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Abstract

Nominal Lambda Calculus

Frank Nebel

Since their introduction, nominal techniques have been widely applied in computer
science to reason about syntax of formal systems involving name-binding operators.
The work in this thesis is in the area of “nominal” type theory, or more precisely the
study of “nominal” simple types.

We take Nominal Equational Logic (NEL), which augments equational logic with
freshness judgements, as our starting point to introduce the Nominal Lambda Calcu-
lus (NLC), a typed lambda calculus that provides a simple form of name-dependent
function types. This is a key feature of NLC, which allows us to encode freshness in
a novel way.

We establish meta-theoretic properties of NLC and introduce a sound model-
theoretic semantics. Further, we introduce NLC[A], an extension of NLC that cap-
tures name abstraction and concretion, and provide pure NLC[A] with a strongly
normalising and confluent βη-reduction system.

A property that has not yet been studied for “nominal” typed lambda calculi is
completeness of βη-conversion for a nominal analogue of full set-theoretic hierarchies.
Aiming towards such a result, we analyse known proof techniques and identify var-
ious issues. As an interesting precursor, we introduce full nominal hierarchies and
demonstrate that completeness holds for βη-conversion of the ordinary typed lambda
calculus.

The notion of FM-categories was developed by Ranald Clouston to demonstrate
that FM-categories correspond precisely to NEL-theories. We augment FM-categories
with equivariant exponentials and show that they soundly model NLC-theories. We
then outline why NLC is not complete for such categories, and discuss in detail an
approach towards extending NLC which yields a promising framework from which we
aim to develop a future (sound and complete) categorical semantics and a categorical
type theory correspondence.

Moreover, in pursuit of a categorical conservative extension result, we study (en-
riched/internal) Yoneda isomorphisms for “nominal” categories and some form of
“nominal” gluing.
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Chapter 1

Introduction

In semantics of programming languages the notion of abstract syntax is a ba-

sic tool that is employed in meta reasoning. It is used to abstract away from the

unnecessary syntactic details of concrete syntax and to concentrate on the essential

constructs of a language. The key idea is that abstract syntax trees are introduced

by structural induction, which allows one to define operations by structural recur-

sion on abstract syntax trees and therefore to prove properties of such operations by

structural induction. It is this structural approach that considerably simplifies meta

reasoning as can be observed in the context of algebraic systems.

For languages with name-binding operators however it has to be considered that

one does not formally deal with abstract syntax trees anymore, but with α-equivalence

classes of abstract syntax trees, which are not inherently inductively defined. In

informal reasoning this is merely a technical issue, which is handled by working with

representatives of the α-equivalence classes and renaming of bound variables if a clash

of names occurs. This informal approach, with the necessary care, is sufficient in the

context of informal reasoning, but if one is interested in formal (mechanised) proofs

a formal treatment of abstract syntax for languages with name-binding is required.

The nominal set model1, introduced by Gabbay and Pitts [32, 33], provides a math-

1originally introduced as the FM-set model.



CHAPTER 1. INTRODUCTION 2

ematical foundation to compute and reason about syntax of formal systems involving

name-binding operators. While the original application of the nominal set model was

to formally reason about abstract syntax with variables and binders, it is now widely

applied to different areas of computer science and logic, where name-binding opera-

tors are used. The underlying ideas of the nominal set model are often referred to

as nominal techniques. Examples of where nominal techniques have been applied are

nominal logics (equational logic [18, 36] and first-order logic [53, 31]), game semantics

[1, 69], domain theory [62, 68], rewriting systems [27], theorem provers [70], logical

programming [11] and functional programming [61]. One of the key features of nom-

inal techniques is that the corresponding formalities are close to informal reasoning

(“pen and paper mathematics”).

The work conducted in this thesis is in the area of “nominal” type theory, which

in recent years has become an active area of research, with contributions ranging over

simple types [9, 55, 23], dependent types [10, 26, 60] and polymorphic types [25].

Our focus is on “nominal” simple types and the introduction of a “nominal” typed

lambda calculus. The typed lambda calculus (λ→) and its equational proof system

is a fundamental formal framework in mathematical logic and computer science to

investigate logical consequences of a set of axioms. It was introduced by Church [12]

and is a direct extension of algebraic (first-order) equational reasoning. We recall

that in the context of algebraic equational reasoning two nominal approaches have

already been introduced: Nominal Equational Logic (NEL) by Clouston and Pitts

[18] and Nominal Algebra (NA) by Gabbay and Mathijssen [36]. In this thesis, we

have borrowed key ideas and structures from NEL [13] to introduce a “nominal”

(higher-order) functional type theory, referred to as the Nominal Lambda Calculus

(NLC), and to study its syntax and semantics. Note that the initial driving factor

for choosing NEL as our starting point was our goal to extend the categorical type

theory correspondence for NEL [15]. To provide an overview we give a more detailed

description of our contributions and goals:
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• We introduce NLC and provide a detailed account of the meta-theory of raw

terms (Section 3.1), as well as the properties of the type and equation system

(Section 3.2).

• We introduce a model-theoretic and categorical semantics for NLC and demon-

strate that both semantics are sound (Section 3.4 and Section 5.2).

• We prove that NLC is a conservative extension of NEL and λ→ (Section 3.5).

• We capture the notion of name abstraction and concretion in NLC. The ex-

tended calculus is referred to as NLC[A] (Section 4.1). Moreover, we introduce

NNLC, which extends NLC[A] with local fresh atomic names (Section 4.3). For

both calculi, we extend the model-theoretic semantics and prove soundness.

• It is well known that functional theories over λ→ correspond to cartesian closed

categories [20, 42]. In the light of the categorical type theory correspondence

for NEL, which uses FM-categories, a natural question to ask is whether NLC

corresponds to some form of “cartesian closed FM-category”. This will be dis-

cussed in Section 5.3 where we make some important observations and introduce

a promising framework towards a future (sound and complete) categorical se-

mantics and a categorical type theory correspondence for an extension of NLC.

Moreover, we analyse properties of pure NLC (without constants) for the pure

βη-theory (without axioms). Work in this direction, but with different foundations,

has been carried out by Cheney [9] and Pitts [55].

• We introduce a pure βη-reduction system for NLC[A] and prove it to be strongly

normalising and confluent. Further, using these results, we demonstrate that

provable equality is decidable (Section 4.2).

• We introduce the notion of full nominal hierarchies, a nominal analogue of full

set-theoretic hierarchies, and prove βη-conversion to be complete for full nomi-
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nal hierarchies in λ→. This result can be seen as a precursor for completeness

theorems of “nominal” typed lambda calculi.

In connection to our work towards a categorical type theory correspondence result

for NLC, we also aimed to prove an additional conservative extension property (based

on ground types) for NLC using a categorical proof argument that we sketched in

Section B.1. This proof argument motivated a careful investigation of enriched and

internal Yoneda isomorphisms for “nominal” categories (Chapter 7), as well as an

extension of the well known gluing lemma for cartesian closed categories (Section

5.1.3) such that the properties of an FM-category are also inherited by the glued

category (Freyd scone). This work lead us to various interesting observations and

technical results, which we thought worthwhile to be included in this thesis.

Note that the content of Section 3.1 and 3.2, as well as Chapter 5 has been

published in [23], and was written with Roy Crole.

1.1 Thesis Overview

We first provide an overview of the content of each individual chapter and later

clarify how the chapters relate to one another from a motivational perspective.

In Chapter 2 we recall the concept of abstract syntax with name-binding operators

and its formalisation using the three main approaches. We give a detailed account of

the nominal set model with its key notions of finite support and freshness, as well as

name abstraction, concretion and local fresh atomic names. In addition, we sketch

the FM-set model, which uses FM-set theory as its foundation and is the precursor

of the nominal set model. Based on these mathematical models, we introduce three

categories, Nom, FMSet and FMNom, also referred to as nominal/FM categories,

and prove various categorical properties of these categories.

In Chapter 3 we introduce NLC. We establish several meta-theoretic properties

of its raw terms and study its mutual inductively defined type and equation system.
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We then introduce a model-theoretic semantics (in FMSet) and prove the type and

equation system to be sound. Further, using a semantic model construction, we prove

that NLC is a conservative extension of NEL and λ→.

In Chapter 4 we introduce NLC[A], an extension of NLC, and demonstrate that it

captures name abstraction and concretion. We extend the model-theoretic semantics

of NLC and prove it to be sound. Further, we define a pure βη-reduction system for

NLC[A] and prove it to be strongly normalising and confluent. Using these results,

we deduce that provable equality is decidable, and moreover that type checking and

type inference are decidable as well. In addition, we demonstrate that NLC can be

used to capture local fresh atomic names. The respective extension of NLC[A] is

referred to as NNLC. We conclude by demonstrating on various concrete examples

how NNLC can be used to capture various constructions in the FM-set model that

involve name abstraction, concretion and local fresh atomic names.

In Chapter 5 we recall the notion of an FM-category and extend it with equivariant

exponentials. The new construction is called an FM-cartesian closed category (FM-

ccc). We investigate if certain categorical constructions, which are required in a

categorical proof argument (see B.1), lift various properties of an FM-ccc. Further,

based on the notion of an FM-ccc we define a sound categorical semantics for NLC. We

then provide evidence that suggests that NLC is not expressive enough to construct a

syntactically generated classifying FM-ccc (term quotient category), or more precisely,

the construction of an exponential in such a category is not possible for NLC. As a

consequence, a categorical type theory correspondence for NLC, as well as a “least-

model” completeness result cannot be obtained in the usual way. As a step towards

resolving this issue, we outline two approaches, which aim to extend NLC such that a

syntactically generated classifying category can be constructed (with a generic model).

The approach we have ultimately chosen to pursue is semantically motivated by

properties observed in the category of FM-sets and FM-functions (FMSet). Based

on these observations, we enhance NLC which ultimately allows us to construct an
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equivariant exponential in a syntactically generated category. This constitutes an

important step towards a syntactically generated classifying category, and ultimately

a complete categorical semantics and a categorical type theory correspondence result.

In Chapter 6 we introduce the notion of a full nominal hierarchy, which is a nom-

inal analogue of full set-theoretic hierarchies, and demonstrate that it is an ordinary

environment model (Henkin model). We pursue the question if the pure βη-theory

can be proven complete for full nominal hierarchies in pure λ→. We argue that this

intermediate goal is not only interesting in its own right, but it also serves as a pre-

cursor towards completeness theorems of “nominal” lambda calculi in the future. We

then provide an overview of the standard proof techniques used to prove completeness

of the pure βη-theory for full set-theoretic hierarchies in pure λ→ and observe that

the logical relation based proof argument is problematic in the context of full nomi-

nal models. This is due to the fact that the argument relies on the axiom of choice.

To circumvent the related issues we apply a stronger precondition, which leads to a

rather restricted completeness theorem. To obtain a stronger completeness theorem

we pursued an alternative route towards completeness using Statman’s 1-section the-

orem, which provides us with a necessary and sufficient condition to determine if the

pure βη-theory is complete for a particular Henkin model in λ→. We demonstrate

that this condition is satisfied for full nominal hierarchies and due to the fact that full

nominal hierarchies are Henkin models, the 1-section theorem can directly be applied

to prove completeness for full nominal hierarchies.

In Chapter 7 we determine if the nominal/FM-categories that we introduced in

Chapter 2 have certain categorical properties, like cartesian closure or (co)completeness,

and recall that these results have direct consequences if one wishes to obtain an en-

riched or internal Yoneda isomorphism. We discuss these consequences in more detail

and unravel variants of enriched Yoneda isomorphism. Moreover, we provide a bare-

hands version of such an enriched Yoneda isomorphism, which reveals interesting

technical details. Further, we prove an internal Yoenda isomorphism for FMSet and
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introduce the notion of a finitely supported (co)limit for FMSet , for which FMSet is

(co)complete.

In Chapter 8 we provide a summary of our contributions, comment on related

work and propose future lines of research.

As previously indicated, we will now relate the different content chapters from a

motivational perspective. For this reason we provide two mind maps (see Figure 1.1

and Figure 1.2) and the following explanatory text:

At first, we want to emphasise that our initial goal, namely to extend the categor-

ical type theory correspondence for NEL, had a major impact on the research carried

out in this thesis, because it significantly influenced the definition of NLC, which is

the core of this thesis (Chapter 3). Taking NLC as our starting point, we pursued

the following goals:

• Based on the observation that NLC can be used to capture name abstraction

and concretion, we introduced NLC[A] as an extension of NLC. We studied its

properties, extended its denotational (model-theoretic) semantics and further-

more introduced an operational semantics (Section 4.1 and 4.2).

• Due to the difficulties that we encountered, regarding the construction of a syn-

tactically generated classifying category for NLC, we considered various possi-

bilities of how to extend NLC. We ultimately decided to pursue a semantically

motivated approach. This approach required various additional structures in

NLC: There is name abstraction and concretion, something that we had al-

ready considered in a different context (Section 4.1). In addition, we had to

introduce local fresh atomic names, which lead to the introduction of NNLC

(Section 4.3). However, to ultimately construct equivariant exponentials, we

introduced [ N]NLC (Chapter 5), a semantically motivated variant of NNLC,

that mimics an adjoint equivalence property of FMSet .

• The work carried out in Chapter 7 and Section 5.1.3 was directly motivated by
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Figure 1.1: Thesis Structure I
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Figure 1.2: Thesis Structure II
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a categorical proof argument that we intended to utilise to prove an additional

conservative extension property for NEL and NLC (on base types).

• Another interesting line of work that we pursued was to study completeness for

“nominal” typed lambda calculi. We initially focused on NLC, but later turned

towards a more restricted problem domain, which allowed us to obtain an inter-

mediate result that we believe may serve as a precursor towards completeness

theorems for “nominal” typed lambda calculi (Chapter 6).
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Chapter 2

Nominal sets and FM-sets

In this chapter we provide a comprehensive introduction in nominal techniques

and their underlying mathematical model.

We begin by recalling the concept of abstract syntax with name-binding operators

and how it can be formalised. This includes a reminder of the three main approaches

and their typical characteristics. We then turn towards the mathematical model that

underpins nominal techniques. It is the FM-set model, introduced by Gabbay and

Pitts [32, 33], which was later refined by Pitts [53] to the nominal set model. A

certain advantage of the nominal set model, regarding applicability, is that it does

not rely on non-standard set-theory (FM-set theory), which makes it slightly more

intuitive. We provide a detailed account of the nominal set model, which includes the

basic notions of finite support support and freshness, as well as three key concepts

of nominal techniques, namely name abstraction, concretion and local fresh atomic

names. Up to this point, the corresponding definitions and properties are, apart

from minor deviations, almost identical for the FM-set model. So, we decided to only

provide a quick overview of the FM-set model. This, of course, does not mean that all

their properties are identical, but for the tasks we have in mind, it will suffice to point

out differences in due course. We conclude this chapter by introducing nominal/FM

categories and by proving various categorical properties for these categories.
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2.1 Abstract Syntax with Name-Binding

We remind the reader that an atomic name, often just referred to as a name or

an atom, is an identifier without an intrinsic meaning, which has one basic property,

namely that it can be compared for identity with other such atomic names. The

association of an object with an atomic name is referred to as atomic name-binding.

Two prototypical examples, in logic and computer science, for formal systems

with name binders (variable binders) in their object language are first-order logic and

the simply typed lambda calculus. Note that in the context of name binders, we

often require the ability to choose a sufficiently fresh atomic name (variable). This

is for example necessary to define a notion of capture-avoiding substitution (in both

systems) or to express the following logical identity and equational rule:

• First Order Logic: P ∧ ∃x(Q(x))⇐⇒ ∃x(P ∧Q(x)) for x /∈ fv(P )

• Typed Lambda Calculus: Γ ` λx : σ.(M x) = M : σ ⇒ τ for x /∈ fv(M)

A fundamental property arising in the context of name-binding is α-equivalence.

Informally, two terms in a language are α-equivalent if they differ only in the choice

of bound names (variables). Note that it is not unreasonable to expect that any

semantics for a language assigns an equal meaning to α-equivalent terms of a language.

As a consequence, many operations on syntax need to respect α-equivalence and

therefore it is meaningful to define operations on α-equivalence classes of abstract

syntax trees in the first place when name binders are involved.

In informal practice α-equivalence is dealt with informally by using ordinary ab-

stract syntax trees (with explicitly chosen bound names). This means that there is no

formal distinction between an α-equivalence class and a chosen representatives of this

α-equivalence class. In the case that a particular representative of an α-equivalence

class is involved in a clash of bound names, another representative with a fresh name

can simply be chosen to avoid such a clash. In the literature this is usually indicated
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by the phrase “we identify terms up to α-equivalence”, also referred to as the Baren-

dregt Variable Convention. There are various approaches towards formalising names

and binders. We will now give an overview of the three main approaches and their

key characteristics:

An early and rather technical approach is based on de Bruijn indices [7], which

propagate a “nameless” presentation of languages with name-binding. The key idea

behind these indices is that the specific name of a bound name does not matter,

but only the fact that a name is bound by a particular binder. So, for example,

the S combinator λxλyλz.(xz)(yz) is represented by λλλ(31)(21). An immediate

consequence of this approach is that α-equivalence is reduced to syntactic equality.

Moreover, operations on syntax are rather arithmetical in nature, which makes this

approach very well suited for mechanised proofs, but rather challenging for humans

to read and manipulate (“coding gap”).

Another approach to represent abstract syntax trees of languages with name-

binding is Higher Order Abstract Syntax (HOAS) [51]. The core idea is to use a

typed lambda calculus as a meta-language in which an object language is embedded.

Thus, questions of binding and α-equivalence are dealt with at a meta-level rather

than as a first class aspect of the object language.

A more recent approach, which was introduced by Gabbay and Pitts [32], is the

theory of nominal sets. Contrary to de Bruijn indices or HOAS, where names are

either avoided or handled as second class citizens, nominal techniques grant names a

first-class status. Its key characteristic is that it fully formalises the informal practice

of name-binding, which we have previously sketched, by using notions of support,

freshness and the novel concept of name abstractions.

To work with names as first class citizen, the concept of a permutation model

has been chosen as the mathematical foundation. It allows to implicitly expresses

the dependency of names (support) and independency of names (freshness). Such

permutation models and their corresponding notion of support already existed in the
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literature, but have been “rediscovered” in the context of names and binding. It was

originally introduced by Fraenkel [29] and refined by Mostowski [49] to prove the

independence of the axiom of choice from the axioms of ZFA (ZF with atoms).

A key novelty of the nominal set model is the introduction of name abstractions,

which allow one to explicitly express the dependency of a structure on names. Thus,

name-binding can now be directly captured in the nominal set model. In combination

with cartesian products and disjoint union, name abstraction can also be used to

represent abstract syntax modulo α-equivalence as an inductive date type in the

nominal set model with the corresponding notions of α-structural induction and α-

structural recursion. An instructive example for the untyped lambda calculus can be

found in [33].

For discussions regarding the advantages and disadvantages of the nominal set

model, compared to the earlier approaches, we refer to [4, 8, 19]. In general, in the

wider research community, the nominal set model is by now well accepted and widely

applied as an alternative approach to formalise names and binding.

2.2 Nominal Set Model

We now recall the basic definitions and properties of the nominal set model, as

well as various related constructions that will be used in this thesis. For full details

we refer to [33, 56].

Support and Nominal Sets

Let A be the countable infinite set of names and Perm(A) the set of finite permu-

tations of A, which are bijections π : A → A such that {a ∈ A | π(a) 6= a} is finite.

Perm(A) has a group structure with function composition, denoted by ◦, acting as

group multiplication, the identity permutation, denoted by ι, as group identity and

the inverse function, denoted by π−1, as group inverse. We write a for finite subsets
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of A and (a a′) for a transposition, also referred to as swapping between names.

The notion of a Perm(A)-set is defined to be a set X, which is equipped with a

permutation action (Perm(A) × X → X), denoted as (π, x) 7→ π ·X x, such that

the following two properties hold:

ι · x = x π · (π′ · x) = (π ◦ π′) · x

If it is clear from context we usually just write π · x. A function f : X → Y between

Perm(A)-sets is called equivariant if for all π ∈ Perm(A) we have that

π · f(x) = f(π · x)

A subset S ⊆ X of a Perm(A)-set X is an equivariant subset if is closed under

the permutation action of X, i.e. for all π ∈ Perm(A) and x ∈ X we have that if

x ∈ S then π · x ∈ S. For a Perm(A)-Set X, we say that S ⊆ A supports x ∈ X if

for all a′, a′′ ∈ A \ S we have that (a′ a′′) · x = x. If S is a finite subset, we say that

x is finitely supported by S. A Perm(A)-Set X with the finite support property,

which requires that every x ∈ X is finitely supported, is called a nominal set. We

now recall some basic properties of nominal sets. For proof details we refer to [33].

Lemma 2.2.1 Let X be a nominal set and x ∈ X. Then there exists a least finite set,

written as supp(x), which supports x. Moreover, supp(x) can be explicitly expressed

as follows:

a ∈ supp(x)⇐⇒ {a′ ∈ A | (a a′) · x 6= x} is not finite.

Lemma 2.2.2 Let X be a nominal set and x ∈ X. Then π · supp(x) = supp(π · x).

Lemma 2.2.3 Let f : X → Y be an equivariant function between Perm(A)-sets X

and Y . Then the following properties hold:

(i) if S ⊆ A supports x ∈ X, then it also supports f(x) ∈ Y . Moreover, if X and

Y are nominal sets, then supp(f(x)) ⊆ supp(x).
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(ii) if f is injective and Y is a nominal set, then X is a nominal set with supp(x) =

supp(f(x)).

(iii) if f is surjective and X is a nominal set, then Y is a nominal set.

We continue by recalling several examples of nominal sets. For further details we

refer to [33].

Example 2.2.4

(i) Discrete Sets: Any set X, equipped with the trivial permutation action π ·x def
=

x, is a nominal set with supp(x) = ∅. X is called a discrete nominal set.

(ii) Set of Names: The set of names A, equipped with the permutation action

π · a def
= π(a), is a nominal set with supp(a) = {a}.

(iii) Finite Permutations: The set Perm(A) of finite permutations of A, equipped

with the conjugational permutation action π · τ def
= πτπ−1, is a nominal set with

supp(τ) = {a ∈ A | τ(a) 6= a}. Note that the map π · τ def
= πτ is also a

permutation action, but Perm(A) is not a nominal set under this permutation

action.

(iv) Binary Cartesian Product: Let X and Y be nominal sets. The binary

cartesian product X × Y def
= {(x, y) | x ∈ X ∧ y ∈ Y }, equipped with the point-

wise permutation action π ·X×Y (x, y)
def
= (π ·X x, π ·Y y), is a nominal set with

supp((x, y)) = supp(x) ∪ supp(y).

(v) Disjoint Union: Let A and B be nominal sets. The disjoint union A⊕B def
=

{(1, x) | x ∈ A} ∪ {(2, y) | y ∈ B}, equipped with the permutation action

π · z def
=

 (1, π ·X x) z = (1, x)

(2, π ·Y y) z = (2, y)

is a nominal set with supp((i, z)) = supp(z) (i = 1, 2).
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(vi) Nominal Powerset: Let X be a Perm(A)-set. The ordinary powerset P(X),

equipped with the permutation action π ·P(X) S = {π ·X x | x ∈ S} for S ⊆ X, is

a Perm(A)-set. Note that if X is a nominal set, it does not generally hold that

P(X) is a nominal set. A counter example is {a1, a3, a5, ...} ⊂ A. However,

for any Perm(A)-set X, the nominal powerset Pfs(X) is a nominal set by

construction.

Pfs(X)
def
= {S ⊆ X | S is finitely supported w.r.t. ·P(X)}

(vii) Linear Order: Let X be a set of nominal sets, which is linearly ordered by the

equivariant subset relation. Then the union
⋃
X = {x | ∃X ∈ X such that x ∈

X}, equipped with the permutation action π · x def
= π ·X x (if x ∈ X ∈ X ), is a

nominal set with x being supported by the finite set of names that support it in

any X ∈ X where x ∈ X.

(viii) Quotient Structure: Let X be a Perm(A)-set and R ⊆ X×X an equivariant

equivalence relation. Then the quotient set X
/
R of equivalence classes [x]R,

equipped with the permutation action π · [x]R
def
= [π · x]R, is a Perm(A)-set

and the quotient function x ∈ X 7→ [x]R ∈ X
/
R is a surjective equivariant

function. Moreover, if X is a nominal set, then X
/
R is a nominal set with

supp(q) =
⋂
{supp(x) | x ∈ q} for q ∈ X

/
R .

(ix) Let X be a nominal set, then the set of emptily supported elements of X, denoted

by (X)es
def
= {x ∈ X | (∀x) π · x = x}, is an equivariant subset of X. Given that

X is a nominal set, we have that (X)es is a nominal set as well.

The disagreement set between two permutations, denoted by ds(π, π′), is de-

fined by {a ∈ A | π(a) 6= π′(a)}. It follows directly that ds(π, π′) = supp(π−1π′).
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Freshness

Definition 2.2.5 The notion of freshness, which is denoted by a # x, is comple-

mentary to the notion of support, i.e.

a # x⇐⇒ a /∈ supp(x)

The set of confinite sets of names is denoted by N
def
= {S ⊆ A | A \ S is finite}.

If P is a property of names, then the freshness quantifier ( Na) P asserts that the

set {a ∈ A | P (a)} is in N. So, the freshness quantifier ( Na)P expresses that P holds

for all but finitely many names. The freshness quantifier can now be used to given

an alternative definition of freshness:

Lemma 2.2.6 Let X be a nominal set and a ∈ A. Then

a # x⇐⇒ ( Nb) (a b) · x = x

As demonstrated in the following theorem, the freshness quantifier can under

certain conditions be read as “for some/any fresh name a” P (a) holds.

Theorem 2.2.7 (Some/Any Theorem) If X is a nominal set and R ⊆ A×X is

an equivariant subset, then for any x ∈ X, the following conditions are equivalent

(i) (∃a ∈ A) a # x ∧ (a, x) ∈ R

(ii) (∀a ∈ A) a # x =⇒ (a, x) ∈ R

(iii) ( Na)(a, x) ∈ R

Note that the previous definitions and results can easily be generalised to finite

sets of names. In this case we often write a # x to mean that for all a ∈ a we have

that a # x holds.
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Name Abstraction, Concretion and Local Fresh Atomic Names

We now recall the notion of name abstraction, concretion and local fresh atomic

names. For a detailed account, including the corresponding proofs, we refer to [33].

Name Abstraction and Concretion

Definition 2.2.8 Let X be a nominal set. The generalised α-equivalence relation

(a, x) ∼ (a′, x′) on A×X is defined as follows:

(a, x) ∼ (a′, x′)⇐⇒ ( Nb)1 (a b) · x = (a′ b) · x′

Lemma 2.2.9 The generalised α-equivalence relation ∼ is an equivariant equivalence

relation.

Using the above Lemma, the N-quantifier in Definition 2.2.8 can now be justified

by Theorem 2.2.7.

Definition 2.2.10 The set of name abstractions on a nominal X, denoted

by [A]X, is defined to be the quotient set A×X/∼ . The equivalence class of a pair

(a, x) ∈ A×X is called the name abstraction of a in x and is denoted by 〈a〉x.

Lemma 2.2.11 Let X be a nominal set and 〈a〉x ∈ [A]X. Then

( Nb)2 〈a〉x = 〈b〉((b a) · x)

As shown in Example 2.2.4 (vii), the set of name abstractions [A]X
def
= {〈a〉x | a ∈

A∧x ∈ X}, equipped with the permutation action π · 〈a〉x def
= 〈π · a〉π ·x is a nominal

set and supp(〈a〉x) ⊆ supp(x) ∪ {a}. As expressed in the following Lemma, this can

be further strengthened.

1b # (a, a′, x, x′)
2b # (a, x)
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Lemma 2.2.12 Let X be a nominal set, a ∈ A and x ∈ X. Then

supp(〈a〉x) = supp(x) \ {a}

Let X be a nominal set. It can be shown that any name abstraction F ∈ [A]X

is a subset of A × X and for any a ∈ A and x1, x2 ∈ X the following property

holds: if (a, x1) ∼ (a, x2), then x1 = x2. Moreover, Dom(F ) = {a ∈ A | a # F} =

A \ supp(F ), and as previously demonstrated, F is finitely supported. Thus, F is a

finitely supported partial function from A to X:

[A]X ⊆ A⇀fs X

Further, there exists an operation, referred to as concretion, which applies a

name abstraction F ∈ [A]X to a name a ∈ Dom(F ). It is denoted by F @ a and

is called the concretion of F at a. In particular, the partial concretion function

@ : [A]X ⊗ A→ X with ⊗ being the tensor product, is defined as follows:

〈a〉x @ b
def
=


x if a = b

(a b) · x if a 6= b ∧ b # x

↑ o/w

It follows by standard computations that the function is equivariant, and therefore

supp(F @ a) ⊆ supp(F ) ∪ {a}.

Lemma 2.2.13 If F ∈ [A]X and a # F , then F = 〈a〉(F @ a).

Analogous to ordinary function spaces, an extensionality principle for name ab-

stractions can be obtained.

Lemma 2.2.14 For all F, F ′ ∈ [A]X [ ( Nb) F @ b = F ′ @ b⇐⇒ F = F ′ ]
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Local Fresh Atomic Names

When working with the nominal set model, we often need to choose fresh names

to define certain constructions. To ultimately show that a construction is well de-

fined, it has to be verified that the construction is independent of the name chosen.

The following theorem, referred to as the “Freshness Theorem”, provides a simple

condition for such independence proofs (see Pitts [56]).

Theorem 2.2.15 (Freshness Theorem) Let X be a nominal set. If a finitely sup-

ported partial function F ∈ A⇀fs X satisfies

( Na) (∃x)[a # x ∧ F (a) ≡ x] (�1)

then there exists a unique element freshXF ∈ X satisfying

( Na) [F (a) ≡ freshXF ] (�2)

Let Λa ∈ A→ ϕ(a) be the description of a partial function in A⇀fs X which sat-

isfies (�1). We then choose to write freshX(Λa ∈ A→ ϕ(a)) ∈ X as fresh a in ϕ(a).

Note that fresh a in ϕ(a) is merely a way to express that the independence prop-

erty holds. However, if we use this form of locally scoped name in the informal

meta-theory of nominal sets, we usually pick a sufficiently fresh name a and directly

work with ϕ(a).

2.3 FM-set Model

Due to their kinship, as previously pointed out, we only provide a brief overview of

the FM-set model. For an extensive account of the FM-set model we refer to Gabbay

[35]. We begin by recalling the definition of the von Neumann cummulative hier-

archy of sets and the corresponding von Neumann universe [63]. The cumulative
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hierarchy is the collection of sets Vα, indexed by the class of ordinal numbers, which

is defined by transfinite recursion using the empty set and the powerset operation P :

V0
def
= ∅

Vα+1
def
= P(Vα)

Vλ
def
=
⋃
α<λ

Vα (with λ a limit ordinal)

The von Neumann universe is a proper class, which is defined to be the union

of Vα over the ordinals α.

V def
=
⋃
α

Vα

The Fraenkel-Mostowski cummulative hierarchy, also referred to as the

FM-hierarchy, extends the von Neumann cummulative hierarchy with names A (ure-

lements) and furthermore restricts to the nominal powerset operation of finitely sup-

ported subsets Pfs to generate the collection of hereditary finitely supported sets:

FM0 = ∅

FMα+1 = A + Pfs(FMα)

FMλ =
⋃
α<λ

FMα (with λ a limit ordinal)

We recall that ∅ and A are nominal sets. Further, we have that Pfs(FMα) is a

nominal set, as well as A + Pfs(FMα). Hence, we have that FMα+1 is a a nominal

set as well. For limit ordinals λ, we recall that each FMα is an equivariant subset of

FMα+1, and therefore the union over all α < λ is also a nominal set with x ∈ FMλ

being finitely supported as an element of some FMα (α < λ). Hence, we have a

hierarchy of nominal sets.

The Fraenkel-Mostowski universe, also referred to as the FM-universe, is de-

fined to be the union over all FMα (as α ranges over the ordinals):

FM =
⋃
α

FMα
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FM is a proper class such that A + Pfs(FM) = FM. Hence, every element

of FM is either a name or a set, which is formally denoted as (0, a) for a ∈ A and

(1, X) for X being a finitely supported subset of elements of FM. We call (1, X) an

FM-set. For brevity we usually just write X. Based on the permutation action for

A and Pfs(−), the permutation action for FM is recursively defined as follows:

π · a def
= π(a) π ·X def

= {π · x | x ∈ X}

Hence, FM is actually a nominal class. Moreover, we have that the FM-set model

is sufficiently rich to encode many of the usual set-theoretic structures for FM-sets. As

an example we present cartesian products and function spaces with their respective

permutation actions and support:

Definition 2.3.1 An ordered pair is represented, using the Kuratowski implemen-

tation, by (x, y)
def
= {{x}, {x, y}}. The cartesian product of FM-sets X and Y is

an FM-set, which is defined as X × Y
def
= {(x, y) | x ∈ X ∧ y ∈ Y }. The deduced

permutation action is π · (x, y) = (π · x, π · y) with supp((x, y)) = supp(x) ∪ supp(y).

Definition 2.3.2 Let X and Y be FM-sets. An FM-function (finitely supported

function) f between FM-sets X and Y is an FM-set of ordered pairs from X × Y ,

where each x ∈ X occurs exactly once as the first component of a pair. The deduced

permutation action is the conjugation action:

(π · f)(x) = π · f(π−1 · x)

This is deduced as follows: Let z ∈ π ·X. We then have (π · f)(z) = z′ for some

z′ ∈ π · Y and (z, z′) ∈ π · f . Note that z = π · x for some x ∈ X, z′ = π · y for

some y ∈ Y and (x, y) ∈ f . Next, we can compute π · f(π−1 · z) = π · f(π−1 · π · x) =

π · f(x) = π · y = z′ = (π · f)(z). Moreover, we can deduce that π · f(x) = (π · f)(π ·x)

We call an FM-function with empty support an equivariant function and an equiv-

ariant FM-set a nominal set. Further, similar to ordinary set-theory, we usually refer
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to an FM-set without specifying its transfinite recursive foundations. As indicated

before, the notions of name abstraction, concretion and local fresh atomic names also

exist in the FM-set model (with minor adaption) (see [33]). In addition, we require

the notion of freshness restricted sets:

Definition 2.3.3 For any FM-Set X and finite set of names a such that a # X, the

freshness restricted set X#a def
= {x ∈ X | a # x}, equipped with the permutation

action of X, is an FM-Set with supp(X#a) = supp(X) ∪ a.

Lemma 2.3.4 ( )#( ) : ob(FMSet)⊗ Pfin(A)→ ob(FMSet) is equivariant.

Proof Let X be an FM-Set and a a finite set of names such that a # X. Then

X#a is a freshness restricted set. We can then deduce that π · X is an FM-Set and

by equivariance of freshness that π · a # π · X. Hence, we have that π · X#π·a is a

freshness restricted set as well. What remains to be shown is that π ·X#a = π ·X#π·a.

We recall that π ·X#a def
= π · {x ∈ X | a # x} def

= {π · x | x ∈ X ∧ a # x}. Let’s take

any π · x with x ∈ X and a # x. Then, by equivariance, we have that π · x ∈ π ·X

and π · a # π · x, and therefore by definition we have that π · x ∈ (π ·X)#π·a. Hence,

⊆ holds. The converse follows similarly. �

2.4 Nominal/FM Categories

We use the following standard notation for categories [43]: For a category C the

class of objects and morphisms is denoted by ob C and mor C, respectively. Each

morphism f in C has a unique domain object A and codomain object B, which is

denoted by f : A → B or f ∈ C(A,B), where C(A,B) denotes the hom-class of all

morphisms from A to B. The composition of morphisms f : A → B and g : B → C

is written as g ◦ f : A → C and the identity morphism for an object A is written as

idA.
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Based on the previously introduced notions of the nominal and FM-set model, we

introduce three categories, also referred to as nominal/FM categories:

• Nom - the category of nominal sets and equivariant functions.

• FMNom - the category of nominal sets and finitely supported functions

• FMSet - the category of FM-Sets and FM-functions

We can immediately observe the following inclusions

Nom ↪→ FMNom ↪→ FMSet

where the first is a lluf subcategory and the second is a full subcategory. For

any nominal/FM category X, we have the obvious forgetful functor to Set , namely

(|X|, ·) 7→ |X|.

Next, we present various concrete limits and colimits in nominal/FM categories,

which will be used on various occasions in this thesis.

Lemma 2.4.1 Nom, FMNom and FMSet have

(i) Terminal objects

(ii) Binary Products

(iii) Equaliser

Proof The constructions follow similarly to Set . So, we only need to demonstrate

that the respective nominal/FM properties hold:

(i) A terminal object, 1, is a singleton set, equipped with the trivial permutation

action. It follows immediately that it is a nominal set (FM-set). For any object

X, the unique function f : X → 1, which maps every element to the element of

the singleton set, is clearly equivariant (emptily supported).
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(ii) For any objectsX and Y the triple (X×Y, prX , prY ) is a binary product with the

cartesian product X × Y def
= {(x, y) | x ∈ X ∧ y ∈ Y } and the usual projection

maps prX and prY . As previously recalled, X × Y is a nominal set (FM-

Set). Further, it follows by standard computations that the projection maps

are equivariant (emptily supported). For the universal property, it can directly

be deduced that for any object Z and functions f : Z → X and g : Z → Y ,

the mediating function 〈f, g〉 : Z → X × Y , which is defined as 〈f, g〉(z)
def
=

(f(z), g(z)), is equivariant (finitely supported by supp(f) ∪ supp(g)).

(iii) Let X and Y be two objects and f, g : X → Y two parallel functions. An

equaliser is provided by the object E
def
= {x ∈ X | f(x) = g(x)} with the

inclusion function e : E ⊆ X. It can easily be deduced that e is equivariant

(finitely supported by supp(f) ∪ supp(g) ∪ supp(X)). Given that e is injective,

we can directly deduce, by Lemma 2.2.3 (ii), that E is a nominal set. It follows

by routine computations that E is an FM-Set (finitely supported by supp(f) ∪

supp(g) ∪ supp(X)). For the universal property, we have that for any object Z

and morphism h, the mediating function is h; thus the mediating function is

equivariance (finitely support) by construction.

�

Lemma 2.4.2 Nom, FMNom and FMSet have

(i) Initial Objects

(ii) Binary CoProducts

(iii) CoEqualiser

Proof The basic constructions follow similarly to Set . So, we only need to demon-

strate that the respective nominal/FM properties hold:
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(i) An initial object, ∅, is the empty set, which is trivially a nominal set (FM-Set)

via the empty permutation action. For any object X, there exists a unique

morphism, namely the empty function, which is trivially equivariant (emptily

supported).

(ii) A binary coproduct for objects A and B is the triple (A⊕B, inclA, inclB), where

A ⊕ B def
= {(1, x) | x ∈ X} ∪ {(2, y) | y ∈ Y } is the disjoint union of A and B

and inclA and inclB are the usual inclusion maps. As previously recalled, A⊕B

is a nominal set (FM-Set). Further, it follows by standard computations that

the inclusion maps are equivariant (finitely supported). For any object Z and

functions f : X → Z and g : Y → Z, the mediating function [f, g] : X⊕Z → Z,

defined as [f, g]((1, x))
def
= f(x) and [f, g]((2, y))

def
= g(y), is equivariant (finitely

supported with supp([f, g]) = supp(f) ∪ supp(g)).

(iii) Let X and Y be two objects and f, g : X → Y parallel morphisms. We define

the relation R
def
= {(f(x), g(x)) | x ∈ X} ⊆ Y × Y and then form the reflexive,

symmetric and transitive closure to obtain the minimal equivalence relation

containing R, which we refer to as ∼ ⊆ Y ×Y . We first define the reflexive and

symmetric closure as R1
def
= R ∪ {(y, y) | y ∈ Y } ∪ {(y, x) | (x, y) ∈ R}. The

transitive closure is given by ∼ def
=
⋃
i∈ω Ri, where Ri is inductively defined with

R1 as base case and for i > 1,

Ri+1
def
= R1 ◦Ri

def
= {(x, z) ∈ Y × Y | ∃y ∈ Y.(x, y) ∈ R1 ∧ (y, z) ∈ Ri}

We then prove by induction on Ri that Ri(y, y
′) implies Ri(π · y, π · y′). From

this we can directly determine that y ∼ y′ implies π · y ∼ π · y′ and therefore

∼ is an equivariant subset of Y × Y . A coequaliser is defined as Q
def
= Y

/
∼

with morphism q : Y → Y
/
∼ being defined as y 7→ [y]∼. By Example 2.2.4

(viii) we have that Q is a nominal set (FM-Set) and q is an equivariant (emptily

supported) function.
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For object P and function p : Y → P such that p ◦ f = p ◦ f , the mediating

morphism m is defined as m([y]∼)
def
= p(y). The fact that m is equivariant

(finitely supported) follows immediately.

�

Let’s now consider the notion of a global element for an object X in nominal/FM

categories, which is defined as p : 1 → X. In the case of Nom we have that any global

element p is equivariant, and therefore the image p(∗) is emptily supported:

π · p(∗) = p(π · ∗) def
= p(∗)

Hence, we have that for any nominal set X

Nom(1Nom , X) ∼=Set |(X)es|

Using the fact that the image of a global element is emptily supported, we can

easily construct parallel functions f, g : X → Y such that f ◦ p = g ◦ p for all global

elements p : 1 → X, but f(x) 6= g(x) for non-emptily supported elements x ∈ X.

Thus, Nom is not well-pointed.

For FMNom and FMSet we have that any global element is finitely supported

and therefore

FMSet(1FMSet , X) ∼=Set |X|

FMNom(1FMNom , X) ∼=Set |X|

Moreover, contrary to Nom, it can easily be deduced that FMSet and FMNom are

well-pointed. We conclude by showing that all three categories are cartesian closed.

Proposition 2.4.3 The categories Nom, FMNom and FMSet are cartesian closed.

Proof It is well known that Nom is cartesian closed (see Section 3.2 in [54]). The

fact that FMSet is cartesian closed follows with minor modifications, as will now be



CHAPTER 2. NOMINAL SETS AND FM-SETS 29

demonstrated. We omit the case for FMNom as it is a combination of Nom and

FMSet . As we have already demonstrated in Lemma 2.4.1, FMSet has cartesian

products. We can now proceed with exponentials:

As in Nom, the evaluation function ev : (B ⇒ C)×B → C is defined as ev(f, x)
def
=

f(x) and given any objects B and C the exponential B ⇒fs C is defined to be the

set of finitely supported functions with respect to the permutation action:

(π ·⇒fs
f)(x)

def
= π ·C f(π−1 ·B x)

Hence, by construction we have that B ⇒fs C is an FM-Set with supp(B ⇒fs

C) = supp(B) ∪ supp(C). It follows by routine computations that ev is emptily

supported. We continue with the universal property: Let f : A × B → C. The

exponential mate λ(f) : A → B ⇒fs C is defined as λ(f)(x)
def
= λy.f(x, y) for each

x ∈ X. λ(f)(x) is finitely supported by supp(f) ∪ supp(x) and therefore λ(f)(x) ∈

B ⇒fs C. Hence, we have that λ(f) is well defined. Further, λ(f) is finitely supported

by supp(f). �
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Chapter 3

Nominal Lambda Calculus

In this chapter we introduce the Nominal Lambda Calculus, referred to as NLC,

which is an extension of the ordinary typed lambda calculus (λ→) that incorporates

ideas and concepts of Nominal Equational Logic (NEL) [18, 13, 17]. The decision to

choose NEL as our foundation is a direct consequence of our initial goal to extend

the categorical type theory correspondence of NEL. Due to the influence of NEL,

regarding the definition of NLC, we will recall details of NEL on several occasions

to justify and explain various design decisions in the context of NLC and its model-

theoretic semantics. For a full account of NEL, its model-theoretic semantics and

properties we refer the reader to [13].

Before we introduce NLC, we provide a quick overview of NEL and its basic ideas

and features. We begin by recalling that NEL is itself a direct extension of equational

logic (EL) and EL provides a formal framework for reasoning about equations in

context of the form xi : si `EL M = M ′ : s ′ (see for example [46, 48]). Further, a

model-theoretic semantics of EL in Set interprets variables and terms as elements

of sets with the interpretation of terms depending on a semantic environment for

variables [48, 71]. Towards introducing NEL, the fundamental idea is that variables

are now interpreted as elements of FM-sets. Thus, if one seeks a notion of sound and

complete equational theories with respect to a model-theoretic semantics in FMSet ,
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one expects NEL to capture the notion of a permutation action and the corresponding

notions of finite support and freshness. This means that judgements a # M are

provided, which assert that a name a is fresh for M , apart from the usual equations

M = M ′. This would require that we are able to assert hypotheses a # x about

variables x that may occur (freely) in M . Indeed in NEL one sees freshness contexts

∇ def
= a1 # x1 : s1, ..., an # xn : sn and freshness assertions ∇ `NEL a # M : s

capturing the intuition that if sets of names ai are fresh for (the interpretation of)

the xi, then a is fresh for (the interpretation of) M . Given that freshness can be

defined equationally in FMSet (see Lemma 2.2.6) as

a # x⇐⇒ ( Nb) (b a) · x = x

one can mimic this characterisation of freshness and work with purely equational

judgements instead. Hence, provability of ∇ `NEL a # M : s can be expressed by

provability of a certain kind of equation [16]:

Th B ∇ `NEL a # M : s
def
= ( Nb) Th B ∇#b `NEL (b a) ∗M ≈M : s

where ∇#b def
= (a1 ∪ b # x1 : s1, ..., an ∪ b # xn : sn) and − ∗ − denotes a

syntactic permutation action on raw terms. Clouston further introduced a sound

model-theoretic semantics for NEL in FMSet , interpreting variables as elements of

FM-sets, and showed that deductive completeness holds.

Note that in this chapter we will lift various results of NEL and λ→ to NLC. At

a conceptual level, we prove analogue results of NEL and λ→, however the technical

proof details are quite different, because in formulating NLC we work with name-

dependent simple types.

3.1 The Meta-Theory of NLC Raw Terms

We first introduce signatures, types and raw terms for NLC, as well as permutation

actions, α-equivalence and capture-avoiding substitution on raw terms. Then we
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provide a collection of meta-theoretic properties of NLC raw terms, properties which

will be applied throughout this thesis.

3.1.1 Signatures, Types and Raw Terms

We recall that in NEL one works with a nominal set of types1. In NLC we

work with a nominal set of ground types and generate from it the nominal set of

types using domain (freshness) restricted function types that take the form sa ⇒ s′.

This particular form of function types in NLC is motivated as follows: NLC extends

NEL, as one would expect, by providing term formers for lambda abstractions and

applications. Let’s now focus on a # x : s `NEL M : s ′, a term in context in NEL.

If we want to capture the “mapping” x 7→ M as an abstraction, we could consider

λx : s .M . However, if we apply λx : s .M to a term N : s we also need to ensure that

a # N holds. For this reason, to make the freshness restriction visible, we decided

to codify the finite set a in the abstraction. Hence, an abstraction in NLC naturally

takes the form λax : s .M .

Moreover, we recall that in NEL the model-theoretic semantics of a context ele-

ment a # x : s (in FMSet) is specified by requiring that [[x]] ∈ [[s ]]#a
def
= {e ∈ [[s ]] |

a # e}. This strongly suggests the use of sa as the domain of a function type for

abstractions in NLC with a compositional semantics [[sa]]
def
= [[s ]]#a. Considering the

definition of a # x : s in NEL, we additionally require that a # s for sa.

Remark 3.1.1 Instead of labelling λ with a finite set of names a, we could have

introduced freshness restriction types of the form sa. Compared to λax : s.M , this

would have provide us with a more “elegant” way to codify freshness restrictions for

lambda abstractions as λx : sa.M . However, the introduction of freshness restriction

types of the form sa would require us to introduce a notion of subtyping, an additional

complication that we wanted to avoid.

1In [13] “types” are called sorts. We use the word type since it better matches general usage in
computer science, and categorical type theory
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Following the motivation given above, we now formally introduce signatures, types

and raw terms of NLC. We start with an NLC-signature Sg , which is composed of

(i) GndSg , a nominal set of ground types. The set of types TypeSg is then

generated by the BNF grammar s ::= γ | sa ⇒ s where γ is any ground type

and a is a finite set of names such that a # s. Since each type s is a finite tree

and GndSg is a nominal set, each type s is finitely supported by the following

permutation action:

π · γ def
= π ·GndSg

γ π · (sa ⇒ s′)
def
= (π · s)π·a ⇒ (π · s′)

and hence TypeSg is a nominal set of types.

(ii) A nominal set of (higher order functions) constant symbols FunSg .

(iii) An equivariant typing function FunSg → TypeSg , which assigns to each constant

symbol c a type s. We usually write this as a constant typing c : s.

The NLC-calculus for an empty NLC-signature, without constant symbols, and

only one base type γ, is called pure.

Note that we “inherit” from NEL an alternative approach of how to present name-

binding operators. Instead of an explicit notion of name-binding, as it is used in

nominal signatures, binding axioms can be used. For more details we refer to [14].

Fixing a set Var
def
= {V1,V2,V3, . . .} of (ordered) variables, the raw NLC-terms

are specified by M ::= πx | c | λax : s .M | M M where πx is called a suspension

[18, 17] of any variable x ∈ Var and permutation π ∈ Perm(A). We refer to the set

of raw terms for signature Sg by TermSg .

Each occurrence of a variable in a term is either free or bound (where all oc-

currences of x in any “subterm” λax : s .M are bound). The set of all variables that

occur in M , called var(M), and the set of all free variables of M , called fv(M), are

recursively defined on M . A term M with fv(M) = ∅ is called a closed term. Fur-

thermore, the set of all names in M , referred to as name(M), is defined recursively
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on M . Given that many of our proofs are by induction on the size of raw terms, we

also introduce the size of a raw term M , which is denoted by |M | and recursively

defined on the structure of M . The precise definitions are given in Table 4.6.

– |πx| def
= 1

– |c| def
= 1

– |M N | def
= |M |+ |N |

– |λax : s.M | def
= |M |+ 1

– fv(πx)
def
= {x}

– fv(c)
def
= ∅

– fv(N N ′)
def
= fv(N) ∪ fv(N ′)

– fv(λax : s.N)
def
= fv(N) \ {x}

– var(πx)
def
= {x}

– var(c)
def
= ∅

– var(N N ′)
def
= var(N) ∪ var(N ′)

– var(λax : s.N)
def
= var(N) ∪ {x}

– name(πx)
def
= supp(π)

– name(c)
def
= supp(c)

– name(N N ′)
def
= name(N) ∪ name(N ′)

– name(λax : s.N)
def
= name(N) ∪ a ∪

supp(s)

Table 3.1: |M |, fv(M), var(M) and name(M) for NLC

3.1.2 Permutation Actions for Raw Terms

We introduce three permutation actions on raw terms: We begin with π • (−)

(π ∈ Perm(Var)), which permutes any occurrence of variables in raw terms [33].

This permutation action will play an important role in defining α-equivalence.

We continue with two standard permutation actions on Perm(A) that we recalled

in Example 2.2.4 (iii), namely conjugation (which makes Perm(A) into a nominal

set) and left multiplication (which does not). Clouston & Pitts [18] and Gabbay &
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Mathijssen [36] defined two permutation actions on terms, referred to as meta-level

π ·M and object-level π ∗M [18, 17], which are syntactic analogues of the actions on

Perm(A). We now extend these permutation actions for NLC by defining additional

clauses for lambda abstractions and applications. In principle, we simply mimic the

permutation action of exponential objects in FMSet , which is a (form of) conjugation

action, as well as the related permutation action on function application. However,

there is one important difference. In (categorical) type theory one often works with

terms in context. As such, a term M with a free variable x can be regarded as a

“morphism” x 7→ M . The meta-level permutation action π ·M does now also apply

the conjugation action to all free variables, whereas this is not the case for the object-

level permutation action. Further, as in the case of Perm(A), we will show that the

set of raw terms is a nominal set under the meta-level permutation action, but not

under the object-level permutation action. However, from a technical point of view

the object-level permutation action turns out to be rather useful. This will become

clearer, once we introduced the model-theoretic semantics and have proven various

auxiliary results involving the object-level permutation action.

Note that the intention of the object-level and meta-level permutation action is

to mimic and ultimately capture the permutation actions for exponential objects and

function application in FMSet . In contrast, variable swapping is introduced to handle

variable-binding for lambda abstractions in the calculus. To increase readability we

use π and τ for permutations in Perm(A) and µ for permutations in Perm(Var).

The precise recursive definition of such mappings (µ ∈ Perm(Var),M) 7→ µ •M ,

(π ∈ Perm(A),M) 7→ π ∗ M and (π ∈ Perm(A),M) 7→ π · M for NLC is given

in Table 3.2. Note that in order to define the object-level permutation action we

first define a basic form of substitution M [π−1x/x] on raw terms M . We call this a

suspension-substitution. Informally, free occurrences of x in M are replaced by

π−1x. Formally, the recursive definition is the expected one, where on suspensions we

define (π′y)[π−1x/x]
def
= π′y if x 6= y and otherwise (π′x)[π−1x/x]

def
= (π′π−1)x.
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– µ • πz def
= π(µ(z))

– µ • c def
= c

– µ•(λaz : s.M)
def
= λaµ(z) : s. (µ •M)

– µ • (M M ′)
def
= (µ •M) (µ •M)

Variable Swapping

– π · π′x def
= (ππ′π−1)x

– π · c def
= π ·FunSg

c

– π · (λax : s.M)
def
= λπ·ax : π · s.π ·M

– π · (M N)
def
= (π ·M) (π ·N)

Meta-Level

– π ∗ π′x def
= (ππ′)x

– π ∗ c def
= π ·FunSg

c

– π ∗ (λax : s.M)
def
=

λπ·ax : π · s.(π ∗ (M [π−1x/x]))

– π ∗ (MN)
def
= (π ∗M)(π ∗N)

Object-Level

Table 3.2: Permutation Actions for NLC

Remark 3.1.2 Note that a more general definition of substitution is not necessary at

this point, because the notion of α-equivalence can be defined using variable swapping

instead of capture avoiding substitution, as will be shown later.

The following technical lemma is used in various proofs by induction on the size

of raw terms:

Lemma 3.1.3 The size of a raw term is not affected by suspension-substitution, vari-

able swapping, the object-level permutation action and the meta-level permutation ac-

tion, i.e.

(i) |M | = |(x y) •M |

(ii) |M | = |M [π−1x/x]|
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(iii) |M | = |π ∗M |

(iv) |M | = |π ·M |

Proof Follows by induction on the structure of M . In the case of (iii), we also need

to apply (ii).

Before we demonstrate that the mappings in Table 3.2 are indeed permutation

actions, we require the following lemma for the object-level permutation action.

Lemma 3.1.4 For any raw term M , we have (π ∗M)[π−1x/x] = π ∗ (M [π−1x/x]).

Proof Proof by induction on the size of raw term M .

SUSP: (M is τx)

(π ∗ τx)[π−1x/x]
def
= πτx[π−1x/x]

def
= πτπ−1x

def
= π ∗ τπ−1x

def
= π ∗ τx[π−1x/x]

CONST: (M is c)

(π ∗ c)[π−1x/x]
def
= (π · c)[π−1x/x]

def
= π · c def

= π ∗ c def
= π ∗ c[π−1x/x]

LAM-ABS: (M is λay : s.N). We consider the case x 6= y (the other case follows

immediately).

(π ∗ λay : s.N)[π−1x/x]
def
= (λπ·ay : π · s.π ∗N [π−1y/y])[π−1x/x]

def
= λπ·ay : π · s.(π ∗N [π−1y/y])[π−1x/x]

= λπ·ay : π · s.π ∗ (N [π−1y/y][π−1x/x]) (induction)

= λπ·ay : π · s.π ∗ ((N [π−1x/x])[π−1y/y]) (x 6= y)

def
= π ∗ (λay : s.N [π−1x/x])

def
= π ∗ (λay : s.N)[π−1x/x]
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APP: (M is P Q)

(π ∗ P Q)[π−1x/x]
def
= (π ∗ P )[π−1x/x] (π ∗Q)[π−1x/x]

= π ∗ (P [π−1x/x]) π ∗ (Q[π−1x/x]) (induction)

def
= π ∗ (P Q[π−1x/x])

�

Proposition 3.1.5 (Permutation Action Definitions)

• The mapping (µ ∈ Perm(Var),M) 7→ µ •M is a permutation action; we call it

variable swapping. A raw term M is finitely supported by all the variables

occurring in it. So, TermSg is a nominal set with supp(M) = var(M) (see

[33]). From now onwards we may write z # M instead of z /∈ var(M).

• The mapping (π ∈ Perm(A),M) 7→ π · M is a permutation action; we call

it the meta-level permutation action. A raw term M is finitely supported

by all the atomic names occurring in it. So, TermSg is a nominal set with

supp(M) = name(M).

• The mapping (π ∈ Perm(A),M) 7→ π ∗M is a permutation action; we call it

the object-level permutation action.

Proof It is easy to see that variable swapping and the meta-level (conjugation) map-

ping is a permutation action, with the corresponding finite support set. To show

that the object-level (left multiplication) mapping is a permutation action, we need

to induct on the size of M and appeal to Lemma 3.1.4 in the abstraction case.

We introduce another technical lemma that demonstrates how variable swapping

interacts with suspension-substitutions, as well as the object-level and meta-level

permutation action:

Lemma 3.1.6 The following properties hold:
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(i) (x y) • (M [π−1z/z]) = ((x y) •M)[π−1(x y)(z)/(x y)(z)]

(ii) (x y) • (π ∗M) = π ∗ ((x y) •M)

(iii) (x y) • (π ·M) = π · ((x y) •M)

Proof Follows by induction on the structure of raw term M . In the case of (ii), we

need to apply (i).

Lemma 3.1.7 For any closed raw term M , we have that π ∗M = π ·M

Proof Follows by induction on the size of raw term M .

3.1.3 α-Equivalence and Capture Avoiding Substitution

So far we have used structural equality on raw terms M = N (also denoted by

M ≡ N). Since we wish to work with capture avoiding substitution, which makes use

of variable renaming, we have to replace = with α-equivalence. This is also necessary

to define a confluent reduction system for NLC at a later point.

We first recall the standard definition, as for example in [38], where α-equivalence

is defined using the notion of capture avoiding substitution. More precisely, the

α-equivalence relation ∼α is defined to be the smallest equivalence relation closed

under the congruence rules (for application and abstraction terms) and the axiom

λax : s .M ∼α λax′ : s .M{x′/x} where x′ 6∈ var(M). The notion of capture avoiding

substitution is then subsequently lifted to α-equivalent terms.

An alternative way to define α-equivalence is terms of variable swapping [22, 33],

where we define a structural congruence relation, ≡α⊂ TermSg × TermSg , using the

rules in Table 3.3. Note that both definitions generate the same equivalence relation,

which follows analogously to [33] (Proposition 2.2). Hence, α-equivalence via the

relation ≡α is defined without recourse to capture avoiding substitution. For this

thesis, we use ≡α as our definition of α-equivalence.
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(x ∈ Var π ∈ Perm(A))πx ≡α πx
M1 ≡α M ′

1 M2 ≡α M ′
2

M1M2 ≡α M ′
1M

′
2

(z x) •M1 ≡α (z y) •M2
(z # (M1,M2, x, y))

λax : s.M1 ≡α λay : s.M2

Table 3.3: Alpha Equivalence by Variable Swapping

We denote the set of α-equivalence classes of raw terms by TermSg
/
≡α and call

its elements [M ]α expressions. We next have to show that various operations, pre-

viously defined on raw terms, preserve α-equivalence and can therefore be lifted to

expressions.

Lemma 3.1.8 Suspension-substitution, variable swapping, as well as the object-level

and meta-level permutation actions preserve α-equivalence, i.e.

(i) M ≡α M ′ =⇒ µ •M ≡α µ •M ′

(ii) M ≡α M ′ =⇒M [π−1x/x] ≡α M ′[π−1x/x]

(iii) M ≡α M ′ =⇒ π ∗M ≡α π ∗M ′

(iv) M ≡α M ′ =⇒ π ·M ≡α π ·M ′

Proof All four properties are proved by rule-based induction over M ≡α M ′. We

only provide full details for (iii). The other properties follow similarly: Let M,M ′ ∈

TermSg and π ∈ Perm(A).

SUSP: Suppose that τx ≡α τx. By the suspension axiom we have πτx ≡α πτx.

Given that π ∗ τx def
= πτx, we immediately get π ∗ τx ≡α π ∗ τx.

LAM: Suppose λax : s.M1 ≡α λay : s.M2. We need to show that π ∗ (λax :

s.M1) ≡α π∗(λay : s.M2), or by definition of π∗− that λπ·ax : π ·s.π∗M1[π−1x/x] ≡α
λπ·ay : π · s.π ∗M2[π−1y/y] holds. We pick a variable z such that z # (M1,M2, x, y).
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It follows immediately that z # (π ∗M1[π−1x/x], π ∗M2[π−1y/y], x, y) is satisfied. We

then have to show that (z x) • (π ∗M1[π−1x/x]) ≡α (z y) • (π ∗M2[π−1y/y]) holds.

Given that z # (M1,M2, x, y) we obtain by assumption and the α-equivalence rule

for lambda abstraction that (z x) • M1 ≡α (z y) • M2. So, by induction we have

π ∗ ((z x) •M1) ≡α π ∗ ((z y) •M2). To complete this case, we apply property (ii)

from above, as well as Lemma 3.1.4 and Lemma 3.1.6.

APP: Suppose M1 M2 ≡α M ′
1 M

′
2. By the application rule we have M1 ≡α M ′

1

and M2 ≡α M ′
2. Then, by induction we have π ∗ M1 ≡α π ∗ M ′

1 and π ∗ M2 ≡α
π ∗M ′

2. By the application rule we obtain (π ∗M1)(π ∗M2) ≡α (π ∗M ′
1)(π ∗M ′

2)

and finally by definition of the object-level permutation action on application we have

π ∗ (M1 M2) ≡α π ∗ (M ′
1 M

′
2). �

Based on the previous equivariance results and Example 2.2.4 (viii), the following

well-defined permutation actions on expressions are induced:

µ • [M ]α
def
= [µ •M ]α

π · [M ]α
def
= [π ·M ]α

π ∗ [M ]α
def
= [π ∗M ]α

Furthermore, the set of α-equivalence classes, TermSg
/
≡α , is a nominal set under

variable swapping, as well as the meta-level permutation action, with supp([M ]α) =

fv(M) and supp([M ]α) = name(M), respectively.

Remark 3.1.9 Having taken great care in defining expressions [M ]α, we adopt the

usual convention of just writing M . This includes using = instead of ≡α. However,

our proofs deal correctly with the intricacies that arise from variable re-naming to

avoid capture (see for example [53] (page 169) and [47]). A full example in the context

of NLC is provided in Lemma 3.2.4 (page 54).

We continue by extending the recursive definition of capture avoiding substitu-

tion for “ordinary” λ-terms as for example presented in [38, 48]. The substitution
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operation acts on suspended variables, analogue to NEL, by applying the object-level

permutation action. In addition, we use variable swapping to rename variables.

Definition 3.1.10 Substituting raw term N for every free occurrences of variable

x in the raw term M yields another raw term, which we denote by M{N/x}. The

definition follows by recursion on the size of M as follows:

(πy){N/x} =def πy if x 6= y

(πy){N/x} =def π ∗N if x = y

c{N/x} =def c

M M ′{N/x} def
= M{N/x}M ′{N/x}

λay : s.M{N/x} def
= λay : s.M if x = y

λay : s.M{N/x} def
= λay : s.M{N/x} if x 6= y, y # N

λay : s.M{N/x} def
= λaz : s. ((z y) •M){N/x} if x 6= y, ¬(y # N),

first variable z # (M,N)

Note that we assume that the variables are enumerated. The operation of capture

avoiding substitution can then be lifted to the level of expressions as follows:

[M ]α{[N ]α/x}
def
= [M{N/x}]α

To show that capture avoiding substitution is well-defined, it has to be demon-

strated that α-equivalence is preserved, i.e. if M ≡α M ′ and N ≡α N ′, then

M{N/x} ≡α M ′{N ′/x}. This follows directly, with minor modifications, from the

proof in [24] (Theorem 2 (a), page 95 - 103). This is also the case for the following

two identities: Let x and y be two distinct variables.

(M{P/x}){Q/x} = M{P{Q/x}/x}

(M{P/y}){Q/x} = (M{Q/x}){(P{Q/x})/y} if y 6= x and y # Q
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In addition, we require simultaneous capture avoiding substitution of expressions,

which will be crucial for defining composition of morphisms in a classifying category–

see Section 5.3.5. It can be generalised from capture avoiding substitution: Substi-

tuting expressions N1, . . . , Nn for free occurrences of the distinct variables x1, . . . ,

xn in the expression M yields another expression, which we denote by M{ ~Ni/~xi} or

M{N1, . . . , Nn/x1, . . . , xn}.

The following technical lemma is implicitly used in many inductive proofs:

Lemma 3.1.11 For any expression M and variable x, M [π−1x/x] = M{π−1x/x}

Proof Proof by induction on the structure of expression M .

SUSP: (M is τy) We consider the case (x = y). The other case follows immedi-

ately.

(τy)[π−1x/x]
def
= τπ−1x

def
= τ ∗ (π−1x)

def
= (τy){π−1x/x}

CONST: (M is c)

c[π−1x/x]
def
= c

def
= c{π−1x/x}

LAM-ABS: (M is λay : s.N) We consider the case x 6= y. The other case follows

immediately. Due to the restricted form of substitution, we do not need to consider

the binding case.

(λay : s.N)[π−1x/x]
def
= λay : s.N [π−1x/x]

= λay : s.N{π−1x/x} (induction)

def
= (λay : s.N){π−1x/x}

APP: (M is P Q)

(P Q)[π−1x/x]
def
= P [π−1x/x] Q[π−1x/x]

= P{π−1x/x} Q{π−1x/x} (induction)

def
= (P Q){π−1x/x}
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�

The next lemma expresses the meta-level permutation action in terms of the

object-level permutation action. It will be used on various occasions to prove prop-

erties of both NLC and its semantics.

Lemma 3.1.12 (· in terms of ∗) For any expression M and {x1, ..., xn} ⊆ Var

with fv(M) ⊆ {x1, ..., xn} we have π ·M = (π ∗M){π−1x1/x1, ..., π
−1xn/xn}.

Proof Proof by induction on the structure of expression M of

(∀π)(∀{x1, . . . , xn})((fv(M) ⊆ {x1 . . . xn}

=⇒ π ·M = (π ∗M){π−1x1/x1, ..., π
−1xn/xn})

SUSP: When M is τxi the result follows immediately by the definition of substi-

tution and the fact that both are permutation actions.

CONST: Follows immediately.

LAM-ABS: Case M is λax : s.M ′ where fv(λax : s.M ′)
def
= fv(M ′) \ {x} ⊆

{x1 . . . xn}. We examine the case when x is not an xi; if x is an xi the details

are not too dissimilar. Due to the restricted form of substitution, we do not need to

consider the binding case. So for the induction step fv(M ′) ⊆ {x, x1 . . . , xn}.

π · (λax : s.M ′)

def
= λπ·ax : π · s.π ·M ′

= λπ·ax : π · s.(π ∗M ′){π−1x/x, ~π−1xi/~xi} (induction)

= λπ·ax : π · s.((π ∗M ′){π−1x/x}){ ~π−1xi/~xi} (x 6= xi)

= λπ·ax : π · s.(π ∗ (M ′{π−1x/x})){ ~π−1xi/~xi} (Lemma 3.1.4)

= (λπ·ax : π · s.π ∗ (M ′{π−1x/x})){ ~π−1xi/~xi} (x 6= xi, no capture)

= (λπ·ax : π · s.π ∗ (M ′[π−1x/x])){ ~π−1xi/~xi} (Lemma 3.1.11)

def
= (π ∗ (λax : s.M ′)){ ~π−1xi/~xi}
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APP: Case M is N N ′.

π · (N N ′)

def
= (π ·N) (π ·N ′))

= ((π ∗N){ ~π−1xi/~xi}) ((π ∗N ′){ ~π−1xi/~xi}) (induction)

def
= ((π ∗N) (π ∗N ′)){ ~π−1xi/~xi}
def
= (π ∗ (N N ′)){ ~π−1xi/~xi}

�

For brevity, we use M{π−1 } as syntactic sugar for M{ ~π−1xi/~xi} with fv(M) =

{x1, ..., xn}. We next demonstrate that • distributes over {/}.

Proposition 3.1.13 µ • (M{N/z}) = (µ •M){(µ •N)/µ • z}

Proof Follows directly by induction on the size of M .

The next propositions are crucial for many of the following results, namely that

∗ associates with {/} and · distributes over {/}.

Proposition 3.1.14 (π ∗M){N/x} = π ∗ (M{N/x})

Proof We prove it by induction on the size of expression M .

SUSP: (M is τy) We consider the case (x = y). The other case follows immedi-

ately.

(π ∗ (τy)){N/x} def
= (πτy){N/x} def

= πτ ∗N def
= π ∗ (τ ∗N)

def
= π ∗ (τy){N/x}

CONST: (M is c)

(π ∗ c){N/x} def
= (π · c){N/x} def

= π · c def
= π ∗ c def

= π ∗ (c{N/x})
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LAM-ABS: (M is λay : s.M) We consider case (x 6= y) and y ∈ fv(N). The

other cases follow similarly.

(π ∗ (λay : s.M)){N/x}
def
= (λπ·ay : π · s : π ∗M [π−1y/y]){N/x}
def
= λπ·az : π · s. ((z y) • (π ∗M [π−1y/y])){N/x} (for z # (M,N))

= λπ·az : π · s. (π ∗ (((z y) •M)[π−1z/z]){N/x} (Lemma 3.1.6, Proposition 3.1.13)

= λπ·az : π · s. π ∗ (((z y) •M)[π−1z/z]){N/x} (induction)

= λπ·az : π · s. π ∗ (((z y) •M){π−1z/z}){N/x} (Lemma 3.1.11)

= λπ·az : π · s. π ∗ (((z y) •M){N/x}){π−1z/z} (z # (M,N))

= λπ·az : π · s. π ∗ (((z y) •M){N/x})[π−1z/z] (Lemma 3.1.11)

def
= π ∗ (λaz : s. ((z y) •M){N/x})
def
= π ∗ ((λax : s.M){N/x})

APP: (M is M M ′)

(π ∗ (M M ′)){N/x} def
= ((π ∗M)(π ∗M ′)){N/x}
def
= (π ∗M){N/x} (π ∗M ′){N/x}

= (π ∗M{N/x}) (π ∗M ′{N/x}) (induction)

def
= π ∗ ((M{N/x}) (M ′{N/x}))
def
= π ∗ ((M M ′){N/x})

�

Proposition 3.1.15 π · (M{N/x}) = (π ·M){(π ·N)/x}

Proof This proof is by induction on the size of expression M .
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SUSP: (M is π′y) We consider the case y = x. The other case follows immediately.

π · ((π′x){N/x}) def
= π · (π′ ∗N)

= (π ∗ (π′ ∗N)){π−1 } (Lemma 3.1.12)

def
= (ππ′ ∗N){π−1 }

= ππ′ ∗ (N{π−1 }) (Lemma 3.1.14)

def
= (ππ′π−1π) ∗ (N{π−1 })
def
= (ππ′π−1) ∗ (π ∗ (N{π−1 }))

= (ππ′π−1) ∗ ((π ∗N){π−1 }) (Lemma 3.1.14)

= (ππ′π−1) ∗ (π ·N) (Lemma 3.1.12)

def
= (ππ′π−1) ∗ (π ·N)

def
= (ππ′π−1x){π ·N/x}
def
= (π · (π′x)){π ·N/x}

CONST: (M is c)

π · (c{N/x}) def
= π · c def

= (π · c){π ·N/x}

LAM-ABS: (M is λay : s.M) We consider the case x 6= y and y ∈ fv(N). The

other cases follow similarly.

π · ((λay : s.M){N/x}) def
= π · (λaz : s. ((z y) •M){N/x})
def
= λπ·az : π · s. π · ((z y) •M){N/x}

= λπ·az : π · s. (π · ((z y) •M)){π ·N/x} (induction)

= λπ·az : π · s. ((z y) • (π ·M)){π ·N/x} (Lemma 3.1.6)

def
= (λπ·ay : π · s. π ·M){π ·N/x} (z # π ·N)

def
= (π · (λay : s.M)){π ·N/x}
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APP: (M is (M M ′))

π · ((M M ′){N/x}) def
= π · (M{N/x}M ′{N/x})
def
= (π ·M{N/x} π ·M ′{N/x})

= ((π ·M){π ·N/x} (π ·M ′){π ·N/x}) (induction)

def
= (((π ·M) (π ·M)){π ·N/x})
def
= (π · (M M ′)){π ·N/x}

�

Both of the previous lemmas can be generalised for simultaneous capture-avoiding

substitution:

Proposition 3.1.16 For expressions M , distinct variables x1, . . . , xn, and expres-

sions N1, . . . , Nn we have

(π ∗M){ ~Ni/~xi} = π ∗ (M{ ~Ni/~xi})

π · (M{ ~Ni/~xi}) = (π ·M){(π · ~Ni)/~xi}

3.2 Typed Expressions and Equational Theories

As our next step, we specify the type and equation system of NLC. The intuitions

of NEL and NLC are again rather similar, but technicalities are quite different due

to the introduction of name-dependent simple types. We recall that in NEL [13],

raw terms are typed using ordinary typing contexts Γ
def
= x1 : s1, . . . , xn : sn with

typing judgements being of the form Γ `NEL M : s and equational judgements are

given as ∇ `NEL M ≈ M ′ : s where ∇ = a1 # x1 : s1, ..., an # xn : sn records

assumptions about freshness and types. NEL judgements of the form ∇ `NEL M : s

are simply sugar for reflexive equations. This means that the type system is entirely

separate from the freshness/equation system. This is in contrast to NLC, where we
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cannot separate the type system in this way, since the types of abstractions depend

directly on freshness assertions. Thus, the contexts we use in the type system must

already encode freshness assertions (and cannot be of the form Γ). Further, our typing

judgements ∇ `NLC M : s are not abbreviations for reflexive equations, but first class

citizens of the calculus.

We now formally introduce the type and equation system for NLC: A freshness

context, or just context, is analogously to NEL a finite partial function ∇ : Var →

Pfin(A) ⊗ TypeSg with ⊗ being the tensor product. By definition, it maps each

variable x ∈ dom(∇) to a pair (a, s) where a is a finite set of names, s ∈ TypeSg and

a # s. The set of contexts CtxtSg , equipped with the permutation action

(π · ∇)(x)
def
= (π · a, π · s)

is a nominal set. We often write a context ∇ for a1 # x1 : s1, ..., an # xn : sn. For

contexts ∇ and ∇′, we write ∇ ≤ ∇′ if dom(∇) ⊆ dom(∇′) and for all x ∈ dom(∇)

such that ∇(x) = (a, s) and ∇′(x) = (a′, s′) we have a ⊆ a′ and s = s′. We define

expressions and equations in context as follows:

• An expression-in-context is a judgement of the form ∇ `NLC M : s where ∇

is a freshness environment, M is an expression and s is a type.

• An equation-in-context is a judgement of the form ∇ `NLC M ≈M ′ : s where

∇ `NLC M : s and ∇ `NLC M ′ : s are expressions-in-context.

An NLC-theory Th is a pair (Sg ,Ax ), where Sg is an NLC-signature and Ax is

a collection of equations-in-context. We shall use Th to inductively define a subset

of expressions-in-context and equations-in-context. Any expression-in-context ∇ `NLC

M : s that has a derivation is called a typed expression; and any equation-in-

context ∇ `NLC M ≈ M ′ : s that has a derivation is called a theorem. The set of

typed expressions and theorems of a NLC-theory Th is defined to be the least set of

judgements containing the axioms of Th and being closed under the rules in Table 3.4
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and Table 3.5. We refer to the set of derived expressions and the set of derived

equations of type s and freshness context ∇ (for signature Sg) as ExpSg(∇, s) and

EquSg(∇, s), respectively. We formally indicate that a judgement J has a derivation

in theory Th by writing Th B J . For brevity, we usually omit this notation in our

proofs. The NLC-theory, which is composed of the empty signature Sg (no constants

and only one ground type) and the empty set Ax , is called the pure βη-theory.

Let’s now consider the rule (AP) in more detail. Since F has type sa ⇒ s ′ we

require that a is fresh for the argument A in context ∇, which we encoded as ∇ `NLC

a # A : s. Note that in defining the rules of NLC, we write ∇ `NLC a # A : s in

the hypothesis of rule (AP) as syntactic sugar for ∇#c `NLC (c a) ∗ A ≈ M : s and

the additional side condition c # (∇, a, A, s). Hence, the rule (AP) would formally be

presented as a rule schema of the following form:

∇ `NLC F : sa ⇒ s′ ∇#c `NLC (c a) ∗ A ≈ A : s
(c # (∇, a, A, s))∇ `NLC F A : s′

The role that ∇ `NLC a # M : s, or more precisely the underlying equations

(used to express freshness), plays in the definition of the typing system of NLC,

leads to a crucial difference between NEL and NLC. The type system rules have

equations-in-context as hypotheses, and the equation rules have expressions-in-context

as hypotheses. Thus theorems and typed expressions are mutually inductively defined.

Obviously this complicates our proofs, at least in comparison to NEL, and leads to

some subtleties which we explain in due course.

(SP) ∇, a # x : s `NLC πx : π · s (C) ∇ `NLC c : s (c ∈ FunSg and c : s in Sg)

(ABS)
∇, a # x : s `NLC M : s′

∇ `NLC λax : s.M : sa ⇒ s′
(AP) ∇ `NLC F : sa ⇒ s′ ∇ `NLC a # A : s

∇ `NLC F A : s′

Table 3.4: NLC Typing Rules
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(AXIOM) ∇ `NLC M : s ∇ `NLC M ′ : s
∇ `NLC M ≈M ′ : s

(∇ `NLC M ≈M ′ : s ∈ Ax )

(REF) ∇ `NLC M : s
∇ `NLC M ≈M : s

(SYM) ∇ `NLC M ≈M ′ : s
∇ `NLC M ′ ≈M : s

(TRANS) ∇ `NLC M ≈M ′ : s ∇ `NLC M ′ ≈M ′′ : s
∇ `NLC M ≈M ′′ : s

(WEAK) ∇ `NLC M ≈M ′ : s (∇ ≤ ∇′)∇′ `NLC M ≈M ′ : s

(AE) ∇#a `NLC M ≈M ′ : s
∇ `NLC M ≈M ′ : s

(a # (∇,M,M ′))

(SUSP) ds(π, π′) # x : s `NLC πx ≈ π′x : π · s

(B)
∇, a # x : s `NLC M : s′ ∇ `NLC a # N : s

∇ `NLC (λax : s.M) N ≈M{N/x} : s′

(E) ∇ `NLC M : sa ⇒ s′ (x # M)
∇ `NLC λax : s. (M x) ≈M : sa ⇒ s′

(CL)
∇, a # x : s `NLC M ≈M ′ : s′

∇ `NLC λax : s.M ≈ λax : s.M ′ : sa ⇒ s′

(CA) ∇ `NLC a # Ai : s ∇ `NLC F1 ≈ F2 : sa ⇒ s′ ∇ `NLC A1 ≈ A2 : s
(i=1,2)

∇ `NLC F1 A1 ≈ F2 A2 : s′

Table 3.5: NLC Equation Rules

Lemma 3.2.1 The rules (SUBST), (SUB) and (SSUB) (in Table 3.6) are derivable.

Proof

(i) (SUBST): Suppose ∇, a # x : s `NLC M1 ≈ M2 : s′, ∇ `NLC N1 ≈ N2 : s′,

∇ `NLC a # N1 : s and ∇ `NLC a # N2 : s. We first apply (CL) on ∇, a #
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x : s `NLC M1 ≈ M2 : s′ to obtain ∇ `NLC λax : s.M1 ≈ λax : s.M2 : sa ⇒ s′

and then (CA) to obtain ∇ `NLC (λax : s.M1) N1 ≈ (λax : s.M2) N2 : s′. The

conclusion follows by application of rules (B) and (TRANS).

(ii) (SUB): Follows similarly to (SUBST) (using (WEAK)).

(iii) (SSUB): Suppose ∇ `NLC M ≈ M ′ : s′, ∇′ `NLC Ni ≈ N ′i : s′, ∇′ `NLC a # Ni : s

and ∇′ `NLC a # N ′i : s. We can now apply (CL) multiple times on ∇ `NLC M ≈

M ′ : s′ to obtain ∅ `NLC λa1x1 : s1. ...λ
anxn : sn.M ≈ λa1x1 : s1. ...λ

anxn : sn.M
′ :

si
ai ⇒ s′. Since we work with expressions and therefore can rename bound

variables, we have that

∅ `NLCλa1y1 : s1. ...λ
anyn : sn. (xi yi) •M

≈λa1y1 : s1. ...λ
anyn : sn. (xi yi) •M ′ : si

ai ⇒ s′

for yi # (Ni, N
′
i). Next, we apply the rules (WEAK) and (CA) to deduce the

following

∇′ `NLCλa1y1 : s1. ...λ
anyn : sn. ((xi yi) •M) N1...Nn

≈λa1y1 : s1. ...λ
anyn : sn. ((xi yi) •M ′) N ′1...N

′
n : s′

We then apply rules (B) and (TRANS) to get ∇′ `NLC ((xi yi) • M){Ni/yi} ≈

((xi yi) • M ′){N ′i/yi} : s′. Given that ((xi yi) • M){Ni/yi} = M{Ni/xi} and

((xi yi) •M ′){N ′i/yi} = M ′{N ′i/xi}, we are done.

�

The “inversion lemma” is a technical lemma that describes how the subexpressions

of a well-typed expression are typed. It is used implicitly in proofs by induction on

the structure of expressions. In the case of NLC it follows immediately by definition

and the fact that we have syntax-directed rules.
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(SUBST) ∇ `NLC a # Ni : s

∇, a # x : s `NLC M1 ≈M2 : s′

∇ `NLC N1 ≈ N2 : s
(i = 1, 2)

∇ `NLC M1{N1/x} ≈M2{N2/x} : s′

(SUB) ∇′ `NLC a # Ni : s

∇, a # x : s `NLC M1 ≈M2 : s′

∇′ `NLC N1 ≈ N2 : s

∇,∇′ `NLC M1{N1/x} ≈M2{N2/x} : s′

(SSUB) ∇ `NLC M ≈M ′ : s′ ∇′ `NLC Ni ≈ N ′i : si

∇′ `NLC ai # Ni : si
∇′ `NLC ai # N ′i : si

∇′ `NLC M{ ~Ni/~xi} ≈M ′{ ~N ′i/~xi} : s′

Table 3.6: NLC Derivable Rules

Lemma 3.2.2 (Typing Rule Inversion) Suppose Th B ∇ `NLC M : s

• If M is a suspension πx, then ∇ = ∇′, a # x : s1 for some context ∇′, type s1

and set of finite names a; thus s = π · s1

• If M is N N ′ then ∇ `NLC N : s1
a ⇒ s and ∇ `NLC a # N ′ : s1 for some type s1

and finite set of names a.

• If M is c, then c : s is the constant typing.

• If M is λax : s1.M
′, then s is of the form s1

a ⇒ s2 for some type s2 and

∇, a # x : s1 `NLC M ′ : s2.

We have yet another technical lemma which is crucial for proving some important

facts about NLC. Lemma 3.2.3 is used in induction steps of lambda abstraction, or

more precisely in the case when the binding variable also occurs in the environment.

For an example induction we refer to the proof of Lemma 3.2.4, where we illustrate

the particular care we take over dealing with lambda abstraction in proofs. A detailed

explanation of the problem can also be found in [53] (page 169). For brevity, we will

usually omit this particular case in proofs, and assume that binding variables do not

occur in the context.
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Lemma 3.2.3 (Variable Equivariance of Judgements) All well-typed expres-

sions and theorems (hence freshness assertions too) are equivariant under variable

swapping. More precisely, for any µ ∈ Perm(Var) we have that

Th B ∇ `NLC M : s =⇒ Th B µ • ∇ `NLC µ •M : s

Th B ∇ `NLC M ≈M ′ : s =⇒ Th B µ • ∇ `NLC µ •M ≈ µ •M ′ : s

Proof The proof is by mutual induction.

Lemma 3.2.4 Th B ∇, a # x : s `NLC M : s ′ if and only if Th B ∇, π · a # x :

π · s `NLC M{π−1x/x} : s ′ and similarly for equations.

Proof Since permutations are isomorphisms we only need to prove one direction of

the implication. We have to prove, by (mutual) induction over the rules in Table 3.4

and 3.5,

(∀Th B ∇′ `NLC [M ]α : s ′) [

(∀ ∇, a, π, x, s) (∇′ ≡ ∇, a # x : s

=⇒ Th B ∇, π · a # x : π · s `NLC [M{π−1x/x}]α : s ′)) ]

(∀Th B ∇′ `NLC [M ]α ≈ [M ′]α : s ′) [

(∀ ∇, a, π, x, s) (∇′ ≡ ∇, a # x : s

=⇒ Th B ∇, π · a # x : π · s `NLC [M{π−1x/x}]α ≈ [M ′{π−1x/x}]α : s ′)) ]

The case of rules (SP) and (C) follows immediately. We now concentrate on the

interesting cases for rules (ABS) and (AP):

(ABS): To save any confusion over variable names we consider the specific instance

of the rule
∇′, b # y : t `NLC [N ]α : t′

(ABS)
∇′ `NLC [λb y : t. N ]α : tb ⇒ t′

in which y is now in local scope. Consider the conclusion of the rule, and the local

instantiation of (∀ ∇, a, π, x, s) when x
def
= y (and the other names remain the same).
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Thus we have ∇′ ≡ ∇, a # y : s . For Induction Property Closure we have to prove

∇, π · a # y : π · s `NLC [(λby : t. N){π−1y/y}]α = [λby : t. N ]α : t′ (�)

We cannot immediately invert ABS since the binding y occurs in ∇′. Choosing

distinct y′ we have that [λby : t. N ]α = [λby′ : t. (y′ y) •N ]α; so we may now invert

(ABS) to get

∇, a # y : s , b # y′ : t `NLC [(y′ y) •N ]α : t′

and hence by the variable equivariance of judgements, Lemma 3.2.3,

∇, a # y′ : s , b # y : t `NLC [N ]α : t′

Therefore, by induction with (∀ ∇, a, π, x, s) locally instantiated as follows ∇, b # y :

t, a, π, y′, s , we have

∇, π · a # y′ : π · s , b # y : t `NLC [N{π−1y′/y′}]α = [N ]α : t′

since y′ 6∈ var(N). Hence, by Lemma 3.2.3, we can obtain (�) from

∇, π · a # y : π · s , b # y′ : t `NLC [(y′ y) •N ]α : t′

followed by an instance of (ABS).

(AP): Contrary to the previous case, we do not explicitly mention α-equivalence

classes. Suppose ∇, a # x : s `NLC P Q : s′′. From this, we can deduce that

∇, a # x : s `NLC P : s′b ⇒ s′′ and ∇, a # x : s `NLC b # Q : s′. Then, by induction,

we obtain that ∇, π · a # x : π · s `NLC P{π−1x/x} : s′b ⇒ s′′. To apply an instance

of rule (AP) we have to show that ∇, π · a # x : π · s `NLC b # Q{π−1x/x} : s′ holds.

We pick c # (∇, a, b, Q, π, s, s′), which clearly satisfies c # ((∇, π · a # x :

π · s), b, Q{π−1x/x}, s′). So, by definition, we have to show that ∇#c, c ∪ π · a # x :

π · s `NLC (c b) ∗Q{π−1x/x} ≈ Q{π−1x/x} : s′ holds.

Given that c # ((∇, a # x : s), b, Q, s′) and by assumption ∇, a # x : s `NLC b #

Q : s′, we have by definition ∇#c, c ∪ a # x : s `NLC (c b) ∗ Q ≈ Q : s′. Then, by
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induction, we obtain∇#c, π ·c∪π ·a # x : π ·s `NLC ((c b)∗Q){π−1x/x} ≈ Q{π−1x/x} :

s′. Given that c # π and by applying Proposition 3.1.14 we have completed this case.

The induction closure property for equations is obtained as follows: Suppose

∇, a # x : s `NLC M ≈ M ′ : s′. By an instance of rule (SP) we have that

π · a # x : π · s `NLC π−1x : s. We can now apply an instance of rule (REF) to obtain

π · a # x : π · s `NLC π−1x ≈ π−1x : s. Before we can apply the derived rule (SUB) to

complete the argument, we have to show that π · a # x : π · s `NLC a # π−1x : π · s.

We pick c # (π, a, s); thus c # (π · a # x : π · s, a, π−1x, π · s). Then, by definition,

we have to show that c ∪ π · a # x : π · s `NLC (c a)π−1x ≈ π−1x : π · s. We can now

compute the following:

ds((c a) ◦ π−1, π−1) = supp(π ◦ (c a) ◦ π−1) = supp((c π · a)) = c ∪ π · a

and then apply an instance of rule (SUSP) to deduce the freshness assertion. �

In order to define the model-theoretic semantics in FMSet and the categorical

semantics we require Proposition 3.2.5 and Proposition 3.2.6.

Proposition 3.2.5 (∗ preserves Typed Expressions and Equalities) Given a

theory Th,

Th B ∇ `NLC M : s implies Th B ∇ `NLC π ∗M : π · s

Th B ∇ `NLC M ≈M ′ : s implies Th B ∇ `NLC π ∗M ≈ π ∗M ′ : π · s

Proof We prove by mutual induction over the rules in Figure 3.4 and Figure 3.5 the

following statements:

(∀Th B ∇ `NLC M : s) (Th B ∇ `NLC π ∗M : π · s)

(∀Th B ∇ `NLC M ≈M ′ : s) (Th B ∇ `NLC π ∗M ≈ π ∗M ′ : π · s)

We begin with the Induction Property Closure for typed expressions. Note that

the cases for rule (SP) and (C) follow as in the case of NEL.
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(ABS): Suppose that ∇ `NLC λax : s.M : sa ⇒ s′. We consider the case where x

does not occur in the context. We can now directly deduce that ∇, a # x : s `NLC M :

s′ holds. So, by induction we obtain ∇, a # x : s `NLC π ∗M : π · s′. We then apply

Lemma 3.2.4 to get ∇, π ·a # x : π · s `NLC (π ∗M){π−1x/x} : π · s. Using an instance

of rule (ABS), we obtain ∇ `NLC λπ·ax : π · s. (π ∗M){π−1x/x} : (π · s)π·a ⇒ π · s′.

Next, to complete this case, we apply Proposition 3.1.14 and Lemma 3.1.11.

(AP): Suppose that ∇ `NLC F A : s′. From this we can directly deduce ∇ `NLC F :

sa ⇒ s′ and∇ `NLC a # A : s. So, by definition we have that∇#c `NLC (c a)∗A ≈ A : s

for some c # (∇, a, A, s). We now have to show that ∇ `NLC π ∗ (F A) : π · s′ holds,

or equally ∇ `NLC (π ∗ F ) (π ∗A) : π · s′ by definition of the object-level permutation

action. By an instance of rule (AP), this can be deduced by demonstrating that

∇ `NLC π ∗F : π · sπ·a ⇒ π · s′ and ∇ `NLC π · a # π ∗A : π · s hold. The former follows

immediately by induction on∇ `NLC F : sa ⇒ s′. For the latter, applying Lemma 3.2.4

and a couple of applications of Proposition 3.1.14, we can equally demonstrate that

π ·∇ `NLC π ·a # π∗A{π−1 } : π ·s holds. By Lemma 3.1.12 we have that π∗A{π−1 } =

π ·A. Then, by equivariance of freshness we obtain π ·c # (π ·∇, π ·a, π∗A{π−1 }, π ·s).

So, by definition it remains to be shown that

(π · ∇)#π·c `NLC (π · c π · a) ∗ (π ∗ A{π−1 }) ≈ π ∗ A{π−1 } : π · s (�)

By induction on ∇#c `NLC (c a) ∗A ≈ A : s we obtain that ∇#c `NLC π ∗ (c a) ∗A ≈

π ∗ A : π · s. Given that π ∗ − is a permutation action we have that ∇#c `NLC

(π · c π · a) ∗ π ∗ A ≈ π ∗ A : π · s. By applying Lemma 3.2.4 and a couple of

applications of Proposition 3.1.14, we obtain (�) and the argument is complete.

The induction closure property for equations is obtained as follows: Suppose that

∇ `NLC M ≈ M ′ : s. By (SUSP) we have that ∅ # x : s `NLC πx ≈ πx : π · s. We can

now apply (SUBST) to directly obtain ∇ `NLC π ∗M ≈ π ∗M ′ : π · s. This completes

the argument. �
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Corollary 3.2.6 (Name Equivariance of Judgements) Given a theory Th,

Th B ∇ `NLC M : s implies Th B π · ∇ `NLC π ·M : π · s

Th B ∇ `NLC M ≈M ′ : s implies Th B π · ∇ `NLC π ·M ≈ π ·M ′ : π · s

Proof Suppose Th B ∇ `NLC M : s. We then apply Proposition 3.2.5 to obtain

Th B ∇ `NLC π ∗M : π · s. Note that we clearly have π ∗M = (π ∗M){π−1 }{π }.

By Lemma 3.2.4 we obtain Th B π · ∇ `NLC (π ∗M){π−1 } : π · s and by Proposition

3.1.14 we have π · ∇ `NLC π ·M : π · s. The case for theorems is proven similarly. �

Hence, we have that the set of derived terms and the set of derived equations

are equivariant subsets of CtxtSg ×TermSg/∼α ×TypeSg and CtxtSg ×TermSg/∼α ×

TermSg/∼α×TypeSg , respectively. Hence, they are nominal sets. Further, we can de-

duce that ExpSg(∇, s) and EquSg(∇, s) are FM-sets (with support supp(∇)∪supp(s)).

Analogous to Clouston [17, 16], we use the following definition for derivability of

∇ `NLC a # M : s:

Definition 3.2.7 Let Th be an NLC-theory and a # s

Th B ∇ `NLC a # M : s
def
= ( Nc) Th B ∇#c `NLC (a c) ∗M ≈M : s

where ∇#c def
= a1 ∪ c # x1 : s1, ..., an ∪ c # xn : sn and the transposition, a ∈ An

is sugar for a tuple of the atoms in the set a. Note that c ∈ An is any/some fresh

tuple of the same size such that c # (∇, a,M). If Th B ∇ `NLC a # M : s then we

may legitimately call the judgement a theorem, but we will usually call it a freshness

assertion.

What remains to be shown is that the N-quantifier is correctly applied in the

previous definition, i.e. we have to demonstrate that Theorem 2.2.7 (Some/Any

Theorem) can be applied. This is done in the following Lemma.
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Lemma 3.2.8 X
def
= CtxtSg × Pfin(A) × TermSg/∼α × TypeSg is a nominal set and

the relation

R
def
= {(c, (∇, a,M, s)) | Th B ∇#c `NLC (a c) ∗M ≈M : s} ⊆ Pfin(A)×X

is an equivariant subset of Pfin(A)×X.

Proof Given that all the sets involved in the definition of X are nominal sets, it

follows immediately that X is a nominal set. Suppose that Th B ∇#c `NLC (a c)∗M ≈

M : s and π ∈ Perm(A). We then obtain, by Lemma 3.2.6, that Th B (π · ∇)#π·c `NLC

π · (a c) ∗M ≈ π ·M : π · s holds. Further, we can deduce the following

π · (a c) ∗M = π ∗ ((a c) ∗M){π−1 } (Lemma 3.1.12)

= π ∗ (a c) ∗M{π−1 } (Lemma 3.1.14)

= (π(a) π(c)) ∗ π ∗M{π−1 }

= (π(a) π(c)) ∗ π ·M (Lemma 3.1.12)

So, we have Th B (π · ∇)#π·c `NLC (π(a) π(c)) ∗ π ·M ≈ π ·M : π · s and therefore

(π · c, (π · ∇, π · a, π ·M,π · s)) = π · (c, (∇, a,M, s)) ∈ R. �

Remark 3.2.9 Considering Definition 3.2.7, we can now express ∇ `NLC a # A : s,

which is originally defined as syntactic sugar for ∇#c `NLC (c a) ∗M ≈M : s with the

side condition c # (∇, a, A, s), using a more nominal vernacular, as ( Nc) ∇#c `NLC

(c a) ∗M ≈ M : s. Hence, ∇ `NLC a # A : s closely coincides with the characterisa-

tion of freshness in FMSet and the “un-sugared” rule (AP) can now be read as

∇ `NLC F : sa ⇒ s′ ( Nc) ∇#c `NLC (c a) ∗ A ≈ A : s

∇ `NLC F A : s′

It follows immediately that the previously obtained equivariance results carry over

to freshness assertions:

Corollary 3.2.10 Let π ∈ Perm(A). We have the following two properties:
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(i) if Th B ∇ `NLC a # M : s, then Th B ∇ `NLC π · a # π ∗M : π · s

(ii) if Th B ∇ `NLC a # M : s, then Th B π · ∇ `NLC π · a # π ·M : π · s

We now present two obvious non-properties with respect to freshness assertions:

Lemma 3.2.11 For any well typed expression ∇ `NLC M : s, the following two impli-

cations do not hold in general:

(i) Th B ∇ `NLC a # M : s =⇒ a # (∇,M)

(ii) a # (∇,M) =⇒ Th B ∇ `NLC a # M : s

Proof For the first implication, it follows immediately that b # x : s `NLC a # (a b)x :

s holds, but a # (a b)x clearly does not hold.

For the second implication we reason semantically by using the model-theoretic

semantics in FMSet for NLC (in Section 3.4). We pick a name a ∈ A and choose a

signature Sg with a single base type Name (with empty support); thus a # Name

and ∅ # x : Name is a well defined context. Then, by an instance of rule (SP) we

obtain that ∅ # x : Name `NLC x : Name holds. Further, we have that a # ((∅ #

x : Name), x). We can now define an NLC-structure for Sg with [[Name]]
def
= A and

provide an environment η(x)
def
= a. It follows immediately that η |= (∅ # x : Name).

Thus, we have that [[x]]η
def
= η(x)

def
= a and therefore a # [[x]]η does not hold. Using

the contrapositive of Corollary 3.4.15 (Soundness lemma for freshness assertions), we

can deduce that ∅ # x : Name `NLC a # x : Name cannot be derived. �

We continue by proving various standard properties of the typing system. Note

that these properties are usually proved by induction on typing derivations, but can

also be proved by induction on the structure of expressions. Given that the type and

equation system of NLC are defined using mutual induction, we use inductive proofs

over the structure of expressions whenever possible to avoid proof overhead.
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Lemma 3.2.12 (Uniqueness of Types) if Th B ∇ `NLC M : s and Th B ∇ `NLC

M : s′, then s = s′.

Proof Proof by induction on the structure of expression M :

∀(∇, s, s′) [Th B ∇ `NLC M : s ∧ Th B ∇ `NLC M : s′ =⇒ s = s′]

SUSP: (M is πx). Suppose that ∇ `NLC πx : t and ∇ `NLC πx : t′. From this we

can deduce that ∇ ≡ ∇′, a # x : s, t ≡ π · s and t′ ≡ π · s. Hence, t = t′.

CONST: Follows immediately.

LAM-ABS: (M is λax : s.N) Suppose that ∇ `NLC λax : s.N : σ and Th B

∇ `NLC λax : s.N : τ . By type inversion we obtain σ = sa ⇒ t and τ = sa ⇒ t′

for some types t and t′. Then, by rule (ABS), and the induction hypothesis, we can

deduce that t = t′ and therefore σ = τ .

APP: (M is F A). Suppose that ∇ `NLC F A : t and ∇ `NLC F A : t′. From this

we can deduce by type inversion that ∇ `NLC F : s1
a1 ⇒ t and ∇ `NLC F : s2

a2 ⇒ t′.

Then, by the induction hypothesis on F , we obtain that s1
a1 ⇒ t = s2

a2 ⇒ t′, and

therefore t = t′ holds. �

This means that we have a partial typing function from CtxtSg × TermSg/∼α
to TypeSg , which is also equivariant by Proposition 3.2.6. We can now deduce the

following useful property: if Th B ∇ `NLC M : s and a # (∇,M), then a # s holds.

This property allows us to simplify various side conditions for type and equation rules.

Lemma 3.2.13 (Context Permutation Lemma) If ∇ `NLC M : s and ∇′ is a

permutation of ∇, then ∇′ `NLC M : s.

Proof Proof by induction on the structure of expression M .

Lemma 3.2.14 (Weakening) If Th B ∇ `NLC M : s and ∇ ≤ ∇′, then Th B

∇′ `NLC M : s.



CHAPTER 3. NOMINAL LAMBDA CALCULUS (NLC) 62

Proof Proof by induction on the structure of M

∀(∇,∇′, s) [Th B ∇ `NLC M : s ∧ ∇ ≤ ∇′ =⇒ Th B ∇′ `NLC M : s]

SUSP: (M is πx). Suppose that ∇ `NLC πx : t and ∇ ≤ ∇′. From this we can

deduce that ∇ ≡ ∇1, a # x : s and t ≡ π · s. Given that ∇ ≤ ∇′ we have that

x ∈ dom(∇′) and ∇′(x) = (b, s) with a ⊆ b. By an instance of rule (SP) we obtain

that ∇′ `NLC πx : π · s, and therefore ∇′ `NLC πx : t.

CONST: Follows immediately.

LAM-ABS: (M is λax : s.N) Suppose that ∇ `NLC λax : s.N : sa ⇒ s′ and

∇ ≤ ∇′. We consider the case where x does not occur in the both contexts. From

this we can deduce that ∇, a # x : s `NLC N : s′ holds. We then apply the induction

hypothesis to obtain ∇′, a # x : s `NLC N : s′, and by an instance of rule (ABS), we

have ∇′ `NLC λax : s.N : sa ⇒ s′

APP: (M is F A) Suppose that ∇ `NLC F A : s′ and ∇ ≤ ∇′. From this we can

deduce that ∇ `NLC F : sa ⇒ s′ and ∇ `NLC a # A : s. By induction we obtain that

∇′ `NLC F : sa ⇒ s′. To apply an instance of rule (AP) and to complete the argument

we need to show that ∇′ `NLC a # N : s holds.

Pick c # (∇,∇′, a,N). We need to show that (∇′)#c `NLC (c a) ∗ A ≈ A : s.

Given that ∇ ≤ ∇′ and c # (∇,∇′) we have that ∇#c ≤ ∇′#c. Further, given that

c # (∇, A, a) we get ∇#c `NLC (c a) ∗A ≈ A : s, and by using (WEAK) we are done. �

Lemma 3.2.15 (Atom Elimination for Typing) If Th B ∇#a `NLC M : s and

a # (∇,M), then Th B ∇ `NLC M : s.

Proof Proof by induction on the structure of expression M that

∀(∇, a, s) [Th B ∇#a `NLC M : s ∧ a # (∇,M) =⇒ Th B ∇ `NLC M : s]

SUSP: (M is πx) Suppose that ∇#a `NLC πx : t and a # (∇, π). From this we

can deduce that ∇#a = (∇′, b # x : s)
#a

= ∇′#a, a ∪ b # x : s and t = π · s. We can

then apply an instance of rule (SP) to obtain ∇′, b # x : s `NLC πx : π · s.
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CONST: Follows immediately.

LAM-ABS: (M is λbx : s.N) Suppose that ∇#a `NLC λbx : s.N : sb ⇒ s′ and

a # (∇,M). So, by definition we have that a # (b, s,N). We consider the case where

x does not occur in the context. We can then deduce that ∇#a, b # x : s `NLC N : s′.

Next, we apply Lemma 3.2.14 to obtain ∇#a, a ∪ b # x : s `NLC N : s′. Given that

∇#a, a ∪ b # x : s = (∇, b # x : s)
#a

and a # (∇, b, s,N) we obtain, by induction,

that ∇, b # x : s `NLC N : s′. We complete this case by applying rule (ABS).

APP: (M is P Q) Suppose that ∇#a `NLC P Q : s′ and a # (∇, P Q). So, by

definition of the meta-level permutation action, we have that a # (P,Q). Further,

we can deduce that ∇#a `NLC P : sb ⇒ s′ and ∇#a `NLC b # Q : s. Then, by induction

on the type derivation we obtain that ∇ `NLC P : sb ⇒ s′. To apply an instance of

rule (AP) and complete the argument, we need to show that ∇ `NLC b # Q : s holds.

We pick c # (∇, b, Q, a) and demonstrate that ∇#c `NLC (c b) ∗Q ≈ Q : s.

From ∇#a `NLC b # Q : s and c # (a,∇, b, Q) we obtain by definition that

(∇#a)
#c `NLC (c b) ∗ Q ≈ Q : s. Given that (∇#a)

#c
= (∇#c)

#a
, we have that

(∇#c)
#a `NLC (c b) ∗Q ≈ Q : s. Note that from ∇ `NLC P : sb ⇒ s′ and a # (∇, P ) we

can deduce that a # sb ⇒ s′; thus a # b. We have that a # (∇#c, (c b) ∗ Q,Q) and

therefore an instance of rule (AE) can be applied to complete this argument. �

Lemma 3.2.16 if Th B ∇ `NLC M ≈ M ′ : s, then Th B ∇ `NLC M : s and

Th B ∇ `NLC M : s.

Proof Follows immediately by mutual induction on Th B ∇ `NLC M ≈M ′ : s .

Lemma 3.2.17 if Th B ∇ `NLC M : s, then fv(M) ⊆ dom(∇).

Proof Proof by induction on the structure of M :

(∀M) [(∀ ∇, s) (Th B ∇ `NLC M : s =⇒ fv(M) ⊆ ∇) ]
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SUSP: (M is πx). Suppose that ∇ `NLC πx : t. From this we can deduce that

∇ = ∇′, a # x : s and t = π · s. Hence, we immediately get that fv(πx) = {x} ⊆

dom(∇).

CONST: Follows immediately.

LAM-ABS: (M is λax : s.N) Suppose that ∇ `NLC λax : s.N : sa ⇒ s′. We

consider the case where x does not occur in the context. By an instance of the rule

(ABS) we obtain ∇, a # x : s `NLC N : s′. Next, we apply the induction hypothesis

to get fv(N) ⊆ dom(∇, a # x : s). So, we have that fv(N) \ {x} ⊆ dom(∇) and

therefore fv(λax : s.N)
def
= fv(N) \ {x} ⊆ dom(∇).

APP:(M is P Q): Suppose ∇ `NLC P Q : s′. From this we can deduce that

∇ `NLC P : sa ⇒ s′ and ∇ `NLC a # Q : s, as well as ∇ `NLC Q : s by Lemma

3.2.16. By induction we have fv(P ) ⊆ dom(∇) and fv(Q) ⊆ dom(∇). Hence, we

have fv(P Q) ⊆ dom(∇). �

Lemma 3.2.18 If Th B ∇ `NLC a # M : s and Th B ∇ `NLC M ≈ M ′ : s, then

Th B ∇ `NLC a # M ′ : s.

Proof Suppose that ∇ `NLC a # M : s (�1) and ∇ `NLC M ≈ M ′ : s. We pick c #

(∇, a,M ′,M, s) and demonstrate that ∇#c `NLC (c a) ∗M ′ ≈ M ′ : s holds: We apply

an instance of rule (WEAK) on ∇ `NLC M ≈ M ′ : s to obtain ∇#c `NLC M ≈ M ′ : s.

Then, by Proposition 3.2.5, we get ∇#c `NLC (c a)∗M ≈ (c a)∗M ′ : (c a) ·s (�2). Note

that (c a) · s = s. Further, by definition, we have that ∇#c `NLC (c a) ∗M ≈ M : s

(�3). The equation then follows directly from multiple applications of rule (TRANS)

for (�1), (�2) and (�3). �

Lemma 3.2.19 if Th B ∇#a `NLC M : s and a # (∇,M, s), then Th B ∇#a `NLC

a # M : s.

Proof Proof by induction on the structure of M :

[(∀ ∇, a, s) (Th B ∇#a `NLC M : s ∧ a # (∇,M, s) =⇒ Th B ∇#a `NLC a # M : s ]
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SUSP: (M is πx). Suppose that ∇#a `NLC πx : t and a # (∇, π, t). From this we

can deduce that ∇#a = ∇′#a, a ∪ b # x : s and t = π · s; so a # (b, s). Next, we pick

c # (π, a,∇) and demonstrate that ∇′#a∪c, c ∪ a ∪ b # x : s `NLC (c a)πx ≈ πx : π · s.

By applying an instance of rule (SUSP) we obtain that ds((a c)π, π) # x : s `NLC

(a c)πx ≈ πx : π ·s. Note that ds((a c)π, π) = supp(π−1(a c)π) = a∪c. By an instance

of rule (WEAK) we obtain ∇′#a, c ∪ a ∪ b # x : s `NLC (a c)πx ≈ πx : π · s.

CONST: Follows immediately.

LAM-ABS: (M is λbx : s.N): Suppose that ∇#a `NLC λbx : s.N : sb ⇒ s′ and

a # (∇,M, sb ⇒ s′). From this we can directly deduce that a # (b, s, s′, N). We now

have to show that ∇#a `NLC a # λbx : s.N : sb ⇒ s′. We pick c # (∇, a, b, s, s′, N)

and demonstrate that ∇#a∪c `NLC (a c) ∗ λbx : s.N ≈ λbx : s.N : sb ⇒ s′. Note that

by definition of the object-level permutation action and an instance of rule (CL) we

can equally show that ∇#a∪c, b # x : s `NLC (a c) ∗N{(a c)x/x} ≈ N : s′ holds.

Due to the fact that a, c # N , the left-hand and right-hand side of the equation

we wish to prove only differ in their suspended variables. More precisely, we have

that for any y ∈ dom(∇#a,c) the suspensions for y can be shown equal by using an

instance of rule (SUSP). In the case of x this is not necessary, because the suspensions

are identical (using a, c # N). Hence, by applying instances of the rules (SUSP), (REF)

and the various congruence rules this judgement can directly be deduced.

APP:(M is P Q) Suppose ∇#a `NLC P Q : s and a # (∇, P Q, s). From this

we can deduce that ∇#a `NLC P : sb ⇒ s′ and ∇#a `NLC b # Q : s. Given that

a # (∇, P ) and by Lemma 3.2.15 we obtain that ∇ `NLC P : sb ⇒ s′. Further,

we have that a # sb ⇒ s′, and therefore a # (s, s′, b). By induction, we obtain

that ∇#a `NLC a # P : sb ⇒ s′. To apply an instance of rule (AP), we have to

show that ∇#a `NLC a # P Q : s′, i.e. we pick c # (∇, a, P,Q, b) and show that

∇#a,c `NLC (c a) ∗ P Q ≈ P Q : s′ holds.

From ∇#a `NLC a # P : sb ⇒ s′ we obtain by definition that ∇#a,c `NLC (c a) ∗P ≈

P : sb ⇒ s′ (�1). From ∇#a `NLC b # Q : s we can deduce by Lemma 3.2.16 that
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∇#a `NLC Q : s and by induction that ∇#a `NLC a # Q : s. Hence, by definition,

we have that ∇#a,c `NLC (c a) ∗ Q ≈ Q : s (�2). We then apply an instance of

rule (WEAK), which also holds for freshness assertions, on ∇#a `NLC b # Q : s to

obtain ∇#a,c `NLC b # Q : s (�3). Next, we apply Corollary 3.2.10 on (�3) to

obtain ∇#a,c `NLC (c a) · b # (c a) ∗ Q : (c a) · s. Given that a, c # (b, s), we have

∇#a,c `NLC b # (c a) ∗ Q : s (�4). Using (�1), (�2), (�3) and (�4), we can apply

rule CA. The result then follows immediately by the definition of the meta-level

permutation action. �

Lemma 3.2.20 (Preservation of Types under Substitution) If Th B ∇, a #

x : s `NLC M : s′ and Th B ∇′ `NLC a # N : s with ∇,∇′ well defined, then

Th B ∇,∇′ `NLC M{N/x} : s′.

Proof Proof by induction on the structure of expression M

SUSP: (M is πx). Suppose that ∇, a # x : s `NLC πx : π · s and ∇′ `NLC a #

N : s. By Lemma 3.2.16 we have that ∇′ `NLC N : s holds and by Proposition 3.2.5

∇′ `NLC π ∗ N : π · s. Then, by Lemma 3.2.14 and the definition of capture avoiding

substitution we obtain that ∇,∇′ `NLC (πx){N/x} : π · s.

CONST: Follows immediately.

LAM-ABS: (M is λby : s′. P ) Suppose that ∇, a # x : s `NLC λby : s. P : s′b ⇒ s′′

and ∇′ `NLC a # N : s. We consider the case where y does not occur in both contexts.

We can now directly deduce that ∇, a # x : s, b # y : s `NLC P : s′′. Next, we

apply the induction hypothesis to obtain ∇,∇′, b # y : s′ `NLC P{N/x} : s′′. By an

instance of rule (ABS) and the definition of capture avoiding substitution we obtain

∇,∇′ `NLC (λby : s′. P ){N/x} : s′b ⇒ s′′.

APP: (M is F A) Suppose that ∇, a # x : s `NLC P Q : s′. From this we can

deduce that ∇, a # x : s `NLC P : (s′′)b ⇒ s′ and ∇, a # x : s `NLC b # Q : s′′. Then,

by induction, we obtain ∇,∇′ `NLC P{N/x} : (s′′)b ⇒ s′. To apply an instance of rule

(AP), which completes the argument, we need to show that ∇,∇′ `NLC b # Q{N/x} :
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s′′. We pick c # (∇,∇′, b, Q,N, a, s). Note that by Proposition 3.1.15 we have that

c # Q{N/x} holds. We then demonstrate that (∇,∇′)#c `NLC (c b) ∗ Q{N/x} ≈

Q{N/X} : s′′ holds.

From ∇, a # x : s `NLC b # Q : s′′, we obtain by definition that ∇#c, c ∪ a # x :

s `NLC (c b) ∗ Q ≈ Q : s′′. Given that ∇′ `NLC a # N : s we can apply Lemma 3.2.16

to obtain ∇′ `NLC N : s. We then apply instances of rules (REF) and (WEAK) to get

∇′#c `NLC N ≈ N : s. Using Lemma 3.2.19, we can deduce from ∇′#c `NLC N : s

and c # (∇′, N, s) that ∇′#c `NLC c # N : s holds. Further, by assumption and an

application of (WEAK) we have that ∇′#c `NLC a # N : s and therefore ∇′#c `NLC

a∪ c # N : s. Hence, we can apply the derived rule (SUBST) to obtain ∇#c,∇′#c `NLC

((c b) ∗ Q){N/x} ≈ Q{N/x} : s′′. By Proposition 3.1.14 and ∇#c,∇′#c = (∇,∇′)#c

we can complete the argument. �

The preservation lemma for types under simultaneous capture avoiding substitu-

tion follows likewise:

Lemma 3.2.21 (Preservation of Types under Sim. Substitution) Let ∇ def
=

a1 # x1 : s1, ..., an # xn : sn and 1 ≤ i ≤ n. If Th B ∇ `NLC M : s′ and Th B ∇′ `NLC

ai # Ni : si, then Th B ∇′ `NLC M{N1, . . . , Nn/x1, . . . , xn} : s′.

As already observed by Clouston [16], the following Lemma can be obtained.

Lemma 3.2.22 (Permutation Equation) if Th B ∇ `NLC M : s and ds(π, π′) #

(∇,M), then Th B ∇#ds(π,π′) `NLC π ∗M ≈ π′ ∗M : π · s.

Proof Suppose∇ `NLC M : s and ds(π, π′) # (∇,M). We can deduce that ds(π, π′) #

s. Next, we apply Lemma 3.2.14 to obtain ∇#ds(π,π′) `NLC M : s. Then, by Lemma

3.2.19, we get ∇#ds(π,π′) `NLC ds(π, π′) # M : s. By instances of the rules (REF) and

(SUSP) we obtain ∇#ds(π,π′) `NLC M ≈ M : s and ds(π, π′) # x : s `NLC πx ≈ π′x : s,

respectively. The result then follows immediately by the derived rule (SUBST). �
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3.3 Examples of NLC Expressions

We now present various interesting examples of expressions and their types in

NLC. We begin with the derived expression

∅ # y : s2 `NLC λa1x : s1. y : s1
a1 ⇒ s2

which trivially follows by (ABS) and (SP). Note that by augmenting the freshness

context to a2 # y : s2 we can still only deduce

a2 # y : s2 `NLC λa1x : s1. y : s1
a1 ⇒ s2

and not s1
a1 ⇒ s2

a2 , as one might initially expect, since this type is not supported

in NLC. Another example is the identity function idX#a : X#a → X#a in FMSet ,

which can be expressed by λax : s. x. Again, we can still only deduce

∅ `NLC λax : s. x : sa ⇒ s

for type sa ⇒ s instead of the more precise type sa ⇒ sa. This indicates that NLC

cannot directly capture all elements in an exponential object of the form X#a1

1 ⇒fs

X#a2

2 (in FMSet), at least not with their accurate type.

We continue with the following two examples, which demonstrate that the type

system of NLC correctly enforces the freshness restrictions. We first show introduce an

expression-in-context that cannot be derived since it violates a freshness restriction.

∅ # y : s 6`NLC (λax : s. x) y : s

This can easily be shown by using the model-theoretic semantics that we will

introduce in the following section and by applying the contrapositive of Lemma 3.4.13

(Soundness Lemma). However by extending the freshness context to a # y : s, the

expression can clearly be derived using rules (AP), (ABS) and (SP):

a # y : s `NLC (λax : s. x) y : s
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Interestingly, as will be shown next, the freshness restriction on the target of an

identity function is indirectly captured by the following freshness assertion, which is

derived by using rules (B), (SUSP) and (TRANS), as well as Proposition 3.2.5

a # y : s `NLC a # (λax : s. x) y : s

Hence, using freshness assertions, we can determine if expressions have additional

freshness restrictions, beyond the explicitly provided types in NLC. However, this

does not suffice to resolve certain issues as we will discuss in Chapter 5.

3.4 A Sound Model-theoretic Semantics

In this section we define the model-theoretic semantics of NLC in FMSet . We

first introduce the notion of a Sg-structure and an environment in FMSet , and then

define the interpretation of NLC expressions for environments in such a structure.

We continue by proving various auxiliary results for the interpretation function and

conclude by demonstrating that type and equational soundness hold.

3.4.1 Structures, Environments and Interpretations in FMSet

Let Sg be a NLC-signature. A Sg-structure M in FMSet is specified by a pair

of equivariant maps:

(i) M[[ ]] : GndSg → ob(FMSet), which extends to the map M[[ ]] : TypeSg →

ob(FMSet) via structural recursion on types:

M[[γ]]
def
= M[[γ]]

M[[sa ⇒ s′]]
def
= M[[s]]#a ⇒fsM[[s′]]

The disjoint union of type interpretations inM, denoted by U def
=
⊎
s∈TypeSg

M[[s]],

is called the universe of M.
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(ii) M[[ ]] : FunSg → U such that if f : s, then M[[f ]] ∈M[[s]].

Lemma 3.4.1 The function M[[ ]] : TypeSg → ob(FMSet) on types is equivariant.

Moreover, the universe U is a nominal set.

Proof Proof by induction on type s. The case for base types follows immediately by

definition of a structureM. For the inductive case (s is s′a ⇒ s′′), it can be deduced

as follows:

π · [[s′a ⇒ s′′]]
def
= π · ([[s′]]#a ⇒fs [[s′′]])

def
= π · ([[s′]]#a)⇒fs π · [[s′′]]

= (π · [[s′]])#π·a ⇒fs π · [[s′′]] (Lemma 2.3.4)

= [[π · s′]]#π·a ⇒fs [[π · s′′]] (induction)

def
= [[(π · s′)π·a ⇒ π · s′′]]
def
= [[π · (s′a ⇒ s′′)]]

Given thatM[[ ]] : TypeSg → ob(FMSet) is an equivariant map, it follows immedi-

ately that the universe U is closed under permutations and therefore it is a nominal

set by construction. �

We define an environment for a structureM to be a finite function from Var to

the universe U of M. The set of environments, EnvSg , equipped with the point-wise

permutation action

(π · η)(x)
def
= π · η(x)

is an FM-Set (finite product of FM-Sets) such that for every η ∈ EnvSg we have

supp(η) =
⋃

x∈dom(η)

supp(η(x))

If η ∈ EnvSg , x ∈ Var and d ∈ U , then the updated environment η[x 7→ d] is

mapping x to d, and otherwise acts like η.
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We now define the interpretation of an NLC expression M under an environ-

ment η in a Sg-structure M. At this point we have to be cautious, because NLC is

dependently typed: in particular the type system and equation system are mutual

inductively defined. This means that we cannot just introduce a recursive definition

of a total interpretation function over NLC expressions and environments, and prove

it sound. Instead, we proceed by using a proof technique, which is usually applied to

prove soundness in the context of dependent types (see for example [66, 52]). This

involves the definition of a partial interpretation function for expressions and envi-

ronments, which is later shown to be total for well-typed expressions. More precisely,

the application of the interpretation function relies on certain condition; conditions

which directly follow from the derivation of well typed expressions in the soundness

proof. Hence, the proof of “totality” for the interpretation function will merely be

postponed, until we prove type and equational soundness.

As an example, we can take the interpretation of a lambda application M N

(see Table 3.7), which relies on the condition that the interpretation of M is a finitely

supported function and that the interpretation ofN is in its domain; thus the freshness

condition is meet. When we now consider rule (AP) in the soundness proof (see

page 83), we can immediately see that both conditions hold. Hence, the interpretation

of M N exists for well typed terms.

We define the interpretation of an NLC-expression M for an environment η (in

an Sg-structure M), written as M[[M ]]η, by induction on the structure of M (see

Table 3.7). To indicate if an interpretation is defined, we writeM[[M ]]η⇓. Hence, we

have defined a partial interpretation function:

M[[−]]− : TermSg/∼α × EnvSg → U

Note that if it is clear from context, we usually do not explicitly mention the

underlying Sg-structure.
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M[[πx]]η
def
= π · η(x) if x ∈ dom(η)

M[[c]]η
def
= M[[c]]

M[[λax : s.M ]]η
def
= Λd ∈M[[s]]#a.M[[M ]]η[x 7→d] if M[[M ]]η[x 7→d]⇓ for any d ∈M[[s]]#a

M[[M N ]]η
def
= M[[M ]]η(M[[N ]]η) if M[[M ]]η⇓, M[[N ]]η⇓, M[[M ]]η is a

fs-function and M[[N ]]η in its domain

Table 3.7: Partial Interpretation Function for NLC

3.4.2 Properties of the Interpretation Function

To prove soundness, we require various auxiliary results for the previously defined

partial interpretation function. Due to the fact that the partial interpretation function

is defined by recursion on the structure of expressions, we can prove the following

properties by induction on the structure of expressions. Taking into account that the

interpretation function is partial, we need to introduce the notion of Kleene equality :

We shall write L � R to mean that L⇓ ⇐⇒ R⇓ and that L = R.

Lemma 3.4.2 Let η be an environment, M an expression and x, x′ two distinct vari-

ables. Then

[[(x x′) •M ]]η � [[M ]]η◦(xx′)

Proof Proof by induction on the structure of expression M :

SUSP: (M is πy) (y 6= x, x′):

[[(x x′) • πy]]η � [[πy]]η

� π · η(y)

� π · ((η ◦ (x x′))(y))

� [[πy]]η◦(xx′)
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M is πx: (similarly for x′)

[[(x x′) • πx]]η � [[πx′]]η

� π · η(x′)

� π · ((η ◦ (x x′))(x))

� [[πx]]η◦(xx′)

LAM-ABS: (M is λay : s.N): (y 6= x, x′) The cases for (y = x) and (y = x′) fol-

low similarly. Suppose [[(x x′)•(λay : s.N)]]η⇓. By definition we have [[λay : s. (x x′) •N ]]η⇓,

and it is equal to Λd ∈ [[s]]#a.[[(x x′)•N ]]η[y 7→d] with [[(x x′)•N ]]η[y 7→d]⇓ for all d ∈ [[s]]#a.

By induction we have that for all d ∈ [[s]]#a, [[N ]](η[y 7→d])◦(xx′)⇓ and [[(x x′) •N ]]η[y 7→d] =

[[N ]](η[y 7→d])◦(xx′). Given that y 6= x, x′ we have [[N ]](η[y 7→d])◦(xx′) = [[N ]]η◦(xx′)[y 7→d] (�1),

and by definition of partial interpretations we have [[λay : s.N ]]η◦(xx′)⇓. The converse

follows similarly. We now continue with the equational part. Let d′ ∈ [[s]]#a.

[[(x x′) • (λay : s.N)]]η(d
′)

def
= [[λay : s. (x x′) •N ]]η(d

′)

def
= (Λd ∈ [[s]]#a.[[(x x′) •N ]]η[y 7→d])(d

′)

def
= [[(x x′) •N ]]η[y 7→d′]

= [[N ]](η[y 7→d′])◦(xx′) (induction)

= [[N ]]η◦(xx′)[y 7→d′] (�1)

def
= (Λd ∈ [[s]]#a.[[N ]]η◦(xx′)[y 7→d])(d

′)

def
= [[λay : s.N ]]η◦(xx′)

APP: (M is N N ′): Suppose that [[(x x′) • (N N ′)]]η⇓. By definition of variable

swapping we have [[((x x′) •N) ((x x′) •N ′)]]η⇓, and it is equal to [[(x x′)•N ]]η([[(x x
′)•

N ′]]η) with [[(x x′) •N ]]η⇓ and [[(x x′) •N ′]]η⇓. By induction we obtain

[[N ]]η◦(xx′)⇓ [[(x x′) •N ]]η = [[N ]]η◦(xx′)

[[N ′]]η◦(xx′)⇓ [[(x x′) •N ′]]η = [[N ′]]η◦(xx′)
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From this we can directly deduce that [[N N ′]]η◦(xx′)⇓. The equation is deduced

as follows:

[[(x x′) • (N N ′)]]η
def
= [[((x x′) •N) ((x x′) •N ′)]]η
def
= [[(x x′) •N ]]η([[(x x

′) •N ′]]η)

= [[N ]]η◦(xx′)([[N
′]]η◦(xx′)) (induction)

def
= [[(N N ′)]]η◦(xx′)

�

The following lemma shows that the interpretation of an expression M for an

environment η only depends on η(x) if x ∈ fv(M).

Lemma 3.4.3 Let η and η′ be environments and M an expression. If η(x) = η′(x)

for all x ∈ fv(M), then [[M ]]η � [[M ]]η′.

Proof Proof by induction on the structure of expression M .

SUSP: (M is πx):

[[πx]]η � π · η(x) � π′ · η(x) � [[πx]]η′

LAM-ABS: (M is λay : s.N). Suppose that for all x ∈ fv(M) = fv(N) \ {y}

we have that η(x) = η′(x). We now assume that [[λay : s.N ]]η⇓, which is equal by

definition to Λd ∈ [[s]]#a.[[N ]]η[y 7→d] with [[N ]]η[y 7→d]⇓ for all d ∈ [[s]]#a. We recall that

η[y 7→ d] = η′[y 7→ d] for all x ∈ fv(N). So, by induction, we obtain that [[N ]]η′[y 7→d]⇓

and [[N ]]η[y 7→d] = [[N ]]η′[y 7→d] for all d ∈ [[s]]#a. From this we can directly deduce that

[[λay : s.N ]]η′⇓. The equation is deduced as follows: Let d′ ∈ [[s]]#a.

[[λay : s.N ]]η(d
′)

def
= [[N ]]η[y 7→d′]

= [[N ]]η′[y 7→d′] (induction)

def
= [[λay : s.N ]]η′(d

′)
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APP: (M is N N ′): The existence part follows immediately by induction, as well

as the equation:

[[N N ′]]η
def
= [[N ]]η([[N

′]]η)

= [[N ]]η′([[N
′]]η′) (induction)

def
= [[N N ′]]η′

�

To show that the partial interpretation function is well defined we need to demon-

strate that it preserves α-equivalence.

Lemma 3.4.4 Let η be an environment and M,M ′ two raw terms. If M ≡α M ′,

then [[M ]]η � [[M ′]]η.

Proof Proof by rule-based induction on ≡α:

SUSP: For πx ≡α πx it follows immediately.

ABS: Suppose that λax : s.N ≡α λax′ : s.N ′. From this we can deduce that for

some name z # (N,N ′, x, x′) we have (z x)•N ≡α (z x′)•N ′. Given that α-equivalent

terms share the same set of free variables, we have that S
def
= fv(λax : s.N) =

fv(λax′ : s.N ′). It follows immediately that x, x′, z /∈ S.

Suppose that [[λax : s.N ]]η⇓. We take η′ to be the restriction of η to S. Using

Lemma 3.4.3 we obtain [[λax : s.N ]]η′⇓ and

[[λax : s.N ]]η = [[λax : s.N ]]η′ (�1)

By definition, we have that [[λax : s.N ]]η′ is equal to Λd ∈ [[s]]#a.[[N ]]η′[x 7→d] and

[[N ]]η′[x 7→d]⇓ for all d ∈ [[s]]#a. Given that x, z /∈ dom(η′), we have [[N ]]η′[x 7→d] =

[[N ]](η′[z 7→d])◦(z x) and by applying Lemma 3.4.2 we obtain [[(z x) •N ]]η′[z 7→d]⇓ and

[[N ]](η′[z 7→d])◦(z x) = [[(z x) •N ]]η′[z 7→d] (�2)
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Then, by induction, we have that [[(z x′) •N ′]]η′[z 7→d]⇓ and

[[(z x) •N ]]η′[z 7→d] = [[(z x′) •N ′]]η′[z 7→d] (�3)

We now repeat the same argument in the reverse order. We apply Lemma 3.4.2

to obtain [[N ′]](η′[z 7→d])◦(z x′)⇓ and

[[(z x′) •N ′]]η′[z 7→d] = [[N ′]](η′[z 7→d])◦(z x′) (�4)

Given that x′, z /∈ dom(η′), we have [[N ′]](η′[z 7→d])◦(z x′) = [[N ′]]η′[x′ 7→d]. So, we have

that for all d ∈ [[s]]#a, [[N ′]]η′[x′ 7→d]⇓ and therefore [[λax′ : s.N ′]]η′ . By applying Lemma

3.4.3 we obtain that [[λax′ : s.N ′]]η⇓ and

[[λax′ : s.N ′]]η′ = [[λax′ : s.N ′]]η (�5)

The converse direction of the existence parts follows similarly. We continue with

the equational part: Let d ∈ [[s]]#a.

[[λax : s.N ]]η(d) = [[λax : s.N ]]η′(d) (�1)

def
= [[N ]]η′[x 7→d]

= [[N ]](η′[z 7→d])◦(z x) (x, z /∈ dom(η′))

= [[(z x) •N ]]η′[z 7→d] (�2)

= [[(z x′) •N ′]]η′[z 7→d] (�3)

= [[N ′]](η′[z 7→d])◦(z x′) (�4)

= [[N ′]]η′[x′ 7→d] (x′, z /∈ dom(η′))

def
= [[λax′ : s.N ′]]η′(d)

= [[λax′ : s.N ′]]η(d) (�5)

APP: Suppose that M N ≡α M ′ N ′. From this we can deduce that M ≡α M ′ and

N ≡α N ′. For the existence part we suppose that [[M N ]]η⇓. By definition we have

[[M ]]η⇓ and [[N ]]η⇓. Then, by induction, we have that [[M ′]]η⇓, [[N ′]]η, [[M ]]η = [[M ′]]η
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and [[N ]]η = [[N ′]]η. Hence, we have that [[M ′ N ′]]η⇓ and both interpretations can be

shown equal as follows:

[[M N ]]η
def
= [[M ]]η([[N ]]η)

= [[M ′]]η([[N
′]]η) (induction)

def
= [[M ′ N ′]]η

�

We continue by proving various properties involving the object-level permuta-

tion action, meta-level permutation action and capture-avoiding substitution in the

context of the partial interpretation function. The existence part of the Kleene equal-

ity follows rather straightforwardly. So, for brevity, we only provide details for the

equality part.

Lemma 3.4.5 Let M be an expression and η[x 7→ d] an environment. Then

[[M ]]η[x 7→π−1·d] � [[M [π−1x/x]]]η[x 7→d]

Proof Proof by induction on the structure of expression M

SUSP: (M is τy) We consider the case y = x. The other case follows similarly.

[[τx]]η[x 7→π−1·d]

def
= τ · (π−1 · d)

def
= τπ−1 · d
def
= [[τπ−1x]]η[x 7→d]

def
= [[(τx)[π−1x/x]]]η[x7→d]

LAM-APP: (M is λay : s.N). We consider the case (y 6= x). The other case
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follows immediately. Let d′ ∈ [[s]]#a.

[[λay : s.N ]]η[x 7→π−1·d](d
′)

def
= [[N ]]η[x 7→π−1·d][y 7→d′]

= [[N [π−1x/x]]]η[x 7→d][y 7→d′] (induction)

def
= [[λay : s.N [π−1x/x]]]η[x 7→d]

def
= [[(λay : s.N)[π−1x/x]]]η[x 7→d]

APP: (M is N N ′).

[[N N ′]]η[x 7→π−1·d]

def
= [[N ]]η[x 7→π−1·d]([[N

′]]η[x 7→π−1·d])

= [[N [π−1x/x]]]η[x 7→d]([[N
′[π−1x/x]]]η[x 7→d]) (induction)

def
= [[(N [π−1x/x]) (N ′[π−1x/x])]]η[x 7→d]

def
= [[(N N ′)[π−1x/x]]]η[x 7→d]

�

Lemma 3.4.6 Let M be an expression and η an environment. Then

π · [[M ]]η � [[π ∗M ]]η

Proof Proof by induction on the structure of expression M .

SUSP: (M is τx)

π · [[τx]]η � π · τ · η(x)

� (π ◦ τ) · η(x)

� [[πτx]]η

� [[π ∗ τx]]η
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LAM-ABS: (M is λax : s.N). Let d ∈ [[π · s]]#π·a.

(π · [[λax : s.N ]]η)(d)
def
= π · [[λax : s.N ]]η(π

−1 · d)

def
= π · [[N ]]η[x 7→π−1·d]

= [[π ∗N ]]η[x7→π−1·d] (induction)

= [[(π ∗N){π−1x/x}]]η[x 7→d] (Lemma 3.4.5)

= [[(π ∗N)[π−1x/x]]]η[x 7→d] (Lemma 3.1.11)

= [[π ∗N [π−1x/x]]]η[x 7→d] (Lemma 3.1.4)

def
= [[λπ·ax : π · s. π ∗N [π−1x/x]]]η(d)

def
= [[π ∗ λax : s.N ]]η(d)

APP: (M is N N ′).

π · [[N N ′]]η
def
= π · [[N ]]η([[N

′]]η)

def
= (π · [[N ]]η) (π · [[N ′]]η)

= [[π ∗N ]]η([[π ∗N
′]]η) (induction)

def
= [[(π ∗N) (π ∗N ′)]]η
def
= [[π ∗N N ′]]η

�

Lemma 3.4.7 Let M be an expression and η an environment. Then

π · [[M ]]η � [[π ·M ]]π·η

Proof Proof by induction on the structure of expression M .
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SUSP: (M is τx).

π · [[τx]]η
def
= π · (τ · η(x))

def
= πτ · η(x)

def
= πτπ−1π · η(x)

def
= πτπ−1 · ((π · η)(x))

def
= [[πτπ−1x]]π·η
def
= [[π · (τx)]]π·η

LAM-ABS: (M is λax : s.N). Let d ∈ [[π · s]]#π·a.

(π · [[λax : s.N ]]η)(d)
def
= π · [[λax : s.N ]]η(π

−1 · d)

def
= π · [[N ]]η[x 7→π−1·d]

= [[π ·N ]](π·η)[x 7→d] (induction)

def
= [[λπ·ax : π · s. π ·N ]]π·η(d)

def
= [[π · (λax : s.N)]]π·η(d)

APP: (M is N N ′).

π · [[N N ′]]η
def
= π · [[N ]]η([[N

′]]η)

def
= (π · [[N ]]η) (π · [[N ′]]η)

= [[π ·N ]]π·η([[π ·N
′]]π·η) (induction)

def
= [[(π ·N) (π ·N ′)]]π·η
def
= [[π ·N N ′]]π·η

�

Lemma 3.4.8 (Substitution Lemma) Let M and N be expressions and η an en-

vironment.

[[M{N/x}]]η � [[M ]]η[x 7→[[N ]]η ]
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Proof Induction on the size of expression M .

SUSP: (M is πy): Case: (y = x)

[[(πx){N/x}]]η
def
= [[π ∗N ]]η

= π · [[N ]]η (Lemma 3.4.6)

def
= [[πx]]η[x 7→[[N ]]η ]

Case: (y 6= x)

[[(πy){N/x}]]η
def
= [[πy]]η
def
= π · η(y)

def
= [[πy]]η[x 7→[[N ]]η ]

LAM-ABS: (M is λay : s.M ′) (y 6= x). Let η be an environment and d ∈ [[s]]#a.

We deduce by Lemma 3.4.3 that [[λay : s.M ′]]η[x 7→[[N ]]η ] = [[λay : s.M ′]]η′[x 7→[[N ]]η ] (�1),

where η′ is the restriction of η to fv(M). So, given that y /∈ fv(M) we have y /∈

dom(η′).

[[(λay : s.M ′){N/x}]]η(d)

def
= [[λaz : s. ((z y) •M ′){N/x}]]η(d) (for z # (M ′, N))

def
= [[((z y) •M ′){N/x}]]η[z 7→d]

= [[(z y) •M ′]]η[z 7→d][x 7→[[N ]]η[z 7→d]]
(induction)

= [[(z y) •M ′]]η′[z 7→d][x 7→[[N ]]η[z 7→d]]
(Lemma 3.4.3, z # M ′)

= [[M ′]](η′[z 7→d][x 7→[[N ]]η[z 7→d]])◦(z y) (Lemma 3.4.2)

= [[M ′]]η′[y 7→d][x 7→[[N ]]η[z 7→d]]
((z, y 6= x); (z, y /∈ dom(η′)))

= [[M ′]]η′[y 7→d][x 7→[[N ]]η ] (Lemma 3.4.3; z # N)

def
= [[λay : s.M ′]]η′[x 7→[[N ]]η ](d)

= [[λay : s.M ′]]η[x 7→[[N ]]η ](d) (Lemma 3.4.3
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APP: (M is P P ′):

[[(P P ′){N/x}]]η
def
= [[P{N/x} P ′{N/x}]]η
def
= [[P{N/x}]]η([[P

′{N/x}]]η)

= [[P ]]η[x 7→[[N ]]η ]([[P
′]]η[x 7→[[N ]]η ]) (induction)

def
= [[P P ′]]η[x 7→[[N ]]η ]

�

3.4.3 Type and Equational Soundness

Before we prove soundness by mutual induction on the type and equation sys-

tem, we introduce the notion of satisfaction for environments, terms-in-context and

equations-in-context.

Definition 3.4.9 An environment η satisfies a context ∇, written as η |= ∇, if

η(x) ∈ [[s]]#a for every a # x : s ∈ ∇.

Lemma 3.4.10 |= ⊆ EnvSg × CtxtSg is equivariant.

Proof Let ∇ be a context and η an environment such that η |= ∇. We demonstrate

that π · η |= π · ∇ for any π ∈ Perm(A), i.e. for any a # x : s ∈ π · ∇ we need to

show that (π · η)(x) ∈ [[s]]#a

We first deduce from a # x : s ∈ π · ∇ that π−1 · a # x : π−1 · s ∈ ∇. Then, given

that η |= ∇ holds by assumption, we have that η(x) ∈ [[π−1 · s]]#π
−1·a = π−1 · [[s]]#a.

We can now deduce that π · η(x) ∈ [[s]]#a. Due to (π · η)(x)
def
= π · η(x), we have

completed the argument. �

Definition 3.4.11 The notion of satisfaction for terms-in-context and equations-in-

context is defined as follows:
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• Given ∇ `NLC M : s we say that M satisfies the typing judgement if for any

η |= ∇ we have that M[[M ]]η⇓, and M[[M ]]η ∈M[[s ]].

• Given ∇ `NLC M ≈ M ′ : s we say that M satisfies the equation judgement if

for any η |= ∇, we have that M[[M ]]η⇓, M[[M ′]]η⇓ and M[[M ]]η =M[[M ′]]η

Definition 3.4.12 A Sg-structure M is a model of an NLC-theory Th = (Sg ,Ax )

if M satisfies all of the equations-in-context in Ax.

Theorem 3.4.13 (Type and Equational Soundness) Let Th be a NLC theory

and M a model. Then every well typed expression Th B ∇ `NLC M : s and theorem

Th B ∇ `NLC M ≈M ′ : s is satisfied in M.

Proof The proof does proceed by mutual induction. Induction Property Closure for

the rules in Table 3.4 and Table 3.5 is proved as follows:

(SP): Suppose ∇, a # x : s `NLC πx : π · s and η |= ∇, a # x : s. So, by definition,

we have that η(x) ∈ [[s]]#a. From this we can deduce that π ·η(x) ∈ [[π ·s]]#π·a ⊆ [[π ·s]].

Further, we can deduce that x ∈ dom(η) and therefore [[πx]]η⇓. It then follows

immediately that

[[πx]]η
def
= π · η(x) ∈ π · [[s]] = [[π · s]]

(C): It directly follows by the definition of a model, or more precisely the under-

lying structure.

(ABS): Suppose we have ∇ `NLC λax : s.M : sa ⇒ s′ . We consider the case where

x does not occur in the context∇. From this we can deduce that∇, a # x : s `NLC M :

s′. Let η |= ∇. We have to show that [[λax : s.M ]]η⇓ and [[λax : s.M ]]η ∈ [[sa ⇒ s′]].

Pick d ∈ [[s]]#a. It follows immediately that η[x 7→ d] |= ∇, a # x : s and by induction

that [[M ]]η[x 7→d]⇓ and [[M ]]η[x 7→d] ∈ [[s′]]. Hence, we have that [[λax : s.M ]]η⇓, with

interpretation Λd ∈ [[s]]#a.[[M ]]η[x 7→d]. This means that [[M ]]η[x7→d] is a function from

[[s]]#a to [[s′]]. Next, we have to demonstrate that the function is finitely supported.
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Let c, c′ /∈ supp((s, a,M, η)).

(c c′) · [[λax : s.M ]]η
def
= (c c′) · (Λd ∈ [[s]]#a.[[M ]]η[x 7→d])

def
= Λd ∈ (c c′) · [[s]]#a.(c c′) · [[M ]]η[x 7→(c c′)·d]

def
= Λd ∈ [[(c c′) · s]]#(c c′)·a.(c c′) · [[M ]]η[x 7→(c c′)·d]

= Λd ∈ [[(c c′) · s]]#(c c′)·a.[[(c c′) ·M ]]((c c′)·η)[x 7→d] (Lemma 3.4.7)

= Λd ∈ [[s]]#a.[[M ]]η[x 7→d] (c, c′ # (s, a,M, η))

def
= [[λax : s.M ]]η

Hence, we have that [[λax : s.M ]]η ∈ [[s]]#a ⇒fs [[s′]]
def
= [[sa ⇒ s′]].

(AP): Suppose ∇ `NLC F A : s′. From this we can deduce that ∇ `NLC F : sa ⇒ s′

and ∇ `NLC a # A : s. Let η |= ∇. We need to demonstrate that [[F A]]η⇓ and

[[F A]]η ∈M[[s′]] holds.

By induction we obtain that [[F ]]η is defined and [[F ]]η ∈ [[sa ⇒ s′]]
def
= [[s]]#a ⇒fs

[[s′]]. Hence, we have that [[F ]]η is a finitely supported function from [[s]]#a to [[s′]].

What remains to be proven, considering the interpretation of an application, is that

[[A]]η exists, [[A]]η ∈ [[s]] and a # [[A]]η.

Before we prove these conditions, we recall that satisfaction of ∇ `NLC a # A : s is

defined to be the satisfaction of particular equations ( Nc′) (∇#c′ `NLC A ≈ (a c′)∗A : s)

for c′ # (∇, a, A, s) (see Remark 3.2.9). Then, by induction, we obtain that for all

environments η′ |= ∇#c′ , we have that [[A]]η′⇓, [[(a c′) ∗ A]]η′⇓ and [[A]]η′ = [[(a c′) ∗ A]]η′ .

We pick c # (∇, A, a, η, s). From c # η and η |= ∇ we can directly deduce that

η |= ∇#c. Given that c # (∇, A, a), and η |= ∇#c we can deduce by induction, as

shown above, that [[A]]η⇓, [[A]]η ∈ [[s]] and [[A]]η = [[(a c) ∗ A]]η. Then, by Lemma 3.4.6,

we get [[(a c) ∗ A]]η = (a c) · [[A]]η. Thus, we have [[A]]η = (a c) · [[A]]η and therefore

a # [[A]]η holds. Hence, we have completed this case.

The Property closure for the equation rules in Table 3.5 is trivial for (REF), (SYM),

(TRANS) and (WEAK). The existence part for the congruence rules (CL) and (CA)
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follows similarly to (ABS) and (AP) and the equational part follows by standard

computations.

(B): Suppose ∇ `NLC (λax : s.M) N ≈M{N/x} : s′. We consider the case where

x does not occur in context ∇. From this we can deduce that ∇, a # x : s `NLC M : s′

and ∇ `NLC a # N : s. Let η |= ∇. Then, by induction, reasoning similar to (ABS),

we obtain [[λax : s.M ]]η⇓ and [[λax : s.M ]]η ∈ [[sa ⇒ s′]] = [[s]]#a ⇒fs [[s′]]. Further,

similar to (AP), we can deduce by induction on ∇ `NLC a # N : s that [[N ]]η⇓,

[[N ]]η ∈ [[s]] and a # [[N ]]η, and therefore [[N ]]η ∈ [[s]]#a. From this, it immediately

follows that [[(λax : s.M) N ]]η⇓, which is [[λax : s.M ]]η ([[N ]]η).

From [[λax : s.M ]]η⇓, we obtain by definition that for all d ∈ [[s]]#a, it is the case

that [[M ]]η[x 7→d]⇓. Due to the fact that [[N ]]η ∈ [[s]]#a, we obtain [[M ]]η[x 7→[[N ]]η ] and by

applying Lemma 3.4.8 we get [[M{N/x}]]η⇓ and [[M ]]η[x 7→[[N ]]η ] = [[M{N/x}]]η (�1).

The equation now follows immediately:

[[(λax : s.M) N ]]η
def
= [[λax : s.M ]]η ([[N ]]η)

def
= [[M ]]η[x 7→[[N ]]η ]

= [[M{N/x}]]η (�1)

(E): Suppose ∇ `NLC λax : s. (M x) ≈ M : sa ⇒ s′. We consider the case

x /∈ dom(∇). From this we can deduce that ∇ `NLC M : sa ⇒ s′. Let η |= ∇.

Then, by induction, we obtain [[M ]]η⇓ and [[M ]]η ∈ [[sa ⇒ s′]] = [[s]]#a ⇒fs [[s′]]. We

now need to demonstrate that [[λax : s. (M x)]]η⇓. Let d ∈ [[s]]#a. We have to show

that [[M x]]η[x 7→d]⇓. Given that x /∈ fv(M) and [[M ]]η⇓, we can apply Lemma 3.4.3 to

obtain that [[M ]]η[x 7→d]⇓ and

[[M ]]η = [[M ]]η[x 7→d] (�2)

We directly obtain [[x]]η[x 7→d]⇓, it is d. Given that d ∈ [[s]]#a and [[M ]]η ∈ [[s]]#a ⇒fs
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[[s′]], [[M x]]η[x 7→d]⇓ follows by definition. The equation can be deduced as follows:

[[λax : s. (M x)]]η(d)
def
= [[M x]]η[x 7→d]

def
= [[M ]]η[x7→d] ([[x]]η[x 7→d])

= [[M ]]η (d) (�2)

(AE): Suppose ∇ `NLC M ≈M ′ : s and a # (∇,M,M ′). From this we can deduce

that ∇#a `NLC M ≈ M ′ : s. Let η |= ∇. We have to show that [[M ]]η⇓, [[M ′]]η⇓ and

[[M ]]η = [[M ′]]η.

Pick c # (a, η,∇,M,M ′). We can now deduce that a # (c a) ·η. So, by induction,

we have that [[M ]](c a)·η⇓, [[M ′]](c a)·η⇓ and [[M ]](c a)·η = [[M ′]](c a)·η (�) .

[[M ]]η = [[(c a) ·M ]]η (c, a # M)

= (c a) · [[M ]](c a)·η (Lemma 3.4.7)

= (c a) · [[M ′]](c a)·η ((�) permuted by (c a))

= [[(c a) ·M ′]]η (Lemma 3.4.7)

= [[M ′]]η (c, a # M ′)

(SUSP): Suppose ds(π, π′) # x : s `NLC πx ≈ π′x : π · s and η |= (ds(π, π′) #

x : s). We can now directly deduce that [[πx]]η⇓ and [[π′x]]η⇓, with the respective

interpretations π ·η(x) and π′ ·η(x). We recall that ds(π, π′)
def
= {a ∈ A | π(a) 6= π′(a)}

and ds(π, π′) = supp(π−1π′). By definition of η |= (ds(π, π′) # x : s) we have

ds(π, π′) # η(x), and therefore supp(π−1π′) # η(x). From this we can directly

deduce that π−1π′ · η(x) = η(x), and furthermore by applying π on both sides that

π′ · η(x) = π · η(x). �

Definition 3.4.14 Given ∇ `NLC a # M : s we say that M satisfies the freshness

assertion if M[[M ]]η⇓ and M[[M ]]η ∈M[[s ]]#a.

Corollary 3.4.15 (Freshness Soundness) Let Th be an NLC-theory and M a

model. Then every freshness assertion Th B ∇ `NLC a # M : s is satisfied in

M.
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Proof Suppose ∇ `NLC a # M : s . Then, by definition, we have that ( Nc) ∇#c `NLC

(c a) ∗M ≈ M : s . Let η |= ∇. We have to show that [[M ]]η⇓ and [[M ]]η ∈ [[s]]#a. By

definition, the latter can be proved by showing that [[M ]]η ∈ [[s]] and a # [[M ]]η.

We pick c # (η,∇, a,M). Given that c # (η,∇), we can deduce that η |= ∇#c.

Then, due to c # (∇, a,M), we have that ∇#c `NLC (c a) ∗ M ≈ M : s and by

Theorem 3.4.13 we obtain [[(c a)∗M ]]η⇓, [[M ]]η⇓, [[M ]]η ∈ [[s]] and [[(c a)∗M ]]η = [[M ]]η.

By Lemma 3.4.6 we have [[(c a)∗M ]]η = (c a) · [[M ]]η, and therefore (c a) · [[M ]]η = [[M ]]η.

Hence, a # [[M ]]η and given that [[M ]]η ∈ [[s]], we have completed the argument. �

3.5 Conservative Extension Results

Having defined NLC with NEL and λ→ in mind, we now demonstrate that NLC

is actually a conservative extension of NEL and λ→. We recall that there are two

standard routes towards a conservative extension result, namely either by using con-

fluence of the βη-reduction system or by a semantic model construction. Given that

we have already obtained all the results required for a semantic model construction,

we will pursue this route to prove conservativity of NLC with respect to NEL. The

proof for λ→ is not shown in detail, but follows analogously to NEL.

Proposition 3.5.1 (Conservative Extension of NEL) Let Th = (Sg ,Ax ) be a

NEL theory. Then for any freshness context ∇, type (sort) s ∈ SortSg and NEL

terms M,M ′ we have that

Sg B ∇: `NEL M : s⇐⇒ Sg ′ B ∇ `NLC M : s

Th B ∇ `NEL M ≈M ′ : s⇐⇒ Th ′ B ∇ `NLC M ≈M ′ : s

where Th ′
def
= (Sg ′,Ax ′) is the direct extension of Th to an NLC-theory.

Proof Let Sg be a NEL-signature. The direct extension of Sg to an NLC-signature

Sg ′ is defined as follows: GndSg ′
def
= SortSg and FunSg ′

def
= OpSg . Then, for any
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f ∈ FunSg ′ we have by definition that f ∈ OpSg . Suppose that f : s1 × ... × sn → s

is the typing assigned to f using the typing function of Sg . So, the typing function

of Sg ′ is defined to map f to the typing f : s1 ⇒ ... ⇒ sn ⇒ s. It follows by

definition that GndSg ′ and FunSg ′ are nominal sets and the typing function of Sg ′ is

equivariant. Hence, we have that Sg ′ is an NLC-signature. Moreover, given that an

equation-in-context of Ax is also an equation-in-context in Ax ′, we take Ax ′
def
= Ax ,

and therefore Th ′ is an NLC-theory.

The left-to-right direction for well typed expressions, i.e. Sg B ∇: `NEL M : s

implies Sg ′ B ∇ `NLC M : s, follows immediately by induction on ∇: `NEL M :

s. Further, the left-to-right direction for equations is proved by induction on the

derivation of Th B ∇ `NEL M ≈M ′ : s:

For rule (REF) of NEL, we suppose that ∇ `NEL M ≈ M : s. This only holds if

∇: `NEL M : s. Applying the previous result, we have that Sg ′ B ∇ `NLC M : s and

by rule (REF) of NLC we obtain that Th ′ B ∇ `NLC M ≈ M : s holds. For all the

remaining rules, apart from (SSUB) of NEL we have that NLC has identical rules.

Due to the fact that we can derive the rule (SSUB) in NLC, we have completed the

left-to-right direction.

To prove the converse directly we use a semantic model construction: We first

demonstrate that every Sg-structure A can be extended to a Sg ′-structure MA such

that for any ∇: `NEL M : s and η |= ∇ we have that if MA[[M ]]η⇓, then A[[M ]]η =

MA[[M ]]η (�). The extended Sg ′-structure MA is defined as follows:

MA[[γ]]
def
= A[[γ]]

MA[[f ]]
def
= curry(A[[f ]])

For any base type γ, we have that MA[[γ]] is an FM-Set, because A[[γ]] is an

FM-Set. Next, we show that the condition for the function map holds: Suppose that

f ∈ FunSg ′ with f : s1 ⇒ ... ⇒ sn ⇒ s. By definition of Sg ′ we have that f ∈ OpSg

with f : s1 × ... × sn → s. Hence, we have that A[[f ]] : A[[s1]] × ... × A[[sn]] → A[[s]].
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Next, by definition, we have that MA[[f ]] = curry(A[[f ]]) and therefore MA[[f ]] ∈

A[[s1]] ⇒ ... ⇒ A[[sn]] ⇒ A[[s]]. Further, by definition we obtain that MA[[f ]] ∈

MA[[s1 ⇒ ... ⇒ sn ⇒ s]]. The equivariants of both maps follows directly from the

equivariants of the corresponding maps in A and therefore we have shown that MA

is an Sg ′-structure in FMSet .

We now prove that property (�) holds: Let Sg B ∇ `NEL M : s and η |= ∇. Under

the assumption thatMA[[M ]]η⇓, it can be shown by induction on the structure of M

that A[[M ]]η =MA[[M ]]η:

SUSP: (M is πx)

A[[πx]]η
def
= π · x def

= MA[[πx]]η

OP: (M is f M1 ... Mn)

A[[fM1...Mn]]η
def
= A[[f ]](A[[M1]]η, ...,A[[Mn]]η)

def
= curry(A[[f ]]) A[[M1]]η, ...,A[[Mn]]η

= curry(A[[f ]])MA[[M1]]η, ...,MA[[Mn]]η (induction)

def
= MA[[f ]]MA[[M1]]η, ...,MA[[Mn]]η
def
= MA[[fM1...Mn]]η

Suppose that A is a Th-algebra (A satisfies all axioms in Ax ). We now demon-

strate that MA is a model of Th ′ (MA satisfies all axioms in Ax ′). Suppose that

∇ `NLC M ≈ M ′ : s is an axiom in Ax ′ and η |= ∇. By definition we have that

∇ `NEL M ≈ M ′ : s is an axiom in Ax . Due to the fact that A is a Th-algebra we

have that A[[M ]]η = A[[M ′]]η. Recalling that we are limited to NEL terms, we clearly

have thatMA[[M ]]η⇓ andMA[[M ′]]η⇓. We can now apply property (�) to deduce that

MA satisfies ∇ `NLC M ≈M ′ : s.

We continue by proving the right-to-left direction for equations derived in NLC.

We suppose that Th ′ B ∇ `NLC M ≈ M ′ : s holds. To show that Th B ∇ `NEL
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M ≈M ′ : s holds we apply the deductive completeness result for NEL ([13] Theorem

5.4.7 and Theorem 5.5.8): In particular, we prove that for any Th-Algebra A and

environment η |= ∇ we have that A[[M ]]η = A[[M ′]]η holds.

We can deduce, as shown above, that there exists a model MA for Th ′ such that

A[[M ]]η = MA[[M ]]η (�1) and A[[M ′]]η = MA[[M ′]]η (�2). Moreover, by soundness of

NLC, we have that MA[[M ]]η =MA[[M ′]]η (�3). We can then deduce that

A[[M ]]η =MA[[M ]]η (�1)

=MA[[M ′]]η (�3)

= A[[M ′]]η (�2)

This concludes the argument for equations. For derived expressions in NLC we

suppose that Sg ′ B ∇ `NLC M : s. By (REF) we have that Th ′ B ∇ `NLC M ≈ M : s

and therefore by the argument above we directly obtain that Th B ∇ `NEL M ≈M : s.

Hence, by definition of (REF) for NEL we can deduce that Sg B ∇: `NEL M : s holds.

�

Proposition 3.5.2 (Conservative Extension of λ→) Let Th = (Sg ,Ax ) be a λ→

theory. Then for any typing context Γ, type s ∈ TypeSg and λ→ expressions M,M ′

we have that

Sg B Γ `LC M : s⇐⇒ Sg ′ B Γ∗ `NLC M : s

Th B Γ `LC M ≈M ′ : s⇐⇒ Th ′ B Γ∗ `NLC M ≈M ′ : s

where Th ′
def
= (Sg ′,Ax ′) is the extension of Th to an NLC-theory and Γ∗ trivially

extends Γ to a freshness context.

Proof The prove follows analogue to the argument above, but here we rely on the

fact that λ→ is complete with respect to cartesian closed categories and the categorical

soundness argument for NLC. �
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There is yet another conservative extension property that we are interested in,

namely to demonstrate that NLC provides a more expressive syntax, but if one is

limited to ground types, this does not increase the computational power of the original

theory Th in NEL.

Conjecture 3.5.3 (Conservative Extension) Let Th = (Sg ,Ax ) be a NEL theory

and Th ′
def
= (Sg ′,Ax ′) the direct extension of Th to an NLC-theory with Ax ′

def
= Ax

and Sg ′ being the direct extension of the NEL-signature Th. Then for any freshness

context ∇ def
= a1 # x1 : γ1, ..., an # xn : γn (with γi ∈ GndSg), ground type γ ∈ GndSg

and NLC-expression E such that Th ′ B ∇ `NLC E : γ we can deduce the following:

(i) there exists a NEL-term M for which Th B ∇ `NEL M : γ and Th ′ B ∇ `NLC

E ≈M : γ (informally: E is βη-reducible to M).

(ii) if there exists another NEL-term M ′ for which Th B ∇ `NEL M ′ : γ and Th ′ B

∇ `NLC E ≈M ′ : γ then Th ′ B ∇ `NEL M ≈M ′ : γ.

Our original aim was to prove this result using a “nominal” version of categorical

gluing as presented by Crole [21, 20]) for EL and λ→. For more details about such a

result and first intermediate results we refer to Appendix B.1.
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Chapter 4

NLC: Name Abstraction,

Concretion and Local Fresh

Atomic Names

In this chapter we extend NLC to capture the notions of name abstraction and

concretion, as well as local fresh atomic names. These are standard constructions in

the FM-set model, which we recalled in Section 2.2. The content of this chapter is

organised as follows:

• The notion of concretion in the FM-set model is a partial function, which is

restricted in its domain by a freshness condition. This coincides precisely with

the notion of domain (freshness) restricted function types in NLC. In com-

bination with the ability to use freshness assertions in typing rules, analogue

to rule (AP), we can extend NLC to NLC[A], a calculus which captures name

abstraction and concretion as first class citizens.

• We introduce a small-step operational semantics for pure NLC[A] and prove it

to be sound, strongly normalising and confluent. This allows us to demonstrate

that provable equality is decidable in NLC[A].
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• We introduce NNLC, an extension of NLC[A] that additionally captures the

notion of local fresh atomic names. It is the precursor of a calculus that we will

introduce in Chapter 5.

Note that the properties studied for NLC (up to soundness) can easily be extended

to NLC[A] and NNLC. The proofs of these properties, mostly by induction, extend

in a routine way. So, we decided to refrain from re-stating these properties or to

extend all the respective proofs in this chapter. Instead we focus on the definition of

the respective calculus and its model-theoretic semantics, as well as some of its key

properties (e.g. soundness). Thus, if we reference auxiliary results of the previous

chapter in the context of NLC[A] or NNLC, we implicitly refer to their extensions for

the respective calculus. Other calculi that capture name abstraction and concretion

are SNTT [9] and the λαν-calculus [55], which we will shortly discuss and compare

to NLC[A] in Chapter 8.

4.1 NLC[A]: NLC with Name Abstraction and Con-

cretion

We define NLC[A] as an extension of NLC, which captures the notions of name

abstraction and concretion. We remind the reader that in the FM-set model the set

of name abstractions, [A]X, is defined as a quotient structure using a generalised

notion of α-equivalence. Further, it is a well known fact that name abstractions can

be represented as finitely supported partial functions with names applied to them

via concretion. Thus, name abstractions can be represented in two isomorphic ways,

namely as equivalence classes or as partial functions.

The key aspect that has to be dealt with is that concretion is a partial function

that can only be applied to arguments that meet certain freshness conditions. Con-

sidering that NLC provides domain (freshness) restricted function types and freshness
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assertions in typing rules, it is not too surprising that concretion can be captured in

NLC. Indeed, one might think that NEL would already be expressive enough to deal

with such freshness conditions on the syntactic level, but as has been observed by

Clouston [14], this is not the case: Suppose that cona : Name.s → s is a concretion

function with a name abstraction type Name.s. Then conaM would only be well

typed if a # M (in context), but NEL does not support such partiality. However, by

restricting to structures with total concretion, a total concretion theory can already

be defined in NEL [14].

In NLC we can now exploit the name-dependent type system, which yields a

solution to generally capture name abstraction and concretion. More precisely, the

type system of NLC allows us to introduce name indexed constants cona which are

assigned the type (Name.s)a ⇒ s. Thus, by extending the total concretion theory

provided in [14] we obtain a general concretion theory for NLC.

We remind the reader that the notions of name abstraction and concretion, as

defined in Section 2.2, were introduced in the nominal set model, whereas the model-

theoretic semantics of NLC is using the FM-set model. However, this is not an issue,

as previously pointed out, because these notions can equally be defined in the FM-set

model, with minor changes that will be pointed out in due course. For a detailed

account of the FM-set model we refer to [33, 35].

The Meta-Theory of NLC[A] Raw Terms

We define an NLC[A]-signature Sg to be an NLC-signature that is extended with

a name abstraction type, which we denote by Name.s. The corresponding permu-

tation action for TypeSg is then extended as follows:

π · Name.s
def
= Name.π · s

For the newly introduced name abstraction type, we have an introduction form

〈a〉M (non-binding) and an elimination form M @ a, referred to as name abstrac-
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tion and concretion, respectively. To emphasise the direct correspondence between

syntactic and semantic notions of name abstraction and concretion, we abuse the

notation. The set of raw terms, TermSg , is extended as follows:

M ::= ... | 〈a〉M |M @ b

The recursively defined auxiliary functions |M |, var(M), fv(M) and name(M)

of NLC extend trivially. The permutation actions on raw terms for NLC extend as

shown in Table 4.1.

(i) µ • (〈a〉M)
def
= 〈a〉µ •M

(ii) µ • (M @ b)
def
= µ •M @ b

Variable Swapping

(i) π · (〈a〉M)
def
= 〈π · a〉π ·M

(ii) π · (M @ b)
def
= π ·M @ π · b

Meta-Level

(i) π ∗ (〈a〉M)
def
= 〈π · a〉π ∗M

(ii) π ∗ (M @ b)
def
= π ∗M @ π · b

Object-Level

Table 4.1: Permutation Actions for NLC[A]

Given that 〈a〉M is non-binding the notion of α-equivalence directly extends over

the newly added term formers. Further, as in the case of NLC, all three permuta-

tion actions can be shown to respect α-equivalence and can therefore be lifted to

expressions:

µ • [M ]α
def
= [µ •M ]α

π · [M ]α
def
= [π ·M ]α

π ∗ [M ]α
def
= [π ∗M ]α
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with supp([M ]α) = fv(M) and supp([M ]α) = name(M). The definition of capture

avoiding substitution is extended as follows:

(〈a〉M){N/x} def
= 〈a〉(M{N/x})

(M @ b){N/x} def
= (M{N/x}) @ b

Typed Expressions and Equational Theories of NLC[A]

We continue by introducing type and equation rules for NLC[A], which allow us

to capture the notions of name abstraction and concretion and their corresponding

properties as presented in Section 2.2 (see Table 4.2 and Table 4.3). With the function

space interpretation of [A]X in mind, it is not surprising that the rules for name

abstraction and concretion are rather similar to lambda abstraction and application.

(NABS) ∇ `NLC[A] M : s a ∈ A (a # s)
∇ `NLC[A] 〈a〉M : Name.s

(CONC)
∇ `NLC[A] b # M : Name.s

∇ `NLC[A] M @ b : s

Table 4.2: NLC[A] Typing Rules

Note that in the FM-set model the definition of a name abstraction set, [A]X,

additionally requires that for a name abstraction 〈a〉x ∈ [A]X, the side condition a #

X holds (see Definition 5.4 in [33]). This ensures that the definition of the concretion

function is well defined. In rule (NABS), this condition is directly reflected in the side

condition a # s, which becomes obvious when we consider that the interpretation

map on types is defined to be equivariant for Sg-structures of NLC[A]. The key

aspect that needs to be consider is the partiality of concretion, but this can easily be

expressed by a freshness assertion. Hence, (CONC) is defined analogue to (AP).

We continue with the equation rules in Table 4.3. (BNABS) is a binding rule for

name abstraction and directly captures Definition 2.2.8. The N-quantifier stands for

(some/any) name b such that b # (a′, a′′,∇,M ′,M ′′)). Further, (BN) captures the
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definition of concretion and (EN) captures Lemma 2.2.13. Considering the analogy of

lambda abstraction/application and name abstraction/concretion, it is not surprising

that the rules (BN) and (EN) are rather similar to (B) and (E), respectively.

(BNABS)
( Nb) ∇#b `NLC[A] (b a′) ∗M ′ ≈ (b a′′) ∗M ′′ : s

(a′, a′′ # s)
∇ `NLC[A] 〈a′〉M ′ ≈ 〈a′′〉M ′′ : Name.s

(BN)
∇ `NLC[A] b # 〈a〉M : Name.s

∇ `NLC[A] (〈a〉M) @ b ≈ (a b) ∗M : s

(EN)
∇ `NLC[A] a # M : Name.s

∇ `NLC[A] 〈a〉(M @ a) ≈M : Name.s

(CC)
∇ `NLC[A] M1 ≈M2 : Name.s ∇ `NLC[A] b # Mi : Name.s

∇ `NLC[A] M1 @ b ≈M2 @ b : s

Table 4.3: NLC[A] Equation Rules

Lemma 4.1.1 The following rule, referred to as (CNA), is admissible.

∇ `NLC[A] M ≈M ′ : s (a # s)
∇ `NLC[A] 〈a〉M ≈ 〈a〉M ′ : Name.s

Proof Suppose ∇ `NLC[A] M ≈ M ′ : s and a # s. We have to show that ∇ `NLC[A]

〈a〉M ≈ 〈a〉M ′ : Name.s. Pick c # (a,M,M ′,∇, s). By applying rule (BNABS), we

can equivalently show that ∇#c `NLC[A] (c a) ∗M ≈ (c a) ∗M ′ : s

We apply Proposition 3.2.5 on ∇ `NLC[A] M ≈M ′ : s to obtain ∇ `NLC[A] (c a)∗M ≈

(c a) ∗M ′ : (c a) · s. Given that a, c # s and by an instance of rule (WEAK), we have

completed the argument. �

Lemma 4.1.2 (Binding Axiom) The following rule is admissible.

∇ `NLC[A] 〈a〉M : Name.s

∇ `NLC[A] a # 〈a〉M : Name.s
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Proof Suppose ∇ `NLC[A] 〈a〉M : Name.s. From this we can deduce that ∇ `NLC[A] M :

s and a # s. We have to show that ∇ `NLC[A] a # 〈a〉M : Name.s, i.e. we pick a name

c # (∇, a,M, s) and demonstrate that∇#c `NLC[A] (c a)∗〈a〉M ≈ 〈a〉M : Name.s holds.

Given that (c a) ∗ 〈a〉M def
= 〈c〉(c a) ∗M , we can apply an instance of rule (BNABS).

So, we pick a name c′ # (c, a,M,∇, s) and show that ∇#c,c′ `NLC[A] (c′ c) ∗ (c a) ∗M ≈

(c′ a) ∗M : s holds.

Given that ∇ `NLC[A] M : s and c, c′ # (∇,M) we can apply the admissible rule

(PERM) to obtain that ∇#c,c′ `NLC[A] (c′ c) ∗M ≈ M : s. We then apply Proposition

3.2.5 to get ∇#c,c′ `NLC[A] (c′ a) ∗ (c′ c) ∗M ≈ (c′ a) ∗M : (c′ a) · s. Given that c′, a # s

holds, we have completed the argument. �

A Sound Model-theoretic Semantics of NLC[A]

We extend the definition of a Sg-structure M for NLC by providing an interpre-

tation for the name abstraction type:

M[[Name.s]]
def
= [A]M[[s]]

The partial interpretation of an NLC[A] expressions M for an environment η (in

a Sg-structure) is extended as follows:

M[[〈a〉M ]]η
def
= 〈a〉M[[M ]]η (if M[[M ]]η⇓)

M[[M @ b]]η
def
= M[[M ]]η @ b (if M[[M ]]η⇓ and b #M[[M ]]η)

Note that the interpretation of a concretion expression M @ b is defined analogue

to the interpretation of an application expression, namely by using a freshness side

condition. The soundness proof is extended as follows:

Soundness Theorem for NLC[A]: The proof by mutual induction for NLC is ex-

tended with the new type and equation rules:

(NABS): Suppose ∇ `NLC[A] 〈a〉M : Name.s. From this we can deduce that ∇ `NLC[A]

M : s and a # s. Let η |= ∇. By induction we obtain that [[M ]]η⇓ and [[M ]]η ∈ [[s]].
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Then, by definition, we have that [[〈a〉M ]]η
def
= 〈a〉[[M ]]η. Hence, we directly obtain

that [[〈a〉M ]]η⇓ and [[〈a〉M ]]η ∈ [A][[s]]
def
= [[Name.s]].

(CONC): Suppose ∇ `NLC[A] M @ b : s. From this we can deduce that ∇ `NLC[A] b #

M : Name.s. Let η |= ∇. By induction, analogous to AP, we obtain that [[M ]]η⇓ and

[[M ]]η ∈ [[Name.s]]#b. By definition we have b # [[M ]]η and therefore the conditions of

the partial interpretation function is meet. So, we have that [[M @ b]]η
def
= [[M ]]η @ b

exists and [[M @ b]]η ∈ [[s]].

(BNABS): Suppose ∇ `NLC[A] 〈a′〉M ′ ≈ 〈a′′〉M ′′ : Name.s. From this we can

deduce that a′, a′′ # s and for (some/any) b # (a′, a′′,∇,M ′,M ′′)) we have that

∇#b `NLC[A] (b a′) ∗M ′ ≈ (b a′′) ∗M ′′ : s holds. Let η |= ∇. We have to show that

[[〈a′〉M ′]]η⇓, [[〈a′〉M ′]]η⇓ and that both are equal.

Pick b # (a′, a′′,∇,M ′,M ′′, η)). We can now deduce that η |= ∇#b and by

induction on ∇#b `NLC[A] (b a′) ∗ M ′ ≈ (b a′′) ∗ M ′′ : s we obtain [[(b a′) ∗M ′]]η⇓,

[[(b a′′) ∗M ′′]]η⇓ and [[(b a′) ∗M ′]]η = [[(b a′′) ∗M ′′]]η. Then, using Lemma 3.4.6, we

get [[M ′]]η⇓, [[M ′′]]η⇓, [[(b a′) ∗M ′]]η = (b a′) · [[M ′]]η and [[(b a′′) ∗M ′′]]η = (b a′′) · [[M ′′]]η.

Hence, by definition, we have that [[〈a′〉M ′]]η⇓, [[〈a′〉M ′]]η⇓ and furthermore (b a′) ·

[[M ′]]η = (b a′′) · [[M ′′]]η. From b # (M ′,M ′′, η) we can deduce, using Lemma 3.4.7,

that b # ([[M ′]]η, [[M
′′]]η). So, by definition 2.2.8, we have that 〈a′〉[[M ′]]η = 〈a′′〉[[M ′′]]η,

which is used to prove the following equation:

[[〈a′〉M ′]]η
def
= 〈a′〉[[M ′]]η = 〈a′′〉[[M ′′]]η

def
= [[〈a′′〉M ′′]]η

(BN): Suppose ∇ `NLC[A] (〈a〉M) @ b ≈ (a b) ∗M : s. From this we can directly

deduce that ∇ `NLC[A] b # 〈a〉M : Name.s and a, b # s. Let η |= ∇. By induction,

similar to AP, we have [[〈a〉M ]]η⇓ and [[〈a〉M ]]η ∈ [[Name.s]]#b. So, by definition, we

have b # [[〈a〉M ]]η (�1), [[M ]]η⇓ and [[M ]]η ∈ [[s]]. Hence, we have (a b) · [[M ]]η⇓ and

(a b) · [[M ]]η ∈ (a b) · [[s]]. By applying Lemma 3.2.5 and recalling that a, b # s, we

obtain [[(a b) ∗M ]]η⇓ and [[(a b) ∗M ]]η ∈ (a b) · [[s]] def
= [[(a b) · s]] = [[s]]. We can now



CHAPTER 4. NLC: NAME ABSTRACTION, CONCRETION AND LFAN 100

prove the equality as follows:

[[(〈a〉M) @ b]]η
def
= [[〈a〉M ]]η @ b

def
= (〈a〉[[M ]]η) @ b

def
= (a b) · [[M ]]η (�1)

= [[(a b) ∗M ]]η (Lemma 3.2.5)

(EN): Suppose∇ `NLC[A] 〈a〉(M @ a) ≈M : Name.s. From this we can deduce that

∇ `NLC[A] a # M : Name.s and a # s. Let η |= ∇. By induction, similar to AP, we have

[[M ]]η⇓ and [[M ]]η ∈ [[Name.s]]#a. So, by definition, we have a # [[M ]]η (�2). Next,

using the definition of the interpretation function we have [[M @ a]]η
def
= [[M ]]η @ a and

furthermore [[〈a〉(M @ a)]]η
def
= 〈a〉(M @ a). Hence, [[〈a〉(M @ a)]]η⇓ and the equality

is obtained using (�2) and Lemma 2.2.13:

[[〈a〉(M @ a)]]η
def
= 〈a〉[[M @ a]]η

def
= 〈a〉[[M ]]η @ a = [[M ]]η

(CC): Suppose ∇ `NLC[A] M1 @ b ≈ M2 @ b : s. Let η |= ∇. The existence part

follows similarly to CONC and the equations is proved as follows:

[[M1 @ b]]η
def
= [[M1]]η @ b

= [[M2]]η @ b (induction)

def
= [[M2 @ b]]η

�

4.2 Small-step Operational Semantics for NLC[A]

We introduce a small-step operational semantics for pure NLC[A] (without con-

stants and axioms), or more precisely a pure βη-reduction system. We demonstrate

that the reduction system is sound, strongly normalising and confluent. From these

properties we can deduce that provable equality of NLC[A] is decidable, and by reusing
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and slightly adapting the algorithms for type checking and type inference of λ→ it

can additionally be shown that both are decidable as well.

A βη-reduction system for NLC[A] can be defined by giving directionality to

most of the equation rules, apart from (SUSP), (BNABS) and (WEAK), where the α-

equivalence relation ≡α needs to be extended instead. Due to the fact that (SUSP)

requires a context, the structural equivalence relation will now be written as ≡∇α
(see Table 4.5). So, the corresponding one-step βη-reduction system would formally

be defined on terms modulo ≡∇α . A notion of βη-conversion can be defined using

the reflexive, symmetric and transitive closure of the one-step βη-reduction system.

Once it has been demonstrated that the βη-reduction system is strongly normalising

and confluent, βη-conversion can be shown to be decidable. In addition, given that

βη-conversion coincides with provable equality in NLC[A], it directly follows that

provable equality is decidable as well.

Since we are mostly interested in decidability of provable equality, we favour a

more direct proof argument without the detour over βη-conversion. This does not

only present us with a shorter proof, but it also provides us with a clearer picture of

what is required to prove strong normalisation and confluence for the βη-reduction

system of NLC[A]. So, for example, we observe that it suffices to define βη-reduction

on raw terms modulo ≡α (expressions) to prove strong normalisation. However, to

prove confluence we additionally require the structural equivalence relation ≡∇α .

To sum it up, we first introduce a pure βη-reduction system on expressions and

prove it to be strongly normalising. Next, we introduce the notion of a structural

relation ≡∇α and demonstrate that the reduction system is confluent up to ≡∇α . We

then conclude by using both properties to demonstrate that the notion of provable

equality is decidable.
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4.2.1 βη-Reduction System

We now formally define a βη-reduction system for the pure NLC[A] calculus with

a strong evaluation strategy (reductions may occur in any context). We begin with

β-contraction, which is defined on expressions as follows:

• (R-BAPP): (λax : s.M) N →β M{N/x}

• (R-BCONC): (〈a〉M) @ b→β (a b) ∗M

Lemma 4.2.1 The contraction axioms (R-BAPP) and (R-BCONC) preserve types.

Proof (R-BAPP) Suppose ∇ `NLC[A] (λax : s.M) N : s′. From this we can deduce

∇ `NLC[A] λax : s.M : sa ⇒ s′ and ∇ `NLC[A] a # N : s, as well as ∇, a # x : s `NLC[A]

M : s′. We then apply Lemma 3.2.20 to obtain ∇ `NLC[A] M{N/x} : s′.

(R-BCONC) Suppose ∇ `NLC[A] (〈a〉M) @ b : s. From this we can deduce ∇ `NLC[A]

b # 〈a〉M : Name.s. So, we have ∇ `NLC[A] 〈a〉M : Name.s and b # s. Further,

we can deduce ∇ `NLC[A] M : s and a # s. We then apply Lemma 3.2.5 to obtain

∇ `NLC[A] (a b) ∗M : (a b) · s. Given that a, b # s, we have completed this case. �

We continue with η-contraction, where we first recall that for pure λ→ the type

preservation property follows directly from the strengthening property of pure λ→:

If Γ, x : σ ` M : τ and x /∈ fv(M), then Γ ` M : τ . Note that the strengthening

property still holds for pure NLC[A], but we now have to consider an additional

complication regarding type preservation of η-contraction: Let b ⊂ a. We can deduce

∅ `NLC[A] λax : s. ((λby : s. y) x) : sa ⇒ s

∅ `NLC[A] λby : s. y : sb ⇒ s

However, due to the fact that a 6= b, we have that sa ⇒ s 6= sb ⇒ s and therefore

the usual η-contraction axiom does not preserve types anymore. To resolve this issue

we introduce a typing assertion as an additional side condition, which enforces the
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preservation of types for η-contraction. To emphasise this, we “decorate” the η-

contraction with ` and a context ∇. In contrast, despite their many similarities, this

is not required for name abstractions.

• (R-EABS) ∇ ` λax : s. (M x) →η M if x # M and ∇ `NLC[A] M : sa ⇒ τ for

some type τ

• (R-ENABS): 〈a〉(M @ a)→η M

Remark 4.2.2 The side condition of (R-EABS) is similar to a side condition used for

pure βη-reduction systems of λ→ with subtyping [58]. Of course, NLC[A] does not

have an explicit subtyping relation, but it has some flavour of subtyping due its domain

(freshness) restricted function types and the (AP) typing rule. Thus, in retrospect it

is not too surprising that an additional side condition for η-contraction is required.

Lemma 4.2.3 The contraction axioms (R-EABS) and (R-ENABS) preserve types.

Proof For (R-EABS) type preservation follows immediately by definition of the axiom.

In the case of (R-ENABS), we suppose that ∇ `NLC[A] 〈a〉(M @ a) : Name.s. From this

we can deduce ∇ `NLC[A] M @ a : s and a # s. Further, we have that ∇ `NLC[A] a #

M : Name.s and therefore ∇ `NLC[A] M : Name.s. �

We refer to expressions of the form (λax : s.M) N or (〈a〉M) @ b (in context ∇)

as a β-redex and expressions of the form λax : s. (M x) (x # M and ∇ `NLC[A] M :

sa ⇒ τ for some type τ) or 〈a〉(M @ a) (in context ∇) as an η-redex.

We say that M βη-reduces to N (in context ∇) in one step, written as ∇ `

M →βη N , if N can be obtained by applying a β-contraction or η-contraction on some

βη-redex in M (in context ∇). The relation →βη (in context ∇) is formally defined

as the smallest binary relation on expressions that is closed under the rules in Table

4.4. It follows by standard computations that the relation preserves α-equivalence

and is therefore well defined. The reflexive and transitive closure of →βη is denoted
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by �βη and an expression M is in βη-normal form (for context ∇) if there is no N

such that ∇ `M →βη N .

∇ `M1 →βη M
′
1

∇ `M1 M2 →βη M
′
1 M2

(R-APP-1)

∇ `M2 →βη M
′
2

∇ `M1 M2 →βη M1 M
′
2

(R-APP-2)

∇, a # x : s `M1 →βη M
′
1

∇ ` λax : s.M1 →βη λ
ax : s.M ′

1

(R-ABS)

∇ `M1 →βη M
′
1

∇ `M1 @ b→βη M
′
1 @ b

(R-CONC)

∇ `M1 →βη M
′
1

∇ ` 〈a〉M1 →βη 〈a〉M ′
1

(R-NABS)

∇ ` (λax : s.M) N →βη M{N/x} (R-BAPP)

∇ ` (〈a〉M) @ b→βη (a b) ∗M (R-BCONC)

x # M ∇ `NLC[A] M : sa ⇒ τ

∇ ` λax : s. (M x)→βη M
(R-EABS)

∇ ` 〈a〉(M @ a)→βη M (R-ENABS)

Table 4.4: βη-Reduction System for NLC[A]

An immediate consequence of the definition of the βη-reduction system is the

following technical lemma:

Lemma 4.2.4 If ∇ `NLC[A] M : s and ∇ `M �βη N , then ∇ `NLC[A] M ≈ N : s.

Proof Suppose ∇ `NLC[A] M : s and ∇ ` M �βη N . By definition, it is either the
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case that M ≡α N or there exists ∇ `NLC[A] M ′ : s such that ∇ ` M →βη M
′ and

∇ ` M ′ �βη N . The first case follows immediately by rule (REF) on ∇ `NLC[A] M : s.

The second case is proved by induction on the number of reduction steps:

Base Case: We have to show by rule-based induction that for any one step

reduction ∇ ` M →βη M
′, we can deduce ∇ `NLC[A] M ≈ M ′ : s. But this follows

immediately by the congruence rules and the axioms (B), (E), (BN) and (EN), as well

as the derived expression ∇ `NLC[A] M : s.

Inductive Case: Suppose ∇ ` M →βη M
′ and ∇ ` M ′ �βη N . We obtain

∇ `NLC[A] M ≈ M ′ : s using the base case and ∇ `NLC[A] M ′ ≈ N : s by the induction

hypothesis. By applying (TRANS) we obtain that ∇ `NLC[A] M ≈ N : s holds. �

We prove via subject reduction that the reduction system is sound.

Lemma 4.2.5 (Subject Reduction) If ∇ `NLC[A] M : s and ∇ ` M �βη M
′, then

∇ `NLC[A] M ′ : s.

Proof We first prove subject reduction for the one-step βη-reduction system by in-

duction on the structure of M . The case for �βη then follows immediately by induc-

tion on the number of reduction steps.

For suspended variables there are no reduction rules to apply. We now have to

consider the various reduction rules for application and abstraction. Given that we

have already shown it for the axiom cases, we only need to consider the congruence

reduction rules:

Case 1: (AP) Suppose that ∇ `NLC[A] M N : s′. From this we can deduce that

∇ `NLC[A] M : sa ⇒ s′ and ∇ `NLC[A] a # N : s. Further, we have that ∇ `NLC[A] N : s

and a # s. We now consider the two congruence rules for applications:

Case 1.1: (R-APP-1) Suppose that ∇ ` M N →βη M
′ N . From this we can

deduce ∇ ` M →βη M ′. Further, given that ∇ `NLC[A] M : sa ⇒ s′, we obtain

∇ `NLC[A] M ′ : sa ⇒ s′ by induction. Then, by rule AP, we have ∇ `NLC[A] M ′ N : s′.
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Case 1.2: (R-APP-2) Suppose that ∇ ` M N →βη M N ′. From this we can

deduce ∇ `NLC[A] N : s and by induction ∇ `NLC[A] N ′ : s. Moreover, applying Lemma

4.2.4 on ∇ `NLC[A] N : s and ∇ ` N →βη N
′ we obtain ∇ `NLC[A] N ≈ N ′ : s. Then, by

Lemma 3.2.18, we can deduce that ∇ `NLC[A] a # N ′ : s and by applying rule (AP) we

obtain ∇ `NLC[A] M N ′ : s.

Case 2: (ABS) Suppose that ∇ `NLC[A] λax : s.N : sa ⇒ s′. From this we can

deduce ∇, a # x : s `NLC[A] N : s′. There is one reduction rule that can be applied.

Case 2.1: (R-ABS) Suppose that ∇ ` λax : s.N →βη λ
ax : s.N ′. From this we

can deduce ∇, a # x : s ` N →βη N
′ and given that ∇, a # x : s `NLC[A] N : s′,

we obtain ∇, a # x : s `NLC[A] N ′ : s′ by induction. Then, by rule ABS, we have

∇ `NLC[A] λax : s.N ′ : sa ⇒ s′.

Case 3: (CONC) Suppose that ∇ `NLC[A] M @ b : s. From this we can deduce

∇ `NLC[A] b # M : Name.s, and moreover ∇ `NLC[A] M : Name.s and b # s. There is

one reduction rule that can be applied.

Case 3.1: (R-CONC) Suppose that ∇ ` M @ b →βη M ′ @ b. From this we

can deduce ∇ ` M →βη M
′ and given that ∇ `NLC[A] M : Name.s holds, we obtain

∇ `NLC[A] M ′ : Name.s by induction. Moreover, by applying Lemma 4.2.4 on ∇ `NLC[A]

M : Name.s and ∇ ` M →βη M
′ we obtain ∇ `NLC[A] M ≈ M ′ : Name.s. Next,

we apply Lemma 3.2.18 to deduce that ∇ `NLC[A] a # M ′ : Name.s. Then, by rule

(CONC), we have ∇ `NLC[A] M N ′ : s.

Case 4: (NABS) Suppose that ∇ `NLC[A] 〈a〉N : Name.s. From this we can deduce

that ∇ `NLC[A] N : s and a # s. There is one reduction rule that can be applied.

Case 4.1: (R-NABS) Suppose that ∇ ` 〈a〉N →βη 〈a〉N ′. From this we can deduce

∇ ` N →βη N
′ and given that ∇ `NLC[A] N : s holds, we obtain ∇ `NLC[A] N ′ : s by

induction. Then, by rule (NABS), we have ∇ `NLC[A] 〈a〉N ′ : Name.s. �

Note that due to the subject reduction lemma we may now write∇ `M �βη N : s

for ∇ `NLC[A] M : s and ∇ ` M �βη N . We continue by proving various technical

lemmas which will be used to prove strong normalisation, confluence and decidability
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of provable equality for pure NLC[A].

Lemma 4.2.6 if ∇, a # x : s ` P →βη P
′ : s′, then for any ∇ `NLC[A] a # M : s, we

have ∇ ` P{M/x} →βη P
′{M/x} : s′.

Proof Proof by induction on the structure of P . In the case of suspended variables

there are no reductions to apply. For application and abstraction we have to consider

the various reduction cases. Here, we only consider the reduction axioms, the congru-

ence reduction rules follow by routine computations using the induction hypothesis.

We consider the cases where x is a free variable in the corresponding redex, otherwise

the property would follow immediately.

Case 1: (R-BAPP) Suppose ∇, a # x : s ` (λay : s.N) Q →βη N{Q/y} : s′.

We consider the case where y # (x, dom(∇), Q,M). We apply Lemma 3.2.20 to

obtain ∇ `NLC[A] ((λby : s.N) Q){M/x} : s′. Then, by definition of the object-level

permutation action we have

((λby : s.N) Q){M/x} ≡α (λby : s.N{M/x}) Q{M/x}

We can then apply the reduction rule (R-BAPP) to obtain

∇ ` (λby : s.N{M/x}) Q{M/x} →βη (N{M/x}){Q{M/x}/y} : s′

Using the substitution identity we have

(N{M/x}){Q{M/x}/y} ≡α (N{Q/y}){M/x}

Hence, we have deduced

∇ ` ((λby : s.N) Q){M/x} →βη (N{Q/y}){M/x} : s′

Case 2: (R-BCONC) Suppose ∇, a # x : s ` (〈a〉N) @ b →βη (a b) ∗ N : s′. By

Lemma 3.2.20 we have that ∇ `NLC[A] ((〈a〉N) @ b){M/x} : s′. Then by definition of

the object-level permutation action we have

((〈a〉N) @ b){M/x} ≡α (〈a〉N{M/x}) @ b
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We can then apply the reduction rule (R-BCONC) to obtain

∇ ` (〈a〉N{M/x}) @ b→βη (a b) ∗N{M/x} : s′

Applying Lemma 3.1.14 we obtain

(a b) ∗N{M/x} ≡α ((a b) ∗N){M/x}

Hence, we have deduced

∇ ` ((〈a〉N) @ b){M/x} →βη ((a b) ∗N){M/x} : s′

Case 3: (R-EABS) Suppose ∇, a # x : s ` λby : s′. (N y) →βη N : s′b ⇒ s′′

(y # N). We consider the case y # (x, dom(∇),M). By Lemma 3.2.20 we have that

∇ `NLC[A] (λby : s′. (N y)){M/x} : s′b ⇒ s′′ and ∇ `NLC[A] N{M/x} : s′b ⇒ s′′. Then by

definition of the object-level permutation action and y # M we have

(λby : s′. (N y)){M/x} ≡α λby : s′. (N{M/x} y)

From y # (M,N) we can deduce that y # N{M/x}. So, we have an η-redex and

therefore the reduction rule R-EABS can be applied to obtain

∇ ` λby : s′. (N{M/x} y)→βη N{M/x} : s′
b ⇒ s′′

Hence, we have deduced

∇ ` (λby : s′. (N y)){M/x} →βη N{M/x} : s′
b ⇒ s′′

Case 4: (R-ENABS) Suppose ∇, a # x : s ` 〈a〉(N @ a) →βη N : Name.s.

Applying Lemma 3.2.20 we have that ∇ `NLC[A] (〈a〉(N @ a)){M/x} : Name.s. Then,

by definition of the object-level permutation action we obtain

(〈a〉(N @ a)){M/x} ≡α 〈a〉(N{M/x} @ a)

Hence, we have an η-redex and can therefore apply the reduction rule (R-ENABS)

to obtain

∇ ` 〈a〉(N{M/x} @ a)→βη N{M/x} : Name.s



CHAPTER 4. NLC: NAME ABSTRACTION, CONCRETION AND LFAN 109

Hence, we have deduced

∇ ` (〈a〉(N @ a)){M/x} →βη N{M/x} : Name.s

�

Lemma 4.2.7 if ∇ `NLC[A] a # M,M ′ : s and ∇ ` M →βη M
′ : s, then for any

∇, a # x : s `NLC[A] P : s′, we have ∇ ` P{M/x}�βη P{M ′/x} : s′.

Proof Using Lemma 3.2.20 we obtain ∇ `NLC[A] P{M/x} : s′ and ∇ `NLC[A] P{M ′/x} :

s′. The proof immediately follows by induction on the number of occurrences of x in

P , where the base case is analogue to the proof of Lemma 4.2.6 �

Lemma 4.2.8 if ∇, a # x : s ` P �βη P ′ : s′, ∇ `NLC[A] a # M,M ′ : s and

∇ `M �βη M
′ : s, then we have ∇ ` P{M/x}�βη P

′{M ′/x} : s′.

Proof By induction on the amount of reduction steps of ∇, a # x : s ` P �βη P
′ : s′

we obtain ∇ ` P{M/x}�βη P
′{M/x} and by induction on the amount of reduction

steps of ∇ ` M �βη M
′ : s, we obtain that ∇ ` P ′{M/x} �βη P

′{M ′/x} : s′. The

result then follows by transitivity. �

Lemma 4.2.9 (Equivariance of Reduction) →βη is equivariant with respect to

π ∗ −, i.e. if ∇ `M →βη M
′ : s, then ∇ ` π ∗M →βη π ∗M ′ : π · s. Moreover, �βη

is equivariant with respect to π ∗ −.

Proof Proof by induction on the structure of M . In the case of suspended vari-

ables there are no reductions to apply. For application and abstraction we have to

consider the various reduction cases. Here, we only consider the reduction axioms,

the congruence reduction rules follow by routine computations using the induction

hypothesis.
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Case 1: (R-BAPP) Suppose ∇ ` (λax : s. P ) Q→βη P{Q/x} : s. By Lemma 3.2.5

we have that ∇ `NLC[A] π∗((λax : s. P ) Q) : π ·s. Then, by definition of the object-level

permutation action, we have that

π ∗ ((λax : s. P ) Q)
def
= ((λπ·ax : π · s. π ∗ P [π−1x/x]) (π ∗Q))

Next, we apply the reduction rule (R-BAPP) to obtain

∇ ` ((λπ·ax : π · s. π ∗ P [π−1x/x]) (π ∗Q))→βη (π ∗ P [π−1x/x]){π ∗Q/x} : π · s

Using Lemma 3.1.11 and a standard substitution identity we obtain

(π ∗ P [π−1x/x]){π ∗Q/x} ≡α π ∗ P{π−1x/x}{π ∗Q/x} ≡α π ∗ P{Q/x}

Hence, we have that

∇ ` π ∗ ((λax : s. P ) Q)→βη π ∗ (P{Q/x}) : π · s

Case 2: (R-BCONC) Suppose ∇ ` (〈a〉N) @ b→βη (a b) ∗N : s. By Lemma 3.2.5

we have that ∇ `NLC[A] π ∗ ((〈a〉N) @ b) : π · s. Then, by definition of the object-level

permutation action, we have

π ∗ ((〈a〉N) @ b)
def
= (〈π · a〉π ∗N) @ π · b

Next, we apply the reduction rule (R-BCONC) to obtain

∇ ` (〈π · a〉π ∗N) @ π · b→βη (π · a π · b) ∗ π ∗N : π · s

By the property of permutation actions we obtain

(π · a π · b) ∗ π ∗N ≡ π ∗ (a b) ∗N

Hence, we have that

∇ ` π ∗ ((〈a〉N) @ b)→βη π ∗ ((a b) ∗N) : π · s
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Case 3: (R-EABS) Suppose ∇ ` λax : s. (M x) →βη M : sa ⇒ s′ (x # M). By

Lemma 3.2.5 we have that ∇ `NLC[A] π ∗ λax : s. (M x) : π · (sa ⇒ s′) and ∇ `NLC[A]

π ∗M : π · (sa ⇒ s′). Then by definition of the object-level permutation action and

x # M we have

π ∗ (λax : s. (M x))
def
= λπ·ax : π · s. π ∗ (M π−1x) ≡ λπ·ax : π · s. ((π ∗M) x)

Given that x # π ∗M and ∇ `NLC[A] π ∗M : π · (sa ⇒ s′), it is an η-redex and

therefore we can apply the reduction rule (R-EABS) to obtain

∇ ` λπ·ax : π · s. ((π ∗M) x)→βη π ∗M : π · (sa ⇒ s′)

Hence, we have that

∇ ` π ∗ (λax : s. (M x))→βη π ∗M : π · (sa ⇒ s′)

Case 4: (R-ENABS) Suppose ∇ ` 〈a〉(M @ a) →βη M : Name.s. By Lemma

3.2.5 we have that ∇ `NLC[A] π ∗ 〈a〉(M @ a) : π · Name.s. Then, by definition of the

object-level permutation action, we have

π ∗ 〈a〉(M @ a)
def
= 〈π · a〉(π ∗M @ π · a)

This is an eta-redex and therefore we can apply the reduction rule (R-EABS) to

obtain

∇ ` 〈π · a〉(π ∗M @ π · a)→βη π ∗M : π · Name.s

Hence, we have that

∇ ` π ∗ 〈a〉(M @ a)→βη π ∗M : π · Name.s

The fact that�βη is equivariant follows immediately by induction on the number

of reduction steps. �

Lemma 4.2.10 if M (in context ∇) is in βη-normal form, then π ∗M (in context

∇) is in βη-normal form.

Proof The contrapositive of this property follows directly using a proof by cases for

the different βη-redexes and Lemma 4.2.9. �
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4.2.2 Strong Normalisation

We prove a strong normalisation theorem for the pure βη-reduction system of

NLC[A]. To achieve this goal we adapt the proof argument used in [38], which is

based on Tait’s logical relations argument [67].

Definition 4.2.11 An expression M (in context ∇) is strongly normalising, de-

noted by SN∇(M), if there are no infinite reduction sequences originating from it.

Consequently, every reduction sequence must end in a normal form after a finite

number of reduction steps.

Definition 4.2.12 The logical predicate R := {Rs
∇ | s ∈ Type ,∇ ∈ Ctxt}, over

well typed expressions, is defined as a type-indexed family of relations, which are

recursively defined as follows:

(i) Rs
∇ ⊆ Exp(∇, s)

(ii) Rγ
∇(M)⇐⇒ SN∇(M)

(iii) Rsa⇒s′
∇ (M)⇐⇒ (∀N ∈ Exp(∇, s)) . [∇ `NLC[A] a # N : s∧Rs

∇(N) =⇒ Rs′
∇(M N)]

(iv) RName.s
∇ (M)⇐⇒ (∀b ∈ A) . [∇ `NLC[A] b # M : Name.s =⇒ Rs

∇(M @ b)]

Lemma 4.2.13 For any context ∇ and type τ

(i) if ∇ `NLC[A] [[...[x X1] ...] Xn] : τ and SN∇(Xi), then Rτ
∇([[...[x X1] ...] Xn]),

where [− −] represents either an application (− −) or a concretion (− @ −),

and Xi are respectively well typed expressions or names.

(ii) If Rτ
∇(M) then SN∇(M)

Note that property (i) is an auxiliary result, which is used to demonstrate that

each Rσ
∇ is non-empty. This is required to prove property (ii).
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Proof Both properties are proved simultaneous by induction on type τ .

Case (τ is γ):

(i) Suppose ∇ `NLC[A] [[...[x X1] ...] Xn] : γ and SN∇(Xi). By definition of R, for

base types, we need to show that SN∇([[...[x X1] ...] Xn]), which follows immediately

because the only redexes are in the Xi’s and we have that SN∇(Xi).

(ii) Follows immediately by definition of Rγ
∇(M).

Case (τ is sa ⇒ s′):

(i) Suppose ∇ `NLC[A] [[...[x X1] ...] Xn] : sa ⇒ s′ and SN∇(Xi). Let ∇ `NLC[A] a #

N : s and Rs
∇(N). By the induction hypothesis for (ii) on type s, we obtain SN∇(N).

Moreover, using rule (AP), we can deduce that∇ `NLC[A] [[...[x X1] ...] Xn] N : s′. Then,

by the induction hypothesis for (i) on type s′, we obtain Rs′
∇([[...[x X1] ...] Xn] N).

Hence, by definition of R, we have that Rsa⇒s′
∇ ([[...[x X1] ...] Xn]).

(ii) Suppose ∇ `NLC[A] M : sa ⇒ s′ and Rsa⇒s′
∇ (M). We pick a variable x such that

x # M . It is clearly the case that ∇, a # x : s `NLC[A] a # x : s and by the induction

hypothesis for (i) on type s, we obtain that Rs
∇,a#x:s(x). From Rsa⇒s′

∇ (M) we can

deduce that Rsa⇒s′
∇,a#x:s(M). By definition of R, we obtain that Rs′

∇,a#x:s(M x), and

by the induction hypothesis for (ii) on type s′ that SN∇,a#x:s(M x). Given that any

subterm of a strongly normalising term is strongly normalising, we have SN∇(M).

Case (τ is Name.s):

(i) Suppose ∇ `NLC[A] [[...[x X1] ...] Xn] : Name.s and SN∇(Xi). Let b ∈ A and

∇ `NLC[A] b # [[...[x X1] ...] Xn] : Name.s. From this we can deduce by rule (CONC)

that ∇ `NLC[A] [[...[x X1] ...] Xn] @ b : s. Then, by the induction hypothesis for (i) on

type s, we obtain Rs
∇([[...[x X1] ...] Xn] @ b). Hence, by definition of R, we have that

RName.s
∇ ([[...[x X1] ...] Xn]) holds.

(ii) Suppose that ∇ `NLC[A] M : Name.s and RName.s
∇ (M). We pick a name b ∈

A such that b # (∇,M, s). By applying Lemma 3.2.14 (Weakening), we obtain

∇#b `NLC[A] M : Name.s. Then, by Lemma 3.2.19, we can deduce that ∇#b `NLC[A] b #

M : Name.s holds. From RName.s
∇ (M) it can be deduced that RName.s

∇#b (M) holds. So,
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by definition of R, we obtain that Rs
∇#b(M @ b) and by the induction hypothesis for

(ii) on type s that SN∇#b(M @ b). Given that any subterm of a strongly normalising

term is strongly normalising, we have SN∇(M). �

Lemma 4.2.14 (Equivariance of R) if Rτ
∇(M) then Rπ·τ

∇ (π ∗M)

Proof We prove it by induction on type τ :

Case (τ is γ): Suppose that Rγ
∇(M). It follows by definition that ∇ `NLC[A] M : γ

and SN∇(M). We can apply Lemma 3.2.5 to obtain that ∇ `NLC[A] π ∗M : π · γ holds.

We now suppose, for a contradiction, that π ∗M is not strongly normalising. So,

by definition, there exists an infinite reduction sequence originating from π ∗M . By

applying Lemma 4.2.9 we can deduce that there also exists an infinite reduction se-

quence, which originates from M . But this contradicts our assumption that SN∇(M).

Hence, we have SN∇(π ∗M) and by definition of R we have Rπ·γ
∇ (π ∗M).

Case (τ is sa ⇒ s′): Suppose Rsa⇒s′
∇ (M). We have to show that R

π·(sa⇒s′)
∇ (π ∗

M). By definition of R, we can equally demonstrate that Rπ·s′
∇ (π ∗M) N under the

assumption that ∇ `NLC[A] π · a # N : π · s and Rπ·s
∇ (N).

By applying Lemma 3.2.5 we obtain that∇ `NLC[A] a # π−1∗N : s and by induction

on s we get Rs
∇(π−1 ∗N). Applying this to Rsa⇒s′

∇ (M), we obtain by definition that

Rs′
∇(M (π−1 ∗N)). Then, by induction on s′, we get that Rπ·s′

∇ (π ∗M (π−1 ∗N)), and

by definition of the object-level permutation action we have that Rπ·s′
∇ (π ∗M N).

Case (τ is Name.s): Suppose RName.s
∇ (M). We have to show that R

π·(Name.s)
∇ (π ∗

M). By definition of R and the permutation action on types, we can equally demon-

strate that Rπ·s
∇ ((π ∗ M) @ b) under the assumption that ∇ `NLC[A] b # π ∗ M :

π · Name.s.

We can apply Lemma 3.2.5 to obtain ∇ `NLC[A] π−1 · b # M : Name.s, and by

definition ofR for RName.s
∇ (M) we have Rs

∇(M @ π−1·b). Next, we apply the induction

hypothesis for type s to obtain that Rπ·s
∇ (π ∗ (M @ π−1 · b)). This case is completed

by definition of the object-level permutation action. �
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Lemma 4.2.15

(i) For any ∇, a # x : s `NLC[A] M : σ and ∇ `NLC[A] N : s such that ∇ `NLC[A] a # N :

s we have that

Rσ
∇(M{N/x}) =⇒ Rσ

∇((λax : s.M) N)

provided that Rs
∇(N) if x /∈ fv(M).

(ii) For any ∇ `NLC[A] 〈a〉M : Name.s such that ∇ `NLC[A] b # 〈a〉M : Name.s

Rσ
∇((a b) ∗M) =⇒ Rσ

∇((〈a〉M) @ b)

Proof

(i) Suppose ∇ `NLC[A] N : s such that ∇ `NLC[A] a # N : s, as well as Rσ
∇(M{N/x}).

As can easily be observed, any type τ can uniquely be written in the form

〈 − − 〈 ... 〈 − − 〈 − − γ 〉 〉 ... 〉 〉

where γ is a base type, 〈 s a s′ 〉 def
= sa ⇒ s′ and 〈 ∗ ∗ s 〉 def

= Name.s. We take

σ to be presented in this form. Suppose that σ has a nesting depth of n. We now

demonstrate that Rσ
∇((λax : s.M) N) holds. Let X1, ..., Xn be well typed expressions

or names that satisfy the type and freshness conditions for type σ, as well as R(Xi)

if Xi is part of a lambda application. Then, by definition of Rσ
∇ we can equally

demonstrate that

Rγ
∇([[...[((λax : s.M) N) X1] ...]Xn])

Note that [− −] was defined in Lemma 4.2.13. Given that Rσ
∇(M{N/x}) holds

by assumption, we can deduce by definition of R that

Rγ
∇([[...[(M{N/x}) X1] ...]Xn])

Hence, by definition of R for base types, we can equally prove that

SN∇([[...[(M{N/x}) X1] ...]Xn]) =⇒ SN∇([[...[((λax : s.M) N) X1] ...]Xn])
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Note that by hypothesis we have that Rs
∇(N) if N does not occur in M{N/x}.

By applying Lemma 4.2.8, the remainder of the argument follows as in the case of

the pure λ→.

(ii) The argument follows similarly to (i). To demonstrate that the implication

of strongly normalising terms holds, we have to apply Lemma 4.2.9. �

Lemma 4.2.16 If a1 # x1 : s1, ..., an # xn : sn `NLC[A] M : s, ∇ `NLC[A] ai # Ni : si

(1 ≤ i ≤ n) and Rsi
∇(Ni), then Rs

∇(M{N1/x1, ..., Nn/xn}).

Proof Proof by induction on the structure ofM . We write∇ for a1 # x1 : s1, ..., an #

xn : sn and θ for {N1/x1, ..., Nn/xn}.

SUSP: (M is πxi) Suppose ∇ `NLC[A] πxi : π · si. Applying Lemma 4.2.14 we can

deduce from Rsi
∇(Ni) that Rπ·si

∇ (π ∗Ni) holds. Given that (πxi)θ
def
= π ∗Ni, we obtain

that Rπ·si
∇ ((πxi)θ) holds.

ABS: (M is λax : s. P ) Suppose ∇ `NLC[A] λax : s. P : sa ⇒ s′. We consider

the case where x # (x1, ..., xn, N1, ..., Nn). Applying Lemma 3.2.20 we obtain that

∇ `NLC[A] (λax : s. P )θ : sa ⇒ s′ holds. Considering the choice of x we have that

(λax : s. P )θ ≡α λax : s. (Pθ) and therefore ∇ `NLC[A] λax : s. (Pθ) : sa ⇒ s′. We

now need to demonstrate that Rsa⇒s′
∇ (λax : s. (Pθ)). Let ∇ `NLC[A] N : s such that

∇ `NLC[A] a # N : s and Rs
∇(N). By definition of R we can equally show that

Rs′
∇((λax : s. (Pθ)) N) holds. By applying rule (AP) we get∇ `NLC[A] (λax : s. (Pθ)) N :

s′. Then, by induction on ∇, a # x : s `NLC[A] P : s′ with ∇ `NLC[A] ai # Ni : si, ∇ `NLC[A]

a # N : s, Rsi
∇(Ni) and Rs

∇(N), we obtain that Rs′
∇((P{N1/x1, ..., Nn/xn, N/x}))

holds. Further, by the choice of variable x, we can compute

P{N1/x1, ..., Nn/xn, N/x} ≡α (P{N1/x1, ..., Nn/xn}){N/x} ≡ (Pθ){N/x}

Hence, we have that Rs′
∇((Pθ){N/x}) holds and by applying Lemma 4.2.15 (i) we

can deduce that Rs′
∇((λax : s. (Pθ)) N) holds.
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APP: (M is N N ′) Suppose that∇ `NLC[A] N N ′ : s′. From this we can deduce that

∇ `NLC[A] N : sa ⇒ s′ and ∇ `NLC[A] a # N ′ : s, as well as ∇ `NLC[A] N ′ : s. Considering

that (N N ′)θ
def
= (Nθ) (N ′θ), we have to demonstrate that Rs′

∇((Nθ) (N ′θ)) holds.

By induction on ∇ `NLC[A] N : sa ⇒ s′ and ∇ `NLC[A] N ′ : s we obtain Rsa⇒s′
∇ (Nθ)

and Rs
∇(N ′θ). Then, by Lemma 3.2.20, we can deduce that ∇ `NLC[A] a # N ′θ : s

holds. Next, we can deduce, by definition of Rsa⇒s′
∇ (Nθ), that Rs′

∇((Nθ)(N ′θ)) holds.

NABS: (M is 〈a〉N) Suppose that ∇ `NLC[A] 〈a〉N : Name.s. From this we can

deduce that a # s and ∇ `NLC[A] N : s. Then, by induction on ∇ `NLC[A] N : s we

obtain Rs
∇(Nθ). We now need to show that RName.s

∇ ((〈a〉N)θ), or equally by definition

of substitution that RName.s
∇ (〈a〉(Nθ)) holds. Let b ∈ A and ∇ `NLC[A] b # 〈a〉Nθ :

Name.s. By definition of RName.s
∇ we can equally show that Rs

∇((〈a〉(Nθ)) @ b) holds.

We apply Lemma 4.2.14 on Rs
∇(Nθ) to obtain that Rπ·s

∇ ((a b)∗(Nθ)). We complete

this case by applying Lemma 4.2.15 (ii) to obtain Rs
∇((〈a〉(Nθ)) @ b).

CONC: (M is N @ b) Suppose that ∇ `NLC[A] N @ b : s. From this we can deduce

that ∇ `NLC[A] b # N : Name.s, as well as ∇ `NLC[A] N : Name.s and b # Name.s.

Applying capture avoiding substitution, we need to show that Rs
∇((Nθ) @ b) holds.

By induction on ∇ `NLC[A] N : Name.s we obtain RName.s
∇ (Nθ), and by Lemma

3.2.20 we get that ∇ `NLC[A] b # Nθ : Name.s. We can then directly deduce by

definition of RName.s
∇ (Nθ) that Rs

∇((Nθ) @ b) holds. �

Theorem 4.2.17 (Strong Normalisation) If ∇ `NLC[A] M : s, then SN∇(M).

Proof Suppose ∇ `NLC[A] M : s. We take the identity substitution Ni ≡ xi. It is

clearly the case that ∇ `NLC[A] ai # xi : si. So, by Lemma 4.2.13 (i), we have that

Rsi
∇(xi). Next, we apply Lemma 4.2.16 to deduce that Rs

∇(M) and complete the

argument by applying Lemma 4.2.13 (ii) to obtain that SN∇(M) holds. �
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4.2.3 Confluence

Given that pure NLC[A] is strongly normalising it suffices to prove weak confluence

since confluence can directly be deduced using Newman’s lemma [50]. As previously

indicated, we require a structural congruence relation ≡∇α on raw terms in βη-normal

form (see Table 4.5) to prove weak confluence. It is a direct extension of the α-

equivalence relation ≡α, as presented in Table 3.3, where we additionally incorporate

the rules (SUSP) and (BNABS) of NLC[A].

M1 ≡∇α M ′
1 M2 ≡∇α M ′

2

M1 M2 ≡∇α M ′
1 M

′
2

M ≡∇α M ′

M @ b ≡∇α M ′ @ b

(z x) •M ≡∇,a#z:s
α (z y) •M ′

(z # (x, y,M,M ′))
λax : s.M ≡∇α λay : s.M ′

(b a1) ∗M1 ≡∇
#b

α (b a2) ∗M2
(b # (∇, a1, a2,M1,M2))

〈a1〉M1 ≡∇α 〈a2〉M2

(ds(π, π′) ⊆ a for ∇(x) = (a, s))
πx ≡∇α π′x

Table 4.5: Structural Congruence Relation for NLC[A]

The following technical lemma is a straightforward extension of the corresponding

results for α-equivalence as presented in [56] (Section 4.1).

Lemma 4.2.18 The operations suspension-substitution, variable swapping, object-

level and meta-level permutation actions (on well typed terms) preserve the structural

congruence relation, i.e.

(i) M ≡∇α M ′ =⇒ µ •M ≡µ(∇)
α µ •M ′
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(ii) M ≡∇α M ′ =⇒M [π−1x/x] ≡∇α M ′[π−1x/x]

(iii) M ≡∇α M ′ =⇒ π ∗M ≡∇α π ∗M ′

(iv) M ≡∇α M ′ =⇒ π ·M ≡π·∇α π ·M ′

Lemma 4.2.19 ≡∇α is an equivalence relation.

Proof We extend the proof that ≡α is an equivalence relation as presented in [56]

(Section 4.1) such that it holds for ≡∇α . Given that the proofs for reflexivity and

symmetry are straightforward, we will only provide details for transitivity. Here,

we follow the argument as provided in [56] (Example 7.8). We first recall that the

transitivity property

∀M1,M2,M3 [ (M1 ≡∇α M2 ∧M2 ≡∇α M3) =⇒M1 ≡∇α M2 ]

which can be transformed into

∀M1,M2 [ M1 ≡∇α M2 =⇒ (∀M3 . M2 ≡∇α M3 =⇒M1 ≡∇α M3) ]

Hence, the property can be proved by rule-based induction on M1 ≡∇α M2. Let

Q
def
= {(M1,M2) | (∀M3 . M2 ≡∇α M3 =⇒ M1 ≡∇α M3)}. Note that from the fact that

≡∇α is equivariant, we can deduce that Q is equivariant as well.

Given that the rules for application and abstraction follow, with minor modifi-

cations, from the original proof argument, we only provide details for the additional

rules with respect to suspension, name abstraction and concretion.

Concretion: Suppose M @ b ≡∇α M ′ @ b. From this we can deduce that

M ≡∇α M ′. Then, by induction we have that Q(M,M ′) holds. We need to show that

Q(M @ b,M ′ @ b). Let N be a well typed expression. By definition of property Q

we have to demonstrate that M ′ @ b ≡∇α N =⇒ M @ b ≡∇α N . We suppose that

M ′ @ b ≡∇α N holds and demonstrate that M @ b ≡∇α N .

Applying the rule inversion principle on M ′ @ b ≡∇α N we deduce that N ≡ N ′ @ b

for some well typed term N ′ with M ′ ≡∇α N ′. By definition of Q(M,M ′) we can
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then deduce that M ≡∇α N ′ and by applying the rule schema for concretion that

M @ b ≡∇α N ′ @ b.

Name Abstraction: Suppose 〈a1〉M1 ≡∇α 〈a2〉M2. From this we can deduce that

(b a1) ∗M1 ≡∇
#b

α (b a2) ∗M2 for some b # (∇, a1, a2,M1,M2). Then, by induction

we have that Q((b a1) ∗M1, (b a2) ∗M2). We need to show that Q(〈a1〉M1, 〈a2〉M2)

holds. Let N be a well typed expression. By definition of property Q we have to

demonstrate that 〈a2〉M2 ≡∇α N =⇒ 〈a1〉M1 ≡∇α N . We suppose that 〈a2〉M2 ≡∇α N

and demonstrate that 〈a1〉M1 ≡∇α N .

Applying the rule inversion principle on 〈a2〉M2 ≡∇α N we can deduce that N ≡

〈a3〉M3 for some name a3 and well typed expression M3, and there exists a name

b′ # (a2,M2, a3,M3,∇) with (a2 b
′) ∗M2 ≡∇

#b′

α (a3 b
′) ∗M3.

Pick b′′ # (a1,M1, a2,M2, a3,M3, b, b
′,∇). Given that ≡∇α is equivariant we can

apply (b′ b′′) · − on both sides to obtain

(b′ b′′) · ((a2 b
′) ∗M2) ≡(b′ b′′)·(∇#b′ )

α (b′ b′′) · ((a3 b
′) ∗M3)

We now compute the following:

(b′ b′′) · (∇#b′) = ((b′ b′′) · ∇)
#(b′ b′′)·b′

(equivariance)

= ∇#b′′ (b′, b′′ # ∇)

(b′ b′′) · ((a2 b
′) ∗M2) = (b′ b′′) ∗ ((a2 b

′) ∗M2){(b′ b′′)−} (Lemma 3.1.12)

= (b′ b′′) ∗ (a2 b
′) ∗M2{(b′ b′′)−} (Lemma 3.1.4)

= (a2 b
′′) ∗ (b′ b′′) ∗M2{(b′ b′′)−} (b′, b′′ # a2)

= (a2 b
′′) ∗ ((b′ b′′) ·M2) (Lemma 3.1.12)

= (a2 b
′′) ∗M2 (b′, b′′ # M2)

we can equally compute that

(b′ b′′) · ((a3 b
′) ∗M3) = (a3 b

′′) ∗M3
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Hence, we have deduced that

(a2 b
′′) ∗M2 ≡∇

#b′′

α (a3 b
′′) ∗M3 (�1)

Further, given that the property Q is equivariant we can apply (b b′′) · − on

Q((b a1) ∗M1, (b a2) ∗M2), i.e. for any well typed expression P

(b b′′) · ((a2 b) ∗M2) ≡(b b′′)·∇#b

α P =⇒ (b b′′) · ((a1 b) ∗M1) ≡(b b′′)·(∇#b)
α P

We can now compute the following:

(b b′′) · (∇#b) = ((b b′′) · ∇)
#(b b′′)·b

(equivariance)

= ∇#b′′ (b, b′′ # ∇)

(b b′′) · ((a2 b) ∗M2) = (b b′′) ∗ ((a2 b) ∗M2){(b b′′)−} (Lemma 3.1.12)

= (b b′′) ∗ (a2 b) ∗M2{(b b′′)−} (Lemma 3.1.4)

= (a2 b
′′) ∗ (b b′′) ∗M2{(b b′′)−} (b, b′′ # a2)

= (a2 b
′′) ∗ ((b b′′) ·M2) (Lemma 3.1.12)

= (a2 b
′′) ∗M2 (b, b′′ # M2)

we can equally compute

(b b′′) · ((a1 b) ∗M1) = (a1 b
′′) ∗M1

Hence, we have deduced that

(a2 b
′′) ∗M2 ≡∇

#b′′

α P =⇒ (a1 b
′′) ∗M1 ≡∇

#b′′

α P (�2)

For P is (a3 b
′′) ∗M3 we can now deduce from (�1) and (�2) that

(a1 b
′′) ∗M1 ≡∇

#b′′

α (a3 b
′′) ∗M3

Given that b′′ # (a1,M1, a3,M3) we can apply the rule schema for concretion and

obtain that 〈a1〉M1 ≡∇α 〈a3〉M3 holds.
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Suspension: Suppose πx ≡∇α π′x with ds(π, π′) ⊆ a for ∇(x) = (a, s). Let N be

a well typed expression. We need to show that Q(πx, π′x). Suppose that π′x ≡∇α N

holds. We need to show that πx ≡∇α N . By the rule inversion principle on π′x ≡∇α N

we have that N ≡ τx with ds(π′, τ) ⊆ a for ∇(x) = (a, s).

Suppose towards a contradiction that c /∈ a and π(c) 6= τ(c). We then have that

pi′(c) = τ(c) and π(c) = π′(c); thus π(c) = τ(c). Hence, ds(π, τ) ⊆ a and by the rule

schema we have πx ≡∇α τx. �

We continue by proving a technical lemma, which is an immediate consequence of

the definition of ≡∇α .

Lemma 4.2.20 Suppose M,M ′ (in context ∇) are in βη-normal form. Then

∇ `NLC[A] M ≈M ′ : s⇐⇒M ≡∇α M ′

Proof (⇒:) Proof by rule-based induction on equations. Note that by definition of

≡∇α all cases apart from (AE) follow immediately. Hence, we only need to demonstrate

closure under the rule schema (AE): Suppose that ∇ `NLC[A] M ≈ M ′ : s holds. From

this we can deduce that ∇#a `NLC[A] M ≈M ′ : s with a # (∇,M,M ′). We then apply

the induction hypothesis to obtain M ≡∇#a

α M ′. Given that a # (M,M ′), we can

directly deduce that a does not occur in any disagreement set of suspended variables

in M and M ′, and therefore it is not required to prove that the structural congruence

relation holds; thus we have that M ≡∇α M ′.

(⇐): It follows immediately by a rule-based induction on ≡∇α . �

Lemma 4.2.21 (Weak Church-Rosser) Let ∇ `NLC[A] M : s. If ∇ ` M →βη M
′

and ∇ ` M →βη M
′′, then there exists a well typed expression ∇ `NLC[A] N : s such

that ∇ `M ′ �βη N and ∇ `M ′′ �βη N (up to ≡∇α equivalence).

Proof This proof proceeds by cases of βη-redexes. Suppose that ∇ ` M →βη M
′

and ∇ `M →βη M
′′, with non-nesting redexes, then M ′′′ is the expression with both
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redexes reduced and M ′ and M ′′ directly reduce to M ′′′. We continue with the various

nesting cases. We use the notation C[R] to indicate that R is a redex in context C.

Case 1: We begin with the nesting cases of β-redexes for applications.

Case 1.1: Suppose that M ≡ C[(λax : s.N) P ], M ′ ≡ C[N{P/x}], M ′′ ≡

C[(λax : s.N) P ′] and ∇ ` P →βη P
′. Then M ′′′ ≡ C[N{P ′/x}] with ∇ ` M ′ �βη

M ′′′ in as many steps as there are occurrences of the variable x in term N and

∇ `M ′′ →β M
′′′.

Case 1.2: Suppose that M ≡ C[(λax : s.N) P ], M ′ ≡ C[N{P/x}], M ′′ ≡

C[(λax : s.N ′) P ] and ∇ ` N →βη N ′. We take M ′′′ ≡ C[N ′{P/x}]. We then

apply Lemma 4.2.8 on ∇ ` N →βη N
′ to obtain ∇ ` N{P/x} →βη N

′{P/x}; thus

∇ `M ′ →βη M
′′′ and ∇ `M ′′ →β M

′′′.

Case 2: We consider the nesting cases of η-redexes for lambda abstractions.

Case 2.1: Suppose M ≡ C[λax : s. (N x)], M ′ ≡ C[N ], M ′′ ≡ C[λax : s. (N ′ x)]

and ∇ ` N →βη N
′. From x # N we can directly deduce that x # N ′. Further,

the typing condition still holds and therefore λax : s. (N ′ x) is also an η-redex. Take

M ′′′ ≡ C[N ′]. So, by rule (R-EABS) we have ∇ ` M ′′ →η M
′′′. ∇ ` M ′ →βη M

′′′

follows directly from ∇ ` N →βη N
′.

Case 2.2: Suppose M ≡ C[λax : s. (N x)], M ′ ≡ C[N ], M ′′ ≡ C[λax : s. P{x/y}]

where N ≡ λby : s′. P and ∇ ` N x →βη P{x/y}. From x # N we can deduce that

x # P . We can then deduce from λax : s. ((λby : s′. P ) x) that s = s′ and b ⊆ a.

Further, by definition of η-contraction we can actually deduce that a = b. Given that

x # P , we have λby : s′. P ≡α λax : s. P{x/y}. Hence, we have that M ′ ≡α M ′′.

Case 3: We consider the nesting case of β-redexes for concretion. Suppose that

M ≡ C[(〈a〉N) @ b], M ′ ≡ C[(a b) ∗N ], M ′′ ≡ C[(〈a〉N ′) @ b] and ∇ ` N →βη N
′. We

take M ′′′ ≡ C[(a b) ∗ N ′]. We then apply Lemma 4.2.9 on ∇ ` N →βη N
′ to obtain

∇ ` (a b) ∗N →βη (a b) ∗N ′; thus ∇ `M ′ →βη M
′′′. ∇ `M ′′ →β M

′′′ follows by rule

(R-BCONC).

Case 4: We consider the nesting cases of η-redexes for name abstractions:
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Case 4.1: Suppose that M ≡ C[〈a〉(N @ a)], M ′ ≡ C[N ], M ′′ ≡ C[〈a〉(N ′ @ a)]

and ∇ ` N →βη N
′. Take M ′′′ ≡ C[N ′]. By rule (R-EABS) we have that ∇ ` M ′′ →η

M ′′′ and ∇ `M ′ →βη M
′′′ follows by ∇ ` N →βη N

′.

Case 4.2: Suppose that M ≡ C[〈a〉(N @ a)], M ′ ≡ C[N ] and M ′′ ≡ C[〈a〉(a b)∗P ]

where N ≡ 〈b〉P . From ∇ `NLC[A] 〈a〉(〈b〉P @ a) : Name.s we can deduce that

∇ `NLC[A] a # 〈b〉P : Name.s holds. The case for a = b follows trivially. In the case

of a 6= b, we can directly deduce that ∇ `NLC[A] a # P : s holds. Due to the fact that

the reduction system is strongly normalising, we can reduce M ′ and M ′′ to normal

form, using the same reduction strategy on C and P to obtain C ′ and P ′. Hence,

we have M ′′′ ≡ C ′[〈b〉P ′] and M ′′′′ ≡ C ′[〈a〉(a b) ∗ P ′] with ∇ ` M ′ �βη M
′′′ and

∇ `M ′′ �βη M
′′′′. We now need to show that M ′′′ ≡∇α M ′′′′. So, what remains to be

proven is that

〈b〉P ′ ≡∇α 〈a〉(a b) ∗ P ′

By definition of ≡∇α , we choose any c # (∇, P ′, a, b) and show that (b c) ∗P ′ ≡∇#c

α

(a c) ∗ (a b) ∗ P holds:

From ∇ ` P �βη P
′ we can deduce by Lemma 4.2.4 that ∇ `NLC[A] P ≈ P ′ : s.

Given that ∇ `NLC[A] a # P : s we can deduce by Lemma 3.2.18 that ∇ `NLC[A] a #

P ′ : s. Then, by definition of freshness assertions and c # (∇, a, P ′) we have that

∇#c `NLC[A] (a c) ∗ P ′ ≈ P ′ : s holds. We can now apply Lemma 3.2.5 to obtain

∇#c `NLC[A] (b c) ∗ (a c) ∗P ′ ≈ (b c) ∗P ′ : s. By Lemma 4.2.10 we can deduce that both

sides of the equation are in βη-normal form, and therefore it follows immediately by

Lemma 4.2.20 that (b c)∗(a c)∗P ′ ≡∇#c

α (b c)∗P ′. We complete this case by observing

that (b c) ∗ (a c) ∗ P ′ ≡ (a c) ∗ (a b) ∗ P ′ holds. �

Theorem 4.2.22 (Church Rosser) Let ∇ `NLC[A] M : s. If ∇ ` M �βη M
′ and

∇ ` M �βη M
′′, then there exists a well typed expression ∇ `NLC[A] N : s such that

∇ `M ′ �βη N and ∇ `M ′′ �βη N (up to ≡∇α equivalence).

Proof From strong normalisation and weak confluence for the βη-reduction system,
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we can deduce that βη-reduction system is confluent (up to ≡∇α equivalence) using

Newman’s lemma [50]. �

There are two immediate corollary of strong normalisation and confluence.

Corollary 4.2.23 For any well typed expression ∇ `NLC[A] M : s, there exists a unique

βη-normal form (up to ≡∇α -equivalence), written as NF (M).

Proof We can deduce from Theorem 4.2.17 (strong normalisation) that there exists

a βη-normal form for M and that by confluence any such normal form is unique (up

to ≡∇α -equivalence) �

Corollary 4.2.24 (Consistency) The pure βη-theory in NLC[A] is consistent.

Proof This follows as in the case of pure λ→. We pick two distinct normal forms

∅ # y : s `NLC[A] λx : s. x : s ⇒ s and ∅ # y : s `NLC[A] λx : s. y : s ⇒ s. Using Lemma

4.2.20 we can immediately deduce that NLC[A] is consistent. �

4.2.4 Decidability of Provable Equality

Using strong normalisation and confluence of the βη-reduction system we can

deduce that the notion of provable equality for NLC[A] is decidable. We first extend

Lemma 4.2.20 to hold for any well typed NLC[A]-expressions.

Lemma 4.2.25 For any well typed expressions ∇ `NLC[A] M,M ′ : s

∇ `NLC[A] M ≈M ′ : s⇐⇒ NF (M) ≡∇α NF (M ′)

Proof (⇒:) Proof by rule-based induction. The cases (SUSP), (BNABS) and (AE)

follow analogue to Lemma 4.2.20, apart from (AE), where we additionally need to

observe that we can deduce from a # M that a # NF (M) holds. The other cases

follow, using confluence, as for λ→.
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(⇐): Suppose NF (M) ≡∇α NF (M ′). From ∇ `M �βη NF (M) and ∇ `M ′ �βη

NF (M ′) we can deduce, applying Lemma 4.2.4, that ∇ `NLC[A] M ≈ NF (M) : s and

∇ `NLC[A] M ′ ≈ NF (M ′) : s. Further, from NF (M) ≡∇α NF (M ′) we obtain, using

Lemma 4.2.20, that ∇ `NLC[A] NF (M) ≈ NF (M ′) : s. We conclude by applying rule

(TRANS). �

Theorem 4.2.26 (Decidability) Provable equality for NLC[A] is decidable.

Proof We know by Corollary 4.2.23 that there exists a unique normal form (up to

≡∇α equivalence), which can directly be computed by the “normal order” reduction

strategy. This is clearly decidable. Given that the structural congruence relation

≡∇α is also decidable, we can deduce from Lemma 4.2.25 that provable equality is

decidable as well. �

Remark 4.2.27 We can easily observe that type checking and type inference in

NLC[A] are essentially syntax-directed. This is analogue to λ→, where both are decid-

able. To demonstrate that this also holds for NLC[A], we need to deal with freshness

assertions, which are a particular kind of equations. However, after we have shown

that provable equality is decidable, it follows by minor enhancements of the algorithms

for λ→ that type checking and type inference are decidable as well.

4.3 NNLC: NLC[A] with Local Fresh Atomic Names

In this section we introduce NNLC, an extension of NLC[A], which captures the

notion of local fresh atomic names.

Meta-Theory for NNLC Raw Terms

We extend NLC[A] by introducing a term former fr a.M , which is a binder on

names. Hence, each occurrence of a name is now either free or bound (where all
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occurrences of a in any “subterm” fr a.M are bound). The recursively defined auxil-

iary functions |M |, var(M), name(M) and fv(M) can trivially be extended. Further,

the recursive definition of fn(M), which determines the free names in M , is given in

Table 4.6. Using the term formers fr a.M and 〈a〉M , we can furthermore introduce a

binding variant of name abstraction as syntactic sugar

αa.M
def
= fr a. 〈a〉M

– fn(πx)
def
= supp(π)

– fn(c)
def
= supp(c)

– fn(M N)
def
= fn(M) ∪ fn(N)

– fn(λax : s.M)
def
= a ∪ supp(s) ∪

supp(M)

– fn(fr a.M)
def
= fn(M) \ {a}

– fn(M @ b)
def
= fn(M) ∪ {b}

– fn(〈a〉M)
def
= fn(M) ∪ {a}

Table 4.6: fn(M) for NNLC

Remark 4.3.1 The binding variant of name abstraction, αa.M , directly corresponds

to the notions of name abstraction introduced for SNTT (denoted by 〈a〉M) and the

λαν-calculus (denoted by αa.M). In contrast to NNLC, the λαν-calculus introduces

the binding variant, αa.M , as a first class citizen, while the non-binding variant,

denoted by 〈a〉M , is introduced as syntactic sugar using term formers αa.M and

(a//a′) (a syntactic notion of name swapping). SNTT does not express both notions

of name abstraction.

We extend variable swapping and the meta-level permutation action of NLC[A]

as follows: Let µ ∈ Perm(Var) and π ∈ Perm(A).

µ • (fr a.M)
def
= fr a. µ •M

π · (fr a.M)
def
= fr π · a. π ·M
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Using the previously defined meta-level permutation action, we extend the notion

of α-equivalence as follows:

( Nb) (b a) ·M ≡α (b a′) ·M ′

fr a.M ≡α fr a′.M ′

In particular, the rule schema is defined for (some/any) name b such that b #

(M,M ′, a, a′). Analogue to NLC[A], both permutation actions preserve α-equivalence

and can therefore be lifted to expressions:

µ • [M ]α
def
= [µ •M ]α

π · [M ]α
def
= [π ·M ]α

with supp([M ]α) = fv(M) and supp([M ]α) = fn(M). Next, we extend the object-

level permutation action − ∗ − : Perm(A)× TermSg/∼α → TermSg/∼α.

π ∗ fr a.M def
= fr a′. π ∗ ((a a′) ·M) (a′ # (M,π))

Note that this definition differs from NLC[A], where we defined the object-level

permutation action on raw terms. Further, the definition of capture avoiding substi-

tution is extended as follows:

(fr a.M){N/x} def
= fr a′. ((a a′) ·M){N/x} (a′ # (M,N))

It follows by routine computations that the object-level permutation action and

capture avoiding substitution are well defined, i.e. the choice of free names does not

matter and both operations preserve α-equivalence. We will now provide some proof

details for selected auxiliary results:

Extension of Lemma 3.1.12 Proof by induction on the size of M :

(M is fr a.N): We have by definition that

π · (fr a.N)
def
= fr π(a). π ·N
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Further, we can deduce the following:

π ∗ (fr a.N){π−1 }
def
= π ∗ (fr a′. ((a′ a) ·N){π−1 }) (for a′ # (π,N))

def
= fr a′′. π ∗ [(a′′ a′) · ((a′ a) ·N){π−1 }] (for a′′ # (a, a′, N, π))

= fr a′′. π ∗ [(a′′ a′) ∗ ((a′ a) ·N){π−1 }{(a′′ a′) }] (induction)

= fr a′′. π ◦ (a′′ a′) ∗ ((a′ a) ·N){π−1 ◦ (a′′ a′) }

= fr a′′. ((a′′ a′) ◦ π) ∗ ((a′ a) ·N){((a′′ a′) ◦ π)−1 } (a′, a′′ # π)

= fr a′′. ((a′′ a′) ◦ π) · ((a′ a) ·N) (induction)

= fr a′′. ((a′′ a′) ◦ π ◦ (a′ a)) ·N

= fr a′′. (π ◦ (a′′ a)) ·N

What remains to be shown is that fr π(a). π · N ≡α fr a′′. (π ◦ (a′′ a)) · N holds,

which follows immediately by definition, using basic permutation operations and the

freshness assumption for a′′. Hence, we have that both α-equivalence classes are equal

and therefore

π · (fr a.N) = π ∗ (fr a.N){π−1 }

�

Extension of Proposition 3.1.14 Proof by induction on the size of M :

(M is fr a. P ):

(π ∗ fr a. P ){N/x} def
= fr a′. (π ∗ ((a′ a) · P )){N/x} (a′ # (a, π, P,N))

= fr a′. π ∗ ((a′ a) · P ){N/x} (induction)

def
= π ∗ (fr a. P ){N/x} (a′ # (a, π, P,N))

�
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Extension of Proposition 3.1.15 Proof by induction on the size of M :

(M is fr a. P ):

π · (fr a. P ){N/x} def
= fr π · a. π · P{N/x}

= fr π · a. (π · P ){π ·N/x} (induction)

def
= (π · fr a. P ){π ·N/x}

�

Typed Expressions and Equational Theories of NNLC

To capture the notion of local fresh atomic names and its properties, as presented

in Section 2.2, we extend NLC[A] with new type and equation rules (see Table 4.7).

We begin with type rule (LFAN), which is directly motivated by Theorem 2.2.15

(Freshness Theorem), or more precisely the corresponding freshness condition

( Na) [F (a) ↓ ∧ a # F (a)]

which is captured in the rule by ∇#a ` NNLC a # M : s. The rule expresses that

once we know that the name a is not in the element denoted by M (given that a

is not in the support of any parameter upon which M depends), we can then form

the expression fr a.M . As explained in Section 2.2, we take this expression to stand

for “M(a) for some/any name a”. Moreover, in computations we want to be able to

replace fr a.M by M provided that a is sufficiently fresh for parameters currently in

context (up to α-equivalence of fr a.M). The corresponding property of the Freshness

theorem, namely

( Na) [F (a) ≡ freshXF ]

is captured by the equation rule (LFANR). In addition, we introduce equation rules

(LFANS) and (LFANL), which capture standard properties of a local scoping operator.
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(LFAN) ∇#a ` NNLC a # M : s
(a # ∇)∇ ` NNLC fr a.M : s

(LFANR)
∇#a ` NNLC a # M : s

(a # ∇)
∇#a ` NNLC fr a.M ≈M : s

(LFANS) ∇#a,a′ ` NNLC a, a′ # M : s
(a 6= a′)∇ ` NNLC fr a. fr a′.M ≈ fr a′. fr a.M : s

(LFANL)
∇#a ` NNLC a # M : s

(a′ /∈ a)
∇ ` NNLC fr a′. λax : s.M ≈ λax : s. fr a′.M : sa ⇒ s′

Table 4.7: NNLC Equation Rules

A Sound Model-theoretic Semantics in FMSet

We begin with the interpretation of fr a.M , which can be defined as follows:

M[[fr a.M ]]η
def
= M[[(a′ a) ·M ]]η for a′ # (η, a,M)

To demonstrate that the interpretation of fr a.M is well defined, it has to be shown

that the interpretation is independent of the choice of a′. At this point, we recall that

the independence property can directly be deduced using Theorem 2.2.15 (Freshness

Theorem). Hence, the partial interpretation of NLC[A] can also be defined as follows:

M[[fr a.M ]]η
def
= fresh a′ in M[[(a′ a) ·M ]]η

Note that the interpretation of fr a.M is partial since the side condition of the

Freshness theorem needs to be satisfied. However, this is not an issue, because for

well typed expressions, analogous to (AP) and (CONC), the side condition is satisfied

by rule (LFAN) and therefore the interpretation is total for well typed expressions.

Before we extend the soundness theorem we provide proof details for two auxiliary

results:
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Extension of Lemma 3.4.7 The proof is by induction on the size of M : We only

concentrate on the equational part of the Kleene equality.

(M is fr a.N)

π · [[fr a.N ]]η
def
= π · [[(a′ a) ·N ]]η (for a′ # (a,N, η))

= [[π · (a′ a) ·N ]]π·η (induction)

= [[(π(a′) π(a)) · π ·N ]]π·η
def
= [[fr π(a). π ·N ]]π·η (for π · a′ # (π(a), π ·N, π · η))

def
= [[π · (fr a.N)]]π·η

Extension of Lemma 3.4.6 Proof by induction on the size of M : We only concen-

trate on the equational part of the Kleene equality.

(M is fr a.N)

[[π ∗ (fr a.N)]]η
def
= [[fr a′′. π ∗ ((a a′′) ·N)]]η (for a′′ # (N, π, a))

def
= [[(a′′ a′) · (π ∗ ((a a′′) ·N))]]η (for a′ # (η,N, π, a′′, a))

= (a′′ a′) · [[π ∗ ((a a′′) ·N)]](a′′ a′)·η (Lemma 3.4.7)

= (a′′ a′) · π · [[(a a′′) ·N ]](a′′ a′)·η (induction)

= π · (a′′ a′) · [[(a a′′) ·N ]](a′′ a′)·η (a′, a′′ # π)

= π · [[(a′′ a′) · (a a′′) ·N ]]η (Lemma 3.4.7)

= π · [[(a′ a) · (a′′ a′) ·N ]]η

= π · [[(a′ a) ·M ]]η (a′′, a′ # N)

def
= π · [[fr a.N ]]η (a′ # (a,M, η))

Extension of Soundness Theorem for NNLC: The proof by mutual induction

for NLC[A] is extended with cases for the new type and equation rules:

(LFAN): Suppose that ∇ ` NNLC fr a.M : s. From this we can deduce that ∇#a ` NNLC

a # M : s and a # (∇, s). Let η |= ∇. We have to demonstrate that [[fr a.M ]]η⇓
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and [[fr a.M ]]η ∈ [[s]]. By definition of the interpretation function we have to show

that fresh a′ in [[(a′ a) ·M ]]η exists. Thus, we have to show that the precondition of

Theorem 2.2.15 (Freshness Theorem) holds:

We begin by demonstrating that the function F
def
= Λa′ ∈ A.[[(a′ a) ·M ]]η is finitely

supported. Let c, c′ /∈ {a} ∪ supp(M) ∪ supp(η) and b ∈ A.

((c c′) · F )(b)
def
= (c c′) · F ((c c′)(b))

def
= (c c′) · [[((c c′)(b) a) ·M ]]η

= [[(c c′) · ((c c′)(b) a) ·M ]](c c′)·η (Lemma 3.4.7)

= [[(b a) · (c c′) ·M ]]η (c, c′ # (a, η))

= [[(b a) ·M ]]η (c, c′ # (M))

def
= F (b)

We continue by showing that there exists a name a′ ∈ A such that a′ # F and

a′ # F (a′). We pick a′ # (a,∇,M, s, η). We can now directly deduce that a′ # F .

What remains to be shown is that a′ # F (a′). Given that η |= ∇ and a′ # (∇, η), we

have that η |= ∇#a′ . Then, by Lemma 3.4.10 and a, a′ # ∇, we deduce that

(a′ a) · η |= (a′ a) · ∇#a′ = ((a′ a) · ∇)
#a

= ∇#a

Next, by induction on ∇#a ` NNLC a # M : s we obtain [[M ]](a′ a)·η⇓ and [[M ]](a′ a)·η ∈

[[s]]#a. Further, given that a′, a # s and by applying Lemma 3.4.7, we have that

F (a′)
def
= [[(a′ a) ·M ]]η = (a′ a) · [[M ]](a′ a)·η ∈ (a′ a) · [[s]]#a def

= [[(a′ a) · s]]#a
′
= [[s]]#a

′

So, we have that F (a′) exists and F (a′) ∈ [[s]]#a
′
. Then, by definition, we have

that a′ # F (a′) holds and the second condition is satisfied.

(LFANR): Suppose that ∇#a ` NNLC fr a.M ≈M : s. From this we can deduce that

∇#a ` NNLC a # M : s and a # (∇, s). Let η |= ∇#a. So, by definition, we have that

a # η holds. The existence part of the Kleene equality follows similarly to (LFAN).

Hence, we have that [[fr a.M ]]η⇓ and [[fr a.M ]]η ∈ [[s]]#a.
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By definition of the partial interpretation function we have that [[fr a.M ]]η
def
=

fresh a′ in F (a′) (�1) . We pick a′′ # (a,M, η). Hence, we have that a′′ # F holds

and by Lemma 3.4.7 (Equivariance of [[(−)]](−)) we get that a′′ # [[M ]]η holds. Then, by

Theorem 2.2.15 (Freshness Theorem) we obtain that F (a′′) = fresh a′ in F (a′) (�2).

Moreover, we can deduce (�3) that

F (a′′)
def
= [[(a′′ a) ·M ]]η

= (a′′ a) · [[M ]](a′′ a)·η (Lemma 3.4.7)

= (a′′ a) · [[M ]]η (a, a′′ # η)

= [[M ]]η (a, a′′ # [[M ]]η)

Using (�1), (�2) and (�3), we can complete this case:

[[fr a.M ]]η = fresh a′ in F (a′) = F (a′′) = [[M ]]η

(LFANS): Suppose that ∇ ` NNLC fr a. fr a′.M ≈ fr a′. fr a.M : s. From this we can

deduce that ∇#a,a′ ` NNLC {a, a′} # M : s and a 6= a′. Let η |= ∇. The existence part

of the Kleene equality follows similarly to (LFAN). We continue with the equational

part:

[[fr a. fr a′.M ]]η
def
= fresh b in (b a) · [[fr a′.M ]](b a)·η (Lemma 3.4.7)

def
= fresh b in (b a) · [fresh b′ in (b′ a′) · [[M ]](b′ a′)·(b a)·η] (Lemma 3.4.7)

= (c a) · [(c′ a′) · [[M ]](c′ a′)·(c a)·η] (c, c′ # (a, a′,M, η); c 6= c′)

= (c′ a′) · [(c a) · [[M ]](c a)·(c′ a′)·η] (a, a′, c, c′ are distinct)

= fresh b′ in (b′ a′) · [fresh b in (b a) · [[M ]](b a)·(b′ a′)·η] (c, c′ # (a, a′,M, η); c 6= c′)

def
= fresh b′ in (b′ a′) · [[fr a.M ]](b′ a′)·η (Lemma 3.4.7)

def
= [[fr a′. fr a.M ]]η (Lemma 3.4.7)

(LFANL): Suppose that ∇ ` NNLC fr a′. λax : s.M ≈ λax : s. fr a′.M : sa ⇒ s′. From

this we can deduce that ∇#a′ , a′ ∪ a # x : s ` NNLC a′ # M : s′ and a′ /∈ a. Let η |= ∇
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and d ∈ [[s]]#a. The existence part of the Kleene equality follows similarly to (LFAN).

The equational part is deduced as follows:

[[fr a′. λax : s.M ]]η(d)
def
= [fresh b in (a′ b) · [[λax : s.M ]](b a′)·η](d) (Lemma 3.4.7)

= [(c a′) · [[λax : s.M ]](c a′)·η](d) (c # (a′, a, s,M, η))

def
= (c a′) · [[λax : s.M ]](c a′)·η((c a

′) · d)

def
= (c a′) · [[M ]]((c a′)·η)[x 7→(c a′)·η]

= (c a′) · [[M ]](c a′)·(η[x 7→(c a′)·η])

def
= [[fr a′.M ]]η[x 7→d] (Lemma 3.4.7)

def
= [[λax : s. fr a′.M ]]η(d)

Hence, we have that [[fr a′. λax : s.M ]]η = [[λax : s. fr a′.M ]]η. �

4.4 Examples of NLC[A] and NNLC Expressions

We begin by providing some basic examples of NLC[A] expressions-in-context:

∅ `NLC[A] λx : s. 〈a〉x : s⇒ Name.s (4.1)

∅ # x : Name.s 6`NLC[A] x @ a : s (4.2)

a # x : Name.s `NLC[A] x @ a : s (4.3)

∅ # x : s `NLC[A] 〈a〉x @ a : s (4.4)

b # x : s `NLC[A] 〈a〉x @ b : s (4.5)

By applying rule (ABS), (NABS) and (SP) we can easily deduce (4.1). The fact that

(4.2) cannot be derived follows by a semantic argument in combination with apply-

ing the contrapositive of the soundness lemma for NLC[A]. The next expression-in-

context is derived by applying rules (CONC), (SP) and (SUSP). Further, by additionally

applying rule (NABS), we can also derive (4.4) and (4.5).
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We continue by introducing three constructions of the FM-set model that require

name abstraction, concretion and local fresh atomic names to be defined and then

demonstrate how NNLC can be used to capture these constructions.

Example 4.4.1 The morphism component of the name abstraction functor [A]− :

FMSet → FMSet is defined as follows (see Lemma 4.10 in [56]):

H : (X ⇒fs Y )→ ([A]X ⇒fs [A]Y )

H
def
= ΛF ∈ X ⇒fs Y → Λd ∈ [A]X → fresh a in 〈a〉(F (d @ a))

Example 4.4.2 The isomorphism [A](X ⇒fs Y ) ∼= [A]X ⇒fs [A]Y ([34] (Corollary

9.6.9)) is observed by I and J , which are defined as follows:

I : [A](X ⇒fs Y )→ ([A]X ⇒fs [A]Y )

I
def
= Λu ∈ [A](X ⇒fs Y )→ Λz ∈ [A]X → fresh a in 〈a〉x((u @ a)(z @ a))

J : ([A]X ⇒fs [A]Y )→ [A](X ⇒fs Y )

J
def
= ΛF ∈ [A]X ⇒fs [A]Y → fresh a in 〈a〉(Λx ∈ X → F (〈a〉x) @ a)

We propose expressions h, i and j as the respective counter parts of H, I and J :

h : (s⇒ s′)⇒ Name.s⇒ Name.s′

h
def
= λf : s⇒ s′. λx : Name.s. αa.(f(x @ a))

i : (Name.s⇒ s′)⇒ Name.s⇒ Name.s′

i
def
= λx : Name.s⇒ s′. λy : Name.s. αa.((x @ a)(y @ a))

j : (Name.s⇒ Name.s′)⇒ Name.(s⇒ s′)

j
def
= λf : Name.s⇒ Name.s′. fr a. 〈a〉(λx : s. f(〈a〉x) @ a)

and then demonstrate that all expressions are well typed in NNLC and that their

interpretation, using the model-theoretic semantics in FMSet , correspond to H, I

and J .
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• h is well defined and captures H: By rule (ABS) we have to show that

∅ # f : s ⇒ s′, ∅ # x : Name.s ` NNLC αa.(f (x @ a)) : Name.s′ holds. Recall

that αa.(f (x @ a))
def
= fr a. 〈a〉(f (x @ a)). We can assume, up to α-equivalence,

that a # (∅ # f : s ⇒ s′, ∅ # x : Name.s,Name.s′). So, by (LFAN) we need to

show that a # f : s ⇒ s′, a # x : Name.s ` NNLC a # 〈a〉(f (x @ a)) : Name.s′.

The freshness assertion follows immediately from Lemma 4.1.2 once we have

shown that a # f : s ⇒ s′, a # x : Name.s ` NNLC 〈a〉(f (x @ a)) : Name.s′.

We now apply (NABS) and show that a # f : s ⇒ s′, a # x : Name.s ` NNLC

f (x @ a) : Name.s′ holds. Then we apply (AP). The left hand side of the rule

follows immediately by (SP) and for the right hand side we apply (CONC). The

corresponding typed expressions and freshness assertion follows directly from

(SP) and (SUSP).

[[λf : s⇒ s′. λx : Name.s. αa.(f(x @ a))]]ε
def
= [[λf : s⇒ s′. λx : Name.s. fr a. 〈a〉(f(x @ a))]]ε
def
= ΛF ∈ [[s]]⇒fs [[s′]]→ Λd ∈ [A][[s]]→ [[fr a. 〈a〉(f (x @ a))]][f 7→F ][x 7→d]

def
= ΛF → Λd→ fresh a′ in [[(a′ a) · 〈a〉(f (x @ a))]][f 7→F ],[x 7→d]

def
= ΛF → Λd→ fresh a′ in [[〈a′〉(f (x @ a′))]][f 7→F ],[x 7→d]

def
= ΛF ∈ [[s]]⇒fs [[s′]]→ Λd ∈ [A][[s]]→ fresh a′ in 〈a′〉F (d @ a′)

= H

• i is well defined and captures I: By rule (ABS) we have to show that

∅ # x : Name.s ⇒ s′, ∅ # y : Name.s ` NNLC αa.((x @ a) (y @ a)) : Name.s′

holds. Recall that αa.((x @ a) (y @ a))
def
= fr a. 〈a〉((x @ a) (y @ a)). We can

assume, up to α-equivalence, that a # (∅ # x : Name.s⇒ s′, ∅ # y : Name.s).

So, by (LFAN), we have to show that a # x : Name.s⇒ s′, a # y : Name.s ` NNLC

a # 〈a〉((x @ a) (y @ a)) : Name.s′ holds. The freshness assertion follows

immediately by Lemma 4.1.2 once we have show that a # x : Name.s⇒ s′, a #
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y : Name.s ` NNLC 〈a〉((x @ a) (y @ a)) : Name.s′ holds. Next, we apply (NABS),

and show that a # x : Name.s ⇒ s′, a # y : Name.s ` NNLC (x @ a) (y @ a) : s′

holds. We first apply (AP) and then apply (CONC). The corresponding typed

expressions and freshness assertion follow directly from (SP) and (SUSP).

[[λx : Name.s⇒ s′. λy : Name.s. αa.((x @ a)(y @ a))]]ε
def
= [[λx : Name.s⇒ s′. λy : Name.s. fr a. 〈a〉((x @ a)(y @ a))]]ε
def
= Λd ∈ [A]([[s]]⇒fs [[s′]])→ Λd′ ∈ [A][[s]]→ [[fr a. 〈a〉((x @ a)(y @ a))]][x 7→d][y 7→d′]

def
= Λd→ Λd′ → fresh a′ in [[(a′ a) · 〈a〉((x @ a)(y @ a))]][x 7→d][y 7→d′]

def
= Λd→ Λd′ → fresh a′ in [[〈a〉((x @ a′)(y @ a′))]][x 7→d][y 7→d′]

def
= Λd ∈ [A]([[s]]⇒fs [[s′]])→ Λd′ ∈ [A][[s]]→ fresh a′ in 〈a′〉((d @ a′)(d′ @ a′))

= I

• j is well defined and captures J: By rule (ABS) we have to show that ∅ #

f : Name.s ⇒ Name.s′ ` NNLC fr a. 〈a〉(λx : s. f(〈a〉x) @ a) : Name.s ⇒ s′ holds.

Note that for the definition of j we implicitly assumed that a /∈ supp((s, s′)).

By (LFAN) we have to show that a # f : Name.s ⇒ Name.s′ ` NNLC a #

〈a〉(λx : s. f(〈a〉x) @ a) : Name.s ⇒ s′ holds. The freshness assertion follows

immediately from Lemma 4.1.2 once we have shown that a # f : Name.s ⇒

Name.s′ ` NNLC 〈a〉(λx : s. f(〈a〉x) @ a) : Name.s ⇒ s′. Next, we apply (NABS)

and demonstrate that a # f : Name.s ⇒ Name.s′ ` NNLC λx : s. f(〈a〉x) @ a :

s ⇒ s′ holds. Then, by (ABS), we have to show that a # f : Name.s ⇒

Name.s′, ∅ # x : s ` NNLC f(〈a〉x) @ a : s′. We continue by applying (CONC) and

show that a # f : Name.s ⇒ Name.s′, ∅ # x : s ` NNLC a # f(〈a〉x) : Name.s′.

So, by definition of freshness assertions, we have to prove that {a, c} # f :

Name.s ⇒ Name.s′, c # x : s ` NNLC (a c) ∗ f (〈a〉x) ≈ f (〈a〉x) : s′ holds. This
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follows directly by application of the rules (CA), (SUSP) and (BNABS).

[[λf : Name.s⇒ Name.s′. fr a. 〈a〉(λx : s. f(〈a〉x) @ a)]]ε
def
= ΛF ∈ [A][[s]]⇒fs [A][[s′]]→ [[fr a. 〈a〉(λx : s. f (〈a〉x) @ a)]][f 7→F ]

def
= ΛF ∈ [A][[s]]⇒fs [A][[s′]]→ fresh a′ in [[(a′ a) · 〈a〉(λx : s. f (〈a〉x) @ a)]][f 7→F ]

def
= ΛF ∈ [A][[s]]⇒fs [A][[s′]]→ fresh a′ in 〈a′〉(Λd ∈ [[s]].F (〈a′〉d) @ a′)

= J
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Chapter 5

Towards a Categorical Type

Theory Correspondence for NLC

The notion of FM-categories (which generalises FMSet) has been introduced by

Clouston [13, 17] to prove a categorical type theory correspondence for NEL. The

corresponding proof argument includes the definition of a sound categorical semantics

for NEL and a classifying FM-category for any NEL-theory (with a generic model).

This means that the categorical semantics can also be proved complete. For a general

introduction to categorical logic, we refer the reader to [42, 20, 52]. An immediate

question, which will only be partially answered in this chapter, is if these results can

be extended to hold for NLC. Our aim in this chapter is to identify and approach

the central issues involved in the construction of a classifying category for NLC. The

chapter is organised as follows:

• We recall the notion of an FM-category and FM-functor, as well as some aux-

iliary results. We continue by extending FM-categories with equivariant expo-

nentials, referred to as FM-cccs, and prove various auxiliary results.

• We analyse if certain categorical constructions “lift” some of the previously

defined properties of an FM-ccc. These constructions play a key role in a
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categorical proof argument (see Appendix B.1), which we intended to use to

prove Conjecture 3.5.3 (conservative extension property).

• The notion of an FM-ccc will underpin our categorical semantics for NLC, which

we demonstrate to be sound. We then approach the construction of a syntacti-

cally generated (classifying) category Cl(Th) (for any NLC-theory Th), which

is defined to be a term quotient structure using Th. We observe that the con-

struction of exponentials in such a category constitutes a key challenge, explain

why it is problematic in the case of NLC and propose two approaches to extend

NLC such that exponentials can be constructed in Cl(Th). The approach we

ultimately pursue is semantically motivated by properties of FMSet and leads

to an extension of NLC, referred to as [ N]NLC. This has already been published

in [23]. In this chapter, we provide a full verification argument to prove that

the proposed construction is indeed an equivariant exponential in Cl(Th). This

is an important step towards constructing a syntactically generated classify-

ing category Cl(Th) for any theory Th of the semantically motivated calculus

[ N]NLC. However, there is more work required, which will not be part of this

chapter. This will be worked out in full detail, as part of a journal version of

[23], at a later point.

5.1 Preliminaries

5.1.1 FM-Categories and FM-Functors

We give an overview of FM-categories and FM-Functors, as well as some auxiliary

results, which will be required in this chapter. For full details we refer to [13, 17]:

Definition 5.1.1 A category C has an internal permutation action if for each

π ∈ Perm(A) and C ∈ ob C there is a C-arrow πC with domain C such that
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(i) ιC is the identity idC

(ii) (π′ ◦ π)C = π′π·C ◦ πC, where π · C is defined to be the codomain of πC.

Lemma 5.1.2 Suppose C is a small category with an internal permutation action

(π,C) 7→ πC. Then

(i) The map (π,C) 7→ π ·C, with π ·C being the codomain of πC, defines a permu-

tation action on obC

(ii) Given a morphism f : C → D in C, π · f : π · C → π ·D is defined as

π · f =def πD ◦ f ◦ (π−1)π·C

Then the map (π, f) 7→ π · f defines the conjugational permutation action on

arrows in C.

(iii) If every arrow in arC is finitely supported with respect to the conjugational per-

mutation action given by (ii), then every object in obC is also finitely supported.

Lemma 5.1.3 The following results hold for the internal permutation action:

(i) The map (π,C) 7→ πC is equivariant, i.e. we have π · (π′C) = (ππ′π−1)π·C

(ii) Each πC : C → π · C is an isomorphism, with the corresponding inverse π−1
π·C :

π · C → C

(iii) The maps π · (−) on obC and arC define an endofunctor C → C

(iv) The internal permutation actions πC : C → π · C are components of a natural

transformation π : idC → π · (−), where idC is the identity functor on C.

Definition 5.1.4 An internal permutation action on a category C is finitely sup-

ported if every arrow in C is finitely supported with respect to the permutation action

defined by Lemma 5.1.2 (ii). We call a category with a finitely supported permutation

action a perm-category.
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Definition 5.1.5 Let C and C ′ be two perm-categories. A functor F : C → C ′ that

strictly preserves internal permutation actions (i.e. F (πC) = πFC), is called a perm-

functor.

Lemma 5.1.6 A small perm-category is an internal category in Nom.

The converse does not hold, as has been explained in [17] (see Remark 4.6).

Lemma 5.1.7 Let F : C → C ′ be a perm-functor between two small perm-categories

C and C ′. Then the following holds:

(i) F is a functor internal in Nom;

(ii) Given two such functors F , F ′ , any natural transformation φ : F → F ′ is a

natural transformation in Nom.

Thus, the category of small perm-categories and perm-functors, PermCat , is a

subcategory of Int(Nom) (the category of categories and functors internal in Nom).

Definition 5.1.8 Take a category C with an internal permutation action and finite

products defined by a terminal object 1, and for each pair of objects C1, C2, a product

C1 × C2 with projections pri(C1, C2) : C1 × C2 → Ci (for i = 1, 2). Then C has

equivariant finite products if for all π ∈ Perm, we have that π · 1 = 1 and

π ·pri(C1, C2) = pri(π ·C1, π ·C2) (for i = 1, 2). As a direct consequence π ·(C1×C2) =

π · C1 × π · C2.

Definition 5.1.9 Let C have a finitely supported internal permutation action and

equivariant finite products. Then C has fresh inclusions if for every finite set of

names a ⊆ A and C-object C such that a # C there exists an object C#a and a

morphism iaC : C#a → C in C for which the following properties hold:

(i) (Equivariance): π · iaC = iπ·aπ·C;
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(ii) (Sets of Names): i∅C = idC and iaC ◦ ia
′

C#a = ia∪a
′

C .

(iii) (Products): iaC1×C2
= iaC1

× iaC2
;

(iv) (Internal permutation action): if supp(π) # C then πC#supp(π) is equal to the

identity idC#supp(π);

(v) (Epi When Fresh): If we have parallel C-arrows f, g : C → D such that f ◦ iaC =

g ◦ iaC and a # (f, g), then f = g;

(vi) (Freshness): Let f : C → D be a morphism in C and a a finite set of names such

that a # D. Define condition †(a, f)
def
= (∃b # (a, f)) ((a b)D ◦ f ◦ ibC = f ◦ ibC).

If †(a, f) holds, then there exists a unique morphism f ∗ : C → D#a in C, called

the image restriction of f , such that iaD ◦ f ∗ = f .

Remark 5.1.10 Each of the freshness properties of an FM-category has a clear in-

tuition once we see it in the context of FMSet. As an example we consider (Fresh-

ness), which is the most involved property. Let f : X → Y be finitely supported in

FMSet and a # Y . By choosing b # (a, f) and x ∈ X such that b # x we have

(f ◦ ibC)(x) = f(x) and the condition amounts to (a b) · f(x) = f(x). Hence, by

definition we have f(x) ∈ Y #a and so f image restricts with f ∗ : x 7→ f(x).

Lemma 5.1.11 Let C be a category with fresh inclusions. Then

(i) If a # (f : C → D), there is a unique arrow f#a : C#a → D#a such that

f ◦ i = i ◦ f#a

(ii) The assignment is functorial, i.e. (idC)#a = idC#a and (g ◦ f)#a = g#a ◦ f#a

Lemma 5.1.12 Let C be a category with fresh inclusions. Then all fresh inclusions

iaC are monomorphisms.
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Definition 5.1.13 A category with finitely supported internal permutation action,

equivariant finite products and fresh inclusions is said to be an FM-category. A

functor F that strictly preserves internal permutation actions (F (πC) = πFC), finite

products (F (1C) = 1FC and F (pr i(C1, C2)) = pr i(FC1, FC2)) and fresh inclusions

(F (iaC) = iaFC) is called an FM-functor.

The fact that FMSet is an FM-category follows straightforwardly.

5.1.2 Equivariant Exponentials and FM-ccc

We introduce the notion of equivariant exponentials and prove various auxiliary

results which are required to establish a sound categorical semantics in FM-ccc.

Definition 5.1.14 Let C be a perm-category with equivariant finite products and ex-

ponentials, i.e. for any any objects B and C there is an object B ⇒ C and a morphism

evB,C : (B ⇒ C) × B → C such that there exists a unique morphism λ(f) : A →

(B ⇒ C) such that f = ev ◦ (λ(f)× idB) for any f : A×B → C. The category C has

equivariant exponentials if the evaluation map is preserved by the internal permu-

tation action, i.e. π · evB,C = evπ·B,π·C. Consequently, π · (B ⇒ C) = (π ·B ⇒ π ·C).

An FM-category with equivariant exponential is called FM-ccc and a functor which

preserves equivariant exponentials, i.e. λ(F (evB,C)◦ ∼=) = idFB⇒FC, is called an

FM-ccc functor.

We know that FMSet is cartesian closed (see Lemma 2.4.3). Next, we deduce that

the exponential is equivariant, and therefore FMSet is an FM-ccc.

(π · evA,B)(f, x)
def
= π · evA,B(π−1 · f, π−1 · x)

def
= π · ((π−1 · f)(π−1 · x))

def
= f(x)

def
= evπ·A,π·B(f, x)
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We recall that for any cartesian closed category C, there is an exponential functor

(−)⇒ (−) : Cop × C → C:

(A,B) 7→ A⇒ B

(f, g) 7→ f ⇒ g
def
= λ(g ◦ ev ◦ (idA⇒B × f))

Lemma 5.1.15 For any FM-cartesian closed category C the following properties hold:

(a) For any f : A×B → C and g : A′ → A, we have λ(f) ◦ g = λ(f ◦ (g × idB))

(b) πAi ◦ pri(A1, A2) = pri(π · A1, π · A2) ◦ πA1×A2 (i = 1, 2)

(c) πB ◦ evA,B = evπ·A,π·B ◦ (πA⇒B × πA).

(d) π · λ(f) = λ(π · f)

(e) π · (f ⇒ g) = π · f ⇒ π · g

(f) πA×B = πA × πB

(g) πA⇒B = π−1
π·A ⇒ πB

(h) For any f : A×B → C we have πB⇒C ◦ λ(f) = λ(πC ◦ f ◦ (id× π−1
π·B))

Proof The proofs follow by routine computations in category theory.

(a): Given that C is cartesian closed, we have that λ(f ◦ (g × idB)) is the unique

morphism such that f ◦(g×idB) = ev ◦(λ(f ◦ (g × idB))×idB) (�1). Moreover,

we have that λ(f) is the unique morphism such that f = ev ◦ (λ(f) × idB).

From the previous equation we can deduce that f ◦ (g × idB) = ev ◦ (λ(f) ×

idB) ◦ (g × idB) = ev ◦ (λ(f) ◦ g × idB). Hence, by the universal property of

(�1) we have that λ(f) ◦ g = λ(f ◦ (g × idB))

(b, c): Follows directly from the fact that internal permutation actions are natural

transformations (Lemma 5.1.3 (iv))
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(d): Given that C is cartesian closed we have that λ(π · f) is the unique morphism

such that π · f = ev ◦ (λ(π · f) × idπ·B) (�1). Moreover, we have that λ(f)

is the unique morphism such that f = ev ◦ (λ(f) × idB). From the previous

equation and the fact that π · (−) is a functor and ev is equivariant, we obtain

that π · f = ev ◦ (π ·λ(f)× idπ·B). Hence, by the universal property for (�1) we

have that π · λ(f) = λ(π · f).

(e): It is deduced as follows:

π · (f ⇒ g)
def
= π · (λ(g ◦ ev ◦ (id× f)))

= λ(π · (g ◦ ev ◦ (id× f))) (by (d))

= λ((π · g) ◦ (π · ev) ◦ (id× (π · f))) (◦ is equivariant)

= λ((π · g) ◦ ev ◦ (id× (π · f))) (ev is equivariant)

def
= (π · f)⇒ (π · g)

(f): For internal permutation actions πA and πB, there exists a unique morphism

πA × πB such that

πA ◦ prA = prπ·A ◦ (πA × πB)

πB ◦ prB = prπ·B ◦ (πA × πB)

Using property (b) from above, we directly obtain that

prπ·A ◦ πA×B = prπ·A ◦ (πA × πB)

prπ·B ◦ πA×B = prπ·B ◦ (πA × πB)

Hence, we have that πA×B = πA × πB.

(g): We have π−1
π·A ⇒ πB

def
= λ(g) where g

def
= πB ◦ ev ◦ (idA⇒B × π−1

π·A) : (A ⇒
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B)× π · A→ π ·B. We can now deduce the following:

g
def
= πB ◦ evA,B ◦ (idA⇒B × π−1

π·A)

= evπ·A,π·B ◦ (πA⇒B × πA) ◦ (idA⇒B × π−1
π·A) (by (c))

= evπ·A,π·B ◦ (πA⇒B × πA ◦ π−1
π·A)

= evπ·A,π·B ◦ (πA⇒B × idπ·A) (Lemma 5.1.3 (ii))

Hence, we have that g = evπ·A,π·B ◦ (πA⇒B × idπ·A). Regarding the fact that

λ(g) is the unique map such that g = ev ◦ (λ(g) × idπ·A), we have completed

the argument.

(h):

πB⇒C ◦ λ(f) = (π−1
π·B ⇒ πC) ◦ λ(f) (by (g))

def
= λ(πC ◦ ev ◦ (id× π−1

π·B)) ◦ λ(f)

= λ(πC ◦ ev ◦ (id× π−1
π·B) ◦ (λ(f)× id)) (by (a))

= λ(πC ◦ ev ◦ (λ(f)× id) ◦ (id× π−1
π·B))

def
= λ(πC ◦ f ◦ (id× π−1

π·B))

�

5.1.3 Examples of FM-Constructions

We investigate if apart from FMSet there are other categorical constructions with

the aforementioned properties of an FM-ccc. The constructions that we consider play

a key role in our attempt to prove an additional conservative extension property for

NEL and NLC via a categorical proof argument. An overview of the categorical proof

argument can be found in Section B.1.
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Freyd-style Glued Categories

We first recall the so called Freyd scone [42, 45, 21].

Theorem 5.1.16 Suppose that C and D are cartesian closed categories, C has all

pullbacks and Γ : D → C is a functor which strictly preserves finite products. Then

the glued category GL(Γ)
def
= (idC ↓ Γ) with

• Objects: (C, f,D) where C ∈ ob C, D ∈ obD and f : C → ΓD is a morphism

in C.

• Morphisms: (h1, h2) where h1 : C → C ′ and h2 : D → D′ are morphisms in C

and D respectively such that f ′ ◦ h1 = Γ(h2) ◦ f .

• id (C,f,D)
def
= (idC , idD,) and (h1, h2) ◦ (h′1, h

′
2)

def
= (h1 ◦ h′1, h2 ◦ h′2).

is cartesian closed with

• terminal object: (1C,∼=, 1D).

• cartesian product: (C, f,D) × (C ′, f ′, D′) =def (C × C ′,∼= ◦(f × f ′), D × D′)

where ∼= is standing for ΓD×ΓD′ ∼= Γ(D×D′) and projection maps pr (C,f,D) :

(C, f,D)× (C ′, f ′, D′)→ (C, f,D) as pr (C,f,D)
def
= (prC , prD) and pr (C′,f ′,D′)

def
=

(prC′ , prD′).

• exponential object

(C, f,D)⇒ (C ′, f ′, D′) =def ((C ⇒ C ′)× Γ(D ⇒ D′), π2, D ⇒ D′)

is defined by the following pullback

C ⇒ C ′ C ⇒ ΓD′
idD⇒f ′

//

(C ⇒ C ′)× Γ(D ⇒ D′)

C ⇒ C ′

π1

��

(C ⇒ C ′)× Γ(D ⇒ D′) Γ(D ⇒ D′)
π2 // Γ(D ⇒ D′)

C ⇒ ΓD′

(f⇒idΓD′ )◦∼=

��
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with the evaluation map ev(C,f,D),(C′,f ′,D′)
def
= (evC,C′ ◦ (prC⇒C′ × idC), evD,D′)

The category GL(Γ) is called a glued category to indicate that D has been glued to

C along the functor Γ. Moreover, the projection functor P2 : GL(Γ)→ D ((C, f,D) 7→

D and (g, h) 7→ h), is cartesian closed, i.e. preserves finite products and exponentials.

Next, we demonstrate that under the assumption that Γ strictly preserves internal

permutation actions, the glued category GL(Γ) also inherits the structure of an FM-

category.

Theorem 5.1.17 Let Γ : D → C be a functor between the FM-categories C and D

such that Γ has the following properties:

• strictly preserves finite products

• strictly preserves internal permutation actions, i.e. Γ(πD) = πΓD

Let GL(Γ) be the comma category (idC ↓ Γ). Then GL(Γ) is an FM-category, and

P2 : GL(Γ)→ D is a morphism of FM-categories.

Proof see Appendix B.2.

By combining both results we can immediately deduce that the gluing lemma

holds for FM-cccs as well.

Corollary 5.1.18 Let Γ : D → C be a functor between the FM-cccs C and D such

that Γ strictly preserves finite products and internal permutation actions, and GL(Γ)

is the comma category (idC ↓ Γ). Then GL(Γ) is an FM-ccc, and P2 : GL(Γ)→ D is

an FM-ccc functor.

Proof We apply Theorem 5.1.16 and Theorem 5.1.17 to obtain that GL(Γ) is an

FM-ccc and P2 : GL(Γ)→ D an FM-ccc functor. What remains to be shown is that



CHAPTER 5. TOWARDS A CATEG. TYPE THEORY CORRESP. 151

the exponential is equivariant:

π · ev(C,f,D),(C′,f ′,D′)

def
= π · (evC,C′ ◦ (prC⇒C′ × idC), evD,D′)

= (π · (evC,C′ ◦ (prC⇒C′ × idC)), π · evD,D′) (Lemma B.2.2)

= (evπ·C,π·C′ ◦ (prπ·C⇒π·C′ × idπ·C), evπ·D,π·D′) (C,D are FM-cccs)

def
= ev(π·C,π·f,π·D),(π·C′,π·f ′,π·D′)

def
= evπ·(C,f,D),π·(C′,f ′,D′)

�

Product and Functor Categories

We demonstrate that the binary product category of FM-categories is an FM-

category, which follows straightforwardly.

Lemma 5.1.19 Let C and D be FM-categories. Then the product category C × D

with the usual definition

• ob (C × D)
def
= ob (C)× ob (D)

• mor (C × D)
def
= mor (C)×mor (D)

• (f2, g2) ◦ (f1, g1)
def
= (f2 ◦ f1, g2 ◦ g1)

• id (C,D)
def
= (idC , idD)

is an FM-category with the following point-wise structures:

• 1C×D
def
= (1C, 1D)

• (C,D) × (C ′, D′)
def
= (C × C ′, D × D′) with projection morphisms pr (C,D)

def
=

(prC , prD) : (C,D)× (C ′, D′)→ (C,D) and pr (C′,D′)
def
= (prC′ , prD′) : (C,D)×

(C ′, D′)→ (C ′, D′)
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• π(C,D)
def
= (πC , πD) : (C,D)→ (π·C, π·D). Consequently, we have that π·(f, g) =

(π · f, π · g)

• ia(C,D)

def
= (iaC , i

a
D) : (C#a, D#a)→ (C,D)

Moreover, we can show that the category of small FM-categories and FM-functors

has finite products.

Proof see Appendix B.3

This result is not too surprising. A more interesting question is if for FM-categories

C and D, the functor category [C,D] is also an FM-category.

We recall that for functor categories, properties can often be lifted point-wise. This

is for example the case for (co)limits, where (co)limits in D can be lifted point-wise

to (co)limits in [C,D]. This also applies for equivariant finite products (see Lemma

5.1.23), but not for fresh inclusions as will be shown later. Further, with respect

to internal permutation actions of [C,D] we require a definition that is analogue to

the permutation action used for exponentials in FMSet . Thus, we define an internal

permutation action that mimics the conjugational permutation action of FMSet .

Lemma 5.1.20 Let C and D be categories with internal permutation actions. An

internal permutation action for the functor category [C,D] can be defined as follows:

For a functor F : C → D, πF : F ⇒ π · F is defined to be a natural transformation

with the following components (in D) for every X ∈ ob (C)

(πF )X : FX → (π · F )(X)

(πF )X
def
= πF (π−1·X) ◦ F (π−1

X )

where the functor π ·F : C → D is defined on objects by (π ·F )X
def
= π ·F (π−1 ·X)

and on morphisms by (π · F )f
def
= π · F (π−1 · f).
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Proof π ·F is clearly a functor. We now demonstrate that πF : F ⇒ π ·F is a natural

transformation. Let X ∈ ob C. Given that C has internal permutation actions, we

have that π−1
X is a morphism in C and by F being a functor, we have that F (π−1

X ) is

a morphism in D. Further, given that D has internal permutation actions, we have

that πF (π−1·X) is a morphism in D. Then, by composition, (πF )X is a morphism in D.

Next, we demonstrate that πF satisfies the naturality condition: Let f : X → Y in C

(π · F )(f) ◦ (πF )X

def
= (π · F (π−1 · f)) ◦ (πF )X

def
= (π · F (π−1 · f)) ◦ πF (π−1·X) ◦ F (π−1

X )

= πF (π−1·Y ) ◦ F (π−1 · f) ◦ F (π−1
X ) (Lemma 5.1.3 (iv) for π in D)

= πF (π−1·Y ) ◦ F (π−1 · f ◦ π−1
X ) (F is a functor)

= πF (π−1·Y ) ◦ F (π−1
Y ◦ f) (Lemma 5.1.3 (iv) for π−1 in C)

= πF (π−1·Y ) ◦ F (π−1
Y ) ◦ F (f) (F is a functor)

def
= (πF )Y ◦ F (f)

Hence, we have that πF is a morphism in [C,D]. What remains to be shown is that

the conditions of an internal permutation action are satisfied. The first condition,

ιF = idF , follows directly from the fact that C and D have internal permutation

actions and F being a functor. This is also the case for the second condition, π′◦πF =

π′π·F ◦ πF , where we additionally apply that π(−) is a natural transformation in D. �

The permutation action on morphisms of [C,D] can be expressed in a more “nat-

ural” way as follows:

Lemma 5.1.21 Let F,G ∈ ob ([C,D]) and α ∈ mor ([C, D]) from F to G. Then the

permutation action π · α can be represented as follows:

(π · α)X = π · απ−1·X
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Proof

(π · α)X

def
= (πG ◦ α ◦ π−1

π·F )X

def
= (πG)X ◦ αX ◦ (π−1

π·F )X

def
= πG(π−1·X) ◦G(ππ−1·X) ◦ αX ◦ π−1

(π·F )(π·X) ◦ (π · F )(π−1
π·X)

def
= πG(π−1·X) ◦G(ππ−1·X) ◦ αX ◦ π−1

π·(FX) ◦ π · F (π−1 · π−1
π·X)

= πG(π−1·X) ◦G(ππ−1·X) ◦ αX ◦ π−1
π·(FX) ◦ π · F (π−1

X ) (Lemma 5.1.3 (i))

def
= πG(π−1·X) ◦G(ππ−1·X) ◦ αX ◦ π−1

π·(FX) ◦ πFX ◦ F (π−1
X ) ◦ π−1

(π·F )X

def
= πG(π−1·X) ◦G(ππ−1·X) ◦ αX ◦ F (π−1

X ) ◦ π−1
(π·F )X

= πG(π−1·X) ◦G(ππ−1·X) ◦G(π−1
X ) ◦ απ−1·X ◦ π−1

(π·F )X (naturality of α)

= πG(π−1·X) ◦G(ππ−1·X ◦ π−1
X ) ◦ απ−1·X ◦ π−1

(π·F )X (G is a functor)

def
= πG(π−1·X) ◦G(idX) ◦ απ−1·X ◦ π−1

(π·F )X

= πG(π−1·X) ◦ π−1
G(π−1·X) ◦ π · απ−1·X (Lemma 5.1.3 (iv))

= π · απ−1·X (Lemma 5.1.3 (ii))

�

Note that for perm-categories C and D the internal permutation action for [C,D]

may not be finitely supported and therefore [C,D] would not be a perm-category. This

is analogue to Nom, where the exponential is defined as the set of finitely supported

morphisms. Hence, we introduce the functor category of finitely supported natural

transformations, [C,D]fs ⊆ [C,D] (luff subcategory), which is by definition a perm-

category. We can now prove the following result:

Lemma 5.1.22 The category PermCat of small perm-categories and perm-functors

is cartesian closed.

Proof see Appendix B.3
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Lemma 5.1.23 Let C be a category and D a perm-category with equivariant finite

products. The point-wise definition of finite products of [C,D] is equivariant.

Proof see Appendix B.3

We conclude by showing that a point-wise definition for fresh inclusions in [C,D]

does not suffice: Suppose a ⊆ A, F : C → D and a # F . A point-wise fresh inclusion

would be defined as a natural transformation iaF : F#a → F with components

(iaF )X
def
= iaFX : FX#a → FX

and F#a(X)
def
= (FX)#a. Note that this definition is only well defined if we can

show that the fresh inclusion iaFX actually exists. This means that we would have

to show that a # FX holds, which cannot be guaranteed, because supp(FX) ⊆

supp(F ) ∪ supp(X) and we only have a # F .

5.2 A Sound Categorical Semantics for NLC

In this section we introduce a categorical semantics that will interpret typed ex-

pressions Th B ∇ `NLC M : s as morphisms [[∇ `NLC M : s ]] : [[∇]] −→ [[s ]] in an

FM-ccc C. Similar to the model-theoretic semantics in FMSet , we need to consider

that NLC is dependently typed: in particular the type system and equation system

are mutually inductively defined. So, following [52, 66] we introduce a partial in-

terpretation function, which is defined only when certain equations are themselves

satisfied by [[−]].

We formally define the categorical semantics for NLC as follows: Let C be an FM-

ccc and Sg a NLC-signature. Then a Sg-structureM in C is specified by giving:

• An equivariant map [[−]] : GndSg −→ ob C that extends to the map [[−]] :

TypeSg −→ ob C via structural recursion ( [[sa ⇒ s ′]]
def
= [[s ]]#a ⇒ [[s ′]]) and can

easily be shown to be equivariant as well, since C has equivariant structure.
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• An equivariant map [[−]] : FunSg −→ ob C where for each higher order function

constant c : s we have [[c]] : 1 −→ [[s]] (recall that C has finite products—hence

an equivariant terminal object).

Let ∇ = a1 # x1 : s1, ..., an # xn : sn ∈ CtxtSg be a freshness context. We

define the C-object [[∇]] by [[∇]]
def
= [[s1]]#a1 × ...× [[sn]]#an . LetM be a structure for a

NLC-signature in an FM-ccc C and consider the binary relation I in Table 5.1.

[[∇, a # x : s ` πx : π · s ]] I π[[s]] ◦ ia[[s]] ◦ pr : [[∇, a # x : s ]] −→ π · [[s ]]

[[∇ ` c : s]] I [[c]]◦! : [[∇]]→ 1→ [[s]]

[[∇, a # x : s `M : s′]] I m : [[∇]]× [[s]]#a → [[s′]]

[[∇ ` λax : s.M : sa ⇒ s′]] I λ(m) : [[∇]]→ ([[s]]#a ⇒ [[s′]])

[[∇ ` F : sa ⇒ s′]] I f : [[∇]]→ ([[s]]#a ⇒ [[s′]]) [[∇ ` a # A : s]] I θ : [[∇]]→ [[s]]#a

[[∇ ` F A : s′]] I ev ◦ 〈f, θ〉 : [[∇]]→ ([[s]]#a ⇒ [[s′]])× [[s]]#a → [[s′]]

[[∇ `NLC M : s ]] I m : [[∇]]→ [[s]]
†(a, m)

[[∇ `NLC a # M : s ]] I m∗ : [[∇]]→ [[s]]#a

Table 5.1: Categorical Semantics for NLC in an FM-ccc

Following [17] we make use of the freshness axiom of an FM-ccc, which is given

by Definition 5.1.9 (vi). Based on this freshness axiom we can directly define the

semantics of ∇ `NLC a # A : s as [[∇ `NLC a # A : s ]]
def
= [[∇ `NLC A : s ]]∗ under the

assumption that the condition †(a, [[∇ `NLC A : s ]]) holds. Note that the categorical

semantics slightly differs from the model-theoretic semantics (in FMSet), where the

partial interpretation function does not provide an additional clause for freshness

assertions.

It can easily be seen that Table 5.1 actually specifies a partial function J 7→ [[J ]]

from judgements to morphisms [[J ]] in C. We define a notion of satisfaction for both

expressions-in-context and equations-in-context. Given ∇ `NLC M : s or ∇ `NLC a #
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M : s we say that M satisfies the judgement if the morphism [[∇ `NLC M : s ]] :

[[∇]] −→ [[s ]] or [[∇ `NLC a # M : s ]] : [[∇]] −→ [[s ]]#a in C is defined (that is, the partial

function J 7→ [[J ]] is defined). If so we write [[∇ `NLC M : s ]]⇓ or [[∇ `NLC a # M : s ]]⇓.

Generally, [[J ]]⇓ def
= (∃j)([[J ]] I j). We may write [[J ]] or even [[J ]]⇓ for morphism j.

Given ∇ `NLC M ≈ M ′ : s we say that M satisfies it if both [[∇ `NLC M : s]]⇓ and

[[∇ `NLC M ′ : s]]⇓ and they are equal morphisms in C. We say that M is a model

of a NLC theory Th = (Sg ,Ax ) if M satisfies all of the equations-in-context in Ax .

With this, we can specify our soundness theorem:

Theorem 5.2.1 (Soundness) Let Th be a NLC theory and M a model of Th in

an FM-ccc. Then every typed expression Th B ∇ `NLC M : s and theorem Th B

∇ `NLC M ≈ M ′ : s is satisfied by M. As a consequence, every freshness assertion

Th B ∇ `NLC a # M : s is satisfied by M as well.

Note that despite some minor technical differences the overall proof technique used

to deal with name-dependent types and the mutual inductive definition of types and

equations is analogous to the model-theoretic semantics in FMSet . For this reason,

we only present full proof details for selected results.

We require the following auxiliary results to prove the soundness theorem. Note

that we appeal to Propositions 3.2.5 and Proposition 3.2.6 to ensure that the NLC

judgements mentioned below are properly defined. We shall write L � R to mean

that L⇓ ⇐⇒ R⇓ and that L = R (Kleene equality).

Lemma 5.2.2 Let ∇ = a1 # x1 : s1, ..., an # xn : sn be a freshness context. Then

(i) id[[∇]] � 〈[[∇ ` a1 # x1 : s1]], ..., [[∇ ` an # xn : sn]]〉

(ii) ia[[∇]] � 〈[[∇#a ` a1 # x1 : s1]], ..., [[∇#a ` an # xn : sn]]〉

(iii) π[[∇]] � 〈[[∇ ` π · a1 # πx1 : π · s1]], ..., [[∇ ` π · an # πxn : π · sn]]〉
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(iv) Take ∇1,∇2 ∈ CtxtSg with disjoint domains (suppose ∇j = ∇ for j = 1 and

2). Then pr[[∇j ]] : [[∇1]] × [[∇2]] → [[∇j]] � 〈[[∇1 ∪ ∇2 `NLC a1 # x1 :

s1]], ..., [[∇1 ∪∇2 `NLC an # xn : sn]]〉.

Lemma 5.2.3 (Useful Semantic Factorisations “[[ξ]] = [[ξ]] ◦m”)

(i) The map ∇ 7→ [[∇]] is equivariant.

(ii) π · [[∇ `NLC M : s]] � [[π · ∇ `NLC π ·M : π · s ]]

(iii) [[∇ ` π ∗M : π · s]] � π[[s]] ◦ [[∇ `M : s]]

(iv)

[[∇, π · a # x : π · s `NLC M{π−1x/x} : s′]] �

[[∇, a # x : s `NLC M : s′]] ◦ (id[[∇]] × π−1

[[π·s]]#π·a
)

(v) Given ∇ ≤ ∇′ there exists an arrow weak : [[∇′]] → [[∇]] such that for any

well-typed expression ∇ `NLC M : s, [[∇′ `NLC M : s]] � [[∇ `NLC M : s]] ◦ weak.

(vi) [[∇#a `NLC M : s]] � [[∇ `NLC M : s]] ◦ ia where a # ∇.

The proofs of Lemmas 5.2.2 and 5.2.3 require a combination of direct calculations

and inductions over the structure of expressions.

Proof of Lemma 5.2.3 (i) and (ii)

(i) It follows immediately from the definition of a perm-category and the definition
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of a categorical semantics that

π · [[∇]]
def
= π · ([[s1]]#a1 × ...× [[sn]]#an)

def
= (π · [[s1]]#a1 × ...× π · [[sn]]#an)

def
= ((π · [[s1]])#π·a1 × ...× (π · [[sn]])#π·an)

def
= ([[π · s1]]#π·a1 × ...× [[π · sn]]#π·an)

def
= [[(π · a1 # x1 : π · s1, ..., π · an # xn : π · sn)]]

def
= [[π · ∇]]

(ii) Proof by induction on the structure of M

(∀M) [ (∀ ∇, π, s) (π · [[∇ `NLC M : s]] � [[π · ∇ `NLC π ·M : π · s ]])) ]

SUSP: (M is π′x) It directly follows from the categorical semantics that

[[π · ∇′, π · a # x : π · s `NLC π · π′x : π · π′ · s]]⇓

and [[∇′, a # x : s `NLC π′x : π′ · s]]⇓. The equality follows by basic properties

of FM-cccs. CONST: (M is c) It is immediate that [[∇ `NLC c : s]]⇓ and

[[π·∇ `NLC π·c : π·s]]⇓. The equality follows from the fact that [[−]] : FunΣ → ob C

is equivariant.

LAM-ABS: (M is λax : s.N) Suppose [[π·∇ `NLC π·(λax : s.N) : π·(sa ⇒ s′)]]⇓

and it is equal to fπ. By the definition of the meta-level permutation action and

the inductively defined semantics we get

[[π · ∇ `NLC λπ·ax : π · s. π ·N : (π · s)π·a ⇒ π · s′]] I λ(nπ)

for some nπ where [[π ·∇, π ·a # x : π ·s `NLC π ·N : π ·s′]] I nπ. By induction we

deduce that [[∇, a # x : s `NLC N : s′]] I n such that π · n = nπ. We then apply

the rule for semantics of abstraction to obtain [[∇ `NLC λax : s.N : sa ⇒ s′]] I

λ(n), that is, [[∇ `NLC λax : s.N : sa ⇒ s′]]⇓. The definitional existence proof in
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the converse direction follows by similar reasoning. We now need to show that

fπ = π · λ(n).

fπ
def
= λ(nπ)

= λ(π · n) (induction)

= π · λ(n) (Lemma 5.1.15 (d))

APP: (M is F A) Suppose [[π ·∇ `NLC π ·(F A) : π ·s′]]⇓ and it is equal to tπ. By

the definition of the meta-level permutation action and the rule for semantics

of applications

[[π · ∇ `NLC (π · F ) (π · A) : π · s′]] I ev ◦ 〈fπ, θπ〉

for

[[π · ∇ `NLC π · F : (π · s)π·a ⇒ π · s′]] I fπ

and

[[π · ∇ `NLC π · a # π · A : π · s]] I θπ.

We have [[π · ∇ `NLC π · a # π · A : π · s]] I απ
∗ by the rule for freshness

assertion semantics where [[π · ∇ `NLC π · A : π · s]] I απ such that †(π · a, απ).

Given that I is a partial function, we have that θπ = απ
∗. By induction we get

[[∇ `NLC F : sa ⇒ s′]] I f and [[∇ `NLC A : s]] I α such that fπ = π · f and

απ = π · α. We now deduce from †(π · a, απ) that †(a, α) holds: Let c # (a, α).

It follows immediately that π · c # (π · a, π · α) and hence from †(π · a, π · α)

we obtain equation (�1). In the equations below, we write internal permutation

actions τC as τ− since the source-target data does not play a significant role in
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our reasoning, and indeed is probably obfuscating:

(π · c π · a)− ◦ (π · α) ◦ i = (π · α) ◦ i (�1)

(π · c π · a)− ◦ π− ◦ α ◦ π−1
− ◦ i = π− ◦ α ◦ π−1

− ◦ i (�2)

π− ◦ (c a)− ◦ α ◦ π−1
− ◦ i = π− ◦ α ◦ π−1

− ◦ i (�3)

(c a)− ◦ α ◦ i ◦ π−1
− = α ◦ i ◦ π−1

− (�4)

(c a)− ◦ α ◦ i = α ◦ i (�5)

By definition of the FM-ccc permutation action on morphisms we obtain equa-

tion (�2). The transposition notation (c a) is short for (c1 a1)◦ . . .◦(ck ak). Since

in Perm(A), π ◦ (c d) = (π(c) π(d)) ◦ π holds generally for single transpositions

(c d), and since permutation actions satisfy (τ ′ ◦ τ)C = τ ′τ ·C ◦ πC we have

π− ◦ (c a)− = (π ◦ (c a))− = ((π · c π · a) ◦ π)− = (π · c π · a)− ◦ π−

This gives us equation (�3). Any internal permutation action (τC : C → τ · C |

C ∈ ob C) is a natural transformation Id → τ · − and in particular so is π−1
− .

Since also π− is iso, equation (�4) holds. Finally since π−1
− is iso we obtain (�5).

Hence, †(a, α) holds.

We can now apply the rule for freshness assertion semantics to obtain [[∇ `NLC

a # A : s]] I α∗, followed by the rule for application semantics to get [[∇ `NLC

F A : s′]] I ev ◦ 〈f, α∗〉. Hence, we have [[∇ `NLC F A : s′]]⇓. The definitional

existence proof in the converse direction follows by similar reasoning.

We now show that tπ = π · (ev ◦ 〈f, α∗〉). Note that (π · α)∗ = π · α∗ (�)

holds: This follows immediately from the universal property of inclusion image
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restriction and the definition of π · (−). Hence

tπ
def
= ev ([[π·s]]#π·a,[[π·s′]]) ◦ 〈fπ, θπ〉

= ev ([[π·s]]#π·a,[[π·s′]]) ◦ 〈fπ, απ
∗〉 (θπ = απ

∗)

= ev (π·([[s]]#a),π·[[s′]]) ◦ 〈π · f, (π · α)∗〉 (induction)

= ev (π·([[s]]#a),π·[[s′]]) ◦ 〈π · f, π · α
∗〉 (�)

= ev (π·([[s]]#a),π·[[s′]]) ◦ (π · 〈f, α∗〉) (equivariant products)

= (π · ev ([[s]]#a,[[s′]])) ◦ (π · 〈f, α∗〉) (equivariant exponentials)

= π · (ev ([[s]]#a,[[s′]]) ◦ 〈f, α
∗〉) (equivariance of ◦)

�

Proposition 5.2.4 (Compositional Semantics) Let ∇ def
= a1 # x1 : s1, ..., an #

xn : sn. Suppose, for theory Th, we have the typed expression ∇ `NLC M : s and

freshness assertions ∇′ `NLC ai # Ni : si for each i ≤ n. Then we have ∇′ `NLC

M{ ~Ni/~xi} : s. Moreover, if [[∇ `NLC M : s ]]⇓ and [[∇′ `NLC ai # Ni : si]]⇓ for each i

then we have [[∇′ `NLC M{ ~Ni/~xi} : s ]]⇓ and further

[[∇′ `NLC M{ ~Ni/~xi} : s ]] =[[∇ `NLC M : s ]] ◦

〈[[∇′ `NLC a1 # N1 : s1]], ..., [[∇′ `NLC an # Nn : sn]]〉

The proof of Proposition 5.2.4 is by induction over the structure of M and does not

require a complicated statement that is provable by mutual induction. The intuition

is that, as one would expect, the semantics of expressions is derivation independent.

We can now prove Theorem 5.2.1.

Proof (Soundness) This proof does proceed by a mutual induction establishing the

satisfaction of all judgement forms. Induction Property Closure for all the rules

in Table 3.4 and Table 3.5 is similar to our example:
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(AP): We need to show that [[∇ `NLC F A : s′]]⇓ (�). By induction we have

[[∇ `NLC F : sa ⇒ s′]] I f (�1). Recalling that satisfaction of the freshness assertion

is the satisfaction of an equation

∇ `NLC a # A : s
def
= ( Nc) (∇#c `NLC A ≈ (a c) ∗ A : s)

we have [[∇#c `NLC A : s ]] I θ and [[∇#c `NLC (a c) ∗ A : s]] I θ′ with θ = θ′. Hence,

by Lemma 5.2.2 (vi), we have that θ = α ◦ i where [[∇ `NLC A : s ]] I α and by

Lemma 5.2.2 (iii) and 5.2.2 (vi) we have that θ′ = (a c)[[s]] ◦ α ◦ i. From the mono

property of freshness inclusions we have α = (a c)[[s]] ◦ α, that is †(α, a). Hence, by

definition, we get [[∇ `NLC a # A : s]] I α∗ (�2). From (�1) and (�2) we obtain (�),

with the definition ev ◦ 〈f, α∗〉.

Property Closure for the rules in Table 3.5 is trivial for (REF) (SYM) (TRANS).

(WEAK) uses Lemma 5.2.2 (v). (AE) uses Lemma 5.2.3 (vi), Lemma 5.2.3 (ii) and

Definition 5.1.9 (v). (SUSP) follows by standard nominal computations. The existence

argument for (B) and (E) follows similarly to (AP). The equational part for (B) follows

from Proposition 5.2.4 �

5.3 Construction of Exponentials in a Classifying

Category

We remind the reader that the key step in proving completeness and ultimately

a categorical type theory correspondence for NLC-theories, with respect to FM-cccs,

is that for any NLC-theory, a syntactically generated classifying category, referred

to as Cl(Th), can be constructed, which is an FM-ccc build from the syntax of an

NLC-theory Th together with a generic model G. The notion of a classifying category

is a standard one in category theory [42, 20]. For clarity, we decompose the required

proof argument in four separate steps and recall it in the context of EL and λ→.
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(i) For any theory Th, a term quotient category, referred to as Cl(Th)1, is con-

structed, which is analogue to a term quotient structure in model theory (used

to prove least-model completeness).

(ii) It has to be demonstrated that various categorical structures can be constructed

in Cl(Th). For example, in the case of algebraic theories it has to be shown that

Cl(Th) has finite products and in the case of functional theories it additionally

has to be shown that Cl(Th) is cartesian closed.

(iii) To prove (least-model) completeness for a categorical semantics, a generic model

G for Cl(Th) and an auxiliary lemma is required.

(iv) Finally, it has to be shown that Cl(Th) satisfies the corresponding categorical

property of a classifying category.

Note that our focus in this chapter will be on the first two steps, while the remain-

ing two steps will be future work. So, for this reason, we refrain from introducing the

precise definition of a classifying category and just refer to [42, 20].

We recall that the classifying category for a NEL-theory, as presented in ([17]), is

an extension of the classifying category for an algebraic theory, with only minor mod-

ifications. Further, given that the construction of classifying categories for algebraic

and functional theories are essentially the same, we have chose the classifying cate-

gories for NEL-theories as our starting point for NLC. As previously indicated, we

now have to demonstrate that Cl(Th) is an FM-ccc for any NLC-theory Th. Due to

the fact that Cl(Th), for any NEL-theory, is already an FM-category, it only remains

to be shown that Cl(Th) has equivariant exponentials. However, this turns out to be

more problematic than initially expected.

As a first step, one may mimic the construction of exponentials in a classifying

category for λ→ and adapt it to NLC. But this does not suffice, as we will now

1Note that we abuse notation at this point, because Cl(Th) is not yet proven to be a classifying
category. This is delayed until step (iv).
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discuss in more detail. We make use of the following typical objects in the intended

classifying category of NLC:

∇ def
= (a1 # x1 : s1, ..., an # xn : sn)

∇′ def
= (a′1 # x′1 : s′1, ..., a

′
m # x′m : s′m)

∇′′ def
= (a′′1 # x′′1 : s′′1, ..., a

′′
k # x′′k : s′′k)

For objects (freshness contexts) ∇ and ∇′, an exponential, motivated by the

classifying category of λ→, would be defined as follows

∇ ⇒ ∇′ def
= (a′1 # f1 : ~si

~ai ⇒ s′1, ..., a
′
m # fm : ~si

~ai ⇒ s′m)

using the freshness restricted function types of NLC, where for each j = 1, ...,m,

~si
~ai ⇒ s′j

def
= s1

a1 ⇒ (s2
a2 ⇒ ...(sn

an ⇒ s′j)). The corresponding evaluation map

ev : (∇ ⇒ ∇′) × ∇ → ∇′ would then be defined by ([f1 ~xi]≈, . . . , [fm ~xi]≈) where

fj ~xi is shorthand for the NLC-application (...((fj x1) x2)...) xn and × is defined by

list concatination.

While the definition of an exponential ∇ ⇒ ∇′ is clearly an object in Cl(Th) (a

freshness context), it can immediately be observed that the evaluation map ev is not a

morphism in Cl(Th). We recall that to demonstrate that ev is a morphism in Cl(Th),

we have to show that ∇ ⇒ ∇′ × ∇ `NLC a′j # fj ~xi : s′j holds for any (1 ≤ j ≤ m).

However, this is not generally the case, because a′j is not necessarily included in the

freshness context of ~xi. Hence, the freshness assertion cannot be derived.

Once we take a semantic viewpoint, the core problem regarding the construction

of exponentials in Cl(Th) for NLC can directly be identified. What proves to be

problematic is the existence of exponentials (in FMSet) of the form X#a ⇒fs Y
#b.

To express exponentials of this form, one would expect types of the form s1
a1 ⇒ s2

a2 ,

but such types are not part of the NLC typing system.

An immediate question that arises in this context is if such types can be mimicked

using NLC. We do not have a definitive answer, but believe that it is rather unlikely.

To provide a solution to this problem, we now discuss two routes to extend NLC
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such that exponentials can be constructed in a syntactically generated (classifying)

category Cl(Th):

• Earlier in this thesis we pointed out the possibility of introducing a variant of

NLC that uses freshness restriction types of the form sa. Apart from being

an interesting variant in its own right, it would now serve a more immediate

purpose, because it would allow us to directly capture exponentials of the form

X#a ⇒fs Y
#b. More precisely, using such a variant of NLC, exponentials could

then be constructed, with only minor deviations, by following the definition of

a classifying category for functional theories: For objects ∇ and ∇′, using the

more general type s1
a1 ⇒ s2

a2 , we would have

∇ ⇒ ∇′ def
= (∅ # f1 : ~si

~ai ⇒ s′1
a′1 , ..., ∅ # fm : ~si

~ai ⇒ s′m
a′m)

where for each j = 1, ...,m, ~si
~ai ⇒ s′j

def
= s1

a1 ⇒ (s2
a2 ⇒ ...(sn

an ⇒ s′j)). The

evaluation map ev : (∇ ⇒ ∇′)×∇ → ∇′ could then be defined as

([f1 ~xi]≈, . . . , [fm ~xi]≈)

where fj ~xi is shorthand for (...((fj x1) x2)...) xn. Further, given the morphisms

δ
def
= ([M1]≈, . . . , [Mm]≈) : ∇′′ × ∇ → ∇′ the exponential mate λ(δ) : ∇′′ →

(∇ ⇒ ∇′) could be defined as

([λa1y1 : s1. ...λ
anyn : sn.M1{y1...yn/x1...xn}]≈, . . . ,

[λa1y1 : s1. ...λ
anyn : sn.Mm{y1...yn/x1...xn}]≈)

Hence, this approach is quite appealing when it comes to constructing exponen-

tials in Cl(Th). However, as previously indicated, we would have to introduce

some form of subtyping and therefore the whole type and equation system of

NLC would have to be modified, which may result in further complications.
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• Another approach is motivated by the following isomorphisms in FMSet :

X#a ⇒fs Y
#a ∼=FMSet (X ⇒fs Y )#a

X#a ⇒fs Y
#b ∼=FMSet (([b]X)#a ⇒fs Y )#b (a ∩ b = ∅)

which provide us with an “alternative” presentation of exponentials in FMSet , a

presentation that is much closer to what NLC can already express since domain

(freshness) restricted function types sa ⇒ s′ and freshness assertions are already

supported by NLC.

The key idea of this approach is to extend NLC such that we can mimic the

“alternative” presentation of an exponential (in FMSet) in a syntactically gener-

ated (classifying) category Cl(Th). This, for example, includes the extension of

NLC such that name abstraction (using a binding term former) and concretion,

as well as local fresh atomic names can be captured. Note that the required

extensions are rather extensive, but compared to the first approach the core of

NLC as presented in Chapter 3 would remain unchanged.

While the first approach is appealing to resolve this issue, we believe that the

introduction of subtyping is rather unpredictable. So, after some careful contempla-

tion, we decided to pursue the second approach. Another strong argument in favour

of the second approach is that we have already demonstrated how name abstraction,

concretion and local fresh atomic names can be captured in NLC (see Chapter 4).

Due to the key role of the “alternative” presentation of exponentials in FMSet for

the chosen approach, we will now sketch various properties that are required to obtain

the aforementioned isomorphisms. We are grateful to Andrew Pitts for bringing

these properties of FMSet to our attention, properties which have independently

been observed and proven by Gabbay [35] (Lemma 8.12 and Lemma 8.18).

Tailored to fit our purpose, we introduce a slightly modified variant of name

abstraction and also slightly reorganise the original proof arguments. Furthermore,

we need to generalise the properties to hold for finite sets of names.
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We recall that for each finite set of names a, there exists a freshness restricted

category, denoted by FMSet#a, which is defined by

ob FMSet#a def
= {X ∈ ob FMSet | a # X}

mor FMSet#a def
= {f ∈ mor FMSet | a # f}

Moreover, there exists a freshness restricted functor (−)#a : FMSet#a →

FMSet which is defined by

(X)#a def
= {x ∈ X | a # x}

(f)#a def
= f

The key property we are interested in is that (−)#a has a right adjoint [a](−),

which is moreover an adjoint equivalence between FMSet#a and FMSet (FMSet#a '

FMSet). Note that from ((−)#a, [a](−), η, ε) being an adjoint equivalence, it follows

by a routine argument that ([a](−), (−)#a, ε−1, η−1) is also an adjoint equivalence.

Hence, for any finite set of names b we also have that [b](−) a (−)#b, which can be

represented as a natural isomorphism (�1) FMSet#b([b]X, Y ) ∼=Set FMSet(X, Y #b)

for X ∈ FMSet and Y ∈ FMSet#b.

Further, it can be shown that for any X ∈ FMSet#b and a ∩ b = ∅ we have

that (�2) ([a]X)#b ∼=Set [a]X#b. By applying property (�1) (for X#a ∈ FMSet) and

property (�2) we can deduce the following:

FMSet(X#a, Y #b) ∼=Set FMSet#b([b]X#a, Y ) ∼=Set FMSet#b(([b]X)#a, Y )

which by definition of FMSet and FMSet#b can be presented as

X#a ⇒fs Y
#b ∼=Set (([b]X)#a ⇒fs Y )#b

It is not hard to see that this can be lifted to an isomorphism in FMSet , i.e. the

left and right hand side are FM-sets and the morphisms observing the isomorphism

in Set are finitely supported.
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To sum it up. We first observed that NLC cannot capture exponentials of the

form X#a ⇒fs Y
#b. We then pointed out that there is an “alternative” notion

of exponentials in FMSet , which is rather close to what NLC can already express.

Hence, to construct an exponential in Cl(Th) we intend to mimic this “alternative”

presentation in Cl(Th). But to achieve this we need to extend NLC with name

abstraction, concretion and local fresh atomic names. As we have shown in Chapter

4 these concepts can already be captured in NLC (see NNLC). However, our ultimate

goal is to modify the definition of NNLC such that the adjoint equivalence in FMSet

is also taken into account. Hence, we wish to introduce a variant of NNLC, referred

to as [ N]NLC, which is semantically motivated by the adjoint equivalence we have

just introduced.

Given that the corresponding results of [ N]NLC (up to soundness) only involve

minor modifications of the corresponding results for NNLC, we refrain from re-stating

those results in this chapter. Moreover, due to the routine nature of the proof ex-

tensions for auxiliary results, we only provide proof details for important key lemmas

and soundness. Thus, if we reference results of NNLC in Chapter 4 in the context of

[ N]NLC we actually refer to their respective extensions for [ N]NLC.

5.3.1 “Alternative” Exponentials in FMSet

We begin by introducing the isomorphism

X#a ⇒fs Y
#a ∼=FMSet (X ⇒fs Y )#a,

which is an immediate extension of [35] (Lemma 8.12). For the second isomor-

phism (a ∩ b = ∅) we wish to obtain:

X#a ⇒fs Y
#b ∼=FMSet (([b]X)#a ⇒fs Y )#b

This is achieved by proving two intermediate results. We first prove the existence
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of an adjoint equivalence

FMSet#b,a ' FMSet#b (a /∈ b) (�)

which is a variant of the property proved in [35] (Lemma 8.18). From this, we can

now directly deduce FMSet#a ' FMSet by using functors (−)#a and [a](−), which

represent multiple applications of the respective functors of the adjoint equivalence

(�). We now recall the functor (−)#a : FMSet#b,a → FMSet#b:

• X ∈ FMSet#b,a is mapped to X#a def
= {x ∈ X | a # x} ∈ FMSet#b and

• f : X → Y in FMSet#b,a is mapped to f#a : X#a → Y #a in FMSet#b, which is

defined by f#a(x ∈ X#a)
def
= f(x) ∈ Y #a.

As we have already seen, X#a is an FM-set with supp(X#a) = supp(X) ∪ {a}.

Given that b # X and a /∈ b, we have that b # X#a and therefore X#a ∈ FMSet#b.

From a # f and a # x we can directly deduce a # f(x). Hence, f#a is well

defined. Further, we have that supp(f#a) = supp(f) ∪ {a} and from f being finitely

supported, we can deduce that f#a is finitely supported as well. Due to the fact that

b # f and a /∈ b, we have that b # f#a and therefore f#a ∈ FMSet#b. The functor

properties follow by routine computations. We continue by introducing the functor

[a](−) : FMSet#b → FMSet#b,a, which is defined as follows:

• X ∈ FMSet#b is mapped to [a]X
def
= {〈a′〉x | a′ # X ∧ x ∈ (a a′) · X} ∈

FMSet#b,a, where 〈a′〉x is the ordinary notion of name abstraction.

• f : X → Y in FMSet#b is mapped to [a]f : [a]X → [a]Y in FMSet#b,a, which

is defined by [a]f(z ∈ [a]X)
def
= fresh b in 〈b〉((a b) · f)(z @ b)

It is not hard to see that supp([a]X) = supp(X)\{a} and therefore [a]X, equipped

with the permutation action π · 〈a′〉x def
= 〈π · a′〉π · x, is an FM-set with supp(〈a′〉x) =

supp(x) \ {a′}. Given that b # X and a /∈ b, we have that b # [a]X. Hence, we have

that [a]X ∈ FMSet#b,a.
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Due to the fact that [a]f is defined using the freshness theorem, we need to

demonstrate that the condition of the freshness theorem is met. We immediately

obtain that h
def
= Λb ∈ A → 〈b〉(((a b) · f)(z @ b)) is finitely supported by supp(f) ∪

supp(z) ∪ {a}. We then choose any name a′ such that a′ # h. We now have h(a′)
def
=

〈a′〉(((a a′) · f)(z @ a′)) and by Lemma 2.2.12 we obtain that a′ # h(a′). Hence, [a]f

is well defined. Further, we have that supp([a]f) = supp(f)∪\{a} and therefore [a]f

is an FM-function with a # [a]f . Moreover, given that b # f and a /∈ b, we have

that b # [a]f . Thus, [a]f ∈ FMSet#b,a. The functor properties follow by routine

computations. After we have defined both functors, we can now prove the key part,

namely the adjoint equivalence.

Proposition 5.3.1 (−)#a a [a](−) and moreover FMSet#b,a ' FMSet#b

Proof We prove that (−)#a a [a](−) is an adjunction via the unit and counit char-

acterisation. We have chosen this characterisation because we directly use the counit

in the definition of our categorical semantics. Further, we prove that FMSet#b,a '

FMSet#b is an adjoint equivalence by demonstrating that the unit and counit are

natural isomorphisms. The unit and counit, as well as their respective inverses are

defined as follows:

• The unit ηa : 1
FMSet#b,a

⇒ [a](−) ◦ (−)#a is a natural transformation with the

components ηa,X : X → [a](X#a) in FMSet#b,a being defined by ηa,X(x)
def
=

fresh a′ in 〈a′〉x. The inverse η−1
a,X : [a](X#a) → X in FMSet#b,a is defined by

η−1
a,X(〈a′〉x)

def
= x.

• The counit εa : (−)#a ◦ [a](−)⇒ 1
FMSet#b

is a natural transformation with the

components εa,X : ([a]X)#a → X in FMSet#b being defined by εa,X(〈a′〉y)
def
=

(a a′) · y. The inverse ε−1
a,X : X → ([a]X)#a in FMSet#b is defined by ε−1

a,X(x)
def
=

fresh a′ in 〈a′〉((a a′) · x).
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Let x ∈ X. In the case of ηa,X we have to show that the condition of the freshness

theorem holds. We can immediately observe that the function Λa′ ∈ A → 〈a′〉x is

finitely supported by supp(x)∪supp(X)∪{a}. Then, for any b # (x,X, a) we directly

obtain that b # 〈b〉x. Let a′ # (a,X, x). We next have to show that

〈a′〉x ∈ [a](X#a)
def
= {〈a′〉x | a′ # X#a, x ∈ (a a′) ·X#a}

From a′ # X and a′ 6= a we can deduce that a′ # X#a holds. Further, from

x ∈ X, a′ # (x,X) and a # X, we can deduce that x ∈ X#a′ = ((a a′) ·X)#(a a′)·a =

(a a′) ·X#a. Hence, ηa,X is well defined and it can easily be seen that ηa,X is finitely

supported by supp(X). Hence, given that b, a # X we immediately get that b, a #

ηa,X , and therefore ηa,X ∈ FMSet#b,a. The inverse map η−1
a,X is well defined and finitely

supported by supp(X). So, we have η−1
a,X ∈ FMSet#b,a. The argument for the counit

follows analogously.

We continue by demonstrating that ηa and εa are natural transformations: Let

f : X → Y in FMSet#b,a (b, a # f) and x ∈ X.

([a]f#a)(ηa,X(x))
def
= [a]f#a(〈a′〉x) (fresh name a′)

def
= 〈a′′〉(((a′′ a) · f#a)(〈a′〉x @ a′′)) (fresh name a′′)

def
= 〈a′′〉(f#a′′(a′ a′′) · x) (a, a′′ # f ; a′′ # x)

def
= 〈a′′〉(f((a′ a′′) · x))

= 〈a′′〉(f(x)) (a′, a′′ # x)

def
= ηa,Y (f(x))

Let f : X → Y in C#b and 〈a′〉x ∈ ([a]X)#a. So, by definition we have that
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a # 〈a′〉x. We consider the case where a 6= a′. Hence, we have that a # x.

εa,Y (([a]f)#a(〈a′〉x))
def
= εa,Y ([a]f(〈a′〉x))

def
= εa,Y (〈a′′〉(((a a′′) · f)(〈a′〉x @ a′′))) (fresh name a′′)

def
= (a a′′) · (((a a′′) · f)((a′ a′′) · x))

= f((a a′′)(a′ a′′) · x)

= f((a′ a)(a a′′) · x)

= f((a′ a) · x) (a, a′′ # x)

def
= f(εa,X(〈a′〉x))

Next, we prove that the previously defined inverse maps for ηa and εa are in-

deed the respective inverses, and therefore the components of ηa and εa are natural

isomorphisms. Let x ∈ X (b, a # X)

η−1
a,X(ηa,X(x))

def
= η−1

a,X(〈a′〉x) (fresh name a′)

def
= x

Let 〈a′〉y ∈ [a](X#a). So, by definition, we have a′ # X#a and y ∈ (a a′) · X#a.

We can now deduce that a′ # X, a′ 6= a and (a a′) · X#a = (a a′) · X#a′ = X#a′ .

Hence, we have that a′ # y.

ηa,X(η−1
a,X(〈a′〉y))

def
= ηa,X(y)

def
= 〈a′′〉y (fresh name a′′)

= 〈a′′〉(a′′ a′) · y (a′, a′′ # y)

def
= 〈a′〉y (a′′ # a′, y)

We continue with the counit εa: Let x ∈ X

εa,X(ε−1
a,X(x))

def
= εa,X(〈a′〉((a a′) · x)) (fresh name a′)

def
= (a a′) · (a a′) · x

= x
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Let 〈a′〉y ∈ [a]X and a # 〈a′〉y. We only consider the case a 6= a′. So, a # y.

ε−1
a,X(εa,X(〈a′〉y))

def
= ε−1

a,X((a a′) · y)

def
= 〈a′′〉((a a′′)(a a′) · y) (fresh name a′′)

def
= 〈a′′〉((a′′ a′)(a a′′) · y)

def
= 〈a′′〉((a′′ a′) · y) (a, a′′ # y)

def
= 〈a′〉y (a′′ # (a, y))

We complete this proof by checking the triangle equalities: Let 〈a′〉y ∈ [a]Y . We

consider the case a′ 6= a.

[a]εa,Y (ηa,[a]Y (〈a′〉y))
def
= [a]εa,Y (〈a′′〉〈a′〉y) (fresh name a′′)

def
= 〈a′′′〉(((a a′′′) · εa,Y )(〈a′′〉〈a′〉y @ a′′′)) (fresh name a′′′)

= 〈a′′′〉((a a′′′) · εa,Y ((a a′′′) · (〈a′′〉〈a′〉y @ a′′′)))

= 〈a′′′〉((a a′′′) · εa,Y ((a a′′′) · ((a′′ a′′′) · 〈a′〉y)))

def
= 〈a′′′〉((a a′′′) · εa,Y (〈a′〉(a a′′′)(a′′ a′′′) · y))

def
= 〈a′′′〉((a a′′′)(a a′)(a a′′′)(a′′ a′′′) · y)

= 〈a′′′〉((a a′′′)(a a′′′)(a′′′ a′)(a′′ a′′′) · y)

= 〈a′′′〉((a′′′ a′) · y) (a′′, a′′′ # y)

= 〈a′〉y (a′′′ # (a′, y))

Let x ∈ X#a (a # x)

εa,X#a((ηa,X)#a(x))
def
= εa,X#a(ηa,x(x))

def
= εa,X#a(〈a′〉x) (fresh name a′)

def
= (a a′) · x

= x (a, a′ # x)

�
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To ultimately obtain the second isomorphism we require a second property, which

is a variant of [35] (Lemma 8.13). Here, we prove it for single names, but it extends

easily to finite sets of names.

Lemma 5.3.2 If X ∈ FMSet#b and a 6= b, then [a]X#b = ([a]X)#b.

Proof Let X ∈ FMSet#b and a 6= b.

(⊆): Take 〈a′〉x′ ∈ [a]X#b. We have by definition that a′ # X#b and x′ ∈

(a a′) · (X#b). Given that supp(X#b) = supp(X) ∪ {b}, we can deduce that a′ # X

and a′ 6= b. Further, we have that x′ ∈ (a a′) · (X#b) ⊆ (a a′) ·X. Hence, we have that

〈a′〉x′ ∈ [a]X. What remains to be shown is that b # 〈a′〉x′. From x′ ∈ (a a′) · (X#b)

we can deduce that (a a′) · x′ ∈ X#b. So, we have that b # (a a′) · x′. Given that

b # (a, a′) and equivariance we have that b # x′, and therefore b # 〈a′〉x′.

(⊇): Take 〈a′〉x′ ∈ ([a]X)#b. So, by definition we have that b # 〈a′〉x′, a′ # X

and x′ ∈ (a a′) ·X. We consider the case (a′ 6= b). The other case follows by choosing

a representative for 〈a′〉x′ which is fresh for b. We can now deduce that a′ # X#b

and b # x′. Considering the assumption x′ ∈ (a a′) · X and b # x′ we obtain that

x′ ∈ ((a a′) ·X)#b = (a a′) · (X#b). �

Remark 5.3.3 We are not yet finished, because to support our claim that exponen-

tials in FMSet can be presented in an “alternative” way, we also have to consider the

case a∩b 6= ∅. So, let c = a∩b. We can now use the previously introduced generalised

isomorphism to deduce the following:

X#a ⇒fs Y
#b ∼=FMSet (X#a\c ⇒fs Y

#b\c)#c

∼=FMSet ((([b \ c]X)#a\c ⇒fs Y )#b\c)#c

= (([b \ c]X)#a\c ⇒fs Y )#b
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5.3.2 [ N]NLC: NNLC with Dependent Name Abstraction Types

Based on the previously observed properties for FMSet , we introduce a new calcu-

lus, which is denoted by [ N]NLC. We take NNLC, which was introduced in Chapter

4, as our starting point. Recall that the aim of this semantically motivated extension

of NLC is to mimic the “alternative” presentation of an exponential (in FMSet) in a

syntactically generated (classifying) category Cl(Th).

We augment the type system with a dependent name abstraction type [a]s,

instead of Name.s, which is a binder on names. The permutation action on types is

extended as follows:

π · [a]s
def
= [π · a]π · s

with supp([a]s) = {a} ∪ supp(s). The set of free names of types, referred to as

fnt(s), is recursively defined as follows:

fnt(γ)
def
= supp(γ)

fnt(s1
a ⇒ s2)

def
= supp(s1) ∪ supp(s2) ∪ a

fnt([a]s)
def
= supp(s) \ a

Next, we introduce α-equivalence for types with the following key rule:

( Nb) (b a1) · s1 ≡α (b a2) · s2

[a1]s1 ≡α [a2]s2

The permutation action can be shown to preserve α-equivalence, and therefore the

permutation action can be lifted on α-equivalence classes of types with supp([s]α) =

fnt(s).

We extend the collection of raw terms with name abstraction and concretion,

respectively denoted by 〈〈a〉〉M and M @ a, as well as a term former for local fresh

atomic names fr a.M . Analogous to 〈a〉M , occurrences of a in M are not bound in

〈〈a〉〉M . The permutation actions on the resulting raw terms (and expressions) are

defined as for NNLC.
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The set of typed expressions and theorems of an [ N]NLC-theory Th is defined to

be the least set of judgements containing the axioms of Th and being closed under

the rules in Table 5.2 and Table 5.3.

(NABSD)
∇#a `[ N]NLC M : (a a′) · s

(a # (∇,M), a′ # s)
∇ `[ N]NLC 〈〈a′〉〉M : [a]s

(CONCD)
∇ `[ N]NLC b # F : [a]s

(a # ∇)
∇#a `[ N]NLC F @ b : (a b) · s

(LFAN) ∇#a `[ N]NLC a # M : s
(a # ∇)∇ `[ N]NLC fr a.M : s

Table 5.2: [ N]NLC Typing Rules

While the rule (LFAN) stays unchanged, compared to NNLC, we have minor mod-

ifications for rules (NABSD) and (CONCD), which are both semantically motivated by

the adjunction (−)#a a [a](−). The final shape of both rules becomes obvious when

we present the adjunction as follows:

FMSet D#a → X ∼= (a a′) ·X

FMSet#a D → [a]X

5.3.3 A Sound Categorical Semantics for [ N]NLC in FMSet

We introduce a categorical semantics for [ N]NLC in FMSet , which relies on the

additional structures that we have just introduced for FMSet (see Table 5.4). Note

that the partial interpretation function is not specifically defined for FMSet , but for

any category with such structures (later referred to as [ N]FM-cccs). This is necessary

for a future categorical type theory correspondence for [ N]NLC. However, as part of

the soundness proof we unravel these definitions (for FMSet) and observe that it is
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(BND)
∇#a `[ N]NLC M : (a a′) · s ∇ `[ N]NLC b # 〈〈a′〉〉M : [a]s

(a # ∇,M)
∇#a `[ N]NLC (〈〈a′〉〉M) @ b ≈ (a′ b) ∗M : (a b) · s

(END)
∇ `[ N]NLC b # F : [a]s

∇ `[ N]NLC 〈〈b〉〉(F @ b) ≈ F : [a]s

(BNABSD)
( Nb) ∇#a,b `[ N]NLC (b a′) ∗M ≈ (b a′′) ∗M ′ : (a a′) · s

(a # (∇,M,M ′);

a′, a′′ # s)∇ `[ N]NLC 〈〈a′〉〉M ≈ 〈〈a′′〉〉M ′ : [a]s

(CCD)
∇ `[ N]NLC b # F : [a]s ∇ `[ N]NLC F ≈ F ′ : [a]s

∇#a `[ N]NLC F @ b ≈ F ′ @ b : (a b) · s
(a # ∇)

(LFANR)
∇#a `[ N]NLC a # M : s

(a # ∇)
∇#a `[ N]NLC fr a.M ≈M : s

(LFANS) ∇#a,a′ `[ N]NLC a, a′ # M : s
(a 6= a)∇ `[ N]NLC fr a. fr a′.M ≈ fr a′. fr a.M : s

(LFANL) ∇#a′ , a′, a # x : s `[ N]NLC a′ # M : s′

∇ `[ N]NLC fr a′. λax : s.M ≈ λax : s. fr a′.M : sa ⇒ s′
(a′ 6∈ a)

Table 5.3: [ N]NLC Equation Rules

close to the to the partial interpretation function introduced for the model-theoretic

semantics for NNLC (in FMSet) that we introduced in Chapter 4.

[[∇#a `[ N]NLC M : (a a′) · s]] I m : [[∇]]#a → (a a′) · [[s]]
[[∇ `[ N]NLC 〈〈a′〉〉M : [a]s]] I [a]((a a′)(a a′)·[[s]] ◦m) ◦ εa,[[∇]] : [[∇]]→ [a][[∇]]#a → [a][[s]]

[[∇ `[ N]NLC b # F : [a]s]] I f : [[∇]]→ ([a][[s]])#b

[[∇#a `[ N]NLC F @ b : (a b) · s]] I concb ◦ f ◦ ia[[∇]] : [[∇]]#a → [[∇]]→ ([a][[s]])#b → (a b) · [[s]]

[[∇#a `[ N]NLC a # M : s]] I θ : [[∇]]#a → [[s]]#a

[[∇ `[ N]NLC fr a.M : s]] I ε−1
a,[[s]] ◦ [a]θ ◦ εa,[[∇]] : [[∇]]→ [a][[∇]]#a → [a][[s]]#a → [[s]]

Table 5.4: Categorical Semantics for [ N]NLC in FMSet
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Extension of Soundness Theorem for [ N]NLC

We recall that in FMSet , ia is an inclusion map. We observe that for a # (∇,M, τ)

and ∇#a `[ N]NLC M : τ , we can deduce that ∇#a `[ N]NLC a # M : τ . Moreover, it

follows that [[∇#a `[ N]NLC M : τ)]] I m and the condition †(a,m) holds. This is

analogous to Lemma 3.2.19 for the model-theoretic semantics. Let c # (∇, a,M, τ)

and d ∈ [[∇]]#a,c. So, a, c # d

((a c)[[τ ]] ◦ [[∇#a `[ N]NLC M : τ ]] ◦ ic
[[∇]]#a,c

)(d)

def
= (a c)[[τ ]]([[∇#a `[ N]NLC M : τ ]](d)) (in FMSet)

= (a c)[[τ ]]([[∇#a,c `[ N]NLC M : τ ]](d)) (in FMSet , c # d)

def
= (a c) · [[∇#a,c `[ N]NLC M : τ ]](d) (in FMSet)

= ((a c) · [[∇#a,c `[ N]NLC M : τ ]])((a c) · d)

= ([[(a c) · ∇#a,c `[ N]NLC (a c) ·M : (a c) · τ ]])((a c) · d) (Lemma 5.2.3 (ii))

= ([[∇#a,c `[ N]NLC M : τ ]])(d) (a, c # (∇,M, τ, d))

= ([[∇#a `[ N]NLC M : τ ]])(d) (in FMSet , c # d)

Hence, by definition of our semantics we have that [[∇#a `[ N]NLC a # M : τ ]] I m∗

with m = ia ◦m∗ (�1). We begin with typing rules and their denotation for FMSet :

(NABSD): Suppose that ∇ `[ N]NLC 〈〈a′〉〉M : [a]s. From this we can deduce that

∇#a `[ N]NLC M : (a a′) · s, a # (∇,M) and a′ # s. We now need to show that [[∇ `[ N]NLC

〈〈a′〉〉M : [a]s]]⇓. By induction we have [[∇#a `[ N]NLC M : (a a′) · s]] I m. So, the

existence follows immediately by definition of the semantics. Next, we demonstrate



CHAPTER 5. TOWARDS A CATEG. TYPE THEORY CORRESP. 180

how the interpretation can be simplified in the case of FMSet . Let d ∈ [[∇]]

[[∇ `[ N]NLC 〈〈a′〉〉M : [a]s]](d)

def
= [a]((a a′)(a a′)·[[s]] ◦m)(εa,[[∇]](d))

def
= [a]((a a′)(a a′)·[[s]] ◦m)(〈a′′〉d) (fresh name a′′)

def
= 〈a′′′〉(((a a′′′) · [(a a′)(a a′)·[[s]] ◦m])(d))

def
= 〈a′′′〉(a a′′′) · [(a a′)(a a′)·[[s]] ◦m])((a a′′′) · d)

def
= 〈a′′′〉(a a′′′) · [(a a′)(a a′)·[[s]](m((a a′′′) · d))])

def
= 〈a′′′〉(a a′′′) · [(a a′) · (m((a a′′′) · d))])

= 〈a′′′〉(a′ a′′′) · (a a′′′) · (m((a a′′′) · d))

= 〈a′〉(a a′′′) · [m((a a′′′) · d)] (a′′′ # (a a′′′) · (m((a a′′′) · d)) using (�1))

= 〈a′〉((a a′′′) ·m)(d)

Hence, for some fresh name b we have the following interpretation

[[∇ `[ N]NLC 〈〈a′〉〉M : [a]s]](d) = 〈a′〉((a b) ·m)(d)

(CONCD): This case follows similarly to (AP) for NLC. The interpretation can be

simplified as follows:

[[∇#a `[ N]NLC F @ b : (a b) · s]](d)
def
= (concb ◦ f ◦ ia[[∇]])(d)

def
= concb(f(d))

def
= f(d) @ b

def
= ([[∇ `[ N]NLC b # F : [a]s]])(d) @ b

(LFAN): This case follows similarly to (AP) for NLC. The interpretation can be
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simplified as follows: Let [[∇#a `[ N]NLC a # M : s]] I θ and d ∈ [[∇]].

[[∇ `[ N]NLC fr a.M : s]](d)
def
= ε−1

a,[[∇]]([a]θ(εa,[[s]](d)))

def
= ε−1

a,[[∇]]([a]θ(〈a′′〉d)) (fresh name a′′)

def
= ε−1

a,[[∇]](〈a
′〉(((a a′) · θ)(〈a′′〉d @ a′))) (fresh name a′)

= ε−1
a,[[∇]](〈a

′〉(((a a′) · θ)(d))) (a′, a′′ # d)

def
= ((a a′) · θ)(d)

Hence, for some fresh name a′ we have that

[[∇ `[ N]NLC fr a.M : s]](d) = ((a a′) · [[∇#a `[ N]NLC a # M : s]])(d)

The justification that we can use fresh a′ in (−) instead follows similarly to the

model-theoretic semantics in FMSet . We continue with the equational rules. The

existence part of the Kleene equality follows analogue to the typing cases. So, we

only concentrate on the equational part:

(BND): Suppose that ∇#a `[ N]NLC (〈〈a′〉〉M) @ b ≈ (a′ b) ∗ M : (a b) · s. From

this we can deduce that ∇#a `[ N]NLC M : (a a′) · s, ∇ `[ N]NLC b # 〈〈a′〉〉M : [a]s and

a # (∇,M). Further, it follows by definition that a′ # s and b # [a]s. We consider

the case where all names are distinct. Hence, we have that b # s. The equation is

deduced as follows: Let d ∈ [[∇]]#a.

[[∇#a `[ N]NLC (〈〈a′〉〉M) @ b : (a b) · s]](d)

def
= [[∇ `[ N]NLC b # 〈〈a′〉〉M : [a]s]](d) @ b

= [[∇ `[ N]NLC 〈〈a′〉〉M : [a]s]](d) @ b (in FMSet)

def
= [〈a′〉((a a′′) · [[∇#a `[ N]NLC M : (a a′) · s]])(d)] @ b (fresh name a′′)

def
= (a′ b) · ((a a′′) · [[∇#a `[ N]NLC M : (a a′) · s]])(d)

def
= (a′ b) · (a a′′) · [[∇#a `[ N]NLC M : (a a′) · s]]((a a′′) · d)

= (a′ b) · (a a′′) · [[∇#a `[ N]NLC M : (a a′) · s]](d) (a, a′′ # d)
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= (a′ b) · [[∇#a `[ N]NLC M : (a a′) · s]](d) (see (�2))

= ((a′ b)(−) ◦ [[∇#a `[ N]NLC M : (a a′) · s]])(d) (in FMSet)

= [[∇#a `[ N]NLC (a′ b) ∗M : (a′ b) · (a a′) · s]](d) (Lemma 5.2.3 (iii))

= [[∇#a `[ N]NLC (a′ b) ∗M : (a b) · (a′ b) · s]](d)

= [[∇#a `[ N]NLC (a′ b) ∗M : (a b) · s]](d) (a′, b # s)

For (�2) we observe that a # [[∇#a `[ N]NLC M : (a a′) · s]](d), which follows from

(�1). Further, we have a′′ # [[∇#a `[ N]NLC M : (a a′)·s]](d), because a′′ is freshly chosen.

(END): The equation is deduced as follows: Let d ∈ [[∇]]

[[∇ `[ N]NLC 〈〈b〉〉(F @ b) : [a]s]](d)

def
= 〈b〉(a a′′) · [[∇#a `[ N]NLC F @ b : (a b) · s]]((a a′′) · d) (fresh name a′′)

def
= 〈b〉(a a′′) · [[[∇ `[ N]NLC b # F : [a]s]]((a a′′) · d)] @ b

def
= 〈b〉(a a′′) · [[[∇ `[ N]NLC F : [a]s]]

∗
((a a′′) · d)] @ b

= 〈b〉[(a a′′) · [[∇ `[ N]NLC F : [a]s]]
∗
((a a′′) · d)] @ b

= 〈b〉[[[(a a′′) · ∇ `[ N]NLC (a a′′) · F : (a a′′) · [a]s]]
∗
(d)] @ b

= 〈b〉[[∇ `[ N]NLC F : [a]s]]
∗
(d) @ b a # (∇, F, [a]s)

= [[∇ `[ N]NLC F : [a]s]]
∗
(d) (�)

= ib ◦ [[∇ `[ N]NLC F : [a]s]](d)

= [[∇ `[ N]NLC F : [a]s]](d) (in FMSet)

with (�) being b # [[∇ `[ N]NLC F : [a]s]]∗(d) and Lemma 2.2.13.

(BNABSD): Suppose ∇ `[ N]NLC 〈〈a′〉〉M ′ ≈ 〈〈a′′〉〉M ′′ : [a]s. From this we can

deduce that ∇#a,b `[ N]NLC (b a′) ∗M ′ ≈ (b a′′) ∗M ′′ : (a a′) · s for some/any fresh b,

a # (∇,M ′,M ′′) and a′, a′′ # s. Let [[∇#a `[ N]NLC M ′ : (a a′) · s]] I m′, [[∇#a `[ N]NLC

M ′′ : (a a′) · s]] I m′′ and d ∈ [[∇]]. Then, by definition, we have that for some fresh c

[[∇ `[ N]NLC 〈〈a′〉〉M ′ : [a]s]]
def
= 〈a′〉((a c) ·m′)(d)

[[∇ `[ N]NLC 〈〈a′′〉〉M ′′ : [a]s]]
def
= 〈a′′〉((a c) ·m′′)(d)



CHAPTER 5. TOWARDS A CATEG. TYPE THEORY CORRESP. 183

Next, by definition, we choose a fresh name b and demonstrate that

(a′ b) · ((a c) ·m′)(d) = (a′′ b) · ((a c) ·m′′)(d)

(a′ b) · ((a c) ·m′)(d)

= (a′ b) · (a c) ·m′((a c) · d)

= (a c) · (a′ b) ·m′((a c) · d)

= (a c) · (a′ b) · [[∇#a `[ N]NLC M ′ : (a a′) · s]]((a c) · d)

= (a c) · (a′ b) · [[∇#a,b `[ N]NLC M ′ : (a a′) · s]]((a c) · d) (in FMSet , b # (a c) · d)

= (a c) · ((a′ b)(−) ◦ [[∇#a,b `[ N]NLC M ′ : (a a′) · s]])((a c) · d) (in FMSet)

= (a c) · [[∇#a,b `[ N]NLC (a′ b) ∗M ′ : (a′ b) · (a a′) · s]]((a c) · d) (Lemma 5.2.3 (iii))

= (a c) · [[∇#a,b `[ N]NLC (a′ b) ∗M ′ : (a b) · (a′ b) · s]]((a c) · d)

= (a c) · [[∇#a,b `[ N]NLC (a′ b) ∗M ′ : (a b) · s]]((a c) · d) (a′, b # s)

= (a c) · [[∇#a,b `[ N]NLC (a′′ b) ∗M ′′ : (a b) · s]]((a c) · d) (induction)

= ... (reverse reasoning)

= (a′′ b) · ((a c) ·m′′)(d)

(CCD): Suppose ∇#a `[ N]NLC F @ b ≈ F ′ @ b : (a b) · s. From this we can deduce

that ∇ `[ N]NLC b # F : [a]s, ∇ `[ N]NLC F ≈ F ′ : [a]s and a # ∇. The equational part is

deduced as follows: Let d ∈ [[∇]]#a.

[[∇#a `[ N]NLC F @ b : (a b) · s]](d)
def
= [[∇ `[ N]NLC b # F : [a]s]](d) @ b

def
= [[∇ `[ N]NLC F : [a]s]](d) @ b (in FMSet)

= [[∇ `[ N]NLC F ′ : [a]s]](d) @ b (induction)

def
= [[∇ `[ N]NLC b # F ′ : [a]s]](d) @ b (in FMSet)

def
= [[∇#a `[ N]NLC F ′ @ b : (a b) · s]](d)

(LFANR): The equational part is deduced as follows: Let d ∈ [[∇]]#a. So, by



CHAPTER 5. TOWARDS A CATEG. TYPE THEORY CORRESP. 184

definition, we have that a # d.

[[∇#a `[ N]NLC fr a.M : s]](d)

def
= ((a a′) · [[∇#a `[ N]NLC a # M : s]])(d) (fresh name a′)

def
= (a a′) · [[[∇#a `[ N]NLC a # M : s]]((a a′) · d)]

def
= (a a′) · [[[∇#a `[ N]NLC a # M : s]](d)] (a, a′ # d)

= [[∇#a `[ N]NLC a # M : s]](d) (a, a′ # [[∇#a `[ N]NLC a # M : s]](d))

def
= [[∇#a `[ N]NLC M : s]](d)

(LFANS): Suppose ∇ `[ N]NLC fr a. fr a′.M ≈ fr a′. fr a.M : s. From this we can

deduce that ∇#a,a′ `[ N]NLC {a, a′} # M : s and a, a′ # ∇. We now prove the equational

part: Let d ∈ [[∇]]

[[∇ `[ N]NLC fr a. fr a′.M : s]](d)

def
= ((a a′′) · [[∇#a `[ N]NLC a # fr a′.M : s]])(d) (fresh name a′′)

= (a a′′) · [[∇#a `[ N]NLC a # fr a′.M : s]]((a a′′) · d)

def
= (a a′′) · [[∇#a `[ N]NLC fr a′.M : s]]

∗
((a a′′) · d)

def
= (a a′′) · [[∇#a `[ N]NLC fr a′.M : s]]((a a′′) · d) (in FMSet)

def
= (a a′′) · [((a′ a′′′) · [[∇#a,a′ `[ N]NLC a′ # M : s]])((a a′′) · d)]

= (a a′′) · (a′ a′′′) · [[∇#a,a′ `[ N]NLC a′ # M : s]]((a′ a′′′) · (a a′′) · d)

def
= (a a′′) · (a′ a′′′) · [[∇#a,a′ `[ N]NLC M : s]]

∗
((a′ a′′′) · (a a′′) · d)

= (a a′′) · (a′ a′′′) · [[∇#a,a′ `[ N]NLC M : s]]((a′ a′′′) · (a a′′) · d) (in FMSet)

= (a′ a′′′) · (a a′′) · [[∇#a′,a `[ N]NLC M : s]]((a a′′) · (a′ a′′′) · d) (distinct a, a′, a′′, a′′′)

= ...

= [[∇ `[ N]NLC fr a′. fr a.M : s]](d)

(LFANL): Suppose that ∇ `[ N]NLC fr a′. λax : s.M ≈ λax : s. fr a′.M : sa ⇒ s′. From

this we can deduce that ∇#a′ , {a′}∪a # x : s `[ N]NLC a′ # M : s′ and a′ 6∈ a. We prove
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the equational part: Let d ∈ [[∇]] and d′ ∈ [[∇]]#a.

(([[∇ `[ N]NLC fr a′. λax : s.M : sa ⇒ s′]])(d))(d′)

def
= ([(a′ b) · [[∇#a′ `[ N]NLC a′ # λax : s.M : sa ⇒ s′]]](d))(d′) (fresh name b)

= ((a′ b) · [[[∇#a′ `[ N]NLC a′ # λax : s.M : sa ⇒ s′]]((a′ b) · d)](d′)

= (a′ b) · ([[[∇#a′ `[ N]NLC a′ # λax : s.M : sa ⇒ s′]]((a′ b) · d)]((a′ b) · d′))
def
= (a′ b) · ([[[∇#a′ `[ N]NLC λax : s.M : sa ⇒ s′]]((a′ b) · d)]((a′ b) · d′)) (in FMSet)

def
= (a′ b) · ([λ([[∇#a′ , a # x : s `[ N]NLC M : s′]])((a′ b) · d)]((a′ b) · d′))
def
= (a′ b) · [[[∇#a′ , a # x : s `[ N]NLC M : s′]]((a′ b) · d, (a′ b) · d′)] (in FMSet)

= (a′ b) · [[[∇#a′ , a # x : s `[ N]NLC M : s′]]((a′ b) · d, ia′[[s]]((a′ b) · d′))]

= (a′ b) · [[[∇#a′ , a ∪ {a′} # x : s `[ N]NLC M : s′]]((a′ b) · d, (a′ b) · d′)]

= (a′ b) · [[[∇#a′ , a ∪ {a′} # x : s `[ N]NLC a′ # M : s′]]((a′ b) · d, (a′ b) · d′)]

= ((a′ b) · [[∇#a′ , a ∪ {a′} # x : s `[ N]NLC a′ # M : s′]])(d, d′)

def
= [[∇, a # x : s `[ N]NLC fr a′.M : s′]](d, d′)

= (λ([[∇, a # x : s `[ N]NLC fr a′.M : s′]])(d))(d′) (in FMSet)

def
= (([[∇ `[ N]NLC λax : s. fr a′.M : sa ⇒ s′]])(d))(d′)

�

5.3.4 [ N]FM-cartesian Closed Categories

We have shown, as an intermediate step, that our categorical semantics for [ N]NLC

(in FMSet) is sound and moreover it closely corresponds to the model-theoretic se-

mantics (in FMSet). The essential question is now, if the categorical semantics that

we have just introduced is also complete and if a categorical type theory correspon-

dence for [ N]NLC can be obtained. As a step towards answering this question we have

to abstract away from FMSet and introduce a category with the following structures:

(i) For any FM-category C, there is a family of categories (C#a | a ⊆fin A) where
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ob C#a consists of those C ∈ ob C for which a # C. Given such C,C ′ ∈ ob C#a,

f : C → C ′ ∈ mor C is a morphism in C#a just in case a # f . The properties

of fresh inclusions ensure that each C#a is indeed a category, and moreover that

for each a ∈ A and b ⊆fin A (a /∈ b) there is a functor (−)#a : C#b,a → C#b as

shown by Clouston [13] (see Lemma 7.2.8).

(ii) We then require that each such functor (−)#a : C#b,a → C#b has a right adjoint

[a](−) : C#b → C#b,a, which is moreover an adjoint equivalence. Further, [a](−)

needs to preserve finite products and [a]X#b ∼= [a](X#b) for a 6= b.

(iii) Further, there is a family of morphisms concb : ([a]C)#b → (a b) · C.

(iv) We also require that these structures satisfy the commutativity properties which

are needed in order to soundly model the equations (see Table 5.2) for the

categorical semantics (see Table 5.4).

For now, we have decided to incorporate soundness in the definition of the struc-

ture, until a more “elegant” structure can be provided. Thus, there is one commuta-

tive diagram for each equational rule and its determined by unravelling the categorical

semantic for the left and right side of the equations of [ N]NLC. For example, we have

for every D ∈ ob C#a, X ∈ ob C, and a′, b # X, where εa,D : D → [a]D#a is the counit

of the adjunction, the following commutative diagrams for (BND) and (END).

D#a m
- (a a′) ·X

(a′ b)(a a′)·X- (a b) ·X

D

i

?

F ∗
- ([a]X)#b

concb

6

with F being the morphism

D
εa,D- [a]D#a [a]m

- [a](a a′) ·X
[a](a a′)(a a′)·X- [a]X
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Further

D
F

- [a]X

[a]D#a

εa,D

?

[a]((a b)(a b)·X ◦ conca ◦ F ∗ ◦ iaD)
- [a]X

wwwwwwwww
where

D#a iaD - D
F ∗
- ([a]X)#b concb- (a b) ·X

(a b)(a b)·X- X

The other commutative diagrams follow analogously. We call an FM-cccs with

these additional structures a [ N]FM-cccs. Hence, as shown in the previous section,

we have that FMSet is an [ N]FM-ccc.

5.3.5 Construction of Exponentials via [ N]NLC

We recall that the starting point of this section was the observation that NLC

is not expressive enough to construct an exponential for a syntactically generated

(classifying) category Cl(Th). This lead to the introduction of [ N]NLC, which is

semantically motivated by an “alternative” exponential in FMSet . To close the circle,

we will now demonstrate that [ N]NLC is expressive enough to construct an equivariant

exponential in Cl(Th). This is an important step towards obtaining a syntactically

generated classifying [ N]FMccc. However, to ultimately obtain a classifying category,

the remaining properties of a [ N]FM-ccc still have to be proven, which is work in

progress that will not be part of this thesis.

We take the syntactic classifying category (term quotient structure) that was

introduced by Clouston [17] as our starting point:

Objects: ob Cl(Th) is defined to be the set of freshness contexts. We make use of
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the following typical objects

∇ def
= (a1 # x1 : s1, ..., an # xn : sn)

∇′ def
= (a′1 # x′1 : s′1, ..., a

′
m # x′m : s′m)

∇′′ def
= (a′′1 # x′′1 : s′′1, ..., a

′′
k # x′′k : s′′k)

Morphisms: mor Cl(Th) is defined to be the set of morphisms

δ
def
= ([M1]≈, . . . , [Mm]≈) : ∇ → ∇′,

which are lists of typed expressions such that for 1 ≤ i ≤ m we have Th B

∇ `[ N]NLC a′i # Mi : s′i, and [Mi]≈ is the equivalence class of those T such that

Th B ∇ `[ N]NLC Mi ≈ T : s′i.

Identity: For∇, as defined above, the identity morphism is given by ([x1]≈, . . . , [xn]≈).

Composition: Let δ : ∇ → ∇′ be as defined above and let δ′
def
= ([N1]≈ . . . [Nk]≈) :

∇′ → ∇′′. Then

δ′ ◦ δ def
= ([N1{ ~Mi/~xi}]≈, . . . , [Nk{ ~Mi/~xi}]≈)

Finitely supported internal permutation action: For ∇ the internal permu-

tation action π∇ is given by ([πx1]≈, . . . , [πxn]≈) : ∇ → π · ∇. By applying the

conjugation permutation action on a morphism δ (see above) we obtain

π · ([M1]≈, . . . , [Mm]≈) = ([π ·M1]≈, . . . , [π ·Mm]≈) : π · ∇ → π · ∇′

Equivariant finite products: The terminal object in Cl(Th) is the empty freshness

context. For ∇ and ∇′, the product is defined by concatination of environments:

∇×∇′ def
= (a1 # x1 : s1, ..., an # xn : sn, a

′
1 # x′1 : s′1, ..., a

′
m # x′m : s′m)

and the projection maps are defined as:

pr1
def
= ([x1]≈, . . . , [xn]≈) : ∇×∇′ → ∇

pr2
def
= ([x′1]≈, . . . , [x

′
m]≈) : ∇×∇′ → ∇′



CHAPTER 5. TOWARDS A CATEG. TYPE THEORY CORRESP. 189

Fresh-inclusion: For ∇ the fresh inclusion is defined as follows:

ia∇
def
= ([x1]≈, . . . , [xn]≈) : ∇#a → ∇

Exponential: Due to the fact that the computations involved in the verification

of the exponential are rather tedious and very lengthy, we believe that it is more

instructive to first verify it for the case ∇i
def
= (ai # xi : si) (i = 1, 2, 3). This

argument can later be generalised without problems. So, let’s consider ∇1 ⇒ ∇2. As

previously discussed, one would imagine that an exponential has the following form:

(∅ # f : s1
a1 ⇒ s2

a2)

which is not a legitimate type in [ N]NLC. In order to construct an exponential,

using the typing system of [ N]NLC, we mimic the isomorphisms observed in FMSet :

∇1 ⇒ ∇2
def
= (a2 # f : ([a2]s1)a1 ⇒ s2)

The evaluation map ev : (∇1 ⇒ ∇2)×∇1 → ∇2 is defined to be

ev
def
= ([fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1)]≈)

Further, for any δ
def
= ([M ]≈) : ∇3 ×∇1 → ∇2 the exponential mate λ(δ) : ∇3 →

∇1 ⇒ ∇2 is given by

λ(δ)
def
= ([λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1}]≈)

We now demonstrate that the previously defined structures constitute an expo-

nential in Cl(Th).

Verification of the Exponential Object

For the construction of an exponential object for (a1 # x1 : s1) and (a2 # x2 : s2),

we may assume without loss of generality that a2 # s1. If this were not the case,
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we could choose a fresh name b and permute (a1 # x1 : s1) with (b a2) to obtain

(a1 # x1 : (b a2) · s1), which is isomorphic to (a1 # x1 : s1) via the morphism

([(b a2)]≈) : ∇1 → (a1 # x1 : (b a2) · s1) in Cl(Th). So, as previously defined, we

have ∇1 ⇒ ∇2
def
= (a2 # f : ([a2]s1)a1 ⇒ s2), which is clearly a freshness context and

therefore an object of Cl(Th).

Verification of the Evaluation Map

We next demonstrate that the evaluation map ev : (∇1 ⇒ ∇2)×∇1 → ∇2, which

is defined as ev
def
= ([fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1)]≈), is a morphism in Cl(Th). Hence,

we have to show that

(∇1 ⇒ ∇2)×∇1 `[ N]NLC a2 # fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1) : s2

holds. We first check if the typing assertion is correct and later prove the freshness

assertion, referred to as (�1). So, we need to show that

{a2} # f : ([a2]s1)a1 ⇒ s2, {a1} # x1 : s1 `[ N]NLC fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1) : s2

To apply rule (LFAN), we need b # ({a2} # f : ([a2]s1)a1 ⇒ s2, {a1} # x1 : s1),

which is satisfied by using α-equivalence. Hence, we have to demonstrate that

{b, a2} # f : [a2]s1
a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC b # (b a2) ∗ f(〈〈b〉〉(b a2)x1) : s2

Again, we first check if the typing assertion is correct and later prove the freshness

assertion, referred to as (�2). By applying Lemma 3.2.5 and considering that b, a2 #

s2, we can equally prove that

{b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC f(〈〈b〉〉(b a2)x1) : s2

By rule (SP) we immediately get {b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 :

s1 `[ N]NLC f : ([a2]s1)a1 ⇒ s2. Note that the previous typing assertion follows directly

by (AP) once we have shown that

{b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC a1 # 〈〈b〉〉(b a2)x1 : [a2]s1
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Yet again, we first check if the typing assertion is correct and later prove the

freshness assertion, referred to as (�3). Given that a2 # s1, we can choose a fresh

name a′2 and α-convert [a2]s1 to [a′2]s1. Hence, we can equally show that

{b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC 〈〈b〉〉(b a2)x1 : [a′2]s1

Given that b # [a′2]s1 and a′2 # ({b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 :

s1, (b a2)x1), we can apply rule (NABSD) and show that

{a′2, b, a2} # f : ([a2]s1)a1 ⇒ s2, {a′2, b, a1} # x1 : s1 `[ N]NLC (b a2)x1 : (a′2 b) · s1

which follows immediately by (SP) and the fact that b, a2 # s1. What remains

to be shown are the three freshness conditions (�1), (�2) and (�3). We begin with

freshness assertion (�3):

{b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC a1 # 〈〈b〉〉(b a2)x1 : [a2]s1

By definition, we choose a fresh name c and prove that

{c, b, a2} # f : ([a2]s1)a1 ⇒ s2, {c, b, a1} # x1 : s1 `[ N]NLC (a1 c) ∗ 〈〈b〉〉(b a2)x1 ≈

〈〈b〉〉(b a2)x1 : [a2]s1

Given that b # (a1, c) and by the derived rule (CNA) we can equally show that

{c, b, a2} # f : ([a2]s1)a1 ⇒ s2, {c, b, a1} # x1 : s1 `[ N]NLC (a1 c)(b a2)x1 ≈ (b a2) : s1

We can now compute the following

ds((b a2), (a1 c)(b a2)) = supp((b a2)(a1 c)(b a2))

= supp((a1 c)(b a2)(b a2)) = supp((a1 c)) = {a1, c}

and therefore (SUSP) can be applied to complete the freshness assertion argument

(�3). We continue with the freshness assertion (�2):

{b, a2} # f : [a2]s1
a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC b # (b a2) ∗ f(〈〈b〉〉(b a2)x1) : s2
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Note that by Corollary 3.2.10 we can equally show that

{b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC a2 # f(〈〈b〉〉(b a2)x1) : s2

Given that {b, a2} # f : ([a2]s1)a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC a2 # f :

([a2]s1)a1 ⇒ s2 trivially follows, it suffices to show that {b, a2} # f : [a2]s1
a1 ⇒

s2, {b, a1} # x1 : s1 `[ N]NLC a2 # 〈〈b〉〉(b a2)x1 : [a2]s1. So, by definition, we need to

demonstrate that for a fresh name c we can obtain

{c, b, a2} # f : [a2]s1
a1 ⇒ s2, {c, b, a1} # x1 : s1 `[ N]NLC (a2 c) ∗ 〈〈b〉〉(b a2)x1 ≈

〈〈b〉〉(b a2)x1 : [a2]s1

Given that b # (a2, c) and by the derived rule (CNA) we can equally show

{b, a2} # f : [a2]s1
a1 ⇒ s2, {b, a1} # x1 : s1 `[ N]NLC (a2 c)(b a2)x1 ≈ (b a2)x1 : [a2]s1

which follows directly by (SUSP) given that ds((b a2), (a2 c)(b a2)) = supp((b c)) =

{b, c} and b, c are in the freshness context for x1. We conclude by showing that the

freshness assertion (�1) holds:

{a2} # f : ([a2]s1)a1 ⇒ s2, {a1} # x1 : s1 `[ N]NLC a2 # fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1) : s2

So, by definition, we have to show that for some fresh name c

{c, a2} # f : ([a2]s1)a1 ⇒ s2, {c, a1} # x1 : s1 `[ N]NLC (c a2) ∗ fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1)

≈ fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1) : s2

Then, by definition of the object level permutation action on fr b. (−) and rule

(LFAN), we need to show that

{b, c, a2} # f : ([a2]s1)a1 ⇒ s2, {b, c, a1} # x1 : s1 `[ N]NLC (c a2) ∗ (b a2) ∗ f(〈〈b〉〉(b a2)x1)

≈ (b a2) ∗ f(〈〈b〉〉(b a2)x1) : s2
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By definition of the object level permutation action we have

(c a2) ∗ (b a2) ∗ f (〈〈b〉〉(b a2)x1)
def
= ((c a2)(b a2)f) (〈〈c〉〉(c a2)x1)

(b a2) ∗ f (〈〈b〉〉(b a2)x1)
def
= ((b a2)f) (〈〈a2〉〉x1)

Further, we can compute

ds(((b a2), (c a2)(b a2)) = supp((b a2)(c a2)(b a2)) = supp((b c)) = {b, c}

and given that {b, c} is in the freshness context for variable f , we can use rule

(SUSP) to obtain

{b, c, a2} # f : ([a2]s1)a1 ⇒ s2 `[ N]NLC (c a2)(b a2)f ≈ (b a2)f : ([b]s1)a1 ⇒ s2

Next, we demonstrate that

{b, c, a1} # x1 : s1 `[ N]NLC 〈〈c〉〉(c a2)x1 ≈ 〈〈a2〉〉x1 : [b]s1

Then, by rule (BNABSD), we have to show that for a fresh name c′ we have

{c′, b, c, a1} # x1 : s1 `[ N]NLC (c′ c)(c a2)x1 ≈ (c′ a2)x1 : s1

We now compute that

ds((c′ a2), (c c′)(c a2)) = supp((c′ a2)(c c′)(c a2)) = supp((c c′)) = {c, c′}

Given that {c, c′} is in the freshness context for x1, the equational judgement

follows directly by (SUSP). To complete the freshness assertion argument, we apply

(WEAK) and (CA). Thus, we have shown that ev is a morphism in Cl(Th).

Verification of the Exponential Mate

We turn towards demonstrating that the exponential mate is a morphism in

Cl(Th). Suppose δ
def
= ([M ]≈) : ∇3 × ∇1 → ∇2. We recall that the exponential

mate is defined as follows:

λ(δ)
def
= ([λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1}]≈) : ∇3 → (∇1 ⇒ ∇2)
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Hence, we have to demonstrate that

∇3 `[ N]NLC a2 # λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1} : ([a2]s1)a1 ⇒ s2

holds. We first check if the typing is correct and later prove the freshness assertion,

referred to as (�4). By rule (ABS) we have to show that

{a3} # x3 : s3, {a1} # z : [a2]s1 `[ N]NLC fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1} : s2

Given that fr b. (−) is a binder, we have that b # ({a3} # x3 : s3, {a1} # z : [a2]s1)

(up to α-equivalence). Hence, we can apply rule (LFAN) and show that

{b, a3} # x3 : s3, {b, a1} # z : [a2]s1 `[ N]NLC b # (b a2) ∗M{(b a2) ∗ (z @ b)/x1} : s2

We postpone the freshness assertion, referred to as (�5), and continue with the

typing assertion. Using Lemma 3.2.5 and considering that b, a2 # s2, we can equally

show that

{b, a3} # x3 : s3, {b, a1} # z : [a2]s1 `[ N]NLC M{(b a2) ∗ (z @ b)/x1} : s2

By assumption and the application of rule (WEAK) we obtain that

{b, a3} # x3 : s3, {b, a1} # z : [a2]s1, {a1} # x1 : s1 `[ N]NLC M : s2

To be able to apply Lemma 3.2.20 and complete the typing assertion, it remains

to be proven that

{a1, b} # z : [a2]s1 `[ N]NLC a1 # (b a2) ∗ (z @ b) : s1

Again, we postpone the freshness assertion, referred to as (�6), until later. Using

Lemma 3.2.5 and considering that b, a2 # s1, we can equally demonstrate that

{a1, b} # z : [a2]s1 `[ N]NLC z @ b : s1

Given that a2 # (z @ b, a1, b, [a2]s1), we can use the rule (AE) and show that

{a2, a1, b} # z : [a2]s1 `[ N]NLC z @ b : s1
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holds instead. Using rule (CONCD) and considering that (a2 b) · s1 = s1 we have to

show that

{a1, b} # z : [a2]s1 `[ N]NLC b # z : [a2]s1

which follows directly by (SUSP). We now turn towards the freshness assertions

(�4), (�5) and (�6). We begin with freshness assertion (�6)

{a1, b} # z : [a2]s1 `[ N]NLC a1 # (b a2) ∗ (z @ b) : s1

By definition of freshness assertions (with a fresh name c) and the definition of

the object level permutation action we have to show that

{c, a1, b} # z : [a2]s1 `[ N]NLC (a1 c)(b a2)z @ a2 ≈ (b a2)z @ : a2

which follows directly from (CCD) and (SUSP), taking into account that

ds((b a2), (a1 c)(b a2)) = supp((a1 c)) = {a1, c}

and both names are in the freshness context for variable z. We continue with

freshness assertion (�5):

{a3, b} # x3 : s3, {a1, b} # z : [a2]s1 `[ N]NLC b # (b a2) ∗M{(b a2) ∗ (z @ b)/x1} : s2

We have by assumption that

{a3} # x3 : s3, {a1} # x1 : s1 `[ N]NLC a2 # M : s2

From this and the fact that (�6) holds, we can deduce by the derived rule (SUBST)

{a3} # x3 : s3 `[ N]NLC a2 # M{(b a2) ∗ (z @ b)/x1} : s2

Then, by rule (WEAK) and Corollary 3.2.10 (using permutation (b a2)), we are

done. What remains to be shown is freshness assertion (�4):

∇3 `[ N]NLC a2 # λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1} : ([a2]s1)a1 ⇒ s2
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By definition we have to show that for a fresh name c we have

{c, a3} # x3 : s3 `[ N]NLC (c a2) ∗ λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1}

≈ λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1} : ([a2]s1)a1 ⇒ s2

We first apply the object level permutation action

(c a2) ∗ λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1}
def
= λa1z : [a2]s1. fr b. (c a2) ∗ (b a2) ∗M{(b a2) ∗ (z @ b)/x1}{(c a2)z/z}

before we use rules (CL) and (LFAN). Hence, we need to show that

{b, c, a3} # x3 : s3, {b, a1} # z : [a2]s1 `[ N]NLC

(c a2) ∗ (b a2) ∗M{(b a2) ∗ (z @ b)/x1}{(c a2)z/z}

≈ (b a2) ∗M{(b a2) ∗ (z @ b)/x1} : s2

We can now deduce the following

(c a2) ∗ (b a2) ∗M{(b a2) ∗ (z @ b)/x1}{(c a2)z/z}

= (c a2) ∗ (b a2) ∗M{(c a2)z/z}{(b a2) ∗ ((c a2)z @ b)/x1}

= (c a2) ∗ (b a2) ∗M{(b a2) ∗ ((c a2)z @ b)/x1} (z /∈ fv(M))

= (c a2) ∗ (b a2) ∗M{(b a2)(c a2)z @ a2/x1}

= (c a2)(b a2) ∗M{((c a2)(b a2))−1z @ a2/x1}

= (c a2)(b a2) ∗ (M{z @ a2/x1}){((c a2)(b a2))−1z/z}

= (c a2)(b a2) ∗ (M{z @ a2/x1}){((c a2)(b a2))−1z/z}

{((c a2)(b a2))x3/x3}{((c a2)(b a2))−1x3/x3}

= (c a2)(b a2) ∗ (M{z @ a2/x1}{((c a2)(b a2))x3/x3})

{((c a2)(b a2))−1z/z}{((c a2)(b a2))−1x3/x3}

= (c a2)(b a2) · (M{z @ a2/x1}{((c a2)(b a2))x3/x3}) (Lemma 3.1.12)

= (b a2)(c b) · (M{z @ a2/x1}{((c a2)(b a2))x3/x3})
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= (b a2) · (((c b) ·M){z @ a2/x1}{(c b) · ((c a2)(b a2))x3/x3}) (Proposition 3.1.15)

= (b a2) · (M{z @ a2/x1}{(b a2)(c a2)x3/x3}) (b, c # M)

= (b a2) ∗ (M{z @ a2/x1}{(b a2)(c a2)x3/x3})

{(b a2)z/z}{(b a2)x3/x3} (Lemma 3.1.12)

= (b a2) ∗M{(b a2)z @ a2/x1}{(b a2)(c a2)(b a2)x3/x3}

= (b a2) ∗M{(b a2) ∗ (z @ b)/x1}{(b c)x3/x3}

Let’s suppose that the suspension of x3 inM is τ . We then have that ds(τ, τ(b c)) =

{b, c} (b, c # τ) and given that {b, c} are in the freshness context for variable x3, we are

done by rule (SUSP). Hence, we have shown that the exponential mate is a morphism

in Cl(Th).

Verification of the Universal Property

The uniqueness of the exponential mate follows immediately by construction of

the classifying category as a term quotient structure. What remains to be shown is

that the following equation holds:

ev ◦ (λ(([M ]≈))× id∇1) = ([M ]≈)

We recall the definitions of ev and λ(−):

ev
def
= ([fr b1. (b1 a2) ∗ f(〈〈b1〉〉(b1 a2)x1)]≈)

λ(([M ]≈))
def
= ([λa1z : [a2]s1. fr b. (b a2) ∗M{(b a2) ∗ (z @ b)/x1}]≈)

For brevity, we omit to explicitly mention the congruence rules used to obtain
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various of the following equations.

ev ◦ (λ(([M ]≈))× id∇1)

def
= ([fr b. (b a2) ∗ f(〈〈b〉〉(b a2)x1)]≈)◦

(([λa1z : [a2]s1. fr b
′. (b′ a2) ∗M{(b′ a2) ∗ (z @ b′)/x1}]≈)× ([x1]≈))

def
= ([fr b. (b a2) ∗ [λa1z : [a2]s1. fr b

′. (b′ a2) ∗M{(b′ a2) ∗ (z @ b′)/x1}]

(〈〈b〉〉(b a2)x1)]≈)

def
= ([fr b. (b a2) ∗ [fr b′. (b′ a2) ∗M{(b′ a2) ∗ ((〈〈b〉〉(b a2)x1) @ b′)/x1}]]≈) (B, z /∈ fv(M))

= ([fr b. (b a2) ∗ [fr b′. (b′ a2) ∗M{(b′ a2) ∗ ((b b′) ∗ (b a2)x1)/x1}]]≈) (BND)

= ([fr b. (b a2) ∗ [fr b′. (b′ a2) ∗M{(b b′)x1/x1}]]≈)

= ([fr b. (b a2) ∗ [fr b′. (b′ a2) ∗M ]]≈) (SUSP, for x1)

def
= ([fr b. fr b′. (b a2) ∗ (b′ a2) ∗M ]≈)

= ([fr b. fr b′. (b′ a2) ∗ (b b′) ∗M ]≈)

= ([fr b. fr b′. (b′ a2) ∗M ]≈) (PERM)

= ([fr b. fr b′.M ]≈) (�)

= ([M ]≈) (rule LFANR)

The equation (�) follows from our assumption that

a3 # x3 : s3, a1 # x1 : s1 `[ N]NLC a2 # M : s2

which by definition gives us the equation

{b′, a3} # x3 : s3, {b′, a1} # x1 : s1 `[ N]NLC (b′ a2) ∗M ≈M : s2

Hence, we have shown that the classifying category Cl(Th) is cartesian closed.
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Verification of Equivariant Exponential

Given the definition of the evaluation map ev

ev∇1,∇2 : ∇1 ⇒ ∇2 ×∇1 → ∇2

ev∇1,∇2

def
= ([fr b1. (b1 a2) ∗ f(〈〈b1〉〉(b1 a2)x1)]≈)

we have to demonstrate the following:

π · ev∇1,∇2 = evπ·∇1,π·∇2

Given that Cl(Th) has internal permutation actions we have

π · ev∇1,∇2 : π · (∇1 ⇒ ∇2 ×∇1)→ π · ∇2 = π · ∇1 ⇒ π · ∇2 × π · ∇1 → π · ∇2

π · ev∇1,∇2 = ([π · (fr b1. (b1 a2) ∗ f(〈〈b1〉〉(b1 a2)x1))]≈)

We can then deduce by definition that

evπ·∇1,π·∇2 : π · ∇1 ⇒ π · ∇2 × π · ∇1 → π · ∇2

evπ·∇1,π·∇2

def
= ([fr b1. (b1 π(a2)) ∗ f(〈〈b1〉〉(b1 π(a2))x1)]≈)

and demonstrate that both morphisms are equal:

π · ev∇1,∇2

= ([π · (fr b1. (b1 a2) ∗ f(〈〈b1〉〉(b1 a2)x1))]≈)

def
= ([fr π(b1). (π(b1) π(a2)) ∗ f(〈〈π(b1)〉〉(π(b1)π(a2))x1)]≈)

= ([fr b1. (b1 π(a2)) ∗ f(〈〈b1〉〉(b1 π(a2))x1)]≈) (α-equivalent)

= evπ·∇1,π·∇2

Remark 5.3.4 We have shown that Cl(Th) has equivariant exponentials and there-

fore Cl(Th) is an FM-ccc. What remains to be proven is that Cl(Th) is a [ N]FM-ccc,

which is not part of this thesis. A detailed account of those constructions and the

corresponding verifications is work in progress that we aim to publish as a journal

version of [23].
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Chapter 6

Completeness of βη-conversion for

Full Nominal Hierarchies in λ→

Our interest in this chapter is on completeness theorems for typed lambda calculi

in the context of the nominal set model. To our knowledge, a “nominal” environment

model (Henkin model) or a completeness theorem for a nominal analogue of full set-

theoretic hierarchies has not yet been studied for such calculi. An interesting attempt

in this direction is the work of Gabbay and Mulligan [37], but their notion of a nominal

Henkin-style model is not an environment model in the usual sense, because function

types are not interpreted as function spaces. Moreover, their completeness result only

refers to the existence of a model that satisfies β-conversion (a term quotient model).

We recall that completeness of βη-conversion in the ordinary simply typed lambda

calculus (λ→) has been proven for full set-theoretic hierarchies [30], full continuous

hierarchies and full recursive hierarchies [57, 48]. All these results have originally

been obtained using a logical relation based proof technique. An alternative proof

technique is used in Statman’s 1-Section Theorem [64, 65], which provides a necessary

and sufficient condition on the combinatorial structure of Henkin models to prove

completeness of βη-conversion on terms typable in λ→.

A logical relation based proof technique is usually the first choice in proving a
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completeness theorem. This is due to the fact that the proof argument is rather

flexible and can conveniently be adapted to a new calculus. At first sight, this seems

like the best approach to prove completeness theorems in a nominal context, but we

need to be careful, because the proof argument relies on the axiom of choice which

may result in complications. Hence, to proceed in this direction, we would have to

find a way to circumvent these complications. In contrast, the 1-Section theorem and

its underlying proof argument is rarely applied in the literature to prove completeness

results, which is related to the more involved and inflexible proof argument. Still,

it has an immediate advantage when it comes to nominal techniques, because the

argument does not involve the axiom of choice.

Having introduced NLC in this thesis, it would be a natural starting point to

investigate if βη-conversion is complete for nominal models in NLC, but as we have

previously observed, NLC can be quite unwieldy at times due to the intertwined

type and equation system. Furthermore, taking into consideration that SNTT and

λαν−calculus use ordinary function types, we ultimately decided to first turn towards

a more general question, namely if βη-conversion is complete for nominal models in

λ→. Once this question is answered, it can be seen as a stepping stone towards

completeness theorems for NLC, SNTT or the λαν−calculus in the future.

To sum it up, we introduce full nominal hierarchies, which are full hierarchies of

finitely supported functions over nominal sets, and analyse if βη-conversion on terms

typable in pure λ→ is complete for such models. At first, this may seem somewhat

cautious, but it isolates rather well the main problem that we will encounter when we

adapt the logical relation based proof technique. An immediate technical advantage

of this intermediate goal is that we can directly use various preliminary results of λ→

which allows us to concentrate on the core problems of the completeness argument.

Moreover, similar to the study of full recursive hierarchies or full continuous hierar-

chies, it is interesting in its own right to analyse if βη-conversion captures equality

in full nominal hierarchies. We now clarify that this is not merely an immediate
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consequence of the completeness result for full set-theoretic hierarchies:

We consider pure typed lambda terms M and N of type (γ ⇒ γ) ⇒ γ, where

γ is a base type. We recall that the interpretations of M and N , which are total

functions, can be shown to be equal in a full set-theoretic hierarchy by applying the

extensionality property. Note that this also holds in case of a full nominal hierarchy.

It may now be the case that the interpretations of M and N map precisely one

element of the function space [[γ]] ⇒ [[γ]] to different elements in [[γ]], and therefore

by extensionality the interpretations of M and N are not equal. If we now take into

account that the full nominal hierarchy is restricted to finitely supported functions,

the domain for the interpretations of M and N , [[γ]]⇒fs [[γ]], may be smaller. Hence,

the element in the domain that observed the inequality of the interpretation of M and

N in the full set-theoretic model may not be an element of [[γ]]⇒fs [[γ]], and therefore

the interpretations of M and N would actually be equal in the full nominal hierarchy.

Thus, there may be additional equations which hold in full nominal hierarchies, but

are not necessarily captured by βη-conversion.

The chapter is structured as follows. We first recall the ordinary typed lambda

calculus and the notion of an environment model (Henkin model). We then introduce

full nominal hierarchies and demonstrate that they are Henkin models. We continue

by discussing how to adapt the logical relation based proof argument such that it

can be applied to full nominal hierarchies and point out issues involving the axiom of

choice. To circumvent this issue, we propose a modification of the proof argument,

which relies on a stronger assumption. This provides us with a rather restricted

completeness theorem, which would need to be further investigated in the future.

Independently of this, we pursue an alternative route towards completeness by ap-

plying Statman’s 1-Section theorem. This involves proving that the necessary and

sufficient condition of the 1-section theorem holds for full nominal hierarchies. Given

that full nominal hierarchies are Henkin models, it directly follows that βη-conversion

is complete for full nominal hierarchies in λ→.
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6.1 Preliminaries

We recall the basic definitions of the ordinary simply typed lambda calculus, as

well as the notions of a typed applicative structure and an environment model (Henkin

model). For full details we refer to [3] and [48], respectively.

Simply Typed Lambda Calculus (λ→)

Definition 6.1.1 (Syntax of λ-terms) We introduce a λ-signature, Sg = (B,C),

which consists of the following data:

• A set of base types B. The set of types T is generated by the BNF grammar

σ ::= γ | σ ⇒ σ, where γ is a base type.

• A set C of typed constant symbols.

For an empty signature (C is empty), the corresponding simply typed lambda cal-

culus is called pure. The set TermSg of raw terms over a λ-signature Sg is generated

as follows:

M ::= x | c | λx:σ.M |MM

where x ranges over the set V of variables and c ranges over a set C of typed

constants. We denote the set of free variables of a term M by fv(M) and the set

of constants of a term M as const(M). Terms are identified up to renaming of

bound variables (Barendregt’s Variable Convention). Capture avoiding substitution is

denoted by N [x := M ].

Definition 6.1.2 (βη-reduction System) The β and η rules are defined as follows:

(λx:σ.N)M // N [x := M ] (β-rule)

λx:σ.Mx // M, if x 6∈ fv(M) (η-rule)
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Terms of the form (λx:σ.N)M are referred to as a β-redex and terms of the form

λx:σ.Mx as a η-redex. We say that M βη-reduces to N in one step, written as

→βη, if N can be obtained by applying the β or η rule to a corresponding redex in

M . Formally, the relation →βη is defined as the smallest relation on P that is closed

under contexts and the β and η-rules. The reflexive and transitive closure is denoted

by →→βη. The notion of reduction gives rise to a natural definition of equality modulo

reduction. Two terms M and N are called βη-convertible, denoted by M =βη N , if

M ≡α N , or there exists a term P with P =βη N and either M →→βη P or P →→βη M .

The βη-normal form of a term M is denoted by NF (M).

Due to the fact that pure λ→ is confluent and strongly normalising the following

decision procedure for βη-conversion can be used:

M =βη N ⇐⇒ NF (M) ≡α NF (N)

Definition 6.1.3 (Typing System) A context is a finite list of variable type pairs,

usually written as Γ = [x1 : σ1, ..., xn : σn], where the variables are required to be

distinct. A term-in-context is judgement of the form Γ `M :σ where Γ is a context,

M is term and σ is a type. A term-in-context is called a derived (proved) term,

if it is generated by the rules:

x :σ ∈ Γ (var)
Γ ` x :σ

c :σ ∈ C (const)
Γ ` c :σ

Γ, x :σ ` N :τ
(→ I)

Γ ` λx:σ.N :σ ⇒ τ
Γ `M :σ ⇒ τ Γ ` N :σ (→ E)

Γ `MN : τ

Applicative Structures and Henkin Models

Definition 6.1.4 (Applicative Structure) A typed applicative structure over

a λ-signature Sg is a pair

A ::= 〈{Aσ}, {appσ,τ}〉

where Aσ is a type indexed set and appσ,τ is a type indexed map Aσ⇒τ → Aσ → Aτ .
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Definition 6.1.5 (Extensional Applicative Structure) We say that a typed ap-

plicative structure is extensional if it satisfies the following property:

∀f, g ∈ Aσ⇒τ . [(∀d ∈ Aσ . appσ,τ f d = appσ,τ g d) =⇒ f = g]

To state the completeness theorem we use a structure that already assumes ex-

tensionality, namely a typed frame.

Definition 6.1.6 A typed frame is a typed applicative structure

A ::= 〈{Aσ}, {appσ,τ}〉

such that Aσ⇒τ ⊆ Aσ ⇒ Aτ and appσ,τ f d = f(d) for any f ∈ Aσ⇒τ and d ∈ Aσ.

Definition 6.1.7 For a λ-signature Sg, typed applicative structure A and context Γ,

we have the following definitions:

• A constant assignment κ is a partial function such that for c ∈ C and

c : σ ∈ Sg, we have that κ(c) ∈ Aσ holds.

• An environment η is a partial function from the set of variables V to the

disjoint union of all Aσ. For d ∈ Aσ, the updated environment η[x 7→ d] is

the environment mapping x to d and all other variables y 6= x to η(y).

• We say that η satisfies Γ, denoted by η |= Γ, if η(x) ∈ Aσ for every x : σ ∈ Γ.

• A total interpretation function for a typed applicative structure A maps a

derivation Γ ` M : σ, constant assignment κ and environment η |= Γ to an

element [[Γ `M : σ]]Aκ,η in Aσ.

Definition 6.1.8 (Henkin models) A pair 〈A, κ〉 is called a Henkin model if A

is an extensional typed applicative structure, κ is a constant assignment and there

exists a total interpretation function satisfying the following condition, referred to as

the environment model condition:
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(i) [[Γ ` c : σ]]Aκ,η = κ(c)

(ii) [[Γ ` x : σ]]Aκ,η = η(x)

(iii) [[Γ `M N : σ]]Aκ,η = appσ,τ [[Γ `M : σ ⇒ τ ]]Aκ,η [[Γ ` N : σ]]Aκ,η

(iv) [[Γ ` λx:σM. :σ ⇒ τ ]]Aκ,η = f , where f is the unique f ∈ Aσ⇒τ such that ∀d ∈

Aσ.appσ,τ f d = [[Γ, x : σ `M : τ ]]Aκ,η[x 7→d]

We say that a Henkin model 〈A, κ〉 satisfies an equation, denoted by 〈A, κ〉 |=

Γ `M = N :σ, if Γ ` M :σ, Γ ` N :σ and [[Γ ` M : σ]]Aκ,η = [[Γ ` N :σ]]Aκ,η for all η

with η |= Γ. If Γ is empty then we omit the context and write 〈A, κ〉 |= M =N :σ.

Similarly, if the signature is empty (no constants) we omit κ. We denote the set of

equations satisfied in a Henkin model A by Th(A).

The following technical lemma shows that the interpretation of a term M only

depends on the elements assigned to the free variables of M in the environment and

the constants that occur in M .

Lemma 6.1.9 Let 〈A, κ〉 be a Henkin model. If Γ `M : σ and η |= Γ, then

[[Γ `M : σ]]Aκ,η = [[Γ `M : σ]]Aκ∗,η∗

where η∗ and κ∗ are the maps η and κ, which are restricted to the set fv(M) and

const(M), respectively.

Lemma 6.1.10 (Soundness for Henkin Models) Let 〈A, κ〉 be a Henkin model.

1. Type Soundness. If Γ `M : σ, then [[Γ `M : σ]]Aκ,η ∈ Aσ for all η |= Γ.

2. Soundness of βη-conversion. Let Γ ` M : σ and Γ ` N : σ. If M =βη N

then 〈A, κ〉 |= Γ`M=N :σ.

We now state the completeness theorem of βη-conversion for Henkin models in

the pure λ→, which is formally defined as follows:
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Definition 6.1.11 (Completeness for Henkin Models) A Henkin model A is

called complete for the pure theory of βη-conversion if for any context Γ, type σ and

pure lambda terms M,M ′ of type σ, the following holds:

A |= Γ`M=M ′ :σ =⇒M =βη M
′

Note that without loss of generality the definition of the completeness theorem

can be restricted to closed terms. Further, an example of such a complete model for

βη-conversion is the syntactically generated term quotient model Q.

Theorem 6.1.12 (Completeness of the Term Quotient Model) There exists

a Henkin model (without empty sorts), referred to as Q, that satisfies precisely the

pure theory of βη-conversion.

6.2 Full Nominal Hierarchy N

We now formally introduce the full hierarchy of finitely supported functions over

nominal sets and demonstrate that it is a Henkin model.

Definition 6.2.1 (Full Nominal Hierarchy) Let Sg be a λ-signature and κ a con-

stant assignment. The full nominal hierarchy over infinite nominal sets {Xγ |

γ ∈ B}, denoted by 〈N , κ〉, is defined to be the typed frame

Nγ def
= Xγ

Nσ⇒τ def
= Nσ ⇒fs N

τ

that is equipped with the following interpretation function, which is recursively

defined on typing derivations for environments η and the constant assignment κ:

[[Γ ` c : σ]]Nκ,η = κ(c)

[[Γ ` x : σ]]Nκ,η = η(x)

[[Γ `M N : σ]]Nκ,η = appσ,τ [[Γ `M : σ ⇒ τ ]]Nκ,η [[Γ ` N : σ]]Nκ,η

[[Γ ` λx : σ.M : σ ⇒ τ ]]Nκ,η = {(d, [[Γ, x : σ `M : τ ]]Nκ,η[x 7→d]) | d ∈ Nσ}
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Note that typed frames are defined to be families of sets and not families of

nominal sets. However, this is not a problem, because the permutation actions are

only used to construct the hierarchy and do not interfere with the actual functions

contained in the sets. Hence, N is constructed using the nominal set structure, but

the actual typed frame is defined on the underlying sets.

For the following auxiliary result, we equip the set of constant assignments and

environments with a point-wise permutation action. Hence, both sets are Perm(A)-

sets with (π · κ)(c)
def
= π · κ(c) and (π · ε)(x)

def
= π · ε(x).

Lemma 6.2.2 Suppose that Γ `M : σ.

(i) π · [[Γ `M : σ]]Nκ,η = [[Γ `M : σ]]Nπ·κ,π·η.

(ii) supp([[Γ `M : σ]]Nκ,η) ⊆
⋃
c∈const(M) supp(κ(c)) ∪

⋃
x∈fv(M) supp(η(x))

Proof (i) The first property is proved by induction on the structure of M :

• Case (M is x)

π · [[Γ, x : σ ` x : σ]]Nκ,η
def
= π · η(x)

def
= (π · η)(x)

def
= [[Γ, x : σ `M : σ]]Nπ·κ,π·η

• Case (M is c):

π · [[Γ ` c : σ]]Nκ,η
def
= π · κ(c)

def
= (π · κ)(c)

def
= [[Γ ` c : σ]]Nπ·κ,π·η
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• Case (M is N N ′):

π · [[Γ ` N N ′ : τ ]]Nκ,η

def
= π · (app [[Γ ` N : σ ⇒ τ ]]Nκ,η [[Γ ` N ′ : σ]]Nκ,η)

def
= π · (([[Γ ` N : σ ⇒ τ ]]Nκ,η)[[Γ ` N ′ : σ]]Nκ,η)

def
= (π · [[Γ ` N : σ ⇒ τ ]]Nκ,η) π · [[Γ ` N ′ : σ]]Nκ,η

def
= app π · [[Γ ` N : σ ⇒ τ ]]Nκ,η π · [[Γ ` N ′ : σ]]Nκ,η

= app [[Γ ` N : σ ⇒ τ ]]Nπ·κ,π·η [[Γ ` N ′ : σ]]Nκ,π·η (induction)

def
= [[Γ ` N N ′ : τ ]]Nπ·κ,π·η

• Case (M is λx : σ.N): Let d ∈ Nσ. We can now deduce the following:

(π · [[Γ ` λx : σ.N : σ ⇒ τ ]]Nκ,η)(d)

def
= π · [[Γ, x : σ ` N : τ ]]Nκ,η[x 7→π−1·d]

= [[Γ, x : σ ` N : τ ]]Nπ·κ,π·η[x 7→π·π−1·d] (induction)

= [[Γ, x : σ ` N : τ ]]Nπ·κ,π·η[x 7→d]

def
= [[Γ ` λx : σ.N : σ ⇒ τ ]]Nπ·κ,π·η(d)

(ii) For the second property we reason as follows: By Lemma 6.1.9, we have that

supp([[Γ `M : σ]]Nκ,η) = supp([[Γ `M : σ]]Nκ∗,η∗) (�1)

where η∗ and κ∗ are the maps η and κ restricted to the set fv(M) and const(M)

respectively. From property (i) above, we know that [[Γ ` M : σ]]N(−,−) is equiv-

ariant and therefore by Lemma 2.2.3 (i) we have that

supp([[Γ `M : σ]]Nκ∗,η∗) ⊆ supp(κ∗) ∪ supp(η∗) (�2)

Due to the fact that the set of environments and assignments are Perm(A)-sets

with a point-wise permutation action, we have that:

supp(κ∗) =
⋃

c∈const(M)

supp(κ∗(x)) =
⋃

c∈const(M)

supp(κ(x)) (�3)
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supp(η∗) =
⋃

x∈fv(M)

supp(η∗(x)) =
⋃

x∈fv(M)

supp(η(x)) (�4)

From (�1), (�2), (�3) and (�4), we get the following:

supp([[Γ `M : σ]]Nκ,η) ⊆
⋃
x∈fv(M) supp(η(x)) ∪

⋃
c∈const(M) supp(κ(c))

�

The previous lemma can now be used to demonstrate that N is a total interpre-

tation function.

Lemma 6.2.3 Let κ be a constant assignment and η an environment such that η |= Γ.

If Γ `M : σ then [[Γ `M : σ]]Nκ,η ∈ Nσ.

Proof The lemma follows by induction on derivations of Γ `M : σ. We only consider

the case for lambda abstraction. The other cases follow immediately. Suppose Γ `

λx : σ.M : σ ⇒ τ and η |= Γ. From this we can deduce that Γ, x : σ ` M : τ . Let

d ∈ Nσ. We directly obtain that η[x 7→ d] |= Γ, x : σ and by induction [[Γ, x : σ `

M : τ ]]Nκ,η ∈ N τ . Hence, we clearly have that

{(d, [[Γ, x : σ `M : τ ]]Nκ,η[x 7→d]) | d ∈ Nσ}

is a function from Nσ to N τ . Given that Nσ⇒τ def
= Nσ ⇒fs N

τ , we have to show

that it is finitely supported as well. This follows immediately from Lemma 6.2.2 (ii).

Thus, we have that [[Γ ` λx : σ.M : σ → τ ]]Nκ,η ∈ Nσ⇒τ �

Due to the fact that the interpretation function of N trivially satisfies the envi-

ronment model condition, we can directly deduce that 〈N , κ〉 is a Henkin model:

Theorem 6.2.4 The full nominal hierarchy 〈N , κ〉 is a Henkin model.
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6.3 Routes Towards Completeness for N

In this section we pursue two routes towards a completeness theorem for N . Note

that in both cases we rely on the fact that N is a Henkin model. We further recall

that the completeness theorem that we pursue is for pure λ→ (without constants)

and to simplify matters, we further restrict to only one base type. Hence, we fix an

empty signature Sg with one base type γ.

6.3.1 Completeness via Logical Relations

We begin with a well known proof technique, based on logical relations, which was

used by Friedman [30]1 and Plotkin [57] to prove that the pure theory of βη-conversion

is complete for full set-theoretic hierarchies. We recall that logical relations are a

powerful tool in logic and semantics, which are used to establish links between syntax

and semantics of a calculus. Here we are interested in how the proof technique can

be used to prove completeness for full nominal hierarchies.

Definition 6.3.1 (Logical Relations) For typed applicative structures A and B, a

logical relation R = {Rσ} over A and B is defined as a family of type indexed

relations which is recursively defined as follows:

(i) Rσ ⊆ Aσ ×Bσ

(ii) Rσ⇒τ (f, g)⇐⇒ ∀x ∈ Aσ . ∀y ∈ Bσ . [Rσ(x, y) =⇒ Rτ (appσ,τ f x, appσ,τ g y)]

We present two auxiliary results that are important building blocks for the proof

of completeness via logical relations:

Lemma 6.3.2 [see Lemma 8.2.17 in [48]] If R ⊆ A×B is a logical partial function

from Henkin model A to B, then Th(A) ⊆ Th(B).

1not yet called logical relations at that time.
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Corollary 6.3.3 Let A be a Henkin model and B a complete Henkin model of βη-

conversion. If R ⊆ A× B is a logical partial function, then Th(A) = Th(B)

Proof Due to the fact that B is complete, we have that Th(B) is precisely the theory

of βη-conversion. By applying the soundness lemma on Henkin model A we deduce

that Th(B) ⊆ Th(A) and therefore Th(A) = Th(B) by applying Lemma 6.3.2. �

This result provides us with a way to determine if a particular Henkin model is

complete. We will now focus on the following two properties, namely if there exists

a complete model B and a logical partial function R.

We begin with the construction of a logical partial functionR between two Henkin

models, which is required to apply Lemma 6.3.2. We consider this as the main hurdle

towards a completeness result for N .

We first recall that for pure λ→ (without constants) a logical relation can directly

be constructed by choosing an arbitrary relation Rγ ⊆ Aγ × Bγ for base type γ and

by extending it inductively to function types. To construct a logical relation R that

is also a partial function, we can proceed as follows: We suppose that Rγ is a partial

function and prove by induction that this property can be lifted to all type-indexed

relations in R, which is informally expressed as R is a partial function.

Note that to prove this property, applying the original proof argument for full

set-theoretic hierarchies, we additionally require that R is surjective. Hence, we also

need to assert that Rγ is surjective and prove that surjectivity can be lifted to all type-

indexed relations in R. The corresponding property is therefore sometimes called the

“Surjective Lemma”, and it is informally expressed as: if B is a typed frame and Rγ

is a partial surjection, then R ⊆ N × B is a logical partial surjection.

Moreover, as will become obvious later, we need to further restrict to typed frames

B of finitely supported functions over a nominal set, also referred to as nominal

typed frames, which are formally defined as typed frames over a nominal set with

Aσ⇒τ ⊆ Aσ ⇒fs A
τ
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A first attempt of a “Surjective Lemma” for N can be stated as follows:

Attempt 6.3.4 (Surjective Lemma I) Let R ⊆ N × B be a logical relation over

the full nominal hierarchy N and a nominal type frame B. If Rγ ⊆ Nγ × Bγ is a

partial surjection, then R is a partial surjection.

We recall that in the original proof argument, as pointed out above, it is required

that R is surjective to ultimately show that R is a partial function. But to show that

R is surjective in the first place, the axiom of choice is required, which is problematic

in the context ofN . In particular, to prove thatR surjective it has to be demonstrated

(in the function type case of the inductive proof) that for any g ∈ Bσ⇒τ there exists

a function f ∈ Nσ⇒τ such that Rσ⇒τ (f, g).

Writing Rσ and Rτ as functions, it can immediately be observed that f can be any

function such that for all x ∈ Dom(Rσ) we have that f(x) is an element of the non-

empty set (Rτ )−1(g(Rσx)). Such functions obviously exists in the full set-theoretic

hierarchy, but in the case of N we also have to demonstrate that such a function

is finitely supported. Due to the fact that g is directly involved in the definition of

f , this justifies why we have restricted the “Surjective Lemma” to nominal typed

frames.

A direct way to prove that a function is finitely supported in the nominal set model

would be to apply the “Finite Support Principle” ([56]): Any function or relation that

is defined from finitely supported functions and relations using higher-order classical

logic without choice principles, is itself finitely supported.

However, due to the fact that the construction of f involves the axiom of choice,

this principle is not applicable in this case. So far, we did not succeed in proving or

disproving that there exits such a finitely supported f for the provided version of a

“Surjective Lemma”.

An obvious way to proceed at this point is to further restrict the “Surjective

Lemma”. More precisely, we address this particular problem by adapting the “Sur-
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jective Lemma” similarly to Mitchell’s proof for full recursive models [48] (see Section

8.4.2). The key idea is to apply a stronger condition on Rγ, which allows us to directly

construct the finitely supported functions that are required to prove surjectivity.

Before we can state the new “Surjective Lemma”, we need to introduce some

auxiliary notions: Let A and B be nominal sets. We call 〈f, g〉 a finitely supported

embedding from B into A if f : B → A and g : A → B are finitely supported

functions and g ◦ f = idB. Analogous to the proof for full recursive models, we use

the concept of realizability in connection with a logical relation R ⊆ A× B

• fσ realizes that Rσ is surjective by computing fσ(b) ∈ Aσ with Rs(fσ(b), b)

for every element b ∈ Bσ.

• gσ realizes that Rσ is a partial function by computing the unique gσ(a) =

b ∈ Bσ with Rσ(a, b) for any a ∈ dom(Rσ)

We modify the notion of a logical partial surjection by equipping it with the

notion of realizing functions: Let A and B be nominal type frames. We say that a

family {Rσ, fσ, gσ} of relations and functions is a finitely supported logical partial

surjection from A to B if R ⊆ A × B is a logical partial surjection, and functions

fσ : Bσ → Aσ and gσ : Aσ → Bσ are finitely supported functions with fσ realizing

that Rσ is surjective and gσ realizing that Rσ is a partial function.

Lemma 6.3.5 (Surjective Lemma II) Let B be nominal type frames. If Bγ is

finitely supported embedded in Nγ, then there exists a finitely supported partial sur-

jection {Rσ, fσ, gσ} from N to B.

Proof Using the finitely supported embedding (fγ, gγ), with the finitely supported

functions fγ : Bγ → Nγ and gγ : Nγ → Bγ for base type γ, we can define Rγ as

follows:

Rγ(x, y)⇐⇒ gγ(x) = y
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Due to the fact that we are restricted to pure λ→, we can construct a logical rela-

tion R ⊆ N ×B by extending Rγ inductively to function types. We then demonstrate

that by using the recursively defined realizing functions

fσ⇒τ
def
= f τ ◦ ◦ gσ

gσ⇒τ
def
= gτ ◦ ◦ fσ

we can prove that {Rσ, fσ, gσ} is a finitely supported logical partial surjection. We

now prove by induction on types that the functions are indeed finitely supported re-

alizing functions. From this we can then directly deduce thatR is a partial surjection.

Base Case:

(i) Let y ∈ Bγ. We need to show that Rγ(fγ(y), y), or equally, by definition of Rγ

that gγ(fγ(y)) = y. Given that (fγ, gγ) is a finitely supported embedding, we

have that gγ ◦ fγ = id; thus we are done.

(ii) The fact that gγ realizes that Rγ is a partial function follows directly by definition

of Rγ.

Both realizing maps are finitely supported by definition.

Inductive Case:

(i) Suppose h ∈ Bσ⇒τ . We have to demonstrate that fσ⇒τ (h) ∈ Nσ⇒τ and

Rσ⇒τ (fσ⇒τ (h), h). We clearly have that f τ ◦ h ◦ gσ is finitely supported and

given that N contains all finitely supported functions, the first condition holds.

For the second condition, we take into account that R is a logical relation.

Hence, we can equally show that for all y, y′ ∈ Nσ such that Rσ(y, y′) we can

deduce that Rτ ((fσ⇒τ (h))(y), h(y′)).
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Suppose y, y′ ∈ Nσ and Rσ(y, y′). By induction we have that gσ realizes that

Rσ is a partial function. So, given that Rσ(y, y′) we can directly deduce that

gσ(y) = y′. Again, by induction, we know that f τ realizes that Rτ is surjective.

So, given that that h(y′) ∈ Bτ we get Rτ (f τ (h(y′)), h(y′)). Further, using the

fact that gσ(y) = y′, we obtain Rτ (f τ (h(gσ(y))), h(y′)) and by definition of fσ⇒τ

we have Rτ ((fσ⇒τ (h))(y), h(y′)).

(ii) Let h ∈ dom(Rσ⇒τ ). We take any h′ ∈ Bσ⇒τ such that Rσ⇒τ (h, h′) and demon-

strate that h′ = gσ⇒τ (h). Let y ∈ Bσ. By induction fσ realizes that Rσ is

surjective. So, we have that Rσ(fσ(y), y) and given that R is a logical relation

we can deduce that Rτ (h(fσ(y)), h′(y)). Further, by induction, gτ realizes that

Rτ is a partial function. So, we have that Rτ (h(fσ(y)), gτ (h(fσ(y)))) and by

uniqueness we get gτ (h(fσ(y))) = h′(y). Given that y is any element, we have

that h′ = gσ⇒τ (h).

By construction, we have that both realizing functions, fσ⇒τ and gσ⇒τ , are finitely

supported. This concludes the proof. �

Based on Lemma 6.3.5 we can now prove a completeness theorem for N :

Theorem 6.3.6 If B is a complete nominal typed frame and Bγ is finitely supported

embedded in Nγ, then N is complete with respect to the theory of βη-conversion.

Proof By Theorem 6.2.4 we have that N is a Henkin model and by Lemma 6.3.5

that R ⊆ N × B is a logical partial function. Given that B is a complete Henkin

model, we can apply Corollary 6.3.3 to obtain Th(N ) = Th(B). �

What remains to be shown to apply the completeness theorem in a meaningful

way is the existence of a complete nominal typed frame B. The prime candidate

would be the syntactically generated term quotient model Q. For the the pure λ→,

we can apply Theorem 6.1.12 to obtain that Q is a Henkin model. Next, we have to



CHAPTER 6. COMPLETENESS OF βη-CONVERSION FOR N IN λ→ 217

show that Q can be viewed as a nominal type frame, i.e. there exits a nominal type

frame B such that B ∼= Q. In the case that we use the trivial permutation action,

this follows similarly to the case for Set .

We can now directly deduce that N over N (equipped with the trivial permutation

action) is complete. Given that Bγ is countable infinite, there exists a bijective map

between Bγ and N. Taking into account that both sets are equipped with a trivial

permutation action, we can directly deduce that the map is equivariant and therefore

we have a finitely supported embedding. This is a trivial example, which holds for

all full nominal hierarchies N over an infinite discrete nominal set.

Considering more interesting examples, the limitations of the theorem become

rather obvious. For example, we did not succeed in proving that Bγ is finitely sup-

ported embedded in A. Thus, it is either the case that the trivial permutation action

for Q is too weak or the finite support restriction for the “Surjective Lemma” is too

strong to begin with. Further work will be necessary to answer this question in a

satisfactory way.

6.3.2 Completeness via Statman’s 1-Section Theorem

An alternative route towards a completeness theorem for full nominal hierarchies

is based on Statman’s 1-Section theorem [64]. The 1-Section theorem provides a

necessary and sufficient condition on the combinatorial structure of Henkin models to

prove completeness of βη-conversion. Informally, the condition is checking if a Henkin

model has enough elements of a particular type to distinguish the interpretations of

lambda terms that are not βη-equivalent.

We begin by recalling the 1-section theorem and show how it is applied to prove

completeness for ordinary full set-theoretic hierarchies. We then turn towards full

nominal hierarchies and demonstrate that the condition of the 1-section theorem

holds. Given that the 1-section theorem can be applied on full nominal hierarchies

over an infinite nominal set, it is a Henkin model by Lemma 6.2.4, we ultimately
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obtained a completeness theorem of βη-conversion for full nominal hierarchies in λ→.

The 1-Section Theorem and its Applications

We introduce the 1-Section theorem as stated in [2] (for Henkin models instead of

classes of Henkin models). For a more extensive account of the 1-section theorem we

refer to [59].

Theorem 6.3.7 (1-Section for Models) For any Henkin model A over the empty

signature Sg, the following properties are equivalent:

(i) For any type σ and any closed pure typed lambda terms M,N of type σ:

A[[M ]] = A[[N ]]⇒M =βη N

(ii) For any closed pure typed lambda terms M,N of type (γ ⇒ γ ⇒ γ)⇒ γ ⇒ γ

A[[M ]] = A[[N ]]⇒M =βη N

Due to the fact that pure λ→ is confluent and strongly normalising, we have that

M =βη N ⇐⇒ NF (M) ≡α NF (N). Further, given that M is a Henkin model,

we can deduce from M =βη NF (M) and N =βη NF (N) that A[[M ]] = A[[NF (M)]]

and A[[N ]] = A[[NF (N)]] by soundness. Thus, we can rephrase the condition of the

1-section theorem as follows: for any closed pure typed lambda terms M,N of type

(γ ⇒ γ ⇒ γ)⇒ γ ⇒ γ

A[[NF (M)]] = A[[NF (N)]]⇒ NF (M) ≡α NF (N)

We can immediately observe that for an empty signature, without constants, the

closed terms of this type, in normal form, encode binary trees

t ::= c | f t t
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which are constructed over a signature {f, c}, where c : γ and f : γ ⇒ γ ⇒ γ. This

observation is useful once we start to prove completeness via the 1-Section theorem,

because the condition can be further simplified. We ultimately aim to prove the

following condition (contrapositive):

(∀t)(∀t′) . [t 6≡ t′ =⇒ (∃κ) [[t]]Aκ,∅ 6= [[t′]]Aκ,∅]

where κ assigns elements to c and f. An immediate consequence of Statman’s

1-Section theorem is that the full set-theoretic hierarchy over the natural numbers

N is complete for βη-conversion. A result, which was originally proven by Friedman

[30].

Corollary 6.3.8 The full set-theoretic hierarchy P over the set of natural numbers

N is complete for the pure theory of βη-conversion.

Proof Given that P is a Henkin model, the 1-section theorem can be applied to

determine if P over N is complete. As pointed out above, to prove completeness via

the 1-section theorem, it suffices to show that for any binary trees t, t′ such that t 6≡ t′

there exist an interpretation for c and f such that the interpretations of t and t′ are

distinct.

In the case of P over N we can even prove a stronger property, namely that there

exists a interpretation for c and f such that for any binary trees t, t′ with t 6≡ t′ we

have that the interpretation of t and t′ are distinct. From this, the above property

follows immediately.

We choose an injective pairing function p : N × N → N such that 0 is not in

the image of p. We can now take the curried version of p, denoted by λ(p), as the

interpretation of f and 0 as the interpretation of c. So, we clearly have that λ(p)

is an element of N ⇒ N ⇒ N and 0 ∈ N. Hence, κ
def
= {(c, 0), (f, λ(p))} is well

defined and we can now deduce by induction on the structure of binary tree t that

the interpretation of t and t′ are distinct.
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• Take c 6≡ f t1 t2. Given that 0 is not in the image of p, we can directly deduce

that [[c]]Pκ,∅
def
= 0 6= p([[t1]]Pκ,∅, [[t2]]Pκ,∅)

def
= (λ(p)([[t1]]Pκ,))([[t2]]Pκ,∅)

def
= [[f t1 t2]]Pκ,∅.

• Suppose f t1 t2 6≡ f t′1 t
′
2. W.l.o.g. we assume that t1 6≡ t′1. By induction and

injectivity of p, we can deduce

[[f t1 t2]]Pκ,∅
def
= ([[f]]Pκ,∅([[t1]]Pκ,∅))([[t2]]Pκ,∅)

def
= (λ(p)([[t1]]Pκ,∅))([[t2]]Pκ,∅)

def
= p([[t1]]Pκ,∅, [[t2]]Pκ,∅)

6= p([[t′1]]Pκ,∅, [[t
′
2]]Pκ,∅) (Induction and p is injective)

def
= [[f t′1 t

′
2]]Pκ,∅

�

Due to the fact that for any infinite set X there exists a countable infinite subset

S ⊆ X, the above result can be generalised to hold for any infinite set X. The pairing

function can then be applied on the enumeration of S to obtain a completeness result.

Corollary 6.3.9 The full set-theoretic hierarchy P over any infinite set X is com-

plete with respect to the theory of βη-conversion.

Completeness Theorem for N

We now demonstrate that the 1-section theorem can be used to prove that βη-

conversion is complete for full nominal hierarchies over an infinite nominal set X.

A trivial example is N over N, where the set of natural numbers is a nominal

set via the trivial permutation action. In this case, completeness follows trivially

using the same argument as for the full set-theoretic hierarchy over natural numbers

and by observing that under the trivial permutation action the pairing function is

equivariant. Note that this holds for any N over a discrete nominal set.
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For nominal sets in general, it can easily be observed that the argument for the

full set-theoretic hierarchy cannot be directly applied. This is due to the fact that a

pairing function is not necessarily finitely supported. So, we need to provide another

argument to demonstrate that the condition of the 1-section theorem is satisfied for

N . To be able to focus on the key reasoning steps, we restrict the completeness

theorem to countable infinite nominal sets. The more general case follows without

problems by observing that for any infinite nominal set X, there exists a countable

infinite subset S ⊆ X. Note that for the construction of S the axiom of dependent

choice is used and therefore the set is not necessarily a nominal set, but this is not

an issue, because we only require that the elements are finitely supported.

Corollary 6.3.10 The full nominal hierarchy N over a countable infinite nominal

set X is complete for the pure theory of βη-conversion.

Proof By Theorem 6.2.4 we have that N over an infinite nominal set is a Henkin

model. Hence, we can apply the 1-section theorem to determine if N is complete.

In the case of N we demonstrate that for any binary tree t there exists a inter-

pretation for c and f such that for any binary tree t′ we have that if t 6≡ t′ then the

interpretation of t and t′ are distinct. This is formally expressed as:

(∀t)(∃κ)(∀t′) . [t 6≡ t′ =⇒ [[t]]Nκ,∅ 6= [[t′]]Nκ,∅] (�)

From this, the property of the 1-section theorem can directly be deduced. We now

choose an enumeration on the set of binary trees with the following basic properties:

t0 ≡ c and (∀ti) (∀tj) [ (tj is a subtree of ti)⇒ j ≤ i ]

Given that X is a countable infinite set we also have an enumeration for X.

We now use both enumerations to construct for any binary tree ti a corresponding

function gi ∈ X ×X ⇒fs X

gi xl xm
def
=

 xk if ((k ≤ i) where (f tl tm) ≡ tk)

xi+1 o/w
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Next, we demonstrate that gi is finitely supported by A := supp(x0) ∪ ... ∪

supp(xi+1). Let c, c′ ∈ A \ A and xl, xm ∈ X.

Case 1: (l > i + 1) or (m > i + i). We assume w.l.o.g that l > i + 1. Note that

for any binary tree tj with j > i + 1 we can deduce from the enumeration of binary

trees that the index of f tj t for any binary tree t is greater than j. So, we have by

definition of gi that gi(xj, )
def
= xi+1 (�1).

We now assume, for a contradiction, that (c c′) ·xl = xk for k ≤ i+1. By applying

the permutation (c c′) on both sides of the equation, we obtain that xl = (c c′) · xk.

Given that k ≤ i+ 1 and c, c′ # xk, we have that xl = xk and therefore l = k. Hence,

we have reached a contradiction, because l > i + 1 and k ≤ i + 1, and therefore

k > i+ 1 (�2). We can now deduce the following equation:

((c c′) · gi)(xl, xm)
def
= (c c′) · (gi((c c′) · xl, (c c′) · xm))

def
= (c c′) · xi+1 (�1, �2)

= xi+1 (c, c′ # xi+1)

def
= gi(xl, xm) (�1)

Case 2: (l,m ≤ i+ 1)

Case 2.1: (l,m such that f tl tm ≡ tk and k > i)

((c c′) · gi)(xl, xm)
def
= (c c′) · (gi((c c′) · xl, (c c′) · xm))

= (c c′) · (gi(xl, xm)) (c, c′ # (xl, xm))

def
= (c c′) · xi+1

= xi+1 (c, c′ # xi+1)

def
= gi(xl, xm)
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Case 2.1: (l,m such that f tl tm ≡ tk and k ≤ i)

((c c′) · gi)(xl, xm)
def
= (c c′) · (gi((c c′) · xl, (c c′) · xm))

= (c c′) · (gi(xl, xm)) (c, c′ # (xl, xm))

def
= (c c′) · xk

= xk (c, c′ # xk)

def
= gi(xl, xm)

Hence, we have that λ(gi) ∈ X ⇒fs X ⇒fs X and therefore it is an element of

the full nominal hierarchy N over X.

Take κ
def
= {(c, x0), (f, λ(gi))}. Then, by construction of gi we can prove by induc-

tion that for all j ≤ i, [[tj]]
N
κ,∅ = xj and xi+1 otherwise:

Clearly, [[t0]]Nκ,
def
= [[c]]Nκ,∅

def
= x0. In the case of tm ≡ f tk tl (k, l < m ≤ i) with

[[tk]]
N
κ,∅ = xk and [[tl]]

N
κ,∅ = xl, we have

[[tm]]Nκ,∅ = [[f tk tl]]
N
κ,∅

def
= gi([[tk]]

N
κ,∅, [[tl]]

N
κ,∅) = gi(xk, xl)

def
= xm

The default case follows similarly. We can now prove property (�): Suppose t is a

binary tree with index k. We then take κ
def
= {(c, x0), (f, λ(gk))}. Suppose that t′ is a

binary tree such that t 6≡ t′. It follows immediately that [[t]]Nκ,∅ 6= [[t′]]Nκ,∅. The 1-section

theorem can then be applied to obtain the completeness theorem. �
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Chapter 7

Yoneda isomorphisms for

Nom/FM categories

In this chapter we study enriched and internal Yoneda isomorphism for nomi-

nal/FM categories. An overview of basic definitions and results of enriched and inter-

nal category theory will be provided in Appendix A. Our interest in this particular

topic stems from our efforts towards proving that NLC is a conservative extension

of NEL via a categorical proof argument, where such Yoneda isomorphisms play an

important role (see Appendix B.1). The computations that we need to perform to

obtain such a categorical conservative extension result are very “fine grained”, why

we have to use and understand the Nom/FM Yoneda lemmas not only abstractly, but

concretely in the form presented in this Chapter. This allows us to compute explicitly

with the permutation actions involved. However, a careful investigation of this topic

is not only means to an end, but also interesting in its own right.

We begin by providing an overview of categorical properties, which are required

to hold for nominal/FM categories such that an enriched or internal Yoneda isomor-

phisms can be obtained:

• For internal category theory we require that any category we internalise into
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has pullbacks (see Definition A.2.1). In addition, it is often required to have

finite completeness.

• For enriched category theory we require that the categories we enrich over are

closed monoidal categories (see Definition A.1.2). Further, to obtain an en-

riched Yoneda isomorphism (embedding), an additional property has to satis-

fied, namely completeness (see Theorem A.1.10).

As demonstrated in Section 2.4, nominal/FM categories have terminal objects,

initial objects, binary (co)products and (co)equaliser. Hence, by standard results [5],

all three categories are finitely (co)complete as well as internally (co)complete taking

into consideration that all three categories are also cartesian closed. From cartesian

closure it follows immediately that all three categories are closed monoidal categories.

What remains to be shown is that Nom, FMSet and FMNom are also complete. In

addition, out of general interest, we also consider cocompleteness.

To sum it up. We first analyse if nominal/FM categories are (co)complete. We

then unravel various weak and strong enriched Yoneda isomorphism, prove subsidiary

results and point out some interesting observations. Next, we present an internal

Yoneda isomorphism for FMSet . We conclude by introducing a notion of fs-(co)limits

and prove that FMSet is complete with respect to this notion of fs-(co)limits.

7.1 (Co)Completeness of Nominal/FM Categories

We begin by recalling a well known fact, namely that in Nom each family of

objects has a (co)product. In addition Nom has (co)equaliser, as shown in Lemma

2.4.1 and 2.4.2; thus we can directly deduce that Nom is (co)complete.

Lemma 7.1.1 Let I be an index set and (Xi | i ∈ I) a family of objects in Nom. A

product of that family is defined as (P , (pr i | i ∈ I)), where P ⊆ Πi∈IXi is the set of

finitely supported tuples with respect to the permutation action
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π · (x1, x2, ..., xi, ...)
def
= (π · x1, π · x2, ..., π · xi, ...)

and pr j : Πi∈IXi → Xj are projection maps.

Proof P is a nominal set by definition and equivariance of the projection maps follows

by standard computations. For the universal property we suppose that (D, (fi | i ∈

I)) is a cone. Then, analogous to products in Set , there exists a unique morphism

h : D → P , which is defined as h(d)
def
= (fi(d) | i ∈ I) for any d ∈ D. We now

need to show that h is well defined, i.e. h(d) is an element of P . This follows

immediately, because d is finitely supported (an element of the nominal set D) and

the morphisms fi are equivariant. Hence, we have that supp(fi(d)) ⊆ supp(d) and

therefore
⋃
i∈I supp(fi(d)) ⊆ supp(d). Thus, h(d) is a finitely supported tuple and

the fact that h is equivariant is deduced as follows:

π · h(d)
def
= π · (fi(d) | i ∈ I)

def
= (π · fi(d) | i ∈ I)

= (fi(π · d) | i ∈ I) (fi is equivariant)

def
= h(π · d)

The commuting condition follows as in the case of Set . �

Lemma 7.1.2 Let I be an index set and (Xi | i ∈ I) a family of objects in Nom.

A coproduct of that family is defined as (
∐

i∈I Xi, (incl i | i ∈ I)), where
∐

i∈I Xi
def
=

{(i, x) | i ∈ I ∧ x ∈ Xi} is the disjoint union over Xi, equipped with the permutation

action

π · (i, x)
def
= (π · i, π · x)

where π · i is the trivial permutation action and π · x is the permutation action of

Xi with supp(i, x) = supp(x), and incl j : Xj →
∐

i∈I Xi are inclusion maps.
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Proof It follows directly that
∐

i∈I Xi is a nominal set and the inclusion maps are

equivariant. For the universal property we suppose that (C, (fi | i ∈ I)) is a cocone.

The mediating morphism h :
∐

i∈I Xi → C, which is defined as h((i, z))
def
= fi(z), is

well defined by construction. Further, h can be proven equivariant as follows:

π · h(i, x)
def
= π · fi(x) = fi(π · x)

def
= h(i, π · x)

def
= h(π · i, π · x)

�

Remark 7.1.3 The fact that Nom is (co)complete can also be directly deduced from

Nom being equivalent to Set Ip.b.p (Schanuel topos)1, where I is the category of finite

names and injective functions, and the fact that Set Ip.b.p is a full reflective subcate-

gory of Set I :

Nom ' Set Ip.b.p ↪→ Set I

We recall that a reflective subcategory is closed under limits. This is not the case

for colimits, where the reflective functor can be used to transform colimits in Set I into

colimits of Set Ip.b.p. Note that Set I is (co)complete (via a point-wise definition). We

can now directly deduce that Set Ip.b.p is (co)complete with (co)limits constructed as

indicated above. Using the equivalence of categories, we then directly obtain that Nom

is (co)complete with the corresponding (co)limits.

A natural question to ask is if FMNom and FMSet can also be proven (co)complete.

So, let’s first reconsider the construction of a mediating function for products and co-

products in Nom:

• h(d)
def
= (fi(d) | i ∈ I) and

• h((i, z))
def
= fi(z)

As can immediately be observed, the mediating function for products would not be

well defined anymore, because for all i we have that supp(fi(d)) ⊆ supp(fi)∪supp(d),

1we refer to [56] for full details.
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but the family of fi’s does not necessarily have a common finite support. Hence, the

tuple would not be finitely supported. For the same reason, the mediating function

for coproducts is not finitely supported anymore.

Now, of course, there might be an alternative construction of products and co-

products, but this is not the case, as we will show with the following proofs by

contradiction.

Proposition 7.1.4 FMNom is not complete.

Proof We assume, for a contradiction, that FMNom is complete. Let I be an in-

finite index set, indeed just ω, and (A | i ∈ I) a family of infinite copies of A. By

assumption, a product Πi∈IA (referred to as P ) exists in FMNom with projection

maps pr i : P → A. Note that by definition we have that all projection maps, pr i, are

finitely supported. We now recursively select names from A such that a1 /∈ supp(pr 1)

and for i > 1 we pick

ai /∈
⋃
j≤i

supp(pr j) ∪ {aj | j < i}

Hence, we have infinitely many distinct names ai, which satisfy ∀u ∈ N.∀k ∈

N. k ≥ u ⇒ ak # pru. We then introduce morphisms fi : 1 → A, which are defined

by fi(∗)
def
= ai. The functions fi are finitely supported by their image {ai}. Thus

(1, {fi | i ∈ I}) is a cone for (A | i ∈ I) in FMNom.

Applying the universal property for products, there exists a finitely supported

morphism h : 1 → P in FMNom. Given that the support of h is finite, there exist

u ∈ N such that for all k ≥ u we have ak # h. Let n ∈ N be such a natural number.

We can now pick the two names an+1 and an+2, which are distinct by construction,
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and deduce the following contradiction:

an+2 = (an+2 an+1) · an+1

def
= (an+2 an+1) · fn+1(∗)

= (an+2 an+1) · (prn+1(h(∗))) (universal property)

= prn+1((an+2 an+1) · h(∗)) (an+1, an+2 # pn+1)

= prn+1(h((an+2 an+1) · ∗)) (an+2, an+1 # h)

= prn+1(h(∗)) (trivial permutation action)

= fn+1(∗) (universal property)

def
= an+1

�

Proposition 7.1.5 FMNom is not cocomplete.

Proof We assume, for a contradiction, that FMNom is cocomplete. Let I be an

infinite index set, indeed just ω, and (A | i ∈ I) a family of infinite copies of A. By

assumption, a coproduct Σi∈IA (referred to as C) exists in FMNom with inclusion

maps incl i : A → C. Note that, by definition, all inclusion maps incli are finitely

supported. We now recursively select names from A such that a1 /∈ supp(incl1) and

for i > 1 we pick

ai /∈
⋃
j≤i

supp(inclj) ∪ {aj | j < i}

Hence, we have infinitely many distinct names ai, which satisfy ∀u ∈ N.∀k ∈

N. k ≥ u⇒ ak # inclu. We then introduce constant functions gi : A→ A, which are

defined by fi(a)
def
= ai for any a ∈ A. The functions fi are finitely supported by their

image {ai}.

Thus (A, {gi | i ∈ I}) is a cone for the diagram F in FMNom. Using the universal

property for coproducts, there exists a finitely supported morphism h : C → A in

FMNom. Given that the support of h is finite, there exist u ∈ N such that for all
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k ≥ u we have ak # h. Let n ∈ N be such a natural number. We can now pick

two names an+1 and an+2, which are distinct by definition, and deduce the following

contradiction:

an+2 = (an+2 an+1) · an+1

def
= (an+2 an+1) · gn+1(a)

= (an+2 an+1) · (h(incln+1(a))) (univeral property)

= h((an+2 an+1) · incln+1(a)) (an+2, an+1 # h)

= h(incln+1((an+2 an+1) · a)) (an+1, an+2 # incln+1)

= gn+1((an+2 an+1) · a) (univeral property)

def
= an+1

�

Corollary 7.1.6 FMSet is not (co)complete.

Proof We have that 1 and A are FM-Sets. Given that FMNom is a full subcategory

or FMSet , the same constructions in the proof by contradiction for FMNom carry

over to FMSet . �

Remark 7.1.7 Considering the rich structure of Set and Nom, the results for FMNom

and FMSet seem, at first, slightly surprising, but in retrospect it is natural to expect

that for an infinite collection of finitely supported functions, a finitely supported fac-

torisation does not exist. Note that this result is not directly mentioned in the nomi-

nal/FM literature, but can be seen as a Folk’s theorem in the context of permutation

models, which we now recall in the context of nominal/FM categories.

7.2 Enriched Yoneda Isomorphisms

In this section we discuss enriched Yoneda isomorphisms for nominal/FM cate-

gories. We start by unravelling the weak Yoneda lemma for Nom, FMNom and FMSet
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and the strong Yoneda lemma for Nom. This allows us to present the respective the-

orems in a more “natural” way, which will pay dividends when working towards a

categorical conservative extension result. Thereby we also prove some interesting

subsidiary results.

The fact that FMNom and FMSet are not complete leads to some immediate

complications when one is interested in working with enriched functor categories and

enriched Yoneda isomorphisms (embeddings). We briefly discuss these complications

and point out a way to circumvent them via universe enlargement.

7.2.1 Weak and Strong Yoneda Lemma

Before we unravel and discuss the enriched Yoneda isomorphisms for different

nominal/FM categories, we recall the basic notions leading to an enriched Yoneda

lemma in Appendix A.1. Moreover, we recall that Nom, FMNom and FMSet are

cartesian closed categories with the exponential for objects X and Y denoted by

X ⇒fs Y . We can now deduce that every cartesian closed category is a symmetric

monoidal closed category:

• The tensor product ⊗ and monoidal unit I are respectively given by the carte-

sian product × and the terminal object 1.

• The “associativity” isomorphism αA,B,C : (A×B)×C → A× (B×C) is defined

as 〈pr 1 ◦ pr 1, 〈pr 2 ◦ pr 1, pr 2〉〉. The inverse is defined analogously.

• The “left unit” natural isomorphism lA : 1 ×A→ A is defined as lA
def
= pr2 and

the “right unit” natural isomorphism rA : A×1 → A as rA
def
= pr1. The inverses

are defined analogously.

• The closure property follows immediately with the internal homset being defined

as [A,B]
def
= A⇒fs B.
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• The “symmetric” natural isomorphism sA,B : A × B → B × A is defined as

sA,B
def
= 〈π2, π1〉. The inverse is defined analogously.

Thus, each nominal/FM category V is trivially symmetric monoidal closed and

therefore V can be enriched over itself, which is notationally expressed as Ver with

the hom object

Ver(X, Y )
def
= [X, Y ]

def
= X ⇒fs Y

Let C be a V-enriched category and F,G : C → Ver are V-valued V-functors.

We now introduce the notion of “natural families” of morphism, such as those that

arise as the components of natural transformations between functors (in ordinary

category theory). For brevity, we write NC(α) = NC(α,F,G,C,C′, f) for the naturaliy

condition: G(f) ◦ αC = αC′ ◦ F (f) for all f ∈ C(C,C ′).

Nat(F,G)
def
= {α ∈ ΠC∈ob(C)|FC| ⇒ |GC| | NC(α)}

Nates(F,G)
def
= {α ∈ ΠC∈ob(C)|(FC ⇒fs GC)es| | NC(α)}

Natfs(F,G)
def
= {α ∈ ΠC∈ob(C)|FC ⇒fs GC| | NC(α)}

where the products of underlying function spaces are in Set . The elements of

these sets are called ordinary natural families.

Weak Enriched Yoneda Lemma

We now apply the weak Yoneda lemmas on all three nominal/FM categories and

further show how the collection of V-natural transformation between V-valued V-

enriched functors CA and F , written as V−Nat(CA, F ), relates to the previously

introduced sets of ordinary natural families. This provides us with a more “natural”

way to present the weak Yoneda lemmas for the respective categories.

Corollary 7.2.1 (Weak Yoneda Lemma for Nom) Let C be a small Nom-category.

For every Nom-functor F : C → Nomer and every object A ∈ ob(C), there exists a
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bijection

|(FA)es| ∼=Set Nom−Nat(CA, F ) ∼=Set Nates(CA, F )

Proof For global elements of FA (in Nom) we immediately obtain that

|(FA)es| ∼=Set Nom(1Nom , FA)

Next, we observe that Nom−Nat(CA, F ) ∼=Set Nates(CA, F ): We recall that a

Nom-enriched natural transformation α : CA ⇒ F is defined to be a family of mor-

phisms (global elements) (αB : 1Nom → Nomer(C(A,B), F (B))
def
= C(A,B)⇒fs FB |

B ∈ ob(C)) such that for all objects A,A′ ∈ ob(C) we have that

cFA,GA,GA′ ◦ (αA ⊗ FA,A′) ◦ l−1
A(A,A′) = cFA,FA′,GA′ ◦ (CA

A,A′ ⊗ αA′) ◦ r−1
A(A,A′)

Again, for global elements of C(A,B)⇒fs FB we immediately obtain that

|(C(A,B)⇒fs FB)es| ∼=Set Nom(1Nom ,C(A,B)⇒fs FB)

and therefore the components correspond with the ordinary natural families.

What remains to be shown is that the commuting condition relate as well. By defi-

nition of Nomer, the “composition” morphism is defined as

cA,B,C
def
= λ((evB,C ◦ sB,B⇒fsC ◦ (evA,B ⊗ idB⇒fsC) ◦ sB⇒fsC,A)

Considering the definition of the exponential mate λ(−), the evaluation map ev

and the symmetry map s for Nom, we obtain that the “composition” morphism is

the “usual” composition ◦ of Nom. With the definition of l−1 and r−1, as previously

presented, we can now compute each side of the equation for θ ∈ C(A,A′):

(cFA,GA,GA′ ◦ (αA × FA,A′) ◦ l−1
C(A,A′))(θ)

def
= (cFA,GA,GA′ ◦ (αA × FA,A′))(∗, θ)
def
= cFA,GA,GA′(αA(∗), FA,A′(θ))
def
= FA,A′(θ) ◦ αA(∗)
def
= FA,A′(θ) ◦ αA
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(cFA,FA′,GA′ ◦ (CA
A,A′ × αA′) ◦ r−1

C(A,A′))(θ)
def
= (cFA,FA′,GA′ ◦ (CA

A,A′ × αA′))(θ, ∗)
def
= cFA,FA′,GA′(CA

A,A′(θ), αA′(∗))
def
= αA′(∗) ◦ CA

A,A′(θ)

def
= αA′ ◦ CA

A,A′(θ)

Hence, we have that FA,A′(θ) ◦ αA = αA′ ◦ CA
A,A′(θ) (NC(α) holds) and therefore

Nom−Nat(CA, F ) ∼=Set Nates(CA, F )

Recall that the enriched weak Yoneda lemma for Nom states that

Nom(1Nom , FA) ∼=Set Nom−Nat(CA, F )

Thus, we have

|(FA)es| ∼=Set Nom(1Nom , FA) ∼=Set Nom−Nat(CA, F ) ∼=Set Nates(CA, F )

�

Corollary 7.2.2 (Weak Yoneda Lemma for FMNom and FMSet) Let C be a

small V-category. For every V-functor F : C→ V and every object A ∈ ob(C), there

exists a bijection

|FA| ∼=Set V−Nat(CA, F ) ∼=Set Natfs(CA, F )

Proof It follows analogously to the previous corollary.

Strong Enriched Yoneda Lemma

We continue by providing a more “natural” presentation of the strong Yoneda

lemma for Nom:
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Corollary 7.2.3 (Strong Yoneda Lemma for Nom) Let C be a small Nom-category.

For every Nom-functor F : C → Nomer and every object A ∈ ob(C), there exists an

isomorphism

FA ∼=Nom [C,Nomer](CA, F ) = (Natfs(CA, F ), ·∫ )

where the permutation action for α ∈ Natfs(CA, F ) is given by

(π ·∫ α)C
def
= π ·⇒fs

αC

Proof The isomorphism follows directly from the Strong Yoenda lemma. Following

Borceux [6] (Proposition 6.3.1), we unravel [C,Nomer](CA, F ), which is defined as the

equaliser EQR(u, v) over the pair of morphisms

u, v : ΠA∈ob(C)(C(A,A)⇒fs FA)→ ΠA′,A′′∈ob(C)(C(A′, A′′)⇒fs (C(A,A′)⇒fs FA
′′))

which are defined as follows:

• u is the “mediating” product morphism, written as 〈uA′,A′′ | A′, A′′ ∈ ob(C)〉,

for the family of morphisms

(uA′,A′′ : ΠA∈ob(C)(C(A,A)⇒fs F (A))→ C(A′, A′′)⇒fs (C(A,A′)⇒fs FA
′′)

| A′, A′′ ∈ ob(C))

where uA′,A′′
def
= λ(cC(A,A′),FA′,FA′′ ◦ (prA′ × FA′,A′′)).

• v is the “mediating” product morphism, written as 〈vA′,A′′ | A′, A′′ ∈ ob(C)〉,

for the family of morphisms

(vA′,A′′ : ΠA∈ob(C)(C(A,A)⇒fs F (A))→ C(A′, A′′)⇒fs (C(A,A′)⇒fs FA
′′)

| A′, A′′ ∈ ob(C))

where vA′,A′′
def
= λ(cC(A,A′),C(A,A′′),FA′′ ◦ (CA

A′,A′′ × prA′′) ◦ s).
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Given how equalisers in Nom are defined we have that

E
def
= {α ∈ ΠB∈ob(C)(C(A,B)⇒fs FB) | u(α) = v(α)}

Let α ∈ ΠB∈ob(C)(C(A,B) ⇒fs FB), A′, A′′ ∈ ob(C) and f ∈ C(A′, A′′). We now

unravel the property u(α) = v(α):

(prA′,A′′ ◦ u)(α)(f)

= uA′,A′′(α)(f) (mediating morphisms)

def
= λ(cC(A,A′),FA′,FA′′ ◦ (prA′ × FA′,A′′))(α)(f)

def
= cC(A,A′),FA′,FA′′ ◦ (prA′ × FA′,A′′)(α, f)

def
= cC(A,A′),FA′,FA′′(prA′(α), FA′,A′′(f))

def
= FA′,A′′(f) ◦ αA′

(prA′,A′′ ◦ v)(α)(f)

= vA′,A′′(α)(f) (mediating morphisms)

def
= λ(cC(A,A′),C(A,A′′),FA′′ ◦ (CA

A′,A′′ × prA′′) ◦ s)(α)(f)

def
= cC(A,A′),C(A,A′′),FA′′ ◦ (CA

A′,A′′ × prA′′) ◦ s(α, f)

def
= cC(A,A′),C(A,A′′),FA′′ ◦ (CA

A′,A′′ × prA′′)(f, α)

def
= cC(A,A′),C(A,A′′),FA′′(CA

A′,A′′(f), prA′′(α))

def
= αA′′ ◦ CA

A′,A′′(f)

Hence, we have that FA′,A′′(f) ◦αA′ = αA′′ ◦CA
A′,A′′(f) and therefore NC(α) holds.

Recalling how products in Nom are defined, we have that ΠB∈ob(C)(C(A,B)⇒fs FB)

is given as

{α = (αB ∈ C(A,B)⇒fs FB | B ∈ ob(C)) | supp(α) <∞}

where the permutation action is π·α def
= π·⇒fs

αB with supp(α) =
⋃
B∈ob(C) supp(αB).

To sum it up, we have that

[C,Nomer](CA, F ) = EQR(u, v) ∈ ob Nom
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is the nominal set

{(αB ∈ C(A,B)⇒fs FB | B ∈ ob(C)) |
⋃

B∈ob(C)

supp(αB) <∞∧ NC(α)}

with π ·∫ α def
= π ·⇒fs

αB. We can then immediately deduce that

[C,Nomer](CA, F ) ⊆ Natfs(CA, F )

For the converse we suppose that α ∈ Natfs(CA, F ). To deduce that α ∈

[C,Nomer](CA, F ), we have to show that supp(α) is finite. By the definition of NC(α),

or more precisely the instance NC(α,A,B, f) for f ∈ C(A,B) we can deduce (�)

αB(f) = αB(f ◦ idA)

def
= (αB ◦ C(A, f))(idA)

= ((Ff) ◦ αA)(idA) (NC((α,A,B, f)))

= (Ff)(αA(idA))

Based on this observation, we can now demonstrate that supp(αB) ⊆ supp(αA(idA)).

Let π # αA(idA) and f ∈ C(A,B). Noting that π−1 · f ∈ C(A,B) we can deduce

(π ·⇒fs
αB)(f)

def
= π · (αB(π−1 · f))

= π · ((FA,B(π−1 · f))(αA(idA)) (�)

= π · ((π−1 · (FA,Bf))(αA(idA))) (FA,B is equivariant)

= (FA,Bf)(π · (αA(idA)))

= (FA,Bf)(αA(idA)) (π # αA(idA))

= αB(f) (�)

Given that supp(α) =
⋃
B∈ob(C) supp(αB) = supp(αA(idA)) <∞, the argument is

complete. �
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Remark 7.2.4 We have seen in the proof of Theorem 7.2.3 that the naturality con-

dition NC(α) implies that for any C ∈ ob(C) we have supp(αC) = supp(αA(idA)).

We used this to show that supp(α) =
⋃
C∈ob(C) supp(αC) is finite. But there is more to

it, because it shows that naturality is itself a sufficient condition to ensure that each

component αC is indeed finitely supported (by supp(αA(idA)). Thus finite support is a

theorem for free and ordinary natural families coincide with finitely supported natural

families.

This is a simple, but in some ways slightly surprising property of natural transfor-

mations in the nominal setting. More importantly, it allows us to present the strong

Yoneda lemma in a particularly pleasing way, which extends the weak Yoneda lemma

very directly.

Corollary 7.2.5 Let C be enriched over Nom and F : C → Nomer be an enriched

functor.

FA ∼=Nom (Nat(CA, F ), ·∫ )

Moreover, we have (Nat(CA, F ), ·∫ ) ∼=Nom (Natfs(CA, F ), ·∫ ) (via the identity)

Before we provide a direct proof of the strong Yoneda lemma for Nom, we prove

the following “lifting” lemma:

Lemma 7.2.6 Suppose that M = (|M |, ·) is a nominal set and S is a set such that

Φ : |M | ∼=Set S : Ψ is an isomorphism of sets. Then S is a nominal set via the

“canonical” permutation action: π ∗ s def
= Φ(π ·M Ψ(s)) with supp(s) = supp(Ψ(s))

and moreover Φ : M ∼=Nom (S, ∗).

Proof The map (π, x) 7→ π∗x is well defined by construction. It follows immediately

that it is a permutation action:

ι ∗ x def
= Φ(ι ·M Ψ(x)) = Φ(Ψ(x)) = x
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π′ ∗ (π ∗ x)
def
= π′ ∗ Φ(π ·M Ψ(x))

def
= Φ(π′ ·M Ψ(Φ(π ·M Ψ(x))))

= Φ(π′ ·M (π ·M Ψ(x))) (isomorphism)

= Φ((π′ ◦ π) ·M Ψ(x)) (permutation action)

def
= (π′ ◦ π) ∗ x

Next, we demonstrate that each element of |S| is supported by supp(Ψ(x)). Let

x ∈ |S| and a, a′ # Ψ(x). We can then deduce that

(a a′) ∗ x def
= Φ((a a′) ·M Ψ(x)) = Φ(Ψ(x)) = x

Given that Ψ(x) ∈ |M | and M is a nominal set, we have that Ψ(x) is finitely

supported and therefore x finitely supported as well. Hence, (|S|, ∗) is a nominal set.

Finally we show that Φ and Ψ are equivariant.

π ∗ Φ(x)
def
= Φ(π ·M Ψ(Φ(x))) = Φ(π ·M x)

π ·M Ψ(α) = Ψ(Φ(π ·M Ψ(α)))
def
= Ψ(π ∗ α)

�

Theorem 7.2.7 (Strong Yoneda Lemma: Bare Hands Version) Let C be a

small Nom-category and F : C → Nomer a Nom-functor. Then there is an isomor-

phism in Set

Φ : |FA| ∼=Set Natfs(CA, F ) : Ψ

given by Φ(x)
def
= x with xC(θ)

def
= (Fθ)(x) and Ψ(α)

def
= αA(idA) (ordinary Yoneda

lemma). Further, we have that Natfs(CA, F ) is a nominal set via the permutation

action ∗, which is defined by passing the permutation action of FA across the bijection:

π ∗α def
= Φ(π ·FAΨ(α)). Moreover, we can show that this permutation action coincides

with the point-wise permutation from Corollary 7.2.3, i.e. we have that π ∗α = π ·∫ α.

This all leads to an isomorphism in Nom which is natural in A and F .

Φ : FA ∼=Nom (Natfs(CA, F ), ∗) = (Natfs(CA, F ), ·∫ ) : Ψ
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Proof We begin by demonstrating that Φ is well defined. By definition of Φ, as

given in the ordinary Yoneda lemma, we have that x is a natural transformation with

components xC : C(A,C) → FC. So, we have that NC(x). What remains to be

shown is that for each C ∈ ob(C) we have that xC is finitely supported under ·⇒fs
.

Let π # x ∈ FA and θ ∈ C(A,C).

(π ·⇒fs
xC)(θ)

def
= π ·FC (xC(π−1 ·C(A,C) θ))

def
= π ·FC (FA,C(π−1 ·C(A,C) θ))(x)

= π ·FC (π−1 ·C(A,C) FA,C(θ))(x) (FA,C is equivariant)

def
= FA,C(θ)(π · x)

= FA,C(θ)(x) (π # x)

def
= xC(θ)

Ψ is trivially well defined, because αA is a map from C(A,A) to FA and therefore

αA(idA) ∈ FA. The fact that Φ and Ψ are mutually inverse follows exactly as with

the ordinary Yoneda lemma.

Φ : |FA| ∼=Set Natfs(CA, F ) : Ψ

Now, since FA is by definition a nominal set, Lemma 7.2.6 (“lifting lemma”)

provides us with a permutation action ∗ on Natfs(CA, F ) such that Φ and Ψ yield a

nominal isomorphism.

Φ : FA ∼=Nom (Natfs(CA, F ), ∗) : Ψ
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What remains to be shown it that π ·∫ α = π ∗ α

(π ∗ α)C(θ)
def
= Φ(π ·FA Ψ(α))(θ)

def
= (π ·FA αA(idA))C(θ)

def
= (Fθ)(π ·FA αA(idA))

= π ·FC π−1 ·FC (Fθ)(π ·FA αA(idA))

def
= π ·FC ((π−1 ·FC (Fθ))(αA(idA)))

= π ·FC (F (π−1 ·C(A,C) θ))(αA(idA))) (F is equivariant)

def
= π ·FC αC(π−1 ·C(A,C) θ)

def
= (π ·⇒fs

αC)(θ)

def
= (π ·∫ α)C(θ)

�

We have seen that there is an enriched Yoneda isomorphism for Nom, but what

about FMNom and FMSet? Given that FMNom and FMSet are both not complete,

we cannot directly use the machinery of enriched category theory (as in the case

of Nom) to obtain an enriched functor category and enriched Yoneda isomorphism.

This, of course, does not mean that an enriched Yoneda isomorphism or embedding

does not exist, because there might be other ways to enrich the functor category and

Yoneda embedding. Independent of an answer to this question, there is an alternative

way to deal with the absence of completeness in categories we want to enrich over:

It is possible to enlarge the universe, while preserving limits and colimits, such

that the Yoneda embedding is enriched in the enlarged universe. In general, universe

enlargement is applied in situations where functor categories are too big to exist as V-

categories. It allows one to interpret them as V ′-categories for a suitable enlargement

V ′ of V . Full details and more general results regarding functor categories are given

in Kelly [41] (Section 3.11 and 3.12). Note that the particular universe enlargement
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we would be interested in is given as a presheaf category

V ′ = [Vop , Set ]

which is (point-wise) complete.

7.2.2 Cartesian Closure via the Enriched Yoneda Lemma

Let C be a small category. To prove that the functor category [C,Nom] is cartesian

closed, the enriched Yoneda lemma for Nom plays an important role. This result is

one of the building blocks towards a categorical conservative extension proof that we

sketched in Section B.1.

Proposition 7.2.8 The functor category [C,Nom] is cartesian closed.

Proof We adapt the proof in ([44], Proposition 1 (p.46)) for Nom. For any functors

P,Q : C → Nom, we have that P ⇒ Q is a functor, which is defined as follows:

• for any object C ∈ ob C, (P ⇒ Q)(C)
def
= (Nat(CC×P,Q), ·∫ )2 is a nominal set,

equipped with the permutation action (π ·∫ α)B
def
= π ·⇒fs

αB.

• for any morphism F : C → C ′ we have a morphism (P ⇒ Q)(f) : (Nat(CC ×

P,Q), ·) → (Nat(CC′ × P,Q), ·), which is defined as ([(P ⇒ Q)(f)](α))B
def
=

αB ◦ (C(C ′, f)× idPB) for α ∈ Nat(CC × P,Q) and B ∈ ob C.

The fact that (Nat(CC × P,Q), ·) is a nominal with supp(α) = supp(αC) follows

analogously to the argument in Corollary 7.2.3. What remains to be shown is that

2The hom-functor CC is trivially enriched.
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the morphism is equivariant.

(π · [(P ⇒ Q)(f)](α))B
def
= π · ([(P ⇒ Q)(f)](α))B

def
= π · (αB ◦ (C(C ′, f)× idPB))

= (π · αB) ◦ (π · C(C ′, f)× π · idPB)

= (π ·∫ α)B ◦ (C(C ′, f)× idPB) (equivariance)

def
= ([(P ⇒ Q)(f)](π ·∫ α))B

Next, we introduce the evaluation map ev : (P ⇒ Q)×P ⇒ Q, which is a natural

transformation with components evC : (Nat(CC × P,Q), ·)× PC → QC

evC(α, y)
def
= αC(idC , y) ∈ QC

We have to show that the components are in Nom; thus equivariant.

π · evC(α, y)
def
= π · αC(idC , y)

= (π · αC)(π · idC , π · y)

def
= (π · α)C(idC , π · y)

def
= evC(π · α, π · y)

We continue by checking the universal property. Let Z : C → Nom be an object

and φ : Z×P → Q a morphism in [C,Nom]. The exponential mate λ(φ) : Z → P ⇒ Q

is a natural transformation with components λ(φ)C : ZC → (Nat(CC×P,Q), ·), which

map any u ∈ ZC to a natural transformation with (λ(φ)C(u))D : C(C,D)×PD → QD

((λ(φ)C)(u))D(f, y)
def
= φD(Z(f)(u), y)

for D ∈ ob C, f : C → D and y ∈ PD. The fact that λ(φ)C(u) is indeed a

natural transformation follows as in the case of Set . Hence, we have that λ(φ)C(u) ∈

Nat(CC ×P,Q). The same is the case for λ(φ). So, to show that λ(φ) is well defined,

it remains to show that the components of λ(φ) are morphisms in Nom (equivariant
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functions).

[π · (λ(φ)C(u))]D(f, y)

def
= (π · [λ(φ)C(u)]D)(f, y)

def
= π · ([λ(φ)C(u)]D)(π−1 · f, π−1 · y)

def
= π · φD(Z(π−1 · f)(u), π−1 · y)

= φD(π · Z(π−1 · f)(u), y) (φD is equivariant)

= φD(Z(π−1 · f)(π · u), y) (Z(π · f) is equivariant)

= φD(Z(f)(π · u), y) (C(C,D) is trivially enriched)

def
= (λ(φ)C(π · u))D(f, y)

�

7.3 Internal Yoneda isomorphisms in FMSet

As we have pointed out in the previous section, there is no enriched Yoneda iso-

morphism for FMNom and FMSet , which is due to the fact that both categories are

not complete. Motivated by the fact that both categories are internally (co)complete,

we got interested in determining if there is an internal variant of a Yoneda isomor-

phism for FMSet and FMNom.

The basic notions of internal category theory are recalled in Appendix A.2. Let C

be an internal category in FMSet with structure (C0,C1, d0, d1, i, c). For any object

A ∈ C0, the internal FMSet-valued hom functor HA : C→ FMSet is specified by the

tuple (d−1
0 (A), d̂1, ĉ) where

d̂1
def
= d1 |d−1

0 (A): d
−1
0 (A)→ C0

ĉ
def
= c |C1×C0

d−1
0 (A): C1 ×C0 d

−1
0 (A)→ d−1

0 (A)

In particular, we have
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• d̂1(f)
def
= X for f : A→ X ∈ d−1

0 (A)

• ĉ(f, g)
def
= f ◦ g for f : X → Y ∈ C1 and g : A→ X ∈ d−1

0 (A)

We need to show that HA is well defined. By definition we have that d−1
0 (A) ⊆ C1.

Then, given that C1 is an FM-Set, we have that all elements of d−1
0 (A) are finitely

supported. It can easily be seen that d−1
0 (A) is finitely supported by supp(C0) ∪

supp(A). Hence, we have that d−1
0 (A) is an FM-Set. Further, the morphisms are

finitely supported by supp(d1)∪supp(d−1
0 (A)) and supp(c)∪supp(d−1

0 (A)). The axioms

follow by trivial computations. Thus, we have that HA is an internal FMSet-valued

functor.

Given that FMSet has pullbacks, it can be deduced that the functor category

[C,FMSet ] with internal FMSet-valued functors as objects and internal natural trans-

formations as arrows is a category, but it is not internal in FMSet . Due to the fact

that FMSet is not small, the functor category cannot be small either and therefore

cannot be internalised into FMSet . Thus, we clearly do not have an internal Yoneda

embedding, but there is an internal Yoneda lemma in FMSet , as we will now demon-

strate. This also holds for FMNom (with minor modifications).

Lemma 7.3.1 (Internal Yoneda Lemma in FMSet) Let C be an internal cate-

gory in FMSet, F : C → FMSet be an FMSet-valued internal functor which is

represented by (P, p0, p1) and A ∈ C0. Then for FA
def
= p−1

0 (A) there exists an iso-

morphism

Φ : FA ∼=FMSet [C,FMSet ](HA, F ) : Ψ

where Φ and Ψ are defined as follows:

• x ∈ FA 7→ Φ(x) : d−1
0 (A) → P such that for any f ∈ d−1

0 (A), Φ(x)(f)
def
=

p1(f, x)

• α ∈ [C,FMSet ](HA, F ) 7→ Ψ(α)
def
= α(i(A)) ∈ FA
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Moreover, we have that the isomorphism is natural in A and F .

Proof Given that FA ⊆ P and P is an FM-set, we have that all elements in FA are

finitely supported. We further have that supp(FA) = supp(p0) ∪ supp(A). So, FA

is an FM-Set. The elements of the set [C,FMSet ](HA, F ) are finitely supported by

definition and its support is supp(HA) ∪ supp(F ).

We continue by showing that Φ and Ψ are well defined maps. Let x ∈ FA. We

demonstrate that Φ(x) is an internal natural transformations between HA and F :

Suppose f : A→ X ∈ d−1
0 (A) for some X ∈ C0. Recall that p1 : C1 ×C0 P → P .

We have that d−1
0 (A) ⊆ C1 and therefore f ∈ C1, x ∈ FA

def
= p−1

0 (A) ⊆ P and

Φ(x)(f) ∈ P . So, we have that Φ(x) : d−1
0 (A)→ P is a well defined morphism. Next,

we demonstrate that Φ(x) is finitely supported by supp(p1)∪supp(x): Let π # (p1, x).

(π ·⇒fs
Φ(x))(f)

def
= π ·P Φ(x)(π−1 ·d−1

0 (A) f)

def
= π ·P p1(π−1 ·d−1

0 (A) f, x)

= (π · p1)(f, π ·p−1
0 (A) x)

= p1(f, x) (π # (p1, x))

def
= Φ(x)(f)

Hence, we have that Φ(x) is a morphism in FMSet . We continue by showing

that Φ(x) satisfies the axioms for an internal natural transformation, which follows

similarly to Set . Hence, we have that Φ is well defined.

Let α ∈ [C,FMSet ](HA, F ). So, we have that α : d−1
0 (A) → P is a morphism in

FMSet . Further, we have i : C0 → C1 with i(A) : A → A being the identity on A.

We have that i(A) ∈ d−1
0 (A) and by axiom (i) of the internal natural transformation

α we have that α(i(A)) ∈ p−1
0 (A)

def
= FA. Hence, Ψ is well defined as well.

We now demonstrate by standard computations that Φ and Ψ are both finitely

supported morphisms. Let π # (p1, FA, [C,FMSet ](HA, F )), x ∈ FA = p−1
0 (A) and
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f : A→ X ∈ d−1
0 (A).

((π · Φ)(x))(f)
def
= (π · Φ(π−1 · x))(f)

def
= π · Φ(π−1 · x)(π−1 · f)

def
= π · p1(π−1 · x, π−1 · f)

= (π · p1)(x, f)

= p1(x, f) (π # p1)

def
= Φ(x)(f)

Let π # (i, A, [C,FMSet ](HA, F )) and α ∈ [C,FMSet ](HA, F ). Then we have

(π ·Ψ)(α)
def
= π ·Ψ(π−1 · α)

def
= (π−1 · α)(i(A))

= α(π · i(A))

= α((π · i)(π · A))

= α(i(A)) (π # (i, A))

def
= Ψ(α)

Hence, both are morphism in FMSet . The fact that Φ and Ψ are mutually inverse

and the isomorphism is natural in F and A follows as in the ordinary Yoneda lemma.

�

7.4 Finitely supported (co)limits

We have shown that FMSet and FMNom are neither complete nor cocomplete.

In the respective counter examples we constructed an infinite family of morphisms

(fi | i ∈ ω) with an infinite support (
⋃
i∈ω supp(fi) =

⋃
i∈ω{ai} = A). In this

section we introduce notions of “finitely supported” (co)cones and (co)limit for which

FMNom and FMSet are (co)complete. This was developed in connection with the

question if FMSet and FMNom are (co)complete.
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Definition 7.4.1 Let A be a small category. A fs-diagram is a functor F : A →

FMSet such that

(i)
⋃
I∈obA supp(FI) is finite

(ii)
⋃
f∈mor A supp(Ff) is finite

Definition 7.4.2 Given a diagram F : A → FMSet, a fs-cone on F consists of

(i) an object C ∈ FMSet

(ii) for every object I ∈ A, a morphism pI : C → FI in FMSet such that for every

morphism u : I → I ′ in A, pI′ = Fu ◦ pI .

(iii)
⋃
I∈obA supp(pI) is finite.

Definition 7.4.3 Given a fs-diagram F : A → FMSet, a fs-cocone on F consists

of

(i) an object C ∈ FMSet

(ii) for every object I ∈ obA, a morphism sI : FI → C in FMSet such that for

every morphism u : I ′ → I in A, sI′ = sI ◦ Fu.

(iii)
⋃
I∈obA supp(sI) is finite.

Definition 7.4.4 Given a fs-diagram F : A → FMSet, a fs-limit of F is a fs-cone

(L, (pI)I∈obA) on F such that for every fs-cone (M, (qI)I∈obA) on F , there exists a

unique morphism h : M → L in FMSet such that for every object I ∈ obA, qI = pI◦h.

Definition 7.4.5 Given a fs-diagram F : A → FMSet, a fs-colimit of F is a fs-

cocone (L, (sI)I∈A) on F such that for every fs-cocone (M, (tI)I∈obA) on F , there

exists a unique morphism h : L→ M in FMSet such that for every object I ∈ obA,

tI = h ◦ sI .
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We now demonstrate that FMNom and FMSet are fs-complete and fs-cocomplete.

Theorem 7.4.6 FMSet and FMNom have all fs-limits.

Proof We enhance the proof argument that was originally used to demonstrate that

Set is complete with “nominal” reasoning steps. Let F : A → FMSet be a fs-

diagram3. We define L ⊆
∏

I∈obA FI to be the set of finitely supported tuples

(xI)I∈obA with respect to the point-wise permutation action

π · (xI1 , xI2 , ...)
def
= (π · xI1 , π · xI2 , ...)

which satisfy the condition

(∀u : I → I ′) Fu(xI) = xI′ (�)

Let pI be the usual projection maps, which are clearly equivariant. We now

demonstrate that (L, pI : L→ FI)I∈obA is the fs-limit of F in FMSet :

We begin by demonstrating that it is an fs-cone. The fact that L is an FM-

set can directly be deduced from condition (i) of an fs-diagram and the fact that L

contains only finitely supported tuples. The commuting condition follows directly

from condition (�) of L. Given that the projection maps are equivariant we have an

fs-cone.

For the universal property we suppose that (Z, qI : Z → FI)I∈obA is a fs-cone.

The “mediating” function h : Z → L is defined as follows:

h(y)
def
= (qI(y))I∈obA

We have to show that h is well defined, i.e. h(y) ∈ L. It follows by construction

that h(y) is an element of
∏

I∈obA FI and the condition (�) follows directly from the

fact that (Z, qI : Z → FI)I∈obA is a fs-cone (commuting condition). Further, we know

that supp(qI(y)) ⊆ supp(qI) ∪ supp(y) and that all the maps qI ’s share a common

support. Hence, h(y) is finitely supported tuple and therefore h(y) ∈ L
3Note that we do not require condition (ii) of an fs-diagram in this proof
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What remains to be shown is that h is finitely supported map. Let z, z′ #

(Z,L,
⋃
I∈obA supp(qI)). Given that (Z, qI : Z → FI)I∈obA is a fs-cone we have

that
⋃
I∈obA supp(qI) is finite.

((z z′) · h)(y)
def
= (z z′) · h((z z′) · y)

def
= (z z′) · (qI((z z′) · y))I∈obA

def
= ((z z′) · qI((z z′) · y))I∈obA

def
= (((z z′) · qI)(y))I∈obA

= (qI(y))I∈obA (z, z′ #
⋃

I∈obA

supp(qI))

def
= h(y)

The argument for FMNom follows analogously. But we clearly do not require

condition (i) of an fs-diagram. �

Theorem 7.4.7 FMSet and FMNom has all fs-colimits.

Proof We enhance the proof argument that was originally used to demonstrate that

Set is cocomplete with nominal reasoning steps. Let F : A → FMSet be a fs-diagram.

We define C
def
=
∐

I∈obA FI
/
R where

∐
I∈obA FI denotes a disjoint union and R is

an equivalence relation defined to be the reflexive, symmetric and transitive closure

of ∼ ⊆
∐

I∈obA FI ×
∐

I∈obA FI, which is defined as:

(I ′, x′) ∼ (I, x) ⇐⇒ x′ = F (u)(x) for u : I → I ′

Further, we define functions pI : FI → C:

pI(x)
def
= [inclI(x)]R

where inclI(x)
def
= (I, x) is the inclusion function of

∐
I∈obA FI. We first demon-

strate that (C, pI : FI → C) is fs-cocone: The infinite disjoint union
∐

I∈obA FI,

equipped with the permutation action π · (I, y)
def
= (π ·I, π ·FI y), contains only finitely
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supported elements. Further, under condition (i) of an fs-diagram, we have that∐
I∈obA FI is finitely supported and therefore

∐
I∈ob indexcat FI is an FM-set.

Next, we demonstrate that R is a finitely supported subset of
∐

I∈obA FI ×∐
I∈obA FI: Let S0 and S1 be the finite sets corresponding to conditions (i) and

(ii) of the fs-diagram F . Suppose (y, y′) ∈ R and c, c′ # S0, S1. We have to show that

((c c′) · y, (c c′) · y′) ∈ R. We only consider the base case of R, namely ∼. Suppose,

we have y = (I, x), y′ = (I ′, x′) and u : I → I ′ such that x′ = Fu(x). From this, we

can directly deduce, using the fact that c, c′ # S0, that (c c′) ·x ∈ (c c′) ·FI = FI and

(c c′) ·x′ ∈ (c c′) ·FI ′ = FI ′. So, we have that (I, (c c′) ·x), (I ′, (c c′) ·x′) ∈
∐

I∈obA FI.

Further, using the fact that c, c′ # S1 and x′ = Fu(x), we can deduce that

(c c′) · x′ = (c c′) · (Fu)(x) = ((c c′) · (Fu))((c c′) · x) = F (u)((c c′) · x)

and therefore we have that

(c c′) · (I, x)
def
= (I, (c c′) · x) ∼ (I ′, (c c′) · x′) def

= (c c′) · (I ′, x′)

From the fact that R is a finitely supported equivalence relation and
∐

I∈obA FI

is an FM-set, we can deduce that the quotient C is an FM-Set with the permutation

action π · [x]R
def
= [π · x]π·R with supp([x]R) ⊆ supp(x) ∪ supp(R). C itself is finitely

supported by supp(
∐

I∈A0
FI) ∪ supp(R). Next, we have to demonstrate that pI is

finitely supported. Let c, c′ # S0, S1. Then

((c c′) · pI)(x)
def
= (c c′) · (pI((c c′) · x))

def
= (c c′) · [inclI((c c′) · x)]R

def
= [(c c′) · inclI((c c′) · x)](c c′)·R

= [(c c′) · inclI((c c′) · x)]R (π # S0, S1)

def
= [(π · inclI)(x)]R

= [inclI(x)]R (c, c′ # S0)

def
= pI(x)
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Due to the fact that we have supp(pI) ⊆ S0 ∪ S1 for all I ∈ obA, they all share

a common support. The commuting condition follows as in the case for Set . Hence,

we have that (C, pI : FI → C) is fs-cocone.

For the universal property we suppose that (Z, qI : FI → Z)I∈obA is a cocone.

We define h : C → Z as follows: h([x]R)
def
= [qI1 , qI2 , ...](x). We have to show that

h is well defined, i.e. it is independent of the choice of the representative of the

equivalence class. This follows immediately from the definition of R and the fact that

(Z, qI : FI → Z)I∈obA is a fs-cocone. What remains to be proved is that h is finitely

supported. Let z, z′ # (R,
⋃
I∈obA(supp(qI)).

((z z′) · h)([(I, x)]R)
def
= (z z′) · h((z z′) · [(I, x)]R)

def
= (z z′) · h([(z z′) · (I, x)](z z′)·R)

def
= (z z′) · h([(I, (z z′) · x)](z z′)·R)

= (z z′) · h([(I, (z z′) · x)]R) (z, z′ # R)

def
= (z z′) · qI((z z′) · x)

def
= ((z z′) · qI)(x)

= qI(x) (z, z′ # qI)

def
= h([(I, x)]R)

The argument for FMNom follows analogously, but we do not need condition (i)

of an fs-diagram. �
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Chapter 8

Conclusions

In this chapter we provide a summary of the contributions made in this thesis and

discuss future lines of research and related work.

NLC: A Nominal Lambda Calculus

We have introduced NLC as an extension of the typed lambda calculus which in-

corporates ideas and concepts from NEL. A key novelty of NLC is the introduction of

name-dependent function types, which are directly motivated by NEL with the initial

goal in mind to extend the categorical type theory correspondence of NEL. As we have

seen, these types have a major impact on the definition of NLC, most importantly

the type and equation system, and ultimately the model-theoretic semantics.

With respect to the meta-theory of NLC raw terms, we had to extend various

standard results of NEL and λ→. Note that unlike NEL, we introduced the object-

level and meta-level permutation action on raw terms instead of well typed terms.

This is a subtle change, which provides us with a slightly neater presentation.

An interesting aspect of NLC is its type and equation system, which we believe

to be intuitive regarding the origin of the individual rules. However, there is one im-

portant aspect to consider, namely that both systems are mutual inductively defined.
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This is due to the fact that name-dependent function types are used. So, the type

system with its freshness judgements is actually “forced” upon us since the typing

of domain (freshness) restricted lambda abstractions is mutually tied to hypotheses

of freshness assertions. We have found working with a dependently typed system

interesting and at times challenging to ensure that our definitions lead to a consistent

system with a cleanly defined semantics. In the end, we have succeeded in recovering

many of the standard properties of λ→ for NLC. Furthermore, we demonstrated that

NLC is actually a conservative extension of NEL and λ→.

An appealing future line of research might be to study a variant of NLC that uses

“proper” freshness restriction types of the form sa. However, an important aspect

that would need to be considered is that while NLC already has some “flavour” of

subtyping, considering the rule (AP), we would need a proper subtyping relation, like

sa � sb if b ⊆ a

Further, for a more immediate extension of NLC, other simple types, like unit or

product types could be considered.

On a more procedural note we have taken great care over our proofs, attempting

to ensure that we do not fall into any of the typical traps related to renaming. In

the construction of NLC we initially followed the nominal approach and introduced

a variable swapping permutation action, which allowed us to define α-equivalence for

raw terms without a recourse to capture avoiding substitution. We believe that this

improves the presentation of various definitions and results. But to ultimately prove

that operations on syntax, like permutation actions and capture avoiding substitution

are independent of the choice of variables (names), we deviated from the formal

framework of nominal sets and used a more traditional approach. In retrospect, it

would have been more elegant to use the notions of α-structural induction and α-

structural recursion of nominal techniques [54], but formalisation of results was not

the prime objective of this thesis. Nevertheless, we believe that a formalisation of
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these results in an automated theorem prover, using a nominal framework, may be

interesting in its own right.

NLC[A]: Name Abstraction and Concretion in NLC

The starting point was the observation that concretion can be captured in NLC

by using name-dependent function types and freshness assertions in typing rules. We

then introduced NLC[A] as an extension of NLC which captures name abstraction

and concretion as first class citizen and proved various properties. It is interesting

to consider that our approach is in some sense contrary to an approach applied for

nominal rewriting systems in [28], where name abstraction is defined first and is later

utilised to model higher-order functions involving local state.

Based on pure NLC[A] (without constants) we introduced a βη-reduction system

and proved it to be strongly normalising and confluent. This is not only interesting

in its own right, but it also allowed us to demonstrate that provable equality for

NLC[A] (NLC) is decidable, as well as type checking and type inference. Moreover,

regarding future work, a confluent βη-reduction system for NLC might be used to

prove Conjecture 3.5.3 (conservative extension property).

Based on the possible extensions of NLC that we have previously proposed, we

will now provide various observations on possible effects such extensions would have

on the βη-reduction system:

• There is the proposal to introduce “proper” freshness restriction types of the

form sa. As previously pointed out, this would require some notion of subtyping.

In this context, we recall that in [58] two classes of subtyping relations were

studied with respect to βη-reduction systems for λ→. The idea would be to

apply these results and observations on the suggested subtyping relation for

NLC; and indeed the proposed subtyping relation does fall into one of the

classes that were analysed in [58]. So, this would suggest the following: While
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the βη-reduction system would remain strongly normalising, it would not be

confluent anymore. However, one would still obtain decidability for provable

equality as remarked in [58].

• An obvious extension is the introduction of other simple types, like product or

unit types. While product types follow immediately, we would have to be careful

with unit types, because η-expansion needs to be used instead of η-contraction.

As can easily be seen, the results of strong normalisation and confluence for

NLC[A] would follow, with only minor modification, from the proof arguments

provided in [39].

To conclude this section, we discuss how NLC[A] relates to SNTT [9] and the

λαν-calculus [55], two alternative extensions of the typed lambda calculus that cap-

ture name abstraction and concretion. What can immediately be observed is that

the properties that were studied for all three calculi are very much in line. However,

the techniques that were used to capture name abstraction and concretion, and the

respective proof details are quite different. The general aim of NLC and SNTT is to

internalise freshness side conditions. In SNTT this is achieved by using a notion of

bunched contexts, a concept which originates from bunched logic. In bunched con-

texts, apart from variable typing, additional information about object-level freshness

is provided. This is similar to NLC[A], where we use freshness contexts. However, the

presentation of freshness contexts and how object-level freshness is used in NLC[A]

is quite different to SNTT. A close similarity of both calculi is that concretion is

captured as a partial function and well definedness is guaranteed by an internalised

freshness condition. A direct consequence of internalised freshness conditions is that

SNTT and NLC[A] need to modify the ordinary typed lambda calculus quite exten-

sively. In comparison, the λαν−calculus is less syntactically “tedious”, because it

has a conventional meta-theory of raw terms and type system. This is sufficient to

capture name abstraction and concretion, because concretion is total due to the use
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of a local scoping operator. At this point, it can of course be argued that SNTT and

NLC[A] do not require a local scoping operator to capture concretion, which would

justify the extra effort. Moreover, the introduction of local scoping adds some extra

level of complexity that also has to be dealt with.

Towards Completeness and a Categorical Type The-

ory Correspondence for NLC

With the aim of obtaining a sound and complete categorical semantics and a

categorical type theory correspondence for NLC, we extended the notion of an FM-

category with equivariant exponentials. This notion does indeed underpin our cat-

egorical semantics of NLC, which we have proven sound. We then emphasised that

the key step in obtaining completeness and a correspondence result for NLC is the

construction of a syntactically generated classifying FM-ccc, Cl(Th), which is usually

defined as a quotient construction using the syntax of NLC. Next, we observed that

NLC is not expressive enough to construct exponentials in Cl(Th). We attributed

this to the limited type system of NLC. To circumvent this issue, we suggested two

approaches towards extending NLC such that exponentials can be constructed in a

syntactically generated classifying category Cl(Th) for such an extended calculus.

The approach that we have ultimately pursued is motivated by the observation

that exponentials in FMSet can be presented in a way that is much closer to what NLC

can already express. The underlying idea was to extend NLC such that we can mimic

this presentation of an exponential (in FMSet) in a syntactically generated classifying

category Cl(Th) (for any theory Th of the extended calculus). Hence, we introduced

[ N]NLC, which is a semantically motivated extension of NNLC and defined a sound

categorical semantics in FMSet . Note that NNLC was introduced beforehand to

independently investigate how local fresh atomic names can be captured in NLC. By

using the additional syntactic structures of [ N]NLC we succeeded in constructing an
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equivariant exponential in Cl(Th) for any [ N]NLC-theory Th. This is an important

step, but there is more work required, which is not part of this thesis. It will be

pursued as future work. Thus, the ultimate goal is to use the new “framework” to

show that for every [ N]NLC-theorem Th, there exits a classifying category Cl(Th)

that is a [ N]FM-ccc.

Completeness of βη-conversion for N in λ→

In recent years various “nominal” typed lambda calculi were introduced and anal-

ysed in the literature. A property of such a calculus that to our knowledge has not

yet been studied is completeness of βη-conversion for a nominal analogue of full set-

theoretic hierarchies. We believe that our contributions in Chapter 6 constitute a

first step in this direction.

We introduced the notion of a full nominal hierarchy N and demonstrated that it

is a Henkin model. To investigate completeness of βη-conversion for such models we

have chosen a simplified problem statement as our starting point. More precisely, we

have asked the question if βη-conversion is complete for full nominal hierarchies in

λ→. We justified that this is a valid problem to be pursued, and moreover, it is not

just a means to an end, but an interesting problem in its own right. Apart from this,

it isolates rather well a problem of completeness proofs via logical relations that one

encounters in the context of nominal sets.

We first provided an overview of the logical relation based proof argument and

identified the “Surjective Lemma” as a key hurdle towards a completeness theorem

for full nominal hierarchies. We then observed that the argument relies on the axiom

of choice to prove that R is a partial logical function. To circumvent the related

issues, we introduced finitely supported embeddings and inductively generated finitely

supported function to prove that R is a partial logical function. But there is a “price”

to be paid, because the condition is rather restrictive and impairs the usability of such
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a completeness theorem. Nevertheless, despite its limited applicability, the result is

useful to shed some light on logical relation based completeness theorems for full

nominal models. We believe that it would be interesting to further investigate if

there are non-trivial nominal sets that can be proven complete or if there is a way to

strengthen the result.

We proposed Statman’s 1-section theorem as an alternative route towards com-

pleteness for full nominal hierarchies. An immediate advantage of the 1-section the-

orem is its rather straightforward combinatorial condition on Henkin models. Due

to the fact that we have restricted ourselves to pure λ→ and full nominal hierarchies

are Henkin models, we were able to directly apply the 1-section theorem. We then

showed that the condition of the 1-section theorem is satisfied for full nominal hi-

erarchies, and therefore succeeded in proving completeness of βη-conversion for full

nominal hierarchies in λ→.

Considering the next step, namely to obtain a completeness theorem for full nom-

inal hierarchies in a nominal lambda calculus, like NLC, we believe that the most

promising route, as of now, would be to adapt Statman’s 1-Section theorem.

Enriched/Internal Yoneda Isomorphisms

In connection to our goal to obtain a categorical type theory correspondence for

NLC, we pursed another goal, namely to prove an additional conservative extension

property (Conjecture 3.5.3) using a categorical proof argument (see Appendix B). As

we have recalled, an important component of the original categorical proof argument

for EL and λ→, as presented in Crole [20] (Section 4.10), is the Yoneda isomorphism.

Hence, to extend the proof argument to hold for NEL and NLC (or an extension of

NLC) we had to study enriched/internal Yoneda isomorphisms in more detail.

We reminded the reader that Nom is (co)complete and demonstrated that FMSet

and FMNom are finitely (co)complete, but not (co)complete. Based on this, we
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obtained weak enriched Yoneda lemmas for all three nominal/FM categories and a

strong enriched Yoneda isomorphism (embedding) for Nom. Due to the very “fine

grained” computations that need to be performed in the categorical proof argument,

we had to unravel the rather abstract results to be able to directly work with the

permutation actions involved. This provided us with some interesting insights.

Moreover, we proved an internal Yoneda lemma for FMSet and showed that FMSet

is (co)complete for a newly introduced notion of finitely supported (co)limits.
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Appendix A

Enriched and Internal Category

Theory

A.1 Enriched Category Theory

We recall the basic notions of enriched category theory, which are necessary to

discuss enriched Yoneda isomorphisms, as presented in [41, 6].

Definition A.1.1 A monoidal category is a category V equipped with

(i) a bifunctor ⊗ : V × V → V, called the tensor product. The image of the pair

(A,B) under ⊗ is written as A⊗B.

(ii) an object I ∈ V, called the unit

(iii) an “associativity” natural isomorphism α with components αA,B,C : (A ⊗ B) ⊗

C ∼= A⊗ (B ⊗ C)

(iv) “left unit” and “right unit” natural isomorphism l and r with components lA :

I ⊗ A ∼= A and rA : A⊗ I ∼= A respectively.
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(v) the “associativity” coherence condition for any objects A,B,C,D:

(idA ⊗ αA,B,C) ◦ αA,B⊗C,D ◦ (αA,B,C ⊗ idD) = αA,B,C⊗D ◦ αA⊗B,C,D

(vi) and the unit coherence condition for any objects A,B:

(idB ⊗ lB) ◦ αA,I ,B = rA ⊗ idB

We assume from here onwards that all monoidal categories V are locally small.

By fixing a monoidal category V , the notions of category, functor and natural trans-

formation can be enriched over V as follows:

Definition A.1.2 Let V be a monoidal category. A V-enriched category C con-

sists of

(i) a class ob(C) of “objects” of C

(ii) for every pair A,B ∈ ob(C) an object C(A,B) ∈ V

(iii) for any objects A,B,C ∈ ob(C), a “composition” morphism cA,B,C : C(A,B) ⊗

C(B,C)→ C(A,C) (in V)

(iv) for any object A ∈ ob(C), an “identity” morphism in V, jA : I → C(A,A)

(v) the “associativity” coherence condition for any objects A,B,C,D,E:

cA,C,D ◦ (cA,B,C ⊗ idC(C,D)) = cA,B,D ◦ (idC(A,B) ⊗ cB,C,D) ◦ αC(A,B),C(B,C),C(C,D)

(vi) the “unit” coherence condition for any objects A,B:

idC(A,B)lC(A,B) = cA,A,B ◦ (jA ⊗ idC(A,B))

cA,B,B ◦ (idC(A,B))⊗ jB = idC(A,B) ◦ rC(A,B)
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A V-enriched category A is called small if ob(A) is a set.

Definition A.1.3 Let V be a monoidal category. Given V-enriched categories C and

D, a V-enriched functor F : C→ D consists of

(i) a function F : ob(C)→ ob(D)

(ii) for every pair C,C ′ ∈ ob(C), a morphism FA,A′ : C(C,C ′)→ D(FC, FC ′)

(iii) the “composition” axiom for any objects C,C ′, C ′′:

FC,C′′ ◦ cC,C′,C′′ = cFC,FC′,FC′′ ◦ (FC,C′ ⊗ FC′,C′′)

(iv) the “identity” axiom for any object C: FC,C ◦ jC = jFC

Definition A.1.4 Let V be a monoidal category. Let C and D be V-enriched cate-

gories and F,G : C → D two V-enriched functors. A V-enriched natural trans-

formation α : F → G is a family of morphisms αC : I → D(FC,GC) for every

object C ∈ ob(C) (in V) such that for all C,C ′ ∈ ob(C)

cFC,GC,GC′ ◦ (αC ⊗GC,C′) ◦ l−1
C(C,C′) = cFC,FC′,GC′ ◦ (FC,C′ ⊗ αC′) ◦ r−1

C(C,C′)

We further recall some additional structures on monoidal closed categories, which

are necessary to obtain an enriched Yoneda lemma.

Definition A.1.5 A monoidal category V is symmetric if for every pair A,B ∈ V,

there is an isomorphism sA,B : A⊗ B ∼= B ⊗ A that is natural in A and B such that

the following diagrams commute:

(i) the “associativity” coherence condition for every triple A,B,C

(idB ⊗ sA,C) ◦ αB,A,C ◦ (sA,B ⊗ idC) = αB,C,A ◦ sA,B⊗C ◦ αA,B,C

(ii) the “unit” coherence condition for every object A: lA ◦ sA,I = rA
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(iii) the “symmetry axiom” for every pair A,B: sB,A ◦ sA,B = idA⊗B

Definition A.1.6 A monoidal category V is closed if for each object B ∈ V, the

functor −⊗B : V → V has a right adjoint [B,−] : V → V.

Due to the fact that V is locally small, it can equally be expressed as follows: for

any object B, there are bijections, often referred to as currying, between the homsets

(natural in both A and C)

λ : V(A⊗B,C) ∼=Set V(A, [B,C]) : µ

Lemma A.1.7 Any symmetric monoidal closed category V can be enriched over it-

self, written as Ver.

Proof Ver is an enriched category with the following structure:

(i) ob(Ver)
def
= ob V

(ii) Ver(A,B)
def
= [A,B]

(iii) the “composition” morphism cA,B,C : [A,B]⊗ [B,C]→ [A,C] is defined as

cA,B,C
def
= λ(evB,C ◦ sB,[B,C] ◦ (evA,B ⊗ id [B,C]) ◦ s[B,C],A)

(iv) the “identity” morphism jB : I → [B,B] is defined as jB
def
= λ(lB).

The coherence condition follow by standard computations. �

Lemma A.1.8 Let V be a symmetric monoidal closed category and C a V-category.

Every object A ∈ ob(C) induces two representable V-enriched functors CA :

C→ Ver and CA : Cop → Ver, which are defined as follows:

• Any object B ∈ ob(C) is respectively mapped to the objects C(A,B),C(B,A) ∈

ob V.
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• Given objects B and B′ in ob(C), the morphism

CA
B,B′ : C(B,B′)→ Ver(C(A,B),C(A,B′))

def
= [C(A,B),C(A,B′)]

is defined as CA
B,B′

def
= λ(cA,B,C ◦ sC(A,B),C(A,B′)), and respectively for CB,B′

A .

The notion of a weak and strong Yoneda isomorphism are defined as follows:

Theorem A.1.9 (Weak Yoneda Lemma (Kelly [41])) Let V be a symmetric

monoidal closed category and C a small V-category. For every V-valued V-functor

F : C→ Ver and every object A ∈ ob(C), there exists a bijection

V(I , FA) ∼=Set V−Nat(CA, F )

Under the additional assumption that V is complete, functor categories can be

enriched over V and we obtain the Strong Yoneda Lemma.

Theorem A.1.10 (Strong Yoneda Lemma (Kelly [41])) Let V be a complete

symmetric monoidal closed category and C a small V-enriched category. For ev-

ery object A ∈ ob(C) and every V-valued V-functor F : C → Ver there exists an

isomorphism in V

FA ∼=V [C,Ver](CA, F )

Corollary A.1.11 Let V be a complete symmetric monoidal closed category. For

every small V-enriched category C, the mapping Y : Cop → [C,Ver] with A 7→ CA

can be extended to a V-functor, referred to as the V-Yoneda embedding.

A.2 Internal Category Theory

We introduce some basic concepts of internal category theory. For a complete

introduction we refer the reader to [5, 40].
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Definition A.2.1 Let C be a category with pullbacks. An internal category A in

C has the following structure

(1) an object A0 ∈ ob C (object of objects)

(2) an object A1 ∈ ob C (object of arrows)

(3) two morphisms d0, d1 ∈ A1 → A0 in mor C (source and target)

(4) a morphism i : A0 → A1 in mor C (identity)

(5) a morphism c : A1 ×A0 A1 → A1 in mor C, where (A1 ×A0 A1, pr 0, pr 1) is the

pullback for d0 and d1. (composition)

and must satisfy the following axioms:

(i) d0 ◦ i = idA0 = d1 ◦ i

(ii) d1 ◦ pr 1 = d1 ◦ c and d0 ◦ pr 0 = d0 ◦ c.

(iii) c ◦ h0 = idA1 = c ◦ h1, where h0 and h1 are factorisations through the pullback

(A1 ×A0 A1, pr 0, pr 1) for cones (A1, 1A1 , id ◦ d0) and (A1, i ◦ d1, idA1).

(iv) c ◦ (idA1 ×A0 c) = c ◦ (c×A0 1A1), where

(1A1 ×A0 c) : A1 ×A0 (A1 ×A0 A1)→ A1 ×A0 A1

(c×A0 idA1) : (A1 ×A0 A1)×A0 A1)→ A1 ×A0 A1

are factorisations through the pullbacks.

Definition A.2.2 Let C be a category with pullbacks. Given two internal categories

A and B, an internal functor F : A→ B is a pair of morphisms in mor C

F0 : A0 → B0 F1 : A1 → B1

which satisfies the following conditions:
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(1) d0 ◦ F1 = F0 ◦ d0, d1 ◦ F1 = F0 ◦ d1

(2) F1 ◦ i = i ◦ F0

(3) F1 ◦ c = c ◦ (F1 ×F0 F1), where

(F1 ×F0 F1) : A1 ×A0 A1 → B1 ×B0 B1

is the unique morphism such that pr 0 ◦ (F1×F0 F1) = F1 ◦ pr 0 and pr 1 ◦ (F1×F0

F1) = F1 ◦ pr 1

Definition A.2.3 Let C be a category with pullbacks and let A be an internal category

in C and P ,Q : A → C two internal functors, written explicitly as P = (P, p0, p1) and

Q = (Q, q0, q1). An internal natural transformation α : P → Q is an arrow

α : P → Q such that

• q0 ◦ α = p0

• α ◦ p1 = q1 ◦ (idA1 ×A0 α)

Definition A.2.4 Let C be a category with pullbacks and let A be an internal category

in C. An internal C-valued functor P : A → C is a triple (P, p0, p1) where:

• P ∈ ob C

• p0 : P → A0 ∈ mor C

• p1 : A1 ×A0 P → P ∈ mor C, where (A1 ×A0 P, prA1
, prP ) is the pullback of d0

(domain map) and p0.

such that the following axioms hold

(i) p0 ◦ p1 = d1 ◦ πA1

(ii) p1 ◦ (i ◦ p0, idP ) = idP

(iii) p1 ◦ (idA1 ×A0 p1) = p1 ◦ (c×A0 idP )
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Appendix B

Towards a Conservative Extension

Result

In connection with the syntactically generated classifying category for [ N]NLC

that we aimed to construct in Chapter 5, we pursued another goal, namely to prove

a categorical conservative extension result, which requires such classifying categories

for NEL and [ N]NLC.

We now sketch the categorical proof argument used and highlight the required

auxiliary results. This motivates why certain properties like enriched and internal

Yoneda isomorphisms, a notion of “nominal” gluing and FM-properties for functor

categories have been studied in the first place.

B.1 Outline of the Categorical Proof Argument

We recall the third conservative extension property that we introduced in Section

3.5. We originally intended to prove this property for NEL and NLC, however the

categorical proof argument requires classifying categories for both, NEL and NLC.

But this is not possible for NLC, as we have explained in Chapter 5. So, instead, the

property would have to be extended to [ N]NLC.



APPENDIX B. TOWARDS A CONSERVATIVE EXTENSION RESULT 269

Conjecture 3.5.3 (for [ N]NLC): Let Th = (Sg ,Ax ) be a NEL-theory. Let Th ′
def
=

(Sg ′,Ax ′) be the extension of Th to an [ N]NLC-theory with Ax ′
def
= Ax and Sg ′ is

the extension of the NEL-signature Th. Then for any freshness context ∇ def
= a1 #

x1 : γ1, ..., an # xn : γn (with γi ∈ GndSg), ground type γ ∈ GndSg and [ N]NLC-

expression E (without local scoping) such that Th ′ B ∇ `[ N]NLC E : γ we can deduce

the following:

(i) there exists a NEL-expression M for which Th B ∇ `NEL M : γ and Th ′ B

∇ `[ N]NLC E ≈M : γ (informally: E is βη-reducible to M).

(ii) if there exists another NEL-expression M ′ for which Th B ∇ `NEL M ′ : γ and

Th ′ B ∇ `[ N]NLC E ≈M ′ : γ then Th ′ B ∇ `NEL M ≈M ′ : γ.

Note that a key step of the proof argument is to translate the conservative exten-

sion property into a categorical setting using the classifying categories (categorical

type theory correspondence) for NEL and [ N]NLC. For the arguments sake, we sup-

pose that a correspondence result for [ N]NLC can be obtained. We remind the reader

that for classifying categories Cl(Th) and Cl(Th′) we have the following definitions:

Cl(Th)(∇, ∅ # x : s)
def
= {([M ]NEL

≈ ) | Th B ∇ `NEL M : s}

Cl(Th′)(∇, ∅ # x : s)
def
= {([E][ N]NLC

≈ ) | Th ′ B ∇ `[ N]NLC E : s}

where the quotients [M ]NEL
≈ and [E][ N]NLC

≈ are defined using provable equality of NEL

and [ N]NLC, respectively. Thus, the definition of a conservative extension, as given

above, now amounts to demonstrating that the inclusion function

{[M ]NEL

≈ | Th B ∇ `NEL M : γ} → {[E][ N]NLC

≈ | Th ′ B ∇ `[ N]NLC E : γ}

is surjective and injective. This corresponds categorically to an inclusion functor

I, I(∇) = ∇ and I([M ]NEL
≈ ) = [M ]NLC

≈ , with Cl(Th)(∇, ∅ # x : s) → Cl(Th′)(∇, ∅ #

x : s) being bijective. Thus, to prove the conservative extension result, we could
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equally show that there exists a full and faithfull inclusion functor I. Analogue to

Crole [20] (Section 4.10), the existence of such an I depends, among other things, on

demonstrating that for some category D and cartesian closed V such as Nom, FMSet

and FMNom) we have

(i) D(A,B) ∼= [D,V ](YA,YB) (Yoneda isomorphism)

(ii) The construction of a glued category GL(Γ), where Γ is constructed using the

Yoneda isomorphism.

(iii) The functor category [D,V ] is cartesian closed

This motivated our study of enriched and internal Yoneda isomorphisms for V

being Nom, FMNom or FMSet in Chapter 7.

Further, given that we work with FM-categories in the context of NEL, we also

need to augment the categorical gluing lemma to hold for FM-categories. A first step

in this direction is the gluing lemma in Section 5.1.3. Furthermore, to be able to

apply the gluing lemma in the categorical proof argument, we would have to show

that the functor category [D,V ] is a cartesian closed category. In Section 7.2.2, we

provided a first result for V being Nom. In addition, we would have to show that

the functor category is an FM-category. We discussed this in more detail in Section

5.1.3.

The following sections contain the proofs of some of the aforementioned properties,

which were stated in Chapter 5.

B.2 Freyd-style Gluing Proof

We decompose Theorem 5.1.17 into various lemmas. We start by introducing an

internal permutation action for GL(Γ).
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Lemma B.2.1 An internal permutation action on GL(Γ) is defined as follows: for

each object (C, f,D) and permutation π we specify a morphism GL(Γ)

π(C,f,D) : (C, f,D)→ π · (C, f,D) = (π · C, π · f, π ·D)

which is point-wise defined by π(C,f,D)
def
= (πC , πD), where πC : C → π · C and πD :

D → π · D are the respective internal permutation actions of C and D, and π · f is

the internal permutation action on morphisms of C.

Proof It is clearly the case that (π · C, π · f, π · D) is an element of GL(Γ). To

show that π(C,f,D) is a GL(Γ)-arrow we need to check if the commuting condition

(π · f) ◦ πC = Γ(πD) ◦ f holds:

(π · f) ◦ πC
def
= (πΓD ◦ f ◦ (π−1)π·C) ◦ πC
def
= πΓD ◦ f ◦ (π−1 ◦ π)C

= πΓD ◦ f ◦ ιC
def
= πΓD ◦ f ◦ idC

= πΓD ◦ f

= Γ(πD) ◦ f (Γ preserves πD)

Next we have to demonstrate that the properties of an internal permutation action

hold. Given that C and D are FM-categories and the internal permutation action is

defined point-wise, the result directly follows:

(i) We have ι(C,f,D)
def
= (ιC , ιD), ιC = idC and ιD = idD. Hence, we can deduce that

ι(C,f,D)
def
= (ιC , ιD) = (idC , idD)

def
= id(C,f,D).

(ii)

(π′ ◦ π)(C,f,D)
def
= ((π′ ◦ π)C , (π

′ ◦ π)D)

def
= (π′π·C ◦ πC , π′π·D ◦ πD)

def
= (π′π·C , π

′
π·D) ◦ (πC , πD)

def
= π′(π·C,π·f,π·D) ◦ π(C,f,D)
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�

We now demonstrate that there is a more “natural” way to apply the permutation

action on morphisms of GL(Γ):

Lemma B.2.2 For any morphism (h1, h2) in GL(Γ), we have that π · (h1, h2) =

(π · h1, π · h2). Consequently, (h1, h2) is finitely supported by supp(h1)∪ supp(h2) and

the internal permutation action on GL(Γ) is finitely supported.

Proof Take any GL(Γ)-arrow h = (h1, h2) : (C, f,D)→ (C ′, f ′, D′). We then deduce

the following:

π · h def
= π(C′,f ′,D′) ◦ h ◦ (π−1)π·(C,f,D)

def
= (πC′ , πD′) ◦ (h1, h2) ◦ (π−1)(π·C,π·f,π·D)

def
= (πC′ , πD′) ◦ (h1, h2) ◦ ((π−1)π·C , (π

−1)π·D)

def
= (πC′ ◦ h1 ◦ (π−1)π·C , πD′ ◦ h2 ◦ (π−1)π·D)

def
= (π · h1, π · h2)

Given that both C and D are FM-categories, and h1 and h2 are respectively C-

arrows and D-arrows, we have that supp(h1) and supp(h2) are finite sets and therefore

h is finitely supported by supp(h1) ∪ supp(h2). Thus, by Definition 5.1.4, we have

that the internal permutation action is finitely supported.

�

Lemma B.2.3 GL(Γ) has equivariant finite products.

Proof The terminal object (1C, id1C , 1D) of GL(Γ), denoted as 1, is composed of the

terminal objects 1C and 1D and the identify function id1C . Given that Γ strictly

preserves finite products we have Γ1D = 1C and therefore 1 is clearly an object of

GL(Γ). Due to the fact that C has equivariant finite products, we have that π ·1C = 1C.



APPENDIX B. TOWARDS A CONSERVATIVE EXTENSION RESULT 273

Further, given that 1C is a terminal object, there is one unique morphism and therefore

π · id1C = id1C . We can now deduce the following:

π · 1 def
= π · (1C, id1C , 1D)

def
= (π · 1C, π · id1C , π · 1D)

def
= (1C, π · id1C , 1D)

def
= (1C, id1C , 1D)

def
= 1

Next, we have to show that for any pair of objects (C, f,D), (C ′, f ′, D′) ∈ GL(Γ)

with a product (C, f,D)× (C ′, f ′, D′) and projections pri : (C, f,D)× (C ′, f ′, D′)→

(C, f,D) for i = 1, 2, the following property holds:

π · pri((C, f,D), (C ′, f ′, D′)) = pri(π · (C, f,D), π · (C ′, f ′, D′)) for i = 1, 2

Note that by applying the definition of projections pri for GL(Γ), we can equally

show that

π · (pri(C,C ′), (pri(D,D′)) = (pri(π · C, π · C ′), pri(π ·D, π ·D′)) for i = 1, 2

But this follows immediately by Lemma B.2.2 and the fact that C and D have

finite equivariant products.

π · (pri(C,C ′), (pri(D,D′)) = (π · pri(C,C ′), π · pr1(D,D)) (Lemma B.2.2)

= (pri(π · C, π · C ′), pr1(π ·D, π ·D′))

�

Lemma B.2.4 GL(Γ) has fresh inclusions, which are defined point-wise as follows:

ia(C,f,D) =def (iaC , i
a
D) : (C#a, f ↑ C#a, D#a) → (C, f,D) such that f ◦ iaC = ΓiaD ◦ (f ↑

C#a).
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Proof It is clearly the case that ia(C,f,D) is an GL(Γ)-arrow. We prove the various

properties step by step:

(i) We first have to prove equivariance: π · ia(C,f,D) = iπ·aπ·(C,f,D):

π · ia(C,f,D)
def
= π · (iaC , iaD)

= (π · iaC , π · iaD) (Lemma B.2.2)

= (iπ·aπ·C , i
π·a
π·D) (equivariance)

(ii) Next, we have to show that i∅(C,f,D) = id(C,f,D) and ia(C,f,D) ◦ ia
′

(C#a,f↑C#a,D#a)
=

ia∪a
′

(C,f,D).

i∅(C,f,D)

def
= (i∅C , i

∅
D)

= (idC , idD) (fresh inclusions)

def
= id(C,f,D)

ia(C,f,D) ◦ ia
′

(C#a,f↑C#a,D#a)

def
= (iaC , i

a
D) ◦ (ia

′

C#a , i
a′

D#a)

def
= (iaC ◦ ia

′

C#a , i
a
D ◦ ia

′

D#a)

= (ia∪a
′

C , ia∪a
′

D ) (fresh inclusions)

(iii) We have to show that ia(C,f,D)×(C′,f ′,D′) = ia(C,f,D) × ia(C′,f ′,D′) holds.

ia(C,f,D)×(C′,f ′,D′)
def
= ia(C×C′,∼=◦(f×f ′),D×D′)

def
= (iaC×C′ , i

a
D×D′)

= (iaC × iaC′ , iaD × iaD′) (fresh inclusions)

def
= (iaC , i

a
D)× (iaC′ , i

a
D′)

def
= ia(C,f,D) × ia(C′,f ′,D′)

(iv) Suppose that supp(π) # (C, f,D). We have to show that π(C,f,D)#supp(π) =
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id(C,f,D)#supp(π) holds.

π(C,f,D)#supp(π)
def
= π(C#supp(π),f↑C#supp(π),D#supp(π))

def
= (πC#supp(π) , πD#supp(π))

= (idC#supp(π) , idD#supp(π))

def
= id(C,f,D)#supp(π)

(v) Let f, g : (C, f,D) → (C ′, f ′, D′) be two parallel C-arrows such that f ◦

ia(C,f,D) = g ◦ ia(C,f,D) and a # (f, g). We have to show that f = g. Let’s refer to the

components of f and g as (f1, f2) and (g1, g2) ,respectively. By enfolding the equation

we get:

f ◦ ia(C,f,D)
def
= (f1, f2) ◦ (iaC , i

a
D)

def
= (f1 ◦ iaC , f2 ◦ iaD)

def
= (g1 ◦ iaC , g2 ◦ iaD)

def
= (g1, g2) ◦ (iaC , i

a
D)

= g ◦ ia(C,f,D)

Hence, we have f1 ◦ iaC = g1 ◦ iaC and f2 ◦ iaD = g2 ◦ iaD. We can furthermore deduce

from a # (f, g) that a # f1, f2, g1, g2. So, given that C and D are FM-categories we

have that f1 = g1 and f2 = g2; thus f = g.

(vi) Let h : (C, f,D)→ (C ′, f ′, D′) be a morphism in GL(Γ) and a a finite set of

names such that a # (C ′, f ′, D′). We pick a finite set of names b such that b # (a, h)

and (a b)(C′,f ′,D′)◦h◦ ib(C,f,D) = h◦ ib(C,f,D). We have to prove that there exists a unique

ĥ : (C, f,D)→ (C ′, f ′, D′)#a such that ia(C′,f ′,D′) ◦ ĥ = h holds. Let h
def
= (h1, h2). By
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enfolding the equation we obtain:

(a b)(C′,f ′,D′) ◦ h ◦ ib(C,f,D)
def
= ((a b)C′ , (a b)D′) ◦ (h1, h2) ◦ (ibC , i

b
D)

def
= ((a b)C′ ◦ h1 ◦ ibC , (a b)D′ ◦ h2 ◦ ibD)

= (h1 ◦ ibC , h2 ◦ ibD)

def
= (h1, h2) ◦ (ibC , i

b
D)

def
= h ◦ ib(C,f,D)

Hence, we have that (a b)C′ ◦h1 ◦ ibC = h1 ◦ ibC and (a b)D′ ◦h2 ◦ ibD = h2 ◦ iaD. From

a # (C ′, f ′, D′) we can deduce that a # C ′ and from b # (a, h) that b # (a, h1). So,

there exists ĥ1 : C → C ′#a and ĥ2 : D → D′#a such that h1 = iaC′ ◦ĥ1 and h2 = iaD′ ◦ĥ2

(�) We can now take ĥ =def (ĥ1, ĥ2). The fact that h = ia(C′,f ′,D′) ◦ ĥ is deduced as

follows:

ia(C′,f ′,D′) ◦ ĥ
def
= ia(C′,f ′,D′) ◦ (ĥ1, ĥ2)

def
= (iaC′ , i

a
D′) ◦ (ĥ1, ĥ2)

def
= (iaC′ ◦ ĥ1, i

a
D′ ◦ ĥ2)

= (h1, h2) (�)
def
= h

We can deduce from the fact that ĥ1 and ĥ2 are unique that ĥ is unique with

respect to the commuting property. �

Lemma B.2.5 P2 : GL(Γ)→ D is an FM-functor, i.e. it strictly preserves internal

permutation actions, products and fresh inclusions

Proof

(i) for internal permutations we can deduce:

P2(π(C,f,D))
def
= P2((πC , πD))

def
= πD

def
= πP2((C,f,D))



APPENDIX B. TOWARDS A CONSERVATIVE EXTENSION RESULT 277

(ii) for products we can deduce:

P2(1C, id, 1D)
def
= 1D

def
= P2((1C, id, 1D))

P2(pr (C,f,D))
def
= P2((prC , prD))

def
= prD

def
= prP2((C,f,D))

(iii) for fresh inclusions we can deduce:

P2(ia(C,f,D))
def
= P2((iaC , i

a
D))

def
= iaD

def
= iaP2((C,f,D))

�

B.3 Product and Functor Category Proofs

Proof of Lemma 5.1.19 It follows by routine computations that the product cat-

egory C × D is an FM-category with the provided structures. We now demonstrate

that the category of small FM-categories and FM-functors has finite products:

As it is well known, any category with a single object A and morphism (idA) is a

terminal object in the category of small categories. This can trivially be extended to

an FM-category. As shown in Lemma 5.1.19, we have that C × D is an FM-category

and if C and D are small, we have that C × D is small as well. The corresponding

projection maps pr i : C1 × C2 → Ci (for i = 1, 2) are functors defined as follows:

pr i((C1, C2))
def
= Ci and pr i((f1, f2))

def
= fi. We continue with the universal property.

For any product cone (B, F1, F2), the mediating functor 〈F1, F2〉 : B → C1 × C2 is

defined as follows: 〈F1, F2〉(B)
def
= 〈F1B,F2B〉 and 〈F1, F2〉(f)

def
= 〈F1f, F2f〉. The

proof that the commuting condition holds and that the projection functors and the

mediating functions are FM-functors follows by routine computations. �

Proof of Lemma 5.1.22 We enhance the proof argument that shows that the cate-

gory of small categories and functors is cartesian closed with “nominal” computations.
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As we have shown in Lemma 5.1.19, the category has finite products. So, we only

have to demonstrate that the category has exponentials: Let C and D be small perm-

categories. Then [C,D]fs ⊆ [C,D] (luff subcategory) is the exponential of C and D.

Given that C andD are small, we have that [C,D] is small and therefore [C,D]fs is small

as well. By Lemma 5.1.20 we have that there exists an internal permutation action

for [C,D]fs . Then, by definition, we have that the morphisms are finitely supported

and therefore [C,D]fs is a perm-category. The evaluation map ev : [C,D]fs × C → D

is defined as follows:

ev((F,C))
def
= FC

ev(η, f)
def
= ηC′ ◦ Ff = Gf ◦ ηC for η : F ⇒ G and f : C → C ′

It can easily be demonstrated that ev is a functor. In addition, we have that show

that ev preserves internal permutation actions:

ev(π(F,C))
def
= ev(πF , πC)

def
= (πF )π·C ◦ F (πC)

def
= πF (π−1·π·C) ◦ F (π−1

π·C) ◦ F (πC)

= πFC ◦ F (π−1
π·C ◦ πC) (F is a functor)

= πFC ◦ F (idC) (Lemma 5.1.3 (ii))

= πFC ◦ idFC (F is a functor)

= πFC

def
= πev((F,C))

For any perm-functor F : A × C → D, there exists a unique exponential mate

λ(F ) : A → [C,D]fs , which is defined as follows:
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Objects: λ(F )(A) : is a functor defined by:

λ(F )(A)(C)
def
= F ((A,C))

λ(F )(A)(f)
def
= F ((idA, f)) for f : C → C ′

Morphisms: For g : A→ A′, λ(F )g : λ(F )(A)→ λ(F )(A′) is a natural transfor-

mation with components

(λ(F )(g))C
def
= F ((g, idC)) : F ((A,C))→ F ((A′, C))

The fact that λ(F )(A) is a functor and λ(F )(g) is a natural transformation follows

as in the original argument. What remains to be shown is that λ(F )(g) is finitely

supported. Let c, c′ # g (g is finitely supported). Given that F is a perm-functor, we

have that F (πC) = πFC and therefore π · FC = F (π · C).

((c c′) · λ(F )(g))C = (c c′) · (λ(F )(g))(c c′)·C (Lemma 5.1.21)

def
= (c c′) · F ((g, id(c c′)·C))

= F ((c c′) · (g, id (c c′)·C)) (F is a perm-functor)

= F (((c c′) · g, (c c′) · id (c c′)·C))

= F ((g, idC)) (c, c′ # g)

def
= (λ(F )(g))C

The fact that λ(F ) is a functor follows as in the original argument. Next, we have
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to show that λ(F ) preserves internal permutation actions. Let πA and C ∈ C.

(πλ(F )(A))C
def
= πλ(F )(A)(π−1·C) ◦ λ(F )(A)(π−1

C )

def
= πF ((A,π−1·C)) ◦ F ((idA, π

−1
C ))

= F (π(A,π−1·C)) ◦ F ((idA, π
−1
C )) (F preserves int. perm.)

def
= F ((πA, ππ−1·C)) ◦ F ((idA, π

−1
C ))

= F ((πA, ππ−1·C) ◦ (idA, π
−1
C ))

def
= F ((πA ◦ idA, ππ−1·C ◦ π−1

C ))

= F ((πA, idC)) (inverse)

def
= (λ(F )(πA))C

The fact that λ(F ) is unique and the commuting condition holds follows as in the

case of small categories and functors. This concludes the argument. �

Proof of Lemma 5.1.23 We recall that finite products in a functor category are

constructed point-wise. We now only have to show that the conditions of an equiv-

ariant finite product hold:

(π · 1[C,D])(X)
def
= π · 1[C,D](π

−1 ·X)

def
= π · 1D (point-wise)

= 1D (D has equiv. products)

def
= 1[C,D](X)

The argument for morphisms follows similarly. We now continue with the equiv-
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ariance of the projection maps:

(π · pr i(F,G))X = π · (pr i(F,G))π−1·X (Lemma 5.1.21)

def
= π · pr i(F (π−1 ·X), G(π−1 ·X)) (point-wise)

= pr i(π · F (π−1 ·X), π ·G(π−1 ·X)) (D has equiv. products)

def
= pr i((π · F )(X), (π ·G)(X))

= (pr i(π · F, π ·G))X (point-wise)

�
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