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Abstract

This thesis explores interactions among agents whose rationality is bounded in dis-
tinct ways. It consists of three self-contained chapters/papers. Chapters 2 and 3
consider myopic and hard-wired strategy revisions based on evolutionary game dy-
namics, while Chapter 4 deals with rationally inattentive agents who acquire costly
information in a flexible manner. The thesis, thus, spans two extremes of the range
of models with boundedly rational agents.

The first paper proposes a novel way to formalize matching mechanisms in evo-
lutionary games. The proposed formalization nests group selection models such
as the haystack (Maynard Smith, 1964) and trait-group models (Wilson, 1975). It is
shown that evolutionary optima can be obtained as Nash equilibria under appro-
priately defined matching rules.

In the second paper matching rules are endogenized and the co-evolution of
cooperation and matching is studied in social dilemma situations. It turns out that
only full-or-null assortativity levels are evolutionarily stable. The extent to which
efficient outcomes are achieved by this endogenization process is evaluated, which
crucially depends on the structure of the particular interaction considered.

The third paper extends recent models of flexible information acquisition to an
uncountable-action-space setting: a beauty contest coordination game. Necessary
conditions for the existence of equilibria with well-behaved strategies are derived.
It is established that affine equilibria exist only if the fundamental is normally dis-
tributed. A higher coordination motive, a more concentrated prior distribution of
the fundamental and higher information costs lead to less attention being paid to
the fundamental. Moreover, flexible information acquisition technology is shown
to result in equilibrium multiplicity under certain parameter combinations.
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Chapter 1

Introduction

Perfect reasoning of agents is among the most usual assumptions in economics.

Agents are commonly assumed to be making optimal decisions after careful delib-

eration while fully using any information to which they have access. This thesis ex-

amines settings with agents whose rationality is bounded in two distinct ways: the

sophistication of their decision-making process and their information-processing

capacity. The different models are suitable to analyze situations that differ in their

informational intensity and time scale.

On the one hand, Chapters 2 and 3 study evolutionary environments where a-

gents are hard-wired to behave as their genes dictate. In evolutionary models, un-

successful behavior is rooted out by the forces of natural selection. They are de-

signed to explore what types of behavior can survive under evolutionary competi-

tion over long time periods. They can also serve in providing evolutionary under-

pinnings for observed behavior.

On the other hand, Chapter 4 is about agents who are able to make sophisticated

decisions and always use best responses to the actions of others. The environment is

one of incomplete information where agents have limitations in their information-

processing capacity. They can acquire more information but this comes at a cost.

These models are designed to analyze short-term and information-heavy situations

such as asset markets where, even though the fundamental value of the asset is not

accurately known to market participants, they can spend resources to gather infor-

mation about it.

Evolutionary models In evolutionary environments, agents are considered to be

hard-wired to behave as their genes dictate. Following the spirit of Maynard Smith

and Price (1973), the evolutionary process is modeled in a game-theoretic manner.

The different behaviors encoded in the genes are viewed as strategies in a normal-

form game whereas the biological fitness (expected number of offspring) of the a-

1



Introduction 2

gents is represented by a (symmetric) payoff matrix. Instead of being best-responders,

as in conventional game theory, players do not carefully consider their decisions.

The focus is on which gene would survive in the long run and what behavior it codes

for, as opposed to finding mutual best respones.

It is well-known (see for example Weibull, 1995) that if agents meet uniformly

randomly, the outcomes of such processes – termed Evolutionarily Stable Strategies

– are the strategies followed by the players in symmetric Nash equilibria of the un-

derlying normal-form game. In this way, the notion of Nash equilibrium (and with

it self-serving behavior) gains evolutionary support. Hence, it seems impossible to

offer prosocial behavior – encountered in humans and other animals – an evolu-

tionary underpinning. Several authors have proposed mechanisms that can give

rise to cooperative behavior. These include kin selection (Hamilton, 1964a,b), local

interactions (Eshel, Samuelson, and Shaked, 1998; Nowak and May, 1992), and ho-

mophily (Alger and Weibull, 2012, 2013). What all these mechanisms have in com-

mon is that they match individuals in a manner that is non-(uniformly) random.

Chapter 2 proposes a novel way to formalize nonrandom matching in evolu-

tionary settings. This formalization extends nonrandom matching (see for example

Bergström, 2003, 2013) to any n-player m-strategy underlying normal-form game.

Based on this, new concepts for the study of evolutionary models under nonrandom

matching are introduced. These concepts, namely Nash Equilibrium with Group

Selection and Evolutionarily Stable Strategy with Group Selection are shown to be

generalizations of the concepts of Nash Equilibrium and Evolutionarily Stable Strat-

egy, respectively. They extend the scope of their counterparts to situations where

individuals do not meet in a uniformly random manner but by following arbitrary

matching rules that match them in groups according to their types.

It is shown that group selection models such as the haystack model of Maynard

Smith (1964) and the trait-group model of Wilson (1975) lead to special cases of

matching rules and can therefore be studied using the newly introduced concepts.

Moreover, a welfare theorem is provided that states that any evolutionary optimum

can become a Nash Equilibrium with Group Selection if an appropriate matching

rule is in place.

Chapter 3 builds on the results of Chapter 2. It asks the questions of how partic-

ular matching rules can come to existence and how different social-dilemma envi-

ronments can lead to different matching rules evolving. In this fashion, the match-
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ing rules that were assumed to be exogenous in Chapter 2 are endogenized. Thus,

the matching process itself is co-evolving along with the cooperation level of the

population. The matching rule follows a constant index of assortativity form as de-

scribed in Bergström (2003) with the index of assortativity being determined dy-

namically. Players vote on whether to increase or decrease the assortativity level of

the matching process based on previously obtained payoffs.

It turns out that only full or null assortativity levels are evolutionarily stable, de-

pending on the strategic nature of the dilemma at hand. The resulting evolution-

arily stable levels of pro-social behavior are accordingly determined. The degree to

which the social dilemma – and the resulting tragedy of the commons – can be over-

come is evaluated using an invasion-barrier approach. The cases of social dilemmas

where democratic consensus is able to significantly improve long-run efficiency are

underprovision dilemmas and those volunteer’s dilemmas in which two volunteers

can generate close-to-efficient outcomes. At the other end of the spectrum, in miss-

ing hero dilemmas and volunteer’s dilemmas where two volunteers meeting is far

from efficient, voting is not able to lift the population away from zero cooperation

levels, thus leading to inefficient outcomes. Prisoner’s dilemmas rank in-between

the two aforementioned cases.

Rational inattention/ information acquisition The rational inattention literature

has considered situations where individuals are constrained in their ability to pro-

cess information. Sims (1998, p. 320), who pioneered this field, found that prices

can be sticky in highly heterogeneous markets if “individuals have many things to

think about and limited time” and therefore “can devote only limited intellectual

resources to [. . . ] tasks of datagathering and analysis.” It is, thus, apparent that such

“weaknesses” can affect economic outcomes. In a recent paper, Yang (2015) studies

an investment game where players make a binary decision – to invest in an asset or

not. Yang relaxes Sims’s assumption of a fixed informational constraint. Introducing

a “flexible information acquisition” technology, he allows players to endogenously

decide how much information (which is costly in time and resources) they want to

acquire. As in the work of Sims, they can also choose what kind of information they

want to acquire; depending on how relevant they assess each event to be.
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In a closely related literature, economists have been exploring the effects of dif-

ferent information structures in the way markets aggregate information.1 This is

of high importance as there may be cases where prices cease to reflect the funda-

mental value of assets. One example of this are stock market bubbles. The model

that has been mostly used for these analyses is that of a beauty contest. In beauty

contests players aim to take actions close to (i) the realization of a random variable

(the fundamental) and, (ii) to the average action of the population. Their payoff

is decreasing in the squared distances from these two values, which makes beauty

contests games with strategic complementarities. The only public type of informa-

tion is a common prior about the fundamental. Subsequently, players may privately

receive one or more signals (depending on the information structure of the consid-

ered model), update their prior and take actions. Information structures that have

been analyzed are usually rigid in the sense that the signals follow particular func-

tional forms that may not necessarily be optimal from the players’ point of view.

Thus, they may be transmitting (partially) redundant information.

Chapter 4 brings the two strands of literature together. It explores how economies

aggregate information when it is difficult for market participants to process infor-

mation but they are given the freedom to choose on which events they want to con-

centrate. It studies a beauty contest in which players use Yang’s (2015) flexible infor-

mation acquisition technology which is generalized to continuous action spaces.

Results show that higher coordination motives, a more concentrated prior of the

fundamental, or higher information costs lead to players paying less attention and

thus acquiring less information. In addition, the structure of flexible information

acquisition settings is found to be the source of the existence of multiple equilibria.

This can happen even when there is a unique equilibrium in the full-information

version of the game at hand, as is the case in beauty contests.

In the following three chapters the ideas that were laid out here are described in

detail. Chapter 5 concludes and provides suggestions for future research.

1See for example Allen, Morris, and Shin (2006), Angeletos and Pavan (2004, 2007), Morris and
Shin (2002), and Myatt and Wallace (2012) among others.



Chapter 2

Evolutionary Games with Group

Selection

Chapter Abstract

This paper introduces two new concepts in evolutionary game theory: Nash equi-
librium with Group Selection (NEGS) and Evolutionarily Stable Strategy with Group
Selection (ESSGS). These concepts generalize Maynard Smith and Price (1973) to
settings with arbitrary matching rules, in particular they reduce, respectively, to
Nash equilibrium and ESS when matching is random. NEGS and ESSGS are to group
selection models (Kerr and Godfrey-Smith, 2002; Bergström, 2002) what Nash Equi-
librium and ESS are to the standard replicator dynamics: any NEGS is a steady state,
any stable steady state is a NEGS, and any ESSGS is asymptotically stable. We also
show that all steady states of any haystack/trait-group model (Maynard Smith, 1964;
Wilson, 1977; Cooper and Wallace, 2004) are steady states of a group selection model
under an appropriately defined matching rule. We proceed to prove what may be
called “the second welfare theorem of evolution:” any evolutionary optimum will
be a NEGS under some matching rule. Our results are illustrated in a range of Pris-
oners’ Dilemma games.

5



2.1: Introduction 6

2.1 Introduction

The canonical evolutionary game theory model of Maynard Smith and Price (1973)

plays an important role in biology, economics, political science, and other fields. Its

equilibrium concept, an evolutionarily stable strategy (ESS) describes evolutionary

outcomes in environments where populations are large and matching is random.1

Since an ESS is a refinement of Nash equilibrium, it obviously cannot explain any be-

havioral departure from purely self-serving behavior in the one-shot Nash sense. In

particular it cannot account for cooperative behavior in say, a prisoners’ dilemma,

or shed light on altruism more generally, nor can it account for any other non-Nash

behaviors such as spite (Hamilton, 1970; Alger and Weibull, 2012) or costly punish-

ment (Fehr and Gächter, 2000).

In order to explain such deviations from Nash behavior, evolutionary game the-

ory turned to models with a finite number of agents hence departing from the first

of the mentioned conditions of Maynard Smith and Price (1973). Thus in Schaffer

(1988), the finite set of individuals have “market power” and can influence average

fitness while making simultaneous decisions (playing the field). In the model pre-

ferred by Maynard Smith (1982) – namely repeated games – a few agents, usually

just two, can perfectly monitor and record each others’ past actions and condition

their strategies hereupon (in evolutionary theory, the repeated games approach is

usually referred to as direct reciprocity). Both of these frameworks have led to an

enormous body of research in economics and game theory (see e.g. Alós-Ferrer and

Ania, 2005; Leininger, 2006; Samuelson, 2002; Vega-Redondo, 1997, and references

therein).

While evolutionary game theorists turned to finite populations, evolutionary bi-

ologists more broadly devoted as much – if not more – attention to a departure from

the second basic condition of Maynard Smith and Price (1973), namely the assump-

tion that matching is random. When matching is non-random – possibly indirectly

so due to prolonged interaction of individuals in separated groups (Maynard Smith,

1964) – the fitness of an individual will depend on the group he is assigned to, and

so different groups will on average meet with varying reproductive success (Kerr

and Godfrey-Smith, 2002; see also Bergström, 2002). Thus non-random match-

1Intuitively, random matching means that an individual’s type has no influence on what type of
individual he is likely to be matched to.
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ing invariably leads to group selection whereby one can trace the evolutionary suc-

cess of certain types of groups and not just their constituent individuals (we return

to this topic in a moment). Take the prisoners’ dilemma. Matching is assortative

if after each round of play cooperators have higher probability of being matched

to other cooperators than to defectors. This is often a highly realistic assumption

corresponding for example to situations where a large group of individuals cannot

perfectly monitor each others’ past behaviors but receive some “revealing signals”

about opponents’ types and exert some influence on with whom they are matched

(Wilson and Dugatkin, 1997; Bergström, 2003) or if they are matched according to a

“meritocratic matching” process in the sense of Nax, Murphy, and Helbing (2014b).

Non-random matching also results if matching depends on the geographical loca-

tion of individuals (Eshel, Samuelson, and Shaked, 1998; Nowak and May, 1992;

Skyrms, 2004); or if (genetically) similar individuals match assortatively as in models

of kin selection (Hamilton, 1964b; Alger and Weibull, 2010). When matching is non-

random a variety of different groups will generally coexist at any given moment in

time. For example in the prisoners’ dilemma, some groups will consist of defectors

only, some of cooperators only, and some will be mixed. Thus the average fitness

will differ across groups, as will the fitness a specific type of individual obtains if he

is placed into different groups. It follows that evolutionary pressure takes place not

just at the individual level but also at the group level even though individuals are

ultimately the fitness bearing entities.2

Now, the existing literature on non-random matching is usually informal and/or

deals only with special cases (typically two types who are matched pairwise and as-

sortatively). As a basis for this paper’s main results, we begin in section 2.2 by laying

out a unified model in a general and self-contained manner. Compared to exist-

ing literature, we add value by setting up a model that allows for arbitrary matching

rules (ways to match populations into groups), any number of strategies, arbitrary

group sizes, and any possible payoff structure in the group stages (i.e., any possible

underlying symmetric normal form game, see section 2.2.1). The most substantial

2Kerr and Godfrey-Smith (2002) show that one may, with equal formal correctness, think of se-
lection taking place at the individual or the group level. This difference in perspective has been (and
is) the topic of a heated debate in evolutionary biology, a key reference here being the book “Unto
Others” by Sober and Wilson (1999). As explained in section 2.2 we are going to take a so-called “indi-
vidualist” perspective in this paper, and will not go into the more philosophical aspects of the levels
of selection controversy.
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of the mentioned generalizations is that we allow for arbitrary matching rules. In-

deed, this is what allows us to show (section 2.2.4) that group selection models based

on prolonged interaction in what Maynard Smith (1964) calls “haystacks” (see also

Wilson, 1975 and Cooper and Wallace, 2004), can be recast as models of group se-

lection based directly on non-random matching (e.g. Bergström, 2003; Kerr and

Godfrey-Smith, 2002). Intuitively, this is not all that surprising from the individu-

alist perspective described above: What matters at the end of the day is whether

individuals are matched randomly with each other or not. Precisely how any de-

parture from random matching comes about is secondary to the fact that as soon

as matching is non-random, different groups with different average fitness levels

will exist and this is ultimately what group selection is all about. In fact, we shall

from now on make this viewpoint explicit by not separating models of non-random

matching from other models of group selection.

The first substantial contribution of the present paper is to fill the resulting gap

in the literature. Specifically, we are going to ask what game theoretic equilibrium

concepts form group selection’s natural parallels to Nash equilibrium and ESS. This

leads to two new equilibrium concepts, namely a Nash equilibrium with group se-

lection (NEGS) and an evolutionarily stable strategy with group selection (ESSGS).

These concepts turn out to be intuitive once the underlying evolutionary game,

which we call a group selection game, is understood. Interestingly, this game turns

out to be novel even from a game theoretic perspective: as in standard imperfect in-

formation games, agents make decisions without knowing with certainty the strate-

gies pursued by opponents – all they know is the distribution of the opponents’

strategies, or to put it in the evolutionary terminology, the probabilities of ending

up in any of the different kinds of groups. Crucially, these probabilities depend on

the actual strategies pursued by the agents. For simplicity, imagine a large group

of individuals, each of whom has a choice between two strategies, “honesty” (H)

or “deception” (D). Agents must commit to a strategy before being allocated into

equal-sized groups where they execute these strategies (equivalently, they choose

their actions with imperfect knowledge about opponents’ actions). Given a specific

matching rule (a way to divide a population with a given fraction of H - and D -types

into groups of equal size) and given that agents know the population-wide com-

position into H and D types, each agent can calculate the probabilities of ending

up in any specific kind of group as a function of the specific strategy chosen (H or
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D ).3 In a NEGS, individuals’ optimal choices precisely lead to the population-wide

composition into H and D types which formed the basis for their decisions in the

first place. Intuitively, in a NEGS the deceptive individuals’ purpose is to keep the

honest individuals in check (and vice versa): without a sufficiently large population

of deceivers, the benefit of choosing to deceive will outweigh that of being honest

because deceptive individuals will face a relatively small chance of being matched

to another deceiver even though matching is assortative. The concept of an ESSGS

simply adds a “non-invasion” criterion to this Nash/fixed point criterion precisely

as is the case with random matching (Maynard Smith and Price, 1973).

After defining group selection games and proving equilibrium existence, we turn

to the relationship with the dynamic evolutionary model of section 2.2. Thus in

theorem 2.4 we prove that any NEGS is a steady state for the replicator dynam-

ics, that any (Lyapunov) stable steady state for the replicator dynamics is a NEGS,

and that any ESSGS is an asymptotically stable state of the replicator dynamics (see

Ritzberger and Weibull, 1995). These results extend existing results on Nash equi-

librium and ESS (Hofbauer and Sigmund, 1998; Maynard Smith and Price, 1973;

Weibull, 1995) to settings with non-random matching, and show that NEGS and ES-

SGS are important new evolutionary game theory concepts. Immediately, a long list

of research questions report themselves in that one could attempt to “transfer” over

to group selection models all of the existing results from evolutionary game theory.

We shall leave the bulk of this for future research, for example we are not going to go

into topics related to neutrally stable strategies, asymptotically stable sets, doubly

symmetric games or the fundamental theorem of natural selection (for these “text-

book” issues see the monographs of Hofbauer and Sigmund, 1998 or Weibull, 1995).

Instead we are going to focus in section 2.4 on a question which in some sense “ig-

nited” this whole literature. The point of the prisoners’ dilemma is that Nash equi-

librium – and with it evolutionary models based on random matching – may easily

fail to produce outcomes that maximize average payoff/welfare in the population.4

The question from the group selection point of view then becomes: What types of

3Obviously, the number of possible group compositions depends on the group size as well as
the number of strategies. With two strategies and groups of size two, any individual can end up in
precisely two different kinds of groups – one where the opponent is of the same type and one where
he is not.

4In the language of welfare analysis, the outcome does not maximize utilitarian social welfare.
This, of course, also implies a break-down of Pareto optimality.
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(non-random) matching will, if any, lead to optimality? Our main result in this re-

gard (theorem 2.5) might be called the “second welfare theorem of evolutionary the-

ory” telling us that any outcome that is optimal will in fact be a NEGS under some

matching rule.

The structure of the paper is as follows: section 2.2 describes the general group

selection model and section 2.3 defines group selection games, NEGS and ESSGS.

Section 2.3 also contains our main theoretical results. Section 2.4 discusses the fit-

ness/welfare issues with basis in the aforementioned “second welfare theorem” and

2.5 contains a number of applications. Finally, section 2.6 concludes.

2.2 Group Selection in Evolutionary Theory

In this section we present a unified model of non-random matching based group

selection. The model is closely related to Kerr and Godfrey-Smith (2002) and Berg-

ström (2003) both of which consider non-random matching as the primus motor

of group selection, and both of which adopt an “individualist perspective” that as-

signs fitness to individuals rather than the groups they form.5 While their analysis

restricts attention to two strategies/types and certain relatively restrictive types of

closed form group formation rules, we allow for any number of strategies and, more

importantly, arbitrary rules of group formation (called matching rules in what fol-

lows). The latter is crucial when in section 2.2.4 we go on to show that any trait-

group model – where matching is random but groups are isolated for prolonged

spells in what Maynard-Smith calls “haystacks” – can be recast within our setting

with non-random matching in such a way that the equilibria/steady states and dy-

namics remain the same. This observation substantially extends the scope of our

general results, and it also dispels the notion that group selection models based on

non-random matching are somehow not “true” models of group selection (certainly,

any difference will be at most a question of interpretation and terminology – any re-

sult about observables, i.e., dynamics and equilibria will remain the same).6

5As shown by Kerr and Godfrey-Smith (2002), one can formally recast such models so that groups
become the fitness bearing entities (so the two frameworks are formally equivalent). The group-
based fitness perspective is strongly advocated in the famous book “Unto Others” by Sober and Wil-
son (1999). See also Maynard Smith (1998) and Okasha (2005) for more on this issue.

6It is also worth mentioning that from a more technical perspective, our model is crafted so that
the main structure of the traditional evolutionary game theory model (e.g. Weibull, 1995) is retained.
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Briefly, the model can be summarized as follows: At each date there is a large set

of individuals, formally the continuum I = [0, 1]. At the beginning of each period,

the agents are allocated into groups of the same finite size n ∈ N. This happens in

accordance with what we call a matching rule (formally defined in subsection 2.2.2)

which is a function that maps the type frequency of the set of agents into the distri-

bution of group types.7 After the n-sized groups are formed, the individuals in each

group face an n-player symmetric normal-form game (section 2.2.1). In accordance

with the basic premise of evolutionary game theory, agents are hard-wired to follow

the same strategy as the parent (‘like begets like’). Thus an individual who is fathered

by a parent who executed strategy j , say, in the previous round will mechanically ex-

ecute strategy j in his group game, regardless of the resulting payoff/composition of

individuals in the specific group he is drawn into. The payoff determines the fitness,

i.e., the (expected) number of children the agent will send on to the next round.8

Finally, after the group game stage, a new generation is born with the relative pro-

portion of each type determined by the success (fitness) this type’s strategy enjoyed

across the different groups. The above process then repeats itself leading to a new

generation and so on. The evolutionary outcome of this group selection process is

a steady state of the resulting replicator dynamical system as described in section

2.2.3.

2.2.1 The underlying normal form group games

Our description begins with the underlying normal form game that agents face in

the group stages. Although in evolutionary models, individuals act purely mechan-

ically and play the strategy inherited from the parent, they nonetheless participate

in a standard normal form game and receive payoffs/fitnesses accordingly. We need

to make this game theoretic aspect clear to set the stage for this paper’s main results.

Let n ∈ {2, 3, . . .} denote the group size so that N = {1, . . . , n} is the set of play-

This both makes the connection with standard replicator dynamics transparent and paves the way
for our analysis in subsequent sections.

7Our concept of a matching rule is closely related to a construction due to Kerr and Godfrey-
Smith (2002, p.484) who, however, consider only the case of two strategies (the extension to any
number of strategies is non-trivial as will become clear).

8A different explanation of fitness that is more plausible in economic contexts is to think of it as
the number of agents copying one’s behavior because it is more successful: More successful behav-
iors will have more followers in the next round of play.
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ers in a group. A group game is a symmetric normal form game G =< N , M , A >

where M = {1, . . . , m} is the set of pure strategies and A : M ×M n−1→R is the payoff

function over pure strategies that all players share. Following Dasgupta and Maskin

(1986), a symmetric game has the property that A(y i , y −i ) = A(y i , ỹ −i )where y i ∈M

is any pure strategy for player i , and y −i , ỹ −i ∈M n−1 are pure strategy profiles of i ’s

opponents where ỹ −i is any permutation of y −i . A (symmetric) Nash equilibrium

for G is defined in the usual way as a vector σ∗ ∈ Sm ≡ {σ ∈ Rm
+ :

∑m
j=1σ j = 1} such

that A(σ∗, (σ∗, . . . ,σ∗))≥ A(σ, (σ∗, . . . ,σ∗)) for allσ ∈ Sm .9

It is convenient to write the previous payoff structure in a way that makes ex-

plicit reference to the group structure. Call an individual who executes pure strategy

j ∈M a type j individual. Due to symmetry, the payoff to such a type j individual

depends only on the number of opponents in his group who play each of the m

strategies (as opposed to which opponents follow what strategies). Next imagine

that this type j individual finds himself in a group, group i say, consisting of n i
1 in-

dividuals of type 1, n i
2 individuals of type 2, and so on up to n i

m .10 In this situation,

the individual’s payoff will be equal to A( j , j opp) where j opp ∈M n−1 is any vector of

opponents’ strategies which contains n i
1 strategy 1 entries, . . . , n i

j−1 strategy j−1 en-

tries, n i
j − 1 strategy j entries, n i

j+1 strategy j + 1 entries, . . . , n i
m strategy m entries.

Crucially, we can write the payoff A( j , j opp) simply as A
(n i

1 ,...,n i
m )

j or even as Ai
j where i

is the index of the specific group the individual finds himself in (as long as we keep

record of the group composition n i = (n i
1, . . . , n i

m ) of group i ).

In this way, we can capture all of the information we need about the normal form

game in a sequence (Ai
j )where j = 1, . . . , m and i = 1, . . . ,γn ,m . Here γn ,m is the num-

ber of different n-sized groups that can be formed with m different pure strategies.11

From combinatorics we know that γn ,m precisely equals the number of multisets of

cardinality n with elements taken from a set with cardinality m (see Aigner, 2007, p.

9Letting σi ∈ Sm ≡ {σ ∈ Rm
+ :

∑m
j=1σ j = 1} denote a mixed strategy for player i and σ−i ∈

S n−1
m denote a mixed strategy profile of player i ’s opponents, it is easy to see that A(σi ,σ−i ) =
∑

y ∈M n A(y i , y −i )
∏

k∈N σ
k
y k .

10Note that since the individual himself is counted here, we necessarily have n i
j ≥ 1 (there is at

least one of the individual’s own type). Of course we must also have
∑

k n i
k = n and each n i

k must be
non-negative.

11Of course, we must be a little careful here because some of these are not really properly defined.
Specifically, Ai

j is not well-defined unless n i
j ≥ 1. But building this explicitly into the notation leads

to unwarranted complications.
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15), i.e.

γn ,m =
(n +m −1)!
n !(m −1)!

=

�

n +m −1

m −1

�

. (2.1)

For example, γ2,2 = 3 since three different groups can be formed if the group

size equals 2 and there are 2 possible strategies (these groups are, respectively, one

where both are of type 1, one where both are of type 2, and one where the individuals

follow different strategies).

2.2.2 Group formation

We now turn to the question of how groups are formed out of each generation’s indi-

viduals. The key concept is that of a matching rule which generalizes what Kerr and

Godfrey-Smith (2002, p. 484) call a “rule of group assembly” to more than 2 pure

strategies (the concept is also related to Bergström, 2003, as returned to below).

A population strategy is the frequency distribution of the different types in the

population, i.e., a vector x= (x1, . . . , xm ) ∈ Sm where the typical element x j is the frac-

tion of j -strategists in the population.A group state similarly represents the group

frequencies and so is a vector g = (g1, g2, . . . , gγn ,m
) ∈ Sγn ,m

where the typical element

g i is the fraction of all groups that is of type i .

A matching rule is simply a function that maps a population strategy x ∈ Sm into

a group state g ∈ Sγn ,m
. So, intuitively, a matching rule describes how any given pop-

ulation is allocated into groups.

Definition 2.1. (Matching Rules) A matching rule is a function f : Sm → Sγn ,m
that

maps any population strategy x ∈ Sm into a group state f(x) ∈ Sγn ,m
.

It is natural – but not necessary for any of our results – to impose consistency on

matching rules by demanding that the fraction of j -type individuals allocated into

the different groups equals the fraction x j of individuals of type j that are actually

present in the population. Since the proportion of j -type individuals in an i -type

group by definition is n i
j/n , the fraction of individuals that are of type j and in i -

type groups will, for any given group state g, be n i
j g i/n . Hence, across all groups the

fraction of the population that is of type j is
∑γn ,m

i=1 n i
j g i/n . This number must then

equal x j for every individual to be allocated to one (and only one) group:
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γn ,m
∑

i=1

n i
j

n
fi (x) =

∑

i∈supp( j )

n i
j

n
fi (x) = x j , for j = 1, . . . , m (2.2)

where supp( j ) is the set of group types that contain at least one j -strategist.

When a matching rule satisfies (2.2), we say that it is consistent. While our main

examples of matching rules below are consistent, a very important special case of

our setting, namely haystack/trait-group models (Cooper and Wallace, 2004; May-

nard Smith, 1964; Wilson, 1975) generally does not lead to consistent matching rules

(see section 2.2.4).12

Recall that n i
j fi (x)/n is the fraction of the total population that is of type j and is

allocated to a group of type i under the matching rule f. When x j > 0 we may divide

this by the fraction x j of the population that is of type j in order to get the fraction

of j -type individuals that is allocated to a group of type i :

w i
j (x)≡

n i
j

n x j
fi (x) (2.3)

This may be compared with Bergström (2003) who studies group selection (again

in the special case n =m = 2), and who takes the w i
j s as primitives instead of the

matching rule. More specifically, Bergström (2003) considers the difference w 1
1 −w 2

2

and calls this difference the ‘index of assortativity’. We return to the index of assor-

tativity in example 3 below where we also show how one gets from a model based

on a constant index of assortativity to our formulation with matching rules.

We finish this subsection by presenting a number of concrete examples of match-

ing rules. We shall be calling on these repeatedly throughout the rest of this paper.

Examples of Matching Rules

1. Complete segregation. Different strategies do not mix. All individuals are al-

located into groups with only individuals of the same type and thus all groups

contain a single type of individual each (n individuals that follow the same

strategy). The group types that have n individuals of the same type get a non-

negative frequency whereas all other kinds of groups get a frequency of zero.

12This is because the proportion of, say, cooperators in the population at the beginning of the
dispersion phase will not necessarily coincide with the proportion of cooperators at the end of the
T −1-th generation
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Due to the consistency requirements for matching rules, we get that the group

type that contains n j -types should get a frequency of x j . So, formally, the

matching rule for complete segregation is the following.

fi (x) = x j , if n i
j = n

fi (x) = 0 , otherwise.
(2.4)

e.g. When n = m = 2 the matching rule for complete segregation take the

form:

f1(x1, x2) = x1 f2(x1, x2) = 0 f3(x1, x2) = x2.

2. Random matching. Let us define the opponent profile of a type j individual in

a type i group to be the vector νi
j = (ν

i
1, . . . ,νi

j , . . . ,νi
m ) ≡ (n

i
1, . . . , n i

j − 1, . . . , n i
m )

that shows how many opponents of each type a type j individual faces when

she is drawn into a group of type i . Obviously, individuals of different types

that face the same opponent profile will be in groups of different types. We

will say that matching is random when the (ex ante) probability of an indi-

vidual (conditional on her type) to end up facing a specific opponent profile

is independent of her type. If this is the case, then the frequencies of group

types will follow a multinomial distribution (see for example Lefebvre, 2007,

p. 22):13

fi (x) =
n !

∏

j∈M n i
j !

∏

j∈M

x
n i

j

j . (2.5)

Notice that for m = 2, the random matching rule becomes

fi (x1, x2) =
n !

n i
1!(n −n i

1)!
x

n i
1

1 x
n−n i

1
2 .

That is, it boils down to the binomial distribution (see Kerr and Godfrey-Smith,

13To show that the property described above holds for the matching rule of equation (2.5), let us
consider a group of type i with n i

j ≥ 1 for some j ∈ M . Notice that a j -type in that group has n i
1

type 1 opponents,. . . , n i
j − 1 type j opponents, . . . , n i

m type m opponents. So the opponent profile

for a j strategist in a type i group will be ν= (n i
1, . . . , n i

j −1, . . . , n i
m ). Indeed, the probability of a type j

individual (conditional on her type) to end up in group with opponent profileν= (ν1, . . . ,νm ) is given

by: w i
j (x) =

n i
j

n x j

n !
∏

k∈M n i
k !

∏

k∈M x
n i

k

j =
(n −1)!
∏

k∈M νk !

∏

k∈M x νk

k . i.e. it is independent of the individual’s

strategy j .
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2002, p. 484).

3. Constant Index of Assortativity.

Bergström (2003) studies 2-person prisoner’s dilemma population games by

using the ‘index of assortativity’ which he defines as “the difference between

the probability that a C-strategist meets a C-strategist and the probability that

a D-strategist meets a C-strategist”. In terms of notation used in this paper

(with x1 and x2 denoting the proportion of cooperators and defectors in the

population respectively), this means that the index of assortativity when the

population strategy is (x1, x2)will be:

α(x1, x2) =w 1
1 (x1, x2)−w 2

2 (x1, x2) =
f1(x1, x2)

x1
−

f2(x1, x2)
2x2

.

Bergström goes on to analyze prisoners’ dilemma games under “assortative

matching” rules that have a constant index of assortativity α for all values of

x. As one easily verifies, the matching rule corresponding to a constant index

of assortativity α is:

f1(x) = x1 (1− (1−α) x2)

f2(x) = 2(1−α)x1 x2

f3(x) = x2 (1− (1−α) x1) .

In the case of α = 0 the rule coincides with the random matching rule and

in the case of α = 1 it coincides with the complete segregation rule (for both

of these statements we of course need n = m = 2, i.e., two players and two

strategies).

2.2.3 Steady states

At this point we have defined all of the key ingredients of a group selection model:

A set of agents I = [0, 1], the normal form group game G =< N , M , A > (here N =

{1, . . . , n} and M = {1, . . . , m}where n is the group size and m the number of strate-

gies/types), and the matching rule f : Sm → Sγn ,m
which in each period allocates the

newborn generation into groups (recall from section 2.2.1 that γn ,m is the number

of different n-sized groups that can be formed from m different strategies).

Given the tuple < I ,G , f >, we are now in a position to describe the dynamical
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system that constitutes the evolutionary model of group selection. The standard

solution concept in group selection models as defined is that of a steady state which

we now proceed to discuss.

Let xt ∈ Sm denote the population strategy at date t (the vector of frequencies of

the different types at the given date, see subsection 2.2.2). At date t , the population

is allocated into groups according to the matching rule f, hence f(xt ) ∈ Sγn ,m
is the

resulting group frequency distribution. Regardless of which group an individual of

type j ends up in, he will mechanically follow the strategy of his type (as inherited

from the parent) and fitness will be distributed accordingly. Now recall from equa-

tion (2.3) of section 2.2.2 that w i
j (x) = n i

j fi (x)/n x j is the fraction of j -type individuals

that is allocated to groups of type i under the matching rule f when the population

strategy is x and x j > 0. From section 2.2.1 we know that the payoff/fitness of a

j -type who finds himself in a group of type i is Ai
j . The average fitness of a type j

individual at date t is consequently
∑

i∈supp( j )w
i
j (x

t )Ai
j . This average fitness will be

denoted by π j (xt ), and if we substitute for w i
j (x

t ) it is clear that this is given by:

π j (x)≡
∑

i∈supp( j )

n i
j

n x j
fi (x

t )Ai
j (2.6)

Since π j (x) is the average fitness of a j -type, the average fitness of all types in the

population will be:

π̄(x) =
m
∑

j=1

x jπ j (x) (2.7)

All that remains now is to describe how these fitnesses determine the next gen-

eration. At this point we have deliberately avoided saying whether time is to be

thought of as discrete or continuous. In fact, we are going to describe both, since

both play important roles in the existing literature.

Beginning with the discrete time version, the well-known replicator dynamics

equations (Hammerstein and Selten, 1994; Taylor and Jonker, 1978; Weibull, 1995,

pp. 122-4), formalize the (sensible) notion that at time t + 1 the proportion of the

population that is of type j must equal the proportion of type j individuals at date

t times the relative fitness of a type j individual.

Definition 2.2. The discrete time replicator dynamics of the group selection model

< I ,G , f> is given by the equations:
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x t+1
j = x t

j

π j (xt )

π̄(xt )
for all j ∈M . (2.8)

where π j and π̄were defined in equations (2.6) and (2.7), respectively.

Turning next to the continuous-time case, the definition becomes (see Hofbauer

and Sigmund, 1998, p. 67; Weibull, 1995, p. 72):

Definition 2.3. The continuous time replicator dynamics of the group selection model

< I ,G , f> is given by the equations:

ẋ j = x j (π j (x)− π̄(x)) for all j ∈M . (2.9)

where π j and π̄were defined in equations (2.6) and (2.7), respectively.

Definition 2.4. A steady state of a group selection model < I ,G , f > is a rest point of

any of the dynamical systems (2.8) or (2.9)

Clearly the steady states are the same whether time is continuous or discrete.

Different notions of stability such as Lyapunov and asymptotic stability are defined

as usual in either case, and the associated steady states (if any) are said to be Lya-

punov stable, asymptotically stable, and so on. Since any uniform population strat-

egy – i.e., any strategy where all individuals are of the same type – will be a steady

state, it is clear that stability must be considered or else the model will have no pre-

dictive power.

2.2.4 Relationship with trait-group models

In this section, we briefly consider the group selection models in Maynard Smith

(1964), Wilson (1975) and Cooper and Wallace (2004). As in the model described

in the previous sections, the population of individuals is split into groups in these

models and interaction in each group determines the number of offspring of differ-

ent types that will enter the population of individuals in the next period, etc. The

difference is that assortativity does not stem from the matching process, but from

prolonged interaction within groups (called “haystacks” in Maynard Smith, 1964,

and trait-groups in Wilson, 1975). Following Cooper and Wallace (2004) closely from

now on, consider a population of individuals who can be of two types. To facilitate
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comparison with this paper’s main model, we assume the population to be a con-

tinuum, so at any moment in time a proportion x1 ∈ [0, 1] will be of type 1 and a

proportion x2 = 1− x1 ∈ [0, 1] of type 2. At the “dispersion phase”, the population is

split into trait-groups consisting of two individuals each. These groups are formed

randomly (using the random matching rule of example 2). The two individuals in

a group proceed to execute the strategy that their type dictates and get payoffs in

fitness terms according to a symmetric normal-form matrix (Ai
j ) (see section 2.2.1).

The fitness of each individual determines the number of children it will send to the

next generation. The trait-group’s offspring is at this point “pooled” and dispersed

but, crucially, the offspring are not pooled with the offspring of all the other groups

as in the model of section 2.2.3. Instead, the trait-groups remain separated for T > 1

generations, so the second generation of a specific trait group is split into subgroups

consisting of offspring of that trait group only (again the dispersion is pairwise and

random). This second generation of subgroups proceed precisely as before to ex-

ecute their type strategies, produce offspring according to the matrix (Ai
j ), and in

this way the trait-group’s third generation is born. The process repeats itself until,

after T generations the trait-group’s combined offspring is finally returned to the

aggregate population. The aggregate population is then again randomly matched

into new trait-groups, and so on.

The described model is called a T -period trait-group model. A steady state is

defined in the usual way as a population strategy x = (x1, x2) with the property that

if the initial proportions of the types are x1 and x2 = 1− x1, respectively, then at any

future date these will be the proportions of the two types in the aggregate population

also.

As we now proceed to show, whether assortativity stems from matching (as in

our preferred model), or from prolonged interaction in groups (as in the models of

Maynard Smith, 1964, Wilson, 1975, and Cooper and Wallace, 2004) is of no conse-

quence in the sense that for any model of the second variety one can reconstruct

the steady states and dynamics with a model from the former.

Theorem 2.1. Consider a T -period trait-group model with group size n, number of

pure strategies m and a symmetric payoff matrix (Ai
j ). Consider also the symmetric

n-player, m-strategy normal form game G with payoff matrix (Ai
j ). Then there is a

matching rule f such that the dynamics and steady states of the group selection model
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< I ,G , f> coincide with the dynamics and steady states of the trait-group model.

A detailed proof is provided in Appendix A.3.1. Here we provide a sketch in the

2-player, 2-strategy case stressing what the matching rule associated with a specific

trait-group model actually looks like.

Consider a T -period trait-group model with payoff matrix (Ai
j ). We remind the

reader that Ai
j indicates the payoff that a j -type individual receives when found in

an i -type group. As this is a 2-player, 2-strategy model, there are three group-types:

group-type 1 which contains two individuals of type 1, group-type 2 which contains

one individual of type 1 and one individual of type 2, and group-type 3 which con-

tains two individuals of type 2.

We are tracking the evolution of the population between two consecutive disper-

sion phases. In order to do that we need to calculate the expected fitness (number

of descendants) that an individual of each type will get at the end of the T periods

whereby the trait-groups remain separated from each other. To that effect, we use a

law-of-large-numbers argument and we calculate the distribution of groups across

all trait-groups at the T -th period.14 This makes us able to calculate the expected fit-

ness for starting individuals (individuals in the original population at the dispersion

phase) of each of the types in the trait-group model. We also calculate the expected

payoffs for the group selection model with a matching rule given by

fi (x) =

∑3
k=1 rk (x)g k

i
∑3

l=1

∑3
k=1 rk (x)g k

l

(2.10)

where r1(x) = x 2
1 , r2(x) = 2x1 x2 and r3(x) = x 2

2 are the components of the random

matching rule r(x) (see example 2). The various g k
i are only dependent on the partic-

ular payoff matrix (Ai
j ) and the number of generations T that the individuals spend

in their respective trait-groups isolated from the rest of the population and are, thus,

given for any trait-group model. They express the (expected) proportion of i -type

groups that are found in a trait-group whose first-generation parents were a pair of

type j at the pair-matching stage of generation T .

We then show that the expected fitness of j -types under the trait-group model

πTG
j and under the matching rule given by equation (2.10) πf

j satisfy the following

14Note that applying the law of large numbers on a continuum is not entirely innocent (see e.g. the
Introduction in Al-Najjar, 1995). As is well known, however, the resulting difficulties can be overcome
in several different ways (see Appendix III in Acemoglu and Jensen, 2012, for an overview).
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condition:

πTG
j (x)

πTG
k (x)

=
πf

j (x)

πf
k (x)

for all x ∈ Sm and j , k ∈M

which is a necessary and sufficient condition for the two models to yield the same

dynamics (and therefore steady states) due to a symmetry of the replicator dynamics

(see equations (2.8) and (2.9)).

It follows that the dynamics of the trait-group model will be the same as those

of the group selection model< I ,G , f>. And, so, the steady states of the two models

will coincide as well.

2.3 Group Selection Games

In the previous section we described in full detail what we think is a natural uni-

fied model of group selection capturing both group selection based directly on non-

random matching (e.g. Bergström, 2003; Kerr and Godfrey-Smith, 2002), and hay-

stack/trait-group models (e.g. Cooper and Wallace, 2004; Maynard Smith, 1964;

Wilson, 1975). Except when we described the group games in section 2.2.1, we made

no mention of game theory – in fact the only reason we did mention this was be-

cause we need it in this section. In this section we are going to shift the perspective

entirely to a game theoretic one. The basic underlying object of study will remain

the same: We have a continuum I = [0, 1] that is now referred to as the set of players,

we have an underlying n-player m-strategy symmetric normal form game G as de-

scribed in section 2.2.1, and we have a matching rule f as described in section 2.2.2.

But the “story” will be very different. All three together will define a game which we

call a group selection game:

Definition 2.5. (Group Selection Games) A group selection game is a tuple< I ,G , f>

where I is a continuum of players, G is a symmetric n-player, m-strategy normal form

game, and f is a matching rule.

Here is the structure of the game: As mentioned, there is a continuum I = [0, 1]of

agents. These are identical, in particular they have the same finite set of pure strate-

gies M = {1, . . . , m} given from the normal form game G . The game is symmetric,
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so we can conveniently summarize a (pure) strategy profile by its frequency distri-

bution x = (x1, . . . , xm ) ∈ Sm where the j ’th coordinate is the fraction of the players

whose strategy is j ∈ {1, . . . , m}. These frequency distributions (each of them rep-

resenting a class of strategy profiles) are the population strategies of the previous

section. The individual player takes x as given and being infinitesimally small, his

own choice of strategy will not affect the relative proportions expressed in x. Now,

in one description, the game has two stages: In the first stage, players choose their

strategies and in the second stage they are allocated into groups of the same finite

size n ∈ {2, 3, . . .} where they execute their strategies.15 What is crucial here is that

agents do not know with certainty which group they will end up in when they choose

their strategies. However, because the structure of the game is known (common

knowledge), an agent will know the rule according to which agents are allocated

into groups, and so will be able to calculate the probability of ending up in any par-

ticular type of group after a specific strategy is chosen. This brings us back to (2.3)

of section 2.2.2. Recall from that section that if x j > 0 then w i
j (x) = n i

j fi (x)/(n x j ) is

the fraction of type j individuals that are allocated into groups of type i under the

matching rule f (and the population strategy x). The case where x j = 0 is returned

to in a moment. It is clear that from an expected payoff point-of-view, w i
j (x) is the

ex-ante probability a j -strategist has of being “drawn” into group i . It follows that

the expected payoff to strategy j will equal

π j (x) =
∑

i∈supp( j )

w i
j (x)A

i
j , (2.11)

where we remind the reader that Ai
j is the payoff received from playing strategy j in

a group of type i (section 2.2.1); and supp( j ) is the set of groups that contain at least

one j -strategist (section 2.2.2). Comparing with section 2.2.3, this expected payoff

precisely coincides with the average fitness to a type j individual in the (determin-

istic) evolutionary group selection model.

Now, for the previous two definitions it is required that x j > 0. The definition

of the w i
j ’s in (2.3) and so the definition of the π j ’s in (2.11) are extended to the

boundary of Sm (bd j (Sm ) = {x ∈ Sm : x j = 0}) by taking w i
j (x) = limx̃ j ↓0 n i

j fi (x̃)/n x̃ j

15From a game theoretic perspective, it is much more natural to think of this as a situation involv-
ing uncertainty (a type of Bayesian game). But the imperfect information perspective actually turns
out to be non-standard because probabilities are endogenously determined.
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whenever x ∈ bd j (Sm ). Evidently, we need to assume that these limits exist. Note

that the limit limx j ↓0 fi (x̃)/x̃ j , if it exists, is precisely the (upper) partial derivative of

fi with respect to x j , ∂ +j fi (x). Hence w i
j (x) = n i

j∂
+
j fi (x)/n when x j = 0.

Definition 2.6. (NEGS) Let < I ,G , f> be a group selection game. A population strat-

egy x∗ ∈ Sm is a Nash Equilibrium with Group Selection (NEGS) if for all j with x ∗j > 0:

π j (x
∗)≥πk (x

∗) for all k ∈M . (2.12)

The average payoff (the welfare) at a NEGS x∗ is denoted by π̄(x∗) = x∗ ·π(x∗).

Here is an intuitive description. In a NEGS, each agent takes the population

strategy x ∗ as given due to his infinitesimal size. Based on group payoff and match-

ing rules, the agent can then calculate the expected payoff (11) resulting from each

of the strategies. Note that, as explained above, this calculation involves calculat-

ing the probability of ending up in any of the different groups as a function of the

strategy chosen. If the agent belongs to a non-negligible set of players who choose

the same strategy as him, strategy j say, then condition (2.12) says that he will not

be strictly better off by switching to a different strategy. When the resulting popu-

lation strategy x ∗ implies the probabilities (2.3) that formed the basis of the agents’

calculations in the first place, the game is at an equilibrium. Note that in a NEGS,

the probabilities of being drawn into the groups are “self-fulfilling” in the sense that

agents’ ex-post decisions lead to the ex-ante probabilities upon which the decisions

are based.

In the following sections we shall see that this concept has a very close relation-

ship with the steady states of the canonical group selection model (section 2.2.3).

The remainder of this section is devoted to showing that the NEGS concept is well-

founded, and strengthening the equilibrium concept.

Our first result states that any group selection game has an equilibrium when

certain regularity conditions are satisfied by the matching rule. Note that the differ-

entiability requirement will be strivially atisfied if the matching rule is differentiable

at the boundary of Sm (we remind the reader that supp( j ) is the set of group types

that contain at least one individual of type j , see equation (2.2)).
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Theorem 2.2. Let < I ,G , f > be a group selection game and assume that f is contin-

uous and that the (upper) partial derivatives ∂ +j fi (x) exist whenever x j = 0 (for all

j ∈M and i ∈ supp( j )). Then < I ,G , f> has a NEGS.

Proof. See Appendix A.3.2.

Note that the assumptions on f imply continuity of the payoff function π. Also

notice that all matching rules of section 2.2.2 satisfy the conditions of Theorem 2.2.

In the literature, ESS is usually defined in games with random matching and in

the special case when n = 2 (see Hofbauer and Sigmund, 1998, p. 63). The appro-

priate generalization of the ESS concept to include non-random matching and any

number of strategies is the following.

Definition 2.7. (ESSGS) Let< I ,G , f> be a group selection game. A population strat-

egy x̂ ∈ Sm is an Evolutionarily Stable Strategy with Group Selection (ESSGS) if for

each y ∈ Sm \ {x̂}, there exists ε̄y > 0 such that

x̂ ·π(εy+ (1− ε)x̂)> y ·π(εy+ (1− ε)x̂) for all ε ∈ (0, ε̄y). (2.13)

The ESSGS concept is a strengthening of the NEGS concept, just as the tradi-

tional notion of an ESS is a strengthening of Nash equilibrium:

Theorem 2.3. Let < I ,G , f> be a group selection game with f satisfying the assump-

tions of Theorem 2.2. Then any ESSGS is a NEGS.

Proof. By way of contradiction, let us assume that some x̂ ∈ Sm is an ESSGS but not

a NEGS. Then, there exists some y ∈ Sm such that (y − x̂) · π(x̂) > 0. But from the

definition of an ESSGS, there must exist some ε̄y ∈ (0, 1) such that for all ε ∈ (0, ε̄y),

(y− x̂) ·π(εy+(1−ε)x̂)< 0. As explained after theorem 2.2, the differentiability at the

boundary and continuity in the interior of Sm of the matching rule, imply continuity

of π. By continuity therefore (y− x̂) ·π(x̂)≤ 0, a contradiction.

In evolutionary models with random matching, there is a clear and well-known

connection between dynamic models of the replicator type and game theoretic con-

cepts such as Nash equilibrium and evolutionarily stable strategies (Hofbauer and

Sigmund, 1998). We next show that any NEGS is a steady state of the replicator

dynamics, and that any stable steady state of the replicator dynamics is a NEGS.
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Furthermore, we are going to prove that any stable steady state of the replicator

dynamics (be it Lyapunov or in the ω-limit sense) will be a NEGS. These results

directly parallel known results on models with random matching with underlying

replicator-dynamics processes (e.g. Hofbauer and Sigmund, 1998, Theorem 7.2.1;

Weibull, 1995, Proposition 3.10) or even in broader classes of dynamics (Ritzberger

and Weibull, 1995). Finally, we will prove that any ESSGS is asymptotically stable for

the associated replicator dynamics.

Note that the following result also applies to trait-group models since (by Theo-

rem 2.1) such models can be recast as non-random matching models with the same

dynamics and therefore, of course, the same set of (stable) steady states.

Theorem 2.4. Let < I ,G , f > be a group selection game and assume that f satisfies

the assumptions of Theorem 2.2 and consider the evolutionary steady states of the

associated dynamical systems (2.8)-(2.9). Then,

1. Any NEGS is a steady state of the discrete time replicator dynamics (2.8) as well

as the continuous time replicator dynamics (2.9).

2. If x∗ is theω-limit of an orbit x (t ) of the replicator dynamics (2.9) that lies ev-

erywhere in the interior of Sm , then x∗ is a NEGS.

3. If x∗ is Lyapunov stable for the replicator dynamics (2.9), then x∗ is a NEGS.

4. Assume that f is of class C 1. Then if x∗ is an ESSGS, it is asymptotically stable

under the replicator dynamics (2.9).

Proof. See Appendix A.3.3.

In particular, under the result of theorem 2.1, all ESSs of a trait-group model

(section 2.2.4) will be NEGS of the group selection game under the appropriately

defined matching rule.

Remark 2.4.1. It is easy to see that if < I ,G , f> is a group selection game under ran-

dom matching, then the set of Nash equilibria with group selection coincides with the

set of symmetric Nash equilibria in the underlying normal form game G . Likewise,

when matching is random the set of evolutionarily stable strategies with group selec-

tion coincides with the set of evolutionarily stable strategies. For a formal proof, see

Appendix A.3.4.
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In the next section we will see the relationship between these results and welfare

in equilibrium.

2.4 Group Selection and the Fitness of Populations

Group selection can explain behavioral traits such as altruism or cooperation which

cannot arise in Nash equilibrium and so cannot be favored by natural selection if

matching is random (see remark 2.4.1). Importantly, such departures from egoism

may be superior to the outcomes under random matching in the sense that the av-

erage fitness may be higher. The classical example here is of course the prisoners’

dilemma where the outcome of random matching yields lower average fitness than

outcomes with assortative matching (see section 2.5 and also Bergström, 2002). In

this section we are going to discuss these issues drawing on both the abstract results

and the concrete examples of the previous sections. As will become clear, our new

concepts (NEGS and ESSGS) allow us to push the discussion substantially forward

in comparison with existing literature.

First, we need to define the concepts involved. Recall from section 2.2 that the

average fitness π̄(x) at a population strategy x ∈ Sm is given by π̄(x) =
∑m

j=1 x jπ j (x)

(equation (2.7)). In the context of a group selection game < I ,G , f>, we referred in-

stead to this as the average payoff or the welfare (see equation (2.11)). Since average

fitness in the evolutionary model is obviously equal to average payoff in the (evo-

lutionary) game theory model, and since by theorem 2.4 we know how the various

equilibrium/steady state concepts relate to each other, we need not differentiate

between them in what follows. Accordingly, we use the term average fitness exclu-

sively from now on. Average fitness at a population strategy x will from now on be

denoted by π̄f(x) so as to explicitly mention the matching rule. This allows us to eas-

ily compare average fitnesses under different matching rules for a fixed underlying

payoff structure/normal form game G (e.g., prisoners’ dilemma or hawk-dove).

Now as was already mentioned, random matching – or for that matter any other

specifically given matching rule f – may not maximize average fitness in a NEGS x∗.

This observation also remains valid if instead of NEGS we focus on ESSGS. Thus,

evolution under non-random matching certainly does not imply fitness maximiza-

tion. The interesting next question therefore is whether for a fixed underlying nor-
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mal form game there exists some matching rule under which average fitness will

be maximized at an NEGS; and if the answer is yes, to characterize these matching

rules in concrete situations. Thus in the prisoners’ dilemma, random matching is

inferior in average fitness terms as, from what we will see in section 2.5, a rule such

as complete segregation will lead to equilibria where everybody cooperates i.e. to

average fitness maximization. When discussing this topic it is important to under-

stand that when f is varied, not only does the set of NEGS (and ESSGS and also, the

set of steady states of the replicator dynamics) change – the average fitness π̄f(x)will

also change at any given population strategy x. So if some population strategy max-

imizes welfare but is not a NEGS at some matching rule f1, it could be a NEGS at

another matching rule f2 but no longer maximize welfare! Any sensible discussion

must therefore consider the joint selection of a population strategy and matching

rule as captured by the following definition.

Definition 2.8. (Evolutionary Optimum) Let G be a symmetric n-player, m-strategy

normal form game. A population strategy x∗ ∈ Sm together with a matching rule f∗ is

said to be an evolutionary optimum if π̄f∗(x∗) ≥ π̄f(x) for all (x, f) ∈ E = {(x, f) : x is a

steady state of 〈I ,G , f〉}.

Intuitively, a population strategy x∗ and a matching rule f∗ form an optimum if

they lead to maximum average fitness of the population among all population strat-

egy/matching rule combinations that satisfy the steady state restriction. Note that

the restriction to steady states is entirely natural here: Any population strategy that

is not a steady state under some matching rule would immediately be “destroyed”

by natural selection.16 Given these definitions, we can now answer the previous

question:

Theorem 2.5. Let (x∗, f∗) be an evolutionary optimum. Then there exists a matching

rule h which satisfies the assumptions of theorem 2.2, such that x∗ is a NEGS under

h, and such that (x∗, h) is an evolutionary optimum (in particular, π̄h(x∗) = π̄f∗(x∗)).

Proof. See Appendix A.3.5.

16Note in this connection that any uniform population strategy is a steady state (in fact, any uni-
form population strategy is a steady state under any matching rule).



2.5: Group Selection and the Prisoners’ Dilemma Game 28

Theorem 2.5 can be thought of as the “second welfare theorem of evolution” telling

us that any evolutionary optimum can be “decentralized” in the evolutionary envi-

ronment through some matching rule.17 That this should be so is easy to see in sim-

ple cases, but it is in general a surprising result. In most standard games (including

the ones considered in this paper), there is a premium on coordination/uniformity,

and so what is needed in order to reach an evolutionary optimum is a sufficiently

high level of assortativity. In games where there is a premium on agents in a group

being different – e.g., due to specialization – it will instead be a sufficiently high

degree of dissociation that leads to evolutionary optimality. It is not obvious that

Theorem 2.5 should hold in the latter case, to say nothing of cases that are neither

assortative nor dissociative.

2.5 Group Selection and the Prisoners’ Dilemma Game

In this section, we look into what is arguably the most analyzed game in the liter-

ature and which has served as the canonical way to model altruistic behavior: the

Prisoners’ Dilemma (PD).

We analyze a number of Prisoners’ Dilemma group selection games under dif-

ferent matching rules: rules that are derived from trait-group models (as described

in section 2.2.4) and those that belong to the class of constant index of assortativ-

ity (see example 3 of section 2.2.2). We also provide comparative statics results for

the class of matching rules with a constant index of assortativity. Interesting results

arise in different families of PD games as equilibrium dynamics change. This ren-

ders us capable to discuss risk dominance and how this is affected under various

levels of assortative matching.

Finally, one may want to make comparisons of the type: “Say x ∗ is an equilib-

rium of a population game under some matching rule f. If the players were using

strategy x ∗ in the associated normal form game, would their expected payoff be

higher or lower than the population-wide average payoff in the population game?”.

Such comparisons are carried out for the three classes of PD games. Our results sug-

gest that equilibrium welfare is monotonically increasing as the equilibrium ‘level

of cooperation’ increases. Despite that, it may be the case that in order to estab-

17If in Definition 2.8 matching rules are required to be consistent, one can show that the “decen-
tralizing” matching rule of Theorem 2.5 can be chosen to be consistent also.
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lish a population strategy with high level of cooperation x ∗ as an equilibrium one

has to do that in expense of welfare. This is because if the players were using x ∗

in the normal form game, they would get a higher expected payoff than they get in

equilibrium.

The prisoners’ dilemma

The two players involved in the game have two possible (pure) strategies each: Co-

operate (C) or Defect (D). In our notation, a PD game is a game with A2
2 > A1

1 > A3
2 >

A2
1.18 The payoff matrices of four PD games are shown in Table 2.1. In any PD game,

there exists a unique pure strategy Nash equilibrium (D,D) as defection strictly dom-

inates cooperation. The outcome is far from optimal as there is an obvious Pareto

improvement if we move to (C,C).

C D
C 11, 11 2, 16
D 14, 2 5, 5

(a) A2
1+A2

2 < A1
1+A3

2

C D
C 55, 55 0, 70
D 70, 0 40, 40

(b) A2
1+A2

2 = A1
1+A3

2

C D
C 11, 11 2, 18
D 18, 2 5, 5

(c) A2
1+A2

2 > A1
1+A3

2 I

C D
C 55, 55 38, 64
D 64, 38 40, 40

(d) A2
1+A2

2 > A1
1+A3

2 II

Table 2.1: The payoff matrices of four Prisoners’ Dilemma games.

Bergström (2003) distinguishes among three types of PD games: those that have

the structure of linear, superadditive and subadditive games of shared output. In

our notation, the conditions for each of the three types are A2
1+A2

2 = A1
1+A3

2, A2
1+A2

2 <

A1
1+A3

2 and A2
1+A2

2 > A1
1+A3

2 respectively. The intuition behind this categorization

is the following. Imagine there are four individuals: two following C and two follow-

ing D. If they are aggregately better off (in the sense of their sum of payoffs) by being

matched into mixed pairs rather than into segregated pairs (i.e. if A2
1+A2

2 > A1
1+A3

2),

then the game is of the “subadditive” type whereas if they are better off being segre-

gated rather than being mixed (i.e. if A1
1+A3

2 > A2
1+A2

2) the game is of the “superaddi-

18Strategy 1 is Cooperation and strategy 2 is Defection. Also, groups of type 1 contain two coop-
erators, groups of type 2 contain one cooperator and one defector and groups of type 3 contain two
defectors.
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tive” type. The “linear” case where A2
1+A2

2 = A1
1+A3

2 is a special transitional situation

between the two more generic ones. We keep this categorization as the three differ-

ent types of games yield different results not only when we look into their dynamic

behavior under non-random matching but also when equilibrium welfare is taken

into account.

2.5.1 Trait-group matching rules

Here we consider examples of trait-group models with a PD payoff structure. We cal-

culate the matching rules for the PD games of Table 2.1 and for the number of gen-

erations spent within the trait-groups varying between 1,2, and 3 using the method-

ology described in 2.2.4. We then derive the dynamics of the corresponding trait-

group model given by the replicator equation (2.9). The results can be seen in Fig-

ure 2.1. In the diagrams x denotes the proportion of cooperators in the population

whereas ẋ denotes the rate of change of x (continuous time is assumed).
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Figure 2.1: Dynamics for the PD games of Table 2.1 under trait-group matching rules
for different values of T .
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Generally, our results demonstrate that the trait-group structure leads to results

similar to the ones we get for the respective games under matching rules with some

positive assortativity (for comparison see 2.5.2 below). So, we can see that as the

number of generations that individuals spend in their respective trait-groups T in-

creases, the Nash equilibrium of the normal form game (x = 0) may no longer be

unique or even a NEGS – although it is always a steady state of the replicator dynam-

ics. Interestingly, our analysis of PD games of the “subadditive” type yields novel

results: depending on the specific game at hand, the trait-group structure can lead

to different patterns of dynamics. Of course, in all cases, the results for T = 1 are ex-

actly the same as the results we get for random matching: x = 0 is the unique NEGS

and it is also an ESSGS.

More specifically, as can be seen in Figure 2.1a, when A2
1 + A2

2 < A1
1 + A3

2 as T

increases new equilibria (in the NEGS sense) emerge: one at x = 1 and one with

0 < x < 1. The extreme equilibria (x = 0 and x = 1) are evolutionarily stable (ES-

SGSs) whereas the intemediate one is not. This suggests that there are two basins

of attraction, one for each of the extreme equilibria. Furthermore, as the value of

T increases, the basin of attraction of the full cooperation equilibrium (x = 1) in-

creases. These results are similar to the ones we get for the respective class of games

under constant index of assortativity matching rules (see case 1 of section 2.5.2 and

the discussion there).

For PD games with A2
1+A2

2 = A1
1+A3

2 (see Figure 2.1b) we observe the same pat-

tern as for the ones with A2
1 + A2

2 < A1
1 + A3

2. These results are in line with the anal-

ysis of Cooper and Wallace (2004) who focus only in this family of games. This is

in contrast with the results that we get for these games under constant index of as-

sortativity matching rules (see case 2 of section 2.5.2) as we do not get the “switch”

from the population strategy x = 0 being the unique equilibrium to x = 1 being the

unique equilibrium. This suggests that the trait-group structure does not introduce

a uniform assortativity for all values of x . This is also corroborated by our results for

the last family of PD games that we discuss straight away.

When A2
1+A2

2 > A1
1+A3

2, our results show that we can get two distinct cases. For

example, in the game shown in table 2.1c, our results follow the ones for the cases

where A2
1+A2

2 ≤ A1
1+A3

2: increased values of T lead to two ESSGSs and the basin of

attraction of the ESSGS at x = 1 where the whole population cooperates increases.

On the other hand, for the game depicted in Table 2.1d, we observe that as the value
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of T increases from 1 to 2, we get a unique interior NEGS x ∗ ∈ (0, 1) which is also

an ESSGS. This result is similar to the ones we get for the same family of PD games

under a constant index of assortativity matching rule (see case 3 of section 2.5.2).

As mentioned before, Cooper and Wallace (2004) discuss only the linear case of

PD games (A2
1 + A2

2 = A1
1 + A3

2). It turns out that the results are richer when we drop

the linear restriction. In the superadditive case, we see that we can get two differ-

ent kinds of dynamic behavior as T increases – depending on the particular game

at hand. It is clear that the trait-group structure adds assortativity to the process.

This assortativity, however, is not uniform for all population strategies x nor is it

necessarily the same for C and D types.19

2.5.2 Constant index of assortativity matching rules

We study the different types of PD games under constant index of assortativity match-

ing rules as described in example 3 of section 2.2.2.20 Our equilibrium analysis of

Prisoners’ Dilemma games, confirms the results of Bergström (2003). More than

that, risk dominance results apply to Prisoners’ Dilemma games when A2
1 + A2

2 <

A1
1+A3

2 and suggest that as the index of assortativity increases, the cooperative strat-

egy becomes risk dominant.

Equilibria of the group selection game

Our analysis applied to PD games under constant index of assortativity matching

rules (see example 3 of section 2.2.2) confirms the results of Bergström (2003) which

are summarized below.

1. If A2
1+A2

2 < A1
1+A3

2 then

(a) if α < (A2
2−A1

1)/(A
2
2−A3

2), there is a unique equilibrium at x ∗ = 0 (all play

D),

(b) if α > (A3
2−A2

1)/(A
1
1−A2

1), there is a unique equilibrium at x ∗ = 1 (all play

C),

(c) ifα= (A2
2−A1

1)/(A
2
2−A3

2) orα= (A3
2−A2

1)/(A
1
1−A2

1), there are two equilibria:

one at x ∗1 = 0 and one at x ∗2 = 1 and

19See Bergström (2013) for more examples of non-random matching with this property.
20This also captures the random matching (α= 0) and complete segregation (α= 1) rules.
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(d) if (A2
2 − A1

1)/(A
2
2 − A3

2) < α < (A
3
2 − A2

1)/(A
1
1 − A2

1), there are three equilibria:

one at x ∗1 = 0, one at x ∗2 =
��

A3
2−A1

1

�

/ (1−α) +A1
1−A2

1

�

/
�

A1
1+A3

2−A2
1−A2

2

�

and one at x ∗3 = 1.

2. If A2
2+A2

1 = A3
2+A1

1 then

(a) if α < (A2
2−A1

1)/(A
2
2−A3

2), there is a unique equilibrium at x ∗ = 0 (all play

D),

(b) if α > (A2
2−A1

1)/(A
2
2−A3

2), there is a unique equilibrium at x ∗ = 1 (all play

C) and

(c) if α= (A2
2−A1

1)/(A
2
2−A3

2), there is a continuum of equilibria. Actually, any

x ∈ [0, 1] is an equilibrium.

3. If A2
1+A2

2 > A1
1+A3

2, then there is a unique equilibrium given by:

x ∗(α) =















0 if α≤ A3
2−A2

1

A1
1−A2

1
�

A1
1−A3

2
1−α +A2

1−A1
1

�

/
�

A2
2−A3

2+A2
1−A1

1

�

if
A3

2−A2
1

A1
1−A2

1
<α<

A2
2−A1

1

A2
2−A3

2

1 if α≥ A2
2−A1

1

A2
2−A3

2

.

The dynamics diagrams for all three cases are shown in Figure 2.2 for constant

index of assortativity rules with different values ofα. The equilibrium analysis above

is summarized in Figure 2.3.

It is interesting to see that the comparative statics results when A2
1+A2

2 > A1
1+A3

2

are very similar to the results we get for a Hawk-Dove game whereas when A2
1+A2

2 <

A1
1+A3

2 the comparative statics results are similar to those for a Stag Hunt game.21 It

is not coincidental that the conditions hold for the respective games.

Risk Dominance

Notice that in the case where A2
1+ A2

2 < A1
1+ A3

2 (where two ESSGSs exist for certain

values of α), there is a value α∗ =
��

A2
2−A2

1

�

−
�

A1
1−A3

2

��

/
��

A2
2−A2

1

�

+
�

A1
1−A3

2

��

for

which the basin of attraction of the ESSGS at x = 1 is greater than that of the ESSGS

at x = 0 iff α ∈ (α∗, 1]. We can interpret that as follows: Assume that players in the

21For more details on these comparisons see Appendix A.2.
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Figure 2.2: Dynamics for the PD games of Table 2.1 under constant index of assor-
tativity matching rules.

0

1

0
A3

2−A2
1

A1
1−A2

1

A2
2−A1

1
A2

2−A3
2

1

x∗

α

ESSGS

(a) A2
1+A2

2 > A1
1+A3

2

0

1

0
A2

2−A1
1

A2
2−A3

2

A3
2−A2

1
A1

1−A2
1

1

x∗

α

ESSGS
NEGS (not ESSGS)

(b) A2
1+A2

2 < A1
1+A3

2

0

1

0
A3

2−A2
1

A1
1−A2

1
1

x∗

α

ESSGS
Neutrally Stable NEGS

(c) A2
1+A2

2 = A1
1+A3

2

Figure 2.3: Comparative statics: NEGS as a function of the index of assortativity for
the three different cases of PD games.
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population do not know whether each of the other players is going to play C or D

and so, using the principle of insufficient reason, they ascribe equal probabilities

(equal to 0.5 each) to each other player following C and D.22 Then, if α ∈ (α∗, 1] the

expected payoff for a player following C is higher than his expected payoff when he

follows D and so, given the aforementioned beliefs, it is a best response for all of

them to follow C, leading to the population strategy being x = 1. Conversely when

α ∈ [0,α∗). So, in the terms described above, we can have a notion of risk dominance

in the group selection game.

2.5.3 Welfare

In Appendix A.1.3 we show how welfare for equilibirum population strategies under

the appropriate matching rules can be calculated. We use this methodology in order

to conduct welfare analysis for the various PD games discussed in this section. We

carry out our analysis restricting ourselves to consistent matching rules as defined

by condition (2.2). The comparison of equilibrium welfare in the group selection

game and welfare in the normal form game when both players use the correspond-

ing mixed strategy is shown in Figure 2.4 for each of the three cases.
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Figure 2.4: Equilibrium welfare and normal form payoff in three PD games.

The maximum level of welfare is obtained when the equilibrium population strat-

egy is the one where all cooperate (x = 1) and it coincides with the maximum ex-

pected payoff players using symmetric strategies can get in the normal form game

when A2
1 + A2

2 > 2A1
1 > A1

1 + A3
2. In the case where A2

1 + A2
2 > 2A1

1 the maximum

value of welfare in the normal form game is obtained when both players play C with

22See also Carlsson and Van Damme (1993).
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probability pC =
�

A2
1+A2

2−2A3
2

�

/
�

2
�

A2
1+A2

2−A1
1−A3

2

��

. However, when this popula-

tion strategy is implemented as an equilibrium in the group selection game, it does

not grant the players such high expected payoffs as the frequency of (C,D) or (D,C)

pairs is not high enough. The implementation of an assortative matching rule can

make the population strategy an equilibrium but this happens at the expense of ob-

tained payoff at that population strategy. Also, if we restrict ourselves to equilibrium

payoffs, then the payoff obtained at x =
�

A2
1+A2

2−2A3
2

�

/
�

2
�

A2
1+A2

2−A1
1−A3

2

��

is no

longer the optimal payoff. Once again, utilitarian optimality is achieved when x = 1

(all cooperate) is implemented as an equilibrium.

2.6 Conclusion

This paper had two main purposes. Firstly, to extend the existing machinery of

evolutionary game theory to include models of group selection; and secondly, to

use the new concepts developed to discuss the relationship between different kinds

of selection and the fitness of populations. Two new equilibrium concepts were

proposed, Nash equilibrium with group selection (NEGS) and evolutionarily stable

strategy with group selection (ESSGS). These equilibrium concepts contain as spe-

cial cases the standard ones; indeed when matching is random, the set of NEGS is

just the symmetric Nash equilibria and the set of ESSGS is the evolutionarily sta-

ble strategies. We proceeded to show in our main theoretical result (theorem 2.4)

that NEGS and ESSGS are for models with arbitrary matching rules what Nash equi-

librium and ESS are for models with random matching. In particular, any stable

steady state of the replicator dynamics is a NEGS and any ESSGS is an asymptoti-

cally stable steady state. As in the standard random matching setting, these results

form the theoretical foundation upon which evolutionary game theory rests; hence

our concepts extend the traditional game theoretic framework to models with group

selection. As for the fitness of populations, our main result is the “second welfare

theorem” of evolution (theorem 2.5) which states that any evolutionary optimum

will be a NEGS under some matching rule.

We also showed (theorem 2.1) that models with structured populations, such

as the haystack and trait-group models, can be captured by appropriately defined

matching rules. This makes the dynamics and equilibrium analysis of such com-
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plicated models considerably easier as one can then simply apply the concepts of

NEGS and ESSGS in a straightforward manner.

From an applied point of view, the great advantage of the game theoretic ap-

proach is the additional structure it imposes compared to dynamic models of the

replicator type. In particular, the analysis becomes simpler and the results become

more powerful. Recall that all uniform population strategies (all individuals em-

ploying the same strategy) are steady states for the replicator dynamics. In fact, the

set of steady states includes everything that is “evolutionarily feasible” (and a good

way to think of this set is in fact as evolutionary models’ parallel to the feasible set of

an exchange economy). This of course makes stability analysis absolutely critical in

the dynamic setting – the problem being that such stability analysis is not straight-

forward in group selection models where the replicator dynamics forms a complex

non-linear dynamical system.23 In contrast, we saw in section 2.5 that the set of

NEGS and ESSGS can be computed with great ease in group selection games, and

equally importantly, the game theoretic formulation allows for abstract analysis and

the derivation of general results. An example of such a general result is that under

random matching, the set of NEGS coincides with the symmetric Nash equilibria in

the underlying normal form game which intuitively means that random matching

precisely corresponds to “self-serving” behavior in general. Such a result would be

impossible to establish within the traditional group selection framework of section

2.2. The “second welfare theorem” of evolution (theorem 2.5) is another example of

this.

Often, matching is a geographical phenomenon (think of viruses, neighborhood

imitation amongst humans, or trait-group models as studied in section 2.2.4), or a

reflection of individuals’ limited ability to monitor other individuals (see the intro-

duction for further details). But when matching rules correspond to institutions

or conventions, not explaining how they come about misses half the story. A clear

weakness of existing group selection models – including the results in this paper – is

in this connection that the matching rules are taken as given. An obvious topic for

future research would be to model the evolution of the matching rules (i.e., to en-

23Thus, consider for example the discrete time replicator dynamics of equation (2.8) in the often-
studied case with two strategies. Unlike in models with random matching where the πs are linear,
in models with non-random matching these coefficients will depend on the population strategy
through the matching rules in an often very complicated way. This of course makes even local sta-
bility analysis a daunting task.
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dogenize them). Consider monitoring: If individuals gain an advantage by increas-

ing their ability to monitor (by increasing their intelligence and memory), we can

see how matching rules will over time evolve to be less and less random (typically

more and more assortative). This then would be a true endogenous description of

matching (institutions, conventions). The simplicity of the game theoretic frame-

work presented in this paper should definitely put such a theory of matching rules

within reach.



Chapter 3

Assortativity Evolving From Social

Dilemmas

Chapter Abstract

Assortative mechanisms can overcome tragedies of the commons that otherwise re-
sult in dilemma situations. Assortativity criteria include genetics (e.g. kin selection),
preferences (e.g. homophily), locations (e.g. spatial interaction) and actions (e.g.
meritocracy), usually presuming an exogenously fixed matching mechanism. Here,
we endogenize the matching process with the aim of investigating how assortativity
itself, jointly with cooperation, is driven by evolution. Our main finding is that only
full-or-null assortativities turn out to be long-run stable, their relative stabilities de-
pending on the exact incentive structure of the underlying social dilemma. The re-
sulting social loss is evaluated for general classes of dilemma games, thus quantify-
ing to what extent tragedy of the commons may be endogenously overcome.

39
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3.1 Introduction

The ‘puzzle of cooperation’ is as old as the theory of evolution (Darwin, 1871). When

the incentives of the population and of its individuals are misaligned (‘mixed-motive

situations’/‘social dilemmas’), two evolutionary forces collide; the individual and

the collective. As a result, collective action (Olson, 1965) may fail and tragedy of the

commons (Hardin, 1968) may result. However, many mechanisms exist through

which cooperative behaviors are achieved against the evolutionary tendency to-

wards noncooperative behaviors that would prevail in the absence of a suitable mech-

anism (see West, Mouden, and Gardner, 2011, for a recent review of mechanisms

and of common misconceptions). Hence, the ‘puzzle of cooperation’ is that na-

ture, involving humans and animals alike, provides us with many examples of social

dilemma situations that are successfully resolved by suitable mechanisms, but also

with many other examples resulting in tragedy of the commons.

Perhaps the best methodology to study the evolution of cooperation is provided

by game theory (von Neumann and Morgenstern, 1944). Without suitable mech-

anisms, the game-theoretic predictions in mixed-motive situations are associated

with non-cooperative strategizing (Nash, 1951) which contradicts collective inter-

ests. In that case, no stable equilibrium exists that reconciles the population and

individual interests (Aumann, 1974, 1987). The game-theoretic literature has ad-

dressed this issue at length (beginning with Axelrod, 1984; Hamilton, 1963, 1964a,b).

This literature shows that, absent suitable mechanisms, societies evolve to socially

undesirable outcomes if interactions in the population are well-mixed/random (Nash,

1950; Young, 2011).

The class of mechanisms that we shall focus on in this paper share the com-

mon feature of non-random interactions, that is, they are assortative mechanisms.

The first formulations of assortative mechanisms date back to Wright (1921, 1922,

1965). Well-known processes that lead to assortativity are genetics (‘kin selection’;

Domingue et al., 2014; Hamilton, 1964a,b), locality (‘spatial interactions’; Abdel-

laoui, Verweij, and Zietsch, 2014; Eshel, Samuelson, and Shaked, 1998; Nowak and

May, 1992; Skyrms, 2004), preferences (‘homophily’; Alger and Weibull, 2012, 2013;

Xie, Cheng, and Zhou, 2015), and actions which, in the context of mixed-motive sit-

uations, is a ‘meritocratic’ criterion that matches players according to their decision

to cooperate (the decision associated with ‘merit’) or to defect (Gunnthorsdottir et
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al., 2010; Nax, Murphy, and Helbing, 2014a; Rabanal and Rabanal, 2014). Under

sufficiently assortative mechanisms, the game-theoretic predictions improve (e.g.

Bergström, 2003; Hamilton and Taborsky, 2005a,b; Jensen and Rigos, 2014; Nax,

Murphy, and Helbing, 2014a). Indeed, social dilemmas can be resolved via assor-

tativity, and better, cooperative outcomes may be reachable.

The effects of assortativity on the underlying strategic nature of a mixed-motive

situation are substantial. It is unlikely, however, that assortativity fell from the sky.

More likely, it evolved driven by evolutionary dynamics within the population and

across populations. In this paper, we contribute to the assortativity literature by en-

dogenizing the evolution of assortativity, in particular of actions. Our results also

apply to the contexts of kin selection, local interaction or homophily. In our model,

the evolution of assortativity is assumed to be driven by democratic consensus based

on one of the most basic models also for social forces or biological auctions, fea-

turing diffusion and intensity of preferences in either direction.1 To the best of our

knowledge there exists no comparable prior study of evolving assortativity based on

democratic consensus dynamics, which permits an interpretation in terms of hu-

man interactions too.2 Related is, for example, Newton (2014) who studies evolving

assortativity, when assortativity is allowed to depend on types, in the context of the

preference evolution model by Alger and Weibull (2012, 2013, 2014, 2015). Other

ways of endogenizing the matching rule may lead to different results, and these are

avenues for further research we shall sketch in our concluding discussion.

In terms of underlying games, we focus on the most general class of symmet-

ric two-by-two social dilemmas that nests the standard prisoners’ dilemma (PD)

(Rapoport and Chammah, 1965) but also includes other games. All agents are of one

type, one whose behavior is driven by his own material self-interest alone. All our

social dilemmas considered, not just the PD, are important situations that often oc-

cur with costly effects in reality. The PD is the best-known example of social dilem-

mas, that is, of situations with the common characteristic that individuals have an

1Democratic consensus of this kind is an aggregation rule used also by many animal species
(Chatterjee, Reiter, and Nowak, 2012; Couzin et al., 2011) such as bees selecting hive-locations (See-
ley and Visscher, 2004) or ants choosing nest sites (Franks et al., 2002). In voting theory, such rules
are known as range, average, cardinal, utility or score voting; numerous proto-democratic human
collectives use this rule (Staveley, 1972), similar to tug of war or voting by clapping/shouting.

2In biology, models have been proposed based on different factors such as invasion by mu-
tants (Dieckmann and Doebeli, 1999; Jiang, Bolnick, and Kirkpatrick, 2013) or other, indirect factors
(Bearhop et al., 2005; Dyson-Hudson and Smith, 1978).
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incentive to defect when facing cooperators. The evolution of cooperation amongst

humans and animals in social dilemma situations has received enormous attention,

and the PD in particular has been studied widely in this context beginning with Ax-

elrod and Hamilton (1981). Beyond the PD, there are related, less well-known so-

cial dilemmas of comparable practical importance. All our social dilemmas share

the public goods character, but games differ with respect to their (i ) Nash equilib-

ria and (i i ) socially desirable outcomes. Our social dilemma situations include the

prisoners’ dilemma, the volunteer’s dilemma (Diekmann, 1985; Myatt and Wallace,

2008; Raihani and Bshary, 2011), the missing hero dilemma (Schelling, 1971) and

the underprovision dilemma.3

In terms of dynamics, we use standard evolutionary replicator equations (Taylor,

1979; Taylor and Jonker, 1978). In the standard mathematical formulation of such a

dynamic (e.g. Eshel, 1983; Eshel, Motro, and Sansone, 1997; Helbing, 1992; Weibull,

1995), we would assume a well-mixed population, that is, pairs would be drawn

uniformly at random from the population. Here, we shall focus on action-assorta-

tive matching instead, using recently introduced methods (Bergström, 2003; Jensen

and Rigos, 2014). In our dilemma games, such a rule is ‘meritocratic’ as it ‘rewards’

(‘punishes’) cooperators (defectors) by matching them with other cooperators (de-

fectors). Assortativity itself evolves by democratic consensus. In the PD game, for

example, cooperators prefer more assortativity in order to be matched less often

with defectors, while defectors prefer less assortativity for the opposite reason. In

which direction this struggle evolves depends on how many people stand on either

side, and by how much they benefit from either change.

Our analysis proceeds in three steps. First, we study the stability of equilibria

given an exogenous level of assortativity. Second, we endogenize the evolution of

assortativity and investigate the stability of regimes under our voting dynamic. Fi-

nally, we evaluate which outcome is more stable in the long run. Our main findings

summarize as follows. Only null-or-full assortativities are long-run stable, providing

evolutionary support for models making either assumption depending on context

as in Wright (1921, 1922, 1965). We can thus identify how long-run performances in

terms of assortativity and cooperativeness depend on the exact incentive structure

3As a byproduct of our operationalization, we introduce the ‘underprovision dilemma’, a variant
of the volunteer’s dilemma, which to the best of our knowledge has not previously been considered
but certainly also represents an important class of games deserving investigation.
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of the underlying social dilemma. Seemingly small differences between classes of

social dilemmas, and even within the same social dilemma class, matter crucially for

convergence properties. Our analysis quantifies system-level endogenous efficien-

cies relative to social and assortative optima, in particular to what degree tragedy of

the commons is overcome.

3.2 The Model

3.2.1 Social dilemmas

We start by setting out the general setup. Here, we have a continuum population in

the closed interval [0, 1] that can follow one of two strategies, either ‘cooperate’ (C )

or ‘defect’ (D ). (Alternative labels could be ‘contribute’ and ‘free-ride’.) Denote by

x the proportion of players playing C . Individuals in the population follow one of

the two strategies, get matched to one other individual in the population, and then

carry out their strategy in their pair. The exact process by which they get selected in

pairs will be discussed in the next section.

Social dilemma Underlying all our interactions is a social dilemma game repre-
sented by a matrix of the following kind:

C D

C r, r a , 1
D 1, a 0,0

Hence a social dilemma is defined by G = (r, a ). To ensure that C-C is not an

equilibrium under random matching, we impose 0 < r < 1 for all G , which defines

the common ‘public goods character’: defection is always a best response against

cooperation. Moreover, we restrict a ∈ (−1, r ), so that C-D outcomes can either be

more or less efficient than C-C, while D-D remains the least efficient in all cases

and cooperation by one player always leads to the other player obtaining a higher

payoff. We therefore investigate the following four different types of (well-known)

social dilemma games:

Prisoners’ dilemma (Rapoport and Chammah, 1965) The PD game is obtained by

setting 2r > 1 + a and a < 0. Defection is a strictly dominant strategy, and total

payoffs are highest in C-C. The unique Nash equilibrium is D-D.
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Volunteer’s dilemma (Diekmann, 1985) The VD game is obtained by setting 2r <

1+ a and a > 0.4 Cooperation is a best response against defection, and the out-

come where exactly one player contributes maximizes total payoffs. The game is a

symmetric anti-coordination game with two (efficient) C-D Nash equilibria in pure

strategies and one in mixed strategies. The mixed-strategy equilibrium is the unique

symmetric one.

Underprovision dilemma The UD game is obtained by setting 2r > 1+a and a >

0. It is a natural variant of the VD, but, to the best of our knowledge, has not been

treated formally previously. Like in the VD, cooperation is a best response against

defection, but now the synergies to mutual cooperation (beyond cost sharing) are so

high that C-C maximizes total payoffs. The game is a symmetric anti-coordination

game with two (inefficient) C-D Nash equilibria in pure strategies and one in mixed

strategies. As in VD, the mixed-strategy equilibrium is the unique symmetric one.

Missing hero dilemma The MHD game is obtained by setting 2r < 1+a and a < 0.5

Defection is a strictly dominant strategy and the unique Nash equilibrium is D-D,

but –other than in the standard PD– the C-D outcome maximizes total payoffs.

Figure 3.1 illustrates how the different social dilemmas live in r –a space. The
differences in the nature of the dilemmas are summarized as follows:

Efficient Outcome
C-D C-C

(a > 2r −1) (a < 2r −1)
Best Reply C (a > 0) VD UD
versus D D (a < 0) MHD PD

Note that only in the VD game it is the case that the pure-strategy Nash equi-

libria of the baseline normal-form game and the efficient outcomes coincide (the

‘baseline loss’ of the Nash equilibrium prediction is 0). In all other cases, there is a

positive ‘baseline loss’: either C-C is efficient but D-D (prisoners’)/ C-D (underpro-

vision) is equilibrium, or C-D is efficient but D-D is the equilibrium (missing hero

dilemma). Since we consider a one-population matching protocol, the asymmetric

4In the basic formulation (Diekmann, 1985), r = a . However, (Diekmann, 1985) mentions the
possibility of synergies through cost sharing (a < r ) considered in (Weesie and Franzen, 1998).

5A less-studied variant of the VD (Diekmann, 1985), recently studied in (Diekmann and Przepi-
orka, 2015), with a different equilibrium structure; see also (Schelling, 1971).
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Figure 3.1: Types of social dilemmas.

pure-strategy Nash equilibria C-D cannot be achieved but only the mixed-strategy

equilibria.

3.2.2 Action Assortativity

We follow Nax, Murphy, and Helbing (2014a) in the definition of an action-assorta-

tive matching rule represented by a constant index of assortativity α ∈ [0, 1] (Berg-

ström, 2003). At one extreme (α = 1) is full assortativity, where cooperators are

matched with cooperators (and defectors with defectors) with probability one. The

other extreme (α= 0) is random matching –the standard assumption in the literature–

where players are randomly matched with each other independently of their ac-

tions.

Environment The environment E is defined by a social dilemma, G = (r, a ), to-

gether with a given level of assortativity, α; E = (G ,α).

We use notation from Jensen and Rigos (2014) so that, for any social dilemma

G , we can fully describe a (consistent) matching rule by only describing how one

variable changes with respect to x (the proportion of cooperators in the popula-

tion). This variable, denoted by φ, expresses the proportion of pairs formed (ac-
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cording to the matching rule) that are of the mixed type (i.e. contain one cooperator

and one defector, also f2). The expression for φ to represent a constant-index-of-

assortativity matching rule will then be

φ(x ) = f2(x ) = 2(1−α)x (1− x ),

where α is the index of assortativity. The proportions of homogeneous pairs ( f1 for

two cooperators, and f3 for two defectors) will be given by

f1(x ) = x −
φ(x )

2
f3(x ) = 1− x −

φ(x )
2

.

Efficiency For a given E = (G ,α) and a proportion of cooperators x , efficiency (the

average payoff in the population) is given by

W (x ,α) = r f1+
1+a

2
f2+0 · f3 = r x + (1−α)(1− x )x (1+a − r ).

The average payoff of a cooperator isπC = (r f1+a f2/2)/x , and that of a defector

is πD = ( f2/2)/(1− x ). Thus, the dynamics of x become

ẋ = x (1− x ) (πC −πD ) . (3.1)

Definition 3.1. Given environment E = (G ,α), x ∗ ∈ [0, 1] is an environment equilib-

rium if, in some arbitrarily small neighbourhood around x ∗, ẋ ≥ 0 when x ≤ x ∗ and

ẋ ≤ 0 when x ≥ x ∗.

Lemma 3.1. For any environment E , there exists an environment equilibrium.

Proof. See Appendix B.1.1.

Lemma 3.2. For all our social dilemmas G , maximum environment equilibrium ef-

ficiency is increasing in the assortativity, α, of the environment.

Proof. See Appendix B.1.2.

3.2.3 Full dynamics

The dynamics on assortativity α that we consider are motivated by utility voting.

We assume that the tendency for α to increase/decrease is driven by relative size
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and growth of the two populations that would benefit from anα-increase/decrease.

In particular, α is governed by the following dynamics: each player gets one vote

to cast; either for higher or for lower α. The probability for a player i , currently

matched into a homogeneous group (C-C or D-D), to vote for an increase of α is

increasing in i ’s payoff. Similarly, the probability for a player j who is currently

matched into a heterogeneous group (C-D) to vote for an increase ofα is decreasing

in j ’s payoff. In particular, players use a logit-based rule to decide whether to vote

for higher or lower merictocracy.

More specifically, let us denote by M and m respectively the highest and lowest

payoff that can be attained by any player in a given social dilemma. If a player gets

M (m), then, with probability one, he votes for an increase (decrease) of α if in a

homogeneous (heterogeneous) group and for a decrease of α if in a heterogeneous

(homogeneous) group. If receiving a payoff of u ∈ (m , M ), a player in a homoge-

neous group votes for an increase of αwith a probability given by

p+homog(u ) =
e g (u )

1+ e g (u )
, (3.2)

where u is the payoff the player received and the normalizing function g (·) is given

by

g (u ) =
1

M −u
−

1

u −m
. (3.3)

The function g is used so that comparisons between different types of social dilem-

mas can be made.

Consequently this means that, for u ∈ (m , M ), the probability that the player

votes for a decrease of α is

p−homog(u ) =
1

1+ e g (u )
. (3.4)

Hence, the “excess” probability (p+ − p−) for a player matched in a homogeneous

group to vote for an increase of α is

zhomog(u ) =
e g (u )−1

e g (u )+1
(3.5)

Similarly, for players in heterogeneous groups, the excess probability for them
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to vote for an increase in αwill be

zheter(u ) =
1− e g (u )

e g (u )+1
. (3.6)

Obviously, zheter(u ) = −zhomog(u ). In our calculations, we will use the function z (·)
given by

z (u ) =











−1 if u =m
exp(g (u ))−1
exp(g (u ))+1 if u ∈ (m , M )

1 if u =M

(3.7)

Let v + and v − denote the number of votes for an increase and for a decrease of the

level of assortativity respectively. Aggregating the votes, these are v + = f1(x ,α)z (r )+

f3(x ,α)z (0) and v − = f2(x ,α)(z (a ) + z (1))/2.

Now the exact form of the dynamics takes a replicator-style form:

α̇=α(1−α)(v +− v −) (3.8)

The main patterns that arise under these dynamics are depicted in Figure 3.2.

Full equilibrium We are interested in identifying states that are stable under the

full dynamics. We define a full equilibrium as follows.

Definition 3.2. For any social dilemma G = (r, a ), a pair (x ∗,α∗) will be called a full

equilibrium if it is a stable node of the full dynamics (equations 3.1 and 3.8).

Obviously, for (x ∗,α∗) to be a full equilibrium, it is necessary for x ∗ to be an en-

vironment equilibrium of E = (G ,α∗), and α∗ to be an evolutionarily stable state of

the voting dynamics given x ∗.

Observation 1. All full equilibria of any social dilemma G have either α∗ = 1 or α∗ =

0.

For a proof and discussion see Appendix B.1.3.

Whether full assortativity is ‘more robust’ than null assortativity depends on the

type and/or exact parameter values of the underlying social dilemma G .6 In search

6Note that Bergström (2013) studies games where populations with varying assortativity levels
(beyond full-or-null) compete.
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of a refinement akin to ‘stochastic stability’ (Foster and Young, 1990) for the case of

continuous populations, we shall formalize this comparison as follows.

Definition 3.3. Assortativity robustness Let (x ∗0 , 0) and (x ∗1 , 1) denote the two candi-

date full equilibria given G . Then, full assortativity is %-robust for some % ∈ [0, 1] if,

for every %′ ∈ (%, 1], all convex combinations %′(x ∗1 , 1) + (1−%′)(x ∗0 , 0) lie in the basin

of attraction of (x ∗1 , 1) and, for every %′′ ∈ [0,%), all convex combinations %′′(x ∗1 , 1) +

(1−%′′)(x ∗0 , 0) lie in the basin of attraction of (x ∗0 , 0).

Note that assortativity robustness % can be seen as a measure of the expected

full equilibrium efficiency relative to full assortativity (the assortative optimum).7

Figure 3.3 summarizes the robustness analysis in r –a space.
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Figure 3.3: Robustness of full assortativity. The white line separates the cases where
full/null assortativity is more robust.

3.3 Discussion

The ‘puzzle of cooperation’ in the sense of how and why cooperation amongst an-

imals or humans emerges and survives in some social dilemmas but not in others,

7The expected full equilibrium efficiency is expressed by%r +(1−%)(a/(1−r +a ))when a > 0 and
%r when a ≤ 0 which is compared to r , the efficiency under full assortativity, yielding an expression
that is linear in % in both cases.
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has kept scientists busy for many years. One strand of research in this area has been

to understand the role of assortativity, through various mechanisms, in overcom-

ing the inherent social dilemma. Indeed, some of the best-known social dilemma

mechanisms such as kin selection, homophily, spatial interaction and action assor-

tativity belong to this family.

In this paper, we focus on action assortativity and break with the assumption of

a pre-existent, fixed level of assortativity. Instead, we propose a dynamic by which

assortativity co-evolves with cooperation through democratic consensus. That way,

we are able to study what assortativity-cooperation pairs are evolutionarily co-stable.

When endogenizing matching through democratic consensus, we find that only

full-or-null assortativities are stable. Depending on the nature of the social dilemma,

cooperation above baseline Nash predictions may thus emerge, in some cases (as in

most underprovision dilemmas and in volunteer’s dilemmas with r > 0.5) up to the

socially optimal level. The emergent levels of assortativity mitigate the tragedy of

the commons in the prisoners’ dilemma, substantially in most of them with r > 0.5.

Only in missing-hero dilemmas and in volunteer’s dilemmas with r < 0.5, the pop-

ulation completely fails to lift itself above the worst possible outcome by becoming

more assortative. Our findings explain why and how the co-stability of assortativ-

ity and cooperation depends crucially on the incentive structure of the underlying

social dilemma.

Avenues for future include exploring different ways of endogenizing matching

tailored, not to action assortativity, but to kin selection, homophily and spatial in-

teraction. For example, when interactions are spatial, then individuals’ choices to

relocate would determine evolving assortativity.



Chapter 4

A Beauty Contest with Flexible

Information Acquisition

Chapter Abstract

This paper studies beauty-contest coordination games in a flexible information ac-
quisition setting à la Yang (2015). A continuum of players receive payoffs based on
the squared distances of their actions from an unobserved fundamental state of the
world and the average action among all players. Each player receives a signal whose
probability distribution conditional on the value of the fundamental is part of their
strategy. Thus, she chooses not only how precise but also what kind of information
she wants to get about the fundamental, while paying a cost linear to the reduc-
tion of entropy. Necessary conditions are derived for well-behaved equilibria. The
case of aggregately affine equilibria (AAE) where the average action is an affine func-
tion of the fundamental is examined in detail. AAE exist only if the fundamental is
normally distributed. Higher information costs, a stronger coordination motive or a
more concentrated distribution of the fundamental lead to less attention being paid
to the fundamental. When information costs are high, there is a unique equilibrium
where players do not acquire information. For a large region of the parameter space,
there exists a unique equilibrium within the classes of AAE and equilibria without
information acquisition. Interestingly, when the coordination motive is high and for
relatively low (but bounded away from zero) information costs, there is a multiplic-
ity of equilibria within the classes considered, suggesting that flexible information
acquisition technology can be the source of multiple equilibria.

52
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4.1 Introduction

This paper studies a beauty-contest coordination game (as formulated by Morris

and Shin, 2002) under a “flexible information acquisition” technology à la Yang (2015).

Beauty contests capture situations where “players wish to do the right thing [. . . ] and

do it together” (Myatt and Wallace, 2012). A continuum of agents have two motives:

a “fundamental” motive in the sense that they want to take actions “close” to the

value of some unobserved but “real” random variable, and a “coordination” motive

in the sense that they want their action to be “close” to the average action of the

population. Information on the unobserved random variable (henceforth the fun-

damental) can be extremely valuable to the players. It can help them to be close to

the realized value of the fundamental and also serve as a coordination device. If ac-

quiring such information is costly, then players face a trade-off between the benefit

of the extra piece of information weighed against its cost.

Players are assumed to be (rationally) inattentive (Sims, 1998, 2003, 2006): they

are constrained in the amount of information they can process, and so they need to

focus their attention on the most important events for them. Unlike in the work of

Sims, though, instead of this constraint being exogenously given, it is determined

endogenously in a “flexible” manner following Yang (2013, 2015) and Yang and Zeng

(2015) who use this technology in binary choice models. Each player is allowed to

relax her constraint by paying a cost. In this way, the information acquisition tech-

nology is flexible from two perspectives: players decide on the amount of informa-

tion they wish to purchase as well as on the best way to use this limited information

(to which events they want to pay more attention). They do so by choosing the func-

tional form of the distribution that their signals are going to follow.

Several questions arise. Firstly, can flexible information acquisition technology

be extended to continuous choice models? Moreover, how do information costs, the

coordination motive, and the distribution of the fundamental affect the way players

acquire information? Additionally, issues of equilibrium multiplicity that appear in

Yang (2015) are addressed: do multiple equilibria arise because of the game struc-

ture or because of the information acquisition technology? In short, it is shown that

the concept of flexible information acquisition can be successfully extended to en-

vironments of continuous choice. Also, a higher coordination motive, higher infor-

mation costs and more concentrated fundamental lead to less attention being paid
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to the fundamental. Finally, multiple equilibria can arise because of the informa-

tion acquisition technology, even though the full-information version of the game

being played has a unique equilibrium.

Beauty contest games have been extensively studied in the literature. Motivat-

ing examples in economics for such interactions come from industrial organiza-

tion where players are assumed to be competing in settings with strategic comple-

mentarities (see Myatt and Wallace, 2012, 2015), financial markets where players

are traders and try to forecast the value of the fundamental while competing with

each other (Allen, Morris, and Shin, 2006) or investment games (as in Angeletos and

Pavan, 2004). Such games have also been used to model policy choices of politi-

cal party members (Dewan and Myatt, 2008). The study of beauty contests gained

so much attention because of the profound intuitions it can offer on the way that

economies aggregate information as well as on the value that information has for

economies.

Since the seminal work of Morris and Shin (2002), the literature that studies the

value of information in these coordination games has been growing constantly, with

the social value of information being in focus. This literature studies under which

conditions more “public” or more “private” information is socially optimal. Most

authors consider exogenous information structures where players cannot affect the

information they get and only make decisions based on the signals they receive.

Exceptions include Myatt and Wallace (2012, 2015), Dewan and Myatt (2008) and

Hellwig and Veldkamp (2009). In their models, the way players obtain information is

endogenized as they can affect the information they get by purchasing more signals

from different sources or by bearing a cost in order to increase their signal precision.

Despite endogenizing the information acquisition process, previous research has

assumed specific functional forms for the distribution of the fundamental as well

as of the signals that the players observe, typically taken to be Gaussian. In these

cases, they identify linear equilibria i.e. equilibria where the players’ actions are

linear or affine functions of the signals they receive.

This paper builds on the recent article by Yang (2015) who introduced the notion

of flexible information acquisition based on the work on rational inattention (Sims,

1998, 2003; Woodford, 2009). Yang (2015) studied a two-player coordination game

with two strategies (invest or not) that has a global-game structure. Players want to

always invest if the value of the fundamental is high, to never invest when the fun-
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damental is low, and to invest only if the other player invests as well for fundamental

values between two thresholds. Each of the two players observes a signal and takes

an action conditional on it. Crucially, they decide the distribution that their signal

will follow conditional on the value of the fundametnal. This comes at a cost that is

linear in Shannon’s measure of mutual information between the distribution of the

fundamental and the player’s chosen distribution over signals.1 The result is that

players want to obtain information about the fundametal only if its prior distribu-

tion is concentrated enough between the two “threshold” values described earlier

and information costs are low enough. When costs are relatively high, he identifies

a unique equilibrium of the game whereas for low information costs there is multi-

plicity of equilibria.

Yang (2015) and the model presented here share two main features: players in

both models (i) use a flexible information acquisition technology and (ii) play a co-

ordination game. On the other hand, there are three main differences. Firstly, Yang’s

players face a binary decision problem whereas a continuous action set is studied

here. Secondly, the equilibrium structure of the full-information version of the two

games is different. Multiple equilibria can arise in Yang’s investment game whereas

in beauty contests under full information there exists a unique equilibrium. Lastly,

instead of using the cost of miscoordination as a parameter, the coordination mo-

tive of individuals is explicity modeled in beauty contests and enters players’ objec-

tive functions as a parameter. Given these differences, the questions laid out earlier

can be addressed.

As a general result, an extension of Yang’s (2015) apparatus to settings with con-

tinuous choice can be achieved. If the action space is unbounded and the prior

has a full support over an unbounded space, it is possible to identify well-behaved

equilibria in which players acquire information. Additionally, it is shown that affine

equilibria (where players’ average action is an affine function of the fundamental)

exist only if the fundamental is normally distributed. Focusing on these equilibria

the following results are established.

As in beauty contests the coordination motive is explicitly modeled as a param-

eter, it allows one to study how it affects equilibrium outcomes. When used in con-

1Mutual information (see for example Kolmogorov, 1956; Shannon, 1948) has to do with the
reduction of entropy. It measures the reduction of the “randomness” of one random variable once
the value of another random variable is known.
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junction with the other parameters of the model (the cost of information and the

variance of the distribution of the fundamental), one can obtain rich comparative

statics results. Thus, the exact way in which these variables affect the (equilibrium)

level of attention being paid to the fundamental can be explored. In line with in-

tuition, higher costs lead to less attention being paid to the fundamental as infor-

mation about its value becomes more expensive. Similar results are obtained for a

more concentrated fundamental: If players know approximately where the funda-

mental lives (when the prior has low variance), the marginal benefit from acquiring

information is quite low and thus, less of it is obtained.

Possibly against intuition, a higher coordination motive leads to less attention

being paid to the fundamental – even to the point of no information acquisition.

The mechanism through which this works is that if players have a strong coordina-

tion motive, knowing the actual value of the fundamental is not of particular help

to them. This is because coordinating close to the actual value of the fundamental

is expensive as it requires more information. So, it is cheaper for them to obtain

less information and focus their actions around the ex-ante expected value of the

fundamental. In this way, they cannot be too far away from efficient coordination

while still paying some attention to the fundamental.

Finally, as discussed above, in the full-information version of Yang’s game many

equilibria appear. It is therefore unclear whether the multiplicity of equilibria stems

from the equilibrium structure of the game studied or whether it emerges from the

flexible information acquisition technology. In a beauty contest game with full in-

formation there is a unique equilibrium where all players take actions equal to the

(perfectly known) value of the fundamental. Thus, studying a beauty contest with

flexible information acquisition, as is done here, can shed light on this issue. It is

found that, indeed, in the case of a normally distributed prior multiple affine equi-

libria arise when the coordination motive is high and for relatively low (but bounded

away from zero for any given value of the coordination motive) information costs.2 A

unique equilibrium is present in all other parameter combinations. So, it seems that

the information acquisition technology is (at least partially) responsible for many

equilibria appearing under some conditions, therefore making coordination harder

for players to achieve.

2Similar results are also found by Myatt and Wallace (2012) when entropy-reduction costs are
being assumed.
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The layout of the paper is as follows: Section 4.2 sets up the model while in Sec-

tion 4.3 best responses that follow a smoothness condition are being calculated.

Necessary conditions for “well-behaved” equilibria and equilibria where no infor-

mation acquisition takes place are derived in Section 4.4. Section 4.5 takes an ex-

haustive look into the case of aggregately affine equilibria where the average action

of the population is an affine function of the realization of the fundamental. Section

4.6 concludes.

4.2 Model Setup

This section introduces the beauty contest game as is set up by Myatt and Wallace

(2012) (based on Morris and Shin, 2002) and the information acquisition technology

of Yang (2015).

A continuum of identical expected utility-maximizing players, who are indexed

by i ∈ [0, 1], are playing a coordination game. Each of them obtains payoff given by

ui = ū − (1−γ)(ai −θ )2−γ(ai − ā )2−C ((Si , qi ))

where ai ∈R is player i ’s action and ā =
∫ 1

0
ai di represents the agents’ average ac-

tion.3 The variable θ (the fundamental motive) is a random variable that has a con-

tinuous probability density function (PDF) p over Θ =R with a well-defined mean

θ̄ and variance σ2
θ .4 The distribution p is assumed to be common knowledge or a

common prior that the players have on the fundamental. Players are incentivized

in two different ways: a) they want to coordinate and b) they want to get close to

the realized value of θ . The parameter γ ∈ (0, 1) determines how strong the coordi-

nation motive is. Finally, ū is a variable that may depend on the action profile of

the whole population (e.g. it may depend on the variance of the players’ actions)

but cannot be affected by a single player’s action as there is a continuum of players

and a single player’s action has zero contribution to any aggregate variable. In any

case, ū is strategically irrelevant but may be relevant for welfare. Since the focus is

on the strategic interaction between players, the expression that determines ū does

3It is assumed that agents act in a way such that the value of ā is well-defined. For a discussion
on this point see Myatt and Wallace (2012, footnotes 3 and 6).

4It is also assumed that p is continuously differentiable (p ∈C 1).
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not affect the results reported here.

Agents can obtain information on the value of θ . They do so by choosing an

information structure that consists of a set of signals Si and a selection of probability

distributions over Si conditional on the value of θ i.e. qi :Θ→∆(Si ).5 The signal that

player i receives is drawn independently of the signals of the rest of the players and

will follow the conditional distribution qi (θ ). The function C ((Si , qi )) represents the

cost of obtaining this information.

The cost of information acquisition is linear in Shannon’s mutual information

measure between qi and p . That is, the more informative the information acquisi-

tion strategy (Si , qi ) is, the higher the cost of information. More explicitly, the cost of

information is given by

C ((Si , qi )) =µ · I ((Si , qi )) =µ

�

∫

Θ

∫

Si

qi (si |θ ) log qi (si |θ )dsi p (θ )dθ− (4.1)

−
∫

Si

∫

Θ

qi (si |θ )p (θ )dθ log

�∫

Θ

qi (si |θ )p (θ )dθ
�

dsi

�

where µ ≥ 0 is the cost per unit of information.6 So, a beauty contest with flexible

information acquisition can be summarized by a tuple (p ,γ,µ).

Timing: The timing is as follows:

1. All players decide upon their information acquisition strategy.

2. The value of θ is realized.

3. Players receive a signal according to their information acquisition strategy.

4. Players take their actions a ∈Θ contingent on the signal they received.

Player i has to decide upon a strategy that consists of three parts: (a) a signal

space Si ∈ 2R – a subset ofR; (b) a (p -measurable) mapping qi :Θ→∆(Si ) that gives

a probability distribution on Si conditional on the value of θ ;7 and (c) a mapping

5Throughout the paper,∆(X )will represent the space of probability distributions over X .
6Throughout the paper, log denotes the natural logarithm and so the unit of measurement of

information is the nat. If the logarithms were taken with a base 2, the unit of measurement of infor-
mation would be the bit. As Yang (2015) points out, the choice of the unit of measurement does not
change the results as 1 bit equals log 2 nats.

7In what follows, qi (si |θ ) denotes the PDF of si conditional on the value of θ .
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λi : Si →∆(Ai ) from the signal space to the space of probability distributions over the

action space Ai = R. The mapping λi is required to be measurable and integrable

with respect to the measure over the signals induced by qi on p .8 The probability

density with which player i follows action ai conditional on receiving signal si will

be denoted by λi (ai |si ).

Let player i ’s strategy be denoted by mi = (Si , qi ,λi ). The whole population’s

strategy profile will be denoted by m and the strategy profile of the population ex-

cluding player i by m−i . In what follows, the average action of the population con-

ditional on the realization of the random variable θ will be denoted by

ā (θ )≡
∫ 1

0

∫

Ai

∫

Sj

a jλ j (a j |s j )q j (s j |θ )ds j da j d j .

4.3 Best Responses

In this section the best response correspondence for a player i is calculated. The

steps taken for this calculation are the following: It is firstly shown that an optimal

strategy for a player i should use (a) a signal space that has the same cardinality as

the action space and (b) a probability distribution over actions conditional on the

signal received that is degenerate (i.e. assigns all probability mass to a single ac-

tion).9 Given the result from the first step, player i ’s best response can be summa-

rized by a function ri :Θ→∆(Ai ) that gives a probability distribution over the action

space conditional on the value of θ . As a second step, necessary conditions that ri

has to satisfy if it is to be a best response are derived. This is done by considering

(local) variations of ri and demanding that an optimal ri should do at least as well

as any of these variations. By taking first order conditions, a unique form of ri when

ā (θ ) (the expected average action conditional on the value of the fundamental) is

strictly increasing is identified.

8Formally λi : Si →∆(Ai ) and λi ∈ L 2(Si , qi dp ).
9This result is well known for cases where the number of choices is finite (e.g. Woodford, 2008;

Yang, 2015).
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4.3.1 Determining the signal space and the signal-to-action func-

tion

In order to determine the optimal signal space that a player will use let m−i be any

strategy profile that player i ’s opponents are using. Let si be the signal that player i

obtained by following the information acquisition strategy (Si , qi ). Given si and m−i ,

player i will form a belief on the value of θ and from that (by pushing forward) on

the value of ā .10 From these beliefs, player i will form expectations θ i and ā i on the

respective variables.

Lemma 4.1. For any strategy profile of player i ’s opponents m−i , any information ac-

quisition strategy (Si , qi ) of player i , and any signal si that player i may have received,

player i has a unique optimal action given by

ai = (1−γ)θ i (si ; (Si , qi ))+γā i (si ; (Si , qi ), m−i ).

Proof.

Let p i (θ |si ; mi ) denote the distribution of θ conditional on the event of player i

receiving signal si while using information acquisition strategy (Si , qi ). This distri-

bution has to satisfy Bayes’s law:

p i (θ |si ; (Si , qi )) =
qi (si |θ )p (θ )

∫

Θ
qi (si |θ ) p (θ )dθ

. (4.2)

If player i knows player j ’s strategy, she can also infer the distribution of player j ’s

signal (conditional on i receiving signal si ) by using Bayes’s rule. That would be:

q i
j (s j |si ; (Si , qi ), m j ) =

∫

Θ

q j (s j |θ ) p i (θ |si ; (Si , qi ))dθ . (4.3)

So, player j ’s action distribution from player i ’s viewpoint will be

νi
j (a j |si ; (Si , qi ), m j ) =

∫

Sj

λ j (a j |s j ) q i
j (s j |si ; (Si , qi ), m j )ds j (4.4)

10Formally it should be ā−i but as the contribution of a single player to the mean action of a con-
tinuum of players is zero, ā−i = ā .
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and player j ’s expected action from i ’s viewpoint will be

a i
j (si ; (Si , qi ), m j ) =

∫

A j

a j ν
i
j (a j |si ; (Si , qi ), m j )da j . (4.5)

So, from player i ’s viewpoint, the expected average action of her opponents (which

is equal to the expected average action over the whole population as player i ’s action

cannot affect the mean action in a continuum population) will be

ā i (si ; (Si , qi ), m−i ) = ā i
−i (si ; (Si , qi ), m−i ) =

∫ 1

0

∫

A j

a j ν
i
j (a j |si ; (Si , qi ), m j )da j d j (4.6)

and her expected value (estimation) of the fundamental will be

θ̄ i (si ; (Si , qi )) =

∫

Θ

θp i (θ |si ; (Si , qi ))dθ . (4.7)

From i ’s viewpoint, given that she received signal si , i ’s expected utility is

Ei (ui |si ) =

∫

Θ

�

ū − (1−γ)(ai −θ )2−γ(ai − ā )2−C (Si , qi )
�

p i (θ |si ; (Si , qi ))dθ . (4.8)

Now assume that player i has already fixed her information acquisition strategy and

all other players have decided upon their strategy. Player i then receives her signal

si . Given that she is maximizing expected utility, her action has to satisfy the follow-

ing first order condition.

a ∗i (m−i |si ; (Si , qi )) = (1−γ)
∫

Θ

θp i (θ |si ; (Si , qi ))dθ + (4.9)

+ γ

∫

Θ

ā (θ )p i (θ |si ; (Si , qi ))dθ

= (1−γ)
∫

Θ

θp i (θ |si ; (Si , qi ))dθ +γā i (si ; (Si , qi ), m−i )

From the equation above it is seen that – as long as the integrals appearing in the

right-hand side of equation (4.9) are well-defined – there is a unique value of a ∗i that

satisfies the above condition.
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In light of the above result, in an optimal strategy (best response) of player i each

signal should map to a unique action ai ∈ Ai rather than a distribution over actions.

More than that, there should be a unique signal that maps to each action. Con-

sider two strategies: mi = (Si , qi ,λi ) where each action has a unique signal that

maps to it (through λi ) and m ′ = (S ′i , q ′i ,λ′i ) where some actions (measurable un-

der the measure induced on Ai by q ′i and λ′i ) have multiple signals that map to

them. Denote by S ′(ai ) the set of signals that map to action ai under λ′i i.e. S ′(ai ) =
�

s ′i ∈ S ′i : Prλ′i
�

ai |s ′i
�

= 1
	

and by s ai the (unique) signal that maps to action ai un-

der λi for all ai ∈ Ai . Let also q (s ai |θ ) =
∑

s ′∈S ′(ai )
q ′(s |θ ) for S ′(ai ). It is clear that

the expected value of ui from the two strategies will be the same as they give the

same probability density on actions for the same values of θ . It is also true that

I (S ′i , q ′i ) > I (Si , qi ) due to the convexity of mutual information in q (see Fozunbal,

McLaughlin, and Schafer, 2005). Therefore, m ′
i is more expensive to player i than

mi and thus not an optimal choice.11

From Lemma 4.1 and the result of the previous paragraph, the signal-to-action

function λi has to be a bijection from Si to Ai .12 Thus, the signal space should have

the same cardinality as the action space.13 So, player i ’s signal space can be reduced

to be a space isomorphic to Ai = R. Since signals are important only as far as they

prescribe probabilities over actions, the exact choice of the signal space will not

change players’ actions as long as it is isomorphic to R and λi is a bijection. One

such example is that the signal space isR andλ(ai |si ) =δ(ai −si ): Dirac’s delta func-

tion. For ease of exposition, in what follows it is assumed that players useR as their

signal space and Dirac’s delta as their signal-to-action mapping i.e. a player i , upon

receiving signal s ∈R, will follow action ai = s .

Players are going to use the whole of R as a signal space but the notation Si to

denote player i ’s signal space will be kept. It is also the case that Ai =Θ =R for all i

but the action space will be explicitly mentioned in order to avoid confusion.

11For similar arguments see Woodford (2008, 2009) and Yang (2015).
12In the sense that λi gives probability one to a unique action ai for each signal si ∈ Si and for

each action ai ∈R there exists a unique signal for which Prλi
(ai |si ) = 1.

13This should happen even if some of these signals are never used. Of course, if any of the signals
is not to be used, this would immediately mean that the corresponding action would never be used
by player i .
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4.3.2 Determining the form of the information acquisition strat-

egy

What remains is to determine how players decide upon their information acquisi-

tion strategy.

Keeping in mind the result of subsection 4.3.1, player i ’s strategy can be sum-

marized by a function ri : θ → ∆(Ai ) which gives a probability distribution on the

action space of player i conditional on the value of θ . So, by writing that the infor-

mation acquisition strategy of player i is ri (ai |θ ), it is meant that player i is using

strategy mi = (R, qi (si |θ ),δ(ai − si ))with qi (si |θ ) = ri (ai |θ ).
Now, observe that from player i ’s point of view, the only way that the other play-

ers are affecting her payoff is through the effect of their strategies on the average

action ā . Thus, player i is not affected by the way that the particular ā (θ ) comes

about. This means that the object to which she is best-responding is the function

ā (θ )which summarizes all of her opponents’ strategies.

So, with a slight abuse of notation, the decision problem of player i is to maxi-

mize the following:

V (ri , r−i ) = U (ri , r−i )−µI (ri ). (4.10)

Where

U (ri , r−i ) = ū − (1−γ)
∫

Θ

∫

Ai

(ai −θ )2ri (ai |θ )p (θ )dai dθ − (4.11)

− γ

∫

Θ

∫

Ai

(ai − ā (θ ))2ri (ai |θ )dai dθ

with ā (θ ) given by

ā (θ ) =

∫ 1

0

∫

A j

a j r j (a j |θ )da j d j . (4.12)
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The mutual information between ri and p is given by

I (ri ) =

∫

Θ

∫

Ai

log

�

ri (ai |θ )p (θ )
p (θ )

∫

Θ
ri (ai |θ )p (θ )dθ

�

ri (ai |θ )p (θ )dai dθ = (4.13)

=

∫

Θ

∫

Ai

log(ri (ai |θ ))ri (ai |θ )p (θ )dai dθ −
∫

Ai

log(Ri (ai ))Ri (ai )dai

where Ri (ai ) =
∫

Θ
ri (ai |θ )p (θ )dθ is the marginal of action ai .

As a first result, it is easy to show that if information is costless, player i has a

unique best response to any ā (θ ).

Proposition 4.2. Let (p ,γ,µ) be a beauty contest with flexible information acquisi-

tion. If µ = 0, then for any ā (θ ), player i has a unique best response that gives a

probability mass of 1 to the action a ∗(θ ) = (1−γ)θ +γā (θ ).

Proof. Asµ= 0, player i can obtain full information on the value ofθ without paying

any costs. So, her optimization problem becomes

max
a ∗(θ )

−(1−γ)(a ∗(θ )−θ )2−γ(a ∗(θ )− ā (θ ))2

Taking a first order condition, one obtains that

a ∗(θ ) = (1−γ)θ +γā (θ ).

So, given any ā (θ ), player i has a unique best action a ∗(θ ). Thus, her best response

would be to give a probability mass of 1 to that action (conditional on θ ). That is,

her best response would be to use ri (ai |θ ) = δ(ai −a ∗(θ )) with δ being Dirac’s delta

function.

The analysis from now on will focus on strategy profiles that satisfy some conti-

nuity and smoothness conditions. In particular the following are defined:

Definition 4.1 (Monotone full-support profile). A strategy profile r will be called a

monotone, full-support profile if it satisfies the following conditions:

1. for (almost) all i ∈ [0, 1] player i ’s action ai has a well-defined mean and vari-

ance
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2. the average action function ā (θ ) =
∫ 1

0

∫

A j
a j r j (a j |θ )da j d j is twice continu-

ously differentiable (ā ∈C 2)

3. the “best action” function a ∗ : Θ → A, defined as a ∗(θ ) = (1− γ)θ + γā (θ ), is

bijective with a ∗′(θ )> 0 for all θ ∈Θ.

The inverse of a ∗ will be denoted byφ(x ). i.e. a ∗(θ ) = x ⇔φ(x ) = θ .

Notice that condition 3, which implies that limθ→±∞a ∗(θ ) = ±∞, is not too re-

strictive as it is satisfied for all weakly increasing ā . It is also satisfied for decreasing

ā as long as ā ′(θ ) > −(1− γ)/γ, even though such behavior would not make intu-

itive sense. More than that, condition 1 implies that ā (θ ), and therefore a ∗(θ ), are

well-defined for all θ .

Any given monotone full-support strategy profile summarized by an ā , along

with the distribution p of the fundamental, induces a probability distribution of the

best action (see Definition 4.1 condition 3). The PDF of this probability distribution

will be denoted by g and is given by

g (x ) = p (φ(x ))φ′(x ).

Definition 4.2 (Smooth strategy). A strategy ri of player i will be called smooth if

ri (ai |θ ) is continuous with respect to the Lebesgue measure (contains no atoms) for

all θ ∈Θ and ai has a well-defined mean and variance.

As two limiting cases of smooth strategies are the one where r (ai |θ ) =δ(ai− f (θ ))

for some function f :Θ→ Ai and the one where r (ai |θ ) =δ(ai−c ) for some constant

c . In the first case, player i ’s action is deterministic. For each value of θ she will use

action f (θ ) with probability one. This means that she gets an infinite amount of

information and therefore has to pay an infinite cost. This, of course, would not be

optimal unless µ = 0, as was seen in Proposition 4.2. On the other extreme, when

r (ai |θ ) =δ(ai − c ), player i plays action c with probability one independently of the

value of θ . This conveys no information about θ to her. This would be optimal

when information costs are too high. The following proposition provides necessary

and sufficient conditions for a smooth best response (a strategy in-between these

two extremes) to exist.



4.3: Best Responses 66

Proposition 4.3. Let (p ,γ,µ) with µ > 0 be a beauty contest with flexible informa-

tion acquisition. Let also r−i be a monotone, full-support strategy profile of player i ’s

opponents for which the variance of the best action isσ2
a ∗ .

Player i has a smooth best response to ri if and only if µ ∈ (0, 2σ2
a ∗). This smooth

best response is unique and is given by

r (ai |θ ) =R (ai )
a ∗′(θ )
p (θ )

1
p
πµ

exp

�

−
(ai −a ∗(θ ))2

µ

�

where

R (ai ) =F −1
ξ

�

exp(µπ2ξ2) ·Fx

�

g (x )
�

(ξ)
�

(ai ).

Proof. See Appendix C.2.1.

In the above, Fx and F −1
ξ denote the Fourier and inverse Fourier transforms

defined as

Fx [ f (x )](ξ) =

∫ +∞

−∞
f (x )exp(−2πı xξ)dx (4.14)

andF −1
ξ [F (ξ)](x ) =

∫ +∞

−∞
F (ξ)exp(2πı xξ)dξ (4.15)

respectively (ı is the imaginary unit). Notice that Fx [g (x )] is closely related to the

characteristic function of the random variable x .14 In the rest of the paper, the terms

“best response to r−i ” and “best response to ā (θ )” will be used interchangeably

as all monotone, full-support profiles r−i that yield the same ā (θ ) will lead to the

same best response from player i .15 In the Appendix some examples are provided

to demonstrate what solutions to the decision problem look like in simple situations

where θ is normally distributed and ā is affine.

In any strategy player i might use, she receives a signal si which prescribes a

unique action ai for her to play (see Lemma 4.1). So, given this signal, she forms a

posterior about belief about the best action. One would expect that the prescribed

action ai should coincide with the expectation of the best response. This intuition is

14In particular, the characteristic function of random variable which is distributed accord-
ing to a probability density function p is ψ(ω) =

∫ +∞
−∞ exp(ı xω)p (x )dx whereas Fx [p (x )](ξ) =

∫ +∞
−∞ exp(−2πı xξ)p (x )dx .

15Recall that ā (θ ) =
∫

[0,1]\i

∫

A j
a j r j (a j |θ )da j d j .
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confirmed by the following proposition. The proposition also shows what the effect

of the information cost to the player’s best response is.

Proposition 4.4. Let (p ,γ,µ)be a beauty contest with flexible information acquisition

and r−i be a monotone, full-support strategy profile of player i ’s opponents for which

Var(a ∗) = σ2
a ∗ > µ/2. In player i ’s smooth best response, her posterior on the best

action a ∗ has a PDF given by

%(a ∗|ai ) =
1

p

2πµ
exp

�

−
(ai −a ∗)2

µ

�

.

Proof. From Bayes’s law, one gets:

%(x |ai ) =
τ(ai |x )g (x )

R (ai )
(4.16)

where τ is the PDF of ai conditional on the best action x . As a ∗(·) is bijective with

inverse φ(·), one can derive τ from the result of Proposition 4.3 with a change of

variable:

τ(ai |x ) =
R (ai )

p (φ(x ))φ′(x )
1
p
πµ

exp

�

−
(ai − x )2

µ

�

=R (ai )
1

g (x )
1
p
πµ

exp

�

−
(ai − x )2

µ

�

and comparing with (4.16), one obtains

%(x |ai ) =
1
p
πµ

exp

�

−
(ai − x )2

µ

�

where x is the best action.

The above result states that, when best responding, players are becoming more

uncertain about what action they should follow as information becomes more ex-

pensive. It also states that a player’s posterior belief about the best action is always

normally distributed, independently of the functional form of the prior p .

Taking a closer look at the result of Proposition 4.3 in light of Proposition 4.4,

the effect of an increasing cost µ becomes clear. A higher µ forces the player to

have a less accurate posterior on what the best action is (as a more accurate belief

would be more costly). The only other part where µ enters the player’s strategy is in

R (ai ). For r (ai |θ ) to be a (conditional) probability distribution
∫ +∞
−∞r (ai |θ )dai = 1
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must hold for all θ . As higher µ induces more dispersed %(x |ai ), in order for this

condition to be satisfied, R needs to become more concentrated. When the value

of µ reaches 2σ2
a ∗ , R needs to have zero variance which means that player i stops

acquiring information.

4.4 Equilibrium

4.4.1 Smooth, monotone, full-support equilibria

Having established conditions for the existence of a smooth best response to mono-

tone, full-support strategy profiles, attention is now shifted towards equilibria. In

particular, the focus will be on the class of (Nash) equilibria whereby individual

strategies are smooth and the whole strategy profile of the population is monotone

and has full-support. Such equilibria are defined formally in the following defini-

tion.

Definition 4.3 (Smooth, monotone, full-support Equilibrium). An action profile r is

called a smooth, monotone, full-support equilibrium (SMFE) if

1. r is a monotone, full-support profile,

2. ri is smooth for all i ∈ [0, 1] and

3. ri is a best response to r for all i ∈ [0, 1].

The next result follows from the definition.

Corollary 4.5. Consider a beauty contest with flexible information acquisition. Then

all SMFE are symmetric i.e. in equilibrium all players use strategies that are equal to

the same strategy r almost everywhere.

Proof. As there is a continuum of agents, any single player i cannot influence the av-

erage action taken by the population for any value of θ . This means that all players

face the same decision problem. Recall that each player has a unique best reply (up

to deviations of measure zero, see Proposition 4.3) to a monotone, full-support pro-

file. Thus, in equilibrium, the strategies that the players are using should be equal

to the same strategy r almost everywhere.
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The following necessary condition for an SMFE is established.

Proposition 4.6. Let B = (p ,γ,µ) be a beauty contest with flexible information ac-

quisition. Let also ā (θ ) ∈C 2 be the average action function of an SMFE of B . Then

ā (θ ) = θ +
µ

2(1−γ)(1+γ(ā ′(θ )−1))

�

p ′(θ )
p (θ )

−
γā ′′(θ )

1+γ(ā ′(θ )−1)

�

. (4.17)

Equivalently, the best action function a ∗(θ ) should satisfy

a ∗(θ ) = θ +
µγ

2(1−γ)
1

a ∗′(θ )
d

dθ

�

log
�

p (θ )
a ∗′(θ )

��

(4.18)

and its inverseφ(x ) should satisfy

φ(x ) = x −
µγ

2(1−γ)
d

dx
log

�

p (φ(x ))φ′(x )
�

. (4.19)

Proof. See Appendix C.2.2.

4.4.2 Equilibria without information acquisition

It might be possible for equilibria where no information acquisition takes place to

exist. Such an equilibrium would be one where players’ actions do not vary condi-

tional on θ . In this case, players obtain no information (I (Si , qi ) = 0) and the cost

they have to incur is zero. Thus, from player i ’s point of view, the average action

does not vary with θ (ā (θ ) = ā ). A necessary condition for such an equilibrium to

exist is derived in what follows.

Lemma 4.7. In an equilibrium where no information acquisition takes place, all

players play θ̄ =
∫

Θ
θp (θ )dθ with probability 1 independently of the value of θ .

Proof.

Assuming that the rest of the population is using strategies without information

acquisition, player i is facing a population where ā (θ ) = ā . Player i ’s expected pay-

off from not acquiring information is

eV (ai ) = ū +

∫

Θ

�

−(1−γ)(ai −θ )2−γ(ai − ā )2
�

p (θ )dθ
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and so, if she maximizes, she has to choose

a ∗i = γā + (1−γ)θ̄ .

Now for a strategy like that to be an equilibrium strategy, it has to be that a ∗i = ā and

thus, ā = θ̄ .

Notice that for the above result the assumption that γ < 1 is crucial. This is be-

cause if the players have no fundamental motive (γ= 1), then the condition a ∗i = ā is

not enough to pin down the equilibrium as the usual coordination problems arise.

Proposition 4.8. A beauty contest with flexible information acquisition (p ,γ,µ) ad-

mits a Nash equilibrium without information acquisition if and only if

µ≥ 2(1−γ)2σ2
θ .

Proof. See Appendix C.2.3.

4.4.3 Equilibrium properties

In the previous section necessary conditions that SMFE and equilibria without in-

formation acquisition should satisfy were derived. Although it is not possible to give

a solution to equation (4.18) in closed form, it is possible to describe some proper-

ties that any SMFE should have. These have to do with the behavior of a ∗ close to

±∞ as well as its ex-ante expected value.

It is firstly shown that in any equilibrium (either SMFE or equilibrium without

information acquisition) the ex-ante expected values of ā , a ∗ and θ are equal to one

another. This is obvious in the case of equilibria without information acquisition as

the whole population plays θ̄ =
∫ +∞
−∞θp (θ )dθ with probability one. In the case of

SMFE, the following proposition is provided.

Proposition 4.9. Let r be an SMFE with average action function ā and best action

function a ∗. Then

∫ +∞

−∞
a ∗(θ )p (θ )dθ =

∫ +∞

−∞
ā (θ )p (θ )dθ =

∫ +∞

−∞
θp (θ )dθ = θ̄ .
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Proof. See Appendix C.2.4.

Proposition 4.9 says that the “mean error” that players make is zero. They will

miss their target θ most of the time but on average they should be correct.

Another result is that when θ goes to +∞ (−∞) the difference a ∗(θ )−θ is neg-

ative (positive).

Proposition 4.10. Let r be an SMFE with best action function a ∗. Then limθ→+∞a ∗(θ )−
θ < 0 and limθ→+∞ ā (θ )−θ < 0. Also limθ→−∞a ∗(θ )−θ > 0 and limθ→−∞ ā (θ )−θ > 0.

Proof. By solving condition (4.18) for p one gets

p (θ ) =
p (θ ′)

a ∗′(θ ′)
a ∗′(θ )exp

�

2(1−γ)
µγ

∫ θ

θ ′

a ∗′(t )(a ∗(t )− t )dt

�

(4.20)

for any θ ′ ∈R. And so

p (θ )
a ∗′(θ )

=
p (θ ′)

a ∗′(θ ′)
exp

�

2(1−γ)
µγ

∫ θ

θ ′

a ∗′(t )(a ∗(t )− t )dt

�

.

Now, taking the limit for θ →+∞:

lim
θ→+∞

p (θ )
a ∗′(θ )

=
p (θ ′)

a ∗′(θ ′)
exp

�

2(1−γ)
µγ

∫ +∞

θ ′

a ∗′(t )(a ∗(t )− t )dt

�

.

As limθ→+∞p (θ )/a ∗′(θ ) = 0 (see proof of proposition 4.9) and p (θ ′)/a ∗′(θ ′) for any

θ ′, it has to be that
∫ +∞

θ ′

a ∗′(t )(a ∗(t )− t )dt =−∞

for all θ ′ ∈R. Clearly, as a ∗′(θ ) > 0 for all θ this can happen only if limθ→+∞a ∗(θ )−
θ < 0. A similar argument can be given for the case where θ → −∞. The same

arguments for ā can be given if one takes into account the definition of a ∗(θ ) =

(1−γ)θ +γā (θ ).

The above proposition shows that in equilibrium players are biased towards the

center of the distribution and they take actions with extreme values (compared to

the ex-ante mean of the distribution) less often. An immediate implication of the

above proposition is that there exists θ0 for which ā (θ0) = a ∗(θ0) = θ0.
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Finally, some results on the relationship between the costµ and the variances of

the fundamental and the best action are given.

Proposition 4.11. Let (p ,γ,µ) be a beauty contest andσ2
a ∗ be the variance of the best

action a ∗ in an SMFE. Thenσ2
θ ≥σ

2
a ∗ . In particular

σ2
θ −σ

2
a ∗ =

µγ

2(1−γ)
+

γ

1−γ
E(Var(ai |θ ))+

1

γ
Var(θ −a ∗).

Proof. See Appendix C.2.5.

In conjunction with Proposition 4.3, the following can be shown.

Corollary 4.12. Let (p ,γ,µ) be a beauty contest with flexible information acquisition

that has an SMFE. Then µ< 2(1−γ)σ2
θ .

Proof. As in an SMFE r is the best response to a monotone, full-support strategy

profile that induces a best action function a ∗(θ ), it has to be that Var(a ∗)<µ/2. Us-

ing this along with the result of Proposition 4.11, one gets that

µ< 2(1−γ)σ2
θ −2γE(Var(ai |θ ))−

2(1−γ)
γ

Var(θ −a ∗)< 2(1−γ)σ2
θ .

The boundary 2(1− γ)σ2
θ is an upper bound to the value of µ and is not tight.

What one can tell for sure is that if µ exceeds this value, then (p ,γ,µ) has no SMFE.

4.5 Application: Aggregately Affine Equilibria

In the literature, the notion of a linear equilibrium is often encountered (see for ex-

ample Angeletos and Pavan, 2007; Morris and Shin, 2002; Myatt and Wallace, 2012).

This concept usually means that the action of a player is some linear or affine func-

tion of the signal she receives. Here, the concept of an aggregately affine equilib-

rium (AAE) is introduced. In an AAE, players act in such a way that the average

action across the population given the realization of the fundamental – and hence

the best action too – are linear functions of the realization of the fundamental i.e.

a ∗(θ ) = κθ + b for some κ > 0 and b ∈R. This section studies exhaustively the case

of AAE. This is made possible by the result of the following proposition which shows

that AAE are possible to occur only if the fundamental is normally distributed.
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Proposition 4.13. Let (p ,γ,µ) be a beauty contest with flexible information acquisi-

tion that admits an aggregately affine equilibrium, then p is a normal distribution.

Proof. In an AAE the best action function is given by a ∗(θ ) = κθ +b . So, a ∗′= κ and

a ∗′′= 0. Using that in equation (4.18) one obtains:

κθ + b = θ +
µγ

2(1−γ)
1

κ

d

dθ
log p (θ ).

And thus,

log p (θ ) =

∫

2(1−γ)κ
µγ

((κ−1)θ + b )dθ +C

where C ∈R is an integrating constant. It will have to be chosen so that the condi-

tion
∫ +∞
−∞p (θ )dθ = 1 is satisfied. From the previous equation:

log p (θ ) =
(1−γ)κ
µγ

((κ−1)θ 2+2bθ ) +C .

Completing the square in the brackets and taking the exponential of both sides one

obtains:

p (θ ) = exp(C ′)exp

�

(1−γ)κ(κ−1)
µγ

�

θ −
b

1−κ

�2�

for some other constant C ′. Now, for
∫ +∞
−∞p (θ )dθ = 1 to be satisfied, it has to be that

κ ∈ (0, 1), otherwise the resulting p will not be integrable. It is clear that – for an

appropriate selection of C ′ – the previous expression is a normal distribution with

a mean θ0 = b /(1−κ) and varianceσ2
θ =µγ/(2(1−γ)κ(1−κ)).

In what follows, a normal prior is assumed and the resulting AAE are calculated.

Assume that the fundamental motive of a beauty contest game follows a normal

distribution with meanθ0 and varianceσ2 i.e. p (θ ) = (
p

2πσ)−1 exp(−(θ−θ0)2/(2σ2)).

Using the result of Proposition 4.6, in any SMFE the average action of the population

conditional on the value of θ has to satisfy the following differential equation:

ā (θ ) = θ −
µ(θ −θ0)

2σ2(1−γ)(1+γ(ā ′(θ )−1))
+

µγ

2(1−γ)(1+γ(ā ′(θ )−1))2
ā ′′(θ )
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or equivalently, the best action a ∗ has to satisfy

a ∗(θ ) = θ +
µγ

2(1−γ)
1

a ∗′(θ )

�

−
θ −θ0

σ2
−

d

dθ

�

log a ∗′(θ )
�

�

. (4.21)

In order to identify AAE, by substituting a ∗(θ ) = κθ +b into equation (4.21), one

obtains two solutions for the value of κ:

κ+ =
1

2
+

Ç

σ2− 2µγ
1−γ

2σ
κ− =

1

2
−

Ç

σ2− 2µγ
1−γ

2σ

whereas the corresponding values for b are

b+ =
µγ

2(1−γ)σ2κ+
θ0 b− =

µγ

2(1−γ)σ2κ−
θ0.

Of course, for these solutions to exist, it is required thatσ2− 2µγ
1−γ ≥ 0 which is equiv-

alent to µ≤ (1−γ)2γ σ
2 for γ ∈ (0, 1). It is easy to confirm that a ∗(θ ) = θ⇔ θ = θ0.

Now recall that for an SMFE it is required that Var(a ∗) > µ/2. This condition in

the case of AAE boils down to 2κ2σ2−µ> 0. Solving this condition for µ for the two

cases of κ+ and κ− one gets the following:

1. For an AAE with a ∗′(θ ) = κ+ to exist, it has to be that either

γ≤
1

2
and µ< 2(1−γ)2σ2 or γ>

1

2
and µ<

1−γ
2γ

σ2.

2. For an AAE with a ∗′(θ ) = κ− to exist, it has to be that

γ>
1

2
and µ> 2(1−γ)2σ2.

All the above parameter combinations are compatible with µ≤ (1−γ)2γ σ
2.

Finally, the equilibrium where no information acquisition is taking place is taken

into consideration. As shown in Proposition 4.8) such an equilibrium exists if and

only if µ ≥ 2(1− γ)2σ2. Notice that in such equilibria a ∗′(θ ) = 1− γ for all values of

θ . So, the first derivative of a ∗ is constant even though this is not an SMFE, as the

strategy that the players use is not smooth.

Interestingly, if γ≥ 1
2 andµ ∈

�

2(1−γ)2σ2, (1−γ)2γ σ
2
�

there is multiplicity of equilib-

ria i.e. there exist three equilibria of the classes that are being considered: two SMFE
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Figure 4.1: Aggregately affine SMFE and equilibria without information acquisition
in different regions of µ and γwhen θ is normally distributed with varianceσ2.

(one with a ∗′ = κ+ and one with a ∗′ = κ−) and an equilibrium without information

acquisition (a ∗′ = 1−γ). In all other cases, there is a unique equilibrium within the

classes under consideration. These results are summarized in Figure 4.1.

The multiplicity arises in the case of intermediate values of µ. This comes in

sharp contrast to the result of Yang (2015) who observes multiplicity of equilibria

for low values of the information cost – despite the game studied here and the one

studied in Yang (2015) both being coordination games.

When information is cheap, players obtain more of it and the game gets closer to

a full-information one. In Yang’s setting the full information game has many equi-

libria for a range of values of the random variable, this multiplicity is recovered when

information costs are low. It is therefore unclear whether the multiplicity of equilib-

ria is present in his model because of the underlying form of the game or because

of the information acquisition technology employed.

Similar to Yang’s result, when costs are low the equilibrium structure of the un-

derlying game is recovered: there is a unique equilibrium where information acqui-

sition takes place. This is also true for the full information case of a beauty contest

(all players play θ ).
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Surprisingly, though, multiple equilibria arise in this setting when the coordina-

tion motive is high (γ> 1/2). Obviously, this cannot stem from the underlying struc-

ture of the game. An intuitive explanation for this result is as follows.

When γ is small, players are able to coordinate to a unique equilbrium where

they acquire information. As γ increases, less information is acquired – as the im-

portance of getting close to the realized value of θ is decreasing and the motive to

coordinate increases. When γ reaches the critical value for which µ = 2(1− γ)2σ2,

the coordination motive becomes so strong that an equilibrium where no player

acquires any information is established: if no player acquires information, they are

sure to perfectly coordinate at θ̄ – saving the costs of acquiring information. When

costs are high, there is no overlapping region where an AAE and an equilibrium with-

out information acquisition coexist. However, when costs are lower, players can still

be acquiring information even when the conditions are there for an equilibrium

without information acquisition to exist, as information is cheap enough.

4.6 Conclusion

This paper extended the concept of flexible information acquisition technology (Yang,

2015) to a setting with continuous action sets: a beauty contest. Necessary con-

ditions for Smooth, Monotone, Full-support Equilibria and equilibria without in-

formation acquisition were derived. Aggregately affine equilibria, where the play-

ers’ average action is an affine function of the fundamental, were found to exist

only in cases where the fundamental is normally distributed. Higher information

costs, higher coordination motives and a more concentrated fundamental lead to

the players paying less attention to the fundamental. For a large set of parameter

combinations, there exists a unique equilibrium within the classes of AAE and equi-

libria without information acquisition. When the coordination motive is high and

information costs are relatively low but bounded away from zero, there is multiplic-

ity of equilibria. This shows that the flexible information acquisition technology is

partially responsible for the appearance of multiple equilibria, even in situations

where the full-information version of the interaction studied has a unique equilib-

rium.



Chapter 5

Conclusion

This thesis studied individuals whose rationality is bounded in distinct ways. In

Chapter 2 individuals were not deliberating their decisions, they were just following

the behavior for which their genes coded. Therefore, the long-run behavior of the

population followed the replicator dynamics. From a more economic perspective,

individuals were viewed as imitating relatively successful behavior as observed in

the population. Even though they were not actually considering the strategic na-

ture of their interactions, they were informed about how well different behaviors

fared on average. In Chapter 3 they were also using behavioral heuristics to make

decisions. They were voting on the way in which they want to be matched while be-

ing reinforced by previously obtained payoffs. It was seen that appropriately chosen

matching processes can lead to efficient outcomes and that under favourable con-

ditions democratic consensus can help populations overcome the tragedy of the

commons.

At the other end of the spectrum, in Chapter 4 individuals were able to make so-

phisticated, strategic decisions but they were uninformed about a payoff-relevant

element, termed “the fundamental.” The acquisition of information was crucial for

them but their information-processing power was limited. As a result, they had to

focus their attention on the events they considered more important. When playing

a beauty contest coordination game, such inattentive individuals were found to be

paying more attention to the payoff-relevant random variable as (i) their coordina-

tion motive or (ii) the cost of information decreased or when (iii) the distribution of

the random variable was highly variant. Importantly, the particular information ac-

quisition technology employed was the source for the appearence of multiple equi-

libria under particular parameter combinations.

As is always the case with scientific research, as questions are answered new

questions appear. Therefore, in a similar sense as Chapter 2, one could ask what

kind of matching rules can make efficient outcomes evolutionarily stable and how

77
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one could maximize the basin of attraction of such evolutionarily stable states.

In the path of Chapter 3, different ways to endogenize matching rules could be

explored. Such endogenization processes could be resulting from collective deci-

sion making (as in the model studied in Chapter 3) but need not be restricted to

that. In one such formulation, the matching process could be decided by a central

planner who is somehow constrained e.g. in not knowing the exact distribution over

strategies of the population or who needs to pay a cost to decrease the entropy of the

matching process. A different way could be that the driver of the evolution of assor-

tativity is some natural process e.g. if individuals’ tendency to match assortatively

is hard-coded and subject to evolutionary pressures.

Finally, in a direction similar to the one of Chapter 4, one could begin by relax-

ing the assumption that individuals are identical in their coordination motives and

informational costs. It is natural to think that some people are better at processing

information than others. Do they do better than less attentive individuals when they

play coordination games or are they unable to exploit their seemingly advantageous

position? What is the welfare loss associated with this heterogeneity? A different

agenda could explore how flexible information acquisition changes results in games

with strategic substitutabilities e.g. where players have anti-coordination motives.

Such research would also need to resolve technical issues that include finding a way

to deal with situations where players’ best responses are not uniquely defined.
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Appendix A

Appendix to Chapter 2

A.1 Finding all equilibria in 2 × 2 games

In this section we provide a tool that makes it easy for one to find and visualize

NEGSs and ESSGSs in the 2 × 2 case. By use of our method, we can easily iden-

tify equilibria of such games by looking for intersections between two lines: one

that depends on the payoffs (the equilibrium curve) and one that depends on the

matching rule in effect (the matching rule curve). An example is shown in Figure

A.1; the equilibrium state is at the intersection of the two lines.

0

1

0 1

φ

x

Matching Rule Curve
Equilibrium Curve

Figure A.1: Example of finding an equilibrium.

In what follows, we analyze games that have a payoff bimatrix of the general form

presented in Table A.1. Without loss of generality, we will assume that A1
1 ≥ A3

2.

Strategy 1 Strategy 2
Strategy 1 A1

1, A1
1 A2

1, A2
2

Strategy 2 A2
2, A2

1 A3
2, A3

2

Table A.1: The general form of a 2×2 game. A1
1 ≥ A3

2.
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A.1.1 The matching rule curve

A matching rule for the 2×2 case, will be of the form f(x) =
�

f1(x1, x2), f2(x1, x2), f3(x1, x2)
�

.

Now notice that under consistency, it can be easily described by only defining one

of the three coordinates fi (x). This is because in order for f to satisfy the equations in

(2.2) (two linearly independent equations in our example of 2 strategies), only one

degree of freedom remains.1 We pick the value of f2(x) – that expresses the extent to

which the two strategies get mixed with one another – to describe the matching rule.

Of course, because there are only two strategies available, the state can be summa-

rized by the proportion of individuals using Strategy 1 (the remaining individuals are

clearly using Strategy 2). We will use x to denote this proportion and thus to express

the state.2 So any matching rule will be described by a functionφ : [0, 1]→ [0, 1]. Un-

der the consistency requirement in (2.2), the three coordinates of f can be calculated

to be:

f1(x ) = x −
1

2
φ(x ) f2(x ) =φ(x ) f3(x ) = 1− x −

1

2
φ(x ). (A.1)

More than that, the conditions 0≤ f1(x ), 0≤ f2(x ) and 0≤ f3(x )must be satisfied for

all x ∈ (0, 1). From these, we get that the valuesφ can take are restricted by:

0≤φ(x )≤ 2x for x ∈
�

0,
1

2

�

, 0≤φ(x )≤ 2(1− x ) for x ∈
�

1

2
, 1
�

. (A.2)

So any consistent matching rule in the case of 2-strategy, 2-person normal form

games can be summarized by a functionφ that satisfies (A.2).

It is now possible for us to draw diagrams that show what matching rules look

like. Examples of graphs of matching rules are given in Figure A.2. A matching rule

is summarized by a line that begins at (0,0), assumes values ‘within’ the triangle

bounded by (A.2) and ends at (1,0).

Under this formalization, the random matching rule will be given by

φ(x ) = 2x −2x 2

1Equations (2.2) are in essence ‘balancing conditions’ similar to condition (2) in Alger and
Weibull (2012). i.e. They ensure that the number of 1-strategists that are matched to 2-strategists
is equal to the number of 2-strategists that are matched to 1-strategists.

2Obviously, x1 = x and x2 = 1− x .
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0

1

0 1

φ

x

Random Matching
Constant Assortativity (α=0.3)

Other Rule

Figure A.2: Examples of Matching Rule Curves.

whereas the complete segregation rule is simply

φ(x ) = 0.

Another example would be the constant index of assortativity rule (Bergström, 2003)

which can be summarized by

φ(x ) = 2(1−α)x (1− x )

where α ∈ [0, 1] is the index of assorativity.

A.1.2 The equilibrium curve

Under any matching rule,it is easy to show that an interior state x ∗ is an equilibrium

iff:

π1(x
∗) =π2(x

∗)⇔

[(A2
2−A3

2)x
∗+ (A1

1−A2
1)(1− x ∗)]φ(x ∗) = 2(A1

1−A3
2)x

∗(1− x ∗) (A.3)

and, looking for boundary equilibria, if φ is differentiable at 0 and at 1, for x = 0 to

be an equilibrium, it must be the case that:

π1(0)≤π2(0) ⇒ (A1
1−A2

1)
∂ φ

∂ x
(0)≥ 2(A1

1−A3
2) (A.4)
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and for x = 1 to be an equilibrium, it must be the case that:

π1(1)≥π2(1) ⇒ (A3
2−A2

2)
∂ φ

∂ x
(1)≤ 2(A1

1−A3
2). (A.5)

Now, provided that there is actually some strategic interaction occurring be-

tween the two players, i.e. either A2
2 6= A3

2 or A1
1 6= A2

1 (or both), then from condition

(A.3) we get two cases:

• If A1
1 6= A3

2, then an interior state will be an equilibrium iff the value of φ for

that state is equal to the value of a function E for that given state. We will call

this function the equilibrium curve of the game and it is given by:

E (x ) =
2(A1

1−A3
2)x (1− x )

(A2
2−A3

2)x + (A
1
1−A2

1)(1− x )
. (A.6)

• In the case where A1
1 = A3

2, then the condition for an interior state to be an

NEGS is:
(

φ(x ) = 0 or

x = A2
1−A1

1

A2
2−A3

2+A2
1−A1

1

(A.7)

Condition (A.7) says that any state for which the two strategies do not mix at all

will be an equilibrium state (obviously, as no strategy gets an advantage over

the other) and, more importantly, that the state
A2

1−A1
1

A2
2−A3

2+A2
1−A1

1
will be an equi-

librium for all matching rules (as long as this value is withing the boundaries

(0,1).

Stability and the Equilibrium Curve If we assume that the matching rule is C 1,

then we can easily check that a state x will be an ESSGS iff

¨

φ(x ) = E (x ) and
∂ φ
∂ x (x )>

∂ E
∂ x (x )

(A.8)

Using the above analysis in conjunction with diagrams like the one in Figure

A.2 can help us spot NEGS and ESSGSs very easily. All one has to do is to plot the

matching ruleφ and the equilibrium curve E on the same diagram. If the two lines

meet at an interior state, then this state is a NEGS. If along with that the equilibrium

curve is above the matching rule to the left of the state and below it to the right of the
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state, then the state is an ESSGS as well. Finally, for the states 0 and 1, one can say

that in order for one of these states to be a NEGS (ESSGS), then it has to be that the

slope of the matching rule is greater than (or equal to) the slope of the equilibrium

curve at that state.

A.1.3 Welfare in 2×2 games

In the case of 2×2 games, by using the formalization introduced above, we can make

equilibrium welfare considerations. What we are interested in is to see how the dif-

ferent equilibria fare in terms of welfare. For a 2×2 game, the welfare at state x when

the value of the matching rule at x isφ is given by:

W (x ,φ) = A3
2+ (A

1
1−A3

2)x +

�

A2
1+A2

2−A1
1−A3

2

�

φ

2
(A.9)

And as long as A2
1+A2

2 6= A1
1+A3

2, solving forφ, we get:

φ =
2(W −A3

2)

A2
1+A2

2−A1
1−A3

2

−
2(A1

1−A3
2)x

A2
1+A2

2−A1
1−A3

2

(A.10)

For any value of W , the above equation gives the set of points on the (x ,φ)plane that

yield an average payoff of W for the population. We will call such lines isogrowth

lines as all points on each of these lines leads to the same growth rate of the pop-

ulation (which is the same as the average payoff). Drawing such lines can help us

visualize what is really happening in terms of welfare under the various matching

rules. More than that, by combining the isogrowth lines with the equilibrium curves

of different games, we can see which matching rules can lead to some (utilitarian)

optimality. An example of an isogrowth diagram is depicted in Figure A.3. Finally,

using the welfare function (A.9) along with the equilibrium curve (A.6) we can cal-

culate the equilibrium welfare in the group selection game and then compare that

to the expected payoff of a player in the normal form game. Such comparisons are

carried out in Section A.2 for two classes of 2×2 games.
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Figure A.3: An example isogrowth diagram.

A.2 Comparative Statics and Welfare analysis for HD and

SH Games

In this section we analyze a number of group selection games with 2 players and

2 strategies under different matching rules. We apply a method that allows us to

graphically portray matching rules and makes the process of finding NEGSs and

ESSGSs as simple as finding the intersections of two curves.3 We also provide com-

parative statics results for the class of matching rules with a constant index of assor-

tativity. We restrict ourselves to analysis of consistent matching rules (see section

2.2.2) throughout this section.

A.2.1 Hawk-dove/chicken

A game often analyzed in the literature of both economics and biology is the Hawk-

Dove (HD) game.4 Players in this game have two available pure strategies: Hawk

(H) and Dove (D). In our formalization, a Hawk-Dove game is a 2 × 2 game with

A2
2 > A1

1 > A2
1 > A3

2.5 The payoff matrices of three Hawk-Dove games are depicted in

Table A.2.

In this game, there are three Nash Equilibria: Two asymmetric ones in pure strate-

gies (H , D ) and (D , H ) and a symmetric one in mixed strategies where both play-

ers play Dove with probability pD =
A2

1−A3
2

A2
1+A2

2−A1
1−A3

2
and Hawk with probability pH =

A2
2−A1

1

A2
1+A2

2−A1
1−A3

2
. In the group selection game the state will be summarized by x which

indicates the proportion of the population that follows D.

3The method is described in Section A.1 of the Appendix in detail.
4Economists usually refer to this game as Chicken rather than Hawk-Dove.
5As a convention in what follows and without loss of generality we will assume that A1

1 ≥ A3
2.
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D H
D 50, 50 40, 80
H 80, 40 0, 0

(a) A2
1+A2

2 > 2A1
1

D H
D 50, 50 40, 60
H 60, 40 0, 0

(b) A2
1+A2

2 = 2A1
1

D H
D 50, 50 20, 60
H 60, 20 0, 0

(c) A2
1+A2

2 < 2A1
1

Table A.2: The payoff matrices of three Hawk-Dove games.

Equilibria of the group selection game

Now, in order to find the NEGS and ESSGSs of the PD game, we follow the method-

ology proposed described in Section A.1 of the Appendix. The equilibrium curves

of the games in Table A.2 are shown in Figure A.4.

0

1

0 1

φ

x

Equilibrium Curve 1
Equilibrium Curve 2
Equilibrium Curve 3

Figure A.4: Equilibrium curves of the HD games in Table A.2.

Random Matching As expected, the unique equilibrium of the group selection

game under the Random Matching rule yields the unique symmetric Nash equi-

librium of the game where a proportion x ∗ = A2
1−A3

2

A2
1+A2

2−A1
1−A3

2
of the population play D .

Complete Segregation Under complete segregation, there is a unique equilibrium

of the group selection game x ∗ = 1 where the whole population follows D .

Constant Index of Assortativity Under a constant index of assortativity rule, the

group selection game has a unique equilibrium given by:

x ∗ =







A1
1−A3

2
1−α +A2

1−A1
1

A2
1+A2

2−A1
1−A3

2
if 0≤α< A2

2−A1
1

A2
2−A3

2

1 if
A2

2−A1
1

A2
2−A3

2
≤α≤ 1

(A.11)
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The equilibrium-finding process is shown in Figure A.5 for constant index of as-

sortativity rules for different values of α. The comparative statics results are sum-

marized in Figure A.6.

0

1

0 1

φ

x

Equilibrium Curve
Random Matching (α=0)

α=0.2
α=0.4
α=0.6
α=0.8

Complete Segregation (α=0)

Figure A.5: NEGS with a constant in-
dex of assortativity in a Hawk-Dove
game.

0

1

0
A2

2−A1
1

A2
2−A3

2
1

x∗

α

ESSGS

Figure A.6: NEGS as a function of the
index of assortativity in a Hawk-Dove
game.

In the HD game, strategies x ∈ [0,
A2

1−A3
2

A2
2+A2

1−2A3
2
) cannot be equilibria of the group

selection game under any (consistent) matching rule due to constraint (A.2) onφ.

Welfare

In order to conduct welfare analysis, we use the methodology described in Section

A.1.3 of the Appendix. The isogrowth diagram of a Hawk-Dove game is shown in

Figure A.7. The comparison of equilibrium welfare in the group selection game and

the normal form game is shown in Figure A.8. Notice that the equilibrium welfare

curve is not defined for x ∈ [0,
A2

1−A3
2

A2
2+A2

1−2A3
2
) as these states can never be attained as equi-

libria of the group selection game. In all HD games, the level of equilibrium welfare

is strictly increasing with the proportion of Doves in the population and thus, max-

imum equilibrium welfare is obtained when the equilibrium state is x = 1 i.e. when

the whole population follows D.

Now, in the case where A2
1 + A2

2 ≤ 2A1
1, maximum equilibrium welfare coincides

with the maximum expected payoff players using symmetric strategies can get in

the normal form game (which is attained when both players play D with certainty).

In the case where A2
1+A2

2 > 2A1
1, the normal form game maximum expected pay-

off (under symmetric strategies) is obtained if both players play D with probability

p ∗D =
A2

1+A2
2−2A3

2

2(A2
1+A2

2−A1
1−A3

2)
. However, when a matching rule that makes x = p ∗D an equilib-

rium is implemented, equilibrium welfare is reduced below A1
1. This is because the
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proportion of Hawk-Dove pairs – which are efficient in the utilitarian sense – is re-

duced in favor of more Hawk-Hawk and Dove-Dove pairs which are not as efficient.

0

1

0 0.2 0.4 0.6 0.8 1

φ

x

W=10
W=20
W=30
W=40
W=50
W=60

Figure A.7: Isogrowth diagram for a
HD game.
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2

1

W

x

Equilibrium Welfare
Normal Form Game Welfare

Figure A.8: Equilibrium welfare and
normal form payoff for a HD game.

A.2.2 Stag hunt

Another game with interesting insights on social behavior is the Stag Hunt.6 In our

notation a SH game will have values A1
1 > A2

2 ≥ A3
2 > A2

1. The payoff matrices of three

SH game are depicted in Table A.3.

S H
S 100, 100 0, 70
H 70, 0 60, 60

S H
S 100, 100 0, 70
H 70, 0 70, 70

S H
S 100, 100 0, 80
H 80, 0 70, 70

Table A.3: The payoff matrices of three SH games.

The game has three Nash equilibria, all symmetric. Two of them are in pure

strategies (S,S) and (H,H) and one in mixed strategies where both players play S with

probability pS =
A3

2−A2
1

A1
1+A3

2−A2
1−A2

2
and H with probability pH =

A1
1−A2

2

A1
1+A3

2−A2
1−A2

2
. Also, we require

that A2
2+A3

2 > A1
1+A2

1 so that even though the pure strategy equilibrium (S,S) is payoff

dominant (i.e. it yields higher payoffs for both players), the pure strategy equilib-

rium (H,H) is risk dominant (i.e. if we assume that players are not sure which strat-

egy their opponent will follow and assign equal probabilities to the two strategies,

then the expected payoff from playing H exceeds the expected payoff from playing

S).7

6For an extensive analysis see Skyrms (2004).
7See Carlsson and Van Damme (1993).
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The importance of the Stag Hunt is that it shows that although the efficient out-

come (S,S) is a Nash equilibrium, it may not always be selected. More than that,

it has been shown that in some stochastic evolutionary models the risk dominant

outcome occurs with probability 1 (Young, 1993) and that in global games, the risk

dominant outcome is the only one that survives iterative elimination of dominated

strategies when noise tends to vanish (Carlsson and Van Damme, 1993). So the lit-

erature suggests that in several environments it is the risk dominant rather than the

payoff dominant outcome that prevails. We show that in our model this inefficiency

can be amended under matching rules with high enough assortativity.

Equilibria of the group selection game

The equilibrium curves of the games in Table A.3 are shown in Figure A.9.

0

1

0 1

φ

x

Equilibrium Curve 1
Equilibrium Curve 2
Equilibrium Curve 3

Figure A.9: Equilibrium curves of the SH games in Table A.3.

Random Matching As before, under the Random Matching rule, as expected, we

get that there are three NEGS in the group selection game that coincide with the

three Nash equilibria of the normal form game: two stable ones (ESSGSs) at x = 0

and x = 1 (where the whole population follows H and S respectively) and a NEGS

which is not an ESSGS where a fraction of the population x = A3
2−A2

1

A1
1−A2

1+A3
2−A2

2
follows S.

Complete Segregation Under the complete segregation matching rule, there is

only one NEGS where the whole population follows S (x = 1) and it is also an ES-

SGS.

Constant Index of Assortativity Under a matching rule with a constant index of

assortativity αwe have two cases depending on the value of α:
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• if α≤ A3
2−A2

1

A1
1−A2

1
we have three NEGS: two NEGS that are also ESSGSs where every-

body follows H (x = 0) or S (x = 1) and a NEGS which is not an ESSGS where a

proportion of the population x =
A3

2−A1
1

1−α +A1
1−A2

1

A1
1+A3

2−A2
1−A2

2
follows S

• if α >
A3

2−A2
1

A1
1−A2

1
there is only one NEGS that is also an ESSGS where the whole

population follows S (x = 1).

The equilibrium-finding process is shown in Figure A.10 for constant index of

assortativity rules for different values of α. The comparative statics results are sum-

marized in Figure A.11.
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α=0.6
α=0.8

Complete Segregation (α=0)

Figure A.10: NEGS with a constant in-
dex of assortativity in a SH game.
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2−A2
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ESSGS
NEGS (not ESSGS)

Figure A.11: NEGS as a function of the
index of assortativity.

As in the case of the Hawk-Dove game, in the Stag Hunt there are some states that

cannot be attained as equilibria under any matching rule. At these states, namely

x ∈
�

A1
1−A2

1

2A1
1−A2

1−A2
2
, 1
�

, the dynamics will tend to lead the population towards x = 1 where

they all follow S under any matching rule. So, if it happens that the system reaches

one of these states, then it will be eventually brought to the state where the whole

population uses the efficient strategy S.

Risk Dominance Notice that there is a value α∗ = (A
2
2−A2

1)−(A
1
1−A3

2)
(A2

2−A2
1)+(A

1
1−A3

2)
for which the basin

of attraction of the ESSGS at x = 1 is greater than that of the ESSGS at x = 0 iff

α ∈ (α∗, 1]. We can interpret that as follows: Assume that players in the population

do not know whether each of the other players is going to play S or H and so, using

the principle of insufficient reason, they ascribe equal probabilities (equal to 0.5

each) to each other player following S and H.8 Then, ifα ∈ (α∗, 1] the expected payoff

for a player following S is higher than his expected payoff when he follows H and so,

8See also Carlsson and Van Damme (1993).
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given the aforementioned beliefs, it is a best response for all of them to follow H,

leading to the state being x = 1. Conversely when α ∈ [0,α∗).

So, in the terms described above, we can have a notion of risk dominance in the

group selection game. Of course – having assumed that A2
2+A3

2 > A1
1+A2

1 as is usually

done in Stag Hunt games – in the case where α= 0, it is always the case that the risk

dominant equilibrium is the one where the whole population follows H (x = 0).

Welfare

The isogrowth diagram of a Stag Hunt game is shown in Figure A.12. The compari-

son of equilibrium welfare in the group selection game and the normal form game

is shown in Figure A.13. Notice that the equilibrium welfare curve is not defined

for x ∈
�

A1
1−A2

1

2A1
1−A2

1−A2
2
, 1
�

as these states can never be attained as equilibria of the group

selection game. The maximum level of welfare is obtained when the equilibrium

state is the one where everybody follows S (x = 1) and it coincides with the maxi-

mum expected payoff players using symmetric strategies can get in the normal form

game.
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Figure A.12: Isogrowth diagram for a
SH game.

A3
2

A2
2

A1
1

0
A1

1−A2
1

2A1
1−A2

1−A2
2

1

W

x

Equilibrium Welfare
Normal Form Game Welfare

Figure A.13: Equilibrium welfare and
normal form payoff for a SH game.

A.3 Omitted Proofs

A.3.1 Proof of Theorem 2.1

Proof. We will restrict our attention to 2× 2 games but similar extensions will hold

for games with more strategies and/or players.
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As the population is evolving in two different time modes (one related to disper-

sion phases and another one related to generations within trait-groups), we choose

to use t to denote dispersion phases and τ to denote generations within the trait-

groups. Our aim is to identify how the population evolves from one dispersion

phase to the next. Intuitively, that would relate more to discrete-time dynamics but

one can extend that to continuous time if the time scale of that evolutionary changes

need to occur is large enough. In what follows, we calculate the fitness of each type

of individual. The relevant dynamic equations (either discrete- or continuous-time)

will determine the evolution of the population thereafter.

At dispersion phase t , the original population which comprises of a proportion

of x1 1-type individuals and x2 2-type individuals is being randomly drawn to form

trait-groups of initial size 2. The outcome is that there will be a proportion x 2
1 of

type-1 trait-groups ({11}), a proportion 2x1 x2 of type-2 trait-groups ({12}) and a

proportion x 2
2 of type-3 trait-groups ({22}). Each of these trait-groups will evolve

independently and in isolation of the rest of the trait-groups for T generations.

Now at each generation τ a (isolated) trait-group will have a population that

comprises of N1 1-type and N2 2-type individuals. These individuals are going to

be drawn into pairs at each generation where they will act according to their types

and get payoffs. Obviously, out of N1 +N2 individuals N1+N2
2 groups (pairs) can be

formed. Let’s call κ the random variable that indicates how many of these groups

are of type 2. Then the number of groups of type 1 will be given by N1−κ
2 and the num-

ber of groups of type 2 will be given by N2−κ
2 . The probability thatκ type 2 groups will

be formed by a population of N1 1-type and N2 2-type individuals is given by

F (κ; N1, N2) =

¨

N1!N2!(N1−κ−1)!!(N2−κ−1)!!
(N1−κ)!(N2−κ)!κ!(N1+N2−1)!! κ ∈ {0, 1, . . . , min{N1, N2}}
0 otherwise

where

(2l −1)!!=











∏l
i=1(2i −1) if l ∈N+

1 if l = 0

0 otherwise

is an appropriate extension of the odd factorial.
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Each of the pairs formed in the first stage (when drawn from the population)

will be the first generation of a trait-group that will evolve separately from all other

groups (pairs) for T generations.

The evolution process of each of the trait-groups follows a stationary Markov

chain. The state of the trait-group at time t is a vector ωt = (ωt
1,ωt

2,ωt
3) that rep-

resents the number of pairs of each type in the given trait-group. Let Amax be the

maximum number of children that can be obtained by a matched pair in a trait-

group (Amax = maxi∈{1,2,3}
∑

j n i
j Ai

j ). Then, after T generations, a trait-group that

began with 2 individuals cannot exceed a population of K =
�

Amax
2

�T
. So, the number

of groups after T periods cannot exceed K
2 . This means that the state space is finite

and is Ω=
�

(ω1,ω2,ω3) ∈N3 : 0<
∑

iωi ≤ K
2

	

. We will let µ denote the cardinality of

Φ. We can also impose an ordering � such that:

ω�ω′⇔











∑

iωi <
∑

j ω
′
j or

∑

iωi =
∑

j ω
′
j andω1 >ω

′
1 or

∑

iωi =
∑

j ω
′
j andω1 =ω′1 andω2 >ω

′
2

This is a total order over Ω and thus it induces a ranking # of the elements of Ω. By

#ω we will denote the rank of state ω under �. Likewise #−1n will denote the n-th

state according to the ranking induced by �.

The only element of the Markov chain that we need to determine is the transition

probabilities. So, the probability that state ω′ will occur at period t + 1 when we

know that the trait-group was at stateω at period t is given by:

P (ω′|ω) =

(

F
�

ω′2; N1(ω), N2(ω)
�

if (ω′1,ω′3) =
�

N1(ω)−ω′2
2 ,

N2(ω)−ω′2
2

�

0 otherwise

where N1(ω) = 2ω1A1
1 +ω2A2

1 and N2(ω) = 2ω3A3
2 +ω2A2

2 give the population of 1-

type and 2-type individuals in the trait-group at stateω respectively. We will callP
the matrix that is defined as follows: Pi j = P (#−1 j |#−1i ).

At each period τ, let P(τ) ∈ Sµ denote the vector whose i -th entry gives the prob-

ability that the trait-group is in state #−1i . As the Markov process is stationary, P(τ)

will be given by P(τ) = P t P(0). Where P(0) is the initial state of the trait-group i.e.

P(0) ∈ {(1, 0, . . . , 0) , (0, 1, 0, . . . , 0) , (0, 0, 1, 0, . . . , 0)} as there’s exactly one pair of individ-

uals in each of the trait-groups in the beginning. In the interest of brevity, we will
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call these vectors P1(0), P2(0) and P3(0) respectively. So, at the end of the T periods

we will have Pi (T ) = P T Pi (0) for i = 1, 2, 3. So after T periods have gone by, the

expected number of type-i groups that will be at a trait-group that contained one

type-k group at time 0 will be:

g k
i =

µ
∑

l=1

P k
l (T )(#

−1l )i

Actually, as we have a continuum of trait-groups, by using a law of large numbers

we can say that the distribution of group types in trait-groups will be (almost surely)

exactly the one given by the above formula.

We will calculate the average fitness that each starting j -type individual will get

(i.e. the number of descendants a j -type is expected to have) after T periods. A

j -type individual that is drawn into a k type trait-group is expected to have

∑

i∈gsupp(k )

g k
i

n i
j

n k
j

Ai
j

descendants. As the distribution of trait-groups is given by the random matching

rule r(x) = (r1(x), r2(x), r3(x)) = (x 2
1 , 2x1 x2, x 2

2 ) and as a k -type trait-group contains n k
j

first-generation i -type individuals, we can calculate the average fitness of a first-

generation j -type individual by:

π j (x) =

∑

k∈supp( j ) rk (x)n k
j

∑

i∈gsupp(k ) g
k
i

n i
j

n k
j

Ai
j

∑

k∈supp( j ) rk (x)n k
j

Where gsupp(k ) =
�

i ∈ {1, 2, 3} |g k
i > 0

	

. Explicitly, for type-1 individuals, the average

fitness is

x1g 1
1 A1

1+ x2

�

2g 2
1 A1

1+ g 2
2 A2

1

�

(A.12)

whereas for type-2 individuals, average fitness is

x2g 3
3 A3

2+ x1

�

2g 2
3 A3

2+ g 2
2 A2

2

�

. (A.13)

The system will follow the replicator dynamics (either the discrete-time version of

equation (2.8) or the continuous-time version of equation (2.9)) with fitness func-

tions given by (A.12) and (A.13). We will show that a group selection model with a
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matching rule given by

fi (x) =

∑

k∈gsupp−1(i ) rk (x)g k
i

∑3
l=1

∑

k∈gsupp−1(l ) rk (x)g k
l

(A.14)

has exactly the same dynamic behavior as the trait-group model. Actually, we can

rewrite the above matching rule as

fi (x) =

∑3
k=1 rk (x)g k

i
∑3

l=1

∑3
k=1 rk (x)g k

l

(A.15)

as g k
l = 0 for all k /∈ gsupp−1(l ).

In the group selection model< I , f,G >, the payoffs for type-1 individuals is given

by (see equation (2.11))
f1(x)
x1

A1
1+

f2(x)
2x1

A2
1

while the fitness for type-2 individuals is given by

f2(x)
x2

A3
2+

f2(x)
2x2

A2
2.

The key observation that makes it easy to show the result is that two models have

identical dynamics if they have identical fractions π1(x)
π2(x)

for all x ∈ S2. So, in order for

the trait-group model to have the same dynamics as the group selection model, it is

sufficient for f(x) to satisfy:

x1g 1
1 A1

1+ x2

�

2g 2
1 A1

1+ g 2
2 A2

1

�

x2g 3
3 A3

2+ x1

�

2g 2
3 A3

2+ g 2
2 A2

2

� =
f1(x)
x1

A1
1+

f2(x)
2x1

A2
1

f2(x)
x2

A3
2+

f2(x)
2x2

A2
2

It is easy to confirm that the above condition is satisfied for the matching rule given

by (A.14). Also notice that f satisfies f1(x)+ f2(x)+ f3(x) = 1 and f1(x), f2(x), f3(x)≥ 0 as

well as the conditions of theorem 2.2.

Notice that f as calculated above would not necessarily be consistent as it may

fail to satisfy condition (2.2). As the trait-group model and the group selection model

under f share the same dynamics, they will also have the same steady states. It is also

interesting to point out that the matching rule f reduces to the random matching

rule when T = 1 (in this case g k
k = 1 and g k

i = 0 for k 6= i ).
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A.3.2 Proof of Theorem 2.2

Best reply correspondence The best reply correspondence (BRC) is a correspon-

dence B : Sm ⇒ Sm defined by:

B (x) =
�

y ∈ Sm :
�

∀ỹ ∈ Sm

�

Π(y, x)≥Π(ỹ, x)
	

and gives the mixed strategies an agent can follow so as to maximize his/her ex-

pected payoff given that the state is x.

We also define the value function V : Sm →R that gives the maximum payoff an

agent can achieve at any given state. Formally: V (x) =maxy∈Sm
Π(y, x).

Equilibrium

We intend to show that under some assumptions on f, an equilibrium state always

exists. We will prove the existence result by using Kakutani’s fixed point theorem. In

order to do that, we need to show that the BRC is convex-valued , nonempty-valued

and upper hemicontinuous. These prerequisites are proven in Lemmata A.1 and

A.2.

Lemma A.1 (Convex-valued BRC). For any group selection game under a matching

rule

G =< I ,G , f> the best reply correspondence B is convex-valued.

Proof. We can identify three different cases for B (x):

• B (x) = ; and thus B is convex-valued at x.

• B (x) = {y∗} i.e. the best reply correspondence contains only one element at x

and thus B is convex-valued at x.

• B (x) contains at least two elements at x i.e. there exist y∗1, y∗2 ∈ Sm such that

Π(y∗1, x)≥Π(y, x) for all y ∈ Sm

Π(y∗2, x)≥Π(y, x) for all y ∈ Sm
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which is possible only if Π(y∗1, x) = Π(y∗2, x) = L . Now, for all λ ∈ [0, 1] we have

the following series of equalities:

Π(λy∗1+ (1−λ)y
∗
2, x) = (λy∗1+ (1−λ)y

∗
2) ·π(x) =

=λy∗1 ·π(x) + (1−λ)y
∗
2 ·π(x) = λΠ(y∗1, x) + (1−λ)Π(y∗2, x) =

=Π(y∗1, x) = Π(y∗2, x) = L

So, for any y∗1, y∗2 ∈ B (x) we get that λy∗1 + (1−λ)y
∗
2 ∈ B (x) for all λ ∈ [0, 1] and

thus B is convex-valued at x.

Since these are the only possible cases, we can conclude that B is convex-valued in

Sm .

Lemma A.2 (BRC: Nonempty-valued and upper hemicontinuous). For a group se-

lection game under a matching rule G =< I ,G , f>, if

1. f is continuous on Sm and

2. the partial derivatives ∂ j fi for all j ∈M and all i ∈ supp( j ) exist on bd j (Sm )

then the best reply correspondence B is non-empty valued and upper hemicontinu-

ous.

Proof. From assumption 2 of the lemma, we get that the limits limx̃→x
fi (x̃)
x̃ j
= ∂ j fi for

all j ∈M and all i ∈ supp( j ) exist on bd j (Sm ) and from the definition of π j (2.6), we

get that

lim
x̃→x
π j (x̃) =π j (x) on bd j (Sm ).

So, π j are continuous on bd j (Sm ) and since all fi are continuous on Sm , π j are con-

tinuous on Sm \bd j (Sm ) as sums of quotients of continuous functions. So, π is con-

tinuous on Sm and therefore, Π is continuous on S 2
m .

Now we can see that the conditions for Berge’s maximum theorem are satisfied:

(i) Sm is compact and (ii)Π is continuous. So, using Berge’s theorem, we get that the

value function V is continuous on Sm and that the best reply correspondence B is

nonempty-valued, compact-valued, upper hemicontinuous and has a closed graph

on Sm .

The results needed are the nonempty-valuedness and upper hemicontinuity of

B .



A.3: Omitted Proofs 98

Now we have all that is needed in prove the theorem. From the results of Lem-

mata A.1 and A.2, we know that B : Sm → Sm is a nonempty-valued, convex-valued,

upper hemicontinuous correspondence defined on the nonempty, compact and

convex set Sm . So, the conditions for the application of Kakutani’s fixed point the-

orem are satisfied. From Kakutani’s fixed point theorem, we get that there exists a

x∗ ∈ Sm such that x∗ ∈ B (x∗)which means that there exists a x∗ ∈ Sm such that

Π(x∗, x∗)≥Π(x, x∗) for all x ∈ Sm .

That is, G has an equilibrium.

A.3.3 Proof of Theorem 2.4

Firstly, note that definition 2.6 implies that a NEGS x ∗ satisfies

x∗ ·π(x∗)≥ y ·π(x∗) for all y ∈ Sm . (A.16)

1. Let x∗ ∈ Sm be a NEGS, I (x)≡ { j ∈M |x j > 0} and O (x)≡ { j ∈M |x j = 0}. Then,

from (A.16) we get for all y ∈ Sm :
∑

j∈M yjπ j (x∗)≤
∑

l∈I (x∗) x
∗
l πl (x∗)+

∑

q∈O (x∗) x
∗
qπq (x∗).

Hence:

∑

j∈M

yjπ j (x
∗)≤

∑

l∈I (x∗)

x ∗l πl (x
∗) (A.17)

Now let p = arg max j∈M π j (x∗) and r = arg maxl∈I (x∗)πl (x∗). Clearly,
∑

l∈I (x∗) x
∗
l πl (x∗)≤

πr (x∗) ≤ πp (x∗) where the second inequality holds because I (x∗) ⊆M . Hence for all

y ∈ Sm :

∑

j∈M

yjπ j (x
∗)≤

∑

l∈I (x∗)

x ∗l πl (x
∗)≤πr (x

∗)≤πp (x
∗) (A.18)

Taking y= (0, . . . , 0, 1
︸︷︷︸

p -th

, 0 . . . , 0), we get πp (x∗)≤
∑

l∈I (x∗) x
∗
l πl (x∗)≤πr (x∗)≤πp (x∗)

which obviously implies that
∑

l∈I (x∗) x
∗
l πl (x∗) = πr (x∗). But this is only possible if

π j (x∗) =πk (x∗) for all j , k ∈ I (x∗), and this in turn implies that π j (x∗) = x∗ ·π(x∗) for all

j ∈ I (x∗). From equation (2.9), we therefore get ẋ ∗j = 0 for all j ∈M , i.e., x∗ is a steady

state.
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2. Assume that x (t ) ∈ intSm converges to x∗ and that x∗ is not a NEGS. That x∗

is not a NEGS means that there exists a j with e j ·π(x∗) = π j (x∗) > x∗ ·π(x∗). Hence

(π j (x∗)−x∗ ·π(x∗))≥ ε > 0 for some ε > 0. Since x (t ) converges and π j is continuous

on the interior, (π j (x (t ))− x∗ ·π(x (t ))→ 0 as t →∞. This is a contradiction. Note

that at the boundary, this holds because we have defined the π j ’s so that they are

continuous onto the boundary. If we had not done that, the claim would in gen-

eral be false for a vector x∗ on the boundary. This same problem does not arise with

random matching/in the usual replicator dynamics setting because the payoff func-

tions trivially are continuous. This shows exactly why our “continuous extension to

the boundary” is the right thing to do.

3. Precisely as in the previous proof and by continuity of the π’s we get that if x∗

is not an NEGS then there exists an ε > 0 such that for all x in a neighborhood of x∗:

(π j (x )− x ·π(x ))≥ ε > 0. This contradicts Lyapunov stability.

4. Following Weibull (1995, pp. 95–100), we will use Lyapunov’s direct method

to prove the proposition. What we need is to find a scalar function H that is defined

on a neighborhood Q of x∗ which has the following properties: (i) H is continuously

differentiable on Q , (ii) H (x∗) = 0, (iii) H (y) > 0 for all y ∈ Q \ {x∗} and (iv) Ḣ (y) =
d

d t H (y)< 0 for all y ∈Q \ {x∗}.
Let us consider the set Qx∗ ≡ {y ∈ Sm |I (x∗) ⊆ I (y)} i.e. the set of all population

strategies that assign positive weights to all the pure strategies that x∗ assigns posi-

tive weights. Obviously, x∗ ∈Qx∗ and Qx∗ is an open set (in the topology induced from

Rm ). So, Qx∗ is a neighborhood of x∗. We will show that the function Hx∗ : Qx∗ → R
defined by

Hx∗(y) =
∑

j∈I (x∗)

x ∗j log

�

x ∗j
yj

�

satisfies all of the above conditions (i–iv) i.e. that it is a strict local Lyapunov function

on Qx∗ .

First of all, it is easy to verify that (i) Hx∗ is continuously differentiable on Qx∗ and

that (ii) Hx∗(x∗) = 0. Now, as x∗ is an ESSGS, we know that there exists a neighborhood

U of x∗ such that condition (2.13) holds for all y ∈U . We will consider the restriction

of Hx∗ on the set U ∩Qx∗ , a neighborhood of x. The next step is to show that Hx∗ is

strictly positive on U ∩Qx∗ . As the function − log(·) is convex, we get from Jensen’s



A.3: Omitted Proofs 100

inequality:

Hx∗(y) =
∑

j∈I (x∗)

x ∗j

�

− log

�

yj

x ∗j

��

≥− log

 

∑

j∈I (x∗)

x ∗j

�

yj

x ∗j

�

!

≥− log

 

∑

j∈M

yj

!

= 0

Now, in the case where I (x∗) = I (y), the first inequality is strict (because of the log’s

strict concavity) and in the case where I (x∗)( I (y), the second inequality is strict. In

any case, we will always have that (iii) Hx∗(y)> 0 for all y ∈U ∩Qx∗ \ {x∗}.
The last step is to show that Ḣx∗ is negative for all y ∈U ∩Qx∗ \ {x∗}. Indeed:

Ḣx∗(y) =
∑

j∈I (x∗)

∂ j Hx∗(y) ẏj =−
∑

j∈I (x∗)

x ∗j
yj

ẏj

and using equation (2.9), we get:

Ḣx∗(y) =−x∗ ·π(y) + π̄(y) = (y−x∗)π(y)

which we know is negative because of (2.13). So, the final condition (iv) is satisfied.

A.3.4 Proof of Remark 2.4.1

Let us denote by yi ∈ Sm the (mixed) strategy used by player i in the normal-form

game G and by x−i ∈ Sm the strategy used in the normal-form game G by all player

i ’s opponents. Let also Pi (yi |x−i ) be the expected payoff of player i in the normal-

form game when he/she is using strategy yi and all of his opponents use strategy

x−i . Since G is symmetric, we have Pi (yi |x−i ) = Pj (y j |x− j ) for all i , j ∈ N . So we can

write P (y|x) to express the expected payoff in the normal-form game of any player

using strategy y when all his opponents use the same strategy x.

A symmetric Nash equilibrium of game G is a strategy x∗ ∈ Sm such that:

P (x∗|x∗)≥ P (y|x∗) for all y ∈ Sm .

So, for x∗ to be a symmetric Nash equilibrium, if every opponent of any given player

i is using strategy x∗, it must be a best response for player i to use the same strategy

x∗ as well.
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On the other hand, a strategy x∗ will be an equilibrium in game < I ,G , f> iff:

Π(x∗, x∗)≥Π(y, x∗) for all y ∈ Sm

Where Π(y, x∗) expresses the expected payoff of an individual using strategy y while

the rest of the population is using strategy x∗. In order to prove the proposition, all

we need to show is that

Π(y, x) = P (y|x) for all y ∈ Sm (A.19)

under the random matching rule. If we let e j be the probability vector that corre-

sponds to pure strategy j , then (A.19) boils down to

π j (x) = P (e j |x) for all j ∈M . (A.20)

Calculating π j (x). Let us denote by M i
− j the set of all strategies other than j rep-

resented in group i and by Γ 1
j the set of all groups that contain exactly one individ-

ual following strategy j . Formally M i
− j =

�

k ∈M \
�

j
	

|i ∈ supp( j )
	

and Γ 1
j = {i ∈

Γn ,m |n i
j = 1}. Calculating π j (x) under rn ,m yields:

π j (x) =
∑

i∈supp( j )

(n −1)!x
n i

j−1

j

(n i
j −1)!

∏

k∈M i
− j

x
n i

k

k

n i
k !

Ai
j , x ∈ Sm \bd j (Sm ) (A.21)

π j (x) =
∑

i∈Γ 1
j

(n −1)!
∏

k∈M i
− j

x
n i

k

k

n i
k !

Ai
j , x ∈ bd j (Sm ) (A.22)

Calculating P (e j |x). In general, all players use mixed strategies i.e. a randomiza-

tion over the set of pure strategies M . We will denote the pure strategy a player

l ends up using after the randomization process has taken place – i.e. the real-

ization of player l ’s mixed strategy – as sl . The probability of a player ending up

in a situation where his/her opponents follow (pure) strategies s−l ∈ M n−1 with

s−l = (s 1, . . . , s l−1, s l+1, . . . , s n ) will be denoted by p (s−l ). When all player l ’s oppo-
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nents use the same strategy x, those probabilities can be calculated to be:

p (s−l ) =
∏

k∈M

(xk )
νk (s−l )

where νk (s−l ) ∈ {0, 1, . . . , n −1} is the number of player l ’s opponents using strategy

k in the ordered set s−l .

Let us fix player l ’s strategy (realization) to be sl = e j . Since the game G is sym-

metric, the payoff of player l will not depend on the exact ordering in s−l but on

the vector ν(s−l ) =
�

ν1(s−l ), . . . ,νm (s−l )
�

. This means that different s−l s with the same

ν(s−l )will yield the same payoff for player l . The number of the differentνoutcomes

are elements is γn−1,m . Let us use κ ∈ Γn−1,m to index the different ν. By abusing no-

tation, we can calculate the probability of a specific νκ to occur as

p (νκ) =
(n −1)!
∏

k∈M ν
κ
k !

∏

k∈M

(xk )
νκk . (A.23)

As player l is using strategy j , if he ends up in a situation where his/her oppo-

nents’ realizations areκ, it is as if he ends up in a group i where n i
k = ν

κ
k for k 6= j and

n i
j = ν

κ
j+1. This group will be in supp( j ) and we will write i = j Â κ and read: “i is the

group that we get if we add an individual who uses strategy j to a set of opponents

whose realizations are κ. Notice that the probabilities in (A.23) are independent of

player l ’s choice of strategy. So, the probability of player l ending up in situation i

conditional on him using strategy j will be the same as the probability realization κ

occurring. Using the i - rather than the κ- indexing, we can rewrite (A.23) (abusing

the notation once again) as:

p (i | j ) = p ( j Â κ| j ) = p (νκ) =
(n −1)!x

n i
j−1

j

(n i
j −1)!

∏

k∈M i
− j

(xk )
n i

k

n i
k !

.

Now, in each of these cases i , player l gets a payoff of Ai
j and his expected payoff is:

P (e j |x) =
∑

i∈supp( j )

p (i | j )Ai
j =

∑

i∈supp( j )

(n −1)!x
n i

j−1

j

(n i
j −1)!

∏

k∈M i
− j

(xk )
n i

k

n i
k !

Ai
j . (A.24)
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In the special case where x ∈ bd j Sm , player l can be sure that he is the only one

using strategy j and thus, the only groups that get positive probability are the ones

in Γ 1
j which have n i

j = 1. So his/her expected payoff is:

P (e j |x) =
∑

i∈Γ 1
j

p (i | j )Ai
j =

∑

i∈Γ 1
j

(n −1)!
∏

k∈M i
− j

(xk )
n i

k

n i
k !

Ai
j . (A.25)

By comparing equation (A.21) to (A.24) and equation (A.22) to (A.25), we can see

that

π j (x) = P (e j |x)

and as we showed that for an arbitrary j , it holds for all j ∈M .

A.3.5 Proof of Theorem 2.5

Let us define the following sets of group types:

E (x∗) = {i ∈ Γn ,m : supp−1(i )⊆ I (x∗)}

[M ] = {i ∈ Γn ,m : supp−1(i ) = { j } for some j ∈M }

E (x∗) consists of the group types that contain only individuals of types that are present

in the population at x∗. E ′(x∗)will denote its complement i.e. group types that con-

tain at least one individual of one of the types that are not present at x∗. [M ] consists

of the groups types that contain only one type of individuals. We will denote the

group type that contains only individuals of type j by [ j ]. Now we can separate all

group types in the following four categories:

• SP (x∗) = E (x∗)∩ [M ] is the set of all group types that contain a single type of

individuals that are present at x∗.

• S A(x∗) = E ′(x∗)∩ [M ] is the set of all group types that contain a single type of

individuals that are absent at x∗.

• M P (x∗) = E (x∗) \ [M ] is the set of all group types that contain more than one

types of individuals that are present at x∗.
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• M A(x∗) = E ′(x∗) \ [M ] is the set of all group types that contain more than one

types of individuals and at least one of them is absent at x∗.

Let us define for any x ∈ Sm the following:

µ= arg min
j∈I (x∗)

x j

x ∗j

We construct h as follows:

• For all i ∈M A(x∗)we define hi (x) = 0.

• For all i ∈ S A(x∗)we define h[ j ](x) = x j .

• For all i ∈M P (x∗)we define hi (x) =
xµ
x ∗µ

f ∗i (x
∗).

• For all i ∈ SP (x∗)we define h[ j ](x) =
xµ
x ∗µ

f ∗[ j ](x
∗) + x j −

xµ
x ∗µ

x ∗j .

It is easy to check that h is a matching rule as it satisfies definition 2.1 i.e. it is a

function from Sm to Sγn ,m
. More than that it is also easy to see that h(x∗) = f(x∗) and

so (x∗, h) is an evolutionary optimum. All we have to do is to show that x∗ is a NEGS

under h.

Now let us define A∗ = max(x,f)∈E π̄f(x). As (x∗, h) is an evolutionary optimum, it

has to be that x∗ is a steady state of the replicator dynamics under h. So:

1. For all j ∈ I (x∗) it has to be that πh(x∗) = A∗ which is ensured by the fact that

h(x∗) = f(x∗) and

2. there is no restriction for all j ∈O (x∗).

For x∗ to be a NEGS it must hold that:

x∗ ·πh(x
∗)≥ y ·πh(x

∗) for all y ∈ Sm .

Notice that from point 1. above, if x∗ ∈ intSm , it is a NEGS as y ·πh(x∗) = A∗ for all

y ∈ Sm and the proposition holds.
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If x∗ ∈ bdSm , then all we need to do is show that πh j (x∗) ≤ A∗ for all j ∈ O (x∗). By

definition

πh j (x
∗) =

∑

i∈supp( j )

n i
j

n
∂ +j hi (x

∗)Ai
j = ∂

+
j h[ j ](x

∗)A[ j ]j +
∑

i∈M A∩supp( j )

n i
j

n
∂ +j hi (x

∗)Ai
j = A[ j ]j .

Finally, notice that under any matching rule the states e j = (0, . . . , 0 , 1,
︸︷︷︸

j−th

0, . . . , 0) are

steady states and the payoff of all individuals on these states is simply: π̄h(e j ) = A[ j ]j .

But as (x∗, h) is an evolutionary optimum, we know that A[ j ]j ≤ A∗ for all j ∈M . So,

πh j (x∗)≤ A∗ for all j ∈M .
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Appendix to Chapter 3

B.1 Omitted Proofs

B.1.1 Proof of Lemma 3.1

In order for x ∗ ∈ (0, 1) to be an environment equilibrium, we need

πC (x
∗,α) =πD (x

∗,α). (B.1)

When a − r +1 6= 0 the above condition yields

x ∗ =
a − r + r

1−α

a − r +1
. (B.2)

Notice that the above condition is only necessary as we haven’t verified that the sta-

bility condition is satisfied. Taking stability into account, we get:

ẋ > 0⇒πC (x ,α)>πD (x ,α)⇒

x (a − r +1)< a − r +
r

1−α
(B.3)

So x ∗ ∈ (0, 1) given by (B.2) will be an environment equilibrium for social dilemmas

with a − r +1≥ 0 as in that case (B.3) yields ẋ > 0⇒ x < x ∗.

Also, x ∗ = 0 will be an equilibrium if

α≤
a

a − r
(B.4)

and x ∗ = 1 will be an equilibrium if

α≥ 1− r . (B.5)

106
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Following Jensen and Rigos (2014) we can separate the set of social dilemmas in

three classes depending on their equilibrium behavior.

Case A: a − r +1> 0. This class contains most of the social dilemmas considered

here and includes all MHDs, VDs, UDs and some PDs. All environments of social

dilemmas of this class always have a unique equilibrium given by

x ∗ =











0 if α≤ a
a−r

a−r+ r
1−α

a−r+1 if a
a−r <α< 1− r

1 if α≥ 1− r

(B.6)

Case B: a − r + 1 < 0. This class contains a subset of PDs. In this type of social

dilemmas the only possible environment equilibria are at x ∗ = 0 and x ∗ = 1. More

specifically, for α ≤ 1− r we have a unique environment equilibrium at x ∗ = 0. For

α ∈ (1− r, a
a−r )we have two environment equilibria: one at x ∗ = 0 and one at x ∗ = 1.

Finally, for α≥ a
a−r we have a unique environment equilibrium at x ∗ = 1.

Case C: a − r + 1 = 0. This class contains a subset of PDs. In this type of social

dilemmas we have a unique environment equilibrium at x ∗ = 0 for α< 1− r (=−a ),

a unique environment equilibrium at x ∗ = 1 for α> 1− r and a continuum of envi-

ronment equilibria forα= 1−r , actually in this case any x ∈ [0, 1] is an environment

equilibrium.

B.1.2 Proof of Lemma 3.2

Consider a social dilemma G = (a , r )and it’s corresponding environments E = (G ,α)

with α ∈ [0, 1].

If x ∗ ∈ (0, 1) can be an environment equilibrium only for social dilemmas with

a − r +1≥ 0 and it has to satisfy

x ∗ =
a − r + r

1−α

a − r +1

(see equation B.2).

The uniform population without any cooperators (x = 0) will be an environment

equilibrium if

α≤−
a

r −a
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and the uniform population consisting solely of cooperators (x = 1) will be an envi-

ronment equilibrium if

α≥ 1− r .

Now using the efficiency formula

W (x ,α) = r x + (1−α)(1− x )x (1+a − r )

we can calculate efficiency at an interior environment equilibrium. After calcula-

tion, this gives

W int
G (α) =

αr + (1−α)a
1+a − r

. (B.7)

It is clear that efficiency when the environment equilibrium is x ∗ = 1 will be

W 1
G (α) = r

and when the environment equilibrium is x ∗ = 0 efficiency is

W 0
G (α) = 0.

Notice that 0≤W int
G (α)≤ r .

We look into efficiency for the three classes of social dilemmas mentioned in

B.1.2.

Case A: a − r + 1 > 0. As described in (B.3), the interior point will be an envi-

ronment equilibrium for some environments if 1+ a − r > 0 in which case it is the

unique environment equilibrium and it is clear from (B.7) that efficiency in this case

is increasing in α. More specifically:

max W ∗(α) =W ∗(α) =











a
1+a−r if α≤ a

a−r
αr+(1−α)a

1+a−r if a
a−r <α< 1− r

r if α≥ 1− r

(B.8)

Case B and C: a − r + 1 ≤ 0. In such environments, for low values of α (α ≤
−a/(r−a )) the unique environment equilibrium is x ∗ = 0 and equilibrium efficiency

is 0. For high values of α (α > 1− r ), the unique equilibrium is at x ∗ = 1. For inter-

mediate values of α there are two environment equilibria at x ∗ = 0 and x ∗ = 1 in
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Case B and a continuum of equilibria (all x ∗ ∈ [0, 1]) in Case C. In both of these types

of environments, maximum equilibrium efficiency in this cases is achieved for the

environment equilibrium at x ∗ = 1 and from the analysis here it is clear that in these

social dilemmas maximum equilibrium efficiency is increasing in α. More specifi-

cally:

max W ∗(α) =

¨

0 if α< 1− r

r if α≥ 1− r

B.1.3 Proof of Observation 1

We formally prove the statement of Observation 1 for cases where either z (0) < 0

(VDs with r < 0.5 and all MHDs) or z (0)+z (1)+z (a )+z (r )> 0 (PDs with a−r +1< 0,

and VDs and UDs with a > 1−r ). For the rest of the cases we provide computational

results to support the statement.

Clearly, in order for the pair (x ∗,α∗) to be a full equilibrium (i.e. an asymptotically

stable state of the full dynamics), we need x ∗ to be an environment equilibrium for

E = (G ,α∗), and α∗ to be an evolutionarily stable state of the voting dynamics given

x ∗. We begin with the following observation.

Observation 2. Consider a social dilemma G . If (x ∗,α∗)with α∗ ∈ (0, 1) is a full equi-

librium, then x ∗ ∈ (0, 1).

Proof.

By way of contradiction, say (1,α∗)with α∗ ∈ (0, 1) is a full equilibrium. Then the

α dynamic (3.8) for x = 1 yields

α̇=α(1−α)z (r ).

So, for all points (1,α) with α ∈ (0, 1), α̇ retains its sign. That is, if z (r ) > 0 the only

possible full equilibrium with x ∗ = 1 will be the one at (x ∗,α∗) = (1, 1) and if z (r ) <

0 the only possible full equilibrium with x ∗ = 1 will be the one at (x ∗,α∗) = (1, 0).

Finally, if z (r ) = 0, there exists no full equilibrium with x ∗ = 1 as α̇ = 0 for all (x ,α)

with x = 1. This is a contradiction.

Similarly for x ∗ = 0. Say (0,α∗) is a full equilibrium. Then theα dynamic for x = 0
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yields

α̇=α(1−α)z (0).

As z (0) < 0 for all social dilemmas, α̇ < 0 for all α ∈ (0, 1) and thus, the only possible

full equilibrium with x ∗ = 0 is (x ∗,α∗) = (0, 0). This is a contradiction.

In light of Observation 2, any potential full equilibrium (x ∗,α∗) that contradicts

the statement of Observation 1 needs to have x ∗ ∈ (0, 1) and α∗ ∈ (0, 1).

For the rest of the proof, we define the quantity Z = z (1)+z (a )+z (r )+z (0)which

turns out to be crucial for the behavior of the dynamic system.

Case 1: Z > 0. For α ∈ (0, 1), the α dynamics equation (3.8) gives:

α̇ > 0⇒αx (1− x )Z > x (1− x )(z (a ) + z (1))+ x 2z (r ) + (1− x )2z (0)

So, for social dilemmas with Z > 0 any interior steady state (x ∗,α∗) (with α̇ = ẋ = 0)

will not be stable as a small deviation to (x ∗,α∗+ ε)will drive the system away from

(x ∗,α∗).

Case 2: z (r )< 0. So, we now focus on social dilemmas with Z < 0. In this case, the

sign of z (r ) is important.

We proceed with another observation.

Observation 3. For any social dilemma G = (r, a ) with Z < 0 and z (r ) < 0, and for

all α ∈ (0, 1) and x ∈ (0, 1), α̇ < 0.

Proof. Define V = v +− v −. For (x ,α) ∈ (0, 1)2, we have the following:

α̇ > 0⇔V > 0

∂ V

∂ α
= x (1− x )Z < 0

So, V would obtain its maximum value for α= 0. This value is

V0 = (x
2z (r ) + (1− x )2z (0))+ (−x (1− x )(z (a ) + z (1)))
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As z is increasing, the maximum value the first term of the right-hand side of the

above equation is z (r ), which is negative in the social dilemmas under considera-

tion. Also, notice that as z (1) = 1 for all social dilemmas and z (a ) > −1, the second

term in the equation will also be negative.

So, any full equilibrium would need to have α∗ = 0.

Case 3: Z < 0 and z (r )> 0. For the rest of the cases, we note that there is always at

most one interior rest point of the full dynamics.

We numerically calculate the Jacobian matrix of the dynamical system and take

the real parts of its two eigenvalues at the the interior rest point. Figure B.1 provides

the plot of the maximum real part of the aforementioned eigenvalues. Since there

is always at least one eigenvalue with a positive real part, we can conclude that the

interior rest point cannot be stable and thus cannot be an environment equilibrium.

Furthermore, as the interior rest point (if it exists) is unique and a saddle point,

there can be no closed trajectories in the interior of the state space. From this, we

conclude that there must exist stable points (sinks) at the boundary of the state

space which are the full equilibria.
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Figure B.1: Maximum eigenvalue of the Jacobian matrix calculated at the interior
rest point for social dilemmas with z (r )> 0



Appendix C

Appendix to Chapter 4

C.1 Examples of smooth best responses

Example 1. Let p (θ ) = exp(−πθ 2) and ā (θ ) = θ . Then a ∗(θ ) = θ andφ(x ) = x . Thus

φ′(x ) = 1. So,

Ri (x ) =F −1
ξ [exp(µπ2ξ2) ·Fx [exp(−πx 2)](ξ)](x ) =F −1

ξ [exp(µπ2ξ2) ·exp(−πξ2)](x ) =

=F −1
x [exp(−π(1−µπ)ξ2)](x ) =

1
p

1−πµ
exp

�

−
πx 2

1−πµ

�

For the above to be integrable, it has to be that µ< 1/π. Notice that
∫ +∞
−∞ Ri (x )dx = 1

which is a condition that is required. So

r (ai |θ ) =
1

p

1−πµ
exp

�

−
πa 2

i

1−πµ

�

exp(πθ 2)
1
p
πµ

exp

�

−
(ai −θ )2

µ

�

The expected action of player i conditional on θ can be calculated to be:

Eai (θ ) =

∫ +∞

−∞
ai r (ai |θ )dai = (1−πµ)θ .

Example 2. Let p (θ ) = (σ
p

2π)−1 · exp(−(θ − θ0)2/2σ2) and ā (θ ) = a0 + κ̃θ . Then,

φ(x ) = (x −γa0)/(1+γ(κ̃− 1)) and φ′(x ) = (1+γ(κ̃− 1))−1. The marginal Ri (·) can be

calculated:

Ri (ai ) =
1

p

2π(1+γ(κ̃−1))2σ2−πµ
exp

�

−
(ai − (γa0+ (1−γ)θ0+γκ̃θ0))2

2(1+γ(κ̃−1))2σ2−µ

�

It is required that µ < 2(σ(1+γ(κ̃− 1)))2. Otherwise, there is no smooth strategy that

112
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solves the decision making problem of player i . The full solution is therefore

r (ai |θ ) =Ri (ai )
1+γ(κ̃−1)
p
πµ

p
2πσexp

�

(θ −θ0)2

2σ2

�

exp

�

−
(ai − (a0+ κ̃θ ))2

µ

�

.

C.2 Omitted Proofs

C.2.1 Proof of Proposition 4.3

Consider variations of the information acquisition strategy of player i . These vari-

ations will be of the type r̃ = r + εη for some ε > 0. These variations should still

be feasible. That is, for all θ , it is required that r (θ ) + εη(θ ) is a probability dis-

tribution over Ai . It is required, thus, that for all θ ,
∫

Ai
r (ai |θ ) + εη(ai |θ )dai = 1

which leads to the condition that for all θ ,
∫

Ai
η(ai |θ )dai = 0. It also has to be that

r (ai |θ ) + εη(a|θ ) ≥ 0 and so η(ai |θ ) ≥ −r (ai |θ )/ε for all ai and θ . From the above

equations, the following is calculated:1

U (ri + εη, r−i ) = ū − (1−γ)
∫

Θ

∫

Ai

(ai −θ )2(ri (ai |θ ) + εη(ai |θ ))p (θ )dai dθ −

− γ

∫

Θ

∫

Ai

(ai − ā (θ ))2(ri (ai |θ ) + εη(ai |θ )p (θ )dai dθ . (C.1)

And the derivatives:

dU (r + εη, r−i )
dε

�

�

�

�

ε=0

= −(1−γ)
∫

Θ

∫

Ai

(ai −θ )2η(ai |θ )p (θ )dai dθ − (C.2)

− γ

∫

Θ

∫

Ai

(ai − ā (θ ))2η(ai |θ )p (θ )dai dθ

dI (r + εη)
dε

�

�

�

�

ε=0

=

∫

Θ

∫

Ai

log(r (ai |θ ))η(ai |θ )p (θ )dai dθ − (C.3)

−
∫

Ai

log(Ri (ai ))H (ai )dai

1The effect of the other players’ strategies is incorporated in ā (θ ).
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with H (ai ) =
∫

Θ
η(ai |θ )p (θ )dθ .

Since the perturbations considered have to be feasible, player i has to solve the

following constrained optimization problem:

max
ri∈L 1(Θ,p )

U (ri , r−i )−µI (ri )

s.t.

∫

Ai

ri (ai |θ )dai = 1 for all θ ∈Θ.

So, the Lagrangian for player i ’s decision problem will be

L (ri , k (θ )) =V (ri , r−i )−
∫

Θ

k (θ )

�

∫

Ai

r (ai |θ )dai −1

�

p (θ )dθ

where k (θ ) is the Lagrange multiplier for the θ -constraint.

Therefore, for any given θ ∈Θ and all possible perturbationsη, an optimal strat-

egy r should satisfy the following first order conditions:

dL (ri + εη, k (θ ))
dε

�

�

�

�

ε=0

= 0⇒
∫

Θ

∫

Ai

�

ui (ai ,θ )−µ log
�

r (ai |θ )
log(Ri (ai )

�

−k (θ )
�

η(ai |θ )p (θ )dai dθ = 0 (C.4)

and

∫

Ai

ri (ai |θ )dai = 1 for all θ ∈Θ. (C.5)

Where ui (ai ,θ ) =−(1−γ)(ai −θ )2−γ(ai − ā (θ ))2.

Since condition (C.4) has to be satisfied for all η, it has to be the case that

−(1−γ)(ai −θ )2−γ(ai − ā (θ ))2−µ
�

log(ri (ai |θ ))− log(Ri (ai ))
�

= k (θ ) for all θ ∈Θ.

So r (ai |θ ) has to be:

r (ai |θ ) =Ri (ai )exp
�

−
k (θ )
µ

�

exp
�

ui (ai ,θ )
µ

�

. (C.6)

So, (C.6) can be rewritten as

r (ai |θ ) =Ri (ai )K (θ )exp
�

ui (ai ,θ )
µ

�

. (C.7)
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where K (θ ) = exp
�

−k (θ )
µ

�

. All that remains to be done is to determine the functions

K (·) and Ri (·).
Now, from the definition of Ri (ai ):

Ri (ai ) =

∫

θ

r (ai |θ )p (θ )dθ ⇒
∫

Θ

r (ai |θ )
Ri (ai )

p (θ )dθ = 1.

And using the fact that player i ’s opponents are using a monotone full-support strat-

egy profile, one gets

∫ +∞

−∞
K (θ )exp

�

−
(ai −a ∗(θ ))2

µ

�

exp
�

−
γ(1−γ)
µ

(θ − ā (θ ))2
�

p (θ )dθ = 1. (C.8)

In the above, a ∗(θ ) = (1−γ)θ +γā (θ ). By assumption (monotone full-support strat-

egy profile), a ∗ is invertible with φ being the inverse of a ∗. With a change of the

variable of integration from θ to x = a ∗(θ ), taking into account assumption 3, and

by defining G (·) as

G (x ) =
K (φ(x ))exp

�

−γ(1−γ)µ (φ(x )− ā (φ(x )))2
�

p (φ(x ))

(1−γ) +γā ′(φ(x ))
(C.9)

condition (C.8) can be rewritten as

∫ +∞

−∞
G (x )exp

�

−
1

µ
(ai − x )2

�

dx = 1. (C.10)

Notice that the above condition has to hold for all ai . This can only happen if G (x ) =

1/
p
πµ.

Proof. Notice that the left-hand side of equation (C.10) is the convolution of g and

f : f (x ) = exp(−µ−1 x 2). Now, take the Fourier transform on both sides and use the

convolution theorem:

Fx [(g ∗ f )(x )](ξ) =Fx [1](ξ)⇒Fx [G (x )](ξ) ·Fx [ f (x )](ξ) =δ(ξ)⇒

Fx [G (x )](ξ) =
δ(ξ)

p
πµexp(−µπ2ξ2)

=
1
p
πµ
δ(ξ).

Where δ(·) is Dirac’s delta function. By taking the inverse Fourier transform on both
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sides, the statement is proven:

G (x ) =F −1
ξ

�

1
p
πµ
δ(ξ)

�

(x ) =
1
p
πµ

.

So now K (θ ) can be calculated.

K (θ ) =
1+γ(ā ′(θ )−1)

p (θ )pπµ
exp

�

γ(1−γ)
µ

(θ − ā (θ ))2
�

(C.11)

Using (C.11) in (C.7) yields

r (ai |θ ) =Ri (ai )
1+γ(ā ′(θ )−1)

p (θ )pπµ
exp

�

−
(ai −a ∗(θ ))2

µ

�

. (C.12)

The solution has to also satisfy
∫ +∞
−∞ r (ai |θ )dai = 1 for all θ . Again, changing the

variable from θ to x = a ∗(θ ), this condition yields

∫ +∞

−∞
Ri (ai )exp

�

−
(x −ai )2

µ

�

dai =
p

πµp (φ(x ))φ′(x ). (C.13)

Notice that the left-hand side of equation (C.13) is the convolution of Ri and f . Now,

take the Fourier transform on both sides and use the convolution theorem

Fai
[Ri (ai )](ξ) ·Fx [ f (x )](ξ) =

p

πµ ·Fx [p (φ(x ))φ
′(x )](ξ)⇒

Fai
[Ri (ai )](ξ) = exp(µπ2ξ2) ·Fx [p (φ(x ))φ

′(x )](ξ)⇒ (C.14)

Ri (ai ) =F −1
ξ [exp(µπ2ξ2) ·Fx [p (φ(x ))φ

′(x )](ξ)](ai ) (C.15)

Now notice that g (x ) = p (φ(x ))φ′(x ) is the PDF of the best action x =φ(θ ). From

equation (C.14) one obtains

Fai
[Ri (ai )](ξ) = exp(µπ2ξ2) ·Fx [g (x )](ξ). (C.16)

It follows from the definition of the Fourier transform (4.14) that for any function

f ,Fx [ f (x )](0) =
∫ +∞
−∞f (x )dx . So, as g is a PDF,Fx [g (x )](0) = 1. More than that, the
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mean of a random variable X with a probability PDF p is given by

E(X ) =
1

−2πı
(Fx [p (x )])

′′(0) (C.17)

and its variance given by

Var(X ) =σ2
X =

�

1

−2πı

�2

(Fx [p (x )])
′′(0)− (E(X ))2 . (C.18)

So, taking the first derivative on both sides of equation (C.16) at ξ= 0 and multiply-

ing by (−2πı )−1 results in

E(ai ) =E(a ∗) (C.19)

and taking the second derivative on both sides of equation (C.16) at ξ= 0, multiply-

ing by (−2πı )−2 and taking into account that E(ai ) =E(a ∗) results in

Var(ai ) =−
µ

2
+σ2

a ∗ . (C.20)

Notice that as by assumptionσa ∗ >µ/2, ai has a well-defined (positive) variance

and R given by equation (C.15) is the PDF of the marginal of ai .

So, the expression for r given by equation (C.7) is well-defined. Thus, the best

reply is given by the following formula:

ri (ai |θ ) =F −1
ξ [exp(µπ2ξ2) ·Fx [p (φ(x ))φ

′(x )](ξ)](ai )
a ∗′(θ )

p (θ )pπµ
exp

�

−
(ai −a ∗(θ ))2

µ

�

(C.21)

This solution is unique.

Now, for the “only if” part, if σa ∗ < µ/2, R would need to have a negative vari-

ance. As this is impossible, the expression on the right-hand side of equation (C.15)

would could not be describing the Fourier transform of a PDF and thus, its Fourier

transform would not exist. This means that player i would not have a smooth best

reply to r−i .

C.2.2 Proof of Proposition 4.6

Denote by r the strategy that all players use in an SMFE (see Proposition 4.5). Since

all players use the same strategy (almost surely), the average action function in an
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SMFE is given by ā (θ ) =
∫ +∞
−∞a r (a |θ )da .

As each player should be best responding to ā , each player’s strategy should be

(almost surely) equal to

r (a |θ ) =R (a )
1+γ(ā ′(θ )−1)

p (θ )pπµ
exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

�

with

R (a ) =F −1
ξ [exp(µπ2ξ2) ·Fx [p (φ(x ))φ

′(x )](ξ)](a ).

Using the property of the Fourier transform (see equation (C.17)), one obtains for

the average action function:

ā (θ ) =−
1

2πı
(Fa [r (a |θ )])′ (0).

So the following calculations are obtained:

r (a |θ ) =F −1
ξ [exp(µπ2ξ2) ·Fx [p (φ(x )φ

′(x )](ξ)](a )× (C.22)

×
1+γ(ā ′(θ )−1)

p (θ )pπµ
exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

�

Using the convolution theorem and the definitions of the operation of convolution

and the Fourier transform:

Fa [r (a |θ )](ξ) =

=
1+γ(ā ′(θ )−1)

p (θ )pπµ
�

exp(µπ2ξ2)Fx [p (φ(x ))φ
′(x )](ξ)

�

∗
�

Fa

�

exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

��

(ξ)

�

=

=
1+γ(ā ′(θ )−1)

p (θ )pπµ

∫ +∞

−∞
exp(µπ2t 2)

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

×

×
�∫ +∞

−∞
exp(−2πı a (ξ− t ))exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

�

da

�

dt
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And taking the first derivative with respect to ξ:

d

dξ
Fa [r (a |θ )](ξ) =

=−2πı a
1+γ(ā ′(θ )−1)

p (θ )pπµ

∫ +∞

−∞
exp(µπ2t 2)

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

×

×
�

(−2πı a )exp(−2πı a (ξ− t ))exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

�

da

�

dt

And so

1

−2πı

d

dξ
Fa [r (a |θ )](ξ)

�

�

�

�

ξ=0

=

=
1+γ(ā ′(θ )−1)

p (θ )pπµ

∫ +∞

−∞
exp(µπ2t 2)

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

×

×
�

exp(2πı t a )a exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

�

da

�

dt =

=
1+γ(ā ′(θ )−1)

p (θ )pπµ

∫ +∞

−∞
exp(µπ2t 2)

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

×

×F −1
a

�

a exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

��

(t )dt =

=
1+γ(ā ′(θ )−1)

p (θ )pπµ

∫ +∞

−∞
exp(µπ2t 2)

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

×

×
1

2πı

d

dt
F −1

a

�

exp

�

−
(a − (1−γ)θ −γā (θ ))2

µ

��

(t )dt =

=
1+γ(ā ′(θ )−1)

p (θ )pπµ

∫ +∞

−∞
exp(µπ2t 2)

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

×

×
1

2πı

d

dt

�

exp(2πı t ((1−γ)θ +γā (θ )))
p

πµexp(−π2µt 2)
�

dt =

=
1+γ(ā ′(θ )−1)

p (θ )

∫ +∞

−∞

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

×

×
exp(2πı t ((1−γ)θ +γā (θ )))

2πı
(2πı ((1−γ)θ +γā (θ ))−2µπ2t )dt =
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=
1+γ(ā ′(θ )−1)

p (θ )

∫ +∞

−∞

�∫ +∞

−∞
exp(−2πı t (x − (1−γ)θ −γā (θ )))p (φ(x ))φ′(x )dx

�

×

×((1−γ)θ +γā (θ ) +µπt ı )dt =

=
1+γ(ā ′(θ )−1)

p (θ )

�

((1−γ)θ +γā (θ ))

∫ +∞

−∞
exp(2πı t ((1−γ)θ −γā (θ )))×

×
�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

dt+

+µπı

∫ +∞

−∞
t exp(2πı t ((1−γ)θ +γā (θ )))

�∫ +∞

−∞
exp(−2πı t x )p (φ(x ))φ′(x )dx

�

dt

�

=

=
1+γ(ā ′(θ )−1)

p (θ )

�

((1−γ)θ +γā (θ ))F −1
t

�

Fx

�

p (φ(x ))φ′(x )
�

(t )
�

((1−γ)θ −γā (θ ))+

+µπıF −1
t

�

tFx [p (φ(x ))φ
′(x )](t )

�

((1−γ)θ +γā (θ ))
�

=

=
1+γ(ā ′(θ )−1)

p (θ )

�

((1−γ)θ +γā (θ ))
p (θ )

1−γ+γā ′(θ )
+

+
µ

2
F −1

t [2πı tFx [p (φ(x ))φ
′(x )](t )]((1−γ)θ +γā (θ ))

�

=

= (1−γ)θ +γā (θ )−
1+γ(ā ′(θ )−1)

p (θ )
µ

2

d

dx
(p (φ(x ))φ′(x ))

�

�

�

�

x=(1−γ)θ+γā (θ )

=

= (1−γ)θ +γā (θ )−
µ

2

p ′(θ )
p (θ )(1+γ(ā ′(θ )−1))

+
µ

2

γā ′′(θ )
(1+γ(ā ′(θ )−1))2

For the last equality, use was made of the following:

x = (1−γ)φ(x )+γā (φ(x )) φ′(x ) =
1

1+γ(ā ′(φ(x ))−1)
φ′′(x ) =−

γā ′′(φ(x ))
(1+γ(ā ′(φ(x ))−1))3

Thus, as in equilibrium it has to be that ā (θ ) = 1
−2πı

d
dξFa [r (a |θ )](ξ)

�

�

ξ=0
, the follow-

ing equilibrium condition is obtained:

ā (θ ) = θ +
µ

2(1−γ)(1+γ(ā ′(θ )−1))

�

p ′(θ )
p (θ )

−
γā ′′(θ )

1+γ(ā ′(θ )−1)

�

.

And as a ∗(θ ) = (1−γ)θ +γā (θ ), this is equivalent to

a ∗(θ ) = θ +
µγ

2(1−γ)
1

a ∗′(θ )
d

dθ

�

log
�

p (θ )
a ∗′(θ )

��

.
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and with a change of variable back to x , one obtains that

φ(x ) = x −
µγ

2(1−γ)
d

dx
log

�

p (φ(x ))φ′(x )
�

.

C.2.3 Proof of Proposition 4.8

From Lemma 4.7, if an equilibrium without information acquisition were to exist,

then all players would follow the strategy ri (ai |θ ) = δ(ai − θ̄ ) i.e. they would play θ̄

with probability one. So, the best action would be a ∗(θ ) = (1− γ)θ + γθ̄ and its in-

verse,φ(x ) = (x−γθ̄ )/(1−γ)withφ′(x ) = 1/(1−γ). So, the best action x is distributed

as p (φ(x ))φ′(x ) i.e.

g (x ) =
1

1−γ
p

�

x −γθ̄
1−γ

�

.

If player i had a smooth best response to a ∗(θ ) = (1−γ)θ +γθ̄ , then the marginal of

her action ai would be given by the expression

Ri (ai ) =F −1
ξ

�

exp
�

µπ2ξ2
�

·Fx

�

1

1−γ
p

�

x −γθ̄
1−γ

��

(ξ)

�

(ai ).

From the definition of the Fourier transform, it is easy to confirm that

Fx

�

1

1−γ
p

�

x −γθ̄
1−γ

��

(ξ) = exp
�

−2πıγθ̄ξ
�

·Fx [p (x )]((1−γ)ξ)

and so

Fai
[Ri (ai )](ξ) = exp

�

µπ2ξ2−2πıγθ̄ξ
�

·Fx [p (x )]((1−γ)ξ). (C.23)

As the mean of the best action is θ̄ , the mean of ai will be θ̄ as well (see equation

(C.19)). From the properties of the Fourier transform, one obtains (equation (C.18))

Var(ai ) =
�

1

−2πı

�2

Fai
[R (ai )])

′′(0)− θ̄ 2

Var(a ∗) =
�

1

−2πı

�2

Fx [g (x )]
′′(0)− θ̄ 2

Var(θ ) =
�

1

−2πı

�2

Fθ [p (θ )]′′(0)− θ̄ 2.
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Along with equation (C.23) and after calculation, it is obtained that the variance of

ai in a best response to a ∗(θ ) is

Var(ai ) =−
µ

2
+ (1−γ)2 Var(θ ). (C.24)

In an equilibrium without information acquisition, it has to be that the best re-

sponse of a player to everyone else playing θ̄ with probability one is to do the same.

That is, player i should not have an incentive to acquire information when others

don’t. i.e. it must be the case that the right-hand side of expression (C.24) calculates

to a non-positive number (and so, cannot be the variance of a distribution):

−
µ

2
+ (1−γ)2 Var(θ )≤ 0

and the expression in the statement of the proposition is obtained

µ≥ 2(1−γ)2σ2
θ .

For the “if” part of the proposition, notice that if µ≥ 2(1−γ)2σ2
θ and all other play-

ers except for player i play θ̄ with probability one, following the previous analysis,

player i ’s best response is to also play θ̄ with probability one and thus an equilib-

rium without information acquisition is established.

C.2.4 Proof of Proposition 4.9

First of all, from the definition of a ∗ it is clear that

∫ +∞

−∞
a ∗(θ )p (θ )dθ = θ̄⇔

∫ +∞

−∞
ā (θ )p (θ )dθ = θ̄ .

Begin by integrating condition (4.18).

∫ +∞

−∞
a ∗(θ )p (θ )dθ =

∫ +∞

−∞
θp (θ )dθ +

µγ

2(1−γ)

∫ +∞

−∞

1

a ∗′(θ )
d

dθ

�

log
�

p (θ )
a ∗′(θ )

��

p (θ )dθ

The above expression is well-defined due to assumption 1 of definition 4.1: As for all

players i their action ai has a well-defined mean and variance, so does their action

conditional on θ , ai |θ . Thus, ā (θ ) =
∫ 1

0

∫

A j
a j r (a j |θ )da j d j will also have a well-
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defined mean as an integral of a variable with a well-defined mean over a compact

space (the interval [0, 1]). Therefore, so will a ∗. What remains to be shown is that

∫ +∞

−∞

p (θ )
a ∗′(θ )

d

dθ

�

log
�

p (θ )
a ∗′(θ )

��

dθ = 0.

One obtains that

∫ +∞

−∞

p (θ )
a ∗′(θ )

d

dθ

�

log
�

p (θ )
a ∗′(θ )

��

dθ =

∫ +∞

−∞

d

dθ

�

p (θ )
a ∗′(θ )

�

dθ =
�

p (θ )
a ∗′(θ )

�θ=+∞

θ=−∞
.

As p is the PDF of a probability distribution, it has to be that limθ→±∞p (θ ) = 0. Now

focus on limθ→+∞p (θ )/a ∗′(θ ). There are three possible cases:

(i) limθ→+∞p (θ )/a ∗′(θ ) = +∞.

As limθ→+∞p (θ ) = 0, it has to be that limθ→+∞a ∗′(θ ) = 0. But then, there exists

a θ ′ such that a ∗(θ )<θ for all θ > θ ′. So, from equation (4.18), it has to be that

p (θ )/a ∗′(θ ) is decreasing for all θ > θ ′.

This contradicts limθ→+∞p (θ )/a ∗′(θ ) = +∞.

(ii) limθ→+∞p (θ )/a ∗′(θ ) = l > 0.

In this case, there exists a θ ′′ such that p (θ )/a ∗′(θ ) ≥ l /2 for all θ ≥ θ ′′. Since

a ∗′> 0, a ∗ is strictly increasing and thus limθ→+∞a ∗(θ ) is well-defined (possi-

bly infinite). So, for θ ≥ θ ′′ it has to be that a ∗′(θ ) ≤ (2/l )p (θ ) and integrating

this gives
∫ θ

θ ′′
a ∗′(x )dx ≤ (2/l )

∫ θ

θ ′′
p (x )dx ≤ 2/l and so a ∗(θ )−a ∗(θ ′′)≤ 2/l . So,

limθ→∞a ∗(θ )≤ 2/l +a ∗(θ ′′)<+∞.

This contradicts condition 3 of definition 4.1.

(iii) limθ→+∞p (θ )/a ∗′(θ ) = 0.

Since the other two cases lead to contradictions, it has to be that this is the

case.

A similar argument can be made for the case where θ →−∞.

So, limθ→+∞p (θ )/a ∗′(θ ) = limθ→−∞p (θ )/a ∗′(θ ) = 0 and

∫ +∞

−∞
a ∗(θ )p (θ )dθ =

∫ +∞

−∞
ā (θ )p (θ )dθ =

∫ +∞

−∞
θp (θ )dθ

.
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C.2.5 Proof of Proposition 4.11

From player i ’s point of view, and given that she knows the function a ∗(θ ), there are

two random variables: θ and ai . One can define more random variables, namely

y =E(ai |θ )which is the (equilibrium) average action given θ and x = (1−γ)θ +γy ,

which is the best action given θ .

Using the variance decomposition formula for ai , one obtains

Var(ai ) =E(Var(ai |θ ))+Var(E(ai |θ )) =E(Var(ai |θ ))+Var(y )

Using this and from equation (C.20) (in the proof of Proposition 4.3), one gets

Var(x ) =
µ

2
+Var(ai ) =

µ

2
+E(Var(ai |θ ))+Var(y ). (C.25)

As y = x/γ+ (1−γ)θ/γ,

Var(y ) =
�

1

γ

�2

Var(x ) +
�

1−γ
γ

�2

Var(θ )−
2(1−γ)
γ2

Cov(x ,θ ). (C.26)

Substituting (C.26) into equation (C.25) and after calculations, one gets

γ(Var(θ )−Var(x )) =
µγ2

2(1−γ)
+
γ2

1−γ
E(Var(ai |θ ))+Var(θ ) +Var(x )−2 Cov(x ,θ )).

Now, notice that

Var(θ ) +Var(x )−2 Cov(x ,θ ) =Var(θ − x )

and thus

σ2
θ −σ

2
a ∗ =

µγ

2(1−γ)
+

γ

1−γ
E(Var(ai |θ ))+

1

γ
Var(θ −a ∗)

whereσ2
θ =Var(θ ) andσ2

a ∗ =Var(x ).
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