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META-ANALYSIS OF GENETIC ASSOCIATION STUDIES: 
OVERVIEW OF THE METHODOLOGICAL ISSUES AND 

PROPOSAL OF GUIDELINES

Cosetta Minelli M.D. M.Sc

Abstract

Genetic association studies have shown a disappointing failure to replicate and validate 
postulated associations, and evidence synthesis is advocated to overcome the problem 
of inadequate sample size and help address other methodological issues of primary 
studies. Despite the fast growth in the number of published meta-analyses of genetic 
association studies, their methodological aspects have received little attention, and the 
need for guidelines in this field is demonstrated by the poor quality of many published 
meta-analyses. This thesis focuses on four specific methodological aspects; 1) how to 
pool data across genotypes using assumptions about the underlying genetic model; 2) 
the use of subgroup analysis and the potential for borrowing information on secondary 
parameters across subgroups, even when the parameter of interest differs; 3) the 
evaluation of departures from Hardy-Weinberg equilibrium as a proxy for poor quality 
of primary studies, and how to handle studies with such departures; 4) the role of meta
analysis in Mendelian randomisation, where genetic data are used to derive an 
unconfounded estimate of the association between a risk factor and a disease. Methods 
currently used to deal with these issues are reviewed and discussed, and alternative 
approaches are proposed to overcome their limitations. These approaches are developed 
using Bayesian methods and are illustrated by re-analysing individual examples, or 
entire datasets, of published meta-analyses. Use of different methods in specific 
contexts is further investigated through simulation work. Finally, the findings presented 
in this thesis are combined with evidence available in the literature to provide a set of 
guidelines on how to deal with all methodological issues which require consideration in 
the meta-analysis of genetic association studies. These guidelines are developed at two 
levels of sophistication, one relatively simple although methodologically correct, the 
other more sophisticated but more efficient, in order to be of potential use to a wide 
range of investigators with varying statistical skills.
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Glossary

GLOSSARY

Allele = One of two or more states in which either copy of a gene can exist.

Assortative mating = A tendency for individuals with similar genotypes to mate.

Autosome = Any chromosome other than a sex  chromosome. Humans have 22 pairs of 

autosomes.

Canalisation = The phenomenon for which a phenotype is kept within narrow boundaries even 

in the presence of disturbing environments or mutations.

Candidate gene = A gene, located in a chromosome region suspected of being involved in a 

disease, whose protein product suggests that it could be the d isease gene in question.

Carrier = An individual who p o ssesses  one copy of a mutant allele that cau ses d isease only 

when two copies are present (recessive mode of inheritance). Although carriers not affected by 

the d isease, two carriers can produce a child who has the disease.

Chromosome = One of 46 double strands of DNA that form the human genom e.

Co-dominant = A mode of inheritance in which two different alleles at the sam e locus are both 

expressed. Thus, each of the three genotypes has a distinct effect on the phenotype, as 

opposed to recessive and dominant. Often used to imply equal effect on the phenotype of the 

two alleles.

Complex disease = The term complex trait/disease refers to any phenotype that does not 

exhibit classic Mendelian inheritance attributable to a single gene; although they may exhibit 

familial tendencies (e.g., familial clustering, concordance among relatives). The contrast 

between Mendelian d iseases and complex d iseases involves more than just a clear or unclear 

mode of inheritance. Other hallmarks of complex d iseases include known or suspected  

environmental risk factors; seasonal, birth order, and cohort effects; late or variable age of 

onset; and variable d isease progression.

Co-segregation = A tendency for alleles at two linked loci to be transmitted from parent to 

offspring together.

DNA = Deoxyribonucleic acid, which makes up gen es and chromosomes.

Dominant = A mode of inheritance in which individuals with a single copy of a d isease  

susceptibility allele have the sam e risk of d isease as those with two copies.

Gamete = A germ cell (sperm or ovum) that carries only one of each pair of the parent’s genes. 

Also called reproductive cells or germ cells.
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Glossary

Gene = The fundamental unit of genetic information that is transcribed to form a single protein.

Gene-environment interaction = This term refers both to the modification of genetic risk 

factors by environmental risk and protective factors and to the role of specific genetic risk 

factors in determining individual differences in vulnerability to environmental risk factors. When 

gene-environment interaction is present, a specific environmental change influences the 

outcome in different ways depending on the genotype. Also called genotype-environment 

interaction.

Gene interaction = The collaboration of several different gen es in the production of one 

phenotypic character (or related group of characters).

Genetic epidemiology = Genetic epidemiology is the epidemiological evaluation of the role of 

inherited causes of d isease in families and in populations; it aims to detect inheritance pattern 

of a particular disease, localise the gene and find a marker associated with d isease  

susceptibility. G ene-gene and gene-environment interactions are also studied in genetic 

epidemiology of a disease. In its broad context, genetic epidemiology includes family studies, 

molecular epidemiologic studies with genetic components, and more traditional cohort and 

case-control studies with family history components.

Genetic model = se e  Mode of inheritance

Genome = All the DNA contained in an organism or a cell.

Genotype = The (possibly unobserved) state of an individual’s  gene at one or more loci 

relating to the phenotype of interest.

Heterosis = s e e  Over-dominance and Under-dominance.

Heterozygote = An individual who carries two different alleles for a particular gene.

Heterozygote advantage = Refers to a situation in a population where the heterozygous 

individuals have higher relative fitness than each of the homozygous individuals. A well 

established ca se  of heterozygote advantage is that of the gene involved in sickle cell anaemia.

Heterozygote disadvantage = This unusual selection process occurs when heterozygotes are 

less fit than either homozygote. This situation is likely to arise when two adjacent populations 

are isolated and becom e homozygous for different alleles, and then com e into secondary 

contact at the borders of their ranges. Also called heterozygous inferiority.

Homozygote = An individual who carries two identical copies of an allele for a particular gene.

Human Genome Project = An international research project to map each human gene and to 

completely sequence human DNA

(http://www.ornl.Qov/sci/techresources/Human Genome/proiect/about.shtmn
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Glossary

Inbreeding = When two parents have one or more ancestors in common, which results in 

inbred offspring. Also known as consanguinity.

Linkage = A tendency for g en es that are located nearby on the sam e chromosome to 

cosegregate; also used to indicate a form of analysis aimed at detecting linkage, linkage 

analysis.

Linkage analysis = The process of determining the approximate chromosomal location of a 

gene by looking for evidence of cosegregation with other genes w hose locations are already 

known [i.e., marker genes].

Linkage disequilibrium (LD) = A tendency for certain pairs of alleles at two linked loci to be 

associated with each other in the population more than would be expected by chance.

Locus = The location on a chromosome of a particular gene (pi. loci).

Mendelian randomisation = A natural randomisation process that occurs at conception to 

determine a person's genotype. It is possible to use 'Mendelian randomisation' to derive an 

estimate of the association that is free of the confounding and reverse causation typical of 

classical epidemiology. According to the second law of Mendel (random assignm ent of genes), 

the inheritance of one trait is independent of the inheritance of other traits. The distribution of 

genetic polymorphisms is largely unrelated to the confounders (socioeconomic or behavioural) 

that distort interpretations of observational epidemiological studies. The basis of Mendelian 

randomisation is best seen  in parent-offspring designs that study the way phenotype and 

alleles co-segregate during transmission from parents to offspring. This study design is closely 

analogous to that of randomised clinical trials as by Mendelian principles there should be an 

equal probability of either allele being randomly transmitted to the offspring. Due to Mendelian 

randomisation, genetic association studies are less prone to confounding than conventional 

risk-factor epidemiology, although pleiotropy and linkage disequilibrium can still produce 

confounding. Mendelian randomisation concept can be used as a tool for epidemiological 

inference on environmental risk factors by examining the genetic counterpart of a suspected  

environmental exposure association free of confounding by conventional confounders.

Mode of inheritance = The manner in which a particular genetic trait or disorder is passed  

from one generation to the next. Autosomal dominant or recessive, X-linked dominant or 

recessive are examples. Also called genetic model.

Mutation = Any change in the sequence of a DNA molecule, which may result in d isease if it 

occurs in the small fraction of the genom e that contains coding sequences, or it may be totally 

harmless. Mutation forms the basis for the differences between alleles. Som e mutations are 

beneficial and may be the substrate for positive natural selection. The term mutation is 

som etim es limited to those polymorphisms that have a serious effect on the function of the 

gene, which are usually rare and deleterious.
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Negative assortative mating = Preferential mating between phenotypically different partners. 

Outbreeding = The mating of genetically unrelated individuals.

Over-dominance = A relationship in which the phenotypic expression of the heterozygote is 

greater than that of either homozygote. This is the opposite of underdominance. The term is 

som etim es used to mean heterozygote advantage. Also called positive heterosis.

Phenotype = The observable trait or d isease status that may be influenced by a genotype.

Pleiotropy = The phenomenon whereby a single mutation affects several apparently unrelated 

aspects of the phenotype.

Polymorphism = A tendency for gene to exist in more than one form or the specific alleles 

thereof. The term polymorphism is often distinguished from mutation by requiring it to be 

relatively common (e.g., greater than 1%).

Population stratification = An example of 'confounding by ethnicity' in which the co-existence  

of different d isease rates and allele frequencies within population sub-sections lead to an 

association between the two at a whole population level. Differing allele frequencies in 

ethnically different strata in a single population may lead to a spurious association or 'mask' an 

association by artificially modifying allele frequencies in ca ses  and controls when there is no 

real association. For this to happen, the subpopulations should differ not only in allele 

frequencies but also in baseline risk to the d isease being studied.

Positive assortative mating = A situation in which like phenotypes mate more commonly than 

expected by chance.

Product rule = The probability of two independent events occurring simultaneously is the 

product of the individual probabilities. The rule stating that the probability of the occurrence of 

independent events is the product of their separate probabilities.

Random mating = Mating between individuals where the choice of partner is not influenced by 

the genotypes (with respect to specific genes under study). The mating of individuals in a 

population such that the union of individuals with the trait under study occurs according to the 

product rule of probability.

Recessive = A mode of inheritance in which individuals with only one copy of the susceptibility 

allele have the sam e risk as those with none.

Segregation = The phenomenon in which an individual inherits half of his or her gen es from 

each parent; one of the two fundamental Mendelian principles.

Selection = The process in nature whereby one genotype leaves more offspring than another 

genotype because of superior life history attributes (fitness) such as survival or fecundity. Also 

called natural selection.
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Somatic cell = Any cell in the body other than germ cells.

Under-dominance = A relationship in which the phenotypic expression of the heterozygote is 

lower than that of either homozygote. This is the opposite of overdominance. The term is 

som etim es used to mean heterozygous disadvantage or inferiority. Also called negative 

heterosis.

Variant = Because of the ambiguity in the definitions of mutation and polymorphism, any 

genetic change is sometimes called a sequence variation and such alleles are called variant. 

Also called genetic variant.

X-linked gene = Located on the X chromosome, with a distinctive pattern of inheritance. 

X-linked (or sex-linked) d iseases are generally seen  only in males.
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CHAPTER 1 Introduction

1 INTRODUCTION

1.1 Aim of the project

The identification of gene-disease associations represents not only an important step in 

understanding the pathological basis of diseases in populations, but also one of the 

main thrusts towards “personalised” medicine. Future therapeutic choices are likely to 

be based on the subject’s genotype (Drews and Ryser, 1997), which might indicate 

different risks for the disease, degrees of severity or response to specific treatments. 

Therefore the importance of evaluating gene-disease associations and their impact on 

future public health is not in doubt. However, genetic association studies tend to show 

important flaws in their conduct, analysis, or reporting (Bogardus, Concato and 

Feinstein, 1999; Attia, Thakkinstian and D'Este, 2003), and these deficiencies may 

contribute to the failure to replicate and validate postulated associations, which 

represents the most serious issue in this field (Ioannidis et al., 2001). Evidence 

synthesis of genetic association studies not only may overcome the problem of 

inadequate sample size, but can also help identify and address some of the other issues 

of primary studies, for example by investigating possible causes of heterogeneity in 

study results. However, although meta-analysis of genetic association studies is an area 

of rapidly growing importance, its methodological aspects have, to date, been 

researched less intensively than one might have expected (Attia, Thakkinstian and 

D'Este, 2003).

The aim of this work is to contribute to the development of valid approaches to the 

meta-analysis of genetic association studies, and the project consists of three elements:

1. Investigation and overview of the study features that are most problematic when 

synthesising the evidence from genetic association studies. A review of the approaches 

that have so far been proposed and a discussion of advantages and disadvantages of the 

different methods will accompany the presentation of each issue.

2. Development of alternative techniques aimed at overcoming some of the 

limitations of currently used methods, either by extending existing methods used in 

other meta-analysis contexts or by developing new approaches. Practical examples

Cosetta Minelli Ph.D. Thesis, September 2005 1



CHAPTER 1 Introduction

represented by published meta-analyses are used to illustrate how to implement the 

methods proposed, to compare them with currently used methods, and to show the 

potential impact of inappropriate analyses on the estimation of the genetic effect.

3. Development of guidelines which can be used to advise researchers and 

research-funders considering a meta-analysis of genetic association studies, as to which 

elements require consideration prior to the collection, synthesis, analysis and 

interpretation of the evidence. In order to make the results of the project potentially 

useful to a wider range of people with varying statistical skills, methods for dealing 

with each issue are proposed at two different levels of sophistication, one relatively 

simple and straightforward although methodologically correct, the other more 

sophisticated but more efficient.

In the following paragraphs background information on genes and diseases (§ 1.2), 

genetic association studies (§ 1.3) and meta-analysis (§ 1.4) is provided. Justification 

for the choice of a Bayesian framework to implement the analyses presented is given in 

§ 1.5, where advantages and disadvantages of the Bayesian approach compared to the 

frequentist approach are discussed. An account of the relevance of meta-analysis of 

genetic association studies is presented in § 1.6, followed in § 1.7 by a brief 

presentation of the methodological issues involved. Finally, § 1.8 provides an overview 

of the contents of the thesis.

1.2 Genes and disease

In all cells of our body the basic genetic information is encoded in genes, which are 

located on chromosomes comprised of DeoxyriboNucleic Acid, DNA (Strachan and 

Read, 1999). The major functional endpoints of genetic information stored in DNA are 

proteins, which in turn regulate diverse cellular functions. However, only a small 

fraction of DNA actually codes for proteins, while the majority of it is non-functional. 

The gene represents the fundamental unit of genetic information, which is transcribed 

to form a single protein. There are 23 different chromosomes in human genome, among 

which 22 (numbered 1 to 22) are autosomes, and 1 is the sex chromosome (named X 

and Y). All somatic cells contain two copies of the genome, that is 46 chromosomes 

including 22 pairs of autosomes and 1 pair of sex chromosomes, which is XX in

Cosetta Minelli Ph.D. Thesis, September 2005 2



CHAPTER 1 Introduction

females and XY in males. Gametes, i.e. sperm and ova, contain only one copy of each 

gene, which will be transmitted to offspring to recreate the double genome.

In the human race, DNA shows incredibly little variation, less than 1%. Those few 

DNA locations, or loci, that vary from person to person are called polymorphic, and the 

different DNA sequences found at a polymorphic locus are called alleles. People with 

two copies of the same allele are said to be homozygous, while people with different 

alleles on the two chromosomes are said to be heterozygous. The term polymorphism 

indicates a genetic variant that is relatively common, say present in at least 1% of 

individuals, while the term mutation is usually restricted to indicate a rare variant with 

a serious deleterious effect on the function of the gene. Although most genes are 

polymorphic, the majority of polymorphisms are silent, i.e. completely harmless. Only 

genetic variants occurring in the small fraction of the genome that contains coding 

DNA sequences may result in an increased risk of disease. The maximum effect of 

genetic variants is seen in classical Mendelian disorders, where the presence of a 

genetic mutation can by itself lead to disease, and the parent-offspring transmission 

follows an inheritance pattern predicted by Mendel’s laws. The mode o f inheritance, 

also called genetic model, determines the way that a trait, such as the disease outcome, 

is expressed according to the individual genotype. A disease is inherited as dominant if 

one copy of the disease allele is sufficient to cause the disease (i.e. the disease is 

present in heterozygotes), or recessive, if two disease alleles are necessary to cause the 

disease (i.e. the disease is not present in heterozygotes). Sometimes the disorder can be 

inherited as co-dominant, meaning that the disease is present in heterozygotes but in a 

form which is less severe than in homozygotes. Apart from Mendelian disorders, 

genetic polymorphisms can affect the risk of much more common complex diseases, 

which are not normally considered “genetic” since the genetic factor is only one among 

the many factors affecting the overall risk of the disease. It is on gene-disease 

associations of this type that this thesis will focus.

1.3 Genetic association studies

The evaluation of the association between a gene and a disease can be carried out using 

two categories of study designs, family-based studies and population-based studies, and
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are often used in different phases of the evaluation process (Keavney, 2000; Risch, 

2000; Thomas, 2004).

Family-based studies are usually carried out in the initial phase represented by gene 

discovery, and classically consist of studying large families which display a clear 

segregation pattern for a disease. These families are examined at a number of 

polymorphic sites, spread over the whole genome at known locations, in order to 

identify polymorphisms which co-segregate with the disease, i.e. are transmitted 

through families in a way that parallels the transmission of the disease. Co-segregating 

polymorphisms, analysed using linkage analysis, provide evidence for the general 

location of the gene on a chromosome. Linkage analysis is based on the principle that 

while two genes on different chromosomes are always inherited independently from 

one another, for two genes on the same chromosome the probability that they are 

inherited together increases with the decrease of the physical distance between them. 

This allows indirect location of the disease genes by studying the co-segregation pattern 

of a number of markers, i.e. polymorphisms for which the locations are known. From 

the tendency of the genetic marker to co-segregate with the disease, which means that 

the marker is inherited together with the disease gene, one can infer that the disease 

gene must be close to that marker.

Population-based studies, also called “genetic association studies” or “molecular 

genetic studies”, are usually performed in the second phase that evaluates the 

association between a candidate gene and a disease on a population scale, and their 

study designs are those of conventional epidemiology, most often case-control study. 

Family-based association studies also exist and are based on the use of offspring trios 

(family-based trio analysis), where most commonly each trio comprises an affected 

offspring together with both parents. However, in this thesis we will refer to genetic 

association studies as to classical population-based association studies.

The main reason for this differential use of types of study in the evaluation of gene- 

disease associations is that family-based studies based on linkage analysis perform 

well, and with high efficiency, only in those cases where the disease has a substantial 

genetic determinant, while they have little power to detect genes with more modest
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effects, such as in complex diseases. In these situations linkage studies can only narrow 

the location of the disease susceptibility gene to a rather large region. On the other 

hand, genetic association studies are much more resource consuming, due to the higher 

requirements in terms of sample size, compared to linkage studies, so that their use is 

usually restricted to the evaluation of genes previously identified as candidates. In the 

study of complex diseases, genetic association studies based on candidate genes 

represent the final step to reveal the aetiological relevance of genetic factors to disease, 

and it is on such studies that this thesis will focus.

Although genetic association studies can be performed using either a cohort or case- 

control design, the latter is by far the most widely used. The outcome in these studies is 

represented by traits, which include disease status, such as myocardial infarction; 

physiological continuous variables, such as blood pressure measurements; and response 

to environmental stimuli, such as drug efficacy or side effects (Cardon and Bell, 2001). 

Ideally, the exposure in genetic association studies is represented by the presence in a 

subject’s genotype of a particular polymorphism, where one of the different forms of 

the gene (alleles) causes a modification of the disease risk through functional 

impairment of the gene. Thus, genetic association studies require a “candidate gene”, 

that is a gene suspected to be associated with the disease, based on previous knowledge 

of the functional relevance of the gene products for the disease risk (Day et al., 2001). 

In the absence of any candidate gene for the disease, a different type of association 

study, named a “genome-wide” study, has been recently developed, and which aims to 

map the genes for human diseases by making use of large sets of polymorphic markers 

throughout the whole genome. Such studies, however, pose the problem of multiple 

testing due to the great number of markers examined and tests required, so that their 

role is likely to be relegated to that of hypothesis-forming studies for the investigation 

of candidate genes, whose findings need to be confirmed using classical genetic 

association studies (Day et a l, 2001).

1.4 Meta-analysis

The synthesis of the evidence available on a specific research topic may be carried out 

either qualitatively in what is called systematic review, or quantitatively through the use
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of appropriate statistical methods, which are referred to as meta-analysis and provide 

an overall pooled estimate of the effect of interest. If correctly performed, systematic 

reviews and meta-analyses represent a powerful tool, which may sometimes provide 

conclusive evidence on the effect of interest from the data already available. Moreover, 

evidence synthesis may help avoid misinterpretation of the results of individual studies 

and provide explanations for the variability, or “heterogeneity”, between study results. 

Studies on the same topic often differ in terms of design, sample size, and other aspects 

such as characteristics of the study population or outcomes considered, and this might 

explain why findings can appear to be contradictory. When carrying out a meta

analysis, investigation of heterogeneity is crucial in order to decide what method should 

be used for pooling study results and, more importantly, whether study results should 

be combined at all (Thompson, 1994; Higgins et a l, 2003). Statistical tests to evaluate 

the presence of heterogeneity are available, but it has been argued that estimating the 

magnitude of the observed heterogeneity is more informative than testing alone, and 

measures aimed at quantifying heterogeneity in meta-analysis have been proposed 

(Higgins and Thompson, 2002).

Meta-analytical methods can be broadly classified into two types, the fixed effect 

model and the random effects model, based on the way the variability between study 

results is treated (Sutton et a l, 2000). The fixed effect model assumes no heterogeneity, 

that is all studies estimate the same true underlying effect size with the estimates 

differing only because of random fluctuation, and the combined effect is calculated as a 

weighted average of all estimates. When heterogeneity between study results is present, 

the use of the fixed effect model leads to an inflation of type I error, i.e. the probability 

of a “false positive” result. In the random effects model, a random term for the effect 

sizes is included in the model to account for the extra variability represented by the 

heterogeneity. The studies are assumed to estimate different underlying effect sizes, 

which vary at random usually following a normal distribution. Random effects models 

can be expressed algebraically as:

yt ~ N (diysf) , with 6t ~ N ( ^ ,r 2)

where yt is an estimate of effect size, 0. is the true effect size and sf is the variance of

y{ for study i; p  is the pooled estimate of effect size, and r 2 is the random effects

variance, which represents the between-study variance. When r 2 is 0, the random
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effects model will reduce to the fixed effect model (Sutton et a l , 2000). Compared to 

fixed effect models, random effects models are more conservative and provide wider 

confidence intervals, and they give relatively more weight to smaller studies than under 

a fixed effect model. The choice between fixed and random effects models is not 

straightforward due to the difficulty in assessing the presence of heterogeneity. In fact, 

the statistical power of tests for heterogeneity is often very low due to the small number 

of studies included in the meta-analysis, and usually a cut-off significance level higher 

than the conventional nominal level is used to compensate for this (p<0.10 instead of 

p<0.05). Some authors suggest that random effects models might be used in any case, 

i.e. disregarding the results of the test for heterogeneity, arguing that when low 

heterogeneity is present the two models will give similar results (Thompson and 

Pocock, 1991; Sutton et a l, 2000). One exception to such strategy might be represented 

by situations where the number of studies included in the meta-analysis is very low. 

Hedges and Vevea (1998) suggest that in these situations the random effects model 

should be regarded as only approximate, due to the difficulty of estimating the 

between-study variance. As a rule of thumb, these authors suggest a minimum of 5 

studies for a reliable use of random effects models. It has to be noted that, although 

random effects models can accommodate heterogeneity, it is important to investigate 

possible causes of variability in study results using subgroup analyses or meta

regression (§ 3.2.1). In many situations it may be sensible not to combine studies at all, 

if they show extreme heterogeneity.

Meta-analyses are mostly performed using the aggregated summary results of the 

studies, where the combined estimate of the effect is calculated by pooling the 

estimates from the different studies, usually extracted directly from journal articles. On 

the other hand, meta-analyses may be carried out on individual patient data, where the 

full study dataset is requested from the original researchers for each study (Stewart and 

Tierney, 2002). In this kind of meta-analysis the data coming from the individual 

patients included in all studies are re-analysed as if they were coming from a large 

single study, although data for each study are still analysed separately. Meta-analyses 

on individual patient data are considered of higher quality compared to meta-analyses 

on aggregated data due to the higher feasibility of checking of the quality of the data, 

standardising inclusion and exclusion criteria, ensuring the appropriateness of the
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analyses, and undertaking subgroup analyses, particularly in specific and relatively rare 

subgroups. Another key aspect of the use of individual patient data is that it allows 

heterogeneity to be correctly explained when patient-level covariates are involved 

(Lambert et a l, 2002; see also § 3.7.1). However, meta-analyses on individual patient 

data are extremely time consuming, have high costs, and rely heavily on the willingness 

to co-operate of the different research groups who carried out the studies. For these 

reasons they represent only a minority of all published meta-analyses, and they will not 

be considered in this thesis.

1.5 Bayesian versus frequentist approach to meta-analysis

The use of Bayesian methods has recently increased in meta-analyses as in many other 

areas of health care research, mainly as a result of advances in computational methods 

for carrying out Bayesian analyses (Spiegelhalter, Abrams and Myles, 2004). The basic 

feature which distinguishes the Bayesian from the frequentist approach is that while the 

classical statistical analysis of a study is based purely on the data collected, the 

Bayesian analysis combines the evidence coming from the data (generating what is 

called the likelihood function) with evidence external to the study and already available 

about the effect of interest (globally referred to as prior distribution). The external 

evidence may come from the results of previous studies or purely from the beliefs of 

experts in the field on the expected effect of interest. The two sources of evidence are 

combined to provide the updated belief (posterior distribution) about the effect size; in 

other words the prior belief about the effect size is updated in the light of the evidence 

coming from the data collected (Figure 1.1).

Two other important features which are exclusive to the Bayesian approach are the 

possibility to make direct probability statements regarding the effect of interest, such as 

what is the probability that the odds ratio is greater than 1, and to obtain a predictive 

distribution of the parameter of interest based on the posterior density, which allows 

predictive statement about future observations (Spiegelhalter, Abrams and Myles, 

2004).
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Figure 1.1 -  Representation of the Bayesian framework
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A Bayesian approach to meta-analysis is possible and sometimes desirable in 

alternative to the classical frequentist methods when dealing with relatively complex 

models. The random effects meta-analysis is an example of a two-level hierarchical 

model. By assuming exchangeability between studies, each can “borrow strength” from 

the others, causing the estimated effects for the individual studies to shrink towards the 

overall mean. More importantly, the precision of the estimate of that overall mean will 

allow for the variability between studies and the uncertainty in the between-study 

variance (Sutton and Abrams, 2001). Although both fixed and random effects models 

can be implemented in a Bayesian framework, usually random effects Bayesian models 

are performed. In comparison with conventional frequentist models, the confidence 

intervals, which in Bayesian terminology are called credible intervals, will be slightly 

wider in a meta-analysis context. The Bayesian approach to hierarchical modelling has 

been advocated for theoretical and practical reasons. Bayesian analysis allows the 

researchers to use external information in the form of prior opinion and enables them to 

produce subjective probability statements about the model parameters (Spiegelhalter, 

Abrams and Myles, 2004). Eliciting probability distributions from experts in the field 

under investigation is a delicate task, since people are prone to certain biases in the way 

they respond to situations involving uncertainty. A number of elicitation methods have
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been proposed, which differ in the way of asking questions about uncertain quantities, 

and some perform better than others in their capability of adequately representing the 

opinion elicited (Garthwaite, Kadane and O’Hagan, 2005). Fitting Bayesian models by 

Markov chain Monte Carlo (MCMC) methods, in particular Gibbs sampling (Gelfand 

and Smith, 1990), is very flexible and makes it practical to handle relatively complex 

and computationally intensive analyses such as hierarchical models, while allowing for 

uncertainty in all parameters (Best et a l, 1996; Brooks, 1998). Although possible, 

inclusion of uncertainty for variance parameters in an equivalent likelihood analysis is 

not straightforward and this source of variability is sometimes ignored (Hardy and 

Thompson, 1996).

1.5.1 The choice of vague prior distributions

The main practical problem in undertaking a Bayesian meta-analysis is to specify 

appropriate prior distributions for the model parameters based on external information 

(Spiegelhalter, Abrams, and Myles, 2004). When expert opinion is available it can be 

difficult to use this to derive probability distributions, especially for parameters such as 

variances or correlations (Gokhale and Press, 1982; Garthwaite and Dickey, 1988). 

When no external evidence is considered worthwhile being taken into account, the prior 

belief can be represented by a non-informative (or vague) prior distribution, and the 

results of the Bayesian analysis will be close to those of the frequentist approach. In 

this case, however, we are left with the equally difficult problem of specifying non- 

informative prior distributions for all of the model parameters, which include the 

hyperparameters if the model is hierarchical (Sutton and Abrams, 2001). Although a 

number of such prior distributions have been proposed, and routinely used, strictly 

speaking “non-informative” prior distributions, i.e. prior distributions that formally 

represent ignorance, and thus do not favour any particular parameter values, do not 

exist (Berger, 1985; Irony and Singpurwalla, 1997). In fact, any prior distribution exerts 

some influence on the posterior distribution, the more so in the presence of sparse data. 

The real aim is to identify a prior distribution that has minimal effect on the final 

inference relative to the data (Bernardo and Smith, 1994). For this reason, the term non- 

informative prior distribution is better replaced by “vague” prior distribution (Kass and 

Wasserman, 1996; Lambert et a l, 2005), which indicates a density that is sufficiently 

diffuse and gives similar prior probability to a wide but plausible range of parameter
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values. The problem of choosing vague prior distributions has been demonstrated to be 

particularly critical for hierarchical variance parameters, since prior distributions 

proposed as vague might in fact influence the analysis due to limited data 

(Spiegelhalter, 2001; Turner, Omar and Thompson, 2001; Gelman, 2004; Lambert et 

a l , 2005). Thus, sensitivity analyses that examine the robustness to the choice of prior 

distributions are an essential part of a Bayesian hierarchical analysis, including random- 

effect meta-analysis. Although this issue will be considered throughout all sections of 

this thesis, sensitivity analysis to the choice of prior distributions will be investigated 

and discussed in more detail in Chapter 2.

1.5.2 Bayesian implementation of meta-analysis methods

Although the meta-analytical methods presented in this thesis can be implemented 

using a frequentist approach, the Bayesian framework is an attractive alternative with 

both philosophical and practical advantages, and for these reasons has been chosen.

Bayesian analysis allows explicit inclusion of prior information on parameters 

representing the genetic effect, the genetic mode of inheritance and the presence/extent 

of Hardy-Weinberg disequilibrium, and because of the simplicity of the MCMC 

algorithm it is easy to implement. Indeed, one of the main driving forces behind the 

increasing use of Bayesian methods in medical research has been the combination of 

increased computing power together with the availability of free software, particularly 

WinBUGS (Spiegelhalter et al, 2004), which is the most widely used statistical 

package for Bayesian analysis. This software is based on MCMC simulation methods 

for parameter estimation, in particular the Gibbs sampler, which samples only from the 

conditional densities in order to obtain the marginal posterior density of each unknown 

parameter and thus simplifies the process of sampling (Gilks, Richardson and 

Spiegelhalter, 1996).

Checking whether the Markov chain has converged to its equilibrium distribution is an 

important issue when using MCMC methods (Gilks, Richardson and Spiegelhalter, 

1996; Brooks, 1998). Lack of convergence might be diagnosed in a number of ways. 

Monitoring of the sample values with visual inspection of the trace plot for a specific 

chain is often not sufficient, since the chain might be stuck in a particular area due to
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the choice of initial values. For this reason, convergence is assessed via sensitivity 

analyses, by running multiple chains from a diverse set of initial values, and with 

different length of burn-in and length of sample. Specific tests have also been proposed, 

which include the Geweke, Heidelberger and Welch, and the Raftery and Lewis 

diagnostic tests (Cowles and Carlin, 1996) implemented in BOA (Smith, 2004).

All meta-analytical models presented in this thesis were carried out using WinBUGS

1.4.1 (Spiegelhalter et a l, 2004), and the WinBUGS codes for the models presented are 

provided in the Appendix.

1.6 Why is meta-analysis of genetic association studies important?

If in all fields of medical research the volume of scientific knowledge has massively 

increased with time, this is particularly true for genetic epidemiology. In the last few 

years, with the completion of the Human Genome Project, the identification of several 

millions of genetic polymorphisms has provided the opportunity for a huge number of 

evaluations of possible gene-disease associations

(http://www.ncbi.nlm.nih.gov/proiects/SNPA. This, coupled with an increased 

efficiency and cost reduction of genotyping, has resulted in a worldwide outpouring of 

genetic association studies to such an extent as to create a serious publishing problem 

for journals and scientists (The Lancet, 2003; Colhoun, McKeigue and Davey Smith,

2003). On a daily basis, one or more new gene discoveries are claimed to be associated 

with increased risk for some disease, promising to help the diagnosis, prevention or 

treatment of that condition based on the characterisation of a subject’s genotype 

(Khoury, Little and Burke, 2004).

Unfortunately, studies of the effect of genetic polymorphisms on disease have often 

shown a disappointing lack of reproducibility (Gambaro, Anglani and DAngelo, 2000; 

Cardon and Bell, 2001; Colhoun, McKeigue and Davey Smith, 2003). Two possible 

reasons for this inconsistency are multiple testing, which can lead to false positive 

results, and a lack of power, which can lead to false negative results. The problem of 

false positive results is due to the fact that a large number of different polymorphisms 

are likely to have been tested on the same biological samples and, by definition when
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using a cut-off significance level of 0.05, 5% of them will result in statistically 

significant findings even in the absence of any genetic effect. On the other side, the 

issue of the lack of power is also particularly important in population-based genetic 

epidemiology, which often seeks to identify relatively small effects against a noisy 

background of biological and social complexity. Most genetic associations have odds 

ratios in the range of 1.1 to 1.4 (Ioannidis, 2003; Ioannidis, Trikalinos and Ntzani,

2004), and genetic association studies tend to be much smaller than would be ideal, and 

thus statistically underpowered to detect such relatively small effects (Clayton and 

McKeigue, 2001; Hirschhorn et al., 2002). Whilst the need for large-scale population- 

based association studies has recently been recognised, they are rarely available 

because they require a large number of individuals, are highly resource intensive, and 

can often be long term in nature (Cardon and Bell, 2001; Colhoun, McKeigue and 

Davey Smith, 2003). Thus, data from such studies will not be available in the near 

future, and in the meanwhile data from a relatively large number of small studies is 

likely to be the sole source of evidence. Under such circumstances, evidence synthesis 

has the potential to play an important role in advancing biomedical knowledge by 

increasing the statistical power (Lohmueller et al., 2003).

Heterogeneity in the size of the estimate of the genetic effect, as opposed to its 

significance, can be due to true variability between studies, that is, variability in excess 

of that which would be expected due to sampling error. An important role of any meta

analysis is the identification of possible sources of such inconsistency or heterogeneity, 

using subgroup analyses or the closely related technique of meta-regression (Sutton et 

a l, 2000; see also § 3.2.1). These methods can help assess whether the heterogeneity 

might be due to systematic differences in study methodology or in the characteristics of 

the studies’ populations.

The important role of evidence synthesis in the evaluation of gene-disease associations 

has been recognised, as showed by the incredible rate at which the number of published 

meta-analyses has increased in the last few years. While Attia and colleagues identified 

only 37 meta-analyses of genetic association studies published between 1991 and 2000 

(Attia, Thakkinstian and D'Este, 2003), in March 2005 the HuGE website archive listed 

243 meta-analyses published from 2000 onwards (§ 4.4.1). On the other hand, the
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appropriate use of meta-analysis of genetic association studies has been researched less 

than might be anticipated, and the general methodological quality of published meta

analyses of genetic association studies is poor (Attia, Thakkinstian, and D'Este, 2003).

1.7 Meta-analysis of genetic association studies: methodological 

issues

Although, in general, meta-analysis is considered the strongest source of evidence and 

thus the ideal basis for medical decision-making, the validity of the results of any meta- 

analysis depends on the use of appropriate methodological approaches (§ 7.1). The 

meta-analysis of genetic association studies not only shares those methodological issues 

common to all applications of biomedical research (Sutton et al., 2000), but also 

introduces problems that are specific to this field. Some of the general meta-analysis 

issues play a particularly important role in meta-analyses of genetic association studies. 

One example is publication bias, the seriousness of which is partly explained by the 

recent flood of genetic association studies submitted for publication and the consequent 

publishing problems for journals (The Lancet, 2003; Colhoun, McKeigue and Davey 

Smith, 2003). In this situation, it can be expected that only studies with “interesting” 

results, i.e. either statistically significant or with large effect sizes, might be published. 

However, in this thesis such general issues will only be discussed when insights on 

them are derived as a by-product from the application of methods proposed to deal with 

different problems (e.g. § 5.4.3 and 5.6.2), or when providing practical 

recommendations for the conduct of meta-analysis, as in Chapter 6. The decision to 

focus this thesis on the specific issues of the meta-analysis of genetic association 

studies has been taken in recognition of the fact that this is an area where less 

methodological work has been done, and for which guidelines could be potentially 

more useful (Attia, Thakkinstian, and D'Este, 2003). The absence of consensus and 

standardisation of the ways of conducting meta-analyses of genetic association studies 

are indeed reflected in the number of different approaches used to deal with the 

problems presented in the following chapters. These approaches are often based on 

very different assumptions, which only rarely are made explicit by the authors of the 

study, with a resulting lack of transparency for the reader who cannot critically evaluate 

them.
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Perhaps the most fundamental difference in meta-analysis of genetic association studies 

is that there are always at least three possible genotype groups to compare, rather than 

the two treatment groups characteristic of most published meta-analyses in biomedical 

research, and that comparison must be sensitive to the mode of the gene's effect, or 

“genetic model” (Attia, Thakkinstian, and D'Este, 2003). The impact of different 

assumptions about the underlying genetic model on the estimation of the genetic effect 

and the development of an alternative approach are presented in Chapter 2.

An important issue in any meta-analysis is the identification of possible sources of 

inconsistency or heterogeneity. Although heterogeneity is often allowed for by using a 

random effects model, where systematic differences between studies are suspected 

subgroup analyses may be more appropriate (§ 3.2.1). In genetic association studies 

such subgroups allow for an interaction between the gene and a study characteristic, 

such as differences in ethnic origin of the study population. It has to be noted that when 

patient-level covariates are investigated, individual patient data might be required to 

correctly explain the observed heterogeneity (Lambert et a l , 2002; see also § 3.7.1). 

Although the issue of subgroup analyses is common in general meta-analysis, genetic 

association studies are peculiar in the sense that there are other parameters, in addition 

to the parameter of interest, which subgroups may or may not share. Thus, for instance, 

the same underlying genetic model could be assumed across subgroups without 

assuming any similarity in the magnitude of the genetic effect. This issue is dealt with 

in Chapter 3, where the impact of different assumptions on different parameters is 

shown, and an approach to the adjustment for study level interaction is proposed.

A specific problem of genetic association studies is the evaluation of Hardy-Weinberg 

Equilibrium (HWE) in the study population, particularly in the controls. In a large 

population in which there is a bi-allelic polymorphism, alleles G and g, if the frequency 

of allele G is p  and the frequency of allele g is 1 -p , then the frequencies of the three 

genotypes, GG, Gg, and gg will be p2,2p(l-p), and (1 -p f, respectively, if there is 

random mating and no selection, that is if the population is in HWE. The 

methodological interest in HWE is in its use as proxy for possible problems associated 

with the quality of genetic association studies. These problems include; population
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stratification, a bias caused by a mixture of different ethnic groups in the study 

population whenever the frequency of the polymorphism and the disease risk vary 

between ethnic groups and the study fails to match cases and controls for ethnicity; 

genotyping error, a mistake in the laboratory identification of a subject’s genotype; 

selection of controls. The issues of how to evaluate departures from HWE and what 

might be the best strategy for dealing in practice with departures from HWE in studies 

included in the meta-analysis are presented in Chapter 4.

Finally, an interesting opportunity offered by genetic association studies is that of 

combining the information from studies evaluating the association between a genotype 

and a disease, with that from studies evaluating the association between the same 

genotype and an intermediate phenotype, thought to be on the causal pathway to the 

disease. This approach, known as “Mendelian randomisation”, can be used to assess 

whether the association between the phenotype (risk factor) and the disease is truly 

causal, and to derive an estimate of the level of association (Davey Smith and Ebrahim, 

2003). The term Mendelian randomisation derives from the fact that a natural 

randomisation process occurs at conception to determine a person's genotype, so that 

genotype can be used as an instrumental variable to derive an estimate of the 

phenotype-disease association which is free of the confounding and reverse causation 

typical of classical epidemiology. However, the uncertainty in the derived estimate of 

the phenotype-disease association can be very large, as it depends on uncertainty in 

both the estimates of the genotype-phenotype and genotype-disease association. Thus, 

an estimate of the phenotype-disease association which is sufficiently precise is only 

likely to be obtained through a meta-analysis of all available evidence. Despite the 

growing interest in Mendelian randomisation, very limited methodological work has 

been done to date in order to investigate methods aimed not only at providing precise 

estimates, but also at checking the basic assumptions on which Mendelian 

randomisation is based. These issues are addressed in Chapter 5, where a novel 

integrated approach to the meta-analysis of genetic association studies using Mendelian 

randomisation will be presented.
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1.8 Overview of the thesis

Chapter 1 has provided background information on genetic association studies, meta

analysis, and the Bayesian approach, which will be adopted throughout this thesis. The 

four specific methodological issues of meta-analysis of genetic association studies 

briefly presented in this chapter are addressed in chapters 2 to 5; the choice of genetic 

model to pool data across genotypes; the use of subgroup analysis; the role of HWE; 

the use of Mendelian randomisation. The structure is similar for all of them. The 

problem is first described in detail; a review of the literature is then presented to 

illustrate what methods are available to deal with it, and how these methods have been 

used in published meta-analyses. This overview is accompanied by a discussion of the 

shortcomings of current methods, which leads to the proposal of novel approaches 

developed to address some of the limitations identified. The approaches proposed are 

illustrated by re-analysing either individual examples or entire datasets of published 

meta-analyses, and the results are compared with those obtained using current methods. 

Problematic issues encountered are further investigated through simulation work; in 

particular, simulations are used to evaluate the impact of different assumptions in the 

Bayesian implementation of the method in Chapter 2, and to compare different 

strategies for dealing with departures from HWE in Chapter 4. In Chapter 6 the 

findings presented in this thesis are combined with evidence available in the literature 

to provide a set of guidelines on how to deal with all issues which require consideration 

in the meta-analysis of genetic association studies. Finally, an overall discussion of the 

findings and the need for further work is presented in Chapter 7. An Appendix with the 

WinBUGS code for the models proposed and other material is also provided, together 

with a brief Glossary, which contains the definition of all the genetics terms used in the 

following sections, and an Addenda with papers published in relation with this PhD.
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2 THE CHOICE OF GENETIC MODEL

2.1 Chapter overview

This chapter addresses the important issue of how results of genetic association studies 

can be pooled in a meta-analysis by including data on all genotype groups and taking 

into account the uncertainty in the underlying genetic model. A brief introduction to the 

problem is presented in § 2 .2, while the different methods that have been used in the 

literature are reviewed in § 2.3. In § 2.4 an alternative “genetic model-free” approach is 

proposed with the aim of addressing some important limitations of existing methods, 

particularly the strong assumptions often made regarding the underlying genetic model. 

In § 2.5 the approach is applied to five examples of published meta-analyses and the 

results compared to the results of currently used methods. In § 2.6 the results of the 

genetic model-free approach based on the commonly used prospective likelihood are 

compared to those obtained using a retrospective likelihood; the latter reflects the 

sampling method of case-control studies, which represent by far the majority of genetic 

association studies. The prospective likelihood is preferred due to the simplicity of its 

implementation; however, although it has been shown to provide equivalent results to 

the retrospective likelihood within individual case-control studies, there is no evidence 

of equivalence in a meta-analysis context. The issue of the choice of vague prior 

distributions when implementing the genetic model-free approach within a Bayesian 

framework is illustrated in § 2.7, based on some of the examples; this issue is further 

investigated through simulation work in § 2.8. Finally, a discussion of advantages and 

disadvantages of the genetic model-free approach and its Bayesian implementation is 

presented in § 2.9.

2.2 Introduction

One of the most problematic issues of the meta-analysis of genetic association studies 

is the choice of the method for pooling study results across genotype groups. In meta

analysis of genetic association studies there are always at least three possible genotype 

groups to compare, rather than the two groups characteristic of most published meta

analyses in biomedical research, and the comparison must be sensitive to the mode of
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inheritance, or genetic model (Attia, Thakkinstian and D'Este, 2003). In the simplest 

case of a polymorphism with two alleles (G and g), one of which is thought to be 

associated with a disease (G), association studies will collect information on the 

relative frequency of disease in subjects with each of the three genotypes (gg, Gg and 

GG). There are thus two odds ratios, or relative risks, to be estimated, that of GG and 

Gg, each compared with the wild genotype gg, and, more importantly, these two risks 

are correlated in a way that depends on the operating genetic model (e.g. recessive, co

dominant, dominant). In particular, the genetic model determines what is the risk of 

disease in the heterozygous group Gg (§ 1.2). Authors of published meta-analyses of 

genetic association studies have dealt with this issue in different ways, based on very 

different assumptions about the underlying genetic model which have not always been 

explicit, and in many cases unjustified.

2.3 Review of the literature

To date almost all meta-analyses of genetic association studies have reduced the three 

groups to two by; (a) assuming a recessive model to justify combining the gg and Gg 

genotypes and comparing gg+Gg with GG; (b) assuming a dominant model and 

comparing gg with Gg+GG, (c) assuming a per-allele effect that places Gg midway 

between gg and GG, also called the co-dominant model; (d) ignoring the heterozygotes 

and comparing gg with GG; (e) performing multiple pairwise comparisons. Although 

rare, heterosis has also been described (Williams, 1998; Juengel, 2000), where the risk 

of the Gg group can be higher (positive heterosis or “over-dominance”) or lower 

(negative heterosis or “under-dominance”) than either of the homozygous groups. 

When unsure which genetic model is operating, some investigators fit multiple models 

and/or perform multiple pairwise comparisons. However, adjustment for such multiple 

testing is seldom made, and the pairwise estimates of the odds ratio of GG vs. gg 

(subsequently referred to as O R gg) and the odds ratio of Gg vs. gg (subsequently 

referred to as ORcg) are usually obtained by carrying out two separate meta-analyses, 

thus ignoring the within-study correlation between the two odds ratios induced by the 

common baseline group.
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Among these meta-analysis approaches, the most efficient in terms of precision of the 

estimate of the genetic effect is that based on the assumption of a specific genetic 

model operating in all studies included in the meta-analysis (genetic model-based 

analysis). By collapsing all data from the three genotypes into two groups, this 

approach enables all available information to be used and has only one parameter to 

estimate for the genetic effect. Although its statistical efficiency explains why the 

genetic model-based analysis tends to be the most commonly used, unfortunately the 

choice of the specific genetic model is usually not supported by any prior knowledge, 

and assuming the wrong model can lead to biased estimates of the genetic effect. When 

unsure which genetic model might be operating, some investigators test multiple 

genetic models or apply both genetic model-based analyses and pairwise comparisons.

A review of 37 published meta-analyses of genetic association studies by Attia et al 

(Attia, Thakkinstian and D'Este, 2003; see also § 6.2) showed that 24 of them (65%) 

used a genetic model-based analysis, although a biological justification for the choice 

of the genetic model was provided in only eight meta-analyses, while in 12 the 

uncertainty about the underlying genetic model was addressed by testing multiple 

modes of inheritance. Only 4 of the meta-analyses reviewed by Attia and colleagues 

avoided having to specify a genetic model by performing separate pairwise analyses, 

where the two odds ratios ORog and O R gg were estimated in two separate meta

analyses. This approach is less efficient than the genetic model-based analysis, since 

the correlation between the two odds ratios induced by the underlying genetic model is 

ignored. Overall, 16 meta-analyses performed multiple comparisons by assuming 

different genetic models or adopting different methods, but only two adjusted for 

multiple testing. Finally, 9 of the meta-analyses in Attia’s review evaluated the gene- 

disease association solely by comparing the frequency of the allele of interest (G) 

between cases and controls. Apart from not being directly interpretable from a clinical 

point of view, given that individuals are characterised by genotypes rather than alleles, 

this per-allele approach has been criticised since it is based on two implicit 

assumptions, which are never evaluated before applying the method (Sasieni, 1997). 

The first assumption is that of a co-dominant genetic model, which means that, on a log 

scale, the risk of Gg is midway between the risks of gg and GG; the second assumption
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is that of Hardy-Weinberg equilibrium, which defines the relation between the allele 

frequencies and the genotype frequencies (§ 4.2.1).

In this thesis a novel approach is presented, which does not assume prior knowledge on 

what is the underlying genetic model, but still analyses all genotypes simultaneously by 

assuming that there is an unknown genetic model which is common across studies.

2.4 Proposed genetic model-free approach

All of the methods of analysis in common use, with the exception of the pairwise 

comparisons, make the implicit assumptions that a particular genetic model applies in 

all studies, and, more importantly, that the model is known in advance; for instance, the 

gene might be assumed to be recessive in all populations. Here a genetic model-free 

approach to the meta-analysis of genetic association studies is proposed, which also 

assumes a common genetic model across studies but which does not specify the mode 

of inheritance in advance. The underlying genetic model is instead estimated from the 

data. Although no specific genetic model is assumed, the analyses are, of course, still 

based on an assumed statistical model. The model is based on a simple 

reparameterisation and uses the odds ratio between the homozygous genotypes (O R gg) 

to capture the magnitude of the genetic effect, and A, the ratio of logORcg and 

logORGG, to capture the genetic mode of inheritance. Lambda is assumed to be common 

across studies, but if this assumption is in doubt then pairwise comparisons obtained 

using bivariate random-effect meta-analysis methods, which take into account the 

correlation between O R gg and ORog, should be used (van Houwelingen, Arends and 

Stijnen, 2002; Nam, Mengersen and Garthwaite, 2003). A graphical way of 

investigating whether the assumption of a common A is appropriate will be presented. 

Finally, allowing A to take any value (unbounded analysis), is equivalent to allowing 

the possibility of heterosis, i.e. that the risk of the Gg group can be higher or lower than 

either of the homozygous groups. If this possibility can be excluded on biological 

grounds then it is better to constrain A between 0 and 1 (bounded analysis); this restricts 

the mode of inheritance to the spectrum between dominant, through co-dominant, to 

recessive.
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2.4.1 Model specification

Consider the meta-analysis of a bi-allelic polymorphism, in which G is the risk allele,

and a dichotomous disease outcome ascertained for each genotype. Define two 

parameters; the odds ratio for the two homozygous genotypes, O R gg, and A, the ratio of 

logORcg and logORoG- In the bounded analysis, although A can take any value between 

0 and 1, values equal to 0, 0.5 and 1 correspond to the recessive, co-dominant and 

dominant genetic model, respectively. For the unbounded analysis, values of A greater 

than 1 or smaller than 0 correspond to positive or negative heterosis.

The logORoo’s are modelled using a random effects meta-analysis model that allows 

for heterogeneity across studies (Sutton et a l , 2000), while A is modelled as a fixed 

effect, that is, the genetic model is assumed to be the same in all studies. It is usually 

not possible to model both logORoG and A as random effects because, without extra 

information, it is very difficult to disentangle the heterogeneity of A from that of

Denoting by yo/ and yy the number of controls and cases, respectively, in the genotype 

group j, with 7=1,2,3 (i.e. gg, Gg and GG), the prospective likelihood (LP) for each 

study included in the meta-analysis will be:

where the parameter a  is the baseline odds of disease (no exposure), i.e. the odds of 

disease when j=1 (genotype gg), and S is the log odds ratio of interest (Sz for logORGg 

and Si for logORoG)-

In the meta-analysis, the full likelihood is then obtained as the product of likelihoods 

(1) over the i studies, under the assumption of independence of the studies. The study- 

specific log odds ratios for GG vs. gg, da, are modelled as normally distributed random 

effects parameters, which vary about an overall mean, 6, with variance, t 2:

logORoG-

(1)

d3i ~ N ( d , r 2) i=1, ...,I
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The study-specific log odds ratios for Gg vs. gg, fai, are equal to the product of and 

A, i.e. A=^2i/d3/, and the mode of inheritance, A, is assumed constant across studies and 

thus modelled as a fixed effect parameter. However, if there are reasons to believe that 

A differs across populations, the model could be generalised to include subgroups of 

studies within which A is constant.

Prior distributions have to be specified for the unknown model parameters 0, rand A. A 

diffuse normal distribution is used for 0 in all models, i.e. 9 ~ Normal(0,10000). In

the bounded analysis, where heterosis is excluded and A is restricted to the range 

between 0 to 1, we need a vague prior distribution constrained to cover the range 

between 0 and 1, such as A ~ Beta(0.5,0.5). For the unbounded analysis, a normal prior 

distribution is used, A ~ Normal(0.5,10), where mean and variance are chosen to reflect 

a wide, but plausible, range of values of A (i.e. A between -6 and 7). On the other 

hand, the vague prior distribution for x  needs to be positive, such as r  ~ Uniform(0,2).

Sensitivity analyses to the choice of prior distributions for A and r  for the bounded 

analysis are presented in § 2.7.1.

Prior to model fitting, it may be useful to plot, for each study, the logORog versus 

logORoG, as shown in Figure 2.1, and in which the slope of the association between 

logORog and logORGG represents A. Such a plot may help check the consistency of A 

across studies and identify outlying studies. Study-specific estimates of A and 95% 

Credible Intervals (95% Crls), as shown in Figure 2.2, help assess whether the variation 

in A across studies might be explained by sampling error.

If the genetic model does not seem to be consistent across studies then it may be better 

to perform joint pairwise comparisons using a general bivariate meta-analysis model 

(Nam, Mengersen and Garthwaite, 2003) that does not assume that A is common but 

still takes into account the correlation between the estimates of O R gg and ORog. The 

model is specified as follows:

rij ~ ,ri:j) i=1 , . . . ,  I 7 = 1 ,  2, 3
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where ri . is the number of cases for genotype j  in study i, which is binomially 

distributed with n(j being the total number of subjects for genotype j  in study i.

The log odds of disease for each genotype is thus:

log
/ jt

V1 -  ^ ,1
= f*i

1 ( \ slog   Hj + <5/:
\ t - X n )

log =  ,̂+<5i3

where: di2 ~ N(0l,r12) and di3 ~ N (d2,x2 )

The parameterisation of the model, i.e. the presence of in the three log odds,

accounts for the correlation between the two estimated log odds ratios. It will be 

interesting for future work to extend the model to allow for correlated random effects, 

that is correlated true log ORs rather than correlated estimates of the ORs, which might 

be more appropriate. However, it is likely that there might be little information to 

estimate such correlation, so that the impact of the choice of a prior distribution for the 

correlation might heavily influence the results.

The same prior distributions used for the genetic model-free approach are adopted here; 

61 ~ Normal(0,10000) , d2 ~ Normal(0,10000), r 1 ~ Uniform^0,2)

and x2 ~ Uniform^0,2)

The number of simulations was varied and the traces were inspected for evidence of 

non-convergence before deciding on a burn-in of 10,000 iterations, followed by chains 

of length 50,000. Convergence was assessed via sensitivity analyses with respect to 

initial values, length of burn-in and length of sample, using visual inspection of trace 

plots (§ 1.5.2). Details of the WinBUGS code for the genetic model-free approach and 

the bivariate meta-analysis model for the joint pairwise comparisons are given in 

Appendix 1.
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2.5 Illustration

2.5.1 Five examples

The implementation of the genetic model-free approach and its comparison to the 

conventional methods are illustrated using five published examples of the meta-analysis 

of genetic association studies. For each meta-analysis, the number of studies included, 

frequency of the risk allele, methods used by their authors and main reported results, 

are given in Table 2.1.

ACE gene and diabetic nephropathy

This meta-analysis was carried out to evaluate the controversial association of the I/D 

polymorphism of the ACE gene with diabetic microangiopathy, in particular 

nephropathy and retinopathy (Fujisawa et al., 1998). Here we consider only the meta

analysis assessing the effect on nephropathy. In the original analysis a dominant model 

was assumed and 21 studies were pooled to give an odds ratio of 1.32 (95% Cl: 1.15 to 

1.51). The average allele frequency for the genetic variant was 0.46.

KIR6.2 gene and Type II diabetes

The K+ inwardly rectifier channel (KIR) is a protein that plays a major role in glucose- 

stimulated insulin secretion. Its encoding gene, KIR6.2, has been suggested as a 

candidate for inherited defects in Type II diabetes. This meta-analysis was carried out 

assuming dominant, recessive and co-dominant models with /^-values corrected for 

multiple testing (Hani et a l , 1998). The result of the meta-analysis, based on four 

studies, was a significant association between KIR6.2 and Type II diabetes. The 

average frequency for the risk allele was 0.34.

AGT gene and essential hypertension

The genetic variant Thr235 of the angiotensinogen (AGT) gene has been found to be 

associated with a predisposition to hypertension in some linkage and association 

studies. This meta-analysis of seven Japanese case-control studies reported an odds 

ratio for the Thr235 allele of 1.22 (95% Cl: 1.05 to 1.42), with an average allele 

frequency of 0.75 (Kato et al., 1999).
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MTHFR gene and coronary heart disease

The 677C. T is a polymorphism of the Methylene TetraHydroFolate Reductase 

(MTHFR) gene involved in folate metabolism, which causes elevated homocysteine 

levels and has been associated with an increased risk of coronary heart disease. This 

meta-analysis of 49 studies reported an odds ratio of 1.21 (95% Cl: 1.06 to 1.39) for the 

TT vs. CC comparison (Wald, Law and Morris, 2002), in close agreement with another 

meta-analysis published around the same time (Klerk et al., 2002). The average 

frequency for the T allele was 0.32.

PON1 Q192R polymorphism and myocardial infarction

PON1 is one of the genes encoding for paraoxonase, a serum enzyme that has been 

implicated in the prevention of atherogenesis and coronary heart disease through its 

association with high-density-lipoprotein particles. This recent meta-analysis of 19 

studies investigated the effect of the Q192R polymorphism in the PON1 gene on the 

risk of myocardial infarction (Wheeler et a l , 2004). The reported per-allele relative risk 

was 1.08 (95% Cl: 1.02 to 1.14), and the average allele frequency was 0.33.

TABLE 2.1 - Five published meta-analyses used for illustration, with methods and results 
reported in the original articles

Author, year A ssociation  evaluated Number of 
s tu d ies

Risk allele 
frequency

REPORTED ANALYSIS

Method R esu lts

Fujisawa, 1998 ACE  gene and 
diabetic nephropathy 21 0.46 Assumed dominant genetic 

model
1.32 

(1.15 to 1.51)

Hani, 1998 KIR6.2 gene and 
Type II diabetes 4 0.34 Only p  value, under dominant 

and recessive genetic models
Dominant: p  < 0.05 
Recessive: p  < 0.01

Kato, 1999 AG T  gene and essential 
hypertension 7 0.75 Per-allele analysis 1.22 

(1.05 to 1.42)

Wald, 2002 MTHFR gene and 
coronary heart disease 49 0.32 Heterozygotes ignored, 

pairwise comparison for O R gg

1.21 
(1.06 to 1.39)

Wheeler, 2004
PON1 Q192R 
polymorphism and 
myocardial infarction

19 0.33 Per-allele analysis 1.12 
(1.15 to 1.51)

2.5.2 Results

Figure 2.1 shows, for each meta-analysis, a plot of logORog against logORoG- All meta

analyses show variation in the genetic effect as represented by the two log odds ratios.
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This might be explained by a number of factors, including sampling error, differences 

in the study methods and differences in the true genetic risk across study populations.

In the absence of heterogeneity in the genetic model and sampling error, all studies 

would be expected to lie along a straight line with slope A. The solid line in Figure 2.1 

represents the slope, A, estimated by the genetic model-free approach using a bounded 

analysis, while the three dotted lines corresponding to the dominant, co-dominant and 

recessive genetic models are plotted for comparison. The figure allows visual 

identification of any outliers or influential studies. Figure 2.2 plots the study-specific 

estimates of A and their 95% Crls, and is used to investigate whether any departures 

from linearity in Figure 2.1 are consistent with sampling error. Within individual 

studies, A is often poorly estimated, but there is little indication in any of the meta

analyses that the genetic models are not common across studies.

Table 2.2 summarises the results for the different meta-analytical methods in common 

use, which consist of separate pairwise comparisons, where logORog is pooled 

independently of logOR.GG> and methods based on assumed genetic models. The results 

are expressed in terms of median and 95% CrI. The result for the ACE example when 

assuming a dominant model (Table 2.2) differs from the published result, which also 

assumed a dominant model (Table 2.1), because the main result in the original paper 

was based on a fixed effect meta-analysis rather than the random effect meta-analysis 

used here, and the analysis was implemented using a classical approach. The use of a 

random effects model and the implementation within a Bayesian framework both 

contribute to explain why the 95% CrI of the estimate in Table 2.2 is sensibly wider 

than the corresponding 95% Cl in Table 2.1 (see § 1.4 and 1.5). The choice of the 

genetic model in model-based methods can have a marked impact on the estimates of 

O R gg and ORog. For instance in the KIR6.2 example the estimates of O R gg vary 

between 1.41 (95% Cl: 0.73 to 2.79) and 1.93 (95% Cl: 0.94 to 3.96). Separate pairwise 

comparisons give an unbiased estimate of O R gg o f  2 .21 , but with an unnecessarily 

wide confidence interval (95% Cl: 1.07 to 4.55) because they do not incorporate any of 

the information on ORcg when estimating ORgg-
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FIGURE 2.1 - Plot of the log ORGg against the log ORGG for: a) ACE  gene and diabetic 
nephropathy; b) KIR6.2 gene and Type II diabetes; c) AGT  gene and essential hypertension; d) 
MTHFR gene and coronary heart disease; e) PON1 Q192R polymorphism and myocardial 
infarction. The solid line represents the slope A estimated by the genetic model-free approach; 
the three dotted lines correspond to the dominant, co-dominant and recessive genetic models 
respectively
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FIGURE 2.2 - Plot of the study-specific estimates of A (with 95% CrI) for: a) ACE  gene and 
diabetic nephropathy; b) KIR6.2 gene and Type II diabetes; c) AGT  gene and essential 
hypertension; d) MTHFR gene and coronary heart disease; e) PON1 Q192R polymorphism and 
myocardial infarction. To better investigate the region in the middle, where the two lines 
correspond to the recessive and dominant models, the 95% Crls have been truncated at ±5

a) b)

study study

C) d)

f f

study study

e)

study
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TABLE 2.2 - Results of the currently used meta-analytical methods for the five meta-analyses

M eta-analysis M ethod OF?Gg
(95% CrI)

ORgg 
(95% CrI) Im plicit X

ACE  gene and 
diabetic nephropathy

Separate pairwise comparisons 1.24 
(0.92 to 1.69)

1.48 
(1.08 to 2.11) -

Recessive model - 1.21 
(1.02 to 1.49) 0

Co-dominant model 1.21 
(1.04 to 1.43)

1.46 
(1.08 to 2.04) 0.5

Dominant model - 1.31 
(0.99 to 1.77) 1

KIR6.2 gene and 
Type II diabetes

Separate pairwise comparisons 1.24 
(0.92 to 1.69)

2.21 
(1.07 to 4.55) -

Recessive model - 1.94 
(0.97 to 3.87) 0

Co-dominant model 1.39 
(0.97 to 1.99)

1.93 
(0.94 to 3.96) 0.5

Dominant model - 1.41 
(0.73 to 2.79) 1

A G T  gene and essential 
hypertension

Separate pairwise comparisons 1.14 
(0.67 to 1.98)

1.68 
(0.98 to 3.04) -

Recessive model - 1.66 
(1.06 to 2.78) 0

Co-dominant model 1.49 
(1.04 to 2.23)

2.21 
(1.09 to 4.99) 0.5

Dominant model - 1.44 
(0.88 to 2.41) 1

MTHFR gene and 
coronary heart disease

Separate pairwise comparisons 1.06 
(0.99 to 1.13)

1.19 
(1.03 to 1.38) -

Recessive model - 1.16 
(1.02 to 1.32) 0

Co-dominant model 1.09 
(1.02 to 1.16)

1.18 
(1.04 to 1.34) 0.5

Dominant model - 1.08 
(1.01 to 1.16) 1

PON1 Q192R polymorphism 
and
myocardial infarction

Separate pairwise comparisons 1.10 
(0.98 to 1.25)

1.13 
(0.95 to 1.33) -

Recessive model - 1.09 
(0.94 to 1.26) 0

Co-dominant model 1.08 
(1.01 to 1.16)

1.17 
(1.02 to 1.35) 0.5

Dominant model - 1.11 
(1.00 to 1.24) 1

Table 2.3 presents the results of the genetic model-free approach with A unbounded and 

bounded between 0 and 1, and the joint pairwise comparisons. The pooled estimates of 

A obtained from the genetic model-free approach tend not to be very precise, but can 

usually rule out some of the commonly assumed genetic models. For example, the 

KIR6.2 gene and the ACE gene examples rule out the dominant and recessive models 

respectively, whilst the MTHFR gene example suggests that A is different from any of 

the values corresponding to the standard genetic models. In the example of the ACE 

gene the estimate of A is very close to one, that is, close to dominant. Compared to an 

assumed dominant model the estimate of ORgg is very similar, but the confidence 

interval is wider reflecting our uncertainty surrounding whether the true underlying 

model is actually dominant. The bounded analysis, in which A must lie between 0 and 

1, did not materially alter the point estimates of any of the parameters in our examples
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TABLE 2.3 - Results of the proposed genetic model-free approach and the joint pairwise 
comparisons, obtained using bivariate meta-analysis, for the five meta-analyses

M eta-analy sis M ethod ORGg 
(95% CrI)

ORgg 
(95% CrI)

K
(95% CrI)

ACE  gene and 
diabetic nephropathy

Genetic model-free 
approach

Unbounded. 1.30 
(0.99 to 1.74)

1.33 
(0.99 to 1.84)

0.95 
(0.64 to 1.39)

Bounded. 1.31 
(1.01 to 1.73)

1.35 
(1.01 to 1.87)

0.92 
(0.65 to 1.00)

Joint pairwise comparisons 1.21 
(0.94 to 1.57)

1.42 
(1.10 to 1.91) -

KIR6.2 gene and 
Type II diabetes

Genetic model-free 
approach

Unbounded. 1.19 
(0.87 to 1.81)

1.97 
(0.94 to 4.12)

0.27 
(-0.25 to 0.85)

Bounded. 1.16 
(1.00 to 1.77)

2.01 
(0.97 to 4.10)

0.24 
(0.00 to 0.82)

Joint pairwise comparisons 1.24 
(0.61 to 2.63)

2.21 
(1.08 to 4.46) -

AG T  gene and 
essential hypertension

Genetic model-free 
approach

Unbounded. 1.03 
(0.69 to 1.71)

1.65 
(1.03 to 3.51)

0.07 
(-1.59 to 0.53)

Bounded. 1.08 
(1.00 to 1.74)

1.81 
(1.05 to 3.66)

0.16 
(0.00 to 0.54)

Joint pairwise comparisons 1.10 
(0.63 to 1.84)

1.79 
(1.04 to 3.34) -

MTHFR gene and 
coronary heart 
disease

Genetic model-free 
approach

Unbounded. 1.04 
(1.00 to 1.11)

1.20 
(1.04 to 1.38)

0.25 
(0.03 to 0.47)

Bounded. 1.04 
(1.00 to 1.11)

1.19 
(1.04 to 1.38)

0.23 
(0.01 to 0.46)

Joint pairwise comparisons 1.06 
(0.99 to 1.12)

1.19 
(1.04 to 1.36) -

PON1 Q192R 
polymorphism and 
myocardial infarction

Genetic model-free 
approach

Unbounded. 1.08 
(0.99 to 1.21)

1.13 
(0.97 to 1.31)

0.65 
(-1.06 to 2.55)

Bounded. 1.08 
(1.00 to 1.21)

1.15 
(1.01 to 1.33)

0.63 
(0.03 to 1.00)

Joint pairwise comparisons 1.10 
(0.99 to 1.23)

1.14 
(0.98 to 1.33) -

but affected their interval estimates. For instance, in the AGT example, where the fitted 

model is very close to recessive, the restriction on A implies that ORog cannot fall 

below 1.00 as this would either require a negative A or a protective effect of the GG 

genotype; the bound rules out the former and the data contradict the latter.

2.6 Retrospective versus prospective likelihood

By far the majority of genetic association studies use a case-control design that requires 

a retrospective likelihood based on the probability of exposure given disease, since this 

reflects their method of sampling. Prentice and Pyke (1979) showed that a maximum 

likelihood analysis based on the corresponding prospective likelihood gives the same 

results as an analysis of the retrospective likelihood for a single study. The advantage 

of using the prospective likelihood is that the outcome variable, disease, is binary, 

whereas in the retrospective analysis the outcome, exposure, can have many levels. In 

the case of genetic association studies, the exposure, i.e. genotype, has three categories 

even in the simplest case of a bi-allelic polymorphism. Although the equivalence of the
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two likelihoods for fixed effect meta-analyses follows from the analogy with a stratified 

case-control study, there is no reason to suppose that exactly equivalent results will be 

obtained with more complex hierarchical models. None-the-less where the 

heterogeneity is small or the data are not sparse we might expect the results to be 

similar. Equivalence within the Bayesian framework does not generally exist and has 

only been established for very particular choices of prior distributions (Seaman and 

Richardson, 2004). Although not exactly equivalent, the results of Prentice and Pyke 

would suggest that with vague prior distributions the retrospective and prospective 

Bayesian analysis should give similar answers. This issue is investigated in the 

following sections.

2.6.1 Model specification for retrospective likelihood

In the meta-analysis based on a retrospective likelihood, which mirrors the method of 

sampling in case-control studies, subjects are selected dependent on their disease status 

and then their exposure status is ascertained.

Denoting by yq, and yy the number of controls and cases, respectively, in the genotype 

groups j, with j=l,2,3 (corresponding to gg, Gg and GG), the retrospective likelihood 

( L r )  for each study included in the meta-analysis is derived from a pair of multinomial 

distributions;

y0. ~ Multinomial(nQ,p 0j) y t; ~ Multinomial(nx,p Xj)

where n0 and n1 are the total number of controls and cases respectively,

p: exp(ddA 
Pd j - = p -  —  —   7=1, 2, 3

exp(d6t)

and d is an indicator of the disease status, taking the value of 0 for controls and 1 for 

cases. The probability that a control has exposure j  is P j / ^ l =iPk > with Pi -  1* The

log odds ratios of disease for the exposure groups Gg and GG compared to no exposure 

(gg) are represented by <$2 and 63 respectively, while <5i is zero by definition. The 

likelihood for each study will thus take the form:

ya
Lr(P ,5 1 y) =

exp (ddj)

exP(d(5*)
(2)
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In the meta-analysis the full likelihood is obtained as the product of the likelihoods (2) 

over the i studies, assuming that the studies are independent. As in the prospective 

meta-analysis (§ 2.4.1), the study-specific log odds ratios 63, are modelled as normally 

distributed random effects parameters, with an overall mean 6 and between-study 

variance t2. The underlying study-specific log odds ratios &2i are again derived as the 

product of <53/ and A, and A is modelled as bounded between 0 and 1 (bounded analysis). 

A diffuse prior normal distribution is used for 6 , 6 ~ Normal(0,10000), while 

Uniform(0,2) and Beta(0.5,0.5) are used for rand A, respectively.

Again, the number of simulations was varied and the traces were inspected for evidence 

of non-convergence before deciding on a burn-in of 5,000 iterations followed by chains 

of length 10,000. Convergence was assessed via sensitivity analyses with respect to 

initial values, length of burn-in and length of sample, and using visual inspection of 

trace plots (§ 1.5.2). Details of the WinBUGS code for fitting this model are given in 

Appendix 1.

2.6.2 Application and comparison

The similarity between models based on retrospective and prospective likelihood was 

investigated by applying them to the five meta-analyses described in § 2.5.

Table 2.4 shows the results for the retrospective and the prospective models, which are 

nearly identical for all meta-analyses and parameters of interest, both in terms of the 

point estimates (medians) and the width of the credible intervals. Different prior 

distributions for A and rgave similar results. The only difference in the two approaches 

was a tendency to a slower convergence for the prospective models, even after the use 

of hierarchical centring (see Appendix 1) in the specification of the prospective models 

(Gelfand, Sahu and Carlin, 1995). This is the reason why the results for the prospective 

models were based on longer burn-in (10,000 instead of 5,000) and chain length 

(50,000 instead of 10,000), compared to the retrospective models.
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Table 2.4 -  Comparison of the results of the genetic model-free approach applied to the five 
examples using a retrospective and a prospective likelihood

M eta-analysis Likelihood ORgq 
(95% CrI)

ORgg 
(95% CrI)

A
(95% CrI)

r
(95% CrI)

ACE  gene and 
diabetic nephropathy

Retrospective 1.31 
(1.01 to 1.72)

1.36 
(1.01 to 1.83)

0.92 
(0.64 to 1.00)

0.54 
(0.31 to 0.87)

Prospective 1.31 
(1.01 to 1.73)

1.35 
(1.01 to 1.87)

0.92 
(0.65 to 1.00)

0.54 
(0.32 to 0.88)

KIR6.2 gene and 
Type II diabetes

Retrospective 1.16 
(1.00 to 1.80)

2.03 
(0.96 to 3.96)

0.24 
(0.00 to 0.79)

0.29 
(0.02 to 1.51)

Prospective 1.16 
(1.00 to 1.77)

2.01 
(0.97 to 4.10)

0.24 
(0.00 to 0.82)

0.31 
(0.02 to 1.49)

A G T  gene and essential 
hypertension

Retrospective 1.09 
(1.00 to 1.71)

1.83 
(1.06 to 3.60)

0.17 
(0.00 to 0.54)

0.56 
(0.24 to 1.37)

Prospective 1.08 
(1.00 to 1.74)

1.81 
(1.05 to 3.66)

0.16 
(0.00 to 0.54)

0.56 
(0.24 to 1.43)

MTHFR gene and 
coronary heart disease

Retrospective 1.04 
(1.00 to 1.11)

1.19 
(1.04 to 1.38)

0.23 
(0.01 to 0.46)

0.33 
(0.19 to 0.50)

Prospective 1.04 
(1.00 to 1.11)

1.19 
(1.04 to 1.38)

0.23 
(0.01 to 0.46)

0.33 
(0.19 to 0.50)

PON1 Q192R 
polymorphism and 
myocardial infarction

Retrospective 1.08 
(1.00 to 1.21)

1.15 
(1.02 to 1.34)

0.62 
(0.03 to 1.00)

0.11 
(0.01 to 0.33)

Prospective 1.08 
(1.00 to 1.21)

1.15 
(1.01 to 1.33)

0.63 
(0.03 to 1.00)

0.11 
(0.01 to 0.33)

2.7 Sensitivity analyses to the choice of vague prior distributions

When adopting a Bayesian approach to a hierarchical model that allows heterogeneity 

in ORgg? unless there is prior knowledge, we have the problem of specifying vague 

prior distributions for the between-study variance of logORcG (t) and for the parameter 

A. The sensitivity of the analysis to such choice is investigated for three of the examples 

considered, in particular for the meta-analyses on KIR6.2 gene and Type II diabetes 

(Hani), AGT gene and essential hypertension (Kato), and PON1 Q192R polymorphism 

and myocardial infarction (Wheeler). The three examples differ in the number of 

studies included, frequency of the risk allele, estimate of A, and estimate of the 

between-study variance. In the following models only analyses based on a bounded A 

are considered.

2.7.1 Prior distributions for x and A

Three prior distributions were considered for the between-study standard deviation of 

logORcG, t, and two for the parameter A. Figure 2.3 shows the densities for the
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different priors on both parameters, all presented on the standard deviation scale.

Prior distributions for r

The value of the random effects standard deviation rcan be very influential in 

assessing the uncertainty about the parameter of interest. Because of the limited 

information in the data, the prior distribution for r  becomes particularly important, and 

yet there is no generally accepted reference prior for this parameter (Spiegelhalter, 

Abrams, and Myles, 2004; see also § 1.5.1). A number of suggestions have been made, 

among which the most popular are the following three reference prior distributions.

The first is a gamma distribution for the precision parameter (the inverse of the 

variance),

4 t  ~ Gammai0.001,0.001)
T l

This corresponds to an inverse-gamma distribution on the between-study variance, and 

has a “spike” of probability mass close to zero after which it rapidly decreases. 

Although this is perhaps the most commonly used vague prior distribution for the 

heterogeneity parameter, it has been recently criticised and prior distributions on the 

standard deviation parameter have been recommended, as they are more directly 

interpretable (Gelman, 2004; Spiegelhalter et a l , 2004).

The second prior for the standard deviation,!; is a standardised half-normal distribution 

truncated at zero,

t  ~ Half -  Normal{0,1) t  >0

This prior distribution gives a low probability to values greater than 2.

Finally, the third prior distribution considered is a uniform distribution over the range 0 

to 2, which excludes the possibility that the standard deviation can be over 2, 

r  ~ Uniform^0,2)

It is interesting to think of what these distributions mean in terms of average values of r  

and what the different values of tt imply in terms of variability of the odds ratio. For 

example, a Half-Normal(0,l) for r  means a median r  of 0.76, which means that the
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ratio of the 97.5% odds ratio to the 2.5% odds ratio is about 20, i.e. exp(3.92r), and this 

roughly represents the range of odds ratios. In the same way, a Uniform(0,2) means a 

median t  of 1 and a ratio of 50 (Spiegelhalter, Abrams and Myles, 2004).

Figure 2.3 -  Density plots for the prior distributions considered for; a) t; b) X. In a) the densities 
for the three priors are all presented on the standard deviation scale; the gamma distribution 
has been re-scaled in order to show the shape of the distribution
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s  Uniform
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Prior distributions for A

For the bounded A, two beta prior distributions are considered over the range between 0 

and 1, and which have been used for modelling vague prior beliefs about proportions 

(Spiegelhalter, Abrams and Myles, 2004).

The first prior distribution is a beta distribution with both parameters equal to one,

A ~ Beta( 1,1)

This distribution is uniform between 0 and 1. However, when parameters have values 

very close to the extremes 0 or 1 and the data are sparse, this prior will tend to pull the 

results towards the middle of the distribution. For instance, for a near recessive model 

when the true value of A is very close to 0 the prior will tend to distort the results 

because it gives 90% prior probability to values greater than 0.1.

The second prior distribution is a beta distribution with both parameters equal to 0.5,

A ~ Beta(0.5,0.5)

which corresponds to a Jeffrey’s prior for a binomial likelihood. This distribution gives 

greater prior probability to values of A close to the extremes (Box and Tiao, 1973), i.e. 

to models that are close to recessive or dominant. However, if the model is actually 

close to co-dominant, i.e. A=0.5, and the data are sparse, this distribution may tend to 

inflate the uncertainty surrounding A.

2.7.2 Results o f  sensitivity analyses

The results for the 6 combinations of prior distributions for rand A for the meta

analyses of Hani, Kato and Wheeler are illustrated in Figure 2.4a, 2.4b, and 2.4c, 

respectively. Point estimates (medians) and 95% CrI of the four parameters of interest, 

ORog, ORgg, A and t, are plotted for each model.

The gamma distribution, with its spike close to zero, tends to produce lower estimates 

of rwith narrower credible intervals, which in turn tends to be reflected in the widths 

of the credible intervals for the odds ratios. This is particularly pronounced in Hani’s 

meta-analysis, where the data are particularly sparse because there are only 4 studies. 

Here the estimate of x is 53% and 51% lower with the gamma prior compared with the
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Figure 2.4 -  Plots of the results for ORGg, 0R Gg, X and x, obtained by applying models with 
different prior distributions to the three meta-analyses; a) Kato (n=7); b) Hani (n=4); c) 
Wheeler (n=19)
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uniform, and the credible interval is 33% and 38% narrower, iox Beta(l,\) and 

Beta(0.5,0.5) respectively.

The impact of the two different beta prior distributions for A varies according to the 

meta-analysis. As expected the Beta(0.5,0.5) tends to pull the point estimates for A 

towards the extremes, i.e. 0 and 1, and the Beta(l,l) tends to provide more precise 

estimates of A, when A is near 0.5, as in Wheeler.

2.8 Simulations to evaluate the effect of different vague prior 

distributions

2.8.1 Setting

Simulation work was undertaken in order to further investigate the sensitivity of the 

parameter estimates to the choice of vague prior distributions for rand A, in situations 

were the true values were known. Simulated datasets were created based on the three 

meta-analyses described in § 2.7, that is KIR6.2 gene and Type II diabetes, AGT gene
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and essential hypertension, and PON1 Q192R polymorphism and myocardial 

infarction. The total number of studies and study sizes were kept the same as in the 

original meta-analyses, while values for the model parameters were taken from the 

profile maximum likelihood approach previously used to analyse these data (Minelli, 

Thompson et al., 2005b -  included in Addenda). For each of the three meta-analyses, 

1,000 new datasets were randomly generated and each was analysed in WinBUGS with 

different prior distributions as described in § 2.7.1. It was not possible to check the 

convergence of all 18,000 analyses, so datasets that gave a large discrepancy in results 

when analysed with different prior distributions were selected, and for these 

convergence was checked by running longer chains (burn-in 50,000, chain length 

100,000) with different starting values. In all cases the results confirmed the original 

analyses.

The median of the corresponding MCMC simulations was taken as the point estimate 

for each of the four parameters ORog, ORgg, A and r. The medians from the analyses 

with the different priors were compared in terms of their mean, their Root Mean Square 

Error (RMSE), and the coverage of the 95% Crls, that is the percentage of intervals that 

included the true value. These three measures describe the average properties of the 

estimators across the 1,000 datasets.

2.8.2 Results

For the four parameters ORog, O Rgg, A and t, the mean, RMSE, and coverage of the 

95% Crls are summarised in Table 2.5. For the scenarios based on Wheeler’s and 

Kato’s meta-analyses, the number of datasets effectively analysed was in fact 995 and 

998 respectively, since a few simulated meta-analyses contained studies with 0 cells for 

both cases and controls in a genotype group, and the MCMC algorithm did not 

converge.

In all cases the half-normal and uniform prior distributions caused the heterogeneity, r, 

to be over-estimated on average, although only in the case of the Hani-based 

simulations was the RMSE also appreciably larger. The beta prior distributions for A 

caused the average estimate of A to move towards 0.5, the more so in the presence of
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Table 2.5 -  Results of the sensitivity analyses to different prior distributions for k  and x, for the simulated meta-analyses based on each of the 3 scenarios; a) 
Kato; b) Hani; c) Wheeler. RMSE = Root Mean Square Error

a)
P aram e te r ORGg O R gg Lam bda Tau

A ssu m e d  v a lue 1.077 1.770 0.130 0.460

S ta tis tic s Mean RMSE C overage Mean RMSE C overage Mean RMSE C overage Mean RMSE Coverage
Prior for A Prior for r

Beta(0.5,0.5)

Gamma 1.134 0.092 99.50 1.914 0.348 95.39 0.210 0.119 99.20 0.433 0.199 94.59

Half-normal 1.144 0.098 99.30 1.931 0.357 97.39 0.222 0.126 99.00 0.511 0.174 96.59

Uniform 1.152 0.104 99.60 1.945 0.366 98.10 0.234 0.134 98.50 0.564 0.210 94.89

Beta (1,1)

Gamma 1.186 0.118 98.09 1.979 0.386 93.88 0.273 0.148 97.39 0.454 0.209 94.48

Half-normal 1.195 0.126 97.89 1.995 0.397 96.58 0.283 0.157 96.48 0.536 0.186 95.48

Uniform 1.203 0.133 97.69 2.007 0.405 97.39 0.292 0.166 95.68 0.593 0.227 93.78
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b)

Parameter ORGg O R gg Lambda Tau

Assumed value 1.177 2.030 0.230 0.134

Statistics Mean RMSE C overage Mean RMSE C overage Mean RMSE Coverage Mean RMSE Coverage
Prior for A Prior for x

Beta (0.5,0.5)

Gamma 1.170 0.111 99.60 2.057 0.373 99.30 0.248 0.135 98.09 0.206 0.076 99.60

Half-normal 1.164 0.110 99.90 2.058 0.378 99.80 0.245 0.133 98.30 0.361 0.227 97.60

Uniform 1.161 0.110 99.90 2.062 0.382 99.90 0.244 0.133 98.20 0.436 0.302 96.19

Beta(1,1)

Gamma 1.208 0.097 99.60 2.064 0.373 99.20 0.293 0.117 98.90 0.206 0.076 99.50

Half-normal 1.203 0.096 99.90 2.067 0.380 99.80 0.291 0.116 98.70 0.363 0.229 97.10

Uniform 1.200 0.095 99.90 2.072 0.381 99.90 0.289 0.115 98.60 0.435 0.301 95.60

c)
Parameter ORGg O R gg Lambda Tau

Assumed value 1.091 1.150 0.620 0.088

Statistics
Mean RMSE C overage Mean RMSE C overage Mean RMSE C overage Mean RMSE C overage

Prior for A Prior for x

Beta(0.5,0.5)

Gamma 1.078 0.040 94.55 1.154 0.052 97.58 0.553 0.192 97.27 0.095 0.025 99.19

Half-normal 1.076 0.041 94.74 1.155 0.053 97.88 0.54 0.195 96.26 0.113 0.040 98.69

Uniform 1.076 0.041 94.43 1.154 0.053 97.87 0.539 0.196 96.46 0.114 0.040 98.79

Beta(1,1)

Gamma 1.078 0.037 94.75 1.16 0.054 97.17 0.532 0.153 97.98 0.097 0.026 99.19

Half-normal 1.077 0.037 95.86 1.16 0.054 97.98 0.521 0.158 97.47 0.116 0.041 98.59

Uniform 1.077 0.037 95.35 1.16 0.054 98.08 0.521 0.159 97.58 0.117 0.042 98.59
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sparse data. This behaviour is caused by the constraint that A must lie between 0 and 1, 

and the choice of symmetrical prior distributions such as the Beta(0.5,0.5) or the 

Beta( 1,1). Such a situation is illustrated by the Kato-based simulations where the true 

value of A is 0.13, so that under-estimates had to lie between 0 and 0.13 while over

estimates could lie between 0.13 and 1, and the average consequently tends to be too 

high. Under these circumstances the mean, or corresponding bias, is not an appropriate 

indicator of the quality of the estimator. A better indicator is the RMSE which favours the 

/?eta(0.5,0.5) prior distribution when A is close to 0 or 1, and the Beta( 1,1) when A is 

close to 0.5. On average, the odds ratios are relatively insensitive to the choice of prior 

distributions.

Good average performance is reassuring but may not be a reliable guide to the sensitivity 

to the choice of prior distributions for any particular single dataset. For this reason Bland- 

Altman style plots, originally described as a way to assess agreement between two 

methods of clinical measurement (Bland and Altman, 1986), were used in order to 

graphically evaluate the difference in results when comparing different prior distributions 

in all 1,000 datasets (Figure 2.5). The difference in estimates based on any two prior 

distributions is plotted against the average of the two estimates. Plots for the Kato-based 

simulations are shown in Figure 2.5 and include a line drawn at the mean difference. Two 

dotted lines are drawn at the mean difference plus and minus 1.96 times the standard 

deviation of the difference, in order to both quantify the difference that can be observed 

when using different prior distributions on the same dataset, and detect patterns in the 

difference which are related to the size of the parameter estimate. Plots for the other two 

scenarios showed similar results, as shown in Appendix 1, figures A and B.

Figure 2.5b shows the effects of the different prior distributions on the estimate of O R gg  

in individual datasets generated under the conditions of the Kato meta-analysis. The 

posterior estimates of O R gg with different prior distributions for r  are usually very close, 

mostly within ±0.1 for estimates that are rarely over 3, and the agreement tends to be 

better in datasets where the posterior estimates of the odds ratio is close to 1. However on 

rare occasions the difference can be as large as 0.3 when the average estimate is 3, a 10% 

difference. Unfortunately there seems to be no way of distinguishing in advance if the 

prior distributions will have a large impact on a particular simulated dataset. If a 10%
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Figure 2.5 -  Bland-Altman plots of the difference in the estimates for Kato meta-analysis obtained by 
models with different prior against their average value for; a) ORGg; b) ORGg; c) X; d) x.
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difference might be of importance, then sensitivity to the choice of prior distributions 

needs to be checked in any meta-analysis.
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The impact of the choice of the prior on A is shown in Figure 2.5c and once again the 

difference tends to be small but can, for particular datasets, be very large. For instance, 

datasets which produce estimates that average 0.6 can produce estimates that differ with 

prior by up to 0.2. Figure 2.5c also shows some of the systematic effects noted in the 

average results. As might be anticipated the impact of the choice of prior distribution is 

most marked in the estimate of % shown in Figure 2.5d. Not only are there strong 

systematic patterns, but the differences can also be large. For instance, when comparing a 

gamma prior distribution and a uniform prior distribution the estimates can vary by as 

much as 0.4 when the average estimate is 0.5, that is one estimate is 0.3 while the other is 

0.7.

2.9 Discussion

2.9.1 A “genetic model-free” approach

When synthesising the evidence available on the association between a genetic 

polymorphism and a disease the main issue is the size of any association, but an 

important additional question is the mode of action of the gene. In practice, the estimate 

of the size of the association is influenced by what is assumed about the underlying 

genetic model. A review of the literature on meta-analysis of genetic association studies 

reveals how currently used approaches fail to address this issue (Attia, Thakkinstian and 

D'Este, 2003). Investigators often base their meta-analyses on the assumption of a 

specific genetic model and ignore their uncertainty about the mode of inheritance. 

Moreover, since it may be that no a priori biological evidence is available to justify the 

choice, different common genetic models are sometimes tested and the different results 

reported. Apart from the problem of multiple testing, this leaves the reader with a set of 

estimates and significance tests to interpret, all based on different assumptions. A number 

of investigators compare allele frequencies between cases and controls; however, this 

method yields a per-allele effect that is equivalent to assuming a co-dominant model and 

Hardy-Weinberg equilibrium (see Chapter 4). Additionally, the issue of whether the 

genetic model is common across populations does not seem to have been addressed.

The results for the five meta-analyses examples show that adopting the wrong genetic 

model can lead to erroneous pooled estimates with deceptively high precision. The only 

meta-analytical approach currently in use which does not assume a common known
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underlying genetic model is analysis by separate pairwise comparisons, i.e. independent 

meta-analyses comparing genotype groups two at a time. This method ignores the 

correlation between the two estimated odds ratios induced by the common baseline group 

and thus is inefficient, as the estimates cannot “borrow strength” from one another as 

they would do in a multivariate meta-analysis (van Houwelingen, Arends and Stijnen, 

2002; Nam, Mengersen and Garthwaite, 2003). The genetic model-free approach is likely 

to be particularly beneficial compared to pairwise comparisons when either of the alleles 

is rare. Moreover, separate pairwise comparisons run into the problem of multiple testing, 

which becomes especially important when a polymorphism with more than two alleles is 

considered.

As Table 2.1 illustrates, published meta-analysis of genetic association studies have used 

a variety of methods for presenting their results. The genetic model-free approach offers a 

single unified method that could have been used in all of these examples giving a 

consistent presentation and avoiding the pitfall of overly strong assumptions about the 

genetic model or inefficient estimates.

The genetic model-free approach provides an integrated way of synthesising the evidence 

on genetic associations, which yields not only the magnitude of the genetic effect but also 

an indication of the operating genetic model based on the available data. The underlying 

genetic model is not constrained to correspond to one of the classical modes of 

inheritance (recessive, co-dominant, dominant), in recognition of the fact that the gene's 

mode of action in complex diseases might differ from that found in Mendelian traits, 

where the association between genotype and disease tend to be of a deterministic nature 

and hence the mode of inheritance is relatively clearly apparent. For example, a value of 

0.23 for A, as in the MTHFR meta-analysis, might be interpreted in two ways. The first 

explanation might be that the polymorphism is recessive in some studies and co-dominant 

in others, so that the average result is between the two. The second explanation could be 

that in complex diseases, the genotype is only one of many factors acting in a complex 

causal cascade leading to the disease. Although, at the molecular level, the polymorphism 

of interest might act in a clearly Mendelian manner on an intermediate phenotype, that 

Mendelian “signal” may be “diluted” or “distorted” when measured at the level of the 

final step in the cascade. Hence A may be a more flexible and appropriate way to discuss
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genetic models in complex disease. The genetic model-free approach has been used in 

practice by Thakkinstian and colleagues (2005 -  included in Addenda) in a published 

meta-analysis of the association between |32-Adrenoceptor polymorphism and asthma, 

where it provided insights on the underlying genetic model.

In the meta-analysis of genetic association studies there are two important types of 

heterogeneity that need to be addressed: heterogeneity in the genetic effect and 

heterogeneity in the genetic model. There are a number of reasons why we might see 

heterogeneity in the genetic effect, including differences in study methods and 

differences in the underlying genetic risk associated with gene-gene or gene-environment 

interactions. Heterogeneity of the genetic effect might also arise if the polymorphism 

under study does not act directly on the disease risk, i.e. it is not a “functional” or 

“causal” polymorphism but is simply a marker, which tends to be inherited together with 

the causal polymorphism (linkage disequilibrium). Populations may have different 

patterns of linkage disequilibrium, which lead to differences in the marker association 

with disease. It is important to note that causes of heterogeneity in the genetic effect will 

not necessarily cause heterogeneity in the genetic model. In fact, in order to act on the 

genetic model, interactions need to influence the disease risk in heterozygotes to a 

different extent to the risk in homozygotes.

The absence of heterogeneity in the genetic model is an important assumption of the 

genetic model-free analysis and, although this assumption is likely to hold in most cases, 

it still needs to be assessed. For example, the effect of genotype on allergy to pollens 

appears to follow different modes of inheritance for different ethnic groups and different 

forms of allergy (Sasazuki, 1983; Marsh and Huang, 1991). Although these are studies 

based on segregation analyses, which are relatively weak in the study of complex 

diseases (Thomas, 2004), they do raise the possibility that the mode of action may vary 

from study to study, perhaps due to complex gene-environment interactions which have 

different impact on the disease risk in heterozygotes compared to homozygotes for the 

polymorphism. Thus, the assumption of a common genetic model should be checked 

before applying the genetic model-free approach, for instance by using the graphs 

presented in figures 2.1 and 2.2. Should this assumption be in doubt, then the best 

approach would be to carry out joint pairwise comparisons using a multivariate meta
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analysis, where the correlations between the estimated odds ratios for the different 

genotype groups are taken into account. In general the random effects genetic model-free 

approach is easier to fit than the corresponding pairwise bivariate model because it 

contains two fewer parameters. Only in very large meta-analyses will it be possible to 

estimate the correlation in the heterogeneities required for the pairwise model. So, even 

when the assumptions of the genetic model-free analysis are not met exactly, such 

analysis may still be the best way of summarising the data and obtaining confidence 

intervals that are not falsely optimistic.

2.9.2 Bayesian implementation of the genetic model-free approach

The genetic model-free approach can be implemented using a maximum likelihood 

analysis, and indeed this route has been followed and did provide results very similar to 

those presented in § 2.5.2 (Minelli and Thompson, et al., 2005b -  included in Addenda). 

However, the Bayesian framework might represent a desirable alternative for both 

philosophical and practical advantages. From a philosophical point of view, Bayesian 

analysis allows explicit inclusion of prior information on the genetic effect and on the 

genetic mode of inheritance. Although this possibility has not been explored in this 

thesis, the models presented could incorporate prior knowledge when it is available. Such 

knowledge might be based on evidence from studies not included in the meta-analysis or 

on expert opinion. While in the first instance the inclusion of prior information would 

often be straightforward, in the second case it can be difficult to use expert opinion to 

derive appropriate probability distributions (Gokhale and Press, 1982; Garthwaite and 

Dickey, 1988). From a practical point of view, the flexibility offered by Bayesian models 

estimated by MCMC algorithms makes it relatively straightforward to implement 

complex hierarchical models. The combination of increased computing power together 

with the availability of free software, particularly WinBUGS, to implement MCMC 

models has greatly contributed to the spread in the use of Bayesian methods (§ 1.5.2). 

However, the increased flexibility leads to a greater requirement to consider the issue of 

model choice (Gilks, Richardson and Spiegelhalter, 1996; Spiegelhalter, Abrams and 

Myles, 2004).

In situations where external information is not available, prior distributions still have to 

be specified for all parameters. Although such prior distributions may be intended to be
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non-informative, this is in fact an impossible aim as Figure 2.3 illustrates. Rather, we 

must hope that the prior distributions will not be influential, in the sense that the use of 

alternative vague prior distributions will not change the conclusions. This may be an 

impossible aim if the data are sparse, especially when specifying prior distributions for 

scale parameters, such as the between-study heterogeneity in a random effects meta

analysis. If the results are sensitive to the choice of supposedly vague prior distributions, 

then we have no option but to consider that any prior distribution is informative and so 

must be chosen with care and subject to a sensitivity analysis (Spiegelhalter, Abrams and 

Myles, 2004). The problem of statistical inference in the presence of sparse data is not 

limited to the Bayesian approach, and an analogous non-Bayesian analysis would find a 

very flat likelihood and would produce wide confidence intervals. In such circumstances, 

the ideal solution might be to incorporate subjective prior information or other external 

evidence in the Bayesian analysis (Berger, 1985).

The hierarchical model for the meta-analysis of genetic association studies involving the 

ratio, A, requires many large studies if the choice of prior distribution for A is not to have 

an undue influence on the final estimates. In much the same way the prior distribution for 

the between-study variation, % can also influence the results. Recent research has 

suggested that the gamma prior distribution in not a good choice for the between-study 

precision in a hierarchical model and that the half-normal or uniform may be better 

(Gelman, 2004). The findings presented in this chapter do not support such a conclusion 

in the situation considered, where in general the gamma distribution performs well. Of 

course, part of the problem is to do with the scaling of the prior distributions. Had we 

taken a half-normal with a smaller standard deviation, or a uniform distribution over a 

shorter range, then the corresponding estimates would have been more similar to those 

obtained using a gamma prior distribution. This very fact emphasises the impossibility of 

defining a general vague prior distribution when data are sparse, and the importance of 

careful specification even when using vague prior distributions. An important issue when 

specifying a vague prior distribution is the need to take into account what values might be 

considered plausible in a particular situation (Spiegelhalter, Abrams and Myles, 2004).

The analysis presented illustrates the importance of an investigation of sensitivity to the 

choice of prior distributions in any Bayesian analysis in which the prior distributions are
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not based on external knowledge. The sensitivity analysis will depend on the range of 

vague prior distributions that are considered reasonable in any given situation and the 

size of the change in the final estimate or its credible interval that is of practical 

importance. Thus, it will not be possible to find a single vague prior distribution that is 

always the least informative, so in complex models the desire to use vague prior 

distributions does not free the researchers from the need to tailor their prior distributions 

to their particular problem.

Although not investigated in this thesis, informative prior distributions, based on expert 

opinion or external evidence, could be used for the different model parameters. In a more 

general meta-analysis context, empirical data-based prior distributions have been 

advocated for the heterogeneity term, % and might be an attractive option, especially 

when the number of studies included in the meta-analysis is small (Higgins and 

Whitehead, 1996). For the parameter A, there might well be data from studies evaluating 

the effect of the same polymorphism on similar disease pathways. The increase in the 

precision of the estimated A due to the use of an informative prior distribution would in 

turn increase the precision in the estimates of the odds ratios of interest, O R gg and ORog, 

and so might be very beneficial.

In the analyses presented in this chapter, the prospective and retrospective likelihoods 

gave very similar results for all examples considered. It may well be that in practice the 

prospective likelihood could be used when synthesising evidence from case-control- 

studies. However, the approximate equivalence of the two likelihoods for a particular 

combination of dataset and model can only be established by using both, which rather 

removes the benefits of the simpler, but theoretically inappropriate, prospective model. 

The retrospective likelihood has the further advantage that it can easily incorporate the 

assumption of Hardy-Weinberg equilibrium in the controls (Thompson et al., 2004; 

Cheng and Chen, 2005). Given these considerations it will often be more appropriate to 

use the retrospective likelihood unless there is considerable evidence of approximate 

equivalence from similar analyses.
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2.9.3 Conclusions

In conclusion, the meta-analytical approach proposed is based on a re-parameterisation of 

the classical representation of genetic association studies, where the new parameters are 

biologically meaningful and informative. The approach makes maximum use of the 

information available by quantifying the magnitude of the genetic effect and estimating 

the genetic mode of action at the same time. The genetic model is estimated on the basis 

of the data rather than assumed, and this is important in all cases where no a priori 

knowledge about the underlying genetic model is available.
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3 SUBGROUP ANALYSIS

3.1 Chapter overview

This chapter addresses the issue of how to handle subgroup analysis in the meta

analysis of genetic association studies. In § 3.2 an introduction to the general problem 

of subgroup analysis is presented, followed by an overview of those issues specific to 

meta-analysis of genetic association studies. Section 3.3 reviews and discusses the 

different approaches adopted for dealing with subgroups in 37 published meta-analyses 

of genetic association studies. In § 3.4 an alternative approach is proposed, based on the 

concept that a meta-analysis of genetic association studies might benefit from 

borrowing information on secondary parameters across subgroups, for example by 

assuming that such parameters are common across subgroups even if the size of the 

genetic effect differs. In particular, the impact of assuming a common genetic model 

and common heterogeneity are considered, and sensitivity analyses performed to 

investigate whether the benefit remains when the secondary parameters are assumed to 

be similar, but not identical. The method of analysis and method of sensitivity analysis 

are demonstrated in § 3.5 by re-analysing one of the meta-analyses reviewed, where the 

subgroups were defined by ethnicity. Three further meta-analyses, in which the 

subgroups were either defined by related disease outcomes or by gender, are discussed 

in detail in § 3.6, in order to illustrate the assumptions that might be made about shared 

parameters. Finally, the advantages and limitations of the approach proposed, compared 

to the commonly used methods for dealing with related subgroups, are discussed in § 

3.7.

3.2 Introduction

3.2.1 Subgroup analysis in general meta-analysis literature

In meta-analysis, two types of subgroup analysis are encountered, which differ in their 

aims (Oxman and Guyatt, 1992; Sutton et al., 2000). In the first type, subgroups are 

usually specified a priori with the purpose of estimating the magnitude of the effect of 

interest (e.g. treatment effect) in different types of patients; this reflects the belief that,
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for instance, the underlying treatment effect may depend on certain baseline 

characteristics of the patients. In the second type, the subgroups are not interesting per 

se, but they are defined after the data have been combined, in order to investigate 

whether an observed variability between study results might be explained by specific 

characteristics of the studies. Although when performing a meta-analysis some 

variation, or heterogeneity, in study results might be expected by chance, often the 

variation observed is in excess of that, which might be explained by a number of 

reasons. Such heterogeneity may reflect not only differences in the characteristics of 

the patients included in each study, but also differences in the degree of the exposure 

(e.g. dose of a drug), length of follow-up, study design and quality, and even 

publication bias, whenever these factors are associated with the outcome of interest 

(Thompson, 1994). Although, to some extent, this variability can be accounted for by 

using a random effects meta-analysis model (§ 1.4), possible sources for the observed 

heterogeneity have to be investigated. Subgroup analysis is the approach most 

commonly used for this purpose (Assmann et a l , 2000), but other methods are 

available. While subgroup analysis consists of performing separate analyses of the 

effect of interest within each subgroup and then comparing estimates and p-values 

across subgroups, an alternative approach is to use a statistical test of interaction 

between effect of interest and subgroup (Oxman and Guyatt, 1992). Another technique 

closely related to subgroup analysis is meta-regression, where a specific characteristic 

of the study population or study methods that might explain heterogeneity in study 

results is modelled as a covariate in a regression-type analysis (Sutton et a l , 2000).

From a frequentist perspective, subgroup analysis poses the problem of multiple 

testing, which may result in false positive findings in one or more subgroups, and 

although adjustments such as Bonferroni correction have been proposed, their use is 

debatable. In fact, statistical adjustment modifies the p-value to account for the multiple 

tests performed, and thus control the probability of type I error, but, by doing so, it 

increases the probability of failing to detect a true effect, i.e. type II error (Perneger, 

1998). On the other hand, the Bayesian approach to subgroup analysis is not concerned 

with the issue of multiplicity, since its philosophy repudiates the very idea of 

hypothesis testing and thus type I error has no relevance (Spiegelhalter, Abrams, and 

Myles, 2004). Moreover, the Bayesian approach allows to incorporate a priori beliefs
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regarding how different the treatment effect in any specific subgroup can be from the 

overall treatment effect, whenever such prior knowledge is available (Donner, 1982; 

Pocock and Hughes, 1990; Dixon and Simon, 1991; Dixon and Simon, 1992; 

Spiegelhalter, Abrams, and Myles, 2004). The inclusion of such a priori structure 

causes shrinkage of both the point estimate of treatment effect and its credible interval. 

This may be very useful in all cases where the paucity of data within subgroups causes 

serious problems of estimation, which can lead to over interpretation of extreme results.

3.2.2 Subgroup analysis in meta-analysis of genetic association studies

Studies of the effect of genetic polymorphisms on disease have often showed a 

disappointing lack of reproducibility (Gambaro, Anglani and D'Angelo, 2000; Cardon 

and Bell, 2001; Colhoun, McKeigue and Davey Smith, 2003). In 2001, Ioannidis and 

colleagues reviewed 26 published meta-analyses of gene-disease associations, with the 

primary aim of evaluating how the degree of heterogeneity in study results may help 

explaining the problem of lack of reproducibility of genetic association studies 

(Ioannidis et a l, 2001). Using a cut-off significance level of 0.1, they found statistically 

significant heterogeneity in 39% of the comparisons, a figure that increased to 47% 

when they updated their dataset in 2003 to include a total of 55 meta-analysis papers 

(Ioannidis et al, 2003). It is thus not surprising that meta-analyses of genetic 

association studies are often presented as organised into subgroups. In fact, although 

sometimes the interest of the investigators lie in specific subgroups of patients defined 

a priori, often subgroup analysis is performed in an attempt to explain the observed 

heterogeneity. Subgroups might be defined by studies on populations differing for 

ethnicity or origin (e.g. European or Asian), studies on men or women, or studies of the 

same gene on different disease outcomes. In such a subgroup analysis it is natural to 

ask whether it is possible to use information from one subgroup to improve the 

estimation in another. Subgroups are usually introduced because there appears to be 

systematic variation in the main outcome measure, i.e. the estimate of the genetic 

effect, but meta-analytic models contain other parameters and it may be that the 

precision of the estimate of the main outcome can be improved by learning about the 

secondary parameters using information from the other subgroups.

When modelling genetic associations there are several parameters that might or might
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not vary across subgroups of studies. These include the magnitude of the genetic effect, 

the mode of inheritance (genetic model), the amount of heterogeneity in the size of the 

genetic effect and the allele frequency. Between-subgroup differences in the size of the 

genetic effect do not necessarily imply corresponding differences in the other 

parameters. Differing effect sizes in the subgroups may be the result of subject-level 

gene-gene or gene-environment interactions when the interacting factor has a different 

prevalence in each of the subgroups. However, for such interactions to be able to 

influence the underlying mode of inheritance, one has to imagine that the interaction 

influences the effect in the heterozygotes in a different way to the mutant homozygotes 

and this is much less likely. Consequently, one might want to assume that the 

subgroups share the same genetic model even though the sizes of the effects differ. 

Adding this assumption is potentially beneficial especially for a subgroup that contains 

few studies.

Another possible assumption is that the heterogeneity or variance of the effect size is 

the same in each subgroup. This could happen when a major gene-environment 

interaction modifies the genetic effect of a polymorphism, so necessitating a subgroup 

analysis, but when other less dramatic sources of variation are similarly distributed 

across subgroups. Conversely, allele frequency is a secondary parameter that is very 

likely to vary between studies, but even here, allele frequency might be modelled by a 

random effect with mean and/or variance that is common across subgroups.

3.3 Review of the literature

In order to evaluate what are the approaches commonly used for subgroup analysis in 

the evidence synthesis of genetic association studies, 37 published meta-analyses 

reported in a review by Attia and colleagues were re-evaluated (Attia, Thakkinstian and 

D'Este, 2003; see also § 6.2). For each meta-analysis information was extracted on; the 

gene-disease association under study, the number of studies, the presence of studies on 

ethnic subgroups and how they were dealt with, the presence of studies on different 

disease outcomes and how they were dealt with, and finally whether any other 

subgroups were considered. The information on how the investigators handled 

subgroups in each of the 37 meta-analyses is summarised in Table 3.1, and full 

references are reported in Appendix 2. The table shows how subgroup analysis tends to
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be common in meta-analyses of genetic association studies and how the approach to 

handling subgroups is very diverse. In most instances, subgroups seemed to be defined 

after the data were combined with the aim of explaining heterogeneity of study results, 

rather than being of interest in themselves and thus specified a priori.

Frequently in the meta-analyses reviewed the definition of subgroups was based on the 

ethnicity and/or origin of the study population. In thirteen studies the meta-analysis was 

focused on a specific population, sometimes explicitly excluding studies on other ethnic 

groups on the grounds of maintaining genetic homogeneity (n=2), while one study 

performed separate meta-analyses on different ethnic subgroups (Furlong, 1999 b). 

Somewhat surprisingly, two of these meta-analyses gave the reason for excluding a 

study (Furlong, 1998), or for performing separate meta-analyses (Furlong, 1999 b), as 

the difference in allele frequency across ethnic groups. In 8 meta-analyses all ethnic 

groups were combined, and in three of them the decision was based on the absence of 

heterogeneity. In another 8 studies a combined meta-analysis across ethnic groups was 

reported together with separate meta-analyses for each ethnic group (n=6) or with a test 

for interaction between gene effect and ethnicity (n=2). In the remaining 7 meta

analyses no information on the presence of different ethnicities was reported.

Thirty one percent of the meta-analyses (n=ll) considered more than one disease 

outcome, with the number of different outcomes ranging from 2 to 15. Apart from one 

meta-analysis in which the outcomes were lung cancer and Parkinson’s disease, in all 

other cases the disease outcomes were more or less related to each other. The 

subgroups were represented by different forms of the same disease defined by severity 

and/or histological features (e.g. different types of lung cancer), or by the effect of the 

same disease on different organs (e.g. diabetic nephropathy and retinopathy). Again, 

the subgroups were analysed in different ways; separately (n=4), together (n=l), or 

both together and separately (n=5).

Table 3.1 also shows how other potential sources of inconsistency of study results were 

dealt with in the meta-analyses; these include male/female differences, possible gene- 

environment interactions (e.g., smoking), and proxy measures of study quality (e.g., 

small versus large studies). In most cases the different subgroups of studies were
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Table 3.1 - Different approaches to handle subgroups or groups of studies in the 37 m eta-analyses reviewed

Author,
year

A ssociation
evaluated

Different e thn ic  g roups Different related ou tcom es O ther su b g ro u p s

Ethnicities Method O utcom es Method G roups Method
C arlqu ist,
1991

HLA c la s s  II polym . & 
c a rd io m y o p a th y

W h ite s / / / / /

J e n k in s ,
1 992

HLA II polym . & H a sh im o to ’s  
thyro id itis  (3 polym .)

C a u c a s ia n s / / / / /

P a to , 1993 D R D 2 g e n e  & alco h o lism N ot rep o r ted / / / / I

O rd o v a s ,
199 5

APOE  g e n e  & re s p o n s e  to  
p ra v a s ta tin N ot rep o r ted / / / M a le /F e m a le

T o g e th e r  (sim ilar 
re s u lts  fo r  th e  tw o)

M cW illiam s,
1995

GSTM 1 g e n e  & iung c a n c e r 3  e th n ic  g ro u p s
T o g e th e r  + s e p a r a te  

a n a ly s e s
D ifferent fo rm s  
o f lung  c a n c e r

T o g e th e r  + s e p a r a te  
a n a ly s e s

P h e n o ty p in g /
g e n o ty p in g

T o g e th e r  + s e p a r a te  
a n a ly s e s

S h aik h ,
1996

D R D 3 S er-9 -G ly  polym . & 
sc h iz o p h re n ia

C a u c a s ia n s  a n d  
A s ia n s

T o g e th e r  + e thnicity  
t e s te d  a s  in te rac tio n / /

D ifferent
c e n tr e s

T o g e th e r  + c e n tre  
te s te d  a s  in te rac tio n

P ra sh e r ,
1 9 9 7

A P O E  g e n e  & A lzh e im er’s  
d i s e a s e  in D ow n sy n d ro m e N ot rep o r ted / / / / /

Kunz, 1 997
AG T  g e n e  & e s se n tia l  
h y p e rte n s io n

W h ite s / / /
Fam ily  h isto ry  
a n d  S ev e rity

T o g e th e r  + s e p a r a te  
a n a ly s e s

W e sto n ,
199 7

H -ras-1  g e n e  & b rea s t/lu n g  
c a n c e r s 3  e th n ic  g ro u p s

T o g e th e r  + s e p a r a te  
a n a ly s e s

Lung  & b r e a s t  
c a n c e r s

S e p a ra te  a n a ly s e s
S m o k e rs /n o n  

- sm o k e rs  
( lung  c a n c e r )

T o g e th e r  + s e p a r a te  
a n a ly s e s

S ta e s s e n ,
1 9 9 7

ACE  g e n e  & c a rd io 
v a sc u la r/re n a l  d i s e a s e 3  e th n ic  g ro u p s

T o g e th e r  + sen sitiv ity  
a n a ly s e s

15  o u tc o m e s  
c o n s id e re d

S e p a ra te  a n a ly s e s
M any

s u b g ro u p s
T o g e th e r  + s e p a r a te  

a n a ly s e s
C h ris te n se n ,
199 7 C Y P 2 D 6  g e n e  & lung c a n c e r M ixed e th n ic  

g ro u p s T o g e th e r / /
S m a ll/la rg e  
s a m p le  s iz e

T o g e th e r  + only 
la rg e  s tu d ie s

H o k an so n ,
199 7

LPL g e n e  & c o ro n a ry  d i s e a s e  
(5 polym .) N ot rep o r ted /

Ml/ c o ro n a ry  
s c le ro s is /  c a ro tid  
s c le ro s is

T o g e th e r / /

lacoviello ,
199 8

PAI-1 p ro m o te r  g e n e  & 
m y o ca rd ia l infarction Not rep o r ted / / /

3  s u b g ro u p s  
(by  d e s ig n  & 

b a s e lin e  risk)

T o g e th e r  + s e p a r a te  
a n a ly s e s

S h a rm a ,
1 998

ACE  g e n e  & isc h a e m ic  s tro k e W h ite s
1 J a p a n e s e  s tu d y  

e x c lu d e d  (to m a in ta in  
h o m o g en e ity )

/ / / /

A rranz, 1 9 9 8
5-H T a r e c e p to r  g e n e  & 
c lo z a p in e  r e s p o n s e  (2 polym .) N ot rep o r ted / / / / /

Furlong,
1 998

S ero to n in  tra n s p o r te r  g e n e  & 
affec tiv e  d iso rd e rs W h ite s

J a p a n e s e  s tu d y  
ex c lu d e d  (d ifferent a lle le  

f re q u e n c ie s )

B ip o lar/u n ip o lar 
a ffec tiv e  d is .

T o g e th e r  + s e p a r a te  
a n a ly s e s / /

Allison, 199 8
A D R B 3 T rp64A rg polym . & 
b o d y  m a s s  in d ex

>3 e th n ic  g ro u p s
T o g e th e r  +  e thn icity  
te s te d  a s  in te rac tio n / /

D iabe tic
s ta tu s

T o g e th e r  + te s te d  a s  
in te rac tio n

F u jisaw a, 
1 9 9 8  (a)

A D R B 3 T rp64A rg  polym . & 
b o d y  m a s s  in d ex

W h ite s  a n d  
J a p a n e s e

T o g e th e r  (n o  lack  of 
h o m o g en e ity ) / /

M any
s u b g ro u p s

T o g e th e r  (no  lack  of 
h o m o g en e ity )

F u jisaw a, 
1 9 9 8  (b)

ACE  I/D polym . & d iab e tic  
n e p h ro p a th y /re tin o p a th y

W h ite s  a n d  
J a p a n e s e

T o g e th e r  (n o  lack  of 
h o m o g en e ity )

N e p h ro p a th y /
re tin o p a th y

S e p a ra te  a n a ly s e s
IDDM/NIDDM

d ia b e te s
T o g e th e r  (no  lack  of 

h o m o g en e ity )
W illiam s,
199 8

D R D 3 Bail po lym . & 
s c h iz o p h re n ia 3  e th n ic  g ro u p s T o g e th e r / / / /

D u b ertre t,
199 8

D R D 3 Bal\ polym . & 
s c h iz o p h re n ia

>3 e th n ic  g ro u p s
T o g e th e r  + s e p a r a te  

a n a ly s e s

H ani, 1 9 9 8 KIR6.2 g e n e  a n d  
T y p e  II d ia b e te s C a u c a s ia n s / / / / /

R o stam i-
H o d jeg an ,
199 8

C Y P 2 D 6  g e n e  & lung 
c a n c e r /P a rk in so n ’s  d i s e a s e M ixed

T o g e th e r  + s e p a r a te  
a n a ly s e s

lung  c a n c e r /  
P a rk in s o n ’s  

d i s e a s e
S e p a ra te  a n a ly s e s

M any
s u b g ro u p s

T o g e th e r  + s e p a r a te  
a n a ly s e s

F urlong, 
1 9 9 9  (a)

T y ro s in e  h y d ro x y lase  g e n e  & 
affec tiv e  d iso rd e rs  (2 polym .) W h ite s 1 J a p a n e s e  e x c lu d e d  

(u n c le a r  a lle le  specific .)
B ipo lar/un ipo lar 

a ffec tive  d is.
T o g e th e r  + s e p a r a te  

a n a ly s e s / /
H oulston ,
199 9 GSTM 1 g e n e  & lung c a n c e r >3 e th n ic  g ro u p s T o g e th e r / / P h e n o ty p in g /

q e n o ty p in g
T o g e th e r  + s e p a r a te  

fo r ty p in q  m e th o d

B reen , 199 9 D R D 2 -141 C D /I  polym . & 
s c h iz o p h re n ia C a u c a s ia n s / / / / /

J o o s t,  199 9 C Y P 2 D 6  g e n e  & P a rk in so n ’s  
d i s e a s e

E u ro p e a n s /  
E u ro p .-d e riv ed  
N orth A m eric.

/ / / / /

S ta e s s e n ,
1999

AG T  g e n e  & ca rd io 
v a s c u la r/re n a l  d i s e a s e 3 e th n ic  g ro u p s
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S e p a ra te  a n a ly s e s  
(d ifferent a lle le  freg .) / / M a le /F e m a le

T o g e th e r  + s e p a r a te  
a n a ly s e s

J u o , 1999 APO A I p ro m o te r  g e n e  & 
ap o lip o p ro te in  A-l level W h ite s

1 J a p a n e s e  s tu d y  
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T o g e th e r  + only 
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liver d i s e a s e W h ite s /

A lcoholic liver 
d ise a se /c irrh o s is

T o g e th e r  (sim ilar 
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analysed separately in sensitivity analyses, while the main analyses were carried out on 

all studies.

3.4 The proposed approach

The method proposed for combining information on the mode of inheritance across 

subgroups is a development of the genetic model-free approach presented in § 2.4. This 

approach, whose formulation allows the data to estimate the genetic model rather than 

requiring it to be assumed a priori, parameterises the meta-analysis in terms of two 

parameters; the O R gg, which captures the magnitude of the genetic effect, and A, the ratio 

of logORGg to logORoG- The genetic model-free approach is summarised below.

The two log odds ratios from each study are modelled in a bivariate meta-analysis in 

which logORGg is derived as the product of logORoG and A. As almost all genetic 

association studies have a case-control design, the meta-analytical model is based on a 

retrospective likelihood. The model is described in detail in § 2.6.1. The logORcg and 

logORoG are denoted by 62 and 63, and, over the studies i, the study-specific log odds 

ratios, 631, are modelled as random effects in order to allow for heterogeneity in the 

genetic effect, so each 631 will vary about a mean, 0, with variance, t2:

63i ~N(0,  t 2)

For each study, the study-specific log odds ratios &2i are equal to the product of <5$; and A, 

and A is modelled as a fixed effect, that is, the mode of inheritance is assumed constant 

across studies. The distribution of &u is derived as the product of 631 and A so that:

d2i ~A (A 0,A V )

Lambda is modelled as bounded between 0 and 1, and so the rare situation of an over

dominant genetic model, in which A can be higher than 1 or lower than 0, is not 

considered in the current examples. In all models vague prior distributions are used for 

parameters 6, rand A;

6 ~ Normal(0,10000), r  ~ Uniform^0,2), A ~ Beta(0.5,0.5).

In order to combine information across subgroups, we allow the genetic model, described 

by the parameter A, and the heterogeneity for the logORoG, described by the parameter r,
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to be the same in each subgroup. This reflects the situation where the researcher thinks 

that the different subgroups might have different genetic effect sizes, but is willing to 

assume that the subgroups are similar enough to share the same genetic model and/or the 

same within subgroup heterogeneity.

To test the sensitivity to the assumptions of common X and common r, we allow a 

difference between the subgroup specific Xs and the zs. This models the situation when 

the researcher is willing to assume that the different subgroups might have a similar but 

not necessarily identical genetic model and/or within subgroup heterogeneity.

Since in our example we assume that X is bounded between 0 and 1, for the sensitivity 

analyses on X we define e as equal to the difference in the logits of the Xs. That is

sj = logit(A7) -  logit(Ai) y=2,3,....

where j  defines the subgroups. For the sensitivity analyses on t we define (j) as relating to 

the difference in the log of the zs. So that

(j)j = log(Tj) -  log(zi) j=2,3,....

The £j and $ are treated as having a prior distribution centred on 0 and with the same,
9  9fixed known variance re and ẑ  , respectively

Sj ~ N(0, t s 2 )  and ^  ~ N(0, r , 2)

The sensitivity analysis investigates the effect of increasing the two variances to reflect 

the situation in which the investigator is increasingly less certain that the genetic model 

and/or the within subgroup heterogeneity are common.

It is interesting to note that the models proposed for the sensitivity analyses for X and s  

require the arbitrary choice of a baseline subgroup, and the results of such analyses have 

to be interpreted considering this. Although the choice of a baseline group could be 

avoided by simply allowing the logits of X? or the log zs to be a random effect across

subgroups, this approach is philosophically different, since it implies that the differences

across studies for the genetic model or for the heterogeneity of the genetic effect come 

from a higher level distribution. While this approach would be preferable if we thought of 

the ethnic groups considered in the meta-analysis as representative of a larger population 

of many possible ethnicities, in our example it might not reflect the authors’ point of
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view, which seems to consider the three ethnic groups as the ones interesting in their own 

right.

Results of all meta-analysis models were obtained in WinBUGS using a burn-in of 

10,000 and a chain length of 50,000. Convergence was assessed through visual inspection 

of trace plots by performing sensitivity analyses with respect to initial values, length of 

burn-in and length of sample (§ 1.5.2).

3.5 Illustration

3.5.1 Subgroups defined by ethnicity

Sethi and colleagues (Sethi, Nordestgaard and Tybjaerg-Hansen, 2003) reported a meta

analysis of the association between the genetic variant Thr235 of the angiotensinogen 

(AGT) gene and essential hypertension. In all, 37 studies were considered and the 

analyses were performed separately on subgroups of studies in three different ethnic 

populations; Whites (n=22 studies), Asians (n=12) and Blacks (n=6). The group of 

Whites included studies on European (n=14), North Americans (n=4), Australians (n=2), 

South Americans (n=l), and one study considered both Europeans and North Americans. 

The group of Asians included studies on Japanese (n=8), Chinese (n=3) and Middle 

Easterns (n=l), while the group of Blacks included studies on Caribbeans (n=2), North 

Americans (n=2), Africans (n=l) and Europeans (n=l).

The results reported for the two odds ratios O R gg and ORog were; Whites, 1.29 (95% 

Confidence Interval: 1.10 tol.50) and 1.08 (1.01 to 1.15); Asians, 1.60 (1.19 to 2.15) and 

1.29 (0.96 to 1.74); Blacks, 1.16 (0.58 to 2.35) and 0.94 (0.45 to 1.96). Average allele 

frequencies of Thr235 (G) were 0.43, 0.76, and 0.83 in the three ethnic groups. Figure 3.1 

shows the forest plots and pooled estimates for O R gg and ORog, separately for each of 

the three ethnic groups. This meta-analysis was re-analysed to illustrate the advantages of 

sharing information across subgroups. The results of the method proposed for handling 

related subgroups as compared to the most commonly used approach are reported in § 

3.5.2, while the results of the sensitivity analyses performed to investigate whether the 

benefit remains when the secondary parameters are assumed to be similar rather than 

identical are shown in § 3.5.3.
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3.5.2 Main results

The first row of Table 3.2 shows the results of separate random effects meta-analyses on 

O R gg and ORGg within each ethnic group. This approach, which is described here as the 

current standard, does not make any assumptions about the genetic model and does not 

seek to share any information across subgroups. By contrast, the second row of Table 3.2 

shows the results when the model is parameterised as described in § 3.4, and the 

heterogeneity and genetic model are assumed common across subgroups. With the 

standard approach the studies on Whites and Asians provide evidence of a genetic effect, 

while the 6 studies on Blacks are inconclusive and have wide credible intervals for the 

estimates of both odds ratios. When common heterogeneity and genetic models are 

assumed, the point estimates for the two odds ratios of Blacks become almost identical to 

those in Whites even though no assumptions have been made about the effect sizes being 

similar, and the credible intervals are much narrower. Indeed, the odds ratios are 

sufficiently similar that we might now also want to assume that they share the same size 

of genetic effect and pool these two subgroups. By analysing Black and White subgroups 

together the estimates for O R gg and O R cg would become 1.30 (95% CrI: 1.09 to 1.54) 

and 1.13 (95% CrI: 1.04 to 1.26), with a common A of 0.49 (95% CrI: 0.29 to 0.72). In 

the Asian subgroup, the second row of Table 3.2 shows that the precision of the estimates 

has increased, but which remain different from those in Whites and Blacks, suggesting 

that the genetic effect size might differ in Asians. In Whites, the results of the two 

approaches are similar because the assumptions are less critical in such a large subgroup 

(n=22).

3.5.3 Results of sensitivity analyses

Table 3.3 shows the results of the sensitivity analyses performed to investigate the impact 

of uncertainty as to whether the mode of inheritance (A) is the same in the different 

subgroups, assuming that we are sure that the heterogeneity is common. The variance of 

the distribution of the prior on the difference in the logits of As (rf) was allowed to 

assume four different values. If A in Whites is about 0.50, then; Te=0 is equivalent to 

certainty that the mode of inheritance is the same in all subgroups; rf=0.43 means that we 

have 95% belief that A in the other two subgroups is between 0.30 and 0.70; re=1.12 

means that A in the two subgroups is between 0.10 and 0.90; r f = + o o  corresponds to no
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Figure 3.1 -  Forest plots and pooled estimates for ORGg and ORGg for each of the three ethnic groups; a) Whites; b) Asians; c) Blacks
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b)

ORgg ORGg

Study

Cheung

Chiang

Hata

Mo rise

Nishiuma

Kislimoto

Thomas

Kario

Sato

Iso

Kato

Frossard

Overall (95% Cl)

Odds ratio 
(95% Cl)

Study

3.12 (0.32,30.66)
Cheung

0.90 (0.04,22.65)
Chiang

2.83 (0.46,17.57) Hata

0.83 (0.23,3.01) Mo rise

2.99 (1.04,8.60) Nishiuma

1.35 (0.47,3.90) KisNmoto

1.39 (0.51,3.79) Thomas

4.14 (1.62,10.56) Kario

1.43 (0.52,3.96) Sato

0.84 (0.33,2.13) Iso

1.37 (0.75,2.53) Kato

1.72 (0.76,3.90) Frossard

1.61 (1.19,2.16) Overall (95(

Odds ratio 
(95% Cl)

2.64 (0.2627.26)

0.23 (0.01,6.22)

0.88 (0.14,5.74)

0.72 (0 .192.77)

1.73 (0.60,5.02)

1.47 (0.50,4.33)

1.12 (0.392-23)

1.84 (0.74,4.60)

0.74 (0 2 6 2 -1 6 )

1.03 (0 .3 9 2 6 9 )

1.48 (0.792-78)

1.45 (0 .672.16)

1.29 (0.96,1.75)

Odds ratio Odds ratio

Cosetta Minelli Ph.D. Thesis, September 2005 64



CHAPTER 3 Subgroup analysis

c)

Study

Rotimi, 1997 

Barley

Rotimi, 1994 

Caulfield, 1995 

Borecki, 1997 

Forrester

Overall (95% Cl)

ORgg ORGg

Odds ratio 
(95% Cl)

.1 .7 5  (0.16,19.60) 

1 .72 (0.27,10.98) 

0 .85 (0.15,4.86) 

1.21 (0.22,6.78)

1.39 (0.29,6.69) 

0 .80  (0.18,3.53)

1.16(0.57,2.36)

Study

Rotimi, 1997 

Barley

Rotimi, 1994 

Caulfield, 1995 

Borecki, 1997 

Forrester

Overall (95% Cl)

Odds ratio 
(95% Cl)

1.42 (0.12,16.91) 

1.13 (0.14,8.88) 

0 .92  (0.15,5.51) 

0 .98  (0.17,5.72) 

1.12(0.22,5.78) 

0 .63  (0.13,291)

0 .94  (0.45,1.98)

Odds ratio Odds ratio

Cosetta Minelli Ph.D. Thesis, September 2005 65



CHAPTER 3 Subgroup analysis

knowledge about the similarity of A across subgroups. Even when this variance is infinite 

we still assume a common genetic model within the subgroups, but not that it is the same 

in each subgroup. For Blacks, it can be seen that the greater the a priori certainty that the 

modes of inheritance are the same across subgroups, the greater the precision of the odds 

ratios, particularly ORcg. However, the improved precision is still evident when r^O.43 

and we are far from certain about the similarity in the modes of inheritance. In Asians, 

introducing the assumption of a common A does not lead to an increased precision of 

either odds ratio, but changes the point estimates for the odds ratios, moving both 

estimates upwards and away from those of the other two groups. This might be due to the 

fact that we are forcing the A for Asians to be the same as in the other two groups while 

in truth it is different. When repeating the analysis by assuming a common A only for 

Blacks and Whites and monitoring the difference with the A in Asians, although a 

difference of 0 was within the 95% credible interval, there was an 87% posterior 

probability that A for Asians was smaller than A for Blacks and Whites.

Table 3.4 shows the results of the sensitivity analyses performed to investigate the impact 

of uncertainty that the within subgroup heterogeneity (r) is the same across subgroups 

when we are sure that the genetic model is common. The variance of the distribution of 

the prior on the difference in the log of the t s  ( t ^ ) was allowed to assume four different 

values. If t  in Whites is 0.30, then; t^=0 is equivalent to certainty that the within 

subgroup heterogeneity is the same in all subgroups; r^=0.56 means that we have 95% 

prior belief that Tin the other two subgroups vary between 0.22 and 0.38; t^=1.01, means 

that rin  the two subgroups can vary from 0.15 to 0.45; t^=+oo corresponds to no 

assumptions on the similarity of t  across subgroups. It can be seen how introducing the 

assumption of the similarity of Tdoes not substantially affect the estimates for the two 

odds ratios in Blacks, while it does improve the precision of the estimates in Asians, with 

the improved precision still evident even when we are far from certain about the 

similarity in the within subgroup heterogeneity. In Asians, the assumption of common x 

also changes the point estimates for the two odds ratios, bringing them towards those in 

Whites and Blacks. This is due to a change in the weights given to studies within each 

subgroup. In fact, among the 12 studies on Asians, there is one study (Chiang) with an 

O R gg of 0.90 (95% Cl: 0.04 to 22.65) and an ORGg of 0.23 (95% Cl: 0.01 to 6.22), 

which, although inconclusive, would suggest a protective effect of the polymorphism on
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the disease with an over-dominant mode of inheritance. When repeating the analysis with 

no assumptions on the similarity of r  ( r ^ = + o o )  after excluding this outlier, the results for 

Asian studies are similar to those obtained from all studies with the assumption of 

common r  (t^=0), with an ORgg of 1.68 (95% CrI: 1.09 to 2.80) and an ORcgof 1.27 

(95% CrI: 1.04 to 1.71). This shows how the assumption of common t  across subgroups 

makes the analysis more robust in the presence of outliers.

These sensitivity analyses assume that our beliefs about the differences between Whites 

and Blacks are the same as, and independent of, our beliefs about the differences between 

Whites and Asians and Blacks and Asians. Given prior knowledge based on expert 

opinion, it would be simple to change these prior distributions and perhaps to introduce 

some correlation.

Additional sensitivity analyses investigating the assumptions of similar A, when r is  not 

assumed common across subgroups and similarly r, when A is not assumed common (i.e. 

a two-way sensitivity analysis), show very similar results to those presented in Tables 3.3 

and 3.4. Their results are reported in Appendix 2, Table A and B.

3.6 Other examples

3.6.1 Subgroups defined by related disease outcomes

As an example of related disease outcomes, the meta-analysis of the association between 

the I/D polymorphism of the ACE gene and two forms of diabetic microangiopathy, 

namely, diabetic nephropathy and diabetic retinopathy, will be considered (Fujisawa, 

Ikegami, and Kawaguchi, 1998; see also § 2.5.1). Fujisawa and colleagues performed 

separate fixed effect meta-analyses for the two outcomes basing both analyses on the 

assumption of a dominant genetic model. The results were an odds ratio of 1.32 (95% Cl: 

1.15 to 1.51) for nephropathy (n= 21 studies), and 0.91 (0.73 to 1.13) for retinopathy 

(n=9). The conclusion was that “the data suggest that the ACE I/D polymorphism affects 

the risk for diabetic nephropathy but not diabetic retinopathy”. Rather questionably, the 

authors justified the choice of the dominant genetic model by the fact that it provided a 

higher odds ratio and marginally less statistical heterogeneity than a recessive model.
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Table 3.2 - Results of our method based on the assumption of common A and r  (heterogeneity for ORqg) compared to the standard approach

META-
ANALYTICAL
APPROACH

White population (n=22) Asian population (n=12) Black population (n=6)

O R g g  
(95% CrI)

O R g 9 
(95% CrI)

A
(95% CrI)

Heterogeneity
(SD)

(95% CrI)
O R g g  

(95% CrI)
ORGg 

(95% CrI)
A

(95% CrI)

Heterogeneity
(SD)

(95% CrI)
O R g g  

(95% CrI)
ORGg 

(95% CrI)
A

(95% CrI)

Heterogeneity
(SD)

(95% CrI)

Separate analyses 
for O R gg and 
ORGg

1.30 
(1.08 to 1.56)

1.13 
(1.03 to 1.26) /

ORgg-
0.29 (0.14 to 0.51) 

ORG9:
0.11 (0.03 to 0.23)

1.63 
(1.12 to 2.36)

1.27 
(0.90 to 1.78) /

ORgg- 
0.24 (0.01 to 0.79) 

ORg9:
0.16 (0.01 to 0.60)

1.17 
(0.49 to 2.84)

0.95 
(0.40 to 2.27) /

ORgg- 
0.35 (0.01 to 1.47) 

ORg„:
0.35 (0.02 to 1.46)

Assumption of 
common A and r

1.31 
(1.07 to 1.59)

1.12 
(1.03 to 1.25)

0.43 
(0.27 to 0.60)

ORgg- 
0.34 (0.20 to 0.53) 

ORGg:
0.15 (0.07 to 0.25)

1.68 
(1.25 to 2.35)

1.25 
(1.08 to 1.54)

0.43 
(0.27 to 0.60)

ORgg- 
0.34 (0.20 to 0.53) 

ORGg-‘
0.15 (0.07 to 0.25)

1.31 
(0.78 to 2.23)

1.12 
(0.90 to 1.48)

0.43 
(0.27 to 0.60)

ORgg- 
0.34 (0.20 to 0.53) 

ORg9:
0.15 (0.07 to 0.25)

Table 3.3 - Sensitivity analyses for A [ej= logit(^) -  logit(A1), with }=2,3; e . ~ N (0,t£2)]

META-
ANALYTICAL
APPROACH

White population (n=22) Asian population (n=12) Black population (n=6)

O R g g  
(95% CrI)

ORGg  
(95% CrI)

A
(95% CrI)

Heterogeneity
(SD)

(95% CrI)
O R g g  

(95% CrI)
ORGg  

(95% CrI)
A

(95% CrI)

Heterogeneity
(SD)

(95% CrI)
O R g g  

(95% CrI)
ORGg 

(95% CrI)
A

(95% CrI)

Heterogeneity
(SD)

(95% CrI)

oni-? 1.31 
(1.07 to 1.59)

1.12 
(1.03 to 1.25)

0.43 
(0.27 to 0.60)

ORgg- 
0.34 (0.20 to 0.53) 

ORGg:
0.15 (0.07 to 0.25)

1.68 
(1.25 to 2.35)

1.25 
(1.08 to 1.54)

0.43 
(0.27 to 0.60)

ORgg:
0.34 (0.20 to 0.53) 

ORgj,:
0.15 (0.07 to 0.25)

1.31 
(0.78 to 2.23)

1.12 
(0.90 to 1.48)

0.43 
(0.27 to 0.60)

ORqg:
0.34 (0.20 to 0.53) 

ORGg:
0.15 (0.07 to 0.25)

r £= 0 .4 3  

(A: 0 .3  to 0.7)

1.30 
(1.07 to 1.58)

1.12 
(1.03 to 1.25)

0.45 
(0.27 to 0.63)

ORgg:
0.34 (0.21 to 0.52) 

ORg9:
0.15 (0.07 to 0.26)

1.66 
(1.24 to 2.32)

1.21 
(1.06 to 1.54)

0.39 
(0.20 to 0.61)

ORgg:
0.34 (0.21 to 0.52) 

ORGg:
0.13 (0.06 to 0.25)

1.30 
(0.75 to 2.34)

1.12 
(0.86 to 1.62)

0.47  
(0.22 to 0.72)

ORgg:
0.34 (0.21 to 0.52) 

ORGg:
0.16 (0.06 to 0.30)

t£= 1 .1 2  

(A: 0.1 to 0.9)

1.30 
(1.07 to 1.58)

1.13 
(1.03 to 1.26)

0.46 
(0.27 to 0.65)

ORgg:
0.34 (0.21 to 0.51) 

ORg9:
0.15 (0.08 to 0.26)

1.60 
(1.20 to 2.21)

1.14 
(1.02 to 1.49)

0.29 
(0.06 to 0.60)

ORgg:
0.34 (0.21 to 0.51) 

ORGg:
0.10 (0.02 to 0.23)

1.29 
(0.70 to 2.40)

1.12 
(0.79 to 1.87)

0.56 
(0.11 to 0.90)

ORgg:
0.34 (0.21 to 0.51) 

ORGg:
0.18 (0.03 to 0.38)

r £=+°o 1.30 
(1.08 to 1.58)

1.13 
(1.03 to 1.27)

0.48 
(0.28 to 0.69)

ORgg:
0.33 (0.20 to 0.50) 

ORg9:
0.16 (0.08 to 0.26)

1.52 
(1.17 to 2.14)

1.06 
(1.00 to 1.42)

0.15 
(0.00 to 0.55)

ORgg:
0.33 (0.20 to 0.50) 

ORGg:
0.05 (0.00 to 0.21)

1.26 
(0.63 to 2.50)

1.11 
(0.66 to 2.14)

0.72 
(0.01 to 1.00)

ORgg:
0.33 (0.20 to 0.50) 

ORGg:
0.23 (0.00 to 0.45)
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Table 3.4 -  Sensitivity analyses for r  [<pj= log(^) -  log(r1), with j=2,3; (j)j ~ Af(0,r^ 2)]

META-
ANALYTICAL
APPROACH

White population (n=22) Aslan population (n=12) Black population (n=6)

O R g g  
(95% CrI)

ORGg 
(95% CrI)

A
(95% CrI)

Heterogeneity
(SD)

(95% CrI)
O R g g  

(95% CrI)
ORGg 

(95% CrI)
A

(95%Crl)

Heterogeneity
(SD)

(95% CrI)
O R g g  

(95% CrI)
ORGg 

(95% CrI)
A

(95% CrI)

Heterogeneity
(SD)

(95% CrI)

t>=0
1.31 

(1.07 to 1.59)
1.12 

(1.03 to 1.25)
0.43 

(0.27 to 0.60)

ORgg*
0.34 (0.20 to 0.53) 

ORGg'
0.15 (0.07 to 0.25)

1.68 
(1.25 to 2.35)

1.25 
(1.08 to 1.54)

0.43 
(0.27 to 0.60)

ORgg:
0.34 (0.20 to 0.53) 

ORGfl:
0.15 (0.07 to 

0.25)

1.31 
(0.78 to 2.23)

1.12 
(0.90 to 1.48)

0.43 
(0.27 to 0.60)

ORqg:
0.34 (0.20 to 0.53) 

ORcg:
0.15 (0.07 to 0.25)

t̂ =0.56

(r. 0.20 to 0.35)

1.31 
(1.08 to 1.57)

1.12 
(1.03 to 1.24)

0.44 
(0.27 to 0.60)

ORgg- 
0.31 (0.18 to 0.51) 

ORGa:
0.13 (0.06 to 0.24)

1.74 
(1.22 to 2.66)

1.27 
(1.08 to 1.64)

0.44 
(0.27 to 0.60)

ORgg:
0.46 (0.21 to 0.85) 

ORGg:
0.20 (0.08 to 0.41)

1.30 
(0.79 to 2.18)

1.12 
(0.90 to 1.47)

0.44 
(0.27 to 0.60)

ORgg:
0.24 (0.08 to 0.62) 

ORog:
0.10 (0.03 to 0.29)

T*=1.01

(r. 0.20 to 0.55)

1.31 
(1.09 to 1.57)

1.12 
(1.03 to 1.24)

0.44 
(0.27 to 0.60)

ORgg- 
0.29 (0.16 to 0.50) 

ORGg:
0.13 (0.06 to 0.23)

1.75 
(1.20 to 2.75)

1.27 
(1.07 to 1.66)

0.44 
(0.27 to 0.60)

ORgg:
0.51 (0.20 to 0.98) 

OReg:
0.22 (0.08 to 0.48)

1.30 
(0.79 to 2.13)

1.11 
(0.90 to 1.44)

0.44 
(0.27 to 0.60)

ORgg:
0.16 (0.03 to 0.63) 

ORg9:
0.07 (0.01 to 0.29)

T0=+°°
1.31 

(1.09 to 1.57)
1.12 

(1.03 to 1.24)
0.45 

(0.28 to 0.60)

ORgg- 
0.30 (0.15 to 0.51) 

ORgq:
0.13 (0.06 to 0.24)

1.81 
(1.17 to 3.03)

1.30 
(1.06 to 1.76)

0.45 
(0.28 to 0.60)

ORgg:
0.62 (0.29 to 1.23) 

ORGg:
0.27 (0.11 to 0.61)

1.31 
(0.76 to 2.34)

1.12 
(0.88 to 1.52)

0.45 
(0.28 to 0.60)

ORgg:
0.29 (0.01 to 1.11) 

ORcg:
0.10 (0.00 to 0.53)
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Rather than assuming a dominant model without good prior reason, the genetic model 

could have been estimated using the genetic model-free approach, where the genetic 

model is represented by the parameter A (see § 3.4). This parameter could be treated as 

common across the two subgroups and the results would automatically allow for 

uncertainty about the mode of inheritance. If appropriate, beliefs about the genetic model 

could be incorporated by specifying an informative prior distribution for A.

It has to be noted that the choice of fixed effect models by the authors of the meta

analysis is debatable, and the routine use of random effects models might be a safer 

option (§ 1.4). In this example, heterogeneity was not statistically significant at the cut

off significance level of 0.1, but the power of the tests of heterogeneity are low and the 

odds ratios for nephropathy ranged widely; from 0.61 to 4.63. By analogy with the usual 

approach to analysis of variance (Snedecor and Cochran, 1989), a common variance for 

the random effect in the two disease subgroups could be assumed unless there was good 

reason not to. The frequency of the D allele in controls in the retinopathy studies varies 

between 24% and 62%. However, the low frequencies are all found in Asian populations, 

while the higher frequencies are found in ethnically European populations. Treating the 

allele frequencies as separate random effects within the two ethnic groups would cause 

shrinkage and could improve estimation in the smaller studies.

3.6.2 Subgroups defined by gender

In a primary study and a meta-analysis both Furlong et al. (Furlong, 1999 b) and Preisig 

et al. (Preisig, 2000) investigated the association between different polymorphisms of the 

MAOA gene and bipolar affective disorder. Because the MAOA gene is located on the X 

chromosome, a difference in the genetic effect might be expected between males and 

females, although the evidence on whether the association is only present in females or 

also in men is controversial. In both papers, meta-analyses were carried out on the overall 

sample and then separately on males and females, and the analyses were based on alleles 

(one per male subject and two per female) rather than on genotype. The studies showed a 

statistically significant association in females but not in males. The per-allele analysis 

implicitly assumes a co-dominant effect in females and relies on independence of alleles 

within women, which is equivalent to assuming Hardy-Weinberg equilibrium. The 

implicit genetic model was neither justified nor tested.
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While an X-linked gene would undoubtedly lead us to check for differences between men 

and women, it does not follow automatically that a single copy of a disease allele will 

increase the risk of disease differently in men and women. In this example, we cannot 

learn about the genetic model in women from the male subgroup so there will be no 

corresponding gain in information across subgroups. However, the assumption of a 

common genetic model for women in all of the studies will, if appropriate, still improve 

precision to some extent. As in the previous example, the genetic model could be 

estimated using the genetic model-free approach (§ 3.4), though with an X-linked gene 

measured on males and females, where males can only be heterozygotes (Gg), rather than 

modelling the parameters logORoG and A, it might be better to parameterise the model in 

terms of logORcg and A, so that logORoG = logORog/A.

In the studies included in the two meta-analyses there is some indication of 

heterogeneity; again a model with common heterogeneity between studies would seem a 

reasonable choice, but this time the model would parameterise the heterogeneity on 

logORGg and derive the distribution for logORGG- The studies include Japanese and 

Caucasian populations so it may be difficult to learn about allele frequencies across 

studies but some increase in precision would result if the allele frequencies in controls 

could be assumed to be the same in men and women within the same study.

3.7 Discussion

3.7.1 Handling subgroups in meta-analysis of genetic association studies

An important stage in any meta-analysis is the identification of possible sources of 

inconsistency or heterogeneity. Heterogeneity is often allowed for by using a random 

effects model, but where systematic differences between studies are suspected, subgroup 

analyses may be more appropriate. Such subgroups allow for an interaction between the 

gene and some characteristic of the studies. It is important to note that heterogeneity 

arises because of gene-environment or gene-gene interaction at the individual level, but 

where the interacting factor is common to all subjects in a study the adjustment may be 

made at the study level. Thus, if a gene interacts with smoking and each study recruits a 

mixture of smokers and non-smokers, but does not distinguish them in their reports, then, 

unless individual patient data can be obtained, a meta-analysis will not be able to
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investigate that interaction although it may find between study heterogeneity due to 

varying levels of smoking in the different populations under study. In fact, the attempt to 

explain heterogeneity due to individual level characteristics in meta-analysis of summary 

data using meta-regression techniques has not proved particularly useful, since failure to 

find any effect is not evidence of a lack of effect (Lambert et a l , 2002). However, if there 

are some studies that only recruit smokers and others that only recruit non-smokers, or if 

separate estimates of the genetic effect are reported for smokers and non-smokers within 

individual studies, then a meta-analysis with two subgroups will help us to evaluate the 

gene-smoking interaction. In general, the power to detect an interaction tends not only to 

be very low in primary studies (Brookes et a l, 2004), but it might be low even in large 

meta-analyses (Altman and Bland, 2003), so that the decision whether to use subgroups 

cannot be based on purely statistical grounds. This may be why apparently unnecessary 

subgroup analyses featured in some of the studies reviewed in Table 3.1.

The review of published meta-analyses presented in this chapter, which looked at 

different types of subgroups, showed considerable variation in the methods used. A 

particularly common criterion for defining subgroups is disease outcome; here 

investigators need to decide whether different diseases are “close enough” to be pooled. 

This has led some to combine all studies, others to carry out subgroup analyses, or to 

combine the two approaches in a form of sensitivity analysis. While complete pooling of 

all evidence might provide misleading results, subgroup analyses can be inefficient 

particularly when there are only a few studies in some of the subgroups. Reporting both 

overall and subgroup results, although seemingly more informative, does not help the 

reader when the results are materially different but within the limits of sampling error. In 

general, what happens is that investigators either assume that all parameters vary across 

subgroups and so carry out completely independent meta-analyses, or they make the 

assumption that every parameter is common and combine all studies into one large group, 

perhaps also assuming a particular genetic model. Often these assumptions are not 

explicitly discussed and so no attempt is made to justify them, and sensitivity analyses 

are frequently omitted.

When synthesising evidence on gene-disease associations, concern is frequently 

expressed about ethnic differences, but the logic behind this concern is not always clear. 

Following a review of published meta-analyses, Ioannidis, Trikalinos, and Ntzani (2004)
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suggested that, much more often than not, the odds ratios were similar across racial 

groups and that reports of ethnic differences in odds ratios should be treated with caution. 

Population stratification is known to be a potential source of bias within individual 

studies, and is caused by a mixture of different ethnic groups in the study population 

whenever the frequency of the polymorphism and the disease risk vary between ethnic 

groups and the study fails to match cases and controls for ethnicity (Cardon and Palmer, 

2003; Freedman, Reich, Penney, et al., 2004; see also § 4.2.2). However, apart from 

being an indicator of quality for primary studies, this is not an issue when combining 

study results in a meta-analysis where the difference in ethnicity is across studies (or 

study groups), within which both cases and controls come from the same ethnic group. 

Thus, if population stratification is not adjusted for in the primary analysis, a meta

analysis can do little to overcome this. On the other hand, studies conducted in different 

parts of the world may show different results because of gene-environment interaction 

and this might justify the use of subgroup analysis. In some of the articles reviewed, the 

investigators excluded studies, or performed separate meta-analyses, on the grounds of 

differences in allele frequency in different ethnic groups. In itself, a difference in allele 

frequency should not be sufficient reason for a subgroup analysis, since it does not 

automatically imply a difference in genetic effect. Similar variation in the approach to the 

use of subgroups is present in relation to other factors, including gender, environmental 

and life-style factors such as smoking, and the study design, for example, typing method.

It is important to understand that in genetic association studies, although gene- 

environment interactions can have a strong influence, confounding should not be a 

problem. At the individual level, genotype is determined by a seemingly random process, 

which is analogous to a randomised trial, and precludes most forms of confounding 

within the study (§ 5.3). Confounding at the study level is theoretically possible, as 

factors that influence the risk of disease may vary between studies (Salanti, Sanderson, 

and Higgins, 2005), but this can be adjusted for by including study specific parameters if 

information on such factors is available, and is unlikely to be a problem.

Although there is little empirical evidence of the relative importance of the different 

potential sources of heterogeneity (Salanti, Sanderson, and Higgins, 2005), any observed 

heterogeneity needs to be investigated and appropriately dealt with. The approach to the 

adjustment for study level interaction proposed in this chapter is based on recognising
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that there are many parameters in genetic association studies. Even when the magnitude 

of the genetic effect differs across subgroups, it may be that other parameters are 

common. The example of the effect of the AGT polymorphism on hypertension in 

different ethnic groups shows how the assumption of a common mode of inheritance and 

common within group heterogeneity of the genetic effect can greatly increase the 

precision of the estimates of the genetic effect in small subgroups. These assumptions 

also bring the size of the gene-disease association in Blacks into very close agreement 

with that found in Whites. Moreover, the sensitivity analyses show that the improvement 

in precision persists even when the secondary parameters are similar rather than identical. 

The re-analysis might lead us to question the conclusions of the authors of the original 

meta-analysis, who tentatively concluded that, unlike in Whites and Asians, “genotype 

did not predict hypertension in black subjects” (Sethi, Nordestgaard and Tybjaerg- 

Hansen, 2003).

The methods described in this paper could easily be extended to accommodate 

assumptions about other secondary parameters that might also improve the precision of 

the estimate for the gene-disease odds ratio. These include the assumption of Hardy- 

Weinberg equilibrium in control groups and the assumption of similarity of the allele 

frequencies in controls; these assumptions might be made within subgroups or across 

subgroups. None of the assumptions can be used indiscriminately, but all need to be 

justified by inspecting the data and calling on prior biological knowledge. However, it 

seems reasonable to suggest that parameters are assumed common, unless there is 

evidence to the contrary. Moreover, the models presented and used to assess the 

sensitivity of the results to different assumptions on the similarity of secondary 

parameters across subgroups could be adapted to incorporate prior beliefs. These prior 

beliefs would form the basis for informative prior distributions on the expected variation 

of the secondary parameters across subgroups.

One limitation of the approach presented in this chapter is that a convincing statistical 

measure to help judge the relative fit of each model could not be found. The attempt to 

use the Deviance Information Criterion (DIC) to compare models did not appear to be a 

successful approach. The DIC is a Bayesian analogue of Akaike's information criterion 

(AIC) and was proposed by Spiegelhalter et al. for comparing complex Bayesian models 

(Spiegelhalter et a l , 2002). For the AGT example, the maximum difference in DIC
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between any two models was 1.9, while a minimum observed difference of 3 is advocated 

to be needed before a true difference is suggested (Spiegelhalter et a l , 2002). Although 

the DIC does not indicate a difference in fit between any of the models that we tried, we 

do not feel confident in stating that all models were equivalent since these findings might 

be due to a lack of sensitivity of the DIC. At present, there is still very limited 

information in the literature on the use of DIC and further experience is needed before its 

routine use can be advocated.

A natural extension to our models would be to allow for the correlation induced by those 

studies that provide data in more than one subgroup. This happened in the AGT re

analysis where three studies reported separately on both Blacks and Whites. Although the 

resulting correlation could easily be accommodated in our models, its impact needs 

further investigation. It might be anticipated that the precision of the estimate of such 

correlation would tend to be poor, so that the influence on the results of the choice of the 

prior distribution for the correlation parameter would not be negligible.

It would be possible, and quite in keeping with the usual practice in Bayesian analysis, to 

model the subgroups using a hierarchical model for the genetic effect size (Sutton et al., 

2000). A parameter that varies across subgroups can be thought of as a realisation from a 

higher-level distribution. Such a model would introduce shrinkage and enable estimates 

for one subgroup to benefit from the data in the others (Sutton and Abrams, 2001). 

However, this approach was not adopted since subgroups are often of interest in their 

own right and are not naturally viewed as being selected from some larger population.

For instance, in the AGT example investigators might be specifically interested in the 

genetic effects in Whites, Blacks and Asians, and not think of these races as being 

selected as representative of some higher-level population of races. This is not to say that 

hierarchical structures do not have potential uses. One might, for instance, want to allow 

for differences between countries; for instance, Blacks in USA, Blacks in Nigeria, Blacks 

in South Africa etc. In these circumstances a hierarchical country effect would be very 

natural.

3.7.2 Conclusions

Investigators carrying out meta-analyses of genetic association studies should give more
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thought to the assumptions that they are willing to make in the presence of subgroups. 

These assumptions should be made explicit so that the reader can critically evaluate them, 

and an effort should be made to test whether these assumptions hold, or, if this is not 

possible, sensitivity analyses should be performed. Apart from the parameters 

representing the genetic effect, there are other secondary parameters in the meta-analysis 

model for which information could be borrowed across subgroups, such as the genetic 

model and the between-study heterogeneity of the genetic effect. The work presented in 

this chapter suggests that assuming that such parameters are common across subgroups is 

a reasonable strategy, unless there is evidence of the contrary, and provides a potential 

gain in the precision of the estimate of the genetic effect. Whenever relevant expert 

opinion is available, stronger assumptions about the parameters of interest and/or 

secondary parameters should be incorporated through informative priors.
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4 HARDY -WEINBERG EQUILIBRIUM

4.1 Chapter overview

This chapter addresses the issue of the assessment of Hardy-Weinberg Equilibrium 

(HWE) in a meta-analysis of genetic association studies, where departures from HWE 

are used as a proxy for problems associated with the quality of the studies included. In 

§ 4.2 the general meaning and applications of HWE law are presented, the possible 

causes for departures from HWE discussed, and the implications for genetic association 

studies highlighted. A review of the methods used in the literature to assess departure 

from HWE, both in terms of testing the presence of departure and estimating its 

magnitude, is presented in § 4.3. In § 4.4 the practical implications of approaching the 

issue of HWE either from the perspective of hypothesis testing or from that of 

estimation are shown by re-analysing a dataset of 37 meta-analyses reported in 30 

published papers, which included 488 primary studies evaluating 516 comparisons. 

Having investigated this, § 4.5 addresses the issue of what might be the best strategy in 

practice for dealing with departures from HWE in studies included in the meta-analysis. 

This is investigated through simulation work aimed at showing the impact, in terms of 

bias and precision of the estimate of the genetic effect, associated with different ways 

of identifying studies with departures from HWE and excluding them from the meta

analysis. Discussion of the results and conclusive remarks are presented in § 4.6.

4.2 Introduction

4.2.1 The Hardy-Weinberg equilibrium law

HWE law states that if the two alleles of a biallelic locus, G and g, with frequency pc 

and pg respectively and pc + pg= 1, are in equilibrium in a population, then the

proportions of subjects with genotypes GG, Gg and gg follow the product rule, and thus
• 2 2 will be pc , 2pG pg and pg respectively (Sham, 2001). This law implies that in each

subject alleles are inherited as statistically independent of one another if the study

population is in HWE. HWE law is used in a variety of contexts. In evolutionary

theory, departures from HWE, that is departures of observed from expected genotype
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frequencies, are estimated to evaluate the impact of evolutionary forces in producing 

changes in allele frequencies of a population over time (Hartl and Clark, 1997). In 

forensic science, HWE law is used in the analysis of DNA evidence for human 

identification and paternity studies, where HWE is assumed in order to calculate 

expected genotype frequencies based on observed allele frequencies (Devlin, Risch, 

and Roeder, 1991). In the study of Mendelian recessive diseases such as sickle cell 

disease, hereditary haemochromatosis or congenital adrenal hyperplasia, where only 

subjects homozygous for the mutation are affected, HWE law is used to estimate the 

carrier rate in normal individuals in a population where all diseased individuals are 

observed. The number of carriers, i.e. subjects heterozygous for the mutation, might be 

important in order to implement and test screening methods for the disease (Thomas, 

2004).

In the field of genetic association studies, HWE law is used for two different purposes. 

First, testing for departure from HWE in a gene bank of individuals affected by a 

disease has been proposed as a relatively efficient method for “rapid gene hunting”, 

when searching for possible polymorphisms associated with the disease (Lee, 2003). In 

a population which is in HWE, and under the assumption that the operating genetic 

model is not co-dominant, the genotype proportions in affected individuals are expected 

to deviate from HWE as a result of the association itself, with the magnitude of the 

departure depending on the allele frequency and the underlying genetic model (Wittke- 

Thompson, Pluzhnikov and Cox, 2005). Second, HWE law has been used for study 

quality control; current practice views departures from HWE in controls as a proxy for 

poor quality and thus possible indication of threats to validity of study results. A 

number of problems in the design and conduct of genetic association studies can lead to 

departures from HWE, the most important being population stratification, genotyping 

error, and selection bias particularly in the choice of controls (Sham, 2001). These 

departures from HWE observed in genetic association studies have to be distinguished 

from genuine departures in the study population.

4.2.2 Causes of departures from HWE

Possible genuine causes of deviation from HWE in the study population of a genetic 

association study include non-random mating, migration and selection (Khoury, Beaty
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and Cohen, 1993; Hartl and Clark, 1997; Sham, 2001). Non-random mating means that 

any two individuals in a population are not equally likely to mate, due to assortative 

mating, inbreeding, or outbreeding. Assortative mating indicates that individuals have a 

tendency to mate with others with similar phenotypes, being these either physiological 

variables (e.g. height and skin colour) or pathological conditions (e.g. deafness), and 

thus with similar genotypes. Such phenomenon, which leads to an increase in the 

frequency of homozygotes at the expense of heterozygotes over successive generations, 

occurs to some extent in nearly all communities. The opposite tendency is called 

“negative assortative” or “dissortative” mating, which leads to an increase in 

heterozygotes at the expense of homozygotes. Inbreeding means mating between 

relatives, that is mates related by ancestry; it is more likely to occur in small 

populations and leads to increased homozygosity. Outbreeding refers to mating 

between individuals from different populations that may have different genetic 

compositions, and leads to an increase in the frequency of heterozygotes. However, one 

generation of random mating in a population is sufficient to produce HWE. Another 

cause of departure from HWE directly related to outbreeding is migration, that is 

movement of individuals between populations with consequent migration of new 

alleles. Finally, genuine departure from HWE in a population may be caused by 

selection. Selection refers to a natural process by which genotypes that lead to either 

increased fertility (ability to procreate) or increased viability (ability to survive from 

fertilisation through to adulthood) are more likely to contribute to the next generation 

than genotypes that do not. An example of this is what is called “heterozygote 

advantage”, where heterozygotes have, or have had at some point in the past, a 

reproductive advantage over wild homozygotes, as documented, for instance, for sickle 

cell anemia (Hartl and Clark, 1997).

To some extent, these genuine causes of departure from HWE do play a role in any real 

population, so that perfect HWE is unrealistic; however they usually result in minimal 

deviations. On the other hand, problems with the design and conduct of genetic 

association studies can lead to observed departures from HWE that do not reflect 

deviations in the study population, and the magnitude of which reflects the extent of the 

problem (Sham, 2001; Khoury, Little, and Burke, 2004). Such methodological 

problems, which include population stratification, genotyping error, and selection bias,
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need to be investigated and addressed both in the context of primary studies and meta

analyses.

Population stratification is a well-known problem of genetic association studies caused 

by a mixture of different ethnic groups in the study population, when the frequency of 

the polymorphism and the disease risk vary between ethnic groups (Cardon and Palmer, 

2003; Freedman, Reich, Penney, et al., 2004). However, its actual confounding effect is 

a matter of intense debate. On one side, some authors suggest that sound 

epidemiological methods, such as matching cases and controls for ethnicity and proper 

selection of controls, address this problem, and therefore argue that well-designed and 

well-conducted genetic association studies are robust against bias from population 

stratification (Wacholder, Rothman, and Caporaso, 2002). On the opposite side, other 

authors view population stratification as a potentially important source of bias even in 

high-quality genetic association studies, due to the presence of residual “cryptic 

stratification”. Cryptic stratification may be caused by a difficulty in defining suitable 

ethnicity categories or by the presence of mixed-ethnicity families. To address this 

problem they suggest either using genetic markers of ethnicity (genomic control 

methods) instead of the traditional self-reported ethnicity, or even replacing the use of 

unrelated controls with that of family-member controls in genetic association studies 

(Thomas and Witte, 2002; Freedman et al., 2004). Genomic control methods are based 

on the principle that if disease frequency varies across ethnic groups, then any genetic 

variant associated with ethnicity will appear to be associated with the disease. By 

genotyping a number of unlinked markers, i.e. polymorphisms not associated with the 

disease, in addition to the polymorphism of interest, spurious associations due to 

population stratification could be estimated and adjusted for (Freedman et al., 2004).

Genotyping error is another important cause of deviation from HWE (Gomes et a l , 

1999; Hosking et al., 2004). It is a mistake in the laboratory identification of a subject’s 

genotype due to sample contamination, observer variability whenever visual inspection 

is required, or technical problems related to the specific technique (Xu et a l , 2002; 

Little et al., 2002). The impact of genotyping error on the estimate of the genetic effect 

depends on whether the error is random, which leads to loss in precision of the estimate 

particularly in the presence of rare alleles (Kang, Gordon, and Finch, 2004), or
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systematic, which causes bias. Systematic error may be due to identification failure 

rates differing between homozygous and heterozygous genotypes, preferential detection 

of one allele, or non-blinded reading of laboratory results. Reported figures of the 

frequency of genotyping errors vary from 1% up to 30% (Akey et a l, 2001). The 

difference in the error rate associated with different genotyping techniques is the main, 

but not the only, reason for such variability, which might also be explained by other 

differences occurring in the various steps of the genotyping process. In a study of the 

association between p53 polymorphism and risk of human papillomavirus-induced 

cervical cancer, the effect of inter-laboratory variation was investigated by dividing 

each specimen into aliquots to be analysed by three different laboratories. Although all 

laboratories adopted the same kind of technique, differences in the testing protocol and 

other conditions related to testing caused a disagreement in assigning genotype status 

which ranged from 22 to 29% (Makni et a l, 2000). This highlights the need for quality 

control protocols to be implemented in primary genetic association studies, where no 

family genotype data are available and thus no Mendelian inheritance checks can be 

performed on the results of genotyping. It has been suggested that investigators should 

routinely include blanks or duplicates on the plate for analysis and perform internal 

validation by checking the scoring of the alleles (Xu et a l, 2002; Little et a l, 2002). 

The availability of such information from a number of studies would greatly help 

clarify the extent of the problem and its impact on the estimates of the genetic effect. It 

has to be noted that the relative impact of even a low error rate on the estimate of the 

genetic effect might not be negligible in the study of gene-disease associations for 

complex diseases; here, gene effect sizes tend to be small with odds ratios in the range 

of 1.1 to 1.4 (§ 1.6), and a loss in precision due to genotyping error might decrease the 

power of the study to detect the association (Gordon et al, 2002).

Selection bias can occur in genetic association studies based on a case-control study 

design, which is by far the most common, and can be due to inappropriate choice of 

either cases or controls (Edland, Slager and Farrer, 2004). The typical source of case 

selection bias is the use of prevalent cases (“prevalent case bias”), which, in chronic 

diseases, can lead to over-representation of genetic factors associated with survival with 

disease or under-representation of genetic prognostic factors. Control selection bias is 

more common and may be due to a number of problems, such as; controls chosen from
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a geographically different population with a different mix of ethnic groups, which leads 

to population stratification; controls chosen from a different birth cohort (“cohort 

effect”) in a population where migration patterns might have changed over time thus 

producing differences in gene frequencies due to demographic shifts.

4.2.3 Detecting departures from HWE in genetic association studies

The way HWE law has been used so far for quality control in genetic association 

studies consists of testing whether the genotype frequencies observed in the study 

population among disease-free subjects correspond to the proportions expected under 

HWE (i.e. p  , 2pq and q ). However, such an approach has been criticised for the 

reason that all tests for HWE have very low power to detect any departure from HWE 

(Salanti et al, 2005), and even when they can detect a statistically significant departure, 

they do not provide information on its magnitude. In general, there is a substantial 

literature that stresses the advantages of estimation over hypothesis testing in medical 

research, where clinically important effects may be statistically non-significant if the 

sample size is inadequate (Rothman, 1978; Gardner and Altman, 1986). Another 

important argument against hypothesis testing for departures from HWE is that real 

populations are never in perfect HWE anyway (§ 4.2.2). Moreover, if the observed 

departure from HWE in a study is caused by methodological problems of the study, 

then its magnitude is likely to depend on the extent of the problem. A number of 

measures of departure from HWE have been developed and could be used to estimate 

the magnitude of the departure, such as the inbreeding coefficient, the disequilibrium 

parameter, and the alpha parameter.

What happens in practice in genetic association studies, however, is that often no 

information at all is reported regarding HWE. The evidence on reporting rates ranges 

from 20% to 69% in primary genetic association studies published in different non

genetics journals over the last few years (Xu et a l, 2002; Nemeth et al, 2004; Kocsis et 

al, 2004a; Kocsis et a l, 2004b; Gyorffy, Kocsis, and Vasarhelyi, 2004a; Gyorffy, 

Kocsis, and Vasarhelyi, 2004b; Bardoczy et a l , 2004). A reporting rate of 29% for any 

information on HWE has recently been shown even in studies published in three high- 

profile genetics journals in 2002 (Salanti et a l , 2005). The same problem is reflected in 

meta-analyses of genetic association studies, as suggested by a review of 37 meta
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analyses by Attia and colleagues, where information on HWE in the studies included 

was reported only in 24% of the meta-analyses (Attia, Thakkinstian, and D'Este, 2003). 

Moreover, in the primary studies and meta-analyses reviewed by these authors where 

information on HWE was reported, such information was always limited to hypothesis 

testing. It is clear that there is a contradiction between the perception of the importance 

of departures from HWE as a proxy for quality problems in genetic association studies, 

and the fact that, in practice, there is little attempt to assess HWE in published primary 

studies and meta-analyses.

4.3 Review of the literature

4.3.1 Testing for HWE

A number of alternatives for testing for HWE have been proposed in the literature, the 

majority based on a frequentist approach (Emigh, 1980; Hernandez and Weir, 1989), 

and others more recent based on sophisticated Bayesian methods which allow 

appropriate modelling of the data (Shoemaker, Painter, and Weir, 1998; Montoya- 

Delgado et a l , 2001; Rogatko, Slifker, and Babb, 2002).

Within the framework of classical hypothesis testing, most of the methods proposed are 

based on either Pearson’s chi-square or Fisher’s exact test. The chi-square test is 

problematic in the presence of sparse data, which can be due to rare alleles with 

frequency of one or more genotypes close to zero, small sample size, multi-allelic 

polymorphisms, or a combination of these. In these situations the chi-square asymptotic 

distribution becomes inadequate and adjustments of the test, such as the use of Yate’s 

correction, have to be adopted to improve the approximation of the sampling 

distribution to chi-square. However, most authors agree that in such situations an exact 

test should be used instead (Emigh, 1980; Hernandez and Weir, 1989), although 

computation is tedious. Among the different forms of exact test that have been 

proposed, the most well known is Haldane’s exact test, or conditional exact test, which 

is analogous to Fisher’s exact test for contingency tables. A third method proposed for 

testing for HWE is the likelihood ratio test (Elston and Forthofer, 1977), but this suffers 

of the same problem of the chi-square test since it approximates discrete data by a 

continuous distribution (chi-square distribution) and thus is based on asymptotic results
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which require the sample size to be large. All frequentist methods presented suffer, to 

different extent, from the additional problem of the dependence of the power of the test, 

and thus the statistical inference, on the nuisance parameter p  indicating the frequency 

of the allele of interest.

It has to be noted that, although much research has been carried out to develop 

appropriate methods for testing HWE, in practice the only method used remains the 

chi-square test. Exact tests are not used either in primary genetic association studies 

(Salanti et al, 2005) or in meta-analyses of genetic association studies (Attia, 

Thakkinstian, and D'Este, 2003), despite the fact that studies investigating 

polymorphisms with rare alleles are relatively common. Among the 239 associations 

recently evaluated by Salanti and colleagues, 74 (31%) comprised data with low allele 

frequencies, but in none of these the investigators discussed the limitations of chi- 

square asymptotic inference (Salanti et a l, 2005).

The main problem of testing for HWE is that the power of any test, which mainly 

depends on the sample size of the study and the frequency of the allele of interest, tends 

to be very low in most genetic association studies. Salanti and colleagues (2005) 

showed how, for example, only about 6% of the tested associations had a power greater 

than 80% to detect a departure from HWE corresponding to an inbreeding coefficient 

of ±0.10 (§ 4.3.2). Therefore, small studies will rarely show statistically significant 

departures even in the presence of considerable deviation from HWE. On the other 

hand, studies with large datasets might show statistically significant departures even 

when the magnitude of the deviation is limited, which is of no interest in any of the 

applications of HWE law, be it in the field of genetic association studies, forensic 

science or any other. For this reason the need for methods aimed at estimating the 

magnitude of deviations from HWE has long been recognised and a number of methods 

have been proposed (§ 4.3.2), but, again, estimates of departures from HWE are usually 

not reported in published primary studies nor meta-analyses of genetic association 

studies (Attia, Thakkinstian, and D'Este, 2003; Salanti et al, 2005).
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4.3.2 Assessing the magnitude of departures from HWE

Assessing the magnitude of the departure from HWE observed in a genetic association 

study is very important in order to evaluate the presence and extent of methodological 

problems which might cause it. In practice, though, there seems to be a fundamental 

contradiction in the way investigators of genetic association studies handle this issue. 

On one side, the concept that departures from HWE, independently from their causes, 

can bias the estimate of the genetic effect is widely accepted. However, this has only 

been demonstrated for the per-allele analysis (Sasieni, 1997; Schaid and Jacobsen, 

1999), where HWE is indeed an assumption of the analysis (§ 2.3), while for genotype- 

based analyses the possibility of bias introduced by departures from HWE is mostly 

based on theoretical considerations. On the other side, there is clearly no attempt to 

estimate the magnitude of departures from HWE in published primary studies and 

meta-analyses (Attia, Thakkinstian, and D'Este, 2003; Salanti et a l , 2005). If 

departures from HWE can indeed bias the study results, then surely such an influence 

depends on the extent, and possibly direction, of the departure, and methods aimed at 

correcting for departures should be considered in the analysis (§ 4.6.3).

Different measures of departures from HWE have been proposed, which again can be 

estimated using a frequentist or a Bayesian approach. Among these, the main are:

1) Inbreeding coefficient (f)

Despite its name, this parameter is used to indicate departure from HWE due to any 

cause, not only inbreeding (Weir, 1996). Denoting the genotype frequencies for the two 

homozygous groups as Pgg and Pgg, and the allele frequencies po and pg, then the 

inbreeding coefficient, f, is: 

f = Pgg/pg + Poo/pG -1 
The lower bound of f depends on the allele frequencies: 

max[-pg/pG, - po/pg] £ f ̂  1

2) Disequilibrium parameter (D)

The disequilibrium parameter, described by Hernandez and Weir (1989), is defined as:

D  =  Pgg — Pg

The bounds on D are functions of the allele frequencies:
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max[-pg2, -pG2] ^ D ^ pgpo

3) Alpha

This parameter, though less well known than the previous two, has been proposed by 

Lindley in the context of a Bayesian approach (Lindley, 1988): 

alpha = Vilog (4PggPGG/PGg2)

The bounds on alpha are independent from the allele frequencies:

-oo < alpha < oo

The lack of lower and upper bounding and the independence from the allele frequencies 

make this parameter particularly suitable to statistical modelling.

For all the three parameters, zero corresponds to perfect HWE, positive values to 

excess of homozygotes and negative values to deficiency of homozygotes relative to 

HWE. Although real populations are never in exact HWE, the extent of genuine 

deviations from HWE is usually minimal. In a report for use in the evaluation of 

forensic DNA evidence in 1996, the United States National Research Council 

suggested an inbreeding coefficient of 0.03 as the upper limit of departure from HWE 

in human populations, from which the disequilibrium parameter can be calculated as 

D=0.03pgpo (National Research Council, 1996).

4.4 Evidence of departure from HWE in meta-analysis

4.4.1 A dataset of 37published meta-analyses

A dataset of 37 meta-analyses published from 2000 and including 488 genetic 

association studies was obtained searching the HuGE Reviews archive 

(http://www.cdc.gov/genomics/hugenet/reviews_arch.htm). The Human Genome 

Epidemiology Network (HuGE Net) is an international collaboration of individuals and 

organisations from different background, founded in 1998 with the aim of developing 

and disseminating population-based human genome epidemiological information 

(Centre for Disease Control and Prevention, 1999). From 2000 the collaboration has 

maintained a list of meta-analyses published under its auspices, preferentially in the 

American Journal o f Epidemiology among other journals (HuGE reviews), as well as 

any other published genetic meta-analyses. Among those listed on the HuGE Net
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Website on 15 March 2005, papers were selected if they; 1) were written in English; 2) 

considered a binary disease outcome; 3) reported the raw data on genotype frequencies 

for cases and controls; 4) included more than 5 studies or comparisons, when studies 

reported separate figures for different subgroups. Comparisons with zero cells for both 

cases and controls in a specific genotype group were not considered, since no meta- 

analytical methods are available to deal with such situations when using a relative 

measure of the effect size such as the odds ratio (Sweeting, Sutton, and Lambert, 2004). 

Comparisons with zeros for both cases and controls were observed when the frequency 

of one allele was extremely low (^0.05) or when a relatively low allele frequency was 

coupled with very small sample size. If more meta-analyses were available assessing 

the same association, the one either more recent or which included the greater number 

of studies was chosen. Inclusion criteria were evaluated based either on the abstract or, 

more often, on the full text of the paper when the abstract did not contain sufficient 

information to establish eligibility. Among all 243 papers listed, only 30 fulfilled the 

inclusion criteria, and the reasons for exclusions are reported in Figure 4.1. It is 

interesting to note how 71% of the papers (n=172) were excluded because they did not 

report raw data on the genotype frequencies for cases and controls in the studies 

included. The 30 papers considered reported on 37 meta-analyses, which included 488 

primary studies. After excluding comparisons with zero cells for both cases and 

controls in one or more genotype groups, the number of comparisons evaluated was 

516. The characteristics of the 37 meta-analyses in terms of number of studies included 

and comparisons considered, average allele frequency for the allele of interest and 

average number of cases and controls are reported in Table 4.1 (complete references for 

the studies in Table 4.1 are reported in Appendix 3).

All meta-analyses considered focused on bi-allelic polymorphisms; in the following 

sections the two alleles will be referred to as G and g, where G indicates the allele 

thought to be associated with the disease. The three genotypes GG, Gg and gg provide 

two odds ratios of interest, the odds ratio of GG versus gg (referred to as O R g g )  and the 

odds ratio of Gg versus gg (referred to as ORog).
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4.4.2 Statistical methods

Hypothesis testing for HWE in the 516 gene-disease associations was performed using 

Fisher exact test, implemented by the genhw cci command in Stata 8 (Cui, 2000). 

Statistical significance was considered at the nominal level of 0.05. The parameter 

alpha was used for estimating the magnitude of departures from HWE, due to the fact 

that this parameter is not bounded, that is it has not got bounds dependent on allele 

frequency (§ 4.3.2). However, the inbreeding coefficient and the disequilibrium 

parameter were also calculated in order to assess the degree of agreement between the 

three measures of departure. The parameter alpha was estimated in WinBUGS, due to 

the simplicity of obtaining its standard error using MCMC methods, using vague prior 

distributions for all parameters. In particular, a diffuse normal prior distribution, 

Normal(0,10000), was used for alpha, and the parameter estimates were obtained using 

a burn-in of 10,000 iterations followed by chains of length 50,000; convergence was 

assessed using visual inspection of trace plots and running multiple chains with 

different initial values, length of burn-in and length of sample (§ 1.5.2). The point 

estimates for the inbreeding coefficient and the disequilibrium parameter used for 

comparison with the point estimates of alpha were calculated using Stata.

4.4.3 Results

The distribution of /7-values for the 516 associations, with values expressed as 

logarithms to base 10, is shown in Figure 4.2. One study with logio (/7-value) of -23.3, 

corresponding to a /7-value of 5.O'24, was removed in order to better show the 

distribution of the other 515. This was a very large study with more than 2,000 patients, 

which explains the extremely low /7-value, and had an alpha value of 0.67. The 

percentage of genetic association studies showing statistically significant deviation 

from HWE (p^0.05) was only 10.5% (54/516). These are the studies that researchers 

might want to exclude, either in their main analysis or in sensitivity analyses, on the 

assumption that they are studies of poor quality due to genotyping error, population 

stratification or problems with selection of cases or controls. However, because the 

nominal level chosen for statistical significance is 5%, only 5.5% out of the observed 

10.5% of the studies will be truly statistically significant, with a false discovery rate of 

47.6%. In other words, among the 54 studies with statistical significant deviation from
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Figure 4.1 - Flow chart of the inclusion and exclusion of papers from HuGE Reviews archive

Published not in English (n=7)
Continuous outcome (n=4)
Raw data not available (n=172)
< 6 comparisons considered (n=22)
< 6 comparisons after excluding those with double zeros (n=3) 
More recent/complete meta-analysis on the same topic (n=3) 
Other reasons (n=2)

Inclusion criteria not satisfied 
n=213

Exclusion of studies with double zeros 
(n=9)

Number of comparisons reported 
n=518

Number of comparisons considered 
* n=516

Exclusion of comparisons with double zeros 
(n=2)

Number of primary studies included 
n=488

Papers selected 
n=30

Nurnber o f prirnary studies considered 
n=479

Meta-analyses reported 
n=37

Papers listed on HuGE Website 
as on 15 March 2005 

n=243
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TABLE 4.1 - Characteristics of the 37 meta-analyses in the dataset, which included 479 studies and 516 
comparisons. For complete references see Appendix 3

Author, year A ssociation evaluated N. of 
stud ies

N. of 
com parisons

A verage
allele

frequency

A verage N. 
cases /co n tro ls

A n g u e lo v a , 2 0 0 3
5-H T2A  1 0 2  T /C  & su ic id a l b e h a v io u r 9 9 0 .5 6 66 /111

5-H TT & su ic id a l b eh a v io u r 12 12 0 .4 5 8 6 /1 5 3

B e n h a m o u , 2 0 0 5
ERCC2*/XPD* A sp 3 1 2 A sn  & lung  c a n c e r 6 6 0.31 4 8 1 /5 1 4

ERCC2*/XPD* Lys751 Gin & Lung c a n c e r 7 7 0 .3 3 4 8 2 /5 5 4

B otto, 2 0 0 0
M THFR C677T  & s p in a  b ifida in p e o p le  a ffe c te d 12 12 0.31 1 0 4 /2 1 9

M THFR C677T  & m o th e rs  of p a tie n ts  with s p in a  bifida 7 7 0.31 8 6 /1 9 3

B ren n an , 2 0 0 4 ADH1C & H e a d  a n d  n e c k  c a n c e r 7 7 0 .6 0 189/251

C am p , 2 0 0 2 S e r2 1 7 L e u  & p ro s ta te  c a n c e r 6 6 0 .2 9 3 7 1 /3 2 5

Di C a s te ln u o v o , 2001 GPIIIa PIA & c o ro n a ry  risk 2 6 2 9 0 .1 4 2 58 /261

E fs ta th iad o u , 2001 COLIA1 Sp1 & f ra c tu re s 13 13 0 .1 6 7 3 /2 0 8

E rtek in -T aner, 2 0 0 5 PLA LM  & A lzh e im er's  d is e a s e 6 6 0 .2 6 1 3 8 /1 4 6

F eyler, 2 0 0 2 M PO  & lung  c a n c e r 7 10 0.2 3 2 6 9 /3 3 3

lo an n id is, 2 0 0 2 Pvull & fra c tu re s 7 8 0 .4 5 8 2 /1 9 7

J e e ,  2 0 0 0 M THFR C 677T (V ) & CAD + m yocard ia l infarction 16 18 0 .3 5 2 3 0 /3 0 5

K aklam ani, 2 0 0 3 TGFBR1 & c a n c e r 7 7 0 .0 8 3 0 5 /2 3 0

K a w o u ra , 2 0 0 5
NEUROD1 Ala45Thr & T y p e  I d ia b e te s  m ellitu s 6 6 0 .2 3 1 5 2 /1 7 8

NEUROD1 Ala45Thr & T y p e  II d ia b e te s  m ellitus 6 6 0 .1 9 2 3 1 /2 1 5

K eh o e , 2 0 0 3 ACE Alu ind el & A lzh e im er’s  d i s e a s e 18 21 0 .4 5 1 5 5 /1 6 8

Lawlor, 2 0 0 4 PON1 Q 1 9 2 R  & c o ro n a ry  h e a r t  d i s e a s e 3 8 3 9 0 .3 5 2 8 1 /4 3 8

L ee, 2 0 0 2
mEH  e x o n  3 & lung c a n c e r 9 11 0 .3 9 1 8 9 /2 8 0

mEH e x o n  4 & lung c a n c e r 9 11 0 .2 0 1 8 9 /2 7 9

Lin, 2 0 0 4 5-HTTLPR & su ic id e 17 17 0 .5 3 8 9 /1 4 3

M atak idou , 2 0 0 3 TP53 & lung  c a n c e r 13 17 0 .3 6 2 0 5 /2 2 9

N oble, 2 0 0 3 D R D 2 T aq l A & a lco h o lism 2 0 2 0 0 .1 5 87 /71

N tais, 2 0 0 3  (a) CYP17 & p ro s ta te  c a n c e r 10 12 0 .3 8 2 0 0 /2 3 0

N tais, 2 0 0 3  (b) SRD5A2 V89L & p ro s ta te  c a n c e r 9 12 0 .3 5 2 1 3 /2 7 9

N tais, 2 0 0 3  (c)
VDR Taql & p ro s ta te  c a n c e r 14 17 0 .3 3 1 1 0 /1 6 7

VDR Poly(A) & p ro s ta te  c a n c e r 5 7 0 .3 3 5 6 /9 9

N tais, 2 0 0 4 CTSD & A lz h e im e r's  d i s e a s e 12 13 0 .0 8 1 9 8 /2 0 6

Ray, 2 0 0 2 C 6 7 7 T  M THFR & v e n o u s  th ro m b o em b o lism 31 31 0 .3 3 1 5 9 /2 5 4

R u je scu , 2 0 0 3 A 2 1 8 C  T P H  & su ic id a l b e h a v io u r 12 12 0 .4 7 1 7 2 /9 9

S c h e n a ,  2001 ACE  I/D & IgA n e p h ro p a th y 7 7 0 .4 8 1 0 0 /1 0 0

S eth i, 2 0 0 3
AG T  M 235T  & h y p e rte n s io n 3 8 4 0 0 .5 8 3 1 6 /3 1 0

AGT  M 235T  & isc h e m ic  h e a r t  d i s e a s e 21 21 0 .5 4 3 4 2 /6 3 0

Y e, 2 0 0 2 CYP17 MspA1 & b r e a s t  c a n c e r 14 15 0 .4 0 2 8 0 /3 1 2

Zhu, 2 0 0 0 PIA1/A2 & m y o card ia l infarction 16 18 0 .1 4 2 2 8 /2 7 2

Z in tz a ras , 2 0 0 5 GLUT1 & d iab e tic  n e p h ro p a th y 6 6 0 .3 4 1 1 8 /1 2 5

HWE, we would expect to see 26 which are false positives. As for the estimate of the 

magnitude of departures from HWE, the degree of agreement between the three 

measures (inbreeding coefficient, disequilibrium parameter and alpha), which is 

represented graphically in Figure 4.3, appeared to be good for all combinations, with 

the exception of a few outliers.
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Figure 4.2 -  Distribution of the p-values (expressed as logarithms to base 10) in 515 
associations. The vertical line corresponds to a p-value of 0.05
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Figure 4.3 -  Agreement between the three measures of departure from HWE

-.5 -  a

oO c

alpha

.1 -

-.1 -

~5S~

Cosetta Minelli Ph.D. Thesis, September 2005 91



CHAPTER 4 Hardy-Weinberg

The values of alpha in the 516 comparisons showed a distribution very close to normal 

and centred on zero (mean 0.01; standard deviation: 0.34), as illustrated in Figure 4.4. 

The vast majority of studies appeared to be either in HWE or very close to it, with only 

four studies (0.8%) showing a value lower than -1 and five studies (1.0%) higher than 

1. However, these estimates of alpha were very imprecise in almost all studies. The 

average standard error for alpha was 0.24, ranging from 0.02 to 0.98.

Given that the magnitude of departures from HWE reflects the extent of 

methodological problems of the study, it might be expected that large studies, which 

are usually associated with higher quality, might tend to show lower values of alpha. In 

order to investigate this aspect, the values of alpha observed in the 516 associations 

were plotted against the sample size of the studies, as shown in Figure 4.5. The scatter 

plot indicates a clear association; very large studies show values of alpha very close to 

0, while smaller studies show either positive or negative values of alpha, the absolute 

magnitude of which increases with the decrease in sample size.

Figure 4.4 -  Distribution of departures from HWE (alpha) in the 516 associations
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Figure 4.5 -  Dependence of alpha on the total sample size in the 516 associations
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Figure 4.6 shows the plot of alpha against /7-value for the 516 comparisons. The vertical 

line corresponds to a /7-value of 0.05, the horizontal line to perfect HWE (alpha=0). The 

same outlier mentioned in Figure 4.2, with logio (p-value) of -23.3, was removed from 

Figure 4.6 to better show the distribution of all the other studies. The plot indicates a 

horse-shoe shape for the relationship between alpha and p-value, where larger values of 

alpha, either positive or negative, are more likely to be associated with statistical 

significant tests. This corresponds to what might be expected. However, among the 516 

studies there are a few cases where the decision to exclude a study based on the p-value 

might be completely inappropriate. The arrows in Figure 4.6 show two examples of 

this. Arrow a indicates a study where the test provides a statistically significant result 

but where there is hardly any deviation from HWE, as suggested by a value of alpha 

very close to 0. On the contrary, arrow b shows a study where the result of the test is far 

from being significant although the value of alpha indicates a large departure from 

HWE.
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Figure 4.6 -  Plots of the values of alpha against p-values for 515 comparisons. The vertical 
line corresponds to a p-value of 0.05, the horizontal to perfect HWE
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4.5 Comparing strategies to deal with HWE in meta-analysis

There is consensus on the fact that departures from HWE should be detected, 

quantified, and reported, both in primary studies and in meta-analysis, since they can 

signal the presence of specific problems, such as genotyping errors and population 

stratification, and thus represent a proxy for poor methodology. A number of authors 

have tried to assess the impact that genotyping errors or population stratification might 

have on the estimate of the genetic effect in terms of loss of power to detect the 

association and possible bias. This has been based on simulation work and assumptions 

on what might be, for instance, the error structure for genotyping errors (Gordon et al., 

2002; Kang, Gordon, and Finch, 2004), or the characteristics of the populations to be 

mixed and the sampling framework for population stratification (Wacholder, Rothman 

and Caporaso, 2002; Heiman et a l , 2004; Gorroochurn et a l , 2004).

Based on these theoretical considerations, a number of authors have suggested that 

meta-analyses of genetic association studies should assess HWE in the studies included 

using Fisher’s exact test. Sensitivity analyses should then be carried out to assess
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whether studies found as being not in HWE (p-value < 0.05) provide a different 

estimate of the genetic effect, which would indicate bias and thus suggest the exclusion 

of such studies from the main analysis (Attia, Thakkinstian, and D'Este, 2003; Salanti, 

Sanderson and Higgins, 2005). Other authors suggest that studies not in HWE should 

be directly excluded from the meta-analysis (Munafo and Flint, 2004). What is not 

considered in this strategy is that there might be a trade-off between the possibility of 

bias in the pooled estimate of the genetic effect introduced by studies not in HWE, and 

the loss in precision associated with the exclusion of these studies from the meta

analysis. Estimating such a trade-off seems particularly important, given that the 

studies which are likely to be excluded based on a statistically significant result of the 

test, are often large studies with sometimes modest departures from HWE, as suggested 

by figures 4.5 and 4.6. Therefore, it might be preferable to approach the problem from a 

more pragmatic perspective, while waiting until strong empirical evidence becomes 

available to elucidate the role of genotyping error and population stratification in 

current studies, their impact on the estimate of the genetic effect, and the validity of 

HWE departures used as a proxy. Once investigators have addressed the issue of HWE 

in meta-analyses of genetic association studies by performing an appropriate test for 

HWE in each study, estimating the magnitude of departures from HWE, and reporting 

these results, what should they do next? In fact, there are two different but related 

questions which need to be answered;

1) Should studies showing departures from HWE be excluded?

2) How can investigators identify studies with departures from HWE; based on 

statistical test, magnitude of the departure, or both? And if both, what thresholds should 

they use?

In order to address both questions, simulation work was undertaken to evaluate 

advantages and disadvantages of different possible strategies of identifying studies with 

departures from HWE and dealing with them. In particular, four possibilities were 

considered for the identification of such studies. The first is the method suggested by 

most authors, which is based on the result of an exact test with a p-value cut-off of 

0.05. The second is a strategy, still based on the result of an exact test, but using a cut

off of 0.10; this higher cut-off significance level might be considered to compensate for 

the lack of power of statistical tests for HWE, in analogy with the p-value cut-off
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routinely used for the test of heterogeneity in meta-analysis (§ 1.4). The other two 

strategies for identifying studies with departures from HWE are based on a combination 

of the result of the test for HWE, at the cut-off level of 0.05 or 0.10, and a value of 

alpha, used to measure the magnitude of the departure, higher than 0.5 or lower than 

-0.5. The choice of this threshold for alpha was based on the following considerations: 

perfect HWE in human populations does not exist, and values of alpha between -0.1 

and 0.1 might be considered the limits of true departure from HWE for allele frequency 

of 0.32, roughly corresponding to an inbreeding coefficient of 0.03 (§ 4.3.2). However, 

because of sampling error, values outside this range may not necessarily indicate 

departure from HWE caused by methodological problems of the study. Indeed, in the 

516 published associations previously described the average standard error for alpha 

was 0.24, with 98% of the values of alpha being between -1.0 and +1.0 and 87% 

between -0.5 and 0.5 (§ 4.4.3). Finally, two identification strategies based purely on the 

magnitude of alpha were considered, one with the threshold values for alpha described 

above, ±0.5, and the other with threshold values of ±1.

In terms of how to deal with studies showing departure from HWE, the possibilities of 

either doing nothing, i.e. including all studies in the meta-analysis in any case, or 

excluding studies identified with any of the strategies described above, were 

considered. Thus, a total of seven different strategies for dealing with departures from 

HWE in meta-analysis were compared in terms of bias and precision of the estimates of 

the genetic effect, in order to identify the strategy with the best trade-off between 

validity and accuracy.

To strengthen the potential value of this approach in providing recommendations on 

how to deal with HWE, the assumptions on a number of parameters needed for the 

simulation work were chosen to reflect the values of those parameters observed in the 

516 gene-disease associations (§ 4.4). However, no empirical evidence is available on 

one of the most crucial parameter in these simulations, the magnitude of the possible 

impact on the genetic effect of departures from HWE. Therefore, sensitivity analyses 

were performed to consider different possibilities, from no impact at all to a doubling 

of the estimate of the log odds ratio for the genetic effect per unit change in alpha. 

Moreover, if there is an impact at all, which is what most authors believe, then a
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specific form for the relationship between the magnitude of the departure from HWE 

and the estimate of the genetic effect has to be assumed. Again, since there is no 

evidence on what form such relationship might take, sensitivity analyses were 

performed by considering two possible scenarios; the log odds ratio for the genetic 

effect could increase proportionally with the increase in the value of alpha (positive or 

negative), or the odds ratio could increase proportionally with the increase in the 

absolute value of alpha, which means that positive and negative values of the same 

magnitude would impact the log odds ratio in the same way.

4.5.1 Methods

In order to identify the best strategy to handle departures from HWE in meta-analysis, 

10,000 datasets, each containing 10 genetic association studies, were randomly 

simulated, and on each dataset seven meta-analyses were performed that differed for 

the studies included, reflecting the different strategies of identifying and dealing with 

studies showing departure from HWE. The pooled genetic effect was estimated using a 

random effects meta-analyses model, implemented in Stata using the metan command, 

but sensitivity analyses were also performed using a fixed effect meta-analysis model, 

implemented with the program. For simplicity, the analysis was performed considering 

only the odds ratio between the two homozygous groups, GG vs. gg (O R g g )  to 

represent the effect of the polymorphism on the disease. The size of 10 for the 

simulated datasets was chosen based on the median number of studies included in the 

37 published meta-analyses (Table 4.1). All studies were assumed to have an equal 

total number of cases and controls. This number, which was fixed for each of the 10 

studies and varied from study to study, was chosen as to reflect the observed 

distribution of the sample sizes in the 516 published studies. In particular, the sample 

size of each study corresponded to a percentile of such distribution: 80, 150, 190, 230, 

270, 330, 400, 500, 690, and 1390. The number of cases and controls in each of the 

three genotype groups for a study was simulated by assuming:

a) A true ORgg of 1.5, which is a value towards the upper end of the range of odds 

ratios observed in the 516 published associations, where the mean odds ratio 

was 1.2. A higher odds ratio has been chosen to increase the possibility of

Cosetta Minelli Ph.D. Thesis, September 2005 91



CHAPTER 4 Hardy- Weinberg

detecting a difference in the estimates of the odds ratio when applying the 

different strategies.

b) A co-dominant genetic model, which corresponds to a true OR.Gg of 1.22.

c) An allele frequency of the allele of interest, G, of 0.32, chosen to reflect the 

mean allele frequency observed in the 516 published associations.

d) A value of alpha randomly generated, at each simulation, by sampling from a 

normal distribution with mean 0 and standard deviation depending on the size of the 

study. In fact, as shown in § 4.4.3, the values of alpha in published studies are 

distributed symmetrically around 0 (Figure 4.4), with the absolute size of alpha 

depending on the size of the study, where larger studies show smaller values of alpha 

(Figure 4.5). Based on the relationship between alpha and sample size observed in the 

516 studies, the true value of alpha for each of the 10 simulated studies (a,-, with

i=1, . . .  ,10) was sampled from:

a ( ~ Normal(Q,oai2) with o ai = 40/(ncasei + 40)

where ncasei represents the total number of cases for study i, which corresponds to half 

the sample size. The function for a  ,■ was chosen by identifying in the scatter plot of 

alpha against sample size for the 516 associations (Figure 4.5) the two lines that 

delimited a region containing about 95% of the points, as shown in Figure 4.7. These 

lines were drawn by considering that in the distribution of the observed values of alpha, 

centred on zero, there are two components of the variability which have to be added; 

the variability explained by the relationship with sample size, and the random variation 

due to sampling error. While the random variation was estimated with WinBUGS (§ 

4.4.2), the form of the dependence of alpha on the sample size was estimated by trial 

and error, by evaluating different functions of alpha on sample size until the two lines 

in the scatter plot, one line for positive and one for negative values of alpha, included 

95% of the 516 associations. This function was the one used to define cr. „ i.e. the 

variability in the distribution of alpha from which alpha values for the 10 studies were 

sampled at each simulation.

Since the underlying value of alpha simulated for each study was expected to play a 

major role in determining which strategy might perform better, a sensitivity analysis to 

assess the assumption of dependence of alpha on sample size was performed. In this
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analysis, a mixture model was used, where the possibility that the value of alpha 

depended on sample size as described above was given a 90% probability, while a 10%

Figure 4.7 -  Derivation of the function used for the simulations, based on the relationship 
between alpha and sample size observed in the 516 published associations. The two lines,

which correspond to ±1.96s, where s = ^ o a2 + SE(alpha)2 , include approximately 95% of 

the points
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probability was given to the possibility that alpha might not depend on the sample size 

at all. Values for alpha were thus randomly sampled from a distribution represented by 

a mixture of two normal distributions, contributing to 90% and 10% in the definition of 

the shape of the overall distribution. The details of the Stata code for this model are 

reported in Appendix 3. The normal distribution representing the possibility of alpha 

being independent from sample size was defined as having a mean of 0 and a fixed 

standard deviation of 0.5, which is equivalent to assuming that the true values of alpha 

lie between -1.00 and +1.00. Thus:

Normal _ 1(0, cri 2) and a ( = 40 !{ncasei + 40)

Normal _ 2(0,0.52)
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e) Three different values were assumed for 6, the parameter representing the slope 

of the association between alpha and the log ORgg> i.e. the impact of departures from 

HWE on the estimate of the genetic effect. In fact, as mentioned in the previous section, 

this is another crucial parameter in the comparisons of the different strategies to 

identify and deal with studies that show departures from HWE. Since no empirical 

evidence is available on this parameter, sensitivity analyses were performed assuming: 

0=0,  corresponding to no impact at all (O R g g  = true O R g g  =1.50); 6 = 0.2, 

corresponding to a 50% increase of the estimate of log O R g g  per unit change in alpha 

(O R g g  = 1-83 when alpha=l); and 6 = 0.4, corresponding to doubling the estimate of 

log O R g g  per unit change in alpha (O R g g  = 2.24 when alpha=l). As regards the form of 

the relationship between log O R g g  and 6, two possible scenarios were considered, 

which are graphically represented in Figure 4.8:

• Scenario 1: A linear trend where log O R g g  increases with the increase in 

alpha, from negative to positive values of alpha.

Figure 4.8 -  Illustration of two possible forms of the relationship between departure from HWE 
and magnitude of the estimated genetic effect; a) Scenario 1; b) Scenario 2. The two lines 
represent different values of &, dashed line: 0=0.2; solid line: 0=0.4. The values of the OR are 
plotted on the log scale
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• Scenario 2: A linear trend where log ORgg increases with the increase in 

the absolute value of alpha, which means that the trend for negative 

values of alpha mirrors the trend for positive values of alpha.

The following 7 strategies for identifying and handling studies with departures from 

HWE were evaluated:

1) Do nothing. All studies are included in the meta-analysis independently from 

any evidence of departure from HWE.

2) Exclude if p<=0.05. Studies are excluded if the p-value of the exact test for 

HWE is lower than, or equal to, 0.05.

3) Exclude if p<-0.1. As in 2) but with a cut-off significance level of 0.1.

4) Exclude if absolute value of alpha>l. Studies are excluded if the observed 

absolute value of alpha is higher than 1 (alpha lower than -1 or higher than +1).

5) Exclude if absolute value of alpha>0.5. As in 4) but with a threshold value of 

0.5.

6) Exclude if p<=0.1 and absolute value of alpha>0.5. Studies are excluded if two 

conditions are met: the p-value of the exact test for HWE is lower than, or equal 

to, 0.1 and the observed absolute value of alpha is higher than 0.5.

7) Exclude if p<=0.05 and absolute value of alpha>0.5. As in 6) but with a cut-off 

significance level of 0.05.

The estimates of the pooled logORGG for the simulated datasets analysed under the 

different scenarios were compared in terms of its mean, its Root Mean Square Error 

(RMSE), that is the square root of the mean squared errors, and the coverage of the 

95% CIs, that is the percentage of intervals that included the true value (ORgg =1.5; 

logORoG =0.405). These three measures describe the average properties of the 

estimator across the 10,000 datasets.

4.5.2 Results

Given the importance of the simulated magnitude of alpha in determining what might 

be the best strategy for handling HWE, the variation of alpha with sample size in the
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simulations based on both the main and the mixture model was compared with that 

observed in the 516 published associations. Such evaluation consisted of simulating 

516 studies using the two models, summarising the values of alpha with different 

scatter plots for each sample size, and comparing the two graphs with that of the 516 

published associations, where scatter plots were drawn for each percentile of sample 

size, to which the 10 different sample sizes of the simulated studies correspond. The 

three graphs, shown in Figure 4.9, indicate a satisfying degree of similarity of both 

simulated datasets with the observed 516 published associations. The simulated studies 

based on the mixture model show more random variation of alpha compared to the 

main model for all sample sizes, and in particular for the largest sample sizes. This 

behaviour is what would be expected given the fact that in the mixture model the alpha 

values of 10% of the studies were sampled independently from the sample size of the 

study.

Tables 4.2 and 4.3 show the results of the simulations for the comparison of the 

different strategies for each of the two models respectively: the main model, with alpha 

sampled from the distribution with variance dependent on the sample size of the study, 

and the mixture model, with alpha sampled from the mixture distribution, where 10% 

probability is assigned to alpha being independent from sample size. For each model, 

the results of the simulations for the pooled O R g g  are reported for each of the three 

values of d, representing different possible impacts of HWE departures on the estimates 

of the odds ratio, and under each of the two scenarios, representing different shapes of 

the possible association between HWE departures and estimates of the odds ratio. In 

tables 4.2 and 4.3, in addition to the mean, RMSE and coverage of the 95%CIs for the 

pooled log O R g g , also reported are the percentage of bias, that is the percentage 

difference between the mean estimate of log O R g g  and its true value, the average 

standard error (SE) of log O R g g  estimates, calculated as the root of the average 

variance, and the percentage of studies excluded from the meta-analysis by each 

strategy, over the 10,000 simulations.

When using the main model and assuming scenario 1, i.e. a linear trend for the impact 

of alpha on the log O R g g  estimate with the extent of the impact represented by the 

three values of 6, all strategies seem to perform well in terms of bias even when the
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Figure 4.9 -  Box plots of the observed values of alpha against sample size for: a) the 516 
studies in the database; b) a sample of 516 simulated studies under the main model; c) a 
sample of 516 simulated studies under the mixture model
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largest value of 6 is assumed. In terms of precision, all strategies perform similarly, 

with the exception of the second and the third strategy, for which exclusion of studies is 

based only on p-value (p<0.05 and p<0.1, respectively), with the third strategy causing 

the highest loss in precision. This is explained by the fact that those studies showing 

statistically significant deviation from HWE are the largest studies, so that their 

exclusion from the meta-analysis does have an impact on the precision of the pooled 

estimate. A cut-off significance level of 0.1 implies that more studies can reach 

statistical significance for departure from HWE, as shown in Table 4.2 where the 

average percentage of studies excluded is 24% compared to 16% for a cut-off of 0.05.

In comparison, the two strategies based on a combination of p-value and magnitude of 

alpha show an average percentage of studies excluded of 11% and 10% when the 

threshold for the p-value is 0.1 (sixth strategy) and 0.05 (seventh strategy), respectively. 

Moreover, the studies excluded will not necessarily be the largest ones, since large 

studies, although more likely to overcome the problem of lack of power of HWE tests, 

will also tend to have smaller values of alpha. The behaviour described also apply to 

scenario 2, where the estimates of log O R g g  are assumed to increase linearly with the 

increase in the absolute value of alpha, with the extent of the association dictated by the 

assumed value of 6.

The situation is not very different when using a mixture model for both scenarios, 

where again the performance of all strategies is similar in terms of bias, with only a 

slightly higher degree of bias for the first strategy, i.e. do nothing, for both scenarios 

when the highest impact of departure from HWE on the estimate of log O R g g  is 

assumed (0=0.4). In terms of precision, again the second and third strategies are those 

performing worse, with an average percentage of studies excluded of 19% and 27% 

respectively. These higher percentages compared to the results for the main model, and 

the consequent higher loss in precision, are due to the fact that in 10% of the simulated 

studies the magnitude of alpha does not depend on the size of the study, so there are 

more large studies with alpha value large enough to be statistically significant.

The measures of average performance commonly used to present the results of 

simulations, as those shown in tables 4.2 and 4.3, may not be a reliable guide to the
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Table 4.2 -  Results for the logORGG under the different strategies obtained using the main model in the two scenarios; a) scenario 1; b) scenario 2. 

a)

Strategy
Theta = 0 Theta =0.2

■ ....  ■ ■ ........  . - ........... .. ■ ............
Theta = 0.41........... * ......* * **.......................... _r

Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%)

Mean %
bias

Aver.
SE RMSE C overage Studies  

excl. (%) Mean %
bias

Aver.
SE RMSE Coverage

Do nothing 0.0 0.403 -0.7 0.115 0.083 96.4 0.0 0.406 0.1 0.116 0.083 96.5 0.0 0.409 0.9 0.117 0.084 96.3

Exclude if: 
p<=0.05 16.5 0.405 -0.1 0.127 0.089 96.7 16.3 0.407 0.5 0.127 0.089 96.4 16.3

-
0.409 0.9

-
0.129 0.091 96.2

Exclude if: 
p<=0.1 23.8 0.405 0.0 0.135 0.094 96.8 23.7 0.407 0.4 0.135 0.094 96.6 23.7 0.409■ . 0.8 0.137 0.096 96.4

Exclude if: 
Ia|>1 1.9 0.402 -0.8 0.115 0.083 96.4 1.9 0.405 -0.1 0.116 0.083 96.5 1.9 0.408 0.6 0.117 0.084 96.3

Exclude if: 
|a|>0.5 12.6 0.400 -1.2 0.118 0.085 96.6 12.5 0.402 -0.7 0.119 0.085 96.5 12.5 0.405 -0.2 0.120 0.086 96.2

Exclude if: 
p<=0.1 &a>0.5 10.9 0.402 -1.0 0.118 0.085 96.6 10.8 0.404 -0.4 0.119 0.085 96.5 10.8 0.406 0.1 0.120 0.086 96.3

Exclude if: 
p<=0.05 & a>0.5 9.6 0.402 -0.8 0.118 0.084 96.6 9.5 0.405 -0.2 0.119 0.084 96.5 9.5 0.407 0.3 0.120 0.086 96.2

b)

Strategy
Theta = 0 Theta =0.2 Thete1 = 0.4

Studies 
excl. (%)

Mean %
bias

Aver.
SE

RMSE Coverage Studies  
excl. (%)

Mean %
bias

Aver.
SE

RMSE C overage Studies „  . . Mean  
excl. (%)

%
bias

Aver.
SE

RMSE Coverage

Do nothing 0.0 0.403 -0.6 0.115 0.082 96.5 0.0 0.428 5.6 0.115 0.084 96.1 0.0 0.455 12.2: 0.116 0.092 94.6

Exclude if: 
p<=0.05 16.3 0.405 -0.1 0.127 0.089 96.6 16.3 0.427 5.2 0.127 0.090 96.4 16.4 0.450 11.1 0.127 0.096 95.4

— _____— __
Exclude if:
p<=0.1 23.6 0.406 0.0 0.135 0.093 96.7 23.6 0.426 5.1 0.135 0.095 96.4 23.9 0.449 10.7 0.135 0.100 95.8

Exclude if: 
|a|>1 1.9 0.403 -0.7 0.116 0.082 96.5 1.9 0.427 5.4 0.115 0.084 96.1 2.0 0.453 11.7 0.116 0.092 94.9

Exclude if: 
|a|>0.5 12.5 0.400 -1.3 0.118 0.084 96.5 12.5 0.422 4.1 0.118 0.085 96.4 12.5 0.446 9.9 0.119

.
0.091 95.5

Exclude if: 
p<=0.1 &a>0.5 10.8 0.402 -1.0 0.118 0.084 96.6 10.8 0.423 4.4 0.118 0.085 96.3 10.9 0.447 10.3 95.4

...................
Exclude if: 
p<=0.05 & a>0.5 9.4 0.402 -0.8 0.118 0.084 96.6 9.4 0.425 4.7 0.118 0.085 96.3 9.5 0.449

--- --------1....... .......
10.6 0.119 0.091 95.4
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Table 4.3 -  Results for the logORGG under the different strategies obtained using the mixture model in the two scenarios; a) scenario 1; b) scenario 2.

a)

Strategy
Theta = 0 Theta = 0.2 Then 0 4

~
Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver 

.. SE
RMSE Coverage

Do nothing 0.0 0.403 -0.6 0.116 0.083 96.7 0.0 0.407 0.3 0.116 0.083 96.5 0.0 0.411 1.4 0.119 0.086 95.8
Exclude if: 
p<=0.05 19.4 0.406 0.2 0.132 0.091 96.8 19.2 0.406 0.1 0.133 0.092 96.6 19.2 0.408 0.6

1 1 
0.135 0.095 96.4

Exclude if: 
J><=0.1 26.7 0.406 0.1 0.141 0.096 96.9 26.6 0.406 0.1 0.142 0.097 96.6 26.6 0.408 0.5 0.144 0.100 96.5
Exclude if: 
l«|>1 2.4 0.402 -0.8 0.116 0.083 96.6 2.4 0.405 -0.1 0.117 0.083 96.5 2.4 0.409 0.9 0.119 0.086

.....................
95.9

Exclude if: 
|a|>0.5 14.8 0.400 -1.3 0.121 0.086 96.7 15.0 0.401 -1.0 0.122 0.086 96.5 15.0 0.404 •0.5 0.124 0.088 96.2
Exclude if: 
p<=0.1 &a>0.5 13.1 0.402 -1.0 0.121 0.086 96.8 13.3 0.403 -0.7 0.122 0.086 96.4 13.3 0.405 -0.1 0.124 0.088 96.2
Exclude if: 
p<=0.05 & a>0.5 11.7 0.402 -0.7 0.121 0.086 96.8 11.9 0.403 -0.5 0.122 0.086 96.4 11.9 0.406 0.1

....  .....
0.124 0.088 96.2

b)

Strategy
Theta =0 Theta = 0.2 Theta = 0.4 ' ......................

Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage

Do nothing 0.0 0.404 -0.5 0.115 0.083 96.5 0.0 0.435 7.3 0.115 0.086 95.6 0.0 0.465 14.8 0.117 0.098 92.8

Exclude if: 
p<=0.05 19.4 0.406 0.2 0.131 0.092 96.6 19.4 0.430 6.0 0.131 0.093 96.0 19.4 0.452 11.4 0.132 0.099 ■ 95.2 ; ;  

______
Exclude if:
p<=0.1 26.7 0.406 0.2 0.140 0.096 96.7 26.7 0.429 5.9 0.139 0.098 96.1 26.7 0.450 10.9 0.141 .  . . .  0.103 95.7

Exclude if:
M>1

2.4 0.403 -0.6 0.116 0.083 96.4 2.5 0.433 6.7 0.116 0.085 95.8 2.4 0.462 13.8 0.117 0.096 93.3

Exclude if: 
|a|>0.5 15.0 0.401 -1.1 0.121 0.086 96.2 15.1 0.425 4.9 0.121 0.087 95.9 15.0 0.449 10.7 0.121 0.093

-f Isli
94.7

Exclude if: 
p<=0.1 &a>0.5 13.3 0.402 -0.8 0.121 0.086 96.3 13.5 0.427 5.2 0.121 0.087 95.9 13.3 0.450 11.1

...............
0.121 0.094 94.6

Exclude if: 
p<=0.05 & a>0.5 11.8 0.404 -0.5 0.121 0.086 96.3 12.0 0.428 5.5 0.120 0.087 95.9 11.8 0.452 11.5 0.094 94.4
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Figure 4.10 -  Box plots of the results for the different strategies obtained using the main model in 
the two scenarios; a) scenario 1; b) scenario 2. 7: do nothing; 2\ exclude if p<=0.05; 3: exclude if 
p<=0.1; 4: exclude if |alpha|>1; 5: exclude if |alpha|>0.5; 6: exclude if |alpha|>0.5 & p<=0.1; 7: 
exclude if |alpha|>0.5 & p<=0.05
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Figure 4.11 -  Box plots of the results for the different strategies obtained using the mixture 
model in the two scenarios; a) scenario 1; b) scenario 2. 7: do nothing; 2: exclude if 
p<=0.05; 3: exclude if p<=0.1; 4: exclude if |alpha|>1; 5: exclude if |alpha|>0.5; 6 : exclude if 
|alpha|>0.5 & p<=0.1; 7: exclude if |alpha|>0.5 & p<=0.05
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sensitivity of the O R gg estimates to the choice of different strategies of handling HWE 

for any particular single dataset. In order to investigate what might happen in individual 

meta-analyses due to the play of chance, a graphical representation of the results of the 

meta-analyses on the 10,000 simulated datasets was also evaluated. Box plots of the 

pooled estimates of log O R gg fo r  each of the seven strategies under the different 

assumptions, i.e. different values of 6 and different shape of the association between log 

O R gg and alpha (scenario 1 and 2) were drawn for the main and the mixture model, as 

shown in figures 4.10 and 4.11 respectively. The second and third strategies are again 

those which perform worse for both the main and the mixture model and under all 

different assumptions on value of 6 and shape of the association between alpha and 

estimate of log O R gg- Adopting these two strategies, occasionally the pooled estimate of 

log O R gg can be rather far from the true value, with this happening more frequently with 

the third strategy (p-value cut-off of 0.1). All the others perform similarly, with the 

possible exception of the first strategy which tends to perform better than all others under 

the mixture model. However, it has to be considered that the outlying estimates identified 

in these graphs are very rare, considering that overall 10,000 estimates are summarised 

by the scatter plots.

The results of the fixed effect meta-analysis models were similar to those of the 

random effects models in terms of differences between strategies for both the main 

and the mixture models. The tables with the measures of average performance as 

well as the graphs with the scatter plots for the fixed effect analyses are reported in 

Appendix 3 (tables A and B; figures A and B).

4.6 Discussion

4.6.1 What does evidence on departures from HWE suggest?

The review of 516 genetic associations included in 37 published meta-analyses presented 

in this chapter, not only confirms some of the aspects of HWE already highlighted by a 

number of authors, but also indicates issues that seem to have been overlooked. The 

problem of the lack of power when testing for HWE, even with the use of the 

unanimously suggested exact test, is in line with what previously indicated. In the 516 

associations, more than half of which were published either in genetics journals or in
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journals with a strong interest in genetics (e.g. American Journal of Epidemiology), the 

percentage of studies showing statistically significant deviation from HWE was 10.5%, 

which is within the range of figures reported by other authors. It particular, this 

percentage was reported to vary from 10% to 35% in genetic association studies 

published in non-genetics journals (Kocsis et al, 2004a; Kocsis et a l, 2004b; Gyorffy, 

Kocsis, and Vasarhelyi, 2004a; Gyorffy, Kocsis, and Vasarhelyi, 2004b; Bardoczy et al, 

2004; Nemeth et al, 2004), where part of the variability was probably explained by 

sampling error due to the relatively small number of associations considered in some of 

the reports. The corresponding reported figure for studies published in three high-profile 

genetics journals was 10%, that is on the low side of the range (Salanti et a l , 2005). As 

pointed out by Salanti and colleagues, this might suggest the presence of publication bias, 

whereby genetic association studies showing departures from HWE might be less likely 

to be submitted for publication or, once submitted, to be published, in high-profile 

genetic journals. In fact, editors and reviewers of such journals might be more prone to 

consider the issue of HWE, and to assume poor methodology for a study with statistically 

significant departure. In the results of the simulations performed in § 4.5, where 

parameters were chosen to reflect those of the 516 associations, the percentage of 

simulated studies reaching statistical significance for departure from HWE at the cut-off 

level of 0.05 was higher than in the observed studies, with values of 16% and 19% for the 

simulations under the main and the mixture model, respectively. Such finding seems to 

support the possibility that publication bias might have been responsible for the low 

percentage observed in the dataset of 516 studies included in the meta-analyses reviewed.

Another important point highlighted by the re-analysis of the 516 associations is the 

dependence of the values of alpha on the size of the studies, with alpha increasing with 

decreasing sample sizes. This is crucial since it means that not only large studies are more 

likely to have the power needed to be able to detect departure from HWE, if such a 

departure exists, but also that they are less likely to present major departures from HWE. 

In fact, this finding is not at all surprising if departures from HWE are to be considered 

proxy for poor quality, since in general the quality of large studies tend to be higher. 

Therefore, the appropriateness of current recommendations on how to deal with HWE in 

meta-analysis, which suggest using an exact test with p-value threshold of 0.05 to 

identify studies with departures from HWE and then exclude them first in a sensitivity
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analysis and eventually in the main analysis if they provide different estimates of the 

genetic effect, might be questioned.

In this chapter, the magnitude of departure from HWE was measured by the parameter 

alpha, which was estimated using a Bayesian approach with vague prior distributions. In 

fact, the inbreeding coefficient and disequilibrium parameter could also be used, but these 

parameters have sampling distributions that may be highly skew and are bounded by the 

requirement that all genotype frequencies be non-negative (Ayres and Balding, 1998).

For this reason it is very difficult to specify vague prior distributions for these 

parameters.

4.6.2 Proposed strategy to detect and deal with departures from HWE

The simulation work presented in this chapter, and which is aimed at identifying the best 

strategy to be used for identifying and handling studies with departures from HWE, 

shows results which do not support the common belief that including studies with 

departures from HWE in a meta-analysis tends to bias the pooled estimate. In fact, the 

strategy of including all studies independently from departures from HWE is not 

associated with the presence of appreciably more bias than any other strategy under either 

of the models used for the simulations, and in any of the sensitivity analyses testing the 

impact of departures on the estimates of the genetic effect or shape of the relationship. 

Indeed, the strategy of “doing nothing” seems to always perform at least as well as the 

others. The second best choice is possibly that of excluding studies based on both the 

result of the exact test, with a p-value of 0.05, and the observed value of alpha, for 

example using thresholds of ±0.5. The worst strategies are those based on the exclusion 

of studies with statistically significant departures from HWE, due to the loss in precision 

of the pooled estimate caused by the exclusion of large studies. When adopting a cut-off 

significance level of 0.1 to compensate for the lack of power of the tests for HWE, the 

loss in precision gets worse due to the higher number of studies excluded.

In the simulations presented in this chapter, the assumptions on the values of the 

parameters required were mostly based on the values observed in the dataset of 516 

published associations. However, further investigation is required to show whether the
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conclusions hold under particular circumstances, such as a very low allele frequency or a 

specific genetic model.

Overall, the results of the simulation work presented here suggests that the real issue 

regarding current recommendations is not the lack of power of tests for HWE as 

previously suggested (Salanti et al., 2005), but the failing to take into account the 

estimate of the magnitude of the departure, or, more radically, the fact that the belief that 

departure from HWE will bias the estimate of the genetic effect might be unjustified.

This does not mean that the issue of HWE should be ignored at all in either primary 

studies or meta-analyses. Indeed, evidence of departures from HWE, which should be 

based on both the result of an exact test and the estimation of the magnitude of the 

departure, should be carefully considered as a warning signal for the possible presence of 

methodological problems requiring further investigation. In the context of a primary 

study, this may lead, for instance, to address the possibility of genotyping errors, try to 

measure the extent of the problem, and adjust the analysis for it. In the same way, 

evidence of departure from HWE in studies included in a meta-analysis should lead one 

to further investigate the possibility of methodological problems in those studies. 

However, decisions on whether such studies should be excluded, either in a sensitivity 

analysis or in the main analysis, should be taken based on the probability of bias 

associated with the specific methodological problem rather than on the evidence of 

departure from HWE per se.

4.6.3 Further work

In this chapter, hypothesis testing for HWE has been performed using a classical 

approach. However, although hypothesis testing is not part of the philosophy on which 

the Bayesian approach to statistical inference is based, a number of methods for testing 

HWE have been recently developed within a Bayesian framework to address some 

limitations of the frequentist approach. Bayesian methods can easily handle the problem 

of nuisance parameters, i.e. parameters that are not directly of interest but which need to 

be defined, by accounting for their different possible values (Spiegelhalter, Abrams, and 

Myles, 2004). Moreover, Bayesian methods can handle situations of sparse data for one 

or more genotypes, thus representing an alternative to exact tests (Zaykin, Zhivotovsky, 

and Weir, 1995). Another important advantage of Bayesian methods is that they allow
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testing hypotheses other than the null. In fact, the presence of perfect HWE, as tested in 

the null hypothesis, is highly unlikely in any real population (§ 4.2.2). Thus, it would 

seem more appropriate to test whether the population is close enough to HWE for us to 

assume that this is the case. The investigators then have to face the problem of defining 

what “close enough” exactly means. Shoemaker and colleagues present an interesting 

application of this approach to the field of forensic science (Shoemaker, Painter, and 

Weir, 1998). They use the posterior distributions of a Bayesian analysis to find 

probabilities that the measures of departure from HWE adopted, the inbreeding 

coefficient and the disequilibrium parameter, lie inside or outside specific intervals.

These intervals were based on the Untied States National Research Council report for use 

in the evaluation of forensic DNA evidence, where an inbreeding coefficient of 0.03 is 

suggested as the upper limit of departure from HWE in human populations (National 

Research Council, 1996). Finally, even if the investigator is indeed interested in testing 

the null hypothesis of exact HWE in the population, the /7-value does not provide any 

quantifiable measure of strength of the evidence against the null hypothesis. This is a 

general problem of the frequentist approach, which is made worse by the fact that p- 

values are indeed often misinterpreted as measures of the evidence against the null, i.e. 

the /7-value is confused with the probability of the population being in HWE. The 

Bayesian approach allows direct probability statements, which are not limited to the null 

hypothesis, but are applicable to any hypothesis of interest, such as what is the 

probability that the departure from HWE is greater than x (§ 1.5). As regards the 

estimation of the magnitude of the departure from HWE, Bayesian methods might be 

advantageous in providing more informative posterior distributions for the parameters of 

interest. Although not investigated in this chapter, previous knowledge about the 

parameter representing the magnitude of the departure or nuisance parameters, such as 

the allele frequencies, can be included in the model when estimating the measure of 

departure from HWE using a Bayesian approach. Previous information on the expected 

magnitude of the departure from HWE, for instance, might derive from some knowledge 

of the mating system operating in the population of interest.

The problem of HWE in meta-analysis of genetic association studies is in many ways 

similar to the problem of underlying risk of disease in meta-analysis of RCTs. In both 

cases, the effect of interest (genetic effect or treatment effect) in the different studies may 

be influenced by a factor (departure from HWE or underlying risk), which can vary from

Cosetta Minelli Ph.D. Thesis, September 2005 113



CHAPTER 4 Hardy-Weinberg

study to study and reflect different characteristics of the study population or study design. 

For this reason, the methods recently developed to adjust for underlying risk of disease in 

meta-analyses of RCTs (Sharp and Thompson, 2000) might help in developing 

appropriate ways of adjusting for departure from HWE in meta-analyses of genetic 

association studies. Such an adjustment might be a more appropriate way of dealing with 

HWE, and could represent a compromise between the two opposite strategies of either 

excluding studies with statistically significant departures from HWE, as recommended by 

most authors, or including all studies by ignoring departures from HWE, as indicated by 

the simulation work presented in this chapter.

Another important issue which requires further investigation is whether, once assessed 

that there is no evidence against HWE in the studies included, the assumption of HWE 

should be incorporated in the meta-analysis model with the aim of increasing the 

efficiency in estimating the pooled genetic effect. Although the incorporation of the 

assumption of HWE could be done in either a frequentist or a Bayesian meta-analysis, the 

advantage of the Bayesian approach is that it allows modelling the uncertainty about the 

assumption, as illustrated by Cheng and Chen in individual case-control genetic 

association studies (Cheng and Chen, 2005). These authors define in their Bayesian 

model a variable representing departure from HWE, for which they use a “power prior” 

where the mean parameter is set to 0 while the precision parameter is chosen to reflect the 

uncertainty about HWE.

4.6.4 Conclusions

Departure from HWE is thought to be an indicator of methodological problems with the 

design and conduct of the study, in particular population stratification, bias in the 

selection of cases and controls, and genotyping error, and therefore needs to be 

investigated both in primary studies and meta-analyses of genetic association studies. 

However, the work presented in this chapter suggests that exclusion of studies from a 

meta-analysis based on evidence of departure from HWE is not justified, in particular 

when evidence of departure only consists of the result of a hypothesis test for HWE. It 

would appear more appropriate to use evidence of deviation from HWE, which should be 

based on both the result of the test and the estimation of the magnitude of the departure, 

as a warning signal for the possible presence of methodological problems requiring
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further investigation. Decisions on whether studies with departures from HWE should be 

excluded from the meta-analysis, either in a sensitivity analysis or in the main analysis, 

should be taken based on the probability of bias associated with the specific problem 

rather than on the evidence of departure from HWE per se.
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5 MENDELIAN RANDOMISATION

5.1 Chapter overview

This chapter addresses a promising application of genetic association studies as tools 

for assessing causality of associations between a risk factor and a disease, based on an 

approach known as “Mendelian randomisation”. An introduction to the concept of 

Mendelian randomisation is presented in § 5.2, followed by a review of the literature on 

Mendelian randomisation and a discussion of the role of meta-analysis in this context in 

§ 5.3. Section 5.4 presents an integrated meta-analytical approach to Mendelian 

randomisation, where a multivariate meta-analysis method is proposed and graphical 

ways of evaluating the assumptions underlying Mendelian randomisation are suggested. 

The meta-analysis models proposed are described in § 5.5, while in § 5.6 the integrated 

approach is applied to the example of MTHFR gene, homocysteine and Coronary Heart 

Disease (CHD). Finally, the issues raised by the use of Mendelian randomisation, the 

advantages of using an integrated approach to synthesise all evidence available, and the 

choice of the multivariate meta-analysis model are discussed in § 5.7.

5.2 Introduction

Traditional epidemiological studies that investigate the association between a biological 

risk factor (phenotype) and a disease are often biased because of confounding or 

reverse causation (Rothman and Greenland, 1998). Genetic association studies provide 

epidemiologists with a tool to obtain an unconfounded estimate of the association 

between a risk factor and a disease, when a certain genetic mutation exists which can 

alter the level of the risk factor. The approach, known as Mendelian randomisation, 

consists of carefully selecting a gene that can be used as an instrumental variable, 

provided that the associations between the gene and the phenotype and the gene and the 

disease can be accurately estimated (Davey Smith and Ebrahim, 2003). The necessary 

precision in these estimates will often be obtained only through the synthesis of all 

available evidence (Thompson, Tobin, and Minelli, 2003). Mendelian randomisation is 

likely to assume an important role in the near future, when greater knowledge of 

biological pathways will guide the choice of more suitable polymorphisms, and more
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data on the genotype-disease and genotype-phenotype associations will become 

available from high quality studies. The potential of Mendelian randomisation, and the 

role of meta-analysis in this approach, have been recognised, as demonstrated by a 

rapidly growing interest in the topic. However, very limited methodological work has 

been done to date to investigate methods aimed not only at providing precise estimates, 

but also at checking the basic assumptions on which Mendelian randomisation is based 

(Minelli, Thompson, et al., 2004 - included in Addenda).

5.3 Review of the literature

Katan was the first, in 1986, to suggest that data from genetic studies could be used to 

test for a relationship between a quantitative intermediate phenotype and a disease in a 

way that is not distorted by confounding or reverse causality, an idea later referred to as 

“Mendelian randomisation” (Katan, 1986). In fact, the term “Mendelian randomisation” 

simply means that, according to Mendel’s laws of segregation and independence 

(Wijsman, 2002), a subject’s genotype is determined by a seemingly random process at 

conception. Thus, epidemiological studies of the genotype-phenotype and genotype- 

disease associations show strong parallels with randomised trials and should not be 

affected by confounding or reverse causation in the way that makes classical 

epidemiological phenotype-disease studies so difficult to interpret (Clayton and 

McKeigue, 2001; Keavney, 2002; Davey Smith and Ebrahim, 2003). Although 

Mendelian randomisation is a fundamental assumption of any study evaluating the 

association between a genotype and an outcome, the term has been used to describe the 

whole process based on Katan’s idea, that is to infer what is the effect of a phenotype 

on disease given information on the gene-disease and gene-phenotype associations. To 

avoid the ambiguity of this double meaning, the alternative name of “Mendelian 

deconfounding” has also been proposed to describe the approach (Tobin et al., 2004 -  

included in Addenda).

5.3.1 From hypothesis testing to estimation

In his letter to the Lancet in 1986, Katan explained his idea using the example of 

cholesterol and cancer, where the hypothesis to test was whether low cholesterol 

favours tumour growth. Since differences in serum cholesterol levels in the population
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are associated with different apolipoprotein E (APOE) genotypes, and the many 

environmental factors acting on cholesterol levels are equally distributed among the 

different genotypes, under the causal hypothesis we would expect to see a 

corresponding association between APOE and cancer. The absence of such a genetic 

association would suggest that the association between low cholesterol and cancer is 

spurious.

Youngman, Keavney and colleagues first used the term “Mendelian randomisation” 

when they applied the concept described by Katan to the evaluation of the association 

between fibrinogen and myocardial infarction based on both direct and indirect 

evidence, the latter obtained through Mendelian randomisation using the beta-fibrogen 

genotype (Youngman, 2000). They studied 4,700 cases and 6,000 controls from the 

ISIS-3 study and found evidence of an association between the beta-fibrogen genotype 

and fibrinogen levels. However, the non-significance of the association between the 

same genotype and myocardial infarction led the authors to reject the hypothesised 

causal pathway. They concluded that the observed association between fibrinogen and 

myocardial infarction (OR 1.20; 95% Cl: 1.13 to 1.26) was probably a result of 

confounding or reverse causation.

The ultimate purpose of evaluating the causal association between a risk factor and a 

disease is to determine the magnitude of the effect of the causal factor. This can direct 

interventions aimed at preventing the disease. Thus, in order to inform decisions in 

health related research, estimation is of much greater utility than hypothesis testing 

(Rothman, 1978; Gardner and Altman, 1986). However, despite the growing interest in 

Mendelian randomisation, Katan’s initial interest in hypothesis testing to confirm or 

refute the evidence for a particular phenotype-disease association found in 

observational studies, has not moved towards the estimation of the magnitude of the 

association, as one would have expected (Tobin et a l, 2004 -  included in Addenda).

5 3 2  The assumptions of Mendelian randomisation

In 2003, Davey Smith and Ebrahim published a paper in which they thoroughly 

reviewed the literature and discussed the potentials of Mendelian randomisation for 

deriving unconfounded estimates of the association between a risk factor and a disease,
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whilst emphasising the reliance of the approach on assumptions about the pathway 

from gene to disease (Davey Smith and Ebrahim, 2003). Among such assumptions, the 

most important is the one that excludes any pleiotropic effects of the genotype on the 

disease, that is the genotype influences the disease only through the phenotype 

considered. If the specific polymorphism also alters the risk of the disease via other 

pathways, then the estimate of the phenotype-disease association of interest might be 

seriously biased. Another assumption is that the locus under study is not in linkage 

disequilibrium with another locus associated with the disease, through either the same 

or a different phenotype, which means that the two loci segregate independently from 

one another and therefore their polymorphisms are not associated. The presence of 

linkage disequilibrium would result in the estimate of the effect of the polymorphism 

under investigation being confounded by the influence of the other polymorphism. On 

the other hand, if polymorphisms at more than one locus influence the same phenotype 

and the loci are not in linkage disequilibrium, then it may be possible to explore 

combinations of polymorphisms at different loci. The authors refer to this as “factorial 

Mendelian randomization”, where the interest would be in evaluating those 

combinations of polymorphisms which produce the most extreme difference in the 

phenotype and thus the highest impact on the disease. Finally, Mendelian 

randomisation assumes the absence of “canalisation”, a term indicating the situation 

where some developmental compensation has occurred to mitigate the effect of a 

polymorphism. This may happen when the effect of a polymorphism expressed during 

foetal development or post-natal growth influences the expression of other genes, 

which leads to permanent changes aimed at compensating for the influence of the 

polymorphism.

5.3.3 The role of meta-analysis in Mendelian randomisation

With the recent growth in knowledge about the human genome there has been a 

dramatic increase in the number of genetic epidemiological studies of the association 

between specific genes and diseases and between those genes and the risk factors or 

phenotypes that are thought to be intermediates on the causal pathway to disease. 

Studies of gene and disease tend to be more common than those on gene and 

intermediate phenotype (hereafter referred to simply as phenotype). The evidence for a 

genotype-phenotype association is often obtained as a spin-off from a study primarily
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aimed at investigating the genotype-disease relationship, and this information is 

frequently obtained only on a subset of the subjects. As the number of genetic studies 

has grown, so meta-analyses have been produced to synthesise the evidence and 

overcome the limitations of power found in even moderately sized studies. The number 

of published meta-analyses of genetic association studies has increased at an incredible 

rate in this last decade; on the 15th of March 2005 the HuGE website archive listed 243 

meta-analyses of genetic association studies published from 2000 (§ 4.4.1), while only 

37 of such papers published between 1991 and 2000 had been previously identified 

(Attia, Thakkinstian and D'Este, 2003).

Where there is strong reason to suppose that the phenotype is intermediate on the causal 

pathway from gene to disease, it would be sensible to perform a meta-analysis that in 

some way integrates the evidence for all three relationships, genotype-phenotype, 

genotype-disease and phenotype-disease, where the size of the phenotype-disease 

association can be estimated from the other two. In fact, the use of Mendelian 

randomisation within individual studies where both genotype-phenotype and genotype- 

disease associations are evaluated is strongly limited by the uncertainty in the derived 

estimate of the phenotype-disease association, which can be very large as it depends on 

uncertainty in both the estimates of the genotype-phenotype and genotype-disease 

association (Thompson, Tobin, and Minelli, 2003). Thus, a sufficiently precise estimate 

of the phenotype-disease association is only likely to be obtained through a meta- 

analysis of all available evidence, which can also allow testing whether the phenotype 

is actually on the causal pathway to the disease.

Recently, Mendelian randomisation has been used in a meta-analysis context in three 

published examples, all evaluating the association of the MTHFR gene polymorphism 

with homocysteine levels but considering different diseases; CHD and myocardial 

infarction (Wald, Law and Morris, 2002; see also § 5.6); stroke (Casas et a l , 2005); 

venous trombosis (Den Heijer, Lewington and Clarke, 2005). Wald and colleagues 

estimated the phenotype-disease association using Mendelian randomisation by 

summarising the evidence available on genotype-phenotype and genotype-disease 

associations. The approach they used had some methodological problems; first, a meta

analysis was only carried out for the genotype-disease association, while a simple
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average was used to summarise the genotype-phenotype association; second, the 

uncertainty in the genotype-phenotype association was not taken into account in the 

calculation of the confidence interval for the derived phenotype-disease association. 

Casas and colleagues addressed both these issues by performing two meta-analyses on 

genotype-phenotype and genotype-disease and by taking into account the uncertainty in 

both associations. By performing two separate meta-analyses, they assumed that the 

genotype-phenotype and genotype-disease estimates were independent and thus ignored 

the correlation induced by studies measuring both associations. In practice, that was not 

a problem in their case since there was only one study contributing to both estimates. 

They then compared this derived estimate with the direct estimate provided by a meta

analysis of classical observational studies, and formally tested the difference between 

the two using an interaction test. Den Heijer and colleagues followed a similar idea, 

although they did not attempt to formally derive the estimate the phenotype-disease 

association based on the evidence on genotype-phenotype and genotype-disease, but 

used such evidence to assess whether the association between homocysteine and 

venous thrombosis observed in their meta-analysis of classical observational studies 

was causal.

5.4 An integrated meta-analysis approach using Mendelian 

randomisation

5.4.1 Estimation of the phenotype-disease association

In order to use genetic studies to quantify the relationship between the phenotype and 

disease, the estimate of the genotype-disease association has to be combined with the 

estimate of the genotype-phenotype association (Figure 5.1). Suppose that a mutant 

genotype (GG) causes an increased risk of disease compared to the wild type (gg) and 

that this effect is measured by the odds ratio, O R g g  v s .  g g -  Further suppose that GG 

compared to gg causes a mean difference, AP, in the level of the intermediate 

phenotype. Then, under the assumptions required for Mendelian randomisation and 

assuming linearity of the relationship between phenotype difference and log odds ratio 

for the disease, O R g g  vs. g g 17 AP is an unconfounded estimate of the odds ratio of disease 

resulting from a unit change in the phenotype.
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FIGURE 5.1 -  Derivation of an unconfounded estimate of the effect of a change in phenotype 
on a d isease based on the concept of Mendelian randomisation
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5.4.2 Sources of evidence

When searching for evidence on genotype-phenotype and genotype-disease 

associations, three different types of genetic studies are likely to be identified; those 

evaluating only the genotype-phenotype association, those evaluating only the 

genotype-disease association, and those evaluating both. As well as noting the usual 

estimates of effect and their precision, it is important to record when both associations 

are measured in the same study, in which case it is necessary to use a multivariate 

model in order to allow for the correlation in the genotype-phenotype and genotype- 

disease evidence arising from the studies that measure both associations (§ 5.5). It 

might be that studies classified as providing only genotype-phenotype information had, 

in fact, evaluated also genotype-disease association but using a different disease 

definition, so that this genotype-disease result cannot be pooled with those of other 

studies. When collecting data on genotype-phenotype it is important to note whether 

the information on the phenotype difference comes from cases, controls or a mixture of 

both. Whenever possible data from cases and controls should be analysed separately. If 

the disease itself affects the level of the phenotype in a way that is not simply linear,
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then the data on the genotype-phenotype effect collected from cases may be less 

reliable due to reverse causation.

5.4.3 An integrated meta-analytical approach

If the genotype-phenotype and genotype-disease evidence all come from unrelated 

sources then separate meta-analyses will give estimates of the pooled effects that can, 

by appealing to Mendelian randomisation, be combined to estimate the size of the 

phenotype-disease association. Otherwise, it is necessary to use a multivariate model in 

order to allow for the correlation in the genotype-phenotype and genotype-disease 

evidence arising from the studies that measure both associations. In either case, the 

uncertainty in both estimates of genotype-phenotype and genotype-disease associations 

needs to be taken into account (Thompson, Tobin and Minelli, 2003). In practice there 

is likely to be a mixture of studies that measure the genotype-phenotype effect, those 

that measure genotype-disease and those that measure both.

Consider first a meta-analysis in which all available studies measure both genotype- 

phenotype and genotype-disease. We could proceed as before and separately pool the 

genotype-phenotype estimates and genotype-disease estimates before combining the 

pooled values in order to estimate the effect of phenotype on disease. However, the 

likely correlation in the sizes of pairs of estimates from the same study would affect the 

width of the confidence interval for the derived phenotype-disease effect and the 

validity of any hypothesis test. A more appropriate approach would be to combine the 

genotype-phenotype and genotype-disease estimates separately within each study to 

obtain study-specific estimates of the phenotype-disease effect. These study-specific 

estimates could be shown in their own forest plot and pooled to get an overall estimate.

In the more realistic situation in which some studies measure both genotype-disease 

and genotype-phenotype and some measure one or the other, then one needs to proceed 

with caution. The most important features of the data will be evident from a forest plot 

in two columns, one for genotype-disease and the other for genotype-phenotype, in 

which paired estimates from within the same study are aligned in the same row (see §

5.6). The forest plot is organized in three blocks representing the studies that measured 

both the odds ratio and the mean difference, those that measured only the odds ratio and

Cosetta Minelli Ph.D. Thesis, September 2005 123



CHAPTER 5 Mendelian Randomisation

those that measured only the mean difference. Within blocks the studies are ordered by 

size of effect. Where both estimates are obtained in the same study, studies are ordered 

by size of the genotype-disease odds ratio. Having drawn the plot, the next stage should 

be to check that the genotype-disease estimates from studies that also report genotype- 

phenotype are consistent with the estimates from studies that do not report genotype- 

phenotype, suggesting that an assumption of exchangeability is appropriate. However, 

this is a subjective judgement (Spiegelhalter, Abrams and Myles, 2004). Similarly 

genotype-phenotype estimates should be compared between studies that also report 

genotype-disease and those that do not.

Funnel plots can be used to look for the presence of publication bias (Sutton et a l ,

2000; Sterne, Egger and Smith, 2001). However, genetic studies may also be affected 

by a form of reporting bias in which both the odds ratio and mean difference are 

measured but only one is reported because the other contradicts the anticipated 

relationship. Moreover, it is possible that reporting both associations is a marker for a 

feature such as study quality. It is very difficult to detect this bias from the reported 

data themselves but a careful reading of the study methods may show if data were 

collected but not reported and it may be informative to distinguish studies that only 

reported one of the two associations using a different symbol on the funnel plots (see §

5.6).

When the phenotype does indeed lie on the causal pathway between gene and disease, 

then studies in populations with a large genotype-phenotype difference might be 

expected to show a large genotype-disease odds ratio. This can be investigated by 

plotting each study on a graph of log odds ratio of genotype-disease against average 

difference in phenotype with genotype (see § 5.6). A similar graphical approach has 

been used previously in the meta-analysis of randomised trials (Smith, Song and 

Sheldon, 1993; Midgley et a l , 1996). This graph would be expected to show a 

monotonic trend if the phenotype is intermediate on the aetiological pathway to disease 

and the line should pass through the origin. Lack of any correlation would cast doubt on 

whether the phenotype is truly intermediate. A line that does not pass through the origin 

might indicate that there is another intermediate phenotype through which the gene 

under study exerts its effect on disease (a special case of pleiotropy), or that the gene is
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in linkage disequilibrium (associated at population level) with a gene which also affects 

the risk of disease, or that there is differential publication bias for the two associations 

(Sterne, Egger and Smith, 2001; Sutton, Abrams and Jones, 2002). This graph will also 

show gross departures from linearity of the relationship between phenotype difference 

and log odds ratio of disease; approximate linearity being an assumption behind the 

averaging across studies to give an estimate of the pooled phenotype-disease 

association.

If it appears that genotype-phenotype and genotype-disease associations are consistent 

across all studies, then we may pool all genotype-phenotype estimates and all 

genotype-disease estimates before combining these overall estimates to derive a figure 

for the phenotype-disease association. The effect of the correlation on the confidence 

interval and hypothesis test will depend on the proportion of studies that report both 

genotype-disease and genotype-phenotype associations. The studies that provide both 

estimates can now be used as described above to provide a comparison with studies 

reporting one of the estimates and to investigate the consistency of the study-specific 

phenotype-disease estimates.

5.5 The multivariate meta-analytical approach

5.5.1 Multivariate meta-analysis models

The meta-analysis of genetic studies using Mendelian randomisation is a special case of 

a multivariate meta-analysis in which the synthesis is simultaneously performed on two 

correlated outcomes, namely the size of the genotype-phenotype difference and the 

genotype-disease log odds ratio. Multivariate models have previously been used in 

meta-analyses that collect data on correlated outcomes within the same study, such as 

in the synthesis of multiple-treatment studies, synthesis of multiple outcome (or 

endpoint) studies, and synthesis of studies with both multiple treatments and multiple 

outcomes (Raudenbush, Becker, and Kalaian, 1988; van Houwelingen, Zwinderman, 

and Stijnen, 1993; Berkey, Anderson, and Hoaglin, 1996; Arends, Voko, and Stijnen, 

2003; Nam, Mengersen, and Garthwaite, 2003). However, unlike most of these other 

applications of multivariate meta-analysis, the outcome of real interest in Mendelian
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randomisation is the single derived phenotype-disease association, calculated as a ratio 

of the two correlated outcomes.

In any multivariate meta-analysis it is important to allow for the correlation in the 

estimates from those studies that supply information on more than one outcome. If the 

I th study supplies correlated outcomes, x t and y •, which are assumed to be multivariate

normally distributed (MVN) with variances vxi and v ., then,

It
~  M V N

Vxi

Vyi

V . H>4v«vy>w
n

(5.1)

By using random effects meta-analyses (§ 1.4), in the next level of the hierarchy we 

assume that different studies vary about the common means px and py with correlated 

between study variances x? and Xy2 ,

Vxi
KVyi

~M VN
(<Vx\ l  r . 2

V \ ^ /

pxxx \ \

\ P r *Ty

X - y  

2 (5.2)
/ /

The parameter p  represents the between-study correlation across studies measuring 

both outcomes and ip represents the within-study correlation. While the between-study 

correlation may be induced by the tendency of studies with large effect of genotype on 

phenotype to also have a large effect of genotype on disease, the within-study 

correlation may be induced by the tendency of patients with large effect of genotype on 

phenotype to also have a large effect of genotype on disease.

For those studies measuring only the first or second outcome we use the corresponding 

univariate normal distributions.

and ~ N\f*s,r / )

and (5.3)

y,- ~ > Vyi)  and t*yi ~ N \ti yyr y l

In models for meta-analysis in Mendelian randomisation x will represent the log odds 

ratio of disease given genotype and y  will represent the mean difference in phenotype. 

The object will be to estimate the ratio of x  to y  as this will give the log odds ratio of
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the effect of phenotype on disease. The literature will provide the study estimates and 

their variances vxi and v ., which may be reported implicitly in the form of standard

errors or confidence intervals.

5.5.2 Within-study and between-study correlations

The within-study correlation, ip, represents the possibility that when a particular study 

estimates one measure as being larger than its actual value then there may be a 

tendency for the other estimate also to be larger (or smaller) than its true value. This 

correlation can only be estimated from individual patient data, and is very rarely 

reported by primary studies. However, there are two good theoretical reasons to 

suppose that the within-study correlation will be negligible in most studies used in 

Mendelian randomisation. The study-specific odds ratio of genotype on disease is based 

on aggregated data and in most studies phenotype level is only measured in a sub- 

sample of the subjects.

To assess the likely size of the within-study correlation, Thompson (2005 -  included in 

Addenda) performed a small simulation study, where parameters were chosen to reflect 

the values in studies of the M7HFR-homocysteine-CHD pathway. In all of the 

simulations the estimated correlation was within the range ±0.05. To further investigate 

the issue, a sensitivity analysis was performed using one of the models presented below 

(Model B, § 5.5.4), implemented using a maximum likelihood approach. In these 

analyses a small known amount of within-study correlation was allowed, and the result 

was that with ip=-0.1 the OR of a 5. mol/1 increase in homocysteine was 1.56 (95% Cl: 

1.18 to 2.05), while with ip=+0.1 the OR was 1.53 (95% Cl: 1.17 to 2.00). Thus, even if 

there is a small amount of within-study correlation this seems to have little effect on the 

final estimate.

The between-study correlation, p, represents the tendency for studies conducted in 

populations where the true effect of genotype on phenotype is large also to show a 

larger than average effect of genotype on disease. In contrast to the within-study 

correlation, for a meta-analysis of studies with a wide range of populations and designs 

this correlation may well be substantial, and can be adequately estimated when there
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are a reasonable number of studies that report both outcomes.

In order to account for the between-study correlation, two models for the 

heterogeneities, or between-study variances, in the estimates of genotype-phenotype 

and genotype-disease associations have been developed. The first model, Model A (§ 

5.5.3), is shown to give estimation problems even with large amounts of data. The 

second model, Model B (§ 5.5.4), overcomes this problem by making the extra 

assumption that the heterogeneity on the genotype-phenotype association is 

independent of the heterogeneity on the phenotype-disease association. Results of both 

models were obtained using a bum-in of 10,000 and a chain length of 50,000. 

Convergence was assessed via sensitivity analyses with respect to initial values, length 

of bum-in and length of sample, using both visual inspection of trace plots and by the 

Geweke, Heidelberger and Welch, and the Raftery and Lewis diagnostic tests (Cowles 

and Carlin, 1996) implemented in BOA (Smith, 2004). The WinBUGS codes for Model 

A and Model B are reported in Appendix 4.

5.5.5 ModelA

The first model, which is represented schematically in Figure 5.2(a) and is based on the 

hierarchical bivariate normal distributions described in § 5.5.1, equations (5.1) to (5.3), 

models the heterogeneities on genotype-phenotype and genotype-disease, while the 

heterogeneity on phenotype-disease is derived from the other two. Without individual 

data it is not possible to estimate the within-study correlation, y/, but for the reasons 

discussed in § 5.5.2, y/ will be very small and so y/ is assumed equal to 0. Denoting the 

log odds ratio of phenotype on disease by 0= jux/juy, the marginal distribution becomes:

xi ~MVN
r 1<§■

i

9
_T/_ \ IPy  J

+ Tx

P * x * y

P * x * y  

V ■ +  Tyi * y
(5.4)

When only one of the pair of estimates is reported, they are treated as univariate 

normal. Thus x{ is normally distributed with mean 6py and variance vxi + tx , or y. is

normally distributed with mean juy and variance vyi+ xy .
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For unknown mean parameters 0 and py, vague normal prior distributions, with mean 0 

and variance 10,000, were used. A Wishart prior distribution was adopted for the 

inverse covariance matrix, in which degrees of freedom were chosen to be the rank of 

the covariance matrix in order to obtain a vague prior distribution (Carlin, 1996). A 

priori beliefs regarding the expectation of the covariance matrix were specified such 

that the variances of and pyi were 0.35 and 7.75 respectively, and the corresponding 

prior correlation was 0.5, reflecting their observed value in the dataset. However, 

sensitivity analyses were performed to investigate the impact on the results of the 

model of the choice of different values for the variance and correlation parameters, 

while the degrees of freedom of the covariance matrix were kept the same to represent 

a vague Wishart prior distribution.

5.5.4 Model B

A  second model, referred to as Model B, overcomes the limitations of Model A by 

modelling the heterogeneities of the associations in an alternative manner. The three 

stages in the triangle shown in Figure 5.1, namely genotype-phenotype, phenotype- 

disease and genotype-disease will all be subject to heterogeneity, but under the causal 

model implicit in that figure any one may be derived from the other two. Model B is 

parameterised in terms of the heterogeneities on the genotype-phenotype and 

phenotype-disease stages and is based on the critical assumption that they are 

independent as illustrated in Figure 5.2(b). It is based on the hierarchical bivariate 

normal distribution described (5.1), but now (5.2) is replaced by:

Even under this model, correlation will still be induced in the resultant heterogeneities 

on genotype-phenotype and genotype-disease. Independence implies that studies that 

report a large effect of genotype on phenotype will not tend to report relatively larger or 

smaller effects of the phenotype on disease. In fact, it is unlikely that the effect of a 

specific level of phenotype on disease would depend on the cause of that level (e.g. 

genotype rather than any other cause). This is almost certainly reasonable in the case of 

MTHFR, homocysteine and CHD, and is very likely to hold in most other cases.

(5.5)
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FIGURE 5.2 - Modelling the heterogeneities of the associations in (a) Model A and (b) Model B
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The specification of Model B, unlike Model A, does not need to approximate the 

distribution of the genotype-disease association by a normal distribution, and uses a 

modified product normal formulation (Spiegelhalter, 1998). Moreover, the specification 

of Model B uses a slightly different method to deal with those studies measuring only 

one association, either genotype-disease or genotype-phenotype. In these studies, the 

association that has not been evaluated is treated as missing at random, and missing 

values are sampled from the corresponding predictive distributions. Thus, all studies 

are modelled in a single step for both genotype-disease and genotype-phenotype 

associations.
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Unknown mean parameters were assumed to have vague normal prior distributions, 

Normal(0,10000). For the parameters representing the between-study heterogeneities a 

Uniform^0,2) on standard deviation was used, but sensitivity analyses were performed 

to investigate the impact of the choice of such prior distribution on the results of the 

models. In particular, a Gamma(0.001,0.001) on the precision parameter and a Half- 

Norm al^,!) on standard deviation were evaluated (see § 2.7.1).

5.6 Illustration

5.6.1 The example ofMTHFR gene, homocysteine and CHD

A recent non-genetic meta-analysis on individual patient data from epidemiological 

studies showed a decrease of 11% in CHD for a 25% decrease of homocysteine levels, 

with an OR of 0.89 and 95% Cl of 0.83 to 0.96 (Homocysteine Studies Collaboration, 

2002). The meta-analysis showed heterogeneity between studies partly explained by 

study design. Retrospective studies yielded higher estimates of risk, perhaps due to 

reverse causation and/or unadjusted confounding. In particular, two major confounding 

factors were suggested; smoking and blood pressure. These are both strongly correlated 

with homocysteine and are known risk factors for CHD. The strong possibility of 

unadjusted confounding makes it very difficult to be sure that the relationship between 

homocysteine and CHD is causal.

A common polymorphism of the gene for the MTHFR enzyme leads to reduced enzyme 

activity, lower folate and consequently higher homocysteine levels (Bailey and 

Gregory, 1999). The polymorphism involves a C-to-T substitution at base 677, so the 

wild type homozygous genotype is referred to as CC and the mutant homozygous 

genotype as TT. This polymorphism can be used, together with the idea of Mendelian 

randomisation, to indirectly assess the effect of homocysteine on CHD.

A recent genetic meta-analysis of individual patient data has shown an increased risk of 

CHD of about 16% associated with genotype TT compared to CC, with an OR of 1.16 

and 95% Cl of 1.05 to 1.28 (Klerk et al., 2002). This result was similar to that of 

another meta-analysis published at the same time but carried out on aggregated data, 

which showed a pooled odds ratio of 1.21 for TT genotype, with 95% Cl of 1.06 to
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1.39 (Wald, Law and Morris, 2002). The later paper also mentioned those studies that 

evaluated the association between genotype and phenotype. They found an average 

difference of 2.7 /xmol/1 in homocysteine concentration (95% Cl: 2.1 to 3.4) between 

TT and CC genotypes.

Combining the two meta-analyses by Wald et al. and Klerk et al., a total of 66 genetic 

studies were identified. Classifying the studies that reported both the estimate and its 

precision, 32 evaluated only genotype-disease association, 16 only genotype-phenotype 

association, and 18 both. The definition of CHD used in the analysis presented is 

myocardial infarction or angiographically confirmed coronary artery occlusion (>50% 

of the luminal diameter). Genotype-disease associations were reported in an additional 

13 studies in the original meta-analyses, but this information was not included because 

of either a different disease definition (e.g. atherosclerotic vascular disease), or a 

restricted study population (e.g. diabetic subjects). The data for the genotype-disease 

and/or genotype-phenotype associations for all the 66 studies are reported in Appendix 

4, Table A, together with the study references.

Among the 18 studies evaluating both associations, 9 measured the mean difference in 

phenotype level with genotype in both cases and controls (4 reporting only combined 

means), 4 measured homocysteine only in cases, 3 only in controls, and 2 reports were 

unclear.

5.6.2 Results

Figure 5.3 shows the two-column forest plot with the first column representing the 

genotype-disease log odds ratio and the second the genotype-phenotype mean 

difference. It is clear that there is considerable variation between studies, with some 

even reporting average odds ratios less than one or mean differences in homocysteine 

in the opposite direction to that anticipated. Figures 5.4a and 5.4b show the funnel plots 

for the genotype-disease and genotype-phenotype associations. For the genotype- 

disease association, there seems to be no evidence of either publication bias, indicated 

by an overall lack of symmetry in the funnel plot, or reporting bias, suggested by a 

discrepancy in the shape of the funnel plot between studies reporting both and those 

reporting only one association. For the genotype-phenotype association, the funnel plot
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FIGURE 5.3 -  Two-column forest plot and pooled estimates for genotype-disease and 
genotype-phenotype associations. A=Asians; E=European; F= Female; M=Male. Full references 
are reported in Appendix 4, Table A
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FIGURE 5.4 -  Funnel plots for (a) genotype-disease and (b) genotype-phenotype associations. 
Different symbols used for those studies measuring both associations (A) and those measuring 
only the association of interest (o)
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is suggestive of possible publication bias, while there appears to be little evidence of 

reporting bias.
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The pooled estimate of the odds ratio of genotype on CHD based on studies that also 

reported the homocysteine change is 1.17 (95% CrI: 0.92 to 1.49) and where 

homocysteine was not reported the pooled odds ratio is 1.23 (95% CrI: 1.04 to 1.47). 

The difference is not statistically significant (p=0.75). Similarly the mean change in 

homocysteine in studies that also reported CHD is 2.06 /zmol/1 (95% CrI: 1.35 to 3.03) 

and in studies that did not report on CHD it is 3.35 /xmol/1 (95% CrI: 2.00 to 4.84). The 

direction of the difference is consistent with the presence of publication bias, whereby 

studies evaluating the genotype-phenotype association alone are only published if the 

effect size detected is large. However, this difference is not statistically significant 

(p=0.12). The lack of significant differences gives some confidence for pooling all odds 

ratio estimates to obtain 1.21 (95% CrI: 1.05 to 1.40) and all mean differences in 

homocysteine to obtain 2.75 /rniol/1 (95% CrI: 2.00 to 3.61).

The next step is to investigate more fully the 18 studies that report both an odds ratio 

and a mean difference. Figure 5.5 shows the forest plot of the study-specific estimates

FIGURE 5.5 -  Forest plot for the derived study-specific estim ates of the odds ratio of 
phenotype on d isea se  (per 5 unit difference in homocysteine). 4=A sians; E-E uropean. Values 
have been truncated at ± 15
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FIGURE 5.6 -  Log odds ratio of M TH FR  gene on coronary heart d isease against mean 
difference in homocysteine between genotypes, separately for studies in which phenotype was 
measured on (a) ca ses  and (b) controls. The axes of the ellipses are inversely proportional to 
the standard errors of the respective associations.
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of the odds ratio of CHD associated with a 5/miol/l increase in homocysteine. Because, 

on a log odds ratio scale, the derived phenotype-disease association is obtained by 

division, when study results suggest that the homocysteine difference could reasonably 

be either side of zero, then the confidence interval for the ratio could stretch to plus or 

minus infinity (Fieller, 1954; Kendall and Stuart, 1973). In some cases this infinite 

range is accompanied by a gap, or clearing, in the forest plot associated with values that 

the ratio is very unlikely to take. The most important feature of Figure 5.5 is the poor 

precision in the derived estimate that can be obtained from most individual studies. 

Indeed, several derived estimates have infinite variance.

Figures 5.6a and 5.6b present plots of the log odds ratio of genotype-disease against the 

mean difference in homocysteine, separately for homocysteine measured in cases and 

controls. The two figures include all studies that either measured homocysteine only in 

cases or controls, or that measured it in both and reported separate estimates for the two 

groups. To allow for the large difference in precision of the different studies, the 

individual estimates are plotted as ellipses, with their axes inversely proportional to the 

standard error of the log odds ratio of genotype-disease and the mean change in 

homocysteine. Both figures show an approximately linear relationship, with the line 

passing close to the origin. As anticipated the pattern is somewhat clearer when control 

data are used. The unweighted correlations observed in Figures 5.6a and 5.6b are 0.37 

(/?=0.29) and 0.78 (p=0.01), respectively.

Table 5.1 reports the results of Model A and Model B for all parameters estimated. In 

particular, 0 represents the log odds ratio of the phenotype-disease association, that is 

the increase in the log odds of CHD associated with a unit increment of homocysteine.

It may be more informative to rescale this odds ratio for increments other than a unit 

increase in homocysteine. For instance, the odds ratio of CHD for a standard reference 

increment of 5 /rniol/1, as used by Wald et al. (Wald, Law and Morris, 2002), is 1.48 

(95% CrI: 1.15 to 1.99) and 1.52 (95% CrI: 1.17 to 2.06) for Model A and B, 

respectively, while for an increment of 3 /xmol/1 considered to reflect the possible size 

of a lowering homocysteine intervention with folic acid supplementation 

(Homocysteine Lowering Trialists' Collaboration, 1998), is 1.26 (95% CrI: 1.09 to 

1.51) and 1.29 (95% CrI: 1.10 to 1.54) for Model A and B, respectively.
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TABLE 5.1 -  Results for Model A and Model B, expressed as median with 95% Crl

MODEL
PARAMETER

e
(95%Crl)

My
(95%Crl)

Tx
(95%Crl)

Ty
(95%Crl)

P
(95%Crl)

Model A
0.078 

(0.026 to 0.137)

2.673 

(1.971 to 3.437)

0.101 

(0.010 to 0.307)

3.178 

(1.594 to 3.958)

0.689 

(0.095 to 0.913)

Model B
0.082 

(0.026 to 0.147)

2.640 

(1.916 to 3.386)

0.120 

(0.041 to 0.280)

3.014 

(1.589 to 3.945)
Not in the model

Sensitivity analyses showed that the results of Model A are sensitive to the values 

specified for the hyperparameters chosen to represent a priori beliefs regarding the 

assumed variances and correlation in the Wishart prior distribution (Appendix 4, Table 

B). Indeed, it will usually be difficult to use Model A since there is unlikely to be 

sufficient information to estimate the between-study correlation accurately, so that any 

prior distribution will necessarily exert some influence on the final results. For both 

Model A and Model B, the results of sensitivity analyses considering different prior 

distributions for the heterogeneity terms, rx and ry, showed differences in the estimates 

of these parameters but minimal impact on the estimates of the parameters of interest, 0 

and py (Appendix 4, Table C).

5.6.3 Effect of ignoring correlation

Performing two independent meta-analyses on genotype-disease and genotype- 

phenotype data and then estimating the phenotype-disease association based on the two 

pooled estimates means ignoring the correlation between the two outcomes, disease and 

phenotype, when measured in the same study. In general, multivariate models should 

be used whenever the outcomes of interest are correlated and measured within the same 

studies. However, the potential gain in terms of increased precision or reduced bias 

may be small, depending on the proportion of studies that measure both outcomes. 

When ignoring correlation in the example of the MTHFR gene, homocysteine and 

CHD, the OR for a 5pmol/l increase in homocysteine was 1.44 (95% Crl: 1.10 to 1.94), 

as compared with 1.48 (95% Crl: 1.15 to 1.99) and 1.52 (95% Crl: 1.17 to 2.06) of the 

multivariate meta-analysis when using Model A and Model B, respectively. Although 

in this example there is not much difference between the results of univariate and 

multivariate models, the impact of properly accounting for the correlation might be
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greater in other situations.

5.7 Discussion

5.7.1 Mendelian randomisation: genotype as an instrumental variable

Mendelian randomisation is an example of the use of an instrumental variable; a 

technique that has been used in econometrics since the 1920s but only occasionally 

applied to health sciences to control for confounding and measurement error (Angrist, 

Imbens, and Rubin, 1996; Greenland, 2000). These methods derive an unconfounded 

estimate of the association between the exposure and outcome of interest from the 

observed relationship of an instrumental variable with both exposure and outcome. The 

use of instrumental variables, despite their potential role in epidemiology, has been 

mainly limited to measurement error (Hardin and Carroll, 2003) and to the field of 

randomised clinical trials. A typical application in randomised trials is to use the 

allocated treatment as an instrumental variable to control for the bias due to non- 

compliance as an alternative to the more usual analysis by intention-to-treat (Angrist, 

Imbens, and Rubin, 1996). A likely explanation for the limited use of these methods is 

that it is often difficult to find suitable instrumental variables, since the method requires 

that the variables have not only an unconfounded relation with both the exposure and 

the outcome of interest, but also an association with the outcome that is explained by 

the association with the exposure. In some situations Mendelian randomisation allows 

the subject’s genotype to be used as an instrumental variable, with genetic studies 

providing information on the impact of a specific mutation on both the phenotype (risk 

factor) and disease of interest. If the gene is carefully chosen then both associations are 

unconfounded because the genotype is effectively randomly assigned, but the important 

assumption that the genotype is associated to the disease only through the phenotype of 

interest needs to be carefully assessed (Davey Smith and Ebrahim, 2003).

5.7.2 The proposed meta-analytical approach

Although genotype-disease associations are becoming better understood, it is only 

when we also have information about the causal pathway that we open up the 

possibility of preventive or therapeutic intervention. Thus, while the association
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between MTHFR polymorphisms and CHD is scientifically interesting, disease 

prevention becomes possible only when we understand that this effect acts, at least in 

part, through homocysteine. Dietary folate supplementation is a relatively simple 

intervention that can be implemented at a population level to lower homocysteine and 

thereby reduce CHD. This intervention was introduced in the U.S.A. in the late 1990's 

with the fortification of cereals and grains (Rader, 2002). Classical epidemiological 

studies may provide evidence about the phenotype-disease association but it will almost 

certainly be affected by confounding and/or reverse causation. The use of Mendelian 

randomisation offers a novel way of deriving unconfounded estimates, although it 

should be remembered that Mendelian randomisation makes its own assumptions about 

the pathway from gene to disease (§ 5.3.2). The most crucial assumption is that the 

genotype influences the disease risk only through the modification of the specific 

phenotype. If the genetic polymorphism also alters the risk of the same disease via 

other pathways, then the estimate of a specific phenotype-disease association might be 

seriously biased. In the example of homocysteine and CHD this is probably not a 

problem, but for instance, polymorphisms of APO-E gene affect several different 

intermediate phenotypes related to lipid metabolism and atherosclerosis (Davey Smith 

and Ebrahim, 2003). Consequently it is advisable to limit the use of Mendelian 

randomisation to studies where there is good biological knowledge of the genotype- 

phenotype-disease pathway.

The approach proposed in this chapter stresses the need for meta-analyses to review 

simultaneously the stages in the genotype-phenotype-disease pathway and by 

implication advocates that, whenever possible, individual studies of genotype-disease 

associations should collect information on intermediate phenotypes. In fact, the analysis 

of studies which measure both associations allow an insight into the inter-relationships 

between genotype, phenotype and disease and gives the opportunity to check the 

assumptions of the analysis. In this respect, a meta-analysis of small studies might be 

more informative than a single large prospective study. In some meta-analyses 

inconsistencies across studies could result in departures from the linear trend seen in 

Figure 5.6. This might happen if study populations differ with respect to phenotype 

measurement, disease definition, gene-environment interactions, compensatory 

developmental processes (canalisation) or linkage disequilibrium with functional alleles
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(Davey Smith and Ebrahim, 2003). Theoretical considerations (§ 5.4.2), and the 

example presented, suggest that it may be safer for primary researchers to measure the 

phenotype in controls in order to avoid any possibility of bias due to reverse causation. 

If the phenotype level is measured in both cases and controls, then two separate 

estimates should be reported. For meta-analyses, our recommendation is to perform 

sensitivity analyses, with phenotype data obtained on cases analyzed separately from 

those obtained on controls.

The need for an integrated meta-analytical approach to genetic studies when using 

Mendelian randomisation is particularly important. The uncertainty associated with the 

derived estimate of the phenotype-disease association can be large as it depends on 

uncertainty in both the estimate of the genotype-phenotype and genotype-disease 

association (Thompson, Tobin and Minelli, 2003). It is crucial in the use of Mendelian 

randomisation that both estimates are sufficiently precise, but especially that of the 

genotype-phenotype association. Such precision is only likely to be obtained through a 

meta-analysis of all available evidence. In fact, at present, almost all genetic studies are 

statistically underpowered to detect the relatively small effects of the many gene 

variants that underlie common, complex diseases (§ 1.6). Although massive reductions 

in genotyping costs offer the prospect of larger studies, study size remains limited by 

the cost of proper phenotyping (Thompson, 2002).

While meta-analyses can, in theory at least, partially alleviate the problem of 

inadequate statistical power, they cannot control the problems of publication and 

reporting bias (Sutton et a i, 2000; Sterne, Egger and Smith, 2001), that are thought to 

be particularly important in genetic epidemiology (Ioannidis et a i, 2001; Colhoun, 

McKeigue and Davey Smith, 2003). However, an integrated meta-analytical approach 

can start to address these issues by comparing the pooled estimates for genotype- 

phenotype and genotype-disease associations in studies reporting either only one or 

both associations, and by drawing the funnel plots in such a way that allows 

comparison between the two types of studies for each association.

The analysis of the correlation between the genotype-disease odds ratio and the 

genotype-phenotype difference, as typified by Figure 5.6, has to be interpreted with

Cosetta Minelli Ph.D. Thesis, September 2005 141



CHAPTER 5 Mendelian Randomisation

care. The plot is based on data aggregated over studies and is analogous to an 

ecological study and potentially subject to the ecological fallacy, i.e. patterns seen in 

aggregate data do not necessarily translate to the individual (Greenland and Robins, 

1994). Thus, when we see an increase in the risk of disease in studies that show an 

increased difference in phenotype it is probable, but not certain, that we would see a 

similar effect at the individual level. Equally a failure to see a pattern in aggregate data 

does not rule out the possibility of an individual level effect. Obviously an individual 

level causal effect is required for an intervention on the phenotype to have an impact on 

the risk of disease.

It is tempting to add non-genetic studies of the phenotype-disease association to the 

integrated approach presented here, if only to test whether they accord with the estimate 

derived from the application of Mendelian randomisation. Unfortunately the sample 

sizes required to establish equivalence of the measured and derived estimates are such 

that even a large meta-analysis may not suffice (Thompson, Tobin and Minelli, 2003). 

This clearly is an area that requires more work because the ultimate aim should be to 

produce an integrated meta-analysis that links together all relevant phenotypes, diseases 

and genotypes, including heterozygotes.

5.7.3 Choice of the multivariate model

When synthesising evidence of genetic studies for use in a Mendelian randomisation 

analysis, studies evaluating genotype-phenotype, genotype-disease or both associations 

together are likely to be encountered. Simulations suggest that in this situation the 

within-study correlation is likely to be very small, but it is still important to allow for 

the between-study correlation in the heterogeneities of studies that evaluate both 

genotype-phenotype and genotype-disease associations. Heterogeneities on the 

genotype-phenotype and genotype-disease associations may be highly correlated but a 

multivariate model that parameterises the heterogeneity directly (Model A) is difficult 

to fit because the correlation is poorly estimated. An alternative approach is therefore 

advocated, which treats the heterogeneities on genotype-phenotype and phenotype- 

disease as being independent, and implicitly defines the correlation between the 

heterogeneities on genotype-phenotype and genotype-disease (Model B).
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A different method, which has not been investigated but could also be considered, is 

that of estimating the phenotype-disease association within each study evaluating both 

genotype-phenotype and genotype-disease associations. These estimates of the 

phenotype-disease association could be combined in the meta-analysis model with the 

indirect estimates of the phenotype-disease association obtained from those studies that 

only estimate either the genotype-phenotype or the genotype-disease association. 

Further work would be required in order to assess whether and when this method may 

be advantageous compared to the methods proposed.

The results of the two multivariate models presented in this chapter were obtained 

using a Bayesian approach with vague prior distributions for all parameters. However, 

the two models were also implemented by Thompson (2005 -  included in Addenda) 

using a maximum likelihood approach. The use of Markov chain Monte Carlo 

(MCMC) methods for parameter estimation in the Bayesian approach avoided the 

requirement for Taylor series approximations of the maximum likelihood approach, 

which might have an impact on the results. Although simulation methods could also be 

used for maximum likelihood inference (Geyer, 1996), they are more difficult to 

implement, mainly because of the current lack of suitable software. However, despite 

the differences in the Bayesian and maximum likelihood approach in terms of 

approximations and structure, the results for the specific example considered were very 

similar. For the maximum likelihood as for the Bayesian approach, the paucity of 

information to accurately estimate the between-study correlation in Model A will 

usually make it difficult to use this model.

When using a Bayesian approach re-parameterisation may not be theoretically 

necessary as the posterior distribution of functions of the model parameters may be 

obtained directly from the MCMC samples. It can nevertheless, depending on the 

precise sampling algorithm used (Brooks, 1998), be desirable to re-parameterise in 

order to improve performance of the MCMC algorithm, especially in a hierarchical or 

non-linear model setting (Gelfand, Sahu, and Carlin, 1995). An important issue raised 

by the use of a Bayesian approach is the choice of vague distributions (O'Hagan, 1994; 

Spiegelhalter, Abrams, and Myles, 2004). In the meta-analysis context presented in this 

chapter, particularly important is not only the choice of the prior distribution used for
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the between-study variance (§ 1.5.1, § 2.7 and § 2.8), but also of the values assumed for 

the parameters of the Wishart prior distribution when adopting Model A. Finally, 

although not considered here, a fully Bayesian approach with prior distributions based 

on data from other pertinent studies or expert opinion and other evidence could be 

adopted. However, elicitation of beliefs regarding the model parameters in such meta

analysis (e.g. correlations) is not straightforward (Gokhale and Press, 1982; Garthwaite 

and Dickey, 1988; Garthwaite, Kadane and O’Hagan, 2005).

5.7.4 Conclusions

Mendelian randomisation is an important tool for epidemiologists not only for testing 

the hypothesis of the existence of a particular phenotype-disease association found in 

classical observational studies - which are prone to confounding - but also for 

estimating the magnitude of the association. However, due to the great uncertainty in 

the estimates of phenotype-disease associations derived using Mendelian 

randomisation, evidence synthesis of genetic information on both genotype-disease and 

genotype-phenotype association is of crucial importance in obtaining estimates with 

sufficient precision. Such meta-analysis requires a multivariate approach and an 

adequate modelling of the underlying interrelated heterogeneities of the three 

associations. An integrated meta-analytical approach offers the possibility of checking 

some crucial assumptions underlying Mendelian randomisation. Should these 

assumptions not be satisfied, then the advocated “deconfounding” power of Mendelian 

randomisation would no longer be true.
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6  GUIDELINES

6.1 Chapter overview

This chapter addresses the practical issue of how to provide comprehensive 

recommendations that might assist investigators undertaking a meta-analysis of genetic 

association studies. In § 6.2, an overview of the quality issues reported for published 

meta-analyses of genetic association studies is presented, and these findings are 

compared with those reported in other fields of medicine. Section 6.3 explains the need 

of comprehensive recommendations in this field, in the light of guidelines developed 

for general meta-analysis. In § 6.4, a set of guidelines are proposed which combine the 

findings presented in the previous chapters with the evidence already available in the 

literature. In particular, § 6.4.1 presents recommendations for dealing with general 

meta-analysis issues based on existing meta-analysis guidelines for RCTs and 

observational studies, which are adapted to consider characteristic problems of this 

field. Guidelines covering the specific issues of meta-analysis of genetic association 

studies are presented in § 6.4.2 at two levels of sophistication, one relatively simple 

although methodologically correct, the other more sophisticated but more efficient. In § 

6.5 the recommendations are extended to consider the case of the meta-analysis of 

genetic association studies using Mendelian randomisation. Finally, § 6.6 discusses the 

relevance of guidelines in this field, the limitations of the guidelines proposed and the 

need for further work.

6.2 Evidence on the quality of published meta-analyses

The problem of poor methodological quality in the field of genetic association studies 

affects first of all primary studies. Indeed, poor quality has been considered one of the 

explanations for the lack of reproducibility of study results, which represents such a 

major problem of this field (Cardon and Bell, 2001). Meta-analysis is advocated as an 

important tool in making sense of conflicting results from different studies, but this can 

be achieved only if the evidence synthesis is performed using appropriate methodology. 

A few papers have recently evaluated different aspects of the quality of meta-analyses 

of genetic association studies, and their conclusion is unanimously that meta-analyses
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of genetic association studies could be improved in many respects (Attia, Thakkinstian 

and D'Este, 2003; Munafo and Flint, 2004; Salanti, Sanderson and Higgins, 2005). The 

flaws in the conduct and reporting of meta-analysis highlighted in these reviews include 

both general meta-analysis issues and issues that are specific to this field.

Attia and colleagues reviewed meta-analyses of genetic association studies published 

between 1991 and 2000 (Attia, Thakkinstian and D'Este, 2003), with the aim of 

evaluating their quality and highlighting how traditional meta-analysis issues, as well as 

issues specific to the field, had been dealt with. Since no quality scale specific for meta

analyses of genetic association studies has been developed yet (§ 6.3), these authors 

used a set of criteria which included five general issues and two issues specific of this 

field. The five general items were: 1) description of the search strategy; 2) description 

of the inclusion/exclusion criteria; 3) whether the authors performed any test for 

heterogeneity and whether, in the presence of heterogeneity, they tried to identify the 

cause; 4) description of the statistical methods used to combine study results and 

whether these corresponded to accepted meta-analytical methods; 5) whether the 

authors explored the possibility of publication bias, and if so how. The two specific 

items were: 1) whether the authors checked Hardy-Weinberg equilibrium (HWE) and 

how; 2) what genetic model the authors chose to pool the data. Based on these criteria, 

they assessed the quality of the 37 genetic meta-analyses identified (see § 3.3), and 

concluded that meta-analyses of genetic association studies could be improved in 

virtually all respects.

Their results for the five general methodological issues were the following:

1. In almost all cases MEDLINE was the only source of studies used by the 

investigators. Twenty-eight studies (76%) did not report their search terms, and 

13 (35%) did not even state their sources.

2. Nineteen studies (51%) did not describe either inclusion or exclusion criteria.

3. Nine studies (24%) did not assess statistically the presence of heterogeneity. 

Among the 13 studies which found and reported heterogeneity, 5 (38%) did not 

explore the reasons for that and 8 (62%) proceeded using a fixed effect model.
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4. Among the 13 systematic reviews where a meta-analysis was performed, only 1 

(8%) did not describe the statistical method used to combine the data. All of the 

other 12 meta-analyses used standard methods; in particular, 4 (33%) used a 

random effects model, 7 (58%) used a fixed effects model, and 1 (9%) used 

both.

5. Thirty (81%) did not check for publication bias (in those which did, visual 

inspection of a funnel plot was the sole method used).

In order to put the findings of Attia’s review into context, a literature search was 

performed to identify similar reviews that evaluated the quality of published meta

analyses in different fields of medicine. The electronic search in MEDLINE, from 1966 

to August 2005, proved to be particularly difficult due to a huge number of records 

obtained when trying to be comprehensive. After attempting different methods, the 

search strategy detailed in Figure 6.1 was used, where the search for keywords was 

limited to the title of the papers. This yielded 544 records, to which only one (Sacks, 

1987) was added based on the cross-reference checking of all relevant papers. The 

retrieval of the articles was limited to those published in English and available in our 

library, and those which assessed more than 10 meta-analyses. In the reviews retrieved, 

different criteria were used by the authors to evaluate the quality of the meta-analyses, 

and not always these criteria were comparable with those adopted by Attia and 

colleagues. In particular, 7 reviews were excluded since they reported on less than two 

items out of the five described in Table 6.1. Details of the inclusion and exclusion of 

reviews are presented in Figure 6.2. Among the 13 reviews included, Oxman and 

Guyatt scale was adopted in about 60% of the cases (Oxman and Guyatt, 1991); 

without additional information provided by the authors, this quality scale contributed to 

three of the five items in Table 6.1. The results of the 13 reviews included, together 

with the field of research considered, number of meta-analyses included and years of 

publication of the meta-analyses, are shown in Table 6.1.

The findings reported in Table 6.1 are not comprehensive of what available in the 

literature and suffer from other limitations, including the fact that some meta-analyses 

might have been included in more than one review. Nonetheless, they provide a
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Figure 6.1 -  Search strategy used to identify in MEDLINE reviews that 
evaluated meta-analyses published in any field of medicine

h Search ^istorY ’' ** * * « * ' 2 Results
1 meta-analysis.m titl. 5702
2 meta-analvses.m titl. 380
3 systematic review.m titl. 3435
4 systematic reviews.m titl. 441
5 1 or 2 or 3 or 4 9577
6 quality.m titl. 59819
7 evaluat$.m titl. 221443
8 assessment.m titl. 90177
9 survey.m titl. 47373
10 appraisal.m titl. 4960
11 methodoloq$.m titl. 15199
12 6 or 7 or 8 or 9 or 10 or 11 426684
13 5 and 12 544

Figure 6.2 -  Flow chart of the inclusion and exclusion of reviews identified by MEDLINE search

Reviews included 
N=13

Published in journals not available 
N=8

MEDLINE search (1966 - Aug. 2005) 
N=544

Identified by cross-reference checking 
N=1

Not published in English 
N=3

< 2 comparable quality criteria reported 
N=7

Only summary information on M-A quality 
N=4

Not relevant, based on title and abstract 
N=502

Reviews screened  
N=545

<= 10 meta-analyses included 
N=8

background which helps evaluating how the methodological quality of meta-analyses of 

genetic association studies compares with that observed in other areas of medical 

research. Table 6.1 clearly shows how the need for improvement of the quality of 

published meta-analyses is not limited to the field of genetic association, but indeed
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Table 6.1 -  General methodological issues reported in published meta-analyses of genetic association studies compared to published general m eta
analyses

Author, year Field of research N. of 
Meta-analyses

Years of 
publication of 
meta-analyses

METHODOLOGICAL ISSUES (% of meta-analyses fulfilling the criteria)

Search
strategy
reported

Inclusion
criteria

reported

Pooling
methods
reported

Statistical
heterogeneity

evaluated

Publication
bias

evaluated
Attia, Thakkinstian, and 
D'Este, 2003 Genetic association studies 37 1991-2000 24 49 92 76 19

Dixon eta!., 2005 General surgical literature* 51 1997-2002 67 70 67 / /

Shea etal., 2002 Any field of medicine 
RCTs

52 Cochrane 1993-1996 31 74 98 29 8

52 Journals 1990-1995 64 46 85 65 17

Moheretal., 2002 Paediatric complementary and alternative 
medicine, and conventional therapy* 66 Not stated-2001 52 64 41 38 17

Bhandari etal., 2001 Orthopaedic surgery
RCTs and observational studies 40 1984-1999 83 78 70 / /

Choi et ai, 2001 Anaesthesia* 82 1989-1999 73 81 82 35 5

Kelly etal., 2001 Emergency medicine* 29 1990-1998 55 69 74 / /

Fishbain etal., 2000 Chronic pain treatment* 16 1988-1998 / 88 / 38 19

Jadad etal., 2000 Asthma
RCTs & observational studies 50 1988-1998 66 60 52 40 16

Jadad etal., 1998 Any field of medicine 
RCTs

36 Cochrane
1995 /

90
/

47
/

39 Journals 46 54

Jadad and McQuay, 1996 Pain research
RCTs & observational studies 80 1980-1993 61 73 71 / /

Sacks etal., 1996 Any field of medicine 
RCTs 58 1987-1990 69 67 78 47 41

Assendelft et a i, 1995 Spinal manipulation 
RCTs 51 1977-1993 27 35 / / /

Sacks etal., 1987 Any field of medicine 
RCTs 86 1955-1986 35 44 66 23 2

* Not stated whether meta-analyses of RCTs, observational studies, or both.
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represents a more general problem. This also applies to Cochrane meta-analyses published 

in The Cochrane database of Systematic Reviews, although they tend to show higher quality 

compared to meta-analyses published on peer-review journals (Jadad et a i, 1998; Olsen et 

al., 2001; Shea, 2002). Overall, the variability of the figures reported for the five items in 

Table 6.1 appears to be more associated with differences across disciplines than years of 

publication of the meta-analyses. As regards the meta-analyses of genetic association 

studies, the comparisons in Table 6.1 shows how the description of the search strategy 

adopted by the authors is particularly flawed compared to other fields of medicine, with only 

24% of the meta-analyses reporting this information. This is somewhat surprising, given that 

the importance of this aspect in systematic reviews and meta-analyses is well recognised 

(Hunt, Jaeschke and McKibbon, 2000; Robinson and Dickersin, 2002). The problem might 

be worse in meta-analyses of genetic association studies due to the lack of recommended 

strategies for the electronic literature search, which instead have been developed for the 

identification of RCTs by the Cochrane Collaboration

(http://www.cochrane.dk/cochrane/handbook/hbook.htm). Poor compared with meta

analyses in other fields is also the reporting of inclusion criteria, particularly when 

comparing meta-analyses published in similar years. On the other side, the reporting of the 

statistical methods used to combine the data seems very good in meta-analyses of genetic 

association studies; as reported above, Attia's review showed how accepted meta-analysis 

methods were always used, although this does not imply that they were the most appropriate 

in each case. Particularly good in comparison to meta-analyses in other field of medicine 

seems to be the assessment of statistical heterogeneity based on the use of a heterogeneity 

test. This is probably explained by the general awareness to the extent of the problem of 

variability in study results in genetic association studies (§ 3.2.2). Finally, the assessment of 

the presence of publication bias based on funnel plots or other methods appears to be very 

poor, although this seems to reflect a general problem of published meta-analyses across all 

fields of medicine.

As regards the other two specific methodological items evaluated by Attia and colleagues, 

their findings were:

1. Seventy-six percent of the meta-analyses did not assess the presence of HWE, and 

among those which did that, 33% did not limit the evaluation of HWE to control 

subjects as should be done (see § 4.2.1).
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2. The choice of how to pool data according to the underlying genetic model showed 

how the approaches used varied considerably, and justification for the choice of the 

approach was not provided in most cases (see § 2.3). In particular, 24% of the meta

analyses determined association solely by comparing allele frequency between cases 

and controls; 33% determined the effect by assuming one specific genetic model, and 

among these, 25% did not give any reason for the choice; finally, 43% performed 

multiple comparisons by applying different models (among which, only 13% 

adjusted for multiple testing).

6.3 Available guidelines and need for more

From what has been discussed in the previous section, it is reasonable to conclude that the 

quality of meta-analyses of genetic association studies do need to improve, and this concerns 

both the traditional meta-analysis issues and the methodological problems specific to this 

field. Such improvement is becoming an urgent need for the scientific community, due to 

the speed to which the number of meta-analyses of genetic association studies has increased 

in the last few years. While traditional meta-analysis issues encountered in the field of 

genetic association studies might benefit from borrowing and adapting recommendations 

developed for meta-analyses of RCTs and classical observational studies, specific issues 

require recommendations developed ad hoc.

In 1999, a conference for the Quality of Reporting of Meta-analyses (QUOROM) of RCTs 

was organised following the CONSORT initiative to improve the quality of reporting of 

RCTs (Begg, 1996), and its proceedings summarised and published (Moher et al., 1999). In 

fact, from 1984 about 20 papers had already been published with checklists for meta

analyses (Shea, Dube' and Moher, 2001), and this included the guidelines for the conduct 

and reporting of meta-analysis of RCTs developed in 1995 by an international group of 20 

scientists (Cook, Sackett and Spitzer, 1995). However, a consensus across disciplines did 

not seem to have developed at that time. The QUOROM statement was well received by the 

scientific community, and it soon became evident that a similar statement was also needed 

for the meta-analysis of observational studies, and in 2000 the MOOSE statement for the 

reporting of meta-analyses of observational studies was published (Stroup et a l , 2000).
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In 1998, an international collaboration of individuals and organisations from different 

backgrounds called “Human Genome Epidemiology Network” (HuGE Net) was formed, 

which aimed at developing and disseminating population-based human genome 

epidemiological information (Centre for Disease Control and Prevention, 1999). Among the 

future objectives of this group, one is the development of guidelines for the evidence 

synthesis of genetic association studies, in recognition of the lack of consensus and need for 

more methodological work. This was the subject of a recent HuGE Net workshop, where the 

different methodological issues were discussed (Cambridge, 3-4 November 2004; report of 

the workshop available at http://www.cgkp.org.Uk/work/activities.html#syst_rev). The 

workshop highlighted how, up to now, the methodological research carried out in the field 

of meta-analysis of genetic association studies seems to have focused more on the appraising 

of genetic association studies than on other aspects of the meta-analysis protocol, such as the 

more specific statistical issues. In 2002, based on the work of a previous HuGE Net 

methodological workshop, Little and colleagues published a comprehensive checklist for the 

appraising of primary genetic association studies (Little et al., 2002). In 2003 Colhoun and 

colleagues proposed a shorter checklist that aimed at helping referees deciding whether a 

genetic association study had addressed the important methodological issues and might be 

suitable for publication (Colhoun, McKeigue and Davey Smith, 2003).

A number of authors have emphasised the need for quality improvement of meta-analyses of 

genetic association studies and given suggestions on how to achieve it (Attia, Thakkinstian 

and D'Este, 2003; Munafo and Flint, 2004; Salanti, Sanderson and Higgins, 2005), but no 

guidelines or comprehensive recommendations have been published yet. General 

recommendations of these authors are to; report the inclusion and exclusion criteria adopted; 

assess the presence of statistical heterogeneity and investigate possible causes; assess 

evidence of publication bias; for other general issues, Attia and colleagues suggest that 

meta-analyses of genetic association studies should adhere to general guidelines developed 

for the meta-analysis of traditional observational studies (Stroup et al., 2000). Regarding the 

choice of how to pool data across genotypes, Attia and colleagues discourage the use of per- 

allele analysis, as well as the use of genotype model-based analyses unless there is a priori 

knowledge of what the genetic model might be. As for the issue of HWE, some authors 

recommend exclusion of studies showing statistical significant departures from HWE 

(Munafo and Hint, 2004), while others suggest performing sensitivity analyses to assess the
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impact of studies showing departures from HWE on the results of the meta-analysis (Attia, 

Thakkinstian and D'Este, 2003; Salanti, Sanderson and Higgins, 2005).

The guidelines proposed in the following sections, although covering all methodological 

aspects of the meta-analysis of genetic association studies, will focus on those more 

statistical specific issues for which consensus and recommendations are particularly lacking. 

For such issues, guidelines are provided at two levels of statistical complexity, with the aim 

of addressing the needs of a broad spectrum of investigators involved in the evidence 

synthesis of genetic association studies. These guidelines are based on the work presented in 

the previous chapters and, although far from being complete and definitive, represent an 

attempt to improve the quality of the meta-analysis of genetic association studies in the light 

of what is known so far.

6.4 Proposed guidelines

6.4.1 General issues

In order to provide recommendations on how to deal with the general methodological issues 

of the meta-analysis of genetic association studies, the QUOROM and MOOSE statements 

for the reporting of meta-analysis of RCTs and observational studies, respectively, have 

been reviewed and those items that seemed relevant to the field of genetic association 

studies have been selected. Table 6.2 summarises these recommendations and their potential 

relevance to the field of genetic association. The choice of what items should be relevant to 

the meta-analysis of genetic association studies has been made after reviewing Attia’s paper 

(Attia, Thakkinstian and D'Este, 2003) and the proceedings of the Huge Net methodological 

workshop, and in the light of the checklist proposed by Little and colleagues (2002) for the 

appraising of primary genetic association studies. Based on these same sources and on the 

work presented in the previous chapters of this thesis, other items have been added to those 

identified as relevant in Table 6.2, and are highlighted in red in Box 6.1, where the 

recommendations for the general issues of the meta-analysis of genetic association studies 

are presented. It can be noted in Table 6.2 how general recommendations developed for 

meta-analysis of RCTs apply to that of genetic association studies, while recommendations 

for meta-analysis of observational studies regarding the problem of confounding do not 

seem relevant to this field. In fact, although genetic association studies are observational in
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Table 6.2 -  Selection of items to inform guidelines on the general meta-analysis issues encountered 
in the meta-analysis of genetic association studies (x = used in guidelines)

Item
Meta-analysis of 

RCTs

(iQUOROM)

Meta-analysis of 
observational 

studies

(MOOSE)

Relevance to 
meta-analysis of 

genetic association  
studies

Literature search

Describe the information sources in detail X X Yes

Search strategy Described restrictions X Yes
Describe search strategy in detail X Yes

List of citations located & justification for exclusion X Yes
Description of addressing articles in other languages X Yes

Study selection
Definition of inclusion and exclusion criteria X X Yes

Study validity assessm ent
Masked condition X X Yes
Quality assessm ent X X Yes

Data extraction
Describe methods in detail X X Yes
Describe study characteristics (din. heterogeneity) X Yes

Methods for pooling
Describe statistical methods for combining results X X Yes

Investigation of heterogeneity
A ssessm ent of statistical heterogeneity X X Yes

Sensitivity and subgroup analysis
Describe sensitivity & subgroup analyses X X Yes
Rationale for a  priori sensitivity & subgroup analyses X Yes

Publication bias
A ssessm ent of publication bias X X Yes

Reporting of results
Provide summarising flow-chart of study selection X Yes
Present descriptive data for each study X X Yes
Present data needed to calculate effect sizes and CIs X Yes
Other Issues
A ssessm ent of confounding X No
Adjusted analyses for possible confounders X No

nature, they tend to be more similar to RCTs in that the exposure to genotype is randomly 

determined at conception (§ 5.2). The only potential confounding of genetic associations is 

thought to be population stratification, which is caused by a mixture of different ethnic 

groups in the study population whenever the frequency of the polymorphism and the disease 

risk vary between ethnic groups and the study fails to match cases and controls for ethnicity 

(§ 4.2.2). Apart from being an indicator of quality for primary studies, this is not an issue 

when combining study results in a meta-analysis where the difference in ethnicity is across 

studies (or study groups), within which both cases and controls come from the same ethnic 

group (§ 3.7.1).
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• Literature search

As in any meta-analysis, the search should be comprehensive. Although there is no direct 

evidence on how well MEDLINE covers genetic association studies, research in the field of 

RCTs shows how MEDLINE may miss a significant number of trials if used in isolation 

(Suarez-Almazor et a l , 2000). For this reason investigators should always use more than 

one electronic database, and they should also make use of grey-literature, reference lists and 

contacts with experts of the field. In general, database searches for gene-disease association 

studies should take the form: ("name o f gene" OR "synonyms") AND ("name o f disease" OR 

"synonyms"). Unlike in meta-analysis of RCTs, database searches for genetic association 

studies should avoid the use of a methodological search filter, since there is currently 

inconsistent use of study design terms in papers and indexing. Such a filter should only be 

considered in situations when searches based on gene and disease yield an overwhelming 

number of citations. The search should not be restricted to English language, since, for 

example, much genetics research is undertaken in China and published in Chinese. 

Information sources and restrictions used for their search strategy should be described in 

detail.

• Study selection

Inclusion and exclusion criteria should be defined a priori. In general, inclusion criteria 

should try to be comprehensive regarding aspects of study designs and potential 

susceptibility to bias, and sample size, but sensitivity analyses should be planned to assess 

the robustness of the results and conclusions of the meta-analysis. In specific cases, it may 

be reasonable to exclude small studies, ideally using a pre-defined cut-point, in order to 

make the review more manageable; however this might introduce bias. The inclusion and 

exclusion criteria adopted should be described in detail.

• Study quality assessment

As in any meta-analysis, assessing the quality of primary studies is an important aspect of 

the meta-analysis of genetic association studies. Although incorporating study quality into 

study weighting in meta-analysis is discouraged by most authors, there is agreement that 

quality assessment of primary studies should be carried out routinely, possibly using scales 

or checklists developed for the specific field of application. This allows excluding studies 

with gross deficiencies and, more importantly, performing sensitivity analyses to evaluate
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whether studies of lower quality tend to provide different results from studies of higher 

quality (Egger, Smith and Altman, 2001). Little and colleagues provide a comprehensive 

checklist for the appraising of genetic association studies (Little et a l , 2002), which, 

although originally not intended for use in isolation as a quality tool, is being used in 

practice.

• Data extraction

Information on the way that participants were selected should be recorded, in particular the 

selection of cases and controls in case-control designs. Whenever possible, results should be 

extracted for each genotype group; results based on unadjusted analyses should be used 

rather than results based on analyses that adjust for potential confounders using regression 

techniques. However, adjusted results might also be extracted when reported, for use in a 

sensitivity analysis. Important information that should be recorded for each study is the 

genotyping method adopted and, whenever available, the rate of genotyping error detected, 

which in the literature has been reported to vary widely, from 1 to 30%, depending on the 

technique used as well as other factors (§ 4.2.2). Evidence on the presence and magnitude of 

genotyping error in a study is important when interpreting an observed departure from 

HWE, since genotyping error might not only lead to loss in precision but also bias in the 

estimate of the genetic effect. Although population stratification is unlikely to be an 

important problem in well-designed studies, it might be present and bias the results of 

studies with lower quality. Thus, information on measures taken to prevent problems of 

population stratification should be extracted when reported.

• Investigation of heterogeneity

As in any meta-analysis, attempts should be made to assess the presence of heterogeneity 

between study results. Although graphically the forest plot used to present the results of a 

meta-analysis might help detecting heterogeneity, this should be formally evaluated on 

statistical grounds as well. Usually authors of meta-analysis assess the presence of statistical 

heterogeneity exclusively through statistical testing, but methodological research suggests 

that evaluating the statistical significance of a test for heterogeneity should not be used in 

isolation. The main problem of heterogeneity tests is that they have very low power, 

particularly when the number of studies included in the meta-analysis is small. Thus, 

estimation of the magnitude of heterogeneity should also be evaluated and reported (Higgins
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and Thompson, 2002; Higgins et a l , 2003). Moreover, investigation of the possible causes 

of heterogeneity should always be performed using sensitivity analysis, subgroup analysis or 

meta-regression. The rationale for the selection of the variables on which to base such 

analyses should also be described.

• General meta-analytical methods for pooling

General meta-analysis methods for pooling study results can be classified in two categories, 

fixed effects models and random effects models (see § 1.4). The fixed effect model assumes 

no heterogeneity, that is all studies estimate the same true underlying effect size with the 

estimates differing only because of random fluctuation, and the combined effect is 

calculated as a weighted average of all estimates. In the random effects model, studies are 

assumed to estimate different underlying effect sizes, and a random term is included in the 

model to account for the between-study heterogeneity. Compared to fixed effect models, 

random effects models provide wider confidence intervals and give relatively more weight 

to smaller studies. Although there is no consensus about whether to use fixed effect or 

random effects models, since statistical tests for heterogeneity tend to have very low power, 

some authors have suggested that random effects models might be used in all cases; both 

models will provide similar results if heterogeneity is truly absent. However, random effects 

models might best be avoided when the number of studies is very small, due to the difficulty 

of estimating the between-study variance (§ 1.4). It is important to note that although 

between-study heterogeneity can be allowed for by using random effects models, the 

presence of important heterogeneity should prevent investigators from combining study 

results at all. The methods used for pooling should be always described in such way that the 

analyses could be replicated.

• Publication and reporting bias

As in any meta-analysis, the possible presence of publication bias should be assessed 

graphically by drawing a funnel plot and formally by evaluating the asymmetry, for example 

using Egger's regression test (Egger et a l, 1997). The possibility of selective reporting bias 

should also be considered, and this could be speculated by interpreting the results in the 

context of how many polymorphisms were studied.
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Box 6.1 -  General recommendations for the conduct of the meta-analysis of genetic association 
studies. In red are recommendations developed ad hoc for meta-analysis in this field

L ite ra tu re  s e a rc h

>  Use more than one database, grey-literature, reference lists and contacts with experts of the field

>  Database search: ("name of gene" OR "synonyms") AND ("name of disease" OR "synonyms")
> Don’t use a methodological search filter (inconsistent use of study designs terms in papers and indexing)

>  Search beyond English language (e.g. much genetics research in Chinese)

>  Describe in detail the information sources and restrictions used

S tu d y  s e le c t io n

>  Define a priori inclusion and exclusion criteria

>  Describe in detail inclusion and exclusion criteria used

S tu d y  q u a lity  a s s e s s m e n t

>  Assess the quality of primary studies (checklist for the appraising of genetic association studies available)

>  Do not weight studies by quality, since single-number summaries of quality are unreliable

>  Perform sensitivity analyses to assess the impact of studies susceptible to bias

>  Describe the criteria used to assess the quality

D a ta  e x tra c tio n

> Information on selection of participants (e.g., cases and controls)

>  Data on genotype frequencies in cases and controls rather than logORs

>  Information on genotyping methods used

> When evaluated, information on degree of genotyping error

>  Information on blinding of measurement of genotype to disease status

>  Information on measures taken to prevent problems of population stratification

In v e s t ig a tio n  o f h e te ro g e n e ity

>  Assess the presence of statistical heterogeneity using both testing and estimation

>  Investigate possible causes of heterogeneity using sensitivity analysis/subgroup analysis/meta-regression

>  Describe the rationale for sensitivity & subgroup analyses

G e n e ra l m e ta -a n a ly t ic a l m e th o d s  fo r  p o o lin g

>  Use always random effects meta-analysis, unless very few studies included

>  Describe methods used

P u b lic a t io n  b ia s

>  To assess presence of publication bias draw a funnel plot and assess asymmetry, e.g. using Egger's regression test

>  Consider the possibility of selective reporting bias

R e p o rtin g  o f  re s u lts

>  Provide summarising flow chart of study selection

> Present descriptive data for each study

>  Present data needed to calculate effect sizes and CIs.

In particular, provide a 2x3 table with genotype frequencies for cases and controls
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• Reporting of results

Investigators should provide a summarising flow-chart of study selection, with number of 

citations located and justification for exclusion of studies, such as that proposed by the 

QUOROM statement (Moher et a l , 1999). They should also present descriptive data for 

each study. In particular, they should provide the data needed to calculate effect sizes and 

CIs for all studies included, for instance in the form of a 2x3 table with genotype frequencies 

for cases and controls for each study.

6.4.2 Specific issues

The following recommendations to deal with the specific issues of meta-analysis of genetic 

association studies are based on the limited methodological work which is available at the 

moment, and to which the work presented in this thesis contributes. Given the current state 

of knowledge, we are still far from having reached conclusions about the approaches to be 

adopted in dealing with such issues, and the recommendations presented in this section 

should be seen very much as necessarily being subject to future developments.

For each methodological issue considered, recommendations are presented at two different 

levels of statistical technicality. Level 1 addresses the needs of researchers with limited 

statistical skills and provides recommendations of what seem to be acceptable approaches 

and, more importantly, recommendations of what approaches should be avoided. Level 2 

represents a step further, where more complex statistical models are suggested to improve 

statistical efficiency, but which require the presence of a statistician in the research team. 

The recommendations for level 1 and 2 are summarised in Box 6.2 and 6.3, respectively.

These recommendations consider the case of a bi-allelic polymorphism, with only three 

possible genotype groups (gg, Gg, GG), and a dichotomous disease outcome. In this 

situation there are two odds ratios expressing the genetic effect, the odds ratio of GG vs. gg 

(O R gg) and the odds ratio of Gg vs. gg (ORog), and the relationship between them define the 

genetic model, A (A=logORGg/logORGG)- However, the same concepts can be applied to 

more complex situations.
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• Pooling across genotypes

The methods available for pooling the data across genotypes in a meta-analysis of genetic 

association studies have been presented and discussed in Chapter 2, where a novel method, 

the genetic model-free approach, has also been proposed.

In summary, all methods available for pooling the data in a meta-analysis of genetic 

association studies can be classified into two categories; those which use information from 

all genotype groups by assuming an underlying, known or unknown, genetic model 

(recessive, co-dominant, dominant) that establish a relationship between the odds ratios for 

the different genotypes; those which do not assume a genetic model but simply analyse the 

genotype groups two at a time (pairwise comparisons), either separately or in a bivariate 

meta-analysis. Although the second type of methods require no assumptions about the 

genetic model and thus might be appealing in some circumstances, they tend to be less 

efficient than the former. Efficiency is an important aspect of meta-analysis of genetic 

association studies, where the genetic effect size is usually small and the power to detect a 

gene-association often low (see § 1.6). For this reason, the position taken in these guidelines 

is that less efficient methods requiring no assumption about the genetic model should be 

used only when the others are not considered appropriate, and in the following sections ways 

of deciding about the appropriateness of the different methods will be suggested.

As regards the methods included in the first category, while genetic model-based methods to 

be used when the underlying genetic model is known are straightforward to implement, the 

genetic model-free approach suggested in this thesis for the common case when the genetic 

model is unknown and has to be estimated from the data, is relatively complex. For this 

reason, the genetic model-free approach will be recommended only in level 2 guidelines. As 

for the methods included in the second category, that is the pairwise comparisons, in theory 

they should always be performed using a bivariate meta-analysis, which takes into account 

the correlation between the two estimated odds ratios, O R gg and O R cg, induced by the 

common baseline group (gg). Separate pairwise analyses ignore such correlation and are 

thus inefficient, as the estimates of the two odds ratios cannot “borrow strength” from one 

another. However, a joint pairwise analysis is difficult to perform, as opposed to the simple 

separate pairwise comparisons, and for this reason it is recommended only in level 2 

guidelines.

Cosetta Minelli Ph.D. Thesis, September 2005 160



CHAPTER 6 Guidelines

In order to decide which method should be used to pool the data across genotypes, there are 

three questions that need to be addressed (Box 6.2 and 6.3):

1 - Can we assume that all studies included share the same underlying genetic model?

When combining information on all genotype groups across studies, we cannot assume a 

single, known or unknown, genetic model if such a model varies from study to study. In 

these circumstances we can only pool the data using pairwise comparisons. In Chapter 2 

ways of investigating whether the assumption of common genetic model, A, across studies 

might hold have been suggested. The simpler way is a graphical evaluation, which consists 

on first plotting the logORcg versus logORoG, where the slope of the association between the 

two log odds ratios represents A. If A is common across studies then the points should all lie 

along the straight line with slope A, with deviation from this only due to sampling error. To 

check whether departures from linearity in the graph are consistent with sampling error, in a 

second graph the study-specific estimates of A and their 95% CIs should be plotted. Ninety- 

five percent Cl for A can be either obtained by bootstrapping or calculated by using an 

approximation.

2 - Do we know what the underlying senetic model is ?

Whenever prior information, in the form of evidence coming from studies not included in 

the meta-analysis and/or expert opinion, is available on what the underlying genetic model 

is, genetic model-based methods should be used. In these circumstances, such methods are 

the most efficient since they do not include uncertainty relatively to the genetic model. 

However, genetic model-based methods can lead to erroneous pooled estimates with 

deceptively high precision when the wrong genetic model is adopted (see § 2.5.2). Thus, 

whenever there is no prior knowledge on the genetic model, a genetic model-free approach 

should be used. If the statistical complexity of implementing such approach represents a 

problem, then the second best choice is to perform pairwise comparisons.

3 -  Can we exclude heterosis?

An additional question after choosing the genetic model-free approach is whether the 

possibility of heterosis can be excluded or not. Heterosis, which means that the risk of the 

Gg group can be higher or lower than either of the homozygous groups, although rare, has 

been described. While the genetic model is usually included in the spectrum between
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recessive and dominant (A=0 and A=l, respectively), so that A can be modelled as bounded 

between 0 and 1, the presence of heterosis implies values of A lower than 0 or higher than 1. 

Heterosis can be excluded based either on prior knowledge from studies not included in the 

meta-analysis and/or expert opinion, or on the data, for instance by plotting the study- 

specific estimates and 95% CIs of A and checking whether there is evidence of A being 

outside the range 0 and 1. The genetic model-free approach based on bounded A (bounded 

analysis) should be used if heterosis can be excluded since it tends to be more efficient 

compared with the unbounded analysis.

Finally, even when performing pairwise comparisons, an attempt should be made to estimate 

the genetic model, A, from the estimates of the two odds ratios, O Rqg and OR-Gg. Although 

the estimate of A will not be very accurate in most cases, it might be informative in large 

meta-analyses (see § 2.5.2). The estimate of A should always be reported together with its 

95% Cl, which could be obtained using methods such as bootstrapping or normal-based 

approximations.

• Borrowing information across subgroups

1 — Is the genetic effect the same across subsrouvs?

In the meta-analysis of genetic association studies, a difference in the genetic effect across 

subgroups of studies implies an interaction between the gene effect and some characteristics 

of the studies defining the subgroups. Thus, in theory, statistical tests for interaction could 

be used to evaluate whether the genetic effects vary across subgroups. However, the power 

to detect an interaction might be low even in large meta-analyses so that, in practice, the 

decision whether to use subgroups can rarely be based on statistical grounds (Altman and 

Bland, 2003). Regardless of which is the variable that defines the subgroups, be it ethnicity, 

gender, type of disease outcome considered, or any other, investigators are usually 

concerned whether the genetic effect is the same across subgroups. Indeed, although there 

are instances when subgroups are defined a priori with the aim of evaluating the genetic 

effect in the specific sub-populations, in most cases subgroup analyses are performed with 

the intent of explaining the observed heterogeneity in the genetic effect across studies. This 

situation is the same as in the meta-analysis of RCTs and classical observational studies, and 

conventional ways for evaluating whether there is evidence of the effect varying across
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subgroups, such as subgroup analysis and diagnostic meta-regression, can be used (Sutton et 

al., 2000). Moreover, prior information on whether the magnitude of the genetic effect 

varies across defined subgroups might be available from evidence external to the meta

analysis and could help investigators decide about the appropriateness of estimating separate 

genetic effects. If the genetic effect is found to vary across subgroups, then investigators 

usually perform separate meta-analyses on the different groups (e.g. in Black, Asian and 

Whites; males and females; etc.), while otherwise all subgroups are combined in one meta

analysis.

2 — Can we borrow information on secondary parameters across subgroups?

In the meta-analysis of genetic association studies, there are other "secondary" parameters 

that might or might not vary across subgroups, independently from differences in the genetic 

effect. These include the parameter representing the genetic model, A, and the parameter 

indicating the amount of heterogeneity in the size of the genetic effect, r. In Chapter 3, the 

rationale for assuming that secondary parameters are common across studies, in order to 

increase the efficiency of the meta-analysis, is presented and discussed. Where there is 

evidence that the genetic effect may vary across subgroups, an alternative to perform 

separate meta-analyses for each subgroup is to jointly perform the meta-analyses by 

modelling secondary parameters, such as A and % as common across subgroups. This 

approach can be particularly beneficial for the meta-analysis of small subgroups, since the 

increased precision in estimating secondary parameters, which is due to the borrowing of 

information from the meta-analyses of other subgroups, is reflected in an increased precision 

in estimating the genetic effect of interest. The implementation of such approach, however, 

is suggested only for guidelines at level 2 (Box 6.3) since it requires the use of relatively 

complex models. These models, which are described in detail in § 3.4, should be applied 

only after checking that there is no evidence against the assumption of common A and/or r  

across subgroups. Again, prior knowledge might help decide about the similarity of A and r  

across subgroups, but such knowledge is unlikely to be available in many cases. Thus, 

decisions on whether these assumptions might hold will often have to be based on the data 

in the meta-analyses, by evaluating and comparing estimates and confidence intervals of the 

parameter in the different subgroups. Another secondary parameter in meta-analysis of 

genetic association studies is the allele frequency in controls. Although the models presented 

in § 3.4 could easily be extended to accommodate the assumption of common allele
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Box 6.2 -Recommendations for specific issues of the meta-analysis of genetic association studies: 
level 1

Pooling across genotypes
1 - Question: Is the genetic model common across studies?

> Graphical check: a) plot, for each study, logOFfeg vs. logO R^; the slope of the association between the two is A

b) plot the study-specific estimates of A with their confidence intervals 

Are departures from linear trend in a) explained by random noise in b)?

Answer. YES: Go to question 2

NO: use separate pairwise comparisons

2 - Question: Do we know what is the genetic model operating?

> Look for prior knowledge (other studies and/or expert opinion)

Answer. YES: use genetic model-based analysis 

NO: use separate pairwise comparisons

3 - If performing separate pairwise comparisons: estimate the genetic model from pooled ORs (report A with Cl)

Borrowing information across subgroups
1 - Question: Is the genetic effect the sam e across subgroups?

> Look for prior knowledge (other studies and/or expert opinion)

> Compare results for subgroups

> Diagnostic meta-regression

Answer. YES: Combine all subgroups in one meta-analysis 

NO: Perform separate meta-analyses

Dealing with Hardy-Weinberg equilibrium
> Evaluate departures from HWE in the studies included by:

Testing for HWE. Use an exact test whenever in the presence of sparse  data 

Estimating the magnitude of the departure. Report its Cl

> Re-evaluate the quality of those studies showing departures from HWE

> Perform sensitivity analyses to exclude studies with departures from HWE only if evidence of specific problems

frequency across subgroups, in fact this parameter is very likely to vary between studies 

with different study populations.

• Dealing with Hardy-Weinberg equilibrium

Since departures from HWE have been shown to be associated with methodological 

problems of genetic association studies, in particular genotyping error, population 

stratification and selection bias, this issue should always be addressed when performing a 

meta-analysis. Whenever raw data on genotype frequencies are reported, evidence on 

departure from HWE should be evaluated, based on both hypothesis testing and estimation, 

for all studies included in the meta-analysis. Testing for HWE should be performed using an 

exact test whenever in the presence of sparse data. For the estimation of the magnitude of
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Box 6.3 -  Recommendations for specific issues of the meta-analysis of genetic association studies: 

level 2

Pooling across genotypes
1 - Question: Is the genetic model common across studies?

> Graphical check: a) plot, for each study, logOFfeg vs. logORGGl the slope of the association between the two is A

b) plot the study-specific estimates of A with their confidence intervals 

Are departures from linear trend in a) explained by random noise in b)?

> Statistical check: Is the model fit of model-free analysis equal/better than bivariate pairwise analysis?

Answer. YES: Go to question 2

NO: use bivariate pairwise analysis

2 - Question: Do we know what is the genetic model operating?

> Look for prior knowledge

Answer. YES: use genetic model-based analysis

NO: use genetic model-free analysis. Go to question 3

3 - Question: Can we exclude heterosis?

> Look for prior knowledge

> Plot the study-specific estim ates of A with their confidence intervals

Answer. YES: use bounded analysis (Os A s1)

NO: use unbounded analysis

4 - If performing bivariate pairwise analysis: estimate the genetic model from pooled ORs (reportA with Cl)

Borrowing information across subgroups
1 - Question: Is the genetic effect the sam e across subgroups?

> Look for prior knowledge

> Compare results for subgroups

> Diagnostic meta-regression

Answer. YES: Combine all subgroups in one meta-analysis 

NO: Go to question 2

2 - Question: Can we borrow information across subgroups on secondary param eters?

> Look for prior knowledge

> Evaluate and compare estim ates and CIs of the parameter(s) in the different subgroups

Answer. YES: Assume common parameter(s) across meta-analyses of different subgroups 

NO: Perform separate meta-analyses

Dealing with Hardy-Weinberg equilibrium
A s in level 1 - Box 6.2

the departure from HWE any of the available measures, such as the inbreeding coefficient, 

the disequilibrium parameter or the alpha parameter, can be used (§ 4.3.2), and such 

estimate should be reported together with its confidence interval. Once studies with 

departures from HWE have been identified, their quality should be carefully re-evaluated in 

the light of this finding, which represents a red-light signal for the possible presence of 

methodological problems requiring further investigation. Sensitivity analyses that exclude
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studies with departures from HWE, and/or exclusion of these studies from the main analysis, 

should only be performed if there is any indication of specific methodological problems 

which may have caused the departure. In fact, the work presented in this thesis suggests that 

the exclusion of studies based on evidence of departure from HWE per se is not justified.

6.5 Extending the guidelines to Mendelian randomisation

The rationale for Mendelian randomisation, with its potentials and limitations, has been 

presented and discussed in Chapter 5, where an integrated approach to the meta-analysis of 

genetic association studies when using Mendelian randomisation has been proposed.

In summary, genetic association studies might be used to provide unconfounded estimates of 

the association between a risk factor (phenotype) and a disease using Mendelian 

randomisation, where the role of genetic information is that of an "instrument". Evidence 

from Genotype-Disease (G-D) association studies is combined with evidence from 

Genotype-Phenotype (G-P) association studies, and such genetic information is used to infer 

the Phenotype-Disease (P-D) association rather than being of interest in itself. Although in 

theory the concept of Mendelian randomisation could be applied within a single study 

measuring both G-D and G-P associations, in practice this is not possible since the derived 

P-D estimate would have extremely low precision even when the study is large. Thus, 

evidence synthesis of a number of studies evaluating G-D association on one side and G-P 

association on the other is needed. However, the validity and accuracy of the derived 

estimate of the P-D association relies not only on validity and accuracy of the evidence 

synthesis performed on both sides of the genetic information, but also on the appropriateness 

of the method used to combine the two sources of genetic data. While the recommendations 

presented in the previous sections address the first methodological aspect, the second 

involves specific issues based on the same principles regulating the use of instrumental 

variables, of which Mendelian randomisation represents an application, and are summarised 

below. These recommendations refer to the situation where only the differences in 

phenotype and disease risk between the two extreme genotypes (GG and gg) are considered 

for deriving the estimate of P-D association.

Cosetta Minelli Ph.D. Thesis, September 2005 166



CHAPTER 6 Guidelines

• Data extraction

For data extraction on G-D association, all recommendations presented in § 6.4.1 apply. As 

for G-P association, in addition to extracting the estimate of the mean phenotype difference 

between genotypes and its precision, information on whether the data on the phenotype 

difference come from cases, from controls, or from a mixture of both, should also be 

extracted. The reason is that data on G-P collected from cases may be less reliable than data 

from controls if the disease itself affects the phenotype level (reverse causation) in a way 

that is not linear (see § 5.6.2 and 5.7.2). Moreover, information of whether both associations 

are measured in the same study should also be recorded, for the reasons explained in the 

sections below.

* Checking the assumption on which Mendelian randomisation is based

The assumptions underlying the triangulation of G-D, G-P and P-D associations, on which 

the use of Mendelian randomisation is based, need to be checked. If such assumptions do not 

hold, serious biases may arise when applying the methods described in Chapter 5 to derive 

an estimate of P-D association.

When synthesising the evidence on genetic information, a mixture of studies evaluating G-D 

association, G-P association, or both is likely to be encountered. The presence of studies 

measuring both associations provides an important opportunity for evaluating whether the 

assumptions underlying Mendelian randomisation might hold. This can be assessed using 

graphs which, although not capable to show minor deviations, have the advantage of being 

simple and thus should always be drawn and evaluated. These graphs, which are described 

in detail in Chapter 5, are the more informative the larger is the number of studies measuring 

both G-D and G-P associations.

First, one should draw a forest plot with two columns, one for G-D and the other for G-P, 

where paired estimates from within the same study are aligned in the same row. The forest 

plot will thus be organised in three blocks, two blocks with studies measuring either G-D or 

G-P, and the third block with studies measuring both associations. Estimates of G-D from 

studies measuring only G-D association should be compared with those from studies 

measuring also G-P association, and the same should be done for estimates of G-P. If it 

appears that G-D and G-P associations are consistent across all studies, then all G-D
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estimates and all G-P estimates can be pooled before combining these overall estimates to 

derive a figure for the P-D association. A possible reason for which, for example, G-P 

estimates from studies measuring only G-P could be different from studies measuring also 

G-D is publication bias, whereby results from studies evaluating G-P alone would be 

reported only if the effect size detected is large. The issue of publication bias should be 

further explored by drawing funnel plots for G-D and G-P, where asymmetry in the plots 

suggests presence of publication bias. If a different symbol on the funnel plots is used to 

distinguish studies that reported data on only one of the two associations from studies 

reporting on both, such funnel plots could also help detect reporting bias. Reporting bias 

means that both the odds ratio and the mean phenotype difference are measured but only one 

is reported, possibly because the other contradicts the anticipated relation. This situation 

may be suggested by a discrepancy in the shape of the funnel plot between studies reporting 

on both associations and those reporting on only one association.

The most crucial assumption underlying Mendelian randomisation is that the genotype 

influences the disease risk only through modification of the specific phenotype, and thus 

investigators should limit the use of Mendelian randomisation to the case where there is 

good biological knowledge of the genotype-phenotype-disease pathway. Whether this 

assumption might hold should always be checked based on the evidence from those studies 

that measured both G-D and G-P associations. When the phenotype does indeed lie on the 

causal pathway between gene and disease, studies carried out in populations with a large 

difference in phenotype with genotype (G-P) might be expected to show a large G-D odds 

ratio. This can be investigated by plotting the findings from each study on a graph of G-D 

log odds ratio against G-P difference, which is expected to show a monotonic trend if the 

phenotype is intermediate on the causal pathway, with the line passing through the origin. 

Lack of any correlation would cast doubt on whether the phenotype is truly intermediate, 

while a line not passing trough the origin might indicate that there is another phenotype 

through which the gene affects the disease risk, or that the gene is in linkage disequilibrium 

with a gene which also affects the disease risk, or that there is differential publication bias 

for the two associations. This graph might also show gross departures from linearity of the 

relation between G-D and G-P, in which case Mendelian randomisation can still be used but 

the methods described in § 5.5 do not apply, since they are based on the assumption of 

approximate linearity.
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• Deriving the estimate for the phenotype-disease association

Are ALL studies measuring both G-D and G-P associations?

In the situation where all available studies measured both G-D and G-P associations, the 

correlation in the sizes of pairs of estimates from the same study affects the size of the 

confidence interval for the derived P-D estimate and the result of the hypothesis test. A 

simple way to account for such correlation is to combine the G-D and G-P estimates 

separately within each study to obtain study-specific estimates of P-D. These P-D estimates 

should be graphed in their own forest plot and pooled to obtain an overall estimate, using 

standard meta-analysis methods.

Are there ANY studies measuring both G-D and G-P associations?

In the more realistic situation in which some studies measured both G-D and G-P 

associations and some measured one or the other, bivariate meta-analysis models should be 

used to account for the correlation induced by those studies measuring both associations. 

Since these models, which are described in detail in § 5.5, are rather complex, they are 

suggested only for guidelines at level 2. The impact of ignoring the correlation induced by 

studies that measured both associations depends on the proportion of such studies.

If the evidence on G-D and G-P came from two separate sources, then independent meta

analyses on G-D and G-P can be performed and the P-D estimate calculated from the two 

pooled estimates. The confidence interval for P-D must be calculated by taking into account 

the uncertainty of both G-D and G-P estimates. This can be done using the following 

formula, which is based on the formula developed by Kendall and Stuart for the confidence 

interval of the ratio of two normal variates. Here the original formula is adapted for large 

samples in which the two estimates used in the ratio are independent, that is come from 

separate meta-analyses (Thompson, Tobin, and Minelli, 2003). Denoting the log odds ratio 

for G-D with § and the mean phenotype difference by 5, the (100-a)% confidence interval

for the ratio has limits: J_
<5

where Zo/2 is the (100-a/2)% value from a standard normal distribution, for instance 1.96 for 

a 95% confidence interval, and s denotes the standard error of the corresponding variable.
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Box 6.4 -  Specific recommendations for the conduct of the meta-analysis of genetic association 
studies when using Mendelian randomisation: level 1

Data extraction
1 - Information on whether G-D and G-P associations are measured in the sam e study

2 - Information on whether G-P data are collected from cases, from controls, or from a mixture of both

3 - S ee Data extraction in Box 6.1

Checking the assumption on which Mendelian randomisation is based
1 - If there are studies measuring both associations: draw a  two-column forest plot with G-D and G-P data

2 - For studies measuring both associations: plot logOR for G-D against mean difference for G-P for each study

3 - Draw funnel plots for G-D and G-P, with different symbols for studies measuring only one or both associations

Deriving the estimate for the phenotype-disease association
Question: Are all studies measuring both G-D and G-P associations?

Answer. YES: 1 -  Combine G-D and G-P estimates to derive a  P-D estimate within each study

2 -  Draw forest plot of study specific P-D estimates: pool them using standard meta-analysis methods 

NO: 1 - Perform separate meta-analyses on G-D and G-P; derive P-D from the two pooled estim ates 

2 - Calculate the Cl for P-D estimate based on uncertainty of both G-D and G-P estimates*

* See § 6.5 “Deriving the estimate for the phenotype-disease association” for formula to calculate Cl for P-D estimate.

Box 6.5 -  Specific recommendations for the conduct of the meta-analysis of genetic association 
studies when using Mendelian randomisation: level 2

Data extraction
1 - Information on whether G-D and G-P associations are m easured in the sam e study

2 - Information on whether G-P data are collected from cases, from controls, or from a mixture of both

3 - See Data extraction in Box 6.1

Checking the assumption on which Mendelian randomisation is based
1 - If there are studies measuring both associations: draw a  two-column forest plot with G-D and G-P data

2 - For studies measuring both associations: plot logOR for G-D against mean difference for G-P for each study

3 - Draw funnel plots for G-D and G-P, with different symbols for studies measuring only one or both associations

Deriving the estimate for the phenotype-disease association
1 - Question: Are all studies measuring both G-D and G-P associations?

Answer. YES: 1 -  Combine G-D and G-P estim ates to derive a  P-D estimate within each study

2 -  Draw forest plot of study specific P-D estimates; pool them using standard meta-analysis methods 

NO: Go to question 2

2  - Question: Are there any studies measuring both G-D and G-P associations?

Answer. YES: Use bivariate meta-analysis model and calculate P-D within the model

NO: 1 - Perform separate meta-analyses on G-D and G-P; derive P-D from the two pooled estim ates 

2 - Calculate the Cl for P-D estimate based on uncertainty of both G-D and G-P estimates*

* S ee § 6.5 “Deriving the estimate for the phenotype-disease association” for formula to calculate Cl for P-D estimate.
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6.6 Discussion

The increasingly important role that evidence synthesis has acquired in medical decision

making (Harbour and Miller, 2001; Atkins et al., 2004) and the recognition of 

methodological weaknesses of published meta-analyses in all fields of medical research (§ 

6.2) have led to a number of initiatives aimed at developing guidelines that could assist 

researchers in producing high-quality evidence synthesis. Important steps in this direction 

have been the publishing of the QUOROM statement for the reporting of meta-analyses of 

RCTs in 1999, followed by the MOOSE statement for the reporting of meta-analyses of 

observational studies in 2000. Following these initiatives and in recognition of the fact that 

evidence synthesis in specific areas might require more specific recommendations, a number 

of groups have developed “specialised” guidelines such as the STARD (Standards for 

Reporting of Diagnostic Accuracy) statement for diagnostic studies (Bossuyt et al., 2003a; 

Bossuyt et a l, 2003b) and the TREND (Transparent Reporting of Evaluations with Non

randomized Designs) statement for behavioural and public health intervention studies (Des 

Jarlais et a l , 2004). These initiatives are now recognised as high research priorities, as 

demonstrated by the publication in June 2005 of a whole issue of the Annals o f Internal 

Medicine, one of the leading journals in medicine, entitled “Challenges of Summarizing 

Better Information for Better Health: The Evidence-based Practice Center Experience”

(Annals of Internal Medicine, 21 June 2005; volume 142, number 12, part 2). This issue 

includes a series of 9 articles targeting different areas of medical research, with the aim of 

aiding researchers in preparing high-quality systematic reviews and meta-analyses.

The Cochrane Collaboration, with its primary aim of generating and disseminating high- 

quality systematic reviews of health care interventions, has significantly contributed to the 

development of comprehensive and practical guidelines for good-standard meta-analysis in 

the field of RCTs (Bero and Rennie, 1995). In the field of genetic association studies, the 

HuGE Net group has recently started working in the same direction as the Cochrane 

Collaboration, by organising and promoting international methodology workshops on the 

issues of meta-analysis of genetic association studies, with the aim of reaching a consensus 

and developing standards for conduct and reporting of such meta-analyses. However, there 

is still much methodological work that needs to be done before a consensus can be reached.
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The number of published meta-analyses of genetic association studies has increased at an 

incredible rate in this last decade. While Attia and colleagues could identify 37 papers 

published between 1991 and 2000 (Attia, Thakkinstian and D'Este, 2003), when I accessed 

the HuGE website archive on the 15th of March 2005 there were 243 papers published from 

2000 (§ 4.4.1). Given the number of meta-analyses of genetic association studies being 

produced and the specific methodological issues that characterise this field, it might seem 

surprising that no guidelines for such an important area of medical research have yet been 

published. The lack of recommendations for good quality evidence synthesis of genetic 

association studies reflects the lack of consensus and indeed the paucity of methodological 

work carried out to investigate the methodological issues of this field.

The guidelines proposed in this chapter have been developed with the aim of assisting the 

conduct of meta-analyses of genetic association studies rather than suggesting the reporting 

of such meta-analyses. Although often used interchangeably, as it appears to be the case for 

the QUOROM statement, these two types of guidelines are intrinsically different. It is true 

that guidelines for reporting of meta-analysis, although structured in a different way from 

guidelines for conducting a meta-analysis, tend to serve the same purpose in that they 

indicate the methodological issues which need to be reported, and thus necessarily 

addressed, in high-quality evidence synthesis. However, guidelines for reporting might not 

necessarily provide recommendations on which method should be adopted for dealing with a 

particular issue when more options are available. This seems to be particularly relevant in 

the field of meta-analysis of genetic association studies where the approaches adopted vary 

substantially and little attempt has been done to compare the different methods and provide 

advice on how to choose between them.

In this chapter the recommendations have also been extended to address the case of meta

analysis of genetic association studies which use Mendelian randomisation, in recognition of 

the importance of this novel application of genetic epidemiology as a potentially valuable 

tool for deriving unconfounded estimates of the effect of a risk factor (phenotype) on a 

disease risk. The work presented in Chapter 5 shows how the near future of Mendelian 

randomisation relies on the possibility of synthesising all evidence available, since no 

individual study, unless extremely large, will have sufficient data to provide a precise 

estimate of the phenotype-disease association of interest. The meta-analysis of genetic 

association studies that uses Mendelian randomisation has specific methodological issues 

that need to be considered, and which have been addressed in this chapter. Moreover, the
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meta-analytical approach potentially provides a valuable tool for assessing some basic 

assumptions on which the use of Mendelian randomisation is based, and simple ways of 

investigating such assumptions have also been presented.

6.6.1 Further work

The recommendations proposed here for the meta-analysis of genetic association studies 

consider only the case of a bi-allelic polymorphism with three possible genotypes, gg, Gg, 

GG, and a dichotomous disease outcome. However, the same concepts hold for the more 

complex situations where the polymorphism involves more than two alleles, where the 

relationships between the odds ratios for the different genotypes that define the mode of 

inheritance become more difficult to specify or evaluate. Moreover, apart from studies 

evaluating the association between a gene and a disease, there are studies which evaluate the 

association between the gene and an intermediate phenotype usually measured as a 

quantitative outcome variable, as discussed for Mendelian randomisation. Although adapting 

the framework of the genetic model-free approach presented in Chapter 2 to accommodate 

the case of a continuous outcome should be relatively straightforward, this route has not 

been taken yet and it represents one of the issues which will follow the work summarised in 

this thesis. In the meanwhile, it would appear sensible to suggest that a bivariate meta

analysis should be carried out whenever there is no prior information about the genetic 

model. As regards the recommendations proposed for integrating the evidence on genotype- 

disease and genotype-phenotype associations when using Mendelian randomisation, the 

methods proposed in this thesis consider the simplest scenario of a single gene, a single 

phenotype and a single disease in the triangulation. This might not be realistic in some 

situations where more genes may influence the same phenotype, or one gene may influence 

more phenotypes acting on the disease of interest. Such situation might require much more 

complicated models, and again represent a value area of future research if Mendelian 

randomisation has to be used for the study of diseases with complex causal pathways.

Finally, it is important to remember that reaching a consensus and developing guidelines, 

although crucially important, will not automatically lead to improved methodological quality 

of published meta-analyses of genetic association studies. A number of authors have shown 

how poor quality has affected meta-analyses of RCTs through the years (Table 6.1) although 

guidelines have been published starting from 1984 (Shea, Dube' and Moher, 2001). It is
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likely that other ways can help promoting good standards. Journal editors, for instance, can 

influence the way current research is published by imposing stricter methodological control 

during the review process, and they could be beneficially involved in the battle to improve 

the quality of research in this field. Moreover, it has to be considered that hardly any 

positive feedback will follow the dissemination of any recommendation for sound 

methodology if the methods proposed are out of reach for most end users. In the field of 

meta-analysis of RCTs, the Cochrane Collaboration has contributed to improve the general 

quality of published meta-analyses not only by disseminating guidelines, but also by 

releasing software user-friendly (Revman software, available at http://www.cc- 

ims. net/RevMan) to help researchers with limited statistical skills implement standard meta- 

analytical models. Indeed, the choice of providing two different levels of recommendations 

in this chapter has been made in recognition of the importance of reaching a wide range of 

researchers with different statistical skills. While an increase in the statistical complexity of 

the model is often associated with an increase in the efficiency of the method, still in 

practice complex models are likely to be used by a minority of the investigators carrying out 

meta-analyses of genetic association studies. Ideally, sophisticated models could be made 

accessible to all researchers by developing appropriate software by which these can be 

implemented using a user-friendly interface. However, it might be argued that user-friendly 

software might encourage researchers to use methods which they do not understand, unless 

graphical and formal investigations of the underlying assumptions for each method are built 

into the program and explained in such a way that they guarantee its appropriate use. This 

represents a stimulating idea for further work.

6.6.2 Conclusions

The guidelines proposed in this chapter have been developed to advise researchers 

considering a meta-analysis of genetic association studies as to which methods should be 

used for the collection, synthesis, analysis and interpretation of the evidence. Particular 

emphasis has been given to the statistical methods which address the specific meta-analysis 

issues of this field, where there seems to be complete lack of consistency, justification and 

transparency in the published literature.

Possibly the most important message for researchers carrying out a meta-analysis of genetic 

association studies is the importance of understanding which are the assumptions behind
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each method available to synthesise the data, since it is only based on such knowledge that 

appropriate choices can be made. An attempt should always be made to investigate whether 

such assumptions might hold, and judgement should ideally be based on both prior 

knowledge and evidence from the data. Graphical and statistical ways of investigating 

whether these assumptions might hold have been presented. Unfortunately, the data may be 

not sufficient to provide evidence for or against such assumptions, and prior knowledge thus 

become valuable. In the absence of any prior knowledge, still investigators have to make a 

rational choice and have the responsibility to write reports that are as transparent as possible, 

where the choice is discussed and justified, so that readers can critically evaluate their work.
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7 DISCUSSION & CONCLUSIONS

7.1 Summary

Meta-analysis is a recognised powerful tool for evidence-based decision making, since it 

can critically appraise, summarise and attempt to reconcile the results from a number of 

studies. Many institutional bodies which are involved in the development of evidence- 

based clinical guidelines consider meta-analysis as the strongest source of evidence, and 

indeed its role in medical decision-making is reflected by the enormous increase of this 

type of study in medical research over the last 15 years (Harbour and Miller, 2001; 

Atkins et a l , 2004). This is particularly true in the field of genetic epidemiology, where 

the recent completion of the sequencing of the human genome, which is considered an 

important milestone in the history of medicine, has led many scientists to believe in an 

imminent integration of gene discoveries into medical practice. Some scientists have 

forecast that by the year 2010 genetic tests will be available for prediction of as many as 

a dozen common conditions, with individuals being able to learn their individual 

susceptibilities and take steps to reduce those risks (Collins and McKusick, 2001). 

Moreover, in a premature way and with worrying rapidity, commercial marketing of 

genetic testing for disease prevention has already been implemented, both in Europe and 

the United States (Khoury, Little and Burke, 2004).

With the increased number of published meta-analyses in all fields of medical research, 

evidence has been reported on how meta-analyses carried out on the same topic can 

produce discordant results (Jadad, Cook and Browman, 1997), and also produce 

discordant results compared to subsequent large RCTs (LeLorier et a l, 1997). As 

LeLorier and colleagues point out, the appealing idea of a meta-analysis as a tool for 

“summarizing all the information contained in a set of trials into a single odds ratio may 

greatly oversimplify an extremely complex issue”, and lead to inappropriate conclusions. 

Genetic association studies have shown a worrying failure to replicate and validate 

postulated associations, to the point that some scientists have raised concerns on the 

actual value of human genome discoveries to health care (Khoury, Little and Burke, 

2004). This situation, while providing a very strong case for evidence synthesis, makes 

the task of combining study results particularly difficult. Unfortunately, as discussed in 

Chapter 6, relatively little methodological work has been carried out in this field and, as a
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consequence, a lack of consensus and standardisation of the methods to be adopted is 

apparent in the literature. Particularly neglected are the specific statistical issues of the 

meta-analysis of genetic association studies, which has been the motivating reason for the 

work presented in this thesis. These include the choice of how to pool the data across 

genotypes based on assumptions about the underlying genetic model, the appropriate use 

of subgroup analysis, and the issue of how to deal with departures from Hardy-Weinberg 

equilibrium of primary studies.

One recurring issue encountered when reviewing the way investigators deal with these 

aspects of meta-analysis of genetic association studies is the lack of a coherent and 

transparent approach to the choice of a specific method among those available. In 

particular, a general problem is the lack of adequate consideration, and sometimes 

understanding, of what are the assumptions on which each method relies. This seems to 

lead to two opposite behaviours; one is to use the method which is most likely to provide 

narrower confidence intervals, or even statistical significance, without any consideration 

of the underlying assumptions; the other is to “play safe” and avoid making any 

assumptions at all. Indeed, avoiding assumptions tends to lead to a loss of power in the 

analysis, and often turns out to be an illusion anyway. An example of this is the way 

investigators deal with the issue of pooling data across genotype groups. Many 

investigators combine the data by assuming a specific genetic model, common to all 

studies included, even when there is no a priori knowledge of what such a model might 

be. However, the examples presented in Chapter 2 show how assuming an inappropriate 

model can lead to biased estimates of the genetic effects, often accompanied by 

deceptively high precision. On the other hand, some investigators choose to avoid the 

need to make any assumption about the underlying genetic model by performing 

independent pairwise comparisons, where the two, or more, odds ratios are estimated in 

separate meta-analyses. This approach tends to be inefficient since it ignores the 

correlation between the odds ratios, and thus the possibility for one of the odds ratios to 

provide additional information on the other. Moreover, avoiding assumptions on the 

genetic model indeed implies assuming that the two odds ratios are independent from one 

another. The philosophical approach adopted in this thesis is closer to the usual way of 

thinking of the statistician, who accepts the idea of assumptions as part of the 

interpretation of the evidence, and who is used to assessing which assumptions might 

hold by applying different models and choosing the simplest that can explain the data. In
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choosing the approach to combine data across genotypes, for instance, each assumption is 

critically evaluated. While the assumption of a specific genetic model in the absence of 

prior knowledge is considered unjustifiable and discarded, the assumption that the same 

unknown genetic model is shared by all studies in the meta-analysis is viewed as 

reasonable. However, a graphical assessment of whether there is any evidence in the data 

against this assumption is performed to support theoretical considerations. In general, the 

assumptions underlying the method adopted should be always discussed and an effort 

should be made to evaluate whether they might hold, based on evidence from the data 

and external information. Whenever in doubt, sensitivity analyses should be performed to 

evaluate the impact of different assumptions on the result of the meta-analysis.

The same philosophical approach is adopted when addressing the issue of subgroup 

analysis. Here the investigator might have reasons to believe that the assumption that the 

parameter of interest, i.e. the genetic effect, is common across subgroups is unjustified. 

However, the assumptions that other secondary parameters in the meta-analysis model 

are shared by all subgroups might well hold. The review of published meta-analysis 

presented in Chapter 3 suggests that investigators deal with subgroups either by 

combining them in a single meta-analysis, thus assuming that they share all parameters in 

the model, or by performing separate meta-analyses, thus assuming that they do not share 

any parameter. The work presented in this thesis suggests that assuming that subgroups 

share secondary parameters, such as the genetic model and between-study heterogeneity 

of the genetic effect, might be reasonable and might provide a potential gain in the 

precision of the genetic effect. Again, sensitivity analyses should be performed whenever 

in doubt.

The issue of HWE in the meta-analysis of genetic association studies, where departures 

from HWE are considered a proxy for poor quality of primary studies, highlights an 

interesting example of how adopting a conservative strategy might not necessarily 

represent the best strategy. Although there is agreement on the fact that departure from 

HWE should be evaluated, there is little evidence supporting the current recommendation 

to exclude studies not in HWE. In fact, there is no straightforward way to define what is 

meant by departure from HWE and how it can be best identified, with possible options 

being; the use of a statistical test, estimation of the magnitude of departures, or a 

combination of both. Indeed, the only option which is currently used is the identification
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of departure based on the result of a test. The risk of a conservative strategy of excluding 

studies which show statistically significant departure is that large studies are those more 

likely to be excluded, although they are not necessarily those showing the larger 

departures. In fact, the review of more than 500 genetic association studies presented in 

Chapter 4 suggests an inverse correlation between sample size of the study and 

magnitude of the observed departure from HWE. The work presented in this thesis 

suggests that the presence of a departure from HWE does not, per se, justify exclusion of 

a study from the meta-analysis, but it should be considered as a warning signal for the 

possible presence of methodological problems in the study. The decision whether to 

exclude the study from the main analysis or in sensitivity analyses should rather be based 

on the detection of a specific problem and consideration of its possible impact on the 

results of the meta-analysis.

The meta-analytical approach to Mendelian randomisation presented in Chapter 5 

illustrates how attention to the underlying assumptions of a method can greatly help 

assessing its validity. Mendelian randomisation is a very promising application of genetic 

association studies, whereby genetic data are used to derive an estimate of the association 

between a risk factor (phenotype) and a disease which is free of the confounding and 

reverse causation typical of classical epidemiology. However, the validity of its use 

strongly depends on the fulfilment of the assumptions on which this method is based 

(Davey Smith and Ebrahim, 2003). An integrated meta-analytical approach can not only 

allow for the phenotype-disease association to be estimated with sufficient precision, but 

also provides a valuable tool for assessing whether the crucial assumptions behind the 

triangulation genotype-phenotype-disease might hold.

In order to put the work of this thesis into context, the findings presented and methods 

developed have been integrated with the evidence already available in the literature to 

provide an overview of all issues that require consideration in the meta-analysis of 

genetic association studies. This has led to the development of a set of recommendations 

for the conduct of meta-analysis in this field. In recognition of the complexity of some of 

the methods proposed, an effort has been made to identify simpler, but yet 

methodologically correct, approaches, and in Chapter 6 guidelines are presented at two 

different levels of statistical sophistication. Indeed, while an increase in the statistical 

complexity of the meta-analysis model is often associated with an increase in its
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efficiency, in practice complex models are likely to be used only by a minority of the 

investigators carrying out meta-analyses of genetic association studies. The key message 

is to not use incorrect methods. The guidelines proposed, although far from being 

definitive, might assist either a statistician new to the field as to what are the specific 

challenges of the meta-analysis of genetic association studies, or a researcher with 

experience in the field but limited statistical skills, as to what assumptions should be 

evaluated before choosing to apply a specific method.

7.2 Discussion and further work

For all issues investigated in this thesis, specific aspects have been identified which 

require further consideration and work. In the choice of how to combine data across 

genotype groups, the proposed genetic model-free approach overcomes a number of 

limitations of currently used methods, but the problem of how to assess the assumption of 

constancy of the genetic model across studies has not been completely resolved. The 

proposed graphical ways of evaluating whether the data suggest that the differences in the 

estimates of the genetic model within individual studies might be explained by sampling 

error, are limited by the fact that such estimates are often very imprecise. When 

addressing the issue of how to handle subgroups, no satisfactory statistical measure could 

be found to compare models based on different assumptions on the similarity of 

secondary parameters across subgroups within the Bayesian framework. Both these 

issues might greatly benefit from the use of a “full” Bayesian approach, where prior 

knowledge based on external data or experts’ opinion is formally incorporated in the 

analysis (Spiegelhalter, Abrams, and Myles, 2004). This interesting, but yet problematic 

aspect, which represents the major advantage of the Bayesian approach compared to the 

classical approach, has not been investigated in this thesis, although its potentials have 

been highlighted. In chapters 2 and 3, the possibility of including prior knowledge not 

necessarily on the parameter of interest but also on secondary parameters included in the 

model, has been discussed. The incorporation of prior information on any of the 

parameters in the meta-analysis model increases, to some extent, the efficiency of the 

approach in terms of precision of the estimate of interest.
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In addressing the issue of HWE, the work presented in Chapter 4 has concentrated on 

how to assess departures from HWE in individual studies and how to handle studies 

showing departures. However, there are a number of other related questions which 

require further investigation. One is whether it is possible to develop an overall 

assessment of the presence and magnitude of departures from HWE in the whole meta

analysis, rather than in individual studies. Another important question is whether, once 

having assessed that there is no evidence of departure, HWE can indeed be assumed in 

the model in order to increase the efficiency in estimating the pooled genetic effect.

Given the important role of meta-analysis in the use of Mendelian randomisation, this is 

another field where further research needs to be carried out in order to extend the use of 

such a promising approach to a range of complex but more realistic situations. The 

possibility of modelling genetic and environmental factors which interfere with the 

triangulation gene-phenotype-disease would greatly increase its applicability. Moreover, 

the statistical efficiency of the approach would benefit from the use of information from 

all genotype groups for both the genotype-phenotype and genotype-disease associations. 

Although the genetic model-free approach presented in Chapter 2 could be used, further 

work is needed to extend the method to the case of a continuous outcome, such as the 

phenotype level.

In general, in order to improve the standard of published meta-analysis, there are two 

separate aspects that need consideration; the first is whether there is consensus on what 

are the most appropriate methods to deal with each methodological issue, which can lead 

to a standardised approach to evidence synthesis; the second is how these methods can be 

disseminated in such a way that they can be implemented by all researchers carrying out 

meta-analysis. Chapter 6 addresses the first question and provides guidelines to assist 

investigators considering a meta-analysis of genetic association studies. These are based 

on current knowledge, to which this thesis contributes and which is still far from being 

conclusive. More methodological work is needed to extend these recommendations not 

only to cover a wider range of situations that might be encountered, such as multiple- 

allele polymorphisms and continuous disease outcomes, but also to improve the 

efficiency of the methods described, such as use of information from all genotypes for 

Mendelian randomisation. The question of how to encourage the implementation of 

methodological recommendations represents an important further step in the research
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agenda. In this thesis the importance of considering the feasibility of application of the 

methods proposed has been recognised and has led to the development of guidelines at 

two different levels of statistical complexity. However, the ideal way to address this issue 

might be to develop user-friendly software packages, which can allow the 

implementation of complex models by investigators with limited statistical skills. The 

counter argument for this is that oversimplification of sophisticated methods might lead 

to their inappropriate use, due to lack of understanding of what their underlying 

assumptions are.

7.3 Conclusions

Empirical evidence on the quality of published meta-analyses of genetic association 

studies suggests that the standard is relatively low, and the methodology needs to be 

improved in virtually all respects. This thesis highlights what are the main 

methodological pitfalls specific to this field and proposes new approaches specifically 

developed for dealing with them. The findings presented are combined with evidence 

available in the literature to provide guidelines on how to deal with all issues which 

require consideration in the meta-analysis of genetic association studies. In order to be of 

potential use to investigators with varying statistical skills, such guidelines are developed 

at two levels of sophistication, one relatively simple although methodologically correct, 

the other more sophisticated but more efficient. The key message is, do not use incorrect 

methods, and perhaps the best way to achieve this is to understand that each method 

adopted is based on assumptions, which need to be carefully considered. These 

assumptions should be always made explicit so that the reader can critically evaluate 

them, and an effort should be made to assess whether these assumptions hold, based on 

prior knowledge and evidence from the data. As has been suggested for meta-analysis 

generally (Sutton et al, 2000), whenever in doubt sensitivity analyses should be 

performed to evaluate the impact of different assumptions on the results of the meta

analysis.
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Model-free approach

a) WinBUGS code for the models based on prospective likelihood 

Model

for( i in 1:n) {

r_gg[i] ~ dbin(p_gg[i], n_gg[i]) 
r_Gg[i] ~ dbin(p_Gg[i], n_Gg[i]) 
r_GG[i] ~ dbin(p_GG[i], n_GG[i]) 
logit(p_gg[i]) <- mu[i] - delta[i]/2 
logit(p_GG[i]) <- mu[i] + delta[i]/2 
logit(p_Gg[i]) <- mu[i] + lambda*delta[i] - delta[i]/2 
mu[i] ~ dnorm(0.0,0.0001) 
delta[i] ~ dnorm(d, prec)

}

d ~ dnorm(0.0,0.0001)

# Bounded analysis
lambda ~ dbeta(0.5,0.5)

# Unbounded analysis
lambda ~ dnorm(0.5,0.1)

prec <- 1/var 
var <- pow(sd,2) 
sd ~ dunif(0,2)
OR_GG <- exp(d)
OR_Gg <- exp(d*lambda)
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b) WinBUGS code for the models based on retrospective likelihood 

Model

{

for( i in 1 :n) {

case[i,1:3] ~ dmulti(p.case[i,], N.case[i]) 
control[i, 1:3] ~ dmulti(p.ctrl[i,], N.ctrl[i])
sum[i] <- p.ctrl[i,1] + exp(lambda*delta[i])*p.ctrl[i,2]+exp(delta[i])*p.ctrl[i,3]
p.case[i,1] <- p.ctrl[i,1]/sum[i]
p.case[i,2] <- exp(lambda*delta[i])*p.ctrl[i,2]/sum[i]
p.case[i,3] <- exp(delta[i])*p.ctrl[i,3]/sum[i]
delta[i] ~ dnorm(d, prec)
p.ctrl[i,1] <- exp(a[i])/(1 + exp(a[i])) * exp(b[i])/(1 + exp(b[i]))
p.ctrl[i,2] <- exp(a[i])/(1 + exp(a[i])) - p.ctrl[i,1]
p.ctrl[i,3] < -1- p.ctrl[i,1] - p.ctrl[i,2]
a[i] ~ dnorm(0.0, 0.0001)
b[i] ~ dnorm(0.0, 0.0001)

}

d ~ dnorm(0.0, 0.0001)

# Bounded analysis
lambda ~ dbeta(0.5,0.5)

# Unbounded analysis
lambda ~ dnorm(0.5,0.1)

prec <- 1/var 
var <- pow(sd,2) 
sd ~ dunif(0,2)
OR_GG <- exp(d)
OR_Gg <- exp(d*lambda)

}
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Joint pairwise comparisons

WinBUGS code (prospective likelihood)

Model

for( i in 1 :n) {

r_GG[i] ~ dbin(p_GG[i], n_GG[i]) 
r_Gg[i] ~ dbin(p_ Gg [i], n_ Gg [i]) 
r_gg[i] ~dbin(p_gg[i], n_gg[i]) 
logit(p_ gg[i]) <- mu[i]
!ogit(p_ GG[i]) <- mu[i] + delta_ GG[i] 
logit(p_ Gg[i]) <- mu[i] + delta_ Gg[i] 
mu[i] ~ dnorm(0.0, 0.0001) 
delta_GG[i] ~ dnorm(d.GG, prec.GG) 
delta_ Gg[i] ~ dnorm(d.Gg, prec.Gg)

}

d.GG ~ dnorm(0.0, 0.0001) 
d.Gg ~ dnorm(0.0, 0.0001) 
prec.GG <- 1/var.GG 
var.GG <- pow(sd.GG,2) 
sd.GG ~ dunif(0,2) 
prec.Gg < -1 /var.Gg 
var.Gg <- pow(sd.Gg,2) 
sd.Gg ~ dunif(0,2)
OR.GG<- exp(d.GG) 
OR.Gg<- exp(d.Gg)
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Figure A -  Bland-Altman plots of the difference in the estimates for Hani meta-analysis 
obtained by models with different prior against their average value for; a) ORGg; b) ORGg.' c) 
A,; d) x.
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Figure B -  Bland-Altman plots of the difference in the estimates for Wheeler meta-analysis 
obtained by models with different prior against their average value for; a) ORGg; b) ORGg.' c) 
A.; d) x.
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2
Table A  - Sensitivity analyses for A [ey= logit(^) -  logit^), withy=2,3; e . ~ Af(0,r£ )], when ris not assumed common across subgroups

META-ANALYSIS
APPROACH

White population (n=22) Asian population (n=12) Black population (n=6)

O R gg 
(95% Crl)

ORGg 
(95% Crl)

A
(95% Crl)

Heterogeneity
(SD)

(95% Crl)
O R gg 

(95% Crl)
O R g9 

(95% Crl)
A

(95% Crl)

Heterogeneity
(SD)

(95% Crl)
O R gg 

(95% Crl)
ORGg 

(95% Crl)
A

(95% Crl)

Heterogeneity
(SD)

(95% Crl)

r £= 0
1.31 

(1.09 to 1.57)
1.12 

(1.03 to 1.24)
0.45 

(0.28 to 0.60)

O R gg- 
0.30 (0.15 to 0.51)

ORGfl:
0.13 (0.06 to 0.24)

1.81 
(1.17 to 3.03)

1.30 
(1.06 to 1.76)

0.45 
(0.28 to 0.60)

O R gg:
0.62 (0.29 to 1.23) 

O R g„: 
0.27(0.11 to 0.61)

1.31 
(0.76 to 2.34)

1.12 
(0.88 to 1.52)
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(0.28 to 0.60)
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0.29(0.01 to 1.11) 
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0.10 (0.00 to 0.53)

r t=0.43 

(A: 0.3 to 0.7)

1.31 
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1.13 
(1.04 to 1.25)

0.46 
(0.29 to 0.63)

O R gg:
0.30 (0.15 to 0.51)

ORG8:
0.13 (0.06 to 0.25)

1.78 
(1.16 to 2.99)

1.26 
(1.05 to 1.74)

0.42 
(0.22 to 0.62)

O R gg:
0.61 (0.29 to 1.21) 

OReg:
0.25 (0.09 to 0.60)

1.31 
(0.74 to 2.39)

1.12 
(0.86 to 1.67)

0.48 
(0.23 to 0.73)

O R gg:
0.24 (0.01 to 1.11) 

O R go:
0.11 (0.00 to 0.61)

r f=1.12 

(A: 0.1 to 0.9)

1.30 
(1.09 to 1.56)

1.13 
(1.04 to 1.26)

0.47 
(0.28 to 0.68)

O R gg:
0.58 (0.27 to 1.17)

ORGg:
0.14 (0.06 to 0.25)

1.70 
(1.13 to 2.86)

1.19 
(1.02 to 1.69)

0.35 
(0.09 to 0.61)

O R gg: 
0.24(0.01 to 1.24) 

O R g9:
0.20 (0.04 to 0.56)

1.29 
(0.66 to 2.60)

1.11 
(0.74 to 2.00)

0.56 
(0.11 to 0.91)

O R gg:
0.29 (0.15 to 0.50) 

ORag.
0.11 (0.00 to 0.89)

Te= + °°
1.30 

(1.09 to 1.56)
1.13 

(1.04 to 1.26)
0.48 

(0.28 to 0.72)

O R gg-'
0.29 (0.15 to 0.50)

ORGg:
0.14 (0.06 to 0.26)

1.63 
(1.12 to 2.71)

1.12 
(1.00 to 1.63)

0.26 
(0.00 to 0.59)

O R gg:
0.53 (0.24 to 1.10) 

ORGg:
0.13 (0.00 to 0.52)

1.26 
(0.58 to 2.72)

1.09 
(0.62 to 2.31)

0.71 
(0.01 to 1.00)

O R gg:
0.26 (0.01 to 1.33) 

O R g9:
0.14 (0.00 to 1.12)
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Table B - Sensitivity analyses for r [ty = log(^) -  log(Ti), with y=2,3; 0;. ~ ^ ( O , ^ 2)], when A is not assumed common across subgroups

META-ANALYSIS
APPROACH

White population (n=22) Asian population (n=12) Black population (n=6)

O R gg 
(95% Crl)

ORGg 
(95% Crl)

A
(95% Crl)

Heterogeneity
(SD)

(95% Crl)
O R gg 

(95% Crl)
ORGg 

(95% Crl)
A

(95% Crl)

Heterogeneity
(SD)

(95% Crl)
O R gg 

(95% Crl)
O R g9 

(95% Crl)
A

(95%Crl)

Heterogeneity
(SD)

(95% Crl)

T̂ -O 1.30 
(1.08 to 1.58)

1.13 
(1.03 to 1.27)

0.48 
(0.28 to 0.69)

O R gg-
0.33 (0.20 to 0.50) 

O R g9:
0.16 (0.08 to 0.26)

1.52 
(1.17 to 2.14)

1.06 
(1.00 to 1.42)

0.15 
(0.00 to 0.55)

O R gg- 
0.33 (0.20 to 0.50) 

O R g9:
0.05 (0.00 to 0.21)

1.26 
(0.63 to 2.50)

1.11 
(0.66 to 2.14)

0.72 
(0.01 to 1.00)

O R gg- 
0.33 (0.20 to 0.50)

ORGg:
0.23 (0.00 to 0.45)

r^=0.56

(t: 0.20 to 0.35)
1.30 

(1.08 to 1.56)
1.13 

(1.03 to 1.26)
0.48 

(0.28 to 0.71)

O R gg-
0.30 (0.17 to 0.49) 

O R g9:
0.14 (0.07 to 0.25)

1.56 
(1.16 to 2.35)

1.08 
(1.00 to 1.49)

0.20 
(0.01 to 0.57)

O R gg- 
0.40 (0.20 to 0.76) 

O R g9:
0.08 (0.00 to 0.33)

1.26 
(0.65 to 2.45)

1.10 
(0.68 to 2.12)

0.69 
(0.01 to 1.00)

O R gg- 
0.24 (0.08 to 0.66) 

ORGg:
0.14 (0.00 to 0.54)

r,=1.01

(r. 0.20 to 0.55)

1.30 
(1.09 to 1.55)

1.13 
(1.04 to 1.26)

0.48 
(0.27 to 0.71)

O R gg- 
0.29 (0.15 to 0.48)

ORGg:
0.14 (0.06 to 0.25)

1.58 
(1.15 to 2.46)

1.09 
(1.00 to 1.53)

0.22 
(0.00 to 0.57)

O R gg-
0.44 (0.20 to 0.86) 

ORGg- 
0.09 (0.00 to 0.39)

1.24 
(0.62 to 2.38)

1.08 
(0.65 to 2.05)

0.66 
(0.01 to 1.00)

O R gg- 
0.17 (0.03 to 0.73) 

O R g9:
0.09 (0.00 to 0.60)

T *F + »
1.30 

(1.09 to 1.56)
1.13 

(1.04 to 1.26)
0.48 

(0.28 to 0.72)

O R gg- 
0.29 (0.15 to 0.50) 

ORGg- 
0.14 (0.06 to 0.26)

1.63 
(1.12 to 2.71)

1.12 
(1.00 to 1.63)

0.26 
(0.00 to 0.59)

O R gg- 
0.53 (0.24 to 1.10)

O R Go:
0.13 (0.00 to 0.52)

1.26 
(0.58 to 2.72)

1.09 
(0.62 to 2.31)

0.71 
(0.01 to 1.00)

O R gg- 
0.26 (0.01 to 1.33) 

ORGg*.
0.14 (0.00 to 1.12)
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APPENDIX 3

CHAPTER 4

Hardy-Weinberg equilibrium
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Table A -  Fixed effects analysis: Results for the logORGG under the different strategies obtained using the main model in the two scenarios; a) scenario 1; b) 
scenario 2.

a)

Strategy
Theta=0 Theta=0.2 Theta=0.4

Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage

Do nothing
0.0 0.405 0.0 0.102 0.081 95.1 0.0 0.407 0.4 0.102 0.081 94.7 0.0 0.412 1.7 0.102 0.083 94.9

Exclude if: 
p<=0.05 16.3 0.407 0.4 0.111 0.087 95.3 16.1 0.408 0.5 0.111 0.088 94.9 16.2 0.411 1.4 0.111 0.089 95.2

Exclude if:
p<=0.1 23.6 0.407 0.4 0.118 0.091 95.3 23.5 0.407 0.4 0.118 0.092 95.0 23.6 0.411 1.3 0.118 0.093 95.0

Exclude if: 
|a|>1

1.9 0.405 -0.2 0.102 0.081 95.0 1.9 0.406 0.2 0.102 0.082 94.7 1.9 0.411 1.4 0.102 0.083 94.9

Exclude if: 
|a |>0.5 12.5 0.402 -0.7 0.105 0.083 95.1 12.4 0.404 -0.4 0.104 0.083 94.9 12.5 0.408 0.5 0.105 0.084 94.9

Exclude if: 
p<=0.1 & a > 0 .5 10.8 0.404 -0.5 0.104 0.083 95.1 10.7 0.405 -0.2 0.104 0.083 95.0 10.8 0.409 0.8 0.104 0.084 94.9

Exclude if: 
p<=0.05 & a>0.5

9.4 0.404 -0.3 0.104 0.083 95.1 9.4 0.406 0.0 0.104 0.083 94.9 9.4 0.410 1.0 0.104 0.084 94.9

b)

Strategy
Theta=0 Theta=0.2 Theta=0.4

Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage

Do nothing
0.0 0.407 0.3 0.102 0.081 95.0 0.0 0.430 6.0 0.102 0.083 94.1 0.0 0.453 11.8 0.101 0.090 92.5

Exclude if: 
p<=0.05 16.5 0.407 0.5 0.111 0.087 95.5 16.3 0.428 5.6 0.111 0.089 94.8 16.5 0.447 10.3 0.111 0.093 93.6

Exclude if: 
p<=0.1 23.9 0.408 0.7 0.118 0.091 95.3 23.6 0.428 5.5 0.117 0.092 95.1 23.9 0.446 10.1 0.118 0.097 93.8

Exclude if: 
Ia|>1 1.9 0.406 0.1 0.102 0.081 95.1 1.8 0.429 5.7 0.102 0.083 94.2 1.9 0.452 11.4 0.102 0.089 92.7

Exclude if: 
|a |>0.5 12.6 0.404 -0.4 0.105 0.082 95.4 12.5 0.424 4.6 0.104 0.083 94.7 12.6 0.444 9.6 0.104 0.088 93.4

Exclude if: 
p<=0.1 & a > 0 .5

11.0 0.405 -0.2 0.105 0.082 95.4 10.8 0.426 5.0 0.104 0.083 94.5 11.0 0.446 9.9 0.104 0.088 93.4

Exclude if: 
p<=0.05 & a>0.5 9.6 0.406 0.0 0.104 0.082 95.4 9.4 0.427 5.2 0.104 0.084 94.5 9.6 0.447 10.2 0.104 0.089 93.3
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Table B -  Fixed effects analysis: Results for the logORGG under the different strategies obtained using the mixture model in the two scenarios; a) scenario 1 ; 
b) scenario 2.

a)

Strategy
Theta=0 Theta=0.2 Theta=0.4

Studies 
excl. (%) Mean %

bias
Aver.
SE RMSE Coverage Studies 

excl. (%) Mean %
bias

Aver.
SE RMSE Coverage Studies 

excl. (%) Mean %
bias

Aver.
SE RMSE Coverage

Do nothing 0.0 0.405 -0.1 0.102 0.081 95.0 0.0 0.410 1.2 0.102 0.084 94.5 0.0 0.417 2.9 0.102 0.085 93.6

Exclude if: 
p<=0.05 19.4 0.408 0.7 0.115 0.091 95.3 19.4 0.409 0.9 0.116 0.093 94.9 19.6 0.413 1.8 0.115 0.093 94.7

Exclude if:
p<=0.1 26.6 0.408 0.6 0.122 0.095 95.3 26.8 0.409 0.8 0.123 0.098 95.1 26.8 0.413 1.8 0.122 0.098 94.6

Exclude if:
l«l>1

2.5 0.404 -0.3 0.102 0.081 95.1 2.4 0.409 0.9 0.102 0.084 94.5 2.5 0.415 2.4 0.102 0.085 93.8

Exclude if: 
|a |>0.5 14.9 0.403 -0.7 0.107 0.085 95.2 14.9 0.405 0.0 0.107 0.087 95.0 15.0 0.410 1.0 0.107 0.087 94.3

Exclude if: 
p<=0.1 & a > 0 .5

13.1 0.404 -0.4 0.107 0.085 95.2 13.2 0.406 0.2 0.107 0.087 95.0 13.3 0.411 1.3 0.106 0.087 94.3

Exclude if: 
p<=0.05 & a>0.5

11.8 0.405 -0.1 0.106 0.085 95.2 11.8 0.407 0.5 0.106 0.086 94.9 11.9 0.412 1.6 0.106 0.087 94.4

b)

Strategy
Theta=0 Theta=0.2 Theta=0.4

Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage Studies 
excl. (%) Mean %

bias
Aver.

SE RMSE Coverage

Do nothing
0.0 0.406 0.1 0.102 0.080 95.3 0.0 0.435 7.2 0.102 0.084 94.3 0.0 0.464 14.4 0.101 0.095 90.5

Exclude if: 
p<=0.05 19.2 0.408 0.7 0.115 0.088 95.7 19.3 0.430 6.1 0.115 0.091 95.2 19.4 0.450 11.0 0.115 0.096 93.7

Exclude if:
p<=0.1 26.7 0.409 0.9 0.122 0.093 95.8 26.5 0.430 6.0 0.122 0.096 95.2 26.8 0.449 10.7 0.122 0.100 94.2

Exclude if:

!a M .
2.5 0.405 -0.1 0.102 0.081 95.3 2.4 0.432 6.6 0.102 0.084 94.3 2.5 0.460 13.4 0.102 0.094 91.3

Exclude if: 
|a|>0.5 14.9 0.403 -0.6 0.107 0.083 95.5 14.9 0.425 4.9 0.107 0.085 95.1 15.0 0.447 10.3 0.106 0.091 93.3

Exclude if: 
p<=0.1 & a > 0 .5

13.3 0.404 -0.3 0.106 0.083 95.5 13.2 0.427 5.2 0.106 0.085 94.9 13.4 0.449 10.7 0.106 0.091 93.1

Exclude if: 
p<=0.05 & a>0.5 11.8 0.405 -0.1 0.106 0.083 95.4 11.8 0.428 5.5 0.106 0.085 94.9 11.9 0.450 1 1 0 0.106 0.092 92.9
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Figure A -  Fixed effects analysis: Box plots of the results for the different strategies obtained 
using the main model in the two scenarios; a) scenario 1; b) scenario 2. 1: do nothing; 2: exclude 
if p<=0.05; 3\ exclude if p<=0.1; 4: exclude if |alpha|>1; 5: exclude if |alpha|>0.5; 6: exclude if 
|alpha|>0.5 & p<=0.1; 7: exclude if |alpha|>0.5 & p<=0.05

a)

theta=0
3 -

2 5

2 -

05-

S i l l

3 -

2 5

2 -

0 5

theta=0.2
o

theta=0.4
3

25

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

b)

theta=0 theta=0.2 theta=0.4
3

2 5

0 5

3 -

2 5 -I

3
2 5

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Cosetta Minelli Ph.D. Thesis, September 2005 203



Appendix

Figure B -  Fixed effects analysis: Box plots of the results for the different strategies 
obtained using the mixture model in the two scenarios; a) scenario 1; b) scenario 2. 1: do 
nothing; 2: exclude if p<=0.05; 3: exclude if p<=0.1; 4 : exclude if |alpha|>1; 5: exclude if 
|alpha|>0.5; 6: exclude if |alpha|>0.5 & p<=0.1; 7: exclude if |alpha|>0.5 & p<=0.05
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Simulation work

Stata code for the ado.file for simulating the 10,000 datasets

program s im _m eta_an a lys is
sy n ta x  n e w v a r l is t (m in  = 6 max = 6 g e n e r a te )  ,  I I I  

A F ( v a r l i s t )  I I I  
NCAses(v a r l i s t ) I I I  
N C O n tr o l s ( v a r l i s t ) I I I  
O R (v a r l i s t )  I I I  
a l p h a ( v a r l i s t )

q u i e t l y  {
t o k e n iz e  ' v a r l i s t '  
l o c a l  ncaseO = " ' l ' "  
l o c a l  n c a s e l  = ""2'" 
l o c a l  ncase2  = " ' 3 ,M 
l o c a l  ncontrolO  = "'4'"  
l o c a l  n c o n t r o l l  = "'5'"  
l o c a l  n c o n tr o l2  = "'6'"

t o k e n iz e  'o r '  
l o c a l  o r l  = "' 1 1" 
l o c a l  or2 = "'2'"  
l o c a l  nstudy = _N

f o r v a lu e s  i  = 1 /  'n s tu d y '  {

l o c a l  a l  = e x p ( - ' a l p h a 1[ ' i ’ ] + ' a f ’ [ ' i ’ ] + l o g ( 2) )  
l o c a l  a2 = e x p ( 2 * ' a f ’ [ ' i ’ ])

l o c a l  p i  = 1 / ( 1 + ' a l ’+ ' a 2 ’ ) 
l o c a l  p2 = ' a l 1/ ( 1 + ' a l ’+ ' a 2 ’ ) 
l o c a l  p3 = ' a 2 ’ / ( 1 + ' a l ’+ ' a 2 ’ )

* numbers o f  c o n t r o l s
- k — — =  = = =  =  =  — = =  —  —  —  —  —  =  =  — = —  =  = = =  =  =  =  =  =  — = =  —  —  —  =  —  —  —

l o c a l  nC = ' n c o n t r o l s ’ [ ' i 1]
p r e s e r v e
drop _ a l l
s e t  obs 'n C 1
tempvar u g
gen 'u '  = u n i fo r m ()
gen 'g '  = ( ' u '  < ' p 3 ' )  + ( ' u '  < ( ' p2 '  
f o r v a lu e s  g t  = 0 /  2 { 

count i f  ' g '  == ' g t '  
l o c a l  c t ' g t '  = r(N)
}

r e s t o r e
f o r v a lu e s  g t  = 0 /  2 {

r e p la c e  ' n c o n t r o l ' g t '' = ' c t ' g t ' '  

}
* numbers o f  c a s e s
* = = = = ———= = = = = ———= = = —= = = = = = = = = —= = = —= = = = —~ —

l o c a l  q l  = ' p i '
l o c a l  q2 = 'p2 '  * ' o r l ' [ ' i ' ]
l o c a l  q3 = 'p3 '  * ' o r 2 ' [ ' i ' ]

+  ' P 3 ' ) )

i n  ' i  1
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l o c a l
l o c a l
l o c a l
l o c a l
l o c a l

sq
q i
q2
q3
nC

q i '
q l ’ 
q 2 ' 
q3'

= n c a se s

q21 
s q 1 
s q 1 
s q '
[ '  i

q3

p r e s e r v e  
drop _ a l l  
s e t  obs 'nC 
tempvar u g 
gen 'u  
gen ' g ' = 
fo r v a lu e s  

count  
l o c a l  
>

r e s t o r e  
fo r v a lu e s  

r e p la c e  
}

>

= u n ifo r m ()
<'u
g t
i f
c t

< 
= 0 
'g' 
g f

q3 
/  2

)

{
' g f

r(N)

+ ( ' u '  < (

g t  = 0 /  
ncase

2 { 
g f = ' c t ' g t 1

end

q2' + "q3' ) )

' in  ' i '
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a) Stata code for the main model

* = = = = = = = = = = = = = = = = = = = = = = = = = := =
* F ixed  param eters  
*========= === ====== = = =:= === = =

in p u t  ncase  
40 
75 
95 
115 
135 
165 
200  
250 
345 
695 
end

gen n c o n tr o l= n c a se  
gen a f = - 0 .75

*gen th e ta= 0  
*gen t h e ta = 0 .2  
gen th e ta = 0 .4

■k ———====== ==— — — — = = = =——— — =—= =—— —===== ———==
* Param eters gen era ted  a t  each  s im u la t io n  

q u i e t l y {
fo r v a lu e s  x = 1 /  10000 {

keep ncase  n c o n tr o l  a f  t h e t a  
s e t  obs 10

gen rep = 'x '
gen a lp h a= in vn orm (u n iform ()) * 4 0 / ( n c a s e + 4 0 )
*gen d e l t a  = l o g ( 1 . 5 ) +  th e ta * a lp h a  
gen d e l t a  = l o g ( 1 . 5 ) +  t h e t a * a b s ( a lpha)

gen lambda=0.5
gen o r l  = exp(lam bda * d e l t a )  
gen or2 = e x p ( d e l t a )

s im _ m eta _ a n a ly s is  e a s e l  c a se2  c ase3  c o n t r o l l  c o n tr o l2  c o n t r o l3  ,  a f ( a f )  
n c a s (n c a s e )  n e o n (n c o n tr o l )  o r ( o r l  o r 2 ) a lp h a (a lp h a )

d i  " "
d i  "SIMULATION ' x ,n
gen a = 0 . 5 * l o g ( 4 * c o n t r o l l * c o n t r o l 3 / c o n t r o l 2 A2 )

}
>
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b) Stata code for the mixture model

* = = = =  = = = =  = = =  = = = = =  ====::==== = = =  ===

* F ixed  param eters  
* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

in p u t  ncase  
40 
75 
95 
115 
135 
165 
200 
250 
345 
695 
end

gen n c o n tr o l= n c a se  
gen a f = - 0 .75

*gen th e ta = 0  
*gen th e ta = 0 .2  
gen t h e t a = 0 .4

*= := = = = = = = = = = = = = = = = = = = = = = := = = = = = = = = = = = = = = = = = =
* Param eters gen era ted  a t  each  s im u la t io n  
* = = = = = = = —= ———= —= = —= = = = = = = —= = = = = ———= = = = = —=

q u i e t l y {
f o r v a lu e s  x = 1 /  10000 {

keep ncase  n c o n tr o l  a f  t h e t a  
s e t  obs 10

gen rep = vx'
gen a _ l= in v n o rm (u n ifo rm () )*  4 0 / ( n c a s e + 4 0 ) 
gen a_2=invnorm (uniform ( ) ) *  0 .5  
gen u=u n iform ()
gen a lp h a = a _ l* (u < 0 .9 )  + a_2*( u>0 . 9 )
*gen d e l t a  = l o g ( 1 . 5 ) +  th e ta * a lp h a  
gen d e l t a  = l o g ( 1 . 5 ) +  t h e t a * a b s ( a lpha)  
gen lambda=0.5
gen o r l  = exp(lambda * d e l t a )  
gen or2 = e x p ( d e l t a )

s im _ m eta _ a n a ly s is  e a s e l  c a se2  c ase3  c o n t r o l l  c o n tr o l2  c o n t r o l3  , a f ( a f )  
n c a s (n c a s e )  n e o n (n c o n tr o l )  o r ( o r l  o r 2 ) a lp h a (a lp h a )

d i  " "
d i  "SIMULATION ' x ,M
gen a = 0 . 5 * l o g ( 4 * c o n t r o l l * c o n t r o l 3 / c o n t r o l 2 A2 )

>
>
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APPENDIX 4

CHAPTER 5 

Mendelian randomisation
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a) WinBUGS code for the Model A 

Model

{

# Studies evaluating G-P and G-D associations (n=18)

for(i in 1:18) {
delta[i,1:2] ~ dmnorm(muQ,T[, ])
Diff_GP[i] ~ dnorm(delta[i,1], Weight_GP[i])
LogOR_GD[i] ~ dnorm(delta[i,2], Weight_GD[i])

}

# Studies with only G-D association (n=32)

for (i in 19:50) {
LogOR_GD[i] ~ dnorm(delta[i,2], Weight_GD[i]) 
delta[i,2] ~ dnorm(mu[2],tau_GD)

}

# Studies with only G-P association (n=16)

for (i in 51:66) {
Diff_GP[i] ~ dnorm(delta[i,1], Weight_GP[i]) 
delta[i,1] ~ dnorm(mu[1],tau_GP)

}

mu[1] ~ dnorm(0.0,0.0001) 
mu[2] ~ dnorm(0.0,0.0001)

tau_GP ~ dgamma(0.001,0.001) 
var2_GP <- 1/tau_GP 
sd_GD <- sd(delta_GDQ) 
var_GD <-pow(sd_GD,2) 
tau_PD ~ dgamma(0.001,0.001) 
var2_PD <- 1/tau_PD

# Sensitivity analysis for tau_GP and tau_GD - half normal distribution

#tau_GP <- 1/var2_GP 
#var2_GP <- pow(sd_GP,2)
#sd_GP ~ dnorm(0,1)1(0,)
#tau_PD <- 1/var2_PD 
#var2_PD <- pow(sd_PD,2)
#sd_PD ~ dnorm(0,1)1(0,)

# Sensitivity analysis for tau_GP and tau_GD - uniform distribution

#tau_GP <- 1/var2_GP 
#var2_GP <- pow(sd_GP,2)
#sd_GP ~ dunif(0,2)

#tau_GD <- 1/var2_GD 
#var2_GD <- pow(sd_GD,2)
#sd_GD ~ dunif(0,2)

T[1:2,1:2]~dwish(R[,],2) 
var_GP <- 1/T[1,1] 
var_GD <- 1/T[2,2] 
cov <- 1/T[1,2] 
for (i in 1:2) {
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for (j in 1:2) {
covmat[i,j] <- inverse(T[, ], i, j)

}
}

corr <- covmat[1,2]/sqrt(covmat[1,1]*covmat[2,2]) 
logOR_PD <- mu[2]*5/mu[1] 
pOR_GD <- exp(mu[2]) 
pDiff_GP <- mu[1]
OR_PD <- exp(logOR_PD)

}

Data

R[.1] RL21
7.75 0.82
0.82 0.35

# Assumed values for Wishart prior distribution in sensitivity analysis:

# 1) variances halved, same correlation (0.5)

R[»1] R[.2]

3.88 0.41
0.41 0.18

# 2) variances doubled, same correlation (0.5)
R[,1] R[,2]

15.50 1.64
1.64 0.70

#3) same variances, correlation of 0

RI.1] R[,2]
7.75 0
0 0.35

#4) same variances, correlation of 0.99

R[»1] R[,2]
7.75 1.63
1.63 0.35

LogOR_GD[] Welght_GDQ

-0.82 2.37
-0.58 10.53
-0.48 4
-0.31 6.93
-0.22 10.41
-0.2 39.06
-0.17 13.72
-0.11 4.73
0.07 6.57
0.19 34.6
0.25 6.25
0.28 13.72
0.41 3.08
0.55 10.41
0.73 25
0.84 16
0.96 4.34
1.14 3.84
-1.61 1.65
-0.63 3.51
-0.37 13.49

Dlff_GP0 Weight_GPO

0.4 0.1
4.9 0.17
2.9 0.41
1.3 2.19
-0.8 2.08
0.9 5.15
2 2.78
2.6 0.81
1.3 0.38
2.8 0.68
2.5 0.87
1.4 2.15
8.8 0.07
3 1.76
3.8 0.68
4.6 0.62
1.2 1.4
11 0.09
NA NA
NA NA
NA NA
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-0.29 10.01
-0.26 4.74
-0.22 11.95
-0.21 11.59
-0.17 1.3
-0.17 25.63
-0.11 6.25
-0.01 9.75
0.03 6.1
0.04 12.94
0.06 4.43
0.1 13.26
0.25 6.43
0.26 11.87
0.3 5.89
0.32 5.38
0.35 3.86
0.38 4.54
0.4 1.52
0.42 8.62
0.46 2.58
0.49 11.82
0.5 11
0.77 7.14
0.98 8.35
1.18 4.22
1.26 6.87
1.3 3.29
1.46 3.26
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
END

NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
0.9 3
1 1.16
1.4 1.56
1.4 2.63
1.7 0.39
2.1 1.89
2.1 0.48
2.1 1.19
3.8 0.43
4 0.21
4.2 0.13
4.3 0.31
4.4 0.25
7.3 0.24
8.1 1.12
9.9 0.29

Cosetta Minelli Ph.D. Thesis, September 2005 212



Appendix

b) WinBUGS code for the Model B

Model

{

# All studies evaluating either G-P, G-D or both associations (n=66)

for( i in 1:66) {
Diff_GP[i] ~ dnorm(delta_GP[i], Weight_GP[i])
LogOR_GD[i] ~ dnorm(delta_GD[i], Weight_GD[i]) 
delta_GD[i] <- delta_GP[i]*delta_PD[i]/5 
delta_GP[i] ~ dnorm (d_GP, tau_GP) 
delta_PD[i] ~ dnorm(d_PD, tau_PD)
Weight_GP[i] ~ dlnorm(mu_WGP,psi_GP)
Weight_GD[i] ~ dlnorm(mu_WGD,psi_GD)
PD[i] <- exp(delta_PD[i])

}

m_GD <- mean(delta_GD[]) 
mu_WGP ~ dnorm(0.0,0.0001) 
mu_WGD ~ dnorm(0.0,0.0001) 
d_GP -  dnorm(0.0,0.0001) 
d_PD ~dnorm(0.0,0.0001)

tau_GP ~ dgamma(0.001,0.001) 
var_GP <- 1/tau_GP 
tau_PD -  dgamma(0.001,0.001) 
var_PD <- 1/tau_PD 
psi_GP ~ dgamma(0.001,0.001) 
psi_GD ~ dgamma(0.001,0.001)

# Sensitivity analysis for tau_GP and tau_GD - half normal distribution

#tau_GP <- 1/var_GP 
#var_GP <- pow(sd_GP,2)
#sd_GP ~ dnorm(0,1)1(0,)
#tau_PD <- 1/var_PD 
#var_PD <- pow(sd_PD,2)
#sd_PD ~ dnorm(0,1)1(0,)
#psi_GP <- 1/var_psi_GP 
#var_psi_GP <- pow(sd_psi_GP,2)
#sd_psi_GP -  dnorm(0,1)1(0,)
#psi_GD <- 1/var_psi_GD 
#var_psi_GD <- pow(sd_psi_GD,2)
#sd_psi_GD -  dnorm(0,1)1(0,)

# Sensitivity analysis for tau_GP and tau_GD -  uniform distribution

#tau_GP <- 1/var_GP 
#var_GP <- pow(sd_GP,2)
#sd_GP ~ dunif(0,2)
#tau_PD <- 1/var_PD 
#var_PD <- pow(sd_PD,2)
#sd_PD ~ dunif(0,2)
#psi_GP <- 1/var_psi_GP 
#var_psi_GP <- pow(sd_psi_GP,2)
#sd_psi_GP ~ dunif(0,2)
#psi_GD <- 1/var_psi_GD 
#var_psi_GD <- pow(sd_psi_GD,2)
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#sd_psi_GD ~ dunif(0,2)

pDiff_GP <- d_GP 
pOR_GD <- exp(m_GD)
OR_PD <- exp(d_PD)

}

Data

LogOR_GDQ Welght_GDO Diff_GPQ Weight_GPQ

Same as for Model A

Cosetta Minelli Ph.D. Thesis, September 2005 214



Appendix

Study
GENOTYPE-DISEASE GENOTYPE-PHENOTYPE

log OR V ariance logOR Diff. Hey Variance Diff. Hey
Chambers (Asians) -0.82 0.42 0.4 10.00
VerhoeffBJ -0.58 0.10 4.9 5.90
Chao -0.48 0.25 2.9 2.44
Tsai -0.31 0.14 1.3 0.46
Schmitz -0.22 0.10 -0.8 0.48
Meisel -0.20 0.03 0.9 0.19
Ma -0.17 0.07 2.0 0.36
Schwartz -0.11 0.21 2.6 1.24
Kim 0.07 0.15 1.3 2.63
Kluijtmans (1997) 0.19 0.03 2.8 1.47
Christensen 0.25 0.16 2.5 1.15
Chambers (European) 0.28 0.07 1.4 0.47
Tokgozogiu 0.41 0.33 8.8 14.29
Nakai 0.55 0.10 3.0 0.57
Morita 0.73 0.04 3.8 1.47
Ou 0.84 0.06 4.6 1.61
Malinow 0.96 0.23 1.2 0.71
Kawashiri 1.14 0.26 11.0 11.11
Zheng -1.61 0.61 / /
Fernandez-A. (Females) -0.63 0.29 / /
Brulhart -0.37 0.07 / /
Girelli -0.29 0.10 / /
Brugada -0.26 0.21 / /
Adams -0.22 0.08 / /
Ardissino -0.21 0.09 / /
Dilley -0.17 0.77 / /
Verhoef (1998) -0.17 0.04 / /
Hsu -0.11 0.16 / /
Van Bockxmeer -0.01 0.10 / /
Abbate 0.03 0.16 / /
Wilcken 0.04 0.08 / /
Pinto 0.06 0.23 / /
Anderson (1997) 0.1 0.08 / /
Fowkes 0.25 0.16 / /
Gardemann 0.26 0.08 / /
Todesco 0.3 0.17 / /
Reinhardt 0.32 0.19 / /
Verhoef (1997) 0.35 0.26 / /
Kihara 0.38 0.22 / /
Araujo 0.4 0.66 / /
Malik 0.42 0.12 / /
Thogersen 0.46 0.39 / /
Izumi 0.49 0.09 / /
Fernandez-A. (Males) 0.5 0.09 / /
Szczeklik 0.77 0.14 / /
Inbal 0.98 0.12 / /
Gallagher 1.18 0.24 / /
Mager 1.26 0.15 / /
Ferrer-Antunes 1.30 0.30 / /
Gulec 1.46 0.31 / /
Dekou (Females) / / 0.9 0.33
Voutilainen / / 1.0 0.86
Chango (a) / / 1.4 0.64
Mazza / / 1.4 0.38
Chango (b) / / 1.7 2.56
Dekou (Males) / / 2.1 0.53
Kosokabe / / 2.1 2.08
Gonzalez Ordonez / / 2.1 0.84
Anderson (2000) / / 3.8 2.33
Kluijtmans (1996) / / 4.0 4.76
Deloughery / / 4.2 7.69
Fujimara / / 4.3 3.23
Arai / / 4.4 4.00
Rassoul / / 7.3 4.17
Yoo / / 8.1 0.89
DAngelo / / 9.9 3.45

Table A  -  All 66 studies 
included in the meta-analyses 
on MTHFR, homocysteine 
(Hey) & CHD
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Table B -  Results of sensitivity analyses for Model A, performed by specifying different sets of 
values for the covariance matrix of the Wishart prior distribution (see WinBUGS code for Model 
A). Results are expressed as median with 95% Crl and compared with those of the main analysis

MODEL
PARAMETER

e
(95%Crl)

Py
(95%Crl) (95%Crl)

ty
(95%Crl)

P
(95%Crl)

Main analysis 0.078 
(0.029 to 0.138)

2.607 
(1.850 to 3.446)

0.070 
(0.002 to 0.251)

5.272 
(1.922 to 14.730)

0.691 
(0.105 to 0.914)

Sensitivity
analyses

Variances halved, 
same correlation 
(0.5)

0.080 
(0.031 to 0.139)

2.537 
(1.813 to 3.348)

0.070 
(0.002 to 0.250)

5.329 
(1.930 to 14.950)

0.762 
(0.171 to 0.943)

Variances 
doubled, same 
correlation (0.5)

0.075 
(0.026 to 0.136)

2.702 
(1.891 to 3.579)

0.070 
(0.002 to 0.252)

5.207 
(1.918 to 14.490)

0.613 
(0.051 to 0.875)

Same variances, 
correlation of 0

0.076 
(0.026 to 0.139)

2.628 
(1.849 to 3.494)

0.069 
(0.002 to 0.251)

5.260 
(1.924 to 14.690)

0.499 
(-0.161 to 0.842)

Same variances, 
correlation of 0.99

0.084 
(0.036 to 0.132)

2.555 
(1.868 to 3.300)

0.071 
(0.002 to 0.252)

5.284 
(1.917 to 14.790)

0.984 
(0.829 to 0.997)

Table C -  Results of sensitivity analyses for Model A and Model B, performed by specifying 
different vague prior distributions for the heterogeneity terms (see WinBUGS codes). Results are 
expressed as median with 95% Crl and compared with those of the main analysis

MODEL
Prior distributions 

for the 
heterogeneities

PARAMETER

e
(95%Crl)

Py
(95% Crl)

Tx 
(95% Crl)

Ty

(95%Crl)
P

(95%Crl)

Model A

Gam ma(0.001,0.001) 0.078 
(0.029 to 0.138)

2.607 
(1.850 to 3.446)

0.070 
(0.002 to 0.251)

5.272 
(1.922 to 14.73)

0.691 
(0.105 to 0.914)

Half-Normal (0,1) on 
standard deviation

0.079 
(0.027 to 0.138)

2.653 
(1.934 to 3.449)

0.101 
(0.010 to 0.301)

3.647 
(1.493 to 7.955)

0.689 
(0.098 to 0.911)

Uniform(0,2) on 
standard deviation

0.078 
(0.026 to 0.137)

2.673 
(1.971 to 3.437)

0.101 
(0.010 to 0.307)

3.178 
(1.594 to 3.958)

0.689 
(0.095 to 0.913)

Model B

Gamma(0.001,0.001) 0.083 
(0.030 to 0.148)

2.682 
(1.914 to 3.533)

0.102 
(0.032 to 0.253)

3.610 
(1.686 to 7.426)

Not in the 
model

Half-Normal(0,1) on 
standard deviation

0.083 
(0.027 to 0.146)

2.650 
(1.923 to 3.426)

0.116 
(0.039 to 0.269)

3.027 
(1.508 to 5.822)

Not in the 
model

Uniform(0,2) on 
standard deviation

0.082 
(0.026 to 0.147)

2.640 
(1.916 to 3.386)

0.120 
(0.041 to 0.280)

3.014 
(1.589 to 3.945)

Not in the 
model
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A natural randomization process, sometimes called Mendelian randomization, occurs at conception to 
determine a person’s genotype. By combining information from genotype-disease and genotype-phenotype 
studies, it is possible to use this Mendelian randomization to derive an estimate of the association between 
phenotype (risk factor) and disease that is free of the confounding and reverse causation typical of classical 
epidemiology. When one is synthesizing evidence, studies evaluating genotype-phenotype associations, studies 
evaluating genotype-disease associations, and studies evaluating both are encountered, and methods should be 
used that allow for this structure. Plotting the log odds ratio of genotype-disease against the mean genotype- 
phenotype difference may help investigators detect departures from the assumptions underlying Mendelian 
randomization. Testing for differences between studies reporting on only the genotype-phenotype or genotype- 
disease association and those reporting on both associations may help in detecting reporting bias. This 
integrated approach to the meta-analysis of genotype-phenotype and genotype-disease studies is illustrated here 
using the example of the methylenetetrahydrofolate reductase (MTHFR) gene, homocysteine level, and coronary 
heart disease. An integrated meta-analytical approach may increase the precision of this estimate and provide 
information on the assumptions underlying Mendelian randomization. Serious biases may arise if the 
assumptions behind the analysis based on Mendelian randomization are not met.
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Abbreviations: Cl, confidence interval; MTHFR, methylenetetrahydrofolate reductase.

With the recent growth in knowledge about the human 
genome, there has been a dramatic increase in the number of 
genetic epidemiologic studies of the association between 
specific genes and diseases and between those genes and the 
risk factors or phenotypes that are thought to be intermedi
ates on the causal pathway to disease. In many instances, 
these studies have supplemented preexisting research on the 
association between the phenotype and the disease. For 
instance, many recent studies have evaluated the associa
tions between polymorphisms in the methylenetetrahydro
folate reductase (M T H F R ) gene and coronary heart disease

and between the M T H F R  gene and homocysteine level. 
These studies have been motivated, in part, by the preex
isting evidence of an association between homocysteine 
level and coronary heart disease. Similarly, there have been 
many studies of polymorphisms in the apolipoprotein E gene 
and coronary heart disease or stroke and many studies of the 
apolipoprotein E gene and lipid levels, stemming from 
epidemiologic evidence of an association between lipids and 
coronary heart disease or stroke.

As the number of genetic studies has grown, so have meta
analyses been produced to synthesize the evidence and over-
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come the limitations of power found in even moderate-sized 
studies (1). Two factors are evident from reviewing these 
meta-analyses: first, studies of the relation between a gene 
and an intermediate phenotype (hereafter referred to simply 
as phenotype) tend to be less common than studies of a gene 
and a disease; and second, evidence for a genotype-pheno
type association is often obtained as a spin-off of a study 
aimed primarily at investigating the genotype-disease rela
tion, and thus this information is often obtained only on a 
subset of the subjects. Where there is a strong reason to 
suppose that the phenotype is intermediate on the causal 
pathway from gene to disease, it would be sensible to 
perform a meta-analysis that in some way integrates the 
evidence for all three relations: genotype-phenotype, geno
type-disease, and phenotype-disease. The logic behind this 
approach is greatly strengthened by an appeal to Mendelian 
randomization—that is, the fact that one’s genes are inher
ited at conception through a seemingly random process. 
Accordingly, epidemiologic studies of genotype-phenotype 
and genotype-disease associations show strong parallels 
with randomized trials and should not be affected by 
confounding or reverse causation in the way that makes clas
sical epidemiologic phenotype-disease studies so difficult to 
interpret (2-4). In theory, the genotype acts as an instru
mental variable, and by combining the information obtained 
from genotype-disease and genotype-phenotype studies, it 
should be possible to derive an unconfounded estimate of the 
phenotype-disease association. Integrated meta-analyses 
may be able to take advantage of Mendelian randomization 
in order to test whether the phenotype is actually on the 
causal pathway and to obtain an unconfounded estimate of 
the size of the effect of phenotype on disease.

In this paper, we present a framework for an integrated 
meta-analytical approach to the study of genotype-disease 
and genotype-phenotype associations that takes advantage of 
the benefits of Mendelian randomization to derive an indi
rect estimate of the phenotype-disease relation. To illustrate 
the methods involved, we use the example of an integrated

meta-analysis of studies on M T H F R  and coronary heart 
disease and M T H F R  and homocysteine level.

METHODS 

Mendelian randomization

In order to use genetic studies to quantify the relation 
between phenotype and disease, the estimate of the genotype- 
disease association must be combined with the estimate of the 
genotype-phenotype association (figure 1). Suppose that a 
mutant genotype (GG) causes an increased risk of disease in 
comparison with the wild type (gg) and that this effect is 
measured by the odds ratio, ORGG vs Further suppose that 
GG compared with gg causes a mean difference, A P , in the 
level of the intermediate phenotype. Then, under the assump
tions required for Mendelian randomization and assuming 
linearity of the relation between phenotype difference and log 
odds ratio for the disease, ORcc vs is an unconfounded 
estimate of the odds ratio of disease resulting from a unit 
change in the phenotype.

Sources of evidence

When one is searching for evidence on genotype-pheno
type and genotype-disease associations, three different types 
of genetic studies are likely to be identified: those evaluating 
only the genotype-phenotype association, those evaluating 
only the genotype-disease association, and those evaluating 
both. In addition to noting the usual estimates of effect and 
their precision, it is important to record when both associa
tions are measured in the same study. It might be that studies 
classified as providing only genotype-phenotype informa
tion in fact also evaluated the genotype-disease association 
but used a different disease definition, so that this genotype- 
disease result cannot be pooled with the results of other 
studies. When collecting data on genotype-phenotype, it is 
important to note whether the information on the phenotype 
difference comes from cases, from controls, or from a 
mixture of both. Whenever possible, data from cases and 
data from controls should be analyzed separately. If the 
disease itself affects the level of the phenotype in a way that 
is not simply linear, the data on the genotype-phenotype 
effect collected from cases may be less reliable because of 
reverse causation.

Meta-analytical approaches

If the genotype-phenotype evidence and the genotype- 
disease evidence come from unrelated sources, separate 
meta-analyses will provide estimates of the pooled effects 
that can, by using Mendelian randomization, be combined to 
estimate the size of the phenotype-disease association. In 
practice, there is likely to be a mixture of studies that 
measured the genotype-phenotype effect, studies that 
measured the genotype-disease effect, and studies that 
measured both. Studies that measured both associations need 
to be modeled correctly in order to properly account for the 
correlation in their estimates of the genotype-phenotype and 
genotype-disease associations (5).
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Consider first a meta-analysis in which all available 
studies measured both genotype-phenotype and genotype- 
disease. We could proceed as before and separately pool the 
genotype-phenotype estimates and genotype-disease esti
mates before combining the pooled values in order to esti
mate the effect of phenotype on disease. However, the likely 
correlation in the sizes of pairs of estimates from the same 
study would affect the size of the confidence interval for the 
derived phenotype-disease effect and the validity of any 
hypothesis test. A better procedure would be to combine the 
genotype-phenotype and genotype-disease estimates sepa
rately within each study to obtain study-specific estimates of 
the phenotype-disease effect. These study-specific estimates 
could be graphed in their own forest plot and pooled to 
obtain an overall estimate.

In the more realistic situation in which some studies 
measured both genotype-disease and genotype-phenotype 
and some measured one or the other, we need to proceed 
with caution. Most important features of the data will be 
evident from a forest plot with two columns, one for geno
type-disease and the other for genotype-phenotype, in which 
paired estimates from within the same study are aligned in 
the same row (see figure 2). The forest plot is organized in 
three blocks, representing the studies that measured both the 
odds ratio and the mean difference, the studies that measured 
only the odds ratio, and the studies that measured only the 
mean difference. Within blocks, the studies are ordered by 
size of effect. Where both estimates were obtained in the 
same study, the studies are ordered by the size of the geno
type-disease odds ratio. Having drawn the plot, the next 
stage should be to check that the genotype-disease estimates 
from studies that also reported data on genotype-phenotype 
are consistent with the estimates from studies that did not 
report data on genotype-phenotype. Similarly, genotype- 
phenotype estimates should be compared between studies 
that also reported data on genotype-disease and those that 
did not.

Funnel plots can be used to search for the presence of 
publication bias (6,7). However, genetic studies may also be 
affected by a form of reporting bias in which both the odds 
ratio and the mean difference are measured but only one is 
reported because the other contradicts the anticipated rela
tion. Moreover, it is possible that the reporting of data on 
both associations is a marker for some feature such as study 
quality. It is very difficult to detect this bias from the 
reported data; but a careful reading of the study’s methods 
section may show whether data were collected but not 
reported, and it may be informative to distinguish studies 
that reported data on only one of the two associations using 
a different symbol on the funnel plots.

When the phenotype does indeed lie on the causal pathway 
between gene and disease, studies carried out in populations 
with a large genotype-phenotype difference might be 
expected to show a large genotype-disease odds ratio. This 
can be investigated by plotting the findings from each study 
on a graph of the log odds ratio of genotype-disease against 
the average difference in phenotype with genotype. A 
similar graphic approach was used previously in the meta
analysis of randomized trials (8, 9). This graph would be 
expected to show a monotonic trend if the phenotype is inter

mediate on the etiologic pathway to disease, and the line 
should pass through the origin. Lack of any correlation 
would cast doubt on whether the phenotype is truly interme
diate. A line that does not pass through the origin might indi
cate that there is another intermediate phenotype through 
which the gene under study exerts its effect on disease (a 
special case of pleiotropy) or that the gene is in linkage dis
equilibrium (associated at population level) with a gene 
which also affects the risk of disease, or that there is differ
ential publication bias for the two associations (7, 10). This 
graph will also show gross departures from linearity of the 
relation between phenotype difference and log odds ratio of 
disease, as approximate linearity is an assumption behind the 
averaging across studies to obtain an estimate of the pooled 
phenotype-disease association.

If it appears that genotype-phenotype and genotype- 
disease associations are consistent across all studies, we may 
pool all genotype-phenotype estimates and all genotype- 
disease estimates before combining these overall estimates 
to derive a figure for the phenotype-disease association. The 
effect of the correlation on the confidence interval and 
hypothesis test will depend on the proportion of studies that 
reported on both genotype-disease and genotype-phenotype 
associations. The studies that provided both estimates can 
now be used as described above to provide a comparison 
with studies reporting one of the estimates and to investigate 
the consistency of the study-specific phenotype-disease esti
mates. Methods for the adjustment of confidence intervals 
and hypothesis tests that allow for between-study correlation 
have been described elsewhere (5).

EXAMPLE

MTHFR, homocysteine, and coronary heart disease

A recent nongenetic meta-analysis of individual patient 
data from epidemiologic studies showed a decrease of 11 
percent in coronary heart disease for a 25 percent decrease in 
homocysteine level (odds ratio = 0.89, 95 percent confidence 
interval (Cl): 0.83, 0.96) (11). The meta-analysis showed 
that heterogeneity between studies was partly explained by 
study design. Retrospective studies yielded higher estimates 
of risk, perhaps because of reverse causation and/or unad
justed confounding. In particular, two major confounding 
factors were suggested: smoking and blood pressure. These 
factors are both strongly correlated with homocysteine level 
and are known risk factors for coronary heart disease. The 
strong possibility of unadjusted confounding makes it very 
difficult to be sure that the relation between homocysteine 
and coronary heart disease is causal.

A common polymorphism in the gene for the M T H F R  
enzyme leads to reduced enzyme activity, a lower folate 
level, and consequently a higher homocysteine level (12). 
The polymorphism involves a C—»T base pair substitution at 
nucleotide 677, so the wild-type homozygous genotype is 
referred to as CC and the mutant homozygous genotype as 
TT. This polymorphism can be used, together with the idea 
of Mendelian randomization, to indirectly assess the effect 
of homocysteine on coronary heart disease.

Am J Epidemiol 2004; 160:445-452
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peans; F, females; M, males. Horizontal bars, 95% confidence interval. (For references, see  the technical report by Minelli et al. (5).)

A recent genetic meta-analysis of individual patient data 
has shown an increased risk of coronary heart disease of 
approximately 16 percent associated with genotype TT as 
compared with CC (odds ratio = 1.16, 95 percent Cl; 1.05,

1.28) (13). This result was similar to that of another meta
analysis published at the same time but carried out on aggre
gated data, which showed a pooled odds ratio of 1.21 for the 
TT genotype (95 percent Cl: 1.06, 1.39) (14). The latter

Am J Epidemiol 2004; 160:445-452



Meta-Analysis of Mendelian Randomization Studies 449

paper also mentioned those studies that evaluated the associ
ation between genotype and phenotype. Wald et al. (14) 
found an average difference of 2.7 fimol/liter in homocys
teine concentration (95 percent Cl: 2.1, 3.4) between the TT 
and CC genotypes.

Sources of evidence

When the two meta-analyses by Wald et al. (14) and Klerk 
et al. (13) were combined, a total of 66 genetic studies were 
identified. Classifying the studies that reported both the esti
mate and its precision, 32 evaluated only the genotype- 
disease association, 16 evaluated only the genotype-pheno
type association, and 18 evaluated both. The definition of 
coronary heart disease used in our analysis was myocardial 
infarction or angiographically confirmed coronary artery 
occlusion (>50 percent of the luminal diameter). Genotype- 
disease associations were reported in an additional 13 studies 
in the original meta-analyses, but this information was not 
included because of either a different disease definition or a 
restricted study population (5).

Among the 18 studies that evaluated both associations, 
nine measured the mean difference in phenotype level with 
genotype in both cases and controls (four reporting only 
combined means); four studies measured homocysteine only 
in cases and three only in controls, and two reports were 
unclear.

RESULTS

Figure 2 shows the two-column forest plot, with the first 
column representing the genotype-disease log odds ratio and 
the second representing the genotype-phenotype mean 
difference. It is clear that there is considerable variation 
between studies, with some even reporting average odds 
ratios less than 1 or mean homocysteine differences in the 
direction opposite that anticipated.

Parts a  and b  of figure 3 show the funnel plots for the 
genotype-disease and genotype-phenotype associations, 
respectively. For the genotype-disease association, there 
seems to be no evidence of either publication bias, indicated 
by an overall lack of symmetry in the funnel plot, or 
reporting bias, suggested by a discrepancy in the shape of the 
funnel plot between studies reporting on both associations 
and those reporting on only one association. For the geno
type-phenotype association, the funnel plot is suggestive of 
possible publication bias, while there appears to be little 
evidence of reporting bias.

All of the following meta-analyses were based on random- 
effects models, which take into account between-study 
heterogeneity (6). The pooled odds ratio estimate for the 
effect of genotype on coronary heart disease based on studies 
that also reported on the homocysteine change was 1.17 (95 
percent Cl: 0.93, 1.48), and where data on homocysteine 
were not reported, the pooled odds ratio was 1.24 (95 percent 
Cl: 1.04, 1.48). The difference was not statistically signifi
cant (p  = 0.68). Similarly, the mean change in homocysteine 
level in studies that also reported on coronary heart disease 
was 2.14 |imol/liter (95 percent Cl: 1.37, 2.91), and in 
studies that did not report data on coronary heart disease it

(a)

5 -  •  A
o
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0- « ,--------------------------------------------- ,------------------------------------------ ,----------
0 5 10

Average difference in hom ocysteine (pmol/titer)

FIGURE 3. Funnel plots for genotype-disease (a) and genotype- 
phenotype (£>) associations. Different symbols are used for those 
studies that measured both associations (triangles) and those that 
measured only the association of interest (circles).

was 3.34 pmol/liter (95 percent Cl: 2.10, 4.59). The direc
tion of the difference is consistent with the presence of publi
cation bias, whereby results from studies evaluating the 
genotype-phenotype association alone are published only if 
the effect size detected is large. However, this difference was 
not statistically significant (p  =  0.11). The lack of significant 
differences justified pooling all of the odds ratio estimates to 
obtain an odds ratio of 1.21 (95 percent Cl: 1.06, 1.40) and 
all mean differences in homocysteine to obtain a difference 
of 2.71 fimol/liter (95 percent Cl: 2.02,3.41). Combining the 
two estimates, we obtain an estimate of the odds ratio for 
coronary heart disease per unit (1.0-|imol/liter) change in 
homocysteine level of 1.07. If, for the moment, we ignore the 
correlation between the studies that measured both, we 
obtain the 95 percent confidence interval 1.02, 1.14. It may 
be more informative to rescale this odds ratio for increments 
other than a unit increase in homocysteine level. For 
instance, the odds ratio for coronary heart disease for a stan
dard reference increment of 5 fimol/liter, as used by Wald et 
al. (14), is 1.43 (95 percent Cl: 1.10, 1.95), while for an 
increment of 3 fimol/liter, considered to reflect the possible
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size of a homocysteine-lowering intervention with folic acid 
supplementation (15), the odds ratio is 1.24 (95 percent Cl: 
1.06, 1.49).

The next step is to investigate more fully the findings of 
the 18 studies that reported both an odds ratio and a mean 
difference. Figure 4 shows the forest plot of the study- 
specific estimates of the coronary heart disease odds ratio 
associated with a 5-|imol/liter increase in homocysteine 
level. Because, on a log odds ratio scale, the derived pheno
type-disease association is obtained by division, when study 
results suggest that the homocysteine difference could 
reasonably be on either side of zero, the confidence interval 
for the ratio could stretch to plus or minus infinity (16, 17). 
In some cases, this infinite range is accompanied by a gap or 
clearing in the forest plot associated with values that the ratio 
is very unlikely to take. The most important feature of figure 
4 is the poor precision in the derived estimate that can be 
obtained from most individual studies. Indeed, several 
derived estimates have infinite variance.

Parts a  and b  of figure 5 show the log odds ratio of geno
type-disease plotted against the mean difference in 
homocysteine level, separately for homocysteine measured 
in cases and in controls. The two parts of the figure include 
all studies that either measured homocysteine only in cases 
or controls or measured it in both and reported separate esti
mates for the two groups. To allow for the large differences 
in the precision of the different studies, the individual esti
mates are plotted as ellipses, with their axes inversely 
proportional to the standard error of the log odds ratio of 
genotype-disease and the mean change in homocysteine 
level. Both figures show an approximately linear relation,

with the line passing close to the origin. As anticipated, the 
pattern is somewhat clearer when control data are used.

The unweighted correlations observed in parts a  and b  of 
figure 5 are 0.37 ip  = 0.29) and 0.78 ip  = 0.01), respectively. 
Adjusting for the correlation in the 18 studies reporting data on 
both measures would alter our odds ratio estimate and confi
dence interval for the effect of a 5-(imol/liter increase in 
homocysteine level on coronary heart disease risk from 1.43 (95 
percent Cl: 1.10, 1.95) to 1.54 (95 percent Cl: 1.17, 2.06) (5).

DISCUSSION

Although genotype-disease associations are becoming 
better understood, it is only when we also have information 
about the causal pathway that we open up the possibility of 
preventive or therapeutic intervention. Thus, while the asso
ciation between M T H F R  polymorphisms and coronary heart 
disease is scientifically interesting, disease prevention 
becomes possible when we understand that this effect acts, at 
least in part, through homocysteine. Dietary folate supple
mentation is a relatively simple intervention that can be 
implemented at a population level to lower homocysteine 
level and thereby reduce coronary heart disease risk. This 
intervention was introduced in the United States in the late 
1990s with the fortification of cereals and grains (18). Clas
sical epidemiologic studies may provide evidence about the 
phenotype-disease association, but it will almost certainly be 
affected by confounding and/or reverse causation. The use of 
Mendelian randomization offers a novel way of deriving 
unconfounded estimates, although Mendelian randomization 
makes its own assumptions about the pathway from gene to
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FIGURE 5. Plot of the log odds ratio for the effect of the methylene
tetrahydrofolate reductase gene on coronary heart disease risk 
against the mean difference in homocysteine level between geno
types, separately for studies in which phenotype was measured 
among cases (a) and controls (b). The axes of the ellipses are 
inversely proportional to the standard errors of the respective associ
ations.

disease (4). The most crucial assumption is that the genotype 
influences disease risk only through modification of the 
specific phenotype. If the genetic polymorphism also alters 
the risk of the same disease via other pathways, the estimate 
of a specific phenotype-disease association might be seri
ously biased. In the example of homocysteine and coronary 
heart disease, this is probably not a problem; but, for 
instance, polymorphisms of the apolipoprotein E gene affect 
several different intermediate phenotypes related to lipid 
metabolism and atherosclerosis (4). Consequently, it is 
advisable to limit the use of Mendelian randomization to 
studies where there is good biologic knowledge of the 
genotype-phenotype-disease pathway.

The approach proposed in this paper stresses the need for 
investigators conducting meta-analyses to review simulta
neously the stages in the genotype-phenotype-disease 
pathway, and it implies that individual studies of genotype- 
disease associations should collect information on interme
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diate phenotypes whenever possible. In fact, the analysis of 
studies that measured both associations allows insight into 
the interrelations between genotype, phenotype, and disease 
and gives researchers an opportunity to check the assump
tions of the analysis. In this respect, a meta-analysis of small 
studies might be more informative than a single large 
prospective study. In some meta-analyses, inconsistencies 
across studies could result in departures from the linear trend 
seen in figure 5. This might happen if study populations 
differed with respect to phenotype measurement, disease 
definition, gene-environment interactions, compensatory 
developmental processes (canalization), or linkage disequi
librium with functional alleles (4). Theoretical consider
ations and our example suggest that it may be safer for 
primary researchers to measure the phenotype in controls in 
order to avoid any possibility of bias due to reverse causa
tion. If the phenotype level is measured in both cases and 
controls, two separate estimates should be reported. For 
meta-analyses, our recommendation is to perform sensitivity 
analyses, with phenotype data obtained on cases analyzed 
separately from phenotype data obtained on controls.

The need for an integrated meta-analytical approach to 
genetic studies when using Mendelian randomization is 
particularly important. The uncertainty associated with the 
derived estimate of the phenotype-disease association can be 
large, since it depends on uncertainty in both the estimate of 
the genotype-phenotype association and the estimate of the 
genotype-disease association (19). It is crucial to the use of 
Mendelian randomization that both estimates are sufficiently 
precise, but especially that of the genotype-phenotype asso
ciation. Such precision is only likely to be obtained through 
a meta-analysis of all available evidence. In fact, at present, 
almost all genetic studies lack the statistical power to detect 
the relatively small effects of the many gene variants that 
underlie common, complex diseases (20). Although massive 
reductions in genotyping costs offer the prospect of larger 
studies, study size remains limited by the cost of proper 
phenotyping (21).

While meta-analyses can (in theory, at least) partially alle
viate the problem of inadequate statistical power, they 
cannot control the problems of publication and reporting bias 
(6, 7) that are thought to be particularly important in genetic 
epidemiology (1, 22). However, using an integrated meta- 
analytical approach, investigators can start to address these 
issues by comparing the pooled estimates for genotype- 
phenotype and genotype-disease associations in studies 
reporting on either one association only or both associations, 
and by drawing the funnel plots in a way that allows compar
ison between the two types of studies for each association.

Analysis of the correlation between the genotype-disease 
odds ratio and the genotype-phenotype difference, as typi
fied by figure 5, must be done with care. The plot is based on 
data aggregated over studies and is analogous to an ecologic 
study that is potentially subject to the ecological fallacy— 
that is, patterns seen in aggregate data do not necessarily 
translate to the individual. Thus, when we see an increase in 
the risk of disease in studies that show an increased differ
ence in phenotype, it is probable but not certain that' we 
would see a similar effect at the individual level. Equally, 
failure to see a pattern in aggregate data does not rule out the
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possibility of an individual-level effect. Obviously, an indi
vidual-level causal effect is required for an intervention on 
the phenotype to have an impact on the risk of disease.

It is tempting to add nongenetic studies of the phenotype- 
disease association to our integrated approach, if only to test 
whether they accord with the estimate derived from the 
application of Mendelian randomization. Unfortunately, the 
sample sizes required to establish equivalence of the 
measured and derived estimates are such that even a large 
meta-analysis may not suffice (19). This is clearly an area 
that requires more work, because our ultimate aim should be 
to produce an integrated meta-analysis that links together all 
relevant phenotypes, diseases, and genotypes, including the 
heterozygous group.
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Commentary: Development of Mendelian 
randomization: from hypothesis test to 
'Mendelian deconfounding'
Martin D Tobin, Cosetta Minelli, Paul R Burton and John R Thompson

In h is le tter  to the  L a n c e t  in  1986 , reprinted  in  this issu e  of th e  
I n t e r n a t i o n a l  J o u r n a l  o f  E p i d e m i o l o g y  ( I J E ) ,  K atan  describ ed  th e  
idea o f u sin g  data from  g en etic  stud ies to  test for a re la tion sh ip  
b e tw e e n  a quan tita tive in term ed ia te  p h e n o ty p e  an d  a d isea se  in  
a w a y  that is n o t d istorted  by c o n fo u n d in g  or reverse  ca u sa lity .1 
F ollow in g  th e  ap p lication  of th e se  id eas b y  o th e r  a u th o rs2-5  
in terest in  th e  con cep t h as gro w n , a lth o u g h  it is still n o t  w id e ly  
u n d erstood . This im portan t and n o v e l m e th o d  h as th e  p o ten tia l 
to  im prove th e  w a y  that th e  q u a n tita tiv e  p h e n o ty p e s  that  
u n d erlie  c o m m o n  d iseases are in v estig a ted , so  b etter  in fo rm in g  
p ublic h ea lth  in terv en tio n s th at alter th e  le v e l o f th e  p h e n o ty p e  
in  order to  reduce th e  risk of d isea se .4

K atan  d escrib ed  h o w  e v id e n c e  o f  th e  e f fe c t  o f  th e  
ap o lip op rote in  E (APOE) g e n o ty p e  o n  ca n cer  risk co u ld  be u sed  
to  test th e  h y p o th esis  that 'a n a tu ra lly  lo w  ch o le s te r o l favours  
tu m o u r  g r o w th .'1 G iven  th at 'th e  grad ien t in  se ru m  ch o les tero l 
lev e ls  in  th e  p o p u la tio n  is a ssoc ia ted  w ith  a grad ien t in  APOE  
[gen o ty p e]', u n d er th e  cau sa l h y p o th e s is  w e  w o u ld  e x p ec t to  
see  a corresp on d ing  a sso c ia tio n  b e tw e e n  APOE an d  cancer. T he  
ab sen ce of su ch  a g e n e tic  a sso c ia tio n  'w o u ld  su g g est th a t th e  
associa tion  b e tw e e n  lo w  ch o le s te r o l an d  can cer  is sp u riou s'. 
K atan em p h a sized  th a t APOE g e n o ty p e  is p resen t s in ce  birth  
an d  is n o t  d istu rb ed  b y  d ise a se , so  u n lik e  c o n v e n t io n a l  
ep id em io lo g ica l m e th o d s  th e  g e n e t ic  test is n o t  in flu en ced  by  
reverse c a u sa tio n  or co n fo u n d in g .

T he term  'M en d e lia n  ran d o m iza tio n ' has b e e n  u sed  by a 
n u m b er  of research ers w h e n  ap p ly in g  th is id ea  to  in v estig a te  
p h e n o ty p e -d ise a s e  a sso c ia tio n s2,4,5 b u t n o t  a lw a y s in  exactly  
th e  sa m e  w ay . T he term  w a s  first u sed  in  a c o m p le te ly  d ifferent 
c o n te x t  to  describe a m e th o d  o f  p seu d o -ra n d o m iza tio n  in  a 
p a rticu la r  c lin ic a l trial fo r  w h ic h  th e  r a n d o m iz a tio n  o f  
trea tm en t w as n o t o th e r w ise  p o ss ib le6 (see  W h ea tley  and  
Gray's C om m en tary  in  th is issu e  o f I J E ) 7 . A t its m o st basic, 
'M en d elia n  ran d om ization ' sim p ly  m e a n s that, accord in g  to  
M en d el's law s o f seg reg a tio n  and in d e p e n d e n c e ,8 a subject's 
g en o ty p e  is d e term in ed  by an  ap p aren tly  ran d o m  p rocess at 
co n cep tio n . So 'M en d elia n  ra n d o m iz a tio n ' is a fu n d a m en ta l 
b io lo g ica l p ro cess  th a t s h o u ld  r e a so n a b ly  u n d e r p in  th e  
appropriate in terp reta tion  o f a n y  stu d y  in  w h ic h  g e n o ty p e  is 
related to an  o u tc o m e . H o w ev er , by c o m m o n  u sage, th e  term  
'M en d elian  ran d om ization ' h as a lso  b e c o m e  a tta ch ed  to  th e  
ep id em io log ica l m eth o d  tha t appears to  b e  b ased  u p o n  K atan's
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id eas th a t g en era tes i n d i r e c t ,  a n d  u n c o n fo u n d e d , in feren ces  
a b o u t th e  a sso c ia tio n  b e tw e e n  a p h e n o ty p e  and  a d isease  g iv en  
d i r e c t  in fo rm a tio n  o n  th e  g e n e -d is e a s e  an d  g e n e -p h e n o ty p e  
asso c ia tio n s 4 T he c o n fu s io n  an d  a m b ig u ity  th a t th is d ou b le  
m e a n in g  en g en d ers  is im p e d in g  th e  tra n sm iss io n  o f  id eas about 
th e  v a lu e  o f th is im p o r ta n t e p id e m io lo g ic a l approach . In our  
v ie w  it w o u ld  b e  b etter  to  g iv e  th e  e p id em io lo g ica l m eth o d  an  
a ltern a tiv e  n a m e , su ch  as 'M e n d e lia n  d eco n fo u n d in g ', and  to  
reserve th e  term  'M e n d e lia n  ra n d o m iz a tio n ' for th e  m ore  
fu n d a m en ta l b io log ica l p rocess.

In  ap p ly in g  th e  c o n c e p t d escrib ed  by K atan, th e  em p hasis  
orig in a lly  w a s o n  h y p o th e s is  test in g  to  con firm  or refu te th e  
ev id e n c e  for particu lar p h e n o ty p e -d is e a s e  a ssocia tion s fo u n d  in  
ob serv a tio n a l stu d ies. H o w ev er , th e  m e th o d  ca n  be d ev e lo p ed  
to  p rov id e  an  e stim a te  o f th e  s i z e  o f th e  u n c o n fo u n d e d  effect of 
a p h e n o ty p e  o n  d ise a se  to g e th e r  w ith  a m e a su r e  o f its 
u n certa in ty . In th is c o m m e n ta r y  w e  describe h o w  th ese  ideas 
h a v e  b e e n  d ev e lo p ed  sin ce  K atan's paper an d  in  particular w e  
em p h a size  th e  b en efits  o f es tim a tin g  th e  size o f th e  effect of 
p h e n o ty p e  o n  d isease  o v e r  sim p le  h y p o th es is  testing . F inally  w e  
co n sid er  p ossib le  fu tu re  d e v e lo p m e n ts  particularly in  regards to  
m eta -a n a ly sis .

Applications of M endelian randomization 
to learn about phenotype-disease 
relationships
Y ou n gm an  e t  a l .  and  K ea v n ey  e t  a l .  w ere  the  first authors to use  
th e  term  'M en d elian  ran d om ization ' in  a sim ilar ep id em io log ica l 
co n tex t to  that described  by K atan.2,3 Y oungm an e t  a l .  studied  
fibr in ogen  lev e ls  and  b eta -fib rogen  gen otyp e in  p rem ature  
m yocard ial in farction  (MI) cases and related controls. From  their  
dataset, three associations w ere  observed. These are sh o w n  in  
Figure 1, w h ere  G represents the  gen otyp e (beta-fibrinogen

D

IP

Figure 1 A pictorial representation of the m odel used to test for a 
causal association betw een intermediate phenotype and  disease (IP-D) 
or to derive an unconfounded estimate of the size of th a t effect
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H in d lll) , IP th e  in te rm ed ia te  p h e n o ty p e  (fib rin ogen ), and  D th e  
d isease (M I). T he a sso c ia tio n  b e tw e e n  G an d  D (sh o w n  as a 
b rok en  lin e) is in d u c ed  o n ly  th r o u g h  th e  causal effects o f G o n  
IP and o f IP o n  D. T he m o d e l a ssu m e s th a t th ere  is n o  o th e r  
p a th w a y  th ro u g h  w h ic h  th e  g e n e  ex erts its effect o n  M I. U n d er  
th e  a ssu m p tio n  of M e n d e lia n  ra n d o m iza tio n , th e  m ea su rem en ts  
of th e  G -D  an d  G -IP a sso c ia tio n s are u n c o n fo u n d e d , w h ile  th e  
m ea su red  IP -D  asso c ia tio n  is lik e ly  to  b e  c o n fo u n d e d  an d  subject 
to  reverse  cau sation .

The in form ation  availab le en a b led  Y ou n gm an  e t  a l .  to  assess  
w h e th e r  fibrin ogen  (IP) h ad  a causal lin k  w ith  M I (D ). The  
a u th ors o b ta in ed  u n c o n fo u n d e d  es tim a te s  o f th e  G -IP  (0 .1 2  g/1 
p er a lle le , standard error 0 .0 1 8 , P <  0 .0 0 0 0 1 )  and  G -D , odds 
ratio = 1 .03  (95%  Cl: 0 .9 6 , 1 .10) associa tions. As th e  G -IP  
associa tion  is clearly estab lish ed , a causal IP -D  rela tion sh ip  w o u ld  
h a v e  resu lted  in  an  o b served  G -D  association . As this G -D  lin k  is 
n o t se en , their  ob served  IP -D  odds ratio o f 1 .20  (95%  Cl: 1.13, 
1.26) is probably  a resu lt o f co n fo u n d in g  or reverse cau sation .

The n o n -s ig n ifica n ce  o f th e  G -D  a ssocia tion  d o es lead  u s to  
d o u b t th e  h y p o th e s iz e d  ca u sa l p a th w a y . H o w e v e r , th is  
c o n c lu sio n  is subject to  all o f th e  reservations w e  w o u ld  h a v e  
ab ou t u sin g  P - v alu es. A n  a ltern ative  in terp reta tion  w o u ld  b e that 
th ere  w e r e  in su ffic ien t data to  ru le o u t a 10%  in crease  in  M I risk 
for a (m od est) 0 .1 2 -g/1 ch a n g e  in  th e  le v e l o f fibr in ogen . T h ou gh t  
o f in  th is w ay, th e  an alysis b ased  o n  th e  a ssu m p tio n  o f M en d elia n  
ran d om ization  su ggests th a t a n y  causal IP -D  a ssocia tion  is n o t  
large b u t it d oes n o t ru le it o u t  co m p lete ly . T he u se  o f th e  data to  
estim ate  the  p oten tia l size o f th e  IP -D  associa tion  is lik ely  to  be  
m u c h  m ore in form ative  th a n  re ly in g  o n  h y p o th es is  tests o f G -IP  
and  G -D  to ru le in  or ru le o u t  a causal link.

To estim ate th e  size o f th e  u n co n fo u n d ed  IP -D  odds ratio 
associated  w ith  a sp ec ified  ch a n g e , K, in  th e  in term ed ia te  
p h en o ty p e  w h e n  th e  m easu red  G -IP d ifference is AIP per a llele  
and th e  odds ratio (per a lle le) o f G -D  is OR, w e  m ay  calcu late

o r k /aip
If th is  e s tim a tio n  ap p ro a ch  is u sed  th e n  it is im p o rta n t that  

u n certa in ty  in  th e  d er iv ed  IP -D  od d s ratio a ccu rate ly  reflects 
th e  u n cer ta in tie s  in  b o t h  th e  G -IP  an d  G -D  e s tim a te s .9 S o m e  
a n a ly ses  h a v e  ig n o red  th e  u n c e r ta in ty  in  G -IP  w h e n  ca lcu la tin g  
Cl for th e  d er iv ed  o d d s ratios, w h ic h  m a y  b e  v ery  m islea d in g  
w h e n  G -IP is in a ccu ra te ly  assessed .

Y ou n g m a n  an d  c o lle a g u e s  a lso  u se d  th e  a ssu m p tio n  of  
M en d e lia n  r a n d o m iz a tio n  to  stu d y  th e  re la tio n sh ip  b e tw e e n  
plasm a a p o lip o p r o te in s A l  (IP j) an d  B (IP2 ) an d  M I (D) u sin g  
ap o lip o p r o te in  E (G t ) a n d  c h o le s te r y l e s ter  tran sfer p ro te in  (G2 ) 
g e n o ty p e s  as illu stra ted  in  F igu re 2 .3

>  IP

Figure 2 Modelling th e  effect of in term edia te  phenotypes on a 
com plex disease

T his m o d e l has th e  a d d itio n a l c o m p lic a tio n s  o f m o r e  th a n  o n e  
g e n e  a f fe c tin g  e a c h  in te r m e d ia te  p h e n o ty p e  (g e n e t ic ,  
sp ec ifica lly  lo cu s, h e te r o g e n e ity )  an d  ea ch  g e n e  e x e r tin g  its 
effect o n  m o re  th a n  o n e  in te r m e d ia te  p h e n o ty p e , a sp ec ia l case  
o f  p le io tr o p y . T h e d e v e lo p m e n t  o f a p p r o a c h e s  to  d er iv e  
u n c o n fo u n d e d  es tim a te s  o f th e  effec t o f IP o n  D in  su ch  
situ a tio n s h a v e  n o t  y e t  b e e n  fu lly  d e v e lo p e d  b u t w o u ld  b e  o f  
e n o r m o u s  b en efit, g iv e n  th a t th e  p h e n o ty p e s  o f g rea test in terest  
in  p u b lic  h e a lth  term s are th o s e  th a t u n d e r lie  c o m m o n  
d isord ers w h e r e  su c h  c o m p le x ity  is th e  n o r m .10 F u rth er  
e x a m p le s  o f th e  u se  o f M e n d e lia n  r a n d o m iz a tio n  can  b e fo u n d  
in  th e  e x te n s iv e  r e v ie w  b y  D a v e y  S m ith  an d  E b rah im .4

Developing the concept: from hypothesis 
testing to M endelian deconfounding
The k ey  research  q u estio n  from  a p ub lic h ea lth  p erspective is: 
w h a t is th e  u n co n fo u n d ed  effect o f IP o n  D? Suitably designed  
g en etic  stud ies p rovide ep id em io log ists w ith  a too l to  derive  
u n co n fo u n d ed  estim ates o f th e  size o f th e  effect o f th e  IP o n  D 
tog eth er  w ith  a m easu re o f its u n certa in ty .9 As w ith  m o st research  
in v o lv in g  h u m a n  subjects, th e  p urpose of su ch  stu d ies w ill u sually  
be to  d eterm in e  th e  m ag n itu d e  o f th e  effect o f a causal factor or an  
in te rv en tio n  a im ed  at p rev en tin g  d isea se .11 In th e se  situations, 
estim a tio n  (o f th e  m ag n itu d e  o f th e  IP -D  association ) rather than  
h yp oth esis  testin g  (of w h e th e r  observational ep id em io lo g y  studies  
h a v e  b e e n  subject to  con fo u n d in g ) w ill be o f greater utility. There  
is a substantial literature th at stresses th e  ad van tages o f estim ation  
over h yp oth esis  testing  to in form  d ecision s in  h ea lth -rela ted  
research .11,12 C linically im portant effects m ay  b e statistically n o n 
sign ificant if the  sam p le size is in ad eq u ate . O n th e  o th er  hand, 
c lin ica lly  irre lev a n t e ffe c ts  m a y  so m e t im e s  b e  sta tistica lly  
significant.

U n c o n fo u n d e d  es tim a te s  o f th e  IP -D  a sso c ia tio n  ca n  read ily  
be ad ju sted  for a rea listic  red u ctio n  in  th e  le v e l o f IP th a t o n e  
co u ld  e x p e c t  fro m  a p u b lic  h e a lth  in te r v e n tio n  a im ed  at 
red u cin g  D. M islea d in g  in fe ren ces  co u ld  resu lt, h o w e v e r , if th e  
in te r v e n tio n  e x er ted  its e ffect o n  D v ia  cau sa l p a th w a y s  o th e r  
th a n  IP. This is th e  case  w ith  in te r v e n tio n s  a im ed  at red u cin g  MI 
risk b y  lo w e r in g  f ib r in o g en , w h ic h  a lso  ap p ear to  a ffect MI risk 
via  o th e r  p a th w a y s .13-15

In order to prod u ce tight Cl for th e  IP -D  odds ratio w e  n eed  
accurate estim ates o f b o th  G -D  and  G-IP. S u ch  in form ation  w ill 
o ften  o n ly  be availab le from  m eta -a n a ly ses . M in elli e t  a l .  h a v e  
describ ed  m eta -a n a ly tica l ap p roach es for M e n d e lia n  d e c o n 
fou n d in g , addressing th e  im portant issu e  that G -IP and  G -D  
associations m ay  be correlated  w h e n  b o th  estim ates are obta in ed  
from  the sam e study  an d  describing m eth o d s to a llo w  for such  
corre la tion .16

The future
Precise estim a te s  are n e e d e d  to  in d irectly  e s tim a te  th e  e ffect o f  
IP o n  D from  M e n d e lia n  ra n d o m ized  stu d ies. A s a lm o st all 
cu rren t g e n e t ic  stu d ies are sta tistica lly  u n d e r p o w e r e d  to  d etect  
th e  re la tiv e ly  sm all e ffec ts  o f  th e  freq u en t g e n e  varian ts th a t  
u n d er lie  c o m m o n , c o m p le x  d ise a se s ,17 th e re  h as b e e n  an  
in crea sin g  em p h a sis  o n  e v id e n c e  sy n th e s is  an d  m eta -a n a ly sis  in  
g e n e t ic  e p id e m io lo g y . T h e H u m a n  G e n o m e  E p id e m io lo g y
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N etw o rk  (H uG ENet) n o w  co -o rd in a tes a ser ies o f  r ev iew s that 
in tegrate ev id en ce  from  g e n e tic  a sso c ia t io n  stu d ies  (h ttp :// 
w w w .c d c .g o v /g e n o m ic s /h u g e n e t /d e fa u lt .h tm ) .18 H o w ev er , 
o n ly  2 o f th e  2 0  rev iew s p u b lish ed  b y  A pril 2 0 0 3  actually  
em p lo y ed  m eta -a n a ly sis .19-21 W e are o p tim istic  a b ou t the  
possib ility  of larger stu d ies in  th e  n ea r  fu tu re  b eca u se  o f th e  
substantia l reductions in  g e n o ty p in g  costs , b u t stu d y  size still 
rem a in s lim ited  by th e  c o s t  o f  p r o p e r  p h e n o ty p in g  and  
M en d elia n  ran d om ization  is lik e ly  to  b e  b a sed  o n  ev id e n c e  from  
m eta-a n a ly ses for th e  fo rese ea b le  fu tu re .

W h en  u n d ertak in g  m e ta -a n a ly se s  o f g e n e t ic  stu d ies to  d erive  
u n co n fo u n d ed  estim a te s  o f IP -D  a sso c ia tio n , researchers w ill 
n eed  to be m in d fu l o f th e  lim ita tio n s  o f M en d elia n  ran d o m 
ization  stud ies d escrib ed  b y  D a v e y  S m ith  and  E brahim 4 and the  
lim ita tio n s o f stan d ard  m e ta -a n a ly tic a l p rob lem s, su ch  as 
p u b lica tion  b ia s.22 F urth erm o re , rep ortin g  an d  p u b lica tion  bias 
are so  p erv a siv e  in  g e n e tic  a sso c ia tio n  s tu d ie s17 that especia l 
ca u tio n  m a y  b e n e e d e d . F u n n e l p lo ts sh o u ld  b e  v isu a lly  
in sp ected  an d  th e  se n s itiv ity  o f th e  resu lts to  m eth o d s w h ich  
'adjust' for th e  p resen ce  o f p u b lica tion  bias cou ld  be te sted .23 In  
ad d ition , ap p roach es th a t a cco u n t for th e  correlation  b e tw e e n  
G -D  and  G -IP a ssocia tion s m a y  be required  w h ere  th ese  
estim a tes are ob ta in ed  from  th e  sam e s tu d ie s .16

T he am b itiou s drive to u n d erstan d  aetio log ica l p a th w a y s that 
u n d er lie  th e  so -ca lled  co m p lex  d iseases, su ch  as asth m a and  
coron ary  heart d isease, has ga thered  p ace w ith  th e  p lethora  of  
b io log ica l k n o w le d g e  and  data that h a v e  arisen  from  th e  h u m a n  
g e n o m e  p roject.24 G iven  th at su ch  d isea ses are co m m o n ,  
im proved  u n d erstan d in g  of th e se  p a th w a y s w ill probab ly  be  
n e c e ssa r y  for s ig n ific a n t im p r o v e m e n ts  in  p u b lic  h e a lth .  
H ow ever, co m p lex  d iseases are a lso  ch aracterized  by their  
m u ltifa c to r ia l n a tu r e , a n  u n c e r ta in  d ise a s e  d e f in it io n , 
p leiotropy, p h e n o c o p ie s , an d  g e n e t ic  h e te r o g e n e ity .10 In  short, 
in d iv id u a l g en etic  e ffects are m o d est, d ifficu lt to  d etect, and  
lik ely  to  be stron g ly  in flu e n c e d  by e n v ir o n m e n t. T he d iseases  
w h ere  'M en d e lia n  d e c o n fo u n d in g ' h as th e  g rea test p o ten tia l 
also  th r o w  up th e  greatest ch a llen g es , s in ce  th e  assu m p tio n s  
that rela te to  M e n d e lia n  ra n d o m iz a tio n  are lea st lik e ly  to h o ld  
for c o m p le x  d isea ses. T he m o st  im p o rta n t a ssu m p tio n  is th e  
ab sen ce  o f an  a ltern a tiv e  p a th w a y  th r o u g h  w h ic h  th e  g e n e  
ex er ts  its e ffect o n  d isea se  (a sp ecia l case o f p le io tr o p y ), w h ich  
w ill a ffect th e  va lid ity  o f a p h e n o ty p e -d ise a s e  a ssocia tion  
d er iv ed  b y  from  g e n e tic  stu d ies. F urth erm ore, th e  find in gs m ay  
b e less g en era lizab le  w h e r e  th ere  is lin k a g e  d iseq u ilib riu m  to, or 
in te r a c t io n  w ith , a g e n e  w ith  fu n c t io n a l e ffe c ts  o n  th e  
p h e n o ty p e  a n d /o r  d isea se  u n d er  study, or g e n e -e n v ir o n m e n t  
in teraction .

H ow ever, g iv e n  that d irect es tim a te s o f th e  effect o f an  
in term ed ia te  p h e n o ty p e  o n  d isea se  in  trad ition a l ob servation al 
stu d ies are h ig h ly  p ro n e  to  c o n fo u n d in g  an d  reverse  ca u sa tio n ,4 
th e  d erivation  o f p h e n o ty p e -d is e a s e  a sso c ia tio n s from  g en etic  
stud ies sh o u ld  be co n sid er ed  as a v a lu a b le  a ltern a tiv e  to  
observational stu d ies and  efforts sh o u ld  be d irected  tow ards  
develop in g  m eth od s to ap p rop ria te ly  m o d e l th is com p lex ity . 
T hese m eth od s h ave th e  p o te n tia l to  b e  p a rticu lar ly  u sefu l in  
th e  future as k n o w led g e  o f b io log ica l p a th w a y s  im p r o v es , m ore  
su itab le  polym orphism s can  be u sed , h ig h  q u a lity  data from  
large g en etic  association stu d ies b e c o m e  ava ila b le , an d  m e th o d s  
to  d er iv e  estim ates from  M en d elia n  ra n d o m ised  stu d ies are  
refin ed .
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SUMMARY

In traditional epidemiological studies the association between phenotype (risk factor) and disease is 
often biased by confounding and reverse causation. As a person’s genotype is assigned by a seemingly 
random process, genes are potentially useful instrumental variables for adjusting for such bias. This type 
o f adjustment combines information on the genotype-disease association and the genotype-phenotype 
association to estimate the phenotype-disease association and has become known as Mendelian ran
domization. The information on genotype-disease and genotype-phenotype may w ell come from a 
meta-analysis. In such a synthesis, a multivariate approach needs to be used whenever some stud
ies provide evidence on both the genotype-phenotype and genotype-disease associations. This paper 
presents two multivariate meta-analytical models, which differ in their treatment o f  the heterogeneities 
(between-study variances). Heterogeneities on the genotype-phenotype and genotype-disease associa
tions may be highly correlated, but a multivariate model that parameterizes the heterogeneity directly is 
difficult to fit because that correlation is poorly estimated. We advocate an alternative model that treats 
the heterogeneities on genotype-phenotype and phenotype-disease as being independent. This model fits 
readily and implicitly defines the correlation between the heterogeneities on genotype-phenotype and 
genotype-disease. W e show how either maximum likelihood or a Bayesian approach with vague prior 
distributions can be used to fit the alternative model. Copyright © 2005 John W iley & Sons, Ltd.

KEY WORDS: Mendelian randomization; meta-analysis; multivariate models; methylene tetrahydrofolate
reductase {M T H F R )  gene; instrumental variables

1. INTRODUCTION

Traditional epidemiological studies that investigate the association between phenotypes 
(biological risk factors) and diseases are often biased because of confounding or reverse
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causation. A useful technique for adjusting for such bias is to employ a carefully selected 
gene as an instrumental variable, an approach that has recently become known as Mendelian 
randomization. This method is effective provided that the gene is well chosen [1] and that 
the associations between the genotype and the phenotype and between the genotype and the 
disease can be accurately estimated. To obtain the necessary precision in these estimates will 
often require a meta-analysis. In such a synthesis, a multivariate approach needs to be used 
whenever some studies provide evidence on both the genotype-phenotype and genotype- 
disease associations, in order to allow for the correlation in those outcomes. This paper 
develops some models for the meta-analysis of genetic studies that are used for Mendelian 
randomization.

1 .1 .  M e t a - a n a l y s i s  o f  g e n e t i c  s t u d i e s  u s in g  M e n d e l i a n  r a n d o m i z a t i o n

With the recent growth in knowledge about the human genome there has been a dramatic 
increase in the number of genetic epidemiological studies of the association between specific 
genes and diseases and between those genes and the risk factors, or phenotypes, that are 
thought to be intermediates on the causal pathway to disease. As the number of these studies 
has grown, so meta-analyses have been produced to synthesise the evidence and overcome 
the limitations of precision found in even moderately sized studies [2, 3].

A new use of this genetic epidemiological evidence has recently been advocated and is 
based on the concept of Mendelian randomization, that is, the fact that one’s genes are in
herited before birth by a seemingly random process analogous to treatment allocation in a 
randomized trial. Because of the nature of genetic inheritance, neither the genotype-disease 
nor the genotype-phenotype relationship can be affected by confounding or reverse causation, 
hence combining them provides an unconfounded estimate of the phenotype-disease asso
ciation [1,4,5]. Suppose that a mutant genotype (GG) is associated with an increased risk 
of disease compared to the wildtype (gg) and that this effect is measured by its odd ratio 
(ORggvsgg)• Further suppose that GG is associated with a mean difference, A P ,  in the level 
of the intermediate phenotype compared with gg. Then, assuming linearity of the relationship 
between phenotype and the log OR of disease, O R ^ f is an unconfounded estimate of the 
OR of disease resulting from a unit change in the phenotype. Equivalently the log OR of 
a unit change in phenotype on disease is estimated by the ratio log ORcGvsgg/AE. It may 
be more informative to rescale this OR for increments other than a unit change in pheno
type. For an increment of k  units the formula becomes OR^y . In a meta-analysis the
assumption of linearity should be assessed by plotting on a graph, for each study, log OR of 
genotype-disease against average difference in phenotype with genotype [6].

In a meta-analysis of genetic studies for Mendelian randomization, there is likely to be a 
mixture of studies that measure the genotype-phenotype effect, those that measure 
genotype-disease and those that measure both. If the evidence on genotype-phenotype and 
genotype-disease comes from unrelated sources then separate meta-analyses would give esti
mates of the pooled effects that could, by appealing to Mendelian randomization, be combined 
to estimate the size of the phenotype-disease association. Otherwise, it is necessary to use 
a multivariate model in order to allow for the correlation in the genotype-phenotype and 
genotype-disease evidence arising from the studies that measure both associations. In either 
case, the uncertainty in both estimates of genotype-phenotype and genotype-disease associa
tions needs to be taken into account [6].

Copyright © 2005 John W iley & Sons, Ltd. Statist. Med. 2005; 24:2241-2254
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The meta-analysis of genetic studies using Mendelian randomization is a special case of a 
multivariate meta-analysis in which the synthesis is simultaneously performed on two corre
lated outcomes, namely the size of the genotype-phenotype difference and genotype-disease 
log OR. Multivariate models have previously been used in meta-analyses that collect data on 
correlated outcomes within the same study, such as in the synthesis of multiple-treatment 
studies, synthesis of multiple outcome (or endpoint) studies, and synthesis of studies with 
both multiple treatments and multiple outcomes [7-11]. However, unlike most of these other 
applications of multivariate meta-analysis, the outcome of real interest in Mendelian random
ization is the single derived phenotype-disease association, calculated as a ratio of the two 
correlated outcomes.

1 .2 .  O v e r v i e w  o f  th e  p a p e r

In this paper we consider two models for the heterogeneities, or between-study variances, 
in the estimates of genotype-phenotype and genotype-disease associations. The first model 
is shown to give estimation problems even with large amounts of data. The second model 
overcomes this problem by making the extra assumption that the heterogeneity on the genotype- 
phenotype association is independent of the heterogeneity on the phenotype-disease associ
ation. In Section 2, we introduce the example that will be used to illustrate the models. 
Section 3 introduces the two models and uses them to analyse the example.

2. ILLUSTRATIVE EXAMPLE: M T H F R  GENE, HOMOCYSTEINE AND CHD

To illustrate the models we consider the use of the methylene tetrahydrofolate reductase 
{ M T H F R )  gene as an instrumental variable in the estimation of the effect of homocysteine 
on coronary heart disease (CHD). Many traditional observational studies have suggested that 
an increase in blood homocysteine level is associated with an increased risk of CHD. However, 
important potential confounders, such as smoking and blood pressure, may be responsible for 
some or all of the observed association. This confounding may explain the heterogeneity 
between studies that was found in a recent meta-analysis of individual patient data [12]. 
Moreover, unknown (and therefore unmeasured) confounders are also thought to influence this 
relationship, as is reverse causation, that is, elevations in blood homocysteine may result from 
atherosclerosis and CHD. The likely presence of unadjusted confounding makes it very difficult 
to be sure that the relationship between homocysteine and CHD is causal. The M T H F R  gene 
has a common polymorphism that has been shown to affect the level of homocysteine in the 
blood, which makes it a possible choice as an instrumental variable. The polymorphism in 
question involves a C-to-T substitution at base 677, so the wildtype homozygous genotype is 
referred to as CC and the mutant homozygous genotype as TT. The TT polymorphism leads to 
reduced enzyme activity and consequently higher homocysteine levels [13], so if homocysteine 
is causally related to CHD we would expect the TT polymorphism to be associated with CHD.

A recent genetic meta-analysis of individual patient data has shown an increased risk 
of CHD of about 16 per cent associated with genotype TT compared to CC (OR: 1.16; 
95 per cent Cl: 1.05-1.28) [14]. This result is similar to that of another meta-analysis based 
on aggregated data published by Wald e t  a l . [15], which showed an OR of 1.21 (95 per 
cent Cl: 1.06-1.39). The latter paper also considered the evidence on the association between

Copyright © 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2241-2254
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MTHFR

TT vs CC

A = Hcy-n- -  Hcyc ORmthfr

Hom ocysteine CHD

ORh = OR, 1/A
‘MTHFR

Figure 1. Calculation o f  an unconfounded estimate o f  the effect o f  an increase in homocysteine 
(H ey) o f  1 pmol/1 on the risk o f  CHD, based on the concept o f  Mendelian randomization.

genotype and phenotype and reported a simple average mean difference of 2.7 (95 per cent Cl: 
2.1-3.4), pmol/1 in homocysteine concentration between TT and CC genotypes (Figure 1).

Combining the two genetic meta-analyses, a total of 66 genetic studies were identified 
(data set available at http://www.prw.le.ac.uk/research/HCG/MTHFRdataSet.html). Of these, 
32 evaluated only the genotype-disease association, 16 only the genotype-phenotype associ
ation, and 18 reported both [6]. The two-column forest plot in Figure 2 illustrates the results 
of the studies.

In any multivariate meta-analysis it is important to allow for the correlation in the estimates 
from those studies that supply information on more than one outcome. If the rth study sup
plies correlated outcomes, x, and _y,, which are assumed to be multivariate normally (MVN) 
distributed with variances vxi and v y i , then,

In the next level of the hierarchy we assume that different studies vary about the common 
means p x and p y with correlated heterogeneities tx and t v.

The parameter p  represents the between-study correlation across studies measuring both out
comes and ij/ represents the within-study correlation. For those studies measuring only the

3. MODELS FOR MULTIVARIATE META-ANALYSIS

MVN

MVN

Copyright © 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2241-2254
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Figure 2. Two-colum n forest plot and pooled estimates for genotype-disease 
and genotype-phenotype associations (for references see data set available at 

http: / / w w  w .prw. le . ac.uk/research/HCG/MTHFRdataSet. html).
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first or second outcome we use the corresponding univariate normal distributions.

Xi ~  N(/ixf, vxi)  and y xl ~  N ( j i x , xx )

and

y t ~  NOv,-, Vyt) and ~  N (^ , t v)

In models for meta-analysis in Mendelian randomization x will represent the log OR of disease 
given genotype and y  will represent the mean difference in phenotype. The object will be to 
estimate the ratio of x to y  as this will give the log OR of the effect of phenotype on disease. 
The literature will provide the study estimates and their variances vxi and v vi, which may be 
reported implicitly in the form of standard errors or confidence intervals. We will assume that 
these variances are known without error.

3 .1 .  W i t h i n - s t u d y  a n d  b e t w e e n - s t u d y  c o r r e l a t i o n s

The within-study correlation, iJ/, represents the possibility that when a particular study estimates 
one measure as being larger than its actual value then there may be a tendency for the 
other estimate also to be larger (or smaller) than its true value. This correlation can only be 
estimated from individual patient data, and is never reported by primary studies. However there 
are two good theoretical reasons to suppose that the within-study correlation will be negligible 
in most studies used in a Mendelian randomization. The study-specific OR of genotype on 
disease is based on aggregated data and in most studies phenotype level is only measured in 
a subsample of the subjects.

A small simulation study was performed to assess the likely size of the within-study cor
relation. This simulated study consisted of the same number of cases and controls ( n  =  100). 
The probability of disease given the phenotype, was assumed to be controlled by a logis
tic function of the phenotype with parameters a and /?. The distribution of the phenotype 
over the population was assumed to be normal with a fixed genotype effect on phenotype. 
Repeated studies were simulated under identical conditions and the correlation between the 
estimated the log OR for the genotype-disease association and the mean difference in phe
notype was calculated. The parameters were chosen to reflect the values in studies of the 
MT/fi^-homocysteine-CHD pathway. Initially the following parameters were considered; 
an OR per unit change in phenotype on disease of 1.1 [/?= lo g (l.l)  =  0.095] and a difference 
in phenotype due to genotype of 4 units, which give an OR of genotype on disease of 1.46; a 
frequency of mutant genotype of 12 per cent; a between-subject variation in levels of pheno
type that is normally distributed with parameters N(8,2) or N(12,2) depending on genotype; a 
baseline risk of disease (a) with mean of —4 and standard deviation of 0.2, reflecting unmea
sured covariates. Under these conditions 3.9 per cent of people with the wildtype genotype 
and 5.6 per cent of those with the mutant genotype develop the disease. As recommended [6] 
the effect of genotype on phenotype was estimated from the controls only.

From 5000 repeated simulations the correlation between the estimated log OR of genotype 
on disease and the mean difference in phenotype was 0.015. Using further sets of 5000 
simulations, the basic situation was altered by changing one parameter (sample size 50 or 
100, phenotype difference 2 or 6, OR 1.05 or 1.2, baseline risk of disease -3) and keeping the 
others fixed at the values given above. In all of these simulations the estimated correlation 
was within the range ±0.05.
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The between-study correlation, p, represents the tendency for studies conducted in popu
lations where the true effect of genotype on phenotype is large also to show a larger than 
average effect of genotype on disease. In contrast to the within-study correlation, for a meta
analysis of studies with a wide range of populations and designs this correlation may well be 
substantial.

3 .2 .  M o d e l  A — h e t e r o g e n e i t y  o n  g e n o t y p e - p h e n o t y p e  a n d  g e n o t y p e - d i s e a s e

In the first model, represented schematically in Figure 3(a), we adopt the hierarchical bivariate 
normal distributions described at the start of Section 3. Without individual data it is not 
possible to estimate the within-study correlation, i]/, but for the reasons set out above \j/ will 
be very small and so we assume t/f =  0. Denoting the log OR of phenotype on disease by 
0  — p x/ p v, the marginal distribution becomes:

Xi ~  MVN ^ 6 p y Vxi +  ?x P \ / v xXy
y* . P y _P\A*Ty Vyi +  Xy

When only one of the pair of estimates is reported we treat them as univariate normal. Thus Xj 
is normally distributed with mean 0 p v and variance v X[ +  xx, or y, is normally distributed with 
mean p y and variance v yi +  xy .

The model has five parameters ( 9 ,p y,xx,xy,p) ,  and numerical maximization of the log 
likelihood using the ml command in Stata [16] is based on the transformed parameter values 
( 0 ,  /i_v,log(tx),log(Tv),log[(l +  p)/( 1 -  p)]). This avoids the need to check the natural range 
constraints on the parameters, such as xx and xy which need to be greater than 0 if not 
log-transformed. Starting values were calculated from the raw data as

X
V y =  P> Tx =  Var(x), i v =  Var(y), p =  Corr(x,y)

For the MTHFR data maximization was started at 0 =  0.06, py =  3 .3 3 ,  xx =  0 .3 5 ,  xy =  1 .1 5 ,  
p =  0.51 and converged to the values reported in Table I. This solution corresponds to an 
OR of 1.53 (95 per cent Cl: 1.21-1.93) for the effect of a 5 pmol/1 increase in homocysteine 
on CHD. The between-study correlation is poorly estimated, and the log likelihood increases 
with p with a maximum at p =  1.

Under Model A the final estimate of the OR depends on the between-study correlation, 
which is poorly estimated. This was demonstrated by sensitivity analyses that fitted the model 
with a range of different known values for the correlation. The results varied from an OR

M odel A Model B
Genotype

DiseasePhenotype

Genotype

p=0

Phenotype

(b)

Disease

Figure 3. (a) M odelling the heterogeneities o f  the associations in Model A; and (b ) modelling the 
heterogeneities o f  the associations in Model B.
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T a b le  I. R e su lts  o f  M o d e l A  and  B  fitted  to  th e  M T H F R  data, u s in g  th e  m a x im u m -lik e lih o o d
approach .

M od el Param eter E stim ate 95 per cen t C l

A e 0 .085 0 .0 3 8 -0 .1 3 2
H y 2 .6 7 8 1 .9 8 9 -3 .3 6 6
*x 0 .1 2 7 0 .0 5 6 -0 .2 8 7
Xy 3 .083 1 .5 1 3 -6 .2 8 1

P * 1.000 —

B 0 0 .0 8 7 0 .0 3 3 -0 .1 4 1
Py 2 .7 1 4 1 .9 3 2 -3 .4 9 5
Xx 0 .0 0 9 0 .0 0 2 -0 .0 3 5
X y 3 .3 7 0 1 .5 8 9 -7 .1 4 8

* T he estim ate is at the extrem e o f  its range and the 95 per cent C l cannot be calcu lated .

of 1.42 (95 per cent Cl: 1.09-1.85) obtained when the between-study correlation was 0 to 
1.53 (95 per cent Cl: 1.21-1.93) when the correlation was 1. It will usually be difficult to use 
Model A because the results depend on the between-study correlation and there is unlikely 
to be sufficient information to estimate the correlation accurately.

3 .3 .  M o d e l  B — h e t e r o g e n e i t y  o n  g e n o t y p e - p h e n o t y p e  a n d  p h e n o t y p e - d i s e a s e

A second model, referred to as Model B, overcomes the limitations of Model A by modelling 
the heterogeneities of the associations in an alternative manner. The three stages in the triangle 
shown in Figure 1, namely genotype-phenotype, phenotype-disease and genotype-disease will 
all be subject to heterogeneity but under the causal model implicit in that figure we may derive 
any one from the other two. In Model B we parameterize the heterogeneities on the genotype- 
phenotype and phenotype-disease stages and critically assume that they are independent as 
illustrated in Figure 3(b). Even under this model, correlation will still be induced in the 
resultant heterogeneities on genotype-phenotype and genotype-disease. Independence implies 
that studies that find a large effect of genotype on phenotype will not tend to find relatively 
larger or smaller effects of the phenotype on disease. In fact, it is unlikely that the effect of a 
specific level of phenotype on disease would depend on the cause of that level (e.g. genotype 
rather than any other cause). This is almost certainly reasonable in the case of M T H F R , 
homocysteine and CHD, and is very likely to hold in most other cases.

Assuming bivariate normal distributions we have a hierarchical model with, at the lower 
level, means p xi and p yi, variances vxi and v̂ -, and 0 within-study correlation. Suppose that 0, 
and p yi represent the log OR of phenotype on disease and the average change in phenotype 
within the z'th study and that the corresponding population means are 0  and p Y. If the between- 
study variances are xq and xy , respectively, and there is zero between-study correlation, then 
since p Xi =  d i p y i , we can use a Taylor series approximation (delta method) [17] to derive the 
mean and variances of the two observed measures; genotype-phenotype and genotype-disease. 
If we approximate their distribution by a bivariate normal we obtain:

Pxi ~  MVN ( 6 g y
P yi . V P y

p 2x e +  62 x} 
6rv

Ox.
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so that:
'Xj ~  MVN ( ' d p y Vxi +  p).X() +  0 2Xy 0 x y
yt V J l y OXy Vyi +  Xy

As before, when only one of the pair is observed we treat them as univariate normal; thus x t is 
normally distributed with mean 6 p y and variance vx i+pL2yX Q + 6 2xy , or y \  is normally distributed 
with mean p v and variance v yi +  t v.

This new model has four parameters ( 0 , / u y , xo, xy ), and numerical maximization of the log 
likelihood is based on transformed parameter values 6 , p,v, l o g ( x 0), log(Tj,). To obtain initial 
values we take:

0 = y  tiy = y> T0=Var( ~ ) ’ Ty = VaT(y)

For the MTT/FR-homocysteine-CHD example, maximization starts at 0  =  0.06, pty =  3.33, 
t  ̂=  0.31, xy  =  1 .1 5  and converges to the values reported in Table I. These figures lead to an 
estimate of the induced correlation between true study-specific means of genotype-phenotype 
and genotype-disease of p  — 0.52. The result of Model B expressed as the effect of a 5 pmol/l 
increase in homocysteine on CHD is an OR of 1.54 (95 per cent Cl: 1.18-2.02).

A sensitivity analysis allowing a small known amount of within-study correlation found 
that with \ J / = —0.1 the OR of a 5 pmol/1 increase in homocysteine was 1.56 (95 per cent Cl: 
1.18-2.05) while with =4-0.1 the OR was 1.53 (95 per cent Cl: 1.17-2.00). Thus even if 
there is a small amount of within-study correlation this has little effect on the final estimate.

The main difference between Models A and B is that B adds the assumption that the 
heterogeneity in the mean difference in phenotype with genotype is independent of the het
erogeneity in the log OR of phenotype on disease. Under Model B, a plot of the true log OR 
of genotype on disease for each study, n xi =  9 iP yi, against the true average difference in phe
notype n yi , would produce points that would lie about a straight line passing through the 
origin with slope 6 , and the correlation would be approximately 9 y / ( x v/ x x ). Using the pa
rameter estimates from the fitting of Model A (Table I) this correlation should be about
0.085* ^(3.083/0.127) =  0.42, similar to the implied correlation when Model B is fitted. The 
fact that Model A goes on to find an implausible solution with a correlation of one is partly 
a reflection of the lack of data to estimate that correlation in the absence of extra assump
tions, and partly due to the detection of some non-linearity. The maximized log likelihood for 
Model A is —37.3 and for Model B is —39.2. As there is one extra parameter in Model A 
the choice of model is not clear cut but we prefer Model B since it accords more closely 
with the pattern of between-study variation that we expected to see.

3 .4 .  B a y e s i a n  a p p r o a c h  t o  p a r a m e t e r  e s t i m a t i o n

Equivalent models have also been developed within a Bayesian framework, using MCMC 
methods as implemented by WinBUGS software 1.4 [18], with ‘vague’ prior distributions 
adopted for all model parameters, such that they contain relatively little information in com
parison to the likelihood [19]. Convergence was assessed via sensitivity analyses with respect 
to initial values, length of ‘burn-in’ and length of sample, using both visual inspection of 
trace plots and by the Geweke, Heidelberger and Welch, and the Raftery and Lewis diagnos
tic tests [20] implemented in BOA [21]. The WinBUGS code is available on our website at 
http://www.prw.le.ac.uk/research/HCG/gebugs.html
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3 .4 .1 .  M o d e l  A .  When adopting a Bayesian approach, the same structure as for the maxi
mum likelihood approach was followed. For unknown mean parameters vague normal prior 
distributions, with mean 0 and variance 1000, were used. A Wishart prior distribution was 
adopted for the inverse covariance matrix, in which degrees of freedom were chosen to be 
the rank of the covariance matrix in order to obtain a vague prior distribution [22]. A  p r i o r i  
beliefs regarding the expectation of the covariance matrix were specified such that the vari
ances of p xi and p yi were 0.35 and 7.75, respectively, and the corresponding prior correlation 
was 0.5, all of which were considered a  p r i o r i  plausible values. The result of the Bayesian 
model expressed as the effect of a 5 jimol/1 increase in homocysteine on CHD is similar to 
that of the maximum likelihood approach, with an OR of 1.50 (95 per cent CrI: 1.15-1.99). 
However, a problem similar to that encountered in the maximum likelihood approach for the 
correlation estimation was present, with the results of the model being sensitive to the values 
specified for the hyperparameters chosen to represent a  p r i o r i  beliefs regarding the expected 
covariance matrix in the Wishart prior distribution.

3 .4 . 2 .  M o d e l  B . When using a Bayesian approach, the specification of Model B, unlike 
Model A, is slightly different from that used for the maximum likelihood approach, and 
uses a modified product normal formulation [23]. Here we do not need to approximate the 
distribution of the genotype-disease association by a normal distribution, as we did in the 
maximum likelihood approach in order to use the delta method. Indeed, strictly speaking, this 
distribution cannot be normal being the product of two distributions, which we assumed to 
be normal (for the genotype-phenotype and phenotype-disease associations). Unknown mean 
parameters have vague normal prior distributions with mean 0 and variance 1000, whilst 
unknown variance parameters have inverse gamma prior distributions with parameters 0.001 
and 0.001. Moreover, the Bayesian specification of Model B uses a slightly different method to 
deal with those studies measuring only one association (either genotype-disease or genotype- 
phenotype). In these studies, the association that has not been evaluated is treated as missing 
at random, and missing values are sampled from the corresponding predictive distributions. 
Thus, all 66 studies are modelled in a single step for both genotype-disease and genotype- 
phenotype associations.

The result for the Bayesian approach expressed as the effect of a 5 pmol/1 increase in 
homocysteine on CHD is an OR of 1.54 (95 per cent CrI: 1.17-2.06). Despite the differences 
in the two approaches in terms of approximations and structure, the results are very similar.

3 .5 .  E f f e c t  o f  i g n o r i n g  c o r r e l a t i o n

Multivariate models should be used whenever the outcomes of interest are correlated and 
measured within the same studies. However, the potential gain in terms of increased preci
sion or reduced bias may be small, depending on the proportion of studies that measure both 
outcomes. When ignoring correlation in the example of the M T H F R  gene, homocysteine and 
CHD, thus carrying out two independent meta-analyses on genotype-disease and genotype- 
phenotype data and then estimating the phenotype-disease association based on the two pooled 
estimates, the OR for a 5 pmol/1 increase in homocysteine was 1.43 (95 per cent Cl: 1.10- 
1.95) and 1.44 (95 per cent CrI: 1.10-1.94), for the classical and Bayesian meta-analyses, 
respectively, as compared with 1.54 (95 per cent Cl: 1.18-2.02) and 1.54 (95 per cent 
CrI: 1.17-2.06) of the multivariate meta-analysis. The confidence interval for the classical
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approach when ignoring correlation is calculated based on the uncertainty in the estimates of 
both genotype-disease and genotype-phenotype associations [24]. In our example, the gain in 
precision between univariate and multivariate models is minimal, however in other examples 
the gain might be greater.

The hierarchical nature of the model could be extended if it were thought that the assump
tion of partial exchangeability was more appropriate [19]: i.e. conditional upon study-level 
covariates, for example, year of study.

4. DISCUSSION

If the assumptions of Mendelian randomization are met [1], then it is possible to derive an 
unconfounded estimate of the size of the phenotype-disease association. The most important 
assumption behind the triangulation shown in Figure 1 for our case-study is that the M T H F R  
polymorphism only influences the risk of CHD through its impact on homocysteine and not 
by any other pathway. We also assume that M T H F R  is not in linkage disequilibrium with 
any gene that influences CHD or homocysteine and that the relationship between the ratio 
of log OR-gg vs gg and the mean difference in phenotype, AP ,  is constant across studies even 
though the size of the phenotype difference may vary. In our case-study these assumptions 
are reasonable [6] and therefore the estimated association between homocysteine and CHD 
is believed to be causal. Clearly it is advisable to limit the use of Mendelian randomization 
to examples where there is a good understanding of the biological pathway from gene to 
phenotype to disease.

When synthesising evidence of genetic studies for use in a Mendelian randomization analy
sis, studies evaluating genotype-phenotype, genotype-disease or both associations together are 
likely to be encountered. Simulations suggest that in this situation the within-study correlation 
is likely to be very small, but it is still important to allow for the between-study correlation 
in the heterogeneities of studies that evaluate both genotype-phenotype and genotype-disease 
associations. Heterogeneities on the genotype-phenotype and genotype-disease associations 
may be highly correlated but a multivariate model that parameterizes the heterogeneity di
rectly (Model A) is difficult to fit because the correlation is poorly estimated. We advocate 
an alternative approach that treats the heterogeneities on genotype-phenotype and phenotype- 
disease as being independent (Model B). This model fits readily and implicitly defines the 
correlation between the heterogeneities on genotype-phenotype and genotype-disease.

In our paper we adopted both a maximum likelihood and a Bayesian approach with vague 
prior distributions for all parameters. Although no differences were shown in any of the re
sults, there are differences in the statistical paradigms and in the subsequent interpretation of 
the results. MCMC was used for parameter estimation in the Bayesian approach due to the 
analytical intractability. The use of MCMC avoided the requirement for Taylor series approx
imations, which might have an impact on the results, although they made no difference in 
our example. Although MCMC methods could also be used for maximum likelihood inference 
[25], we found good performance using the Newton-Raphson algorithm together with approx
imate variances. When using a Bayesian approach re-parameterization may not be theoretically 
necessary as the posterior distribution of functions of the model parameters may be obtained 
directly from the MCMC samples. It can nevertheless, depending on the precise sampling 
algorithm used [26], be desirable to re-parameterize in order to improve performance of the
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MCMC algorithm, especially in a hierarchical or non-linear model setting [27]. An additional 
issue raised by the use of a Bayesian approach is the choice of ‘vague’ or non-informative 
prior distributions [19,28]. This is particularly important for the prior on the between-study 
variance in a meta-analysis context, to which the results may be sensitive [19,29-31]. The 
difference in the interpretation of the results of the two approaches is reflected by the differ
ent meaning of the confidence/credibility intervals, and, more importantly, by the possibility 
offered by Bayesian methods to allow direct probability statements regarding the estimate of 
the effect of interest. Finally, although we did not consider it, a fully Bayesian approach with 
prior distributions based on data from other pertinent studies [32-34] or expert opinion and 
other evidence could be adopted [19]. However, elicitation of beliefs regarding the model 
parameters in such meta-analysis (e.g. correlations) is not straightforward [35,36].

Mendelian randomization is an example of the use of an instrumental variable; a technique 
that has been used in econometrics since the 1920s but only occasionally applied to health 
sciences to control for confounding and measurement error [37, 38]. These methods derive an 
unconfounded estimate of the association between the exposure and outcome of interest from 
the observed relationship of an instrumental variable with both exposure and outcome. The 
use of instrumental variables, despite their potential role in epidemiology, has been mainly 
limited to measurement error [39] and to the field of randomized clinical trials. A typical 
application is to use the allocated treatment as an instrumental variable to control for the 
bias due to non-compliance as an alternative to the more usual analysis by intention-to- 
treat [38]. A likely explanation for the limited use of these methods is that it is often difficult 
to find suitable instrumental variables, since the method requires the variables have not only 
an unconfounded relation with both the exposure and the outcome of interest, but also an 
association with the outcome that is explained by the association with the exposure. In some 
situations Mendelian randomization allows the subject’s genotype to be used as an instrumental 
variable, with genetic studies providing information on the impact of a specific mutation on 
both the phenotype (risk factor) and disease of interest. If the gene is carefully chosen then 
both associations are unconfounded because the genotype is effectively randomly assigned, 
but the important assumption that the genotype is associated to the disease only through the 
phenotype of interest needs to be carefully assessed [1].

There are many other issues regarding the synthesis of genetic studies using Mendelian 
randomization that might be considered and developed as extensions of the model presented. 
An important issue for any meta-analysis that is particularly relevant in genetic epidemiology 
[2,40], is that of dissemination bias. Not only do we need to be concerned about the possi
bility of publication bias but also of reporting bias, due to researchers choosing not to report 
either a log OR or a phenotype difference when both are measured but one is not consistent 
with some accepted theory. An integrated meta-analytical approach can start addressing these 
issues by comparing the pooled estimates and the funnel plots for genotype-phenotype and 
genotype-disease associations in studies reporting either only one or both associations [6]. It 
is important to note that, whilst all meta-analyses are based on the assumption of missing at 
random for those studies which might not have been included (no publication bias), in the case 
of Mendelian randomization we also assume that in those studies reporting only one estimate, 
the other is also missing at random (no reporting bias). A valuable extension would be to 
model explicitly the reporting and publication bias mechanism in the meta-analysis [41,42]. In 
practise, however, explicit information about these mechanisms is usually lacking and strong 
assumptions about reporting and publication mechanisms operating are likely to be required.
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Another important extension would be to include the information on genotype-disease asso
ciation obtained from the analysis of subjects heterozygous (rather than only homozygous) 
for the polymorphism. The use of Mendelian randomization could also be extended to more 
complex situations where several genotypes influence the disease through the same phenotype 
or where a single genotype influences the disease through different phenotypes.
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SUMMARY

A genetic model-free method for the meta-analysis of genetic association studies is described that 
estimates the mode of inheritance from the data rather than assuming that it is known. For a bi- 
allelic polymorphism, with G as risk allele and g as wild-type, the genetic model depends on the ratio 
of the two log odds ratios, / =  log ORGg/log ORgg, where ORgg compares GG with gg and ORog 
compares Gg with gg. Modelling log ORgg as a random effect creates a hierarchical model that can be 
implemented within a Bayesian framework.

In Bayesian modelling, vague prior distributions have to be specified for all unknown parameters 
when no external information is available. When the data are sparse even supposedly vague prior distri
butions may have an influence on the posterior estimates. We investigate the impact of different vague 
prior distributions for the between-study standard deviation of log ORgg and for X, by considering three 
published meta-analyses and associated simulations. Our results show that depending on the character
istics of the meta-analysis the results may indeed be sensitive to the choice of vague prior distribution 
for either parameter.

Genetic association studies usually use a case-control design that should be analysed by the corre
sponding retrospective likelihood. However, under some circumstances the prospective likelihood has 
been shown to produce identical results and it is usually preferred for its simplicity. In our meta-analyses 
the two likelihoods give very similar results. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1 .1 .  B a y e s i a n  m o d e l s  f o r  m e t a - a n a l y s i s

Meta-analysis is the quantitative synthesis of results from multiple studies [1], If the results 
for the individual studies are similar they can be pooled using a fixed effects model, but 
where the studies show heterogeneity it is important to use a random effects model that al
lows for the between-study variability [1]. Ideally the reasons for the heterogeneity should 
then be investigated [2]. A random effects meta-analysis is an example of a two-level hierar
chical (or multilevel) model. By assuming exchangeability between studies, each can ‘borrow 
strength’ from the others. This results in the estimated effects for the individual studies being 
shrunk towards the overall mean and usually gives increased precision. More importantly, 
the precision of the estimate of that overall mean will allow for the variability between 
studies [3,4].

The Bayesian approach to hierarchical modelling has been advocated for theoretical and 
practical reasons [4]. Bayesian analysis allows researchers to use external information ei
ther in the form of subjective beliefs or based on other data sources, and enables them to 
produce subjective probability statements about the model parameters [4]. Fitting Bayesian 
models by Markov chain Monte Carlo (MCMC) methods is particularly flexible and makes it 
practical to use relatively complex hierarchical models while allowing for uncertainty in all 
parameters [5,6]. Although possible, inclusion of uncertainty for variance parameters in an 
equivalent likelihood analysis is not straightforward and this source of variability is often 
ignored [7].

The main practical problem in undertaking a Bayesian meta-analysis is to specify appropri
ate prior distributions for the model parameters based on external information. When expert 
opinion is available it can be difficult to use this to derive probability distributions, especially 
for parameters such as variances or correlations [8, 9]. When there is no external informa
tion we are left with the equally difficult problem of trying to specify non-informative prior 
distributions for all of the model parameters, including the hyperparameters if the model is 
hierarchical [3]. Although a number of such prior distributions have been proposed, and rou
tinely used, strictly speaking ‘non-informative’ prior distributions, i.e. prior distributions that 
formally represent ignorance, and thus do not favour any particular parameter values, do not 
exist [10, 11]. In fact, a n y  prior distribution exerts some influence on the shape of the poste
rior distribution, the more so in the presence of sparse data. The real aim is to identify a prior 
distribution that has minimal effect on the final inference relative to the data [12]. For this 
reason, the term non-informative prior distribution is better replaced by ‘vague’ prior distribu
tion [13,14], which indicates a density with high spread that gives similar prior probability to 
a wide range of parameter values. The problem of choosing vague prior distributions has been 
demonstrated to be particularly critical for hierarchical variance parameters, since prior distri
butions proposed as vague might in fact influence the analysis due to limited data [13, 15-17]. 
Thus, sensitivity analyses that examine the robustness of the choice of prior distributions are 
an essential part of a Bayesian hierarchical analysis.

1 .2 .  M e t a - a n a l y s i s  o f  g e n e t i c  a s s o c i a t i o n  s t u d i e s :  a  g e n e t i c  m o d e l - f r e e  a p p r o a c h

The meta-analysis of genetic association studies introduces specific methodological prob
lems [18], among which the most characteristic is the presence of at least three possible

Copyright © 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3845-3861
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genotypes as exposure groups and the fact that these are related by the underlying mode of 
inheritance. In the simplest case of a bi-allelic genetic polymorphism, with a wild-type allele, 
g, and a mutant allele, G, thought to be associated with the disease of interest, association 
studies will collect information on the relative frequency of disease in subjects with each of 
the three genotypes (gg, Gg and GG). There are thus two relative risks or odds ratios to be 
estimated, GG and Gg, each compared with the wild genotype gg. The relationship between 
these two relative risks is dependent on the mode of inheritance, also called the genetic model.

Methods currently used for the meta-analysis of such studies usually reduce the three groups 
to two by assuming a specific genetic model and thus combining the groups accordingly (e.g. 
assuming a recessive model to justify combining Gg and gg) or assigning to the heterozygous 
group Gg half the effect, on the log scale, of the GG group (co-dominant model or ‘per-allele’ 
analysis) [18].

Since the underlying genetic model is usually not known, we propose a method that avoids 
the assumption of a specific genetic model, but which takes into account the correlation 
between the two estimates of the odds ratios [19]. The model treats the log odds ratio of 
Gg v e r s u s  gg (logORGg) as an unknown proportion, A, of the log odds ratio of GG v e r s u s  
gg (logO R g g ), i e. A =  logORcg/logO R gg , and thus ORog =  [O R gg] ; • Under this model the 
ratio, A, is assumed constant across studies. We refer to this approach as ‘genetic model-free’, 
a term already in use in genetic epidemiology to indicate that no underlying g e n e t i c  model 
is assumed, though the analyses are still based on an assumed s t a t i s t i c a l  model. Values of A 
equal to 0,0.5 and 1 correspond to the recessive, co-dominant and dominant genetic model, 
respectively, but we allow A to take any value between 0 and 1. In very rare situations a gene 
may be over-dominant, that is the risk of the Gg group can be higher or lower than either 
of the homozygous groups [20]. This would be characterized by values of A higher than 1 or 
lower than 0. This rare situation is not considered in this particular investigation.

1 .3 .  O v e r v i e w  o f  th e  p a p e r

In this paper we consider the statistical aspects of a Bayesian implementation of the genetic 
model-free approach by applying the model to three previously published meta-analyses and 
to simulations based on those three scenarios.

When adopting a Bayesian approach to a hierarchical model that allows heterogeneity in 
O R gg , unless there is prior knowledge, we have the problem of specifying vague prior dis
tributions for the between-study variance of log O R gg and for the parameter A. Since we rule 
out the over-dominant case in our examples, we need vague prior distributions for A which are 
constrained to cover the range between 0 and 1. The sensitivity of the analysis to the choice 
of vague prior distributions is investigated for the three published meta-analyses introduced 
in Section 2 and then for the simulated data in Section 3.

By far the majority of genetic association studies use a case-control design that requires 
a retrospective likelihood based on the probability of exposure given disease. Prentice and 
Pyke [21] showed that a maximum likelihood analysis based on the corresponding prospec
tive likelihood gives the same results as an analysis of the retrospective likelihood for a single 
study. Because the form of the prospective likelihood is simpler, it is very widely used. Equiv
alence within the Bayesian framework does not generally exist and has only been established 
for very particular choices of prior distributions [22]. Although not exactly equivalent, the 
results of Prentice and Pyke would suggest that with vague prior distributions the

Copyright © 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3845-3861
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retrospective and prospective Bayesian analyses should give similar answers. This issue is 
investigated in the context of meta-analysis in Section 4.

2. ILLUSTRATIVE EXAMPLES

2 .1 .  I l l u s t r a t i v e  m e t a - a n a l y s e s

For illustrative purposes, the genetic model-free method and all sensitivity analyses are applied 
to three previously published meta-analyses. In all cases, the polymorphism is bi-allelic, and 
we will call the two alleles G and g, where G is the one thought to be associated with the 
disease. The examples are

(a) A G T  gene and essential hypertension, reported by Kato e t  a l. [23]. The meta-analysis 
includes 7 case-control studies, with an average number of cases and controls per 
study of 191 and 175, respectively, and an average frequency of the G allele of 0.75.

(b) K I R 6 . 2  gene and type II diabetes, reported by Hani e t  al. [24]. This meta-analysis 
includes 4 case-control studies, with an average number of cases and controls per study 
of 130 and 92, respectively, and an average frequency of the G allele of 0.34.

(c) P O N 1  Q192R polymorphism and myocardial infarction, reported by Wheeler e t  al.  
[25]. This is a meta-analysis including 19 studies, 17 of which are case-control and 2 
cohort studies. The average number of cases and controls per study is 301 and 424, 
respectively, and the average frequency of the G allele is 0.33.

The variation between the three meta-analyses in terms of the number and sizes of the studies 
and the frequency of the allele of interest allows us to assess whether the sensitivity to the 
choice of prior distributions varies according to these characteristics.

2 .2 .  T h e  m e t a - a n a l y t i c a l  m o d e l  b a s e d  o n  r e t r o s p e c t i v e  l i k e l i h o o d

The meta-analysis is based on a retrospective likelihood that mirrors the method of sampling 
in case-control studies. Subjects are selected dependent on their disease status and then their 
exposure status is ascertained.

Denoting by y o j  and y \ j  the number of controls and cases, respectively, in genotype group j ,  
with j  =  1,2,3 (corresponding to gg, Gg and GG), the retrospective likelihood (Z,R) for each 
study included in the meta-analysis is derived from a pair of multinomial distributions

y Qj ~  Multinomial(«o, p o j ) y \ j  ~  Multinomial(«i , p \ j )

where n 0 and n\ are the total number of controls and cases, respectively

- _  PjexpWj) . , , ,
P dj i > 7 ^

and d  is an indicator of the disease status, taking the value of 0 for controls and 1 for cases. 
The probability that a control has exposure j  is P j / Y ^ l = i  Pk, with P\ =  l .  The log odds ratios 
of disease for the exposure groups Gg and GG compared to no exposure (gg) are represented 
by &2 and ^3, respectively, while <5i is zero by definition. The likelihood for each study will

Copyright © 2005 John W iley & Sons, Ltd. Statist. Med. 2005; 24:3845-3861
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thus take the form

L R( P , S ; y ) =  n  II
d = o j= i  \  E L i  Pk exp( d 5 k )

1 3 P j  exp( d d j )
(1)

In the meta-analysis, the full likelihood is then obtained as the product of likelihoods (1) 
over the i studies, under the assumption of independence of the studies. The study-specific 
log odds ratios for GG v e r s u s  gg, <53,, are modelled as normally distributed random effects 
parameters, which vary about an overall mean, 9 ,  with variance, x2

The study-specific log odds ratios for Gg v e r s u s  gg, E ,  are equal to the product of 
<53, and X, i.e. /  =  E / E ,  and the mode of inheritance, X, is assumed constant across studies 
and thus modelled as a fixed effect parameter. It is usually not possible to model both E  
and X as random effects because, without extra information, it is very difficult to simulta
neously estimate the heterogeneity of the two parameters. However, if  there are reasons to 
believe that /  differs across populations, the model could be generalized to include subgroups 
of studies within which X is constant.

Prior distributions have to be specified for the unknown model parameters 6 , x and X. While 
a diffuse normal distribution is used for 9  in all models, i.e. 0~N orm al(0,10000), prior dis
tributions for x and X are discussed in the following paragraphs. Corresponding posterior 
distributions are obtained using MCMC methods implemented using WinBUGS 1.4.1 [26], 
and details on the WinBUGS code for fitting this model can be found on our website, 
www.hs.le.ac.uk/research/HCG/AppendixSiM2005.doc. The number of simulations was varied 
and the traces were inspected for evidence of non-convergence before deciding on a ‘bum-in’ 
of 5000 iterations followed by chains of length 10 000.

2 . 2 . 1 .  P r i o r  d i s t r i b u t i o n s  f o r  t h e  h e t e r o g e n e i t y  t e r m .  Three prior distributions were consid
ered for the between-study standard deviation, x. Figure 1(a) shows the densities for the three 
prior distributions, all presented on the standard deviation scale.

The first prior distribution is a gamma distribution for the precision parameter (the inverse 
of the variance),

This corresponds to an inverse-gamma distribution on the between-study variance, and is 
approximately uniform apart from a ‘spike’ of probability mass close to zero. Although this 
is perhaps the most commonly used vague prior distribution for the heterogeneity parameter, 
it has been recently criticized and prior distributions on the standard deviation parameter have 
been recommended, as they are more directly interpretable [15,26],

The second prior distribution for the standard deviation, t, is a standardized half-normal 
distribution truncated at zero,

■53,~ N ( 0 ,t2)

4r ~Gamma(0.001,0.001)x

x ~  Half-Normal(0,1) x >  0 

This prior distribution gives a low probability to values greater than 2.

Copyright © 2005 John W iley & Sons, Ltd. Statist. Med. 2005; 24:3845-3861

http://www.hs.le.ac.uk/research/HCG/AppendixSiM2005.doc


3850 C. MINELLI E T  AL.

1
?! Gamma
iil{

1 *.

i :
f+^vHalf Normal

' \ X Uniformj « \
1 \  X• \ s
1 X.

1

(0.5,0.5)
c/>
c0)Q

0.4 0.6 0.8 10 0.2
(a) Tau (b) Lambda

F igu re 1. D e n s ity  p lo ts  for  th e  prior d istr ib u tio n s c o n sid er ed  for: ( a )  t; and  ( b )  2 . In ( a )  th e  d e n s it ie s  
for the  three p rior  d istr ib u tio n s are a ll p resen ted  o n  the  standard d e v ia t io n  sc a le ;  th e  g a m m a  d istr ib u tio n  
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Finally, the third prior distribution considered is a uniform distribution over the range 0 
to 2 and excludes the possibility that the standard deviation can be over 2

t ~Uniform(0,2)

2 . 2 . 2 .  P r i o r  d i s t r i b u t i o n s  f o r  2. We consider two beta prior distributions for the parameter, I .  
Both are constrained to cover the range between 0 and 1, and have been used for modelling 
vague prior beliefs about proportions [4]. Figure 1(b) shows the densities for the two prior 
distributions.

The first prior is a beta distribution with both parameters equal to one

2 ~  Beta( 1,1)

This distribution is uniform between 0 and 1. However, when parameters have values very 
close to the extremes, i.e. 0 or 1, and the data are sparse, this prior distribution will tend 
to pull the posterior estimates towards 0.5. For instance, for a near recessive model where 
the true value of 2 is very close to 0, this prior distribution will tend to distort the posterior 
estimates because it gives 90 per cent prior probability to values greater than 0.1.

The second prior is a beta distribution with both parameters equal to 0.5

2 ~Beta(0.5,0.5)

and corresponds to a Jeffreys’ prior distribution for a binomial likelihood. This distribution 
gives greater prior probability to values of 2 close to the extremes [27], i.e. to models which 
are close to recessive or dominant. However, if the genetic model is actually close to co
dominant, i.e. 2 =  0.5, and the data are sparse, this distribution may tend to inflate the uncer
tainty surrounding 2.

2 .3 .  R e s u l t s

The results for the 6 combinations of prior distributions for i  and 2 for the meta-analyses 
of Kato, Hani and Wheeler are illustrated in Figures 2(a), (b) and (c), respectively. Point

Copyright © 2005 John W iley & Sons, Ltd. Statist. Med. 2005; 24:3845-3861



BAYESIAN IMPLEM ENTATION OF A GENETIC M ODEL-FREE APPROACH 3851

Beta(0.5,0.5)
Gamma 

Half Normal 
Uniform

Gamma 
Half Normal 
i Uniform

Beta(0.5,0.5)

Beta(1,1)

Gamma 
Half Normal 

Uniform

Gamma 
Half Normal 

—• Uniform

(a)

1.2 1.4 1.6
OR Gg

Beta(0.5,0.5)

Beta(1,1)

0.2 0.4
Lambda

1.8

Gamma 
Half Normal 

Uniform

Gamma 
Half Normal 

Uniform

0.6

OR GG 

Beta(0.5,0.5)

Beta(1,1)

0.5 1
Tau

Gamma 
Half Normal 

Uniform

Gamma 
Half Normal 

Uniform

1.5

Beta(0.5,0.5)

Beta(1,1)

H Gamma

— i Half Normal h

----------- 1 Uniform I—

Gamma 

-• Half Normal I-

-* Uniform •-

Beta(0.5,0.5)

Beta(1,1)

H Gamma

 1 Half Normal

 1 Uniform

Gamma 

H Half Normal 

 1 Uniform

1.2 1.4 1.6
OR Gg

1.8 3
OR GG

Beta(0.5,0.5)

Beta(1,1)

-< Gamma I— ®-

-* Half Normal 1--------
Uniform I--------

H Gamma I-

~l Half Normal •- 

Uniform i-

Beta(0.5,0.5) 
 1

Beta(1,1)

Gamma 

Half Normal 
H Uniform

Gamma 

Half Normal 

H Uniform

0
(b)

0.2 0.4 0.6
Lambda

0.8 0.5
Tau

1.5
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Figure 2. Continued.

estimates (medians) and 95 per cent credible intervals (CrI) of the four parameters of interest, 
O R Gg, O R gg ,  ̂ and i, are plotted for each model.

The gamma distribution, with its spike close to zero, tends to produce lower estimates of 
t with narrower credible intervals, which in turn tends to be reflected in the widths of the 
credible intervals for the odds ratios. This is particularly pronounced in Hani’s meta-analysis, 
where the data are sparse because there are only 4 studies. Here the estimate of t is 53 and 51 
per cent lower with the gamma prior distribution compared with the uniform and the credible 
interval is 33 and 38 per cent narrower, for beta(l,l) and beta(0.5,0.5), respectively.

The impact of the two different beta prior distributions for X varies according to the char
acteristics of the meta-analysis. As expected the beta(0.5,0.5) tends to pull the point estimates 
for X towards the extremes, i.e. 0 and 1, and the beta(l,l) tends to provide more precise 
estimates of X, when X is near 0.5, as in Wheeler.

3. SIMULATIONS

Simulated data sets were created based on the three meta-analyses described in Section 2, in
order to investigate the posterior parameter estimates in situations where the true values were
known. The total number of studies and study sizes were kept the same as in the original 
meta-analyses, while values for the model parameters were taken from a profile maximum
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likelihood approach previously used to analyse these data [19]. For each of the three meta
analyses, 1000 new data sets were randomly generated and each was analysed in WinBUGS 
using the different prior distributions described in Section 2.2. It was not possible to check the 
convergence of all 18 000 analyses so we selected data sets that gave a large discrepancy in 
results when analysed with different prior distributions and checked convergence for those by 
running longer chains ( ‘burn-in’ 50 000, chain length 100000) with different starting values. 
In all cases the results confirmed the original analyses.

The median of the corresponding MCMC simulations was taken as the point estimate for 
each of the four parameters ORcg, O R gg , X and i. The medians from the analyses with the 
different prior distributions were compared in terms of their mean, their root mean square error 
(RMSE), and the coverage of the 95 per cent Crls, that is the percentage of intervals that 
included the true value. These three measures describe the average properties of the estimators 
across the 1000 data sets.

3 .1 .  R e s u l t s

For the four parameters ORGg, ORgg, X and t ,  the mean, RMSE, and coverage of the 95 
per cent Crls are summarized in Table I. For the scenarios based on Wheeler’s and Kato’s 
meta-analyses, the number of data sets effectively analysed was in fact 995 and 998, respec
tively, since a few simulated meta-analyses contained studies with 0 cells for b o t h  cases and 
controls in a genotype group, and the MCMC algorithm did not converge.

In all cases the half-normal and uniform prior distributions caused the heterogeneity, i, to 
be overestimated on average, although only in the case of the Hani-based simulations was the 
RMSE also appreciably larger. The beta prior distributions for X caused the average estimate 
of X to move towards 0.5, the more so in the presence of sparse data. This behaviour is 
caused by the constraint that X must lie between 0 and 1, and the choice of symmetrical 
prior distributions such as the beta(0.5,0.5) or the beta(l,l). Such a situation is illustrated by 
the Kato-based simulations where the true value of X is 0.13, so that underestimates had to 
lie between 0 and 0.13 while overestimates could lie between 0.13 and 1, and the average 
consequently tends to be too high. Under these circumstances the mean, or corresponding 
bias, is not an appropriate indicator of the quality of the estimator. A better indicator is the 
RMSE which favours the beta(0.5,0.5) prior distribution when X is small and the beta(l,l) 
when X is close to 0.5. On average the odds ratios are relatively insensitive to the choice of 
prior distributions.

Good average performance is reassuring but may not be a reliable guide to the sensitivity 
to the choice of prior distributions for any particular single data set. For this reason we 
used Bland-Altman style plots, originally described as a way to assess agreement between 
two methods of clinical measurement [28], in order to graphically evaluate the difference 
in results when comparing different prior distributions in all 1000 data sets (Figure 3). The 
difference in estimates based on any two prior distributions is plotted against the average of 
the two estimates. Plots for the Kato-based simulations are shown in Figure 3 and include a 
line drawn at the mean difference. Two dotted lines are drawn at the mean difference plus 
and minus 1.96 times the standard deviation of the difference, in order to both quantify the 
difference that can be observed when using different prior distributions on the same data set, 
and detect patterns in the difference which are related to the size of the parameter estimate. 
Plots for the other two scenarios showed similar results (data not shown).
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Figure 3. Plots o f  the difference in the estimates for Kato meta-analysis obtained by models with different 
prior distribution against their average value (Bland-Altm an plot) for: (a ) ORog; (b ) ORgg; (c) and 
(d ) t. Horizontal lines are drawn at the mean difference, and at the mean difference plus and minus 1.96 

times the standard deviation o f  the differences. The models are based on retrospective likelihood.

Figure 3(b) shows the effects of the different prior distributions on the estimate of O R gg hi 
individual data sets generated under the conditions of the Kato meta-analysis. The posterior 
estimates of O R gg with different prior distributions for x are usually very close, mostly within
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Figure 3. C ontinued .

±0.1 for estimates that are rarely over 3, and the agreement tends to be better in data sets 
where the posterior estimates of the odds ratio is close to 1. However, on rare occasions the 
difference can be as large as 0.3 when the average estimate is 3, a 10 per cent difference. 
Unfortunately there seems to be no way of distinguishing in advance if  the prior distributions 
will have a large impact on a particular simulated data set. If a 10 per cent difference might 
be of importance, then sensitivity to the choice of prior distributions needs to be checked in 
any meta-analysis.
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The impact on a  of the choice of the prior distribution is shown in Figure 3(c) and 
once again the differences tend to be small, but can, for particular data sets, be very large. 
For instance, data sets which produce estimates that average 0.6 can produce estimates that 
differ with the choice of prior distribution by up to 0.2. Figure 3(c) also shows some of the 
systematic effects noted in the average results. As might be anticipated, the impact of the 
choice of prior distribution is most marked in the estimate of t, shown in Figure 3(d). Not 
only are there strong systematic patterns, but the differences can also be large. For instance, 
when comparing a gamma prior distribution and a uniform prior distribution the estimates can 
vary by as much as 0.4 when the average estimate is 0.5, that is one estimate is 0.3 while 
the other is 0.7.

4. PROSPECTIVE V E R S U S  RETROSPECTIVE LIKELIHOOD

Although the retrospective likelihood reflects the method of sampling in case-control studies, 
a prospective likelihood based on the probability of disease given exposure, gives the same 
odds ratio, in both maximum likelihood [21] and some Bayesian analyses [22]. The advantage 
of using the prospective likelihood is that the outcome variable, disease, is binary, whereas in 
the retrospective analysis the outcome, exposure, can have many levels. In the case of genetic 
association studies, the exposure, i.e. genotype, has three categories even in the simplest case 
of a bi-allelic polymorphism.

Although the equivalence of the two likelihoods for fixed effects meta-analyses follows 
from the analogy with a stratified case-control study, there is no reason to suppose that exactly 
equivalent results will be obtained with more complex hierarchical models. Nonetheless, where 
the heterogeneity is small or the data are not sparse, we might expect the results to be similar.

Denoting by y o j  and y \ j  the number of controls and cases, respectively, in genotype group j ,  
with y =  1,2,3 (i.e. gg, Gg and GG), the prospective likelihood (LP) for each study included 
in the meta-analysis is derived from three binomial distributions, which leads to the following 
likelihood:

. ydJ3 1 ■ 0Cd e x p ( d d j )
j =i ;=o I £ j =0a* exp( d d j )

L P( x , d , y ) = U  n  < :----- 7777 ? (2)

where the parameter a is the baseline odds of disease (no exposure), i.e. the odds of disease 
when j =  1 (genotype gg), and 8 is the log odds ratio of interest (<52 for logORog and S3 for 
log O R g g ).

In the meta-analysis the full likelihood is obtained as the product of the likelihoods (2) over 
the i studies, assuming that the studies are independent. As in the retrospective meta-analysis 
(Section 2.2), the study-specific log odds ratios S3i are modelled as normally distributed ran
dom effects parameters, with an overall mean 6 and between-study variance t2. The underlying 
study-specific log odds ratios, <52/, are again derived as the product of <53( and I .  A diffuse 
normal distribution, 0~N orm al(0,10 000), is used in all models, while the different prior dis
tributions for r and I  are as discussed in Sections 2.2.1 and 2.2.2. Corresponding posterior 
distributions are obtained using MCMC methods implemented using WinBUGS 1.4.1 [26], 
and details on the WinBUGS code for fitting this model can be found on our website, 
www.hs.le.ac.uk/research/HCG/AppendixSiM2005.doc. The number of simulations was varied
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T a b le  II. R e su lts  o f  th e  g e n e t ic  m o d e l-fr e e  ap p roach  a p p lied  to  the  th ree  o r ig in a l m e ta -a n a ly se s , 
u sin g  b o th  a  r e tr o sp e c tiv e  and  a  p r o sp e c tiv e  lik e lih o o d . T h e  b e ta (0 .5 ,0 .5 )  and  th e  u n ifo r m (0 ,2 )  

are u se d  as v a g u e  p rior d istr ib u tio n s fo r  ) .  and r, r e s p e c t iv e ly .

M eta-analysis L ik elih ood
ORGg 

(95%  CrI)
O R gg 

( 95%  CrI) (95%  CrI)
T

(95%  CrI)

K ato R etrosp ective

P rospective

1.087
(1 .0 0 0 ,1 .7 0 5 )

1.083
(1 .0 0 0 ,1 .7 3 6 )

1.828
(1 .0 5 7 ,3 .5 9 8 )

1.814
(1 .0 5 3 ,3 .6 6 0 )

0 .1 6 6
(0 .0 0 1 ,0 .5 3 8 )

0 .159
(0 .0 0 0 ,0 .5 4 2 )

0 .5 6 4
(0 .2 3 6 ,1 .3 7 3 )

0 .5 6 0
(0 .2 3 9 ,1 .4 2 5 )

H ani R etrosp ective

Prospective

1.163
(0 .9 9 7 ,1 .7 9 7 )

1.162
(0 .9 9 8 ,1 .7 7 3 )

2 .0 2 9
(0 .9 5 9 ,3 .9 5 6 )

2 .013
(0 .9 6 8 ,4 .0 9 5 )

0 .238
(0 .0 0 2 ,0 .7 8 5 )

0 .2 4 0
(0 .0 0 1 ,0 .8 1 5 )

0 .2 9 4
(0 .0 1 7 ,1 .5 1 3 )

0 .3 0 6
(0 .0 1 5 ,1 .4 9 2 )

W heeler R etrosp ective

P rosp ective

1.083  
(1 .0 0 1 ,1 .2 0 7 )

1.083  
(1 .0 0 0 ,1 .2 1 0 )

1.148
(1 .0 1 9 ,1 .3 3 7 )

1.147
(1 .0 0 9 ,1 .3 3 0 )

0 .618
(0 .0 2 8 ,0 .9 9 7 )

0 .627
(0 .0 3 2 ,0 .9 9 8 )

0 .108
(0 .0 0 9 ,0 .3 3 2 )

0 .1 0 6
(0 .0 0 5 ,0 .3 3 1 )

and the traces were inspected for evidence of non-convergence before deciding on a ‘burn-in’ 
of 5000 iterations followed by chains of length 10 000 for the retrospective model and 50 000 
for the prospective model.

4 .1 .  R e s u l t s

We compared the retrospective and the prospective likelihoods by applying them to the 
three meta-analyses described in Section 2.1 and then to the simulated data sets described in 
Section 3.

Table II shows the results for the models with beta(0.5,0.5) and uniform(0,2) as vague 
prior distributions for A and x, respectively. The results are nearly identical for all meta
analyses and parameters of interest, both in terms of the point estimates (medians) and the 
width of the credible intervals. Different prior distributions for 2 and x gave similar results 
(data not shown). These findings were confirmed by the results of the simulations (data not 
shown). The only difference in the two approaches was a tendency to a slower convergence 
for the prospective models, even after the use of hierarchical centring in the specification of 
the prospective models [29]. This is the reason why the results for the prospective models 
(Table II) were based on longer chains, as described in the previous section.

5. DISCUSSION

The genetic model-free approach to the meta-analysis of genetic association studies is an 
integrated way of synthesizing the evidence on the genetic association, which captures both 
the magnitude of the genetic effect and information about the genetic mode of inheritance. 
Although the method can be implemented using maximum likelihood [19], the Bayesian 
framework is an attractive alternative with both philosophical and practical advantages. From
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a philosophical point of view, Bayesian analysis allows explicit inclusion of prior distribu
tion information on the genetic effect and on the genetic mode of inheritance. Although this 
possibility has not been explored in this paper, the models presented could incorporate prior 
knowledge when it is available. Such knowledge might be based on evidence from studies not 
included in the meta-analysis or on expert opinion. While in the first instance the inclusion 
of prior information would often be straightforward, in the second case it can be difficult to 
use expert opinion to derive appropriate probability distributions [8, 9]. From a practical point 
of view, the flexibility offered by Bayesian models estimated by MCMC algorithms makes 
it relatively straightforward to implement complex hierarchical models. The combination of 
increased computing power together with the availability of free software, particularly Win
BUGS [26], to implement MCMC models represents one of the main driving forces behind 
the increasing use of Bayesian methods in medical research. However, the increased flexibility 
leads to a greater requirement to consider the issue of model choice [4,30].

In situations where external information is not available, prior distributions still have to be 
specified for all parameters. Although such prior distributions may be intended to be non- 
informative, this is in fact an impossible aim as Figure 1 illustrates. Rather, we must hope 
that the prior distributions will not be influential, in the sense that the use of alternative vague 
prior distributions will not change the conclusions. This may be an impossible aim if the data 
are sparse, especially when specifying prior distributions for scale parameters, such as the 
between-study heterogeneity in a random effects meta-analysis. If the results are sensitive to 
the choice of supposedly vague prior distributions, then we have no option but to consider 
that any prior distribution is informative and so must be chosen with care and subject to a 
sensitivity analysis [4], The problem of statistical inference in the presence of sparse data is 
not limited to the Bayesian approach, and an analogous non-Bayesian analysis would find a 
very flat likelihood and would produce wide confidence intervals. In such circumstances, the 
ideal solution might be to incorporate subjective prior information or other external evidence 
in the Bayesian analysis [11].

The hierarchical model for the meta-analysis of genetic association studies involving the 
ratio, 2, requires many large studies if the choice of prior distribution for X is not to have an 
undue influence on the posterior estimates. In much the same way, the prior distribution for 
the between-study variation, t, can also influence the results. Recent research has suggested 
that the gamma prior distribution is not a good choice for the between-study precision in a 
hierarchical model and that the half-normal or uniform may be better [15]. Our findings do 
not support such a conclusion in this situation, where in general the gamma performs well. 
Of course, part of the problem is to do with the scaling of the prior distributions. Had we 
taken a half-normal with a smaller standard deviation, or a uniform distribution over a shorter 
range, then the corresponding estimates would have been more similar to those obtained using 
a gamma prior distribution. This very fact emphasizes the impossibility of defining a generic 
vague prior distribution when data are sparse, and the importance of careful specification even 
when using vague prior distributions.

Our analysis illustrates the importance of an investigation of sensitivity to the choice of 
prior distributions in any Bayesian analysis in which the prior distributions are not based 
on external knowledge. The sensitivity analysis will depend on the range o f vague prior 
distributions that are considered reasonable in any given situation and the size o f the change 
in the final estimate or its credible interval that is of practical importance. Thus, it will not 
be possible to find a s i n g l e  vague prior distribution that is always the least informative, so in
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complex models the desire to use vague prior distributions does not free the researchers from 
the need to tailor their prior distributions to their particular problem.

In our analyses the prospective and retrospective likelihoods gave very similar results for 
all examples considered and for all the different vague prior distributions considered for x 
and X. It may well be that in practice the prospective likelihood could be used when syn
thesizing evidence from case-control studies. However, the approximate equivalence of the 
two likelihoods for a particular combination of data set and model can only be established by 
using both, which rather removes the benefits of the simpler, but theoretically inappropriate, 
prospective model. The retrospective likelihood has the further advantage that it can easily in
corporate the assumption of Hardy-Weinberg equilibrium in the controls [31,32]. Given these 
considerations it will often be more appropriate to use the retrospective likelihood unless there 
is considerable evidence of approximate equivalence from similar analyses.

Although not explored in this paper, informative prior distributions, based on expert opinion 
or external evidence, could be used for the different model parameters. In a more general 
meta-analysis context, empirical data-based prior distributions have been advocated for the 
heterogeneity term, t , and might be an attractive option, especially when the number of studies 
included in the meta-analysis is small [33]. For the parameter / ,  there might well be data 
from studies evaluating the effect of the same polymorphism on similar disease pathways. The 
increase in the precision of the estimated X due to the use of an informative prior distribution 
would in turn increase the precision in the estimates of the odds ratios of interest, O R g g  and 
ORcg, and so might be very beneficial.

A CK NO W LEDG EM ENTS

Cosetta M inelli would like to thank the Department o f  Health, U.K., for supporting this research via a 
National Research Scientist in Evidence Synthesis Award, and she would like to thank the International 
Society for Clinical Biostatistics for the Student Conference Award received to attend the ISCB con
ference 2004 and present this work. The authors would also like to thank the referees for their useful 
comments, which greatly improved the paper.

REFERENCES

1. Sutton AJ, Abrams KR, Jones D R , Sheldon TA , Song F. M e t h o d s  f o r  M e t a - a n a l y s i s  i n  M e d i c a l  R e s e a r c h .  

W iley: Chichester, U .K ., 2000.
2. Thom pson SG. W hy sources o f  heterogeneity in m eta-analysis should be investigated, B r i t i s h  M e d i c a l  J o u r n a l  

1994; 309 (6965): 1351-1355 .
3. Sutton AJ, Abrams KR. Bayesian m ethods in m eta-analysis and evidence synthesis. S t a t i s t i c a l  M e t h o d s  i n  

M e d i c a l  R e s e a r c h  2001; 1 0 (4 ):2 7 7 -3 0 3 .
4. Spiegelhalter DJ, Abrams KR, M yles JP. B a y e s i a n  A p p r o a c h e s  t o  C l i n i c a l  T r i a l s  a n d  H e a l t h - C a r e  E v a l u a t i o n .  

W iley: Chichester, U .K ., 2004.
5. Brooks SP. Markov chain M onte Carlo method and its applications. J o u r n a l  o f  t h e  R o y a l  S t a t i s t i c a l  S o c i e t y ,  

S e r i e s  D  1998; 47(1 ):6 9 -1 0 0 .
6. Best N G , Spiegelhalter DJ, Thomas A, Brayne CEG. Bayesian analysis o f  realistically com plex m odels. J o u r n a l  

o f  t h e  R o y a l  S t a t i s t i c a l  S o c i e t y ,  S e r i e s  A  1996; 1 5 9 (2 ):323-3 4 2 .
7. Hardy RJ, Thom pson SG. A  likelihood approach to m eta-analysis with random effects. S t a t i s t i c s  i n  M e d i c i n e  

1996; 1 5 (6 ):6 1 9 -6 2 9 .
8. Garthwaite PH, D ickey JM. Quantifying expert opinion in linear regression problems. J o u r n a l  o f  t h e  R o y a l  

S t a t i s t i c a l  S o c i e t y ,  S e r i e s  B  1988; 5 0 (3 ):4 6 2 -4 7 4 .
9. Gokhale D V , Press SJ. A ssessm ent o f  a prior distribution for the correlation coefficient in a bivariate normal 

distribution. J o u r n a l  o f  t h e  R o y a l  S t a t i s t i c a l  S o c i e t y ,  S e r i e s  A  1982; 1 4 5 (2 ):2 3 7 -2 4 9 .
10. Irony TZ, Singpurwalla N D . Noninform ative priors do not exist: a d iscussion with Jose M. Bernardo. J o u r n a l  

o f  S t a t i s t i c a l  I n f e r e n c e  a n d  P l a n n i n g  1997; 6 5 (1 ): 159—189.

Copyright © 2005 John W iley & Sons, Ltd. Statist. Med. 2005; 24:3845-3861



BAYESIAN IMPLEM ENTATION OF A GENETIC MODEL-FREE APPROACH 3861

11. Berger JO. S t a t i s t i c a l  D e c i s i o n  T h e o r y  a n d  B a y e s i a n  A n a l y s i s  (2nd edn). Springer: N ew  York, U .S .A ., 1985.
12. Bernardo JM, Smith AFM . B a y e s i a n  T h e o r y .  W iley: Chichester, U .K ., 1994.
13. Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. H ow  vague is vague? A  sim ulation study o f  

the impact o f  the use o f  vague prior distributions in MCMC using W inBUG S. S t a t i s t i c s  i n  M e d i c i n e  2005; 
2 4:2401-2428 .

14. Kass RE, W asserman L. The selection o f  prior distributions by formal rules. J o u r n a l  o f  t h e  A m e r i c a n  S t a t i s t i c a l  

A s s o c i a t i o n  1996; 91(431): 1 343-1370 .
15. Gelman A. Prior distributions for variance parameters in hierarchical m odels. T e c h n i c a l  R e p o r t ,  Department 

o f  Statistics, Columbia University, 2004. Available at http://w w w .stat.colum bia.edu/~gelm an/research/ 
unpublished/tau7.pdf

16. Turner RM, Omar RZ, Thom pson SG. Bayesian methods o f  analysis for cluster randomized trials with binary 
outcom e data. S t a t i s t i c s  i n  M e d i c i n e  2001; 20(3 ):453-4 7 2 .

17. Spiegelhalter DJ. Bayesian methods for cluster randomized trials with continuous responses. S t a t i s t i c s  i n  

M e d i c i n e  2001; 2 0 (3 ):4 3 5 -4 5 2 .
18. Attia J, Thakkinstian A, D ’Este C. M eta-analyses o f  m olecular association studies: m ethodologic lessons for 

genetic epidem iology. J o u r n a l  o f  C l i n i c a l  E p i d e m i o l o g y  2003; 56 (4 ):2 9 7 -3 0 3 .
19. M inelli C*, Thompson JR*, Abrams KR, Thakkinstian A , Attia J (* Joint first authors). The choice o f  a genetic 

m odel in the m eta-analysis o f  m olecular association studies. I n t e r n a t i o n a l  J o u r n a l  o f  E p i d e m i o l o g y ,  advance 
access published 22 August 2005.

20. W illiam s J, Spurlock G, Holmans P, Mant R, Murphy K, Jones L e t  a l .  M o l e c u l a r  P s y c h i a t r y  1998; 3(2): 
141-149  (Erratum appears in M o l e c u l a r  P s y c h i a t r y  1998; 3 (5 ):458).

21. Prentice RL, Pyke R. Logistic disease incidence m odels and case-control studies. B i o m e t r i k a  1979; 66(3): 
4 0 3 -4 1 1 .

22. Seaman SR, Richardson S. Equivalence o f  prospective and retrospective m odels in the Bayesian analysis o f  
case-control studies. B i o m e t r i k a  2004; 91(1): 1 5 -2 5 .

23. Kato N , Sugiyama T, Morita H, Kurihara H, Yamori Y, Yazaki Y. A ngiotensinogen gene and essential 
hypertension in the Japanese: extensive association study and meta-analysis on six reported studies. J o u r n a l  

o f  H y p e r t e n s i o n  1999; 1 7 (6 ):7 5 7 -7 6 3 .
24. Hani EH, Boutin P, Durand E, Inoue H, Permutt M A, Velho G e t  a l .  M issense mutations in the pancreatic islet 

beta cell inwardly rectifying K +  channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic  
basis o f  Type II diabetes m ellitus in Caucasians. D i a b e t o l o g i a  1998; 41( 12): 1 511-1515 .

25. W heeler JG, K eavney B D , Watkins H, Collins R, Danesh J. Four paraoxonase gene polym orphism s in 11212 
cases o f  coronary heart disease and 12786 controls: meta-analysis o f  43 studies. L a n c e t  2004; 363(9410):  
6 8 9 -6 9 5 .

26. Spiegelhalter DJ, Thomas A, Best NG, Lunn D. W i n B U G S  U s e r  M a n u a l .  V e r s i o n  1.4.1. M RC Biostatistics 
Unit, Cambridge, U.K ., 2004.

27. B ox GEP, Tiao GC. B a y e s i a n  I n f e r e n c e  i n  S t a t i s t i c a l  A n a l y s i s .  Addison-W esley: Reading, M A , 1973.
28. Bland JM, Altman DG. Statistical m ethods for assessing agreement betw een tw o m ethods o f  clinical 

measurement. L a n c e t  1986; 1 (847 6 ):3 0 7 -3 1 0 .
29. Gelfand AE, Sahu SK, Carlin BP. Efficient parameterisations for normal linear m ixed m odels. B i o m e t r i k a  1995; 

8 2 (3 ):4 7 9 -4 8 8 .
30. Gilks WR, Richardson S, Spiegelhalter DJ. M a r k o v  C h a i n  M o n t e  C a r l o  i n  P r a c t i c e .  Chapman & Hall: London, 

U.K ., 1996.
31. Cheng KF, Chen JH. Bayesian m odels for population-based case-control studies when the population is in 

Hardy-W einberg equilibrium. G e n e t i c  E p i d e m i o l o g y  2005; 2 8 (2 ):1 8 3 -1 9 2 .
32. Thompson D, Witte JS, Slattery M, Goldgar D. Increased power for case-control studies o f  single nucleotide 

polymorphisms through incorporation o f  fam ily history and genetic constraints. G e n e t i c  E p i d e m i o l o g y  2004; 
27(3 ) :2 15-224 .

33. H iggins JP, W hitehead A. Borrowing strength from external trials in a m eta-analysis. S t a t i s t i c s  i n  M e d i c i n e  

1996; 1 5 (2 4 ):2 7 3 3 -2 7 4 9 .

Copyright © 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3845-3861

http://www.stat.columbia.edu/~gelman/research/


Published by Oxford University Press on behalf of the International Epidemiological Association International Journal of Epidemiology 2005;34:1319-1328 
© The Author 2005; all rights reserved. Advance Access publication 22 August 2005 doi: 10.1093/ije/dyi 169

The choice of a genetic model in the 
meta-analysis of molecular association studies
Cosetta M inelli, John R Thompson, ̂  Keith R Abrams, 1 Ammarin Thakkinstian2,3 and John Attia3

A c c e p t e d  2 5  J u ly  2 0 0 5

B a c k g r o u n d  T o e v a lu a te  g e n e - d is e a s e  a sso c ia t io n s , g e n e t ic  e p id e m io lo g is t s  c o lle c t  in fo r m a t io n  

o n  th e  d ise a s e  risk in  su b je c ts  w ith  d iffe r e n t  g e n o t y p e s  (fo r  a b i-a lle l ic  

p o ly m o r p h is m :  gg, Gg, G G ). M e ta -a n a ly s e s  o f  su c h  s tu d ie s  u s u a l ly  r e d u c e  th e  

p r o b le m  to  a s in g le  c o m p a r iso n , e i th e r  b y  p e r fo r m in g  t w o  se p a r a te  p a ir w ise  

c o m p a r iso n s  o r  b y  a s s u m in g  a sp e c if ic  u n d e r ly in g  g e n e t ic  m o d e l  (r e c e s s iv e , c o 

d o m in a n t , d o m in a n t ) .  A  b io lo g ic a l ju s t if ic a t io n  fo r  th e  c h o ic e  o f  t h e  g e n e t ic  m o d e l  

is  s e ld o m  a v a ila b le .

M e t h o d s  W e  p r e s e n t  a g e n e t ic  m o d e l- fr e e  a p p r o a c h , w h ic h  d o e s  n o t  a s s u m e  th a t  th e

u n d e r ly in g  g e n e t ic  m o d e l  is k n o w n  in  a d v a n c e  b u t  s t ill m a k e s  u s e  o f  th e  

in fo r m a t io n  a v a ila b le  o n  a ll g e n o ty p e s . T h e  a p p r o a c h  u s e s  O R GG, th e  o d d s ra tio  

b e t w e e n  th e  h o m o z y g o u s  g e n o ty p e s , to  c a p tu r e  th e  m a g n itu d e  o f  th e  g e n e t ic  

e ffe c t , a n d  X, th e  h e te r o z y g o te  lo g  o d d s  ra tio  a s a p r o p o r t io n  o f  th e  h o m o z y g o te  lo g  

o d d s  ra tio , to  c a p tu r e  th e  g e n e t ic  m o d e  o f  in h e r ita n c e .  T h e  a n a ly s is  a s s u m e s  th a t  

t h e  s a m e  u n k n o w n  g e n e t ic  m o d e l,  i .e . th e  s a m e  X, a p p lie s  in  a ll s tu d ie s , a n d  th is  is 

in v e s t ig a te d  g ra p h ic a lly . T h e  a p p r o a c h  is i l lu s tr a te d  u s in g  f iv e  e x a m p le s  o f  

p u b lis h e d  m e ta -a n a ly s e s .

R e s u lt s  A n a ly s e s  b a se d  o n  sp e c ific  g e n e t ic  m o d e ls  c a n  p r o d u c e  m is le a d in g  e s t im a te s  o f  th e

o d d s  ra tio s  w h e n  a n  in a p p r o p r ia te  m o d e l  is  a s s u m e d . T h e  g e n e t ic  m o d e l- fr e e  

a p p r o a c h  g iv e s  a p p r o p r ia te ly  w id e r  c o n f id e n c e  in te r v a ls  t h a n  g e n e t ic  m o d e l-b a s e d  

a n a ly s e s  b e c a u s e  it a llo w s  fo r  u n c e r ta in ty  a b o u t  t h e  g e n e t ic  m o d e l .  In  te r m s o f  

a s s e s s m e n t  o f  m o d e l  fit, it p er fo rm s at le a s t  as w e l l  a s a b iv a r ia te  p a ir w ise  a n a ly s is  in  

o u r  e x a m p le s .

C o n c lu s io n s  T h e  g e n e t ic  m o d e l- fr e e  a p p r o a c h  o ffer s  a u n if ie d  a p p r o a c h  th a t  e f f ic ie n t ly  

e s t im a te s  th e  g e n e t ic  e ffe c t  a n d  th e  u n d e r ly in g  g e n e t ic  m o d e l .  A  b iv a r ia te  p a ir w ise  

a n a ly s is  s h o u ld  b e  u s e d  if  th e  a s s u m p t io n  o f  a c o m m o n  g e n e t ic  m o d e l  acro ss  

s tu d ie s  is  in  d o u b t.

K e y w o r d s  M e ta -a n a ly s is ,  p o p u la t io n  g e n e t ic s , p o ly m o r p h is m , g e n e t ic  m o d e ls ,  a s s o c ia t io n  

s tu d ie s

P o p u la tio n -b a sed  g e n e tic  ep id e m io lo g y , w h ic h  e v a lu a te s  th e  risk  
of a d isea se  associa ted  w ith  a sp ec ific  g e n e t ic  p o ly m o r p h ism , 
o fte n  seek s to  id en tify  re la tiv e ly  sm all e ffec ts  aga in st a n o isy  
b ack grou n d  of b io lo g ica l an d  socia l c o m p le x ity . B e ca u se  o f th is,
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m ost g en etic  a ssocia tion  stu d ies  te n d  to  b e  sta tistica lly  u n d e r 
p o w e r e d .1,2 W h ile  th e  n e e d  for la rg e -sca le  p o p u la tio n -b a sed  
a ssocia tion  stu d ies h as re c e n tly  b e e n  r e c o g n iz e d ,3,4 data from  
su ch  stu d ies w ill n o t be a v a ila b le  in  th e  n ea r  fu tu re . In th e  
m ea n tim e , ev id e n c e  sy n th e sis  fro m  m u lt ip le  sm all stu d ies has 
th e  p o ten tia l to  p lay  an  im p o r ta n t ro le  in  a d v a n c in g  b iom ed ica l 
k n o w led g e  by in creasin g  th e  sta tistica l p o w e r .5 H o w ev er , the  
appropriate u se  o f m e ta -a n a ly sis  w ith in  g e n e t ic  ep id em io lo g y  
has b een  research ed  less th a n  m ig h t b e  an tic ip a ted , an d  th e  
gen era l m eth o d o lo g ica l q u a lity  o f  p u b lish e d  m e ta -a n a ly se s  of 
g en etic  a ssociation  stu d ies is p o o r .6

A recent rev iew  by A ttia  e t  a l . 6  s h o w e d  h o w  m e ta -a n a ly se s  of 
g e n e tic  a ssociation  stu d ies o fte n  fail to  address gen era l 
m eta -a n a ly tica l con cern s an d  ig n o re  im p o r ta n t issu es specific

1 3 1 9
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to  g e n e -d ise a s e  a sso c ia tio n s . G en era l c o n cern s in c lu d e  th e  lack
o f ex p lic it  rep ortin g  o f in c lu s io n  an d  e x c lu s io n  criteria, a fa ilure
to  ex p lo re  p oss ib le  so u rc es o f h e te r o g e n e ity , an d  th e  a b sen ce  of
an  in v estig a tio n  o f p u b lic a tio n  bias. A n  im p o rta n t asp ect o f th e
in c lu sio n  criteria for a m e ta -a n a ly s is  is o u tc o m e  d e fin it io n , s in ce
d ifferen ces in  th e  w a y  o u tc o m e  is d e fin e d  an d  m ea su red  m ay

3 7w e ll ex p la in  h e te r o g e n e ity  o f stu d y  resu lts . ' A n o th e r  im p o r t
an t sou rce  o f h e te r o g e n e ity  is d ivers ity  in  th e  p o p u la tio n s  
stu d ied , in  p articu lar e th n ic  d iv e r s ity .3 P u b lica tion  bias arises 
b eca u se  stu d ies sh o w in g  e ith e r  sta tistica lly  s ign ifican t resu lts or
large effect sizes are o fte n  m o re  lik e ly  to  b e p u b lish ed  th a n  

8  9n eg a tiv e  stu d ies, ' a n d  th u s  th e  resu lt o f a m eta -a n a ly sis  b ased  
o n  p u b lish ed  stu d ies m a y  b e  p o s it iv e ly  b iased . P ub lica tio n  b ias is 
p articu larly  im p o r ta n t in  g e n e t ic  e p id e m io lo g y  b e c a u se  it is 
p ossib le  to  stu d y  m a n y  p o ly m o r p h ism s o n  th e  sam e su b jects and  
th e n  to  se lec t th o se  th a t are su b m itted  for p u b lic a tio n .3,10-13  
A lth o u g h  s im p le  grap h ica l m e th o d s  su c h  as fu n n e l p lo ts  ca n  b e  
u sed  to  d etect p u b lic a tio n  b ia s,8,9 in  th e  r e v ie w  by A ttia  e t  a l . 6  

o n ly  20%  of th e  m e ta -a n a ly se s  (7 o u t  o f 37) ad d ressed  th is issu e .
M e th o d o lo g ic a l issu e s  th a t are sp ec ific  to  g e n e t ic  e p id e m io lo g y  

in c lu d e  th e  c h e c k in g  of H a rd y -W ein b er g  eq u ilib r iu m  an d  th e  
ch o ice  o f a g e n e t ic  m o d e l .6,7 In th e  m e ta -a n a ly s is  o f g e n e tic  
asso c ia tio n  stu d ies th e r e  are a lw a y s at lea st th r ee  p ossib le  
g e n o ty p e s  to  co m p a re . T h is con trasts w ith  th e  tw o  trea tm en t  
grou p s ch aracteristic  o f m o st b io m e d ica l m e ta -a n a ly se s . In  
practice, th e  n u m b e r  o f p o ss ib le  co m p a riso n s b e tw e e n  g e n o ty p e s  
is o ften  red u ced  b y  a ssu m in g  a sp ec ific  g e n e t ic  m o d e l, su c h  as 
d o m in a n t or rece ss iv e , b u t th e  c o n c lu s io n s  m ig h t b e  se n s itiv e  to  
th is a ssu m p tio n .6

In th e  sim p lest case  o f a p o ly m o r p h ism  w ith  tw o  a lle les  (G and  
g), o n e  of w h ic h  is th o u g h t  to b e  a sso c ia ted  w ith  a d isea se  (G), 
a ssocia tion  stu d ies w ill u su a lly  co llec t  in fo r m a tio n  o n  th e  
n u m b ers o f d isea sed  an d  d isea se -fre e  su b jects w ith  ea ch  of th e  
th ree  g e n o ty p e s  (gg, Gg, an d  GG). To d ate  a lm o st all m e ta 
a n a ly ses o f g e n e t ic  a sso c ia tio n  stu d ies h a v e  red u ced  th e  th ree  
groups to  tw o  b y  (i) ig n o r in g  th e  h e te r o z y g o te s  an d  co m p arin g  
gg w ith  GG, (ii) p erfo rm in g  separate p a irw ise  com p a riso n s, 
(iii) a ssu m in g  a r ece ss iv e  m o d e l to  ju stify  co m b in in g  th e  gg  an d  
Gg g e n o ty p e s  an d  co m p a rin g  gg +  Gg w ith  GG, (iv) a ssu m in g  a 
d o m in a n t m o d e l an d  co m p arin g  gg w ith  Gg +  GG, an d  
(v) a ssu m in g  a p e r -a lle le  effect tha t p la ces Gg m id -w a y  b e tw e e n  
gg an d  GG, a lso  ca lled  th e  c o -d o m in a n t  m o d e l. W h e n  u n su re  
ab ou t th e  g e n e t ic  m o d e l, so m e  in v estig a to rs fit m u ltip le  m o d e ls  
a n d /o r  perform  p a irw ise  com p a riso n s. H o w ev er , a d ju stm en t  
for m u ltip le  te st in g  is se ld o m  m ad e, a n d  th e  p a irw ise  e stim a tes  
of th e  odds ratio o f GG vs gg  (su b se q u e n tly  referred  to  as O RGG) 
and  th e  odds ratio o f  Gg vs gg  (su b se q u e n tly  referred  to  as O RGg) 
are u su a lly  o b ta in ed  b y  carrying o u t tw o  separate m e ta -a n a ly se s , 
th u s ig n o r in g  th e  co rre la tio n  b e tw e e n  th e  tw o  od d s ratios  
in d u c ed  by th e  c o m m o n  b a se lin e  grou p .

The r e v ie w  b y  A ttia  e t  a l 6  sh o w e d  th a t 2 4  o f  37  m e ta -a n a ly se s  
based  the ir  a n a ly sis  o n  th e  a ssu m p tio n  of an  u n d e r ly in g  g e n e tic  
m od el, w ith  h a lf o f th e se  te stin g  m u ltip le  m o d e s  of in h e r ita n c e  or 
m u ltip le  p a irw ise  co m p a r iso n s. A  b io lo g ica l ju stif ica tio n  for th e  
ch o ice  o f th e  g e n e t ic  m o d e l w a s  p ro v id ed  in  o n ly  e ig h t m e ta 
a n a ly ses . In n in e  o f th e  m e ta -a n a ly se s  th e  g e n e t ic  e ffec t w as  
tested  by co m p a rin g  th e  a lle le  fr e q u e n c y  in  cases an d  con tro ls.

All o f th e  m e th o d s  o f an a ly sis  in  c o m m o n  u se , w ith  th e  
e x cep tio n  o f  th e  p a irw ise  co m p a riso n s, m a k e  th e  im plic it  
a ssu m p tio n s th a t a p articu lar g e n e t ic  m o d e l a p p lies in  all stu d ies,

and , m o re  im p o rta n tly , th a t th e  m o d e l is k n o w n  in  ad van ce; for  
in sta n ce , th e  g e n e  m ig h t b e  a ssu m e d  to  b e  recess iv e  in  all 
p o p u la tio n s . H ere w e  su ggest a g e n e t ic  m o d e l-fr e e  ap p roach  to  
th e  m e ta -a n a ly sis  o f g e n e t ic  a sso c ia tio n  stu d ies th a t a lso  a ssu m e s  
a c o m m o n  g e n e t ic  m o d e l across stu d ies b u t w h ic h  d o es  n o t  
sp ec ify  th e  m o d e  of in h er ita n ce  in  a d v a n ce . T he u n d er ly in g  
g e n e tic  m o d e l is in stea d  e s tim a te d  from  th e  data. A lth o u g h  n o  
sp ec ific  g e n e t ic  m o d e l is a ssu m e d , th e  a n a ly ses  are, o f cou rse , still 
b ased  o n  an  a ssu m e d  statistical m o d e l. T he m o d e l is b ased  o n  a 
sim p le  rep a ra m eter iza tio n  an d  u ses th e  od d s ratio b e tw e e n  th e  
h o m o z y g o u s  g e n o ty p e s  (O R GG) to  cap tu res th e  m a g n itu d e  o f th e  
g e n e t ic  effect, an d  A, th e  ratio o f lo g  O RGg an d  log  O RGG, to  
cap ture th e  g e n e t ic  m o d e  of in h e r ita n c e . A is a ssu m ed  to  be  
c o m m o n  across stu d ies, bu t if th is  a ssu m p tio n  is in  d ou b t th e n  
p a irw ise  co m p a riso n s o b ta in ed  u sin g  b ivaria te  ra n d o m -effe c t  
m e ta -a n a ly sis  m e th o d s , w h ic h  take in to  a cco u n t th e  corre la tion  
b e tw e e n  O R GG an d  O RGg, sh o u ld  b e  u s e d .14,15 W e describe  
graphica l an d  statistical w a y s o f in v e st ig a t in g  w h e th e r  th e  
a ssu m p tio n  of a c o m m o n  A is rea so n a b le .

A llo w in g  A to  take a n y  v a lu e  (u n b o u n d e d  an a ly sis), is 
e q u iv a le n t  to  a llo w in g  th e  p oss ib ility  o f h e tero sis , i .e . th e  risk  
o f th e  Gg grou p  can  b e  h ig h er  or lo w e r  th a n  e ith er  o f th e  
h o m o z y g o u s  grou p s. A lth o u g h  rare, h e tero sis  h as b e e n  
d esc r ib ed .16,17 If th is p o ss ib ility  can  b e  e x c lu d e d  o n  b io lo g ica l  
gro u n d s th e n  it is b e tter  to  co n stra in  A b e tw e e n  0 an d  1 (b o u n d ed  
an a lysis); th is  restricts th e  m o d e  o f effec t to  th e  sp ec tru m  
b e tw e e n  d o m in a n t , th r o u g h  c o -d o m in a n t, to  recess iv e .

M e t h o d s
Genetic model-free approach: a common but 
unrestricted genetic model
C on sid er  th e  m eta -a n a ly sis  o f a b i-a lle lic  p o ly m o r p h ism , in  
w h ic h  G is th e  risk a lle le , an d  a d ic h o to m o u s  d isea se  o u tc o m e  is 
ascerta in ed  for ea ch  g e n o ty p e . W e  d e f in e  tw o  p aram eters: th e  
odds ratio b e tw e e n  th e  tw o  h o m o z y g o u s  g e n o ty p e s , O RGG; an d  A, 
th e  ratio o f log  O RGg an d  lo g  O R GG. T h e v a lu e  o f A is n o t  
restricted , b u t v a lu e s  eq u a l to  0, 0 .5 , an d  1 co rresp on d  to  th e  
recess iv e , c o -d o m in a n t, and  d o m in a n t  g e n e t ic  m o d e l, resp ec t
iv e ly , an d  v a lu e s  > 1  or < 0  w o u ld  su g g est p o s it iv e  or n e g a tiv e  
h etero sis .

Log ORgg co u ld  b e  m o d e lle d  as a f ix e d -e ffe c t  or as a ran d omQ
effect th a t a llo w s  for h e te r o g e n e ity  across stu d ies. In th e  
a n a ly ses p resen ted , th e  log  ORGG h as b e e n  m o d e lle d  as a ran d o m  
effect e x c e p t in  th o se  s itu a tio n s w h e r e  th e  h e te r o g e n e ity  o f log  
O R gg w a s  v ery  c lo se  to  0. A is m o d e lle d  as a f ix ed -effect, th a t is, 
th e  g e n e t ic  m o d e l is a ssu m e d  to  b e  th e  sa m e  in  all stu d ies. It is 
u su a lly  n o t p o ss ib le  to  m o d e l b o th  lo g  O R GG a n d  A as ran d om  
effects  b eca u se , w ith o u t  extra  in fo r m a tio n , it is very  d ifficu lt to  
d isen ta n g le  th e  h e te r o g e n e ity  o f A from  th a t o f log  ORGG.

T he tw o  lo g  odds ratios from  ea ch  stu d y  are m o d e lle d  as b e in g
b ivariate n o rm a lly  d istrib u ted . T he w ith in  stu d y  va r ia n ces an d
co v a r ia n ces are o b ta in ed  from  th e  reports o f th e  in d iv id u a l
stu d ies an d  are trea ted  as k n o w n . A n y  h e te r o g e n e ity  is a ssu m ed
to  b e  n o rm a lly  d istr ib u ted . F ull d eta ils  o f th e  m o d e l are rep orted
in  th e  A p p en d ix . In th e  e x a m p le s  p resen ted  th e  param eters
w e r e  e s tim a te d  b y  m a x im u m  lik e lih o o d  u sin g  th e  m l co m m a n d  18in  Stata. In terval estim a te s  can  be o b ta in e d  e ith er  from  
th e  a p p ro x im a te  standard  errors o b ta in ed  as part o f th e
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m a x im iza tio n , or from  th e  appropriate p ro file  lik e lih o o d . T he  
profile  lik e lih o o d s w e r e  u sed  for th e  b o u n d e d  a n a lysis an d  w ere  
o b ta in ed  by co n sid er in g  se lec te d  v a lu es  o f  o n e  o f  th e  p aram eters  
a n d  m a x im iz in g  th e  lik e lih o o d  o v er  th e  o th ers. T he co rre sp o n d 
in g  in terv a ls  are th e  range of e stim a tes th a t had  a profile  
l ik e lih o o d  w ith in  1 .92  =  1 /2  (95% )] o f th e  m a x im u m . In th e
b o u n d e d  an a ly sis  A w a s restricted  to  th e  range 0 -1 ,  th a t is 
h etero sis  w a s ex c lu d ed . To ob ta in  in terva ls u n d er  th e se

co n d itio n s th e  m a x im iza tio n  req u ired  for th e  p rofile lik e lih o o d s  
w a s perform ed  o v er  th e  restr icted  ran ge. V alu es o f A kaike's  
In form ation  C riterion  (AIC) are rep orted  for m o d e l co m p a r
is o n ,19 w ith  th e  best m o d e ls  sh o w in g  th e  sm a llest AIC.

Prior to m o d e l fitting, it m ay  b e  u se fu l to  p lot, for ea ch  study, 
th e  log  ORGg vs log  ORGG, as s h o w n  in  F igure 1, in  w h ic h  th e  
s lop e o f th e  asso c ia tio n  b e tw e e n  lo g O R Gg an d  log  ORGG 
rep resen ts A. S u ch  a p lo t m a y  h e lp  c h e c k  th e  co n sis te n c y  of A
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F igure 1 Plot of the  log ORCg against the  log ORCjG for: (a) ACE gene and diabetic nephropathy, (b) KIR6.2 gene an d  Type II diabetes,
(c) AGT gene and essential hypertension, (d) MTHFR gene and coronary heart disease, and (e) PONl Q192R po lym orphism  and  m yocardial 
infarction. The solid line represents the slope A estim ated by the  genetic m odel-free approach; the th ree  dotted lines correspond to th e  dom inant, 
co-dom inant, and recessive genetic models, respectively
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across studies and identify  outly ing studies. Study-specific  
estim ates of A and bootstrapped 95%  confidence intervals 
(CIs), as show n in Figure 2, help assess w h eth er  the variation in A 
across studies m ight be exp lained  by sam pling error. Figure 2 is 
based on 1000 bootstrap sam ples from each study. If the genetic  
m odel does not seem  to be consistent across studies th en  it m ay  
be better to perform  jo in t pairw ise com parisons using a general 
bivariate m eta-analysis m o d e l,14 w h ich  does not assum e that A is 
com m on but still takes in to  account the correlation b etw een  
ORGg and ORGg. Details of this m odel are also g iven  in the  
Appendix.

Examples
The genetic m odel-free approach is illustrated using five 
published exam ples of the m eta-analysis of genetic association  
studies. For each m eta-analysis, the num ber of studies included, 
frequency of the risk allele, m ethods used by their authors, and 
m ain reported results, are g iven  in Table 1.

ACE  gene and diabetic nephropathy
This m eta-analysis w as carried out to evaluate the controversial 
association of the I/D polym orphism  of the A C E  gene w ith
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F ig u re  2 Plot of the  study-specific estim ates of A (w ith 95%  Cl) for: (a) ACE gene and diabetic nephropathy , (b) KIR6.2 gene and  Type II 
diabetes, (c) AGT gene and  essential hypertension , (d) MTHFR gene and coronary heart disease, and (e) PON I Q192R polym orphism  and m yocardial 
infarction. To b etter investigate th e  region in th e  m iddle, w here the tw o lines correspond to th e  recessive and dom inan t m odels, the 
95%  CIs have been tru n ca ted  at ± 5
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T able 1 Five published m eta-analyses used for illustration, w ith m ethods and results reported in the  original articles

A u thor , year A sso c ia tio n  e v a lu a ted
N u m ber  

o f  stu d ies
R isk a lle le  
freq u en cy

R ep o rted  an a lysis
M ethod Results

Fujisawa, 199820 ACE gene and diabetic nephropathy 21 0.46 Assum ed dom inan t genetic m odel 1.32 (1.15-1.51)

Hani, 199821 KIR6.2 gene and Type II diabetes 4 0.34 Only P-value, u n d er dom inan t and  
recessive genetic m odels

D om inant: P < 0.05 
Recessive: P <  0.01

Kato, 199922 AGT gene and essential hypertension 7 0.75 Allele frequencies cases vs controls 1.22 (1.05-1.42)

Wald, 200223 MTHFR gene and coronary 
heart disease

49 0.32 Heterozygotes ignored, pairw ise 
com parison for ORGG

1.21 (1.06-1.39)

W heeler, 200425 PON I Q192R polym orphism  and 
myocardial infarction

19 0.33 Per-allele relative risk 1.12 (1.15-1.51)

d iab etic  m icro a n g io p a th y  (n ep h ro p a th y  an d  r e t in o p a th y ) .20 
H ere w e  co n sid er  o n ly  th e  m eta -a n a ly sis  a ssessin g  th e  effect 
o n  n ep h ro p a th y . A  d o m in a n t m o d e l w a s a ssu m e d  an d  21 stu d ies  
w e r e  p o o le d  to  g iv e  an  odds ratio o f 1 .32  (95%  Cl 1 .1 5 -1 .5 1 ) . T he  
a verage a lle le  freq u en cy  for th e  g e n e t ic  varian t w a s 0 .4 6 .

KIR6.2 gene and Type II diabetes
T he I<+ in w a rd ly  rectifier (KIR) ch a n n e l is a p ro te in  that p lays a 
m ajor role in  g lu co se -s tim u la ted  in su lin  se cre tio n . Its e n c o d in g  
g e n e , K 1 R 6 . 2 ,  has b een  su ggested  as a can d id a te  for in h er ited  
d efects  in  T ype II d iabetes. This m e ta -a n a ly sis  w a s carried ou t  
a ssu m in g  d o m in a n t, recessive , and  c o -d o m in a n t  m o d e ls  w ith  P -  

v a lu e s  corrected  for m u ltip le  te st in g .21 T he resu lt o f th e  m e ta 
a n a lysis , b ased  o n  four stud ies, w a s a sign ifican t a sso c ia tio n  
b e tw e e n  K I R 6 . 2  an d  T ype II d iab etes. T he a v era g e  freq u en cy  for 
th e  risk a lle le  w a s 0 .3 4 .

AGT  gene and essential hypertension
T he g e n e tic  varian t T hr235 o f th e  a n g io te n s in o g e n  (A G T )  g e n e  
h as b e e n  fo u n d  to  b e  associated  w ith  h y p e r te n s io n  in  so m e  
lin k a g e  an d  asso c ia tio n  stu d ies. T his m eta -a n a ly sis  of se v e n  
Ja p a n ese  c a se -c o n tr o l stu d ies reported  an  odds ratio for th e  
T h r235  a lle le  o f 1 .22  (95%  Cl 1 .0 5 -1 .4 2 ) , w ith  an  avera g e  a lle le  
freq u en cy  o f 0 .7 5 .22

MTHFR gene and coronary heart disease
T he 6 7 7 C —>T is a p o ly m o r p h ism  o f th e  M e t h y l e n e T e t r a H y d r o F o l a t e  

R e d u c t a s e  ( M T H F R )  g e n e  in v o lv e d  in  fo la te  m eta b o lism , w h ic h  
ca u ses e le v a te d  h o m o c y ste in e  lev e ls  an d  h as b e e n  associa ted  
w ith  an  in crea sed  risk of coron ary  h eart d isease . T his m e ta 
an a ly sis  o f 4 9  stu d ies reported  an  odds ratio o f 1.21 (95%  Cl 
1 .0 6 -1 .3 9 )  for th e  TT vs CC c o m p a r iso n ,23 in  c lo se  a g reem en t  
w ith  a n o th e r  m eta -a n a ly sis  p u b lish ed  a ro u n d  th e  sam e t im e .24 
T he avera g e  freq u en cy  for th e  T a lle le  w a s 0 .3 2 .

PON1 Q192R polym orphism  and m yocardial 
infarction
P O N 1  is o n e  o f th e  g en es  e n c o d in g  for p a ra o x o n a se , a seru m  
e n z y m e  that has b e e n  im p lica ted  in  th e  p r e v e n tio n  of  
a th e r o g e n e s is  an d  coron ary  heart d isea se  th r o u g h  its a sso c ia tio n  
w ith  h ig h -d e n s ity -lip o p r o te in  particles. T his r ece n t m e ta 
an a ly sis  o f 19 stu d ies in v estig a ted  th e  effect o f th e  Q 192R  
p o ly m o r p h ism  in th e  P O N 1  g e n e  o n  th e  risk o f m y o card ia l  
in fa r c tio n .25 T he reported  p er-a lle le  re la tiv e  risk w a s 1 .08  (95%  
Cl 1 .0 2 -1 .1 4 ) , an d  th e  average a lle le  freq u en cy  w a s 0 .3 3 .

Results
Figure 1 sh o w s, for ea c h  m eta -a n a ly sis , a p lo t o f log  O RGg against 
log  ORGg- All m e ta -a n a ly se s  sh o w  v a r ia tio n  in  th e  g e n e t ic  effect as 
rep resen ted  b y  th e  tw o  log  od d s ratios. T h is m ig h t be ex p la in ed  by  
a n u m b er  of factors, in c lu d in g  sa m p lin g  error, d ifferen ces in  the  
stu d y  m eth o d s and  d ifferen ces in  th e  tru e  g e n e tic  risk across study  
p op u la tio n s. In th e  a b sen ce  o f h e te r o g e n e ity  in  th e  g e n e tic  m o d e l 
an d  sam p lin g  error, all stu d ies w o u ld  b e  e x p ec ted  to  lie  a lo n g  a 
straight lin e  w ith  slo p e  A. T h e  so lid  lin e  in  F igure 1 rep resen ts th e  
slope, A, estim a ted  b y  th e  g e n e t ic  m o d e l-fr e e  approach , w h ile  th e  
three d o tted  lin es co rre sp o n d in g  to  th e  d o m in a n t, co -d o m in a n t, 
and  recess ive  g en etic  m o d e ls  are p lo tte d  for com p arison . The  
figure a llo w s v isu a l id en tif ica tio n  o f a n y  ou tliers or in flu en tia l  
stud ies. F igure 2 p lo ts th e  stu d y -sp e c if ic  estim a te s  o f A an d  their  
95%  bootstrap  CIs, an d  is u se d  to  in v e stig a te  w h e th e r  an y  
departures from  lin ea r ity  in  F igure 1 are c o n s is te n t  w ith  sam p lin g  
error. W ith in  in d iv id u a l stu d ies A is o f te n  p o o r ly  estim a ted , but 
there  is little in d ica tio n  in  a n y  o f  th e  m e ta -a n a ly se s  tha t the  
g e n e tic  m o d e ls  are n o t c o m m o n  across stu d ies.

Table 2 su m m a rizes th e  resu lts  for th e  d ifferen t m eta -a n a ly tica l 
m eth o d s in c o m m o n  use; n a m e ly , sep a ra te  p a irw ise  com p arison s, 
w h e r e  log  O RGg is p o o le d  in d e p e n d e n t ly  o f lo g  ORGG, and  
m eth o d s based  o n  a ssu m e d  g e n e t ic  m o d e ls . In  th e se  a n a ly ses th e  
log  ORgg has b e e n  m o d e lle d  as a r a n d o m  effect e x cep t in  tw o  
cases, m arked  in  T able 2, w h e r e  th e  h e te r o g e n e ity  o f lo g  ORGG w as  
very  clo se  to  zero. T he resu lt for th e  ACE ex a m p le  w h e n  
assu m in g  a d o m in a n t m o d e l (Table 2) d iffers from  th e  p u b lish ed  
result, w h ic h  a lso  a ssu m e d  a d o m in a n t  m o d e l (Table 1), b eca u se  
th e  m ain  resu lt in  th e  o rig in a l p a p er  w a s  b ased  o n  a f ix ed -effectQ
m eta -a n a ly sis  rather th a n  o u r  r a n d o m  effe ct  m eta -a n a ly sis . The  
ch o ice  of th e  g e n e tic  m o d e l in  m o d e l-b a se d  m e th o d s  can  h a v e  a 
m arked  im pact o n  th e  estim a te s  o f  O R GG an d  O RGg. For in stan ce, 
in  th e  K I R 6 . 2  ex a m p le , th e  e s tim a te s  o f  O RGG vary  b e tw e e n  1.38  
(95%  Cl 1 .0 4 -1 .8 2 )  an d  1 .9 4  (95%  Cl 1 .3 0 -2 .9 0 ) . Separate  
p airw ise com p arison s g iv e  a c o n s is te n t  e s tim a te  o f O RGG o f 2 .2 1 , 
b u t w ith  an  u n n ecessa r ily  w id e  C l (95%  Cl 1 .4 3 -3 .4 0 )  b eca u se  
th e y  do n ot in corp orate  a n y  o f th e  in fo r m a tio n  o n  O RGg w h e n  
estim a tin g  ORGG. V alu es o f  th e  AIC ca n  b e  u se d  to  id en tify  g e n e tic  
m o d els  that are n o t c o n sis te n t w ith  th e  data. For in sta n ce , in  th e  
ACE ex a m p le  th e  p o ss ib ility  o f a r ece ss iv e  m o d e l can  be  
elim in ated .

Table 3 p resen ts th e  resu lts o f th e  g e n e t ic  m o d e l-fr e e  approach , 
w ith  A u n b o u n d ed  an d  b o u n d e d  b e tw e e n  0  an d  1, and  o f th e  
jo in t pairw ise com p arison s. T he p o o le d  estim a te s  o f A ob ta in ed  
from  th e  g en etic  m o d e l-fr e e  ap p roach  te n d  n o t  to  b e v ery  precise,
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T able 2 Results of cu rren tly  used m eta-analy tical m ethods for th e  five m eta-analyses

M eta-ana lysis M eth o d O R gg (95% Cl) ORGr (95% Cl) Im p lic it  A AIC
ACE gene and diabetic nephro p a th y Separate pairwise com parisons 1.44 1.07-1.93) 1.23 (0.94-1 .60) - 94.4

Recessive m odel 1.16 1.01-1.32) - 0 89.8

C o-dom inant m odel 1.42 1.09-1.87) 1.19 (1.04-1 37) 0.5 76.2

D om inant m odel 1.29 1.00-1.66) - 1 68.2

KIR6.2 gene and Type II d iabetes3 Separate pairwise com parisons 2.21 1.43-3.40) 1.22 (0.91-1 64) - 8.4

Recessive m odel 1.93 1.29-2.88) - 0 8.0

C o-dom inant m odel 1.94 1.30-2.90) 1.39 (1.14-1 70) 0.5 7.9

D om inan t m odel 1.38 1.04-1.82) - 1 13.3

AGT  gene and essential hypertension Separate pairw ise com parisons 1.58 1.06-2.35) 1.16 (0.77-1 76) - 26.0

Recessive m odel 1.64 1.17-2.29) - 0 20.7

C o-dom inant m odel 2.15 1.26-3.65) 1.47 (1.12-1 91) 0.5 24.2

D om inant m odel 1.41 0 .95-2 .09) - 1 40.6

MTHFR gene and  coronary  h eart disease Separate pairw ise com parisons 1.19 1.04-1.36) 1.05 (0.99-1 12) - 88.6

Recessive m odel 1.16 1.02-1.31) - 0 76.2

C o-dom inant m odel 1.18 1.05-1.32) 1.08 (1.02-1 15) 0.5 75.8

D om inant m odel 1.08 1.01-1.16) - 1 88.3

PON I Q192R polym orphism  and Separate pairw ise com parisons 1.16 1.02-1.32) 1.08 (1.00-1 17) - 22.4
m yocardial infarction3 Recessive m odel 1.13 1.00-1.27) - 0 20.0

C o-dom inant m odel 1.17 1.05-1.31) 1.08 (1.03-1 14) 0.5 15.8

D om inant m odel 1.10 1.02-1.18) - 1 17.4

3 Fixed-effect model.

Table 3 Results of th e  proposed genetic m odel-free approach, for bo th  u n b o unded  and bounded  A, and the jo in t pairw ise com parisons obtained 
using bivariate m eta-analysis

M eta-analysis M eth o d OR gg (95% Cl) ORGr (95% Cl) A (95% Cl) AIC

ACE gene and diabetic nephro p a th y G enetic m odel-free approach

U nbounded  A 1.30 (0.98-1.72) 1.29 (1.01-1.66) 0.98 (0 .61-1.34) 70.2

B ounded A 1.30 (1 .00-1.77) 1.29 (1.00-1.69) 0.98 (0 .61-1 .00) 70.2

Jo in t pairw ise com parisons 1.39 (1 .07-1.81) 1.23 (0.96-1.58) - 71.4

KIR6.2 gene and Type II d iabetes3 G enetic m odel-free approach

U nbounded A 2.14 (1.39-3.29) 1.21 (0.90-1.63) 0.25 ( -0 .1 1  to 0.61) 8.4

B ounded A 2.14 (1.43-3.29) 1.21 (1.08-1.63) 0.25 (0 .00-0.69) 8.4

Jo in t pairw ise com parisons 2.14 (1 .39-3.29) 1.21 (0.90-1.63) - 8.4

AGT  gene and essential hypertension G enetic m odel-free approach

U nbounded  A 1.64 (0 .99-2.72) 1.00 (0.66-1.53) 0.01 ( -0 .8 3  to 0.85) 22.7

B ounded A 1.64 (1 .15-3.05) 1.00 (1.00-1.62) 0.01 (0 .00-0.52) 22.7

Jo in t pairw ise com parisons 1.86 (1 .14-3.05) 1.16 (0.77-1.76) - 24.2

MTHFR gene and  coronary  h eart disease G enetic m odel-free approach

U nbounded A 1.20 (1 .05-1.37) 1.05 (0.99-1.11) 0.26 (0 .04-0.47) 73.6

B ounded A 1.20 (1 .05-1.38) 1.05 (1.01-1.12) 0.26 (0 .04-0.49) 73.6

Jo in t pairw ise com parisons 1.20 (1 .05-1.37) 1.06 (0.99-1.13) - 75.3

PON1 Q192R polym orphism  and  
m yocardial in farction3

G enetic m odel-free approach 

U nbounded  A 1.17 (1 .04-1.33) 1.08 (1.00-1.17) 0.53 ( -0 .0 3  to 1.13) 17.8

B ounded A 1.17 (1 .04-1 .33) 1.08 (1.01-1.17) 0.53 (0 .09-1.00) 17.8

Jo in t pairw ise com parisons 1.17 (1 .04-1 .33) 1.08 (1.00-1.17) - 17.8

3 Fixed-effect model.
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b u t lik e  th e  AIC, th e y  can  u su a lly  ru le  o u t  so m e  o f th e  c o m m o n ly  
a ssu m ed  g e n e t ic  m o d e ls . For e x a m p le , th e  K I R 6 . 2  g e n e  a n d  th e  
A C E  g e n e  e x a m p le s  ru le o u t th e  d o m in a n t  an d  recess iv e  m o d e ls , 
resp ectiv e ly , w h ile  th e  M T H F R  g e n e  e x a m p le  su ggests th a t A is 
d ifferen t from  a n y  of th e  v a lu e s  co rre sp o n d in g  to  th e  standard  
g e n e tic  m o d e ls . In th e  ex a m p le  o f th e  A C E  g e n e , th e  e s tim a te  o f A 
is very  c lo se  to  1, that is, c lo se  to  d o m in a n t. C om pared  w ith  an  
assu m ed  d o m in a n t m od e l, th e  m o d e l-fr e e  ap p roach  g iv es  very  
sim ilar e s tim a te s  o f ORGG, b ut th e  Cl is w id er  reflectin g  
u n certa in ty  a b o u t th e  true m o d e  of in h er ita n ce .

In all o f th e  ex a m p les, th e  AIC sh o w s  that th e  g e n e tic  m o d e l-  
free a p p roach  fits at least as w e ll as th e  jo in t  p a irw ise  
com p a riso n s. S in ce  the  tw o  a p p roach es o n ly  differ for th e  
a ssu m p tio n  o f  c o m m o n  A, th e se  f in d in g s sup p ort th o se  in  
F igure 2, a n d  su ggest that th e re  is n o  e v id e n c e  aga in st th e  
a ssu m p tio n  o f  c o m m o n  A in  a n y  o f th e  fiv e  ex a m p les .

U n d er a f ix ed -e ffec t  a ssu m p tio n  th e re  is n o  b e tw e e n -s tu d y  
h e te r o g e n e ity  an d  so  th e  m o d e l-free  ap p roach  is ex a ctly  
eq u iv a le n t  to  th e  jo in t pairw ise co m p a riso n  as b o th  m o d e ls  
adjust for w ith in -s tu d y  correlation . For a ra n d o m -e ffe c ts  m o d e l 
th e y  g iv e  d ifferen t an sw ers b eca u se  th e  m o d e l-fr e e  approach  
im p lies a stru ctu red  covarian ce p a ttern  as w e ll  as a ssu m in g  a 
c o m m o n  m o d e  of in h er ita n ce  (see  A p p e n d ix ). T he b o u n d e d  
a n a lysis , in  w h ic h  A m ust lie b e tw e e n  0 an d  1, did n o t a lter th e  
p o in t e s tim a te s  o f an y  o f th e  p aram eters in  ou r  ex a m p les , 
b eca u se  th e  m a x im u m  lik e lih o o d  estim a te s  o f A w e r e  all w ith in  
th e  req u ired  ran ge. The in terva ls for A in  th e  b o u n d e d  an a lysis  
are tru n c a ted  at 0 and 1 an d  are b ased  o n  p rofile  lik e lih o o d s  
rather th a n  ap p rox im ate  standard  errors, w h ic h  a cco u n ts  for  
so m e  sm all d ifferen ces from  th e  u n b o u n d e d  a n a lysis . T he  
b o u n d e d  a n a ly sis  can  h ave an  e ffect o n  th e  in terv a l estim a tes. 
For in sta n ce , in  th e  A G T  ex a m p le , w h e r e  th e  fitted  m o d e l is very  
c lo se  to  recess iv e , th e  restriction  o n  A im p lie s  th a t ORGg ca n n o t  
fall <  1 .00  as th is w o u ld  e ith er  requ ire a n e g a tiv e  A or a p ro tectiv e  
effect o f th e  GG gen otype; th e  b o u n d  ru les o u t th e  form er an d  th e  
data con trad ict th e  latter.

T he A G T  ex a m p le  appears to  b e c lo se  to  recess iv e , A =  0 .0 1 , b ut  
w ith  th e  largest stu d y  p o in tin g  to  a c o -d o m in a n t  effect, as sh o w n  
in  F igure 2c. If th e  co n sta n cy  o f A is d o u b ted  th e n  jo in t  p a irw ise  
co m p a riso n s co u ld  be used; su ch  an  a n a ly sis  d o e s  n o t  d o w n  
w e ig h t  th e  ORGG an d  O RGg estim a te s from  th e  largest stu d y  to  th e  
sa m e  e x te n t  an d  so p rod u ces larger p o o le d  e s tim a te s . T he AIC 
prefers th e  g e n e tic  m o d e l-free  ap p roach  b e c a u se  it req u ires th ree  
param eters in stead  of four.

D is c u s s io n
W h e n  sy n th esiz in g  th e  e v id e n c e  o n  th e  a sso c ia tio n  b e tw e e n  a 
g e n e t ic  p o ly m o rp h ism  an d  a d isea se  th e  m a in  issu e  is th e  size of 
a n y  a ssocia tion , b u t an  im portan t ad d itio n a l q u e stio n  is th e  m o d e  
of a ction  o f th e  g en e . In practice, th e  e s tim a te  o f th e  size  o f th e  
a ssocia tion  is in flu e n c e d  by ou r  a ssu m p tio n s a b o u t th e  u n d er ly in g  
g e n e tic  m o d e l. A  r e v ie w  o f th e  literatu re o n  m eta -a n a ly sis  of  
g e n e tic  associa tion  stu d ies revea ls h o w  cu rren tly  u sed  ap p roach es  
fail to  address th is is su e .6 In vestigators o fte n  b ase th e ir  m e ta 
an a ly ses o n  th e  assu m p tio n  o f a sp ecific  g e n e t ic  m o d e l an d  ign ore  
th e ir  u n certa in ty  ab ou t th e  m o d e  o f in h er ita n ce . M oreover , sin ce  
it m a y  b e  th a t n o  a priori b io log ica l e v id e n c e  is ava ilab le  to  ju stify  
th e  ch o ice , d ifferen t c o m m o n  gen etic  m o d e ls  are so m e tim e s  tested  
an d  th e  d ifferent resu lts reported. A part from  th e  p ro b lem  of

m u ltip le  testing, th is lea v es  th e  read er w ith  a set o f estim ates and  
sign ifican ce tests to  in terpret, all b ased  o n  d ifferen t assu m p tion s. A  
n u m b er  o f in vestiga tors com p a re  a lle le  freq u en c ies  b e tw e e n  cases 
an d  controls; h o w e v e r , th is m e th o d  y ie ld s  a p er -a lle le  effect th a t is 
eq u iv a len t to  a ssu m in g  a c o -d o m in a n t m o d e l w ith  H a rd y -  
W ein b erg  eq u ilibr iu m . A d d ition a lly , th e  issu e  o f w h e th e r  the  
g e n e tic  m o d e l is actu a lly  c o m m o n  across p o p u la tio n s  d o es n o t  
se e m  to h ave b e e n  addressed .

T he resu lts for th e  five  m eta -a n a ly s is  e x a m p le s  sh o w  that  
a d op tin g  th e  w ro n g  g e n e t ic  m o d e l ca n  lea d  to  e rro n eo u s p o o led  
e stim a tes w ith  d ecep tiv e ly  h ig h  p rec is io n . T he o n ly  m eta -  
a n alytica l approach  cu rren tly  in  u se  th a t d o es  n o t  a ssu m e  a 
c o m m o n  k n o w n  u n d er ly in g  g e n e t ic  m o d e l is a n a ly sis  b y separate  
p a irw ise  com p arison s, i.e . in d e p e n d e n t  m eta -a n a ly se s  co m p a r
in g  g e n o ty p e  groups tw o  at a t im e . T his m e th o d  ig n o res th e  
corre la tion  b e tw e e n  th e  tw o  e s tim a te d  od d s ratios in d u c ed  by th e  
c o m m o n  b a se lin e  grou p  a n d  th u s  is in e ffic ie n t, as th e  estim ates  
ca n n o t 'b orrow  stren gth ' from  o n e  a n o th e r  as th e y  w o u ld  
in  a m u ltivaria te  m e ta -a n a ly s is .14,15 T he g e n e t ic  m o d e l-free  
approach  is lik e ly  to  b e  p a rticu lar ly  b en efic ia l com p ared  w ith  
p airw ise com p a riso n s w h e n  e ith e r  o f th e  a lle les  is rare. 
M oreover, separate p a irw ise  c o m p a r iso n s ru n  in to  th e  p rob lem  
of m u ltip le  testin g , w h ic h  b e c o m e s  e sp e c ia lly  im p ortan t w h e n  a 
p o ly m o rp h ism  w ith  m o re  th a n  tw o  a lle le s  is con sid ered .

As Table 1 illu strates, p u b lish e d  m e ta -a n a ly s is  o f g e n e tic  
a ssocia tion  stu d ies h a v e  u se d  a v a r ie ty  o f m e th o d s  for p resen tin g  
their  resu lts. T he g e n e t ic  m o d e l-fr e e  ap p roach  offers a s in g le  
m eth o d  th a t co u ld  h a v e  b e e n  u se d  in  a ll o f th e se  e x a m p les  g iv in g  
a co n sisten t p resen ta tio n  an d  a v o id in g  th e  p itfall o f o v er ly  strong  
a ssu m p tio n s ab ou t th e  g e n e t ic  m o d e l or o f in e ffic ie n t estim a tes.

T he g en e tic  m o d e l-free  ap p ro a ch  p ro v id es  a n  in teg ra ted  w a y  of  
sy n th esiz in g  th e  e v id e n c e  o n  g e n e t ic  a sso c ia tio n s , w h ic h  y ie ld s  
not o n ly  th e  m a g n itu d e  o f th e  g e n e t ic  e ffe c t  (O R), but a lso  an  
in d ica tion  of th e  o p era tin g  g e n e t ic  m o d e l b ased  o n  th e  ava ilab le  
data. The u n d er ly in g  g e n e t ic  m o d e l is n o t  co n stra in ed  to  
correspond  to  o n e  o f  th e  c lassica l m o d e s  o f  in h e r ita n c e  (recessive , 
c o -d o m in a n t, d o m in a n t), in  r e c o g n it io n  o f th e  fact th a t th e  
g en e 's  m o d e  of a ction  in  c o m p le x  d ise a se s  m ig h t  differ from  that  
fo u n d  in  M en d e lia n  traits, w h e r e  th e  a sso c ia tio n  b e tw e e n  
g en o ty p e  an d  d isease  ten d  to  b e  o f  a d e term in is tic  n a tu re  and, 
h en ce , th e  m o d e  of in h e r ita n c e  is r e la tiv e ly  c learly  ap p aren t. For 
ex a m p le , a v a lu e  o f 0 .2 6  for A, as in  th e  M T H F R  m eta -a n a ly sis , 
m igh t be in terp reted  in  tw o  w ays:

(i) The p o ly m o r p h ism  is r e c e ss iv e  in  so m e  stu d ies and  
c o -d o m in a n t in  o th ers, so  th a t th e  a v era g e  resu lt is b e tw e e n  
th e  tw o .

(ii) In co m p lex  d iseases, th e  g e n o ty p e  is o n ly  o n e  o f  m a n y  factors 
acting in  a co m p lex  cau sa l ca sca d e  lea d in g  to  th e  d isease. 
A lth o u g h , at th e  m o lecu la r  le v e l , th e  p o ly m o r p h ism  o f in te r 
est m ight act in  a clearly  M e n d e lia n  m a n n e r  o n  so m e  in te r 
m ed ia te  p h e n o ty p e , th a t M e n d e lia n  'sign al' m a y  be 'd ilu ted ' 
or 'd istorted' w h e n  m ea su red  at th e  le v e l  o f th e  final step  in  
th e  cascade. H en ce, A m a y  b e  a m o r e  fle x ib le  an d  appropriate  
w a y  to discuss g e n e t ic  m o d e ls  in  c o m p le x  d isease .

In th e  m eta-an alysis o f g e n e tic  a sso c ia tio n  stu d ies there  are 
tw o  im portant types o f h e te r o g e n e ity  th a t n e e d  to  b e  addressed: 
h etero g en eity  in  th e  g en etic  e ffect a n d  h e te r o g e n e ity  in  th e  g en etic  
m odel. There are a n u m b er  of rea so n s w h y  w e  m ig h t see  
h etero g en eity  in  th e  g en etic  effect, in c lu d in g  d ifferen ces in  study
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m eth o d s an d  d ifferen ces in  th e  u n d er ly in g  g e n e tic  risk associated  
w ith  g e n e -g e n e  or g e n e -e n v ir o n m e n t  in teraction s. H etero g en eity  
of th e  g en etic  effect m ig h t a lso  arise if th e  p o ly m o rp h ism  u n d er  
stu d y  d o es n o t act d irectly  o n  th e  d isease risk, i.e . it is  n o t a 
'fun ction al' or 'causal' p o ly m o r p h ism  b u t is s im p ly  a m arker, w h ic h  
ten ds to  be in h er ited  to g e th er  w ith  th e  causal p o ly m o rp h ism  
(linkage d iseq u ilib riu m ). P o p u la tio n s m a y  h a v e  d ifferen t p atterns  
of lin k age d iseq u ilib riu m , w h ic h  lead  to  d ifferen ces in  th e  m arker  
association  w ith  d isease . It is im portan t to  n o te  th a t cau ses of 
h etero g en e ity  in  th e  g e n e t ic  effect w ill n o t n ecessa r ily  cause  
h etero g en e ity  in  th e  g e n e t ic  m o d e l. In  fact, in  order to  act o n  th e  
g en etic  m odel, in tera ctio n s n e e d  to  in flu e n c e  th e  d isease  risk in  
h etero zy g o tes to  a d ifferen t e x te n t  to  th e  risk in  h o m o z y g o tes .

T he a b sen ce  o f h e te r o g e n e ity  in  th e  g e n e t ic  m o d e l is an  
im portan t a ssu m p tio n  o f th e  g e n e t ic  m o d e l-fr e e  an a ly sis  and, 
a lth o u g h  th is a ssu m p tio n  is lik e ly  to  h o ld  in  m o st cases, it still 
n eed s to  b e a ssessed . For ex a m p le , th e  effec t o f g e n o ty p e  o n  
a llergy  to  p o lle n s  a p p ears to  fo l lo w  d ifferen t m o d e s  o f in h er ita n ce  
for d ifferen t e th n ic  grou p s an d  d ifferen t form s o f a llerg y .26,27 
A lth o u g h  th e se  stu d ies are b ased  o n  seg reg a tio n  a n a ly ses , and  
are re la tiv e ly  w e a k , th e y  d o  raise th e  p o ss ib ility  th a t th e  m o d e  of 
a ctio n  m ay  vary  from  stu d y  to  stu d y , p erh ap s o w in g  to  c o m p le x  
g e n e -e n v ir o n m e n t  in te r a c tio n s  th a t h a v e  d ifferen t im pact o n  th e  
d isea se  risk in  h e te r o z y g o te s  com p a red  w ith  h o m o z y g o te s  for th e  
p o ly m o r p h ism . T hus, th e  a ssu m p tio n  o f a c o m m o n  g en etic  
m o d e l sh o u ld  b e  c h e c k e d  b efo re  a p p ly in g  th e  g e n e t ic  m o d e l-fr e e  
approach , for in sta n c e  b y  u s in g  th e  graphs p resen ted  in  F igures 1 
an d  2. S h o u ld  th is  a ssu m p tio n  b e in  d ou b t, th e n  th e  best 
ap p roach  w o u ld  b e to  carry o u t  jo in t  p a irw ise  co m p a riso n s u sin g  
a m ultiv a r ia te  m e ta -a n a ly s is , w h e r e  th e  co rre la tio n s b e tw e e n  
th e  odds ratios for th e  d ifferen t g e n o ty p e  grou p s are ta k e n  in to  
acco u n t. In  a d d itio n  to  th e  graph ica l in v e stig a tio n , th e  d ifferen ce  
in  fit, as m ea su red  b y  AIC, b e tw e e n  th e  m o d e l w ith  c o m m o n  A 
an d  th e  co rresp o n d in g  p a irw ise  an a ly sis  offers a g u id e  to  th e  
ap p rop ria teness o f th e  a ssu m p tio n  o f a c o m m o n  g e n e t ic  m o d e l. 
In g en era l th e  r a n d o m -effe c ts  m o d e l-fr e e  ap p roach  is ea s ier  to fit 
th a n  th e  co rre sp o n d in g  p a irw ise  b ivariate  m o d e l b e c a u se  it 
co n ta in s tw o  fe w e r  p a ram eters. O n ly  in  v ery  large  m e ta -a n a ly se s  
w ill it b e  p ossib le  to  e s tim a te  th e  co rre la tio n  in  th e  h e te r o g e n 
e ities  requ ired  for th e  p a irw ise  m o d e l. So, e v e n  w h e n  th e  
a ssu m p tio n s o f th e  m o d e l-fr e e  a n a ly sis  are n o t  m e t  ex a ctly , 
th e  m o d e l-free  a n a ly sis  m a y  still b e  th e  b est  w a y  o f su m m a riz in g  
th e  data an d  o b ta in in g  CIs th a t are n o t fa lse ly  op tim istic .

A ll o f th e  m o d e ls  co n sid er ed  in  th is p ap er h a v e  b e e n  based  o n  
th e  n orm al a p p ro x im a tio n  to  th e  d istr ib u tio n  o f th e  log  odds 
ratio. In e x a m p le s  w h e r e  so m e  o f th e  stu d ies h a v e  very  fe w  
su b jects w ith in  o n e  o f th e  g en o ty p e s , as m ig h t h a p p en  w ith  a 
rarer a lle le , it w o u ld  b e  b etter  to  u se  a m u lt in o m ia l lik e lih o o d . In 
th e  case o f a ra n d o m -effe c ts  m o d e l th is adds to  th e  c o m p le x ity  
b e c a u se  o f th e  n e e d  to  n u m er ica lly  in te g ra te  o v e r  th e  ran d om  
effect b efo re  m a x im iz a t io n . W ith in  th is  m u lt in o m ia l fra m ew o rk  
w e  can  still u se  th e  A p a ra m eter iza tio n  b asic  to  th e  g e n e t ic  
m o d e l-fr e e  ap p roach  an d  in terp ret th e  resu lts in  th e  sa m e w a y  as 
w ith  th e  n o rm a l a p p ro x im a tio n .

T he resu lts p r e se n te d  in  th is p ap er h a v e  b e e n  o b ta in ed  u sin g  
m a x im u m  lik e lih o o d  m eth o d s , b u t a B a y e sia n  approach  w ith  
n o n -in fo r m a tiv e  prior d istr ib u tion s g a v e  v ery  sim ilar resu lts to  
th o se  in  T ables 2 an d  3 (data n o t sh o w n ) . T h e ch o ic e  o f a 
B a y e sia n  ap p roach  to  im p le m e n t th e  m e th o d  m ig h t b e  
m o re  d esirab le w h e n  th ere  is e x te r n a l in fo r m a tio n  regard ing  
th e  m a g n itu d e  o f th e  g e n e t ic  e ffect a n d /o r  m o d e  o f in h er ita n ce ,
w h ic h  m ig h t c o m e  from  stu d ies n o t  in c lu d e d  in  th e  m eta -

28an a ly sis  or from  ex p ert o p in io n . W h e n  M ark ov  ch a in  M o n te  
Carlo m e th o d s  are u sed , it a lso  m a k e s th e  g en era liza tio n  
to  m u lt in o m ia l lik e lih o o d s  w ith  ra n d o m  effects m o re  stra igh t
forw ard .29

In c o n c lu s io n , w e  p ro p o se  a n e w  m e ta -a n a ly tic a l m e th o d  
b ased  o n  a re -p a ra m eter iza tio n  o f th e  classical rep resen ta tio n  of  
g e n e tic  a sso c ia tio n  stu d ies, w h e r e  th e  n e w  param eters are  
b io lo g ica lly  m e a n in g fu l an d  in fo r m a tiv e . T he ap p roach  m ak es  
m a x im u m  u se  o f th e  in fo r m a tio n  a v a ila b le  by q u a n tify in g  th e  
m a g n itu d e  of th e  g e n e t ic  e ffect an d  e s tim a tin g  th e  g e n e t ic  m o d e  
of a ctio n  at th e  sa m e tim e . T h e g e n e t ic  m o d e l is e s tim a te d  o n  th e  
b asis o f th e  data rath er th a n  a ssu m e d , an d  th is is im p o rta n t in  all 
cases w h e r e  n o  a priori k n o w le d g e  a b o u t th e  u n d er ly in g  g e n e tic  
m o d e l is ava ilab le .

A c k n o w le d g e m e n t s
W e w o u ld  lik e  to  a c k n o w le d g e  th e  h e lp fu l c o m m e n ts  o n  earlier  
drafts o f th e  p ap er from  M artin  T ob in . C osetta  M in elli w o u ld  lik e  
to  th a n k  th e  D ep a rtm e n t o f H ea lth , UK, for su p p o rtin g  th is  
research  v ia  a N a tio n a l R esearch  S c ien tist in  E v id en ce  S y n th es is  
A w ard . W e w o u ld  a lso  lik e  to  th a n k  th e  tw o  a n o n y m o u s  
r ev iew e rs  for th e ir  th o u g h tfu l an d  u se fu l c o m m e n ts .

KEY M E SSA G ES

•  M e ta -a n a ly s is  o f  m o le c u la r  a s s o c ia t io n  s tu d ie s  is o f te n  b a se d  o n  t h e  a s s u m p t io n  o f  a sp e c if ic  g e n e t ic  m o d e l  

(r e c e s s iv e , c o - d o m in a n t ,  o r  d o m in a n t ) .

•  B io lo g ic a l  ju s t if ic a t io n  fo r  t h e  c h o ic e  o f  th e  g e n e t ic  m o d e l  is  s e ld o m  a v a ila b le , a n d  r e su lts  c a n  b e  m is le a d in g  w h e n  

a n  in a p p r o p r ia te  m o d e l  is  a s s u m e d .

•  S p e c if ic a t io n  o f  t h e  g e n e t ic  m o d e l  is  s o m e t im e s  a v o id e d  b y  c o m p a r in g  g e n o t y p e  g r o u p s  t w o  at a t im e , b u t  th is  is 

in e f f ic ie n t .

•  W e  p r o p o se  a g e n e t ic  m o d e l- f r e e  a p p r o a c h  w h e r e  th e  in fo r m a t io n  a v a ila b le  o n  a ll g e n o t y p e s  is  u s e d  a n d  t h e  g e n e t ic  

m o d e l  is e s t im a te d  r a th e r  th a n  a s s u m e d .

•  T h e  a p p r o a c h  a s s u m e s  th a t  a ll s tu d ie s  sh a r e  th e  s a m e  u n k n o w n  g e n e t ic  m o d e l ,  a n d  w e  s u g g e s t  w a y s  o f  

in v e s t ig a t in g  w h e t h e r  th is  a s s u m p t io n  m ig h t  h o ld .
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A p p e n d ix  

B iv a r ia te  m e ta -a n a ly s is
C onsider th e  m eta -a n a ly sis  o f a set o f  c a s e -c o n tr o l a ssocia tion  
stu d ies of a b i-a lle lic  p o ly m o r p h ism . Let Z u  rep resen t th e  v a lu e  of 
log  ORCg estim a ted  from  th e  zth stu d y  a n d  z2, th e  log  O RGG. 
A ssu m in g  a p p rox im ate  b ivaria te  n o rm a lity

Z \ i > 1 1 ' ’ v u V \2 i

. Z2‘ . I > 2  / . v \2  i V2i _

w h ere  th e  p,s are th e  true lo g  odds ratios for th a t stu d y . The va lu es o f 
th e  variances and covarian ces are trea ted  as k n o w n  and can  be  
derived  from  th e  n u m b er  o f  cases an d  co n tro ls  in  each  g en o ty p e  
in  that study. If w e  a ssu m e th at th e  stu d ies c o m e  from  a p op u la tion  
in  w h ich  th e  log odds ratios are a lso  n o rm a lly  d istributed , th e n

> n  ' ~ n \ > i ' T \ T \ 2

X > 2 . T 12 t 2 .

w h ere  th e  r's rep resen t th e  h e te r o g e n e it ie s  b e tw e e n  stu d ies. The  
distribution  o f th e  o b ser v ed  data in  th e  m e ta -a n a ly s is  is th u s

z n  ' > i ' ’ Vu +  Ti V \2 i  +  T 12
_ z l2 I > 2 . _V \2i  +  t 12 V2i +  t 2

From  w h ic h  a lik e lih o o d  ca n  b e  fo rm e d  an d  th e  p aram eters  
estim ated . U n less th e  m e ta -a n a ly s is  in c lu d e s  a large n u m b er  of  
stud ies, th e  covarian ce b e tw e e n  th e  h e te r o g e n e it ie s  is d ifficu lt to  
estim ate , b ut th e  resu lts for th e  o th e r  p a ram eters are n o t very  
se n sitiv e  to  r 12 so u sin g  an  a ssu m e d  v a lu e  w ill n o t b e  m islead in g . In 
our a n a lyses w e  u sed  r J2 =  0 . 9 y j r f r f  a n d  c h e c k e d  th e  resu lts in  a 
sensitiv ity  analysis. A  f ix ed -e ffec ts  m o d e l a ssu m e s that t x =  r 2 =  
t 12 =  0 .

G e n e tic  m o d e l- f r e e  a n a ly s i s
The g en etic  m o d e l-free  a n a ly sis  is s im ilar  to  th e  g en era l b ivariate  
m eta-an a lysis . First w e  a ssu m e  th a t

' z u

A
' W ’ V], V \2 i

_Z2i _ . ^2, . v \ 2 i V2 i .
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w h e r e  th e  p aram eter , A, w h ic h  d escrib es th e  g e n e t ic  m o d e l  
is c o m m o n  across s tu d ies. T he h e te r o g e n e ity  b e tw e e n  stu d ies  
w ill be

' W ~ n (
Ap2 ' A2t At

.  ^2, . I . ^2 . At t _

The d istr ib u tion  of th e  o b ser v ed  data in  th e  m eta -a n a ly sis  is th u s

Zu A |V V],- +  A T V\2i +  At
.z2i. I . ^2 V] 2i +  At V2i +  T

an d  o n c e  aga in  th e  lik e lih o o d  ca n  b e fo rm ed  an d  m a x im ized  to  
estim a te  th e  p aram eters. In th is  m o d e l th e  co v a r ia n ce  b e tw e e n  
th e  h e te r o g e n e it ie s  is co n tro lled  by A an d  can  th u s  b e  estim a ted . 
It is a d v isab le  to  in sp ec t th e  profile  lik e lih o o d  of ea c h  p aram eter  
as in  sm all m e ta -a n a ly se s  th e  lo g - lik e lih o o d  can  b e far from  
q uadratic. A  f ix e d -e ffe c ts  m o d e l a ssu m e s th a t t  =  0.

In so m e  m e ta -a n a ly se s  it m a y  b e ap p rop riate to  restrict A to lie  
in  th e  ran ge (0 ,1 ) , th a t is, to  e x c lu d e  h etero sis . In  th is case, th e  
overa ll m a x im iz a t io n  an d  th e  p ro file  l ik e lih o o d  m a x im iza tio n s  
are o v er  th e  restr icted  range.
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A number of studies have investigated two common polymorphisms in the p2-adrenoceptor gene, Arg/Gly16 and 
Gln/Glu27, in relation to asthma susceptibility. The authors performed a meta-analysis of each polymorphism, as 
well as haplotype analysis, for adult and pediatric populations separately, using published data, supplemented by 
additional data requested from the original authors. Individual analysis detected no effect of Arg/Gly16 \n adults but 
did suggest a recessive protective effect of Gly16 for children, with an odds ratio of 0.71 (95% confidence interval 
(Cl): 0.53, 0.96) compared with the other genotypes. Results for Gln/Glu27 in adults seem to indicate that hetero
zygotes are at decreased risk of asthma than either homozygote (odds ratio = 0.73, 95% Cl: 0.62, 0.87), although 
the studies are heterogeneous; in children, the Glu/Glu genotype has a decreased risk of asthma (odds ratio =
0.60, 95% Cl: 0.35,0.99) compared with the other genotypes. Despite the proximity of these two polymorphic sites, 
the linkage disequilibrium coefficient of 0.41 was not high (p < 0.001). Haplotype analysis suggests that there may 
be an interaction between the two sites, with a lower risk of asthma associated with the Glu27allele (compared with 
Gln27), and that this risk is modified by the allele at position 16.

asthma; epidemiology; genetics; haplotypes; linkage disequilibrium; meta-analysis; polymorphism, genetic; 
receptors, adrenergic

Abbreviations: Cl, confidence interval; LR, likelihood ratio; OR, odds ratio; SNP, single-nucleotide polymorphism.

E d i t o r ’s  n o te :  T h is p a p e r  is  a ls o  a v a i la b le  on  th e  w e b s i te  One of the main thrusts of genetic epidemiology is to
o f  th e  H u m a n  G e n o m e  E p id e m io lo g y  N e tw o r k  ( h t tp : / /  understand the genetic contribution to complex diseases 
w w w .c d c .g o v /g e n o m ic s /h u g e n e t / ). such as cardiac disease, diabetes, and asthma. One of the
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most popular study designs in this area is a molecular asso
ciation study in which a polymorphism is linked to the 
disease outcome, either in cases and controls or in a cohort. 
These studies are often limited by small sample sizes (1), so 
there is a role for meta-analysis in pooling these studies, 
particularly to detect the small effect sizes that may be 
associated with these polymorphisms.

The p2-adrenoceptor gene is a key gene to study in 
asthma. f32-Adrenoceptors are present on many airway cells, 
including smooth muscle cells which are hyperreactive in 
asthma, and (32-adrenoceptor agonists form a major treat
ment class in asthma. Functional polymorphisms of this 
gene may influence both disease susceptibility and treat
ment response in asthma.

A number of studies have investigated polymorphisms in 
the p2-adrenoceptor gene in relation to asthma. Two com
mon polymorphisms are A r g / G l y l 6  and G ln /G lu 2 7 \ in the 
former polymorphism, glycine is substituted for arginine at 
codon 16 (Argl6 —>Gly) and, in the latter, glutamic acid is 
substituted for glutamine at codon 27 (Gln27 —> Glu) (2, 3). 
In vitro studies indicate that the G l y l 6  allele enhances agonist- 
induced down regulation of the receptor, whereas the 
G lu 2 7  allele enhances resistance to down regulation (4, 5). 
It is plausible that these differences in receptor regulation 
influence the reactivity of airway smooth muscle in response 
to airway inflammation and thereby alter the risk of asthma. 
However, epidemiologic studies have yielded conflicting 
results, with the direction of the effects not always congruent 
with the in vitro results. Several narrative reviews of these 
two polymorphisms and asthma (4-6) have been conducted; 
however, neither a magnitude nor a mode of gene effect was 
provided in these reviews. Furthermore, new studies that 
examine this association have been reported since those 
reviews, and there have been new developments in the 
methodology of meta-analysis of genetic studies (1,7, 8). 
We therefore performed a systematic review of the associa
tion between A r g / G l y l 6  and G ln /G lu 2 7  and asthma with the 
following objectives: first, to estimate allele frequencies; 
second, to ascertain if there is an effect of these polymor
phisms on asthma susceptibility, and if so to estimate the 
magnitude of that effect and the possible mode of inheri
tance (1, 7, 8); third, to determine linkage disequilibrium 
between these two polymorphisms; and fourth, to infer hap- 
lotypes of these polymorphisms and link them with asthma 
susceptibility.

MATERIALS AND METHODS 

Search strategy

Embase and Medline databases (from January 1966 to 
March 2004) were searched using the Embase, PubMed, 
and Ovid search engines. The search strategy for allele fre
quency was as follows: beta2* AND prevalence AND gene. 
The search strategy for association between gene polymor
phisms and asthma was the following: asthma AND (beta 
receptor or beta-2 or adrenoceptor) AND (polymorph* or 
mutation* or variant* or genotype*). Searching was per
formed in duplicate by two independent reviewers (A. T. 
and M. M.).

Inclusion criteria

For allele frequency, any human studies that estimated the 
prevalence of (32-adrenoceptor polymorphisms at codon 
16 (A r g / G l y l 6 ) and/or codon 27 (G ln /G lu 2 7 )  and reported 
on ethnically homogeneous populations were included, re
gardless of size. For assessing association, human studies, 
regardless of sample size, were included if they met the 
following criteria:

• (32-Adrenoceptor polymorphisms at codon 16 (A r g /G ly l6 )  
and/or codon 27 (G ln /G lu 2 7 )  were determined. The wild- 
type alleles for these two polymorphisms were A rg  and 
G in , respectively.

• The outcome was asthma (incident or prevalent), and 
there were at least two comparison groups, for example, 
asthma versus control (nonasthma) groups.

• Participants could be either children or adults, but results 
should be reported separately.

• There were sufficient results for extraction of data, that 
is, number of subjects for each genotype in asthma and 
control groups. Where eligible papers had insufficient 
information, we contacted authors by e-mail for addi
tional information.

The reference lists of the articles retrieved were also re
viewed to identify publications on the same topic. The most 
complete and recent results were used where there were 
multiple publications from the same study group.

Data extraction

Data were extracted independently and in duplicate by 
two reviewers (A. T. and M. M.) who used a standardized 
data extraction form. Any disagreement was adjudicated by 
a third author (J. A.). Covariables, such as mean age, gender, 
and ethnicity, were also extracted for each study.

Quality score assessment

The quality of studies was also independently assessed by 
the same two reviewers who used quality assessment scores 
that were modified from our previous meta-analysis of mo
lecular association studies (7) (appendix table 1). These 
scores were based on both traditional epidemiologic consid
erations and genetic issues (1). Total scores ranged from 
0 (worst) to 13 (best).

Statistical analysis

Data analyses were performed as follows. First, the fre
quency of A r g l 6  and G ln 2 7  alleles in various ethnic groups 
was estimated by the inverse variance method, as described 
in the Appendix.

Second, estimation of the gene effect on asthma was 
performed by a logistic regression approach described pre
viously (8). In brief, the steps were as follows. Hardy- 
Weinberg equilibrium was assessed for each study by use of 
the %2 test or Fisher’s exact test, where appropriate, and only 
in control groups. A Q  test for heterogeneity was performed 
separately for three odds ratios (ORs), that is, G ly /G ly  versus
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A rg /A rg  (O R ]), A r g /G ly  versus A r g /A r g  (O R2), and G ly /G ly  
versus A r g /G ly  (O R 3 ) for the A r g /G ly l6  polymorphism and 
G lu /G lu  versus G ln /G ln  (O R j), G ln /G lu  versus G ln /G ln  
(OR2), and G lu /G lu  versus G ln /G lu  (O R 3 ) for the G ln /G lu 2 7  
polymorphism. If there was heterogeneity on at least one of 
these odds ratios, the cause of heterogeneity was explored by 
fitting a covariable (e.g., ethnicity, age, gender, or quality 
score) in a meta-regression model (9-11). If there was no 
heterogeneity, logistic regression analysis with the fixed-effect 
model was used to determine the gene effect; otherwise, the 
random-effect model was used to pool. A likelihood ratio 
test was used to gauge whether the overall gene effect was 
significant. If the main effect of the genotype was statisti
cally significant, further comparisons of OR ], OR2, and OR 3  

were explored. These pairwise differences were used to in
dicate the most appropriate genetic model as follows.

1. If OR] =  OR3 ^  1 and OR2 =  1, then a recessive model 
is suggested.

2. If OR] =  OR2 /  1 and OR3 =  1, then a dominant model 
is suggested.

3. If O R 2  =  I/O R 3  /  1 and OR] =  1, then a complete 
overdominant model is suggested (also referred to as 
a “homozygous model” or “heterosis”).

4. If OR] >  O R 2  > 1 and OR] >  O R 3  > 1 (or OR] <  
O R 2  < 1 and OR] <C O R 3  <C 1), then a codominant 
model is suggested.

Third, the gene effect was estimated by use of a newer, 
“parsimonious” approach detailed elsewhere (C. Minelli 
et al., University of Leicester, unpublished manuscript). In 
brief, this approach summarizes the genetic model in terms 
of a parameter lambda (X ), which is the ratio between 
log(ORj) (G lu /G lu  vs. G ln /G ln ) and log(OR2) (G ln /G lu  vs. 
G ln /G ln ) . This parameter, which represents the heterozygote 
effect as a proportion of the homozygote variant effect, cap
tures information about the genetic mode of action as fol
lows: a recessive model if X — 0 , a dominant model if X =  1, 
a codominant model if X — 0.5, and homozygous or over
dominant if X is greater than 1 or less than 0. The two log odds 
ratios are modeled as either fixed or random effects, as de
scribed in the second statistical analysis enumerated above.

Once the best genetic model is identified, this model is 
used to collapse the three genotypes into two groups (except 
in the case of a codominant model) and to pool the results 
again. Sensitivity analyses were performed by including or 
excluding studies not in Hardy-Weinberg equilibrium.

Fourth, with haplotype analysis, the haplotype frequen
cies of A r g /G ly  1 6  and G ln /G lu 2 7  polymorphisms were in
ferred using the expectation-maximization algorithm (12). 
The odds ratio was then estimated by use of the profile 
likelihood. The linkage disequilibrium coefficient was then 
estimated (13). The likelihood ratio test was used to test 
whether the linkage disequilibrium was significant.

All analyses were performed using Stata software, ver
sion 8.0 (14), apart from the parsimonious approach, for 
which WinBugs 1.4 (15) with vague prior distributions 
was used. A p  value of less than 0.05 was considered sta
tistically significant, except for tests of heterogeneity where 
a level of 0.10 was used.

RESULTS

For pooling allele frequency, 67 studies were identified, 
of which 16 (16—31) reported separate information for de
fined ethnic groups. Fourteen studies (2, 3, 32-43) retrieved 
from the search for gene effect were also included.

Allele frequencies

A rg  a lle le . To estimate the pooled frequency, we used 
data only from control groups where a case-control design 
was used or from the entire group where a cohort design was 
used. Twenty-six studies (2, 3, 17, 18, 20-22, 24, 26-43) 
reported Arg allele frequencies (table 1), with 13 studies of 
Caucasian adults, three of Caucasian children, four of Black 
adults, six of Oriental adults, two of Oriental children, and 
one of Semite (Jews/Arabs) adults. Of these, six were not in 
Hardy-Weinberg equilibrium, leaving 12 studies of Cauca
sians, three of Blacks, and seven of Orientals for pooling.

There was heterogeneity among the 12 Caucasian studies 
(xfi =  109.96, p  < 0 .001). The pooled frequency using the 
random effects model was 42.0 percent (95 percent confi
dence interval (Cl): 38.4, 45.7). The pooled frequency 
among Blacks was 49.2 percent (95 percent Cl: 45.7, 
52.7), and this estimate was homogeneous (x2 =  0.24, 
p  =  0.89). There was heterogeneity among Oriental studies 
( 2̂ = 18.79, p  =  0 .01), and the pooled frequency was 
56.2 percent (95 percent Cl: 51.9, 60.6).

Gin a lle le . Twenty-six studies (3, 16, 17, 19, 20, 22-25, 
27-43) reported the frequency of the G ln /G lu 2 7  polymor
phism, 12 studies of Caucasian adults, three of Caucasian 
children, three of Black adults, seven of Oriental adults, 
two of Oriental children, one of Jewish adults, and one of 
Polynesian adults (table 2). Three studies, all of Caucasians, 
did not observe Hardy-Weinberg equilibrium and were not 
included in pooling.

There was heterogeneity among the 10 Caucasian studies 
( x l  =  437.77, p  < 0 .001), and the pooled frequency was 
59.6 percent (95 percent Cl: 53.6, 65.6). All Black studies 
were homogeneous (x2 =  1.08, p  =  0.58), and the pooled 
frequency with the fixed model was 81.3 percent (95 percent 
Cl: 79.7, 83.0). Seven Oriental studies were also homoge
neous ( x l  =  7 .2 6 , p  =  0 .3 0 ) , and the pooled frequency was 
91.9 percent (95 percent Cl: 90.9, 92.9).

Assessing association between gene polymorphisms 
and asthma

Across both Embase and Medline databases, 435 studies 
were identified in total, of which 113 were duplicates, leav
ing 322 study abstracts that were reviewed. From these, 30 
studies seemed to be relevant, and therefore the full papers 
were retrieved. Sixteen studies were judged to have met the 
inclusion criteria, of which eight provided complete data in 
the paper. Requests for additional data on the other eight 
studies were made, of which four were granted. Two addi
tional studies (36, 43) were identified by a known expert 
(D. D.), and the authors provided additional data. The char
acteristics of the adult and pediatric study populations, for
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TABLE 1. Estimation of the pooled prevalence of the Arg allele

Subjects, first author 
(reference no.)

Hardy- 
Weinberg 
equilibrium 
(p value)

Total
no.

Arg allele 
frequency 

(no.)

% with 
Arg 

allele

Caucasian adults*
Santillan (3) 0.07 1,208 520 43
Barr (2) 0.50 274 164 60
Holloway (32) 0.30 182 73 40
Dewar (33) 0.32 1,268 489 39

Arnaiz (34) 0.02f 102 42 41
Reihsaus (35) 0.04f 112 30 27
Hakonarson (36) 0.75 362 127 35
Rosmond (17) <0.001f 534 238 45
Dallongeville (20) 0.53 2,258 857 38
Tang (21) 0.06 248 95 38
Aynacioglu (22) 0.84 208 84 40
Weir (30) 1.00 168 102 61

Xie (31) <0.05f 376 172 46
Caucasian children*

Martinez (37) 0.90 538 206 38

Binaei (38) 0.13 310 135 44
Hopes (39) 0.12 838 279 33

Black adultsf
Kotanko (18) <0.05f 162 63 33
Tang (21) 0.51 286 144 50
Candy (24) 0.37 246 119 48

Xie (31) 1.00 246 120 49
Oriental adults§

Wang (42) 0.50 272 140 51
Sugaya (26) <0.05f 414 165 40
Chang (27) 0.11 260 137 53

Kim (28) 0.37 178 115 65
Iwamoto (29) 0.71 238 115 48
Xie (31) 0.69 208 122 59

Oriental children§
Leung (41) 0.48 140 81 58
Lin (40) 0.06 298 182 61

Jewish/Arab adults
Shachor (43) 0.45 222 101 45.5

* Pooled prevalence (%): 42 (95% confidence interval (Cl): 38.4, 
45.7).

t  Not included in pooled prevalence.
* Pooled prevalence: 49.2 (95% Cl: 45.7, 52.7).
§ Pooled prevalence: 56.2 (95% Cl: 51.9, 60.6).

TABLE 2. Estimation of the pooled prevalence of the Gin allele

Subjects, first author 
(reference no.)

Hardy- 
Weinberg 
equilibrium 
(p value)

Total
no.

Gin allele 
frequency 

(no.)

% with 
Gin 

allele

Caucasian adults*

Arnaiz (34) <0.05f 102 54 53
Santillan (3) 0.12 1,208 972 81
Holloway (32) 0.13 182 107 59
Dewar (33) 0.58 1,260 656 52

Reihsaus (35) 0.19 112 57 51
Hakonarson (36) 0.09 398 208 52

Rosmond (17) 0.45 532 314 45
Heckbert (19) 0.81 8,882 5,069 57
Dallongeville (20) <0.0011 2,982 1,321 44
Aynacioglu (22) 0.81 208 142 68
Weir (30) 1.00 168 90 54

Xie (31) 0.06 376 245 65
Caucasian children*

Martinez (37) 0.69 538 343 64

Hopes (39) 0.38 838 433 52
Binaei (38) <0.05f 310 250 81

Black adultsf
Heckbert (19) 0.64 1,616 1,315 81
Candy (24) 0.75 246 204 83

Xie (31) 0.78 246 195 79
Oriental adults§

Wang (42) 1.00 272 248 91
Kawamura (16) 0.16 838 772 92

Kahara (23) 1.00 248 233 94
Chang (27) 0.55 260 240 92

Kim (28) 0.59 176 156 89

Iwamoto (29) 1.00 238 221 93
Xie (31) 1.00 208 193 93

Oriental children§
Leung (41) 1.00 140 125 89
Lin (40) 1.00 298 267 90

Jewish/Arab adults
S h ach o r(43) 0.66 218 150 69

Polynesian

Duarte (25) 0.51 2,044 1,944 95

* Pooled prevalence (%): 59.6 (95% confidence interval (Cl): 53.6, 
65.6).

t  Not included in pooled prevalence, 
t  Pooled prevalence: 81.3 (95% Cl: 79.7, 83.0).
§ Pooled prevalence: 91.9 (95% Cl: 90.9, 92.9).

example, mean age, gender, ethnicity, type of subjects, and 
allele frequency, are given in table 3.

A rg /G ly  16  p o ly m o rp h ism . Adult asthma. Nine studies 
(2, 3, 32-36, 42, 43) determined the association between 
A r g /G ly  1 6  and asthma in adults (table 4). Total sample sizes

for asthma and control groups were 1,331 and 1,872, re
spectively. Within the asthma group, the mean age was 41 
(standard deviation: 11) years, and 49 percent were females. 
Within the control group, the mean age was 39 (standard 
deviation: 11) years, and 35 percent were females.
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TABLE 3. General characteristics of studies included in pooling gene effects

Subjects, first author 
(reference no.) Year Study design Race Mean age 

(years) % female Quality
score

Adults

Shachor (43) 2003 Case-control Jewish/Arab 38 53.0 5

Arnaiz (34) 2003 Cohort Caucasian 28 1.9 9
Santillan (3) 2003 Case-control Caucasian 37.3 15.0 13
Barr (2) 2001 Case-control Caucasian 58.4 64.9 10
Wang (42) 2001 Case-control Asian 33.0 61.7 13
Hakonarson (36) 2001 Case-control Caucasian 47.5 56.3 6
Holloway (32) 2000 Case-control Caucasian 31.4 54.9 6
Dewar (33) 1998 Cross-sectional Caucasian 18-70* 54.0 6
Reihsaus (35) 1993 Case-control Unknown 46 5

Children

Martinez (37) 1997 Cross-sectional Caucasian 10.8 9

Hopes (39) 1998 Cross-sectional Caucasian 10.5 5
Leung (41) 2002 Case-control Asian 10.8 55.0 5
Binaei (38) 2003 Case-control Caucasian 1

Lin (40) 2003 Cross-sectional Asian 13.9 9

* Range.

The seven studies (2, 3, 32, 33, 36, 42, 43) that observed 
Hardy-Weinberg equilibrium were pooled. Heterogeneity 
was checked for OR.! (G ly /G ly  vs. A r g /A r g ) , OR2 (A r g /G ly  
vs. A r g /A r g ) , and OR3 (G ly /G ly  vs. A r g /G ly ) . Results indi
cated heterogeneity for ORi and OR2 but not for OR3 (for 
OR,: xl =  14.14, p  — 0.03; for OR2: xl =  13.98, p  =  0.03; 
for OR3: xl — 10.38, p  =  0.11). Race was explored as a po
tential cause; however, heterogeneity was still present in all 
odds ratios after excluding the one study of Asians (42) and 
the one study of Semites (for ORi: xl = 8.85, p  — 0.07; for 
OR2: xl = 9.76, p  =  0.04; for OR3: xl =  7.84, p  =  0.10). 
Hence, these seven studies were pooled by use of logistic 
regression with the random-effects model. The overall gene 
effect was not significant (likelihood ratio (LR) =  0.01, p  =  
0.99), with the estimated OR,, OR2, and OR3 being 1.00 (95 
percent Cl: 0.80, 1.24), 0.99 (95 percent Cl: 0.81, 1.22), and 
1.01 (95 percentCI: 0.85,1.20), respectively (table 5). Anal
ysis using the parsimonious approach yielded very similar 
results: OR, =  1.01 (95 percent Cl: 0.79, 1.32), OR2 =  1.00 
(95 percent Cl: 0.79, 1.30), and X =  0.15 (95 percent Cl: 
-4.15, 4.99).

Sensitivity analysis was performed by including the two 
studies (34, 35) that did not observe Hardy-Weinberg equi
librium; the results were similar in showing no genetic effect 
(LR2 =  0 .4 1 , p  =  0.96).

Childhood asthma. Five studies (37-41) determined the 
association between the A r g / G l y l 6  polymorphism and 
asthma in children (table 4), and all observed Hardy- 
Weinberg equilibrium. The total sample size was 334 with 
asthma and 842 controls.

No heterogeneity was detected for ORi (G ly /G ly  vs. A r g /  
A r g ) , OR2 (A r g /G ly  vs. A rg /A rg ) , or OR3 (G ly /G ly  vs. A r g /  
G ly )  (for OR!: xl = 1-97, p  =  0.74; for OR2: xl = 1-38,
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p  =  0.85; for OR3: x l  — 4.92, p  =  0.30). Logistic regression 
with the fixed-effect model was used to assess the overall 
gene effect, and this was close to the formal significance 
level (LR2 =  5.15, p  =  0.08). The estimated ORi, OR2, and 
OR3 were 0.75 (95 percent Cl: 0.50, 1.12), 1.08 (95 percent 
Cl: 0.76,1.55), and 0.70 (95 percent Cl: 0.51,0.96) (table 5). 
These estimates suggest a recessive protective effect of the 
G ly  allele, and therefore A r g /A r g  and A r g /G ly  were com
bined and compared with G ly /G ly . The estimated odds ratio 
was 0.71 (95 percent Cl: 0.53, 0.96); that is, children with 
the G ly /G ly  genotype had about 29 percent lower risk of 
having asthma than did children with the A r g /A r g  and 
A r g /G ly  genotypes. Using the parsimonious approach gave 
similar results: ORi and OR2 of 0.88 (95 percent Cl: 0.52, 
1.20) and 1.04 (95 percent Cl: 0.76, 1.54), respectively. The 
estimated X was —0.16 (95 percent Cl: —3.85, 4.39), close 
to what would be expected for a recessive model, that is, 0 , 
although the confidence interval was wide.

G ln /G lu2 7  p o ly m o rp h ism . Adult asthma. Eight studies 
(3, 32-36, 42, 43) assessed the association between the 
G ln /G lu 2 7  polymorphism and asthma in adult patients 
(table 6). The sample size was 1,162 for asthma and 1,745 
for control groups. All studies except one (34) observed 
Hardy-Weinberg equilibrium, and seven studies were there
fore pooled to assess gene effect.

Heterogeneity tests were negative for ORi (G lu /G lu  vs. 
G ln /G ln ) and OR3 (G lu /G lu  vs. G ln /G lu )  but significant for 
OR2 (G ln /G lu  vs. G ln /G ln )  (for OR,: x l  =  2 .3 3 ,p  =  0.89; for 
OR3: x l  =  8.15,p =  0.23; for OR2:x6 =  18.47,/? =  0 .01). A 
number of factors were explored, including race, but we 
could not identify the source of heterogeneity. We then 
pooled these studies by logistic regression with the random- 
effects model to assess the gene effect. The likelihood ratio
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TABLE 4. Genotype frequencies of the Arg/Gly16 polymorphism between asthma and control groups

Subjects, first author 
(reference no.)

Asthma group Control group

No.
% with 

Arg 
allele

Genotype (no.)
No.

% with 
Arg 

allele

Genotype (no.)

Arg/Arg Arg/Gly Gly/Gly Arg/Arg Arg/Gly Gly/Gly
Adults

Arnaiz (34)* 12 54 4 5 3 39 37 9 11 19
Santillan (3) 303 45 56 163 84 604 43 101 318 185
Barr (2) 171 49 36 97 38 137 60 51 62 24
Wang (42) 128 62 52 54 22 136 51 38 64 34

Holloway (32) 154 34 29 47 78 91 40 17 39 35
Dewar (33) 117 33 14 50 53 517 40 74 263 180
Reihsaus (35)* 51 28 5 19 27 56 27 7 16 33
Hakonarson (36) 323 37 45 151 127 181 35 21 85 75
Shachor (43) 72 46 13 40 19 111 46 25 51 35

Total 1,331 254 626 451 1,872 343 909 510
Children

Martinez (37) 38 37 5 18 15 231 35 35 108 88

Leung (41) 76 58 25 38 13 70 58 22 37 11
Binaei (38) 38 10 7 24 7 155 44 34 67 54

Lin (40) 80 58 34 35 11 69 57 27 25 17
Hopes (39) 102 37 11 54 37 317 32 28 147 142

Total 334 82 169 83 842 146 384 312

* Arnaiz and Reihsaus were not included in the pooled gene effect.

test indicated that the overall gene effect was signif
icant (LR = 14.64, p  <  0.05). The estimated ORj, OR2, 
and OR3 were 0.88 (95 percent Cl: 0.68, 1.14), 0.72 (95 
percent Cl: 0.60, 0.85), and 1.22 (95 percent Cl: 0.94, 1.60) 
(table 5).

The estimated ORi, OR2, and X by the parsimonious ap
proach were 0.97 (95 percent Cl: 0.75, 1.27), 0.88 (95 per
cent Cl: 0.63, 1.18), and 0.61 (95 percent Cl: -4.66, 5.54), 
respectively. Sensitivity analysis was performed by adding 
the one study (34) not observing Hardy-Weinberg equilib
rium, and the gene effect was robust: The estimated ORj, 
OR2, and OR3 were 0.88 (95 percent Cl: 0.68, 1.13), 0.71 
(95 percent Cl: 0.60, 0.84), and 1.22 (95 percent Cl: 0.95, 
1.59), respectively This seems to indicate a homozygous or 
overdominant mode of effect, with heterozygotes being at 
lower risk of asthma than either homozygote. Pooling ac
cording to this model yielded an odds ratio of 0.73 (95 per
cent Cl: 0.62, 0.87); that is, the chance of having asthma 
was about 27 percent less with G ln /G lu  compared with G in /  
G in  +  G lu /G lu . Although this is a nonintuitive model, there 
is precedent for other genes acting in this manner (see Dis
cussion); alternatively, this may be a spurious result due to 
the distribution of data and the possibility of interaction 
between the two polymorphic sites. We address this possi
bility further in the next section using haplotype analysis.

Childhood asthma. There were five studies (37-41) ad
dressing the association between the G ln /G lu 2 7  polymor
phism and asthma in children (table 6). All studies observed 
Hardy-Weinberg equilibrium except one (38).

The four studies observing Hardy-Weinberg equilibrium 
were pooled (37, 39^f 1). Since the studies by Lin et al. (40) 
and Leung et al. (41) had cells with no counts, we added 
1 for each cell for these two studies. There was no evidence 
of heterogeneity for ORi (G lu /G lu  vs. G ln /G ln ) , OR2 ( G in /  
G lu  vs. G ln /G ln ), or OR3 (G lu /G lu  vs. G ln /G lu ) (for ORj: 
X] =  0.47, p  =  0.93; for OR2: x j  =  2.24, p  =  0.53; for 
OR3: x l  =  1.51, p  — 0.68). Logistic regression with the 
fixed-effect model was then used to pool; the estimated ORi 
and OR3 of 0.62 (95 percent Cl: 0.36,1.07) and 0.59 (95 per
cent Cl: 0.35, 0.99), respectively, were similar, whereas the 
estimated OR2 of 1.05 (95 percent Cl: 0.75, 1.48) was close 
to one (table 5). Although the overall gene effect was not 
significant (p  =  0 .12), there is the suggestion of a recessive 
protective effect. The G ln /G ln  and G ln /G lu  genotypes were 
therefore combined and compared with G lu /G lu . We found 
that the estimated odds ratio was 0.60 (95 percent Cl: 0.37, 
1.00); that is, children who had the G lu /G lu  genotype were 
about 40 percent less likely to have asthma than were chil
dren who had genotype G ln /G lu  or G ln /G ln . Sensitivity 
analysis was performed by including the study not in 
Hardy-Weinberg equilibrium; this did not change the indi
cation of a recessive protective effect (OR =  0.61, 95 percent 
Cl: 0.38, 0.98). The parsimonious model was compatible 
with this effect, with an OR] of 0.90 (95 percent Cl: 0.49, 
1.22), an OR2 of 1.02 (95 percent Cl: 0.76, 1.40), and an 
estimated X of —0.04 (95 percent Cl: —3.63, 4.30). Hence, 
these results suggested a recessive protective effect of G lu , 
although neither model was statistically significant.
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TABLE 5. Determination of the genetic effects of Arg/Gly16 and Gln/Glu27 
polymorphisms on asthma

Logistic regression Model-free approach

Genotype Adjusted 
odds ratio

95%
confidence

interval

Adjusted 
odds ratio

95%
confidence

interval

Arg/Gly16
Adults

Gly/Gly vs. Arg/Arg 1.00 0.80, 1.24 1.01 0.79, 1.32
Arg/Gly vs. Arg/Arg 0.99 0.81, 1.22 1.00 0.79, 1.30
Gly/Gly vs. Arg/Gly 1.01 0.85, 1.20 X = 0.15 -4 .15 , 4.99

Children
Gly/Gly vs. Arg/Arg 0.75 0.50, 1.12 0.88 0.52, 1.20

Arg/Gly vs. Arg/Arg 1.08 0.76, 1.55 1.04 0.76, 1.54
Gly/Gly vs.Arg/Gly 0.70 0.51, 0.96 X =  -0 .1 6 -3 .85 , 4.39
Gly/Gly vs. Arg/Arg + Arg/Gly 

(recessive effect) 0.71 0.53, 0.96
Gln/Glu27

Adults

Glu/Glu vs. Gln/Gln (OR,*) 0.88 0.68, 1.14 0.97 0.75, 1.27
Gln/Glu vs. Gln/Gln (OR2*) 0.72 0.60, 0.85 0.88 0.63, 1.18
Glu/Glu vs. Gln/Glu (OR3*) 1.22 0.94, 1.60 X = 0.61 -4 .66, 5.54
Gln/Glu vs. Gln/Gln +  Glu/Glu 

(overdominant effect) 0.73 0.62, 0.87
Glu/Glu vs. Gln/Gln (OR,) 0.62 0.36, 1.07 0.90 0.49, 1.22
Gln/Glu vs. Gln/Gln (OR2) 1.05 0.75, 1.48 1.02 0.76, 1.40
Glu/Glu vs. Gln/Glu (OR3) 0.59 0.35, 0.99 X = -0 .0 4 -3 .63 , 4.30
Glu/Glu vs. Gln/Glu +  Gln/Gln 

(recessive effect) 0.60 0.37, 1.00

*O R i, odds ratio of asthma with the preceding comparison of genotypes (OR2 and OR3 
defined similarly).

Haplotype analysis of Arg/Gly16 and Gln/Glu27 
polymorphisms

Three studies of adults provided data for haplotype anal
ysis (3, 33, 36). The study by Weir et al. (30) reported 
inferred haplotype data among subjects who had only ho
mozygous wild or mutant genotypes at one locus, so this study 
was not included in the present analysis. The expectation- 
maximization algorithm was applied to infer haplotypes 
for the three studies, and linkage disequilibrium was as
sessed. The estimated linkage disequilibrium coefficient 
was 0.48 (p  <  0.001).

The haplotype frequency in asthmatics and controls is 
described in table 7. The three most common haplotypes 
were A r g /G ln  (37.5 percent), G ly /G lu  (31.7 percent), and 
G ly /G ln  (28.2 percent). The estimated odds ratios were 
0.39 (95 percent Cl: 0.29, 0.58), 0.99 (95 percent Cl:
0.74, 1.49), and 0.83 (95 percent Cl: 0.62, 1. 24) for hap
lotypes A r g /G lu , G ly /G ln , and G ly /G lu  compared with A r g /  
G in . These numbers seem to indicate that, when G in  is 
present at position 27, the risk of asthma is the same regard
less of what allele is present at position 16. However, with 
G lu  at position 27, the risk of asthma is lower, and this

decreased risk is modified by the allele at position 16, being 
lower with A r g l 6  than with G ly  1 6 .

This effect modification is marked, and the confidence 
interval of the odds ratio for the A r g /G lu  haplotype does 
not overlap with that of the G ly /G lu  haplotype (table 7). 
Subjects who had haplotypes A r g /G lu  and G ly /G lu  were 
61 percent and 17 percent less likely to have asthma than 
were subjects who had haplotype A r g /G ln . However, sub
jects with haplotype G ly /G ln  had the same chance of asthma 
as did subjects with A r g /G ln .

DISCUSSION

The various results of the individual single-nucleotide 
polymorphism (SNP) analyses and haplotype analyses are 
complex, but synthesizing the data overall seems to indicate 
the following. First, the G lu 2 7  allele appears to be protective 
against asthma, reducing the risk of asthma by approxi
mately 27 percent. This makes biologic sense because the 
G lu  variant is resistant to down regulation in vitro, and it is 
possible that these individuals express higher (^-receptor 
levels in the context of inflammation. This was suggested

Am J Epidemiol 2005;162:201-211



208 Thakkinstian et al.

TABLE 6. Genotype frequencies of the Gln/Glu27 polymorphism between asthma and control groups

Subjects, first author 
(reference no.)

Asthma group Control group

No.
% with 

Gin 
allele

Genotype (no.)
No.

% with 
Gin 

allele

Genotype (no.)

Gln/Gln Gln/Glu Glu/Glu Gln/Gln Gln/Glu Glu/Glu

Adults
Arnaiz (34)* 12 58 6 2 4 39 51 14 12 13
Santillan (3) 303 88 241 53 9 604 80 385 202 17
Wang (42) 128 92 108 19 1 136 91 113 22 1

Holloway (32) 153 87 49 76 28 91 59 35 37 19
Dewar (33) 119 49 33 51 35 511 53 134 271 106
Reihsaus (35) 51 39 13 26 12 56 51 17 23 16
Hakonarson (36) 324 55 92 173 59 199 52 48 112 39
Shachor (43) 72 73 38 29 5 109 69 50 50 9

Total 1,162 580 429 153 1,745 796 729 220
Children

Martinez (37) 38 64 16 17 5 231 64 95 104 32
Hopes (39) 102 54 24 63 15 317 51 83 156 78

Leung (41) 76 92 64 12 0 70 89 55 15 0
Binaei (38)* 37 78 23 12 2 155 81 107 36 12
Lin (40) 80 91 65 15 0 69 88 54 14 1

Total 333 192 119 22 842 394 325 123

* Not in Hardy-Weinberg equilibrium and not pooled.

in both adult and pediatric populations, although the genetic 
model in each was different.

Second, the protective effect of G lu 2 7  may be due to the 
haplotype. It is probable that this is not an effect of this SNP 
in isolation but, instead, reflects a common haplotype that 
includes this allele. Drysdale et al. (44) investigated 13 SNPs 
in the human J32-adrenergic receptor gene promoter and cod
ing regions in relation to responsiveness to (32 agonists. 
They found that, although there was no association when 
SNPs were analyzed individually, there was a clear relation 
between one of the common haplotypes (haplotype 2 in their 
paper, which included G lu 2 7 )  and good response to p2 ago
nists in vivo, as well as increased messenger RNA levels and 
gene expression in vitro. Haplotypes that included G ln 2 7  
(e.g., haplotype 4 in their paper) had overall poorer response 
to p2 agonists and lower expression levels. Presumably,

good response to exogenous agonists also reflects good 
response to endogenous agonists and, hence, a protective 
effect against asthma.

Third, the genetic model suggested by the data appears to 
be an overdominant protective effect of G lu 2 7 . This model is 
also called heterozygote advantage or positive heterosis, and 
although it may appear counterintuitive, a recent review in
dicates that this mode of action is perhaps more common 
than previously thought and cites numerous examples (45). 
Indeed, the IL 1 2 B  promoter polymorphism has been associ
ated with severity of asthma in children, and this also seems 
to observe a pattern of heterozygote advantage (46). The 
mechanism of such a model is still speculative but may in
clude 1) advantages in having variation in a multimeric pro
tein, such as better Vmax (47); 2) an allele with a selective 
advantage that is detrimental when homozygous (e.g., sickle

TABLE 7. Distribution of haplotype frequency of Arg/Gly16 and Gln/Glu27 
polymorphisms between asthma and control groups

Haplotype
Control group 
(n = 2,331)

Asthma group 
(n =  950) Adjusted 

odds ratio*

95%
confidence

intervalNo. % No. ° /o

Arg/Gln 978 37 573 39 1.00
Arg/Glu 91 3 18 1 0.39 0.29, 0.58

Gly/Gln 741 28 428 29 0.99 0.74, 1.49

Gly/Glu 852 32 461 31 0.83 0.62, 1.24

* Adjusted for study effect.
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cell and falciparum malaria); and 3) a greater range of ex
pression of gene products and plasticity with heterozygotes 
than homozygotes (45). Alternatively, this may be a spurious 
result due to other untyped loci in the haplotypes analyzed.

Fourth, there may be interaction or synergism between 
different SNPs. The haplotype analysis raises the possibility 
that the position 16 polymorphism may be an effect modi
fier: The protective effect of G lu 2 7  was accentuated with 
A r g l 6  compared with G ly l6 ,  although there was no inde
pendent effect of the position 16 polymorphism on its own. 
This would indicate that it may be difficult to predict a 
haplotype effect from its constituent SNPs.

Fifth, the linkage disequilibrium between position 16 and 
27 polymorphisms is not high. This may be surprising given 
that they are only 30 nucleotides apart and there are no 
intervening introns. However, this is congruent with other 
studies indicating that recombination frequency is not 
strictly proportional to chromosomal distance, and it is sen
sitive to ancestral effects; for example, Drysdale et al. found 
that “some pairs of close sites have reduced levels of link
age disequilibrium relative to more spaced pairs of sites” 
(44, p. 10485).

The pooled allele frequencies at both the A r g l 6  and 
G ln 2 7  sites confirm the presence of significant variation 
between racial groups and are similar to values generally 
recognized, for example, in ALFRED (Allele Frequency 
Database) (48). Although crude, these results do support 
a role of these polymorphisms in asthma susceptibility, 
given the varying incidence of asthma in these racial groups. 
Interestingly, the variation was more marked at the G ln 2 7  
locus than at A r g l6 ,  and it was the former that was more 
strongly implicated in asthma susceptibility in our results.

These findings must be taken with caution at the present 
time for a number of reasons. First, these estimates are 
obtained by pooling despite heterogeneity.

Second, the asthma phenotype was often not fully spec
ified, and details of asthma diagnoses were often scanty. 
Future studies should clearly identify whether asthma cases 
were diagnosed from symptoms or on population screening, 
and they should include results of atopic testing, spirometry, 
or methacholine challenge. Without sufficient information 
in individual studies, the condition labeled as asthma in this 
meta-analysis is likely to be heterogeneous and may be 
contributing to the inconsistency of results.

Third, the haplotype results are very different from those 
found in the longitudinal Normative Aging Study cohort 
(49), where the G ly l6 /G ln 2 7  haplotype had a protective ef
fect compared with A r g l6 /G lu 2 7  (a different reference ge
notype), whereas in our study there was an increased risk. 
This discrepancy, however, may be due to the fact that, in the 
latter, the outcome was airway hyperresponsiveness (which 
does not always correspond to asthma) and that the popula
tion was general, community-dwelling males screened with 
a methacholine challenge test, not diagnosed asthmatics.

Fourth, these findings do not take into account smoking 
status, since data were available from only two studies (3, 
42). There are some indications that the genotype effects 
may be more apparent among nonsmokers (49).

Fifth, the findings in childhood and adult asthma are in
consistent. This may be due to chance, or, alternatively,

there may be a genuinely different mode of action in adults 
compared with children, in that asthma is a clinically dif
ferent disease in these two populations. Asthma in late 
childhood, which was the age range studied in these papers, 
is predominantly atopic in nature, more likely to be eosin
ophilic, more likely to be symptom diagnosed and episodic, 
and less likely to be associated with persistent airway hyper
responsiveness (49-52). Since the G lu 2 7  polymorphism is 
associated with less airway hyperresponsiveness (53), this 
may explain differences between the associations in adults 
and children. Alternatively, given the incomplete under
standing of asthma pathogenesis, there may be pleiotropic 
effects of the (32-receptor at different stages or etiologies of 
disease. Indeed, one of us has observed such an age-specific 
association for another gene candidate in a population of 
children followed from childhood into early adult life (54).

In summary, these results are suggestive of a protective 
effect of the G lu 2 7  allele, probably as part of a haplotype, 
and they raise the possibility of interactions with the posi
tion 16 alleles and possibly other SNPs. This warrants fur
ther investigation in larger studies. The clinical implications 
of these findings are not clear. These polymorphisms may be 
involved in both conferring the risk to develop asthma and 
influencing the response to p2-agonists; this has been the 
subject of a recent randomized crossover trial (55) and is 
the topic of an ongoing meta-analysis (56).
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APPENDIX

The pooled prevalence was calculated as

-__Y.wiPiP  ’

where p  was the pooled prevalence of the allele, p , was the 
prevalence of the allele in each study, and w, was 1/varip ,) ,  
which was the weight of each study.

Heterogeneity of prevalences across studies was checked 
as follows:

1

Q  =  ' 5 2 w i ( P i ~ P ) 2 -
The Q  statistic follows a %2 distribution with number of 

studies (k ) -  1 df. If heterogeneity was present, between- 
study variation was then estimated as follows:

,2 Q - ( k - l )i =
E wi -

if Q  >  k — 1 or 0 otherwise.

var(/7,-) + t2 ’

and the pooled prevalence was estimated as follows:
E *

w i PiP   V— N * *

The 95 percent confidence interval was estimated as 
follows:

ck tPT "  , 19695 percent Cl = p  ± E *Wi

APPENDIX TABLE 1. Scale for quality assessm en t of 
molecular association studies of asthma

Criteria

Clearly described objective criteria for diagnosis 
of asthma

Diagnosis of asthma by patient self-report or by 
patient history

Not described
Ascertainment of controls

Controls were tested to screen out asthma, 
i.e., measured FE V ^ or PEFR*

Controls were subjects who did not report asthma; 
no objective testing

Not described 
Genotyping examination 

Genotyping done under “blinded” condition 
Unblinded or not mentioned 

Hardy-Weinberg equilibrium 
Hardy-Weinberg equilibrium in control group 
Hardy-Weinberg disequilibrium in control group 
No checking for Hardy-Weinberg equilibrium 

Association assessment 
Assess association between genotypes and 

asthma with appropriate statistics and 
adjustment for confounders

Assess association between genotypes and 
asthma with appropriate statistics without 
adjustment for confounders

Inappropriate statistics used
Response rate

Response rates for both groups are the same, 
i.e., to within 5%

Response rates are different, between 5% and 10% 
Response rates are more than 10% different, or 

no mention of response rates 
Total

Score

Representativeness of cases
Consecutive/randomly selected from case 

population with clearly defined sampling frame
Consecutive/randomly selected from case 

population without clearly defined sampling frame 
or with extensive inclusion/exclusion criteria

No method of selection described 
Representativeness of controls

Controls were consecutive/randomly drawn from the 
same sampling frame (ward/community) as cases

Controls were consecutive/randomly drawn from 
a different sampling frame as cases

Not described 
Ascertainment of asthma

This was used to calculate a weight term that accounted for 
between-study variation: rate

FEV1t forced expiratory volume in 1 second; PEFR, peak expiratory flow

Am J Epidemiol 2005; 162:201 -211

http://alfred.med.yale.edu/alfred/index.asp
http://cochrane.bireme.br/cochrane/show

