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Generalised synthesis methods in human health 
risk assessment

Jaime Louise Peters B.Sc. M.Sc.

Abstract
This thesis critically explores the potential of systematic review and generalised 
synthesis methods to assist in human health risk assessments of exposure to 
chemicals in the environment. Current methods used to review and evaluate 
diverse, yet relevant, human and animal evidence for such risk assessments are 
described and shown to be lacking some degree of quantification, transparency and 
structure. Systematic review and generalised evidence synthesis methods 
demonstrate potential in overcoming some of these limitations.

In this thesis the use of systematic review and meta-analysis methods to evaluate 
evidence from animal experiments to inform human health related decisions is 
reviewed and results suggest that the quality of reporting of these reviews needs to 
be improved in order to make more efficient use of the animal evidence. To 
investigate the potential of systematic review and generalised synthesis methods in 
human health risk assessments, the methods are applied to two different examples 
where relevant evidence comes from human studies and animal experiments. In 
both examples, the use of systematic review methods was not only feasible, but 
provided structure and transparency in the identification and review process above 
that found in current risk assessments. In the first example hierarchical Bayesian 
models are used to synthesise evidence across species, leading to the derivation of a 
safe exposure limit. However, in the second example, the relevant data were much 
more diverse and sparse and so synthesis across species was of limited value. 
Nevertheless, synthesis of evidence within species assisted in evaluating the totality 
of relevant evidence. The quantitative framework of generalised evidence synthesis 
methods allows greater ease in assessments of between-study heterogeneity and 
publication bias. In this thesis the performance of methods to detect and adjust for 
publication bias has been assessed in scenarios likely to occur in a human health 
risk assessment context, and an alternative test has been proposed. However the 
findings suggest that caution is needed when carrying out and reporting results of an 
evidence synthesis especially when between-study heterogeneity and/or publication 
bias are suspected.

This thesis illustrates the potential of systematic review and generalised evidence 
synthesis methods in assisting human health risk assessments of environmental 
exposures and their ability to overcome some of the limitations of current methods. 
Although improvements in the quality of reporting of systematic reviews and meta
analyses of animal experiments need to be made, such an approach far outweighs 
current alternatives.
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Chapter 1 Introduction

Introduction

1.1 Aims of thesis
In assessing risks to human health from exposure to chemical substances in the 

environment, relevant evidence comes from a variety of sources including human 

studies and animal experiments. Current risk assessment methods are not ideal due 

to their over-reliance on expert judgement and the lack of transparency in the 

methods used and the decisions made. Systematic review and meta-analysis 

methods have the potential to overcome some of the limitations of the current 

process. There has been limited exploration of methods for the quantitative 

synthesis of evidence from human and animal studies (DuMouchel and Harris, 

1983; DuMouchel and Groer, 1989; Cox and Piegorsch, 1994). The aim of this 

thesis is to assess the potential use of systematic review and meta-analysis methods 

to assist in current human health risk assessments of exposure to chemical 

substances in the environment.

1.2 Background
In all aspects of life, humans are exposed to thousands of chemical substances. For 

example, carbon monoxide at home from the gas cooker, environmental tobacco 

smoke at the local pub and diesel exhaust on the walk to work. In fact there are 

around 100 000 chemical substances registered in the EU (Commission of the 

European Communities, 2001). 2 700 of these are categorised as new substances 

(available on the market since September 1981). Before they were marketed the 

new chemicals were subject to testing for human health risks (EEC, 1967). 

However the remaining 97 000 or so chemicals are classed as existing substances 

(available before September 1981) and have not been subject to the same testing 

requirements as the new substances (Commission of the European Communities,

Jaime Peters PhD Thesis 2006 1



Chapter 1 Introduction

2001). Thus there are thousands of chemicals on the market, in our environment, 

about which little is known. It is therefore imperative that risk assessments are 

carried out for these chemicals to ensure safe human exposure.

Assessing the human health effects of exposure to chemical substances is a complex 

task. Although they would be ideal to avoid bias, randomized controlled trials 

(RCTs), where groups of humans are exposed to different doses of a chemical 

substance, are not usually carried out because of the obvious ethical issues of 

deliberately exposing humans to potentially lethal chemicals, inducing adverse 

health effects. However, some controlled human studies where volunteers are 

exposed to chemicals (e.g. chamber/booth studies) do exist, but tend to be based on 

a limited number of volunteers (Emstgard et al., 2005; Joffres et a l,  2005). Instead 

evidence for a risk assessment may come from controlled animal in vivo and in vitro 

experiments and observational human studies. Animal experiments have the 

advantage of being controlled: the exposure and response can be closely monitored. 

On the other hand, observational human studies may not be as controlled, but an 

advantage lies in their results providing information on the human experience of 

exposure to certain chemicals (unlike the animal experiments). Thus, evidence 

relevant for a risk assessment can come from diverse sources, including 

epidemiology and toxicology (WHO, 1994). It is likely that within the disciplines 

of epidemiology and toxicology, different methodologies will have been used (e.g. 

observational cohort and case-control studies in epidemiology; in vitro and in vivo 

studies in toxicology). There are also likely to be many differences between these 

studies beyond their design, such as the different routes of exposure (inhalation, 

oral, dermal), the different levels of exposure and the different species and strains of 

animals used.

Several methods to evaluate diverse evidence in a risk assessment are available and 

used throughout the world by governments and regulatory agencies. All of the 

methods require assumptions and judgements to be made during the risk assessment 

process. It is important that when setting limits for safe (or acceptable) human 

exposure to chemical substances (in order to avoid increased risk to human health) 

there is transparency regarding the various assumptions made. Moreover, those
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Chapter 1 Introduction

setting, enforcing and using the limits must understand the nature and degree of 

uncertainty that exists in the estimation of these exposure limits.

1.3 Risk assessment methods
Methods for human health risk assessment for exposure to chemical substances in 

the environment are often based on subjective, narrative reviews of the evidence 

(including that from both human and animal studies) as described in Chapter 2. 

When limits for human exposure to these chemicals need to be determined, they are 

often calculated from an animal experiment. The dose level from a particular study, 

observed to cause no or little adverse effects in animals is divided by a number of 

‘uncertainty’ factors (UFs) to reflect a limit for human exposure (WHO, 1994; 

Woolley, 2003; Edler et al., 2005). More complex biological processes can be used 

in risk assessment, particularly for chemicals believed to be carcinogens (RATSC, 

1999a; Woolley, 2003; Watanabe, 2005), but these methods often require quite 

detailed evidence that is rarely available.

The risk assessment methods are not ideal. Current strategies to review and 

incorporate diverse evidence to inform risk assessments are generally not systematic 

and lack some degree of quantification (RATSC, 1999b). The nature and degree of 

uncertainty that exists in the estimation of these exposure limits needs to be clear to 

both setters and users of these limits. There also needs to be some harmonization of 

the different approaches used by various agencies and governments throughout the 

world (RATSC, 1999b). There is a real need for the development of a systematic, 

transparent methodology to combine human and animal data that could formally 

incorporate biological/mechanistic data, in so far as it exists (Budtz-Jorgensen et al.,

2001) and allow estimation of inherent uncertainty. Methods commonly used in 

medical research to systematically identify, review and evaluate human evidence on 

a particular intervention or policy, systematic review and meta-analysis methods, 

have the potential to help improve the objectivity and transparency of the current 

risk assessment process.

Jaime Peters PhD Thesis 2006 3



Chapter 1 Introduction

1.4 Systematic reviews and meta-analyses
Initially used in the fields of educational and psychological research (Hedges and 

Olkin, 1985), systematic reviews and meta-analyses are now commonly used in 

medical research, particularly to combine evidence from human RCTs. As the 

emphasis on evidence-based medicine increases, systematic reviews are used to 

compile, to assess the extent and quality of, and to summarise the results of 

research. The aim of a systematic review is to comprehensively evaluate the 

available evidence keeping potential biases to a minimum. This is achieved through 

the structured and transparent nature of such a review where the target research 

questions, methods and results are clearly laid out, making explicit assumptions and 

decisions made in execution. This also allows reproducibility and ease in updating 

the review (Sutton et al., 2000; Egger et a l, 2001).

Where appropriate, meta-analyses extend the systematic review by quantitatively 

synthesising results from the relevant articles. Advantages of a meta-analysis 

include greater statistical power than that in a single study, the potential for more 

precise estimates, a framework for investigation of possible sources of 

heterogeneity between studies and the potential to be more generalisable (Fleiss and 

Gross, 1991; Blettner et al., 1999). The pooled estimate from a meta-analysis is a 

weighted average of the results of the primary studies, where the weighting is 

dependent upon the precision of the estimate from each study (i.e. studies with large 

precision are given more weight in the meta-analysis). Fixed and random effects 

models are used in meta-analysis and are both described in Chapter 3. Meta

analysis is not just about obtaining an estimate of effect from multiple studies. Its 

quantitative framework allows investigation of between-study heterogeneity and 

publication bias. Between-study heterogeneity describes variability in the true 

underlying effects between studies in a meta-analysis (Higgins and Thompson,

2002). There may be many possible sources of between-study heterogeneity, for 

instance the way in which the exposure or health outcomes are measured may differ 

across studies. When it exists, between-study heterogeneity can affect the inference 

and conclusions of a meta-analysis and its possible sources must be investigated. 

Publication bias is the tendency for some studies to be less (or more) likely to be 

published and hence included in a systematic review because of the size and/or
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statistical significance of their effect (Song et al., 2000). If publication bias occurs, 

the subsequent systematic review or meta-analysis of published literature may be 

misleading. Therefore an assessment of publication bias should be undertaken 

before conclusions can be drawn from a meta-analysis. In Chapter 3, between-study 

heterogeneity and publication bias are described and discussed in further detail.

1.5 Bayesian methods for meta-analysis
Bayesian methods of statistical analysis are now increasingly popular, due mainly to 

advances in computing (Smith and Roberts, 1993). A Bayesian approach to 

statistical analysis allows subjective beliefs and/or external evidence to be formally 

incorporated alongside the dataset of interest. This prior information (e.g. from 

previous reports or expert opinion) must be expressed in terms of probability 

distributions before it can be included in an analysis. The basis for the Bayesian 

framework is Bayes ’ Theorem

P(0\Data) ocP(0)P(Data\0) (1.1)

where P(6) is the prior density function (findings from previous studies or expert 

opinion), P(Data\6) is the likelihood function (the dataset of interest) and P(6\Data) 

is the posterior density function which is often summarised by a mean or median 

(Sutton et a l, 2000). The importance given to the prior distribution compared to the 

likelihood function depends upon the precision of the information forming the prior 

distribution. The more information available, the more precise the prior 

distribution, thus the more impact it has in the analysis. In Figure 1.1 an example of 

a Bayesian analysis is represented showing the prior distribution, the likelihood 

function and the posterior distribution for the pooled slope estimate from a Bayesian 

meta-analysis. In this example the prior distribution is more precise than the 

likelihood function. This is reflected in the posterior distribution since it is more 

similar to the prior distribution than the likelihood function.
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Figure 1.1 Graphical presentation of a Bayesian analysis
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Bayesian methods are increasingly used to meta-analyse evidence in human 

healthcare and have a number of advantages over classical meta-analysis models 

(Spiegelhalter et a l, 2000a; Sutton and Abrams, 2001). These advantages include 

the allowance and modelling of uncertainty in estimation of the between-study 

heterogeneity parameter (denoted by r 2 in Equations 3.2 and 3.4 in Chapter 3); the 

prediction of effects in new studies; the borrowing of strength from similar studies, 

and groups of studies; the flexibility to model realistically complex relationships 

(Spiegelhalter et al., 2004). Bayesian meta-analysis models are discussed in more 

detail in Section 3.3.4 of Chapter 3.

1.6 Thesis overview
Current methods of human health risk assessment of environmental exposures are 

described in Chapter 2. The diverse nature of the evidence that must be considered 

for a thorough risk assessment is demonstrated in addition to the limitations of the 

current process. Areas where systematic review and meta-analysis methods may be 

useful in overcoming these limitations are highlighted from a comparative review of 

risk assessment documents in which limits for occupational exposure to manganese 

(Mn) are derived.

In Chapter 3, systematic review and meta-analysis methods are described and 

discussed, including details on assessing between-study heterogeneity and 

publication bias and the use of Bayesian methods for meta-analysis. Quantitative 

methods for the synthesis of human and animal evidence are also reviewed in 

Chapter 3. Since there has been little use and development of methods to combine 

human and animal evidence, potentially relevant methods for the generalised 

synthesis of human evidence are reviewed. In an attempt to identify an appropriate 

approach for exploring the potential of systematic reviews and meta-analyses in the 

risk assessment context, common features of the models reviewed in Chapter 3 are 

discussed.

The extent of use and quality of systematic reviews and meta-analyses of animal 

experiments is previously unreported and in Chapter 4 the details and findings of a
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systematic review of the current use of systematic review and meta-analysis 

methods for the synthesis of animal evidence to inform human health are reported. 

As a consequence of the findings of this review and an absence of detailed guidance 

for systematic reviews and meta-analyses of animal studies, guidelines are proposed 

to aid the conduct and reporting of such articles.

In Chapters 5 and 6 the potential of systematic review and meta-analysis methods to 

assist in human health risk assessments of environmental chemicals is explored.

The two examples used to illustrate the potential of systematic review and meta

analysis methods have been chosen because of their diversity, thus allowing 

assessment of issues that may be specific to each example and more general issues 

that may exist in the application of these methods to the human health risk 

assessment process. The examples are i) the risk of delivering a low birth weight 

baby associated with exposure to trihalomethanes (THMs) in drinking water 

(Chapter 5), and ii) possible neurobehavioural effects resulting from occupational 

exposure to manganese (Mn) (Chapter 6). For each example, the relevant human 

and animal data are identified and reviewed using systematic review methods and 

are synthesised using hierarchical Bayesian models that allow complex modelling of 

the diverse evidence and incorporation of additional evidence using informative 

prior distributions. As the method and result sections of Chapter 5 demonstrate, 

systematic reviews and meta-analyses can be used effectively in a risk assessment. 

However, because of diverse and sparse evidence such an application is not so 

straightforward for the second example, Mn exposure and neurobehavioural effects 

(Chapter 6). In the THMs example, the animal data appear consistent with the 

human data and so methods to synthesise evidence within and across different 

species and strains are investigated. Such consistency between species is, however, 

lacking in the Mn example, thus although synthesis across species may not be 

appropriate in this example, the advantages of systematic review and meta-analysis 

methods to summarise different types of evidence are demonstrated.

Consideration or assessment of the possibility of publication bias in a meta-analysis 

was an aspect found to be particularly deficient in the reporting of systematic 

reviews and meta-analyses of animal experiments in Chapter 4. Publication bias is
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no less important in meta-analyses of animal experiments than it is in meta-analyses 

of human studies. Evidence suggests that current methods for assessing and 

adjusting for publication bias do not perform well (Begg and Mazumdar, 1994; 

Sterne et al., 2000; Macaskill et al., 2001; Schwarzer et al., 2002; Terrin et al.,

2003). Using simulations prompted by the characteristics of the 46 meta-analyses 

of animal experiments identified in Chapter 4, the performance of these commonly 

used models and methods for assessing publication bias are assessed in Chapter 7. 

The rank correlation test (Begg and Mazumdar, 1994), Egger’s regression tests 

(Egger et al., 1997), Macaskill’s regression test (Macaskill et al., 2001) and the trim 

and fill method (Duval and Tweedie, 2000a; Duval and Tweedie, 2000b), are all 

investigated in the presence and absence of induced publication bias and between- 

study heterogeneity in addition to a number of alternative regression tests. From 

these simulation analyses an improved regression test for publication bias, based on 

sample size, is identified and its performance in likely meta-analyses for human 

health risk assessments is discussed.

In Chapter 8 investigation of the performance of tests for publication bias is 

extended to include the scenario where a measured study-level covariate may help 

explain observed between-study heterogeneity. Following on from a motivating 

example (Mapstone et al., 2003) and the observation in Chapter 4 that many meta

analyses of animal experiments include different species and strains of animal, the 

performance of tests to help detect publication bias is assessed when some of the 

between-study heterogeneity can be explained by a measured covariate. This is 

likely to be a common feature of meta-analyses of animal experiments where results 

from experiments using different species and strains are synthesised.

Finally, in Chapter 9, the research contained within this thesis is summarised and 

the potential of systematic review and meta-analysis methods to assist in human 

health risk assessments is discussed, with particular attention paid to i) the 

application of systematic reviews and meta-analyses to evaluate animal 

experiments, ii) the quantitative synthesis of human and animal evidence, and iii) 

the performance of tests for the detection of publication bias in likely scenarios in 

human health risk assessments. Limitations of the work presented here are 

considered, in addition to recommendations for practice and possible areas of future
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research. The thesis ends with conclusions on the potential of systematic review 

and meta-analysis methods to assist in human health risk assessments to 

environmental exposures.
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Chapter 2 Risk assessment methods

Risk assessment methods

2.1 Chapter overview
In this chapter current approaches to human health risk assessment for 

environmental exposures are described and discussed. In Section 2.2 methods for 

the daunting and important task of identifying, reviewing and evaluating evidence 

on potential health risks from exposure to environmental chemicals and 

determination of exposure limits is introduced. Current risk assessment practice 

generally involves categorising substances into threshold and non-threshold 

substances. Threshold substances are assumed to have some level of exposure 

below which there are no adverse health effects. Above this threshold, exposure is 

thought to lead to adverse health effects. Non-threshold substances are assumed to 

be harmful, no matter how small the exposure. The majority of substances having a 

toxic effect are assumed to be threshold substances; non-threshold substances 

usually refer to genotoxic carcinogens. The approach taken to the risk assessment 

typically depends on whether a chemical is believed to be a threshold or non

threshold substance. In Section 2.3 the risk assessment approach for threshold 

substances is described, including determination of the critical effect for the risk 

assessment (2.3.1), the uncertainty factors (2.3.2) and the reference dose (2.3.3). 

General approaches for the risk assessment of non-threshold substances are 

described in Section 2.4. To highlight the limitations of the current risk assessment 

process, documents describing a human health risk assessment for occupational 

exposure to Mn are reviewed in Section 2.5. The advantages of systematic review 

and meta-analysis methods and their potential to overcome some of the limitations 

of current risk assessment approaches are discussed in Section 2.6.
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Chapter 2 Risk assessment methods

2.2 Introduction
A number of chemicals in our environment, natural and man-made may be harmful 

to human health at certain levels of exposure. The aim of a human health risk 

assessment is to review and evaluate all the relevant evidence on the potential risks 

to human health from exposure to these chemicals. These risk assessments are 

usually carried out by governments or regulatory agencies, such as the World 

Health Organization (WHO) and the US Environmental Protection Agency (US 

EPA). The risk assessment process generally involves four steps (RATSC, 1999a; 

Woolley, 2003; Cogliano, 2005):

1. Hazard identification -  identifying what adverse effects result from exposure 

to the substance (whether the effects are in animals or humans)

2. Hazard characterization -  quantitative evaluation of the adverse effect

3. Exposure assessment -  measured, estimated or predicted exposure to the 

substance by humans

4. Risk characterization -  combines the three steps above to predict the 

severity of human effects from exposure to the substance, if there are any, 

and identifies the population likely to be affected (e.g. elderly, those 

occupationally exposed)

An informative and useful assessment of the risks to human health from exposure to 

chemicals should therefore be based on all available data relevant to the area of 

interest. Often these data are from a variety of sources, including animal 

experiments and human epidemiology studies (WHO, 1994; Woolley, 2003).

Within these sources it is likely that different methodologies will have been used 

(e.g. observational cohort and case-control design human epidemiology studies, in 

vitro and in vivo animal experiments). Hence the data potentially relevant for a 

human health risk assessment may be quite diverse. Although data from human 

studies are preferred over that from animal experiments in terms of relevance, the 

human data are likely to have low power and precision and be particularly prone to 

biases and confounding since often only data from observational studies are 

available. On the other hand, data from animal experiments are less likely to suffer 

from such biases and confounding and often be much more precise (WHO, 1994). 

However, results of an animal experiment are less relevant to an assessment of risks
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to human health than results from a human study. Thus, a balance must be achieved 

between the merits of the data, such as relevance and precision, from these various 

sources when considering evidence for a risk assessment.

In many situations, especially in Europe, an expert committee will review the 

available published evidence and derive an exposure limit to an environmental 

substance below which there is no adverse risk to human health (Rubery et al.,

1990; WHO, 1994; RATSC, 1999b). However, for non-threshold substances an 

exposure limit below which there is no risk to human health cannot be achieved and 

so a level of ‘acceptable’ risk is defined. The exposure limit is then derived from 

this level o f ‘acceptable’ risk (RATSC, 1999b). More quantitative methods are 

generally used in the US for risk assessment (RATSC, 1999b). These methods can 

take the form of quite complex mathematical and/or biological models, if and where 

the data are available, to model the process from exposure to a substance in a 

particular to species, including the concentration of the chemical in different organs 

through to any adverse effects likely to be observed (RATSC, 1999a; Watanabe, 

2005). The approaches generally taken in the risk assessment of threshold and non

threshold chemical substances are described in Sections 2.3 and 2.4 respectively.

2.3 Threshold substances
2.3.1 The critical effect

For a risk assessment the relevant evidence is identified and reviewed before a 

particular study is chosen as the pivotal study on which the calculation of the 

exposure limit is based. This pivotal study is usually chosen to be of high quality, 

and although human studies are preferred when investigating human health effects, 

typically only experiments on animals are suitable for this purpose. When a number 

of experiments are candidates for the pivotal study, the one using the most sensitive 

species or strain of animal, conducted over the longest study period is often chosen 

(Woolley, 2003). From this experiment the dose level at which there is no observed 

adverse effect (NOAEL) relating to the most serious health effect, or that which 

occurs at the lowest dose level is identified. The NOAEL is the highest dose (or 

exposure) level in the study at which no adverse health effects are seen in the study
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subjects. When a NOAEL cannot be obtained from the study (i.e. when an adverse 

effect is observed at every dose level) the lowest dose at which an adverse health 

effect is observed in the experimental group, the LO AEL (lowest observed adverse 

effect level), is used (WHO, 1994).

There are a number of limitations of this approach. By its very nature, the 

N(L)OAEL is restricted by the design of the pivotal study it is taken from. It can 

only be a dose-level used in the pivotal study and so choice of doses and spacing 

between doses in the experiment becomes an important issue (Woolley, 2003). 

Identification of a N(L)OAEL also depends upon the statistical power of the 

experiment. If the experiment does not have sufficient statistical power, no adverse 

effects may be observed, possibly leading to a conclusion that exposure to a 

substance is not harmful when in fact the study was just not powerful enough to 

detect an effect (WHO, 1994). The approach is also subject to the issues of 

multiple-testing since effects at each dose level are tested separately (Edler et al., 

2005). Furthermore selection of a N(L)OAEL from a particular experiment is 

dependent upon the species, strain, sex and age of the animal, the duration of the 

exposure and observational period and the sensitivity of the method used to measure 

the outcome (WHO, 1994). A further criticism of the N(L)OAEL is that it makes 

no use of the data relating to other non-zero dose levels in this experiment, and so is 

not particularly efficient (Gaylor et a l, 1998).

A number of these criticisms of the N(L)OAEL can be overcome by use of the 

benchmark dose (BMD) method (Crump, 1984). Based on data from the pivotal 

study the BMD is calculated from a dose-response curve of this data (curve A in 

Figure 2.1). It is defined as the dose level corresponding to a specified level of 

increased risk (point B in Figure 2.1) calculated from the upper limit (often the 95% 

confidence limit) of the estimated dose-response slope (curve C in Figure 2.1).
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Figure 2,1 Calculation o f the benchmark dose

Risk

B

Dose levelBenchmark
Dose

Thus, data from all dose levels in the pivotal study are used in the derivation of the 

BMD. This is in contrast to the N(L)OAEL approach where data from only one 

dose level are used. In the US, the BMD method is becoming increasingly popular 

and is replacing use of the N(L)OAEL approach. The popularity of this approach is 

reflected through its application to human epidemiological data (Budtz-Jorgensen et 

a l , 2000) and the fact that the US Environmental Protection Agency (EPA) is 

developing software to facilitate its application (EPA, 2003). However use of the 

BMD approach is not straightforward; a particular issue is the difficulty in finding 

an appropriate model for estimation of the dose-response curve used to obtain the 

BMD. This difficulty is demonstrated with the US EPA BMD software having 

provision for 16 different dose-response models (EPA, 2003), which inherently 

introduces an extra source of uncertainty into the risk assessment process: model 

uncertainty. Another criticism of the BMD approach is that in some cases, because 

of limited data within the pivotal study, it may not be possible to construct a dose- 

response curve (RATSC, 1999a). If, however, a dose-response curve can be
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calculated on such little data, use of the BMD may be restricted by large or 

incalculable confidence limits (Murrell et al., 1998). Such a situation would call for 

more data in terms of dose levels and animals within a study (RATSC, 1999b). 

Finally, as with the N(L)OAEL, the BMD is based on data from just one study. A

exposure limit.

2.3.2 Uncertainty factors (UFs)

If the pivotal study is a human study, there may be possible differences in the 

sensitivity between the study population and the population of interest for the 

specific risk assessment. For example, the pivotal study may be an occupational 

epidemiology study (and so fairly healthy individuals make up the study 

population), but the risk assessment is for exposures in the general population, 

including children, the elderly and those who may be ill. These differences in 

sensitivity to the exposure and/or outcome, known as intraspecies variation, must 

be considered. In current risk assessment practice, this is achieved by applying 

uncertainty factors (UFs) accounting for intraspecies variation to the N(L)OAEL or 

BMD (WHO, 1994; Woolley, 2003). If the pivotal study is on animal experiments, 

UFs are applied to account for differences in the sensitivity between responses from 

the laboratory animals and humans (interspecies variation) as well as differences 

between humans (intraspecies variation). Applying UFs to the N(L)OAEL or BMD 

simply involves dividing the N(L)OAEL or BMD by the product of the UFs. The 

resulting figure is the exposure limit and has many terms depending on the type of 

exposure being assessed; they include the tolerable daily intake, the acceptable daily 

intake, and the reference concentration. For the purpose of this thesis this figure is 

referred to as the reference dose (RfD), defined by

It is an estimate of the amount of contaminant/chemical, expressed on a body 

weight basis, which can be ingested over a lifetime without appreciable health risks 

to humans.

more efficient approach would consider all available relevant evidence in setting an

N(L)OAEL or BMD
(2 .1)
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The most commonly used maximum values for the intraspecies and interspecies 

UFs are 10 and 10. Thus, when an animal experiment is the pivotal study, the total 

UF accounting for intraspecies and interspecies variation is 100 (10 for intraspecies 

variation x 10 for interspecies variation) (WHO, 1994). There may be further 

sources of uncertainty between the pivotal study and the exposure and outcomes of 

interest for the particular risk assessment. These include the severity of the adverse 

health effect, the use o f a LOAEL rather than a NOAEL, different exposure routes 

(e.g. if the exposure route of interest for the risk assessment is different to that from 

which the N(L)OAEL is obtained), absence of data on chronic effects and whether 

sufficient data on similar compounds are available to help inform the risk 

assessment (WHO, 1994; Woolley, 2003). For each of these possible sources of 

uncertainty an UF can be applied. Decisions on the sources of uncertainty that exist 

and the magnitude of any UFs to be applied are made by expert judgement, usually 

in committees. In situations where great uncertainty exists, UFs of 10,000 have 

been used (WHO, 1994). Attempts to increase the accuracy of UFs by subdividing 

them into more specific areas of uncertainty have been proposed. Renwick (1993) 

has suggested that the interspecies UF of 10 should be divided into two 

components; one of up to 4 for toxicokinetic data (information on the association 

and process between the external and internal dose) and one of up to 2.5 for 

toxicodynamic data (information concerning the internal dose and its effect), so that, 

interspecies UF = toxicokinetic uncertainty x toxicodynamic uncertainty 

= 4 x 2.5 

=  10

When data are available for one or both of these factors the estimate of uncertainty 

is more precise and the interspecies UF is consequently more accurate. Similarly, 

splitting the UF for the intraspecies variation into two components to account for 

corresponding toxicokinetics and toxicodynamics data has been advocated 

(Renwick and Lazarus, 1998), but where each is allocated equal weighting (i.e. 3.2 

x 3.2 = 10). This assumes that the maximum difference between sensitive subjects 

and the mean of the general population is a factor of 3.2 for both the 

toxicodynamics and toxicokinetics of the exposure. If toxicodynamic or 

toxicokinetic data do not exist, the default UF of 10 should be applied (Renwick, 

1993).
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The scientific background for the default UF of 100 for interspecies and intraspecies 

variation is not clear (Renwick and Lazarus, 1998). Renwick’s proposal of dividing 

these two components further to reflect available information on toxicodynamics 

and toxicokinetics has been adopted by at least one regulatory agency: the WHO 

International Programme on Chemical Safety (IPCS) (Dourson et a l , 1996;

Renwick and Lazarus, 1998). Although these UFs are still confined within the 

default of 100 for intraspecies and interspecies variation, there is evidence to 

suggest that in practice this default performs well to protect humans (Dourson and 

Stara, 1983; Dourson et a l , 1996). However, we do not know whether this will 

always be the case. The UK Department of the Environment reported that the 

interspecies and intraspecies sources of variation can take values anywhere between 

10 and 1,000 depending on judgments made by the expert committee (DoE, 1993). 

Moreover when further sources of uncertainty exist (e.g. route of administration, use 

of a LOAEL) the magnitude of the total UF may be very large. In such cases the 

resulting RfD can be imprecise and too conservative. With this in mind the WHO 

has put forward a guideline maximum value for a total UF of 10,000 (WHO, 1994).

2.3.3 The reference dose (RfD)

There is a danger with the calculation and presentation of a single number (RfD) 

representing exposure limit for a particular chemical. Firstly, the RfD carries all the 

limitations of the parameters used in its calculation, the N(L)OAEL or BMD and the 

UFs. Therefore it can only be interpreted with an understanding of how these 

parameters are calculated and the assumptions involved. Often such data on the 

derivation of the N(L)OAEL, BMD and UFs are not easily available, although in 

recent years there has been a move towards increasing transparency particularly by 

UK agencies (RATSC, 1999b). Secondly, no measure of the uncertainty or 

variability of the RfD is given. The size of the UF gives some indication of the 

uncertainty, according to expert judgement, but more useful is a measure of the 

variance of this exposure limit. A step towards the evaluation and presentation of a 

measure of uncertainty for the RfD is in the use of probabilistic UFs. A number of 

authors have investigated using probabilistic UFs, where a distribution reflects 

likely values for an UF (Baird et a l , 1996; Slob and Pieters, 1998; Swartout et a l , 

1998), thus accounting and describing the uncertainty in the UFs and leading to a 

probabilistic RfD.
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2.4 Non-threshold substances
It is generally assumed, for risk assessment purposes, that any exposure, however 

small, to a genotoxic carcinogen or mutagen carries some level of risk, so that there 

is no threshold below which exposures can be regarded as safe; referred to as wow- 

threshold substances. A number of approaches are taken in the risk assessment of 

these substances (WHO, 1994). For substances found in the environment and in 

food, methods have been used to obtain a level of exposure corresponding to a very 

low or ‘acceptable’ risk to human health (RATSC, 1999b), say a level which leads 

to one extra cancer per million people exposed for a lifetime (Woolley, 2003).

These methods involve dose-response modelling of animal carcinogenicity data 

followed by the extrapolation of effects to likely exposure levels experienced by 

humans (Lovell and Thomas, 1997). A number of dose-response models are 

available for this low dose-level extrapolation which allow for a certain degree of 

conservatism (Moolenaar, 1994; Lovell and Thomas, 1997; Cogliano, 2005) 

equivalent to that from the use of UFs in risk assessments of threshold substances 

(RATSC, 1999b). The linearised, multistage model is the most commonly used 

extrapolation model (Mendes and Pluygers, 2005).

Physiologically-based pharmacokinetic (PBPK) modelling had been advocated to 

inform the extrapolation process (RATSC, 1999a; Woolley, 2003). These models 

allow more informed and precise extrapolation between species and/or routes of 

exposure where sufficient information on the biological and mechanistic effects of a 

chemical is available (Watanabe, 2005). However, although advocated, PBPK 

modelling is generally not used in the UK to inform risk assessment because of a 

lack of detailed information and expertise in applying the models (RATSC, 1999a).

However, as in the use of PBPK modelling, current understanding of the underlying 

biological processes is often still too incomplete to permit a confident choice of 

model, and different models may yield widely differing estimates. Subsequently, 

risk assessors must be cautious about interpreting precision as accuracy in the dose- 

response model (RATSC, 1999b). These more quantitative modelling approaches 

are generally favoured in the US. In particular the US EPA uses the linearised,
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multistage models as the default for risk assessment of potentially carcinogenic 

substances (RATSC, 1999b).

Because of the limited information available for decisions on the choice of dose- 

response model, and the fact that a number of different models can be applied to the 

same data, use of dose-response models in the risk assessment of non-threshold 

substances is rarely carried out in the UK. Instead a qualitative, case-by-case 

weight of evidence approach is taken by an expert committee. This involves a 

narrative review of the evidence using subjective judgements to ascertain an 

exposure limit associated with an ‘acceptable’ risk to human health (Lovell and 

Thomas, 1997). Because of this subjectivity, there is uncertainty on the consistency 

of expert committees to weight various pieces of evidence (RATSC, 1999b). 

However, the largest disadvantage of a narrative weight of evidence approach is that 

a quantitative estimate of risk from a specified level of exposure cannot be obtained. 

Instead the main finding of a risk assessment of a non-threshold substance from a 

weight of evidence approach is classification of that substance such as,

-  Carcinogenic to humans

-  Probably carcinogenic to humans

-  Possibly carcinogenic to humans

-  Not classifiable as to its carcinogenicity to humans

-  Probably not carcinogenic to humans 

(IARC, 2000).

2.5 Risk assessments for occupational exposure to 

manganese (Mn)
Most of the limitations observed in the previous two sections cannot be overcome 

until a time when more detailed evidence is available (e.g. to help inform PBPK 

modelling and the choice of UFs and dose-response models). However, there may 

be areas where the use of systematic review and meta-analysis methods could help 

to overcome some of these limitations. To illustrate where systematic reviews and 

meta-analyses may potentially improve current risk assessment processes, risk
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assessment documents for occupational exposure to manganese (Mn) are reviewed, 

highlighting current practice and limitations.

2.5.1 Occupational exposure to Mn

Mn is an essential element; our bodies need Mn for us to survive and stay healthy. 

Estimates suggest a daily intake of 2-3 mg is required to maintain good heath 

(WHO, 1981). Mn is an abundant element found in rock, water, air and soil, with 

food being the primary environmental source for humans (WHO, 1981). However, 

exposure to high levels of Mn can be harmful. For humans the main source of high 

level exposure is in occupational settings. Miners, in particular, are exposed to very 

high levels of Mn, while workers in the manufacturing of steel and iron products are 

also exposed, albeit to substantially lower levels than miners.

The type of health effects commonly observed in humans exposed to high levels of 

Mn are neurobehavioural effects: adverse effects relating to emotion, learning and 

behaviour. A combination of symptoms, known as ‘manganism’, has been reported 

by miners occupationally exposed to very high levels of Mn (ATSDR, 2000).

These symptoms are similar to those seen in people with Parkinson’s disease, and 

include mental and emotional disturbances as well as difficulty with movement. In 

non-mining occupations exposure to Mn is more commonly characterised by 

difficulty with balance and hand and arm steadiness. Mn is considered to be a 

threshold substance because the human body requires it to maintain good health, yet 

higher levels of exposure are associated with adverse neurobehavioural health 

effects.

2.5.2 Reviewing the risk assessment documents

Since risk assessments are often commissioned by regulatory agencies and 

governments, a systematic review of published literature is likely to be of limited 

use in identifying documents describing the risk assessment and derivation of an 

exposure limit for Mn. Instead, citation searches on known Mn reviews and internet 

searches of regulatory agencies such as the American Conference of Governmental 

Industrial Hygienists (ACGIH) and the WHO were carried out to find Mn risk 

assessment documents for occupational exposure.
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Five documents describing the derivation of a limit for occupational exposure to Mn 

were identified. Two are from the US, including the ACGIH and Clewell et al 

(2003); one from the WHO, one in Germany from the Deutsche 

Forschungsgemeinschaft DFG, the German Research Foundation), and one 

published in the UK by the Institute for Environmental Health and Institute of 

Occupational Medicine (IEH and IOM). The occupational exposure limits derived 

in the documents range from 0.03 -  0.5 mg/m3 in air, depending on the type of 

exposure (total vs. respirable dust) (Table 2.1).
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Table 2.1 The different types o f occupational exposure limits derived for manganese (Mn)

Organisation Country Year Type of limit Level (mg/m3)

WHO Study Group WHO 1980 Occupational Exposure Limit 0.3 mg/m3 respirable dust (TWA)

DFG Germany 1999 Maximum Workplace Concentration 0.5 mg/m3 total dust

ACGIH US 2002 Threshold Limit Value for 
Occupational Exposure 0.03 mg/m3 respirable dust (TWA)

Clewell et al. US 2003 Occupational Exposure Guideline 0.1-0.3 mg/m3 respirable dust (8-hr TWA)

IEH and IOM UK 2004 Occupational Exposure Limit 0.1 mg/m3 respirable dust

TWA, Time-weighted average (e.g. 8 hours per day for 5 days a week to account for occupational exposure); WHO, World Health Organization; DFG, Deutsche 

Forschungsgemeinschaft (German Research Foundation); ACGIH, American Conference of Governmental Industrial Hygienists; IEH and IOM, Institute for Environment 

and Health and Institute for Occupational Medicine

Occupational Exposure Limit (OEL), a limit of the concentration of a hazardous substance in workplace air;

Threshold Limit Value (TLV), reflecting the level of exposure that the typical worker can experience without an unreasonable risk of disease or injury 
(scientific opinion based solely on health factors);
Maximum Workplace Concentration (MAK), the German equivalent of the OEL
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A summary of how the reported exposure limits were derived in each risk 

assessment document is given in Appendix A. Figure 2.2 details the general 

approach taken by each of the Mn risk assessments in their derivation of an 

exposure limit. As this figure illustrates, no UFs are applied to the calculated 

N(L)OAELs and BMDs (i.e. UF=1). This is because the evidence comes from 

human occupational epidemiology studies reflecting the population and situation of 

interest for the exposure limit being derived. However, the different risk 

assessments use different pivotal studies for the calculation of the N(L)OAEL or 

BMD which accounts for the different occupational exposure limits obtained by the 

risk assessments. Different choices of pivotal study can be explained in part by 

newer studies only being included in the more recent reviews, however this does not 

explain all of these differences.

In each of the risk assessments in Table 2.1 details on the process through which the 

evidence was searched and identified to be relevant, in addition to inclusion or 

exclusion criteria of any kind are not reported. This is a serious omission.

Although it is unlikely that an important piece of evidence may have been 

overlooked (because of the number of experts involved in the risk assessment) the 

overall evidence base may not be wholly representative if a comprehensive 

literature search was not undertaken. Therefore if the basis of the evidence cannot 

be traced, setters and users of the limit cannot be entirely confident that the limit 

was derived from an unbiased set of evidence. Furthermore, in the reviews 

following Method 1 in Figure 2.2 (reporting a narrative review of the evidence) the 

actual data on which the limit is derived are difficult to determine. These 

limitations regarding transparency of the evidence base could be overcome by the 

use of systematic review methods where a search strategy is clearly defined, 

including any restrictions and details of the inclusion and exclusion criteria used.

All of which will provide greater transparency than that currently found in human 

health risk assessments.
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Figure 2,2 Flow chart o f the approach taken to derive the exposure limit

Relevant human studies and animal experiments are described

i
These are used to identify health outcomes for the basis o f  the exposure limit

i
All reviews focus on a smaller sample o f the relevant literature

I
Then, either...

...the evidence is narratively 
reviewed and the lowest 
exposure levels where 
effects observed informs the 
exposure limit (Method 1)

9 WHO Study Group 
■ DFG

a few human studies are identified

I
Roelse/tf/., 1992 
Mergler et al., 1994 
Gibbs et al, 1999 
Lucchini et al., 1999 
Myers et al., 2002

On the basis o f relevance one or more o f these studies are then used in the

calculation of...

...a L(N)OAEL 
(Method 2)

L(N)OAEL
UF

9 ACGIH (t/F=7)
■ IEH/IOM (UF=1)

...a BMD 
(Method 3)

BMD
UF

9 Clewell et al. (UF=1)

Jaime Peters PhD Thesis 2006 25



Chapter 2 Risk assessment methods

An additional limitation in the risk assessment approaches described here is that 

although evidence is available from a number of studies, in Methods 2 and 3 in 

Figure 2.2 only one study is used for the basis of the exposure limit. Thus decisions 

on the choice of pivotal study have had to be made and often the reasons for choice 

of study are not clear. Furthermore there are no sensitivity analyses for this choice 

of study. For instance, within a particular risk assessment, the following question is 

not answered: what would the limit be if a different study was the pivotal study? 

(Although from this review of Mn documents such a question can be addressed.) 

Use of just one study for the basis of the calculation of the exposure limit when 

there are other relevant studies available is inefficient. Although these other studies 

may inform the health outcome used for the derivation of the exposure limit, how 

the limit is expressed or the UF values applied, the data are not formally 

incorporated. Moreover statistical power limitations within a study may pose a 

threat to the validity of the derived exposure limit. If, as mentioned in Section 2.3, 

an effect could not be seen at a particular exposure level, this may be due to a lack 

of statistical power, rather than a lack of effect. If, on the other hand, a large effect 

is seen this could just be due to chance.

2.6 Risk assessments, systematic reviews and meta-analyses
The evidence relevant for a risk assessment can be diverse and often both human 

and animal data must be considered. Debate on the use of animal experiments to 

inform human health is on-going, whether for human health risk assessments of 

environmental chemicals or to investigate the efficacy of medical interventions. 

Issues concern the relevance of animals for human diseases, the extrapolation of 

results from animal experiments to human experience, in addition to ethical aspects 

of using animals for experimentation (Pound, 2001; Smith, 2001; Pound and 

Ebrahim, 2002). The 3 Rs of animal research were introduced as a means of 

promoting humane use of animals in experiments and encouraging work towards 

alternatives to animal experimentation (Russel and Burch, 1959), they are:

- Refinement: minimise suffering and distress 

Reduction: minimise number of animals used 

Replacement: avoid the use of living animals
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Many authors have pointed out that systematic review and meta-analysis methods 

have a role in this debate on animal experimentation (Roberts et al., 2002a; 

Sandercock and Roberts, 2002; Pound et al., 2004; Khan and Mignini, 2005; 

Macleod et al., 2005). These methods have the potential to identify and bring 

together the vast amount of animal, and human, evidence for a risk assessment 

allowing a rigorous, transparent and explicit evaluation of the current literature. 

Rather than just deriving an exposure limit, use of these methods in human health 

risk assessment may lead to a decision that no more animal experiments are 

required or that more studies in humans are needed. Thus, because of the 

systematic review and/or meta-analysis it may be clear that further animal 

experiments are unnecessary. Although not relevant to the context of setting an 

environmental exposure limit, but relevant to the use of systematic reviews and 

meta-analyses to review animal experiments, a systematic review of the human and 

animal evidence on the effects of nimodipine in focal cerebral ischemia 

demonstrates this important point (Horn et al., 2001). The authors noted that 

although conducted before and alongside 22 human trials of nimodipine, the animal 

data were not systematically reviewed until after evidence of an effect could not be 

found in the human data. The findings from the animal data suggested that there 

was, in fact, no convincing evidence to begin human clinical trials.

Use of meta-analysis methods to combine data from relevant studies for a human 

health risk assessment could help to overcome some of the limitations of the current 

approach described in this chapter. For instance, formal inclusion of evidence from 

a number of relevant studies rather than reliance on a pivotal study would not only 

make more efficient use of the evidence, but result in an increase in statistical power 

over a single study (Fleiss and Gross, 1991; Blettner et al., 1999; Roberts et al., 

2002a; Sandercock and Roberts, 2002; Pound et al., 2004). In the case of 

occupational exposure to Mn, human evidence was found to be sufficient for the 

basis of the risk assessment. However, sometimes only animal evidence is available 

and this increase in power from a meta-analysis may have implications for one of 

the 3Rs of animal research: reducing the number of animals used in experiments.

A further advantage of the use of a meta-analysis of studies rather than a pivotal 

study is the generalisability of the results from a meta-analysis. The occupational
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exposure limit for Mn is intended to cover a number of occupations, and so a meta

analysis of studies in different occupational settings may be particularly beneficial 

here. Roberts et al. (2002a) have also discussed that meta-analysis methods allow 

consistency to be assessed across species, and this can be extended to assessments 

across different occupational settings, routes of exposure and so on. Furthermore an 

understanding of sources of bias that may be apparent in the individual studies, thus 

leading to improvements in the quality of conducting and reporting human studies 

and animal experiments, could be identified from a meta-analysis (Sandercock and 

Roberts, 2002; Macleod et al., 2005). Finally, meta-analysis offers a quantitative 

framework which allow for the investigation into possible sources of between-study 

heterogeneity and may help in assessment of possible publication bias (Roberts et 

al., 2002a; Sandercock and Roberts, 2002; Macleod et al., 2005).

The application of systematic review and meta-analysis methods to data from 

human studies (RCTs and epidemiology studies) is now commonplace. However, 

the use of these methods to review and evaluate evidence from animal experiments 

is less documented. In the following chapter, general systematic review and meta

analysis methods are described, including the use of Bayesian methods of meta

analysis. The application of these methods to the synthesis of human and animal 

evidence are reviewed, in addition to more recent methods for the generalised 

synthesis of human evidence in healthcare research.
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Meta-analysis and generalised 

synthesis of evidence methods

3.1 Chapter overview
In the previous chapter, the often quite diverse evidence relevant for human health 

risk assessments for environmental exposures was described. Current methods for 

such risk assessments and some of their limitations were presented and discussed, 

and the use of systematic review and meta-analysis methods in this context was 

proposed. In this chapter, general systematic review and meta-analysis methods 

used in human healthcare research are briefly summarised in Sections 3.2 and 3.3, 

with descriptions of fixed and random effects inverse-variance weighted meta

analysis models and Bayesian methods of meta-analysis. Meta-analysis models 

used for the assessment of human and animal data to inform human health risk 

assessments from exposure to environmental chemicals are then reviewed in more 

detail in Section 3.4. In the last ten years there has been little use and development 

of these methods to combine human and animal data. However, there has been 

some application of systematic review and meta-analysis methods to the synthesis 

of toxicological data only and to the synthesis of human evidence only from 

different, but related, sources. Methods used in these areas of research are 

presented in Section 3.5 and common features of all the models reviewed in this 

chapter are discussed in Section 3.6 with respect to the synthesis of evidence for 

human health risk assessments of environmental chemicals. Bayesian hierarchical 

models are identified as providing the most appealing framework for the synthesis 

of human and animal evidence to inform human health effects. The advantages of 

such models are discussed and their application to two risk assessment examples 

(Chapters 5 and 6) is proposed.
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3.2 Systematic review methods
As mentioned in Section 1.4, systematic reviews are commonly used in human 

healthcare research to identify, evaluate and summarise all the available relevant 

evidence concerning a clearly focused pre-defined research question. Explicit, 

transparent, repeatable criteria are used to carry out these reviews and minimise all 

possible sources of bias (Sutton et al., 2000; Egger et al., 2001), including biases in 

the selection of studies. Research groups have been established to carry out and 

promote systematic reviews in human healthcare. These include the Cochrane 

Collaboration and the NHS Centre for Reviews and Dissemination (CRD) based at 

the University of York. The Cochrane Collaboration and the CRD make procedural 

documentation available on their websites for carrying out systematic reviews of 

evidence on medical interventions to inform decision-making. There are a number 

of important steps in any systematic review, and these are described and discussed 

in the documentation from the Cochrane Collaboration and CRD. They include:

-  Formulating the research question

-  Development of a protocol

-  Identifying and selecting studies

-  Assessing study quality

-  Data extraction

-  Data synthesis (if appropriate)

-  Interpreting results and recommendations 

(Deeks et a l, 2001; Higgins and Green, 2005).

Advantages of using systematic review methods to review and summarise evidence 

are well documented in human health research (Cook et al., 1995; Blettner et al., 

1999; Moher et al., 1999; Stroup et al., 2000; Bracken et a l, 2001; Egger et al., 

2001; Chalmers et al., 2002), and beyond. For instance, established in 2000 from 

the Cochrane Collaboration, the Campbell Collaboration also aims to prepare and 

maintain systematic reviews of interventions, but in social, behavioural and 

educational areas, rather than medical (www.campbellcollaboration.org). As with 

the Cochrane Collaboration and CRD, guidance on carrying out systematic reviews 

is provided by the Campbell Collaboration.
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Where appropriate, a systematic review can be extended to a meta-analysis of the 

relevant articles: the quantitative synthesis of results from individual studies. The 

various methods used for meta-analyses and important issues arising from a meta

analysis are described in the following section.

3.3 Meta-analysis methods
Meta-analyses allow quantitative estimation of effects across multiple studies.

There are many techniques available for meta-analysis, including the synthesis of p- 

values from each study, resulting in a pooled p-value for the statistical significance 

of the effect in question (Sutton et a l , 2000; Whitehead, 2002). Although simple, 

this approach is not particularly informative as the magnitude of an effect is 

preferable to just an indication of its statistical significance. The most commonly 

reported pooled estimate is calculated using a weighted average of the results of 

primary studies, where the weight is dependent upon the precision of the estimate 

from each individual study - so that studies with large precision are given more 

weight in the meta-analysis (Sutton et al., 2000). These methods are generally 

known as inverse-variance weighted meta-analysis models. Fixed and random 

effects models are used in meta-analysis and choice of one over the other depends 

on the variability of the study specific estimates assumed within the meta-analysis. 

Excess variability, known as between-study heterogeneity, is an important feature of 

any meta-analysis that must be considered and explored. Another problematical 

feature of meta-analyses (and systematic reviews) is the possibility of publication 

bias: where an article is more (or less) likely to be submitted and published than 

another article depending on its findings. Publication bias and between-study 

heterogeneity are discussed in more detail in Sections 3.3.2 and 3.3.3. First, fixed 

and random effects meta-analysis models are described.

3.3.1 Fixed and random effects meta-analysis models

The fixed effects model assumes that the summary estimates from the individual 

studies in a meta-analysis are all estimating the same underlying effect. Any 

differences between study estimates are assumed to be due to sampling error only 

(i.e. there is no between-study heterogeneity).
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The fixed effects model is given by

y ,=/J  + £, varty, ) = of (3.1)

where y t is the observed effect in study /, n is the underlying effect, e, is the error in 

they t estimate of /j. and erf is the variance (assumed known) in study i (Sutton et a l, 

2000). In many meta-analyses however it is unlikely that the only variability 

between estimates is due to sampling error, often between-study heterogeneity is 

observed. Between-study heterogeneity may reflect differences between the studies 

in the meta-analysis, e.g. the way in which exposure was measured or the fact that 

some studies were carried out in different geographical locations. The presence of 

between-study heterogeneity means that the assumptions of the fixed effects meta

analysis model are not met. If some proportion of the between-study heterogeneity 

can be explained by a measured covariate then it is best to use meta-regression or 

subgroup analyses (see Section 3.3.2). If however, between-study heterogeneity 

cannot be explained then a random effects model, rather than a fixed effects model, 

should be used since it assumes that there is greater variability between study 

estimates than that due to sampling error alone (unlike the fixed effects model). 

Between-study heterogeneity, denoted by r 2, is taken into account and estimated in 

the random effects meta-analysis model. The model, referred to as a 2-level 

hierarchical random effects model, is given by

y, = 0, + et 0, ~ r 2) var(^) = cr2 + r 2 (3.2)

where y t is the observed effect in study i, is the true effect in study i and n is the 

overall true underlying effect, e, is the error in the y t estimate of ju, erf is the

variance (assumed known) in study i and t 2 is between-study variance to be 

estimated (Sutton et a l, 2000).

The decision as to whether a fixed or random effects meta-analysis model should be 

used depends on the existence of between-study heterogeneity in the meta-analysis, 

and is discussed further in the next section.
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3,3,2 Between-study heterogeneity

Techniques are available for the assessment of between-study heterogeneity in a 

meta-analysis, including the Q-statistic which tests the hypothesis that the 

underlying effects are the same in each study (Sutton et al., 2000) and I2. I2 

assesses the percentage of total variation across studies that is due to between-study 

heterogeneity rather than chance (Higgins and Thompson, 2002). It is given as

where H 2 = — , Q is the Q-statistic mentioned above and k is the number of 
k - l

studies in the meta-analysis.

However, when between-study heterogeneity exists it can affect the inference and 

conclusions of a meta-analysis, so merely accounting for it in a random effects 

meta-analysis model is not sufficient. Investigation of possible sources of between- 

study heterogeneity should be carried out and attempts made to explain the extra 

variability. Subgroup analyses and meta-regression have been advocated to do this 

(Cook et a l , 1995; Moher et al., 1999; Stroup et a l , 2000; Higgins and Green,

2005). Meta-regression involves the regression of effect size on study-level 

covariates believed to explain some of the between-study heterogeneity (e.g. year of 

publication, country study carried out in). A random effects meta-regression is 

preferred since it models heterogeneity that is not explained by the study-level 

covariates (Sutton et a l , 2000; Thompson and Higgins, 2002). The model is given 

by

yi -  Po + P\x i + + — + Pk%k + ui + £i (3-4)

where pm are the regression coefficients to be estimated (m=0, ...,k),Xn are the 

values for the k  study-level covariates (n-1, ...,k), ui ~iV(0,r2)is the random effect 

(accounting for extra heterogeneity not explained by the study-level covariates) and 

et is error (Sutton et al.9 2000; Whitehead, 2002).
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3.3.3 Publication bias

Publication bias describes the tendency of some studies to be more (or less) likely to 

be published, hence more (or less) likely to be identified and included in a 

systematic review or meta-analysis, because of the size and/or statistical 

significance of the summary estimate from that study (Song et a l, 2000). If 

publication bias occurs, the subsequent systematic review or meta-analysis of 

published literature may be misleading. A number of techniques to help identify 

whether a meta-analysis is subject to publication bias have been developed and are 

commonly used. They include the funnel plot (Light and Pillemar, 1984), a rank 

correlation test (Begg and Mazumdar, 1994), a regression test (Egger et a l, 1997), 

and a nonparametric method known as trim and fill which adjusts for publication 

bias (Duval and Tweedie, 2000a; Duval and Tweedie, 2000b). Details of the funnel 

plot, the rank correlation and regression tests, and the trim and fill method are given 

in Chapter 7 where their performance is assessed under a number of scenarios using 

simulation analyses.

3.3.4 Bayesian meta-analysis models

Bayesian methods are often used in meta-analysis (Spiegelhalter et a l, 2000a;

Sutton and Abrams, 2001) and a number of examples are available (Pasquali et a l, 

2002; Oberwald et a l, 2003; Babapulle et a l, 2004). Bayesian methods of meta

analysis are sufficiently flexible to be used to combine evidence from a number of 

different study designs, as will be seen in Chapter 5. They are also attractive in that 

they allow borrowing of strength across similar types of studies. Furthermore, they 

allow, where appropriate, for prior evidence and/or expert judgement to be 

incorporated into an analysis of evidence from multiple sources (Spiegelhalter et a l, 

2000a). Because of their flexible nature which allows realistically complex models 

to be fitted, and their ability to include external evidence in the synthesis, Bayesian 

methods of meta-analysis are appealing for the synthesis of diverse evidence needed 

for a human health risk assessment. This will be seen in Sections 3.4 in the review 

of methods used and will be demonstrated in Chapters 5 and 6 where such models, 

incorporating informative prior distributions, are applied to two different 

environmental exposure risk assessment examples. Further advantages of Bayesian 

meta-analyses include the ability to predict effects in future studies and allowance
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of variability in the between-study heterogeneity parameter r 2, as mentioned in 

Section 1.5.

The pooled estimate from a Bayesian meta-analysis does not generally differ to that 

from a classical meta-analysis. However, since extra variability is accounted for in a 

Bayesian meta-analysis, e.g. in the estimation of r 2 in random effects meta

analyses, there is usually greater variability in the pooled estimate from a Bayesian 

meta-analysis than that from a classical meta-analysis.

A Bayesian random effects meta-analysis model can be specified by

y, ~ N(0it<T2) 0,~ N ( m,t2) (3.5)

M ~ [ - - ]  r 2

where y, is the observed effect in study with cr2 denoting the variance in study /.

Oi is the true effect in study i, // is the overall true underlying effect and r 2 is the 

estimate of between-study variance. Prior distributions need to be placed on the 

overall effect, //, and the estimate of between-study variance, r 2. Two types of 

prior distributions could be placed on these parameters: vague or informative. A 

vague prior distribution is intended to provide no additional information on the 

parameters of interest, allowing the data to dominate in the analysis. Informative 

prior distributions, on the other hand, can be used to incorporate additional relevant 

evidence. This additional evidence may come from a number of different sources, 

including prior beliefs elicited from experts and data from related experiments or 

studies. It is important that the sensitivity of results from a Bayesian analysis to 

different prior distributions is assessed. This is especially important when prior 

distributions are specified that are intended to be vague, since in reality they may be 

quite informative (Lambert et al., 2005). As shown in Equation 3.5 above, in 

Bayesian meta-analyses prior distributions are placed on variance parameters 

(e.g. r 2); often little additional information is available about these parameters and 

so vague prior distributions are used. Lambert et al. (2005) demonstrated the
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importance of sensitivity analyses for vague prior distributions, particularly for 

variance parameters.

Even when vague prior distributions are placed on parameters in a model, a 

Bayesian analysis still has a number of advantages over a classical analysis of the 

evidence (Sutton and Abrams, 2001). These advantages include the ability to make 

direct probability statements and the calculation of predictive distributions, in 

addition to the fact that all parameter uncertainty can be accounted for and 

propagated throughout the modelling process. Hence, a Bayesian approach is taken 

for the synthesis of evidence in this thesis (see Chapters 5 and 6). The Bayesian 

analyses reported in this thesis have all been carried out in WinBUGS (Spiegelhalter 

et al., 2000b). This software package was designed specifically for Bayesian 

analyses, and is discussed further in Section 5.5 (Chapter 5).

3.4 Generalised synthesis of evidence on environmental 

exposures
The use of meta-analysis methods to synthesise relevant evidence regarding 

environmental exposure -  response relationships has been noted by a number of 

authors (DuMouchel and Harris, 1983; DuMouchel and Groer, 1989; Cox and 

Piegorsch, 1994; Hasselblad, 1995; Tweedie and Mengersen, 1995; Dominici et al., 

2000; Simmonds et al., 2003; Dominici et al., 2004; Wolpert and Mengersen,

2004). The majority of articles apply meta-analysis methods to findings from 

human environmental epidemiology studies, e.g. environmental tobacco smoke and 

lung cancer (Hasselblad, 1995; Tweedie and Mengersen, 1995; Wolpert and 

Mengersen, 2004), air pollution and mortality (Dominici et al., 2000 and 2004), 

health effects from low-level exposure to lead (Hasselblad, 1995) and respiratory 

effects from exposure to nitrogen oxide (Hasselblad, 1995). However, as seen in 

Chapter 2, the evidence relevant to the assessment of risks from environmental 

exposures can be quite diverse, often involving the examination of results from 

human studies and animal experiments. Few authors (DuMouchel and Harris, 1983; 

DuMouchel and Grogr, 1989; Cox and Piegorsch, 1994) have investigated methods
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to combine human and animal evidence relevant to inform human health effects 

from environmental exposures. The models employed in these articles are now 

described.

DuMouchel and Harris (1983) applied a Bayesian hierarchical regression model 

with random effects to the synthesis of human and animal evidence for an 

assessment of human lung cancer risk from exposure to a number of environmental 

emissions, including diesel engine exhaust, benzo(a)pyrene and cigarette smoke. 

Data from six studies are used (two human epidemiology study, one in vivo 

experiment in mice and three in vitro animal experiments -  one with Syrian hamster 

embryo cells and two with L5178Y mouse lymphoma cells). These six studies 

provide evidence on ten different exposures, where estimates for the effects of a 

particular exposure are available from at least two different species. The data are 

synthesised with the aim of informing human health effects from exposure to these 

ten environmental emissions (the one human study only investigates three of the ten 

exposures).

A linear regression model is used, where the relative potency of exposures is 

assumed equal across species, i.e. exposure A is more potent than exposure B which 

is more potent than exposure C for all species. The model is given by

yki ~ N (&ki’cki) &ki -  M + ak + 7i + dkl (3.6)

where y u  is the estimated logarithm of the dose-response slope in species k 

(ik: 1,... ,4) for exposure / (/: 1,... ,9). /j. is the overall mean effect with a k and y, 

representing the average species and exposure effects, respectively. 0kl is the true 

log dose-response slope in species k for exposure /, with standard error ckl, which is 

assumed to be known. E[0kl \ /j,ak,y,] = /j + ak +y{ and Skl is then defined as 

&ki ~ M~ak ~Yi > dkl ~ N(Q,<j2) (DuMouchel and Harris, 1983).

Informative prior distributions are placed on a , which reflects the fit of the equal 

relative potency model and diffuse prior distributions are placed on jn, a k and y t . 

These prior distributions must be assessed for their sensitivity. DuMouchel and
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Harris (1983) also discuss a method for selecting the most relevant evidence from 

that available to inform investigation of the risk of human lung cancer from 

exposure to various emissions. This involves finding the set of species and 

exposure data which minimises cr. The authors conclude that the most efficient use 

of evidence in this Bayesian hierarchical approach requires reasonably informative 

data on a number of different exposures and species, rather than very precise 

estimates for just one exposure or species.

DuMouchel and Groer (1989) apply this model (Equation 3.6) to 13 datasets to 

inform investigation into the risk of bone cancer in humans from exposure to 

particular nuclides and isotopes. Data from four biological systems (humans, 

beagles (via injected or inhaled exposure) and rats) investigating the effects of 

exposure to two radionuclides and two isotopes, summarised by dose-response 

slopes, are used. When evidence from multiple studies investigate the same 

exposure-species interaction, the data are synthesised by the calculation of an 

inverse-variance weighted mean dose-response slope. Thus, the evidence to be used 

in the model (Equation 3.6) comes from a 4 x 4 table detailing all possible species- 

exposure interactions. As in DuMouchel and Harris (1983), specification of prior 

distributions for the unknown parameters a k, y, and cr is discussed and analysed 

for sensitivity. DuMouchel and Groer (1989) also conclude that best use of the 

evidence from such a model requires there to be information across all exposures 

and species, rather than very precise estimates for one species or exposure.

More recently, Cox and Piegorsch (1994) have described methods for the synthesis 

of evidence to inform human health effects from environmental exposures. In their 

report of a meeting organised by the US National Institute of Statistical Sciences 

and the US EPA methods for the synthesis of p-values, fixed and random effects 

inverse-variance weighted models and weighted linear regression models are 

described to combine evidence from human epidemiological studies. The use of 

Bayesian methods are also discussed, in particular to help model uncertainties in the 

synthesis of the evidence, especially the between-study heterogeneity parameter.

The possible synthesis of relevant human evidence with animal evidence is 

presented in the form of an ordinal regression model with random effects.
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Incorporating terms to account for different species and exposure concentrations 

and durations, the (ranked) severity of health outcomes from the different human 

and animal studies are modelled. The ordinal regression model is given by

P(yy Zs\b i9 X y  , Z y  , U y ) =   -------— -----~  J ~---— (3.7)
(1 + exp ( r i a  + f i x y + y z y + b f U y ) ) )

where yy is the severity ranking (s describes the severity categories) for exposure 

group j  (j: 1,... ,n,) in study i (/: 1,... ,M). xy denotes the dose level/concentration for 

exposure group j  in study i and zy represents exposure group and study specific 

covariates. The random effects are modelled by uy and study-specific parameters bt. 

The unknown parameters a, /? and y are estimated by the model. This regression 

model is not applied to a dataset in Cox and Piegorsch (1994), however articles by 

Carroll et al. (1994) and Guth et al. (1997) report the use of this model when 

applied to evidence on acute inhalation to tetrachoroethylene. These two articles are 

included in the systematic review of systematic reviews and meta-analyses of 

animal experiments in Chapter 4.

Both of the approaches described above to synthesise human and animal evidence 

(Equations 3.6 and 3.7) use random effects regression models which account for 

species, exposure and outcome differences; one approach uses a Bayesian 

framework to inform associations between related exposures and species. In the last 

ten years there has been very little use and development of such methods for the 

synthesis of human and animal evidence. However, similar models have been used 

to combine evidence from multiple toxicological experiments and to combine 

different types of human evidence. The models and their applications are discussed 

in the next section.

3.5 Other relevant research
3.5.1 Synthesis methods fo r  toxicological data

Following on from the use of Bayesian hierarchical random effects regression 

models to combine human and animal evidence by DuMouchel and Harris (1983)
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and DuMouchel and Groer (1989), Wolpert and Warren-Hicks (1992) and Dominici 

et a l (1997) apply similar models to investigate relationships between 

measurements of substances in lakes. In order to simultaneously analyse field and 

laboratory data to predict the presence or absence of brook trout in lakes from 

measurements of water chemistry, Wolpert and Warren-Hicks (1992) use a 

hierarchical Bayesian model. Logistic regression is used to model the presence of 

trout in lakes on measures of pH, aluminium and calcium ultimately leading to 

predictions on their presence in lakes where such water chemistry measures are 

available. Not only does the use of Bayesian models allow evidence from the two 

different, but relevant, sources of evidence (field and laboratory data) to be 

synthesised, but an issue of multicollinearity in the example Wolpert and Warren- 

Hicks use can also be addressed using such a model. The authors conclude that the 

data dominated in the analysis of the evidence since results from using two different 

sets of prior distributions were found to be similar.

Dominici et a l (1997) apply a similar model to investigate the relationships 

between measurements of three substances to inform the water quality of 12 lakes in 

the US. For ten of these 12 lakes, measurements of chlorophyll-ar (C), total 

phosphorus (TP) and total nitrogen (TN) have been taken on at least two different 

occasions. In two lakes, only measurements of C and TP are available. The aim of 

the analysis is to model C using TP and TN in order to predict water quality from 

future measurements of TP and TN. The random effects regression model needs to 

account for multiple measures of a substance at each lake and the fact that 

measurements of TN are missing for two lakes. Levels of C are modelled in each of 

the s = 1,...,12 lakes by

Diffuse plausible prior distributions are placed on the unknown parameters for 

estimation of the relationships between the lake measurements. Dominici et al 

(1997) conclude that the flexibility of the Bayesian random effects model allows for 

a comprehensive analysis of the lake water quality problem, to inform future water 

quality management matters.

log(C) = p ‘ + P’ log(7P) + Pi logf
y i r  j

(3.8)
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More recently, Bayesian hierarchical models have been used to combine estimates 

of potency from mutagenesis arrays of toxic environmental agents (Simmonds et 

al., 2003). Findings from multiple Ames/Salmonella microsome mutation assays, 

which use different strains of the bacterium Salmonella typhimurium to screen for 

genetic damage to DNA after exposure to environmental stimuli, are combined to 

inform possible genotoxic effects from environmental exposures. From each assay 

the number of mutant colonies observed after a certain time period is recorded as a 

function of the dose for each strain used in the experiment. The authors state that a 

better understanding of the potency of the toxic agent is achieved from an 

evaluation of findings across dose levels and strains. Simmonds et al. (2003) use 

the Bayesian two-level random effects meta-analysis model given in Equation 3.5 to 

synthesise evidence from the Ames assays. A diffuse prior distribution is placed on 

p , the true overall potency of the toxic agent, and the following shrinkage prior 

distribution, k{t) , is used for r , the estimate of between-study standard deviation, 

from DuMouchel (1994)

h - n r r -  <3-9>
(to + T) V 1 —

V.k=1 yk

Although the previous three meta-analysis models (including Equations 3.8 and 3.9) 

demonstrate the use of Bayesian methods to evaluate toxicological data, only one 

type of evidence has been combined. As discussed in Chapter 2, evidence from 

different sources needs to be combined to inform a human health risk assessment of 

environmental exposures. Over the last 20 years, there has been growing 

acknowledgement that evidence needed to inform practice and policy in human 

healthcare is likely to come from a variety of different sources (Ades and Sutton,

2006). With this in mind, an increase in the use and development of frameworks 

and methods for the generalised synthesis of human evidence has been seen (i.e. the 

combination of different, but related, evidence needed for a thorough investigation 

of the effectiveness of medical interventions). In the next section, potentially 

relevant generalised synthesis frameworks and methods for the combination of 

evidence for a human health risk assessment of environmental exposures are 

described.
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3,5.2 Methods for the generalised synthesis of human evidence 

In order to carry out an assessment of health technologies, Eddy (1989) points out 

that relevant data needed for such an assessment is likely to form a chain of 

evidence, with types of evidence informing different parts of the chain. With this in 

mind, Eddy proposed the confidence profile method for the synthesis of related 

evidence on health technologies. Under a Bayesian framework, the method allows 

different sources of information, including results from RCTs and epidemiological 

studies, case studies and expert opinion, to be synthesised for an evaluation of the 

effectiveness of a medical intervention. The method can, and has been, described 

by four steps (Hasselblad, 1994). Step one is to define the problem, including the 

intervention to be assessed and the health outcomes of interest. For each outcome, 

the next step (step two) is to identify and obtain all the available and relevant 

evidence, accounting for any biases in the estimation of effects from each piece of 

evidence. In step three the chain of evidence is defined in terms of probability 

distributions in a Bayesian model. It is solved in step four using a number of 

methods depending on the type and amount of evidence available and the structure 

of the models used to synthesise this evidence. Since a Bayesian model is proposed, 

prior information on particular parameters can be included to further inform the 

process (Eddy, 1989).

A number of examples exist in which the confidence profile method is used to 

synthesise evidence on the efficacy of interventions (Critchfield and Eddy, 1987; 

Gavin et al., 1987; Hasselblad and Critchfield, 1987; Eddy et al., 1988; Adar et al., 

1989). However, there appears to have been little use of the confidence profile 

method in the last 15 years. Medline only identified 5 articles that have explicitly 

reported use of the confidence profile method since 1990 (Shekelle et al., 1992; 

Evans et al., 1995; Hurwitz et al., 1996; Klotzbeucher et al., 2000; Lefevre and 

Aronson, 2000), although Spiegelhalter et al. (2004) show how such models can 

easily be implemented in WinBUGS. This can, perhaps, be explained by the 

complexity of the approach. Although developed to assess evidence for 

interventions in health care, Eddy (1989) comments that the applications are far 

reaching, including the social sciences and environmental sciences.
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A few years after Eddy’s proposal of the confidence profile method, a US General 

Accounting Office (GAO) report was published describing the efforts of the GAO 

to suggest a method for the evaluation of evidence from a number of different study 

designs on the effectiveness of medical interventions (GAO, 1992). Whereas the 

confidence profile method looked at evidence in terms of chains (Eddy, 1989; Ades 

and Sutton, 2006), the cross design synthesis approach was proposed by the GAO 

for the purpose of combining studies that have “...different, complementary 

designs...” in order to minimise the weaknesses and maximise the strengths of each 

study design (GAO, 1992). The report describes the cross design synthesis of 

evidence from RCTs and observational databases, such as clinical databases on 

cancer patients.

The cross design synthesis approach can be described in four steps. The first 

involves assessment of the different types of evidence and generalisability of each 

study’s results. The GAO report illustrates this step with assessment of different 

RCTs, highlighting investigation of patient selection and recruitment, and the likely 

representativeness of randomised patients. From this assessment decisions on 

whether combining just the RCTs will provide the relevant information on the 

population of interest, or whether data from other types of studies also needs to be 

combined: leading to a cross design synthesis. In the GAO report evidence from 

observational databases is also assessed, with particular attention paid to the internal 

validity of this data source. Once this is achieved, the second step involves 

assessment of biases within each individual study and making appropriate 

adjustments for these biases. Although the GAO report suggests two possible 

approaches (either exclusion of the more biased studies, or secondary adjustment to 

account for those biases within each study), they advocate adjustment rather than 

exclusion since one of the aims of the cross design synthesis approach is to 

maximise the strengths of each study. Steps 3 and 4 involve combining the 

evidence within study type (i.e. RCT or database) and then synthesis across study 

type. Using a meta-analysis framework, the GAO report (1992) suggests the use of 

methods for stratification, weighting and extrapolation to account for differences 

between the study designs being synthesised. The authors stress that this method 

requires many judgments to be made throughout the process, and further exploration 

as to how these subjective judgments can be minimised is needed (GAO, 1992).

Jaime Peters PhD Thesis 2006 43



Chapter 3 Meta-analysis and generalised synthesis methods

Both the confidence profile method and the cross design synthesis approach are 

applicable to the evaluation of the diverse evidence available for an assessment of 

risks to human health from exposure to environmental chemicals. However, in the 

examples used in Chapters 5 and 6 (Trihalomethane exposure and Mn exposure), a 

cross design synthesis approach is more appealing as different sources of evidence 

are used to inform the same outcome, rather than there being an explicit chain of 

evidence.

Following the ideas of a cross deign synthesis approach, Prevost et al. (2000) and 

Sutton and Abrams (2001) combine evidence from RCTs with evidence from 

observational studies to investigate the effectiveness of breast cancer screening and 

electronic foetal heart rate monitoring, respectively. The authors acknowledge that 

relevant evidence for such investigations comes from both sources (RCTs and 

observational studies) and that each source has its strengths and weaknesses. For 

instance, Prevost et a l (2000) argue that although data from RCTs may represent 

the ‘gold standard’ and provide information on efficacy of an intervention, data 

from observational studies can provide details on the effectiveness of an intervention 

in clinical practice (i.e. outside a RCT). Thus, evidence from both types of study is 

desirable.

In Prevost et al. (2000), the RCT and observational evidence are initially analysed 

separately by the usual Bayesian random effects meta-analysis model given in 

Equation 3.5. A number of plausible, but diffuse, prior distributions are placed on 

the unknown parameters; j i , the true overall relative risk of breast cancer mortality

with screening, and r 2, the between-study heterogeneity estimate. In Sutton and 

Abrams (2001), the RCT evidence is meta-analysed using this same Bayesian 

random effects models, with similarly plausible and diffuse prior distributions 

placed on the unknown parameters. Their results are presented alongside results 

from classical fixed and random effects meta-analysis models. To incorporate the 

observational evidence, Sutton and Abrams (2001) construct informative prior 

distributions for the true overall difference in the risk of perinatal mortality, //, 

using the observational evidence. These prior distributions depend on beliefs about 

the quality and relevance of the observational data to the research question. Three
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‘beliefs’ are defined and illustrated by Sutton and Abrams. Construction of each 

informative prior distribution based on the observational evidence requires taking 

summary estimates from a random effects meta-analysis of the observational data 

and adjusting (or not adjusting) the variance of this summary estimate. The three 

‘beliefs’ and informative prior distributions are described in Table 3.1.

Table 3,1 Construction o f informative prior distributions fo r p  based on 

observational evidence in Sutton and Abrams (2001)

Type of belief Adjustment of variance of pooled observational evidence

Naive None required
Equivalent Make equivalent to variance of pooled RCT evidence
Down-weighted Make larger than variance of pooled RCT evidence

Prevost et al. (2000) and Sutton and Abrams (2001) also describe a three-level 

random effects hierarchical Bayesian model to combine the RCT and observational 

evidence. The three levels can be thought of as study level, study type level and 

population level (Sutton and Abrams, 2001). The model is given by

y 0 ~ N(V'o>a ii) Vij~N(0j,*)) Oj ~ N(p,v2) (3.10)

where y0 is the observed effect in study i of study type j  with cr2 representing the 

(assumed known) variance of y0. y/tj is the true effect in study /, study type j , 6j is 

the true effect in study type j  and r 2 is the estimate of the variance between studies

of type j. p  is the overall effect across study type with v 2 representing the estimate 

of the variance between study types. In both articles, plausible diffuse prior 

distributions are placed on the unknown parameters p , r 2 and v 2. Results from

the Bayesian random effects meta-analysis models with diffuse, and informative 

(Sutton and Abrams, 2001), prior distributions are compared to the findings of the 

three-level hierarchical Bayesian model (Equation 3.10). All authors caution that 

the sensitivity of estimates to specifications of the prior distributions should be 

assessed, especially between study type variance.
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Extensions to this three-level hierarchical Bayesian model are discussed by Prevost 

et al (2000) and Sutton and Abrams (2001). They include placing constraints on 

the relevance of one study type compared to a second study type (Prevost et a l , 

2000; Sutton and Abrams, 2001). Using the notation of Equation 3.10 (where n  is 

the overall effect, 6X is the true effect in RCTs and 02 is the true effect in 

observational studies), this involves specifying a constraint of the following form

I / / - 0 J  < \ j u ~ 0 2 \ (3.11)

Prevost et a l (2000) also discuss the possible weighting of the observational 

evidence in terms of its relevance to the RCT evidence in the usual Bayesian 

random effects model (Equation 3.5). This approach is similar to the weighting of 

the observational evidence as a prior distribution for the RCT evidence carried out 

by Sutton and Abrams (2001) and given in Table 3.1.

Further developments in methods for the generalised synthesis of evidence include 

combining qualitative evidence with quantitative evidence. To investigate factors 

affecting the uptake of childhood immunisation, Roberts et a l (2002b) reviewed the 

relevant available evidence. This evidence came from qualitative and quantitative 

studies. The qualitative evidence came from studies using focus groups, postal 

questionnaires and interviews based on open-ended questions. The quantitative 

evidence included surveys of patient satisfaction. Using a Bayesian fixed effects 

meta-analysis model (see Equation 3.1), the quantitative evidence was synthesised, 

with informative prior distributions placed on //, the pooled log odds ratio for 

patient satisfaction with general practice care. The informative prior distributions 

were initially constructed from the authors prior beliefs of factors relevant to 

immunisation uptake. These beliefs were revised in light of findings from an 

analysis of the qualitative evidence. These up-dated beliefs formed the prior 

distributions for // in the synthesis of the quantitative evidence. Roberts et al 

(2002b) conclude that an analysis of purely quantitative or purely qualitative 

evidence would have omitted potentially important factors affecting the uptake of 

childhood immunisation.
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More recently, Spiegelhalter and Best (2003) describe and discuss the use of 

Bayesian hierarchical random effects models to synthesise relevant, yet disparate, 

sources of evidence for cost-effectiveness analyses. In line with methods used by 

Prevost et a l (2000) and Sutton and Abrams (2001) for down-weighting certain 

types of evidence, methods to down-weight potentially biased evidence are also 

presented by Spiegelhalter and Best (2003). Each relevant study is intending to 

estimate the parameter of interest, 8 , but because of differences in study population, 

for instance, between types of studies, the biased parameter, 8 + 5h, is being

estimated in each study, where 8h is termed ‘external bias’; Sh ~ These

studies may also be subject to internal bias, due to their quality. Therefore, in each 

study the parameter being estimated is 8 + 8h+8b (where 8b is the internal bias

parameter, 8b ~ N(0,ab) ). Thus, for study i

8t ~N(S,crl + ctI )

N a (3.12)

where qt = - JCTh 2 . Spiegelhalter and Best refer to qt as the ‘quality weight’ for
°bi+°h

each study; this could be equal to 1 for a high-quality human RCT and so taken at 

face-value, or equal to 0.1 for a non-randomised study, resulting in a down- 

weighting of this evidence in the synthesis model. A cost-effectiveness analysis for 

choice of two hip replacement prostheses based on the time to revised replacement 

(the revision hazard ratio) is used to illustrate the use of a Bayesian hierarchical 

random effects model for the synthesis, and down-weighting, of relevant evidence. 

Revision rates from three different studies are used in the cost-effectiveness 

analysis: i) a registry of hip replacements in Sweden (non-randomised), ii) a RCT, 

and iii) a case series (non-randomised). The parameter of interest, HRk, describes 

the revision hazard ratio (for new compared to usual prosthesis) in study k (k: 1-3) is 

given by
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rik ~ Bin(pik, Nfc )
\og(-\og(\-p2k)) = \ogHlk (3.13)
log(-log(l-/?2Jt)) = log/f2* =\ogHlk -logHRk

Where i (J: 1,2) denotes the prosthesis type, Nik is the total number of patients 

receiving prosthesis i in study k and rik is the number of patients in study k with 

prosthesis i requiring a revision operation (Spiegelhalter and Best, 2003). Using 

Equation 3.12,

log HRk ~ N
f  __  -2 \
log HR,^~ 

9k
(3.14)

The following informative prior distribution is placed on the between-study 

standard deviation, crh ~ ATO.2,0.052) . Results are presented assuming 1) all three 

datasets have qk (from Equation 3.14) equal to one (i.e. no down-weighting of any 

evidence) and 2) the non-randomised evidence is down-weighted, using two 

formations: a) ql = 0.1 (hip registry), q2 = 1 (RCT) and q3 = 0.2 (case series) and b) 

^  =0.1, q2 =1 and q3 -  0.05. These results demonstrate the sensitivity of the 

pooled HRk to differing weightings of the evidence (Spiegelhalter and Best, 2003).

3.6 Summary
There has been little use and development of methods for the synthesis of human 

and animal evidence to assess risks to human health from exposure to chemicals in 

the environment. However, there has been an increase in the use and development 

of generalised evidence synthesis methods in human health care research, some of 

which describe models potentially relevant to the environmental risk assessment 

context. Models for the synthesis of human and animal evidence, multiple 

toxicological datasets and human evidence from related but different study designs 

have been reviewed in this chapter. The confidence profile method (Eddy, 1989) 

and the cross design synthesis approach (GAO, 1992) have also been described as 

relevant frameworks for the synthesis of human and animal evidence in an 

environmental risk assessment context. The cross design synthesis approach in
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particular looks appealing, because the evidence is parallel and not in sequence, to 

the synthesis of related human and animal evidence for a risk assessment of 

exposure to environmental chemicals.

A common theme running through all but one of the approaches described in this 

chapter is the use of Bayesian hierarchical models. Such models provide flexibility 

in the modelling of realistically complex relationships. For instance, allowing 

additional data or beliefs on the form of relationships between types of data to be 

incorporated into the synthesis of evidence via prior distributions (DuMouchel and 

Harris, 1983; DuMouchel and Groer, 1989; Dominici et al, 1997; Prevost et al., 

2000; Sutton and Abrams, 2001). Bayesian models are also appealing since the 

extent to which different types of evidence are considered relevant to the main aim 

of the synthesis (in most cases here that aim is to inform human health) can be 

controlled by placing constraints on both the parameters and the weights given to 

various pieces of evidence in the model.

Bayesian hierarchical models have been used in a variety of health and non-health 

related contexts to model simple and more complex hierarchical evidence from 

single and multiple studies, some of which have been described in this chapter (see 

Sections 3.4 and 3.5). In addition to those described in this chapter, Bayesian 

hierarchical models have been used for the analysis of human epidemiological 

studies with spatial and/or temporal aspects (Richardson et al., 1995; Mueller et a l, 

2001; Lopez-Vizcaino et a l, 2002; Gemperli et a l, 2004; Boyd et a l, 2005; Peng et 

a l, 2005), the analysis of financial data (Gallizo et a l, 2002; Talih and Hengartner, 

2005) and weather forecasting data (Hoar et a l, 2003; Fox and Wikle, 2005), in the 

analysis of veterinary studies (Hirst et a l, 2002; Ranta et a l, 2005; Stevenson et a l,

2005) and genetic studies (Sillanpaa et a l, 2001; Kuhnert and Do, 2003; Bae and 

Mallick, 2004; Waldmann et a l, 2005).

The naturally hierarchical structure of the data in these types of studies necessitates 

a hierarchical model. However, the use of Bayesian hierarchical models in these 

articles provides many advantages, e.g. flexibility in the formation of the model by 

inclusion of prior information (Bae and Mallick, 2004; Talih and Hengartner, 2005; 

Ranta et a l, 2005; Stevenson et a l, 2005; Boyd et a l, 2005), the use of Bayes
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factors to select the most appropriate model (Gallizo et a l, 2002) and the ease in 

obtaining predictive distributions (Gallizo et al., 2002) and direct probabilities from 

a Bayesian analysis (Hirst et a l, 2002). Such advantages are attractive for the 

synthesis of human and animal evidence for human health risk assessments.

A second similarity in the synthesis models described here is the use of random 

effects over fixed effects models. The rationale for one over the other depends on 

the assumption that all studies are estimating the same effect. In analyses where 

different types of studies are combined, use of a fixed effects model may not be 

appropriate because of the assumption that the only variability between estimates is 

due to chance. A random effects model allows for excess heterogeneity between 

study estimates that is likely to be present when combining estimates from different 

study types. Furthermore, this heterogeneity is modelled and provides information 

on where and how studies may differ in their estimate of the effect. For instance, in 

the three-level hierarchical model given in Equation 3.10, variation both between 

study estimates within a study type and across study types is modelled. 

Consideration of a random effects model leads to discussion of a third feature 

common to some of these models: the use of a hierarchical structure. Such a 

framework allows explicit description and estimation of the inter-relationships 

between data sources, which can lead to a more informed understanding of study 

differences and between-study heterogeneity.

A fourth feature to consider is the modelling of dose-response relationships. The 

use of these relationships and the subsequent dose-response slope estimate is likely 

to be required in applications of synthesis methods to risk assessment examples (as 

in Chapter 5), as they are in all of the articles concerned with environmental effects 

described in this chapter (DuMouchel and Harris, 1983; DuMouchel and Groer, 

1989; Cox and Piegorsch, 1994; Dominici et a l, 1997; Simmonds et a l, 2003).

In this chapter general meta-analysis and more sophisticated synthesis models have 

been described. Use of the cross design synthesis approach, Bayesian hierarchical 

models, random effects and dose-response relationships are all likely to be useful in 

a risk assessment context and the models described here look promising. A cross 

design synthesis approach allows close examination of the relevance, quality and
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the strengths and weaknesses of one source of evidence over other sources. 

DuMouchel and colleagues (DuMouchel and Harris, 1983; DuMouchel and Groer, 

1989) have already applied similar models to human and animal evidence to inform 

human health risk assessments, where different species and exposures are modelled 

using a Bayesian random effects regression (Equation 3.6). In this thesis the 

generalised evidence synthesis models presented by Prevost et a l (2000) and Sutton 

and Abrams (2001) are applied to the relevant human and animal evidence. So far, 

these models have only been applied to the synthesis of different types of human 

evidence, RCTs and observational studies. The generalised evidence synthesis 

models differ to the models used by DuMouchel et al. in that a random effect is 

placed on the pooled human and pooled animal parameters, rather than the 

relevance of different species to effects in humans being explicitly modelled (as 

with DuMouchel’s model). Investigation of the application of these models to 

evidence for human health risk assessment provides a framework for the building of 

more complex hierarchical models, as is clearly demonstrated in Chapter 5 and also 

allows assessment and investigation of methods for down-weighting particular 

sources of evidence (such as those described in Prevost et a l (2000), Sutton and 

Abrams (2001) and Spiegelhalter and Best (2003)). In Chapters 5 and 6, the use of 

systematic review and meta-analysis methods within a cross design synthesis 

approach to combine diverse data for human health risk assessments of exposure to 

environmental chemicals is explored. However, before these models are applied to 

the relevant human and animal evidence, it is important to consider current use of 

systematic review and meta-analysis methods to combine animal evidence alone. 

Although some authors advocate the use of these methods for animal evidence 

(Roberts et a l , 2002a; Sandercock and Roberts, 2002; Pound et a l , 2004; Macleod 

et a l , 2005) and provide some guidance for their application in the risk assessment 

context (McKnight, 1992) the extent to which they are carried out is unknown. In 

the next chapter, a systematic review of the use of systematic review and meta

analysis methods for the review and evaluation of animal experiments is reported. 

The aim of this systematic review is to assess the extent, and quality, of these 

methods when applied to animal evidence.
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Systematic reviews and meta
analyses applied to animal 

experiments

4.1. Chapter overview
Limitations in current methods for human health risk assessment and the potential 

use of systematic reviews and meta-analyses to overcome some of these limitations 

have been considered in Chapter 2. The extent to which systematic review and 

meta-analysis methods are used to review animal experiments to inform human 

health is unknown. In this chapter details of a systematic review to establish the 

extent and quality of systematic reviews and meta-analyses of animal experiments 

are described. In Section 4.2, recent literature discussing the use of systematic 

reviews and meta-analyses to review animal experiments are presented. Details of 

the systematic review are given in Section 4.3, alongside a brief review of current 

guidelines for reporting systematic reviews and meta-analyses. In Section 4.4 the 

methods reported in the included articles are reviewed with respect to established 

guidelines and recommendations for conducting and reporting systematic reviews 

and meta-analyses. As a consequence of this critique, guidelines for good quality 

reporting of systematic reviews and meta-analyses of animal experiments are 

developed and presented in Section 4.5. A quality assessment of each meta-analysis 

is then made using these guidelines, although the question still remains as to 

whether the quality of the reporting or the quality of the actual meta-analysis is 

being assessed, or a combination of the two. In Section 4.6 the findings of the 

systematic review and the quality assessment are discussed.

Jaime Peters PhD Thesis 2006 52



Chapter 4 Systematic reviews and meta-analyses of animal experiments

4.2 Introduction
With the increase in evidence-based medicine, systematic reviews and meta

analyses are now commonly used to review human evidence from RCTs and 

observational epidemiology studies on matters of health. The advantages of this 

approach to identify, review and evaluate the available evidence have been noted by 

many researchers (Sackett et al., 1996; Egger and Davey Smith, 1997; Sutton et al., 

2000; Egger et al., 2001; Cochrane Collaboration, 2005). Sometimes, relevant 

evidence may also come from animal experiments in addition to human studies and 

so this information should be reviewed and evaluated as well. Recently there has 

been some debate about the usefulness of using systematic review and meta

analysis methods to review animal experiments to inform matters related to human 

health care (Pound et al., 2004; Roberts et al., 2002a; Sandercock and Roberts, 

2002).

In a risk assessment context, animal experiments are often the basis for an 

assessment of the human health effects from exposure to chemical substances in the 

environment (e.g. cadmium, dioxins (CDC, 2005)). In these cases the available 

human evidence is usually limited and so animal experiments are the main source of 

evidence. The potential of meta-analyses to help in an evaluation of evidence for 

such risk assessments has been reported (e.g. McKnight, 1992), and although it has 

been stated that 1 in 10000 animal records in Medline were tagged ‘meta-analysis’ 

(Roberts et al., 2002a), the extent to which these methods are used to evaluate 

animal evidence is unknown. It is important to assess the quality of these 

systematic reviews and meta-analyses, particularly as many authors are advocating 

their use. In this chapter the extent to which systematic reviews and meta-analyses 

have been used to review and evaluate data from animal experiments, the methods 

used and the quality of reporting of these methods are investigated.
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4.3 Methods
4.3,1 Systematic review o f the literature

The electronic databases MEDLINE (1966 -  July 2005), EMBASE (1980 -  July 

2005), TOXLINE (1945 -  July 2005) and ScienceDirect (1900 -  July 2005) were 

searched to identify reports of the application of systematic reviews and/or meta

analyses to animal experiments. The search strategy is given in Appendix B 

(Table B.l). As some systematic reviews and/or meta-analyses may not find their 

way to being published as journal articles indexed in electronic databases, an 

electronic search of the grey literature was also undertaken. The grey literature 

covers reports and papers that may be prepared for funding bodies, governments 

and committees that are unlikely to be published as articles in peer-reviewed 

journals, for example, or book chapters, theses, conference and meeting abstracts 

(Hartling et al., 2005). The websites, databases and keywords used to search the 

grey literature are also given in Appendix B (Table B.2).

The following criteria were used to identify relevant systematic reviews and meta

analyses of animal experiments. For systematic reviews, details on the source(s) of 

evidence searched and some information on at least one of the following were 

sought,

• Search terms used

• Inclusion and exclusion criteria

• Any limitations placed on the search.

For meta-analyses, a report of some quantitative synthesis of results of more than 

one experiment was required. Unlike meta-analyses in medicine, some of the meta

analyses identified in this chapter did not use systematic review methods to identify 

the data used in the meta-analysis. Regardless of whether a systematic review was 

used or not, all meta-analyses of animal experiment data were sought.

The reference lists of all relevant articles identified from these searches were 

assessed and my own files were searched to identify further pertinent studies. There 

were a number of criteria for the inclusion of articles into this systematic review. 

The systematic reviews and/or meta-analyses had to involve in vivo animal 

experiments; where the purpose of reviewing animal evidence was to inform human
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health regarding 1) a medical intervention, 2) an epidemiological association (e.g. 

physical activity and cancer) or 3) the effect of an exposure to a chemical substance 

(e.g. diesel exhaust). Articles were considered relevant even if human evidence was 

also sought in addition to the animal evidence in the systematic review and/or meta

analysis.

4.3.2 Current guidelines for reporting systematic reviews and meta-analyses 

Considerable attention has been paid to the quality of reported systematic reviews 

and meta-analyses including many articles that have critically appraised these types 

of studies (e.g. Jadad et al., 1998; Christensen, 2001; Shea et al., 2002; Hemels et 

al., 2004; Dixon et al., 2005). In addition to these, reports from conferences and 

meetings have developed into guidelines for the reporting of systematic reviews and 

meta-analyses. The most recognised of these have resulted in the QUOROM 

(Quality Reporting of Meta-analyses: Moher et al., 1999) and MOOSE (Meta

analyses of Observational Studies in Epidemiology: Stroup et al., 2000) statements, 

although other guidelines existed prior to these (e.g. Cook et al., 1995). As a 

demonstration of the common use of the QUOROM and MOOSE statements, Web 

of Science (http://wok.mimas.ac.uk) holds 465 and 288 citations, respectively, for 

these two articles (as of 31st January, 2006). Moreover, a number of prominent 

journals now encourage submitted systematic reviews and meta-analyses to follow 

guidelines set out in the QUOROM and MOOSE statements (e.g. BMJ, JAMA, 

Annals of Internal Medicine).

Further guidance can be found in the Cochrane Reviewer’s Handbook (Higgins and 

Green, 2005) and from the NHS Centre for Reviews and Dissemination (Deeks et 

al., 2001). Indeed, there is a plethora of information available to guide researchers 

undertaking systematic reviews and meta-analyses in many areas of interest. For 

example, meta-analyses of diagnostic studies (Irwig et al., 1994), environmental 

epidemiology studies (Blair et al., 1995), clinical trials (Moher et al., 1999), 

observational studies (Stroup et al., 2000), studies of prognostic markers (Riley et 

al., 2003), genetic association studies (Munafo and Flint, 2004). However, there do 

not appear to be any guidelines for the conduct and reporting of systematic reviews 

and meta-analyses of animal experiments. In the next section, features of the 

methods reported in the relevant systematic reviews and meta-analyses of animal
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experiments are critiqued with respect to the guidelines mentioned in this section. 

This will then lead on to the development of guidelines specifically for systematic 

reviews and meta-analyses of animal experiments.

4.4 Results
4.4.1 Articles identified

The total number of relevant articles identified from the search strategies is given in 

Figure 4.1. The three articles reviewed in Section 3.4 (DuMouchel and Harris, 

1983; DuMouchel and Groer, 1989; Cox and Piegorsch, 1994) are not included in 

this systematic review since their interest lies in the methodological aspects of 

synthesising multiple human and animal studies (this no doubt explains why they 

were not identified from the systematic review described in Section. 4.3.1).

Figure 4.1 Relevant articles identifiedfrom the systematic review

Electronic database search Grey literature search

2 8 4 7  Hits 9 6 0

1 I
3 5 2  Potentially relevant 2

1 1
1 0 2  Actually relevant 0

1 0 3 ^ '
-4----------- 1

from own files

Systematic Systematic review Meta-analysis
review only and meta-analysis only

n=57 n=29 n=17

Jaime Peters PhD Thesis 2006 56



Chapter 4 Systematic reviews and meta-analyses of animal experiments

As in Figure 4.1, the 103 relevant articles can be split into three categories: i) those 

reporting details o f a systematic review only (n=57), ii) those reporting a systematic 

review followed by a meta-analysis (n=29) and iii) articles only reporting details of 

a meta-analysis (n=17). A full list of these references is given in Appendix C. 

Whether an article is a systematic review only, a systematic review and meta

analysis, or a meta-analysis only appears to be related to the setting of the article

(i.e. whether it is evaluating a medical intervention, an epidemiological association 

o f an environmental exposure) as Figure 4.2 illustrates.

Figure 4.2 Settings for the systematic review and meta-analysis articles
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There is a tendency for meta-analyses of effects from environmental exposures to be 

based on evidence that does not originate from a systematic review. There are no 

articles reporting a systematic review and meta-analysis in an environmental 

setting, and all reports on an epidemiological association involve a systematic 

review. There has been a large increase in the number of systematic reviews 

published over time, particularly in the last five years (Figure 4.3); most of these are 

articles reviewing medical interventions (Figure 4.4). The use o f systematic review 

and/or meta-analysis methods to review evidence for environmental exposures has 

decreased in the last five years (2001- 2005) compared to the five years previous to 

that (1996-2000).
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Figure 4.3 Year ofpublication by type o f article
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4.4.2 Features o f the systematic reviews

Of the 86 articles reporting the use of systematic review methods, 52 articles (60% 

of the meta-analyses) report searching for both human and animal evidence to 

address the research question of interest and 34 (40%) consider only the animal 

evidence. Of the 52 systematic reviews including human and animal evidence, nine 

report a meta-analysis of some of the data. Five reviews report meta-analysing the 

human data only (Shepard and Futcher, 1997; Zock and Katan, 1998; Collins et al., 

2001; de Nijs et al., 2004; Singer and Thode, 2004), two meta-analyse the human 

data and then the animal data (Pema and Remuzzi, 1996; Biondi-Zoccai et al.,

2003), while two report meta-analysing the human evidence with the animal 

evidence (Jiao et al., 2000; Woodruff et al., 2004). The meta-analysis methods used 

to combine the animal data in Pema and Remuzzi (1996), Biondi-Zoccai et al. 

(2003), Jiao et al. (2000) and Woodruff et al. (2004) are described in the following 

section.

Within these 86 articles, details of search strategies are generally given 

comprehensively. 73 articles (85%) report the source(s) used to search the evidence 

along with details on at least two of the following: the search terms used, 

inclusion/exclusion criteria and any limitations placed in the search. However, only 

26 of the 86 (32%) systematic reviews mention whether or not any language 

restrictions were placed on the systematic review (most limitations reported refer to 

the years searched in electronic databases). Seven of the systematic reviews report 

that there were no language restrictions, while 13 report that only English language 

articles were considered. The remaining eight articles list a number of languages in 

which articles were sought along with English, they are German, French, Italian, 

Spanish and Dutch. The reporting of these details is clearly deficient in this set of 

systematic reviews. Since there is mixed evidence as to whether language 

restrictions are a possible source of bias in systematic reviews (Egger et al., 1997; 

Song et al., 2000; Egger et al., 2003), it is important that these details are reported 

so that the reader is aware of such limitations and possible sources of bias.

In terms of the sources of evidence searched, this set of systematic reviews 

comprehensively report methods. 73 of the 86 (85%) systematic reviews report 

searching more them one source of evidence with two articles reportedly searching
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ten different sources of evidence (Borrelli and Ernst, 2002; Borrelli et a l, 2003). 

Electronic databases are used in all but one systematic review to search the 

evidence. The one study not using electronic databases was published in 1963, 

before such databases were available. The databases searched include Medline, 

Embase, Toxline, Cochrane library, Complementary Medicine and Current 

Contents. To supplement these electronic database searches, many articles also 

report searching various other sources, including the reference lists of relevant 

articles (n=54, 63%), contacting authors for further (un)published data (n=10,12%), 

searching conference and meeting proceedings/abstracts (n=8, 9%), contacting 

companies for further articles (n=7, 8%) and searching the internet (n=2, 2%).

Unfortunately details on any quality assessment of the primary animal experiments 

are inadequately reported. Only 20 of the 86 (23%) systematic reviews reported an 

assessment of the quality of the primary experiments. Eight of these used the 

results as further inclusion and exclusion criteria and six studies use them as 

discussion points. The remaining six systematic reviews meta-analyse the animal 

data and use the quality score as a variable for subgroup analyses in an attempt to 

explain any between-study heterogeneity. Although there are many issues 

concerning the use of quality scores (Juni et al., 1999), MOOSE recommends their 

use as subgroup variables (Stroup et al., 2000).

4.4.3 Features o f the meta-analyses

46 articles report the use of meta-analysis methods to combine animal experiments. 

29 (63%) of these report a systematic review of the literature prior to the meta

analysis of the relevant data (and have been included in the review of systematic 

review methods above). The data used in the other 17 articles (37%) include that 

from a set of replicate experiments (Tachibana, 1989; Tachibana et al., 1996), an 

established database of results of experiments (Crump et al., 1999) and non- 

systematic reviews (Corpet and Tache, 2002; Eichacker et al., 2002; Brown and 

Strickland, 2003). For the remaining eleven studies not using a systematic review 

there are few details on the origin or identification of the primary data used in the 

meta-analyses. The reader is therefore prevented from making an informed decision 

on the search process and whether the findings are based on a biased set of 

evidence. As pointed out, the majority of these meta-analyses are for environmental
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exposures; thus one cannot be fully confident of results since the basis for the meta

analysis is unclear.

The number of experiments combined in each article varies from meta-analyses of 

just three experiments (Horn et al., 2001; Preda et a l, 2005) to one of 397 

experiments (Crump et al., 1999); the median number is 25, with 5 meta-analyses 

not reporting the number of experiments combined.

Only one study reports using individual animal data (Preda et al., 2005), the rest 

synthesise aggregate data from each primary study. Obtaining individual animal 

data is likely to be more useful in a meta-analysis (Cook et a l, 1995), but it is often 

very hard to get hold of. None of the meta-analyses reviewed here reported seeking 

individual data from authors of the primary studies.

A variety of methodologies to synthesise data are used in these 46 articles. 

Individual summaries of the meta-analysis articles including the setting for the 

meta-analysis, the species/strain of animals included, the number of experiments 

included and some detail of the methods used (including effect estimates reported, 

whether and how heterogeneity was assessed, the synthesis methods used, any 

subgroup analyses and whether and how publication bias was investigated) are 

given in Appendix D.

Figure 4.5 illustrates the different methods used to synthesise evidence from 

individual animal experiments in the 46 meta-analyses. Although simple methods 

for obtaining a quantitative synthesis across experiments are popular, as are the 

usual inverse-variance weighted models described in Equations 3.1 and 3.2 in 

Chapter 3, so too are more complex models. Further description of the synthesis 

methods follows Figure 4.5.
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Figure 4.5 Methods o f synthesis used in meta-analyses with and without systematic reviews

Unknown: (precision-weighted?)

Correlations on individual animal data

Weighted synthesis of p-values

Unweighted mean or median average

* Pooled weighted effect

Pooled inverse-variance weighted fixed effects

Pooled inverse-variance weighted random effects

Pooled inverse-variance weighted fixed and random 
effects

Fixed effects weighted regression 

Random effects weighted regression 

Unweighted regression 

Dose-response model 

More specialised (see text)

4 5 6

N um ber of articles

10

Systematic reviews and meta-analyses ■ Meta-analysis only

no details given on weights used and whether fixed or random effects model
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At the top of Figure 4.5 is a meta-analysis where the method of synthesis used is not 

reported (Bertani et a l , 2002). The authors reference Cook et a l (1995) for the 

methods used and this suggests an inverse-variance weighted synthesis of the form 

described in Equations 3.1 and 3.2. One of the simplest approaches taken is by 

Preda et a l (2005) who combined the individual animal data from three 

experiments to calculate correlation coefficients. However, no account is taken for 

the fact the data came from different experiments. This method would not be 

recommended because potential differences between experiments are not 

considered; the data used in Preda et a l (2005) do not originate from the same 

experiment as the analyses they use suggests. Another method not recommend is 

the synthesis of p-values, since a synthesis of effect sizes would provide more 

information. However, Jiao et al (2000) weight p-values from experiments by 

sample size and report an overall pooled p-value describing the statistical 

significance of an effect across experiments.

In the following meta-analyses a pooled estimate of effect size is obtained. As 

Figure 4.5 shows, 9 (20%) of the meta-analysis articles report the use of an 

unweighted mean or median average effect size across experiments. Where further 

details are available use of the Mann-Whitney test and ANOVA are cited among the 

methods used (Kelley, 1996; Rowlett and Woolverton, 1996; Pries et a l, 1998). 

Half of the meta-analyses (n=23) report some weighted synthesis of the evidence 

from individual experiments, three of which give no details on the weights used or 

whether a fixed effects or random effects model was assumed (Tachibana, 1989; 

Tachibana et a l, 1996; Nava-Ocampo et a l, 2000). Fixed and random effects 

inverse-variance weighted models of the form given in Equations 3.1 and 3.2 in 

Chapter 3 are used in 15 (33%) of the meta-analyses. All but one of these 15 meta

analyses have been carried out to investigate the efficacy of medical interventions: 

the other meta-analysis is investigating an epidemiological association (Glatt et a l , 

2000). This suggests that use of an inverse-variance weighted meta-analysis model 

has translated from the methods used to synthesise human RCTs. In 5 (11%) of the 

meta-analyses, fixed or random effects weighted regression models are used to 

combine individual experiments, and in one meta-analysis unweighted regression is 

used. However, few details are given on these regression models in the articles.
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Of the 8 meta-analyses (17%) reporting use of dose-response models to synthesise 

evidence from individual experiments, six are from meta-analyses carried out to 

investigate health effects from exposure to environmental chemicals and two are 

estimating clinical effects of an intervention. It is interesting to note that none of 

these 8 meta-analyses were preceded by a systematic review. The different types of 

dose-response models used in these meta-analyses are summarised in Appendix D, 

with two authors citing the use and development of specialised software to apply the 

dose-response models.

Further specialised methods of synthesis reported in these meta-analyses are the 

meta-analysis of diagnostic data using a summary receiver-operator characteristic 

(SROC) curve (Craig et al., 2000) and Crump et a l (1999) report modelling 

distributions of p-values from nearly 400 experiments.

Five of the 46 articles report the use of meta-analysis methods to combine human 

with animal data, and although the most appropriate method of analysis would be to 

account for the species differences, Kroll et al. (1993), Jiao et al. (2000) and 

Woodruff et al. (2004) combine the human and animal evidence without accounting 

for the fact data from different species are being synthesised. Carroll et al. (1994) 

and Guth et al. (1997), however, account for species differences using the 

regression model presented by Cox and Piegorsch (1994) described in Section 3.4.

As mentioned in Section 3.3.2, between-study heterogeneity is a widespread and 

important feature of meta-analyses (Engels et al., 2000; Sutton et al., 2000; Villar et 

al., 2001). It is essential that the presence of between-study heterogeneity is not 

only considered in a meta-analysis, but also that possible sources are investigated, 

since any excess heterogeneity has implications for both the synthesis and inference 

of a meta-analysis (Sutton et al., 2000). Figure 4.6 shows the number of meta

analyses reviewed in this chapter which do, and do not, report observing or 

assessing between-study heterogeneity. The methods used to assess between-study 

heterogeneity and how suspected heterogeneity is dealt with are also shown.
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Figure 4.6 Flow diagram o f how heterogeneity is considered in 46 meta-analyses

46
Meta-analyses

21 suspect heterogeneity

No mention of 
heterogeneity

Assess 
heterogeneity 

and give details

Mention, but do 
not assess 

heterogeneity

Assess 
heterogeneity, but do 
not give any details Statistical models reported:

• Chi-squared test
• ANOVA
• Stratified analyses
• Test for interactions
• Restricted maximum 

likelihood
• Breslow & Day

Maximum done to address suspected heterogeneity:
• Exclude heterogeneous studies 4
• Allow for heterogeneity by reporting random effects estimate 3
• Attempt to explain using subgroup analyses including meta-regression 14*

* this value includes studies that attempted to explain between- 
study heterogeneity and reported random effects estimate
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Of the 21 meta-analyses in which between-study heterogeneity is suspected, four 

exclude the heterogeneous studies from the calculation of the pooled estimate of 

effect. The Cochrane Reviewer’s Handbook states that if a heterogeneous study (or 

studies) is clearly an outlier then such an approach can be justified (Higgins and 

Green, 2005). However, they caution that there are often many reasons that can be 

found for why a particular study could be considered an outlier, hence such an 

approach could be dangerous and actually introduce bias into the meta-analysis. An 

attempt to explain why these studies were heterogeneous would be desirable, rather 

than just excluding them. However, this attempt was not made by any of these four 

meta-analyses. The meta-analyses reporting the random effects estimate rather than 

the fixed effects estimate when heterogeneity is suspected, allow for this between- 

study heterogeneity, but again, no attempt to explain possible sources of 

heterogeneity is made.

On the other hand, 14 out of 21 (67%) meta-analyses suspecting between-study 

heterogeneity report subgroup analyses to investigate possible sources of 

heterogeneity. This approach is advocated by many authors (Cook et al., 1995; 

Moher et al., 1999; Stroup et al., 2000; Higgins and Green, 2005). However, there 

are important issues here as to the quality of these subgroup analyses. In some of 

the meta-analyses more than five variables are assessed in an attempt to explain 

heterogeneity and it is often unclear as to whether these analyses are a priori or post 

hoc. Interpretation of findings from these subgroup analyses should be made in 

light of whether they were pre-specified and how many were carried out, in addition 

to biological or methodological processes (Deeks et al, 2001; Higgins and Green, 

2005). Reports of meta-analyses of animal experiments must therefore clearly state 

the basis for any subgroup analyses and make sure they are pre-specified. This 

feature is inadequately reported by the meta-analyses reviewed here. Of particular 

importance to meta-analyses of animal experiments, are differences between animal 

species and strains. Seventeen of the 46 meta-analyses either failed to provide 

details on the species or strains used in the meta-analysis or gave no details on 

whether any differences were taken into account. 14 meta-analyses only included 

one species or strain of animal. Of the remaining 15 meta-analyses, five analysed 

different species separately and ten took species differences into account using 

regression methods.
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Publication bias can significantly affect interpretation of a meta-analysis and is no 

less important in meta-analyses of animal experiments. Only 17 meta-analyses 

mention and consider, to some extent, publication bias. An assessment of 

publication bias is reported in six of these: funnel plots, Egger’s regression test 

(Egger et al., 1997) or the Failsafe number (Rosenthal, 1979) are generally used.

The lack of any investigation into publication bias by authors of these meta-analyses 

is worrying although reasonable explanations are given by some authors: only a 

small number of studies are being reviewed (Craig et al., 2000); “the current 

statistical procedures addressing this issue lack validity” (Kelley, 1996). This is a 

particularly important point from Kelley (1996) and in Chapters 7 and 8, 

performance of the usual tests for publication bias is investigated using simulation 

analyses.

In the systematic reviews and meta-analyses reviewed in this chapter there is a 

dearth of any graphical presentation of primary studies and overall estimates. Plots, 

such as forest and funnel plots, can be very informative and helpful to readers and 

are recommended in a number of guidance documents (Cook et al., 1995; Moher et 

ah, 1999; Stroup et ah, 2000).

4.5 Quality reporting guidelines
4,5,1 Development o f  guidelines

As a consequence of the review of systematic reviews and meta-analyses in the 

previous section, guidelines for good quality reporting of systematic reviews and 

meta-analyses of animal experiments have been developed. These guidelines are 

largely based on QUOROM since animal experiments could be seen as analogous to 

human RCTs, but also include aspects of MOOSE. Further modifications make the 

guidelines specific to the reporting of meta-analyses of animal experiments and, 

from an evaluation of how well the 103 articles identified in this chapter reported 

their systematic reviews and meta-analyses, particular features have been 

incorporated that are poorly reported in the set of meta-analyses reviewed in Section 

4.4, such as addressing species differences and whether literature searches are 

subject to any language restrictions. These guidelines are given in Figure 4.7.
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Figure 4,7 Proposed guidelines for reporting systematic reviews and meta-analyses o f animal experiments

Heading Subheading Descriptor

Title Identify the report as a meta-analysis [or systematic review] of animal toxicology experiments

Abstract Use a structured format

Objectives Describe explicitly the scientific question/ hypothesis

Data sources Describe the databases and other important information sources used
Review methods Describe the selection criteria (e.g. species, strain, intervention/exposure, outcome & study design); methods for validity 

assessment, data abstraction, and study characteristics, and quantitative data synthesis

Results Describe characteristics of the experiments included and excluded; qualitative and quantitative findings (e.g. point 
estimates and confidence intervals/ standard errors), stating clearly what is estimated: dose-response curves, LD50 etc; 
and subgroup analyses

Conclusion State the main results and their implications

Introduction Describe the scientific problem explicitly, biological rationale for the intervention/exposure, and rationale for the review

Methods Searching Describe the information sources in detail (e.g. databases, registers, personal files, expert informants, agencies, hand- 
searching), including keywords, search strategy and any restrictions (years considered, publication status, language of 
publication)

Describe special efforts to include all available data (e.g. contact with authors, searching the grey literature)
Selection Describe the inclusion and exclusion criteria (defining population, intervention/ exposure, principal outcomes, and study

design)
List excluded experiments and reasons for exclusion
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Validity and quality 
assessment

Describe the criteria and process used (e.g. blind assessments, quality assessment, and their findings)

Data abstraction Describe the process or processes used (e.g. completed independently, in duplicate), including details on reproducibility, 
inter-rate agreement.

Whether aggregate data or individual animal data are abstracted

Study Describe the type of study designs, animals’ characteristics (e.g. species, strain, age, sex), details of intervention/exposure
characteristics (including route of administration, dose and duration), outcome definitions
Quantitative data Describe the principal measures of effect, method of combining results (e.g. fixed- and random-effects; meta-regression),
synthesis handling of missing data; how statistical heterogeneity was assessed and investigated; how data from different species 

and strains were dealt with; adjustment for possible confounding variables; rationale for any a-priori sensitivity and 
subgroup analyses; and any assessment of publication bias -  all in enough detail to replicate

Results Flow chart Provide a meta-analysis profile summarising experiment flow giving total number of experiments in the meta-analysis
Study Present descriptive data for each experiment (e.g. species, strain, age, sex, sample size, intervention/exposure, dose,
characteristics duration)

Quantitative data Report agreement on the selection and validity assessment and relevance to the scientific question/ hypothesis; present
synthesis simple summary results (e.g. forest plot); present data needed to calculate effect sizes and confidence intervals; identify 

sources of heterogeneity, impact of study quality and publication bias
Discussion Summarise key findings; discuss scientific/clinical inferences and generalisability based on internal and external validity; 

interpret the results in light of the totality of available evidence, including data from human studies; discuss rationale for 
use of animal data to help inform human health outcomes; critically appraise potential biases in the review process (e.g. 
publication bias); suggest a future research agenda
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To explore the relative quality of the meta-analyses of animal experiments, every 

one of the 46 meta-analyses (with or without a systematic review) has been assessed 

on the basis of the guidelines given in Figure 4.7. The findings are given in the 

following section.

4,5,2 Findings o f the quality assessment

The quality assessment of the 46 meta-analyses suggest that reporting of methods, 

results and the discussion in the meta-analysis is particularly poor; so too are 

aspects of the abstract (first column of Table 4.1). However, every meta-analysis 

reviewed here adequately describes the scientific problem, biological rationale for the 

intervention/exposure, and rationale for the review. 27 of the 46 meta-analyses 

(60%) identify the article as a systematic review or meta-analysis in the title.

The quality of reporting is generally worse in meta-analyses concerning 

environmental exposures (n=10) than those concerning medical interventions 

(n=30) or epidemiological associations (n=6) as Figures 4.8a, 4.8b and 4.8c show. 

Part of this can be explained by the fact that none of the environmental exposure 

meta-analyses are preceded by a systematic review, so it is understandable that 

some details (e.g. information sources, validity and quality assessments) are less 

likely to be reported in these articles. Although environmental exposure meta

analyses are more likely to identify the use of animal experiments in the article’s 

title, they appear less likely to fulfil elements of the abstract and methods sections 

compared to meta-analyses of animal experiments investigating a medical 

intervention or epidemiological association (Figures 4.8a, 4.8b and 4.8c).
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Figure 4.8a Percentage o f meta-analyses, by setting, fulfilling criteria from the proposed guidelines: title and abstract

n
State meta

analysis/systematic
review

State animal Abstract: Abstract: objectives Abstract: data Abstract: review
experiments structured sources methods

Guideline item

Abstract: results Abstract:
conclusions

□ Clinical (n=30) ■ Epidemiological (n=6) □  Environmental (n=10)
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Figure 4.8b Percentage o f meta-analyses, by setting, fulfilling criteria from the proposed guidelines: introduction and methods

Intro: problem & Methods: Methods: special Methods: Methods: list & Methods: validity & Methods: data
rationale information sources effort for search  inclusion/exclusion explain excluded quality a s se ssm e n t abstraction

criteria
G uideline item

□  Clinical (n=30) □  Epidemiological (n=6) □  Environmental (n=10)
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Figure 4.8c Percentage o f meta-analyses, by setting, fulfilling criteria from the proposed guidelines: results and discussion

Methods: study Methods: data synthesis Results: flow chart Results: study Results: data synthesis Discussion
characteristics characteristics

Guideline item

□ Clinical (n=30) ■ Epidemiological (n=6) □  Environmental (n=10)
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Considering the set of 46 meta-analyses of animal experiments as a whole, when 

compared with two sets of meta-analyses of human RCTs (Christensen et al., 2001; 

Hemels et al., 2004), Table 4.1 shows that the percentage of meta-analyses of 

animal experiments fulfilling guideline items relating to elements of the methods, 

results and discussion sections is lower than for the two sets of meta-analyses of 

human RCTs. However, for many of the other items, the percentage of meta

analyses of animal experiments fulfilling items is greater than that in the 

pharmacotherapy meta-analyses (Hemels et al., 2004)
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Table 4.1 Percentage o f meta-analyses fulfilling each item by type o f meta-analyses

Meta-analyses of Hepatology meta-analyses Pharmacotherapy meta-analyses 

animal experiments (Christensen, 2001) (Hemels et aL, 2004)

Guideline item % (n=46) % (n=15) % (n=32)

Title -  define as meta-analysis 59 93 22

Title -  define as animal data3 52 Not an item in QUOROM, so no result for these meta-cmalyses

Abstract -  structured 29 40 50

Abstract -  state objectives 98 73 69

Abstract -  data sources 33 80 16

Abstract -  review methods 2 20 9

Abstract -  results 76 73 0

Abstract -  conclusions 91 80 94

Introduction 100 100 91

Methods -  information sources 74 87 59

Methods -  special effort in searching3 17 Not an item in QUOROM, so no result for these meta-analyses
Methods -  inclusion/exclusion criteria 67 73 56

Methods -  list excluded studies3 7 Not an item in QUOROM, so no result for these meta-analyses
Methods -  validity 26 67 16
Methods -  abstraction 50 87 22
Methods -  characteristics 57 87 72
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Methods -  synthesis 63 100 69

Results -  trial flow 35 47 6

Results -  characteristics 52 87 81

Results -  synthesis 41 57 75

Discussion 85 93 97

8 not an item in QUOROM
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Finally, it is encouraging to note that there is some evidence to suggest the quality 

of reporting of meta-analyses of animal experiments is improving. Using the 

modified guidelines, a crude quality score was given to each meta-analysis, where a 

meta-analysis scored one point for every criteria they fulfilled in the guidelines 

(with a maximum possible score of 21). The median and range of quality scores for 

meta-analyses published in the same year are shown in Figure 4.9. This should help 

give some idea as to whether a change in the quality of these meta-analyses 

(according to the guidelines in Figure 4.7) has occurred over time. Figure 4.9 

shows that the studies with the highest median quality scores were published in the 

last few years. However within the last few years a number of meta-analyses of low 

quality, according to the assessment carried out in this chapter, have also been 

published. This suggests that improvements in the quality of the reporting of meta

analyses of animal experiments are needed.

4.6 Summary
The systematic review described in this chapter has identified 103 articles reporting 

a systematic review and/or meta-analysis of animal experiments. This has allowed 

an investigation into the methods used, the appropriateness of these methods and 

has lead to the development of guidelines to promote improved conduct and 

reporting of such research.

A number of deficiencies in the conduct and reporting of systematic reviews and 

meta-analyses of animal experiments have been identified in this review. Although 

the reporting of systematic reviews of animal experiments appears to be of 

reasonable quality, aspects of the methods and results sections of meta-analyses of 

animal experiments are particularly poorly reported. Moreover, results of this 

review suggest that features specific to meta-analyses of animal experiments, such 

as how to deal with different species and strains of animals, need to be addressed.
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Figure 4.9 Median and range o f quality assessment scores by year
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Several issues have emerged from this review, some of which are not specific to 

systematic reviews and meta-analyses of animal experiments. In relation to 

searches of the electronic database, the term ‘meta-analysis’ as a publication type 

(i.e. meta-analysis.pt) in MEDLINE identified a number of articles that were not 

quantitative syntheses of evidence but systematic reviews. This highlights an issue 

with terminology that has previously been noted (Chalmers et al., 2002) where 

meta-analysis is thought of as a systematic review, rather than an extension to a 

systematic review in situations where it may be appropriate. For the systematic 

review described in this chapter, the issue regarding terminology was not 

particularly important since both systematic reviews and meta-analyses were being 

sought. However, it could be misleading for researchers and can greatly reduce the 

precision of carefully designed search strategies. Similarly, because the search term 

‘animals’ was used, many ecological and veterinary studies were identified, 

decreasing the precision of the search process.

A large number of studies thought to be relevant for this review, were eventually 

excluded because they either referred to themselves as ‘systematic reviews’ but 

gave no details on any sources of evidence searched, the limitations or inclusion and 

exclusion criteria and the number of studies being reviewed (n=6) or gave one or 

two details of a systematic review which were not sufficient to meet the inclusion 

criteria given in Section 4.3.1 (n=5). For instance, Wegener (1979), Feihl et al. 

(2001), Kroeze et a l (2002) and Zhong et al. (2003) all refer to their articles as 

systematic reviews, but no details on the source(s) of evidence searched, how they 

were searched and the number of studies obtained are reported. Similarly, Loder 

(2003) describes her review as systematic in the abstract, yet only gives information 

on the sources searched, not on any inclusion/exclusion criteria or search strategy. 

Smorenburg and Van Noorden (2001) also refer to their review as systematic and 

state that “.. .all animal studies, published between 1960 and 1999... are reviewed”, 

but few further details are given.

A distinction should be made between articles that carry out a systematic review but 

do not publish sufficient detail on the process and articles that have not carried out a 

systematic review. Because of this it is not enough to just recommend the use of 

systematic reviews, the methods used must be clearly reported so that potential
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sources of bias and details of the process can be examined and compared to the 

results and conclusions of the review.

This systematic review has shed light on the extent and style of systematic reviews 

and meta-analyses of animal experiments. It is interesting to note that none of the 

environmental meta-analyses were preceded by a systematic review, and that in 

many of these meta-analyses the origin of the data could not be identified.

However, it is encouraging to see that the number of meta-analyses without a 

systematic review is slightly smaller in the period 2001-2005, than in 1996-2000 (4 

vs. 6 articles).

The quality assessment carried out in Section 4.5.2 has uncovered a number of areas 

of deficient reporting of the systematic reviews and meta-analyses of animal 

experiments. These must be addressed before systematic review and meta-analyses 

of animal experiments can make efficient use of the data to inform human health, 

while helping the aims of the UK 3Rs programme in reducing the number of animal 

experiments. In the following two chapters, systematic review and meta-analysis 

methods are used to identify, review and evaluate the available human and animal 

evidence relevant to risk assessments of two different environmental exposures in 

order to explore the potential benefits these methods may bring to the current risk 

assessment process. In Chapter 6, neurobehavioural risks associated with 

occupational exposure to Mn is assessed. First, in Chapter 5, a relationship between 

exposure to THMs in drinking water and an increase in the risk of a pregnant 

woman delivering a low birth weight baby is explored.
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Trihalomethanes and 

low birth weight: example I

5.1 Chapter overview
The limitations of current risk assessment methods have been highlighted and the 

potential of systematic review and meta-analysis methods to overcome some of 

these limitations has been discussed (Chapter 2). However, the number of articles 

combining both human and animal data (the types of evidence expected in a risk 

assessment) appear to be small; the five articles identified in Section 4.4.3 (Kroll et 

al., 1993; Carroll et al., 1994; Guth et al., 1997; Jiao et al., 2000; Woodruff et a l,

2004) and the three articles described in Section 3.4.3 (DuMouchel and Harris,

1983; DuMouchel and Groer, 1989; Cox and Piegorsch, 1994). In this chapter, a 

cross-design synthesis approach (GAO, 1992) is taken to the evaluation of evidence 

for a risk assessment of exposure to a group of environmental chemicals. The 

possible association between exposure to trihalomethanes (THMs) in drinking water 

and an increased risk of giving birth to a low birth weight baby is investigated. 

Bayesian hierarchical meta-analysis models used by Prevost et a l (2000) and 

discussed in Chapter 3 are applied to evidence from human and animal studies to 

assess potential human health risks. In Section 5.2, the THM example is introduced 

and issues surrounding the risk assessment of this group of environmental chemicals 

are discussed. The search for relevant literature (Section 5.3), including that from 

both human and animal studies, the methods for obtaining study-specific estimates 

comparable across study design (Section 5.4) and the synthesis of these estimates 

within and across study type are all described (Section 5.5). Results of the evidence 

synthesis are presented in Section 5.6, with sensitivity analyses of assumptions 

given in Section 5.7. In Section 5.8 the results are interpreted and discussed in light 

of assumptions made and the findings from sensitivity analyses. Finally, in Section
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5.9, implications for the use of systematic review and meta-analysis methods to 

assist in the human health risk assessment of trihalomethanes are discussed. The 

work presented in this chapter includes and extends the work described in Peters et 

al. (2005) (given in Appendix E).

5.2. Trihalomethane exposure and low birth weight
Trihalomethanes (THMs) are a group of chlorinated by-products (CBPs). They are 

formed when chlorine, added to drinking water supplies for disinfection purposes, 

reacts with organic and inorganic substances such as humic and fulvic acids already 

present in the water supply (Fawell et al., 1997). The type and concentration of 

these CBPs depends upon many factors including the amount of chlorine added, 

time since the chlorine was added, water temperature and its pH level (Koivusaol 

and Vartianinen, 1997). THMs are the most common by-products of chlorination 

(Nieuwenhuijsen et al., 2000). They include chloroform, bromodichloromethane 

(BDCM), dibromochloromethane (DBCM) and bromoform, but often total THMs 

are measured and reported in epidemiological studies. Correlations between the 

individual (chloroform, BDCM, DBCM and bromoform) and total THM 

concentrations suggest that total THMs are a good indicator for chloroform 

concentration in drinking water, but not for the other THMs (Whitaker et al., 2003).

The evidence for possible health effects of exposure to THMs has been mixed. The 

health effects considered include cancers in general (Morris et al., 1992; Hsu et al., 

2001; Lee et al., 2004) and cancers specific to the pancreas (Do et al., 2005), the 

bladder (McGeehin et al., 1993; Villanueva et al., 2003; Villanueva et al., 2004) 

and the brain (Cantor et al., 1999). Adverse reproductive and developmental effects 

have also been investigated (Reif et al., 1996; Niewenhuijsen et al., 2000). Because 

of concerns over adverse health effects from exposure to THMs, water companies 

are required to meet limits on the amount of THMs present in the water supply. In 

the US, the federal government has set a mandatory limit of 80 parts per billion 

(ppb) of total THMs in the water supply (EPA, 1998). Here in the UK, we are 

subject to EU directives of a limit of 100 ppb trihalomethanes in the water supply,
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although it is stated that “where possible, without compromising disinfection, 

Member States should strive for a lower value” (EU, 1998).

Nieuwenhuijsen et a l (2000) published a narrative review of human and animal 

research investigating the potential association between THM exposure and adverse 

reproductive effects in humans. They suggested that there was a potential link 

between exposure to THMs and an increased risk of a pregnant woman delivering a 

low birth weight baby. The quality of the human studies, particularly for assessing 

exposure levels, was not high and the animal data were not comprehensive. In this 

chapter the narrative review by Nieuwenhuijsen et a l (2000) is built upon by 

systematically collating and quantitatively summarising the human and animal 

research investigating oral exposure to THMs and a possible risk of delivering a low 

birth weight baby. WHO has defined low birth weight as babies weighing less than 

2500g at birth (WHO, 2004) and this is the definition used in the analyses presented 

here.

5.3 A systematic search of the literature
Since the focus of this chapter is on methods to combine different types of evidence, 

only limited details of the systematic review to identify literature on the potential 

association between oral exposure to THMs and low birth weight are reported here. 

Following guidelines set out by the CRD (Deeks et a l, 2001), evidence from both 

human studies and animal experiments was sought. Because of problems with 

translation, the search was limited to those reports published in the English 

language. The implications of this are discussed in Section 5.9. The electronic 

databases and search terms used are given in Appendix F. The literature search was 

supplemented by investigation of the references from published reports and reviews 

(e.g. Reif et a l, 1996; Fawell et a l , 1997) to identify further relevant research.

Data from eight articles were found to be relevant: five human epidemiological 

studies (Bove et a l, 1992; Kramer et a l, 1992; Savitz et a l, 1995; Gallagher et a l, 

1998; Dodds et a l, 1999) and three animal studies (Thompson et a l, 1974; Ruddick 

et a l, 1983; Narotsky et a l, 1997). Multiple experiments were reported in each of
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the animal studies, so that eight animal experiments were identified in total. The 13 

relevant studies (five epidemiological studies and eight animal experiments) are 

summarised in Table 5.1.

There are a number of differences between the human epidemiology studies and the 

animal experiments in this example. Firstly, in the human studies, odds ratios 

(ORs) for a pregnant woman to deliver a low birth weight baby are presented at 

each exposure level category where the referent group is the lowest exposure group. 

In the animal experiments, the health outcome of interest, foetal weight, is subject to 

a litter effect since foetal weight is related to the number of pups in a litter 

(Healy, 1972), i.e. the more pups there are in a litter, the more likely those pups will 

be of low weight, as with multiple births in humans. An ideal analysis of foetal 

weight would take into account the litter effect (Williams, 1975), however, in the 

animal experiments used in this example, the individual animal data are not 

available and so the results, as reported in the animal experiments, are used. In two 

of the eight animal experiments the mean and standard deviation of the mean 

weights in each litter at each dose level are reported and used in subsequent 

analyses. The remaining six experiments report mean weights and standard 

deviations at each dose level, but do not report whether litter effect has been 

accounted for. Secondly, the ORs from the human studies are each adjusted for a 

number of different covariates (e.g. education, maternal age, parity), in the animal 

experiments different species and strains are used. Thirdly, exposure to THMs is 

measured and reported differently. Exposure in the human studies is measured in 

terms of ppb, while in the animal studies it is measured in mg per kg of body weight 

per day (mg/kg/day). In four of the human studies total THMs are measured while 

in all of the animal experiments and one human study (Kramer et al., 1992), 

exposure to one or more of the individual THMs (e.g. chloroform, BDCM, DBCM, 

bromoform) is assessed.

The many differences in study design, measurement and reporting have to be 

addressed directly so that comparable study-specific estimates can be obtained for 

each of the 13 studies, and then synthesised for a meaningful summary of the 

relevant evidence to assist in the derivation of an exposure limit.
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Table 5.7 Summary o f the relevant studies identifiedfrom the literature search

Author Study design Population/
species/strain

Exposure Exposure
measure

No. dose 
levels

Outcome measure

Five human epidemiological studies

Bove etal, 1992 Cross-sectional Population based Total THMs ppb 5 Term low birth weight
(>37 weeks gestation and < 2500g)

Savitz etal., 1995 Case-control Population based Total THMs ppb 3 All low birth weight (< 2500g)
Dodds et al, 1999 Retrospective cohort Population based Total THMs ppb' 4 All low birth weight (< 2500g)

Gallagher et al, 1998 Retrospective cohort Population based Total THMs ppb 4 All low birth weight (< 2500g)

Kramer e/ al, 1992 Case-control Population based Chloroform ppb' 3 All low birth weight (< 2500g)

Eight animal experiments
Thompson et al, 1974 In vivo toxicology Sprague-Dawley rats Chloroform mg/kg/day 4 Foetal weights at postpartum day 1

Dutch-Belted rabbits Chloroform mg/kg/day 4 Foetal weights at postpartum day 1

Ruddick etal, 1983 In vivo toxicology Sprague-Dawley rats Chloroform mg/kg/day 3 Foetal weights at postpartum day 1

BDCM mg/kg/day 3 Foetal weights at postpartum day 1

CDBM mg/kg/day 3 Foetal weights at postpartum day 1

Bromoform mg/kg/day 3 Foetal weights at postpartum day 1
Narotsky etal, 1997 In vivo toxicology Fisher 344 rats BDCM (in com oil) mg/kg/day 4 Foetal weights at postpartum day 1

BDCM (in aqueous) mg/kg/day 4 Foetal weights at postpartum day 1

* reported in jxg/1, which is equivalent to ppb
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5.4 Obtaining study-specific estimates
In order to obtain comparable estimates of effect, a dose-response slope estimate of 

the ln(OR) for low birth weight was sought from each individual study. This meant 

that the measures of effect reported in the animal experiments (mean foetal weight 

at each dose) had to be converted to ln(OR)s for low birth weight. To transform the 

mean foetal weights at each dose level in the animal experiments to ORs it is 

assumed that the foetal weights were normally distributed and that 7.6 % of the 

animals in the control (zero dose) group were of low weight. There appear to be no 

generally accepted cut off values for low foetal weight in different animal species 

and strains, and so the percentage of low birth weight babies, those weighing <

2.5 kg in England in 1999 (ONS, 2000), was used: 7.6%. Under these assumptions 

the number of animals in each dose group considered to be of normal and low foetal 

weight was obtained so that the OR for low birth weight could be calculated. The 

measured exposure scales (i.e. levels of THM reported in ppb or mg/kg/day) also 

had to be transformed so that they were comparable between the human studies and 

animal experiments. Since it is more difficult to obtain estimates of water intake 

and body weight for different animals, the exposure scale from the human studies 

was transformed to that in the animal experiments (mg/kg/day). Under the 

assumptions that average body weight is 60 kg and average water intake is

2 litres/day, as in standard risk assessment practice (DoE, 1993; WHO, 1996), 

exposures measured in the human epidemiology studies were calculated in terms of 

mg/kg/day.

Thus, 80ppb = 80pg/l.

Applying the average water intake assumption 

= 160pg/day, 

applying the average body weight assumption
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_ 160pg/day 
60kg

= 2.6667pg/kg/day

= 0.0027mg/kg/day

To calculate a dose-response slope in each study a weighted least squares linear 

regression of ln(OR) on the natural log of dose, ln(dose), was fitted. The weight 

was inversely proportional to the variance of the ln(OR) estimate at each ln(dose) 

level

In(ORik) = a t +Pi In{doseik) + s t (5.1)

where k is the observation number in study / (/': 1,.. .,13), and s, is the error term. 

The a, ’s represent the intercept which is forced through the minimum dose in each 

study, and the slope estimates /?, (and corresponding variances) are the study- 

specific estimates to be used in the subsequent synthesis.

Although there are differences in the exposures measured between the studies (i.e. 

individual and total THMs) and evidence suggests some are more highly correlated 

than others with total THMs (Whitaker et al., 2003), for simplicity these exposures 

are assumed equivalent. Similarly, differences in the designs of the human 

epidemiology studies (case-control, cohort and cross-sectional) are not addressed 

here, i.e. the assumption is that each type of study is estimating the same effect and 

is subject to the same biases. This will be discussed further in Section 5.9.

5.5 Methods of synthesis
In Chapter 3, methods for the synthesis of human and animal evidence and methods 

for the generalised synthesis of human evidence were reviewed. A number of 

features common to the most appealing models were discussed and subsequently 

proposed for their use in the synthesis of human and animal data in this and the 

following chapter. Thus, because of flexibility in the specification of models, a
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hierarchical Bayesian approach is taken here to combine the human and animal 

evidence for an assessment of exposure to THMs and an increased risk of delivering 

a low birth weight baby. A number of models are used to synthesise the evidence, 

ranging in sophistication from the separate synthesis of the human evidence and the 

animal evidence, using ‘vague’ and informative prior distributions, to more complex 

models allowing for differences in the species and strains used in each study (as in 

Prevost et al (2000) and Sutton and Abrams (2001)). Pooled estimates from a 

classical random effects meta-analysis are calculated and compared with the 

estimates from all of the Bayesian models. The aim of applying these models to the 

data is to estimate the effect of exposure to THMs on the risk of a woman delivering 

a low birth weight baby, taking account of the relevant human and animal evidence.

The Bayesian analyses in this chapter and in Chapter 6  were carried out in 

WinBUGS (Spiegelhalter et ah, 2000b). This software package was designed 

specifically for Bayesian analyses. The statistical model is specified and Markov 

chain Monte Carlo (MCMC) simulation is used for estimation of the unknown 

parameters. MCMC simulations allow integration over high-dimensional 

probability distributions to provide parameter estimates for models. Samples are 

drawn from the probability distributions and approximated (Gilks et al., 1999). The 

parameter estimates can be made more accurate by increasing the number of 

samples drawn. In WinBUGS, a Gibbs sampler is used to draw the samples from 

the full set of posterior conditional distributions which converge under Ergodic 

theory to the posterior marginal distributions (Spiegelhalter et al., 2000a; Sutton and 

Abrams, 2001). A common issue in MCMC estimation is establishing convergence 

of the sampler. Assessing whether convergence has been achieved is not easy and 

is subjective. Within WinBUGS a number of diagnostic tools are available to help 

assess convergence. The Gelman-Rubin plot allows assessment of convergence of 

the sampler when more than one chain (all starting from different initial values) is 

used . The history plot displays successive sample values (i.e. plots of sample value 

against sample number) to illustrate how well the sampler is mixing (i.e. checking 

that it is moving around the sample space quickly), further indications of good or 

poor mixing can be obtained from the autocorrelation plot which shows the 

correlation between successive sample values and the density plot shows the 

posterior samples. Examples of these plots are given in Figures 5 .4-5 .7 . In
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addition to these plots, the changing of initial values, length of burn-in and the 

number of iterations can be used to help judge the convergence of models (see 

Section 5.7.3).

5.5.1 Synthesis o f study-specific estimates within study type (human epidemiology 

studies and animal experiments)

A two-level hierarchical random effects Bayesian meta-analysis model {Model 1) 

was used to combine the study-specific dose-response slope estimates, /?,, within

each of the two study types (human epidemiological studies and animal 

experiments). This random effects model is the same as that presented in Equation

3.5 and those used by Prevost et al. (2000), Sutton and Abrams (2001) and 

Simmonds et al. (2003). Within this framework, the data were analysed in several 

ways: Model la  combined only the human epidemiological studies; Model lb  

combined only the animal experiments. Both of these models had ‘vague’ prior 

distributions placed upon the unknown parameters, so that the data would dominate 

in the synthesis of the studies. In Section 5.7 sensitivity analyses for different 

choices o f ‘vague’ prior distributions are described.

Two further models, Model lc  and Model Id, are used to combine the 

epidemiological studies and animal experiments, respectively, but with informative 

prior distributions on the pooled slope parameter, /u, which is based on the 

posterior mean and variance from Model la  and Model lb. This follows the 

approach taken by Sutton and Abrams (2001) in the synthesis of evidence from 

RCTs and observational studies. Thus, the posterior mean and variance from the 

synthesis of the animal experiments {Model lb), is used to inform the prior 

distribution for the synthesis of the human epidemiological studies {Model lc). 

Similarly, the posterior mean and variance from synthesising the epidemiological 

studies {Model la), is used as a basis for the prior distribution in the synthesis of the 

animal experiments {Model Id). The structure used by all forms of Model 1 follows 

that given in Equation 3.5

P, ~ N(9l,a 2i )  
e , ~ N ( n , T 2)

H ~ N(a,b)
1 / t2 ~ Gamma(0.001,0.001)

(5.2)
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where 0, is the true dose-response slope in study i (for Model la  and Model lc  i: 

1,..,5, for Models lb  and Model Id  i: 1,..,8), p  is the pooled dose-response slope 

and t 2 is the between study variance. In all four models (Models la  - d), it is 

assumed that <j] are known, and the observed variances of the slope estimates in

each study are used to represent them. In Model la  and Model lb, a = 0 and 

b=  1 09, allowing for a range of plausible values for the dose-response slope 

estimate of between -2  x 109 and 2 x 109. In Model lc, a = posterior mean from 

Model lb  and b = posterior variance from Model lb. Similarly, in Model Id, 

a = posterior mean from Model la  and b = posterior variance from Model la. In all 

four models, a ‘vague’ prior, Gamma(0.001, 0.001), is placed upon the between 

study precision parameter, 1 / r 2.

5.5.2 Synthesis o f  study-specific estimates across study type 

A fifth form of Model 1, Model le, combines all 13 studies (/: 1,.. .,13), taking no 

account of the fact studies are from two different sources, with ‘vague’ prior 

distributions on all unknown parameters. This is not an appropriate approach as the 

different sources of evidence should be accounted for in the synthesis because of 

their differing designs and relevance to the parameters of interest, i.e. human health 

effects (GAO, 1992). Three further models (Models 2, 3a and 3b) do take into 

account that these data are from different study types.

A further hierarchical random effects Bayesian model (Model 2) estimates an 

overall pooled slope estimate, p, but allows distinct estimates of the between study 

variances for the epidemiological studies and the animal experiments. Thus, a 

common average is assumed regardless of study design but different between-study 

variances are allowed for each study type. Model 2 is given by

P u ~ N ( v t .<rl) 

W, ~ N(/*,*])

n  ~ a/(0 ,io9)
1 /r ,2 ~Gamma(0.001,0.001) (5.3)
1 /r 2 ~ Gammo(0.001,0.001)
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where the P(j are the observed slope estimates for the fth study of type j  (where j - 1 

for epidemiological studies and j —2  for animal experiments), cr2 are the variances 

of the p tj and y/y is the true slope estimate for study i of type j . x2 is the variance 

between studies of type j  and ju is the pooled slope estimate. ‘Vague’ prior 

distributions were placed on the unknown parameters / / ,  1 / r 2 and 1 / r 2.

Model 3 can be thought of as an extension to Model 2 where distinct study type 

estimates of effect are modelled. It is a three-level hierarchical random effects 

Bayesian model which includes a level to account for study type,7 . Prevost et al 

(2000) and Sutton and Abrams (2001) apply this model to combine data from RCTs 

with data from observational studies. This model was reviewed in Chapter 3 

(Equation 3.10). In Model 3a J :  1,2 where 7 -  1 represents the human 

epidemiological studies and j=2 the animal experiments). In Model 3b, the animal 

experiments are further divided in an attempt to account for the different species and 

strains of animal used in the studies, hence 7 : 1,...,4 where j — 1 for human studies,

7 -2  for experiments using rabbits, J=3 for experiments using Sprague-Dawley rats 

andy-4 for experiments using F344 rats). In Equation 5.4, Model 3 (Equation 3.10) 

is described alongside the prior distributions placed on the unknown parameters n ,

1/ r 2 and 1 / v2.

A, ~ N(Wll,ol) / /~ jv (o ,io 9)

y/y ~ N(0j ,x2j ) Mx] ~ Gamma(0.001,0.001) (5.4)

Qj ~ N(fx,v2) 1 /v 2 ~ Gamma(0.001,0.001)

As well as estimating the variance between studies of type7 , x2, Model 3 estimates

the variance between study types, v2, and the pooled dose-response slope for the7 th 

type of study, 6 f . As with Model le  and Model 2, the pooled slope estimate of the

13 studies is given by fi. ‘Vague’ prior distributions were placed upon the unknown 

parameters fi, 1 /r 2 and 1/v2. It may arguably be more appropriate to discuss the

estimate of 61, the overall human effect, from this model than //, the overall species
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effect. In Figure 5.2 both estimates are presented and this point is further discussed 

in Section 5.8.

WinBUGS (version 1.3) (Spiegelhalter et ol., 2000b) was used to estimate 

parameters for the Bayesian analyses using Markov Chain Monte Carlo simulation. 

For each model a ‘burn-in* of 10,000 iterations was followed by a further 200,000 

updates after which the median and the 2.5 and 97.5 percentiles of the posterior 

distribution were used to summarise the parameter estimates. All initial values were 

set to one and convergence and model performance were assessed visually from the 

trace and autocorrelation plots available within WinBUGS (see Figures 5.4-5.6 ).

As part of the sensitivity analyses reported in Section 5.7, the length of ‘burn-in’, 

number of updates and the initial values given above were changed, and different 

‘vague’ prior distributions were placed upon the parameters in Models le, 3a and 3b 

to assess the sensitivity of the results to these prior distribution specifications.

5.6. Results
5.6.1 Study-specific dose-response slope estimates

The dose-response slope estimates (medians), J3h and 95% credibility intervals 

(Crls) calculated from each study are shown in Figure 5.1. Apart from the study of 

Ruddick et al. (1983) on DBCM exposure, the animal experiments all have very 

similar dose-response slope estimates and are quite precise, the human 

epidemiology study estimates appear more heterogeneous and generally less 

precise. The estimate of the between study variance (the posterior median), for 

the epidemiology studies is 0.0051, but for the animal experiments it is 0.0027.

5.6.2 Within study type pooled dose-response slope estimates

In Table 5.2 the pooled dose-response slope estimates, ju, and 95% Crls obtained 

from Models la-d  are compared with the results from a classical random effects 

synthesis fitted using the META command in Stata 8.2 (StataCorp, 2004).
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Figure 5.1 Study specific dose-response slope estimates (and 95% Crls) from ln(OR) vs. In(dose) linear model

Human epidemiology studies

Dodds et al. (1999) - total THMs 

Gallagher et al. (1998) - total THMs ■ 

Savitz et al. (1995) - total THMs 

Bove et al. (1992) - total THMs 

Kramer et al. (1992) - chloroform

Animal experiments
Sprague-Dawley Rats 

Thompson et al. (1974) - chloroform 

Ruddick et al. (1983) - chloroform 

Ruddick et al. (1983) - BDCM 

Ruddick etal. (1983)-DBCM —  

Ruddick et al. (1983) - bromoform

Fischer-344 Rats 
Narotsky et al. (1997) - BDCM (co) 

Narotsky et al. (1997) - BDCM (aq)

Dutch Belted Rabbits 
Thompson et al. (1974) - chloroform

- 0.2 0.0 0.2 0.4 0.6

Dose-response slope estimate

0.8

Slope estimate 
(95% Crl)

0.052 (-0.002,0.106) 

0.252 (-0.160,0.662) 

0.428 (-0.045,0.898) 

0.121 (0.066,0.175) 

0.016 (-0.015,0.048)

0.061 (0.046,0.076) 

0.102(0.074,0.131) 

0.095(0.074,0.116) 

-0.117 (-0.212,-0.022) 

0.056(0.030,0.081)

0.105(0.080,0.131)

0.037(0.012,0.062)

0.036 (0.004,0.068)

~i 
1.0

co, com oil vehicle; aq aqueous vehicle
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Table 5.2 Pooled slope estimates, p  (and 95% Crls/CIs) from the human 

epidemiological studies and animal experiments

Model
Epidemiological studies Animal experiments

(n=5) (n=8 )

Bayesian model with vague prior 

distribution (Models la  and lb)
0.077 (-0.017, 0.240) 0.058 (0.006, 0.100)

Bayesian model with informative 

prior distribution (Models lc  and Id)
0.061 (0.023, 0.099) 0.060 (0.017, 0.100)

Classical random effects model 0.071 (0.007, 0.136) 0.062 (0.038, 0.086)

Results from the Bayesian models with ‘vague’ prior distributions (.Model la  and 

Model lb) and the classical models show that the pooled slope estimates from the 

human data, p  are slightly larger than the pooled slope estimates from the animal 

experiments and have much more variability associated with them. This reflects 

what was seen in Figure 5.1. As expected, the Bayesian models give pooled slope 

estimates with wider 95% Crls than the estimates obtained from the classical 

random effects model. This is because more variability is taken into account in the 

Bayesian model. The results from the Bayesian models with informative prior 

distributions (Model lc  and Model Id) are very similar to each other and are close to 

the pooled slope estimate of the animal experiments from Model lb  and the 

classical random effects model. Thus, it would appear that in Model lc  and Model 

Id  the data from the animal experiments are dominating, regardless of whether they 

form the prior or the likelihood in the Bayesian analysis. This reflects the fact that 

the slope estimates from the animal experiments are estimated more precisely than 

those from the human epidemiology studies.

5.6.3 Overall pooled dose-response slope estimates

The pooled slope estimates, p  from Models le, 2, 3a and 3b, and the pooled slope 

estimate for the human evidence, 6iy in Models 3a and 3b are shown in Figure 5.2. 

Again, pooled estimates from the classical random effects model are given for 

comparison.
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Figure 5.2 Pooled dose-response slope estimates, p  and Oj (95% Crls) obtained 

from the five synthesis models used to combine all 13 studies

Key
All species estimate h
Human epidemiological estimate i——e — \  

Bayesian models

Model 1e
(2-level hierarchical)

Model 2
(2-level hierarchical - j: 1,2) 

Model 3a
(3-level hierarchical - j: 1,2)

Model 3b
(3-level hierarchical - 4)

Classical model 

Random effects

ih-o I

f—O-— |

H-m— i 
i—o —i

I—OH

i i 
-0.5 -0.3

1---- 1----T
- 0.1

~T~
0.1 0.3 0.5

Pooled dose-response slope estimate

Pooled slope estimate 
(95% Crl/CI)

0.061 (0.027, 0.094) 
0.077 (-0.017, 0.24)

0.061 (0.025, 0.096)

0.065 (-0.432, 0.577) 
0.072 (-0.007, 0.188)

0.061 (-0.037, 0.162) 
0.068 (0.001, 0.156)

0.062 (0.040, 0.084) 
0.071 (0.007, 0.136)

Model le, human epidemiology estimate is p  from Model la; 
Model 3, human epidemiology estimate is 0]

It can be seen that the models give similar pooled dose-response slope estimates, p  

but the level of precision varies across models. Model le  assumes no difference 

between the human studies and animal experiments. Results suggest that in 

comparison with the findings of Models la-d  (Table 5.2), the animal data are 

dominating the estimate of the pooled slope response slope; this is not necessarily 

what is wanted. Although animal experiments are less likely to be prone to biases 

than the human epidemiology studies and potentially contribute useful information, 

in terms of relevance, evidence from human studies is more important. In Model 2 

although a common mean is again assumed, the between-study variance for human 

studies is allowed to differ to that from animal experiments. This reflects what is 

seen in Section 5.6.1 where dose-response slopes from the animal experiments are 

more similar than those from the human studies. Allowing for these different 

between-study variances in Model 2 results in a slightly wider 95% CrI for p  than
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that from Model le\ the pooled estimate is the same. Models 3a and 3b yield larger 

amounts of uncertainty in the pooled dose-response slope estimates, reflecting the 

variability allowed among species in the models. In particular, Model 3a (which 

distinguishes between the human studies and the animal experiments) gives a very 

wide 95% CrI compared to the pooled slope estimates from the other models in 

Figure 5.2. The reason for this, as Prevost et al. (2000) also noted, is that the 

variance among species is estimated with enormous uncertainty, partly since only 

two sources of evidence, in this example, the pooled slope estimate from the human 

epidemiology studies, Oi, and the pooled slope estimate from the animal 

experiments, 02, are being synthesised to obtain the overall pooled slope estimate, ju. 

Hence, when the different species and strains are taken into account in Model 3b, so 

that there are four sources of evidence, the 95% CrI is much narrower. Before any 

interpretation of the parameter estimates from each of these models is discussed 

(Section 5.8), the sensitivity of some of the various assumptions made in this 

analysis are investigated.

5.7. Sensitivity analyses
Many assumptions were made to obtain comparable dose-response slope estimates 

from each of the 13 studies and to combine them using the synthesis models 

described. In this section some of these assumptions are changed to assess the 

sensitivity of the results. The impact of different dose-response models on the 

resulting slope estimates, $ , is explored, in addition to changing the water intake 

and body weight values assumed in the initial analyses. The effect of different 

‘vague’ prior distributions placed on the unknown parameters in the synthesis 

models defined in Section 5.5 is also investigated.

5.7.1 Dose-response models

For simplicity a linear regression slope was used to obtain study-specific dose- 

response slope estimates in Section 5.4. The sensitivity of the results based on this 

model is now explored using a number of alternative dose-response models. Where

z is the study (/: 1, 13) and j  is the dose level in each study i, the alternative dose-

response models are:
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A. A logit model on ln(dose) given by

In
f  \

Pik
l ~Pik

= at + In(doseilc ) + €t (5.5)

where put is the probability of observing a low birth weight foetus at dose level k 

in study i.

B. A linear model as given in Equation 5.1, but with dose replacing ln(dose) as the 

explanatory variable

ln(OR,*) = (Xi + Pidoseik + et (5.6)

C. A linear model of ln(OR) on dose as in B (Equation 5.6) above, but taking into 

account the correlation structure between the ln(OR)s within each study using 

the method from Greenland and Longnecker (1992). The covariance matrix C is 

obtained by letting A 0 and A x be the fitted number of low birth weight foetuses 

at the reference exposure and exposure x , respectively, B 0 and B x be the fitted 

number of foetuses that are not of low birth weight at the reference exposure and

A Bat exposure level x, respectively, such that - *- °- = exp(L x ), where Lx is the

adjusted ln(OR) at exposure level x (x ^ 0). C then has diagonal elements v* (the 

estimated variance of Lx) and off-diagonal elements cxz, where

^xz ^xz^yXV2 ') j  T"xz
r  1 O  A 1 1 1 1  »+ — sxsz a n a s x = —  + —  + —  + —  (5.7)
V^o B0J A X B x Aq B q

(Greenland and Longnecker, 1992).

D. A logit model as in A above (Equation 5.5), but with dose replacing ln(dose) as 

the explanatory variable
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In
f \

Pik
\~Pik

= al + Ptdoseik + (5.8)

The alternative dose-response models A, B and D above were all calculated in 

WinBUGs, dose-response model C was calculated classically in Splus (Splus, 

1999).

The study-specific dose-response slope estimates are shown in Table 5.4. In the 

models where ‘dose’ is the independent variable (Models B, C and D), the study- 

specific slope estimates from Model B are generally larger than those from Models 

C and D. One difference between Model B and Models C and D that may explain 

the increase in the slope estimates is that Model B incorrectly assumes 

independence of estimates within a study. This is incorrect since all ln(ORs) refer 

to the lowest exposure category as the reference group, therefore they are not 

independent. Although estimates are not independent in Model C, the correlation 

structure of the ln(OR) is taken into account using the method of Greenland and 

Longnecker (1992), and in Model D, because ln(OR) are not being modelled, the 

estimates within a study are independent.

A clear difference between the slope estimates calculated from the different models 

is that for the epidemiology studies the estimates are much larger when ‘dose’ is 

used as the independent variable (Models B, C and D), rather than ‘ln(dose)’ 

(Equation 5.1 and 5.5 (Model A)). However such a difference is not seen in the 

slope estimates from the animal experiments. The slope estimates are defined as the 

increase in ln(OR) per unit increase in exposure (mg/kg/day), whether that be dose 

or ln(dose). Whereas the range of dose levels covered by the animal experiments 

reaches 400 mg/kg/day, the exposure reported in the epidemiology studies do not 

exceed 0.0042 mg/kg/day.

If a ‘dose’ dose-response model is used, the epidemiology studies will each have 

very little weight in the synthesis of all studies (as they have very low precision), 

and so the animal experiments will tend to dominate. However, if the ‘ln(dose)’ 

dose-response model is used, the animal experiments are less likely to dominate 

because the precision of the slope estimates is similar for the animal experiments
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and epidemiology studies. The results of applying the synthesis Models la, lb  and 

le  to the dose-response slope estimates obtained from the different linear dose- 

response models are given in Table 5.3.

The choice of dose-response model is critical for the synthesis of the studies. To 

investigate which dose-response model is most appropriate, the fit of each of the 

dose-response models was assessed using the Bayes Information Criterion (BIC) 

(Schwarz, 1978). BIC values for the dose-response model are given in Table 5.4. 

The shaded numbers in each row highlight the model with the lowest BIC value. 

The lowest BIC value indicates the dose-response model that best fits the data from 

that study (Schwarz, 1978). The linear models appear to give a better fit to the data 

than the logit models, since the BIC values are lower for the linear models. 

However, results from applying the BIC suggest that the use of ‘ln(dose)’ over 

‘dose’ in the linear model improves the fit of the model.

5. 7.2 Sensitivity o f assumptions on body weight, water consumption and low birth 

weight cut off values

To convert the measurement of exposure reported in the epidemiology studies, 

standard default body weight and water consumption values were applied to the 

data. More recent surveys suggest that these values are inaccurate (ECETOC, 2001; 

EA and DEFRA, 2002). The dose-response slopes, $ , from the epidemiology 

studies were re-analysed using estimates from these surveys in place of the former 

‘default’ values. As described on page 8 8 ,

dosennh * water
dose /k/da^= -----------------  (5.9)mg/kg/day w e i g h t  * IQQQ V '

where dosemg/kg.day is the dose level in mg/kg/day, doseppb is the dose level in ppb, 

water is the estimate of daily water intake per day and weight is the average weight 

in kg. In the initial analysis, water = 2 and weight = 60 in Equation 5.9. By using a 

Bayesian model inclusion of uncertainty about the assumed values, their impact on 

the dose-response slope estimates obtained and the subsequent synthesis of the 

slopes can also be assessed. Thus, for the sensitivity analyses, a mean of 68.53 kg 

(standard deviation of 13.87 kg) was assumed as average body weight (EA and
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DEFRA, 2002) such that weight-N(68.53, 192.38) in Equation 5.9, and 

0.991 litres/day (standard deviation of 0.0304) was assumed for average water 

intake (ECETOC, 2001), such that water~N(0.991, 0.0009) in Equation 5.9. These 

sensitivity analyses were carried out for both the Tn(dose)’ linear dose-response 

model and the ‘dose’ linear dose-response model. The results of these sensitivity 

analyses are given in Table 5.5.
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Table 5.3 Study-specific dose-response slope estimates (and 95% Crls) obtainedfrom the three different linear dose-response models (original

dose-response model and Models A-D in Equations 5.5 —5.8)

Original Model Model A Model B Model C Model D

Study Linear model: 
ln(OR) and 

ln(dose)

Logit model: 
ln(dose)

Linear model: 
ln(OR) and dose

Linear model: 
ln(OR) and ln(dose)

Logit model: 
Dose

Epidemiological studies

Dodds et al. (1999) 
(Total THMs)

0.052 
(-0 .0 0 2 , 0.106)

0.045 
(-0.028, 0.118)

27.37 
(-3.38, 57.99)

16.92 
(-20.75, 54.60)

17.78 
(-20.83, 56.25)

Gallagher et al. (1998) 
(Total THMs)

0.252 
(-0.160, 0.662)

0.130 
(-0.335, 0.584)

253.2 
(-117, 622)

210.24
(-27.53,448.01)

183.3 
(-261.20, 597.10)

Savitz etal. (1995) 
(Total THMs)

0.428 
(-0.045, 0.898)

0 .2 1 0  
(-0.283, 0.705)

150 
(-30.17, 329)

62.26 
(-122.77,247.30)

55.73 
(-121.30, 231.10)

Bove et al. (1992) 
(Total THMs)

0.121  
(0.066, 0.175)

0.124 
(0.056, 0.193)

98.83 
(53.47, 143.8)

95.40 
(39.78, 151.01)

95.99 
(41.14,150.80)

Kramer et al. (1992) 
(Chloroform)

0.016 
(-0.015, 0.048)

0.016 
(-0.019, 0.052) 638.2 

(-487.8, 1763)
650.71 

(-606.00,1907.4)
665.5 

(-610.60, 1917.00)

Animal experiments
Sprague-Dawley Rats

Thompson et al. (1974) 
(Chloroform)

0.061 
(0.046, 0.076)

0.070 
(0.047, 0.096)

0.017
(0.013,0.021)

0.013 
(0 .0 1 0 , 0.016)

0.132 
(0 .0 1 0 , 0.016)
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Ruddick et al. (1983) 0 .102 0.160 0 .0 2 2 0.023 0.031
(Chloroform) (0.074, 0.131) (0.132, 0.191) (0.017, 0.028) (0.017,0.029) (0.026,0.037)

Ruddick et al. (1983) 0.095 0.097 0.015 0.004 0.006
(BDCM) (0.074, 0.116) (0.065, 0.135) (0.011,0.019) (0.001, 0.007) (0.003, -0.008)

Ruddick et al. (1983) -0.117 -0.147 -0.038 0.038 -0.054
(DBCM) (-0 .2 1 2 , -0 .0 2 2 ) (-0.273, -0.063) (-0.070, -0.007) (0.007,0.069) (-0 .110 , -0 .0 2 0 )

Ruddick et al. (1983) 0.056 0.030 0.008 0.009 0.016
(Bromoform) (0.030,0.081) (0.003,0.061) (0.005,0.011) (0.006,0.012) (0.013,0.021)

Fischer-344 Rats

Narotsky et al. (1997) 0.105 0.108 0.042 -0 .0 0 2 0 .0 1 0

(BDCM -  com oil vehicle) (0.080, 0.131) (0.077,0.144) (0.029, 0.056) (-0.017, 0.012) (-0 .0 0 1 , 0 .0 2 1 )

Narotsky et al. (1997) 0.037 0.041 0.008 0 .001 -0.007
(BDCM -  aqueous vehicle) (0 .0 1 2 , 0.062) (0.009, 0.079) (-0.003,0.019) (-0.018, 0 .0 2 0 ) (-0.017, 0.003)

Dutch Belted Rabbits

Thompson et al. (1974) 0.036 0.044 0.021 0.014 0.017
(Chloroform) (0.004, 0.068) (-0.002, 0.103) (0.002, 0.040) (-0.008, 0.065) (-0.004, 0.040)

Jaime Peters PhD Thesis 2006 103



Chapter 5 Trihalomethanes and low birth weight

Table 5.4 Bayesian Information Criterion (BIC) values for the different dose- 

response models

Original Model Model A Model B Model D

Study Linear model: 
ln(OR) & 
ln(dose)

Logit model: 
ln(OR) & 
ln(dose)

Linear model: 
ln(OR) & dose

Logit model: 
ln(OR) & dose

Epidemiological studies

Dodds et al. (1999) 
(Total THMs) 2.04r 4.26 2.58 4.89

Gallagher et al. (1998) 
(Total THMs) 3.34 6.46 3.14 6.05

Savitz et al. (1995) 
(Total THMs) 3.80 4.84 2.79 5.15

Bove et al. (1992) 
(Total THMs) 5.10 9.90 5.32 11.03

Kramer et al. (1992) 
(Chloroform) 0.90 2.52 0.70 2 .2 0

Animal experiments

Sprague-Dawley Rats
Thompson et al. (1974) 
(Chloroform) 9.12 35.54 4.50 7.22

Ruddick et al. (1983) 
(Chloroform) 27.77 208.14 9.19 23.93

Ruddick et al. (1983) 
(BDCM) 10.77 59.86 24.86 91.99

Ruddick et al. (1983) 
(DBCM) 1.21 4.54 1.32 2.96

Ruddick et al. (1983) 
(Bromoform) 21.06 135.63 14.96 56.54

Fischer-344 Rats
Narotsky et al. (1997) 
(BDCM-corn oil vehicle) 3.83 67.99 39.73 125.16

Narotsky et al. (1997) 
(BDCM-aqueous vehicle) 11.62 33.92 17.79 38.51

Dutch Belted Rabbits
Thompson et al. (1974) 
(Chloroform) 1.21 2.96 1.54 3.66
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Table 5.5 Dose-response slope estimates and 95% Crls from the epidemiological studies obtainedfrom applying different body weight and

water intake assumptions

Original Model 
Linear: ln(OR) vs. ln(dose)

Model B 
Linear: ln(OR) vs. dose

Study Original assumptions Including variability Excluding variability 
of assumptions of assumptions

Including variability Excluding variability of 
of assumptions assumptions

Dodds et al. 
(1999)

0.052 
(-0 .0 0 2 , 0.106)

0.052 
(-0.002, 0.107)

0.052 
(-0.002, 0.107)

72.66 
(-9.97, 168.60)

62.99 
(-8.12, 133.8)

Gallagher et al. 
(1998)

0.252 
(-0.160, 0.662)

0.253 
(-0.155, 0.662)

0.253 
(-0.155,0.662)

674.70 
(-312.50,1798)

585.40 
(-260.3, 1433)

Savitz et al. 
(1995)

0.428
(-0.045,0.898)

0.428 
(-0.043, 0.897)

0.428 
(-0.043, 0.897)

400.40
(-81.91,958.50)

345.9 
(-68.39, 757.9)

Bove et al. 
(1992)

0.121  
(0.066, 0.175)

0.121
(0.066,0.175)

0.121  
(0.066, 0.175)

267.30 
(134.50,438.10)

229.2 
(125.2, 333.3)

Kramer et al. 
(1992)

0.016
(-0.015,0.048)

0.018 
(-0.017, 0.052)

0.018 
(-0.017, 0.052)

1696 
(-1332, 5032)

1472 
(-1124,4055)

Pooled estimate 
(Model la)

0.077 
(-0.017, 0.24)

0.078 
(-0.016, 0.239)

0.078 
(-0.016, 0.239)

154.20
(19.48,513.80)

148.60 
(20.28,466.20)
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For the ‘ln(dose)’ model, if the variability of the assumptions from the survey data 

is taken into account the estimates and 95% Crls do not change (compare results in 

column two and three in Table 5.5). However, taking into account the variability of 

the body weight and water intake assumptions in the ‘dose’ model, larger dose- 

response slope estimates are obtained and the variability associated with these 

estimates is much greater than when the variability is not taken into account. The 

model that includes information on the variability of the water intake and body 

weight assumptions is more appealing as it shows from the outset the amount of 

variability associated with the results. Clearly, as more accurate data are collected, 

the models can be updated.

Further assumptions were made in defining the percentage of control group animals 

that were of low birth weight in the animal experiments so that ORs could be 

calculated from the reported means (and standard deviations) of the foetal weights. 

Four further cut-off levels of low birth weight were applied: 5 %, 10 %, 20 % and 

taking two standard deviations below the control group mean (Foster and Auton, 

1995). The results are given in Figure 5.3.

When the cut-off values for low birth weight are changed there is little impact on 

the pooled slope estimates. Use of Foster and Auton’s definition of two standard 

deviations below the mean as low birth weight gives the largest departure from the 

estimate calculated in the initial analyses, however, this is a relatively small 

difference.

5.7.3 Checking o f model fitting assumptions and sensitivity ofprior distributions

Use of different ‘bum-in’ lengths, number of iterations and initial values in the 

Bayesian analyses in WinBUGS suggested that the models had converged 

satisfactorily. Convergence was assessed using a number of diagnostic tools 

available in WinBUGS: Gelman-Rubin plots for the convergence of multiple 

chains, the autocorrelation plot, the density plot and the history plot. Examples of 

these are given in Figures 5.4-5.7 for Model 3b (Equation 5.4).
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Figure 5.3 Pooled dose-response slope estimates obtained for different low birth 

weight cut-off values

Cut-off value 
for low birth w eight

Model 1e

Model 2

Model 3a

Model 3b
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2 std devs
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10%
20%
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-0.5 -0.2 0.0 0.2 0.4

Pooled d ose-resp on se slop e estim ate

0.6

Cut-off value used in the initial analyses. The dashed line indicates the pooled slope estimate from 

initial analysis for that Model.
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Figure 5.4 Gelman-Rubin plots for fi, 6t and x 2 in Model 3b (see Equation 5.4)
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Figure 5.5 Autocorrelation plots for ft, 6t and r 2 in Model 3b (see Equation 5.4)
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Figure 5.6 History plots for n, 0, and r 2 in Model 3b (see Equation 5.4)
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Figure 5.7 Density plots for n , 0 , and r 2 in Model 3b (see Equation 5.4)
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Assessment of the Gelman-Rubin plots (Figure 5.4) indicates that the 80% interval 

within each chain and the average 80% interval across the chains have a ratio of 

one, thus suggesting that convergence between the three different chains has been 

achieved (Brooks and Gelman, 1998). Figures 5.5 and 5.6 indicate that the Gibbs 

sample is mixing well, since there is little autocorrelation for all parameters (Figure 

5.5) and no evidence of the sample getting ‘stuck’ in a particular sample space 

(Figure 5.6).

As recommended by many authors including DuMouchel and Harris (1983), 

DuMouchel and Groer (1989), Prevost et al. (2000), Sutton et al. (2000), Sutton and 

Abrams (2001), Spiegelhalter et al. (2004) and Lambert et al. (2005) the sensitivity 

of vague prior distributions placed on the unknown parameters were assessed. In 

Model le, a. normal prior distribution, N(0,1011), which is slightly more diffuse than
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that used in the initial analyses, is placed on the pooled dose-response slope 

estimate, p. Two further prior distributions were placed upon the unknown between 

study precision component. They were: cr ~ N (0,104) ,  for a  > 0 , which is 

uniform on the variance, and 1 /cr2 ~ Uniform(0,104) which allows values very 

close to zero for the variance component. The results obtained from using different 

prior distributions in Model le  to synthesise all 13 studies are shown in Table 5.6.

Table 5.6 Results (slope estimates and 95% Crls) from using different *vague ’ 

priors in Model le

Prior for pooled slope estimate, p
Prior for between-study

precision, 1 / a 2_____________ N(0,109)________________ N(0,10n)_______

Gamma (0.001, 0.001) 0.061 (0.027, 0.094) 0.061 (0.027, 0.094)

N (0, 104)f, cr > 0 0.061 (0.026, 0.095) 0.061 (0.026, 0.095)

Uniform (0,104) 0.061 (0.030, 0.091)_______0.061 (0.030, 0.091)
T Prior distribution placed on between-study standard deviation

The findings suggest that changing the prior distributions in Model le  has very little 

effect on the estimate for the pooled dose-response slopes. Hence we can be 

confident that the Model le  is robust to the ‘vague’ priors used in the initial 

synthesis.

The prior distributions placed upon the unknown parameters p  1/cr] and l / v 2 in 

Models 3a and 3b are shown in Table 5.7.
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Table S. 7 Prior distributions used in the sensitivity analyses for Models 3a and 3b

Priors for between study-type Priors for between study Priors for pooled slope

precision, 1/v 2 precision, 1/a2 estimate, //

Gamma (0.001, 0.001) Gamma (0.001, 0.001) N(0,10y)

Gamma (0.1, 0.1) Gamma (0.1, 0.1) N(0, 1011)

Gamma (1, 1) Gamma (1, 1)

N(0,106)* for 1/v 2 >0 N(0, 106)ft for cry>0

N(0, 104)f for 1/v 2 >0 N(0, 104)ft for a  j  >0

N(0,102)f for 1/v 2 >0 N(0,102)nfor Gj >0

^  Prior distribution placed upon between-study standard deviation, Gj

The Gamma (0.1, 0.1) and Gamma (1,1) prior distributions placed on the precision 

parameters will allow for larger values for the variance component than those from 

using a Gamma (0.001, 0.001) prior distribution as in the original analysis. The 

half-normal prior distributions placed upon the standard deviation are uniform on 

the variance, and allow for differing ranges of plausible values for the variance 

component, with N(0,106) being the most diffuse of the half-normal variance priors.

The results of these sensitivity analyses are shown in Figures 5.8 and 5.9 for Models 

3a and 3b, respectively. Each plot A-F gives the pooled estimate and 95% CrI from 

the different vague prior distributions placed on the pooled slope // and the between- 

study precision 1 /a 2. For instance, in plot A the 12 different combinations for

vague prior distributions on /j, and 1 /a 2 are compared when the between study-type

precision 1 / v 2 ~ Gamma (0.001, 0.001); in plot B when 1/v 2 ~ Gamma (0.1, 0.1). 

Since there is a great deal of variability in the variance estimates for the different 

between study-type vague prior distributions in Model 3a, plots D-F in Figure 5.8 

are on different scales. There is less variability in the estimates in Figure 5.9, so 

each plot has the same scale to help comparison between the different specifications 

of the between study-type precision in Model 3b. The numbers 1-12 in each plot 

correspond to the following vague prior specifications,
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[1] 1/a j  ~ Gamma (0.001, 0.001); // ~ N(0, 109)

[2] 1 / a )  ~ Gamma(0.001, 0.001); H ~  N (0,10n )

[3] 1/a j  ~ Gamma(0.1,0.1); H ~ N(0, 109)

[4] l / a 2j  ~Gamma(0.1, 0.1); //~ N (0 , 10n )

[5] l / a 2 ~ Gamma(l, 1); yt/ — N(0, 109)

[6] 1/a2 ~Gam m a(l, 1); // ~ N(0, 1011)

[7] Gj~  N(0, 106), a  >0; H  ~ N(0, 109)

[8] a  j  ~ N(0, 106), a  >0; /y~N (0, 1011)

[9] cry ~N (0, 104), a  >0; H ~ N(0, 109)

[10] O' j  ~ N(0, 104), a  >0; yW-N^lO11)

[11] Oj  ~ N(0, 102), a  >0; H  ~ N(0, 109)

[12] cr, ~N (0, 102), a > 0; // ~ N(0, 1011)
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Figure 5.8 Pooled dose-response slope estimates and 95% Crls from sensitivity 

analyses o f the prior distributions in Model 3a

A. 1/v 2 ~ Gamma (0.001,0.001)
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Figure 5.9 Pooled dose-response slope estimates and 95% Crls from sensitivity 

analyses o f the prior distributions in Model 3b

A. 1/v 2 ~ Gamma (0.001,0.001) B. 1/v 2 ~ Gamma (0.1,0.1)
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Priors for the pooled dose-response slope parameter, p  

Changing the prior distribution placed on p  has very little effect on the pooled 

estimates and 95% Crls in both Models 3a and 3b (Figures 5.8 and 5.9). This 

suggests that the prior distribution used in the initial analyses, N(0,109), is 

sufficiently diffuse to let the data dominate in the synthesis.

Priors for the between study precision parameter, 1/cr2

Changing the between study precision prior in Models 3a and 3b does have an 

impact on the estimated pooled dose-response slopes and 95% Crls. In Model 3a, 

the impact is generally small (see Figure 5.8). The half-normal prior distributions 

on l/<jj ([7] -  [12]) give very similar estimates and 95% Crls to each other,

regardless of the prior placed on the between study-type precision parameter, 1/v2. 

But the gamma prior distributions ([1] -  [6 ]) give slightly different estimates and 

95% Crls. Larger slope estimates and 95%CrIs are obtained when the 

Gamma (1,1) prior distribution is applied than when the Gamma (0.1, 0.1) or 

Gamma (0.001, 0.001) prior distributions are applied. Use of the Gamma (1,1) 

prior, compared to the Gamma (0.1, 0.1) and Gamma (0.001, 0.001) priors, means 

that larger positive values for the variance components can be sampled and so the 

estimates are likely to be larger when Gamma (1, 1) is used than when 

Gamma (0.1, 0.1) and Gamma (0.001, 0.001) are used.

In Model 3b a pattern, similar to that in Model 3a, can be seen when gamma prior 

distributions are placed upon 1/cr2, regardless of the prior placed on the between

study-type precision, 1/v2. When the half-normal prior distributions are placed on 

1/a 2, they generally give similar results when a gamma prior is placed on the

between study-type precision parameter, 1/v2 (see Figures 5.9 A-C), but give 

slightly different estimates and 95% Crls when a half-normal prior is placed on 

1/v2 (see Figures 5.9 D-F). In this instance, the half-normal prior which allows for 

the most variation in the estimation, N(0,106), provides results with wider 95% Crls 

than those from the N(0, 104) and N(0, 102) priors, as might be expected.
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Priors for the between study-type precision, 1/v2

Comparing analyses by the between study-type precision prior means comparing 

results across the plots A-F in Figures 5.8 and 5.9. In Model 3a (Figure 5.8) the 

dose-response slope estimates from the different prior distributions are very similar, 

although there are differences in the precision of these estimates. Results from 

placing gamma prior distributions on 1/v2 are not that different in terms of point 

estimate and precision, but there are considerable differences in the precision of 

each estimate when a half-normal prior distribution is used (see Figure 5.8).

In Model 3b (Figure 5.9) the different half-normal prior distributions placed upon 

the between study-type precision, 1/v2, gave similar results to each other. When 

the Gamma (1,1) prior distribution is placed upon 1/v2, the results obtained have 

very little precision.

These sensitivity analyses demonstrate that the choice of prior distributions placed 

upon the unknown precision parameters in Model 3 may have a very important 

influence on the results obtained. As Lambert et al. (2005) discuss in their 

simulation study of the impact of prior distributions in a meta-analysis scenario, it is 

difficult to specify truly vague priors, particularly for variance parameters. This is 

more problematic when there are, in effect, only two pieces of evidence from which 

to estimate the variance, as is the case with Model 3a. However, none of the pooled 

slope estimates obtained from the analyses of Model 3 suggested a significant 

increase or decrease in the risk of low birth weight with exposure to THMs, and so 

the pooled estimates are robust to different choices of ‘vague’ prior, but the 

variability if these estimates are sensitive to the ‘vague’ prior placed on the 

parameters.

5.7.4 Changing relevance o f the animal data

Using a Bayesian model, it is possible to include judgements on the relevance of the 

data from the animal experiments to the setting of standards of safe exposure to 

humans. In Section 5.5.1, how prior distributions can be placed on the human data 

that relates to the information available from the animal data was demonstrated 

{Model lc ). As reviewed in Chapter 3, Prevost et al. (2000) and Sutton and Abrams
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(2 0 0 1 ) have looked at how the weight of one source of evidence may be changed in 

accordance with prior beliefs concerning the relevance of that evidence in the 

synthesis. In this chapter, the animal data dominate in Model 1c, but each source of 

evidence can be forced to have the same weight in the synthesis by making the 

variance of the animal data (which is used to form the prior distribution) the same as 

the variance of the human data. The effects on the overall pooled estimate of the 

human data when the variance of the animal data (used to form the prior 

distribution) is changed can be investigated. Rather than using the three prior 

‘beliefs’ that Sutton and Abrams (20001) used (see Section 3.5.2) to weight the 

animal data, a range of weights are employed here. Figure 5.10 shows the pooled 

estimates corresponding to the weight given to the animal experiments, a is the 

ratio of the variance of the human data and the animal data, so that, for example, 

when a = 2 , the variance of the animal data is twice that of the human data, so the 

human data has twice as much weighting in the synthesis. In the analyses reported 

in Section 5.5.1, where the animal data were used to form the prior for the synthesis 

of the human data (Model lc ), a is equivalent to 0.13 (as indicated on Figure 5.8). 

Thus highlighting the fact that the animal data have much more weighting in the 

synthesis than the human data.

Using different weights for the animal data to inform the synthesis of the human 

data has quite an impact on the results of the synthesis. Expert judgment can be 

incorporated to assess the relevance of the animal data to the human data in setting 

environmental exposure limits. Other methods addressing the issue of weighting in 

the synthesis of studies are available. Ibrahim and Chen (2000) explore the use of a 

power transform prior, whereby the likelihood function of historical evidence is 

raised to the power of p, where 0  < p  < 1 (such an approach could be applied to our 

example and possibly extended to include more sources of evidence). Prevost et al. 

(2000) extend their Bayesian three-level hierarchical model by incorporating 

constraints on certain parameters. For instance, they force the evidence from RCTs 

to be less variable than the evidence from observational studies. These additional 

methods, use of power transform priors (Ibrahim and Chen, 2000) and placing 

constraints on the different sources of evidence (Prevost et al., 2000), are
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demonstrated in Chapter 6  using evidence for an assessment of the 

neurobehavioural health risks from exposure to Mn.

Figure 5.10 Results o f changing the relevance o f the animal data on the pooled 

dose-response slope estimate from the human data
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5.8. Interpretation of dose-response estimates
The pooled dose-response slopes estimated from Models 1, 2 and 3 must be 

interpreted with care. It is not the intention of this assessment to obtain an average 

dose-response effect between exposure to THMs and low birth weight across 

species, but rather to estimate the effect in humans while taking account of all 

available and relevant evidence. This has meant the use and inclusion of evidence 

from animal experiments. It may therefore be argued that in Models 3a and 3b the
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main parameter of interest is 6j, the pooled dose-response slope for the human 

evidence, rather than n , the overall species effect.

The pooled dose-response slope estimates obtained in this chapter could be thought 

of as a first step in the BMD approach described in Section 2.3.1, i.e. calculation of 

a dose-response slope estimate. However, since regulatory agencies are now 

tending towards the use of slope estimates as the basis of setting exposure limits 

(Edler et al., 2005) rather than use of a single figure (since slope estimates are more 

informative (e.g. an estimate of risk for any level of exposure can be obtained) and 

are also relatively easy to interpret (assuming parsimony has been used to model the 

dose-response relationship)), no choice of critical effect needs to be made. 

Furthermore, since human and animal evidence are considered and, as shown, their 

relevance investigated using prior distributions, UFs are not required.

The aim of this chapter was to explore the usefulness of systematic review and 

meta-analysis methods in risk assessments, not to identify an exposure limit for 

THMs and the risk of delivering a low birth weight baby. However, in Table 5.8 

details of the estimates of risk for low birth weight based on results from Models lc  

and 3b are presented. This provides some illustration of how the dose-response 

slopes could be used in practice to inform human health risk assessments.

Table 5.8 Risk o f delivering a low birth weight baby derivedfrom synthesis Models 

lc  and 3b

Synthesis m odel P a ra m e te r
D ose-response slope 

estim ate

O R  (95%  C rI)  fo r  delivering  a  

low b ir th  w eigh t b ab y  w hen 

exposed to  100 p p b  T H M s

M odel lc Human effect, p 0.061 1.0002

(0.023, 0.099) (1.0001, 1.0003)

M odel 3b Hum an effect, 6j 0.068 1.0002

(0.001,0.156) (0.9999, 1.0005)

* defined as the increase in ln(OR) per unit increase in ln(dose)
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Estimates suggest a very small increased risk of delivering a low birth weight baby 

when exposed to 100 ppb of THMs compared to no exposure to THMs. Differences 

in the dose-response slope estimates from Models lc  and 3b, have little effect on the 

resulting OR for low birth weight. There is, however, more uncertainty in the 

estimate from Model 3b, providing less evidence than that from Model lc  on the 

increased risk of delivering a low birth weight baby from exposure to lOOppb of 

THMs. The increased risk indicated from the ORs reported here, is very small, but 

considering the large number of pregnant women potentially exposed to this level of 

THMs, such estimates could represent a large number of babies in practice.

It could be argued, however, that it is not the posterior distribution that should be 

used here (Ades and Higgins, 2005). If these findings are to be applied to a slightly 

different human population, it would be more appropriate to use the predictive 

distribution. For example, the human epidemiology studies included in this 

example were all carried out in North American, and so any uncertainty in the likely 

effect seen in the UK could be accounted for in the predictive distribution. This is, 

however, beyond the scope of this thesis, but discussion of this can be found in 

Prevost et al (2000) and Spiegelhalter et al (2004) among others.

5.9 Summary
The potential for systematic review and formal synthesis models to help in a risk 

assessment of an increased risk of delivering a low birth weight baby for exposure 

to THMs has been shown in this chapter. Many assumptions have had to be made, 

but use of these methods has forced explicit acknowledgement and description of 

these assumptions. The sensitivity of many of these assumptions has been 

investigated and depending on the dose-response model used, the assumptions made 

can have a critical effect on the estimates obtained.

The sensitivity analyses have also demonstrated the necessity of checking the 

appropriateness of the chosen dose-response model. For simplicity, a linear 

relationship between the ln(OR) for delivering a low birth weight baby and ln(dose) 

was initially assumed. However, the logit model is among the most commonly
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applied dose-response models in toxicology, together with the probit and Weibull 

models (Crump, 1984; Covello and Merkhofer, 1994; Lovell and Thomas, 1997). 

Here, the application of the BIC has suggested that the linear model provides a 

better fit to the data than the logit model. The use of Tn(dose)’ would seem more 

sensible than ‘dose’, as it reflects a multiplicative effect with increasing exposure.

In fact, in toxicology and pharmacology, Tn(dose)’ is generally used (Rang et al., 

1999). In this example Tn(dose)’ is more appealing as the epidemiological slope 

estimates from the Tn(dose)’ dose-response model have comparable magnitude and 

precision to those from the animal experiments. All of the dose-response models 

have assumed that, for the outcome of low birth weight, THMs are non-threshold 

substances (any exposure, however small, could increase the risk of delivering a low 

birth weight baby, see Sections 2.2 and 2.3). Although most exposures are believed 

to be threshold substances, given the lack of evidence on a possible threshold, this 

assumption appears reasonable. However, further work could consider whether a 

threshold effect exists for exposure to THMs.

A particular issue related to the construction of the dose-response slopes is that the 

animals are generally subjected to much higher doses than humans (i.e. 400 

mg/kg/day vs. 0.0042 mg/kg/day). Thus, evidence from the animal experiments 

concerns exposures way beyond those likely to be experienced by humans and so 

one could question the relevance here of the animal experiments. Subjecting 

animals to lower doses may help to increase relevance to the human situation, 

however, in order to have the power to detect any effects at these lower doses, many 

more animals may be required in the experiments, an approach that is not in line 

with the 3Rs (see Section 2.6).

A number of synthesis models have been used to combine the relevant THMs and 

low birth weight evidence, and in assessing which to recommend, account must be 

taken of the fact that, in this example, two different sources of evidence are being 

combined. Hence use of Model le  to synthesise all 13 studies is not advocated 

since it does not distinguish between the human and animal evidence. For this 

example, it is not clear which synthesis models are the most advantageous. In terms 

of taking into account the two different sources of evidence, Models lc and Id, 

which used informative prior distributions, are of interest. Since the human
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epidemiological data is of primary importance, Model lc  which synthesises the 

human evidence with the animal evidence forming the prior distribution is the more 

appealing of these two models. By assessing the relevance of the animal evidence 

and allowing it to have less influence in the synthesis, the impact of this particular 

source of evidence in Model lc can, and has been, explored quantitatively.

However, in Model 3b the human and species/strain specific evidence are modelled 

explicitly, with the hierarchical framework allowing the pooled human estimate to 

borrow strength from the pooled animal estimates. Moreover some idea of the 

between species-strain variability is obtained through the v 2 parameter in Equation 

5.4. Although estimated with a great deal of uncertainty (since it is based on very 

little information and the prior distribution placed on it is vague) v 2 could be used 

to investigate the relevance of the evidence from different species and strains to 

humans as part of future work. Since choice of synthesis model may not be clear, 

methods of model comparison could be extended (e.g. from use of BIC to inform 

choice of dose-response model in Table 5.4) to the use of Bayes Factors and 

averaging over the synthesis models (Kass and Raftery, 1995), as carried out by 

Sutton and Abrams (2001) in WinBUGS.

The sensitivity of limiting the systematic review in Section 5.3 to English language 

articles only has not been assessed. Such limitations could possibly lead to a biased 

set of evidence in the systematic review as pointed out in Section 4.4.2. Although 

problems of language translation arise when a search is not restricted to language, 

some foreign language articles tend to provide an English language abstract. This 

could provide sufficient information for inclusion into a systematic review when 

translation of the full text is not possible. However it is still unclear as to the impact 

language restrictions have (Egger et a l , 2003).

The impact of two assumptions made for the synthesis of the different evidence in 

this chapter has not been discussed. Dose-response slopes from two cohort, two 

case-control and one cross-sectional epidemiological studies were synthesised 

without account taken of the difference in designs. These differences could be 

important if bias in the study estimate is related to study design. Thus, one is 

assuming that estimation of the dose-response relationship is the same regardless of
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the study design and measures of effect used. Methods for the synthesis of different 

epidemiological study designs are available (Muller et a l , 1999; Martin and Austin, 

2000; Spiegelhalter and Best, 2003; Wolpert and Mengersen, 2004) and could be 

used and incorporated into the hierarchical models used in Sections 5.6. The effect 

of these different techniques to account for the fact different epidemiological study 

designs are synthesised would form further work into the sensitivity of the analyses 

carried out.

In this chapter, it was assumed that levels of total THMs, chloroform, BDCM, 

CDBM and bromoform are all equivalent (i.e. Total THMs = chloroform = BDCM 

= CDBM = bromoform). In reality the following relationship is true: Total THMS 

= chloroform + BDCM + CDBM + bromoform. Research has suggested that 

measures of chloroform and total THMs are highly correlated, but that correlations 

between total THMs and other individual THMs are not convincing (Whitaker et 

a l , 2003). One approach would be to consider that taken by DuMouchel and Harris 

(1983) where data from slightly different exposures are used to inform the exposure 

of interest and this is being investigating (Peters et a l , 2003).

Since this work was carried out three articles have been found that are relevant to 

this example: two human epidemiological papers each reporting a study of exposure 

to total THMs and the risk of delivering a low birth weight baby (Toledano et a l , 

2005; Wright et a l , 2005) and one paper reporting two animal experiments 

investigating exposure to BDCM in rats and rabbits (Christian et a l , 2002). 

Toledano et a l (2005) report increasing adjusted ORs for delivering a low birth 

weight baby with increasing levels of exposure to total THMs, although the 95%

CIs suggest that the evidence of an effect is not strong (low exposure, OR = 1; 

medium exposure, OR = 1.05 (95% Cl 0.96, 1.15); high exposure, OR = 1.09 (95% 

Cl 0.93, 1.27)). Wright et al (2005) do not observe strong evidence of an increase 

in the adjusted OR for low birth weight risk with exposure to total THMs (low 

exposure, OR = 1; medium exposure, OR = 0.97 (95% Cl 0.81, 1.26); high 

exposure, OR = 1.05 (95% Cl 0.85, 1.29)). Christian et a l (2002) observe an 

increase in foetal weight with exposure to DCBM of up to 150 parts per million 

(ppm) in both the rat and rabbit experiments compared to no exposure to DCBM, 

but a decrease in foetal weight for exposures of 450ppm and 900ppm. As part of
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further work these articles, and any subsequently identified, will be included in a re

analysis to provide an up-dated synthesis of the evidence, hopefully offering more 

information.

In this example a reasonable amount of similar evidence was available to apply 

systematic review and meta-analysis methods in an attempt to illustrate their 

potential in human health risk assessments. However, in reality this example was 

quite artificial in terms of human health risk assessment as a single health outcome 

was chosen (rather than assessing a range of possible health outcomes that may or 

may not be seen as more severe or occurring at lower levels of exposure as would 

be done in a traditional risk assessment). For instance, other related outcomes 

should be considered e.g. premature birth, stillbirths. When dealing with a number 

of potentially adverse effects a more formal decision modelling approach may be 

desirable so that both the evidence on, and the impact of, of these effects may be 

simultaneously assessed whilst allowing for appropriate correlation and uncertainty 

(Cooper et al.9 2004). In the next section a second risk assessment example is used 

to illustrate the potential usefulness of systematic review and meta-analysis methods 

in human health risk assessments.
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Manganese and neurobehavioural 
effects: example II

6.1 Chapter overview
The potential usefulness of systematic review and meta-analysis methods in human 

health risk assessment for environmental chemicals is further explored in this 

chapter using the example of occupational exposure to manganese (Mn) and adverse 

neurobehavioural effects. This example is quite different to that used in Chapter 5, 

which allows assessment of the general, and more specific, issues involved in 

applying systematic review and meta-analysis methods to human health risk 

assessment. The example of Mn and neurobehavioural effects is introduced in 

Section 6.2 and compared to the THMs and low birth weight example of Chapter 5. 

In Section 6.3, a systematic review of the evidence relevant to a risk assessment of 

exposure to Mn and neurobehavioural health effects is described. Advantages of 

this approach to identifying and reviewing the evidence are discussed. The diverse 

human and animal data found to be relevant for this risk assessment are described in 

Section 6.4. Data on a particular outcome, activity level are synthesised within each 

different species in Section 6.5. Advantages of synthesising pieces of similar 

evidence and graphical presentation of the data are discussed. In Section 6 .6 , a 

subset of the activity level evidence in which data exist from human occupational 

epidemiology studies, and from rat, mouse and bird experiments are used to 

illustrate methods to synthesise evidence from diverse sources. Finally, in Section 

6.7, further meta-analysis techniques are discussed in terms of their ability to help 

overcome some of the limitations of current risk assessment methods.
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6.2 Introduction
To evaluate the potential of systematic reviews and meta-analyses in human health 

risk assessments it is advantageous to have illustrative examples where many 

differences exist between them so that general issues of the application of 

systematic reviews and meta-analyses can be investigated in addition to those 

specific to the individual examples. Previous reports suggest that neurobehavioural 

effects are the most common health effect of increased exposure to Mn generally 

observed at lower levels of exposure (Clewell et al 2003). As a consequence, 

neurobehavioural health effects are investigated in this chapter.

The example of occupational exposure to Mn and neurobehavioural health effects is 

quite different to THMs and low birth weight (Chapter 5) for a number of reasons. 

The exposure profiles (the levels of exposure, the likely populations exposed and 

the routes of exposure) represent many of these differences. Mn is an essential 

element; so not only is there a level at which exposure to Mn is harmless, but 

exposure at a certain level is required to maintain good health (WHO, 1981). In 

Chapter 5, THMs were assumed to be non-threshold substances, and so any dose- 

response modelling for Mn will differ to that for THMs, since the threshold effect 

needs to be accounted for.

Everyone is exposed to Mn, but although it is an environmental substance found in 

rock, soil, water and food, the major source of exposure of Mn at toxic levels is 

occupational (WHO, 1981). Therefore unlike THMs where whole populations are 

potentially exposed but at quite modest levels, fewer people are at risk from high 

levels of exposure to Mn (i.e. only those working in particular industries), but the 

levels of exposure they experience are quite substantial. Another difference in the 

exposure profile of Mn compared to THMs, is the route of exposure: the main route 

of exposure to toxic levels of Mn is via inhalation (e.g. dust), whereas the main 

route of THMs exposure is via drinking water. This difference has implications 

when comparison of the human and animal studies is considered. In the THMs 

example all of the animal experiments reported oral exposure to THMs to coincide 

with the main route of human exposure, however, as will be seen in Section 6.3, 

only a small percentage of the relevant animal experiments expose animals via
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inhalation (as the main route of human exposure). Thus, comparison across human 

ands animal experiments on Mn is made more complex.

The health outcomes considered in the two examples are also quite different. 

Whereas low birth weight is easily measured and defined, and can be applied 

globally (WHO, 2004), neurobehavioural health effects represent a number of 

different outcomes involving adverse effects relating to emotion, learning and 

behaviour, which are often measured using a number of different tests and 

techniques. As a consequence, adverse neurobehavioural effects are much more 

difficult to quantify and define as will be seen in this chapter. This means that 

consistency across outcomes is a particularly important feature of human health risk 

assessments where neurobehavioural effects are of interest, and as will be shown, 

systematic review and meta-analysis methods can facilitate such assessments.

To build upon the work of Chapter 5, a broader range of possible health effects are 

assessed in this chapter, neurobehavioural effects, as opposed to a specific outcome 

(as in the THMs example, low birth weight). Initial species-specific meta-analyses 

use the models given in Equations 3.1 and 3.2 in a classical statistical framework 

(Section 6.5). In Section 6 .6 , Bayesian methods of synthesis, following on from 

those applied in Chapter 5, are used.

6.3 The systematic review
As with Chapter 5, the focus here is on the potential of evidence synthesis methods 

and not the systematic review methods used to identify the evidence and so only 

limited details are given. Appropriate guidelines were followed (Deeks et a l, 2001) 

to conduct a systematic search of all potentially relevant human studies and animal 

experiments for a risk assessment of the neurobehavioural effects from exposure to 

Mn. The search was carried out in Medline and the search strategy used is given in 

Appendix G. No limitations were placed on the language of the article, although 

articles not in English were not translated. As discussed in Sections 4.4.3 and 5.9 

current research suggests the implications of using English language articles only 

are unlikely to induce bias into the review. The Medline search was supplemented
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by a review of references used in a draft version of the IEH/IOM joint report on 

occupational exposure limits for manganese (IEH and IOM, 2004) and the ATSDR 

Toxicological Profile for Manganese (ATSDR, 2000). Relevant articles had to 

report details of a human study or animal experiment on possible neurobehavioral 

effects from exposure to Mn. Neurobehavioural effects were defined to be any 

adverse effects associated with learning, emotion and behaviour. The 

bibliographies of all relevant articles were searched to identify further references 

that may be of interest. From a list of 579 potentially relevant articles, 92 were 

found to be relevant, 55 of which were human epidemiology studies and 37 were in 

vivo animal experiments. A list of these 92 references is given in Appendix G. 

There are many differences between these studies in terms of the species and strains 

of animals and the routes of exposure used in the experiments. These differences 

are illustrated in Table 6.1.

There is a great amount of diversity in the evidence relevant for this risk 

assessment. In the animal experiments, not only are different strains of species used 

(e.g. Sprague-Dawley and Wistar rats), but experiments have been carried out in 

quite different species, from mice and birds to dogs and monkeys. Moreover, the 

route of exposure to Mn used in a study appears to be related to the species used. 

The majority of experiments in rats assess oral exposure to Mn, monkey 

experiments generally involve injecting Mn and human studies mainly concern the 

inhalation of Mn. In the following section the diversity of the relevant human and 

animal evidence is described and discussed in further detail.
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Table 6.1 Diversity o f evidence available for the risk assessment o f manganese and 

neurobehavioural effects

Species Strain Route of exposure 

Inhalation Oral Injection

Rat Sprague-Dawley 1 4* 3*

Wistar 2

ITRC albino 2

CD 1

ITRC 1

Albino 3

Total 1 13 3

M ice CD-I 1

ddY 2

Swiss 1

ICR Swiss 1

Total 2 3 0

Birds Quail 1

Dogs Beagle 1

Rabbits unknown 1 2

M onkeys Rhesus 2 1 2

Macaca fastcicularis 3

Indian red-haired 1

Squirrel 1

Cebus 1

Total 2 1 8

H um ans

- Occupational studies 50

- Environmental studies 5

Total 50 5 0

Overall total 56 2 3 * I f

* Two experim ents (oral and injection) are reported in one article
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6.4 The evidence
6.4.1 Human epidemiological evidence

All but five of the human studies are occupational epidemiology studies of a cross- 

sectional design where inhalation is the route of exposure to Mn (Table 6.1). The 

earliest human epidemiology studies relevant to this review were published in 1941 

(Flinn et al., 1941; Kawamura et a l , 1941), and have been carried out in many 

countries across the world including those in Europe, Asia, South and North 

American and Australasia. The different occupations considered include mining, 

steel works, dry cell battery factories, welding, enamels production factories and 

alloy plants. Although the focus of this chapter is occupational exposure to Mn, 

non-occupational studies may provide useful information on health effects. The 

five environmental studies concern oral exposure to increased levels of Mn in the 

water supply due to environmental levels (Kondakis et al., 1989), intoxication from 

nearby industry (Beuter et al., 1999; Vieregge et a l , 1995), and accidental 

intoxication (Kawamura et a l, 1941; Kilbum, 1987).

Exposure to manganese

Many different Mn compounds are assessed in the occupational epidemiology 

studies, e.g. pyrolusite, Mn dioxide, ferromanganese. For an exposure assessment 

typically an ‘amount’ of exposure has to be determined from a measured level of 

some form of Mn and take into consideration length of exposure. Often in an 

occupational study a level of exposure cannot be measured or estimated, and so to 

classify the amount of Mn exposure, workers are defined in terms of the type of job 

they do or in which areas of a factory, say, they spend most of their working time. 

Often exposure assessment can be quite uncertain. Comparisons across studies 

between the exposures individuals experience is difficult. The different approaches 

used to monitor and measure exposure, the different levels of exposure experienced 

(e.g. very high for miners, much lower for welders) and the different compounds 

individuals may be exposed to all increase the complexity of any cross-study 

comparison.

In the occupational epidemiology studies where Mn has been measured, levels in 

air, blood, urine and hair are reported. In some studies only length of exposure
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(estimated by length of employment) is reported (Abd El Naby and Hussanein,

1965; Kilbum, 1987; Sjogren et al., 1990; Huang et al., 1993; Kilbum, 1998; 

Kilbum, 1999). Other studies do not attempt to determine an ‘amount’ of exposure, 

but just report whether subjects were exposed or unexposed (Rodier, 1954; Mena et 

al., 1967; Styblova et al., 1979). Generally, these are the oldest studies, when 

methods to measure Mn exposure were not available.

In cases where Mn has been measured or estimated, it is typically done so as a level 

of exposure in air and reported as a volume, mg/m . However, there are yet more 

differences in how Mn levels in air are estimated and reported in the occupational 

epidemiology studies varying in cost, practicality and accuracy. These levels may 

be measured from a stationery device (placed in a particular area of the factory) or a 

personal device (attached to an individual in an attempt to measure their personal 

exposure levels). Additionally, some studies measure and report total Mn dust 

levels in air (the amount of dust taken in by an individual) while other studies 

measure and report respirable levels (the amount of dust likely to enter the 

respiratory tract -  a proportion of the total dust levels).

Attempts to compare exposure levels across studies are further limited by how the 

levels are reported; for instance, the range of exposure levels in the exposed and 

control groups (Brown et al., 1991), the average estimated or measured exposure 

level (Gibbs et al., 1999), upper limits for exposure (Flinn et al., 1941; Hua and 

Huang, 1991). Thus comparison of exposure levels is incredibly difficult with such 

diverse measuring and reporting of Mn levels in occupational settings, reflecting 

issues of cost, practicality and accuracy. This not only has implications for 

comparison across a number of human studies, but also in comparison with findings 

from relevant animal studies. If individual subject (patient and animal) data were 

available, many of these problems could be overcome to ease comparison.

However, these data are not available and so comparison is made at an aggregate 

level. This not only brings challenges for the comparison of exposure levels across 

studies, but introduces further problems such as the ecological fallacy (this is 

discussed further in Section 6.5.2).)
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Neurobehavioural health effects

The different health outcomes and how they are tested add even further complexity 

to the comparability of the human epidemiology studies. The types of 

neurobehavioural health effects can be summarised using categories set out by 

Iregren (1999). Although Iregren (1999) describes these categories as arbitrary, 

since different tests often contain aspects of more than one particular category, they 

provide a useful basis for assessment of the outcomes and have been used by others 

(Fem-Pollak et al., 2004; DuMont et al., 2005). They are:

-  Motor function

-  Memory

-  Reaction time

-  Other cognitive function

-  Mood and subjective symptoms

In Table 6.2 the different neurobehavioural health effects assessed in the human 

epidemiological studies are presented. Each row represents a type of study which 

has been defined by the health effects measured. The first row indicates there are 

four studies where all five types of neurobehavioural outcomes were investigated; 

the second row shows that two studies report an assessment of motor function, 

memory, reaction time and other cognitive function, but not mood or subjective 

symptoms.

27 of the 55 epidemiology studies report using tests to assess neurobehavioural 

effects from at least two of Iregren’s outcome categories; seven studies only test 

aspects of motor function (penultimate row of Table 6.2). In these 34 epidemiology 

studies test results are reported in terms of mean scores (and usually standard 

deviations) for the exposed group and the control group. Many different tests are 

reportedly used to measure the same neurobehavioural effect. For example, 13 

different types of motor function tests are identified in the 55 epidemiology studies, 

with some of these having up to 5 different versions (e.g. for the pegboard test 

which measures dexterity, Purdue, Santa Ana, Grooved, SPES and undefined 

versions are reportedly used).
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Table 6.2 The type andfrequency o f neurobehavioural effect outcomes investigated

in the 55 human epidemiological studies

No. studies 
assessing 

combinations 
of outcomes

Motor
function Memory Reaction Time

Other
Cognitive
function

Mood/
subjective
symptoms

4 X X X X X
2 X X X X
2 X X X X
1 X X X
1 X X X X
3 X X X
2 X X X X
1 X X X
1 X X X
1 X X
1 X X X
1 X X
3 X X
1 X X X X
2 X X X
1 X X
7 X

21 X

In the 21 studies that only reported outcomes for mood or subjective symptoms, no 

tests are carried out (last row of Table 6.2); instead the number of exposed or 

control subjects judged to be suffering a particular symptom is reported (although 

some of these studies do not report findings for a comparative control group). Thus, 

some studies report mean scores for many different tests and neurobehavioural 

outcomes while others report the proportion of individuals indicating changes in 

mood or subjective symptoms. These differences in how the outcomes are assessed 

and presented impacts upon the comparability of these studies, and have severe 

implications for the synthesis of such evidence.

6.4.2 Animal experiment evidence

Of the 37 relevant animal experiments, 16 are on rats (including one study 

presenting results for both oral and injection exposure), 11 on monkeys, 5 are 

experiments on mice, 3 on rabbits, one on dogs and one on birds. Within these 

species a number of different strains are used (see Table 6.1).
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Exposure to manganese

As with the human evidence, there is a great deal of variation in how exposures are 

measured and reported in the animal experiments. The routes of exposure used in 

the experiments differ between the animals used. Half of the experiments use oral 

exposures to Mn, typically given in drinking-water. In general it is rats that are 

orally exposed to Mn, while monkeys are much more likely to be exposed though 

injection. Six of the experiments use inhalation as the route of exposure reflecting 

the usual route of human occupational exposure to Mn.

Different Mn compounds are assessed including manganese chloride, manganese 

oxide and manganese carbonate. The frequency and length of exposure also varies 

between experiments. Although dose levels are generally well reported in these 

experiments when drinking water is the route of exposure to Mn, animals are 

generally caged together, and so how much a particular animal drinks is unknown. 

Hence, the amount of Mn an animal is exposed to in practice may not be as 

accurately reflected in the reporting of the experiment, as one may have been led to 

believe by the fact that animal experiments are more controlled than human 

epidemiology studies.

Neurobehavioural health effects

Animals are tested for neurobehavioural effects in 18 of the 37 experiments. The 

mean scores and standard deviations for each test at each dose level are usually 

reported in the experiments. In the other 19 experiments certain behaviours and 

symptoms related to neurobehavioural health effects are observed in the animals by 

investigators (such as lethargy, unsteady gait, tremor, muscular weakness). The 

number of animals per dose group exhibiting these various behaviours and 

symptoms are reported in the experiments.

6.4.3 Summary

In this section, the diversity in design, measurement and reporting of studies 

relevant to an assessment of the risks to neurobehavioural health effects from 

exposure to Mn has been highlighted. The many differences in study population, 

Mn exposure (in terms of compound, level, length and frequency), 

neurobehavioural health effects assessed and the tests used for an assessment are
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unlikely to be specific to this example. The diversity described in this section 

highlights some of the challenges faced by risk assessors in an attempt to review 

and evaluate all of the relevant evidence for a comprehensive risk assessment. 

Having already shown that a systematic review offers a way of identifying and 

reviewing evidence that allows transparency and reproducibility, in the next section 

I demonstrate how meta-analysis methods can help overcome some of the 

limitations of current risk assessment approaches. Because of the diversity of the 

evidence a synthesis of all the relevant data may be limited. Instead systematic 

review and meta-analysis methods can be used to summarise evidence on similar 

exposures and effects, strengthening the risk assessment by offering a more 

structured and transparent framework. Meta-analysis methods are applied to a 

particular neurobehavioural health effect, activity level, in an attempt to 

demonstrate how these methods can be used in the risk assessment process, 

overcoming some of the current limitations of the risk assessment process.

6.5 Synthesis of the evidence: activity level
This particular outcome, activity level, was chosen as research suggests that changes 

in motor function abilities are the first symptoms of adverse exposure to Mn 

(ATSDR, 2000; WHO, 1981) and activity level is one of many markers for motor 

function ability. However, this health outcome is quite subjective and, perhaps, 

vague in that there is no threshold corresponding to normal activity levels by which 

to make comparisons. Moreover, many factors could contribute to reduced or 

increased activity levels, but because such vague and subjective health outcomes are 

often the first indications of an adverse effect in humans they are important to 

monitor. Sixteen human epidemiology studies report level of activity as a health 

outcome in the Mn literature; a further 17 animal experiments are also relevant to an 

assessment of this outcome. Activity level scores are available in four of the human 

epidemiology studies and ten of the animal experiments. For each of these, the 

mean activity scores in the exposed and control groups are reported. In the other 

human epidemiology studies and animal experiments, activity level is reported as 

the number of subjects reporting, or observed to have, a negative symptom relative 

to activity level (e.g. fatigue, exhaustion, restlessness). Some studies report both
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types of responses. Application of meta-analysis methods to the human evidence 

are described in Section 6.5.1, in addition to the difficulties and limitations of any 

synthesis. Similarly, meta-analysis methods to evaluate the animal activity level 

evidence are described in Section 6.5.2. In Section 6 .6 , evaluation of all the 

evidence (human and animal) using meta-analysis methods is demonstrated.

6,5.1 Assessing the human evidence

Before any synthesis of the human epidemiological evidence on activity level and 

Mn exposure can be done, four issues need consideration. Firstly, relevant data 

from two studies (Wennberg et a/., 1991; Camerino et a l, 1993) is not clearly 

reported and so these studies are excluded from further analyses. The second issue 

is that a number of different symptoms have been investigated and reported.

Fatigue is the most commonly investigated symptom and so in the synthesis of 

activity level evidence the focus will be on fatigue and fatigue-like symptoms of 

drowsiness, asthenia, tiredness and lethargy. Scores for vigour from the four 

epidemiology studies using questionnaires will also be considered and synthesised. 

Thirdly, a number of studies report more than one outcome as a measure of activity 

level for the same set of subjects. Although these can be compared to assess the 

consistency of reporting, these symptoms are likely to be correlated (e.g. vigour and 

fatigue), and so this correlation should be taken into account. However there is a 

lack of individual data on how the various symptoms correlate with each other and 

so to avoid this correlation, only one activity level outcome from each study will be 

included in the analyses. The fourth issue is that measures of fatigue or vigour from 

four studies are reported as mean scores and their variances, while the remaining 

studies report the number of subjects in the control and exposed groups exhibiting a 

particular fatigue-like symptom. Clearly these different measures of fatigue cannot 

be compared directly. For the four studies reporting mean fatigue scores from a 

questionnaire, the standardised mean difference between scores in the control group 

and those in the exposed group have been calculated by

d = *HZ^L (6 .!)
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where xo is the mean score for the control group, xj is the mean score in the exposed 

group and <x01 is the sample standard deviation defined below, where <x0 and erx are

the standard deviations in the control and exposed group, and no and nj are the 

number of subjects in the control group and the exposed group, respectively.

_ (n0 -l)cr0 +(n,-l)a,
CT°i 11 ----------1------iV "o + ” 1 ~ 2

The variance of d, the standardised mean difference is given by Equation 6.3 

(Sutton et al., 2000).

, nQ+ nx d 2var( d) = —-----L + ------------  (6.3)
n0nx 2 (n0 +nx)

For studies in which the number of subjects with a fatigue-like symptom are 

reported, the ln(OR) for reporting a fatigue-like symptom in the exposed group 

compared to the control group is calculated. Let nXe be the number of subjects in 

the exposed group exhibiting a symptom, n2e be the number of subjects in the 

exposed group not exhibiting a symptom, with nXc the number of subjects in the 

control group exhibiting a symptom and n2c the number of subjects in the control 

group not exhibiting a symptom by

In {odds) e = In
V 2e y

In (odds)c = In nlc (6.4)

In (OR) = In (odds)(
In (odds)c

where a comparative control group is not reported only the ln(odds)e is calculated. 

The studies, the symptoms reported and the outcome measures calculated are 

displayed in Table 6.3.
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Table 6.3 Evidence from the human epidemiology studies used in subsequent analyses

Study Year Symptom
No.

exposed
No.

controls
Standardised mean difference 

in symptom score
Ln(OR)

Ln(odds) in exposed 
group

Estimate Variance Estimate Variance Estimate Variance

Huang et al. 1990 Vigour 61 61 0.181 0.033

Huang et al. 1990 Fatigue 61 61 -0.545 0.034

Mergler et al. 1994 Vigour 74 74 0.293 0.027

Mergler et al. 1994 Fatigue 74 74 -0.630 0.028

EC 1997 Vigour 151 98 -0.226 0.017

EC 1997 Fatigue 151 98 -0.238 0.017

Kilbum 1998 Vigour 41 66 1.066 0.045

Kilbum 1998 Fatigue 41 66 -1.190 0.046

Flinn et al. 1941 Drowsiness 23 16 0.788 2.772 -2.708 0.711

Mena et al. 1967 Asthenia 13 8 6.129 4.192 3.296 2.074

Jonderko et al. 1971 Asthenia 46 45 0.143 0.338 -1.661 0.159

Saric et al. 1977 Fatigue 369 204 0.164 0.032 -0.355 0.011

Wang et al. 1989 Fatigue 8 32 1.059 0.603 0 0.444

EC 1997 Tiredness 151 98 0.675 2.683 -4.608 0.673

Gibbs et al. 1999 Fatigue 75 75 0 0.10953 -0.400 0.055

Deschamps et al. 2001 Asthenia 138 137 0.334 0.063 -0.408 0.030

Rodier 1955 Fatigue 115 -2.027 0.084

Schuler et al. 1957 Fatigue 15 1.686 0.474

Abd El Naby & Hussanein 1965 Lethargy 45 -1.997 0.206
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Using classical fixed and random effects meta-analysis methods (see Equations 3.1 

and 3.2 in Chapter 3), pooled estimates for the standardised mean difference in 

fatigue and vigour scores, ln(ORs) for reporting a fatigue-like symptom for an 

exposed individual compared to a control individual and the ln(odds) of reporting a 

symptom if exposed are given in Table 6.4.

As described in Section 3.3.2,12 gives an estimate of the amount of heterogeneity 

between studies in a meta-analysis (Higgins and Thompson, 2002). For each meta- 

analysis carried out here, I was calculated. Since the estimates of I suggest 

between-study heterogeneity in all of the meta-analyses Table 6.4, only the random 

effects pooled estimates are discussed. The pooled standardised mean difference in 

scores from the four studies using a questionnaire to assess activity level suggest 

that exposed workers experience stronger feelings of fatigue than workers in the 

control group. This is also reflected in the pooled ln(OR) for reporting a fatigue

like symptom, where exposed subjects are more likely to exhibit symptoms of 

fatigue than the control subjects, though not significantly so (OR=1.35; 95% Cl 

0.91, 2.00). Interpretation of the pooled log odds of exposed workers reporting a 

symptom is difficult without a control. However since inclusion of the data from 

three studies that do not have a comparative control group does not appreciably 

change the pooled ln(odds)e calculated for the eight studies with comparative 

control groups one may argue that the conclusions would not have changed 

substantially if such control groups did exist for these three studies. This gives 

confidence to the findings that exposed workers experience more fatigue than 

workers in the control group. Although some comparison across these types of 

pooled estimates can be made, i.e. assessing whether they are all indicating a similar 

pattern, any further comparison or powerful estimate of an effect is not possible 

with the data as they currently are.
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Table 6.4 Combined effects for measures offatigue and vigour from the relevant human epidemiology studies

Symptom No. studies 
in analysis Standardised mean difference in score Ln(OR) for reporting a symptom Ln(odds) for reporting a symptom 

(exposed group)

Fixed Random I2 Fixed Random I2 Fixed Random I2

Vigour 4 0.18 
(0.02, 0.34)

0.31 
(-0.19, 0.81)

89
(75, 95) • •

Fatigue 4 -0.54 
(-0.70, -0.37)

-0.63 
(-1.0 0 , -0.26)

80 
(46, 92) • • •

Fatigue/
drowsiness/

8
0.24 0.30 33 -0.47 -0.93 90

asthenia/
tiredness

(-0.01,0.48) (-0.09, 0.69) (0, 70) (-0.63,-0.31) (-1.52, -0.33) (84, 94)

Fatigue/
drowsiness/
asthenia/
tiredness/

11 .
-0.59 

(-0.74, -0.45)
-0.98 

(-1.59, -0.38)
86

(75,92)

lethargy
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Methods do exist for the synthesis of outcomes on a continuous scale with those on 

a binary scale (Whitehead et al., 1999; Chinn, 2000). However, these methods are 

not applied here for a number of reasons. Firstly, the method proposed by 

Whitehead et al., (1999) cannot be used as there is no threshold for ‘normal’ scores 

of fatigue from the questionnaires. Secondly, to use Chinn’s method the assumption 

that fatigue is measured on the same underlying scale in the different types of 

studies has to be made. This is a strong assumption to make here as fatigue is 

actually measured in some studies, but observed in others. If this assumption is 

made then use of Chinn’s transformation could be used to compare levels of fatigue 

between control and exposed subjects in the 11 studies. Methods also exist to 

combined evidence from one-armed and multi-armed trials (Begg and Pilote, 1991). 

This approach could be used here, if there were evidence from studies that only 

looked at the symptoms of fatigue for control subjects.

So far the health effects have been described in terms of those exposed to Mn and 

those not exposed, no levels of exposure have been used in the analyses. To help 

derive an exposure limit for Mn some consideration of the level of Mn workers are 

exposed to must be made. However as pointed out in Section 6.4.1 exposure data 

can be poorly reported in studies.

Of the 14 epidemiology studies in Table 6.3, three present no information on 

exposure levels for the subjects in their study (Rodier, 1955; Mena et al., 1967; 

Kilbum, 1998). One study uses length of exposure to categorise individuals (Abd 

El Naby and Hussanein, 1965), a further three studies provide estimates of likely 

exposure levels in air (Flinn et al., 1941; Wang et al., 1989; Huang et al., 1990), 

although one of these also measures levels of Mn in blood (Wang et al., 1989). In 

the remaining seven epidemiology studies, measured exposure levels are reported. 

Six report measured levels of Mn in air in terms of ranges (Mergler et al., 1994; EC, 

1997; Saric et al., 1977; Deschamps et al., 2001), upper limits (Schuler et al., 1957) 

or calculate a cumulative exposure index (Gibbs et al., 1999). A number of these 

studies report ranges of Mn levels in blood and/or urine, as well as in air. The final 

study (Jonderko et al., 1971) reports a lower limit for Mn levels in blood.
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This diversity in the reported exposure data adds a further level of complexity to the 

setting of an occupational exposure limit for Mn and restricts a more quantitative 

assessment of exposure as subjective judgement is required in making assumptions 

so that the levels of measured and estimated Mn exposure in different mediums can 

be compared. However, if such diversity in the reported exposure levels did not 

exist, the results of an assessment of the exposure levels should be interpreted 

cautiously, since aggregate exposure data are used. An assessment of exposure 

would be much more informative if individual subject data were available.

6.5.2 Assessing the animal evidence

As with the evidence from the human epidemiology studies, many differences exist 

between the 17 animal experiments, and these must be addressed before the data can 

be synthesised. First, evidence from four of the 17 experiments cannot be included 

in the analyses as there are insufficient data on either the number of animals in each 

dose group (Calabrese et al., 1999) or the number of animals exhibiting a negative 

activity symptom (Chandra, 1972; Subhash and Padmashree, 1991; Dorman et al., 

2000). Secondly, in a number of experiments, the animals’ activity levels are 

measured at numerous time-points. To overcome differences in time-points and 

frequency of the measurements between different experiments, the final (or only) 

time-point measure reported in each experiment is used as the main outcome.

Thirdly, two experiments (Bonilla, 1984; Pappas et al., 1997) report results for more 

than two groups, while the remaining experiments have only one exposed group 

which is compared to a control group. Although reducing the amount of 

information that can be used, for ease of comparison, the lowest and highest dose 

groups in the two experiments are used in the subsequent analysis. Fourthly, most 

experiments test activity levels and report mean scores (and standard deviations) for 

the exposed and control groups. Since the measurement scales are not the same for 

all experiments, the standardised mean difference between control and exposed 

animal activity scores have been calculated using Equation 6.2. A positive 

standardised mean difference suggests control animals are more active than exposed 

animals. In the other three experiments animals are observed and the number in 

each group showing adverse activity level effects is given. From these proportions, 

the ln(ORs) for an exposed animal to exhibit a negative activity symptom compared
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to a controlled animal is calculated using Equation 6.3. Finally data on a number of 

different species and strains of animal are available in these experiments. The data 

are analysed by the different species used, thus giving some idea of the observed 

effect from exposure to Mn across different species. The data available from the 17 

animal experiments and the standardised mean differences or InORs for an effect on 

activity level are shown in Table 6.5.

The pooled standardised mean differences in activity counts between exposed and 

control animals (where a positive value indicates less activity in the exposed group, 

see Equation 6.1) and ln(ORs) for observing a negative activity symptom (see 

Equation 6.4) using classical fixed and random effects meta-analyses (see Equations

3.1 and 3.2 in Chapter 3) are shown in Table 6 .6  by animal species. The pooled 

standardised mean differences suggest that rats exposed to Mn are much more 

active than control rats, but this pattern is not seen with exposed mice and birds 

compared to unexposed mice and birds. In fact the evidence for mice and birds 

tends to suggest animals exposed to Mn are less active than control animals. This 

suggests that Mn exposure has an adverse effect on all species, but for rats its effect 

is to increase activity levels, while for humans (Table 6.4), mice and birds (Table 

6 .6 ) activity levels tend to decrease with exposure to Mn.

The pooled ln(ORs) from experiments on monkeys suggests that exposed monkeys 

are over 7 times more likely (95%CI: 1.05, 51.42) to be observed exhibiting an 

adverse activity symptom than unexposed monkeys. The uncertainty associated 

with this estimate is clear from the very wide Cl, yet it does not include the null. 

This finding must be interpreted with care as the adverse symptom refers to 

extremes of behaviour; it does not refer to increased or decreased activity levels 

unlike the rest of the animal and human evidence. Thus, general patterns in activity 

levels from exposure to Mn can be compared between species but, because of 

differences in the measuring and reporting of activity levels, such comparisons are 

limited.
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Table 6.5 Available animal evidence

Study Year Species Symptom
No. No. Standardised mean

Ln(OR)
exposed controls difference in activity score

Estimate Variance Estimate Variance

Chandra et al. 1981 Rat
Activity counts per 15 min - 
day 7

6 6 -2.21 0.54

Murthy et al. 1981 Rat Activity - 21% casein diet 6 6 -13.03 7.41

Murthy et al. 1981 Rat 10% casein diet 6 6 -11.50 5.85

Bonilla 1984 Rat No. movements 8 8 4.67 0.93

Nachtman et al. 1986 Rat last time measurement 12 12 -1.42 0.21

Pappas et al. 1997 Rat Activity levels 10 10 -5.24 0.89
Gray & Laskey 1980 Mouse last time measurement 6 6 2.15 0.53
Lown et al. 1984 Mouse 45 38 0.07 0.05

Komura & Sakamoto 1991 Mouse % rate of activity -  day 105 8 8 0.97 0.28

Laskey & Edens 1985 Bird 11 15 3.82 0.44

Suzuki et al. 1975 Monkey Hyperexcitability 6 2 2.20 3.02

Eriksson et al. 1987 Monkey Hyperactive, then hypoactive 4 2 3.81 4.62

Shinotoh et al. 1995 Monkey Hypoactive 3 3 1.02 2.13
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Table 6 .6  Pooledfixed and random effects estimates for activity levels from the relevant animal experiments

Activity
outcome Species No. studies 

in analysis
Standardised mean difference between 

activity score* Ln(OR) for reporting a symptom

Fixed Random I2 Fixed Random I2

Rat 6
-1.69 -4.02 

(-2.34,-1.04) (-7.30,-0.74)
95 

(91, 97) •

Counts Mouse 3 0.35 0.91 
(-0.04, 0.74) (-0.24,2.05)

78 
(29, 93) •

Symptom

Bird

Monkey

1

3

3.82 
(2.52, 5.12) •

2 .0 0  2 .0 0  
(0.05, 3.94) (0.05, 3.94)

0
(0, 90)

* • •  •  •a positive value indicates less activity in the exposed group
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This is also an issue when exposure data are considered, since it is measured and 

reported in diverse ways. For example a number of different routes of exposure are 

used, as are different periods of exposure (ranging from four days to two years 

depending on the species and route of exposure) and frequency of dosing. Meta

regression techniques may be useful in exploring whether an effect exists at 

different dose levels and Figure 6.1 shows how this might be achieved by plotting 

the standardised mean differences from the six rat studies against the reported dose 

level of exposed rats (daily dose of Mn, in mg/ml of drinking water). It may be 

tempting to suggest from this plot that low and high levels of manganese in drinking 

water are associated with increased levels of activity in rats. However, there are a 

number of dangers in the assessment and interpretation of Figure 6.1. Firstly, there 

are only six experiments and the measures of exposure are so diverse that one 

should be cautious of over-interpretation of this plot. Perhaps if data from a larger 

number of experiments were available and the exposure data were less diverse, this 

plot may be more useful in identifying an exposure limit for Mn. Secondly, and 

more importantly, the use of subject-related averages in a meta-regression (such as 

average Mn exposure) introduces the problem raised earlier of ecological fallacy. 

This is where relationships between subject-related averages and outcomes are not 

the same as the relationship between exposure and outcome in the individual 

(Thompson and Higgins, 2002). The only way to overcome this problem is by 

using the individual subject data and modelling the individual exposures and 

outcomes.

6.5.5 Summary o f  species-specific evidence

Although the differences between the sources of evidence which must be taken into 

account in a risk assessment are great, use of systematic reviews and meta-analysis 

methods in this example, so far, have assisted in making it easier to evaluate and 

understand the available human and animal data by combining similar types of 

evidence. There are now eight pieces of evidence to consider regarding activity 

levels rather than data from 27 studies. These data are presented in Table 6.7. The 

pooled standardised mean differences in activity levels are displayed graphically in 

Figure 6.2 to help assess consistency of effects across species (as advocated by 

Roberts et al. (2002a)). Thus, systematic review and meta-analysis methods have a
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useful role in summarising the evidence, regardless of whether a cross design 

synthesis is undertaken.

Figure 6.1 A plot o f the standardised mean differences in activity score from six rat 

experiments against Mn dose
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NB negative standardised mean difference suggests increased activity levels in rats exposed to Mn

In fact, in this example, there are a number of possible reasons why one may decide 

not to carry out a cross-species synthesis. For instance, whereas the evidence from 

the human studies is based on self-assessment regarding feelings of fatigue and 

vigour, the animal evidence is from experiments measuring the amount of activity 

animals display. These two types of assessment therefore may not be considered 

comparative and synthesis across species may produce misleading and 

uninformative findings. Furthermore, the evidence in this example suggests that 

humans, mice and birds experience a decrease in activity level with Mn exposure 

while rats increase their activity (see Table 6.7 and Figure 6.2). Both of these 

effects can be termed adverse, but a synthesis of all these results, as they are, is 

likely to result in a dilution of this effect (i.e. provide a standardised mean
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difference close to zero). Methods to account for this could be carried out, such as 

taking the modulus of each study estimate; however the overall estimate may be 

difficult to interpret.

Table 6,7 Random effects pooled evidence on activity levels and exposure to Mn

Activity level 
outcome

Species Number of 
studies

Effect measure Summary of 
effect

Fatigue Humans 4 Standardised 
mean difference

-0.63 
(-1.0 0 , -0.26)

Humans 8 Ln(OR) 0.30 
(-0.09,0.69)

Humans 11 Ln(odds) -0.93 
(-1.52, -0.33)

Vigour Humans 4 Standardised 
mean difference

0.31 
(-0.19, 0.81)

Activity counts Rats 6
Standardised 

mean difference
-4.02 

(-7.30, -0.74)

Mice 3 Standardised 
mean difference

0.91 
(-0.24, 2.05)

Birds 1
Standardised 

mean difference
3.82

(2.52,5.12)
Negative activity 
symptom Monkeys 3 Ln(OR) 2 .0 0  

(0.05, 3.94)

Nevertheless a synthesis of the available evidence taking account of the different 

species and study types can be achieved using the meta-analysis models defined in 

Chapter 5 (Equations 5.2 -  5.4). To illustrate the use of these models, and some 

possible extensions, they are applied to the human and rat evidence presented in 

Figure 6.2. It should be noted that because of the inconsistency between the results 

from the human and rat data one would not usually combine the evidence, however 

for illustrative purposes only, it is carried out here. The models and results are 

described in the following section.
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Figure 6,2 Standardised mean differences in activity scores from four human 

epidemiology studies and ten animal experiments

Humans
Huang etal, 1990 
Mergleretal, 1994 
EC ,1997 
Kilbum, 1998 
Pooled effect

Rats
Chanrdaetal, 1981a 
Murthy etal, 1981a 
Murthy etal, 1981b 
Bonilla, 1984 
Nachtman et al, 1986 
Pappas etal, 1997 
Pooled effect

Mice
Gray and Laskey, 1980 
Lown et al, 1984 
Komura and Sakamoto, 1991 
Pooled effect

Birds
Laskey and Edens, 1985

-10 -s o

Standardised mean difference in activity counts

0.18 (-0.17,0.54) 
0.29 (-0.03,0.62) 
-0.23 (-0.48,0.03) 
1.07(0.65,1.48) 
0.31 (-0.19,0.81)

-2.21 (-3.68, -0.78) 
-13.03 (-18.37,-7.70) 
-11.50 (-16.24,-6.76) 

4.67 (2.78,6.56) 
-1.42 (-2.32,-0.53) 
-5.24 (-7.09, -3.39) 
-4.02 (-7.30, -0.74)

3.82(2.52,5.12) 
0.07 (-0.36,0.5) 

0.97 (-0.07,2.00) 
0.91 (-0.24, 2.05)

2.15(0.73,3.57)
I
10

6.6 Further application of meta-analysis methods
6.6.1 Synthesis across species

A naive synthesis of the data from the four human studies and six rat experiments 

may assume that all 1 0  studies are estimating the same effect, so that there are no 

differences between species, routes of exposure or the slightly different health 

outcomes. This assumption clearly does not hold here, but such a synthesis is 

provided for a comparison with subsequent analyses. There is some evidence of 

heterogeneity between the outcomes from the 4 human studies and 6  rat 

experiments (Figure 6.2) and so a random effects model is used to synthesise the 

data. A random effects meta-analysis model, defined in Equation 3.2, is used here 

under a Bayesian framework (see Equation 6.5)
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d , ~ NV„ o f )  n - N i W ' )
9i ~ JV(//,r2) 1 / t 2 ~ Gamma(0.001,0.001)

where dt is the standardised mean difference in scores from study i (/: 1, . .  .,1 0 ), erf 

is the variance of dh calculated from Equation 6.3*. 0, is the true standardised mean 

difference in study i, /j, is the pooled estimate and t? is the estimate of between study 

variance. Results are compared with the pooled estimate from a classical random 

effects meta-analysis model.

The following models allow importance of the animal evidence in assessing human 

health risks from Mn exposure to be modelled.

In the first of these models, a prior, based on the rat data, is placed on the synthesis 

of the human evidence. The Bayesian model applied here is that defined in Section

5.5.1 (Model lc), where the rat data are taken at ‘face value’ and the combined 

estimate is used as a prior for the synthesis of the human data

v ~ N ( n ra, y , a , )  ( 6 6 )

0 , ~ N(ju,t2) 1/ t 2 ~  Gamma(0.001,0.001)

where dt is the standardised mean difference in scores from study i (/: 1,...,4), cr2 is 

the variance of dt. 0 , is the true standardised mean difference in study i, fi is the 

pooled estimate, t? is the estimate of between study variance, /urat is the combined 

estimate from the six rat experiments and v 2at is the variance of this estimate.

* Abrams et al. (2005) report that a correlation may be induced between dj and its variance when 
calculated by Equation 6.3 since the variance is a function of dh Thus a simplification o f Equation 
6.3 (as given on page 31 of Sutton etal. (2000)) may be more appropriate to avoid this correlation.
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In the following models different levels of relevance of the rat data to the human 

data are incorporated. This is achieved through the use of power transform priors 

(Ibrahim and Chen, 2000). The prior distribution for the human evidence, here the 

rat data, is raised to the powerp, where 0  <p < 1 (p = 1  is equivalent to the 

informative prior analysis of Equation 6 .6  above)

where dik is the standardised mean difference in study i (/: 1,...,4 and for

differing values of p). (jfk is the estimated variance of dik, 0 ik is the true standardised

mean difference in study pk is the combined estimate and r 2k is the between study 

estimate of variance. p rat is the combined estimate from the six rat studies and vj?" 

is the variance of this estimate, raised to the power p. The median estimates and 

95% CrI for the pooled human effect, pk for the 11 different values of p, are given in 

Figure 6.3.

From Figure 6.3 one can see that as the rat data are given more weight, i.e. as 

p -» 1, the pooled estimate from the human evidence increases in precision. In 

Figure 6.3 the dilution of adverse effects, seen in humans and rats, resulting from 

the cross-species synthesis can be seen. Nevertheless, this is a useful model to 

assess the sensitivity of the pooled estimate to differing levels of perceived 

relevance of the rat data, although it is difficult to determine how to measure 

relevance.

d.k ~ N<.d,k>a l )  
Oik -NiVk^k)

Mk ~  N(Mra > Vk )

11 t\  ~ Gamma(0.001,0.001) (6.7)
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Figure 6.3 Plot o f pooled human effect jUk (95% CrI) with changing values o f p 

(relevance weighting for the rat data) [p= 0  implies rat data are totally discounted; 

p=l implies rat data are included at face value]
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In the following, perhaps more realistic scenario, relevance is not measured, instead 

judgements are made on some evidence being more relevant than other evidence. 

The three-level hierarchical model described in Equation 5.4 is used here

m ~ N (  0,109)
~N(9j , r1j ) 1/rJ ~ Gamma(0.001,0.001) (6 .8 )

d j - N ^ v 1) 1 / v*2 ~ Gamma{0.001,0.001)

where dy is the standardised mean difference in study z (/: 1 , 1 0 ), species j

(J= 1 ,humans, j = 2 , rats), crfj is the (estimated) variance of dy and if/ i s  the true

standardised mean difference in study i, species j. 0j is the combined estimate of 

studies using species j, r y2 is the estimate of variance between studies on species j ,
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p  is the overall combined estimate and v 2 is the estimate of variance between 

studies of different species.

Two versions of this model are applied to the human and rat Mn and activity level 

evidence. The first is as described above: the unconstrained analysis. In the second 

version of this model the following constraint, used by Prevost et al. (2000), is 

made to model the order of relevance of one species over another: the constrained 

analysis. In Equation 6.9, 6X is the pooled human estimate, and d2 is the pooled rat 

evidence, so that the human evidence are forced to be less biased than the animal 

evidence, which one is likely to believe given it is the human effect that is 

ultimately of interest.

I / / - 4 I < \ f t - e 1 \ (6.9)

The pooled estimates from the different models described here, except the power 

prior model, are given in Figure 6.4, so that there results can be compared.

Figure 6.4 Pooled standardised mean difference effects from the human studies and 

rat experiments

Synthesis model

Classical 
random effects

Human

Rat

All

Human 

Rat -

Eqns (6.5) & (6.6) All

Bayesian 
random effects

Human with rat prior

Bayesian Human

random effects Rat
3-level (unconstrained) ^

Eqn (6.8)

Bayesian Human
random effects Rat

3-level (constrained) ^
Eqn (6.9) _____

0.31 (-0.19,0.81) 

-4.02 (-7.29,-0.74) 

-0.82 (-1.64,0)

0.30 (-0.48,1.13) 

-4.37 (-11.3,2.08) 

-2.27 (-6.06,1.15) 

0.26 (-0.68,0.98)

0.23 (-0.94,0.90) 

-1.89 (-4.62,0.48) 

-0.73 (-3.61,1.3)

0.20 (-0.68,0.87) 

-1.81 (-4.94,0.43) 

-0.20 (-2 .0 ,1.2)

Standardised mean difference
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Figure 6.4 highlights findings from Table 6.7 and Figure 6.2 that the human 

evidence is much more precise than the rat evidence and that Mn exposure affects 

humans and rats differently according to the data used here. A naive synthesis of 

the evidence in a classical random effects model results in a reasonably precise 

pooled estimate suggesting a significant increase in activity levels for those exposed 

to Mn. The naive analysis using a Bayesian model is less precise, as one would 

expect from a Bayesian model but still suggests an increase in activity level with 

Mn exposure. The result of using rat data as a prior for the synthesis of the human 

data is very similar to if the prior data were not used at all. This is because the 

evidence from the rat experiments has a large variance and so the prior distribution 

is diffuse and has little impact on the synthesis of the human evidence. Use of the 

3-level model gives pooled estimates of effect across rats and humans that lies 

between the naive synthesis pooled estimate and that from use of an informative 

prior distribution to synthesise the human evidence. Comparing the estimates from 

the two 3-level models (unconstrained and constrained) shows that 0,, the estimate 

from the human evidence, and 0 2, the estimate from the rat evidence, change very 

little. However, the overall pooled estimate of jj. from the constrained model has 

been pulled towards the estimate of the human evidence, 0 X, as would be expected.

As briefly discussed in Chapter 5, it may be more appropriate for estimates of 0,, 

the human effects, to be reported and interpreted, rather than estimates of n , the 

overall species effect. Since human health effects are of interest here, it appears 

reasonable to use 0,. However, choice of 0, over fj, is not as clear when different 

types of human evidence are being synthesised, for example, as in Prevost et al. 

(2000) and Sutton and Abrams (2000). In both of these papers evidence from 

human RCTs are combined with evidence from observational studies on an 

intervention, and it will no doubt be due to the main question of interest: the 

effectiveness or the efficacy of the intervention.

The application of these methods to the human and rat Mn and activity level data is 

illustrative only. In the following section, illustration of the advantages of a meta

analysis framework in a risk assessment context is extended to demonstrate possible 

sensitivity analyses.
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6.6.2 Sensitivity analyses

Having a quantitative framework for the evaluation of evidence for a risk 

assessment allows investigation of the sensitivity of some of the decisions and 

assumptions made in the risk assessment process. In this section, the sensitivity of 

conclusions are investigated by assessing the impact of a number of studies on the 

meta-analyses carried out in Section 6.5.1 and more explorative analyses common 

in meta-analyses are described (between-study heterogeneity and publication bias).

Study impact

A common sensitivity analysis in meta-analysis is to investigate whether inclusion 

or exclusion of certain studies has a significant impact on the conclusions. For 

example, if, in earlier stages of the systematic review process, there has been 

difficulty assessing the quality, or the inclusion/exclusion criteria for one or more 

studies, an investigation as to the impact of including or excluding a study can be 

carried out. To demonstrate this Table 6 .8  shows the pooled rat estimate of the 

standardised mean difference in activity when data from Chandra et al. (1981) are 

included (as in the initial analyses), and excluded, from a classical random effects 

meta-analysis.

Table 6 .8  Impact o f Chandra et al. (1981) data on the pooled rat standardised mean 

difference estimate

Pooled estim ate (95%  C l)

Initial analysis
-4.02 (-7.29, -0.74)

(Chandra e t al. data included)

Sensitivity analysis
-4.70 (-9 .15 ,-0 .25)

(Chandra et al. data excluded)

Inclusion of data from Chandra et al. decreases the pooled standardised mean 

difference estimate; however, the overall conclusion is the same, i.e. the exposed 

rats have higher activity counts than unexposed rats. Moreover inclusion of the 

Chandra et al. data provides a more precise estimate than that obtained when these 

data are excluded.
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The impact of each study in the meta-analysis can easily be assessed to determine 

whether one particular study is greatly influencing the pooled estimate. This is 

illustrated using the available epidemiological data on the ln(OR) of reporting a 

negative activity symptom. Each study is systematically excluded from the meta

analysis and the remaining data re-analysed. Figure 6.5 shows the combined 

estimate from a classical random effects meta-analysis when each study is excluded.

Figure 6,5 Impact o f each study on the pooled estimate

Study omitted

Deschamps et al 2001---->--------

Jonderko et al 1971

Mena etal 1967 •"

Saric et al 1977 I-----

Gibbs etal 1999 

Wang etal 1989 

Flinn etal 1941 

EC 1997

Combined estim ate

h I

-0 .15 0.0 0.15 0.30 0 .45

LnOR for negative activity sym ptom s

0.15 (-0.14,0.44) 

0.20 (-0.06,0.46) 

0.17 (-0.08,0.43) 

- i 0.24 (-0.13,0.60) 

0.23 (-0.04,0.51) 

0.21 (-0.04,0.47) 

0.19 (-0.06,0.45) 

0.20 (-0.06,0.45) 

0.20 (-0.05,0.45)

0.60

No one study has a huge influence on the combined estimate. However attention is 

drawn to the Saric et al (1977) study, which when excluded, leaves a combined 

estimate with a larger 95% Cl suggesting the Saric et al. study is quite precise.

Meta-regression and between-study heterogeneity

In Section 3.3.2 meta-regression techniques were described. These techniques can 

be used to explain heterogeneity between studies. For instance, year of publication 

may explain some heterogeneity between the eight epidemiology studies where a 

ln(OR) for reporting a fatigue-like symptom was calculated. Although year of
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publication itself is unlikely to explain heterogeneity, it may be a surrogate for 

other, unmeasured characteristics, such as a change in occupational practice 

affecting both the exposure and health outcome. Figure 6 .6  is a plot of the eight 

studies in chronological order.

Figure 6 .6  Plot o f the ln(OR) for reporting a fatigue-like symptom from eight 

epidemiology studies by year o f publication
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It is difficult to see if there is an association between ln(OR) for reporting a fatigue

like symptom and year of publication. Using meta-regression techniques year of 

publication is regressed on to ln(ORs). Results suggest there is little evidence of a 

linear relationship between the ln(OR) and year of publication (estimated year of 

publication regression coefficient -0.002; 95% Cl -0.022, 0.019). However meta

regression should be looked upon as an explanatory analysis and should therefore 

not be over-interpreted (Sutton et al., 2000).
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Publication bias

A further aspect of meta-analysis that should be considered is the possibility of 

publication bias, as described in Section 3.3.3. This relates to the idea that studies 

concluding significant results are more likely to be published. If data are subject to 

publication bias, the evidence available for the basis of the exposure limit may be 

biased, resulting in the possibility of a biased estimate for the exposure limit.

Hence, it is necessary for a thorough search of the literature to be carried out, 

including areas of the grey literature. However, if a study has been conducted, but 

not reported anywhere, clearly it cannot be identified. It is therefore important to 

assess whether publication bias is an issue for a particular set of evidence and what 

impact this may have on any analyses. There has been very little investigation of 

publication bias of animal experiments as shown in Section 4.4.3.

In many meta-analyses, the number of studies being combined is quite low, and so a 

funnel plot is often difficult to interpret. Figure 6.7 is a funnel plot of the 14 studies 

investigating Mn exposure and activity levels, illustrating quite clearly that the 

human studies are much more precise (a higher value for 1/standard error) than the 

animal experiments. There is some evidence to suggest that small studies 

concluding a decrease in activity levels in Mn exposed groups compared to 

unexposed groups (a positive standardised mean difference) are missing (bottom 

right-hand comer of Figure 6.7). Although findings from the often used rank 

correlation and regression tests to detect publication bias (Begg and Mazumdar, 

1994; Egger et al., 1997) suggest there is little evidence of publication bias 

(p=0.555 and p=0.511, respectively). However, evidence from four different 

species is being assessed here and as Table 6.7 shows, a species effect is evident. 

Thus an assumption of the use of the funnel plot, and subsequent tests based on the 

funnel plot, is not met: that all studies should come form the same underlying 

distribution (Light and Pillemar, 1984). As is further discussed in Section 8.2.2 of 

Chapter 8 , assessment of publication bias within species is one way to proceed, but 

this leads to fewer studies to be assessed, reducing the statistical power of these 

methods. However, as noted by a number of authors and demonstrated in Chapter 

7, the power of methods to detect publication bias is poor as the number of studies 

in the meta-analysis decreases (Begg and Mazumdar, 1994; Steme et al., 2000; 

Macaskill et al., 2001). In fact, there is evidence to suggest that current commonly
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used methods for the detection and adjustment of publication bias are not ideal 

(Begg and Mazumdar, 1994; Sterne et al., 2000; Macaskill et al., 2001; Schwarzer 

et al., 2002; Terrin et al., 2003).

In human health risk assessments, species effects are likely to be observed and so 

investigation of how to appropriately assess publication bias in the presence of 

species effect, or more generally between-study heterogeneity, is required. There 

has been some suggestion that publication bias is more of an issue for epidemiology 

studies than for randomised controlled trials as some epidemiology studies may 

have been done in a more explorative manner, and have therefore been selectively 

published (Blettner et al 1999). However the presence and impact of publication 

bias of animal experiments has not been investigated. In Chapters 7 and 8 

assessment and adjustment for publication bias in meta-analyses of human studies 

and animal experiments is explored.

6.7 Summary
In this chapter a second, quite different example to that used in Chapter 5, has been 

described: neurobehavioural effects from occupational exposure to Mn. A 

systematic review of the evidence for such a risk assessment was carried out. From 

this systematic review, the relevant evidence from humans and animals was found 

to be quite diverse in terms of the population used, the exposure and the 

measurement of an adverse effect. Due to this diversity, an evaluation of the 

evidence is quite complex, however systematic review and meta-analysis methods 

have allowed for a transparent and structured summary of the relevant evidence. 

Synthesis of evidence across species has been illustrated in this chapter (Section 

6 .6 .1), but the diversity of the evidence means that such summary estimates may be 

difficult to interpret. Synthesis of evidence within species has allowed 

straightforward examination of the consistency of estimated effects across the 

different species (e.g. Table 6.7), however this has still been limited by the diversity 

in the relevant experiments and studies, and by their reporting. Such an 

examination of consistency across species using common risk assessment methods 

may not be so straightforward. Synthesising similar study results means that
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decisions regarding the pivotal study (as used in general risk assessment 

approaches, see Chapter 2) are redundant, leading to more efficient use of the 

evidence. Of course, decisions on the quality and relevance of studies are still 

needed when systematic review and meta-analysis methods are employed, but this 

can be achieved in a more transparent manner. For example, relevance and quality 

can be set out in the inclusion and exclusion criteria.

By attempting to take a formal approach to the review and evaluation of evidence 

regarding the human neurobehavioural health effects from occupational exposure to 

Mn, the many problems of reviewing such evidence have been highlighted and 

described in this chapter. The aim has not been to develop a synthesis model which 

can incorporate and account for all sources of evidence and uncertainty that would 

replace current risk assessment approaches. Instead, systematic reviews and meta

analysis methods have been applied to this example in order to demonstrate where 

and how these methods may be more advantageous than current methods of risk 

assessment, and to point out that regardless of the approach taken, many issues 

remain in how the human and animal evidence can be used to inform human health 

risk assessments. For instance, one particular problem highlighted in this chapter 

has been the varied reporting of the measured exposures within and across different 

study/experiment types. Regardless of the approach taken to risk assessment, this is 

an important limiting factor of the review and evaluation process. Identification of 

this highlights areas where reporting of individual studies and experiments need to 

be improved, and suggests that some form of harmonization would be 

advantageous. Moreover, this systematic approach to identifying and evaluating the 

evidence potentially relevant to a risk assessment has illustrated areas where 

evidence are available that may help improve current practice. For example, 

although different types of experiments used different routes of exposure (oral, 

inhalation and injection -  see Table 6.1), evidence from two animal strains (rhesus 

monkeys and Sprague-dawley rats) covered all three exposure routes. This allows 

for an examination of findings across exposure routes for these animals that may 

potentially be useful when considering different strains or species.
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Figure 6.7 Funnel plot o f 14 studies investigating exposure to manganese and 

differences in activity levels between exposed and unexposed subjects
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Evidence concerning just one of the many neurobehavioural outcomes has been 

synthesised in this chapter (i.e. activity level). To form the basis of a human health 

risk assessment, meta-analysis methods need to be applied to all relevant outcomes 

to help summarise the evidence and inform decision-makers as to the form of the 

exposure limit required for occupational exposure to Mn. As demonstrated in this 

chapter and in Chapter 5, such an approach has many attractive advantages over the 

more narrative methods of risk assessment described in Chapter 2.
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Performance of tests and 

adjustments for publication bias

7.1 Chapter overview
Regardless of the application, possible publication bias and between-study 

heterogeneity are important features of a meta-analysis that must be considered. In 

this chapter, methods for the detection of, and adjustment for, potential publication 

bias are assessed in terms of their performance under a number of simulated meta

analysis scenarios. These include the rank correlation test (Begg and Mazumdar, 

1994), a number of regression tests (Egger et al., 1997; Macaskill et al., 2001) and 

the trim and fill method (Duval and Tweedie, 2000a; Dual and Tweedie, 2000b). 

Publication bias and its potential consequences are introduced in Section 7.2. In 

Section 7.3 these tests and methods and their use in practice are described. An 

overview of the performance of the rank correlation test, the regression test and the 

trim and fill methods is presented in Section 7.4 based on the findings of six 

published simulation studies. Results from these studies do not fully answer 

questions on the performance of the tests and methods in certain scenarios and so, in 

Section 7.5 details of new simulation analyses are given. The characteristics of the 

meta-analyses and the tests and methods investigated in the simulations carried out 

in this chapter are defined, in addition to the analyses undertaken. The results of 

these simulation analyses are presented in Section 7.6 followed by some sensitivity 

analyses of the parameters defined in the simulated meta-analyses (Section 7.7).

The results of the simulations and further analyses are discussed in Section 7.8. The 

simulations and results presented in this chapter include and go beyond those 

reported in Peters et al. (2006) (given in Appendix H).

Jaime Peters PhD Thesis 2006 165



Chapter 7 Methods for publication bias

7.2 Introduction
Publication bias describes the tendency for smaller studies reporting a non

significant or unfavourable effect, to be less widely disseminated as reports of larger 

studies concluding a significant and/or favourable effect (Easterbrook et al., 1991; 

Scher et al., 1994; Stem and Simes, 1997; Ioannidis, 1998; Song et al., 2000). A 

number of processes may lead to publication bias. They include authors being less 

likely to write-up and submit studies with unfavourable or uninteresting results and 

editors of prominent journals (where space is limited) being less likely to accept and 

publish such papers. Evidence also suggests that larger, significant, more 

interesting studies are more likely to be submitted to English language journals, 

regardless of the first language of the authors, but the evidence regarding the impact 

of this on a systematic review or meta-analysis is mixed (Egger et al., 1999; Song et 

al., 2000; Egger et al., 2003). Outcome reporting bias may also affect the findings 

of a systematic review or meta-analysis (Song et al., 2000). This occurs when 

researchers only publish findings for outcomes where a significant effect was 

observed, regardless of the number of outcomes actually analysed. Much research 

has, and is currently, being done to investigate the effects of, and adjustments for, 

outcome reporting bias (Hahn et al., 2002; Chan et al., 2004; Chan and Altman, 

2005; Williamson et al., 2005; Williamson and Gamble, 2005).

The consequences of ignoring the possibility of publication bias may be quite 

severe. If publication bias is present, the subsequent systematic review and/or meta

analysis will then be based on a biased set of evidence which may in turn lead to 

misleading results (often an inflation of the true effect) and conclusions, affecting 

decision-making and policy.

When conducting a systematic review the most appropriate way to limit the 

likelihood of publication bias is to comprehensively search the literature. A review 

should not just concentrate on studies obtained from a search of electronic databases 

(such as Medline and Embase), but should involve searching numerous sources of 

evidence, e.g. the reference lists of relevant studies, conference proceedings, grey 

literature, internet, hand-searching of journals, contacting researchers or
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manufacturers for any unpublished material (Sutton et a l, 2000; Deeks et al., 2001; 

Egger et al., 2001; Cochrane Collaboration, 2005).

However, even a comprehensive systematic review of the literature will not be able 

to identify those studies that have not even been written up, and so a meta-analysis 

may still be subject to publication bias, regardless of how thorough the systematic 

review. It is therefore important that all meta-analyses are investigated for the 

possible presence of publication bias. A number of methods have been developed 

to assist in determining whether a review is affected by publication bias. These 

include the funnel plot (Light and Pillemar, 1984), a rank correlation test (Begg and 

Mazumdar, 1994), a regression test (Egger et al., 1997) and a non-parametric 

method called ‘trim and fill* (Duval and Tweedie, 2000a; Duval and Tweedie, 

2000b). In the review of the application of systematic reviews and meta-analyses to 

animal experiments (Chapter 3) it was noted that 17 out of the 46 meta-analyses 

(37%) mentioned the issue of publication bias. Of these meta-analyses, only six 

report carrying out some assessment. A number of authors gave reasons for not 

assessing possible publication bias in their meta-analysis, including the comment 

that “available techniques lack validity” (Kelley, 1996). In this chapter the 

performance of the rank correlation test, Egger’s regression test and a number of 

alternative regression tests in addition to the trim and fill method is investigated 

using simulation analyses. The most commonly used methods to investigate 

publication bias are now described.

7.3 Methods for detecting publication bias
The simplest method is the funnel plot (Light and Pillemar, 1984). This is a scatter 

plot of the estimate of effect, e.g. the natural logarithm of the odds ratio (ln(OR)), 

against a measure of precision, usually 1/(standard error of ln(OR)), for each study 

in the meta-analysis. There has however been some discussion as to what form the 

axes should take (e.g. precision vs. sample size (Sterne and Egger, 2001)) and this 

will be returned to in Section 7.8. On the assumption that smaller, less precise 

studies are more subject to random variation than the more precise larger studies 

when estimating an effect, the scatter plot should resemble a funnel in the absence
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of publication bias, with the highly precise studies at the top of the funnel and the 

smaller, less precise studies varying around the true effect (Figure 7.1). In the 

presence of publication bias, smaller studies reporting less favourable or non

significant effects are likely to be missing from the meta-analysis, resulting in an 

asymmetric plot (see Figure 7.2).

It is important to note that publication bias is only one reason why asymmetry may 

be observed in a funnel plot. Alternative reasons for this asymmetry include poorer 

methodological quality of smaller studies, between-study heterogeneity, chance and 

inadequate analyses (Sterne et ol., 2000; Ioannidis, 2005). For instance, Ioannidis 

(2005) discusses the possibility that level or quality of treatment received by an 

individual depends upon the study size, thus the perceived effectiveness of the 

treatment differs by size of study. For example, large mutlicentre trials require 

many centres to be involved, many of which will be less experienced compared to 

those few involved in smaller studies (Ioannidis, 2005).

Although very simple to use, the funnel plot is a subjective means for detecting 

possible publication bias. Statistical tests have therefore been developed to provide 

a more formal assessment. The following two tests (Begg and Mazumdar, 1994; 

Egger et al., 1997) are based on the idea that when publication bias is present, an 

association can be observed between effect size and precision; so that the more 

extreme effect sizes will have lower precision (as is observed in a funnel plot).
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Figure 7.1 Funnel plot o f a meta-analysis in the absence ofpublication bias
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Figure 7.2 Funnel plot o f a meta-analysis in the presence ofpublication bias
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The rank correlation test is based on Kendall’s tau (Begg and Mazumdar, 1994). It 

tests directly for a correlation between the standardised effect size, 0 *, and 

variance, v*, by determining whether the ranks of one study’s set of variables (the 

adjusted effect estimate and its variance: 0 *, v*) are both larger or smaller than 

those of another study. For example, for studies i and j, ( 6 *, v*) and ( 6 *, v*) are

concordant if ( 0 *, v*) are both higher or lower than ( 6 *, v*). If not, the ranks are

considered to be discordant. The Kendall rank correlation test statistic is a function 

of the number of concordant ranks, x, the number of discordant ranks, y, and the 

number of studies in the meta-analysis, n. The test statistic is calculated by

     -------— y-- (7.1)
V»(n-lX2 n + 5)/18

A two-sided p-value is conventionally reported for the rank correlation test, where 

evidence of a correlation between the ranks therefore suggests evidence of funnel 

plot asymmetry.

The second test commonly used to help detect publication bias is a regression test 

(Egger et al., 1997). The standardised effect — , where y t is the estimate of effect
set

in study i and set is its standard error, is regressed on a measure of precision given

by — . The model is
se,

^  = a  + - f -  + £l (7.2)
se; se;

where et is random error (ei ~ N(0,cr2)).  The null hypothesis is J3 -  0 , i.e. there 

is no association between the precision of a study —  and its standardised effect
set

— . To obtain a p-value, p /  se(P)  is compared to the t-distribution with n-2
se:
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degrees of freedom, where n is the number of studies in the meta-analysis (Egger et 

al., 1997). Equation 7.2 is equivalent to

y, = a + fi.sei + .sei weighted by — (7.3)
se,

The rank correlation test and the regression test are both assessed at the 10% level 

of significance because of low statistical power (Egger et al., 1997).

The funnel plot, rank correlation test and regression test are only useful to help 

identify whether publication bias is an issue, they do not solve the problem or help 

to assess the impact of any suspected publication bias. The trim and fill method, 

however, provides an adjusted (for publication bias) pooled estimate giving some 

idea of the likely effect of publication bias (Duval and Tweedie, 2000a; Duval and 

Tweedie, 2000b). It is an iterative non-parametric method based on the one-sided 

asymmetry of a funnel plot. The key assumption is that studies with the most 

extreme effect sizes are suppressed. Knowing the ranks of the absolute effect sizes 

and their signs around the pooled estimate, // (which is obtained from either a fixed 

effects meta-analysis (Equation 3.1) or a random effects meta-analysis (Equation 

3.2)), an estimate of ka, the number of studies with the most extreme effect sizes that 

are ‘missing’, is obtained using one of three different estimators of kQ (Duval and 

Tweedie, 2000a; Duval and Tweedie, 2000b). They are

R0 = r  - i

4Srank “ «(« + 1)L„ =■
2n - \

(7.4)

e < , = ” ~ 2

where n is the number of studies in the meta-analysis, y * is the length of the right 

most run of ranks and Srank is the Wilcoxon statistic (Duval, 2005). Findings from 

simulations suggest that Ra and La are the preferred estimators to be used (Duval 

and Tweedie, 2000a; Duval and Tweedie, 2000b). Since /j, is likely to be subject to
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any publication bias that exists, the trim and fill method iteratively estimates k0 and 

p. Thus, based on the initially estimated p, k0 is estimate (using Ra or L0) and 

‘trimmed’ from one side of the funnel plot so that a more symmetrical plot is 

obtained. p  is then re-estimated on this ‘trimmed* set of studies (using a fixed 

effects meta-analysis or a random effects meta-analysis), leading to a second 

estimate of kQ. This process is repeated until estimates of p  and kQ are stable. Given 

the final estimates of p* and kQ*, the meta-analysis is ‘filled’, where the kQ* 

‘trimmed’ studies are replaced and the ‘missing’ studies have the estimates of effect 

and variance as their reflected ‘trimmed’ studies. A worked example of the trim and 

fill process using R0 or L0 is given in Duval (2005).

Selection models have also been used to model publication bias and provide an 

estimate of the pooled effect adjusting for the selection process (Iyengar and 

Greenhouse, 1988; Hedges and Vevea, 1996; Copas, 1999; Copas and Shi, 2001; 

Preston et al., 2004). However, use of these models often requires there to be many 

studies in the meta-analysis and a great deal of computation (there is no specific 

software available for the general application of these models), and so they are not 

commonly used to assess publication bias (Hedges and Vevea, 2005).

Table 7.1 Availability o f  publication bias tests and methods in statistical software 

(Borenstein, 2005; Sterne et al., 2001)

Rank 

correlation test
Regression test T rim  & fill

Stata Y Y Y

Comprehensive meta-analysis Y Y Y

Metawin Y Y N

RevMan N N N

EasyMA Y N N

StatsDirect Y Y N

The rank correlation test, regression test, and the trim and fill method are commonly 

used to help identify publication bias in meta-analyses. To illustrate the frequent 

use of these methods, meta-analyses published (between May 1997 and January 

2006) in the BMJ and the JAMA were surveyed. It was found that 42 out of 83
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(51%) meta-analyses, in which an assessment of publication bias was made, report 

using the rank correlation test and/or the regression test. Only 8  (10%) reported 

using the trim and fill method. The popularity of the rank correlation and regression 

tests is also seen in the number of citations of the two papers introducing these tests. 

As of 27th March 2006, Web of Science holds 350 articles that cite Begg and 

Mazumdar’s (1994) paper on the rank correlation test, and 908 articles citing Egger 

et a l ’s (1997) paper on the regression test. The papers in which the trim and fill 

method is described (Duval and Tweedie, 2000a; Duval and Tweedie, 2000b) have 

76 and 64 citations, respectively, in Web of Science (as of 27th March 2006). No 

doubt the common use of these tests and the trim and fill method is in part due to 

their availability in statistical software packages (see Table 7.1).

Although evidence suggests these methods are commonly used to help identify and 

adjust for possible publication bias, reports of simulation studies indicate that the 

performance of these methods is not as high as one would hope. Furthermore, a 

number of features of Egger’s regression test require closer consideration. Firstly, 

Egger’s regression test has a multiplicative error term (seen in Equation 7.3). This 

feature is not consistent with usual regression models where the error is additive 

(McCullagh and Nelder, 1996). Secondly, the test has been criticised for violating 

an assumption of regression models: that the independent variable, standard error in 

Equation 7.3, is estimated, and so subject to random error (Irwig et a l , 1998; 

Macaskill et a l , 2001). Thirdly, when the study summary estimates are ORs, there 

is a correlation between the ln(OR) and its standard error, since the variance is a 

function of ln(OR) (Irwig et a l , 1998; Macaskill et a l , 2001).

When the ln(OR) is calculated from the usual 2x2 table

ln(Otf) = Inrad^
\ be j

, and se(ln(0 /?)) = J —+ — + — + — 
a b e d
1 1 1 1 (7.5)

Use of standard error as the independent variable in Egger’s regression test 

(Equation 7.3) is likely to result in increased type I error rates, since this correlation 

is induced, particularly for large underlying ORs. Each study is also weighted by
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the inverse of standard error, further magnifying effects from this correlation 

(Macaskill et al., 2001).

In the following section papers using simulation analyses to assess the performance 

of the rank correlation test, the regression test or the trim and fill method are 

reviewed.

7.4 Review of related simulation studies
7.4.1 Rank correlation and regression tests

In their proposal for the rank correlation test, Begg and Mazumdar (1994) simulated 

meta-analyses of 25 and 75 primary studies to investigate the performance of the 

test. The underlying effect in the meta-analyses varied from 0 (the null hypothesis) 

through to three standard deviations from the null. The standardised variances of 

each primary study were either large (variance =0.1,1,10) or small (variance=0.5,

1, 2), so that the studies in the meta-analysis were of varying sizes. To induce 

funnel plot asymmetry, a smooth exponential weight function was used, with 

publication bias defined as ‘strong’ or ‘moderate’. A number of different selection 

models were used based on the assumption that bias is dependent either only on the 

p-value or only on the effect estimate. Their findings were based on 5000 repeats of 

these combinations. Begg and Mazumdar found that the performance of the rank 

correlation test varies with the characteristics of the meta-analysis and the selection 

model used to induce dissemination bias. They concluded that although the test is 

powerful to detect publication bias for large meta-analyses (75 studies) and has 

moderate power for smaller meta-analyses (25 studies), the type I error rates 

(percentage of simulations where publication bias is incorrectly indicated) were 

lower than expected in all scenarios (they do not present these results).

Sterne et al (2000) assessed the power of both the rank correlation test and Egger’s 

regression test. The simulated meta-analyses are based on characteristics of 78 

meta-analyses identified from a review of meta-analyses published between 1993 

and 1997 from four general medical journals and four specialist medical journals. 

The number of primary studies in the meta-analyses was 5, 10, 20 or 30 with
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underlying ORs of 1, 0.5 and 0.25. The underlying proportion of events in the 

control group was 5%, 10% and 20%. To induce publication bias a linear model 

was assumed, such that:

ln(OR) = true treatment effect + (bias coefficient * standard error ofln(OR))

The bias coefficient took the values 0 (i.e. no bias), -0.5 and -1. Sterne et al 

describe three sets of simulations:

1. 1,000 repeats of each of the 108 combinations of the above parameters (4 

sizes of meta-analysis, 3 OR sizes, 3 control event proportions and 3 degrees 

of publication bias)

2. 1,000 repeats of no bias and an extreme OR of 0.1, combined with 4 meta

analysis sizes and 3 control event rate proportions

3. For each of the 78 reviewed published meta-analyses the overall treatment 

effect, number of subjects in the treatment and control group and the 

observed control event proportions were obtained. 1 ,0 0 0  sets of simulations 

were based on each of these reviewed meta-analyses

From the findings of these simulations, the authors noted that as the number of 

primary studies in a meta-analysis increased, so did the power of both tests. They 

found that, in particular, when there is an underlying effect (i.e. OR ^ 1), the rank 

correlation test was generally less powerful than Egger’s regression test. The rank 

correlation test had anywhere between 4% and 8 8 % of the power of Egger’s 

regression test for all scenarios (except where OR=0.25, the control group event rate 

= 5% and there was severe bias when the rank correlation test was more powerful 

than Egger’s regression test). However, the type I error rates from Egger’s 

regression test were too high when i) the OR was large, ii) there were few events in 

the study and iii) the primary studies were all of similar sizes.

Macaskill et a l (2001) assessed the power of the rank correlation test and the Egger 

regression test, in addition to an alternative regression test with sample size as the 

independent variable in order to overcome use of a random variable as the 

independent variable and help reduce the correlation between ln(OR) and its
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standard error observed in Egger’s regression test. The alternative regression model 

is given as

yt = a  + p. sizet + si (7.6)

where y t is the estimate of effect from study i , and sizel is the total sample size for

that study. In one form of this model, each estimate of effect is weighted by its 

precision. In the second form (referred to as the funnel pooled variance (FPV)

model), each estimate is weighted by + . Where a is the number of
a + b c + d "

subjects in group 1 in which an event was observed, b is the number of subjects in 

group 2  in which an event was observed, and c and d  are the number of subjects for 

which no events were observed in group 1 and group 2, respectively. This 

weighting is based on the assumption that the null hypothesis is true, i.e. the 

underlying OR is one.

The underlying OR in each of the simulated meta-analyses was 1, 0.67, 0.5 or 0.25, 

with an underlying probability of an event in the control group given by a uniform 

distribution (0.1, 0.5). The proportion of events in the treatment group is calculated 

from this via the OR. A selection model is used to induce ‘severe’ publication bias 

(as given in Begg and Mazumdar 1994). The probability of selection is based on 

the p-value, as opposed to the effect size. 1 0 ,0 0 0  repeats were generated for every 

combination.

Macaskill et al report that the power to detect publication bias was low for all four 

tests. In particular, Egger’s regression test exceeded the expected type I error rates 

and the authors report a marked imbalance in the tail probability areas for the 2 - 

tailed test. Macaskill et al. conclude that the FPV regression model is the preferred 

method because of favourable type I error rates.

More recently, Schwarzer et al (2002) assessed the type I error rates of the rank 

correlation test and Egger’s regression test in the presence of unexplained between- 

study heterogeneity. They do not look at the power of these tests. The simulated
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meta-analyses contained 10,20 or 50 primary studies. The size of these studies was 

based upon findings of an empirical review of eight German medical journals; only 

trials with more than 30 patients were included in the simulation analyses. Both 

ORs and relative risks (RRs) were considered as the estimate of effect, but only 

those based on ORs are reported, as the results for the RRs were similar. The 

underlying OR was 0.5, 0.67, 1, 1.5 and 2 and between-study variance was defined 

as 0%, 25% and 50% of the within study variance of a study with 100 subjects. 

10,000 repeats of each combination of parameter values were generated. The 

authors also considered the case for meta-analyses with larger primary studies.

Schwarzer et al. found that the type I error rates for both the rank correlation test 

and Egger’s regression test exceeded the expected 10% level. They noted that the 

rank correlation test appears to perform well when OR=l, but for both tests, as the 

treatment effect and the number of studies increased, the type I error rates also 

increased. As between-study heterogeneity increases, the type I error rates increase 

for Egger’s regression test, but are acceptable for the rank correlation test.

However, the simulations including between-study heterogeneity are based on 

characteristics of a meta-analysis of thrombolytic therapy, and the authors point out 

that the high type I error rates could be due to a feature of that meta-analysis.

From these four articles, there is evidence that the rank correlation test is less 

powerful than Egger’s regression test (Sterne et a l , 2000; Macaskill et al., 2001), 

but that the type I error rates for Egger’s regression test are generally too high 

(Sterne et al., 2000; Schwarzer et al., 2002). The power of these tests tends to 

increase as i) the number of primary studies increase (Sterne et al., 2000), ii) the 

control group event rate increases (Sterne et al., 2000) and iii) the further the OR is 

from the null (Sterne et al., 2000; Macaskill et al., 2001). Unfortunately it seems 

that in situations where such methods would be most appealing (e.g. small number 

of primary studies, moderate levels of bias), the power of the rank correlation test 

and Egger’s regression test is low (Begg and Mazumdar, 1994; Sterne et al., 2000; 

Macaskill et al., 2001). On the other hand, the FPV regression test in Macaskill et 

al. (2001) had the appropriate type I error rates and power to detect induced 

publication bias. Further research is needed to assess the performance of
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Macaskill’s regression test compared to the rank correlation and Egger’s regression 

test in different meta-analysis scenarios.

7,4,2 Trim and f i l l  method

Assessment of the performance of the trim and fill method has been limited. Duval 

and Tweedie (Duval and Tweedie, 2000a; Duval and Tweedie, 2000b) defined the 

total number of studies conducted and relevant to the meta-analysis as N  = n + k, 

where N  is the total number of studies carried out (N — 25, 50 and 75), defined by n, 

the number of observed studies and k, the number of unobserved studies (k = 0, 5 

and 10). Results are based on 1000 repeats using a fixed effects model. In the 

paper, publication bias is based on the assumption that studies with the most 

extreme estimates of effect (at one end of the effect size scale) have been censored, 

rather than based on the p-value as in Begg and Mazumdar (1994), Hedges and 

Vevea (1996) and Macaskill et al (2001). Inducing publication bias on the basis of 

effect size corresponds to the key assumption of the trim and fill methods, that 

studies with the most extreme effect sizes are censored (Duval and Tweedie, 2000a; 

Duval and Tweedie, 2000b).

When there is no bias (i.e. k = 0), the error rate is slightly less than that expected; 

when the error rate of 2.5% is expected, the error rate obtained is at best 2% and at 

worse 1%. The authors explain that this is because a random effects model has been 

used to analyse data generated from a fixed effects model and is therefore 

conservative. Duval and Tweedie (2000a) conclude that the trim and fill method 

performs well in estimating the number of ‘missing’ studies when publication bias 

is induced by effect size, but stress that it is a useful tool for sensitivity analyses 

only.

Terrin et al. (2003), however, conclude that in some situations the trim and fill 

method incorrectly adjusts for studies that are not ‘missing’. In their simulations, 

both fixed and random effects models are used to generate meta-analyses. The 

parameter values are based on the findings of a review of 125 meta-analyses. The 

number of primary studies was set to be either 10 or 25 and the size of the primary 

studies were taken from the following i) a uniform distribution (ln(50), ln(500)), ii) 

a uniform distribution (ln(1 0 0 ), ln(1500)), iii) a uniform distribution
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(ln(100), ln(10000)) or iv) chosen to attain 80% power. The underlying ORs were 

defined as large, moderate and no effect (0.5, 0.8 and 1, respectively), with 

underlying probability (and variance for random effects model) of an event in the 

control group of 0.15 (0.005) or 0.3 (0.02) from which the true probability in the 

treatment group was calculated. The between-study variance for the random effects 

was either 0.01 or 0.15. All combinations of the above parameter values were 

repeated 1000 times. Terrin et al (2003) do not induced publication bias in any of 

their simulated scenarios, and therefore only assess the performance of the trim and 

fill method in the absence of publication bias.

When the primary studies were from a fixed effects model, the trim and fill method 

performed well in that the coverage probabilities were similar to the expected 

coverage probability of 0.95. However, when the studies were from a random 

effects model and the between-study heterogeneity was large ( r 2 = 0.15), the 

coverage probabilities from the trim and fill method were low. In conclusion Terrin 

et al caution that in the presence of between-study heterogeneity, the trim and fill 

method inappropriately adjusts for publication bias when none exists.

Generally, it would appear that methods to detect publication bias sound appealing 

and intuitive, but it is not necessarily the case that their properties are good enough 

to allow safe use in practice. Only two of the papers described here (Schwarzer et 

a l , 2002; Terrin et a l, 2003), consider another important aspect of meta-analysis; 

between-study heterogeneity. As mentioned in Section 3.3.2, between-study 

heterogeneity can seriously affect the inference and conclusions of a meta-analysis 

and its sources should be investigated within the meta-analysis framework, 

particularly as evidence of between-study heterogeneity is found in many meta

analyses as Engels et al (2000) and Villar et a l (2001) conclude.

Engels et al (2000) reviewed 125 meta-analyses of randomized controlled trials 

using binary data (meta-analyses had to have > 6  studies to be included) from 7 

major journals from 1990 to 1996, and the 1994 Cochrane pregnancy and childbirth 

database. Risk differences and ORs were calculated for each study and were then 

meta-analysed. A test for between-study heterogeneity was applied to all meta
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analyses. Results indicated that meta-analyses of ORs were less likely to show 

significant between-study heterogeneity compared to meta-analyses of risk 

difference estimates. Nevertheless, at the usual 10% level of significance for this 

test, 35% of meta-analyses indicated between-study heterogeneity when ORs were 

combined and 47% when risk differences were combined. In addition to this, Villar 

et al. (2001) found that 25% of the 84 meta-analyses published in Issue 3 of the 

Cochrane Library’s pregnancy and childbirth module (1998) had evidence of 

between-study heterogeneity. Between-study heterogeneity is a feature common to 

many meta-analyses and so must be considered alongside an assessment of 

publication bias. As yet there has been very little work on assessing publication 

bias in heterogeneous meta-analyses. Terrin et a l (2003) investigated the impact 

between-study heterogeneity had on the performance of the trim and fill test and 

Schwarzer et al. (2002) have looked at the type I error rates of the rank correlation 

test and the regression test in the presence of between-study heterogeneity.

Summary characteristics of the published simulation studies described above are 

given in Table 7.2

Jaime Peters PhD Thesis 2006 180



Chapter 7 Methods for publication bias

Table 7.2 Summary o f characteristics ofpublished simulation studies assessing performance o f tests and adjustments for publication bias

Study
Test(s) and Method(s) of 
interest

Publication
bias

How publication 
bias induced

Number of studies 
in the meta-analysis

Underlying effect(s)
Between-study
heterogeneity

Begg and Mazumdar (1994) Rank correlation test Yes
p-value or 
effect size

25, 75
0  (null hypothesis) + 

3 standard deviations
Yes

Sterne et al (2000)
Rank correlation test 
Egger’ regression test

Rank correlation test

Yes
Function of 

standard error
5, 10,20, 30 ORs of 1, 0.5 and 0.2 No

Macaskill et al. (2001)
Egger’s regression test 
FIV sample size regression 
FPV sample size regression

Yes p-value 21,63
ORs of 1,0.67, 0.5 

and 0.25
No

Schwarzer et al (2002)
Rank correlation test 
Egger’s regression test

No - 10, 20,30
ORs of 0.5,0.6,1, 

1.5 and 2
Yes

Duval and Tweedie (2002a) Trim and fill method Yes Effect size 25, 50, 75 Not specified No

Terrin et al (2003) Trim and fill method No - 10, 25 ORs of 0.5,0.8 and 1 Yes
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From Table 7.2, one can see that there are gaps in the evidence concerning the 

performance of these tests and the trim and fill method. For instance, the 

performance of Egger’s regression test in comparison to the rank correlation test has 

not been assessed in the presence of unexplained between-study heterogeneity; the 

trim and fill method has not been compared to the usual unadjusted meta-analysis 

methods (see Equations 3.1. and 3.2) in the presence of publication bias induced 

other than on the basis of effect size, nor in the presence of both publication bias 

and between-study heterogeneity. Furthermore, the promising results of the FPV 

regression model in Macaskill et a l (2001) requires further examination. Building 

on the published work described above and in Table 7.2, simulation analyses have 

been carried out to assess the performance of the rank correlation test, Egger’s 

regression test and a number of alternative regression tests, in addition to the trim 

and fill method. Under conditions of varying levels of publication bias and 

unexplainable between-study heterogeneity, the power and type I error rates of these 

tests are assessed and compared, and the bias in estimates from the trim and fill 

method is investigated. In Chapter 8 , the performance of these tests is assessed in 

the presence of unexplainable between-study heterogeneity, and that which can be 

explained to some extent by a measured covariate (explainable between-study 

heterogeneity).

7.5 Simulations
7.5.1 Parameters

Both fixed and random effects models have been used to simulate the meta

analyses. The fixed effects model is given by

y , = 6  + s„ (7.7)

where 0 is the true underlying effect, ln(OR).

The random effects model is
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Qi ~ N ( p , x 2)  (7.8)

where Qt is the true effect in study i, p  is the true underlying effect, ln(OR), and 

x2 is the estimate of between-study variance.

The simulated meta-analyses were based on characteristics of the meta-analyses of 

animal experiments identified from the systematic review in Chapter 3. However, 

findings can be applied generally. The characteristics took the following values:

• The number of primary studies in a meta-analysis was 6 , 16, 30 or 90 

studies.

• The probability of an adverse event in the control group was sampled from a

uniform distribution (0.3, 0.7).

• The natural logarithm of the number of control subjects within each primary

study was taken from the distribution N(5, 0.3).

• For simplicity the ratio of exposed to control subjects was one.

• The underlying ORs were 1, 1.2, 1.5, 3 or 5.

Given the known number of subjects in the control group, the probability of an 

adverse event in the control group and the underlying OR, values for the individual 

cells of the usual 2x2 table for calculation of an OR (see Equation 7.5) were 

simulated.

For random effects meta-analyses, the between-study variance is defined to be 20%, 

150% and 500% of the average within-study variance for studies from the
•j

corresponding simulation. This can be compared in terms of I , the percentage of 

total variation across studies that is due to between-study heterogeneity rather than 

chance (Higgins and Thompson, 2002). Here, the between-study variation defined 

to be 20%, 150% and 500% of the within-study variation corresponds to an I2 of 

16.7%, 60% and 83.3%, respectively.

Publication bias was induced in two ways: 1) on the assumption that studies are 

excluded from the meta-analysis as a result of the one-sided p-value associated with 

the effect estimate of interest (Begg and Mazumdar, 1994; Hedges and Vevea,

1996; Macaskill et al., 2001), 2) on the assumption that the size of the effect
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estimate determines whether a study is included in the meta-analysis or no, so that 

studies with the most extreme estimates of effect are excluded (Duval and Tweedie, 

2 0 0 0 a).

Inducing publication bias by p-value

Two levels of publication bias were simulated based on the one-sided p-value.

These two levels are termed ‘moderate’ and ‘severe’, and correspond to levels 

specified in Hedges and Vevea (1996). The probability for inclusion into the meta

analysis depends on the p-value from the study. This probability is defined by a 

step function and is shown in Table 7.3. Thus, for moderate publication bias, a 

study with a p-value between 0.2 and 0.5 has a probability of 0.5 for inclusion in the 

meta-analysis.

Table 7.3 Specification o f publication bias severity based on one-sided significance

Severity o f  

publication bias

p-value from 

study

Probability 

for inclusion

Moderate <0.05 1

0.05 -  0.2 0.75

0 .2 -0 .5 0.5

>0.5 0.25

Severe <0.05 1

0.05 -  0.2 0.75

>0.2 0.25

All simulations were repeated until the desired number of studies in each meta

analysis (6 , 16, 30 or 90) was obtained. For the scenario where the underlying 

OR is 1 and the number of studies included in the meta-analysis is 30, the studies 

included and excluded from the meta-analysis by these two levels of publication 

bias severity are given in Figure 7.3.

As Figure 7.4 shows, more studies need to be generated for severe bias than for 

moderate bias, until the specified number of studies is obtained. This is as 

expected, since fewer studies are excluded for moderate bias than for severe bias.
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Figure 7.3 Funnel plot o f studies from simulation o f ‘moderate ’ and ‘severe' 

publication bias; included and excluded studies are indicated
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Of particular interest in Figure 7.4 is that the mean number of studies generated to 

obtain the required number of included studies reduces as the underlying OR gets 

larger. For these larger underlying ORs, most studies are likely to have a 

statistically significant effect estimate because they are far from the null. Thus 

fewer studies are excluded. This is further illustrated in Figure 7.5. The shaded 

areas on each of the four plots (A-D) indicate different regions of statistical 

significance from a one-sided test for the different ln(OR) and 1/se values plotted 

along the x- and y-axes, respectively. So, by overlaying these areas on the usual 

funnel plot, one can visually assess the statistical significance of each study in the 

meta-analysis. When the underlying OR is relatively far from the null (as in plot 

A), few, if any, of the estimates will be non-significant (based on a one-sided p- 

value), and so each study generated is likely to be included in the meta-analysis, 

hence little publication bias is induced. In plots B-D of Figure 7.5, the number of 

studies potentially excluded from the meta-analysis increases as the underlying OR 

gets closer to the null. Therefore, inducing publication bias on the basis of 

significance leads to a somewhat distorted picture. Studies simulated from a meta

analysis with a large underlying OR are less likely to be excluded from the meta

analysis than studies from a meta-analysis where the underlying OR is close to the 

null. This phenomenon leads to consideration of an alternative method for inducing 

funnel plot asymmetry by effect size.
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Plot B
i

Plot A: underlying O R is far from the null (O R  =  1.5); P lot B: underlying O R =  1 

Plot C: underlying OR =  0.9; Plot D: underlying OR =  0.8

Figure 7.5 Examples o f censoring by level o f statistical significance o f the effect estimate
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Inducing publication bias by effect size

Again, two levels of bias were induced to represent ‘moderate’ and ‘severe’ 

publication bias. Either the 14% or 40% most extreme studies showing an 

unfavourable effect were excluded from the meta-analysis such that the final 

number of studies in a meta-analysis was still 6 , 16, 30 or 90. For example, with the 

severe level of publication bias, 40%:

• Where the final number of studies is 6 , 10 studies have been generated and 

the 4 studies (= 40% of the original 10 studies) giving the most extreme 

unfavourable estimates are not included in the meta-analysis.

• Where the final number of studies is 90, 150 studies have been generated 

and the most extreme unfavourable 60 studies (= 40% of 150) are not 

included in the meta-analysis.

This second method of inducing publication bias, excluding x% of studies giving 

the most extreme unfavourable results, is much more intuitive when looking at a 

funnel plot. More importantly, the number of studies excluded does not depend on 

the size of the underlying OR as it does when publication bias is induced on the 

basis of p-values.

Relationship between publication bias induced by p-value and effect size 

Inducing publication bias in these simulations may well impact on how the different 

tests and the trim and fill method are seen to work because the tests and methods are 

based on different assumptions. For instance, the trim and fill method is based on 

the idea of publication bias induced by effect size rather than p-value. The 

relationship between the p-value of an estimate effect and its size is not immediately 

obvious. Figure 7.6 may help in understanding the connection.

In this example the underlying OR is 1. The circle and diamond symbols represent 

studies that would be excluded using the 14% and 40% cut-off points, respectively, 

for the most extreme effect sizes. The shaded areas show the level of (one-sided) 

significance of the effect estimate, illustrating the studies that are more likely to be 

excluded (i.e. those found in the shaded areas).
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Figure 7.6 Inducing publication bias by p-value and by size o f effect
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In summary, the simulations used in this chapter to assess the performance of the 

rank correlation test, a number of regression tests, and the trim and fill method take 

the following form:

• No between-study heterogeneity and no publication bias

» 5 different sizes of OR (ORs of 1,1.2,1.5, 3, 5) and 4 sizes of meta

analysis (6,16, 30, 90 studies) = 20 scenarios

• Between-study heterogeneity and no publication bias

» 5 different magnitudes of OR, 4 sizes of meta-analysis and 3 levels 

of between-study heterogeneity (20%, 150%, 500% of the within- 

study variance) = 60 scenarios

• No between-study heterogeneity but publication bias

» 5 different magnitudes of OR, 4 sizes of meta-analysis and four types 

of induced publication bias (by p-value: moderate and severe; by 

effect size: 14% and 40% excluded) = 80 scenarios

• Between-study heterogeneity and publication bias

» 5 different magnitudes of OR, 4 sizes of meta-analysis, four types of 

induced publication bias and three levels of between-study 

heterogeneity = 240 scenarios

The results are based on 1000 repetitions of each of the above 400 situations. All 

analyses were carried out in Stata 8.2 (StataCorp, 2004). In the next section Egger’s 

regression test and alternative regression tests assessed here are specified. These 

alternative regression tests defined here allow for different criticisms of Egger’s 

regression test (given at the end of Section 7.3) to be investigated and compared.

7.5.2 Regression models

Egger’s fixed effects regression on the standard error

As defined in Equations 7.2 and 7.3, Egger’s regression test is given by

y  ot= f  + —  + s t , which is equivalent to
sei set

y t -  a  + J3.se, + s i .sei weighted by — (Model 1)
set

where y t is the ln(OR) from study i and sel is the standard error of y t .
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To avoid violating an assumption of regression analysis, a model is defined where 

the inverse of sample size is used in place of the standard error in a form of Egger’s 

regression test (Model 2).

Egger’s fixed effects regression on the inverse o f sample size

y i .size i = a  + p.size t + s t (Model 2)

where size, is the total sample size of study /.

To address the issue of multiplicative error in Egger’s test (Model 1), Model 3 is 

defined as the additive error version of Model 1.

Linear fixed effects regression on standard error

y t = a  + p.set + s t , weighted by-^r  (Model 3)sef

Macaskill et al. (2001) proposed a linear model with additive error as that in Model 

3, but where the independent variable, standard error, is replaced by the total sample 

size. As described in Section 7.4.1 Macaskill et al. define two forms of this model 

depending on the weighting used and these are defined as Models 4a and 4b.

Linear fixed effects regression on sample size (FIV model)

yi = a  + p.sizet + si , weighted by — ( Model  4a)
se,

Linear fixed effects regression on sample size (FPV model) 

y t = a + p.sizei + et , weighted by i i  H--------
K a i + b i  C t + d t j

(Model 4b)

In Models 1 and 3, standard error is used as a measure of precision for each study 

and is then tested for an associated with effect size. Precision can also be thought of 

in terms of the inverse of sample size for each study; studies with large sample sizes
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tend to have larger precision. Thus Model 4c is defined as a version of Model 4b, 

where the inverse of sample size is used in place of sample size.

Linear fixed effects regression on inverse o f sample size

P
y t = < * + - — +£,,size,

weighted by f  i i  H--------
Kai +bi Ci+d^

(Model 4c)

Finally, two random effects linear models are defined (Model 5 and Model 6 ).

Since between-study heterogeneity is induced in some simulations used here, it is of 

interest to assess how well random effects models for publication bias will fair in 

such simulations. Models 5 and 6  can be thought of as random effect versions of 

Models 3 and 4a.

Linear random effects regression on standard error

yi = a  + p.sei + p t + s{, weighted by —
se;

(Model 5)

Linear random effects regression on sample size

y ( = a  + p.sizei + si, weighted by - —r
set

(Model 6 )

The eight regression models described above are summarised in Table 7.4.

Table 7.4 Summary o f  the regression models assessed in these simulations

Model based on...
Egger’s fixed 
effects model

Linear fixed 
effects model

Linear random 
effects model

Some transformation
Model 1 Model 3 Model 5

of standard error 

Some transformation
Model 2 Model 4 * Model 6

of sample size
* three different weightings for each study are implemented (Models 4a, 4b and 4c)
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All of these regression models test an association between the (standardized) effect 

size from each study in the meta-analysis, y t , and a measure of its precision

(whether a transformation of standard error or sample size). Evidence of an 

association may suggest that the meta-analysis is subject to publication bias if the 

smaller, less powerful studies have larger effect sizes than the more precise studies.

7.5.3 Estimate o f  effect

When publication bias is suspected one should go beyond simply testing for it in an 

attempt to determine if this publication bias is likely to have a significant impact on 

the conclusions one may draw the meta-analysis. The trim and fill method allows 

some examination of the possible effect of publication bias on the pooled estimate. 

Given that a fixed effects or random effects meta-analysis model can be used in 

both the iterative part of the trim and fill process and the calculation of the adjusted 

pooled effect from the ‘filled’ meta-analysis (see Section 7.3), there are four 

possible fixed and random effects versions of the trim and fill method: fixed-fixed 

effects, fixed-random effects (fixed effects model for the iterative process and 

random effects for the pooled estimate), random-fixed effects, random-random 

effects. The random-random effects version is advocated by Duval and Tweedie 

(2 0 0 0 a; 2 0 0 0 b), however, more recently discussion of the reporting of results from 

the fixed-fixed effects model has received attention (Sutton, 2005). In these 

simulation analyses only the performance of the fixed-fixed effects and random- 

random effects trim and fill models are considered and are thus referred to as the 

trim and fill fixed effects model and the trim and fill random effects model in the 

rest of the thesis. There has, in the past, been some discussion as to alternative 

ways to proceed in a meta-analysis when publication bias is suspected. One method 

is the ‘best evidence synthesis’ approach proposed by Slavin (1986 and 1995). This 

approach requires strict inclusion criteria to be set so that only the best evidence, in 

terms of quality, are included and synthesised. This approach has many benefits, 

but although quality is likely to be affected by sample size, such an approach may 

still be subject to publication bias as key factors leading to publication bias include 

the effect size and statistical significance, in additional to sample size. However, 

Berlin et al. (1989) suggest a form of best evidence synthesis wherein sample size is 

the key factor for inclusion into the meta-analysis. They argue that since large
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studies are usually published and it is the effect estimates of smaller studies that are 

subject to more random variation, a meta-analysis of only large studies should not 

be subject to publication bias. There is therefore a case for looking at results from 

individual studies rather than using results from a meta-analysis especially if there is 

evidence of heterogeneity and/or publication bias. With this in mind, the 

performance of using the estimate from the largest study or the study that is most 

precise in place of the pooled estimate is examined in these simulation analyses in 

the presence and absence of publication bias and between-study heterogeneity. To 

summarise, the estimate of effect from six different methods are compared:

1. Usual unadjusted fixed effects meta-analysis estimate (see Equation 3.1)

2. Usual unadjusted random effects meta-analysis estimate (see Equation 3.2)

3. Trim and fill fixed effects meta-analysis estimate (see Equation 7.4)

4. Trim and fill random effects meta-analysis estimate (see Equation 7.4)

5. Estimate from the largest study in the meta-analysis

6 . Estimate from the study with the greatest precision in the meta-analysis

7.5,4 The analyses

The type I  error rates (percentage of simulations where publication bias is 

incorrectly indicated at p < 0.1) for the rank correlation test, Egger’s regression test 

(Model 1) and the alternative regression tests (Models 2, 3, 4a, 4b, 4c, 5 and 6 ) are 

investigated in a range of scenarios described in Section 7.5.1.

In the presence of publication bias, the power (percentage of simulations where 

publication bias is correctly indicated at p < 0.1) of these tests is explored. An ideal 

test would have type I error rates of 10% and good power to detect publication bias 

when it is present, regardless of the size of the underlying effect, the number of 

primary studies in the meta-analysis and the amount of between-study 

heterogeneity. The corresponding maximum standard error for these estimates of 

the type I error rates and power are also given.

The two-tailed p-value for the coefficient of interest in each regression model is 

calculated in two ways: i) from the usual t-test and ii) from a permutation test (or

Jaime Peters PhD Thesis 2006 194



Chapter 7 Methods for publication bias

randomization test). The permutation test has been proposed by Higgins and 

Thompson (2004) as an alternative in meta-regression to temper high type I error 

rates. This approach does not rely on an assumed distribution of the regression 

coefficients when calculating statistical significance, unlike the usual approach.

The permutation test has not before been used to calculate p-values from regression 

tests to detect publication bias.

Performance of the six methods to estimate an effect outlined above are assessed 

through measures of

• relative bias, the difference between the underlying effect and the estimated 

effect as a percentage of the underlying effect, where a negative bias 

indicates an underestimate of the underlying OR, a positive bias indicates an 

overestimate, and

• coverage probabilities, the proportion of simulations in which the 

underlying effect lies within the 95% confidence intervals of the estimate, in 

the absence and presence of publication bias.

When looking at the performance of these methods it must be borne in mind that 

when publication bias is induced on the basis of the p-value associated with the 

effect estimate from a study, a meta-analysis with a large underlying OR is unlikely 

to contain many studies with a non-significant estimate (as discussed in Section 

7.5.1). Because of this, few studies from such a meta-analysis will be excluded and 

so little publication bias will be induced. Hence, for meta-analyses where the 

underlying OR > 3, and publication bias has been induced by p-value, any effect of 

publication bias will be minimal. This must be taken into account when interpreting 

the performance of these methods to detect, and adjust for, possible publication 

bias. The performance of the tests and the trim and fill method in these simulated 

meta-analyses is reported in the following section. Only results for ‘severe’ 

publication bias are shown in this chapter, however relevant results for ‘moderate’ 

publication bias are referred to and given in Appendix I (these follow the same trend 

as for ‘severe’ bias, but results for ‘moderate’ bias are not as pronounced).
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7.6 Results
7.6.1 The rank correlation test

The type I error rates of the rank correlation test for different underlying ORs, meta

analysis size (the number of primary studies in the meta-analysis) and level of 

between-study heterogeneity are given in Figure 7.7. The maximum standard error 

in estimates of type I error rates and power for the rank correlation tests is 1.6 %, so 

that estimates of the type I error rates and power have a 95% Cl that does not 

exceed ±1.96* 1.6% in width. For small meta-analyses (n=6 ), the type I error rates 

are lower than expected, however for large ORs and reasonably sized meta-analyses 

(n > 30), the error rates are larger than expected, especially when there is a great 

deal of heterogeneity. Imbalance in the tail probability areas can also be seen 

(bottom row of Figure 7.7).

Figure 7.7 Type I  error rates for the rank correlation test
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Results of the simulation analyses suggest that the rank correlation test has good 

power to detect ‘severe’ publication bias, especially when there is a small or 

moderate underlying effect, but that this power tends to decrease as the amount of 

between-study heterogeneity increases (Figure 7.8). When the underlying effect is
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large (OR > 3), it is difficult to distinguish between type I error rates and power, 

because of the large type I error rates observed in Figure 7.7. This trend in levels of 

power for ‘severe’ bias is also seen when ‘moderate’ publication bias is induced, 

although the observed power is not as high (see Figure 1.1 in Appendix I).

Figure 7.8 Power o f  the rank correlation test to detect ‘severe ’publication induced 

by p-value (top row) and effect size (bottom row)
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7.6.2 The regression model tests

The maximum standard error in the estimates of power and type I error rates from 

the eight regression tests using p-values from the usual t-test and the permutation 

test is 1 .6 %.

P-values obtainedfrom the usual t-test

The first set of results for the regression model tests are based on the use of the 

usual t-test to obtain p-values for coefficients of a regression model. Results from 

the permutation tests are given later. Unlike the rank correlation test, when applied 

to small meta-analyses Egger’s regression test (Model 1) has the expected 10% type 

I error rates (Figure 7.9). However, as with the rank correlation test, the expected
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type I error rate is exceeded for meta-analyses with large underlying effects (OR >

3).

Figure 7.9 Type I  error rates for all regression models when there is no between- 

study heterogeneity
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Three tests (Models 4a, 4b and 4c) appear to perform well in terms of attaining the 

expected type I error rates regardless of the number of primary studies and the size 

of the underlying effect. Apart from having very low type I error rates for meta

analyses with a small number of primary studies, Model 6 appears to perform 

reasonably well when there are a large number of studies in the meta-analysis 

(although the expected type I error rate of 10% is not quite achieved). When there 

is a great deal o f between-study heterogeneity (see Figure 7.10), Model 6 attains the 

expected type I error rates, however Model 4c is the only model to consistently 

achieve the expected 10% type I error rate regardless of the amount of between- 

study heterogeneity, the number of primary studies in the meta-analysis and the size 

of the underlying effect.
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Figure 7.10 Type I  error rates for all regression models when between-study 

heterogeneity is 500% o f the average within-study heterogeneity
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Egger’s regression test (Model 1) generally appears to be more powerful than 

Model 4c to detect ‘severe’ publication bias, with both tests having greatest power 

when ‘severe’ publication bias is induced on the basis of effect size (compare 

Figures 7.11 and 7.12). However, this observed power must be interpreted in light 

of the type I error rates, and clearly a trade-off between the two is required.

Because of the high type I error rates o f Egger’s regression test, it is difficult to 

distinguish power from these error rates. On the other hand, since Model 4c has the 

expected type I error rates in all scenarios, there is more confidence in the observed 

power actually representing power to detect publication bias. For these reasons 

Model 4c appears superior to Egger’s regression test and the other six regressions 

tests to detect publication bias when the p-values are calculated from the usual t- 

test.
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Figure 7.11 Power to detect ‘severe' publication bias induced by p-value when 

there is no between-study heterogeneity
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Figure 7.12 Power to detect ‘severe * publication bias induced by effect size when 

there is no between-study heterogeneity (see Figure 7.11 above for legend)
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None of the models with appropriate type I error rates have power to detect ‘severe’ 

publication bias, regardless of how it is induced, when there is a great deal of 

between-study heterogeneity. The same general trend in power is seen when 

‘moderate’ publication bias is induced, but the levels of power are smaller (Figures

1.2 and 1.3 in Appendix I).

P-values obtained from the permutation test

In Figure 7.13, the type I error rates from all eight regression models are shown for 

the case when there is no between-study heterogeneity. Type I error rates of 

Egger’s regression test exceed the expected 10% level and increase as the 

underlying ORs and the number of studies in the meta-analysis increases. Type I 

error rates for Model 4c are higher than the expected 10% level for all underlying 

ORs and the number of studies in the meta-analysis. Model 6 , the random effects 

regression model using sample size is the only model seen to have the expected type 

I error rates regardless of OR size or meta-analysis size, when the permutation test 

is used to calculate the p-value. However, there is an imbalance in the tail 

probability areas for Model 6  (see Figure 1.4 in Appendix I).

In the presence of substantial between-study heterogeneity, Models 4a and 4b, in 

addition to Model 6 , are the only ones to have the appropriate type I error rates. 

Those from Egger’s regression test (Model 1) well exceed 10%, especially when 

OR> 3 (Figure 7.14).
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Figure 7.13 Type I  error rates o f the eight regression models when the permutation 

test is used and there is no between-study heterogeneity
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Figure 7.14 Type I  error rates o f the eight regression models when the permutation 

test is used and between-study heterogeneity is 500% o f the within-study variation

i i i i i i
0  2 0  4 0  6 0  8 0  100

Model 6
o  
o  •

V U K - 1

§ * O R - 1 .2
n p  —i  cU K  — 1 . 0

o  «
CD —O

U K  *3

_ / > n

40

O R - 5

o  .
CN

O  - i—i—i—i—i—r-
0 2 0  4 0  6 0  8 0  100  
No. primary studies

Model 4b

i—i—i—i—i—r~
0  2 0  4 0  6 0  8 0  1 0 0

Model 4c

t—i—i—i—i—r-
0 2 0  4 0  6 0  8 0  1 0 0  

No. primary studies

~i—i—i—i—i—r
0 2 0  4 0  6 0  8 0  1 0 0  
No. primary studes

1 I I I I I-
0 2 0  4 0  6 0  8 0  1 0 0

Model 4a
o  -

1-- 1--1-- 1-- 1--T
0  2 0  4 0  6 0  8 0  1 0 0  
No. primary studies

Model 1
o  
o

i—i—i—i—i—r
0  2 0  4 0  6 0  8 0  1 0 0

Model 2
o  o •

Model 3

vO U  .ôOO 
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Models 1,2, 3 ,4c and 5 all have higher levels of power to detect ‘severe’ 

publication bias than Models 4a, 4b and 6  (see Figures 7.15 and 7.16), but these 

models had higher than expected type I error rates, so again this trade-off between 

power and type I error rate must be made.

Figure 7,15 Power (when the permutation test is used to calculate p-values) to 

detect ‘severe ’ publication bias induced by effect size when there is no between- 

study heterogeneity (see Figure 7.16 below for legend)
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None of the models with appropriate type I error rates when there is a great deal of 

between-study heterogeneity (Figure 7.14), have power to detect ‘severe’ 

publication bias when there is a great deal of heterogeneity (Figures 1.5 and 1.6 in 

Appendix I); as concluded with the results based on the usual t-test.
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Figure 7.16 Power o f  the eight regression models to detect ‘severe ’publication 

bias induced by p-value when there is no between-study heterogeneity
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In summary Model 4c appears superior to both Egger’s regression test (Model 1) 

and Macaskill’s regression test (Model 4b) when the usual t-test is used for 

calculation of p-values. Apart from lower than expected type I error rates when 

there is no between-study heterogeneity, Model 6  also seems to perform reasonably 

well. More so when the permutation test is used to calculate the p-values. None of 

the tests (whether using the t-test or permutation test to calculate p-values) performs 

well to detect publication bias when a great deal of unexplained between-study 

heterogeneity is present.

7.6.3 Estimates o f  effect -  the trim andfill method

In the absence of publication bias, the trim and fill method has slightly lower 

coverage probabilities than expected, i.e. the underlying OR lies within the 95% Cl 

of the estimated OR fewer times than expected (top row of Figure 7.17). There is 

very little relative bias in the (fixed and random effects) trim and fill adjusted 

estimate of the underlying OR (bottom row of Figure 7.17). This suggests that 

although the underlying OR lies outside the 95% confidence interval (calculated
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from the trim and fill method) more often than expected, on average, the fixed and 

random effects trim and fill estimate is similar to the underlying OR when there is 

no publication bias. Therefore indicating that the 95% CIs from the trim and fill 

method are too narrow. The corresponding coverage probabilities and relative bias 

in the usual (unadjusted) inverse-variance weighted estimates (from Equations 3.1 

and 3.2) are also given in Figure 7.17. There is very little departure from the 

expected 0.95 coverage probabilities and 0% relative bias for both the fixed and 

random effects model.

Figure 7.17 Coverage probabilities (top row) and relative bias (bottom row) o f 

methods for pooling estimates in the absence o f publication bias and between-study 

heterogeneity
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As between-study heterogeneity increases, the coverage probabilities for the fixed 

and random effects trim and fill estimates and the usual fixed effects unadjusted 

estimates do not perform well (top row Figure 7.18). As the underlying OR 

increase, these estimates increasingly under-estimote the underlying OR (bottom 

row Figure 7.18).

Jaime Peters PhD Thesis 2006 205



Chapter 7 Methods for publication bias

Figure 7.18 Coverage probabilities (top row) and relative bias (bottom row) o f 

methods for pooling estimates in the absence o f publication bias, when between- 

study heterogeneity is 500% o f the within-study heterogeneity
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This suggests that if the trim and fill method, or the usual fixed effects method, is 

used when no bias exists, and there is a great deal o f between-study heterogeneity, a 

biased estimate is obtained. These results have also been reported by Terrin et al. 

(2003). Reassuringly, the results in Figure 7.18 suggest that the random effects 

unadjusted meta-analysis method does indeed perform well in the presence of 

between-study heterogeneity, where the coverage probabilities are as expected (i.e. 

0.95) and there is little bias in the random effects estimate o f the underlying OR.

The underestimate by the usual fixed effects meta-analysis model in Figure 7.18 is 

an interesting finding. This underestimate is not seen for i) ORs closer to the null, 

ii) when there is no between-study heterogeneity (see Figure 7.17) or iii) when the 

random effects meta-analysis model is used. This last point suggests that it is the 

most precise studies that are being underestimated since more relative weighting is 

given to these studies in a fixed effects meta-analysis compared to a random effects 

meta-analysis. This leads to discussion as to why studies are being underestimated 

when the OR is very large and there is a great deal of between-study heterogeneity.
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It is likely to be a factor in how the values in the 2x2 tables for the primary studies 

are generated in this simulation analysis. The exposure group event rate, p , , is 

calculated by fixing the control group event rate, pc, and the underlying OR. In 

these simulations pc is sampled from a uniform distribution (0.3, 0.7), and because 

between-study heterogeneity is induced, the ORs are sampled from a normal 

distribution, rather than being fixed at the defined ORs of 1, 1.2, 1.5, 3 or 5. The 

most extreme OR is 5 and when a great deal of between-study heterogeneity is 

induced the sampled OR can be much larger than 5. Thus, given that in a single 

simulated study, the sampled pc could be 0.7 and the sampled underlying OR could 

also be large (OR > 5), p, will be forced to be large. However, the distribution of 

pt at the extremes (i.e. p t = 0  and p, = 1) is skewed and so as the calculated pt gets 

closer to one, the number of individuals with the event in the exposure group (rt) is 

likely to be less than that specified via p , . Therefore, the simulated number of 

events (rt) and non-events (nt-rt) in the exposure group is unlikely to reflect that 

specified by the calculated p t and so the 2 x2  table for that study will not equate to 

the sampled underlying OR, but a lower OR (since the p t from which rt and nt-rt 

have been sampled is smaller than the p t calculated via the sampled pc and OR). 

For instance for Study A in Figure 7.19, p t is 0.92 with the OR calculated to be 5, 

however if one assumes that the calculated p, was in fact 0.97, for instance, (but 

the skew in the distribution of pt meant a lower value of p , , 0.92, was sampled) it 

can be seen how the OR is hugely underestimated, i.e. OR = 5 in Study A vs OR = 

14 in Study B.

The studies where the underlying OR has been underestimated are likely to be more 

precise for the reason discussed earlier in this chapter (Section 7.3, page 173): the 

correlation between the OR and its standard error (Macaskill et al., 2001). This is 

seen in an extreme case in Figure 7.20 where a meta-analysis is simulated to have 

90 studies (all having 400 subjects, 200 in each arm). The underlying ln(OR) in 

each study is drawn from N(1.61, 0.45), such that the mean OR is 5 with 95% Cl 

1.34, 18.62. In this extreme case it can be seen that studies with large ln(ORs) are 

estimated with a great deal of variability and studies with small ln(ORs) are 

estimated very precisely.
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Figure 7,19
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The pooled OR from the fixed effects model is 4.5 (95% Cl: 4.27,4.73) -  an 

underestimate, while the pooled OR from the random effects model is closer to that 

defined (5.04 with 95% Cl: 4.36, 5.82) since studies are given relatively more equal 

weighting in a random effects model than in a fixed effects model. When the trim 

and fill model is applied to meta-analyses simulated from such extreme scenarios 

underestimates are also obtained from both the fixed effects and random effects trim 

and fill models as shown in Figure 7.18. The trim and fill adjusted estimates for the 

extreme meta-analysis simulated above (where all sample sizes sire equal) are OR = 

3.52 (95% Cl 3.39, 3.67) for the fixed effects trim and fill model and OR = 4.10 

(95% Cl 3.56, 4.76) for the random effects trim and fill mode.

An alternative approach to simulating the binary data could help to alleviate some 

of this bias. For instance, Schwarzer et al. (2002) do not fix the control group event 

rate, pc, instead they fix p A such that

log it{pc) = log it{pA ) -  i  ln(Otf) 

log it(pt) = log it(pA ) + ~  In (OR)

where OR is the underlying OR. Using this approach less extreme values for p, 

may be obtained that do not force the OR in a study to be an underestimate of the 

sampled OR.

The method used in these simulations to calculate the individual level data within a 

study (i.e. by fixing the control group event rate and the underlying OR to then 

calculate the exposure group event rate) is the standard approach taken in 

simulations of binary data (Sterne et al., 2000; Macaskill et al., 2001; Terrin et al., 

2003; Harbord et al., 2006). However, as discussed above the results suggest that 

this may lead to a bias in meta-analyses of large ORs when there is a great deal of 

between-study heterogeneity. Clearly this bias needs to be investigated further than 

has been discussed above, with more simulations being required to assess the bias 

and factors contributing to it. This is, however, beyond the scope of this thesis, 

although is likely to form further work in this area.
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In the presence o f ‘severe’ publication bias and no between-study heterogeneity, the 

fixed and random effects trim and fill method over-estimates the underlying OR by 

up to 10% when bias is induced by p-value, and up to 15% when induced by effect 

size (see Figure 7.21). (Note that the 0%, -5% relative bias seen in Figure 7.21 for 

the larger underlying ORs when publication bias is induced by p-value is an 

artefact, since little publication bias has been induced as discussed in Sections 7.5.1 

and 7.5.3.) The trim and fill method appears to perform slightly better than the 

unadjusted method since less biased estimates are obtained.

Figure 7.21 Relative bias o f four methods in estimating the true OR when there is 

no between-study heterogeneity in the presence o f severe publication bias
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As between-study heterogeneity increases, these estimates become more biased. 

When there is 500% between-study heterogeneity, all four methods give an over

estimate of the true OR of approximately 30-50% (Figure 7.22).
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Figure 7.22 Relative bias o f four methods in estimating the true OR in the presence 

o f severe publication bias and a great deal o f between-study heterogeneity (500% o f 

the within-study heterogeneity)
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In summary, findings suggest that the trim and fill method does not appear to 

provide estimates which are any less biased than those o f the usual fixed and 

random effects inverse-variance meta-analysis methods. In the absence of 

publication bias, where there is a large amount o f between-study heterogeneity, the 

trim and fill method can greatly under-estimate the underlying OR as Terrin et al. 

(2003) demonstrated. On the other hand, when publication bias is present, the 

resulting over-estimate from the trim and fill method can also be misleading in 

many situations.

Related to this is the point that use of a random effects meta-analysis rather than a 

fixed effects meta-analysis in the presence of between-study heterogeneity can give 

a more biased estimate of the effect when publication bias is present. This is seen to 

some extent in Figure 7.22 where the unadjusted random effects estimates are 

slightly more biased than the unadjusted fixed effects estimates. The reason for this 

is that when a random effects meta-analysis is used, because o f the addition of r 2 to
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the calculation of the weighting given to each study (see Equation 3.2), individual 

study weightings become smaller than if a fixed effects meta-analysis is used. In 

particular, smaller studies get relatively more weight in a random effects meta

analysis than in a fixed effects meta-analysis. When publication bias is present, a 

number of smaller studies suggesting an wmnteresting or wwfavourable effect are 

likely to be ‘missing’, but the smaller studies suggesting an interesting or favourable 

effect will still be taken into account in the meta-analysis. Thus, in a random effects 

meta-analysis, these smaller studies will have more weight in the estimate of the 

overall effect than in a fixed effects meta-analysis and so a more biased estimate 

may be obtained because of the greater influence of these smaller studies in a 

random effects meta-analysis compared to a fixed effects meta-analysis.

7.6.4 Estimates o f  effect -  using the largest or most precise study 

It is worth noting that for many of these simulations the largest study is the most 

precise study. As between-study heterogeneity, the number of studies in the meta

analysis and the underlying OR all increase, in 50-60% of simulations the largest 

and most precise study are the same study. However, in cases where the underlying 

OR is close to the null, the number of studies in the meta-analysis is small and there 

is no between-study heterogeneity, the largest study and the most precise study are 

the same for 80-90% of the simulations. Hence, in these situations one would 

expect little difference in performance where the largest study or the most precise 

study was used, since they are the same studies.

When there is no publication bias or between-study heterogeneity, taking the 

estimate from the largest study or the most precise study gives very good estimates 

of the underlying effect in terms of the relative bias and the coverage probabilities. 

However, when there is a great deal of heterogeneity between studies (500% of the 

within-study variance) these approaches tend to give biased estimates of the 

underlying effect (Figure 7.23).
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Figure 7.23 Relative bias and coverage probabilities o f using the observed effect 

from the largest study and the most precise study to estimate the underlying effect 

when there is no publication bias
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In the presence of ‘severe’ publication bias, estimates from the largest or most 

precise study are biased by about 10% of the underlying effect (Figure 7.24). When 

there is a great deal o f between-study heterogeneity this increases up to 80% when 

the estimate from the study with the largest sample size is used and up to 50% when 

the estimate from the most precise study is used (Figure 7.24).
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Figure 7.24 Relative bias and coverage probabilities o f using the observed effect 

from the largest study and the most precise study to estimate the underlying effect 

when publication bias is induced by p-value or effect size
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7.6.5 Estimates o f effect -  summary

In the presence o f simulated ‘severe’ publication bias all approaches assessed here -  

the trim and fill method, taking estimates from the largest study and the most 

precise study -  do not perform particularly well when used to estimate the 

underlying effect. These findings confirm those in Terrin et al. (2003) that when 

the trim and fill method is applied to a meta-analysis with no publication bias, 

under-estimates of effect are obtained when between-study heterogeneity exists. 

However, in the presence of publication bias, regardless o f the amount o f between- 

study heterogeneity, the fixed and random effects trim and fill estimates generally 

give the least biased estimates in these simulation analyses compared to the usual 

fixed and random effects meta-analysis models and use of either estimate from the 

largest study or the most precise study. Compared to the fixed effects trim and fill 

method, the random effects trim and fill method gives coverage probabilities closer 

to the expected 0.95 level. However, the random effects meta-analysis tends to
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have a wider 95% Cl around the pooled estimate (since the between-study 

heterogeneity parameter in accounted for), thus there is more opportunity for the 

true effect to be included in the 95%CI from a random effects meta-analysis, than a 

fixed effects meta-analysis. It is therefore, noteworthy that there is little difference 

between the relative bias of the fixed and random effects trim and fill adjusted 

estimates.

7.7 Further analyses
The analyses presented in this section were carried out in response to reviewers’ 

comments on Peters et al. (2006) (Appendix H) regarding different scenarios and 

parameter values.

7.7.1 Alternative parameters fo r  the simulations

To help identify whether the superior performance of Model 4c over Egger’s and 

Macaskill’s regression tests (Models 1 and 4b, respectively), was an artefact of the 

simulations described in Section 7.5, additional simulations, based on Macaskill et 

al. (2001), were carried out. The first set of additional simulations (1) are based on 

the two primary study sample size configurations given in Macaskill et al Both 

configurations, A and B, have 21 studies in the meta-analysis. Configuration A 

consists of 11 studies with 1 0 0  subjects per group, 6  with 2 0 0  subjects per group 

and 4 studies with 300 subjects per group. Configuration B has 10 studies with 100 

subjects per group, 5 with 200 subjects per group, 3 with 300 subjects per group, 2 

with 500 subjects per group and 1 study with 1000 subjects per group. Publication 

bias is defined as severe such that the probability of selection into the meta-analysis, 

p(w), is 1 if the study’s p-value is <0.05; p(w) = 0.75 if 0.05 < p-value < 0.2; p(w) = 

0.25 if p-value > 0.2.

The second set of simulations (2) have the sample size configurations A and B 

above and the selection mechanism p(w) = exp(-4*(p-valueA1.5)) as used in 

Macaskill et al. The different p-value based selection mechanisms used are shown 

in Figure 7.25.

Jaime Peters PhD Thesis 2006 215



Chapter 7 Methods for publication bias

Figure 7.25 ‘p-value based1 selection mechanisms used

Moderate bias 

■ *  Severe bias

Macaskill et al bias

p-value

Simulations (1) and (2) were carried out under conditions of 0%, 20%, 150% and 

500% between-study heterogeneity as defined in Section 7.5.1. In the absence of 

publication bias, Model 4c appears to have better performance in terms of the 

appropriate type I error rates, regardless of the amount of heterogeneity, the size of 

the underlying OR and the sample size configuration, over Models 1 and 4b (Figure

7.26 -  note that the format of these figures is different to those before: the x-axis 

represents the size of the underlying OR and each line represents the type I error 

rate or power of Egger’s regression test (Model 1), Macaskill’s regression test 

(Model 4b) and the modified Macaskill’s test (Model 4c)).
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Figure 7.26 Type I  error rates o f Models 1, 4b and 4c in sample size configurations 

A and B (number o f primary studies in meta-analysis is 21 in each simulation)
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In the presence of publication bias, the findings are slightly harder to interpret 

(Figure 7.27 for simulation (1) results and Figure 7.28 for simulation (2) results). 

Since publication bias is here based on p-value, relatively little bias is actually 

induced when the underlying OR > 3, hence the observed lack of power for these 

ORs is as expected. All models have greater power to detect asymmetry in 

configuration B. This is not surprising as a greater range of sample sizes exist 

(Sterne et al., 2000). Egger’s regression test appears to have slightly greater power 

to detect publication bias in configuration A regardless of the amount of between- 

study heterogeneity and selection mechanism used (left hand column of Figures

7.27 and 7.28). However, this power must be interpreted in light of the type I error 

rates for configuration A, and for Egger’s regression test it is difficult to distinguish 

between the inflated type I error rates and these estimates of power. In 

configuration B (right hand column of Figures 7.27 and 7.28), Egger’s regression 

test appears most powerful when there is little or no heterogeneity. In the presence 

of increasing between-study heterogeneity, Model 4b (Macaskill’s test) appears 

most powerful. However, again these estimates of power most be considered 

alongside the inflated type I error rates from Model 1 and Model 4b for the 

corresponding levels of between-study heterogeneity (see Figure 7.26).
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Figure 7.27 Power o f Models 1, 4b and 4c to detect publication bias in sample size 

configurations A and B for simulation set (1) (number o f primary studies in meta

analysis is 21 in each simulation)
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Figure 7.28 Power o f Models 1, 4b and 4c to detect publication bias in sample size 

configurations A and B for simulation set (2) (number o f primary studies in meta

analysis is 21 in each simulation)

No heterogeneity

Configuration A Configuration B
E gg er 's  te s t 

Macskill's test 

Modified M acaskill's tes t

t — —---------i------1— — ;------------- 1------------------ —i— ;—  ----------- r- H---------------------- 1-------------  1---------------------- 1----------------------r
1 2 3 4 5 1 2 3 4 5  

OR O R

20% heterogeneity

Configuration A Configuration B
o

150% heterogeneity

Configuration A Configuration B
§ -! 8

500% heterogeneity

Configuration AO
o

8

o

o

1 2 3 4 5

. o „ S <o
£  e  -

Configuration B

3
OR

Jaime Peters PhD Thesis 2006 220



Chapter 7 Methods for publication bias

These findings suggest that the superiority of Model 4c, in terms of its appropriate 

type I error rates and reasonable power relative to Models 1 and 4b, is not an 

artefact of the study size design defined in the initial set of simulations described in 

Section 7.5.1.

7.7.2 Relative risk as the measure o f  effect

So far in this chapter, the performance of these tests and the trim and fill method 

have only been assessed when the effect estimate is the OR. In the review if meta

analyses in the BMJ and the JAMA (described in Section 7.3), 29% of meta

analyses used the relative risk (RR) as the outcome of interest. Thus, the 

performance of these models when the estimate of effect is the RR is clearly of 

interest. Schwarzer et al. (2002) report excessive type I error rates for Egger’s 

regression test when the relative risk (RR) is used as the measure of effect in their 

simulation analyses. To assess the performance of the eight regression tests when 

the RR is the effect estimate, in the following analyses RRs of 1, 1.5 and 5 were 

defined and meta-analyses were simulated under the same conditions given in 

Section 7.5.1. Due to time constraints and the fact that it is difficult to interpret the 

performance of tests to detect publication bias when the underlying effect is large 

and publication bias is induced by p-value (see Section 7.5.1), publication bias was 

only induced by effect size.

When the OR is used, the weighting for Models 4b and 4c is based on collapsing the 

usual 2x2 table for the OR and calculating the variance of this pooled log odds (see 

Equation 7.5 and the specification of Models 4b and 4c in Section 7.5.2). When the 

RR is the estimate of effect, the weighting for Models 4b and 4c have been 

calculated using the same 2 x2  table.

Results suggest that Model 4c attains appropriate type I error rates regardless of the 

underlying RR, the number of primary studies in the meta-analysis and the amount 

of between-study heterogeneity. Model 6  also performs reasonably well in terms of 

type I error rates (Figures 7.29 and 7.30).
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In the presence o f ‘severe’ publication bias (induced by effect size), all models have 

reasonable power to detect the asymmetry (Figures 7.31 and 7.32), although as with 

previous results, power and type I error rates must be considered together.

RRs and the variance of the RR are correlated (as with ORs) and this is seen in 

these plots, since the sample size models (Models 4a, 4b, 4c and 6) perform better in 

terms of obtaining the appropriate type I error rates. In conclusion, model 4c 

appears to out-perform the other models when the effect is a RR as it does with 

ORs. However, further confirmatory work is required, particularly with the 

specification of the weighting for Models 4b and 4c, and an exploration of the 

performance o f these models when other measures of effect are the summary 

estimates (such as risk difference) is needed.

Figure 7.29 Type I  error rates when RRs are the measures o f  effect and there is no 

publication bias or between-study heterogeneity
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Figure 7.30 Type I  error rates when RRs are the measures o f effect when there is no 

publication bias but 500% between-study heterogeneity
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Figure 7.31 Power to detect ‘severe ’publication bias induced by effect size when 

RRs are the measures o f effect and there is no between-study heterogeneity
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Figure 7.32 Power to detect ‘severe ’ publication bias induced by effect size when 

RRs are the measures o f effect and there is 500% between-study heterogeneity
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7.8 Summary
The results presented in this chapter confirm 1) the findings o f Begg and Mazumdar 

(1994), Sterne et al. (2000), and Macaskill et al. (2001) that the rank correlation test 

is not very powerful for meta-analyses with a small number o f studies, 2) those of 

Sterne et al (2000), Macaskill et al. (2001) and Schwarzer et al. (2002) that Egger’s 

regression test is inappropriate for the detection of publication bias when ORs are 

the summary measures because of the excessive type I error rates and 3) the 

findings of Terrin et al. (2003) that the trim and fill method can inappropriately 

adjust for publication bias in the presence of between-study heterogeneity.

None of the methods assessed here to detect or adjust for publication bias has 

consistently performed well. Instead, for the publication bias tests, a trade-off 

between power and type I error rates is required. With this in mind, although Model 

4c (where the inverse sample size is the independent variable) is no more powerful

Model 5
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than Egger’s regression test (Model 1) and Macaskill’s regression test (Model 4b), 

because of favourable type I error rates and a reduction in the correlation between 

ln(OR) and its standard error, Model 4c should be routinely used in place of Egger’s 

regression test. Use of the permutation test to obtain p-values for these models did 

not necessarily suggest improved performance of the models, except for Model 6  

(random effects regression with sample size as the independent variable). Although 

further work into the use of the permutation test would be informative, so far 

evidence does not suggest one should move away from use of the usual t-test for 

calculation of p-values in regression tests for publication bias.

One limitation of Model 4c is that in order to calculate the weighting each study 

receives in the regression, the number of events and non-events in the two 

comparison groups (i.e. a, b, c and d  in Equation 7.5) must be known. Thus the use 

of Model 4c in practice may be restricted when only the ln(OR) and variance or 

confidence limits are reported in primary studies, or when an adjusted ln(OR) has 

been obtained from a logistic regression. Although the impact of an approach 

similar to Greenland and Longnecker (1992) to estimating fitted cell counts when 

adjusted ln(OR)s are reported, as described in Equation 5.7, could be investigated.

In general, the regression models including sample size as the independent variable 

were seen to be superior to those using standard error as the independent variable. 

This provides strong evidence for the use of sample size, rather than the inverse of 

standard error as an axis in the funnel plot. Sterne and Egger (2001) do not 

recommend use of sample size because of the difficulty in defining the shape of the 

funnel, however when the summary estimate and standard error are correlated (as 

for ORs), use of standard error as an axis on the funnel plot is likely to accentuate 

asymmetry. This is particularly likely when the underlying OR is believed to be far 

from the null.

Sensitivity analyses suggest that the performance of the regression tests when ORs 

are used is similar to that when RRs are used as the measures of effect. Again 

Egger’s regression test has excessive type I errors, and although a trade-off is 

needed between these error rates and power, models using sample size generally
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performed well in terms of appropriate type I error rates and reasonable levels of 

power.

Findings from the assessment of the trim and fill method are not particularly 

reassuring. In the absence of publication bias, when there is a large amount of 

between-study heterogeneity, the trim and fill method can under-estimate the 

underlying OR, as pointed out by Terrin et a l (2003). Similarly when publication 

bias is present, the resulting over-estimate from the trim and fill method can also be 

misleading. However, this approach was less biased in it’s estimate of the 

underlying effect than using the estimate from the largest or most precise study and 

the usual fixed and random effects unadjusted models. As is further discussed in 

Section 9.4, these methods do have a valuable role to play in assessing the 

sensitivity of the estimate of effect.

In these simulations, a relatively common event has been simulated, however, meta

analyses are generally also useful for rare effects and so investigation of this would 

be useful when recommended how to investigate publication bias. Evidence 

suggests the type I error rates for Egger’s regression test are particularly high in 

these situations (Sterne et al., 2000; Schwarzer et al., 2002), but performance of all 

tests and the trim and fill method when the event is rare would be part of further 

work. A further limitation is that publication bias has been induced on the basis of 

either p-value or effect size, when in reality, it is likely to be a combination of these 

plus influences from other factors. However, the fact that these simulations 

suggested improved performance of Model 4c over all of the other tests regardless 

of whether publication bias was induced by p-value or effect size, gives confidence 

to the findings. Nevertheless, further simulations where publication bias is induced 

as a combination of p-value and effect size would be advantageous.

In the context of human health risk assessment these findings suggest that the 

usefulness of regression tests, in particular Model 4c, may be variable. For 

instance, the number of relevant studies to be synthesised in a risk assessment may 

differ; for example while Crump et al. (1999) estimate the proportion of liver 

carcinogens using almost 400 rat and mouse bioassays (see Appendix D), in the 

THMs example in Chapter 5 only 13 study results were synthesised, similarly Guth

Jaime Peters PhD Thesis 2006 226



Chapter 7 Methods for publication bias

et al (1997) report the synthesis of just 12 experiments (see Appendix D). When 

the number of studies in the meta-analysis is small, the results in Section 7.6 suggest 

that none of the regression tests assessed have good power to detect publication 

bias. Furthermore, the relevant evidence included in a risk assessment may be quite 

heterogeneous due to species, exposure route and outcome differences, among 

others (as illustrated in Chapter 6  for the Mn example). In meta-analysis scenarios 

where unexplained between-study heterogeneity was present, the simulation 

analyses in this chapter found that all tests performed badly, regardless of the size of 

the underlying effect or the number of studies in the meta-analysis.

In some meta-analyses in human health risk assessments, and other contexts, 

between-study heterogeneity may be explained by a study-level covariate. For 

example, the different species or route of exposure may explain the between-study 

heterogeneity. In Chapter 4, only 14 of the reviewed meta-analyses (30%) did not 

report combining study estimates from different species. In the next chapter, the 

simulated analyses described in Section 7.5 are extended to include situations where 

between-study heterogeneity can be explained by a study-level covariate, a scenario 

likely to occur when different sources of evidence are combined for a human health 

risk assessment. These analyses will assess whether detection of publication bias in 

these scenarios is possible and whether it can be improved.
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Assessment of publication bias in 

the presence of between-study 

heterogeneity

8.1 Chapter overview
In Chapter 7 the performance of tests to detect publication bias in the presence of 

unexplained between-study heterogeneity was investigated and shown to be 

problematic. In some situations between-study heterogeneity can be partly 

explained by measured study-level covariates, such as country of study, the type of 

population and, in meta-analyses of animal experiments, the different species used. 

When such predictable between-study heterogeneity exists, assessing publication 

bias is not straightforward. The aim of this chapter is to explore approaches for the 

assessment of publication bias in the presence of explainable between-study 

heterogeneity in an attempt to disentangle one from the other. In Section 8.2, a 

published meta-analysis of animal experiments where some of the between-study 

heterogeneity can be explained is introduced as the motivating example for this 

chapter: the meta-analysis by Mapstone et al. (2003). Details of simulation analyses 

used to assess the performance of methods for the detection and adjustment of 

publication bias when between-study heterogeneity exists and can be partially 

explained, are given in Section 8.3. In Section 8.4 their results are presented and 

applied to the Mapstone et al meta-analysis. The practical use of these techniques 

is discussed in Section 8.5 in addition to some recommendations.
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8.2 Motivating example
8.2.1 The Mapstone et a l (2003) meta-analysis

Between-study heterogeneity and publication bias are important aspects of meta

analyses (Sutton et al., 2000; Egger et al., 2001) and can be simultaneous features 

of a meta-analysis. Neglect of either one when carrying out a meta-analysis can 

have serious implications for the conclusions and subsequent decisions based on the 

meta-analysis. Although methods for the detection of between-study heterogeneity 

and publication bias exist, assessment of one in the presence of the other can be 

misleading. This is demonstrated by a re-analysis of a meta-analysis of animal 

experiments identified from the systematic review described in Chapter 4.

Mapstone et al. (2003) synthesise relative risks (RR) from experiments 

investigating fluid resuscitation and the risk of death in animals with haemorrhage. 

Using the quality assessment described in Section 4.5, the reporting of this meta

analysis was of reasonably high quality (reporting 81% of the specified items, 

compared to the mean of 53% of guideline items reported). Although possible 

sources of between-study heterogeneity are explored, Mapstone et al. (2003) do not 

assess publication bias.

RRs for mortality are obtained from 43 animal experiments on three species, rats 

(n=35), pigs (n=7) and sheep (n=l), and are combined using a weighted regression 

with random effects. Using the available data, a pooled RR of 0.88 (95% Cl: 0.73,

1.07) was replicated in Stata with a random effects meta-analysis. Evidence 

suggests a great deal of between-study heterogeneity: I2 of 67%

(95% Cl: 55%, 76%). Mapstone et al. report that type of haemorrhage model 

explained some of the heterogeneity between studies, in addition to follow-up time 

and volume of fluid infused. Consequently, they report RRs stratified by 

haemorrhage model, and adjusted for fluid used, follow-up time and species of 

animal, even though little difference is reported in the RRs with and without 

adjustment for species (and since 81% of the experiments are on the same species, a 

species effect would be difficult to identify). Figure 8.1 shows the ln(RR) from all 

experiments by the species used.
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Figure 8,1 Forest plot o f experiments from Mapstone et a l (2003) by species used
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The one sheep experiment (Sakles et al., 1997) suggests no increase or decrease in 

the risk of mortality with fluid resuscitation compared to no fluid resuscitation. The 

data from the experiments on pigs generally suggests some evidence of a decrease 

in the risk of mortality, except for the experiment by Bickell et al. (1992). Although 

evidence from the rat experiments is mixed and quite heterogeneous, a number of 

different rat strains are used, including Sprague-Dawley, Hebrew university and 

Wistar rats. To investigate whether strain of rat explains any of the observed 

heterogeneity a forest plot indicating species and strain of rat is presented in Figure 

8 .2 .
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Figure 8,2 Forest plot o f experiments from Mapstone et al. (2003) by species and 

strain used
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Visual inspection of this plot suggests some evidence of a strain effect in the rat 

experiments, with experiments using Sprague-Dawley rats generally concluding a 

reduction in the risk of mortality with fluid resuscitation, while evidence from 

experiments using Hebrew university rats suggests an increased risk of mortality. 

The evidence from the Wistar rat strains is mixed and the ln(RR)s from these 

experiments are generally less precise than those from experiments using other rat 

strains. The fixed and random effects models described in Equations 3.1 and 3.2, 

respectively, are used to combine the ln(RR) estimates within each species and 

strain group indicated in Figure 8.2. These pooled estimates are presented in Table 

8 . 1.
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Table 8.1 Pooled RR estimates for mortality by species and strain

Species/strain
No.

experiments
Pooled RR estimate 

Fixed effects Random effects
f(%> 

(95% Cl)
Sprague-Dawley
rats
Hebrew

16 0.68 (0.61, 1.31) 0.65 (0.52, 1.23) 68 (45, 81)

university rats
10 2.34(1.62,3.52) 0 (0 , 62)

Wistar rats 9 0.95 (0.79,1.15) 0 (0, 65)

Sheep 1 1 (0.07,13.3)

Pigs 7 0.68 (0.51, 0.91) 0.69 (0.39, 1.20) 67 (27, 85)

These pooled RR estimates reflect the differences between rat strains observed in 

Figure 8.2. It is, however, plausible that the differences between the observed RRs 

from the rat strains are not necessarily reflecting true differences in the effect of 

fluid resuscitation between rat strains; rat strain may be a proxy for some other 

factor. For instance, the fact that all ten experiments using Hebrew university rats 

are carried out by the same research group should not be overlooked. Furthermore, 

six of the 16 experiments on Sprague-Dawley rats are carried out by the same group 

and five of the nine experiments using Wistar rats involve the same authors. It is 

therefore possible that the rat strain effect observed is a proxy for experimenter 

effect, environment effect or some other effect related to the laboratory used or the 

group of researchers.

A number of possible sources of between-study heterogeneity were explored by 

Mapstone et a l , (2003) such as haemorrhage model, fluid used and follow-up time, 

however for the purpose of demonstrating how ignoring between-study 

heterogeneity (explained by study-level covariates) can give misleading results 

when assessing publication bias, only species and strain differences are referred to 

in this chapter. Although it is very likely that more than one covariate may explain 

between-study heterogeneity, this is not addressed here but is discussed in Section 

8.5. The aim of this chapter is to explore approaches for assessing publication bias 

when some, or all, of the between-study heterogeneity can be explained by a study- 

level covariate, e.g. species or strain of animal. Throughout this chapter, such
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between-study heterogeneity is referred to as predictable or explainable. 

Unexplained, or unpredictable, between-study heterogeneity refers to extra variation 

that cannot be explained by a study level covariate measured in the individual 

studies (i.e. has been generated by a random effects model in the simulations).

8.2.2 Assessment o f  publication bias

Even when possible sources of explainable between-study heterogeneity are 

identified in a meta-analysis, it is often not taken into account when assessing 

publication bias (e.g. Boffetta and Silverman, 2001; Fleischaur and Arab, 2001). 

Such an approach could be termed naive, as a possible source of heterogeneity is 

ignored in this assessment which could distort the results. For example, funnel plot 

asymmetry and/or significant findings from a publication bias test may not be due to 

publication bias at all, but instead due to between-study heterogeneity distorting the 

funnel plot and/or publication bias test. A funnel plot of all 43 experiments in the 

Mapstone et al (2003) meta-analysis based on the inverse of the standard error 

suggests evidence of publication bias (Figure 8.3), whereas a funnel plot based on 

the inverse of sample size appears less skewed (Figure 8.4). In both plots the 

dashed line represents the pooled RR of 0.88.

Results of Chapter 7 (Section 7.6.2) suggest that inflated type I error rates seen with 

Egger’s regression test when ORs are used are also seen when RRs are used. The 

modified Macaskill test (based on the inverse of the sample size -  Model 4c from 

Chapter 7; Peters et a l, 2006 (Appendix H)) however, was found to have 

appropriate type I error rates when RRs are used and reasonable power to detect 

publication bias. For completeness, results from the modified Macaskill test are 

presented alongside those from the commonly used regression and rank correlation 

tests to accompany the above funnel plots. The rank correlation test and Egger’s 

regression test (both based on the standard error) reflect the asymmetry observed in 

Figure 8.3, with p = 0.069 and p = 0.018, respectively. The modified Macaskill test 

however, suggests little evidence of publication bias (p = 0.647) as Figure 8.4 

suggests.
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Figure 8.3 Funnel plot (where y-axis is the inverse o f the standard error) o f 

experiments in Mapstone et al. (2003) meta-analysis
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Figure 8.4 Funnel plot (where y-axis is the inverse o f the sample size) o f 

experiments in Mapstone et al. (2003) meta-analysis
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As part of sensitivity analyses, one may wish to apply the trim and fill method to 

these data to investigate the impact of the asymmetry observed in Figure 8.3.

Results of the random effects trim and fill method suggests that twelve experiments 

are ‘missing’, and that their impact is to reduce the RR of mortality to 0.71 (95%

Cl: 0.58, 0.86) from 0.88 (95% Cl: 0.73, 1.07). In summary, the usual methods to 

detect publication bias (the rank correlation test, Egger’s regression test and the trim 

and fill method) indicate evidence of publication bias in the Mapstone et al meta

analysis, and suggest that the RR of mortality from fluid resuscitation could in fact 

be lower. However, in the light of results from Chapter 7, these findings, 

particularly those from the trim and fill method, could be misleading, especially 

given the large amount of between-study heterogeneity (I2 = 67%). The modified 

Macaskill regression test (Model 4c in Chapter 7), on the other hand, suggests no 

evidence of publication bias.

This naive assessment of publication bias in the Mapstone et al. (2003) meta

analysis is based on two assumptions. The first is that all experiments, regardless of 

species and strain of animal used, are estimating the same underlying effect. 

However, as is seen from Table 8.1, the evidence indicates some difference in the 

effect of fluid resuscitation depending on the species or strain of animal used, 

suggesting that this first assumption is not true. Since the basis for using a funnel 

plot to detect publication bias is that all studies come from the same underlying 

population (Light and Pillemar, 1984), the funnel plot and tests based on it cannot 

be relied upon in this case.

The second assumption made by this naive assessment of publication bias is that 

any publication bias affects all the experiments in the same way. This assumption 

may not be true either with animal experiments. For example, because of ethical 

issues there may be more experiments carried out on smaller animals (e.g. rats and 

mice) than on larger animals (e.g. dogs and monkeys). Furthermore, experiments 

using larger animals are likely to use fewer of them than the experiments using 

smaller animals. Thus, regardless of the underlying effect, experiments with 

smaller sample sizes (usually those on larger animals) may not be powerful enough 

to detect an effect if it exists. In contrast the larger experiments (usually those on 

smaller animals) are more likely to conclude a statistically significant effect if it
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exists because of increased power. If different effects are observed in different 

species and species is related to the size of the experiment a funnel plot is likely to 

be skewed by this. When it comes to publication, experiments using larger animals 

are likely to be published regardless of their findings, because of the ethical issues 

of experimentation on larger animals. Thus, publication bias may well affect 

experiments on different animals in different ways, leading one to question the 

validity of the second assumption of this naive assessment of publication bias. This 

issue of differential publication bias in studies of different designs has been 

discussed by Sutton et al. (2002) in relation to differing human study designs.

Since it is likely that both of the assumptions made in the naive assessment of 

publication bias are untrue, a number of possible approaches could be taken, 

including the assessment of publication bias within the homogeneous groups and 

the simultaneous modelling of publication bias and the explainable between-study 

heterogeneity (more details on these models are given in Section 8.3.2). In Figure 

8.5 (y-axis is the inverse of standard error) and Figure 8.6 (y-axis is the sample size) 

funnel plots are presented for assessment of publication bias within the different 

species and rat strain groups in the Mapstone et a l (2003) meta-analysis.

P-values from the rank correlation, Egger’s regression and the modified Macaskill 

tests for publication bias within each species and strain subgroup (except for sheep 

where only one experiment exists) are presented in Table 8.2. The findings from 

these tests suggest little evidence for the presence of publication bias within the 

subgroups.

Table 8.2 P-values for publication bias within species and strain o f animal

No.
experiments

p-value
Species/strain Rank 

correlation test
Egger’s 

regression test
Modified 

Macaskill test
I2

Sprague- 
Dawley rats 16 0.79 0.87 0.83 68%

Hebrew 
university rats 10 0.83 0.20 0.93 0%

Wistar rats 9 0.21 0.07 0.36 0%

Pigs
.... .. .................................. . —

7 0.55 0.73 0.87 67%

Model 4c in Chapter 7
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Figure 8.5 Funnel plots, with inverse standard error on the y-axis, o f experiments 

in Mapstone et al. (2003) meta-analysis specified by species and rat strain*
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et al. (2003) meta-analysis specified by species and rat strain
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This approach to assessing publication bias in the presence of between-study 

heterogeneity takes account of the different effects in the subgroups, but a great deal 

of power is lost, e.g. rather than an assessment of publication bias in a set of 43 

experiments, publication bias is assessed within subgroups of 16,10, 9 and 7 

experiments. It has been noted that the power of these publication bias tests 

decreases as the number of primary studies in the meta-analysis decreases (Section

7.6.2 of this thesis, and Begg and Mazumdar, 1994; Macaskill et al., 2001; Sterne et 

al., 2001; Peters et a l, 2006 (Appendix H)). Furthermore, within two of the four 

subgroups, substantial between-study heterogeneity still exists (see Table 8.2, 

Sprague-Dawley rats and pigs) and assessment of publication bias should account 

for this heterogeneity. However as demonstrated in Chapter 7, none of the tests 

assessed had power to detect publication bias when between-study heterogeneity 

was present and there were few studies in the meta-analysis. A third approach to 

assessing publication bias and between-study heterogeneity is to simultaneously 

model publication bias and explainable between-study heterogeneity.

In the following sections naive assessments of publication bias in the presence of 

explainable between-study heterogeneity are examined and compared to the 

performance of regression models which simultaneously model publication bias and 

explainable between-study heterogeneity using simulation analyses. The aim of this 

work is to assess the best approach for assessing publication bias in the presence of 

explainable between-study heterogeneity.

8.3 Simulation analyses
8.3.1 Parameters

Two sets of meta-analysis scenarios were simulated to allow an assessment of 

publication bias detection methods in the presence of explainable between-study 

heterogeneity: 1) where only between-study heterogeneity explainable by a study 

level covariate exists, 2) where both explainable and unexplained between-study 

heterogeneity exist. To simulate the first of these two scenarios half of the primary 

studies in the meta-analysis (group 1) were drawn from an underlying OR given by 

ORj, and the other half (group 2) from OR2, so that the ratio of studies drawn from
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ORi to studies drawn from OR2 is one. Table 8.3 details the three combinations of 

underlying OR that were used.

Table 8.3 Combinations ofln(OR) used to simulate predictable between-study 

heterogeneity

Combination OR1 OR2
1 1 1.5

2 1 5

3 1.5 5

Within each group the fixed effects model given in Equation 7.8 was used to 

simulate the meta-analyses. This scenario may not, however, be particularly 

realistic, as even after adjustment for known covariates between-study heterogeneity 

may still exist (Sutton et a l , 2000). This is a reason why random effects meta

regression is often advocated over fixed effects meta-regression (Sutton et al., 2000; 

Thompson and Higgins, 2002; Whitehead, 2002).

Meta-analyses in the second scenario (where both explained and unexplained 

heterogeneity is present) were simulated as above using combinations 1, 2 and 3 in 

Table 8.3, but the random effects model given in Equation 7.8 was used within each 

group to model the unexplained between-study heterogeneity. Three levels of 

unexplained between-study heterogeneity were applied as with the simulated meta

analyses in Chapter 7: 20%, 150% and 500% of the average within-study variance.

In each meta-analysis, the same level of unexplainable between-study heterogeneity 

is simulated in groups 1 and 2.

Within each meta-analysis, the total number of primary studies is defined as in 

Section 7.51 to be 6, 16, 30 or 90, thus within each group (1 or 2) in a meta

analysis, there are 3, 8, 15 or 45 studies, respectively. The probability of an adverse 

event in the control group sampled from a uniform distribution (0.3, 0.7), the natural 

logarithm of the number of control subjects within each primary study taken from 

the distribution N(5, 0.3) and the ratio of exposed to control subjects is one.
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The meta-analyses were simulated in the presence and absence of publication bias. 

Publication bias was induced in the same way as described in Section 7.5.1, by p- 

value or effect size. It is assumed that publication bias occurs within each of the 

two groups of studies within a meta-analysis, so that when publication bias is 

induced by effect size, in each group studies in the left hand-side of each funnel are 

missing, as shown in Figure 8.7. When publication bias is induced by p-value and 

the underlying OR is large, the actual bias induced by this mechanism is likely to be 

small. Therefore the studies in group 2 with underlying OR2 in a meta-analysis (see 

Table 8.3) are less likely to be subject to publication bias when it is induced by p- 

value. This is illustrated in Figure 8.8, where studies with an underlying OR closer 

to the null (solid points) are more likely to be subject to publication bias than the 

studies with an underlying OR further from the null (hollow points). This issue was 

described and discussed in Section 7.5.1 and should be borne in mind when 

interpreting power based on publication bias that has been induced by p-value.

Only findings relating to ‘severe’ publication bias are presented here. Findings from 

‘moderate’ publication bias follow the same general trend in power to detect 

‘severe’ publication bias, but levels of power for ‘moderate’ publication bias are at 

lower levels.
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Figure 8.7 Inducing publication bias (based on effect size) within each group in a 

meta-analysis
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Figure 8.8 Inducing publication bias (based on p-value) within each group in a 

meta-analysis
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In summary, the simulated meta-analyses used in the assessment of methods to 

detect and adjust for publication bias in the presence of explainable between-study 

heterogeneity take the following form:

• No unexplained between-study heterogeneity and no publication bias, only 

perfectly explainable between-study heterogeneity

» 3 combinations of underlying effect (ORs of 1 and 1.5; 1 and 5; 1.5 

and 5) and 4 sizes of meta-analysis (6,16, 30, 90 studies) =

12 scenarios

• Unexplained and explainable between-study heterogeneity and no 

publication bias (unexplained and explained between-study heterogeneity)

» 3 combinations of underlying effect, 4 sizes of meta-analysis and 3 

levels of between-study heterogeneity (20%, 150% and 500% of the 

within-study heterogeneity) = 36 scenarios

• No unexplained between-study heterogeneity but publication bias and 

explainable between-study heterogeneity

» 3 combinations of underlying effect, 4 sizes of meta-analysis and 

four types of induced publication bias (by p-value: moderate and 

severe; by effect size: 14% and 40% censored) = 48 scenarios

• Unexplained and explainable between-study heterogeneity and publication 

bias

» 3 combinations of underlying effect, 4 sizes of meta-analysis and 3 

levels of between-study heterogeneity and four types of induced 

publication bias = 144 scenarios 

The results, given in Section 8.4, are based on 1000 repetitions of each scenario and 

are carried out in Stata 8.2 (StataCorp, 2004).

8.3.2 Techniques for assessing publication bias

A number of tests for publication bias are assessed in terms of their performance 

(type I error rates and power) in the presence of explainable between-study 

heterogeneity. They include regression models, with and without a covariate to 

account for the explainable between-study heterogeneity. These are now described.

Tests for publication bias

The performance of the rank correlation test (Begg and Mazumdar, 1994) and the
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eight regression tests described in Section 7.5.2 (Models 1 -  6) are assessed where 

between-study heterogeneity, explainable by a study level covariate, is a feature of 

the simulated meta-analyses. This type of analysis reflects the naive assessment of 

publication bias in the Mapstone et a l meta-analysis described in Section 8.2.2 and 

will be referred to as the naive assessment throughout this chapter.

The performance of extended versions of the eight regression models is also 

assessed in these simulation analyses. These extended regression models 

(Models IE -  6E) include a term to account for the study-level covariate explaining 

the between-study heterogeneity. The extension of Egger’s regression test to 

account for between-study heterogeneity by including an extra term, has been 

suggested (Sterne et a l , 2000), but not carried out before.

The idea behind this approach is that if between-study heterogeneity is being 

mistaken for publication bias, as was shown in Mapstone et a l (2003) in Section 

8.2, one can adjust for the explainable between-study heterogeneity (using 

regression), and then assess the meta-analysis using one of these tests for the 

presence of publication bias, all in one step.

These extended models are given below, where groupt (i = 1,2 ) specifies which 

underlying OR each study comes from in the meta-analysis. For example, in a 

meta-analysis simulated under combination 1 in Table 8.3, group, defines those 

studies with an underlying OR of 1 and group2 defines those studies with an 

underlying OR of 1.5.

Egger’s fixed effects regression on standard error

-̂ -L- = P + + y.group t (Model IE)
set sei

Egger’s fixed effects regression on inverse o f sample size

y i .size, = a + f3.sizei + y.group t + s t (Model 2E)

Linear fixed effects regression on standard error
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yi =a + ft.set + y.group, + , weighted by (Model 3E)

Linear fixed effects regression on sample size

yi =a + fi.size, + y.group: + ei , weighted by —
se-

(Model 4aE)

Linear fixed effects regression on sample size -  FPV model (Macaskill et al., 2001)

yt = a + p.sizet + y.groupt + s t , weighted by r 1 1  ̂ 1--------  H----------
Kai +bi Ct+d,;

(Model 4bE)

Linear fixed effects regression on inverse o f sample size 

y .=a + + y.group t , weighted by
size:

'  i i--------------  _i------------------

Kai +bi c ,+diy
(Model 4cE)

Linear random effects regression on standard error

yi =a + p.set + y.,group, + p t + s ■, weighted by —
se,

(Model 5E)

Linear random effects regression on sample size

yi =a + p.size, + y.groupt + //, + £; , weighted by (Model 6E)

8.4 Results
8.4.1 Between-study heterogeneity

When the covariate group is ignored, moment-based estimates of between-study 

heterogeneity (obtained from the META command in Stata (StataCorp, 2004)) in 

the simulated meta-analyses clearly demonstrate that there is more heterogeneity in 

meta-analyses from combinations 2 (OR=l, 5) and 3 (OR=1.5, 5), compared to 

combination 1 (OR=l, 1.5) (Table 8.4). This is as expected since the underlying 

ORs in combinations 2 and 3 are more diverse than those in combination 1.
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Between-study heterogeneity is around 15-20 times greater in combination 2 than in 

combination 1, and 9-11 times greater in combination 3 than in combination 1.

Table 8.4 Summary estimates o f between-study heterogeneity in the simulated meta

analyses
M edian estim ate o f  between- Ratio o f  betw een-

study heterogeneity study heterogeneity N um ber o f  prim ary

Combination

1

Com bination

9

[Com bination 2 studies in m eta

analysis

C om bination 1]

0.0375 0.7584 20.22 6

0.0416 0.6735 16.19 16

0.0407 0.6482 15.93 30

0.0409 0.6356 15.54 90

Com bination Com bination
[Com bination 3

1 3
Com bination 1]

0.0375 0.4101 10.94 6

0.0416 0.375 9.01 16

0.0407 0.3668 9.01 30

0.0409 0.3551 8.68 90

8.4.2 Naive assessment o f  publication bias - the rank correlation test 

When the two subgroups come from relatively similar underlying distributions (i.e. 

combination 1, ORs = 1 and 1.5), the funnel plots from these two groups overlap 

(see Figures 8.7 and 8.8) and this is reflected in the 10% type I error rates from the 

rank correlation test (Figure 8.9). However, when the meta-analyses are simulated 

under combinations 2 and 3 where there is greater disparity between the underlying 

ORs from which the studies are drawn, the type I error rates are much larger (Figure 

8.9).
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Figure 8.9 Type I  error rates for the rank correlation test when there is explainable 

between-study heterogeneity and differing levels o f unexplained between-study 

heterogeneity
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The type I error rates are greater for meta-analyses simulated from the underlying 

OR combinations 2 and 3, than they are if all studies come from an underlying OR 

of 5 (Figure 7.7; Section 7.6.1). This is explained by the greater amount of 

heterogeneity in these meta-analyses caused by the large differences in the two 

underlying ORs. The type I error rates increase as the amount of unexplained 

between-study heterogeneity increases (Figure 8.9).

When ‘severe’ publication bias is induced by effect size the rank correlation test 

appears powerful to detect it (Figure 8.10), but it is difficult to distinguish this 

power from the high type I  error rates (Figure 8.9). However, since the type I  error 

rates for combination 1 are as expected, the rank correlation test appears to have 

moderate power to detect ‘severe’ publication bias when it is induced by effect size 

(Figure 8.10).
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Figure 8.10 Power o f the rank correlation test to detect ‘severe ’publication bias 

induced by p-value (top row) and effect size (bottom row) when there is explainable 

between-study heterogeneity and differing levels o f unexplainable between-study 

heterogeneity
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As seen in Figure 8.10, levels of power for the rank correlation test are higher when 

‘severe’ publication bias is induced by effect size compared to when ‘severe’ 

publication bias is induced by p-value. Results for the rank correlation test and 

‘moderate’ publication bias follow the same trend, but levels o f power are much 

lower (see Figure J.l of Appendix J).

Results suggest that the rank correlation test does not perform well (in terms of type 

I error rates) when the primary studies in a meta-analysis are drawn from two quite 

different underlying ORs. These type I error rates increase as the amount of 

unexplained between-study heterogeneity increase.

No heterogeneity
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8.4.3 Naive assessment of publication bias - the regression tests

P-values obtained from the usual t-test

In Chapter 7, it was found that only one model used for the detection of publication 

bias consistently performs well in terms of type I error rates: Model 4c -  a 

modification of the FPV model in Macaskill et al. (2001). When extra, predictable 

between-study heterogeneity exists, Models 4c and 6 (the random effects linear 

regression model with sample size as the independent variable) are the only models 

that appear to perform well in terms of expected type I error rates (Figure 8.11).

Figure 8.11 Type I error rates o f eight regression tests when there is unexplainable 

between-study heterogeneity, but no unexplained between-study heterogeneity
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When there is a great deal of unexplained between-study heterogeneity (500% of 

within study heterogeneity) Models 4c and 6 have the expected type I error rates 

regardless of the underlying ORs and the number of primary studies in the meta

analysis (Figure J.2 of Appendix J), all other models exceed the 10% type I error 

rate.
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The power of some of these tests (Models 1, 3 and 5) looks to be high when 

publication bias is induced by p-value (Figure 8.12), but because of the 

corresponding high type I error rates, it is difficult to see how powerful these tests 

are for the detection of ‘severe’ publication bias. Model 4c, which had the 

appropriate type I error rates, has little power to detect publication bias, regardless 

of the characteristics of the simulated meta-analyses and whether publication bias is 

induced by p-value (Figure 8.12) or effect size (Figure 8.13).

Model 6 appears to have power to detect ‘severe’ publication bias when it is 

induced by effect size and the simulated meta-analyses are drawn under 

combination 1, ORi = 1 and OR2 =1.5 (see Figure 8.13). In all other scenarios 

power to detect publication bias does not exceed 20%. When unexplained between- 

study heterogeneity is present, the power of all tests is reduced, regardless of how 

publication bias is induced (Figures J.3 and J.4 of Appendix J).
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Figure 8.12 Power o f regression tests to detect ‘severe ’publication bias (induced 

by p-value) when there is explainable between-study heterogeneity but no 

unexplainable between-study heterogeneity
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Figure 8.13 Power o f regression tests to detect ‘severe ’publication bias (induced 

by effect size) when there is explainable between-study heterogeneity but no 

unexplained between-study heterogeneity
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P-values obtained from the permutation test

The following results describe the performance of Models 1 - 6  when the 

permutation test is used to calculate the p-values of the coefficients from these 

models. Models 4a, 4b and 6 all have the appropriate type I error rates regardless of 

the number of primary studies in the meta-analysis, the underlying ORs (Figure 

8.14). As the amount of unexplained between-study heterogeneity increases, the 

type I error rates of Models 4a, 4b and 6 remain at 10% (Figure J.5 of Appendix J).

Figure 8.14 Type I  error rates o f eight regression tests when the permutation test is 

used when there is explainable between-study heterogeneity but no unexplained 

between-study heterogeneity
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When the permutation test is used to calculate the p-values (Figures 8.14 to 8.16), 

none of the models showing the appropriate type I error rates across differing 

amounts of between-study heterogeneity (Models 4a, b and 6) appear to have good 

power to detect publication bias whether induced by p-value or effect size. Model 6 

is the only model demonstrating any power to detect publication bias and this is 

only for the case when publication bias is induced by effect size and the meta

analysis consists of studies drawn from underlying ORs of 1 and 1.5 (Figure 8.15).
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Figure 8.15 Power o f eight regression tests to detect ‘severe ’publication bias 

(induced by effect size) when the permutation test is used when there is explainable 

between-study heterogeneity but no unexplained between-study heterogeneity
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Figure 8.16 Power o f eight regression tests to detect ‘severe ’publication bias 

(induced by p-value) when the permutation test is used when there is explainable 

between-study heterogeneity, but no unexplained between-study heterogeneity
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Levels of power from Models 4a, 4b and 6 remain at 10% regardless of the amount 

of unexplained between-study heterogeneity that is present (Figures J.6 and J.7 of 

Appendix J).

In this naive assessment of publication bias where explainable between-study 

heterogeneity is not modelled, none of the models demonstrating the appropriate 

type I error rates using the usual t-test to calculate p-values were at all powerful in 

detecting ‘severe’ publication bias. The disappointing performance of these tests is 

not particularly surprising since the explainable between-study heterogeneity was 

not accounted for in any of these regression models. Thus, in the following section, 

results from extended versions of these models, where a covariate effect is included 

to account for predictable between-study heterogeneity, are presented.

8.4,4 Accounting fo r  predictable between-study heterogeneity — the regression 

tests

P-values obtainedfrom the usual t-test

The type I error rates are as expected for models 4aE, 4bE and 4cE regardless of the 

number of primary studies in the meta-analysis and the underlying ORs (Figure 

8.17). When a great deal of unexplained between-study heterogeneity exists, only 

Model 4cE continues to have the appropriate type I error rates (Figure 8.18). 

Although Model 6E has lower than expected type I error rates when there is no 

unexplained between-study heterogeneity these error rates are as expected when 

there is a large amount of unexplained between-study heterogeneity.

As previously described, when publication bias is induced by p-value one would 

expect little difference between the estimates of power and type I error rates for 

meta-analyses where the underlying OR is far from the null (combinations 2 and 3), 

since little, if any, publication bias is actually induced. This is seen to some extent 

in the estimates of power from the extended regression models when publication 

bias is induced by p-value (Figure 8.19). When there is a great deal of unexplained 

between-study heterogeneity, estimates of power are similar to the estimated type I 

error rate (Figure J.8 of Appendix J).
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Figure 8.17 Type I  error rates for eight extended regression tests when there is 

explainable between-study heterogeneity but no unexplained between-study 

heterogeneity
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Figure 8.18 Type I  error rates for eight extended regression tests when there is 

explainable between-study heterogeneity and a great deal o f unexplained between- 

study heterogeneity (500%)
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Figure 8.19 Power o f eight extended regression tests to detect ‘severe ’publication 

bias (induced by p-value) when there is explainable between-study heterogeneity 

and no unexplained between-study heterogeneity
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When publication bias is induced by effect size and there is no unexplained between 

study heterogeneity, all of the extended models appear to have good power to detect 

this publication bias, especially for large meta-analyses, regardless of how the meta

analyses were simulated (Figure 8.20). When there is a great deal of unexplained 

between-study heterogeneity, power is difficult to distinguish from the 

corresponding estimates of the type I error rates (Figure J.9 o f Appendix J).
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Figure 8.20 Power o f eight extended regression tests to detect ‘severe ’publication 

bias (induced by effect size) when there is explainable between-study heterogeneity 

but no unexplained between-study heterogeneity

P-values obtained from the permutation test

When the permutation test is used to calculate the p-values given by Models IE - 

6E, none of the models appear to attain the appropriate type I error rates in all 

scenarios (Figures 8.21 and 8.22). Although Models 4aE, 4bE and 6E have the 

expected 10% type I error rate when there is a great deal o f unexplained between- 

study heterogeneity (Figure 8.22).

When publication bias is induced by effect size, Models 4aE and 6E are the only 

models having reasonable type I error rates demonstrating good levels of power 

(Figure 8.23). This power is diminished when a great deal o f unexplained between- 

study heterogeneity is present (Figure J.10 of Appendix J) and non-existent when 

publication bias is induced by p-value (Figure J.l 1 in Appendix J).
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Figure 8.21 Type I error rates (when the permutation test is used to calculate the p- 

values) for eight extended regression tests when there is explainable between-study 

heterogeneity but no unexplained between-study heterogeneity
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Figure 8.22 Type I  error rates (when the permutation test is used to calculate the p- 

values) for eight regression tests when there is explainable between-study 

heterogeneity and a great deal o f unexplained between-study heterogeneity (500%)
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Figure 8.23 Power (when the permutation test is used to calculate the p-values) o f  

eight extended regression tests to detect ‘severe ’publication bias (induced by effect 

size) when there is explainable between-study heterogeneity but no unexplained 

between-study heterogeneity
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8.4.5 Summary and application to Mapstone et al. (2003) meta-analysis

The results suggest that a naive assessment of publication bias, that incorrectly 

assumes the studies in a meta-analysis are all from the same underlying distribution, 

can give misleading results. This is particularly so when a great deal of unexplained 

between-study heterogeneity is also present. When using the permutation test to 

calculate p-values, Model 6 has the expected type I error rates regardless o f the 

amount of unexplained between-study heterogeneity, and seems to have some 

power to detect publication bias in a particular scenario. Extending these regression 

models to include a term to account for explainable between-study heterogeneity 

appears to improve the performance of Models 4a, 4b and 4c in terms of appropriate 

type I error rates (compare Figures 8.11 and 8.17). However, these extended 

models only have power to detect publication bias when it is induced by effect size 

and there is no unexplained between-study heterogeneity. The relative bias in the 

estimates o f the group effect from Models 4aE, 4bE and 4cE are given in
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Figure 8.24 for the case where these models appear to perform well, i.e. in the 

absence and presence of publication bias (induced by effect size), when there is no 

unexplained between-study heterogeneity.

Figure 8.24 Relative bias in the estimates o f the group effect in Models 4aE, 4bE 

and 4cE
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It seems reasonable to attempt to simultaneously model publication bias and 

explainable between-study heterogeneity using these extended models, and as 

Figure 8.24 shows in the presence of publication bias, the predictable between-study 

heterogeneity (here the group effect) can be estimated without bias in models that 

performed well in terms of type I error rates and power for the detection of 

publication bias (Models 4aE, 4bE and 4cE). Thus, simultaneously modelling 

publication bias and explainable between-study heterogeneity may be o f potential 

use, however in this chapter such models have only been found to perform well in a 

limited scenario (publication bias induced by effect size and no unexplainable 

between-study heterogeneity) and it is questionable as to how realistic this scenario 

is in practice.
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For comparison Model 1 (Egger’s regression test), Model 4a (the fixed effects linear 

regression model on sample), Model 4b (Macaskill’s FPV model) and Model 4c 

(the modified Macaskill test that performed well in Chapter 7) and their extended 

versions (Models IE, 4aE, 4bE and 4cE) are applied to the Mapstone et a l meta

analysis (Table 8.5).

Table 8.5 P-values from the application o f different models to the Mapstone et al 

meta-analysis for the detection ofpublication bias

Model 1 Model 4a Model 4b Model 4c

Egger’s Fixed effects linear Modified
regression test model on sample size Macaskill’s test Macaskill test

Naive assessment 0.018 0.126 0.752 0.647

Simultaneous
assessment 0.35 0.268 0.55 0.695
(extended models)

Evidence of publication bias in the Mapstone et al. meta-analysis, is only seen with 

Egger’s regression test (Model 1), but results of this chapter, the previous chapter 

and published papers (Sterne et al, 2000; Macaskill et al., 2001; Schwarzer et al, 

2002) have demonstrated the increased type I error rates of Egger’s test. Further 

interpretation of these p-values from the naive and simultaneous publication bias 

assessments should be made cautiously as Models 4aE, 4bE and 4cE only 

demonstrate favourable properties in limited settings. Moreover, in the Mapstone et 

al (2003) meta-analysis there are five subgroups (Sprague-Dawley rats, Hebrew 

University rats, Wistar rats, pigs and sheep) within the meta-analysis that explain 

some of the between-study heterogeneity, whereas in the simulations described in 

this chapter only two subgroups have been considered. Thus, although there is 

some potential as to the use of the extended Models 4aE, 4bE and 4cE, further 

work, including assessing the performance of these models when there are more 

than two subgroups, is needed.
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8.5 Summary
The results of the simulation analyses described in this chapter suggest that 

regression models for publication bias do not perform well when between-study 

heterogeneity, explainable by a measured study-level covariate, is present. This is 

regardless of whether the usual t-test or the permutation test is used to calculate p- 

values from the regression models. There is, however, some evidence that models 

extended to simultaneously account for publication bias and explainable between- 

study heterogeneity may have the potential to assist in detecting publication bias 

when explainable between-study heterogeneity exists (i.e. Models 4aE, 4bE and 

4cE). In fact preliminary findings suggest that these models have a great deal of 

power to distinguish between publication bias and explainable between-study 

heterogeneity when the meta-analysis is very large (1000 studies), suggesting that 

the observed poor performance is due to lack of power.

However, as pointed out, these results are only relevant for the simulation analyses 

defined in this chapter. In particular, the way in which publication bias was induced 

here may not be realistic. By inducing publication bias within each group in a meta

analysis, it is assumed that publication bias depends on the knowledge that a 

particular study comes from a particular underlying distribution (i.e. from a 

particular subgroup). Since publication bias depends on beliefs on what is 

interesting, important and/or favourable according to authors, editors and reviewers, 

these subgroups may not be recognised and so the way in which publication bias has 

been induced in this chapter may not fully reflect reality.

Furthermore, as noted in Chapter 7, publication bias probably depends upon both 

the p-value and the effect size, in addition to a number of other mechanisms that 

can or cannot be measured. Using evidence on reasons why some articles get 

published and others do not (e.g. Kerr et a l , 1977; Kupfersmid et al., 1991; Frank, 

1994; Weber et a l , 1998), simulations based on these assumptions could be 

attempted. Nevertheless, there are many possibilities and uncertainties in the 

publication process, and so, as with the analyses carried out in this chapter and in 

Chapter 7, the extent to which the simulations would reflect reality is unknown.
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However, the fact that findings in this chapter are consistent regardless of whether 

publication bias is induced by p-value or effect size, gives some confidence to the 

robustness of these results.

The simulation analyses described in this and the previous chapter offer the best 

approach to assessing and comparing the performance of the tests and methods for 

dealing with publication bias since analytical solutions cannot be obtained. 

However, one of the limiting factors of simulation analyses is that they do not 

provide the reasons for why one test may perform better than another in a particular 

scenario. Often more detailed investigation is required to understand why, for 

instance, Model 4c performs better than Models 4a and 4b. Thus, such 

investigations would form part of further work.

Although the models assessed in this chapter have generally demonstrated poor 

performance when assessing publication bias, the scenarios outlined in this chapter 

are realistic scenarios: between-study heterogeneity (explained to some extent by a 

measured covariate, e.g. different species or strains used in an experiment) and 

publication bias can be simultaneous features of a meta-analysis. Therefore 

ignoring one or both in the meta-analysis can give rise to misleading results. In 

human health risk assessments explainable between-study heterogeneity is likely to 

exist, thus as this chapter has shown, it is important that an assessment of 

publication bias takes into account the likely between-study heterogeneity. This 

was demonstrated in Section 8.2 with the Mapstone et al (2003) meta-analysis, 

however, the question still remains as to how best to assess between-study 

heterogeneity or publication bias in the presence of the other. There has been little 

work in this area, although one technique that has been proposed is the covariate- 

adjusted funnel plot. Petticrew et a l (1999) present an adjusted funnel plot for the 

assessment of publication bias. Using regression, Petticrew et a l adjusted the 

funnel plot by study quality, the covariate believed to explain the observed between- 

study heterogeneity. The covariate-adjusted funnel plot suggested little evidence of 

publication bias.

Although not a formal test, this approach is analogous to the use of the extended 

regression models (Models IE -  6E). In both cases, the data in the meta-analysis
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are adjusted for the covariate effect and then assessed for publication bias. In 

Models IE -  6E publication bias is tested, in the covariate-adjusted funnel plots it is 

subjectively assessed. However, since few of the extended models performed well 

in the different scenarios, the performance of the covariate-adjusted funnel plot will 

need to be fully investigated.

Given that the extended regression models did not perform well (when the size of 

the meta-analysis reflects that likely in reality), rather than attempting to account 

simultaneously for between-study heterogeneity and publication bias, it may be 

more informative to stratify the data by the covariate believed to explain the excess 

between-study heterogeneity and assess publication bias within each subgroup.

This was carried out in Section 8.2.2 for the Mapstone et al. (2003) meta-analysis. 

However, the simulations in this chapter have only considered categorical study- 

level covariates to explain between-study heterogeneity. In some situations, these 

study-level covariates may be continuous (e.g. distance from the equator in a meta

analysis of BCG vaccine (cited in Sutton et a l, 2000)) and the performance of these 

extended models should be assessed in these scenarios.

Such an approach may be more relevant as one is unlikely to be interested in the 

overall pooled effect from a meta-analysis, if a covariate can explain heterogeneity 

between studies. In this case, one is more likely to be interested in the findings 

within each subgroup and so an assessment of publication bias within these may be 

more appropriate. However, this approach will result in a significant loss of power 

since subgroups, such as species and strain, will contain fewer studies and so tests 

will be less likely to be able to detect publication bias if it occurs (Begg and 

Mazumdar, 1994; Sterne et al., 2000; Macaskill et al., 2001; Peters et al., 2006 

(Appendix H)). The application of systematic review and meta-analysis methods in 

human health risk assessments provides a quantitative framework for the assessment 

of between-study heterogeneity and publication bias. Although the characteristics 

of such meta-analyses (e.g. large between-study heterogeneity due to species 

differences) may mean that assessment of publication bias is not at all 

straightforward, as this chapter and Chapter 7 have shown, investigation into 

publication bias will nonetheless be greatly facilitated by the systematic review and 

meta-analysis framework.
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Discussion

9.1 Thesis summary
Human health risk assessments for environmental exposures involve the evaluation 

of a great deal of often quite diverse evidence. Current methods used in risk 

assessment have their limitations; wider use of systematic review and meta-analysis 

methods could help to overcome them. The use of these methods in the risk 

assessment of exposure to environmental chemicals is different from many of the 

other areas where systematic reviews and meta-analyses methods have been applied 

(e.g. clinical interventions, epidemiological associations), because evidence from 

animal experiments is often used in addition to human evidence. This has led to 

particular consideration of the extent, quality and issues involved in systematic 

reviews and meta-analyses of animal experiments in this thesis (Chapter 4).

Findings from a systematic review of these articles indicate an increase in the past 

few years in the publication of systematic reviews and meta-analyses of animal 

evidence. However, an assessment of the reporting of these articles has found many 

to be of poor quality, especially when compared to sets of meta-analyses of human 

RCTs. Based on QUOROM, guidelines have been proposed in this thesis to help 

improve the reporting and conduct of systematic reviews and meta-analyses of 

animal experiments. However, it is imperative that the quality and reporting of the 

original animal experiments should also improve since the quality of a meta

analysis depends on the quality of the primary studies.

The next step in assessing the potential of systematic reviews and meta-analyses to 

help in risk assessments of environmental exposures was to apply these, and more 

sophisticated cross design synthesis, methods to two risk assessments of the human 

health effects from exposure to environmental chemicals (Chapters 5 and 6). In one 

example these methods were successfully applied throughout the risk assessment 

process, from identifying the relevant evidence through to the derivation of a ‘safe’
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exposure limit (Chapter 5: total THMs and low birth weight). In the second 

example however, the data were much more diverse and sparse, and so the 

application of meta-analysis methods was of limited value in the evaluation of the 

evidence (Chapter 6: Mn and neurobehavioural effects). Even so, the approach 

taken in Chapter 6 demonstrated the advantages of a systematic review, even though 

a meta-analysis across species was not feasible. If these methods are adopted in the 

human health risk assessment context, issues of between-study heterogeneity and 

publication bias will need to be addressed. In this thesis an improved method for 

the detection of publication bias was proposed (Chapter 7). Approaches for 

detecting publication bias when differences between studies may be explained by 

study-level covariates (a situation potentially common in the synthesis of evidence 

for a human health risk assessment, e.g. species, exposure route) have also been 

assessed and findings suggest one should proceed with caution in such situations 

(Chapter 8).

In the following three sections, the main issues arising in this thesis -  i) the 

application of systematic review and meta-analysis methods to animal evidence, ii) 

the cross-design synthesis of human and animal evidence in environmental exposure 

risk assessment contexts, and iii) methods for the detection of publication bias -  are 

discussed in the context of the thesis aims, considering possible areas for further 

work.

9.2 Systematic reviews and meta-analyses of animal 

experiments
As many have pointed out, systematic reviews have the potential to help summarise, 

review and evaluate data from multiple animal experiments (Pound et al., 2004; 

Roberts et al., 2002a; Roberts and Sandercock, 2002; Horn et al., 2001). Their use 

may also lead to a decrease in the number of animal experiments, and human 

studies, carried out (Horn et al., 2001), strengthening the UK 3Rs aim of reducing 

the number of animal experiments. However, no assessment of the quality of the 

reporting of these methods for evaluating animal experiments had previously been 

carried out to assess their use in practice. In this thesis a systematic review of
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systematic reviews and meta-analyses of animal experiments (Chapter 4) found that 

much improvement is needed in the conduct and reporting of these methods to 

evaluate animal evidence. In particular, the meta-analyses of animal experiments 

concerning environmental exposures tended to be of poor quality, with none of 

them being preceded by a systematic review. Although the sources of evidence 

were described in some of the environmental exposure meta-analyses (e.g. multi

laboratory experiments, databases of toxicology results), many others did not 

identify the origin of the data. The fact that there has been less use of systematic 

review and meta-analysis methods to combine human environmental 

epidemiological studies than human RCTs for medical interventions (Blair et al., 

1995) may have impacted upon their uptake in the review of animal evidence for 

environmental exposures. For instance, the systematic reviews and meta-analyses 

of animal experiments assessing medical interventions reviewed in Chapter 4 tend 

to use approaches similar to those used in systematic reviews and meta-analyses of 

human RCTs. This suggests that systematic review and meta-analysis methods used 

to synthesise animal evidence in medical interventions have translated from those 

used in the synthesis of human RCTs.

The systematic review described in Chapter 4 was based on the reports of 

systematic reviews and meta-analyses of animal experiments, so a distinction 

between the conduct and the reporting of the articles could not be made. This point 

is clearly made by the number of articles initially thought to be relevant, but 

subsequently excluded from the review as they did not meet the pre-specified 

inclusion criteria. For instance, as pointed out in Chapter 4, many articles referred 

to themselves as systematic reviews of animal experiments, but provided very few, 

or no, details on the systematic review process. Hence, a clear distinction needs to 

be made between articles excluded because they are not reports of systematic 

reviews or meta-analyses, and articles excluded because the systematic review 

process was poorly reported.

In addition to there being no guidelines for reporting of systematic reviews and 

meta-analyses of animal experiments, a possible factor in the poor reporting of these 

articles is that, unlike human RCTs, published guidelines for the reporting of 

primary animal experiments are not available. There is evidence to suggest that
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such guidelines are associated with improved reporting in human primary studies 

(Moher et a l , 2001) and a number of publications and websites do offer guidance 

for the conduct and reporting of primary animal experiments. For instance, a whole 

issue of the ILAR journal (Institute for Laboratory Animal Research; Vol 43, No 3, 

2002) is dedicated to giving guidance on both the design and the analysis of animal 

toxicology studies and an approach for evaluating the quality of toxicological 

studies has been proposed (Klimisch et al., 1997). In the UK, the National Centre 

for the Replacement, Refinement and Reduction of Animals in Research is working 

towards improvements in experimental design (http://www.nc3rs.org.ukA and 

guidelines for animal testing are also available from a number of US and 

international organisations, such as the Center for Alternatives to Animal Testing 

(CAAT) based at the John Hopkins University (http://caat.ihsph.edu/) and the 

Organisation for Economic Co-operation and Development (OECD) 

(http://www.oecd.org/department/0.2688.en 2649 34377 1 1 1 1 1.00.html). Initiatives 

to improve the quality of reporting of the primary studies should go hand-in-hand 

with both the conduct and reporting of systematic reviews and/or meta-analyses of 

animal experiments. It is hoped that, initially, the guidelines proposed in Figure 4.7 

should help to improve the quality of both the conduct and reporting of systematic 

reviews and meta-analyses of animal experiments. Further work would involve 

much discussion and revision of these guidelines, with researchers carrying out 

systematic reviews and meta-analyses of animal experiments on a regular basis to 

increase their relevance to animal experiments, leading to improvements in the 

quality of reporting. This could, and should, lead to a more efficient use of the 

animal evidence to inform human health, while contributing to the 3Rs programme 

if researchers, particularly those involved in environmental exposure outcomes, are 

willing to adopt these methods.

9.3 Synthesis of human and animal evidence
When it comes to the review and evaluation of both human and animal evidence, 

there are likely to be few objections to the use of systematic review methods for this 

purpose. As has been pointed out, systematic reviews which have been conducted 

thoroughly ensure all relevant data are included and help identify areas where more
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evidence is required. Thus, advantages of a systematic review approach are greater 

than the more narrative, qualitative approaches to human health risk assessment 

described in Chapter 2. The application of meta-analysis for the synthesis of human 

and animal evidence is another issue and one that has, so far, received little 

attention. To synthesise relatively diverse evidence an understanding is required on 

the assumptions made to 1) obtain comparable, meaningful estimates of effect from 

each study, and 2) to combine these estimates in a sensible and constructive way, 

minimising the potential for bias in the overall estimate of effect. For some, these 

assumptions may initially seem to be too strong. However, the assumptions are 

parallel to those currently made in the risk assessment process, and through the 

transparent nature of systematic reviews and meta-analyses these assumptions are 

forced to be made explicit. DuMouchel and colleagues (DuMouchel and Harris, 

1983; DuMouchel and Groer, 1989) showed how the use of a Bayesian model 

provides a flexible and realistically complex framework for the synthesis of human 

and animal evidence to inform human health risks from environmental exposures 

which allow explicit modelling of the relevance of one species to another in the 

prior distributions.

In this thesis, alternative Bayesian models have been used to illustrate the potential 

of systematic review and meta-analysis methods to synthesise human and animal 

evidence for a human health risk assessment (Chapters 5 and 6). These Bayesian 

models have been previously applied to different sources of human evidence 

(Prevost et al., 2000; Sutton and Abrams, 2001). In this thesis, their use to combine 

animal and human evidence to obtain a ‘better’ estimate of effect in humans, rather 

than an overall species effect, has been illustrated. Extensive sensitivity analyses, 

as in Chapter 5, have demonstrated the necessity of investigating the impact of the 

many different assumptions made in such a synthesis, and this has been greatly 

facilitated in the quantitative framework provided by the use of meta-analysis 

methods. However, in practice, the use of meta-analysis may be restricted by the 

diversity of available relevant evidence as illustrated in Chapter 6 with the Mn 

example. In the Mn example, meta-analysis methods could only be used to a certain 

extent because the available evidence concerned such a diverse set of studies and 

experiments. Nevertheless, use of these systematic review and meta-analysis 

methods facilitated the evaluation of the evidence in the Mn example by allowing
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synthesis of similar sorts of evidence within the whole evidence base, thus reducing 

the amount of evidence to be considered. The presentation of evidence was also 

facilitated by a systematic review and meta-analysis approach such that data were 

displayed in a clear and concise manner, allowing inconsistencies to be identified 

(see Table 6.7). However, estimation towards a ‘safe’ exposure limit for Mn was 

limited by the inconsistent reporting of exposure data in the primary studies and 

concerns related to the ecological fallacy (see Section 6.5.2), thus highlighting 

advantages in obtaining individual (human and animal) subject data.

Within a meta-analysis framework, of the kind presented in Chapters 5 and 6, the 

number and type of further studies needed to inform the human health risk 

assessment could also be considered. For instance, the Expected Value of different 

types of Information (EVI) in the risk assessment could be calculated and used to 

inform the direction of future research (Claxton, 1999), e.g. should a human 

epidemiological study be carried out or an animal experiment to provide the most 

information. This approach already has applications in the decision-making process 

for new medical technologies (Claxton et al., 2002; Tappenden et a l, 2004) and it is 

not difficult to see how the application of EVI to the risk assessment examples in 

Chapters 5 and 6 could form further work in this area. Such an application would 

have potentially important implications for funding bodies and for the design of 

future human studies and animal experiments.

Since there has been very little research into the use of cross-design synthesis 

methods for human and animal evidence in the risk assessment context, there is a 

great deal of scope for further work. More immediate work could involve returning 

to the THMs example (Chapter 5) and updating the synthesis models to account for 

the more recent human and animal evidence now available (Christian et a l , 2002; 

Toledano et al., 2005; Wright et al., 2005). Further modelling of the THMs 

example could involve i) describing and estimating the relationship between the 

THM exposures (i.e. how total THMs, chloroform, BDCM, CDBM and bromoform 

are related), ii) broadening the health outcomes to account for, and model, related 

effects (such as premature birth and stillbirth in addition to low birth weight), 

iii) applying model averaging techniques (Kass and Raftery, 1995; Sutton and 

Abrams, 2001) to the dose-response models (as mentioned in Section 5.9) and iv)
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comparing the fit of the synthesis models, not just the dose-response models as in 

Section 5.7.1. Further work has already begun in the use of the Bayesian models 

proposed by DuMouchel (DuMouchel and Harris, 1983) for the THMs example and 

this will be followed by critical comparison of different Bayesian hierarchical 

models to synthesise the relevant evidence (Peters et al., 2003).

Further work in the Mn example requires careful consideration of the exposure 

levels in the relevant studies and experiments. As noted above, and in Chapter 6, 

estimation of a ‘safe’ exposure limit could not be carried out using the current 

evidence, but use of individual subject data would greatly facilitate this assessment. 

However, obtaining the individual subject data is unlikely to be a trivial task and its 

costs and benefits could also be assessed from an EVI approach alongside 

consideration of whether a human study or animal experiment is likely to provide 

the most valuable, evidence given the likely costs of obtaining that evidence and the 

funds available. Such an assessment can only be based on the existing evidence and 

so further work in the Mn example would involve more informed synthesis of 

evidence across species and health effects, accounting for multiple outcomes in the 

synthesis, as in Riley et al. (2006), and differences in effects between species. This 

would also provide a larger framework for investigation of possible differential 

publication bias in the generalised synthesis of this evidence.

9.4 Publication bias in the presence of between-study 

heterogeneity
Regardless of whether human or animal evidence are being synthesised in a meta

analysis, between-study heterogeneity and publication bias are both common and 

important features of meta-analyses (Engels et al., 2000; Sutton et al., 2000; Egger 

et al., 2001; Villar et al., 2001). Ignoring either can have implications for the 

findings and conclusions made from a meta-analysis no matter what the application 

is. If exposure limits are set on the basis of biased evidence the implications could 

have a large impact for the general population. When they are simultaneously 

present, assessment and interpretation of one of these may be affected by the other. 

However, investigating the possible presence of between-study heterogeneity and/or
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publication bias must be carried out and implications of the findings of the meta

analysis must be explored. In Chapter 7 an improved test for publication bias, based 

on the inverse of sample size and an alternative specification for study weighting 

(Model 4c), was proposed and found to have more appealing properties (i.e. 

appropriate type I error rates and reasonable power) compared to all of the 

regression tests assessed, including the commonly used Egger’s regression test 

(Peters et al., 2006). Based on the inverse of the sample size, this alternative test 

avoids the correlation induced between an estimate of InOR and its standard error 

and also avoids possible problems of regression dilution bias, since sample size is a 

known quantity whereas standard error is estimated. Although initial results suggest 

that the modified Macaskill regression test is superior to Egger’s regression test 

when the relative risk is the summary estimate, further investigation into the 

performance of Model 4c is needed under different conditions (e.g. when the event 

is rare, when the number of subjects in a study is small). In addition to this, a 

comparison of Model 4c with models recently put forward by Harbord et al. (2006) 

and Copas et a l (2005) is required with recommendations on choice of model in 

different circumstances.

The scenarios in Chapter 7 were extended in Chapter 8 to include investigation of 

publication bias when some, or all, of the between-study heterogeneity can be 

explained by a measured study-level covariate, e.g. species and strain of animal. 

Results indicate that when this explainable between-study heterogeneity is not 

modelled, none of the eight regression tests or the rank correlation test (Begg and 

Mazumdar, 1994) assessed here performed well. Extended versions of fixed effects 

linear regression models based on sample size, and a modification of Model 4c 

showed some potential for identifying publication bias and correctly estimating 

species effects, but only in limited scenarios (with preliminary findings suggesting 

that for very large meta-analyses these models could be quite powerful). 

Simultaneous modelling of publication bias and explainable between-study 

heterogeneity has important advantages of power over individual assessment of 

publication bias within homogenous subgroups. Such models are, therefore, worth 

pursuing in addition to more subjective methods such as the covariate-adjusted 

funnel plots mentioned in Section 8.5.
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It must be noted, however, that all of the results from Chapters 7 and 8 are confined 

to the meta-analysis scenarios simulated in those chapters. For instance, because a 

number of factors are thought to influence publication bias, actually inducing 

publication bias realistically is difficult. Many authors induce publication bias 

based on p-value (Macaskill et al. 2001, Hedges and Vevea, 1996; Begg and 

Mazumdar, 1994) or on effect size (Duval and Tweedie, 2000b). In this thesis both 

mechanisms have been used, but any modelling of publication bias is unlikely to 

capture all aspects of the process. In reality, publication bias is likely to be based on 

both the effect size and the p-value from a primary study, in addition to many other 

possible factors. It is, therefore, difficult to make general conclusions on the power 

of the tests assessed in this thesis, but similar performance across different 

mechanisms of publication bias (as seen with Model 4c in Section 7.6.2) gives some 

confidence to the generalisability of these findings.

Just testing for the presence of publication bias is not enough. In the survey of 

meta-analyses published in JAMA and BMJ (described in Section 7.3), a number of 

approaches were taken in these articles when publication bias was suspected. These 

ranged from excluding studies from funnel plots and claiming no evidence of 

publication bias; acknowledging possible publication bias but giving no detail of its 

extent or impact; carrying out sensitivity analyses on the impact of possible 

publication bias (e.g. comparing unadjusted estimates to trim and fill adjusted 

estimates); and discussion of the implications, advising caution in the interpretation 

of the findings of the articles and calling for larger, well-designed studies to be 

carried out.

An ideal approach, taken by a number of the meta-analyses reviewed in JAMA and 

the BMJ, would be to assess the impact suspected publication bias may have on the 

overall estimate of effect. None of the three approaches assessed in Chapter 7 to 

obtain an estimate of the underlying effect ((i) the trim and fill method, (ii) using the 

estimate from the largest study, (iii) using the estimate from the most precise study) 

performed particularly well in terms of how well the estimate of effect compares to 

the underlying effect (i.e. the bias in the estimate), especially when unexplainable 

between-study heterogeneity was present. Although it may seem appealing to use 

the largest study, or studies, in a meta-analysis and believe them to be less likely to
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be affected by publication bias, when a great deal of between-study heterogeneity is 

induced, the findings of these simulations suggest that publication bias does impact 

upon the larger studies. These findings are similar to those of Stem and Simes 

(1997), who still found evidence of publication bias in their meta-analysis of ‘large’ 

studies.

These, and other, approaches such as Copas’ sensitivity method (Copas and 

Jackson, 2004) provide a means for sensitivity analyses when publication bias is 

suspected. However, in many situations decisions need to be made on the evidence 

available, even if it is heterogeneous and/or likely to be subject to publication bias. 

Future work needs to consider not just the appropriateness and performance of 

particular tests for publication bias but also investigation into methods to obtain 

appropriately adjusted estimates of effect reflecting the likely impact of publication 

bias. Until this is done, meta-analyses need to be interpreted with care, especially 

when between-study heterogeneity and/or publication bias are suspected. As such 

further research in this area would extend the scenarios reported in Chapter 8 to that 

where the between-study heterogeneity covariates are continuous rather than binary. 

The performance of the tests in these scenarios can then be examined and compared 

to the results given in Chapter 8 and to inform recommendations for practice and 

future investigations into publication bias in the presence of between-study 

heterogeneity.

9.5 Conclusions
This thesis has illustrated and critically explored the potential for systematic review 

and meta-analysis methods to assist in a human health risk assessment of 

environmental exposures and contributed to the development of methods for doing 

so. In particular, methods for the synthesis of human and animal evidence have 

been illustrated (Peters et al., 2005) using Bayesian hierarchical models only 

previously used to combine different sources of human evidence. However, 

improvements on current practice are needed, especially in the conduct and 

reporting of systematic reviews and meta-analyses of animal experiments, as is an 

acknowledgement of the limitations of meta-analyses in particular. Current use of
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these methods to review animal evidence suggests that improvements in reporting 

need to be made to make better use of the evidence to inform human health. It is 

hoped that guidelines (given in Chapter 4) for good quality reporting of systematic 

reviews and meta-analyses of animal experiments will help to do this (Peters et a l, 

accepted). As Chapter 6 demonstrated, systematic review and meta-analysis 

methods have an important role in the search, review and evaluation of the evidence 

for a risk assessment of environmental exposures. However, because of the diverse, 

and sometimes sparse, nature of the evidence available for a human health risk 

assessment full cross-design synthesis may not be appropriate or achievable. 

Nevertheless, advantages of such a framework far out-weigh the alternatives 

including narrative reviews, decreased power, and inefficient use of all the relevant 

evidence. Using systematic review and meta-analysis methods, features such as 

study quality, between-study heterogeneity and publication bias can be assessed and 

their impact on results and subsequent decisions investigated. Work carried out in 

Chapter 7 has contributed to the debate on how best to identify publication bias in 

different meta-analysis scenarios (Peters et a l, 2006) and publication of the results 

from Chapter 8 will build on this for scenarios where at least some between-study 

heterogeneity can be explained. As discussed in Section 9.3, use of systematic 

review and meta-analysis methods may lead on to more informed use of time, 

energy and money by directing future research using a value of information 

approach. Human health risks from exposure to environmental chemicals can only 

be assessed when all the relevant evidence, regardless of its sources, are considered 

together. Systematic reviews and meta-analyses can help to make this process more 

structured and transparent, ultimately leading to a more efficient informed 

assessment of human health risks to environmental chemicals.
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Appendix A: Summary of the derivation of 
occupational exposure limits for manganese (Mn)

WHO Study Group (1980) Occupational Exposure Limit

0.3 mg/m3 respirable dust (TWA)

Based on a review of animal and human evidence, the WHO Study Group suggest 

that the most sensitive and important health outcomes from exposure to manganese 

are those affecting the central nervous system and lungs. A narrative review of the 

evidence suggests central nervous system effects occur at levels below 5 mg/m3 and 

adverse effects in the lungs are observed at levels of 0.3-0.5 mg/m3. From this 

review, the study group suggest 0.3 mg/m respirable dust as an occupational 

exposure limit.

DFG (1999) Maximum Workplace Concentration

0.5 mg/m total dust

From a review of animal and human evidence, the authors state that the most 

important health outcome is effects on the central nervous system. Using data from 

four human occupational epidemiology studies assessing central nervous system 

effects (Iregren, 1990; Roels et al., 1992; Wennberg et al., 1992; Mergler et al., 

1994), the range of exposure levels where effects are observed is reported to be
' i

0.25-1 mg/m . Data from animal experiments are also reviewed to assess whether 

other health outcomes are of significance, but conclude that the central nervous 

system is the main outcome of interest. Based on the fact that there are differences 

in the sampling equipment used in Germany and in Sweden (where the study with 

the lowest observed effect - 0.25 mg/m3 - was carried out), and that concentrations 

measured in Germany are twice those measured in the US and Sweden, the
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maximum workplace concentration is reported to be 0.5 mg/m (i.e. twice that 

observed in the Swedish study).

ACGIH (2002) Threshold Limit Value for Occupational Exposure

0.03 mg/m3 respirable dust (TWA)

Using evidence from a number of human studies, the ACGIH declare that effects on 

the central nervous system and the lungs are of primary importance in the derivation 

of an occupational exposure limit. Taking LOAELs from three occupational 

epidemiology studies (Roels et al., 1992: LOAEL 0.15 mg/m3; Mergler et a l, 1992: 

LOAEL 0.035 mg/m3; Lucchini et al., 1999: LOAEL 0.037 mg/m3), a threshold 

limit value for occupational exposure of 0.03 is obtained. Few details are available 

on exactly how this level is obtained from the three LOAELs, but the authors state 

that no UFs were applied because of the agreement between LOAELs from Mergler 

et al. and Lucchini et al. Results from six additional human studies and other 

possibly important health outcomes are discussed in light of the recommended 

exposure limit.

Clewell et al. (2003) Occupational Exposure Guideline

0.1-0.3 mg/m3 respirable dust (TWA)

Based on a review of the human evidence, Clewell et al argue that neurological 

symptoms are the most sensitive to manganese exposure. From a review of these 

human studies, four were identified as being relevant for calculation of the 

benchmark dose (Roels et al., 1992; Gibbs et al., 1999; Iregren, 1990; Mergler et 

al., 1994). However data from only two of these studies was used since individual 

patient data were available (Roels et al., 1992; Gibbs et al., 1999). Results from a 

number of tests reported in each study were analysed using the benchmark dose 

approach: Three dose-response models were defined; a Weibull model for quantal 

data (Roels et al., 1992: Gibbs et al., 1999) and a Weibull model for continuous
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data (Gibbs et a l, 1999) and a K-power model for continuous data (Gibbs et al., 

1999).

In total nineteen benchmark dose levels are calculated and presented in Clewell et 

al (2003), ranging from 0.09 to 0.27 mg/m3, with no UFs being applied at any 

point. The authors do not report the exposure limit the smallest benchmark dose 

level for a number of reasons, including the fact the smaller levels resulted from 

continuous data being redefined as quantal data and that the health outcomes used in 

each study do not coincide with what is considered to be ‘material impairment’ by 

the US Occupational Safety and Health Administration, therefore taking the lowest 

benchmark dose is likely to result is a conservative exposure limit. Thus, the 

following range of limits is recommended 0.1-0.3 mg/m3 respirable dust.

IEM and IOM (2004) Occupational Exposure Limit

0.1 mg/m2 respirable dust

Initial large review of human and animal studies leads authors to the following 

assumptions on which the Occupational Exposure Limit is based:

-  Respirable route is most relevant (i.e. the dust likely to enter the respiratory 

tract) since the evidence of there is insignificant gastrointestinal absorption

-  Neurological endpoints are the first indications of an adverse effect

-  Even with prolonged exposure to Mn there may be a threshold effect, 

although this is likely to vary between individuals

The authors conclude that there are sufficient relevant human data for the basis of 

the derivation of the occupational exposure limit and cite, and briefly describe, the 

three human epidemiology studies used (Roels et al, 1992; Gibbs et a l, 1999; 

Myers et al, 2002).

Few details are given on how the limit of 0.1 mg/m3 respirable dust is obtained from 

these studies: “Based on these three studies, it is concluded that limiting exposure to 

0.1 mg/m respirable manganese will prevent most workers from developing the
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subtlest detectable effect, that is, a small non-clinical decrement in motor 

neurobehavioural function”. The authors only state that no UFs were applied, since 

the population in each of the three studies is representative of the intended 

population subject to the occupational exposure limit. A supplementary limit is 

reported just in case the gastrointestinal route of exposure is important (0.5 mg/m3 

total dust).

Dietary intake, Clewell’s calculation of a benchmark dose (Clewell et a l , 2003) and 

data from one animal experiment (St-Pierre et a l, 2001) are all considered as 

supporting evidence for an occupational exposure limit of 0.1 mg/m respirable 

dust.
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Appendix B: Search strategies for systematic 
reviews and meta-analyses of animal experiments

Table B .l Searching the electronic databases

Database Search strategy

Medline (1966-July 2005) 1 review.ab

(adaptation of CRD 2 review.pt

Strategy 2.1a) 3 meta-analysis.ab

4 meta-analysis.pt

5 meta-analysis.ti

6 or/1-5

7 letter.pt

8 comment.pt

9 editorial.pt

10 or/7-9

11 animals, sh

12 experiment.tw

13 11 or 12

14 6 not 10

15 13 and 14

16 systematic, tw

17 15 and 16

Total number of articles 1464

Potentially relevant (after screening titles
141

and abstracts)

Actually relevant (after screening abstracts 
andfull text articles)
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ScienceDirect (all years)
systematic review (title, abstract 

or keyword)

animal (title, abstract or 
keyword)

1 and 2

Total number of articles

Potentially relevant (after screening titles 
and abstracts)

Actually relevant (after screening abstracts 
and full text articles)

ScienceDirect (all years) 1

Total number of articles

Potentially relevant (after screening titles 
and abstracts)

Actually relevant (after screening abstracts 
and fu ll text articles)

EMBASE 
(1980-May 2004)

27

17

11

meta-analysis (title, abstract or 
keyword)

animal (title, abstract or 
keyword)

1 and 2

58

20

11

1 Animal Experiment/

2 animal studS.mp

3 Animal Model/

4 animal model$.mp

environmental exposure.mp or 
exp Environmental Exposure/

toxicology.mp or exp 
Toxicology/ or exp Genetic 

Toxicology/ or exp Comparative 
Toxicology

mutagen$.mp or exp Mutagenic
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Agent/

carcinogen$.mp or exp 
Carcinogen/

9 to.fs

10 ae.fs

11 si.fs

12 Meta Analysis/

13 (systematicS and review$).mp.

(systematic$ and
14

overview$).mp.

15 or/1-4

16 or/5-11

17 Nonhuman/

18 review.pt.

19 13 or 14 or 18

20 systematic.mp.

21 19 and 20

22 12 or 21
23 15 and 16 and 22

24 17 and 23

Total number of articles

Potentially relevant (after screening titles 
and abstracts)

Actually relevant (after screening abstracts 
and full text articles)

295

63

17
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Medline (1966-May 2004) 1 meta-analysis.sh

2 meta-analysis.pt

3 meta analy$.tw

4 met analy$.tw
5 metanaly$.tw

6 metaanaly$.tw

7 animal.sh

8 or/1-6

9 7 & 8

Total number of articles 812

Potentially relevant (after screening titles 
and abstracts)

Actually relevant (after screening abstracts
and full text articles)

TOXNET (all years) 1 meta analysis

2 animal

3 1 &2

Total number of articles 191

Potentially relevant (after screening titles 
and abstracts)

Actually relevant (after screening abstracts
2

and full text articles)

a available at http://www.vork.ac.uk/inst/crd/search.htm
ab, abstract; pt, publication type; ti, title; sh, subject heading; tw, text word; mp, free text; 
exp, term exploded; fs, floating subheading; to, toxicity; ae, adverse drug reaction; si, side 
effects
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Table B.2 Searching the grey literature

Database Keywords Hits Potentially relevant Actually relevant

Cancerlit

htto://www.cancer.20v/search/
(meta analys OR systematic review) 

AND (animal or experiment)
58 0

UKDoH meta-analysis 2 0
http://www.info.doh.2ov.uk/doh/noin systematic review & animal 1 0

t.nsf/Publications? ReadF orm
systematic review & experiment 0

meta analys* 121 0
British Library systematic review & animal 0

http://catal02ue.bl.uk
systematic review & experiment 0

Graylit meta analys* 256+ 1 0

http://2ravlit.osti.20v/ systematic review & animal 250+ 0

systematic review & experiment 250+ 0

Agricola meta-analysis 7 1 0
htto://www.nal.usda.20v/a298/ae98.h systematic & review 21 0

tml
meta-analyses 0

indicates truncated search (e.g. analys* will identity analysis, analyses and analyse); ‘+’ indicates that the maximum number of articles were shown, but 
there may have been more relevant articles.
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Appendix D: Summaries of the meta-analyses of animal experiments

Table D .l Details o f the 46 meta-analyses o f animal experiments

Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Unknown
Bertani et al. 
(2002)

Italy

International 
Journal o f 
Artificial 
Organs

Use of artificial 
liver support in 
fulminant 
hepatic liver 
failure

Systematic
review

No details 
of species 
or strain

12 animal 
experiments 
in meta
analysis

Not reported Effect estimates: Odds ratio for survival
Heterogeneity: Assessed but none suspected (p-value o f 0.113), give no 
details on how assessed heterogeneity
Synthesis method: Not given, but reference Cook et al 1995 Journal o f
Clinical Epidemiology
Subgroup analyses: No
Assess publication bias: Do not mention

Combing p-values
Jiao et al. 
(2000)

UK

British 
Journal o f 
Surgery

Augmented 
portal perfusion 
for the treatment 
of portal 
hypertension in 
cirrhosis

Systematic
review

Rat, pig, 
rabbit and 
human

5 Not reported Effect estimates: The mean intrahepatic portal vascular resistance (IHPR) 
was calculated. The mean IHPR was compared before and after portal 
pumping using t-tests 
Heterogeneity: Mention but do not assess
Synthesis method: P-values weighted by sample size and square rooted 
Subgroup analyses: No
Assess publication bias: Do not mention, although point out that all but one 
study are from the same group of investigators
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Some average
Corpet and 
Tach6 (2002)

France

IARC
Scientific
Publications

To find the most 
potent
chemopreventive 
agents for 
colorectal cancer

Not systematic Rodents 122 (= 171 
agents)

Not reported Effect estimates: Potency “estimated by the ratio of value in control rats 
divided by the value in treated rats”
Heterogeneity: No details
Synthesis method: Obtain median potency across all agents
Subgroup analyses: No
Assess publication bias: Do not mention

Dumas et al. 
(1994)

Canada

American 
Journal o f the 
Medical 
Sciences

Effect of 
nutritional 
calcium on blood 
pressure

Systematic
review

Rats Not explicit Not reported Effect estimates: Average difference in blood pressure between 
experimental and control groups 
Heterogeneity: No details
Synthesis method: “A pooled mean effect was calculated when the data 
were numerous and similar enough”
Subgroup analyses: By type of rat 
Assess publication bias: Do not mention

Kelley (1996) 

USA

Journal o f
Applied
Physiology

Effects of 
mechanical 
overload on 
skeletal muscle 
fibre number

Systematic
review

Quail, 
chickens, 
rats, cats 
and mice

17 Not reported Effect estimates: Percentage change in muscle fibre number 
Heterogeneity: No details
Syntheses method: Non-parametric methods are reported for the meta
analyses o f these data: Mann-Whitney and Kruskal-Wallis tests.
Subgroup analyses: Yes
Assess publication bias: Mention but no assessment was made because of 
the lack of validity of the statistical procedures. Kelley concludes by 
warning readers of the use o f meta-analysis methods particularly as in this 
review eleven of the seventeen relevant studies are by the same research 
group
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Study Setting Origin of 
data Species Number

studies
Study

quality Methodology
Linde et al. 
(1994)

Germany

Human and
Experimental
Toxicology

Protective effect 
of serially 
agitated dilutions 
(SADs) of toxin 
preparations.

Systematic
review

Rats 26 Y es-a  
quality 
index was 
developed

Effect estimates: ^Protective indexes’
Heterogeneity: No details
Synthesis method: “Protective Indexes [were] calculated independently 
from the combined raw data”. No further details on the methodology are 
reported
Subgroup analyses: No
Assess publication bias: state that because of die great amount of effort in 
identifying the research “.. .and because of the number of negative studies 
obtained, we feel that our survey is reasonably comprehensive and unlikely 
to have missed important research in this area

Marino
(1990)

USA

Journal o f 
Bioelectricity

Health effects of 
exposure to 
power-frequency 
electric fields

No details Mice 5 (=8
experiments
)

Not reported Effect estimates: Means 
Heterogeneity: No details
Synthesis method: Mean average -  no further details
Subgroup analyses: Yes
Assess publication bias: Do not mention

Nava-
Ocampo et al. 
(2000)

Mexico

Medical
Hypotheses

Neuroprotective 
effects of drugs 
inhibiting 
glutamate release

Systematic
review

Not
reported

4 (=30
comparisons
)

Yes -  as part 
of the 
inclusion 
criteria

Effect estimates: Mean parameters for brain damage
Heterogeneity: Assessed using Chi-square test. Excluded 17 comparisons
because they were heterogeneous
Synthesis method: Weighted average -  no details given on the weights 
Subgroup analyses: No
Assess publication bias: State that there is little evidence here as more non
significant than significant studies identified from this review

Pries et al. 
(1998)

Germany

Cardiovascul 
or Research

Effects of 
hemodilution on 
flow resistance 
of vascular beds

Systematic
review

Dog,
rabbit, cat 
and rat

28 Not reported Effect estimate: A number of measures of effect
Heterogeneity: State there is a great deal of variation, do not say how they 
assess it
Synthesis method: Analysis of variance (using Bonferroni corrections) to 
investigate associations between outcome and design characteristics 
Subgroup analyses: No 
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Rowlett and 
Woolverton 
(1996)

USA

Psychopharm
acology

Benzodiazepine 
and behavioural 
effects

Systematic
review

Rat,
baboon,
monkey
and
pigeons

16 Not reported Effect estimate: Behavioural measure of effect
Heterogeneity: Assess interactions by species/ treatment
Synthesis method: ANOVA with Bonferonni corrections and Tukey-
Kramer post hoc test
Subgroup analyses: No
Assess publication bias: Do not mention

Sumner et al. 
(2004)

UK

Psychopharm
acology

Effect in brain of 
a number of 
psychoactive 
drugs

Systematic
review

No details No details Not reported Effect estimates: Percentage change 
Heterogeneity: Mention, but do not assess
Synthesis method: Mean average percentage change (no details on any 
weighting)
Subgroup analyses: No details 
Assess publication bias: Do not mention

Tachibana
(1989)

Japan

Teratology

Possible 
behavioural 
effects of 
exposure to 
methylmercury 
and d-
amphetamine

Experiments
across six
laboratories.
Collaborative
Behavioural
Teratology
Study

Not
specified

24 Not reported Effect estimates: Standardised mean differences 
Heterogeneity: Assess (none suspected) but do not report details 
Synthesis method: A weighted average effect size. This paper references 
Hedges and Olkin (1980) for the methods.
Subgroup analyses: No
Assess publication bias: Do not mention

Tachibana et 
al. (1996)

Japan

Physiology 
and Behavior

Adverse 
outcomes 
associated with 
exposure to 
phenytoin

Experiments
from
laboratories.
Collaborative
Behavioural
Teratology
Study

Rat 30 Not reported Effect estimates: Standardised mean differences
Heterogeneity: Assess (heterogeneity suspected - “if an effect size from a
laboratory was judged not to share the common effect size, the effect size
was excluded from the pooling”) but do not report details
Synthesis method: A  weighted average -  no details given on the weights
Subgroup analyses: By animal breeder
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Woodruff et 
al (2004)

USA

Photomedicin

Efficacy of laser 
therapy in wound 
repair

Systematic
review

Human
and
animal

24 studies 
(31 effect 
sizes)

Not reported Effect estimates: Cohen’s d 
Heterogeneity: No assessment 
Synthesis method: Mean d 
Subgroup analyses: Yes
Assess publication bias: Use the Failsafe N method

e and Laser
Surgery

Pooled precision-weighted fixed effects model
Glatt et al. 
(2000)

USA

Neurotoxicolo 
gy and 
Teratology

Prenatal cocaine 
exposure on 
dopamine system 
development

Systematic
review

Rats and 16 studies = Not reported Effect estimates: Pearson’s product-moment correlation coefficients
rabbits 87 Heterogeneity: Chi-square test (heterogeneity not suspected)

experiments Synthesis method: The median, unweighted, weighted (by total number of
subjects in each experiment) are calculated and reported
Subgroup analyses: No details
Assess publication bias: Do not mention

Pakzaban and
Isacson
(1994)

USA

Neuroscience

Transplantation 
of fetal
neuroblasts from 
and transplanted 
into the adult 
brain

Published data 
(but give no 
information on 
how studies 
searched and 
identified)

Rats (as 
hosts)

25 Yes Effect estimates: Survival
Heterogeneity: Mention, but no assessment
Synthesis method: Combined using the Mantel-Haenzel test
Subgroup analyses: No details
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study

quality Methodology
Pema and
Remuzzi
(1996)

Italy

American 
Journal o f  
Kidney 
Disease

Urinary protein 
excretion and 
glomerular 
injury in 
proteinuric 
nephropathies

Systematic
review

Rats and 
humans

41 for 
proteinuria; 
16 for
albuminuria
(+17
human)

Not reported Effect estimates: Correlation coefficient between two variables under 
study.
Heterogeneity: Mention, but do not assess 
Synthesis method: Effect sizes weighted by sample size 
Subgroup analyses: No details
Assess publication bias: No, but mention possibility of reporting bias 
within studies

Roberts et al. 
(2002)

UK

BMJ

Fluid
resuscitation

Systematic
review

Rats, pigs 
and sheep

38 Yes Effect estimates: Odds ratios for mortality
Heterogeneity: Assess (heterogeneity suspected — use stratified analyses), 
but give no details
Synthesis method: Fixed effects meta-analysis 
Subgroup analyses: Yes
Assess publication bias: Mention i t  but do not assess

Pooledprecision-weight random effects model
Biondi- 
Zoccai et al. 
(2003)

Italy

Resuscitation

Is vasopressin 
superior to 
adrenaline or 
placebo in the 
management of 
cardiac arrest?

Systematic
review

Pigs, rats 
and
humans

33 (plus 2
human
studies)

Not reported Effect estimates: Risk differences
Heterogeneity: Assess (not suspected), but no details on how 
Synthesis method: Random effects meta-analysis in Easy MA for two 
outcomes
Subgroup analyses: By type of cardiac arrest 
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Horn et al. 
(2001)

Netherlands

Stroke

Use of
nimodipine in 
acute ischemia 
stroke

Systematic
review

Rats, 
rabbits, 
cats and 
gerbils

10 (7 for one 
outcome, 3 
for another)

Yes Effect estimates: Standardised mean differences.
Heterogeneity: Assess (heterogeneity suspected so use random effects) but 
do not give details on how assessed
Synthesis method: Random effects inverse-variance weighted average 
Subgroup analyses: Yes
Assess publication bias: Acknowledge the possibility of publication bias 
and state that “ if such a publication bias for negative animal experiments 
exists, this would result in an even more ‘negative’ conclusion of the 
present review”

Macleod et al. 
2004

Australia

Efficacy of 
nicotinamide in 
experimental 
stroke

Systematic
review

Rats and 
mice

71 outcomes 
from 14 
studies

Refer to 
Horn et al

Effect estimates: Percentage difference in neurological test for 
experimental compared to control animals 
Heterogeneity: Chi-square test. Heterogeneity suspected 
Synthesis method: Dersimonian and Laird random effects inverse-variance

Stroke
weighted mean difference
Subgroup analyses: Yes, in attempt to explain heterogeneity
Assess publication bias: Smaller effect estimates observed in reports given
in abstracts only thus suggesting evidence of publication bias

Macleod et al. 
2005

Australia

Journal o f
Pineal
Research

Efficacy of the 
neuroprotective 
drug melatonin 
for ischaemic 
stroke

Systematic
review

Rats and 
mice

13 studies Refer to 
Horn et al 
and Macleod 
et al 2004 -  
give quality 
score

Effect estimates: Proportional reduction in outcome (infarct volume, 
neurological score or combined score) in experimental compared to control 
animals
Heterogeneity: Chi-squared test. Heterogeneity suspected 
Synthesis method: Dersimonian and Laird random effects inverse-variance 
weighted mean difference 
Subgroup analyses: Yes
Assess publication bias: Do not assess, but mention it the possibility it may 
have an effect
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Macleod et al. 
2005

Australia

Journal o f  
Cerebral 
Blood Flow 
and
Metabolism

Efficacy of a 
drug (FK506) for 
acute stroke

Systematic
review

Monkeys
and
rodents 
(not clear)

24 studies = 
109
comparisons

Gave studies 
a score -  
maximum of 
10

Effect estimates: Proportion improvement in outcome for experimental as a 
percentage o f control outcome
Heterogeneity: Used stratified meta-analyses and chi-square test for 
heterogeneity
Synthesis method: Random effects Dersimonian and Laird weighted mean 
difference
Subgroup analyses: Yes
Assess publication bias: Mention that any publication bias may mean 
estimate is an over-estimate of effect, but not do assess it

Mapstone et 
al. (2003)

UK

Journal o f 
Trauma

Fluid
resuscitation of
uncontrolled
haemorrhage

Systematic
review

Rats, pigs 
and sheep

44 Not reported Effect estimates: Risk ratios for mortality
Heterogeneity: Assessed using chi-square test Heterogeneity suspected -
explored through stratification and meta-regression
Synthesis method: Random effects meta-regression (in STATA)
Subgroup analyses: Yes
Assess publication bias: Do not mention

Injury,
Infection and 
Critical Care
Syeda et al. 
2004

Austria

Journal o f 
Thoracic and 
Cardiovascul 
ar Surgery

Review efficacy 
of methods of 
myocardial 
salvage

Systematic
review

Pigs, dogs 
and
possibly 
others (not 
clear)

Two meta
analyses:
7 studies 
and 5 
studies

Not reported Effect estimates: Mean infarct size
Heterogeneity: Used restricted maximum likelihood. Suspected 
heterogeneity so used random effects model 
Synthesis method: Random effects weighted mean difference 
Subgroup analyses: No details
Assess publication bias: Used Egger’s test (when evidence of publication 
bias for meta-analysis warn about overestimating effect)
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Willmot et al. 
2005

UK

Free Radical 
Biology and 
Medicine

Efficacy of nitric 
oxide synthase 
inhibitors in 
experimental 
ischemic stroke

Systematic
review

Rats (a 
number of 
strains), 
rabbits, 
cats, mice, 
gerbils, 
pigs and 
lambs

73 relevant Used STAIR 
for
methodologi 
cal quality 
(Horn et al)

Effect estimates: Standardised mean difference 
Heterogeneity: Chi-square test. Heterogeneity suspected 
Synthesis method: Random effects model sample size weighted (in 
RevMan)
Subgroup analyses: Yes
Assess publication bias: Use Egger’s test (suggests no pub bias, but 
authors say this cannot be ruled out)

Willmot et al. 
2005

UK

Nitric Oxide

Efficacy of nitric Systematic 
oxide for acute review 
ischaemic stroke

Rat (a 25 studies
number of
strains)
and
rabbits

STAIR Effect estimates: Standardised mean differences
(Horn et al) Heterogeneity: Chi-square test. Heterogeneity suspected

Synthesis method: Random effects meta-analysis (in RevMan) 
Subgroup analyses: Yes, to investigate heterogeneity 
Assess publication bias: Use Egger’s test and funnel plot

Pooled precision-weight fixed and random effects model
Lee et al. 
(2003)

Canada

Journal o f
Cardiac
Failure

Effects of 
endothelin 
receptor 
blockade on 
survival in 
experimental 
heart failure

Systematic
review

Rats 9 
(Sprague- 
Dawley 
and
Wistar)

Y e s-
adapted
from
Cochrane
guidelines

Effect estimates: Risk ratios for mortality 
Heterogeneity: Chi-square test where p<0.1 is significant 
Synthesis method: Mantel-Haenszel stratified by time of drug 
administration (fixed and, where evidence of heterogeneity, random effects 
model)
Subgroup analyses: By time of therapy 
Assess publication bias: Mention, but do not assess

Lucas et al. 
(2002)

Netherlands

Lasers in
medical
Science

Review evidence 
for those 
unequivocally in 
favour of low 
level laser 
therapy

Systematic
review

Not 11 
reported

Yes Effect estimates: Standardised mean difference 
Heterogeneity: Assess, but do not report how
Synthesis method: Inverse-variance weighted (cite Der Simonian and Laird 
1986 and Cooper and Hedges 1994)
Subgroup analyses: Prospectively planned 7 different subgroup analyses; 
carried out only 5 of them
Assess publication bias: Mention and contact recent authors for original 
data -  do not assessment publication bias
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Fixed effects weighted regression model
Eichacker et 
al. (2002)

USA

American 
Journal o f  
Respiratory 
and Critical 
Care 
Medicine

Risk of death 
and treatment 
effect to explain 
disparate results 
between the 
preclinical and 
clinical sepsis 
trials of anti
inflammatory 
agents

Animal data 
from citation 
search of 
relevant 
human 
articles: not 
from a 
systematic 
review

Not
reported

38 (= 95
experiments
)

Not reported Effect estimates: Odds ratios for survival
Heterogeneity: Used Breslow and Day test (significant heterogeneity 
identified, so looked at subgroup analyses)
Synthesis method: Weighted (by the number of animals in each 
experiment) linear regression of the log of die odds of treatment mortality 
and log of the odds of control mortality in each study 
Subgroup analyses: Yes 
Assess publication bias: Do not mention

Freedman
(1994)

USA

Statistics in 
Medicine

Fat intake and 
mammary 
tumour incidence

Systematic
review

Rats
(Sprague-
Dawley
and
others)

68 (= 114 
experiments 
)

Not reported Effect estimates: Proportion of animals developing at least one tumour
Heterogeneity: Mention, but do not assess
Synthesis method: Fixed effects linear logistic model
Subgroup analyses: No details
Assess publication bias: Do not mention

Random effects weighted regression model
Baron et al. 
(2000)

Austria

International 
Journal o f  
Oral and 
Maxillofacial 
Implants

Review the 
experimental 
peri-implantitis 
models

Systematic
Review

Monkeys, 
dogs and 
pigs

9 Not reported Effect estimates: Pearson’s correlation coefficient 
Heterogeneity: Weighted ANCOVA 
Synthesis method: Regression with random effects 
Subgroup analyses: No details 
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Dirx et al. 
(2003)

Netherlands

International 
Journal o f  
Cancer

Energy 
restriction on 
spontaneous 
mammary 
tumours

Systematic
review

Mice 14 Yes Effect estimates: Risk differences 
Heterogeneity: Assess, but give no details on how 
Synthesis method: Meta-regression - inverse-variance weighted using 
STATA software
Subgroup analyses: Yes, to explore heterogeneity 
Assess publication bias: Used funnel plot and Egger’s test

Fay et al. 
(1997)

USA

Cancer
Research

Fat intake and 
mammary 
tumour incidence

Systematic
review

Rats and 
mice

97 (= 146
experiments
)

Not reported Effect estimates: Proportion of animals with a tumour 
Heterogeneity: No details
Synthesis method: Used conditional logistic regression with sandwich
estimators (CLRS) method
Subgroup analyses: No details
Assess publication bias: Do not mention

Unweighted regression model
Kroll et al. 
(1993)

USA

Pacing and 
Clinical 
Electrophysio 
logy

Reviewing 
evidence that 
defibrillation 
thresholds are 
steadily 
declining

No details Humans, 61 (+34 Not reported Effect estimates: Waveforms 
dogs and human) Heterogeneity: No details
pigs Synthesis method: Multivariate model was built by using backward and

forward stepwise selection from the full list of variables
Subgroup analyses: No
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Dose-response models
Benignus
(1994)

USA

Journal o f
Applied
Physiology

Construction of 
dose-response 
models for the 
behavioural 
effects of 
exposure to 
carbon monoxide

No details of
search strategy
given,
however
inclusion
criteria are
reported.

Rats and 
humans

Not reported Not reported Effect estimates: Standard Response Metameter (SRM) - expresses the 
relative size of behavioural impairments due to the exposure 
Heterogeneity: No details
Synthesis method: The model: SRM( = 1 -  p(HbCO{ ) 2 and was iteratively 
fitted “using the method of nonlinear regression”. The estimated pooled 
P  for humans and rats are presented in the article.
Subgroup analyses: No details
Assess publication bias: Mention possibility of publication bias and warns 
that low level exposure studies should not be dismissed.

Benignus et 
al. (1998)

USA

Toxicological
Sciences

Informing 
construction of 
physiologically 
based
pharmacokinetic 
models for 
behavioural 
effects of toluene 
exposure

No details of 
literature 
search given, 
but inclusion 
criteria are 
presented

Rats and 
humans

6 -  although 
not clear

Not reported Effect estimates: Behavioural measure 
Heterogeneity: No details
Synthesis method: Number of dose-response models were used to
separately fit the human and rat data and these are given in the article. The
rat estimates were extrapolated for human exposure and agreed closely with
the actual human data
Subgroup analyses: No details
Assess publication bias: Do not mention

Bouzom et al. 
(2000)

France

Journal o f  
Pharmaceutic 
al Sciences

Preclinical data 
on drug S 20342

No details 
given on how 
studies 
identified

Rats
(Wistar)

8(5
pharmacoki 
netic, 3 
toxicokineti 
c)

Not reported Effect estimates: A number of variables 
Heterogeneity: No details
Synthesis method: A nonlinear mixed effects model was used to fit the 
concentration-time data from the animals and incorporated into a two- 
compartment structural pharmacokinetic model using software NONMEM 
IV
Subgroup analyses: No details 
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study

quality Methodology
Brown and
Strickland
(2003)

USA

Regulatory
Toxicology
and
Pharmacolog
y

Exposure to
hydrogen
sulphide

Not systematic 
- no details 
given of the 
literature 
search or 
inclusion 
criteria

Rats and 
mice

23 Not reported Effect estimates: For each endpoint observed in the studies, the health 
effect is categorized by severity 
Heterogeneity: Assess, but no details
Synthesis method: Software developed by the US Environmental 
Protection Agency (CatReg) is used to combine the data using categorical 
regression. Dose-duration response models were fitted to the individual 
studies and where there existed statistically homogeneous data, these were 
pooled using the dose-duration models.
Subgroup analyses: No details 
Assess publication bias: Do not report

Carroll et al. 
(1994)

USA

National 
Institute o f  
Statistical 
Sciences

Assess all health 
effects of acute 
inhalation to 
tetrachoroethylen 
e

“all available 
data from 
published 
sources, 
proceedings 
and technical 
reports” are 
included in 
this database

Rats, mice 
and
humans

Not reported Not reported Effect estimates: Severity scores are assigned to each outcome in all 
primary studies regardless o f animal species used. The severity scores 
relate to no effect, adverse effect, severe effect 
Heterogeneity: Assessed through stratified analyses 
Synthesis method: Logistic regression. One model includes study 
covariates, such as species used and gender. Conclude that the pooled 
analysis obscures important effects which can be seen when factors such as 
‘species used’ are included in the regression.
Subgroup analyses: Yes 

Assess publication bias: Do not mention
Guth et al. 
(1997)

USA

Risk Analysis

Central nervous 
system health 
effects of acute 
inhalation to 
tetrachoroethylen 
e

“all available 
studies”

Rats, mice 
and
humans

12 Not reported Effect estimates: Severity scores are assigned to each outcome in all 
primary studies regardless of animal species used. The severity scores 
relate to no effect, adverse effect, severe effect.
Heterogeneity: Main model assumes data from homogeneous population,
so use stratified regression model to allow for subgroup differences.
Synthesis method: Regression model
Subgroup analyses: Yes
Assess publication bias: Do not mention
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Study Setting Origin of 
data Species Number

studies
Study
quality Methodology

Hendry and
Roberts
(1990)

UK

Radiation
Research

Dose-incidence 
relationships for 
marrow failure in 
terms of radio 
sensitivity of 
tissue-rescuing 
units

No details on 
how studies 
identified

Mouse, 
monkey, 
dog, pig, 
sheep and 
goat

68 Not reported Effect estimates: Probability of death
Heterogeneity: Assessed; only combined homogeneous data
Synthesis method: used the model: -ln(-lnP)=D/D0-lnK; where P=
probability of animal death=exp(-KS), and S=survival fraction.
Subgroup analyses: No details
Assess publication bias: Do not mention

Valberg and
Crouch
(1999)

USA

Environmenta 
I Health 
Perspectives

Lung tumours 
from lifetime 
inhalation of 
diesel-engine 
exhaust particles 
(DEPs)

No details 
given on the 
search strategy 
used to 
identify these 
studies, but 
inclusion 
criteria are 
reported

Rats
(F344 and 
Wistar)

8 (=13
experiments
)

Not reported Effect estimates: Incidence of tumours 
Heterogeneity: Mention but do not assess
Syntheses method: A  flexible exposure-response model containing a non
negative, but possibly zero, threshold concentration, applied to the data 
from each study 
Subgroup analyses: No details 
Assess publication bias: Do not mention

More specialised methods o f  synthesis
Craig et al 
(2000)

Australia

Journal o f
Nuclear
Medicine

Test
performance of 
dimercaptosucci 
nic acid (DMSA) 
scintigraphy for 
the diagnosis of 
acute
pyelonephritis

Systematic
review

Rats and 
pigs

8 Yes Effect estimates: Sensitivity and specificity
Heterogeneity: Mention but do not assess (the number of studies was too 
small)
Synthesis method: SROC curve constructed with individual study points of 
equal weighting and weighting by the inverse of the variance. Changing the 
weighting made no difference 
Subgroup analyses: No details
Assess publication bias: Mention and caution that the estimate of test 
performance given here may be an overestimate. They concede that the 
number of studies used here is too few to allow an assessment of 
publication bias
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data Species Number

studies
Study
quality Methodology

Crump et al. 
(1999)

USA

Annals o f the 
New York 
Academy o f 
Sciences

Estimate the 
proportion of 
liver carcinogens

From National 
Toxicology 
Program data 
archives

Mice and 
rats

397
bioassays

Not reported Effect estimates: Incidence of tumour 
Heterogeneity: No details
Synthesis method: Modelling the distribution of p-values obtained from all 
tests
Subgroup analyses: By sex and species 
Assess publication bias: Do not mention

Correlations on individual animal data
Preda et al. 
2005

US

Investigative
Radiology

Compare limited 
MR performance 
with MR for 
whole tumour 
area

“datasets from
3 separate
studies,
already
published”
(not further
details)

Sprague-
Dawley
rats

3 studies = 
98 tumours

Not reported Effect estimates: Correlation coefficients 
Heterogeneity: No details
Synthesis method: Combine all data regardless of which study the data 
came from
Subgroup analyses: No details 
Assess publication bias: Do not mention
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Summary. Systematic review and synthesis (meta-analysis) methods are now increasingly 
used in many areas of health care research. We investigate the potential usefulness of these 
methods for combining human and animal data in human health risk assessment of exposure to 
environmental chemicals. Currently, risk assessments are often based on narrative review and 
expert judgment, but systematic review and formal synthesis methods offer a more transparent 
and rigorous approach. The method is illustrated by using the example of trihalomethane expo
sure and its possible association with low birth weight. A systematic literature review identified 
13 relevant studies (five epidemiological and eight toxicological). Study-specific dose-response 
slope estimates were obtained for each of the studies and synthesized by using Bayesian meta
analysis models. Sensitivity analyses of the results obtained to the assumptions made suggest 
that some assumptions are critical. It is concluded that systematic review methods should be 
used in the synthesis of evidence for environmental standard setting, that meta-analysis will 
often be a valuable approach in these contexts and that sensitivity analyses are an important 
component of the approach whether or not formal synthesis methods (such as systematic review 
and meta-analysis) are used.

Keywords: Bayesian models; Cross-design synthesis; Epidemiology; Meta-analysis;
Sensitivity analyses; Systematic review; Toxicology

1. Introduction

1.1. Systematic review and synthesis methods
As the emphasis on evidence-based medicine increases, systematic review methods are com
monly used to compile, to assess the extent and quality of and to summarize the results of 
research. As in prim ary research, the target research questions, methods and results should be 
clearly laid out, offering transparency and making explicit assumptions and decisions that are 
made in execution. This allows reproducibility and ease in updating (Sutton et a l ,  2000; Egger 
and Davey Smith, 2001). As part o f a systematic review it may be appropriate to perform a 
meta-analysis, yielding a quantitative synthesis of results from several studies. Advantages of 
meta-analysis include greater statistical power than a single study, the potential for more precise 
estimates, a framework for investigation of possible sources of heterogeneity between studies 
and the potential to be more generalizable (Fleiss and Gross, 1991; Blettner et al., 1999).

Often information regarding a particular area of interest will come from studies of fundamen
tally different designs, such as case-control studies and randomized controlled trials. Several 
researchers have investigated methods for combining results from hum an studies of different
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designs, known as cross-design synthesis (Larose and Dey, 1997; Bhatia et al., 1998; Muller 
et al., 1999; Prevost et al., 2000; Sutton and Abrams, 2001; Roberts et al., 2002a). Bayesian 
methods o f synthesis are sufficiently flexible to allow, if appropriate, for prior evidence and/or 
expert judgm ent (e.g. on the relative appropriateness of certain types o f evidence) to be incor
porated into the analysis o f the observed data (Spiegelhalter et al., 2000a).

In assessing risks to human health from exposure to chemical substances in the environment, 
relevant evidence comes from both animal and hum an research. There has been relatively little 
exploration o f m ethods for quantitative synthesis of evidence from hum an and animal studies, or 
even of toxicological studies alone (Roberts et al., 2002b; Sandercock and Roberts, 2002). How
ever, DuM ouchel and Harris (1983) and DuM ouchel and Groer (1989) have investigated alter
native Bayesian models for combining dose-response slopes from animal and human studies.

In this paper we explore the use o f systematic review and formal methods of synthesis for 
combining animal and hum an data for setting standards on levels o f hum an exposure to envi
ronmental chemicals. We use the example o f the possible association between exposure to tri- 
halomethanes (THM s) in drinking water and low birth weight to illustrate these approaches.

1.2. Use of human and animal data to set environmental exposure standards 
Current methods to  review and incorporate diverse evidence to inform risk assessments are gen
erally not systematic and lack some degree o f quantification (Risk Assessment and Toxicology 
Steering Committee (1999) and references therein). A single, pivotal, study may be selected as the 
basis for the risk assessment, e.g. the establishment o f a threshold value below which adverse 
health effects are not observed. It is im portant that when environmental exposure standards 
are set there is transparency regarding what data are used, how they are used and the various 
assumptions that are made. The nature and degree o f uncertainty that exists in the estimation 
of these standards needs to be clear to both setters and users o f the standards. Currently, this is 
not always so; there is a real need for the development of a systematic transparent methodology 
to combine hum an and animal data that could formally incorporate biological or mechanistic 
data, in so far as they exist (Budtz-Jorgensen et al., 2001) and allow an estimation of inherent 
uncertainty.

2. Example: exposure to trihalom ethanes and low birth weight

2.1. Background to the example
THM s are a group o f chlorinated by-products (CBPs), formed when chlorine, added to drinking 
water supplies for disinfection, reacts with organic and inorganic substances that are already 
present in the water-supply (Fawell et al., 1997). The type and concentration of these CBPs 
depend on factors such as the amount of chlorine added, the time since the chlorine was added, 
the water tem perature and its level o f acidity (Koivusalo and Vartiainen, 1997). The most 
commonly measured THM s are chloroform, bromodichloromethane (BDCM), dibromochlo- 
romethane (DBCM) and bromoform, but often total THM s are measured and reported in 
epidemiological studies. Correlations between the individual and total THM  concentrations 
(Whitaker et al., 2003) suggest that total THM s are a good indicator for the concentration of 
chloroform in drinking water, but not for the other THMs.

A possible association between exposure to CBPs and the incidence of cancer is reported by 
Morris et al. (1992). The potential for reproductive health effects of exposure to CBPs has also 
been a focus o f concern, in particular risks that are associated with the foetus or newborn babies. 
Nieuwenhuijsen et al. (2000) published a narrative review of human and animal research inves
tigating the potential association between exposure to THM s and adverse reproductive effects.
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They suggested that there was a potential link between exposure to  TH M s and low birth weight, 
although the quality of the human studies, particularly for assessing exposure levels, was not 
high and the animal data were not comprehensive. Here we build on the review of Nieuwenhuij- 
sen et al, (2000) by systematically collating and quantitatively summarizing the hum an and 
animal research investigating oral exposure to THM s and a possible association with low birth 
weight.

2.2. A systematic search of the literature
We performed a systematic search o f the literature on the potential association between oral 
exposure to TH M s and low birth weight following standard procedures (National Health Ser
vice Centre for Reviews and Dissemination, 2001). Evidence from both hum an and animal 
studies was sought. The search was limited to reports published in English. Lists of the elec
tronic databases and search terms that are used are given in Peters et al. (2003). The search was 
supplemented by an investigation of the references from published reports and reviews (e.g. Reif 
et al. (1996) and Fawell et al. (1997)) for further relevant research. 13 studies were found to be 
relevant (five epidemiological and eight toxicological). In the epidemiological studies the odds 
ratios (ORs) for low birth weight are adjusted for different covariates in each study; in the tox
icological studies, different species and strains of animal are compared. There were many 
differences between the disciplines. Exposures are reported as parts per billion in the epidemi
ological studies, but in the toxicological studies as milligrams per kilogram of body weight per 
day; the toxicology studies report means (and standard deviations) o f weight at each dose level, 
whereas ORs for low birth weight are reported in the epidemiological studies. These differences 
must be addressed directly so that comparable study-specific estimates can be obtained for each 
of the 13 studies.

2.3. Obtaining study-specific estimates
We transformed the exposure scale in the epidemiological studies (parts per billion) to that 
reported in the toxicological studies (milligrams per kilogram of body weight per day), assum
ing, as in standard risk assessment practice, an average body weight o f 60 kg and an average 
water intake o f 21 day-1 (Department o f the Environment, 1993; World Health Organization, 
1996). Our aim was to obtain a dose-response slope estimate o f the natural logarithm of the OR 
(ln(OR)) for low birth weight associated with exposure to THM s for each study. To transform 
the mean weights given at each dose level in the toxicological studies to ORs we further assumed 
that the foetal weights were normally distributed and that 7.6% of the animals in the control 
(zero dose) group were of low weight. (As there appear to be no generally accepted cut-off 
values for low weight in different species, the percentage of low birth weight babies (weighing 
less than 2.5 kg) in England in 1999 (Office for National Statistics, 2000) was used.) Under these 
assumptions we obtained the number of animals in each dose group that were considered to 
be of normal and low foetal weight and hence calculated the OR. For each study, we fitted a 
weighted least squares linear regression o f ln(OR) on the natural logarithm of dose (ln(dose)), 
the weight being inversely proportional to the variance of the ln(OR) estimate at each ln(dose) 
level:

ln(OR,-y) =  oti +  Pi ln(dose,y) +  £/ (1)

where j  is the number of observations in study i (i = 1 , . . . ,  13) and e,- ~  N (0 ,02). The slope 
estimates Pi (and corresponding variances) are the study-specific estimates to be used in the 
subsequent synthesis. Although there are differences in the exposures measured between the
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studies (i.e. individual and total THM s), for simplicity we here assume that these exposures are 
equivalent throughout.

3. Methods of synthesis

3.1. Synthesis of study-specific estimates within the two disciplines
A two-level hierarchical Bayesian model (model 1) was used to combine the study-specific dose- 
response slope estimates #  within each o f the two disciplines (epidemiology and toxicology). 
Within this model framework, the data were analysed in several ways: model la  combined 
only the epidemiological studies and model lb  combined only the toxicological studies. Both 
o f these models had ‘vague’ prior distributions on the unknown parameters, so that the data 
would contribute m ost to  the posterior distribution. In Section 5.3 we report sensitivity analyses 
of various choices o f vague prior distributions.

Two further models, models lc  and Id, also combined the epidemiological and toxicological 
studies respectively, but with informative prior distributions on the pooled slope parameter p  
based on the posterior mean and variance from models la  and lb. Thus, the posterior mean 
and variance from the synthesis of the toxicological studies (model lb ) were used to inform 
the prior distribution for the synthesis o f the epidemiological studies (model lc). Similarly, the 
posterior mean and variance from synthesizing the epidemiological studies (model la) were 
used as a basis for the prior distribution in the synthesis of the toxicological studies (model Id). 
The structure that was used by all forms o f model 1 is

f3i ~  N (6i ,o f) ,  p ~ N (a ,b ) ,
(2)

6i ~  N(p, t 2), 1 / t 2 ~  gamma(0.001,0.001)

where 0/ is the true dose-response slope in study i (for models la  and lc, * =  1 , . . . ,  5; for models 
lb  and Id, i — 1 , . . . ,  8), p  is the pooled dose-response slope and r 2 is the between-study vari
ance. In all four models, we assume that erf are known, and we use the observed variances of the 
slope estimates in each study to represent them. In models la  and lb , a =  0 and b =  109, allowing 
for a range o f plausible values for the dose-response slope estimate o f between —2 x 109 and 
2 x 109. However, in model lc a is the posterior mean from model lb  and b is the posterior 
variance from model 1 b, and in model Id  a is the posterior mean from model 1 a and b is the pos
terior variance from model la. In all four models, a vague prior is placed on the between-study 
precision param eter 1 / r 2.

3.2. Synthesis of study-specific estimates across disciplines
A fifth form of model 1, model le, combines all 13 studies (i =  1 , . . . ,  13), taking no account 
of the studies being from two different sources, with vague prior distributions on all unknown 
parameters. Three further models (models 2, 3a and 3b) do take into account the fact that data 
from different sources are being combined.

Model 2 is a two-level Bayesian hierarchical model estimating an overall pooled slope esti
mate p, but allowing distinct estimates of the between-study variances for the epidemiological 
studies and the toxicological studies. Model 2 is given by

Pij ~  ojj), p  ~  N (0 ,109), }
ipij ~  N(p, T 2 ) ,  1 / r 2 ~  gamma(0.001,0.001), > (3)

I / tj ~gam m a(0.001,0.001) J
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where the Pij are the observed slope estimates for the ith study o f type j  (where j  =  1 for epide
miological studies and j  = 2 for toxicological studies), cr?. are the variances o f the Pij and ipij is 
the true slope estimate for study i of type j .  r j  is the variance between studies of type j ,  and p  is 
the pooled slope estimate. Vague prior distributions were placed on the unknown parameters.

Model 3 is a three-level Bayesian hierarchical model (Prevost et al., 2000; Sutton and 
Abrams, 2001) which includes a level to  account for study type, j .  In model 3a, j =  1,2 ( j  =  1 
for epidemiological studies and j  = 2 for toxicological studies). In model 3b, we further divide 
the toxicological studies in an attempt to  account for the different species and strain of animals 
that were used in the studies; hence j  =  1 , . . .  ,4  ( j  =  1 for hum an studies, j  = 2 for studies 
using rabbits, j  =  3 for studies using Sprague-Dawley rats and j  = 4 for studies using F344 rats). 
Model 3 is given by

Pij ~  N(ipij, ofj), p  ~  N(0 , 109), 
ipij ~  N(6j, r j ) ,  1 / r j  ~  gamma(0.001,0.001),

6j~ N ( p ,u 2), l / i /2~gam m a(0.001,0.001). ^
(4)

As well as estimating the variance between studies o f type j ,  r j ,  model 3 estimates the vari
ance between study types, u1, and the pooled dose-response slope for the j th  type of study, 6j. 
As with models 1 and 2, the pooled slope estimate o f the 13 studies is given by p. Vague prior 
distributions were placed on the unknown parameters.

WinBUGS (version 1.3) (Spiegelhalter et a l ,  2000b) was used to estimate parameters for the 
Bayesian analyses by using Markov chain M onte Carlo simulation. For each model a burn-in 
of 10000 iterations was followed by a further 200000 updates after which the median and the 
2.5- and 97.5-percentiles of the posterior distribution were used to summarize the parameter 
estimates. All initial values were set to 1 and convergence and model performance were assessed 
visually from the trace and autocorrelation plots that are available within WinBUGS.

As part o f the sensitivity analyses that are reported in Section 5.3, the length of burn-in, 
number o f updates and the initial values given above were changed, and various vague prior 
distributions were placed on the parameters in models le, 3a and 3b to assess the sensitivity of 
the results to these specifications.

4. Results

4.1. Study-specific dose-response slope estimates
The dose-response slope estimates (medians), Pi and 95% credibility intervals (CIs) that were 
calculated from each study are shown in Fig. 1. Apart from the study o f Ruddick et al. (1983) 
on exposure to DBCM , the toxicological studies all have very similar dose-response slope esti
mates and are quite precise; the epidemiological study estimates appear more heterogeneous 
and generally less precise. The estimate (posterior median) of the between-study variance r 2 for 
the epidemiological studies is 0.0051, but for the toxicological studies it is 0.0027.

4.2. Within-discipline pooled dose-response slope estimates
In Table 1 the pooled dose-response slope estimates p  and 95% CIs obtained from models la - Id  
are compared with results from a classical random-effects synthesis fitted by using the META 
command in STATA 7 (StataCorp, 2001).

Results from the Bayesian models with vague prior distributions (models la  and lb) and 
the classical models show that the pooled epidemiological slope estimates p  are slightly larger 
than the pooled toxicological slope estimates and have much more variability associated with
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Epidemiological studies

Dodds et al. (1999) 
Gallagher et al. (1998) 
Savitz et al. (1995) 
Boveetal. (1992) 
Kramer et al. (1992)

Toxicological studies

Sprague-Dawley Rats 
Thompson et al. (1974) - chloroform 
Ruddick et al. (1983) - chloroform 
Ruddick et al. (1983) - BDCM 
Ruddick et al. (1983) - DBCM I— *■  
Ruddick et al. (1983) - bromoform

Fischer-344 Rats
Narotsky et al. (1997) - BDCM (co) 
Narotsky et al. (1997) - BDCM (aq)

Dutch Belted Rabbits 
Thompson et al. (1974) - chloroform

Wi
Wi

Slope estimate 
(95% Cl)

0.052 (-0.002,0.106) 
0.252 (-0.160,0.662) 
0.428 (-0.045,0.898) 
0.121 (0.066,0.175) 
0.016 (-0.015,0.048)

0.061 (0.046,0.076) 
0.102(0.074,0.131) 
0.102 (0.074,0.131) 

-0.117 (-0.212,-0.022) 
0.056 (0.030,0.081)

0.105(0.080,0.131)
0.037(0.012,0.062)

0.036 (0.004,0.068)

I I I I I I I I
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Dose-response slope estimate

Fig. 1. Study-specific dose-response slope estimates /3, and 95% CIs from In(OR) versus In(dose) linear 
model (co, corn oil vehicle; aq, aqueous vehicle)

Table 1. Epidemiological and toxicological pooled slope estimates p (and 95% CIs or 
confidence intervals)

Model p  from epidemiological 
studies (n =  5)

p  from toxicological 
studies (n =  8)

Bayesian model with vague prior 
distribution (models la  and lb) 

Bayesian model with informative prior 
distribution (models lc  and Id) 

Classical random-effects model

0.077 (-0.017, 0.240) 

0.061 (0.023, 0.099) 

0.071 (0.007, 0.135)

0.058 (0.006, 0.100) 

0.060(0.017, 0.100) 

0.062 (0.038, 0.086)

them. This reflects what was seen in Fig. 1. As expected, the Bayesian models give pooled slope 
estimates with wider CIs than the estimates that are obtained from the classical random-effects 
model, because more variability is taken into account in the Bayesian model. The results from 
the Bayesian models with informative prior distributions (models lc  and Id) are very similar to 
each other and are close to the pooled slope estimate of the toxicological studies from model 
lb  and the classical random-effects model. Thus, it would appear that in models lc and Id the 
data from the toxicological studies are dominating, regardless of whether they form the prior or 
the likelihood. This reflects the fact that the slope estimates from the toxicological studies are 
estimated more precisely than those from the epidemiological studies.
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Bayesian models

Model 1e
(2-level hierarchical)

Model 2
(2-level hierarchical - j:1,2) 

Model 3a
(3-level hierarchical - j:1,2)

Model 31?
(3-level hierarchical - j:1 ,..,4)

Classical model 

Random effects

- o  I

Pooled slope estimate 
(95% Cl)

0.061 (0.027, 0.094) 
0.077 (-0.017, 0.24)

0.061 (0.025, 0.096)

0.065 (-0.432, 0.577) 
0.072 (-0.007, 0.188)

0.061 (-0.037, 0.162) 
0.068 (0.001,0.156)

0.062 (0.040, 0.084) 
0.071 (0.007,0.136)

I I I I I I I I I I I I 
-0.5 -0.3 -0.1 0.1 0.3 0.5

Pooled dose-response slope estimate
Fig. 2. Pooled dose-response slope estimates \ i  (and 95% CIs) obtained from the five synthesis models 
that were used to combine all 13 studies (model 1e, the human epidemiological estimate is /z from model 
1a; model 3, the human epidemiological estimate is 0 ^ ) :  ■, all-species estimate; O, human epidemiological 
estimate

4.3. Overall pooled dose-response slope estimates
The slope estimates p  that were obtained from pooling all 13 studies using the various models 
are shown in Fig. 2. Again, pooled estimates from the classical random-effects model are given 
for comparison.

From Fig. 2 we can see that the models give similar pooled dose-response slope estimates 
p, but their level o f precision varies. The three-level hierarchical model that only distinguishes 
between the epidemiological and toxicological studies (model 3a) gives a very wide C l compared 
with the pooled slope estimates from the other models in Fig. 2. The reason for this, as Prevost 
et al. (2000) also noted, is that only two pieces o f evidence, in our example the pooled epidemi
ological slope estimate 6 \ and the pooled toxicological slope estimate 62, are being synthesized 
to obtain the overall pooled slope estimate p. Hence, when the different species and strains 
are taken into account in model 3b, so that there are four sources o f evidence, the C l is much 
narrower.

5. Sensitivity analyses

As has been pointed out, many assumptions were made to obtain comparable dose-response 
slope estimates from each of the 13 studies and to combine using the synthesis models described. 
In this section some o f these assumptions are assessed for their sensitivity. These include the 
effect of different dose-response models on the resulting slope estimates changing the water 
intake and body weight assumptions that were made in the initial analyses and the assessment of 
different vague prior distributions that were placed on the unknown parameters in the synthesis 
models that are defined in Section 3.
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5.1. Dose-response models
We investigated the effect on the findings of using different dose-response models to obtain the 
study-specific slope estimates. The models were as follows:

(a) a linear model as given in equation (1), but with dose replacing ln(dose) as the explanatory 
variable;

(b) a linear model (ln(OR) and dose) as in (a), but taking into account the correla
tion structure between the ln(OR)s within each study (Greenland and Longnecker, 
1992);

(c) a logit model (on ln(dose)) given by

where p  is the probability of observing a foetus with a low birth weight;
(d) a logit model as in (c), but with dose replacing ln(dose) as the explanatory variable.

Comparing the results o f the three dose-response models where ‘dose’ is used as the explanatory 
variable (models (a), (b) and (d)), the slope estimates from model (a) are generally larger than 
those from models (b) and (d). The Greenland and Longnecker (1992) model (b) takes into 
account the correlation structure of the ln(OR) estimates within each study, whereas in the logit 
model (d) the estimates within a study are all independent. This may suggest that the incorrect 
assumption o f independence o f the estimates within a study, as made in model (a), increases the 
resulting slope estimates.

The toxicological slope estimates (and standard errors) are somewhat smaller when dose 
is used in the model, compared with ln(dose) (the dose-response slope estimates from the lin
ear dose-response models can be found at h t t p : / / w w w .hs. l e . a c . u k / d i v i s i o n / e p p h /  
p r o j e c t s / e p i a n d t o x / ) .  However, for the epidemiological studies, the models that include 
dose give slope estimates (and standard errors) that are orders o f magnitude greater than those 
including ln(dose). The slope estimates are defined as the increase in ln(OR) per unit increase 
in dose (milligrams per kilogram per day) and, whereas the range o f dose levels that is covered 
by the toxicological studies reaches 400 mg kg-1 day-1 , the exposures that were reported in the 
epidemiological studies do not exceed 0.0042 mg kg- May-1 .

If a dose dose-response model is used, the epidemiological studies will each have very little 
weight in the synthesis o f all studies (as they have very low precision), and so the toxicological 
studies will tend to dominate. However, if the In (dose) dose-response model is used, the toxico
logical studies are less likely to dominate because the precision of the slope estimates is similar for 
the toxicological and epidemiological studies. The results of pooling the dose-response slope 
estimates that were obtained from the various linear dose-response models can be found at 
h t t p : / /www. h s . l e . a c . u k / d i v i s i o n / e p p h / p r o j e c t s / e p i a n d t o x / .

It is clear that the choice of dose-response model is critical for the synthesis o f the studies. 
To investigate which dose-response model is most appropriate, we assessed the fit of each of 
the dose-response models by using the Bayes information criterion (Schwarz, 1978). The linear 
models appear to give a better fit to the data than do the logit models, since the Bayes information 
criterion values are lower for the linear models. However, results from applying the Bayes infor
mation criterion suggest that neither dose nor ln(dose) in the linear model is more advantageous 
than the other in terms of model fit. The complete table of Bayes information criterion values 
for each dose-response model can be found at h t t p : /  /  www. h s  . l e . a c . u k / d i v i s i o n /  
e p p h / p r o j e c t s / e p i a n d t o x / .

a  + (3 ln(dose) +  e (5)

http://www.hs
http://www.hs.le.ac.uk/division/epph/projects/epiandtox/
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5.2. Sensitivity of assumptions on body weight, water consumption and low birth weight 
cut-off values
This section reports the results from the sensitivity analyses of the assumptions that were made 
in Section 2.3. To convert the measurement o f exposure that was reported in the epidemiological 
studies, we applied standard default body weight and water consumption values. Recent surveys 
suggest that these values are inaccurate (European Centre for Ecotoxicology and Toxicology of 
Chemicals, 2001; Environment Agency and D epartm ent for Environment, Food and Rural 
Affairs, 2002). We reanalysed the dose-response slopes /?,• from the epidemiological studies us
ing estimates from these surveys in place of the above ‘default’ values. Furthermore, by using 
a Bayesian model we could also assess whether inclusion o f uncertainty about the assumed 
values affected the dose-response slope estimates that were obtained and the subsequent syn
thesis of the slopes. These sensitivity analyses were carried out for both  the ln(dose) linear 
dose-response model and the dose linear dose-response model. A mean of 68.53 kg (standard 
deviation 13.87 kg) was assumed as the average body weight (Environment Agency and Depart
ment for Environment, Food and Rural Affairs, 2002), and 0.9911 day-1 (standard devia
tion 0.0304) for average water intake (European Centre for Ecotoxicology and Toxicology of 
Chemicals, 2001). The full results can be found at h t t p : /  /www. h s . l e . a c . u k / d i v i s i o n /  
e p p h / p r o j e c t s / e p i a n d t o x / .

The different assumptions had no effect on the individual and pooled dose-response slope 
estimates when the ln(dose) linear model is applied to the data. However, for the dose linear 
model, changing the assumptions increases the size o f the estimates by a  multiple o f 2 and more. 
For the ln(dose) model, if the variability of the assumptions from the survey data is taken into 
account the estimates and CIs do not change. However, taking into account the variability of 
the body weight and water intake assumptions in the dose model, larger dose-response slope 
estimates are obtained and the variability that is associated with these estimates is much greater 
than when the variability is not taken into account. The model that includes information on the 
variability o f the water intake and body weight assumptions is more appealing as it shows from 
the outset the am ount o f variability that is associated with the results. Clearly, as more accurate 
data are collected, the models can be updated.

Further assumptions were made in defining the percentage o f control group animals that 
were o f low birth weight in the toxicological studies so that ORs could be calculated from the 
reported means (and standard deviations) o f weight. We applied four further cut-off levels of 
low birth weight: 5%, 10%, 20% and taking two standard deviations below the mean for the 
control group (Foster and Auton, 1995). These different cut-off values had moderate effects on 
the ORs and slope estimates /?,■ that were obtained for the toxicological studies.

5.3. Checking of model assumptions and sensitivity of prior distributions
Use of different burn-in lengths, number o f iterations and initial values in the Bayesian analyses 
in WinBUGS suggested that all the models had converged satisfactorily. Changing the vague 
prior distributions in model le has very little effect on the estimate for the pooled dose-response 
slopes p  and the 95% CIs (full results can be found at h t  t p : /  /www. h s . 1 e . a c . u k  / d i v i s i o n /  
e p p h / p r o j e c t s / e p i a n d t o x / ) .

The prior distributions on the unknown parameters p, l / r j  and \ / u 2 in models 3a and 3b as 
part of these sensitivity analyses are shown in Table 2.

For brevity we do not discuss all the results here; instead we refer interested readers to Peters 
et al. (2003) for more details. However, in general, the more diffuse prior distribution on p, 
N (0 ,1011), in models 3a and 3b makes no difference to  the pooled slope estimates p  and 95% 
CIs that were obtained in the initial analyses.
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Table 2. Prior distributions used in the sensitivity analyses for models 3a 
and 3b

Prior for pooled 
slope estimate p.

Prior for between-study 
(within type) precision, l l r j

Prior for between-study- 
type precision, 1 lu2

N (0 ,109) 
W(0,10H)

gamma(0.001,0.001) 
gamma(0.1,0.1) 
gamma(l,l) 
N(0,106)t for Tj > 0 
N(0,104)f for Tj >  0 
N(0,102)j for Tj > 0

gamma(0.001,0.001) 
gamma(0.1,0.1) 
gamma(l,l) 
W(0,106)t for «/>0 
iV(0,104)J for i/> 0  
W(0,102U for i/> 0

t  Prior distribution placed on the between-study standard deviation t j . 
j Prior distribution placed on the between-study-type standard deviation v.

The prior distributions on the precision components I f r j  and l / u 2 in models 3a and 3b 
do have an effect on the estimated pooled dose-response slopes p  and 95% CIs. The half
normal prior distributions on l / r j  give very similar estimates and 95% CIs to each other, but 
the gamma prior distributions give slightly different estimates and 95% CIs. Larger slope esti
mates and CIs are obtained when the gam m a(l, 1) prior distribution is applied since larger 
values for the variance components can be sampled. This general pattern can be seen for models 
3a and 3b (see Peters et a l (2003)).

These sensitivity analyses demonstrate that the choice of prior distributions that are 
placed on the unknown precision parameters in model 3 may have a very im portant influ
ence on the results that are obtained. As Lambert et al. (2003) discussed in their simulation 
study o f the effect o f prior distributions in a meta-analysis scenario, it is difficult to spec
ify truly vague priors, particularly for variance parameters. This is more problematic when 
there are, in effect, only two pieces of evidence from which to estimate the variance, as is the 
case with model 3a. However, none of the pooled slope estimates p  that are obtained from 
the analyses o f model 3 suggested a significant increase or decrease in the risk o f low birth 
weight with exposure to THM s, so our conclusions are robust to different choices of vague 
prior.

Using a Bayesian model, it is possible to include judgments on the relevance o f the toxico
logical data to the setting o f standards of safe exposure to humans. In Section 3.1 the posterior 
mean and variance from the synthesis of the toxicological studies is used to form the prior 
distribution for the synthesis of the epidemiological studies. Prevost et al. (2000) and Sutton 
and Abrams (2001) have looked at how the weight o f one source of evidence may be changed in 
accordance with prior beliefs concerning the relevance of that evidence in the synthesis. A figure 
showing the pooled estimates p  corresponding to  the weight that is given to the toxicolog
ical studies can be found at h t t p : / / www.hs . l e . a c . u k / d i v i  s i  o n / e p p h / p r o j e c t s /  
e p i a n d t o x / .  Using different weights for the toxicological data to inform the synthesis of the 
epidemiological studies does impact substantially on the results o f the synthesis. Thus, expert 
judgment can be incorporated to assess the relevance of the toxicological data to the epidemi
ological data in setting environmental exposure standards. Ibrahim and Chen (2000) explored 
the use of a power transform prior, whereby the likelihood function of historical evidence is 
raised to the power o f p, where 0 <  p ^  1. Such an approach could be applied to our example 
and possibly extended to  include more sources o f evidence.

http://www.hs
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6. Discussion

We have introduced the potential for systematic review and formal synthesis models to  be used in 
the context o f assessing risks to human health from exposures to chemicals in the environment. 
The application o f this methodology to the illustrative example o f exposure to THM s and the 
risk of delivering a baby with a low birth weight has required many assumptions to  be made. So 
also do more traditional approaches to analysing and interpreting evidence on health outcomes 
o f environmental exposures. However, the use o f systematic review and meta-analysis methods 
forces and facilitates explicit acknowledgement and description o f these assumptions. In this 
example, the sensitivity o f many o f these assumptions has been investigated; depending on the 
dose-response model, the assumptions that are made can have a critical effect on the estimates 
that are obtained.

Our analyses have also demonstrated the necessity of checking the appropriateness o f the 
dose-response model chosen. For simplicity, we initially assumed a linear relationship between 
In (OR) for low birth weight and In (dose). However, the logit model is among the most com
monly applied dose-response models in toxicology, together with the probit and Weibull models 
(Crump, 1984; Covello and Merkhofer, 1994; Lovell and Thomas, 1997). In the example that we 
have used, the application of the Bayes information criterion has suggested that the linear model 
provides a better fit to the data than the logit model. The use of ln(dose) seems more sensible 
than dose, as it reflects a multiplicative effect with increasing exposure. In fact, in toxicology 
and pharmacology, ln(dose) is generally used (Rang et al., 1999). In  this example, at least for 
the purpose o f synthesis, In(dose) is more appealing as the epidemiological slope estimates from 
the ln(dose) dose-response model have a magnitude and precision that are comparable with 
those from the toxicological studies.

In assessing which synthesis model to recommend, account must be taken of the fact that, 
in this example, two different sources of evidence are being combined; hence we do not advo
cate the use o f model le to synthesize all 13 studies. The synthesis models that appear to 
be the most advantageous, in terms of taking into account the two different sources of evi
dence, are those that used informative prior distributions (models lc  and Id). Furthermore, 
by assessing the relevance o f a source o f evidence and allowing it to  have more (or less) influ
ence in the synthesis the effect o f this particular source of evidence can be quantitatively ex
plored. For both the dose-response and the synthesis models, methods o f model comparison 
could be extended to  the use of Bayes factors and averaging over models (Kass and Raftery, 
1995).

7. Conclusion

Systematic review and formal synthesis methods ensure that all relevant evidence is included 
and that data are combined in a transparent and reproducible manner. We believe that this 
initial attempt to apply systematic and transparent methodology to the setting of environmen
tal exposure standards is, in itself, a significant step forward in the chemical risk assessment 
and exposure standard setting process. Many assumptions had to be made and documented in 
transforming and analysing the data in this example for this to be achieved. However, these 
assumptions are parallel to those which are currently made in the risk assessment process, and 
our approach forces them to be made explicit. We recommend that systematic review methods 
be used in the risk assessment process as they provide a structured, transparent means of iden
tifying and assessing the body of research concerning a particular area of interest. Sensitivity 
analyses should also be considered, not just in the development o f this methodology, but in 
more general standard setting processes.
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Since the main focus o f this paper is to illustrate the potential benefits o f applying systematic 
review and, if appropriate, meta-analysis methods in the risk assessment process, we do not, at 
this point, attem pt to  conclude whether there is an association between exposure to THM s and 
low birth weight, nor at what level of exposure the risk of such an effect may increase.

The next stages in the development of our approach will be to investigate another, quite differ
ent, example using these methods of systematic review and meta-analysis, to help to identify 
those assumptions and issues that are of general importance and those that are only relevant to 
specific examples. Furtherm ore, we want to build on the models that are presented in this paper 
to incorporate additional relevant information. We have already begun to investigate this by 
assessing the effect o f changing the relevance o f the animal data to the hum an exposures (Sec
tion 5.3). However, further information such as the different routes o f exposure and different 
types o f exposure (for instance individual chemicals versus mixtures o f chemicals) could also 
be taken into account, together with available data on biological effects and mechanisms, and 
a Bayesian hierarchical approach offers an appealing and flexible framework for doing so.
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Appendix F: Search strategy for articles

List of electronic databases used in the systematic literature review

MEDLINE

EMBASE

Web of Science

TOXLINE

CANCERLIT

BIOSIS

SCISEARCH

ENVIROLINE

POLLUTION ABSTRACTS

List of terms used in the electronic database searches

[$ indicates truncation, such that ‘pregnanS’ retrieves pregnant, pregnancy, 

pregnancies and so on]

Drinking (adjacent to) Water

or Water-Pollutants-Chemicals

or Water (adjacent to) Supply

or Water (adjacent to) Pollution or Pollutants

or Water-Management

or Water-Quality

AND

Water/ ChlorinS 

or TrihalomethanS
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or Haloace$

or Disinfection

or Disinfectant

or Disinfectant-Agent

or Byproducts or By (adjacent to) Products

AND

Genital-System-Function 

or Reproductive-Toxicity 

or Gestation 

or Pregnan$ 

or Infant Newborn 

or Pregnancy Outcome 

or Abnormalities 

or Birth 

or Fetus

or Reproduction 

or Reproductive
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Appendix G: Search strategy and list of included 
references for Mn articles

List of terms used in the Medline search
Manganese (in title, abstract, medical subject headings)
Manganese (adjacent to) ore$l (in title, abstract, medical subject headings)
Pyrolusite (in title, abstract, medical subject headings)
Pyrochroite (in title, abstract, medical subject headings)
Cianciulliite (in title, abstract, medical subject headings)
Manganese (adjacent to) oxide$l (in title, abstract, medical subject headings)
MNO (in title, abstract, medical subject headings)
Manganese (adjacent to) II (adjacent to) oxide (in title, abstract, medical subject headings) 
Manganese (adjacent to) IV (adjacent to) oxide (in title, abstract, medical subject headings) 
MN02 (as keyword)
MNO (adjacent to) 2 (in title, abstract, medical subject headings)
Polianite (in title, abstract, medical subject headings)
Ramsdellite (in title, abstract, medical subject headings)
Manganese (adjacent to) III (adjacent to) Oxide (in title, abstract, medical subject 
headings)
MN203 (as keyword)
Braunite (in title, abstract, medical subject headings)
MN (adjacent to) 2 (adjacent to) O (adjacent to) 3 
MN304 (as keyword)
MN (adjacent to) 3 (adjacent to) O (adjacent to) 4 
Hausmannite (in title, abstract, medical subject headings)
MN307 (as keyword)
MN (adjacent to) 3 (adjacent to) O (adjacent to) 7 
MN508 (as keyword)
MN (adjacent to) 5 (adjacent to) O (adjacent to) 8 
NA3MN04 (as keyword)
NA (adjacent to) 3 (adjacent to) MNO (adjacent to) 4
Sodium (adjacent to) manganate (in title, abstract, medical subject headings)
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BAMN04 (as keyword)
Barium (adjacent to) manganate (in title, abstract, medical subject headings)
MNS04 (as keyword)
MNSO (adjacent to) 4
Manganese (adjacent to) sulphate (in title, abstract, medical subject headings)
Manganese (adjacent to) II (adjacent to) sulphate (in title, abstract, medical subject 
headings)
MNCL2 (as keyword)
Manganese (adjacent to) chloride (in title, abstract, medical subject headings)
Manganese (adjacent to) II (adjacent to) chloride (in title, abstract, medical subject 
headings)
MN (adjacent to) N03 (adjacent to) 2
Manganese (adjacent to) nitrate (in title, abstract, medical subject headings)
Manganese (adjacent to) II (adjacent to) nitrate (in title, abstract, medical subject headings) 
Manganous (adjacent to) salt$l (in title, abstract, medical subject headings)
MN2 (adjacent to) S04 (adjacent to) 3
Manganese (adjacent to) III (adjacent to) sulphate (in title, abstract, medical subject 
headings)
MN (adjacent to) S04 (adjacent to) 2
Manganese (adjacent to) IV (adjacent to) sulphate (in title, abstract, medical subject 
headings)
FEMN (in title, abstract, medical subject headings)
Ferromanganese (in title, abstract, medical subject headings)
SIMN (in title, abstract, medical subject headings)
Silicamanganese (in title, abstract, medical subject headings)
FESIMN (in title, abstract, medical subject headings)
Ferrosilicamanganese (in title, abstract, medical subject headings)
Manganese with steel (in title, abstract, medical subject headings)
Potassium (adjacent to) permanganate (in title, abstract, medical subject headings)
KMN04 (as keyword)
KMNO (adjacent to) 4
Potassium (adjacent to) manganate (adjacent to) VII (in title, abstract, medical subject 
headings)
Potassium (adjacent to) VII (adjacent to) manganate (in title, abstract, medical subject 
headings)
Manganese-compounds (exploded)
Manganese (exploded)
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AND

Neurtoxicity-syndromes (exploded)
Toxicology (exploded)
Toxic$7 (in title, abstract, medical subject headings) 
Nervous-system (exploded) 
Nervous-system-diseases (exploded)
Toxicity-tests (exploded)
Manganese-poisoning (exploded)
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Comparison of Two Methods to Detect 
Publication Bias in Meta-analysis
Jaime L. Peters, MSc
Alex J. Sutton, PhD
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Lesley Rushton, PhD

S y s t e m a t ic  r e v ie w s  a n d  m e t a -  

analyses are com m only used 
to identify and evaluate evi
dence about interventions or 

exposures in human health. Even 
when conducted thoroughly, system
atic reviews and meta-analyses can be 
subject to publication bias— studies 
being less likely to be p ub lished , 
hence less likely to be included in a 
systematic review or m eta-analysis 
because of the size and/or statistical 
sign ifican ce  of their estim ate  o f  
effect.1 If publication bias occurs, the 
subsequent system atic rev iew  or 
meta-analysis of published literature 
may be misleading.

Of the methods available to research
ers for the detection of publication bias, 
one of the simplest is the funnel plot.2 
This is a scatterplot of the estimate of 
effect from each study in the meta
analysis against a measure of its preci
sion, usually 1/SE ( F ig u r e  1A). In the 
absence of bias, the plot should re
semble a “funnel shape,” as smaller, less 
precise studies are more subject to ran
dom variation than larger studies when 
estimating an effect. In the presence of 
publication bias, some smaller studies 
reporting negative results will be miss
ing, leading to an asymmetrical funnel 
plot. Of course, publication bias is not 
the only possible explanation for ob
served (or tested) funnel plot asymme
try.3 Between-study heterogeneity and 
small-study effects (the tendency for

Context Egger's regression test is often used to help detect publication bias in meta
analyses. However, the performance of this test and the usual funnel plot have been 
challenged particularly when the summary estimate is the natural log of the odds ratio 
(InOR).
Objective To compare the performance of Egger's regression test with a regression 
test based on sample size (a modification of Macaskill’s test) with InOR as the sum
mary estimate.
Design Simulation of meta-analyses under a number of scenarios in the presence 
and absence of publication bias and between-study heterogeneity.
Main Outcome Measures Type I error rates (the proportion of false-positive re
sults) for each regression test and their power to detect publication bias when it is pres
ent (the proportion of true-positive results).
Results Type I error rates for Egger’s regression test are higher than those for the 
alternative regression test. The alternative regression test has the appropriate type I 
error rates regardless of the size of the underlying OR, the number of primary studies 
in the meta-analysis, and the level of between-study heterogeneity. The alternative 
regression test has comparable power to Egger's regression test to detect publication 
bias under conditions of low between-study heterogeneity.
Conclusion Because of appropriate type I error rates and reduction in the correla
tion between the InOR and its variance, the alternative regression test can be used in 
place of Egger's regression test when the summary estimates are InORs.
JAMA. 2006;295:676-680 www.jama.com

smaller studies to show greater effects 
than larger studies) are also possible ex
planations.3 However, when the study 
summary estimates are odds ratios 
(ORs), there is a correlation between 
the natural log of OR (InOR) and its SE, 
since the variance is a function of InOR.4 
This correlation is stronger the fur
ther the estimated OR is from unity.

Thus, some asymmetry observed in 
a funnel plot may be due to this corre
lation rather than publication bias. 
The effect of this correlation can be 
avoided by plotting effect size esti
mates against sample size, rather than 
precision. The meta-analysis plotted in 
Figure 1A uses data simulated from a 
model with no publication bias. How
ever, it appears that some small nega
tive studies could be missing from the 
bottom left-hand corner, which could

be interpreted as indicating publica
tion bias. When these data are plotted 
against sample size (Figure IB), the 
funnel plot looks more symmetrical. 
Although Figures 1A and IB are not 
remarkably different, since only the 
y-axis has changed, the impact on 
Egger’s regression test can be quite 
striking, especially if the underlying 
OR is far from null.
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METHOD FOR DETECTION OF PUBLICATION BIAS IN META-ANALYSIS

Statistical tests have been devel
oped to provide more formal assess
ments for publication bias than the in
sp ection  of fun nel p lo ts . Egger’s 
regression test5 is widely used (eg, as 
of January 11,2006, the Web of Knowl
edge® included 819 articles citing this 
article), is implemented in a number of 
software packages,7'10 and has become 
a standard procedure (eg, of 43 meta
analyses published in JAMA since 1997 
in which an assessment of publication 
bias was made, 13 reported using Eg
ger’s regression test). Since it is based 
directly on the funnel plot, where the 
standardized effect estimate (effect/  
SE) is regressed on a measure of pre
cision (1/SE), Egger’s regression test is 
also subject to the effects of the corre
lation when using ORs.

In fact, Egger’s regression test has 
been challenged because of its high 
type I error rates (the proportion of 
false-positive results) when ORs are 
used,31112 a probable symptom of this 
correlation. As almost one third of the 
JAMA articles reviewed above used Eg
ger’s regression test when the sum 
mary estimates were ORs, this needs in
vestigation. Using simulation analyses, 
we confirm that Egger’s regression test 
is indeed inappropriate for ORs, par
ticularly when the ORs are large and 
there is considerable between-study het
erogeneity.3-4,11 We describe a simple al
ternative (a modified version of Ma- 
caskill’s test,4 which is little used in 
practice) for detecting funnel plot asym
metry that avoids this correlation.

METHODS
We assessed the performance of 8 re
gression tests for funnel plot asymme
try, including Egger’s regression test, us
ing simulation methods. The tests13 differ 
in terms of the independent variable 
used, the weighting used, and whether 
random effects were included. In this ar
ticle we compare the performance of Eg
ger’s regression test and the test found 
to have the most desirable properties 
compared with the remaining regres
sion tests (results for all tests can be 
found in Peters et al13). Other modified 
tests are also being developed.14

Figure 1. Funnel Plots of a Meta-analysis Simulated With No Publication Bias

[a] Precision on the Y-Axis |~B~l Sample Size on the Y-Axis
10

o 6>o% °
Re?

cP
0^0 o, 
0 cP 

°°6> °o

1.0
OR (on Log Scale)

1.0
OR (on Log Scale)

InOR indicates natural log of the odds ratio; SE, standard error.

Characteristics of the simulated meta
analyses were based on a systematic re
view of meta-analyses of animal experi
ments,15 but the findings can be applied 
generally. Meta-analyses of 6, 16, 30, 
and 90 primary studies with underly
ing ORs of 1, 1.2, 1.5, 3, and 5 were 
simulated. The control group event rate 
was allowed to vary for each primary 
study. It was sampled from a uniform 
distribution with lower and upper lim
its of 0.3 and 0.7, respectively, repre
senting a fairly common event in the 
control group. The treatment group 
event rate was calculated from this and 
the assumed underlying OR. The num
ber of subjects in the control group in 
each study was based on the exponen
tial of the normal distribution with a 
mean of 5 and variance of 0.3. The ra
tio of control to treated/exposed sub
jects was 1. The median sample size was 
around 300 in each simulated meta- 
analysis. Fixed- and random-effects 
models were used to simulate the meta
analyses. Since between-study hetero
gen e ity  is o ften  found  in m eta- 
analyses,1617 an understanding of the 
performance of tests for publication bias 
in such situations is essential in prac
tice. The between-study heterogene
ity parameter was calculated as a per
centage of the average within-study 
variance estimate. From the fixed- 
effects m odel, the average w ithin- 
study variance was calculated and be
tween-study heterogeneity was then

defined to be 20%, 150%, and 500% of 
the within-study variance estimate. This 
reflects scenarios ranging from mod
est to considerable between-study het
erogeneity. These levels of between- 
study heterogeneity corresponds to 
values of I2, the percentage of total varia
tion across studies that is due to het
erogeneity rather than chance,18 of 
16.7%, 60%, and 83.3%, respectively.

Performance of the regression tests 
was assessed in the absence and pres
ence of induced funnel plot asymme
try. Asymmetry was induced in 2 ways. 
First, it was induced on the basis of the 
P value associated with a study’s effect 
size419,20 (the larger the P value the more 
likely that study was excluded from the 
meta-analysis). Since a study estimate 
is more likely to be statistically signifi
cant when the underlying OR is large, 
little publication bias is actually in
duced for the larger underlying ORs. 
Therefore, publication bias was also in
duced on the basis of study effect size.21 
Studies with the most extreme nega
tive effect sizes were excluded from the 
meta-analysis. Results are based on 
1000 replications. The maximum SE of 
estimates for the type I error rates and 
power in the simulations is 1.7%. All 
simulations and analyses were carried 
out in Stata 8.2.7 For ease of presenta
tion, only results for the underlying ORs 
of 1, 1.5, and 5 are given in the Fig
ures (findings for underlying ORs of 1.2 
and 3 follow the same general trend13).
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RESULTS
An ideal test has the desired type I er
ror rate (eg, 10% when statistical sig
nificance is specified from a 2-tailed test 
at P < .10 , as is advocated for these 
tests5) and good power to detect asym
metry when it exists. In F ig u r e  2, 
Egger’s regression test exceeds the ap
propriate type I error rate of 10% for 
large underlying ORs. As the amount 
of between-study heterogeneity and 
number of primary studies increases, 
the type I error rates also increase, even 
for moderate ORs (ie, OR= 1.5). We also

observed an imbalance in the tail prob
ability areas for Egger’s 2-tailed test,13 
as previously demonstrated.4,11

In the presence o f funnel plot asym
metry, Egger’s regression test appears 
reasonably powerful to detect this asym
metry (F igu re 3 ), especially as the un
derlying OR and number of studies in  
the meta-analysis increase.

However, in assessing practical use 
of the test, power must be considered 
in light of the type I error rates (so 
that false-positive results are not mis
taken for true-positive results). This

trade-off between power and type I 
error rates is similar to that between 
the sensitiv ity  and specificity  of a 
d iagnostic  test. Our find ings and 
those of others3,4,11 lead us to have 
serious concerns over the practical 
use of Egger’s test to identify funnel 
plot asymmetry for InORs.

Of the 7 further regression models 
assessed, one model stands out in that 
its performance is superior to all the 
others, including Egger’s regression 
test.13 This model and the simulated re
sults from it are now discussed.

Figure 2. Type I Error Rates for Egger's Regression Test and the Alternative Regression Test
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An Alternative to Egger's 
Regression Test
In preference to Egger’s regression test, 
we recommend a simple weighted lin
ear regression with InOR as the depen
dent variable and the inverse of the total 
sample size as the independent vari
able. This is a minor modification of Ma- 
caskill’s test,4 with the inverse of the total 
sample size as the independent vari
able rather than total sample size. Our 
results indicate that use of the inverse 
of the total sample size gives more bal
anced type 1 error rates in the tail prob
ability areas than where there is no trans
formation of sample size.13 Use of sample 
size reduces the correlation between the 
InOR and its SE.413 It also avoids vio- 

Q n ^ g  lating an assumption of regression mod-
 r-— —r------- ,------ —,------—, els that Egger’s regression test does not

avoid, as the independent variable, SE, 
is subject to random error (so that Eg
ger’s regression test is affected by re
gression dilution bias22).

The weighting given to each study by 
the alternative regression test is based 
on the assumption that the null hy- 

B pothesis is true, ie, the underlying
' ‘ OR = 1. Choice of this weighting helps

to reduce the correlation between the 
InOR and the weight given to each study 
when the standard inverse variance 
weighting is used. Thus, appropriate 
type I error rates and balance in the tail 
probabilities are achieved.

Further explanation of the implica-
 .̂..a  tions of this choice of weighting can be
80 100 found in Macaskill et al4 and details of

________  the weighting given to each study are
given in Peters et al.13 Figure 2 shows

©2006 American Medical Association. All rights reserved.
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that the type I error rates for this alter
native regression test are approxi
mately 10%, as expected, regardless of 
the size of the underlying OR, the num
ber of studies in the meta-analysis, and 
the amount of between-study hetero
geneity, unlike those for Egger’s regres
sion test (Figure 2).

When there is little between-study 
heterogeneity, the alternative regres
sion test and Egger’s regression test ap
pear to have moderate power to detect 
asymmetry when it is induced on the 
basis of P value (Figure 3) and high 
power when asymmetry is induced on 
the magnitude of the effect (data not 
shown).

When there is considerable hetero
geneity (Figure 3), Egger’s regression 
test is more powerful than the alterna
tive regression test, however as dis
cussed it is difficult to disentangle the 
high type I error rates of Egger’s regres
sion test from power.

COMMENT
Neither Egger’s regression test nor the 
alternative regression test are particu
larly powerful in all scenarios. How
ever, a test that may not be optimal, but 
performs well in all situ ation s, is 
needed. Thus, although the alterna
tive regression test is no more power
ful than Egger’s regression test, we 
recommend that the alternative be rou
tinely used rather than Egger’s regres
sion test because it reduces the corre
lation between InOR and its SE4 through 
the choice of weighting and has appro
priate type I error rates. The alterna
tive regression test can easily be run in 
any software package allowing weighted 
linear regression. (Details on imple
menting this test in Stata7 are avail
able from the authors.) In fact, apply
ing this test to the m eta-analysis  
illustrated in Figure 1 gives a nonsig
nificant result (P=.18), as one would 
expect since the data were simulated 
with no publication bias; Egger’s re
gression test yields P -  .07.

The alternative regression test is analo
gous to a funnel plot based on sample 
size. Thus, although contrary to the 
recommendations of Sterne and Egger23

for choice of funnel plot axis, we advo
cate use of sample size13 for InORs.

We have also assessed use of the per
mutation test to obtain the P value for 
each test. The permutation test has been 
advocated for use in meta-regression to 
deal with inflated type I error rates.24 
Preliminary findings do not necessar
ily suggest better performance of tests 
based on P values from *he permuta
tion test compared with the usual t 
test.13 Extensions to, and performance 
of, these regression tests when some of 
the between-study heterogeneity can be

explained by a study-level covariate is 
ongoing work.

Our results, like those of some oth
ers,3,4 only concern synthesis of ORs. 
Findings of an investigation of Egger’s 
regression test using relative risks (RRs) 
suggests a similar result: excessive type 
I error rates.11 Although more work is 
needed on the performance of both tests 
when the summary estimate is not the 
OR, it is likely that other relative sum
mary estimates (eg, RRs and risk differ
ences) will be subject to effects similar 
to the correlation described above for the

Figure 3. Power of Egger's Regression Test and the Alternative Regression Test to Detect 
Publication Bias Induced by P  Value
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OR, thus suggesting Egger’s regression 
test may not be appropriate. We did not 
consider meta-analyses of rare events. 
Evidence suggests the type I error rates 
for Egger’s regression test are particu
larly high in these situations,311 but per
formance of the alternative regression 
test needs exploring.

Simply testing for the presence of 
asymmetry does not help obtain an 
unbiased estim ate from the m eta
analysis, particularly as there is over
reliance on these tests (eg, a nonsig
nificant P value being taken as evidence 
that publication bias is not an issue). 
Our review of 43 meta-analyses pub
lished in JAMA since 1997 found that a 
number of approaches are taken when 
publication bias is suspected (as in 11 
of the 43 meta-analyses). These include
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Appendix I

Appendix I: Additional simulation results for 

Chapter 7

Figure 1.1 Power o f the rank correlation test to detect ‘moderate’ publication 

induced by p-value (top row) and effect size (bottom row)
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Appendix I

Figure 1.2 Power (when the usual t-test is used to calculate p-values) to detect 

‘moderate ’publication bias induced by p-value when there is no between-study 

heterogeneity (see Figure 1.1 for legend)
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Figure 1.3 Power (when the usual t-test is used to calculate p-values) to detect 

‘severe ’publication bias induced by effect size when there is no between-study 

heterogeneity (see Figure 1.1 for legend)
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Figure 1.4 Type I error rates for eight regression models when the permutation test 

is used to calculate the p-values and there is no between-study heterogeneity
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Figure 1.5 Power (when the permutation tests is used to calculate p-values) to 

detect ‘severe ’publication bias induced by p-value when between-study 

heterogeneity is 500% o f the within-study heterogeneity (see Figure 1.1 for legend)
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Figure 1.5 Power (when the permutation tests is used to calculate p-values) to 

detect ‘severe ’ publication bias induced by effect size when between-study 

heterogeneity is 500% o f the within-study heterogeneity (see Figure 1.1 for legend)
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Appendix J: Additional simulation results for 

Chapter 8

Figure J .l Power o f the rank correlation test to detect ‘moderate ’publication bias 

induced by p-value (top row) and effect size (bottom row) when there is explainable 

between-study heterogeneity and differing levels o f unexplainable between-study 

heterogeneity
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Figure J.2 Type I  error rates when there is unexplainable between-study 

heterogeneity, and a great deal o f unexplained between-study heterogeneity (500% 

o f within study heterogeneity)
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Figure J.3 Power to detect ‘severe 'publication bias induce by p-value when there 

is explainable between-study heterogeneity and a great deal o f  unexplainable 

between-study heterogeneity (500% o f the within-study heterogeneity)
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Figure J.4 Power to detect ‘severe ’publication bias induce by effect size when 

there is explainable between-study heterogeneity and a great deal o f unexplainable 

between-study heterogeneity (500% o f the within-study heterogeneity)
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Figure J.5 Type I  error rates (where the permutation tests is used to calculate p- 

values) when there is explainable between-study heterogeneity and a great deal o f 

unexplained between-study heterogeneity (500% o f the within-study heterogeneity)
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Figure J.6 Power (p-values calculated by permutation test) to detect ‘severe ’ 

publication bias induced by p-value when there is explainable between-study 

heterogeneity and a great deal o f unexplained between-study heterogeneity (500% 

o f the within-study heterogeneity)
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Figure J. 7 Power (p-values calculated by permutation test) to detect ‘severe ’ 

publication bias induced by effect size when there is explainable between-study 

heterogeneity and a great deal o f unexplained between-study heterogeneity (500% 

o f the within-study heterogeneity)
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Figure J.8 Power (p-values calculated by the usual t-test)of extended regression 

tests to detect ‘severe 'publication bias induced by p-value when there is 

explainable between-study heterogeneity and a great deal o f unexplainable 

between-study heterogeneity (500% o f the within study heterogeneity)
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Figure J.9 Power (p-values calculated by the usual t-test) o f  extended regression 

tests to detect ‘severe 'publication bias induced by effect size when there is 

explainable between-study heterogeneity and a great deal o f  unexplainable 

between-study heterogeneity (500% o f the within study heterogeneity)
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Figure J.10 Power (p-values calculated by the permutation test) o f extended 

regression tests to detect ‘severe ' publication bias induced by effect size when there 

is explainable between-study heterogeneity and a great deal o f unexplainable 

between-study heterogeneity (500% o f the within study heterogeneity)
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Figure J . l l  Power (p-values calculated by the permutation test) o f extended 

regression tests to detect ‘severe ’publication bias induced by p-value when there is 

explainable between-study heterogeneity and no unexplainable between-study 

heterogeneity
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