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SUMMARY

The classical techniques of network synthesis are restricted 

to designs in idealized elements with series-parallel configurations. 

This research is an investigation into the possibility of unrestricted 

synthesis employing alternative techniques which involve optimization 

by computer. In this method the values of the elements are modified 

such that an error function is reduced. If the current network is 

unable to satisfy the required network response then the components 

have to be modified. A method of coefficient matching was investigated 

with lumped, linear, passive three-terminal networks having a maximum 

of ten nodes.

The research utilized a design package developed by Drs. O.P.D. 

Cutteridge and A.J. Krzeczkowski. This formulated the problem for 

solution by an RC network with a fixed number of nodes. An 

effective analysis routine calculated the values of the coefficients and 

their first derivatives, for optimization by the conjugate gradient and 

Gauss-Newton algorithms. The rudiments of a method for the addition 

and removal of a single element had been developed.

Research was undertaken into three areas. Firstly, the 

efficiency and dependability of the optimization was improved. This 

involved research into the individual error functions, variation of 

common factors and the efficient utilization of the optimization 

algorithms. Secondly, modifications to the network topology were 

considered. The criteria to determine the need for a modification 

were improved and checks to ensure the continued efficiency implemented. 

An improved method of element addition (capable of multiple additions) 

was devised. Thirdly, the addition of groups of elements was investi

gated (i.e. node addition) and a successful method developed.



With these modifications implemented, the.package was able to , 

achieve more complex realizations than had previously been obtained.

For example some seven node RC realizations with fifteen elements 

were automatically evolved from initial structures having five nodes 

and eight elements, a process which sometimes required a total of 

twenty-five topological modifications. Several theoretically 

interesting networks which were evolved automatically by the package 

are included.
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CHAPTER 1

INTRODUCTION

The development of integrated circuits and the requirement for

increasingly more demanding specifications have amplified"the

deficiencies of the traditional methods of network synthesis. Termed
12the classical techniques * , these methods are all based upon series- 

parallel decompositions (series decomposition of impedance functions and 

parallel decomposition of admittance functions). This produces a 

network composed of small subnetworks which can be easily synthesized.
3In 1968, Fialkow proved that not all feasible networks can be realized 

within the confines of a series-parallel topology. These techniques 

are also deficient in that they produce realizations with excess numbers 

of elements, and exclude consideration of element parasitics, variable 

Q factors, possible constraints on element values, etc. Alternative 

methods are required to ensure designs do satisfy the requirements when 

actual elements are considered.

The computer, which can perform many calculations rapidly and at 

low cost, enables methods of directed trial and error to be employed. 

Such methods are, therefore, no longer dependent on the topology of the 

network. Mass production techniques have led, to a situation where 

larger sums can be expended on the initial design. Consequently, 

computing costs are unlikely to prove prohibitive and are anyway contin-
4uously being reduced (currently at a rate of 15% per annum ).

Any feasible techniques which arise from this research are 

applicable to many fields other than electrical network synthesis. 

Calahan^ intimated that many other systems are analogous to electrical 

networks, having easily identifiable ’through' and 'across' variables



analogous to current and voltage. Also the automated design concept 

has links with machine intelligence [more specifically pattern 

recognition) and, further, the use of optimization techniques is 

spreading to many fields.

In the area of network synthesis the computer was initially 

applied to the design of filters^. Theoretical design techniques had 

failed to satisfy the required performance criteria when physical 

elements had been used to construct the network. . In 1956, Aaron^ 

proposed using a least-squares approach for improving upon the design
g

at each stage of the classical synthesis methods. Desoer and Mitra 

(1961) further proposed an iterative optimization method which varied 

the values of the physical non-ideal elements of ladder filters, to 

reduce the variance between the desired and the actual transfer functions
9Calahan (1965) extended this idea with a method applicable to any linear 

network, but the intention remained to modify classical designs to 

nullify the effects of parasitics. However, the ultimate aim must be 

to complete the design entirely by computer. Director and Rohrer^^ 

(1969) instigated the next forward step by developing a method for the
9addition of elements, a possibility recognized by Calahan , There are,

however, no commercial packages currently available which can achieve

this goal. Several of the large scale analysis packages have facilities

for optimization and consider other aspects such as non-linearity and

temperature. However, none appear to be capable of modifying the

network topology^^.

At Leicester, several years of research into computer aided

network design have been supervised by Dr. O.P.D. Cutteridge. A method

of coefficient matching has been successfully used, although pole-zero
12and direct matching were considered by Wright . Wright also examined 

interactive design as well as the predominantly used automated design.



Coefficient matching has long been recognized to have good properties
9of convergence and has also proved of greater efficacy for topological

12-15modifications. Early results disclosed the possibility of

reducing the size of networks produced by classical or other techniques.

Similarly, success has been achieved with additions of both elements

12 14,16-18 nodes^^. Practical problems requiring restrictions
12on the values of elements etc., have also been solved

The author's research described in this thesis is devoted to 

the synthesis of 3-terminal lumped, linear, time invariant networks by 

a coefficient matching method, and utilized the batch mode exclusively. 

Automated desigft lA the bàtch mode requires less sophisticated 
equipment and users less skilled in the discipline, but can be 

hazardous in that it is possible for entire job-times to elapse 

without useful developments. However, it can also prove useful in 

overcoming in-built prejudices of an interactive user, i.e. pre

conceived concepts of the topology of a solution network. This factor

precluded the discovery of a six node computer realization to the set
19of functions given by Lucal (equations 1.1) despite repeated attempts, 

particularly by Hegazi^^ and also the author in early work.

36p^ + 2058p3 + 6552p2 + 4638p + 36 
^11 36p3 + 216p% + 396p + 216

36p^ + 36p3 + 72p2+ 36p + 36 
’̂ 12 36p3 + 216pZ + 396p +216

= 36p^ + 533p3 + 1572p2 + l]83p + 36 
^22 36p3 + 216p/ + 396p + 216

1.1

Coefficient matching can only be applied after the given set 

of design specifications have been transformed into the required 

functions (termed, the approximation stage). In this thesis the



coefficients are those of the polynomials in p , the complex frequency
20variable, of the short-circuit admittance parameters. Typically

the approximation stage is performed by computer, using methods such

as those of Remez.- A starting network which satisfies the order of

these polynomials, with or without common factors, is required. The

method of analysis used was based on the nodal admittance matrix, which

is small and easily formulated when compared to the alternatives, and
13 21-24had been developed at Leicester ' It is capable of rapidly

calculating the network coefficients and their derivatives with respect 

to the elements. Coincident with the research in this thesis the 

possibility of an alternative method of analysis employing fast Fourier 

t r a n s f o r m s w a s  investigated by Banerjee^^. With the order of 

magnitude of problems considered here, there was no variation in 

accuracy or speed experienced.

Once the coefficient values have been calculated, an individual 

error function (f^) is determined for each coefficient in order to 

provide a measure of the variation between the actual and desired values. 

These functions are formulated such that f^ = 0 when the two values 

are identical. As individual functions will vary rapidly with 

fluctuations in the element values, and so cannot all be reduced simult

aneously, an overall summation of the errors (F) is used to evaluate 

the progress. (Generally this performance function is a squared 

summation.) Optimization routines are used to modify the element (and 

common factor) values such that error F is reduced. The variables 

are optimized in the logarithmic domain to ensure that the element values 

remain positive. Although active equivalents to negative elements can

be obtained, they only approach the idealized behaviour over a limited
28range of voltages, currents and frequencies . Furthermore, a passive 

rather than an active design may be preferable. If the current network



is unable to satisfy the design requirements, then this has to be 

established and the network topology modified.

The only elements considered were lumped, linear resistors, 

capacitors and inductors (RLC networks) with no parasitic effects. 

Consequently this research can only be regarded as one stage in the 

complete design of an electrical network. However, the results 

produced may be of interest to theoreticians and prove beneficial in 

modelling situations.

The approximation stage and final tuning to the requirements (by,
29say, design centering ) are not considered. The major requirement of 

any design is that it should satisfy the desired performance criteria. 

Determining which of a set of possible solutions is the optimum design 

will depend on requirements such as cost, or the lowest sensitivity of 

the characteristics to element variations. These parameters are not 

dealt with and the design is directed towards producing a solution with 

the minimum number of nodes. This approach will tend to minimize the 

time taken to locate a realization (because the time for each analysis 

increases as the number of nodes increases) and also to minimize the 

number of elements. This in turn increases the speed of the optimization 

and possibly reduces the cost of production, if not the sensitivity.

An adequate design was only considered to have been achieved when the 

error function F had been reduced to the limits of the computer accuracy, 

This is termed a computer realization, and not a solution, as it is 

uncertain if this will be an exact solution or merely a very good quazi 

solution.

With idealized RLC networks the solution of practical problems 

cannot be attempted. The motivation behind the research was to solve 

academic test problems with known solutions and to develop processes 

which could then be applied to other problems which did not have known



1.2

solutions. If required, it would then be possible to consider more

practically orientated problems with model representations of actual

elements, etc. Two test problems were considered extensively. Two

element kind solutions to Lucal's functions (eq.1.1) had been obtained
19 30 31by using classical series-parallel decomposition techniques ' ’

However, all the solutions had contained at least seven nodes plus the 

reference node, which is two more than the minimum as indicated by the 

order of the polynomials. This problem is therefore of particular 

interest in the derivation of techniques for the addition of nodes.

The second problem is due to Fialkow^ (eq. 1.2),

-  1197p^ + 5 6 6 1 3 .14p2 + 2 8368 .584p + 191.184 
^11 '  ^22 ‘  800000p2 + 408000p + 3840 ^

= 3p^ - 1.14p2 + 197.176p + 77.616 i
'  12 800000p2 + 408000p + 3840

and is of particular interest because its realization must have a non

series-parallel structure and so cannot be solved by classical synthesis 

techniques. Several other test examples were derived from these two 

sets of functions.

An introductory grounding in the basic principles of the coefficient 

matching technique is given in Chapter 2. The formulation of the nodal 

admittance matrix and the significance of the short-circuit admittance 

parameters are also explained. The powers of the complex frequency 

variable, p , present in the functions make it preferable to calculate

the polynomial coefficients by assigning real values to p . The analysis
13 21-24method employed, as developed by Cutteridge and di Mambro * " ,  is

outlined briefly.



The individual error functions are non-linear functions of the

network elements, hence a set of non-linear simultaneous equations are

formed. The derivatives of the coefficients and thus the individual

error functions are easily attainable (an advantage over other forms

of modelling such as pole-zero or direct matching). Consequently,

optimization algorithms which use this information are to be preferred

to those which use only function evaluations. The most powerful

algorithm for the solution of non-linear simultaneous equations is the

Newton-Raphson (NR) method, known as the Gauss-Newton (GN) method

when transformed to accommodate overdetermined equations. Here the

individual error functions (f^) are considered and not the overall

error F as with the gradient descent methods. However, when far

from a solution the GN can fail to converge. Consequently, two-

part programs switching from a stable, but less powerful, gradient

descent method to the GN method are often used. Di Mambro^^ found

this type of two-part package to be superior to Levenberg's technique,

which is a quasi-Newton method. Details of the optimization algorithms

investigated conclude Chapter 2.

The research contained in this thesis is a continuation of the

work of Krzeczkowski^^. With the analysis as developed by Cutteridge

and di Mambro^^'^^ , the element values were modified by the conjugate
32gradients method of Fletcher and Reeves and the GN algorithm.

Criteria had been developed to switch from one optimization routine to

the other and a choice between two individual error function formulations

was possible. Furthermore, algorithms had been included to instigate

element removals and element additions based on closed form
33expressions for the optimum values of the virtual elements . (There 

exists the possibility of an element connected between any two nodes.

Any element which is not present is, in effect, set to zero and is



referred to as a virtual element.) Although these facilities for 

topological modifications existed, there was no routine included to 

establish whether the synthesized network could be correctly matched to 

the required network. A description of such a routine, included by 

the author, and other safeguards such as checks on symmetry is given 

in Chapter 3. Also included is discussion of switching between the 

two sections in the optimization routines used, error function formula

tion and performance, variation of common factors, and improvements and 

modifications to the linear searches incorporated in the optimization 

routines. The original program, written in Algol, was restricted to 

three-terminal networks containing only resistors and capacitors (RC 

networks), with the possibility of only one common factor. A Fortran 

version was developed by the author which considered both RC and RLC 

networks with any number of common factors.

It has already been stated that there had been examples which had 

reduced solutions produced by classical techniques to solutions or quasi

solutions with fewer nodes. This suggests that a suitable design

strategy would be to choose a start network with a number of superfluous 

nodes so that the optimization could remove nodes and elements, thus 

leaving a good approximation to the required network. Often, however, 

this proves impractical. The time taken for each analysis increases

with the number of nodes. Further, the power of any optimization routine

is reduced as the number of variables is increased. Consequently, 

progress in reducing the error with large, arbitrary, start networks can 

be negligible. An alternative strategy is to start with a minimal 

topology (i.e. comprising of the minimum number of elements and nodes 

possible to effectively synthesize the requirements) and add suitable 

elements to this initial guess. Also, as additions would generally 

improve any network which had been produced by the reduction of a larger



network, element additions are of great significance.

The criteria which activate topological modifications are discussed 

in Chapter 3. Chapter 4 illustrates several possible methods of element 

addition, and a method based on the corrections given by the GN 

algorithm proved successful. Details of strategies devised to combat 

examples in which problems did arise with this method are also discussed.

Chapter 5 details the findings of the author with several methods 

for introducing new nodes into the network. A method was developed 

which solved many test examples.

A cross-section of results, both successful and unsuccessful, are 

illustrated in Chapter 6. Of particular interest are RC computer 

realizations to Lucal's functions with only six nodes plus the reference 

node, and RLC realizations to Fialkow's functions with a series- 

parallel structure. The general efficacy of the program developed is 

indicated by results from different start topologies to the same problem, 

and the same start topology with slightly differing test problems. The 

results are also compared to those achieved previously.

A final gathering together of the achievements of the research 

is contained in Chapter 7. The author also outlines several possible 

subjects for research, together with possible extensions to the package.

Three machines were used during the course of the research.

Most of the results contained in Chapter 6 were obtained on a CDC Cyber 72. 

The original work was run on an ICL 1906A machine. When this shut down 

a Fortran version was transferred to an IBM 360 machine. The further 

transfer to the Cyber was performed because of the increased accuracy 

available.



10

CHAPTER 2

NETWORK THEORY, THE COEFFICIENT MATCHING TECHNIQUE AND THE 

OPTIMIZATION ALGORITHMS

2.1. Introduction

There are several possible methods of network representation 

which facilitate the use of computer aided design. These methods are 

interchangeable in that it is possible to transform the desired
34response from, say, time-dependent equations into the frequency domain

and from a desired frequency response into an approximate representation
35using polynomials in -p" , the complex frequency variable. These trans

formations are not always easily accomplished (particularly, say, 

obtaining the polynomial coefficient^of narrow band networks) but are 

performed to expedite the design process. One such form of representa

tion, coefficient matching, has been found to be particularly suitable 

and consequently has been employed in this research. The efficacy of
9

this method was originally indicated by Calahan and the major consider

ations were examined at Leicester before concentrating on this approach. 

The results obtained prior to, and during, this research would appear to 

validate this choice.

Two alternative methods are the direct method (which matches a 

desired response, say the frequency, at a number of positions) and the 

pole-zero method. In all three methods the variables are modified such 

that the synthesized response equates to the desired response.

After a cursory inspection it may seem that direct matching 

would be desirable in that it is unnecessary to approximate to a set of 

transfer functions, and also tolerances can be easily handled. With 

other methods, if a complete design is required, the tolerance
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requirements have to be considered at the approximation stage and, 

unless an exact synthesis o^ the functions is obtained, it remains 

uncertain whether the network will satisfy the requirements. In parti

cular, the polynomial coefficients can be ill-conditioned, with small 

variations of the values resulting in significant movements of the poles 

and zeros. However, just as it may prove difficult to choose particular 

values for the calculation of an approximation to a response, difficulty 

may be experienced in determining the positions for direct matching.

Further, the magnitude of the network required to effectively synthesize 

the response may not be apparent from frequency characteristics. With 

coefficient matching the minimum is evident although, even then, extra 

common factors may be required. Also, direct matching is further 

removed from the classical methods of synthesis which may provide useful 

information concerning the feasibility of networks, etc.

Several other factors favour the use of coefficient matching. 

Although difficulty may be experienced in determining the values of the 

required coefficients, once this approximation stage has been accomplished 

the design will proceed in a similar and straightforward manner.

Further, it will be clearly apparent when a realization has been achieved. 

The method has also been found to have favourable properties of conver-
9

gence as, unlike other methods, the coefficients and derivatives are multi

linear functions of the network elements. Consequently, the derivatives 

can be easily and accurately formulated.

The values of the poles and zeros can be determined from the values 

of the coefficients, therefore pole-zero matching will tend to suffer 

from similar deficiencies to coefficient matching. The major difficulties 

with the pole-zero technique arise in establishing which synthesized pole 

(or zero) is to be matched to which particular desired nole (or zero).
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9
Calahan was the first to employ a coefficient matching technique, 

attempting to match the coefficients of a single desired network function 

T(s) . The NR method was used to determine iteratively the required 

element values, the progress monitored by the reduction of error 

functions to a value of zero at a realization. A sufficient number of 

variables were fixed in value to ensure that a defined system was 

obtained.

The method was improved by Cutteridge^^"^^ who recognised that 

simultaneous matching of a multiplicity of network functions could be 

achieved with multi-terminal structures, thus fully specifying the network 

A number of elements were varied, sufficient to ensure that the 

synthesized network could be matched accurately to the desired network, 

whilst the other elements were set to zero, thus producing a defined 

or overdefined system.

Further explanation of the coefficient matching technique employed 

in this thesis appears in section 2.4. This section also outlines the 

significance of equivalent networks containing normalizing variables and 

common factors.

Possible methods of analysis and various optimization routines 

had been considered prior to the commencement of this research. An

analysis routine (section 2.3) using the nodal admittance matrix
,o 13,2

13,21
(section 2.2) had been developed by Cutteridge and di Mambro^^'^^ and

had been found to be at least as efficient as other methods

The state-variable method of analysis does have advantages in

that it can be easily extended to include non-linear elements, and also

provides useful information about the performance of the network,

Di Mambro^^ disregarded this alternative nartially as a result of the 
38findings of Pottle who declared this method to be less accurate and 

more time consuming in determining the coefficient values. Later,
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39however, Pottle devised an improved method.

As the derivatives are readily available, optimization routines 

using this information are preferable to direct methods (such as the 

Simplex method) which use only function evaluations. The potency 

of the direct methods decreases as the number of variables is increased. 

Two-part programs combining a powerful Newton method with a stable 

gradient method were found to be preferable to quasi-Newtonian methods. 

Originally a combination of the conjugate gradient (section 2.5) and 

GN techniques (section 2.6) was employed but an alternative gradient 

method using second order derivatives (developed at Leicester by 

Cutteridge, Henderson and Dowson^^"^^) was investigated. The criteria 

developed to instigate switching between the gradient and GN techniques 

are described in Chapter 3.

2.2. The Nodal Admittance Matrix and the Short-Circuit Admittance Functions

Nodal admittance analysis has two major advantages over mesh 

impedance analysis.

(1) The nodal admittance matrix is more easily formulated 

automatically. It is not easy to determine the number 

of independent loops and to specify these loops on the 

computer.

(2) There will be fewer nodes than meshes in a network and 

consequently the arrays will be smaller, occupying less 

computer storage and the analysis will be performed 

more quickly. The speed of computation can also be 

aided by the sparsity of the nodal matrix enabling the 

use of various time saving t e c h n i q u e s ' ^ . (These 

techniques are insignificant with the order of networks 

examined in this thesis and are not employed.)
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Consider a 3-terminal network as shown in Figure 2.1. The 

external behaviour of the network is described by the relationship 

between the input ( 1 and o ) and output terminals ( 2 and 0 ) . 

Suppose that the network comprises of a total of n nodes (plus the 

reference node) and that the voltages of these n nodes above the 

reference node are E^, E^ ... E^ . The admittance of each branch

between any two nodes i and j (Y\^) is comprised of a combination of 

a maximum of three types of element.

Hence ,

Y . . = (pC + G + L/p) (2.1)

where ,

p is the complex frequency variable

C is the capacitance in Farads between nodes i and j

G is the conductance in S(e-mens between nodes i and j

and L is the inverse inductance in Henrys  ̂ between nodes i and j 

k
If Kirchoff's current law is applied to each node in turn and Ohm's law 

is used to determine the current in each branch, the n equations can 

be arranged to the form,

I = Y E - Y E - Y E - Y E1 11 1 12 2 13 3 m  n
I = -Y E + Y E - Y E - Y E2 21 1 22 2 23 3 zn n
0 = -Y E - Y E + Y E - Y E
J
1

31 1 32 2 33 3 3H n

I

0 = -Y E - Y E - Y E + Y Eni T\2 2 na 3 nn n

Y. . is the sum of the admittances connected

(2.2)

1]
are no external drives to nodes 3 , 4 ... n)



From Cramer’s rule, and expanding down columns one and two
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^2 " ^21^1 ^22^2 (2.3)

or, in matrix form

with

"E
1

rz
11

z
12 ri 1 

1

Az. -hi Z22. _I2.

h i
A

^12 =
A21
A , z21 = - f -  ^22 = - f

(2.4)

where are the cofactors of the determinant of the admittance

matrix A .

Hence, using the relationship that

A A = A A A A1122 11 22 12 21

'II' > 1 1 ^ 12'
_I2_ 7 2 1 ^22 _h_

(a form of Jacobi’s theorem)

(2.5)

12 11

^ 1 1 2 2 ^ 1 1 2 2

For networks comprised of reciprocal elements (such as RLC networks)

then y  = y  . If y = y (and hence A = A ) the network 
12 ^21 11 22 11 22

is said to be symmetrical.

For RLC networks, the three short-circuit admittance functions

(7 ll , and, therefore, the four cofactors (A^^ , A^^ , A^^ ,

A ) fully define the external performance of a network. The 
1122

coefficients of the rational functions in p (the complex frequency 

variable) of these four cofactors are those used in the coefficient 

matching process. The term short-circuit is derived from the relation

ships
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I
y = 77̂  when nodes 2 and 0 are short-circuited 11

y = 77̂  " " 1 and 0 " " "22

II
and y ^2 = —  ” 1 and 0 " " " (2 .6)

2

The roots of the polynomials A , A and A are the zeros 
^  11 12 22

and A the poles of the network admittance functions. An1122 ^
alternative representation is

m r.p 
ij oop o (p + a^)

where r is the residue of the pole at infinity,

is the residue of the pole at zero,

and is the residue of the pole at -a^ .

If the residues of y^^ , -7^2 ^22 ^ particular pole are

denoted by r^^ , r^^ â d̂ r^^ then CauerVs residue cmdi.tion states

that

^11^22 - fi2%0  • (2.8)

When '^11^22 ~ ^ 1 2  * ^12 ^ ^ the pole is said to be compact.

A further point of interest arises from a study of graph theory^^. This

indicates that the 2-trees of A are included in the 2-trees of A
12 11

and A^^ . Consequently if the coefficients of any power of p in

A , A and A are equal, they should correspond to identical 
11 12 22 ^

142-trees . Therefore the two-trees of A^^ and A^^ for this power 

of p must be zero.
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Further information as to the values of poles, residues and 

zeros for particular network configurations and types is available 

in the standard texts.

2.3. Calculation of the Coefficients and their Derivatives

An analysis routine which can calculate quickly and accurately

the coefficient values and their derivatives with respect to the

elements, is essential. Such a method was developed by Cutteridge

and Di Mambro^^*^^ who found it compared favourably with other

methods available at that time. Reference to the state variable method
38 39and the findings of Pottle  ̂ has already been made.

Di Mambro^^ also considered the Adjoint^^*^^ and similar

methods. Although there is no actual data for a comparison of the

accuracy and computation times, the Adjoint would seem to be a less

direct method of calculating the derivatives than by simply determining

the cofactor values.

A further method of analysis, using fast Fourier transforms
27was investigated at Leicester by Dr. Banerjee. The results were not 

found to be superior, in terms of gvk\erspeed of’ accuracy, to the method 

of Cutteridge and Di Mambro for the order of networks investigated in 

this thesis.
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The cofactors of the nodal admittance matrix are in the form of 

polynomials in p . When inductors are included in the network the 

admittances of each branch are multiplied by n to remove any inverse 

powers. It is impractical to manipulate the powers of p when 

determining the coefficient values, so m + 1 values are assigned to 

p , where m is the highest order of the polynomials produced.

The m + 1 values of p , Pg , Pg give m + 1 equations

of the form

(2.9)

where A(p) is the value of a cofactor evaluated at a particular value 

of p , and c^ are the coefficient values to be calculated. Thus,

i 1

I Pr+i ^r+i

r -

 Pr+i-

! C 
! 1

1 A(Pl)

LaCPr+i) j (2.10)

The values of the coefficients are obtained by multiplying each side of

equations 2.10 by the inverse of the Vandermonde matrix (the m+1 by m+1 matrix)

The values of the derivatives can be calculated in a similar manner.
3c.

Values of %—  will be obtained if values of A(p.) are substituted by 3x.
3 Avalues of (pu) . The speed of the calculation is increased byx̂  1

(i) using the information that the derivative of a determinant 

with respect to one of its elements is equal to the cofactor 

of that element.

(ii) calculating the values for the cofactor A^^^g fi^st, since 

this has terms in common with the other cofactors.
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For a more detailed explanation of the method see Di Mambro^^'^^"^^.
13 21This method can also be applied to active devices ’

2.4. Formulation•of the Coefficient Matching Technique

Although this will not always be the case, the examples considered

in this thesis reauired the cofactors of A , A , A and A of
11 12 22 11 2 2

the admittance matrix to be realized.

Let,
m be the total number of coefficients of the four cofactors, all

of which have to be realized. (No further coefficients should be

generated by the synthesized network.)

n be the total number of independent variables, comprising of

elements and common factors

a_ (i = 1 to m) be the required values of the coefficients

(as modified by the presence of any common factors)

c^ (i = 1 to m) be the values of the corresponding coefficients

generated by the network variables, Xj (j = 1 to n)

k be the normalizing variable

The proximity of each actual coefficient (c^) to the desired value 

(a_) is indicated by the individual error functions f^ (i = 1 to m ) .

A progress function, F , is constructed from these individual error 

functions. If these f^ are devised such that f^ = 0 when (and only 

when) = ka^ , then the design problem is in a form ideally suited to

optimization by computer, namely, to modify the values x_. such that an 

overall error function F is reduced.



20

9Calahan’s original formulation was

f^ = - ka^ (2 .11)

This gives an absolute measurement of the error. However, this has 

a trivial solution (if sufficient of the equal zero for all the

to be zero) which causes practical problems^^. The formulation 

predominantly employed in this research was

h  = k ÿ  - 1 • f2 .i2)
1

This gives a relative value of the variance between the actual and the 

desired coefficients which is theoretically preferable, particularly 

when the required coefficients vary by orders of magnitude. The progress

function was constructed from the sum of the squares of the f^ , namely,

F = I  q  . (2.13)
i=l

It can be seen that the individual functions were identically weighted. 

This representation (equations 2.13) does not produce discontinuities 

in the values of the derivatives, as does the minimax representation 

(equations 2.14), and also enables 

m
F = I Iql (2.14)

i=l

the optimum value of k to be easily calculated. (See Appendix 1 )

Although it is the coefficients of the cofactors which are matched, 

the external behaviour of a network is actually defined by the short- 

circuit admittance functions. As these functions are ratios of two of 

the cofactors, if all the cofactors are multiplied by the same factor 

the network will retain the same external characteristics. This extra
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factor can be any combination of three possible forms:

(i) a scalar quantity known as the normalizing variable

(ii) a power of the complex frequency variable p^ , where

n is an integer

(iii) a polynomial in p . This can be factorized into 

individual common factors of the form (p + a ) .

a is referred to as the value of the common factor 

whose form (positive real, complex, etc.) will 

depend on the types of the components in the network.

Krzeczkowski^^ determined that the optimization proceeded in the 

most efficient manner when the normalizing variable was set to its 

optimum value at each function evaluation. Each common factor will 

introduce an extra coefficient to each cofactor. The variation of the 

common factor values is discussed in section 3.5.

Transformations to the logarithmic domain and to the square

domain have both been considered as possible methods to ensure that the

variables retain positive values. However, potential solutions with

negative valued elements are not ignored, but are mapped into the

solution space where they can still have a detrimental effect. The
13 2]square transformation has usually been employed '' , in preference to

the logarithmic transformation, with the intention of avoiding potential 

numerical difficulties as the variables tend to zero values. 

Krzeczkowski^^ found that these difficulties did not arise. In fact, 

the logarithmic transformation has the advantage of natural scaling 

which Krzeczkowski found beneficial stating; "This constraint improves 

the rate of convergence of the algorithms most markedly".



22

2.5. The Conjugate Gradients Algorithm

To prevent the error function F increasing between successive

iterations, it was found necessary to modify the linear search of the
32original algorithm published by Fletcher and Reeves . The details 

of these modifications can be found in section 3.7. The original Algol 

version was transcribed into Fortran by the author.

The efficacy of several alternative optimization routines had been

investigated prior to the commencement of this research. Although the

basic GN algorithm has been improved by the implementation of factors

such as a linear search, working in the domain of transformed variables,

etc., the algorithms still only converge consistently from values close

to those at a minimum of the error. In order to develop more powerful

optimization routines, two-part programs have been investigated. These

generally employ either, a gradient descent method or, a modified NR

technique which can approximate to a gradient method (e.g. Levenberg)

prior to the implementation of the GN . Both alternatives were

examined at Leicester prior to this research. Approaches using a true

gradient descent method were found to be superior to the quasi-Newton

t e c h n i q u e s ' ^ * . Of the improvements on the basic steepest descent

algorithm, the conjugate gradients method was found to be superior to
5the variable metric method of Fletcher and Powell " and its modified 

counterpart (1970).

■ As a further alternative, it is possible to construct simple 

function minimization procedures which exploit the multilinear properties 

of the network coefficients. Such a method was described by Massara 

and Fidler^^. This was shown to have rapid initial convergence

characteristics but k , the normalizing variable, was omitted without

explanation.
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The conjugate gradients method is guaranteed to locate the 

minimum of any quadratic function of n arguments in at most n

iterations. As this is not the case with network synthesis, the

process is iterative with the search set to the steepest descent 

direction at the first iteration and reset after each n iterations.

Using the superscript k to denote values at the kth

iteration, the search direction is governed by

where ^  is the gradient vector of F with respect to the n 

variables of x

and 8 = 0 if k = rn + 1

(where r is an integer of value zero or greater)
k-l k-1

&  • g.
S = - Y n ----iTT ■ (2-16)

g • g.

This modifies the vector of the current values of x 

(Xj,j = l to n) such that

i   ̂ 2  ( 2 . 1 7 )

where X is a scalar calculated (by a linear search) to minimize the 

error value F .

To reiterate, the CG is only useful in the initial stage of 

a two-part optimization algorithm as the good progress initially 

obtained tails off.
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2.6. The Gauss-Newton Algorithm

The Taylor Series expansion of a function f(x) is

6x^+ ^  f"fx) + ...f(x + 5x) = f(x) + 6xf'(x) + f'(x) + ... (2.18)

If ÔX is such that f(x + 5x) - 0 and second order terms 

and above are ignored,

- f(x) - 5x.f'(x) (2.19) 

Generalizing to n functions £  of n variables x

- ^(x) = J . ^  - the symbolic NR algorithm

i.e. 5x = - [J]"\f(x) (2.20)

where [J] is the Jacobian matrix (n xn) of first derivatives. F or an

overdetermined system (m equations in n variables where m > n) a

least squares solution to the set of linear equations can be obtained b)’’
Tpremultiplying by J , the transpose matrix of the Jacobian.

- J^ f(x)= J^ J ÔX

giving 52Ç = - [J^J] J^ f(x) - a symbolic form of the (2.21)

Gauss Newton algorithm

The corrections ^  can best be found by using a routine which uses 

Householder's transformations.
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The variables are modified thus;

= x^"^ + X 5x^"^ (2 .22)

where X is a scalar value obtained by a linear search to minimize 

the value F . This encourages convergence of the method.

2.7. A Steepest Descent Algorithm Utilizing Second Order Derivatives

This further gradient descent method was investigated, in place

of the CG method, as the preliminary stage of a two-part program.

This method had been devised at Leicester by Cutteridge and Henderson^^*^^
41and an improved version, as developed by Dowson , was supplied to the 

author. The method had previously been successfully applied to a 

transistor modelling problem with which difficulty had been experienced 

using the alternative gradient methods which used only first order 

derivatives^^. This method produces several minima at each iteration 

and, consequently, enables restarts to be made from alternative positions 

if the optimization is proceeding at a slow rate in an initial direction. 

The conventional method of steepest descent can be written as

« X .  = - v . 3 f  ( 2 . 2 , . )

J

where, y > o for descent and y is chosen (by a linear search) to 

minimize the value of F .

Extending this to include the second partial derivatives of F

‘”i ■ ■ “ { y  • (J, C T j ' y  o - w
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or, in vector matrix form,

ôx_ = - y [G + H (2.25)

where G is the gradient vector 

and H is the Hessian in F .

Hence,

5x = - (H - XI)‘\ g . (2.26)

Thus X = + » and X = - <» correspond to the directions of steepest

ascent and descent, respectively.

The eigenvalues, X̂  ̂ , are calculated to locate the discontinuities

of the function F(X) . This enables all the minima of this multimodal

function to be efficiently determined.

In practice, the moduli of the corrections are limited so that

the variation of each variable per iteration does not exceed a

prescribed value. This introduces further discontinuities into the
41function F(X) . Their positions can be calculated , thus facilitating 

the linear search. It is usual to proceed from the minimum producing 

the best reductions in error unless the restart facility is invoked.
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i\ 2

FIGURE 2.1: THREE-TERMINAL RLC NETWORK



28

CHAPTER 3

THE DEVELOPMENT AND STRATEGIES OF AN 

AUTOMATED DESIGN PACKAGE

3.1. Introduction

Although the basic concepts of the coefficient matching 

technique have been described, there are many possible options 

available, within this framework, which will affect the performance 

of an automated package. This chapter contains discussion of several 

possible variations, together with the author's ideas on the options, 

which, when combined, will provide the optimum package. As each point 

is discussed the original and final treatments are described, thus 

clarifying the achievement of this research The inherent strategies 

of network evolution are also described. Among the topics considered 

are :

(i) the inclusion of algorithms to ensure that the 

coefficients are matched to the desired values as 

efficiently as possible (section 3.3)

(ii) the optimum error function formulations (section 3.4)

(iii) the representation and variation of common factors 

(section 3.5)

(iv) switching criteria for the two-part optimization algorithms 

(section 3.6)

(v) modification of the linear searches included in the 

optimizati on routines (section 3.7).
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(vi) development of criteria to activate both the addition 

and removal of individual elements and nodes (sections

3.8, 3.9 and 3.10)

(vii) the strategy towards the acceptance of element additions 

(section 3.2)

Chapters 4 and 5 are supplementary to this chapter. In Chapter 4 

the author details the results of several possible methods of element 

addition, considering both the actual choice of element and its value 

on addition. Also included in this chapter is detailed discussion of 

the alternative strategies applied to several particular additions which 

failed using the general approach. Chapter 5 considers the specific 

topic of node addition.

There are two possible evolutionary strategies which can be 

adopted in network design. Firstly, elements can be added to a starting 

topology with a small structure just capable of realizing the polynomials 

of the required network (termed a minimal structure). Alternatively, 

a larger starting topology with several nodes more than the required 

number will, hopefully, remove unnecessary nodes and obtain a reasonable 

approximation to the requirements. After consideration of the relative 

merits of the two options, the first strategy was adopted. Although 

both alternatives had previously produced worthwhile results,

(1) the time required for each iteration increases 

significantly as the number of nodes increases 

(approximately doubles on increasing an RC 

network from five to seven nodes),

(2) optimization routines work more effectively with 

fewer variables. Consequently, if the original
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network is too large, an excess of redundant elements 

can prevent the optimization routine from locating the 

required values of the elements which are capable of 

providing a good approximation to the desired network, 

(Generally, the first minimum is the most difficult to 

locate when the optimization commences with arbitrary 

element values),

(3) even when a larger network has been reduced it is 

unlikely that an exact realization will have been 

produced. Therefore, element additions will still 

be required.

Obviously, if a solution is known to a network similar to that required, 

then this would provide a suitable start structure.

3.2. The Strategies Governing the Evolution of a Design

A starting topology, which satisfies the order of the desired 

network polynomials, is specified at the start of each design. Certain 

other network characteristics (such as symmetry) may be required of 

the start topology. The values of the elements, and any common factors 

present, are varied by the optimization routines such that the overall 

error function F is reduced. F is a squared summation of the 

individual error functions, f̂  , which provide a measure of the variance 

between the actual and the desired values of the coefficients. Since 

the element values are required to be positive, it may prove necessary 

to remove an element, and possibly an associated common factor, when 

mapping to a negative valued element occurs, (Active devices are only 

equivalent to a negative element over a small range of voltages, currents 

and frequencies^^.)
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Generally, the optimization will continue, provided the iob-time 

has not been exceeded, until one of the following situations has been 

diagnosed:

(i) the synthesized network is a sufficiently accurate 

representation of the desired network,

(ii) the synthesized network is a better approximation to 

the desired network than can be obtained anywhere in 

the surrounding region of vector space, provided the 

topology remains constant. (This may be a local, 

rather than a global, minimum of the error.)

(iii) the progress may be unacceptably slow (as gauged by

the error F), with no indication of imminent improvement 

(gauged by the sum of the squares of the Gauss Newton 

corrections -SSQGNC)

(iv) the network may be incompatible with the GN algorithm 

(i.e. the variables are not independent).

If situations (i) or (iv) are diagnosed then the program will stop. 

Otherwise, the program will investigate the possibility of topological 

additions.

The program will include, first of all, elements which do not 

introduce further common factors, then elements which produce extra common 

factors and, finally, groups of elements which introduce a new node.

With the method of node addition developed by the author, and similarly 

with other methods, node addition will introduce an extra common factor 

and a further three elements. Optimization routines work with 

increasing efficiency, in terms of both the results achieved and the time
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required to achieve them, with decreasing numbers of variables.

Hence the three preference categories for additions. Furthermore: 

the time required for each analysis increases as the number of nodes 

increases; the optimization routines deal more effectively with 

elements than common factors; and element additions without the 

introduction of extra common factors are performed more efficiently 

than both those with on accompanying common factor and node addition.

Within each of these three groups an order for addition is 

established. The element addition^ say, which the algorithms indicate 

will reduce the error by the largest amount is included first, etc.

Once the addition has been performed the variables are optimized 

(with the possibility of removals) until the algorithms diagnose one of 

the four defined situations. If situation (i) arises the package 

terminates. Otherwise a comparison is made of the error value at 

this endpoint with the error prior to the last addition. If the error 

has increased, then the program restarts from the next best addition 

from the previous endpoint. Otherwise, a further addition is made 

from the new endpoint. To ensure that the design proceeds efficiently, 

nodes are only included from positions where a local minimum has been 

obtained (i.e. case (ii)).

After each element removal it is necessary to establish if the

network still satisfies the orders of the desired polynomials. A fault
13 18of this type could be remedied by the inclusion of further elements ‘ *

At such a position, however, the error will increase to a high value 

(one or more of the coefficients are no longer represented) as with 

the introduction of an extra common factor. Consequently, the additions 

will not be as reliable as those from a minimum. The author adopted a 

strategy whereby a restart was made using the next best alternative to 

the previous addition.
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It is possible that the removal of an element will effectively 

remove a node. Similarly, node removal can be indicated by elements 

shorting out (section 3.9). With several of the earlier examples, the 

author found that the addition of a node resulted in the removal of 

one of the original nodes, without eventually reducing the error (i.e. 

the networks were equivalent). To avoid this type of unnecessary 

operation, node removals were not performed. When removal was 

indicated, the program restarted with an alternative to the previous 

addition.

3.3. Topological Considerations

The original Algol package had a very limited repertoire of 

possible topological modifications. The only element types considered 

were resistors and capacitors (RC networks) and although element 

additions and removals were possible, changes in the number of nodes were 

not. The package simply matched a set of synthesized coefficients to 

a prescribed range of desired coefficient polynomials. Several faults 

of the program were pertinent to these limitations, namely,

(i) if the synthesized network was at any stage producing 

zero values for coefficients which were required to be 

matched, the program continued to optimize although 

little could be achieved under these conditions,

(ii) if extra coefficients were generated (by the synthesized 

network) outside the prescribed range of optimization, 

the program continued although the results were worthless.
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(iii) the number of common factors was fixed initially at one 

or zero and remained at this value irrespective of the 

requirements,

The Fortran version developed required only the orders of the

desired polynomials and their coefficient values and not the actual

orders of the start network. The orders of the polynomials produced

by the synthesized network were calculated initially, and after each

topological modification, and the number of common factors determined.

(If the start network was unable to produce the polynomials required

the program terminated. However, elementary topological modifications
13 18to rectify such a fault could quite easily be included ' ..) It was

only necessary for the initial number of common factors to be declared

if they were to be assigned specific values, otherwise they were set

to integer values.

The coefficients of are fully represented in the A^^
14and A^^ polynomials . Consequently, if a particular power of p 

has identical coefficient values in the polynomials of A^^ , A^^

and A^2 , the same combination of elements form these coefficients. 

Accordingly, a network with an element which contributes to the particular 

coefficient in at least one polynomial, but not all three, cannot exactly

realize the requirements. Consider Lucal's set of functions, namely,

= 36p^ + 2058p3 + 655?p2 + 4638p + 36 
36p3 + 216p2 + 396p + 216

= 36p^ + 36p3 + 72p2 + 36p + 56 
12 36p3 + 216p2 + 396p + 216

y = 36p4 + 533p3 + 1572p2 + i ig s p  + 56
22 36p3 + 216p2 + 396p + 216

The coefficients of p " and p are identical for A , A and A
 ̂ ^  11 12  2 2
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For a true RC realization of these functions there should, be no purely 

capacitive, or purely resistive, path between nodes 1 (or 2) and 0 

Similar conditions apply to RLC and RL networks. Intuitively it 

would seem that the temporary inclusion of elements which contravened 

these conditions would increase the capacity for topological modifications, 

thus increasing the likelihood of a realization. (A comparative example 

where this supposition is borne out is included in Chapter 6 .) However, 

in practice, the inclusion of these elements did not produce radical 

changes in the topology. Also, many instances, the element addition 

algorithms were bncumbErreid. by these extra elements. For example, 

elements which produced negligible reductions in error were included 

prior to elements which could have provided a significant reduction.

(In these instances it is possible to relate the size of the GN 

corrections obtained on introducing an element at its optimum value to 

the expected change in its value - see section 4.4.) Furthermore, as 

the error F decreased the values of the elements prohibiting the 

equality of these coefficients became smaller in relation to the other 

elements. The close proximity of these small values to the negative 

domain produced problems with mapping to negative values, thus several 

element additions were attempted which proved worthless because of the 

requirement for positive valued elements.

It should be noted that if individual elements are to be 

represented by models (as the capacitor of Figure 3.1) then this criteria 

could not be imposed.

The author considered it to be generally advisable to retain a 

symmetrical network (by the simultaneous addition of a pair of elements) 

when this was required (i.e. = *̂22^' This facet was ignored in

the original Algol program. The results were similar to those 

obtained with the previously discussed restrictions to element additions.
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Although it seems reasonable to postulate that the inclusion of all 

possible elements will provide a more powerful alternative, in practice 

the unsymmetfical additions rarely produced significant improvements, 

and then only before the error had been reduced by a significant amount. 

Similarly, the problems encountered increased as the error was reduced 

(say, to 10 . On occasions, the inclusion of single elements, or

of symmetrical pairs, will not be possible. (Thé introduction of a 

node is required.) However, the algorithms will indicate that single 

elements which destroy the symmetry can be included at very small values. 

This is because, with a computer of finite accuracy, it is not possible 

to synthesize an exactly symmetrical network

Algorithms were included to diagnose symmetrically matched nodes 

from the values of the coefficients and derivatives obtained from a unit 

valued analysis. Similarly, element removals were performed symmetrically,
I

The designs which considered only resistors and capacitors are 

valid because of the practical difficulties associated with inductors. 

(Inductors required to produce reasonable Q factors at low frequencies 

are bulky and expensive, etc.) However, the character of feasible 

networks that can be produced by an RC network is limited and, because 

of the problems of instability associated with an active network (these 

can result from the effects of para^itics and consequently be unforeseen), 

RLC designs are of merit.

The designs in this research usually commenced from an RC start 

network and included inductors if required. Generally, the algorithms 

successfully included the best inductor. This produced topologies 

which were predominantly RC dominated and several possible RL dominated 

configurations were not considered, at least not initially. The program 

considered only RC and RLC networks so it was not possible to add 

the optimum capacitor to an RL equivalent of an RC network, This 

limitation of the current package could quite easily be rectified.
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3.4. Individual Error Functions

The original program provided an option between two possible 

error functions, namely.

c. ka.
Formulation 1 f . = t— —  — ---------------  1 ka. c.1 1

c.
Formulation 2 f. = —  1 .--------------  1 ka.1

where, to reiterate,

c^ are the coefficient values produced by the synthesized network,

a^ are the required coefficients as modified by the presence of 

any common factors

and k is the normalizing variable.

Previous research at Leicester^^*^^ had indicated that option 1 

was the more efficient alternative. However, this formulation also 

has a minimum when c% = - ka^ and so cannot be applied to the design 

of networks containing active devices. (The synthesized coefficients 

produced by an RLC network cannot have negative values with positive 

valued elements but may with an active network.)

Originally k was considered as a variable but set to an optimum 

value (see Appendix 1) at each function evaluation. As this optimum 

value for k is a function of c^ and , its effect can be incor

porated into the other variables, for example, for formulation 2



38

Thus, in theory, a further variable can be optimized by the GN algorithm. 

Krzeczkowski^^ stated that both methods of representation were equivalent 

but the author found that significant differences did arise when a substantial 

reduction in error was produced by one GN iteration. Typically, in a 

situation where the latter method of representation reduced the error 

from, say, 10 ^ to 10 the former reduced the error by a smaller 

factor, say, to lO”  ̂ . The latter method of representation was 

adopted in this research.

It is possible to derive optimum values for k and one common 

factor for the further alternative

ka.
Formulation 3 f. = — — - 1 . 
--------------------  1. c .

This was examined both when the common factor was set to the optimum 

value and also when varied normally, (The jobs were run shortly after 

the commencement of the research and the criteria for switching between 

CG and GN iterations were similar, but not identical, to those 

described in section 3,6,)

The most striking feature of the test examples was the disappointing 

results (Table 3,1) obtained with formulation 3 when applied to Fialkow’s 

functions.

= 1197p3 + 56,613,14p2 + 28,368.584p + 191,184 
800>000p2 + 408,000p + 3840

= 3p^ - l,14p2 + i97,i76p + 77,616 
^2 800,000p2 + 408,000p + 3840

The common factor and several elements that were not connected to nodes 

1 and 2 were invariably reduced to very low values. This effect was 

particularly marked when the common factor was set to its optimum values
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but was apparently caused by the error formulation itself, as indicated 

by the small common factor values obtained from starting values between 

1 and 10 with the common factor varied normally (Table 3.2),

These results refer to the topology of Fig.3.2. Several local minima 

can be obtained (Table 3.3) with the largest changes affecting the 

capacitor between nodes 0 and 5 (Cgg) and the common factors.

The optimum values for the common factor and k appeared to 

result in large modifications to these values before the optimization 

had significantly modified the element values. Consequently, the 

optimization always commenced from a disadvantageous position. The 

fact that some runs were successful and that the global, rather than a 

local, minimum was always located, does indicate the power of this 

formulation.

Results with a larger network (Fig.3.3), applied to Lucal’s 

functions (equations 3.1), showed a significant improvement (Table 3.4). 

The two common factors were set to the optimum value in alternate 

iterations and varied normally in the others.

A brief study was undertaken to ascertain if improved results 

could be obtained using formulation 3 by starting with an ordinarily 

varied common factor, then switching to the optimum values. In general, 

it proved difficult to determine when the values had been sufficiently 

modified to obtain maximum efficiency. A premature switch, reproduced 

the same deficiencies and a delay resulted in the location of a local 

rather than the global minima.

To summarize, the results obtained by formulation 3 were not 

superior to those obtained by the original formulations. Further, 

formulation 3 does not enable closed form expressions to be developed 

for the optimum value of a new element. These optimum values had 

provided the basis of the original method of element addition and are
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still used to establish an order of preference for addition. The 

optimum values calculated for formulation 2 were not comparable to those 

of formulation 3, particularly at high errors when these values are of 

most use. . However, they would probably constitute a good starting 

position for a linear search.

Formulation 2 was employed in preference to formulation 1 for 

the following reasons:

(a) the results confirmed that 1 is a more powerful 

formulation than 2 in that the optimization proceeds 

successfully from a wider range of starting values.

However, from starting values of unity (the mean value in 

the logarithmic domain) the results were invariably very 

similar,

(b) closed form expressions for the optimum values of virtual

elements are available for method 2 but not 1 .

(Linear searches can prove time consuming and inaccurate)

(c) As discussed in section 3.6, the author preferred to

proceed initially using the CG algorithm before 

employing the GN . When using formulation 2 it is

easier to gauge when the elements have been sufficiently 

altered to enable the GN to progress. Formulation 2 

has a maximum error value of M (see Appendixi^whore M 

is the number of coefficients synthesized, whereas 

formulation 1 has no maximum value. Consequently, it 

is more difficult to determine automatically at a high 

error value if the synthesized network is a good 

approximation with a poor topology, or if the element 

values are far removed from those required. Consider,
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for example, the attempted synthesis of Fialkow’s 

functions with the network of Fig.3.4. As the poles 

at zero and infinity are not compact for those 

functions, this topology cannot provide a good 

approximation to the network. With formulation 2 

a minimum can be obtained with an error value of 

3.56. However, with formulation 1 the error 

cannot be reduced below a value of 1.18 x 10^ , 

although this is not a minimum as signified by the 

SSOGNC . This value of error is higher than the 

starting error values for networks of corresponding 

topology synthesizing other sets of functions,

Cd) method 1 cannot be used to optimize networks 

containing active devices.

Although method 2 was used predominantly,when difficulties 

were encountered formulation 1 was considered as a possible 

alternative without ever producing significant improvements.

3.5. Common Factors

The original package allowed for only one common factor, to be

fixed, or varied, as required. Algorithms had not been included to

determine analytically the number of common factors required initially
14or, after topological modifications. Hegazi investigated networks 

with a maximum of three variable common factors and considered it 

necessary to reduce the values of the GN corrections for the common 

factors and, in certain situations, to vary only the common factors, 

and not the elements, and vice versa. The author considered it
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satisfactory to vary the common factors in the same manner as the 

elements. This approach can be justified by a comparison of the lowest 

error values attained (by the author and Hegazi) for similar computer 

realizations with the same computer accuracy.

Initially, only RC networks were considered and the package was 

modified to manipulate a maximum of three common factors (p + A)(p + B)

(p + C), where A , B and C were varied. There are two basic 

difficulties with this method. Firstly, the formulation of the deriva

tives cannot be readily generalized and thus is laborious, requiring 

separate options for each given number of common factors. (see 

Appendix 4). Secondly, common factors having complex values are feasible 

when RLC networks are considered.

Minima of error with complex common factors will not simply be

ignored when this method of representation is employed. Consider the

network of Fig.3.5 which is generated during an example to realize

Fis.lkow's functions. The inductor (I^^) has just been included from

a minimum of error 4.99 x IC> . On entering the GN , at an error of

8.39 X t h e  corrections for the common factors (values 0.773 and

0.774) are 542 and -543 , whereas the largest correction for an

element is 0.752 . The GN algorithm was unable to reduce the error.

When an alternative method of representation was used (discussed belcw)

the optimization passed through a region where the common factors were
-8complex, but produced a minimum of error of value 1.38 x 10 with 

real common factors.

(p + A) (p + B) (p + C) = p 3 + p 2  (A + B + C) + p (AB + AC + BC) + ABC . (3.4)

As an alternative to varying the common factors, the polynomial 

coefficients (e.g. ABC) can be varied. These values must remain positive
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for an RLC network and this representation permits any combination 

of real and complex common factors, although it is possible that a 

complex pair of the form (p2 + A) will cause numerical difficulties 

because of the zero- valued p coefficient. This method also has the 

advantage that general formulae for increasing, or decreasing, the 

number of common factors can be easily obtained. Furthermore, the 

number is limited only by the space allocated. Moreover, only first 

order derivatives exist whereas with the alternative method there can 

be second and higher order derivatives, dependent on the number of 

common factors. It could therefore be expected that this method 

would improve the optimization, even with RC networks, as the 

algorithms use only the first derivatives. This was verified with 

several test examples.

It is possible to obtain a good approximation for the value of 

any common factor to be removed. For example, if a node, prior to its 

removal, has admittances totalling C farads and G s«^mens connected 

to it, then the common factor removed will be of value G/C , The 

author’s research considered only RC and RC dominated RLC 

networks, and node removals were not attempted. Consequently, common 

factors were predominantly removed accompanying the removal of a resistor 

or an inductor. As these had been reduced to a low value prior to 

their removal, the associated common factor would also be small. Thus, 

the term ARC , say, would be small. Consequently, it proved sufficient 

to remove the ABC variable and to not calculate the approximate value of 

the common factor and adjust the remaining terms.
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3.6 The Use of Two-Part Optimization Routines

The program originally employed a strategy whereby a series of 

GN iterations were performed immediately. If this series failed to 

progress sufficiently, the original values were varied by a CG 

iteration and a further series of GN iterations were performed.

Thus, the more powerful GN algorithm was applied to starting values 

obtained from the more stable CG algorithm. The author was of the 

opinion that the progress achieved by this strategy was unsatisfactory, 

even with small RC networks (5 nodes plus earth), exhibiting faults 

which were amplified when applied to larger networks. The major faults 

exhibited when examples were run from arbitrary values were

(1) Even with topologies known to realize a solution (as 

Fig.3.3) the entire job-time often elapsed (up to 600 

seconds on an ICL 1906A machine) without producing a 

significant reduction in the error value. It was noted 

in these instances that isolated CG iterations were

reducing the error by a larger factor than an entire

series of GN iterations.

(2) Elements were unnecessarily removed at high errors from 

solution, and other, topologies.

(3) Common factors, and their associated elements diverged 

from the values at the solutions. This fault was less 

evident with error formulation 1 of section 3.4.

A modification to the implementation of the GN algorithm, whereby 

the maximum variation per iteration was limited for each variable,

produced little improvement. Only rarely was the GN algorithm able
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to reach a minimum from a high initial error. Further, in situations 

where large changes in one or more variables were required, this 

limiting process was detrimental to the optimization.

Several factors were considered before the original strategy was 

modified so as to proceed initially using the CG algorithm alone, 

until the GN algorithm could proceed effectively.

(1) Using this approach with examples with which little had 

been achieved in 600 seconds, the solution was located 

in around 200 seconds. Similar improvements were

experienced with a cross-section of examples. One

noticeable effect of using the CG extensively was that, 

when several possibilities existed, there was a tendency 

for the same: minimum to be located from different sets 

of arbitrary starting values. This particular minimum 

may not necessarily be the global minimum but, as networks 

evolve quite successfully via local minima, this is not a 

problem.

(2) A CG iteration can be performed in less time than a GN

iteration. This is particularly true when the values are 

remote from those at the minimum of error where the GN 

corrections are large, requiring repeated function 

evaluations in the linear search.

(3) Although large fluctuations in the magnitude of the

variables occur in the CG section, if the error has
_ 2

been reduced to a value of 10 , then the variables

will generally have attained values of the correct order 

of magnitude. Proceeding beyond this point did
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occasionally produce difficulties with the removal of elements 

This is not strictly a fault of the optimization but merely 

exposes a limitation of the element removal algorithms of 

section 3.8. Also, when the GN algorithm is able to 

proceed, it will generally reduce the error at a faster 

rate than the CG algorithm.

(4) From arbitrary starting values, the initial CG iterations

can modify the variables in the opposite direction to the

actual requirements. This would appear to invalidate 

the original strategy whereby one CG iteration was 

expected to provide a significantly improved starting 

position for the GN algorithm.

(5) When remote from a minimum, it can prove difficult to

gauge whether the GN will progress. Large GN

corrections can be obtained when a suitable topology has 

values far removed from those required, but the number

of iterations required before a minimum is located can be 

ambiguous. Alternatively, the corrections can be 

large because the variables are dependent, even when the 

number is significantly lower than the number of 

coefficients.

When commencing from arbitrary values, the first minimum will 

generally prove to be the most difficult to locate. However, after 

an addition (and particularly at high errors) elements previously 

included may require significant modifications to their values. These

changes are achieved more readily using the CG rather than the GN 

algorithm. Also, after many additions the initial error will be
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increased to a higher value, equivalent to the errors obtained with the 

variables set to arbitrary values. Consequently, optimization using 

the CG section was employed after each topological modification, as 

well as with the initial network.

The final conditions developed were as follows:

If (1) the CG had diverged (i.e. been unable to locate a

lower error) on 5 occasions,

or (2) 100 consecutive CG iterations had been performed,

the program switched to the GN algorithm, irrespective of the error 

value. Otherwise, the CG algorithm was employed until the error had 

been reduced below a value M f 3 , where M is the total number of 

coefficients. Again, unless conditions (1) or (2) had been violated, 

the CG algorithm was employed until the error had reduced below a 

value of 10 ^ , provided that the error was being reduced at a

prescribed rate, namely, a 5% reduction over the previous five iterations.
40-42A steepest descent algorithm, developed at Leicester , was 

examined as a possible alternative to the CG algorithm. This 

algorithm used second order derivative information and had been considered 

primarily as a method of overcoming problems that were sometimes exper

ienced with element additions (see Chapter 4). However, it was also 

applied to networks with variables set to arbitrary values. Its value 

as a plausible alternative optimization routine was undermined by the 

increase in time required per iteration as the number of variables 

increased. On occasions, with RC networks containing seven nodes, 

only seven consecutive iterations were performed in 600 seconds on an 

ICL 1906A machine. Consequently, the use of this algorithm in this 

manner, as an alternative to the CG algorithm, is not feasible, at 

least with the lumped, linear, passive networks considered. Furthermore,
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although the algorithm is more powerful than the CG algorithm (the 

error reduction per iteration is greater), it was not sufficiently 

powerful for a strategy of employing the GN after each iteration to 

be successful.

This algorithm had proved beneficial when applied to a transistor 

modelling problem with eight variables and eight equations. Two-part 

optimization programs, using a gradient descent and a GN algorithm,- 

had located the solution from a few arbitrary starting values^^ but, in 

general, a local minimum of error had been located. Unlike a first 

order gradient descent method, the linear search of the second order 

method provides a number of local minima. If the error is reducing 

slowly, it is possible to restart from one of these alternative minima 

and, consequently, the solution can be located more often. HoweVer, in 

network synthesis the location of a local minimum need not prove 

detrimental. Often, new elements are either added successfully, or 

wiil be removed in the process of locating a better minimum. Also, the 

error functions representing the transistor modelling problem contained 

exponential terms. These could be expected to provide an extra level 

of difficulty.

3.7. Modifications to the Linear Searches of the Optimization Routines

Several restrictions were imposed on the linear search section
32of the CG algorithm of Fletcher and Reeves

(i) The maximum number of function evaluations per iteration 

was limited to eleven (to prevent the program remaining 

in a loop as sometimes occurred),
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(ii) the linear search scalar was prevented from searching 

in the negative domain,

(iii) the calculation of the square-root of a negative value 

was averted. (This can occur in the interpolation 

section.)

If for these, or any other reasons, the algorithm produced a one 

per cent increase in the error, the values were reset to those prior to 

the iteration and the next iteration performed.

The original linear search for the GN algorithm comprised of a

golden-Sex3^cjA. followed by a quadratic interpolation. Problems

were only experienced originally when the error increased following the
14location of a local, rather than a global, minimum . These problems 

were overcome by comparing the best error value obtained by the linear 

search to that prior to the iteration. If an increase of two per cent, 

or more, was recorded, the search was conducted in an alternative region,

Further problems arose when larger networks were considered.

With RC networks containing seven nodes (as in Fig.3.3) several 

difficulties were experienced.

(1) The error was only being reduced to values of 10 

with solution topologies, whereas errors as low as 10 

had been obtained with five node RC networks.

(2) After successive CG iterations had substantially 

reduced the error, difficulty was often experienced in 

locating a lower error in the linear search of the GN 

algorithm.

(3) Local minima, as defined by the SSQGNC , were rarely 

located with non-solution topologies. In some cases
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the program had to return to the CG section as the GN 

failed to locate a value of the linear scalar producing a 

lower error value. In other cases the error F 

fluctuated in value but the SSOGNC was relatively high 

compared to values previously obtained at a minimum.

It should perhaps be noted that these networks were predominantly 

series-parallel structures. It was later observed that non-series 

parallel structures are more readily optimized (i.e. the solutions are 

often reduced to lower errors and the minima are signified by lower 

values of the SSQGNC .)

It was postulated that the GN linear search would only fail to 

locate a lower error when close to a minimum. Elements were therefore 

included at these positions of failure, but the difficulties were not 

overcome. At this stage of the research the original method of
33element addition (based upon the optimum values of virtual elements 

section 4.2), was still employed. The efficacy of this method is 

greatly reduced when activated at a position which is not a true minimum 

of the error. As a result, what generally occurred was that an incorrect 

addition would be made, the linear search would again fail and so a series 

of poorly chosen elements were included. It is preferable, because of 

the reduced efficiency experienced, not to include elements in such a 

position, even with the improved method for element addition developed 

by the author (section 4.4). However, element additions at such 

positions can, if used in moderation, prove useful in by-passing occasional 

instances where the optimization is only proceeding at a poor rate.

The inclusion of an element at a value higher than the optimum value, as 

in the author’s method of addition, can aid the optimization by-pass such 

a region of difficulty, even if the element included is actually 

superfluous to the requirements. However, it was not such isolated
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instances of difficulty that were being experienced at this stage, but 

a persistent problem.

In an alternative approach to overcome these difficulties, 

attempts were made to emphasize the positions of the minima. Overall 

error functions, as in equations 3.5,

2n where n is an integer ^ 2 (3.5)

are possible but, with the individual error functions considered, 

an optimum value for k cannot be obtained without performing a linear 

search. A similar situation was produced by considering individual 

error functions of the form

Formulation la f. =   1

Formulation 2a f. =  1

ka. j

-  1

These still emphasize the error functions of larger values in relation 

to the smaller ones and expressions for the optimum value of k can be 

derived (see Appendix 1 ). With n equal to two the situation was

slightly improved.

A much more successful approach to the problem was to increase 

the accuracy of the linear search. The golden search section was 

removed as it had been contributing little and is not certain to isolate 

the region around the global minimum. The GN corrections had been 

scaled down, when necessary, to give a maximum value of three. Earlier 

research at Leicester had indicated that this value would, in general, shift 

X (the linear search scalar) to a value of approximately one.

However, it was not uncommon for the values to be less than 10 ^ ,
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particularly when a poor set of GN corrections had been obtained. The

accuracy of X was improved by further scaling of the values of the GN 

corrections. The error F was evaluated with X equal to 1.0 and

0.8 giving values F (1.0) and F (0.8) . If F (0.8) was less than

F(l.O) then the corrections were reduced by a factor of ten and the 

new F (1-0) and F (0.8) evaluated. Otherwise, F (1.2) was evaluated 

and the three values were used, in repeated quadratic interpolations, 

to obtain a value of X between 0.8 and 8 . If this minimum value

of F gave a two per cent increase on the error value prior to this

iteration, then the corrections were further scaled by a factor of ten 

and a further search instigated. If ten such scalings occurred, X 

was set to what was effectively a value of 10 . (In fact this only

occurred when the error had been reduced to the limits of the computer’s 

accuracy i.e. a computer realization.) The increased accuracy of the 

values of X overcame the faults described previously. Minima were 

more easily obtained and easily defined from the values of the SSQGNC .

3.8. Element Removal

To ensure that they retain positive values, the variables are 

transformed into the logarithmic domain. However, potential minima 

with negative values are mapped into the solution space and the optimiza

tion attempts to give these elements negative values. As the transformed 

variables cannot be reduced to zero values, the necessary elements have 

to be removed whilst having a positive value. As different networks 

will require elements over a very wide range of values, it is not possible 

to have a carte-blanche policy of removing elements with values below a 

prescribed figure. (Practical considerations may require the values to 

be within certain limits.) However, it is possible to inspect the gradients
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and determine the extent to which an element contributes to the 
13 21network ’ . The program originally employed a method, devised by

Cutteridge^^, which proved efficient with smaller networks in removing 

elements prior to their reduction to insignificant values. Cutteridge 

stated that, (for the GN corrections)

'If the correction associated with a particular 

element is negative over a certain number of 

iterations, if the absolute value is increasing 

monotonically and if the absolute value of the 

differences on two successive iterations is 

increasing monotonically, then the element should 

be removed.'

ki.e. if 6̂  denotes the correction of element j on iteration k 

then

If , -g.k > 0 .
3 I J J 3

and |gk_ . g,k-3| > |j.k-3 _  ̂ k-4
3 3 3 3 3 3 3 3

(3.6)

As a safeguard against unnecessary removals, the original program 

required that Cutteridge's criteria should be satisfied on two separate 

entries into the GN section^^'^^, termed indications to remove an 

element, before any element was to be removed. The modification to the 

two-part optimization program,giving repeated CG iterations prior to 

entering the GN , improved the efficacy of the algorithm and removed
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the necessity for dual indications. However, despite the repetition 

of results which generally occurred, two indications were required in 

the author’s version of the program before any element was removed.

(This Was primarily to increase the probability of locating the 

correct minimum when difficulty was experienced at low error values - 

see section 4.6.)

The criteria had been developed primarily during the design of 

five node, eleven element networks. As the number of variables is 

increased, so the variation of each variable per iteration will tend to 

decrease. When applied to larger networks the criteria based on only 

five consecutive iterations proved insufficient i.e. element removals 

were indicated when all that was required was a significant reduction 

in the value of the elements. To overcome this, the conditions of 

equations 3.6 had to occur at five iterations, consecutive or 

otherwise, with all the relevant corrections of magnitude greater than 

one, before this was taken as an indication to remove an element.

Also, if a series of GN iterations had ended because of slow progress, 

if the criteria of equations 3.6 had been satisfied on at least one 

iteration and if the correction of the relevant element had a negative 

value of magnitude greater than one, then this was also taken as an 

indication to remove an element. An element was also removed if the 

correction of an element was so large and negative in relation to the 

others, that a value of the linear search scalar greater than ten was 

obtained.

Problems did arise with isolated T-networks connected to the 

external nodes, as in Fig.3.6. With unsymmetrical networks, elements 

would be unnecessarily removed (a resistor in this case). Of the two 

similar elements connected to nodes one and two, one would have an 

increasingly positive correction and the other an increasingly negative
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correction. It is not possible to suppress element removals. If

this is attempted then either the corrections will increase in size with

no reduction of error, or an element of small value will remain with a

very large correction which will overshadow the other values.

Minor problems also arose with the removal of elements which had

already been reduced to a very small value. An extra algorithm to
21investigate the gradients (as described by di Mambro ) would be

beneficial in these instances as a supplement to the original algorithms

It should be noted that the error will invariably increase as a result

of the removal of a finite valued element. Also, pairs of elements

were removed, when necessary, to retain the symmetry of a network.
15 14Multiple removals, as described by Cutteridge and Hegazi , were not 

attempted.

3.9. Node Reduction

As has been stated earlier, the author predominantly employed a 

strategy of design by building from a small start network, rather than 

by reducing a large network. If at any stage the removal of a node

had been indicated, the program restarted from the position of the last

addition with the next best alternative. After most topological 

additions the error will be increased to a high value. It was noted 

that, on many occasions, node removals were required when

(i) the introduction of a new node had resulted in the 

removal of one of the existing nodes ,and produced an 

equivalent network (i.e. the minimum error values 

obtained were identical)

(ii) a local minimum had been obtained on the introduction of
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a new node (producing an increase in the error value), 

resulting in the removal of this new node after the 

addition of a further element.

Furthermore, certain start topologies had elements and nodes removed 

until the topologies were unable to produce the orders of the 

coefficients required. Consequently, on many occasions node removals 

failed to produce a superior approximation to the requirements and the 

author felt that a significant amount of time could be saved by 

ignoring these possibilities, without seriously impairing the design 

process. Examination of the solutions to problems appeared to 

indicate that, if a solution can be produced with n nodes, a very 

similar solution could be obtained with n + 1 nodes, etc. This 

finding further validates the adopted strategy. However, node removals 

were genuinely required on several instances and the facility should be 

included.

Node removals can be indicated in two manners. Firstly, 

elements can be removed repeatedly by the normal methods until a node 

has been effectively removed. For a node to be electrically meaningful 

there must be connected to it either, two or more types of elements to 

at least two other nodes, or, a minimum of three elements of the same type 

(If only three elements of the same type are connected to a node it is 

preferable to perform a wye-delta transformation and remove a node in 

this way. This will facilitate the removal of any of these three 

elements, if required.)

Alternatively nodes can short out (i.e. all the elements connected 

to the node increase towards an infinite admittance). This was 

diagnosed by algorithms similar to those for indicating element removals 

except in this situation the GN corrections are becoming increasingly 

positive.
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3.10. Criteria to Activate Element Addition

Ideally, elements are to be included only when it is known that 

the current topology is unable to realize the requirements, namely, 

when a global minimum of error has been located with the error above 

an acceptable value. The location of a minimum of the error is 

signified by a low value of the SSOGNC with no associated reduction

in the error value. In the original program a minimum was defined as
-7 -7having a SSQGNC less than 10 with an error greater than 10

With some minima it was not possible to achieve this value of the

SSQGNC (although increasing the computer accuracy will decrease the

attainable value), whilst on other occasions it was possible to significantly

reduce error after this SSQGNC value had been attained. Furthermore,

the possibility of locating a minimum of error, that was not a solution,

with an error less than 10  ̂ was totally discounted. The author

developed several criteria to determine when a minimum had been located.

If the SSQGNC was less than 10 and the error had been 

reduced by less than one per cent by the last iteration, then this was 

declared as a minimum. When minima occur at higher values of the SSQGNC 

it is necessary to define a minimum by the oscillating values of the 

SSQGNC with the error constant. A counter, ISS , was used to assess 

when these fluctuations did, in fact, signify a minimum. For the value 

of ISS to increase, the error must not have decreased by five per cent 

over the last five GN iterations. Otherwise, if the SSQGNC was less 

than 10  ̂ , but was greater than the previous value, and the error had 

not been reduced by more than one per cent by the last iteration, ISS 

was increased by one. At high errors the SSQGNC may fluctuate in a 

different manner. Hence, if the SSQGNC was greater than ten, but its 

last value was less than 10  ̂ , and if the error had not been reduced
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by more than one per cent by the last iteration, then ISS was 

increased by one. If ISS attained a value of three then this was 

defined as a minimum. Similarly, if the GN was halted because the 

error was not decreasing, but ISS had a value of greater than zero, 

then this was also declared as a minimum.

On occasions the optimization will be unable to locate a minimum. 

The original program performed a maximum of one hundred GN interations, 

at which stage a further element was included. With the version 

developed by the author, elements could only be included if the error, 

at such a cessation of the optimization, had been reduced below the 

value prior to the last addition. Algorithms were therefore included 

to gauge how the optimization was progressing, to ensure that reduced 

errors were obtained wherever possible.

A minimum of 60 consecutive GN iterations were performed 

unless the variables were dependent [signified by large GN corrections 

and repeated failure of the least squares algorithm). A further GN 

iteration was performed after this point, up to an overall maximum of 

150 iterations, wh^jrv ever

(i) the SSOGNC had been reduced on the last five iterations

by an overall amount in excess of three per cent,

or [ii) if over the last five iterations the error had been

reduced by more than one per cent and the SSQGNC by 

an amount greater than five per cent.

Then, finally, yet further GN iterations were performed, to an

overall maximum of 200 , whilst ever the SSQGNC was less than one

and the error had been reduced by the previous iteration.
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Nodes were included only when there were no possible element 

additions. To ensure that the network remained stable, node additions 

were only attempted from positions declared as minima. The actual 

methods for introducing an element and a new node are described in 

Chapters 4 and 5 respectively.

3.11. Summary

The main theme of this chapter has been to discuss the modifications 

made to the original Algol program, follow through the development to the 

final Fortran version and, where appropriate, to discuss the factors 

which influenced the choice of strategy. The major modifications made 

by the author are as follows:

(1) algorithms have been introduced to increase the flexibility 

and efficiency of the program. The program will no longer 

attempt to optimize networks which cannot be equated to

the required functions,

(2) options are now available which restrict the topological 

modifications, thus improving the efficiency of the design 

process. These concern symmetrical networks and what 

are, nominally, networks with compact poles at zero and/or 

infinity,

(3) the program can now design RLC networks as well as

RC networks,

(4) a restart strategy has been incorporated which performs 

alternative additions when, with the original inclusions, 

the optimization had failed to locate an error value lower 

than that prior to the addition.
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(5) the author has included algorithms to both determine the 

number of common factors required and to vary them whereas, 

originally, the number had been set to one or zero by the 

initial data and had remained at that value irrespective 

of the actual requirements,

(6) the efficacy of the two-part optimization program has

been improved,

(7) the efficiency of the linear searches of the optimization 

routines have been improved, significantly improving the. 

performance of the package,

(8) the criteria for the removal of elements have been improved,

(9) algorithms have been included to recognise when a node 

removal is required,

(10) the author improved the criteria which determine when

topological additions are required,

(11) an alternative, improved method has been developed for

the introduction of elements (detailed in Chapter 4),

(12) an effective method for node addition has been developed

(Chapter 5) whereas previously the number of nodes had

remained constant.
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FIGURE 3.1: MODEL REPRESENTING A 
LOSSY CAPACITOR

1

4
FIGURE 3.2: SYNTHESIZED NETWORK 
MATCHED TO FIALKOW'S FUNCTIONS

C,, = 5.032 
C35 = 3.164
C =2.2854 5
Cgg = 0.8468 
Cq^ = 0.5556 
G34 = 1.290

1

C 21.03 G 0.6984

46 
'0 5 
’0 3 
=04
G 17
12

= .5044 
= 7.739 
= 50.66 
= 9.818
= G^^ = 0.2778 
= 0.02778

Common factors = 1.00 and 1.42

FIGURE 3.3: REALIZATION OF LOCAL'S FUNCTIONS
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FIGURE 3.4; SYNTHESIZED
NETWORK MATCHED TO 
FAILKOW’S FUNCTIONS

FIGURE 3.5: RLC NETWORK 
MATCHED TO FIALKOW'S
FUNCTIONS

1

0

FIGURE 3.6: T-NETWORK CONNECTED TO EXTERNAL NODES
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CHAPTER 4 

ELEMENT ADDITION

4.1. Introduction

For a topology of the order investigated (i.e. containing up 

to ten nodes) the two-part optimization program as employed in this 

research is capable of locating the solution values, if one exists, 

from arbitrary starting values. However, it is unlikely that a 

solution topology will be chosen to start the design of a network not 

previously solved. The better approach at this stage, rather than 

repeatedly optimizing different networks, is to include extra elements 

when the best approximation for the synthesized network has been 

achieved, whilst retaining the original values of the existing variables.

Element addition, which is given priority over node addition, is 

activated by criteria described in section 3.10. These relate to 

situations where the rate of progress is slow as well as to the normal 

situation where a minimum of the error has been located.

The original program did contain a method for element addition
33(based on the optimum values for the introduction of a virtual element )

and its efficiency is discussed. This method had been used at Leicester

with some success^^*^^'^^. Two other possible methods for element

addition are discussed, including a steepest descent method similar to
48that employed by Rohrer . This method had been found to be of limited

use when applied to direct matching of real frequency characteristics and
12pole-zero matching by Wright . A more successful method based on the GN

algorithm was devised by the author. This method is similar, in many
13 18ways, to a method devised by di Mambro ' * based upon the Levenburg 

algorithm.
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As the components are represented by idealized linear models, 

the program can only be considered as an initial step in the ultimate 

goal of automated network design, producing results which are probably 

of greater interest to the network theoretician than the engineer.

It was felt that, because of the idealized nature of the components, 

the techniques developed would only be fully justified if exact 

realizations, rather than quasi-solutions, werq obtained.

Furthermore, it seems reasonable to postulate that difficulties may 

arise when larger networks are considered. For these reasons, consid

erable effort was directed to the development of techniques to overcome 

the difficulties encountered with element additions, even after a good 

quasi solution had been obtained. Although several of these techniques 

did achieve a degree of success, none were infallible. However, later 

results indicated that these difficulties may not be so predominant as 

was thought at one time. Many successful runs were obtained, some of 

which are contained in Chapter 6 .

4.2. Element Addition Based on the Optimum Values for Virtual Elements

It is possible, with several error functions, to derive expressions 

for the value of a virtual element which will reduce the error by the 

maximum amount and for the corresponding error value. These are termed 

the optimum values (see Appendix 5). With the remaining functions a linear 

search has to be employed. Researchers at Leicester^^'^^ had considered 

these optimum values to form the basis of the best methods for element 

addition. It was postulated that, if the optimum element value was 

positive, then the element would remain positive when all the values were 

optimized. This concept is similar to that for the steepest descent 

methods but is more powerful in that quantitative measures are produced.

33
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whereas the gradient of a zero valued element may not be representative
12of the situation as a whole . This method was originally devised by 

33Cutteridge who suggested that the best virtual element to include was 

that which would reduce the error by the greatest amount on inclusion 

at its optimum value. This criteria was subsequently modified slightly 

by Krzeczkowski^^ and Hegazi^^.

The relative reduction in error produced by an optimum valued 

element addition will decrease as the error F is decreased. Similarly, 

the optimum element value will decrease to a value much smaller than that 

required at the next minimum of error (for typical values see Table 4.1). 

It is specified that the error F must be continually reduced and 

consequently, at low errors, the optimization can progress at only a 

pedestrian rate. In such cases the introduction of new elements at 

values above the optimum values (thus increasing the error initially) will 

substantially aid the optimization. However, as quantitative measures 

for the required values of the new elements cannot be obtained by this 

method, empirical methods have to be employed. (Such as setting the
14new element to a value equal to the mean value of the current elements .) 

Introduction of the new element at an underestimated value will produce 

little benefit, whilst introduction at an overestimated value can 

completely disrupt the network, often resulting in unnecessary element 

removals. It is probably as a result of the slow reduction in error 

experienced with elements introduced at low values that Krzeczkowski^^ 

based his element additions on the virtual element with the largest 

optimum value.

The efficacy of this method of element addition is reduced when 

an element has to be included from a position where the optimization has 

failed to locate a minimum. This may occur because of, say, a poor 

topology, or, localized difficulty with the optimization. As has been



7}

_2Stated, at a minimum with a lower error value, say less than 10 ,

there is little difference between the error value at the minimum and 

that when the virtual element is included at the optimum value. Away 

from a minimum a large disparity appears in the values, influenced by 

factors which could be altered by the elements which are already present. 

Although an element which is able to provide a better approximation may 

be chosen, it is more likely that the new element will either be removed, 

or that the optimization will result in the unnecessary removal of other 

elements.

At even lower values of the error, the optimum values calculated 

become meaningless. (Indicated by negative values for the optimum 

error values.) The question arises, "At what stage do the values 

become meaningless?". Most importantly, "When will the optimum element 

values be of incorrect sign?". There are two questions to consider.

Are the optimum values so small that, firstly, inaccuracies of the 

derivatives can alter the sign of the optimum element value and, secondly, 

are the minor variations of the existing elements from the exact values 

at the minimum of any consequence?

To summarize, the introduction of the element (at its optimum 

value) which produces the greatest reduction in the error works very 

effectively at high errors (greater than 10 ^). At errors below this 

value the elements which can improve the approximation can be determined. 

However, introduction of the element at its optimum value will cause 

the error to be reduced only very slowly, and a better value at which to 

introduce the element can only be estimated. Then, at an error above 

the best that the optimization can achieve, the optimum values become 

meaningless.

A further point to consider is that the variables may no longer 

be independent, even when the number is significantly lower than the
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number of coefficients. This is undetectable from the optimum values 

but is an important consideration because, although the CG algorithm 

will perform normally, the GN algorithm will be ineffectual*

Consider as an example the values of Table 4.1. The optimum 

values are positive for all the virtual elements except for the symmetrical 

pair of resistors and R^^ . As indicated, all the other virtual

elements can be included to produce an improved approximation to the 

network. For this and several other topologies synthesizing the network 

described by Fialkow, it is possible to replace the resistor R^^ by 

the elements R^^ and R^^ » and produce an equivalent network. As 

this is the global minimum, nothing can be gained from the addition of 

this pair of elements, thus validating the negative optimum values.

4.3. Element Addition by the Method of Steepest Descent

It should be noted that this method was only investigated

because the results obtained using the optimum value method of section

4.2 initially appeared to be worse than they actually were. Many

element additions signified by this method appeared to be incorrect but

in fact failed merely because of the values at which they were introduced.

An alternative method, based on the gradients and similar to the
48steepest descent method of Rohrer , was developed. The steepest

descent method had not been examined previously at Leicester in association
12with a coefficient matching technique, but had been examined by Wright 

Wright found that he could only add elements successfully to the simplest 

of networks.

Any new element should be included on the pretext that it should 

contribute something extra to the network that the original elements 

could not produce. In an attempt to delocalize the effects of the
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steepest descent method, the gradients of the individual error functions 

were considered. Originally, the virtual element included was that 

which produced the largest gradient of opposite sign for the individual 

error function with largest modulus. This algorithm greatly favoured 

elements connected to nodes 1 and 2 but did give useful additions.

Slight variations to this theme were also investigated but the 

results obtained were inferior to those obtained with the method using 

optimum values and would share similar limitations.

4.4. Element Addition Using the GN Algorithm

At low errors, the addition of elements at the optimum value 

to a structure optimized to the minimum of error can produce a large 

GN correction for the new element and a correspondingly slow rate of 

optimization. It was noted that on some occasions this large correction 

was positive in sign, whilst negative on others. A]so, when elements 

had been included at larger values, say 10  ̂ , to speed the 

optimization and when even higher values had been required, a large 

positive correction had been reduced by a factor similar to the increase 

in the value of the element. Closer examination revealed that, for 

the linear elements examined in this thesis, the GN algorithm, which 

approximates to the first two terms in the Taylor Series, was sufficient 

to give approximate values for the new minimum with the virtual element 

included from an existing minimum. This provides an ideal platform 

on which to base a strategy for element addition. If the correction 

for the new element is positive, then the next minimum will occur with 

this new element at a positive value, hence, this element is a possible 

addition.

Although the optimization was performed in the logarithmic domain.
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the program still contained variables in the natural domain. The 

Jacobian and the corrections were calculated in the natural domain and 

the transformation to the logarithmic domain was carried out as follows. 

Firstly, each correction was divided by its corresponding element value. 

Then the elements were modified as below;

= x^^^ * expCXô^'^) for all i (4.1)

where,

the superscript k denotes the values at iteration k ,

X denotes the value of a variable,

5 denotes the value of a transformed correction

and > is a scalar which minimizes the error function (Phe linear 

search scalar).

The approximate value for the new element is therefore obtained 

by multiplying the modified correction by the corresponding element 

value, and adding this value to the original optimum value. It can be 

seen from Table 4.1 that these approximate values are generally of the

correct order of magnitude. (In this case the approximations are

correct to within a factor of two and are all underestimates.)

Although these results were obtained for a small network with only twelve 

variables, this approximation holds for networks of twice this size and 

possibly larger still. Discrepancies only occurred between the two 

values when elements were introduced from local minima. Additions from 

such positions are generally productive, either successfully incorporating 

the new element or removing it to produce a better minimum. It can also 

be seen that the values for the new elements extend over a wide range 

(from 10  ̂ to 0 .2), making empirical choices of the element values very 

difficult.
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As the corrections are calculated initially in the natural 

domain, it is apparent that mapping to minima with negative values can 

occur. If a negative value was indicated for the virtual element, 

then this element was not considered for addition. However, there 

will be minima with a positive valued virtual element but with one of 

the other originally positive elements becoming negative. For the 

network of Fig.4.1, if the resistor Rqs is included, an exact solution 

can be realized with a negative value for Roi+ . It is usual to find 

in these instances that there is a better minimum (than prior to the 

addition) with the negative element set to zero (i.e. removed).

Hence, in general, when this situation arises it does not cause signifi

cant problems. With this example a minimum of value 1.84 x 10  ̂ is 

obtained from which several alternative realizations can be produced.

The optimum values were used to determine which of the possible 

elements to include. The element which produced the greatest reduction 

in error invariably proved the best addition at low errors but 

occasionally, at high errors, elements were included only to be removed 

after the subsequent addition.

To facilitate the programming (and because it is not possible to 

divide by zero to transfer to the logarithmic domain), the virtual 

elements were included, in turn, into the current topology at the 

initially low value of 10”  ̂ . The network was analysed and the 

optimum values calculated. If the optimum element value was positive 

the element was set to this value. If the optimum value was negative, 

with magnitude less than 10  ̂ , then the element was reset to the 

absolute optimum value. At this stage the GN corrections were 

determined. Provisionally, a positive correction for the virtual 

element was stored for possible element addition and a negative correction 

stored for possible node addition (see Chapter 5). The error values
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used to determine the order of addition were those calculated at this 

stage and not those previously estimated (i.e. the optimum error value)

Occasionally, when a virtual element is introduced into a 

network the elements will no longer be independent. Such occurrences 

are characterized by large GN corrections. As large modifications 

may genuinely be required, criteria have to be developed to distinguish 

between the two situations. The element was rejected as a possible 

addition if any of the following conditions were violated:

(1) if three or more of the corrections for the original 

elements had values either

(a) greater than 100 

or (b) less than 100

(2) if the approximate value for the new element was greater 

than that of any of the existing elements and if two or 

more of the corrections for the original elements had 

values either

(a) greater than 100 

or (b) less than 100 .

Problems in discerning between the two situations are reduced 

as the computer accuracy is increased. However, when elements are 

to be included from a position which is not a minimum, the dependence 

of the variables is not so clearly indicated.

Elements were included at the optimum values unless their GN 

corrections had a value greater than ten, in which case the approximate 

value indicated by the corrections (termed the indicated value) was 

used.
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This method of element addition is similar to an apparently
13 18successful method developed by Cuttèridge and di Mambro ' . Their

method, however, was based upon the Levenberg algorithm for optimization. 

This can approximate to the direction of steepest descent and is thus 

able to consider many possible additions simultaneously. The 

corrections were repeatedly analysed as X , the damping factor, was 

varied and the element giving the largest correction included. Multiple 

additions were thought to be possible but did not generally prove 

beneficial and so were avoided.

In comparison with the method developed by the author, this 

method would appear to be slightly inferior. First of all, the author 

was able to perform multiple additions (section 4.7). Also, when 

the variables become dependent the corrections increase in size. Hence, 

it would seem to be possible, especially with the large number of 

elements considered simultaneously, to choose an element of this type 

rather than the one which shows the greatest tendency to go positive. 

Furthermore, inspection of Table 4.1 shows that the element which 

exhibits the greatest tendency to go positive when the GN algorithm is 

invoked (i.e. the largest indicated value), is the resistor Rqs which 

is, in fact, the only possible element addition which produces a local 

minimum rather than a solution. Using the author's method, this 

element would be the last element to be included.

One problem which could not be detected from the GN corrections 

was that on occasions (at high errors) new elements would immediately 

short out (as described in section 3.9).

Elements which necessitated the introduction of an extra common 

factor were handled in a slightly different manner. Initial investi

gations were conducted by employing a linear search to determine the 

optimum values for the common factor and the element. (Once the
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common factor has been assigned a value the optimum element value can 

be determined.) However, almost invariably (with the exceptions 

occurring when the error was particularly high) the search merely 

produced two very small values. The common factor and the element 

were therefore set to the arbitrary values of one and 10  ̂ , 

respectively. These arbitrary values increased the error value and, 

consequently, a positive GN correction in this situation indicates 

only the possibility of a minimum of error below this new high error 

value and not below the original minimum error value. Also, the 

introduction of the common factor means that the GN analysis is not 

performed from a true minimum, resulting in a further reduction in 

the efficiency of the method. However, the derivation of the GN 

corrections can be justified as an approximate value for the new element 

is obtained, thus facilitating the location of a better minimum if 

one does exist.

No element addition was accepted unless, on its inclusion, an 

error value below that prior to the addition of the new element was 

located. If not, the program restarted with an alternative addition.

4.5. The Influence of the Logarithmic. Transformation and the

Indicated Values on the Speed of the Optimization

Consider as a specific example the introduction of the three 

elements R 1 2» C1+5 and Rq3 to the network of Fig.4.1. The GN 

corrections calculated on the introduction of the elements at the 

optimum values are shown in Table 4.2. The modifications required to 

realize a solution increase in the order R %2 > C1+5 and Rq3 .

Elements were introduced originally at the optimum value and the 

optimization was performed in the logarithmic domain. The elements
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were reintroduced firstly, with the optimization performed in the 

natural domain and, secondly, with the elements set to the indicated 

values. The results are given in Table 4.3.

The additions as performed in the original version of the program 

were obviously unacceptable. In all but the most trivial of examples, 

as with the addition of the resistor i the logarithmic transforma

tion was not a significant factor in the poor performance of the 

optimization algorithms and should be retained for its advantageous 

properties. An obvious improvement was obtained on introducing the 

elements at an approximation to its value at the subsequent minimum,

(i.e. the indicated value). These results were typical of those

obtained with all the networks examined. In general, the lower the 

error value prior to the element addition, the greater is the benefit 

obtained by including the element at the indicated value.

4.6. Two Examples Where Difficulty was Experienced with Element Addition

In the main, difficulties with the element addition appear to arise 

at low errors when the introduction of the new element does not produce a 

large reduction in the error. Two specific examples are given in 

Figs. 4.2 and 4.3. Both are synthesizing Lucal's functions (eqns.3.1). 

Figure 4.4 relates to an alternative initial path taken by the example 

of Fig.4.3.

With example 1 (Fig.4.2) no difficulty was attached to the location 

of a computer realization. (There are in fact three realizations

readily obtained bv the introduction of the elements R . C and C )12' 12 57
The difficulties arose with the attempted introduction of other possible 

element additions. When included in the normal manner, at the indicated 

values, all the other possible elements were immediately reduced in value
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by several orders of magnitude. Whilst some were removed, others

attempted to recover from these small values. The problem with this 

example appeared to arise because of the close configuration of the 

elements.

The major problem with example 2 (Figs.4.3 and 4.4) occurred on 

the addition of the capacitor . The problem here is of removing

the large element .

Although similar problems occurred with other element additions, 

the subsequent discussion of possible methods to facilitate the 

introduction of elements is focused upon these two examples.

It should be noted that these faults did not apparently arise 

because of any inaccuracy of the analysis. Runs from identical start 

points but with different levels of computer accuracy differed slightly 

and, some, but not all, succeeded in locating the minimum of example 2 , 

Fig.4.3cL However, the runs with the highest accuracy were not always 

the successful ones. Comparison of a large sample of runs showed 

that all accuracies were equally likely to proceed successfully, the 

accuracy of all being sufficient to locate the minimum when the GN 

proceeded along a path which led to a correct minimum. As a result of 

these findings, little research was undertaken into possible methods of 

increasing the accuracy of the analysis routines.

4.7. Multiple Element Addition

After an element addition has been determined by the methods of 

section 4.4, it is possible to determine a possible second addition by 

introducing the first element at its optimum value, and re-examining, 

in a similar way, all the remaining virtual elements. For two elements 

to be considered for simultaneous addition, both must have positive GN
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corrections and the independence of the variables must be retained.

The author found that any two element additions determined in this 

manner would invariably be identical to any two consecutive, individual 

additions. In theory the process can be applied repeatedly and three 

elements have been simultaneously included to produce a solution (see 

section 6.7).

The process (examined with many examples) appears to be limited

by element removals. Consider example 2, Fig,4.3. It is possible to

add the two elements R and C to the network of Fig.4.3a16 57 *
apparently because no removals are required between the two additions 

when performed separately. When the simultaneous addition was performed 

the program had no difficulty in removing the element C^^ . However, 

no second element could be found to simultaneously add with the element 

Cgg to the network of Fig.4.3b. Similarly, when the alternative 

route of Fig.4.4 was taken, it was not possible to add a second element 

with the resistor R^^ to the network of Fig.4.4a. Hence, it will not 

always be possible to manoeuvre around a position of difficulty.

A by-product of multiple additions is the possibility of evolving 

solutions more rapidly. At low errors it may prove substantially 

quicker to determine a second addition than to optimize a further topology 

requiring, say, 100 GN iterations. Alternatively, time may be 

wasted searching for a further addition which does not exist.

This method will not help to locate difficult minima of the same

kind as in example 1. In fact, from the previous minimum to that

shown in the figure (where the resistor R^^ is included), the only 

possible double additions indicated are the three which produce computer 

realizations. This indicates one drawback with multiple additions.

Many possible additions, which may lead to what are superior approxima

tions when factors such as sensitivity are considered, are not signified.
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Other disadvantages were noted. At higher errors (greater than
_210 ) elements were incorrectly signified as possible additions. On one

occasion it appeared that four elements could be included whereas, in 

fact, all four were removed and the optimization located an alternative 

minimum with a reduced error value. On a further occasion a second 

element was indicated as a possible addition when the addition of the 

first alone was sufficient to produce a solution.

4.8. Detailed Use of the GN Corrections on Restarting After

Element Addition

It was outlined in section 4.4 that, when a virtual element was 

included at the optimum value to an existing minimum of error, the GN 

corrections indicated the approximate values of the variables at the 

subsequent minimum. The effect of modifying the values of some, or all, 

of the existing variables to the approximate values indicated for the 

subsequent miniipum (as opposed to leaving them at the values prior to the 

new element addition) was investigated. As the number of variables 

increases, so the accuracy of these approximate values decreases. With 

the two specific examples outlined previously, the GN corrections for 

the existing elements proved of little value.

When minima were located with the element additions of example 1 , 

the relative changes in the values of the existing variables were small.

In fact, the CG section modified the values by an amount greater than 

the changes actually required, and consequently, the effect of any 

initial modifications to the values in relation to the GN corrections 

was immediately nullified.

The values of the variables at the minima for the topologies of 

Figures 4.3(b) and 4.3(d), and the values of the GN corrections with the
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subsequent element addition included at the optimum value, are given 

in Table 4.4. It can be seen that three significant changes occurred

in the values between the two minima:

(i) the capacitor was removed, i.e. set to zero,

(ii) the capacitor was increased in value by a factor

of twelve,

Ciii) the resistor was increased in value by a factor 

of thirty.

The element removial was not indicated by the initial GN analysis as 

the corresponding correction was of value minus 0,5 whereas, for a 

negative valued element the correction should have a value of less than 

minus unity. Similarly the large increases required in the other two 

elements were not apparent, possibly because the values were shifted 

by the removal of the element.

In an attempt to establish which elements would have to be 

removed subsequently, elements with relatively large, negative GN

corrections (less than minus 0.25) when a GN analysis was performed

with a virtual element included at the optimum value, were reduced in

value and the GN corrections recalculated. (Would the GN corrections

become increasingly negative if the removal was required?) However, 

once the elements constituting the original minimum had been altered, the 

position of the subsequent minimum, as suggested previously, was no longer 

indicated by the GN corrections. This failure to indicate the 

subsequent minimum had not occurred when the virtual element had been 

increased in value (sections 4.4 and 4.10).
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4.9. Discussion of Alternative Values at Which to Add New Elements

Although the indicated value does provide a good approximate 

value for the new element, on occasions the new element will be driven 

to a low value and, either removed, or, the speed of the optimization 

reduced to an unacceptable level. Slight modifications to the 

indicated value, say by a factor of 10 , made little difference. Only 

occasionally, when apparently by chance the optimization proceeded by a 

particular route, were the difficult minima located when a modification 

of this magnitude was made.

At the suggestion of Dr. Cutteridge, the element of

example 2 was introduced at a value 10  ̂ times the indicated value.

This produced large GN corrections of opposite, oscillating signs 

(approximate magnitude 10^) for the elements and Cg^ . Gradually

the element Cg^ was reduced in value and removed, thus producing the 

correct topology. However, the new element retained an inordinately 

large value giving a situation similar to additions at the optimum value. 

Namely, one large correction (negative for the element C^y) dominated 

and the optimization proceeded at an unacceptably slow rate.

With the particular example described above, the correct element 

had been removed. Further examples were investigated to establish 

if this treatment would repeatedly perform in this manner, i.e. to indicate 

which elements it is necessary to remove. However, the correct

elements were not removed when an element removal was required and, 

furthermore, removals still occurred when none were necessary. This 

procedure was therefore of little value, generally.
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4.10 The Behaviour of the GN Corrections When the Value of the

Virtual Element is Increased

When a virtual element is included at its optimum value at a 

low,valued minimum of error,, a possible element addition is indicated 

by a corresponding large, positive GN correction. This large 

correction will dominate the optimization which consequently proceeds 

at a slow rate because the error must be continually reduced. If the 

value of the virtual element is increased by a factor of , say , ten , 

then the GN correction should decrease by the same factor if the 

same minimum is still being indicated.

Consider the addition of the capacitor to the network of

Figure 4.3b. If the optimum value of 4.73 x 10  ̂ is increased by 

factors of ten, the same minimum will be indicated until the value has 

been increased to 4.73 x -4 . At this stage the dominant GN 

correction has been reduced to 420 and the error increased to 2.11 x 10 

from 6.53 X 10 ® . There would seem, therefore, to be much greater 

scope for larger modifications to the elements whilst the error is 

reducing. However, in practice, the improvement to the optimization is 

not sufficient to be of any consequence, at least in the logarithmic 

domain. When the program was modifed to operate in the natural domain, 

the scope had been increased sufficiently to allow a step length of X 

equal to 0.25 to be taken. After this iteration, however, the variables 

were in an undefined region of space and the optimization converged onto 

the dominant minimum, reducing the new element to a negative value.

(Again, the logarithmic transformation had not proved detrimental.)

This example was typical of the results obtained whenever this procedure 

was invoked.

-5
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4.11 Element Addition with the Value Fixed Initially

At low errors the optimization is aided by including the new

elements at the indicated value, thus increasing the initial error.

Hence, it is possible for the optimization to reduce the value of the

new element, possibly even remove it, and attempt to relocate the

previous minimum. It is known that this indicated value will be a

good approximation to the value of the element at the next minimum.

It should therefore be possible to fix the new element at this value,

optimize the other variables and force the values of the other variables

into the region of vector space surrounding the required minimum.

Initially the constraints were released when the error had
-2 _ 3reached arbitrary values of 10 and 10 . These values proved

to be too high, the new element being removed once the constraints were

released. A more successful policy was to release the constraints on

the value of the new element when the error had been reduced below a

value one hundred times that of the previous minimum. Similarly, the

constraints were released when a topological modification was indicated.

Four possible element additions to the network of Figure 4.2 were

examined. These were the elements and R^^ , all of

which had failed with the normal method of addition. Of these four,

two (R. _ and C,_) were successful. A third (C,, ) was successful when 35 16 l4
the Start values were modified as indicated by the original GN corrections 

The fourth example persisted in removing the element R^^ but, when this 

operation had been performed, the optimization was unable to locate a 

better minimum. (The difficulty may have been due to the series-parallel 

structure of the new network.)

The additions to the networks of Figures 4.3b and 4.3d were also 

performed by this method. Both of these examples could be regarded as
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successful as the optimization reduced the value of the elements which 

should have been removed to very small values. The fact that these 

elements were not actually removed was due to the limitations of the 

element removal algorithms, rather than a failure of the method.

Consider in more detail the addition of the element to

the network of Figure 4.3b. This requires the removal of the element 

C^^é. i.e. with no constraints the minimum occurs with a negative value 

for the element . When the element was constrained to its

indicated value, the minimum was shifted to a position where the value 

of the element was small but positive. Similarly, it is not

difficult to envisage a situation where an element which has a positive 

value at the true minimum, has a negative value at the minimum with the 

new element fixed at the indicated value. This could cause problems 

with the implementation of a method which was generally found to be 

successful. Slight variations to the indicated value will shift the 

position of the minimum and possibly shift any negative valued elements 

into a positive region. However, this could prove difficult (as with 

the aforementioned addition of the new element ) and it will

possibly be quicker to by-pass an addition which causes such problems.

4.12 Simultaneous Addition and Removal of Elements

This approach is only relevant to the type of difficulty 

encountered with example 2. With this example difficulty is experienced 

with element removal on two occasions, namely,

(i) attempting to reach the network of Figure 4.4c from 

that of Figure 4.2b i.e. removing the resistor 

R^^ (original value 0.205) after the addition of 

the resistor R (final value 0.548),
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(ii) attempting to reach the network of Figure 4.3d from 

that of Figure 4.3c, i.e. removing the capacitor 

Cq5 (original value 1 .21) after the addition of the 

capacitor (final value 0.195).

In both cases the elements included and removed are of the same 

type, are connected to a common node and have similar values. This is 

possibly the root cause of the problem. Also, the second case requires 

the removal of an element of much larger value than the new element, 

possibly indicating why this removal is the more difficult to perform.

The following strategy was adopted. Any elements indicated as 

possible additions which on addition did not produce a lower error were 

stored. When all of the possible element additions had failed, the 

program reintroduced the elements whilst simultaneously removing, in 

turn, one of the several elements of the same type connected to a node 

also connected to the new element. This strategy proved successful 

with several examples which synthesized Lucal's functions (Section 6.5). 

This method failed, however, when the same start topologies were used 

to synthesize the similar network functions of equations 6.4, 6.6 and

6.7. However, it is possible that on these instances the GN was 

mapping to a minimum with a negative valued element which did not have 

a minimum with an error lower than that of the previous minimum when 

the negative valued elements were constrained to a value of zero.

4.13 Element Addition with the Existing Element Values Reset Arbitrarily

This method is also of greater significance when the difficulty 

arises from diagnosing necessary element removals. VIhen the network 

of Figure 4.3c was restarted from values of unity, the element was

removed and the minimum located. However, completely arbitrary element
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values of this type will not always be ideal. (In this example the 

required values are all in the region 0.01 to 50 .) It is also 

possible that from such arbitrary values, the optimization will fail to 

distinguish between situations where an element genuinely requires to 

be removed or, merely reduced by an order of magnitude. (As with the 

T networks of Figure 3.6 mentioned in Section 3.8.)

An alternative to completely arbitrary values can be obtained by 

using the values from the previous minimum. This should have a similar 

effect to the successful multiple additions approach. When the element 

values of the network of Figure 4,3a were substituted for those of 

Figure 4.3b, the optimization again proceeded successfully. However, 

replacing the values of Figure 4.4c by those of Figure 4.4a failed 

to produce the desired effect. This was possibly because node 7

had just been included and so these three elements could not be reset 

to previous values.

4.14 An Alternative Optimization Algorithm

This algorithm was included as an alternative to the CG 

algorithm'. Based on the method of steepest descent, it considers 

the second order derivatives also. The algorithm was devised by 

Cutteridge a n d H e n d e r s o n ^ ^ b u t  an improved version, developed by 

Dowson^l was actually used. The basis of the method was described 

in Section 2.7.

This method had proved to be considerably more powerful than a 

conventional, first order gradient descent method. Using this algorithm 

alone, the solution had been obtained, from many starting values, for a 

transistor modelling problem with eight equations and eight unknowns.

This problem had previously proved too difficult for a two-part
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optimization program consisting of a gradient descent method followed by
36a Newton-Raphson algorithm

Modification of a variable, X , shifts the search direction 

from the steepest descent through to the steepest ascent direction. 

Discontinuities in the error produce several local minim<* for various 

values of X . Usually, the algorithm proceeds from the minimum which 

has the lowest overall error value, restarting from alternative minima 

should the progress prove slow.

The results obtained with the lumped linear networks examined in 

this thesis were rather poor compared to those with the transistor 

problem. With the increase in the number of variables and the extra 

computation required to determine the values of the derivatives, each 

iteration required an inordinately long time to perform. An example 

of an RC network with 7 nodes and 17 variables performed only 7

complete iterations in 600 seconds on an I CL 1906A machine.

Also, the algorithm did not show a tendency to move to the next: minimum 

after the addition of a new element, as occurs with the GN algorithm, 

the effects being rather localized. Consecutive iterations were 

performed using the new algorithm on the usual situation, with the new

element introduced at the indicated value, and the other variables at

the values immediately prior to the addition. The net effect appeared 

to be that the initial elements were modified only slightly to compensate 

for the introduction of the new element. There was no apparent 

attempt to shift the variables to the vicinity of the,new minimum.

The introduction of the element C to the network of Figure 4.3b57
was examined in detail. When individual iterations were followed by 

blocks of GN iterations, it was the removal of the new element 

which was indicated and not that of the required element C^^ . The 

values of the variables at the alternative minima (with the error reduced)
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were examined. On no occasion were the three large changes required 

for the next minimum reflected in the values. (i.e. removal of C05
and large increases in the elements ahd R )07 17

4.15 Summary

The capabilities and limitations of the original method for 

element addition were discussed and the development of a superior method, 

utilising the GN corrections, described. This method not only 

determines whether the introduction of a particular element is feasible, 

but also indicates the approximate value of the new element at the new 

minimum. Hence, the major limitation of the original method of using 

the optimum element values was overcome.

Occasionally, the initial increase in the error resulted in the 

removal, or reduction to an unsatisfactory value, of the new element. 

Several methods to overcome such difficulties were briefly examined.

The method which would probably prove effective with the greatest number 

of examples was optimizing with the new element initially fixed at its 

optimum value. However, difficulties can arise with this method, and 

an automated system to overcome all eventualities would probably involve 

an extra degree of difficulty than the other algorithms already in the 

program.

Although these difficulties occurred with sufficiently few 

examples to enable many realizations to successfully evolve, such 

occurrences will presumably increase as larger, more difficult problems 

are considered.
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I Virtual 
'Element (s)

Optimum
value

GN
correction

Indicated
value

Actual
value

1=01 , G

!  ^03
1  ^ 0  5
i S z

1  ^13
| S s . G

i ' o i . c

^ 4 . C ;

S s , c .

C 3 4
I  C 3 5
I  C 4 5

-2.08
3.07
9.55
2.16
3.82
2.60
5.87
1.45
4.66
3.17
2.90
9.90 
4.57 
5 20

X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10

i
- 1 0  I 

- 1 2  I
- 1 0

-10

-13
- 1 0

-10

- 7

-6.11 

2.55 
4.31 
5 .51 
7.12 
3.16 
4.70 
1.88 

3.83 
5.05 
4.76 
8.14 
1.21 

4.51

X 10°

X 10^ 

X 10^

X lo""
X 10"+ 

4
X 10
X 10^ 

X 10®
X 10®

4
X 10
X 10^ 

4
X 10
X 10®
X 10®

7 85 X 10"^ 1.39 X IQ-I
4.12 X 10-1 I 1.26 *

1.19 X 10"^ 2.50 X 10"^
2.72 X 10-® ' 5.85 X 1Q-®
8.22 X 10"^ 1 1.94 X 10-5
2.76 X 10-2 : 5.38 X 10-2
2.72 X 10-^ ; 4.39 X lQ-4

1.79 X 10-7 1 3.50 X 10'7
1.60 X 10-5 1 3.37 X 1Q -5
1.38 X 10'^ i 2.92 X 10-^
8.05 X 10-5 I 1.74 X IQ-^
5.52 X 10-2 j 1.17 X 10 "̂
2.34 X IQ-l 5.57 X IQ-T

Th?.s is the value at the quasi solution of error 1.86 x 10 and 

not that at the solution with the element having a negative

value.

TABLE 4.1. VALUES RELATED TO THE ADDITION OF ELEMENTS TO THE NETWORK

OF FIGURE 4.1.
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1

4
^13 = ^23 = I'SO X 10 
Cq3 = 5.97 X 10"1
Cos = 4.54
Ĉ , = 2.00 X 10^04
Common factor = 1 .1 2  

Error = 3 . 1 3 x 10 ^

-3
14
'35
%5
'04

= 7.00 X 10 
5.34 X 10"!

-2

= 2.27
= 1.02 X 10 - 1

FIGURE 4.1; OUAZI REALIZATION OF FIALKOW'S FUNCTIONS

1

7
C = 21.0 G 0.2911 3 27
C = 3.79 G^^ 4.0336 35
C _  = 2.04 G, , 3.2246 45
C = 5.09 G - 0.69024 06
C =6.87 G 9.4105 04
Cg y = 0.568 S 3 = 50.1
G =0.391 - 1.8617 56
Common factors = 0.348, 1.18
Error = 8.80 x 10 -7

Possible RC element additions: C
12 14

C5 7 ’ C'l2
16
34

23
36

26
46

34

FIGURE 4.2: QUAZI REALIZATION OF LUCAL'S FUNCTIONS
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(a)

(bl
Cc)
(d)
(e)
(f)

1

Final error =

7 6

ADD G 
ADD C;,
REMOVE Cq5 
ADD Gq5 
REMOVE G35

1.94 X 10-6

Final error = 6.53 x 10

Final error = 9.64 x 10-9

1 C 3

Cl3 = 14.0 G^y = 16.1
C34 = 1.68 Ce 7 = 0.0927
^24 = 3.00 C26 = 3.81
Co 7 = 6.32 Cq 3 = 39.2
C57 = 0.921 Cq4 = 10.8
C56 = 0.739 Cq 5 = 2.10
Cq 6 = 1.64 C 16 = 0.0822
Common factors = 2.00 and 3.00

FIGURE 4.3: EVOLUTION OF A NETWORK REALIZING LUCAL'S FUNCTIONS
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(a)

(b)
(c)

ADD G 
REMOVE G

67
27

Final error = 6.92 x 10 

Final error = 6.53 x 10~®

Network identical to that of Figure 4.3(b)

FIGURE 4.4: EVOLUTION OF A NETWORK REALIZING LUCAL'S FUNCTIONS
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CHAPTER 5 

NODE ADDITION

5.1. Introduction

It is improbable that the start topology chosen will prove 

capable of realizing the desired network response exactly and it is 

therefore necessary to develop methods for modifying the network 

topology. Criteria were developed to determine when topological modi

fications could best be made. These basically involved determining 

that either, the current network had attained the values which produce 

it’s best approximation to the required network, or that the optimization 

was not proceeding quickly and efficiently. These criteria were 

detailed in section 3.10.

Later, an efficient method of element addition was developed 

(section 4.4). Element addition is to be preferred to node addition for 

two reasons. Firstly, it introduces fewer variables, which aids the 

optimization, and secondly, the nodal admittance matrix remains small, 

thus minimizing the computation required in the analysis. The introduc

tion of elements confined within the existing topology may prove to be 

insufficient. The addition of new nodes may be required because, either, 

the network cannot be realized with the minimum number of nodes apparently 

possible, or, the start topology is far removed from a possible solution.

In this chapter, several possible methods for the addition of a 

node are reviewed and examined, some of which had been suggested previously 

and others devised by the author. As the research was restricted to 

idealized linear networks, the efficacy of any particular method was 

gauged very stringently. As exact realizations to the test problems 

were known to exist, it was postulated that a truly efficient method of
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node addition would produce an exact realization with, in most instances, 

the minimum number of nodes. Methods which produced a better approxi

mation to the network but failed to provide realizations with the minimum 

number of nodes, were considered as inadequate.

The results obtained using the various methods are described in 

general and in relation to two specific examples.. One of the methods 

devised by the author (section 5.8) provided realizations to these two 

examples and to many more, some of which are shown in Chapter 6.

5.2. Review of the Previous Methods for the Introduction of a New Node

It is, perhaps worthwhile to reiterate that topological modifica

tions are apparently accomplished more easily when a method of coefficient

matching is employed. Using pole-zero and direct matching of frequency
12characteristics, Wright was only able to successfully include elements 

to the simplest of networks and did not attempt the addition of nodes.

Di Mambro^^ suggested three possible methods for node addition.

The first of these involved the substitution of equivalent networks as 

in Figure 5.1a. (A similar method to this is discussed in section 5.4.) 

Briefly, there are two main problems with this method. Firstly, how 

is the choice made as to which element to split? Furthermore, this is 

only a half-way stage. A further element has to be included to make 

this node electrically meaningful and this may prOve difficult to achieve.

The equivalent circuit of Figure 5.1b also poses the question of 

which element is to be transformed. This transformation also 

necessitates the introduction of an inductor which may be undesirable 

because of the associated practical difficulties. One advantage of 

this method would appear to be that the elements will be included at 

approximately the required values, thus reducing the probability of
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problems with the optimization which arise when variables are introduced, 

with extreme values.

The two further methods outlined by di Mambro involved the intro

duction of pairs of elements to the new node, but the criteria for 

determining which node to include were not ideal. The first was based 

on a steepest descent algorithm (which will tend to be very localized) 

and the second on an alternative error formulation which is not as 

efficient as that employed by the author. One of these methods was 

used by di Mambro in an example which succeeded in reducing the error 

by a factor of ten. However, the results were not conclusive as the 

run had to be curtailed due to a lack of research time.

Krzeczkowski^^ suggested two further methods which are discussed

in sections 5.6 and 5.7. One of these methods, using a delta-wye
14transformation, was later adopted by Hegazi who succeeded in producing 

a computer realization to one particular example. This, was possibly 

the first occasion on which a node had been introduced entirely satis

factorily. Outside the group at Leicester, there seems to have been 

little achieved in terms of actual published results.

5.3. Two Specific Examples where the Introduction of a Further Node 

is Required

Using a design package similar to that at the commencement of this 

research, one particular attempt, by Cutteridge^^, to synthesize Fialkow's 

functions (eons. 3.3), produced a quasi-realization with an error of 

2.72 X 10  ̂ . This package used the same error formulation as the 

author and the element addition was based on the optimum values for 

virtual elements (section 4.2). The improved element addition technique 

developed by the author (section 4.4) introduced the element to

greater effect. After the removal of the capacitor , an improved
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minimum of 4.99 x 10  ̂ was located (the network of Figure 5.2).

At this stage there did not appear to be any further RC element

additions, hence, this provides one example where node addition is

required. (It is possible, however, to include an inductor at

this stage and produce an RLC realization of the network without

the introduction of a further node.) At this time realizations of

this set of functions were only known to exist with five nodes and

not with six as that the node addition would produce.

The second test example is similarly an RC network

(synthesizing Lucal’s functions) from which no further RC element

additions are possible (Figure 5.3). Previously, the only solutions
19to this network had been produced by series-parallel decomposition * 

30,31. Similarly, computer realizations had only been produced by 

introducing no more than two alternative elements to these solutions. 

All these realizations had contained at least seven nodes, one more 

than the current network of this example. (A computer realization 

for this network with only six nodes is given in section 6.6.)

5.4. The Addition of a New Node by Replacing an Existing Element 

with an Equivalent Network

Di Mambro^^ outlined the possibility of introducing an extra 

node by splitting an existing element, as shown in Figure 5.1a.

In theory, it should be possible to add further elements of the same 

type to the new node. In practice, the introduction of the node 

has little effect by itself and a third element of a different type 

must be introduced to the new node.

The author initially attempted to introduce this further 

element in a similar manner to the element addition method of section
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4.4. Each existing element was split in turn and the GN corrections

determined for each element addition made possible by the formation of

the new node, with the new element and common factor set to arbitrary 
-6values of 10 and 1 , respectively. With the two specific 

examples described in section 5.3 (and with others), it proved impossible 

to locate an element which could in fact be included. A more 

intuitive approach was adopted after this.

The new approach was based on the assumption that, if the new 

network was very similar to the original network, then the starting 

error would be similar and could be decreased by the introduction of 

the extra variables. It was postulated that the network would be 

least disturbed if the smallest element was chosen for splitting as in 

Figure 5.1a. Similarly, least disturbance would result if the third 

element was connected to the reference node which is-, in any case,

the most general, option and, possibly, most likely to produce the largest

effect. The values were chosen such that they approximated to the 

introduction of a new common factor of value unity.

New nodes were introduced which did produce a reduction in the

error but not always ideally. Initial results were encouraging 

with examplé 2 reaching a solution. (The route to the solution from 

this minimum is traced in Figure 4.4.) However, this proved to be an 

isolated success. Nodes tended to be repeatedly introduced into the 

same region, producing little reduction in the error. A typical 

example is shown in Figure 5.4. The method also failed to introduce 

a node to the network of example 1.

There are other difficulties associated with this method. 

Occasionally a new node would be introduced successfully only to be 

removed when the original element was re-introduced. Furthermore, 

as the GN algorithm was not involved in determining whether a node
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should be introduced, problems with the optimization did arise with 

particular examples.

It was explained in section 3.3 that certain networks (such as 

that defined by Lucal's functions) cannot be realized exactly when 

particular elements are included. It would seem unwise to include 

nodes in the positions of these small valued, undesirable elements if 

this, or a similar method, were to be used to introduce nodes.

5.5. Nodal Addition Employing a Modified Element Addition Algorithm

A method has been developed which is capable of introducing more 

than one element simultaneously, provided that, if the additions were 

performed individually, an element removal would not be required between 

additions. It is electrically meaningless for one element only to be 

connected to a node. It would seem, therefore, that if it were not 

for the extra common factor introduced, the introduction of two elements 

comprising a new node would be straightforward. (The introduction of 

one element alone could not possibly result in the removal of another 

element.)

As the optimum values for the three new variablestended to small 

values, the elements were set to small values of 10  ̂ and the common 

factor set to unity. The GN corrections were derived and, provided 

that criteria to establish the independence of the variables were not 

violated, the pairs of elements which had positive corrections were 

considered to be possible additions. One interesting feature was that 

the corrections for the elements forming the new node were identical in 

value. This feature perhaps calls into question the validity of the 

method as the minima do not occur with the elements at identical values. 

Priority of addition was given to the node which registered the lowest 

error value when included at the arbitrary values. The elements were
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introduced at their indicated values, namely, 10  ̂ times their GN 

corrections.

To summarize the results briefly, the method was successful in 

so far as it did introduce nodes which produced a reduction in the 

error, but not to the extent that computer realizations, not just quasi- 

realizations, were produced. A typical example of an attempted 

synthesis of Lucal’s functions is given in Figure 5.5. The choice of 

which node to include was far from ideal and greatly favoured 

connections to nodes 1 and 2 . When the choice of nodes was 

determined by a user with knowledge of a solution, computer realizations 

could be produced (see Figure 5.6). As the error reduced, so the 

number of possible introductions decreased. In fact, it was not 

possible to introduce a further node to the networks of examples 1 and 

2 . Furthermore, nodes indicated as possible additions were often 

removed, though it was not apparent whether this was simply difficulty 

with the optimization or if the method had failed.

The two new nodes shown in Figure 5.7 are identical, hence, if 

both are possible additions, the choice of which node to introduce is 

determined merely by computer round-off errors. However, it is quite 

possible that the introduction of one node will produce a realization 

whilst the other will not. If the new node was introduced in the 

incorrect position and no further additions occurred, it would be possible 

to reverse the node. However, it is normal to find that further 

additions will be possible.

To alleviate these difficulties, the effects of several modifications 

to the strategy were investigated:

(i) Renewed, but unsuccessful, attempts were made to calculate 

optimum values for the elements by optimizing these values 

only.
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(ii) Priority was given to connections to the reference node 

(zero) via the internal nodes (not one or two). This 

was not always possible, particularly at lower errors, and 

so,

(iii) nodes were introduced, not to the optimum topology for.

the fixed number of nodes, but from the original topologies 

having the same number of nodes which had sparse numbers 

of elements and a higher error value.

(iv) Nodes were also included in groups of three elements rather 

than two, thus removing the ambiguity about reversals.

The results remained disappointing. It was still not possible to devise 

an automatic method capable of producing computer realizations.

One piece of information which did shed some light on which node to 

add was the optimum values for negative elements., as described in 

section 5.8. Such a method would prove difficult to employ automa- . 

tically but would, perhaps, be of benefit to an interactive user.

However, this would still not remove the difficulties caused by the 

absence of possible new nodes at low errors.

5.6. The Introduction of a Node by the Duplication of an Existing T-network

It was Krzeczkowski^^ who indicated that the networks of Figure 5.8 

were equivalent and, without actually investigating its efficacy, 

suggested this as a possible method for introducing a node. Conceptually 

this method seems ideal in that it produces an equivalent network with 

extra variables, intimating that the error can only be reduced. Also, - 

the new elements are introduced at reasonable values. The one apparent 

drawback is that there is no fundamental reason whv the method should
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introduce nodes in the optimum position (i.e. so as to produce a solution 

with the minimum number of nodes).

In practice, the duplication often produces very large GN correc

tions which are unable to reduce the error, even when the maximum modifi

cation to each variable is limited. These large corrections also make 

it impossible to introduce further elements to by-pass this problem, as 

can sometimes occur. These large corrections remained when the values 

of one of the T-networks were altered so the two were no longer identical.

With example 1 the addition failed as described above. With 

example 2 there are two possible nodes to duplicate. When node 6 

was duplicated the same problem appeared. When node 4 was duplicated 

two elements were removed, thus removing the new node.

5.7. The Delta-Wye Transformation as a Method of Introducing a Node

One obvious problem with this method was that often, when the 

introduction of a node was required, there was not a delta configuration 

to transform (see Figure 5.9). This would seem to suggest the necessity 

of a supplementary method, either of an alternative method of node 

addition or, of a restart facility to be used to locate alternative 

networks whose topologies do contain such a configuration. Both alter

natives would appear to be far from ideal.

The transformation did not, on any occasion, enable an element of the

same type as those forming the delta to be introduced to the new node.

The introduction of an element of a different type, with an accompanying

common factor, was required. Although Hegazi^^ used this method and 

succeeded in producing a realization, several points arise from his work. 

Only the one example was described, which gives little indication as to 

the general efficacy of the method. When the node was introduced, there
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were two possible delta configurations which could have been transformed. 

There was no indication as to why one had been preferred to the other. 

Furthermore, the choice of the accompanying element appeared to be 

arbitrary and its addition did in fact produce an increase in the error 

from a value of 1.74 x 10"^ to 2.12 x 10 ^ .

The calculation of the optimum values for the new element and the 

common factor again proved to be of little benefit, as did the calcula

tion of the GN corrections, except in formulating an approximate value 

for the new element. Consequently, the new element was introduced 

between the new and the reference nodes at a value of unity. The new 

common factor was also set to unity.

Generally, the results obtained were poor. On no occasion did the 

transformation produce a realization. IVhen attempts were made to 

synthesize the network described by Lucal's functions, nodes were 

repeatedly introduced to the same regions of the network, producing 

little reduction in error.

The method failed with both test examples. Example 1 did not 

contain a delta configuration, whilst using the strategy outlined on 

example 2 merely resulted in the new node shorting out.

5.8. Node Introduction by Substituting a T-network in Place of a Negative

Virtual Element

The order in which possible element additions are performed is 

governed by the error value obtained with the virtual element set to its 

optimum value (section 4.4). This method has proved to be almost totally 

successful in determining which element should be introduced, namely, that 

which will produce the greatest reduction in the error. Consequently, 

it seems reasonable to postulate that these optimum values will also
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give the optimum position for the introduction of a negative element.

As one of the major defects with the previously discussed methods of 

node addition was that there seemed to be no apparent method of 

determining the optimum position for the introduction of the node, this 

information was thought to provide a firm basis on which to build an 

alternative method. (Nodes are only introduced when there are no 

available element additions, i.e. if any further elements were 

introduced they would attain negative values.)

The author chose to replace a prospective negative element by a 

T-network, as shown in Figure 5.10. This was chosen primarily on the 

basis of ah inspection of the requirements to produce the known 

solutions, but also because of its simplicity and generality. It was 

thought that the four extra variables would provide a high probability 

of locating a better minimum. T-networks containing only two types 

of elements were chosen for two reasons. Firstly, it may be preferred 

that inductors are not included in the design. Secondly, the optimiza

tion algorithms often had difficulty in removing elements which had ah 

associated common factor, hence, useful networks can be masked by 

superfluous additions.

Initially, the four new variables were included at values of unity,

the mid value on the logarithmic scale. This enabled solutions to

eyolve for both test examples, thus producing the first six node

realization to Fialkow's functions (Figure 6.24) and a seven node

realization to Lucal's functions (figure 4.3). Several attempts had

previously been made, by the author and others, to produce such a six

node realization by commencing from a topology with six nodes, but all

had resulted in the removal of one node. It is possible to produce
3the solution topology originally given by Fialkow from this realization 

by shorting nodes 4 and 5 and removing one of the pair of resistive
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elements produced. This would seem to confirm the theory that, if 

there is a solution to a problem with n nodes, there will be similar 

solutions with n + 1 nodes. this, in turn, validates the strategies 

of including a node when no element additions are possible and of 

ignoring any node removals indicated.

As could be expected, setting the new values arbitrarily did not 

always prove ideal. Examples arose where the value of unity was 

significantly larger, or smaller, than the required values. To reduce 

the occurrences of these faults, the values were chosen as shown in 

Figure 5.11, where the value G , for example, represents the modulus 

of the indicated value of the original negative element. The values 

are arranged to produce a new common factor with an approximate value 

of unity. Further problems arose when this indicated value was an 

underestimate, producing large GN corrections for the new elements 

and thus impairing the progress. Further empirical criteria were 

developed to combat this fault. If the initial error was below a 

value of five, the values of the elements constituting the new node 

were repeatedly multiplied by a factor of ten until the error had 

increased above this value.

This method was used successfully with many examples, producing

many networks of a type which had not been realized before using any

other methods of synthesis (see Chapter 6). However, the method did
]4not succeed in introducing a node to the network from which Hegazi

successfully produced a realization. Furthermore, the procedures

involved in introducing the new nodes were not ideal. Slight variations

in the procedures can result in failure to locate a minimum following a

feasible addition. This is perhaps one position from which extended

optimization in the CG section, instead of switching to the GN when
_2

the error has reduced below 10 , would prove advantageous.
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At one stage, extra additions were considered when the 

introduction of T-networks between the external nodes had failed.

If a complete chain of elements (of the same type as the negative 

element) formed a link between nodes 1 and 2 , then new nodes 

were introduced, in turn, parallel to the elements in this chain.

This innovation proved to be of little value with the examples 

considered.

5.9. Summary

Various methods have previously been suggested (and some examined) 

for introducing a new node to a network. Several of these methods, 

and others devised by the author, were examined. The one method^^ 

which had produced an exact realization, was found to be of limited 

value with the vast majority of examples. A method, based on the 

introduction of T-networks in place of negative valued elements, was 

devised by the author and used successfully on many occasions (section 

5.81 .
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C = C = 1.50 X 10 13 23
- 3

= 0.597 
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Common factor = 0.
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= 48.1 
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FIGURE 5.2: RC NETWORK REQUIRING THE ADDITION OF A NODE TO REALIZE
FIALKOW’S FUNCTIONS
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S 3
= 21.3 G i5 = 0.180

G34 = 1.54 =2 5 = .2.36
C24 = 3.38 Go 3 = 50.5

Go 6 = 1.69 Go 4 = 12.7

C56 = 0.756 G 35 = 4.69

Go 5 = 1.37
Common factor = 2.50 
Final error = 2.44 x 10 “4

FIGURE 5.3; RC NETWORK REQUIRING THE ADDITION OF A NODE TO REALIZE
LUCAL'S FUNCTIONS
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(b) ADD C12

(c) ADD NODE 6

Final error = 0.819 

Final error = 0.257
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Final error = 3.97 x 0

Final error = 3.25 x 10
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(continued over)FIGURE 5.4:
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(h) ADD G 37
(i) REMOVE G

(j) REMOVE C
07

17

C = 1.74 34
" 2.78

= 1-99
= 0.609 

S s  = 2.85

1

Final error = 4,30 x 10

G = 0.455 3718.7 2.67

G = 7.99 X 10 56
^25 "  2.65
G = 51.803

= 13.6

G = 9.20 X 10
12

-2

-2

common factors 1.94 and 0.665

FIGURE 5.4: (CONTD.) EVOLUTION OF AN RC QUAZI REALIZATION OF LUCAL'S 

FUNCTIONS ADDING NODES BY THE METHOD OF SECTION 5.4

indicates that a minimum of the overall error function was not located
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(a)

(b) ADD C

1
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(c) ADD NODE 6

Initial values = ID^

Final error = 0.819 

Final error = 0.25 7

(d) ADD Css 5
(e) REMOVE Final error =
(f) ADD Css
(g) REMOVE C^s Final error =
(b) ADD C^G
(i) REMOVE C26 Final error =
(j) ADD Ci2 Final error =
(10 ADD NODE 7

Final error 

37 X 10"^

34 X 10"3 

92 X 10"^

= 5.48 X 10-2

1

{ = 3

Final error = 1.75 x 10-4

FIGURE 5.5: EVOLUTION OF AN RC QUAZI REALIZATION OF LUCAL'S FUNCTIONS 

ADDING NODES BY THE METHOD OF SECTION 5.5
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Ta)

(b) ADD C

Initial values

Initial error .66
2 Final error = 0.819

5
12

(c) ADD NODE 6

j Final error = 0.25 7

1

, T

Cd) ADD G56
(e) ADD G12
Cf) REMOVE G^5

C g ) ADD NODE 7

Final error = 7.04 x 10-2

Final error = 3.97 x lO'^

Final error = 3.25 x 10-2

(h) REMOVE C Final error =

) ADD Final error ='6 7
(j) ADD 26
(k) REMOVE G Final error =

(1) ADD

_l4

.-7

-9

FIGURE 5.6: REALIZATION OF LUCAL'S FUNCTIONS OBTAINED BY ADDING NODES IN

(contd.)THE MANNER OF SECTION 5.5 IN A POSITION DETERMINED BY THE AUTHOR
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119

(a)

X.

Cb)

1

k

1

k

if X = XiX; + X, X, + \
T,.......... T, 'T.then X = X  /X , = X / X  and X = X  /)[a 3 b 1 c 2

FIGURE 5.9: DELTA-STAR TRANSFORMATION

1 # -

-G

-C

1 »-
1.0 n 1.0

1.0

1.0

1.0

1.0.0

W  "]

FIGURE 5.10: NODE ADDITION BY THE ORIGINAL METHOD OF SECTION 5.8
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CHAPTER 6

SELECTED RESULTS PRODUCED BY THE AUTOMATED DESIGN PACKAGE 

DEVELOPED BY THE AUTHOR

6.1. Introduction

The techniques which, when combined, form the automated design 

package, have been described in the previous chapters. Unless otherwise 

indicated, these results were obtained using the methods and strategies 

which were stated as being the most efficient. Designs, with both RC 

and RLC networks were attempted.

To help clarify how a design evolves, an example is included 

which shows each topological modification of the design and describes 

any unsuccessful modifications [section 6.3). The space and time 

required precludes such a detailed description for other examples. 

Similarly, only an informative cross-section of all the results obtained 

could be included.

To facilitate an evaluation of the general efficacy of the 

package, classes of results are given when:

(i) the same start topology is used to synthesize several

sets of slightly different network functions (section 6.4),

(ii) the synthesis of the same network (that defined by Lucal's 

functions) is attempted from various start topologies 

(sections 6.3 and 6.5).

Also, when appropriate, the results are compared to those obtained 

previously with similar methods applied by other researchers. With 

results from outside Leicester the design procedures will be totally 

different. Hence, it is only possible to compare the rudiments of what



122

has been achieved, say, has node addition been successfully performed.

During the course of this research, several computer realizations 

were obtained which are of interest to the network theoretician, namely,

(i) a realization to Lucal’s functions requiring only six 

nodes plus the reference node (section 6.6),

(ii) a series-parallel RLC realization of Fialkow’s functions 

(section 6,8).

Several other networks of interest are also included.

The results produced by the automated design package are evaluated 

in Chapter 7. Also, difficulties with, and deficiencies of the program 

are outlined and future possibilities for research discussed.

6.2. The Network Functions Used as Test Examples 

19Lucal published two RC realizations for the network described 

by the functions

^1122 ^ P + i p + 2 p + 3

The only realizations of these functions prior to this research had 

been produced by series-parallel decomposition of two element kind networks, 

The smaller of Lucal’s realizations contained eight nodes (plus the 

reference) and three common factors of the form (p + a) . Later, Hansen

and Wanet^^ produced a realization with only seven nodes, thirteen elements 

and one common factor.
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The functions can be written in the more general form

X u  = P
1 "llP "llP
6 P + 1 P + 2 p + c

1 *12? ^2? Y 12P
6 P + 1 P + 2 p + c

1 *22? ^ 2 ^ ^̂22”
6 P + 1 P + 2 p + c

-^12 = P "

Xzz = P + Z  + (6.2)

where, «jj = 1 . = -1 , = 1

®11 ' > ®12 " lS/2 , 6^^ = 15/4

=  3 5  , Y j 2  "  " 3 S / 3  > y22 "

and C = 3 (6.3)

Eight similar sets of functions were obtained by modifying these parameters 

(All examples retained the compactness of the poles.) The new values 

are as in equations 6.3 unless otherwise stated. The actual values of 

the coefficients are shown in Table 6,1. (Again, the values are not 

given if they are identical to those in Lucal’s original set of functions.)

Example 1

Yii = = 35/3 (6.4)

Example 2

Y^l = 35 X 3 ; = 35/27 (6.5)

Example 3

11 " ®22 " 15/2 (6 .6)

Example 4

= 15 X 2 ; 6 = 15/8 (6.7)
11 22
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Example 5

= 1/2 ; 0^2 = 2 (6 .8)

Example 6

= 2 ; = 1/2 (6.9)

Example 7

C = 2.1

6 1 2  = 15 ; 6 , 2  = IS (6 .1 0 )

note: if B = 15/2 then the cofactor A has two negative valued
12 12

coefficients. This is avoided if 3^^ is set to a value of fifteen.

However, without further modification this network would contravene 

Cauer’s residue condition, namely,

^11 - < 2 ^ 0 ■

Hence, if 3 is increased to a value of fifteen Cauer’s condition will 22
be satisfied and, furthermore, the poles will be compact.

Example 8

C = 10 . (6.11)

If a computer realization had not already been obtained, runs 

from a minimal structure of five nodes were terminated prior to the 

addition of an eighth node. There usually proved to be insufficient 

time on the Cyber 72 to fully investigate the effects of such a third 

node addition. (The maximum job-time was 3500 octal seconds.)

For passive networks (as considered in this thesis), the 

coefficients of the polynomials produced must be positive for positive
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valued elements^^. Consequently, at least one common factor of the form 

(p + aj is required to mask the effect of the negative coefficient of 

Fialkow’s set of functions (equations 6.12),

_ 1197p3+56613.14p2+28368.584p+191.184 
^11 “ ^22 800000p^+408000p+3840

_y = 3p3-1.14p2+197.176p+77.616 
12 800000p2+408000p+3840

if they are to be realized by a passive network. (0.38 < a < )

Furthermore, for a two element kind realization, the topology cannot be 

series-parallel^^.

Fialkow’s functions can be written in the more general form

i f  n . Ap2 + Bp 1
^11 = ^22 = 80ÔÔ5Ô [“ u P  * ®11 " p2 ;  ei'Tb' j

“ ,,P + 6,, - (6.13)12 800000 L 12̂  ̂ 12 p2 + Cp + D .

where,

3^^ = 39839 ; 3^^= 16,170

A = 16,172.67 ; B = 8,049.5384

C = 0.51 ; D = 0.0048 (6.14)

The compact finite poles and the residues of these poles have irrational
i 58 values

Seven other sets of functions with a similar negative valued 

coefficient were obtained by modifying the values of the parameters in 

6.14. The values of the new sets of parameters are as in Fialkow’s 

original functions unless otherwise stated. The actual coefficient 

values are given in Table 6.2.
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Example 1

6 = 16170 (6.15)11

This produces a further compact pole, that at zero.

Example 2

a = 3 (6.16)
11

Produces a further compact pole, at infinity.

Example 3

Oil = 3 ; 3^^ = 16,170 (6.17)

All four poles are now compact.

Example 4

a = CL = 100 
11 12

3ii = 3 = 16,121.17 (6.18)

All four poles are compact. This network was first suggested by
u .14Hegazi

Example 5

a^2 = 783 ; 3^2 = 15770 (6.19)

These values produce two negative valued coefficients in the cofactor A 

Example 6

12

= 1977 3^^ = 39430 (6.20)

Example 7

A = 16,172.167 ; B = 8,049.539
D = 0.005 (6.2])
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6,3. A Detailed Study of the Evolution of a Network Which Realizes

Lucal's Functions

This example (Figure 6.1) was chosen arbitrarily and not because 

it reflects particularly favourably on the techniques devised by the 

author. In fact, the evolution is a little strained in places. The 

author is of the opinion that a close study of such an example will 

provide a greater insight into the actual behaviour of the package. 

Several points worthy of consideration do arise.

(1) An examination of the topology at the realization (Figure 

6.1x) indicates that five of the original eight elements have been 

retained. As two of the discarded elements were connected between the 

external nodes 1 and 2 , it. is perhaps possible to say that five of 

the original six elements comprising the major features of the initial 

structure have been retained. This serves to illustrate the dependence 

on the original starting topology, even though this may appear to be 

dissimilar from the structure which evolves. It also underlines that 

realizations will not be produced with the minimum number of nodes from 

all start structures. Element additions are based on whether any one 

addition alone will provide an improved approximation, even when multiple 

additions are performed (as described in section 4.7). Variations are, 

therefore, essentially localized in character. However, it seems 

probable that the removal of nodes will allow for greater deviation

from the start topology.

(2) The failure of the first element addition to the initial 

structure (Figure 6.1(a)) exemplifies the recognized drawback that, even 

when optimizing in the logarithmic domain, it is possible to map to 

minima with variables of negative value. The addition of the capacitor
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 ̂ led to the removal of the elements C and R . Thus, the23 12 1+5
synthesized network coefficients could not be equated to all those 

required. With the initial structure at a minimum and the new element 

at the optimum value, the GN corrections were:

. _-3
S 3  = -0.374 S s = -8.58

^34 " 82.0 «45 = 81.3

Cos = -0.365 ^0 3 = 0.318

^12 " -2.85 «12 = 0.707

^2 3 " 3.07 (6.22)

The correction for the element less than minus unity which,

at this high error value, is probable evidence that mapping to a negative 

valued element has occurred. The correction for the resistor R45
was large and positive but the element was subsequently removed. The 

removal of the first element (â t which stage the value of the

resistor R^^ had increased by a factor of 60) produced a totally different 

minimum, thus necessitating the removal of a second element. (The 

variations of the values of elements are generally more marked at higher 

errors.) These large, genuinely required increases in the values 

indicate the difficulty in choosing criteria to discern between these 

situations and others where the variables are no longer independent.

This type of occurrence indicates the validity of the restart

strategy. The introduction of the element is subsequently performed

(?) At one stage in the design the following sequence of events 

were performed by the package:

(a) the element was included

(b) the element was removed
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(c) the element was included

(d) the element was removed

(e) the element was included (3.4)

It would appear that the initial addition of the element was

superfluous and that the addition of the element should have been

preferred, particularly as the introduction of the removed element 

was not possible at stage (e) . The location of the actual minima, 

with the capacitor having negative values, confirmed that the

original choice of the element C23 had been incorrect. The intro

duction of the element realized a minimum of error 0.545 as

compared to a minimum of 0.276 .

The values of the GN corrections when each element was

introduced, in turn, at the optimum value were 5.26 for the element

and 1.81 x 10^ for the element . These values are typical

of those which occur when an incorrect choice of element has been made, 

i.e. the element with the larger error on introduction at the optimum 

value, has greater scope for modification (signified by a larger GN 

correction) and produces a minimum with lower error than an element that 

is included at an optimum value which is high when compared to its value 

af the subsequent minimum. The determination of empirical criteria 

to extrapolate to an approximate, eventual error were not considered to 

be necessary. This feature occurs only rarely, always at relatively 

high error values, is easily rectified, and at lower errors in the 

vicinity of solutions the optimum element is invariably included.

A similar situation can occur when nodes are introduced. An 

investigation of such occurrences seemed to indicate that this would 

produce a solution with, say, one extra node and common factor. As 

alternative solutions are of interest for sensitivity considerations, etc
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this is not a totally unacceptable feature. Furthermore, an examination 

of several examples indicated that any surplus nodes would often be 

removed if such a facility was available.

(4) It was when the second node addition was required that the

evolution became a little strained. The first attempt to introduce

this second node was to substitute for the negative element R (section
36

5.8). Relatively large GN corrections were obtained after this

introduction (SSQGNC of the order of 10^). The reason for this was not

evident. Possibly the elements were dependent or, perhaps, the values

were far removed from those at a minimum and in a non-linear region of

vector space. Although no minimum was located, the error was reduced

below that prior to the node addition. The subsequent analysis did not

locate any possible element additions. Nodes were not introduced

from such positions, hence, the program restarted by including an

alternative choice to form the seventh node. This also resulted in

large GN corrections (SSQGNC of the order 10^) because the new node was

identical in structure to that of node 6 (Fig.6 .Ip). The first element

addition CC27) resulted in the removal of the elements R ^2 and C^2

and the element shorted out. The second addition (C^g) proceeded

in a similar manner but an indication to remove the element C occurred46
simultaneously with an indication to short out an element. Of these two 

possibilities, element removal was preferred. The removal of this 

element produced an increase in the error (.Figs. 6.1(s) to 6.1ft)) due to 

the location of an alternative minimum where the removal of a node was not

required. The fact that the element can be included from this

minimum confirms that this is the case. (The element is re-introduced

at a later stage and is present in the final topology.) Such an increase

in error is acceptable because the error is only compared between 

adjacent element additions.
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6.4. The Attempted Synthesis of Slightly Differing Network Functions

from Those Given by Lucal Using the Same Starting Topology

The start network used was that described in the previous section 

CFigure 6 .lCa)),. Further network functions were obtained by modifying 

the values of the residues of one of the finite poles of Lucal's 

functions (functions 6.4 to 6.9). The two examples with modified pole 

values (functions 6.10 and 6 .11) do not appear to have similar solutions 

and so cannot be meaningfully compared.

In the attempted synthesis of functions 6.5, the element 

was removed, causing the job to terminate. Of the remaining six examples 

tested (Lucal's functions plus five modified sets of functions), five 

produced a realization. The other produced a good qua^i solution with 

seven nodes (error 1.09 x 10 ^). The resulting topologies are shown 

in Figures 6.2 to 6 .6 .

The examples were very similar, in terms of topological modifica

tions, until the addition of the second node (Figure 6 .1 (p)). The only 

differences were

(i) for functions 6.7 the element was included in place

of the element ;

(ii) for functions 6.8 the element was not present.

From this point onwards, all the successful examples with the 

modified functions proceeded by introducing a T-network in place of the 

negative element . This did not introduce a node with the same

structure as an existing node and the design proceeded smoothly from 

minimum to minimum. (This was also the third choice of addition,

following the addition of the node identical in structure to an existing 

node, for the example synthesizing Lucal's functions.) It would seem



132

that situations where existing nodes are duplicated in this manner 

necessitate the application of a different strategy (see Chapter 7).

Realizations to the other networks for which solutions were not 

obtained (functions 6.5, 6.7, 6.10 and 6.11) evolved from alternative 

minimal structures (Figures 6.7 to 6.10).

The T-network was thought to be introduced to greatest effect 

in the position corresponding to the negative element which produced 

the greatest reduction in the error value on inclusion at its optimum 

value. This is a very similar concept to the introduction of an 

element (section 4.4) about which it has been argued that the virtual 

element with the largest optimum value should be included^^. Using 

this as an alternative location for the introduction of the T-network, 

realizations were produced to all seven examples previously discussed, 

from the minimal structure of Figure 6.11(a). The topological 

modifications were identical with all seven examples (Figure 6.11).

The solution values are given in Table 6.3. In general, the 

introduction of a node in this position did not reduce the error by a 

factor as large as when the node was introduced in the normal position.

The results with this example were more impressive using the alternative 

method because of the difficulties caused by a sequence of minima with 

low error values (section 6.5).

6.5. Further Attempts to Realize Lucal's Functions

Four further attempts to realize Lucal's functions from minimal 

structures are shown in Figures 6.12 to 6.15. Two were successful 

whilst the others were terminated before the eighth node was included.

It can be seen that the example of Figure 6.13 requires the removal of the 

element R^^ (value 2.64 x 10 )̂ which will remove the common factor
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of value 8.45 x 10  ̂ . However, a realization was not obtained 

when the job was re-submitted with the element removed.

Three other starting structures produced realizations when 

simultaneous addition and removal of elements was employed (section 

4.12). Using the normal method of addition, these examples can fai] 

because of the difficulty associated with the location of minima at low 

errors. Typical realizations are shown in Figures 6.16 to 6.18.

The example with the start structure of Figure 6.17 was attempted, 

unsuccessfully, by Hegazi^^ and di Mambro^^ .

When these same three starting structures were used in the 

attempted synthesis of functions 6.4, 6.6 and 6.7. difficulty was again 

experienced in locating similar minima. However, it was not possible 

to locate the minima by applying simultaneous addition and removal, even 

though realizations were known to exist with the same topologies. The 

problems of locating minima were discussed in Chapter 4.

6 .6 . Computer Realizations of Lucal's Functions Having Only Six Nodes

As stated in the introduction, the realizations produced by 

series-parallel decomposition all contained at least seven nodes plus the 

reference. Similarly, all the computer realizations previously shown

had required seven nodes. The fact that non-series parallel structures 

had failed to produce realizations with fewer numbers of elements had 

reinforced the opinion that solutions did not exist with fewer than 

seven nodes. However, a realization was discovered for the modified

functions 6.5 which required only six nodes. This structure was 

used as a starting point for the attempted synthesis of Lucal’s functions 

and a six node realization did evolve (Figure 6.19).

Later, an example with a previously used starting topology was 

re-run allowing element additions which destroyed the compactness of the
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poles at zero and infinity. This produced a further six node 

realization (Figure 6,20), of which the four smaller elements are 

redundant.

Low error values of 10 do not prove that a solution has 

been achieved, they merely indicate a good quazi solution with each 

coefficient matched to 25 figures. The element values of these two 

networks did not tend to rational values, hence, it is a difficult task 

to verify that these are in fact solutions. In an attempt to obtain 

realizations with rational values, jobs were run with series-parallel 

structures and with the common factor fixed at unity. No series- 

parallel realizations were obtained and the elements remained irrational 

with the common factor fixed. (One extra element was required.)

It would appear, from a comparison of the examples of Figures 

6.16 and 6 .2 0 , that it is preferable to leave element additions 

unrestricted. The difference between the two examples arose because

of the introduction of the element C in place of the element C35 ^ 05

This type of element replacement occurred only very rarely. Generally, 

comparative runs from the same start network proceeded in a similar 

manner, with many more topological modifications required when the 

element additions were not restricted. With this example, the manoeuvre 

occurred at a high error value (0.25) and required ten topological 

modifications before it was accomplished (topologies 6 .20c . to 6 .20m )

It is practically impossible for such a substitution of elements to 

occur at lower errors with additions governed only by the effect of one 

element in isolation.
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6.7. The Program Efficacy When Applied to the Synthesis of

Fialkow’s Functions

Many different RC realizations had been obtained for Fialkow's 

functions^^*^^*^^'^^'^^'^^ , both by element addition and node reduction. 

Provided a reasonable starting network was chosen, the methods of 

Cutteridge^^*^^ , di Mambro^^ , Krzeczkowski^^ and Hegazi^^ were all 

able to produce realizations to this problem, presumably aided by the 

multiplicity of available solutions. The new algorithms developed by 

the author were able to emulate these results.

The example of Figure 6.21 produced a realization after three 

topological modifications whereas, using the same start network, 

Cutteridge^^ achieved a realization after five modifications. An 

alternative realization was obtained by the simultaneous addition of 

three elements (Figure 6.22). Although many other multiple additions 

could be successfully accomplished, this strategy was not normally adopted, 

One reason for this was exemplified by this particular example. Only two 

elements were indicated as possible third additions (C^^ and R^^) 

whereas, in fact, there are a number of possible, alternative additions.

The author found that, in general, a design would evolve if the 

network was of the form shown in Figure 6.23(a), as opposed to that of 

Figures 6 .23(b) and (c). With the alternative structures as shown in 

Figures (b) and (c), the corrections were large and unhelpful unless the 

network was unsymmetrical.

As the start networks become increasingly variant from the

solution topologies, then the probability increases that a node addition

will be required before a realization can be achieved. No RC

realizations to this problem had been achieved after the inclusion of a

node. The only successful node addition previous to this research had
14been accomplished, by Hegazi , with an RLC realization of a similar
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network. The method devised by the author was consistently able to 

include nodes to produce realizations with both RC and RLC networks. 

(No RLC realizations of Fialkow’s functions could be found with only 

four nodes.)
17A further example of Cutteridge , which had only produçed a 

quazi realization (2.72 x 10-^) was examined. Under similar conditions, 

an extra element and node were included to produce the first six node 

realization obtained other than by a trivial transformation (Figure

6.24). This node addition can be avoided when inductors are included 

to produce RLC realizations. A re-run of the job, considering 

symmetrical pairs of elements for addition where necessary (which 

Cutteridge had not), produced an alternative six node realization (Figure

6.25), indicating the existence of a family of similar solutions, as with 

five nodes.

The evolution of a typical RLC realization which includes the 

addition of a node is described in Figure 6.26,

6 .8 . RLC Realizations of Fialkow’s Functions Having Series-Parallel 

Topologies

The addition of the elements R and R produced the first13 23 ^
such network obtained (Figure 6.27). There were several other possible

additions. Of the possible RC additions, four others (R , C ,
12 12

C , C and C ) would have retained a series-parallel structure.
03 14 24

When these further alternative elements were introduced, only one 

succeeded in producing an alternative realization (Figure 6.28) whilst 

the others were immediately removed. However, this does not prove 

conclusively that these topologies are not solutions.
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Unfortunately, the author was unable to fully investigate 

these realizations. However, several elementary points, pertinent 

to the network of Figure 6.28, are probably worthy of note.

It is not possible to determine, from the printout, the exact 

nature of the common factors. They appear to be equal in value but, 

whether they are exactly equal, and whether they are complex, is not 

discernable. However, the common factors are not equal to the values 

of the compact, finite poles of Fialkow’s functions (i.e. 

p + 0.255 ± /O.060225). This indicates that the finite poles are fully 

represented in one of the two subnetworks, and not decomposed.

The subnetwork containing node three gives a polynomial in

which indicates the poles to be (p + 0.255 + /O.060225) and (p + A) , 

where A is the value of one common factor. Hence, the further poles 

must be produced by the other RC subnetwork. This eliminates the 

possibility of complex common factors.

An examination of for the same subnetwork appears to

indicate that a common factor of (p + A) is not present. These initial 

observations would appear to indicate a situation where a pole is 

included into both subnetworks such that the net effect is zero, i.e. the 

residues are of equal magnitude but of opposite signs. In this case the 

common factors will be equal.

6.9. Attempted Synthesis of Network Functions Differing Slightly from 

Those Given by Fialkow

Krzeczkowski^^ has conjectured that it is not possible to produce 

a network having a negative coefficient in the cofactor , as in

Fialkow’s functions, but with all of the poles compact. However,
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Krzeckowski had only examined the general case with five node, RC 

networks. Hegazi^^ was unable to find such a network by applying 

coefficient matching techniques. The finite poles of Fialkow’s 

functions are already compact. The synthesis of similar networks 

(retaining compact, finite poles and a negative valued coefficient), 

produced by reducing the residues of the poles of y^^ and Y 

having

(i) a compact pole at zero (functions. 6.15)

(ii) a compact pole at infinity (functions (6.16)

(iii) compact poles at zero and infinity (functions 6.17),

was investigated. A fourth example (functions 6.18), again with all 

poles compact, devised (but not solved) by Hegazi, was also examined.

A solution to example 1 (functions 6.15) had already been produced
58by Cutteridge and Krzeczkowski and many others could be similarly 

produced by the removal of one element, or a symmetrical pair, from a 

realization of Fialkow’s functions.

Realizations of the three other sets of functions were not so 

readily achieved. Several of the elements connected to internal nodes 

were reduced to small values (of the order of 10 ^) and the jobs had to 

be run in double precision on the Cyber 72 (thirty decimal places).

With RC networks, nodes frequently shorted out after the addition of 

an element and, although good quazi solutions were obtained, no 

realizations were located. (Topologies similar to the six node RC 

realizations of Fialkow’s functions were utilized as starting topologies 

as well as five node RC structures.) However, RLC realizations 

were obtained (Figures 6.29 to 6.31) including examples with series- 

parallel topologies similar to those for Fialkow’s functions
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*
(Figures 6.32 and 6.33).

Example five (functions 6,19) was constructed to produce two

small negative valued coefficients in the cofactor . Any

realization of these functions with a passive network having positive

valued elements would require at least two common factors.

Starting topologies (both RC and RLC) which realized Fialkow’s

functions with two common factors were used, but the error value was

not significantly reduced on any occasion. Furthermore, when extra

nodes and inductors were included, thus increasing the numbers of

common factors, the program still failed to make progress.

Example six (functions 6.20) shifted the values of the residues

of y^^ and y^^ by the same amount as the previous example had

shifted the corresponding residues of y . The program had no
12

difficulty in realizing these functions (Figure 6.34).

Example seven (functions 6.21) is a network having finite poles 

of rational values (0.5 and 0.001). The residues of these finite poles 

were calculated such that the coefficients of the cofactor A^^ remained 

unaltered. Realizations similar to those for Fialkow’s functions were 

obtained (Figure 6.35).

If the formulation of a similar example is attempted (i.e. the 

values of the coefficients of the cofactor A^^ are to remain unchanged) 

with finite poles of value one and two, then the functions are not

Subsequent to the compilation of this thesis the network of Figure 6.33 
was investigated by the author and found to be an exact realization 
(see Appendix 5), It it therefore possible to construct an exact RLC- 
series-parallel realization of Fialkow’s functions by including further 
resistive and capacitive elements between nodes oneCtwo) and zero.

Ro, = *02 = = 0-029575 S.

Coi = Co2 = 0.0014975 F.
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feasible for an RC network. (The residue of at the pole

p + 2 will have a negative value.)

6.10, Attempted Realization as RLC Networks of RC Realizable 

Sets of Functions

Whilst RLC realizations of Fialkow's functions have been given, 

and the existence of many others indicated, RLC realizations.of Lucal's 

functions have not been referred to. As RC realizations have been 

located, it seems reasonable to assume that RLC realizations also exist. 

However, no exact RLC realizations were found, although good quazi 

realizations were, obtained (error values of 10 ® were achieved).

The behaviour of the two networks was quite different. A surplus 

inductor was included at various positions into RC structures known to 

realize the functions and the network optimized from arbitrary values of 

unity. When attempting to synthesize Fialkow's network, one of the RC 

components was always removed to produce a quazi solution to the network. 

Presumably the removal of the surplus inductor was deferred by the 

existence of its accompanying common factor. Subsequent element addition 

produced a Realization. However, when attempting to synthesize Lucal's 

functions, the inductor and its associated common factor were either 

removed or reduced to such low values that they should have been removed. 

Some inherent feature of Lucal's functions was apparently opposing the 

introduction of an inductor.
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Lucal's 
functions 

(6.1)

FUNCTIONS

6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11

A 36 108
11 p 3 533 813 1319 668 465.5 569 515 905.6 785

1572 2412 ,3876 2112 1302 175 2 1482 , 2571 3567

P^ 1183 1743 2989 1588 980.5 1399 1075 ;11766.2 3262

P'̂ 36 108 120

C z
4P 36 108

P^ 36 108 1273.6 288
P^ 72 216 595.8 2508
P^ 36 108 343.81 2052
p“ 36 108 1 25.2 120

^22 p" 36 108
p' 2058 1218 13734 1788 2598 2040 2094 b^25.6 2.310

p^ 6552 4032 42,336 5472 8712 6462 6732 5931 11,382
p' 4638 2958 29034 3828 6258 4530 4854 1006.2 9552
p“ 36 108 i1 25.2 120

!a p3 36 108
11

I 1122I1 p' 216 648 183.6 468
p' 396 1188 298.8 1152
p“ 216 648 151.2 720

Coefficient values as for Lucalk functions unless otherwise indicated,

TABLE 6.1. VALUES FOR THE COEFFICIENTS OF FUNCTIONS OBTAINED BY

SLIGHTLY MODIFYING LUCAL'S FUNCTIONS
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Initial values 10

(a)

Initial error = 12.3

0 Final error = 3.31

APDGi,
(3 possible additions)

Value 1.07 (second choice)

(b)

(c)

REMOVE G 12

1

5

ADD C23 
(3 possible additions)

Initial error = 10.6

Final error = 2.58 
-7Value 1.58 x 10

1

Initial error = 2.58

Final error = 2.55

Y Value 0.128

FIGURE 6.1: EVOLUTION IN DETAIL OF A NETWORK WHICH REALIZES LUCAL'S FUNCTIONS

(contd. over)
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rd) 1

Initial error = 2.27

Final error = 0.979

(e)

REMOVE C
12

V

ADD C21+
(2 possible additions)

Value 5.35 x 10-7

1

Initial error = 0.979

Final error = 0.951

V Value 1.96

(f) 1

5

REMOVE C23

FIGURE 6.1 CONTINUED

Initial error = 5.13

Value 1.20 x 10

Final error = 0.476 
-5

Initial error = 0.476

1
Final error = 0.473

(contd.over)
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ADD G 14
(1 possible addition)

Value 8.49 x 10 -2

Initial error = 0.778

1
Final error = 0.471

Value 0.470 x 10^ADD NODE 6 
(5 possible additions)

(i)

REMOVE C 34

(j)

ADD C36
(1 possible addition) 

FIGURE 6.1; CONTINUED

Initial error = 9.47

1

Final error = 0.254
5

Value 2.25 x 10 -4

Initial error = 0.254

1

Final error = 0.226

Value 17.3

(Contd.over)
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Initial error = 3.72

1

Final error = 0.128
5

REMOVE G15 Value 3.29 x 10-2

CD

Initial error = 0.177

1

Final error = 
0.115

ADD C
12

(5 possible additions)

Cm)

/ Value 0.188

Initial error = 
1.67

1

Final error 
9.68 -2

-2REMOVE C Value 5.22 x 10

FIGURE 6.1: CONTINUED
(Contd. over)
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(n)

Initial 
error = -2

1

Final erro

ADD G
12

(1 possible addition)

(0)

ADD NODE 7 
(8 possible additions)

Cp)

ADD
(4 possible additions)

26

Value 1.20 X 10"%

Initial 
error = 
0,143

1

Final error = 
a no V in-2

Value 1.73 x 101 
(second choice)

Initial 
error =6.44

1

Final error -2

Value 2.66 
(second choice)

FIGURE 6.1: CONTINUED
(Contd. over)
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(q)

Initial 
error = 6.83

1

Final error -2

REMOVE G 12 Value 8.28 x 10
V

(r)

Initial error

<— y1

Final error

REMOVE C
12 Value 2.31 x 10 -2

V

(s)

Initial error

1

Final error

REMOVE C46 Value 0.555

FIGURE 6.1: CONTINUED

(Contd. over)
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et)

Initial error = 1.24

1

Final erro

ADD G36
(5 possible additions)

Value 0.872

Cu)

Initial'error = 0.184

1

Final error

ADD C67 Value 1.23
(6 possible additions)

Initial

(v)

Initial error = 1.81

Final error 
= 6.40 X 10 -4

REMOVE C36 Value 5.21 x 10-2

FIGURE 6.1: CONTINUED

(Contd. over)
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(w)

Initial erroC = 3

1

Final error -6

ADD C4 6
(2 possible additions)

(x)

Value 0.143 

6
Initial error 
= 0.187

1

Final error -22

S 3 20.6 S s 0.992

S a = 0.911 G45
= 0.269

S . = 0.175 = 52.2

S y = 3.46 ^14 = 0.785

S y = 0.406 % 6 = 10.1

c
26

= 4.40 G
07

= 6.48

C67 = 1.96 G 36
= 0.549

c46 = 0.314

Common factors 1.5 3 and 0.862

FIGURE 6.1: CONTINUED
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Final error 
= 2.96 X 10 -20

S s = 13.7 C
12 = 0.0534 G

25
= 1.03

S s = 0.815 C27 = 7.01 S 3 = 29.9

= 0.0991 S 7 = 2.08 S e = 5.02

^4 6 = 0.344 S y = 0.502 S 4 = 0.805

S o = 2.46 A s = 0.264 S  7 = 18.2

Common factors 1.6 3 and 0.842

FIGURE 6.2: REALIZATION OBTAINED FOR FUNCTIONS 6.4 FROM THE STARTING TOPOLOGY
OF FIGURE 6.lC.a),

Final error -2 0
S a  = 16.7 ^12 = 0.0602 A s = 1.30

^05 = 1.00 S  7 = 6.12
^ 0 3

= 45.9

(̂ 24 = 0.0969 S  7 = 1.55 A s = 4.68

S e  = 0.465 S  7 = 0.405 A . = 0.778

c =ae 3.42 S s = 0.254 G0 7 = 14.0

Common factors 1.61 and 0.728

FIGURE 6.3: REALIZATION OBTAINED FOR FUNCTIONS 6.6 FROM THE STARTING TOPOLOGY
FIGURE 6.1(a)
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Final error 
1.09 X 10

S 3 = 28.5
4

0̂ 7 = 0.821
5
Go 3 = 66.8

Cos = 1.32 C57 = 0.643 Cl4 = 0.678

^36 = 1.80 = 0.392 Go 6 = 11.1

= 2.44 "25 = 0.239 S 7 = 2.02

^45 = 0.319 ^25 = 2.98

Common factors 2.5 2 and 1.30

FIGURE 6.4: QUASI REALIZATION OBTAINED FOR FUNCTIONS 6.7 FROM THE 

STARTING TOPOLOGY OF FIGURE 6.1Ca)

Final erro^.=
4.74 X 10

C = 20.1 C = 4.92 G = 0.26013 27 45
C = 1.38 C = 0.0819 G = 52.6
05 24 0 3

C = 0.365 C = 1,96 G = 5.7845 67 06

G36 = 2.64 C, , = 0.314 4 7 S , = 0.682

C12 = 0.0789 G25 = 1.47 Co 7 = 10.4

Common factors 1.40 and 0.894 
FIGURE 6.5: REALIZATION OBTAINED FOR FUNCTIONS 6.8 FROM THE STARTING

TOPOLOGY OF FIGURE 6.1(a)
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4 -- 1---1- 5

S 3 = 21.0 S ? = 4.35 S 5 = 0.543 S e = 5.53
Cos = 0.429 Ce 7 = 1.43 Ct+5 = 0.155 Co 7 = 11.6
Ct+6 = 0.772 Ct+7 = 0.541 Cq 3 = 52.7 Cl2 = 0.0572
C36 = 5.20 Ci4 = 1.18
Ci2 = 0.0403

Common factors = 1.66 and 0.631

FIGURE 6.6: REALIZATION OBTAINED FOR FUNCTIONS 6.9 FROM THE STARTING
TOPOLOGY OF FIGURF. 6.1(a)
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(a)

(b)

(c) 

Cd) 

(e)

ADD C

ADD C
34

15
ADD G.12
REMOVE C15

Initial values = 10
Initial error =9.28

Final error = 
0.4755

Final error 

Final error

0.145

0.103

Final error = 9.14 x 10 -2

(f) ADD NODE 6

1

Cg) REMOVE C 34 Final error = 1.87 x

(h) ADD C^g

(i) REMOVE C, .45 Final error = 1.13 x

Cj) ADD

-2

-12

FIGURE 6.7: REALIZATION OF FUNCTIONS 6.5

(Contd. over)
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1

S 3 = 44.5 ^15 0.175

C 35 = 0.925 G25 = 0.774

S k = 3.54 S 3 = 122

S g = 0.129 ^04 = 8.49

^36 = 3.65 G i2 = 2.42 X

S g = 1.92 S s = 7.28

C34 = 2.43 X 10"2

,-2

Common factor = 1.03

FIGURE 6.7: CONTINUED
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Initial values - 10

Initial error = 9.24
(a)

1
5 Final error = 0.522

(b) ADD C,^ Final error = 0.132

(c) ADD Cj5 Final error = 9.29 X 10-2

(d) ADD Gj2

(e) REMOVE Ci5 Final error = 8.39 X 10"2

(f) ADD NODE 6

i

(g )

(hl

REMOVE C 34 Final error = 1.92 x 10  ̂

Final error = 2.71 x 10

FIGURE 6 .8 : REALIZATION OF FUNCTIONS 6.7

(Contd. over)
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1

S 3 - 28.6 S s 0.180

S s = 0.802 S s = 0.798

S s
= 0. 124 S a

= 67.0

= 3.33 S . = 9.06

S s = 0.289 S z = 2.00 X

S e = 2.55 S e = 7.01

S e
= 2.11

>-2

Common factor = 1.10

FIGURE 6.8: CONTINUED
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Initial error = 9.74

1 2 Final error = 
0.8365

fb)
(c)
(d) 

Ce) 
(d)

ADD C15
ADD

ADD 

REMOVE 

ADD NODE 6

Final error = 3.12 x 10

Final error = 9.04 x 10

Final error = 8.07 x 10

-2

-4

-4

(g)
Ch)
Ci)
Cj)
Ck)

REMOVE C34
ADD G34 

ADD Ci4 

REMOVE C35 

REMOVE Ci4

1

Final error = 2.24 x 10 -7

* -15Final error =5.58 x 10

Final error = 4.75 x 10 -24

FIGURE 6.9: REALIZATION OF FUNCTIONS 6.10

CContd. over)
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{ = 3

1

C l ,  = ( 2 4 . % ^2 5 = (2 . 0 5 )

= (9 .4Ô7) ^0 3 = 4 6 . 8

Cl5 = 1-12 S . = 15.9

Ci2 = (1 .00) S s = 1.86

C = 3 .07  . G = 1.70
06 46

G = 0 .1 82 G = 0 .44415 34
Common factor 2 .00

( ) - indicates exact values

FIGURE 6.9: CONTINUED
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(a)

(b)

(c)

4 5

,0

A D D  Ci,5 

A D D  N O D E  6

Initial values = 10

Initial error = 10.5

Final error = 1.35 

_2
Final error = 5.04 x 10~

(d)

(e)

(f)

(g)

1

R E M O V E  C Final error = 5.17 x 10

A D D  G

REMOVE G^5 Final error = 4.98 x 10

A D D  N O D E  7

FIGURE 6.10; REALIZATIONS OF FUNCTIONS 6.11

(Contd. over)
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D

(h) REMOVE C0 7 1 Final error = 1.04 X 10'3
(i) ADD Ci2 Final error = 8.42 X 10"^
(j) ADD G 37 Final error = 7.44 X 10"^
(k) ADD • Ct̂ y
(1) REMOVE G37
(m) REMOVE C23 Final error = 2.02 X 10 "̂
(n) ADD Ggy
(o) REMOVE Go 7 Final error = 7.30 X 10-5
(P) ADD C36
Cq) REMOVE C 16 Final error = 1.23 X 10-1'

c = 4 .7 7 G 28.41 3 14
= 4 .7 2 ^2 5 = 7.02

^4 5 = 2.14 ^0 3 = 15.0

^26 = 0 .6 27 ^0 6 = 16.2.

C57 = 1.08 ^15 = 0.171

C12 = 0.5  73 ^6 7 = 0 .0 44  3

C4 7 = 0 .9 0 3 G 37 = 3.08

^38 = 1.87

Common factors = 8.82 and 2.75

FIGURE 6.10: CONTINUED
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(a) 1

ADD C
ADD
REMOVE Ci, 5

(b)
(c)
(d)
(e) ADD NODE 6

FIGURE 6.11: STRUCTURAL CHANGES l\HEN THE NODE IS INGLUDED IN AN
ALTERNATIVE POSITION

(contd. over)
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1

(f)
Ig)
(h)

ADD C45
REMOVE G

12
ADD NODE 7

(i)
(j)
(k)

1

REMOVE G
ADD
REMOVE C Computer realization

FIGURE 6.11: CONTINUED
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(a)

4 = 3
Initial values = 10

Initial error = 10.5

1

Final error = 4.38

(b)
(c)
(d)

ADD
ADD G2 3 
ADD NODE 6

Final error = 1.61 
Final error = 1.61

(e)
(f)
(g)
(h)
(i) 

(j)

1

REMOVE C Final error = 4.13 x 10
ADD C
REMOVE C Final error = 3.73 x 10
ADD G
REMOVE C. Final error = 2.31 x 10

-1

-2

-2

ADD NODE 7

FIGURE 6.12; REALIZATION OF LOCAL'S FUNCTIONS

(Contd. over)
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(k)

C D

1

*Final error 2REMOVE C

ADD 00 7 Final error = 2.29 x 10

-3

-21

1 o

c 21.1 G = 0.22615 13
C35 = 0.189 ^34 = 0.289
^4 5 = 0.675 ^24 = 0.817
^26 = 4.28 ^0 5 = 52.7
C46 = 0.114 ^0 6 = 10.9
C27 = 0.259 Gi2 = 0.0570
C57 = 2.57 ^0 7 = 6.37
^6 7 = 1.96
Common factors = 3.06 and 1.10

FIGURE 6.12: CONTINUED
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(a)

(b)
(c)
(d)

Initial values 
Initial error

1

Final error = 2.38

ADD C Final error = 1.22
Final error = 1.22ADD G

= 1(T  
= 10.3

ADD NODE 6

(e)

(f)

(g) 
Ih) 

(i)

(j)

REMOVE G

REMOVE G
14

16
ADD '46
REMOVE Cl2 

REMOVE 0^5

ADD NODE 7

1

Final error = 1.13

Final error = 0.774

FIGURE 6.13: QUA'Sl REALIZATION OF LUCAL'S FUNCTIONS

(Contd. over)
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1

5 0 6

(k) REMOVE S 7
(1) ADD ^56
(m) REMOVE ^46
(n) ADD Gl7
(0) ADD (̂ 6 7
(p) REMOVE ^15
(q) REMOVE G34
(r) ADD G46
(s) REMOVE (̂ 56
(t) ADD G57
(u) REMOVE *̂ 37
(v) REMOVE

Final error = 0.744

Final error = 0.716 
Final error*= 0.455

Final error = 1.18 x 10 
Final error = 9.26 x 10

Final error = 9.25 x 10

- 2

-3

-3

1

6 Final error = 9.27 x 10 -3

FIGURE 6.13: CONTINUED
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(a)

(b)

Ce)
Cd)
(e)

(f)

Initial values

Initial error =9.32
1

Final error = 0.4435
ADD 34
ADD C15
a d d

REMOVE Cl5 

ADD NODE 6

Final error = 0.128 

Final error = 9.25 x 10~^

Final error = 8.09 x *10-2

(g)
(hi

REMOVE C35
ADD NODE 7

1

Final error = 2.73 x lO'^

FIGURE 6.14: REALIZATION OF LUCAL'S FUNCTIONS

CContd.over)
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1

(i)
(j)
(k)
(1)
(m)
(n)

R E M O V E  

A D D  C 3 7  

R E M O V E  Cl 2 

A D D  Gl}. 7 

R E M O V E  C l 7 

A D D  C 3 5

Final error = 6.65 x 10

Final error =4.2] x 10

* -4Final error = 2.48 x 10
Final error = 1.65 x 10 -22

Cl3 = 20.8 A  7 = 2.83 Gis = 0.560 °36 = 2.04
C45 = 0.402 C37 = 1.97 G? 5 = 0.237 G

Li C
= 1.46

C24 = 5.11 ^35 =0.262 Go 3 = 52.2
4 b

A  7 = 4.72
^0 6 = 2.51 G o 4 = 9.57 A  7 = 1.98

Common factors = 1.39 and 1.24

FIGURE 6.14: CONTINUED



(a)

(b)

(c)

(d)
(e)
(f)

( g )

ADD NODE 6

REMOVE G 
ADD

34
'36

REMOVE G34

ADD NODE 7

171
Initial values

Initial error 
V  . =8.741

Final error = 1.33

I• ADD G Final error = 1.33

1

Final error = 1.01

Final error = 0.973

1

5

Lowest error produced was 0.452.
At this stage an alternative node addition was required.

FIGURE 6.15: FAILURE TO REALIZE LUCAL'S FUNCTIONS
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(a)

Initial values = 10^
Initial error = 8.65

1
Final error = 0.819

5

(b)
fc)

ADD
ADD NODE 6

Final error = 0.257

1

5
(d) REMOVE ^12 Final error = 7.77 X 10 _4
Ce) ADD C56 Final error = 2.45 X 10
(f) REMOVE Gt+6 Final error = 2.44 X

-4
10

(g) ADD NODE 7

1

Final errorFinal error = 6.92 x 10

FIGURE 6.16: REALIZATION OF LUCAL'S FUNCTIONS REQUIRING SIMULTANEOUS 
ADDITION AND REMOVAL OF ELEMENTS (SECTION 4.12)

(Contd. over)
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Ch) ADD

(i) REMOVE G27 Final error = 6.5 3 x

(J) ADD Cg 7 and
REMOVE C o s Final error = 9.85 x

Ck) ADD Cq 5 ..
C D REMOVE C 35 Computer realization

-9

1

Cl3 = ^14 = 0.0822
Cq 4 = 1.64 R = 3.81

24
Ci+5 = 0.739 R 39.2

03
C2 g — 3.00 R = 10.8

06
C 36 = 1.68 R 16.1

17
Cq 7 = 6.32 R = 0.0927

47
C57 = 0.921 R = 2.10

05

Common factors = 2.00 and 3. 00

FIGURE 6.16; CONTINUED



174

(a)

(b)
(c)

(d)
(e)
(f)
(g)

Initial

1

Initial values = 10 0

ADD Cos
ADD NODE 6

23
CS6

REMOVE C 
ADD 
REMOVE Cl6 
ADD NODE 7

Final error = 0.951

Final error = 0.912

1

4
Final error = 9.47 x 10"^ 

Final error = 2.44 x 10

Continues as in figure 6.16

FIGURE 6.17: REALIZATION OF LUCAL’S FUNCTIONS REQUIRING SIMULTANEOUS 
ADDITION AND REMOVAL OF ELEMENTS (SECTION 4.12)
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(a)

(b)
(c)
(d)

(e)

Initial values = 10
Initial error = 8.21

1

Final error = 1.464 5

ADD
ADD Gi2 
REMOVE Ci, 5

ADD NODE 6

Final error = 0.819

Final error = 0.659

(f)
(g )  

(hi 
(i)

(j)

23
C36

REMOVE C 
ADD 
ADD Ci2 
REMOVE Cl6

ADD NODE 7

1

Final error = 0.182
-2Final error = 9.72 x 10 

Final error = 3.25 x 10 ^

FIGURE 6.18: REALIZATION OF LUCAL'S FUNCTIONS REQUIRING SIMULTANEOUS 
ADDITION AND REMOVAL OF ELEMENTS (SECTION 4.12)

(Contd. over)
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(k)
(1)
(m)
(n)
(o)
(P)

(q)
'(r)

1

4 5
REMOVE Ci2 
ADD Cs 7 
REMOVE Gey 
ADD Ci+5 
REMOVE G 12 
ADD Ci, 7 
REMOVE Co 7 
ADD Go 7 
REMOVE G 37

and

Final error*= 1.05 x 10’^

Final error = 1.60 x 10 -6

Final error = 6.53 x 10

Final error = 4.45 x 10

1

This is an exact realization as given by Cutteridge 30

FIGURE 6.18: CONTINUED
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1

^13 = 21.1 ^26 = 0.232 S s = 0.172 Go 4 = 10.8

C35 = 0.854 C 36 = 2.64 G25 = 0.804 Gi2 = 0.0247

^24 = 4.29 ^46 = 2.24 Go 3 = 52.6 Go 6 = 6.57

Common factor =
56

0.986
= 0.101

FIGURE 6.19: REALIZATION OF LUCAL'S FUNCTIONS 
WITH 6 NODES

(a)

Initial values = 10®
Initial error = 8.66

I

Final error= 0.819
5

(b) ADD C 12 Final error = 0.257
(c) ADD C35 Final error = 0.168
Cd) ADD Go2 Final error = 0.140
(e) ADD G23 Final error = 0.139
(f) ADD G i4 Final error = 0.139
(g) ADD Gi2
(b) REMOVE C 12
(i) REMOVE G i4 Final error = 0.100

(j) ADD G45
(k) REMOVE G23 Final error = 7.45 X
(1) ADD Go 1
(m) REMOVE Go 5 Final error = 7.03 X
(n) ADD Go 5 Final error = 7.03 X
(0) ADD Go 1 Final error = 7.02 X

(P) ADD NODE 6

)-2
)-2
.-2

FIGURE 6.20: SIX-NODE REALIZATION OF LUCAL'S FUNCTIONS OBTAINED BY 
RELAXING THE CONSTRAINTS ON ELEMENT ADDITIONS

C rnnfH nvp-r'i
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C q)

(r)
REMOVE C 
ADD

34
46

Final error = 1.73 x 10 
computer realization.

-2

c13 = 21.1 = 8.68 X 10"^
-11

G 15 = 0.180 S 2 = 0.0190

= 4.29 Co, = 5 .03  X 10 G? 5 = 0.823 ^05 = 3.08 X

^35 = 0 .857 ^26 = 0.245 Go 3 = 52.6 Go 1 = 2.00 X

^02 - 3.92 X 1 0 ' “ C36 = 2.63 ^04 = 10.9 Go6 = 6 .47

Ci+ 6 = 2.01
Common factor = 1.09

-12

FIGURE 6.20: CONTINUED
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(a)

(b)
(c)
(d)

ADD
ADD Cq 2 
ADD G 2 2

Initial values = 10
Initial error = 17.7

1

Final error = 3.56
4

Final error = 2.99 
Final error = 1.29 x 10 
computer realization

-2

1

4

c , c = ( 1 .5  X l O ' O G ,G = 0.070013 23 14’ 24
("0 3 = (0 .5 9 7 ) ^35 = 0 .579

Go 4 = 20.1 G45 = 2.22

Go 5 = 4 .4 9 Gq4 = 0 .102

Gi 2 = 2 .81 X 10 -7

Common factor = 1.20

FIGURE 6.21: REALIZATION OF FIALKOW'S FUNCTIONS
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Initial values = 10°

(a)

Initial error 17.7

1

Final error = 3.56

4

ADD G. and

(b)

Oh
ADD Co 3 and 
ADD Ci2 Computer realization

1

4
C^gjC^s = I'SO X 10
Cqi+ = 20.1
Cq5 = 4.44
Co 3 = 0.658

-3

Ci2 = 3.52 X 10 

Common factor = 1.24

-7

G35 = 
G45
^04

CO.07) 
0.650 
2.24 
0.102

FIGURE 6.22; REALIZATION OF FIALKOW'S FUNCTIONS BY THE SIMULTANEOUS 
ADDITION OF THREE ELEMENTS (SECTION 4.7)
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(a) 1

4

(b ) 1

5

(c) 1

5

FIGURE 6.23: ALTERNATIVE NETWORK STRUCTURES
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(a)

(b) ADD C04
(c) ADD
(d) ADD Co 5
(e) REMOVE Cot+
(f) ADD Cq3
(g) REMOVE C35
(h) ADD NODE 6
(i) REMOVE G03

Initial values = 10® 
Initial error = 16.

Final error = 3.62

Final error = 0.590 
Final error = 1.03 x 10

Final error = 2.74 x 10

Final error = 4.99 x 10

Computer realization

-3

-5

-6

^13*^2 3 = Cl.5 X 10"3) *̂ 14 '^2 4 = (0.07)
C45 = 22.3 Cu4 = 0.102
^0 5 = 198 Cos = 87.6
Co 3 = (0.597) G 36 = 0.534
Co 6 = 2.25 C46 = 1.36

Common factors = 1.34 and 0.401

FIGURE 6.24: SIX-NODE RC REALIZATION OF FIALKOW'S FUNCTIONS
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(a)

Initial values
Initial error

1

Final error = 3.62
4

(b) ADD Cos Final error = 1,29
(c) ADD Ro1,^02 Final error = 7.09 x lo'S
(d) ADD ^15* R% 5
(e) REMOVE Roi,Ro2 Final error = 2.82 x lo's
(f) ADD Cq 2
Cg) REMOVE C 35 Final error = 4.99 x 10-6
(h) ADD NODE 6
(i) REMOVE Gq 3 Computer realization

0

c m -

4

13
Ci+5
C-Q5 

Co 3
Co 6

= C = (1.5 X 10"3)23
= 7.02 
= 477 
= (0.597) 
= 0.772

^14
Cos
Cl 5,G25
C 36
C146

4.04 X 10 
215
2,96 X 10
(0.534)
0.788

-2

-2

Common factors = 0.442 and 2.23

FIGURE 6.25: SIX-NODE RC REALIZATION OF FIALKOW'S FUNCTIONS
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(a)

Initial values - 
= 0.0015

C ,C ,G „G = 1 0 3 04 0 3 04
Initial error = 11.5

Final error = 11.5
(b) ADD L34
(c) REMOVE Go4 Final error = 0.420
(d) ADD Co 1 ,Cq2 Final error = 2.30 X 10-2
(e) ADD G i2 Final *error = 2.24 X 10"^
(f) ADD G34
(g) REMOVE ^01'Co2 Final error = 9.66 X 10"^
(b) ADD ^0 1 ^02
(i) REMOVE Go 3
(j) REMOVE G i2 Final error = 5 .38 X 1 0 - 3

( k } ADD C 12 Final error = 5.36 X 1 0 ' 3

( 1 ) ADD NODE 5

4

FIGURE 6.26: RFC REALIZATION OF FIALKOW’S FUNCTIONS INCLUDING THE
ADDITION OF A NODE
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(m)
(n)

(o)

REMOVE C12
REMOVE Go 1,Go2

ADD G35

Final error = 1.19 x 10_5

Final error = 1.70 x 10_20

4

^13’^2 3. 
Co 3
04
'05

(1.5 X 10"^ 
(0,597)
20.6
4.60

^14’̂ 24
C 34
Go 5
G45
G35

0.070
0.483
0 .11]
1.32
5.15 X 10-2

= 0.121

Common factor = 0,398 and 0.398

FIGURE 6.26: CONTINUED



1

_3
^13*^23 = (1.5 X 10 )
C _ 19.904
^03 = (0.597)

C45 = 5.19

^14,^24 = 0.0700

Go 3 = 0.596

Go 4 = 0.102

^05 = 2.02
G .G _ 7.80 X 10"^13' 23
Lo 3 = 0.148
Common factors = 0.494 and 0.494

FIGURE 6,27: RLC REALIZATION OF FIALKOW’S FUNCTIONS HAVING A 
SERIES-PARALLEL STRUCTURE

1

Cl3'C23 = (1.5 X 10"3)
C 20.004
Co 3 = (0.597)

Gi+5 = 5.19
G i4 ,G2 4 = 0.0700

Go 3 = 0.595

Go4 = 0.102

Go 5 = 2.01

Gi2 = 3.84 X 10'^

Cq 3 = 0.148
^ Common factors = 0.492 and 0.492

FIGURE 6.28: RLC REALIZATION OF FIALKOW’S FUNCTIONS HAVING A 
SERIES-PARALLEL STRUCTURE

4

^13’^23 = (7.5 X 10'®)

C45 = 8.41
Go 5 = 95.5
G%4,G24 = 4.04 X 10"2

= 46.8

Go 3 = 1.49 X 10"^
Gl5,G25 = 2.96 X 10"2

G%2 = 3.96 X 10"?
L34 = 3.72 X lO'G

Common factors = 0.494

FIGURE 6.29* RLC REALIZATION OF FUNCTIONS 6.16
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13' 23 
:4 5

1

G2 3.63 X 104.04 X 10
= 8.38 
= 32.4

^05 
G.05 34

Common factor = 0.4 89 and 0.489

= 15.8 
= 1.48 X 10-5

= 3.65 X 10

-7 
-  6

FIGURE 6.30: RLC REALIZATION OF FUNCTIONS 6.17

13' 23
^4 5
^0 5
^06

= 77.8 
= 1.07 X 10-4

4.03 X 1 0 " 2G ,G 3.9224 -4.38 2.575 X 10
= 3.92 X 10 G

G05 = 38.7
^16*^26 - 8.39 X 10-7

Common factor = + 0.529 + 0.0159 p + 1.22 x 10-4

FIGURE 6.31: RLC REALIZATION OF FUNCTIONS 6.18
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1

Cl 3*̂ 23 = (7'S X lO'G) 
C45 = 97.0
Co5 =25.1
^^4*^24 “ 0.0700 

= 47.2
= 1.49 X 10"5 
= 0.102 
= 3.84 X 10"?

'4 5 
'0 3

;o4
'12
"0 3 = 3.69 X 10-6

Common factors = 0.492 and 0.492

FIGURF. 6.32: RLC SERIES-PARALLEL REALIZATION OF FUNCTIONS 6.16

1

^4 5
Cos

= 32.4 
= 8.38

Gm.,G2u - 4.04 X 10-2

'4 5 = 15.8

Go 3 = 1.49 X 10-5
-7

O 12 = 3.84 X 10

^0 3 = 3.69 X lO'G
Common factors = 0.492 and 0.492

FIGURE 6.33: RLC SERIES-PARALLEL REALIZATION OF FUNCTIONS 6.17
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(b)
(c)
(d)

ADD 
ADD C 
ADD

04

03
'12

Initial values = 10
Initial error

(a)

Final error = 3.57

Final error = 2.99 
Final error = 7.65 x 10-3

1

^13’̂ 23
Co.
^0 5
"0 3

(1.5 X 10"3) 
20.1 
3.48 
(0.597)

^14*^24
G35
G45
^04
G 12

0.0700
0.570
1.91
0.102
2.23 X 10"?

Common factor =1.26

FIGURE 6.34: REALIZATION OF FUNCTIONS 6.20
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(a)

(b)
(c)
(d)

ADD G 
ADD C

(
ADD G

04

03

1

4

Initial values = 10° 
Initial error = 17.7

12

Final error = 3.58

Final error = 2.99
Final error = 5.46 x 10 ^
Final error = 1.99 x lO'^^

^04
C0 5
^0 3

1

C Z 3
3475 X 10 G G = 6.9524

-2

= 19.9 
= 3.28 
= 1.63

35
Gi+5
Go4
^12

= 1.59 
= 2.48 
=  0.100 
= 3.03 X 10-7

Common factor = 1.84

FIGURE 6.35: REALIZATION OF FUNCTIONS 6.21
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CHAPTER 7

CONCLUSIONS AND POSSIBILITIES FOR FURTHER RESEARCH

The major conclusion of this research is that it is possible, at

least with networks of the order considered, to evolve realizations from

a minimal starting topology. Realizations requiring the addition of

one or two nodes were repeatedly obtained to several test problems.

(Although element addition had previously been achieved by several

r e s e a r c h e r s ^ ^ * o n  only one instance had a node been included
14to successfully produce a realization . Furthermore, the author found

this method to be ineffective when applied to other test examples.)

With RC networks, realizations with seven nodes [plus earth) and

fifteen elements evolved from minimal structures of five nodes and eight

elements, requiring approximately twenty-five topological modifications.

Although similar RLC networks could not be located, RLC realizations

with a similar number of elements, but with only six nodes, were obtained

for other problems from similar starting topologies. This would seem

to indicate possibilities beyond the reduction of networks synthesized

by standard methods (e.g. artificial transmission lines) as suggested 
13by di Mambro ' .

The principal achievements of the research were to:

(1) improve the efficiency of the optimization (sections

3.6 and 3.7),

(2) modify the criteria for the recognition of the desirability

of element removal (section 3.8),

(3) include criteria to recognize when node removal is

indicated (section 3.9),
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(4) develop criteria to determine the location of a minimum

of the overall error function (section 3.10),

(5) develop an improved method for the introduction of 

elements (section 4.4),

(6 ) develop a successful method for the introduction of 

groups of elements, i.e. node addition (section 5.8).

These improved techniques, allied to their improved utilization 

(by ensuring the coefficients are matched effectively and by including 

a restart facility), produced three networks of theoretical significance:

(i) an RLC series-parallel realization of Fialkow’s functions 

(section 6 .8),

(ii) RLC realizations of a network containing a negative

numerator coefficient in the short-circuit transfer

admittance function after the removal of common factors, 

all poles of both impedance and admittance being compact 

(section 6.9),

(iii) An RC realization of Lucal's functions with only six 

nodes plus the reference node (section 6 .6).

Whilst a deal of success has been achieved with the composite 

strategy developed, none of the techniques currently incorporated in the 

program is necessarily to be regarded as beyond improvement. All could 

be improved, either as a unique change or, as one of a series of changes 

to produce a different strategy. This fact is illustrated by the need 

for recourse to a restart strategy after some topological additions. 

Consider for example the question of node addition. An addition may 

be said to fail in several manners:
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(i) an attempted introduction may not be feasible as the 

method has only an empirical and intuitive basis,

(ii) the node may be introduced at values which result in

the rejection of the addition when it is, in fact, feasible,

(iii) (bne node may be included in preference to others which 

would have produced better results,

(iv) on isolated instances, the method will fail to include a 

node in any of the potential positions.

The methods used in this research assume that an approximation 

stage has been accomplished, i.e. the requirements have been transformed 

into the short-circuit admittance parameters. These parameters are 

rational functions in p , the complex frequency variable, and the 

coefficients are equated in the design process. The relative merits of 

the alternatives to coefficient matching are well documented in the 

literature and the salient points have been restated in this thesis.

Many feel, because of the mathematical basis of coefficient matching, 

that if computer aided design is to be achieved it will be by this, rather 

than an alternative method. (This mathematical aspect also facilitates 

the adoption of automated, rather than interactive, design.) Perhaps a 

re-evaluation of these alternatives, incorporating some of the 

developments beneficial in design based on coefficient matching, would be 

enlightening. (The author will discuss, at a later stage, why the 

coefficient matching design may be insufficient in itself.)

The behaviour of any optimization routine will obviously be 

dependent on the accuracy of the analysis. (Several jobs run by the 

author at the latter stages of the research were successful only when 

double precision was employed.) For the magnitude of the networks
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considered, the accuracy of the analysis was not a limiting factor 

in the performance of the package. Consequently, the author conducted 

little research into the analysis routine. In fact it is evident 

that there are several modifications which could be implemented that 

would increase the accuracy without recourse to an alternative method.

Worthwhile research could be undertaken into an evaluation of 

the accuracy produced by this method^^*^^”^^, and improved versions, to 

establish the practical limitations of size, element disparities etc.

Similarly a more extensive evaluation of the fast Fourier transform 

method^^'^^ could be undertaken.

The less direct adjoint method^^ of calculating the derivatives, 

which determines the response to real frequencies, appears to be preferred 

merely because it is ’in vogue’. An accurate comparison with the method 

devised at Leicester should be undertaken.

The power of the optimization routines contained in the original 

version of the program was improved in two ways. Firstly, by modifying 

the criteria that determine which algorithm should be used and, secondly, 

by improving the linear searches of the two algorithms, thus ensuring a 

continued reduction of the error. An alternative second order gradient 

descent algorithm^^ was examined but was found to be superfluous to 

the requirements of an idealized RLC network. Further, it is 

unlikely, because of the increased computational effort required as the 

number of variables is increased, that this method will be viable when 

applied to larger networks. The limitations of size (etc.) on this 

combined CG/GN algorithm were not fully explored and research in this 

direction would be beneficial. The largest networks tackled by the 

author had ten nodes and twenty RC elements and variable common factors.

A further related topic for research could be an investigation of 

the effects of constraints on the element values, a reasonable practical
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requirement. Similarly, underdefined problems could also be examined. 

These underdefined problems could arise in two foreseeable circumstances, 

For several reasons, it can prove beneficial to commence desi^s from 

the smallest possible structures^. However, the degree of difficulty 

experienced and time taken in achieving a realization will be 

dependent on the proximity of the network to a suitable topology. The 

author had insufficient time to examine whether it is reasonable to 

start with a network with the minimum number of nodes but a large number 

of elements, which are consequently underdefined, and use a suitable 

optimization technique to modify the values. . It would, perhaps, be 

possible to remove redundant elements, by say, their sensitivities, 

and hence commence the conventional design from the suitable remanent 

network.

Alternatively, with all the examples considered in this thesis, 

the networks were defined by three short-circuit admittance parameters 

and, hence, four cofactors. A situation could arise where the design 

requirements are so flexible that only one parameter, and hence two
9cofactors, are necessary to define the network, as in Calahan’s 

original formulation of a coefficient matching problem. Although this 

intrinsically reduces the difficulty of producing a solution, it may 

lead to an underdefined problem.

Cutteridge^^ developed an algorithm which removes elements prior 

to their reduction to a negligible value. This algorithm was modified 

to increase its efficiency when applied to networks with more components. 

Similarly, the criteria for determining when element addition was 

required were also improved. The determination of a minimum of the 

overall error function is important not only because it intimates that 

the current network is unlikely to satisfy the requirements but, also, 

the element addition algorithms work more efficiently from the actual 

minima.
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Chapter 4 was devoted to element addition. The original package
33included a method of element addition but this had limitations which 

increased as the error was reduced. An improved method was developed, 

based on the GN algorithm. However, some problems are already 

apparent with this method at low errors. A fuller appraisal of the 

range of applicability is necessary. (Elements have, so far, been 

successfully included to RC networks with ten nodes.) Questions as 

to the value of the method when applied to situations where multilinearity 

does not exist (e.g. direct matching of real frequency characteristics) 

still have to be answered.

The author believes that the seven programming modifications 

detailed below would facilitate the evolution of designs using the 

current techniques or usefully extend the scope of the package. However 

this poses the question of whether the improvements will be justified 

by the extra computation and storage required.

(i) The current package can only design RC and RLC networks. 

An extension to enable the design of RL and LC networks 

would provide greater scope. (Section 3.3)

(ii) A method involving the evaluation of the gradients could 

be included to facilitate the removal of elements driven 

to small values. (Section 3.8) However a method of this 

kind would not aid a situation where an extreme valued 

common factor accompanies the element, possibly producing 

a minimum of the error function. (Section 6.5)

(iii) The removal of nodes should be allowed, with possible 

safeguards when the structure is already minimal.

(Section 6.3)
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(iv) The value of any common factor removed should be 

calculated and the necessary modifications implemented. 

(Section 3.5)

(v) Wye-delta transformations are advisable when only three 

elements of one type are connected to a particular node. 

This will facilitate the subsequent removal, if necessary, 

of any of these three elements. (Otherwise the elements 

will tend to large values - section 3.9.)

(vi) If any one node is connected to only two other nodes it

is advisable to reverse the connections (as in Figure 5.7), 

and investigate possible element additions, before 

introducing a further node.

(vii) It is possible that the creation of a new node will produce 

a node which is identical in topology to an existing node, 

(i.e. the new node is at the intersection of the same 

types of elements as another node which are in turn 

connected, at the alternative end, to the same nodes - 

section 6.3.) If such a situation remains after

optimization, then the new node addition should be rejected

(restarting the evolution with an alternative node 

addition) unless a true minimum of the overall error 

function, signified by a low SSQGNC , has been located.

One region into which the program could be extended is to take 

further account of practical considerations for the existing range of 

elements, e.g. parasitic elements, constraints on element values and

ratio values, sensitivities etc. Constraints on the element values

have already been mentioned. It could be argued that effects such as
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parasitics and sensitivities could be dealt with in a third stage of
29the design process, say by design centering . The coefficients that 

are used in the matching process are only approximations to the actual 

requirements. Consequently, it may prove that a final tuning of the 

network values to the desired response will always be required.

Furthermore, the effect of parasitics is dependent upon the range and 

the values of the frequencies to which the network is required to 

respond and, therefore, may not always be a significant factor. Things 

are further complicated when the extension to active netwbrkSis contem

plated. Consider, for example, these two contrasting standpoints.

The linear approximation of, say, a transistor may be inaccurate to a 

large degree when compared to that of a capacitor, hence, it would seem 

to be wasteful to devote undue effort to producing an extremely accurate 

model of a capacitor. However, unseen parasitics can lead to problems 

with active devices (e.g. oscillation) and are therefore significant.

Di Mambro^^ described how the present method of analysis could 

be simply extended to include active devices which can be represented 

by voltage dependent current sources. One such device model is the 

hybrid-n model of a bipolar transistor (Figures 7.1 and 7.2) which can 

be used in all three configurations.

Some of the effects of including active devices will be more 

obvious than others. An active network will only be fully defined by 

all four short-circuit admittance functions and hence five cofactors of 

the nodal admittance determinant. Furthermore, it will be possible to 

design without inductors with their associated practical difficulties.

A further possible effect could be the cheaper production of a satisfactory 

network. A mass-produced thick or thin film printed circuit device 

(capable of representing transistors, resistors and capacitors) may prove 

cheaper than a passive RLC alternative.
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The hybridan model would appear to be an ideal candidate for a

first investigation into the design of active networks. An. initial

investigation could attempt to solve simple problems of, say,

neutralisation - i.e. adding external feedback components to overcome

the effects of the internal feedback of the transistor. However, there

are other factors to consider. The model is only valid at a certain

operating point. To retain this level of biasing any d.c. input has

to be removed from the device by a coupling reactance (capacitor).

Hence, only capacitive connections should be made to a transistor

terminal. Furthermore, it may be necessary to include these capacitors

in the device model, or at least constrain them within certain values.

Coupling capacitors affect the lower cut-off frequency and so should be

large (limited by size and cost). In contrast, the impedance (1/pC)

needs to be sufficiently large so that the a.c. signal does not affect

the biasing resistor, which has thus to be known. Similarly, the

characteristics of a single transistor can vary considerably with

temperature and so extra external components may be required to nullify

these effects. These factors indicate the requirement to design with

a specified transistor rather than vary the component values (within

certain practical limits) and either locate or manufacture components

with appropriate characteristics. Furthermore, for many purposes
59suitable transistors will be known. For example, Ryder states that 

many amplifier designs involve predicting and designing around the 

frequency and delay distortion which results from the coupling capacitors.

A simple active device can be modelled effectively by an 

equivalent circuit, as the hybrid-n. However, it would seem to be prefer

able to model larger devices, such as complete integrated circuits, by 

their external performance characteristics. This would require minor 

modification to the formulation of the analysis routine rather than an 

alternative method.
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FIGURE 7.2: THE COMPLETE HYBRID - n  EQUIVALENT OF A TRANSISTOR
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APPENDICES

1. Optimum Values for k , the Normalizing Variable

The expressions derived relate to an overall error value F , 

comprising of the summation of the individual error functions f^ , 

such that

m

i=l

where, m is the total number of coefficients equated.

(1)

Thus,
m 9f.

1=1
(2)

Formulation 1

= k T1

k'a.

3f. __^
9k

c.1
T^a.

a.1 (3)

m c. ka.

1=1 c.1

c. a.
f - F I T  -1 1

(4)

9FTo minimize F with respect to k , = 0 (5)

hence.

k =
a.

I  0  1

(6)



This corresponds to an error value of
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m e. m a .
F = 2 / I (-■-) I  ■ ("“)

i=l î 1=1 '̂ i
- 2m (7)

Similarly,

Formulation 2

gives
k =

c. ^
I e )  1

I Ô  1

C8)

corresponding to an error of

m c.
.1 e )  1=1 1

F = m -

Formulation 3

ka.

C9)

gives

I
k = -

c.1
a.I (A-)c.1

(10)
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Formulation la

’i " (ka.)
ka. n

gives

k =
a.

l (A )

2n

c.1

(11)

Formulation 2a

gives

k =
I  Ô

c /
I  ( r )  1

2n

(12)

2. An Expression for the Optimum Value of One Common Factor

If the original desired coefficients are of value , then

the desired coefficients with a common factor of the form (p + A) , 

will be

ai = Aa. 4. a._i (13)

Thus,
3a.
TÂ" " c'i (14)
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If
ka.

(15)

and F = y f .2 (16)

then
ka. a. 3c.

1 1
(17)

but from (10)

IK
3x

a.  ̂ a.
I t - )  - i  I f = °

hence, substituting for k ,

when
a. a. 3a. a.  ̂ 3a. ,1(^)1 c F  I T  ■ I f^) I I T  • F  " ° 1 1  1 1

(18)

substituting for (11) and (12) , and rearranging

A =

a. a- ,
1 0  I ( - 0  

1 1

a. , a.a. ,

i i

et. , a.I - e  • 1 0 a. a^a. , 
1 0  1 ( 0 0 )c.1 c.■1

(19)

(the terms in A^ cancel.)
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3. The Optimum Values of Virtual Elements

Suppose that an additional variable, u , is introduced 

corresponding to the growth of a virtual element. The polynomial 

coefficients c^ are multilinear functions of the network elements:,: 

hence, provided the existing elements are fixed in value.

where

c._ is the value of c. when y = 0 10 1
9c.

and c ! is the value of when y = 0 .10 9y

Substituting the value c^ into equation (9) , and equating to
33zero, Cutteridge obtained the expression

m e .  m e .  c.’ m e  I m e .I ( 0  I ( 0 )  ( 0 )  - I ( - 0  I ( - 01=1 1=1 *1 ®i 1=1 ^1 1=1 1̂
p --------;---------------- ;----------------------—  (21)

m e .  m e .  c. m e .  m c. ^I ( - 0  I ( 0 )  ( - 0  - I (-0) I 0 )1=1 ^1 1=1 1̂ “i 1=1 ®i 1=1 ^1

This can be substituted back into equation 9 to obtain the corresponding 

error value.

4. Alternative Methods of Representing the Common Factors

Consider a topology which produces three common factors (p + A),

(p + B) and (p + C) . Let the original, required coefficients be 

and the revised coefficients be a^ .

Hence,



206

a. = ABC.a. + (AB + BC + AB).a. ,+ ( A + B  + C).a. „ + a .   ̂
1 i  1 - 1  1 - 2  1 - 3

(22)

When the values of the individual common factors (A,B and C) are 

varied, higher order derivatives will exist, e.g.

I T  = BCa. + (B +

32a.
 ̂ = C a. ■+ a.9A9B i i-l

93a.
^  = Cl. (23)9A9B9C i

It is possible to construct an alternative set of variables x^ such 

that, with this example.

x^ = ABC

X = AB + AC + BC2

X = A + B + C3

i.e. a . = x a  + x a  + x a .   ̂ (24)1 1 i 2 i-l 3 1-2

In this case only first order derivatives will exist, e.g.

32a.
i Z T x /  ° • (25)

and the first order derivatives are easily calculated, whatever the 

number of common factors.

To calculate the values of the new variables y^ (i = 1 to r) 

when a new common factor, value X, is introduced



207

= Xj . X

= V l  " X

otherwise

7i = X.x^ + • (26)

The removal of a common factor is similarly straightforward.

5 .. An RLC-Series - Parallel Network Having no RC - Series - Parallel

Equivalent

Consider the network of Figure 6.33 as a solution of functions

6.17. The arguments expressed in section 6.8 concerning Fialkow's 

functions still hold. Namely, the network (if it is a realization) 

is realized by introducing an extra pole into the two subnetworks 

with residues of identical magnitude but opposite sign effectively 

cancelling the pole.

Functions 6.17 can be expressed in terms of their poles as:

r 9. 9 . foi1
11 ^22 800000

■^12 " 8000000

where r^ = 3 , r^ = 16170

8086.335/0.060225 ± 1962.753775
 ̂ /O .060225

and a,B = 0.255 ± /0.060225



Subnetwork 1 satisfies the functions
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= y11 22 800000 l_r p + a p + A J

-y 12 8000000
, .p.
1 p + a p + A

and subnetwork 2 satisfies the functions

1 r p . r- p. r,
r + +  —11 ^22 800000 {_ 0 p + 6 P + A

-y 12 8000000
P

r -o p P + A

where A = a -

and

The element values can be determined to be

C = 7.5 X 10 
13

.6

Gg g — 2 C 2 g • (A + a]

G = (r - r - r ) T 8000000 12 o Q

G = 2 . tr + r ) v 8000000 13 k o

G . 2 . (3 . r + r . A'l=  k  6_____
A 8 (r^ + r )

05

05

{C . (Ar. + r_] - 2 . G,^ . (r. + r_)}
45 A "3- 13 • " A  "3-

(Ta  ■ g + A . Tg)
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