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ABSTRACT 

Wetlands are ecosystems encountered at the land-water ecotone and hence 
inheriting rich complexity and biodiversity. Emergent macrophytes are a 
prime example of this variability manifested by the co-occurrence of 
vegetation associations at a very fine spatial level. From 1960s onwards an 
abrupt deterioration of reed beds in Europe has been systematically observed 
and denoted as the ‘reed die-back’. Since then, earth observation has been 
utilized mainly to map the extent of reed beds based on multispectral 
information. Hyperspectral remote sensing has frequently been employed in 
vegetation related studies, however the spectral information content of 
macrophytes has not been widely investigated. This study focuses on assessing 
the potential of imaging spectroscopy for assessing the ecophysiology of lake 
shore vegetation at leaf level and mapping macrophytes species associations 
from airborne imagery. Concurrently acquired spectroscopic, chlorophyll 
fluorescence and chlorophyll content information from field samples around 
Lake Balaton, Hungary are employed to identify spectral regions and propose 
narrowband indices which can aid the identification of reed ecophysiological 
status based solely on vegetation spectral characteristics. Macrophyte species 
as well as Phragmites in different phenological states have concretely separate 
spectral responses, however stable and die-back reed are not crucially 
different. Bathymetry regulates consistently the spectral response of Phragmites. 
Narrow band ratio 493/478 (0.65***) correlates with the ETR, the latter being 
an indication of the photosynthetic activity of the plant, and hence the 
vegetation physiological status. Most indices correlating with fluorometric 
parameters are located in the optical domain. Based on R2 graphs, the ratios 
699/527 and 612/516 can be used to estimate Y(II) from AISA hyperspectral 
data. Estimation of the photophysiological parameters of a reed bed is 
possible based solely on airborne hyperspectral imagery. Simultaneously 
acquired airborne AISA Eagle, Hawk and discrete return LiDAR data are 
combined in order to stress out the potential of each dataset in classifying the 
reed bed in terms of species associations. An application of SVM on noise-
reduced Eagle data, at the chlorophyll and near infrared absorption spectral 
regions, provides the most concrete results in terms of overall accuracy (89%). 
SVM outperforms ML and infrared sensors as well as LiDAR data do not 
improve the categorization of macrophyte classes. While airborne data inherit 
a superior spectral and spatial resolution, they are difficult to acquire in an 
operational context. Upcoming satellites will provide imagery with 
progressively higher spatial and spectral capabilities. A simulation of Sentinel-
2 image over a reed bed in a nature protected area indicates the potential of 
satellite imagery in mapping macrophytes. Main classes can be distinguished, 
despite the fact that inter-class separability is becoming vague. Given the very 
large swath of Sentinel-2 (290km) an operational categorization of main 
macrophytes is foreseen achievable.  
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Chapter 1  

Introduction 

During the 1960s in Europe reed beds started to deteriorate in several 

geographic regions simultaneously for unidentified reasons, resulting in a 

considerable reduction of reed surface coverage (Ostendorp 1989; Den 

Hartog et al. 1989; Van der Putten 1997; Brix, 1999a). The symptoms 

associated with reed decline and the consequences have been collectively 

denominated as the ‘reed die-back’ (Boorman et al. 1977). Whilst in European 

wetlands the phenomenon was sustained, in America reed needed to be 

restrained due to its aggressive growth, spread (McCormick et al. 2010) and 

ability to displace native aquatic vegetation. Operationally, in the U.S. the 

extent of reed stands was reduced by water level control, herbicide 

application, prescribed burn, etc. The problem has been reported widely in the 

literature to the point of considering the species as noxious (Leithead et al. 

1976). 

These two parallel observations stimulated a strong concern among scientific 

groups which sought ways to understand the cause underlying the 

phenomenon and the associated consequences. In parallel, legislative 

authorities developed strategies for sustainably tackling the problem in the 

framework of wetland ecosystem management. Land cover changes have a 

strong impact on biotic components of ecosystems, and therefore on human 

environment. Likewise, on a global scale the loss of biodiversity initiated a 

scientific interest in species distribution (biological invasion is the second 

most important reason for biodiversity loss after habitat fragmentation 

(Petrovskiy, S., inaugural lecture)), the associated environmental drivers and 

how they operate in different geospatial contexts (Turner et al. 2003). Part of 

the effort has been devoted to reporting qualitatively and quantitatively the 

coverage and condition of vegetation which, traditionally, was estimated based 
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on field visits and in-situ measurements. Only lately the scientific community 

started to entrust earth observation, to a degree driven by the abundance of 

remotely sensed data, the ever increasing technological improvements and the 

decreasing cost of purchasing imagery.  

Imaging spectroscopy, commonly known as hyperspectral remote sensing, has 

been progressively employed in vegetation related studies. Plants inherit an 

immense variability in structure, composition and characteristics; fine spectral 

information is a key parameter to identify species, study the vegetation vigour 

or estimate biophysical parameters remotely in such complex scenes. 

Hyperspectral instruments record electromagnetic incoming radiation in 

hundreds contiguous spectral bands; this information can be translated to 

reflectance of the object of interest, which is directly associated to biophysical 

parameters and physiological status of the vegetation. For instance the stress 

condition of a leave is a direct consequence of the photosyntheric activity of 

the plant, the latter demonstrating specific spectral characteristics in the 

reflectance pattern which can be locate in the hyperspectral signature of the 

plant. Nevertheless and despite the fact that lately remote sensing has been 

rapidly advancing as a science, characterizing wetland vegetation with rich 

biodiversity has not been thoroughly investigated with hyperspectral data.   
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Chapter 2  

Background 

2.1 Importance of wetlands 

Wetlands are multiple-value structures with a very high ecosystem significance 

covering approximately 4-6% of the world’s terrestrial part and a “tentative 

minimum” global area of 12.8 million km2 according to estimations from 

Finlayson et al. (1999). They are generally perceived as places where “water is 

the primary factor controlling the environment and the related plant and 

animal life” (Niering, 1985), and more strictly are defined according to the 

Article 1.1 of the Ramsar Convention (Ramsar Convention Secretariat, 2013) 

as “areas of marsh, fen, peatland or water, whether natural or artificial, 

permanent or temporary, with water that is static or flowing, fresh, brackish or 

salt, including areas of marine water the depth of which at low tide does not 

exceed six metres”. They serve important ecological functions and processes, 

despite the fact that are usually perceived by the general public in a negative 

context (Mitsch and Gosselink, 2000). At the ecosystem level, wetlands are 

functioning as means for providing habitat for a variety of organisms, erosion 

control, and water purification by recycling nutrients and sequestering 

pollutants. Their importance is stressed by the fact that they connect the 

terrestrial and water biotic and abiotic characteristics of the landscape, and as 

such they host a rich biodiversity of plant and animal species. Per se, the 

habitats encountered within wetlands are of a very dynamic nature and 

enclose rich diversity.  

Lakeshore vegetation is such an ecosystem, and more specifically the ecotone 

where the terrestrial and aquatic ecosystems merge, hence the vegetation 

species biodiversity encountered in the buffer zone is intrinsically rich (Figure 

2.1). Consequently wetlands are closely associated in the scientific context 

with biodiversity loss and environmental drivers (Turner et al. 2003). Likewise, 
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wetlands are areas profoundly susceptible to climate change both indirectly 

because of the biodiversity they house, and directly as they are fundamentally 

regulated by the water availability, which in essence is the inundation level of 

the water body. The fluctuation of water regime is expected to be a major 

consequence of anticipated global warming. Furthermore, wetlands sequester 

and release a large volume of fixed carbon in the biosphere and therefore are 

possibly an important component in global climate change (Mitsch and Wu, 

1995). Finally, lately they have been of focal concern because of the growing 

anthropogenic pressure. The importance is further underpinned by the fact 

that the loss of wetlands through development, and the associated functions 

and values, is often irreversible.  

Efficient management and conservation of wetlands and natural habitats has 

been increasingly a topic of investigation by several scientific groups during 

the last years (e.g. Spanhove et al. 2012). While the field is prevailed by  

 

Figure 2.1: Zonation of the lake shore environment. Wetlands are ecosystems rich in biodiversity and are directly 

associated with the inundation level, hence the water availability. 
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biological and ecological oriented disciplines, earth observation data and 

associated techniques are progressively employed for mapping features of 

interest and indicators. This has urged the need to develope methodologies 

based on remotely sensed data and tailored to wetland characteristics.   

2.2 Phragmites australis 

Common reed (Phragmites australis (Cav.) Trin. ex Steud.) is a tall and 

rhizomatous perennial grass (Haslam, 1969; Leithead et al. 1976) (Figure 2.1). 

It is characterised as an herbaceous renascent aquatic plant typically 

encountered in wetland environments and more frequently in land-water 

interface zones (Tucker, 1990). Acting as a buffer zone between terrestrial and 

aquatic ecosystems (Brix, 1999b), it holds an important role as the key species 

of temperate wetlands and delivers valuable ecosystem services such as  

maintaining the shore stability (Engloner, 2009). It can tolerate certain 

amounts of salinity (<35‰ according to Lissner and Schierup (1997)) and 

therefore can expand into brackish waters as well. Although its ecological 

importance is significant, human disturbance has been a large threat for reed 

beds and subsequently the habitats they support (Wilcox, 1995; Meinesz, 

1999).  

Phragmites is one of the most widespread vascular plants on the Earth, growing 

in all continents except Antarctica (Tucker, 1990). Thus its appearance 

depends both on the environment and the genotype (Kühl et al. 1999; Brix, 

1999b). Koppitz (1999) and Hansen et al. (2007) claim that Phragmites is a 

species with very high genetic variability, which accounts for the large 

differences between different clones. There is a considerable variation in the 

chromosome complement of Phragmites (Tucker, 1990; Hansen et al. 2007), 

however no correlation has been found in ploidy, habitat or geography 

between 40 European populations in a survey conducted by Raicu et al. (1972, 

as cited in Tucker, 1990). Bastlová et al. (2004) reported variation in Phragmites 

phenology as well as morphological and growth characteristics depending on 
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the geographical location; for instance plant height is decreasing with 

increasing latitude. This variability of characteristics is thought to be the 

differentiation of genotypes adapted to the local environment. Nevertheless, 

despite the importance of the findings from studies focusing on Phragmites 

from the ecological point of view, it is not uncommon to often reach 

contradictory results. For a more comprehensive description of Phragmites 

morphology, physiology and phenology the reader is suggested a review from 

190 publications conducted by Engloner (2009).   

Phragmites holds a significant role in wetlands as it provides a buffer zone 

between the terrestrial and aquatic ecosystems and therefore contributes to 

water quality stabilization. Its importance is particularly significant in shallow 

lakes since their ecological status depends on the abundance and composition 

of macrophytes (Hunter et al. 2010b). Furthermore, the maximum seasonal 

biomass of living shoots and rhizomes of Phragmites may exceed 170t dry 

weight per ha (Brix et al. 2001) in some places (e.g. Comana Lake, Romania), 

hence, on a global scale permanent reed beds can be considered as temporary 

greenhouse gas sinks. Moreover, reed is reducing considerably the erosion of 

the lake shoreline and contribute to long term geomorphological stability (e.g. 

Morris et al. 2015). From a commercial point of view, they are used for 

thatch, basketry and as a source of pulp for paper production especially in 

Eastern European countries (Tucker, 1990). Finally, reed formulates a dense 

stand occupying most part of the ecotone between the terrestrial and aquatic 

ecosystems and houses species from both sides. Therefore it is breeding, 

feeding and spawning zone and acts as an important sanctuary of wildlife. 

2.3 The reed die-back 

Since the beginning of the 1950’s a sudden, widespread and escalating retreat 

of reed beds has been observed in parts of Europe (Ostendorp, 1989; Den 

Hartog et al. 1989). Typical indicative expressions reported include abnormal 

rhizome, root anatomy and low starch levels in rhizomes (Čížková et al. 2001), 
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weaker culms, gradual thinning, reduced size, formation of clumps, natural 

degeneration of the land-water ecotone and eventually retreat from relatively 

deep water (Van der Putten, 1997). These factors signifying an abrupt reduced 

stability are collectively reported in the literature as the ‘reed die-back’. 

However, contrary to the typical stress manifestation in the leaf structure of 

most plants, identification of die-back conditions is not straightforward when 

using macroscopic visual assessment especially at an early stage, because of 

the connection of individual shoots by underground rhizomes allowing 

sharing of nutrients. Thus, while the entire plant may be in a state of die-back, 

the leaves do not necessarily show important phenotypic signs of 

deterioration. 

Large scale reed die-back has been observed mainly in Central Europe 

(Krumscheid et al. 1989; Küshl and Kohl, 1992; Fogli et al. 2002) and to a 

lesser extent in Eastern and Northern Europe (Van der Putten, 1997). 

According to Ostendorp (1989) and Van der Putten (1997), the phenomenon 

was first reported 60 years ago by Hürlimann (1951). Since then an increasing 

scientific interest and environmental concern has been raised. Several national 

and international projects have been developed for studying and tackling the 

problem and awareness has been raised within the academic community.  

Over the last decades various causative factors have been proposed, however 

a concrete assumption has not yet been agreed on. The conclusion of the 

1993-1994 European Project on Reed Die-back and Progression (EUREED) 

is that stagnant water levels, due to changes in water table management 

practices, in combination with eutrophication is a key factor (Van der Putten, 

1997; Brix, 1999a). Prolonged stabilized water levels have been reported from 

very early as a causal factor of emergent vegetation degradation (McDonald, 

1955; Uhler, 1944; Harris and Marshall, 1963; Ostendorp, 1999). The first 

author pays attention to the rise of water level and refers to an early study by 

Oosting (1933) where a lake was filled up with water after a two-year dry 
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period and the emergent vegetation disappeared. The water level affects the 

reed growth, both on the amplitude of the fluctuation and the elevation. 

Deegan et al. (2007) found that Phragmites growth was actually enhanced by 

moderately fluctuating water level (±30 cm) while Vretare et al. (2001) in 

their experiment found that increased or fluctuating water depth results in 

reduced plant growth. Weisner and Strand (1996) proposed that the sudden 

temporal increase in water depth is a critical aspect. They claim that Phragmites 

is a species well acclimated to water depth changes, however not to sudden 

temporal increases, which has consequences on the plants’ rhizome 

architecture and oxygen supply. More specifically, due to inundation, 

oxygenation of rhizomes and roots, as well as the surrounding sediment, 

becomes less and less effective. As a result, hypoxic or even anaerobic 

conditions are formed which affect the sediment chemistry and create 

environments that could be tolerated by only certain plants. 

Eutrophication was the major cause proposed in the early years as it coincided 

in time with reed die-back in several European Lakes. Boar et al. (1989) as 

well as Čížková-Končalová et al. (1992) refer to eutrophication as a condition 

affecting reed functionality indirectly in several ways. In the same paper it is 

suggested that wave action, generated by boats or drifting matter, makes reed 

more vulnerable. Complementary to this idea, Ostendorp (1989) suggested 

that waves loaded with floating rubbish, driftwood and wash of filamentous 

algae is a factor contributing to mechanical damage. However, Weisner (1987) 

reports more vigorous reed belts when macrophytes are exposed to waves 

than at sheltered sites. Algal wash can upset reed stands in eutrophic lakes. As 

indicated by Ostendorp (1992) in a lakeside reed belt the chemical influence 

of algae is not significant, however the mechanical impact is important as the 

stalks are broken from the algal masses. Other factors proposed to affect reed 

vigour are local disturbance such as mechanical mowing, the formation of 

toxic by-products of decomposing litter in anoxic environment (Van der 
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Figure 2.2: Representation of mature plant of species Phragmites (adapted from Brix 1999a, drawing by K. Tind) 

(upper left), a typical die-back reed stand in Lake Balaton, as observed from the waterward side (upper right) and a 

stable very dense, stable and tall reed stand (bottom). 

Putten, 1997), premature senescence, insect bore holes and callus 

development (Armstrong et al. 1996), siltation, attacks by insects and 

organisms and damage by geese and muskrats (McDonald, 1955). Theories 

also include the carbon starvation hypotheses which is not a direct cause of 

reed die-back, but may be a gradual process preceding it (Van der Putten, 

1997). Soil pore-water salinity was claimed by Fogli et al. (2002) to be a factor 
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affecting, directly or indirectly, the growth reduction in Denmark and the 

Mediterranean. 

The reed die-back phenomenon has been a well-studied topic in limnology 

worldwide. Despite the potential capabilities of earth observation in 

vegetation-related studies, remote sensing techniques have only recently been 

encompassed in the framework of reed die-back and macrophytes species 

composition with representative examples presented by Liira et al. (2010), 

Hunter et al. (2010a), Onojeghuo and Blackburn (2011), Zlinszky et al. (2012) 

and Villa et al. (2013). The issue of 'reed die-back' may be important in various 

aspects such as habitat ecology or ecosystem conservation and remote sensing 

may be a vital tool for large scale assessment of physiological and biophysical 

parameters of reed vegetation. 

2.4 Lake Balaton 

Lake Balaton (Figure 2.3) is the largest (596 km2) freshwater shallow lake in 

Central Europe situated in the west part of Hungary (latitude 46.86026, 

longitude 17.75473) at 104.8 m above the Baltic Sea level. It has an average 

depth of 3.3 m and maximum depth 11 m and as such exhibits distinctive 

characteristics encountered at shallow lakes (e.g. rapid temperature changes). 

In general, wetlands encountered in such ecosystems are more sensitive to 

climate and human impact since small water level fluctuations are considerable 

in relative water depth terms (Korponai et al. 2010). Furthermore, in a very 

shallow lake wave action is effective over almost the entire lake depth, hence 

solid material does not accumulate (Bengtsson and Hellström, 1992) and 

resuspension becomes intense.  

The Zala River is the main inflow of Lake Balaton among 50 smaller inputs 

from a catchment area of 5179 km2. The only outflow existing is the artificial 

channel of Sió through which the water level is regulated and stabilized since 

the construction of the outlet sluice in 1863. In former times, due to the 
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absence of a temporary outflow, the water level was highly fluctuating and 

macrophytes were regulated according to changes in climatic conditions 

(Herodek, 1988a). 

The Lake encompasses important natural conservation sites and plays a 

pivotal role in the greater region. Protection of water quality and maintaining 

the natural state of the lake has been of environmental, governmental and 

touristic importance (Szilassi (1999), cited in Jordan et al. 2005). Macrophytes 

are growing at the lakeshore, creating a long ecotone where the terrestrial and 

aquatic ecosystems merge. Large and continuous clusters of macrophytes 

appear along the north shore of the lake while in the south shore they are 

sporadically distributed in smaller and narrower reed beds.  

According to the last survey conducted by the Hungarian Water Authorities 

within the lake boundary, 14.09 km2 are covered by vegetation consisting 

mainly of 11.45 km2 Phragmites, 0.93 km2 quasi-natural vegetation (e.g. Typha 

sp., Carex sp., Scirpus sp.) and 1.79 km2 other types of vegetation, mainly 

artificial trees, lawns etc. (Pomogyi, 2013). In essence, this is a large wetland 

area dominated by reed. Macrophytes in general stretch along 112 km of the 

254 km of shoreline and particularly in the northern shore where they form 

large coherent and continuous stands. 

From 1970s until mid-1990s and due to increasing nutrient load the lake 

transformed from mesotrophic to eutrophic and to hypertrophic (Cserny and 

Nagy-Bodor, 2000). In the 1970s and 1980s the lake faced environmental 

pollution, eutrophication and fish extinction, possibly due to redeposited soil 

masses containing fertilisers, pesticides and herbicides (Jordan et al. 2005).  

Especially during the 1980’s the eutrophication intensified (Herodek, 1984) 

and in the summer of 1982 the water quality deteriorated sharply with the 

invasion of a long-lasting blooms of algae in the entire lake area (Herodek, 

1988b) which caused severe environmental problems until the mid-1990’s. 
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Attempts to restore the lake to its previous state and reverse the 

eutrophication were initiated in the mid-1980s (Padisák and Reynolds, 1998). 

The main actions taken were the construction of the Kis-Balaton water 

retention system with the aim of reducing the phosphorus load of the Zala 

River and construction of a drainage system around Lake Balaton that would 

deterred the treated sewage water from around the Lake directly into its 

outflow, the Sió Canal, i.e. outside the catchment area of the Lake (Somlyódy, 

1998). Furthermore the water volume, and thus the water level of the lake, 

were adequately controlled by the operation of the Sió sluice (Virág, 1988). 

Water quality has been improved since early 1990s with wetland 

reconstruction and drainage and sewage infrastructure around the lake.  

Reed die-back in the lake has been observed since the 1970s onwards (Kovács 

et al. 1989), a while after the eutrophication of the lake started. Eutrophication 

was consequently initially considered the primal reason of the reed die-back, 

however this theory was later on refuted as the die-back was essentially similar 

in the oligotrophic (eastern) and most hypertrophic (western) basins of the 

lake (Zlinszky et al. 2014). Several studies have focused on the reed die-back 

in lakes around Hungary. According to Van der Putten (1997) in the whole 

country die-back was apparent where reed has been harvested by heavy 

machinery. Positive correlation between die-back and litter accumulation can 

be typically found in lakes (Van der Putter, 1997). Felföldy et al. (1969) from 

very early reported water depth as factor of wave action, which is nowadays 

considered a crucial parameter in reed die-back. Čı ́žková et al. (2001) while 

measuring carbohydrates reserves at the reed bed of Kis-Balaton found that 

the local reed stands are among stands with lowest values known to date, and 

suggest this might be the reason of vulnerability to shoot damage or removal.  



 13   
 

Figure 2.3: Area of study at Lake Balaton, Hungary and the distribution of emerged macrophytes along the shore. 

The relative position of the Lake within Europe (left) and Hungary (right) are depicted in the inset images. 

The main reason suggested by scientists at the Balaton Limnological Institute, 

an Institute dedicated to studying the ecology of Lake Balaton, is the 

anaerobic state of the sediment caused from high and stable water level (Tóth 

V.R., personal communication; Zlinszky 2013). Since the creation of the Sió 

channel the water level is stabilized at 104.84 m above the Adriatic Sea level to 

prevent flooding in the area. As a consequence to the stabilization, the 

submerged sediment at the reed stands is not oxygenized properly; if the water  

level doesn’t fluctuate, the anaerobic bacteria present in the sediment of the 

reed stands consuming reed litter create reductive conditions. As a result, reed 

deteriorates at depths deeper than 2 m where it becomes insufficiently 

oxygenized. 

2.5 Remote sensing of wetlands 

Optical and hyperspectral remote sensing is a valuable technique for 

vegetation related studies and its value has long been recognized. The spectral 

information from the optical and Infra-red (IR) domains is the key 

information when studying plants from distance; for this reason wetland 

studies are employing passive sensors and not so often radar, LiDAR or other 
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methods. Earth observation data have been used for mapping the distribution 

of wetland characteristics and later on for evaluating the condition of the 

vegetation from the late 1960’s onwards in the form of aerial photos and 

satellite images since the advent of the Landsat Multimission Modular 

Spacecraft (MMS) (Bartlett and Klemas, 1980; Butera, 1983). Lately a growing 

number of monitoring reed habitats initiatives have started to emerge (e.g. 

Csaplovics and Schmidt, 2011; Pfeifer and Zlinszky, 2014).  

However, traditionally wetland mapping has been relying on ground-based 

surveys undertaken by experienced ecologists. Large-scale conventional 

mapping methods based on in-situ measurements have been proven expensive, 

labour intensive, impossible at inaccessible areas, error prone and time 

consuming when covering large areas (Zhang, 1998). Spanhove et al. (2012) 

list the drawbacks of field mapping including budget restrictions for surveying 

large regions, inaccessibility of remote areas, slow speed of recording and 

processing field data and last but not least between-observer errors. For 

example, Cherrill and McClean (1999) in a study investigating the agreement 

between six independent surveyors report an average spatial agreement of 

25.6%; the large disagreement is mainly attributed to classification errors. In 

the same study they suggest that the use of aerial photographs and maps 

before and during fieldwork could increase mapping precision. Aerial digital 

photos have been used as an alternative cost-effective methodology for 

spectral analysis on macrophyte cover as well (Anker et al. 2014). Several 

other papers have been acknowledging the contribution of earth observation 

data in assessing the conservation status of natural habitats (e.g. Turner et al. 

2003; Kerr and Ostrovsky, 2003; Rebelo et al. 2009) as a non-destructive, 

time- and cost-benefit alternative.  

Vegetation is one of the most studied characteristics of wetlands. Continuous 

advances in the spatial and spectral resolutions of sensors are offering a 

valuable tool for biodiversity monitoring, directly by identifying species (e.g. 
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Husson et al. 2014 map aquatic vegetation based on sub-decimeter images 

from Unmanned Aerial Vehicles (UAV)) as well as indirectly by deriving 

biophysical characteristics (Turner et al. 2003). For example, Spanhove et al. 

(2012) estimated fine-scale indicators by measuring coarse-scale parameters 

with remote sensing, hence providing indirectly information on ecological 

features. Bartlett and Klemas (1980) report that many important 

characteristics of wetland ecosystems may be inferred from the distribution of 

emergent macrophytes, such as chlorophyll absorption, percent green 

vegetation, total and green biomass and canopy height. Nevertheless, wetland 

mapping with earth observation data has been a challenging task for scientists 

and practitioners likewise. The large biodiversity encountered in this ecotone 

results in a complex spatial structure and composition. Additionally, the water 

level variability over time creates constantly changing conditions which are 

difficult to be monitored. The need to establish advanced methodologies for 

wetland vegetation mapping is prominent and several authors urge for 

developing and improving wetland specific methods using advanced remote 

sensing data from state-of-the-art sensors with enhanced capabilities (Rebelo 

et al. 2009). Turner et al. (2003) review the usefulness of remote sensing for 

biodiversity science and conservation and indicate great improvement of 

species detection and patterns of species richness with remotely sensed data. 

In the same paper they call for collaboration between remote sensing 

practitioners and biodiversity and conservation scientists.  

As an example, the need to quantitatively determine the cover of reed on Lake 

Balaton is of significant importance and has been stressed from the very early 

years (Tóth, 1972). Similar conditions have been observed in several 

European wetlands with an increasing environmental and scientific interest. 

To date, most of the operational mapping takes place through field visits and 

visual evaluation to estimate the area covered and associated characteristics. 

Earth observation is undeniably a rich source of information for vegetation 
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mapping; yet equally importantly it can provide information on plants 

biophysical properties.  

At leaf level, photons interact with vegetation by either absorption or 

scattering. When absorption occurs, the energy drives either the 

photosynthesis of the plant, either dissipates to the environment as heat, 

either is emitted back to the environment at different wavelength as 

chlorophyll fluorescence. Vegetation-specific processes such as 

photosynthesis can determine the spectral response of the plant. For instance, 

the dominant leaf pigments, chlorophyll a and b, a-carotene and xanthophyll, 

absorb collectively around 445 nm in the blue region and specifically 

chlorophyll (CHL) around 645 nm; as a result and according to widespread 

scientific perception, the photosynthetic activity is associated with the red-

edge inflection point, the near-infrared region with the cell structure and the 

shortwave infrared with the water absorption of the plant (Figure 2.4). The 

optical part of the spectrum provides important information on the plant 

photosynthetic activity and manifestation of plant stress is expressed in this 

region. Especially the range 530-570 nm is suggested from Kotta et al. (2014) 

for species and larger taxonomic units separation.  encompasses the important 

spectral characteristics of vegetation and rationalizes the necessity of using 

narrowband hyperspectral data in vegetation related studies.  

Such accurate measurements are made with handheld spectroradiometers 

attached to leaves. The narrow bands of hyperspectral data can provide key 

information in regard to green vegetative cover (McGwire et al. 2000), species 

and vegetation associations (Schmidt and Skidmore, 2003), plant stress 

(Carter, 1993) and disease infection (Chen et al. 2008). Furthermore it is 

possible to estimate biophysical parameters remotely, such as with sensors 

attached onboard satellites, aircrafts or UAVs, however the interaction of the 

signal with the atmospheric elements and the capability of recording 

reflectance in pixel-sized areas can alter significantly the recorded values.  
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Figure 2.4: Typical vegetation reflectance curve and important features that can be estimated through mainly 

spectroscopic information (after Hoffer, 1978). 

Satellite imagery has been the choice of most wetland mapping studies 

because it offers either very fine spatial resolution imagery (for instance 

WorldView-4 is planned to deliver images at 0.30m pixel size) or very high 

spectral resolution data (Hyspiri imaging spectrometer has 212 bands); yet 

currently no satellite in orbit offers both capabilities simultaneously. This can 

be accomplished at present only by hyperspectral sensors mounted on 

airplane platforms flying at low altitude.  

For a complete overview of wetland mapping, Ozesmi and Bauer (2002) 

summarize the classification schemes used in remote sensing of wetlands, 

Rebelo et al. (2009) report on several recent initiatives using earth observation 

data to foster wetland inventorying, Adam et al. (2010) concentrate on the 

identification of wetland vegetation and Klemas (2011) compiles a 

comprehensive review of practical techniques. 

2.6 Environmental policy framework 

Legislative authorities have long realized the financial and social consequences 

of wetland degradation and developed strategies for monitoring and 
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inventorying natural habitats. The GlobWetland project coordinated by the 

European Space Agency (ESA) lasted from 2003 to 2008 in connotation with 

the Ramsar Convention on Wetlands established as early as 1971. 

GlobWetland II was the continuation programme run between 2009 and 

2013, time during which approximately 200 wetlands were mapped in the 

Mediterranean region. In a similar effort, ESA and the Ramsar secretariat are 

launching the GlobWetland Africa project within 2014. This project will be 

established on satellite observations to support wetland management and its 

resources in Africa. Another important endeavour was the Millennium 

Ecosystem Assessment (2001-2005) (Finlayson et al. 2005), implemented to 

assist decision makers on the relationship between ecosystem change and 

human well-being, part of which is devoted to wetland mapping. In 2001 the 

Pan-Mediterranean Wetland Inventory was introduced (Fitoka and 

Keramitsoglou, 2008). Multi-scale Services for Monitoring NATURA 2000 

Habitats of European Community Interest (2010-2013) mapped nature sites 

of community interest for fostering environmental legislation in Europe and 

reducing biodiversity loss. The “BIOdiversity multi-SOurce Monitoring 

System: from space to species” is an ecological modelling system for 

monitoring habitats and particularly those exposed to pressure.   

Another well-known project is NATURA 2000, a European Union (EU) wide 

network of nature protection areas established under the 1992 Habitat 

Directive and is the backbone of EU nature and biodiversity monitoring. One 

of the targets of EU strategy for 2020 is the better protection and restoration 

of ecosystems. It proposes the development of a framework for degraded 

ecosystems supported by relevant work for mapping and assessing its state.  

The European Earth Observation programme Copernicus, previously known 

as Global Monitoring for Environment and Security (GMES), is a programme 

building on in-situ collected and earth observation data to provide reliable and 

up-to-date information to end users through 6 established services. GMES 



 19   
 

was launched with the aim to provide reliable information to European public 

missions and successively establish a European observation capacity through 

an operational set of services. The objective was to develop a high-quality 

European Earth observation capability, which will benefit a broad range of 

European policies. Wetland ecosystems are part of the Copernicus land 

monitoring services. 

Wetlands are vulnerable to changes and it is expected that climate change will 

have a pronounced effect on them (Erwin, 2009). Currently there is a lot of 

debate on the consequences of global warming and especially of sea level rise 

in the biosphere and the first indications are anticipated to be evident in 

wetland habitats. In this context, the United Nations Framework Convention 

on Climate Change (UNFCCC) was derived from Rio Earth Summit in 1992 

and was entered into force on 21st March 1994 with the aim to address climate 

change. Quality of inland waters, which is part of wetland ecosystems and 

affects lakeshore vegetation, has been supported by the EU Water Framework 

Directive (WFD) and remote sensing can considerably contribute to water 

quality monitoring (Chen et al. 2004).  

In regard to the reed die-back, the European Commission during the 1990s 

funded two consecutive research projects. The EUREED during 1993-1994 

and the EUREED II from 1996 to 1999 were designed to provide the basis 

for co-ordinated research activities throughout Europe for studying the 

parameters affecting reed die-back.  

2.7 Research objectives 

The review of the previous scientific literature on the remote sensing of 

macrophytes has shown that wetland mapping, and specifically the case of 

lakeshore ecotones, is challenging especially when concerning large 

geographical areas. Earth observation plays an increasing role in ecology lately 

as it gains recognition while hyperspectral sensors are equipped with ever 
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increasing technical capabilities. In this application-oriented discipline, the 

need to research how and to which extent categorizing aquatic vegetation and 

estimate associated biophysical parameters based on remotely sensed imagery 

is prominent. Studies of mapping macrophytes with remote sensing are 

limited to delineating the reed bed and very few examples can be found which 

demonstrate species level categorization. Biophysical parameters are a more 

generic field in vegetation studies with many prime examples demonstrating 

precise estimation of nitrogen content, chlorophyll content and biomass for 

example, however these parameters are associated to plant stress only at an 

advanced stage.  

This study is driven by the need to further develop remote sensing techniques 

for lakeshore vegetation applications, specifically delineating macrophytes 

classes of interest and estimating the stress condition of Phragmites. Studying 

the vegetation of ecosystems with rich biodiversity such as wetlands, requires 

in-situ measurements and fine scale imagery. The former allows for extracting 

site- and species-specific background data and results, while the latter is pre-

requisite for unveiling the complex structure of the ecosystem and the 

vegetation cover at species and association level. At this scale, distinguishing 

species assemblages or even individual species can become feasible (Turner et 

al. 2003). Towards this direction, a wide range of datasets was employed, from 

in-situ measurements to airborne data and simulated satellite imagery over 

Lake Balaton, Hungary in an attempt to investigate the potential of remote 

sensing for mapping macrophyte associations and stress conditions in the 

framework of the reed die-back phenomenon in a lakeshore environment.  

More specifically, in this study the following objectives are addressed: 

1. To study hyperspectral reflectance profiles of different macrophytes 

and Phragmites phenotypical states at leaf and canopy scale in order to 

differentiate between species and phenotype. 
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2. To study how the spectral response of Phragmites leaves associates with 

chlorophyll fluorescence parameters and hence with photosynthetic 

activity. Based on the results from the field data analysis, to further test 

whether reed die-back can be detected from hyperspectral remote 

sensing. 

3. To search for classification schemes for lakeshore vegetation mapping 

with high spatial resolution airborne data and quantify their accuracies. 

4. To simulate Sentinel-2 imagery from airborne data for assessing the 

expected potential of the satellite for lakeshore vegetation mapping and 

reed die-back detection as a possible application in the Copernicus 

programme. 

The Thesis is structured accordingly in 4 remaining parts. Chapter 3 is 

dedicated to the analysis of hyperspectral responses collected from field 

samples on Lake Balaton over emergent macrophytes. The discrepancies in 

reflectance curves at the 400-1000nm spectrum between species and Phragmites 

stability conditions at leaf and canopy scale is investigated. Chapter 4 (together 

with sub-chapter 3.4.5) has been published at the time of this Thesis 

publication in the scientific journal of Remote Sensing of Environment 

(Stratoulias et al. 2015) and is an outcome of my personal scientific research. 

This chapter is dealing with finding appropriate narrowband indices which 

better represent reed’s ecophysiology. This is accomplished on the basis of 

concurrently acquired hyperspectral and fluorescence data from the same leaf 

samples in-situ and by coupling spectral narrowband combinations with 

fluorometric parameters, the latter representing the physiological status of the 

plant. In the second part of this chapter the developed hyperspectral indices 

are applied on airborne imagery over the area of study in order to assess their 

performance from low-altitude airborne data. In chapter 5 an evaluation of 

classification algorithms and different airborne dataset inputs for mapping 

emergent macrophyte associations over a reedbed is presented. The 
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capabilities of hyperspectral sensors recording radiation at the 400-1000nm 

and 1000-2400nm spectral range and the joint classification of spectroscopic 

data with concurrently acquired airborne laser scanning data is discussed. Last, 

in chapter 6 a simulation of a Sentinel-2 image is presented based on the 

airborne hyperspectral data. A classification of the main classes is presented 

and the suitability of satellite data for operational mapping of lakeshore 

vegetation is discussed.   
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Chapter 3  

Analysis of macrophytes in-situ spectral information 

3.1 Introduction 

The reed die-back has long been a subject of discussion in an endeavour to 

identify the causes and reveal its underlying mechanisms. Reed physiology and 

the associated aquatic environment have been extensively studied with regard 

to anatomy, chemical composition, biological processes and ecological 

behaviour. Imaging spectroscopy has lately been emerging as a promising 

technique for vegetation-related applications and scientific improvements are 

needed to sustain the potential for advancement in this field (Thenkabail et al. 

2012). Despite the fact that the use of imaging spectroscopy has proven 

promising in similar fields such as precision agriculture and disease 

diagnostics, a detailed spectral analysis has not yet been compiled for the 

wetland vegetation at Lake Balaton. As an example, Chen et al. (2008) studied 

the spectral characteristics of a cotton canopy infected with Verticillium wilt in 

order to prepare the ground for utilizing remote sensing techniques. Given 

the fact that there is a strong theoretical background on the reed die-back, a 

similar spectral investigation and correlation of factors could provide useful 

techniques for mapping lake shore vegetation. For instance, nitrogen 

concentration has been identified as a factor related to reed disturbance; reed 

sequesters nearly twice the amount of nitrogen per unit area in living 

aboveground tissue compared to cattail (Typha angustifolia) (Findlay et al. 2002). 

Küshl and Kohl (1992) report a strong correlation between nitrogen 

accumulation and lower stability of the reed stands in 8 lakes in Germany.  

Furthermore, the indications of reed die-back are generally not easily 

detectable with visual assessment. Reed plants (i.e. ramets) are interconnected 

with common rhizome and the phenotypical expression of a disease or 

disturbance is not easily distinguishable at the aboveground plant material. 
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The signs of stress are based on differences in density within the reed stand, 

the diameter and height of the stems, etc. Therefore, reed die-back is a general 

term expressing the phenomenon of deterioration at the plant community 

scale and not for individual ramets. As such, remote sensing could potentially 

provide a means to assess reed phenotype, which is difficulty accomplished 

otherwise.  

On the other hand, unmanaged ecosystems have a richer number of species, 

phenotype, canopy structures, etc. which results in a large variability in 

chlorophyll content, leaf area, biomass, and photosynthetic functioning. As 

mentioned earlier, Lake Balaton, being the largest lake in central Europe, 

extends in a vast area and exhibits variability in water quality and ecological 

characteristics between eastern and western basins (Üveges et al. 2011), which 

results in higher morphological variability of species among different sites 

throughout the lake. Phragmites is a species with a wide phenotypic variability 

at Lake Balaton (Tóth and Szabó, 2012) and large differences in genetic 

variability (Engloner et al. 2010; Engloner and Major, 2011). The well-known 

morphological variability expressed in the chromosomes is transferred into 

the spectral signature of the plant material and the vegetation intra-variability 

might be considerably higher than the interspecific variations between plant 

associations or even species. 

3.2 Objectives 

This chapter focuses on the analysis of spectral samples collected on the 

northern shore of Lake Balaton in regard to vegetation classes of interest. The 

heterogeneity of vegetation is the pivotal point. The plasticity of the spectral 

response is discussed in regard to the species composition and the reed 

phenology on Lake Balaton. Specifically, the objectives are to: 

1. Study the spectra of the main macrophyte associations of Lake Balaton 
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2. Investigate any differences existing between stable and die-back reed 

samples at leaf and canopy scale 

3. Investigate differences in phenotype of reed canopy as appears in different 

growing stage 

4. Study the differences between the sun and shade leaves of the reed plants 

5. Examine the effect of inundation level on the reflectance and 

transmittance spectra of reed leaf samples as well as the chlorophyll 

fluorescence and chlorophyll content 

3.3 Field campaign and sampling design 

Spectra recorded non-destructively in the field are the most reliable source of 

information of vegetation’s spectral signatures. Measurements on leaves have 

the advantage of providing pure spectral signal with no atmospheric 

interference, and hence uninfluenced by atmospheric interaction. On the 

other hand, spectra recorded with a field-of-view instrument over the canopy 

have little atmospheric interference and can provide local-specific spectra of a 

ground area analogous to the satellite’s pixel resolution.  

3.3.1 Spectroscopic data collection 

A field campaign was carried out perimetrically of Lake Balaton during August 

2012, coinciding with the biological productivity peak of reed stands. Data 

were obtained from 3 visits at different parts of the northern shore of Lake 

Balaton (Figure 3.1). The Szigliget, Bozsai and Kerekedi bays were selected as 

they are relatively large vegetated areas and include reed die-back patches. 

At Szigliget bay (Figure 3.1) leaf reflectance spectra were collected based on 

the following main macrophytes associations of Lake Balaton (objective 1): 

1. terrestrial reed (representing Phragmites growing on soil, hence not 

covered with water) 

2. aquatic reed (Phragmites growing at sediment where at least 50cm is 

covered vertically with water)  
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3. Typha sp.  

4. Carex sp.  

21, 20, 19 and 10 samples were considered for terrestrial reed, aquatic reed, 

Typha and Carex respectively. Moreover, canopy spectra from reed samples in 

regard to different phenotype were collected (objective 3). The classes 

established were reed patches with inflorescence, reed with high dried content 

and recently emerged reed. All the above field samples were collected along 

transects perpendicular to the lake shore. A stratified random sampling 

(probabilistic method of sampling) was followed in the direction of the 

transect. This provides the benefit to minimize the variability between the 

different zones of the area. Samples were taken from fully mature leaves 

which receive sufficient solar radiation. Large leaves were selected for reasons 

of covering the whole area of the leaf-clip accessory instrument and avoiding 

illumination artefacts while recording in-vivo.  

A morphological survey took place to investigate the separability of stable and 

die-back reed based on the hyperspectral signal at canopy scale (objective 2) at 

Bozsai bay (Figure 3.1). 6 location points were chosen for the stable samples 

and 7 points for the die-back sites. Bozsai bay is a natural protected site, 

therefore it is quasi-undisturbed from human activity and its biodiversity and 

complexity is higher than those of managed ecosystems. It encompasses a 

variety of macrophytes, trees and grasslands, however the main ecological 

focus is placed on Phragmites and a relatively smaller part covered with Typha 

sp. and Carex sp. This study area has the advantage of situated in the vicinity of 

the base Research Institute, providing easy access and assuring familiarity of 

the author and experienced researchers with the local vegetation. 

Field data collection at Kerekedi bay was conducted between 2nd and 17th 

August 2012. The reed bed was covered by a stand of mostly monospecific 

Phragmites, although at the terrestrial part Carex sp. was co-dominant. The 
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western part of the reed bed has seen a regression of the reed fringe by 20 

meters the last 10 years and is a characteristic case of die-back occurrence at 

the easternmost mesotrophic basin of Lake Balaton. Canopy measurements 

were collected in order to investigate the differentiation of stable and die-back 

reed samples. 7 location points were chosen for the stable samples and 11 

points for the die-back sites. Furthermore leaf spectra were obtained in regard 

to stable and die-back reed conditions (objective 2). Sunny and shaded leaves 

were also collected and the spectra recorded from the middle of the leaves 

(objective 4).  

Hyperspectral data from macrophytic samples from the three lake bays were 

recorded simultaneously with geolocation and floristic information appended. 

Access to waterfront parts of vegetation was accomplished by a boat (Figure 

3.2), while access to the terrestrial part of macrophytes through narrow 

walkways and transects within the reed stand. A Hand-Held ASD portable 

FieldSpec 2 spectroradiometer (Analytical Spectral Devices Inc., Boulder, 

Colorado, U.S.A.) was used to record radiation intensity in 750 consecutive 

channels at the spectral domain 325-1075 nm with a spectral resolution less 

than 3nm at 700nm. Twenty consecutive measurements were acquired over 

the same sample leaf or canopy area. Integration time was 544 ms.  

Canopy radiance was recorded between 11:00 and 15:00 local time (Central 

European Time) when sun is at zenith and irradiation is the highest of the day 

under clear sky conditions. This was accomplished by attaching the device to 

an extendable pole and placing it perpendicularly 50cm above the vegetation 

canopy (Figure 3.2). The field of view of the instrument in this configuration 

was 25°. The instrument was calibrated with a white reference panel every 10 

min (Spectralon, Labsphere).  
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Figure 3.1: Field data collection at designated macrophyte sites on Lake Balaton, namely Szigliget bay (latitude 

46.796965, longitude 17.405215), Bozsai bay (latitude 46.918315, longitude 17.834720) and Kerekedi bay 

(latitude 46.967421, longitude 17.917029). 74% of the macrophyte sites lie on the north shore of the Lake, while 

on the south shore only thin slivers of vegetation are encountered.  

Leaf reflectance and transmittance values were collected through a leaf-clip 

attached to the device with an optical fiber. The light source in this 

experimental set-up is provided not by solar illumination conditions, but from 

an integrated light bulb in the leaf-clip. A white or a black panel is placed on 

the opposing side to record reflectance or transmittance values respectively as 

well as for calibration purposes.  

Complementary, a Leica GS20 PDM handheld Global Positioning System 

(GPS) receiver was used to acquire the geolocation of the measurements 

accompanied by floristic information on the sampling point.  
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Figure 3.2: Photograph illustrating the setup for collecting canopy field measurements from the watereward side of the 

reed bed with the aid of a motorboat at Bozsai bay in Lake Balaton, Hungary. The spectroradiometer is attached 

vertically at the end of a pole and is pointing downwards at the time of data acquisition.  

3.3.2 Biophysical parameters and leaf hyperspectral concurrent 

measurements 

Hyperspectral, chlorophyll fluorescence and chlorophyll content were 

measured concurrently (Table 3.1) from reed leaves along a transect aligned 

perpendicular to the lake shore at the north-eastern part of the Kerekedi bay 

and according to different inundation categories (Figure 3.3) in regard to 

objective 5. A site where monospecific reed can be found was chosen to 

minimize inter-species heterogeneity. Some fragmentation in this area could 

be observed, but this inhomogeneity is a result of the vegetative growth of 

reed and can be considered natural and not a result of stress. There were no 

severely stressed plants at the edge of the reed bed since this was a relatively 

stable reed patch. 

In-situ measurements were collected in the Kerekedi bay on August 14th, 2012 

at the climax of the growing period in the area of study and under clear sky 

conditions between 11:00 and 13:00 local time (objective 5, further 

information provided at sub-chapter 3.2). Mid-morning period is the time of 

the day when signal levels are maximized in regard to stress identification 
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(Amoros-Lopez et al. 2008). The measurements were performed at the middle 

third of the youngest fully matured leaves of Phragmites in full sunlight 

conditions.  

While the ecotone of the lakeshore is an environment in gradual transition, it 

is necessary to stratify it into meaningful categories for the sake of statistical 

analysis and interpretation.  It is acknowledgeable that this crisp classification 

introduces errors and is a simplification of the ecotone environment, however 

it can provide meaningful results based on categories which can be identified 

as such in other parts of the Lake or even other Lakes. Taking into account 

the inundation level and the edge of the reed bed from the watershed side, 

four categories have been distinguished visually in the field:  

1. Terrestrial  

2. shallow water 

3. deep water and 

4. waterfront 

In the terrestrial part of the transect sediment was not covered with water, 

in the shallow part the sediment was covered with up to 15 cm of water, at 

the deep part of the transect the plants were covered with more than 15 

cm of water, while reed at depth of more than 140 cm and up to 5 meters 

in vicinity to the waterfront of the reed bed was considered as the 

waterfront category. The latter is receiving higher environmental pressure 

from wind, wave mechanical damage, litter accumulation and maneuvering 

from fishing boats docking between the reed stands. Measurements at 23, 

55, 27 and 17 location points of the transect for the 4 categories 

respectively were collected. 

 

 



 31   
 

Table 3.1: Instruments used and parameters measured in this field campaign. 

Data type Instrument 

Hyperspectral leaf reflectance ASD FieldSpec-2 HandHeld spectroradiometer 

Fluorescence yield PAM-2500 fluorometer 

Chlorophyll content SPAD-502 chlorophyll meter 

 

Leaf chlorophyll content was estimated by a SPAD-502 chlorophyll meter 

(Konica Minolta, Inc., Japan), measurement which is based on the optical 

density difference at two wavelengths, 650 nm and 940 nm. Light adapted 

chlorophyll fluorescence data were acquired on site using a PAM-2500 

fluorometer (Heinz Walz GmbH, Germany). For each sample the apparent 

(Fs) and the maximum (Fm′) values of fluorescence yield and the 

Photosynthetically Active Radiation (PAR) (measured in µmol quanta m-2 s-1) 

in the light-adapted state were measured. Fs is in essence the fluorescence 

yield under solar conditions (or under a constant actinic white light) while Fm′ 

is the yield obtained when exposing the leaf to a saturating light pulse of high 

intensity (3000 mmol m-2 s-1). The nomenclature adapted in this study 

follows this from Genty et al. (1989).  

The age difference between the leaf samples (of plants of the same age) due to 

the apical growth of Phragmites has been minimized by selecting only the 

apical first fully mature leaf. 

Ground-based hyperspectral measurements were recorded contemporary 

using the Hand-Held ASD portable spectroradiometer from the same leaves 

as the biophysical parameters. The recording method was the same as already 

described. 

 



 32   
 

 

Figure 3.3: Kerekedi bay, Lake Balaton and location of sampling points. 

3.4 Methodology 

The methodology carried out for the analysis of the objectives follows a 

generic pattern as described below. The statistical analysis has been 

implemented mainly in the R language environment (R Core team, 2013). First 

the spectra were averaged to a mean value for the 20 occurrences after 

eliminating any outliers, which might have occurred especially in the first and 

last measurements due to the clip loose adjustment or the tilted orientation or 

low elevation of the instrument. The mean values were exported to an ascii 

file in ViewSpecPro 6.0 software in reflectance data format. Thereafter, the 

mean spectra and the associated standard deviation of the entire population of 

the samples were calculated. Each spectrum was subset to the region 400 – 

1000 nm since the marginal wavelengths appeared to be highly unstable due to 
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error introduced by the instrument. Finally the mean value and the 95% 

confidence intervals were plotted for each experimental setup.  

For the inundation level categories, the Tukey-Kramer Test (Pairwise 

Comparisons for One-Way Layout Design) was used to compare the 

photophysiological data collected from the fluorometer and the CHL meter 

for each category.  

3.5 Results and discussion 

3.5.1 Leaf spectral analysis of macrophyte species 

Leaf reflectance spectra from the main macrophytes encountered at Lake 

Balaton were studied. The samples were collected from the Szigliget bay and 

categorized in four associations, namely terrestrial reed, aquatic reed, Typha sp. 

and Carex sp. The two reed categories show a distinguishing spectral curve 

comparatively to the other two species as they reflect stronger in the visible 

region (Figure 3.4). The difference is especially prominent in the region 560 – 

670 nm, region which is regulated by the leaf pigments and indicates 

chlorophyll absorption as explained in . In the near-infrared domain reed 

categories reflect weaker, indicative of the different cell structure. Between 

terrestrial and aquatic reed small differences can be observed such as the 

gradually higher reflectance of the latter below 500 nm and above 800 nm 

(Figure 3.4). Spectral curves of Carex and Typha follow a similar pattern; 

nevertheless Carex demonstrates 10% relative lower reflectance throughout 

the spectrum (Figure 3.4).  

The main macrophyte species encountered at Lake Balaton, and especially 

reed, have a high degree of separability at leaf scale. It is worth noting 

however that some species, such as Carex are rarely forming dominant patches 

in the study area; they are growing within other macrophytes patches and 

consequently such associations are more challenging to detect at canopy scale 

with non-proximate instruments. To add in the complexity of the scene when 
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studying macrophytes, consideration has to be given to the fact that reed also 

grows often in a mixture with other species, and its presence is not always 

dominant, especially in the terrestrial edge of the reed bed where drier 

sediment conditions become favorable to ruderal vegetation. 

 

Figure 3.4: Leaf mean reflectance spectra (curves) and the corresponding 95% confidence intervals (shaded areas) for 

the macrophytes associations collected at the Szigliget bay in Lake Balaton. Reed categories reflects stronger in the 

visible region and especially at the chlorophyll absorption bands between 560nm and 670nm, while it reflects weaker 

in the near infrared, associated to the cell structure as explained in . 

3.5.2 Reed spectral analysis in regard to reed die-back 

Leaf reflectance spectra from stable and die-back reed plants were collected 

from the Kerekedi bay, Lake Balaton. Respectively, canopy reflectance spectra 

were obtained from the Bozsai bay at the waterward side of the lake.  

The spectral responses at the leaf scale show statistically important 

discrepancies between plants from stable and die-back reed sites (Figure 3.5). 

First, the die-back reed has lower reflectance values in the visible wavelengths 

with the largest difference appearing at 560 nm. Furthermore, it exhibits a red-

shift in the red-edge region, with the inflection point being shifted by 6 nm to 

longer wavelengths. In the near-infrared domain, the spectra appear to be very 

similar. In the red-edge region, differences in the reflectance at the inflection 
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point (Figure 3.7) are not large (0.45 (SD 0.027) for the stable and 0.49 (SD 

0.017) for the die-back). Despite that statistically the differences are 

important, it should be noted that they are relatively small. Furthermore, the 

samples were taken from adjacent reed patches for each category, and thus the 

resemblance might also be attributed to the genetic similarity of the patch and 

not the die-back effect.  

 

Figure 3.5: Leaf mean reflectance spectra (curves) and the corresponding 95% confidence intervals (shaded areas) for 

the Phragmites plants collected from the stable and die-back reed stands at the waterfront area of the Kerekedi bay in 

Lake Balaton. 

At canopy-scale a 5% relative increase in reflectance is observed on the stable 

reed in comparison to the die-back reed (Figure 3.6). The spectra are similar in 

shape throughout the 400-1000 nm spectrum. High inter-variability is 

observed. The inflection point is found at 727 nm for the stable and 728 nm 

for the die-back. Differences in reflectance values are not large (0.22 (SD 0.03) 

for the stable and 0.22 (SD 0.04) for the die-back) (Figure 3.7). The 95% 

confidence intervals overlap and there are no crisp boundaries where 

separation between the two classes can be found throughout the spectrum. 

This variation is attributed to the vegetation material within the field of view 

as well as the illumination geometry of the scene; the radiance recorded by the 
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instrument with the field of view optics is a combination of reflectance from 

leaves, stalks, flowers and understory materials. Furthermore, the dense 

structure of the macrophytes as well as the orientation of the leaves create 

shadows and a generally complex scene which only little resembles the 

reflectance from the measurements at leaf scale. Variability in spectral 

response is also introduced by the viewing geometry between the incident  

light and the observer (Van der Meer and de Jong, 2002). Last but not least, 

 

Figure 3.6: Canopy mean reflectance spectra (curves) and the corresponding 95% confidence intervals (shaded areas) 

for Phragmites plants collected from stable and die-back reed samples at the waterfront area of the Bozsai bay in 

Lake Balaton. 
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Figure 3.7: Red-edge inflection point for leaf and canopy scale of stable and die-back reed samples. Statistically, 

important differences seem to appear only at leaf scale. 

and from an ecological point of view, the most important factor influencing 

the macrophytes canopy reflectance is the heterogeneity of the patches, since 

within the reed stand different patches may contain different species, different 

genotypes of the same species, and stalks of different age, height, dimension 

or structure; all these factors cumulatively assign a changeability in results of 

canopy values which is common in ecological studies. 

Reflectance as recorded from the airborne sensor (Figure 3.8) shows 

contradictory results from the field measurements. A die-back reed pure 

pixel’s indicative spectrum reflects stronger in the visible domain than the 

stable reed; however the opposite process takes place in the near-infrared 

domain. The signal recorded by sensors from distance are influenced by 

several factors, mainly the geometry and the structure of the material; in this 

case it is recognized that the orientation of the leaves, which differs in stable 

and die-back reed stalks, is playing a crucial role in the reflectance spectra. 

 

Figure 3.8: Spectral surface radiance (atmospheric correction applied) of sample pure pixels from an airborne 

hyperspectral sensor corresponding to stable and die-back reed from the reed bed at Bozsai bay, Lake Balaton.  
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3.5.3 Canopy spectral analysis of reed’s phenological status 

Reed patches with inflorescence (reed inflorescence), reed with dried ramets 

and recently emerged reed (reed) were studied from a stable reed bed at the 

Szigliget bay. Recently emerged reed shows lower values of reflectance 

throughout the whole spectrum, which is indicative either of the absence of 

reflecting materials, such as dried content and flowers encountered in the 

other two classes, either of the better light use efficiency or a combination of 

the two (Figure 3.9). Reed patches with dried ramets reflects higher probably 

because they contain dead reed stalks from previous years and therefore light 

utilization is at lower levels. Reed inflorescence has a gradually higher 

absorption from 590 to 690 nm and an overall higher reflectance at the near 

infrared domain, which indicates pigment absorption and high photosynthetic 

activity of the plant at this stage of growth. 

 

Figure 3.9: Canopy mean reflectance spectra (curves) and the corresponding 95% confidence intervals (shaded areas) 

for samples of Phragmites in different phonological states (reed with inflorescence, reed with dried ramets and recently 

emerged reed) collected with an ASD handheld spectroradiometer at the Szigliget bay, Lake Balaton. Recently 

emerged reed absorbs considerably higher at the cchlorophyll absorption bands between 560nm and 690nm. 

3.5.4 Spectral analysis of sun and shade leaves of reed 

Leaves from the middle of the stem (shade) and from the top of the stem 

(sun) from Kerekedi bay were analyzed in order to investigate their spectral 



 39   
 

response in connection with the leaf relative vertical position in the foliage.  

 

Figure 3.10: Leaf mean reflectance spectra (curves) and the corresponding 95% confidence intervals (shaded areas) for 

samples of reed under sunny and shaded conditions collected at the Kerekedi bay, Lake Balaton. 

Sun leaves show a slightly higher reflectance in the infra-red region (Figure 

3.10). The differences are insignificant, however this advocates that the 

addition of the relative position of the leaf in the foliage in perplexing the 

diverging spectral response by one more factor. 

3.5.5 The influence of inundation level on reed leaves stability  

In this part the concurrently acquired chlorophyll fluorescence parameters and 

spectral signatures from reed samples at different inundation categories are 

analyzed. Water level is a factor representing different environments where 

reed grows in, and its fluctuation has been an important aspect as reported in 

the literature (Paillisson and Marion, 2011; Tóth and Szabó, 2012). The study 

was conducted at a perpendicular to the shore transect of a stable reed bed of 

Kerekedi bay. 

3.5.5.1 Spectral response of reed leaves in regard to the inundation 

environment 

The results from the analysis of the four inundation classes indicate that the 

differences between categories are statistically important (Figure 3.11). To test 
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the hypothesis, a t-test for the bands at 500 nm and 800 nm which represent 

the optical and near-infrared domains was performed. For the terrestrial and 

deep water datasets the p value was lower than 0.001 for both wavelengths. 

The leaf reflectance curves of plants growing in terrestrial and shallow water 

conditions only show very small differences in the visible (<1%) and red-edge 

(<3%) domains of the spectrum. Their 95% confidence intervals partially 

overlap, which indicates that they cannot be distinguished based on the visible 

part but only in the infrared part of the spectrum. The reflectance curves from 

the deep water and the water’s edge locations show differences of up to 5% in 

the visible and even >10% in the infrared domain when compared to the 

terrestrial and shallow locations. The vegetation spectra for the deep water 

and water’s edge locations show that their 95% confidence intervals do not 

overlap with any of the other spectra. They are hence different and responsive 

to the inundation categories defined. Furthermore the plateau in the near-

infrared region has an ascending trend in the categories with water substrate, 

while for the terrestrial the reflectance response is flat; this is associated to the 

cell structure as presented in  and is attributed to role of the water level on the 

internal structure of the leaves.  

It is important to note that the inundation categories define different ecotypes 

of the reed bed and hence different reed phenotypic categories. Tóth et al. 

(2012) suggest that morphology of Phragmites is influenced by site-specific 

environmental conditions rather than lake-scale factors. Some of these 

conditions are increased anaerobic bacterioflora due to litter accumulation in 

the reed stands, lack of oxygen in the sediment, anaerobic conditions in the 

sediment of stagnant waters and reed clones adapted to survive at deep water 

(lower redox). As a result from these local processes in the succession from 

the terrestrial to the deep water parts of the reed bed, different ecotypes of 

Phragmites can emerge. Hence the phenotypic variation is such an ecotone can 

be large, fact that is prominent in the spectral responses of the categories in 
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the experiment.  shows clearly that ecosystem heterogeneity matters in the 

plants spectral response, in the sense that the same vegetation species (i.e. 

reed) has different reflectance curves for the terrestrial and shallow locations 

from the deep water and water edge locations.  

 

Figure 3.11: Mean reflectance spectra (curves) and the corresponding 95% confidence intervals (shaded areas) of 

Phragmites leaf samples collected from the terrestrial, shallow water, deep water and waterfront parts of the reed stand 

in Kerekedi Bay, Lake Balaton. Reed growing in categories with water have a sloped infrared plateau (750 – 

1000nm), while terrestrial reed has a stable reflectance value across these wavelengths. 

3.5.5.2 Photochemical response of reed leaves in regard to the 

inundation environment 

The spectral response of leaves in regard to the bathymetric condition of the 

plants was investigated. The photophysiological data show a high degree of 

similarity (Figure 3.12). The ETR mean values changed throughout the 

transect between 173 and 222, although a small, but significant difference in 

the terrestrial part of the transect was observed. The chlorophyll content of 

the leaves was ca. 45 SPAD units, with a difference between the deep water 

and waterfront regions (Figure 3.12e). While on the basis of morphological 

parameters a special supra-individual ordinance was observed in the transects 

of the Kerekedi bay (Tóth and Szabó, 2012) and other experimental setups 

conducted in different lakes (Mauchamp et al. 2001; Vretare et al. 2001), the 
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different level of inundation does not affect the studied photochemical 

parameters, or this was masked by variability within the samples. The 

relatively high values of the Y(II) and ETR in comparison to earlier studies 

(Dulai et al. 2002; Mauchamp and Méthy 2004; Velikova and Loreto 2005; 

Nguyen et al. 2013) indicated that the studied plants were in stable condition 

(Figure 3.12c and Figure 3.12d). The water depth gradient did not affect these 

studied parameters, although the highest values of ETR and Y(II) were 

measured in the shallow and deep water part of the reed stand suggesting 

slightly better conditions for Phragmites in these parts of the transect. 

 

Figure 3.12: Changes of: (a) F, (b) Fm', (c) ETR, (d) Y(II) and (e) chlorophyll content of leaves of Phragmites at 

the terrestrial, shallow water, deep water and waterfront of the reed bed at the study site. n=27-55. The comparison 

was performed using the Tukey-Kramer Test (Pairwise Comparisons for One-Way Layout Design). Boxes 

encompass the 25% and 75% quartiles of all the data for each specific part of the studied area. The central solid line 

represents the median, while the dashed line represents the average, bars extend to the 95% confidence limits, and dots 
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represent outliers. Figure reproduced from Stratoulias et al. (2015) based on data collected by D. Stratoulias and 

V.R. Tóth. This figure was produced by V.R. Tóth.  

3.6 Conclusions 

In-situ observations provide ground truthing for remote sensing as well as 

information not available by remote sensing (Christian 2008). While field 

imaging spectroscopy suffers from the drawbacks characterizing generally 

field data collection such as time and cost expenditures, in this study field 

spectral measurements have provided an insight into the physiological status 

of macrophytes at Lake Balaton. Under different experimental setups, the 

complexity and dependence of spectral signature of lakeshore vegetation to 

different environmental parameters affecting the leaf response was revealed. 

Macrophyte species present diverging spectral signatures at leaf scale and can 

be strongly distinguished at the red and near infrared domains. Die-back reed 

samples presented a slight differentiation to stable samples; however this 

might be attributed to the fact that the sampling took place at neighboring 

areas for each class, and hence there is the possibility that clonal differences 

play a pivot role instead of the manifestation of die-back. Hence, local specific 

measurements might not represent the actual problem in such a highly 

dynamic nature of the lakeshore environment. Canopy analysis of the samples 

in terms of the die-back phenomenon did not present statistically sound 

results. Spectra from pure representative pixels of an airborne hyperspectral 

image are most probably associated with vegetation composition and canopy 

structure. Differences between canopy reflectance as measured in the field 

and from the airborne platform are strong and have been also reported in the 

literature. For instance Azaria et al. (2009) applied spectroscopic experiments 

on cannabis from different heights (i.e. short distance laboratory controlled 

conditions, 25m, 80m and airborne AISA) found that the spectral signal varies 

with distance from the sensor.  
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When examining Phragmites at different phenological states, it becomes 

obvious that flowering reed and reed with higher dried content (dead reed 

culms of previous years) reflects proportionally higher in the optical domain. 

Flowering reed also demonstrated a stronger absorption at the red region and 

a sharp red-edge curve, which is indicative of the high photosynthetic activity 

of the plant at this stage of growth. In an experiment comparing sunny and 

shaded leaves, the discrepancies were statistically small, with sunny leaves 

being slightly more vigorous indicated by a slight red-edge shift to longer 

wavelengths.  

Spectral measurements on reed leaves in regard to bathymetry reveal a 

considerably different spectral behavior of reed samples. Despite the fact that 

no effect of inundation on photophysiological parameters (i.e. chlorophyll 

fluorescence parameters and chlorophyll content) across different water levels 

along a transect vertical to the lake shore has been found as described later in 

chapter 4, the spectral response diversifies significantly. It is a well-known fact 

that the phenotypic expression in regard to bathymetry is changing (Tóth and 

Szabó, 2012) as well as the DNA-fingerprint between land and water reeds 

(Engloner et al. 2010) also. The differences of reflectance profiles found for 

these levels of inundation can be attributed to the stress condition of the reed 

patch, the microenvironment in which the culms grow or even differences in 

genotype of the species growing in different environments.  

All these fluctuations on reed spectra reflects the large phenotypic plasticity of 

Phragmites and the significant consequences in the phenotype of the shore 

vegetation. This study underpins the heterogeneity of lakeshore vegetation 

ecosystem inherited in the spectral response of the plants.   
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Chapter 4  

Remote sensing of reed ecophysiology by coupling 

chlorophyll fluorescence and spectroscopic information 

4.1 Introduction 

Based on the results of the handheld spectral measurements presented in 

chapter 3, the following chapter will investigate the correlation between two 

concurrently measured datasets, the proximate spectroscopic information and 

chlorophyll fluorescence, with the aim to investigate to which extent spectral 

bands or spectral indices can represent chlorophyll fluorescence parameters 

and hence stress indications at leaf and subsequently canopy level.   

Vegetation photosynthetic systems are very sensitive to environmental 

induced stress. Stress also manifests through reduced chlorophyll content in 

plants, green biomass, water absorption capacity and several other ways. Such 

properties are correlated strongly with spectral indices and have been widely 

studied in the literature with very high correlation coefficient values reported. 

However these alterations in properties are only the causalities succeeding in 

time the stress induction, and hence are the consequences of the process. As 

such, traditional indices correlating to vegetation vigor such as the Normalised 

Difference Vegetation Index (NDVI) might provide information on stress 

only when damage has already occurred (Meroni et al. 2008). 

The first exhibition of leaf stress preceding morphological and other 

physiological changes will be reduced photosynthesis. Photosynthetic systems 

(PS) are the driving forces behind the biochemical and biophysical processes 

of photosynthesis. Any physiological process that affects the functioning, 

specifically the excitation and light quenching of the PS and especially the 

PSII, will have a detrimental effect on the photosynthesis. Besides the 

photosynthetic activity, chlorophyll fluorescence is one of the processes 

behind the de-excitation of the PSII, i.e. it can affect the process of reduction 
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in the reaction centers. The changes in processes of photosynthesis and 

consequently in chlorophyll fluorescence take place well before any 

measurable changes in chlorophyll content. It is a well-known fact that 

chlorophyll fluorescence is a direct indicator of the photosynthetic activity of 

the plant (Amoros-Lopez et al. 2008) and can be non-intrusively measured in-

situ. Such photochemical parameters can provide an early diagnostic indicator 

of plants’ stress and it is a well-studied fact that production of plants can be 

easily and non-intrusively estimated by chlorophyll fluorescence.  

The most prevailing method to measure chlorophyll fluorescence is Pulse 

Amplitude Modulated (PAM) fluorescence. Photochemical parameters usually 

relate to the measured Fs and Fm′ values of fluorescence yield (Maxwell and 

Johnson, 2000). Genty et al. (1989) proposed a widely used formula to 

estimate changes in quantum yield defined as:  

𝑌(𝐼𝐼) =  
𝛥𝐹

𝐹𝑚′
 =  

𝐹
𝑚′−𝐹𝑠

𝐹𝑚′
 (1) 

where the photosynthetic yield Y(II) represents the ratio of open (reduced) to 

closed (oxidized) PSII reaction centres at given irradiance, which is the 

proportion of energy potentially used for photosynthesis. More specifically it 

is a measurement of the transfer of electrons between photosystems within 

the process of photosynthesis. Since during photosynthesis 4 electrons must 

be transported for every assimilated carbon dioxide (CO2) molecule, Y(II) 

represents the potential possible driving force of photosynthesis. Therefore it 

relates to net photosynthesis at the given light intensity. From quantum yield, 

the Electron Transport Rate (ETR) could be calculated: 

𝐸𝑇𝑅 =  
𝛥𝐹

𝐹𝑚′
× 𝑃𝐴𝑅 × 𝐴𝐹 × 0.50 (2) 

where 0.50 accounts for distributing the energy between PSI and PSII and AF 

is the Absorption Factor for the monocotyledonous plant leaves which is 

assumed constant and equal to AF=0.86.  
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In chloroplasts the ETR within the PSII translates into production (Genty et 

al. 1989; Kitajima and Butler, 1975), parameter which provides significantly 

enhanced information in comparison to the photosynthetic activity at the 

given environmental conditions and time. It can be measured by PAM 

fluorometry, which in-situ is rapid, allowing determining hundreds 

of parameters within a short time span. When measured in a context of a 

correct methodological approach, it allows recording the apparent 

photosynthetic activity (PAR) estimating the photosynthetic efficiency (ETR). 

From PAR-ETR relation there is a possibility to calculate the maximum 

Electron Transport Capacity (ETRmax), the theoretical light saturation 

intensity (Ik) and the maximum quantum yield for whole chain electron 

transport (α), that are photophysiological characteristics to the specific plants 

grown at given light environment, and thus gives the opportunity to identify 

the acclimation shaping the photosynthetic processes. For a comprehensive 

explanation of chlorophyll fluorescence the reader is referred to Krause and 

Weis (1991) and Baker (2008). 

Remote sensing applications for the mapping of reed condition in Europe 

have been reported in the literature but their function so far has been limited 

to a tool for assessing the distribution of vegetation species and sometimes 

the level of stress categorically; however quantification of reed stress 

physiological indicators has not been attempted. For example, Bresciani et al. 

(2009) used remotely sensed data to monitor reed physiological status 

represented by the Leaf Area Index (LAI) in three environmentally sensitive 

Italian lakes. Liira et al. (2010) estimated the macrophyte expansion in a 

eutrophic Lake based on a Landsat TM and ETM+ time series. Hunter et al. 

(2010a) mapped the distribution of macrophytes in a clear British shallow 

lake. Onojeghuo and Blackburn (2011) demonstrated the synergistic use of 

hyperspectral and Light Detection And Ranging (LiDAR) data for mapping 

reed bed habitats and Bresciani et al. (2011) estimated the LAI from field and 
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satellite data in the context of reed conservation. Lately, Zlinszky et al. (2012) 

used discrete return LiDAR to categorize aquatic vegetation and stressed reed 

in Lake Balaton, Hungary and Villa et al. (2013) presented an approach to 

monitor reed conservation status of Lake Garda in Italy with a variety of 

remotely sensed datasets. Remote sensing inherently has the capacity of 

species distribution mapping in lakeshore environments, however, 

macrophytes physiological status has not been yet investigated thoroughly 

from a remote sensing perspective. Despite the fact that chlorophyll 

fluorescence is one of the most powerful stress detection methods in plant 

ecophysiology (Maxwell and Johnson 2000), coupling with remote sensing has 

not yet been widely investigated. Only a few studies relate to the topic (e.g. 

Zarco-Tejada et al. 2002; Nauman et al. 2008; Zhang et al. 2011). Zarco-

Tejada et al. (2002) suggest that fluorescence parameters can be derived solely 

from spectroscopic information by inverting the FRT–PROSPECT model.  

Attempts to relate leaf spectral information with several physiological and 

morphological parameters have been widely reported in the literature, such as 

with chlorophyll, nitrogen, water, biomass content and leaf density. While 

some of these parameters have been proven to correlate highly with spectral 

indices, chlorophyll fluorescence provides significantly more information on 

the photosynthetic activity of plants than other physiological parameters.  

The coupling between physiological parameters and spectral information is 

often established by building indices in the form of mathematical formulae 

integrating spectral bands. These spectral indices are typically developed on 

the basis of empirical observations or experimental processes as a proxy to 

vegetation characteristics (Table 4.1). For instance, Zarco-Tejada et al. (2001) 

proposed that the ratio of the reflectance of 750 nm (i.e. R750) and 710 nm 

(R710) is a good indicator of chlorophyll content at leaf level. Gitelson and 

Merzlyak (1996) suggest the indices R750/R550 and R750/R700 are highly 

proportional (correlation R2 > 0.95) to chlorophyll concentration in leaves. In 
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a similar manner Vogelmann et al. (1993) propose R740/R720 as well as the ratio 

of first derivative values D715/D705. Stagakis et al. (2010) in a thorough 

investigation of chlorophyll indices suggest that mNDVI (Sims and Gamon 

2002), PSRI (Merzlyak et al. 1999) and SIPI (Peñuelas et al. 1995) perform 

well in chlorophyll estimation. Finally, Thenkabail et al. (2000) present a study 

on the relationship between vegetation indices and agricultural crop 

characteristics where they suggest that remarkably strong relationships are 

found in specific narrow bands.  

This chapter presents the investigation of the potential of imaging 

spectroscopy for characterizing the ecophysiological status of reed in a lake 

shore environment based on fluorometric in-situ measurements. This is one of 

the first attempts to correlate chlorophyll fluorescence with spectroradiometry 

(in-situ and airborne) and investigate the correlation between these two 

aspects, and furthermore correlate spectral information with a more robust 

physiological parameter in regard to photosynthetic activity (i.e. chlorophyll 

fluorescence) than typical parameters used in similar studies such as 

chlorophyll, nitrogen, water or biomass content. 

Statistical analysis was used to quantify the association between chlorophyll 

fluorescence kinetics and hyperspectral signatures of reed leaves. Spectral 

indices correlating significantly to fluorescence yield, and thus vegetation 

stability, were identified. An application of lake-shore vegetation status 

assessment based on hyperspectral airborne collected imagery demonstrates 

the potential of remote sensing for reed stability quantification. 

4.2 Study area 

This part of the study focuses on a monospecific reed bed at Kerekedi bay. 

The main objective is to couple fluorometric and spectroscopic data 

representing different inundation levels as described in the previous chapter 

(objective 5). The dataset used is the same as of section 3.4.5 and consists of  
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Table 4.1: Empirical indices proposed frequently in remote sensing studies of vegetation. 

Index Reference Formula 

ARI2 (Anthocyanin Reflectance Index) Gitelson et al. (2001) 
𝑅800 ∗ (

1

𝑅550
−  

1

𝑅700
) 

CRI1 (Carotenoid Reflectance Index) Gitelson et al. (2002) 1

𝑅510
− 

1

𝑅550
 

CRI2 (Carotenoid Reflectance Index) Gitelson et al. (2002) 1

𝑅510
− 

1

𝑅700
 

EVI (Enhanced Vegetation Index) Huete et al. (2002) 
2.5 ∗

𝑅782 − 𝑅675

𝑅782 + 6 ∗ 𝑅675 − 7.5 ∗ 𝑅445 + 1
 

mND705 (modified Normalized Difference 

Index) 

Sims and Gamon (2002) 𝑅750 − 𝑅705

𝑅750 + 𝑅705 − 2 ∗ 𝑅445
 

mSR705 (modified Simple Ratio Index) Sims and Gamon (2002) 𝑅750 − 𝑅445

𝑅705 − 𝑅445
 

NDVI (Normalized Difference Vegetation 

Index) 

Tucker (1979) 𝑅782 − 𝑅675

𝑅782 + 𝑅675
 

NDVI750 (Red-edge Normalized Difference 

Vegetation Index) 

Gitelson and Merzlyak 

(1994) 

𝑅750 − 𝑅705

𝑅750 + 𝑅705
 

PRI (Photochemical Reflectance Index) Gamon et al. (1997) 𝑅531 − 𝑅570

𝑅531 + 𝑅570
 

PSRI (Plant Senescence Reflectance Index) Merzlyak et al. (1999) 𝑅680 − 𝑅500

𝑅750
 

RGI (Red Green Index) Zarco-Tejada et al. (2005) 

 

𝑅690

𝑅550
 

SGI (Sum Green Index) Gamon and Surfus (1999) 𝑀𝑒𝑎𝑛 (𝑅500 𝑡𝑜 𝑅600) 

SIPI (Structure Insensitive Pigment Index) Peñuelas et al. (1995) 𝑅800 − 𝑅445

𝑅800 − 𝑅680
 

SRI (Simple Ratio Index) Jordan (1969) 𝑅800

𝑅680
 

VOG1 (Vogelmann) Vogelmann et al. (1993) 𝑅740

𝑅720
 

VOG2 (Vogelmann) Vogelmann et al. (1993) 𝑅734 − 𝑅747

𝑅715 + 𝑅726
 

VOG3 (Vogelmann) Vogelmann et al. (1993) 𝑅734 − 𝑅747

𝑅715 + 𝑅720
 

WBI (Water Band Index) Peñuelas et al. (1993) 𝑅900

𝑅970
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contemporary acquired spectral and biophysical information recorded from 

the same leaves. For a detailed description of the dataset and the sampling 

design the reader is referred to section 3.2.2. Kerekedi bay is a managed 

ecosystem since reed is cut down in winter in contrast to the Boszai bay which 

is a protected area. Interventions in reed biomass such as slashing, burning 

and grazing practices for conservational purposes have a profound effect on 

reed structure and growth (Engloner, 2009). Phragmites is a species with an 

especially fast regenerating capability in comparison to other macrophytes. As 

such, in areas where anthropogenic interference occurs, it is expected that a 

monospecific stand of Phragmites would be present, in comparison to natural 

reserved ecosystems where heterogeneity shall be preserved and thus richer 

biodiversity encountered.  

 

In addition to the field data, an airborne hyperspectral image from Eagle 

sensor is employed, acquired over the Kerekedi bay (Figure 3.1) collected on 

August 26th, 2010 at 15:17 Coordinated Universal Time (UTC). Further 

information on the image specifications is provided in chapter 5.  

4.3 Data quality assessment 

While this is a robust dataset for studying the ecophysiology and vegetation 

distribution at Lake Balaton, a critical issue has to be discussed; ideally field 

and airborne data should be collected concurrently, however this has not been 

logistically possible and there exists a gap between the airborne dataset 

(August 2010) and the field data (August 2012). Nevertheless, this two-year 

time difference does not introduce inconsistencies in the study for several 

reasons. First, the two groups of datasets are used for two different purposes; 

the indices developed from in-situ measurements are not time-specific in the 

sense that plants’ chlorophyll fluorescence response is a physical phenomenon 

and hence the correlation with the spectral information cannot be affected by 
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time. As the temperature correlates with infrared signal independently of the 

acquisition year in vegetation, the spectral indices proposed are regarded in 

this study as a global index for fluorescence yield, and probably similar results 

would be yielded if repeating the experiments another year. The indices 

proposed should correlate similarly to the fluorescence any time they are 

applied (and probably anywhere). Secondly, regarding the reed die-back, it is a 

slow process and within 2 years the reed bed does not change substantially as 

currently the phenomenon is rather slow in comparison to the historically 

rapid occurrence in the 1970s. Furthermore, the field data have been used to 

identify optimal spectral indices, which presumably best represent the 

fluorescence yield, and not to classify the image, hence two datasets for two 

different purposes were used. Moreover, measurements have been taken to 

reduce the expected variability to minimum; both datasets are collected in 

August, period during which all emergent vegetation species at the 

geographical region of study are at climax. This means that the species’ spatial 

distribution and proportional area coverage in mixed pixels will be 

representative of the real existence, hence eliminating seasonal (intra-annual) 

variability. Inter-annual variability is unavoidable, however has been minimal 

during 2010 and 2012 (Piroska Pomogyi, personal communication) since no 

physical or artificial disturbance occurred in Lake Balaton in general at the 

study site. For all the aforementioned reasons it is anticipated that the 

distribution of macrophytes has not changed considerably between the two 

years of interest.  

4.4 Methodology 

The overall methodology was based on identifying the optimal indices for 

characterizing the physiological status of reed from coupling the field 

spectroradiometer data with the fluorescence parameters; subsequently this 

method was transferred to the airborne dataset and apply the indices for 
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mapping the physiological status of a large part of the reed bed at Kerekedi 

bay.  

Additionally, the effective quantum yield of photochemistry, i.e. the fraction 

of absorbed photons used by the photochemical systems (Y(II)) and the ETR 

were calculated on the basis of the former and according to the formulae (2).  

4.4.1 Optimizing leaf stress indication from spectroscopic data 

The methodological approach was established partly by taking as guidance the 

study presented by Inoue et al. (2012) on correlating hyperspectral data with 

canopy nitrogen content in paddy rice for diagnostic mapping. The collected 

hyperspectral in-situ data were exported using the bundled software ViewSpec 

Pro 6.0 (Analytical Spectral Devices Inc., USA) and the main processing was 

implemented in the R programming language (R Core Team, 2013). The R 

script used for processing the raw data and producing the graphs is provided 

in Appendix 1. While discrimination analysis can be performed in order to 

select the optimum bands, in this study the focus was on deriving the 

complete combination of spectral indices between all channels. The aim of 

spectral indices is to construct a mathematical combination of spectral band 

values for enhancing the information content in regard to the parameter under 

study. Many of the indices found in the literature are formed as a Ratio 

Spectral Index (RSI) of one band to another such as: 

𝑅𝑆𝐼(𝑖, 𝑗) =  
𝑅𝑖

𝑅𝑗
  (3) 

Where Ri and Rj are the intensity values at wavelengths i and j respectively. 

The Normalized Difference Spectral Index (NDSI) is another transformation 

frequently used defined as: 

𝑁𝐷𝑆𝐼(𝑖, 𝑗) =  
𝑅𝑖− 𝑅𝑗

𝑅𝑖+𝑅𝑗
 (4) 
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A vegetation-specific representation of NDSI is the popular NDVI applied on 

a near-infrared and a red channel as reported first by Rouse et al. (1974). 

Reflectance and transmittance data were used in a similar manner, 

nevertheless reflectance data are the backbone of the methodology since the 

results can be applied on remotely sensed imagery. RSI and NDSI for the 

hyperspectral spectra were calculated from complete combinations of the 

available bands, as in similar studies (e.g. Stagakis et al. 2010, Inoue et al. 

2012). Multiple regressions and equations between samples of RSI and 

photophysiological parameters were fitted for several datasets. The general 

relationship between RSI (or NDSI) and Fm′1 and Fs appears to be linear 

(Figure 4.1). Thus it was assumed in this study that all the relationships were 

linear and the statistical moments of the relationship are indicative of the 

association between the spectral and the photophysiological parameters.  

 

Figure 4.1: Example of regression fitted for the RSI combinations against Fm′ (a) and Fs (b). The relationship 

appears to be linear and hence the square of the Pearson correlation coefficient (R2) was used as a measure of variance 

in the assumed linear relationship. 

For each photophysiological parameter and each environmental category the 

coefficient of determination (R2) and the corresponding significance level (p) 

were calculated. More specifically the Pearson product-moment correlation 

coefficient was calculated by dividing the covariance of the two variables with 

the product of their standard deviations:  
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The square of the Pearson correlation coefficient (i.e. R2), known as the 

coefficient of determination, represents the agreement level of the linear fit of 

the variance between the two variables. R2 = 1 represents a perfect linear 

relationship while R2 = 0 means that there is no linear relationship between 

the variables.  

The results were visualized using raster maps of the coefficient of 

determination in increments of 0.1 and a complimentary map of the p value 

divided across the critical thresholds 0.050, 0.010 and 0.001. The optimum 

spectral index representing fluorescence yield is identified based on the 

highest R2 between the in-situ hyperspectral and fluorescence measurements. 

This index is regarded as a global index for each inundation category which 

would sufficiently represent fluorescence yield, and hence photosynthetic 

activity, based on narrowband spectral channels. Finally, the same processing 

on the transmittance hyperspectral data was undertaken in order to investigate 

which radiance recorded from the sensor provides more accurate results. For 

the purposes of reducing computer processing time, the bands of the 

hyperspectra were averaged in increments of three channels and thus reducing 

the number of spectral bands from 600 to 200. The same filter was applied on 

the reflectance dataset for reasons of comparison retrospectively.  

In the context of placing the findings in the framework of relevant studies, 18 

narrowband empirical indices frequently reported in the literature (Table 4.1) 

were derived, and subsequently the coefficient of determination between the 

index and the photophysiological parameters. The performance of the 

empirical indices with the ones proposed from the presented hyperspectral 

analysis were compared based on the R2 values and then cumulatively the 
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results were clustered in a hierarchical correlation relationship, indicating the 

performance of the indices studied.  

4.4.2 Application on airborne imagery 

Collaboratively with remote sensing techniques, efforts have been placed in 

coupling laboratory measurements with airborne imagery, however 

atmospheric interference in the later is affecting unevenly the wavelength 

dependent intensity and the overall signal to noise (including the atmospheric) 

ratio is not matched sufficiently. Typical wavelengths used in the laboratory 

are 663 nm for detecting chlorophyll a, 643 nm for chlorophyll b and 470 nm 

for carotenoids (Fogli et al. 2002).  

An application of the findings from leaf to canopy level was attempted in 

order to investigate up-scaling of the application and the possibility to retrieve 

information on photosynthesis from remotely sensed data. The indices 

proposed from the field analyses that can be applicable to airborne imagery 

were identified. The 200-band correlation maps for reflectance were used 

since they have similar spectral resolution with the airborne (i.e. 3nm). The 

results were recomputed and the bands with optimal R2 values located. 

However the choice of the optimal index for transferring the methodology to 

the airborne data depends on the nature of the latter; wavebands at the 

marginal available spectral range are dismissed since the airborne instrument 

noise and the water absorption from the atmosphere above 900 nm result in 

high levels of errors even after atmospheric correction. Additionally, many of 

the indices calculated from the raw data lie in a very small part of the 

spectrum, usually within one or a couple of pixels in the R2 graphs, and 

wouldn’t be adequate for the spectral resolution of the airborne image. 

Furthermore, indices based on adjacent bands were tested and provided 

unsatisfactory results, which can be attributed to the high signal correlation 

between adjacent bands recorded by the instrument. The optimal index for Fs 

and Fm′ was selected based on the above criteria and searched for 2 
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wavelengths with a sufficient difference in the wavelength of more than 

20nm, a wide waveband of more than 10nm and located outside the regions 

300-400 nm and 900-1000 nm. The reflectance RSI with the highest R2 for Fs 

and Fm' from the terrestrial part of the transect was then used to plot the 

Y(II) values calculated from the Fs and Fm′ indices according to equation (1) 

against the in-situ recorded measurements. In conjunction with the R, the Root 

Mean Square Error (RMSE) of the linear regression was taken into account to 

compare the behaviour of the calculated values and the estimated regression 

from the RSI index. RMSE is a frequently used measure of the difference 

between values predicted by a model and the values actually observed from 

the environment that is being modelled. The RMSE of a model prediction in 

regard to the observed values Xobs,i and the estimated variable Xmod,i is: 

n

XX
RMSE

n

i iiobs 


 1

2

mod,, )(

  (6) 

The best bands identified were isolated and the RSI index with the highest 

statistical significance was applied to the airborne hyperspectral images. The 

same procedure was carried out for the ETR parameter based on equation (2) 

and by using the result from the Y(II) calculations as above and the best RSI 

for PAR. The leaf scale reflectance profiles were used as a representation of 

reed stability on the measurable leaf chemical and physiological properties.  

The main aspect of this application was to investigate whether the 

methodology developed at the leaf level could be transferred to airborne 

imagery and to what extent the result is representative of the real Y(II) and 

ETR values. For this task and since no accurate fieldwork at canopy level can 

present the values of Y(II) and ETR, the results were visually interpreted by 

wetland ecologists at the Balaton Limnological Institute in Tihany to evaluate 

the information content in the vegetation index image. The performance of 
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the index in regard to reed condition in the study area is further assessed and 

discussed.  

4.5 Results and discussion 

4.5.1 Complete-combination spectral indices for coupling with 

photophysiological parameters 

4.5.1.1 Reflectance data 

Figure 4.2 and Figure 4.3 present an indicative subset of the results of the RSI 

relationship with Fs and Fm' respectively. The complete set of results is 

provided in Appendix 2. Graphs of RSI and NDSI correlations are an 

information source of significance of the wavelengths correlating to the 

physiological parameter under study and optimize the selection of the 

effective wavelength and bandwidth according to Inoue et al. (2008). With the 

increasing use of imaging spectroscopy, the need for standardized data 

processing techniques specifically for hyperspectral data has been prominent 

(Plaza et al. 2009). These case-specific optimization graphs provide ad-hoc 

information for the entire hyperspectrum. They are a prime example for 

analyzing the special properties of hyperspectral data and can be 

recommended as a process coupling ground data and hyperspectral 

information.  

From a statistical point of view, the R2 graphs represent the distribution of 

correlation between wavelength combinations and the physiological parameter 

under study. In essence, areas where the distribution is dense provide 

evidence of regions where information extracted from these spectral 

combinations can represent the physiological parameter. The p graph 

represents the confidence of the assumption made; the lower the p value the 

stronger the hypothesis we have built. A unique observation in the graph, or a 

cluster of observations, has to be studied synergistically in the R2 and p 

graphs, optimization of the output is derived where R2 will reach a maximum, 

and p is sufficiently low (in this study we seek for values p = ***). The results 
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of this analysis for all the physiological-spectral combinations investigated are 

summarized in  

Table 4.2. The maximum R2 values indicate a high correlation and thus a 

significant predictive ability when using the specific index as a proxy for the 

physiological parameter. Furthermore, the maps provide information on the 

effective wavelength bandwidth. For instance, bands with narrow width are 

appropriate in the context for hyperspectral data, while bands in the graph 

covering a wider spectrum are tailored to information which might be related 

to multispectral instruments. 

Reflectance maximum values exhibit differently in regard to individual 

photophysiological parameters. Fs and Fm' correlation is very similar, which 

can be attributed to the fact that both Fs and Fm' represent fluorescence yield 

which is proportional to intensity of electromagnetic radiation and thus are 

directly related to the spectroradiometers’ recorded values at specific 

wavelengths. On the other hand Y(II) and ETR are calculated on the basis of 

the former. The correlation coefficient in this pair of parameters seems to be 

close in most cases ( 

Table 4.2).  However, when measuring Y(II) and ETR the reflectance values 

diverge. Radiance values correlate better in the deep water for Fs and Fm′ 

while Y(II), PAR, ETR and CHL present maximum R2 at the waterfront part 

of the transect. 

It is important to note the relatively low R2 obtained for the combined dataset 

from the whole transect. This indicates that the environmental conditions at 

the given point of the transect affect essentially the spectral response of 

Phragmites and the inundation categories defined mark important differences 

between reed stands within a reed bed. 

Y(II) is representing the amount of used PSII systems, while ETR shows the 

actual activity at the given light intensity. Although ETR calculation is based 
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on Y(II), ETR and Y(II) appear to have different effective spectral regions. 

ETR performs slightly better than Y(II) in terms of maximum R2.  ETR has 

the highest correlation R2 = 0.65 at a narrow bandwidth of 3nm at (493, 478) 

for both RSI and NDSI at the waterfront category and a sufficient correlation 

window (0.5< R2<0.6) at 600-700 nm. This bandwidth is typical in 

multispectral sensors and information can be derived from a combination of 

bands within this spectral region, which several multispectral sensors contain. 

Hence, critical information for the ETR parameter is encountered at the red 

domain of the chlorophyll absorption region.  Y(II) has a maximum R2 = 0.62 

at (473, 483) for RSI and NDSI.  

4.5.1.2 Consistency between RSI and NDSI 

Comparing the maximum values of R2 for RSI and NDSI no important 

differences were found, however the wavelength combination as well as the 

shape of the spectral regions in the respective figures changes slightly in a few 

cases. For example, the RSI and NDSI for Fs in the deepwater category are 

presented in Figure 4.4. Both indices sustain similar highest R2 value (0.76 and 

0.75 respectively) at the same combination of wavelengths (633, 690) which is 

deemed to be significant, despite the very narrow width. Concerning wider 

wavebands, both indices seem to correlate in a homogeneous spectral area at 

the wavelengths 530-670 nm and a second region at 690-720 nm in which RSI 

correlates stronger (0.6 < R2 <0.7) around 700 nm. In the rest of the results in 

regard to the category and photophysiological parameter under study, minor 

differences can be located in the distribution of the RSI and NDSI maps, 

however they are insignificant. A comparison of the maximum of the 

combinations from Table 4.3 supports the very similar maximum R2 values 

and wavelength combinations obtained when using the two indices. It is 

important to notice that the similarities between RSI and NDSI are sometimes 

intriguing. For this reason a quality assurance test was run in order to confirm 

that the R script used is faultless and delivered the anticipated results. The R2 
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values for specific waveband pairs were calculated separately and compared 

with the results from the undertaken analysis, and the values were equal. 

Furthermore, RSI and NDSI values appear identical because they are rounded 

up to the second decimal point, for instance Fs for SI and NDSI is 0.67 for 

both cases in the revised table, however the actual values are 0.674408 for the 

SI and 0.673089 for the NDSI. To check the robustness of the algorithm, an 

application on a completely different dataset consisting of ASD measurements 

and water content as biophysical parameter collected in 

Table 4.2: Spectral band combination and maximum value of coefficient of determination (R2) for reflectance RSI 

and NDSI in regard to the photophysiological parameter measured in-situ. p: *→p<0.05, **→p<0.01, 

***→p<0.001. 

 Terrestrial Shallow water Deep water Waterfront Combined dataset 

 Ri, Rj R2 Ri, Rj R2 Ri, Rj R2 Ri, Rj R2 Ri, Rj R2 

RSI = Ri / Rj 

Fs 541, 549 0.67 

*** 

546, 551 0.58 

*** 

690, 633 0.76 

*** 

871, 861 0.60 

*** 

546, 551 0.47 

*** 

Fm' 544, 549 0.55 

*** 

539, 544 0.57 

*** 

545, 548 0.82 

*** 

904, 906 0.56 

*** 

539, 560 0.47 

*** 

Y(II) 803, 818 0.46 

*** 

663, 686 0.38 

*** 

908, 923 0.45 

*** 

473, 483 0.62 

*** 

659, 687 0.24 

*** 

PAR 945, 941 0.48 

*** 

892, 889 0.25 

*** 

827, 825 0.48 

*** 

989, 997 0.71 

*** 

917, 922 0.09 

*** 

ETR 941, 945 0.52 

*** 

664, 685 0.47 

*** 

556, 564 0.48 

*** 

493, 478 0.65 

*** 

621, 692 0.25 

*** 

CHL 802, 800 0.51 

*** 

759, 764 0.57 

*** 

760, 764 0.50 

*** 

889, 924 0.63 

*** 

747, 748 0.14 

*** 

NDSI = ( Ri – Rj ) / ( Ri + Rj ) 

Fs 541, 549 0.67 

*** 

546, 551 0.58 

*** 

633, 690 0.75 

*** 

861, 871 0.60 

*** 

546, 551 0.47 

*** 

Fm' 544, 549 0.55 

*** 

539, 544 0.57 

*** 

545, 548 0.82 

*** 

904, 906 0.56 

*** 

539, 560 0.47 

*** 

Y(II) 803, 818 0.46 

*** 

663, 686 0.38 

*** 

908, 923 0.45 

*** 

473, 483 0.62 

*** 

659, 687 0.24 

*** 

PAR 941, 945 0.48 

*** 

889, 892 0.25 

*** 

825, 827 0.48 

*** 

989, 997 0.71 

*** 

917, 922 0.09 

*** 

ETR 941, 945 0.52 

*** 

664, 685 0.47 

*** 

556, 564 0.48 

*** 

478, 493 0.65 

*** 

621, 692 0.25 

*** 
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CHL 800, 802 0.51 

*** 

759, 764 0.57 

*** 

760, 764 0.50 

*** 

889, 924 0.63 

*** 

747, 748 0.14 

*** 

 

Figure 4.2: Coefficient of determination (R2) (a) and corresponding p values (b) between apparent fluorescence yield 

(Fs) and RSI (Ri, Rj) measured on Phragmites plants at the deep water part of the transect in Kerekedi Bay, Lake 

Balaton. The RSI was calculated using the whole spectrum reflectance combinations of two wavebands at i and j.   

 

Figure 4.3: Coefficient of determination (R2) (a) and corresponding p values (b) between maximum fluorescence yield 

(Fm') and RSI (Ri, Rj) measured on Phragmites plants at the deep water part of the transect in Kerekedi Bay, 

Lake Balaton. The RSI was calculated using the whole spectrum reflectance combinations of two wavebands at i and 

j. 

the Ecuadorian Amazon forest was conducted; the results show an expected 

output which is the correlation of the SI at the 940 nm according to the 
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literature (Figure 4.5). Similar consistency between RSI and NDSI is presented 

in results from Inoue et al. (2012) in a similar study for Nitrogen content in 

paddy rice. For these reasons it is suggested that the differences between RSI 

and NDSI are not crucial and the application of either is sufficient.  

4.5.1.3 Transmittance data 

The same methodology described above was applied on the transmittance and 

reflectance data again, this time with a 3x3 spectral filter to reduce the number 

of bands from 600 to 200 and hence computer requirements. A comparison 

between the results from the raw data and the filtered data does not reveal 

large differences (Figure 4.6). Transmittance and reflectance maximum values 

exhibit differently in regard to individual photophysiological parameters 

(Table 4.3 and Table 4.4). Fs and Fm' correlation is very similar, which can be 

attributed to the fact that both Fs and Fm' represent fluorescence yield which 

is proportional to intensity of electromagnetic radiation and thus are directly 

related to the spectroradiometers’ recorded values at specific wavelengths. On 

the other hand Y(II) and ETR are calculated on the basis of the former. The 

correlation in this pair of parameters seems to be proximate in most cases, 

with the exception of the transmittance in the waterfront category where there 

is a difference of 0.21 for the coefficient of determination (Table 4.4). 

However, when measuring Y(II) and ETR the reflectance and transmittance 

values diverge. Reflectance values correlate better in the shallow water and 

terrestrial categories for Y(II), PAR, ETR and CHL, while transmittance 

values for these parameters correlate better in the deep water and waterfront 

areas. It is important to note the relatively low R2 values that were obtained 

for the combined dataset from the whole transect. This indicates that the 

environmental conditions (primarily water level) at the given point of the 

transect affected the reflectance of Phragmites, while the photophysiological 

parameters were not influenced as significantly. 
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Figure 4.4: Coefficient of determination (R2) for RSI (Ri, Rj) (a) and NDSI (Ri, Rj) (b) between Fs measured on 

Phragmites plants at the deepwater part of the transect in Kerekedi Bay, Lake Balaton. RSI and NDSI were 

calculated using the whole reflectance spectrum combinations of two wavebands at i and j. 

 

Figure 4.5: Coefficient of determination (R2) for RSI (Ri, Rj) (a) and corresponding p value (b) results produced by 

applying the R algorithm on an independent dataset collected in the Amazon forest (water content vs reflectance 

spectral indices). As expecter, water contect is correlating between 900 nm and 1000 nm.  
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Figure 4.6: Non-filtered (a) and 3x3 filtered (b) for reflectance RSI example. 

Table 4.3: Spectral band combination and maximum value of coefficient of determination (R2) for reflectance RSI 

and NDSI in regard to the photophysiological parameter measured in-situ. p: *→p<0.05, **→p<0.01, 

***→p<0.001. A 3x3 filter has been applied in order to reduce the number of bands from 600 to 200. 

 Terrestrial Shallow water Deep water Waterfront edge Combined dataset 

 Ri, Rj R2 Ri, Rj R2 Ri, Rj R2 Ri, Rj R2 Ri, Rj R2 

RSIR = Ri / Rj 

Fs 573, 525 0.65 

*** 

552, 546 0.53 

*** 

639, 690 0.72 

*** 

912, 909 0.48 

** 

552, 546 0.45 

*** 
Fm' 540, 561 0.52 

*** 

552, 540 0.55 

*** 

549, 546 0.80 

*** 

594, 600 0.38 

** 

561, 540 0.47 

*** 

Y(II) 462, 474 0.43 

*** 

687, 663 0.36 

*** 

924, 909 0.40 

*** 

492, 489 0.51 

** 

690, 651 0.23 

*** 
PAR 462, 489 0.47 

*** 

888, 894 0.12 

*** 

885, 900 0.33 

** 

414, 429 0.52 

** 

996, 999 0.07 

** 

ETR 942, 945 0.41 

** 

663, 687 0.41 

*** 

912, 909 0.45 

*** 

480, 495 0.65 

*** 

693, 627 0.24 

*** 
CHL 711, 453 0.48 

*** 

765, 759 0.54 

*** 

612, 699 0.46 

*** 

417, 423 0.57 

*** 

756, 753 0.13 

*** 

NDSIR = ( Ri – Rj ) / ( Ri + Rj ) 

Fs 552, 546 0.65 

*** 

552, 546 0.53 

*** 

690, 639 0.72 

*** 

912, 909 0.48 

** 

552, 546 0.45 

*** 

Fm' 561, 540 0.52 

*** 

552, 540 0.55 

*** 

549, 546 0.80 

*** 

600, 594 0.38 

** 

561, 540 0.47 

*** 

Y(II) 690, 651 0.43 

*** 

687, 663 0.36 

*** 

924, 909 0.40 

*** 

492, 489 0.51 

** 

690, 651 0.23 

*** 

PAR 996, 999 0.46 

*** 

894, 888 0.12 

** 

900, 885 0.33 

** 

429, 414 0.51 

** 

399, 999 0.07 

** 

ETR 693, 627 0.41 

** 

687, 663 0.40 

*** 

912, 909 0.45*

** 

495, 480 0.65**

* 

693, 627 0.24*** 

CHL 756, 753 0.47 

*** 

765, 759 0.54 

*** 

699, 612 0.46*

** 

423, 417 0.57**

* 

756, 753 0.13*** 
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Table 4.4: Spectral band combination and maximum value of coefficient of determination (R2) for transmittance RSI 

and NDSI in regard to the photophysiological parameter measured in-situ. p: *→p<0.05, **→p<0.01, 

***→p<0.001. A 3x3 filter has been applied in order to reduce the number of bands from 600 to 200. 

 Terrestrial Shallow water Deep water Waterfront edge Combined dataset 

 Ti, Tj R2 Ti, Tj R2 Ti, Tj R2 Ti, Tj R2 Ti, Tj R2 

RSIT = Ti / Tj 

Fs 576, 525 0.65 

*** 

681, 672 0.51 

*** 

603, 516 0.72 

*** 

534, 528 0.61 

*** 

564, 537 0.44 

*** 

Fm' 558, 543 0.50 

*** 

582, 528 0.52 

*** 

585, 525 0.79 

*** 

459, 453 0.40 

** 

564, 537 0.45 

*** 

Y(II) 510, 651 0.41 

** 

681, 672 0.29 

*** 

663, 687 0.36 

** 

471, 492 0.79 

*** 

690, 654 0.23 

*** 

PAR 462, 486 0.46 

*** 

930, 933 0.10 

* 

738, 408 0.50 

*** 

411, 543 0.45 

** 

492, 681 0.07 

** 

ETR 693, 624 0.40 

** 

684, 669 0.40 

*** 

645, 690 0.59 

*** 

447, 462 0.66 

*** 

624, 693 0.34 

*** 

CHL 705, 552 0.32 

** 

762, 759 0.50 

*** 

702, 564 0.51 

*** 

975, 966 0.72 

*** 

759, 756 0.11 

*** 

NDSIT = ( Ti – Tj ) / ( Ti + Tj ) 

Fs 576, 525 0.65 

*** 

681, 672 0.51 

*** 

603, 516 0.71 

*** 

534, 

528 

0.61 

*** 

564, 537 0.44 

*** 

Fm' 558, 543 0.50 

*** 

561, 549 0.52 

*** 

585, 525 0.79 

*** 

459, 

453 

0.40 

** 

564, 537 0.45 

*** 

Y(II) 651, 510 0.40 

** 

681, 672 0.29 

*** 

687, 663 0.35 

** 

492, 

471 

0.79 

*** 

690, 654 0.23 

*** 

PAR 486, 462 0.46 

*** 

933, 930 0.10 

* 

735, 429 0.49 

*** 

543, 

411 

0.43 

** 

681, 498 0.07 

** 

ETR 693, 624 0.40 

** 

684, 669 0.40 

 

*** 

690, 645 0.59 

*** 

462, 

447 

0.65 

*** 

693, 624 0.34 

*** 

CHL 705, 552 0.32 

** 

762, 759 0.50 

*** 

702, 564 0.51 

*** 

975, 

966 

0.72 

*** 

759, 756 0.11 

*** 

4.5.2 Empirical indices for spectral assessment of photophysiological 

parameters 

18 frequently used empirical indices derived from the in-situ spectral 

measurements according to the 4 inundation categories are presented in Table 

4.5. It is obvious that the best correlations (R2=0.71) were obtained from the 

basic photophysiological parameters (Fs and Fm'), while the derived 

parameters (i.e. ETR and Y(II)) decrease the number of significant 

correlations found. For Fs and Fm' the highest and more significant 

correlation was obtained in the deep water part of the transect, while the 
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waterfront of the studied transect had smaller and less significant correlations. 

This difference in Fs and Fm' correlation could be explained by high 

homogeneity of the deep water reed stand and the heterogeneity of the 

studied Phragmites in the terrestrial (sporadic appearance of the co-dominant 

Carex and other ruderal species) and waterfront (plants of different ages and 

physical conditions) of the stand. The Photochemical Reflectance Index (PRI) 

= (R531−R570)/(R531+R570) (Gamon et al. (1997)) has outperformed the 

other indices and reached R2 values equal to 0.65 and 0.71 for Fs and Fm' 

respectively at the deep water category.  

Contrary to Fs and Fm' results, for ETR and Y(II) high coefficient 

correlations are observed in the waterfront category (R2 = 0.57*** and 0.36* 

respectively) and are represented better by the narrowband NDVI. The reed 

standing at the edge of the reed bed is assumed to be under higher 

environmental pressure relatively to the inner part of the reed bed; therefore 

diverse physiological states can be encountered and linear correlation with 

indices representing photosynthetic activity can be optimized.  

A comparison of R2 values between the optimized indices derived from the 

complete combinations (Table 4.3) and the empirical indices (Table 4.5), 

reveals that the R2 values of the proposed narrowband indices are significantly 

higher than the best performed empirical indices. For instance, regarding Fs in 

the deep water category, the RSI and NDSI band combinations (690, 633) 

result in R2 = 0.76*** for RSI and R2 = 0.75*** for NDSI while the best 

empirical index PRI reaches 0.65***. For Fm′ in the same category, the 

combination (544, 548) gives R2 = 0.82*** for RSI and NDSI while PRI = 

0.71***. In the waterfront category, R2 = 0.62*** for Y(II) when calculated 

from RSI and NDSI while from NDVI R2 = 0.36***. In a similar manner and 

for ETR, R2 = 0.65*** for RSI and NDSI while for NDVI R2 = 0.57***. The 

results are in some way anticipated, at least concerning PRI and NDVI; these 

two empirical indices are each a specific case of NDSI and the result from 
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their calculation has been already accounted for in the complete combination 

bands. PRI has been proposed also by Meroni et al. (2008) to detect stress at 

an early stage, in contrast with NDVI which provided stress-related 

information only when the damage has occurred. Comparing the PRI band 

combination (531, 570) with the optimized one for Fs in the terrestrial part 

(541, 549), it is noticeable that these two indices lay in the same 2-dimensional 

spectral region, and hence the results are expected to be similar. By testing the 

complete combination bands, the exact bands which provide optimum 

coefficient correlation were identified for a specific case study. This becomes 

obvious in Figure 4.7 where the relationship between all spectral indices in the 

form of correlation clusters for the shallow water part category is visualized. It 

is worth noting that mathematically more complicated empirical indices such 

as EVI didn’t perform satisfactorily. This fact in combination with the 

observation that RSI and NDSI are very similar can lead to the conclusion 

that the importance of constructing a spectral index lies in the band selection 

and not the mathematical formulae.   

4.5.3 Estimation of Y(II) and ETR from RSI values 

4.5.3.1 Y(II) estimation 

For the maximum values of the correlations found between the 

photophysiological parameters F and Fm′ and the corresponding RSIs, the 

linear regression was calculated on the dataset collected at the terrestrial part 

of the transect according to equation (1) (Figure 4.8 and Table 4.6). Based on 

the values of F and Fm′ for each measurement, the Y(II) was calculated and 

the linear regression between the latter modelled Y(II) and the in-situ 

measurement for Y(II) recorded was investigated for each category. The R2 of 

the model predictions was for most cases considerably lower than the 

calculated from the RSI. Only the terrestrial modelling prediction is   
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Table 4.5: Correlation matrix between the measured photophysiological parameters and empirical indices. p: 

*→p<0.05, **→p<0.01, ***→p<0.001, all the number without significance indexes are not significant. 

Index Fs Fm' Y(II) PAR ETR CHL Fs Fm' Y(II) PAR ETR CHL 

Terrestrial Shallow water 

ARI2 0.3** 0.33** 0.01 0.03 0.02 0.22* 0.18** 0.24*** 0.04 0 0.07 0.03 

CRI1 0.07 0.06 0.03 0.02 0.12 0.25* 0.1* 0.06 0.13** 0.03 0.09* 0.01 

CRI2 0.12 0.11 0.03 0.01 0.09 0.29** 0.14** 0.11* 0.14** 0.02 0.11* 0.01 

EVI 0.4** 0.32** 0.08 0.03 0 0.02 0.01 0.02 0 0.01 0.01 0.23*** 

mND705 0.25* 0.31** 0 0.02 0.02 0.23* 0.15** 0.21*** 0.02 0 0.02 0.23*** 

mSR705 0.26* 0.3** 0.01 0.01 0.02 0.23* 0.16** 0.21*** 0.02 0 0.03 0.19*** 

NDVI 0 0 0 0.05 0.12 0.15 0.04 0.07* 0 0.03 0.01 0 

NDVI750 0.22* 0.28** 0 0.01 0.01 0.1 0.18** 0.26*** 0.01 0 0.02 0.24*** 

PRI 0.62*** 0.45*** 0.22* 0 0.17 0.03 0.48*** 0.52*** 0.22*** 0 0.26*** 0 

PSRI 0 0.01 0.04 0.15 0.07 0.01 0.04 0.03 0.07 0 0.08* 0.03 

RGI 0.01 0.03 0 0.15 0.17 0.18* 0 0 0 0.03 0.01 0.2*** 

SGI 0.08 0.06 0.01 0 0 0.01 0.08* 0.14** 0 0.01 0.01 0.06 

SIPI 0 0 0.04 0.17* 0.1 0.08 0 0 0 0 0 0 

SRI 0 0 0.01 0.05 0.14 0.15 0.03 0.07 0 0.04 0.01 0.01 

VOG1 0.18* 0.25* 0 0.02 0.01 0.14 0.17** 0.24*** 0.02 0 0.02 0.31*** 

VOG2 0.14 0.21* 0 0.02 0 0.16 0.15** 0.22*** 0.01 0 0.01 0.35*** 

VOG3 0.14 0.22* 0 0.02 0 0.16 0.15** 0.22*** 0.01 0 0.01 0.35*** 

WBI 0.13 0.07 0.05 0 0.01 0.01 0 0 0 0 0 0 

Index Fs Fm' Y(II) PAR ETR CHL Fs Fm' Y(II) PAR ETR CHL 

Deep water Waterfront 

ARI2 0.39*** 0.4*** 0.08 0.01 0.14 0.13 0.02 0 0.03 0.06 0.09 0.31* 

CRI1 0.38*** 0.46*** 0.04 0.01 0.09 0.15* 0.07 0.03 0.14 0.15 0.24* 0.28* 

CRI2 0.43*** 0.5*** 0.05 0.01 0.11 0.16* 0.05 0.03 0.1 0.1 0.17 0.36* 

EVI 0.01 0.07 0.05 0.04 0.01 0.1 0.05 0 0.26* 0.19 0.41** 0.42** 

mND705 0.57*** 0.61*** 0.1 0 0.1 0.14 0.01 0 0.11 0.34* 0.35* 0.01 

mSR705 0.65*** 0.63*** 0.17* 0 0.17* 0.1 0.01 0 0.08 0.26* 0.27* 0.01 

NDVI 0.21* 0.16* 0.16* 0.01 0.12 0 0.17 0.04 0.36* 0.31* 0.57*** 0.1 

NDVI750 0.56*** 0.58*** 0.13 0 0.11 0.17* 0.04 0 0.22 0.38** 0.5** 0.04 

PRI 0.65*** 0.71*** 0.14 0.04 0.27** 0.02 0.05 0.06 0.03 0.03 0 0.33* 

PSRI 0.08 0.14 0 0.2* 0.1 0.01 0 0 0.02 0.04 0.04 0.4** 

RGI 0.09 0.12 0 0.04 0.02 0.21* 0.19 0.11 0.17 0.03 0.18 0.01 

SGI 0.28** 0.27** 0.08 0 0.09 0 0.01 0 0.07 0.37** 0.31* 0.13 

SIPI 0.1 0.13 0.01 0.04 0.05 0.03 0 0.01 0.02 0.02 0.02 0.44** 

SRI 0.21* 0.16* 0.16* 0.01 0.12 0 0.12 0.03 0.3* 0.27* 0.5** 0.13 

VOG1 0.56*** 0.58*** 0.12 0.01 0.1 0.21* 0.02 0 0.21 0.36* 0.47** 0.05 

VOG2 0.55*** 0.56*** 0.12 0.01 0.09 0.23* 0.01 0.01 0.2 0.32* 0.44** 0.06 

VOG3 0.55*** 0.57*** 0.13 0.01 0.09 0.23* 0.01 0.01 0.2 0.32* 0.43** 0.06 

WBI 0.04 0.02 0.04 0.03 0.01 0.14 0.01 0.06 0.05 0.02 0.06 0.2 
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Figure 4.7: Hierarchical clustering of correlation relationship between the spectral indices proposed (grey colour), the 

empirical indices tested (black colour) and the biophysical parameters measured in-situ (grey colour). 

distinguished by providing a correlation of 0.35 (Figure 4.9) while the 

estimated correlation from the best in-situ RSI was 0.46. The corresponding 

RMSE was found to be 0.057.  

 

Figure 4.8: Linear regression for Fs (a) and Fm' (b) for the reflectance RSIs with the highest correlations at the 

terrestrial part of the transect in Kerekedi Bay, Lake Balaton. 
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Figure 4.9: Linear regression of the measured and predicted values for Y(II) of Phragmites plants from the terrestrial 

part of the transect. Predicted values calculated based on the best correlations found from reflectance RSI for Fs and 

Fm' (Figure 4.8). 

Table 4.6: Model predictions for Y(II) from the RSI reflectance dataset. 

 Equation RMSE R2 from predicted Y(II) R2 from best RSI for Y(II) – Table 4.1 

Terrestrial y = 0.443x + 0.231 0.057 0.35 (Figure 4.9) 0.46 

Shallow water y = 0.873x + 0.074 0.167 0.12 0.38 

Deep water y = 0.456x + 0.236 0.131 0.05 0.45 

Waterfront y = 1.395x - 0.200 0.180 0.27 0.62 

Combined 

dataset 

y = 0.513x + 0.180 0.334 0.01 0.24 

4.5.3.2 ETR estimation 

In a similar manner the ETR for the reed on the waterfront part of the 

transect was calculated on the basis of the maximum RSI values for PAR and 

Y(II) (Figure 4.10). The predicted R2 value was found to be 0.72 (Figure 4.11) 

while the R2 value from the in-situ ETR correlation with the best RSI was 0.65. 

This indicated that the modelled prediction based on the equation (2) provides 

slightly higher R2 values for ETR. The corresponding RMSE was 49.707. The 

results for the other parts of the transect (Table 4.7) indicate that the 
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predicted R2 value is always lower than the measured, however the differences 

are not significant. In comparison to the prediction of Y(II), prediction in 

ETR seems to perform better in terms of the coefficient of determination 

values.  

 

Figure 4.10: Linear regression for PAR (a) and Y(II) (b) for the reflectance RSIs with the highest correlations at the 

waterfront part of the transect in Kerekedi Bay, Lake Balaton. 

 

Figure 4.11: Linear regression of the measured and predicted values for ETR of Phragmites plants from the 

waterfront part of the transect. Predicted values calculated based on the best correlations found from reflectance RSI 

for PAR and Y(II) (Figure 4.10). 
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Table 4.7: Model predictions for ETR from the RSI reflectance dataset. 

 

 

Equation RMSE R2 from predicted Y(II) R2 from best RSI for Y(II) – 

Table 4.1 

Terrestrial y = 1.098x – 55.703 66.329 0.48 0.52 

Shallow water y = 1.247x – 43.055 58.587 0.38 0.47 

Deep water y = 1.024x + 12.544 52.96 0.37 0.48 

Waterfront y = 1.184x – 30.651 49.707 0.72 (Figure 4.11) 0.65 

Combined 

dataset 

y = 1.247x – 37.723 134.89 0.17 0.25 

 

The experimental design introduces some unavoidable limitations in 

correlation and therefore generally cannot lead to exceptionally high R2 values. 

The paired dataset is acquired from two different scientific electronic 

instruments with different set up, operation and associated errors. 

Furthermore, while measurements were made on the same area of each leaf, 

the overlap due to the users’ operation accuracy is not certain, as well as the 

measuring surface is not identical in the two instruments and neither could be 

compensated. An additional source of variability is the heterogeneity of reed 

vegetation coming both from microhabitat differences of the study area and 

genetic patchiness of the reed stands. Finally Y(II) is a measurement of the 

light capture efficiency of PSII, while ETR is a proxy of the gross rate of 

carbon fixation, the latter is assumed to represent photosynthesis (Maxwell 

and Johnson 2000). A high correlation is found under laboratory conditions 

between these relationships, however when measured in the field, Y(II) and 

CO2 fluxes can be affected by temperature (Fryer et al. 1998). All the above 

errors are introduced and propagate through the experiment, thus the 

correlation coefficient estimated is not as high as in similar studies 

investigating direct morphological and physiological aspects (i.e. stem density, 

dry biomass, chlorophyll and nitrogen content with laboratory methods) 

which are more accurate to measure; nevertheless coupling with fluorescence 
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data provides a direct measurement of photosynthetic activity of the plant and 

an indirect estimation of environmental stress. 

4.5.4 Application on airborne hyperspectral data 

The optimal index for the application on the airborne dataset was defined as 

the band combination with the highest R2 value from the filtered 3x3 results, a 

corresponding confident p value, the lowest RMSE and also covers an 

adequate broad spectrum to contain the remote sensors bandwidth at the 

specific wavelength. This has been identified as the band combinations 

RSI(612, 516) (0.63***) for Fs, (699, 527) (0.51***) for Fm′ and (463, 488) 

(0.47***) for PAR based on the terrestrial category. The Y(II) and ETR maps 

resulting from transferring the field methodology to the airborne imagery is 

presented in Figure 4.12. The Y(II) calculated on the basis of Fs and Fm' 

parameters reveals the photophysiological homogeneity over the stable reed 

and is sufficient for estimation of the Y(II) value based on remotely sensed 

data. This becomes obvious when comparing the map with the actual Y(II) 

measurements in-situ (Figure 3.12). The terrestrial and waterfront sides of the 

stand have slightly lower Y(II) values, while the reed stands in the middle of 

the reed bed contain higher values ( and Figure 4.12). The calculated Y(II) 

values are lower  by 15-20% compared to the in-situ actual data, but insertion 

of a correction factor could compensate for the final output. In spatially more 

heterogeneous environments, such as the waterfront and terrestrial edges, the 

potential photosynthetic capacity is lower than in the more homogeneous 

environment in the middle of the reed bed. This is probably in connection 

with disturbances that the plant is encountering at less homogeneous patches. 

Moreover in these sites the possibility of appearance of adventive species is 

significantly higher, thus different ETR and Y(II) signals could be originated 

from the abundance of other species within a single pixel. Furthermore, the 

waterfront of the reed stands contains plants of significant age differences 

(Tóth and Szabó, 2012) which affects the photophysiological parameters too, 
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while the interior of the stands has a more homogeneous age distribution and 

thus more reliably measured by remote sensing. Thus, while during the in-situ 

fluorescence measurements usually the average and fully grown plants were 

measured, the airborne data contains the spectral response from a very diverse 

pool of Phragmites plants including the very strong signal from young shoots. 

In summary, it is proposed that the photosynthetic activity can be estimated 

from hyperspectral airborne imagery. The images have to be radiometrically 

and atmospherically corrected in order to assure consistency between the 

remotely sensed and leaf data. This methodology has been successfully 

demonstrated when applied to high spectral and spatial resolution airborne 

imagery. Based on the reflectance spectral indices (band1, band2: 612, 516) 

(0.63***) for Fs, (699, 527) (0.51***) for Fm′ and (463, 488) (0.47***) and the 

equations (1) and (2) estimation of Y(II) and ETR is feasible qualitatively. 

When applying a linear regression to fit the spectral indices to the in-situ 

observations according to the equations in Table 4.6 and Table 4.7, 

quantitative estimation of Y(II) and ETR is possible. While the study area 

comprised mainly of stable reed, reed areas receiving environmental pressure 

appear at marginal values. This methodology could be used to map the 

physiological status of reed beds based solely on hyperspectral imagery.   

 

Figure 4.12: Y(II) (a) and ETR (b) estimation from the hyperspectral airborne dataset over the area of study at 

Kerekedi Bay, Lake Balaton according to the best correlation found in the reflectance RSI at the terrestrial part of the 

transect (left) and predicted values calculated from the maximum correlation of Fs and Fm′. 
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4.6 Limitations 

When the findings from the leaf scale are used for interpretation of airborne 

imagery, some confounding factors need first to be considered. This is a 

limitation of a direct application of the findings from the field 

spectroradiometry to canopy level airborne imagery. Airborne reflectance 

measurements are made at a coarser scale and tend to average over a very 

large number of leaves, which may include healthy and diseased leaves, stems 

or even leaves from different species. Furthermore, shadows caused by the 

vegetation and orientation of the leaves are largely affecting the illumination 

conditions of canopy reflectance. In addition, in sparse vegetative conditions 

understory vegetation, ground or water signal can add in to the radiant 

exitance within a pixel.  

Spectra of similar materials are recorded differently from the ASD and AISA 

sensors due to the fact that airborne remote sensing systems measure the 

amount of radiation reflected by an object which varies depending upon the 

sensitivity of the instrument, the wavelengths sampled, lighting geometry and 

atmospheric conditions (Roberts and Herold 2004) rather than reflectance. 

Another source of variation is the Bidirectional Reflectance Distribution 

Function (BRDF) which can be measured only indirectly (Schaepman-Strub et 

al. 2006). Although a compensation for that has not been attempted in the 

lack of multi-directional data, this might have introduced variations in the 

illumination of the area. Additionally, the spectral resolution of the airborne 

instrument was set to maximum (i.e. < 3 nm) during the acquisition of the 

data, which resulted to suboptimal Signal-to-Noise Ratio (SNR). 

Consequently, the marginal spectral regions will be noisy and the indices 

proposed from the field analysis that lay in these areas will not be applicable. 

Especially in regard to estimating biophysical parameters in optically complex 

waters, errors associated only to SNR can account as high as 80% for space 

borne hyperspectral sensors as demonstrated by Moses et al. (2012). 
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Furthermore, low radiometric resolution means high correlation between 

adjacent channels, and application of indices to the airborne data based on 

these channels will provides a noisy output. Hence the selection of the Fs and 

Fm′ was based on the highest correlation among the indices which are not 

encountered in the regions 400-450 nm and 900-1000nm and they have a 

sufficient spectral difference of 10nm.  

4.7 Conclusions 

Spectroradiometric leaf reflectance and photophysiological parameters were 

measured in-situ over reed leaves in different inundation categories at 

vegetation peak in the mesotrophic Kerekedi bay. Despite the fact that 

correlation coefficient values are not as high as the correlation of spectral 

information with chlorophyll content or other directly measured biophysical 

parameters, chlorophyll fluorescence is the most representative measure of 

photosynthetic activity and therefore stress condition of the plant, and the R2 

was found to be statistically sufficient to support the estimation of leaf stress 

based solely on spectroscopic data. A strong correlation between narrowband 

spectral indices and chlorophyll fluorescence parameters has been found. This 

indicates the potential of in-situ hyperspectral data in assessing plant condition 

in real time, in agreement with Meroni et al. (2008). In this study it is 

suggested that for in-situ hyperspectral leaf measurements, the index (690, 633) 

provides the best coefficient correlation (0.76***) for Fs in the stable deep 

water part of the transect and (545, 548) (0.82***) for the Fm′. In the 

waterfront category, Y(II) correlates better with the band combination (473, 

483) (0.62***) and ETR with (493, 478) (0.65***).  

While these indices are spectrally very narrow and can be applied only when 

the instrument has a very high spectral resolution of 1nm, maps of the 

coefficient of determination can aid locating indices tailored to other remote 

sensing instrument. An application of the findings from the field data analysis 

to the airborne hyperspectral imagery on a study area at Lake Balaton, 
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Hungary presents actual estimation of Y(II) and ETR values over the reed bed 

under study. The indices identified were Fm′: (699, 527) and Fs: (612, 516) for 

calculating Y(II) and  PAR: (463, 488) for calculating ETR on the basis of 

mathematical equations (1) and (2). Hence the representation of 

photosynthesis from airborne hyperspectral image is feasible. It is worth 

mentioning that the indices proposed are largely found in the optical domain; 

this comes in contrast with a related study from Zarco-Tejada et al. (2002) 

who suggests an RSI index based on the red-edge domain for stress detection 

after analyzing information from inverting a radiative transfer model. 

This research underpins the development of methods for estimating 

photophysiological parameters on Phragmites based solely on imaging 

spectroscopy and proposes optimal indices for evaluating the ecological status 

of reed based on spectroscopic data. Future work based on the findings could 

encompass samples from reed populations comprising of stable and die-back 

reed, which will provide die-back specific spectral indicators. Furthermore 

research on spectral indices beyond the 400-1000 nm spectrum would provide 

information on leaf-water absorption bands and lignin-cellulose features, 

which can also associate with environmental stress in aquatic vegetation.   
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Chapter 5 Aquatic vegetation mapping based on airborne 

hyperspectral and LiDAR data 

5.1 Introduction 

In chapter 4 it became apparent that proximate and field spectroscopic data 

are a reliable source of information at species and canopy level, however such 

a sample collection over large geographic areas, such as Lake Balaton, is 

cumbersome at frequent intervals. In chapter 5 we scale up the problem of 

detecting macrophytes and reed die-back categories from airborne imagery. 

Earth observation data is essentially the only way to monitor a large wetland, 

synergistically with field measurements. Nevertheless, classification of 

wetlands from remotely sensed imagery is a challenging task for scientists and 

practitioners alike. The high biodiversity encountered in the ecotone between 

the terrestrial and the aquatic ecosystems results in a complex spatial structure 

and a lack of concrete boundaries between habitat types. Typically, all 

available image sources and steps during the classification process have to be 

investigated and minor changes, for instance in the selection of the training set 

or the classification set-up, can alter the final outcome noticeably.  

A pivotal role in vegetation mapping has been assigned to hyperspectral 

remote sensing, mainly due to the ability to discriminate vegetation types 

based on the spectral characteristics, which are largely correlated with 

vegetation species and cannot be easily differentiated with multispectral 

sensors. The importance of spectral reflectance in vegetation mapping has 

been realised as early as the 1970’s (Carter and Anderson, 1972). Shive et al. 

(2010) report this advantage in a study trying to identify various types of 

wetland frog habitats, which is typically formed of ponds and lakes during 

June and July within areas of emergent vegetation. Burai et al. (2010) in a 

similar to my study effort separated 7 main vegetation classes in a wetland in 
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Hungary with overall accuracy 78% and kappa coefficient 0.63. In the same 

paper they stress the need to develop wetland specific spectral libraries.  

LiDAR information has also been used mainly in forestry due to the ability to 

penetrate in the canopy cover and extract height and volumetric distribution 

of trees (e.g. Miller, 2001; Pedergnana et al., 2011; Puttonen et al., 2010; Jones 

et al., 2010). In low vegetation and habitat identification LiDAR capabilities 

are restricted, however efforts are continuing mainly by integrating LiDAR as 

auxiliary data. Anderson et al. (2010) have stressed the usefulness of LiDAR 

data in habitat architecture in a range of ecosystems by capturing fine spatial 

patterns.  

Finally, aerial photos have been employed successfully in mapping the 

expansion of emergent vegetation (e.g. Weisner 1991) especially in the ages 

when space- and airborne spectrometers were not available. For instance, in 

the framework of reed die-back Krumscheid et al. (1989) attempted to locate 

reed regression through interpretation of aerial photographs. Object-based 

image analysis is prevailing lately in image processing of very high spatial 

resolution images, however most of the studies in the literature are employing 

satellite data and not much research has been done with airborne imagery 

which expands pixel resolution capabilities to less than 20 cm. Recently, sub-

decimetre resolution UAV imagery was successfully used to identify aquatic 

vegetation in a lake site with 95.1% overall accuracy (Husson et al. 2014).  

In this chapter the focus is on the classification scheme for mapping lakeshore 

vegetation with high spatial resolution data. An evaluation of the degree in 

which the different remotely sensed datasets (sources) are providing accurate 

information on the vegetation classes of interest is presented as well as a 

comparison of two popular classification algorithms in wetland mapping, 

namely Maximum Likelihood (ML) and Support Vector Machines (SVM).  
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5.2 Classification approaches 

The advent of very high resolution imagery revealed new capabilities in earth 

observation, as well as challenges. One of the main complications associated 

with high spatial resolution is that the homogeneity of land cover, as it 

appears in pixels of medium resolution satellite images, is lost (Ehlers et al. 

2003); as the spatial resolution of the image increases, individual scene 

elements are appearing and the spectral response of the scene becomes more 

varied, hence the representation of each class less consistent (Barnsley and 

Barr, 1996). Blaschke and Strobl (2001) state that when the pixel size becomes 

smaller than the size of the object, the derived object is made up of several 

pixels and the value of an individual pixel relates not to the character of the 

object but to its components. Therefore fine resolution provides high 

structural detail but also high contrast between neighboring pixels. This might 

lead to confusion on selecting representative spectra for the classification. 

Gong et al. (1992) and Johnsson (1994) reckon that classification of such high 

spatial resolution data does not necessarily translate into better results. For 

instance, Barker and King (2012) report that pixel-based classification 

produced more heterogeneous classes than the object based image approach 

when using orthophotographic imagery. As a consequence, it is still a 

challenge to investigate the means with which information at high spatial 

resolution can be transformed to accurate information on the ground.  

5.2.1 Data sources 

With data been available at increasing resolutions and decreasing cost, there is 

a tendency in the literature for fusing data types in order to increase accuracy 

in classification problems. Dalponte et al. (2008) provide a justified reason for 

fusing hyperspectral and LiDAR data in vegetation related studies and urge 

the need to develop advanced classification systems which will fruitfully 

exploit information provided by these two sources. The idea behind this 

assumption is that different data types acquired from different sensors 
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provide different sort of information, which to an extent are complimentary 

to each other. Hyperspectral sensors for instance record the spectral 

dimension which is sensitive for discrimination of species and surface types, 

while LiDAR is providing information on the dimensionality and structure of 

geometric surface properties (Koetz et al. 2007). Several sources have 

reported increased classification accuracy as a result of integration of data 

from multiple sensors. Jones et al. (2010) in a study mapping 11 tree species in 

a coastal region report an increase of user’s accuracy when fusing data by 

8.4% – 18.8% in comparison to solely hyperspectral classification. Johansen et 

al. (2010) present an automatic feature extraction of biophysical properties 

from LiDAR data and suggest that similar applications can be employed from 

natural resource management agencies. Swatantran et al. (2011) conclude that 

these two data types have many potential applications in ecological and habitat 

studies. Klemas (2011) recommends that the combined use of LiDAR and 

hyperspectral imagery can improve the accuracy of wetland species 

discrimination. Finally, Onojeghuo and Blackburn (2011) optimise the 

synergistic use of LiDAR and AISA hyperspectral for mapping reed bed 

habitats and report a significant improvement by 11% when a mask based on 

LiDAR dataset was incorporated. 

With regards to the spectral information, plant pigment absorption is 

demonstrated at the spectral region of the visible domain and the red-edge; 

hence most vegetation studies are concentrating at this region. Nevertheless, 

the near infrared domain is associated to information on the plants cell 

structure and water content (figure 1.4) which is directly related to 

macrophytes environmental conditions. A few studies have been using 

synergistically the two datasets (e.g. Hunter et al. 2010a; Onojeghuo and 

Blackburn, 2011; Mewes et al. 2011; Lausch et al. 2013). Peerbhay et al. (2013) 

suggest that inclusion of near-infrared spectrum might provide increased 

potential in vegetation species mapping. 
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5.2.2 Classification algorithms 

With the increasing availability of earth observation data, there comes a large 

vault of source information in offer; however, more data does not necessarily 

translate into better analysis (Fernandez-Prieto et al. 2006) as long as the 

schemes to extract the information are not optimized. Appropriate image 

processing is an essential aspect of any classification of remotely sensed data 

to a meaningful categorical map (Lu and Weng, 2007). 

Pixel based classifiers have traditionally been the means to classify remote 

sensing imagery from very early years. These classifiers are making categorical 

judgments based solely on the spectral information of each individual pixel 

(Gong and Howarth, 1990). Unsupervised classification algorithms are 

implemented on the assumption that no knowledge of the study area exists; 

hence the result is spectrally consistent, however the thematic categories 

assigned after classification are not necessarily associated to real classes of 

objects. Supervised classification on the other hand relies on the indication of 

representative polygons to be used for the classification from the user. The 

most widely used supervised classifier in remote sensing has probably been 

the ML which assumes however that the statistical function of each class in 

each band follows the Gaussian distribution. SVM developed by Vapnik 

(1995) is a supervised non-parametric statistical learning technique that has 

become popular the last years due to increasing citation in scientific literature 

(e.g. Brown et al. 2000; Keramitsoglou et al. 2006; Chi et al. 2008). SVM 

performs well in cases with a small number of training samples, which is one 

of the problems encountered often in remote sensing classifications. 

Mountrakis et al. (2011) review the use of SVM in remote sensing and stress 

the superiority of the classifier over most of the traditional algorithms. Several 

papers have confirmed the superiority of SVM over alternative classifiers 

applied on hyperspectral data (Melgani and Bruzzone, 2004; Pal and Mather, 

2004; Camps-Valls and Bruzzone, 2005; Oommen et al. 2008; Dalponte et al. 
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2008; Hunter et al. 2010a; Kuo et al. 2010; Bahria et al. 2011) and in land 

use/land cover classification schemes (Pal and Mather, 2005; Boyd et al. 2006; 

Keramitsoglou et al. 2006; Dixon and Candade, 2008; Dalponte et al. 2009). 

Yang et al. (2008) reports on the suitability of SVM when comparing the 

application of six classifiers on airborne hyperspectral imagery for the 

detection of giant reed. Furthermore, SVM seems to eliminates the Hughes 

effect (the predictive power reduces as the dimensionality increases), which is 

crucial for high-dimension hyperspectral data (i.e. Hugh phenomenon: 

(Hughes, 1968)) (Pal and Mather, 2004; Oommen et al. 2008). 

Classification integrating the textural information of a scene has also been 

widely used. Object Based Image Analysis (OBIA) (Lang and Blaschke, 2006; 

Blaschke 2010) is a sub-discipline of GIS devoted in partitioning imagery into 

meaningful objects (Hay and Castila, 2006) embracing information extracted 

from the spatial relationship of the image elements. Barker and King (2012) 

and Elatawneh et al. (2012) are some example of studies of reporting 

superiority of OBIA methodology. Kernel based Re-Classification (KRC) is a 

texture-based algorithm developed by Barnsley and Barr (1996) taking into 

consideration the frequency and the spatial arrangement of the class labels of 

the pixels and has provided accurate results in fine scale habitat mapping with 

fine resolution imagery (Keramitsoglou et al. 2005).  

Nevertheless, while other vegetation canopies (e.g. trees) are composed of 

plants which vary by species, height, size and texture, macrophytes are 

encountered most often in assemblages of species with more homogeneous 

spatial characteristics, leaving no other option of discrimination other than 

their spectral response. Hyperspectral information is the main pillar of 

information for such discrimination. In the context of reed mapping, Gilmore 

et al. (2009) report high classification accuracies due to unique high near-

infrared reflectance in the early fall. However there still exists the need to 
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investigate the algorithms best suited to map macrophytes with high spatial 

resolution data. 

5.3 Area of study 

A large data pool of airborne imagery, is available for the complete shore line 

of Lake Balaton. However, due to inconsistencies in date acquisition, flight 

orientation, atmospheric conditions, data size and processing time it was 

deemed impossible to combine the whole dataset in one image and define as 

the area of study the whole Lake. It was decided to follow a site-specific 

approach for applying the classification approaches and focus on the Bozsai 

bay, described in chapter 3.2.1 and its relative position to Balaton Lake is 

depicted in figure 3.1. Two adjacent hyperspectral scenes comprise the reed 

bed and neighbouring grasslands, open fields, roads, settlements, potato 

farmlands and trees. 

5.4 Airborne remotely sensed data 

Airborne platforms are a means for acquiring remotely sensed imagery 

offering advanced capabilities in comparison to the satellite operational 

systems. Their main advantage is the flexibility to operate in time and space; 

therefore ideal atmospheric and illumination conditions at the time of image 

acquisition are assured, and the availability of data depends only on the 

weather conditions, unlike satellite systems which are following an established 

orbit. Functional operation of an airborne remote system can be rapid, making 

it ideal for emergency situations and unexpected events, such as floods, 

earthquakes and landslides. Furthermore, the low altitude from which imagery 

is acquired translates into high spatial resolution, the magnitude of which 

depends on the absolute altitude of the aircraft. Likewise, atmospheric 

interaction is restricted at the lowest part of the atmosphere and hence 

radiometric resolution is typically higher than satellite systems. Malthus and 

George (1997) suggested from very early that airborne remote sensing has a 

strong potential for monitoring freshwater macrophyte species. 
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Figure 5.1: Flight lines of the airborne campaign undertaken during August 2010 (main image) and sample of the 

concurrently collected (a) hyperspectral, (b) LiDAR and (c) orthophotos dataset (inset image).  

Table 5.1: Specifications of remote sensing instruments used to collect simultaneously hyperspectral, LiDAR and 

orthophotos during 21st – 26th Aug 2010 on Lake Balaton, Hungary under clear sky conditions. 

Data type Hyperspectral Hyperspectral Discrete return 

LiDAR 

RGB photography 

Instrument AISA Eagle AISA Hawk Leica ALS50-11 Leica RCD105 

Ground pixel size at 1550 m 

absolute altitude 

1.05 m 2.10 m 4 returns maximum 

(resampled) 

17.5 cm 

Swath at 1550 m relative 

altitude (1445 true altitude) 

992m (38° fov) 614m (24° fov) - 948 m 

Spectral domain  400 – 970 nm 970 – 2450 nm 1064 nm Visible 

Number of bands  253  256 Maximum four 

discrete returns 

3 

Spectral resolution 3.3 nm 8.5 nm - RGB 

FWHM 2.20 – 2.44 6.31 - - 

Radiometric resolution  12 bit 14 bit - 16 bit 

Signal to Noise Ratio (SNR) 1250:1 (max) 800:1 (max) - - 

 

An extensive EUFAR airborne campaign was undertaken between August 21st 

and 26th 2010 by the Airborne Research and Survey Facility (ARSF, 

Gloucester, U.K.) vested in the Natural Environment Research Council 

(NERC). The platform used was a Dornier 228-101 research aircraft able of 
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flying up to 15000 ft altitude at a maximum speed of 160 knots true air speed 

when performing scientific operations. The aircraft flew at 1550m true altitude 

and was equipped with an Inertial Measuring Unit/Global Navigation Satellite 

System (IMU/GNSS) providing information on the aircrafts’ position and 

orientation respectively. The survey covered the whole Lake Balaton and the 

Kis Balaton, an adjacent wetland on the south west of the main Lake (Figure 

5.1). The dataset (Table 5.1) comprises of concurrently recorded hyperspectral 

(400-2500 nm), discrete return LiDAR and orthophotos (Zlinszky et al. 2011). 

5.4.1 Hyperspectral imagery 

Hyperspectral reconnaissance mapping systems inherit a considerably higher 

spectral resolution in comparison to conventional spaceborne sensors. They 

have been suggested for vegetation related projects in several studies (Shive et 

al. 2010; Dalponte et al. 2008) based on the fact that the fine segmentation of 

the sensors’ spectral response is able to provide suitable information for 

discriminating vegetation attributes at associations and species level. Currently 

most remotely sensed data are acquired from sensors carried on aircrafts. 

Only two hyperspectral space-borne imagers are orbiting around the earth, 

namely CHRIS on PROBA-1 and Hyperion on Earth Observing-1, but more 

will become available in the near future, such as the Environmental Mapping 

and Analysis Program (ENMAP), Prisma and the Hyperspectral Infrared 

Imager (HyspIRI). With the launch of missions setting in orbit state-of-the-art 

multispectral and hyperspectral sensors, imaging spectroscopy dataset are 

gradually becoming wider available.  

The hyperspectral imagery was collected from an airplane-mounted Specim’s 

AISA dual system (Spectral Imaging Ltd., Oulu, Finland) incorporating the 

nadir-looking sensors Eagle and Hawk as in similar studies (Artigas and Yang, 

2005; Jensen et al. 2007; Dalponte et al. 2008; Shafri and Hamdan, 2009; Yang 

and Artigas, 2009; Burai et al. 2010; Onojeghuo and Blackburn, 2011). The 

sensors recorded incoming radiation cumulatively in 509 bands from 400 to 
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2450nm with Full-Width Half-Maximum (FWHM) 2.20 – 2.44 and 6.32 for 

Eagle and Hawk respectively and delivered a spatial resolution of 1.5m at 

1550m true altitude (Table 5.1). The angle between the line of sight of the 

sensors and the zenith was 180° since they are nadir looking instruments. The 

data were delivered in 1b ENVI BIL data formal with metadata attached in 

HDF4. 

5.4.2 LiDAR 

Airborne Laser Scanning (ALS), widely known as LiDAR, is the technique of 

estimating the range of objects from the sensor with the use of pulsed laser. 

LiDAR systems can deliver either discrete-return pulses or full-waveform. In 

discrete-return typically one pulse from the top of the object and a second 

from the bare ground are reflected, based on which the Digital Surface Model 

(DSM) and the Digital Terrain Model (DTM) respectively can be calculated. 

In full-waveform systems, a more detailed representation of the canopy 

structure can be achieved. Downward-looking LiDAR from airplane 

platforms has lately been used in the context of wetlands for discriminating 

vegetation species from marsh components (Rosso et al. 2006), classifying 

wetland elements based solely on LiDAR data (Brennan and Webster, 2006), 

estimating the inundation level below forest canopy based on the amplitude of 

the LiDAR signal (Lang and McCarty, 2009), synergistically with high 

resolution satellite data to improve wetland distinction (Maxa and Bolstad, 

2009) and categorizing vegetation species in Lake Balaton, Hungary (Zlinszky 

et al. 2012).  

A maximum of 4 discrete-returns of an 83kHz (1064 nm) pulse were recorded 

from a Leica ALS50 compact laser scanning system and delivered in ASCII 

point cloud format. At the last calibration before the 2010 campaign LiDAR 

data were judged against Ground Control Points (GCPs) and a mean error of 

3.1 cm and SD of 2.2 cm at an altitude of 1350 m was estimated. Further 
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information on the LiDAR system specifications can be found at Zlinszky et 

al. (2012).  

5.4.3 Orthophotos 

Aerial photography allows for very high spatial resolution depiction of land 

characteristics in a manner that is used extensively by practitioners to visualize 

stereoscopically species and classes of interest (Caylor, 2000). Orhtophotos 

were one of the first techniques used to map macrophytes (e.g. Malthus et al. 

1987; Ferguson et al. 1993; Rutchey and Vilchek, 1999), nevertheless photo-

interpretation is a subjective application and can become time- and 

consequently cost-consuming in an operational context (Jensen et al. 1986). 

True-colour images were recorded from a 39 megapixel Leica RCD105 

medium format digital camera. The CCD instrument of the camera recorded 

radiation in three channels in the visible domain and delivered images in 16-

bit TIFF format, with approximate ground resolution of 17.5 cm from 1550 

m aircraft true altitude. In the specific setup, the data were extracted via two 

separate channels from the camera; due to the sensitivity of the instruments to 

temperature a discontinuity of spectral response at the centre of the image is 

noticeable. For this reason the data provider considered the image pixel data 

values not appropriate to use for scientific radiometric measurements. 

Furthermore, the main disadvantage of aerial photography is the need to 

mosaic the individual photos to cover a larger area (Carleer and Wolff, 2004), 

especially considering the relatively small area covered in images acquired 

from low-altitude flights. This pre-processing step results to further 

radiometric degradation.  

A total of 1940 aerial images were collected and archived. Geometric 

registration on a UTM projection was implemented by the Vienna University 

of Technology. This dataset was used synergistically with expert knowledge 

for selecting training and validation sets from the hyperspectral images in the 
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processes of classification and accuracy assessment respectively, while the use 

of radiometric values has been dismissed.  

5.5 Data-processing 

Remote sensing sensors record incoming radiation in the form of a Digital 

Number (DN). Nevertheless from the DN to the actual quantitative 

information about features on the earth’s surface, there are numerous factors 

that can alter the value of the electromagnetic signal. First the DN values are 

calibrated to radiance values, which is the quantitative representation of the 

incoming radiation at the sensor. This procedure account for sensor defects, 

system noise and variations in the scan angle of an airborne system and is 

accomplished by applying a gain and offset to the DN values, according to the 

specification of the instrument.  

The second and most significant factor for hyperspectral sensors is the 

influence from the atmosphere, which absorbs and scatters unequally for 

different wavelengths. Above wetlands, the effect of the water vapour is most 

prominent. Radiance image contains the overall radiation reaching the sensor, 

including radiation reflected from the surface of the earth, the clouds, the 

atmosphere directly and through scattering and is affected by the solar 

radiation intensity properties. In the lack of concurrently acquired field data, 

the ideal way to isolate the surface reflectance signal is by removing the 

unwanted atmospheric and illumination effects through the application of 

correction models, which require information on the atmospheric conditions 

at the time of acquisition.  

The third contribution in distorting the image information is influence from 

the solar illumination dependencies, terrain roughness and the BRDF. 

Atmospheric correction as implemented in various commercial packages will 

account for the first two factors when integrating a DEM in the calculations. 
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Geometry is reconstructed based on flight information collected concurrently 

with the image.  

This pre-processing of airborne imagery is a time and effort consuming 

procedure and requires specialized software and user skills, however is critical 

for the quality of the final product. The processing order of the adjustments 

does not affect considerably the output image according to Xu and Wu 

(2012). An approach for correcting the artefacts apparent in the specific 

images to compensate for radiometric, atmospheric and geometric 

inaccuracies was followed (Figure 5.2). First, cross-track illumination 

correction was applied to remove the glitter found in several images. Then 

atmospheric correction was implemented based on a radiative transfer model. 

The geometric registration was applied integrating a DEM derived from the 

concurrently acquired LiDAR data. Finally the water pixels were removed and 

the two images were subset and mosaicked around the reed bed at the Bozsai 

bay. 

 

Figure 5.2: Pre-processing flowchart of the hyperspectral and LiDAR datasets. 
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5.5.1 Radiometric correction and bands exclusion 

Radiometric correction is necessary to compensate for the effects of the 

atmosphere, off-nadir surface reflection and glint. Vignetting effects, 

instrument scanning, off-nadir view angle and sun reflection as well as other 

illumination effects can affect the image non-uniformly and are generally 

regarded as cross-track illumination effects (ITT Visual Information 

Solutions, 2009). In the used dataset the main contributor has been the sun 

reflection when solar azimuth was diverging from the aircraft orientation 

(Table 5.2) and illumination conditions have therefore not been isotropic. As a 

result, a glitter at the edge of the images is apparent in several images and 

especially in the flight with North-South orientation such as this above Tihany 

peninsula (Figure 5.1). 

Table 5.2: Solar illumination conditions at Lake Balaton (lat: 46.9127. lon: 17.8369) during time acquisition as 

calculated from the National Oceanic and Atmospheric Administration (NOAA) Solar calculator (url: 

http://www.esrl.noaa.gov/gmd/grad/solcalc). 

Flight 

number 

(Julian day) 

Date 

(dd/mm/yyyy) 

Time 

(GMT)* 

(hh:mm) 

Solar noon Solar azimuth 

(in degrees) 

Solar elevation 

(in degrees) 

233 21/08/2010 13:40 - 14:18 12:52 200.16 – 214.55 53:71 – 50:71 

234 22/08/2010 13:31 - 14:28 12:52 196.51 – 217.89 53:85 – 49:37 

235 23/08/2010 12:56 - 14:02 12:51 181.97 – 208.53 54:48 – 51:47 

238b 26/08/2010 10:25 - 11:38 12:50 127.95 – 151.32 42:30 – 50:38 

238d 26/08/2010 14:29 - 15:29 12:50 217.70 – 235.52 47:91 – 40:45 

*Local time is +1 hour from the GMT and observes the Daylight Saving Time. 

 

The quality of the available data degrades at the low and high wavelength 

edges of both Eagle and Hawk sensors. The bands for Eagle were restricted 

to the bandwidth 450-900 nm and for Hawk to 1000-2400 nm. Along-track 

mean values were then calculated and plotted to stress the variation in 

illumination differences across the image lines. Cross-track illumination 

correction was applied on the samples of each image. A 2nd order polynomial 

function and an additive correction method were fit. The output of the 
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process (i.e. .bsq file) was converted to a .bil file format which is an acceptable 

format for the atmospheric correction plug-in. 

5.5.2 Atmospheric correction 

As solar electromagnetic radiation propagates through the earth’s atmosphere, 

it interacts with gases and aerosols through absorption, reflection and 

scattering. This process is wavelength dependent and therefore is especially 

noticeable in hyperspectral imagery. Below 290 nm almost the entire incoming 

solar radiation is attenuated by molecular oxygen (O2) and ozone (O3). In the 

optical spectral region atmosphere does not absorb considerably, while in the 

infrared radiation is absorbed moderately by water vapour (Seinfeld et al. 

2012) at bands centred at 940 nm, 1140 nm, 1380 nm and 1880 nm, as well as 

by molecular oxygen (O2) at 760 nm, CO2 at 2010 nm and 2080 nm and other 

gases such as carbon monoxide (CO), nitrous oxide (N2O) and methane 

(CH4) (Van der Meer, 2001). Apart from gases, tropospheric aerosols 

contribute to reflection. However and contrary to the atmospheric gases, their 

spatial and temporal distribution fluctuates strongly as a consequence of their 

week-long lifetime (Kaufman et al. 2002). 

To add in the complexity, the adjacency effect also affects recorded radiation, 

a term referring to the occurrence of optical path interference between 

reflectances from adjacent surface materials (Burazerović et al. 2013), with a 

prominent example being that of coastlines, where existence of water and 

land, two materials with different spectral behavior, are merging. More 

specifically, a proportion of photons reflected from the one surface will be 

dispersed in the air due to atmospheric backscattering, and thus can be 

deflected in the radiance path of the second material, as recorded by the 

instrument. This spectral contamination is prominent especially at short 

wavelengths in scenes containing large reflectance contrast (Richter et al. 

2006). Such a case is macrophytes growing in Lake Balaton, the water of 

which is characterized by high reflectivity in the optical domain due to the 
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suspended sediment, submerged macrophytes and high chlorophyll 

concentration. Several studies have attempted to develop algorithms for 

correcting the phenomenon (i.e. Santer and Schmechtig, 2000, Sanders et al. 

2001, Sterckx et al. 2011) nevertheless popularly the effect is accounted for in 

established atmospheric correction models.  

The correction is deemed necessary if the radiation reflected by the target 

material on the ground is to be estimated. Atmospheric correction was 

implemented in the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH), which is part of the ENVI atmospheric correction 

module (ITT Visual Information Solutions, 2009). FLAASH is a first-

principles atmospheric correction tool based on a modified version of the 

MODTRAN4 radiation transfer code (Matthew et al. 2000) to correct 

wavelengths in the visible through near-infrared and shortwave infrared 

regions up to 3μm. MODTRAN is a well-established atmospheric radiance 

transfer code reported to outperform other radiation transfer codes (Staenz et 

al. 2002) and on which the major atmospheric correction commercial software 

is based on (i.e. FLAASH and ATCOR-4). Another atmospheric correction 

method considered was the QUick Atmospheric Correction (QUAC) which is 

a more automated and approximate method than FLAASH in the sense that 

the algorithm does not feed on information from the user about the 

illumination conditions but rather derives it from within the scene. QUAC 

also does not account for the adjacency effect neither scene average visibility 

and requires several material to be encountered in the scene, including a dark 

pixel. QUAC yielded similar results (Figure 5.3), however due to the simplicity 

of the underlying theory, it was decided to implement the more sophisticated 

FLAASH algorithm. After taking into account the time period of the airborne 

campaign and the geographical position of the study area, the mid-latitude 

summer atmospheric model was used. No aerosol model was accounted for as 

in the scene there is a lack of dark pixels, which is necessary for the 
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implementation of aerosol integration (Kaufman et al. 1997). Instead, the 

aerosol amount was estimated by the visibility which was set to 50 km in 

agreement with the atmospheric conditions on the day of the acquisition and 

confirmed by the local METAR report. The CO2 mixing ratio was set to 404 

ppm. Spectral polishing was used with a width of 9 spectral channels. The 

ground elevation at the Lake is approximately 80 m above sea level and can be 

assumed constant for the purpose of atmospheric correction as the terrain 

around the Lake is in principle flat. The rest of the input for FLAASH was 

taken from the navigation file recorded during the flight campaign for each 

individual scene. A list of the parameters used and further explanation is 

provided in Appendix 4.  

A total of 188 images were corrected with water absorption intensity 

calculated from each individual image from bands including the 820 nm and 

1135 nm wavelength for eagle and hawk instruments respectively. Overall the 

atmospheric correction provided typical spectral responses for the 

 

Figure 5.3: Comparison of the spectral signature of a reed pixel from the raw data, QUick Atmospheric Correction 

(QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 
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vegetation contained in the image (Figure 5.3). No artefacts were apparent, 

due to the clear sky conditions at the time of image acquisition and the lack of 

open water absorbing bodies around the mesotrophic Kerekedi bay. 

5.5.3 Geometric correction 

Airborne collected data differ from satellite products in the sense that during 

image acquisition the airplane is moving through the atmosphere and small 

fluctuations in the motion of the aircraft can result in large distortions in the 

raw image. For this reason, simultaneous acquisition of the aircraft’s motion 

variables is necessary in order to place the measurements into a precise 

geographical reference (Bange et al. 2013). These variables include altitude, 

attitude (yaw, pitch and roll angles), position and velocity of the aircraft and 

are acquired from on board integrated IMU/GNSS devices. Furthermore, the 

comparatively short distance between the aircraft and the target introduces 

systematic distortion in the image as well as unsystematic depending on the 

terrain roughness, which deems necessary to take into account the topography 

of the area if geodetic accuracy is to be achieved.  

The geometric registration was applied with the open–source Airborne 

Processing Library software v3.1.4 (Warren et al. 2014). The algorithm is 

designed to geographically register the raw imagery by taking into account 

bore-sight information recorded during the flight. The DSM extracted from 

the concurrently acquired LiDAR dataset with missing values filled-in from 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) Global DEM (NASA LP DAAC, 2001) was used to increase the 

geometric precision. The two images were registered at the Projected 

Coordinate System UTM (Zone 33N) of the WGS 1984 Datum in a 1.5m x 

1.5 m grid (Figure 5.4). 
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Figure 5.4: Raw image as delivered by the data provider (a) and geometrically registered image on UTM 33N (b) 

depicting the east part of the study area. 

5.6 Training and validation set 

Chen and Stow (2002) make a thorough comparison of common training 

strategies for classification used in the literature and reckon that the training 

approach can affect the classification result. Moreover, they claim that the 

training has a higher influence on the result when applied on fine rather than 

coarse resolution images. Information on vegetation species and geolocation 

of pure areas formed the basis for selecting the training and validation sets. 

For the reed-specific categories, close collaboration was established with 

ecologists with experience of the study area. A set of polygons was selected on 

the hyperspectral image representing 7 emergent-vegetation classes of interest. 

A stratified random sampling (probabilistic method of sampling) was followed 

for the reason of minimizing variability within different zones of the image 

area. The sampling area was divided in large zones and each one was assigned 

a number of sample units proportional to its area. The position of the units 
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then was defined randomly and the size of the samples was proportional to 

the size of the class they represent. The concurrently acquired aerial 

photography was used to assure coherency of the polygons. The set was 

divided in two groups, one used for training the classifier and the other for 

validating the results.  

5.7 Methodology 

5.7.1 Input layers 

The input layers for the classification process have been prepared based on 

the Eagle, Hawk and LiDAR data sources as of Figure 5.5. The first input 

layer was extracted from the Eagle dataset by removing the noise from the 

hyperspectral images. The second input layer was created in a similar manner 

from the Hawk data. The third image input for the classification is a layer 

stack of indices as identified from previous chapters and others employed 

frequently in the literature. Finally the last input layer is based on the 3 PCs of 

the Eagle image and the DCM as extracted from the LiDAR data. PCs were 

used as representative bands inheriting most of the information from the raw 

image and was preferred over the MNF eigenvalues as MNF main function is 

to reduce the noise rather than compacting the information of data. The steps 

for each of the 4 datasets is described in detail in the sub-chapters below.  
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Figure 5.5: Workflow indicating the preparation of input layers for the classification process based on the Eagle, 

Hawk and LiDAR pre-processed datasets.  

5.7.1.1 Eagle data 

Due to the nature of hyperspectral data, the spectral bands are highly 

correlated and the dataset in whole contains a large degree of redundancy. A 

Minimum Noise Fraction (MNF) transformation (Green et al. 1988) can be 

applied to eliminate the noise, reduce the dimensionality of the data and hence 

the computational requirements without important loss of information. 

Subsequently, the components (i.e. eigenvalues) of the transformation which 

are unaffected from noise can be inversed back to the real hyperspace. 

Nevertheless, these transformations are not improving the performance, but 

just speed up the classification, as indicated by Musci et al. (2008) who found 

no considerable differences when classifying AISA hyperspectral imagery 
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based on the original scene, the forward MNF and the inversed MNF. 

Controversially, Pandey et al. (2014) in a study using similar data found that 

the classification accuracy improves in case ML algorithm is applied on the 

MNF in comparison to the total number of bands. 

 

Figure 5.6: Eigenvalues of the Eagle image (a) and depictions of the Minimum Noise Fraction (MNF) 

transformation corresponding to bands number 1 (b), 4 (c), 9 (d), 14 (e) and 16 (f). Noise is considerably higher 

than the information content after band 14 and hence all the bands after this threshold have been dropped. 

Forward MNF transformation was applied on the Eagle image. Based on the 

eigenvalues and the corresponding MNF bands, the first 14 transformed 

bands were selected as the threshold where information is still more 

prominent in the image in comparison to noise (Figure 5.6). 

5.7.1.2 Hawk data 

Hawk data have been provided along with the Eagle imagery; nevertheless the 

coverage of the whole reed bed is not complete due to its narrower swath and 

adjacent images do not overlap. This appears as a wide missing stripe at the 

edge of the individual images. Furthermore, Hawk suffers from regular 

dropped frames, resulting in missing lines in the image. The integration of the 

Hawk data in the methodology was attempted provided the best results and 
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evaluate the usefulness of the infrared spectral domain in wetland vegetation 

mapping. A similar methodology as for Eagle data was followed for 

processing the Hawk data. Bands between 1336-1462nm and 1791-1967nm 

have been excluded as they are largely affected by atmospheric absorption. 

The MNF was then calculated and the first 11 eigenvalues selected in a similar 

procedure as described in the previous part (Figure 5.7).  

5.7.1.3 Joint classification of LiDAR and Eagle data   

LiDAR data can indirectly provide information on height and structure of the 

canopy, which is an independent and complimentary to spectroscopy source 

of information for classes on the ground. In this part the difference of the 

first and last LiDAR returns, representing the material height, was used with 

the hyperspectral data to classify the area of interest. In a similar attempt 

Dalponte et al. (2008) merged hyperspectal information with elevation and 

intensity channels from LiDAR resulting to a slight increase in classfication 

accuracy. 

First and last discrete LiDAR returns were used to extract the DSM and DTM 

respectively. Subsequently the Digital Canopy Model (DCM) was calculated by 

subtracting the DTM from the DSM at a 2.5m raster grid. Despite the fact 

that the DCM derived from moderate-density LiDAR data underestimates the 

canopy height (Zlinszky et al. 2012), it is however associated to the canopy 

height characteristics. Thereafter the DCM of the two adjacent stripes were 

mosaicked and resampled to 1.5m pixel size. Finally the first 3 Principal 

Components (PCs) from the Eagle image were extracted and combined with 

the DCM to enhance the information content.  

5.7.1.4 Indices fusion 

A classification scheme based on products derived from the hyperspectral 

image was attempted. The first three PCs from the Eagle image were 

calculated. The narrowband empirical indices NDVI and PRI (table 4.2) were  



 102   
 

 

Figure 5.7: Eigenvalues of the Hawk image (a) and depictions of the Minimum Noise Fraction (MNF) 

transformation corresponding to bands number 1 (b), 4 (c), 9 (d), 11 (e) and 12 (f). Noise is considerably higher 

than the information content after band 11 and hence all the bands after this threshold have been dropped. 

extracted.  

These are indices heavily used in vegetation related studies as they are 

associated to vegetation characteristics. Furthermore, the band rations 

representing the Fs, Fm’ and PAR per findings of the fluorescence analysis in 

chapter 4 were derived. The individual layers were combined in a composite 

image.  

5.7.2 Reed bed masking and mosaicking 

The interest of this study lays in the reed bed of the Bozsai bay. The 

macrophytes encountered in this natural reserve inherit a diverse and complex 

structure, and it was decided to narrow the focus on the emergent 

macrophytes of this area rather than a more broad vegetation types on the 

lake shore. In essence trees, lake water, bare ground and manmade materials, 

some of which are part of the natural reserve, were excluded however and 

scientifically speaking it is not challenging as identification of trees and other 
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generic classes has already been demonstrated widely in the literature 

successfully.  

A mask from the DCM was derived by selecting all pixels with values between 

0.3 and 3m, range which represents typical macrophytic vegetation. The 

hyperspectral image was subset with the mask to isolate pixels of 

macrophytes. Finally, a mosaicking procedure was undertaken to stitch 

together the two images. No colour balancing was used and a feathering 

distance of 100 pixels was assumed. 

5.7.3 Classification 

Several processing steps were iteratively tested and concluded to the 

methodological workflow presented in Figure 5.8. The classification 

procedure was conducted identically for the 4 different input layers developed 

and using the same training dataset. For each case, a two-step classification 

was followed. The image was first classified based on the main macrophytes 

encountered in the area, namely Phragmites, Typha, Carex and grassland. The 

Phragmites class was used to subset the original input layer again, and this 

subset image was then classified based on the dominance of Phragmites in the 

patch according to the classes of dominant, co-dominant, sub-dominant and 

reed die-back. Subsequently, the two classification products were merged with 

the sub-classes of Phragmites substituting the generic class Phragmites in the 

main classification. This scheme was applied twice, first based on the ML 

algorithm and a second time based on SVM for each input layer. Expert 

knowledge and the concurrently acquired orthophotos during the field 

campaign were used to conduct the accuracy assessment based on an error 

matrix. Image processing and classification were realized with the software 

ENVI 5.0 (Exelis Visual Information Solutions). The cartographic production 

was carried out in ArcMAP 10.0 (Environmental Systems Research Institute, 

Inc.).  
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Figure 5.8: Workflow of the classification scheme developed through iterative classifications and evaluations for 

mapping emergent vegetation. The two step approach involves classification of the image based on the main macrophyte 

species (Phragmites, Typha, Carex and grassland) and subsequently isolation of the Phragmites class and 

classification of the latter based on the dominance of Phragmites (dominant, co-dominant and sub-dominant) and reed 

die-back. At the final stage the two classification results are merged with the Phragmites-specific classification overlaid 

over the macrophyte species map. The result is assessed quantitatively based on expert knowledge and concurrently 

acquired orthophotos.  

5.7.4 Accuracy assessment 

Remotely sensed imagery is especially suitable for vegetation mapping 

purposes, however the output of the classification procedure has no credibility 

unless its accuracy is assessed and quantified (Chen et al. 2004). A mainstream 

methodology for accuracy assessment was followed based on an error matrix 
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(contingency table) as suggested by Congalton (1991). An approach presented 

by Dalponte et al. (2008) in a study employing similar data has been adapted. 

As already mentioned, in-situ floristic information synergistically with the 

concurrently acquired high resolution ortho-photos and expert knowledge 

were combined to create the validation polygons. More specifically, based on 

the validation set collected as described in section 5.6, the validation polygons 

were overlaid on the high resolution ortho-photos. The latter was used 

together with expert-knowledge to decide on the class information for the 

polygon; Given the homogeneity of the polygon, which was taken into 

account when designing the sample polygons, the ascribed classed were 

considered are the truth data. The accuracy assessment was carried out 

thereafter comparing in essence the resultant thematic map with the truth 

data.  

5.8 Results and discussion 

Figure 5.9 and Figure 5.10 present the results of the classification based on 

ML and SVM algorithms respectively and for each data source. Table 5.3, 

Table 5.4, Table 5.5 and Table 5.6 present the error matrix of the accuracy 

assessment for each data source independently. The maps contain solely 

classes of emergent macrophytes typically encountered around Lake Balaton. 

The overall accuracy ranges from 41.79% for the LiDAR dataset with ML 

classification to 88.64% for the Eagle dataset with SVM. In general SVM 

provides better results than ML, a fact which is also observed in a similar 

study mapping submerged macrophytes by Hunter et al. (2010a). Some errors 

exist between the different classes of reed and especially the classes 

encountered at the edge of the reed bed, i.e. reed die-back and sub-dominant 

reed.  

Reed in the central part of the reed bed was classified as co-dominant and 

botanical surveys support this finding, while at the edges (both terrestrial and 

waterward) of the reed bed and especially in the thin sliver at the west reed 
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seems to compete with other macrophyte species. The main class (i.e. 

Phragmites) typically grows in the same environment with other macrophyte 

species and grasses, and hence the dominant class in all classification results is 

reed co-dominant which occupies the main reed bed. Co-dominant reed is 

very accurately classified by SVM in the cases of Eagle and Indices layers with 

96% and 97% producer accuracy. Pure reed (i.e. reed dominant) is 

encountered at a small part of the Lake shore east of the Typha island, part 

which is correctly classified with both ML and SVM in all data sources except 

LiDAR; in the case of SVM this part is only slightly containing reed dominant 

pixels while with ML a large part of the image is classified as reed dominant 

which is incorrect. The canopy structure information contained in the LiDAR 

does not assist in the classification of this class. SVM shows a higher accuracy 

for Eagle and Indices data sources (84% and 68% respectively) in comparison 

to ML, however when classifying Hawk data ML has an advantage of 

producer accuracy 60% over 40% for SVM. It is worth noting that reed 

dominant has the lowest accuracy across macrophytes, as homogeneous and 

pure patches of Phragmites are not frequently encountered in the Bozsai bay 

and to an extent they always contain a degree of other macrophyte species 

within a pixel. Reed sub-dominant contains reed as a minority within other 

macrophytes, and is encountered at the edge of the reed bed, where terrestrial 

vegetation and grass grow in favorable conditions. ML and SVM are 

classifying the east part of the reed bed as reed sub-dominant as well as fringe 

areas of the reed bed. One important difference is found on the north part of 

the reed bed where there is a sliver of grassland as indicated by SVM 

classifications of Eagle image and the Indices image, however ML classifies 

this part mainly as reed subdominant which is incorrect. ML always provide 

better producer accuracy that SVM, while the opposite is realized for the case 

of user accuracy; in essence this means that SVM results show a realistic map 

of sub-dominant reed, however several pixels from the validation set have not 
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been labeled correctly by SVM and therefore some pixels of this class are 

misclassified as other classes on this map.  

Reed die-back is encountered at the waterward edge of the north-east part of 

the reed bed mainly as fragmented patches of water reed. Reed die-back is 

confused mainly with reed sub-dominant and to a less extent with Typha, as it 

is mainly neighboring with the first and the fringe of the Typha island is 

misclassified as die-back in several cases in regard to the latter. This also 

means that spectrally, and at 1.5m spatial resolution, die-back is different than 

the more homogeneous classes of dominant and co-dominant reed. SVM 

overestimates the extent of reed die-back in the case of Eagle data in 

comparison to the ML results, while the opposite is the case for the Indices 

composite image. LiDAR data in the case of ML presents an unrealistic result 

while SVM indicates realistically the extend of the die-back reed; this might be 

attributed to the fact that ML is not performing well when classifying multi-

source images while SVM is not confused with this approach. In overall ML 

seems to perform weaker when classifying datasets of different data types, 

such as the LiDAR or the Hawk data integration with Eagle imagery.  

It is worth commenting that the literature is controversial on the capability of 

imaging spectroscopy on mapping vegetation stress. Swatantran et al. (2011) 

for example mention that hyperspectral data can provide information such as 

stress on canopy state, while Leckie et al. (2005) attempted unsuccessfully to 

include unhealthy classes of species in a classification of old growth temperate 

conifer forest canopies. In this study representative polygons of reed die-back 

areas were selected, however reed die-back is a dynamic phenomenon 

characterizing the physiological condition of a plant and not a vegetation 

category with concrete boundaries. As such reed die-back areas are indicated 

by the fragmentation of the reed patch rather than the physiological status of 

the plant in this classification scheme. For a more representative estimation of 

the physiological status, spectral indices can show the degree to which the area 
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is stable as it was demonstrated in chapter 4. However when integrating the 

die-back class in a macrophytes classification scheme, it provides an indication 

of fragmented and sparse reed patches which are under unfavourable 

environments at the period of image acquisition and hence potentially 

associated to reed die-back conditions.  

Typha, occupying the small island in the centre of the image, is correctly 

classified by all ML results, however in the cases of the indices and LiDAR 

layers several Typha patches are indicated in the reed bed. In the SVM 

classification the Eagle classification provides similar to the ML results, the 

Indices and LiDAR layers indicate the outer buffer zone as reed co-dominant. 

Typha is often confused with other assemblages of Phragmites, fact which is also 

reported in a similar study from Maheu-Giroux and de Bloisa (2005) in a 

similar study using colour aerial photography. Carex is encountered at the west 

of the reed bed, classified correctly only in the case of Eagle data for both 

algorithms with 82% and 94% user accuracy respectively; however when using 

the Hawk data ML does not classify any pixel as Carex and instead replace it 

with Typha. SVM on the other hand presents an area restricted in size. In the 

case of Indices and LiDAR, there is a fragmented distribution in other parts 

of the image as well for the ML classification, while SVM does not classify 

Carex pixels. Again the most representative source for pure macrophytes 

species is coming from Eagle.  

Grassland is a class differing in the height of the foliage and hence it would be 

expected to be distinguished from the LiDAR composite image, however this 

is not the case for ML (producer accuracy 6%); SVM only partially classifies 

the sliver on the north part of the image (producer accuracy 39%). ML in all 

cases does not perform satisfactorily in the case of grassland as it is most 

often classified as reed sub-dominant. This fact in some very parts is true as 

the transition from the reed bed to the grassland does not have a concrete 

boundary, however it is a smooth transition occupying a buffer zone where 
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the two species co-exist in different proportions. SVM applied on the Eagle 

dataset is outperforming considerably for the grass class with 92% producer 

accuracy and 97% user accuracy.  

 

Figure 5.9: Thematic maps from the ML classification of the Eagle (a), Hawk (b), Indices from Eagle (c) and 

LiDAR combined with Eagle PCs of the macrophyte main species and Phragmites associations at Bozsai bay, Lake 

Balaton. 
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Figure 5.10: Thematic maps from the SVM classification of the Eagle (a), Hawk (b), Indices from Eagle (c) and 

LiDAR combined with Eagle PCs of the macrophyte main species and Phragmites associations at Bozsai bay, Lake 

Balaton. 
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Table 5.3: Confusion matrix illustrating the results of the classification on Eagle data with Maximum Likelihood 

(ML) and Support Vector Machines (SVM) algorithms. All values except the Kappa coefficient are in percentages. 

 Typha Grassland Carex Reed 

dominant 

Reed co-

dominant 

Reed sub-

dominant 

Reed die-

back 

User 

Accuracy 

 ML SVM M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

Typha           

95  

                   

54  

                      

-  

                      

-  

                      

-  

                      

-  

                     

6  

                     

1  

                     

0  

                     

0  

                     

0  

                     

1  

                     

1  

                     

5  

                   

81  

                   

75  

Grasslan

d 

                      

-  

                      

-  

                   

25  

                   

92  

                      

-  

                      

-  

                      

-  

                      

-  

                      

-  

                     

0  

                      

-  

                     

0  

                      

-  

                     

1  

                 

10

0  

                   

97  

Carex                       

-  

                      

-  

                      

-  

                      

-  

                   

95  

                   

84  

                      

-  

                      

-  

                     

0  

                     

0  

                     

3  

                     

0  

                      

-  

                      

-  

                   

82  

                   

94  

Reed 

dominan

t 

                      

-  

                   

19  

                      

-  

                     

0  

                      

-  

                      

-  

                   

65  

                   

84  

                     

6  

                     

2  

                     

0  

                     

2  

                      

-  

                     

3  

                   

43  

                   

65  

Reed co-

dominan

t 

                      

-  

                   

10  

                     

3  

                     

1  

                     

1  

                   

14  

                     

0  

                   

11  

                   

86  

                   

96  

                     

4  

                   

14  

                      

-  

                     

1  

                   

98  

                   

92  

Reed 

sub-

dominan

t 

                     

1  

                     

2  

                   

69  

                     

6  

                     

4  

                     

1  

                   

24  

                     

0  

                     

7  

                     

2  

                   

89  

                   

75  

                   

26  

                   

13  

                   

71  

                   

92  

Reed 

die-back 

                     

4  

                   

15  

                     

2  

                      

-  

                      

-  

                      

-  

                     

3  

                     

2  

                     

1  

                      

-  

                     

2  

                     

6  

                   

68  

                   

72  

                   

49  

                   

37  

Producer 

accuracy 

                   

95  

                   

54  

                   

25  

                   

92  

                   

95  

                   

84  

                   

65  

                   

84  

                   

86  

                   

96  

                   

89  

                   

75  

                   

68  

                   

72  

    

Overall 

Accuracy 

83.22

% 

88.64

% 

 

Kappa 

Coefficie

nt 

0.72 0.8  
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Table 5.4: Confusion matrix illustrating the results of the classification on Hawk data with Maximum Likelihood 

(ML) and Support Vector Machines (SVM) algorithms. All values except the Kappa coefficient are in percentages. 

 Typha Grassland Carex Reed 

dominant 

Reed co-

dominant 

Reed sub-

dominant 

Reed die-

back 

User 

Accuracy 

 ML SVM M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

Typha             

63  

            

59  

              

3  

              

0  

            

29  

               

-  

              

0  

              

0  

              

0  

              

0  

              

0  

              

0  

               

-  

              

2  

            

44  

            

79  

Grasslan

d 

               

-  

            

15  

               

-  

            

69  

               

-  

               

-  

               

-  

              

3  

               

-  

              

0  

               

-  

              

1  

               

-  

              

4  

               

-  

            

79  

Carex                

-  

               

-  

               

-  

               

-  

               

-  

            

30  

               

-  

              

0  

               

-  

              

0  

               

-  

              

4  

               

-  

               

-  

               

-  

            

56  

Reed 

dominan

t 

              

4  

              

4  

               

-  

               

-  

               

-  

               

-  

            

60  

            

40  

            

22  

              

8  

              

0  

              

1  

              

9  

            

26  

            

15  

            

23  

Reed co-

dominan

t 

            

29  

            

20  

            

46  

            

26  

            

38  

            

57  

            

14  

            

42  

            

63  

            

85  

              

2  

              

3  

              

5  

              

1  

            

87  

            

89  

Reed 

sub-

dominan

t 

              

4  

              

1  

            

50  

              

5  

            

33  

            

12  

            

13  

              

8  

            

15  

              

6  

            

94  

            

86  

            

20  

              

8  

            

63  

            

82  

Reed 

die-back 

               

-  

              

1  

               

-  

               

-  

               

-  

               

-  

            

12  

              

5  

               

-  

               

-  

              

1  

              

2  

            

41  

            

34  

            

43  

            

46  

Producer 

accuracy 

            

63  

            

59  

               

-  

            

69  

               

-  

            

30  

            

60  

            

40  

            

63  

            

85  

            

94  

            

86  

            

41  

            

34  
    

Overall 

Accuracy 

64.44

% 

79.49

% 

 

Kappa 

Coefficie

nt 0.45 0.65 
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Table 5.5: Confusion matrix illustrating the results of the classification on Indices dataset with Maximum 

Likelihood (ML) and Support Vector Machines (SVM) algorithms. All values except the Kappa coefficient are in 

percentages. 

 Typha Grassland Carex Reed 

dominant 

Reed co-

dominant 

Reed sub-

dominant 

Reed die-

back 

User 

Accuracy 

 ML SVM M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

Typha           

57  

            

20  

               

-  

               

-  

               

-  

               

-  

            

23  

            

10  

            

10  

              

1  

              

2  

              

1  

              

3  

              

3  

            

12  

            

26  

Grassland 
               

-  

               

-  

              

7  

            

68  

               

-  

               

-  

               

-  

               

-  

               

-  

              

0  

               

-  

              

0  

               

-  

              

4  

         

10

0  

            

97  

Carex                

-  

               

-  

               

-  

               

-  

            

81  

               

-  

               

-  

               

-  

              

4  

               

-  

              

0  

               

-  

               

-  

               

-  

            

57  

               

-  

Reed 

dominant 

              

7  

              

9  

              

1  

              

1  

               

-  

               

-  

            

55  

            

68  

              

2  

              

0  

            

13  

            

20  

              

2  

              

7  

            

33  

            

34  

Reed co-

dominant 

            

30  

            

68  

              

3  

              

9  

            

13  

            

97  

              

5  

            

18  

            

74  

            

97  

              

8  

            

21  

              

1  

              

1  

            

93  

            

83  

Reed sub-

dominant 

               

-  

               

-  

            

84  

            

18  

              

6  

              

3  

              

8  

              

0  

              

9  

              

1  

            

70  

            

54  

            

31  

            

37  

            

63  

            

84  

Reed die-

back 

              

6  

              

3  

              

5  

              

3  

               

-  

               

-  

              

7  

              

2  

               

-  

              

0  

              

5  

              

2  

            

58  

            

43  

            

32  

            

45  

Producer 

accuracy 

            

57  

            

20  

              

7  

            

68  

            

81  

               

-  

            

55  

            

68  

            

74  

            

97  

            

70  

            

54  

            

58  

            

43  
    

Overall 

Accuracy 

69.0

5% 

77.69

% 

 

Kappa 

Coefficient 0.52 0.59 
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Table 5.6: Confusion matrix illustrating the results of the classification on LiDAR fused dataset with Maximum 

Likelihood (ML) and Support Vector Machines (SVM) algorithms. All values except the Kappa coefficient are in 

percentages. 

 Typha Grassland Carex Reed 

dominant 

Reed co-

dominant 

Reed sub-

dominant 

Reed die-

back 

User 

Accuracy 

 ML SVM M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

M

L 

SV

M 

Typha             

41  

              

8  

              

1  

               

-  

              

0  

               

-  

            

17  

              

1  

            

11  

              

0  

              

3  

              

2  

              

2  

              

6  

              

9  

            

14  

Grasslan

d 
               

-  

               

-  

              

6  

            

39  

               

-  

               

-  

               

-  

               

-  

               

-  

               

-  

               

-  

              

0  

               

-  

              

0  

         

10

0  

            

96  

Carex                

-  

               

-  

               

-  

               

-  

            

73  

               

-  

               

-  

               

-  

              

4  

               

-  

              

1  

               

-  

               

-  

               

-  

            

54  

               

-  

Reed 

dominant 

            

33  

              

7  

              

0  

               

-  

              

0  

               

-  

            

63  

            

51  

            

38  

            

10  

            

17  

              

7  

              

3  

              

6  

              

9  

            

20  

Reed co-

dominant 

              

2  

            

80  

              

1  

              

4  

            

17  

            

95  

            

13  

            

44  

            

31  

            

87  

              

5  

            

35  

               

-  

              

4  

            

88  

            

76  

Reed 

sub-

dominant 

              

5  

              

0  

            

92  

            

57  

              

8  

              

5  

              

1  

              

1  

            

13  

              

2  

            

65  

            

50  

            

29  

            

28  

            

56  

            

73  

Reed die-

back 

            

19  

              

5  

               

-  

              

0  

              

1  

               

-  

              

4  

              

1  

              

3  

              

0  

              

7  

              

3  

            

60  

            

49  

            

18  

            

45  

Producer 

accuracy 

            

41  

              

8  

              

6  

            

39  

            

73  

               

-  

            

63  

            

51  

            

31  

            

87  

            

65  

            

50  

            

60  

            

49  
    

Overall 

Accuracy 

41.79

% 

68.72

% 

 

Kappa 

Coefficie

nt 0.26 0.43 

 

 

5.9 Conclusions 

A set of classification results derived from the application of ML and SVM 

algorithms on 4 different airborne data sources has been presented. 

Hyperspectral Eagle, Hawk and LiDAR data have been used independently 

and synergistically to map emergent macrophytes at a nature protected area on 

Lake Balaton. A detailed representation of most classes under study is 

achieved, a result which can be attributed to the concurrent very high spectral 

and spatial resolution of the imagery.  
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Significant pre-processing is required to be applied on the airborne 

hyperspectral data before undertaking classification, which might prove to be 

time and effort consuming when handling large datasets. While classification 

techniques can be automated given the availability of a training set, pre-

processing is site- and image-specific and the intervention of the user is 

essential. Field data are an important part of mapping aquatic vegetation; a 

classification based solely on the airborne imagery and without the 

contribution of information on the ecological status of the training samples 

would provide incomprehensible results in this study.  

Phragmites is growing in the same environment with other macrophytes and 

grasses, especially in the terrestrial part of the reed bed. Hence, there is an 

abundance of reed within a pixel. In this study a categorical approach of reed 

abundance and other macrophytes species as well as grass was adhered. The 

reed sub-classes show a high degree of separability, with the most prominent 

class (i.e. co-dominant reed) exhibiting 96% producer accuracy and 92% user 

accuracy (SVM applied on Eagle data). Reed die-back is the most challenging 

case of vegetation mapping and unique since it refers to a state of 

deterioration of the vegetation species rather than species or association of 

species. Nevertheless, fragmentation at the edge of the reed bed is associated 

to the consequences of the die-back conditions and hence the extent to which 

the reed bed is affected. SVM outperforms ML, mainly in regard to the class 

of grassland and provides higher overall accuracy in all data sources, reaching 

an 89% for Eagle data. The joint classification of LiDAR data with the first 3 

PCs from the Eagle image did not perform satisfactorily (overall accuracy 

69%, kappa coefficient 0.43). Macrophytes associations and species 

encountered in a typical reed bed on Lake Balaton are identified using the 

MNF transformation of high spatial resolution hyperspectral data, and 

especially in the visible and near-infrared spectrum.   
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Chapter 6 Sentinel-2 image simulation based on airborne 

hyperspectral data 

6.1 Introduction 

As the previous chapters have shown, airborne and handheld hyperspectral 

systems provide the opportunity to study in detail the ecophysiology of a 

lakeshore environment. This chapter is examining what might be achieved 

from a satellite platform and more specifically from the upcoming Sentinel-2 

superspectral mission.  

Airborne and handheld hyperspectral systems deliver the capability of 

acquiring imagery with fine spatial, spectral and radiometric characteristics; 

nevertheless, the financial cost per unit area is high and routine provision of 

information over large geographic areas can become expensive. Moreover, 

airborne systems lack a consistent viewing geometry as the recorded DN 

values are affected by the airplane’s relative orientation to the sun. For 

example Griffin and Burke (2003) when studying AVIRIS scenes acquired at 

different times during a flight found that for a two-hour flight centred in time 

at solar noon, the retrieved reflectance errors exceeded ±0.10 at visible 

wavebands. With regard to the image’s spatial aspect, orientation relative to 

the earth surface can introduce considerable nonlinear geometric distortions. 

Finally, data products for scientific applications are commonly delivered in 

low level format, inheriting the above misrepresentations and requiring a 

tedious pre-processing procedure. Especially in the case of hyperspectral 

imagery, it is critical to compensate for radiometric, atmospheric, geometric 

and terrain distortions (Perry et al. 1998). 

For the aforementioned reasons airborne data are not regularly employed for 

operational purposes; instead satellite images have been commonly used for 

earth observation. Reduced pre-processing, artefacts and expense to acquire 

satellite products are the main reasons of popularity amongst scientists and 



 117   
 

practitioners. However the trade-off between the fixed spectral, spatial and 

temporal resolution does not always allow for certain applications, such as 

perhaps the fine-scale macrophyte mapping demonstrated in the last chapter. 

For instance Landsat-8, one of the most popular satellites for remote sensing, 

would provide multispectral data in 30m pixel resolution, which is too coarse 

for fine scale habitat mapping. WV-2 on the other hand, the satellite with the 

finest spatial resolution for commercial use, would lack the temporal 

resolution of Landsat as the surface coverage potential of the satellite is too 

small to overpass the same area in regular intervals.  

Sentinel-2 is a twin-satellites mission for supporting the Copernicus 

programme developed by ESA. The open access and free of charge policy 

adapted for the data products is anticipated to foster the use of remotely 

sensed data for routine environmental applications. The satellites will offer a 

high spatial resolution in the spectral domain 443 – 2190 nm for land 

monitoring services (part of which wetlands are) and the first satellite is 

planned to be launched in June 2015. Enhanced specifications include the 

high spatial resolution up to 10m for selected bands and the integration of 

narrowband channels in the red-edge region (ESA 2012). One of the main 

advantages of Sentinel-2, which makes the satellite highly suitable for 

monitoring and inventorying purposes, is the combination of the wide swath 

and the frequent revisiting time.  

The developed provisions of Sentinel-2 in comparison to satellites already in 

orbit will potentially deliver new capabilities in natural habitats mapping. For 

example, Hedley et al. (2012) in a study simulating Sentinel-2 data report an 

increased performance in comparison to Landsat ETM+ when mapping 

tropical coral reefs. Richter et al. (2011) test the potential of Sentinel-2 in 

estimating LAI of three contrasting agricultural crops and suggest that 

Sentinel-2 can deliver quality biophysical parameter estimation through the 

PROSPECT_SAILH model.  
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In a similar manner, it is important to investigate well in advance of the launch 

of Sentinel-2 the potential of the output product in order to assess the 

capabilities, examine the compatibility with satellites already in orbit, ensure 

continuity of image provision with similar specifications and accelerate the 

operational use of the forthcoming imagery. New sensors such as the 

Sentinel-2 are equipped with super spectral resolution, trying to bridge this 

gap. It is yet to be seen whether the addition of extra bands in combination 

with the very high spatial resolution suffices for fine scale aquatic vegetation 

mapping.   

This study aims to evaluate the potential of the forthcoming Sentinel-2 

satellite in mapping lakeshore vegetation at fine scale. The simulation of the 

high spatial resolution (i.e. 10m and 20m) bands of Sentinel -2 was presented 

at the VNIR (Visible and Very Near InfraRed) region of the spectrum from 

the airborne hyperspectral imagery acquired concurrently with AISA Eagle 

and Hawk instruments over the east part of Bozsai bay. The spectral and 

spatial aggregation are derived separately as well as the final Sentinel-2 

simulated product and the reed bed area in the main thematic categories of 

vegetation and main materials is classified. A comparison of the products with 

the classification of the original AISA image is revealing the effect of spectral 

and spatial downscaling and the information lost through this process when 

mapping lakeshore vegetation.  

6.2 Dataset specifications 

Sentinel-2 multispectral sensors are recording incoming radiation in the visible 

and near infrared spectrum at bands designed to provide continuity to pre-

existing multispectral satellite missions such as the Landsat. An additional 4 

narrow bands in the red-edge region are included and with the aim to provide 

enhanced capabilities in vegetation studies (e.g. Delegido et al. 2011). The 

spatial resolution depends on the channel and is set to 10m, 20m and 60m 

(Table 6.1), the latter being bands for the purposes of atmospheric correction 
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from information within individual images, step necessary in several 

vegetation studies deriving biophysical parameters, time series analysis or 

transferability studies. The bands’ resolution at 10m is at a scale where fine 

pattern information on aquatic vegetation may be achieved (Figure 6.2).  

The study area is defined as the east part of the Bozsai bay, presented and 

classified in the previous chapter (Figure 6.1). The data used for the 

simulation are the concurrently acquired Eagle and Hawk hyperspectral 

overlapping stripes over the East part of the bay, also presented in an earlier 

chapter. Both datasets inherit a higher spectral, spatial and radiometric 

resolution compared to the Sentinel-2 announced specifications (ESA 

Sentinel-2 Team 2010) and therefore simulation by spectral and spatial up-

scaling is feasible (Table 6.1). The aircraft flying orientation was planned to a 

north-south bearing analogous to the direction of the polar orbit (inclination 

98.5º) of Sentinel-2 satellite. It is worth noting the difference of coverage 

between the AISA system and Sentinel-2 in Figure 6.1; the area covered by the 

airborne image is small due to the low altitude of the aircraft; conversely the 

290km swath of Sentinel-2 assures a very large coverage where the whole Lake 

Balaton is included in a maximum of 2 overpasses.  

Table 6.1: Simulated bands of Sentinel-2 (greyed) and specifications of instruments. 

Band # Central wavelength Bandwidth 

(nm)(nm) 

Spatial resolution Radiometric resolution 

1 443 nm 20 nm 60 m 12-bit 

2 490 nm 65 nm 10 m 

3 560 nm 35 nm 10 m 

4 665 nm 30 nm 10 m 

5 705 nm 15 nm 20 m 

6 470 nm 15 nm 20 m 

7 783 nm 20 nm 20 m 

8 842 nm 115 nm 10 m 

8b 865 nm 20 nm 20 m 

9 945 nm 20 nm 60 m 

10 1380 nm 30 nm 60 m 

11 1610 nm 90 nm 20 m 

12 2190 nm 180 nm 20 m 
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Figure 6.1: Study area in Lake Balaton, Hungary and the wide swath (290 km) of Sentinel-2. 

 

Figure 6.2: RGB representation (665nm, 560nm, 490nm) of the simulated Sentinel-2 image. The white stripe 

indicates missing data due to systematic dropping lines of the Hawk sensor. Insets: subsets of the central reed bed area 

of the main image (bottom) and true-colour RGB aerial photo (0.25 m) acquired concurrently with the hyperspectral 

dataset (top). 
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6.3 Methodology 

The methodology is based on the spectral and spatial aggregation of the 

airborne hyperspectral dataset in order to synthesize an image with 

characteristics similar to the Sentinel-2. AISA specifications are superior to 

Sentinel-2 (Table 6.1) and therefore by downscaling the image specifications a 

Sentinel-2 image simulation is feasible. The latter product is a suitable ground 

for testing techniques and methodologies in a pre-operational context.  

The AISA dual image (Eagle and Hawk) was first pre-processed as described 

in chapter 5 by applying radiometric normalization, atmospheric correction 

and geo-registration. Only one strip covering the east part of the bay was used 

as the mosaicking of adjacent images introduces artefacts and reduces the 

radiometric quality of the product. Eagle and Hawk data were merged to 

produce a single image covering the spectrum 400-2500 nm. Thereafter the 

bands outside the spectrum covered by Sentinel-2 channels were removed in 

order to assure comparability between the hyperspectral image and the 

simulated. Subsequently, the following products were derived (Figure 6.3): 

1. The first 10 components of the MNF. This product contains the entire 

information from the data and is considered representative of the 

hyperspectral image in this set-up.  

2. Spectrally resampled image. The Spectral Response Function (SRF) is 

convolved with the hyperspectral data for the spectral resampling. The 

SRF is assumed to be a Gaussian distribution defined by the central 

wavelength and bandwidth (represented by FWHM) of Sentinel-2 

specifications.  

3. Spatially aggregated image. The spatial aggregation is performed 

individually for each narrow band according to the spatial resolution of the 

corresponding Sentinel-2 band (i.e. 10m or 20m) using bilinear 

convolution. Bands with coarse resolution (i.e. 20m) are then down-scaled 

to 10m and merged with the rest of the bands. Subsequently the first 10 
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components of the inversed MNF transformation were derived to reduce 

spectral dimensionality. 

4. Consecutive spectral and spatial resampling (steps 2 and 3 consecutively). 

This product represents the simulated Sentinel-2 image, while the 

individually spectrally and spatially resampled products as described above 

indicate the loss of information due to the individual or and spectral up-

scaling from the hyperspectral airborne data. 

 

The four products are classified using the same parameters and training set. 

Broader classes than the macrophyte-specific classification scheme that was 

set-up in the previous chapter were chosen. This decision was taken on the 

basis that Sentinel-2 products will be more frequently used over large areas 

and in a more generic lakeshore aquatic environment mapping. Classes of 

trees and bare soil were included and the classes of Typha and Carex were 

excluded as they are not encountered in the east part of the Bozsai bay. The 

SVM algorithm was employed as it has provided the best results as per 

chapter 5.  

 

Figure 6.3: Workflow of the methodology, derivation of the four input datasets from the AISA airborne 

hyperspectral imagery.  

Hyperspectral image at Sentinel-2 bands (2m pixel 
resolution) 

Inverse MNF 
transformation 10 

components 

Spectral resampling at 10 
bands of Sentinel-2 

Spatial aggregation at 
10m 

Consecutive spectral and 
spatial resampling 
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6.4 Results and discussion 

As demonstrated in Figure 6.4, Sentinel-2 bands with 10m spatial resolution 

are encountered at the visible and near-infrared spectrum while bands with 

20m spatial resolution are concentrated around the red-edge region as well as 

longer wavelengths at spectral regions encompassing the hyperspectral 

vegetation spectrum. From the spectral point of view, the 10m bands are 

placed at wavebands with key information for vegetation studies in the visible 

domain as is the chlorophyll absorption characteristics and a wide bandwidth 

covering the near-infrared. 20m bands on the other hand have more diverse 

characteristics, with wide bands in the near-infrared and 4 narrow bands 

distributed in the narrow waveband of the red-edge region. It is worth noting 

that the red-edge bands are as narrow to include only 3-5 measurements from 

the corresponding hyperspectral data and therefore inherit a spectroscopic 

nature. Comparing the detail of spectra from the two sources, it becomes 

apparent that the near infrared bands are averaging the hyperspectral 

information available over a spectral region, while in the optical and red-edge 

domain the waveband covered by the Sentinel-2 channels is rather constant, at 

least for the pure monospecific reed pixel demonstrated in this example.  

Table 6.2 presents the Sentinel-2 between-band correlations. The red-edge 

bands are highly correlated, however not as high to be considered identical. 

Taking into account that the target material is vegetation, this translates into 

that the red-edge bands might provide discriminatory information on 

vegetation condition and stress. For instance, the bands at 705 nm and 783 

nm maintain a relatively low value at 0.87. Delegido et al. (2011) have already 

demonstrated the importance of Sentinel’s-2 red-edge bands for the 

estimation of LAI and Chlorophyll content. However, someone has to take 

into consideration that the results are weighted averages from the 

hyperspectral data, and Sentinel-2 sensor might demonstrate different 

robustness in the way radiation is recorded; hence a real image would be  
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Figure 6.4: A spectral profile from a pixel of pure monospecific reed from the combined Eagle and Hawk data (grey) 

and the Sentinel-2 simulated image (colour). 

Table 6.2: Correlation between the spectral channels of the simulated Sentinel-2 image. Bands in bold numbers are 

with correlation < 0.9. 

Central band 490 560 665 842 705 740 783 865 1610 2190 

490 nm    1.00     0.99     0.92     0.51     0.78     0.54     0.51     0.50     0.60     0.62  

560 nm        1.00     0.89     0.56     0.79     0.58     0.56     0.55     0.61     0.60  

665 nm        1.00     0.60     0.90     0.64     0.61     0.60     0.79     0.84  

842 nm            1.00     0.86     0.99     0.99     0.99     0.90     0.74  

705 nm            1.00     0.90     0.87     0.87     0.96     0.92  

740 nm                1.00     1.00     1.00     0.93     0.77  

783 nm                1.00     1.00     0.91     0.74  

865 nm                    1.00     0.91     0.75  

1610 nm                    1.00     0.95  

2190 nm                        1.00  

 

necessary to judge on the inter-band correlation with confidence. The results 

from the classification of the 4 input images is presented in Figure 6.5. The 

intermittent steps of spectral or spatial aggregation present the level of 

information loss due to reduction of the spectral and spatial dimensionality 

respectively, as a result from up-scaling from the airborne hyperspectral 
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image. The consecutive spectral and spatial aggregation is representing the 

simulated Sentinel-2 image.  

Classification of the spectrally aggregated dataset results in a vegetation map 

very similar to the hyperspectral output. This indicates that the near-complete 

spectral information inherited by the Sentinel-2 bands contains vital 

information regarding vegetation targets; indeed in such a classification set-up 

the superspectral characteristics of Sentinel-2 are sufficient and equally 

suitable for lakeshore vegetation mapping. However, it is worth noting that in 

such simulation experiments the effects of the atmospheric path, and how 

well it can be accounted for if a satellite product is used, can not be simulated. 

While FLAASH was suitable for hyperspectral data and provided images at-

target radiance, the spectral resolution and bandwidth of the satellite channels 

will not provide adequate information in order to perform such an accurate 

atmospheric correction; hence someone would expect that the satellite data 

contain an additional source of error, this of the inadequate atmospheric 

correction.  

At spatial aggregation, macrophyte-specific classes are not as well delineated 

as in the hyperspectral image and therefore capability of fine scale mapping 

appears restricted. This may be attributed to the fact that spatial degradation 

results in larger pixels and therefore more classes are encountered within a 

single pixel. Consequently, the image is constructed from mixed pixels and the 

discrimination capability between similar classes is weakened. For instance the 

road network between the bare soil land parcels on the top of the image is not 

identifiable since the road which is narrow compared to the pixel size is 

integrated with the dominant surrounding class. 

With regards to the simulated Sentinel-2 image (i.e. lower right inset of Figure 

6.5), separability between generic classes as well as vegetation species is 

maintained and furthermore all classes are present. Nevertheless, class 

changes occur between macrophytic classes. Thematic consistency in generic 
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classes such as trees, bare soil and reed is maintained; however, discrimination 

capability is constrained when mapping classes which inherit higher inter-class 

spectral variability such as macrophyte associations indicated by misclassified 

patches. The vegetation classes of reed and trees are well separated, 

nevertheless sub-dominant reed and grassland are largely confused in the 

Sentinel-2 simulated image, as a result of the nature of sub-dominant reed 

which most probably includes grassland at the terrestrial part of the reed bed. 

This argument indicates that similar classes, such as the aforementioned, are 

not distinguished as satisfactorily as in the airborne hyperspectral imagery.  

Reed die-back is classified correctly as slivers at the waterward edge of the 

reed bed from the Sentinel-2 data at the 10m resolution and a complete 

lakeshore vegetation status seems to be feasible based on the simulated data. 

Vegetation-specific applications based on Sentinel-2 imagery are further 

supported by the fact that mapping of vegetation vigour requires sound 

atmospheric correction methods. The 60m bands of Sentinel-2 will provide 

atmospheric correction from information on water vapour and aerosol 

derived within the scene and hence Sentinel-2 is especially suited for studying 

biophysical parameters of vegetation. 

Overall, Sentinel-2 performs satisfactorily in classifying wetland ecosystems 

with high discrimination complexity as judged by qualitative assessment. The 

10m spatial resolution allows for detecting fragmented patches at the edge of 

the reed bed, which are the main manifestation of die-back conditions. 

Confusion between macrophyte classes and associations is low at the 

individual spectral aggregation and rather high at the spatial resolution, which 

indicates that mapping of such classes is feasible with the spectral 

characteristics of Sentinel-2 but at a finer pixel resolution than the 10m.  
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Figure 6.5: Classification of the 4 products; highlighted on the lower right the classification result derived from the 

Sentinel-2 simulated image. 

6.5 Conclusions 

Sentinel-2 is the forthcoming satellite with enhanced spectral and spatial 

capabilities anticipated to provide further potential in habitat mapping and 

classification of such complex scenes. In the framework of the upcoming 

satellite launch, simulated data are needed to assess the quality of the expected 

product and fruitfully exploit the imagery. 
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In this study a classification from simulated Sentinel-2 imagery was presented, 

synthesized from hyperspectral airborne data over a nature reserve site in 

Lake Balaton in order to assess the suitability of the imagery for fine-scale 

lakeshore vegetation mapping. An SVM supervised classification of Sentinel-2 

simulated image in comparison to the MNF transformation of the 

hyperspectral source image, shows that thematic consistency of generic classes 

such as trees, bare soil and reed, is maintained; however when mapping classes 

inheriting higher inter-class spectral variability (e.g. macrophytes associations) 

the discrimination capability is constrained. The information is well preserved 

in spectral resample while spatial up-scaling introduces clumping of classes 

and mixed pixels. The very large swath of Sentinel-2 (i.e. 290 km) provides the 

opportunity of large scale main categorical mapping of large wetlands. It is 

foreseeable that the upcoming Sentinel-2 data will enable users to derive 

frequent products of aquatic vegetation with wide area coverage, high spatial 

resolution (i.e. 10m) and a thematic consistency. This study adds to the already 

documented high potential of Sentinel-2 for demanding earth observational 

needs (Malenovský et al. 2012). Further research on the usefulness of the 

introduced narrow-width red-edge bands is required to investigate in what 

degree it can assist in stress mapping and biophysical parameters estimation.  
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Chapter 7  

Contribution to science 

7.1 Conclusions 

This part presents the findings of the work cumulatively in the framework of 

the literature review presented in the beginning of the Thesis. This study has 

been centered on the die-back phenomenon and this document presents, to 

the author’s knowledge, the first investigation of reed stability in general, and 

hence die-back indications, from the imaging spectroscopy perspective. The 

results were evaluated with regards to the scientific questions raised and a 

report on the contribution of the study in the scientific ongoing efforts is 

given.   

Chapter 3 deals with the spectral characteristics of emergent macrophytes 

from proximate recorded data. The main species at Lake Balaton (i.e. 

terrestrial reed, aquatic reed, Typha and Carex) have separating spectra in the 

400-1000nm domain at leaf scale; especially reed is differentiated in the red 

region considerably. Reed die-back samples present a higher reflectance at the 

visible spectrum at leaf scale; the same observation can be made at canopy 

scale. However the 95% confidence interval is too wide to draw conclusions, 

it appears that die-back phenomenon inherits several canopy-related 

manifestations (mainly illumination geometry) and Phragmites in general 

presents too high heterogeneity at canopy scale to make safe conclusions. The 

same applied with red-edge inflection point shift, which statistically is 

important at leaf scale but not at canopy scale. Phragmites phenological state is 

also spectrally diverging at canopy scale according to the dried ramets and 

inflorescence found in the field of view. Nevertheless, sun and shade leaves 

do not present any reflectance discrepancies at leaf scale. Finally, a spectral 

analysis of reed samples collected along a transect perpendicular to the lake 

shore reveals that spectra are diversifying significantly according to the depth 
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the ramets are growing in. This is in absolute agreement with the already 

advocated fact that phenotypic expression depends on bathymetry (Tóth and 

Szabó, 2012) as well as the genotype (Engloner et al. 2010). This Thesis 

suggests that these differences pass on the reflectance profile of the leaves in 

the visible and near-infrared and can be ascribed to the vegetation’s stress 

condition, the microenvironment or even genotypic differences of the species 

growing in different environments. 

The study of the reflectance profiles is the main tool of hyperspectral remote 

sensing analysis and was investigated in Chapter 3. However the physioliogical 

status of the plant is not clearly expressed in the spectral profile. Chapter 4 

presents an original idea of using hyperspectral data as a proxy to represent 

photosynthetic activity, which is directly related to environmental induced 

stress. It demonstrates the first explicit analysis of coupling in-situ 

hyperspectral data with photophysiological parameters. This allows for 

detection of spectral indices which can act as a proxy of the parameter under 

study. A strong correlation between narrowband spectral indices and 

chlorophyll fluorescence parameters indicates the potential of hyperspectral 

remote sensing in assessing reed stability. Specifically to the fluorescence 

parameters, the calculated indices are an indication of plant stability at leaf 

scale. An application of the findings from the field data analysis to airborne 

hyperspectral imagery reveals important information about reed condition at 

the study area. Y(II) values, regarded as a proxy of photosystem activity, have 

been calculated from high R2 combination of spectral ratio 612/516 

representing Fs and 699/527 representing Fm΄. ETR values are estimated 

based on the calculated Y(II) and the spectral ratio 463/488 for PAR. A 

comparison with empirical vegetation indices from the literature shows 

significantly higher R2 values of the proposed indices for the specific 

application. Spectral indices at leaf scale were recommended for evaluating 

reed ecological status based on spectroscopic data to support the 
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identification of affected vegetation patches and presents R2 maps that can aid 

the selection of indices tailored to the specifications of each instrument.  

In chapter 5 attention is given to a more holistic approach to the problem on 

macrophytes mapping in lakeshore environment. Building on the previous 

chapter and using the indices developed which provide information on the 

stress conditions, and hence are associated to die-back phenomena, the 

macrophytic mapping of a reed bed in a nature protected area with high 

biodiversity is tested with different classifiers and data input scenarios. The 

ML and SVM algorithms were tested on hyperspectral and LiDAR datasets 

over a reed bed with high biodiversity.  Eagle (400-1000 nm) image classified 

with SVM presents the most accurate and comprehensible results for most 

macrophytic classes. The overall accuracy has reached 89%, fact which can be 

attributed to the high spectral and spatial resolution of the airborne imagery. 

Co-dominant Phragmites, occupying the majority of the reed bed, is classified 

with 96% producer and 92% user accuracy. Reed die-back is arguably the 

most challenging class encountered at the edge of the reed bed. It appears that 

the classifier is categorizing reed die-back mainly according to consequences 

of the degeneration of the littoral zone (lower density, fragmentation of 

patches, litter accumulation) which is the aftermath of die-back conditions. As 

such, several marginal areas of reed (for instance Typha) are often categorized 

as die-back, even if in reality they are another class. The fused hyperspectral 

and LiDAR data have provided weaker results (overall accuracy 69%); hence it 

is concluded that the DCM does not assist in macrophytic mapping. Probably 

another byproduct from the LiDAR such as homogeneity or texture of the 

DCM may provide useful information. Overall, high spatial resolution 

hyperspectral data in the visible and near-infrared domain can provide 

accurate information on vegetation species and associations of reed beds and 

an indication of areas affected by die-back, however not a direct 

representation of die-back areas.   
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Last, in chapter 6 a Sentinel-2 image was synthesized from the airborne data 

and classified to the main categories in the macrophyte area. The idea behind 

this study was to investigate to what degree operational mapping of the main 

classes of the reedbed is feasible with upcoming frequent satellite data. The 

consistency of generic classes such as bare soil, reed and trees is maintained; 

however when mapping vegetation association classes with high within-class 

variability the discrimination capability is lower but still provides useful 

results. Reed die-back suffers from the same reasoning as the airborne 

imagery with fragmented fringe areas indicated as such, nevertheless it can be 

considered as indicated areas affected from die-back conditions. The very 

wide swath of Sentinel-2 (i.e. 290 km) in combination with the open access 

policy adopted for the data products could be the ground for operational 

mapping of reed beds.   

7.2 Contribution to knowledge 

This work draws from the need to research the spectral characteristics of 

freshwater emergent vegetation at different spatial scales as it has been 

proposed by Dekker et al. (2001). Vegetation encountered in lacustrine 

environments is a challenging mapping case due to the associated 

dependencies on the heterogeneity of the coverage resulting from the 

biodiversity, the presence of the water (and absence at the terrestrial side) and 

the homogeneous structure of the reed beds. Furthermore and for the specific 

case study, Phragmites is an organism with an especially high phenotypic 

plasticity (i.e. the reaction of the plant to changes of the environment) and 

therefore can easily acclimatize in the environment it grows.  

Under this highly dynamic nature, an attempt to apply imaging spectroscopy 

on macrophytes encountered at Lake Balaton at leaf and canopy scale was 

attempted. The most important finding of the research has been the novelty 

of coupling fluorescence and spectral information from concurrent in-situ 

measurements as described also in Stratoulias et al. (2015). Remote sensing 
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has long been used to characterize the type, the amount and the spatial 

distribution of vegetation, however no concrete results have been presented in 

the literature on the processes of photosynthesis and productivity through 

remote sensing techniques. Spectral indices have been used to estimate 

biomass, chlorophyll content, water content and other physiological 

parameters, nevertheless these vegetation characteristics have no direct link to 

photosynthetic activity, and hence stress conditions. In chapter 4 narrowband 

indices are suggested as well as graphs from where case-specific indices can be 

derived, through which remote sensing can be used to represent the 

physiology of Phragmites. An application of the index on the airborne 

hyperspectral imagery shows that large scale remote sensing of plant 

production and possibly detection of plant stress is feasible.   

Secondly, comparative proximate-acquired spectra were provided and the 

variability introduced from several factors was discussed (i.e. species, stress 

condition, phenology, illumination conditions and inundation level), which 

affect the spectral response of a plant at leaf and canopy scale. These factors, 

in the framework of statistical separability, can be taken into account when 

conducting field measurements and classification of imagery as they introduce 

considerable variability in the spectral behavior of the macrophytic material. 

One important aspect of the research has been that bathymetric conditions in 

which reed grows affect considerably the spectral behavior of the plant, which 

is probably associated indirectly to different clones encountered across the 

reed bed.  

Finally, a highly accurate map of macrophyte species and associations derived 

from the classification of hyperspectral airborne imagery was presented. 

Hyperspectral data at 2m spatial resolution can provide thematic maps with 

consistency of the vegetation species encountered at reed beds as well as an 

indication of die-back conditions. However, a message conveyed through the 

research is that die-back can not be directly projected through airborne, and 
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thus satellite, imagery but only areas which have been already affected by die-

back can be indicatively estimated. A simulation of a Sentinel-2 image shows 

that main macrophytic classes can be separated at the satellites spectral and 

spatial resolutions.  

Reed die-back is a complex problem that continues to raise concern. In the 

wider framework of wetland vegetation mapping, remote sensing can provide 

key knowledge at proximate, local and regional scale. This thesis has 

attempted to investigate ways hyperspectral information from in-situ, airborne 

and simulated satellite data can aid in the identification of macrophyte species 

and quantification of biophysical parameters directly associated to reed 

ecophysiology. The methods and hyperspectral indices proposed in this work 

can contribute to the monitoring and sustainable management of wetlands 

with die-back phenomena and diversified macrophytic vegetation. Multi-

temporal data and analysis may provide evidence on the peak photosynthetic 

activity during the growing season and richer information on macrophytes 

distribution. While the complexity of the problem is large due to the 

genotypical and phenotypical differences of macrophytes, it appears that 

proximate hyperspectral reflectance information is well associated to the 

photosynthetic activity of the plant and airborne imagery is providing 

evidence on the phenotypical distribution of different clones of Phragmites. 
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Appendix 1: R language script for processing of the field 

data and production of correlation maps  

### PROCESSING CHAIN AND PRODUCTION OF FLUORESCENCE GRAPHS 

 

# Install packages  

install.packages("gtools") 

require(gtools) 

install.packages("zoo") 

require(zoo) 

install.packages("lattice") 

require(lattice) 

install.packages("grid") 

require(grid) 

install.packages("gridExtra") 

require(gridExtra) 

install.packages("RColorBrewer") 

require(RColorBrewer) 

 

# !!! set parameter name from excel columns labels 

jname <- c("blank", "TEMP", "PAR", "Fs", "Fm", "YII", "ETR", "CHL") 

 

# !!! set reflectance or transmittance values 

rad <- "R" 

 

# !!! set working directory when running on WINDOWS 

setwd(file.path("C:", "Users", "ds331", "Desktop", "fluorescence", "14 Aug 

2012", "field", "exported_reflectance")) 

 

# list the files in the folder (exported from ASD ('reflectance' data format | 

'rows' data organisation | 'false' print row title)) 

readfiles <- list.files(pattern = '*asd.txt') 

 

# read tables and create a list 

listoffiles <- lapply(readfiles, read.table, header=TRUE, 

colClasses="numeric", sep="\t") 

 

# derive SI and NDSI matrices for each spectrum record (i for observations) 

for (i in 1:length(listoffiles)) 
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{   

  # read txt files 

  raw <- listoffiles[[i]] 

   

  # subset to spectrum range 400 nm - 1000 nm 

  raw <- raw[, c(77:677)] 

   

  # convert table to matrix 

  raw = as.numeric(raw) 

 

  # clone rows 

  n=length(raw) 

  iaxis <- matrix(rep(raw, n), nr=n, byrow = TRUE) 

   

  # transpose raw 

  jaxis <- t(iaxis) 

   

  # build Spectral Index (SI) matrix 

  SI <- (iaxis/jaxis) 

   

  # build Normalized Difference Spectral Index (NDSI) matrix 

  NDSI <- (iaxis-jaxis)/(iaxis+jaxis) 

   

  # write tables to file 

  write.table(SI, file = paste("SI", i, ".txt", sep = ""), sep = "\t") 

  write.table(NDSI, file = paste("NDSI", i, ".txt", sep = ""), sep = "\t") 

} 

 

## BUILD SI AND NDSI DATASETS 

 

# list the files in the folder 

readSI <- list.files(pattern = '^SI*') 

readNDSI <- list.files(pattern = '^NDSI*') 

 

# package gtools - sort numerically 

readSI <- mixedsort(readSI) 

readNDSI <- mixedsort(readNDSI) 

 



 137   
 

# read tables and create a list 

SIS <- lapply(readSI, read.table, header=TRUE, sep="\t") 

NDSIS <- lapply(readNDSI, read.table, header=TRUE, sep="\t") 

 

## READ IN-SITU MEASUREMENTS 

 

# read in-situ data (from text file) 

setwd(file.path("..", "insitu_measurements")) 

insitu <- read.table("fldata.txt", sep="\t", header = TRUE, quote = "") 

 

# check if the number of observations is equal with the number of spectra 

all.equal(nrow(insitu), length(SIS)) 

 

# !!!! SET BAND WINDOW SIZE 

maxband <- length(SI[ ,1]) 

minband <- 1 #set to 1 to for full spectrum 

 

# set working directory for results 

setwd(file.path("..")) 

 

### SI ### 

 

## STATISTICS 

 

# calculate coefficient of determination matrix 

# j is the parameter from insitu data: Fv_Fm_ETR_factor_dev_two (1), alpha 

(2), ETRmax (3), Ik (4) 

for (j in 2:length(jname)) 

{  

  insitu_par <- insitu[ ,j] 

  lmr <- data.frame() 

  lmp <- data.frame() 

   

  # calculate correlation for each element in x(px), in y(py) for each 

observation (i)   

  for (py in minband:maxband) # in minband:maxband 

  { 

    for (px in minband:maxband) # in minband:maxband 

    { 
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      obs <- data.frame() 

             

      # calculate r ^2 and p values 

      obs <- as.matrix(obs) 

      cor <- cor.test(obs[ ,1], obs[ ,2], method = "pearson")  

      lmr <- rbind(lmr, cor[4][[1]]^2) 

      lmp <- rbind(lmp, cor[3]) 

    } 

  } 

   

  # replace NAs with zeros (0) 

  lmr[is.na(lmr)] <- 0 

  lmp[is.na(lmp)] <- 0 

   

  # convert to matrix 

  lmr <- as.matrix(lmr, byrow = TRUE) 

  lmp <- as.matrix(lmp, byrow = TRUE)   

   

  # derive place mark 

  if (i == 23){ 

    place = "terrestrial" 

  } else if(i == 78){ 

    place = "shallowwater"   

  } else if(i == 105){ 

    place = "deepwater" 

  } else if(i == 122){ 

    place = "wateredge" 

  } else if(i == 123){ 

    place = "fulldata" 

  } else{ 

    place = "unknownplacemark" 

  } 

   

  # assign name to use in this session 

  namer <- paste(rad, "_", "SI", "_", "Rsq", "_", place, "_", jname[j], 

".txt", sep = "") 

  namep <- paste(rad, "_", "SI", "_", "P", "_", place, "_", jname[j], ".txt", 

sep = "") 
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  # write to table 

  write.table(lmr, namer, sep = "\t") 

  write.table(lmp, namep, sep = "\t") 

} 

 

## PRODUCE Rsquare GRAPH 

 

# itterate for the j parameters of the insitu data, Fv_Fm_ETR_factor_dev_two 

(1), alpha (2), ETRmax (3), Ik (4) 

for (j in 2:length(jname)) 

{    

  # assign name to use in this session  

  namer <- paste(rad, "_", "SI", "_", "Rsq", "_", place, "_", jname[j], 

".txt", sep = "") 

  namep <- paste(rad, "_", "SI", "_", "P", "_", place, "_", jname[j], ".txt", 

sep = "") 

   

  # read the table 

  resultr <- as.matrix(read.table(namer, header = TRUE, sep="\t", 

row.names=NULL, colClasses = c(rep("NULL", 1), rep("numeric", 1)))) 

  resultp <- as.matrix(read.table(namep, header = TRUE, sep="\t", 

row.names=NULL, colClasses = c(rep("NULL", 1), rep("numeric", 1))))  

   

  # define matrix dimensions 

  dim(resultr) <- c(sqrt(length(resultr)), sqrt(length(resultr))) 

  dim(resultp) <- c(sqrt(length(resultr)), sqrt(length(resultr))) 

   

  # transpose to fit iaxis in x and jaxis in y 

  resultr <- t(resultr) 

  resultp <- t(resultp) 

   

  ## Plot R with package lattice 

   

  # set minimum and maximum values 

  minr <- min(resultr, na.rm = TRUE) 

  maxr <- max(resultr, na.rm = TRUE) 

  minp <- min(resultp, na.rm = TRUE) 

  maxp <- max(resultp, na.rm = TRUE) 

   

  # set diagonal to high values - resulting in white line in graph 

  diag(resultr) <- NA 
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  diag(resultp) <- NA 

   

  # define data frame for lattice 

  dr = data.frame(xr=rep(seq(400, 1000, length=nrow(resultr)), ncol(resultr)),  

                  yr=rep(seq(400, 1000, length=ncol(resultr)), 

each=nrow(resultr)),  

                  zr=c(resultr)) 

  dp = data.frame(xp=rep(seq(400, 1000, length=nrow(resultp)), ncol(resultp)),  

                  yp=rep(seq(400, 1000, length=ncol(resultp)), 

each=nrow(resultp)),  

                  zp=c(resultp)) 

   

  # create colour palletes 

  palr <- rev(brewer.pal(10, "RdYlBu")) 

  palp <- rev(brewer.pal(7, "OrRd")) 

  breaksr <- c(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 

  breaksp <- c(0, 0.001, 0.01, 0.05, 1) 

   

  # save to jpg 

  tiff(file = paste(rad, "_", "SI", "_", place, "_", jname[j], ".tif", sep = 

""), antialias = "cleartype", 

       res = 200, pointsize = 1/30, width = 2000, height = 1000, units = "px") 

  plot.new()  

  par(mfrow=c(1,2), omd=c(1,0.2,0.4,0.2)) 

  print(        

    rplot <- levelplot(zr~xr*yr, data=dr, col.regions= palr,  

                       cuts = 10, at = breaksr, 

                       #main = paste("r-squared value: ", rad, "Spectral Ratio 

Index - ", jname[j]),  

                       xlab = paste("Wavelength", parse(text="Ri"), "(nm)", 

sep = " "),  

                       ylab = paste("Wavelength", parse(text="Rj"), "(nm)", 

sep = " "), 

                       scales = list(draw = TRUE, tick.number = 7), 

                       colorkey = list(space = "right",  col=palr, at = 

breaksr,  

                                       labels = 

c("0.0","0.1","0.2","0.3","0.4","0.5","0.6","0.7","0.8","0.9","1.0"))) 

  ) 

  print(     

    pplot <- levelplot(zp~xp*yp, data=dp, col.regions=palp,  

                       cuts=3, at=breaksp, 
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                       #main = paste("P-value: ", rad, "Spectral Ratio Index - 

", jname[j]),  

                       xlab = paste("Wavelength", parse(text="Ri"), "(nm)", 

sep = " "),  

                       ylab = paste("Wavelength", parse(text="Rj"), "(nm)", 

sep = " "), 

                       scales = list(draw = TRUE, tick.number = 7), 

                       colorkey = list(space = "right", col=palp, at = c(0.00, 

0.10, 0.25, 0.50 ,1),  

                                       labels = c("0.000", "0.001", "0.010", 

"0.050", "1.000"))) 

  ) 

  # requires gridExtra 

  grid.arrange(rplot,pplot, nrow=1, ncol = 2) 

  grid.text(expression("R "^2), y=unit(0.1, "npc"), rot=0, x=unit(0.45, 

"npc")) 

  grid.text(expression("p"), y=unit(0.1, "npc"), rot=0, x=unit(0.933, "npc")) 

  grid.text(expression("(a)"), y=unit(0.045, "npc"), rot=0, x=unit(0.07, 

"npc")) 

  grid.text(expression("(b)"), y=unit(0.045, "npc"), rot=0, x=unit(0.57, 

"npc")) 

  dev.off() 

} 

 

### NDSI ### 

 

## STATISTICS 

 

# calculate coefficient of determination matrix 

# j is the parameter from insitu data: Fv_Fm_ETR_factor_dev_two (1), alpha 

(2), ETRmax (3), Ik (4) 

for (j in 2:length(jname)) 

{  

  insitu_par <- insitu[ ,j] 

  lmr <- data.frame() 

  lmp <- data.frame() 

   

  # calculate correlation for each element in x(px), in y(py) for each 

observation (i)   

  for (py in minband:maxband) # in minband:maxband 

  { 

    for (px in minband:maxband) # in minband:maxband 

    { 
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      obs <- data.frame() 

             

      # calculate r ^2 and p values 

      obs <- as.matrix(obs) 

      cor <- cor.test(obs[ ,1], obs[ ,2], method = "pearson")  

      lmr <- rbind(lmr, cor[4][[1]]^2) 

      lmp <- rbind(lmp, cor[3]) 

    } 

  } 

   

  # replace NAs with zeros (0) 

  lmr[is.na(lmr)] <- 0 

  lmp[is.na(lmp)] <- 0 

   

  # convert to matrix 

  lmr <- as.matrix(lmr, byrow = TRUE) 

  lmp <- as.matrix(lmp, byrow = TRUE)   

   

  # derive place mark 

  if (i == 23){ 

    place = "terrestrial" 

  } else if(i == 78){ 

    place = "shallowwater"   

  } else if(i == 105){ 

    place = "deepwater" 

  } else if(i == 122){ 

    place = "wateredge" 

  } else if(i == 123){ 

    place = "fulldata" 

  } else{ 

    place = "unknownplacemark" 

  } 

   

  # assign name to use in this session 

  namer <- paste(rad, "_", "NDSI", "_", "Rsq", "_", place, "_", jname[j], 

".txt", sep = "") 

  namep <- paste(rad, "_", "NDSI", "_", "P", "_", place, "_", jname[j], 

".txt", sep = "") 
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  # write to table 

  write.table(lmr, namer, sep = "\t") 

  write.table(lmp, namep, sep = "\t") 

} 

 

## PRODUCE Rsquare GRAPH 

 

# itterate for the j parameters of the insitu data, Fv_Fm_ETR_factor_dev_two 

(1), alpha (2), ETRmax (3), Ik (4) 

for (j in 2:length(jname)) 

{    

  # assign name to use in this session  

  namer <- paste(rad, "_", "NDSI", "_", "Rsq", "_", place, "_", jname[j], 

".txt", sep = "") 

  namep <- paste(rad, "_", "NDSI", "_", "P", "_", place, "_", jname[j], 

".txt", sep = "") 

   

  # read the table 

  resultr <- as.matrix(read.table(namer, header = TRUE, sep="\t", 

row.names=NULL, colClasses = c(rep("NULL", 1), rep("numeric", 1)))) 

  resultp <- as.matrix(read.table(namep, header = TRUE, sep="\t", 

row.names=NULL, colClasses = c(rep("NULL", 1), rep("numeric", 1))))  

   

  # define matrix dimensions 

  dim(resultr) <- c(sqrt(length(resultr)), sqrt(length(resultr))) 

  dim(resultp) <- c(sqrt(length(resultr)), sqrt(length(resultr))) 

   

  # transpose to fit iaxis in x and jaxis in y 

  resultr <- t(resultr) 

  resultp <- t(resultp) 

   

  ## Plot R with package lattice 

   

  # set minimum and maximum values 

  minr <- min(resultr, na.rm = TRUE) 

  maxr <- max(resultr, na.rm = TRUE) 

  minp <- min(resultp, na.rm = TRUE) 

  maxp <- max(resultp, na.rm = TRUE) 

   

  # set diagonal to high values - resulting in white line in graph 

  diag(resultr) <- NA 
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  diag(resultp) <- NA 

   

  # define data frame for lattice 

  dr = data.frame(xr=rep(seq(400, 1000, length=nrow(resultr)), ncol(resultr)),  

                  yr=rep(seq(400, 1000, length=ncol(resultr)), 

each=nrow(resultr)),  

                  zr=c(resultr)) 

  dp = data.frame(xp=rep(seq(400, 1000, length=nrow(resultp)), ncol(resultp)),  

                  yp=rep(seq(400, 1000, length=ncol(resultp)), 

each=nrow(resultp)),  

                  zp=c(resultp)) 

   

  # create colour palletes 

  palr <- rev(brewer.pal(10, "RdYlBu")) 

  palp <- rev(brewer.pal(7, "OrRd")) 

  breaksr <- c(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 

  breaksp <- c(0, 0.001, 0.01, 0.05, 1) 

   

  # save to jpg 

  tiff(file = paste(rad, "_", "NDSI", "_", place, "_", jname[j], ".tif", sep = 

""), antialias = "cleartype", 

       res = 200, pointsize = 1/30, width = 2000, height = 1000, units = "px") 

  plot.new()  

  par(mfrow=c(1,2), omd=c(1,0.2,0.4,0.2)) 

  print(        

    rplot <- levelplot(zr~xr*yr, data=dr, col.regions= palr,  

                       cuts = 10, at = breaksr, 

                       #main = paste("r-squared value: ", rad, "Normalized 

Difference Vegetation Index - ", jname[j]),  

                       xlab = paste("Wavelength", parse(text="Ri"), "(nm)", 

sep = " "),  

                       ylab = paste("Wavelength", parse(text="Rj"), "(nm)", 

sep = " "), 

                       scales = list(draw = TRUE, tick.number = 7), 

                       colorkey = list(space = "right",  col=palr, at = 

breaksr,  

                                       labels = 

c("0.0","0.1","0.2","0.3","0.4","0.5","0.6","0.7","0.8","0.9","1.0"))) 

  ) 

  print(     

    pplot <- levelplot(zp~xp*yp, data=dp, col.regions=palp,  

                       cuts=7, at=breaksp, 
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                       #main = paste("P-value: ", rad, "Normalized Difference 

Vegetation Index - ", jname[j]),  

                       xlab = paste("Wavelength", parse(text="Ri"), "(nm)", 

sep = " "),  

                       ylab = paste("Wavelength", parse(text="Rj"), "(nm)", 

sep = " "), 

                       scales = list(draw = TRUE, tick.number = 7), 

                       colorkey = list(space = "right", col=palp, at = c(0.00, 

0.10, 0.25, 0.50 ,1),  

                                       labels = c("0.000", "0.001", "0.010", 

"0.050", "1.000"))) 

  ) 

  # requires gridExtra 

  grid.arrange(rplot,pplot, nrow=1, ncol = 2) 

  grid.text(expression("R "^2), y=unit(0.1, "npc"), rot=0, x=unit(0.45, 

"npc")) 

  grid.text(expression("p"), y=unit(0.1, "npc"), rot=0, x=unit(0.933, "npc")) 

  grid.text(expression("(a)"), y=unit(0.045, "npc"), rot=0, x=unit(0.07, 

"npc")) 

  grid.text(expression("(b)"), y=unit(0.045, "npc"), rot=0, x=unit(0.57, 

"npc")) 

  dev.off() 

} 

# END  
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Appendix 2: Correlation of in-situ fluorescence parameters 

and leaf hyperspectral reflectance 
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Appendix 3: Correlation of in-situ fluorescence parameters 

and leaf hyperspectral transmittance 
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Appendix 4: Atmospheric correction input parameters 

Parameter Value Notes Variable 

Input radiance Image xxxxxxx1b.bil 16-bit unsigned integer  x 

Scale factor 1000 [1]  

Output reflectance file xxxxxxx2.bil Level 2 product x 

Output directory for FLAASH files \level2\  x 

Rootname for FLAASH files FLAASH   

Sensor type Hyperspectral-AISA   

Lat  Centre of each scene x 

Lon  Centre of each scene x 

Sensor altitude (km)  Flight log file x 

Ground elevation (km) 0.11   

Pixel size (m) 2 Adjacency effect correction  

Flight date   Day of August 2010 x 

Flight time GMT (HH:MM:SS)  Flight log file x 

Atmospheric model  Mid-Latitude Summer  Surface temperature  

Water retrieval  Yes   

Water absorption feature 820 nm for Eagle 

1135 nm for Hawk 

1135 nm is recommended x 

Aerosol model Maritime Non critical for high visibility  

Aerosol retrieval None   

Initial visibility (km) 50   

Spectral polishing Yes [2]  

Width (number of bands) 9 (minimum 2)   

Wavelength recalibration No   

Hyperspectral settings  Based on AISA specifications  

Spectrograph definition file -   

Aerosol scale height (km) 1.50                  For adjacency scattering range  

CO2 mixing ratio (ppm) 404 [3]  

Use square slit function No   

Use adjacency correction Yes   

Reuse MODTRAN calculations No   

Modtran resolution 5cm-1   

Modtran multiscatter model Scaled DISORT   
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Number of DISORT streams 8   

Zenith angle 180 For nadir-viewing sensors  

Azimuth angle  (Dir – 1800) [4] x 

Use tiled processing No   

Tile size (Mb) - 75% of available RAM  

Radiance image -   

Re-define scale factors for r.i. -   

Output reflectance scale factor 1000 Reflectance scale factor in .hdr  

Automatic save template file Yes   

Output diagnostic files No    

 

[1] The measurement unit of the data provided is μW ∙ cm-2 ∙ sr-1 ∙ nm-1, however the data in the files includes a x1000 

scaling factor. This is included to avoid floating-point numbers, making calculations quicker, avoiding rounding errors and 

reducing file sizes. Therefore, in essence the data values in the files are effectively nW ∙ cm-2 ∙ sr-1 ∙ nm-1, and a division by 

1000 is required to represent units in μW ∙ cm-2 ∙ sr-1 ∙ nm-1. 

[2] Spectral polishing is a correction method used to reduce spectal artifacts (e.g. residual “saw-tooth” instrument noise) 

by applying a uniform linear transformation. 

[3] Carbon mixing ratio exhibits a clear seasonal pattern with lower values corresponding to late summer. According to 

the Mauna Loa Observatory, CO2 concentration has an annual growth rate of approximately 2 ppmv for the years 1998 – 

2008 (http://cdiac.ornl.gov/trends/co2/sio-mlo.html). By extrapolating the data a summer value of 384 ppmv for late 

summer 2010 when the data were collected was calculated. By adding 20 ppmv to the actual value according to FLAASH 

user’s guide recommendation for best results, an input value 404 ppmv was considered.  

[4] The sensor heading is measured east from north in degrees (0 – 360). FLAASH required as input the angle between 

the line-of-sight and due north, hence it is between -180 and +180.   

  



 152   
 

 References 

Adams, J.B., Smith, M.O. and Johnson, P.E. (1986). Spectral Mixture 

Modeling - a new analysis of rock and soil types at the Viking Lander-1 Site. 

Journal of Geophysical Research-Solid Earth and Planets, 91, 8098-8112. 

Adam, E., Mutanga, O. and Rugege, D. (2010). Multispectral and 

hyperspectral remote sensing for identification and mapping of wetland 

vegetation: a review. Wetlands Ecology and Management, 18(3), 281-296. 

Amoros‐Lopez, L., Gomez‐Chova, L., Vila‐Frances, J., Alonso, L., Calpe, J., 

Moreno J. and del Valle‐Tascon, S. (2008). Evaluation of remote sensing of 

vegetation fluorescence by the analysis of diurnal cycles. International Journal of 

Remote Sensing, 29(17-18), 5423-5436.  

Anderson, K., Bennie, J. and Wetherelt, A. (2010). Laser scanning of fine scale 

pattern along a hydrological gradient in a peatland ecosystem. Landscape 

Ecology, 25, 477-492. 

Anker, Y., Hershkovitz, Y., Ben Dor, E. and Gasith, A. (2014). Application of 

aerial digital photography for macrophyte cover and composition survey in 

small rural streams. River Research and Applications, 30(7), 925–937. Armstrong, 

J., Armstrong, W., Armstrong, I.B. and Pittaway, G.R. (1996). Senescence, and 

phytotoxin, insect, fungal and mechanical damage: factors reducing convective 

gas-flows in Phragmites australis. Aquatic Botany, 54(2–3), 211-226. 

Artigas, F.J. and Yang, J.S. (2005). Hyperspectral remote sensing of marsh 

species and plant vigour gradient in the New Jersey Meadowlands. International 

Journal of Remote Sensing, 26(23), 5209-5220.  

Azaria, I., Goldshleger, N., Ben-Dor, E. and Hamburger, R.B. (2009). 

Detection of cannabis plants by hyper-spectral remote sensing means. 

Proceedings of the 6th EARSeL Imaging Spectroscopy SIG Workshop. 



 153   
 

Imaging spectroscopy: Innovative tool for scientific and commercial 

environmental applications, Tel Aviv, Israel, March 16-18, 2009.  

Bahria, S., Essoussi, N. and Limam, M. (2011). Hyperspectral data 

classification using geostatistics and support vector machines. Remote Sensing 

Letters, 2, 99-106. 

Baker N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in 

vivo. Annual Review of Plant Biology, 59, 89-113. 

Bange, J., Esposito, M., Lenschow, D. H., Brown, P. R. A., Dreiling, V., Giez, 

A., Mahrt, L., Malinowski, S. P., Rodi, A. R., Shaw, R. A., Siebert, H., Smit, H. 

and Zöger, M. (2013). Measurement of aircraft state and thermodynamic and 

dynamic variables. In: Airborne measurements for environmental research: 

methods and instruments (eds. Wendisch, M. and Brenguier, J. –L.), Wiley-

VCH Verlag, GmbH & Co., Weinheim, Gemany.  

Barker, R. and King, D.J. (2012). Blanding’s Turtle (Emydoidea blandingii) 

Potential Habitat Mapping Using Aerial Orthophotographic Imagery and 

Object Based Classification. Remote Sensing, 4, 194-219. 

Barnsley, M.J. and Barr, S.L. (1996). Inferring urban land use from satellite 

sensor images using Kernel-based spatial reclassification. Photogrammetric 

Engineering and Remote Sensing, 62(8), 949-958. 

Bartlett, D.S. and Klemas, V. (1980). Quantitative assessment of tidal wetlands 

using remote sensing. Environmental management, 4(4), 337-345. 

Bastlová, D.,Čížková, H., Bastl, M. and Květ, J. (2004). Growth of Lythrum 

salicaria and Phragmites australis plants originating from a wide geographical 

area: response to nutrient and water supply. Global Ecology and Biogeography, 

13(3), 259–271.  

Ben-Dor, E., Schläpfer, D., Plaza, A. J. and Malthus, T. (2013). Hyperspectral 

remote sensing. In Airborne measurements for environmental research: 



 154   
 

methods and instruments. Eds. Wendisch, M. and Brenguier, J. –L. Wiley-

VCH Verlag, GmbH and Co., Weinheim, Gemany. 

Bengtsson, L. and Hellström, T. (1992). Wild-induced resuspension in a small 

shallow lake. Hydrobiologia, 241(3), 163-172. 

Blaschke, T. and Strobl, J. (2001). What's wrong with pixels? Some recent 

developments interfacing remote sensing and GIS. GIS - Zeitschrift für 

Geoinformationssysteme, 14(6), 12-17. 

Blaschke, T. and Hay, G.J. (2001). Object-oriented image analysis and scale-

space: Theory and methods for modeling and evaluating multi-scale landscape 

structure. International Archives of Photogrammetry and Remote Sensing, 34(Part 

4/W5), 22-29.  

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS 

Journal of Photogrammetry and Remote Sensing, 65, 2-16.  

Boar, R.R., Crook, C.E. and Moss, B. (1989).  Regression of Phragmites australis 

reedswamps and recent changes of water chemistry in the Norfolk Broadland, 

England. Aquatic Botany, 35(1), 1-4. 

Boorman, L.A., Sheail, J. and Fuller, R.M. (1977). “The Phragmites die-back 

problem.” Progress Report. Institute of Terrestial Ecology Project, no. 539. 

Boyd, D., Sanchez-Hernandez, C. and Foody, G. (2006). Mapping a specific 

class for priority habitats monitoring from satellite sensor data. International 

Journal of Remote Sensing, 27(13), 2631-2644. 

Brennan, R. and Webster, T.L. (2006). Object-oriented land cover 

classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 

162-172.  



 155   
 

Bresciani, M., Stroppiana, D., Fila, G., Montagna, M and Giardino, C. (2009). 

Monitoring reed vegetation in environmentally sensitive areas in Italy. Italian 

Journal of Remote Sensing, 41(2), 125-137. 

Bresciani, M., Sotgia, C., Fila, L-. G., Musanti, M. and Bolpagni, R. (2011). 

Assessing common reed bed health and management strategies in Lake Garda 

(Italy) by means of Leaf Area Index measurements. Italian Journal of Remote 

Sensing, 43(2), 9-22.    

Brix, H. (1999a). The European research project on reed die-back and 

progression (EUREED). Limnologica - Ecology and Management of Inland Waters, 

29(1), 5-10. 

Brix, H. (1999b). Genetic diversity, ecophysiology and growth dynamics of 

reed (Phragmites australis). Aquatic Botany, 64, 179-184. 

Brix, H., Sorrell, B.K. and Lorenzen, B. (2001). Are Phragmites-dominated 

wetlands a net source or net sink of greenhouse gases? Aquatic Botany, 69, 

313–324. 

Brown, M., Lewis, H.G. and Gunn, S.R. (2000). Linear Spectral Mixture 

Models and Support Vector Machines for Remote Sensing, IEEE Transactions 

on Geoscience and Remote Sensing, 38(5), 2346-2360. 

Burai, P., Lövei, G.Z., Csaba, L., Nagy, I. and Enyedi, P. (2010). Mapping 

aquatic vegetation of the Rakamaz-Tiszanagyfalui Nagy-morotva using 

hyperspectral imagery. AGD Landscape and Environment, 4(1), 1-10.  

Burazerović, D., Heylen, R., Geens, B., Sterckx, S. and Scheunders, P. (2013). 

Detecting the adjacency effect in hyperspectral imagery with spectral 

unmixing techniques. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 6(3), 1070-1078.  

Butera, K.M. (1983). Remote Sensing of Wetlands. IEEE Transactions on 

Geoscience and Remote Sensing, GE-21(3), 383-392. 



 156   
 

Camps-Valls, G., and Bruzzone, L. (2005). Kernel-based methods for 

hyperspectral image classification. IEEE Transactions on Geoscience and Remote 

Sensing, 43, 1351-1362. 

Carleer, A. and Wolff, E. (2004). Exploitation of very high resolution satellite 

data for tree species identification. Photogrammetric Engineering and Remote 

Sensing, 70(1), 135-140.  

Carter, G.A. (1994). Ratios of leaf reflectances in narrow wavebands as 

indicators of plant stress. International Journal of Remote Sensing, 15(3), 697-703.  

Caylor, J. (2000). Aerial photography in the next decade. Journal of Forestry, 

98(6), 17-19.  

Csaplovics, E. and Schmidt, J. (eds.) (2011). International symposium on 

advanced methods of monitoring reed habitats in Europe. Technische 

universitat Dresden, Rhombos-Verlag. 

Chen, B., Li, S.-K., Wang, K.-R., Wang, J., Wang, F.-Y., Xiao, C.-H., Lai, J.-C. 

and Wang, N. (2008). Spectrum characteristics of cotton canopy infected with 

verticillium wilt and applications. Agricultural sciences in China, 7(5), 561-569.  

Chen, D.M. and Stow, D. (2002). The effect of training strategies on 

supervised classification at different spatial resolutions. Photogrammetric 

Engineering and Remote Sensing, 68(11), 1155-1161. 

Chen, Q., Zhang, Y., Ekroos, A. and Hallikainen, M. (2004). The role of 

remote sensing technology in the EU water framework directive (WFD). 

Environmental Science and Policy, 7, 267-276.  

Cherrill, A. and McClean, C. (1999). Between-observer variation in the 

application of a standard method of habitat mapping by environmental 

consultants in the UK. Journal of Applied Ecology, 36(6), 989-1008.  



 157   
 

Chi, M., Feng, R., and Bruzzone, L. (2008). Classification of hyperspectral 

remote-sensing data with primal SVM for small-sized training dataset 

problem. Advances in Space Research, 41(11), 1793-1799. 

Christian, R.R. (2008). The Global Observation System of Systems (GEOSS). 

Inventory, assessment and monitoring of Mediterranean wetlands: Mapping 

wetlands using earth observation techniques, Fitoka, E. and Keramitsoglou, I. 

(eds.). EKBY and NOA, MedWet publication.  

Čížková-Končalová, H., Kvet, J. and Thompson, K. (1992). Carbon 

Starvation: A key to reed decline in eutrophic Lakes. Aquatic Botany, 43(2), 

105–13. 

Či ́žková, H., Istvánovics, V., Bauer, V. and Balázs, L. (2001). Low levels of 

reserve carbohydrates in reed (Phragmites australis) stands of Kis-Balaton, 

Hungary. Aquatic Botany, 69(2–4), 209-216. 

Congalton, R.G. (1991). A review of assessing the accuracy of classifications 

of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46. 

Convention on Wetlands of International Importance especially as Waterfowl 

Habitat. Ramsar (Iran), 2 February 1971. UN Treaty Series No. 14583. As 

amended by the Paris Protocol, 3 December 1982, and Regina Amendments, 

28 May 1987. 

Crawley, M.J. (ed) (1997). Plant Ecology - 2nd ed. USA: Blackwell Science. 

Cserny, T. and Nagy-Bodor, E. (2000). Limnogeology of Lake Balaton 

(Hungary), chapter 58, in: Gierlowski-Kordesch, E.H. and Kelts. K.R. (eds), 

Lake basins through space and time. Tulsa, Oklahoma, U.S.A.: The American 

Association of Petroleum Geologists (AAPG) Studies in geology, 46, 605-618. 

Dalponte, M., Bruzzone, L., and Gianelle, D. (2008). Fusion of hyperspectral 

and LIDAR remote sensing data for classification of complex forest areas. 

IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1416-1427. 



 158   
 

Dalponte, M., Bruzzone, L., Vescovo, L. and Gianelle, D. (2009). The role of 

spectral resolution and classifier complexity in the analysis of hyperspectral 

images of forest areas. Remote Sensing of Environment, 113(11), 2345-2355. 

Deegan, B.M., White, S.D. and Ganf, G.G. (2007). The influence of water 

level fluctuations on the growth of four emergent macrophyte species. Aquatic 

Botany, 86(4), 309-315.  

Dekker, A.G., Brando, V.E., Anstee, J.M., Pinnel, N., Kutser, T., 

Hoogenboom, E.J., Peters, S., Pasterkamp, R., Vos, R., Olbert, C. and 

Malthus, T.J.M. (2001). Imaging spectrometry of water (chapter 11). In: 

Imaging spectrometry: basic principles and prospective applications, van der 

Meer, F.D. and de Jong, S.M. (eds.), Springer.  

Delegido, J., Verrelst, J., Alonso, L. and Moreno, J. (2011). Estimation of 

Sentinel-2 red-edge bands for empirical estimation of green LAI and 

Chlorophyll content. Sensors, 11, 7063-7081. 

Den Hartog, C., Květ, J. and Sukopp, H. (1989). Reed. A common species in 

decline. Aquatic Botany, 35(1), 1-4. 

Dixon, B. and Candade, N. (2008). Multispectral landuse classification using 

neural networks and support vector machines: one or the other, or both? 

International Journal of Remote Sensing, 29(4), 1185-1206. 

Dulai, S., Horváth, F., Pécsváradi, A., Bondár, M., Molnár, I. and Erdei, L. 

(2002). Does increased photorespiration protect the leaves of common reed 

living in fragmented patches from excess light? Acta Biologica Szegediensis 46(3-

4), 155–156. 

Engloner, A. I. (2009). Structure, growth dynamics and biomass of reed 

(Phragmites australis) – A review. Flora – Morphology, Distribution, Fnctional Ecology 

of Plants, 204(5), 331-346.  



 159   
 

Ehlers, M., Gähler, M. and Janowsky, R. (2003). Automated analysis of ultra 

high resolution remote sensing data for biotope type mapping: new 

possibilities and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 

57(5-6), 315-326.  

Elatawneh, A., Kalaitzidis, C., Petropoulos, G.P. and Schneider, T. (2012). 

Evaluation of diverse classification approaches for land use/land cover 

mapping in a Mediterranean region utilizing Hyperion data. International Journal 

of Digital Earth, 1-23.  

Engloner, A.I. (2009). Structure, growth dynamics and biomass of reed 

(Phragmites australis) – A review. Flora - Morphology, Distribution, Functional Ecology 

of Plants, 204(5), 331-346.  

Engloner, A. I., Major, Á. and Podani, J. (2010). Clonal diversity along a water 

depth gradient in a declining reed stand as detected by three different genetic 

methods. Aquatic Botany, 92(1), 1-8.  

Engloner, A.I. and Major, Á. (2011). Clonal diversity of Phragmites australis 

propagating along water depth gradient. Aquatic Botany, 94, 172–176. 

Erwin, K.L. (2009). Wetlands and global climate change: the role of wetland 

restoration in a changing world. Wetlands Ecology and Management, 17, 71-84.  

ESA (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES 

operational services. ESA SP-1322/2, ESA Communications.  

https://sentinel.esa.int/documents/247904/349490/S2_SP-1322_2.pdf 

ESA Sentinel-2 Team (2010). GMES Sentinel-2 Mission Requirements 

Document. EOP-SM/1163/MR.dr, issue 2.1.  

http://esamultimedia.esa.int/docs/GMES/Sentinel-2_MRD.pdf 

Felföldy, L., Muszkalay, L., Rakoczi, L. and Szesztay, K. (1969). Origin and 

movement of sediment in Lake Balaton, 287. 



 160   
 

Ferguson, R.L., Wood, L.L. and Graham, D.B. (1993). Monitoring spatial 

change in seagrass habitat with aerial photography. Photogrammetric Engineering 

and Remote Sensing, 59, 1033-1038. 

Fernandez-Prieto, D., Arino, O., Borges, T., Davidson, N., Finlayson, M., 

Grassl, H., MacKay, H., Prigent, C., Pritchard, D. and Zalidis, G. (2006). The 

Glob Wetland Symposium: Summary and way forward. Proceedings of the 

first International Symposium on GlobWetland: Looking at Wetlands from 

Space, Frascati, Italy, 19-20 October 2006. ESA SP-634. 

Findlay, S.E.G., Dye, S. and Kuehn, K.A. (2002). Microbial growth and 

nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. 

Wetlands, 22(3), 616-625. 

Finlayson, C.M., Davidson, N.C., Spiers, A.G. and Stevenson, N.J. (1999). 

Global wetland inventory – current status and future priorities, Marine and 

Freshwater research, 50(8), 717-727. 

Finlayson, C.M., D'Cruz, R. and Davidson, N. (2005). Ecosystem services and 

human well-being: water and wetland, synthesis. A report of the Millennium 

Ecosystem Assessment. 

Fitoka, E. and Keramitsoglou, I. (eds) (2008). Inventory, assessment and 

monitoring of Mediterranean wetlands: Mapping wetlands using earth 

observation techniques. EKBY and NOA. MedWet publication. (Scientific 

reviewer Nick J Riddiford). 

Fogli, S., Marchesini, R. and Gerdol, R. (2002). Reed (Phragmites australis) 

decline in a brackish wetland in Italy. Marine environmental research, 53(5), 465-

479. 

Fryer, M. J., Andrews, J. R., Oxborough, K., Blowers, D. A. and Baker, N. R. 

(1998). Relationship between CO2 assimilation, photosynthetic electron 



 161   
 

transport, and active O2 metabolism in leaves of maize in the field during 

periods of low temperature. Plant Physiology, 116, 571-580.  

Gamon, J. A., Serrano, L. and Surfus, J.S. (1997). The photochemical 

reflectance index: an optical indicator of photosynthetic radiation use 

efficiency across species, functional types and nutrient levels. Oecologia, 112, 

492-501. 

Gamon, J.A. and Surfus, J. (1999). Assessing leaf pigment content and activity 

with a reflectometer. New Phytologist, 143(1), 105-117. 

Gausman, H.W. (1977). Reflectance of leaf components. Remote Sensing of 

Environment, 6(1), 1-9.  

Genty, B., Briantais, J. M. and Baker, N. R. (1989). The relationship between 

the quantum yield of photosynthetic electron transport and quenching of 

chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) – General Subjects, 

990(1), 87-92.  

Gilmore, M.S., Civco, D.L., Wilson, E.H., Barrett, N., Prisloe, S., Hurd, J.D. 

and Chadwick, C. (2009). Remote Sensing and In Situ Measurements for 

Delineation and Assessment of Coastal Marshes and Their Constituent 

Species. In Y. Wang (Ed.), Remote Sensing of Coastal Environments, 261-280. Boca 

Raton, Florida: CRC Press. 

Gitelson, A. A. and Merzlyak, M. N. (1994). Spectral reflectance changes 

associated with autumn senescence of Aesculus Hippocastanum L. and Acer 

Platanoides L. leaves. Spectral features and relation to chlorophyll estimation. 

Journal of Plant Physiology, 143, 286-292. 

Gitelson, A. A. and Merzlyak, M. M. (1996). Signature analysis of leaf 

reflectance spectra: algorithm development for remote sensing of chlorophyll. 

Journal of Plant Physiology, 148(3-4), 494-500. 



 162   
 

Gitelson, A. A., Merzlyak, M. N. and Chivkunova, O. B. (2001). Optical 

properties and nondestructive estimation of anthocyanin content in plant 

leaves. Photochemistry and Photobiology, 71, 38-45. 

Gitelson, A. A., Zur, Y., Chivkunova, O. B. and Merzlyak, M. N. 

(2002). Assessing carotenoid content in plant leaves with reflectance 

spectroscopy. Photochemistry and Photobiology, 75, 272-281. 

Gong, P. and Howarth, P.J. (1990). The use of structural information for 

improving land-cover classification accuracies at the rural-urban fringe. 

Photogrammetric Engineering and Remote Sensing, 56(1), 67-73.  

Gong, P., Marceau, D.J. and Howarth, P.J. (1992). A comparison of spatial 

feature ectraction algorithms for land-use classification with SPOT HRV data. 

Remote Sensing of Environment, 40(2), 137-151.  

Granéli, W. (1990). Standing Crop and Mineral Content of Reed, Phragmites 

australis (Cav.) Trin. ex Steudel, in Sweden: Management of Reed Stands to 

Maximize Harvestable Biomass. Folia Geobotanica & Phytotaxonomic, 25(3), 291-

302. 

Green, A.A., Berman, M., Switzer, P., and Craig, M.D. (1988). A 

transformation for ordering multispectral data in terms of image quality with 

implications for noise removal. IEEE Transactions on Geoscience and Remote 

Sensing, 26, 65-74. 

Griffin, M.K. and Burke, H.-H.K. (2003). Compensation of hyperspectral data 

for atmospheric effects. Lincoln laboratory journal, 14, 1. 

Hansen, D.L., Lambertini, C., Jampeetong, A. and Brix, H. (2007).  Clone-

specific differences in Phragmites australis: Effects of ploidy level and 

geographic origin. Aquatic Botany, 86(3), 269-279.  

Harris, S.W. and Marshall, W.H. (1963). Ecology of water-level manipulations 

on a northern marsh. Ecology, 44(2), 331-343. 



 163   
 

Haslam, S. M. (1969). The development of shoots in Phragmites communis Trin. 

Annals of Botany, 33(4), 695-709.  

Hay, G.J. and Castilla, G. (2006). Object-based image analysis: strengths, 

weaknesses, opportunities and threats (SWOT). 1st International Conference 

on Object-based Image Analysis, XXXVI-4/C42. 

Hedley, J., Roelfsema, C., Koetz, B. and Phinn, S. (2012). Capability of the 

Sentinel 2 mission for tropical coral reef mapping and coral bleaching 

detection. Remote Sensing of Environment, 120. Special issue: The Sentinel 

Missions – New Opportunities for Science, 145-155. 

Herodek, S. (1984). Eutrophication of Lake Balaton: Measurements, Modeling 

and Management. Verhandlung Internationale Vereinigung Limnologie, 221087. 

Herodek, S. (1988a). Limnology of Lake Balaton, in Lake Balaton, research and 

management, Misley, K. (Ed), NEXUS, Hungary. 

Herodek, S. (1988b). Eutrophication of Lake Balaton, in Lake Balaton, research 

and management, Misley, K. (Ed), NEXUS, Hungary.  

Hoffer, R.M. (1978). Biological and physical considerations in applying 

computer-aided analysis techniques to remote sensor data. In: Swain, P.H. and 

Davis, S.M. (eds.), Remote Sensing – The Quantitative Approach. New York: 

McGraw-Hill International Book Co., chapter 5.  

Huete, A., Didan, K., Miura, T. Rodriguez, E. P., Gao, X. and Ferreira, L. G. 

(2002). Overview of the radiometric and biophysical performance of the 

MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213.   

Hufkens, K., Scheunders, P. and Ceulemans, R. (2009). Ecotones on 

vegetation ecology: methodologies and definitions revisited. Ecological Research, 

DOI 10.1007.  



 164   
 

Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. 

IEEE Transactions on Information theory, 14(1), 55-63.  

Hunter, P.D., Gilvear, D.J., Tyler, A.N., Willby, N.J. and Kelly, A. (2010a). 

Mapping macrophytic vegetation in shallow lakes using the Compact Airborne 

Spectrographic Imager (CASI). Aquatic Conservation-Marine and Freshwater 

Ecosystems, 20(7), 717-727. 

Hunter, P.D., Tyler, A.N., Carvalho, L., Codd, G.A. and Maberlyd, S.C. 

(2010b). Hyperspectral remote sensing of cyanobacterial pigments as 

indicators for cell populations and toxins in eutrophic lakes. Remote Sensing of 

Environment, 114(11), 2705-2718. 

Hürlimann, H. (1951). Zur Lebensgeschichte des Schilfs an den Ufern der 
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