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Abstract

This project is devoted to the study of solid-liquid interfaces in pure Fe
and Fe-C alloys using molecular simulation. It consists of three parts: first,
we use the coexisting phases approach to calculate melting phase diagrams of
several recent Fe-C interaction potentials, such as Embedded Atom Method
(EAM) potential of Lau et al. [I], EAM potential of Hepburn and Ackland [2],
and Analytic Bond Order (ABOP) potential of Henriksson and Nordlund [3].
Melting of both bee (ferrite) and fec (austenite) crystal structures is investi-
gated with C concentrations up to 5 wt%. The results are compared with the
experimental data and suggest that the potential of Hepburn and Ackland is
the most accurate in reproducing the melting phase diagram of the ferrite but
the austenite cannot be stabilised at any C concentration for this potential.
The potential of Lau et al. yields the best qualitative agreement with the
real phase diagram in that the ferrite-liquid coexistence at low C concentra-
tions is replaced by the austenite-liquid coexistence at higher C concentrations.
However, the crossover C concentration is much larger and the ferrite melting
temperature is much higher than in the real Fe-C alloy. The ABOP potential
of Henriksson and Nordlund correctly predicts the relative stability of ferrite
and austenite at melting, but significantly underestimates the solubility of C

in the solid phases.

Second, we develop a new direct method for calculating the solid-liquid in-
terfacial free energy using deformation of the solid-liquid coexistence system.
The deformation is designed to change the area of the interface, while preserv-

ing the volume of the system and crystal structure of the solid phase. The



interfacial free energy is calculated as the deformation work divided by the
change of the interfacial area. The method is applied to the bee solid-liquid
interface of pure Fe described by the Hepburn and Ackland potential. The ob-
tained results are somewhat different from those calculated by the established

methods so further development and analysis are required.

Third, we investigate the dependence on C concentration of the bee solid-
liquid interfacial free energy of Fe-C alloy described by the Hepburn and Ack-
land potential. We use the method proposed by Frolov and Mishin [4] which is
analogous to the Gibbs-Duhem integration along the solid-liquid coexistence
line. The calculations are performed for three different crystal orientations
(100), (110) and (111), allowing us to determine the anisotropy of the interfa-
cial free energy and its dependence on C concentration along the coexistence
line. Although the precision is somewhat limited by the high computational

cost of such calculations.

This PhD project is a part of the MintWeld project; Modelling of Inter-
face Evolution in Advanced Welding (www.le.ac.uk/mintweld), funded by the

European Commission under the Framework Seven Programme (FP7).
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Chapter 1

Introduction

1.1 MintWeld

This PhD project is a part of the MintWeld project - Modelling of Inter-
face Evolution in Advanced Welding (www.le.ac.uk/mintweld) funded by the
European Commission under the Framework Seven Programme (FP7). The
MintWeld project aims to establish the capability to design and engineer weld-
ing processes with a multi-scale, multi-physics computational modelling ap-
proach. The particular attention will be paid to the evolution of the solid-liquid
interface.

Partners of the project:

TATA Steel UK Limited, London, UK

Delft University of Technology, Delft, The Netherlands

Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

Institute of Welding, Gliwice, Poland

e Norwegian University of Science and Technology, Trondheim, Norway



KTH Royal Institute of Technology, Stockholm, Sweden

TWI Ltd, Cambridge, UK

University College Dublin, Dublin, Ireland.

University of Leicester, Leicester, UK

University of Oxford, Oxford, UK

Frenzak Sp. Zoo, Mikolow, Poland.

The project aims to understand better the technology for welding deep sea
gas and oil transportation systems in an engineering research project using

advanced methods to revolutionise the welding industry.

This PhD project is linked with the ab initio group which is creating
new interaction potentials for molecular simulations suitable for simulations
at higher temperatures close to melting and the phase field group which re-
quires anisotropy properties of explored structures which can be calculated
through Molecular Dynamics simulations. Both groups are based at the Ecole

Polytechnique Federale de Lausanne, in Lausanne, Switzerland.

The aim of this PhD project is to model by computer the processes of
solidification and interface evolution in simple models of metals and alloys
using classical molecular simulations. The simulations are performed using one
of the open source molecular dynamics packages DLPOLY [5]. To achieve the
goals of the project DLPOLY needs to be modified, so a substantial component
of this project is to extend the functionality of DLPOLY in order to handle a
wider range of interatomic potentials and methods of the solid-liquid interfacial

free energy calculation. Within the project a microscopic understanding of the



properties of solid-liquid interfaces, as well as the processes taking place during

the solidification of metals and alloys have been developed.

For investigation of the properties of steel several different effective in-
teraction potentials for Fe and Fe-C systems can be found in the literature.
Unfortunately, most of them are for low temperature states of iron (ferrite)
and therefore their abilities to describe properties of austenite are rather poor.
Only some of those which include C-C interactions (therefore higher concen-
trations of C) have been selected as candidates for modelling of iron in a high

temperature state [0 [7, [§].

1.2 Molecular Dynamics simulations

Computer molecular simulations is a powerful tool for gaining fundamental
knowledge of materials processes and properties, and for providing input mod-
els for continuum models and materials design. The capabilities of such simu-

lations continue to grow with the progress in modern computer technology.

Here, the main ideas behind Molecular Dynamics (MD) simulations are
briefly outlined. The description is based on D. Frenkel and B. Smit- ‘Under-
standing Molecular Simulation: From Algorithms to Applications ’[9], ‘Intro-
duction to Molecular Dynamics Simulation 'by M. Allen [10] and M. Allen’s

and D. Tildesley’s book ‘Computer Simulation of Liquids ’[T1].

Molecular dynamics simulations are computer simulations carried out to
understand the time evolution of molecular assemblies in terms of their struc-
ture and microscopic interactions between them. Providing a guess at the

interactions between particles, we obtain 'exact’ predictions of the bulk prop-



erties of our model system. These predictions are ’exact’ in the sense that
they can be made as accurate as we like, depending on our computer budget.
Simulations act as a bridge between theory and experiment. At the same time,
we may also run simulations which are difficult or even impossible to carry out
in a laboratory. MD simulations are in many respects very similar to real ex-
periments. During a real experiment, we prepare a sample of the material that
we wish to study. We connect this sample to a measuring instrument (e.g., a
thermometer or manometer), and we measure the properties of interest over a
certain time interval. If our measurements are subject to statistical noise (as
most measurements are) then the longer we average, the more accurate our
measurement becomes. In a MD simulation, we follow exactly the same ap-
proach. First, we prepare a sample: we select a model system consisting of N
particles of mass m; (i = 1,2,3..N) with given initial positions and velocities.
Then we solve Newton’s equations of motion where r; is the position of particle
i, f; is the force acting on particle i due to the interaction with other particles

and (possibly) external fields, and the dots over r; denote time differentiation.

mir; = fi(7, . 750) (1.1)

Equation (L)) is a system of 3N 2"? order differential equations, which cannot
be solved exactly, but can be solved approximately using numerical algorithms.
The most popular is the Velocity Verlet (VV) [13] algorithm. Writing the
equation of motion in terms of Taylor series for a particle ¢ at time t — At and

t+ At:

() — At (t) + é—fﬁ(t) - Ag—f%i@) + O(AtY) (1.2)

1

7t — At)

I
<
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At? . At?

7t + At) = 75(t) + At (t) + i) + ?%’i(t) + O(AtY (1.3)
Adding equations (L2) and (L3)):
Fi(t — At) + 75 (t + At) = 27,(t) + AT (t) + O(AtY) (1.4)
Thus
. . . At? A

To find the new position and velocity the VV relies on the two previous steps.
The velocity at midpoint at time ¢ + At/2 is calculated from the position at

time t and t + At:

7t + At) — 7 (t)

U; At/2) = 1.
Bt + At/2) - (16)
ri(t + At) = 7i(t) + Aty (t + At/2). (1.7)
Similarly, velocity at the midpoint between ¢t — At and t:
i (t) — it — At

At

The acceleration can be found from an approximation of the second derivative:

m;

11



Hence

¥ (t + At/2) :@(t—At/Z)Jr%f:(t) (1.10)

And finally velocity at time t + At can be written as:

At fi(t + At)

Gt + A = Gi(t + AL/2
Ui(t + At) = U;(t + At/2) + 5 .

(1.11)

In the VV algorithm v; and r; are calculated in the three steps described by

equations (L), (I.I0) and (LII)).

1.2.1 Interaction potentials

Atoms and molecules consist of electrons and nuclei which obey the laws of
quantum mechanics. However, solving the Schrodinger equation is much more
difficult than solving Newton’s equation, especially for systems containing hun-
dreds of atoms. Thus the influence of electrons on the nuclei can be replaced
with an effective interaction, which only depends on the positions of nuclei.

- 0

fi= _8772U(F17--->FN) (1.12)

where ﬁ is the force acting on the particle ¢ and U is the potential energy
of the system of N particles. The types of interactions between particles can
be classified according to the number of particles involved in the interaction.

Therefore, the potential energy can be formally represented as the sum of

12



single-particle interactions, pair-interactions, triplets, etc.

U@Ey) =Y w () + > ) () + > D Y us (7,75, 7%) + ...
i i j>i i j>i k>

(1.13)
Where w; (7;) is the externally applied potential field or the effects of the
container walls and us represents interaction between pairs of particles, etc.
The most commonly studied systems in molecular dynamics are described only
in terms of pair interactions, while higher order interactions are neglected.
However, it was found that for metals it is not enough to provide only pair
potentials, since pair potentials do not have environmental dependence and
do not account for the directional nature of the bond. This problem was
solved in different ways described in the chapter devoted to different interaction

potential for iron systems.

Potential based methods of computer simulations based on atomistic mod-
els perform fast calculations of the system energy and classical interatomic
forces, and provide access to systems containing millions of atoms. This
technique enables researchers to run simulations for tens or even hundreds

of nanoseconds.

Interatomic potentials parameterise the configuration space of the material
and express U as a relatively simple function of all atomic positions (config-
uration point). The forces are then computed (usually analytically) as coor-
dinate derivatives of U. This computation of U and f: is a simple and very
fast numerical procedure with an order-N scaling. It does not involve any
quantum-mechanical calculations although they are often used during the de-

velopment of potentials. The potential functions contain fitting parameters,

13



which are adjusted to reproduce selected properties of the material known
from experiment and/or first-principles calculations. Once the fitting process
is complete and parameters fixed, the potential is used in all simulations of
the given material. The underlying assumption is that a potential which gives
accurate energies/forces on configuration points used during the fit will also
give reasonable results for configurations between and beyond those points.
This property of potentials is referred to as ‘transferability ’and is the most

adequate measure of their quality [14].

1.2.2 Thermodynamic properties

Macroscopic properties of materials (e.g. density, temperature, structure) de-
pend on microscopic properties of particles (i.e. mass, shape, velocity, inter-
action). Thus a variety of thermodynamic properties can be calculated from
computer simulations. Computer simulations enable predictions to be made of
the thermodynamic properties of systems for which there is no experimental
data, or for which experimental data is difficult or impossible to obtain. The
thermodynamic properties are usually defined by a small set of parameters
such as number of particles N, temperature T, and pressure P. The system
evolves in time and changes its point in phase space, hence thermodynamic
properties of the system can be written in terms of a position in phase space.
Thus macroscopic properties of the system are defined as an average over all
possible thermodynamic states of the system (ensemble average). If the system
contains many particles, it can be assumed that it is an ergodic system, for

which the ensemble average of some property 7 is equal to the time average

14



(ergodic hypothesis):

(o) = (1) (1.14)

The internal energy is easily obtained from a simulation as the ensemble av-
erage of the energies of the states that are examined during the course of the

simulation:

U=(U)= %ZU (1.15)

where M is the number of time steps.

The pressure is usually calculated via the virial theorem of Clausius. The
wvirtal is defined as the expectation value of the sum of the products of the
coordinates of the particles and the forces acting on them. This is usually
written W = > Fzﬁl where r; is a position of the particle ¢ and ﬁl is the time
derivative of the momentum. The theorem of Clausius states that the virial is

equal to —3NkgT for 3-dimensional systems.

If the particles interact through a pairwise potential, the contribution to
the virial from the intermolecular forces can be derived. The contribution to

the virial from the interaction u(r;;) between atoms ¢ and j is given by:

0 0 0 0 0 0
W = | — - = i i i g 1.1

Two atoms 7 and j separated by a distance r;:

rig = /(@ = 2 + (5 — )2 + (50— ) (1.17)
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Since:

ory: o . o
; "y ::cl-@j i) and :L’jarj = —xju (1.18)

and similarly for the y and z coordinates, we can apply the chain rule, 9/0z; =

(0/0r;;)(0r;j/0x;), as follows:

Wreal =

+ = ry—2 (1.19)

(wi —2;)* | (Wi —y)* | (2 —2)?] Qulry) Au(ri;)
(rij) (rij) " (rij) } ori; YO

When we include the contribution from all pairs of atoms, we obtain:

real - Z Z Tij 8,27:;] (120)

In an ideal gas, the only forces are those due to interactions between the gas
and the container and it can be shown that the virial in this case equals —3PV'.
This result can also be obtained directly from PV = NkgT'. Forces between
the particles in a real gas or liquid affect the virial and hence the pressure. The
total virial for a real system is equal to the sum of an ideal gas part (—3PV)
and contribution due to interaction between the particles. The result obtained
is:

= 3PV + Z Z ) T” = —3NkpT (1.21)

i=1 j=i+1 Tij

If Ou(r;j)/0r; is written as — f;;, the force acting between atoms ¢ and j, then

we have the following expression for the pressure:

1 1 N N

i=1 j=i+1

The forces are calculated as part of a molecular simulation, and so little ad-

16



ditional effort is required to calculate the virial and thus the pressure [12].
Notice that the equations above (L.I6)-(L.22) are for the pair interaction only,
thus applying many-body interaction potential pressure calculation should be

adapted for the potential.

The temperature T is directly related to the kinetic energy, £, of the

system as follows:

A = L =252 (3N - N,) (1.23)

where p; is the total momentum of particle ¢ and m; is its mass, N,, is the
number of constrains on the system. In molecular dynamics simulation the
total linear momentum of the system is often constrained to a value of zero,
which has the effect of removing three degrees of freedom from the system and

so N. would be equal to 3.

17



1.2.3 Periodic Boundary Conditions

To avoid surface effects in MD simulations
periodic boundary conditions have to be
used. For instance for a system of 1000 atoms
in a 10x10x10 cube, around half of the par-
ticles are on the outer faces, this can have a
large effect on the measured properties. Even
for a system of 10% atoms, the surface atoms
amount to 6% of the total. Thus in simula-
tions, if the particle leaves the basic simula-
tion box, attention can be switched to the in-
coming periodic image. Figure [LI]illustrates

2D cubic periodic boundary conditions.

The common experience in simulations is that periodic boundary conditions
do not have a big effect on the equilibrium thermodynamic properties and
structure of fluids. However, investigation of liquid-solid interface periodic
boundary conditions are required in order to consider interfacial properties.
Hence for the investigations of the liquid-solid interface two interfaces have to

be created to match periodic boundary conditions. This is described in the
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chapter devoted to phase diagram calculations.
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1.3 Structure of the thesis

In order of investigate interfacial properties of the Fe-C system we begin with
testing different existing interaction potentials by computing phase diagrams
and comparing them with experimental data. Using the best suitable potential
for our calculations we obtained solid-liquid interfacial free energy of the pure
Fe system. Different methods of interfacial free energy calculations have been
employed including a method developed within the project which uses the de-
formation of the solid-liquid coexisting system. Using results of solid-liquid
interfacial free energy for one component Fe system we applied the method by
Frolov and Mishin [4] to obtain interfacial free energy along the coexistence
line. The thesis consists of three main chapters: testing of the selected recent
interaction potentials for the Fe-C system, methods of interfacial free energy
calculation and implementation of Frolov and Mishin method for the Fe-C
system. The final chapter summarises the PhD project and provides recom-
mendations for future work within the area. The description of the software

and hardware used within the project can be found in the Appendix.
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Chapter 2

The melting phase diagrams

We investigate low concentration Fe-C alloys (up to 5wt%), since within the
MintWeld project properties of steels are to be explored. We test how selected
potentials for the Fe-C system predict melting properties of the system by

calculating melting phase diagrams.

The Finnis-Sinclair (FS) method [15] and the embedded atom method
(EAM) [16] are the most widely used potential formats for metallic systems.
They have been applied to simulations of interfaces, dislocations, fracture, dif-
fusion, structural transformations, solidification and melting, and many other
processes. Over the past two decades, these potential forms have produced an
excellent record of delivering reasonable values of different properties of metals

including binary systems [17].
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Figure 2.1: Melting phase diagram obtained experimentally for the Fe-C alloy [I§].

The region of interest is highlighted in red.

2.1 Methodology

Figure 2.1l illustrates the experimental Fe-C melting phase diagram [18]. The
region of interest (highlighted in red) consists of austenite (v) face-centred
cubic structure (fcc) and ferrite (§) body-centred cubic structure (bec). In
order to obtain a phase digram, coexisting concentrations of C in the solid and
liquid states have to be found for a range of temperatures below the melting
temperature of the pure Fe system. Such coexisting points can be calculated

for different crystal structures (bcc and fec are the structures we are interested

in).
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The coexistence of two phases is characterised by the thermal equilibrium,

mechanical equilibrium and material equilibrium:

Tsol = ﬂiqa Psol = Pliq7 and HFesol = HFeliqy  MC,sol = HC,liq (2]-)

where 1" is temperature, P is pressure, p is chemical potential and subscripts
sol and liq indicate that the property is for solid or liquid states respectively. In
recent years a quantitative computing of phase diagrams has become possible.
With the use of computers, simultaneous optimisations of thermodynamic and
phase equilibrium data can be applied to the critical evaluation of binary and

ternary systems.

Traditionally phase diagrams are
obtained by combination of the

common tangent construction [19)]

T=const

and Gibbs-Duhen integrations (GDI)
[20].  Within the method, Gibbs

free energy should be calculated for

a specified temperature for different

concentrations of the second compo- c

nent of the mixture for both states. Figure 2.2: Schematic illustrations of the
The common tangent construction common tangent construction of Gibbs free

. .. energy curves for both the liquid and solid
simultaneously minimises the total

states at the constant temperature.
Gibbs energy and ensures the equal-
ity of the chemical potentials, thereby showing that these are the equivalent cri-

teria for equilibrium between liquid and solid phases [19]. Figure schemat-

ically shows Gibbs free energy curves for both liquid and solid states with a
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common tangent at constant temperature. This can be done for other tem-
peratures to obtain a smooth coexistence line. Unfortunately it turns out
to be inefficiently time consuming, since it requires a significant number of
free energy calculations for different concentrations of the second component.
However the rest of the coexistence line can be calculated by using GDI, with-
out performing additional free energy calculations. The method is equivalent
to the numerical integration of the Clausius-Clapeyron equation. When two
phases « and [ coexist at a given temperature T and pressure P, their chemi-
cal potentials must be equal. Changing both the pressure and the temperature
by infinitesimal amounts dP and dT', respectively, the difference in chemical

potential, y, of the two phases becomes:

dpte, — dpig = —(Sq — 53)dT + (Vs + vg)dP. (2.2)

where s and v are the molar entropy and volume. Along the coexistence line

to = pp and TAs = Ah, hence:

dP  sq—s3  Ah
dT vy +vg TAv

(2.3)

As Ah, T and Av can be computed directly in a simulation, dP/dT can be
calculated from equation (Z3). To solve equation (2.3)) predictor-corrector
algorithms can be used [21, 22]. This method has been applied to locate
the vapour-liquid [20], 23] and solid-liquid coexistence curve of the Lennard-
Jones fluid [24]. The Gibbs-Duhem integration is potentially a very efficient
technique for tracing a coexistence curve. However the numerical errors in the
integration of equation (23] may result a large deviations of the computed
coexistence points from the true coexistence curve. Similarly, any error in the

location of the initial coexistence points will lead to an incorrect estimate of

23



the coexistence curve. Such errors can be reduced by performing additional
calculations of more points where two phases are in equilibrium using the
common tangent technique. As was mentioned before, such calculations require

a number of long simulations making the method inefficiently time consuming.
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2.2 The coexisting phase approach

Diffusion coefficients of carbon have been cal-
culated for different carbon concentrations of
the Fe-C system using different interaction
potentials. It was found that carbon dif-
fuses relatively fast inside both liquid and
solid states. Results for carbon diffusion in
the system are provided in the section de-
voted to the diffusion coefficients and densi-
ties in the Fe-C system. Thus it was decided
to take advantage of diffusion properties of
Fe-C systems and use the so called coexist-
ing phase approach |25 26]. The methodol-
ogy of the coexisting phase approach, used
for determining the melting phase diagrams,

is described below.

Temperature and pressure can be con-
trolled in molecular simulations, while com-
putations for chemical potential are not so

unequivocal. To control chemical potential,

LIQUID

SOLID

LIQUID

Figure 2.3: Initial system structure
with two solid-liquid interfaces. Par-
allelepiped boundary conditions ap-
plied, thus the system consists of two
interfaces. Fe particles are displayed
in green and C in red. The interfaces

are perpendicular to the z-axis.

the grand-canonical ensemble has to be applied, which allows fluctuation of

the total number of particles. This is complicated for the interstitial systems

such as Fe-C. The coexisting phase approach may be used when a solid-liquid

interfacial system is created within a simulation box. As long as the simulation

time is sufficiently long to allow carbon to move through the solid phase to

and from the interface, the equilibrium concentrations and hence the equality
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Figure 2.4: BCC crystal structure of the Fe-C system with all possible positions of
C. Fe particles are shown in grey and C in green.

of chemical potentials for Fe and C, can be reached. This explains why the
ability of carbon to diffuse relatively fast in the system is an important factor

when implementing the coexisting phase approach.

The melting temperature for the pure iron system can be found by running
simulations of the solid-liquid 0% carbon concentration system at different
temperatures and looking for a temperature where the system neither melts
nor freezes. Using the known melting temperature for the pure iron system
and the shape of the experimental phase diagram, we can guess approximate
carbon concentrations in the liquid and solid states for the temperatures be-
low the melting temperature of the pure iron system. Configurations with two
interfaces placed against the z-direction as shown in Figure were created
to match periodic boundary conditions. Figure illustrates a configuration
where the solid phase is placed between two liquid parts, whilst due to periodic
boundary conditions, liquid can be placed between two crystals. As was men-
tioned before, two crystal types had to be created: ferrite (body-centred cubic)
and austenite (face-centred cubic). These two crystallographic structures with

all possible carbon positions are shown in Figures 2.4] — 2.5
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Figure 2.5: FCC crystal structure of the Fe-C system with all possible positions of
C. Fe particles are shown in grey and C in green.

Figure displays parameters monitored during the simulations. These
are total and potential energy, volume of the simulation box, pressure compo-
nents and density profile with time evolution. The density profile illustrates
how the system density as a function of coordinate z (z-axis is perpendicular
to the interface) changes during the simulation. There are three regions on
the plot of the density profile, light blue is for liquid phase and stripy is for
solid phase. Using the isothermal-isobaric constant - NPT ensemble, temper-
ature and pressure of the simulation can be controlled and equilibrium can
be achieved at the desired temperature. Within this ensemble the pressure
is adjusted by adjusting the volume. Figure illustrates parameters of the
system which reached equilibrium. The system energy and volume go up and
down and pressure components fluctuate around zero meaning that the sys-
tem is neither melting nor freezing. Also, we can see coexistence of solid and
liquid phases on the plot for total density profiles. The system will either
melt or freeze if the simulations temperature and/or initial concentrations of
carbon are too far from values of coexistence. Once we obtain the coexistence
conditions at some temperature, it is not hard to find approximate carbon

concentrations at the lower temperatures and apply the coexistence approach
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Figure 2.6: Energy, volume, pressure and density profile of the system monitored
during the simulation. A system of 16293 (Fe - 16128, C-165) particles was used.
T=1700K

to precise C concentrations.

We obtained detailed information about the structural and dynamic prop-
erties of the solid-liquid interfaces. During simulations, we could observe car-
bon concentration changes in liquid and solid parts of the system. Monitoring
iron and carbon density profiles (Figure 2.7]) we could make the carbon density
function smooth using filtering techniques and see carbon distribution in the
system across the interface. Oscillations of the density represent the crystal
layers in the solid phase, while smooth densities (cyan for Fe and pink for C)
are shown, which better represent the average density in each phase and how
it changes across the interface (top picture). In the figure (bottom picture),
the filtered carbon density profile is shown. To determine the average den-
sity of Fe and C in the crystal phase at the coexistence point we average over

the density profile oscillations [27]. Observing that carbon concentrations in
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Figure 2.7: The top figure illustrates Fe density profiles obtained during the sim-
ulation including filtered density functions (cyan for Fe and pink for C). The lower
figure shows the C concentration in the system at one step of the long simulation.
Both figures display results for the Hepburn and Ackland potential [2] at T' = 1760K.

the liquid and solid remain around the same values we could assume that the

system is equilibrated in terms of carbon concentration.

To obtain density profiles the system should be split into bins in the z-
direction hence knowing number of particles in each bin and the volume of
the bins, the density can be calculated as a discrete function of z. As was
mentioned before using this function, we can estimate the amount of liquid
and solid in the system and see if the system is melting/solidifying. Within
the project DLPOLY has been modified such that profiles can be obtained
for the density of both components, stress tensor and potential energy of the
system. More detailed information about this modification of the code can be

found in the chapter devoted to the Frolov and Mishin method.

For the simulations, systems of size &~ 30 x 30 x 60A have been used.
For each simulation up to 16 CPUs were used (hardware used in the project

is described in Appendix [B]). Knowing the carbon distribution in the system
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during a short-time simulation we could observe how carbon diffuses from the
liquid state part into the solid state part and/or backwards. Thus changing
initial concentrations and/or temperature an equilibrium of the system can be
reached. Depending on how far the initial carbon concentrations in the solid
and liquid states are from equilibrium concentrations, longer simulations may
be required. However it was found that on average a 5ns simulation was enough
to reach the equilibrium if initial carbon concentrations and temperature are
relatively close to the equilibrium conditions. Each 5ns simulation was split
into up to ten short simulations, such that temperature could be adjusted at

different stages of the whole simulation.

2.3 Interaction Potentials for Fe-C system

As was mentioned above, two of the tested potentials Lau et al. [I], and
Hepburn and Ackland [2] use the Finnis-Sinclair (FS) [15] and the embedded
atom method (EAM) [16] correspondingly. Omne of the challenges in FS and
EAM simulations is the lack of flexibility in addressing chemical effects. Each
time a new solute B is added to a metal A to examine its effect on a particular
property, a new binary potential AB must be constructed (unless it already
exists). The construction of an accurate binary potential is a highly demanding
task. This explains why a common strategy in this field is to generate new

potentials that are not only accurate but also ‘universal .

The third tested potential by Henriksson and Nordlund for the Fe-C system
[3] uses the analytical bond-order potential (ABOP) formalism ([28] and refer-
ences therein) it is a suitable approach for a potential that is able to describe
different bonding types. It is essentially a modified form of the Brenner[29] [30]

and Tersoff [31] potentials, which were originally developed for C-H and Si,
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respectively. The ABOP formalism has been used previously for metals, semi-
conductors, and combinations of these, such as Ga-As, [28] Si-C, [32] and Pt-C

33].

2.3.1 Hepburn and Ackland potential

This section introduces an empirical potential based on insights from density
functional theory, showing covalent-type bonding for carbon. This is a many-
body interaction potential by Hepburn and Ackland [2] which describes the
interaction of carbon and iron across a wide range of defect environments. The
potential can be used for billion atom MD simulation systems, as it has EAM

form [16]:

U(ri;) = %sz(a,g)(mj) +ZF(0!)(pa>7 (2.4)

)

o= Pap(ry) (2.5)

i#]
where V(4 5), ®(a,5), and F{,) are parametrised functions dependent on element
types, a and (. Since the Hepburn and Ackland potential describes Fe-C
interaction o and 3 can be Fe or C. F{, represents the local bond-structure
energy of atom ¢ of type «, so called embedded function. In the Hepburn and

Ackland potential the interaction between iron and carbon is not symmetric:

‘/(Oévﬁ) = Wﬁva) (26>
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In other words, Fe atom has different density function for interaction with Fe

and C atoms, ®(pe re) and ®(pe ), respectively. And the same for C atom

interacting with Fe and atoms, i.e. ® re) and @y, respectively. This

requires changes in the DLPOLY code for EAM potentials, since the initial

code sets one density function for both ®, 3 and ®(,). Thus the code was

modified by introducing the potential (reading tables of the functions) and

force calculations. Equation (24]) can be split into two parts:

Urs) = 5 323 Ve () + 3 Fe )

L N ——
TV
ul u2

Hence the force acting on the particle k£ can be written as:

fk == —Vku = —(Vkul + V;ﬂbg)

For the first part —Vu; of the equation (2.8):

“Viur =3 D> Vias Vari

1 jF#L

where V(’a g) 18 the first derivative of V{4 gy with respect to r.

r; — ry —T;

J 5jk

r.
Virij = Vilri —rj| = =8 —

i Tij
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Introducing v which is a type of particle k (7 = Fe, C), then it can be written
that:

/ ..
R TR 3) DR S D LU

1 Y (s) 1 Yoy (Tik)
T
1 TR —T;
=3 2 [V () + Vs (ri)] = —
J#k J

(2.12)

Where V(. 5y = V{3, are from equation (ZG). For —Vu, from equation (2.8):

—Vius ==Y Fl(p:)Vip; (2.13)

using (2.5) and (2.I0) it can be written that

vk/)z = vk Z q)(a,ﬁ) (TZ] Z (I)(a B) Tz] vk'rl]

77 7 (2.14)
- Ty — 7T
Zq)(aﬁ 7’@] |: ]5ik_ ]5jk:|-
ij ij
J#i
Ty — Tk
—Viatz = = 3 Flpn) @ ) () 2+ > Fl ()P (M) = —— =
ik ik ik
’ Tk — 7’]'
_Z Fi(or) @0, ) (i) + Fj (pﬂ)q)(ﬁ,v)(rkj)} T
j#k ki
(2.15)

Equations (2.9)-(215) describe modifications in the forces calculations which

have been implemented in DLPOLY code. Tables which describe pair interac-
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tions, density and embedded functions had to be created: three pair interaction
function for Fe-Fe, Fe-C and C-C, density functions for Fe-Fe, Fe-C, C-Fe and
C-C and embedded functions for Fe and C. This has been done by modifying
tables taken from the LAMMPS Molecular Dynamics Simulator [86]. Notice
that the initial DLPOLY code assumes that ® 3 = ®(.) and uses eight
functions for a binary system. As was mentioned before, the modified code

reads tables of functions in a way that all functions can be used.

According to Hepburn and Ackland the potential allows the correct predic-
tion of the interactions between carbon and a range of defects in iron, many

of which are intractable with other potentials.

2.3.2 Lau et al. potential

This is a many-body interaction potential for an alloy of arbitrary point de-
fect concentration, body-centred cubic a-Fe supersaturated in C. According to
authors [I] simulations with this interaction potential shows agreement with
carbon-vacancy (nC-nVa) point defect cluster formation energies for defects

that were determined by first principle calculations [34].

To create this potential, Lau et al. hypothesise that a better description
can be achieved by fitting the potential to the energies and also to the configu-
rations of point defects and clusters thereof as predicted by density functional
theory (DFT). For this purpose an adopted FS formalism was used [15]. The
description of a C-C interaction was provided because of the requirement to
distinguish defect clusters including more than 1 C atom. This formalism es-
sentially is EAM where the embedded function in equation (2.4]) is a square

root.
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Similar to the previously described potential by Hepburn and Ackland, the
potential by Lau et al. is not symmetric in the sense of interaction between
[ron-Carbon and Carbon-Iron, since the density functions for Fe-C and C-
Fe are not equal. This led to problems in using this potential with the initial
software code, since DLPOLY uses one set of data for Iron-Carbon and Carbon-
[ron interaction. Thus changes in the DLPOLY code are required, in order to
use this potential. Using the F'S formalism initially implemented in the code,
Fe-C and C-Fe interactions were separated with different fitting parameters
for the density functions. Similarly, to modifications in DLPOLY for EAM,

we change the code so that it creates nine functions for a binary system.

2.3.3 Potential by Henriksson and Nordlund

The analytic bond-order interaction potential by Henriksson and Nordlund has
been developed for the iron-carbon system for use in molecular simulations.
According to the paper by Henriksson and Nordlund [3] the potential has
been successfully fitted to the most important crystalline polytypes among the
many known metastable iron carbide phases - cementite and Hagg carbide.
Properties of other carbides and the simplest point defects obtained using
this potential match well with available data from experiments and density-

functional theory calculations.

The potential uses the analytic bond-order formalism (ABOP) ([28] and
references therein) which is appropriate for a potential that is able to describe
different bonding types. As was mentioned before ABOP is a modified form
of the Brenner and Tersoff potentials, therefore to implement this potential,

the Tersoff potential coded in DLPOLY was modified.
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As reported by Henriksson and Nordlund, fairly good results were obtained
testing the potential on the carbides Fe;Cs and Fe,C. The results were less than
15% off experimental and density-functional theory properties of Fe carbides.
Parameters for Fe-Fe interactions developed by Muller et al. [8] were used,
which gives the correct dependence of the relative stability of fcc and bcc
phases on temperature. The potential for the C-C interaction is taken from

I35, 136].
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Figure 2.8: Phase diagram obtained using Hepburn and Ackland potential. Exper-
imental data [18] is shown as a solid line and bce coexisting points are represented
in crosses.

2.4 Results

Hepburn and Ackland Potential. Figure2.§illustrates results calculated
using the Hepburn and Ackland potential. Obtained coexisting points for bce
are shown in crosses and experimental results [18] in a solid line. Concentration
is represented by percentage of the atoms. It can be seen that compared
with the experimental data, the potential is good in reproducing the melting
properties of bee Fe; the potential predicts the shape of the melting diagram
similar to the experimental results. However simulations of the fcc Fe-C system
with up to 20% carbon showed that the potential fails to predict the austenite

crystal stabilisation.
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Figure 2.9: Phase diagram obtained using the Lau et al. potential. Experimental
data is shown as a solid line, bce coexisting points are represented in crosses and fcc
coexisting points are in circles.

Lau et al. potential. The melting phase diagram obtained using the Lau
et al. potential is shown in Figure 2.9 Again results for bce are shown by
crosses and experimental data is the solid line, whilst coexisting points for fcc
are shown by circles. Comparing with experimental data, the obtained results
agree quite well in the sense of the shape of the diagram. Austenite becomes
more stable than bce at the higher carbon concentrations, so the model phase
diagram is qualitatively similar to the experimental. However as can be seen,
quantitative agreement is rather poor. The melting temperature of the pure
Fe bce solid is about 2400K, that is about 600K more than the experimental
melting temperature. The Fe-Fe interaction which directly affects the melting
temperature of the pure iron system is taken from the Rosato [39] poten-
tial which was not created to describe properties of Fe at high temperatures.

The bee phase remains more stable compared to fcc at all temperature be-
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Figure 2.10: Phase diagram obtained using the ABOP Henriksson and Nordlund
potential. Experimental data is shown as a solid line, bcc coexisting points are
represented in crosses and fcc coexisting points are in circles.

low melting and at a temperature about 1820K fcc-liquid coexistence appears
with 12.5% of carbon in the liquid and 9.5% of carbon in the fcc solid phase.

While in the real alloy, fcc becomes more stable than bee with much lower

concentrations.

Henriksson and Nordlund potential. Figure shows results obtained
with the ABOP Henriksson and Nordlund potential. On the figure the same
representation of bee, fcc and expreimental data for previously presented phase
diagrams is used. As can be seen, the potential also overestimates the melting
temperature of the Fe-C alloy, but it correctly predicts the changes of the
stable phase at melting from bcc to fee as the carbon concentration in the
liquid is increased by about 3%. However the problem with this model is that

it predicts much lower carbon concentration within the fcc solid phase than
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shown by the experimental data.

Potential for the future calculations. After comparing phase diagrams
obtained using the selected potentials, the Hepburn and Ackland potential
was selected. It predicts coexisting points for the bee Fe-C alloy fairly close
to the coexistence line obtained experimentally. Therefore for all calculations
described in the chapters below the Hepburn and Ackland potential has been
used. The results shown are for the bece structure, since it was found that using

the Hepburn and Ackland potential, the fcc structure is unstable.

2.5 Density and diffusion coefficients.

For the three tested potentials densities inside the liquid and solid have been
calculated. This simplifies the creation of initial liquid-solid systems with coex-
isting carbon concentrations. Moreover, diffusion coefficients were calculated
for carbon inside the liquid and solid states. Figures [R.I1] and show
results for densities of iron and carbon in the solid and liquid states obtained
using the Hepburn and Ackland potential. Here we present results only for the
Hepburn and Ackland potential since this potential was chosen for all future
calculations. From the diffusion coefficients, shown in Figure 2.13] it can be
seen that carbon diffuses fairly rapidly in both liquid and solid. This makes
it possible to use the coexisting phase approach for the Fe-C systems as was
mentioned above. Figure2.13 compares obtained results with the experimental

data [37],[38], and shows relativity good quantitative agreement.
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temperature inside the liquid and solid states obtained by the Hepburn and Ackland
potential.

Using the obtained diffusion coefficients and the Arrhenius equation:

D = Dye P/ET (2.16)

we calculated the activation energy for the diffusion. Dy is the diffusion coef-
ficient when the temperature goes to infinity, R is the universal gas constant
and F is the activation energy for diffusion process. Figure 2.14 illustrates
logarithmic dependence of the diffusion coefficient on reciprocal temperature
which was used to predict Dy, and Dy;. Obtained activation energy for the
diffusion of carbon in the solid is F, = 2.128 x 10* cal/mol and in the liquid
E; = 2.448 x 10* cal/mol.
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Chapter 3

Interfacial free energy

calculation

The crystal-melt interfacial free energy -, is the work required to create a unit
area of crystal and its coexisting melt interface. Its anisotropy (i.e., the de-
pendence of v on the orientation of the crystal with respect to the interface) is
also of particular interest for pattern formation in solidification; for example,
the anisotropy can determine the dendrite growth direction in directional so-
lidification [40]. Even small anisotropies are important, as they are necessary
for the stable growth of dendrites [41]. The interfacial free energy has been
the focus of numerous studies [42] — [57] primarily due to its importance in

crystal nucleation and growth [58] — [63].

Direct experimental determinations of « are usually based on contact angle
measurements [64] 65]. Such measurements are quite difficult and have been
done only for a handful of materials [66]. The lack of reliable direct experi-
mental methods for determining v and its anisotropy has motivated a growing
number of studies aimed at computing v and its anisotropy for model systems

via molecular simulation [47] — [57].
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Currently, three qualitatively different approaches are being employed to
determine the crystal-melt interfacial free energy in computer simulations: the
cleaving method [67], the Capillary Fluctuation (CF) method [47] (both of
which have been used within the MintWeld project and are described below
in this chapter) and Classical Nucleation Theory (CNT)[G8] (this method is
also briefly described in this chapter). Within the project a new deformation
method has been invented which uses the deformation of liquid and crystal
systems by keeping the system volume and crystal structure constant. This
chapter aims to discuss the new method and compare the results with the

cleaving and capillary fluctuation methods.
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3.1 Capillary fluctuation method

The capillary fluctuation method, which ex-
amines the magnitude of capillary fluctua-
tions in the profile of a thin strip of the inter-
face, [49] — [53], [55], [57] has been used over
the past few years. Figure B.1]illustrates the
simulation geometry. Spheres are coloured
according to whether they are part of the
crystal (light grey) or liquid (dark grey) as
determined by the value of the order param-

eter calculated as described in [50].

For a macroscopically rough interface, the
size of the capillary fluctuation modes is re-
lated to the interfacial stiffness 4 which is
given in terms of the interfacial free energy

~ by the formula:

() =+ d*y/db’ (3.1)

nm e

w
-3

Figure 3.1: Sample geometry
from the (100) interface simulation.
Spheres are coloured according to
whether they are part of the crystal

(light grey) or liquid (dark grey).

where 6 is the angle between the instantaneous local normal to the interface

and the average orientation for the reference flat interface. By simulating

a number of interfaces with different crystal orientations and measuring the

average magnitude of the fluctuation modes, stiffness can be found from the

simulations and the anisotropic interfacial free energy can be extracted.

Within the method, interfacial free energy is obtained from the interface

fluctuation approximately, thus making the method ‘indirect ’and less accurate.
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Figure 3.2: The cleaving of the bulk hard-sphere system by two moving walls.
Spheres are assigned types 1 and 2 based on their position with respect to the
cleaving plane (dashed line).

The capillary fluctuation approach was first applied to the hard-sphere system
[57]. Within the MintWeld project interfacial free energy for the pure Fe
system and Fe-C alloys has been obtained by the capillary fluctuation method

for three crystal orientations.

3.2 Cleaving method.

Within the “cleaving” method, separate bulk crystal and melt systems pre-
pared at the crystal-melt coexistence conditions are transformed along a con-
tinuous path that brings them in contact with each other, creating an interface.
Thermodynamic integration is performed along the path in order to determine
the reversible work involved in the transformation process. The value of ~ is

then obtained as the work, divided by the area of the created interface.

In this method external “cleaving” potentials are used to separate the liquid

and crystal, which are at the coexisting temperatures and densities. Solid and
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liquid are placed next to each other and to merge them into a coexisting
interface, the potentials are removed. This approach uses only hard-sphere
interactions in the order to cleave the bulk hard-sphere systems and this allows

the application of the Broughton-Gilmer cleaving procedure [47].

The “cleaving” process is shown in Figure [48]. Spheres are assigned
types 1 and 2 based on their position with respect to the cleaving plane (dashed
line). Two walls of type 1 and 2, which interact only with spheres of similar
type, are placed on the opposite sides of the cleaving plane, so that initially
there are no collisions between walls and spheres (as shown in the diagram).
The system is then cleaved by moving the walls in directions indicated by the
arrows. The walls do not interact with the spheres when the distance from the

walls to the cleaving plane is larger than the sphere radius.

When the wall are gradually moved towards each other, starting from po-
sition z; (initial) and finishing at zy, the spheres of different types no longer

face each other at the cleaving plane. The work per unit area is

W= / " ple) d- (3.2)

where P(z) is the pressure measured as a function of the walls’ position.

The crystal-liquid interfacial free energy can be measured in the following

four steps (Figure B.3):

1. Cleaving the bulk crystal by the inserting two walls at the cleaving plane

and moving them in z-direction;
2. Cleave the bulk liquid in a similar way;

3. Match the cleaved crystal and liquid by changing the periodic bound-
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Figure 3.3: Cleaving method in 4 steps: cleaving the bulk crystal, cleave the bulk
liquid, match the cleaved crystal and liquid by changing the periodic boundary
conditions and move the walls back to their initial positions.
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ary conditions, while keeping the crystal and liquid restricted by the

respective cleaving walls;

4. Slowly move the walls back on their initial positions.

According to [69] obtained results using this method are about 10% higher
than that determined from experiments. Within the MintWeld project inter-
facial free energy between the crystal and its melt have been calculated by the
cleaving method for the pure iron for three crystal orientations: (100), (110)
and (111). Results are presented later in the thesis in the section devoted to

the comparison of the interfacial free energy obtained using different methods.

50



3.3 Classical Nucleation Theory

Classical nucleation theory (CNT) can be applied to a wide range of under-
cooling temperatures to directly estimate the interfacial free energy. The tem-
perature dependence of the interfacial energy can also be calculated with this
method. According to CNT [70], to form a small solid sphere of radius r in a

supercooled liquid, the change in the Gibbs free energy can be expressed as:

4
AG, = —§7T7’3AGV + 472y, (3.3)

where ~gy, is the orientationally averaged solid-liquid interfacial energy and
AGYy is the Gibbs free energy difference per unit volume between solid and
liquid phases at the same temperature. Based on experimental results [71]
[47], there is an empirical relation between AGy and the latent heat of fusion
[48]:

AT
AGy = LVT— (3.4)

m
where Ly is the latent heat of fusion per unit volume at the equilibrium melting
temperature, T}, is the equilibrium melting temperature, and AT = (1, — T)

is the undercooling temperature. The critical nucleus radius is obtained from

equation (B.3):

2L o (2T
T*_AGV_< I )AT' (3.5)

Notice that equations above use ‘thin wall approximation '[72]. Molecular
dynamic simulations can be used to determine the size of the critical radius
as a function of AT, so that interfacial free energy can be obtained. For

most materials, the indirect estimates of this quantity are obtained from the
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nucleation rate measurements, using the (approximate) relationship between
vsr and the nucleation rate from the classical nucleation theory (or variants
thereof). However, since this approach yields an orientationally averaged value

of vsr,, it is unable to resolve the anisotropy.
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5L,

— liquid - — solid

Figure 3.4: Deformation of the solid-liquid system: a) initial system, b) after
deformation.

3.4 Deformation method

The deformation method for a crystal and its melt interfacial free energy cal-
culation in Molecular Dynamics simulations has recently been invented. Below

a description of the method including the obtained results is presented.

3.4.1 Idea

The idea of the deformation method is to take an equilibrated solid-liquid
interfacial system of size (L, L,, L,) and deform it into a system of size
($xLg, syLy, s,L,), as shown in Figure 3.4, where s,, s,,s, > 0 are the scaling
factors. If we manage to deform the system in such a way that the final state
of the bulk solid and liquid phases is the same as the initial state, then the

only change in the system is the change in the area of the interfaces:

AA =2(sysy — 1)L, L, . (3.6)
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If we measure the reversible work, W, required to perform the deformation,

then the solid-liquid interfacial free energy can be determined as:

w

Vsl = H . (37)

The deformation of the system is carried out at constant temperature. To
preserve the state of the bulk liquid, we simply need to preserve its volume.

This can be done by setting s, = (s,5,) ™"

Preserving the state of the bulk solid is more complicated since we need
to preserve both its volume and structure. Let’s view the solid as consisting
of crystal layers parallel to the x-y plane. One possible way to preserve its
structure is to squeeze the system in the z direction to half its original size,
ie. s, = 1/2, and rearrange the atoms so that a pair of neighboring layers is
merged into one crystal layer with the same structure as the original layer. So,
if R; = (X;, Y, Z;) are the coordinates of atoms in the ideal crystal structure,

then their coordinates after the deformation are:

Ri == (XM }/;7 Zz) = (Ssz + dm,iu SyY; + dy,i7 SzZi + dz,i) 5 (38)

where d; = (dy,,dy,,d.;) is the displacement vector of atom ¢ required to

recover the original crystal structure after the deformation.

For example, consider a (100) oriented bcc crystal (see Figure B5). The
smallest crystal block that can be deformed in such a way has the size (L,, L,, L,) =
(a,a,2a), where a = {/2/p, is the length of the unit bec cube with pg be-
ing the density of the solid, and contains four atoms with coordinates R; =

(1/4,1/4,1/4), Ry = (3/4,3/4,3/4), Ry = (1/4,1/4,5/4), Ry = (3/4,3/4,7/4)
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Figure 3.5: Splitting of bee structure with (100) orientation into layers in the z-
direction.

in units of a. If we choose the scaling factors s, = s, = V2, s, = 1/2,
and the displacement vectors d, = (v/2/4,0,1/8), dy = (v/2/4,0,—1/8),
ds = (—v2/4,0,1/8), dy = (—v/2/4,0,—1/8) in units of a, then the size
of the crystal block after deformation will be (L., L,, L.) = (v/2a,v/2a, a) and
the atoms will be in the original (100) oriented bcc crystal structure. Other
orientations of the bce crystal, as well as the fce and other crystal structures,
can be deformed in a similar way. The details are given in Tables B.1] — 3.3l
Coordinates of atoms, R;, and displacement vectors, d;, are given in units of
the bee unit cube length a = {’/m , where pq is the density of the solid. It can
be seen that different orientations require different minimum number of atoms
for the deformation. Thus for (100) orientation the minimum is 4 atoms, 8

atoms for (110) and 12 atoms for (111) orientation.

3.4.2 Continuous Deformation Process

In order to calculate the reversible work required to perform the deformation,

we need to set up a continuous process that deforms the system from its initial
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Table 3.1: Deformation parameters for the (100) oriented bcc crystal block.

(Ly, Ly, L) (82, Sy, S2)
(a,a,2a) (\/ﬁ, V2, 1/2)
1 R, d;
1] (1/4,1/4,1/4) | (V/2/4,0,1/8)
2| (3/4,3/4,3/4) | (v/2/4,0,-1/8)
31 (1/4,1/4,5/4) | (—v/2/4,0,1/8)
4| (3/4,3/4,7/4) | (—v/2/4,0,—1/8)

Table 3.2: Deformation parameters for the (110) oriented bcc crystal block.

(Ly, Ly, L) (81, Sy, S2)
(a, V2a, 2\/§a) (\/5, V2, 1/2)

O ~J O T = W N | .

(3/4,3v2/4,v/2/4)
(1/4.v/2/4,V2/4)
(3/4,v2/4,3v2/4)
(1/4,3v2/4,3v2/4)
(3/4,3v2/4,5v/2/4)
(1/4,7/2/4,5v/2/4)
(3/4,v2/4,7v2/4)
(1/4,