
Zames-Falb multipliers for absolute stability: from O’Shea’s contribution to
convex searches

Joaquin Carrascoa, Matthew C. Turnerb, William P. Heatha

aControl Systems Centre, School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK
bControl Systems Research Group, Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK

Abstract

Absolute stability attracted much attention in the sixties. Several stability conditions for loops with slope- restricted
nonlinearities were developed. Results such as the Circle Criterion and the Popov Criterion form part of the core
curriculum for students of control. Moreover, the equivalence of results obtained by different techniques, specifically
Lyapunov and Popov’s stability theories, led to one of the most important results in control engineering: the KYP
Lemma.

For Lurye1 systems this work culminated in the class of multipliers proposed by O’Shea in 1966 and formalised
by Zames and Falb in 1968. The superiority of this class was quickly and widely accepted. Nevertheless the result was
ahead of its time as graphical techniques were preferred in the absence of readily available computer optimization. Its
first systematic use as a stability criterion came twenty years after the initial proposal of the class. A further twenty
years have been required to develop a proper understanding of the different techniques that can be used. In this long
gestation some significant knowledge has been overlooked or forgotten. Most significantly, O’Shea’s contribution and
insight is no longer acknowledged; his papers are barely cited despite his original parameterization of the class.

This tutorial paper aims to provide a clear and comprehensive introduction to the topic from a user’s viewpoint.
We review the main results: the stability theory, the properties of the multipliers (including their phase properties,
phase-equivalence results and the issues associated with causality), and convex searches. For clarity of exposition we
restrict our attention to continuous time multipliers for single-input single-output results. Nevertheless we include
several recent significant developments by the authors and others. We illustrate all these topics using an example
proposed by O’Shea himself.
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1. Introduction

A feedback interconnection of a linear system and a static nonlinearity is said to be absolutely stable if the inter-
connection is stable (in some sense) for every nonlinearity in a given class. The theory of absolute stability has occu-
pied an important portion of the control theory literature due to its relevance to a variety of practical control/systems
engineering problems. The absolute stability problem can be studied, broadly, from either the perspective of internal
stability, or from that of input-output stability. The former, and perhaps more common, approach typically involves
the search for the parameters of a proposed Lyapunov function which can be used to guarantee asymptotic stability of
the origin for as large a class of nonlinearities as possible. The latter approach involves the use of transfer functions
called multipliers. In their classical interpretation they are used to translate one nonlinear passivity-type problem into
another linear, easier to solve, passivity-type problem. The aim, again, is to choose a multiplier within a predefined
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Figure 1: R. P. O’Shea, reproduced with kind permission of The Tribune-Democrat (2009).

class of multipliers which allows input-output stability to be guaranteed for as large a class of nonlinearities as possi-
ble. In this paper, attention is focused on input-output stability from the perspective of passivity and in particular on
the properties of the so-called Zames-Falb multipliers.

The multiplier approach attracted much attention from the control community in the 1960’s. One reason for this
was, without the computing power of today, researchers were able to glean a great deal about the absolute stability of
a system purely from the properties of the linear part. In an early paper the concept of multiplier was used by Brockett
andWillems (1965) and the idea developed rapidly from this (O’Shea, 1966, 1967), etc. Despite this early promise and
flurry of activitity, probably the most widely known absolute stability tools today are the Circle and Popov Criteria (see
Vidyasagar, 1993; Khalil, 2002) which have become standard, in part due to their simplicity and in part due to their
graphical interpretations. However, when a tighter description of the nonlinearity is available, these criteria are well-
known to be conservative. In such cases, the use of more general multiplier methods can be useful and, in particular,
the so-called Zames-Falb multipliers can often be used to improve predictions made about stability and performance
of the interconnection.

Despite their moniker, Zames-Falb mulitipliers were actually discovered by O’Shea (1966, 1967). While the
treatment of O’Shea (1966) was restricted to causal multipliers, the aim of O’Shea (1967) was to extend this definition
to noncausal multipliers: “this modification allows greater freedom in the phase variation of G( jω) + 1/k outside of
the ±90o band”. There were several correspondence items discussing these (Zames and Falb, 1967; Willems et al.,
1967; Falb and Zames, 1967). A rigorous and correct treatment was first given in the much-cited paper by Zames
and Falb (1968). The contribution of O’Shea was fully acknowledged by all concerned at the time. As an example,
Desoer and Vidyasagar (1975) state that the “idea of using noncausal multipliers is due to O’Shea.”

However, the class of multipliers aroused little further interest for twenty years, until the proposal of Safonov
and Wyetzner (1987) for computer-aided search and the illustration by Megretski and Rantzer (1997) of multiplier
analysis embedded within the framework of IQCs. In these and subsequent papers the pioneering work of O’Shea was
largely overlooked. The terminology “Zames-Falb multiplier” appears to have been coined by Chen and Wen (1995,
1996) in their proposal for a convex search. This development, while rightly acknowledging the important work of
Zames and Falb, has had an unfortunate consequence. Zames and Falb (1968) focus on the relation of the nonlinearity
to the monotone and bounded static nonlinearity; O’Shea’s insights into the phase properties of the multipliers have
been largely forgotten (with one notable exception: the discussion of Megretski (1995) on phase limitation).

In this tutorial paper we re-examine Zames-Falb multipliers and, in particular, use an example of O’Shea (1967)
to discuss the phase properties of the Zames-Falb multipliers and how they can be used advantageously in the study
of the absolute stability problem.

The remainder of the paper is structured as follows. In Section 2 we provide a brief motivating example explaining
the significance of Zames-Falb multipliers, and in Section 3 we review the basics of the absolute stability problem
and some approaches to its solution. In Section 4 we address at length an example previously discussed by O’Shea
(1967). In particular we discuss how a number of input-output stability methods can be used for analysis. This
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section includes a comprehensive treatment of the application of a multiplier originally proposed by O’Shea. In
Section 5 further properties of Zames-Falb multipliers are discussed and in Section 6 a brief review of start-of-the-art
computational searches is given. Finally in Section 9 we conclude and point to some other recent developments in the
use of Zames-Falb multipliers. While we emphasise the tutorial aspect of this overview, some mathematical formalism
and machinery is inevitable; this is given in the appendix.

2. Motivating example

Remark 1 Several concepts in this section are formally defined in Section III and/or the appendix.

Since saturation is a memoryless and slope restricted nonlinearity, the Zames-Falb multipliers can be used to
study the stability/robust stability of systems involving saturation (Jönsson and Rantzer, 2000). We shall illustrate
such analysis with an anti-windup example (Kothare and Morari, 1999) where robust stability is to be established
(Turner et al., 2007; Morales et al., 2014). U(s) and Y(s) are the Laplace transform of the plant’s input and output,
respectively.

Consider a plant with additive uncertainty

Y(s) =
�
G(s) +

1
γ
Δ

�
U(s), (1)

where G(s) is the nominal SISO transfer function and Δ represents additive uncertainty with, for any bounded signal
u,

�Δu�2 ≤ �u�2. (2)

In the case where Δ is restricted to be a linear time invariant (LTI) system we may write this as the familiar H∞ norm
condition

�Δ�∞ ≤ 1. (3)

Suppose the controller has the internal model control structure given by

U(s) = −Q(s) (Y(s) −G(s)U(s)) . (4)

and illustrated in Fig. 2.
The robustness of such controllers are discussed at length by Morari and Zafiriou (1989). Briefly, if both G and Q

are stable, then it follows from a small gain argument that the loop is stable provided

�Q�∞ < γ. (5)

Suppose now there is saturation in the loop, as in Fig. 3. Since the saturation operator is in series with Δ, a similar
small gain argument (Turner et al., 2007) says that the loop remains stable provided (5) is satisfied. In other words,
the antiwindup scheme preserves the robustness (to additive uncertainty) of the loop without saturation.

Q(s) ✲ G(s)

G(s)

Δ 1/γ

♠❄✲

♠
✲

❄
✲
−

♠ ✲

✻
✲

✲ ✲

−

u y

Figure 2: Internal model control where the plant dynamics are assumed known save for an additive uncertainty.
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Figure 3: Internal model control with saturation.
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q2 y✲
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Qb(s)
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Figure 4: The antiwindup scheme of Zheng et al. (1994).

But the antiwindup scheme of Fig. 3 can be notoriously sluggish. To improve matters, one suggestion in the
literature (Zheng et al., 1994) is the scheme of Fig. 4 with

Qb(s) =
Q(∞)
Q(s)

− 1, (6)

so that
Q(s) = (1 + Qb(s))−1Q(∞). (7)

This often has much better performance, but there is no longer an a priori guarantee of stability. In our example we
consider a case where the Zames-Falb multipliers can be used to establish such stability.

Suppose G is first order with a delay (a standard model in the process industries):

G(s) = e−sd
b

s + a
. (8)

A natural choice for Q is then:
Q(s) =

c
b
s + a
s + c

. (9)

In the unconstrained (saturation ≡ identity) case, robust stability is established via (5) which in this case reduces to

max
� c
b
,
a
b

�
< γ. (10)

In the constrained (saturation � identity) case, establishing robust stability is much more difficult. However the
constrained loop is stable (Morales et al., 2014) provided there exists a multiplier (of some form) M such that

1 − Q∗bM∗ − MQb − M − M∗ + M∗MQ(∞)2/γ2 < 0, (11)

at all frequencies. It may not be possible to satisfy this inequality with a constant M (and it cannot be satisfied with
constant M if �Q�∞ → γ), but for our example, it is straightforward to check that the inequality is satisfied if we
choose

M(s) =
s + a
s + c

. (12)

It transpires that this belongs to the class of first order Zames-Falb multipliers provided 0 < a < 2c. In this case the
robust stability of the constrained loop is established using a Zames-Falb multiplier.
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Figure 5: Lurye system. Both G and φ are assumed to be causal.

3. Preliminaries

In an early paper Brockett and Willems (1965) use the concept of a multiplier. The aim of its use is to reduce the
conservatism of the open loop approach which is used to analyse the stability of the problem. The advantage of this
approach is that the condition to be tested will only depend on the linear system G and the maximum slope of the
nonlinearity k.

3.1. The Lurye problem
The Lurye problem consists of finding conditions on the linear system G such that the feedback interconnection

between G and any nonlinearity φ that belong to some class of nonlinearities is stable. As stability must be ensured
for the whole class, the adjective absolute is added, and this problem is also known as the absolute stability problem
(see Liberzon, 2006, for an overview).

The feedback interconnection is defined by

u1 = r1 − φu2,
u2 = r2 +Gu1.

(13)

It is usual, although not necessary, to assume that G is strictly proper. This is enough to ensure the feedback between
G and any slope-restricted nonlinearity is well-posed (i.e. that u1 and u2 are uniquely defined given r1 and r2, all on
the extended spaces defined in the appendix). The system is said to be input/output stable if for any r1 ∈ L2, r2 ∈ L2
we also have u1 ∈ L2 and u2 ∈ L2.

In this paper we consider the class of static nonlinearities with slope less than or equal to k. With an abuse of
notation we use φ to denote both the memoryless operator (φ : L2e → L2e) and its associated nonlinear function
φ : R→ R.
Definition 1 A static nonlinearity φ is said to be slope restricted φ ∈ S [0, k] if for any real number x and y we have

0 ≤ φ(x) − φ(y)
x − y ≤ k. (14)

The LTI system G is given by

ẋ = Ax + Bu, (15)
y = Cx + Du, (16)

and its transfer function isG(s) = C(sI−A)−1B+D. Henceforth, we will no longer distinguish between LTI operators
and their transfer functions. The Rosenbrock system matrix

G(s) ∼
�
A B
C D

�
(17)

will be used as shorthand. G∗ denotes the adjoint of G and it is given by G∗(s) = G�(−s).
We assumeG is stable (i.e. A is Hurwitz), hence we may assume r1 = 0 without loss of generality. IfG is unstable,

the loop would be unstable with φ the zero operator.
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3.2. The Nyquist value and the Kalman conjecture

The class of slope restricted nonlinearities φ ∈ S [0, k] includes the linear gains τk with τ ∈ [0, 1]. This provides
some insight to the absolute stability problem. In particular it is necessary for absolute stability that the Lurye system
be stable with any such linear gain. The Nyquist value kN is the maximum value of k for which this holds:

Definition 2 (Nyquist value) Let G ∈ RH∞ with Rosenbrock system matrix (17). The Nyquist value is given by

kN = sup
�
k > 0 : A − τBCk(1 + τkD)−1 is Hurwitz for all τ ∈ [0, 1]

�
. (18)

It is tautologous to say that for absolute stability we require k < kN . As a result, the inverse of the linear system
(1 + τkG) needs to be bounded for all τ ∈ [0, 1]. This fact implies that for absolute stability to hold the phase of the
system (1 + kG) must be within the interval (−180o, 180o).

Kalman (1957) made the conjecture that consideration of feedback with linear gain was also sufficient for absolute
stability:

Kalman Conjecture (Kalman, 1957) Let φ be a memoryless nonlinearity slope-restricted on S ∈ [0, k]. Then, the
Lurye system in Fig. 5 is asymptotically stable if A − τBCk(1 + τkD)−1 is Hurwitz for all τ ∈ [0, 1].

The conjecture has played an important part in the development of the absolute stability of feedback systems con-
taining slope-restricted nonlinearites. It is true for first, second and third-order continuous-time systems (Barabanov,
1988). Thus we know a priori that a third order system is absolutely stable provided φ ∈ S [0, kN) and we can bench-
mark a test for stability by seeking the maximum slope value and comparing with this upper bound (e.g Safonov and
Wyetzner, 1987; Carrasco et al., 2014b). But the conjecture is false in general and the fourth-order counterexamples
proposed more than 40 years ago (Fitts, 1966; O’Shea, 1967; Willems, 1971; Leonov and Kuznetsov, 2013) can also
be used as benchmarks as they can be very challenging for stability tests. We illustrate such a benchmark in this paper.

3.3. Passivity, loop transformations and multipliers

Passivity theory provides an important stability test for closed-loop systems. Conditions for stability are simplified
since one element of the Lurye system (13) is LTI stable. We can assume r1 = 0 without loss of generality. It is
sufficient for closed-loop stability that φ be passive and G be strictly input passive (SIP). A stable operator φ : L2 →
L2 is said to be passive2 if there exists some β ≤ 0 such that

�φu, u� ≥ β for all u ∈ L2.

A stable LTI system G is SIP (Brogliato et al., 2006) if and only if there is a δ > 0 such that

Re{G( jω)} ≥ δ for all ω.

If the nonlinearity φ is sector bounded on the interval [0, k] then the map from ũ2 = u2 − y2/k to y2 is passive. But
the system shown in Fig. 6 is stable if and only if our original Lurye system is stable. Hence, via a loop transformation
argument, it is sufficient for stability for G + 1/k to be SIP. This is the Circle Criterion.

Similarly, suppose M (a “multiplier”) is biproper transfer function whose zeros and poles are all in the left half
plane. Then the system shown in Fig. 7 is stable if and only if our original Lurye system is stable. If φM−1 is passive,
then it suffices for stability that MG be SIP.

3.4. Zames-Falb theorem

O’Shea (1966, 1967) proposed a set of multipliers appropriate for slope-restricted nonlinearities. This included an
extension to noncausal multipliers. The machinery was formalised by Zames and Falb (1968) in their seminal paper.

2General definitions of passivity are given by Brogliato et al. (2006) and Khalil (2002).
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Figure 6: Loop transformation. If the map φ̃ from ũ2 = u2 − y2/k to y2 is passive, then it suffices for stability to test whether G̃ = G + 1/k is strictly
input passive, where ỹ1 = y1 + u1/k
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Figure 7: Multiplier theory. If the map S 1 = φM−1 is passive then it suffices for stability to test whether S 2 = MG is strictly input passive.
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Theorem 1 (Zames and Falb, 1968) Consider the feedback system in Fig. 5 with G ∈ RH∞, and a slope-restricted
nonlinearity φ ∈ S [0, k]. Assume that the feedback interconnection is well-posed. Then suppose that there exists a
convolution operator M : L2(−∞,∞)→ L2(−∞,∞) whose impulse response is of the form

m(t) = δ(t) −
∞�

i=1

hiδ(t − ti) − h(t), (19)

where δ is the Dirac delta function and

∞�

i=1

|hi| < ∞, h ∈ L1, and ti ∈ R ∀i ∈ N. (20)

Assume that:

(i)

�h�1 +
∞�

i=1

|hi| < 1, (21)

(ii) either h(t) ≥ 0 for all t ∈ R and hi ≥ 0 for all i ∈ N, or φ is odd; and
(iii) there exists δ > 0 such that

Re {M( jω)(1 + kG( jω))} ≥ δ ∀ω ∈ R. (22)

Then the feedback interconnection (13) is L2-stable. �

The corresponding class of multipliers is known as the class of Zames-Falb multipliers.

Definition 3 The class of Zames-Falb multipliersM is given by all transfer functions M ∈ L∞ whose inverse Laplace
transform3 is given by

m(t) = δ(t) −
∞�

i=1

hiδ(t − ti) − h(t), (23)

where

�h�1 +
∞�

i=1

|hi| < 1. (24)

The above class will be used for slope-restricted and odd nonlinearities. If the nonlinearity is non-odd, only a
subclass of multiplier can be used.

Definition 4 The class of positive Zames-Falb multipliersM+ is given by all transfer function M ∈ M such that the
inverse Laplace transform (23) satisfies that L−1(1 − M) = h(t) ≥ 0 for all t ∈ R and hi ≥ 0 for all i ∈ N .

Although such definitions may appear formidable at first sight, it is usual to consider only subclasses. Most
searches are restricted to rational Zames-Falb multipliers (the class RM), where hi = 0 for all i and M ∈ RL∞. An
exception is the search of Safonov and Wyetzner (1987) where instead h(t) = 0 for all t, so the multiplier is a sum of
delayed impulses.

In addition, if M is a Zames-Falb multiplier we can always find a factorization M = MaMc where Mc,M−1c ∈ H∞
and Ma,M−1a ∈ H−∞, i.e. M∗a, (M∗a)−1 ∈ H∞. This is the cornerstone of Zames and Falb (1968) to formalise the use
of the class of multiplier proposed by O’Shea (1967). In the jargon, this factorization is referred to as a canonical
factorization (see Carrasco et al., 2012b, and references therein).

It is emphasized that the causality assumption of the real systems G and φ is not required on the multiplier, since
it is just a mathematical “device”. Hence M is not required to be causal. It is required to be bounded in the sense that
its impulse response has finite L1-norm (24). In particular this ensures M can be factorized into a causal and bounded
operator Mc and an anticausal and bounded operator Ma. For LTI systems, the use of the bilateral Laplace transform
leads to duality properties4. Loosely speaking, if a system is assumed to be causal, M ∈ H−∞ means that the impulse
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✛
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M−∗a✲
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Figure 8: Combination of the loop transformation in Fig. 6, multiplier approach in Fig. 7, and factorization M = MaMc. All LTI blocks are in H∞.
The structure is used to justify noncausal multipliers.

response of the system is unbounded; if a system is assumed to be bounded, M ∈ H−∞ means that the impulse response
m(t) is zero for all t > 0.

It can be shown that the L1 norm condition (21) on M and the slope-restriction on φ ensures

�y2,Mũ2� ≥ 0, (25)

This guarantees the block S 2 in Fig. 7 to be positive. Similarly, the phase property on M(G + 1/k) (22) ensures

�Mỹ1, u1)� ≥ 0. (26)

Nevertheless, stability cannot be ensured since M is not causal. Zames and Falb used the canonical factorization
M = MaMc to show stability. The properties of the inner product in (25) and (26) mean we can write

�M∗ay2,Mcũ� ≥ 0, and �Mcỹ1,M∗au1)� ≥ 0. (27)

As a result, both the blocks S 1 and S 2 in Fig. 8 are stable and positive, and hence passive. Therefore, the feedback
interconnection between S 1 and S 2 is stable (by passivity) and equivalent to our original Lurye problem.

4. O’Shea’s example

Our standard problem is the Lurye problem (13) depicted in Fig. 5. The nonlinearity φ from u2 to y2 is static and
slope-restricted to the interval S [0, k].

Brockett and Willems (1965) suggested plants with the structure

G(s) =
s2

s4 + as3 + bs2 + c + d
, (28)

would be challenging to analyse. O’Shea (1967) chose a subclass of the form

G(s) =
s2

(s2 + 2ζs + 1)2
, (29)

where the symmetry aids both intuitive understanding and the ability to find solutions by hand. The symmetry is given
by G( jω) = G∗( jω−1). This turns out to be a challenging feature for several classes of multipliers.

If the nonlinearity φ is replaced with a linear gain k, then the loop is stable for all k and for all 0 < ζ ≤ 1; i.e. the
Nyquist value is infinite when ζ is in this range (the phase never drops below −180o, see Fig. 12). But if φ is a saturation

3Since m : R→ R, the bilateral Laplace transform is required.
4It also leads to intrinsic difficulties (Georgiou and Smith, 1995).
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Figure 9: Simulated values for signals y1 and y2 when k = 2000 and ζ = 0.1. The loop is apparently unstable.

Figure 10: Simulated values for signals y1 and y2 when k = 2000 and ζ = 0.6. The loop is apparently stable, and O’Shea’s analysis proves it to be.

block in series with a gain k, then it is possible to find values of k and ζ that are apparently unstable. For example, Fig. 9
shows the result generated in Simulink when ζ = 0.1 and k = 2000. Such phenomena were first observed by Fitts
(1966), and have attracted much attention as counterexamples to the Kalman conjecture. Barabanov (1988)
questioned the validity of Fitts’ original counterexample; this has led to considerable discussion (Leonov and
Kuznetsov, 2011; Kuznetsov et al., 2011; Leonov and Kuznetsov, 2013). O’Shea (1967) showed that such loops
could be guaranteed stable for all k > 0 provided 1/2 < ζ ≤ 1. For most of our discussion we will fix ζ = 0.6. Fig. 10
shows such stable behaviour generated in Simulink when ζ = 0.6 and k = 2000.

In the following subsections, we will consider how various standard criteria can be used to judge stability. In
particular we will be able to associate a particular range of k for each criterion where stability can be guaranteed.
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Figure 11: The H∞ norm of G is 0.6944.

4.1. Passivity

In our problem the nonlinearity φ from u2 to y2 is passive. It would therefore suffice for the phase of G to lie on
the interval (−90o,+90o). However G is not passive; its phase approaches +180o at low frequency and −180o at high
frequency (Fig. 12). Hence the passivity theorem cannot be used directly to establish stability for any k > 0.

4.2. Small gain theorem

The L2 gain of the nonlinearity from u2 to y2 is k. That is to say, for any u2 ∈ L2, we must have �y2�2 ≤ k�u2�2. It
follows by the small gain theorem that the loop is guaranteed stable provided

k�G�∞ < 1.

The H∞ norm of G is �G�∞ = 0.6944. Hence we may conclude the loop is stable for

k <
1

0.6944
= 1.44.

4.3. Circle Criterion

Although the passivity theorem cannot be invoked directly, it can be used indirectly. The nonlinearity φ is sector
bounded; it follows we can use a loop transformation and apply the Circle Criterion (Fig. 6). It is thus sufficient for
G + 1/k to be SIP for stability. For our example we find (Fig. 12)

Re {G( jω)} > −0.0868 for all ω.

It follows that the loop is stable provided

k <
1

0.0868
= 11.52.
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Figure 12: Nyquist plot of G when ζ = 0.6. The plot never encircles the −1 point, so the Nyquist value is infinite. The phase drops from +180o to
−180o, so G is not passive. The Nyquist plot of G is always to the right of −0.0868, so the Circle Criterion confirms stability for k < 1/0.0868.

Figure 13: Popov plot for G when ζ = 0.6

4.4. Popov Criterion

For the Popov Criterion we test whether M(G + 1/k) is SIP where M is a Popov multiplier of the form

M(s) = 1 + ηs with η ∈ R. (30)

This is a standard and well-known result, although the case with η < 0 is often ignored (Khalil, 2002). In fact it can
be derived as a corollary of the Zames-Falb theorem (Brockett and Willems, 1965; Carrasco et al., 2013).

One might naı̈vely expect the Popov Criterion to offer an improvement over the Circle Criterion. However for this
example the symmetry of G ensures this is not the case. The Popov plot in Fig. 13 provides a result no better than the
Circle Criterion and shows that the implicit Popov multiplier is 1 + 0s, since the dashed line is vertical. The reason is
simple: suppose k > 11.52 (the maximum k for which the Circle Criterion guarantees stability). There is a frequency
interval where the phase of 1 + kG( jω) is greater than +90o and a frequency interval where it is less than −90o. See
Fig. 14 for the case k = 15. Any Popov multiplier that raises the phase at high frequency (i.e. with positive coefficient)
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cannot reduce the phase at low frequency. Conversely, any Popov multiplier that reduces the phase at low frequency
cannot raise the phase at high frequency. In brief, if k > 11.52 and given some η ∈ R, there must exist some frequency
ω where

|∠ {(1 + η jω)(1 + kG( jω)}| > 90o.
A typical result with η positive is shown in Fig. 15; a negative η would result in a similar but opposite effect.

In the sixties and seventies, several other frequency domain conditions based on stability multipliers were
tested using graphical interpretations; see Narendra and Taylor (1973) as a classical textbook on this topic and
Section 3.4.1 in Altshuller (2013) for a recent overview. In particular, Table 3.1 in Altshuller (2013) can be used
to show that the symmetry of the phase prevents other classes of multipliers, such as the Yakubovich multi-
pliers (Yakubovich, 1965), the RL multipliers (Brockett and Willems, 1965) or the RC multipliers (Brockett
and Willems, 1965), from improving on the Circle Criterion for this example. Similarly the Off-axis Circle
Criterion Cho and Narendra (1968) uses either RL or RC multipliers. Note that Park (2002) provides a convex
search for the Yakubovich multipliers.

Figure 14: Phase of 1 + 15G( jω). There are value of ω < 1 where the phase is greater than +90o and values of ω > 1 where the phase is less than
−90o.

Figure 15: In blue, phase of (1 + 0.2 jω)(1 + 15G( jω)). In green, the phase of (1 + 0.2 jω). The multiplier raises the phase at all frequencies.
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Figure 16: Phase of M( jω)(G( jω) + 1/k) with k = 2000 and p = 0.001. The phase is always between −90o and +90o.

4.5. O’Shea’s multiplier

O’Shea (1967) proposed the multiplier

M(s) =
(s + 1)(−s + p)
−s + 1 , (31)

with p > 0 sufficiently small. This is sufficient to ensure the phase of M(G + 1/k) lies above −90o and below +90o as
in see Fig. 16. This in turn is sufficient for stability even though the multiplier has a pole in the right half plane, i.e.
the multiplier is noncausal.

In particular, the existence of O’Shea’s multiplier M with the property that M(G + 1/k) has phase on the interval
(−90o, 90o) guarantees the existence of a Zames-Falb multiplier (Definition 3) satisfying the conditions of the Zames-
Falb theorem (Theorem 1). Hence the existence of O’Shea’s multiplier is sufficient for stability.

The multiplier M suggested by O’Shea (31) itself is not within the class of Zames-Falb multipliersM. We can
write

1
2 − pM(s) = MZF(s) + ηs, (32)

with
MZF(s) = 1 − 2 − 2p2 − p

1
−s + 1 and η =

1
2 − p .

Since MZF ∈ Ma we can write M as the sum of a Zames-Falb mutliplier and a Popov term ηs. We require a
phase-equivalence result (Carrasco et al., 2013): if M(G + 1/k) has phase in (−90o,+90o) and M can be written
M(s) = MZF(s)+ ηs with MZF ∈ M, then there exists a phase-equivalent MPE ∈ M such that MPE(G+ 1/k) has phase
in (−90o,+90o). In this case, such a MPE can be constructed as follows. Put q = (2 − 2p)/(2 − p) and choose ρ > 0
such that q < 1 − ρ, for example ρ = p/(4 − 2p). We can then write

1
2 − pM(s) = 1 −

q
−s + 1 + ηs =

�
1 − ρ − q

−s + 1
�
+ ρ

�
1 +
η

ρ
s
�
,

Then we can write

MPE(s) =
�
1 − ρ − q

−s + 1
�
+ ρ

�
1 + ηs/ρ
1 + εs

�
,
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Figure 17: Phases of M( jω)(G( jω) + 1/k) and MPE( jω)(G( jω) + 1/k) where M is O’Shea’s multiplier and MPE is a phase-equivalent Zames-Falb
multiplier. The parameter ε is chosen as 10−4. As O’Shea’s multiplier includes a Popov term (with positive parameter η) the corresponding phase
tends to +90o at high frequency, while that for MPE tends to 0o.

for ε > 0 sufficiently small. The phases of M(G + 1/k) and MPE(G + 1/k) are compared in Fig. 17.
In short, the noncausal multiplier (31) can be used to guarantee the absolute stability of our example for any

positive k provided p > 0 is chosen sufficiently small. A similar analysis guarantees stability for any positive k
provided the damping ratio ζ > 0.5. A formal proof requires the concept of phase-equivalence (Carrasco et al., 2013,
2014a) which we discuss further in the next section.

5. Further properties

The class of Zames-Falb multiplier is one of the possible classes that have been proposed for analysing the stability
of the Lurye system (13). The aims of this section are to discuss the phase properties of the Zames-Falb multipliers
and the equivalence between different classes of multipliers, where it will be shown that phase is a key factor.

5.1. Positivity

One trivial property of the multiplier is that it must be a positive system. By definition, a multiplier is required to
preserve the positivity of the class of nonlinearities. As mentioned by Carrasco et al. (2012b), when a scaled identity
is within the class of nonlinearities, then the multiplier itself needs to be positive. Referring to Fig. 8, this can easily
be seen because

�M∗aφ̃ũ2,Mcũ2� = �φ̃ũ2,MaMc����
=M

ũ2� ≥ 0,

where ũ2 = u2 − y2/k. Thus if we consider the particular case φ̃ũ2 = kũ2 with k > 0, then

�φ̃ũ2,Mũ2� = �kũ2,Mũ2� ≥ 0,

and hence
�ũ2,Mũ2� ≥ 0,

for all ũ2 ∈ L2.

15



The phase of the multiplier is required to be within the interval [−90o, 90o]. However, we cannot consider this as
a limitation of the multiplier as the phase of (1+ kG) must belong to the interval (−180o, 180o) to satisfy the necessity
of the Kalman Conjecture.

In the Nyquist diagram, we can find further restrictions on the Nyquist plot of the multiplier M ∈ M. In particular,
we can use L1 norm properties to ensure that the Nyquist plot belongs to a circle with centre (1, 0) and radius 1
(Safonov and Kulkarni, 2000); see Fig. 18. Loosely speaking, it is due to the fact that the L1 norm of a system is
always greater than its H∞ norm. See Vidyasagar (1993) for further details.

Re(z)

Im(z)

✲

✻

Allowed

region

1 2

✇

1

Figure 18: Allowed region for the Nyquist plot of Zames-Falb multipliers (see further details in Carrasco et al., 2012a)

5.2. Noncausal multipliers
Undoubtedly, O’Shea’s main contribution to multiplier theory was the introduction of noncausal multipliers (see

Desoer and Vidyasagar, 1975, page 227). The motivation was to increase the flexibility of the phase of the multiplier.
In this section, we demonstrate this concept. An analytic result can be obtained for rational first order Zames-Falb
multipliers.

Lemma 1 Given � > 0, there exists a first-order causal Zames-Falb multiplier such that its phase is 90◦ − � at some
frequency. However, if Mc is a causal rational first-order Zames-Falb multiplier, then ∠Mc( jω) > − arcsin(1/3) for
all ω ∈ R.

Re

Im

✲

✻

∼ −19o

Figure 19: A fist order multiplier cannot reach a phase below −19◦. A symmetric figure can be drawn for anticausal multipliers.

Lemma 2 Given � > 0, there exists an anticausal first-order Zames-Falb multiplier such that its phase is −90◦ + �
at some frequency. However, if Mac is an anticausal rational first-order Zames-Falb multiplier, then ∠Mac( jω) <
arcsin(1/3) for all ω ∈ R.
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The proofs of these results are straightforward, but they show the significant reduction on the selection of the
phase of the multiplier if we limit ourselves solely to causal or anticausal multipliers for a fixed order. However, it
can be easily shown that a causal multiplier can reach any phase by considering an infinite dimensional multiplier.

Lemma 3 Given θ ∈ (−90◦, 90◦), there exist causal or anticausal Zames-Falb multipliers with phase θ.
Once again the result is trivial by using the multiplier M(s) = 1 + z1e±s. Hence one could be tempted to think that
there is no phase limitation if the order is infinite.

5.3. Phase limitations of Zames-Falb multipliers
It has been established that the conditions on the Zames-Falb multiplier require some limitation in the selection

of the phase5. The lack of such limitation would imply that we can make any biproper plant appear passive if its
phase is within the interval (−180◦, 180◦); hence the Kalman conjecture would be true. As the Kalman conjecture
is known to be false, the L1 condition on the multiplier must have an interpretation as a phase limitation. One such
characterization of a limitation is given by Megretski (1995).

Lemma 4 (Megretski, 1995) Let b > a > 0, r > b/a be real numbers. Let

ρ = ρ(a, b, r) = sup
t>0

|ψ(t)|
φ(t)
,

where
ψ(t) = −cos(rbt)

rt
+
r cos(rbt)

t
− r cos(rat)

t
+
cos(rat)

rt
,

and
φ(t) = (r + 1)(b − a) + r sin(at)

t
− r sin(bt)

t
+
sin(rat)
rt

+
sin(rat)
rt
,

Then ρ < ∞ and there exist no multiplier M(s) ∈ M+ such that6

∠(M( jω)) > tan−1 ρ, ω ∈ [a, b]
and

∠(M( jω)) < − tan−1 ρ, ω ∈ [a, b]
Remark 2 A symmetric result, i.e. negative phase at low frequency and positive phase at high frequency, can be
straightforwardly developed.

If it has been shown that there is no limitation in the phase of a causal or anticausal multiplier, Megretski’s result
shows that there is a limitation based on the rate of change of the phase. It can be easily shown with O’Shea’s example.
Let us consider k = ∞, then the required phase properties of the multiplier are presented in Table 1.

As O’Shea (1967) mentions, the proposed multiplier ensures stability for any gain for ζ > 0.5. For ζ < 0.5, the
problem remains unsolved, and searches can be tested with this example. However, Fig. 9 shows that no multiplier
can ensure stability for large k when ζ = 0.1. So the limiting factor for the phase of multiplier is not the phase itself,
but how fast it changes. So, for ζ = 0.5 there exists a multiplier able to change its phase from −79o up to 79o in two
decades; but for ζ = 0.1, there is no Zames-Falb multiplier which can change its phase form −88o up to 88o in two
decades, preserving the properties for the rest of frequencies.

The analysis of Megretski (1995) is not definitive. It is clear that restrictions to subclasses of Zames-Falb multi-
pliers, such as the causal multipliers, impose further limitiations in phase. However no analytic result has yet been
provided. Fig. 21 shows the phase of two causal but irrational multipliers. Their phase spans the interval (−90o,+90o)
with very fast transitions from −90o up to +90o but slow transitions from +90o down to −90o.

5For a further discussion on the phase of Zames-Falb multipliers see Freedman (1972).
6The original results is given for all the Zames-Falb multipliers. However, it holds only if h(t) ≥ 0 for all t. This is discussed in a conference

paper under submission.
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Figure 20: Megretski’s phase limitation for Zames-Falb multipliers. If the phase of a multiplier is above tan−1 ρ for a range of frequencies (a, b),
then the multiplier cannot reach a phase below − tan−1 ρ over the range of frequencies (ra, rb).

ζ −∞ < ω < 10−1 10−1 < ω < 101 101 < ω < ∞

0.9 (−90o,−70o) (−70o, 70o) (70o, 90o)

0.7 (−90o,−74o) (−74o, 74o) (74o, 90o)

0.5 (−90o,−79o) (−79o, 79o) (79o, 90o)

0.3 (−90o,−83o) (−83o, 83o) (83o, 90o)

0.1 (−90o,−88o) (−88o, 88o) (88o, 90o)

Table 1: Phase properties of a multiplier in order to show that O’Shea example is stable for any slope

5.4. Equivalences

The first equivalence result between classes of multiplier was given by Falb and Zames (1968). In this paper, they
show that given any RL and RC multiplier (for definitions, see Falb and Zames, 1968; Brockett and Willems, 1965), a
Zames-Falb multiplier with the same phase can be found. Then it is no longer important that the class of Zames-Falb
multipliers does not include some RL and RC multipliers, since we can always find an “substitute” in the class.

A formal definition is required. However, we need to limit our set of interest. It is a key step in order to be able to
establish formal substitution and equivalence results. As we have mentioned, the necessity of the Kalman conjecture
is required in order to ensure absolute stability; hence we will restrict our attention to plants where this property is
required.

Definition 5 The set SR is given by the plants G̃ = 1 + kG with the following properties

• 1 + kG is stable.

• (1 + τkG)−1 is stable for any τ ∈ [0, 1].
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Figure 21: Phase of the multiplier 1 ± e−s.

Loosely speaking, given some plant G and maximum slope k, then (1 + kG) � SR, the existence of a Zames-Falb
multiplier such that (1 + kG)M is positive can be dismissed. Once we have introduced this class of LTI system, then
formal definitions can be given.

Definition 6 (Phase-substitute) Let Ma and Mb be two multipliers and �G ∈ SR. The multiplier Mb is a phase-
substitute of the multiplier Ma when

Re
�
Ma( jω)�G( jω)

�
≥ δ1 ∀ω ∈ R,

for some δ1 > 0 implies
Re

�
Mb( jω)�G( jω)

�
≥ δ2 ∀ω ∈ R,

for some δ2 > 0.

This property has already been used in Section 4.5, and the phase-substitution of multipliers with the addition of
the Popov term has been explained. Another simple but insightful equivalence is described as follows:

Definition 7 (Park’s multipliers, Park, 2002) The class of Park’s multipliers is defined as follows:

MP(s) = 1 +
bs

−s2 + a2 , (33)

for any two scalars a and b.

It is straightforward to show that Park’s multipliers can be linked with the class developed by Yakubovich (1965).
However, a more detailed analysis will show that we can find a Zames-Falb multiplier with the same phase properties.

Firstly, let us find the zeros of a Park multiplier. If b > 0, then the zeros will be labelled as follows

z1 =
b −
√
b2 + 4a2

2
,

z2 =
b +
√
b2 + 4a2

2
;
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whereas if b < 0 we will use

z1 =
b +
√
b2 + 4a2

2
,

z2 =
b −
√
b2 + 4a2

2
.

This ensures that |z1| < |z2|. Note that z1z2 < 0.
Secondly, the phase of MP( jω) is given by the phase of its zeros, since the phase of its poles cancels out, i.e.

∠(MP( jω)) = ∠( jω − z1) + ∠( jω − z2). (34)

Finally, the zero with larger absolute value, z2 can be transformed into a pole reflected in the imaginary axis since
∠( jω − z2) = −∠( jω + z2). As a result, the phase of any Park multiplier is given by

∠(MP( jω)) = ∠( jω − z1) − ∠( jω + z2) = ∠
�
jω − z1
jω + z2

�
. (35)

So we have found a phase-substitute multiplier that can be rewritten as follows:

M(s) =
s − z1
s + z2

= 1 − z2 + z1
s + z2

. (36)

Then, we can check that M ∈ M since
�m�1 =

z2 + z1
z2

< 1, (37)

where m is the inverse Laplace transform of
z2 + z1
s + z2

and we have used that z1z2 < 0 and |z1| < |z2|.
This example and the previous example illustrate the concept of phase-substitution. Using this concept, it can be

shown that a search over the whole class of Zames-Falb multipliers would be enough to obtain the best possible result
compared with any other class of multipliers in the literature (Carrasco et al., 2013). Nevertheless the significant dif-
ficulties in obtaining a convex search over the whole class of Zames-Falb multipliers mean that the parameterizations
of other classes of multipliers may still be useful. We discuss searches in the following section.

6. Convex Searches

Section 4 has illustrated how various stability tests can be used to find the maximum slope of the nonlinearity φ
for which stability is guaranteed. This, and other sections, have also illustrated how the selection of an appropriate
Zames-Falb multiplier can enable more accurate statements regarding the absolute stability of a Lurye system to be
made. Using an example from O’Shea (1967) it has been shown how the selection of such a multiplier may be
achieved for a relatively simple system. For more complex systems, it is somewhat more difficult to choose the
most “appropriate” Zames-Falb multiplier because the set of such multipliers is extremely large and, in fact, infinite
dimensional. Typically, we would like to choose a multiplier which allows us to make the least conservative statements
about, for example:

1. the size of slope for which stability is guaranteed;
2. the L2 gain from a given input to a given output (Turner and Kerr, 2011; Megretski et al., 2004).

Choosing such a multiplier which either maximises the slope size or minimises the L2 gain is not trivial. In this
section, several automated searches for rational (M ∈ RM) multipliers are introduced. The searches described are
based on Chen andWen (1995, 1996), which is similar to that implemented in the IQC toolbox (Megretski et al., 2004;
Kao et al., 2004; D’Amato et al., 2001), and also more recent approaches of the authors (e.g. Turner et al., 2009b;
Carrasco et al., 2014b). The technique of Safonov and Wyetzner (1987) and Gapski and Geromel (1994), which has
recently been updated (Chang et al., 2012) is briefly discussed in Section 6.7.
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6.1. Linear search in k
Modern searches for multipliers are somewhat different to classical graphical criteria (see Narendra and Taylor,

1973). In graphical criteria with simple multipliers (e.g. Circle, Popov), kmax is found directly via a plot of G( jω),
even though an auxiliary multiplier is implicit (See Fig. 13).

The search for more sophisticated multipliers requires a different approach. In this case, a linear search over k is
carried out. Given a value k f , then a search overM is carried out to find a suitable multiplier for G̃ = G + 1/k f , i.e.
we search for a multiplier M ∈ M such that

Re{M( jω)(1/k +G( jω))} ≥ 0, (38)

for all ω > 0. If the search is successful, the multiplier found is suitable for any k < k f , i.e.

Re{M( jω)(1/k +G( jω))} = Re{M( jω)/k} + Re{M( jω)G( jω))} ≥
Re{M( jω)/k f } + Re{M( jω)G( jω))} > 0 ∀ω ∈ R, (39)

where we have used that Re{M( jω)} > 0; hence we can increase k f . If the search is unsuccessful, we reduce k f until
a successful search is obtained.

Before computational methods were available attempts were made to interpret the Zames-Falb multipliers
graphically (e.g. Freedman, 1972; Lipatov, 1981). It must be highlighted that these geometrical methods also
require a linear search. In this tutorial, we focus on the development of convex searches, but Section 3.4.1
of Altshuller (2011) provides an overview of such graphical methods (see Altshuller, 2010, for an example).

6.2. Time and Frequency domain conditions
Recall that the system in Fig. 5 is absolutely stable if there exists a multiplier M = 1 − H ∈ RM which satisfies

the following conditions:
1. a frequency domain condition

Re {M( jω) (1 + kG( jω))} ≥ 0 ∀ω ∈ R; (40)
2. a time domain condition

�h�1 ≤ 1. (41)

A central issue, which will recur throughout this section, is that of combining, in an efficient and tractable manner,
these two conditions. In particular, it is generally difficult to provide a frequency domain characterisation of the
L1 norm, although, as discussed in Section 5, the L1 norm requirement appears to place a limit on the rate-of-change
of phase of the multiplier (Megretski, 1995).

A result which we shall invoke several times in this section is the so-called Positive Real Lemma given below. This
can be interpreted as a special case of the KYP lemma (Rantzer, 1996).

Lemma 5 (Rantzer, 1996) Let G(s) be a transfer function with Rosenbrock matrix (17) such that det( jωI − A) � 0
for all ω ∈ R.
1.

G( jω)� +G( jω) ≥ 0 ∀ω ∈ R,
if and only if (A, B) is controllable and there exists a P = P� such that

�
A�P + PA PB −C�
� −D − D�

�
≤ 0.

2.
G( jω)� +G( jω) > 0 ∀ω ∈ R,

if and only if there exists a P = P� such that
�
A�P + PA PB −C�
� −D − D�

�
< 0.

The Positive Real Lemma provides a connection between positive realness in the frequency domain and a matrix
inequality. It is of central importance in casting conditions involving Zames-Falb multipliers as LMI’s.
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

�
Ap 0

−BHkCp AH

��
P + P

�
Ap 0

−BHkCp AH

�
P
�

Bp
BH(I − kDp)

�
−
�
kC�p(I − DH)

CH
�

�

� −(I−DH)(I−kDp)−(I−kDp)(I−DH)


< 0 (47)

6.3. Preliminary Manipulations
The main goal of this section is to translate the positive real condition (40) and theL1 condition (41) into tractable,

automated searches. Two approaches to this will be described, but both ways share some initial manipulation which
will be covered here. Assume first that H(s) has state-space realisation

H(s) ∼
�

AH BH
CH DH

�
, (42)

where the matrices AH,BH,CH,DH are to be determined7. Here and elsewhere G has the following state-space
realisation

G(s) ∼
�
Ap Bp
Cp Dp

�
. (43)

Given these two state-space realisations, it then follows that

M( jω)(kG( jω) + 1) ∼
�
AI BI
CI DI

�
, (44)

where

�
AI BI
CI DI

�
=


Ap 0 Bp

−BHkCp AH BH(I − kDp)
k(I − DH)Cp CH (I − DH)(I − kDp)

 . (45)

Our objective then becomes a search, over the multiplier state-space matrices (AH,BH,CH,DH), in order to maximise
the scalar k which represents the slope restriction of our nonlinearity. Invoking Lemma 5 now shows that the positive
real condition (40) can, equivalently, be expressed as a search over real symmetric matrices P such that the following
matrix inequality is satisfied. �

A�IP + PAI PBI −C�I
� −DI − D�I

�
< 0. (46)

Using the realisation (45), this inequality can be written as inequality (47) (at the top of next page). Note that, because
the matrices (AI , BI ,CI ,DI) are affine functions of multiplier matrices (AH,BH,CH,DH) this matrix inequality is
nonlinear, due to products of AH,BH and P, and therefore not amenable to efficient solution. While this section does
not seem to have eased the difficulty of the search for Zames Falb multipliers, it transpires that the inequality (47) is
a useful stepping stone towards a convex search. The following two sections will show two different approaches for
simplifying this inequality and imposing the L1 bounds (41).

6.4. Structured Multipliers
The problems with searches for multipliers as they stand are two-fold: the troublesome L1 condition (41) and the

nonlinear matrix inequality (47) that arises as a result of the positive real condition (40). The approach advocated by
Chen and Wen (1995, 1996) (see also Jönsson, 1996; Megretski et al., 2004), is to structure the multipliers in such a
way that (i) L1 norm bounds may easily be obtained and (ii) the nonlinear matrix inequality (47) becomes a linear
matrix inequality. The approach described here follows Chen and Wen (1995). The first observation to make is that if
a transfer function, H(s), is given a first order structure, it is easy to calculate its L1 norm as illustrated below.

7Colour highlights when these matrices are considered as variables, other variables within LMI’s are typed in bold.
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Example 1 (A first order multiplier) Let

H(s) =
κ

s + a
; then �h�1 = κa .

Thus the L1 bound is simply κ/a < 1. For fixed a this is simply a linear inequality in κ and the associated state-space
matrices are

AH = −a BH = 1 CH = κ DH = 0.

Notice that, under the assumption that a is constant, three of the four state-space matrices are constant, which means
that inequality (47) is actually linear. Therefore, with this structure of multiplier we have obtained a linear inequality
for the L1 norm and a linear matrix inequality for the positive real condition: a tractable search.

The basic approach by Chen and Wen (1995) is to extrapolate from the above example. By restricting attention to
a sub-class of Zames-Falb multipliers, the L1 norm conditions become simple linear inequalities. Also, because this
ensures that matrices AH and BH are constant, the nonlinear matrix inequality (47) becomes linear.

6.4.1. A class of causal positive multipliers

h(t)

t

1

-1

(−∞, 0)

[0,∞)

Figure 22: A causal multiplier with positive impulse response

In order to describe the work of Chen and Wen (1995) concisely, we first consider the following sub-class of
Zames-Falb multipliers:

RM+c = {M(s) = 1 − H+c(s)} (48)

where h+c(t) = L−1{H+c(s)} is such that h+c(t) = 0 t < 0 and h+c(t) ≥ 0 ∀t. In other words, the multiplier is
assumed causal and the impulse response h+c(t) is positive. An example of such a function is shown in Fig. 22. These
assumptions will be relaxed in subsequent sections.

This representation of the multiplier has several advantages: firstly it significantly reduces the complexity of the
L1 inequality, viz:

�h�1 =
� ∞

−∞
|h+c(t)|dt

=

� ∞

0
|h+c(t)|dt (causality)

=

� ∞

0
h+c(t)dt (positivity)

< 1.

In this case, the following Theorem can be used for approximating such functions:
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

�
Ap 0

−BHkCp AH

��
P + P

�
Ap 0

BHkCp AH

�
P
�

Bp
BH(I − kDp)

�
−
�
kC�p
CH
�

�

� −(I−kDp)−(I−kDp)


< 0 (51)

Theorem 2 (On approximation in L1[0,∞), Szegö, 1975) For any h(t) ≥ 0 ∈ L1[0,∞) and any � > 0 there exists
κ+ci and N such that

� ∞

0

����h(t) −
N�

i=0

κ+ci e
−tti

����dt < �.

The implications of this are the following: by choosing N large enough, h+c(t) can be arbitrarily well approximated
by a sum of first order functions. This means that, for h+c(t), we can always find a phase equivalent multiplier
represented by a sum of first order functions. In addition, with this approximation, the L1 norm can be calculated
explicitly and the L1 constraints are linear inequalities in κ+ci :

�h+c�1 =
N�

i=0

(κ+ci )i! ⇒
N�

i=0

(κ+ci )i! < 1. (49)

The above follows from considering the Laplace Transform of e−tti for i ∈ {0, 1, . . . ,N}, i.e.

H+c(s) =
N�

i=0

κ+ci
(s + 1)i+1

∼
�
AH BH
CH 0

�
(50)

The main issue in the application of this result is the requirement that h+c(t) ≥ 0 for all t ≥ 0. To guarantee this, note
that h+c(t) is given by

h+c(t) =
N�

i=0

κ+ci e
−tti (52)

for some N and for some κ+ci to be chosen. Then h+c(t) ≥ 0 for all t ≥ 0 if
N�

i=0

κ+ci t
i ≥ 0 ∀t ≥ 0. (53)

Chen and Wen (1996) have shown that this time-domain condition is equivalent to
�N
i=0 κ

+c
i (−1)i s2i

(1 + s)N(1 − s)N����������������������������������
S +c(s)

≥ 0 ∀s = jω. (54)

A state-space realisation of S +c(s) can then be given as

S +c(s) ∼
�
A+c B+c
C+c D+c

�
, (55)

where the structure of the above state-space matrices is given by Chen and Wen (1996). In particular C+c and D+c are
structured affine functions of the κ+ci . Then applying Lemma 5 to inequality (54) we obtain the matrix inequality�

A�+cX+c + X+cA+c X+cB+c + C+c
� D+c + D+c�

�
≤ 0, (56)

for some X+c = X+c�. Noting that A+c and B+c are constant, and that C+c(κ+ci ) and D+c(κ+ci ) are affine functions of
κ+ci , we have an LMI in X+c, and structured C+c(κ+ci ) and D+c(κ+ci ). Thus letting H(s) = H+c(s), inequality (47) can be
expressed as the inequality (51) at the top of the page. For a fixed k, inequalities (54), (56) and (51) form a system of
linear matrix inequalities. Thus, in this case, the search for a multiplier becomes an LMI problem.

24



6.4.2. Noncausal multipliers
A restriction in the results derived so far is that we have assumed the multiplier, M(s) is causal, that is h(t) = 0

∀t < 0. As explained earlier in the paper, this may cause some conservatism. However, this assumption can be
removed relatively easily by structuring h(t) as the sum of a causal part and an anticausal part, viz,

h(t) = h+c(t) + h+a(t) (57)

where h+c ∈ L1[0,∞) and h+a ∈ L1(−∞, 0]. An example of such an h(t) is shown in Fig. 23. A similar approximation
to that given in Theorem 2 can then be used to approximate the anti-causal part of h(t) as

h+a(t) ≈
N�

i=0

κ+ai e
tti, (58)

which is again a sum of first order terms. Recalling the approximation (52) for the causal part of h+(t), theL1 constraint
(41) can again be replaced by the linear inequality

�h�1 =
N�

i=0

�
κ+ci + (−1)iκ+ai

�
i! < 1, (59)

which is a linear inequality in κ+ci and κ+ai . In the same way as before if we assign

S +a(s) ∼
�
A+a B+a
C+a D+a

�
, (60)

where A+a and B+a are constant, and C+a(κ+ai ) and D+a(κ+ai ) are affine functions of κ
+a
i .Then following a similar line

of reasoning to that in equations (53)-(54), it follows that h+a(t) ≥ 0 providing there exists a symmetric matrix X+a
satisfying the LMI:

�
A�+aX+a + X+aA+a X+aB+a + C+a

� D+a + D+a�
�
≤ 0,

In this case, a state-space realisation for H(s) is given by

H(s) =
N�

i=0

�
κ+ci

(s + 1)i+1
− κ+ai
(s − 1)i+1

�
∼
�
AH BH
CH 0

�
.

This realisation can then be used to obtain an LMI from (47).

h(t) = h+c(t) + h+a(t)

t

1

-1

h+a(t) ∈ L1(−∞, 0] h+c(t) ∈ L1(0,∞]

Figure 23: A noncausal multiplier with positive impulse response
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

S11Ap+A�p S11 S11Ap+A�p P11 + kC�p BH
�+AH

� S11Bp+CH
� − kC�p(1−DH)

� P11Ap+A�p P11+k( BHCp+C�p BH) P11Bp+BH(kDp+1)− kC�p(1−DH)�

� � −(kDp+1)�(1−DH)�− (1−DH)(kDp+1)


< 0 (65)

6.4.3. Non-positive multipliers
Previously it was assumed that h(t) = h+(t) ≥ 0 ∀t. This assumption can be relaxed by assuming h(t) is the

difference between two positive impulse responses

h(t) = h+(t) − h−(t) h+(t), h−(t) ≥ 0 ∀t (61)

From this it follows that a bound on the L1 norm is given by

�h�1 ≤ �h+�1 + �h−�1. (62)

Because both h+(t) and h−(t) are assumed positive for all t, arguments mirroring those in the two above subsections
can be used to derive LMI conditions for both the strict positive real condition (47) and the guarantees of positivity.
The L1 constraint can again be simplified to the inequality

N�

i=0

(κ+ci + (−1)iκ+ai + κ−ci + (−1)iκ−ai )i! < 1, (63)

which is linear in κ+ci , κ
+a
i , κ

−c
i and κ−ai : we have a system of LMI’s as before.

6.4.4. Remarks on the structured approach
There are two main criticisms which could be levelled at the fixed structure approach.

Complexity/Conservatism of approximation. In common with all Zames-Falb multiplier searches, the approach of
Chen and Wen (1995) searches over only a subset of these multipliers, namely over the set

RMN =

M(s) = 1 − H(s) : h(t) =
N�

i=0

κ+ci e
−tti + κ+ai e

tti + κ−ci e
−tti + κ−ai e

tti
 ⊂ RM. (64)

The order of the multiplier is proportional to 4N in this case, where N is a free parameter indicating the accuracy
of the approximation: large N will imply that RMN is in some sense a denser approximation of RM, but large N
implies a large computational burden as the larger number of states imply numerous LMI variables. In short: there is
a clear trade-off between conservatism and computational efficiency, and the choice of the integer N may be problem-
dependent. In particular, as N increases, the problem becomes ill-conditioned.

The decomposition h(t) = h+(t) − h−(t). Although this decomposition is not conservative when N approaches infin-
ity (see Veenman and Scherer, 2014), for finite values of N it may introduce some conservatism, since a triangular
inequality is used to bound the L1-norm. This is confirmed by numerical results (Carrasco et al., 2014a). In partic-
ular, if h(t) changes sign a nonsmooth function must be approximated with smooth functions, which is only possible
if N approaches infinity. As previously mentioned, the problem becomes ill-conditioned as N increases; hence this
decomposition may be conservative in practice.

6.5. Plant-order multipliers

An issue with the structured multipliers introduced in the foregoing section is that the conservatism is heavily
dependent on the choice of N which determines the order of the multiplier. Indeed, for certain choices of multiplier a
very large N would need to be chosen in order to reduce the conservatism to acceptable levels. In addition, although
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h(t)

t

1

-1

Valid h(t)
h+(t)

-h
−
(t)

Figure 24: Smooth h(t) difficult to decompose as smooth h+(t) and h−(t)

there is a clear trade-off between computational requirements and conservatism, the choice of N for a particular
problem is by no means obvious.

For this reason, in a series of papers (Turner et al., 2009b, 2010; Turner and Kerr, 2011; Carrasco et al., 2012a;
Turner et al., 2012; Carrasco et al., 2014b) the authors have developed an alternative method for searching for multi-
pliers based on a change of variables similar to that used inH∞ controller design (Scherer et al., 1997). The main idea
is that, if the multiplier is unstructured, but its order is the same as the plant, then a change of variables may be used
to “linearise” some of the resulting matrix inequalities. The approach also uses uses a pseudo-LMI approach in order
to bound the L1 norm of the transfer function H(s); the approach is conservative but it can be easily accommodated in
the plant-order approach. The restriction of attention to plant order multipliers, RMPO ⊂ RM obviously introduces
some conservatism a priori but the resulting search procedure is, with a slight caveat, entirely systematic.

6.5.1. Causal Plant order multipliers
In this section we restrict ourselves to causal plant order multipliers

RMPO = {M(s) = 1 − H(s) : H(s) ∈ RH∞} , (66)

and where deg(H(s)) = deg(G(s)) = np. The assumption that H ∈ RH∞ implies that the matrix AH is Hurwitz, but
no structure is imposed. This absence of structure in the multiplier is required for the change of variables proposed
later, but it also means that calculating �h�1 accurately is generally difficult. Instead, a convenient upper bound from
the literature will be used.

Theorem 3 (Scherer et al., 1997; Abedor et al., 1996) Let H ∈ RH∞. Then

�h�1 ≤ ξ if ∃Y = Y� > 0, µ > 0, λ > 0 s.t.

�
AH
�Y + YAH + λY YBH

� −µI
�
< 0, (67)


λY 0 CH

�

� (ξ − µ)I DH
�

� � ξI

 ≥ 0. (68)

It is emphasized that Theorem 3 gives only an upper bound on the L1 norm, �h�1 ≤ ξ; it may be extremely
conservative. Another issue with Theorem 3 is that the two matrix inequalities are “not quite” LMIs due to the
presence of the free scalar λ > 0. The consequence of this is that the plant order searches proposed here will take the
form of LMI’s plus a line search, which is computationally cumbersome compared to an LMI, but relatively easy -
and entirely systematic - to implement.

The first step in obtaining convenient plant-order multiplier searches is the partitioning of the matrix P = P� in the
positive real condition (47). It is assumed that P > 0 and therefore that its inverse Q−1 = P exists. This allows one to
write �

Q11 Q12
Q12

� Q22

� �
P11 P12
P12
� P22

�
=

�
I 0
0 I

�
, (69)
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where each of the sub-matrices, Pij,Qij ∈ Rn×n. Based on this partitioning, the following matrices are defined:

Π1 :=
�

Q11 I
Q12

� 0

�
Π2 :=

�
I 0

P11 P12

�
. (70)

Using the congruence transformation diag(Π1, I) and noting that Π1P = Π2, the positive real condition (47) is equiv-
alent to �

Π1
�AIΠ2

� +Π2AIΠ1 Π2BI −Π1
�CI

� −DI − D�I

�
< 0. (71)

After some algebra, it can be deduced that this inequality is equivalent to inequality (65), which is an LMI in P11, S11 >
0, AH,BH,CH,DH for fixed k, where S11 = Q11

−1 and

AH := P12AHQ�12S11, (72)
BH := P12BH, (73)
CH := CHQ�12S11, (74)
DH := DH. (75)

A similar congruence transformation can be applied to theL1 inequalities (67) and (68) in order to arrive at expressions
in the new coordinates (AH,BH,CH,DH). In order for this to work, the choice Y = P22 in inequalities (67) and (68) is
made. With this choice, the congruence transformation diag(Q12, I) is applied to inequality (67) and the congruence
transformation diag(Q11

−1Q12, I, I) is made to inequality (68). Under these congruence transformations, inequalities
(67) and (68) then become equivalent to

� − AH − AH
� + λ( P11 − S11) BH
� − µ

�
< 0, (76)


λ( P11 − S11) 0 CH

�

� 1 − µ DH
�

� � 1

 > 0. (77)

Together, for fixed k, inequalities (65), (76) and (77) form a system of linear matrix inequalities plus a line search
over λ > 0. This problem can be solved relatively easily using modern software and the multiplier can be recovered
by using equations (72)-(75).

6.5.2. Anticausal multipliers
A key restriction so far is that M(s) (H(s)) is assumed causal. Similar results but with M(s) assumed anticausal

can be obtained with the aid of the following result

Theorem 4 (Carrasco et al., 2014b) Let H ∈ RH−∞. Then

�h�1 ≤ ξ if ∃ Y = Y� < 0, µ > 0, λ > 0 s.t.

�
AH
� Y − YAH + λY YBH

� − µI
�
< 0, (78)


− λY 0 CH

�

� (ξ − µ)I DH
�

� � ξI

 ≥ 0. (79)
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The consequence of Y < 0 is that when applying the KYP Lemma (5), for nonsingularity of P to be guaranteed (as
we need to use Q = P−1), instead of stipulating P > 0, instead it is stipulated that P < 0. Using a similar reasoning
to before, it then follows that the positive real condition is satisfied if the matrix inequality (65) is satisfied. Similarly,
invoking Theorem 4 and applying similar reasoning to the causal case, the L1 inequalities become the following:

� − AH − AH
� − λ( P11 − S11) BH
� − µ

�
< 0, (80)


− λ( P11 − S11) 0 CH

�

� 1 − µ DH
�

� � 1

 ≥ 0. (81)

Together inequalities (65), (80) and (81) form a system of LMI’s plus a line search over λ > 0. This set of LMI’s is
similar to the causal result given earlier but, since it results in the return of anticausal multipliers can sometimes yield
much less conservative results.

6.5.3. Including Popov Multipliers
Popov multipliers are not bounded on the imaginary axis and so, strictly speaking, do not belong to the class of

Zames-Falb multipliers. However, following arguments given in Section 4 (see Carrasco et al., 2013), they can be
considered as anticausal relaxations in the case of causal Zames-Falb multipliers; or, as causal relaxations in the case
of anticausal multipliers. Space prohibits a full discussion, but it suffices to say that they are useful in the plant-order
searches proposed earlier (see Turner and Kerr, 2011; Turner et al., 2012).

6.5.4. Remarks on the plant-order approach
The plant order approach is a systematic search for Zames-Falb multipliers, but the nature of the approach is

inherently restrictive: the order is fixed a priori, the manner of including the L1 constraint has several sources of con-
servatism and, excluding the Popov terms, the multiplier returned is either causal or anticausal. A common criticism
of multiplier techniques is the poor scaling of dynamic multiplier searches with problem complexity. The plant order
approach described here also suffers from that due to the inclusion of the line search over λ, and, to a lesser extent, due
to the full-block nature of the matrix variables in the LMIs. Another subtle issue with the plant order approach is that,
as described here, it is only applicable to the case of φ being odd. This is not the case with the structured approach of
Chen and Wen (1996) or the approach using irrational multipliers (Chang et al., 2012).

6.6. Application of search techniques to O’Shea’s example

This section illustrates the application of the search techniques described to O’Shea’s example. The Zames-Falb
searches are compared to the well-known Circle Criterion, Park’s Criterion (Park, 2002) and also the non-rational
Zames-Falb searches of Chang et al. (2012), which have not been described in detail in the paper. The Zames-
Falb searches used are the causal (Turner et al., 2009b) and anticausal plant-order searches (Carrasco et al., 2014b)
described in Section 6.5, these same searches with the addition of Popov multipliers (Turner and Kerr, 2011; Turner
et al., 2012; Carrasco et al., 2014b), and the structured searches of Chen and Wen (1995) from Section 6.4. The
plant-order searches were performed by solving the LMI’s given earlier together with a 100 element line search over
logarithmically spaced λ. The Chen and Wen search is performed with a 18th order multiplier, comprising an 9th
order causal and an 9th order anticausal part. Results are tested using the IQC toolbox (Kao et al., 2004).

The results of the various searches are shown in Table 2 for O’Shea’s example using a variety of damping ratios,
ζ. For all ζ, the Nyquist Value is infinite. As mentioned earlier, due to the symmetry in the example, Park’s Criterion
cannot out-perform the Circle Criterion, leading to identical maximum slope predictions from both criteria. Safonov
and Chang’s method gives the greatest slope value for ζ = 0.6, but for the remaining ζ gives values similar to
Park/Circle. The remaining Zames-Falb searches all do better than Park for all values of ζ and, perhaps not surprisingly
given the phase symmetry of the problem, the causal and anticausal plant searches provide exactly the same slope
values in all cases.

The structured search of Chen and Wen deserves some explanation: the performance of this technique is highly
dependent on multiplier order. For ζ ∈ [0.2, 0.6] with a 18th order multiplier, Chen and Wen’s method took a similar
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computation time compared with other methods but provided significantly greater slope values. For higher order
multipliers, the results deteriorate. This is likely to be due to numerical issues associated with the factorials in the
basis representation. For ζ < 0.05, Chen and Wen’s method provided more conservative estimates of slope size,
irrespective of multiplier order, than the plant order search. For low order multipliers this is due to the restricted bases
(1/(s ± 1)N) used, while for high order multipliers numerical issues again become significant.

This suggests that results can be improved by a better selection of poles and this is indeed the case. Note that the
IQC-toolbox can be used as a manual search tool by choosing an adequate location of the poles, hence the multiplier
is given by

M(s) = 1 −

N�

i=0

κci
(s + pc)i+1

+

N�

i=0

κai
(s − pa)i+1

 (82)

for some selection pc > 0 and pa > 0. For a discussion in the selection of these values, (see Jönsson, 1996). An
inexperience user may perform the search using a swap over these two values or a Monte Carlo approach. However
performance then depends on the user’s ability. For example, when ζ > 0.5, experienced users will be understand that
the phase of this plant requires a selection of the poles that concurs with the solution proposed by O’Shea: a very fast
causal pole and an anticausal pole at −1. It does not seem surprising as O’Shea proposed such solution by hand 50
years ago.

O’Shea’s example illustrates clearly the complexities in finding the “best” multiplier, and the current lack of a
complete and tractable method.

6.7. Safonov’s search

It is the first tractable search proposed in the literature, Safonov and Wyetzner (1987) proposed a search where the
parametrisation of the multiplier contained irrational terms, i.e.

m(t) = δ(t) −
N�

i=1

ziδ(t − ti).

The main advantage of this search is the simplicity to test the time domain condition. However, it is not possible to
check the frequency domain condition in a convex manner. The lack of an LMI implementation reduces the usefulness
of this search since it cannot straightforwardly be combined with other classes of multiplier.

Originally, the impulses where equally distributed over a range of times resulting in a large optimization problem.
To reduce the computational burden, Gapski and Geromel (1994) reduced the size of the optimization by proposing
an iterative method where the position of a new impulse δ(t − tN+1) is obtained if the search with N impulses fails.
Recently, a new sub-algorithm has been proposed to improve this selection of the new impulse (Chang et al., 2012).
In table 2, we have used the code developed by Chang and Safonov8. The results for ζ > 0.55 are very good, but this
search is not able to improve Circle criterion results for ζ < 0.5. Once again, anti-symmetry of the phase of (1+kG) is
a possible explanation. The search for the new tN+1 is designed to correct only one region of frequencies where there
is a lack of positivity. So it is possible this the selected exponential for the multiplier is only able to “fix” one of both
regions where there is lack of positivity. Note that as ζ approaches zero, non-positive regions are closer each other.

7. Further Developments

7.1. The IQC framework

We have framed our discussion in terms of passivity rather than IQCs (integral quadratic constraints) (Megretski
and Rantzer, 1997) which provided a new framework for multiplier theory. Whereas passivity, dissipativity, and
Lyapunov theories can be used in any nonlinear interconnection, the IQC framework restricts its attention to the Lurye
system. It therefore provides a natural framework in which to work with Lurye problems in general, and Zames-Falb
multipliers in particular. Although Megretski and Rantzer (1997) provide a self-contained frequency domain

8Code is available on http://www.michaelwchang.com/zf/
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result, the IQC framework was developed in a combination of frequency and time domains by Yakubovich
(1965). A natural extension of the original IQC framework to obtain stability conditions including Zames-Falb
multipliers the using convolution results by Falb and Zames (1967) has been developed in (Altshuller et al.,
2004; Altshuller, 2013).

Furthermore IQC theory provides not only self-contained stability results, but also computational tools to test
stability conditions. For example, the search of Chen and Wen (1995, 1996) is encapsulated within the IQC-β tool-
box (Kao et al., 2004; Megretski et al., 2004). The IQC framework is especially useful if there is more than one
nonlinearity or uncertainty in a feedback loop (e.g. Jönsson and Rantzer, 2000); the motivating example of Section 2
is most naturally expressed in the IQC framework.

Zames-Falb multipliers were used as an illustrative example by Megretski and Rantzer (1997). This sparked
renewed interest in their properties and applications. It is therefore worth asking what advantages the IQC framework
offers over and above the user-friendliness noted above. IQC theory dispenses with the requirement that multipliers
can be factorized, and this is often claimed as an advantage over classical methods (Megretski and Rantzer, 1997).
But the requirement that the Zames-Falb multipliers must be factorizable is no restriction on their generality (Zames
and Falb, 1968). It turns out that this is also the case whenever multipliers are used for a class of nonlinearities that
includes a finite gain (Carrasco et al., 2012b). On the other hand the IQC framework allows additional properties of
the nonlinearities to be included in the analysis (for example Turner and Kerr, 2011 include a tighter sector condition);
to the best of the authors’ knowledge the results of such analysis cannot be obtained via classical techniques.

The relation between passivity theory and the IQC theorem is explored by Carrasco et al. (2012b). The relation
between dissipativity (and hence Lyapunov methods) and the IQC theorem is beginning to be understood (Willems
and Takaba, 2007; Veenman and Scherer, 2013; Seiler, 2015).

7.2. MIMO nonlinearities

Similarly, our treatment has been restricted to SISO systems with slope restricted nonlinearities. The generalisa-
tion of the Zames-Falb theorem to MIMO nonlinearities is discussed by Safonov and Kulkarni (2000). In particular,
it is necessary that the nonlinearity can be expressed as the derivative of a convex potential function. This condition is
natural for SISO nonlinearities, but may be restrictive in the MIMO case. In fact the condition was recognised in the
classical literature (Willems, 1972). It can be shown that the quadratic program used in input-constrained model pre-
dictive control satisfies the conditions for Zames-Falb multipliers (Heath and Wills, 2007). Often attention is limited
to diagonal nonlinearities; if the nonlinearities are repeated then the symmetry may be usefully exploited (D’Amato
et al., 2001; Kulkarni and Safonov, 2002; Turner et al., 2009a). More generally, it is possible to construct specific
multipliers appropriate for nonlinearities with repeated blocks (Mancera and Safonov, 2005).

7.3. Discrete-time multipliers

O’Shea also pioneered the equivalent multipliers for use with discrete-time systems (O’Shea and Younis, 1967).
Formal treatments can be found by Willems and Brockett (1968) and Willems (1971); their MIMO extension and
necessity properties are given by Kulkarni and Safonov (2002) and Mancera and Safonov (2005). The discrete-time
counterpart to the search for causal multipliers of Turner et al. (2009b) (and the anti-causal search of Carrasco et al.,
2014b) is developed by Ahmad et al. (2013). A search for a first-order FIR Zames-Falb multiplier is presented
by Ahmad et al. (2015). A generalisation to FIR Zames-Falb multipliers is presented by Wang et al. (2014). This
approach appears highly promising, as it seems to combine the best aspects of the searches of Chen and Wen (1995)
and Safonov and Wyetzner (1987).

7.4. Different nonlinearities

Both Rantzer (2001) and Materassi and Salapaka (2011) allow relaxations on the condition of the nonlinearity.
The nonlinearity considered by Rantzer (2001) is a perturbation of a nominal odd saturation function, while that
considered by Materassi and Salapaka (2011) is some perturbation of a more general nominal odd nonlinearity. In
both cases positivity is preserved by further limiting the L1 norm condition. The multipliers of Rantzer (2001) can be
shown to be applicable to a wider class of nonlinearity (Kulkarni et al., 2011b,a).
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8. Open questions

Although there have been many recent advances in Zames–Falb mutliplier theory, some open question are still
open even for SISO systems in continuous-time. Here we provide some of these open questions.

Complete search. Different searches have been proposed in the literature. Results in this paper and comparisons
by Carrasco et al. (2014a) show that no complete tractable search can be found in the literature. Advantages and
drawbacks of each technique have been mentioned in Section 6. The development of a complete and tractable search
remains an open challenge.

Instability criteria. Currently, searches are tested using only the Nyquist value as an upper bound. However, it is
well know that this is not a tight bound for fourth-order systems or higher order. For O’Shea’s example small values
of ζ produce unstable behaviour. The maximum slope for searches decreases significantly as ζ approaches zero,
though the Nyquist value remains infinity. Tractable instability criteria must be developed to be able to understand
the real conservativeness of the classes of multipliers and searches over these classes. Existence of limit cycle for this
particular problem is discussed by Leonov and Kuznetsov (2013), whereas general results are also available in the
literature, (e.g. Manchester and Slotine, 2014).

Dual problem. The dual problem in robustness analysis has been proposed by Jönsson (1996) and Jönsson and
Rantzer (1997). The limitations given by Megretski (1995) provide a method to find when a Zames-Falb multiplier
cannot be found. However, it is not understood how to use these limitations to discard the existence of a Zames-Falb
multiplier suitable for a plant G and slope k.

Stability conjecture. Related with the two previous questions, we can state the following conjecture:

Conjecture 1 Suppose we have a stable plant G and a constant k < kN such that there is no Zames-Falb multiplier
M satisfying

Re{M( jω)(1 + kG( jω))} ≥ δ
for any δ > 0. Then there exists a slope-restricted nonlinearity φ ∈ S [0, k] such that the feedback interconnection
between G and φ is not L2-stable.

Completeness. In discrete-time, the Zames–Falb multipliers are the only multipliers that can preserve the positivity
of monotone and bounded nonlinearities (Willems, 1971; Kulkarni and Safonov, 2002; Mancera and Safonov, 2005).
In continuous time other multipliers, such as Popov multipliers, can also preserve the positivity of the nonlinearity yet
are not themselves Zames–Falb multipliers. Nevertheless, all other classes of multipliers in the literature have been
shown to be phase-equivalent to Zames-Falb multipliers (Carrasco et al., 2013, 2014a). It is an open question whether
any possible class of multipliers preserving the positivity of monotone and bounded nonlinearities is phase-contained
in the class of Zames–Falb multipliers.

Synthesis. The use of multipliers for synthesis has already been proposed by Veenman and Scherer (2014). Moreover,
Zames–Falb multipliers have been already used in synthesis techniques (Moreno et al., 2010; Kerr et al., 2011). The
development of a convex synthesis technique using the Zames-Falb multipliers for anti-windup design is still open.

Local stability. The use of input-output stability criteria provides many advantages. However, open-loop unstable
systems only can be locally stable in closed-loop. The use of IQCs for local stability has been considered by Fang
et al. (2008). However, it is unknown whether multiplier theory has any role in the analysis of local stability.
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9. Conclusion

This tutorial has attempted to provided a coherent introduction to the topic of Zames-Falb multipliers. We have
shown a motivating example for using Zames-Falb multipliers in the robustness analysis of antiwindup. Their defini-
tions, phase properties, and searches have been presented.

We have devoted a significant part of the paper to describing O’Shea’s contribution, most notably O’Shea’s ob-
servation that noncausal multipliers provide significant advantages over causal multipliers, in particular with respect
to their phase properties. We have also shown, using O’Shea’s original set of examples, the complexity in multiplier
searches: for some (ζ > 0.5), a manual search remains best; while for others (ζ < 0.5) the best achievable slope
remains unknown and for different values of ζ different automated searches appear better.
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Appendix A. Further notation

This appendix provides some technicalities about common notation in multiplier theory that has been used tacitly
in the main text.

Appendix A.1. Signal Spaces

Let L2(−∞,∞) be the Hilbert space of all square integrable and Lebesgue measurable functions (usually signals)
f : (−∞,∞)→ R with inner product defined as

� f , g� =
� ∞

−∞
f (t)g(t)dt, (A.1)

and norm defined as � f �2 = � f , f �1/2, for f , g ∈ L2(−∞,∞). The function f ∈ L2(−∞,∞) belongs to the subspace
L2[0,∞) if f (t) = 0 for all t < 0 and the subspace L2(−∞, 0] if f (t) = 0 for all t > 0. For brevity we often use
f ∈ L2 as shorthand for f ∈ L2[0,∞). A truncation of the function f at T is given by fT (t) = f (t), ∀t ≤ T and
fT (t) = 0, ∀t > T . The function f belongs to the extended space L2e[0,∞) if fT ∈ L2[0,∞) for all T > 0.
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Let L1(−∞,∞) be the space of all absolutely integrable and Lebesgue measurable functions (usually impulse
responses of LTI systems) f : (−∞,∞)→ R with norm

� f �1 =
� ∞

−∞
| f (t)|dt. (A.2)

The function f ∈ L1(−∞,∞) belongs to the subspace L1[0,∞) if f (t) = 0 for all t < 0 and the subspace L1(−∞, 0] if
f (t) = 0 for all t > 0. For brevity we often use f ∈ L1 as shorthand for f ∈ L1[−∞,∞).

Appendix A.2. System Spaces

The space L∞ (RL∞) is the space of (real rational) transfer functions,G(s), bounded and analytic on the imaginary
axis. The L∞-norm is defined as

�G�∞ = sup
ω∈(−∞,∞)

|G( jω)|

The spaceH∞ (RH∞) is the space of (real rational) transfer functions analytic in the closed right half plane. The space
H−∞ (RH−∞) is the space of (real rational) transfer functions analytic in the closed left half plane. It can be shown, for
G ∈ RH∞, that

�G�∞ = sup
w∈L2[0,∞),w�0

�Gw�2
�w�2 (A.3)

A system G is said to be causal if (Gu)T = (GuT )T for any T > 0. A formal definition of anticausal system would
require a different truncation, but an LTI operator is anticausal if its adjoint is causal. If an LTI operator has a bounded
impulse response h(t), i.e. h ∈ L1, its transfer function belongs to H∞ (H−∞) if and only if h(t) = 0 for all t < 0 (t > 0),
i.e. the LTI operator is causal (anticausal).

Appendix A.3. Nonlinearities

A nonlinearity φ : L2e[0,∞) → L2e[0,∞) is said to be memoryless if there exists N : R → R such (φv)(t) =
N(v(t)) for all t ∈ R. We assume that N(0) = 0. Moreover, φ is slope-restricted in the interval S [0, k], if

0 ≤ N(x1) − N(x2)
x1 − x2 ≤ k (A.4)

for all x1 � x2. The nonlinearity φ is said to be odd if N(x) = −N(−x) for all x ∈ R. Let Φ(k) be the class of slope-
restricted nonlinearities with slope within the interval S [0, k]. Our prime example is a saturation function, which is
slope-resricted to the interval S [0, 1]. A saturation function in series with a linear gain k is a memoryless nonlinearity
slope-restricted to the interval S [0, k]. It is odd if the absolute value of the upper bound is equal to the absolute value
of the lower bound.
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