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ABSTRACT

In this thesis we study the second Hochschild cohomology group HHZ(A)
of a finite dimensional algebra A. In particular, we determine HH?(A) where
A is a finite dimensional self-injective algebra of finite representation type
over an algebraically closed field K and show that this group is zero for most
such A; we give a basis for HH2(A) in the few cases where it is not zero.

Then we consider algebras of tame representation type; more specifically,
we study finite dimensional self-injective one parametric tame algebras which
are not weakly symmetric. Here we show that HH2(A) is non-zero and find
a non-zero element 7 in HH2(A) and an associative deformation A, of A.
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iv
INTRODUCTION

In this thesis we study the second Hochschild cohomology group HH?(A)
of all finite dimensional self-injective algebras A of finite representation type
over an algebraically closed field K. The second Hochschild cohomology
group is linked to deformations of an algebra, that is, if HH2(A) = 0 then
all deformations of A are trivial. The converse of this result is false in
general and was shown in [13]. However, for monomial algebras with directed
quiver the converse holds and was shown in [8]. We then study certain finite
dimensional algebras A of tame representation type and find a non-zero
element 7 in HH?(A) and an associative deformation A, of A.

In general, finite dimensional self-injective algebras of finite representation
type over an algebraically closed field K fall into type A, type D and type E.
Riedtmann in her paper [23] classified the stable equivalence representatives
of these algebras and Asashiba then showed that stable equivalence classes
are exactly the derived equivalence classes in [2, Theorem 1.2]. In [2], the
derived equivalence class representatives are given explicitly by quiver and
relations.

Happel in [17] showed that Hochschild cohomology is invariant under
derived equivalence. So if A and B are derived equivalent then HH?(4) &
HH?(B). Hence to study HH?(A) for all finite dimensional self-injective
algebras of finite representation type over an algebraically closed field K, it
is enough to study HH?(A) for the representatives of the derived equivalence
classes. The algebras of type A fall into two types: Nakayama algebras and
Mboébius algebras and the Hochschild cohomology of these algebras has been
studied in the literature. In [9], Erdmann and Holm give the dimension of
the second Hochschild cohomology group of a Nakayama algebra. In [15],
Green and Snashall find the second Hochschild cohomology group for the
Mobius algebras.

The main work in the thesis is in determining HH2(A) for the finite di-
mensional self-injective algebras of finite representation type D and E. The
algebras of type D fall into 5 classes, and the algebras of type E fall into 2

classes. In Chapter 5 we give a general theorem, Theorem 5.11, which we
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use to show that HH?(A) = 0 for most of these algebras. This is motivated
by work in [15]. The strategy of the theorem is to show that every element
in Hom(Q?, A) is a coboundary so that HH?(A) = 0, where Q? is the second
projective in a minimal projective resolution of A as a A,A-bimodule. For all
other cases which are not covered by Theorem 5.11, we determine HH2(A)
by direct calculation, and find a basis for HH2(A) in the instances where
HH?(A) # 0. Chapters 4, 6, 7, 8 deal with the satandard algebra of type D,
Chapters 9, 10 deal with standard algebra of type E and Chapter 11 deals
with the nonstandard algebra of type D.

In [2, Proposition 1.1], Asashiba gives a classification of finite dimensional

self-injective algebras of finite representation type over an algebraically closed
field according to the type of the algebra. I give more details in Chapter 2;
however it is sufficient here to note that the following theorem is the main re-
sult of this thesis which is given in Theorem 11.10 in Chapter 11, and deals
with every finite dimensional self-injective algebra of finite representation
type over an algebraically closed field K.
Theorem. Let A be a finite dimensional self-injective algebra of finite
representation type over an algebraically closed field K. If A is the stan-
dard algebra of type A(Azpt1,8,2) with s,p > 1, A(Dn,s,1),A(Dy,s,3)
with n > 4,8 > 1, A(Dy,s,2),A(D3p,8/3,1) withn > 4,m > 2,5 > 2
or A(Enp, s,1), A(Ee,s,2) withn € {6,7,8},s > 1; then HH?(A) = 0.

If A is of type A(An,s/n,1) then dim HH2(A) = m wheren+1=ms+r
and 0 <r < s.

For A(Agpt1,8,2) with s =p =1, dimHH?(A) = 1.

Let A be A(Dy,1,2); then dim HH?(A) = 1.

Let A be the standard algebra A(D3m,1/3,1); then

2 ifchar K #2,

. 2 _
dim HE(A) “{ 4 ifchar K =2.

If A is the nonstandard algebra A(m) of type (D3m,1/3,1) where m > 2 we
have

1 ifchar K # 2,

. 2 _
dim HH™(A) = { 3 ifcharK=2.



Thus we have determined HH2(A) for all finite dimensional self-injective
algebras A of finite representation type over an algebraically closed field.

In the final chapter of the thesis we consider certain finite dimensional
self-injective one parametric but not weakly symmetric tame algebras. The
classification of these algebras is given in [6]. The algebras in [6] are divided
into two types, and in this thesis we study some of one type. For our
algebras A we show in Theorem 12.15 that HH2(A) is non-zero and find a
non-zero element 7 in HH?(A) and an associative deformation A, of A. This
illustrates the connection between the second Hochschild cohomology group
and deformation theory.

This leaves infinitely many algebras in the classification of [6] of the first
type and the algebras of the second type to look at for future work. We also
intend to look at the classification in [7] of finite dimensional self-injective
one parametric of finite representation type tame weakly symmetric alge-

bras.



1. HOCHSCHILD COHOMOLOGY AND DEFORMATIONS

The aim of the thesis is to study the second Hochschild cohomology group
and to determine the second Hochschild cohomology group of all finite di-
mensional self-injective algebras of finite representation type over an alge-
braically closed field.

We start by introducing Hochschild cohomology and explain how the sec-
ond Hochschild cohomology group controls the deformations of an algebra,
thus providing an important link between algebra and algebraic geometry.

Since we are interested in finite dimensional algebras over an algebraically
closed field, we assume throughout that A is a finite dimensional algebra over
an algebraically closed field K. Let A® = A®x AP be the enveloping algebra
of A. For ease of notation we write ® for ®g.

Now we will define the acyclic Hochschild complex of A.

Definition 1.1. [5, p75] Let S,(A) = A®"*2. Then S,(A) isa A,A-bimodule
via

@®b)(M®M® - ®At1) =adg® M ® -+ ® Any1d.
Let S,(A) = A®", Then Sp(A) = A® Sn(A) ® A = (A ® AP) ® S,(A)
A¢ ® S,(A). The acyclic Hochschild complex is the projective resolution of
A over A®

Su(A): -+ = Su(A) B Sur(A) 5.1 = S1(A) B So(A) > A — 0.

The map d, : Sp(A) = Sp—1(A) is given by

n
ao®...®an+1 — Z(_l)ja0®...®ajaj+1 ®-..®an+1
j=0
and it is a A,A-homomorphism.

Note that the acyclic Hochschild complex is known also as the bar reso-

lution of A as in [20] or the standard resolution as in [17].

Let X be a A,A-bimodule. Applying Hompe(—, X) to the acyclic Hochschild

complex gives the complex



S*(A,X) : 0 — Hompe(So(A),X) — Hompe(S1(A),X) — ... —
Hompe(Sp(A), X) = Hompe(Sp+1(A), X) — ...
We have Hompe (Sy(A), X) = Hompe (A*®S,(A), X) = Homg (S, (A), X).
So the map
Hompe (Sp(A), X) — Hompe(Sns1(A), X)
is the map
b" : Homg (Sn(A), X) — Homg (Sny1(A), X)
given by
b™(f):01® - ®an41 > a1f(a2® - ® anta)
+) (-1)'f(a1® - ® 6811 ® -+ ® Ant1)
i=1
+(-1)"""f(a1® - - ® an)an+1,
where f € Homg(S,(A), X).
Note that Sp(A) = K so Homg(So(A), X) = X. Therefore the map
b° : X — Homg(A, X) is given by

¥(z): A - X,a— ax — za for z € X,a € A.

In [19], Hochschild started with this complex, that is, with
C*: 0o X & Homg(A, X) & Homg(A®2,X) & ...

Definition 1.2. The n-th Hochschild cohomology group of A with coeffi-
cients in the bimodule X is denoted H*(A, X) and is the n-th cohomology
group of the complex

C*:0— X % Homg (A, X) & Homg(A%%, X) & ...

Thus H*(A, X) = Ker b"/Imb™L.

The group H*(A, X) is also the n-th cohomology group of the complex
S*(A, X). Since S,(A) is a projective resolution of A as a A,A-bimodule,
this gives that H?(A, X) = Ext}.(A, X). Note with X = A, then H"(A, A)
is denoted by HH"(A), and is called the n-th Hochschild cohomology group
of A.
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The low dimensional groups HH?(A), HH!(A) and HH?(A) have important
interpretations. Though this thesis is interested in HH2(A), we consider
briefly the descriptions of HH°(A) and HH'(A) in this chapter as well. Let
us take the Hochschild complex C* with X = A and write 6™ for b™:

C*:0— A S Homg(A,A) 5 Home(A%2,4) S ...

Then we have §° : A — Homg (A, A) where §%()) is the element in Homg (A, A)
which is given by a + aX — Aa. Since HH(A) = Ker 69, then

HH’(A) {A € Aja — a)X — Xa is the zero map}
{AeA|lard—da=0Vace A}

Z(A), the centre of A.

Now we look at HH' (A) and again use the complex C*. The group HH(A)
is related to the derivations of A.

Definition 1.3. [17, 1.2] Let X be a A,A-bimodule. The set of derivations
of A on X is the set

Derg (A, X) := {f € Homg(A, X)|f(a1a2) = a1f(a2)+f(a1)az, Va1, a2 € A}
The set of inner derivations of A on X is the set

Inng (A, X) := {f. € Homg (A, X)|fz(a) = az — za, with z € X}.

We know that H!(A, X) = Ker 6! /Im 6. Let f € Ker 6'; then §!(f) =0,
where 61(f) : A®2 — X is defined by:

a1 ® a2 — a1 f(a2) — f(a1a2) + f(a1)as.

So alf(ag) - f(alaz) +f(a1)a2 = 0, Val,az € A. Hence f(a1a2) = alf(az) -+
f(a1)az and so f € Derg(A, X). And Im4° = {f, € Homg (A, X)|fz(a) =
az — za, with £ € X} = Inng (A, X). Therefore,

H!(A, X) = Derk (A, X)/Inng (A, X).

So HH(A) = Derg (A, A)/Inng (A, A).
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Definition 1.4. [17, 1.2] If f is a derivation of A on X which represents a

non-zero element of H'(A, X) then f is called an outer derivation of A on
X.

Now let us look at HH2(A). This group is related to the deformations
of A. The deformation theory of an associative algebra was introduced by
Gerstenhaber in [12]. We take the results here from [11] which provides a
useful summary and introduction to this theory.

A one-parameter algebraic deformation of A may be considered as a family
of algébras {A:¢} such that Ag = A and the multiplicative structure of A;
varies in some “nice” algebraic way with t. We will look at the next example

before giving a formal definition.
Example 1.5. Let A = KQ/I where Q is the quiver

and I = (bc). Let A; = KQ/I, where I; = (bc — at). Notice that bc = 0 in
A but bc = at in A; so the product varies with ¢.

We will return to this example in 1.19, but first we give the formal defi-

nition of a deformation.

Definition 1.6. [11, Definition 1.2] A one-parameter deformation of A is
the power series ring A[[t]] together with a multiplication F' which is a formal
power series F = Y20 | fot™ with f, € Homg(A®2, A) and fo is multipli-
cation in A. We write (a,b) for a ® b. Then F gives A[[t]] a K[[t]]-algebra
structure with

F@b) = fola,b) + fi(a,b)t + fa(a,b)E + ..

= ab+ fi(a,b)t + fa(a,b)t? + ...
for a,b € A. The deformation A[[t]] with multiplication F' is written Ap.

If t = 0 then A[[t]] & A with multiplication F(a,b) = ab so we get back

to A as required.
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Note that [11] uses A @k K]{[t]] instead of A[[t]] but claims that A @k
K][[t]] = A[[t]]. However, this isomorphism does not always hold. For, as
Buchweitz remarked, if A = K]a] then Y {2, a;t* € A[[t]] but 352, a;t* ¢
A ®k K]{[t]]. So we must use A[[t]] throughout.

Now, we started with an associative algebra A over K so we want the

deformation A to be associative.
Definition 1.7. [11, Definition 1.2] The deformation A is associative if
F(F(a,b),c) = F(a, F(b,c)), Va,b,c € A.
By expanding both sides we have:
F(F(aa b)7 c) F(Zn—o fn(aa b)tn’ c)
- Zn=0 F(f‘n(a'a b)7 c)tn
Zn_o Em——o fm(fn(aa b), c)tn+m,

and
Fla, F(b,)) = Pla, 52 falb, ")
= Zn—-o F(a’a f'n(ba C))tn

n=0 Em—o fm(aa fn(b, c))tn-i-m'

Now if we collect the coeflicients of t" we get

3 filfr-i(a,b),0) = Y fila, fr—i(b,0)) (1)

i=0 i=0
Definition 1.8. [11, p22] Let f,, be the first non-zero coefficient where
m > 1 in the power series for F. Then f,, is called the infinitesimal of F.

Now let f, be the infinitesimal of F' and put r = m in (1) to give:
fo(fm(a,b),¢) + fm(fo(a,b),c) = fo(a, fm(b,¢)) + fm(a, fo(b, c))-
Since fo is multiplication in A we have:
fm(a,b)c+ fm(ad,c) = afm(b,c) + fm(a,bc).

Hence afm(b,c) — fm(ab,c) + fm(a,bc) — fm(a,b)c = 0. Therefore, fm €
Ker §2.



This leads to the first theorem which connects deformation theory and
cohomology theory.

Theorem 1.9. [11, Theorem 2.1] If F is an associative deformation of A
then the infinitesimal f,, of F is in Ker 62, that is, f,, is a 2-cocycle.
Now we consider when any 2-cocycle may be extended to give an associa-
tive deformation of A.
For arbitrary n, we may write (1) as:
fo(fa(a,),¢) + 17 filfa-i(a,b),¢) + fa(fo(a,b),c)

= fola, fn(b,¢) + 3077 fia, fai(b,¢)) + Fn(a, fo(b,c)).
Then

n—1 n—1
(szn)(aa ba C) = Zfi(fn—i(aa b)’c) - Z fi(a’ fn-—i(b, C)) (2)
=1

=1

If f1,..., fm-1 satisfy (2) then let

- m—1
9= Z[fi(fm—i(a’ b),c) — fi(a, fm-i(b,c))],

i=1
that is, the right hand side of (2). Then the cohomology class of g may
be viewed as an obstruction to the construction of f,, which extends the
deformation.
We now have the following important theorem proved by Gerstenhaber;

a proof may also be found in 11, p33]

Theorem 1.10. 12, §5 Proposition 3] The obstruction g is a 3-cocycle, that
is, 63g = 0.

Corollary 1.11. [11, Corollary 2.3] If HH3(A) = 0 then every 2-cocycle of

A may be extended to an associative deformation of A.

Proof. Let f be a 2-cocycle of A. We construct an associative deformation
F of A with infinitesimal f, thus showing that every 2-cocycle of A may be
extended to an associative deformation of A. ‘

Let fo be the usual multiplication in A and let f; = f. Then, from
Theorem 1.9, f; satisfies (2). Let g2 = f1(f1(a,b),c) — fi(a, f1(b,c)), that is,
the right hand side of (2) with n = 2. From Theorem 1.10 we have §3g; = 0
so g2 € Kerd3. Since HH3(A) = 0 then Ker§® = Im 2. Hence g» € Imé2.
Therefore g; = 62 f5 for some fo.
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Now let g3 = 32, [fi(fs—i(a,b),¢) — fi(a, fs_i(b,c))], that is, the right
hand side of (2) with n = 3. Again from Theorem 1.10 we have 63g3 = 0 so
that g3 = 62 f3 for some f3.

Continuing in this way gives f,, for n > 2. Let F = } %, f5t". Then F

is an associative deformation that extends the cocycle f = f;. a

Now we want to describe whether or not two deformations are significantly
different from one another. Given associative deformations Ar and Ag of A
we want to know when there is an isomorphism ¥ : Ap — Ag which keeps
A fixed.

Definition 1.12. [11, p23] A formal isomorphism ¥ : A — Ag is a K[[t]]-

" linear map that:may be written in the form
¥(a) = a+ P1(a)t + ¢2(a)t2 +-..., fora € A.

We remark that it is enough to consider a € A since ¥ is K[[t]}-linear,
and we also assume that each v; € Homg (A, A).
The formal isomorphism ¥ is an algebraic isomorphism if ¥ is multipli-

cation preserving, that is, if
G(¥(a), ¥ (b)) = ¥(F(a,b)) for all a and b in A.

The deformations Ar and Ag are said to be equivalent if there is an

algebraic isomorphism ¥ : Ap — Ag. In this case we write Ap = Ag.

If A and Ag are equivalent, then from [11, p23], we have §141 = f1 — g1.
So f1 and g; represent the same element of HH?(A).
Now suppose that we have constructed 91,2, .., ¥m-1, from Ar to Ag.

Then we have the following theorem and corollary. |

Theorem 1.13. [12, §5 Proposition 2] The obstruction to finding ¥, which

extends the isomorphism is a 2-cocycle.

Thus if HH?(A) = 0, then there is no obstruction to finding ., so all

such obstructions vanish and Ap & Ag.
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Corollary 1.14. [12] IfHH2(A) = 0 then all deformations of A are isomor-
phic.

Definition 1.15. [11, p23] The trivial deformation of A is the deformation
Ap with F = fo. We say that a deformation is trivial if it is isomorphic
to the trivial deformation. An algebra A is rigid if it has no non-trivial

deformations.

Theorem 1.14 implies that if HH2(A) = 0 then all deformations of A are
trivial. Hence we have the following result.

Theorem 1.16. [12, §3 Corollary] If HH?(A) = 0 then A is rigid.

However, the converse to Theorem 1.16 is not true in general as was
shown in [13]. However, it was shown in [8] that the converse does hold
for monomial algebras KQ/I where Q has no oriented cycles. We briefly
discuss [8] in relation to Example 1.5.

Definition 1.17. A finite dimensional algebra KQ/I over a field K is a
monomial algebra if I is a two sided ideal of K Q generated by a set of paths
each of length at least 2.

Theorem 1.18. [8, Theorem 3.12, Theorem 4.2] Let Q be a quiver with no
oriented cycles and I an ideal of KQ generated by a set of paths each of
length at least 2. Then A = KQ/I is rigid if and only if HH?(A) = 0.

Example 1.19. Let A = KQ/I as in Example 1.5 so that Q is the quiver

7N,

and I = (bc). Thus A is a monomial algebra.

1

It is straightforward to show that there is a non-zero element of HH?(A)

given by
P? = Ae; ® e3A — A such that e; ® e3 > a.

(Indeed, in [4] a minimal projective resolution of a monomial algebra is

given.)



9

Thus from [8], A is not rigid, that is, A has a non-trivial deformation.
The construction of a deformation is given in (8], and for this example,

A: = KQ/I, where I, = (bc — at) is a non-trivial deformation of A.

Thus we have shown the link between HH2(A) and deformations. Our
aim is to compute HH2(A) for a specific class of finite dimensional algebras.
In the next chapter we introduce our algebras together with the notion

of derived equivalence.
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2. DERIVED EQUIVALENCE AND SELF-INJECTIVE
ALGEBRAS OF FINITE REPRESENTATION TYPE

In the following chapters we will look at HH2(A) for all finite dimensional
self-injective algebras of finite representation type over an algebraically closed
field. Recall that a finite dimensional algebra is of finite representation type
if there are only finitely many isomorphism classes of indecomposable finitely
generated A-modules. These algebras were classified in [2] by quiver and re-
lations up to derived equivalence. It is known from Happel’s result in [17]
that Hochschild cohomology is invariant under derived equivalence. We start
with a brief description of some category theory to enable us to introduce
the concept of derived equivalence. This is mainly taken from [24]; details
can also be found in [21].

Definition 2.1. [24, Definition A.1.1] A category C consists of a class of
objects O@bj(C), a set of morphisms Hom¢ (A, B) for every ordered pair (4, B)
of objects, an identity morphism id4 € Hom¢(A, A) for each object A, and

a composition function
Hom¢(A, B) x Home (B, C) - Home(A, C)

for every ordered triple (A, B, C) of objects. In addition, a category needs
to satisfy two axioms:

(i) Associativity Axiom, that is, (hg)f = h(gf) for f : A— B,g: B —
C,h:C - D.

(ii) Unit axiom, that is, idgf = f = fida for f : A— B.

Example 2.2. For A a finite dimensional algebra, mod A is the category
whose objects are finitely generated A-modules and morphisms are A-module

homomorphisms.

Definition 2.3. [24, p421] A functor F : C — D from a category C to a
category D is a rule that associates an object F/(C) of D to every object
C of C, and a morphism F(f) : F(C1) — F(C2) in D to every morphism
f:C1 — C2inC. In addition, F is required to preserve identity morphisms,
that is, F(idc) = idp(c) and composition, that is, F(gf) = F(g9)F(f)-
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Definition 2.4. [24, p422] A subcategory B of a category C is a collection
of some objects and some morphisms of C, such that the morphisms of B
are closed under composition and include idp for every object B € B. A
subcategory is itself a category.

A subcategory B of a category C in which Homg(B1, B2) = Hom¢ (B, B2),
for every By, B; in B is called a full subcategory.

To define the stable category we need to specify the objects and mor-

phisms. For an algebra A, let mod A denote the category of finite dimen-
sional A-modules and pro A denote the full subcategory of mod A consisting
of finite dimensional projective A-modules.
Definition 2.5. Let A be a self-injective algebra. Then the category of
finitely generated A-modules modulo projectives is the stable category mod A,
that is, mod A = mod A/(proA). So the objects of mod A are finitely gener-
ated A-modules. If M, N are in mod A, let PHom, (M, N) be the subspace
of Homy (M, N) consisting of all those A-morphisms which factor through
projective modules. Note that f : M — N factors through a projective if
there exists a projective module P and two morphisms g : M — P and
h: P — N such that f = hg:

Now we define the morphisms in the stable category by
Hom(M, N) := Homy (M, N)/PHoma (M, N).
Remark. If M is projective module and f : M — N, then f factors through

a projective, that is, the following diagram is commutative:

M—L1-nN

PN

M
So in mod A, f : M — N is the same as the zero map 0 : M — N and,
in particular, idps : M — M is the zero map 0 : M — M. Therefore, every

projective module is isomorphic to zero in the stable category.
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Definition 2.6. [24, A.3] Suppose that F and G are two functors from C to
D. A natural transformation 7 : F — G is a rule that associates a morphism
7e : F(C) = G(C) in D to every object C of C in such a way that for every
morphism f : C — C' in C the following diagram commutes:

F(C) L F(C")

"Icl lnc’
Gy

G(C) —- (")

If each 7. is an isomorphism, we say 7 is natural equivalence or natural
isomofphism and write F = G.

An equivalence of categories is a pair of functors F: C > Dand G: D —» C
such that FG and GF are naturally isomorphic to the appropriate identity
functor, that is, FG 2 idp and GF 2 idc.

Now the following definition tells us when two algebras are stably equiv-
alent.

Definition 2.7. {2, pl] For two algebras A,Il, an equivalence mod A —
mod IT is called a stable equivalence from A to II. The algebras A,II are
said to be stably equivalent if there exists a stable equivalence between

them.

In fact, for a self-injective algebra A, the stable category mod A is a tri-
angulated category. We see this in Theorem 2.13 but first we will define a
triangulated category using [18] and [24].

Definition 2.8. [24, A.4.1] A category C is called an Ab-category if the
set of morphisms Hom¢(A, B) is an abelian group such that composition
distributes over addition, that is, for appropriate morphisms f,g,¢’ and h,
we have f(g+ ¢ )h = fgh+ fg'h.

Definition 2.9. [24, p425] An Ab-category C is called an additive category
if C satisfies the following:
(1) There is a zero object 0 € C such that Hom¢(0, A) = e = Homg(A4,0),

where e is the trivial abelian group consisting of one element.
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(2) For all X,Y € Obj(C), there exists X ® Y € Obj(C) with maps:

that satisfies the following:
pxix =1idx; pyiy = idy;
pxiy =0; pyix=0;
ixpx +iypy = idxey-
Definition 2.10. [18, 1.1] Let C be an additive category and T an au-
tomorphism of C. A sextuple (X,Y, Z,u,v,w) in C is given by objects
X,Y,Z € Obj(C) and morphisms u: X - Y,v:Y > Zand w: Z - TX.

The sextuple can be written as follows:
X3Y3Z3TX.
The automorphism T is usually called the translation functor, and its
inverse is denoted by 77!. A morphism of sextuples from (X,Y, Z, u, v, w)
to (X',Y',Z' 4/ ,v',v') is a triple (f, g, h) forming a commutative diagram

in C:

u v w

X Y Z TX
f l 91 hl Tf l
X syt Loz ¥y

If f,g and h are isomorphisms in C the morphism is then called an isomor-

phism. Then we say that the two sextuples are isomorphic.
Definition 2.11. [18, p2] An additive category C is called a triangulated

category if there is an automorphism T : C — C, a set of sextuples in C
and a fixed set of sextuples which we call triangles such that the following
conditions hold.

(TR1) Every sextuple isomorphic to a triangle is a triangle.

Every morphism u : X — Y can be embedded into a triangle.

The sextuple (4, A,0,id4,0,0) is a triangle.

(TR2) (Rotation).

If (X,Y,Z,u,v,w) is a triangle then (Y, Z,TX,v,w, —Tu) is a triangle.
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(TR3) (Morphisms).

Given two triangles (X,Y, Z, u,v,w) and (X', Y, Z',4/,7’, %) and mor-
phisms f : X - X', g: Y — Y’ such that v'f = gu, there exists a morphism
(£, g, h) of triangles.

X——Y——Z7—TX
fl 91 Elhl Tfl
X sy Yz Yy

(TR4) (The octahedral axiom).

Consider three triangles (X,Y,Z',u,4,7),(Y,Z,X',v,5,5') and
(X, Z,Y’,vu,k,k'). Then there is a triangle (2',Y’, X', TZ', f, g, Tij') such
that gk = j,k'f =7, fi = kv and Tuk' = j'g.

Definition 2.12. [18, p4] For additive categories C, D an additive functor
F : C — D is a functor such that each Hom¢(X,Y) — Homp(FX,FY) is a
group homomorphism.

An additive functor F between two triangulated categories C,C’ is called
exact if for T and T' automorphisms on C and C’ respectively, there exists an
invertible natural transformation a« : FT — T'F such that
(FX,FY,FZ,Fu,Fv,Fwayx) is a triangulation of C whenever
(X,Y, Z,u,v,w) is a triangulation of C.

If an exact functor F : C — (' is an equivalence of categories, then we

call it a triangle equivalence. Then C and C’ are called triangle equivalent.

FOI'MGmOdA,ifO—)M—-)Il-)Nl —-0and 0> M —>I, - Ny, — 0
are short exact sequences in mod A with I, I injective A-modules then from
[18, Lemma 2.2] we know that N; = N in mod A. We let 27! = N; which

is unique up to isomorphism in mod A.

Theorem 2.13. [18, Theorem 2.6] If A is self-injective algebra the stable
category mod A is a triangulated category with T = Q71 and the triangles

are the seztuples isomorphic to a standard triangle.

In the next part using [24] we will define the derived category D(A) of
an abelian category. It is obtained from the category Ch(.A) of cochain
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complexes in two stages; the first step is to construct a quotient category of

Ch(.A) and the next step is to localize this quotient category.

Definition 2.14. [24, A.4.2] An abelian category is an additive category A
such that: ,

(1) Every map in A has a kernel and cokernel,

(2) Every monic in A is the kernel of its cokernel, and

(3) Every epi in A is the cokernel of its kernel.

Definition 2.15. [24, p2] Let A be an abelian category. The category of
cochain complexes Ch(.A) is the category where the objects are bi-infinite
cochain complexes in A and the morphisms are cochain maps. A cochain

map f: A— B in Ch(A) is a commutative diagram:

-1

A =,,, = A-—l 4 AO d(’)‘ Al di‘,A2

/| ml ol gl
- 1

B =... B—l dB BO d% Bl dB B2

where d'f1di, = 0,d}j'd}; = 0, A', B' € A,Vi € Z.

Let f and g be two cochain maps from A to B. We say that f and
g are (cochain) homotopic if there are maps s, : A® — B™! such that
f—g9 = sd +ds. The maps {s,} are called a cochain homotopy from f to g.
The objects of the homotopy category #(.A) are cochains in A and the

morphisms are homotopy equivalence classes of cochain maps. Thus

Hom’H(.A) (A7 B) = HomCh(A) (A7 B)/ ~y

where f ~ g if and only if f is homotopic to g. Note that H(A) is a
triangulated category and it is a quotient category of Ch(.A).
To define the derived category we now need to define a quasi-isomorphism

and a localisation.

Definition 2.16. [24, Definition 1.1.2] A cochainmap f: A — Bin H(A) is
a quasi-isomorphism if the induced cohomology maps f*: H*(A) — H"(B)

are all isomorphisms.
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Definition 2.17. [24, Definition 10.3.1] Let S be a collection of morphisms
in a category C. A localisation of C with respect to S is a category S™1C,
together with a functor g : C = S~1C such that:

i) g(s) is an isomorphism in S~!C for every s € S.

ii) Any functor F : C — D such that F(s) is an isomorphism for all s € S
factors in a unique way through gq.

We now come to the definition of the derived category.

Definition 2.18. [24, p379] The derived category of an abelian category A
is defined as the localisation D(A) := Q~1#(.A), where Q is the collection
of quasi-isomorphisms in H(.A).
Theorem 2.19. [24, Corollary 10.4.3] Let A be an abelian category. Then
D(A), D*(A), D*(A) and D~ (A) are all triangulated categories where D*(A),
D*(A) and D~ (A) are the full subcategories of D(A) whose objects are the
cochain complezes ‘which are bounded, bounded below and bounded above,
respectively.
Definition 2.20. (2, p2] A triangle equivalence D(.A) — D(B) between two
derived categories is called a derived equivalence.

If A= modA and B = modII for algebras A, IT and if there is a triangle
equivalence D(,A) — D(B) then we say A, II are derived equivalent.

Now we describe Asashiba’s work of [2]. The main result for us is [2, The-
orem 1.2] in the paper which we state in Theorem 2.24. In brief, Asashiba
gives the derived equivalence class representatives of all self-injective finite
dimensional algebras of finite representation type over a field K. His descrip-
tion is given in terms of the type of A. Throughout the paper K denotes an
algebraically closed field, all algebras are assumed to be basic, connected,
finite dimensional algebras with identity.

The type typ(A) was defined in [3]. We recall the definition here. Some
definitions are needed first and they are taken from [1].

Definition 2.21. [1, p166] A morphism g : B — C in mod A is called
irreducible if g is neither a split monomorphism nor a split epimorphism
and if g = ts for some s : B -+ X and ¢t : X — C then s is a split

monomorphism or ¢ is a split epimorphism.
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Definition 2.22. [1, p225] For any algebra A of finite representation type
the Auslander-Reiten quiver of A (AR-quiver) is the quiver where the ver-
tices are the indecomposable finitely generated A-modules and the arrows
are the irreducible morphisms between indecomposable finitely generated

modules together with the Auslander-Reiten translate 7.

Now we define the type typ(A). From [22], the stable AR-quiver of a self-
injective algebra A of finite representation type has the form ZA/(g), where
A is a Dynkin graph, g = (77" such that r is a natural number, ¢ is an
automorphism of the quiver ZA with a fixed vertex, 7 is the AR-translate.

Then typ(A) := (A, f,t), where t is the order of ( and f := r/ma such
that ma =n,2n —3,11,17 or 29 as A = A,,, D,,, Eg, E7 or Ejg, respectively.
Remark. The type of A is uniquely determined by the stable Auslander-

Reiten quiver.

Proposition 2.23; [2, Proposition 1.1] Given A o self-injective algebra of
finite representation type then the type typ(A) is one of the following:

{(An,s8/n,1)|n,s € N};

{(A2p+1,8,2)|p,s € N};

{(Dn,s8,1)|n,8 € N,n > 4};

{(Dn, 8,2)|n,s € Nyn > 4};

{(D4,s,3)|s € N};

{(D3m,8/3,1)|m,s € Nym > 2,31 s}; |

{(BEn,s,1)|n=6,7,8,8 € N}; and

{(Es, 3,2)|s € N}.

Now we state the main theorem for us.

Theorem 2.24. [3, Theorem] Let A and II be representation-finite self-
injective algebras.

(i) If A is standard and II is non-standard then A and II are not derived
equivalent.

(it)If A and 11 are either both standard or both non-standard then the
following are equivalent:

1) A and II are derived equivalent;

2) A and I1 are stably equivalent;
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3) typ(A) = typ(11).

Thus we may list the derived equivalence class representatives accord-
ing to their type. Asashiba gives a precise description of these algebras by
quiver and relations in [2]. We give here the full classification of [2] of de-
rived equivalence class representatives of the finite dimensional self-injective
algebras of finite representation type over an algebraically closed field. Using
Proposition 2.23 and Theorem 2.24, the derived equivalence representatives
are given in 2.25-2.33. Note that [j] denotes the residue of j modulo s where
8 2 1 and we write paths from left to right (whereas paths are written from
right to left in [2]).
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2.25. A(A,,s/n,1) with s,n > 1.

A(Ap, 8/n,1) with s,n > 1 is the Nakayama algebra N;, and it is given
by the quiver Q(N,.»):

with relations R(N,,5):
041 iy =0, for all i € {1,2,...,8} = Z/(s).

2.26. A(Azpi,8,2) with s,p > 1.

A(Azpt1,8,2) with 8,p > 1 is the M6bius algebra M, , and it is given by
the quiver Q(Mp,):

ﬁLa_—II]
e ¢ 4 0

o
iz
0
ol
o o
ﬂi”l o’
0
ﬁuli "'g)ll “[1211 1 3
o o o °
N A
1
A all ot abl, . all ! Al
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with relations R(Mp s):

(i) ol Bl... 80 for all i € {0,...,s — 1},
(i) forallzG{O,...,s—2},

P I
a},‘“llag]] =0, ﬂzl’t—llﬂg)] =0,

(iii) paths of length p + 2 are equal to 0.

2.27. A(Dp,s,1) withn > 4,3 > 1.

A(Dy,s,1) with n > 4,3 > 1 is given by the quiver Q(Dy, 3):

[s-1)
ot

O €«————— s

= | gle-1]

! et
[o] /
'n-2
- lo) = “ee
[0) M
o0 Bo ol
n-3 70

(o] (o] @
\ / ok,
i A . gl

o

Gn_2

ST

with relations R(D,, s, 1):

) oll soll ol = g1g = ofiafl, or all € (0,

Z/(s),
(ii) for all i € {0,...,8 — 1} = Z/(s),
a[i] ﬂ[i+1] —0, a[i],y[i+1] =0,
ﬁ[’] [t+11 =0, ,Yltl akt;] 0,

3
()
“F A " i /ﬁ‘o’] I
\ O A
[0} (o]
o]

,8—1} =



21
ﬂ£i17g+1] =0, 7{;} ﬂ([)i+l] =0,

(iii) for all 2 € {0,...,8 — 1} = Z/(s) and for all j € {1,...,n -2} =

Z/("‘ - 2)’

i i+1
all..af, =0,

[;] ﬁltl ﬂ[=+1] 0, ,7([;] ,y[t],Y[H'l] 0,

AT o A

The set of relations (iii) means that “a-paths” of length n— 1 are equal to
0, “B-paths” of length 3 are equal to 0 and “y-paths” of length 3 are equal
to 0.

2.28. A(D,,s,2) withn > 4,8 > 1.

A(Dy,s,2) with n > 4,s > 1 is given by the quiver Q(Dy, s) above with
relations R(D,,, s,2):

(i) ol ol .- aflall = giIAH = Aflf), for all i € {0,...,6 - 1} =
Z/(s),

(ii) for all i € {0,...,8 — 1} = Z/(s),

olil g+t Z o, i+l _ g
{t] E:i;] —o, ,y[t] akfll 0,

and for all 7 € {0,...,8 — 2},

ﬂgi] ,Y([)i+1] —0, ol ﬁ[i+1] _

ge-1g0l _ g, Ao 11%[)01 —o,
(iii) “a-paths” of length n—1 are equal to 0, and for all i € {0,...,5—-2},

ﬂ[i] ﬂ[i] ﬂ[i+11 — ,yltl,ygtl,ygﬂl 0,
ﬁ[t] ﬁ[i+1] ﬂ[‘l+1] 7{1]7([]t+1]7£1+1] =0 and

ﬂ([)a—l]ﬂ[a 1] [0 =0, 7([)3_1]7£8~1]ﬂ([]0] =0,

ﬂ“"”v“”v&"] =0, e =0
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2.29. A(Dy,s,3) with s > 1.

A(Dy, s,3) with s > 1 is given by the quiver Q(Dj, s) above with relations
R(Dy, s,3):

(i) ag]a[:] = ﬂ([,i] ?] = 'yg]'yr], forallie {0,...,8—1} =Z/(s),

(ii) for all % € {0,...,8 — 2},

g 0 o o,
ilafi+ _ g it g,
i+l _ g Mgl _ g,
and
a[l'—llag) 1= o, a[f_l]'yg)] =0,

ﬂga-l]aE)O] =0, ﬂ{a—llﬂ([)‘)] =0,

A =0, A =0,
(iii) paths of length 3 are equal to 0.

2.30. A(D3p,8/3,1) withm >2 and 3ts > 1.

A(D3m,8/3,1) withm > 2 and 3 { s > 1is given by the quiver Q(D3m, 3/3):



and for s = 1, Q(D3m,1/3):

am-—1
0 «———rr-
B “;/
o
a1l

o

o\

o

o]

with relations R(D3pn,3/3,1):
(i) oflall. ..ol = i1, for all i € {1,..., s} = Z/(s),

23



oo ] [+2
(i) ag',la[l"' ]

=0, for all i € {1,...,s} = Z/(s),

(i) a'[;] ---aﬂﬂi.,.za?-"a] “e a?+3] =0,forallze {1,...,s} = Z/(s) and
for all j € {1,...,m} (i.e. paths of length m + 2 are equal to 0).

2.31. A(E,,s,1) withn € {6,7,8} and s > 1.

A(E,,s,1) is given by the quiver Q(En, 3):

a[;-l]

,41‘““

n—-3
o (o} =Y
fo] G N
Cpn_4 )
° '7&01
3 :
o A 7 :
0
of! gl a2
1 e e 3
o [o] 2 [o] ! [o] -
agol \ / QL ]_ 3
ﬁ[ll ﬂ[ll
agl_ 3 3 o ﬂ[ll (o] ! a[11]
2

all,

with relations R(Ep,,s,1) :

(@) ol 4

(ii) for all i € {0,...,8 — 1} = Z/(s),
olpt =0,

Blagtd =0,

—> 0

o

Sl — o

Halt =0,

-ofloll = gAY = A4, for all i € {0,...,s -1},

]a‘:”_z
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ﬂ[s] [i+1] _ =0, 7?] ﬂ£i+l] =0,

(iii) “a-paths” of length n — 2 are equal to 0, “S-paths” of length 4 are
equal to 0 and “y-paths” of length 3 are equal to 0.

2.32. A(Eg,s,2) with s > 1.

A(Eg, s,2) is given by the quiver Q(Fs, s) above with relations R(Fg, s,2) :
() ollaflal! = AR = A for all i € {0,...,5 — 1},
~ (ii) for all i € {0,...,8 — 1} = Z/(s),

’ygi]a:[;i+1] —0, 7{;‘] ﬂ:[;’+1] ~0,
alli] ,Y£i+1] =0, ﬁ£i17£i+l] =0,

and for all i € {0,...,s — 2},

a[li] ﬂ:[;‘+1] =0, ﬂ{” agﬂ] =0,
[16—1]0“[30] =0, ﬁgs-—l] ,3;[;,0] =0,

(iii) “y-paths” of length 3 are equal to 0 and for all € {0,...,s—2} and
for all j € {1,2,3} = Z/(3),

0{[;] [‘i‘;] =0, 13][1] ﬂ[""l]
I I Y e NI Iy

2.33. Nonstandard algebras A(m) with m > 2.

From [2] the derived equivalence representatives of the nonstandard self-
injective algebras of finite representation type over an algebraically closed

field K are the algebras A(m) for each m > 2, where A(m) is given by the
quiver Q(Ds3p,,1/3):



Qm-1

m-—-—m-—1
B y
Q)
ml

2

o\

3

with relations R(m):

(i) maz---am =82,

(ii) amar = omBa,

(iii) ayaigy1---os =0, for all i € {1,...,m} = Z/(m) (i.e. “a” paths of
length m + 1 are equal to 0).
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3. PROJECTIVE RESOLUTIONS

To find the Hochschild cohomology groups for any finite dimensional al-
gebra A, a projective resolution of A as a A®-module is needed. So in this
chapter we will look at the projective resolutions of [15] and [16] in order
to describe the second Hochschild cohomology group. In [15, Theorem 2.9],
for A = KQ/I where Q is a quiver, I is an admissible ideal of KQ and the
set f2? is a minimal set of generators for the ideal I, a minimal projective

resolution of A as a A, A-bimodule is given which begins:
s PBRPAQ LA,
where the projective A, A-bimodules Q°, Q1, Q2 are given by

Q°= P Avewa,

v,vertex
Q= @ Ao(a) ® t(a)A,
a,arrow

where o(a) is the origin of the arrow a and t(a) is the end of q,

Q* = @ Ao(z) ® t(z)A.

zef?

We now explain the notation of [15] (including the notation o(z) and t(z)
for z € £2) and start by defining the A, A-bimodule homomorphisms g, 4;
and As.

Definition 3.1. The map g: Q° — A, is the multiplication map so is given
by v ® v — v. The map 4; : Q' = @, Ao(a) ® t(a)A — QO is given by
o(a) ® t(a) — o(a) ® o(a)a — at(a) ® t(a) for each arrow a.

To define the map A; : Q2 — Q, we fix the set f2 (which is a minimal
set of generators of I) and let = be one of the minimal relations. Then
T = ) _1Cj01j " akj* -y, that is,  is a linear combination of paths
ayj -+ Qgj--- a5 for j=1,...,r and ¢; € K and there are unique vertices v
and w such that each path a;; - - - ax; - - - a,,; starts at v and ends at w for all j.
We write o(z) = v and t(z) = w. Then A3 : Q® = @, ;s Ao(z)®t(z)A — Q'
is given by o(z) ® t(z) — X7, ¢i(3el; 015 ak-1); ® (k41)j "+ Bs;5)»
where a1; -+ - a(r—1); ® Q(r+1); * - * @s;5 € Ao(ar;) ® t(ax;)A.
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In order to find the projective Q3 and the map Ajz in the A®-resolution of
A, Green and Snashall in [15] start by finding a projective resolution of A/t
as a A-module, where A = KQ/I, Q is a quiver, I is an admissible ideal
and t = J(A) the Jacobson radical of A. The paper [16] by Green, Solberg
and Zacharia provides a procedure to find such a resolution, in the graded
and finite dimensional cases. In the first part of this section we describe the
work of [16]. Then we will relate this to the A°-resolution of [15].

We are interested in the finite dimensional case. Given A = KQ/I finite
dimensional with I an admissible ideal, with the notation of [16], consider
the right A-module A/r. Let the vertices of Q be labelled 1,...,n and let
F=1]",eKQ. Then

FoAlt—0

is an exact sequence of KQ-modules. Note that F is a projective KQ-
module (since it is the sum of projective K Q-modules).

Now [16] constructs a filtration of F' by K Q-submodules that contains
all the information needed to construct the A-projective resolution of A/t.
This filtration is

...CcF*cF*c...cF'cF
such that the F*’s are projective K @-modules (since the F*’s are submodules
of F and KQ is a hereditary algebra), and
coio > F*/F"I 5 F* Y ... 5 FY/F'TI 5 F/FI -5 Aft— 0

is a A-projective resolution of A/t with the maps induced by the inclusions
of the filtration.

We introduce the notation needed to define these submodules F*. Let
R=KQ, f?=e¢; fori=1,...,n so that the projective A-module

n n :
H R/ H f2I maps onto A/t
i=1

=1

Let fO = {f?},. We have the exact sequence of R-modules

0 - Qk(A/r) = [[ekQ S A/e 0.

=1
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Now choose a set {f}*} of elements of I, fOR = [, &;KQ such that
QL(A/t) = Ilica fH*R. We will find this set by finding QL(A/t) which is
Ker f. The map f is given by: ejry + -+ +exn = €171 + -+ + €prp + ¢,
with r; € KQ. Then QR(A/r) = {e1r1+ -+ +enrnlerT1 + -+ eprn €t} =
‘Ha’m.,w aK Q. Therefore we may take the set {f}*} to be the set of arrows
of the quiver Q.

Next we discard all the elements f!* that are in [, f°I; note that

* 1 F2I is equal to [ [~ il = I. Denote the remaining elements of the set
{f}*} by {f!}. However, there are no elements f!* in I since I is admissible.
Hence {f!} = {a,arrows}. Let f1 = {f}}.

The algorithm now proceeds as follows: firstly, assume we have con-

structed f?, f},..., f™s. Then construct the set f**! by considering
Ms#eNdl =11 "-
R j k

Note that we may have {ff*!*} = @. Next discard all the elements fi+!*
that are in []; f*I and denote the remaining elements by f7+!. Let f*+! =
{fo+1}. If {f71} = 0 then we stop at this point. Note that the set f2 is a
minimal set of generators for the ideal I.
Now [16] gives the following definitions and results for the resolution of
AJr.
Definition 3.2. [16, Definition 1.1]. For each n > 0, let P, = [, f*R/f'I
and let 6" : P, — P,_1 be the homomorphism induced by the inclusion
Hifi"RCij;—lR- »
Note that if {f"} = 0 then P, = 0. For this reason if {f*} = ) then we

can stop at this stage of the construction.

Theorem 3.3. [16, Theorem 1.2]. With the above notation,
('P,J):u-—)Pnﬂ;Pn_l -2 P 6—1>P0-—)A/t->0

is a projective resolution of A/v over A.

It was then shown in [16] that, when A is a finite dimensional algebra, we
can always choose the elements {f7'} in such a way as to obtain a minimal

projective resolution when I is an admissible ideal.
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Theorem 3.4. [16, Theorem 2.2] In the resolution (P, d) the elements {f7'}
can be chosen in such a way that, for eachn, no proper K -linear combination
of a subset of {fI'} is in [I; 7711 + [, f*.

Moreover, there is a decomposition

Hsr=(q]rmn]Id]# R,
k i i

where the elements f can be chosen to be in L; f}'“lI .

Theorem 38.5. [16, Theorem 2.4] Let (P,d) be the projective resolution of
A/x as in Theorem 3.3, where {fI'} are chosen as in Theorem 3.4. Then,

the resolution (P,4) is minimal.

We are int‘erested in the minimal projective resolution of A as a A°-
module, and in particular in the part Q3 23 Q2 of this resolution. We
keep the notation of [16]. Then [15, 2.5] describes @3 in the following way.
Suppose that the elements of f2 are {fZ,...,f2}, where f2 is our fixed
minimal set of elements in the generating set of I. Each element of f3 is in
M PRNAIAAD = (I12R)N(I1, al). Let y denote an arbitrary element
of f3, s0y € [[f?R and y € [[,al. Therefore, y = Zf2p;, with p; € R.
Also y = Zqa(Z; 0 f?ﬁ,-) = Ygia04 ffﬁg for elements o, B; € R, arrows a, so
we may write y = Xg;f2r;, where g; is in the ideal of R generated by the
arrows and r; € R.

Then [15] gives that Q% =[], ;s Ao(y) ® t(y)A and describes the map A;.
For y € f3 the component of A3(o(y)®t(y)) in the summand Ao(f2)®4(f2)A
of Q% is Z(o(y) ®pi — ¢ ® 7).

Thus we can describe the part of the minimal projective A°-resolution of
A

BBPRRAPBRPSA-0
since we have determined the set f° satisfying the conditions of Theorem

3.4. Applying Hom(—, A) to this resolution gives us the complex
0 — Hom(Q°% A) % Hom(Q!,A) & Hom(Q2,A) & Hom(Q3, A)
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where d; is the map induced from A; for i = 1,2,3. Then HH?(A) =
Ker d3/Imd;. We keep this notation for the rest of the thesis.

The next proposition tells us how many elements there are in the set f3.

Proposition 3.6. (17, Lemma 1.5] Let A be a finite dimensional algebra
over a field K. Let P(i) denote the indecomposable projective A-module
e;A. Let S; = P(i)/radP(i) be the corresponding simple A-module. Denote
by P(i,j), the indecomposable projective A®-module A(e; ® e;)A.

Then if

R, 2R, 1—:-Ri—>Ry—>A—-0
i8 a minimal projective resolution of A over A®, then
R, = @) P(i, j)#mExA(S0S)),
6

In order to find Ext™(S;, S;) we use the well-known result, (see [5, Corol-

lary 2.5.4]), that for S;, S; simple right A-modules, we have

Iﬁxtx(S%,Sy) EéIIornA(Slnéh,E%).
So Proposition 3.6 says that Ae; ® e;A occurs dim Ext}(S;, S;) times in the

n-th projective A®-module of the minimal projective resolution of A. This
provides a check that we have found all elements of f3.

The paper [16] and subsequent work by Green and Solberg (unpublished)
provides us with an explicit description of the set f3. Throughout we fix f°
as the set of vertices of the quiver Q, f! as the set of arrows of Q and f2 as
our chosen minimal set of generators of the ideal I.

The maps induced by the filtration

w.CF*cF*lc...cF! C F,

in Theorem 3.5 give the beginning of the minimal projective resolution of
A/ as
II @A S I] t@a % [[ va—A/e—0

z€f3 acf! vefo
with maps 62 and §' given as follows. For a € f1, 61(t(a))) = at(a)) in the
summand t(a)A. For ¢ € f2 where x = 3_7_; cja1j- - akj---as;; With the
notation of Definition 3.1, §%(t(z)\) has component cjag; -+ ax; « + - @;5A in

the summand t(ai;)A.
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Moreover, as A/t is the direct sum of the simple right A-modules, for each
simple S = v(A/t), we have the beginning of a minimal projective resolution
of S given by

T =S I «aaberss—o
z€f2,0(z)=v ac fl0(a)=v
Now using §2 to compute Ker§2 = 03 (S) and P3, the third projective in
the minimal projective resolution of S, we may write P3 = Dicz, eiA for
some index set Z, where |Z,| = dim Hom(Q3(S), A/t) = dim Ext3 (S, A/x).
Moreover this explicit calculation of Ker §2 gives us the map
#:Po J[ HwA
z€f2,0(z)=v
& > Do 3 o(c)=vt(T)Diz€i, for each i € I,.

For each i € I,, we set f} := B¢ 12 (4)=yTPi;s € KQ. Taking the union
over all simple right A-modules S gives us our set f3 = g, ,impe{f71i € Z,}-
It is easy to verify for each of our algebras that we consider that this set f3
does have the required properties and that |f3| = dim Ext3 (A/x, A/¢).

Now we are ready to compute HH2(A) for the derived equivalence repre-
sentatives of the self-injective finite dimensional algebras of finite represen-
tation type over an algebraically closed field.

First we note that the algebras of type (An,s/n,1) and (A2p+1, 3,2) have
been considered in [9] and [15] respectively. We will come back to these
results later in Chapter 5, but we start by considering type D, beginning
with (Dy, s,1) in the next chapter.

Throughout, all tensor products are tensor products over K, and we
write ® for ® k. When considering an element of the projective A®-module
Q' = @, arrow Ao(a) ® Ha)A it is important to keep track of the individual
summands of Q!. So to avoid confusion we usually denote an element in
the summand Ao(a) ® t(a)A by A ®, N\ using the subscript ‘a’ to remind
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us in which summand this element lies. Similarly, an element \ ® £ XN lies
in the summand Ao(f?) ® t(f2)A of Q2 and an element A ® s A lies in the
summand Ao(f3) ® t(f3)A of Q3.



4. A(D,,s,1)

In this chapter we will determine dim HH2(A) for A(D,,s,1) with n >
4,s > 1. The algebra A(Dy, s, 1) is given by the quiver Q(D,, s):

a[;—l]

O €«— ¢00

ot~ gle-1)

! ‘e
[0] & /
Qp_2
O - o “oe
[s—1]
l ﬂy " ..
[0]
Yo
[01 [01 [2) } [2]
[0} N Yo ﬁl2] Qn-3
[1) [1) 0
"0 N
(o] [¢] [}

c ot

[0] ° [2]
\ / %n-2
ﬂ},‘l ﬁ[lu
o

El—z a[11]

%

Qn-3

=

with relations R(Dp, s,1):
(@) a['] k]_3 -ag]a[l"] = ﬂg]ﬁ?] = ([)i]fy?], for all i € {0,...,8—1} =
Z/(s),
(ii) for all s € {0,...,s8 — 1} = Z/(s),
a[i] ﬂ["+1] =0, a[i],y[i-i'l] =0,

ot _ g Mol g,
B <0, A =0,

(iii) for all i € {0,...,8 — 1} = Z/(s) and for all j € {1,...,n -2} =
Z/(”'_'z)a

e

ﬁ[i] ﬁ[i] ﬁ[i+1] =0, 7[:]7[117[&1] 0,

ﬂ[:] ﬂ[l+1] ﬂ[t+1] 7;:]7([)1+1]7£i+1] -0
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The set of relations (iii) means that “a-paths” of length n— 1 are equal to

0, “B-paths” of length 3 are equal to 0 and “y-paths” of length 3 are equal
to 0.

We label the vertices of the quiver Q(D,, s) as follows. Fori =0,...,s—1,
o(al ) = o(B) = o(W)) = exs, o(ell) = ejyry, forj = 1,...,n -3,
O(By]) = en-1,; and o('y;i]) = en -

We need a set f2 of minimal relations but note that R(D,,,s,1) for s > 1
is not minimal. So now we will discard some of the relations of R(Dp,s,1)
to give a minimal set.

All relations of type (ii) are in f2. For relations of type (i), choose ,B([,i | ,B{"] -
7}}11{‘] € f? and ﬂglﬁP - aﬁl_2a£i1_3---a[2i]a[1i] € f2. With these choices,
we now consider the relations of type (iii). So (ﬂg] ,3?] - 7([;’]7{1'])%[)1-4-1] =
(ﬁglﬂ£‘17§ + _7([;]751‘]%[;' +1]) € Iand ﬂg]ﬁ£i]'yg *1 ¢ I. Therefore 'y([]i ]7£i]'y([)i ¢
I and is not in our minimal set of relations f2. Also 'ygi_l] (ﬂg ] ﬁ?] - 'y([)i 17{"1) =
I N N i A e T
and is not in f2. Similarly we can show that neither ﬁg] ﬁ;i]ﬂ([)i 1 por
alagpl ™™ are in 12

Now consider “o-paths”. We have gLl — ol oll .. ollall e g2,
So (ﬂglﬁyl — aE]_ 2aE]_3-~a[2i]a[1i])aEJ_r;] € I and ﬂglﬂgﬂaﬁi;} € I. There-
fore agl__2a£i]_3 -~a[2i]a[1i]a£';f;] € I and is not in f2. Also alli-ll(ﬂ([,i]ﬂgi] -
aﬁl_zagl_:, e a[;]a[f)) € I and a[li—llﬂg]ﬂgi] el. So a[f—llagl_zagl_s e a[zi]a[;]
€ I and not in f2.

(1] ol

However, the path ag]a[;]an_2

cannot be obtained from any
other paths, so ag]agi]agf;] e agH] € f2. Ingeneral, aglagl_l ‘e aEﬂIaEH]

€ f? for k= {2,...,n — 3}. Now let us label the elements of f? as follows.

f12,1,i = ([)i] 5"] - ’7([]"]'7?], f12,2,i = ([)i]ﬁ?] - agl—zagl—s : --a!}]aﬁ"],
fa15= a[:]ﬁ([)iﬂla fa2i= a[1i]7([Ji+1],
fas;= gi]agt;], faai= 7£i]aﬁt;],

fasi= gi],n[)iﬂl, fi?,s,i - 7£i] ﬂ([)m] and

f32,k,.- = aE] cee alli]aﬁf;] oo aE:H], for k={2,...,n— 3}
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2 __ 42 2 2 2 2 2 2 2 2 .
Hence f* = {fl,l,i’fl,2,i’ f2,1,i’ f2,2,i’ f2,3,i1 f2,4,i’ f2,5,i’f2,6,i1f3,k,i} for 1

0,...,s—land k=2,...,n—3.

Next we need to find f3.

For i € {0,...,s8 — 1} the indecomposable projective modules are:

el,,-A
1,1
n—1,1 n—2,i n,t
n-—3,i
1,41

For2<m<n-2

em,iA.

1,i+1

n—2,1+1

n—3,i+1

m,i+1
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en—1,A enil
n—1,1 n,i
| |
1,i+1 1,i+1
| |
n—1,71+1 n,t+1

From the minimal projective resolutions of each simple A-module we easily
see that:

R

93(52,,') 1,242

PN

n,i+ 2 n—1,1+2
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for 3 <m < n — 2 we have,

Q3(Sm) = m—2,i+1
m-—3,i+1
1,i+2
n—2,14+2
m-—1,14+2
Q3(Sn-1,4) = 1,i+2
n,i+ 2 n—2,i1+2
Qs(Sn,i) o 1,i+2
n—2,i+2 n—-1,1i+2

For 03(S1;) we need more details. We have the map

P:en—2iA®Den_1:ADeniA = Q(S1,:)
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given by:

i
i
€n—1il > ﬂ([)]en—l,iu,

en,zf =Y \ en,;ﬁ

where ), u, ¢ € A. Note that Q2(S; ;) = Ker .
Proposition 4.1. 02(81;) = (—al? 5---olf, 81, 0)A + (0, B, —1FHA.

Proof. On one hand, let z € Q%(S1;). Then z = (en-2), €n—1il,€n;if)-

Write e, tA Cpién—2,i+C1 zaL]._3+c2 1,a[ ]..30“ gt ten—2; a[] [‘] ,[:t;]a

En—1,i4 = c:);en-—l,l + d];ﬁ[’] + 6,2 ﬂb] [-+1) and 3n,t£ = ,zen,: + dl,z')'{z]

d ,,'y?]'y([; 1 with all coeﬁ‘ic1ents CjirCl;di; € K. Since z € Kery we

’)
know that (z) = 0. So a 2(00,,en_2,, + cl,,a[] 3+ cz,,aL] 3a£:]_4 +- 4+

gl el I 81 e et 8+ ¢, ) 42 o

(3] 3] [t+1])_ (3] [] [] [] [1] [1] oot

dii7i +d2471 C0i0, o+C1i0, 3+,
[ )

SO C N N P ,‘akl_ Lol [,] ) ,ﬂ[’] g +dmm +

Gkl = ol et + ol ol ol 4 s
Cn-4 ,zaﬁ.]_zail_ w0 + g B + dognd) + (enzi + iy +d1,1) sl =0
Thus cp; = -++ = Cp—4; = c{,’, =do; =0 and cy34+¢); +di; = 0s0let

c’“ = —(cn—3, + d1,;). Therefore,

L= (cn_s,.ag]_:; [*]+cn_ ,,a['] . a[%]aki;], —(Cn- 3,,+d1,,)ﬂ[i]+c'2 ‘ﬁ[i]ﬁ[i*i'l],
d1,5’7£]+d2,z’7[']'¥['+1]) (- ak]_h a[;],ﬁ[z] 0)(—cn-3,€1,i+1+Cn—2, za[ﬁl])*‘
(0,881, —)(~dh er 11405 B8+ Do rf ). S0 € (ol - ofl, 3, 00
+(0, 8, =)A.

Thus 02(S1;5) € (—all - alf, a1, 0)A + (0, 87, —4L)A.

On the other hand, let z € (— a['] a[l'], Ll ,0)A + (0, ,3%'], —'yl])A So
o (call -l 014068, ) m (—on ol - ol em 15
+en—1,4 {lu, en,,'yl u) where A\, u € A. It is immediate from the definition
of 7 that ¥(z) = 0 and so = € 02(S1,:).

Thus (—af o), A,00A + (0,8, —1i)A € 0%(51,).

Therefore, 2%(S;,) = (-—aE] aﬁ'], [t], 0)er,i+1A+(0, ﬂ?], —’)’1])31,@+1A
O
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To find ©3(S; ;) the second projective in the resolution of S1iiseir1A®
e1,i+1A. With the map:

0: e1;+1A ® e111A - Q(51,)
given by:
(erivad eriap) = (ol - oll, B, 0)eririr + (0,81, -thersiap

where A, u € A, we have Q3(S; ;) = Keré.
Proposition 4.2.

03(S1,4) = (e el 3, 0A + (0, a5 5hA + (-4, A5 A + (Y, 0)A.

Proof. On one hand, let y € Q3(S1;). Theny = (e1,i+1), €1i+14) € €1,i+1A®
e1i+1A where A, u € A. Let A = ¢g 51161541 +01,i+10['f;]+62,i+ aftlla [H-l]

n n—2 On—3
c+ten-2 ,,+la£:“_“;1 [i+1] HCn_14+1 ﬂ0i+l] +enit1 ,Y([)z+ ! an dp=chyperiot
c,l’i+1a""2 to '+1a“"2,'+1a£z 3]+ +c,n—2,1+1a£:+;] oty i+l [i+1]
h z+1’Y({)+ I Since y € Ker 6 we know that 6(y) = 0. Thus, (— ai a[l,], g,]’ 0)
(cosrieris1+erivraly +easolb oty 4o+ enaip10bT; +11 NI
cn-1,1+1ﬂg+11 + cn,t+l7o+ % + (0,8, —(¢, i + 0 z+1a£:_3]+
‘J'2,z+1an—2,z+la£:3]+ +C’n_2 t_Ha[1+1] . [t+1]+cl . 1+lﬂh+l /i ([)H-l])

—CO,1+1(—an—3' ol B 0)+(crig10f 5 oot Y g8 BETY 0)+

chi1(0,8F ,—71‘)+(o 1B 85, ,,m?] B Z cpgrn(cally ol
H 0)+(c1,,+1a“ H kt;],(cn— i+r1+C,_ ,;+1) [‘] [H-l] +Cn z+17£z]'7([)1+1])+

cf),:+1(0 B, —21) = 0. Thus cog1 = crint = chipq = Ggyy = 0 and

Chq 1i+1 T en—1,i+1 = 0. Replace ¢, ;.1 by —cn-1,i+1. Therefore, y =

(02,z+la£,t;]a£:1‘1] For it enais 1a[+] N P ﬂ([;i+1]+cn,, 7([; )
& sr1ohhy+o ool e, z+la[’+” ot —en1ipaB ) =
[t+;]a£:t3] (c2i+1€n—3441 %+ + Cn—2,i+1 O‘E:4] [i+1])
,3([)“*' ]cn_l,i+1en— Li+1 +’)‘([,i +1] Cnji+1€ni+1, O n_ (c’1 is1€n—2441+ ¢ a[z+;]
Fooot c,n—2,i+la£:i-;] [i+1]) - ﬁlﬂ_llcn— 1li+1€n—1 ,z+1) . Thus

= (af*lq [z+1]/\ + g 4 o1, alitll,, _ gli+lg)

= (a "*élaktél OA+ (0,0l + (=AY, B (—0) + (Y, o),
where A\, u, &, v € A.
So y € (af*UaltY o)A + (0, ol IHA + (=8, B + (v, 0)A.

n—2
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Thus 03(S1,) € (ef*3le "3, 0)A+(0, ol A+ (=85, B )A+ (Y, 0)A.
On the other hand, let y € (a[""ll [i+1] ,0)A+(0 [1+1]) A+(- ﬂ[ﬁll, [i+1]) A

Ap-3) y Oy
+006 ", 0)A. So writey = (ol Fal ", 0)A+(0, ot (8L, B e+

(o [’+l] ,0)v, where A, u, ¢, v € A. Then 6(y) = (— aE]_:,- afl, ['],O)a['“] [H'l]/\
+(0 ﬁ[’] ])a[ﬂ’l]” ( a[’] . all’], 5] O)ﬁ[ﬂ'l]ﬁl_'_(o ﬂ[’] 1])ﬂg+1]§,
(—all 5-- a‘:h , 0) "+”u=o. So y € 03(51,4).

Thus (a&ié‘akf;’,om + (0, 0Bt A + (-, g A + (1, 0)A €
93(.5'1,,-).

Therefore, 23(S1;) = (ag:f;]akf;],O)en 3,i+1A + (0, a )en_ A+
(=BFY, B ey 1A + (Y, 0)eni11A. Let ¢ be the the map:

¢ : en—3it1A ® en—2+1A © en—1,i41A ® enit1A — Q3(S1,:)

given by:
en—-3,i+1)‘ > ( gt;] E:+:1;]’0)en—-3 i1,
enzitip (0,0 )en oiiap,
en-1i+16 = (- ﬂhﬂ] ['H Jen—1i+1€,
enit1v ('yo+] O)en,;+1v
where A\, u, €, v € A O

From the projective resolution for simples we now know that the 3rd
projective in the A® resolution of A is:

Q3= @;—0 [(Ae1i®en—3:+1A)B(Ae1i®en_2i+1A)D(Ae1i®en_141A)D
(Ae1,®eni+1A) @ (Aez ;i ®e1,i42A) ® (Aen—1,:®e€1,i+2A) ® (Aeni®e1ir24)®

e (Aem,, ®em—2 ,z+1A)]

We now give a specific illustration of finding an element of f3. From
above we know that Q3 has the term Ae1; ® ep—3i+1A which corresponds

to some element of f3. Using the filtration in K Q we have

en—sir1 5 (ool 0) & (5[1'] oGl Gl gl llglitlly %
gt ﬁ[z] [i+1] [1+1] ol ol . [,] i1l 1]
0 M1

Oy 2Qy 3 Qp 20y _3°° a, 20, 3- So we may choose fl,l,i -

U0l el ool llef Y = 2,0 ol Y. S

larly the other summands of 93(.5'1,,-) give us the terms f,;, f3s,, f34;

which correspond to the summand Ae;; ® en_2i114A, Aey; ® en—1,11A and
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Aer; ® enit1A of Q3 respectively. Then we find by direct calculation the
expressions of each f3 in the form f} = 3;9if}ri with gj, v € KQ.
From the previous comments the set f2 for all s > 1 consists of the

following elements:

3 3 3 3 3 3 :
{fl,l,i’fl,2,ia fi3e flap Figi fie f?,u, fgﬁ,i’fg,m,i}’ with m € {4,...,n-2}

where
f %,1,;’ = f 12,2,10Ef;]a£:4——§] = ﬁwf 2,3:% Btll M 2f3,n--3,1’
ff,z,i = f1 144 :—H = ﬁo f231 "'Yo f24,v
ff,a,i = f1 1,80 'H] f1 2,;ﬁ[$+1] = a, 5 a£ 3 14 ’70 fz 16,09
f ?;4,.' = fi 2,;"/([) = ﬂ[']f 2,58 L]— 0{2]f 2,2,i?
f f,s,i = f3 2,1,iM1 ['-H] - 13 2 2,:’7?“] = aglf 1,1,i+1>
f 13,6,5 = f2,3,1 :—Ll] a’[1’+l] f2 547 [,+1] = :Bl fi 1,1,i41 — ﬂ1 fi 1,2,i+13
f 13,7,i = f3 2,6,iF1 ‘H] f2 4, E:J—r;l [zH] = ’71 f 1,2,i+1>
f§,3,i = fsz,; 1 = a f, 1,4 [ﬁl] a[;]al]f12t+1’
fg,m,i = f3 m-—l,zagztl] = H~1f3,m-2,z‘ for m € {4’ cooy,m— 2}

To find HH?(A), we know that HH?(A) = Ker d3/Im dy (from the notation
of Chapter 3). First we will find Imd,.

Imds for s > 1.

Since d; : Hom(Q!,A) — Hom(Q?, A), then dof € Imdy, where f €
Hom(Q',A) and dof = fA;. Here Q' = @ ;[(Ae1; ﬂ[’] en—1:A) @
(Aen_1; ® g e1,i+11) ® (Aey; ® 1 enil) ® (Aen;i ® 1 €1,414) © (Aezi ® 1o
e1,i+1A) © @2 (Aeryr ®a§q e1;A)]. The module @' has 5s + s(n — 3) sum-
mands, that is, 25 + sn summands. Let f € Hom(Q"', A) and write

fleii ®»61[)i] en—14) = C14 },"], flen—1 ® 1 e1,i+1) = 62,1'/3?],
fle1s ® 1 €ni) = 03,i7([;], flens ® 1 €1,i+1) = C4,i’Y£z],

fle2i ® 1 eriv1) = dy ;0

flertay ® i er;) = dyzal) for 1 € {2,...,n 2},

where ¢ € {0$ ey 8 — 1}1 and C1,iyC2,i,C3,i,C44, dl,i7 dl,i € K.
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We have Q% = @2, [(Ae1:® 72, 111 8)0(Aei @ e1:110)O(Ae2i®pa
en—l,i-i-lA) ©® (Aez; ® 32 en,i+14) @ (Aep-1;® s €n-2 ,t+1A) ® (Aen;i ® s
en—2i+11) @ (Aen—1;i @ foa eni+1A) @ (Aen;i ® o en—1,i+1A)®
@Z;S(Aek.,.l,.- ®f§.k,e exi+1/)]. Here Q2 has 4s + sn summands. Now we
find fA;. Recall the definition of the map As from Definition 3 1.

We have fAz(e1: @3  e1i+1) = flers g gl — €1 ® i A+ !

ﬂ[']
eirt = 1 @ A erit1) = fleis ® il en-1 D6 - f (el,z ® o

Hf(en— 1,4 ®ﬂ[i] el,‘l+l) - 'Yolf(en,t ® [-] el,s+l) = C14 ([)1] b = C3,i ([]‘]7[11
c2i ([;]ﬂ ,.‘7([)}7“ (c1,i — €3, + €2 — €ai) [']ﬂm
Also fAx(e1; ®p, . e1i1) = flers ®pp en-14)B1 + B f(en-14 ® g

e1i+1)—f (e1,i®a[':1_2en_2)a£‘;]_3 -+ ol)— El-zf (en—24® 1 sen—S,i)an_4 e ag’]—

—afl, - oflf (e24®,meri+1) = e1 il 4oy B0 B1 —d,, 50l , - all—
—diioll g ool = (e + cap — dnag — ... — di)BPBY.
And fAz(e2:®p, €n-14+1) = f(€2:®, 1 el,i+1)ﬁo+1]+a1] fleri+1®gen
en-1i+1) = dl*'a[l‘]ﬂ[w bt eI = (d1i + eripn)adl g = 0
fAz(e2:8y3, enit1) = fle24®, [-1e1,,-+1)73' Hliofly (e1i41® pi+11€n,i+1) =
dl,aall’]'y([,+ 4 03,.+1a['] li+1] _ (d1,. + e3ir1) a[] ([)i+1] _o,
fAz(en—1; ®yz, . En-2 i+1) = flen—1, ®ﬁ{"] €1 +1)agi;] + ﬁgil flerir ®a£f‘_”§]

en—2,+1) = C2, gz] ?:;1 + dn—2 i+h6[i] kié] =0,

-fA2(en,'l ®f2 en—2,‘;+1) = f(en,; ® [t] 61,,+1)a£1:;] + ’Yl]f(el,‘l"'l ® (‘_’_1]
en—-2,‘i+l) = C4,t'7£t] E:t;] + dn—-2,1+1'7£‘] kt;] =0,

fAz(en-1i® g, enit1) = flen-14 Bgia erirt) T+ B f(ei41 ® i+
eni+1) = 2P 3 ([; H +€3i+1 ﬂiﬂ'ﬁ[; R 0,
fAz(en; ®f, en-14+1) = fleni ® o el,i+1)ﬂ([;+l] + ')'Pf (e1,i+1 ®ﬁ([,.-+1]
en—1,+1) = ,sz]ﬂ({)+ ] + 11 ['] ﬁ["*'l] =0.
For k € {2,...,n — 3}, fAz(er+1, ®f§.k,a erit1) = flert1,i ®a;:,] exs)
ol .. oflafitlL . ot Gl fleri®y leh—l,i)ag]_2 o olilafHll Ll
... ollalt]]... ofit] . o erin) = digallal] ... ol
oy apan 1 f(ert1i1 ®°L'+1] erit1) = driog o 0

ot ol g, a“ag 1ag:] ol of bt diigaad] ol
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aﬁf;] ['H] ['_H] = (dii+dr—1i+ - -+di ,+1)a;‘] agc]_ e agi]aﬁf;] - aE'H]
=0.

Hence fAz(e14 ®, €1 +1) = (cri—c3i+c2—ca;3)B) H c:ﬂ([)i] ﬂ{i] and
fAxe1i®p, erit1) =(criteyi—dnoi—...— dl,.)ﬂ([;] ﬁ['] ' ﬂ([;'] A for

somec,c" € K Moreover f A, takes every other 1dempotent o(ff, ) ®t(f2 i)
with j # 1 to zero. So dimImd; = 2s.

To find Ker ds we consider separately the cases s = 1 and s > 2.
Kerds for s > 2.

To find Kerds, we have d3 : Hom(Q?,A) — Hom(Q3,A). Let h € Kerds,
so h € Hom(Q? A) and d3h = 0. Then, as s > 2, themap h: Q%2 - A is
given by

h(e1; ®¢2 s eli+1) = Cl,tﬁ([]]ﬂ[z]

hler ®gz,  eriv1) = ey Sl

h‘(°(f2,g,t) ®f2 (f2,_1,1)) = 0 for J € {1 6} and

h(o(fars) ®2, Uf3xs)) =0, for k€ {2,...,n -3}

for some c14,¢2; € K, wherei € {0,...,5—1}. Hence dim Hom(Q?, A) = 2s.
Note that Imd; C Kerds C Hom(Q% A). So since dimImd,

= dim Hom(Q?, A) = 2s then dim Ker d3 = 2s so Imdy = Ker d;. Therefore
HHZ(A) = 0.

Kerds for s = 1. We write § and f;, to indicate 619 and fa.p,0 TeSPECtively
for an arrow é in Q(Dj, s) since there is no confusion here. The algebra
(Dr,1,1) is given by the quiver Q(D,1):
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Qan—2
n—2
an-3 Bo
VR
n—3 n-1 n 1
mn
4
2
a1

Recall from the beginning of the chapter that for s = 1 the minimal

relations are

2 2
fi1 = BobBr — vomn, fi2 = Pob1 — an—20n-3- - 201,

fg,l = a1 o, fig = 0170,
f33 = Pron-2, f24=m0n_3,
f25 = B0, f36 =mBo and

fik:ak---alan_g---ak, for k ={2,...,n— 3}

and the set f3 is

{fls,li f13,2’ fisa f13,4, fifn f13,6’ fi"h fg,sv f23,m}1 with m € {4’ ey 2} where



f‘?l = f12,2an——2an—3 = ﬂ0f22,3an—3 - an—2f:¥,n—37

fia = fian = Bofls—0f2s

fi"3 = f12,1.30_f12,2»30 = an-2°~a2f2,1—7of226,

e o= o = Bofis—an—z---cafly,

fi’,s = f22,1ﬁ1 - f'iz')/l = alfli,l,

fie = fisan-s--on—fiem = BifE—Pifia

B = Beb—faons-a = mfl,

s = fle = aaf} B — e fl,,

f3m = fim-10m—2 = am-1fim_g forme{4,...,n—2}.

We have d3 : Hom(Q?, A) — Hom(Q3 A). Let h € Kerds, so h €
Hom(Q?,A) and d3h = 0. Then h : Q? — A is given by

h(e1 ® 2 e1) = cie1 + c205,

h(e1 ®y2, €1) = cse1 + caBofr,
h(o(3;) ®p, H(f3)) =0, for j € {1,...,6} and
h’(o(f32,k) ®f32,k t(.f32,k)) = dyoyg, fork € {2) ceey 3}
for some ¢, ¢z, c3,c4,dx € K. Hence dim Hom(Q?,A) = n.

Recall the definition of the map A3 from Definition 3.1. Then hA3z(e1® 2,
en-3) = h(el®flz,2 an—-2an—3"[ﬁo®f2”3 Qn_3—0p_2® f;?,n-ae""i*]) = h(e; ®s2,
el)an—2an-—3“ﬂoh(en—l®fgsen—2)an—3+an—2h(en—2®f32m_3 en—3) = (0361"‘
cafofr)an—20m-3 — 0 + dn-30n—20,-3 = (c3 + dn—3)on—20n-3. As h €
Kerds,c3 + dn—3 = 0.

hAz(e1® 2 en—2) = h(e1® flﬂ,lel)an—2—ﬂoh(en—l ®, en—2)+vh(en® .
en—2) = (c1€1 + c2B0P1)an—2 = cran—2, so c1 = 0.

hA3(ex ®f13’3en—1) = h(el®flﬁ'lel)ﬂ0—h(el® ff’zel)ﬂo_an—‘;’ -~ ogh(ea®p2
en-1) + Yoh(en @2 en_1) = (c1e1 + c25061)Bo — (czer + cae15061)B0 =
(c1 — ¢3)Bo- So we have ¢; — c3 = 0 and ¢; = c3. As ¢; = 0 it follows that
c3 = 0 and therefore d,,—3 = 0.

hAs(e1®53 en) = h(e1® 2 e1)10—Boh(en-18sz €n)+an-2- - czh(e2®yz,

en) = (cze1 + caBoPr)yo = c3y0. We already know c3 = 0, so this gives no
new information.
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Simila.rly, hA3(e2®ff,5el) = h(e2®f22,x en—l)ﬁl —h(eg®fg’2en)71—alh(el®fla’1
e1) = —ca,

hAs(en-1 ®p3, €1) = h(en—1 @, en-2)an-3an-q---a1 — hien1 &,
en)m — Brh(er ®f12’1 e1) + Bih(e ®fi2 e1) = —c1b1 + c3f1 = (es — 1),

hAz(en ®fi7 e1) = h(en ®f'3.6 en-1)61 — h(e, ®f22'4 €n—2)Qn_3--Q; —
v1h(ey ®s2, e1) = —7(cser + c4BofB1) = —csm, all give no new informa-
tion.

hAsz(e3® £ e1) =h(e3® fa e2)ar —azh(e2® 2 en—1)01 — a2a2h(e1 ® 2,
e1) = daonay — 0 — az2a1(cser + cafoB1) = (d2 — c3)a2cn. Thus we have
da —c3 =0. As c3 =0, it follows that d; = 0.

Finally for m € {4,...,n — 2}, we have hAs(en B em—2)
= h(em®f33‘m_lem—l)am-2_am—lh(em——l®fg‘m_2 em—2) = dm—-10m—1Qm—2—
dm—20m-10m—2 = (dm-1 — dm_2)m_1am—2. Then dr,_1 — d—2 = 0 and
80 dm—1 = dm—9. Hence dy,—3 = d,—4 = ... = d3 = d2. We already have
dn-3=0anddy=0sody=0fork=2,...,n—3.

Thus h is given by

h(e1 ®y3  e1) = c2fofr,

h(ex ®rz, e1) = c4fobh,
h(o(f3;) ®g (f3;)) =0, for j € {1,...,6} and
ho(f24) ®, (F20) = 0, for k € {2,...,n — 3}

for some c2,c4 € K and so dimKerds = 2.

We recall that dimImd, = 23 = 2. Therefore dim HH?(A) =2 —2=0.
Theorem 4.3. For A = A(Dy,s,1) withn > 4,s > 1 we have HH2(A) = 0.
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5. VANISHING OF HH?(A)

In chapter 4 we showed that HH?(A) = 0 for A of type (Dy,s,1) with
s > 1. Together with Section 3 of [15], which gives some sufficient conditions
for the vanishing of HH2(A), this motivates new results on the vanishing of
HH?(A) which may be applied to some of the self-injective algebras of finite
representation type. Throughout A = KQ/I is a finite dimensional algebra
over the algebraically closed field K where I is an admissible ideal with
a minimal set of uniform relations f2 = {fZ,...,f%}. Note that we may
choose each relation to be uniform, that is, for each relation f2 there are
some vertices v, w such that f2 = vf? and f? = f?w.

We start by recalling some definitions from Section 3 of [15] and from the
theory of Grobner bases (see [15] and [14]).

A length-lexicographic order > on the paths of Q is an arbitrary linear
order of both the vertices and the arrows of Q, so that any vertex is smaller
than any path of length at least one. For paths p and ¢, both not vertices,
we define p > ¢ if the length of p is greater than the length of ¢g. If the
lengths are equal, say p =a;---a; and ¢ = b; - - - by where the a; and b; are
arrows, then we say p > ¢ if there is an 7,0 < i < t — 1, such that a; = b;
for j <7 but a;4+1 > biys.

Let f be an element in KQ written as a linear combination of paths
> j=1¢ip; with ¢; € K\{0} and paths p;. Following [15], we say a path p
occurs in f if p = p; for some j.

Definition 5.1. Fix a length-lexicographic order on a quiver Q. Let f be
a non-zero element of KQ. Let tip(f) denote the largest path occuring in
f- Then

Tip(I) = {tip(f)|f € I\{0}}-

Define NonTip(I) to be the set of paths in KQ that are not in Tip(I).
Note that for vertices v and w, vNonTip(])w is a K-basis of paths for vAw.
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Definition 5.2. [15, Definition 3.1] The boundary of f2, denoted by Bdy(f?),
is defined to be the set

Bdy(f?) = {(o(f1), {fD)); - -, (o(fm), UFm)} = {(o(2), t(z))|= € £7}.
Definition 5.3. [15, Definition 3.3] Let G2 = |JuNonTip(I)w, where the
union is taken over all (v, w) in Bdy(f?).

We consider now elements of Hom(Q?, A).

Definition 5.4. (15, Definition 3.4] For p in G? and = € 2 with o(z) = o(p)
and t(z) = t(p), define ¢, , : @ — A to be the A°-homomorphism given by

o(£2) ® t(f2) { p iff=s

otherwise.

Let d; : Hom(Q',A) — Hom(Q? A) be the map induced by A2. Each
element of HH?(A) may be represented by a map in Hom(Q?, A) and so is
represented by a linear combination over K of maps ¢p .. If every ¢, is
in Im dy then Hom(Q?,A) = Imd, and hence HH?(A) = 0. Our strategy in
Theorem 5.11 is to show that HH?(A) = 0 for certain self-injective algebras
of finite representation type by showing that every ¢, is in Imd,.

First we return to [15] and modify [15, Definition 3.6].

Definition 5.5. Let X be a set of paths in KQ. Define
Lo(X) = {p € X|3 some arrow a which occurs in p and
which does not occur in any element of X\{p}}.
For p € Lo(X), we call such an a an arrow associated to p.

Define L;(X) for i € N by
i-1

Li(X) = Lo(X\ | L;(X)).

=0
Definition 5.8. [15, Definition 3.9] Let X be a set of paths in NonTip(I).
The arrows are said to separate X if X = |J;5q Li(X).

Now we will state the main Theorem of [15].
Theorem 5.7. [15, Theorem 3.10] Let X = G2 and suppose that the arrows
separate X. Suppose further that for all (v,w) € Bdy(f?) there is some
z = vzw € f2? and constants c,; € K\{0} such that vf?w = {tip(z) +
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> picoNonTip(I)w C=,iPi}- For each path p in X, let ap be an arrow associated
to p and let s, be the number of occurrences of ap, in p. Suppose that char K
does not divide s, for all p € X. Then every element of Hom(Q?,A) is
a coboundary, that is, ¢p, € Imdy for all p € G? and x € f2. Thus
HH?(A) = 0.

Theorem 5.7 was used in [15] to determine HH?(A) for the self-injective
Mobius algebras of finite representation type A,,. We state Theorem 4.2 of
[15] with the notation of [2] which we have given in chapter 3.

Theorem 5.8. [15, Theorem 4.2] For the Mdbius algebra M, , we have
HH?(M,,) = 0 ezcept when p=1 and s = 1.

From [15], if p =1 and s = 1 then M, , is the preprojective algebra of
type Az. In [10, 7.2.1}, a basis for the Hochschild cohomology groups of
the algebras of type A, is given. Using [10, 7.2.1] with n = 3 we have the

following proposition.

Proposition 5.9. For the Mobius algebra M,, withp =1 and s = 1 we
have dim HH2(M,,) = 1.

Self-injective algebras of finite representation type A, fall into two types.
They are the Mébius algebras M, , above, and the self-injective Nakayama
algebras. In [9], the dimension of HH?/(A) is given for a self-injective
Nakayama algebra for all j > 1. In particular this gives us HH?(A) when
j = 1. The self-injective Nakayama algebra A(A,, s/n,1) of [2] is the algebra
B+l of [9]. Write n+ 1 = ms + r where 0 < r < s. From [9], with j =1,
we have the following result.

Proposition 5.10. [9, Proposition 4.4] For A = A(An,s/n,1), we have
dim HH?(A) = m.

Thus we need now to determine HH?(A) for the algebras of type D, and

Eg 8.
For the algebras A(Dy, s,1), A(Dp, 8,2) withn > 4, A(Dy, s,3), A(D3m, 3/3,1)
with m > 2 and 3 { s, A(E,, s, 1) with n € {6,7,8} and A(Es,s,2) all for
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s > 1, Theorem 5.7 does not apply since there is some £ = vzw € f2 such
that jvf2w| > 1.

Motivated by Theorem 5.7 we give a new theorem on the vanishing of
HH?(A) which we will show applies to all these algebras when s > 2. (We
will consider the case s = 1 later.)

Theorem 5.11. Suppose that for all (v,w) € Bdy(f?) either vAw = {0}
or there is some path p such that vNonTip(I)w = {p}. If vAw # 0 suppose
further that vf?w = {p—q1,...,p — a:} for paths q,...,q:. Thus we may
write G2 = {p1,...,pr}, where for eachi =1,...,r, we have non-zero paths
@1+ -+ > Gitg with o(ps) f24(pi) = {pi — @irs .., i — Git,}-

LetY = {p;,...,Pr,Gij|1 <1 <7,1<j<t}. Suppose that Lo(Y) =Y.
Let a;; be an arrow associated to q;; and assume that a;; occurs only once
in the path ¢;;. Then every element of Hom(Q?, A) is a coboundary, that is,
$p,z € Imdy for all p € G2 and z € f2, and thus HH?(A) = 0.

Proof. 1t is enough to show that each element ¢y, , of Hom(Q?, A) where pisa
path in G2 and z € f? with o(z) = o(p) and t(z) = t(p), is a coboundary. By
hypothesis G2 = {pi,...,p,}. Note that the paths p,...,p, are distinct.
Consider the path p; where i € {1,...,7}. Then by hypothesis there are
vertices v;, w; with v;NonTip(I)w; = {p;} and v;f?w; = {p; — ¢i1,...,Pi —
¢it;}. Thus if z € f2 and o(z) = o(p;) and t(x) = t(p;) then = € v; f2w;.
Thus z € {p; — gi1,--.,0i — git,}- Consider z = p; — ¢;; where j € {1,...,%}.
The map ¢y, - : @2 = A is given by

oo~ { B

We have Y = {p1,...,pr,¢j|]1 <1 <11 < j<t}and Y = Lo(Y) so

gij € Lo(Y). Therefore there exists some arrow a;; which occurs in ¢;; and

if f2 =g,
otherwise.

does not occur in any element of Y'\{g;;}.

Define ¥ : Q1 — A by
—, if a= ai i
LCLTYCTER Pty

Now we want to show that ¥A2 = ¢p, .. Take o(fZ) ® t(fZ) € Q2. We
start by finding 9 A(o(f2) ® t(f2)) by considering two cases.
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Case f2 =z.

Here, we have 9 A2(0(f2) ® t(f2)) = ¥ A2(o(z) ® t(z)), where = = p; — g¢;;
and ¢;; = p1a;jp2 for paths py,p2 such that a;; does not occur in p; or
p2 since a;; occurs only once in ¢;; by hypothesis. Let p; = 01--- 01,01 =
€1 €n,p2 = by by, where o’s, €'s, b’s are arrows. Then Y Az(o(z) ®
t(z)) =

P[(0(2) @y (02°+-01) + 01 ®0, (932 01) + -+ + (0102 - - 011 By, H())—

(0(x) @, (€2« - €n)aijp2 + €1 B¢, (€3 - €n)aijp2 + -+ + (€162 - €n—1) O,
aijp2 + p1 Qa;; P2 + P16ij By (b2 bm) + praib1 Qp, (b3---bm) + -+ +
1835(b1bs - - - bn-1) ®s,, H2))]-

As ¢;j,pi € Y = Lo(Y) and a;; occurs in ¢;5, we have that a;; does not
occur in p;. So a;; is not equal to any of the o’s, €’s or b’s. Therefore

Y Az(o(z) ® t())

= —9(; ®Ba;; p2)

= —p19(t(p1) ®ay; 0(p2))p2

= —p1¥(0(ai;) ®ay; Haij))p2

= P18ijp2 = Qij-

Case f? # z.

We consider the cases o f2)At(f2) = 0 and o(f2)At(f7) # 0.

a) If o(f2)At(fZ) = 0 then PA>(o(f2) ® H(fR)) = o(fF)YA(o(fF) ®
t(FRUSE) = 0 as $A2(0(f7) ® t(f2)) € A and o(f)At(fZ) = 0.

b) If o(fZ)At(f2) # 0 then o(fZ)At(f?) = Sp{p.}, the vector space
spanned by p,, for some 1 < u < r. Hence f,f = py — qy for some 1 <[ < ty,.

We have Lo(Y) = Y so a;j does not occur in any element of Y'\{g;;}.

Suppose for contradiction that a;j occurs in gy, so that g, = ¢;; as paths
in KQ. Then

o(f2) = o(qu) = o(gi;) = o()
and

t(f2) = t{qu) = Hgi;) = t(e).
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Therefore, o(fZ)At(f2) = o(z)At(z) = Sp{p:}. Hence, p, = p; by the
choice of G2. Therefore, f2 = p, — gu = pi — ¢;j = =. This gives a contra-
diction since we assumed f,f # z. Hence a;; does not occur in gy.

Now suppose for contradiction that a;; occurs in p, so that p, = gij as
paths in KQ. Then

o(f2) = o(pu) = o(qij) = o()
and
Hf2) = tpu) = t(g;) = t(z).
Therefore, Sp{p.} = o(f2)At(f2) = o(z)At(z) = Sp{p;}. Therefore, p, =
p; by the choice of G2. Hence p; = p, = ¢;; in KQ. So p; —¢;j =0in KQ.
This contradicts p; — ¢;; being a minimal generator of I. Therefore, a;; does

not occur in p,.
Thus a;; does not occur in fZ. So Y Az(o(f2) ® t(f2)) = 0.

Hence A3 is the map

(@) { &

if f2 =g,
otherwise.

As p; — ¢ij € f?, we know that p; = ¢;; in A. Hence YA = ¢p, .-
Thus ¢y, -, and hence each element of Hom(Q?, A), is a coboundary. Hence
HH2(A) = 0. O

We now want to apply Theorem 5.11. So we need minimal relations for
each algebra in Asashiba’s list. We consider the standard algebras in this
chapter. Theorem 5.11 does not apply to the nonstandard algebras and so

we consider the nonstandard case separately in Chapter 11.

5.12. A(Dy,s,2).
Recall the quiver and relations from 2.28. We need a set f2 of minimal

relations but note that R(D;, s,2) is not minimal. So now we will discard

some of the relations of R(D,, s,2) to give a minimal set.
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All relations of type (ii) are in f2 For relations of type (i), let ﬂ([;]ﬂg’.] -
Aol € 2 and QA — ol ol ...ollall € 2 foric {0,...,5—1).

We now ‘consider the relatlons of type (111) Now (881l 'yo']'y[’]) s -
(BH B Bl 1y € 1 and gAY € I forall i € {0, ..., s—2).
Therefore 'y[']'y?]'y[“'l] € I and so is not in f2 for all i € {0,...,s — 2}.
Similarly we can show that B[']ﬂ[']ﬂ[”"l] [’]ﬁ[’“]ﬂ["”] and 'y[’] ["H] [’+1]
are not in f2 for i € {0,...,s — 2}.

Now consider the path ﬁ([,’_l] ,Bg’—ll'ytl,ol. Here we have (ﬂ([)"—ll ,3{’-1] - 'y([,"'ll

ety l0) _ glagle-tl 0] _ et fe=1] (0 & p g ol feal ol ¢ p
Therefore B[' l]ﬂ['—ll 0 ¢ and 8o is not in f2. Similarly we can show
that Alr~Ul-140, ;a 1100000 g 69500 are not in £2.

Now conmder “a-paths”. We have B[i],B[i] [i] [’] ['] [1‘] € f2
So ( ﬂ["] ﬂ[‘] ['] ['] ) ['] [']) a['+;] e I and ’3[1] ﬁ['] [ti';] ¢ I. There-
fore (am 31_3 [2'] g’])akt;] € I and is not in f2. Also a[i—”(,@[i]ﬂ[i]

ol oll .. ooy  Tand af Va6 € 1. SoaliTall all ... ool ¢
I and is not in f2 for i € {0,...,s — 1}.

However, the path a[;]a[f]aﬁf;] e aliﬂ] for i € {0,...,8 — 1} cannot be
obtained from any other relations, so ag]ag'] [H'l] [2i+1] € f%. More
generally, aglagl_l---as:ﬂ]azﬂl € f2forie {0,... ,8 — 1} and for k =
{2,...,n — 3}. So we have the following proposition.

Proposition 5.13. For A = A(D,, s,2) with s > 2, let

for allie {0,...,s—-1},

=058 -, A= A8 - allall - oflad,

A
I )
for alli € {0,...,s -2},
Boi=B0%, fRei =801,
fars-1= [’_llﬁ[ol f38,0-1= ‘/gs 1]7([)0],

forie{0,...,8—-1},

s = ol allaftl o for k= (2,0 - 3).
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Then f2 = {.f12,1,is f12,2,is .f22,1,i, f22,2,ia .f22,3,g‘7 .f22,4,i fOT 1= 0; ceey 8 — 1} U {f22,5,1'a
frgifori=0,...,8 =2} U{f37, 1,f38s 1} U{fis; fori=0,...,s—1
and k =2,...,n — 3} is a minimal set of relations.

In the case s = 1, we write § and f7, to indicate 61 and fap o respectively
for an arrow 4 in Q(D,, s) since there is no confusion here. The relations
for the algebra A(D,,1,2) are R(Dy,,1,2) as follows.

(i) an—20n-3- - aaa1 = B = yom,

(ii)
a1 =0, ayy =0,
fran—2 =0, Top-2 =0,
B1Bo = 0, 7Y =0,

(iii) “a-paths” of length n — 1 are equal to 0,
BoPryo =0, Yomfo =0,

Brvomn =0, mBofr = 0.

Note that R(Dp,1,2) is not minimal. So now we will discard some of the
relations of R(Dy,1,2) to give a minimal set f2.

All relations of type (ii) are in f2. For relations of type (i), let Go1 —
Yom € f? and BoP1 — an—20n-3--- a2 € f2.

We now consider the relations of type (iii). First consider “a-paths”. We
have Bof1 —Qn—204_3 -+ - azay € f2. So (Bof1—an—20m-3 - azn)an_z € I
and BoBran—2 € I. Therefore an_20m,_3- -+ aaa10m_2 € I and is not in f2.
Also a1(Bof1—0n—2an-3+ - azcn) € I and 01891 € I. Soran_20n-3--- a2
o1 € I and is not in f2.

However, the path asajan—_2---as cannot be obtained from any other
relations, so aza10y,_g -+ az € f2. More generally, apag—1 - Q10 € f?
for k € {2,...,n — 3}. It is easy to see that the other relations of type (iii)

are not in f2. So we have the following proposition for s = 1.
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Proposition 5.14. For A = A(D,,,1,2), let

21 = BoBr — Yo, fia=BoP1 — on—20m_3- - azan,

f21=o1po, f24 = c1,
f33 = Pran—a, f24=mo0n_2,
f25 = B1fo, f26 =m0 and

f32,k=ak~--a1a,._2---ak, forke{2,...,n—3}.

Then f2 = {f12,1’f12,2a f22,11 f22,2’ .f22,3a f22,4) f22,51 f22,67 .f32,k fork=2,...,n— 3}
18 a minimal set of relations.

5.15. A(D4, 3,3).

Recall the quiver and relations from 2.29. We need a set f2? of minimal
relations but note that R(Dy, s, 3) is not minimal. So now we will discard
some of the relations of R(Dy,s,3) to give a minimal set. All relations of
type (ii) are in f2. For relations of type (i) let ﬂ([,i] {i] - 7([,‘17?] € f? and
ﬂg]ﬂ?] - ag]agi] € f2forallic {0,...,5s—1}.

We now consider the relations of type (iii). Consider first “g-paths”. So
(A58~~~ A8 i85 € 1 {1 e 1
for all 2 € {0,...,s — 1}. Therefore ﬂglﬂgi]ﬁg“] € I and is not in f2 for
all i € {0,...,s — 1}. We also have gl (gl — /l1yl) — gli-1glighl _
ﬂ%’._ll'yg]ﬂﬂ € I and ,6{"‘”7([;'17?] € I for all i € {0,...,s8 — 2}. Therefore
ﬁy—llﬁg}ﬂgﬂ € Iforalli€ {0,...,s—2} and is not in f2 for all ¢ € {0,...,s—
2}. So A8l ¢ f2.

Now consider “y-paths”. We have (B([)i ] ,3%"] - 'y([,i | 7{"] )'y([,i 1 _ ﬁ([)i ]ﬂ([,i ]'y([,i Hl_
7([,i]7£i]7([:+1] € I and ﬁg]ﬂ£i17g+1] € I for all i € {0,...,s8 — 2}. Therefore
7([;']7?]7{,‘*” € I and is not in f2 for all i € {0,...,s — 2} but 7{"”7},"] €
f2. Therefore 7([,‘17?]7};'*” € I and is not in f2 for all i € {0,...,5 — 1}.
We alo v {8 — o) = {58 {0 ¢ 1 ane
7{i_1]ﬂ([)i]ﬂ£i] € I for all i € {0,...,s — 1}. Therefore 7&{—1]7([;']7?] € I for all
i€{0,...,5—1} and is not in f2 for all i € {0,..., s — 1}. Similarly we can

show that for “a-paths” neither ag]agi]ag“] nor a[l’—llagjlallol are in f2.
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Now we consider the other possible paths of length 3. We have 'y['] bl ﬂ[ﬂ'l]
in I and is not in f2 since 7['][3["”] € f2foralli € {0,...,s—1}. Similarly we
can easly see that non of a[‘] ['] ['HI g J ﬁ?] ag+1] , agi]'y?"'l] 7?"’1] , ,B{i] ag +1]a[1i+1]
or 'yg']ﬁ([,’“]ﬂ{'“] are in f2 for a.ll i€ {0,...,s—1}.

We also have 'y([,']'y[']a([,'“] € I and is not in f2 for all i € {0,...,s — 2}.
Therefore, 7, [’ 1 [' 1 E,°] € f%. Similarly we can easly see that non of
oliall ﬂ[a+11 ﬂm ﬂm B Gt gl gl B o] B[] ]
in f2 for all i € {0,...,5 — 2}. Hence off Yol Bl 1l

['—113[0][3[0], {’_llfy([,olfy[o] and 'y[’ 1 [01 [0] are in f2. So we have the fol-
lowing proposition.
Proposition 5.16. For A = A(Dy,s,3) with s > 2, let
Jorallic {0,...,5—-1}:

f12,1,; ﬂmﬂw 'Yg]fyi'], f, 24 ﬂ[’]ﬁ[‘] a‘[;] a[t],

f2 24 = 01]’)’{&1]

fas =85,
for alli € {0,...,8—2}:
Bas=ollBt,  Bee= T,

f2 14 = H [‘H-l] )

2 6s = ,Ylt] a[’+1]
fars-1= 7£s-1]7([)o], fag,8-1= [8_1]»3[0],
2 901 = [s—ll [0]
Fram =BT, f2a0m1 = of Nl g,
3 dys—1 = ﬂ["'llﬂ[’—l] [0] fis,1= aﬁ"”ﬁ},"]ﬂ?] and
fi6e-1= e, e =1 "ol
Then f2 = {f} 1,6 i} 12,87 13 1,40 13 12,87 f2 g4 fori=0,...,8— 1}u {f22,4,¢’ f22,5,i’

2 2
f2,6,i fori=0,... ,3"2}U{f2,7,a-1a -f2,8,s—lv f2,9,s—1, f3,1,a—1’ f32,s-1 fg,S,s—l’
f32,4,3_1, f32,5,,_1, f32,6’,,1} is a minimal set of relations.

Consider s = 1. We write § and f7, to indicate 61 and fa.p,0 Tespectively
since there is no confusion here. The relations R(Dj4, 1, 3) is given as follows:



(i)
Bobr = yom = agon,
(i)
Prag = 0, a1 = 0,
1Bo = 0, 7Y =0,
B1Bo = 0, arog = 0,
(iii) paths of length 3 are equal to 0.

It is easy to see from Proposition 5.16 that the set of minimal relations

f? when s = 1 is different. It is given in the next proposition.

Proposition 5.17. For A = A(D4,1,3), let
11 = Bobr — vom, f2 = BoBr — o,

f22,1 = fray, f22,2 = a1,
f23 = nPo,
f§,4 = 7170, f§,5 = (18 and
f2¢ = au0o.

Then .f2 = {flz,la f12,21 f22,11.f22,2’ f22,3) f22,4) f22,57 f22,6} is a minimal set Of rela-

tions.

5.18. A(D3m,3/3,1).

We recall the quiver and relations from 2.30. We need a set f? of minimal
relations but note that R(Dsy,,s/3,1) is not minimal. So we discard some
of the relations of R(Djsy,,s/3,1) to give a minimal set.

Relations of type (i) and (ii) are in f2.

We now consider the relations of type (iii). If j = 1 we have a? 1. aﬂﬁﬂ.g
a[f 3= ﬂiﬂi+lﬂi+2a¥+3] = &a&‘ . a?:l]agi 8l er.80 agi] co-ald i+20¢[1i+3]
€ I and is not in f2. Similarly if j = m then it can be shown that

ol ,~+2a[1i+3] .-l ¢ I and is not in f2.
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However, the paths a.[;] cee agﬂﬂ,-.,.gag”s] .o ag-i+3]Vj €{2,...,m—1} can-
not be obtained from any other relations, so a?l ‘oo aﬂﬂi.,.ga[l”a] cee a£i+3] €
f2Vj € {2,...,m — 1}. So we have the following proposition.

Proposition 5.19. For A = A(Ds,,,8/3,1) with 8 > 1, let for all i €

{1,...,s}
fi=Bbu—ofl ol f=allal",
f3i5= a[']  allBiy2alt .. a?*'s] forallj € {2,....m— 1.

Then f? = {fl,,-,fz’,-,fg,,-,j Jorj=2,....m—1landfori=1,...,8} isa
minimal set of relations.

5.20. A(E,,s,1).

Recall the quiver and relation from 2.31. We need a set f2 of minimal
relations but note that R(E,, s, 1) is not minimal. So we discard some of
the relations of R(E,,s,1) to give a minimal set. Throughout this part
i € {0,...,8 — 1}.All relations of type (ii) are in f2. For relations of type
(i) let 63']ﬁ[']ﬂl’] Ay € 72 and B EAY — ol al! ... ol € f2 for all
ie{0,...,s—1}.

We now consider the relations of type (iii) and start by considering “a

paths”. We have 6;5:] ﬁg] ﬁ[i] [’] ['] . [i] ['] € f2. So (B [1] (4] ﬁ[i] _
E:l_aagl_‘,- . [i] [i])agf;] el and ﬂ[’]ﬁ[']ﬂ['] [’+1] € I. Therefore the rela-

tion a['] [i]_ . ['] ['] [’H] € I and is not in f2 Also a[’ 1] (ﬁ[']ﬂ[']ﬁ[’] -

ol il - afloll € 1 and o444 € 1. Soololl sal .ol
€ I and not in f2.

However, the path ag]a[l‘] &f;] !;'“]
other relations, so a[']a[']a[”l] [2”'1] € f2. More generally, the relation

[']a;:] 17" [H'l] ['+1] € fPforke{2,...,n—4}.

Now cons1der “ﬂ paths” of length 4. We have (G5 [’] [ ﬁ["] —'y[i]'y[i] ),B[H'l]
,BM ﬁ[’] ﬁ[‘] ﬂ[ﬂ'l] é‘] {'] ﬂ;!;+1] e Iand ,Yg],yg'] '3[""1] € I. Therefore '3[1] ’3[1] ’3[1] ,3["*'1]
€ I and is not in f2. We also have ﬁg'—ll(ﬁ:[;] [‘]ﬁ[’ 7[’]7[’]) = ,6[’ I]ﬂ[’]ﬂ[']ﬂ[’]——
B4 ¢ 1 and A4 € 1. Therefore {15 A 6 € I and is
not in f2.

cannot be obtained from any
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However, the path ﬂg _llﬂy_llﬂg ],Bg] cannot be obtained from any other
relations, so A _I]B{i_llﬁglﬂg] € f2.

Now consider “y-paths” of length 3. We have (B:[,i 1 ﬁg ] ﬁgi] - 73' 17?])75 -
B g0 gl 1B BB+ ¢ 7 ang o166 6B+ ¢ T Therefore, NN
€ I and is ot in f2. We also have y"~1) (8l g1 Yl L lily = Lli-1] glil glil gl
1{“”7517@ € I and ﬂ"‘”ﬂ@ﬂé‘%{"’ € I. Therfore, 'y{i_ll'yg]'yf] € I and is
not in f2.

So the elements of f2 is given in the following proposition.

Proposition 5.21. For A = A(E,,s,1) withs > 1 and for alli € {0,...,s—
1}, let

Flas = BB8 o, =600 — all ol , ... ablald,
fiii= oll ﬂﬁ‘“’, f2a;= ol
fiai= Hlalty, faai= By,
f 22,5,:‘ = 'Y?] aEfl“;‘, f22,6,i = ,Y[i] ﬁ£i+1],

f;;{k,,- = aE]aE]_I cee agi:]a;:“] forke{2,...,n—4} and
fhe= 501055

2 _ [¢2 2 2 2 2 2 2 2 2
Then f* = {fl,l,i’ -fl,2,i’ fz,l,i’f2,2,i’ f2,3,v faai f2,5,is fz,s,v f3g for ke {2...,

n— 4}, f2;} is a minimal set of relations.

5.22. A(FEs,s,2).

We recall the quiver and relations from 2.32. We need a set f? of minimal
relations but note that R(Fs, s,2) is not minimal. So now we will discard
some of the relations of R(Eg,s,2) to give a minimal set. All relations of
type (ii) are in f2. For relations of type (i) let ﬂ:[: ]ﬂglﬂy] - 7;"]7?] € f? and
ﬂg]ﬂglﬂ?] - g]ag]a?] € f2forallie{0,...,s—1}.

We now consider the relations of type (iii) and start with “y-paths” of
length 3. We have (88181 By ) 411 _ gl glil gl 1] _ B [+
I and ,B:[:] ,Bg]ﬂgi]'yg e Iforalli e {0,...,s~1}. Therefore, '7?]7?]7?“] el
for all i € {0,...,s — 1} and is not in f2. We also have 7{i—1](ﬂg]ﬂg]ﬂ¥] —
Ay = B — A0 € 1 and Af a0AE Y € 1 for an
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i€{0,...,8—1}. Therefore, v 1yl ¢ I forall i € {0,...,5—1} and is
not in f2.

Now consider “a-paths”. When j = 1 we have ,Bi]ﬂ[i]ﬂ[i] ag]a[;]a[f] €
2. So alli-ll(ﬁ:[)’il ﬂgl ﬁ[’] a:[;]a[']a[l’]) € I and C![%—1] ﬂ[t] '3[1] ﬂ[i] e I for all
i€ {0,...,s—2}. So a[l' 1] g] !;] 5‘] € I for all i € {0,...,8 — 2} and
is not in f2. Similarly if j = 3 it can be shown that a‘!;]a[z']a[;] [+ ¢ f
for all i € {0,...,8 — 2} and is not in f2. However, if j = 2 and s > 2
then the path ag]a[’]a[ﬂ"ll B+1] cannot be obtained from any other paths,
S0 a[i] [i] [i+1] ["H] € fiforallic {0,...,5 —2}.

Now con31der “ﬁ-paths” When j = 1 we have ,3[‘_1] (ﬂ[’] [']ﬂ[i] —75‘17{‘]) =
A pAA — 100 1 and I-yflfl € I for all i € {0,..., 0 -
1}. Therefore ﬂ?_l]ﬂg]ﬁg]ﬂm € I for all i € {0,...,s — 1} and is not in
2. So in particular A AL1BHBHY is not in f2 for all i € {0,...,s — 2}.
Similarly when j = 3 it can be shown that ﬂg]ﬂ[ﬂﬂi]ﬂﬁﬂl eI foralliec
{0,...,s — 1} and is not in f2. So in particular B[']ﬁ[’]ﬁ[']ﬂ[w"l] € I is not
in 2 for all ¢ € {0,...,s — 2}. However, if j = 2 and only if s > 2 then
the path ﬂ[i]ﬁgi]ﬁ:[: 'H]ﬁg 1 cannot be obtained from any other paths, so
A B gl i+t ¢ #2 for all i € {0, ..., s — 2}.

This leaves two relations of type (iii) to consider. Firstly consider the rela-
tion ag" -1, [1"1]ﬂ§°1 e ﬂﬂa =0.If j =1 we have ﬂ[o]ﬁ B[O] - 7£°]q£°‘ €
f2. So a[;“](ﬁ§°lﬁ£°1ﬂ£°] - 75’17501) € I and a[’ 1]7£°1~,[°1 € I. Therefore,
a[l"”ﬂg’]ﬁg’]ﬁ?] € I and is not in f2. Similarly, when j = 3 we can show
that ag'—lla[;-lla[f—llﬁgol € I and is not in f2. However when j = 2 then
the path a!; _l]a[f_l]ﬁ:[,mﬂgol cannot be obtained from any other paths, so
a[;—l] 0[13—1] ,3;0] ﬂg)] € f2.

Finally consider the relation ,BJ[.’_I] ,B["I] 1, L-] =0.Ifj =1 we
have ﬂlol ﬂlol ﬂlol [0] [20]allol € 2. So ﬁgs-ll (8 gol ﬁg]] ﬁ£0] _ a[3°]a[2°]a£°]) el
and ﬂ[’“l]ﬁm}ﬁm,@[o] € I. Therefore, ﬁ%’_llagolagola?] € I and is not in f2.
Similarly, when j = 3 we can show that ﬂ["_llﬂ[’_llﬂ[’_ll O ¢ I and is
not in f2. However when j = 2 then the path g5 g*~"! [0] ol
obtained from any other paths, so ,3[" l]B[’ 1 [0] [0] € f2. So the elements

of f2 is given in the following proposition.

cannot be
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Proposition 5.23. For A = A(Es, s,2) with s > 2, let
Jorallie {0,...,s—1}:

f2 — gl ﬁ[;] ﬂ[tl 7£’]'7£'], ,f, 2 ﬂ['] ﬂ[,] ﬁ[t] :[;‘] a[;'] agi],

NON S il gl

_ 2
fari=m figi=o

Bos=old™,  fai= g,

and for alli € {0,...,5 — 2}

fg,s,i = agi]ﬂ:giﬂla f22,6,i = ﬂ%"]a? +1],
Braa=c ol gy, =60
fg,l" — a[‘] a[tl [z+1] [=+1] f32’2" ﬁlzl ﬁ[:] ﬂ[z+1] ﬂ[”l],
fsz’s’a__l = a[‘ 1 [s—l] 6[0] ﬂlﬂl’ fagr= £"“1] ﬁ[a—l] o] [o]-

Hence f? = {f} 1 a4 far10 Fo0 Foagr f3ag fori € {0,...5 —1}} U
{f35 f264> orie{0,... 18—2}}U{f37 -1 f38,s-1}U{f31, f2ay foric
{0,...,8—2}}U{f33,_1, f34,-1} is a minimal set of relations.

Consider s = 1. We write § and fa,p to indicate 5l% and fap,o Tespectively
since there is no confusion here. The set of minimal relations f2 when s = 1
is different from the case s > 2 above. The minimal relations for s = 1 is

given in the next proposition.

Proposition 5.24. Let A = A(Eg, 1,2), let
1 = BsPafr — yam, fia2 = BsBab1 — azazan,

f31=mas, f22=mps,
2 2

faz =y, f24 = Brye,
2

fis = aras, fa.6 = B1Ps,

31 = w1 fsfe, f33 = Bbrasas.
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2 _ [42 L
Hence f2 = {f{1, fl2: 31, F32: 33, F34r Fo5r FRer F31, f32} 15 @ minimal set
of relations.

We now apply Theorem 5.11 to the self-injective algebras of type D, and
Eg 78 using Propositions 5.13, 5.14, 5.16, 5.17, 5.19, 5.21, 5.23, 5.24.
For example consider the algebra A(D,,s,2) for s > 2. Fix an order on

the vertices and the arrows:

e > ai‘:_;] > ﬂ{’ 1]

and ,3[8 1 > €10 > €n—20 > " > €11 > €0 > €Cp_10 > > €1 s5-1 >
en—2,a-—1 > > €ns—-1> €p—1,5-1-
Then tip(f2, ) = tip(B5 By — 15 1i)) = 2+ and tip(f2, ) = tin(BY AL -
['] E:]_:, !;] [1']) = £:1_2 Ef]_3.--a£]a£’] for i = 0,...,8 — 1. For all
other f} € f* with f} # fl1 fia; we know that f? is a path in KQ
so tip(f7) = f?. In these cases o(f7)NonTip(I)t(f?) = {0}. Let v; =
o(f21:) = o(f3,;) and let w; = ¢(fF, ;) = H(f2,;) fori =0,...,8 — 1. Then
(vi,w;) € Bdy(f?) and v;NonTip(I)w; = {ﬂ([,']ﬁg']} foralli=0,...,5—1.So
let plil = BB for i =0,...,5—1. Then v; f2w; = {881 — 41441, gl gl —
ool - afloll} = (o — g g — g}, where ol = 7‘[;17[11, & =
['] ['] . a[zi] Bl With the notation of Theorem 5. 11, 6% = {8 ['],Bgll |i=
0 a1} and ¥ = (AAT A o o o oo e
1} = Lo(Y). Choose a,[i] = 'y[] and a[] = a[] so that a[i] and a[i] are ar-
3] [i]

rows associated to ¢;° and g;° respectively, and a[] occurs once in qgl for
j = 1,2. Then by applying Theorem 5.11, every element of Hom(Q?,A) is
a coboundary and so HH?(A) =

Similar arguments give the following corollary.

Corollary 5.25. Let A be one of the standard algebras A(D,,, s3,1), A(D,, 3,2)
for n > 4, A(Dy,s,3) , A(D3m,s/3,1) with m > 2,3 t s, A(Ep,s,1) with
n € {6,7,8} and A(Fs,s,2) and s > 2. Then HH?(A) = 0.

Remark. i) Theorem 5.11 does not apply if s = 1.
ii) Corollary 5.25 provides an alternative proof of our result (see Theorem
4.3) in Chapter 4 that HH?(A) = 0 for A = A(Dp, s,1) with s > 2.
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In the next chapters we will determine HH?(A) for the algebras A(Dy, s, 2),
A(Ds4, 8,3), A(D3m,s/3,1), A(Ep,s,1), A(Fg,8,1) when s = 1.



65
6. A(Dp,s,2)

In this chapter we calculate HH?(A) for A(D,,s,2) with n > 4,8 = 1.
It is known that HH2(A) = 0 for s > 2 from Theorem 5.11. We start by
recalling the algebra A(Dj, s,2) for all s > 1. From [2] and 2.4 in Chapter
2, the algebra A(D,, s,2) is given by the quiver Q(Dy,, s):

[s-1]
a3
O C———— .

ag.a -1]

ﬂgs—l]

“El—z

o] 7][.‘~ l] .o
0
ol 8
n—-3 7([)0]

o (e}

2 2
0‘[20] p[°] 7&01 ‘Y({) ) 6[2] aLl-s
1 4 e 0
o - o 2 [o} ! e] ) o
o \ / o
ﬁ([JI] ﬁ{”
(o]

"‘gl-z

1 1
AT

with relations R(D,, s,2):

(i) aﬁ]_2ag]_3---ag]a[lq = ﬂg]ﬂgi] = fyg]'ygi], for all 1 € {0,...,s—1} =
Z/(s),

(ii) for all i € {0,...,s — 1} = Z/(s),

=0, o<,
f]aﬁf;] =0, 7£i]a£:i—;] =0,

and for all i € {0,...,s — 2},
R

s =0, A=



(iif) “a-paths” of length n—1 are equal to 0, and for all i € {0,...,s—2},

A 0, A <o,
gl g+l glivtl _ o N N .
gl 0 _ o Aot gl _ o
B 0, oA =0

In the case s = 1, the algebra A(D,, 1, 2) is given by the quiver Q(D,,1):

Qn—-2

an-3 Bo
/y'(\
n—3 n—1 n 1
m
A
2
ai

with the minimal set of relations given in Proposition 5.14 as follows.

f2 = {f12,1a f12,21f22,1’ f22,21f22,3» f§,4’ f22,5a f22,6’ f32,k fork=2,...,n— 3} where

1 = Bobr — Yom, f3 = Bobr — an_20n_3 - a3en,
2
f22,1 = a1, f2,2 = 170,
2
f22,3 = fron-2, f2,4 = Y10n-2,

f25 = Brfo, f26 =m0 and
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f;%k:ak---alan_z---ak, forke {2,...,n—3}.

Next we need to find f3. This again can be done by looking at the
3rd projective in each of the minimal projective resolution of the simple
A-modules.

eiA eml, for2<m<n-2
1 m
/ \
n—1 n—2 n m—1
n—3
1
1 n-—2
n—3




en—1A enA
n—1 n
|
1 1
| |
n n—1

From the minimal projective resolution of each simple A-module we easily

see that:

Q3(32) = 1



69

For 3 < m < n — 2 we have,

Q3(Sm) = m—2
m-—3
1
n—2
m-—1
93(Sn_1) o

as

Q3(Sn)

iR

PN

For 23(S1) we need more details. We have the map
P en2A®e_1AD e A — Q(S])

given by:

€n—2 F> Op—2€n-2A,
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en—14 + Boen—14,

ené — Y0ené
where A, y1,€ € A. Note that 22(8;) = Ker .
Proposition 6.1. Q2(S) = (apn—3--- a1,—B1,0)A + (0, —B1,71)A.

Proof. On one hand, let z € 9%(S;). Then £ = (ep—2), en—14, €né) With
Ap€ € A Write ep2) = coen—2 + c1an-3 + C20n30n_4 + -+
Cn—2Qn-3 - Q10n-2, €n—14 = Coen—1 + €101 + P10 and en¢ = dpen +
dim1 + dam Bo with ¢j, ¢}, d; € K. Since z € Kery we know that ¢(z) = 0.
Thus on—2(coen-2 + C1n—3 + C2an-30n—4 + -+ + Cn20n_3° - 010n_3) +
Bo(cgen—1+c1 B1+chB170)+70(doen+d1v1+dam o) = coon—2+C10m-20m-3+
C20n—20-30n—4+ "+ CnegQn_20n-3 - Q2+ Cn_3Qn_20n_3 - a1 +cofo+
c1BoBr + doyo + d1vom = Cotn—2 + C10n—200n-3 + C2an_20n_30n_4 + -+ +
Cn—40n—20n—3 - - - az+coPBo+doYo+(cn-3+cy+d1)BoS1 = 0. Hence ¢ = ¢1 =
c2=...=cpa4=cg=dg=0and ch—3+c] +d; =0. Write ¢} = —(ch-3+
d1). Therefore, © = (cp—30p-3 - A1+Cn—205-3 - - A10n—2, —(Cpn—3+d1) 1+
B0, dim+d2v16o) = (an-3 - -+ a1, —P1,0)(cn-3€1+Cn—20n-2)+(0, —B1,m)
(d1e1 — c570 + d2fp)- So z € (An—3 -+ a1, —P1,0)A + (0, —B1,11)A.

Thus 02(51) C (an-3---01,—061,0)A + (0, —B1,11)A.

On the other hand, let z € (an—3---a1,—P1,0)A + (0,—B1,71)A. So
z = (an-3--a1,—P1,0A+ (0, —P1,m)ps = (en-20m_3 - 1\, —en_151A —
en—-1014, eny14). By definition of ¢ it is easy to see that ¥(z) = 0.

Thus (an-3- - a1,—B1,0)A + (0, —B1,m)A C Q%(51).

Therefore, 2%(S;) = (an—3- - a1, —P1,0)e1A + (0, — 1, m)e1A. O
To find 023(S;), we need to find the kernel of the map:
0:e1A @ erA — Q(S;)
given by
(e1M,e1p) = (an—3--- a1,—f1,0)e1X + (0, =B, m)erp

where ), u € A. Note that Q3(S;) = Ker6.
Proposition 6.2. 93(S;) = (an—2an—3,0)A+(0, an—2)A+(Bo, 0)A+(v0, —70) A
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Proof. On one hand, let y € 93($;). Then y = (e1, e ). Write y = (coe1 +
C10n-2+C20n20n_3+ -+ Cn—2Qn-2 - - 01 +Cn-100+ Cn7Y0, cg€1 + ¢y On—2+
hOn—20m-3+ -+ + Cp_g0n—2--- a1+ ¢,_100 + ¢j0) With ¢;,¢; € K. Since
y € Ker 0 we know that 6(y) = 0. Thus (an-3--- a1, —B1,0)(coe1 +crom—2+
C2an-20m-3+ - + Cp—20n—2-+- a1 + cp-160 + caY0) + (0, —B1,m)(cher +
1 0n—2+CHan_20n 3+ +Cp_san_2- - a1+¢,_1Bo+ch ) = (Coan-3 - a1+
€C1Qn—_3* - * 1Qn—3, —CoP1—CnP170, 0)+(0, —ctB1 — ¢ P10, oY1 +Cp_1MPo) =
(coan—3---ar1tecion_3 - 1an—2, —(co+cp) B1—(cn+c,) B170, g11+¢) 1 11 B0).
Thus cg = c1 =¢j,_; =¢g = 0,¢cn + ¢, = 0. Let ¢}, = —c,. Therefore, y =
(c2an—2an-3+-+cp-2an—2- a1 +cp-1080+ a0, clan_2+ han_20m 3+
cood € g2 01 —CnY0) = (On-2an-3(C26n-3+ - +Cn-2an_4- 1)+
Bocn—1€n—1+70Cnen, On—2(Cren—2+Ch0on_3+- -+ Cp_aQn_3 -+ 01)—"Y0Cnen).
So

y = (an-20n_3A + Bo + YoV, an_24 — YoV)

= (aﬂ—-2a‘n—3’ 0)A + (0’ aﬂ—2)”' + (ﬂOa 0)§ + (707 _'70)V),

where A, u,€,v € A. Hence y € (an—20p-3,0)A + (0, an—2)A + (Bo,0)A +

(Y0, —0)A.
Thus

03(851) C (an-20n-3,0)A + (0, @n—2)A + (Bo, 0)A + (70, —70)A.

On the other hand, let y € (ap—20n—3,0)A + (0,0n—2)A + (5o, 0)A +
(70, =70)A- So y = (an—20m-3,0)A+(0, an—2) s+ (Bo, 0)€ + (Y0, —0)v, Where
A p,€v € A. Then 0(y) = (an-3- - - a1, —B1,0)an—20n_3A+(0, —B1, 71 )an—24
+(on—3 -+ a1,—P1,0)Bo€ + (an—3 - - 1, —B1,0)v0v — (0, = B1, M )vov = 0. So
y € Q3(81).

Thus (@n—20n-3,0)A + (0,n_2)A + (Bo,0)A + (70, —10)A T 023(S1).
Therefore, Q3('5'1) = (an-20n-3,0)en—3A + (0, an—2)en—2A + (5o, 0)en—1A +
(70, —70)enA. O

From the projective resolutions for simples we now know that the 3rd
projective @3 = (Ae; ® en—3A) ® (Ae1 @ en—2A) ® (Aey @ en—1A) ® (Ae1 ®
en) ® (Ae2®e1A) D (Aep-1®@e1A) D (Ae, Q@erA) @ 72 (Aem ® em_2A).

m=3
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We choose the set f3 to consist of the following elements:

{(Rufia s fiafis fie fin fas: fam}, withm € {4,...,n—2} where

fl 1 = .fl 92Qqn-20n_3 = ﬂOf2 30n-3 an—2f3 n—31

f1 2 = f1 10n—2 = ﬁofz 'Ysz 49

fls = f1 260 = ﬁofzs On—2 a2f2 1

f14 = f1 10— fiz = an-2° a2f22 ’Yszs’

f15 = leﬂl fgz’Yl = alfl 1)

fle = fzsﬂl fzsan—3 = 12,

f17 = f24an—3 fzs’)’l = '71f11 "/1f1 29

f23 = fs 201 = azfz 131 a2alf1 25

fz,m = fa,m—lam—2 = Qm- 1f3 m—2 forme {4,...,n—2}.

We know that HH?(A) = Ker d3/Imd,. First we will find Imd,.
Find Imd;.

Since d; : Hom(Q',A) — Hom(Q? A), then dof € Imd,, where f €
Hom(Q',A) and daf = fA2. Here Q! = (Ae1®p,en—1A)O(Aep_1Q5, e1A)D
(Ae1 ®g enA) @ (A€, @, €1A) ® (Ae) Qq,,_; €n—2A) @ @,”:_13(1\61“ Qq, e1f).
Let f € Hom(Q!,A) and so write

f(e1 ®p, en—1) = c1P0, f(en—1®p, &1) = c261,

f(el ®‘Yo eﬂ) = €370, f(en ®’71 el) = €471,

f(e1®a,_; €n—2) = dn—20m—2
and
fle1+1®a €1) =dioy for L € {1,...,n -3},
where ¢1, €2, c3,¢4,dn—2,d; € K for l € {1,...,n —3}.

We have Q% = (Ae; ®p2, e1A) © (Ae; ® 2, e1d) @ (Ae2 ® 3 en-1A) ®
(Ae2 ® 2 end) @ (Aep_q B2, en—2A) @ (Aen ®z, en—2A) @ (Aen-1 @z,
en—1A) ® (Ae, ® £ end) ® DrT3 (Mg 11 ® R ekA)

Now we find fAz. We have

fAz(e1 ®f12,1 e1) = f(e1®p, en—1)P1 — f(€1®, en)71+ Bof (en—1®p, €1) —
Y0f (€n ®y, €1) = c18061 — c3v0m + 26061 — cavom = (c1 — €3+ 2 —c4)Fobr-

Also fAz(e1®;2, €1) = f(e1®p €n-1)B1 + Bof (en-1®p, €1) — f(e1®an_s

en—2)an—-3 e al"'an—2f(en——2®a,.-3en—3)an—4 1. —Qp_2 aZf(ei’@aI
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e1) = c1fofr + 28081 —dn—20an—2 -y —...—dian_3---aga; = (c1+c2 —
dn—2 — ... — d1)Bobh.

And fAz(e2®s3, en-1) = f(e2 ®q; €1)Bo + a1 f(e1 ®p, €n-1) = d1c1fp +
cie1fo = (d1 + e1)onfp = 0,

fAz(e2®p, en) = f(e2 ®a, €1)70 + a1 f(e1 ®, €n) = dr1y0 + c3c170 =
(d1+ c3)a170 = 0,

fAz2(en-1®p3 en—2) = f(en-1®p €1)on—2+B1f(€1®a,_s€n—2) = c2fr1an—2
+dn—261an-2 =10,

fAz2(en®pz en-2) = f(en ®y €1an-2+71f(€1®an_s €n—2) = caM10n—2+
dn—2man—2 =0,

fAz(en-18y3 en-1) = flen-1 ®p, €1)Bo + B1f(e1 Bg, €n—-1) = 28150 +
ca1p1fo = (c2 + c1)Bifo =0,

fAz(en ® 3, n) = f(en ®x €1)0 + MS(e1 ® €n) = camo + c3MmY0 =
(ca+c3)mr =0.

Finally, for k£ = 2,...,n — 3, we have fAs(ex+1 ®yz, er) = fler+1 Ra,
€r)k—1- 03 Qg+ arpf(er Oay_; €k—1)0k—2  Q1Qp—2 - Qg+ ...+
aj - 01ap-2 - Op—1 f(€k+1 Oay €k) = ArOROR_1 - 1002+ O +
dr— 100102+ 010p—3 Qg+ .. + dpOg - 102+ -+ 10 = (di+
di-1+ -+ +di)agar-1---aap—2-- o = 0.

Thus f is given by

fAz(e1®p, €1) = (c1 — 3 + c2 — ca)Bofh1 = /o and
fAzx(e1®p3, e1) = (c1+ 2 —dn2 — ... — d1)BoB1 = "o
for some c,c’ € K
FAr(o(f) U f]) =0
for all sz # ff,l, ff,z . So dimImdy = 2.
Find Kerdgs.

We have d3 : Hom(Q2%,A) —» Hom(Q3,A). Let h € Kerds, so h €
Hom(Q?,A) and d3h = 0. Then h: Q2 — A is given by

h(e1 B2, e1) = cie1 + 26/,

h(ey B2, e1) = cze1 + cafobh,
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h(o(£35) ® 13, Uf2;)) =0, for j € {1,...,4},
h(en—1 ®f2, €n—1) = C5€n_1,
h(e, ® e en) = c¢en, and

h(o(f34) ®g2, Uf3k)) = dra, for k € {2,...,n — 3}

for some cy,...,cq,dr € K. Hence dim Hom(Q?,A) =n—4+6=n+2.

Then hA3(e1®fls'le,,_3) = h(e1® flzael)an_gan_3—ﬂoh(e,,_1® fza,aen_g)a,,_s
+on—2h(en—2®p  en-3) = (cze1+csfofi)om—20n-—3—0+dn_30m_20m_3 =
(c3 + dn—3)an—20an_3. As h € Kerd3 we have c3 + d,—3 = 0.

hAs(e; Bz, en-2) = h(e1® 2, e1)an—2—LGoh(en—1® s en—2)+vh(en® I’y
en—2) = (c1€1 + c2B0P1)an-2 = c1an—2. As h € Kerds, c; = 0.

Next, hAsz(ex 853, en-1) = h(ex ®s2, e1)Bo — Boh(en-1 ®p2, en-1) +
an—2 - ogh(e1 @y, en-1) = (cse1 + csfoB1)Bo — csPoen—1 = (c3 — ¢c5)Bo- So
we have c3 — ¢5 = 0 and hence c3 = cs.

hAs(e1®3 en) = h(e1®pz e1)r0—h(e1®pz, €1)10—an—2- - azh(e2®p,
en) +Y0h(en ®g3  €n) = (c11 + c2B0B1)0 — (cser + caBofi)ro — 0+ cov0 =
(c1 — c3 + ¢g)v0- Therefore c3 = cg as ¢; = 0.

hAs(e2 ®ﬁ;'5 e1) = h(ez ®f3‘1 en—1)01 — h(ez ®f3'2 en)m —aih(er ®ff,1 e1) =
—ciay = 0. This gives no new information since we have already ¢; = 0.

hA3(en-1® e e1) = h(en—1 ®sz, en-1)A1 —h(en-1® s €n—2)Qn_3 Q1 —
Brh(e1®y3, €1) = csen-181 — Pr(cser + caboP1) = 5P — caPr = (e5 — ¢3) 61
Thus again we have c5 = c3.

hA3(6n®fi7el) = h(en®fzz,4en_2)an_3 <o al-—h(el®f22,een)'yl —’ylh(e1®f12’1
e1) + n(er ®s, e1) = —cgenm1 — Y1(c1€1 + c26061) + 1 (caer + caBofr) =
—cgm1 —c171+c3m = (c3—c1—cg)71- So again this gives no new information.

hAs(es ®f23.a e1) = h(es ®f32’2 e2)oq — azh(ez ®f22’1 en—1)P1 + agazh(er ®f12,2
e1) = daaga; —0+aza;(cser +¢4BpB1) = (d2+c3)aza;. So we have dy+c3 =
0.

Finally form € {4,...,n—2}, we have hA3(em®f23‘m’ em—2) = h(em®f§,m_1
em—1)0m—-2—0m-1h(em_1® fg_m_zem—z) = dm—-10m-1Qm—2—8m—20m—10m—2
= (dm-1 — dm—2)am—-1am—2. Then dpp—1 — dm—2 = 0 and so dp—1 = dim—2.
Hence d,,— 3 =dn,_4=...=d3 = ds.
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Thus h is given by
h(e1 ®5z, e1) = c20/31,
h(e1 ®y3, 1) = cse1 + cafobi,
h(o(£3;) ®s3, Uf3;)) =0, for j € {1,...,4},
h(en-1®yz, €n-1) = csen—1
h(en ®s2, en) = c3en, and
h(o(fg,k) ®2, t(f:?,k)) = —c3ag, for k€ {2,...,n -3}
for some c2,c3,c4 € K. So we have dim Kerds = 3.
Therefore dim HH2(A) = 3 — 2 = 1. Hence dim HH?(A) = 1.

Theorem 6.3. For A = A(Dp,1,2) we have dim HH?(A) = 1.

6.4. A basis for HH2(A).
Now we will find a non-zero element of HH?(A). An element of Kerds

represent a non-zero element of HH2(A) if it is not an element of Imdj. Let

7 be the map in Kerds given by

€e1®y2, €1 — e,
en-19® flgEn—1 P €n_1,
2 en ®f22'82en ."") en,
o(f3x) ®g2, W(f3y) — —ox, forke€{2,...,n -3},
else — 0.

Clearly, n is a non-zero map. Suppose for contradiction that n € Imd,.
Then by the definition of 1, we have n(e, ® e en) = en. On the other
hand, n(e, B, en) = fAs(en ®yz, en) for some f € Hom(Q',A). So
n(en ® e en) = 0. So we have a contradiction as we get e, = 0. Therefore
n &€ Imd,.

Thus 7+ Imd; is a non-zero element of HH?(A) and so the set {n+Imd,}
is a basis of HH?(A).
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7. A(D4, S, 3)

It is known for A = A(Dy, s,3) with s > 2 that HH2(A) = 0 from Theorem
5.11. The aim of this chapter is to find HH?(A) for A = A(Dy, s, 3) with
s = 1. Following Asashiba in [2], we write ag for az. We start by recapping
the definition of A(Dy, s,3) with s > 1. From [2] and 2.5 in Chapter 2 the
algebra A(Dj, 3,3) is given by the quiver Q(Dj, s):

[s—1]
ay

‘41]
[o} <._.__1- “ee
‘Y['-l]
04)0] 1
[0]
Bo ,Y(I)OJ

o o o

: g2
ﬂ[ol [2] 0
1 ,Y[o] Yo
1
ol (1) [11 o
Yo it
o (o] (o]

Xg]y

o
oft oll

with relations R(Dj, s, 3):
(i) ag]a[f] = ﬂ([:]ﬂ?] = 'y([,'.]'ygi], for alli € {0,...,8 — 1} = Z/(s),
(ii) for all i € {0,...,8 — 2},

oflfft=0, ol =0,
gl = g, Ailgfi+1 _ o,

fildi =0, A =0,

and

of Mol =0, o7yl =0,

ﬂga-—l]aLO] =0, ﬁ{a—llﬂ([)()] =0,
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7{:—1] ﬁt[)o] —0, 7{.;—1] 7([)0] =0

(iii) paths of length 3 are equal to 0.

Consider s = 1. The algebra A(Dy,1,3) is given by the quiver Q(Dy,1).
Note that we changed the notation of the vertices from that in Chapter 4.

ao
Bo
S ED
B
ai

with the minimal set of relations given in 5.17 as follows.

f2 = {flz,la f12,2af22,1) f22’2: f22,3af22,4a f22,57 f22,6} where

21 = Bobr — vom, fLa = BoB1 — apan,

fa1 = Brco, f32 = a170,
f22,3 = 71:30a
f22,4 = 7170, f22,5 = 518 and

f36 = 100
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Next we need to find f3. The indecomposable projective A-modules are:

e1A eaA esA esA

N,
%

B —— - —
O
) —— - ——

From the minimal projective resolution of each simple A-module we have

03(Ss) = 1
/N
2 4
03(S3) = 1
/N
2 3
03(Sq) =

3/1\4

For 93(S1) we need more details. We have the map

P:esA DesADesA — Q(Sl)
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given by:
e2A - Ype2,
esp — Poespy,
eq€ — agesd

where A, u, £ € A. Note that 92(S;) = Ker 4.
Proposition 7.1. 92(S1) = (11, —61,0)A + (0, — 81, c1)A.

Proof. On one hand, let z € Q2%(S;). Then z = (ez), e3p,es) where
A, € € A Write e2) = coez + 171 + camiag, esp = ches + €181 + chBivo
 and eq§ = doeq + dioy + doy By with ¢, ¢}, di € K. Since z € Kery we
know that v(z) = 0. Thus, yo(coez + c1m1 + c27100) + Bo(ches + ciBr +
cP17) + aoldoes + dion + d2a1fo) = covo + c1vom + coBo + ¢1Bobr +
doog + dioga; = covo + 66ﬁ0 + doag + (c1 + C’l + d1)BoB1 = 0. Thus
co=cy=dg=0and ¢c; +¢| +di =0. Let ¢ = —(c1 + d1). Therefore,
z = (aam +camao, —c181 — d1 B + ch B0, dica +d2a1 Bo) = c1(m, —B1,0) +
d1(0, —B1, 1) + (2 a0, c4B170, d2c1Bo) = (M1, —P1,0)(c1e1+c200 — c370) +
(0, =1, c1)(d1re1 + d20) = (71, —P1,0)A+ (0, — 51, 1) u, where A, i € A. So
z € (m,—P1,0)A + (0,1, a1)A.

Thus 92(31) - (")‘1, —ﬂl,O)A + (0, -6, al)A.

On the other hand, let z € (y1, =81, 0)A+(0, —B1, @1)A. So z = (71, —F1,0)A
+(0, —B1, 1) = (eam A, —e3B1 A — e3P, es1 ). Then it is easy to see from
the definition of 9 that ¢(z) = 0.

Thus (y1, =51, 0)A + (0, =581, 1)A C Q%(Sy).

Therefore, 22(S1) = (1, —B1,0)e1A + (0, —B1, o1)e1A. O
Next 03(8)) is the kernel of the map
0: e1A @ erA — Q3(S1)
given by
(e1h,e1p) = (1, —B1,0)erA + (0, =1, on)erpn

where A\, 1 € A.
Proposition 7.2. 23(S;) = (6o, 0)A + (70, —Y0)A + (0, ap)A.
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Proof. Firstly, let y € Q3(S;). Then y = (e1),e1n) € e1A @ ey A with
A, i € A. Write y = (coe1+crap+czapar +c3fp+cavo, cher+cag+chapar +
c3Po + cyyo) with ¢;, ¢} € K. Since y € Ker 6 we know that §(y) = 0. Thus,
(m,—P1,0)(coer + crop + cacpar + c3fo + cao) + (0, —B1, o) (cper + chao +
chapa1+c3o+cyr0) = co(11, =B, 0)+(c1r100, —caBrvo, 0)+¢4(0, —B1, 01)+
(0, —c4Brv0, 31 Bo) = (com + ermw, —(ca + ¢4)B1v0 — (co + )P, char +
c3a1fp) = 0. Thus g = ¢y = ¢y =c =0,ca+cy =0and cg+c) =
0. Let ¢j = —cq. Therefore, y = (caapar + ¢35 + cayo, o + chagon —
cav0) = (Bo(cses + c2B1) + a0, co(ches + har) — cayo) = (BoA+op, aoé -
~ Yom) = (Bo, 0)A + (70, —10) 1 + (0, c0)§, where A, p, € € A. So y € (Bo, 0)A +
(70, —70)A + (0, a0)A.

Thus Q3(81) C (6o, 0)A + (70, —70)A + (0, ag)A.

Conversely, let y € (6o, 0)A + (70, —70)A + (0, 20)A. So y = (B, 0)\ +
(70, —Y0) +(0, )€ = (e1B0, 0)A+ (€170, —€170) 4 +(0, e1cx0)€, Where A, 1, § €
A. Then
0(y) = (m, —B1,0)Bor+ (71, =1, 0)v0u— (0, —=B1, 1) You+(0, =51, 1) o€ =
0. So y € Q3(S5y).

Thus (89, 0)A + (10, —710)A + (0, a0) A C 23(S1).

Therefore, 23(51) = (8o, 0)esA + (70, —70)e2A + (0, ap)esA. 0O

From the projective resolution for simples we now know that the 3rd
projective Q3 = (Ae; ® e2A) @ (Aer ® e3A) © (Aey ® esA) @ (Aex ® e1A) @

(Aes ® e1A) ® (Aeg ® e1A).

We choose the set f3 to consist of the following elements:
21 = ffan-flanw = aofgz,z - ’70f§,4,
fi;z = flz,lﬁo = ﬁofzz,s - ’70f223,
f1,3 = f1,2ao = '30f22,1 - aofz,ea
f13,4 = f22,3ﬁ1 - f22,4’71 = ’Ylflin
fis = fg,sﬁl - f2210‘1 = Bifia )
fie = figon—fiam = oafii—oaafis,

Find Imd;.
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We know that HH?(A) = Kerds/Imd,. First we will find Imd,. Since
dz : Hom(Q',A) — Hom(Q?,A), then dzf € Imdz, where f € Hom(Q!, A)
and dyf = fAz. Here Q! = (Aej ® e2A) ® (Ae2 ®, €1A) ® (Aey ®p, €3A) ®
(Aesz ®p, e1A) @ (Aey ®qp esA) @ (Aes ®q, €A). Let f € Hom(Qq,A) and
write |

f(e1 ® €2) = c1v0, f(e2 ®, e1) = cam1,
f(e1 ®g, €3) = c3fo, f(e3 ®p, €1) = caf,
f(e1 ®q, €4) = cs00
and
f(e4 ®q, €1) = csa,
where c1,...,c6 € K.

We have Q% = (Ae;1® 7,e18)0(Ae1®pz e1A)®(Aes®yz esh)D(Aes®
esA) © (Ae2 ® s e3A) @ (Ae ® 2. ea\) ® (Ae3 ® s esA) ® (Aes ® e esA).

Now we find fA;. We have

fAz(e1 ®g3, €1) = f(e1 ®p, €3)B1 — fle1 ®x €2)m1 + Bof(e3 ®p, €1) —
Y0f (€2 ®4, €1) = c3BoB1 — c1vom + caBoP1 — c2v071 = (€3 — €1+ ¢4 — ¢2)Bofr-

Also fAs(e1®y3, e1) = f(e1 ®g, €3)B1 + Pof(e3 ®p, €1) — f(€1 ®ap €4) —
o f(e4®a, €1) = ¢3P0P1 +csfof1 — csaoa — ceapan = (c3+c4 —c5—c5)Pof1-

fAz(e3®;3 es) = f(e3®p, €1)a0+ b1 f(€1®a0 €4) = caBrao+csPrcxo =0,

fAz(ea®p3, €2) = f(ea®ay €1)70+ 1 f(€1® €2) = cga1y0+c10170 =0,

fAz(e2 B2, e3) = f(e2®+, €1)Bo + 71 f(e1 ®g, €3) = c2m1Po + 37160 = 0,

fAz(e2 @y, €2) = f(e2 ®y €1)0 + 11f(€1 ® €2) = 2mY0 + 11170 = 0,

fA2(e3®y, e3) = flea®p, €1)fo + B1f (€1 ®p, €3) = caB1fo +c36100 = 0,

fAz(ea®p3 e4) = f(e4®ay €1)a0+ 1 f(€1®a0 €4) = cs100+ 50100 = 0,

Hence f is given by

fAz(e1 @y, €1) = (c3 — e1 + ca — c2)Bo1 = ¢'Bofr,
fAz(e1®p3,€1) = (ca+ca—c5— c6)Bofr = ¢ BoPr and
FAx(o(f3;) ® (f2,) = 0, where j € {1,2,3,4,5,6}.
So dimImdy = 2.

Find Ker ds. We have d3 : Hom(Q?, A) — Hom(Q3,A). Let h € Kerds, so
h € Hom(Q?, A) and d3h = 0. Then h : Q% — A is given by
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h(ex ®sz, e1) = cier + c26ofh,
h(e1 ®y2, €1) = cse1 + cafofr,
h(o(£3;) ®s3, t(f3;)) =0, for j € {1,2,3},
h(e2 ® 2 e2) = cse,
h(es ®sz, e3) = cgez and
h(es ®s2, es) = creq,
for some cy,...,cr € K. Hence dim Hom(Q?,A) = 7.

Then hAs(e; ®f13,1 e2) = h(e; ®f12,1 e1)y — h(ex ®‘f12'2 e1)v — aoh(eq ®f,2’,
e2) + voh(e2 ® 3, e2) = (cre1 + c26081)70 — (czer + caBoBi)0 + csoe2 =
c170 — ¢370 + ¢570 = (€1 — ¢3 + ¢5)Y0- As h € Kerds, ¢; —c3 +¢5 = 0.

hAs(e1 ®g3, e3) = h(e1 ®z  e1)Bo — Boh(es ®yz  e3) +oh(e2 Bz €3) =
(c1€1 + c28061)Bo — ceBoes = (c1 — cg)Po- Thus we have ¢; — cg = 0 and so
c1 = cg.

hAsz(e1 ®y3 e4) = h(e1® 3, e1)ag — Boh(es @z, €4) + coh(ea @z €4) =
(cse1+cafobhr)ap+crapes = czag+crap = (c3+cr)ag. So we have c3 = —cy.

hAs(e2 ®ys, e1) = h(ez ®jz, €3)B1 — h(e2 ® 2, e2)m — mh(e1 ® 2, e1) =
—cseam1 — m(cier + e20081) = —csm1 — aam1 = (—cs5 — c1)1. Therefore
c1 = —c5. Thus c3 = 0 as we had ¢; — c3 + ¢5 = 0 above. Also ¢; = 0 since
we already had c3 = —c.

hAs(e3 @3 €1) = h(es ®yz, €3)B1 — hes ®gz ea)oar — Bih(e1 gz, e1) =
cee3Pr — Pi(cser + cafBoP) = (cg — ¢3)P1. Hence cg = 0 since we had c3 =0
already. Moreover, since ¢; = cg, we know ¢; = 0.

hAz(es ®ff,e e1) = h(es ®f22,o es)ar — h(es ®f,‘g’2 e2)v1 — aih(er ®f1’,1 e1) +
arh(e1 @2, 1) = creson — au(crer + c2fofr) + ar(czer + cafofr) = crar —
c1ag + c3ay = (e7 + ¢3 — c1)ay. This gives no new information.

Thus h is given by

hler ®yz e1) = c2Bofh,
h(e1 8y, e1) = caBobr,
h(o(f22,j) ®f22'j t(-f22,,1)) = Ov for .7 = {11 .o ,6}a

for some c¢3,c4 € K and so dim Kerds = 2.



Therefore dim HH2(A) =2 — 2 = 0.
Theorem 7.8. For A = A(Dy,1,3) we have HH?(A) = 0.
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8. THE STANDARD ALGEBRA A(Ds,,,s/3,1)

It is known for A = A(D3pm,8/3,1) with m > 2 and 3 { s > 2 that
HH?(A) = 0 from Theorem 5.11. The aim of this chapter is to find HH2(A)
for A = A(D3p,8/3,1) with s = 1. We start by recapping the definition of
A(D3p,8/3,1) with s > 1. From [2] and 2.30, the algebra A(D3n,s/3,1)
with m > 2 and 3t s > 1 is given by the quiver Q(D3m, 8/3):

"‘gs]- 1
ol
o B2
2\ )
a[i]/
° Bs
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with relations R(Djsy,, 8/3,1):
(i) a[:]ag] ol = BiBis1, for all i € {1,...,8} = Z/(s),
(if) oflal*? = 0, for all i € {1,..., s} = Z/(s),
(iii) ag-'-lfnaiﬂﬂ.-.,.za?“] ---a?-"s] =0,forallie {1,...,8} = Z/(s) and
for all j € {1,...,m} (i.e. paths of length m + 2 are equal to 0).

Consider s = 1. We write § and f7, to indicate 611 and fa1p TESpec-
tively for an arrow 4 in (Q, s) since there is no confusion here. The algebra
A(D3m,1/3,1) is given in [2] and has quiver Q(Dspm,,1/3):

me———m—1

From Proposition 5.19 in Chapter 5 the set of minimal relations f2 for
A(D3m,1/3,1) is as follows:

f12=ﬂ2—a1"'ama f22=amal)

f32,j=aj"'amﬁa1--'aj forall j € {2,...,m —1}.

Next we need to find f3. The indecomposable projective right A-modules

are:
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From the minimal projective resolutions of each simple A-module we see
that: for 2 <t < m — 2 we have,

Q3(St)

R
(3 3
+
sy N

_._gq._—p—a—p-s—s.— | — e

o~
4 —e-



and

Qs(Sm) > Ss.

For 93(.5'1) we need more details. We have the map
Y:eiAdeA — Q(Sl)

given by:
e1A — ,361/\,

€2 — ajez,
where A, 1 € A. Note that 02%(S;) = Ker .
Proposition 8.1. Q%(S;) = (8, —az - - am)A.

Proof. First let z € Q2(S;). Then z = (e1\,eau) with A\, u € A. Write
€1 = cper +cra1 +c20na2+ -+ Cm—101 - Am—1+ Cma1 * - O+ Cm1 8+
cpB3 + i for + hBarag + -+, _1Bay - am—1 and eap = doez + djaz +
dazag + -+ + dp-102° - @m + dpoz - - amfB + dmy102 - amBon where
ci,di,¢; € K. Since z € Kery we know that ¢(z) = 0, that is, B(coe1 +
cion + 20102 + ¢+ + Cm—101°** Cm—1 + CmO1 -+ O + Cm1B + B +
1By + chBaraz + -+ + ¢, 181 - - am—1) + a1(doez + diaz + d2azas +
cor+dpo1a2cr @ + dpag - apB + dmy1a2 o amBar) = 0. So cof +
a1fay+eafonaz+- - +em-1801 -+ - Am_1+CmB+emy1 8% +doay +dion oz +
daajogaz + - +dm—201 1 +dm_101 - +dmoy - - = cpB+
c1fBay + caBonag + -+ + cm-18ay - - - -1 + doay + diiag + daanozas +
oo+ dm201 - 0m1 + (dm-1 + €m41)B% + (dm + cm)B° = 0. Thus ¢o =
e = =¢m1=dg =" =dmn2=0,dn-1+cmt1 = 0 and dy, +
cm = 0. Therefore, z = (cmfB2 + cm418 + B> + 1 Bas + chBaag + -+ +
1801+ A1, —Cm4102 O — Cm02 -+ OB + dmy102 -+ - amPar) =
em+1(8, —a2 - am) +em(B, —az - - am)B+ (9% + ) for + hBenaz + - - +
Cm—1801 - @m—1,dmi102 - - amPor) = (B,—02- - am)(cmir€1 + cmfB +
B +cian+charaz+- -+, 101+ am-1+dmy1Ba1) = (B, —az - - am)v,
where v € A. So z € (B,—az - - am)A. Thus 02(5;) C (B, —az -+ - am)A.
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On the other hand, let z € (8, —a2:--aym)A. So z = (B, —as---am)A =
(e1BA, —ezaz - - - am ), where A € A. Then ¥(z) = (82 —a1---am)A = 0.
Thus (8, —az---am)A C Q%(S5)).

Therefore, 22(81) = (8, —az--- am)e1A. O

To find N3(S;) we have that 23(S;) = Ker 8 where 6 is the map:
6: elA — 92(51)

given by:
ei1\ — (ﬂ, —Qg - am)elA

where )\ € A.

Proposition 8.2. 03(5;) = BajazA.

Proof. On one hand, let y € 23(S;). Then y = e;\ where A € A. Write
y=cpe1+cia1 +caajaz+ -+ Cm—101+ - Am—1+ Cm01 * - Qm + Cyp18 +
B + 1By + hBaraz + -+ + ¢, 1B -+ - am—1 Where ¢;,c; € K. Since
y € Ker@ we know that §(y) = 0. Thus 0 = (B,—0a2--am)(ceer +
cla; + caanag + 0+ 101+ Q-1 + CmQ1 - Ay + Cm1 0 + C{)ﬁ3 -+
ciBay + &Barag + -+ + ¢ _1Bay - am-1) = (coB + 1B + c2Bonoz +
o+ emo1Ba1 - @mo1 + emB® + cm418°, —co02 - - am — Cmy102 - OB —
ciaz - - - ampPay) = co(B, —az - - - am)+(c1801+c2Baraz+ - +em-18a1 -+ - Om—1
+cmB3, 0) + cm+1(B, —a2++- ay)B + (0, —djog - amPay). Thuscg = -+ =
cms1 = €, = 0. Therefore, y = cpB% + chBanaz + -+ + ¢, _1801 - am—1
= Baraz(chas - - - untchez+: -+, _103 - am—1) = Bonazpu, where u € A.
So y € BajazA. Thus 3(8)) C BagazA.

On the other hand, let y € BajazA. So y = BajazX where A € A. Then
0(y) = (B, —az- - am)BarazA =0.So y € 93(51). Thus BajazA C 93(31).

Therefore, 23(5;) = BajazesA. O
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From the projective resolutions for simples we now know that the 3rd
projective @ = (Ae; ® e3A) ® @73 (Aer ® err2A) @ (Aepn—1 ® e1A) ©
(Aem ® e2).

We choose the set f3 to consist of the following elements:

{ffafg,t’fe?,ff} with ¢ € {2,...,m — 2} where

= fiBaoy = Bflaraz+ oy - am-1fias — a1 f3,,

f 3,t = f itat+1 = of 32,t+1a

3 = fini1o0m = Oom-1ff02- 0mB + Am-10m B — Om-10mPBf3,

fi = fioamPor = —omfiBar+ amBfion + amPay - am_1f3.
Find Imd,.

We know that HH2(A) = Ker d3/Imd;. First we will find Imd,. Sinced; :
Hom(Q!,A) — Hom(Q?,A), then dyf € Imda, where f € Hom(Q', A) and
daf = fAz. Here Q' = (Ae1®per A)OD ;" (Aei®0,€1414) D (Aem®a,, €1A).
Let f € Hom(Q!,A) and so

fle1®ge1) = creq + caB + e + s,
f(e1 ®q, €141) = diay, forl € {1,...,m — 1},
f(em ®a,, €1) = dmam,
where ¢, c2,¢3,¢4,d;,d € K, forl € {1,...,m —1}.

We have Q2 = (Ae; ®pe1d)® (Aem ®p2 €2A) @;":—21 (Aej ®g2, ej+1A).

Now we find fA;. We have

fAz(e1 ®y3 e1) = f(e1 ®pe1)B + Bf(e1 ®p €1) — f(€1 ®ay €2)02+* Om —
a1f(e2 ®ay €3)03 Om — -+ — @102+ Am—1f(em ®a, €1) = (c161 + 28 +
03,32 + C4ﬂ3)ﬂ + B(cie1 + 28 + 63ﬂ2 + C4,33) —dioy-am —daoy - Qpy —
vio—dpoycom=2¢18—(d1+d2+ - +dm—262)ﬂ2 + 2¢3033.

Also fAz(em ®j2 e2) = f(em ®a,, €1)1 + amf(e1 ®a, €2) = dnamay +
diamay = (dm + d1)amoy = 0.

Finally, for j = 2,...,m — 1 we have fAs(e; ®y2 ej+1) = f(ej ®aq;
ej+1)0lj+1 coramPay - Olj+ajf(ej+1®a,-+1ej+2)aj+2 ccamPay -t o+
;e am—lf(em®am€1)ﬁal ceeojtog e amf(el®ﬂel)al cee aj+aj ces amﬁ
f(el ®ay 62)012 T +etaje-- amﬁal e aj—lf(ej ®a,~ ej+1)

= djajajtr-ramfar---a; + djjiaja54054 00 amPBay--ca; + ...
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+dma; - am_1amPon - aj+aj - - am(cier + 2B+ c3f+cyfP)on -+ - oy +
dioj---amParaz---aj + - + djaj- - amPay -+ - aj_10a;. So fAz(ej ®f32,,-
ej+1) = (dj +djy1+ -+ +dn+di+--- + dj)aj - omPay -~ @j = 0. Thus
f is given by

fAz(e1®y2€1) = 2¢18—(d1+da+- - -+dm—2¢3) 8% +2¢38° = 2¢ B+ B2 +2¢" 32,

fAz(em @z €2) =0, f(e; ®fz. ej+1) =0, forall j € {2,...,m -1}
for some ¢,",d" € K. So

3 ifcharK #2,

dimImd; = { 1 ifcharK =2

Find Kerds.
We have d3 : Hom(Q? A) — Hom(Q3,A). Let h € Kerds, so h €
Hom(Q?,A) and d3h = 0. Then h: Q2 — A is given by

h(e1 ®y3 e1) = cie1 + €28 + ¢36° + caB°,
h(em ®;2 e2) = csamBoy and
h(e; ®f3,;,- ej+1) = djaj, for j € {2,...,m -1},
for some cy, . ..,c5,d; € K where j = 2,...,m—1. Hence dim Hom(Q?,A) =
m+ 3.

Then hA3 (e1®ﬁse3) = h(e1®flze1)5ala2—ﬂh(e1®f?el)alag—ﬂal e Q1
h(em® sz €2)a2+onh(ez B2, es) = (cre1+ceB+csBi+caf?)Boraz—PB(cier+
c2B+ 32 + caffP)araz + dearag = c1fenaz — c1farag + daonag = dyagag.
As h € Kerds we have d; = 0.

Fort € {2,...,m —2}, we have hAj3(e; ®s3, et+2) = h(e: ®fz, €1+1)0t41 —
ath(et41 ®s2 .1 et+2) = diagopyr — dipr10poeyy = (de — deya)ozagyy. Then
di —diy1 =0andsodi=diyy fort =2,...,m—2. Henceda =dg = ... =
dm—2 = dm—1. We already have d; =0sod; =0for j=2,...,m— 1.

Now hA3(em_1®fssel) = h(em-1® fg'm_lem)am—am_lh(em®fzzez)a2 e amf
—am—1amh(er ® 2 e1)B + am—1ampBh(e; ®2 e1)

= dpm—10m—10m — C5QAm—10mBa1Qs - - - OB — Am—1am(c1€1 + c28 + c36% +
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caf®)B+am-10mB(cre1+c2f+c38%+¢48%) = dm—10m—10m—C10m—10mB+
c10m-1am0 = 0, and

hAz(em ®y3 e2) = h(em ®;2 e2)az - - amfBay + anh(e; ®;2 e1)Bay — amf
h(ex ®2 er1)ar — amPoy - - am-1h(em ®;2 e2) = csamPBajaz - amPoy +
am(cier + c2f8 + 63ﬂ2 + C4ﬂ3)ﬂal — amfB(cie1 + c28 + 63ﬂ2 + 04,33)(11 -
csamPBoy « - am_10mPBa; = 0, and so these give no information on the con-
stants occuring in h.

Thus h is given by
h(er ®yz e1) = cre1 + c26 + c38° + caf°,
h(em ®y2 e2) = csamPBa; and
h(e; ®gz. ej+1) =0, forje {2,...,m —1}
for some ¢;,...,c5 € K and so dim Kerds = 5.

Therefore,

5-3=2 ifcharK #2,

. 2 —
dim HH (A)—{ 5—1=4 ifcharK =2.

Hence,
2 if char K # 2,

. 2 _
dim HH'(A) = { 4 if char K = 2.

Theorem 8.3. For A = A(D3,,1/3,1) we have

2 ifchar K # 2,

dim HH?(A) = { 4 ifcharK=2.

8.4. A basis for HH2(A).

char K # 2.

We know that dim HH?(A) = 2. So we need to find two non-zero linearly
independent elements in HH2(A). We start by defining two non-zero maps
hi, hs in Kerds. Let h; be the map given by

e1®ge1 > e,
else — 0,
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and the map h; given by

em ®p €2 — amPa,
else — 0.

Now suppose for contradiction that h; € Imd;. Then h;(e; ®;2 e1) =
fAz(e1®y2€) for some f € Hom(Q', A). So we have e; = 2¢/B+c"B*+2c" 3
for some c¢,c",c"” € K. This gives a contradiction. Therefore h; ¢ Imd,,
that is, h; 4+ Imdz # 0+ Imd; is a non-zero element in HH?(A). Similarly,
if we suppose that hy € Imds, then ha(en ®;2 e2) = fAz(em ®;2 e2) for
some f € Hom(Q!,A). So we have a,,B8a; = 0. But this contradicts having
amfPa; a non-zero path in A. Therefore hy ¢ Imds, that is, hy + Imdy #
0 + Imd; is a non-zero element in HH2(A).

Next we need to show that {h;+Imdz, ho+Imds} is a basis for Ker d3/Imds
= HH?(A). Suppose c(h1 + Imds) + d(h2 + Imdz) = 0 + Imd> for some
¢,d € K. Sochyj+dh; € Imds. Then (ch1+dh2)(em®fzaeg) = ng(em®fzz e2)
for some f € Hom(Q',A). So we have da,,8c1 = 0. Hence d = 0. Also
(ch1 + dha)(e1 ®ya €1) = fAs(er ®y2 €1). So ce; = 2B + "'B?% + 27" 3.
Therefore ce; —2¢ B+c"32+2¢" 3% = 0. Since {e1, 8, 8%, 3%} is a linearly inde-
pendent set in A, we have c = ¢/ = ¢ = ¢ = 0. Hence h; +Imdy, ho+1Imd,
are linearly independent.

So {h1 + Imds, hy + Imd,} is a basis of HH?(A) when char K # 2.

charK = 2.

Here dim HH?(A) = 4. So we need to find four non-zero linearly indepen-
dent elements in HH2(A). We start by defining non-zero maps k1, hz, ks, by
in Kerds.

Let h; be the map given by

61®f1261 — e,
else — 0,

hy be given by
e1®uer — B,
else — 0,
h3 be given by
e1® 12 e = ﬂ3a
else — 0,
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and h4 be given by
em @2 €2 — amfo,
else — 0.
It can be shown as before that these maps are not in Imd;. Now we

will show that {h; + Imdy, hy + Imdz, hg + Imdz, hgy + Imd,} is a linearly
independent set in Kerds/Imd; = HH?(A).

Suppose a(h1 + Imds) + b(h2 + Imdy) + c(h3 + Imdz) + d(hg + Imd3) =
0 4+ Imd; for some a,b,c,d € K. So ah; + bhy + ch3 + dhy € Imd;. Hence
ahy + bhy + chs + dhy = f A, for some f € Hom(Q!,A). Then (ah; + bhy +
ch3 + dhs)(em ®2 e2) = fAz(em ® £ ez2). So we have day,fa; = 0. Hence
d=0.

Also (ahy+bha+chg+dhs)(e1 ®flze1) = ng(e1®f;.'el). So ae; +b8+cB® =
c"B%. Therefore ae; + b3 + cB° — ¢"B? = 0. Since {e1, 8, 5%, 33} is linearly
independent in A, we have a = b = ¢ = ¢’ = 0. Hence {h; + Imdy, h2 +
Imdy, hg + Imdy, hgy + Imdy} is linearly independent in HH? (A) and forms
a basis of HH?(A) when char K = 2.

This completes the discussion of the standard self-injective algebras of
finite representation type D,. In the next chapter we start to look at the
algebras of type E,.
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9. A(E,,s,1)
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It is known for A = A(E,, s,1) with s > 2 that HH?(A) = 0 from Theorem
5.11. The aim of this chapter is to find HH2(A) for A = A(En,s,1) with
8 = 1. We start by recapping the definition of A(E,, s,1) with s > 1. From
[2] and 2.31, the algebra A(E,, s,1) with n € {6, 7,8} is given by the quiver

Q(En,, s):
c'[;ml]
0 -——
oot e
ai?!.s ;/5‘ -1
o o [s-1]
alo] l ﬁy 71
n—4
o O
ﬁ;o] o 1'
o + 2 :
oy [0} ////;
Ih 7&1] ,YP] B3
(o] o (o] o] ]
"‘[10] \ / 1 ol
[1] {1}
B B
aily | o o or T afl
8;
L p— . —>0
R of

with relations R(E,,s,1) :
(i) a,[i]_3 e ag]a[li] = ﬂglﬂg]ﬂy] = 73'175"], for all i € {0,...,5 -1},
(ii) for all i € {0,...,s8 — 1} = Z/(s),

alli] ﬁ:[;'+1] =0, agi},ygﬂ] =0,
Alaft =0, Alal =0,

‘[agl-z



AT _ g g+ _ g

(iii) “d—paths” of length n — 2 are equal to 0, “B-paths” of length 4 are
equal to 0 and “y-paths” of length 3 are equal to 0.

In order to complete our investigation of HH?(A) for A = A(Ey,s,1) we
consider s = 1. We write § and f, to indicate 81 and fa b0 Tespectively
for § an arrow in Q(Enp,s) since there is no confusion here. The algebra
A(E,,1,1) is given by the quiver Q(E,,1):

an-—3
n—3
Qan -4
Bs
n-—1
VR
n—4 B2 n 1
\11/
n—2
5
2
a1
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with the set of minimal relations f2 given in Proposition 5.21 as follows:

1= BsBP1 — 2m, fla=BsPaP1 — an—3an_4- - az0n,

2
f2,1 = a1 03, f22,2 = 172,
2 _ 2

f23 = Bran-3, fia = Prye,
2 2

f2,5 = 71Q0n-3, fz,s = ’71ﬂ3,

]‘32',= = opQp—1 -+ g1k for k € {2,...,n — 4} and

f1 = BaP1Bsfe-

2
Hence f? = {fl,laf]2,2,f22,1af22,27f22,31f22,41f22,5’f22,61f32,k fork = 2,...,n —

4, f23.
r»J4
Note that f2 is a subset of R(Ep,,1,1) since the set R(E,,1,1) is not

minimal.

Next we need to find f3.
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The indecomposable projective right A-modules are:

e1A emd, for2<m<n-3
1 m
/ \
n-—1 n—3 n m-—1
|
n—2 n—4
1
1 n—3
n—4
m
en—2A en—1A enl
n—2 n—1 n
|
1 n—2 1
n—1 1 n
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From the minimal projective resolutions of each simple A-module we see

that:

23(82) o

For 3 < m < n — 3 we have,

Q%(Sm)

Q3(Sn-2)

IR

IR
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23(Sn-1)

R
pd

IR

03(Sn)

N

For Q3(S;) we need more details. We have the map

1

Y:ien—3A De—1A D e A — Q(S))

given by:
€n—3A P Qp_3€n_3A,
en—14 > P3€n_14,
en — Y2€né
where A, u,& € A. Note that 9%(S;) = Ker 9.
Proposition 9.1. 9%(81) = (en—4- - a1,~B261,0)A + (0, 261, —1)A.

Proof. On one hand, let z € 92(S;). Then & = (en-3\, €n—14, ent). Write
en—3A = Cgen—-3+C10n—g4+C200_40p 5+ +Cn-30n_4 - M10n_3, En_1j4 =
C{)en_1 + ) B2 + 5P + cgﬂzﬂlﬂa and e, = dpe, + d171 + da717y2 where
¢i; ¢;,d; € K. Since z € Kery we know that 9(z) = 0. Thus an—3(coen—3 +
C1Qn—4 + C2Qn—4Qn_5 + *** + Cp—3Qn—4 - A105-3) + B3(cpen—1 + 162 +
P21 + c3B26103) + v2(doen + dim1 + d2my2) = coan-3 + c10m-30n-4 +
€20 300 _40n—5+ ** + Cn_40n_30an_4 -+ a1 + o3 + 1 B362 + 535201 +
doy2 + divay1 = 0. Hence cpan—3 + c1an—30n—4 + C2Qn_30n—40n-5+ -+ +
Cn—5Qn—30n—4 - 02 + coPfs + ¢1P302 + dov2 + (cn—a + ¢4 + d1)B3 5261 = 0.
Thus cp = ¢ =¢ =...=¢cp5=¢Cyp=¢ =dg =0and ¢4+, +
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di = 0. So let & = —(cn—4 + d1). Therefore, £ = (cp_40n-g- -y +
Cn-30n-4- - 010n-3, —(Cn—a¢ + d1)BB1 + Bfi1fs,dim + damys)
= (an—4---a1,—B2B1,0)(cn-s€1 + cn_zan-3) + (0, 3281, —m1)(cher + 4B +
d2712) = (@n-4---0a1,—B251,0)A + (0,8281,—m)p, where \,u € A. So
z € (an—q--a1,—F201,0)A + (0, 32581, —711)A. Thus

0(51) C (an—a-+- a1, — 21, 0)A + (0, 8281, —11)A.

On the other hand, let z € (an—4---a1,—B261,0)A + (0,52081, —m)A.
So z = (an—4---a1,—F201,0)A + (0, 3251, —m)p with A\, u € A. From the
definition of 4, it follows that v(z) = 0. Thus (ap—4--- a1, —F2061,0)A +
(0, 8281, —m)A C Q*(81).

Therefore, Q2(S1) = (an—4 -+ @1, —B201,0)e1A + (0, 8281, —1)esA. O

To find Q3(S;), we use the map:

0:e1A @ elA — Q%(S))
given by:

(e1A, e1p) = (@n—qg -+ 1, ~B251,0)e1) + (0, B281, —m1)e1
where ), 1 € A, since we know that 23(S;) = Keré.

Proposition 9.2.
03(S1) = (0n-30n—4,0)A + (72,0)A + (B3, —B3)A + (0, @n—3)A + (0, B3.52) A

Proof. On one hand, let y € Q3(S;). Then y = (e1), e1u). Write ey =
coe1+C10n-3+C20n_30n 4+ +Cn_3an_3 - a1+Ca—272+Cn-183+CcnB302
and ejp = cher + jan_3 + Chan-3an—a+ -+l _zan_3-ra1+ ¢ o2+
c),_1B3+cl,B302 with ¢;, ¢} € K. Since y € Ker 6 we know that (y) = 0. Thus
(an—a--a1,—B2P1,0)(coe1 +c10n-3+C2an-30n—4+- - +Cpn-3an-3- -1+
Cn—272+Cn—183+CcnfB362) +(0, B281, —m1)(cper +cjan—3 +chan—30m_g+- - -+
Ch_30n—3 - oq+Cy_g12+c),_1B3+c,B302) = (Codn—a -+ 1+C10n-4 - 1On-3,
—cofB21 — cn-1820103,0) + (0,cpB201 — 1820103, —chm — Cham¥2) =
(con—a -+ a1+C10n-4 -+ @103, —(co—C¢() B2 1 —(cn-1+¢},_1)B26183, —cpm
—ch_ oY) =0.Thuscg=c1=cyg=c),_3=0,cn1+¢,_;=0. Letc,_; =
—cn—1. Therefore y = (c2an—30n—4+- - +Cn—3an_3 - 1 +Cn—272+Ccn-103+
cnB302,C10n—3 + han_3an_g4+ - +Cj_3an-3+- a1 —cn-1083+ ¢, P302). So
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¥y = (an—son-a(c2en—a + -+ + cn_30n_5---@1) + cn—272 + B3(cn—1€n-1 +
nfB2), an-3(cien—3 + Chan_g + --- + Cj_san_s-+- 1) — cp—183 + cLB3).
Theny = (an—san—s(c2en—a+:-+cagan_s5- - a1)+cn—272+B8s(cn-1€n—1+
cnP2); an-3(chen—3+chan—a+- - +¢),_z0n_4---a1)— B3(cn-1€n—1+Ccaf2) +
(cn + c,)B3B2). Hence

¥ = (an-3an—4{ + vov + B3¢, an_3k — B3€ + B3 fan)

= (an—3an—4: O)C + (72, O)V + (ﬂ3’ —133)£ + (07 an—?.)'c + (0, ﬂ3ﬁ2)7]a

~ where C’ V,f, K,m € A. So Yy € (an—3an—4» O)A + (72,0)A + (:337_ﬂ3)A +
(0, an—3)A + (0, B332)A. Thus

03(S1) C (an—30n—4,0)A + (y2,0)A + (B3, —B3)A + (0, an—3)A + (0, B382) A.

On the other hand, let y € (an-3an-4,0)A + (72,0)A + (B3, —B3)A +
(0, an—-3)A+(0, B3B2)A. So y = (e10n—30:—4,0)¢+ (€172, 0)v+(e183, —e183)€+
(0,e1an—3)k+(0,€10382)n, where {,v, €, k,n € A. Then 8(y) = (ap—4--- i,
—B261,0)an—3an—4(+(0, B251, —11)on—35+(0, B251, —71) B3 Ben+(an—4 - - - a1,
—B2P1,0)B3€ + (en—a -+ a1,=B2B1,0)y2v — (0, 8281, —m1)v2v = 0. So y €
03(S1). Thus (@n-30n-4, 0)A+(72,0)A+(Bs, —B3) A+(0, an—3)A+(0, B382)A C
Q3(81).

Therefore, 23(51) = (@p—30n—4,0)en—aA + (72,0)enA + (B3, —B3)en—1A+
(0, @n—3)en—3A + (0, B352)en—2A. O

From the projective resolution for simples we now know that the 3rd
projective Q3 = (Ae; ® en—4A) ® (Ae1 ® en—3A) ® (Aer ® en—2A) ® (Ae1 ®
en—1A) ® (Aer @ epA) @ (Ae2 @ e1A) @ (Aep—1 @ e1A) @ (Aep,—2®@ e1A) @
(Aes ® e1A) ® Dr % (Aem ® em—2A).

We choose the set f3 to consist of the following elements:

3 3 3 3
{fil’ fig,m fia,s’ f1,4’ fl,s’ fl,ﬁ’ f1,7a f13,81 f13,9’ f;,is, fg,m}
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il = fl 20n—30n—4 = ﬁ3ﬁ2f2 3Qn—-4 — an—3f3 n—4»

fio',z = f1 1%n-3 = ﬂaﬂzfzs ’Y2f2 55

fii,s = fl 18302 = ﬁ3f4 "Y2f2 6162a

fig,4 = 'f1 1ﬁ3 - f1 2ﬁ3 = Qp-30n—4g° C'lzfz 1 'Y2f2 6:

fﬁs = f1 272 = ;63ﬂ2f2 4— Qp_305_4° a2f2 29

fi",s = f2 1ﬁ2ﬁ1 f22,2'71 = alf] 1,

fi? = f4ﬂl = ,32»51f11 +'32f24’)’1,

fig = f2 3an-4-rag01— fiam = b f1 1 — Bifts

fie = fz 60201 — f350n—4- 0oy = ’Ylfl 2

f§3 = fs 201 = a2f2 1ﬂ2ﬁ1 azalfl 29

f2 m = f3 m—10m—2 = Qm-1 f3 'm—2 form =4,. - 3.
Find Imd,.

We know that HH?(A) = Kerd3/Imd,. First we will find Imd,. Since
d2 : Hom(Q!,A) — Hom(Q?, A), then daf € Imd,, where f € Hom(Q!,A)
and daf = fA2. Here Q! = (Ae1®p,en—1A)D(Aen_19g,en—2A)B(Aen—_2®p,
e11) @ (Ae1 ®, e,A) © (Aey @y €1A) B (Ae1 B,y en—3A) DD (Aer 41 By
eiA). Let f € Hom(Q?,A) so

f(e1 ®p; en—1) = 13, f(en—1 ®p, en—2) = c20s,
fen—2 ®p, €1) = c3P
f(el B, en) = C472, f(en Oy, e1) = ¢s7,

f(el Rap_s en—3) = dnp_30n-3
and
flei+1 ®q &) = dioy, forl e {1,...,n - 4},
where ¢1,...,c5,d1, i€ K forl=1,...,n—4.

We have Q? = (Ae; ®s2, eid) & (Aex ®2, e1d) @ (Aez ®2, en—1A) ®
(A82 ®f22 . enA) (3] (Aen_g ®f§ s en_3A) @ (Aen._2 ®f§,4 enA) ) (Aen ®f§,5 en._3A) (43)
(Aen ®p2 . en-1A) ® Dil3(Aers1 Bz, exh) © (Aen_1 ® gz en—2h).

Now we find fA;.

We have fAz(e1 ®2, e1) = f(e1®p; en—1)B201 + B3 f(en—1®p, en—2)61 +
B3B2f(en—2®p, €1) — f(e1®y,en)mM1 —Y2f (€n®, €1) = €1838251 + 2838281 +
c3B3B281 — cavay1 — esvan = (€1 + c2 + €3 — ca — ¢5) 835201,
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fAz(e1®53 €1) = f(e18p,n-1)B251+03f (en-1®p,6n—2)B1+B8352f (en—2®p,
e1) - f(e1®an_s€n—3)an—g...01— - —an-3...02f(€2®a, €1) = c1836251 +
2030261+ c3PB302h —dn-3an-30n-4...01— - ~dr1an_3an_4...01 = (c1+
c2+c3)B30201—(dn—3+- - -+d1)B36261 = (c1+c2+c3—dn—3— - -—d1)B3B25.

Also fAz(e2®2, en—1) = f(e2 ®ay €1)B3 + 1 (€1 ®p, €n—1) = d101f3 +
cra1fB3 = (di + c1)a1 83 =0,

fAs(ez ®r2, en) = f(e2 ®a, €1)712 + a1 f(e1 ®y,; €n) = diuy2 + cac112 =

(d1+ ca)ny2 =0,

fAz(en—2®g3 en-3) = f(en—2®p,€1)an-3+01f(€1®an_sen-3) = c3fron—3
+dn-3010n-3 = (c3 + dn—3)B1an-3 = 0,

fAz2(en—2®53 €n) = f(en—2®p e1)12+B1f(e1@y,n) = csBr1r2+cafrya =
(c3 +ca)B1v2 = 0,

fA2(en®pz en-3) = f(en®y €1)an-3+mf(€1®an_s€n-3) = csM1ON-3+
dn_3710n-3 = (C5 + dn_3)710-3 = 0,

fA2(en®pz €n-1) = f(en®y €1)B3+ 11 f(€1®ps€n-1) = csnBs+c1m1Ps =
(es +c1)n1B3 = 0.

For k = 2,...,n — 4, fAa(ex+1 ®gz, er) = f(er+1 oy €k)k—1°- 1
n-3 - Op+0kf(ex®ay_,€k~1)0k—2 " - Q103+ - O+ -+ Q- - Q103+ -
ak+1f(er+1 Oay €k) = (dk + dg—1 + -+ + di)akQ—1--- @10n-3 - o = 0.

Finally, fAz(en-1 ®y2 €n—2) = f(en—1 ®p, €n—2)018302 + B2f(en—2 ®p,
e1)B302 + B201f (€1 ®p; €n—1)B2 + F2183f (en—1 ®p, en—2) = 2820610302 +
38218352 + 182818382 + caf218382 = (2¢2 + ¢3 + ¢1) 32518382 = 0.

Hence f is given by

fAs(e1®y3, e1) = (c1 + c2+ c3 — ca — c5)B3B2P1 = €' B3,
fAxe1®p, 1) = (c1+ca+ 3 —dng — - — d1)B3B2P1 = " BsafBy,
fA2(0(f3;) ® 4 ;) =0, forj=1,...,6,
fAz2(ex+1 ®f§,k ex)=0fork=2,...,n—4,
fAz(en-1®y3 en—2) =0,

for some c/,c” € K. Hence dimImds = 2.

Find Kerds.
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We have d3 : Hom(Q? A) — Hom(Q3,A). Let h € Kerds, so h €
Hom(Q?, A) and d3h = 0. Then h : Q2 — A is given by

h(e1 ®g3, €1) = cre1 + 272,
h(e1 ®y;3, €1) = cser + carem,
h(o(f3 ) ®;2. t(f3;)) =0, for j € {1,...,6},

h(ek+1 ®s2, er) =drag fork=2,...,n — 4,

h(en-1 @2 en—2) = c52
for some ¢y, ...,cs,dr € K. Hence dim Hom(Q?,A) = n.

Then hA3(el ®-f?.1 €n—gq) = h(81 ®f12'2 €1)Qn—_30n_4 — ﬂ3ﬁ2h(en_2 ®f,2'3
en-3)0n—a+an-3h(€n-3®s  en—4) = (cse1+ca¥2v1)on_30m—4+dn_son_3
On—4 = C30n—-3Qn-4+dn_40n_30n_4 = (c3+dn_4)an_3an—4. As h € Kerds,
we have ¢3 + dp—4 = 0 and s0 ¢c3 = —dp_34.

hA3(e1®53 en-3) = h(e1®2 €1)an—3—P362h(en—2® 12,8n-3)+72h(en®
en—3) = (c1€1 + c21271)on—-3 = c1an—3. As h € Kerds, we have ¢; = 0.

hA3(e1® s en—2) = h(e1® 2 €1)B302 — Bsh(en—1®2€n_2) + 12h(€n® e
en-1)B2 = (c1e1 + c272m1)B3B2 — c5PB3B2 = (c1 — ¢5)B3PB2. Thus, since h €
Ker d3, we have cs = 0 as we have already ¢; = 0.

Now, hA3(e1®53 en-1) = h(e1®z e1)B3—h(e1®2 e1)B3—an-3an—4- - a2
h(e2®gz, en—1)+712h(en®gz en-1) = (cre1+c272m)Bs —(cse1+carom)Bs =
(c1 — ¢3)Bs. So we have ¢; — c3 = 0 and so ¢3 = 0 as ¢; = 0. It then follows
that d,—4 = 0 as c3 = —d,,_4 above.

Next, hAs(e: ®3, en) = hie1 ® 2, e1)y2 — BPB2h(en—2 ® 2, en)+
Gn-30n—q - azh(ez @z, en) = (czer + cavem)y2 = c3y2 = 0. This gives
no new information.

Similarly, hAs(ez ®s3, €1) = h(e2 ® gz, €n-1)B281 — h(e2 ® 2, en)1 -
arh(e; ®f2, e1) = —ai(cier + c2y2m) = —c1a1 =0,

hA3(en-1®y3,€1) = h(en-18®s3€n—2)B1 —B2Prh(e1® ff’lel)-&h(en—2® e
en)n = c5P261 — Babr(crer + cayam) = (c5 — c1)B2r = 0,

hA3(en-2®y3, €1) = h(en—2®p2 €n-3)an—a- - c2c1 —h(en-28®p2 en)n —
Prh(e1®yz e1)+fih(er®p 1) = —Bi(crer+carem) +Ba(cser +eamam) =
(c3 —€1)B1 =0, and
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hAs(e, ®f13,° e1) = h(en ®f22,6 en—1)0201 — hien ®f22’5 €n—3)Qn_4- - @201 —
mh(e1 ® 2, e1) = —7(cze1 +cay2m) = —c3m1 = 0, all give no new informa-
tion.

Next, hAs(es ®3, €1) = h(es ® 3, e2)on — aah(es O, en-1)B2b1 +
azarh(eq ®s2, e1) = daaz20q + agai(cser + cayey1) = (d2 + c3)aza;. Since
h € Kerds, we have dy + ¢c3 = 0. So d3 = 0 as ¢3 = 0 from above.

Finally, form € {4,...,n—3}, we have hA3(em®fg’mem—-2) = h(em®f‘,?,m_1
em—l)am—2“am—1h(em-—l®f§,m_2Cm—2) = dm—10m-10m—2—0m—20m—10m—2
= (dm-1—dm—-2)m-1am—2. Then h € Kerds gives dy,—1 —dpm—2 = 0 and so
dm-1=dm—2. Hence d,_4 = d,,_5 = ... = d3 = d3. We already have d; =0
sod,=0fork=2,...,n—4.

Thus A is given by

h(e1 ®yz, e1) = c2vam,
h(e1 ®yz, €1) = camm,
h(o(f3) ®;2. t(f3;)) =0, for j € {1,...,6},
h(ek+1 B2, ex) =0, for ke {2,...,n—4} and
h(en—1®y2 en—2) =0,
for some c2,c4 € K and so dim Kerdz = 2.
Therefore dim HH?(A) = 2 — 2 = 0. Hence HH?(A) = 0.

Theorem 9.3. For A = A(E,,1,1) with n = 6,7,8, we have HH?(A) = 0.
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10. A(Eﬁ, S, 2)

It is known for A = A(FEs, s,1) with s > 2 that HH2(A) = 0 from Theorem
5.11. But we recap all s > 1 first. The algebra A(FEs, s,2) is given by the
quiver Q(Fg, 3):

a[;—l]
ﬁia-l]
° [s—1]
e
N
o0
BY
0
o o
ol g © :
y
°L ° 2| 42
.’gol T2 Bs
B
allo} 1 [l]
’Y&l o N ° a?}
ﬁgll /
o]
(1] ° o1l
ag 1

with relations R(Fg,s,2) :
(i) ag]ag]a[f] = g] glﬂyl = 7%"],#], for all i € {0,...,8—1};
(ii) for all i € {0,...,8 — 1} = Z/(s),

Mol =0, el =0,
NS Y A _ g,

and for all 7 € {0,...,s — 2},

ol g+l — g, i+l — g,

{
ol 1[0 — o, gl ﬂ:[‘ol =0;



108

(iii) “y-paths” of length 3 are equal to 0 and for all i € {0,...,s—2} and
for all j € {1,2,3} = Z/(3),

ol ..allafttl. ot =0, pgll... gl gl g,
ag_a—ll L alla-—ll ﬂ:[f] ... ﬂJ['O—]s =0, ,3;3-—1] ﬂga—l]ago] o aﬁ-"l =0,

Consider s = 1. Recall that we write § and f;, to indicate 619 and fabo
_respectively since there is no confusion here. The algebra A(Eg, 1,2) is given
by the quiver Q(Fg,1).

a3
3 5 B3
VR
az B2 6 1
\7_1/
2 4 B
al

with the set of minimal relations f2 given in 5.24 as follows.

£ = BsBaBr — 12, fia = B3B2B1 — azazay,

2
f§,1 = MN0a3, f2,2 = 7P,
f22,3 = 0172, f22,4 = B172,
2
f22,5 = a1a3, fz,e = 103,

f31 = azen P32, f24 = BoPrazas.

2 22 22 £2 g2
Hence f2? = {f12,1aff,zafzz,pfzz,z’f%,s’f2,4af2,5’f2,6:f3,1af3,2}-
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Next we need to find f3. The projective indecomposable A-modules are:

e1A e2/A esA
1 2 3
N
5 3 1 2
6 5 1
4 2 4 5
ANV
1
esA esA egA
4 5 6
|
1 4 1
|
3 1 6
2 3

From the minimal projective resolutions of each simple A-module we have:

1R
et

03(S2)

7\
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03(S3)

3(83)

23(S4)

Q3(Ss)

0%(S6)

IR

IR

R

iR

IR

N W —— =

BN — ) —————

/N

B O

/N
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For 3(S;) we need more details. We have the map
Y:e3A DesA D egA — (S1)
given by:
eg\ — ases),
esp — Baesp,
e6€ — Y2e6€
where ), 1, ¢ € A. Note that 9%(S;) = Ker 9.
' Proposition 10.1. 2%(S;) = (aza1, —B281,0)A + (0, 3281, —71)A.

Proof. On one hand, let = € 02(S;). Then z = (e3),esu,est). Write
es = coez+craz+caoza +czanar 33, esp = cyes+cy Ba+ch B0+ B P03
and egf = doeg + d1y1 + dav172. Since z € Ker 9 we know that 9(z) = 0.
Thus as(coes + c102 + c202a1 + c3a20u103) + Ba(ches + 1 B2 + chB281 +
ca3B2Pr103) + v2(does + dim1 + d21172) = coas + crazaz + c2azaz0n + cpBs +
1 B3Pz + chB3B261 +dov2 + divam = coas + crazaz + ;B3 + ¢, 8362 + dova +
(c2+ch+di)yey1 =0.Thuscg=c1 = cj = ¢}, =dp =0 and c3+ch+d; = 0.
Let ¢4 = —(cg + d1). Therefore, z = (coaza; + czazan B3, —(c2 + d1)B201 +
c3Befros3, dim+daviy2) = (@201, —B201,0)(c2e1+¢383)+(0, 281, —11)(—d1e
+czas — doye) = (aea1, —B2B1,0)A + (0, B2B1, —71)p, where A, € A. So
z € (o201, —B261,0)A+(0, B251, —11)A. Thus Q2(S1) C (201, —B201,0)A+
(0, 8261, —m)A.

On the other hand, let z € (aza1, —B261,0)A + (0, 32081, —m)A. So z =
(az01, —3261,0)A + (0, 3201, —11) s, where A, € A. From the definition
of 9, it follows that ¢(z) = 0. Thus (@201, —B201,0)A + (0, 3261, —71)A C
02(5).

Therefore, Q%(S;) = (a2, —B261,0)e1A + (0, G251, — 1 )e1A. O

To find 23(S;). We have the map:
0:e3ADesA— 92(31)
given by:
(ex\, e1p) > (a2, —B21,0)e1 A + (0, G281, —71)e1p
where A, u € A.



112
Note that Q3(S;) = Ker4.

Proposition 10.2. 93(S;) = (a3, as)A+ (0, aza2)A + (2, 0)A + (0, B3)A +
(B3B2, 0)A.

Proof. On one hand, let y € Q3(S1). Then y = (e1)\,e1p) with A\, u € A.
Write e; A = cpey + cr1a3 + coa3az + czazagsa; + c4y2 + 503 + cgf3P2 and
eip = cper + daz + chazos + chazazan + cyy2 + kB3 + ciB3B2 with all
coefficients c;,c; € K. Since y € Kerf we know that 6(y) = 0. Thus
(a2a1, —B21,0)(coer + c103 + c2032 + c3azazar + c4v2 + ¢503 + ce8382) +
(0, 8281, —)(cher + chas + chazas + cyazazay + v + chBs + chBsf:) =
(cooza1 + csaza1 B3, —coB2 1 — c18281 03, 0) + (0, cpB281 + ¢ B2 P13, —chyv1 —
camy2) = (coozar + csazonfBs, (¢ — co)Befr + (¢ — c1)BePras, —com —
car1iv2) = 0. Thus ¢ = ¢5 = ¢ = ¢4 = 0,¢; = c¢1. Therefore, y =
(c1a3 + 2302 + c3az3n0 + cay2 + c6B3 2, cra3 + chasazar + chazazon +
c5Bs + cP3Pz)

= (o3(cies + coaz + c3az01) + ca72 + 50352, as(cies + choz + cyazen) +
Bs(cses + cg2))

= (az(c1e3 + c202 + c30201) + cav2 + 58382, as(cres + ca02 + (ch — e2)a +
csazay + (¢ — c3)azar) + Pa(ches + csB2))

= (as(cies + c2a2 + czaga), as(cres + caan + czazar) + (0, asaz((ch —
c2)ez + (c3 — e3)a1)) + (cay2,0) + (0, B3(cses + cgB2) + (c6P3P2,0). Hence
y = (a3, a3)n+(0, asaz)+ (2, 0)€+(0, Bs) K+ (B3B2, 0)v where ,(, €, k,v €
A. So y € (as,a3)A + (0,a302)A + (72,0)A + (0, 83)A + (B362,0)A Thus
03(81) C (a3, a3)A + (0, 2302)A + (72, 0)A + (0, B3)A + (8352, 0)A.

On the other hand, let y € (a3, a3)A + (0, aza2)A + (72,0)A + (0, B3)A +
(B3B2,0)A. So y = (e1as,e1a3)n + (0, e1aza2){ + (e172,0)€ + (0,e183)k +
(e183062,0)v where n,(,£,k,v € A. Then 0(y) = (a2a1,—B201,0)azn +
(0,801,-m)asn  + (0,826, —m)azaz( +  (azon,—P2p1,0)12¢
+(0, B281, —1)B3k + (0201, —B251,0)B3B2v = 0. So y € N3(S1). Thus

(a3,a3)A + (0, a3a2)A + (72, 0)A + (0, B3)A + (8382, 0)A C Q3(Sy).

Therefore, 93('Sl) = (03, a3)A+ (Oa a3a2)A+ ('72; O)A+ (0’ ﬂ3)A+ (ﬂ3ﬂ21 O)A
O
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From the projective resolution for simples we now know that the 3rd
projective Q3 = (Aex ® egA) @ (Ae; ® esA) ® (Aer ® esA) @ (Ae; ® e3A) @
(Ae1®@eaA)D(Ae2®e1A)D(Aez®e1 A)D(Aes®e1 A)D(AesQey A)D(AegRerA).

The set f3 consists of the following elements:

(73,53, 13, 13, £2, 13, £2, 13, 13, 13y} where
3 fiam = ﬁ3ﬂ2f24 a3a2f2 3)

g = f121ﬂ3 = ,33162f26 ’Yzfzz,
f33 = f1 233162 /33ﬂ2f2 B2 = —asfs 1y
: = f1 103 — f1 203 = 0‘302f2 5~ ’72f22,1,
2 = f1 10302 +’Y2.f2 102 = ﬁsfs 2
8= f2 50201 — f2 3N = a1ff; —efia
= f3 15— a2f2 371 = azalfl 13
f§°’ = fz 6ﬁ2ﬂ1 f2 4 = ,31f1 12
3 = f3 201 — ﬁ2f2 613251 = —ﬂm@lfl 2
130 = f2 2P261 — fz 190201 = ’Ylfl 2-

Find Imda.

We know that HH2(A) = Kerds/Imd,. First we will find Imd,. Since
dy : Hom(Q',A) — Hom(Q? A), then daf € Imdz, where f € Hom(Q!,A)
and daf = fA,. Here Q! = (Ae; ®p, esA) ® (Aes ®p, ea\) © (Aes ®p, e1A) @
(Ae1 @, e6A) B (Aeg®ny, e1A) B (Ae1 ®ag €3A) D (A3 ®a, e2A) (Ae2®q, €14).
Let

f(e1 ®p; €5) = 103, f(es ®p, €5) = cof2,
flea ®p, €1) = c3ph
f(e1®y, €6) = cama, f(es ® €1) = csm,
J(e1 ®as €3) = csas, f(e3 ®a, €2) = cro2 and

f(e2 ®q, €1) = csy

where ¢1,...,c3 € K.
We have Q% = (A1 ® 2, el\)®(Ae1® 2, e1A)®(Aes® 2 esA)D(Aeg® 3
esA) @ (Ae2 ® s egA) @ (Aes ® . egA) @ (Ae2 ® s esA) @ (Aes ® e esA).
Now we find fAs.
We have fAa(e; ®f12,1 e1) = f(e1®p;€5)B201+P3f(esQp,e4)B1+P382f (€a®p,
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e1) — f(e1 ®, es)1 — 12f (€6 ®+, €1) = 18382081 + c283B261 + c3PsPar —
caran — s = (€1 + c2 + ¢3 — ¢4 — ¢5)B3B8201,

Also fAy(e1®y2_ €1) = f(e1®p, 5)B251+B3f (e5®@p, €4)B1 +B32f (ea @,
€1) — f(e1®a; €3)az0n — 03 (€3 ®a, €2)01 — 302 f (€2 ®ay €1) = €1835201 +
c2B3P201 + c3B3PaPh — ceasazon — cragazan — cgazazon = (c1+ 2 + €3 —
ce — ¢7 — cs)Psph,

fAz(e @53, €3) = f(es ®, e1)as + 1 f(e1 ®as €3) = csmMO3 + CEMO3 =
(cs + ce)mas =0,

- fAx(es ® 3, €5) = flee ®y €1)B3 + mf(e1 ®p, €5) = csmBs + amifs =
(es + ca1)mpBs =0,

fAsx(e2 ®yz, €6) = fe2 ®ay €1)72 + 1 f(€1 ®, €6) = c8O1Y2 + 40172 =
(cs + ca)ary2 =0,

fAz(ea ®pz, e6) = f(ea ®p, €1)12 + Prf(e1 @y, €6) = cafry2 + cabry2 =
(c3 +c4)Bry2 = 0,

fAs(e2®y3, €3) = f(e2 ®ay €1)a3 + a1 f(e1 ®ay €3) = camraz + csania3 =
(cs + cg)nas =0,

fA2(eq B2, es) = f(ea ®p, €1)Bs + P1f(e1 ®g,; e5) = c3Bif3 + 18183 =
(cs +c1)BBs =0,

fA2(33®s2 e4) = f(e3®az €2)1B302+ 2 f (€2 €1)B3B2+ 2011 f(€1®p
e5)B2 + a2a183f(es ®p, €4) = crazan P32 + cgaz1P3f2 + cro201 0302 +
caa2a1 8302 = (c7 + cg + €1 + c2)azn B3 62 = 0,

Finally, fAs(es ®;z, €2) = f(es ®p, €a)Brozor + B2f(ea ®p, e1)azar +
B2P1f(e1 ®as €3)az + Babrasf(e3 ®a, €2) = c2B2b1a302 + c3fofrasos +
ceP2Prasar + crPafrazas = (c2 + c3 + cs + c7)Bafroz oz,

Hence f is given by

fhAx(e1®p e1) = (c1+ca +c3 —ca — c5)Bafafr = ¢ Ba b,
fAx(e1®p, 1) = (e1+ c2 + c3 — s — c7 — ¢8)B3BaBr = <" B3P,
fAx(o(f7) ® 42 (f7)) = O for all 1 # fufia

So dimImdy = 2.

Find Kerdsg.
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We have d3 : Hom(Q?,A) — Hom(Q3,A). Let h € Kerds, so h €
Hom(Q?,A) and dsh = 0. Then h: Q2 — A is given by

h(e1 ®sz, e1) = cie1 + c2mam,
h(e1 ®yz, e1) = czex + cayam,

h(o(f3;) ®gz, (f2;)) =0, for j € {1,...,6},

~ for some ¢y, ¢a,c3,c4 € K. Hence dim Hom(Q?,A) = 4.
Mo(f3) @z, Uf30)) = 0, for 1=1,2,

Then hAsz(e; ®ys en) = h(ex ®f2, e1)v2 — B3B2h(eq ®y2, e6) + agazh(es ®s2,
eg) = (czer + camam)y2 = €372 + cay2m1y2 = c372. As h € Kerds we have
c3=0.

hAsz(e1 ®3 es) = h(e1 ®2, e1)Bs — BaP2h(es ®s2, es) + v2h(es ®;2, es) =
(c11 + c2712m1)Bs = c1f3 + 2127183 = €183. As h € Kerds, ¢; = 0.

Now, hA3(e1®y3e4) = h(e1®yz, €1)B302—P302h(ea® 3 e5)Bat+ash(es®yz
es) = (cze1 + cavay1)B3B2 = c3B302 + cay211B8302 = c3B3 = 0. This gives no
new information.

Next, hAz(e1 ®f2 e3) = h(e; ®.ff,1 e1)as — h(e; ®f12’2 e1)as — agazh(ez ®f22,5
e3)+12h(es®y2 e3) = (cre1+cayvem)es — (cze1+csazyi)as = (c1—cs)az+
(c2 — ca)vamas = (c1 — c3)as, so we have c3 = 0 as we already have ¢; = 0.

hAs(e1®g3e2) = h(e1®y3 er1)asaz+72h(es®gz, e3)az —Bsh(es @z €2) =
(c1e1 + cavevi)azas = crazaz + cayay1a3az = crazog =0,

hAs(ez ®ys e1) = h(ez Bz, es)azar — h(ez B2, es)1 — aih(er ®sz,
e1) + a1h(e1 ®p, e1) = —ai(crer + cay2m) + ca(cser + carem) = —cron —
coo12m + c3aq + cac1y2m = (c3 — ¢1)aq = 0, since we have already c3 =
Ccl1 = 0.

Similarly, hA3(63®f$el) = h(e3®f§,164)ﬂ1—a2h(62®f22‘366)’)'1 —agalh(el®f12,1
e1) = —azai(cier + cay2m) = —c1a20n — ceazcn1 2 = 0, and

hAs(ea ®3 €1) = h(e4 @2 €5) 21 — h(ea ® gz, es)1 — Pih(e1 ®p e1) =
—Bi(cre1 + c2vam) = —c1B1 — c2P1v2m = —c1B1 = 0, as we have ¢; = 0.

Next, hA3(es®;ze1) = h(es®;z, e2)a1—P2h(es®z e5)B2f1+B2b1h(e1®y2,
e1) = Bafi(cser + cavam) = c3Befr + caf2Brvem = e3P = 0,
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Finally, hA3(es®y3 €1) = h(e3®f3'ze5)ﬂzﬂl—h(es® 2 es)azar1—mh(e1® 2,
e1) = —mn(czer1+carem) = —c3Mm—can 2N = —c3m = 0, as we have cz = 0.
Thus h is given by

h(e1 ®yz, e1) = ca1am,
h(e1 ®yz_ e1) = camm,
h(o(f3;) ®sz, Hf3;)) =0, for j = {1,...,6},

h(o(f3;) ®s2, t(f2))) =0, for 1 =1,2,
for some c3,c4 € K and so dim Kerds = 2.
Therefore dim HH?(A) =2 -2 =0.

Theorem 10.3. For A = A(FEs,1,2) we have HH2(A) = 0.

Now we summarise the results of chapters 4, 5, 6, 7, 8, 9, 10 using Theorem
5.11, as we have already pointed out, we have the following theorem.

Theorem 10.4. Let A be the standard algebras of type A(Dy,, 8,1), A(Dy, s,2),
with n > 4, A(Dy,s,3), A(D3m,8/3,1) with m > 2,3 { s, A(E,,s,1) with
"ne€{6,7,8} or A(Eg,s,2). If s > 2 then HH*(A) = 0.

The case s = 1 has been dealt with in Theorems 4.3, 6.3, 7.3, 8.3, 9.3 and
10.3. Combining these with Theorem 10.4 we complete our description of
the second Hochschild cohomology for all finite dimensional standard self-
injective algebras over an algebraically closed field of type D and E, thus
summarising Chapters 4 and 6-10.

Theorem 10.5. Let A be a standard algebrd of type A(Dy, s8,1),A(Dys,s,3)
withn > 4,8 > 1, A(D,,s,2), A(D3m,8/3,1) withn > 4,m > 2,8 > 2 or
A(E,,s,1), A(Eg,s,2) withn € {6,7,8},8 > 1. Then HH2(A) = 0.

Let A be A(Dy,1,2); then dim HH2(A) = 1.

Let A be A(D3m,1/3,1); then

2 ifchar K #2,

. 2 _
dim HH'(A) = { 4 ifchar K =2.
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To conclude we now know the second Hochschild cohomology group for

all finite dimensional standard self-injective algebras over an algebraically
closed field K.

Theorem 10.6. Let A be a finite dimensional standard self-injective alge-
bras over an algebraically closed field K. If A is of type A(A2pt1,8,2) with
8,p > 1, A(Dp,s,1),A(Dy, s,3) withn > 4,3 > 1, A(Dy, 8,2), A(D3m, 3/3,1)
withn > 4,m > 2,8 > 2 or A(E,,s,1), A(FEs, s,2) withn € {6,7,8},8 > 1;
- then HH?(A) = 0.

If A is of type A(An, s/n,1) then dim HH%(A) = m.

For A(A2py1,8,2) with s = p=1, dimHH?(A) = 1.

Let A be A(Dp,1,2); then dim HH2(A) = 1.

Let A be A(D3m,1/3,1); then

2 ifchar K #2,
4 ifchar K =2.

Further a basis of HH?(A) where dim HH2(A) # 0 for A(A,,s/n,1),
A(Azpt1,8,2), A(Dn,1,2) and A(D3pm,1/3,1) can be found in [9], [10], 6.4
and 8.4 respectively.

We consider the nonstandard algebra in Chapter 11.

dimHH?(A) = {
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11. NONSTANDARD ALGEBRAS

From [2] the derived equivalence representatives of the nonstandard self-
injective algebras of finite representation type over an algebraically closed
field K are the algebras A(m) of type (D3m,1/3,1) for each m > 2, where
A(m) is given by the quiver Q(D3,,,1/3):

Qam-—-1
m-—-m — 1

with relations R(m):

() a1z am = B2,

(ii) amon = amfPoay,

(iii) oyo441+-- 0 =0, for all i € {1,...,m} = Z/(m) (i.e. “a” paths of
length m + 1 are equal to 0).

We need a set f2 of minimal relations. Relations of type (i) and (ii)
are in f2. Solet 82 — a1 -am =: f} and ama; — amBa; =: fZ. Now
consider the relations of type (iii). Let f35 := azaz---azif m>3. fi=1
then the path a; - -- a1 is one of the elements of I. It can be shown, for
m >3, that a; -+ amon = a1+ - am—1 f2— f2Bon+Bfion+Bay - - - am—_1f3—
Bf2Bar + fifioar + o1+ amfiar + flay - amon + a1f3z03 - - aman. So
o1 -amor € I and not in f2. Also it can be shown, for m > 3, that
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Oma1 - 0m = fiaz am — amPBff + amfiB + faz- - amP — amBfIB+
amfifitam - -amfi+amfior--am+ ama1f§,2a3 s Qp. So, if m > 3,
then @01+ am € I and not in f2. If m = 2 then axayaz € f2 and we
let f3, := azanaz. In this case ayazon = on fZ — f2Bay + BfEay + Bou f2 —
ﬂffﬂal + ffflzal + alaszal + flajoz0y + alfg,zal so is not in f2. Let

ji=2,....m—-1 ifm>3,

2 oo .
f3,j.—aJaJ+1...anor{j=2 ifm = 2.
. These paths cannot be obtained from any other relations. Now we have the

elements of f2 as follows.

f12=ﬂ2"'al"'am, f22=ama1—a1’nﬂal’

2 _ ji=2,....m—-1 ifm >3,
fs,j—ajaj+1---ajfor{j=2’ y iy

Next we need to find f3. The indecomposable projective right A-modules

are:
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e1A e, for2<t<m
1 t
/ \
1 2
/
2 m—1
m m
/
m 1

N

From the minimal projective resolution of each simple A-module we see
that: for 2 <t < m — 2 we have,



(£

Teq) pue
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For 23(51) and 03(S,,) we need more details. We will find 23(S;) first.
‘We have the map
¥:e1h @ eah — Q(S))

given by:

el — fep ),

€2 — ajex/,
where A, 4 € A. Note that Q2(S;) = Ker .
Proposition 11.1. Q%(S;) = (8, —a3--- am)A.

Proof. First let z € Q%(S1). Then z = (e1),eap) with A\, u € A. Write
e1d = ey +eray +ca0ae+cc+Cpmo1Q1 - A1+ Cmay - O+ Cm1 8+
B +ci oy + hfarag + -+ - + Cfpy_yBay -+ am—1 and eap = doez + drag +
d2oza3 + -+ + dp—102+ - 0 + Az - - B + dmy102 - - - amPBar where
ci,di,c; € K. Since z € Kery we know that (x) = 0, that is, B(coe1 +
c1oq + 010 + <+ + Cm-101** Am—1 + CmO1 -+ Om + Cm418 + B +
c’lﬂal + c&ﬂalaz + e 4 C'm__lﬂal -+ am-1) + ai(doe2 + diag + daonasz +
vt dpmo1020 o + dpaz - amB + dpp102 - amBoy) = 0. So coB +
c1Bar+caBaraz+- - +em-1801 - tm_1+cmB +em182 +doar +dianaz+
deajagag + -+ dm—201 A1 +dm-101 - @ + dmay - amPB = cof +
c1Bor + cofaraz + -+ + em—1801 - - - am-1 + dgo + diiag + d2onozog +
oo+ dm201 - Om-1 + (dm-1 + cm41)8% + (dm + cm)B® = 0. Thus ¢p =
&1 = =cp1 =dyg=-=dp2=0,dn1+cm1 = 0and dp +
¢m = 0. Therefore, £ = (cmfB% + cm+18 + B + By + hfanag +--- +
Crn—1B01 - A1, —Cm 4102+ Qm — Cm 02 - - AP + dmy102 - amPBor) =
emi1(B, —az - am) +em(B, —a - - - am) B+ (% + &) for + chfonar +- -+ +
Cp1Bon - am1,dmi102 - - amBar) = (B,—a2- - am)(cmt+1e1 + cmf +
B? + dar + ey + o0 + a1 rome1 — (¢f + dmy1)Boa)
= (B, —az-++am)v, where v € A. So x € (8,—0a2 -+ an)A. Thus Q2(S;) C
(B, —az---am)A.

On the other hand, let z € (8, —az---am)A. Soz = (B,—az:--ap)A =
(e1B\, —e2a2 - - - am)), where A € A. Then ¢(z) = (6% — a1+ am)X = 0.
Thus (8, —a2 - - o)A C Q%(51).

Therefore, 2%(5)) = (8, —az - am)e1A. 0
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* To find 23(S;) we have that 23(8;) = Ker  where 6 is the map:
0:e1A = Q%(S))
given by:
eix— (B, —az- - am)e1A
where X € A.
Proposition 11.2. Q3(8)) = BojazesA.

Proof. On one hand, let y € 23(S;). Then y = e;A where A € A. Write
Y = cpe1+c1a1+coaraot - +Cm_101 * * - O 1+Cm @1 * + * A tCmy18+ch B3+
ciBay + Payag +- -+ ¢, _1Ba1 - - - am—1 Where ¢i,c; € K. Since y € Ker 0
we know that 6(y) = 0. Thus 0 = (8, —az--- am)(coe1 + c1a1 + c2oas +
rtCmo101 - Omo1+Cma1 - A+ Cm18+ 6B + ¢ fon +hBarag+- - -+
Cp—1801 - am—1) = (coB + c18a1 + c2Barag + + - - + cm—18a1 - Am—1 +
cmBon -+ am + emy1B82, —coaz - - am — (¢} + c1)az -+ - amPBoq). Thus cp =
o = Cm41 = 0 and €] + ¢1 = 0 so that ¢, = 0. Therefore, y = c)S® +
c’zﬁalaz + -+ c’m_lﬁal i Qme1 = ﬂalag(c{,a::, ccem + c'263 + e
Ch_103 "+ Qm_1) = PBajogu, where u € A. So y € BajazA. Thus Q3(S;) C
ﬂalagA.

On the other hand, let y € BajazA. So y = Bajas A where A € A. Then
0(y) = (B, —a2 - atm)Barazh = 0. So y € N3(S1). Thus BajazA C N3(S)).

Therefore, 23(S5;) = BajazesA. O

To find N3(S,,) we have the map
Y:e1A = Q(Sm)
given by:
e1\ — amer1 ), where A € A.
Note that Q2(S,,) = Ker 9.
Proposition 11.3. Q%(S,,) = (o1 — Baa)A.
Proof. First let € Q%(S,,). Then z = e\ with A € A. Write x = cpe; +

cron+ca102+- - +Cmo101 -+ Q14 Cm01 - - A+ Crp18+¢p8° +¢) Bon +
hBaraz+:--+c, 1801+ - am—_1 where c,-,cg- € K. Since z € Ker ¢ we know
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that ¢(z) = 0, that is, a,(coe; + croy + coa1az + -+ + Cu—101 - A1 +
em@1 -+ - am+Cmt18+cpB + ) far+chBarag+- -+ _1Bar -+ Am—1) = 0.

So cpam + crama + caamaiaz + - - + Cp—1@mal -+ - Apm—1 + Cpr10mB +
ciamPor+chamParaz+- - -+, _jamPBa -+ am—1 = coam+(c1+¢})amar+
(ca+ch)amaroz+ -+ (cm—1+ Cp_1)ma1 * * - Am—1 + Cm410mB = 0. Thus

co=cmt1 =0and ey +¢cf =cp+ch=-+ =cm-1+¢,_; =0. There-
fore, z = cio1 + 2102 + -+ + €101+ -1 + CmQ1 -+ O + B3 —
cfoy — ... —cm-1fa1 - am-1 = c1(a1 — o) + c2(a1 — Bar)oz + -+ +

em-1(01—Bar)az - - om+eman - - - am+cpB% = (a1 —PBar)(crez+caoa+- - -+
Cm-202 -+ A1+ (Cm—1+€m)az - &m) + (em + ¢p) B = (01 — Ba)(cre2 +
c200+ - +Cm—202 - Am—1+(Cm—1tCm)a2 - am+(cm+cp)(az - - - amfB)) =
(a1 —PBan)v, where v € A. So z € (a1 —Bay)A. Thus Q2(Sy,) C (a1 —Bai)A.
On the other hand, let £ € (a3 — Ba1)A. So ¢ = (a1 — Bai)A, where
A € A. Then ¥(z) = (ama1 — amBai)X = 0. Thus (a1 — Ba1)A C Q2(Sy).
Therefore, 0%(Sy) = (a1 — Bay)eqA. O

To find Q3(S,,) we have that 23(S,,) = Ker @ where 0 is the map:
0: eaA — Q%(Sp)
given by:
el — (a1 — Bag)eaA
where A € A.

Proposition 11.4. Q3(S,) = az -+ - amaieaA.

Proof. On one hand, let y € 93(S,,). Then y = e2\ where A € A. Writey =
doez+diaz+daazaz+: - +dp_102 O +dmaz - - mB+dmy102 -+ amon
where d; € K. Since y € Ker6 we know that 6(y) = 0. Thus 0 =
(o1 — Bay)(doez + diag + deazag + - + dp—102 -+ - O + dmaz - B +
dm+1a2 + - amon) = do(aq — Pay) + di(a1 — Bar)az + d2(o1 — Bor)ozas +
oo 4 dm_z(al - ﬂal)ag v Q-1 + dm-101 - ap + (dm -d —l)ﬁa- Thus
d = -+ = dp-1 = 0 and d;, — dy—1 = 0 so that d, = 0. There-
fore, y = dm+102---amonp, where p € A. So y € az - amaiA. Thus
Qs(Sm) (_Z Q.- amalA.
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On the other hand, let y € a3---ama1A. So y = az - amon A where
A € A. Then 6(y) = (a1 — Bay)ag-+-amair = 0. So y € N3(S,,). Thus
az---amoyA C Q3(Sy,).

Therefore, 23(S;,) = az - - - amareaA. m

To determine HH?(A) we start by finding Im d.
Find Imd,.

We know that HH?(A) = Ker d3/Imdy. First we will find Imdj. Since dj :
Hom(Q!,A) — Hom(Q?, A), then dyf € Imd,, where f € Hom(Q!,A) and
daf = fAs. Here Q' = (A61®361A)®®,2;1(A61®a, ei+10) B (Aen®aq,, €10).
Let f € Hom(Q*,A) and so

fle1®ge1) = crer + c2B + c38% + cuff,
f(el B el+l) = dlal, forl e {1a ceeyM — l}a

f(em ®a,, €1) = dmam,
where c3, c2, c3,¢4,d;,dm € K.

We have Q% = (Ae1® 2 e1A) ® (Aem ® 2 2A) © DT (Ae; ® 72, €i10) if
m > 3 and Q% = (Ae1 ®pz e1A) © (Ae2 ®fz e2A) © (Aez @2 e3A) if m = 2.

Now we find fA;. We have

fAz(e1 @2 1) = f(e1 ®p €1)B + Bf (€1 ®p €1) — f(e1 By €2)02+ - O —
a1f(e2®aj€3)a3  Qm — -+ — 0102 - 1 f(€m Bay, €1) = (c161 + 28+
c3B? + caB®)B + B(cier + caf + c3fB? + caB®) —dion - o — dao -+ - i, —
i —Amon O =268 — (d1 + da + -+ - + dm — 2¢2) 5% + 2¢353.

Also fAz(em ®;z e2) = f(em ®a., €1)o1 + anf(e1 Oa, €2) — f(em Ba,,
e1)Bai — anf(e1 ®p e1)ar — ampBf(e1 Qa; €2) = dmamar + diamon —
dmamBon —om(cre1+c2B+c3f?+csB) a1 —dramBar = (dm+d1—e1)amar—
(dm+c2+d1)amBar = (dm+d1—c1 —dm —c2 —d1)amar = —(c1+c2)ama.

Finally, for m > 3 and j = 2,....,m —1 or for m = 2 and j = 2,
we have fAs(e; ®f§,,- ej+1) = f(ej ®a;y ej+1)jt1° - aj + ajf(ej41 ®ajiy
e,-+2)aj+2 ceeagtr et aj_lf(ej®a,.ej+1) = (dj+djp1+- - +dj)aj - a;
=0.
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Thus fA; is given by
fA2(el®f1261) = 261,3—-(d1+d2+- . ‘+dm'—202)ﬁ2+263,33 - 2c’ﬂ+c"ﬂ2+2c'”,33,

fAz(em ®p3 €2) = —(c1 + c2)aman,
f(ej®fgjej+1)=0, forallje{2,.... m—1}ifm>30orj=2ifm=2
for some ¢, c",d",c1,c3 € K. So

. _J 4 ifcharK #2,
dzmlmdg—{z if char K = 2.

Next we determine Ker d3 in the case where m > 4. We will consider the
cases m = 2 and m = 3 later.
Find Kerds for m > 4.

From the projective resolutions for simples we know,, for m > 4, that the
third projective Q3 = (Ae1 ® esA) & DT (Aet ® es12A) ® (Aep—1 @ e1A) ©
(Aem ® e24).

For m > 4, the set f3 consists of the following elements:

{f}, f30 £3, £} with t € {2,...,m — 2} where

B = fiBua = Bfifaioz+ o1+ om—1fraz + (Bon — 01) 24,
3 2 2 ’
fz,t = f32,tat+1 = atf3,t+éa . .
s = fima(lam—omB) = am-1fiar---om+om_10mfiB - am-lafgﬂfl,
f3 = fifax---amm = —amfiBar + amBfiar + amar - am-1f3.

We have d3 : Hom(Q%,A) - Hom(Q3,A). Let h € Kerds, so h €
Hom(Q?,A) and d3h = 0. Then h: Q% — A is given by

h(e1 ®y3 €1) = cre1 + 2B + c30” + caB,
h(em ® 2 e2) = csamoy and
h(e; ®fz, ej+1) = djay, for j € {2,...,m — 1},
for some cy,...,cs,d; € K where j =2,...,m—1.

Then hAs3(e1®y3e3) = h(e1®2e1)Ba102—Bh(e1®pze1)ara2—a1 - - - am-1h(em® gz
e2)az — (Bax — an)h(ez ®yga, e3) = (cre1 + 2B + c3B? + cafB®)Bonaz —
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B(cre1+caf+c3f?+caf3)oanar—cson - - - Om—10mar a2 —dafar oz +deayaz =
da(ar1a2 — ﬂalaz). As h € Kerd3 we have dy = 0.

Fort € {2,...,m — 2}, we have hAj3(e; 8y, et+2) = h(e: ®y2, €4+1)Qs 1 —
ath(eta ®f2 1 et+2) = dioyoyy1 — der0pop1 = (de — dey1)oag1. Then
di—div1=0andsod; =diyg fort =2,...,m—2. Hencedy =dz = ... =
dn-2 = dp—1. We already have d =0sod; =0 for j =2,...,m—1.

Now hAsz(em-1® 13 e1) = h(em-—1® B em)(am — amPB) — am-1h(e, ® £
e2)ag .-+ am—am_lamh(q@flzel)ﬂ-}-am_lamﬁh(el@flz €1) = dm-10m—10m—
drn—10m—10mB—C50m—10m Q@102 - + - A —Qm—10m(c161+C2B8+c36%+ca %) B+
am—1amB(cier + caB + c3B% + c4B?) = dm—1(m—10m — Am—10:,8) = 0, as
dm—1 = 0 above.

Finally, hA3(6m®f4s e2) = hiem ®;2 e2)on - - - amal +amh(er ®;2 e1)Bay —
amBh(ey ®;s2 €1)a; — ama;y -+ am—1h(en ®j2 €2) = Csamaiaz - anay +
am(cier + c28 + c3fB? + C4ﬂ3)ﬂal — amfB(cier + 28 + C3,C'-)’2 + C4ﬂ3)a1 -
C5AMQY * * * Q1001 = —ClamfPor + ciay,PBa; = 0, and so this gives no
information on the constants occuring in h.

Thus h is given by
h(e1 ® 2 e1) = cres + caff + c36° + cafF®,
h{em ®yz e2) = csamay and
h(e; ®y2, ej+1) =0, for j € {2,...,m — 1}
for some c¢y,...,c5 € K and so dim Kerdz = 5.

Therefore, for m > 4 we have

5—4=1 ifcharK #2,

. 2 —
dimHH (A)—{ 5_-2=3 ifcharK =2.

Theorem 11.5. For A = A(m) and m > 4 we have

1 ifchar K # 2,

. 2 _
dimHH'(A) = { 3 ifchar K =2.
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11.8. A basis for HH2(A) for A = A(m) and m > 4.

charK # 2.

Suppose that m > 4. We know that dim HH2(A) = 1. So we need to find
one non-zero element in HH2(A). Define the non-zero map h; in Kerds to
be given by

e1®pe — e,
else — 0.

Now suppose for contradiction that h; € Imdz. Then hj(e; ®p e1) =
fAz(e1®y2e1) for some f € Hom(Q!, A). So we havee; = 2¢'8+c"B%+2c" 33
for some ¢,c",c¢" € K. This gives a contradiction. Therefore h; ¢ Imd,.
Hence hy + Imd; is a non-zero element in HH2(A).

So {h1 + Imd,} is a basis of HH%(A) when char K # 2.

charK = 2.

Suppose that m > 4. Here dim HH?(A) = 3. So we need to find three
non-zero linearly independent elements in HH2(A). We start by defining
non-zero maps hj, he, h3 in Ker ds.

Let h; be the map given by

€1 ®p2€1 > e,
else — 0,

h2 be given by

e1®p € B3,
else — 0,

and hs be given by

el®flzel — ﬁa
else +— 0.

It can be shown as before that these maps are not in Imd,;. Now we will
show that {h; + Imdy, ha + Imdy, h3 + Imds} is a linearly independent set
in Ker d3/Imd, = HH2(A).

Suppose a(hy +Imdy) +b(he +Imdy) +¢(hz +Imdz) = 0+ Imd; for some
a,b,c € K. So ahy + bhy + chs € Imd;. Hence ah; + bha + chs = fA; for
some f € Hom(Q',A). Then (ahi +bhs + chs)(e1 ®2 €1) = fAz(e1 ®;2 €1).
So ae; + bB3® + ¢B = "B for some ¢’ € K. Since {e1, 3, 5? 5} is linearly
independent in A, we have a = b = ¢ = ¢’ = 0. Hence {h1 + Imdz, h2 +
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Imdy, h3 + Imd,} is linearly independent in HH?(A) and forms a basis of
HH?(A) when char K = 2.

11.7. HH%(A) for A = A(m) and m = 3.
Note that if m = 3 then the set f3 is {f}, f3, f3} where

= flBaias = Bffaras + aaafifas + (Boq — o) f3,,
f3 = fiilas—a3B) = oaaffosas+ azasfif — azosBfi,
f} = fioasos = —asfifa + asBfior + asnanfi.

To find Kerds. It can be seen easily from the case where m > 4 that a
typical element h € Kerdj is given by

h(ex ®f12 e1) =cie; + 28+ 03,62 + C4ﬂ3,
h(es ®f22 62) = cgasay and
h(ez ®f;."2 e3) =0,

for some ¢y,...,c5 € K and so dim Ker dz = 5. Recall that

4 ifcharK #2,

dimImd, = { 2 if char K = 2.
Therefore,

5—4=1 ifcharK #2,
5—2=3 ifcharK =2.

A basis for A = A(m) where m = 3 is the same basis as for m > 4 above.

dimHH?(A) = {

11.8. HH?(A) for A = A(m) and m = 2.
The set f3 is the set {f3, f3} where

f2 = fiParoy = Bfiaraz+ a1ffaz + (Ben — 1) f3s,
f} = flosm = —oofifor+ azBfion + oz fi.

Let h € Kerds. So h € Hom(Q2,A) and
h(e1 ® 3 e1) = cre1 + 2B + c3B” + caff’,
h(e2 ®;2 e2) = csapay and

h(e2 ®f32 e1) = daaz

for some ¢cy,...,c5,d2 € K.
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Then hA3(e; ®j3 e1) = h(ex ®s2 e1)Baraz—Bh(e; ®j2 e1)ayas—ajhie; ®j2
ez)az — (a1 —an)h(e2®@;2 €1) = (c1e1+ 2B +c36° +caff) faraz ~ Blcrer +
c2B+csBP+caBP)anar—csar oz ag—dyfarag+daci oz = da(a102—Paraz).
As h € Kerds we have dy = (.

Also hAsz(e2 ®f2 e2) = h(e2 sz ez2)azai+agh(e; ®y3 e1)Bay —azBh(er ®2

“e1)a1 — azonh(e2® 2 €2) = 5010201 + ag(cren + o+ 382 + caf?)Bon —
aaf(cre1 + caB + 32 + caB3)a; — csaranazan = —ciazfay + cronfay = 0,
and so this gives no information on the constants occuring in h.

So h is given by
he1 ®p e1) = crer + caB + s + caff’,
h(e2 ® 3 e2) = csazcy and

h(e2 ®f32’2 e1) =0,

for some c¢y,...,c5 € K.
So dim Kerds = 5. Recalling that dim Imd; was found earlier, we have

5—-4=1 ifcharK #2,
5-2=3 ifcharK=2.

The basis for A = A(m) where m = 2 is again the same as above.

dimHH?(A) = {

We summarise the results in the following theorem.

Theorem 11.9. For A = A(m) where m > 2 we have

5—4=1 ifchar K # 2,
5-2=3 ifchar K =2.

If char K # 2, then {h; + Imd,} is a basis for HH?(A) where h; is the

map given by

dimHH%(A) = {

€1Q®p2€1 ey,
else — 0.
If char K = 2, then {h; + Imdy, ha + Imds, h3 + Imd;} is a basis for
HH?(A) where h; is the map given by
€e1Q®p€1 — e,
else — 0,
h, is given by

el®fl2 e = ﬂs’
else — 0,
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and hg is given by
e1®ue1 — B,
else — 0.

This completes the discussion of HH2(A) for the non-standard self-injective
~ algebras of finite representation type over an algebraically closed field.

Theorem 11.10. Let A be a finite dimensional self-injective algebra of finite
representation type over an algebraically closed field K. If A is the standard
algebra of type A(Azpi1,3,2) with s,p > 1, A(Dp,s,1),A(D4,s,3) withn >
4,8 > 1, A(Dp, s,2),A(D3m,8/3,1) withn > 4,m > 2,8 > 2 or A(Ep,s,1),
A(Eg, 8,2) withn € {6,7,8},s > 1; then HH?(A) = 0.

If A is of type A(An,s/n,1) then dim HH%(A) = m wheren+1=ms+r
and0<r<s.

For A(Azp+1,8,2) with s = p=1, dimHH?(A) = 1.

Let A be A(Dy, 1,2); then dim HH?(A) = 1.

Let A be the standard algebra A(D3m,1/3,1); then

2 ifchar K # 2,
4 ifchar K =2.

If A is the nonstandard algebra A(m) of type (D3m,1/3,1) where m > 2 we

have

dimHH?(A) = {

1 ifchar K # 2,

. 2 _
dim HH'(A) = { 3 ifchar K =2.
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12. DERIVED EQUIVALENCE AND ONE-PARAMETRIC
SELF-INJECTIVE ALGEBRAS

In this chapter we look at self-injective algebras of tame representation
type (not finite representation type). We start by describing the work of
Bocian, Holm and Skowronski in [6] which gives a classification of all stan-
' dard one-parametric but not weakly symmetric self-injective algebras. We
consider the algebras of [6], but remark that there are other classes of self-
injective tame representation type algebras that we could also have consid-
ered. In particular, the classification of all standard one-parametric weakly
symmetric algebras has been given in [7]. The algebras in [6] are divided
into two types, and here we study HH2(A) for some of one type A. The
main result here is Theorem 12.13, and this finishes the thesis. Future work
will continue the computation for the second type.

We start by describing this first type. The classification in [6] gives each
algebra by quiver and relations and is constructed from Brauer graphs. The
definitions are all taken from [6).

Definition 12.1. A Brauer graph T is a finite connected undirected graph,
where for each vertex there is a fixed circular order on the edges adjacent
to it.

In the context of the paper [6], T has at most one cycle. Moreover, the
edges adjacent to a given vertex are clockwise ordered.

Let T be a Brauer graph with exactly one cycle Ry, having k > 2 edges.
Let v1,...,v; be the vertices of R; and n(v;) = {v;,vi41} the edges of Ry
where ¢ = 1,...,k and vg41 = v1. In that case the Brauer graph T is of the

form (*):
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\ / \ y'
°&(—kl—>:) (ky° \ y°
;Ar:(kh; / \o

As can be seen from the diagram, the main edges are labelled 1,...,k.
Sometimes we will use the notation n(v;) for the main edge : where 1 < i < k.
The outer edges are those labelled by ™ where 1 < m < p and the inner
edges are those labelled by i,, where 1 <m <gq.

The outer vertices are labelled wy, ..., ws, where w(;_1)p1m and v; are
the vertices of the edge i™, for 1 < m < pand 1 < i < k. The inner vertices
are labelled y1,. .., ygr Where y(;_1)q+m and v; are the vertices of the edge
im,forl1<m<gand1<i<k.

For ease of following the edges, we will label the inner edges by i* where
p+2<t<p+g+land1<i<k.Soi=14_p 1.

As in [6], the edges of T are then rotated by an automorphism of T'.
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Definition 12.2. An automorphism of the Brauer graph T is an automor-
phism which preserves the fixed circular order on the edges adjacent to any
vertex.

A rotation of T is an automorphism o, of T, for some integer s with
1< 8 < k-1, such that g,(v;) = viy, foralli =1,2,... k (where k +r =
rforr>1).

As in [6], we assume gcd(s + 2, k) = 1. With the following definitions we
will define the generalized Brauer quiver Q(T',0,).

Definition 12.3. Let T be a Brauer graph. A o,-orbit of a vertex v of T
is the orbit of v with respect to the action of the cyclic group generated by
o, on the vertices of T. Moreover, all o,-orbits of vertices of T" have k/d

elements where d = gcd(s, k).

Definition 12.4. Let T be a Brauer graph. An order P(T),0,) of the edges
of T is defined as

P(T, 0'3) = UP(T, 0’,,‘0)

where v are the representatives of all pairwise different o,-orbits of vertices
of T. A cyclic order p(T,o,,v) is defined using the cyclic orders of edges

o/ d)_l(v) in the Brauer graph 7.

around the vertices v,0,(v),...,

Specifically, let » € {0,1,...,(k/d) — 1}, let ¢ be an edge of T adja-
cent to the vertex o7(v) and let j be the direct successor of ¢ in the cyclic
order in T around of(v). If j # n(oj(v)), then j is defined to be the
direct successor of i in the cyclic order p(T,0,,v). If j = n(oj(v)) then
(077! (v)) = os(n(of(v))) is said to be the direct successor of 4 in the cyclic
order P(T,0,,v).

Now we are ready to define the generalized Brauer quiver Q(T,o,).

Definition 12.5. Given a Brauer graph T, we define a generalized Brauer
quiver Q(T,0,) where the vertices and arrows are given as follows. The
vertices of Q(T,0,) are the edges of T. An arrow ¢ — j exists if and only if

j is the direct successor of i in the order p(T, o).

Definition 12.6. The algebra Q()(T,0,) is the algebra
KQ(T,0,)/TO)N(T,0,),
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where KQ(T,g,) is the path algebra of the quiver Q(T’,0,) and IV)(T, o,)
is the ideal in KQ(T, 0,) generated by the elements

(1) ab where a : i3 — i3,b : i3 — 43 and %;,42,43 are not consecutive
elements in the cyclic order P(T,a,).

(2) C(3,p(T, 04,v)) — C(3,p(T, 04, w)), where i = {v,w} is an edge of T
~and C(3,p(T,a,,v)),C(i, p(T,0,,w)) are the paths from i to 0,(1) in the
quiver Q(T',0,) corresponding to the consecutive elements i, . .. ,0,(i) of the

cyclic orders p(T,0,,v) and p(T, s, w), respectively.

Definition 12.7. If the Brauer graph T is of the form () and ged(s, k) =1
then Q()(T, 0,) is denoted by A(p, g, k, 3).

As [6, Theorem 1] shows, these algebras A(p, q, k, 8) are one of the types
of standard one-parametric but not weakly symmetric algebras. The other
type is labelled I'*(n) and the definition of I'*(n) is in [6].

Theorem 12.8. [6, Theorem 1] For a standard self-injective algebra A the
following are equivalent:
i) A is one-parametric but not weakly symmetric;

ii) A is derived equivalent to an algebra of the form A(p, g, k, s) or I'*(n).

Remark. Two algebras of the form A(p, g, k, s) and I'*(n) are derived equiv-
alent if and only if they are isomorphic. Note that an algebra of the form
A(p, g, k, ) is never isomorphic to an algebra of the form I'*(n) as their stable
Auslander-Reiten quivers are not isomorphic. Precise details of when two
algebras either both of type A or both of type I' are given in [6, Proposition
7.6] and [6, §0] respectively.

The overall aim is to find HH?(A) for all standard one-parametric but not
weakly symmetric algebras and in this thesis we consider here some of the
derived equivalent representatives of these algebras A(p, g, k, 8), namely the
algebras A(p,q,k,k — 1).

We fix s = k — 1 and will show that the second Hochschild cohomology
group is non-zero, for the algebras of the form A(p, g, k, k—1) where p, g, k are
arbitrary. With s = k — 1 it is true that gcd(s+ 2,k) = 1 and ged(s, k) = 1.
As Hochschild cohomology is invariant under derived equivalence, the second
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Hochschild cohomology group is non-zero for any algebra derived equivalent
to one of these representatives A(p, g,k,k — 1).

For an arbitrary p,q,k and s = k—1, let d = ged(s, k) = ged(k—1,k) =1
and let o, be the rotation:

for the main vertices v;,
Os:V;i > Vitrp—1 Wherei+k—-1=1-1,74> 2.

for the outer vertices w;,

on s vy 4 Wit(e=1)p if w; is a vertex around vy,
a7 Wi—p otherwise,
and for the inner vertices y;,
0t g b Yi+(k-1)¢ if % is a vertex around v,
s Yi—q otherwise.

For ease of notation we write o for o;.
The orbit of a vertex v with respect to the action of the cyclic group

generated by o on the vertices of T is:

{id(v),o(v),0%(v),...}.
Recall from Definition 12.3 that all o-orbits of vertices of T have the same

number of elements, namely k. Now we find the orbit O(v) of each vertex v
of T.

O(v1) = {v1, vk, V-1, - .. ,V3,V2}

O(w1) = {w1, Wk—1)p+1 Wk-2)p+1s - - - » W2p+1, Wp1}

0(“’1’) = {wpa Wikps W(k—1)ps -+ + » W3p, w2p}

O(11) = {¥1, W(k-1)g+1: W(k—2)g+1s - - - » W2g+1, Wg+1}

O(yq) = {yq? Ykqs y(k—l)q, <1 Y39y y2q}-
Now we introduce an order P(T, o) of the edges of the Brauer graph T'.
We have p + q + 1 distinct representatives of the orbits of the vertices of T,
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they are vy, w1,...,Wp,¥1,...,¥q- So we have p+g+1 cyclic orders. Hence,
from Definition 12.4 we know that
P(T,0) = p(T,0,v1) UL, p(T,0,w;) U Uj<1 (T, 0, 3;)-

Using Definition 12.4 we define the cyclic order around each vertex. For
- the cyclic order p(T, o, v1), starting from any edge, say i, and moving clock-
wise around the vertex v, if the direct successor of i is not a main edge then
it is the direct successor of ¢ in the cyclic order. If the direct successor is a
main edge n(o"(v1)) then the direct successor of the edge i is n(c"*!(v;))
in the cyclic order. So we have,

p(T,0,v) = {1,1P%2 . [1ptatl g 11 1P | kPY2 . kPYOtl |—1,
k',...,kP k—1,(k—=1)P*2,, .. 2,20F2 opte+l q ol 2P}

The other cyclic orders are found more easily, and can be seen to be:

o(T,0,w) = {1}, k!, (k - 1)},...,3%,21},

o(T, o, wp) = {17, kP, (k — 1)7,...,3P, 2P},
p(T’ U’ yl) = {1p+.2’ kp+2, (k - l)p-*.z’ M | 3p_+2’ 2”2},

p(T, o, yq) = {1P+¢1+1, kp+q+l, (k _ 1)P+q+1’ . ,3p+q+1’ 2p+q+1}.

Then the generalized Brauer quiver Q(T, o) using Definition 12.5 is of the

form:
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B

-1
2 7%

Pz = 7

1p+2 al ax;+q+1 2p+q+l

e :
k — 1p+3
kel _aftet coy k—1P2
\

Te-1 k-1 o
lee———"" 13 ... 1 kP
k T k k 7!

k

Hence, by Definition 12.6, the algebra A(p,q,k,k — 1) is given by the
above quiver Q(T, o) with the relations:

(1) for all 7 € {1,...,k}, we have relations

a2,

%Bis1>

7{/33'“ where j € {1,...,p— 1},

’Yf Yo(i)»

B Y(;) Where m € {1,...,n},

o!~16! wherel€ {p+3,...,p+q+1},

Al q“a,(i) and
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ﬂ:a‘a(i) wheret € {p+2,...,p+q+1}.

(2) for all i € {1,...,k}, we have relations

a,-af"’z e afﬂﬂ%(i)'ﬁl R e 7 R ’Yf+1ai°‘f+2 e afﬂﬂ,

Bl — ™ APana®lE . g a’ft?ﬂ'y;z{.-\'vf,_.\ ---'VTII.fO{ me{l..... p}.

ﬂt ﬂm '7; 7p a(t)ag'(t) ag-(t()l 702(1)75(,') ° "Y:E,'_) afor meE {11 RREY
,Bt - a ap+q+l’70(t)7_; '7paa(1) a(,) tv?gl)a

Now we want to find an a.lgebra A (p,q, k, k—-l) isomorphic to A(p, g, k, k—
1) and so that A’ = KQ'/I' and the ideal I’ is contained in the square of the
arrow ideal of KQ'. So we are going to replace §’s in the relations where it
is possible. Let Q'(p,q,k, k — 1) be the quiver:

-1 1
P 1 "

T2

1! %

1pt+et+l ‘ opt+q
oh /
Te
ap+q+l
12 !
: k
171
aj
e g ’
kP2 k — 173
1P
p+2
a1
kP+¢1+1 a"+q+1 Q-1 k_1P+2
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Then A(p,q,k,k — 1) is isomorphic to the algebra given by the quiver
Q'(p,q,k, k — 1) with relations, for all i € {1,...,k}:
(1) esed*? - o Ty ok o,
07 -HERRRE . PT- 10 LY AL AP
Yt Aoyl a(') ag‘(t) 7,.,_1'7;(‘.) . -'y";(i) where j € {1,...,p—1},
'Yp 70(1)s
ey o oV Vo oty
where m € {1,.. ,p},
otk ot q+l7o'(i)'7i Aoy ol (,) f,_(,l)
where | € {p+3,...,p+q+ 1},
of oy,
af - o Ty gyl ol el
where t € {p+2,...,p+q+ 1}
and finally

2 2
(2) ewef*? - o gl of — v Afppoaed e o

These relations are not minimal. So next we will find a minimal set of
relations f2 for this algebra.

Let f2; = 0ot ol My ot o P —mirby - el o,
f2i = M and f3; = of ™ layq) so fiy, £, f3; ate in f? for i €
{1,...,k}.

Now consider the other relations. We have (a.,a:’" 2. ap"' q“fy,(,)% AP -
Yorder - Weal - ol oy and vl B aed T ol T g
are both in I. Therefore o;a?*?. .. af+"+1'y¢,(,-)'y} «+ AP0y € I and is not
in f2.

Also we have f}.v,(;) € I, so that vyt F +la,-af+ 2.t q+l)'y,(,-)
is in I and not in f2.

Now consider the relation 4™ - - - 4 a,,(,) a(1) a/pz) 'y,z(,')'yi(i) cee
where m € {1,...,p}.

1t+€ 1. So 2oyl "’5@3’“%’(0“’5(&) Y5 Yoo €  and not in f2
el So 'yfa,(,)af"'(';) af:(';) 'Ya"(i)'Yi(i) . --'yﬁ('i)lﬂyf(i) € I and not in f2.

-1
To() Yot
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Ifme{l,...,p— 1}, then

2 _ 2 1 .
foim=1""% C'a(i)“%) "'“52:")” ’Ya’(i)’Yclr(.') e ’Y:Es)l’)'e';fi)
cannot bel obtained from any other elements of I. So ff,i,m =Am...qf a,(,-)af;'g
cee af"'('g"' 7,2(,-)7},('.) e ’y;'z:)l'y;'zi? is in f2 where m € {1,...,p—1}.

Now consider the relation 4/ ! ... 4? a,(,-)az'('g e ai'(';';"'l'y,‘ﬂ'yb(i) ey @
where j € {1,...,p—1}. Note that this relation is precisely ff,‘-,m above with
j = m, which is in f2.

Next consider the relation ! 1o} ... ot q"'l'y‘,(;)'y} coen? a,(,-)af;('g e af,’(il)
where l € {p+3,...,p+g+1}. It cannot be obtained from any other relations
in I. Therefore f52,i,l—1 = o} la}...aft "+1'y¢,(,~)'y} ceenf a,(i)af"g cee af;(il)
wherel € {p+3,...,p+ g+ 1} isin f2.

Finally consider af - - - o+ q“'ya(i)'y} ceeqf a,,(,-)aﬁg ‘e af;(il)afr(i) where t €
{p+2,...,p+q+1}. This is precisely the element f2,, , witht =1 —1
above.

So we now have the minimal set of relations.

Proposition 12.9. For A = A(p,q,k,k — 1), the minimal set of relations,
forallie {1,...,k}, is

FP={f2 f3i fae Fhigr Foin—1}
where

fhi= ko vy e e,
13 = Mo ()
f3i = ol ay,
f3ii= R A4 aa(i)af;f;i e aﬁf’,.‘)'“vm'ri(,-) e ’Yi(i)

where j € {1,...,p -1},
fg,i,l—l = 0’5_10‘5 e 04’* q+l7a(i)'7il Sk aa(e)a% e af;(il)

wherel e {p+3,...,p+q+1}.

In contrast to the majority of the self-injective algebras of finite represen-
tation type, we will show that the algebra A(p,q,k,k — 1) has HH?(A) # 0.
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Specifically, we will find a non-zero element in HH?(A). As HH?(A) =
Ker d3/Imds, the first step is to find a non-zero map in Kerds. We have
ds : Hom(Q?,A) — Hom(Q3, A).

12.10. Define h € Hom(Q?2,A) by

(R)OUL) =1 @ = el ol Tyl =),
else — 0.

We note that p # 0 so h is a non-zero map. But py, = 0 and pa; = 0.
Hence pt = 0 where v = radA. Similarly we have tp = 0.

To show that h € Ker d3 we show that hA3 = 0.

Recall from Chapter 3 that the 3rd projective in a minimal A®-resolution
of Ais @ = uyefs Ao(y) ® t(y)A where y = 3°, fﬁpu =Y ‘h.f&ﬂn Du is
a path of length > 1 and ¢, is in the ideal generated by the arrows. For
y € f3 the component of A3(o(y) ® t(y)) in Ao(f2) ® t(f2)A is

E(O(y) ®f3 Pu—Gqu ®f§ ru)'
Then

hA3(o(y) ® Hy)) = Zu(h(o(y) @2 Pu) ~ quh(0(f2) ® 52 UFD))rw).

if 2= f2

As p, is in the arrow ideal of KQ, pp, € pt = 0. So we have h(o(y)®p.) =
0. Similarly h(qu ®¢2 7u) = 0 as gupry € tpry = 0.
Therefore hA3(o(y)®t(y)) = 0 forall y € f3 so hA3 = 0. Thus h € Kerds.

Thus we have a non-zero map h in Kerds.

Proposition 12.11. For h given in 12.10, h is a non-zero map in Ker d3.

Next we find Imds.

Since d : Hom(Q!,A) » Hom(Q?, A), let f € Hom(Q*, A) and consider
daf = fAj. Here

Q' = BL[(Aei®y ey A) ODE (A ® jeisi A) O (Aeir @peq(i) ) D
(Ae; B, €i0+2A) © DI, (Aesr ® €011 A) © (Aejprass ® et €o(i)A)]-
Let
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J(ei ®, e(ip1yr) = 1,

fless ®,73' €ji+1) = Cz,ijyf forje{1,...,p—1},

F(eiw ®p €5(3)) = C2407

f(ei ®q, €ip+3) = c350,

fley ® epir) =caipal fort' € {p+2,...,p+q} and

flewrer ® prert €)= Cagpras10f T dialt T gt R
where all coefficients ¢y ;,c3;; for j € {1,...p — 1}, ¢, p,C3,,Ca4p for ¢’ €

{p+2,...,p+4q},c4ipig+1,d1 € K.

We have Q2 = @?__:1[(1\6,‘ ®f12i e,(,-)A) ® (Aeir ®f§‘_ e ) @ (Aejpret ®f32.'
e(o(i)r+1A) OB (Aeis® e e(o) 1 A) OB IS (Aey-1® 12011 Ee@ )]

Now we find fA,.

We have, fAz(e,'®flz",e,(i)) = f(ei®a; eir+2)af+2“‘af+q+l’7<r(i)'7il"'%P"'
O N e e B S Sl
f(eip+atr ®grtatt € (i) ’Ycr(i)"/il e 7f+aiaf+2 e af+q+1f (eﬂ(i)®7a(i)ei1)7i1 o
Ft+oialt? . oM My flea®pea)n? P+ toual TR ol )
Ao e Orp o)
~[nf ey O, 1) - Fproiad 2 o T iyl
flegsny ®p,, ei)aiod - Pt gyl AP, fei ®ay eipra)of T
a?+q+1 +'Yi'7i1+1 ces %l’“aif(ei”, ®a?+2 ei,+3)a:'+3 ... af"'q“ +.. '+’7i'7i1+1 ces
’Yf+1aiaf+2 cee af+ 7 flepratt ®a'p+q+1 €oi))]
= (cs,¢+04,i,p+2+- s+ pret1 FC () T C2ii1 1 '+c2,i,p)0/»iaf+2 e Olf+q+l
Yo@) W - W —leri+ i+ Heair1pt+CaitCaiprat o+ Caiprgr1]t
Yhr o el o
So fAz(e; ®s2, €o(i)) = (Cro6) + €241 + -+ C2ip — €15 — C2i411 — - —
62,i+1,p)0¢c'af+2 e af+q+1'7a(i)’7i1 e ’Yf

Next, fAz(er ®p, €a) = fleir ®p o)) Vo) + % f(€o(s) By €1) =
(c2,i,p + C1,0(9) I Yo(s) = 0.

Now, fAz(e;pt+et1 ® £, e(,,(,'))p-i-z) = f(ejptatr ®°‘?+q+1 €o(i)) (i) T+ afH—
F(€o(i)®any o)) = Caiprat1ol T agy+diial "y oyt - Ao+
C3,0)8 gy = drad 02 - o)

q+1
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For the remaining terms, we note that fAs(e;;i® 2. €(a(i))it+t) € eiile(g(iy)it
- Vje{l,...,p—1} and eiile(g(iy)it1 = 0, so fAa(e;i ®f},'_’j e(o(i))i+1) = 0.
Similarly fAz(e;i-1 ®f?,a,:-1 e(o(i)) € ep-1Ae i VI € {p+3,...,p+q+1}
and eg-1Ae, )y = 0, so fAz(e;-1 ®s2., e@)y) = 0.

Let ¢, = Clo() * €21+ + C2ip — Cli — C2i41,1 — -.. — C2i41,p for
i=1,...,k.
Thus for i € {1,...,k}, f is given by
fA2(e; ®p eo() = chaiaf - oI ol o,
fAsx(er ®p3 €a) =0,
FA2(e;ptetr ®f§,‘, e(,(,-))p+2) = dl,iafﬂ- q+1’7a(i)’7i1 e 'Yfaa(i),
fA2(e;i ®.. €(o(i))i+1) = 0 where j € {1,...,p— 1} and
fAz2(eq— 8. €(o(i)y) =0 wherel € {p+3,...,p+q+ 1},
where ¢}, ...,c, € K with ¥ _;c/ =0and d1,...,d1x € K.
To find dimImdy, let ¢; )+ 2,1+ - +C2i,p =0 bo(s) a0d €15+ Coi41,1 +
-+ + €2i41,p =: b;. Therefore we have the following k equations

C’1=bk—b1

&g ="b— b

/
Ck—1 = br—2 — b1

cfe = bk-—l — bk.

Thus we can form the matrix A of coefficients so that

g T by T
& by
: =A
C§c—1 br—1
| < ] br |
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ol
|

(=Y

(=}
OO =

where A =

oo
o
[y

I
faery

- -

Then it is easy to show that rank(4) = k — 1.
Hence dimlmdy =k -1+ k = 2k — 1.

Proposition 12.12. dimImdy = 2k — 1.
We now come to the main result of this chapter.

Theorem 12.18. For A(p,q,k,k — 1), HH?(A) # 0 with h + Imd; being a
non-zero element.

Proof. Consider the element h + Imdy of HH?(A) where h is given as in
12.10 by

°(f12,1) ® t(flz,l) =e1®ex = p,
else — 0.

Recall p= a10f*? ..o o] - oL

We have from Proposition 12.11 that 0 # h € Kerds. Now suppose for
contradiction that h € Imd,. Then h(e1 ® ex) = fAz(e1 ® ex). So p = cjp
and so ¢ = 1. Also h(e; ® e,(;)) = fAz2(e; ® €,(;)) where i € {2,...,k}.
Then 0 = cjasol ™. of "y, (7} - - oF, where i € {2,...,k}. But this
contradicts having £¥ ;¢ = 0. Therefore h ¢ Imdy, that is, h + Imd, #
0+ Imd,. So h + Imd; is a non-zero element in HH2(A). O

It is then immediate from Proposition 12.12 and Theorem 12.13 that we
have the following result.

Corollary 12.14. dimKerd; > 2k.

Remark. There are other non-zero maps h; in Ker ds defined similarly, for
each i, such as hy given by
o(ff2) @) =e2®er = af™ o iynd -,
else — 0.
However they all represent the same element of HH2(A), since, for example,
hs — h € Imd,.
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Let A+ Imd; =: 7). Since we have HH?(A) # 0 we might have a deforma-
tion related to that element 7 in HH?(A). We introduce a new parameter
t to get a deformed algebra A, such that if ¢ = 0 we get back to A. The
deformed algebra A, is the algebra K'Q/I,, where I, is the ideal generated
by the following elements:

(1) flz,l —tp, f12,j where j € {2,...,k},

(2) for all 7 € {1,...,k}, f22’,-,fg,i,ff’i,j,fg’i,,_l, where j € {1,...,p— 1},
le{p+3,...,p+q+1},

(3) pa for all arrows a with t(p) = o(a),

(4) ap for all arrows a with t(a) = o(p).

We now need to show that dim A, = dim A to make sure that A, is indeed
a deformation. I thank Dr. Karin Erdmann for her helpful comments when
considering A,,.

It is clear that dime;A, = dime;A for all t and for all vertices e; with
ej # e1 because the relation f#; — pt does not affect this.

Now we consider ejA, ejA, with t # 1, e1A, with ¢ = 1.

elA
SN
1p—i—2 21
ot |7
1p+3 22
1p+q+1 P
aftett| 1
k 1
™| len
1! 12
71 | af*?
12 17+3
1P 1pta+l
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e1A, witht#1 e1h, witht=1
1 1
o~ 7 a1~ m
1p+2 I 21 17+2 = 21
aft?| | 7 oft?| |4
17+3 92 1743 22
qptetl op 1p+a+l P
aptet| R |2
k 1 k 1
e | jen Ve | | e
1! 1P+2 11 1p+2
7l | af*? 7l | af*?
12 1p+3 12 1P+3
1P 1pte+l 1P 1pt+et+l
‘Yl'\ % /af+¢+1 7{\ k

In each case we see that dimejA = dime A, = 2p+2q+4 for all £. Hence
dimA, = dimA.
Theorem 12.15. With A,n, and A, as defined above, then A, is a defor-
mation of A.

So we have found a non-zero element in HH2(A) and a corresponding
associative deformation of A. Thus we can see the connection between the

second Hochschild cohomology group and deformation theory.

This concludes the chapter and the thesis. In future work we will consider
the other derived equivalent representatives of the algebras of the first type
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A(p,g,k,3). After that, it would be interesting to consider HH?(A) for the
second type I'*(n) and to look at the classification in [7] of tame weakly
symmetric finite dimensional self-injective algebras.
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