They define

guilt as the perceived payoff loss inflicted on another player, i.e., as the difference between an opponent’s

expected payoff E(mj) and actual payoff mj :

G(mj , E(mj)) = max{0, E(mj)−mj}. (1)

To be precise, since a player i does not know exactly how much his opponent j expects, E(mj) is i’s

belief about j’s expectation. That makes guilt, and a guilt-averse agent’s utility, a function of second-

order beliefs (cf. Geanakoplos et al. (1989), Attanasi and Nagel (2007), Battigalli and Dufwenberg

(2009)). Battigalli and Dufwenberg (2007) also propose a utility function over money and guilt (2),

which has been extensively used in subsequent theoretical and experimental research.2

ui(mi, G) = mi − θG. (2)

Here mi is the decision-maker’s monetary payoff, G is the guilt he experiences, and θ is a guilt sensitivity

parameter. A key advantage of such an approach is that it endogenizes the reference point E(mj)

which with a formulation such as (2) is implicitly solved for in equilibrium. A constant marginal rate of

2Examples are Battigalli and Dufwenberg (2009), Chang et al. (2011), Battigalli et al. (2013), Khalmetski (2015).
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substitution (MRS) between money and guilt arguably has a drawback, however: It can explain nearly

any observed behavior. To illustrate with an often studied example, consider the so-called Dictator

game, in which one player (the Dictator, hereafter D) decides upon the division of the total endowment

T between himself and the other player (the Recipient, hereafter R). His donation to R, mR, is hence his

strategy. In Psychological Nash equilibrium of the game, D’s donation will maximize his utility, given

his belief about what R expects from him (E(mR)), and this belief will be correct (E(mR) = mR). It is

easy to see that, if D’s utility is defined as in (2): u = T −mR−θmax{0, E(mR)−mR}, either the set of

equilibria coincides with the strategy set (if θ ≥ 1), or giving zero is the only equilibrium (if θ < 1). The

second case is falsified by experimental evidence of positive giving in the Dictator game (Engel, 2011).

The first case is consistent with experimental data but — and this is our main point — it is unfalsifiable

in the sense that it is consistent with any set of empirical/experimental observations.

In section 4, we return to the Dictator game as well as two other games that suffer from related

difficulties and explain how these shortcomings are overcome if we instead use the following logarithmic

specification:

ui(mi, G) = logmi − θG. (3)

To be sure, it is rather obvious that one way out of the previously described predicament is not to

assume a constant MRS.3 At the same time, one cannot pass to arbitrary utility representations, however,

including arbitrary additively separable representations, since that merely compounds the explanatory

richness. In brief, one must commit to a specific functional form for falsification to be possible. In the next

section we will argue from deeper moral axioms that (3) is a proper alternative to linear specifications.

3 Moral Choice and Axiomatization

Consider a decision-maker who has a preference relation � over a two-dimensional choice set M×G ⊆
R2

+, where m ∈ M = R++ is his strictly positive monetary payoff, and G ∈ G = R+ is the guilt he

experiences. (m1, G1) � (m2, G2) reads “a payoff of m1 accompanied by guilt of size G1 is at least as

good as a payoff of m2 accompanied by guilt of size G2”.

We assume throughout that � is complete and transitive (rational), monotone in the sense that

money is desirable whereas guilt is undesirable (m1 > m2 ⇒ (m1, G) � (m2, G) and G1 < G2 ⇒
(m,G1) � (m,G2)), and continuous (for all (m1, G1), the lower and the upper contour sets, {(m,G) :

(m,G) � (m1, G1)} and {(m,G) : (m,G) � (m1, G1)} are closed). These assumptions are of course

completely standard.

The previous assumptions together with convexity of the choice set M×G imply the existence of

a continuous utility representation, i.e., a continuous function u : M×G → R so that u(m1, G1) ≥
u(m2, G2)⇔ (m1, G1) � (m2, G2) (Debreu, 1954). A simple adaption of another contribution by Debreu,

immediately provides us with necessary and sufficient conditions for u to be additively separable, i.e., for u

3Note that a decreasing MRS between money and guilt implies strictly convex preferences over the player’s own and his
opponent’s income – an idea which was theoretically developed and empirically verified in multiple studies (most notably,
Cox et al. (2007) and Cox et al. (2008)).
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to take the form u(m,G) = f(m)+g(G) (here f must be strictly increasing and g strictly decreasing under

our monotonicity condition). What we have in mind is Debreu’s “double cancellation condition” (Debreu,

1960) which in the current setting can be cast as follows: If (m1, G1) � (m2, G2) and (m2, G3) � (m3, G1),

then (m1, G3) � (m3, G2). In words, the decision-maker’s marginal disutility of guilt does not depend

on how wealthy he is, and vice versa.4

Everything that has been said so far is either well-known or trivial in light of existing literature. In

contrast, the next concept is new. Consider an agent who is indifferent between two options, one of

which offers more money and more guilt (the greedy option), while the other offers less money and less

guilt (the conscientious option). Formally, consider a pair of distinct alternatives {(m1, G1), (m2, G2)}
such that:

(m1, G1) ∼ (m2, G2). (4)

We call any {(m1, G1), (m2, G2)} that satisfies (4) a moral dilemma. For a given moral dilemma, the

agent is willing to give up m1 −m2 in order to reduce his level of guilt by G1 −G2. The sacrifice ratio

between the two,
m1 −m2

G1 −G2
, (5)

is referred to as the price of a clear conscience. Our first moral axiom makes the (bold) postulate that

the price of a clear conscience is independent of the moral dilemma the agent faces:

Axiom 1 (Constant Price of a Clear Conscience) For any (m1, G1) ∼ (m2, G2) and (m′1, G
′
1) ∼

(m′2, G
′
2), it holds that m1−m2

G1−G2
=

m′1−m
′
2

G′1−G′2
.

The linear utility representation u(m,G) = m−θG of equation (2) is easily shown to imply Axiom 1.

In addition, the underlying preferences are clearly rational, monotone, and continuous. More surprisingly,

the converse is true as well:

Theorem 1 Consider a rational, monotone, and continuous preference relation � on M×G. Then �
admits the utility representation u(m,G) = m− θG, θ > 0 if and only if � satisfies Axiom 1.

Proof: In the Appendix.

Theorem 1 tells us that assuming a linear utility representation amounts to assuming that the mental

tradeoff between money and guilt captured by the price of a clear conscience remains the same regardless

of the level of income and load of sin an agent faces. This, it may be argued, is not necessarily a realistic

description of actual behavior. We would arguably expect an agent to care less about giving up a unit of

income the richer he is. He will therefore be willing to pay more to clear his conscience than a relatively

poorer version of himself. The next axiom formalizes this description of behavior in a specific way by

requiring the relative price of a clear conscience to always equal the relative income. This statement is

of course only meaningful if relative income is well defined, i.e. if the increase in income is the same for

both the greedy and the conscientious options.

4For further interpretation and discussion of this condition as well as equivalent independence type conditions see
Debreu (1960) as well as Segal and Sobel (2002) and Vind and Grodal (2003).
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Axiom 2 (Income Effect in Moral Choice) For any (m1, G1) ∼ (m′1, G
′
1) and (m2, G2) ∼ (m′2, G

′
2),

such that m1

/
m2 = m′1

/
m′2, it holds that

m′1−m
′
2

G′1−G′2

/
m1−m2

G1−G2
= m′1

/
m1.

Axiom 2 implies the double cancellation condition. Indeed, in the Appendix we prove the following

lemma:

Lemma 1 Suppose a rational, monotone and continuous � on M×G satisfies Axiom 2. Then (m1, G1+

a) ∼ (m2, G2 +a) whenever (m1, G1) ∼ (m2, G2), and (m1, G1 +a) � (m2, G2 +a) whenever (m1, G1) �
(m2, G2) for any a ∈ [max{−G1,−G2},+∞].

Applying Lemma 1 to the antecedent statements of the double cancellation condition, we obtain:

(m1, G1) � (m2, G2) ⇒ (m1, G3) � (m2, G2 +G3 −G1) (6)

(m2, G3) � (m3, G1) ⇒ (m2, G3 +G2 −G1) � (m3, G2) (7)

which by transitivity yields (m1, G3) � (m3, G2). In particular, Axiom 2 implies that umust be additively

separable. One can show that Axiom 1 also implies the double cancellation condition and therefore an

additively separable utility function.

It turns out that Axiom 2 is necessary and sufficient for a representation which is logarithmic in

money and linear in guilt.

Theorem 2 Consider a rational, monotone and continuous preference relation � on M×G. Then �
admits the utility representation U(m,G) = logm− θG, θ > 0 if and only if � satisfies Axiom 2.

Proof: In the Appendix.

Intuitively, the proof of Theorem 2 proceeds by showing that the indifference curves of � satisfying

Axiom 2 are related by parallel displacement along the guilt axis and proportional expansion along the

money axis, which leads to the desired representation.5

4 Reinterpreting Existing Literature

In this section, we continue the discussion of section 2 with the representation (3) in hand. We study

three well-known laboratory games in which experimental subjects appear to be motivated by conside-

rations other then their monetary payoff. Non-monetary motivation is manifested in positive giving in

the Dictator game, non-zero contributions in the Public Good Provision game, and cooperation in the

Prisoner’s Dilemma. We show that this seemingly irrational behavior can be explained by guilt aversion,

as modeled by functions (2) and (3). Indeed, both models admit observed experimental outcomes in

equilibrium. However, we also demonstrate that the explanatory power of model (2) stems from its

unfalsifiability, and prove that the logarithmic representation (3) achieves sharper predictions without

sacrificing the goodness of fit.

5An alternative axiomatization of utility functions (2) and (3) is possible, where they rely on a common axiom requiring
that the price of a clear conscience is constant for all moral dilemmas with fixed levels of money. Two additional axioms
are then required to obtain Theorems 1 and 2 respectively, which describe how the PCC reacts to the change in money,
holding the level of guilt fixed. This axiomatization can be found in a working paper version of this study.
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The rest of this section proceeds as follows. First, for each game, we introduce the classic structure:

Players, strategies and “material” payoffs corresponding to experimental payouts. Second, we replace

these payoffs with utility functions (2) and (3), which depend not only on the strategies (via “material”

payoff m), but also on pre-game beliefs (via guilt G). The extended utility function domain means that

the resulting structure is a “psychological game” (Geanakoplos et al., 1989). If a player’s preferences

are represented by such a utility function, his preference ordering over the outcomes of the game, e.g.

possible Dictator’s donations to the Recipient, depends on his pre-game beliefs, e.g. what he thought

the Respondent expected to receive. Third, the new game is solved for Psychological Nash equilibria, in

which all players best-respond to their beliefs, and these beliefs are correct. Finally, the equilibria of the

game under utility functions (2) and (3) are compared to experimental outcomes, which constitutes an

empirical test of the models.

4.1 The Dictator Game

In the Dictator game, one of the players (the Dictator, hereafter D) determines how to split a total

endowment T between himself and a passive player (the Recipient, hereafter R). D’s donation to R,

which is his strategy, is denoted by mR. If D is selfish, i.e. if his preferences are reflected by his material

payoff T − mR, the only Nash equilibrium of the game is zero donation: mR = 0. We would expect

a guilt-averse D to donate a positive amount to R. This is formally confirmed below, when we find

equilibria in psychological games induced by the linear (2) and the logarithmic (3) guilt models. Denote

D’s belief about R’s expectation of the donation by E(mR). The amount of guilt that he experiences

from donating mR is thus G = max{0, E(mR) − mR}, and Psychological Nash equilibrium (hereafter

PsyNE) is a strategy m∗R which solves (8).6 U(m∗R, E(mR)) ≥ U(mR, E(mR)) for all mR ∈ [0, T ];

m∗R = E(mR).
(8)

First, consider D’s utility under the linear guilt model (2):

u = T −mR − θmax{0, E(mR)−mR}. (9)

PsyNE is determined from the system (10), which is obtained by applying the utility function (9) to

the equilibrium condition (8):

 T −m∗R − θmax{0, E(mR)−m∗R} ≥ T −mR − θmax{0, E(mR)−mR} for all mR ∈ [0, T ],

m∗R = E(mR).
(10)

which yields

6Strictly speaking, Psychological Nash Equilibrium consists of a strategy profile and a belief profile (Geanakoplos et al.,
1989). However, since these profiles are required to coincide (in equilibrium, strategies match beliefs), hereafter we denote
PsyNE by its constituent strategy profile, implying that it is accompanied by the matching belief profile.
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m∗R ∈

 [0, T ] if θ ≥ 1;

{0} otherwise.
(11)

Equation (11) characterizes the set of equilibria in the game. This set, depending on D’s guilt

sensitivity θ, either coincides with the strategy set [0, T ], or consists of the unique equilibrium where D

gives zero.

Observation 1 In the Dictator game with the linear utility function (2), all possible Dictator’s donations

are PsyNE of the game if θ ≥ 1, and zero donation is the only PsyNE if θ < 1.

Figure 1, left illustrates the equilibria in the Dictator game under the linear guilt function, as solved

from the system (10). The first equation in (10) solves for D’s optimal donation m∗R as a function of his

belief about R’s expectation E(mR). Depending on D’s guilt sensitivity, it is either a 45◦ line from the

origin m∗R = E(mR) (if θ ≥ 1, solid graph), or a horizontal line m∗R = 0 (if θ < 1, dashed graph). The

second equation in (10) is a 45◦ line from the origin, and the solution is their intersection, which is the

whole line for θ ≥ 1 or a single point (0, 0) for θ < 1.

T/2 T
0

T/2

T

E(m
R
)

m
R*

θ > 0

θ < 0

T
0

T

E(m
R
)

m
R*

T−1/θ

Figure 1: Dictator’s optimal donation m∗R as a function of his belief E(mR) under the linear (left) and
logarithmic (right) guilt models.

Let us compare this prediction with the laboratory evidence. In a meta study of 129 different Dictator

Game experiments (a total of 41,433 observations), Engel (2011) reports a mean contribution of 28.35%

of the initial endowment. In fact, only 36.11% of all participants give nothing. Thus, if the linear guilt

model (2) is correct, then for the majority of players guilt sensitivity must be larger than one. The

model then suggests that these people will be giving out donations of all sizes, but the experimental

data indicates that dictators are more likely to give little. Indeed, the distribution of average giving

compiled in Engel (2011) is left skewed. Large donations are very rare. In particular, less than 10% of

all participants surveyed in the meta-study gave more than 60% of the pie. In short, the linear model

(2) does not account for the main stylized fact implied by the experimental evidence: The prevalence of

moderate donations.

It turns out that the logarithmic model (3) embraces this stylized fact, predicting that for big expect-

ations E(mR), D’s optimal donation to R will be less than such expectation: m∗R(E(mR)) < E(mR).
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It follows that such E(mR) cannot be part of an equilibrium and will not be observed. Indeed, PsyNE

under model (3) solves the following system:

 log(T −m∗R)− θmax{0, E(mR)−m∗R} ≥ log(T −mR)− θmax{0, E(mR)−mR} for all mR ∈ [0, T ];

m∗R = E(mR);

(12)

which yields

m∗R ∈ [0,max{0, T − 1

θ
}]. (13)

Expression (13) tells us that if D’s preferences are represented by the logarithmic utility function (3),

he will only satisfy expectations E(mR) up to a maximum of T − 1
θ (Figure 1, right). This threshold

expectation is increasing with D’s guilt sensitivity.

Observation 2 In the Dictator game with the logarithmic utility function(3), the Dictator’s donations

up to max{0, T − 1
θ} are PsyNE of the game.

Proof: In the Appendix.

Observation 2 implies that smaller donations are more likely to be observed, which is in line with the

existing body of laboratory evidence. Note that, apart from the equilibrium prediction, the logarithmic

model describes how D best-responds to a big E(mR): The amount he gives will be less than what he

believes is expected from him. This implication of the logarithmic model validates the guilt aversion

hypothesis, which has been put into question by some experimental results, most notably Ellingsen et al.

(2010) who show that players’ donations in the Dictator game do not always match their beliefs. Ellingsen

et al. (2010) data is indeed inconsistent with the linear guilt model (2), which predicts that, for any belief

E(mR), the Dictator will either grant it in full or give nothing. This leads Ellingsen et al. (2010) to

refute the guilt aversion hypothesis. However, the logarithmic model, as we just argued, accounts for

“sub-belief giving” by the Dictators, thus explaining most of their data.

4.2 The Public Good Provision Game

In a 2-player Public Good Provision game, each player i = 1, 2 is endowed with wi and decides upon

the amount of his contribution to a common fund xi ∈ [0, wi], which is hence his strategy. The money

in the fund is multiplied by a number 2a and shared equally among the players. The final payoff mi is

then determined as follows:

mi = wi − xi + a(xi + xj), (14)

where 1 > a > 0.5. The restriction on a makes contributions collectively efficient but not individually

rational.

If utilities equal material payoffs, the only equilibrium is zero contribution by both agents (“free-

riding”). This sharp prediction is refuted by laboratory tests of the game, which report an average

9



contribution of 40-60% of the initial endowment (Ledyard, 1995). Can the phenomenon of positive

contributions be attributed to guilt aversion? It has been shown that non-binding promises during

pre-play communication helps sustain high contribution levels in Public Good Provision experiments

(Ledyard (1995) and more recently Denant-Boemont et al. (2011)), which suggests the players’ desire to

meet expectations, i.e. guilt aversion. We formally confirm this intuition below, demonstrating that the

models of guilt aversion (2) and (3) indeed admit positive contributions in equilibrium.

Let E(xi) denote i’s second-order belief about xi, i.e. what he thinks j expects him to contribute.

First, consider the linear guilt model (2), under which i’s utility becomes

ui(xi, xj , E(xi)) = wi − xi + a(xi + xj)− θi ·max{0, (wj − xj + a(E(xi) + xj))− (wj − xj + a(xi + xj))}

= wi − (1− a)xi + axj − θi ·max{0, a(E(xi)− xi)}.

Observe that utility is linear in the choice variable, which implies a corner solution. Indeed, it is

easy to show that, if θi ≥ 1−a
a , a player i will maximize his utility by contributing as much as expected

from him (xi = E(xi)), regardless of j’s contribution. In other words, any belief about his contribution

is self-fulfilling, which means that the set of equilibria coincides with the set of strategy profiles. If the

player is not guilt-averse enough (θi <
1−a
a ), he will contribute zero.

Observation 3 Consider a Public Good Provision game with the linear utility function (2). A contribu-

tion profile (x1, x2) is a PsyNE if it satisfies the following: (i) xi = 0 for any i = 1, 2 such that θi <
1−a
a ;

(ii) xi ∈ [0, wi] for any i = 1, 2 such that θi ≥ 1−a
a .

Proof: In the Appendix.

The linear guilt model thus predicts that some agents will be giving out positive contributions, but

remains agnostic about their size, their correlation with the opponent’s contribution, and the effect

of the parameters of the model on the amounts given. However, the existing body of experimental

evidence from Public Good Provision games has some clearly identifiable patterns. In an early meta

study, Ledyard (1995) observes that contributions positively depend on Marginal per Capita Return

(a in our model). In a survey of post-1995 experimental literature, Chaudhuri (2011) emphasizes two

stylized facts: First, heterogeneity of players in terms of social preferences, and second, the prevalence

of conditional cooperators in the subject pool, whose contributions positively depend on the average

contribution in the group (in a 2-player setting considered here, this is equivalent to dependence on the

opponent’s contribution). We will now show that the logarithmic guilt model (3) accounts for all three

of these stylized facts.7

Under the logarithmic model (3), agent i’s utility becomes:

Ui(xi, xj , E(xi)) = log(wi − (1− a)xi + axj)− θi ·max{0, a(E(xi)− xi)}. (15)

7Heterogeneity of players is also implied by the linear model, which suggests that the players fall into one of the two
groups, depending on their guilt sensitivity: Those who contribute nothing and those who can contribute anything. The
logarithmic model provides a sharper prediction, since it implies a continuum of contribution behaviour, where the player’s
maximum contribution positively and continuously depends on his guilt sensitivity.
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PsyNE is a pair of contributions (x∗1, x
∗
2), where each xi satisfies the following conditions: Ui(x

∗
i , x
∗
j , E(xi)) ≥ Ui(xi, x∗j , E(xi)) for all xi ∈ [0, wi] for i = 1, 2;

x∗i = E(xi) for i = 1, 2.
(16)

Solving the system (16) yields Observation 4.

Observation 4 Consider a Public Good Provision game with the logarithmic utility function (3). A

contribution profile (x∗1, x
∗
2) is a Psychological NE if, for i = 1, 2, either x∗i = 0 or 0 < x∗i ≤ (wi +

ax∗j )
/

(1− a)− (θia)−1.

Proof: In the Appendix.

In words, for given values of players’ guilt sensitivities, admitted in equilibrium are contributions

up to a certain limit. The player’s maximum contribution positively and continuously depends on the

marginal return a, his guilt sensitivity θi and his opponent’s contribution xj , which is an exact match of

the stylized experimental facts discussed above. The predictions of the model are illustrated in Figure

2 for the cases of big (left) and small (right) initial endowments: Shaded areas are Psychological Nash

equilibria of the Public Good Provision game.
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Figure 2: Equilibria in the Public Good Provision game under the logarithmic guilt model for the cases
of big (left) and small (right) initial endowments, where f(xj , θi, wi, a) = (wi + axj)

/
(1− a)− (θia)−1.

4.3 The Prisoner’s Dilemma Game

In the Prisoner’s Dilemma game, two players choose between cooperation and defection. The latter

strategy is dominant but leads to an inefficient outcome, as described in the payoff table below:

Cooperate Defect
Cooperate c, c s, t

Defect t, s d, d

11



where t > c > d > s.8

Mutual defection is the only Nash equilibrium of Prisoner’s Dilemma. Contrary to this prediction,

existing experiments report non-negligible proportion of cooperative choices, around 20% in most studies

(Andreoni and Miller, 1993; Cooper et al., 1996).

The presence of cooperation in laboratory Prisoner’s Dilemma has been attributed to guilt aversion

by some experimental papers, notably Miettinen and Suetens (2008). In Miettinen and Suetens (2008),

it is argued that players who cooperate do so to avoid the feeling of guilt which comes with unilateral

defection. We validate this intuition by applying the formal models of guilt aversion (2) and (3) to

Prisoner’s Dilemma and comparing their predictions with the experimental findings.

First, let us find pure strategy equilibria under the linear guilt model (2).

Observation 5 Consider a Prisoner’s Dilemma game with the linear utility function (2). Mutual de-

fection is a PsyNE for any values of θ; mutual cooperation is a PsyNE iff θi ≥ t−c
c−s (for i = 1, 2) and

unilateral cooperation, where i is the cooperator, is a PsyNE iff θi ≥ d−s
t−d .

Proof: In the Appendix.

Observation 5 tells us that all strategy profiles can be equilibria, including, perhaps surprisingly,

unilateral cooperation. Indeed, sufficiently guilt averse players (with θi ≥ d−s
t−d ) will be willing to co-

operate even when they think their opponent is going to defect. In order to see how extreme the guilt

sensitivity thresholds are, we calculated its numerical value for payoff tables used in some of the most

famous Prisoner’s Dilemma experiments (Table 1).

Table 1: Guilt Sensitivity Thresholds under the Linear Model

Paper
Minimum Guilt Sensitivity

Unilateral Cooperation Mutual Cooperation
Andreoni and Miller (1993) 0.5 0.71

Bereby-Meyer and Roth (2006) 0.7 0.7
Friedman and Oprea (2012) 0.29 0.8

For all considered studies, the condition for mutual cooperation is at least as restrictive as for uni-

lateral cooperation. We illustrate this result in Figure 3, left, which shows that unilateral cooperation is

an equilibrium under strictly larger set of parameter values than mutual cooperation, and hence is more

likely to be observed (Zones B,C,D VS Zone C only).9

Contrary to this prediction, existing experimental research suggests that most players who cooperate

in Prisoner’s Dilemma do so conditionally on their opponent also cooperating. Cooper et al. (1996) do

not identify any unconditional cooperators in their subject pool, and estimate the fraction of conditional

cooperators to be 12.5-22%. Croson (2000) finds that at least 51% of subjects reciprocate their coun-

terpart’s expected action i.e. play a conditional strategy. Brosig (2002) reports that in a face-to-face

experiment 90% of cooperators switch to defection when they think the opponent is going to defect.

8The letters stand for temptation, cooperation, defection, sucker.
9The numerical values in Figure 3 were calculated using Bereby-Meyer and Roth (2006) payoffs. For the payoff

tables used in the other two studies (Andreoni and Miller, 1993; Friedman and Oprea, 2012), the prevalence of unilateral
cooperation is even greater.
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Figure 3: Equilibria in the Prisoner’s Dilemma game under the linear (left) and logarithmic (right) guilt
models.

Let us compare this evidence with the predictions of the logarithmic guilt model (3).

Observation 6 Consider the Prisoner’s Dilemma game with the logarithmic utility function (3). Mutual

defection is a PsyNE for any values of θ; mutual cooperation is a PsyNE when θi ≥ log(t/c)
c−s (for i = 1, 2)

and unilateral cooperation, where i is a cooperator, is a PsyNE when θi ≥ log(d/s)
t−d .

Proof: In the Appendix.

Applying Observation 6 to experimental studies, we find that a necessary condition for mutual co-

operation is strictly weaker than for unilateral cooperation (Table 2).10 The infinity signs mean that

a player will never be a unilateral cooperator in Andreoni and Miller (1993) and Friedman and Oprea

(2012).11 This is because under model (3) the tradeoff between money and guilt depends on the agent’s

wealth. A unilaterally cooperating player is poorer than a mutually cooperating one, hence he cares

less about the harm he inflicts on the opponent by switching to defection. Consequently, unilateral

cooperation is hard to sustain in equilibrium.

Table 2: Guilt Sensitivity Thresholds under the Logarithmic Model

Paper
Minimum Guilt Sensitivity

Unilateral Cooperation Mutual Cooperation
Andreoni and Miller (1993) ∞ 0.08

Bereby-Meyer and Roth (2006) 27 5.1
Friedman and Oprea (2012) ∞ 0.06

Figure 3, right illustrates Observation 6. It shows that, even for Bereby-Meyer and Roth (2006)

payoffs, where all strategy profiles can still be equilibria, unconditional cooperation is limited to the

extreme end of guilt sensitivity distribution. As a result, (C,C) is a more likely equilibrium outcome

than (D,C) and (C,D) combined; which is in line with the experimental evidence.

10Note that although the cardinal values of θ are not comparable between the linear and the logarithmic models, the
order of the thresholds is meaningful

11This is because in these papers “sucker” payoff is equal to 0, which entails infinitely negative utility for the player
under the logarithmic model. Hence, there does not exist an amount of guilt large enough to dissuade him from switching
to defection in this case.
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5 Conclusion and Discussion

By developing a formal theory of moral choice, we provided axiomatic foundations for two utility rep-

resentations of guilt aversion. First, we proved a representation theorem for a frequently used linear

utility, which enabled us to carefully examine and question its underlying axioms. We then proposed a

logarithmic representation grounded in more realistic assumptions about the way agents trade off ma-

terial and moral considerations. By applying the logarithmic representation to laboratory games, we

showed that it can better account for the existing body of experimental evidence than a linear represen-

tation. Moreover, the novel functional form is able to address experimentally informed criticism of a

guilt aversion hypothesis, e.g. it predicts Ellingsen et al. (2010) observation that actions do not always

match beliefs. Our framework gives experimentalists tools to pick the most appropriate utility model

by considering the axioms of moral choice. Future theoretical research can draw on our approach to

discover the grounding of other utility models of non-selfish preferences.

Our analysis can be extended to dynamic frameworks; in particular, income received today can affect

guilt experienced tomorrow. Guilt in round n can be modeled as a payoff loss inflicted on the other

player in round n − 1. In fact, the lasting nature of emotions is well-known in psychological literature

(Davidson, 1998; Gratz et al., 2010) and was also observed in laboratory repeated games (Grimm and

Mengel, 2011; Madarász et al., 2012; Neo et al., 2013). Coupled with our non-linear utility, this lag in

guilt can explain consumption smoothing, as well as end-effects in experimental games (e.g. “cutoff”

cooperation in repeated Prisoner’s Dilemma).

One potential problem with the current paper, as well as with the established models of guilt aversion,

is that any utility function over “monetary” payoffs has an implication for the agent’s risk preferences.12

In games with belief-dependent utility, these implications are poorly understood. It seems reasonable to

conjecture that models linear in money (Battigalli and Dufwenberg, 2007; López-Pérez, 2010; Miettinen,

2013) imply risk neutrality of the agent, whereas our logarithmic specification corresponds to risk aver-

sion. In this paper, however, we remain agnostic about the exact risk properties of our model, owing to

our focus on pure strategy equilibria. The implicit risk assumptions of guilt averse preferences deserve

further investigation in a separate study.

Appendix

Representation Theorems

In order to establish Theorems 1 and 2, we prove several auxiliary results, which allow us to construct new

indifference sets from existing ones. This follows from continuity of � and Axioms 1-2, which describe

how given indifference sets are related to one another.

We first establish Lemmas 1-4 which are used in the proof of Theorem 2.

Our first lemma demonstrates that the indifference sets of � satisfying Axiom 2 are related by parallel

displacements along the guilt axis.

12We are grateful for an anonymous referee for pointing this out.
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Proof of Lemma 1. First, observe that Axiom 2 implies that the PCC is constant for moral dilemmas

with fixed amounts of money: m2−m1

G2−G1
= m2−m1

G′2−G′1
for any (m1, G1) ∼ (m2, G2) and (m1, G

′
1) ∼ (m2, G

′
2).

Second, we prove the symmetric (∼) part of the lemma. Consider (m1, G1) ∼ (m2, G2). WLOG,

let m2 > m1 (then G2 > G1 by monotonicity). Suppose (m1, G1 + a) 6∼ (m2, G2 + a). First, suppose

(m1, G1 + a) � (m2, G2 + a). By monotonicity, (m2, G2 + a) � (m1, G2 + a). Since by continuity the

lower and the upper contour sets of (m2, G2 + a) are closed, their intersections with a closed connected

interval {(m1, G) : G ∈ [G1 + a,G2 + a]} are also closed. Moreover, they are non-empty, since the ends

of the interval belong to the upper and the lower contour sets respectively, as shown above. Recall

that a connected space cannot be divided into two disjoint non-empty closed sets, hence there is a point

(m1, G3), with G1+a < G3 < G2+a (*) which belongs to both intersections, i.e. (m1, G3) ∼ (m2, G2+a).

Hence we have two moral dilemmas which, by Step 1, should entail the same price of clear conscience:

m2−m1

G2−G1
= m2−m1

G2+a−G3
which implies G3 = G1 +a, a contradiction to (*). Now suppose that (m1, G1 +a) ≺

(m2, G2 + a). There are two cases to consider. If a > 0, then (m2, G2 + a) ≺ (m2, G2) ∼ (m1, G1).

Thus, (m1, G1) � (m2, G2 + a) � (m1, G1 + a). By connectedness and continuity again, there exists a

point (m1, G4) such that (m2, G2 + a) ∼ (m1, G4), where G1 + a > G4 > G1 (**). Then by Step 1,

G2−G1 = G2 + a−G4, i.e. G4 = G1 + a, which contradicts (**). The case when a < 0 is demonstrated

analogously.

Third, we prove the asymmetric (�) part of the lemma. Let (m1, G1) � (m2, G2). We need to show

that (m1, G1+a) � (m2, G2+a). Case 1. G1 > G2 (hencem1 > m2) and a > 0. Suppose, conversely, that

(m1, G1+a) � (m2, G2+a). By monotonicity and transitivity, (m1, G1+a) � (m2, G2+a) ≺ (m2, G2) ≺
(m1, G1). By connectedness of {(m1, G) : G ∈ [G1, G1 + a]} and continuity of �, there exists such G3

that (m2, G2 + a) ∼ (m1, G3) and G1 < G3 ≤ G1 + a (*). Now consider (m2, G2). By connectedness

and continuity again, there exists G4 such that (m2, G2) ∼ (m1, G4) and G1 < G4 < G1 + a. By Step

1, G4 − G2 = G3 − (G2 + a) and thus G3 = G4 + a > G1 + a, but by (*) G3 ≤ G1 + a, which is a

contradiction. Thus, our supposition was wrong, and (m1, G1 + a) � (m2, G2 + a). The remaining three

cases are demonstrated analogously.

In order to be able to construct new indifference sets from existing ones by proportional expansion

along the money axis, we need to prove existence of an indifference curve passing through any two money

levels, which is demonstrated in the following lemma.

Lemma 2 If a rational, monotone and continuous � satisfies Axiom 2, then for any (m,G) and any

m′ > m, there exists G′ such that (m,G) ∼ (m′, G′).

Proof. The proof relies on continuity of �, connectedness of M and quasilinearity in guilt (established

in Lemma 1), and is available on request.

We can now use Lemma 2 to show that indifference sets of � satisfying Axiom 2 are related by

proportional expansion along the money axis. This is established in Lemma 3.

Lemma 3 If a rational, monotone and continuous � on M×G satisfies Axiom 2, then (bm1, G1) ∼
(bm2, G2) whenever (m1, G1) ∼ (m2, G2) and (bm1, G1) � (bm2, G2) whenever (m1, G1) � (m2, G2) for

any b ∈ R++.
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Proof. First, we prove the symmetric part of the lemma. Consider (m1, G1) ∼ (m2, G2). WLOG, let

m1 > m2. By Lemma 2, ∃G3 so that (bm2, G2) ∼ (bm1, G3). By Axiom 2, bm1−bm2

G3−G2

/
m1−m2

G1−G2
= b, which

implies that G3 = G1. Hence, (bm1, G1) ∼ (bm2, G2).

Second, we prove the asymmetric part of the lemma. Let (m1, G1) � (m2, G2). Case 1: m1 > m2.

By Lemma 2, ∃G3 and G4 so that (m2, G2) ∼ (m1, G3) and (bm2, G2) ∼ (bm1, G4). By monotonicity,

G1 < G3. By Axiom 2, bm1−bm2

G4−G2

/
m1−m2

G3−G2
= b, which implies that G4 = G3. Hence, by monotonicity,

(bm2, G2) ∼ (bm1, G3) ≺ (bm1, G1). The remaining case (m2 > m1) is demonstrated analogously.

In the proof of Theorem 2, we will reduce the comparison of points on the money-guilt plane to the

comparison of points on the m axis. In order to show it is possible, in Lemma 4 we prove that every

point in M×G belongs to an indifference set which has a nonempty intersection with any line parallel

to the m axis (including the m axis itself).

Lemma 4 If a rational, monotone and continuous � satisfies Axiom 2, then for any (m,G) and any

G′, there exists m′ such that (m,G) ∼ (m′, G′).

Proof. The proof is similar to that of Lemma 2 with two divergences. First, the roles of the two variables

(m and G) are switched. Second, we are able to demonstrate the existence of m′ for two cases: G′ > G

and G′ < G. In the proof we require Lemma 3 in the same way as Lemma 1 was required to prove

Lemma 2.

Finally, we establish two auxiliary results necessary to prove Theorem 1. The first of these shows

that indifference curves of � satisfying Axiom 1 are related by parallel displacement along the money

axis.

Lemma 5 If a rational, monotone and continuous � on M×G satisfies Axiom 1, then (m1 + a,G1) �
(m2 + a,G2) whenever (m1, G1) � (m2, G2) for any a ∈ [max{−m1,−m2},+∞].

Proof. Similarly to the asymmetric part of Lemma 1, this proof consists of 4 cases. However, in

the rest of the Appendix we will only be using the result for one case: m2 > m1 and a > 0, which

is considered here. The remaining 3 cases are proved analogously. Let (m1, G1) � (m2, G2), where

m1 < m2 (hence G1 < G2 by monotonicity). We need to show that (m1 + a,G1) � (m2 + a,G2), where

a > 0. Suppose, conversely, that (m1 +a,G1) � (m2 +a,G2). By monotonicity, (m1 +a,G1) � (m1, G1)

and hence by transitivity (m1 + a,G1) � (m2, G2). By connectedness of {(m,G2) : m ∈ [m2,m2 + a]}
and continuity of �, there exists such m3 that (m1 + a,G1) ∼ (m3, G2) and m2 < m3 ≤ m2 + a (*).

Now consider (m1, G1) and observe that (m2, G2) ≺ (m1, G1) ≺ (m2 + a,G2), where the last relation

follows from monotonicity and transitivity. By connectedness and continuity again, there exists m4 such

that (m1, G1) ∼ (m4, G2) and m2 < m4 < m2 + a. By Axiom 1, m4 −m1 = m3 − (m1 + a) and thus

m3 = m4 + a > m2 + a, but by (*) m3 ≤ m2 + a, which is a contradiction. Thus, our supposition was

wrong, and (m1 + a,G1) � (m2 + a,G2), q.e.d.

In the proof of Theorem 1, we will require a result similar to Lemma 2 for preferences satisfying

Axiom 1, i.e. that for any initial money-and-guilt situation (m,G) and any large guilt G′ > G1 there
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exist a sum of money large enough to “seduce” the agent by making him indifferent between the status

quo and the large guilt.

Lemma 6 If a rational, monotone and continuous preference relation � on M×G satisfies Axiom 1,

then for any (m,G) ∈M×G and any G′ > G, there exists m′ ∈M such that (m,G) ∼ (m′, G′).

Proof. The proof is similar that of Lemma 2, with the exception that the roles of the variables (m and

G) are switched. In the proof we require Lemma 5 in the same way as Lemma 1 was required to prove

Lemma 2.

We are now ready to establish our main representation theorems.

Proof of Theorem 1. Necessity is established in the text before the theorem. We now show sufficiency.

Suppose � satisfies Axiom 1. Consider the point (1, 0). By Lemma 6, there exists m∗ ∈ M such

that (1, 0) ∼ (m∗, 1). By monotonicity of �, such m∗ is unique. Let θ = m∗−1
1−0 = m∗ − 1. Assign

u(m,G) = m − θG uniquely for all (m,G) ∈ M×G. We now show that u represents �, i.e. that

u(m1, G1) ≥ u(m2, G2) iff (m1, G1) � (m2, G2). First, suppose (m1, G1) � (m2, G2). Pick a G3 >

max{G1, G2}. By Lemma 6, there exist µ1 and µ2 such that (m1, G1) ∼ (µ1, G3) and (m2, G2) ∼ (µ2, G3).

By Axiom 1, µ1−m1

G3−G1
= µ2−m2

G3−G2
= θ. Then u(m1, G1) = m1− θG1 = µ1− θ(G3−G1)− θG1 = µ1− θG3 ≥

µ2−θG3 = µ2−θ(G3−G2)−θG2 = m2−θG2 = u(m2, G2). Second, suppose u(m1, G1) ≥ u(m2, G2) and

consider µ1, µ2 defined as above. Then µ1 = m1 + θ(G3 −G1) = u(m1, G1) + θG3 ≥ u(m2, G2) + θG3 =

m2 + θ(G3 − G2) = µ2. By monotonicity it follows that (µ1, G3) � (µ2, G3) and then by transitivity

(m1, G1) � (m2, G2), q.e.d.

Proof of Theorem 2. Necessity. Suppose U(m,G) = logm − θG represents � for some θ > 0.

Consider (m1, G1) ∼ (m2, G2) and (m′1, G
′
1) ∼ (m′2, G

′
2), where m1

/
m′1 = m2

/
m′2. Then logm1− θG1 =

logm2−θG2 and logm′1−θG′1 = logm′2−θG′2, which implies θ(G1−G2) = log m1

m2
= log

m′1
m′2

= θ(G′1−G′2).

The relative PCC then becomes m1−m2

G1−G2

/
m′1−m

′
2

G′1−G′2
= m1−m2

(m1−m2)m′1

/
m1

= m1

m′1
, which establishes Axiom 2.

Sufficiency. Step 1. Consider any (m1, G1) ∈ M×G. If G1 = 0, let U(m1, G1) = logm1, which

is uniquely defined. If G1 > 0, by Lemma 4, ∃µ1 ∈ M s.t. (m1, G1) ∼ (µ1, 0). Moreover, such

µ1(m1, G1) is unique. Indeed, suppose (m1, G1) ∼ (µ1, 0) and (m1, G1) ∼ (µ′1, 0), where µ1 6= µ′1.

WLOG, let µ1 > µ′1. Then, by monotonicity, (µ1, 0) � (µ′1, 0), which contradicts transitivity of �.

Assign U(m1, G1) = log µ1(m1, G1).

We now show that U defined as above represents �. Suppose (m2, G2) � (m1, G1). As shown above,

there exist unique numbers µ1 and µ2 such that (µ2, 0) ∼ (m2, G2) � (m1, G1) ∼ (µ1, 0) ⇒ µ2 ≥ µ1 ⇒
U(m2, G2) = logµ2 ≥ logµ1 = U(m1, G1) by transitivity and monotonicity. Following the same steps

backwards proves that (m2, G2) � (m1, G1) whenever U(m2, G2) ≥ U(m1, G1).

It is left to be demonstrated that U is of the specified form, i.e. there exists a well-defined function

f(G) = U(m,G) − logm, ∀G. In order to do so, consider (m1, G1) and (m3, G3) such that G1 = G3.

We need to show that f(G1) = f(G3). WLOG, let m1 > m3. By Lemma 4, there exist µ1 and

µ3 such that (m3, G3) ∼ (µ3, 0) and (m1, G1) ∼ (µ1, 0). By Lemma 3, (m3, G3) ∼ (µ3, 0) implies
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(m1, G1) ∼ (µ3m1

m3
, 0), thus µ1 = m1

m3
µ3. Thus, f(G1) = U(m1, G1)− logm1 = logµ1− logm1 = log µ1

m1
=

log m1µ3

m3m1
= logµ3 − logm3 = U(m3, G3)− logm3 = f(G3).

Step 2. We need to demonstrate that f defined as above is linear in G. It suffices to show that, for

any G1, G2, G3 and G4 ∈ G such that G2−G1 = G4−G3, it is true that f(G2)−f(G1) = f(G4)−f(G3).

Consider arbitrary G1, G2, G3 and m, as well as G4 = G3 +G2−G1. WLOG, let G2 > G1 and G3 >

G1. As shown in Step 1, there exist unique µ1 and µ2 such that (m,G1) ∼ (µ1, 0) and (m,G2) ∼ (µ2, 0).

Thus, f(G1) = logµ1− logm and f(G2) = logµ2− logm, which implies f(G2)−f(G1) = log µ2

µ1
. Lemma

4 ensures that there exists m∗ such that (m,G1) ∼ (m∗, G3). Thus, by transitivity, (m∗, G3) ∼ (µ1, 0),

i.e. U(m∗, G3) = log µ1 and f(G3) = logµ1 − logm∗.

By Lemma 1, (m,G1) ∼ (m∗, G3) ⇒ (m,G2) ∼ (m∗, G3 + (G2−G1)), where G3 + (G2−G1) = G4.

We can now calculate U(m∗, G4) = U(m,G2) = logµ2 and f(G4) = log µ2− logm∗. It is now easy to see

that an arbitrary change in G produces the same change in f at any two values of G: f(G4)− f(G3) =

(logµ2 − logm∗)− (logµ1 − logm∗) = log µ2

µ1
= f(G2)− f(G1).

Thus, f can be written as f = a + bG. Observe that a = f(0) = logm − logm = 0. In order to

calculate b, consider a point (1, 1). Note that f(1) = logµ0 − log 1 = logµ0, where (1, 1) ∼ (µ0, 0), and

µ0 is unique for a given preference relation. Hence b = µ0. We can now write f(G) = µ0G. Observe

that, by monotonicity, µ0 < 1 and logµ0 < 0. Assign θ = −b = − logµ0 > 0.

U(m,G) = logm− θG represents �, q.e.d.

Applications

Proof of Observation 2. Under the logarithmic guilt model (3), D’s utility becomes

U(mR, E(mR)) = log(T −mR)− θmax{0, E(mR)−mR}. (17)

D maximizes his utility by choosing an optimal donation m∗R, given his second-order belief (i.e. his

belief about R’s expectation of the donation) E(mR). If the optimal donation equals the belief, it is a

PsyNE of the game.

Let m∗R(E(mR)) denote D’s optimal donation, as a function of his belief.

Observe that, due to the maximum operator present in the function form, U(mR) admits a kink at

mR = E(mR), where U(mR) is continuous, but not differentiable.

Note that the kink point mR = E(mR) separates the function into two halves:

U =

 log(T −mR)− θ(E(mR)−mR) if mR ≤ E(mR);

log(T −mR) if mR > E(mR).
(18)

Let Ul(mR) = log(T −mR)− θ(E(mR)−mR) and Ur(mR) = log(T −mR).

Observe that ∂Ul

∂mR
= −1

T−mR
+ θ. Denote by ml

R the value of mR maximizing the function Ul:

ml
R =

 T − 1
θ if T − 1

θ > 0;

0 if T − 1
θ ≤ 0.

(19)
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Observe that utility to the right of the kink is decreasing: ∂Ur

∂mR
= −1

T−mR
< 0. Also, utility to the left

of the kink is concave: ∂2Ul

∂m2
R

= −1
(T−mR)2 < 0. The value of mR maximizing the whole function is thus

the smaller of the two: the kink E(mR), or the value ml
R maximizing the left-hand-side utility Ul:

m∗R(E(mR)) =


0 if T − 1

θ ≤ 0;

T − 1
θ if 0 < T − 1

θ < E(mR);

E(mR) otherwise,

(20)

which proves Observation 2.

Proof of Observation 4. Recall the equilibrium condition on contributions and beliefs in the Public

Good Provision game:

x∗i =

 Ui(x
∗
i , x
∗
j , E(xi)) ≥ Ui(xi, x∗j , E(xi)) for all xi ∈ [0, wi] for i = 1, 2;

E(xi) for i = 1, 2.
(21)

Similarly to the Dictator game application, the function Ui(xi) admits a kink at xi = E(xi); it is

strictly decreasing to the right of it (∂Ur

∂xi
=

∂ log(wi−(1−a)xi+axj)
∂xi

= a−1
wi−(1−a)xi+axj

< 0) and strictly

concave to the left of it (∂
2Ul

∂x2
i

=
∂2(log(wi−(1−a)xi+axj)−θia(E(xi)−xi))

∂x2
i

= −(a−1)2
(wi−(1−a)xi+axj)2

< 0). Hence,

best response contribution is equal to the expectation if and only if either of the two conditions holds: (i)

utility is increasing to the left of the kink: ∂Ul

∂xi
(E(xi)) ≥ 0 or (ii) expectation is zero E(xi) = 0. Below

we solve for equilibrium contribution x∗i under (i).
∂(log(wi−(1−a)xi+axj)−θia(E(xi)−xi))

∂xi
(E(xi)) ≥ 0;

x∗i = E(xi).
(22)

 (a− 1)
/

(wi − (1− a)E(xi) + axj) + θia ≥ 0;

x∗i = E(xi).
(23)

 x∗i ≤ (wi + axj)
/

(1− a)− (θia)−1;

x∗i = E(xi).
(24)

As one can see from the formula, player i’s maximum equilibrium contribution is increasing with his

initial endowment wi, his guilt sensitivity θi and the other player’s contribution xj . It is also easy to

show that x∗i is increasing with return on investment a.

Proof of Observation 5. We will establish the values of parameters θi, i = 1, 2 under which each

pure strategy profile (with corresponding beliefs) is a Psychological Nash equilibrium.

1. (Defect, Defect ; E(m1) = d, E(m2) = d) is the only NE of the game and hence also an equilibrium

in the psychological game with guilt aversion (deviations from it will neither increase the players’ material

payoffs nor decrease their guilt, which is already zero).

2. (Cooperate, Defect ; E(m1) = s, E(m2) = t) is an equilibrium if:
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 u1(C,D) ≥ u1(D,D);

u2(C,D) ≥ u2(C,C).
(25)

Applying utility function (2) and solving for θ1, θ2 we obtain θ1 ≥ d−s
t−d ;

θ2 ∈ R.
(26)

3. (Cooperate, Cooperate; E(m1) = c, E(m2) = c) is an equilibrium if ui(C,C) ≥ ui(D,C) for

i = 1, 2. Applying utility function (2) we obtain c− θi(c− c) ≥ t− θi(c− s), which yields θi ≥ t−c
c−s .

Proof of Observation 6. Similarly to the previous proof, we write down conditions ensuring that

unilateral deviation is unprofitable for each candidate pure strategies equilibrium.

1. (Defect, Defect ; E(m1) = d, E(m2) = d) is always an equilibrium in games with guilt aversion as

argued above.

2. (Cooperate, Defect ; E(m1) = s, E(m2) = t) is an equilibrium if log s− θ1(t− t) ≥ log d− θ1(t− d);

log t− θ2(s− s) ≥ log c− θ2 · 0;
(27)

which yields  θ1 ≥ log(d/s)
t−d ;

θ2 ∈ R.
(28)

2. (Cooperate, Cooperate; E(m1) = c, E(m2) = c) is an equilibrium if log c−θi(c−c) ≥ log t−θi(c−s)
for i = 1, 2, which yields θi ≥ log(t/c)

c−s .
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