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SUMMARY

The classical techniques of network synthesis are restricted
to designs in idealized elements with series-parallel configurations.
This research is an investigation into the possibility of unrestricted
synthesis employing alternative techniques which involve optimization
by computer. In this method the wvalues of the elements are modified
such that an error function is reduced. If the current network is
unable to satisfy the required network response then the components
have to be modified. A method of coefficient matching was investigated
with lumped, linear, passive three-terminal networks having a maximum
of ten nodes.

The research utilized a design package developed by Drs. O0.P.D.
Cutteridge and A.J. Krzeczkowski. This formulated the problem for
solution by an RC network with a fixed number of nodes. An
effective analysis routine calculated the values of the coefficients and
their first derivatives, for optimization by the conjugate gradient and
Gauss-Newton algorithms. The rudiments of a method for the addition
and removal of a single element had been developed.

Research was undertaken into three areas. Firstly, the
efficiency and dependability of the optimization was improved. This
involved research into the individual error functions, variation of
common factors and the efficient utilization of the optimization
algorithms. Secondly, modifications to the network topology were
considered. The criteria to determine the need for a modification
were improved and checks to ensure the continued efficiency implemented.
An improved method of element addition (capable of multiple additions)
was devised. Thirdly, the addition of groups of elements was investi-

gated (i.e. node addition) and a successful method developed.



With these modifications implemented, the package was able to .
achieve more complex realizations than had previously been obtained.
For example some seven node RC realizations with fifteen elements
were automatically evolved from initial structures having five nodes
and eight elements, a process which sometimes required a total of
twenty-five topological modifications. Several theoretically
interesting networks which were evolved automatically by the package

are included.
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CHAPTER 1

INTRODUCTION

Thé develobment of integrated circuits and the requirement for
increasingly more demanding specifications have amplified-the
deficiencies of the traditional methods of network synthesis. | Termed
the classical techniqueél’z, these methods are allbbased upon series-
parallel decompositions (series decomposition of impedance functions and
parallel decomposition of admittance functions). This produces a
network composed of small subnetworks which can be easily synthesized.
In 1968, Fialkow3 proved that not all feasible networks can be realized
within-the coﬁfines Qf a series-parallel topology. These techniques
are also deficient in that they produce realizations with excess numbers
of elements, and exclude consideration of element parasitics, variable

Q factors, possible constraints on element'values, etc. Alternative
methods are required to ensure designs do satisfy the requirements when
actual elements are considered.

The computer, which can perform many calculations rapidly and at
low cost, enables methods of directed trial and error to be employed.
Such methods are, therefore, no longer dependent on the topology of the
network. Mass production techniques have led, to a situation where
larger sums can be expended on the initial design. Consequently,
computing costs are unlikely to prove prohibitive and are anyway contin-
uously being reduced (currently at a rate of 15% per annum4).

Any feasible techniques which arise from this research are
applicable to many fields other than electrical network synthesis.
Calahan5 intimated that many other systems are analogous to electrical

networks, having easily identifiable 'through' and 'across' variables



analogous to currenf and voltage. Also the automated design concept
has links with machine intelligence (more specifiéally pattern
recognition) and, further, the use of optimization techniques is
spreading to many -fields.

In the area of network synthesis the computer was initially
applied to the design of filters6. Theoretical design techniques had
failed to satisfy the required performance criteria when physical
elements had been used to construct the network. . In 1956, Aaron7
proposed using a least-squares approach for improving upon the design
at each stage of the classical synthesis methods. Desoer and Mitra8
(1961) further proposed an iterative optimization method which varied
the values of the physical non-ideal elements of ladder filters, to
reduce the variance between the desired and the actual transfer functions.
Calahang (1965)‘extended this idea with a method applicable to any linear
network, but the intention remained to modify classical designs to
nullify the effects of parasitics. However, the ultimate aim must be
to complete the design entirely by computer. Director and Rohrerlo
(1969) instigated the next forward step by developing a method for the
addition of elements, a possibility recognized by Calahangq There are,
however, no commercial packages currently available which can achieve
this goal. Several of the large scale analysis packages have facilities
for optimization and consider other a5pect§ such as non-linéarity and
temperature. However, none appear to be capable of modifying the
network topologyll.

At Leicester, several years of research into computer aided
network design have been supervised by Dr. O0.P.D. Cutteridge. A method
of coefficient matching has been successfully used, although pole-zero
and direct matchingwere considered by Wrightlz. Wright also examined

interactive design as well as the predominantly used automated design.



Coefficient matchiﬁg has long been recognized to have good properties
of convergence9 and has also proved of greater efficacy for topological
modifications. Early resultslz-15 disclosed the possibility of
reducing the size of networks produced by classical or other techniques.
Similarly, success has been achieved with additions of both elements

12-14,16-18 and of nodesl4. Practical problems requiring restrictions

on the values of elements etc., have also been solvedlz.

The author's research described in this thesis is devoted to
the synthesis of 3-terminal lumped, linear, time invariant networks by
a. coefficient matching method, and ﬁtilized the batch mode exclusively,
Automated design in the batch mode requires less sophisticated
equipment and users less skilled in the discipline, but can be
hazardous in that it is possible for entire job-times to elapse
without useful developments. However, it can also prove useful in
overcoming in-built prejudices of an interactive user, i.e. pre-
conceived concepts of the topology of a solution network. This factor
precluded the discovery of a six node computer realization to the set

of functions given by Lucal19 (equations 1.1) despite repeated attempts,

particularly by Hegazi14 and also the author in early work.

_ 36p* + 2058p3 + 6552p% + 4638p + 36 |
Y11 7 36ps + 216p2 + 396p + 216

., _ 36p* + 36p3 + 72p2+ 36p + 36
Y12 7 T36p3 + 216p2 + 396p + 216

C 1.1

36p* + 533p3 + 1572p2 + 1183p + 36
36p° + 216p° + 396p + 216 ’

y22

Coefficient matching can only be applied after the given set
of design specifications have been transformed into the required

functions (termed, the approximation stage). In this thesis the



coefficients are fhoée of the polynomials in p , the complex frequency
variable, of the short-circuit admittance parametefs. Typicallyzo,
the approximation stage is performed by computer, using methods such

as those of Remez.. A starting network which satisfies the order of
these polynomials, with or without common factors, is required. The
method of analysis used was based on the nodal admittance matrix, which
is small and easily formulated when compared to the alternatives, and
had been developed at Leicester13’21_24. It is capabie-of rapidly
calculating the network coefficients and their derivatives with respect
to the elements. Coincident with the research in this thesis the
possibility of an alternative method of analysis employing fast Fourier
transform525526.was investigated by Banerjee27. With the order of
magnitude of‘problems considered here, there was no variation in
accuracy or speed experienced.

Once the coefficient values have been calculated, an individual
érror function (fi) is determined for each coefficient in order to
pfovide a measure of the variation between the actual and desired values.
These functions are formulated such that fi = 0 when the two values
are identical. As individual functions will vary rapidly with
fluctuations in the element values, and so cannot all be reduced simult-
aneously, an overail summation of the errors (F) is used to evaluate
the prdgress. (Generally this performance-function is a squared
summation.) Optimization routines are used to modify the element (and
common factor) values such that error F 1is ieduced. The variables
are optimized in the logarithmic domain to ensure that the element values
remain positivé. Although active equivalents to negative elements can
be obtained, they only approach the idealized behaviour over a limited
range of voltages, currents and frequencieszs. Furthermore, a passive

rather than an active design may be preferable. If the current network



is unable to satisfy the design requirements, then this has to be
established and the network topology modified.

The only elements considered were lumped, linear resistors,
capacitors and inductors (RLC networks) with no parasitic effects.
Consequently this research can only be regarded as one stage 1in the
complete design of an electrical network. However, the results
produced may be of interest to theoreticians and prove beneficial in
modelling situations.

The approximation stage and final tuning to the requirements (by,
say, design centering29) are not considered. The major requirement of
any design is that it should satisfy the desired performance criteria.
Determining which of a set of possible solutions is the optimum design
will depend on requirements such as cost, or the lowest sensitivity of
the characteristics to element variations. These parameters are not
dealt with and the design is directed towards producing a solution with
the minimum number of nodes. This approach will tend to minimize the
time taken to locate a realization (because the time for each analysis
increases as the number of nodes increases) and also to minimize the
number of elements. This in turn increases the speed of the optimization
and possibly reduces the cost of production, if not the sensitivity.

An adequate design was only considered to have been achieved when the
error function F had been reduced to the limits of the computer accuracy,
This is termed a computer realization, and not a solution, as it is
uncertain if this will be an exact solution or merely a very good quazi
solution.

With idealized RLC networks the solution of practical problems
cannot be attempted. The motivation behind the research was to solve
academic test problems with known solutions and to develop processes

which could then be applied to other problems which did not have known



solutions. If required, it would then be possible to consider more
practically orientated problems with model representations of actual
elements, etc. Two test problems were considered extensively. Two
element kind solutions to Lucal's functions (eqg.l.l) had been obtained
by using classical series-parallel decomposition techniqueslg'30’3l
However, all the solutions had contained at least seven nodes plus the
reference node, which is two more than the minimum as indicated by the
order of the polynomials. This problem is therefore of particular

interest in the derivation of techniques for the addition of nodes.

The second problem is due to Fialkow” (eq. 1.2),

- 1197p® + 56613.14p2 + 28368.584p + 191.184
M1 r22 800000p2 + 408000p + 3840 A

= 3p~ - 1.14p2 + 197.176p + 77.616 |
' 12 800000p2 + 408000p + 3840

and 1is of particular interest because its realization must have a non-
series-parallel structure and so cannot be solved by classical synthesis
techniques. Several other test examples were derived from these two
sets of functions.

An introductory grounding in the basic principles of the coefficient
matching technique 1is given in Chapter 2. The formulation of the nodal

admittance matrix and the significance of the short-circuit admittance

parameters are also explained. The powers of the complex frequency

variable, p , present in the functions make it preferable to calculate

the polynomial coefficients by assigning real values to p . The analysis
) ) 13 21-24 :

method employed, as developed by Cutteridge and di Mambro * ", 1is

outlined briefly.



‘The individﬁal error functions are non-linear functions of the
network elements, hence a set of non-linear simulfaneous equations are
formed. The derivatives of the coefficients and thus the individual
error functions are easily attainable (an advantage over other forms
of modelling such as pole-zero or direct matching). Consequently,
optimization algorithms which use this information .are to be preferred
to those which use only function evaluations. The most powerful
algorithm for the solution of non-linear simultaneous equations is the
Newton-Raphson (NR) metho&, known as the Gauss-Newton (GN) method
when transformed to accommodate overdetermined equations.‘ Here the
individual error functions (fi) are considered and not the overall
error F as with the gradient descent methods. However, when far
from a solution the GN can fail to converge. Consequently, two-
part programs switching from a stable, but less powerful, gradient
descent method to the GN method are often used. Di Mambrols found
this type of two-part package to be superior to Levenberg's technique,
which is a quasi-Newton method. Details of the optimization algbrithms
investigated conclude Chaptér 2.

The research contained in this thesis is a continuation of the
work of Krzeczkowski16.  With the analysis as developed by Cutteridge

and di Mambrol3721-24

, the element values were modified by the conjugate
gradients method of Fletcher and Reeves32 énd the OGN algorithm.
Criteria had been developed to switch from_bne optimization routine to
the other and a choice between two individual error function formulations
was possible.  Furthermore, algorithms had been included to instigate
element removals and element additions based on closed form
expressions for the optimum values of the virtual elementsss. (There

exists the possibility of an element connected between any two nodes.

Any element which is not present is, in effect, set to zero and is



referred to as a virtual element.) Although these facilities for
topological modifications existed, there was no routine included to
establish whether the synthesized network could be correctly matched to
the required network. A description of such a routine, included by
the author, and other safeguards such as checks on symmetry is given

in Chapter 3. Also included is discussion of switching between the
two sections in the optimization routines used, error function formula-
tion and performance, variation of common factors, and improvements and
modifications to the linear searches incorporated in the optimization
routines. The original program, written in Algol, was restricted to
three-terminal networks containing only resistors and capacitors (RC
networks), with the possibility of only one common factor. A Fortran
version was developed by the author which considered both RC and RLC
networks with any number of common factors.

It has already been stated that there had been examples which had
reduced solutions produced by classical techniques to solutions or quasi-
solutions with fewer nodes. This suggests that a suitable design
strategy would be to choose a start network with a number of superfluous
nodes so that the optimization could remove nodes and elements, thus
leaving a good approximation to the required network. Often, however,
this proves impractical. The time taken for each analysis increases
with the number of nodes. Further, the power of any optimization routine
is reduced as the number of variables 1is increased. Consequently,
progress in reducing the error with large, arbitrary, start networks can
be negligible. An alternative strategy is to start with a minimal
topology (i.e. comprising of the minimum number of elements and nodes

possible to effectively synthesize the requirements) and add suitable

elements to this initial guess. Also, as additions would generally

improve any network which had been produced by the reduction of a larger



network, element additions are of great significance.

The criteria which activate topological modifications are discussed
in Chapter 3. Chapter 4 illustrates several possible methods of element
addition, and a method based on the corrections given by the GN
algorithm proved successful. Details of strategies devised to combat
examples in which problems did arise with this method are also discussed.

Chapter 5 details the findings of the author with several methods
for introducing new nodes into the network. A method was developed
which solved many test examples.

A cross-section of results, both successful and unsuccessful, are
illustrated in Chapter 6. Of particular interest are RC computer
realizations to Lucal's functions with only six nodes plus the reference
node, and RLC realizations to Fialkow's functions with a series-
parallel structure. The general efficacy of the program developed is
indicated by results from different start topologies to the same problem,
and the same start topology with slightly differing test problems. The
results are also compared to those achieved previously.

A final gathering together of the achievements of the research
is contained in Chapter 7. The author also outlines several possible
subjects for research, together with possible extensions to the package.

Three machines were used during the course of the research.

Most of the results contained in Chapter 6 were obtained on a CDC Cyber 72.
The original work was run on an ICL 1906A machine. When this shut down

a Fortran version was transferred to an IBM 360 machine. The further
transfer to the Cyber was performed because of the increased accuracy

available.
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CHAPTER 2

NETWORK THEORY, THE COEFFICIENT MATCHING TECHNIQUE AND THE

OPTIMIZATION ALGORITHMS

2.1. Introduction

There are several possible methods of network representation
which facilitate the use of computer aided design. These methods are
interchangeable in that it 1is possible to transform the desired
response from, say, time-dependent equations into the frequency domain
and from a desired frequency response into an approximate representation
using polynomials in ?§5, the complex frequency variable. These trans-
formations are not always easily accomplished (particularly, say,
obtaining the polynomial coefficient”of narrow band networks) but are
performed to expedite the design process. One such form of representa-
tion, coefficient matching, has been found to be particularly suitable
and consequently has been employed in this research. The efficacy of

9
this method was originally indicated by Calahan and the major consider-
ations were examined at Leicester before concentrating on this approach.
The results obtained prior to, and during, this research would appear to
validate this choice.

Two alternative methods are the direct method (which matches a
desired response, say the frequency, at a number of positions) and the
pole-zero method. In all three methods the variables are modified such
that the synthesized response equates to the desired response.

After a cursory inspection it may seem that direct matching
would be desirable in that it is unnecessary to approximate to a set of

transfer functions, and also tolerances can be easily handled. With

other methods, if a complete design is required, the tolerance
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requirements have to be considered at the approximation stage and,

unless an exact synthesis o” the functions is obtained, it remains

uncertain whether the network will satisfy the requirements. In parti-

cular, the polynomial coefficients can be ill-conditioned, with small

variations of the values resulting in significant movements of the poles

and zeros. However, Jjust as it may prove difficult to choose particular

values for the calculation of an approximation to a response, difficulty

may be experienced in determining the positions for direct matching.

Further, the magnitude of the network required to effectively synthesize

the response may not be apparent from frequency characteristics. With

coefficient matching the minimum is evident although, even then, extra

common factors may be required. Also, direct matching is further

removed from the classical methods of synthesis which may provide useful

information concerning the feasibility of networks, etc.

Several other factors favour the use of coefficient matching.

Although difficulty may be experienced in determining the values of the

required coefficients, once this approximation stage has been accomplished

the design will proceed in a similar and straightforward manner.

Further, it will be clearly apparent when a realization has been achieved.

The method has also been found to have favourable properties of conver-

9

gence as, unlike other methods, the coefficients and derivatives are multi-

linear functions of the network elements. Consequently, the derivatives

can be easily and accurately formulated.

The values of the poles and =zeros can be determined from the values

of the coefficients, therefore pole-zero matching will tend to suffer

from similar deficiencies to coefficient matching. The major difficulties

with the pole-zero technique arise in establishing which synthesized pole

(or zero) 1is to be matched to which particular desired nole (or zero).
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Calahan9 was the first to employ a coefficient matching technique,
attempting to match the coefficients of a single desired network function
T(s) . The NR method was used to determine iteratively the required

element values, the progress monitored by the reduction of error
functions to a value of zero at a realization. A sufficient number of
variables were fixed in value to ensure that a defined system was
obtained.

The method was improved by Cutteridge””"”" who recognised that
simultaneous matching of a multiplicity of network functions could be
achieved with multi-terminal structures, thus fully specifying the network
A number of elements were varied, sufficient to ensure that the
synthesized network could be matched accurately to the desired network,
whilst the other elements were set to =zero, thus producing a defined
or overdefined system.

Further explanation of the coefficient matching technique employed
in this thesis appears in section 2.4. This section also outlines the
significance of equivalent networks containing normalizing variables and
common factors.

Possible methods of analysis and various optimization routines
had been considered prior to the commencement of this research. An
analysis routine (section 2.3) using the nodal admittance matrix

13,2
(section 2.2) had been developed by Cutteridge and di MambrgAA‘(A

A

and
- 13,21
had been found to be at least as efficient as other methods
The state-variable method of analysis does have advantages in
that it can be easily extended to include non-linear elements, and also
provides useful information about the performance of the network,
Di Mambro”~” disregarded this alternative nartially as a result of the

38
findings of Pottle who declared this method to be less accurate and

more time consuming in determining the coefficient wvalues. Later,
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however, Pottle39 devised an improved method.

As the derivatives are readily available, optimization routines
using this information are preferable to direct methods (such as the
Simplex method) which use only function evaluations. The potency
of the direct methods decreases as the number of variables 1is increased.
Two-part programs combining a powerful Newton method with a stable
gradient method were found to be preferable to quasi-Newtonian methods.
Originally a combination of the conjugate gradient (section 2.5) and

GN techniques (section 2.6) was employed but an alternative gradient
method using second order derivatives (developed at Leicester by
Cutteridge, Henderson and Dowson”""”") was investigated. The criteria
developed to instigate switching between the gradient and GN techniques

are described in Chapter 3.

2.2. The Nodal Admittance Matrix and the Short-Circuit Admittance Functions

Nodal admittance analysis has two major advantages over mesh
impedance analysis.
(1) The nodal admittance matrix is more easily formulated
automatically. It is not easy to determine the number
of independent loops and to specify these loops on the

computer.

(2) There will be fewer nodes than meshes 1in a network and
consequently the arrays will be smaller, occupying less
computer storage and the analysis will be performed
more quickly. The speed of computation can also be
aided by the sparsity of the nodal matrix enabling the
use of various time saving technigques'”. (These

techniques are insignificant with the order of networks

examined in this thesis and are not employed.)
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Consider a 3-terminal network as shown in Figure 2.1. The

external behaviour of the network is described by the relationship

between the input (1 and o ) and output terminals (2 and 0 )

Suppose that the network comprises of a total of n nodes (plus the

reference node) and that the voltages of these n nodes above the

reference node are E~, E~ ... EN . The admittance of each branch

between any two nodes i and J (Y\") is comprised of a combination of

a maximum of three types of element.

Hence ,
Y.. = (pC + G + L/p) (2.1)
where ,
P is the complex frequency variable
C is the capacitance in Farads between nodes i and 3
G is the conductance 1in S(e-mens between nodes i and 3
and L is the inverse inductance in Henrys *~ between nodes i and
k

If Kirchoff's current law is applied to each node in turn and Ohm's law

is used to determine the current in each branch, the n equations can

be arranged to the form,

I =Y E - Y E - Y E - Y E

1 1 1 12 2 13 3 m n

I =-Y E + Y E - Y B - Y E

2 21 1 22 2 23 3 zn n

0 =-Y E - Y E + Y E - Y
31 1 32 2 33 3 3H n

0 =-Y E -Y E -Y E +Y E @ 2)
ni ™2 2 na 3 nn n

Y':I.]' is the sum of the admittances connected

are no external drives to nodes 3 ,4 ... n)
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From Cramer's rule, and expanding down columns one and two

Ep= 2 + 2,0

E2 f 22111 f Zzzlé » (2.3)

or, in matrix form

E rz yA I
1] 2 [ 11 12 1
E, 221 222 I2 v (2.4)
ﬁlL A21 A12 Azz
with le = le = - 221 =" and 222 = -

where Aij are the cofactors of the determinant of the admittance

matrix A .

Hence, using the relationship that

A A = A - A A i !
1122 A11 . 1281 (a form of Jacobi's theorem)
Ll P Vi Vi
I Y21 Y22 Va (2.5)
where y _ 822 y = - bo1 v = By y = b
= > = D = - ) =
11 by, 712 Bi1gg. 721 Byygp 22 Ayyn,

For networks comprised of reciprocal elements (such as RLC networks)

th = . = =
en Yio = Yoy If yll Yoo (and hence All A22) Fhe network

is said to be symmetrical.
For RLC networks, the three short-circuit admittance functions

A

(y s ylz , y22) and, therefore, the four cofactors (All > b, A22 s

11

Al ) fully define the external performance of a network. The
122

coefficients of the rational functions in p (the complex frequency
variable) of these four cofactors are those used in the coefficient

matching process. The term short-circuit is derived from the relation-

ships
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I
= —L when nodes 2 and 0 are short-circuited
AP
1
IZ
S "noon 3 " 1" "
Yoo < V2 1 and O
Il
and y12 = v__ m" e 1 and O " " 1A (2.6)
2
The roots of the polynomials All , Al2 and A22 are the zeros
and A the poles of the network admittance functions. An

1122

alternative representation is

m i
Yii ST 4T 4§ e (2.7)

where r 1is the residue of the pole at infinity,

T is the residue of the pole at zero,

and r; 1s the residue of the pole at TR

If the residues of Yi1 0 Y12 and Yoo of a particular pole are

denoted by Ty, s Ty, and T, then Cauer's residue cpndition states
that
2 50 . (2.8
Ty1To2 ~ T2 27 - ‘( -8)
_ 2 . .
When T T, ST, 5T, # 0 the pole is sgld to be compact.

A further point of interest arises from a study of graph theory47. This

indicates that the 2-trees of A12 are included in the 2-trees of A11

and A22 . Consequently if the coefficients of any power of p in

A R A12 and A22 are equal, they should correspond to identical
11

2-trees” . Therefore the two-trees of Aoy and Ay, for this power

of p must be zero.
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Further information as to the values of poles, residues and
zeros for particular network configurations and types is available

in the standard texts. -

2.3. Calculation of the Coefficients and their Derivatives

An analysis routine which can calculate quickly and accurately
the coefficient values and their derivatives with respect to the

elements, is essential. Such a method was developed by Cutteridge

13,21-24

and Di Mambro ,who found it compared favourably with other

methods available at that time. Reference to the state varisble method

38,39 has already been made.

10,48-51

and the findings of Pottle

Di Mambro13 also cpnsidered the Adjoint and similar
methods.  Although there is no actual data for a comparison of the
accuracy and computation times. the Adjoint Qould seem to be a less
direct method of calculating the derivatives than by simply determining
the.cofactor values.

A further method of analysis, using fast Fourier transform525-26,
was investigated at Leicester by Dr. Banerjee. The results27 were not
found to be superior, in terms of ¢ W&~ speed of accuracy, to the method

of Cutteridge and Di Mambro for the order of networks investigated in

this thesis.



18

The cofactors of the nodal admittance matrix are in the form of
polynomials in p . When inductors are included in the network the
admittances of each branch are multiplied by n to remove any inverse
powers. It is impractical to manipulate the powers of p when
determining the coefficient values, so m + 1 +values are assigned to

p , where m is the highest order of the polynomials produced.
The m + 1 wvalues of p , Pg , Pg give m + 1 equations

of the form

(2.9)
where A(p) is the value of a cofactor evaluated at a particular value
of p , and c”® are the coefficient values to be calculated. Thus,

r -
1 A(P1)
i1 IC
[
I Pr+i “r+i Pryi- LaCPr+i) j Q JO)

The values of the coefficients are obtained by multiplying each side of
equations 2.10 by the inverse of the Vandermonde matrix (the m+l by m+l matrix)

The values of the derivatives can be calculated in a similar manner.

3c.
Values of %; will be obtained if values of A(p.) are substituted by
3A . . .
values of R (p%) . The speed of the calculation is increased by
X
(1) using the information that the derivative of a determinant

with respect to one of its elements 1is equal to the cofactor

of that element.

(ii) calculating the values for the cofactor A"""g fi*st, since

this has terms in common with the other cofactors.
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For a more detailed explanation of the method see Di Mambro~"'"7""~",

13,21

This method can also be applied to active devices !

2.4. Formulationeof the Coefficient Matching Technigque

Although this will not always be the case, the examples considered
in this thesis reauired the cofactors of A , A , A and A
11 12 22 1122

the admittance matrix to be realized.

Let,
m be the total number of coefficients of the four cofactors, all

of which have tobe realized. (No further coefficients should be

generated by the synthesized network.)

n be the total number of independent variables, comprising of

elements and common factors

a (i=1 to m be the required values of thecoefficients

(asmodified by the presence of any common factors)

ch i= 1 to m) be the wvalues of the corresponding coefficients

generated Dby the network variables, X3 3 =1 to n)
k be the normalizing variable

The proximity of each actual coefficient (c¢®) to the desired value
(a_) 1is indicated by the individual error functions f~ 1@ =1 to m) .
A progress function, F , is constructed from these individual error
functions. If these £ are devised such that f~ = 0 when (and only
when) = ka” , then the design problem is in a form ideally suited to
optimization by computer, namely, to modify the values X. such that an

overall error function F 1is reduced.
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Calahan's original formulation9 was

r

fi =c; - kai : : (2.11)

This gives an absolute measurement of the error. However, this has

a trivial solution (if sufficient of the xj equal zero for all the
. . 16 .

c; to be zero) which causes practical problems™ . The formulation

predominantly employed in this research was

£.=—-1 . (2.12)

This gives a relative value of the variance between the actual and the
desired coefficients which is theoretically preferable, particularly
when the required coefficients vary by orders of magnitude. The progress

function was constructed from the sum of the squares of the fi , namely,
moo,
F= ) £. | (2.13)

It can be seen that the individual functions were identically weigh+ted.
This representation (equations 2.13) does not produce discontinuities
in the values of the derivatives, as does the minimax representation

(equations 2.14), and also enables
m
F= ) |£f] | _ (2.14)

the optimum value of k to be easily calculated. (See Appendix 1 )

Although it is the coefficients of the cofactors which are matched,
the external behaviour of a network is actually defined by the short-
circuit admittance functions. As these functions are ratios of two of
the cofactors, if all the cofactors are multiplied by the same factor

the network will retain the same external characteristics. This extra
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factor can be any combination of three possible forms:
(1) a scalar quantity known as the normalizing variable

(ii). a power of the complex frequency variable pn , where

n 1is an integer

(iii) a polynomial in p . This can be factorized.into
individual common factors of the form (p + a).
a 1is referred to as the value of the common factor
whose form (positive real, complex, etc.) will

depend on the types of the components in the network.

Krzeczkowski16 determined that the optimization proceeded in the
most efficient manner when the normalizing variable was set to its
optimum value at each function evaluation. Each common factor will
introduce an extra coefficient to each cofactor. The variation of the
common factor values is discussed in section 3.5.

Transformatidns to the logarithmic domain and to the sguare
domain have both been considered as possible methods to ensure that the
variables retain positive values. However, potential solutions with
negative valued elements are not ignored, but are mapped into the
solution space where they can still have a detrimental effect. The
square transformation has usually been empldyed13’2], in preference to
the logarithmic traﬁsformation, with the intention of avoiding potential
numerical difficulties as the variables tend to zero values.
Krzeczkowski16 found that these difficulties did not arise. In fact,
the logarithmic transformation has the advantage of natural scaling
which Krzeczkowski found beneficial stating; "This constraint improves

the rate of convergence of the algorithms most markedly".
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2.5. The Conjugate Gradients Algorithm

To prevent the error function F increasing between successive
iterations, it was fouﬁd necessarf to modify the linear search of the
original algorithm bublished by Fletcher and Reevessz. The details
of these modifications can be found in section 3.7. The original Algol
Version was transcribed iﬁto Fortran by the author.

The efficacy of several alternative optimization routinres had begn
~investigated prior to the commencement of this research. Although the
basic GN algorithm has been improved by the implementation of factors
such as a lineaf search, working in the domain of trénsformed variables,
etc., the algorithms still only converge consistently from values close
to those at a minimum of the error. In order to develop more powerful
optimization routines, two-part programs have been investigated. These
generally employ either, a gradient descent method or, a modified NR
technicue which can approximate to a gradient method (e.g. Levenberg)
prior to the implementation of .the GN . Both alternatives were
examined at Leicester prior to this research. Approaches using a true
gradient descent method were found to be superior to the quasi-Newton

3 . . ‘ ]
1“’36’5?. Of the improvements on the basic steepest descent

techniques
algorithm, the conjugate gradients method was found to be superior to

the variable metric method of Fletcher and Powell53 and its modified
counterpart (1970).

- As a further alternative, it is possible to construct simple
function minimization procedures which exploit the multilinear properties
of the network coefficients. Such a method was described by Massara
and Fidler54. This was shown to have rapid initial convergence

characteristics but k , the normalizing variable, was omitted without

explanation.



The Conjugaté gradients method is guaranteed to locate the
minimum of any quadratic function of n arguments in at most n
iterations, As this is not the- case with network synthesis., the
process is iterative with fhe search set to the steepest descent
direction at the first iteratiocn and reset after each n iterations.

Using the superscript k to denote values at the kth

iteration, the search directicn is governed by

P =8 +8p | (,2.15‘)

where g 1is the gradient vector of F with respect to the n

variables of x
and g =0 if k=1rn +1

(where r is an integer of value zero or greater)

gk_l k-1
or B =W' (,2.16)
£ - £
This modifies the vector of the current values of X
(xj,j=l ton) such that
-1 -1
3# = 5# + ) EF (2.17)

where XA 1is a scalar calculated (by a linéar search) to minimize the
error value F

To reiterate, the CG 1is only useful in the initial stage of
a two-part optimization algorithm as the good progress initially

obtained tails off.

23
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2.6. The Gauss-Newton Algorithm
The Taylor Series expansion of a function f(x) is
6x"
f(x + 5x) = f(x) + éxf'(x) + frfx) + ... (2.18)
If OX is such that f(x + 5x) - 0 and second order terms

and above are ignored,

- f(x) - 5x.f'(x) (2.19)

Generalizing to n functions £ of n variables «x

- "(x) = J." - the symbolic NR algorithm
i.e. 5x = - [J]I"\f (x) (2.20)
where [J] is the Jacobian matrix (n xn) of first derivatives. For an
overdetermined system (m equations in n variables where m >n) a

least squares solution to the set of linear equations can be obtained b)”’

T
premultiplying by J , the transpose matrix of the Jacobian.

giving 52C = - [J"J] Jn £ (x) - a symbolic form of the (2.21)

Gauss Newton algorithm

The corrections can best be found by using a routine which wuses

Householder's transformations.
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The variables are modified thus;

= x""" 4 X 5xnmh (2.22)
where X is a scalar value obtained by a linear search to minimize

the wvalue Fo. This encourages convergence of the method.

2.7. A Steepest Descent Algorithm Utilizing Second Order Derivatives

This further gradient descent method was investigated, in place
of the CG method, as the preliminary stage of a two-part program.
This method had been devised at Leicester by Cutteridge and Henderson”""*""
and an improved version, as developed by Dowson41, was supplied to the
author. The method had previously been successfully applied to a
transistor modelling problem with which difficulty had been experienced
using the alternative gradient methods which used only first order
derivatives””. This method produces several minima at each iteration
and, consequently, enables restarts to be made from alternative positions
if the optimization is proceeding at a slow rate in an initial direction.

The conventional method of steepest descent can be written as

«X. = -v.3f (2.2,.)

where, y > o for descent and vy is chosen (by a linear search) to

minimize the value of F

Extending this to include the second partial derivatives of F

Iy 01y 0-¥



26

or, in vector matrix form,
8x = - u[G + H §x] : (2.25)

where G 1is the gradient vector

and H 1is the Hessian in F .
Hence,

sx = - (H-AD1)"'.G . (2.26)
Thus X =+ and A = - @ correspond to the directions of steepest

ascent and descent, respectively.

The eigenvalues, Xi , are calculated to locate the discontiruities
of the functicen F(A) . This enables all the minima of this multimodal
function to be efficiently determined.

In practice, the moduli of the corrections are limited so that

the variation of each variable per iteration does not exceed a

prescribed value. This introduces further discontinuities into the

. . . 4 A .
function F(A) . Their positions can be calculated 1, thus facilitating
the linear search. It is usual to proceed from the minimum producing

the best reductions in error unless the restart facility is invoked.



FIGURE 2.1:

THREE-TERMINAL RLC NETWORK

i\
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CHAPTER 3

THE DEVELOPMENT AND STRATEGIES OF AN

AUTOMATED DESIGN PACKAGE

3.1. Introduction

Although the basic concepts of the coefficient matching
technique have been described, there are many possible options
available, within this framework, which will affect the performance
of an automated package. This chapter contains discussion of several
possible variations, together with the author's ideas on the options,
which, when combined, will provide the optimum package. As each point

is discussed the original and final treatments are described, thus

clarifying the achievement of this research The inherent strategies
of network evolution are also described. Among the topics considered
are :

(1) the inclusion of algorithms to ensure that the

coefficients are matched to the desired values as

efficiently as possible (section 3.3)

(ii) the optimum error function formulations (section 3.4)

(1ii) the representation and variation of common factors

(section 3.5)

(iv) switching criteria for the two-part optimization algorithms

(section 3.6)

(v) modification of the linear searches included in the

optimizati on routines (section 3.7).
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(vi) development of criteria to activate both the addition
and removal of individual elements and nodes (sections

3.8, 3.9 and 3.10)

(vii) the strategy towards the acceptance of element additions

(section 3.2)

Chapters 4 and 5 are supplementary to this chapter. In Chapter 4
the author details the results of several possible methods of element
addition, considering both the actual choice of element and its value
on addition. Also included in this chapter is detailed discussion of
the alternative strategies applied to several particular additions which
failed using the general approach. Chapter 5 considers the specific
topic of node addition.

There are two possible evolutionary strategies which can be
adopted in network design. Firstly, elements can be added to a starting
topology with a small structure just capable of realizing the polynomials
of the required network (termed a minimal structure). Alternatively,

a larger starting topology with several nodes more than the required
number will, hopefully, remove unnecessary nodes and obtain a reasonable
approximation to the requirements. After consideration of the relative
merits of the two options, the first strategy was adopted. Although

both alternatives had previously produced worthwhile results,

(1) the time required for each iteration increases
significantly as the number of nodes increases
(approximately doubles on increasing an RC

network from five to seven nodes),

(2) optimization routines work more effectively with

fewer variables. Consequently, 1if the original
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network 1is too large, an excess of redundant elements
can prevent the optimization routine from locating the
required values of the elements which are capable of
providing a good approximation to the desired network,
(Generally, the first minimum is the most difficult to
locate when the optimization commences with arbitrary

element values),

(3) even when a larger network has been reduced it is
unlikely that an exact realization will have been
produced. Therefore, element additions will still

be required.

Obviously, if a solution is known to a network similar to that required,

then this would provide a suitable start structure.

3.2. The Strategies Governing the Evolution of a Design

A starting topology, which satisfies the order of the desired
network polynomials, is specified at the start of each design. Certain
other network characteristics (such as symmetry) may be required of
the start topology. The values of the elements, and any common factors

present, are varied by the optimization routines such that the overall

error function F is reduced. F is a squared summation of the
individual error functions, f* , which provide a measure of the variance
between the actual and the desired values of the coefficients. Since

the element values are required to be positive, it may prove necessary

to remove an element, and possibly an associated common factor, when
mapping to a negative valued element occurs, (Active devices are only
equivalent to a negative element over a small range of voltages, currents

and frequencies”™”.)



Generally, the optimization will continue, provided the job-time
has not been exceeded, until one of the following situations has been

diagnosed:

(i) the synthesized network is a sufficiently accurate

representation of the desired network,

(ii) the synthesized network is a better approximation to
the desired network than can be obtained anywhere in
the surrounding region'of vector space, provided the
topology remains constant. (This may be a local,

rather than a global, minimum of the error.)

(iii) the progress may be unacceptably slow (as gauged by
the error F), with no indication of imminent improvement
(gauged by the sum of the squares of the Gauss Newton

corrections -SSQGNC)

(iv) the network may be incompatible with the GN algorithm

(i.e. the variables are not independent).

If situations (i) or (iv) are diagnosed then the program will stoﬁ.
Otherwise, the program will investigate the possibility of topoleogical
additions.

The program will include, first of all, elements which do not
introduce further common factors, then elements which produce extra common
factors and, finally, groups of elements which introdﬁce a new node.

With the method of node addition developed by the author, and similarly
with other methods, node addition will introduce an extra common factor
and a further three elements. Optimization routines work with

increasing efficiency, in terms of both the results achieved and the time
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required to achieve'them, with. decreasirg numbers of variables.

Hence the three preference categories for additiens. Furthermore:
the time required for each analysis increases as the number of nodes
increases; the optimization routines deal more éffectively with
elements than common factors; and element additions without the
introduction of extra common factors. are performed more efficiently
than both those with an accompanying common factor and node addition.

Within each of these three groups an order for addition is
established.l The element addition, say, which the algorithms irdicate
will reduce the error by the largest amount is included first, etc.

Once the addition has been performed the variables are optimized
(with the possibility of removals) until the algorithms diagnose one of
the four defired situaticns. If situation (i) arises the package
terminates. Otherwise é comparison is made of the error value at
this endpoint with the error prior to the last additicn. If the error
has increased, then the program restarts from the next best addition
from the previous endpoint. Otherwise, a further addition is made
from the new endpoint. To ensure that the design proceeds efficiently,
nodes are only included from positions where a local minimum has been
obtained (i.e. case (ii)).

After each element removal it is necessary to establish if the
network still satisfies the orders of the desired polynomials. A fault
of this type could be remedied by the inclgSion of further elementsls’ls.
At such a positiocn, however, the error will increase to a high value
(one or more of the coefficients are no longer represented) as With
the introducticn of an extra common factor. Consequently, the additions
will not be as reliable as those from a minimum. The author adopted a
strategy whereby a restart was made using the next best alternative to

the previous addition.
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It is possiblé that the removal of an element will effectively
remove a node. Similarly, node removal can be indicated by elements
shorting out (section 3.9). With several of the earlier examples, the
author foun& that the addition of a node resulted in the removal of
one of the original nodes, without eventually reducirg the error (i.e.
the networks were equivalent). To avoid this type of unnecessar;
operation, node removals were not performed. When removal was

indicated, the program restarted with an alternative to the previous

additioen.

3.3. Topological Considerations

The original Algol package had a very limited repertoire of
possible topologicél modifications. The only element types considered
were resistors and capacitors (RC networks) and although element
additions and removals were possitle, changes in the number of nodes were
not. The package simply matched a set of synthesized coefficients to
a prescribed range of desired coefficient polynomials. Several faults

of the program were pertinent to these limitations, namely,

(1) if the synthesized network was at any stage producing
zero values for coefficients which were required to be
matched, the program contirued to optimize although

little could be achieved under these conditions,

(ii) 1if extra coefficients were generated (by the synthesized
network) outside the prescribed range of optimizaticen,

the program contirued although the results were worthless.
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(1ii) the number of common factors was fixed initially at one
or zero and remained at this wvalue irrespective of the

requirements,

The Fortran version developed required only the orders of the
desired polynomials and their coefficient values and not the actual
orders of the start network. The orders of the polynomials produced
by the synthesized network were calculated initially, and after each
topological modification, and the number of common factors determined.
(If the start network was unable to produce the polynomials required

the program terminated. However, elementary topological modifications

13 18
to rectify such a fault could quite easily be included ) It was
only necessary for the initial number of common factors to be declared
if they were to be assigned specific values, otherwise they were set

to integer values.

The coefficients of are fully represented in the A""
and A"" polynomials . Consequently, if a particular power of p
has identical coefficient values in the polynomials of A" , A"™"
and A*2 , the same combination of elements form these coefficients.

Accordingly, a network with an element which contributes to the particular
coefficient in at least one polynomial, but notall three,cannot exactly

realize the requirements. ConsiderLucal's set of functions,namely,

36ph + 2058p3 + 6557p2 + 4638p + 36
36p3 + 216p2 + 396p + 216

= 36p" +36p3 + 72p2 + 36p + 56

12 36p3 + 216p2 + 396p +216
y = 36p4 + 533p3 + 1572p2 +iigsp + 56
22 36p3 + 216p2 + 396p + 216

The coefficients of p" and p are identical for A , A and A

~ ~ 11 12 22
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For a true RC reaiization of these functions there should be no purely
capacitive, or purely resistive, patﬁ between nodes 1 (or 2) and O
Similar conditions apply to RLC - and RL networks. Iﬂtuitively it
would seem that the temporary inclusion of elements which contravened
these conditions would increase the capacity for topoleogical modificatijons,
thus increasing the likelihood of a realization. (A comparative example
where this supposition is borne out is included in Chapter 6.) However,
in practice,'the inclusion of these elements did not produce radical
changes in the topology. Aiso, \n many instances, the element addition
algorithms were -encumbered. by these extra elements. For example,
elements which produced negligible reductions in error were inqluded
prior to elements which could have provided a significant reduction.

(In these instances it is possible to relate the size of the GN
corrections. obtained on introducing an elément at its optimum value to
the expected change in its value - see section 4.4.) Furthermore, as
the error F decreased the values of the elements prohibiting the
equality of these coefficients became smaller in relation to the other
elements. The close proximity of these small values to the negative
domain produced problems with mappirg to negative values, thus several
element additions were attempted which proved worthless because of the
requirement for positive valued elements.

It should be noted that if individual elements are to b¢
represented by models (as the capacitor of Figure 3.1) then this criteria
could not be imposed.

The author considered it to be generally advisable to retain a
symmetrical netwerk (by the simultaneous additicn of a pair of elements)
when this was required (i.e. A11 = Azz). Th#s facet was ignored in
the origiral Algol program. The results were similar to those

obtained with the previously discussed restricticns to element additions.
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Although it seems reésonable to postulate that the inclusion of all
possible elements will ﬁrovide a more powerful alternative, in practice
the unsymmetrical additions rarely produced significant improvements,
and then only before the error had been reduced by a significant amount.
Similarly, the prob]emé encountered increased as the error was reduced
(say. to 10_6). On occasions, the inclusicn of sirgle elements, or
of symmetrical pairs, will ndt be possitle. (The introduction of a
node is required.) However, the algorithms will indicate that single
elements which destroy the symmetry can be included at very small values.
This is because, with a computer of finite accuracy, it is not possitle
to synthesize an exactly symmetrical network.

Algorithms were included to diagnose symmetrically matcﬁed nodes
from the values of the coefficients and derivatives obtained from a unit
valued analys%s. Similarly, element removals were performed symmetricdlly.

The designé which considered only resistors and capacitors are
valid because of the practical difficulties associated with inductors.
(Inductoré required to produce reasonable Q factors at low frequencies
are bulky and expensive, etc.) However, the character of feasible
networks that can be produced by an RC network is limited and, because
of the problems of instability associated with an active network (these
can result from the effects.of paragitics and consequently be unforeseen),
RLC designs are of merit.

The designs in this research usually_commenced from an RC start
network and ircluded inductors if required. Generally, the algorithms
successfully included the best inductor. This produced topologies
which were predominantly RC dominated and several possikle RL dominrated
configurations were not considered, at least not initially. The program
considered only RC and RILC networks so it was not possible to add
the optimum capacitor to an RL equivalent of an RC network. This

limitation of the current package could quite easily be rectified.
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3.4. Individual Error Functions

The original program provided an option between two possible

error functions, namely,

C. ka
Formulation 1 £, = — - —%
i ka C.
i i
c.
Formulation 2 £, = —— -1
i kai

where. to reiterate.

c. are the coefficient values produced by the synthesized network,

a; are the required coefficients as modified by the presence of

any common factors

and k is the normalizing variable.

14,16 had indicated that option 1

Previous research at Leicester
was the more efficient alternative. However, this formulation also
has a minimum when c; = - kai and so cannot be applied to the design
of networks containing active devices. (The synthesized coefficients
produced by an RLC network cannot have negative values with positive
valued elements but may with an active network.)

Originally k was considered as a variable but set to an optimum
value (see Appendix 1) at each functijon evaluation. As this optimum

value for k is a function of s and a; its effect can be incor-

porated into the other varigbles, for example, for formulation 2.

afi i aci 1 . Ak c; (3.2)
3x. 8x. = ka. ax, k23, : T
J ] 3 ] i
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Thus, ir theory, a further variable can be optimized by the GN algorithm.
Krzeczkowski16 stated that both methods of representation were equivalent
but the author found that significant differences did arise when a substantial
reduction in error was produced by one GN iteration. Typically, in a
situation where the latter method of representation reduced the error

-2

from, say, 10 to 10f5, the former reduced the error by a smaller

factor, say, to 107" . The latter method of representation was
adopted in this research,

It is possible to derive optimum values for k and one common

factor for the further alternative

Formulation 3 f.=—-1,
i c

This was examined both when the common factor was set to the optimum
valve and also when varied normally. (The jobs were run shortly after
the commencement of the research and the criteria for switching between
CG aﬁd GN iterations were similar, but not identical, to those
described in section 3.6.)
‘ The most striking feature of the test examples was the disappointing

results (Table 3.1) obtained with formulation 3 when applied to Fialkow's

functions,
y. =y = 1187p3 * 56,613.14p + 28,368.584p + 191,184
1722 800,000p2 + 408,000p + 3840
3 2
_3pd - 1,14p% + 197.176p + 77.616
-y12 = (3,3)

800,000p2 + 408,000p + 3840

The common factor and several elements that were not connected to nodes
1 and 2 were invariably reduced to very low values. This effect was

particularly marked when the common factor was set to its optimum values
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but was apparentiy éaﬁsed by the error formulation itself, as indicated

by the small common factor values obtained from starting values between
1 and 10 with the common factor varied normally (Table 3.2).

These results refer to the topology of Fig.3.2. Several local minima

can be obtained (Table 3.3) with the largest changes affecting the

capacitor between nodes 0 and S (Cos) and the common factors.

The optimum valves for the common factor and k apfeared to
result in large modifications to these values before the optimizaticn
had significantly modified the element values. Consequently, the
optimizaticn always commenced from a disadvantageous position. The
fact that some runs were successful and that the global, rather than a
local, minimum was always located, does indicate the power of this
formalation.

ﬁesults with a larger network (Fig.3.3), applied to Lucal's
functions (equaticns 3.1), showed a significant improvement (Table 3.4).
The two common factors were set to the optimum value in alternate
iterations and varied normally in the others.

A brief study was undertaken.to ascertain if improved results
could be obtained using formulation 3 by starting with an ordinarily
varied common factor, then switching to the optimum values. In general,
it proved difficult to determine when the values had been sufficiently
modified to obtain maximum efficiency. - Alpremature switch . reproduced
the same deficiencies and a delay resulted in the location of a local
rather than the global minima.

To summarize, the results obtained by formulation 3 were not
superior to those obtained by the original formulations. Further,
formulation 3 does not enable closed form expressions to be developed
for the optimum valve of a new element. These optimum values had

provided the basis of the original method of element addition and are
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optimum values calculated for formulation 2 were not comparable to those

of formulation 3, particularly at high errors when these valuves are of

most use.

. However, they would probably constitute a good starting

position for a linear search.

Formulation 2 was emplcyed in preference to formulation 1 for

the following reasons:

(a)

(b)

(c)

the results confirmed that 1 is a more powerful
formulation than 2 in that the optimization procéeds
successfully from a wider range of starting values.
However, from starting valves of unity (the mean valuve in
tﬁe logarithmic domain) the results were invariably very

similar,

clesed form expressions for the optimum values of virtual
elements are available for method 2 but not 1

(Linear searches can prove time consumirg and inaccurate)

As discussed in section 3.6, the author preferred to
proceed irnitially using the CG algorithm before
employing the GN . When using formulaticn 2 it is
easier to gauge when the elements have been sufficiently
altered to enable the GN to progress. Formulaticn 2
has a maximum error &alue of M fsee Appendixi)where M
is the number of coefficients synthesized, whereas
formulation 1 has no maximum value.  Censequently, it
is more difficult to determine automatically at a high

error value if the synthesized network is a good

_approximaticn with a poor topology, or if the element

values are far removed from those required. Consider,



for exahple, the attempted synthesis of Fialkow's
function§ with the network of Fig.3.4; As the poles
at zero and infinity are not compact for these
functicns, this topology cannot provide a good
approximaticn to the network. With formulation 2
a minimum can be obtained with an error valve of
3.56. However, with formulation 1 the error
cannot be reduced below a value of 1.18 x 103 ,
although this is not a minimum as signifiéd by the
SSOGNC .  This value of erfor is higher than the
starting error values for networks of corresponding

topology synthesizing other sets of functicns,

(d) method 1 cannot be used to optimize networks

containing active devices.

Although method 2 was used predominantly,when difficulties
were encountered formulation 1 was considered as a possikle

alternative without ever producing significant improvements.

3.5. Common Factors

The original package allowed for only one common factor, to be
fixed, or varied, as required. Algorithms bad not been included to
determine analytically the number of common factors required initially
or, after topological modificaticns. Hegazil4 investigated networks
with a maximum of three variable common factors and considered it
necessary to reduce the values of the GN corrections for the common
factors and, in certair situations, to vary only the common factors,

and not the elements, and vice versa. The author considered it

41
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satisfactory to vary the common factors ir the same manner as the
elements. This approach can be justified by a comparison of the lowest
error values attaired (by the author and Hegazi) for similar computer
realizations with ‘the same computer accuracy.

Initially, only RC retworks were considered and the package was
modified to manipulate a makimum of three common factors (p + A)(p + B)
(p + C), where A , B and C were varied. There are two basic
difficulties with this method. Firstly, the formulation of the deriva-
tives cannot be readily generalized and thus is laborious, requiring
separate opticns for each given number of common factors. (see
Appendix 4). Secondly, common factors having complex valuves are feasible
when RLC networks are considered.

Minima of error with complex common factors will not simply be
ignored when this method of representaticn is employed. Consider the

network of Fig.3.5 which is generated during an example to realize

Fialkow's functions. The inductor (103) has just been included from
-5

a minimum of error 4.99 xIO . On entering the GN , at an error of

8.39 x\Cfa, the corrections fer the common factors (values 0.773 and

0.774) are 542 and - 543 , whereas the largest correcticn for an
element is 0.752 . The GN algorithm was unable to reduce the error,
When an alternative method of representation was used (discussed belcw)
the optimization passed thrﬁugh a regicn wﬁere the common factors were
complex, but produced a minirum of error of valuve 1.38 x 10°% with

real common factors.

(p+A)(p+B)(p+C) = p3+p2 (A+B+C) + p (AB+AC+BC) +ABC . (3.4)

As an alternative to varying the common factors, the polynomial

coefficients (e.g. ABC) can be varied. These values must remain positive
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for an RLC network ahd this representation permits any combination
of real and complex common factors, although it is bossible that a
complex pair of the form (p2 + A) will cause numerical difficulties
because of the zero valved p coefficient. This method also has the
advantage that general formulae for increasing,- or decreasing, the
number of common factors can be easily obtained. Furthermore, the
ngmber is limited only by the space allocated. Moreover, only first
order derivatiﬁés exist whereas with the alternative method there can
be second #ﬁd higher order deri?atives, dependent on the number of
common factors. It could therefore be expected that this method
would improve the Optimization, even with RC netwdrks, as the
algorithms use only the first derivatives. This was verified with
several test examples.

It is possible to obtain a good approximation for the valve of
any common factor to be removed. For example, if a node, prior to its
removal, has admittances totalling C farads and G sefimens connected
to it, then the common factor removed will be of value G/C . The
author's research considered only RC and RC domirated RIC
networks, and node removals were not attempted. Consequently, common
factors were predominantly removed accompanying the removal of a resistor
or an inductor. As these had been reduced to a low value pricr to
their removal, the associated common factor'would also be small. Thus,
the term ABC , say, would be small. Consequently, it proved sufficient
to remove the ARBRC variable and to not calculate the approximate value of

the common factor and adjust the remaining terms.
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3.6 The Use of Two-Part Optimization Routines

The program originally employed a strafegy whereby a series of

GN iteratjons were éerformed iﬁmediately. If this series failed to
progress sufficienily, the original values were varied by a (G
iteraticn and a further series of GN iteraticns were performed.
Thus, the more powerful GN algorithm was applied to starting values
obtained from the more stable CG algorithm. The author was of the
opinion that the progress achieved by this strategy was unsatisfactory,
even with small PRC networks (5 nodes plus earth), exhibiting faults
which were amplified when applied to larger networks. The majér faults

exhibited when examples were run from arbitrary valves were

(1) Even with fopolcgies kﬁown to realize a solution (as
Fig.3.3) the entire job-time often élapsed (uvp to 600
seconds on an ICL 1906A machine) without producing a
significant reduction in the error value. It was noted
'in these instances that isclated CG iteraticns Qere
reducing the error by a lerger factor than an entire

series of GN iterations.

(2) Elements were unnecessarily removed at high errors from

soluticn, and other, topologies.

(3) Common factors, and their assccisted elements diverged
from the valves at the solutions. This fault was less

evident with error fermulation 1 of secticn 3.4.

A modification to the implementation of the GN algorithm, whereby
the maximum variation per iteration was limited for each variable,

produced little improvement. Only rarely was the GN algorithm able
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to reach a minimum from a high initial error. Further; in situations

where large changes in one or more variables were required, this

limiting nrocess was detrimental to the optimization.

Several factors were considered before the original strategy was

modified so as to proceed initially using the CG algorithm alone,

until the

(1)

(2)

(3)

GN algorithm could proceed effectively.

Using this approach with examples with which 1little had
been aéhieved in 600 seconds, the solution was located

in around 200 seconds. Similar improvements were
experienced wifh a cross-section of examples. One
noticeable effect of using the CG extensively was that,
when several possibilities existed, there was a tendency
for the same minimum to be located from different sets
of arbitrary starting values. This particular minimum
may not necessarily be the global minimum but, as networks
evolve quite successfully via local minima, this is not a

problem.

A CG 1iteration can be performed in less time than a GN
iteration. This is particularly true when the values are
remote from those at the minimum of error where the GN
corrections are large, requiring repeated function

evaluations in the linear search.

Although large fluctuations in the magnitude of the
varisbles occur in the CG section, if the error has
been reduced to é value of 1072 , then the variables
will generally have attained values of the correct order

of magnitude. Proceeding beyond this point did
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occasionally produce difficulties with the ;emoval of elements.
This is not strictly a fault of the optimization but merely
exposes a limitation of the element removal algorithms of

- section 3.8. Also, when the GN algorithm is able to
proceed, it will generally reduce the error at a faster

rate than the CG algorithm.

(4) From arbitrary starting Qalues, the initial CG iterations
can modify the variables in the opposite direction to the
actual requirements. This would appear to invalidate
the original strategy whereby one CG iteration was
expected to provide a significantly improved starting

position for the GN algorithm.

(5) When remote from a minimum, it can prove difficult to
gauge whether the GN will progress. Large GN
corrections can be obtained when a suitable topology has
values far removed from those required, but the number
of iterations required before a minimum is located can be

ambiguous. Alternatively, the corrections can be

large because the variables are dependent, even when the
number is significantly lower than the number of

coefficients.

When commencing from arbitrary values, the first minimum will
generally prove to be the most difficult to locate. However, after
an addition (and particularly at high errors) elements previously
included may requiré significant modifications to their values. These
changes are achieved more readily using the CG rather than the GN

algorithm. Also, after many additions the initial error will be
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increased to a highef value, -.equivalent to the errors obtained with the
variables set to arbitrary values. Consequently,.optimization using
the CG section was employed after each topological modification, as
well as with the initial network!

The final conditions developed were as follows:

If (1) the CG had diverged (i.e. been unable to locate a

lower error) on 5 occasions,
or (2) 100 consecutive CG iterations had been performed,

the program switched to the GN. algorithm, irrespective of the error
value. Otherwise, the CG algorithm was employed until the error had
been reduced Below a value M + 3, where M 1is the total number of
coefficients. Agaiﬁ, unless conditions (1) or (2) had been violated,
the CG algorithm was employed until the error had reduced below a
value of 1072 , provided that the error was being reduced at a
prescribed rate, namely, a 5% reduction over the previdus five iterations.

40-42
, was

A steepest descent algorithm, developed at Leicester
examined as a possible alternative to the CG algorithm. This
algorithm used second order derivative information and had been considered
primarily as a method of overcoming problems that were sometimes exper-
ienced with element additions (see Chapter 4). However, it was also
applied to networks with variables set to arbitrary values. Its value
as a plausible alternative optimi;ation routine was undermined by the
increase in time required per iteration as the number of ﬁariables
increased. On occasions, with RC networks containing seven nodes,
only seven consecutive iterations were performed in 600 seconds on an
ICL 1906A machine. Consequently, the use of this algorithm in this

manner, as an alternative to the CG algorithm, is not feasible, at

least with the lumped, linear, passive networks considered. Furthermore,
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although the algorithm is more powerful than the CG algorithm (the
error reduction per iteration is greater), it was hot sufficiently
powerful for a strategy of employing the GN after each iteration to
be successful.

This algorithm had proved beneficial when applied to a transistor
modelling problem with eight variables and eight equations. Two-part
optimization programs, using a gradient descent and a GN algorithm, -
had located the solution from a few arbitrary starting values36 but, in
general, a local minimum of error had been located. Unlike a first
order gradient descent method, the linear search of the second order
method provides a number of local minima. If the error is reducing
slowly, it is possible to restart from one of these alternative minima
and, consequently, the solution can be located more often, However, in
netwofk synthesis the locatioﬁ of a local minimum need not prove
detrimental. Often, new elements are either added successfully, or
will be removed in the process of locating a better minimum. Also, the
error functions representing the transistor hodelling problem contained
exponential terms. These could be expected to provide an extra level

of difficulty.

3.7. Modifications to the Linear Searches of the Optimization Routines

Several restrictions were imposed on the linear search section

of the CG algorithm of Fletcher and Reeves32

(1) The maximum number of function evaluations per iteration
was limited to eleven (to prevent the program remaining

in a loop as sometimes occurred),
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(1i1) the linear search scalar was prevented from searching

in the negative domain,

(iii) the calculation of the square-root of a negative value
was averted. (This can occur in the interpolation

section.)

If .for these, or any other reasons, the algorithm producea a one
per cent increase in the error, the values were reset to those prior to
the iteration and the next iteration performed.

The original linear search for the 6N algorithm comprised of a
golden-&exjnén.%%aﬂil;followed by a quadratic interpolation. Problems
were only experienced originally when the error increased following the
location of a'locai, rather than'avglobal, minimum14. These problems
were overcome by comparing the best error value obtained by the linear
search to that prior to the iteration. If an increase of two per cent,
or more, was recorded, the search was conducted in an alternative region.

Further problems arose when larger networks were considered.

With RC networks containing seven nodes (as in Fig.3.3) several

difficulties were experienced.

(1) The error was only being reduced to values of 10712
with solution topologies, whereas errors as low as 10720

had been obtained with five node RC networks.

(2) After successive CG iterations had substantially
reduced the error, difficulty was often experienced in
locating a lower error in the linear search of the GN

algorithm.

(3) Local minima, as defined by the SSQGNC , were rarely

located with non-solution topologies. In some cases
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the program had to return to the CG section as the GN
failed to locate a value of the linear scalar producing a
lower error value. ' In other cases the error F
fluctuated in value but the SSOGNC was relatively high

compared to values previously obtained at a minimum.

It should perhaps be noted that these networks were predominantly
series-parallel structures. It was later observed that non-series
parallel structures are more readily optimized (i.e. the solutibns are
often reduced to lower errors and the minima are signified by lower
values of the SSQGNC .)

It was postulated that the GN linear search would only fail to
locate a lower error when close to a minimum. Elements were therefore
included at these positions of failure, but the difficulties were not
overcome. At this stage of the research the original method of
element addition (based upon the optimum values of virtual elements33 -
section 4.2), was still employed. The efficacy of this method is
greatly reduced when activated at a position which is not a true minimum
of the error. As a result, what generally occurred was that an incorrect
addition would be made, the linear search would again fail and so a series
of poorly chosen elements were included. It is preferable, because of
the reduced efficiency experienced, not to include elements in such a
position, even with'the improved method for element addition developed
by the author (section 4.4). However, element additions at such
positions can, if used in moderation, prove usefﬁl in by-passing occasional
instances where the optimization is only proceeding at a poor rate.

The inclusion of an element at a value higher than the opfimum value, as
in the author's method of addition, can aid the optimization by-pass such
a region of difficulty, even if the element included is actually

superfluous to the requirements. However, it was not such isolated
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instances of difficuityvthat were being experienced at this stage, but
a persistent problem. |

In an alternative approach to overcome these difficulties,
attempts were made-to emphasize the positions of the minima. Overall

error functions, as in equations 3.5,

where n 1is an integer 3 2 (3.5)

are possible but, with the individual error functions considered,
an optimum value for k cannot be obtained without performing a linear
search. A similar situation was produced by considering individual

error functions of the form
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These still emphasize the error functions of larger values in relation
to the smaller ones and expressions for the optimum value of k can be
derived (see Appendix 1 ). With n equal to two the situation was
slightly improved.
A much more succe;sful approach to the problem was to increase

the accuracy of the linear search. The golden search section was
removed as it had been contributing little and is not certain to isolate
the region around the global minimum. The GN corrections had been
scaled down, when necessary, to give a maximum value of thfee. Earlier
research at Leicester had indicated that this value would, in general, shift

X (the linear search scalar) to a value of approximately one. |

; -2
However, it was not uncommon for the values to be less than 10 ,
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particularlf when a ﬁoor set of GN corrections had been obtained. The
accuracy of A was improved by further scaling ofvthe values of the GN
corrections. The error F was evaluated with A equal to 1.0 and
0.8 giving values F(1.0) and F(0.8) . If F(0.8) was less than
F(1.0) then the correctioﬁs were reduced by a factor of ten and the
new F(1.0) and F(0.8) -evaluated. Otherwise, F(1.2) was evaluated
and the three values were used, in repeated quadratic interpolations,
to obtain a value of X between 0.8 and 8 . If this minimum value
of F gave a two per cent increase on the error value prior to this
iteration, then the corrections were further scaled by a factor of ten
and a further search instigated. If ten such scalings occurred, X

-10 (In fact this only

was set to what was effectively a value of 10
occurred when the error had been reduced to the limits of the computer's
accuracy i.e. a computer realization.) The increased accuracy of the

values of X overcame the faults described previcusly. Minima were

more easily obtained and easily defined from the values of the SSQGNC .

3.8. Element Removal

To ensure that they retain positive values, the variables are
transformed into the logarithmic domain. However, potential minima
with negative values are mapped into the solution space and the optimiza-
tion attempts to give these elements negative values. As the transformed
variables cannot be reduced to zero values, the necessary elements have
to be removed whilst having a positive value. As different networks
will require elements over a very wide range of values, it is not possible
to have a carte-blanche policy of removing elements with values below a
prescribed figure. (Practical considerations may require the values to

be within certain limits.) However, it is possible to inspect the gradients
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and determine the extent to which an element contributes to the

13 21 .. ;
network 4 . The program originally employed a method, devised by
Cutteridge””, which proved efficient with smaller networks in removing

elements prior to their reduction to insignificant wvalues. Cutteridge

stated that, (for the GN corrections)

'If the correction associated with a particular
element is negative over a certain number of
iterations, if the absolute value is increasing
monotonically and if the absolute value of the
differences on two successive iterations is
increasing monotonically, then the element should

be removed.'

k

i.e. if e denotes the correction of element j on iteration k
then
If , -g.k >0

3 I J J 3
and lgk__ . g,k-3] > [|j.k-3 _ ~ k-4

3 3 3 3 3 3 3 3

@ 6)

As a safeguard against unnecessary removals, the original program
required that Cutteridge's criteria should be satisfied on two separate
entries into the GN section”*'**, termed indications to remove an
element, before any element was to be removed. The modification to the
two-part optimization program,giving repeated CG iterations prior to

entering the GN , improved the efficacy of the algorithm and removed
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the necessity for duél indications. However, despite the repetition
of results which generally occurred, two indications were required in
the author's version of the pfogram before any element was removed.
{(This was primarily to increase the probability of locating the
correct minimum when difficulty was experienced at low error values -
see section 4.6.)

The criteria had beenvdeveloped primarily during the design of
five node, eleven element networks. As the number of variables is:
increased, so the variation of each variable per iteration will tend to
decrease. When applied to larger networks the criteria based on only
five consecutive iterations proved insufficient i.e. element removals
were indicated when all that was required was a significant reduction
in the Qalue of the glements. Torovercome this, the conditions of
equations 3.6 had to occur at five iterations, consecutive or
otherwise, with all the relevant corrections of magnitude greater than
one, before this was taken as an indication to remove an element.

Also, if a series of GN iterations héd ended because of slow progress,
if the criteria of equations 3.6 had been satisfied on at least one-
iteration and if the correction of the relevant element had a negative
Qalue of magnitude greater than one, then this was also taken as an
indication to remove an element. An element was also removed if the
correction of an element was so large and négative in relation to the
others, that a value of the linear search scalar greater than ten was
obtained. '

Problems.did arise with isolated T-networks connected to the
external nodes, as in Fig.3.6. With unsymmetrical networks, elements
would be unnecessarily removed (a resistor in this case). Of the two
similar elements connected tb nodes one and two, one would have an

increasingly positive correction and the other an increasingly negative
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correction. It is hbt possible to suppress element removals. If

this is attempted then either the corrections will increase in size with
no reduction of error,'or an element of small value will remain with a
very large correction which will ovérshadow the other values.

Minor problems also arose with the removal of elements which had
already been reduced to a very small value. An extra algorithm to
investigate the gradients (as described by di MambroZI) would be
beneficial in these instances as a supplement to'the original algorithms.
It should be noted that the error will invariably increase as a result
of the removal of a finite valued element. Also, pairs of elements
were removed, when necessary, to fetain the symmetry of a network.
Multiple removals, as described by Cutteridge15 and Hegazil4, were not

attempted.

3.9. Node Reduction

As has been stated earlier, the author predominantly employed a
strategy of design by building from a small start network, rather than
by reducing a large network. If at any stage the removal of a node
had been indicated, the program restarted from the position of the last
addition with the next best alternative. After most topological
additions the error will be increased to a high value. It was noted

that, on many occasions, node removals were required when

(1) the introduction of a new node had resulted in the
removal of one of the existing nodes .and produced an
equivalent network (i.e. the minimum error values

obtained were identical)

(ii) a local minimum had been obtained on the introduction of
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a new node (producing an increase in the error value),
resulting in the removal of this new node after the

addition of a further element.

Furthermoré, certain start topologies had elements and nodes removed
until the topologies were unable tb produce the orders of the
coefficients required. Consequently, on many occasions node removals
failed to produce a‘superior approximation to the requirements and the
auﬁhor felt that a significant'amount of time could be saved by
ignoring these possibilities, without seriously impairing the design
process. Examination of the solutions.to prcblems appeared to
indicate that, if a solution can be produced with n nodes, a very
similar solufion could be obtained with n + 1 nodes, etc. This
finding further validates the adopted strategy. However, node removals
were genuinely required on several instances and the facility should Be
included.

Node removals can be indicated in two manners. Firstly,
elements can be removed repeatedly by the normal methods until a node
has been effectively removed. For a node to be electrically meaningful
there must be connected to it either, two or more types of elements to
at least two other nodes, or, a minimum of three elements of the same type.
(If only three elements of the same type are connected to a node it is
preferable to perform a wye-delta transformation and remove a node in
this way. This will facilitate the removal of any of these three
elements, if required.)

Alternatively nodes can short out (i.e. all the elements connected
to the node increase towards an infinite admittance). This was
diagnosed by algorithms similar to those for indicating element remova1§
except in this situation the GN corrections are becoming increasingly

positive.
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3.10. Criteria to Activate Element Addition

Ideally, elemeﬁts are to be included only when it is known that
the current topology is unable to realize the requirements, namely,
when a global minimum of error has been located with the error above
an acceptable value. The location of a minimum of the error is
signified by a low value of the SSQGNC with no associated reduction
in the error value. In the original program a minimum was defined as
having a SSQGNC 1less than 10~7 with an error greater thén 1077 .

With some minima it was not possible to achiefe this value of the

SSQGNC (although increasing the computer accuracy will decrease the
attainable value), whilst on other occasions it was possible to significantly
reduce error after this SSQGNC value had been attained. Furthermore,

the possibility of locatiﬁg a minimum of error, that was not a solution,

with an error less than 10-7 was totally discounted. The author

developed several criteria to determine when a minimum had been located.

If the SSQGNC was less than 10~ 'C

and the error had been
reduced by less than one per cent by the last iteration, then this was
declared as a minimum. When minima occur at higher values of the SSQGNC
it is necessary to define a minimum by the oscillating values of the
SSQGNC with the error constant. A counter, ISS , was used to assess
when these fluctuations did, in fact, signify a minimum. For the value
of ISS to increase, the error must not have decreased by five per cent
over the last five GN iterations. Otherwise, if the SSQGNC was less
than 107} , but was greater than the previous value, and the error had
not been reduced by more than one per cent by the last iteration, 1ISS
was increased by one. At high errors the SSQGNC may fluctuate in a

different manner. Hence, if the SSQGNC was greater than ten, but its

last value was less than 10_1 , and if the error had not been reduced
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by more than one per éent bv the last iteration, then ISS was
increased by one. If 1SS attained a value of three then this was
defined as a minimum. Similarly, if the GN was halted because the
error was not decreasing, but ISS had a value of greater than zero,
then this was also declared as a minimum.

On occasions the optimization will be unable to locate a minimum.
The original program performed a maximum of one hundred GN interationms,
at which stage a further element was included. With the version
developed by the author, elements could only be included if the error,
at such a cessation of the optimization, had been reduced below the
value prior to the last addition. Algorithms were therefore included
to gauge how the optimization was progressing, to ensure that reduced
errors were obtained wherever possible.

A minimum of 60 consecutive GN iterations were performed
unless the variables were dependent (signified by large GN corrections
and repeated failure of the leaét squares algorithm). A further GN
iteration was performed after this point, up to an overall maXimum of

150 iterations, wh@un . ever

(1) the SSQGNC had been reduced on the last five iterations

by an overall amount in excess of three per cent,

or (ii) 1if over the last five iterations the error had been
reduced by more than one per cent and the SSQGNC by

an amount greater than five per cent.

Then, finally, yet further GN iterations were performed, to an
overall maximum of 200 , whilst ever the SSQGNC was less than one

and the error had been reduced by the previous iteration.
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Nodes were inéluded only when there were no possible element
additions. To ensure that the network'reﬁained sfable, node additions
were only attempted from positions declared as minima.  The acfual
mefhods for introducing an element and a new node are described in

Chapters 4 and 5 respectively.

3.11. Summary

The main theme of this chapter has been tb discuss the modifications
made to the original Algol program, follow thrdugh the development to the
final Fortran veréion and, where appropriate, to discuss the factors
which influenced the choice of strategy. The major modifications made

by the author are as follows:

(1) algorithms have been introduced to increase the flexibility
and efficiency of the program. The program will no longer
attempt to optimize networks which cannot be equated to

the required functions,

(2) options are now available which restrict the topological
modifications, thus improving the efficiency of the design
proceés. These concern symmetrical networks and what
are, nominally, networks with compact poles at zero and/or

infinity,

(3) the program can now design RLC networks as well as

RC networks,

(4) a restart strategy has been incorporated which performs
alternative additions when. with the original inclusions,
the optimization had failed to locate an error value lower

than that prior to the additionm.



(5)

(6)

)

(8

(9)

(10)

(11)

(12)
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tHe authbr has included algorithms to both determine the
number of common factors required and fo vary them whereas,
originally, the number had been set to one or zero by the
initial data and had remained at that value irrespective

of the actual requirements,

the efficacy of the two-part optimization program has

been improved,

the efficiency of the linear searches of the optimization

routines have been improved, significantly improving the.

performance of the package,

the criteria for the removal of elements have been improved,

algorithms have been included to recognise when a node

removal is required,

the author improved the criteria which determine when

topological additions are required,

an alternative, improved method has been developed for

the introduction of elements (detailed in Chapter 4),

an effective method for node addition has been developed
(Chapter 5) whereas previously the number of nodes had

remained constant.
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FIGURE 3.1: MODEL REPRESENTING A
LOSSY CAPACITOR

4
FIGURE 3.2: SYNTHESIZED NETWORK
MATCHED TO FIALKOW'S FUNCTIONS

1

C 21.03 G 0.6984
= = .5044

C,, 5.032 .6

C35 = 3.164 05 = 7.739
=2.285 = 50.66

45 03

Cgg = 0.8468 o4 " 9.818

Cg® = 0.5556 G17 = G = 0.2778

G34 = 1.290 12 0.02778

Common factors = 1.00 and 1.42

FIGURE 3.3: REALIZATION OF LOCAL'S FUNCTIONS



FIGURE 3.4; SYNTHESIZED
NETWORK MATCHED TO
FAILKOW’S FUNCTIONS

FIGURE 3.5: RLC NETWORK
MATCHED TO FIALKOW'S
FUNCTIONS

FIGURE 3.6: T-NETWORK CONNECTED TO EXTERNAL NODES
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CHAPTER 4

ELEMENT ADDITION

4.1. Introduction

For a fopology of the order inQestigated (i.e. containing up

to ten nodes) the two-part optimization prbgram as employed in this
research is capable of locating the solution values, if one exists,
from arbitrary starting values; However, it is unlikely that a
solution topology will be cﬁosen to start the design of a network not
previously solved. The better approach at this stage, rather than
repeatedly opfimizing different networks, is to include extra elements
when the best approximation for the synthesized network has been
achieved, whilst retaining the original values of the existing variables.

| Element addition, which is given priority over node addition, is
activated by criteria described in section 3.10. These relate to
situations where the rate of progress is slow as well as to the normal
situation where a minimum of the error has been located.

The original program did contain a method for element addition

(based on the optimum values for the introduction of a virtual element33)
and its efficiency is discussed. This method had been used at Leicester
14,16,17

with some success Two other possible methods for element
addition are discussed, including a steepest descent method similar to

that employed by Rohrer48. This method had been found to be of limited
use when applied to direct matching of real frequency characteriétics and
pole-zero matching by Wrightlz. A more successful method based on the GN
algorithm was devised by the author. This method is similar, in many |

13,18

ways, to a method devised by di Mambvo based upon the Levenburg

algorithm.
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As the components ére represented by idealized linear models,
the program can only be considered as an initial step in the ultimate
goal of automated network design, produqing results which are probably
of greater interest to the network theoretician than the engineer.

It was felt that, because of the idealized nature of the components,
‘the techniaues developed would only be fully justified if exact
realizations, rather than quasi-solutions, were obtained.

Furthermore, it seems reasonable to postulate that difficulties may
arise when larger networks are considered. For these reasons, consid-
erable effort was directed to the development of techniques to overcome
the difficulties encountered with element additions, even after a good
quasi solution had been obtained. Although several of these techniques
did achieve a degree of success, nohe were infallible. However, later
results indicated that these difficulties may not be so predominanf as
was thought at one time. Many successful runs were obtained, some of

which are contained in Chapter 6.

4.2. Element Addition Based on the Optimum Values for Virtual Elements

It is possible, with several error functions, to derive expressions33
for the value of a virtual element which will reduce the error By the
maximum amount and for the corresponding error value. These are termed
the optimum values (see Appendix 3). With the remaining functions a linear

search has to be employed. Researchers at Leicester”’16

had considered
these optimum values to form the basis of the best methods for element
addition. It was postulated that, if the optimum element value was
positive, then the element would remain positive when all the values were

optimized. This concept is similar to that for the steepest descent

methods but is more powerful in that quantitative measures are produced,
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whereas the gradient'of a zero valued element may not be representative
of the situation as a wholelz. This method was originally devised by
Cutteridge33 who suggested that the best virtual element to include was
that which would reduce the error by thé greatest amount on inclusion
at its optimum value. This criteria was subsequently modified slightly
by Krzeczkowski16 and Hegazil4

The relative reduction in error produced by an optimum valued
element addition will decrease as the error F 1is decreased. Similarly,
the optimum element value will decrease to a value much smaller than that
required at the next minimum of error (for typical.values see Table 4.1).
It is specified that the error F must be continually reduced and
consequently, at low errors, the optimization can progress at only a
pedestrian rate. In such cases thelintroduction of new elements at
values above the optimum values (thus increasing the error initially) will
substantially aid the optimization. -However,‘as quantitative measures
for the requifed values of the new elements cannot_be obtained by this
method, empirical methods have to be eﬁployed. ' (Such as setting the
new element to a value equal to the mean value of the current elementsl4.)
Introduction of the new element at an underestimated value will produce
little benefit, whilst introduction at an overestimated value can
completely disrupt the network, often resulting in unnecessary element
removals. It is probably as a result of the slow reduction in error
experiénced with elements introduced at lowvvalues that Krzeczkowski16
based his element additions on the virtual element with the largest
optimum value.

The efficacy of this method of element addition is reduced when
an element has to be included from a position where the optimization has -
failed to locate a minimum. This may occur because of, say, a poor

topology, or, localized difficulty with the optimization. As has been
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stated, at a minimum with a lower error value, say‘less than »10-2 ,
there is little difference between the error value at the minimum and
that when the virtual element is included at the optimum value. Away
from a minimum a large disparity appears in the values, influenced by
factors which could be altered by the elements which are aléeady present.
Although an element which is able to provide a better approximation may
be chosen, it is more likely that the new element will either be removed,
or that the optimization will result in the unnecessary removél of other
elements.

At even lower values of the error, the optimum values calculated
become meaningless. (Indicated by negative values for the optimum
error values.) The question arises, "At what stage ‘do the values
become meaningless?"; Most importantly, "When will the optimum element
values be of incorrect sign?"; There are two questions to coﬁsider.

Are the optimum values so small that, firstly, inaccuracies of the
derivatives can alter the sign of the optimum element value and, seéondly,
are the minor variations of the existing elements from the exact values
at the minimum of any consequence?

To summarize, the introduction of the element (at its optimum
value) which produces the greatest reduction in the error works very
effectively at high errors (greater than 10-2). At errors below this
value the elements which can improve the approximation can be determined.
However, introduction of the element at its optimum value will cause
the error to be reduced only very slowly, and a better value at which to
introduce the element can only be estimated. Then, at an error above
the best that the optimization can achieve, the optimum values become
meaningless.

A further point to consider is that the variables may no longer

be independent, even when the number is significantly lower than the
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number of ;oefficienté. This is undetectable from the optimum values
but is an important consideration because, althoughlthe CG élgorithm
will perform normally, the GN algorithm will be ineffectual.

Consider as an example the values of Table 4.1, The optimum
values are positive for all the virtual elements except for the symmetrical
pair of resistors. R01 and Ry, « As indicated; all the other virtual
elements can be included to produce an improved approximation to the
network. ‘For this and several other topologies synthesizing the network
described by Fialkow, it is possible to replace the resistor R04 by
the elements Roq and Rozi, and produce an equivalent network. As

this is the global minimum, nothing can be gained from the addition of

this pair of elements, thus validating the negative optimum values. -

4.3, Element Addition by the Method of Steepest Descent

It should be noted that this method was only investigated
because the results obtained using the optimum value method of section
4,2 initially appeared to be worse than they actually were. Many
element additions signified.by this method appeared to be incorrect but
in fact failed merely because of the values at which they were introduced.

An alternative method, based on the gradients and similar to the
steepest descent method of Rohrer48, was developed. The steepest
descent method had not Been examined previously at Leicester in association’
with a coefficient matching technique, but had been examined by Wrightlz.
Wright found that he could only add elements successfully to the simplest
of networks. |

Any new element should be included on the pretext that it should
contribute something extra to the network that the original elements

could not produce. In an attempt to delocalize the effects of the
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steepest descent method, the gradients of the individual érror functions
were considered. Originally, the virtual elément included was that
which produced the largest gradient of opposite sign for the individual
error function with largest modulus. This algorithm greatly favoured
elements connected to nodes 1 and 2 but did give useful additioms.
Slight variations to this theme were also investigated but the
results obtained were inferior to those obtained with the method using

optimum values and would share similar limitatioms.

4.4. Element Addition Using the GN Algorithm

At low errors, the addition of elements at the optimum value

to a structuré optimized to the minimum of error can produce a large

GN correction for the new element and a correspondingly slow rate of
optimization, It waé noted that on some occasions this large correction
was positive in sign, whilst negative on others. Also, when elements
had been included at larger values,., say 10_'3 , to speed the
optimization and when even higher values had been required, a large
positive correction had been reduced by a factor similar to the increase
in the value of the element. Closer examination revealed that, for
the linear elements examined in this thesis, the GN algorithm, which
approximates to the first two terms in the Taylor Series, was sufficient
to give approximate values for the new minimum with the virtual element
included from an existing minimum. This provides an ideal platform
on which to base a strategy for element addition. If the correcticn
for the new element is positive, then the next minimum will occﬁr with
this new element at a positive value, hence, this element is a possible
addition. |

Although the optimization was performed in the logarithmic domain,
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the program still contained variables in the natural domain. The
Jacobian and the corrections were calculated in the natural domain and
the transformation to the logarithmic domain was carried out as follows.
Firstly, each correction was divided by its corresponding element value.

Then the elements were modified as below;

= x"""  * expCXoen'?) for all i (4.1)

where,

the superscript k denotes the values at iteration k ,
X denotes the value of a variable,
5 denotes the value of a transformed correction
and > is a scalar which minimizes the error function (Phe linear

search scalar).

The approximate value for the new element is therefore obtained
by multiplying the modified correction by the corresponding element
value, and adding this value to the original optimum value. It can be
seen from Table 4.1 that theseapproximate values are generally of the
correct order of magnitude. (In this case the approximationsare
correct to within a factor of two and are all underestimates.)
Although these results were obtained for a small network with only twelve
variables, this approximation holds for networks of twice this size and
possibly larger still. Discrepancies only occurred between the two
values when elements were introduced from local minima. Additions from
such positions are generally productive, either successfully incorporating
the new element or removing it to produce a better minimum. It can also
be seen that the values for the new elements extend over a wide range

(from 10 ~ to 0 .2), making empirical choices of the element values very

difficult.
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As the corrections are calculated initially_in_the natural
domain, it is apparent that mapping to minima with negative values can
occur, If a negative value was indicated for the virtual element,
then this element was not considered for addition. However, there
will be minima with a positive valued virtual element but with one of
the other originally positive elements becoming negativé.- For the
network of Fig.4.1, if the resistor Rps is included, an exact solution
can be realized with a negativé value for Rpy . It is usual to find
in these instances that there is a better minimum (than prior to the
addition) with the negative element set to zero (i.e. removed).

Hence, in general, when this situation arises it does not cause signifi-
cant problems. With this example a minimum of value 1.84 x 10-8 is
obtained from which several alfernative realizations can be produced.

The optimum values were used to determine which of the possible
eleﬁents to include. The element which produced‘the greatest reduction
in error invariably proved the best addition at low errors but
occasionally, at high errors, elements were included only to be removed
after the subsequent addition.

To facilitate the programming (and because it is not pdssible to
divide by zero to transfer to the logarithmic domain), the virtual
elements were included, in turn, into the current topology at the
initially low value of 1078 . The network was analysed and the
optimum values calculated. If the optimuﬁ element value was positive
the element was set to this value. If the optimum value was negative,
with magnitude less than 1078 , then the element was reset to the
absolute optimum value, At this stage the GN corrections were
determined. Provi;ionally, a positive correction for the virtual

element was stored for possible element addition and a negative correction

stored for possible node addition (see Chapter 5). The error values
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used to determine the order of addition were those calculated at this
stage and not those previously estimated (i.e. the optimum error value)
Occasionally, when a virtual element is introduced into a
network the elements will no longer be independent. Such occurrences
are characterized by large GN corrections. As large modifications
may genuinely be required, criteria have to be developed to distinguish
between the two situations. The element was rejected as a possible

addition if any of the following conditions were violated:

(1) if three or more of the corrections for the original

elements had values either

(a) greater than 100

or (b) less than 100

(2) if the approximate value for the new element was greater
than that of any of the existing elements and if two or
more of the corrections for the original elements had

values either

(a) greater than 100

or (b) less than 100

Problems in discerning between the two situations are reduced
as the computer accuracy 1is increased. However, when elements are
to be included from a position which is not a minimum, the dependence
of the variables is not so clearly indicated.

Elements were included at the optimum values unless their GN
corrections had a value greater than ten, in which case the approximate
value indicated by the corrections (termed the indicated value) was

used.
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This method of element addition is similar to an apparently
successful method developed by Cutteridge and di Mémbrols’ls. Their
method, however, was based upon the Levenberg algorithm for optimization.
This can approximate to the direction of steepest descent and is thus
able to consider many possible additions simultaneously. The
cdrrections.were repeatedly analysed as A , theldamping factor, was
varied and the element giving the largest correction included. ' Multiple
additions were thought to be possible but did not generélly prove
beneficial and so were avoided.

In comparison with the method developed by the author, this
method would appear to be slightly inferior. First of all, the author
was able to perform multiple additions (section 4.7). Also, when
the variables become dependent the corrections increase in size. Hence,
it would seem to bé possible, especially with the large number of
elements considgred simultaneously, to choose an element of this type
rather than the ohe which shows the greatest tendency to go positive;
Furthermore, inspection of Table 4.1 shows that the element which
exhibits the greatest tendency to go positive when the GN algorithm is
invoked (i.e. the largest indicated value), is the resistor Rgs which
is, in fact, the only possible element addition which produces a local
minimum rather than a solution, Using the author's method, this
element would be the last element to be inéluded.

One problem which could not be detected from the GN corrections
was that on occasions (at high errors) new elements would immediatély
short out (as described in section 3.9).

Elements which necessitated the introduction of an extra common
factor were handled in a slightly different manner. Initial investi--
gations were conducted by employing a linear search to determine the

optimum values for the common factor and the element. (Once the
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common factor has beén assigned a value the optimum element value can
be determined.) However, almost invariably (with the exceptions
occurring when the error was particularly high) the search merely
produced two very -small values. The common factor and the element
were therefore set to the arbitrary values of one and 1078 s
respectively. These arbitrary values increased the error value and,
consequently, a positive GN correction in this sitﬁation indicates
only the possibility of a minimum of error below this new high error
value and not below the original minimum error value. Also, the
introduction of the commoﬁ factor means that the GN analysis is not
performed from a true minimum, resulting in a further reduction in
the efficiency of the method. However, the derivation of the GN
corrections can be justified as an approximate value for the new element
is obtained, thus facilitating the location of a better minimum if
one does exist.

No elemént addition was accepted unless, on its inclusion, an

error value below that prior to the addition of the new element was

located. If not, the program restarted with an alternative addition.

4.5, The Influence of the Logarithmic Transformation and the

Indicated Values on the Speed of the Optimization

Consider as a specific example the introduction of the three
elements Ryp, Cys and Rp3 to the network of Fig.4.1. The GN
corrections calculated on the introduction of the elements at the
optimum values are shown in Table 4.2. The modifications required to
realize a solution increase in the order Rjs , Cus and Rgsz .

Elements were introduced originally at the optimum value and the

optimization was performed in the logarithmic domain. The elements
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were reintroduced firstly, with the optimization performed in the
natural domain and, secondly, with the elements set to the indicated
values. The results are given in Table 4.3.

The .additions as performed in the original version of the program
were obviously unacceptable. In ali but the most trivial of examples,
as with the addition of the resistor R12 , the logarithmic transforma-
tion was not a significant factor in the poor performance of the
optimization algorithms and should be retained for its advantagéqus
properties. An obvious improvement was obtained on introducing the
elements at an approximation to its value at the subsequent minimum,
(i.e. the indicated value). These results were tyﬁical of those
obtained with all the networks examined. In general, the lower the
error value prior to the element addition, the greater is the benefit

obtained by including the element at the indicated value.

4.6. Two Examples Where Difficulty was Experienced with Element Addition

In the main, difficulties with the element addition appear to arise
at low errors when the introduction of the new element does not produce a
large reduction in the error. Two specific examples are given in
Figs. 4.2 and 4.3. Both are synthesizing Lucal's functions‘(éqns.S.l).
Figure 4.4 relates to an alternative initial path taken by the example
of Fig.4;3.

With example 1 (Fig.4.2) no difficulty was attached to the location
of a computer realization. = (There are in fact three realizations

readily obtained by the introduction of the elements R and C57)

127 C12
The difficulties arose with the attempted introduction of other possible
element additions. When included in the normal manner, at the indicated

values, all the other possible elements were immediately reduced in value
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by several Qrders of.magnitude. Whilst some were removed, others
attempted to recover from these small values. The problem with this
example appeared to arise because of the close configuration of the
elements.

The major problem with example 2 (Figs.4.3 and 4.4) occurred on
the addition of the capacitor C57 . The problem here is of removing
the large element C05

Although similar problems occurred with other element additioms, .
the subsequent discussion of possible methods to facilitate the
introduction of elements is fécused upon these two examples.

It should be noted that these faults did not apparently arise
because of any inaccuracy of the analysis. Runs from identical start
points but with different levels of computer accurécy differed slightly
and, some, but not all, succeeded in locating the minimum of example 2,
Fig.4.3d. However, the runs with the highest accuracy were not always
thevsuccessful ones. Comparison of é large sample of runs showed
that all accuracies were equally likely to proceed successfully, the
accuracy of all being sufficient to locate the minimum when the GN
proceeded along a path which led to a correct minimum. As a result of
these findings, little research was undertaken into possible methods of

increasing the accuracy of the analysis routines.

4.7. Multiple Element Addition

After an element addition has been determined by tﬁe methods of
section 4.4, it is possible to determine a possible second addition by
introducing the first element at its optimum value, and re-examining,
in a similar way, all the remaining virtual elements. For two elements

to be considered for simultaneous addition, both must have positive GN



corrections and the independence of the variables must be retained.

The author found that any two element additions determined in this
manner would invariably be identical to any two consecutive, individual
additions; -~ In theory the process can be applied repeatedly and three
elements have been simultaneously included to produce a solution (see
section 6.7).

The process (examined with many exampleé) appears to be limited
by element removals. Consider example 2, Fig.4.3. It is possible to
add the two elements VRIS and C57 to the network of Fig.4.3a
apparently because no removals are required between the two additions
when performed separately. When the simultaneous addition was performed
the program had no difficulty inm removing the element C05 . However,
no second element could be found to simultaneously édd with the element
Cys to the network of Fig.4.3b. Similarly, when the alternative
route of Fig.4.4 was taken, it was not possible to add a second element
with the resistor R67 to the network of Fig.4.4a. Hence, it will not
always be possible to manoeuvré around a position of difficulty.

A by-product of multiple additions is the possibility of evolving
solutions more rapidly. At low errors it may prove substantially
quicker to determine a second addition than to optimize ; further topology
requiring, say, 100 GN iterations. Alternatively, time may be
wasted searching for a further addition whiéh does not exist.

This method will not help t§ locate difficult minima of the same
kind as in example 1. In fact, from the previous minimum to that
shown in the figure (where the resistor R56 is included), the only
possible double additions indicated are the three which produce computer
realizations. This indicates one drawback with multiple additions.

_ Mény poésible additions, which may lead to what are superior approxima-

tions when factors such as sensitivity are considered, are not signified.
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Other disadvanfages were noted. At higher errors (greater than
10’2) elements were iﬁcorrectly signified as possible additions. On one
occasion it appeared that four elements could be included whereas, in
fact, all four were removed and the optimization located an alternative.
minimum with a reduced error value. On a further occasion a secoﬁd
element was indicated as a possible additiqn when the addition of the

first alone was sufficient to produce a solution.

4.8. Detailed Use of the GN Corrections on Restarting After

Element Addition

It was_outiined in section 4.4 that, when a virtual element was
included at the optimum value to an existing minimum of error, the GN
corrections indicated the approximate values of the variables at the
subsequent minimum. The effect of modifying the values of some, or all,
of the existing variables to the approximate values indicated for the
subsequent minipum (as opposed to leaving them at.the values prior to the
new element addition) was investigated. As the number of variables
increases, so the accuracy of these approximate values decreases. With
the two specific examples outlined previously, the GN corrections for
the existing elements proved of little value.

When minima were located with the element additions of example 1 ,
the relative changes in the values of the existing variables were small.
In fact, the CG section modified the values by an amount greater than
the changes actually required, and consequently, the effect of any
initial modifications to the.values in relation to the GN corrections
was immediately nullified.

The values of the variables at the minima for the topologies of

Figures 4.3(b) and 4.3(d), and the values of the GN corrections with the
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subsequent element addition included at the optimum value, are given
in Table 4.4. It can be seen that three significant changes occurred
in the values between the two minima:

(i) the capacitor C05 was removed, i.e. set to zero,

(ii) the capacitor C0 was increased in value by a factor

7

of twelve,

(iii) the resistor R17 was increased in value by a factor
of thirty.

The element removial was not indicated by the initial GN analysis as
the c§rresponding correction was of value minus 0.5 whereas, for a
negative valued element the correction should have a value of less than
minus unity. Similarly the large increases required in the other two
elements were not apparent, possibly because the values were shifted
by the removal of the element. |

In an attempt to establish which elements would have to be
removed subsequently, elements with relatively large, negative GN
corrections (less than minus 0.25) when a GN analysis was performed
with a virtual element included at the optimum value, were reduced in
value and the GN corrections recalculated. (Would the GN corrections
become increasingly negative if the removal was required?) However,
once the elements constituting the original minimum had been altered, the
position of the subsequent minimum, as suggested previously, was no longer
indicated by the GN corrections. This failure to indicate the
subsequent minimum had not occurred when the virtual element had been

increased in value (sections 4.4 and 4.10).
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4.9. Discussion of Alternative Values at Which to Add New Elements

Although the indicated value does provide a good approximate
value for the new element, on occasions the new element will be driven
to a low value and,beither removed, or, the sneed of the optimization
reduced to an unacceptable level. Slight modifications to the
indicated value, say by a factor of 10 , made little difference. Only
occasionally, when apparently by chance the optimization proceeded by a
particular route, were the difficu}t minima located when a modification
of this magnitude was made.

At the suggestion of Dr. Cutteridge, the element C57 of
example 2 was introduced at a value 10°® times the indicated value.
This produced large GN corrections of opposite, oscillating signs
(approximate magnitude 105)'for the elements Cg, and Cyg . Gradually
the element C05 was reduced in value and removed, thus producing the
correct topology. However, the new element retained an'inordinately
large value giving a situation similar to additions at the optimum value.
Namely, one large correction (negative for the element 'C57) dominated
and the optimization proceeded at an unacceptably slow rate.

With the particular example described above, the correct element
had been removed. Further examples were investigated to establish
if this treatment would repeatedly perform in this manner, i.e. to indicate
which elements it is necessary to remove. However, the correct
elements were not removed when an element rémoval was required and,
furthermore, removals still occurred when none were necessary. This

procedure was therefore of little value, generally.



4.10 The Behavipur of the GN Corrections When the Value of the

‘Virtual Element is Increased

When a virtual element is included at its optimum value at a
IGWValuedﬁﬁﬁimum of error, a possible element addition is indicated
by a corresponding large, positive GN correction. This large
correction will dominate the optimization which consequently proceeds
at a slow rate because the error must be continually reduced. If the
value of the virtual element is increased by a factor of ; say , ten s
then the GN correction shoﬁld decrease by the same factor if the
same minimum is still being indicated. |

Considgr the addition of the capacitor C57 to the network of
Figure 4.3b. If the optimum value of 4.73 x 107° is increased by
factors of ten, the same minimum will be indicated until the value has
been increased to 4.73 x -4 . At this stage the dominant GN
correction has been reduced to 420 and the error increased to 2.11 x 10>
from 6.53 x 10°° . There would seem, therefore, to be much greafer
scope for larger modifications to the elements whilst the error is
reducing. However, in practice, the improvement to the optimization is
not sufficient to be of any consequence, at least in the logarithmic
domain. When the program was modifed to operate in the natural domain,
the scope had been increased sufficiently to allow a step length of A
equal to 0.25 to be taken. After this iteration, however, the variables
were in an undefined region of space and the optimization converged onto
the dominant minimum, reducing the new element to a negative value.
(Again, thellogarithmic transformation had not proved detrimental.)
This example was typical of the results obtained whenever this procedure

was invoked.
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4.11 Element Addition with the Value Fixed Initially

At low errors the optimization is aided by including the new
elements at the indicated value, thus increasing the initial error.
Hence, it ié possiﬁle for the optimization to reduce the value of the
new element, possibly even remove it, and aftempt to relocate the
previous minimum. It is known that this indicated value will be a
good approximation to the value of the element at the next minimum.

It should therefore be possible to fix the new element at this value,
optimize the other variables and force the values of the other variables
into the region of vector space surrounding the required minimum.

Initially the constraints were released wﬁen the error had

3 .
These values proved

reached arbitrary values of 10°% and 10
to be too high, the new element being removed once the constraints were
released. A more successful policy was to release the constraints on
the value of the new element when the error'had been reduced below a
value one hundred times that of the previous minimum. ~Similarly, the

censtraints were released when a topological modification was indicated.

Four possible element additions to the network of Figure 4.2 were

examined. These were the elements Ras, C16 s Clu and Rau , all of
which had failed with the normal method of addition. Of these four, -
two (R36 and Cls) were successful. A third (Clu) was successful when

the start values were modified as indicated by the original GN corrections.;
The fourth example persisted in removing the element R56 but, when this
operation had been performed, the optimization was unable to locate a
better minimum. (The difficulty may have been due to the series-parallel
structure of the new network.)

" The additions to the networks of Figures 4.3b and 4.3d were also

performed by this method. Both of these examples could be regarded as
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successful as the 0ptimization reduced the value of the elements which
should have been removed to very small values. The fact that these
elements were not actﬁal]y removed was due to the limitations of the
elemen; removal algorithms, rather than a failure of the method.

Consider in more detail the addition of the element C,, to
the network of Figure 4.3b. This requireé the removal of the é;ement
Cosi.i.e. with no constraints the minimum occurs with a negative value
for the element C05 . When the element‘ C57 was constrained t6.its
indicated value, the minimum was shifted to a position where the value
of the element C05 was small but positive. Similarly, it is not
difficult to envisage a situation where an element which has a positive
value at the true minimum, hasva negative value at the minimum with the
new element fixed at the indicated value. This could cause problems
with the implementation of a method which was generally found to be
successful. Slight variations to the indicated value will shift the
position of the minimum and possibly shift any negative valued elements
into a positive region. However, this could prove difficult (as with
the aforementioned addition of the new element R3L+ ) and it will

possibly be quicker to by-pass an addition which causes such problems.

4.12 Simultaneous Addition and Removal of Elements

This approach is only relevant to the type of difficulty
encountered with example 2.  With this exémple difficulty is ekperienced

with element removal on two occasions, namely,

(1) attempting to reach the network of Figure 4.4c from
that of Figure 4.2b i.e. removing the resistor
R27 (original value 0.205) after the addition of
the resistor R67 (final value 0.548),
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(ii) attempting to reach the network of Figure 4.3d from
that of Figure 4.3c, i.e. removing the capacitor
CO5 (original value 1.21) after the addition of the

capacitor C57 (final value 0.195).

In both cases the elements included and removed are of the same
type, are connected to a common node and have similar values. This is
possibly the root cause of the problem, Also, the second case requires
the removal of an element of much larger value than the new élement,
possibly indicating why this removal is the more difficult to perform.

The following strategy was adopted. Any elements indicated as
possible additions which on addition did not produce a lower error wére
stored. Wheh 21l of the possible element additions had failed, the
program reintroduced the elements whilst simul taneously removing, in
turn, one of the several elements of the same type connected to a node
also connected to the new element. This strategy proved successful
with several examples which synthesized Lucal's functions (Section 6.5).
This method failed, however, when the same start topologies were used
to synthesize the similar network functions of equations 6.4, 6.6 and
6.7. However, it is possible that on these instances the GN was
mapping to a minimum with a negative valued element which did not have
a minimum with an error lower than that of the previous minimum when

the negative valued elements were constrained to a value of zero.

4.13 Element Addition with the Existing Element Values Reset Arbitrarily

This method is also of greater significance when the difficulty
arises from diagnosing necessary element removals. When the network
of Figure 4.3c was restarted from values of unity, the element C05 was

removed and the minimum located. However, completely arbitrary element
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values of this type wiil not alway§ be ideal. (In this example the
required values are all in the region 0.01 to Sd ) It is also

possible that from such arbitrary values, the optimization will fail to
distinguish between situations where an element genuinely requires to

be removed or, merely reduced by an order of magnitude. (As with the
T networks of Figure 3.6 mentioned in Section 3.8.)

An alte;nativé to completely arbitrary values can be obtained by
using the values from the pfevious minimum. This should -have a similar
effect to the successfui multiple additions épproach. When the element
values of the network of Figuré 4.3a were substituted for those of
Figure 4.3b, the optimization again proceeded successfully. However,
replacing the values of Figure 4.4c by those of Figure 4.4a‘ failed
to produce the desired effect. This was possibly because node 7
had just been included and so these three elements could not be reset

to previous values.

4.14 An Altermative Optimization Algorithm

This algorithm was included as an alternative to the CG
algorithm. Based cn the method of steepest descent, it considers

the second order derivatives also. The algorithm was devised by

CutteridgeandHenderson4O’42

Dowson4% was actually used. The basis of the method was described

but an improved version, developed by

in Section 2.7.

This method had proved to be considerably more powerful than a
conventional, fifst order gradient desceﬁt method. Using this algorithm
alone, the solution had been obtained? from many starting values, for a
transistor modelling problem with eight equations and eight unknowns.

This problem had previously proved too difficult for a two-part
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optimization programvconsisting of a gradient descent method followed by
a Newton-Raphson algorithm36. |

Modifieation of a variable, X , shifts the search direction
from the steepest descent through to the steepest ascent direction.
Discontinuities in the error produce several local minimew for various
values of A . Usually, the algorithm proceeds from the minimum which
has the lowest overall error value, restarting from alternative minima
should the progress prove slow.

The results obtained with the lumped linear networks examined in
this thesis were rather poor compared_to those with the transistor
problem.  With the increase in the number of variables and the extra
computation required to determine the values of the derivatives, each
iteration required an inordinately leng.time to perform. An example
of an RC network with 7 nodes and 17 variables nerformed only 7
complete iterations in 600 seconds on an ICL 1906A machine.

Also, the algorithm did.not show a tendency to move to the next: minimum
after the addition of a new element, as occurs with the GN algorithm,
the effects being rather localized. Consecutive itetations were
performed using the new algorithm on the usual situation, with the new
element introduced at the indicated value, and the other variables at
the values immediately prior to the addition. ~The net effect_appeared
to be that the initial elements were modified only slightly to cempensate
for the introduction of the new element.  There was no apparent
attempt to shift the variables to the vicinity of the new minimum.

The intreduction of the element CS7 to the network of Figure»4.3b
was examined in detail. When individnal iterations were followed by
blocks of GN iterations, it was the removal of the new element C57
which was indicated and not that of the required element C05 . The

values of the variables at the alternative minima (with the error reduced)



were examined. On no occasion were the three large changes required

for the next minimum reflected in the values. (i.e. removal of C05
and large increases in the elements C07 ahd R17)
4.15 Summary

The capabilities and limitations of the original method for
element addition were discussed and the development of a superior method,
utilising the GN corrections,.described. This method not only
determines whether the introduction of a particular element‘is feasible,
but also indicates the approximate valué of the new element at the new
minimum. Hence, the major limitation of the original method of using
the optimum element values was overcome.

Occasionally, the initial increase in the error resulted in the
removal, or reduction to an unsatisfactory value, of the new element.
Several methods to overcome such difficulties were briefly examined.

The method which would probably prove effective with the greatest number
of examples was optimizing with the new element initially fixed at its
optimum value. However, difficulties can arise with this method, and
an automated system to overcome all eventualities would probably involve
an extra degree of difficulty than the other algorithms.alreadyvin fhe
program.

Although these difficulties occurred with sufficiently few
examples to enable many realizations to sucéessfully evolve, such
occurrences will presumably increase as larger, more difficult problems

are considered.
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| Virtual Optimum GN Indicated Actual

'Element (s) value correction value value
1201 -2.08 X 10 -6.11 X 10
~03 3.07 X 10 i 2.55 X 10~ 7 85 x 10"4 1.39 X IQ-I
=10 | *
5 9.55 X 10 4.31 X 10% 4.12 x 10-1 I 1.26
-12 |
2.16 xX 10 5.51 X lo"™ 1.19 x 10"* 2.50 x 10"~
-10
3.82 x 10 7.12 X 10+ 2.72 X 10-® ' 5.85 X 10-®
~13 4
2.60 X 10 3.16 X 10 8.22 X 10"~ 1 1.94 x 10-5
5.87 X 10 4.70 X 10~ 2.76 X 10-2 5.38 X 10-2
1.45 x 1077 1.88 x 108 2.72 X 10-~ ; 4.39 x Q-4
-13
4.66 X 10 3.83 X 10® 1.79 X 10-7 1 3.50 x 10'7
-10 4
~4 3.17 X 10 5.05 x 10 1.60 x 10-5 1 3.37 x 1 -5
-10
2.90 x 10 4.76 X 10# 1.38 X 10'* i 2.92 X 10-*
4
9.90 X 10 8.14 x 10 8.05 X 10-5 1 1.74 x IQ-*
4.57 X 10 1.21 x 100 5.52 x 10-2 § 1.17 X 10"
520 x 10 4.51 x 108 2.34 x I0-1 5.57 X IQ-T
Th?.s is the value at the quasi solution of error 1.86 x 10 and
not that at the solution with the element having a negative
value.
TABLE 4.1. VALUES RELATED TO THE ADDITION OF ELEMENTS TO THE NETWORK

OF FIGURE 4.1.
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~13 = 223 = I'SO X 10

cqg3 = 5.97 x 10™M1
Cos = 4.54

CA0’4 = 2.00 X 10
Common factor = 1.12

Error = 3.13 x 10 *

14

'35

%5
'04

= 7.00 x 102

5.34 X 10™!
2.27

1.02 x 107"

FIGURE 4.1; OUAZI REALIZATION OF FIALKOW'S FUNCTIONS

7
(o] = 21.0

13
(o] = 3.79

36

= 2.04

C46 0
(o] = 5.09

24
Cc =6.87

05
Cgy = 0.568
G17 =0.391
Common factors = 0.348,

7

Error = 8.80 x 10

.18

Possible RC element additions:

C
12 14 16 23 26

0.291
4.03
3.22
0.690
9.41
50.1

1.86

C57’ C'12 34 36 46

FIGURE 4.2: QUAZI REALIZATION OF LUCAL'S FUNCTIONS
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(a)

(b1
Ce)
a
(e)
(£)

Cl3
C34

~24
Co 7
C57
C56

CQ6

ADD G
ADD c;,
REMOVE Cg5
ADD Gg5

REMOVE G35

14.0

6.32
0.921
0.739
1.64

97

Final error = _6
1.94 X 10

6
Final error = 6.53 x 10
Final error = 9.64 x 10
Cc 3
Gy = 16.1
ce7 - 0.0927
c26 3.81
Ccqg3 = 39.2
Co4 = 10.8
ce5 2.10
c1g — 0.0822

Common factors = 2.00 and 3.00

FIGURE 4.3:

EVOLUTION OF A NETWORK REALIZING LUCAL'S FUNCTIONS



(a)
Final error = 6.92 x 10
ADD
®) G67
(c) REMOVE G27 Final error = 6.53 x 10~®

Network identical to that of Figure 4.3(b)

FIGURE 4.4:

EVOLUTION OF A NETWORK REALIZING LUCAL'S FUNCTIONS
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CHAPTER 5

NODE ADDITION

5.1. Introduction

It is imﬁrobable that the start topology chosen will prove
capable of realizing the desired network response exactly and it is-
therefore necessary to develop methods for modifying the network
topology. Criteria were developed to determine when topological modi-
fications could best be made. These basically involved detérmining
that either, the current network had attained. the values which produce
it's best approximationAto the required network, or that the optimization
was not broceeding quickly and efficiently.  These criteria were
detailed in section 3.10.

Later, an efficient method of element addition was developed
(section 4.4). Element additicn is to be preferred to node addition for
two reasons. Firstly, it introduces fewer vafiables, which aids the
optimization, and secondly, the nodal admittance matrix remains small,
thus miﬁimizing the éomputation required in the analysis. The introduc-
tion of elements confined within the existing topology may prove to be
insufficignt. The addition of new nodes may be required because, either,
the network cannot be realized with the minimum number of nodes apparently
possible, or, the start topolégy is far remo?ed from a possible solution.

In this chapter, several possible methods for the addition of a
node are reviewed and examined, some of which had been suggested previously
and others devised by the author. As the research was restricted to
idealized linear networks, the efficacy of any particular method was
gauged very stringently. As exact realizations to the test problems

were known to exist, it was postulated that a truly efficient method of



100

node addition would ﬁroduce an exact realization with, in most instances,
the minimum number of nodes; " Methods which prodﬁced a better approxi-
mation to the network but failed to provide realizétions with the minimum
number of nodes, were considered as inadequate.

The results obtained using the various methods are described in
general and in relation to two specific eiamples.. One of the methods
devised by the author (section 5.8) provided realizations to these two

examples and to many more, some of which are shown in Chapter 6.

5.2. Review of the Previous Methods for the Introduction of a New Node

It is perhaps worthwhile to reiterate that topological modifica-
tions are appérently accomplished more easily Qhen a method of coefficient
matching is employed. Using pole-zero and direct matching of frequency
characteristics, Wrightlewas only able to successfully include elements
to the simplest of networks and did not attempf the addition of nodes.

Di Mambro13 suggested three possible methods for node addition.

The first of these involved the substitution of equivalent networks as

in Figure 5.1a. (A similar method to this is discussed in section 5.4.)
Briefly, there are two main problems with this method. Firstly, how

is the choice made as to which element to split? Furthermore, this is
only a half-way stage. A further element has to be included to make
this node electrically meaningful and this may prove difficult to achieve.

The equivalent circuit of FigureAS.lﬁ also poses the question of
which‘element is to be transformed. This transformation also
necessitates the introduction of an inductor which may be undesirable
because of the associated practical difficulties. One advantage of
this method would appear to be that the elements will be included at

approximately the required values, thus reducing the probability of
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problems with the optimization which arise when variables are introduced.
with extreme values.

The two further methods outlined by di Mambro involved the intro-
duction of pairs of elements to the new node, but the criteria for
determining which node to include were not ideal. The first was based
on a steepest descent algorithm (which will tend to be very localized)
and the seéond on an alternative error formulation which is not as
efficient as that employed by the author. One of these methods was
used by di Mambro in an example which succeeded in reducing the error
by a factor of ten. However, the results were not conclusive as the
run had te be curtailed due to a lack of research time. |

Krzeczkowski16 suggested two further me;hods which are discussed
in sections 5.6 and 5.7. One of these methods, using a delta-wye
transformation, was later adopted by Hegazil4 who succeeded in producing
a computer realization to one particular example. This. was possibly
the first occasion on which a node had been introduced entirely satis-
factorily. Outside the group at Leicester, there seems to have been

little achieved in terms of actual published results.

5.3, Two Specific Examples where the Introduction of a Further Node

is Required

Using a design package similar to that at the commencement of this
research, one particular attempt, by Cutteridge17, to synthesize Fialkow's
functions (eqns. 3.3), produced a quasi-realization with an error of

2.72 x 107> . This package used the same error formulation as the
author and the element addition was based on the optimum values for
virtual elements (section 4.2). The improved element addition techniqqé
developed by the author (section 4.4) introduced the element C03 to-

greater effect. After the removal of the capacitor C35 , an improved
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minimum of 4.99 x 10°° was 1océted (the network of Figure 5.2).
At this stage there did not appear to be any further RC element
additions, hence? this provides one example where node addition is.
required. - (It-is possible, however, to include an inductor at
this stage and produce an RLC realization of the network without
the introduction of a further node.) At this time realizations of
this set of functions were only known to exist with five nodes and
mot with six as that the ndde addition would produce.

The second tesf example is similarly an RC network
(synthesizing chal's functions) from which no further RC element
additions are possible (Figure 5.3). Previously, the only solutions

to this network had been produced by series-parallel decomposition1 ’

30’31. Similarly, computer realizations had only been produced by
introducing no more than two alternative elements to these solutions.
All these realizations had contained at least seven nodes, one more

than the current network of this example. (A computer realization

for this network with only six nodes is given in section 6.6.)

5.4, The Addition of a New Node by Replacing an Existing Element

with an Equivalent Network

Di Mambro13 outlined the possibility of introducing an extra
node by splitting an existing element, as shown in Figure 5.1a.
In theory, it should be possible to add further elements of the same
type to the new node. In practice, the introduction of the node
has little effect by itself and a third element of a different type
must be introduced to the new node.

The author initially attempted to introduce this further

element in a similar manner to the element addition method of section
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4.4, Each existing'element was split in turn and the GN corrections
determined for each element addition made possible‘by the formation of
the new node, with the new element and common factor set to arbitrary
values of .10—6 and 1, respectiveiy. With the two specific
examples described in section 5.3 (and with others), it proved impossible
to locate an element which could in fact be included. A more
intuitive approach was adopfed after this.

The new approach was based on the assumption that, if the new
network was very similar to the original network. then the starting
error would be similar and could be decreased by the introduction of
the extra variables. It was postulated that the network would be
least disturbed if the smallest element was chosen for splitting as in
Figure 5.1la. Similarly, least disturbance would result if the ﬁhird
element was cénnected to the reference node which is, in any case,
the most general option and, possibly, most likely to produce the largest
effect. The values were chosen such that they approximated fo the
introduction oan new common factor of value unity.

New nodes were introduced which did produce a reduction in the
error but not always ideally. Initial results were encouraging
with exampld 2 reaching a solution. (The route to the solution from
this minimum is traced in Figure 4.4) However, this proved to be an
isolated success. Nodes tended to be repéatedly introduced into the
same region, producing little reduction in the error. A typical
example is shown in Figure 5.4. The method also failed to introduce
a node to the network of example 1.

There are other difficulties associated with this method.
Occasionally a new qode would be introduced successfully only to be

cmoved when the original element was re-introduced. Furthermore,

as the GN algorithm was not involved in determining whether a node
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should be intréduced,.problems with the optimization did arise with
particular examples. |

It was explained in section 3.3 that certain networks (such as
that defined by Lucal's functions) cannot be realized exactly when |
particular elements are included. It would seem unwise to include
nodes in the positions of these small valued, undesirabie elements if

this, or a similar method, were to be used to introduce nodes.

5.5. Nodal Addition Employing a Modified Element Addition Algorithm

A method has been developed which is capable of introducing more
than one element simultaneously, provided that,‘if the additions were
performed individually, an element removal would not be required between
additions. It is electrically meaningless for one element only to be
connected to a node. It would seem, therefdre, that if it were not
for the extra common factor introduced, the introduction of two eiements
comprising a new node would be straightforward. (The introduction of
one element alone could not possibly result in the removal of another
element.)

As the optimum values for the three new variablestended to small
values, the elements were set to small values of 10.6 and the commcn
factor set to unity. The GN corrections were derived and, provided
that criteria to establish the independence of the variables were not
violated, the pairs of elements which had positive corrections were
considered to be possible additions. One interesting feature was that
the corrections for the elements forming the new node were identical in
value. This feature perhaps calls into question the validity of the
method as the minima do not occur with the elements at identical values.
Priority of addition was given to the node which registered the lowest

error value when included at the arbitrary values. The elements were
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introduced at their indicated values, namely, 10-6 times their GN
corrections.

To summarize the results briefly, the method was successful in
so far as it did introduce nodes which produced a reduction in the
error, but not to the extent that computer realizations, not just quasi-
realizations, were produced. A typical example of an attempted
synthesis of Lucal's functions is given in Figure 5.5. The choice of
which node to include was far from ideal and greatly favoured
connections to nodes 1 and 2 . When the choice of nodes was
determined by a user with knowledge of a solution, computer realizations
could be produced (see Figure 5.6). As the error reduced, so the
number of possible introductiens dec£eased. * In fact, it was nof
possible to introduce a further node to the networks of examples 1 and

2. Furthermore, nodes indicated as possible additions were often
removed, though it was not apparent whether this was simply difficulty.
with the optimization or if the method had failed.

The two new nodes shown in Figure 5.7 are identical, hence, if
both are possible additions, the choice of which node to introduce is
determined merely by computer found—off errors. However, it is quite
possible that the introduction of one node will produce a realization
whilst the other will not. If the new node was introduced in the
incorrect position and no further additions‘occurred, it Would be possible
to reverse the node. However, it is normai to find that further
additions will be possible.

To alleviate these difficulties, the effects of several modifications

to the strategy were investigated:

(1) Renewed, but unsuccessful, attempts were made to calculate
optimum values for the elements by optimizing these values

only.
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(ii) Priority was given to connections to the reference node
(zero) via the internal nodes (not one or two). This
was not always possible, particularly at lower errors, and

© so,

(iii) rnodes were introduced, not to the optimum topology for
the fixed number of nodes, but from the original topologies
‘having the same number of nodes which had sparse numbers

of elements and a higher error value.

(iv) Nodes were also included in groups of three elements rather

than two, thus removing the ambiguity about reversals.

The results remained disappointing. It was still not possible to devise
an automatic method capable of producing computer realizations.

One piece of information which did shed some light on which node to
add was the optimum values for negative elements, as described in
section 5.8. Such a method would prove difficult-to employ automa-
tically but would, perhaps, be of benefit to an interactive user.
However, this would still not remove the difficulties caused by the

absence of possible new nodes at low errors.

5.6. The Introduction of a Node by the Duplication of an Existing T-network

It was Krzeczkowski16 who indicated that the networks of Figure 5.8
were equivalent and, without actually investigating its efficacy,
suggested this as a possible method for introducing a node. Conceptually
this method seems ideal in that it produces an equivalent network with
extra variables, intimating that the error can only be reduced. Also, -
the new elements are introduced at reasonable values. The one apparent

drawback is that there is no fundamental reason why the method should
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introduce nodes in thé optimum position (i.e. so as to produce a solution
with the minimum number of nodes). |

In practice, the duplication-often produces very large GN correc-
tions which are unable to reduce the error, even when the maximum modifi-
cation to each variable is limited. These large corrections also make
it impossible to introduce further elements to by-pass this problem, as
can sometimes occﬁr. These large corrections remained when the values

of one of the T-networks were altered so the two were no longer identical.

With example 1 the addition failed as described above. With
example 2 there are two possible nodes to duplicate. When node 6
was duplicated the same problem appeared. When node‘ 4 was duplicated

two elements were removed, thus removing the new node.

5.7. The Delta-Wye Transformation as a Method of Introducing a Node

One obvious problem with this method was that often, when the
introduction of a node wés required, there was not a delta configuration
to transform (see Figure 5.9). This would seem to suggest the necessity
of a supplementary ﬁethod, either of an alternative method of node
addition or, of a restart facility‘to be used to locate alternative
networks whose topologies do contain such a configuration.  Both alter-
natives would appear to be far from ideal.

The transformation did not, on any occasion, enabie an element of the
same type as those forming the delta to be introduced to the new node.

The introduction of an element of a different type, with an accompanying
coﬁmon factor, was required. Although Hegazi14 used this method and
succeeded in producing a realization, several points arise from his work..
Only the one example was described, which gives little indication as to

the general efficacy of the method. When the node was introduced, there
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were two possible deita configurations which could have been transformed.
There was no indication as to‘why one had been preferred to the other.
Furthermore, ;he choice of the accompanying element éppeared to be
arbitrary and its addition did in fact produce an increase in the error
from a value of 1.74 x 10°° to 2.12 x 1072 .

The calculation of the optimum values for the new element and ‘the
common factor again proved to be of little benefit, as did the calcula-
tion of the GN corrections, except in formulating an approximate value
for the new element. Consequently, the new element was introduced
between the new and the reference nodes at a value of unity. The new
common factor Qas also.set to unity.

Generally, the results obtained were poor. On no occasion did the
transformation precduce a realization. When attempts were made to
synthesize the network described by Lucal's functions, nodes were
repeatedly introduced to the same regions of the network, producing
little reduction in error.

The method failed with both test examples. Example 1 did not
contain a delta configuration, whilst using the strategy outlined on

example 2 merely resulted in the new node shorting out.

5.8. Node Introduction by Substituting a T-network in Place of a Negative

Virtual Element

The order in which possible element additions are performed is
governed by the error value obtained with the virtual element set to its
optimum value (section 4.4). This method has proved to be almost totaliy
successful in determining which element should be introduced, namely, that
which will produce the greatest reduction in the error. Consequently,

it seems reasonable to postulate that these optimum values will also
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give the optimum position for the introduction of a negative element.
As one of the major defects with the previously discussed methods of
node addition was that there seemed to be no apparent method of
determining the optimum position for the introduction of the node, this
information was thought to provide a firm basis on which to build an
alternative method. (Nodes are only introduced when there are no
available elément additions, i.e. if any further elements were
introduced they would attain negative values.)

The author chose to repiace a prospective negative element by a
T-network, as shown in Figure 5.10.  This was chosen primarily on the
basis of an inspection of the requirements to produce the known
solutions, but also because of its simplicity and generality. It was
thought that the four extra variables would provide a high probability
of locating a better minimum. T-networks contajning only two types
of elements were chosen for two reasons. Firstly, it may be preferred
that inductors are not included in the design. Secondly, the optimiza-
tion algorithms often had difficulty in removing elements which had an
associated common factor, hence, useful networks can be masked by
superfluous additions.

Initially, the four new variables were included at values Qf unity,
the mid value on the logarithmic scale. This enabled solutions to
evolve for.. both test examples, thus produéing the first six node
realization to Fialkow's functions (Figure 6.24) and a seven node
realization to Lucal's functions (Figure 4.3). Several attempts had
previously been made, by the author and others, to produce such a six
node realjzation by commencing from a topology with six nodes, but all
had resulted in the removal of one node. It is possible to produce
the solution topology originally given by Fialkow3 from this realization

by shorting nodes 4 and 5 and removing one of the pair of resistive
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Rou. elements produced. This would seem to confirm the theory that, if
there is a solution to a problem with n nodes, there will be similar
solutions with n + 1 nodes. This, in turn, validates the strategies
of including a nodé when no element additions are possible and of
ignoring any node removals indicated.

As could be expected, setting the new values arbitrarily did not
always prove ideal. | Examples arose where the value of unity was
significantly larger, or smaller, than the required values.  To reduce
the occurrences of these faults, the values were chosen as shown in
Figure 5.11, where the value G , for example, represents the modulus
of the indicated value of the original negative element. The values
are arranged to produce a new common factor with an approximaté value
of unity. Fufther problems arose when this indicated value was an
underestimate, producing large GN corrections for the new elements
and thus impairing the progress. Further empirical criteria were
developed to combat this fault. If the initial error was below a
value of five, the values of the elements constjtuting the new node
were repeatedly multiplied by a factor of ten until tﬁe error had
increased above this value.

This method was used successfully with many examples, producing
many networks of a type which had not been realized before using any
other methods of synthesis (see Chapter 6). However, the method did.
not succeed in introducing a node to the nefwork from which Hegazi]4
successfully produced a realization. Furthermore, the procedures
involved in introducing the new nodes were not ideal. Slight variations
in the procedures can result in fajlure to locate a minimum following a
feasikle addition. This is perhaps one position from which extended
optimization'in the CG section, instead of switching to the GN when

the error has reduced below 10_2 , would prove advantageous.
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At one stage, extra additions were considered when the
introduction of T-networks between the external nodes had failed.
If a complete chain of elements (of the same type as the negative
element) formed a link between nodes 1 and 2 , then new nodes
were introduced, in turn, parallel to the elements in this chain.
This innovation proved to be of little value with the examples

considered.

5.9. Summary

Various methods have previously been suggested (and some examined)
for introducing a new node to a network. Several of these methods,
and others devised by the author, were examined. | The one method14'
which had produced an exact realization, was found to be of limited
value with the vast majority of examples. A method, based on the
introduction of‘T-nétworks in place of negative valued elements, was
devised by the author and used successfully on many occasions (section

5.8).
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1
Final error = 0.819
b ADD C
) 12 Final error = 0.257
(c) ADD NODE 6
1
Final =2
-2
(d) ADD Cgg Final error = 3.97 x 0
(e) ADD G
. -2
e REMOVE G Final error = 3.25 x 10
) 56
(g) ADD NODE 7
1

-2
Final error

FIGURE 5.4: (continued over)



(h) ADD G
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07
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(3) 17
1
Final error = 4,30 x 10
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" 2.78 ~25 . 2.65
G = 51.8
= 1-99 03
= 0.609 = 13.6
=9.2 1072
Ss = 2.85 G, = 9.20 x 10
common factors 1.94 and 0.665
FIGURE 5.4: (CONTD.) EVOLUTION OF AN RC QUAZI REALIZATION OF LUCAL'S

FUNCTIONS ADDING NODES BY THE METHOD OF SECTION 5.4

indicates that a minimum of the overall error function was not located
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FIGURE 5.5: EVOLUTION OF AN RC QUAZI REALIZATION OF LUCAL'S FUNCTIONS

ADDING NODES BY THE METHOD OF SECTION 5.5
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Initial values

Initial error .66

2 Final error = 0.819
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Final error = 7.04 x 10
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14
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FIGURE 5.6: REALIZATION OF LUCAL'S FUNCTIONS OBTAINED BY ADDING NODES IN

THE MANNER OF SECTION 5.5 IN A POSITION DETERMINED BY THE AUTHOR

(contd.)
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CHAPTER 6

SELECTED RESULTS PRODUCED BY THE AUTOMATED DESIGN PACKAGE

DEVELOPED BY THE AUTHOR

6.1. Introduction

The techniques which, when combined, form the automated design
package, have been described in the previous chapters. Unless otherwise
indicated, these results were obtained using the methods and strategies
which wefe stated as being the most efficient. Designs with both RC
and RLC networks were attempted.

To help clarify how a design evolves, an.examplé is included
which shows each topological modification of the design and describes
any unsuccessful.modifications (section 6.3). The space and time
required precludes such a detailed description for other examples.
Similarly, only an informative cross-section of all the results obtained
could be included.

To facilitate an evaluation of the general efficacy of the

package, classes of results are given when:

(1) the same start topology is used to synthesize several

sets of slightly different network functions (section 6.4),

(ii) the synthesis of the same network (that defined by Lucal's
functions) is attempted from various start topologies

(sections 6.3 and 6.5).

Also, when appropriate, the results are compared to those obtained
previously with similar methods applied by other researchers. With
results from outside Leicester the design procedures will be totally

different. Hence, it is only possible to compare the rudiments of what



has been achieved, say, has node addition been successfully performed.

During the course of this research, several computer realizations

were obtained which are of interest to the network theoretician, namely,

(1) a realization to Lucal's functions requiring only six

nodes plus the reference node (section 6.6),

(ii1) a series;paréllel RLC realization of Fialkow's functions

(section 6.8).

Several other networks of interest are also included.

The results produced by the automated design package are evaluated

in Chapter 7.

are outlined and future possibilities for research discussed.

6.2, The Network Functions Used as Test Examples

Also, difficulties with, and deficiencies of the program

Lucal19 published two RC realizations for the network described

by the functions

22 1 P 15p 35p
y11“131122-1)-'-6"'p+,1+p+2.+p-l-3'
y. = QL\ - . 1 7 . 15p/2 _ 35p/3
124, P*% p+l p+2 p+3
A
oo 11 1 P 15p/4 _ 35p/9
y22_A1122-p+6+p+1*p+2+p+3

(6.1)

The only realizations of these functions prior to this research had

been produced by series-parallel decomposition of two element kind networks.

The smaller of Lucal's realizations contained eight nodes (plus the

reference) and three common factors of the form (p + a) .

Later, Hansen

and Wanet31 produced a realization with only seven nodes, thirteen elements

and one common factor.
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The functions can be written in the more general form
1 "11Pp "11p
Xu =P 6 p4+1 p+2 ptec

1 *127 ~N27 Y 12P
-*12 =P "6 pgt 1 p+2 P tcC

1 *227? ~24 ~M227
Xzz = P + & + P+ 1 P+ 2 p + c (6.2)
where, «jj =1 . =-1 , =1
®11 ' > ®12 "1s/2 , 6~ =15/4
= 35 , Yj2 " ov3s /3 > Y22
and c =3 (6.3)

Eight similar sets of functions were obtained by modifying these parameters

(All examples retained the compactness of the poles.) The new values
are as in equations 6.3 unless otherwise stated. The actual values of
the coefficients are shown in Table 6,1. (Again, the values are not

given if they are identical to those in Lucal’s original set of functions.)

Example 1

Yii = = 35/3 (6.4)

Example 2

Y~ 1 35 X3 ; = 35/27 (6.5)

Example 3

11 " ®22 " 15/2 (6 .6)

Example 4

15 X2 ; 6 = 15/8 (6.7)
11 22
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Example 5

a, = 1/2 ;. a,, = 2 _ : (6.8)
Example 6

@, = 2 3@y, = 1/2 ‘ (6.9)
Examgle 7

c = 2.1

812 = 15 H 822 = 15 _(6.10)
note: if B12'= 15/2 then the cofactor A12 has two negative valued
coefficients. This is avoided if 812 is set to a value of fifteen.

However, without further modification this network would contravene

Cauer's residue condition, namely,

2
By Bya = By

N\
o

Hence, if 822 is increased‘to a value of fifteen Cauer's condition will

be satisfied and, furthermore, the poles will be compact.

C=10. : (6.11)

If a computer realization had not already been obtained, runs
from a minimal structure of five nodes were terminated prior to the
addition of an eighth node. There usually proved to be insufficient
time on the Cyber_72 to fully investigate the effects of such a third
node addition. (The maximum job-time was 3500 octal seconds.)

For passive networks (as considered in this thesis), the

coefficients of the polynomials produced must be positive for positive
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valued element556. Consequently, at least one common factor of the form
(p + a) 1is required to mask the effect of the negative coefficient of

Fialkow's set of functions (equations 6.12),

_ 1197p3+56613.14p2+28368.584p+191.184

Yin % Va2 T 800000p2+408000p+3840
_ 3p3-1.14p2+197.176p+77.616
Yy, = 2 (6.12)
800000p2+408000p+3840
. e . 197.176
if they are to be realized by a passive network. (0.38 < a < ——T—Tz—f)

Furthermore, for a two element kind realization, the topology cannot be
series—para11e157.

Fialkow's functions can be written in the more general form

r 2 =
ol Tl . . M2eBp

Y11 = Y22 © 00000 [_"‘11p 11 p2 + G+ D j

1 T Ap2 + Bp

12 = 300000 [“12P * B2 T 72 cp 4D (6.13)
where,

all = 1197 s alé =3
B, = 39839 ; B ,=16,170
A =16,172.67 ; B = 8,049.5384
C =0.51 ; D=0.0048 (6.14)

The compact finite poles and the residues of these poles have irrational
.58
values
Seven other sets of functions with a similar negative valued
coefficient were obtained by modifying the values of the parameters in
6.14. The values of the new sets of parameters are as in Fialkow's
original functions unless otherwise stated. The actual coefficient

values are given in Table 6.2.
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ExamEIe 1

8, = 16170 | (6.15)

This produces a further compact pole, that at zero.

gxaggle 2
= 6.16
@ 3 ( )

Produces ‘a’ further compact pole, at'infinity.
Example 3
a,, =3 H B,, = 16,170 ‘ - (6.17)

11

All four poles are how compact.

Example 4 .

e, =a__ =100

11 12
= = 16,121.17 6.18

117 % 121 (6.18)
All four poles are compact. This network was first suggested by
Hegazi14
Example 5

ay, = 783 5 gy, = 15770 - (6.19)

These values produce two negative valued coefficients in the cofactor A12

Example 6

@, = 1977 Bll = 39430 (6.20)

Example 7

16,172.167 ; B = 8,049.539
0.005 (6.21)

o
i}
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6.3. A Detailed Study of the Evolution of a Network Which Realizes

Lucal's Functions

This examp}e (Figure 6.1j was chosen arbitrarily and not because
it reflects particularly favourably on the technicues devised by the
author. In fact, the evolution is a little strained in places. The
author is of the opinion that a close study of such an example will
provide a greater insight into the actual behaviour of the packaée.

Several points worthy of consideration do arise.

(1) An examination of the topology at the realization (Figure
6.1x) indicates that five of the originalneight elements have been
retained. As two of the discarded elements were connected between the
external nodes 1 and 2 , it is perhaps possible to say that five of
the original six elements comprising the major features of the initial
structure have been retained. ' This serves to illustrate the dependence
on the original starting topology,‘even though this may appear to be
dissimilar from the structure which evolves. It also underlines that
realizations will not be produced with the minimum number of nodes from
all start structures. Element additions are based on whether any one
addition alone will provide an improved approximation. even when multiple
additions are performed (as described in section 4.7). Variations are,
therefore, essentially localized in character. However, it seems
probable that the removal of nodes will allow for greater deviation

from the start topology.

(2) The failure of the first element addition to the initial
structure (Figure 6.1(a)) exemplifies the recognized drawback that, even
when optimizing in the logarithmic domain, it is possible to map to

minima with variables of negative value. The addition of the capacitor
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C23 led to the removal of the elements C12 -and RL+5 . Thus, the
synthesized network coefficients could not be equated to all those
required. With the initial structure at a minimum and the new element

at the optimum value, the GN corrections were:

Cpy = -0.374 R, = -8.58 x 1073 g

C,, = 82.0 R, = 81.3

Cos = -0.365 Ro3 = 0.318

Cy, = -2.85 Ry, =0.707

C,, = 3.07 (6.22)

The correction for the element C12 is less than minus unity which,

at this high error value, is probable evidence that mapping to a negative
valued element has occurred. The correction for the resistor Rqs
was large and.positive but the element was subsequently removed. The
removal of the first element C12 (at which stage the value of the |
resistor RL+S had increased by a factor of 60) produced a totally different
minimum, thus necessitating the removal of a second elemeﬁt. (The
variations of the values of elements are generally more marked at higher
errors.) These large, genuinely required increases in the valués

indicate the difficulty in choosing criteria to discern between:these
situations and others where the variables are no longer independent.

This type of occurrence indicates the validity of the restart

strategy. The introduction of the element C23 is subsequently performed.

(3) At one stage in the design the following sequence of events

were performed by the package:

(a) the element C23 was included

(b) the element C12 was removed
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(¢) the element C2L+ was included

(d) the element C23 was removed

(e) the element R;g was included (3.4)

23 was

It would appear thét the initial addition of the element C
superfluous and that the addition of the element C21+ should have been
preferred, particularly as the introduction of the removed element C12
was not possible at stége (e) . The location of the actual minima,
with the capacitor C12 having negative values, confirmed that the
original choice of the element C,; had been incorrect. The intro-
duction of the element C,sq realized a minimum of error 0.545 as
compared to a minimum of 0.276

The Qalues of the GN corrections when eaéh element was

introduced, in turn, at the optimum value were 5.26 for the element

C23 and 1.8i x 103 for the element Czu . These values are typical
of those which occur when an incorrect choice of element has been made,
i.e. the element with the larger error on introduction at the optimum
value, has greater scope for modification (signified by a larger GN
correction) and produces a minimum with lower error than an element that
i; included at an optimum value which is high when compared to its value
at the subsequent minimum. The determinatién of empirical criteria

to extrapolate to an approximate, eventual error were not considered to
be neéessary. This feature oécurs.only rarely, always at relatively
high error values, is easily rectified, and at lower errors in the
vicinity of solutions the optimum.element is invariably included;

A similar situation can'occuf when nodes are introduced. An

investigation of such occurrences seemed to indicate that this would

produce a solution with, say, one extra node and common factor. As

alternative solutions are of interest for sensitivity considerations, etc.
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this is not a totally unacceptable feature. Furthermore, an examination
of several examples indicated that any surplus nodes would often be

removed if such a facility was available.

(4)A It wa; when fhe second node addition was required that the
evolution became a Iittle strained. The first atfempt to introduce
this second node was to substitute for the negati?e elemenf R36 (section
5.8). . Relatively large GN corrections were obtained after this
introduction (SSQGNC of the order'of‘los). The reason for this was not
evident. Possibly the elements wefe dependent or, perhaps, the values

were far removed from those at a minimum and in a non-linear region of

vector space. Although no minimum was located, the error was reduced
below that prior to the node addition. The subsequent analysis did not
locate any possible element additions. Nodes were not introduced

from sﬁch positions, hence, the program restarted by including an
alternative choice to form.the seventh node. This also resulted in
large GN corrections (SSQGNC of the order 10°) because the new node was
identical in structure to that of node 6 (Fig.6.1lp). The first element
addition (C,,) resulted in the removal of the elements Rli and Cip

and the element Cus shorted out. The second addition  (C proceeded

26)
in a similar manner but an indication to remove the element ng occurred
simultaneously with an indication to short out an element. Of these two
possibilities, element removal was preferred. The removal of this
element produced an increase in the error CFigs. 6.1(s) to 6.1(t)) due to
the location of an alternative minimum where the removal of a node was not
required. The fact that the element CL+6 can.be included from this
minimum confirms that this is the case. (The element is re-introduced

at a later stage and is present in the_final topology.) Such an increase

in error is acceptable because the error is only compared between

adjacent element additions,
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6.4, The Attempted Svnthesis of Slightly Differing Network Functions

from Those Given by Lucal Using the Same Starting Topology

The start network used was that described in the previous section
(Figure 6.i(a))." Further network functions were obtained by modifying
the values of the residues of one of the finite poles of Lucal's
functions (functions 6;4 to 6.9). The two examples with modified pole
values (functions 6.10 and 6?11) do not appear to have similar solutions
and so cannot be meaningfully compared. |

In the attempted synthesis of functions 6.5, the eiement Cay
was removed, causing the job to terminate. Of the reméining six examples
 tested (Lucal's functions plus five modified sets of'funCtions), five
produced a réalization.- The other produced a good quasi solution with
seven nodes (error'1.09 X 10-8). The resulting topologies are shown
in Figures 6.2 to 6.6.

The eiamples were very similar, in terms of topological modifica-
tions, until the addition of the secdnd node (Figure 6.1(p)). Thelonly

differences were

(1) for functions 6.7 the element Csu was included in place

of the element C12 :
(ii) for functions 6.8 the element R, Was not present.

From this point onwards, all the successful examples with the
modified functions proceeded by introducing a T-network in place of the
negative element C23 . This did not introduce a node with the same
structure as an ekisting node and the design proceeded smoothly from
minimum to minimum. (This was also the third choice of addition,
following the addition of the node identical in structure to an existing

node, for the e&ample synthesizing Lucal's functions.) It would seem



that situations whefe existing nodes are duplicated in this manner
necessitate the application of a different strateéy (see Chapter 7).

Realizations to the other networks for which solutions were not
obtained (functions 6.5. 6.7, 6.10 and 6.11) evolved from alternative
minimal structures (Figures 6.7 to 6.10).

The T-network was thought to be introduced to greatest effect
in the position corresponding to the negative element which produced
the greatest reduction in the error value on inclusion at its optimum
value. This is a very similar concept to the introduction of an
element (section 4.4) about which it has been argued that the virtual
element with the largest optimum value should be includedl6. Using
this as an alternative location for the introduction of the T-network,
realizations were produced to all seven examples previously discussed,
from the minimal sfructure of Figure 6.11(a). The topological
modifications were identical with all seven examples (Figure 6.11).
The solution values are given in Table 6.3. In general, the
introduction of a node in this position did not reduce the error by a

factor as large as when the node was introduced in the normal position.
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The results with this example were more impressive using the alternative

method because of the difficulties caused by a sequence of minima with

low error values (section 6.5).

6.5. Further Attempts to Realize Lucal's Functions

Four further attempts to realize Lucal's functions from minimal
structures are shown in Figures 6.12 to 6.15, Two were successful

whilst the others were terminated before the eighth node was included.

It can be seen that the example of Figure 6.13 requires the removal of the

element R57 (value 2.64 x 10_3) which will remove the common factor
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of value 8.45 x 10-6.. However; a realizétion was not obtained
when the job was re-submitted with the element removed.

Three other‘starting structures produced realizations when
simultaneous addition and removal of elements was employed (section
4.12), Using the normal method of addition, these examples can fail
because of the difficulty associated with the location of minima at low
errors. Typical realizations are shown in Figures 6.16 to 6.18.

The ekample with the stért structure of Figure 6.17 was attempted,
unsuccessfully, by Hegazi14 and di-Mambro13

When these same three starting structures were used in the
attempted synthesis of functions 6.4, 6.6 and 6.7, difficulty was again
experienced in locating similar minima. However, it was not possible
. to locate the minima by applying simultaneous addition and removal, even
though realizations were known to exist with the same topologies. The

problems of locating minima were discussed in Chapter 4.

6.6. Computer Realizations of Lucal's Functions Having Only Six Nodes

As stated in the introduction, the realizations produced by
series-parallel decomposition all contained at least seven nodes plus the
reference. Similarly, all the computer realizations previousiy shown
had required seven nodes. The fact that non-series parallel structures
had failed to produce realizations with fewer numbers of elements had
reinforced the opinion that solutions did not exist with fewer than
seven nodes. However, a realization was discovered for the modified
functions 6.5 which required only six nodes. This structure was
used as a starting point for the attempted synthesis of Lucal's functions
and a six node realization did evolve (Figure 6.19).

Later, an example withva previously used starting topology was

re-run allowing element additions which destroyed the compactness of the
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poles at zéro and infinity. This produced a further six node
realization (Figure 6420), of which the four smaller elements are
redundant.

Low error ‘values of 10'50 do not prove that a solution has
been achieved, they mefely indicate a good quazi solution with each
coefficient matched to 25 figures. The element values of these two
networks did not tend to rational values, hence, it is a difficult task
to verify that these are in fact solutions. In an attempt to obtain
realizations with rational values, jobs were run with series-parallel
structures and with the common factor fixed at unity. No séries-
parallel realizations were obtained and the elementsremained irrational
with the common factor fixed. (One extra element was required.) |

It would appéar, from a comparison of the examples of Figures
6.16 and 6.20, that it is preferable to leave elemeﬁt additions
unrestricted. The difference between the two examples arose because
of the introduction of the elemeﬁt C35 in place of the element - C05
This type of element replacement occurred only very rarely. Generally,
comparative runs from the same start network proceeded in a similar
manner, Qith many more topological modifications required when the
elemgnt additions were not restricted. With this example, the manoeuvre
occurred at a high error value (0.25) and required ten topological
modifications before it was accomplished (topologies 6.20c:  to 6.20m ).
It is practically impossible for such a subétitution of elements to
occur at lower errors with additions governed only by the effect of one

element in isolation.
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6.7. The Program Efficacy When Applied to the Synthesis of

Fialkow's Functions

Many different RC realizations had been obtained for Fialkow's

13,14,15,16,17,58

functions , both by element addition and node reduction.

Provided a reasonable stafting network was chosen, the methods of
Cutteridge”’33 , di Mambro13 s Krzeczkowski16 and Hegazi14 were all
able to prdduce realizations to this problem, presumably aided by the
multiplicity of available solutions. The new algorithms developed by
the author were able to emulate these results.

The example of Figure 6.21 produced a realization aftef three
topological modifications wheréas, using the same startAnetwork,
Cutteridge17 échieved a realization after five modifications. An
alternative realization was obtained by the simultaneous addition of
three elements (Figure 6.22). Although many other multiple édditions
could be successfully accbmplished, this strategy was not normally adopted.
One reason for this was exemplified by this particular example. Only two

elements were indicated as possible third additions (C and Rlz)

12
whereas, in fact, there are a number of possible, alternative additions.

The author found that, in general, a design would evolve if the
network was of the form shown in Figure 6.23(a), as opposed to that of
Figures6.23(b) and (c). With the alternative structures as shown in
Figures (b) and (c), the corrections were large and unhelpful unless the
network was unsymmetrical.

As the start networks become increasingly variant from the
solution topologies, then the probability increases that a node addition
will be required before a realization can be achieved. No RC
realizations to this problem had been achieved after the inclusion of a

node. The only successful node addition previous to this research had

been accomplished, by Hegazil4, with an RLC realization of a similar
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network. The method devised by the author was consistently able to
include nodes to produce realizations with both RC and RLC networks.
(No RLC realizations'of FialkoQ's functions could be found with only
four nodes.)

A further example of Cutteridge17, which had only produged a
quazi realization (2.72 x 10-5) was examined. Under similar conditions,
an extra element and node were included to prddgce the first six node |
realization obtained other than by a trivial transformation (Figure
6.24). This node addition can be avoided when inductors are included
to produce RLC realizations. A re-run of the job, considering
symmetrical pairs of elements for addition where necessary (which
Cutteridge had not), produced an alternative six node realization (Figure
6.25),‘indicating the exigtence of a family of similar solutions, as with
five nodes.

The evolution of a typical RLC realization which includes the

addition of a node is described in Figure 6.26.

6.8. RLC Realizations of Fialkow's Functions Having Series-Parallel
Topologies
The addition of the elements R13 and R23 produced the first
such network obtained (Figure 6.27). There were several othef possible
additions. Of the possible RC ;dditions; four others (Rlz, C12’
Cos' Clu and C 4) would have retained a series-parallel structure.

When these further alternative elements were introduced, only one
succeeded in producing an alternative realization (Figure 6.28) whilst
the others were immediately removed. However, this does not prove

conclusively that these topologies are not solutions.
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Unfortunately, the author was wunable to fully investigate
these realizations. However, several elementary points, pertinent
to the network of Figure 6.28, are probably worthy of note.

It is not possible to determine, from the printout, the exact
nature of the common factors. They appear to be equal in value but,
whether they are exactly equal, and whether they are complex, is not
discernable. However, the common factors are not equallto the values
of the compact, finite poles of Fialkow's functions (i.e.

p + 0.255 £ /0.060225). This indicates that the finite poles are fully
represented in one of the two subnetworks, and not decomposed.

The subnetwork containing node three gives a polynomial in 81192
which indicates the poles to be (p + 0.255 + v0.060225) and (p + A) , |
where A is the value of one common factor. Hence, the further poles
ﬁust be produced by the other RC subnetwork. This eliminates the
possibility of complex common factors.

An examinationvof A12 for the same subnetwork appears to
indicate that a common factor of (p + A) 1is not present. These initial
observations would appear to indicate a situation where a pole is
included into both subnetworks such that the net effect is zero, i.e. the
residues are of equal magnitude but of opposite signs. In this case the

common factors will be equal,

6.9. Attempted Synthesis of Network Functions Differing Slightly from

Those Given by Fialkow

.16 . ce o .
Krzeczkowski™ has conjectured that it is not possible to produce
a network having a negative coefficient in the cofactor A, s as in

Fialkow's functions, but with all of the poles compact. However,
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Krzeckowski had only examined the general case with five node, RC

networks. Hegazi14 was unable to find such a network by applying
coefficient matching techniques. The finite poles of Fialkow's
functions are already compact. The synthesis of similar networks

(retaining compact, finite poles and a negative valued coefficient),
produced by reducing the residues of the poles of Yiq and Yoo and

having
(i) a compact pole at zero (functionms. 6.15)
(ii) a compact pole at infinity (functions (6.16)
(iii) compact poles at zero and infiﬁity (functions 6.17),

was investigated. A fourth example (functions 6.18), again with all
poles compact, devised (but ﬁot solved) bv Hegazi, was aléo examined.

A solution to example 1 (functions 5.15) had already been produced
by Cutteridge and Krzeczkowski58 and many others could be similarly
produced by the removal of one element, or a éymmetrical pair, from a
realization of Fialkow's functions. |

| Realizationé of the three other sets of functions were not so
readily achieyed. Several of the elements connected to internal nodes
were reduced to small values (of the order pf 10'6) and the jobs had to
be run in double precision on the Cyber 72 (thirty decimal places).
With RC networks, nodes fréquently shorted out after the addition of
an element and, although good quazi solutions were obtained, no
realizations were located. (Topologieé similar to the six node RC
realizations of Fialkow's functions were utilized as starting topologies
as well as five node RC structures.)‘ However, RLC realizationms
were obtained (Figures 6.29 to 6.31) including examples with series-

parallel topologies similar to those for Fialkow's functions
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(Figures 6.32 and 6.33)f

Example five (functions 6.19) was constructed to produce two
small negative valued coefficients in the cofactor A12 . Ary
realization of these functions with a passive network having positive
valued elements would require at least two common factors.

Starting topologies (both RC and RLC) which realized Fialkow's
functions with two common factorsvwere used, but the error value was
not significantly reduced on any occasion. Furthermore, when extra
nodes and inductors were included, thus increasing the numbers of
common factors, the program still failed to make progress.

Example six (functions 6.20) shifted the values of the residues
of yll. and Yoo by the same amount as the previous example had
shifted the corresponding residues of y12 . The program had no
difficulty in realizing these functions (Figure 6.34).

Example seven (funbtions 6.21) is a network having finite poles
of rational values (0.5 and 0.001). The residues of these finite poles
were calculated such that the coefficients of the cofactor ‘Alz--remained
unaltered. Realizations similar to those for Fialkow's functions were
obtained (Figure 6.35).

If the formulation of a similar example is attempted (i.e. the
values of the coefficients of the cofactor A12 are to remain unchanged)

with finite poles of value one and two, then the functions are not

*

Subsequent to the compilation of this thesis the network of Figure 6.33
was investigated by the author and found to be an exact realization _
(see Appendix 5). It it therefore possible to construct an exact RLC-
series-parallel realization of Fialkow's functions by including further
resistive and capacitive elements between nodes one(two) and zero.

113.568

RO) = R02 = W = 0.029575 S.
- _ 1194
Co1 = Coz = gog gy = 0-0014975 F.
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feasible for an RC network. (The residue of y,, at the pole

p + 2 will have a negative value.)

6.10. Attempted Realization as RLC Networks of RC Realizable

Sets of Functions

Whilst RLC realizations of Fialkow's functions have been given,
and the existence ofvmany others indicated, RLC realizations of Lucal's
functions have not been referred to. As RC realizations have been
located, it seems reasonable to assume that RLC realizations also exist.
However, no exact RLC realizations were found, although good quazi
realizations ‘were. obtained (error values of 10'8 were achieéeved).

The behaviour of the two networks was qﬁite different. A surplus
inductor was included at various positions into RC structures known to
realize the functions and the network optimized from arbitrary values of
unity. When attempting to synthesize Fialkow's network, one of the RC
components was always-removed to produce a quazi solution to the network.
Presumably the removal of the surplus inductor was deferred by the
existence of its accompanying common factor. Subsequent element addition
produced a gealization, However, when attempting to synthesize Lucal's
functions, the inductor and its associated common factor were either
removed or reduced to such low values that they should have been removed.
Scme inherent feature of Lucal's functions was apparently opposing the

introduction of an inductor.



Lucal's
functions
(6.1)
a 36
11
p3 533
1572
pA 1183
p'A 36
4
Cz P 36
pA 36
pA 72
pA 36
p" 36
A22 pll 36
p' 2058
p* 6552
p' 4638
P\\ 36
h 3 36
i 1122 P
p' 216
p' 396
P“ 216

Coefficient wvalues

TABLE 6.1.

6.4 6.5 6.6
108
813

1319 668

2412 ,3876 2112

1743 2989 1588
108
108
108
216
108
108
108
1218 13734 1788
4032 42,336 5472
2958 29034 3828
108
108
648
1188

648

FUNCTIONS

465.5 569 515
1302 1752 1482
980.5 1399 1075
2598 2040 2094
8712 6462 6732
6258 4530 4854

-

905.6
,2571

}766.2

1273.6
595.8
,343.8
1 252

b*25.6

6.11

785
3567
3262

120

288
2508
2052

120

2.310

5931 11,382

1006.2
25.2

183.6
298.8
151.2

9552
120

468
1152
720

as for Lucalk functions unless otherwise indicated,

SLIGHTLY MODIFYING LUCAL'S FUNCTIONS

VALUES FOR THE COEFFICIENTS OF FUNCTIONS OBTAINED BY
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(a)

APDGi,

(3 possible additions)

(b) 1

REMOVE G
12

(c) 1

ADD C23

(3 possible additions)

FIGURE 6.1: EVOLUTION IN DETAIL

144
Initial wvalues 10

Initial error = 12.3

0 Final error = 3.31

Value 1.07 (second choice)

Initial error = 10.6

Final error = 2.58

-7
Value 1.58 x 10

Initial error = 2.58

Final error = 2.55

Value 0.128

OF A NETWORK WHICH REALIZES LUCAL'S FUNCTIONS

(contd. over)



rd) 1

REMOVE C
12

ADD C21+

(2 possible additions)

() 1

REMOVE C23

FIGURE 6.1 CONTINUED
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Initial error = 2.27

Final error = 0.979

-7
Value 5.35 x 10

Initial error = 0.979

Final error = 0.951

Value 1.96

Initial error = 5.13

Final error = 0.476

-5
Value 1.20 x 10

0.476

Initial error

Final error = 0.473

(contd.over)



ADD G14

(1 possible addition)

ADD NODE 6

(5 possible additions)

(1)

REMOVE C
34

(3)

ADD C36

(1 possible addition)

FIGURE 6.1; CONTINUED
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-2
Value 8.49 x 10

Initial error = 0.778

Final error = 0.471

Value 0.470 x 10+

Initial error = 9.47
Final error = 0.254
-4

Value 2.25 x 10

Initial error = 0.254

Final error = 0.226

Value 17.3

(Contd.over)



(k)
1
REMOVE G
15
CD
1
ADD C

12
(5 possible additions)

REMOVE C

FIGURE 6.1: CONTINUED
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Initial error = 3.72

Final error = 0.128

-2
Value 3.29 x 10

Initial error = 0.17

Value 0.188

Final error =

0.115

Initial error

Final
9.68

Value 5.22 x 10 2

(Contd.

1.67

error

over)

7



(n) 1

ADD G
12

(1 possible addition)

(0) 1

ADD NODE 7

(8 possible additions)

Cp) 1

ADD
26

(4 possible additions)

FIGURE 6.1: CONTINUED
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Initial

error =
-2

Final erro

Value 1.20 X 10"%

Initial
error =
0,143

Final error =
a no V in-2

Value 1.73 x 101

(second choice)

Initial
error =6.44

Final error

Value 2.66

(second choice)

(Contd. over)
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Initial
error = 6.83

@ 1
Final error
REMOVE G12 Value 8.28 x 10
\
Initial error
(r) 1 vy
Final error
REMOVE C Value 2.31 x 10 2
12
\4
Initial error
(s) 1
Final error
REMOVE C46 Value 0.555

FIGURE 6.1: CONTINUED

(Contd. over)



et) 1

ADD G
36

(5 possible additions)

ADD
c67

(6 possible additions)

REMOVE C
36

FIGURE 6.1: CONTINUED
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Initial error = 1.24

Final erro

Value 0.872

Initial'error = 0.184

Final error

Value 1.23

Initial error = 1.81

Final error 4
= 6.40 X 10

-2
Value 5.21 x 10

(Contd. over)



ADD C46

(2 possible additions)

(x)

FIGURE 6.1:

CONTINUED

c=3

20.6

s3
= 0.911

S a
= 0.175

s .
= 3.46

Sy
= 0.406

Sy
c = 4.40

26
c = 1.96

67
c = 0.314

46

Common factors

1.53

Value 0.143

45

~l4

%6

07

36

and

Initial erro

Final error

Initial error

0.992

0.269

52.2

0.785

10.1

0.549

0.862

0.187

Final error

22
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Final error

= 2.96 x 10 2°
= 13.7 C = 0.0534 G = 1.03
Ss 12 25
= 0.815 c = 17.01 = 29.9
Ss 27 s 3
= 0.0991 g 7 = 2.08 so =502
agg = 0.344 sy = 0-502 s 4 = 0.805
= 2.46 = 0.264 = 18.2
So As s 7

Common factors 1.63 and 0.842

FIGURE 6.2: REALIZATION OBTAINED FOR FUNCTIONS 6.4 FROM THE STARTING TOPOLOGY
OF FIGURE 6.1C.a),

Final error

sa = 16.7 a1p = 0.0602 ag = 1:30
ags = 1-00 g 7 = 6.12 ngy = 45-9
(24 = 0-0969 g 7 = 1.55 ag = 4-68
se = 0-465 g 7 = 0.405 = 0.778
c =342 gs = 0-254 07 = 14.0

Common factors 1.61 and 0.728

FIGURE 6.3: REALIZATION OBTAINED FOR FUNCTIONS 6.6 FROM THE STARTING TOPOLOGY

FIGURE 6.1 (a)
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Final error

1.09 X 10
4 5

g3 = 28.5 g = 0.821 o3 = 668
Cos = 1.32 cs57 = 0.643 cl4 = 0.678
azg = 1.80 = 0.392 o6 = 11.1

= 2.44 = . = .

wos = 0.239 g 5 = 2.02

= 0.319 = 2.98

~45 ~25

Common factors 2.52 and 1.30

FIGURE 6.4: QUASI REALIZATION OBTAINED FOR FUNCTIONS 6.7 FROM THE

STARTING TOPOLOGY OF FIGURE 6.1Ca)

Final erro”.=

4.74 X 10

C = 20.1 Cc = 4.92 G = 0.260
13 27 45
c = 1.38 c = 0.0819 G = 52.6
05 24 03
c = 0.365 C = 1,96 G = 5.78
45 67 06
G36 = 2.64 Ch? = 0.314 s, = 0.682
ci2 = 0.0789 G25 = 1.47 Co7 = 10.4

Common factors 1.40 and 0.894

FIGURE 6.5: REALIZATION OBTAINED FOR FUNCTIONS 6.8 FROM THE STARTING

TOPOLOGY OF FIGURE 6.1 (a)



N T
4 5
g3 = 21.0 g, =4.35 g5 = 0.543 e = 553
Cos = 0.429 ce7 = 1.43 ct45 = 0.155 co7 = 11.6
ctig = 0.772 cts7 = 0.541 Co3 = 52.7 c12 = 0.0572
c3g = 5.20 cig = 1.18

Ci2 = 0.0403

Common factors = 1.66 and 0.631

FIGURE 6.6: REALIZATION OBTAINED FOR FUNCTIONS 6.9 FROM THE STARTING
TOPOLOGY OF FIGURF. 6.1 (a)



Initial values = 10

Initial error =9.28

(a)

Final error =

5 0.475
(b) ADD C34 Final error 0.145
(c) ADD 015 Final error 0.103
Cd) ADD G.
12
(e) REMOVE C . Final error = 9.14 x 10 2
(£) ADD NODE 6
1

-2
Cqg) REMOVE C34 Final error = 1.87 x
(h) ADD C*g

-12
(i) REMOVE C Final error = 1.13 x

‘45

C3) ADD

FIGURE 6.7: REALIZATION OF FUNCTIONS 6.5

(Contd. over)



FIGURE 6.7:

s3 = 44.5

c3s = 0.925

sk = 3.54

Sg = 0.129

A3 - 3.65

Sg =1.92

c3a = 2.43 x 10"2
Common factor = 1.03
CONTINUED

~15

G25

0.175

0.774

122

2.42 X
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(9)

ADD C,"
ADD C35
ADD Gj2

REMOVE Ci5s

ADD NODE 6

REMOVE C
34

FIGURE 6 .8:

157

Initial wvalues - 10

Initial error = 9.24

Final error = 0.522
Final error = 0.132

Final error = 9.29 X 10-2

Final error = 8.39 X 10"2

Final error = 1.92 x 10

Final error = 2.71 x 10

REALIZATION OF FUNCTIONS 6.7

(Contd. over)
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- 28.6 0.180
S 3 S s

= 0.802 = 0.798
Ss Ss

= 0. 124 = 67.0
S s S a

= 3.33 = 9.06

S .

= 0.289 = 2.00 x 2
Ss Sz

= 2.55 = 7.01
Se Se

= 2.11
Se
Common factor = 1.10

FIGURE 6.8: CONTINUED



fb)

(d)
Ce)

(9)
Ch)

i)
C3)
Ck)

ADD C15
ADD
ADD

REMOVE

ADD NODE 6

REMOVE C
34
ADD G34
ADD Ci4
REMOVE C35

REMOVE Ci4

Initial error = 9.74

2 Final error =

0.836
Final error =3.12 x 10
. -4
Final error =9.04 x 10
-4
Final error =8.07 x 10
. -7
Final error = 2.24 x 10
* -15
Final error =5.58 x 10
24

Final error = 4.75 x 10

FIGURE 6.9: REALIZATION OF FUNCTIONS 6.10

CContd.

159

over)



{=3
1
Cl, = (24.% apg = (2.05)
= (9.407) ag3 = 46.8
Ccl15 = 1-12 s. 15.9
Ci2 = (1.00) ss ~ 1.86
(of = 3.07 . G = 1.70
06 46
G = 0.182 G = 0.444
15 34
Common factor 2.00
() - indicates exact values

FIGURE 6.9: CONTINUED
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(a)

©

ADD Ci,5

ADD NODE 6

REMOVE C

ADD G

REMOVE G*5

ADD NODE 7

FIGURE 6.10;

Initial values = 10°

Initial error = 10.5

Final error = 1.35
2
Final error = 5.04 x 10~
Final error = 5.17 x 10
Final error = 4.98 x 10

REALIZATIONS OF FUNCTIONS 6.11

(Contd.

151

over)



(h)
(1)
&)
(k)
(1)
(m)
(n)
(o)

(P)

FIGURE 6.10:

REMOVE C
07

ADD Ci2

ADD G37

ADD 'y

REMOVE G37

REMOVE C23

ADD Ggy

REMOVE Go 7

ADD C36

REMOVE C16

13

"5
A26
c57
Ci12
c47

~38

Common factors

2.14
0.627
1.08
0.573
0.903
1.87

CONTINUED

Final
Final

Final

Final

Final

Final

14
25

03
"6
M5

T T
G37 ~

8.82 and 2.75

error
error

error

error

error

error

28.4
7.02
15.0
16.2.
0.171
0.044 3
3.08

.04

.42

.44

.02

.30

.23

10'3
10 nA

10"~

10"~

10-5

10-1'
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(a) 1

®) ADD o]
(c) ADD

(d) REMOVE (i, 5
(e) ADD NODE 6

FIGURE 6.11: STRUCTURAL CHANGES 1\HEN THE NODE IS INGLUDED IN AN
ALTERNATIVE POSITION

(contd. over)
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1
(£) ADD C
45
REMOVE G
Ig9) 12
(h) ADD NODE 7
1
i) REMOVE G
(3) ADD
(k) REMOVE C Computer realization

FIGURE 6.11: CONTINUED
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4=3
Initial wvalues = 10
Initial error = 10.5
(a) 1
Final error = 4.38
(b) ADD Final error = 1.61
(c) ADD G23 Final error = 1.61
(d) ADD NODE 6
1
(e) REMOVE C Final error = 4.13 x 10-1
(f) ADD C
-2
) REMOVE C Final error = 3.73 x 10
0) ADD G
-2
(1) REMOVE C. Final error = 2.31 x 10
) ADD NODE 7

FIGURE 6.12; REALIZATION OF LOCAL'S FUNCTIONS

(Contd. over)



1
(k) REMOVE C
CD ADD 007
1 o
c 21.1
15
cas = 0.189
a5 = 0.675
~26 = 4.28
cae 0.114
c27 = 0.259
c57 = 2.57
a7 = 1.96
Common factors = 3.06 and

FIGURE 6.12: CONTINUED

*

Final error

Final error

13
~34

~24
~05
~06
Gi2

~07

.10

0.226
0.289
0.817
52.7
10.9
0.0570
6.37
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()
(c)
(d)

(e)

€3]

(9)

1h)

(1)

(3)

ADD C
ADD G

ADD NODE 6

REMOVE G

14
REMOVE G16
ADD 146

REMOVE C1l2

REMOVE 045

ADD NODE 7

FIGURE 6.13:

Initial wvalues
Initial error

Final error = 2.38
Final error = 1.22
Final error = 1.22
Final error = 1.13
Final error = 0.774

1T
10.3

QUA'S1 REALIZATION OF LUCAL'S FUNCTIONS

(Contd.

over)
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(k)
(1)
(m)
(n)
(0)
(p)
(@
(x)
(s)
(t)
(u)
)

FIGURE 6.13:

REMOVE

ADD

REMOVE

ADD

ADD

REMOVE

REMOVE

ADD

REMOVE

ADD

REMOVE

REMOVE

CONTINUED

S 7
56
~46
G17
67
15
G34
G46
(*56
G
57
*A37

Final

Final

Final

Final

Final

Final

6

error = 0.744
error = 0.716
error*= 0.455
error = 1.18
error = 9.26
error = 9.25

Final error

X

X

X

10
10~

10~

-3
9.27 x 10
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Initial wvalues

Initial error =9.

(@) 1
5 Final error = 0.443
() ADD 3 Final error = 0.128
Ce) ADD C15 Final error = 9.25 x 10~*
Cd) ADD
-2

(e) REMOVE Cl15 Final error = 8.09 x *10
(£ ADD NODE 6

1
(9) REMOVE C35 Final error = 2.73 x 10'*
(hi ADD NODE 7

FIGURE 6.14: REALIZATION OF LUCAL'S FUNCTIONS

CContd.over)



1
(1) REMOVE
(J) ADD C 37
(k) REMOVE Cl:2
(1) ADD Q. 7
(m) REMOVE C17
(n) ADD C 35
c13 = 20.8 A7 = 2.83
c24 = 5.11 A35 =0.262
~06 = 2.51
Common factors = 1.39 and

FIGURE 6.14: CONTINUED

Final

Final

Final

Final

Gis

G?5

Go 3

Go 4

error

error

error

error

0.560
0.237
52.2
9.57

= 6.65

=4.2]

= 2.48

x 10
x 10

-4
x 10

-22
x 10

= 2.04
°36
G = 1.46
ig

= 4.72
A 7

= 1.98
A 7
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Initial wvalues

Initial error

@) 1 v . =8.74
Final error = 1.33
(b) ¢eADD G I Final error = 1.33
(c) ADD NODE 6
1
(d) REMOVE G34 Final error = 1.01
() ADD 136
(£) REMOVE G34 Final error = 0.973
(9) ADD NODE 7

Lowest error produced was 0.452.

At this stage an alternative node addition was required.

FIGURE 6.15: FAILURE TO REALIZE LUCAL'S FUNCTIONS
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Initial wvalues = 10"
Initial error = 8.65
(a) 1
Final error = 0.819
5
(b) ADD Final error = 0.257
fc) ADD NODE 6
1
5
(d) REMOVE a12 Final error = 7.77 X 10
4
Ce) ADD Cc56 Final error = 2.45 X 10
-4
(£) REMOVE Gt6 Final error = 2.44 X 10
(g) ADD NODE 7
1
Final error = 6.92 x 10

FIGURE 6.16: REALIZATION OF LUCAL'S FUNCTIONS REQUIRING SIMULTANEOUS

ADDITION AND REMOVAL OF ELEMENTS (SECTION 4.12)

(Contd. over)
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Ch) ADD
(1) REMOVE G27 Final error
(J) ADD Cg7 and
REMOVE (gg Final error = 9.85 x
Ck) ADD cos .
CD REMOVE (- 35 Computer realization

c13 = ~la 0.0822

Cod = 1.64 R = 3.81
24

Cit5 = 0.739 R 39.2
03

C2g — 3.00 R = 10.8
06

C36 = 1.68 R 16.1
17

Co7 = 6.32 R = 0.0927
47

C57 = 0.921 R = 2.10
05

Common factors = 2.00 and 3.00

FIGURE 6.16; CONTINUED
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Initial wvalues = 10

Initial
() 1

Final error = 0.951
(b) ADD Cos Final error = 0.912
(c) ADD NODE 6
1
4

(d) REMOVE C23 Final error = 9.47 x 10"*
(e ADD cse
(£) REMOVE Cl6 Final error = 2.44 x 10

(9) ADD NODE 7

Continues as in figure 6.16

FIGURE 6.17: REALIZATION OF LUCAL’S FUNCTIONS REQUIRING SIMULTANEOUS

ADDITION AND REMOVAL OF ELEMENTS (SECTION 4.12)
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Initial wvalues = 10
Initial error = 8.21
(@) 1
4 5 Final error = 1.46
(b) ADD Final error = 0.819
(c) ADD Gi2
(d) REMOVE Ci,5 Final error = 0.659
(e) ADD NODE 6
1
() REMOVE 023 Final error = 0.182
-2
(9) ADD Cc36 Final error = 9.72 x 10
(hi ADD ciz2
(1) REMOVE Cle6 Final error = 3.25 x 10 *
(3) ADD NODE 7

FIGURE 6.18: REALIZATION OF LUCAL'S FUNCTIONS REQUIRING SIMULTANEOUS
ADDITION AND REMOVAL OF ELEMENTS (SECTION 4.12)

(Contd. over)



(k)
(1)
(m)
(n)
(o)
(P)

(@)
'(x)

4
REMOVE

ADD

REMOVE

ADD

REMOVE

ADD

REMOVE

ADD

REMOVE

Ci2
Cs7
Gey
Cit+5
G12
G, 7
Co 7
Go 7

G37

and

5
Final error*= 1.05

Final error = 1.60

Final error = 6.53

Final error = 4.45

30

This is an exact realization as given by Cutteridge

FIGURE 6.18:

CONTINUED

lol A

10

10

10
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a1z © 211 ~26

c35 = 0.854 c36 =

apqg = 429 a6

56

Common factor = 0.986
FIGURE 6.19:

(a) I

(b) ADD

(c) ADD

Cd) ADD

(e) ADD

(f) ADD

(9 ADD

(b) REMOVE

(1) REMOVE

&) ADD

(k) REMOVE

) ADD

(m) REMOVE

(n) ADD

(0) ADD

(P)

FIGURE 6.20:

.232
.64
.24

.101

REALIZATION OF LUCAL'S FUNCTIONS
WITH 6 NODES

C12

C35
Go2

G23
G14

Gi2

C12

G14

G45
G23
Gol
Go 5
Go 5

Gol

ADD NODE 6

Ss
G25 T

Go 3

Final
Final
Final
Final

Final

Final

Final

Final

Final

Final

177

0.172 = .
Go 4 10.8
0.804 gi2 = 0.0247
52.6 Go6 = 6.57
Initial values = 10®
Initial error = 8.66
Final error= 0.819
error = 0.257
error = 0.168
error = 0.140
error = 0.139
error = 0.139
error = 0.100
error = 7.45
error = 7.03 )-2
error = 7.03 )-2
-2
error = 7.02

RELAXING THE CONSTRAINTS ON ELEMENT ADDITIONS

SIX-NODE REALIZATION OF LUCAL'S FUNCTIONS OBTAINED BY

CrnnfH mvpr'i



2

ca) REMOVE Cs, Final error = 1.73 x 10

(x) ADD . computer realization.

c13 = 21.1 = 8.68 X 10':’\11 G15 = 0.180 s 2 - 0.0190
= 4.29 co, = 5.03 X 10 s = 0.823 g5 = 3.08 X

a3s = 0.857 apg = 0.245 Go3 =526  goq = 2.00 X

oz - 3.92 X 10 L = 2.63 s = 109 oo = 6.47

CGt+6 = 2.01
Common factor = 1.09

FIGURE 6.20: CONTINUED



(b)
(c)
(9)

13’

("0 3
Go 4

Go 5

Common factor

23

1
ADD
ADD Cq2
ADD G22
1

(1.5 x 10'0
(0.597)

20.1

4.49

= 1.20

FIGURE 6.21:

179

Initial wvalues = 10
Initial error = 17.7
Final error = 3.56
Final error = 2.99

-2
Final error = 1.29 x 10

computer realization

G, ,/G,, = 0.0700
r3s = 0.579
G45 = 2.22
Cod = 0.102
GI 2 =281 x 1077

REALIZATION OF FIALKOW'S FUNCTIONS
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Initial values = 10°
Initial error 17.7
(@) 1
Final error = 3.56
4
ADD .
GOh and
ADD Co3 and
ADD Ci2 Computer realization
®) 1
4
CAgjC”*s =1I'SO X 10 C0.07)
Cgi+ =20.1 G35 = 0.650
cqs =4.44 Gas 2.24
Co3 =0.658 ~04 0.102
ciz = 3.52 x 10/
Common factor = 1.24

FIGURE 6.22; REALIZATION OF FIALKOW'S FUNCTIONS BY THE SIMULTANEOUS
ADDITION OF THREE ELEMENTS (SECTION 4.7)



()

(c)

FIGURE 6.23:

ALTERNATIVE NETWORK STRUCTURES
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()
(c)
(4)
(e)
(£)

()]
(h)

(1)

A13%42 3
C45
~05
Co3
Co6

ADD Cc
04

ADD

ADD Co5

REMOVE Cot+
ADD cq3
REMOVE C35
ADD NODE 6

REMOVE G
03

Cl.5 X 10"3)

22.3

198

(0.597)

2.25

Common factors

FIGURE 6.24:

*14 '2 4

Cu4
Cos

G 36

C4ae6

1.34 and 0.401

Final

Final

Final

Final

Initial wvalues = 10®
Initial error = 16.
Final error = 3.62
error = 0.590
error = 1.03 x 10_3
-5
error = 2.74 x 10
-6
error = 4.99 x 10

Computer realization

(0.07)
0.102
87.6
0.534

SIX-NODE RC REALIZATION OF FIALKOW'S FUNCTIONS
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(b)
(c)
(4)
(e)
(£)

Cq)
(h)

()

FIGURE 6.25:

13
Cit5
cQ5

Co 3

Co 6

Common factors = 0.442 and 2.23

1
ADD Cos
ADD Ro1l,702
ADD ~15*R% 5

REMOVE Roi,Ro2
ADD Cq2

REMOVE C35
ADD NODE 6

REMOVE Gq 3

= (1.5 X 10"3
23 ( )

= 7.02

= 477

(0.597)

0.772

Final

Final

Final

Final

Final

Initial values

Initial error

error = 3.62
error = 1,29
error = 7.09 x lo'S
error = 2.82 x lo's
error = 4.99 x 10-6

Computer realization

~14

Cos
Cl5,G25
C36

Cl46

4.04 X 10
215

-2
2,96 x 10
0 534)
0.788

SIX-NODE RC REALIZATION OF FIALKOW'S FUNCTIONS
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Initial values -

= 0.0015

c ,©. ,6 .,G
03 04 03 04
Initial error = 11.5

(a)

Final error = 11.5
®) ADD L34
(c) REMOVE Go4 Final error = 0.420
(d) ADD Co1l,Cq2 Final error = 2.30 x 10-2

*

(e) ADD GI2 Final error = 2.24 X 10"#
(£) ADD G34
(9) REMOVE 41 'co2 Final error = 9.66 X 10"~
®) ADD ~01 ~02
(1) REMOVE Go 3
(3) REMOVE ;o Final error = 5 .38 X 10-3
(k} ADD Cc12 Final error = 5.36 X 10'3
(1) ADD NODE 5

FIGURE 6.26: RFC REALIZATION OF FIALKOW’S FUNCTIONS INCLUDING THE
ADDITION OF A NODE



(m) REMOVE C._,
(n) REMOVE Go 1,Go2
(o) ADD G35

4

(1.5 X 10"~

A1377223
Co3 (0,597)
04 20.6
105 4.60
= 0.121
Common factor = 0,398 and

FIGURE 6.26: CONTINUED

Final error = 1.19 x 10
Final error = 1.70 x 10
A147A24 0.070

c34 0.483

Go 5 0.11]

cas 1.32 L
G35 5.15 x 10
0.398

20
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A13%723 (1.5 X 10~ )
C - 19.9
04
~03 = (0.597)
c45 = 5.19

~14,724 = 0.0700

1 Co 3 = 0.596
Go4 = 0.102
~05 = 2.02
G .G - 7.80 X 10"
13' 23

lo 3 = 0.148

Common factors = 0.494 and 0.494

FIGURE 6,27: RLC REALIZATION OF FIALKOW’S FUNCTIONS HAVING A
SERIES-PARALLEL STRUCTURE

= (1.5 X 10"3)

cl3'c23
C 20.0
04
Co 3 = (0.597)
Gi+5 = 5.19

G14 ,G24 = 0.0700

Go 3 = 0.595
! God = 0.102
Go 5 = 2.01
Gi2 = 3.84 X 10'"
Co 3 = 0.148
~ Common factors = 0.492 and 0.492

FIGURE 6.28: RLC REALIZATION OF FIALKOW’S FUNCTIONS HAVING A
SERIES-PARALLEL STRUCTURE

(7.5 X 10'®)

~137423
cds - 8.41
Go 5 = 95.5

G%4,G24 = 4.04 x 10"2

= 46.8
Go 3 = 1.49 x 10"~
Gl5,G25 ~ 2.96 x 1072
ce2 = 3.96 X 10"?
L34 = 3.72 x 10'G
Common factors = 0.494

FIGURE 6.29* RLC REALIZATION OF FUNCTIONS 6.16



1
13" 23 4.04 X 10 2 G
45 = 8.38 05 = 15.8
-5
= 32.4 . = .
05 G34 1.48 X 10

Common factor = 0.489 and 0.489

FIGURE 6.30: RLC REALIZATION OF FUNCTIONS 6.17

G ,G 4.03 X 10"2

13' 23 24 -4
L5 .38 2.575 X 10
~05 77.8 G05 = 38.7

-4 -7
~06 = 1.07 X 10 ~"16*726 - 8.39 X 10

-4

Common factor = + 0.529 + 0.0159 p + 1.22 x 10

FIGURE 6.31: RLC REALIZATION OF FUNCTIONS 6.18

3.63 x 107

-6
3.65 X 10

3.92 X 10 G
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FIGURF. 6.32:

FIGURE 6.33:

aA3*»*23 = (7's X 10'G

c4s = 97.0
Cos5 -25.1
ANgEA24 N 0.0700
45 = 47.2
03 = 1.49 X
= 0.102
;o4
= 3.84 X
'12
03 = 3.69 X

Common factors =

10"5

10"z

1076

0.492 and 0.492

RLC SERIES-PARALLEL REALIZATION OF FUNCTIONS 6.16

~45 =

Cos
Gm.,G2u -
'45

Go 3 =

012

~03

Common factors

32.4
8.38
4.04 X
15.8
1.49 X
3.84 X
3.69 X

10

10-5
-7

10

10'G

0.492 and 0.492

RLC SERIES-PARALLEL REALIZATION OF FUNCTIONS 6.17

188



(a)

ADD
(®) 04
(c) ADD C
03
ADD
@ 12
1
A137A23 (1.5 x 10"3)
Co. 20.1
A05 3.48
03 (0.597)

Common factor =1.26

FIGURE 6.34:

Initial wvalues = 10

Initial error

Final error = 3.57

Final error = 2.99
Final error = 7.65 x 10_3

Al4%A24 0.0700

G35 0.570

G45 1.91

~04 0.102

G12 2.23 x 10"?

REALIZATION OF

FUNCTIONS 6.20
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(a) 1
ADD G
®) 04
(c) ADD C
03
(@) ADD G
12
1
475 x 10
~04 = 19.9
co5 = 3.28
~0 3 = 1.63
Common factor = 1.84

FIGURE 6.35:

Final
Final

Final

CzZ3
3

G24
35
GH5
Go4

~12

REALIZATION OF

Initial wvalues

Initial error =

Final error = 3.58

error=2.99
error=5.46 x 10 *

error=1.99 x 10'**

= 6.95

= 2.48

= 0.100

= 3.03 X 10

FUNCTIONS 6.21

10°

17.
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CHAPTER 7

CONCLUSIONS AND POSSIBILITIES FOR FURTHER RESEARCH

Thé major.conclusion of this research is that it is possible, at
least with networks of the order considered, to evolve realizations from
a minimal starting topology. Realizations requiring the addition of
one or two nodes were repeatedly obtained to several test problems.
(Although element addition had previously been achieved by several

13,14,15,16,17
researchers

on only one instance had a node been included
to successfully produce a realizationl4. Furthermore, the aﬁthor found
this method to be ineffective when applied to other test examples.)

With RC networks, realizations with seven nodes (plus earth) and
fifteen elements evolved from minimal structures of five nodes and eight
elements, requiring approximately twenty-five topological modificatiecns.
Although similar RLC networks could not be locatéd, RLC realizations
with a similar number of eiements, but with only six nodes, were obtained
for other problems from similar starting topologies. This would seem
to indicate possibilities beyond the reduction of networks synthesized
by standard methods (e.g. artificial transmission lines) as suggested

by di Mambrols.

The principal achievements of the research were to:

(D improve the efficiency of the optimization (sections

3.6 and 3.7),

(2) modify the criteria for the recognition of the desirability

of element removal (section 3.8),

(3) include criteria to recognize when node removal is

indicated (section 3.9),



(4)

(5)

(6)

These improved techniqueé, allied to their improved utilization

develop criteria to determine the location of a minimum

of the overall error function (section 3.10),

develop an improved method for the introduction of

elements (section 4.4),

develop a successful method for the introduction of

groups of elements, i.e, node addition (section 5.8).

(by ensuring the coefficients are matched effectively and by including

192

a restart facility),; produced three networks of theoretical significance:

(1)

(ii)

(1ii)

.an RLC series-parallel realization of Fialkow's functions

(section 6.8),

RLC realizations of a network containing a negative
numerator coefficient in the short-circuit transfér
admittance function after the removal of common factors,
all poles of both impedance and admittance being compact

(section 6.9),

An RC realization of Lucal's functions with only six

nodes plus the reference node (section 6.6).

Whilst a deal of success has been achieved with the composite

strategy developed, none of the techniques currently incorporated in the
program is necessarily to be regarded as beyond improvement.
be improved, either as a unique change or, as one of a series of changes

to produce a different strategy.

for recourse to a restart strategy after some topological additions.

Consider for example the question of node addition.

be said to fail in several manners:

This fact is illustrated by the need

Ar addition may

All could
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(1) an attempted introduction may not be feasible as the

method has only an empirical and intuitive basis,

(ii) the node may be introduced at values which result in

the rejection of the addition when it is, in fact, feasible,

(iii) one node may be included in preference to others which

would have produced better results, -

(iv) on isolated instances, the method will fail to include a

node in any of the potential positions.

The methods used in this research assume that an approximation
stage has been accomplished, i.e. the requirements have been transformed
into the short-circuit admittance parameters. These parameters are
rational functions in p , the complex frequency variable, and the
coefficients are equated in the design process. The relative merits of
the alternatives to coefficient matching are well documented in the
literaturé and the salient points have been restated in this thesis.

Many feel, because of the mathematical basis of coefficient matching,

that if computer aided design is to be achieved it will be by this, rather
than an alternative method. (This mathematical aspect also facilitates
the adoption of automated, rather than interactive, design.) Perhaps a
re-evaluation of these alternatives, incorp@rating some of the
developments beneficial in design based on coefficient matching, would be
enlightening. (The author will discuss, at a later stage, why the
coefficient matching design may be insufficient in itself.)

The behaviour of any optimization routine will obviouély be
dependent on the accuracy of the analysis. (Several jobs run bv the
author at the latter stages of the research were successful only when

double precision was employed.) For the magnitude of the networks
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considered, the accufacy of the analysis was not a limiting factor

in the performance of,the-package. Consequeptly; the author conducted

little research into the analysis routine. In fact it is evident

that there are several modifications which could be implemented that

would increase the accuracy without recourse to an alternative method.
Worthwhile research could be undertaken into an evaluation of

13,21—24, and improved versions, to

the accuracy produced by this method
establish the practical limitations of size, element disparities etc.
Similarly a more extensive evaluation of the fast Fourier transform

25,26

method could be undertaken.

The less direct adjoint methocld's_51

of calculating the derivatives,
which determines the response to real frequencies, appears to be preferred
merely because it is 'in vogue'. An accurate comparison with the me thod
devised at Leicester should be undertaken.

The power of the optimization routines contained in the original
version of the program was improved in two ways. Firstly, by modifying
the criteria that determine which algorithm should be used and, secondly,
by improving the linear searches of the two algorithms, thus ensuring a
continued reduction of the error. An alternative second order gradient

descent a.lgorithmd'o-42

was examined but was found to be superfluous to

the requirements of an idealized RLC network. Further, it is

unlikely, because of the increased compgtational effort required as thé
number of variables is increased, that this method will be viable when
applied to larger networks. The limitations of size (etc.) on this
combined CG/GN algorithm were not fully explored and reéearch in this
direction would be beneficial. The largest networks tackled by the

author had ten nodes and twenty RC elements and variable common factors.

A further related topic for research could be an investigation of

the effects of constraints on the element values, a reasonable practical



195

requirement. Simiiarly, underdefined problems could also be examined.
These underdefined problems could arise in two fofeseeable circumstanceé.
For several reasons, it can prove beneficial to commence designs. from
the smallest possible structurés: However, the degree of difficulty
experienced and time taken in achiéfing a realization will be

dependent on the proximity of the network to a suitable topology. The
author had insufficient time to examine whether it is reasonable to
start with a network with the minimum number of nodes but a large number
of elements, which are consequently underdéfined, and use a suitable
optimization technique to modify the values. . It would, perhaps, be
possible to remove redundant elements, by say, their sensitivities,

and hence commence the conventional design from the suitable remanent
network.

Alternatively, with all the examples considered in this thesis,
the networks were defined by three short-circuit admittance parameters
and, hence, four cofactors. A situation could arise where the design
requirements are so flexible that only one parameter, and hence two
cofactors, are necessary to define the network, as in Calahan's9
original formulation of a coefficient matching problem. Although this
intrinsically reduces the difficulty of producing a solution, it may
lead to an underdefined problem. |

Cutteridge15 developed an algorithh which removes elements prior
to their reduction to a negligible value. This algorithm was modified
to increase its efficiency when applied to networks with more components.
Similarly, the criteria for determining when element addition was
required were also improved. The determination of a minimum of the
overall error function is important not only because it intimates that

the current network is unlikely to satisfy the requirements but, also,
the element addition algorithms work more efficiently from the actual

minima.
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Chapter 4 was devoted to element addition.' The original package
included a method of element a.ddition:[’3 but this had limitations which
increased as the error was reduced. An improved method was developed,
based on the GN algorithm. However, some problems are already
apparent with this method at iow errors. A fuller appraisal of the
range of applicability is necessary. (Elements have, so far, been
successfully included to RC networks with ten nodes.) Questions as
to the valué of the method when applied to situations where multilinearity
does not exist.(e.g. direct matching of real frequency characteristics)
still have to be answered.

The author believes that the seven programming modifications
detailed beloQ would facilitate the evolution of designs using the
current technicues or usefully extend the scope of the péckage. However
this poses the question of whether the improvements will be justified

by the extra computation and storage required.

(1) The current package can only design RC and RLC networks.
An extension to enable the design of RL and LC networks

would provide greater scope. (Section 3..3)

(ii) A method invdlving the evaluation of the gradients could
be included to facilitate the removal of elements driven
to small values. (Section 3.8) However a method of this
kind would not aid a situatioﬁ where an extreme valued
common factor accompanies the element, possibly producing

a minimum of the error function. (Section 6.5)

(iii) The removal of nodes should be allowed, with possible
safeguards when the structure is already minimal.

(Section 6.3)
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(iv) The value of any common factor removed should be
calculated and the necessary modifications implemented.

(Sectioﬁ 3.5)

(v) Wye-delta transformations are advisable when only three
elements of one type are connected to a particular node.
This will facilitate the subsequent removal, if necessary,
of any of these three elements. (Otherwise the elements

will tend to lérge values - section 3.9)

(vi) 1If any one node is connected to only two other nodes it
is advisable to reverse the connections (as in Figure 5.7),
and investigate possible element additions, before

introducing a further node.

(vii) It is possible that the creation of a new node will produce
a node which is identical in topology to an existing node.
(i.e. the new node is at the intersection of the same
types of elements as another node which are in turn
connected, at the alternative end, to the same nodes -
section 6.3.) If such a situation remains after
optimization, then the new ndde addition should Ee rejected
(restarting the evolution with an alternative node
addition) unless a true minimum of the overall error

function, signified by a low SSQGNC , has been located.

One region into which the program could be extended is to take
further account of practical considerations for the existing range of
elements, e.g. para$itic elements, constraints on element values and
ratio values, sensitivities etc. Constraints on the element values

have already been mentioned. It could be argued that effects such as
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parasitics and sensitivities could be dealt with in a third stage of

the design process, say by design éenteringzg. The coefficients that
are used in>the matching process are only approximations to the actual
requirements. Consequently, it may prove that a final tuning of the
network values to the desired response will always be required.
Furthermore; the effect of parasitics is dependent upon the range and
the values of the frequencies to which the network is required to
respond aﬁd, therefore, may not always be a significant factor. Things
are further complicated when the extension to active networkSis contem-
plated. Consider, for example, these two contrasting standpoints.

The linear approximation of, say, a transistor may be inaécurate to a
large degree when compared to that of a capacitor, hence, it would seem
to be wasteful to devote undue effort to producing an extremely accurate
model of a capacitor. However, unseen parasitics can lead to problems
with active devices (e.g. oscillation) and are therefore significant.

Di Mambro13 described how the present method of analysis could
be simply extended to include active devicés which can be represented
by voltage dependent current sources. One such device model is the
hybrid-ﬁ model of a bipolar transistor (Figures 7.1 and 7.2) which can
be used in all three configufations.

Some of the effects of including active devices will be more
obvious than others. An active network will only be fully defined by
all four short-circuit ;dmittance functions and hence five cofactors of
the nodal admittance determinant. Furthiermore, it will be possible to
design without inductors with their associafed practical difficulties.

A further possible effect could be the cheaper production of a satisfactory
network. A mass-produced thick or thin film printed circuit device
(capable of representing transistors, resistors and capacitors) may prove

cheaper than a passive RLC alternative.
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The hybridﬁﬁ model would appear to be an ideal candidate for a
first investigation into the -design of active nethrks. An initial
investigation could attempt to solve simple problems of, say,
neutralisation - i.e. adding external feedback components to overcome
the effects of the internal feedback of the transistor. However, there
are other factors to consider, The model is only valid at a certain
operating point. To retain this level of biasing any d.c. input has
to be removed from the device by a coupling reactance (capacitor).

Hence, only capacitive connections should be made to a transistor
terminal. Furthermore, it may be necessary to include these capacitors
in the device model, or at least constrain them within certain values.
Coupling capacitbrs affect the lower cut-off frequency and so should be
large (limited by size and cost). In contrast, the impedancé (1/pC)
needs to be sufficiently large so that the .a.c. signal does not affect
the biasing resistor; which has thus to.be known. Similarly, the
characteristics of a single transistor can vary considerably with
temperature and so extra external components may be required to nullify
these effects. These factors indicate the requirement to design withl
a specified transistor rather than vary the compdnent values (within
certain practical 1limits) and either locate or manufacture components
with appropriate characteristics. Furthermore, for many purposes
suitable transistors will be known. For.example, Ryder59 states that
many amplifier designs involve predicting And designing around the
frequency and delay distortion which results from the coupling capacitors.

A simple active device can be modelled effectively by an
equivalent circuit, as the hybrid-n. However, it would seem to be prefer-
able to model larger devices, such as complete integrated circuits, by
their external performance characteristics. This would require minor
modification to the formulation of the analysis routine rather than an

alternative method.
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FIGURE 7.1: FIRST ORDER TRANSISTOR SMALL SIGNAL EOUIVALENT CIRCUIT

FIGURE 7.2: THE COMPLETE HYBRID - n EQUIVALENT OF A TRANSISTOR



APPENDICES

1. Optimum Values for k , the Normalizing Variable

The expressions derived relate to an overall error value F

comprising of the summation of the individual error functions fi s

such that_
v 2
F= ) f, ¢Y)
. i
i=1
where, m 1is the total number of coefficients equated.
Thus,
m af
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This corresponds to an error value of

Similarly,

Formulation 2
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Formulation la
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2. An Expression for the Optimum Value of One Common Factor

If the original desired coefficients are of value a; then

the desired coefficients with a common factor of the form (p + A)

will be

a; = Aai *os g (13)
Thus,

Ja.

-1 = q, (14)
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3. The Optimum Values of Virtual Elements

Suppose that an additional variable, u , is introduced
corresponding to the growth of a virtual element. The polynomial
coefficients cj are multilinear functions of the network elements,

hence, provided the existing elements are fixed in value,

= M T !
c; T S5y *tmcl (20)
where
c. is the value of c. when u=0
10 1
, ac,
and ¢! is the value of —> when u=20
10 ou

Substituting the value s into equation (9), and equating (%%) to

zero, Cutteridge33 obtained the expression

]

¥ Sioy T Sioy (Sio ? io T (Cio
LE) 1ED) ) - P 1
1=1 i 1=1 1 1 i=1 1 1=1 1
no= (21)
m cio moc.. cio moc,. W c; 2
TGy 1 Gy Gy 1 Gy ¥y
i=1 %1 i=1 % i i=1 %1 i=1 %1
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This can be substituted back into equation 9 to obtain the corresponding

error value.

4, Alternative Methods of Representing the Common Factors

Consider a topology which produces three common factors (p + A),

(p +B) and (p + Q). Let the original, required coefficients be oy

and the revised coefficients be a;

Hence,
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a, = ARC.a.+ (AB + BC + AB).a

i i i-1+ (A +B + C).ai_ + 0

2 i-3

(22)

When the values of the individual common factors (A,B and C) are

varied, higher order derivatives will exist, e.g.

aai
EY e BCa. + (B + C)u.i_1 + ai_2
32a,
—1 =Caq, +a
3A3B i i-1
a3ai .
5A3BaC - %i B

It is possible to construct an alternative set of variables x; such

that, with this example,

x1 = ABC
x = AB + AC + BC
x3 = A+B+C
i.e. a. = xa._+Xao + X0 (24)
1 1 i 2 1-\ 31-2

In this case only first order derivatives will exist, e.g.

=0 . ‘ : (25)

and the first order derivatives are easily calculated, whatever the
number of common factors.
To calculate the values of the new variables Y3 (i=1+torT)

when a new common factor, value X, is introduced
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otherwise

;T X.xi + Xy - (26)

-
i

The removal of a common factor is similarly straightforward.

5. An RLC-Series - Parallel Network Having no RC - Series - Parallel

Equivalent

Consider the network of Figure 6.33 as a solution of functions
6.17. The arguments expressed in section 6.8 concerning Fialkow's
functions still hold. Namely, the network (if it is a realization)
is realized by introducing an extra pole into tﬁe two subnetworks
with residues of identiéal magnitude but opposite sign effectively
cancelling the pole.

Functions 6.17 can be expressed in terms of their poles as:

1 p. ra P. rs‘
Y11 T Y22 T 800000 {rr P*I Y p+a " p+ SJ'

. T

1 ' p Pv-r&-
"Y1, T 8000000 [rl'p T TP T 5‘:‘§j

Q!é

where r, =3 , Ty = 16170

. . 8086,335/0,060225 ¢ 1962.753775
@’B /0060275

and o,B 0.255 + /0.060225
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Subnetwork 1 satisfies the functions

-— — 1 . a—
Y11 T %,, T 800000 lLrl'p "Pro PrA

- p.T Pp.T A7

v oot [, Pt P-4
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and subnetwork 2 satisfies the functions
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T
o
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o

The element values can be determined to be

_6

C = 7.5 x 10
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