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Abstract.

This thesis deals with the construction of a medical decision support system, and 

more specifically with the knowledge sources within the system that facilitate its 

operation. Simulations of some results from a proportion of these knowledge sources are 

created, the results correspond to the physical and electrophysiological tests carried out 

on a patient during neuromuscular diagnosis, and various methods of processing the 

acquired data for interpretation.

Chaos as a method of modelling myoelectric activity is assessed for the purpose 

of creating an EMG simulation knowledge source and for differentiating between 

disorder types. The construction of phase portraits, correlation dimension analysis and 

calculation of Lyapunov exponents are all used to attempt to establish the presence of 

chaotic behaviour in the myoelectric signal. However, it is proven that the dynamics of 

the EMG are not chaotic in nature, thus a more suitable model for EMG simulation is 

chosen.

The second knowledge source looked at in detail is that of EMG decomposition. 

Two methods of clustering MUAPs into their classes are assessed. Firstly the use of a 

neural network to cluster action potentials represented by correlated features and then non 

correlated factors. The method proves most effective when non-correlated factors are 

used. The second method looked at is that of multiple database principal component 

analysis. This method proves capable of clustering MUAP classes in the presence of 

noise and MUAP variation. The method is tested on real data and, within the limits of the 

study, the results are confirmed.

A study of time requirements is made for resolution of overlapping action 

potentials. Two methods are considered a fast and a more thorough one. It is established 

that it would be appropriate for these methods to be used in complement with one and 

other, in a method for automatic decomposition that includes both clustering methods 

discussed along with various other appropriate techniques such as firing time analysis.
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Chapter 1- Introduction.

1.1 The motivation for this research.

The problem of diagnosing disorders of the neuromuscular system is a complex

one. It involves the invocation of various types of testing and the ability to interpret

disparate forms of information. The overall process, most notably the 

electrophysiological assessment, can be quite time consuming. Electrophysiological 

assessment of a patient is a frequently used test during diagnosis. It is hampered by the 

limitations imposed upon the force, generated within the observed muscle, by manual 

identification of its content. The relatively low forces involved increase the number of 

tests required to achieve a diagnosis. In this case an automatic routine would reduce the 

cost in time by allowing a fuller (higher force) signed to be analysed, and improve the 

diagnostic procedure by allowing analysis of higher force activity.

The creation of a medical decision support system applied to neuromuscular 

diagnosis would make the diagnostic procedure less time consuming and more efficient. 

As may be seen from the example above, there is a need to improve the procedure of 

neuromuscular diagnosis for the benefit of clinicians and to reduce patient discomfort. 

This forms the motivation for the research presented within this thesis.

1.2 Objectives

The objectives of this research are as follows:

1. To enable development and testing of a blackboard based medical decision support 

system, for use in neuromuscular diagnosis, by creating simulations of required but 

unavailable sources of knowledge;

2. To investigate the hypothesis that the dynamics underlying the interference 

electromyogram are chaotic in nature;

l
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3. To create a knowledge source capable of simulating the EMG signal and of 

contributing to a simulated patient for use within the medical decision support 

system;

4. To investigate methods of clustering motor unit action potentials into both their 

classes and their trains, for use within an automatic decomposition knowledge source. 

This knowledge source is to be applied within the medical decision support system; 

and

5. To assess the feasibility, with respect to required processor time, of two methods of 

resolving superimposed motor unit action potential complexes, to be utilised within 

the same automatic decomposition routine.

1.3 Medical decision support systems.

Medical decision support systems (MDSS) are specially designed computer 

programs which perform not only ordinary numerical analysis, but also knowledge 

intensive operations (Wang, 1995). Knowledge based systems use the information stored 

in their own knowledge base in order to solve the problem with which they are presented. 

Medical decision support systems fall within this category.

MDSS are systems which will aid and complement the formation of a diagnosis 

by a clinician. They are in no way intended to replace the doctor. An MDSS may be 

considered to be another test that may be ignored by the diagnostician if, for example, the 

yielded results are contrary to the results of other tests employed in the diagnostic 

procedure.

1.4 - The blackboard system.

The blackboard approach was designed to cope with ill-defined, complex 

applications in decision making. The original metaphor upon which today’s systems are 

based is as follows:

2
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“Imagine a group of human experts seated next to a large 

blackboard. The specialists are working co-operatively to 

solve a problem. Problem solving begins when the problem 

and initial data are written on the blackboard. The 

specialists look for an opportunity to apply their expertise 

to the developing solution. When a specialist finds 

sufficient information to make a contribution, the 

contribution is recorded on the blackboard, which lets other 

specialists apply their expertise. This process of adding 

contributions to the blackboard continues until the problem 

is solved.” (Corkhill, 1991).

As a system implemented in software the metaphor is translated into various 

groups. These consist of the blackboard itself, the repository of knowledge of all kinds 

relevant to the problem, knowledge sources, distinct modules representative of the 

metaphor’s experts and the scheduler which acts as the chairman of the meeting of 

experts.

An important feature of the blackboard system is that it may deal with information 

in diverse formats. Each knowledge source is distinct and interacts with the blackboard 

only, thus many data types may be accommodated within the system.

The tasks to which blackboard systems are applied, all share common 

characteristics, (Nii, 1994):

1. The problems are complex and ill-structured, with large 

solution spaces.

2. The solutions require situation dependant or 

opportunistic invocation of diverse sources of 

knowledge.

3
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3. The problems require both synthetic and analytic 

processes.

1.5 - Application to Neurophysiological diagnosis.

The diagnosis of neuromuscular disorders is based on the results of different 

tests. These tests may be of procedural form, i.e. they may depend upon numerical 

techniques to present information in a form useable by the clinician, or they may mix 

procedural and knowledge based methods. The data produced by each of these methods 

must necessarily be of diverse form, consisting of numeric and symbolic forms, etc.

The problem of forming a diagnosis from these diverse inputs is not an easy one, 

it takes a great deal of experience for a doctor to be able to do so. This is because the 

information is drawn from complex signals and procedures that require a great deal of 

understanding in order to be interpreted. The blackboard system has been fairly widely 

accepted today as a pertinent scheme for biomedical applications (Suranammi, 1993). It 

provides an opportunistic problem solving environment calling on multiple knowledge 

sources to reach a co-operative solution to a complex task (Jones, Sehmi & Kabay, 1992). 

Both data and goal driven strategies may be used and these are necessary for 

neurophysiological diagnosis. The blackboard system is thus suitable for application to 

the creation of medical decision support systems.

1.6 - Electromyography.

“Electromyography is the study of muscle function through the inquiry of the 

electrical signal the muscles emanate.” (Basmajian & De Luca, 1985).

4
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1.6.1 - The Motor Unit (MU).

The structural unit within the muscle that undergoes contraction is the muscle cell 

or muscle fibre. This muscle fibre, which consists of a very fine thread, has a length that 

may vary from approximately a few millimetres to 30 centimetres and a diameter in the 

region of 10 to 100 micrometers. When subjected to contraction, each individual muscle 

fibre can reduce in length by up to approximately 43%

In order for a muscle fibre to sustain a contraction, it must undergo reactivation 

continuously, and as such is subject to rapid contraction and relaxation for the duration 

of the muscle contraction.

When looking at normal mammalian skeletal muscles, muscle fibres tend to be 

activated in groups rather than on an individual basis. All the muscle fibres contained 

within these groups are supplied by the terminal branches of a single neurone or axon, 

the body of which is contained in the anterior horn of the spinal grey matter.

Thus it may be seen that the motor unit consists of:

1. The nerve cell body.

2. The long axon running down the motor nerve.

3. Its terminal branches.

4. The muscle Fibres.

5
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Figure 1.6.1.1 - An illustration of a motor unit.
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It is now clear that the MU is the functional unit of striated muscle, because the 

impulse which travels along the motor neurone causes all constituent muscle fibres of the 

motor unit to contract almost simultaneously.

However, there are two factors which prevent the simultaneous 

contraction of the muscle fibres, these being;

• The variation in time which is a consequence of the

different lengths and diameters of the axon branches

activating the muscle fibres. This is, however, a 

constant time delay.

• The delay in time caused by random emission of

Acetylcholine packets, from each neuromuscular

junction.

The second of these two factors is believed to be a random process and as such, 

the excitation of each muscle fibre in a MU also appears to be random in time.

6



Simulation and analysis in electromyography.

The actual size of MUs is variable, muscles controlling fine movements, such as 

those in the ear and eye, contain relatively few muscle fibres (less than 20) whilst those 

in, for example the leg or any other limb will have large MUs containing many muscle 

fibres (up to and over 1000), (Lenman & Ritchie, 1977).

The motor units in a muscle are arranged in a hierarchy based on size. The MUs 

containing a small no. of fibres are activated by the smaller alpha motoneurons and are 

excited in the earlier stages of a contraction requiring an increasing level of force. The 

larger MUs are activated, as would be expected, by larger alpha motoneurons, and at 

progressively greater levels of force.

1.6.2 - The Electromyogram, (EMG).

The EMG is the electrical manifestation of the neuromuscular activation 

associated with the contraction of a muscle. It is a very complex signal which, although 

extremely noise like in appearance, is highly structured.

The EMG signal is affected by several different factors, these being anatomical 

and physical properties of the muscle under observation, the control scheme of the 

peripheral nervous system, and the characteristics of the instrumentation used to detect 

and observe it.

The main component of the EMG is :

1.6.3 - The Motor Unit Action Potential, (MUAP).

Under normal conditions, an action potential propagating down a motoneuron 

activates all of the branches of that motoneuron. These in turn activate all the muscle 

fibres in that MU.

7
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When the post synaptic membrane of a muscle fibre is depolarised, the 

depolarisation travels in both directions along the fibre. The depolarisation of the 

membrane is accompanied by a movement of ions. These together generate an 

electromagnetic field in the vicinity of the muscle fibres.

If an electrode is located within this field, it will detect the potential or voltage 

whose time excursion is the action potential of that MU.

The signal seen at the site of detection will, in actual fact, be a superposition in 

both time and space, of the individual MU components contributed from each muscle 

fibre in the MU, and of other nearby, active MUs. This is because the depolarisation of 

the individual muscle fibres of one MU overlap in time.

The shape and amplitude of a MUAP depend upon the geometric arrangement, 

with respect to the electrode’s location, of the active muscle fibres in the MU. If there are 

fibres in the detection site which belong to other MU and which are excited these too will 

be detected. They will, however, be recognisable from one and other because their shape 

will vary: this is an effect of the geometric arrangement previously mentioned. The 

differences in the arrangement of fibres between MU, relative to the electrode, alter the 

size and shape of their action potentials.

It is true, however, that MUAPs from different MU may have similar amplitude 

and shape. This occurs when the fibres of MU in the detectable area of the electrode have 

similar spatial arrangement. The geometric arrangement of the fibres in a MU is very 

sensitive to disruption. Even slight movements of the penetrative electrode will 

significantly alter the geometric arrangement of the fibres, and thus, the amplitude and 

shape of the corresponding MUAP also.

When the factors which effect MUAP shape are taken into account, it comes as no 

surprise at all that variations are found in the amplitude, number of phases and duration of 

MUAPs detected by the same electrode, and especially in MUAPs detected by different 

electrodes.

8
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Figure 1.6.3.1 - Normal Action Potential Shapes .
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1.6.4 - The Motor Unit Action Potential Train, (MUAPT).

The occurrence of a MUAP is accompanied by a twitch of the muscle fibres 

contained within that MU. For a contraction of the muscle to be sustained, it is necessary 

for the MU within it to be continuously reactivated. The waveform produced by one MU 

is then known as the Motor Unit Action Potential Train (MUAPT).

The waveform of the MUAP will remain constant in the MU APT if the 

geometric relationship between the active muscle fibres in the muscle, and the electrode 

recording the electrical activity within the muscle, remains constant. Other factors 

requiring constancy are the properties of the recording electrode and the biochemical set­

up of the muscle tissue.

It is known that, in humans, the muscle fibres of any one particular MU are 

scattered randomly within a section of the normal muscle, also that they are intermingled 

with constituent fibres of other MUs. The Cross Sectional Area of a MU, in fact, ranges 

from 10 to 30 times that of the muscle fibres within it. This implies that the muscle may 

contain fibres belonging to between 20 and 50 MU. It is thus clear that a single MU APT 

is observed only when the muscle fibres from one MU are active, and that this will only 

occur under very low levels of contraction.

9
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As the force output of the muscle increases, the MU with fibres in the pickup area 

of the electrode become activated causing simultaneous detection of several MUAPTs. 

This is the case, even for highly selective electrodes. As the number of simultaneously 

detected MUAPTs increases, it becomes more difficult to determine which MU APT a 

certain MUAP comes from, and thus to group together the MUAPs which form a 

MUAPT. This is due to the increase in the probability that MUAPs from different 

MUAPTs will overlap, that is associated with the increase in force output of the muscle 

and the increase in simultaneously detected MUAPTs. As the MUAPTs present in the 

EMG overlap, the Interference Electromyogram (IEMG) is formed. This is a 

superposition of MUAPTs in time.

Figure 1.6.4.1 - An Example of the Interference EMG

Amplitude (mV)

4

2

0 Time (ms)

2

0.1 ms

1.6.5 - Force generation.

When a healthy, normal muscle is at rest, with the exception of occasional nerve 

potentials and endplate potentials, it is electrically silent. Any electrical activity that may 

be detected due to the insertion or relocation of the electrode will be of minimal duration.

When such a muscle as the one described above is subjected to a weak voluntary 

contraction, a few MUAPs within it begin to fire asynchronously. This is typically at a 

rate of between 5 and 40 per second. As the required force output of the muscle becomes

10



Simulation and analysis in electromyography.

greater, it is necessary for more force to be generated. This is achieved via two separate 

mechanisms:

1. Recruitment of Motor Units.

2. Alteration of Motor Unit Firing / Discharge rates.

When the force output of a muscle becomes greater, there is a transient increase in 

the firing rate of the MUs already active within the muscle. This is closely followed by 

recruitment, and an associated decrease in the firing rate. This is the case until all of the 

MU within the muscle are active.

For recruitment, firstly the small MU within the muscle fire. These are followed 

by the larger MUs, thus the contraction of a muscle is known as a 'Production of Graded 

Muscular Tension.' It is usual for MU that have been recruited to remain active 

throughout the period of the contraction, and when all the MU available have been 

recruited, the second mechanism for increasing the force output of a muscle, by 

increasing the frequency at which the individual MUs fire, is resorted to.

As the required force output of the muscle decreases, the last MU to be recruited 

is the first to be released from work. The release of MUs continues in this first in, last out 

manner, until the last MU is deactivated. At this point an iso-electric baseline is restored.

1.6.6 - The EMG of Myopathy.

The changes in the appearance of the EMG, due to muscular diseases, depict 

firstly, the pathological changes in a muscle which result in a loss of fibres. The signal 

consists of a main spike potential and others following it. These other spike potentials are 

due to activity in muscle fibres not within the immediate recording vicinity of the 

electrode. The spikes arise because the electrode is recording near to a MU which has lost 

some of its fibres. Thus within that MU, the muscle fibre membranes and the motor end 

plates are not functioning properly. This produces a scatter of time delays in the elements

11
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of the MU. These different delays cause the firings of the remaining fibres within the MU 

to be out of phase with one and other, thus they appear in the EMG as individual spikes.

When observing the EMG of a muscle suffering with a myopathic disorder, the 

electrode will pick up signals from nearby muscle fibres, but those fibres belonging to the 

MU that are some distance away are lost. This affects the appearance of the signal, 

therefore the action potential of a myopathic MU will be of low amplitude, short 

duration, and will be polyphasic during voluntary contraction

Figure 1.6.6.1 - The Myopathic Action Potential.
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100

0

-100

So, the reduction in the dimensions of MUAPs, and the fragmentation of normal 

bi- and Triphasic potentials into polyphasic potentials, result from the loss of functioning 

muscle fibres within MU. However, the most interesting aspect of voluntary contraction 

in a myopathic muscle, is the occurrence of a full interference pattern during contractions 

of only weak force.

The increase in the interference pattern at low levels of contraction within 

myopathic muscles, in comparison with the level of interference observed in a normal 

muscle, may be explained as a ‘Reduction in the Mechanical Output’ of the diseased 

muscle. This is characterised by fewer muscle fibres being available within the MU to 

produce an output of force. Each muscle fibre as a single entity is very weak, and as there 

are fewer within the MU, to produce the desired output, the muscle fibres that are 

available are recruited at a rate greater than that demonstrated by a normal muscle, and at 

a higher firing rate, at relatively lower force level, in order to produce a comparable

12
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output to that of the norm. This relative increase in the firing rate, at low force levels, 

contributes more action potentials than may be normally expected, thus creating an 

interference pattern. It follows that a full interference pattern will be observed, at a lower 

proportion of maximum voluntary contraction than in normal muscles.

In general, when a muscle is host to a myopathic disorder, the motor and sensory 

conduction velocities remain normal.

1.6.7 - The EMG of the Neurogenic Lesion.

There are three types of trauma from which a nerve may suffer:

1. Neurapraxia: this is a temporary failure of nerve conduction without loss 

of axonal continuity between the neurone and it’s end organ;

2. Axonotmesis: this describes severance or damage to the axon with 

subsequent wallerian degeneration distal to the axonal lesion, but without 

damage to the basement membrane and connective tissue of the nerve 

bundle. Axonal regeneration occurs after this lesion at a rate of 1- 

2mm/day.

3. Neurotmesis: this describes more serious cases of axonotmesis, where 

damage to the basement membrane and connective tissue occurs. The 

perineurium may also sustain damage. In the most severe cases the nerve 

may be severed. Regeneration is less effective than for axonotmesis, 

because of the damage sustained by the basement membrane or connective 

tissue sheaths of the nerves, therefore making functional recovery of the 

muscle less complete.

There are two types of pathology that can occur in a neuropathic disorder:

13
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1. Demyelination: damage to the Myelin sheath which covers the nerve 

fibre. This type of disorder results in an overall slowing of the Nerve 

Conduction Velocity, (NCV). It is usually observed to be less than one 

half of the expected value. There is a second potential that is 

sometimes recorded in NCV test: this is known as the F wave. The F 

wave is formed from the evoked impulse travelling proximally along 

the nerve to the anterior horn cell, before travelling distally to inervate 

the muscle. In a neuropathic disorder of this type, the F wave is seen to 

be of reduced amplitude, prolonged duration and exhibiting 

polyphasicity.

2. Axonal Lesion: When there are lesions on the anterior hom cell or the 

peripheral nerve, there results a partial injury to the motor nerve, (i.e. 

the alpha motoneuron).The effect of this is that some of the muscle 

fibres within an MU will no longer be activated when the muscle 

contracts. This may be viewed as a break in the interface between the 

nervous system and individual muscle fibres. To cope with this, the 

surrounding MU, providing of course that there are some still in a 

normal state, will grow out to encompass the muscle fibres which are 

no longer connected to the nerve of their MU, thus connecting them 

with a new nerve, and re-innervating them. This obviously results in a 

change in the geometric arrangement of fibres within the MU. There 

are groups of several muscle fibres, all belonging to the same MU, 

present within the pick-up area of the electrode.

When observing the action potentials of a muscle suffering from neurogenic 

lesions, it is possible that those due to the MU recruited early on in the contraction may 

appear as normal, though it is likely that some will be polyphasic. It is more likely that 

these early action potentials will be polyphasic in chronic (i.e. those of a long period) 

lesions than in acute (i.e. short and severe) lesions. Generally, a neurogenic EMG signal 

will contain spontaneous activity such as fibrillation potentials, which are potentials due
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to a local involuntary contraction of muscle resulting from the spontaneous activation of 

a single muscle fibre whose nerve supply has been damaged or cut off, even at rest.

Figure 1.6.7.1 - The Neurogenic Action Potential.
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As the force of the contraction increases, and more MU are recruited, the action 

potentials increase in magnitude. The later recruited units are significantly larger than 

those first recruited. The increase in size is due to recruitment of those MUs re­

innervated, by the axons of surviving MU. The increased percentage of polyphasic 

MUAPs is due to the larger spatial distribution of muscle fibres, (Ludin, 1980). These 

action potentials are known as “Giant Potentials”, if their magnitude is greater than 

approximately lOmV.

A neuropathic disorder may be “Sensory” or “Motor”, or a combination of both. 

Sensory Neuropathy is usually caused by damage to the nerve fibres connected to the skin 

surface. In this case there is no effect in the EMG, but the NCV tests show abnormal 

results. Motor Neuropathy is caused by damage to the nerve fibres connected to the 

muscle. In this case, abnormal affects are observed in the EMG, but mainly in the NCV 

tests.

It has been observed that the most characteristic factor of the EMG of neuropathy, 

is the reduction in the degree of interference pattern at maximum voluntary contraction,
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during all stages of the disorder. This is an indication of the loss of functioning MUAPs 

within a muscle, and the respective interference pattern is seen to consist of a reduced 

number of large amplitude, fast firing MUAPs.

When a muscle is severely affected in the way described above, only a single 

MUAP may be recorded during maximum contraction. This differs from severe cases of 

muscle fibre lesion, where the full interference pattern may be seen, even at relatively low 

force levels.

1.6.8 - Spontaneous activity.

Unlike the voluntary activity of a muscle, the spontaneous activity is studied 

whilst the muscle is at rest. It is studied like this because at rest there is little or no 

voluntary content in the signal being observed, thus making the spontaneous activity 

recognisable.

Spontaneous activity may be grouped as follows: insertion activity; fibrillation 

potentials; positive sharp waves; bizarre high frequency potentials; end-plate potentials; 

and fasciculation potentials.

1.6.8.1 - Insertion activity.

This is the electrical activity caused by either the insertion or the movement of a 

needle electrode. It consists of a very brief burst of potentials lasting less than 500ms 

(Swash & Schwarz, 1981). The potentials caused by insertion are of shorter duration and 

smaller amplitude than the action potentials caused by the firing of a motor unit.

1.6.8.2 - Fibrillation and fibrillation potentials.

Fibrillation is the spontaneous contraction of a single muscle fibre. The 

fibrillation potential is the electrical activity associated with that fibrillation. The
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potentials may fire spontaneously, or in a similar fashion to insertion activity, may be 

provoked by movement of the recording electrode. The potentials usually fire at a 

constant rate, although a small proportion fire irregularly ( DeLisa et al, 1994). The firing 

rate often decreases just prior to the cessation of the discharge. These potentials rarely 

occur in normal muscle, they are associated with denervation.

1.6.8.3 - Positive sharp waves.

The positive sharp wave is caused by insertion or movement of the needle 

electrode. It is characterised by a fast rise time and relatively short positive phase, and a 

slower negative phase of smaller amplitude. It is considered to originate from a damaged 

region of muscle fibres, (Richardson & Barwick, 1969) (Lenman & Ritchie, 1977).

Positive sharp waves may be recorded from fibrillating muscle fibres when the 

potential arises from an area immediately adjacent to the needle electrode, (DeLisa et al, 

1994). Both positive sharp waves and fibrillation potentials occur more commonly in 

peripheral nerve disorders than in lesions near or on the anterior horn cells.

1.6.8.4 - End-plate potentials.

The end plate potential may be defined as the graded, non-propagated membrane 

potential induced in the postsynaptic membrane of the muscle fibre by the action of 

acetylcholine released in response to an action potential in the postsynaptic axon 

terminal, (DeLisa et al, 1994).

These potentials may be confused with fibrillation potentials. The major 

difference is that a slight movement of the needle will cause the end-plate potential to 

disappear.
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1.6.8.5 - Fasciculation and fasciculation potentials.

A fasciculation is the spontaneous firing of a group of muscle fibres or a motor 

unit, it is accompanied by visible movement of the skin (limb), mucous membrane 

(tongue), or digits, (DeLisa et al, 1994).

The fasciculation potential has the configuration of a motor unit action potential, 

but it occurs spontaneously. They most often occur sporadically, but sometimes occur as 

a grouped discharge, (DeLisa et al, 1994).

Fasciculation potentials are usually found in spinal cord lesions and in motor root 

lesions, (Swash & Schwarz, 1981). They do occur in normal muscles, however, their 

discharge rate is significantly different. In normal subjects they occur at a rate of 

approximately 1/s, but in anterior hom cell disorders their frequency is slower: one every 

3 to 4s, (Trojaberg & Buchthal, 1965).

1.7 - Investigations in Electromyography.

Various investigations are carried out during neurophysiological examinations. A 

large proportion of these fall into the category of electrophysiological tests and as such 

require the use of electrodes.

1.7.1 - The Electrode.

The electrical activity in a muscle is monitored using electrodes. The main 

constraint of these electrodes is that they must be relatively harmless to the patient and at 

the same time must be brought close enough to the muscle under observation to detect the 

current created by the ionic movement within it.

There are several different types of electrode used in the study of muscle function, 

the first of these being:
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1.7.1.1 - The Surface Electrode.

The surface electrode comes in two general formats, either the passive electrode 

or the active electrode. Both are very similar in that they consist of a detection surface 

which monitors the current on the patient’s skin, via the electrode-skin interface, i.e. the 

area of contact between the skin and the detection surface. The major difference between 

the two occurs in the active configuration. Here, the input impedance of the electrode is 

increased greatly. This reduces the effects of both the impedance and the quality of the 

electrode-skin interface. Both of these formats are required.

This electrode type may be used to detect those EMG signals that contain the 

contributions from many individual MUs within the pickup area of the electrodes 

detection surface. They may also be used to detect motor unit action potential trains 

during low level contractions of the muscle. However, the concentric needle or EMG 

electrode, is mostly used for these purposes, in practice, whilst the surface electrode is 

used for nerve conduction velocity testing.

1.7.1.2 - The Needle Electrode.

The most common electrode is a penetrative electrode, inserted into the muscle, 

i.e. the needle electrode. The needle electrode is available in many forms, but the most 

widely used in electromyography is the concentric needle electrode (CNE).

The CNE is used in both clinical and research environments, and comes in 

different formats. The monopolar configuration contains a single insulated wire in the 

cannular of the needle, the tip of that wire being bared to act as the electrodes detection 

surface, whilst the bipolar configuration contains two insulated wires in the cannular, thus 

providing the electrode with two detection surfaces.

The CNE has two significant advantages over other electrode types: its relatively 

small detection surface enables the electrode to detect MUAPs individually. This is 

especially so at low levels of contraction, and the electrode may easily be repositioned
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within the muscle, without reinsertion, to improve the signal quality or to view signals 

from surrounding areas

It is also possible to obtain electrodes specifically designed to study certain 

characteristics of the MU.

Figure 1.7.1.2.1 - The Concentric Needle Electrode.
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central wire

insulation

1.7.1.3 - The EMG Amplifier.

The basic electrical characteristics of the EMG signal may be seen from figure

1.5.1.3.1 to be as follows: in frequency, the EMG ranges from approximately 25Hz to 

several kilohertz; in amplitude it varies from lOOuV to 90mV, and the DC potential is 

small in magnitude.

This indicates that amplifiers to be used in the observation and recording of the 

EMG must have a wide frequency response. It is beneficial, however, that the amplifier 

need not cover the very low frequencies, i.e. less than approximately 25Hz, because 

motion of the body consists mostly of low frequencies. Thus motion may easily be 

filtered out of the EMG, without having adverse affects on the quality of the signal.

The type of electrode used affects the amplifier characteristics. Surface electrodes 

reduce the level of the signal, so that amplitudes vary from approximately 0.1 to lmV.
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The electrode impedance is low, ranging from about 200 to 5000Q. This increases the 

required gain of the amplifier. If an intramuscular electrode is used, the signal may be an 

order of magnitude greater than that observed using the surface electrode, thus the gain 

required is an order of magnitude less.

Another factor affecting the amplifier, is the surface area of the electrode. This 

area is small, so the electrodes source impedance will be relatively high. In order to 

obtain a good quality signal reproduction, it is necessary to have a reasonably high 

amplifier input impedance.

Figure 1.7.1.3.1 - The electrical characteristics of the EMG.
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1.7.2 - Physical tests.

1.7.2.1 - Nerve conduction velocity studies.

Nerve conduction studies are technical procedures used to assess objectively the 

functional states of the peripheral neuromuscular system, (DeLisa et al, 1994).
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The velocity with which a stimulus propagates along a peripheral nerve is a useful 

indicator of the state of the muscle - nervous system interface. However, this is not the 

only thing of interest, various other observations, both motor and sensory, are made on 

the peripheral nerves to aid in diagnosis.

The apparatus required to perform nerve conduction studies consists of various 

electrodes for stimulating the nerve, recording from the nerve and for grounding it. These 

electrodes are all surface electrodes and are arranged into different configurations for 

different types of observation.

The main observations are those of the motor and sensory nerve responses 

(latancies) and hence the motor and sensory nerve conduction velocities. It should be 

routine practice to measure sensory and motor nerve conduction velocities in at least one 

nerve in all patients, because some patients, especially those with proximal weakness, 

may thus be shown to have a neuropathy rather than other myopathic or neurogenic 

disorders, (DeLisa et al, 1994).

Various levels of stimulation may be used , though for motor nerve conduction 

studies, supramaximal stimuli must be used, (Swash & Schwarz, 1981). Supramaximal 

stimulation uses a stimulus 20% stronger in voltage or current than that which is required 

for maximal stimulation. Maximal stimulation is the stimulus intensity after which a 

further increase in the stimulus intensity causes no increase in the amplitude of the 

evoked potential in the nerve under investigation, (DeLisa et al, 1994)

Measurements of the applied stimulus current give a measure of the stimulus 

threshold of the nerve and these are sometimes useful in detecting slight abnormalities, 

particularly when comparison is made between sensory thresholds in opposite limbs, 

(Swash & Schwarz, 1981).

The motor latency is the time from the time of stimulation of the nerve to the 

initial deflection of the response from the isoelectric baseline; whilst its sensory 

counterpart may be measured from the time of stimulation of the nerve to, either the peak 

of the negative phase, or the initial positive dip of the response.
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From these latencies, the appropriate conduction velocities may be calculated. 

This is done by stimulating the nerve at two separate locations and relating the stimulus 

propagation time difference to the separation of stimulation sites, as follows:

Conduction Velocity =  Stimulus Separation /  (  Proximal Latency - Distal Latency)

Proximal latency being the latency recorded from the location of stimulation most 

proximal to the nerve, and likewise for the distal latency.

It is accepted that the maximal nerve conduction velocity usually exceeds 50 m/s 

in the arms and 40 m/s in the legs. In more proximal parts of the nerve, the conduction is 

usually slightly faster, ( Swash & Schwarz, 1981).

When stimulating a mixed nerve (i.e. a motor and sensory nerve), a nerve action 

potential is propagated and may be recorded at another point along the nerve, and its 

conduction velocity calculated. This technique is useful in the assessment of entrapment 

syndromes, when it may give information about local slowing of nerve conduction and 

loss of nerve fibre, (Swash & Schwarz, 1981).

So, NCV studies are useful in distinguishing between different types of disorder, 

and in diagnosing the presence and whereabouts of nerve entrapment syndromes, both 

using the propagation of nerve action potentials and the comparison between limbs of 

velocities through possible entrapment sites.

1.7.2.2 - Blood Creatine Phosphokinase content.

Creatine Phosphokinase is an enzyme which is present within human muscles in 

large quantities. Upon the occurrence of muscle fibre damage, this enzyme leaks from the 

muscle and causes a raised level in the blood.

The most valuable test in patients with neuromuscular disorders is measurement 

of the blood creatine phosphokinase (CPK) levels (Swash & Schwarz, 1981).

The level of CPK in the blood varies in relation to muscular activity, and even 

normal subjects may show slight elevations after exercise in which muscular trauma is
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sustained, (Swash & Schwarz, 1981). Even the trauma of the EMG electrode or muscle 

biopsy will cause a raise in CPK levels.

The major factor to be considered in the analysis of CPK is a high content in the 

blood. Muscular disorders may be identified from unusual increases in CPK level. The 

CPK is raised in most myopathies, the highest values being found in Duchenne muscular 

dystrophy. In some indolent myopathies the CPK may be normal. It is also normal in 

peripheral neuropathies and other neurogenic disorders. However, in some severe chronic 

neurogenic disorders, the CPK may be moderately raised, (Swash & Schwarz, 1981).

In general though, most myopathies have a raised CPK level whilst most 

neuropathies have a normal or slightly raised CPK level. So the CPK level is a useful 

indicator of the state of the fibres within muscles. CPK level may also be used to monitor 

the progress of myopathic disorders within their hosts. The level of CPK within the blood 

is ascertained by analysis of a patients blood sample.

1.7.3 - Low force electrophysiological tests.

Low force electrophysiological assessment of the muscle consists of observation 

of the activity within the muscle, whilst no force is being exerted, and observation of the 

activity in the muscle whilst it is generating a low to medium force output, i.e. prior to the 

development of the interference signal. Voluntary activation is studied in a graded 

manner so that individual units may be studied, (Swash & Schwarz, 1981).

At zero force, after insertion activity has died away and its parameters been 

recorded, the other forms of spontaneous activity are looked for. These consist of 

fasciculation and fibrillation potentials, end-plate potentials, positive sharp waves and 

bizarre high frequency potentials. The presence or absence of such activity can be highly 

indicative of certain disorders, thus negating others and facilitating diagnosis.

The important parameters which are required to be identified from volitional 

activity are as follows: action potential amplitude; action potential duration; number of 

phases; firing rate. This information, most notably the number of phases, will 

differentiate between normal and disordered muscle, and myopathic and neuropathic
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muscle. Combined with the information about spontaneous activity present within the 

signal and physical test results, along with further information about the patient, a 

diagnosis may be possible. However, other investigations may be required to isolate the 

disorder present.

These observations are made using the CNE described previously, attached to the 

relevant amplifiers and displays. The needle should be placed in one of the most affected 

muscles. It is important that there is a standard for measuring the parameter dimensions. 

Thus, the amplitude is measured as the maximum peak to peak amplitude. This is 

affected by: the diameter of the muscle fibres; the number of fibres; the temporal 

distribution of the action potential closest to the recording electrode; the leading off area 

of the electrode, (DeLisa et al, 1994). The number of phases in an action potential is the 

number of baseline crossings plus one. A phase is seen to be the area between two 

adjacent baseline crossings.

In a clinical environment, all of these observations are generally made by the 

clinician using his or her eye. There has been much interest over the years in the 

automation of this process. Various methods of decomposition have been presented, 

demonstrating differing levels of success. However, the traditional doctor’s eye is, at 

present, the more effective method.

1.7.4 - High force electrophysiological tests.

At high force levels, the electrical activity recorded from the muscle is much 

harder to analyse. The EMG shows an interference pattern in many cases and it is 

difficult to discover any useful information, simply using visual observation. Various 

techniques have been devised for gleaning useful information from high 

force/interference EMG signals. Some of these are described.
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1.7.4.1- Single database principal component analysis.

It has been shown that different types of spectra derived from signals typical of 

normal, myopathic and neurogenic subjects, can be classified successfully using the 

method of principal component analysis, (Jones et al, 1990).

Principal component analysis is a multivariate statistical technique which is 

capable of representing a set of data variables by a completely new, orthogonal, set of 

data variables, reduced in number from the original. It is an effective way of classifying 

the spectra of the turning point process of interference EMGs and its application to 

interference EMGs has allowed successful separation of normals and cases of neurogenic 

and myopathic disorders.

The use of two principal component coefficients, to classify each interference 

EMG, can give adequate discrimination between cases. If extra information is available to 

separate neurogenic disorders from early myopathic disorders, whilst the use of three 

coefficients provides enhancement to discrimination in difficult cases, (Jones et al, 1990).

These results are presented in more detail by Jones et al, who state that mixtures 

of normal and myopathic EMG’s with more than 10% and fewer than 40% abnormal 

units are classified as neurogenic in two dimensional analysis. EMG’s with fewer than 

10% abnormal units are classified as normal and those with more than 40% myopathic 

units are classified as myopathic.

Mixtures of normal and neurogenic EMGs with more than 10% abnormal units 

are correctly classified as neurogenic in two dimensional analysis, EMGs with fewer than 

10% abnormal units are classified as normal

The addition of a third principal component coefficient into the procedure allows 

the correct classification of all mixtures of normal and myopathic units when there are 

more than 20% abnormal units present, (Jones et al, 1990).
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1.7.4.2- Triple database principal component analysis.

It is apparent that the principal component analysis algorithm (single database) is 

capable of taking in a recorded high force (interference) EMG signal, resolving it into its 

principal components, representing it using the first three, and forming a comparison of 

this representation with the clusters ascribed to the different disorder types.

The triple database principal component analysis knowledge source is very similar 

to its single database counterpart. The major difference being that the database from 

which the principal components and their associated weights are calculated, in the single 

database method, consists of the turning point spectra of interfering EMG signals 

representative of normal, myopathic and neurogenic signals, whilst in the triple database 

method there is an individual database for each disorder type.

The method of muscle condition determination consists of generating the 

principal component representation of a new signal using each database concurrently to 

see which set of principal components fits its turning point spectrum most closely. 

Closeness being measured in terms of the size and whiteness of the residual. The residual 

is defined as the difference between the actual spectrum, and the least squares 

approximation using weighted sums of the principal component spectra from the 

particular class being considered, (Jones et al, 1987).

1.7.4.3 - Turns Analysis.

Willison’s method uses two parameters to characterise the EMG:

• The number of potential reversals (turns) per unit time.

• The mean amplitude between turns.

A comparison is made between the amplitude of the potential deflection and a 

pre-set threshold level. Only those phase changes that exceed this threshold are registered
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as significant turns. The threshold uses a point of change in phase of potential as its 

reference.

It has been shown by different investigators that this method will successfully 

discriminate between healthy, myopathic and neurogenic muscle. Myopathic muscle 

shows an increased turns count per unit time and a mean amplitude between turns that 

tends to fall below the normal range. Neurogenic muscles show grossly increased mean 

amplitude between turns, (Willison, 1964) (Rose & Willison, 1967) (Colston & Feamley, 

1967) (Hayward & Willison, 1973 & 1977).

Hayward and Willison also showed that the increase in mean amplitude between 

turns in progressive neurogenic disorders, such as Motor Neurone Disease, may be 

followed from within the normal range to within the clearly abnormal, (Hayward & 

Willison. 1973).

Fuglsang-Frederikson et al reported that the number of patients identified as 

having neurogenic or myopathic disorders by turns analysis and by inspection of MUAP 

waveforms were very nearly the same, (Fuglsang-Frederikson et al, 1976 & 1977)

The turns count in an IEMG has been shown to correlate with the percentage of 

polyphasic MUAPs measured from individual motor units.

The main requirement for the correct operation of the algorithm is that the 

contraction force is accurately controlled. This requirement prevents the method being 

used successfully on children and on uncooperative patients. It also limits the number of 

muscles that may be studied.

It is important to note that the mean amplitude between turns, and the number of 

turns per unit time are directly related to the number of MU present within a contraction, 

and as such, correct classification of a muscles state will only occur if enough MU are 

present within the contraction. It was found that for myopathic, neurogenic and semi- 

neurogenic disorders correct classification is made for signals containing 10 or more 

potential trains, but for semi-myopathic disorders, 10 normal and 10 myopathic potential 

trains are required for correct classification, (Parekh, 1986).
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Myopathic disorders are classified correctly for signals containing above 30% 

myopathic potential trains, and Neurogenic disorders are also classified correctly for 

signals containing above 30% Neurogenic potential trains.

1.8 - The type of system

It may be appreciated from the details of those tests carried out in 

neurophysiological examination, that the results are diverse in form and inference. Not all 

tests bear the same relevance to different disorders, in fact some tests may not be required 

to form the diagnosis. Thus for an MDSS to be successful in this area it must be able to 

deal with the diversity of information present and the degree of relevance that the data has 

to the problem. The blackboard system is well suited to this type of situation.

Each of the different tests outlined may be viewed as a distinct source of 

knowledge to the blackboard. No one knowledge source requires interaction with another, 

this is only required with the blackboard. As such, the blackboard system will be able to 

deduce the validity of suggested hypotheses, making it a support device rather than a 

diagnostic replacement for the clinician.

1.9 - Summary.

This chapter has introduced the idea of medical decision support systems and the 

architecture and operation of the blackboard system, highlighting reasons for its 

suitability for application to the problematic field of neuromuscular diagnosis.

Background information on the subject of neurophysiology has been presented, 

including descriptions of the components that make up the electromyogram in both 

healthy and abnormal conditions. The methods of force generation have been outlined 

along with the behaviour of certain elements of the muscle and its associated EMG under 

various conditions of disorder. Spontaneous activity has been summarised and its 

occurrence presented. Types of electrode used in electromyography have been discussed 

and some characteristics of the required signal amplification have been outlined.
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The tests that may be carried out during neurophysiological investigations have 

been presented briefly. These included physical tests, low force electrophysiological tests 

and high force physiological tests.
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Chapter 2 - A simulated patient.

2.1 - Introduction.

This chapter is concerned with the creation of a simulated patient for interaction 

with a medical decision support system, and as a source of clinical reference. The MDSS 

interacted with is that created and tested in EPSRC Rep GR/J47064. Initially the reasons 

for creating such a simulated patient are addressed. In section 2.3 the components 

required for creating the simulated patient are outlined. Section 2.4 introduces the basic 

concepts of these components and isolates what form the simulations will take. This 

section also discusses the method of data representation used and the method by which 

the simulations operate within the simulated patient. Section 2.5 presents the data 

produced by the simulation of physical tests; section 2.6 presents the data produced by 

simulation of low force electrophysiological tests, and section 2.7 presents the data 

produced by simulation of high force electrophysiological tests. The usefulness of these 

simulations is discussed in section 2.8 and summarised in section 2.9.

2.2- Why create a simulated patient?

There are two main reasons for creating a simulated patient. The first reason is to 

provide appropriate results for the validation and modification of the neuropysiological 

MDSS. The second is to create the ability to provide training in comparative diagnosis of 

neuromuscular disorders. Both of these reasons are important and will be dealt with 

separately.

How can the creation o f a simulated patient facilitate validation o f an MDSS? To 

create an MDSS and ensure its correct operation, in the case of a blackboard based 

system, it is necessary to have operative knowledge sources to provide the information 

requisite to making a decision, or proving/disproving an hypothesis. There are two 

reasons at this stage for using simulations of knowledge sources. Either the real
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knowledge source is not available, or it is advisable to use data, the characteristics of 

which are known, in order to test whether the system is making the required decisions 

correctly.

So, simulations of the knowledge source may enable the system to operate in the 

absence of various knowledge sources necessary to diagnosis, during development. It 

may also allow the validity of the system’s decision making abilities to be assessed, by 

providing data to the system where the corresponding diagnosis is already known, and 

checking that the system agrees.

How does the creation o f a simulated patient help with comparative diagnosis 

training? Many disorders of the muscle and nerve are not commonly seen and as such, 

they have characteristics that may not have been seen by clinicians. The creation of a 

reference, via simulations, of rare conditions and also of commonly occurring ones, 

provides a valuable source of comparison. The simulations may be used as a primary 

source of training for doctors approaching practice, or they may simply be used as a 

source of comparison during diagnosis.

In this capacity, simulations of knowledge sources which create a simulated 

patient are useful in a clinical environment.

The test results which create the simulated patient all herald from those 

knowledge sources which are a part of the neurophysiological MDSS. It is important to 

appreciate that these results are necessary to the diagnostic decision making process.

2.3 - The simulated knowledge sources.

The knowledge sources that are simulated fall into three distinct categories: 

knowledge sources dealing with the results of physical tests performed on patients (these 

are the knowledge sources most pertinent to comparative diagnosis); knowledge sources 

representing the results of low to medium force electrophysiological assessment of 

patients and their associated post processing; and knowledge sources representing the 

results of high force electrophysiological assessment of patients and their associated post 

processing. These knowledge sources are listed below.
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Physical tests: Nerve conduction velocity tests;

Blood Creatine Phosphokinase level tests.

Low force Electrophysiological assessments:

Low/medium force EMG tests;

Very low force EMG tests;

Zero force EMG tests.

High force Electrophysiological assessments:

Single database principal component analysis of high force EMGs; 

Triple database principal component analysis of high force EMGs; 

Turns analysis (Willisons Method).

2.4 - Operation of Simulated Knowledge sources.

Two exclusive types of knowledge source have been isolated in the MDSS (Small 

et al, 1997a). These may be described as follows:

Firstly, the disease knowledge source. This is a module that contains details of 

diseases and disorders, the tests necessary to diagnose such diseases and finally the 

appropriate results from the specified tests to identify the relevant disorder.

Secondly, there is the test knowledge source. This type of knowledge source takes 

information and processes it, yielding useful results. It may also prompt for observations 

made of the patient under investigation and return more appropriate and useful 

information generated from these. So, in effect, the test knowledge sources contain 

numerical algorithms to take in collected data and return useful diagnostic information to 

the blackboard.

Simulations occur primarily of the latter type of knowledge source. These are 

important modules because they provide the system with information that may be used to
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form the diagnosis. Without the results returned by these knowledge sources, there would 

be no grounds upon which to base a decision and the MDSS would not function.

The results obtained from the numerical algorithms within some knowledge 

sources are not in themselves of great use to the blackboard system’s decision engine. A 

more useful form of information is how the result of each knowledge source compares 

with what is accepted to be normal within the field of neurophysiology. For example, 

MUAP Amplitude may be one of either, normal, small or large. However, there is no 

clear-cut boundary between the end of one class and the beginning of the next. Normal 

logic is unable to represent the unclear boundaries presented here.

It is convenient to use set theory to discuss the application of logic to this 

problem. Kosko & Isaka (1993) explain that, in standard set theory, an object either does 

or does not belong to a set: there is no middle ground. In such bivalent sets, the object 

may not belong to both a set and its complement set, nor to neither of the two sets. This 

is a demonstration of standard logic, and was termed “the law of the excluded middle” by 

Aristotle.

Fuzzy logic is a variation on standard logic that enables us to deal with 

uncertainties such as the unclear boundary between classes shown above. It may be 

looked upon as a fuzzification of the boundaries between sets. Sets that are fuzzy or 

multivalent break the law of the excluded middle to some extent. Items belong only 

partially to a fuzzy set, and they may also belong to more than one set.

It is important to appreciate that fuzzy degrees are not the same as probability 

percentages. Probability measures the likelihood of something occurring, whilst fuzziness 

measures the degree to which something occurs, or some condition exists.

The only constraint on fuzzy logic is that an object’s degrees of membership in 

complementary groups must sum to unity, so the law of the excluded middle holds, 

merely as a special case in fuzzy logic. ( Kosko & Isaka, 1993).

It is thus apparent that a fuzzy logic representation of the results of knowledge 

sources in comparison to what is normal would suit the ill defined boundaries between 

classes, allowing levels of confidence to be applied to the results returned to the 

blackboard.
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i.e. The amplitude is Small (0.0) so we have an amplitude that is normal with

Normal(0.7)

Large (0.3)

70% certainty but that may be larger than normal (with 30% certainty) i.e. the result falls 

somewhere in the boundary between the two, figure 2.4.1.

The method by which useful information is provided to the blackboard is as 

follows: whilst the system is working to either prove or disprove a hypothesis of disease 

classification, the knowledge sources will provide their information to aid in the decision 

making process. In general, the characteristics displayed by myopathic and neurogenic 

muscles do not resemble one another. So, where necessary, an inhibitory clause that will 

prevent unsuitable results from being returned is intrinsic in the simulations.

Figure 2.4.1 - Graphical representation of Degree of Membership.

Degree o f  M embership.

1.0

Small Normal Large

0.0

Am plitude

However, as a means of testing the systems ability to handle spurious information 

in the diagnosis, the knowledge source will not always return the result corresponding to 

the disorder suspected. This brings an element of reality to the procedure. It is operated 

using a Gaussian distribution with the correct result situated at the mean location of the 

distribution. Various other results are located at sites less likely to occur.
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It was preliminarily decided that a set of five neuromuscular conditions would be 

provided within each simulation. Those five conditions are as follows: Limb Girdle 

Muscular Dystrophy (LGMD), a myopathy, but by no means characteristic of the entire 

myopathy family; Motor Neurone disease (MND), a neuropathy; of the other three cases, 

two are completely normal and one is representative of Thomsens myotonia congenita 

(MC), a type of myotonia.

2.5- Physical test knowledge source simulations.

2.5.1- Nerve Conduction Velocity.

In this simulation, location of the site of recording is of the utmost importance. 

For example, the required values from this knowledge source are velocities, both motor 

and sensory, and latencies from all the relevant nerves. In order to calculate these, the 

exact sites of recording and stimulation, and their separations, are required. Here, the 

motor NCV from the Ulnar nerve is provided along with the Distal Motor Latency and 

the sensory NCV from the Median nerve along with the Terminal Latency is also 

provided. Both of these sets of recordings are performed in the arms and hands.

For completeness, and the provision of the facility to carry out comparisons 

between the upper and lower body, the addition of velocities and latencies from the Sural, 

Peroneal, Posterial and Tibial nerves should be carried out.

The types of result returned to the blackboard from this simulation may be viewed 

diagramatically in figure 2.5.1.1, and their specific values may be justified by the 

following clinical findings:
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Figure 2.5.1.1 - NCV simulation outputs.
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Motor Neurone Disease - motor nerve conduction may be abnormal; in particular an 

increased distal motor latency (Lambert, 1962) and a slightly slowed motor nerve 

conduction velocity may be found (Argyropoulos et al, 1978). Sensory nerve conduction 

is normal. (Swash & Schwarz, 1981).

Limb Girdle Muscular Dystrophy - Nerve conduction studies are normal (Swash & 

Schwarz, 1981). This is due to LGMD being a myopathy, a disorder of the muscle fibre, 

thus there is no impediment to transmission along the motoneurone.

Thomsens Myotonia Congenita - The motor NCV is normal (Swash & 

Schwarz,1981). This is the only part of the NCV studies likely to be affected because 

myotonia is “ a persistent contraction of a muscle, or group of fibres in a muscle, 

observed after the cessation of voluntary contraction.” (Swash & Schwarz, 1981).

The numerical results for this knowledge source may be viewed in table 2.5.1.1;

37



Simulation and analysis in electromyography.

Table 2.5.1.1 - NCV simulation outputs, numerical.

Motor Velocity CF Distal Motor Latency I CF Sensory Velocity CF Terminal Latency CF Location
i

1 (MND) Low 0 Low | 0 Low 0 Low 0.1 Ulnar &
Normal 0.8 Normal 0.3 Normal 0.7 Normal 0.9 Median
High 0.2 High 0.7 High 0.3 High 0 Nerves

2 (LGMD) Low 0.6 Low 0.2 Low 0.2 Low 0.1 Ulnar &
Normal 0.4 Normal 0.8 Normal 0.8 Normal 0.9 Median
High 0 High 0 High 0 High 0 Nerves

3 (MC) Low 0 Low 0.3 Low 0.1 Low 0.2 Ulnar &
Normal 0.7 Normal 0.7 Normal 0.9 Normal 0.8 Median
High 0.3 High 0 High 0 High 0 Nerves

4 (NORM) Low 0.2 Low 0.1 Low 0.2 Low 0 Ulnar &
Normal 0.8 Normal 0.9 Normal 0.8 Normal 0.9 Median
High 0 High 0 High 0 High 0.1 Nerves

5 (NORM) Low 0 Low 0.1 Low 0 Low 0.3 Ulnar &
Normal 0.7 Normal 0.9 Normal 0.6 Normal 0.7 Median
High 0.3 High 0 High 0.4 High 0 Nerves

These numbers are representative of the medically accepted results for the chosen 

disorders when in the form of fuzzy triplets.

2.5.2- Blood Creatine Phosphokinase level.

Simulation of the CPK levels characteristic to different disorders is fundamental 

to the diagnostic procedure of the MDSS. This knowledge source is of great use in 

differentiating between myopathic and neurogenic disorders.

Only one result is returned from this simulation to the blackboard, this is in the 

fuzzy format previously used. Fuzzification of CPK is the first step towards an integrated 

fuzzy approach, (Zimmerman, 1990). The outputs of the simulation may be viewed 

diagramatically in figure 2.5.2.1. The numerical results for this simulation may be seen in 

table 2.5.2.1 and their specific values may be justified by the following clinical findings:

Motor Neurone Disease - The CPK level is increased in more than half the

patients, it may be increased to 2 or 3 times the normal range (Williams & Bruford,
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1970). The higher levels are found in patients whose muscle biopsies show secondary 

myopathic changes, (Achari & Anderson, 1974)(Schwartz et al, 1976).

Figure 2.5.2.1 - Fuzzy output, graphical, for Biochemistry simulation.

Degree of Membership

Normal Much
Above
Normal
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Normal

CPK

Table 2.5.2.1 - Biochemistry simulation outputs, numerical.

% of CPK CF

1 (MND) Normal 0.4
Above 0.6
Much above 0

2 (LGMD) Normal 0
Above 0.5
Much above 0.5

3 (MC) Normal 0.7
Above 0.3
Much above 0

4 (NORM) Normal 0.8
Above 0.2
Much above 0

5 (NORM) Normal 0.1
Above 0.9
Much above 0

6 (Myositis) Normal 0
Above 0.2
Much above 0.8

These numbers are representative of the medically accepted results for the chosen 

disorders when in the form of fuzzy triplets.
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Limb Girdle Muscular Dystrophy - The CPK level is moderately increased; it is rarely 

as high as 10 times the normal range. (Swash & Schwartz, 1981).

Thomsens Myotonia Congenita - The CPK may be slightly raised in some patients, 

presumably those with the recessive form of the disease in whom distal weakness and 

atrophy is developing, but this has not been carefully evaluated.

The raised CPK level apparent in one normal case may be attributed to recent 

vigorous exercise or electromyographic investigations, whilst the presence of a sixth 

disorder here, a general myocitis, is to enable the system to differentiate between 

myopathy and myocitis.

2.6 - Low force electrophysiological assessments.

2.6.1 - Low/medium force EMG tests.

This simulation provides the results that may be produced by a decomposition 

algorithm, the purpose of which is to take in a signal of low to medium force, and from 

that signal, determine certain MUAP characteristics, and certain features of the signal as a 

whole.

The Characteristics observed by the decomposition algorithm, and as such those 

simulated here are:

• Action Potential Amplitude.

• Action Potential Duration.

• Percentage Polyphasicity

• Number of Motor Units Present.

• Mean Firing Rate.

• Standard Deviation of the Firing Rate.
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The outputs of the simulation may be viewed diagramatically and numerically 

below, and their specific values may be justified by the following clinical findings. They 

are represented using the method considered most suitable, fuzzy triplets.

Figure 2.6.1.1 - Fuzzy outputs, Graphical, for Lowmed simulation.
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Motor Neurone Disease - On volition, The MUAPs are typical of a neurogenic 

disorder, they are increased amplitude, long duration and polyphasic, (Swash & Schwarz, 

1981).

Thus for Motor Neurone Disease, amplitude, duration and polyphasicity 

are all increased. It follows that if the duration of the action potential is increased, then 

the number of firings in a set time is reduced, so the number of units present is reduced. 

In order to combat this and present a comparatively normal force output, the firing rate 

must be increased. So firing rate is above normally acceptable parameters.
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Limb Girdle Muscular Dystrophy - Concentric Needle EMG reveals typical 

myopathic, short duration, polyphasic MUAPs of low amplitude, often with a full 

interference pattern, (Swash & Schwarz, 1981).

The characteristics are standard for a myopathic disorder. The interference at 

relatively low levels of force indicates an increase in firing rate.

Thomsens Myotonia Congenita - In the dominant form of Thomsens Myotonia 

Congenita, the EMG Shows Myotonia, but is usually otherwise normal, (Swash & 

Schwarz, 1981).

For both normal cases, the parameters fall within normal bounds for each 

individual characteristic.

Table 2.6.1.1- The Lowmed simulated results, numerical.

I Amplitude CF Duration CF %Poly CF No. of Units CF Mean FR CF S.D. FR I
. |

1 (MND) Below 0 Short 0 Normal 0 Normal 0 Below 0 Below i 0.4
Normal 0.2 Normal 0.3 Above 0.2 Less 0.5 Normal 0.3 Normal ' 0.6
above 0.8 Long 0.7 Much Abv 0.8 Much Less 0.5 Above 0.7 Above I 0

i
2 (LGMD) Below 0.7 Short 0.8 Normal 0 Normal 0.6 Below 0 Below I 0.4

Normal 0.3 Normal 0.2 Above 0.4 Less 0.4 Normal 0.2 Normal 0.6
above 0 Long 0 Much Abv 0.6 Much Less 0 Above 0.8 Above 0

3 (MC) Below 0.6 Short 0.6 Normal 0.3 Normal 0.9 Below 0 Below 0.3
Normal 0.4 Normal 0.4 Above 0.7 Less 0.1 Normal 0.3 Normal j” 0.7
above 0 Long 0 Much Abv 0 Much Less 0 Above 0.7 Above 0

[
4 (NORM) Below 0 Short 0 Normal 0.9 Normal 0.7 Below 0 Below ! 0.1

Normal 0.8 Normal 0.8 Above 0.1 Less 0.3 Normal 0.7 Normal ! 0.9
above 0.2 Long 0.2 Much Abv 0 Much Less 0 Above 0.3 Above 0

5 (NORM) Below 0.2 Short 0.3 Normal 0.9 Normal 0.9 Below 0.2 Below 0
Normal 0.8 Norma! 0.7 Above 0.1 Less 0.1 Normal 0.8 Normal 0.7
above 0 Long 0 Much Abv 0 Much Less 0 Above 0 Above I 0.3

These numbers are representative of the medically accepted results for the chosen 

disorders when in the form of fuzzy triplets.
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2.6.2 - Very low force EMG tests.

This simulation is similar in some respects to the previous one. It observes some 

of the characteristics that are observed by the decomposition algorithm, but, as the name 

would suggest, it does not deal with such high force levels. This simulation accounts for 

manual observation of the EMG signal, at levels of force where the identification of 

parameters is readily possible.

The Characteristics observed in this simulation are:

• Action Potential Amplitude.

• Action Potential Duration.

• Percentage Polyphasicity

The types of result, once again in the preferred fuzzy format, returned to the 

blackboard from this simulation may be viewed diagramatically below, and their specific 

values may be justified by the following clinical findings.

Figure 2.6.2.1 - Fuzzy output, graphical, for Vlow simulation.

Degree O f Membership Degree O f Membership
k

Much
Above
Normal

Above
Normal

Normal Above
Normal

NonnalBelow
Normal

Amplitude o f Action Potential Percentage Polyphasicity

Degree O f Membership 
k

Normal

Duration of Action Potential

43



Simulation and analysis in electromyography.

Motor Neurone Disease - On volition, The MUAPs are typical of a neurogenic 
disorder, they are increased amplitude, long duration and polyphasic, (Swash & Schwarz, 
1981).

Limb Girdle Muscular Dystrophy - Concentric Needle EMG reveals typical 
myopathic, short duration, polyphasic MUAPs of low amplitude, often with a full 
interference pattern, (Swash & Schwarz, 1981).

Myotonia Congenita - In the dominant form of Thomsens Myotonia Congenita, the EMG 
Shows Myotonia, but is usually otherwise normal, (Swash & Schwarz, 1981).

As would be expected, for both normal cases, the amplitude, duration and 
percentage polyphasicity of the observed voluntary activity fall within normal bounds.

Table 2.6.2.1 -Vlow EMG simulation results, numerical.

Amplitude CF Duration CF %Poly CF

1 (MND) Below 0 Short 0 Nonnal 0
Normal 0.3 Normal 0.4 Above 0.2
above 0.7 Long 0.6 Much Abv 0.8

2 (LGMD) Below 0.8 Short 0.8 Normal 0
Normal 0.2 Normal 0.2 Above 0.3
above 0 Long 0 Much Abv 0.7

3 (MC) Below 0.6 Short 0.5 Normal 0.3
Normal 0.4 Normal 0.5 Above 0.7
above 0 Long 0 Much Abv 0

4  (NORM) Below 0 Short 0 Normal 0.8
Normal 0.8 Normal 0.7 Above 0.2
above 0.2 Long 0.3 Much Abv 0

5 (NORM) Below 0.4 Short 0.3 Normal 0.9
Normal 0.6 Normal 0.7 Above 0.1
above 0 Long 0 Much Abv 0

2.6.3 - Zero force EMG tests.

The zero force EMG simulation is concerned with spontaneous activity. 

That is, electric activity recorded from muscle or nerve at rest, after insertion activity has 

subsided and when there is no voluntary contraction or external stimulus, also with 

insertion activity.
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The types of activity dealt with in this simulation are:

• Insertion Activity;

• Fibrillations;

• Fasciculations;

• Positive Sharp Waves;

and may be expanded to accommodate;

• Endplate Activity;

• Bizarre High Frequency Activity.

The types of result returned from the blackboard from this simulation may be 

viewed diagramatically below, and the specific values, displayed in table 2.6.3.1, may be 

justified by the following clinical findings.

Figure 2.6.3.1 - Fuzzy output, graphical, for zero force EMG simulation.
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Motor Neurone Disease - There is increased insertional activity, fibrillation

potentials and positive sharp waves are not prominent but are almost invariably found, 

particularly in atrophic muscles. Fibrillations tend to become more prominent in the later 

stages of the disease (Goodgold & Eberstein, 1977). Fasciculation potentials are often 

found, they may be very polyphasic,(Swash & Schwartz, 1981).

Limb Girdle Muscular Dystrophy - Bizarre high frequency potentials may be present, 

but myotonia is absent and fibrillation potentials are rare, (Swash & Schwartz, 1981).

Myotonia Congenita - In the dominant form of Thomsens myotonia

congenita, the EMG shows myotonia but is usually otherwise normal, (Swash & 

Schwartz, 1981).

The normal cases will exhibit normal amounts of spontaneous activity.

Table 2.6.3.1 - Zero force EMG KS results, numerical.

Insertion Activity DM Fasciculation DM Fibrillation DM PSW DM

1 (MND) Below 0 Below 0 Below 0 Below 0
Normal 0.4 Normal 0.5 Normal 0.2 Normal 0.6
Above 0.6 Above 0.5 Above 0.8 Above 0.4

2 (LGMD) Below 0.1 Absent 0.9 Absent 0.9 Absent 0.9
Normal 0.9 Present 0.1 Present 0.1 Present 0.1
Above 0

3 (MC) Below 0 Below 0 Below 0 Below 0
Normal 0.6 Normal 0.7 Normal 0.8 Normal 0.7
Above 0.4 Above 0.3 Above 0.2 Above 0.3

4 (NORM) Below 0 Below 0 Below 0 Below 0
Normal 0.7 Normal 0.8 Normal 0.8 Normal 0.7
Above 0.3 Above 0.2 Above 0.2 Above 0.3

5 (NORM) Below 0.1 Below 0 Below 0 Below 0
Normal 0.9 Normal 0.7 Normal 0.7 Normal 0.6
Above 0 Above 0.3 Above 0.3 Above 0.4
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2.7 - High force electrophysiological assessments.

2.7.1 - Single database principal component analysis.

The principal component analysis algorithm (single database) which is at the heart 

of this procedure is capable of taking a high force EMG and representing it in such a way, 

that when compared to normal and disordered representations, it is possible to determine 

which group it belongs to.

The data returned to the blackboard from this simulation is less than that from low 

force analysis. This test merely distinguishes between the classes normal, myopathic and 

neurogenic. The result of this process of identification is presented in a fuzzy format 

shown in figure 2.7.1.1.

Figure 2.7.1.1 - Fuzzy output, graphical, for Single database PCA simulation.
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The membership of each class is calculated using a measure of distance between 

the representation of the EMG being analysed in 3-D space and the centre of the normal 

cluster, see figure 2.7.1.2, of principal component coefficients.

Due to the fact that this method is not in common use in the clinical environment, 

there are no clinical examples of the results of this test when performed on specific 

disorders. As such, the results for this simulation assume that the routine will correctly 

classify both the myopathic and neurogenic disorders, whilst the normal and myotonic 

muscle conditions will be classified as normal. Investigations made by Jones et al suggest 

that this would be the case, (Jones et al, 1990)
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Figure 2.7.1.2 - Principal Component cluster positions in 2D.
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The numerical results returned to the blackboard may be seen in table 2.7.1.1.

Table 2.7.1.1 - Single database PCA simulation results, numerical.

M uscle Condition CF

1 (MND) Myopathic 0
N europathic 0.6
Normal 0.4

2 (LGMD) Myopathic 0.7
N europathic 0.3
Normal 0

3 (MC) Myopathic 0
Neuropathic 0.4
Normal 0.6

4  (NORM) Myopathic 0
Neuropathic 0.7
Normal 0.3

5 (NORM) Myopathic 0
Normal 0.5
Neuropathic 0.5
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2.7.2 - Triple database principal component analysis.

The results of the triple database principal component analysis algorithm 

simulation are presented below. The method for determining the degrees of membership 

for each of the fuzzy classes, shown in figure 2.7.2.1, differs from that of the single 

database method in that it is not necessary to establish the proximity in 3-D space to 

predetermined disorder clusters. This similarity to a disorder class is determined by 

isolating the smallest residual and whitest residual spectrum for the principal component 

spectra calculated using the different disorder databases.

Figure 2.7.2.1 - Fuzzy output, graphical, from triple database PCA simulation.
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The results should be very similar to those of the single database method, but as 

before there are no clinical standard results. The numerical results are shown in table 

2.7.2.1, these are returned upon request to the blackboard.
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Table 2.7.2.1 - Triple database PCA simulation results, numerical.

Muscle Condition CF

1 (MND) Myopathic 0
N europathic 0.6
Normal 0.4

2 (LGMD) Myopathic 0.7
Neuropathic 0.3
Normal 0

3 (MC) ; Myopathic 0
Neuropathic 0.4
Normal 0.6

4 (NORM) Myopathic 0
N europathic 0.7
Normal 0.3

5 (NORM) Myopathic 0
Normal 0.5
Neuropathic 0.5

2.7.3 - Turns analysis.

The method of determining class allegiance in this algorithm is by a simple set of 

rules. For a 5 second signal:

I f  Count Rate <3101 per 5s Then Muscle Condition = Normal 

I f  Count Rate >3101 per 5s and mean amplitude <289mV Then Muscle Condition = Myopathic

I f  Count Rate> 3101 per 5s and mean amplitude >289mV Then Muscle Condition = Neurogenic 

(Willison, 1964) (Parekh, 1986).

This may be seen in figure 2.7.3.2.
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Figure 2.7.3.2 - Disorder class cluster positions
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This result is returned to the blackboard system in the form of a fuzzy triplet 

representing the state of the muscle according to Willison’s algorithm. The fuzzy triplet is 

a standardised combination of two fuzzy pairs. These are representations of the rules 

presented above, the first pair containing the information on confidence of the signal 

being analysed falling in the normal class or disordered class, and the second pair 

containing the confidence information on whether the signal being analysed is myopathic 

or neurogenic in nature. The three degrees of membership taken from our two fuzzy pairs 

are forced to yield a sum of 1.0 in order to satisfy the requirements of fuzzy logic. The 

fuzzy relationship diagrams may be seen below.

Cluster positions from turns analysis.
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Figure 2.7.3.3 - Fuzzy output, graphical, from Turns Analysis simulation.
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The third relationship diagram seen in the figure above is a forced combination of 

the two fuzzy pairs depicted, as such it is not representative of a set of measurements 

itself, rather it is a combination of the measurements required to form the fuzzy pairs.

The results for this knowledge source assume that the routine will correctly 

classify both the myopathic and neurogenic disorder, whilst the normal and myotonic 

conditions are represented as normal. The results are as follows:

Table 2.13.2 - Turns analysis simulated results, numerical.

Muscle condition DM

1 (MND) Nonnal 0
Myopathic 0.1
Neuropathic 0.9

2 (LGMD) Nonnal 0
Myopathic 0.7
Neuropathic 0.3

3(MC) Normal 0.4
Myopathic 0.4
Neuropathic 0.2

4 (NORM) Normal 0.4
Myopathic 0.3
Neuropathic 0.3

37NORM) Normal 0.5
Myopathic 0.2
Neuropathic 0.3
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2.8 - Discussion

The reasons, stated initially, for creating a simulated patient were to enable testing 

and development of an MDSS and to aid in comparative diagnosis training. The 

interaction of some or all of the simulations, outlined in the previous pages, with the 

central blackboard in the MDSS facilitates operation of that system in situations where 

some or all of the actual knowledge sources are unavailable. This is only for the purpose 

of development: they would not be utilised in the actual diagnostic procedure.

These simulations may be used to validate the decision making process of the 

MDSS. They will form a set of test results for certain disorders that are known to be 

characteristic of that disorder. When the MDSS is used to form a suggested diagnosis 

upon these test results, its performance may be monitored, and the diagnosis checked 

against the known diagnosis for the test results being utilised. Thus, the level of 

performance may be quantified

The two simulations of most interest to the creation of a synthetic patient for 

comparative diagnosis are the physical test result simulations. These give nerve 

conduction velocity readings, both motor and sensory, with latencies, for various nerves 

in the human body, and an indication of the blood creatine phosphokinase level 

respectively.

At present, these two simulations are able to provide, results representative of the 

five disorder classes mentioned earlier, with the possibility of extending to include many 

more. In order to create a realistic simulation of a patient it is necessary to have records of 

the myoelectric activity associated with the CPK and NCV test results. The inclusion of 

this data would allow a diagnosis to be made through analysis of all the data available. It 

is thus necessary to create a realistic simulation of myoelectric activity.

2.9 - Summary.

This chapter introduced the requirement for a simulated patient and discussed the 

uses to which it would be put. It highlighted the operation and construction of the
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components within such a simulated patient. Each individual simulation of a relevant 

component was detailed, and the content was justified.

The use of the simulations went a long way towards creating a synthetic patient 

for use in conjunction with the MDSS, enabling rigorous testing of the MDSS, and aiding 

clinicians in diagnosing both rare and common disorders.

In order to make a more complete simulation of a patient, it is necessary to be able 

to simulate the electrical activity of the muscle. This, in conjunction with those 

simulations outlined in this chapter, will go even further towards creating a simulated 

patient for the purposes outlined.
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Chapter 3 - The dynamics of the EMG.

3.1 Introduction

The main thrust of this research is to provide knowledge sources for use in an 

MDSS applied to neuromuscular disease diagnosis. One important area requiring further 

development is the difficult issue of characterising the EMG generated during high force 

contractions. Previous methods, such as principal component analysis and Willison’s 

method, are promising but it seems likely that a more fundamental approach to 

parametrising the interference EMG may be a more powerful discriminator. Thus may the 

EMG be characterised by a chaotic model?

This chapter seeks to introduce and explain the existence of chaotic dynamics, 

especially in biomedical systems. A brief description of Chaos and the observable 

behaviour both causing and characterising it is given. Section 2.3 introduces and explains 

in detail some methods of identifying the presence of chaos in experimental and real time 

series, giving insight as to how results should be interpreted. In the next section, evidence 

of the occurrence of chaos in biomedical systems is given, and along with details of 

pitfalls in current techniques for simulating electromyograms, used to form the 

hypothesis that the dynamics underlying the firing of MUAPs may be chaotic in nature, 

and as such, that a model based upon chaotic dynamics would be better suited to the 

purpose of EMG simulation than current techniques. Section 2.5. presents the results of 

application of the outlined methods of identifying chaos, and discusses their implications.

3.2 What is Chaos?

Chaos may be defined as a deterministic dynamical system in which there is a 

long term unpredictability arising from sensitive dependence on initial conditions.

Deterministic chaos is a natural occurrence in many non-linear systems, that ‘until 

recent years has been believed to be totally unpredictable’, (Kearney & Stark, 1992).
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Chaotic systems are deterministic, although their output may be random in appearance. 

They are characterised by a high sensitivity to initial conditions.

Thus, in a chaotic system, any small differences in initial conditions grow 

exponentially with time, rather than decrease or grow linearly. It is therefore impossible 

to predict the long term behaviour of such systems, in spite of their being deterministic. 

However the short term behaviour of the system may be predicted successfully.

Chaotic behaviour is characterised by the divergence of nearby trajectories in state

space. As a function of time, the separation between two initially close trajectories

increases in an exponential way, at least for periods of short duration. The short duration 

is a necessary factor because in chaotic systems the trajectories remain within some 

bounded region by intertwining and wrapping around each other without intersecting and 

without repeating exactly. This forms a complex strange attractor in phase space, 

(Hilbom, 1994). The presence of a strange attractor in the phase space of a system is 

usually a positive sign of chaos, although some non-chaotic strange attractors do exist.

3.3 Methods of Identifying Chaos in a time series.

There are several different ways in which chaos may be identified in a time series.

These include qualitative methods such as the construction of phase portraits. There are 

also quantitative methods such as correlation dimension analysis, and calculation of 

Lyapunov exponents. These three methods are employed in this investigation, and are 

described in this section.

3.3.1 Construction of Phase Planes/Portraits.

The phase plane or portrait is a representation of the state of a dynamical system in phase 

space. The instantaneous system state is represented by a point in this space. As time 

evolves, the system state changes forming a trajectory in the phase space, the ensemble of 

these forms the phase portrait (Casaleggio et al, 1988)(Babloyantz & Destexhe, 1988). 

See figure 3.3.1.1.
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Phase portraits are constructed from a single measured system variable. A time 

delay is introduced between the variables used to describe the system in m-dimensional 

phase space, leading to an m-dimensional vector;

The phase space spanned by the new variables, *(/), ,x(t + ( m - \ ) T ) , has

topological properties identical to the original phase portrait. (Takens, 1980)(Broomhead 

& King, 1986a)(Broomhead & King, 1986b).

Two or three dimensional views of the phase portrait may be observed, these 

offer information about the dynamics of the system from which they are constructed. 

Stable systems have trajectories that approach a single point in phase space, an attractor, 

by describing a straight line or spiral. An example of chaotic behaviour, for the EEG, the 

trajectories are much more complex because they attempt to approach a strange attractor, 

a sign of chaos. (Babloyantz & Destexhe, 1988)

3.3.2 Correlation Dimension Analysis.

This quantitative method is based upon Takens Embedding Theorem, (Takens, 

1981), which states that for all typical time series obtained from a finite degree of 

freedom dynamical system, there is some integer m and a function G such that:

X (t) = x { t\x { t + r),x(t + 2 r ) , ........ ,x(t + (m - l)r) 0)

) (2)

where m is the embedding dimension, and m<2d+l, where d  is the number 

of degrees of freedom of the underlying dynamical system.
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Figure 3.3.1.1 - A phase portrait constructed from the Rossler time series, a known 

Chaotic time series.

V(t+delay)
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The method of identification of chaos employed here requires the calculation of 

the Correlation dimension for increasing values of m (Kearney & Stark, 1992). The 

correlation dimension seeks to measure the dimension of a finite data set extracted from a 

time series, in m-dimensional space, on which the points of the embedded data set lie. It 

is therefore a measure of the number of variables that are necessary to describe that data 

set.

Application of this theorem requires the creation, of a vector series {vw}, from the 

scalar series { xn}, where:

V» =0„ >*„-!>......> *„-„+! ) (3)
An advantage of this process is that the co-ordinate independent 

properties of { v„ }, such as the Lyapunov exponent (X, Lambda) which is a dynamical 

measure of the sensitive dependence on initial conditions and correlation dimension (Dc), 

are the same as those of the system which created the original {xn}.

It is possible for both X and Dc to be calculated from { vM }. Dc is a measure of the 

number of variables that are necessary to describe a set, and is determined using a finite

data set, {vj,v2, ...... ,v^}. N samples are used, and the Euclidean distance (rtj = |v, -  vy|)

is found between the N 2 possible pairs ( v i,, Vj ) of these points.

The calculation of Dc may be performed using the original series { xn} rather than 

{vn}, removing the need for manual embedding, as follows:

Firstly the Euclidean Distance, ry is calculated:

ru =
m- 1 

.*=0

Yt
(4)

Now for a given separation E, let N(E) be the number of pairs such that rtj < E .

C(E) is the proportion of pairs that are within a distance E of each other, and is found as 

follows:
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(5)

The correlation dimension itself, may now be defined as:

logC(£)
(6)

that is, the gradient of the plot of log C(E)

against log E asE , the separation of pairs of points, approaches zero.

As the correct embedding dimension for a system is unknown and may not be 

calculated, a trial and error procedure must be followed to determine whether or not the 

system under scrutiny is chaotic. The Correlation dimension must be calculated for 

increasing values of m, and the way in which the correlation dimension behaves 

determines the nature of the system.

The behaviour of the correlation dimension is controlled by the values contained 

in the finite data set. For example:

• When all the samples in the data set are constant, the correlation dimension will equal

• If the samples in the data set lie upon a curve, the correlation dimension will equal 1.

• If the samples in the data set fill a plane, the correlation dimension will equal 2.

lie, the correlation dimension will equal the embedding dimension (m).

The way in which the correlation dimension behaves, as the embedding 

dimension increases, determines the nature of the system. If Dc=0 we have a regular 

periodic time series; if Dc continues to increase with m, then the series was generated by 

a truly random process, i.e. for white noise Dc=oo; if however, the correlation dimension 

should stabilise at a non-integer value, then the system is said to contain a ‘strange 

attractor’. This is usually a sign of chaos, although strange non-chaotic systems do occur.

0.

• If the samples in the data set completely fill the m-dimensional space in which they
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Figure 3.3.2.1 shows the expected behaviour of the correlation dimension of a random 

and a chaotic time series, with increasing embedding dimension.

The behaviour of the correlation dimension of a chaotic system is demonstrated 

by the Henon map, a two dimensional chaotic system, whose correlation dimension 

varies with m as follows: Dc(l) = 1, Dc(2) =1.21, Dc(3)=Dc(4)=Dc(5)=1.21, [5].

There are certain factors effecting the computational accuracy of correlation 

dimension analysis, of which the two most pertinent are described. If insufficient data 

points are used in the analysis, a hard limit is set on the upper value of the correlation 

dimension, thus causing possible prevention of a true result being reached, should the 

actual value of correlation dimension exceed the enforced upper limit. A second effect of 

too few points is that, at higher levels of embedding the density of points in phase space 

is too low to yield useful information. The points appear to spread out in phase space 

giving the appearance that they herald from a system dominated by random dynamics, 

and no correlation dimension will be settled upon.

Figure 3.3.2.1 - The Ideal Behaviour of the correlation dimension for chaotic and 

random time series.
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Noise in the signal being analysed may effect accurate calculation of the 

correlation dimension. Whilst the average magnitude of the noise in the signal is greater 

than the separation of point pairs generated from the signal the noise will dominate the 

structure of the attractor and as such, the correlation dimension. (Hilbom, 1994).

These two factors have opposite effects. Whilst the limited number of data points 

used in the analysis will tend to reduce the calculated value of correlation dimension, at 

least at lower levels of embedding, the presence of noise will increase it if the above 

condition is true. It is possible that fortuitous cancelling may occur between the two, 

producing an artificial region for calculation of the correlation dimension.

3.3.3 Calculation of Lyapunov exponents.

The second quantitative method addressed here is accepted to be a more 

conclusive test for the presence of chaos within a system, and involves the calculation of 

Lyapunov exponents.

The spectrum of Lyapunov exponents has proven to be the most useful dynamical 

diagnostic tool for chaotic systems. (Wolf et al, 1985). Lyapunov exponents are a 

measure of the average exponential rates of either divergence or convergence of nearby 

trajectories in phase space. There are as many Lyapunov exponents as there are 

dimensions in the state space, however the largest or dominant Lyapunov exponent is 

considered to be of most interest.

Since nearby orbits in the system correspond to nearly identical states, 

exponential orbital divergence means that systems whose initial differences were 

irresolvable, will soon behave quite differently. (Wolf et al, 1985). The dominant 

Lyapunov exponent is then, the time averaged logarithmic growth rate of the difference 

between two orbits.

Negative Lyapunov exponents are indicative of converging trajectories, positive 

exponents are indicative of diverging trajectories whilst zero exponents indicate the 

temporary stable nature of a system. It is the presence of at least one positive Lyapunov 

exponent that indicates chaotic behaviour in a system. A positive exponent indicates that
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motion within the attractor is locally unstable and exhibits sensitive dependence to initial 

conditions. (Broomhead & King, 1986a.) (Broomhead & King, 1986b.)

The magnitudes of Lyapunov exponents determine the length of time for which a 

chaotic system may be effectively predicted. (Wolf et al, 1985) The exponents measure 

the rate at which system processes create or destroy information about that system, and 

are expressed as bits/sec. Hence, if a system has a positive exponent of 3 bits/sec and the 

recorded system variable is digitised to 16 bits precision, the predicted instantaneous 

values of the system will cease to be reliable after 16/3 = 5.33 seconds. Predicted values 

would still be available but would be useless because all information about the system 

will have been lost.

The Lyapunov exponents may be defined as follows; (Grassberger et al, 1992)
—y

Grassberger et al said let Be be an s  -ball around the vector x . If s  is infinitesimal, then 

this ball will be transformed after a time t into an ellipsoid with semi-axes ei . They 

assumed that these were ordered by magnitude, i.e. s x > s2 > Thus Xt is given by:

 ̂= !lrs{7log£'} (7)

In other words, the A, ’s measure the geometric 

growth of vectors in tangent space. This method requires use of the tangent map which 

governs divergence of nearby trajectories in phase space.

An alternative way of defining the Lyapunov exponent is presented by Hilbom. If 

two nearby trajectories on a chaotic attractor initially with separation d0 at time t = 0 

diverge so that their separation becomes d{t) at time t,

d(t) = dQe* (8)

then X is the Lyapunov exponent for the

trajectories.
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The method used here, for preliminary experimentation, does not use tangent 

maps explicitly, although their explicit use in exponent estimation has been shown to 

make the procedure more systematic. (Eckman et al, 1986)(Sano & Sawada, 1985). Any 

more involved investigations should compare the results of different estimation 

algorithms.

The method of phase space reconstruction based upon the embedding theorem 

described in section 2.3.2 provides a reconstructed attractor with the identical co-ordinate 

independent properties, such as Lyapunov exponent, as the system that created the 

original time series.

The employed approach to estimating Lyapunov exponents from experimental 

data requires the long term evolution of a single pair of nearby orbits to be monitored. 

This technique is useful when the starting point is a time series rather than describing 

equations. Two data points may be considered to define the early state of the 1st principal 

axis of the n-ellipsoid as long as their separation is small (Wolf et al, 1985).

When the evolved separation of the two points becomes too large, the non-fiducial 

data point is replaced with a point more closely representing the fiducial data point, also 

in the same direction as the original vector. One limitation of using a finite data set for 

calculation of dominant Lyapunov exponent is that the point inserted by replacement will 

be an approximation to the fiducial point because not enough data will be present to 

ensure the exact point, this would require infinite data.

Each replacement is evolved until another becomes necessary, or until the entire 

data set has been traversed, when an estimate of A will be made.

The use of finite data prevents probing of the desired infinitesimal length scales of 

the attractor, Noise is also capable of this, although the method employed estimates the 

dominant exponent in signals containing a degree of noise. (Wolf et al, 1985)(Wolf & 

Bessior, 1991).
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3.4 Is the clinical Electromyogram Chaotic?

3.4.1 Chaos in Biomedical Systems.

Evidence of chaotic behaviour has been found in biological signals, such as the 

Electrocardiogram (ECG). The ECG exhibits quasi-periodic behaviour, but with many 

irregularities in the record. Babloyantz & Destexhe found that the correlation dimension 

of recorded ECGs settled at values ranging from 3.6±0.1 to 5.2+0.1 (Babloyantz & 

Destexhe, 1988). These values suggested that the normal cardiac oscillations follow 

deterministic dynamics of a chaotic nature, characterised by an unusually high dimension. 

Babloyantz & Destexhe also suggested that any mathematical model for the description 

of cardiac activity must contain at least five dimensions, to encompass the majority of the 

dimension range, and must show deterministic chaos in its output. These results were 

supported by Bortolan & Casallegio, who found that at rest, normal ECG had a 

correlation dimension value usually below 3, whilst for arrhythmic patients, the values 

were as large as 4.5. (Bortolan & Casallegio, 1995). For the cardiac attractor, the largest 

Lyapunov exponent was found to be >1=0.38+0.08 (Babloyantz & Destexhe, 1988). This 

is a clear positive exponent and implies that the ECG exhibits chaotic dynamics.

Similar results have been obtained for the Electroencephalogram (EEG), where 

although the EEG dimensionality varies according to the cognitive state, and also with 

some pathological brain conditions such as epileptic seizures (Rapp et al, 1989). 

Researchers have found that the EEGs correlation dimension falls within the range 3 to 8 

(Principe & Reid, 1990).

It has been reported (Ogo & Nakagawa, 1995), that the maximum Lyapunov 

index is positive for most of the EEG frequency components, for almost all subjects in 

the study. In other words, it is estimated that the EEG is composed of a large number of 

frequency components with chaotic properties.
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All of this is evidence that Chaos exists within the human body, and allows that it 

may be present, though undiscovered, in other biomedical systems such as the 

electromyogram.

3.4.2 EMG Simulation.

The model upon which EMG simulation is currently based consists of banks of 

filters whose impulse responses are equivalent to individual MUAP templates, and trains 

of pulses determining the firing of each motor unit, thus determining the inter pulse 

interval (IPI) between each MUAP. The Model is derived conceptually from that 

presented by Parker & Scott, (Parker & Scott, 1973) and others.

The model employs a Gaussian renewal process to determine the occurrence of 

the next firing. This method has been found to be the most suitable to date, (Jones & 

Lago, 1977) (Jones et al, 1987).

Despite the success of the Gaussian distribution in modelling some key features of 

the EMG, it is deficient in determining the occurrence of each successive MU firing. The 

Gaussian distribution falls short of ideal because beyond a few standard deviations of the 

distribution, the probability of a firing occurring, although small, is not zero.

Figure 3.4.2.2 - The problem with Gaussian distributed Inter Pulse Intervals.

n+ln
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This cannot be ignored because a model of motor unit firing based upon the 

Gaussian distribution could fire pulse n+1, see figure 3.4.2.2, at the same time as, or 

before pulse n, the previous pulse in the series of pulses making up the firing times of a 

MU APT. It is thus necessary to search for new methods of modelling the firing of MUs 

within human muscle, which will predict firing time accurately and without ambiguity.

3.4.3 Models of the membrane.

The Hodgkin-Huxley membrane model is the analog circuit studied most in 

neurophysiology. Simplifications such as that by Fitzhugh & Nagumo, and others such as 

the Bonhoeffer-Van der Pol model show that there are non-linear and positive and 

negative feedback processes in operation during neural discharge. These processes are 

prerequisite for the occurrence of chaos, thus further grounds for hypothesising that chaos 

is present in the neurophysiological system are evident.

Non-linearity may be observed in the current voltage characteristics of the tunnel 

diode, an element of the Fitzhugh-Nagumo simplification of the Hodgkin-Huxley 

membrane model, see figure 3.4.3.1.

Figure 3.4.3.1 - The Fitzhugh-Nagumo Analogue Circuit.

Td
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The current-voltage (I-V) characteristics of the Tunnel diode (Td) may be 

observed in figure 3.4.3.2. They are clearly non-linear.

Figure 3.4.3.2 - I-V characteristics of the Tunnel diode.

I

3.4.4 A Chaotic EMG Simulator?

It may be stated that the EMG is neither wholly stochastic nor deterministic. It is a 

highly structured signal, made up from a collection of signals that have elements of 

variation within them, and the contributions of other spontaneous factors. The fact that 

there are elements of variation within the signal, and that the firing of MUs appears to be 

difficult to predict, supports the suggestion that the EMG, at medium to high levels of 

force, may be better described by a chaotic model than by a model based on a random 

procedure such as Gaussian Renewal.

Other factors supporting this are the problems inherent in the use of Gaussian 

renewal, the most suited statistical distribution, to determine the next firing of a MU, the 

presence of non-linear and positive and negative feedback processes in neural discharge, 

and the presence of chaotic dynamics in other biomedical systems, namely the heart and 

the brain, inferring that chaos is present in the human body, so it may be present in the 

muscle system.
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A further reason for attempting to establish whether the EMG is chaotic or not is 

the use of the analysis as a discriminator. If a chaotic model for the EMG is established as 

being appropriate, it is possible that the number of parameters describing certain muscle 

states or conditions, determined by the chaotic analysis, could be used to discriminate 

between those muscle conditions. This could form the basis of a discriminatory 

knowledge source for the MDSS.

3.5 Attempted identification of Chaos in the EMG.

The three methods of identifying chaos, previously outlined in this chapter are 

employed to determine whether the dynamics of MUAP firing exhibit any signs of 

chaotic behaviour. Authentic EMG signals, recorded using the TEAC R81 analogue 

recorder and digitised using an AT&T DSP32C 16Bit DSP board are analysed. The data 

was sampled at a rate of 8kHz.

3.5.1 EMG Phase Portraits.

Phase portraits were constructed for EMG signals recorded from muscles considered to 

be in a normal condition, and for signals recorded from muscles in various states of 

disorder. Different delays ( r )  were employed, using signals of approximately 40000 

samples. Figure 3.5.1.1. displays this.

The phase portraits observed appear to consist of trajectories that loop as time 

passes and the state of the system driving MUAP firing changes. It is clear that the 

behaviour of the EMG is not periodic, periodicity being represented by a single closed 

curve. However the phase portraits of the EMG in no way infer that the underlying 

dynamics are Chaotic. It is, in fact, not possible to extract any useful information from 

these plots.
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3.5.2 The Behaviour of Dc.

Real signals of approximately 9000 samples, recorded from both normal and 

disordered muscle groups, were analysed using this technique.

The correlation dimension was calculated for successive levels of embedding, 1 

through 10, in order that the behaviour of Dc may be observed over the length of the 

progression.

The gradient of the log C(E)/log E plot is the correlation dimension, and this is 

calculated by the program “CORDIM” using regression analysis, with a 65% confidence 

level in the gradient of each regression line. This gives an indication of how accurate the 

estimate of the correlation dimension is. See figure 3.5.2.1. This figure depicts seemingly 

random behaviour of a normal EMG signal and the levels of confidence given to 

correlation dimension estimate at each level of embedding.

Figure 3.5.2.1 - Correlation dimension progression for a normal signal (male 

subject) exhibiting 65% Error boundaries.
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Figure 3.5.1.1 - Phase portraits of a normal EMG signal, for delay (t)  =1 to 9.
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Correlation dimension progressions were constructed for sets of signals exhibiting 

certain disorders, see table 3.5.2.1, and their behaviour was observed. See figures 3.5.2.2 

to 3.5.2.6.

Table 3.5.2.1 - The signals upon which correlation dimension analysis was 

performed, (Sampling Frequency = 8000Hz)

Disorder Signal No. Subjects sex. Duration, (s)

No disorder. 1 Unknown 1.12

2 1.12

3 1.12

4 1.12

5 1.12

Inherited Motor 1 Male 1.12

Sensory Neuropathy.

2 1.12

Limb Girdle Muscular 1 Male 1.12

Dystrophy.

(Myopathy) 2 1.12

Dermatomyocytis 1 Male 1.12

(Chronic).

(Myocytis) 2 1.12

3 1.12

4 1.12

5 1.12

Primary Muscle 1 Male 1.12

Atrophy.

(Myopathy) 2 1.12

3 1.12

4 1.12

5 1.12

The progression of the correlation dimension with increasing embedding 

dimension, for EMGs with no disorder, as seen in figure 3.5.2.2, indicates, in agreement 

to a certain extent with the results displayed by the construction of phase portraits that the 

hypothesis of chaotic dynamics determining MUAP firing is not a valid one.
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It may be seen that the correlation dimension values, for all five signals in this 

class, continue to rise in an almost linear fashion. This does not match the standard 

behaviour for the correlation dimension of a chaotic system which will taper off and settle 

around some non-integer value. The non-integer value where the correlation dimension 

settles is an indication of chaos in this analysis, and the next integer above the correlation 

dimension is the minimum number of variables required to describe the system. If the 

value settled at was an integer, the system would not be chaotic. The non integer 

correlation dimension on its own, is not however, conclusive proof of the presence of 

chaos in a time system. To obtain a definite affirmative, further testing, such as 

calculation of Lyapunov exponents, must be carried out.

The behaviour of Dc seen in figure 3.5.2.2, does not give any indication of chaotic 

behaviour. The continuous increase in numerical value is more consistent with that of a 

system governed by random dynamics than by chaotic dynamics.

The progressions shown in figure 3.5.2.3, for signals recorded from a muscle with 

an inherited motor sensory neuropathy, although limited in number by the lack of 

available data, also have a prevailing tendency to increase almost linearly. This furthers 

the argument that the underlying dynamics of the human muscular system, unlike those 

of the human heart (ECG), or the human brain (EEG), are not driven by a chaotic process.

Figure 3.5.2.4 introduces some results which provide evidence against this 

argument. The two progressions, in this case, for a muscle undergoing a severe form of 

myopathy, display a correlation dimension which appears to settle at values of 5.7±0.3 in 

the case of signal one, and at 3.02±0.1 in the case of signal two. However, the number of 

data points used for correlation dimension calculation, in this case -9000, is insufficient 

for accurate calculation at high levels of embedding. The number of data points necessary 

for accurate calculation of the correlation dimension is in the range 5” to 10” , where n is 

the embedding dimension. The number of points used here allows confidence in levels of 

embedding up to between 3 and 5. Thus, not much confidence can be placed in these 

apparent non-integer correlation dimensions, because they do not settle until the seventh 

or eighth level of embedding. It is also possible that this indication of chaotic behaviour
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is totally case specific. It does not, in itself, negate the general thesis that chaos theory 

will not provide an appropriate method for modelling the clinical electromyogram.

Figure 3.5.2.5 shows a set of progressions that add weight to our argument. The 

correlation dimension, once again increases with embedding dimension in a manner more 

indicative of random than chaotic dynamics.

Figure 3.5.2.6 shows results that are similar to those of figure 3.5.2.4, the main 

difference being that the correlation dimension does not actually settle, but continues to 

increase at a much decreased rate after the sixth level of embedding. This could however 

be attributed to a hard upper limit being set upon the magnitude of the correlation 

dimension by a limited number of input data points. Again great confidence cannot be 

placed in these results, because the correlation dimension does not actually settle at a 

non-integer value within the 10 levels of embedding used, although it remains within the 

range 5.5 to 7.5.

Figure 3.5.2.2 - Summary of the correlation dimension progressions with increasing 

embedding dimension, for signals recorded from a muscle with no disorder.
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Figure 3.5.2.3 - Summary of the correlation dimension progressions with increasing 

embedding dimension, for signals recorded from a muscle with inherited sensory motor 

neuropathy.
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Figure 3.5.2.4 - Summary of the correlation dimension progressions with increasing 

embedding dimension, for signals recorded from a muscle with limb girdle muscular 

dystrophy.
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Figure 3.5.2.5 - Summary of the correlation dimension progressions with increasing 

embedding dimension, for signals recorded from a muscle with chronic dermatomyocytis.
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Figure 3.5.2.6- Summary of the correlation dimension progressions with increasing 

embedding dimension, for signals recorded from a muscle with primary muscle atrophy.
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3.5.3 Lyapunov exponents of the EMG.

Lyapunov exponents were estimated using the method previously described. The 

data upon which the analysis was performed, was the same data used for correlation 

dimension analysis, the sole difference being that the number of points used was raised 

from approximately 9000 to 32000.

In order to verify the stability of the resulting estimated dominant Lyapunov 

exponent it is necessary to repeat the calculation for varied embedding dimensions and 

evolution times etc.

The estimated values calculated for differing EMG signals varied in magnitude, 

but the amplitude was of the order of approximately 200 to 350 bits/second. This order of 

magnitude was estimated for varied inputs to the estimation algorithm.

An exponent falling within this range would lead one to believe that the data of 

interest was being drowned out by noise. There are two reasons for this not being so.

The analysis algorithm has been tested on data known to be chaotic in nature and 

in these instances has yielded the expected results. The algorithm is known to deal with 

some noise and the data being analysed has a very low noise content.

The second reason for believing that the unusually high exponent is not indicative 

of noise is more involved. A comparison between the yielded dominant exponents from 

real EMG signals and from synthetic signals comprising MUAP templates firing 

randomly was made. The results for both types of signal were similar in that they 

exhibited exponents with amplitudes in the same order of magnitude, but more 

importantly numerically close to one another.

The dominant Lyapunov exponent estimated for a truly random time series whose 

dynamics were based upon the normal distribution, was an order of magnitude larger than 

those calculated for both the real EMG and synthetic signals.

The exponent then, leads us to believe that the dynamics displayed by our real 

signals are random This is because the dominant exponent is large, suggesting noiselike 

random behaviour, but is not as large as that for a true random signal, also because the
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exponent is comparable with that of signals that do not contain a large proportion of 

noise, and whose dynamics are known.

These results, and their meaning, are in accordance with the information gained 

from correlation dimension analysis of real EMG signals. Thus within the scope of this 

investigation it is reasonable to believe that the dynamics behind the clinical 

electromyogram may be better described by a random procedure than a chaotic one.

An example of the progression of dominant exponent estimation may be seen in 

figure 3.5.3.1.

figure 3.5.3.1 - Dominant Lyapunov exponent estimation for a normal signal.
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In general, a chaotic model for the firing of MUAPs within the EMG would seem 

inappropriate. A better suited model for simulation of the EMG remains banks of filters 

whose impulse responses are representative of various Action Potential templates, 

triggered by trains of pulses, whose firing is determined by statistical methods i.e. 

Gaussian renewal, summed to provide a synthetic EMG.
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3.6 Summary.

There is a requirement to parametrise the interference EMG and to see if these 

parameters are disease sensitive. A novel way of attempting this was investigated here, 

the use of a chaotic model.

In this chapter, chaotic deterministic dynamics and some of their characteristics 

have been introduced along with various techniques, both qualitative and quantitative, for 

identifying the possible presence and the actual presence of chaotic dynamics in a time 

series.

It has been suggested that the driving dynamics for motor unit firing in the 

clinical electromyogram, at medium to high levels of force, may be chaotic. 

Investigations to establish the truth of this have been carried out and the results presented 

and interpreted.

Finally, it is concluded that the hypothesis of a chaotic model for EMG simulation 

must be put to one side in favour of a statistical model. It may not be wholly discarded 

however, due to the difficulty of extracting final proof of non-chaotic behaviour from the 

EMG.
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Chapter 4 - The EMG simulation knowledge source.

4.1 Introduction

The importance of spontaneous muscular activity to neuromuscular diagnosis 

is discussed, with reference to disorders of the muscle and nerve. The conclusions 

drawn from this discussion are then used to confirm the necessity of including 

spontaneous activity in myoelectric activity simulation routines if they are to produce 

realistic results.

Methods for simulating spontaneous activity as a part of an overall 

myoelectric activity simulation routine are outlined and discussed.

Different techniques used for the simulation of the electromyogram are 

considered along with the results of the previous chapter. The most appropriate 

methods for modelling the EMG are selected.

A simulation routine based upon these methods is described. The routine is 

capable of producing synthetic signals representative of both voluntary and 

spontaneous activity. The voluntary activity may comprise amplitude and duration 

variation. The simulator also contains a noise generator.

4.2 The importance of spontaneous activity.

Spontaneous activity is the electrical activity recorded from muscle or nerve at 

rest after insertion activity has subsided and where there is no voluntary contraction or 

external stimulus, (DeLisa et al, 1994).

There are various types of spontaneous activity, which have been described in 

chapter 1. Insertion activity may be viewed as an involuntary activity, this is 

comparable with spontaneous activity, the difference being that it is the result of an 

applied stimulus i.e. insertion or movement of the recording electrode with relation to 

the muscle fibres.
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It is helpful to consider one or two disorders of the muscle or nerve in order to 

demonstrate the importance of the presence and degree of severity of spontaneous 

activity in forming a useful and accurate diagnosis.

A presenting feature of Motor Neurone disease is Fasciculation. These 

potentials are usually repeated at a rate of approximately one every three or four 

seconds, (Trojaborg & Buchthal, 1965). Fasciculations are most commonly observed 

in the arms but any muscle may be affected: it is particularly important to examine the 

tongue carefully since fasciculations are easily detected in this muscle, (Swash & 

Schwarz, 1981)

In electrophysiological assessment of this disorder, the insertional activity is 

increased. Fibrillation potentials and positive sharp waves are not prominent but are 

invariably found, particularly in atrophic muscles, (Swash & Schwarz, 1981). 

Fibrillations tend to become more prominent in the later stages of the disease, 

(Goodgold & Eberstein, 1977).

For a second example of a disorder and its associated spontaneous activity, 

Duchenne muscular dystrophy is used. In this disorder, spontaneous activity is present 

as follows: on insertion of the electrode there is increased activity. Fibrillation 

potentials are frequently recorded, (Buchthal & Rosenfalck, 1963). Fibrillation 

potentials were found in 7 out of 8 patients with this disorder, (Desmedt and 

Borenstein, 1976). Positive sharp waves are usually only seen in the weakest muscles, 

(Swash & Schwarz, 1981).

From the preceding two examples, it is clear to see that the types of 

spontaneous activity and their prevalence in disorders of different kinds vary 

considerably. In the two examples given, the first has a great deal of fasciculations, 

whilst there is a greater degree of fibrillation potentials present in the second. After 

insertion activity has died away, it would be expected that a normal muscle would 

provide an electrically silent record for observation.

These two observations lead to the statement that if any spontaneous activity is 

present within the signal observed from a muscle at rest after any insertion activity has 

died away, then the state of that muscle or its nerve supply is not normal. The length 

of time required for the insertion activity to completely die away can be indicative of 

disorder. Insertion activity tends to be prolonged in denervated muscles and muscles
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affected by certain muscular disorders such as polymyositis, (Lenman & Ritchie, 

1977). In conditions of acute inexciteability of muscle fibres, there is a noticeable 

reduction in the insertion activity, (Richardson & Barwick, 1969). The degree to 

which it is present is also an indicator of the state of the muscle or nerve, for example, 

in both of the example disorders there is increased insertion activity.

Secondly, the type of spontaneous activity and the strength of its presence are 

major indicators of the nature of the disorder. In fact, this information may be 

instrumental in differentiating between otherwise similarly characterised disorders.

We may thus see that any attempt to simulate myoelectric activity, if it is to 

produce realistic results, must provide the ability to include spontaneous activity. 

Where this is not the case, realistic simulations may only be produced for muscle 

conditions that contain no spontaneous activity, effectively excluding many disorders.

4.3 Some characteristics of spontaneous activity.

4.3.1 Fibrillation Potentials.

Nature - Biphasic spike of short duration.

Duration - <5ms.

Pk - Pk Amplitude - <lmV (Typically 20-300uV).

Firing Rate -1 -50 Hz, (10 common).

Sound - High Pitched and Regular (Rain on a tin roof).

4.3.2 Fasciculation potentials.

Nature

MUAP.

Duration

Pk - Pk Amplitude 

Firing Rate 

Sound

A Potential with the configuration of a bi or triphasic

As MUAP.

As MUAP.

1/s normal, 1 per 3 or 4s for anterior horn cell disorders.

Plunk, Plunk, Plunk.
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4.3.3 End-Plate potentials.

Nature - Biphasic potentials with an initial negative phase.

Duration - <2ms

Pk - Pk Amplitude - up to 200 uV.

Firing Rate - 2-30/s

Sound - Sharp, high pitched.

4.3.4 Positive sharp waves.

Nature

Duration

Pk - Pk Amplitude 

Firing Rate 

Sound

- Biphasic, positive negative action potential.

- Positive phase <5ms

- Negative phase 10 -100 ms

- up to lmV

-1 -50 Hz, (10 common).

- Sharp click to thud.

4.3.5 Bizarre high frequency potentials.

Nature - Polyphasic action potentials.

Duration

Pk - Pk Amplitude - lOOuV to lmV

Firing Rate - 5 - 100Hz

Sound

4.4 The inclusion of spontaneous activity in a simulation program.

The types of spontaneous activity to be included in the myoelectric activity 

simulation program are positive sharp waves, motor end-plate potentials, fibrillation 

potentials and fasciculation potentials. The simulation program itself will be detailed 

later in this chapter. Examples of these potentials may be observed in figures 4.4.1 to 

4.4.3.
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The manner in which these potentials are incorporated into an EMG simulator 

is outlined. For both Fibrillation potentials and positive sharp waves, whose firing 

frequency is reported to vary between 1 and 50Hz (Swash & Schwarz, 1981) and 2 

and 30 per second (Echtemach, 1997), the most common firing frequency observed is 

10Hz (Echtemach, 1997). It is stated in Swash & Schwartz that positive sharp waves 

recur in a uniform and regular pattern (Swash & Schwartz, 1981) whilst Delisa et al 

say that fibrillation potentials usually fire at a constant rate, although a small 

proportion fire irregularly, (Delisa et al, 1994).

As such, in order to determine the firing frequency of all the included types of 

spontaneous activity, with the exception of fasciculation potentials, a Gaussian 

distribution is employed. In order to provide the most realistic range for fibrillation 

potentials and positive sharp waves, the mean of the distribution is set at 10Hz, the 

typical value. The distribution is set to vary around the mean value by ±8Hz. This 

provides a range of frequency from 2 to 18Hz that may occasionally be exceeded. 

Although this method does not encompass the whole range of occurrences of these 

activities, it will cater for a large proportion, i.e. the most common occurrences.

Echtemach states that motor end plate potentials have an irregular discharge 

pattern, and fire at a rate of 2 to 30 per second, (Echtemach, 1997). In order to 

accommodate these characteristics a Gaussian distribution is used with the mean set to 

16 so that it causes firing rate to vary between 2 and 30 Hz.

In the case of fasciculation potentials, firing frequency is determined by 

ascertaining whether the fasciculations occurring are the product of a normal or a 

disordered muscle. If the fasciculations are in a muscle in a normal state, the firing 

rate is set to 1 per second, whilst in disordered muscle it is varied Gaussianly between 

1 firing every 3 to 4 seconds. The potentials used for fasciculation are those of a 

normal biphasic or normal triphasic action potential, and may be seen in section 4.7

4.5 Models for EMG simulation.

There has been much thought on the subject of determining the occurrence of 

motor unit firing and hence modelling myoelectric activity. The most controversial 

properties of human single motor unit activity are the inter pulse interval and the
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correlation structure between successive intervals, (Lago, 1979). Various researchers 

found no evidence of significant correlation between adjacent inter pulse intervals, 

(Clamann, 1969) (Deluca & Forrest, 1973) (Shiavi & Negin, 1975), whilst others 

produced contradictory results, (Person & Kudina, 1972).

In 1979 DeLuca stated that only minimal (if any) dependence exists among the 

inter pulse intervals of a particular MUAP train. Therefore the MU APT may be 

represented as a renewal pulse process, one in which each IPI is independent of all 

other inter pulse intervals, (DeLuca, 1979).

This was supported by Jones et al in 1987. They reported that works carried 

out on different muscles had produced conflicting conclusions on the suitability of 

renewal procedures for modelling muscular behaviour. It was then suggested that the 

process of firing is almost certainly of the non-renewal type, based on the biophysics 

of membrane recovery after firing. However, they concluded that the non-renewal 

characteristics exhibited were muscle dependant, and of less importance than the 

distributions associated with the firings, (Jones et al, 1987).

Despite some speculation about the applicability of the renewal process to the 

firing statistics of a single motor unit in human muscle, it has been adopted in the 

majority of attempts to model these statistics.

Various distributions have been advocated for determining the next firing in a 

train of pulses. The Gaussian distribution was suggested to be appropriate, 

(Rosenfalck, 1954) (Clamann, 1969). This was agreed upon by Person & Kudina, with 

the limiting condition of the firing frequency exceeding 10.5 pulses per second, 

(Person & Kudina, 1972). The Gamma distribution, (Shiavi & Negin, 1975), the 

Poisson distribution, (Brody & Scott, 1974) and the Weibul distribution, (Deluca & 

Forest, 1973)(Maranzana et al, 1981) were also proposed.

The Gamma, Weibul or Poisson distributions, however, would not predict a 

peak in the EMG power spectrum at the appropriate firing frequencies, which is in 

fact often observed (Jones & Lago, 1982). The use of a renewal process utilising 

Gaussianly distributed inter pulse intervals fits the data published by Clamann for the 

human brachii biceps muscle very well (Clamann, 1969). It has been shown by Lago 

and Jones to predict the local peak in the EMG power spectrum, (Jones and Lago, 

1977) (Jones etal, 1987).
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In the previous chapter, reasons for the Gaussian distribution being less than 

ideal for determining motor unit firing time information were presented. The basis for 

hypothesising that firing times may be determined by a chaos driven model were laid 

out. It has, however, been shown that a chaotic model is inappropriate, (Small et al, 

1997b) (Small et al, 1998).

Taking all of these findings into consideration, the Gaussian distribution, 

though not deemed wholly suitable for the purpose intended, appears to be the best.

4.6 Characteristics of volitional activity.

All measurable parameters vary from muscle to muscle because the number of 

muscle fibres in the individual motor unit varies from muscle to muscle. The 

parameters also change with age. In addition, they are strongly affected by the type of 

needle used, (Liveson & Ma, 1992).

Despite all of these limiting factors, some usual (expected) characteristics for 

the potentials observed during voluntary activation, are shown below.

Normal Muscle;

Amplitude; lOOuV to 4 - 5mV ( assessed at MVC).

Duration; 2 - 17 ms (most 8-12  ms).

Phases; 1 to 4.

Myopathic potentials;

Amplitude; Less than 1 mV is abnormally low.

Duration; Majority are very short, (i.e. less than 5 ms).

Phases; Polyphasic.

Neurogenic Potentials:

Amplitude; Greater than 5mV.
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Duration; Increased (by definition).

Phases; Polyphasic.

An extra characteristic feature of neurogenic motor units is that the number of 

potentials issuing from that unit will be reduced.

4.7 Simulation of volitional activity.

The model upon which volitional activity is based comes from that of Parker 

& Scott, (Parker & Scott, 1973). It is based upon the work of Lago, (Lago, 1979).

It has been stated previously that the model consists of a bank of filters, the 

impulse responses of which are representative of motor unit action potential 

templates. These filters are driven by trains of pulses, each train determining the firing 

times of one filter in the bank. The model may be seen diagrammatically in figure 

4.7.1.

Figure 4.7.1 - The model for myoelectric activity.

>  y(t)

n(t)

Twelve different action potential shapes are used as templates. These consist 

of three of each of the following types: normal biphasic, normal triphasic, myopathic 

and neurogenic. These templates span the width of typical duration for their
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respective classes, and fall within expected ranges for amplitude. The waveforms may 

be seen in figures 4.7.2 to 4.7.5.

It is known that motor unit firing time statistics are not deterministic in nature. 

Previous sections have established that the most appropriate way of modelling motor 

unit firing is by use of the Gaussian renewal process. The firing times of a single 

motor unit may be viewed as being characterised by a random variation around a set 

inter pulse interval. Different coefficients of variation for inter pulse interval have 

been reported. These have varied from 0.08 to 0.2 (Person & Kudina, 1972) to 0.7 to

0.9 (Deluca & Forrest, 1973).

Determination of firing time in the case of simulation operates upon the 

generation of a random firing occurrence, based upon a range of inter pulse interval 

specified by the user. This method allows the user’s choice of inter pulse interval and 

coefficient of variation to be created in the signed.

Other elements of variation within the routine are variation in template 

amplitude and variation in template duration. Addition of random noise to the signal 

is also a feature. The levels of noise within the signal are set by the user.

There are two mechanisms for variation in duration. As shown in figures 4.7.2 

to 4.7.5, different duration templates are available for each action potential type. 

Variation in duration between signals may be achieved by using these different 

templates. The same affect, and that of variation between action potential trains, may 

be attained by varying the duration of a single template. Variation in template duration 

is performed by interpolation between sample points in the original template. This 

mechanism allows the user to specify the duration of action potentials. It also allows 

the introduction of random variation in duration between successive firings of the 

same motor unit. Such variation occurs between limits set by the user.

The number and type of units active within the synthetic signal is user defined. 

The resulting signal is sampled at 4096 Hz.

No account has been taken of recruitment of motor units or synchronisation 

between motor units during a contraction.

Examples of synthetic signals produced, both low and high force voluntary 

activity, and spontaneous activity may be seen in Figures 4.7.6, 4.7.7 & 4.7.8
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The biphasic templates.
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The triphasic templates.
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The myopathic templates.

1000

-1000

o 2 4 6 8 10 12 14 16 18 20
No. Sam ples

1000

-1000

0 2 4 6 8 10 12 14 16 18 20
No. S am ples

1000

-1000

0 2 4 6 8 10 12 14 16 18 20
No. S am ples

92



A
m

pl
itu

de
, 

uV 
A

m
pl

itu
de

, 
uV 

A
m

pl
itu

de
, 

uV

Figure 4.7.5

Simulation and analysis in electromyography.

The neurogenic templates.
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A simulated low force EMG, containing 3 normal MUAPTs.
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A simulated high force EMG containing 15 normal MUAPTs.
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Figure 4.7.8 - A simulated train of positive sharp waves.
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4.8 Simulation in a medical decision support system.

Earlier in this chapter, the relevance of spontaneous activity to neuromuscular 

diagnosis was discussed. This is part of a larger picture. A large proportion of 

neuromuscular diagnostic information is gained from analysis of the electromyogram 

of the patient being investigated. The electromyogram will be measured at different 

force levels depending upon which investigations are being carried out. Zero 

voluntary force for investigation of spontaneous activity, etc.

An EMG simulation routine may be used as a knowledge source for 

interaction with a decision support system used in neurophysiological diagnosis in a 

number of ways. Simulated data may be used when a clinician is learning the use of 

the decision support system. It may also be used when a clinician is being trained. The 

use of a simulator in this respect will provide access to a large source of signals for 

observation and experimentation. Many of the signals that will be available through 

simulation are representative of rare disorders. Signals such as these are not often 

encountered in clinical situations, where the disorder most often observed is carpal 

tunnel syndrome.

A second use of a similar nature would be for preparation. In a situation where 

a patient has been referred to a neurophysiologist with a suspected disorder of a rare 

nature, simulation would be of use. Observation of a signal representative of the 

disorder would be beneficial in familiarising him/herself with the characteristics of the 

disorder before identification is attempted. A simulator would be able to provide such 

an example. In this instance a simulation knowledge source as a part of the MDSS 

would complement the use of medical and laboratory texts in disorder characteristic 

determination, by providing readily available visual examples.

Simulations of EMG signals are made up from known elements. They have 

characteristics that are known by the user. Such simulations may be used to test the 

performance of signal processing algorithms, (Jones et al, 1987). This idea may be 

expanded to encompass whole systems rather than just single algorithms. The use of 

simulated signals in the MDSS will allow its correct operation to be established, a 

known input should give the correct output. An example signal may be analysed using 

the system. The corresponding outputs and recommendations may be compared with
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those gained from analysing a real signal that is suspected to be from the same 

disorder. This procedure of comparison may be an aid to diagnosis.

Finally, the incorporation of a myoelectric activity simulator in the MDSS will 

add to the work reported in chapter 2. The simulator, when combined with simulations 

of the results of other tests in the diagnostic procedure, especially those highlighted in 

chapter 2, will be instrumental in the generation of a readily available source of 

reference for neurophysiology, i.e. a simulated patient. This source of reference will 

contain not only characteristic information and test results for disorders, but the ability 

to produce examples of their associated activity too. This will be of great use in 

comparative diagnosis training.

4.9 Summary.

In this chapter the importance of the inclusion of spontaneous activity in any 

realistic simulation package has been presented. Typical characteristics of 

spontaneous activity have been introduced and the inclusion of this activity in a 

myoelectric activity simulator has been discussed and outlined.

Various models for the simulation of voluntary myoelectric activity were 

presented and their suitability to the task were discussed. The most appropriate was 

selected and reasons for this selection given. Typical characteristics of voluntary 

activity have been presented and their inclusion in a simulation package outlined.

The use of myoelectric simulations with medical decision support systems was 

discussed.
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Chapter 5 - The decomposition knowledge source.

5.1 Introduction.

This chapter is concerned with the process of decomposition and its use as a 

knowledge source within a blackboard based MDSS. Section 5.2 discusses the merits 

of using this procedure as a knowledge source. Section 5.3 addresses the problem of 

decomposition. A description of what the process is intended to achieve is presented, 

and its usefulness is outlined. Comparisons are made with the techniques currently 

employed in clinical practice.

In section 5.4 highlights of various methods presented over the years by 

different researchers are outlined and some of their innapropriate features are 

explained. In section 5.5 a detailed description of one method of particular interest is 

offered. Problems and possible additions are discussed.

5.2 Decomposition as a knowledge source.

When developing an MDSS for application to the problem of 

neurophysiological diagnosis, it is vital that all of the knowledge and data necessary 

to accurate decision making is available. Should this not be the case, system suggested 

diagnoses will be of little value and may be misleading.

Decomposition (or low force electrophysiological assessment) is a vital 

component of the diagnostic procedure. There are circumstances when these tests and 

the knowledge they will supply are not needed. An example of this is the occurrence 

of carpal tunnel syndrome, a nerve entrapment disorder. Nerve conduction studies and 

the patients physical symptoms will be sufficient to make the diagnosis. 

Electrophysiological assessment would be unnecessary. The blackboard system has 

the ability to choose which sources of knowledge it utilises, thus catering for this 

situation and the next.

Ihe diagnosis of many disorders is not as simple as that of a nerve entrapment. 

Observations of MUAP shape, amplitude, duration and firing frequency are required
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for the discovery of the state of a muscle that is host to an unknown disorder. It is 

electrophysiological assessment of the muscle in question, at low to medium levels of 

contraction, that will provide this information. In a computer based system, it is the 

task of a decomposition routine to analyse the EMG signal and provide this 

information.

It is thus necessary to incorporate into any computer based neurophysiological 

diagnostic system, whether it be for decision support or for decision making, the 

ability to process low to medium force EMG signals and utilise the extracted 

information in the diagnostic procedure. Without this ability the system would be 

incapable of making accurate or realistic diagnoses in the majority of cases. As such, a 

decomposition knowledge source is a prerequisite for a blackboard based MDSS 

applied to neurophysiological diagnosis.

5.3 The decomposition problem.

As was described in chapter one, the EMG signal is a summation in time of 

the contributions of active motor units. Each motor unit produces a train of action 

potentials which, when superimposed upon one another, form the electromyogram.

Decomposition of such signals involves determining from which motor unit 

each action potential came. The extraction and grouping of action potentials supplies a 

lot of information.

In current medical practice, electromyographic diagnosis is based on visual 

and auditory assessment of EMG signals, (Coatrieux et al, 1985). Visual analysis is 

obviously a difficult task. It necessitates a great deal of training. The doctor is 

required to perform manual thresholding in order to separate the motor unit activity 

from the disparate forms of background activity that may be present. The most 

significant constraint imposed upon investigations by visual analysis is the necessity 

for a low force of contraction. As we know, the greater the force of contraction, the 

more motor units there are contributing to it (until they have all been recruited). 

Consequently, the degree of overlap prevalent within the EMG signal increases too. 

There is an escalating degree of difficulty in making accurate visual identifications in
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these circumstances. As a result of this, it is necessary for visual analysis of the EMG 

to be performed at low force levels.

There are detrimental effects caused by this constraint. Firstly, in a muscle, the 

activation threshold of motor units ranges from low to high. The higher activation 

threshold units will not become active during these tests. It is quite possible that these 

units would display signs of disorder. Thus diagnosis may be made all the more 

difficult by the imposition of the low force contraction constraint.

A second undesirable effect of this constraint is that the number of requisite 

tests for diagnosis is increased. In order to gain information about an adequate number 

of motor units within the muscle suspected of being disordered, multiple tests must 

be carried out, (Loudon, 1991). Even so, the most useful data will not necessarily be 

gained.

All of this causes the analysis to be time consuming, which is undesirable. Not 

least because of the discomfort caused to the patient by insertion, reinsertion and 

movement of the penetrative needle electrodes used. The major problem with totally 

visual procedures is the tremendous amount of time required to make the MUAP 

identifications and precise firing time measurements, (LeFever & DeLuca, 1982).

The feature of the EMG of most use diagnostically is MUAP shape. The 

shapes of the MUAP waveforms in an EMG signal are an important source of 

information used in the diagnosis of neuromuscular disorders. The problem is that it is 

difficult for the doctor to extract the MUAP information from an EMG signal, 

(Bhullar et al, 1990).

It has been made apparent that an automated decomposition procedure would 

be beneficial in several ways. Firstly, it would reduce the number of tests required 

during analysis, thus reducing diagnosis time and patient discomfort. Secondly, it 

would allow analysis of higher threshold motor units, thus providing access to much 

more information of diagnostic use. As such, a reliable and effective automatic 

decomposition routine would be a useful tool for the neurophysiologist.
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5.4 An overview of techniques.

The obvious usefulness of automatic decomposition, highlighted in the 

previous section, has lead many researchers to attempt to find solutions to the 

problem.

Different approaches have been tried. These have included supervised, 

unsupervised and partially supervised methods making either single or multiple passes 

through the data. (Stashuk & Paoli, 1998). Many routines have utilised shape based 

classification, examples of these are LeFever & DeLuca and Loudon et al,( LeFever & 

Deluca, 1982)(Loudon et al, 1992). Firing statistics have also been incorporated into 

the discriminatory process, for example, the methods of McGill et al and Loudon et al, 

(McGill et al, 1985)(Loudon et al, 1992).

The success of the existing routines has been variable. The method of LeFever 

& Deluca achieves decomposition at force levels of up to 100% of maximum 

voluntary contraction, containing up to eight MUAPs. However, to acquire the data it 

takes a considerable amount of time to run, requires interaction with a highly skilled 

operator and utilises a special electrode that is not in common use. Other methods 

such as those of McGill et al, and recently, Stashuk & Paoli (Stashuk & Paoli, 1998) 

do not consider superimposed activity. No method has yet been widely accepted.

5.5 The method of interest.

The method of most interest in this study is that presented by Loudon et al, 

(Loudon et al 1992). The procedure for decomposing an EMG signal is divided into 

two parts: one for the classification of non-overlapping action potentials and the other 

for the resolution of superimposed waveforms.
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5.5.1 Classification of non-overlapping MUAPs.

The initial stage involves splitting the EMG signal into active segments 

(segments containing significant activity) and non-active segments. Only the active 

segments are retained. The rest of the signal is discarded.

Next, each active segment is described by a set of eight features. These form a 

feature vector, a simpler and more useful representation of the activity. The problem 

of correlation between features is overcome at this stage by orthogonalisation. 

Orthogonalisation of the features produces a new set of characterising vectors of 

reduced dimension. This is achieved using diagonal factor analysis.

The final stage in the routine dealing with non-overlapping data is that of 

classification. Classification is performed in a number of steps. The first is the 

formation of a network connecting all active segments; the second is clustering of 

non-overlapping MUAPs and the third is the application of MU statistical analysis.

The active segment network is formed so that vectors which are most similar 

are joined together. The measure of closeness used is the Euclidean distance between 

vector pairs. The network distance, i.e. the distance between adjacent segments in the 

network, is a normalised Euclidean distance.

Clustering of active segments within the network is achieved by cutting the 

network where there is an increase in network distance above the average distance of 

the next four segments. Superpositions are discarded at this point. It is stated that 

clusters due to superpositions will have less than five members.

Finally the firing statistics are calculated for the classified motor units. The 

mean and standard deviation are calculated for each cluster. The criterion used to 

group together firing period values of an MU is that the periods are within ±20% of 

one another. Groups of similar periods form within each MU, the mean and standard 

deviation is calculated for each of these groups and the smallest mean firing period is 

used to represent the true firing of the MU.
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5.5.2 Resolution of superimposed waveforms.

This is performed using both procedural analysis, in the form of a net area 

study followed by template matching, and knowledge based analysis.

The net area study reduces the possible number of MUAP combinations that 

could be the constituents of the overlapping complex. This is achieved by the use of a 

thresholding procedure based upon the theory that the sum of MUAP areas forming a 

complex will be equal to the area of the actual complex. This suggests the most likely 

combinations of MUAPs to make up the complex.

The template matching procedure uses these suggested combinations. The 

maximum peak of each MUAP in a combination is aligned with that of the complex, 

and subtracted. This is done for each MUAP in the combination, consecutively. It is 

repeated for every possible combination of MUAP order within the specific 

combination of MUAPs. This process is repeated for all the combinations suggested 

by the net area study. The combinations yielding the smallest residuals below a set 

threshold are selected.

The final discrimination is made during the knowledge based analysis. This 

assesses whether or not the MUAP combinations suggested fit in with the previously 

calculated MU firing statistics. The most appropriate combination is selected at this 

stage.

5.5.3 Discussion

Whilst this routine has been shown, in the past, to work well on both 

simulated and real data, testing, by various parties, has revealed that it does not 

always perform as well as may be expected.

It is hypothesised that an improvement in the MUAP classification section of 

the routine would improve the overall operation of the non-overlapping classification 

part of the routine.

With regard to resolution of superimposed waveforms, an improvement of the 

method is advisable. Should the existing method not find a combination that has the 

minimum residual and that falls below the predetermined threshold, every possible
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time registration for the selected combinations should be compared with the complex 

in question. This method, although more time consuming, is more likely to produce an 

appropriate solution than the more subtle methods recommended by Loudon & Jones.

5.6 Summary.

In this chapter the importance of decomposition as an element of the MDSS 

has been established. The problem of decomposition and some reasons for the need 

for an automatic routine have been discussed.

An overview of previously attempted methods of automatically decomposing 

EMG signals has been presented. Several different methods have been commented on 

and their shortcomings highlighted.

The method upon which future work is to be based has been described in some 

detail, and areas where improvement may be possible have been pointed out.
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Chapter 6 - MUAP clustering using artificial neural networks.

6.1 Introduction.

In this chapter it is suggested that neural networks may be suitable for 

application to the problem of action potential clustering, i.e., discriminating between 

normal, myopathic and neurogenic classes, providing that appropriate inputs are 

chosen. The problem is addressed using simulated data, as a study in the feasibility of 

the approach. In section 6.3, various neural networks and the methods in which they 

are trained are described. Section 6.4 describes the application of various networks 

and data representations to the task of clustering. It also portrays the testing and 

performance of these networks in the presence of noise, both white and band limited, 

and in the presence of overlapping data. The performance of the networks in correctly 

clustering normal, noisy and overlapping data is discussed and the implications 

highlighted.

6.2 Neural networks and the MUAP clustering problem.

It may be seen from the last chapter that the clustering of MUAPs into groups 

containing MUs from the same MU APT is a problem in pattern recognition. However 

one chooses to represent an action potential, other potentials from the same train 

(assuming they are similar in shape and duration, etc.) will be characterised by similar 

representations. The formation of clusters will consist of recognising similar 

representations of MUAPs and labelling them as such. Thus, the task is pattern 

recognition.

Pattern recognition is a task which has received much attention in the world of 

artificial intelligence (Al). Many problems have been addressed using neural networks 

and suitable solutions have been found. One example of interest is the method of zip 

code recognition devised by Le Cun et al. This method uses a multilayer perceptron to 

recognise hand written digits.

The use of neural networks to cluster MUAPs may well provide an 

improvement upon the performance of the algorithm presented in chapter 5. Important
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factors to the operation of this method are the type of artificial neural network (ANN) 

used and the method used to classify each segment of activity from the EMG signal.

6.3 The neural network.

The material in this section is based to some extent upon the books of Haykin 

and Gurney respectively, (Haykin 1994)(Gumey, 1997).

The neural network may be best described by the presentation of definitions:

“A neural network is an interconnected assembly of 

simple processing, units or nodes, whose functionality is 

loosely based upon that of the animal neuron. The 

processing ability of the network is stored in the inter­

unit connection strengths or weights, obtained by a 

process of adaptation to, or learning from, a set of 

training patterns.” (Gurney, 1997)

An alternative definition is given by Haykin:

“A neural network is a massively parallel distributed 

processor that has a natural propensity for storing 

experiential knowledge and making it available for use.

It resembles the brain in two respects:

1. Knowledge is acquired by the network through a 

learning process.

2. Intemeuron connection strengths known as synaptic 

weights are used to store the knowledge.” (Haykin,

1994)

In order to understand the operation of such networks, it is important that the 

basic element of operation within the network, the node or neuron, be understood.
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6.3.1 The neuron

The artificial neuron was originally proposed by McCulloch & Pitts, 

(McCulloch & Pitts, 1943). Figure 6.3.1.

Figure 6.3.1 The artificial neuron model.
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Weights

The model consists of synapses with their corresponding weights, a 

summation element and an activation function. In the case of the original model, the 

activation function was a hard limit or step function. Other terms that may be 

incorporated within the neuron model are those of threshold and bias. The threshold 

has the effect of lowering the net input to the activation function, whilst the bias raises 

it.

6.3.1.1 The activation function.

The activation function defines the output of a neuron in terms of the activity 

level at its input, (Haykin, 1994). It limits the output amplitude of a neuron.

Two examples of activation function are shown below: figure 6.3.1.1.1 shows 

the hard limit function and figure 6.3.1.1.2 shows the sigmoid or soft limit function.

The sigmoid function is a softened step function. Its use allows non-binary 

numbers to be output from the neuron. This ability may be of great use in some 

applications.
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Figure 6.3.1.1.1 The hard limit activation function.

Hard limit activation function

Figure 6.3.1.1.2 The sigmoid (soft limit) activation function.

Sigmoid activation function.

6.3.2 The perceptron

The perceptron is the simplest form of neural network. It is used to classify 

patterns that are linearly separable, (Haykin, 1994). The perceptron is also used as an 

element within a layer of perceptrons. The use of single and multiple layers of 

perceptrons will be dealt with later.

A single perceptron is capable of classifying its inputs into one of only two 

classes. This explains the requirement for linear separability of inputs. Further 

explanation is drawn from the way in which a neuron works in classifying inputs. 

Classification is achieved via the formation of what is termed a “hyperplane” between 

the two linearly separable sets of input data. All data falling on one side of the plane 

will be classified as a member of one group and all data falling on the other side will 

be classified as a member of the second group. It is thus clear that if the two sets of 

data are linearly inseparable, the neuron will misclassify some input patterns.
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If an input data set consists of more than two linearly separable groups, the 

introduction of a single hyperplane will not correctly separate them. As this is the 

case, a single neuron will not correctly classify the inputs. The use of more than one 

neuron, i.e. a layer of neurons, will introduce more hyperplanes to separate the input 

space. As long as all the clusters of inputs within the input space are linearly 

separable, a layer of neurons containing enough neurons will be able to solve the 

problem

A schematic diagram of the perceptron may be seen in figure 6.3.2.1. It may 

also be seen, from this figure, how the perceptron is derived from the McColluch-Pitts 

neuron model of section 6.3.1. This derivation was made by Rosenblatt, (Rosenblatt, 

1962).

Figure 6.3.2.1 The perceptron model.
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6.3.2.1 Gradient descent: perceptron learning.

Gradient descent is the term given to an iterative procedure used to find the 

minimum of a function. Gradient descent may be used to train a single neuron or 

layers of neurons. The method consists of calculating an error, the difference between 

a neuron’s actual output and its target output, and performing gradient descent upon 

the error as a function of the neuron’s input weights. Thus the weights giving the 

minimum error are found. The squared sum difference between output and target is
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the usual measure of error for a neuron. For neuron layers, the sum of squared errors 

is used.

6.3.3 The multilayer perceptron.

The multilayer perceptron, as its name suggests, consists of more than one 

layer of neurons. For the sake of simplicity, a two layer network using a small number 

of neurons in each layer will be used to illustrate the entire set of networks, figure 

6.3.3.1. The value of a multiple layer network is evident when the input data requiring 

classification is not linearly separable. The use of multiple layers allows the decision 

surface (the hyperplane in the case of a single neuron) to have a shape appropriate to 

solving the specified problem.

Figure 6.3.3.1 The multilayer perceptron network.

Output layer

Input layer
Hidden layer

As may be seen from figure 6.3.3.1, multilayer networks consist of at least one 

hidden layer and a single output layer. The hidden layer is so named because it is not a 

part of either the input or output to the network. Inputs to the network progress 

through it in a layer-by-layer fashion. Nodes within the network may be either fully
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connected, as they are in figure 6.3.3.1, or they may be only partially connected. If a 

network is partially connected, not all nodes in the network will be connected to all 

nodes in the surrounding layers.

There are problems with the use of multiple layers of neurons. One of these is 

the possible use of too many hidden neurons to classify inputs into their desired 

groups. If there are too many neurons, the decision surface created upon presentation 

of the training data may provide good classification of the training data, but may fail 

to generalise when similar data is presented. Generalisation is the ability of a trained 

network to correctly classify data that is a part of the target set, but that was not 

included in the training set. The network is able to generalise its solution to include 

new data.

A second problem is the occurrence of local minima in the error function. 

When these are present, the method of gradient descent (backpropagation for multiple 

layers, see section 6.3.3.1) may well find a local minimum, rather than the function’s 

global minimum. Should this occur, the solution settled upon will not be the best one; 

it may not even be an acceptable solution.

6.3.3.1 The backpropagation learning rule.

The error backpropagation method of network training is based upon gradient 

descent. It is specifically for use with multilayer networks. The method consists of 

making two passes through the network. Initially an input is presented to the network. 

This propagates through the network layers producing an output. The output error is 

calculated in the same way as for pure gradient descent. This error is propagated 

backwards through the network. During the backward pass, the synaptic weights of 

the network are adjusted, using gradient descent, to reduce the error. It is only during 

the backward pass that the weights are altered, during the forward pass they remain 

fixed, (Haykin, 1994).

The training of a network by this method consists of presentation of input 

vectors to the net until an acceptable sum of squared errors is reached. The speed with 

which this occurs is controlled in part by the learning rate. The learning rate is quite a 

sensitive term. Too large a learning rate may cause the learning process to become
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oscillatory around the error minimum, thus never reaching a solution. Too small a 

learning rate may cause the learning process to take far too long a time. There is an 

obvious trade off between the speed of learning and the ability to reach an acceptable 

solution.

The oscillatory effect introduced by too high a learning rate may be combated 

by the introduction of momentum to the backpropagation method. Momentum ensures 

that any change in synaptic weight is not dramatically different from the previous 

change. This is achieved by including a proportion of the last weight change in the 

current weight change. This has a tendency to smooth out small fluctuations in the 

error-weight space, (Gurney, 1997). So the addition of momentum allows the learning 

rate to be increased by suppressing oscillatory behaviour.

6.3.4 Self organisation: competitive networks and self organising feature maps.

Self-organising networks can learn to detect regularities and correlations in 

their input and adapt their responses to that input accordingly, (Demuth & Beale, 

1994). We shall look at competitive networks and self organising feature maps. Both 

of these are based upon competitive learning.

If a network can learn a weight vector configuration without being told 

explicitly of the existence of clusters at the input, then it is said to undergo a process 

of self-organised or unsupervised learning, (Gurney, 1997) Competitive learning, 

section 6.3.4.1, allows behaviour such as this.

In a self-organising feature map, the neurons are placed at the nodes of a 

lattice that is usually one or two dimensional, (Haykin, 1994). When training is 

undergone, these neurons distribute themselves to recognise the presented input data 

and to represent its topography. Self organising networks are based upon the 

competitive network, they are competitive networks in the lattice formation. 

Understanding is enhanced by the presentation of the competitive network 

architecture, figure 6.3.4.1.
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Figure 6.3.4.1 The competitive architecture.

Output layer

Input layer

The inputs presented to the network are seen by all the neurons within it. 

There are intralayer, or lateral, connections such that each node is connected to itself 

via an excitatory (positive) weight, and inhibits all other nodes in the layer with 

negative weights, (Gurney, 1997). The latter connections are seen only for the central 

node in the above figure.

After training of the network has taken place, presentation of an input will 

result in all neurons in the network giving a result. The maximum result will be given 

by the neuron, or neurons, associated with the cluster of inputs in which the currently 

presented input falls. A more specific example of this type of behaviour is given by 

the winner takes all network. This network behaves in exactly the same way as that 

previously described, but it only outputs ones and zeros. The winning neuron will 

output a one whilst all others output a zero.

A competitive network learns to categorise the input vectors presented to it, it 

also learns the distribution of inputs by dedicating more neurons to classifying parts of 

the input space with higher densities of input, (Demuth & Beale, 1994). Self 

organising feature maps map the topological characteristics of the inputs to the 

network. They operate similarly to competitive networks, but smooth the transition 

between inputs by presenting a neighbourhood of neuron firings. The maximum firing 

in the neighbourhood represents the winner of the competition and the other firings
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represent those that came close. This allows the progression of the input transition to 

be mapped and observed as the winning neuron changes.

6.3.4.1 Competitive learning.

For the net to encode the training set, the weight vectors must become aligned 

with any clusters present in this set and each cluster must be represented by at least 

one node, (Gurney, 1997).

In order to do this, training input data must be presented to the network. 

Learning occurs as follows: an input vector is presented to the network and a sum of 

weighted inputs is calculated for each neuron. The initial synaptic weights for each 

neuron will differ. The neuron with the highest sum of weighted inputs has won the 

competition between all neurons. Only the winning neuron has its weights adjusted.

The weights of the winning neuron are updated so that the weight vector 

moves closer in space to the current input vector. This alteration of weight ensures 

that the winning neuron is more likely to fire again when a vector similar to the 

current input is presented to the network, and less likely when a dissimilar vector is 

presented.

This procedure is repeated for the whole training set, many times over, in 

order that each input, single or cluster, be characterised. As long as there are enough 

neurons present within the network, each cluster of inputs should contain at least one 

neuron.

A problem with competitive learning is that of dead neurons. If too many 

neurons are present, some may never win the competition, and thus never take part in 

characterising the input data set.

6.3.5 Learning vector quantisation networks.

To achieve the best results for pattern classification, the use of the feature map 

should be accompanied by a supervised learning scheme, (Kangas et al, 1990).

Learning vector quantisation is a pattern classification method in which each 

output unit represents a particular class or category, (Fausett, 1994). Learning vector
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quantisation networks can classify any set of input vectors, not just linearly separable 

sets of input vectors, (Demuth & Beale, 1994).

This method of supervised learning is based upon two techniques: that of 

competitive networks and that of vector quantisation. The first technique has already 

been covered, however, vector quantisation is explained below.

In vector quantisation, the input space is divided into distinct sections. These 

sections are based upon the inputs. For each section a characteristic weight vector is 

assigned.

Learning vector quantisation is a supervised learning technique that uses class 

information to move the weight vectors slightly, so as to improve the quality of the 

classifiers decision regions, (Haykin, 1994).

Initially, the competitive section of the network forms clusters. This is 

followed by learning vector quantisation. The essence of the method is that input 

vectors are selected randomly from the input space and the similarity between the 

input’s class and the class of each region’s characteristic weight vector is assessed. 

The weight vectors that are similar to the selected input are moved towards it and 

those that are not similar are moved away.

After several passes through the input data, the weight vectors would typically 

converge, and the training is complete.

6.4 Application of neural networks to the problem.

6.4.1 Describing features as network inputs.

The initial consideration when trying to group data sets into distinct classes 

using neural networks, is how best to represent the data. Any representation must 

contain the majority of the information available about the data entry, or at least 

enough of this information to allow discrimination between similar but different 

entries. This is important because the distribution of inputs in the input space of the 

neural network determines the number of input units in the network and the ease of 

classification. It is obvious that the fewer inputs there are describing a single data 

entry, the easier classification will be (this is relative to the ease of classification of
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the problem itself). This is due to a lower dimension input space requiring less 

complex decision surfaces.

In the case of identifying individual action potentials and grouping them 

appropriately, samples of the signal are inappropriate. This is so because, depending 

upon the sampling frequency employed during the digitisation process, a single 

MUAP will necessitate a large number of inputs to the neural network. Another 

problem apparent with this type of input is that the number of samples in different 

action potentials will vary, thus the number of required input nodes to the network 

will vary too. The most direct solution to this problem is the use of null input nodes. 

This, however, is not ideal because the APs are altered and thus the accuracy of 

classification will be altered too. It is also possible that an AP with more samples than 

there are input nodes will still occur.

A more suitable representation of data for input to neural networks, based 

upon that of Loudon (Loudon, 1991), is outlined. The method consists of representing 

each input to the network by a set of eight features. These features are characteristic of 

certain aspects of action potentials that will vary between different MUAPTs. The 

features are listed below:

1. The maximum peak to peak amplitude feature.

2. The maximum positive amplitude feature.

3. The positive area feature.

4. The negative area feature.

5. The maximum positive gradient feature.

6. The maximum negative gradient feature.

1. The number o f  turns feature.

8. The number o f  samples feature.

In the following investigations, these features will be used to create the input 

vectors presented to each neural network. The data used both for training and testing 

the neural networks is simulated and at this stage consists wholly of non-overlapping 

data. Each action potential within a data set is represented by its features for 

presentation to the neural networks.

117



Simulation and analysis in electromyography.

6.4.1.1 The multilayer perceptron.

It is clear that where the inputs to be classified consist of vectors in eight 

dimensions, the problem requires the decision surface to be quite complex within the 

input space. We know that a single perceptron is capable of differentiating between 

only two linearly separable clusters, a single layer of perceptrons is capable of 

differentiating between more than two linearly separable clusters (the number 

determined by the number of neurons within the layer) and a multilayer perceptron is 

capable of differentiating between clusters that are not linearly separable.

An eight dimensional representation of a MUAP may not be visualised by the 

human eye. The most that may be seen is a three dimensional slice of such a 

representation. As such it is not possible to assess visually, whether our problem 

consists of linearly separable groups of input data or not. In order to deal with this 

uncertainty both single and multilayer networks were utilised in the attempt to solve 

the problem.

The set of data used for training the networks consisted of normal biphasic, 

normal triphasic myopathic and neurogenic simulated action potentials. Within each 

of the four classes the duration of an action potential was fixed at five standards (those 

standards being different for each class, and representative of the limits of expectation 

for real data). For each class the amplitudes varied randomly. The training set 

consisted of five examples of each standard for each class. All data was simulated, 

noise free, and consisted solely of non-overlapping action potentials.

Various networks, both single and multilayer, were trained using this data set. 

It was attempted firstly to train these networks to classify the input data into 20 groups 

(one group representing each MU), and secondly into 4 groups (one group 

representing each class of MU). The number of neurons in the hidden layers and the 

learning rate and training times were altered in the attempt to achieve the optimal 

learning procedure. The momentum term was included in learning to prevent the 

networks settling at local minima.

In all cases it was found that the sum of squared errors failed to reach an 

acceptable level. In fact, the levels at which the sum of squared errors settled far 

exceeded acceptable levels for single, double, and triple layer networks. This was in
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spite of the addition of neurons to different layers, and in spite of variation in learning 

rate and of momentum. The sum of squared errors always settled at values too large 

for the resulting network to have been of any use in classification. Thus, a suitable 

solution to our problem was not found using perceptron networks.

6.4.1.2 The competitive network.

Various competitive networks were trained to address the problem. Initially 

the networks were used to classify between 2 (biphasic normal and triphasic normal) 

and 3 (biphasic normal, triphasic normal and myopathic) classes of action potential. 

The results of the three class operation may be seen below. A network consisting of 

three competitive neurons (the minimum possible amount for this operation) was 

used. It was trained using a single example of each class and used to identify five 

example of each class (including the training example). The number of training cycles 

was 1000. 100% accuracy of classification was achieved. The distribution of 

classifications may be seen in figure 6.4.1.2.1.

Figure 6.4.1.2.1 Competitive classification of three MUAP types.

Myopathic
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Classification.
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A separate network was trained in a similar way. This network utilised four 

neurons to distinguish between four action potential classes (biphasic normal, 

triphasic normal, myopathic and neurogenic). It was trained with one example of each 

class for 1000 cycles. The distribution of classifications between the four classes may 

be seen in figure 6.4.1.2.2. It is evident that all the neurogenic action potentials are 

wrongly classified as triphasic normals.

Figure 6.4.1.2.2 Competitive classification of four MUAP types (1).

( / c y /  Neurogenic 
W S J  Myopathic 

Y  Triphasic C lass 

Biphasic

C lassification

The network was retrained with differing learning rates and bias time 

constants. The best set of results obtained consisted of 2 triphasic normals 

misclassified as neurogenics. This is a 40% misclassification rate for the triphasic 

class. The distribution of the classifications may be viewed in figure 6.4.1.2.3.

Again the network was retrained using two training vectors per class. This 

retraining allowed 100% classification of 5 inputs for each class. The distribution of 

classifications may be seen in figure 6.4.1.2.4.
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Figure 6.4.1.2.3 Competitive classification of four MUAP types (2).
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Figure 6.4.1.2.4 Competitive classification of four MUAP types (3).
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All of the previous tests in this section use only a single MUAP train per class. 

In order that this network be tested more thoroughly, more MUAPTs must be 

represented. A good test is the ability of the network to differentiate between action 

potentials from trains within the same class.
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A network was trained for this purpose. The training data consisted of one 

action potential from each of five different standard durations within the biphasic 

class. The network was trained for 1000 cycles. The data used to train the network 

was correctly classified when presented to the network, however, when a test set of 

data consisting of five examples of each action potentials from each MU APT was 

presented, the following misclassification rates were observed: duration 1 (40%); 

duration 2 (60%); duration 3 (0%); duration 4 (40%); duration 5 (20%). The 

distribution of these results may be seen in figure 6.4.1.2.5.

Figure 6.4.1.2.5 Competitive classification of MUAPTs from the same class.

Train.

Classification.

Attempted training using more than one training vector failed. It failed in that 

the competition between neurons failed to produce correct positioning of neurons in 

the input pairs representative of each duration. This is probably due to the close 

proximity of the clusters of input vector types when represented in eight dimensions. 

Moving the analysis into three dimensions by employing self organising maps may 

help to alleviate this somewhat.

However, the purpose of the self organising map is to trace the progress of the 

inputs in a multidimensional space. This is achieved by a neighbourhood of neurons
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firing around the responsive neuron, but with less strength. This allows the progress of 

firing neurons to be traced as different inputs are presented to the network.

The purpose of the self organising map is to map the topological 

characteristics of a system or set of inputs. The map will identify any naturally 

occurring groups of input and classify them as such. The self organising map or 

network will not necessarily classify the data in the way intended for differentiation 

purposes. It is stated by Fausett (Fausett, 1994) that non-supervised (i.e. self 

organising) techniques should not be used for pattern recognition for the above 

reason. Instead they should be used in conjunction with supervised techniques to 

ensure the clusters formed are those desired. Learning vector quantization is an 

example of such a combination of unsupervised and supervised learning techniques. 

This method will be used instead of purely unsupervised techniques from this point 

forward.

6.4.1.3 The learning vector quantization (LVQ) network.

It has already been shown that the competitive network is capable of 

identifying the clusters of inputs representative of the four major muscle condition 

classes and their corresponding action potential shapes. The learning vector 

quantization network may be seen as a competitive network and a linear network 

combined, figure 6.4.1.3.1. The linear network has the effect of grouping the outputs 

of the competitive network as specified by the user. This is the supervised element of 

the otherwise unsupervised network.

Figure 6.4.1.3.1 - The LVQ network architecture.
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The effect of this is that more neurons may be used to classify the input data 

than the number of output classes. All outputs are grouped into the desired output 

classes by the linear layer.

In order to test the learning vector quantization network’s performance the 

problem of differentiating between MUAPs from different trains in the same class was 

addressed. A learning vector quantization network consisting of 5 competitive 

neurons (one per standard MUAP duration) and 5 linear neurons was trained for 1000 

cycles. The training data consisted of 10 example simulated biphasic action potentials, 

2 each from each of the five duration standards.

Upon completion of the training a test set of data comprised of five examples 

of each duration of biphasic action potential was presented to the network for 

classification. The results obtained were as follows: for duration 1 there was 60% 

misclassification; for duration 2 there was 40% misclassification; for duration 3 there 

was 0% misclassification; for duration 4 there was 40% misclassification; and for 

duration 5 there was 40% misclassification. These distributions may be seen in figure

6.4.1.3.2.

Figure 6.4.1.3.2 LVQ discrimination between MUAPTs from the same class (1).

Train.

Classification.
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The same test was repeated, retraining the network with first three, then four 

input vectors per duration of MUAP. For 3 input training: duration 1 had a 

misclassification rate of 40%; duration 2 had a misclassification rate of 0%; duration 

3 had a misclassification rate of 0%; duration 4 had a misclassification rate of 40%; 

and duration 5 had a misclassification rate of 40%. These results may be seen in figure

6.4.1.3.3.

Figure 6.4.1.3.3 LVQ discrimination between MUAPTs from the same class (2).

Classification.

Bi 5 
4

Train.

For 4 input training there was a misclassification rate of: 0% for duration 1; 

20% for duration 2; 0% for duration 3; 40% for duration 4; and 40% for duration 5. 

Figure 6.4.1.3.4 shows the results.

The use of a network containing 10 and 15 neurons in the competitive layer 

did not significantly alter the results. For all of these tests, various learning rates were 

used. The learning rate did not dramatically alter the performance of the network, 

however a learning rate of 0.2 to 0.3 seemed to be the most effective.
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Figure 6.4.1.3.4 LVQ discrimination between MUAPTs from the same class (3).

Classification.

Train.

6.4.2 Discussion

The results obtained in the last three sections show that the combination of 

supervised and unsupervised learning methods present within learning vector 

quantization networks provide the best way (of those investigated) of grouping 

together input vectors into identifiable clusters for the purpose of classification of 

MUAP type and MU APT allegiance. Of the other methods, multilayer perceptrons do 

not work well at all, and though competitive networks work reasonably there are 

limitations with them. The main limitation is that of the number of competitive 

neurons. The number of classes is determined to a large extent by the input data, but 

also by the number of neurons present in the competitive layer. The clusters formed 

will not necessarily be those desired by the user: they will be naturally occurring ones. 

It is likely that if more neurons than the number of required classes are used, more 

than the required classes will be isolated, though null neurons may occur. This 

problem is overcome by the LVQ network, thus the LVQ is more suited to pattern 

recognition.
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The results also indicate that a neural network is not capable of classifying any 

set of inputs in the way that the user would want them classified. Thus, the inputs to 

the network must be carefully selected to ensure that the problem may be solved. A 

point of interest at this juncture is the statement that “as long as there are enough 

neurons in the competitive layer, a learning vector quantization neural network will 

find the solution to any classification problem”. There are two points that should be 

addressed here. Firstly, there is the worry that given too many neurons the solution 

found may become too specific to the data used for training and thus fail to generalise 

adequately upon presentation of other data sets, however similar they may be. This is 

a similar worry to that expressed about multilayer perceptrons. The second point is 

that though it may be possible to find a solution given enough neurons, it would be far 

more preferable to simplify the solution of the problem by choosing the most 

appropriate inputs. Doing so will minimise the learning time and the network 

dimensions, and make the problem more straightforward in general.

The inputs used up to this point have consisted of eight dimensional vectors. 

Vectors that consist of a lower dimension are easier to deal with. The eight features 

used to describe a segment of MUAP activity are correlated with one another to a 

certain extent. It is desirable that the number of inputs to the neural networks be 

reduced whilst the maximum possible amount of information about each MUAP is 

retained. One method of achieving this aim is to remove correlated information, i.e. 

information repeated in more than one feature, by replacing the describing features 

with orthogonal (uncorrelated) factors calculated from the features themselves. This 

will have the effect of reducing the number of dimensions of our input vectors, whilst 

retaining a maximum amount of useful information from the describing features.

6.4.3 Orthogonal factors as network inputs.

Two ways of creating orthogonal factors from correlated features are diagonal 

factor analysis and principal component analysis respectively. There are 

characteristics of these methods which reflect upon their suitability for the application 

in mind: these are discussed below.
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In their method for automatic decomposition of the EMG of 1991, Loudon & 

Jones applied the method of diagonal factor analysis (Appendix 1) to the problem of 

producing uncorrelated factors from correlated features. The method produces a 

number of factors less than the original number of features. The new factors consist of 

appropriately weighted features and their number, their choice and their order are 

dictated by the data being orthogonalised.

Preference was given to the above method by Loudon & Jones because it 

required a relatively small amount of processor time in comparison with principal 

component analysis. This is no longer an important consideration. At the time that the 

method was devised, the speed of CPUs was considerably slower. Today’s technology 

ensures that the processor time required to perform principal component analysis is 

negligible as a constituent part of an analysis algorithm. It is now more important to 

apply the most appropriate method. Time considerations are not so weighty, but they 

do still occur in some cases.

Diagonal factor analysis and PCA both reduce the number of describing 

factors by creating an approximation to the original data. The question is, which 

method is most suited to our application?

The main problem with diagonal factor analysis is that the number of 

orthogonal factors generated from each orthogonalised set of inputs will not 

necessarily be the same. This will cause problems in neural network classification, 

should a network be trained using five dimensional inputs, i.e. each MUAP is 

represented by the first five diagonal factors and their associated weights, and be 

presented with a set of MUAPs for classification where each MUAP is represented in 

six dimensions, the network would be unable to operate with the data. The dimension 

of the input vectors must remain the same for the trained network to accurately 

classify the data. A second problem with diagonal factor analysis is that whilst the 

number of factors generated is less than the original number of describing features, it 

is only just so. There are eight describing features, and these are often reduced to five 

or six diagonal factors. It is desirable that the reduction in dimension of input be 

greater than two or three dimensions.

Principal component analysis (Appendix 2) is more suited because the 

majority of variance in the inputs is accounted for in the 1st component and the
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majority of the remainder occurs within the earlier components, hence fewer are 

required to account for most of the information available. This addresses the last 

problem apparent in diagonal factor analysis, a small number of components may be 

used to describe each MUAP, whilst retaining the majority of the information 

portrayed by the eight describing features.

A further important fault with the method of diagonal factor analysis is that the 

features chosen as factors may not always be the same. This will depend upon the data 

set being orthogonalised. A change in the chosen features will represent a change in 

the distribution of inputs within the input space of the network. Should this occur, 

once again the trained network will be unable to classify the data because the inputs 

for classification will be representative of a different task or problem.

This problem will not occur when using PCA. Overall the PCA method is 

more suited to the orthogonalisation of features for use with neural networks, than is 

the diagonal factor analysis method.

6.4.3.1 The generation of orthogonal features.

As was stated previously the method for orthogonalising the input data 

deemed most suitable is principal component analysis. The mathematics behind the 

method may be seen in Appendix 2, whilst its application is described here.

Principal component analysis was carried out on each set of inputs. In order 

that the distribution of inputs was related from set to set the same database was used 

to calculate the components from. The standard database contained 120 action 

potentials consisting of normal biphasics, normal triphasics, myopathies and 

neurogenics, all of typical clinical characteristics. As before, these classes were sub­

divided into MUAPs with different duration templates, this time three different 

durations per class were present. Simulated non-overlapping, noisefree data was used. 

Initially the standard database was used alone; subsequently more inputs were added 

for the purpose of different investigations.

This standard database was used to train and test the different neural networks. 

Two dimensional representations of the new orthogonal inputs may be seen below. 

The whole data set is shown in figure 6.4.3.1.1
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Figure 6.4.3.1.1 - PCA representation of the standard database, in 2D.
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It is clear to see that the different types of action potentials form separate 

clusters. These are clearly marked in figure 6.4.3.1.1. The behaviour of the clusters 

may be remarked upon as follows: the appearance of the clusters in straight lines is 

due to the lack of variation in duration in each class. This affects two of the original 

eight features directly. However, there is a difference in position within each class for 

the three chosen durations: any further variation around these durations would cause 

the phenomenon observed within the clusters to disappear. The variation in position 

observed within the clusters is due to the members of each cluster differing in 

amplitude. The variation in position is as follows: the point representing the smallest 

action potential resides at the top left of the cluster, whilst the point representing the 

largest action potential in the cluster is the bottom right point. The position of other 

MUAPs in the class varies between these points linearly.

It may be seen that factors orthogonalised in this way present good inputs to 

neural networks because they are lower in dimension and consist of well separated 

clusters. It was found that the first three principal components accounted for 

approximately 96% of the variance between inputs. Further principal components 

added very little information, but would increase the complexity of the problem. It 

was decided to use three principal components to represent the data, thus providing 

three dimensional inputs to the neural networks. The method of representation is as
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follows: each input is reconstructed by the sum of the products of the principal 

components and its associated principal component coefficients, thus each individual 

input may be represented by its own principal component coefficients, numbering 

three in this case.

6.4.3.2 The multilayer perceptron with orthogonal inputs.

Multilayer and single layer perceptron networks of varying dimension were 

trained to attempt a solution to the problem. As before, no matter how many neurons 

or layers were used, the sum of squared errors failed to reach anywhere near an 

acceptable level, thus no solution was found. This was the case irrespective of 

learning rate, momentum and training time. It is thus apparent that the application of 

multilayer perceptrons to the problem, in this way, will not yield a solution.

6.4.3.3 The LVQ network with orthogonal inputs.

The data used in the following three tests is that contained within the standard 

database of four classes of action potential, after orthogonalisation. The database was 

split into two halves equal in content. One of the two sets was used for network 

training, the other for testing the trained network.

Test 1 - Classifying data into MUAP classes.

A learning vector quantization neural network consisting of 3 input nodes, 4 

competitive neurons and 4 linear output neurons was trained using the data shown in 

table 6.4.3.3.1, for the purpose of differentiating between the four MUAP classes 

(normal biphasic, normal triphasic, myopathic and neurogenic). The principal 

component functions associated with both the training and test data are shown in 

figure 6.4.3.3.I. The functions consist of eight values each because they are calculated 

from the eight features used to represent each MUAP.
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Table 6.4.3.3.1 The training data.

MUAPT PCC1 PCC2 PCC3
biphasic -4.89E-02 8.33E-03 1.72E-01
duration 1 -8.16E-02 3.50E-02 1.40E-01

-9.42E-02 4.52E-02 1.27E-01
-5.06E-02 9.71 E-03 1.71 E-01
-4.80E-02 7.62E-03 1.73E-01

biphasic -1.25E-01 1.15E-01 5.62E-02
duration 2 -1.29E-01 1.17E-01 5.32E-02

-1.33E-01 1.21 E-01 4.90E-02
-1.11E-01 1.05E-01 6.88E-02
-1.22E-01 1.13E-01 5.88E-02

biphasic -3.20E-02 1.21 E-01 1.22E-01
duration 3 -3.58E-02 1.23E-01 1.19E-01

-3.90E-03 1.06E-01 1.47E-01
-9.91 E-03 1.09E-01 1.42E-01
-3.89E-02 1.24E-01 1.16E-01

triphasic -2.12E-02 9.78E-02 -8.82E-03
duration 1 2.26E-02 7.69E-02 1.20E-02

2.25E-02 7.69E-02 1.19E-02
1.67E-02 7.97E-02 9.18E-03
2.62E-02 7.52E-02 1.37E-02

triphasic -4.79E-02 1.61 E-01 -6.66E-02
duration 2 -4.88E-02 1.61 E-01 -6.69E-02

-2.09E-02 1.51 E-01 -5.66E-02
1.29E-03 1.43E-01 -4.85E-02

-5.81 E-03 1.45E-01 -5.11 E-02
triphasic 7.41 E-02 2.04E-01 -6.88E-02
duration 3 3.08E-02 2.14E-01 -8.27E-02

5.11 E-02 2.11 E-01 -7.73E-02
5.29E-02 2.10E-01 -7.68E-02
5.34E-02 2.10E-01 -7.66E-02

myopathic -2.46E-01 -1.41 E-01 -5.48E-02
duration 1 -2.43E-01 -1.46E-01 -5.20E-02

-2.41 E-01 -1.51 E-01 -4.93E-02
-2.44E-01 -1.44E-01 -5.30E-02
-2.36E-01 -1.63E-01 -4.29E-02

myopathic -2.39E-01 -9.19E-02 -7.85E-02
duration 2 -2.17E-01 -1.34E-01 -5.44E-02

-2.30E-01 -1.09E-01 -6.87E-02
-2.28E-01 -1.12E-01 -6.71 E-02
-2.31 E-01 -1.07E-01 -6.98E-02

myopathic -2.37E-01 -6.85E-02 -8.37E-02
duration 3 -2.41 E-01 -6.25E-02 -8.73E-02

-2.29E-01 -8.23E-02 -7.54E-02
-2.31 E-01 -7.82E-02 -7.79E-02
-2.32E-01 -7.65E-02 -7.89E-02

neurogenic 1.96E-01 -2.28E-01 5.70E-02
duration 1 1.82E-01 -2.16E-01 4.77E-02

1.79E-01 -2.15E-01 4.64E-02
2.40E-01 -2.61 E-01 8.48E-02
2.37E-01 -2.59E-01 8.29E-02

neurogenic 2.75E-01 -1.81 E-01 1.90E-02
duration 2 2.42E-01 -1.60E-01 1.74E-03

2.19E-01 -1.45E-01 -1.01 E-02
2.81 E-01 -1.85E-01 2.17E-02
2.68E-01 -1.77E-01 1.53E-02

neurogenic 3.61 E-01 6.31 E-02 -1.09E-01
duration 3 4.25E-01 4.60E-02 -8.93E-02

3.48E-01 6.66E-02 -1.13E-01
3.73E-01 5.99E-02 -1.05E-01
3.97E-01 5.37E-02 -9.80E-02
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Figure 6.4.3.3.1 The 3 associated principal component functions.
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The data consists of the first 3 principal component coefficients for the database used 

previously. The network was trained for 5000 cycles.

The purpose of this test was to attempt to train the network to distinguish 

between the four classes of action potential present within the database. The network 

was provided with a set of ranges within which all its inputs would fall, and a set of 

target vectors corresponding to the correct class of each input vector.

A solution was found prior to the completion of the training period. Upon 

presentation of the training data to the trained network for classification, 100% 

accuracy was achieved, see figure 6.4.3.3.2. Again, learning rates between 0.2 and 0.3 

were found to be most effective.

Figure 6.4.3.3.2 LVQ identification of class of noiseless simulated training data.

Neurogenic 
Y  Myopathic 

Triphasic Class.
. 'j m j -  ■

Biphasic

Classification.

Upon presentation of the test data set (the second set from the standard 

database) shown in table 6.4.3.3.2, 100% accuracy was achieved also, see figure 

6A3.3.3.
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Figure 6.4.3.3.3 LVQ identification of class of noiseless simulated training data.
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Test 2 - Classifying data into i t ’s constituent MUAP trains.

The purpose of the second test was to establish how the neural network will 

perform when trained to discriminate between action potentials from specific MUAP 

trains rather than purely between action potential classes.

A second LVQ network was trained for 5000 cycles. This network again 

utilised the data shown in test 1 and as such 3 input neurons constituted the input 

layer. The competitive layer contained 12 neurons (one for each MU APT present in 

the database). In this test the number of linear output neurons was also 12, for the 

same reason as was given for the number of competitive neurons present.

After training the data set used to train the network was presented for the 

purpose of classification. The results gained showed a 98.3% success rate. There was 

only one misclassification present, see figure 6.4.3.3.4, and that was only a 

misclassification with respect to MUAP allegiance, not class allegiance. This problem 

could be overcome by the use of more neurons in the competitive layer.
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Table 6.4.3.3.2 The test data.

MUAPT PCC1 PCC2 PCC3
biphasic -9.82E-02 4.85E-02 1.23E-01
duration 1 -6.46E-02 2.11 E-02 1.57E-01

-9.78E-02 4.82E-02 1.23E-01
-6.18E-02 1.89E-02 1.59E-01
-5.90E-02 1.66E-02 1.62E-01

biphasic -1.13E-01 1.07E-01 6.71 E-02
duration 2 -1.29E-01 1.17E-01 5.32E-02

-1.01 E-01 9.84E-02 7.77E-02
-1.26E-01 1.16E-01 5.57E-02
-1.32E-01 1.19E-01 5.06E-02

biphasic -4.02E-02 1.26E-01 1.15E-01
duration 3 -1.25E-02 1.10E-01 1.40E-01

-1.56E-02 1.12E-01 1.37E-01
-1.28E-02 1.11E-01 1.39E-01
-6.81 E-03 1.18E-01 1.34E-01

triphasic 2.75E-02 7.46E-02 1.43E-02
duration 1 1.94E-03 8.67E-02 2.17E-03

2.53E-02 7.56E-02 1.33E-02
2.65E-02 7.50E-02 1.38E-02

-1.25E-02 9.36E-02 -4.67E-03
triphasic -2.46E-03 1.44E-01 -4.99E-02
duration 2 -7.36E-03 1.46E-01 -5.17E-02

-8.34E-03 1.46E-01 -5.20E-02
2.11 E-03 1.42E-01 -4.82E-02

-9.69E-05 1.43E-01 -4.90E-02
triphasic 7.64E-02 2.06E-01 -7.05E-02
duration 3 7.37E-02 2.06E-01 -7.12E-02

9.25E-02 2.03E-01 -6.62E-02
4.69E-02 2.11 E-01 -7.84E-02
3.34E-02 2.14E-01 -8.20E-02

myopathic -2.42E-01 -1.48E-01 -5.10E-02
duration 1 -2.34E-01 -1.66E-01 -4.12E-02

-2.45E-01 -1.44E-01 -5.35E-02
-2.36E-01 -1.62E-01 -4.33E-02
-2.40E-01 -1.53E-01 -4.80E-02

myopathic -2.19E-01 -1.30E-01 -5.69E-02
duration 2 -2.27E-01 -1.15E-01 -6.53E-02

-2.24E-01 -1.21 E-01 -6.21 E-02
-2.21 E-01 -1.25E-01 -5.94E-02
-2.21 E-01 -1.25E-01 -6.94E-02

myopathic -2.31 E-01 -7.86E-02 -7.76E-02
duration 3 -2.42E-01 -6.07E-02 -8.84E-02

-2.26E-01 -8.82E-02 -7.18E-02
-2.39E-01 -6.45E-02 -8.61 E-02
-2.35E-01 -7.26E-02 -8.12E-02

neurogenic 2.07E-01 -2.36E-01 6.36E-02
duration 1 2.09E-01 -2.38E-01 6.53E-02

2.12E-01 -2.40E-01 6.72E-02
1.74E-01 -2.11 E-01 4.32E-02
2.22E-01 -2.47E-01 7.33E-02

neurogenic 2.82E-01 -1.86E-01 2.26E-02
duration 2 2.71 E-01 -1.78E-01 1.66E-02

2.34E-01 -1.55E-01 -2.52E-03
2.47E-01 -1.63E-01 4.60E-03
2.86E-01 -1.88E-01 2.43E-02

neurogenic 4.58E-01 3.74E-02 -7.95E-02
duration 3 4.26E-01 4.57E-02 -8.89E-02

3.71 E-01 6.05E-02 -1.06E-01
3.70E-01 6.07E-02 -1.06E-01
3.63E-01 6.27E-02 -1.08E-01
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The proportion of inputs from the test data set that were correctly classified 

was 100%, see figure 6.4.3.3.5. This was a good result.

Figure 6.4.3.3.4 LVQ identification of MUAPT of noiseless simulated training

data.
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Figure 6.4.3.3.5 LVQ identification of MUAPT of noiseless simulated test data.
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Test 3 - Classifying three different Biphasic MUAPs

It is easy to see that when the principal component coefficients for one class, 

in this case normal biphasic, are calculated alone, i.e. without the presence of the other 

classes held within the standard database, the clusters are easily separable. This may 

be seen for the biphasic class in figure 6.4.3.3.6.

Figure 6.4.3.3.6 Biphasic principal component clusters.
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The object of test 3 was to observe this and to demonstrate that given an input 

data set, an LVQ network could differentiate between MUAPs from different 

MUAPTs. A network consisting of 3 input neurons, 3 competitive neurons and 3 

linear output neurons was trained for 5000 cycles. The data used for training was the 

biphasic content of the training data set used in tests 1 & 2. This consisted of 15 

examples, five each of 3 different durations. A similar set taken from the test data set 

of tests 1 & 2 was used to assess the performance of the network after training was 

completed.
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Presentation of the training data to the trained network yielded a correct 

classification rate of 100%, the same was apparent for the test data set, see figures 

6.4.3.3.7 and 6.4.3.3.8.

Figure 6.4.3.3.7 Differentiation between three biphasic trains, training data.

Train.

Figure 6.4.3.3.8 Differentiation between three biphasic trains, test data.
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6.4.3.4 Testing the LVQ networks.

Real EMG signals are often polluted by the presence of noise and the 

potentials within them often obscure one another. What is seen by the clinician is the 

superposition of all such components. It is thus important to test the successful neural 

networks from section 6.4.3.3, to see how they will cope with noise and overlapping 

data.

6.4.3.4.1 MUAPs in white noise.

Test 1 - The Identification o f noisy data.

The equipment used today to monitor and record EMG information is very 

sophisticated. As a result of this, the amount of noise present in the recorded signals 

is of a very low level.

Five different levels of noise were used to investigate the effect of noise upon 

the neural networks trained to classify clean simulated data. These noise levels are 

shown in table 6.4.3.4.1.1.

Table 6.4.3.4.1.1 Noise levels for simulated data.

Level Range (uV
1 ±5
2 ±10
3 ±20
4 ±30
5 ±40

One EMG signal containing a single train of biphasic action potentials was 

simulated at each noise level. This was repeated for each standard duration of 

biphasic template present within the standard database used previously. The number 

of signals was 15. Action potentials were manually extracted, ten from each signal, 

and added to the general database. The database was then re-analysed using principal
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component analysis and the first three coefficients were again used to represent each 

data entry.

The purpose of this test was to assess the performance of the neural network 

trained to identify MU classes, in classifying action potential in the presence of white 

noise. The entire database was presented to the network and the following results were 

obtained: for the unpolluted data, 1 misclassification was recorded from the 120 

presented inputs; for the noisy data, 10 misclassifications (5, 1, 3, 0, 1, for levels 1 to 

5 respectively) were recorded for 150 presented inputs. Thus the misclassification 

rates were 0.83% and 6.67% respectively. These results are presented in figures

6.4.3.4.1.1 and 6.4.3.4.1.2.

Figure 6.4.3.4.1.1 LVQ class determination in the presence of white noise, clean 

data.

Neurogenic 
Myopathic y Triphasic C|as#. 

Biphasic

Classification.

Test 2 -  Classification o f MUAPs into MUAPTs in white noise.

The same simulated database as was used in test 1 was utilised in test 2. In this 

case, the neural network trained in section 6.4.3.3 (Test 2) was presented with the 

database as its inputs in order to assess its performance in the presence of white noise. 

The results obtained may be seen in figures 6.4.3.4.1.3 and 6.4.3.4.1.4. For the noise 

free data, a misclassification rate of 28.3 % was observed, whilst for the noisy data, 

the overall misclassification rate was 67%. Individual misclassification rates were 

73%, 60%, 63%, 67% and 70% for noise levels 1 to 5 respectively.
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Figure 6.4.3.4.1.2 LVQ class determination in the presence of white noise, noisy

data.

Noise Level.

C lassification.

Figure 6.4.3.4.1.3 LVQ classification of clean and noisy data, clean results.

Neuro 2

Class.

Classification.
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Figure 6.4.3.4.1.4 LVQ classification of clean and noisy data, noisy results.
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Test 3 -  Classifying different Biphasic MUAPs.

In this test, the noisy data was added to the biphasic database of section 6.4.3.3 

(Test 3). The whole database was then re-analysed using PC A so that each action 

potential in the database was represented by its first 3 principal component 

coefficients. These were then presented to the pre-trained network. The results may be 

seen in figure 6.4.3.4.1.5 and 6.4.3.4.1.6.

It was observed that in classifying this data the neurons trained to respond to 

class one action potentials responded to class three, whilst those trained to respond to 

class three responded to class one. The conditions for this are set out below. When 

noisy and clean data was analysed simultaneously by the network, the above effect 

was observed. This effect was also observed when analysing purely noisy data, but 

not when analysing purely clean data.

Upon retraining the network with clean and noisy data, and varying the 

number of neurons in the competitive layer of the network, the effect was still 

observed to some extent. When classifying clean and noisy data, or noisy data alone, 

the correct groupings were observed. However, when classifying normal data alone,
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the effect was observed. It was noticed, however, that the clusters formed contained 

all MUAPs from the appropriate train, whether or not the trains were correctly 

identified.

Figure 6.4.3.4.1.5 LVQ differentiation between noisy biphasics, clean data.

Classification.

3

Class.

Figure 6.4.3.4.1.6 LVQ differentiation between noisy biphasics, noisy data.

Classification.

144



Simulation and analysis in electromyography.

6.4.3.4.2 MUAPs in band limited noise.

It is known that the noise present within the EMG signal is not in fact white in 

nature, it is band limited. The object of this test is to determine whether the neural 

network trained to group MUAPs into clusters using noise free data, and tested using 

data in white noise, will react any differently to data in the presence of band limited 

noise.

White noise was generated and filtered to create band limited noise. This was 

then added to unpolluted simulated signals. The same noise levels used in the case of 

white noise were again used in this test. The characteristics of the filter used may be 

seen in figure 6.4.3.4.2.1, and its design is outlined in Appendix 3.

Fifteen simulated signals were created: five each of the three durations of 

biphasic action potential. These were combined with the band limited noise signals 

and ten action potentials were extracted manually from each. The action potentials 

were added to the database and the principal component coefficients for the database 

entries were calculated. Each entry was then represented by its first three principal 

component coefficients. Test one from section 6.4.3.4.1 was repeated, the results of 

this test may be seen in figures 6.4.3.4.2.2 and 6.4.3.4.2.3. It is clear that there is little 

difference between the performance of the network in white and band limited noise.
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Figure 6A3.4.2.1 The bandpass filter characteristics, ideal and real.
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Figure 6.4.3.4.2.2 LVQ class determination in the presence of white noise, clean 

data.

Neurogenic 
y  Myopathic 

Triphasic Class.

Biphasic

Classification.

Figure 6.4.3.4.2.3 LVQ class determination in the presence of white noise, noisy

data.

Neurogenic 

Myopathic 

Triphasic Class. 

Biphasic

Classification.
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6.4.3.4.3 Identification of overlapping MUAPs.

In order to establish how neural networks trained upon non-overlapping data 

cope with the introduction of overlapping data at their inputs, it is necessary to 

generate some overlapping data. Using simulations it is possible to create such data 

whilst still knowing its characteristics.

The shortest biphasic and the shortest triphasic action potentials (taken from 

the simulator of chapter 4) were passed across one another in stages of 3 samples. The 

resulting summations were available for use as overlapping data. The overlap present 

within each record varied, and the whole set formed a smooth progression as the 

biphasic action potential passed through the triphasic action potential and through the 

other side. As a result of the constituent action potential lengths (biphasic = 33 

samples, triphasic = 34 samples), 21 overlapping records were produced.

The overlapping features were described by their eight describing features. 

These were then analysed using principal component analysis in conjunction with the 

standard database used throughout this section. Each entry was again represented by 

its first three principal component coefficients. The principal component 

representation of the entire database in 2D may be seen in figure 6.4.3.4.3.I.

Figure 6.4.3.4.3.1 2D PCC representation of overlapping data, all classes present.
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When presented for classification to the normal network trained to classify 

data into the four classes (normal biphasic, normal triphasic, myopathic and 

neurogenic), the following results were observed, figure 6A3.4.3.2:

Figure 6.4.3.4.3.2 LVQ classification of overlapping data into four classes (1).

0 v e r l a PP
Neurogenic 

£ 7  Myopathic 
Triphasic 

Biphasic

C lassification.

The actual misclassification rates are worse than the figure suggests. For the 

non-overlapping data, class 1 (biphasic) exhibits 93.3% misclassification; class 2 

(triphasic) exhibits 13.3% misclassification; class 3 (myopathic) exhibits 70% 

misclassification; and class 4 (neurogenic) exhibits 70% misclassification. The 

overlapping data exhibits 100% misclassification. It is all classified as class 4 rather 

than class 1 or 2. Overall the misclassification rate is 70.9%.

The neural network was retrained, as before utilising non-overlapping data 

only, but this time with 12 neurons in the competitive layer. 5000 cycles were used for 

training purposes. The test set was once again presented and the following results 

were obtained, figure 6.4.3.4.3.3
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Figure 6.4.3.4.3.3 LVQ classification of overlapping data into four classes (2).
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Once again the results are bad. For the non-overlapping data, class 1 (biphasic) 

exhibits 93.3% misclassification; class 2 (triphasic) exhibits 30% misclassification; 

class 3 (myopathic) exhibits 70% misclassification; and class 4 (neurogenic) exhibits 

70% misclassification. 100% misclassification was observed in the overlapping 

records, and as before, all overlapping data was misclassified as class 4. The overall 

misclassification rate was 70.9%

The next stage was to attempt the training of a network, and classification of 

the data set used in this section, to isolate overlapping data as a fifth class. This was 

attempted using 12, 20 and 25 neurons, each new network being trained for 5000 

presentations of the training data. The entire database was used for the purpose of 

training, and upon its presentation for classification, the following results were 

obtained, figures 6.4.3.4.3.4 to figure 6.4.3.4.3.6.

For the 12 neuron network the misclassification rates stand as follows: class 1 

(30%); class 2 (13.3%); class 3 (33%); class 4 (30%); and class 5 (0%). The overall 

misclassification rate was 22.7%.
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Figure 6.4.3.4.3.4 LVQ classification of overlapping data into five classes (12 

neurons).
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Figure 6.4.3.4.3.5 LVQ classification of overlapping data into four classes (20

neurons).
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For the 20 neuron network the misclassification rates stand as follows: class 1 

(37%); class 2 (3.3%); class 3 (30%); class 4 (3.3%); and class 5 (4.7%). The overall 

misclassification rate was 16.3%.
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Figure 6.4.3.4.3.6 LVQ classification of overlapping data into four classes (3).
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For the 25 neuron network the misclassification rates stand as follows: class 1 

(10%); class 2 (3.3%); class 3 (33.3%); class 4 (0%); and class 5 (4.7%). The overall 

misclassification rate was 10.6%.

6.4.3.5 Discussion

It has been shown in section 6.4.3.2 that, as expected, the multilayer 

perceptron network does not find a solution to the problem of classifying action 

potentials into their classes. This result was expected because the performance of this 

type of network in the test relating to the classification of action potentials represented 

by describing features was also of this nature. Although this type of network has been 

used to solve complex pattern recognition problems i.e. by Le Cun et al (1990), it has 

been the case that a great deal of information about the problem to be solved has been 

used to pre-define the networks architecture to enable its classification abilities. That 

has not been the case here, because the multilayer perceptron network is not 

necessarily the most suited to pattern recognition, and backpropagation is not 

necessarily the most suited learning rule. There are other architectures and learning
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methods, such as semi supervised methods, that are designed to perform in a more 

appropriate fashion.

The learning vector quantization network is such an architecture. It has been 

shown in section 6.4.3.3 that this architecture is able to differentiate between the 

classes and MUAPTs used in this investigation when represented in a suitable 

manner, in simulated noisefree data conditions containing small scale amplitude 

variations. This result is important in that it shows that the class of MUAP may be 

identified automatically in these conditions.

The results pertaining to classification into MUAPs suggest that this is also 

viable. However, variation in duration of the MUAPs or the addition of further 

MUAPTs to the problem may cause the boundaries within each class to become 

blurred or even to overlap preventing correct classification. This may even occur 

between the normal biphasic and normal triphasic classes. It would not however be a 

problem because the overall objective is to determine the performance of this method 

in clustering MUAP classes into normal, myopathic and neurogenic.

Section 6.4.3.4 shows how the LVQ networks trained on noisefree simulated 

data respond to the introduction of both white noise and band limited noise, to the 

problem. It is clear that the classification of these simulated action potentials 

represented by the first three principal component coefficients of their eight describing 

features may be separated into the desired classes with little misclassification for 

white noise and no misclassification for band limited noise. This result is of interest 

because the noise present within Real EMG signals is band limited in nature. Also, 

although the levels of noise used in these tests was low, that is in keeping with the 

conditions prevalent in the clinical environment.

When attempting to classify APs directly into the MUAP train from which 

they originate, in the presence of noise, large misclassification rates were observed. 

The reasons for these large rates are as follows: when many MUAPTs are present 

within the data set being analysed (in this case there were 12 MUAPTs present) the 

amount of input space allocated to each individual MUAPT cluster is small. This 

small allocation is due to many representations being present, and the spread in space 

between the different classes. The MUAPT clusters of one class are all represented in
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one smallish section of the input space. Thus this is an effect of the method of 

representation of data, rather than a shortcoming of the network used.

The addition of noise to action potential trains moves the position of their 

MUAPs within and relative to their appropriate clusters. It is possible that the addition 

of noise will cause an action potential to be located closer to a cluster that is not its 

own, than to its own. This will cause the neurons of the wrong class to fire, resulting 

in an incorrect classification.

A second reason for misclassification is the effect of adding new data to the 

database causing the clusters within it to shift minutely. This problem is accentuated 

by the close proximity of small clusters and their corresponding neurons and may 

cause misclassifications. This problem is not a serious factor for the previous method 

of class identification, because the class clusters are so distinct. A method of 

countering this effect would be to calculate the PCCs of each action potential to be 

classified separately, with respect to the database. This would, however, significantly 

increase the processor time required and that is highly undesirable.

These results do not present a great setback. It is of great use to be able to 

classify data into the classes normal, myopathic and neurogenic. This ability could 

form the first stage of a decomposition routine, or be a tool in itself.

The third test in the section shows that the method of differentiating between 

MUAPs from trains of a like class performs well under noisy conditions for the 

simulated data used. This is not of as much interest as the method for differentiating 

classes, because the clusters are more likely to move within this input space, 

depending upon the characteristics of the MUAPTs, than they are within the classes of 

the overall problem.

In section 6.4.3.4.3 the ability of the neural network trained for differentiation 

between classes to deal with overlapping data was assessed. As may be seen, the PCC 

representations of overlapping data do not fall within the bounds of the class clusters. 

This indicates that the neural network will be unable to classify the overlapping data 

correctly. This supposition is bome out by the results. Significant misclassifications 

occur. An attempt to train the network to classify overlaps into their own class also 

produces significant, if lower, misclassification rates. These results were to be 

expected when the position of overlapping data representations were compared with
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those of non-overlapping data. The overlapping data representations tend to spread 

throughout the input space.

6.5 Summary.

It has been hypothesised in this chapter that the use of neural networks may 

provide a good method for clustering action potentials into their appropriate class 

groups. Some reasons for this hypothesis have been presented, along with a 

foundation for the subject of neural networks.

Attempts have been made to train various networks to cluster action potentials 

as dictated by the user with different levels of success. The performance of these 

networks has been assessed when classifying data polluted with white noise, with 

band limited noise, and with the superimposition of other action potentials.

Overall, these tests tell us that the method of principal component coefficient 

representation of non-overlapping, simulated MUAP data for classification with LVQ 

networks is suited to determining the class of that data. It is not suited to determining 

the MUAP from which it came. It is also not suited to operating with overlapping or 

superimposed data, though it is capable of dealing with realistic levels of noise.
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Chapter 7 - Alternative applications in decomposition.

7.1 Introduction.

This chapter presents some further contributions to ongoing research in the 

decomposition of EMG signals. The first part of the chapter is used to describe some new 

ideas for helping to classify action potentials. The second part concerns the problem of 

how to deal with overlaps.

As a continuation of the work carried out in chapter 6 towards finding solutions to 

the problem of clustering MUAPs, this chapter looks at these two issues in the task of 

automatic decomposition. The first is that of multiple database principal component 

analysis. In section 7.2 this method is applied to the problem of MUAP class 

determination and tested in the presence of noise, amplitude variation and time dilation 

variation.

The second issue outlined in section 7.3 is a study in the resolution of overlapping 

MUAP templates. The feasibility of the method proposed by Loudon in 1991, is assessed 

with regard to required processor time. The same study is carried out for a proposed more 

thorough method of template resolution. All of these methods strive towards the creation 

of an automatic decomposition knowledge source to interact with a blackboard based 

MDSS.

7.2 Multiple database principal component analysis.

The concept of principal component analysis utilising more than one database as a 

method of EMG analysis was introduced briefly in chapter 1. In that case three databases 

were used to enable differentiation between normal, myopathic and neurogenic signals at 

force levels where interference was prevalent. The results obtained during the study were 

encouraging, providing good discrimination when using three dimensional 

representations of the signals in question, i.e. representing them by their first three

156



Simulation and analysis in electromyography.

principal component coefficients, (Jones et al, 1990). This success suggests that the 

method may be useful in discriminating between the classes of MUAPs in the time 

domain as well as interference EMGs in the frequency domain. The use of this method is 

also a logical progression from the use of single database PCA in chapter 6. However, 

the multiple database procedure is a discriminatory technique in itself. Here a more 

detailed description of the multiple database technique is made, with reference to the 

works of Jones, Lago and Parekh, (Jones et al, 1990)(Parekh 1986).

The idea of multiple database principal component analysis is that the number of 

databases corresponds to the number of classes into which the data is split. In the case of 

Jones et al, three databases were used to classify data into three distinct groups. Each 

database in multiple database PCA is made up from examples of signals corresponding 

to the class which it represents.

The basis of the method is that for each signal to be classified, principal 

component analysis is carried out with each of the databases present. The unknown vector 

representation of the signal is reconstructed in the following form, (Parekh, 1986);

X  = G + p x .Cj + p2 x 2 + p3 .c3 + error (1)

where X = new or unknown signal vector.

G = database or class mean. 

pn= principal component n of class. 

cn = principal component coefficient n 

relating to unknown or new signal.

This process is carried out for each database or class. The schematic for this 

method may be seen in figure 7.2.1. The class to which the unknown vector belongs is 

identified as the one which has the smallest residual or error vector. This error vector is 

calculated by the following equation (2) and its magnitude is evaluated as the mean 

squared error, equation (3).
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E = X - G - p ].c]- p 2.c2- p 3.c3 (2)

Figure 7.2.1 The schematic diagram of multiple database PCA.
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The following investigations are made in order to ascertain whether the method 

will be of use in differentiating between classes of MUAPs and between MUAPs from 

different trains within the same class. It is a pilot study to determine the method’s 

suitability or lack of it.

7.2.1 The classification of different MUAP shapes.

In order to see whether the multiple database PCA routine would be able to 

differentiate between the four MU classes, a database consisting of nine examples of the 

class was constructed for each class. The MUAPs in each class all came from the same 

MUAPT. All data was simulated. Principal component analysis was then carried out, 

using each database in turn, to identify one action potential from each class. The action
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potentials that were used for identification were not a part of the database though they 

came from the same MUAPT as those in the database. The results obtained may be seen 

in Figure 7.2.1.1. They consist of the sum of squared errors for each action potential 

being classified, calculated with each database. In each case, the smallest sum of squared 

errors is highlighted.

Figure 7.2.1.1 The results of class determination using multiple database PCA (1).
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Classification.

It may be seen that all the potentials in the above test were classified correctly. In 

order to further test the performance of the method tested under such circumstances, the 

experiment was repeated, this time using six databases representing two separate biphasic 

MUAP trains, two separate triphasic MUAP trains, a single myopathic MUAP train and a 

single neurogenic MUAP train. The results may be seen in Figure 7.2.1.2. Again, the 

lowest sum of squared errors for each attempted classification is highlighted.
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Figure 7.2.1.2 The results of class determination using multiple database PCA (2).
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Again all the classifications made were correct.

7.2.2 The classification of similar MUAP shapes.

A harder problem for the method to deal with is the differentiation of action 

potentials from the same class but belonging to different trains of MUAPs within that 

class. It has already been seen that the method is capable of differentiating between two 

similar MUAPs, see section 7.2.1. It is the purpose of this investigation to assess the 

performance of the routine in classifying similar action potentials submerged in noise, or 

with amplitude or time dilation variation.

7.2.2.1 The classification of MUAP types in noise.

The databases utilised in the last test, six in number, were utilised to determine the 

performance of the method when classifying action potentials in the presence of noise. In
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this case white noise was used. The databases consist of nine examples of the class 

represented by the database, all of the examples were noise free.

Five levels of noise were used in this test, as they were in chapter 6. Those noise 

levels may be seen in table 7.2.2.1.1.

Table 7.2.2.1.1 The noise levels used to test the multiple database PCA method.

Level Range (uV
1 ±5
2 ±10
3 ±20
4 ±30
5 ±40

One example from a type one biphasic train submerged in each level of noise was 

classified using the multiple database PCA method. The results are shown in figure 

7.2.2.1.2.

Figure 7.2.2.1.2 The results of MUAP determination in noise (1).
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As may be seen correct classification occurred at all levels with the exception of 

that containing ±10uV noise. A new database was constructed for the 1st biphasic class. 

This database consisted of 15 examples, 5 of these examples were clean data, the other 10 

consisted of 2 examples each of action potentials submerged in each noise level. The 

previous test was rerun replacing the original biphasic one class database with the newly 

constructed one. The results may be seen in figure 7.2.2.1.3

Figure 7.2.2.1.3 The results of MUAP determination in noise (2).
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This time the error in classification occurs at the noise level of ±40uV. Again the 

database was altered, this time exchanging the noisy MUAPs in the database and those 

being classified. The test was rerun and the results are shown in figure 7.2.2.1.4.

It is seen that this time all the classifications were correct.
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Figure 7.2.2.1.4 The results of MUAP determination in noise (3).
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1.2.22 The classification of MUAP types with amplitude variation.

This test was intended to assess the performance of the method in classifying 

correctly action potentials undergoing variation in their amplitude. To make the test more 

rigorous, three action potential trains of the same class were used. These trains contained 

no noise and each consisted of biphasic potentials. The amplitude of the database 

potentials varied between 1.0 and 1.2 times the template magnitudes. Each train consisted 

of a different duration template.

Three databases each consisting of 10 examples were constructed, one 

corresponding to each of the three MUAP trains. Each train is a class in this test. For the 

first MUAP train, i.e. class 1, the template was varied in amplitude between 0.1 and 2.0 

times its actual size. The variation was staged in steps of 0.1 times the original magnitude 

of the template. Each of these potentials was classified using multiple database PCA. The 

procedure was then repeated for class 2 and class 3. The templates may be seen in figure 

7.2.2.2.1, and the results for each train at each amplitude may be seen in figures 1 2 2 2 2
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to 122.2A. These figures depict the classification of each class of MUAP indicated by 

the multiple database PCA routine, as the amplitude was varied. The range of amplitude 

for which correct classification is achieved may be readily observed.

Figure 1 2 2 2 .1 The MUAP templates used.
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Figure 1.2.222 Distribution of classifications for class 1.
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Figure 1 .2 .2 2 3  Distribution of classifications for class 2.

A m plitude scaling  factor.

Figure 1.2.2.2 A Distribution of classifications for class 3.

Amplitude scaling factor.
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A repeat of this test was made wherein two of the templates were more similar, 

i.e. a fourth class was used in preference of our existing class three. These templates may 

be seen in figure 7.2.2.2.5, and the results may be seen in figures 1.222.6 to 7.2.22.%.

Figure 1.2.22.5 The similar MUAP templates used in the retest.
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Figure 1.2.22.6 Second distribution of classifications for class 1.
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Figure 7.2.2.2.7 Second distribution of classifications for class 2.

Amplitude scaling  factor.

Figure 7.2.2.2.8 Distribution of classifications for class 4.

Amplitude scaling  factor.
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7.2.2.3 The classification of MUAP types with time dilation variation.

The purpose of this test is similar to that of the last test. It is to assess the 

performance of the method when classifying MUAPs with variation in their time dilation 

or template duration. The same databases as were used in the previous test were also 

utilised in this test.

To generate suitable data for classification each template (corresponding to each 

database or class) was varied in duration from 60 to 140% of its original duration. This 

was done for each of the three templates, in steps of 10%. The three sets of data were then 

classified using the multiple database PCA technique. The results may be seen in figures

7.2.2.3.1 to 7.2.2.3.5. These figures depict the classification of each class of MUAP 

indicated by the multiple database PCA routine, as the template duration was varied. The 

range of duration for which correct classification is achieved may be readily observed.

Figure 7.2.2.3.1 Distribution of classifications for class 1.

Duration scaling  factor.
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Figure 7.2.2.3.2 Distribution of classifications for class 2.

Duration scaling  factor.

Figure 7.2.2.3.3 Distribution of classifications for class 3.

Duration scaling  factor.

As in the previous section, a repeat of this test was made utilising a fourth class in 

preference of our existing class three. The results may be seen in figures 7.2.2.3.4 to 

1.2.23.6.
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Figure 7.2.2.3.4 Second distribution of classifications for class 1.

Duration scaling  factor.

Figure 7.2.2.3.5 Second distribution of classifications for class 2.

Duration scaling  factor.

170



Simulation and analysis in electromyography.

Figure 7.2.2.3.6 Distribution of classifications for class 4.

Duration scaling  factor.

7.2.3 Tests with real data.

It is important to evaluate any method intended for analysis of the EMG upon real 

data as well as simulated data. The use of simulated data allows knowledge of the 

characteristics of the data being analysed, and hence, knowledge of the level of success of 

the algorithm. It is, however, vital that the algorithm also works when applied to real 

data, if it is to be of use clinically.

To test the ability of multiple database principal component analysis to deal with 

the analysis of real data, three trains of real data were used, two biphasic and one 

triphasic. From each train, 11 action potentials were extracted. Nine of these action 

potentials formed the database for that train (or class) and the other two formed the set of 

data to be identified using the method under investigation. The three sets of real data 

extracted from these trains may be seen in figures 7.2.3.1 to 7.2.3.3.
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Figure 7.2.3.1 - Real data set no. 1.
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Figure 7.2.3.2 - Real data set no. 2.
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Figure 7.2.3.3 - Real data set no. 3.
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Two tests were run to identify six action potentials, two each from each class of 

action potential. The classification was made between the three classes of action potential 

and each test was used to classify between three action potentials, one from each class.

As a result of these tests, the six action potentials were identified correctly. In 

each case the reconstruction of the action potential with the smallest mean squared error 

corresponded to the appropriate class. This may be seen in figures 7.2.3.4 and 7.2.3.5.
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Figure 7.2.3.4 - Smallest Mean squared errors, test 1.
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Figure 7.2.3.5 - Smallest Mean squared errors, test 2.
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7.2.4 Discussion.

It may be seen from the results portrayed in the previous sections that, within the 

limits of this study, multiple database principal component analysis is effective in 

discriminating between classes of action potential, and between MUAPs from different 

MUAPTs, when the data being analysed is noise free and simulated, with small elements 

of amplitude variation. It has been seen that the method has correctly differentiated 

between the classes biphasic normal; triphasic normal; myopathic; and neurogenic, and 

also between individual biphasic normal and triphasic normal trains whilst 

discriminating between classes.

The addition of noise to the problem introduced some misclassifications. These 

misclassifications were, however, only between trains, not between classes. So, the noisy 

biphasic action potentials were always classified as belonging to the biphasic class, 

although they were not always classified as belonging to the correct train. This problem 

was alleviated by enlarging the appropriate databases to include noisy data as well as 

clean data. Increasing the size of the database and the variation of its content improved 

the performance of the algorithm, in this case.

When assessing the performance of the method in the presence of MUAP 

amplitude and duration variation, the results shown were good. Taking into account that 

the classification was carried out between 3 MUAPTs of the same class, a much more 

difficult task than that of classification between different classes, the amount of variation 

allowable before misclassification occurred was encouraging. It was noted however, that 

the similarity of the dimensions of the action potentials within different trains affects the 

ability of this method to distinguish between the trains adversely. Correct classification 

between 2  trains will occur for larger variations in dimension when the two trains in 

question are dissimilar than when they are similar in dimension. This leads to the 

suggestion that the method is better suited to class discrimination than to MUAPT 

discrimination, because there is less similarity between classes than there is between 

trains of MUAPs.
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The application of this method of classification to trains of real clinical data 

provided encouraging results. The correct classifications were made, even though the 

trains used all consisted of normal class action potentials.

It is obvious that the smallest mean squared error value in a classification may not 

be unequivocally accepted as corresponding to the correct MU APT or class of MUAP. 

This is because the correct MU APT may not be represented in the analysis. A dynamic 

threshold is required to ensure that only appropriate classifications are accepted. This 

would be necessary for the algorithm’s use as a component of an automatic 

decomposition routine. A static threshold would be inappropriate because the magnitude 

of the mean squared errors produced with each database, for different action potentials, 

varies substantially.

Finally, this has been a pilot study for the application of this method to MUAP 

clustering, and although the results have been encouraging, a larger study is required to 

establish the feasibility of multiple database principal component analysis as a method of 

discriminating between MUAP classes.

7.3 Resolution of overlapping data.

In this section, 2 connected methods of resolving overlapping MUAP complexes 

are looked at with regard to their required processing times. The first method is that 

proposed by Loudon et al, (Loudon et al, 1992), and the second is an extension of this 

method devised to be more thorough in its operation.

7.3.1 Method 1.

The basis of this method for resolving superimposed MUAP waveforms is the fact 

that MUAPs forming a superimposed waveform will have a total area sum equal to that 

of the superimposed waveform (Loudon, 1991). In this method the above fact is used to 

limit the number of combinations assessed as the possible components of the complex, to 

those that are the closest in terms of the sum of areas. This analysis takes place after the
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analysis of non-overlapping waveforms, as such, the MUAPs contributing to the complex 

have already been identified. Only pairs and trios of MUAPs are considered.

The algorithm used to limit the number of possible combinations is as follows:

|TAmc- TAsv\(threshold (4)

where TAmc = total area of MUAP combination.

TAsw = total area of superimposed waveform

The second stage of this method consists of a template matching routine. The 

combinations previously selected are utilised here. The MUAPs in a selected combination 

of MUAPs are subtracted one by one from the superimposed complex, in order that the 

residual error be found. This is achieved using maximum peak alignment prior to 

subtraction. The process is repeated for every possible order of MUAPs within the 

combination to ensure that the residual error selected is the smallest one available for that 

combination. The procedure is carried out for all the combinations selected in the first 

stage. If the residual is below a set threshold, that combination is selected for firing time 

analysis to check the availability of the component MUAPs at the firing time of the 

complex and assess the likelihood of the solution being correct.

7.3.2 Method 2.

There are shortcomings with method 1: the most appropriate residual may not be 

found in stage 2, thus a solution may not be found. If this is the case a more thorough 

examination of the selected combinations of MUAPs is required.

At this point instead of carrying out stage two of method one, it is necessary to 

evaluate the sum of squared differences between the superimposed complex and every 

time registration for the selected combinations. The combinations are limited to pairs and 

trios of MUAPs, as well as single MUAPs. The construction and evaluation of every
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combination of MUAPs within the selected combinations from previous sections is 

required. The minimum residual calculated corresponds to the correct combination as 

long as it is less than the selected threshold level.

7.3.3 Processing time requirements.

Processing time calculations for both of the introduced methods were carried out. 

These involve evaluating the number of operations required to resolve a superimposed 

complex and relating this figure to the running speed of a chosen machine. The basis for 

these calculations are that there are 6  separate MUAPTs present within the scope of the 

problem, each with a length of 36 samples. The length of the overlap to be resolved, in 

samples, is 63. For the calculations see Appendix 4. To resolve this superimposed 

complex, the following number of operations were required:

Method 1 - 4482 Floating point operations (FLOPS)

Method 2 - 473084 FLOPS

For a machine running at 8  MFLOPS the required processor time for carrying out 

these operations is as follows:

4482Method 1 - T  = — -  = 0.00056s
8000000

w 7 ^  ^  473084Method 2 T - -----------  = 0.059s
8000000

For a machine running at 10 MFLOPS the required processor time for carrying 

out these operations is as follows:
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4482Method 1 - T= = 0.00045s
10000000

Method 2 - T— 47-30-84-- = 0.047s
10000000

To resolve 100 overlaps, 10 each of 36, 46, 52, 56, 6 6 , 72, 76, 8 6 , 96 and 106 

respectively, the required number of operations are:

Method 1 - 437875 FLOPS

Method 2 - 66.483 MFLOPS

Thus for a machine running at 8  MFLOPS the processing time would be:

\  1  1 rr, 437875 _ n c cMethod 1 - T    = 0.055s
8000000

Method! - 6 6 4 8 3 0 0 0  = 8.31s
8000000

For a machine running at 10 MFLOPS the required processor time for carrying 

out these operations is as follows:

4 3 7 8 7 5
Method 1 - T = ■—  = 0.044s

10000000

w 7 ^  66483000Method 2 T=------------  = 6.65s
10000000
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7.3.4 Discussion.

The last section has given us some insight to the amount of processing time 

required to resolve overlapping MUAP complexes into their constituent MUAPs. The 

times were calculated using the required number of operations to carry out the procedure 

(an estimate) and the running speed of modem computers. The lower of the two running 

speeds used is based upon that of a Pentium 75Mhz processor.

The times indicated for the resolution of a single overlapping complex of 63 

samples are small in duration. This is the case for both of the methods considered in this 

section. These times would be further reduced by the employment of a machine utilising 

a more speedy processing unit. However, the times given allow these methods to be 

considered as appropriate for inclusion in an automatic decomposition routine. They 

operate swiftly enough not to cause an unwanted delay in the overall processing time of 

such a routine.

Alterations to the time requirements of these methods would be caused by various 

factors. These factors include: the number of MUAPTs present within the EMG under 

investigation; the lengths (number of samples) of the MUAPs within these MUAPTs; the 

lengths (number of samples) of the superimposed complexes to be resolved; and the 

sampling frequency of the EMG under investigation.

The number of MUAPTs in the investigation affects the number of possible 

combinations of MUAPs that could form the superimposed complex. This factor affects 

stage one of both methods. The other factors also affect both methods but they affect 

method 2  most severely because the calculations involved are more dependant upon 

MUAP lengths.

The sampling frequency used for the calculations was that of the simulator, 

4096Hz. Were this to be increased, the lengths of both MUAPs and superimposed 

complexes would increase because the number of samples per unit time would increase. 

Along with this increase, the required processor time for these operations would increase 

too. This should not prove too detrimental when looking at the times for single 

resolutions. However, when resolving many complexes the second method could become

180



Simulation and analysis in electromyography.

unacceptably time consuming. As such, method two is better suited to isolating the most 

appropriate combination of MUAPs once method one has been implemented and if it has 

failed to find a solution below the acceptable threshold level. Method two serves better to 

complement method one than to replace it.

7.4 Summary.

In this chapter the idea of using multiple database principal component analysis as 

a method of discriminating between MUAP classes and MUAP trains has been 

considered. Using simulated data, in a limited experiment the effectiveness of this 

approach has been assessed and tested in the presence of noise, in the presence of MUAP 

amplitude variation and in the presence of MUAP duration variation. The method has 

been tried on real data as a precursor to a more in depth analysis, and results were found 

to be encouraging.

The time requirements of two similar methods of resolving superimposed MUAP 

complexes has also been assessed. It has been suggested that these methods are suitable 

for use as elements of an automatic decomposition routine, in a complementary rather 

than exclusive role.
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Chapter 8 - Conclusions and future work.

8.1 - Conclusions.

As a result of the research undertaken within this thesis, conclusions may be 

drawn in several areas. These include methods of modelling electromyographic activity, 

simulation within the area of neurophysiology, and methods of discriminating between 

certain types of electromyographic activity. All of these studies aim to assist in the 

generation and operation of medical decision support system in the area of neuromuscular 

diagnosis.

When considering the type of system to be employed for the purpose of medical 

decision support is concerned, the discussion in chapter one demonstrates the suitability 

of the blackboard based system for this application. The diverse types of knowledge to be 

handled by the system make it an ideal choice.

As an aid in the design of this system, simulations of various aspects of the 

neurophysiological diagnosis procedure have been created. These simulations, limited for 

now to certain examples of specific disorders and normal conditions, have allowed a 

decision support system to be created and tested, where the real knowledge sources were 

not available at the time. The simulations also go part of the way towards the creation of a 

simulated patient for use in the target system. This acts as a source of reference of what 

test results are associated with particular types of disorder.

In order to further understanding in the difficult field of classifying interference 

EMGs for the purpose of the MDSS, an attempt was made to model these signals using 

chaos theory. It may be concluded from the results shown in chapter three that the 

dynamics of the interference EMG are not chaotic in nature. The construction of phase 

portraits shows looping trajectories rather than the “strange attractor” associated with 

chaotic behaviour. The correlation dimension shows behaviour indicating random 

dynamics for all cases except that of limb girdle muscular dystrophy, which shows some 

preliminary signs of chaotic behaviour. Lyapunov exponents also infer random behaviour
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rather than chaotic behaviour. The presence of chaotic dynamics for the case of limb 

girdle muscular dystrophy does not give enough grounds for assuming a general chaos 

based EMG model. However, the idea of chaotic dynamics behind the EMG should not 

be completely discarded. The future may bring new methods for determining the presence 

of chaos, that are more effective than those in use today. These should be utilised to 

further test the hypothesis that there are chaotic dynamics present within the clinical 

EMG.

At present it should be concluded that in general, a chaotic model for the firing of 

MUAPs within the EMG would seem inappropriate. A better suited model for simulation 

of the EMG remains banks of filters whose impulse responses are representative of 

various action potential templates, triggered by trains of pulses, whose firing is 

determined by statistical processes e.g. (Gaussian renewal), summed, to provide the 

EMG.

It may be concluded from this chapter that the number of chaotic parameters 

required to model specific disorder classes will not be useful in discriminating between 

those classes.

To further the simulations, already created, in enhancing the MDSS, a myoelectric 

activity simulator is made available. The simulator provides both spontaneous and 

voluntary activity to the MDSS in its role as a knowledge source. This KS will allow 

comparison of signals, clinician training and reference sources. When this simulation is 

added to the simulations of chapter two, the simulated patient reference source is highly 

enhanced and has already and has already proved useful in pilot trials of the MDSS 

(EPSRC Report GR/J47064).

Two new applications of known signal processing techniques are proposed and 

assessed. The use of neural networks to discriminate between MUAP classes and to 

discriminate between MUAP trains is investigated. The types of input required for 

success are also studied. From this work it may be concluded, as expected, that non­

correlated inputs to the neural networks prove more efficient than correlated inputs, and 

that principal component coefficients are suitable non-correlated inputs. It is also 

concluded that, of the neural networks tried, the learning vector quantization network is
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the most useful, of the methods tried, for discrimination purposes using simulated data. 

The combined findings lead to the conclusions that the method using LVQ networks to 

cluster inputs represented by non-correlated factors is successful in discriminating 

between MUAP classes in clean and noisy conditions but not effective in discriminating 

between MUAP trains.

The second method assessed is that of multiple database principal component 

analysis. The results of chapter seven, section 2, allow the conclusion to be drawn that 

this method too is effective, within the limits of the investigation, in discriminating 

between action potential classes but not between action potential trains.

It may be seen from the results of the calculations in chapter seven, section 3, that 

rather than implementing separately the two methods of resolving overlapping action 

potential complexes within the decomposition knowledge source, the two methods should 

be implemented to complement one another. The more thorough method should only take 

effect when the more time efficient method fails. This is due to the relative processor time 

requirements for the separate methods.

The objectives stated in chapter one were met in the following ways. Various 

knowledge sources have been simulated (chapter two) and have enabled development of 

the MDSS. These simulations have also contributed to the creation of a simulated patient 

which is a useful addition to the MDSS. The created knowledge source simulating 

myoelectric activity (chapter four) also contributes the this simulated patient.

The hypothesis that the dynamics of the interference EMG are chaotic have been 

thoroughly investigated (chapter three) and discarded . Two methods of clustering 

MUAPs have been investigated (chapters six and seven), and the time requirements of 

two methods of overlapping MUAP resolution have been assessed. Overall the objectives 

originally set out for the research presented in this thesis have been met fully.
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8.2 - Future Work.

Work should be done in the future in the area of simulation to help in the efficient 

operation and testing of the MDSS, and for the creation of a simulated patient. At present 

the simulation providing the results of nerve conduction velocity testing is only 

concerned with a selection of the nerves tested in the upper body. For completeness and 

to enable comparisons between upper and lower body conditions, this simulation should 

be expanded to include all the nerves present in the upper body that may need to be 

investigated and all the corresponding nerves in the lower body. Ultimately the MDSS 

needs to be provided with further real data knowledge sources as well as simulations of 

them, so it is required that more work be done to implement all the simulated knowledge 

sources as real working knowledge sources.

With regard to the method of discriminating between classes of MUAP using 

single database principal component analysis and learning vector quantization neural 

networks, so far all the investigations carried out have used simulated data. It is necessary 

to build a large database of low force, real, EMG signals, from which training and test 

data can be taken. The method then needs to be assessed using both a combination of real 

and simulated data, and purely real data. This is to verify that its performance is as good 

as results so far have suggested.

The tests carried out so far upon multiple database principal component analysis 

have been limited in scope, especially those carried out using real data. It is important 

that this study be widened in the future to include more tests upon simulated data and 

many more tests upon real data. This is required to validate those results already acquired 

and to add further confidence in the method.

Finally the major area for work in the future is the construction of a modular 

automatic decomposition routine for use as a knowledge source in the MDSS. A recent 

method of decomposing non-overlapping signals proposed by Stashuk (Stashuk & Paoli, 

1998) utilises the combined results of various forms of EMG signal analysis to reach a 

solution to the problem. It is suggested that a similar method be utilised, combining the 

two methods of class discrimination proposed in this thesis with other methods such as
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firing time analysis. Also, it is suggested that such a scheme should utilise the methods of 

overlapping complex resolution as discussed in this thesis. The results of all these 

methods should be combined appropriately to produce a decomposed EMG signal from a 

the raw data.

The quest for a useable MDSS in neurophysiology has proved difficult and much 

still needs to be done to achieve a satisfactory solution. This thesis, and the further works 

proposed, is a contribution to the international effort in this field.
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Appendix 1.

Principal component analysis.



Principal component analysis.

Principal component analysis is a multivariate statistical analysis method in which 

the factors describing variability between members of a data set are calculated. This is 

achieved in the following manner: From the data set a mean vector and a variance- 

covariance matrix are calculated.

A set of new variables may be defined, made up from linear combinations of the 

measured variables, such that the first new variable contains the most variance, the 

second new variable contains the next greatest amount of variance, etc. The principal 

components of the data set are equal to the eigenvectors of the variance-covariance matrix 

formed above.

In effect, principal component analysis finds new variables which are linear 

combinations of the variables contained in the data set, so that they have maximum 

variation and are orthogonal. These new representations of our data set variables are 

made up from the mean vector plus weighted sums of the principal components.

This may be seen as:

F(x) = M{x) + axp x + a2p2.......

where M(x) is the mean vector.

an is the nth principal component

pn is the nth principal component coefficient corresponding to x.

or approximated by;

xr.oa»A,(*)



Appendix 2.

Diagonal factor analysis.



Diagonal factor analysis.

Diagonal factor analysis, similarly to principal component analysis, is a method of 

describing a data set with non-correlated, orthogonal, factors. These factors are weighted 

sums of the original data set entries. The order and weights of these orthogonal data 

representations are calculated as follows:

Firstly the data set is standardised and the mean valuse of the data set is extracted 

from each enty within it. From this data set a correlation matrix is formed and the sum of 

squared correlations is calculated for each column in the correlation matrix. The sum of 

squared correlations serves as an indicator of how much of the total variance present in 

the original data set is described by each individual data entry represented by a column in 

the correlation matrix. The data entry associated withe the column that has the highest 

sum of squared correlations is chosen to be the first diagonal factor. The weight given to 

this factor is the square root of the associated autocovariance.

For the second diagonal factor to be selected and its weight to be calculated, the 

effects of the first diagonal factor must be eliminated from the correlation matrix. Thus, 

the residual matrix is formed, each entry is determined using the equation:

where Rij A -  ijth correlation value of residual matrix.

Rj = ijth correlation value of correlation matrix.

Pj&Pj = weightings given to the ith and jth data entries.

the weightings are calculated as follows;

n _ V̂K 
k  ~  _1



where Pk = weighting of the kth data entry.

Rvk — kth value in row v of correlation matrix.

Ryy = value of selected weight for 1st diagonal factor.

The sum of squared correlations is then calculated for each column and the whole 

procedure is repeated until the weighting applied to the features is less than a chosen 

threshold. The number of factors chosen will be less than the original number of data set 

entries.

This information is based upon that in (Loudon, 1991).



Appendix 3.

Band pass filter construction.



Bandpass filter design.

It is known that the frequency components of the EMG below 20Hz are unstable 

and thus the EMG is recorded at frequencies above this level, i.e. the amplifiers 

bandwidth has a lower limit of 20Hz, (Basmajian & Deluca, 1985). The high frequency 

cut-off point of the amplifier is selected as being above the highest frequency of the 

wanted signal. The frequency limits imposed upon the signal also determine the 

frequency band of the noise too. For the case of our band limiting noise filter the band 

chosen was 20Hz - 2KHz. The 2KHz upper limit enables the routine to be tested 

thoroughly as some suggested upper limits were as low as lKHz.

The filter used was designed using the MATLAB™ routine FIR2. An order of 

256 was selected for the filter because this provided a good approximation to the ideal 

bandpass frequency band required. The characteristics of the filter have already been seen 

in chapter 6. The design is based upon the filter coefficients:

b(z) = b( 1) + b(2)z~l +.........+B(n + \)z~n.



Appendix 4.

Time intensive overlap resolution, calculations.



Time intensive method of resolving overlaps.

Assumptions: 1.) 6 MUAPs, each 36 samples in length.

2.) Machine running at 8 MFLOPS.

Calculations;

a.) Area of complex = 2n operations. n is no of samples in complex, must be odd

as using simpsons approximation.

b.) Area of all candidate MUAPs.

i~m 

/= i

c.) Discrimination using areas.

In this case there are single APs, double overlaps and triple overlaps to be considered. 

There are 6 singles, 15 possible double combinations and 20 possible triple combinations.

Operations: Addition of areas - 35 operations.

discrimination - 6 (single)

29(double)

39(triple)

The discrimination assumes selection of single AP with are nearest to complex, 2 nearest 

doubles and two nearest triples.

d.) Time registration possibilities for combinations selected in 1 -> 3.



For single chosen: align peak (n operations to find corresponding max. in

complex, p operations to find max. in MUAP)

subtract AP from complex (n operations)

threshold residual (1 operation)

TOTAL OPERATIONS = 2n + p + 1

For double combinations:

no of possible overlap positions = pi + p2 -1.

align peak 1 (n operations to find corresponding max. in

complex, p operations to find max. in MUAP)

subtract AP 1 from complex (n operations)

align peak 2 (n operations to find corresponding max. in

complex, p operations to find max. in MUAP)

subtract AP 2 from complex (n operations)

align peak 2 (n operations to find corresponding max. in 

complex)

subtract AP 2 from complex (n operations)

align peak 1 (n operations to find corresponding max. in 

complex)



subtract AP 1 from complex (n operations)

residual 1< residual 2? (1 operation)

threshold residual (1 operation)

TOTAL OPERATIONS = 8n+2p+2 

For triple combinations:
n=b

no, of possible overlap positions = + q -  1
n=a

nol = no. samples in double 

combination.

q = no. samples in single.

Must run APs through discrimination in all possible orders, thus 6 combinations.

TOTAL OPERATIONS = 18n + 3p + 12

To resolve one overlap in this case of 63 samples.

a.) 2(63)=126.

b.) 6(2*35)=420. (35 due to simpson’s approximation)

c.) 35+6+29+39=109.

Short method

d.) 2(63)+36+l = 163 (for single)

(double) ops. = (8n+2p+2)*2 = (8(63)+2(36)+2)*2 = 1156.



(triple) ops = (18n+3p=12)*2= (18(63)+3(36)+12)*2 = 2508

Total operations =126+420+109+163+1156+2508 = 4482

4482 FLOPSTime to compute = --------------------------=0.00056_s
8000000 FLOPS /S

Complete method

If previous method produces a residual that is too large, the following method should be 

employed. This method compares the sum of squared differences for the selected 

combinations at every time registration possible, with the complex being resolved.

no. possibilities (double)= n+p-1=36+36-1= 71.
n=71

no. possibilities (triple) = ^ (nol) + q - 1 = 1296.
w=36

Operations: 

2 waves)

subtract possible combination from actual complex (n ops, n is longest of

square difference elements 

sum squared elements 

threshold 

smallest?

thus 3n+2 operations per combination.

(n ops)

(n ops) 

(1 op) 

(1 op)

(single) ops = 3n+2 = 3(63) + 2=191.



(double)

ops

=55(3(63)+2)+2(3(64)+2)+2(3(65)+2)+2(3(66)+2)+2(3(67)+2)+2(3(68)+2)+2(3(69)+2) 

+2(3(70)+2) +2(3(71)+2) = 13777.

(triple)

ops =no. ops*(3n+2) =

406(3(63)+2)+29(3(64)+2)+30(3(65)+2)+31 (3(66)+2)+32(3(67)+2)+ 

33(3(68)+2)+34(3(69)+2)+35(3(70)+2)+36(3(71)+2)+35(3(72)+2)+34(3(73)+2)+33(3(74 

)+2)+ 32(3(75)+2)+ etc.............= 222342.

for our 5 possible selections (1 single, 2 doubles and 2 triples)

No. Operations:

a.) 2(63)=126.

b.) 6(2*35)=420. (35 due to simpson’s approximation)

c.) 35+6+29+39=109.

(single) =191 

(double) = 2(13777)

(triple) = 2(222342)

Total No. = 473084 FLOPS.

Processing Time = . 5^084  = q q5 9 s 
5 8000000



For 100 Overlaps* 10 each of, 36 .46«52,56,66,72,76,86,96,106, respectively,

a.) = 20(36)+ 20(46)+ 20(52)+ 20(56)+ 20(66)+ 20(72)+ 20(76)+ 20(86)+ 20(96)+ 

20(106) = 13840.

b.) = 420.

c.) = 35+[(6+29+39)*100] = 7435.

Short Method.

(single) = [10(2(36)+36+1)] + [10(2(46)+36+l)] + [10(2(52)+36+l)] + [10(2(56)+36+1)] 

+ [10(2(66)+36+1)] + [10(2(72)+36+1)] + [10(2(76)+36+l)] + [10(2(86)+36+l)] + 

[10(2(96)+36+1)] + [10(2(106)+36+1)] = 17540.

(double) = [(10*2)(8(36)+2(36)+2)] + [(10*2)(8(46)+2(36)+2)] +

[(10*2)(8(52)+2(36)+2)] + [(10*2)(8(56)+2(36)+2)] + [(10*2)(8(66)+2(36)+2)] +

[(10*2)(8(72)+2(36)+2)] + [(10*2)(8(76)+2(36)+2)] + [(10*2)(8(86)+2(36)+2)] +

[(10*2)(8(96)+2(36)+2)] + [(10*2)(8(106)+2(36)+2)] = 125520.

(triple) = [(10*2)(18(36)+3(36)+12)] + [(10*2)(18(36)+3(36)+12)] +

[(10*2)(18(36)+3(36)+12)] + [(10*2)(18(36)+3(36)+12)] + [(10 *2)(18(36)+3(36)+12)] + 

[(10*2)(18(36)+3(36)+12)] + [(10*2)(18(36)+3(36)+12)] + [(10*2)(18(36)+3(36)+12)] + 

[(10*2)(18(36)+3(36)+12)] + [(10*2)(18(36)+3(36)+12)] = 273120.

Total operations = 13840 + 420 + 7435 + 17540 + 125520 + 273120 = 437875.

437875 FLOPS AAC.„
Time to compute = --------------------------=0.0547_s

F 8000000 FLOPS/S



Complete Method.

(single) = [10(3(36)+2)] + [10(3(46)+2)] + [10(3(52)+2)] + [10(3(56)+2)] + 

[ 10(3 (66)h-2)] + [10(3(72)+2)] + [10(3(76)+2)] + [10(3(86)+2)] + [10(3(96)+2)] + 

[10(3(106)+2)] = 20960.

(doubles) = Y j n° P oss*n o °Ps = [(10*71)(3(36)+2)] + [(10*71)(3(46)+2)] + 

[(10*71)(3(52)+2)] + [(10*71)(3(56)+2)] + [(10*71)(3(66)+2)] + [(10*71)(3(72)+2)] + 

[(10*71)(3(76)+2)] + [(10*71 )(3(86)+2)] + [(10*71)(3(96)+2)] + [(10*71)(3(106)+2)] = 

1564930.

(triples) = y  no.poss * no.ops =31655130.

Total operations = 13840 + 420 + 7435 + 20960 + (2*1564930) + (2*31655130) = 

66482775.

Total No. = 66.483 MFLOPS.

D . 66.483 MFLOPSProcessing Time = ----------------------= 8.31s
8 MFLOPS/S
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SIMULATION OF THE CLINICAL ELECTROMYOGRAM

G J . Small, N.B. Jones & J.C. Fothergill 
University of Leicester. Department of Engineering, Leicester LEI 7RH, UK I

|

i I !
At present, the best modei for determining the firing of motor units in the human muscle system, appears to consist o 
trains of impulses combined driving a bank of filters, the impulse responses of which are representative of tht 
individual action potential shapes that appear in the EMG record. The most suitable distribution for the occurrence o 
each impulse in a train has received much attention over the years. Distributions such as the Weibul, Poisson ant 
Exponential distribution have all been considered and shown not to be ideal. The Gaussian distribution has beei 
settled upon as suitable for most purposes as it has been shown to explain some important properties of the EMG 
However, the Gaussian distribution has deficiencies when determining the next firing of a motor unit, which are reasoi 
enough to search for new methods of determ ining the firing time of each motor unit that is active during a rauscli 
contraction. i
In all existing models the behaviour of the firing rate during muscle contraction has been assumed to be stochastic ! 
However i: is feasible that the next firing in a motor unit action potenual train is determined by a chaotic deterministic j 

j  process instead. i
j In an attempt to examine this idea investigations into the dynamics of the system driving the firing of motor unit j 

j during a contraction have been carried out A numerical technique (correlation dimension analysis') was used, as th< ; 
i  first step towards identifying the presence of chaos in the EMG record. j
j As a result of this analysis it is evident that the system driving motor unit firing during a contraction of the humai j 
| muscle is not clearly chaotic in nature but indeed seems to have truly stochastic properties. Thus the original model ;
! consisting of filters triggered by trains of normally distributed impulses, remains the most suitable model available a j 
j  present. j
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CHAOS AS A POSSIBLE MODEL OF ELECTROMYOGRAPHIC ACTIVITY.

G J Smallf , N B Jonesf , J C Fothergill+ & A P Mocroft * .

* University of Leicester, Department of Engineering, Leicester, LEI 7RH, England.
* The Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, England.

ABSTRACT.

Grounds for the hypothesis that chaotic dynamics may 
underly the EMG are established and discussed.

In order to test this hypothesis, investigations into the 
dynamics of the system driving the firing of motor units 
during a contraction have been carried out. They 
consist of: 1.) The construction of phase portraits. 2.) 
Correlation dimension analysis, and 3.) Calculation of 
dominant Lyapunov exponents.

The results obtained from analysing real EMG data 
recorded from both normal and disordered subjects do 
not support the hypothesis that the EMG arises for a 
system having chaotic dynamics.

As a result of this analysis it is evident that the system 
driving motor unit firing during a contraction of the 
human muscle may not be proven to be chaotic, at least 
not with the techniques presently available. Simulation 
may still be better achieved using a model based upon 
statistics.

INTRODUCTION.

This paper seeks to introduce and explain the existence 
of chaotic dynamics, especially in biomedical systems. 
A brief description of Chaos and the observable 
behaviour both causing and characterising it is given.

Evidence of the occurrence of chaos in biomedical 
systems is given, and along with details of pitfalls in 
current techniques for simulating electromyograms. 
This is used to form the hypothesis that the dynamics 
underlying the firing of MUAPs may be chaotic in 
nature, and as such, that a model based upon chaotic 
dynamics may be better suited to the purpose of EMG 
simulation than current techniques. f *

Methods used currently for identifying the presence of 
chaos in experimental and real time series are 
described, giving some insight as to how results should 
be interpreted.

Chaos may be defined as a deterministic dynamical 
process in which there is long term unpredictability 
arising from sensitive dependence on initial conditions.

Deterministic chaos is a natural occurrence in many 
non-linear systems, that ‘until recent years has been 
believed to be totally unpredictable’, Kearney & Stark 
0 ) .  Chaotic systems are deterministic, although their 
output may be random in appearance.

In a chaotic system, any small differences in initial 
conditions grow exponentially with time, rather than 
decrease or grow linearly. It is therefore impossible to 
predict the long term behaviour of such systems, in 
spite of their being deterministic. However the short 
term behaviour of the system may be predicted 
successfully.

Chaotic behaviour is characterised by the divergence of 
nearby trajectories in state space. As a function of time, 
the separation between two initially close trajectories 
increases in an exponential way, at least for periods of 
short duration. The short duration is a necessary factor 
because in chaotic systems the trajectories remain 
within some bounded region by intertwining and 
wrapping around each other without intersecting and 
without repeating exactly. This forms a complex 
strange attractor in phase space, Hilbom (2). The 
presence of a strange attractor in the phase space of a 
system is usually a positive sign of chaos, although 
some non-chaotic strange attractors do exist.

Chaos in Biomedical Systems.

Evidence of chaotic behaviour has been found in 
biological signals, such as the Electrocardiogram 
CECG). The ECG exhibits quasi-periodic behaviour, but 
with many irregularities in the record. Babloyantz & 
Destexhe found that the correlation dimension of 
recorded ECGs settled at values ranging from 3.6±0.1 
no 5.2±0.1, Babloyantz & Destexhe (3). These values 
suggested that the normal cardiac oscillations follow 
deterministic dynamics of a chaotic nature, 
characterised by an unusually high dimension. 
Babloyantz & Destexhe also suggested that any

What is Chaos.



mathematical model for the description of cardiac 
activity must contain at least five dimensions, to 
encompass the majority of the dimension range, and 
must show deterministic chaos in its output. These 
results were supported by Bortolan & Casallegio, who 
found that at rest, normal ECG had a correlation 
dimension value usually below 3, whilst for arrhythmic 
patients, the values were as large as 4.5, Bortolan & 
Casallegio (4). For the cardiac attractor, the largest 
Lyapunov exponent was found to be X =0.38±0.08 (3). 
This is a clear positive exponent and implies that the 
ECG exhibits chaotic dynamics.

Similar results have been obtained for the 
Electroencephalogram (EEG), where the EEG 
dimensionality varies according to the cognitive state, 
and also with some pathological brain conditions such 
as epileptic seizures, Rapp et al (5). Researchers have 
found that the EEG’s correlation dimension falls within 
the range 3 to 8, Principe & Reid (6).

It has been reported, Ogo & Nakagawa (7), that the 
maximum Lyapunov index is positive for most of the 
EEG frequency components, for almost all subjects 
studied. In other words, it is estimated that the EEG is 
composed of a large number of frequency components 
with chaotic properties.

EMG Simulation.

The model upon which EMG simulation is currently 
based consists of banks of filters whose impulse 
responses are equivalent to individual MUAP 
templates, and trains of pulses determining the firing of 
each motor unit, thus determining the inter pulse 
interval (IPI) between each MUAP, Figure!. The Model 
is derived conceptually from that presented by Parker & 
Scott (8), and others.

There has been much thought on the subject of 
determining the occurrence of motor unit firing. In 
1979 DeLuca stated that only minimal (if any) 
dependence exists among the IPIs of a particular 
MUAP train. Therefore the MU APT may be 
represented as a renewal pulse process, one in which 
each IPI is independent of all other IPIs, DeLuca (9).

This was supported by Jones et al in 1987, they 
reported that works carried out on different muscles had 
produced conflicting conclusions on the suitability of 
renewal procedures for modelling muscular behaviour. 
It was then suggested that the process of firing is almost 
certainly of the non-renewal type based on the 
biophysics of membrane recovery after firing. However, 
they concluded that the non-renewal characteristics 
exhibited were muscle dependant, and of less

importance than the distributions associated with the 
firings, Jones et al (10).

m

>y(t)

n(t)

Figure 1 - The Current Model for EMG 
Simulation.

Various distributions have been suggested for this 
purpose. The Poisson distribution Brody & Scott (11) 
and the Weibull distribution Maranzana et al (12), 
Deluca & Forest (13), are two such distributions. None 
of these, however, would predict a peak in the EMG 
power spectrum at the appropriate firing frequencies, 
and the occurrence of this is, in fact, often observed, 
Jones & Lago (14). The use of a renewal process 
utilising Gaussianly distributed IPIs has been shown by 
Lago and Jones to predict the local peak in the EMG 
power spectrum, Lago and Jones (15), (10). So the 
Gaussian distribution has seemed to be the one most 
suited to modelling the EMG, to date.

Despite the success of the Gaussian distribution in 
modelling some key features of the EMG, it is deficient 
in determining the occurrence of each successive MU 
firing. The Gaussian distribution falls short of ideal 
because beyond a few standard deviations of the mean 
of the distribution, the probability of a firing occurring, 
although small, is not zero.

This cannot be ignored, because a model of motor unit 
firing based upon the Gaussian distribution could fire 
pulse n+1 at the same time as, or before pulse n, the 
previous pulse in the series of pulses making up the 
firing times of a MU APT.

Models of the membrane.

The Hodgekin-Huxley membrane model is the analog 
circuit studied most in neurophysiology. Simplifications 
such as that by Fitzhugh & Nagumo, and others such as 
the Bonhoeffer-Van der Pol model show that there are



non-linear and positive and negative feedback processes 
in operation during neural discharge. These processes 
are prerequisite for the occurrence of chaos and so a 
chaotic model looks like an attractive alternative.

variables used to describe the system in m-dimensional 
phase space, leading to an m-dimensional vector;

X  (0 = x(t), x{t + X),...., x(t + (m - 1)1)

A Chaotic EMG Simulator?

It may be stated that the EMG is neither stochastic or 
deterministic. It is a highly structured signal, made up 
from a collection of signals that have elements of 
variation within them, and the contributions of other 
spontaneous factors. The fact that there are elements of 
variation within the signal, and that the firing of MUs 
appears to be difficult to predict, supports the 
suggestion that the EMG, at medium to high levels of 
force, may be better described by a chaotic model than 
by a model based on a random procedure such as 
Gaussian Renewal.

The phase space spanned by the new variables,
x(t),.........  x(t + (m — 1)T ) , has topological
properties identical to the original phase portrait. 
Takens (17), Broomhead & King (18) & (19).

Two or three dimensional views of the phase portrait 
may be observed, these offer information about the 
dynamics of the system from which they are 
constructed. Stable systems have trajectories that 
approach a single point in phase space, an attractor, by 
describing a straight line or spiral. An example of 
chaotic behaviour, for the EEG the trajectories are 
much more complex because they attempt to approach a 
strange attractor, a sign of chaos, (3).

Other factors supporting this proposition are the 
problems inherent in the use of Gaussian renewal, the 
most suited statistical distribution, to determine the 
next firing of a MU, the presence of non-linear and 
positive and negative feedback processes in neural 
discharge, and the presence of chaotic dynamics in 
other biomedical systems, namely the heart and the 
brain.

Correlation Dimension Analysis.

This quantitative method is based upon Takens 
Embedding Theorem, (17), which states that for all 
typical time series obtained from a finite degree of 
freedom dynamical system, there is some integer m  and 
a function G such that:

METHODS OF IDENTIFYING CHAOS IN A 
TIME SERIES.

There are several different ways in which chaos may be 
identified in a time series. These include qualitative 
methods such as the construction of phase portraits. 
There are also quantitative methods such as correlation 
dimension analysis, and calculation of Lyapunov 
exponents. These three methods are employed in this 
investigation, and are described in this section.

Construction of Phase Planes/Portraits.

The phase plane/portrait is a representation of the state 
of a dynamical system in phase space. The 
instantaneous system state is represented b /  a point in 
this space. As time evolves, the system state changes 
forming a trajectory in the phase space, the ensemble of 
these forms the phase portrait, Cassaleggio et al (16), 
(3).

Phase portraits are constructed from a single measured 
system variable. A time delay is introduced between the

“n+l

where m is the embedding dimension, 
and m<2d+l, where d  is the number of degrees of 
freedom of the underlying dynamical system.

The method of identification of chaos employed here 
requires the calculation of the correlation dimension for 
increasing values of m, (1). The correlation dimension 
seeks to measure the dimension of a finite data set 
extracted from a time series, in m-dimensional space, 
on which the points of the embedded data set lie. It is 
therefore a measure of the number of variables that are 
necessary to describe that data set

The correlation dimension is defined as:

D c = l J '°fisel
E~*° [ log E J

that is, the
gradient of the plot of log C(E) against log E  as E, the 
separation of pairs of points, approaches zero. C(E) is 
the proportion of pairs that are within a distance E  of 
each other.



As the correct embedding dimension for a system is 
unknown and may not be calculated, a trial and error 
procedure must be followed to determine whether or not 
the system under scrutiny is chaotic. The correlation 
dimension must be calculated for increasing values of 
m, and the way in which it behaves determines the 
nature of the system.

If D c -0  we have a regular periodic time series; if Dc 
continues to increase with m, then the series was 
generated by a truly random process, i.e. for white noise 
Dc=<»; if however, the correlation dimension should 
stabilise at a non-integer value, then the system is said 
to contain a ‘strange attractor*. This is usually a sign of 
chaos, although strange non-chaotic systems do occur.

There are certain factors which effect the computational 
accuracy of correlation dimension analysis, of which 
the two most pertinent are described. If insufficient data 
points are used in the analysis, a hard limit is set on the 
upper value of the correlation dimension, thus possibly 
preventing of a true result being reached, should the 
actual value of correlation dimension exceed the 
enforced upper limit, (2). A second effect of too few 
points is that, at higher levels of embedding the density 
of points in phase space is too low to yield useful 
information. The points appear to spread out in phase 
space giving the appearance that they are generated by 
a system dominated by random dynamics, and no 
correlation dimension will be settled upon.

Noise in the signal being analysed may effect accurate 
calculation of the correlation dimension. Whilst the 
average magnitude of the noise in the signal is greater 
than the separation of point pairs generated from the 
signal the noise will dominate the structure of the 
attractor and as such, effect the computed correlation 
dimension, (2).

Calculation of Lyapunov exponents.

The spectrum of Lyapunov exponents has proven to be 
the most useful dynamical diagnostic tool for chaotic 
systems, Wolf et al (20). Lyapunov exponents are a 
measure of the average exponential rates of either 
divergence or convergence of nearby trajectories in 
phase space. There are as many Lyapunov exponents as 
there are dimensions in the state space, however the 
largest or dominant Lyapunov exponent is considered to 
be of most interest

Since nearby orbits in the system correspond to nearly 
identical states, exponential orbital divergence means 
that systems whose initial differences were irresolvable, 
will soon behave quite differently, (20).

Negative Lyapunov exponents are indicative of 
converging trajectories, positive exponents are 
indicative of diverging trajectories whilst zero 
exponents indicate the temporary continuous nature of a 
disturbance to the system. It is the presence of at least 
one positive Lyapunov exponent that indicates chaotic 
behaviour in a system. A positive exponent indicates 
that motion within the attractor is locally unstable and 
exhibits sensitive dependence to initial conditions, (19)

The Lyapunov exponent may be defined as follows. If 
two nearby trajectories on a chaotic attractor initially 
with separation d 0 at time t  =  0 diverge so that their
separation becomes d ( t)  at time t, 

d ( t)  = d 0e lj

then X is
the Lyapunov exponent for the trajectories, (2).

ATTEMPTED IDENTIFICATION OF CHAOS IN 
THE EMG.

The three methods of identifying chaos, previously 
outlined in this paper are employed to determine 
whether the dynamics of MUAP firing exhibit any signs 
of chaotic behaviour. Authentic EMG signals, recorded 
using the TEAC R81 analogue recorder and digitised 
using an AT&T DSP32C 16Bit DSP board are 
analysed. The data was sampled at a rate of 8khz.

EMG Phase Portraits.

Phase portraits were constructed for EMG signals 
recorded from muscles considered to be in normal 
condition, and for signals recorded from muscles in 
various states of disorder. Different delays (X ) were 
employed, using signals of approximately 40000 
samples.

The phase portraits observed, see fig 2, appear to 
consist of trajectories that loop as time passes and the 
state of the system driving MUAP firing changes. It is 
clear that the behaviour of the EMG is not periodic, 
periodicity being represented by a single closed curve. 
However the phase portraits of the EMG in no way 
proves that the underlying dynamics are Chaotic. It is, 
in fact, not possible to extract much useful information 
from these plots.

x
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Figure 2 - A Phase Portrait of a signal recorded from a 
muscle with muscular dystrophy. Delay =lmS.

The Behaviour of the correlation dimension (Dc).

Real signals of approximately 9000 samples, recorded 
from both normal and disordered muscle groups, were 
analysed using this technique.

Table 1 - The signals upon which correlation 
dimension analysis was performed.

Disorder Signal
No.

Subjects
sex.

Samp
freq.

(KHz)

Duration.
(S)

NORM 1 Male 8 1.12
2 8 1.12
3 8 1.12
4 8 1.12
5 8 1.12

MND. 1 Male 8 1.12
2 8 1.12

LGMD 1 Male 8 1.12
2 8 1.12

DMC 1 Male 8 1.12
2 8 1.12
3 8 1.12
4 8 1.12
5 8 1.12

PMA 1 Male 8 1.12
2 8 * 1.12
3 8 1.12
4 8 1.12
5 8 1.12

Where MND is Motor Neurone disease, LGMD is Limb girdle Muscular 
dystrophy, DMC is Deimatomyocytis and PMA is Primary muscle 
atrophy.

The correlation dimension was calculated for successive 
levels of embedding, 1 through 10, in order that the 
behaviour of Dc may be observed over the length of the 
progression.

The gradient of the log C(E)/log E plot is the 
correlation dimension, and this is calculated using 
regression analysis, with a 65% confidence level in the 
gradient of each regression line. This gives an 
indication of how accurate the estimate of the 
correlation dimension is, and provides a degree of 
assurance that the result is realistic.

Correlation dimension progressions were constructed 
for sets of signals exhibiting certain disorders, see table 
1 and their behaviour was observed. See figures 3 and
4.

Dc(l) 
Dc(2) 
Dc(3) 
Dc (4)

Embedding dimension, (m)

Figure 3 - Summary of correlation dimension 
progressions with increasing embedding dimension, for 
signals recorded from a muscle with no disorder.

The progression of the correlation dimension with 
increasing embedding dimension, for EMGs with no 
disorder, as seen in figure 3, indicates that the 
hypothesis of chaotic dynamics determining MUAP 
firing, is not a valid one.

It may be seen that the correlation dimension values, 
for all five signals in this class, continue to rise in an 
almost linear fashion. This does not match the standard 
behaviour for the correlation dimension of a chaotic 
system which will taper off and settle around some non­
integer value. The non-integer value where the 
correlation dimension settles is an indication of chaos 
in this analysis, and the next integer above the 
correlation dimension is the minimum number of 
variables required to describe the system. If the value 
settled at was an integer, the system would not be 
chaotic. The non integer correlation dimension on its 
own, is not however, conclusive proof of the presence of 
chaos in a time signal. To obtain a definite affirmative,



further testing, such as calculation of Lyapunov 
exponents, must be carried out 
The progressions calculated from a muscle with an 
inherited motor sensory neuropathy and those from a 
muscle with chronic dermatomyocytis also have a 
prevailing tendency to increase almost linearly.

Figure 4 introduces some results which provide 
evidence in favour of chaos as a model for the EMG . 
The two progressions, in this case, for a muscle 
undergoing a severe form of myopathy, display a 
correlation dimension which appears to settle at values 
of 5.7±0.3 in the case of signal one, and at 3.02±0.1 in 
the case of signal two. However, the number of data 
points used for correlation dimension calculation, in 
this case -9000, is insufficient for accurate calculation 
at high levels of embedding. The number of data points 
necessary for accurate calculation of the correlation
dimension is in the range 5" to 10n, where n is the 
embedding dimension.

5 4 ' '

Dc (1) 
Dc ( 2)

3 ' ‘

Embedding dimension, (m)

Figure 4 - Summary of correlation dimension 
progressions with increasing embedding dimension, for 
signals recorded from a muscle with limb girdle 
muscular dystrophy.

The number of points used here allows confidence in 
levels of embedding up to between 3 and 5. Thus, not 
much confidence can be placed in these apparent non­
integer correlation dimensions, because they do not 
settle until the seventh or eighth level of embedding. It 
is also possible that this indication of chaotic behaviour 
is totally case specific. It does not, in itself, negate the 
general thesis that chaos theory will not provide an 
appropriate method for modelling th*e clinical 
electromyogram.

The progressions calculated from a muscle with a 
primary muscle atrophy are similar to the normals until 
the sixth level of embedding, but continue to increase at 
a much decreased rate after that This could be 
attributed to a hard upper limit being set upon the

magnitude of the correlation dimension by a limited 
number of input data points. It does not however settle 
at a non-integer level.

3.5.3 Lyapunov exponents of the EMG.

Lyapunov exponents were estimated using the method 
previously described. The data upon which the analysis 
was performed, was the same data used for correlation 
dimension analysis, the sole difference being that the 
number of points used was raised from approximately 
9000 to 32000.

In order to verify the stability of the resulting estimated 
dominant Lyapunov exponent it is necessary to repeat 
the calculation for varied embedding dimensions and 
evolution times etc.

The estimated values calculated for differing EMG 
signals varied in magnitude, but the amplitude was of 
the order of approximately 200 to 350 bits/second. This 
order of magnitude was estimated for various inputs to 
the estimation algorithm. See figure 5.

no. of evolutions.

Figure 5 - Dominant Lyapunov exponent 
estimation for a normal signal.

An exponent falling within this range would lead to the 
belief that the data of interest was being drowned out by 
noise. There are two reasons for this not being so.

The analysis algorithm has been tested on data known 
to be chaotic in nature and in these instances has 
yielded the expected results. The algorithm is known to 
deal with some noise and the data being analysed has a 
very low noise content

The second reason for believing that the unusually high 
exponent is not indicative of noise is more involved. A 
comparison between the dominant exponents yielded 
from real EMG signals and from synthetic signals



comprising MUAP templates firing randomly was 
made. The results for both types of signal were similar 
in that they exhibited exponents with amplitudes of the 
same order of magnitude, but more importantly 
numerically close to one another.

The dominant Lyapunov exponent estimated for a truly 
random time series whose dynamics were based upon 
the normal distribution, was an order of magnitude 
larger than those calculated for both the real EMG and 
synthetic signals.

The exponent then, leads us to believe that the 
dynamics displayed by our real signals are random This 
is because the dominant exponent is large, suggesting 
noiselike random behaviour, but is not as large as that 
for a true random signal, also because the exponent is 
comparable with that of signals that do not contain a 
large proportion of noise, and whose dynamics are 
known.

These results, and their meaning, are in accordance 
with the information gained from correlation dimension 
analysis of real EMG signals. It is thus reasonable to 
believe that the dynamics behind the clinical 
electromyogram may be better described by a random 
procedure than a chaotic one.

CONCLUSIONS.

It may be concluded from the results yielded from 
construction of phase portraits, that the dynamics of the 
EMG appear not to be chaotic. With the results from 
correlation dimension analysis and dominant Lyapunov 
exponent analysis, it is even more likely that the 
underlying dynamics of the human muscular system are 
not chaodc, but are more random in nature.

In general, a chaotic model for the firing of MUAPs 
within the EMG would seem inappropriate. A better 
suited model for simulation of the EMG remains banks 
of filters whose impulse responses are representative of 
various action potential templates, triggered by trains of 
pulses, whose firing is determined by statistical 
methods e.g. (Gaussian renewal), summed, to provide a 
synthetic EMG.
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Abstract
This paper assesses the use and performance of 

some artificial neural networks (ANNs) in automatically 
decomposing the clinical electromyogram, with the aim 
of determining the intrinsic firing statistics.

Reasons for the need for automatic 
decomposition are given and one suggested method is 
highlighted.

In this method an attempt is made to train neural 
networks of different architectures to solve the problem 
of clustering action potentials into their constituent types 
using different inputs.

The performance of the most successful method 
is assessed in the presence of noise and overlapping data.

As a result of these tests, it is established that 
the method of action potential clustering into types, 
using learning vector quantization networks and 
principal component coefficients as inputs, is effective in 
clean data and in noisy data, but not in the presence of 
overlapping action potentials.

Keywords
Decomposition, electromyogram, neural network, 
principal component analysis.

Introduction
It is important for neurophysiological diagnosis 

that automatic analysis of the structure of the EMG is 
made possible. At present, the diagnostic procedure 
consists of visual recognition of action potentials within 
the signal observed from a contracting muscle. This 
procedure necessitates observation of only those 
potentials from motor units activated at low force. Visual 
identification of firing times to a good level of accuracy 
is not easy. An accurate automatic method of motor unit 
firing time determination would be of much use in 
diagnosis.

Previous methods for decomposing the EMG 
and thus determining firing time statistics have not been 
well received clinically. This is due to reasons varying 
from the procedure requiring too specialised equipment 
and time consuming expert interaction, to successful 
operation being limited to very low force levels.

A method of interest is that proposed by 
Loudon and Jones in 1992 [1]. This method of 
decomposition extracts segments of significant activity 
from the recorded EMG signal and represents them using 
a set of characteristic features. These features are then 
orthogonalised and clustered. The clustering is used to 
determine from which motor unit action potential train 
(MUAPT) the potentials came.

The clustering of features may be seen as a 
problem in pattern recognition. Neural networks of 
various architectures have been used, with various levels 
of success, to solve similar problems such as hand 
written character recognition, [2]. It is thus reasonable to 
hypothesise that the use of neural networks in grouping 
similar feature vectors will improve the performance of 
this method.

Another point in favour of this approach is the 
non-linear nature of the clustering problem. Neural 
networks can have the ability to solve non-linear 
problems. Thus their use may lead to better performance, 
providing more readily available and reliable firing time 
information than that presently used in the method of 
Loudon & Jones [1],

Feature methods
The initial consideration when trying to group 

data sets into distinct classes using neural networks, is 
how best to represent the data. Any representation must 
contain the majority of the information available about 
the data entry, or at least enough of this information to 
allow discrimination between similar but different 
entries. This is important because the distribution of 
inputs in the input space of the neural network 
determines the number of input units in the network and 
the ease of classification.

A suitable representation of data for input to 
neural networks, based upon that of [1], is outlined. The 
method consists of representing each input to the 
network by a set of eight features. These features are 
characteristic of certain aspects of action potentials that 
will vary between different MUAPTs. The features are 
listed below:

1. The maximum peak to peak amplitude feature.
2. The maximum positive amplitude feature.
3. The positive area feature.

mailto:nbjl@le.ac.uk


4. The negative area feature.
5. The maximum positive gradient feature.
6. The maximum negative gradient feature.
7. The number o f turns feature.
8. The number o f samples feature.

In the following investigation, these features 
will be used to create the input vectors presented to each 
neural network. The data used both for training and 
testing the neural networks is simulated and at this stage 
consists wholly of non-overlapping data. Each action 
potential within a data set is represented by its features 
for presentation to the neural networks.

The set of data used for training the networks 
consisted of normal biphasic; normal triphasic; 
myopathic; and neurogenic simulated action potentials. 
Within each of the four classes the duration of an action 
potential was fixed at five standards (those standards 
being different for each class, and representative of the 
limits of expectation for real data). For each class the 
amplitudes varied randomly. The training set consisted 
of five examples of each standard for each class. All data 
was simulated, noise free, and consisted solely of non­
overlapping action potentials.

Various networks were trained to attempt 
classification of action potentials into the classes normal 
biphasic; normal triphasic; myopathic; and neurogenic. 
Single and multilayer perceptron networks were trained 
with different combinations of neurons for varied times 
using a selection of learning rates. Competitive and 
Learning vector quantisation networks, see figure 1, 
were also trained with different learning rates and 
different numbers of neurons, where appropriate.

Figure 1 - The learning vector quantization neural network.
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Feature results
It was found that the use of these eight 

correlated inputs to the ANN made correctly recognising 
individual inputs too difficult. Multilayer Perceptrons 
trained using backpropagation did not reach an 
acceptable level of error. Competitive networks yielded 
large scale errors, whilst networks trained using learning 
vector quantisation, though an improvement, also gave 
errors in classification. * •

Orthogonal factor methods
In order to decrease the complexity of each 

active segment’s representation, the eight features were 
orthogonalised. Three factors accounting for the majority 
of variance in the original eight, the coefficients 
corresponding to the first three principal components, 
were used to represent each input. It was found that 
approximately 95% of the total variance was included in 
these factors. The distribution of inputs may be seen in 
figure 2.

Figure 2 - The orthogonalised data set.
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The data set used in this investigation was 
similar in nature to that of the previous one. In this case 
the set consisted of 120 action potentials, 30 of each 
class. Three durations per class were present, which were 
representative of the typical range expected in the 
clinical environment. The data set was split into two 
sections, one for training and the other for testing.

It was attempted to train multilayer perceptron 
networks and learning vector quantization networks to 
correctly classify the data. Various numbers of neurons 
and learning rates were employed during the training. 
Competitive networks were not used in this investigation 
because they are purely for observing the topographical 
characteristics of the data set [3], the learning vector 
quantization method is a semi-supervised hybrid of the 
competitive network and is used in its stead.

Factor results
The results obtained in this investigation for the 

use of multilayer perceptron networks were as before. 
The networks failed to reach an acceptable error level, no 
matter how the structure and learning of the network was 
altered.

The results for the learning vector quantization 
network when classifying both the training and test data 
sets were the same. 100% correct classification was 
achieved, see figure 3.



Figure 3 - The results o f  classification o f  training &  test data.
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Testing the method.
Real EMG signals are often polluted by the 

presence of noise and the potentials within them often 
obscure one another. What is seen by the clinician is the 
superposition of all such components. It is thus important 
to test the successful neural network from the previous 
section, to see how it will cope with the presence of 
noise and overlapping data.

The equipment used today to monitor and 
record EMG information is very sophisticated. As a 
result of this, the amount of noise present in the 
recorded signals is of a very low level.

Five different levels of noise were used to 
investigate the effect of noise upon the neural networks 
trained to classify clean simulated data. These noise 
levels are shown in table 1.

Table 1 N oise levels  for sim ulated data.

Level Range (uV
1 ±5
2 ±10
3 ±20
4 ±30
5 ±40

One EMG signal containing a single train of 
biphasic action potentials was simulated at each noise 
level. This was repeated for each standard duration of 
biphasic template present within the database used 
previously. The number of signals was 15. Action 
potentials were manually extracted, ten from each signal, 
and added to the general database. The database was then 
re-analysed using principal component analysis and the 
first three coefficients were again used to represent each 
data entry.

The purpose of this test was to assess the 
performance of the neural network trained to identify 
motor unit classes, in classifying action jfotential in the 
presence of noise. The entire database was presented to

the network and the following results were obtained: for 
the unpolluted data, 1 misclassification was recorded 
from the 120 presented inputs; for the noisy data, 10 
misclassification were recorded for 150 presented inputs. 
Thus the misclassification rates were 0.83% and 6.67% 
respectively, see figure 4.

Figure 4 - Results for classification o f  n oisy  biphasic data.
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In order to establish how neural networks 
trained upon non-overlapping data cope with the 
introduction of overlapping data at their inputs, it is 
necessary to generate some overlapping data. Using 
simulations it is possible to create such data whilst still 
knowing its characteristics.

The shortest biphasic and the shortest triphasic 
action potentials within the database were passed across 
one another in stages of 3 samples. The resulting 
summations were available for use as overlapping data. 
The overlap present within each record varied, and the 
whole set formed a smooth progression as the biphasic 
action potential passed through the triphasic action 
potential and out of the other side. As a result of the 
constituent action potential lengths (biphasic = 33 
samples, triphasic = 34 samples), 21 overlapping records 
were produced.

The overlapping action potentials were 
described by their eight describing features. These were 
then analysed using principal component analysis in 
conjunction with the standard database used throughout 
this section. Each entry was again represented by its first 
three principal component coefficients.

When presented for classification to the normal 
network trained to classify data into the four classes 
(normal biphasic, normal triphasic, myopathic and 
neurogenic), the following results were observed, figure
5.

Discussion
The results obtained during the feature 

investigation show that the combination of supervised 
and unsupervised learning methods present within 
learning vector quantization networks provide the best



way (of those investigated) of grouping together input 
vectors into identifiable clusters for the purpose of 
classification of action potential type. Of the other 
methods, multilayer perceptrons do not work well at all, 
and although competitive networks work reasonably, 
there are limitations with them.

Figure 5 - Results o f  classification o f  overlapping data
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Classification.

The results also indicate that a neural network is 
not capable of classifying any set of inputs in the way 
that the user would want them classified. Thus, the inputs 
to the network must be carefully selected to ensure that 
the problem may be solved.

It may be seen from the investigation using 
orthogonal features as inputs that the multilayer 
perceptron network is not capable of solving this 
problem without a great deal of pre-knowledge defining 
the architecture as in [2].

However, the learning vector quantization 
network is capable of accurately classifying both training 
and test data when that data is represented by orthogonal 
features. This is the case for the scope of this study using 
simulated action potentials.

The learning vector quantization method using 
orthogonal factors as inputs performs well in the 
presence of noise. The levels are low, though this is 
realistic because the levels of noise found in practice are 
also of low dimension.

When overlapping data is presented to the 
neural network, large scale misclassifications occur. This 
effect is due to the principal component coefficients of 
the overlapping data not falling within the designated 
class cluster areas. As such, the combined method of 
principal component coefficient representation and 
learning vector quantization classification is not suited to 
overlapping data, nor to data in the presence of 
overlapping data.

clustering action potentials into their type classes, for the 
purpose of determining firing statistics in clean, noise 
free, signals and also in signals containing low levels of 
noise. Low noise levels do in fact exist in real
measurements due to the high performance of modem 
EMG data collection techniques. It may also be seen that 
this method is incapable of resolving overlapping
segments of activity, and as such is incapable of
revealing all the firing statistics of signals other than 
those recorded from low level contractions where 
overlapping of action potentials does not occur. Other 
techniques are required to resolve these overlaps and fill 
in the gaps in the firing time information.
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Conclusions * .
It is concluded that, within the limits of this 

study, the method outlined is capable of automatically


