
 
Estimating relationships and relatedness 

from dense genome-wide data 

 

Thesis submitted for the degree of 

 

Doctor of Philosophy 

 

at the University of Leicester 

 

by 

 

Meng Sun BSc MSc 

 

 

 

Department of Health Sciences 

University of Leicester 

2015 

 

 

 

  



                                                                                                                    

                                                                                                             

Page | 1 

 

Abstract 

Estimating relationships and relatedness from dense genome-wide data 

Meng Sun 

Relationship and relatedness estimation from genetic markers is relevant to many 

areas, including genealogical research, genetic counselling, forensics, linkage analysis 

and association analyses in genetic epidemiology. Traditionally unlinked genetic 

markers (microsatellites) are used. But the problems which can be solved by such 

markers are limited. Linked genetic markers are not only available in much larger 

numbers, but also provide extra information which is not available from unlinked 

markers. It is desirable to exploit the increasing availability of dense genome-wide 

single nucleotide polymorphisms (SNP) data for estimating relationships and 

relatedness. 

While Method of Moments (MoM) methods and other non-pedigree approaches only 

give a degree of pairwise relatedness, a pedigree likelihood approach can distinguish 

exact relationships. The pedigree likelihood approach also has advantages in that extra 

individuals can be considered jointly and extra data such as Y-chromosomal and 

mitochondrial SNPs can be incorporated with autosomal SNPs easily. In this thesis I 

firstly confirm that the increase in information obtained from large sets of linked 

markers substantially increases the number of problems that can be solved with 

pedigree approach. Furthermore, when two distant relatives do share genome 

segments through identity by descent (IBD), we usually have greater power to 

distinguish more distant relatives from unrelated pairs than was previously believed. 

Data on extra individuals always improve discriminatory power, but the position of 

the extra individuals in the pedigree dictates the extent of this increase of power. 

Linkage Disequilibrium (LD) is an issue for pedigree likelihood approach and it needs 

to be dealt with.  

MoM methods are easy to use and are generally robust to the effect of LD, but they 

are only accurate for relatives up to second cousins. I propose using pedigree 

likelihood approach to estimate pairwise relatedness and find we can greatly improve 

the accuracy in detecting distant relatives.  
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1 Introduction 

1.1 Background and aim 

Relationship and relatedness are two words which are often used to describe 

relatives and they have different meanings. The term ‘relationship’ tells us 

specifically how relatives are related to each other and typically specifies a 

pedigree connecting them. In this thesis, the terms ‘relationship’ and ‘pedigree’ 

are hence used interchangeably. The term ‘relatedness’, on the other hand, 

describes how closely the relatives are related to each other in terms of genetic 

sharing and is described by a single parameter such as a coefficient of kinship. A 

single degree of relatedness can correspond to many different relationships. For 

example, the three relationships: grandparent-grandchildren, half-sibling and 

uncle-nephew all have the same degree of relatedness and a common kinship 

coefficient.   

Relationships and relatedness can be estimated from genetic data. This is relevant 

to many areas of application including genealogical research, forensic 

identification, linkage analysis and association analysis for various reasons. In 

genealogical research, lines of descent of a family could be traced for those who 

are interested in their family tree and for genetic counselling purposes. In forensic 

research, the identification of a victim might be possible after a disaster if the 

DNA of a relative is available (Gill et al., 1994, Olaisen et al., 1997). 

Relationships often need to be confirmed in inheritance claims and in immigration 

cases (Hansen and Morling, 1993). Pedigree data are used in traditional linkage 

analysis to locate putative genes for diseases. It is important to know that the 

relationships in the pedigree are correct. The result of a linkage analysis will be 

distorted if two founders in the pedigree are in fact related while they are assumed 

to be unrelated (Leutenegger et al., 2002). Estimating their true relationships 

could yield a larger and more informative pedigree for linkage analysis. Recently 

it has been claimed that pedigree-based kinship coefficients can be replaced with 

marker-based estimates in linkage analysis and pedigrees are not necessary any 

more (Day-Williams et al., 2011). Day-Williams et al. (2011) show that they have 
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obtained a LOD (logarithm of odds) score peak in a quantitative trait locus 

linkage analysis based on estimated kinship coefficients near the locus previously 

reported by a pedigree-based study. However, it is noted that their LOD score is 

much lower than the one reported in the pedigree-based study. So it is not 

evidence that pedigree is not needed any more in linkage analysis. Instead it just 

shows that it is possible to carry out a linkage analysis even if there is no pre-

specified pedigree. Nowadays there are fewer pedigree-based linkage analysis 

studies. But this area is still controversial with many people arguing for the 

usefulness of large pedigrees in gene mapping (Wijsman, 2012, Pattaro and Saint-

Pierre, 2013).  

Association studies on unrelated individuals are commonly undertaken and they 

are good at finding common putative alleles contributing to disease. But disease 

alleles which are rare and have modest effects will be difficult to detect in 

population studies of unrelated individuals due to lack of power. One way to 

increase the power of finding those alleles is to use data from related individuals 

as they share longer haplotypes around the putative alleles and so are more 

informative than unrelated individuals (Boehnke and Cox, 1997, Goring and Ott, 

1997, McPeek and Sun, 2000, Stankovich et al., 2005). This is because rare alleles 

usually would have arisen relatively more recently than common ones and so 

there is less recombination and mutation to break the haplotypes, while old alleles 

tend to become common or else disappear from the gene pool. In standard 

association studies, relationship estimation is also relevant. It can be used to detect 

unknown relatives in the sample as their existence could bias the results when all 

individuals are assumed to be unrelated (Choi et al., 2009, Thornton and McPeek, 

2010). Relationship estimation is also widely used in research on animals and 

plants as well. The focus on this thesis will be on human data, but the methods are 

general and relevant to a broader range of applications. 

My primary interest is to improve the accuracy of relationship estimation (using 

pedigrees) and improve our ability to detect relatives that cannot be easily 

detected using existing approaches, such as more distant ones, using genome-wide 

genetic data. I would also like to know whether we really need pedigrees for 
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finding good sets of relatives in population data. Moreover, there are many 

methods estimating relationships or overall relatedness, but it is not always clear 

what they are really estimating, what assumptions they are making and when they 

can be best used. It is of interest to investigate this as well. 

When the exact relationship (pedigree) is of interest, one approach based on the 

pedigree likelihood is attractive in that it can easily deal with multiple individuals 

at the same time and prior information can, in principle, be incorporated (details 

in Chapter 4). Recent work indicates that we can exploit the ever-increasing 

availability of genome-wide single nucleotide polymorphism (SNP) data for 

estimating relationships between individuals using this likelihood approach (Skare 

et al., 2009). This approach will play an important role in this thesis. 

1.2 Layout of the subsequent chapters 

Chapter 2 introduces some background knowledge that is essential to the thesis. 

This includes human genetics and some terminologies and concepts such as 

identity by descent (IBD), linkage disequilibrium (LD) and pedigrees. Then 

different methods of calculating pedigree likelihood are described. The most 

important one for this thesis is the Lander-Green algorithm which is used to do all 

the pedigree likelihood calculation in this thesis.  

In Chapter 3, the various software packages and datasets that have been used in 

this thesis are described. They are put together as one chapter for easy reference. 

In Chapter 4, the pedigree-based likelihood method is introduced. It is an 

approach to distinguish one relationship from several alternative relationships 

rather than to estimate the unknown true relationship. Standard forensic problems, 

such as paternity testing, would typically look at two alternatives for example: the 

hypothesized relationship versus ‘unrelated’. This method is examined and ways 

to improve it are investigated. One question that I would like to answer is what 

will happen if the density of SNPs keeps increasing. One might presume that we 

would always get a better result when more markers are used. I also would like to 

know whether an extra genotyped individual will help estimate the relationship 

between two specific individuals and, if so, how to select this third individual. 
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Traditionally unlinked data (microsatellites) are used and there is hence no 

problem with LD. But when dense genome-wide genetic data are used as in this 

thesis, LD within the SNPs is unavoidable. In Chapter 5, the effect of LD on 

relationship estimation for the pedigree likelihood method is investigated and a 

possible way for dealing with LD is studied.  

The most popular approach to deal with LD is to thin the data. But to what extent 

should we thin? There is no consensus in the literature. I would like to investigate 

how the thinning approach works. Since thinning dense SNP data will 

unavoidably lose some information, it is of interest to model LD rather than 

simply remove SNPs. It is investigated how LD modelling works for relationship 

estimation. In this chapter, the pedigree-based likelihood method is proposed to be 

used as a method to estimate the degree of an unknown relationship rather than 

just to distinguish between specific alternatives.  

In Chapter 6, methods for estimating pairwise relatedness without using a 

pedigree are considered. They are used for the cases where the exact relationship 

is not of interest and just general relatedness is required. These methods include 

maximum likelihood methods, method of moments (MoM) and IBD segment 

detection methods. The aim is to understand how these methods work, their 

strength and weakness, and whether pedigrees are really necessary for detecting 

relatives when relatedness rather than exact relationship is all that is needed. 

Maximum likelihood methods are just briefly discussed. MoM methods and IBD 

segment detection methods are examined in some detail. These methods are 

compared with the pedigree likelihood approach that is proposed in Chapter 5. 

Work in Chapter 4, 5 and 6 has been written as a paper titled “On the Use of 

Dense SNP Marker Data for the Identification of Distant Relative Pairs” which 

has been accepted by the “Theoretical Population Biology”.  

Chapter 7 is devoted to the usefulness of Y chromosome SNP data and mtDNA 

SNP data for relationship estimation. Such data are routinely collected in many 

SNP chips but, to my knowledge, they have not been used to supplement 

autosomal DNA for relationship or relatedness estimation before. The potential of 
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these additional data is investigated including how they can be incorporated with 

autosomal SNPs and in what situations they are most useful.   

When data on more than two individuals are available, sometimes it is of interest 

to construct a pedigree for them. Chapter 8 looks at how to cluster a large number 

of individuals into groups of relatives and how the joint relationship of these 

relatives can be estimated all together and hence reconstruct a pedigree. One of 

the advantages of the pedigree likelihood method over pairwise estimation is that 

it can naturally consider the relationships between many individuals altogether. 

In Chapter 9, a summary is given for the findings in this thesis. I have also 

outlined some extensions for future work.  
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2 Background biology, terminology and 

concepts 

2.1 Human genetics 

Human genetic information is stored in DNA (deoxyribonucleic acid) molecules 

as a linear sequence of nucleotide bases and can be transmitted from parents to 

children. DNA is a two-stranded helix. Each strand consists of four different 

nucleotide bases: adenine (A), cytosine (C), guanine (G) and thymine (T). The 

bases on the two strands pair with each other following a rule of A pairing with T 

and G pairing with C (Figure 2.1). DNA is replicated by separating the strands 

and using each strand as a template to form two identical double-strands of DNA. 

The two strands are complementary, so we only need to know the sequence of one 

strand. A strand of DNA can also be used to produce RNA (ribonucleic acid) in a 

process called transcription, in which only one strand of DNA is used as a 

template to construct the complementary strand. RNA, unlike DNA, is usually 

single-stranded. There are two classes of RNA. One class is mRNA which carries 

the genetic information from the DNA to the synthesis of protein in a process 

called translation. Another class is noncoding RNA which is involved in the 

expression of other genes. The transmission of genetic information is through the 

activity of DNA and RNA regulating the formation of polypeptides, the basic 

component of proteins. A gene is a DNA segment which includes a sequence of 

bases which can be transcribed into mRNA and instructs the formation of protein. 

Protein is an important component of the human body and different types of 

protein can determine the different functions of cells.  So changes in the DNA 

sequence can have an effect on our health by changing the functionality of 

proteins.  
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Figure 2.1 Picture of a standard double helix from U.S. national library of medicine. 

 

The entire genetic material carried in humans is called the genome. The haploid 

human genome has a size of 3200 megabases (Mb). The genome is distributed 

among 23 pairs of chromosome inside the cell nucleus. 22 pairs are the autosomes 

and one pair consists of the sex chromosomes with XX in females and XY in 

males. Humans also carry mitochondrial DNA, a 16.5 kilobases (kb) molecule 

present in many copies in almost all cells, and housed outside the nucleus. Except 

for the sex chromosomes, nuclear chromosomes in each pair have the same basic 

structure and gene sequence with one originating from the father and one from the 

mother. The two chromosomes in a pair are called homologues. A locus is a 

particular position on a chromosome, and an allele is one of the sequence variants 

that could exist in a specific locus. For example, at the locus of the ABO blood 

group, there are three possible alleles: A, B and O.    

Only 3% of our genome comprises coding sequences (Lander et al., 2001) and the 

number of genes that code for proteins is only about 24,000. 99.9% of genome is 

identical between individuals. But the remaining DNA sequence in chromosomes 

can vary in many ways. There are two widely studied types of DNA sequence 

variant - microsatellites and SNPs. A microsatellite, also referred to as a short 

tandem repeat (STR), is a repeated short sequence of about 2-6 base pairs (bp), 

e.g. ‘CACACA….’. Microsatellites are very variable in the numbers of repeats 

and hence informative since most people have different alleles at a given locus. A 

SNP is a variant of DNA where a single base is substituted for another, and 
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includes single-base insertion and deletion. Such variants usually have only two 

alleles. 

Not all changes in DNA sequence change the structures of proteins. This is 

because 97% of the genome has no effect on proteins and also because there is 

redundancy in the genetic code, which means that several different codons 

(nucleotide triplets that can specify an amino acid or indicate the termination of 

translation) may produce the same amino acid. Those SNPs which can actually 

lead to the change of amino acids are called non-synonymous SNPs. We also need 

to note that changes outside of the protein-coding regions can affect the phenotype 

as well by altering the regulation of genes. 

A genotype is the combination of the alleles at one locus on each of the two 

chromosomes. In a genotype, the order of the alleles is usually not important, e.g. 

Aa = aA by default. It is usually made explicit if they are ordered. Hardy-

Weinberg Equilibrium (HWE) specifies a state that genotype frequencies are 

consistent with the two alleles being sampled independently from a population of 

alleles. For example, if the frequencies of allele A and a are 𝑝𝐴 and 𝑝𝑎, the 

frequencies of the genotypes AA, Aa and aa under HWE are 𝑝𝐴
2, 2𝑝𝐴𝑝𝑎 and 𝑝𝑎

2 

respectively. A haplotype is the sequence of the alleles at different loci along a 

chromosome.  Obviously, a haplotype depends on the order of the alleles along 

the chromosome. Haplotypes also tell us the phase of the genotypes, in other 

words, which chromosome an allele belongs to. A phenotype, also called a trait, 

refers to an observable property of an individual. A phenotype could be a disease 

status e.g. presence or absence of a disease; it could also be a continuous 

characteristic, e.g. blood pressure, height, etc. 

A person is homozygous at a locus if the two alleles at that locus on the pair of 

homologous chromosomes are the same and heterozygous if they are different. If 

a trait is expressed whenever one abnormal allele is present, then that abnormal 

allele is called dominant for this trait and the trait is called a dominant trait. If a 

trait only manifests itself when two copies of the abnormal alleles are present, the 

abnormal allele is said to be recessive for that trait and that trait is recessive. 

There is also an intermediate case, while both phenotypes are expressed and no 
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phenotype is dominant. The expressed phenotype is somewhere between two 

extreme states. This is called co-dominance. 

Cells can be categorized by the number of the chromosome sets contained in 

them. For human cells, each chromosome set consists of 23 chromosomes. But 

different cells in our body may contain different copy numbers of the 

chromosome set (ploidy). Most human cells contain two copies of the 

chromosome set and are called diploid. But sperm and egg cells only carry one 

copy of the chromosome set and are called haploid. Some cells, like red blood 

cells contain no chromosomes at all. In some species, the cell can be triploid or 

tetraploid.  

There are two kinds of replication process for a cell, mitosis and meiosis. All the 

cells in our body are derived from one single zygote (the fertilized egg cell) which 

is formed by the sperm and egg cells. Both mitosis and meiosis involve the 

processes of replication of DNA and cell division. But mitosis produces identical 

chromosomes and the resulting cells remain diploid, while meiosis produces 

haploid cells which are all genetically different from each other. Meiosis only 

happens in the germ-line cells and produces gametes (sperm and eggs) while 

mitosis is the normal process for human cell division and it generates the cells 

required for an embryo to grow. 

Meiosis starts from a diploid cell and goes through one replication process and 

two division processes leading to the formation of gametes. Each gamete 

randomly receives one member of the pair of homologous chromosomes which 

have experienced the crossover process (see below). So each gamete only has one 

copy of the chromosome set and contains 22 autosomes and one sex chromosome.  

In sperm cells, the sex chromosome could be either X or Y, but in egg cells, the 

sex chromosome is always X. When a sperm fertilizes an egg, a diploid zygote 

will be formed with chromosome constitution of either ‘46,XX’ or ‘46,XY’ 

(‘46,XX’ means there are 46 chromosomes in total and the sex chromosomes are 

XX). 
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Because each diploid cell contains two sets of chromosomes, it thus has two 

copies of each chromosome, one is paternally inherited and the other is maternal. 

During meiosis, when one cell divides into two daughter cells, the process that 

decides which homologue goes to which daughter cell is random. So there are 223 

possible combinations of parental chromosome in the gametes from just a single 

meiosis. 

Figure 2.2 Crossover in meiosis. Two homologous chromosomes are replicated (a) -> crossover happens 

on two chromatids between two chromosomes (b)-> crossover is completed (c) -> four gametes are 

produced, each with one chromosome (d). 

 

In the process of the gamete formation, the homologous chromosomes are not 

transmitted to the gametes completely. First, each single chromosome will be 

replicated and the replicated chromosome will be connected with the original 

chromosome, both of them are called chromatids (as shown in (a) of Figure 2.2). 

Then the cell will experience two division processes. A chromatid is one of the 

two identical copies of DNA making up a duplicated chromosome, which are 

joined at their centromeres, for the process of cell division. They are called sister 

chromatids. A process called crossover occurs between paternal and maternal 

chromatids leading to further genetic variation among the resulting gametes as 

shown in (b) of Figure 2.2. Crossover involves the breakage and the rejoining 

of chromosomes in paternal and maternal chromatids (as shown in (c) of Figure 

2.2). The point at which a crossover happens is called a chiasma. Crossover can 

separate the alleles that originally appeared in one chromosome and could also 
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make two alleles with different sources appear on one chromosome. This process 

is called recombination. The random segregation of chromosomes in meiosis and 

the crossover between homologues ensures that one individual can produce a huge 

amount of genetic diversity in their gametes. Crossover is often used to assess the 

distance between two loci with 1cM (centiMorgan) denoting an average number 

of crossover of 0.01 in one generation. For two loci which are physically close on 

the same chromosome, the expected number of crossover between them is usually 

close to 0. Generally the greater the distance between two loci, the higher the 

probability of a crossover happening between them. The exception is in 

recombination hotspots (regions in a genome where crossover is more frequent). 

It is the odd number of crossovers between two loci which causes the 

recombination of the genes on two loci because an even number of crossovers 

between two loci would take each allele back to their original chromosome. In 

each crossover process, there are always two sister chromatids remaining non-

recombinant while another two recombine. So the maximum recombination rate, 

which can be assessed by the proportion of gametes that are recombinant, is 50% 

for a pair of well separated loci.  

Mutations are variations in the usual DNA sequence of an organism which are the 

result of chemical or physical agents or DNA replication errors. Only those 

mutations in the coding regions of genes can affect the amino acid sequence of a 

protein. Regulatory mutations in the non-coding regions could affect the amount, 

location or timing of protein production. An organism could have original 

phenotypes or mutant phenotypes depending on whether a mutation occurs. 

The Law of Segregation (first law of Mendel) states that every individual 

possesses a pair of alleles for any particular trait and that each parent passes a 

randomly selected allele to its offspring. The Law of Independent Assortment 

(second law of Mendel) states that separate genes for separate traits are passed 

independently from parents to offspring. That is, the selection of a particular gene 

in the gene pair for one trait to be passed to the offspring has nothing to do with 

the selection of the gene for any other trait. But we know now this is true only for 
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genes that are not linked i.e. are not located closely enough on a chromosome to 

be inherited together more often than not.   

Mendelian characters are those characters whose expression is determined by a 

particular genotype at a single locus. There are six general inheritance patterns for 

Mendelian characters:  

(1) Autosomal dominant. Under this pattern, an affected parent transmits the 

phenotype to both male and female children and affected males and 

females appear in each generation of the pedigree. One example of this 

type of disorder is Huntington's disease (OMIM number #143100).  

(2) Autosomal recessive. Under this pattern, both sexes can be affected and 

two unaffected parents could have an affected child. One example of this 

type of disorder is cystic fibrosis (OMIM number #219700). 

(3) X-linked dominant. Under this pattern, affected males pass the disorder to 

all daughters but to none of their sons, and affected heterozygous females 

married to unaffected males pass the disorder to half their sons and 

daughters. One example of this type of disorder is X-linked 

hypophosphataemic rickets (OMIM number #307800). 

(4) X-linked recessive. Under this pattern, many more males than females 

show the disorder because males only have one X chromosome and the 

phenotype will expressed as long as that X chromosome contain the causal 

allele; all daughters of an affected male are ‘carriers’; none of the sons of 

an affected male show the disorder or are ‘carriers’. One example of this 

type of disorder is Haemophilia A (OMIM number #306700). 

(5) Y-linked. A disorder with this pattern only affects males and all male 

offspring of an affected male are affected. One example of this type of 

disorder is Y-linked deafness (OMIM number #400043). 

(6) Mitochondrial. A disorder with this pattern is passed by a mother to all of 

her offspring, and cannot be passed on by males, since females only pass 
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on mitochondrial DNA in the egg. One example of this type of disorder is 

Leber hereditary optic neuropathy (OMIM number #535000).  

But most human characters are more complex than Mendelian characters. These 

are governed by genes on several loci and are called multifactorial.  

The knowledge of human genetics in this thesis is mainly taken from the books of 

Strachan (2011) and Palmer (2011).   

2.2 Identity by descent and identity by state  

A set of genes at a locus are said to be identical by descent (IBD) if they have 

been inherited from a common ancestor. In contrast, two alleles are said to be 

identical by state (IBS) when they are of same type regardless of their origins. The 

sharing of genes IBD can be used to measure the relationship between individuals. 

Obviously, related individuals will have more IBD sharing than unrelated 

individuals and relatives are similar phenotypically because they share more genes 

IBD. These probabilities of IBD are important in identifying the relationship 

between people. The difference between IBD and IBS is thus important in linkage 

analysis where putative genes for disease are tracked through pedigrees but less 

important in association analysis where the focus is on the effects of the genes 

carried and not their origin.   

Inbreeding refers to reproduction through the mating of two genetically related 

parents. It will result in increased homozygosity, which in turn increases the 

chances of offspring being affected by recessive traits. The inbreeding coefficient 

is the probability that two alleles at a locus in an individual are IBD. The kinship 

coefficient is the probability that the two alleles, randomly drawn from two 

individuals at a particular locus, are IBD. The inbreeding coefficient of an 

individual is hence the kinship coefficient between the father and the mother of 

the individual. Kinship coefficients and inbreeding coefficients are just 

probabilities, so they can only take values between 0 and 1. Denoting the kinship 

coefficient by θ we have 

θ = 1/2×P(IBD=2)+1/4×P(IBD=1)+0×P(IBD=0) = 1/2𝑘2+1/4𝑘1+0𝑘0, 



                                                                                                                    

                                                                                                                  Chapter 2 

Page | 32 

 

where P(IBD=2) = 𝑘2 represents the probability that two individuals share both 

genes IBD, P(IBD=1) = 𝑘1 represents the probability that two individuals share 

one IBD gene and P(IBD=0) =𝑘0 represents the probability that two individuals 

share zero IBD gene. The coefficient of ½ for 𝑘2 arises from the fact that if two 

individuals share two IBD genes, then if we randomly take one gene from each 

individual, the chance that they are IBD is 50%. A similar argument applies for 

the coefficients of 𝑘1and 𝑘0.  

There are many possible paths of genetic descent by which individuals could 

share IBD. For example, individuals A and B could share one gene IBD at a given 

locus which is from their common mother, or from their common grandmother. A 

genealogical relationship determines a probability for each path. One method of 

calculating the theoretical kinship or inbreeding coefficient, based on pedigrees, is 

the path-counting method which sums the kinship or inbreeding coefficients over 

all paths, originally introduced by Wright (1922).  

2.3 Linkage disequilibrium 

Linkage disequilibrium (LD) is the non-random association between alleles at two 

or more loci which results in the higher or lower frequency of some haplotypes in 

a population than what will be expected from a random formation of the haplotypes 

combining alleles on different loci. In contrary, linkage equilibrium (LE) describes 

the situation in which the haplotype frequencies in a population are same as the 

value that would be obtained if the genes at different loci are combined at random. 

LD is used to describe the association of alleles between loci within the population. 

There are many ways to measure LD. A simple one was proposed by Falconer and 

Mackay (1996). For diallelic loci, 

D = 𝑃𝐴1𝐵1 − 𝑃𝐴1𝑃𝐵1=𝑃𝐴2𝐵2 − 𝑃𝐴2𝑃𝐵2 = 𝑃𝐴1𝐵1𝑃𝐴2𝐵2 − 𝑃𝐴1𝐵2𝑃𝐴2𝐵1, 

where A and B are the two genes in question with alleles A1 and A2 for gene A 

and alleles B1 and B2 for gene B. 𝑃𝐴1𝐵1  is the frequency of the haplotype 𝐴1𝐵1 

in the population. 𝑃𝐴1, 𝑃𝐵1 are the population allele frequencies, etc. So D 

measures the departure from linkage equilibrium in which case D = 0. This 
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measure depends on the allele frequencies and has a maximum and minimum 

value based on those frequencies. Another measure of LD is to scale D to 𝐷𝑚𝑎𝑥, 

the maximum possible value of D based on allele frequencies, 𝐷′ = 𝐷/𝐷𝑚𝑎𝑥. The 

range of values of 𝐷′ is -1 to 1. D takes the maximum value whenever one 

haplotype frequency is 0.  Another measure for diallelic markers is the squared 

correlation between pairs of loci (Hill and Robertson, 1968),  

𝑟2 = 𝐷2/[𝑃𝐴1𝑃𝐴2𝑃𝐵1𝑃𝐵2].  

The value of 𝑟2 ranges from 0 to 1. When 𝑟2 is 1, the two markers provide exactly 

the same information. LD decays over time with recombination between the two 

loci and with mutation.             

2.4 Pedigrees 

A pedigree, which is also called a genealogy, can be formally defined as “a group 

of individuals together with a full specification of all the relationships among 

them” (Thompson, 1986). Pedigrees can be shown graphically. One example of a 

pedigree is shown in Figure 2.3. By convention a square is used to denote a male 

and a circle to denote a female. Horizontal lines below couples are used to 

represent marriages. Parents and their children are linked through vertical lines. 

The individuals who are in the same level in the pedigree are in the same 

generation, often denoted by Roman numerals. Each person in each generation is 

labelled by Arabic numbers. Individuals with data e.g. those who are affected by a 

disease, are shown by shading. By convention, it is often assumed that every 

individual either has no parent specified in a pedigree (called a founder), or both 

parents specified (called a nonfounder). Closed circuits formed by lines and 

individuals are called loops in a pedigree and are often the result of inbreeding, 

multiple mating or marriage exchanges. A pedigree with loops is called looped 

pedigree. A looped pedigree is shown in Figure 2.4. The loop is caused by the 

marriage between individuals 12 and 13 who have a relationship of first cousin 

once removed. Generations are often not distinct in the presence of loops. 

Figure 2.3 An example of an unlooped pedigree with 2 affected members. 
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Figure 2.4 An example of looped pedigree. 

 

Pedigrees are often used to determine the mode of inheritance (e.g. dominant, 

recessive, etc.) of genetic diseases. They are also essential to linkage analysis. 

Linkage analysis is the analysis of the linkage in the inheritance between genes at 

different loci based on the observational phenotypes and the known pedigree 

structure (Palmer, 2011). Linkage between loci is the tendency for alleles of two 

or more loci close on the chromosome to be transmitted to the next generation 

together. So generally the closer two genes lie on a chromosome, the more likely 

they will show linkage. Genes located on different chromosomes, for example, do 

not show linkage. Genetic linkage studies aim to estimate the distance between a 

set of markers (polymorphic DNA sequences with known location) and a putative 

trait gene by estimating the recombination fractions. If a disease tends to be 

passed to offspring along with specific markers, then it can be concluded that the 
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gene(s) which are responsible for the disease are located close on the chromosome 

to these markers. The disease could be a Mendelian disease (caused by one gene) 

or a complex disease, which is caused by the action of many genes.  

Linkage analysis is a method based on pedigree data. The information provided 

by pedigrees is determined by two factors. One factor is the structure and the size 

of the pedigree, e.g. number of generations, number of affected individuals. 

Another factor is the heterozygosity of the genetic markers. Higher heterozygosity 

is more informative because when a locus is homozygous we cannot see whether 

or not there is recombination between it and other loci.        

Linkage analysis works well for Mendelian traits. But for complex diseases, the 

linkage analyses could only locate the genes to a large region (typically tens of 

cM). We could refine the locating to a smaller region by another method, 

association analysis, which can be a complementary to linkage studies. 

Association analysis is used to establish the association between genotypes at one 

or more loci with a phenotype, which could be a quantitative character or a binary 

trait such as disease status. Association is a different concept from linkage. For 

linkage, there could be different alleles at the same locus linked with a same trait 

in different families. But for association, it is the same allele which is associated 

with the trait across the whole population. The availability of large numbers of 

SNPs and the reducing costs for genotyping have made association analysis an 

important study in genetic epidemiology. Importantly, association analyses are 

typically carried out on unrelated individuals. 

A case-control study is a classical tool to carry out association analysis. Case-

control studies use subjects who already have a disease or another trait and 

determine if these patients differs from those who do not have the disease or trait 

in any characteristics. In genetic case-control studies particularly, the frequencies 

of alleles or genotypes between the cases and controls are compared. The cases 

will have the disease or the trait under study; the controls will be unaffected and 

randomly selected from the population. A significant difference in the frequency 

of an allele or genotype of the genetic marker under consideration between these 
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two groups means that the marker could increase probability of having the disease 

or trait, or be in LD with a marker which does. Haplotypes can also show 

association with a disease or trait. 

Pedigrees are not required for association studies but large population studies will 

undoubtedly contain relatives. These relationships, if ignored, could bias the 

results of an analysis. Methods for detecting relatives from genetic data would 

also be relevant to population association studies. Current genome-wide 

association studies provide a rich source of data with thousands of individuals 

typed for hundreds of thousands (even millions) of SNPs. 

Confounding due to population stratification is another form of bias that can arise:  

misleading results can be produced when the individuals in the study are from 

different genetic backgrounds. Family-based designs, such as parent-case trios 

have been proposed to overcome such problems. In family-based designs, the 

alleles or genotypes transmitted to affected people are compared with those alleles 

or genotypes which are not transmitted. A family-based association test, 

transmission disequilibrium test (TDT), was proposed by Spielman et al. (1993).. 

All three individuals in each trio, two parents and one affected child, need to be 

genotyped. But the phenotypes of the parents do not need to be known. The TDT 

considers parents who are heterozygous for an allele and evaluates the frequency 

with which that allele is transmitted to affected offspring. For example, out of the 

total number of 𝑛 parents with genotype A1A2, 𝑎 parents have transmitted A1 to 

their children and 𝑏 parents have transmitted A2 to their children (𝑎 + 𝑏 = 𝑛). 

The departure of 
𝑎

𝑛
 and 

𝑏

𝑛
 from 50% are considered as a sign of association. A 𝜒2 

test can be performed to test whether the association is significant.    

2.5 Calculating likelihoods of pedigrees  

The calculation of the likelihoods of pedigrees is important. It is required for 

traditional linkage analysis. The idea of using the computation of likelihoods to 

carry out linkage analysis was raised by Haldane (1934). Haldane and Smith 

(1947) developed the methods of using likelihood ratio and maximum likelihood 
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estimation to do linkage analysis, and calculating likelihood on the extended 

pedigrees.  

Here I will introduce how the likelihood of a pedigree for genetic marker data can 

be calculated. I begin with unlinked genetic markers where the likelihood can be 

calculated one marker at a time. This includes the simple cases and more complex 

cases where some individuals are unobserved and a peeling method is needed 

(Thompson, 1986). Then the Lander-Green algorithm for likelihood calculation 

with linked markers is introduced.  

2.5.1 Pedigree likelihood calculation when all individuals are observed 

The likelihood that we want to calculate is the probability of the observed data 

under the hypothesized pedigree: 

P(observed data |hypothesized pedigree).    (2.1). 

When genotype data are available for all individuals on the pedigree, this 

probability can be written as  

∏ P(genotype) ∏ P(genotype|parental genotypenonfoundersfounders ),    (2.2)  

based on an assumption that the genotype of an individual at one locus is 

independent of the genotypes of all non-descendants in the pedigree given the 

genotypes of his/her parents. The likelihood of a pedigree can be easily calculated 

from Equation (2.2 ). P(genotype) is simply the genotype frequency in the 

population and  P(genotype|parental genotype) can be calculated by Mendelian 

segregation. 

I will describe the process of simulating genotype data on a pedigree. Consider the 

pedigree in Figure 2.5. 

Suppose at one locus in this pedigree there are two alleles A1 and A2 with 

frequencies p(A1) and p(A2) respectively and p(A1) = p(A2) = 0.5. The founders 

are assumed to be unrelated and their genotypes are independent. The founder 

frequencies for different genotypes are 0.25 for A1A1, 0.5 for A1A2 and 0.25 for 

A2A2 assuming Hardy-Weinberg Equilibrium. Genotypes were simulated for the 
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founders 1, 2, 7 and 8 by randomly assigning genotypes A1A1, A1A2 and A2A2 

to 1, 2, 7 and 8 according to their frequencies. The resulting genotypes are A2A2 

for 1, A1A2 for 2, 7 and 8.  

According to Mendelian segregation, the frequencies of offspring genotypes given 

the parental genotypes of (A1A2, A2A2) are 0.5 for A1A2 and 0.5 for A2A2. We 

can simulate the genotype of the 3, 4, 5 and 6 by randomly assigning genotypes 

A1A2 and A2A2 to them according to their frequencies. The result is A2A2 for 3, 

A2A2 for 4, A1A2 for 5 and A1A2 for 6. We can simulate the genotypes of 

individuals 9 and 10 based on the same frequencies. The resulting genotypes are 

A2A2 for 9, A1A2 for 10. 

The genotypes of the parent of 11 are both A1A2 and the possibilities of 11’s 

genotype and frequencies are 0.25 for A1A1, 0.5 for A1A2 and 0.25 for A2A2. 

The simulated genotype for 11 based on these frequencies is A2A2. 

We can summarize the simulated genotypes in Table 2.1 and show them on the 

pedigree in Figure 2.5. 

 Table 2.1 The simulated genotypes for the pedigree in Figure 2.5. 

Individual 1 2 3 4 5 6 7 8 9 10 11 

Genotype A2A2 A1A2 A2A2 A2A2 A1A2 A1A2 A1A2 A1A2 A2A2 A1A2 A2A2 

 

Figure 2.5 Pedigree for genotype simulation and likelihood calculation. 

 

For the pedigree with complete data in Figure 2.5, the likelihood can be simply 

computed by the formula 
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 Likelihood = ∏ F(genotype)1,2,7,8 ∏ P(genotype|parental genotype)3,4,5,6,9,10,11  

= (0.25×0.5×0.5×0.5) × (0.5×0.5×0.5×0.5×0.5×0.5×0.25)=0.513.  

2.5.2 Peeling method for likelihood calculation 

When there are missing genotypes in the pedigree (some individuals are not 

genotyped), the likelihood calculation is more difficult. We need to sum up the 

probabilities of the observed genotypes for all the possible combinations of 

genotypes for those missing individual(s). This is called a numeration approach, 

which could be complex when the number of missing individuals is large and we 

need to calculate probabilities for the whole pedigree for every possible 

combination of the missing genotypes. Then the advantage of a peeling method is 

significant. In each step of it we only consider the possible genotypes of the 

missing individuals at that step. 

Elston and Stewart (1971) first introduced the peeling method for unlooped 

pedigrees. Cannings et al. (1978) extended the method to more complex pedigrees 

of any form and size. I only use the unlooped pedigree to illustrate the peeling 

method for simplicity. For an unlooped pedigree, we can always find one member 

to partition the pedigree into two groups and such members are called pivots. One 

group connects the pivot through his parents and is called the ‘above group’ of the 

pivot. The other group connects the pivot through his offspring and is called the 

‘below group’ of the pivot. The basis of the peeling method is that the probability 

of the genotypes above the pivot and the probability of the genotypes below the 

pivot are independent given the genotype of the pivot. We move the position of 

the pivot and sequentially each individual is peeled off and the information 

contained in those individuals is incorporated into a function on some remaining 

members of the pedigree.  

The two most important formulae are as follows, where X is the pivot: 

AX(i) = P(data above X & X has genotype i) ,       (2.3) 

BX(i) = P(data below X & X has genotype i).        (2.4) 
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The formula (2.3) is used to peel down a pedigree from top to bottom and the 

formula (2.4) is used to peel up a pedigree from bottom to top. 

For sequential computation, we need to define the following three components:  

(1) The trait of interest is determined by a genotype at a locus. The frequency 

for genotype j in the population is F(j).  

(2) The penetrance is defined as the probability that a person has a specified 

phenotype conditional on his genotype being j. 𝑆𝐴(j) = P(A has the 

phenotype | genotype of A is j). This item will always be 1 since only 

genotype data are used in this thesis. 

(3) The transition probability is defined as the probability that a child has 

genotype i conditional on that his parents have genotypes j and k. 

T(i|j,k)=P(child has genotype i| parents having genotypes j, k).  These 

would be 0, ¼, ½. 1 if inheritance was Mendelian, for example.  

Suppose that in a pedigree we have 5 people in the order O, P, Q, R, S and Q is 

the pivot as shown in Figure 2.6 because it separates the pedigree into two 

unconnected parts. 

Figure 2.6 A simple pedigree with pivot individual, Q. 

 

Formula (2.3) in this case can be written as 

 𝐴𝑄(i) = P(data above Q & Q has genotype i) 

= ∑ ∑ (P(genotype of O is k)𝑘𝑗 P(genotype of P is j)P(O has the specific 
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phenotype | genotype of k)P(P has the specific phenotype | genotype of 

k)P(genotype of Q is i |O,P have genotype of j,k).   

For simplicity, it can be written as 

AQ(i) = ∑ ∑ [F(j)F(k)SO(k)SP(j)T(i|j, k)kj ].            (2.5) 

Some rules need to be specified to make the peeling method work: 

1) If there is no member above Q, then 𝐴𝑞(i) = F(i) = P(Q has genotype i). 

2) If there is no member below Q, then 𝐵𝑄(i) = 1.  

3) If a phenotype for Q is not specified, SQ(i) = 1 for every i.  

When working down the pedigree in this example, e.g. to a pivot Q, we use: 

AQ(i) = ∑ ∑ [AM(j)AF(k)S𝑀(j)S𝐹(k)T(i|j, k)k𝑗 ],     (2.6) 

where M and F denote the mother and father of Q.  

When working up a pedigree, Equation (2.7) is used to record information that 

each offspring C contributes to the combined parental genotypes (i,j) :  

BM,F
∗ (C: i, j) = ∑ [SC(k)BC(k)T(k|i, j)]k .   (2.7) 

An unobserved individual can be ignored in calculating the likelihood if this 

individual does not have any offspring, illustrated with a simple example. This is 

important for simplifying calculations. If there are two parts of the pedigree linked 

by a couple without children, the likelihoods for the two parts can be calculated 

separately and multiplied together.                   
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Figure 2.7 Pedigree with missing data for individual 5 (a) and Pedigree with individual 5 deleted (b). 

 

If in the pedigree (a) of Figure 2.7 the only possible genotypes for 5 are i and j 

given the parental genotypes of 1 and 2, then P (i|1,2)+P (j|1,2) =1. The likelihood 

of observed data under this pedigree is: 

P(1)P(2)P(3|1,2)P(4|1,2)P(5=i|1,2)P(6|1,2)+P(1)P(2)P(3|1,2)P(4|1,2)P(5=j|1,2)P(6|1,2)  

= P(1)P(2)P(3|1,2)P(4|1, 2)P(6|1, 2)[ P(5=i|1, 2)+ P(5=j|1, 2)] 

= P(1)P(2)P(3|1, 2)P(4|1, 2)P(6|1, 2),  

which is equal to the likelihood calculated for the pedigree (b) in Figure 2.7 with 

individual 5 deleted using Equation (2.2). The reason for this is that if an 

individual has no children and is also unobserved, then it does not provide any 

information to the probability of the genotypes of other people in the pedigree. 

This can be understood in another way that the relationship of all other individuals 

is unchanged by removing this individual. By the same reasoning, we can see that 

if two mating founders are not genotyped and they have only one child, then they 

can be removed and the child regarded as a founder; again this does not change 

the relationships between the other members of the pedigree.  

Suppose that individual 2 is missing instead as shown in Figure 2.8.  
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Figure 2.8 Pedigree of Figure 2.7 (a) with individual 2 missing. 

 

If the only possible genotypes for the individual 2 are i and j under this pedigree, 

then the likelihood is  

P(1)P(i)P(3|1, i) P(4|1, i) P(5|1, i)P(6|1, i)+ P(1)P(j)P(3|1, j)P(4|1, j) P(5|1, j)P(6|1, j).  

Individual 2 cannot be removed in calculating the likelihood for the observed 

genotypes as his/her possible genotypes are needed for calculating the 

probabilities for the genotypes of the children. And we can see that by removing 

individual 2, the relationships between other individuals are changed. For 

example, the relationship between 3 and 4 changes from certain full sibling to 

either full sibling or half sibling. 

The peeling method will now be illustrated using the pedigree and simulated data 

of Figure 2.5 with individuals 1, 6 and 10 missing (Figure 2.9).  

Figure 2.9 Pedigree of Figure 2.5 with multiple missing genotypes. 

 

As shown above, individual 10 can be ignored as she has no data and no children 

in the pedigree. I will peel using the following sequence.  
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1) Peel 9 off and accumulate the information of 9 onto 8 and 3.  

2) Peel 8 off and put all accumulated information onto 3.  

3) Peel 3, 4 and 5 off and put all accumulated information onto 1 and 2.  

4) Peel 1 and 2 off and put all accumulated information onto 6.  

5) Peel 6 and 7 off and put all accumulated information onto 11.  

The contribution of the data on 9 to the genotype probabilities of 8 and 3 is: 

B3,8
∗ (9: i, j) = ∑ [k 𝐵C(k)T(k|i, j)] = B3,8

∗ (9 ∶ A2A2, A1A2) 

= 𝐵9(A2A2)𝑇(A2A2|A2A2, A1A2)] 

=𝑇(A2A2|A2A2, A1A2)]=0.5  

since 𝐵9(A2A2) = 1 because 9 does not have offspring. 

Adding this contribution of 9 and information on 8 to 3, we get:  

𝐵3(A2A2)=𝐴8(A1A2)𝐵3,8
∗ (9: 𝑖, 𝑗) 

=F(A1A2) × 0.5 =0.25 where 𝐴8(A1A2)=F(A1A2) because there are no 

individuals above 8. Now we have accumulated all the information on 8, 9 to 3. 

Next any information on 3, 4, 5 can be accumulated to their parents 1 and 2: The 

possible genotypes of 1 are A1A2 and A2A2 based on the genotypes of her 

children. P(A1A2)=0.5, P(A2A2)=0.25 according to the genotype frequencies of 

founders. 

When genotype of 1 is A2A2, 

𝐵1,2
∗ (3: i, A1A2) = 𝐵1,2

∗ (3: A2A2, A1A2) = 𝐵3(A2A2)𝑇(A2A2|A2A2, A1A2) 

=0.25×0.5=0.53 

𝐵1,2
∗ (4: i, A1A2) = 𝐵1,2

∗ (4: A2A2, A1A2) = 𝐵4(A2A2)𝑇(A2A2|A2A2, A1A2) 

=1×0.5 =0.5 as 4 does not have descendent and 𝐵4(k)=1 for any k. 

 𝐵1,2
∗ (5: i, A1A2) = 𝐵1,2

∗ (5: A2A2, A1A2) = 𝐵5(A1A2)𝑇(A1A2|A2A2, A1A2) 
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=1×0.5=0.5 as 𝐵5(k)=1 for any k. 

 If we accumulate all the information from all the offspring of 1 and 2 except 6 to 

1 and 2 and specify it as 𝐵1,2
∗∗ (i,j), we will get: 

𝐵1,2
∗∗ (i, A1A2) =  𝐵1,2

∗∗ (A2A2, A1A2) 

= 𝐵1,2
∗ (3: A2A2, A1A2)𝐵1,2

∗ (4: A2A2, A1A2)𝐵1,2
∗ (5: A2A2, A1A2) 

=0.53×0.5×0.5=0.55. 

When the genotype of 1 is A1A2, 

𝐵1,2
∗ (3: i, A1A2) = 𝐵1,2

∗ (3: A1A2, A1A2) = 𝐵3(A2A2)𝑇(A2A2|A1A2, A1A2) 

=0.25×0.25=0.54 

𝐵1,2
∗ (4: i, A1A2) = 𝐵1,2

∗ (4: A1A2, A1A2) = 𝐵4(A2A2)𝑇(A2A2|A1A2, A1A2) 

=1×0.25 =0.25 as B does not have descendent and 𝐵4(k)=1 for any k. 

 𝐵1,2
∗ (5: i, A1A2) = 𝐵1,2

∗ (5: A1A2, A1A2) = 𝐵5(A1A2)𝑇(A1A2|A1A2, A1A2) 

=1×0.5=0.5 as 𝐵5(k)=1 for any k 

𝐵1,2
∗∗ (i, A1A2) =  𝐵1,2

∗∗ (A1A2, A1A2) 

= 𝐵1,2
∗ (3: A1A2, A1A2)𝐵1,2

∗ (4: A1A2, A1A2)𝐵1,2
∗ (5: A1A2, A1A2) 

=0.54 ×0.25×0.5=0.57 

This can be all accumulated onto 6 together with any information on 1 and 2 and 

produces 𝐴6(i). 

For i=A1A2,𝐴6(i)= ∑ [j=A2A2 or A1A2 𝐴1(j)𝐴2(A1A2) T(A1A2|j, A1A2) 𝐵1,2
∗∗ (j, 

A1A2)]  

= F(A2A2) × F(A1A2) × 0.5×0.55+ F(A1A2) ×F(A1A2) ×0.5×0.57 

=0.25×0.5×0.5×0.55+0.5×0.5×1×1×0.5×0.57 

=3 × 0.510  
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For i=A1A1,𝐴6(i)=∑ [j=A2A2 or A1A2 𝐴1(j)𝐴2(A1A2) T(A1A1|j, A1A2) 𝐵1,2
∗∗ (j, 

A1A2)]   

= F(A2A2) ×F(A1A2) ×0×0.55+ F(A1A2) ×F(A1A2) ×0.25×0.57 

=0.5×0.5×0.25×0.57 

=0.511  

For i=A2A2, 𝐴6(i)=∑ [j=A2A2 or A1A2 𝐴1(j)𝐴2(A1A2) T(A2A2  |j, A1A2) 

 𝐵1,2
∗∗ (j,A1A2)]  

= F(A2A2) F(A1A2) ×0.5×0.55+ F(A1A2) × F(A1A2) ×0.25×0.57 

=0.25×0.5×0.5×0.55 +0.5×0.5×0.25×0.57 

= 0.59 + 0.511 

=5× 0.511. 

Then accumulate these information and any information of 7 onto 11, we get 

𝐴11(A2A2)= ∑ [j=A1A2,A1A1 or A2A2 𝐴6(j) 𝐴7(A1A2) T(A2A2| A1A2, j)] 

=3 × 0.510 ×F(A1A2) ×0.25+0.511× F(A1A2) ×0+5×0.511 × F(A1A2) ×0.5  

=3×0.513+5× 0.513 

=0.510 

The total probability is 𝐴11(A2A2) 𝐵11(A2A2) ) = 0.510 ×1= 0.510 and this is 

likelihood of the pedigree. 

We can check this result by doing the calculation again with the enumeration 

method. Firstly, we enumerate all the possible genotype combinations for the 

genotypes of the missing individuals, and then calculate likelihood for each 

option. At the end, add the likelihoods up to provide the total likelihood. This is 

possible because there are only a few options in this case. Individual 10 is 

disregarded again and the possible combinations for the genotypes of individuals 
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(1, 6) which are consistent with the pedigree are (A2A2, A2A2), (A2A2, A1A2), 

(A1A2, A1A2), (A1A2, A2A2). We then calculate the likelihoods for the pedigree 

with each of these possibilities by the formula: P(1) ×P(2) ×P(7) ×P(8) ×P(3|1,2) 

×P(4|1,2) ×P(5|1,2) ×P(6|1,2) ×P(9|3,8) ×P(11|7,6) and get 0.511 + 0.512 + 

0.513 + 0.513 = 0.510. This is the same as what we get using the peeling method. 

There could be different sequences for peeling and some may be more efficient 

than others. In the above example, after we accumulated the information of 

individuals 8, 9 and 10 onto individual 3, we could have accumulated the 

information on individuals 7 and 11 onto individual 6 and then accumulated the 

information of all individuals onto individuals 1 and 2. This is easily seen for a 

simple example but finding a good peeling sequence can be computationally 

challenging for a large complex pedigree. 

Only one locus is used in this example, but the peeling method can be extended to 

deal with multiple unlinked loci and looped pedigrees. For a looped pedigree, we 

cannot always partition the pedigree into two with a single pivot and may require 

a partition set of individuals instead. For complex pedigrees, these pivot sets can 

be quite large, e.g. two complex pedigrees mentioned by Sheehan (2000): the 

Polar Eskimo pedigree and the Pima Indian pedigree, need maximal cut sets of 50 

and 75 respectively to peel (Sheehan, 2000). So the algorithm can easily run into 

storage problems. For similar reasons, linked loci, although manageable in 

principle, lead to computational problems. 

2.5.3 The Lander-Green algorithm 

The peeling method of the last section is based on the Elston-Stewart algorithm 

which sums the variables sequentially over a pedigree, but jointly over loci. Its 

complexity scales exponentially with the number of the loci and linearly with the 

number of people. Therefore it is suitable for pedigrees of arbitrary size, but only 

a few markers. 

 Here we consider another algorithm, Lander-Green algorithm, whose 

computation proceeds sequentially along the chromosome and jointly over all 

loci. Its complexity scales exponentially with the number of the size of the 
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pedigree, and linearly with the number of loci. So it is capable of dealing with a 

large number of loci, but the size of the pedigree that it can process is limited. 

Generally a pedigree with no more than 25 non-founders is practical (Lander and 

Green, 1987). Many types of computational software have been developed to 

implement the Lander-Green algorithm, such as ALLEGRO (Gudbjartsson et al., 

2000) and Merlin (Abecasis et al., 2002). 

To explain the Lander-Green algorithm, firstly we need to introduce the concept 

of the inheritance vector. Suppose there are f founders and n nonfounders in a 

pedigree. There will be 2n meioses with 2n gametes transmitted to the 

nonfounders. Each allele of one nonfounder could be from the paternal or 

maternal chromosome of his parent. For a locus 𝑀𝑗, we define an inheritance 

vector 𝐼𝑗 as a vector with 2n coordinates corresponding to 2n gametes. Each 

coordinate takes the value of 0 if the gamete carries the DNA from the paternal 

chromosome of the parent, or 1 if the gamete carries the DNA from the maternal 

chromosome of the parent. Because each coordinate of the 𝐼𝑗 has two possible 

values, there are potentially 22n different forms for Ij. But many of them are 

inconsistent with the observed data and can be excluded. 

The probability that  Ij on Mj differs from Ij+1 on  Mj+1 is determined by the 

recombination fraction θj between Mj and Mj+1. It is assumed that, given the 

value of Ij at Mj, the probabilities of the value of IJ+1 are independent of 

I1…..Ij−1, which is the Markov property. So the inheritance vectors I1…..Im , 

where m is the number of loci form a Markov chain and are called a Hidden 

Markov Chain (HMM) because the state of Ij is not observable. But the genotype 

is observable and is influenced by the state of the inheritance vector. We can get 

some information of the state of Ij by P(Gj|Ij), the probability of genotype 

Gj conditional on Ij. This HHM can be demonstrated by the following figure. 
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Figure 2.10 Demonstration of HMM in Lander-Green algorithm. 

 

If we denote the genotype data of the whole pedigree over all the m loci as G, 𝐺𝑗 

as the genotype data of the whole pedigree on locus j, 𝐼𝑗 as the inheritance vector 

for the locus j and I = (𝐼1, 𝐼2 … . 𝐼𝑚) is the set of inheritance vectors, the likelihood 

can be written as: 

L = P(G) = ∑ {P(G|I)P(I)} = ∑ … ∑ {P(I1) ∏ P(Ij|Ij−1) ∏ P(Gj|Ij)}m
j=1

m
j=2ImI1I     (2.8) 

where 𝑃(𝐼1) is the prior probability of the state of the inheritance vector at locus 

𝑀1, 𝑃(𝐺𝑗|𝐼𝑗) is the probability of the observed genotype given the inheritance 

vector state at locus j and 𝑃(𝐼𝑗|𝐼𝑗−1) is the transition probability of the heritance 

vector for state 𝐼𝑗 at locus 𝑀𝑗 given state 𝐼𝑗−1 at locus 𝑀𝑗−1. This computation 

proceeds along the chromosomes jointly over all the meioses instead of 

proceeding sequentially over the pedigree and jointly over all loci.  

From Equation (2.8) it can be seen that there are three ingredients for the 

likelihood calculation by Lander-Green algorithm: 

1) Listing all possible inheritance vector states; 

2) Calculating 𝑃(𝐼𝑗|𝐼𝑗−1) for each locus 𝑀𝑗; 

3) Building the transition matrix for the HMM.  

Then with all these ingredients ready, we can calculate the likelihood along a 

chromosome: 
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1) For a pedigree with n nonfounders, there are 2n meioses and the length of 

the inheritance vector is 2n with each coordinate corresponding to the 

result of one meiosis. There are 22𝑛 possible states for the inheritance 

vector by setting the value at each coordinate as 0 or 1.  

For example in a nuclear family with one father, one mother and one child, 

there are n=2 meioses. So the length of the inheritance vector at a specific 

locus is 2n=4 and there are  24=16 possible states for this inheritance 

vector, which can be listed as 

(0000,0001,0010,0011,0100,0101,0110,0111,1000,1001,1010,1011,1100,

1101,1110,1111).  

If one state is regarded as one element, all the possible states for 𝐼𝑗 at locus 

𝑀𝑗 can be regarded as a vector and denoted as 𝑝𝑗. 

2) At each locus 𝑀𝑗, calculate a probability vector 𝑞𝑗. Each element in this 

vector is set as 𝑃(𝐺𝑗|𝐼𝑗), the probability of 𝐺𝑗 conditional of each possible 

state of 𝐼𝑗 . This (𝐺𝑗|𝐼𝑗) can be calculated by studying the genetic descent 

graph (a graphical description of a specific inheritance vector) and the 

gene flow patterns. For each state of 𝐼𝑗 list the possible sets of founder 

alleles which are compatible with the observed genotypes. The likelihood 

of the data, conditional on this state of 𝐼𝑗 and one set of founder alleles, is 

just the product of the allele frequencies. Then sum them over all possible 

sets of founder alleles to get the probability 𝑃(𝐺𝑗|𝐼𝑗) at that state of 𝐼𝑗. 

Figure 2.11 shows a genetic descent graph which displays how the founder 

alleles descend through the pedigree. This is a representation of an 

inheritance vector.  
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Figure 2.11  A genetic descent graph. 

 

3) Build the transition matrix. Given the recombination fraction 𝜃𝑗  between 

the locus 𝑀𝑗 and 𝑀𝑗+1, each coordinate of the inheritance vector 𝐼𝑗  has the 

probabilities of 𝜃𝑗  to change value from 0 to 1 or from 1 to 0 and the 

probability of 1-𝜃𝑗 of unchanged. So the transition probability from one 

state to another state is the product of the powers (exponents) of 𝜃𝑗  and 

1 − 𝜃𝑗. The power of 𝜃𝑗  is the number of meioses where the value of the 

coordinate of the inheritance vector 𝐼𝑗 changed and the power of 1 − 𝜃𝑗  is 

the number of meioses where the coordinate of the inheritance vector 𝐼𝑗 

unchanged. The transition matrix with one meiosis is  

T= [
1 − 𝜃𝑗  𝜃𝑗  

𝜃𝑗  1 − 𝜃𝑗  
]. The general form of the transition matrix T(𝜃𝑗)  

between locus 𝑀𝑗 and 𝑀𝑗+1for a pedigree with n nonfounders is the 

Kronecker product of the above 2×2 matrix corresponding to transitions of 

each 2n coordinates in the inheritance vector. The Kronecker product, 

denoted by ⊗, is an operation on two matrices of arbitrary size resulting in 

a block matrix, like  

A⊗B=[
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵

]. 

            T(𝜃𝑗)=𝑇⊗2𝑛=[
1 − 𝜃𝑗  𝜃𝑗  

𝜃𝑗  1 − 𝜃𝑗  
]

⊗2𝑛

=𝑇⊗2𝑛−1 × 𝑇 
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           =[
(1 − 𝜃𝑗)𝑇⊗2𝑛−1 𝜃𝑗𝑇⊗2𝑛−1  

𝜃𝑗  𝑇⊗2𝑛−1 (1 − 𝜃𝑗)𝑇⊗2𝑛−1  
] .   

           The size of this matrix is 22𝑛 × 22𝑛 for n nonfounders. 

With these three components, we can run the Markov chain to calculate the 

likelihood: 

1) Define a left conditional probability vector 𝐿𝑗=𝐿𝑗−1𝑇𝑗−1,𝑗。𝑞𝑗 where 

𝑇𝑗−1,𝑗 is the transition matrix from locus 𝑀𝑗−1 to 𝑀𝑗 and 。is the 

componentwise vector multiplication (derive a new vector by multiplying 

the corresponding components of two vectors with same length). 

2) For j=1, set 𝐿𝑗=𝐼1𝑞1 where 𝐼1is the prior inheritance distribution, assumed 

to be a uniform distribution without extra information. Then iterate the 

process of 𝐿𝑗=𝐿𝑗−1𝑇𝑗−1,𝑗。𝑞𝑗 along the chromosome until locus 𝑀𝑚. 

3) Then the overall likelihood is just the summation over all the elements of 

𝐿𝑚. 

Here I use an example to show the likelihood calculation by the Lander-Green 

algorithm. The pedigree is a nuclear family with the child genotyped over 5 

unlinked loci and two parents untyped. The genotypes and alleles frequencies are 

shown in Table 2.2. 

Table 2.2 The genotypes and alleles frequencies in an example for Lander-Green algorithm. 

Locus A1 A2 A3 A4 A5 

Individual1 12 12 12 59 12 

 

The number of alleles of loci and allele frequencies are in Table 2.3. 
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Table 2.3 The types of alleles of different loci and allele frequencies in the example for Lander-Green 

algorithm. 

Locus A1 A2 A3 A4 A5 

No. of alleles 3 4 2 10 2 

Allele 1 0.5 0.3 0.85 0.1 for each of  

10 alleles 

0.6 

Allele 2 0.25 0.3 0.15 0.4 

Allele 3 0.25 0.3   

Allele 4  0.1   

 

There are two meiosis in the pedigree and the possible states of the inheritance 

vector are (0, 0), (0, 1), (1, 0), (1, 1).  

At locus A1, the probability for the inheritance state (0,0) is 

f(1)×f(2)=0.5×0.25=0.125 where f denote the allele frequency, for (0,1), (1,0) and 

(1,1) are all f(1) × f(2) =0.125. So 𝑞1=(0.125,0.125,0.125,0.125). Similarly, 

𝑞2=(0.09,0.09,0.09,0.09), 𝑞3=(0.1275,0.1275,0.1275,0.1275),  

𝑞4=(0.01,0.01,0.01,0.01), 𝑞5=(0.24,0.24,0.24,0.24).  

Because the 5 loci are unlinked so 𝜃𝑗=0.5 for j=1,…,4 and the transition matrix is 

[
0.5 0.5
0.5 0.5

]
⊗2

. 

Run the Markov chain and get 𝐿5= (8.60625e-07 8.60625e-07 8.60625e-07 

8.60625e-07). Likelihood= 3.4425e-06. This result is checked and consistent with 

the likelihood calculated by P(A1) ×P(A2) ×P(A3) ×P(A4) ×P(A5) (R code in 

Appendix 10.1). We need to note that this example is just for demonstration 

purposes. For unlinked loci, the Lander-Green algorithm is not the most efficient 

algorithm. 

Lander-Green algorithm is quite slow, but several refinements have been raised to 

improve the computing efficiency. Efforts have been made in two directions. One 

is to simplify the matrix computation. Another is to reduce to number of 

inheritance vectors. In the first direction, Idury and Elston (1997) proposed the 

divide and conquer algorithm, dividing the multiplication of a big matrix into the 

multiplication of smaller matrices. Kruglyak and Lander (1998) introduced the 

method of fast Fourier transforms. In another direction, Kruglyak et al. (1996) 
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used founder symmetry to reduce the number of inheritance vectors from 22𝑛 to 

22𝑛−𝑓. Gudbjartsson et al. (2000) used founder couple symmetry to reduce the 

number of inheritance vector to 22𝑛−𝑓−𝑐 where c is the number of founder couples 

in the pedigree. 

2.6 Summary 

This chapter introduced the concepts and methods that will be used in the thesis. 

Firstly genetics was introduced as all data used in the thesis are genetic data, it is 

essential to know the basic concepts about genetics. Then pedigrees and different 

methods to calculate pedigree likelihood were described. 
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3 Datasets and software 

3.1 Affymetrix 500K SNP allele frequency and map 

Allele frequencies for the Affymetrix 500K Array Set derived from HapMap data 

have been used in simulations. They were downloaded from 

http://folk.uio.no/thoree/FEST. The physical map distances have been changed to 

genetic map distances (cM) in accordance with the Rutgers Combined Linkage-

Physical map of the Human Genome. After quality control, there are 416,854 

SNPs in total in this data set. 

3.2 WTCCC Affymetrix SNP 6.0 dataset 

I applied to the Wellcome Trust Case Control Consortium for Affymetrix SNP6.0 

SNP genotype data of their control groups. This provides 2934 unrelated 

individuals, each with data on 893,634 autosomal SNPs. After data cleaning, I 

retain 2674 unrelated individuals and 711,020 SNPs. 1285 individuals are from 

the NBS (National Blood Service) control group and 1389 are from the 1958 

Cohort control group. 

3.3 SNP data from HapMap for CEU and TSI  

I downloaded allele frequency data of two populations from the HapMap project. 

One population is denoted as ‘CEU’ on the HapMap website and the samples are 

from Utah residents with Northern and Western European ancestry. Another 

population is denoted as ‘TSI’ and the samples are from Tuscan Italians of 

Southern Europe. Because the numbers of SNPs in the allele frequency files for 

the two populations are slightly different, I carry out a filtering step when 

downloading the allele frequency files by only acquiring the SNPs common in 

both populations, with MAF ≥ 0.01 and for which I have a linkage map. This 

procedure yields 556,873 SNPs for each population.  
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3.4 The MICROS dataset  

I have used real data from the MICROS study of Bolzano, Italy (Pattaro et al., 

2007). Bolzano is the capital city of a province of Italy known as Southern Tyrol. 

The MICROS study is carried out in three villages of the Val Venosta around 

Bolzano which have been quite isolated due to geographical, historical and 

political reasons. The objective of this study was to screen the population for the 

presence of several traits by questionnaire and pedigree data together with clinical 

measurements and blood samples. Starting from the typed individuals, they have 

reconstructed pedigrees with 15 generations including 50,037 individuals, going 

back to the early 1600s. Most of the participants are connected by one large 

pedigree. The dataset that I obtained from Bolzano includes genotypes for 1286 

individuals over 313,285 SNPs (including sex chromosomes). The platform used 

for genotyping is the Illumina 300K SNP chip. In this thesis, only markers on the 

autosomal chromosomes are used for these data. Allele frequencies are estimated 

from all the typed individuals. The linkage map for Illumina 550K is used, which 

covers all SNPs in Illumina 300K apart from several hundred. The number of 

autosomal SNPs that are kept is 303,783 in total. There are four pedigree files 

with 1, 2, 4, 8 and 12 generations above the sampled individuals respectively. The 

more generations there are, the more detailed our knowledge of the relationships 

between the individuals.  

3.5 Merlin Software 

The Merlin Software (Abecasis et al., 2002) was used to simulate the genotypes 

and calculates the pedigree likelihood using the Lander-Green algorithm as 

described in Chapter 1.   

Four input files are needed by Merlin, each with a specified format. The first type 

of input file is a pedigree file with a suffix of ‘ped’ which describes the 

relationships between the individuals and contains the genetic data of the 

individuals. It includes five essential columns. These first five columns are: 

family identifier (a label which could be a name or a number), individual 

identifier, identifier of the father, identifier of the mother and the sex of the 
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individual (1 for male and 2 for female), respectively. There could be many 

families in one pedigree file. The columns after the first five columns are for any 

number of various types of genetic data, including phenotypes for discrete and 

quantitative traits and marker genotypes. The content in an example pedigree file 

hs1.ped is as following: 

# hs1.ped 

1   1   0  0  2   1      0   3 3    0 0 

1   2   0  0  1   1      0   4 4   0 0 

1   3   0  0  2   1      0   1 2   0 0 

1   4   2  1  1   1      0   4 3   0 0 

1   5   2  3  2   2      6   1 3   2 2 

 

The pedigree in this file is a single family of half siblings with individuals 1, 2 

and 3 as parents and individuals 4 and 5 as children. 0 means that the value is 

missing for an individual. Hence, the third and fourth columns indicate that 1,2 

and 3 are all founders since they have no parents in the pedigree, whereas 4 and 5 

have the same father (2) but different mothers (1 and 3). The sixth column is for 

disease status, where 1 means unaffected and 2 means affected. The seventh 

column is for a quantitative trait, where 6 is the value for the individual 5.  The 

eighth and ninth columns are for one genetic marker with the two values coding 

the observed genotypes, each representing one allele. The number 1, 2, 3 or 4 

….represent different alleles, so Merlin allows multiple alleles. The genotypes are 

unordered, so ‘3 4’ and ‘4 3’ will be treated as the same genotype. The tenth and 

eleventh columns are for another genetic marker. 0 0 means the genotype is 

missing for that individual. The two alleles of a genotype can be separated by a 

slash sign as ‘4/4’.  I only use genotype data in my work. So the columns for 

disease status and quantitative trait values are not needed. The first line in hs1.ped 

will be read like this: this individual belongs to family 1; he is the 1st individual in 

this family; the identifiers for his father and mother are both 0 because he is a 

founder and his parents are not included in the pedigree; he is a male; he is 
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unaffected; the data for his quantitative trait are missing; his genotype for the first 

marker is 3/3 and his genotype for the second marker is missing. 

A pedigree file can include data of different types. So a second type of input file: 

data file is needed to describe the content of the pedigree file. A data file 

describes the content of the pedigree files apart from the first five essential 

columns. Data files have two columns. The first column is the type of data item 

and the second column provides a label (a name) for each data item. Each data 

item of the pedigree file corresponds to one row in the data file. The naming of 

the pedigree file and data file is somewhat confusing. In fact all the data are 

included in the pedigree file. Data files just explain the columns in the related 

pedigree files to show us what kind of data those columns represent. A data file 

corresponding to the pedigree file hs1.ped is hs1.dat and is shown below. 

# hs1.dat 

A  status of a disease 

T  value of a trait 

M  marker 1 

M  marker 2 

 

The third type of input file is a map file which specifies which chromosome each 

marker is on and its linkage mapping position (in cM) on it. Merlin will convert 

the linkage distance into a recombination fraction using the Haldane mapping 

function. An example of a map file is hs1.map as follows: 

# hs1.map 

CHROMOSOME   MARKER     POSITION 

12                           marker 1        112.3 

12                           marker 2        114.5  

 



                                                                                                                    

                                                                                                                  Chapter 3 

Page | 59 

 

The fourth type of input file is a frequency file which specifies the number of 

alleles at each locus and their frequencies. The following is an example of the 

frequency file hs1.freq where marker 1 has four alleles and marker 2 has two 

alleles. 

# hs1.freq 

M marker 1 

F 0.1 0.5 0.2 0.2 

M marker 2 

F 0.6 0.4 

 

For Merlin to simulate genotype data, the pedigree file, data file and map file are 

all required. A frequency file is optional. Merlin’s simulation function can 

generate random datasets that resemble the original data set in terms of marker 

positions, allele frequencies and missing patterns. If a genotype is missing in the 

original pedigree file, it will be missing in the simulated pedigree file as well. 

Merlin assigns random alleles to founders according to allele frequencies at each 

marker. If a frequency file is given to Merlin, the allele frequencies in this file will 

be used. Otherwise Merlin will estimate the allele frequencies from the genotype 

data in the pedigree file. Alleles are simulated independently at each marker for 

founders when we assume linkage equilibrium i.e. when we choose not to allow 

LD. These are then segregated through the pedigree using the relationships 

specified in the pedigree file and recombination fraction deduced from the map 

file. It replaces the original genotypes with these simulated genotypes, retaining 

the original pattern of missing data exactly (for example, if individual A is 

ungenotyped at a marker in the original pedigree file, individual A's genotype at 

that marker will be discarded in all simulation). Changing the random seed (with 

the -r command line option) will make Merlin generate a different set of founder 

chromosomes and segregation pattern, and consequently a different random 

simulation result.  
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Merlin can calculate the likelihoods of different hypothesized pedigrees for some 

individuals with genotype data. The calculation uses the Lander-Green algorithm 

(Lander and Green, 1987) because it involves large numbers of linked markers 

(for details see section 2.5.3 of this thesis). 

While doing my study, I noticed that the official version of Merlin has a bug in 

calculating the likelihoods of distant pedigrees for 500K SNPs and the corrected 

version (from Øivind Skare) had to be used instead. The official release has not 

been debugged at the time of this thesis being written.  

3.6 Mendel Software  

The software package Mendel (Lange, et al., 2013) was used instead of Merlin in 

some simulation, because it enables tracking of simulated alleles at each locus of 

every non-founder to the founders. So we could obtain the exact kinship 

coefficient based on the realized IBD sharing between two individuals and 

compare this with the estimated kinship coefficient. To simulate data, the input 

files that Mendel requires are very different from Merlin. All the options are listed 

in a control file rather than in the command line, e.g. type ‘mendel control.in’ in 

Linux if the control file is named as ‘control.in’.  The control file has the 

following format: 

!  Input Files 

! 

DEFINITION_FILE = ~/merlin/Mendel-130/affydef.in 

MAP_FILE = ~/merlin/Mendel-130/affymap.in 

PEDIGREE_FILE = ~/merlin/Mendel-130/affyped.in 

! 

!  Output Files 

! 

NEW_PEDIGREE_FILE = affypedsourced.out 
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OUTPUT_FILE = Mendelaffy.out 

SUMMARY_FILE = Summaryaffy.out 

! 

!  Analysis Parameters 

! 

ANALYSIS_OPTION = Gene_dropping 

REPETITIONS = 1 

SEED = 1 

MODEL = 1 

KEEP_FOUNDER_GENOTYPES = False 

MISSING_DATA_PATTERN = Existing_Data 

MISSING_AT_RANDOM = 0.0 

GENE_DROP_OUTPUT = Sourced 

PEDIGREE_MAX_LINE_LEN = 2000000 

PEDIGREE_LINKAGE_FORMAT = True 

MAP_DISTANCE_UNITS= cM 

Firstly the location and file names of the input files and output files need to be 

given. What come next are some options for Mendel. In the option of 

ANALYSIS_OPTION, ‘Gene dropping’ tells Mendel to simulate data. In the 

option of GENE_DROP_OUTPUT, ‘Unordered’ means that unordered genotypes 

be outputted. The label of the alleles in simulated data will be outputted if the 

value of this option is changed to ‘Sourced’. When ‘Sourced’ is chosen, every 

allele at all loci in the founders will be assigned a label and it is these labels that 

are passed down to the descendants. Then in the simulated data, we know the 

realized IBD status for every locus and between all individuals. But the simulation 

can be done only with either ‘Unordered’ or ‘Sourced’, and not both. So the 
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simulation needs to be done twice for every random seed to get both genotypes 

and labels. 

3.7 R Statistical software  

The statistical software R is an essential tool in this work and was used to prepare 

the input files for Merlin, to organize the output files of Merlin and to carry out 

analyses.  

3.8 The high-performance computing facility 

(ALICE) of the University of Leicester 

The ALICE, high-performance computing (HPC) cluster, of the University of 

Leicester was used in this study. ALICE can run multiple jobs at the same time, 

which can reduce the time carrying out the large numbers of simulations. 

3.9 Eigensoft Software 

Eigensoft (Patterson et al., 2006) is a package including many programs. Here I 

have only used one of its functions ‘smartpca’ which runs principal components 

analysis on genotype data and outputs principal components (eigenvectors) and 

eigenvalues. Then another of its functions was used to plot the top two principal 

components (or any specified pair of principal components). 

3.10 Jenti Software 

The software Jenti (Falchi and Fuchsberger, 2008) is a very useful tool for 

splitting large pedigrees into smaller ones to help visualize the pedigree and 

choose relative pairs with particular relationships. Jenti has been used to compute 

the expected kinship coefficients between individuals based on pedigrees. We can 

also specify the number of genotyped individuals in each sub-pedigree and the 

kinship coefficients between them when splitting pedigrees. When visualizing the 

sub-pedigrees we can specify how many generations above the genotyped 

individuals should be displayed.  
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3.11 ERSA and Germline Software  

The software ERSA (Huff et al., 2011) was used to estimate the degree of 

relationship and it was compared with the method proposed in this thesis. The 

input file for ERSA is a list of IBD segments and their lengths which is outputted 

from software Germline (Gusev et al., 2009). The software Germline accepts a 

ped file and a map file in Plink format (Purcell et al., 2007) which is very similar 

to Merlin format. The only differences to Merlin format are that the ped file in 

Plink format has an extra column for phenotype (which can be set unknown) and 

the map file in Plink format has an extra column for physical map. Germline can 

detect IBD segments for the pairs of individuals included in the ped file.  
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4 Distinguishing relationships with 

pedigree-based likelihoods 

This chapter is a more in-depth study of what was undertaken in Skare et al. (2009). 

That paper explored the potential of linked SNP markers and a pedigree-based 

likelihood method for estimating relationships. Other likelihood-based approaches and 

unlinked microsatellite markers have been used to estimate relationships traditionally 

(Milligan, 2003, Anderson and Weir, 2007) . With the availability of large numbers of 

linked SNP markers, it needs to be explored how these linked markers extend the range 

of identification problems that can be solved. Clearly the discriminatory power of one 

SNP marker will be less than that of one multi-allelic microsatellite marker and there 

will be a reduction of discriminatory power in linked markers compared to 

independently-inherited markers as there are correlations between linked markers. So a 

larger number of linked markers than unlinked markers will be needed. However, large 

numbers of linked markers are widely available in genome-scan data and the argument 

in Skare et al. (2009) is that these could be exploited to distinguish distant 

relationships. As in that paper, the approach taken here is that a pairwise relationship 

can be expressed by a pedigree which links the two relatives. There are many different 

existing software packages which can be used to calculate pedigree likelihoods. 

The estimation problem in this chapter focuses on distinguishing specific alternative 

relationships rather than estimating unknown relationships. The paper of Skare et al. 

(2009) considered pairwise relationships and mainly focused on distinguishing a true 

relationship from an alternative relationship of ‘unrelated’. This is the classical forensic 

situation. For example, we only need to know whether an individual is a parent of 

another individual or not, whether an accused individual is the criminal or completely 

unrelated to the criminal, etc. Their results show that the information obtained from 

large sets of linked markers could increase substantially the number of problems that 

can be solved. With 500K autosomal SNPs, relationships up to the order of second 

cousins can be distinguished from ‘unrelated’ without ambiguity, which corresponds to 

m=6 meioses separating the two individuals of interest. Relationships up to third 

cousins can be distinguished from ‘unrelated’ with reasonable certainty. But any 
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relationship with m>8 separating meiosis seems to be beyond the scope of 500K 

markers.  

4.1 Methods used and relevant notation 

The ratio of the likelihoods of the two hypotheses of 𝐻𝑖 and 𝐻𝑗 is  
𝐿𝑖

𝐿𝑗
, and is called the 

likelihood ratio. A likelihood ratio is typically expected for a forensic analysis. The 

Bayesian approach to inference is a method which updates the likelihood of a 

parameter by multiplying it with the prior distribution of that parameter to obtain a 

posterior distribution. Specifically, for a parameter 𝜃 and data vector 𝑥, the posterior 

probability distribution of 𝜃 is: 

𝑝(𝜃|𝑥) =
𝑝(𝑥|𝜃)

𝑝(𝑥)
𝑝(𝜃), 

leading to the proportionality: 

posterior probability ∝ likelihood × prior probability. 

The Bayesian approach will be used in this work, in addition to the simple likelihood. 

For cases with only two alternatives, the likelihood ratio is in fact more widely used 

and easier to interpret than the Bayesian posterior probability ratio. But the Bayesian 

method is more general: it allows us to consider cases with more than two alternative 

relationships and proper prior information can be accommodated if it is available. A 

flat prior is assumed throughout as all alternative relationships are assumed equally 

likely in the absence of any extra information. 

For n hypotheses concerning the relationship between two individuals, 𝐻1, 𝐻2,….. 𝐻𝑛, 

the prior probabilities are 𝜋1, 𝜋2,… 𝜋𝑛 and 𝜋𝑖 = 1/𝑛 for a flat prior. The likelihood for 

Hi is the probability of the data under the hypothesis 𝐻𝑖 and it is denoted as 𝐿𝑖 =

𝑃(𝑑𝑎𝑡𝑎|𝐻𝑖). Then the posterior probability of 𝐻𝑖 will be:   
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𝐏(𝐇𝐢|𝐝𝐚𝐭𝐚) =
𝐋𝐢𝛑𝐢

∑ 𝐋𝐢𝛑𝐢
𝐧
𝐢=𝟏

=
𝐋𝐢

∑ 𝐋𝐢
𝐧
𝐢=𝟏  

 𝐚𝐬 𝛑𝐢 =
𝟏

𝐧
 𝐟𝐨𝐫 𝐢 = 𝟏 … 𝐧.              (4.1) 

Note that P(Hi|data) =
Li

L1+L2
 for i = 1, 2 when there are only two hypothesized 

relationships, so the posterior probability ratio of 𝐻𝑖 and 𝐻𝑗 is 
P(𝐻𝑖|𝑑𝑎𝑡𝑎)

P(𝐻𝑗|𝑑𝑎𝑡𝑎)
=

𝐿𝑖

𝐿𝑗
 which is 

precisely the likelihood ratio. 

Following Skare et al. (2009), all pedigrees connecting two individuals can be allocated 

into three types if looped pedigrees are excluded. The first type is HS − n1 − n2 where 

two individuals A and B share one common ancestor with 𝑛1 being the number of 

generations between the common ancestor and A and 𝑛2 being the number of 

generations between the common ancestor and B. For example, HS-1-1 represents the 

case where A and B are half-siblings. A HS-3-3, half second cousin, relationship is 

depicted in Figure 4.1a. The second type is S − n1 − n2 where two individuals A and B 

share two common ancestors and n1, n2 are the numbers of generations between the 

two common ancestors and A, B respectively. S-1-1 represents the case where A and B 

are full siblings. An S-3-2 (first cousin once removed) relationship is depicted in Figure 

4.1b. The third type is PC-n where one individual A is an ancestor of another 

individual B and the number of generations between them is n. PC-1 is just a parent-

child relationship. A PC-2, grandparent-grandchild, relationship is depicted in Figure 

4.1c. 

Figure 4.1 Examples of different types of unlooped pedigree.  

                                a. HS--3-3 pedigree;                   b. S-3-2 pedigree;             c. PC-2 pedigree. 
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4.2 Verifying the results in Skare et al. (2009) 

Firstly I verified the results reported from the R package FEST in the paper of Skare et 

al. (2009) using my own code. This provided a foundation for my extension work and 

also served as a code check. The software Merlin (Abecasis et al., 2002) was used to 

simulate the genotypes and calculate the likelihoods.  

In this section, allele frequencies for the Affymetrix 500K Array Set derived from 

HapMap data are used. All simulations are based on real allele frequencies and genetic 

maps. Flat priors are used in the whole simulation study to report posterior 

probabilities. The Haldane map function was used to convert linkage distance to 

recombination fraction as defaulted in Merlin.  

Before carrying out the major part of the work, the R code was checked using 400 

simulations on a special case. The third cousin (S-4-4) and second cousin twice 

removed (S-5-3) relationships are not distinguishable by any amount of autosomal 

genetic information (Donnelly, 1983). This is because the likelihoods of both 

relationship types HS−n1−n2 and S−n1−n2 are determined by n1, n2 only through 

n = n1+n2. These two pedigrees are shown in Figure 4.2. The likelihoods of the two 

relationships were exactly the same for all 400 replicates of simulated data as expected. 

The same was checked to be true for relationships HS-6-6 and HS-5-7 as well. 

Figure 4.2 Two pedigrees which cannot be distinguished by any number of autosomal markers. 

 

4.2.1 Distinguish the true relationship from ‘unrelated’ 

Genotypes were simulated for two individuals with different HS-n-n type true 

relationships and then it was tried to distinguish the true relationships from a single 
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alternative hypothesis of ‘unrelated’. Likelihoods and posterior probabilities were 

calculated for both hypothesized pedigrees with a flat prior and the average posterior 

probabilities of the true relationship are shown in Equation (4.1). To see the effect of 

different numbers of markers, the simulations were performed with 22 (unlinked), 220, 

2200, 22000 and 500K markers. 22 unlinked markers were generated by picking up 

one from each chromosome. 220, 2200, 22000 markers were generated by choosing 10, 

100, 1000 markers evenly spaced from each chromosome respectively. 400 replicates 

were done when all 500K markers were used and 1000 replicates were done when less 

dense markers were used and the averages of the results were taken. Table 4.1 shows 

the average posterior probabilities of the true relationship when the only alternative 

relationship is that the two individuals are unrelated. 

Table 4.1 Simulation results based on Affymetrix 500K SNP Array frequency and map data. 

# of markers HS-1-1 HS-2-2 HS-3-3 HS-4-4 HS-5-5 HS-6-6 

22(unlinked) 0.608 0.512 0.500 0.500 0.500 0.500 

220 0.923 0.580 0.507 0.501 0.500 0.500 

2200 1 0.925 0.605 0.515 0.500 0.500 

22000 1 1 0.947 0.685 0.550 0.547 

500K 1 1 1 0.878 0.612 0.551 

Average posterior probabilities for each true pedigree when the only alternative hypothesis is that the two 

individuals of interest are unrelated. Averages are taken over 400 replicates for 500K markers and over 1000 

replicates otherwise. 

From Table 4.1 we can see that 22 unlinked markers are not enough as the highest 

posterior probability is 0.608 for the HS-1-1 relationship. When the number of markers 

is increased to 220, this value becomes 0.923. So we have quite high power to 

distinguish half siblings from unrelated individuals with this few markers. With all 

500K SNP markers we can solve this distinguishing problem with certainty for 

relationships up to HS-3-3 and with reasonable confidence up to HS-4-4. Note that HS-

6-6 relatives are difficult to be distinguished from ‘unrelated’ with any number of 

SNPs used here.   

These results are consistent with those reported in the paper of Skare et al. (2009). But 

the values are not exactly same of course because I used different random seeds in the 

simulations. Also I did not remove the markers with MAF (minor allele frequency) < 

0.1 as they did.  
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It needs to be noted that the values in Table 4.1 are just the averages of the results of a 

large number of simulations. For example, 0.685 is the average of the 1000 posterior 

probabilities obtained from 1000 replicates with HS-4-4 as the true relationship using 

22000 markers. The results of these replicates are quite varied as would be expected. A 

histogram of these 1000 posterior probabilities is shown in Figure 4.3. Due to this 

variability it is important to look at the results of individual replicates of the simulation, 

rather than just the average. 

Figure 4.3 Histogram of posterior probabilities for 22,000 markers based on 1000 replicates, with HS-4-4 and 

‘unrelated’ as the true and alternative relationships respectively. 

 

4.2.2 Distinguish the true relationship from several alternative relationships 

In this section, the true relationship is compared with several close alternative 

relationships, rather than just with ‘unrelated’. 500K SNP genotype data were 

simulated for each of HS-1-1, HS-2-2……HS-5-5 and ‘unrelated’ relationships. Then 

for each simulated dataset, the true relationship and all other options were compared all 

together. Comparing several relationships all together is made possible by the Bayesian 

framework as a likelihood ratio can only be used to compare two relationships. 

Equation (4.1) was used for the calculation here. The results are shown in Table 4.2, 

from which we can see that as the relationship becomes more distant, it is more 

difficult to distinguish it from those close alternative relationships. 

Posterior probability
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Table 4.2 Simulation results based on Affymetrix 500K frequency and map data with five alternative 

relationships for each true relationship. 

True 

relation(belo

w) 

HS-1-1 HS-2-2 HS-3-3 HS-4-4 HS-5-5 Unrelated 

HS-1-1 1 0 0 0 0 0 

HS-2-2 0 0.959 0.041 0 0 0 

HS-3-3 0 0.034 0.748 0.189 0.028 0.001 

HS-4-4 0 0 0.173 0.467 0.263 0.097 

HS-5-5 0 0 0.023 0.275 0.388 0.313 

Unrelated 0 0 0.002 0.089 0.326 0.583 

In the first column are the true relationships. Then for each true relationship, the posterior probabilities of 

the true relationship and five alternative relationships are shown. Each row may not sum to one due to 

rounding. Averages are taken over 400 replicates. 

4.3 Some extensions to the paper of Skare et al. (2009) 

4.3.1 Investigating the individual posterior probabilities in Table 4.1 

Here I consider the complete posterior probabilities of all 400 or 1000 replicates for 

each simulation in 4.2.1 rather than just their averages. Histograms of the posterior 

probabilities corresponding to some of the averages reported in Table 4.1 are shown 

below in Figure 4.4. Complete histograms of the posterior probabilities for all entries in 

Table 4.1 are given in Appendix 10.2. Please note that I am going back to the case 

where there are only two options: a specific relationship versus ‘unrelated’. 
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Figure 4.4 Frequency histograms of the individual posterior probabilities of the true pedigrees contributing to 

each of the averages reported in Table 4.1 where there is only one alternative pedigree, ‘unrelated’, for each 

true pedigree. The three rows correspond to the different numbers of SNPs (2200, 22000, 500K) used in the 

simulation. The four columns correspond to the four different true pedigrees ( HS-3-3, HS-4-4, HS-5-5, HS-6-

6). The X-axis represents the posterior probability of the true pedigree. 

 

From Figure 4.4 we can see two patterns in these posterior probability distributions. 

Firstly, when more markers are used, there is clearer separation in the posterior 

probabilities, some values are as high as 1, some are low values and there are very few 

values between the two extremes. Secondly, when dense markers are used, the 

proportion of values close to 1 gets smaller as the relationship becomes more distant. 

The explanation for these patterns is as follows. As noted by Donnelly (1983), the 

probability that there is no IBD sharing between two relatives increases when the 

number of meiosis between them increases, but if two relatives do share IBD, they will 

share quite substantial chromosomal segments. For example, the expected length of the 

shared IBD segments is 8.33cM for two relatives with 12 meioses (S-6-6) between 

them when they do have IBD sharing (Browning and Browning, 2012, Thompson, 

2013). So there are two different situations in all these simulated genotype data sets. In 

some simulations, two related individuals shared some IBD chromosomal segments. In 

other simulations, there is no IBD sharing between them, therefore their genotypes look 
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like they are unrelated although they are related biologically. It suggests that those 

posterior probabilities close to 1 in my simulation correspond to the cases that there is 

IBD shared between the two relatives and those low values correspond to the cases that 

there is no IBD shared. When less dense markers are used, those two patterns in the 

histograms are not very clear because firstly, the less dense SNP markers cannot pick 

out all shared IBD segments in the relatives; secondly, the smaller number of markers 

do not give enough information to make the true pedigree distinguishable with 

certainty from ‘unrelated’ even when two relatives do share IBD. 

Note also that the low values of the posterior probabilities for different true 

relationships in these histograms are different, being around 0.15 for HS-4-4, 0.35 for 

HS-5-5 and 0.45 for HS-6-6. The reason for these values lower than 0.5 is that when 

there is no IBD shared between two relatives, the likelihood of an ‘unrelated’ pedigree 

is higher and the likelihood of the true pedigree is lower. This is because the true 

pedigrees are not supported by the data and the observed genotypes are consistent with 

the hypothesis of ‘unrelated’. The relationship HS-4-4 gave lower values than the 

relationship HS-6-6 because HS-6-6 is a more distant relationship than HS-4-4 and 

closer to ‘unrelated’ than HS-4-4. Therefore it is more ‘wrong’ to say HS-4-4 is 

‘unrelated’ than to say HS-6-6 is ‘unrelated’. So when there is no IBD shared by two 

relatives, the posterior probability of the true pedigree when HS-4-4 is the true pedigree 

is lower than when HS-6-6 is the true pedigree. This is further evidence that the low 

posterior probabilities correspond to the situations where there is no IBD shared 

between relatives. 

I also found that these posterior probabilities have limits for both cases where the two 

relatives share IBD and where they do not share IBD. Therefore the average posterior 

probabilities have limits. It means that they cannot keep increasing no matter how 

informative the data are. Suppose the probability of no IBD sharing between two 

related individuals is β (note this is a fixed value for any specific relationship), then in 

the cases where there is no IBD shared by two relatives, the limit of the posterior 

probabilities of the true pedigree (relationship not supported by genotypes) is β/(1+ β). 

This can be seen as follows. The genotype data that were simulated are unrelated and 

there are only have two alternative pedigrees, the true pedigree and ‘unrelated’. The 

probability that the ‘unrelated’ pedigree generates these unrelated genotypes is 1 and 
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the probability that the true pedigree generates these unrelated genotypes is β. With a 

flat prior probability distribution, the posterior probability of the true pedigree for these 

genotype data is β/(1+ β). This limit will be approached when dense markers are used. 

From the 500K SNP cases in Figure 4.4 we can estimate β for a HS-5-5 relationship at 

around 0.6 (240/400). It is estimated from the histograms in Figure 4.4 where 240 out 

of 400 simulated data sets having no IBD sharing when the true relationship is HS-5-5. 

Then the posterior probability of the true pedigree HS-5-5 when there is no IBD 

sharing is 0.6/1.6=0.375 which corresponds to the low values in the histogram. The 

expected posterior probability of the true pedigree is therefore (1 − 𝛽) × 1 + 𝛽 ×
𝛽

1+𝛽
 

which is equal to 0.625 when 𝛽 = 0.6. As another example, if we estimate 𝛽 = 0.8 

(320/400) for HS-6-6 relationship, the limit of the posterior probability for the true 

pedigree when no IBD shared is around 0.444 (
0.8

1+0.8
) and the expected posterior 

probability of the true pedigree is 0.556. Again it is estimated from the histograms in 

Figure 4.4 where 320 out of 400 simulated data sets having no IBD sharing when the 

true relationship is HS-6-6. These values are similar with the entries in Table 4.1 when 

500K SNPs are used.  

The fact that nearly all results lie close to the two limits of the posterior probability of 1 

and 0.444 (see right bottom histogram in Figure 4.4) when 500K SNP markers are used 

suggests that we already have very high information from this number of markers for 

relationships as distant as HS-6-6. We can distinguish the true relationship from 

‘unrelated’ with near certainty for any particular case where there is IBD sharing 

between the two relatives. This implies that we should not be able to make the average 

posterior probabilities in Table 4.1 increase significantly by simply increasing the 

number of markers. This is controlled by the fact that there is a high probability of no 

IBD shared between relatives when the relationship is distant. When 500K SNPs are 

used, it would seem that those average posterior probabilities are already very close to 

their limits.  

Moreover, this is further evidence that for distant relationships we should not 

concentrate on the average posterior probability. For distant relationships, the average 

posterior probability of the true pedigree will always look small no matter how many 

SNP markers we have, but this does not mean that we can make no inference about 
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them. When two distant relatives do share IBD segments in their genome, there is 

potential to distinguish relationships even more distant than HS-6-6. Although the 

average looks quite small, in individual cases where two distant relatives do share IBD, 

we could have a very high likelihood ratio between the true pedigree and an alternative 

pedigree and thus be able to make reasonable inference. Simulation results show that 

we can distinguish the true pedigree for relatives as distant as HS-8-8 from ‘unrelated’ 

provided they share segments of chromosome IBD (results not shown). Unfortunately 

more distant relationships are beyond the calculating capability of Merlin. In summary, 

by taking a more detailed look into the results presented by Skare et al. (2009), we can 

significantly expand on the conclusions drawn in that paper.   

4.3.2 After a certain point more SNPs do not help much 

To check my hypothesis about the number of SNPs, I estimated allele frequencies for 

the Affymetrix SNP6.0 SNP data on the 2934 controls from the WTCCC and simulated 

genotype data for these 711,020 SNPs (I refer to this as 711K SNPs for simplicity) to 

repeat the simulation study in the last section. Recall (Chapter 3) that there are about 

416,854 autosomal SNPs after cleaning in the previously used 500K SNP dataset. The 

first three rows in Table 4.3 are extracted from Table 4.1 and the last row is added for 

the results of 711K SNPs. We can see a clear improvement when the number of SNPs 

changes from 2200 to 500K SNPs, but there is no clear advantage, on average, in using 

711K rather than 500K. 

Table 4.3 Simulation results with 711K SNPs when the only alternative relationship is ‘unrelated’ and 

comparison with previous results. Averages are taken from 400 replicates. 

# of markers HS-1-1 HS-2-2 HS-3-3 HS-4-4 HS-5-5 HS-6-6 

2200 1 0.925 0.605 0.515 0.500 0.500 

22000 1 1 0.947 0.685 0.550 0.547 

500K 1 1 1 0.878 0.612 0.551 

711K 1  1 1 0.872 0.647 0.557 

 

This point can also be demonstrated by looking at the histograms in Figure 4.5. The 

true pedigree HS-4-4 is used here for illustration. When the number of SNPs changes 

from 2200 to 500K SNPs, we get better clustering due to the increase in information 

from the additional SNPs. But there is almost no change at all when the number of 
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SNPs changes from 500K to 1 million. The reason for this has been discussed above in 

Section 4.3.1. 

Figure 4.5 Histograms of posterior probabilities of the true pedigree when the true relationship is HS-4-4, for 

different numbers of SNPs. 

 

 

4.4 Distinguishing power when a third individual is 

genotyped for an unlooped pedigree 

Sieberts et al. (2002) have shown that modelling three individuals together could help 

distinguish the true relationship between two individuals from a disputed relationship. 

They worked on a special case where the pairwise relationship between the individuals 

in a trio could only be MZ twins, full sibs, half sibs or ‘unrelated’. They showed that 

there are 18 possible relationships for this trio and proposed a model to calculate the 

likelihood using an HMM (Hidden Markov Model). Linkage in the markers is 

incorporated in the calculation. Up to 285 genetic markers are used in their analysis. In 

one of their examples, the reported relationship of two individuals A and B is half-sibs, 

but its likelihood is very close to full-sibs. Therefore the two relationships are not 

distinguishable. They considered a third individual C whose relationship with B is full-

sib which is confirmed by the available markers. Then the likelihood of the trio was 

calculated in their relationship space to find the most likely pedigree and the next-

most-likely pedigree. The likelihoods of these two pedigrees were very different and in 

these two pedigrees the relationship between A and B are different, full-sibs in one 
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pedigree and half-sibs in another. Therefore the relationship between A and B can be 

found.  

Pedigree-based likelihood approaches can easily incorporate genotype data on 

additional individuals which is advantageous over other pairwise estimation methods as 

will be discussed in Chapter 6. In the next simulation study I want to investigate 

whether one extra genotyped relative could improve the power to distinguish the true 

relationship between individuals A and B from alternative relationships in more 

general cases (i.e. not limited to those cases considered by Sieberts et al. (2002), and 

what the pattern of this improvement is when the extra individual features in different 

positions on the pedigree. There are many choices for the position of the third 

individual in the pedigree connecting the two individuals in question. I define some 

notation for the pedigree position of this extra typed individual and some of these 

positions are shown in Figure 4.6 (mainly those most practical). The third individual 

could be a parent, grand-parent, sibling, half-sibling, cousin, aunt/uncle or child of one 

of the two individuals of interest. By examining the different amounts of information 

associated with different positions of the third individual we can recommend which 

relatives would be best to genotype. 

Figure 4.6 Denotation for different positions of the third genotyped individual. 

 

A third genotyped individual C, whose relationship with individual B is known, is said 

to be on a ‘within’ position if he/she is related to the other individual A. He/she is said 

to be on an ‘outside’ position if he/she is not related to another individual A. Several 

examples are as follows. ‘Within1’ denotes that the third genotyped individual is a 

parent of either of the two individuals of interest and is on the direct line of descent 

from the common ancestor(s). ‘Outside1’ denotes a parent either of the two individuals 
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of interest and who is a founder. ‘Within2’ denotes a grandparent of either of the two 

individuals of interest and who is on the direct line of descent from the common 

ancestor(s). ‘Outside2’ denotes a grandparent of either of the two individuals of interest 

and who is a founder (part a of Figure 4.6). The third individual is said to be at a 

‘sibling’ position if he/she is a sibling of individual B (part b of Figure 4.6), an ‘In Half 

Sibling’ position if he/she is a half sibling of individual B and also related with 

individual A (part c of Figure 4.6) and an ‘Out Half Sibling’ position (part d of Figure 

4.6) if he/she is a half sibling of individual B and unrelated to individual A. 

It is assumed that we know the relationship between the third individual C and B 

because we are estimating the relationship of A and B based on the likelihood of the 

three individuals. This is only justifiable when the relationship between C and B is 

fixed throughout all hypothesized pedigrees and therefore there is only one variable in 

these hypothesized pedigrees which is the relationship between A and B. For example, 

when the true relationship between A and B is HS-3-3 and we have an individual C 

genotyped on ‘within1’ position as in (a) of Figure 4.7, the alternative pedigree that I 

use for the alternative hypothesis that A and B are unrelated is as in (b) of Figure 4.7. 

But it is not the only approach to look at the question. If we do not assume that the 

relationship between B and C is known, the alternative pedigree could be that all three 

individuals are unrelated as in (c) of Figure 4.7 .  

Figure 4.7 Pedigrees illustrating that the relationship of the third individual with one individual in question 

should be kept same in alternative pedigrees. 

(a)                                                       (b)                            (c) 

              

If we do not keep the position of C fixed, then there are three relationships (AB, AC, 

BC) varying in the hypothesized pedigrees and changes in any of them affect the 
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likelihood. We cannot make any inference about the relationship of A and B by 

comparing likelihoods of the hypothesized pedigrees. If we use (c) as the alternative 

pedigree, when the true pedigree has higher likelihood than the alternative pedigree, all 

we can say is that the three individuals are not all unrelated, i.e. it is unlikely that all 

three individuals are unrelated with each other as shown in the alternative pedigree. But 

we cannot say specifically that individual A and B are unrelated or not. This can be 

easily illustrated by simulation. 

Genotype data were simulated for the pedigree shown in (a) for 220 SNPs, which are 

evenly picked from Affymetrix 550K SNPs. 220 SNPs are used because the likelihood 

ratio will be smaller for a small number of SNPs and it is easier to see changes in 

likelihood. Allele frequencies from the HapMap data were used as before. If we only 

consider the data on A and B, the likelihood ratio of relationship HS-3-3 over 

‘unrelated’ for individuals A and B is 1.406. We do not have good power to distinguish 

the true relationship of A and B from ‘unrelated’. Next we want to see how a third 

‘within1’ individual C could increase our distinguishing power. If we use the pedigree 

(c) in Figure 4.7 as the alternative pedigree, the likelihood ratio of the true pedigree and 

the alternative pedigree is extremely high: 1.135658e+12. But we cannot then conclude 

that the true relationship of A and B can be distinguished from ‘unrelated’. This big 

difference in likelihoods of the two pedigrees (a) and (c) in Figure 4.7 could be caused 

by the change of the relationship between B and C (from PC-1 to ‘unrelated’), rather 

than the change of the relationship between A and B (from HS-3-3 to ‘unrelated’). If 

we compare the likelihood of the true pedigree with the pedigree in (b) in Figure 4.7 

where A and B are unrelated, the likelihood ratio is just 2.367. In fact, when we use the 

correct alternative, we do not have such high distinguishing power to tell the true 

relationship of A and B from ‘unrelated’.  

For dense SNPs, likelihood ratios can be enormous e.g. of the order 10300. However 

the basic pattern is the same: using the wrong alternative can lead to exaggerated 

evidence in favour of the relationship being tested. Consider simulated 500K SNP data 

for a more distant true relationship HS-4-4. When there is not a third individual, the 

likelihood ratio for the true relationship versus ‘unrelated’ is 10258. When there is a 

third individual C available and its relationship with B is kept unchanged, the 
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likelihood ratio for the true pedigree and alternative pedigree is 10434. But when there 

is a third individual available and the alternative pedigree of (c) in Figure 4.7 is used, 

the likelihood ratio for the true pedigree and alternative is 1054348. Again using the 

wrong alternative (c) will give misleading results. Large numbers of replicates have 

been done for both examples and consistent results have been obtained but are not 

shown here. 

When we keep the relationship between B and C as known and fixed in all pedigrees, 

the only thing that differs between the two alternatives is the relationship of interest 

between A and B (relationship of A and C will be known as long as that between A and 

B is known). Hence we can make inferences about the relationship of A and B based 

on likelihood.  

Simulation was carried out with dense markers (500K SNPs) first, then with less dense 

markers and I started with third individuals who are ancestors of A or B. They are 

expected to provide higher information because those individuals on ‘within’ positions 

and on the direct line of descent from a common ancestor actually make the 

relationship that we are estimating closer. This is because C is in the middle of the 

meiosis chain that links A and B in this case and we know the relationship of A and B 

as long as we know the relationship between A and C. The simulation process is as 

follows: genotypes of the three individuals under a true pedigree were simulated by 

Merlin, then the probabilities of the genotype data were calculated both under the true 

pedigree and another pedigree on which A and B are unrelated and the extra individual 

C has the same relationship with B as that in the true pedigree. Posterior probabilities 

were then obtained as before. The true relationships used in this section are all HS-n-n 

type. Taking HS-3-3 relationship and position within1 as example, the true pedigree 

and corresponding alternative pedigree are shown in part (a) and part (b) of Figure 4.7. 

The cases for other true relationships and positions of the third genotyped individual 

will follow naturally. 

The results based on 500K SNPs are shown in Table 4.4. The number of replicates is 

400. The first column is for the different positions of the third individual in the 

pedigree. The first row is for different true relationships between A and B. The second 

row is for the corresponding values extracted from Table 4.1 when only two 
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individuals, A and B, are genotyped for the simulation and they are shown here for 

comparison. Each other value in the table is the average posterior probability of the 

true pedigree when a third individual C is available and the alternative pedigree is that 

A and B are unrelated with the relationship between B and C unchanged (Figure 4.7). 

Table 4.4 Simulation results based on all 500K markers and a third individual being genotyped. The number 

of replicates is 400. 

True relationship HS-3-3 HS-4-4 HS-5-5 HS-6-6 

Only two genotyped 1 0.878 0.612 0.551 

Within1 1 0.978 0.770 0.587 

Within2 1 0.998 0.861 0.638 

Within3 1 1 0.968 0.763 

Within4  1 1 0.865 

Within5   1 0.961 

Within6    0.993 

Outside1 0.995 0.863 0.667 0.548 

Outside2 0.995 0.891 0.637 0.545 

Outside3 1 0.879 0.665 0.555 

Outside4  0.849 0.647 0.544 

Outside5   0.641 0.558 

Outside6    0.558 

Average posterior probabilities of the true pedigree are shown for each true relationship versus the single 

alternative of ‘unrelated’ and each position of the third individual. 

From Table 4.4 two points seem to be suggested. Firstly, if the third individual is in a 

‘within’ position and on the direct line of descent from the common ancestor in the 

pedigree, it will improve the power considerably (comparing posterior probabilities 

with those in the first row). The further away it is from the individual in question and 

hence closer to the common ancestor(s), the more improvement it gives. Secondly, 

there is no obvious increase in the average posterior probability if the third individual is 

in an ‘outside’ position. The first point is quite as expected because we have kept the 

relationship between C and B as known and C is on the direct line of descent from the 

common ancestor. Therefore the closer the position of C is to the common ancestor, the 

closer the relationship between A and C is. But it is unexpected to see that an extra 

genotyped individual in an ‘outside’ position does not necessarily help to distinguish 
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relationships. Especially the individual C on ‘outside1’ position should make some 

difference due to the parent-child relationship between B and C. For example, when C 

is homozygous for an allele (say 11) on a locus and B is heterozygous (12) for that 

same locus and A is homozygous (22) for the other allele, allele 1 of B must be from C, 

allele 2 of B must be from her father. Then this observation should favour the true 

pedigree over ‘unrelated’ because A and B are more likely to share the 2 alleles IBD 

under the true pedigree. 

By repeating the simulation with less dense markers (2200 SNPs, 400 replicates), I 

found that when a third individual in an ‘outside1’ position is genotyped, clear 

increases in the posterior probabilities of the true pedigrees can be seen. If the true 

relationship between A and B is HS-3-3, the posterior probability of the true pedigree 

when a third individual in an ‘outside1’ position genotyped is 0.679 compared with 

0.605 when there is no third individual genotyped. This means that when a third 

individual C at any ‘outside’ position is genotyped, the posterior probabilities can 

increase. The main reason that no clear increase in distinguishing power was seen when 

500K SNPs were used is that likelihoods were converted into posterior probabilities. 

When likelihood ratios are very high, the increases in the posterior probabilities are less 

clear than the increases in likelihood ratios. For example, a likelihood ratio 2000:1 

corresponds to a posterior probability of 0.9995002 and a likelihood ratio of 4000:1 

corresponds to a posterior probability of 0.9997501. In this example the likelihood ratio 

doubles, but the posterior probability only increases by 0.00025. In cases where 

likelihood ratios are on a scale as large as 10100, doubling the likelihood ratio yields an 

increase in the posterior probability of less than 10−100, which is treated as 0 by 

computer. The second reason that we cannot see the increase of the posterior 

probability of the true pedigree when the third individual C is on ‘outside’ positions is 

that C only provides information when A and B share IBD in this case. I have done a 

calculation to illustrate that when A and B share no IBD, the likelihood ratio between 

the true pedigree and an alternative pedigree remains unchanged when a third 

individual on ‘outside1’ is observed (see Appendix 10.3).  

In cases where two individuals do share IBD we have great power to distinguish the 

two relatives from ‘unrelated’ with 500K dense markers. The likelihood of the true 
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pedigree is greatly higher than the likelihood of the alternative, so the posterior 

probabilities of the true pedigree are very close to 1 and are often rounded up to 1 by 

computer. Therefore we see no increase in the posterior probability of the true pedigree 

when a third individual is added although there is an increase in the likelihood ratio. 

The improvement in discriminating power due to a third individual can be seen more 

clearly when less dense markers are used because in those cases, the posterior 

probability of the true pedigree is less than 1, so there is scope for increase. But I still 

present posterior probabilities rather than likelihood ratios because I want to consider 

average performance over a large number of replicates. It is unreasonable to take 

averages of likelihood ratios because likelihood ratios could be on different scales for 

different replicates. But posterior probabilities are all on the same scale between 0 to1. 

When the third individual is an offspring of one of the two individuals of question, it 

would seem intuitive that it will not increase our distinguishing power for the 

relationship of the two individuals of question. I find this holds when only unlinked 

markers are used, but is not the case when linked markers are used.   

Let us consider the same pedigree in Figure 4.7, for a different problem. Suppose we 

want to estimate the relationship of A and C (HS-3-2 as the true relationship) and I 

want to see whether the third individual B as a child of C will increase our 

distinguishing power. When all three individuals are genotyped, the true pedigree and 

the alternative pedigree are as in Figure 4.7 (b). When only A and C are genotyped (B 

is not genotyped), the true pedigree and the alternative pedigree are as in Figure 4.8. 

Figure 4.8 Pedigrees of HS-3-2 and ‘unrelated’. 

 

When only unlinked markers are used, the likelihood ratio between the true pedigree 

and the alternative can be easily calculated as it can be done for every marker 

separately. It is illustrated with one marker. 
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LR =
L(A,C,B|True)

L(A,C,B|Unrelated)
=

L(A,C|True)L(B|C)

L(A)L(B)L(B|C)
=

L(A,C|True)

L(A)L(B)
, 

which is the same as the likelihood ratio when only A and C are observed. This means 

when markers are unlinked, the estimation of the relationship between A and C is 

independent of the genotypes of the child B. This explains the simulation results. 

But if we use linked SNPs, the average posterior probability of the true pedigree based 

on 2200 SNPs and 400 replicates when all three individuals are observed is 0.8172621. 

The average posterior probabilities of the true pedigree based on the same SNPs and 

400 replicates when the child B is not observed is 0.774, which is considerably less 

than 0.817. Variance of the posterior probability has been considered and the increase 

of the posterior probabilities is significant. Consistent results are observed when trying 

to distinguish the true pedigree from several close alternative pedigrees. This means 

that the genotype data of a third individual in an ‘offspring’ position does increase our 

information on the relationship of two individuals when linked markers are used. The 

reason could be that what happens at one marker is not independent of what happens at 

another marker when markers are linked and what segregates to the child in one marker 

can be informative for what segregates to another. 

Next I show that a third genotyped individual helps to distinguish the true relationship 

from several alternative hypotheses as well as for just one alternative hypothesis. I take 

the positions of the third individual to be ‘within1’ and ‘within2’ for illustration. 

When the third individual is in a ‘within1’ position, if the alternative relationships 

include HS-1-1, we could get bizarre results because the data generated from other 

distant relationships could be impossible for the HS-1-1 relationship. For example, 

genotype ‘1 1’ at a locus of the third individual C who is a ‘within1’ parent of B, and 

genotype ‘2 2’ at the same locus of the other individual in question, A, are not possible 

for a HS-1-1 pedigree because C is a common ancestor and will be a parent of A as 

well. But these genotypes could be generated by a HS-3-3 pedigree (Figure 4.9). 

Merlin will remove those markers which have inconsistent genotypes and the 

likelihoods we get will be for different numbers of markers and not comparable. So H-

1-1 was excluded from the choice of the possible relationships. 
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Figure 4.9 One example of genotypes which can be generated by pedigree HS-3-3 but are not possible for 

pedigree HS-1-1. 

 

Resulting posterior probabilities calculated as shown in Equation (4.1) are given in 

Table 4.5 and Table 4.6. 

Table 4.5 Posterior probabilities of the true pedigree and several alternative pedigrees when a third 

individual is available in a ‘within1’ position (values in brackets are from Table 4.2 for only two individuals 

genotyped). 500K SNPs are used and averages are taken from 400 replicates. 

True 

relation(belo

w) 

HS-2 HS-3 HS-4 HS-5 Unrelated 

HS-2 0.987(0.959) 0.013(0.041) 0/(0) 0/(0) 0/(0) 

HS-3 0.010(0.034) 0.894(0.748) 0.092(0.189) 0.004(0.028) 0(0) 

HS-4 0(0) 0.105(0.173) 0.627(0.467) 0.247(0.263) 0.021(0.097) 

HS-5 0(0) 0.004(0.023) 0.274(0.275) 0.473(0.388) 0.249(0.313) 

Unrelated 0(0) 0(0.002) 0.024(0.089) 0.249(0.326) 0.727(0.583) 

 

Table 4.6 Posterior probabilities of the true pedigree and several alternative pedigrees when a third 

individual is available in a ‘within2’ position (values in brackets are for only two individuals genotyped). 

500K SNPs are used and averages are taken from 400 replicates. 

True 

relation(belo

w) 

HS-2 HS-3 HS-4 HS-5 Unrelated 

HS-2 1(0.959) 0(0.041) 0(0) 0(0) 0(0) 

HS-3 0(0.034) 0.961(0.748) 0.039(0.189) 0(0.028) 0(0) 

HS-4 0(0) 0.035(0.173) 0.773(0.467) 0.189(0.263) 0.002(0.097) 

HS-5 0(0) 0(0.023) 0.178(0.275) 0.692(0.388) 0.131(0.313) 

Unrelated 0(0) 0(0.002) 0.002(0.089) 0.132(0.326) 0.865(0.583) 
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From Table 4.5 and Table 4.6 we can see that when a third individual is genotyped, the 

true pedigrees have higher posterior probabilities than when only two individuals are 

genotyped, which means we can distinguish the true relationships from the alternative 

relationships with higher certainty. Note that we are only concerned with the values 

down the diagonals as they are the posterior probabilities of the true pedigrees.   

For completeness, I also considered the effect of a third individual for the S-n-n 

relationships (results not shown). The findings are consistent with those for HS-n-n 

type relationships with respect to the patterns of influence on the distinguishing power 

associated with different positions of the third genotyped individual on the pedigree. 

Finally, the effect of a third individual when its position is more general was 

investigated. I compared all positions of the third individuals which are most practical 

to be genotyped and then give a recommendation as to which relatives are potentially 

the most informative. In this simulation, the true relationship of A and B is HS-4-4 as 

shown in Figure 4.6 and the only alternative relationship is ‘unrelated’. The positions 

considered for the third individual include ‘within1’, ‘sibling’, ‘In Half Sibling’, ‘Out 

Half Sibling’ (see Figure 4.6), ‘In Avuncular’ and ‘In Cousin’ (see Figure 4.10). ‘In 

Avuncular’ is the individual who is an uncle or aunt of B and is on the direct line of 

descent from the common ancestor. Likewise, ‘In Cousin’ is a cousin of B who is on a 

direct line descendent of the common ancestor. Results are shown in Table 4.7 and 

results for only two individuals are shown as well for comparison. 
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Figure 4.10 Positions of ‘In Avuncular’ and ‘In Cousin’ of the third individual on a HS-4-4 pedigree. 

  

Table 4.7 The average posterior probabilities of the true pedigree when trying to distinguish the true 

relationship HS-4-4 from ‘unrelated’ based on 500K SNPs with a third individual in different positions. 

Averages are taken from 400 replicates. 

Position of the 

third individual 

No third 

individual 

Within1 Sibling In Half 

Sibling 

Out Half 

Sibling 

In 

Avunc-

ular 

In Cousin 

Posterior 

probability of the 

true pedigree 

0.878 0.978 0.941 0.942 0.874 0.978 0.970 

 

It can be seen from Table 4.7 that the third individual in all the positions except 

‘Outside Half Sibling’ increases the posterior probabilities of the true pedigrees. As 

noted previously, this is because any effect of the ‘outside’ individuals is unnoticed 

when very dense markers are used. These results show that ‘sibling’ and ‘In Half 

Sibling’ provide similar information and ‘In Avuncular’ and ‘within1’ provide similar 

information, which is higher than the information provided by ‘sibling’.  

My conclusion is that one extra genotyped individual always gives extra information in 

distinguishing the relationship of two individuals when linked markers are used. When 

dense SNPs are used, this increase of information relies on whether and how much the 

third individual C, whose relationship with B is known, shares IBD with A at loci 

besides those at which B and A already shares IBD. ‘Outside’ positions do not share 
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IBD with A at all and they increase the likelihood ratio only when A and B share IBD, 

in which case the likelihood will be already so high that the posterior of the true 

pedigree is 1 without the third individual. So there is no increase in the posterior 

probability. But the third individuals on ‘within’ positions could increase the posterior 

probability even when individuals A and B do not share IBD because they themselves 

could share IBD with A at extra loci. With the presence of the third individual at a 

‘within’ position, the true pedigree will have posterior probability of 1 in more 

replicates than when there is no third individual. That is why we can see a big increase 

in the average posterior probability. In other words, the probability of detecting a 

relative pair, as estimated by the proportion of simulations in which the relationship is 

detected, is higher when there is a third individual in ‘within’ position. Some relative 

pairs who are otherwise not detectable (because there is no IBD shared between them) 

can be detected now. If the third individual is on a ‘within’ position, the closer it is to 

the common ancestor(s) of the two individuals of interest, the more IBD sharing it can 

have with A at additional loci beside those at which A and B already share IBD and the 

higher the increase in average posterior probability we can observe. For linked dense 

SNP data, ‘outside’ positions are not useful as they only provide information in the 

case where we already have plenty of information. The increase of information 

provided by the third individual in these cases is not very noticeable.  For third 

individuals who are an ancestor of B, like parents or grandparents, the closer they are 

to the other individual A, the more information they provide if they are on a ‘within’ 

position. But at the same time, it is more likely that this third individual is actually on 

an ‘outside’ rather than ‘within’ position, because the more distant it is to B, the more 

ancestors B has on that generation who are symmetric on the pedigree and only one of 

them is on a ‘within’ position. As generally ‘outside’ positions are not very helpful as 

discussed previously, ‘siblings’ are safest to use as they will always help. If we can 

genotype both parents of A or B, or all four grandparents of A or B and try them all, 

then they would be better choice as they can provide more information. 

4.5 Simulation with looped pedigrees 

Realistically, human pedigrees generally will not have the simple unlooped structures 

considered so far. It is of interest to see what happens to our power to distinguish a true 
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pedigree from an alternative if there are loops in the true pedigrees. Since a relationship 

between two individuals is defined when there is a path connecting them on a pedigree, 

looped pedigrees potentially represent multiple relationships between the two 

individuals. For example, on the pedigree shown in Figure 4.11, we can say that A and 

B have two relationships: HS-4-4 and HS-6-6. I carried out a simulation to see how 

well we can distinguish this special relationship (with a loop in the pedigree) from 

‘unrelated’. The posterior probability of the true pedigree is 0.901 when only the two 

individuals in question are genotyped and the only alternative relationship is that they 

are unrelated. This value is higher than that of 0.878 obtained when a true pedigree of 

HS-4-4 was assumed (Table 4.1). This is because the IBD sharing between A and B on 

this looped pedigree is higher than that of the normal HS-4-4 pedigree and our 

distinguishing power is based on the proportion of IBD sharing between two 

individuals. Recall that when calculating the theoretical IBD (pedigree-based) sharing 

between two individuals, different paths on the pedigree need to be summed over 

(Section 2.2). 

Figure 4.11 Pedigree of HS-6-6 with a more recent HS-4-4 relationship nested within. 

 

 

Another looped pedigree that I used as test structure shown in Figure 4.12 (Thompson, 

1986), depicts A and B with a recent S-3-2 relationship via the common ancestors 5 

and 6 nested within as S-5-3 relationship via 1 and 2. The posterior probability of the 

true pedigree as shown in Figure 4.12 is higher than that when the true pedigree is 

assumed to be S-3-2 when the only alternative relationship is ‘unrelated’.  
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Figure 4.12 Pedigree taken from p17 of the book “Pedigree Analysis in Human Genetics” by Thompson 

(1986). 

 

 In this second pedigree (Figure 4.12), a third genotyped individual was assumed in 

different positions and posterior probabilities of the true pedigree versus the alternative 

pedigree, that A and B are unrelated, were calculated. The results are based on 1000 

simulations with 220 SNP markers are shown in Table 4.8. This choice of SNP set is 

because we can distinguish the true relationship from unrelated with almost 100% 

certainty if denser markers are used, and so any increase of power provided by the third 

individual is not detectable. The results show similar effects of the third genotyped 

individual as seen for an unlooped pedigree. For example, 4, 6, 7 and 8 are positions 

for the third individual in the S-5-3 relationship between A and B via 1 and 2. 

Individual 8 provides very little information as it is an ‘outside’ position. Individual 4, 

6 and 7 provide much more information as they are in ‘within4’, ‘within3’ and 

‘within2’ positions respectively. As expected, individuals 4 and 6 provide more 

information than does 7.  10, 12, 13 and 14 are positions for third individual in the S-3-

2 relationship between A and B via 5 and 6. Individual 13 is in an ‘outside’ position. 

Individual 10, 12 and 14 provide much more information as they are in ‘within2’, 

‘within1’ and ‘within1’ positions respectively. Again, individual 10 provides more 

information than do individuals 12 and 14.  
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Table 4.8 The posterior probabilities of the true pedigree with a third individual genotyped for the pedigree 

in Figure 4.12 and the only alternative being that A and B are unrelated. 

Extra’s 

position  

Only A 

and B 

genotyped 

4 6 7 8 10 12 13 14 

Posterior 

probabilities 

0.609 0.780 0.795 0.693 0.635 0.957 0.754 0.640 0.773 

 

4.6 Summary 

In this chapter, I have presented a pedigree likelihood approach for estimating the 

relationship between two individuals and extended previous work using this method. 

Firstly the individual simulation results were examined more closely rather than just 

looking at the average results over a large number of simulations. By this we had a 

better understanding how this method performs. Together with the results from the 

simulation study with 1 million SNPs, it was shown that the distance of the relatives 

that we can detect from ‘unrelated’ is limited by the possibility of no IBD sharing 

between distant relatives rather than the number of markers. This is consistent with the 

theory of Donnelly (1983). Secondly it was shown that much denser SNPs data are not 

very helpful after a point. Therefore there is no need to keep increasing the number of 

SNPs used. We will return to this point when discussing the existence of LD within 

dense SNPs in the next chapter. Thirdly, how extra genotyped individuals help the 

relationship estimation of two individuals was investigated. One of the key advantages 

of this method over other approaches is that genotype data on additional individuals 

can easily be incorporated into the pedigree likelihood and thus considered jointly. 

Simulation results show that the best extra individual to genotype to help relationship 

estimation is the sibling of one of the two individuals in question. 

 



                                                                                                                    

                                                                                                                  Chapter 5 

Page | 91 

 

5 Testing the likelihood approach on real 

data and accounting for LD 

In previous studies with the pedigree likelihood method, some assumptions were made. 

For example, founders of a pedigree were assumed to be unrelated and different loci in 

the founder population were assumed to be in linkage equilibrium (genotype 

frequencies at one locus are independent of genotype frequencies at another locus). But 

the assumption of linkage equilibrium is not justifiable in general and especially when 

dense markers are used. It is desirable to explore the effect of this assumption. 

5.1 Investigate the effect of ignoring LD with 

simulated data 

 As Merlin has the option of incorporating LD into genotype simulation and likelihood 

calculation, it is easy to take LD into account via this option, although it is not the only 

way to model LD. Merlin models LD by combining tightly linked markers into clusters 

and estimating haplotype frequencies within each cluster (Abecasis and Wigginton, 

2005). The algorithm assumes that the markers can be grouped into non-overlapping 

clusters of consecutive markers such that (1) markers within a cluster can be in LD, (2) 

markers in different clusters have a very low level of LD, (3) the recombination rate 

within a cluster is extremely low. The LD within each cluster is described by the 

relevant haplotype frequencies. To make the method computationally tractable, two 

approximations are made: LD between clusters is ignored and the recombination rate 

within each cluster is assumed to be zero.  

Users can provide Merlin a ‘clusters’ file describing a series of clusters within each of 

which there are several contiguous markers. Each cluster is described by a line which 

begins with the word ‘CLUSTER’ followed by a series of marker names. This line is 

followed by several lines which begin with the word ‘HAPLO’. Each of these lines 

specifies a haplotype and its frequency.  

The first few lines of a ‘clusters’ file for three markers could be written as follows:  
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CLUSTER rs556920 rs553456 rs7989455 

HAPLO 0.2500   3   2   1 

HAPLO 0.3167   3   2   3 

HAPLO 0.2000   1   4   1 

HAPLO 0.2333   1   4   3 

In this cluster, the first and second markers, rs556920 and rs553456, are in complete 

LD as allele 3 at the first marker always appears together with  allele 2 at the second 

marker. Likewise allele 1 at the first marker is paired with allele 4 at the second 

marker. 

If users provide their own ‘Clusters’, Merlin will check: firstly that the markers are 

contiguous within each cluster; secondly that the map position of the markers within 

each cluster are the same. Otherwise it will change those positions to be the same to 

ensure there is no recombination within each cluster. 

If this ‘clusters’ file is not provided, Merlin can generate the file itself based on the 

input files of genotypes. There are different criteria for the formation of the clusters. 

Users can use the –distance option to specify a map distance. Then markers with a 

pairwise distance less than this value are included in one cluster. Or users can call the –

rsq (standing for 𝑟2 which is used to measure LD) option to specify a 𝑟2 value and any 

two markers with pairwise 𝑟2 greater than this value are included in one cluster. For 

both criteria, only contiguous markers will be included into clusters. 

Then the haplotype frequencies within each cluster are estimated from available 

genotype data. This ‘clusters’ file can be saved for future use. Estimating maximum 

likelihood haplotype frequencies in pedigrees is complex and an E-M algorithm was 

proposed by Abecasis and Wigginton (2005). The observed genotypes of founders are 

used to estimate the haplotype frequencies. As each individual has two haplotypes, 

there are 2𝑛 haplotypes if the number of founders is 𝑛.  However, the haplotypes of the 

founders are often not observed. In the E step, conditional on the starting estimate of 

the haplotype frequencies, the expected count of each haplotype is calculated by 

summing over all configurations of the founder haplotypes that are compatible with the 
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observed genotype data. The count of that haplotype in each configuration is weighted 

by the probability of that configuration, which is simply the product of the haplotype 

frequencies of the 2𝑛 haplotypes in that configuration. In the M step, the haplotype 

frequency estimates are updated by dividing the expected haplotype count of each 

haplotype by the number of the founder haplotypes in the sample. Then this process of 

iteration continues until convergence is reached.   

In calculating the pedigree probability of the genotype data with LD, the Lander-Green 

algorithm is adapted: rather than iteration over markers, iteration over clusters of 

markers in LD is required (refer to Section 2.5.3). For each inheritance vector, the 

conditional probability of observed genotypes for all markers within the cluster is 

calculated based on estimated haplotype frequencies. 

When Merlin simulates the data with the LD function chosen, the genotypes of the 

markers within a cluster will be simulated according to their haplotype frequencies, 

rather than their allele frequencies. Cluster haplotypes will be assigned to markers 

within a cluster for the founders and transmitted to descendants together as a unit 

because Merlin assumes no recombination between markers within a cluster. For 

markers outside the clusters, the process of simulation and likelihood calculation will 

be the same as when LD is not modelled.  

In my first simulation study with LD, the real genotypes of 1285 unrelated individuals 

from the NBS sample (control group in WTCCC project selected from National Blood 

Service of UK) were used to estimate the haplotype frequencies. The total number of 

SNPs is 711,020. The threshold for combining SNPs into one cluster is 0.001cM, 

which means that the markers with pairwise genetic distance less than 0.001cM will be 

included in one cluster. This threshold of 0.001cM was chosen for practical reasons 

although it can be expected that with a greater threshold, LD will be better accounted 

for as the LD blocks will contain more SNPs. However, larger thresholds drastically 

increase the running time for the simulation process which makes large numbers of 

simulations, as are required here, impractical. These experiments are computationally 

expensive. The higher the threshold is set, the more time it takes to build the LD 

blocks. When 0.001cM is the threshold, the largest LD block contains up to 200 SNPs, 

which makes the computation very slow and it takes more than two days to generate 
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the haplotype frequencies file for Merlin. After the LD block file is ready, the genotype 

simulation and likelihood calculation for one pedigree could takes around 20 minutes 

when the whole set of 500K SNPs is used. For example, it took more than one week to 

generate the results for Table 5.1. Here I consider any experiment which takes much 

longer than a week as unpractical, but it does not mean that they cannot be done. By 

this simulation, the effect on relationship estimation of ignoring LD in the data is 

investigated. The results when several close alternative pedigrees are considered are 

shown in Table 5.1. 

Table 5.1 The posterior probabilities of all alternative relationships when the true relationships are HS-4-4 

and ‘unrelated’ respectively under different situations of LD. ‘No LD simulated’ means there is no LD in the 

simulated genotypes. ‘LD simulated, not accounted for’ means there is LD in the simulated genotypes, but the 

LD is not accounted for in the likelihood calculations when the relationships are estimated. ‘LD simulated, 

accounted for’ means there is LD in the simulated genotypes and it is accounted for correctly when the 

relationships are estimated. 

True relation(below) HS-1-1 HS-2-2 HS-3-3 HS-4-4 HS-5-5 Unrelated 

HS-4-4 (No LD simulated) 0 0 0.173 0.467 0.263 0.097 

HS-4-4 (LD simulated,not accounted for) 0 0.001 0.608 0.339 0.051 0.001 

HS-4-4 (LD is simulated and accounted 

for) 

0 0 0.164 0.479 0.279 0.077 

Unrelated (No LD is simulated) 0 0 0.001 0.085 0.323 0.590 

Unrelated (LD is simulated, not   

accounted for) 

0 0 0.256 0.549 0.181 0.014 

Unrelated (LD is simulated and 

accounted for) 

0 0 0.001 0.085 0.324 0.589 

 

From Table 5.1 we can see that when the true relationship is HS-4-4 and LD in the 

simulated data is accounted for perfectly, our inference will be the same as when there 

is no LD in the data. But when LD is not accounted for, HS-3-3 will have the highest 

average posterior probability among all alternative relationships considered. When the 

true relationship is ‘unrelated’ and the LD in the data is not accounted for, HS-4-4 will 

have the highest average posterior probability. This means that when LD is present and 

ignored, relationships will look closer than the true reltionships and, in particular, 

unrelated individuals will look related. Here we know the true LD model and can hence 

adjust appropriately. But in reality it is not that easy to model LD. 
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5.2 Estimating the degree of relationship using the 

pedigree likelihood method and showing the effect 

of ignoring LD with real data 

The pedigree likelihood approach has only been used to distinguish the true 

relationship from some alternative relationships previously. This requires a sensible set 

of pedigrees to be selected, usually based on prior information. Here I propose to use 

pedigree likelihood to infer the degree of relationship or relatedness. In many 

situations, the precise relationship as defined by a pedigree may not be required, or 

relationship-specific alternatives may not be available. But it may be of interest to 

estimate the relationship of relatives up to a certain degree.  

We know that the number of pedigrees connecting two individuals is infinite. 

Therefore two assumptions are made. The first assumption is that two individuals in 

question are outbred and under this assumption, we know that all possible relationships 

can be classified into three types, S − n1−n2, HS − n1+n2 and PC − n (Section 4.1). 

The second assumption is that all relationships with more than n separating meioses are 

regarded as ‘unrelated’. This means that we only consider relationships up to this level 

and not be able to estimate more distant relationships. With these two assumptions, the 

number of possible relationships for any pair of individuals is finite. Then the 

relationship which has the highest likelihood is the estimated relationship. Essentially 

we find the most likely relationship for the two individuals under the two assumptions. 

Since it is known that all S − n1−n2 relationships with a given n = n1+n2 have the 

same likelihood for all values of n1 and n2 which holds for HS − n1−n2 type of 

relationships as well, we can reduce the number of likelihoods that need to be 

calculated further. But at the same time, it means that we cannot estimate the precise 

relationship and can only estimate the degree of relationship. Therefore, when only 

considering relationships which are not more distant than S − 8 − 8, we just need to 

calculate the likelihood of the pedigrees S-1-1, S-1-2, S-2-2, S-2-3, …, S-8-8, HS-1-1, 

HS-1-2, HS-2-2, …HS-7-8, PC-1, PC-2, …, PC-15 and ‘unrelated’.  

To reduce the number of likelihood calculations even further and speed up the process, 

when the requirement for accuracy is not very high, a small number of simple unlooped 
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pedigree structures, such as S-1-1, S-2-2,  …, S-5-5, S-6-6 and ‘unrelated’  can be used 

as a rough template against which to test a given relative pair (so this method can also 

be phrased as ‘Template’ method).  If any of the S − n − n structures has the highest 

likelihood the pair of individuals is regarded as related. Otherwise they are regarded as 

unrelated. This method does not give us the exact relationship between the two 

individuals, but could give us an estimate of the degree of relatedness in terms of the 

number of meioses separating them. When applying this method to estimate the degree 

of relationship in practice, it is not necessary to convert likelihoods into posterior 

probabilities. But in order to summarize the results of a large number of pairs of 

relatives when investigating the impact of LD on relationship and relatedness 

estimation, posterior probabilities are calculated assuming a flat distribution of the 

template pedigrees.    

 It needs to be noted that this is a method of maximum likelihood estimation of 

pairwise relatedness using pedigree as a parameter and it is different to the approach of 

using pedigree likelihood to distinguish the true relationship from a set of alternative 

relationships although they look similar. When distinguishing the true relationship 

from alternative relationships, it is assumed that the true relationship is included in the 

relationship set considered. But the true pedigrees could be complicated and there is no 

guarantee that the true relationship will be included in the set of alternatives. Hence, a 

set of alternative relationships with simple structures ranging from S-1-1 to S-6-6 etc. 

and ‘unrelated’ can be used as a template to estimate the general degree of relationship 

between the two individuals rather than the exact relationship itself. Later in this thesis, 

we can see that this method still works when the ‘outbred’ assumption is breached and 

it performs better than existing methods on estimating degree of relationship 

accurately.  

The real data that I used are from the MICROS study (see description in Chapter 3) . 

Allele frequencies are estimated from all the individuals. Genotype data on 303,783 

SNPs with a linkage map are used for every individual. We have four pedigree files of 

the MICROS study covering the same genotyped individuals, but with different 

numbers of generations in each of them. The full 12-generation pedigree is very big 

and unwieldy to work with. The 8-generation pedigree is used in this whole thesis. The 

software Jenti (Falchi and Fuchsberger, 2008) is used to split large pedigrees into 
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smaller ones to help visualize the pedigree and also to choose pairs of individuals with 

desired relationships. Jenti was also used to compute the expected kinship coefficient 

between individuals based on the pedigree data provided. Another possible choice to 

visualize pedigrees is the R package ‘kinship’.  

Firstly several pairs of relatives with most recent relationship ranging from S-3-3 to S-

5-5 were chosen to get an idea of how pedigree likelihood estimation performs for such 

data.,  A larger number of relative pairs (101 ) whose most recent relationship is S-3-3 

were then considered for average performance. Second cousins (S-3-3) could be 

distinguished from ‘unrelated’ easily (Section 4.2), but they could not be so easily 

distinguished from close alternatives, which is what I am looking at now. The first pair 

of relatives (230 and 1193) is connected via the sub-pedigree in Figure 5.1, and has a 

true most recent relationship of S-3-3: the kinship coefficient between the two 

individuals is 0.01833677 based on the large 8-generation pedigree and 0.0177 based 

on the sub-pedigree while the expected kinship coefficient of an S-3-3 relationship is 

0.015625.  

Figure 5.1 An inbred pedigree connecting individuals 230 and 1193 (shaded) of the MICROS Study. 

 

The likelihood of the ‘true relationship’ was compared with several very close 

alternatives and posterior probabilities of all relationships were calculated. The 

posterior probabilities of all the hypothesized relationships are shown in Table 5.2.  
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Table 5.2 Posterior probabilities of several close alternative relationships for individuals 230 and 1193 with 

the true relationship S-3-3. 

Relationships S-3-3 HS-2-2 HS-3-2 S-4-3 HS-3-3 Unrelated 

Posterior 

probabilities 

0.9946751 9.662598e-35 3.710342e-30 0.005324923 1.825236e-28     0 

 

There are two surprising phenomena. Firstly, the posterior probability of the true 

pedigree is very high even though the alternative pedigrees are very close to it; but we 

do not usually have such high distinguishing ability for simulated S-3-3 pedigree data 

even when there is no LD. Secondly, the S-3-3 pedigree can easily be distinguished 

from the alternative HS-3-2, even though these two pedigrees have the same expected 

kinship coefficient. In simulated data, these two pedigrees give very close posterior 

probabilities. I found this is partly due to the fact that I did not include any closer 

alternative relationship, and partly due to that all HS − n1 − n2 type of hypothesized 

relationships tends to have extremely lower posterior probabilities compared to S −

n1 − n2 type of relationships when the true pedigree is inbred. This point has been 

verified with simulated inbred pedigree data (results not shown). The reason for this 

phenomenon could be that the IBD sharing between two individuals with a complex 

relationship is more consistent with two common ancestors and we know that the 

variances of the realized sharing for extending siblings and extending half-siblings are 

different even though the expected value may be the same (Hill and Weir, 2011). This 

could imply that when we use the ‘Template’ method to estimate relationships in real 

data where inbreeding is likely, only extended siblings relationships should be used as 

alternative relationships. For the next four pairs of relatives, closer alternative 

relationships are added, and in each case it is the closest alternative relationship that 

has the highest likelihood. 

We now consider the 101 pairs of relatives whose most recent relationship is S-3-3. 

The results show that in all 101 relative pairs, it is S-1-1 that has the highest likelihood. 

This means that the estimated degree of relationship is always closer than the true 

relationship which is consistent with the findings from simulated data. 
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This could be due to two reasons: the true relationship of the two individuals is actually 

closer than the most recent relationship because of inbreeding and the presence of LD 

in dense SNP markers makes individuals look more closely related than they really are. 

The second reason is more likely as the true relationships must be more distant than S-

1-1 however much inbreeding is present in these relatives. 

5.3 Is there a way to solve the problem of LD 

It has been shown that the pedigree-based likelihood method is biased in the presence 

of LD. Here in this section, I consider how to deal with it. One simple way to remove 

the effect of LD, which is commonly done in practice, is to reduce the density of the 

SNP markers to be used (Berkovic et al., 2008, Pemberton et al., 2010). Berkovic et al. 

(2008) and Pemberton et al. (2010) simply used 10,000 markers without giving reason 

for this number. Kling et al. (2012) did relationship estimation for different levels of 

true relationship using different numbers of SNPs. There are large numbers of relative 

pairs for each true relationship. A pedigree likelihood approach is used in their work as 

well. They consider the number of SNPs giving the highest proportion of correct 

estimates.  It is shown that this number is different for different true relationships. They 

suggested using no more than 20,000 markers to obtain reliable result. I will test 

whether thinning works with both simulated data and real data bearing in mind that it 

discards a lot of the available information. Then I will attempt to model LD in real 

data.  

Merlin was used throughout to model LD. As described before, there are two criteria to 

build LD blocks, distance between markers and pairwise 𝑟2. The Plink Software was 

also looked at, but it is very similar to Merlin in the way it models LD and only uses 𝑟2 

as the criterion to build LD blocks. The real data that were used are the SNP data from 

the MICROS dataset for 101 selected pairs of individuals whose most recent 

relationship is S-3-3. 303,783 autosomal SNPs are available for every individual. It 

should be noted that the true relatedness of these relatives is varied due to inbreeding 

although their most recent relationships are same. Based on the 8-generation pedigree, 

the expected kinship coefficient for some pairs is closer to that of an S-3-2 relationship. 

Hence we do not expect to get an estimate of S-3-3 for every pair of relatives.  
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5.3.1 Is thinning SNPs a valid method to get rid of LD? 

I began by considering whether the effect of LD can be removed by simply thinning 

the SNPs. So SNP data with LD were simulated for different true relationships and 

then different subsets of SNPs were selected for the relationship estimation.  If 𝑁 is the 

total number of available SNPs, a thinned subset of size 𝑁/𝑛 is obtained by taking 

every n𝑡ℎ SNP in sequence. 

The first simulation I did is an extension of that summarized in Table 5.1 where 

711,020 SNP data with LD were simulated for the true relationships of HS-4-4 and 

‘unrelated’ respectively and the posterior probabilities of alternative pedigrees HS-1-

1,…HS-5-5 and ‘unrelated’ were calculated. In that simulation, LD was modelled by 

setting that only SNPs with pairwise distances less than 0.001cM are in LD. I have 

shown that LD will make the estimated relationship closer than the true relationships if 

it is not accounted for, but will not cause a problem if it is accounted for correctly. 

Now for the same simulated data, posterior probabilities of the alternative pedigrees 

were calculated with thinned SNPs. The results are shown below in Table 5.3 along 

with those from Table 5.1 for comparison. 
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Table 5.3 Averaged posterior probabilities over 400 replicates of several alternative pedigrees when 711,020 

SNPs are simulated with and without LD, but only thinned SNPs are selected (italic).   

True relation(below) HS-1-1 HS-2-2 HS-3-3 HS-4-4 HS-5-5 Unrelated 

HS-4-4 (No LD simulated) 0 0 0.173 0.467 0.263 0.097 

HS-4-4 (LD simulated, not accounted 

for) 

0 0.001 0.608 0.339 0.051 0.001 

HS-4-4 (LD is simulated and accounted 

for) 

0 0 0.164 0.479 0.279 0.077 

HS-4-4 (only use 20K SNPs) 0 0.001 0.215 0.367 0.246 0.171 

HS-4-4 (only use 30K SNPs) 0 0.0003 0.218 0.406 0.240 0.136 

HS-4-4 (only use 50K SNPs) 0 0.0014 0.207 0.435 0.242 0.154 

Unrelated (No LD is simulated) 0 0 0.001 0.085 0.323 0.590 

Unrelated (LD is simulated, not 

accounted for) 

0 0 0.256 0.549 0.181 0.014 

Unrelated (LD is simulated and 

accounted for) 

0 0 0.001 0.085 0.324 0.589 

Unrelated(only 20K SNPs are used) 0 0 0.021 0.197 0.352 0.429 

Unrelated(only 30K SNPs are used) 0 0 0.013 0.168 0.353 0.466 

Unrelated(only 50K SNPs are used) 0 0 0.006 0.140 0.352 0.502 

 

It can be seen that when thinned SNPs (20K, 30K or 50K) are used, the estimates are 

not as biased as when all SNPs are used (row 3 of Table 5.3). In all three cases, it is the 

true pedigree which has the highest average posterior probability. For both true 

pedigrees of HS-4-4 and ‘unrelated’, when 50K SNPs are used, the true pedigree has 

greater posterior probability than when 20K SNPs are used, but the average 

performance is still not as good as when all SNPs are used and LD modelled 

appropriately (row 4 of Table 5.3). We cannot find an ideal number of SNPs which 

gives the best estimate in the presence of LD with this simulation as this number will 

be dependent on the true relationship (Kling et al., 2012). In this simulation, genotypes 

with LD are simulated and LD blocks estimated by Merlin, which are unrealistically 

short (see Table 5.7) and this LD can be removed easily with thinning. This is why the 

50K SNP set works well here. The simulation study was repeated with LD blocks built 

using 𝑟2 > 0.2  as a threshold and similar patterns of the results were observed when 

thinning was applied. It is intuitive that less dense markers reduce the LD but they also 

provide less information than denser markers. So there is a balance to maintain when 
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thinning the density of SNPs to reduce the effects of LD as reduced numbers also lead 

to reduced distinguishing power and flatter posterior probability distributions.  

Determining whether SNPs are in LD simply by their pairwise distances is very 

arbitrary and the LD between SNPs located more distantly apart is ignored. Therefore 

in the next simulation, I modelled LD from the MICROS dataset using 𝑟2 as the 

criterion for building LD blocks and estimated the haplotype frequencies from all 1285 

genotyped individuals. These samples in this dataset are related which is not ideal, but 

we do not have enough genotyped founders to do anything else. Estimating haplotype 

frequency from the sample will induce bias. But this is what everyone does when 

population frequencies are not available. The criterion of putting SNPs into LD blocks 

is that their pairwise 𝑟2 is greater than 0.2. The true pedigree is S-3-3. Likelihoods and 

posterior probabilities for several closer alternative pedigrees were calculated when 

there was no LD in the simulated data, when there was LD and the LD was not dealt 

with and when there was LD but a subset of SNPs was used to do the estimation. The 

results are shown in Table 5.4. 

Table 5.4 Averaged posterior probabilities of several alternative pedigrees when 300,000 SNPs are simulated 

with and without LD. All and thinned SNPs are used in calculation. 

True relation(below) S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 Unrelated 

S-3-3 (No LD simulated) 0 0.0002 0.906 0.093 0.0006 0 

S-3-3 (LD simulated, not accounted for) 0.235 0.764 0.0005 0 0 0 

S-3-3 (only use 20K SNPs) 0 0.001 0.871 0.116 0.011 0.001 

S-3-3 (only use 50K SNPs) 0 0.001 0.923 0.074 0.001 0 

 

Again we can see that when thinned SNPs are used, the effect of LD is greatly reduced 

as we saw in the previous simulation with HS-4-4 as the true pedigree. Thinned SNPs 

give results which are not very different to the results given by dense SNPs in linkage 

equilibrium for this level of relatedness. If we only consider two hypothesized 

pedigrees, the true pedigree and ‘unrelated’, then the posterior probability of the true 

pedigree changed from 1 to 0.994 when the number of SNPs changed from 300K to 

20K. So thinning SNPs to around 20K does keep most of the distinguishing power 

while removing LD. But if the true pedigree is more distant like HS-4-4 (Table 5.3), 
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the distinguishing power is reduced as well while removing the effect of LD when 

thinned SNPs are used. These results imply that for relationships up to S-3-3, thinning 

SNP data to around 20K is feasible in that we do not lose too much distinguishing 

power while bias caused by LD is removed.   

5.3.2 Modelling LD in the real MICROS data  

From simulation results it seems that thinning SNPs is an acceptable method to deal 

with LD. But it will waste information that we have on dense SNP data. So in this 

section I try to see whether LD in dense real SNP data can be modelled well. Here I 

want to consider all 101 pairs of relatives that were selected from MICROS study 

whose most recent relationship is S-3-3. By examining the results for a large number of 

relatives, we can have a better understanding of the performance of my modelling of 

LD on average. 

Firstly I used pairwise distance as the criterion for building LD blocks and then used 

pairwise 𝑟2. For every pair of relatives, the likelihood was calculated for hypothesized 

pedigrees S-1-1 to S-6-6 and ‘unrelated’, and the posterior probability is calculated 

under the assumption of a flat prior distribution. Results are presented as average 

posterior probabilities of the different hypothesized relationships for the 101 pairs of 

relatives. 

Firstly let us see how the likelihood method performs when LD is not considered. 

When all 300K SNP are used in the estimation, the average posterior probability is 1 

for S-1-1 and 0 for all other alternative pedigrees. Pedigree S-1-1 as the closest 

considered pedigree has highest likelihood in all 101 pairs, which is very biased. 

When LD was modelled by Merlin with a distance of 0.001cM as the threshold to build 

LD blocks, the estimation did not improve. Results show that in all 101 pairs of 

relatives, the posterior probability of the pedigree S-1-1 is 1 in all 101 pairs of 

relatives. When LD was modelled with 𝑟2 as the blocking criterion, a threshold of 0.6 

was first considered and Merlin performed the analysis in a window (or grid) of 5 cM 

along the chromosome. The results are shown in Table 5.5. 
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Table 5.5 Averaged posterior probabilities of several hypothesized pedigrees and the number of times that 

each hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent 

relationship is S-3-3 when LD is modelled and the threshold of 𝐫𝟐 is set at 0.6. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior 

probability 

0.620 0.380 0 0 0 0 0 

Number of times giving 

the highest likelihood 

63 38      

 

It can be seen that in some pairs of relatives the estimated relationships have changed 

from S-1-1 to S-2-2, but these estimated relationships are still closer than the suspected 

‘real’ relationship. 

Setting 𝑟2 at 0.2 and a grid of 10 cM allows SNPs in weaker LD to be included and 

larger LD blocks. Hopefully LD will be better accounted for. For every SNP, 

increasing the grid will increase the number of SNPs to be checked for LD with that 

SNP. The results for these 101 pairs with real data are as follows in Table 5.6. 

Table 5.6 Averaged posterior probabilities of several hypothesized pedigrees and the number of times that 

each hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent 

relationship is S-3-3 when LD is modelled and the threshold of 𝐫𝟐 is set at 0.2. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior 

probability 

0.278 0.613 0.109 0 0 0 0 

Number of times giving 

the highest likelihood 

28 63 10     

 

The estimated relationship is still biased towards closer relationship, but the bias is less 

than when LD is not modelled. On average it is S-2-2 which has the highest posterior 

probability rather than S-1-1. These results show that when the grid is increased and 

the clustering criterion is lowered, the bias caused by LD is greatly reduced. By 

lowering the criterion of clustering SNPs, the number of SNPs that can be considered 

for an LD block is increased.  
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The LD blocks formed with different thresholds are examined and part of the reason 

why the distance threshold performed so badly compared with the  𝑟2 threshold 

become evident. 

Table 5.7 The number of LD blocks formed, the number of SNPs included in LD blocks in total, the number 

of SNPs in the largest LD block and the median of the number of the SNPs in all LD blocks when different 

thresholds are used to model LD in MICROS dataset. The total number of SNPs is 303783. 

Threshold for LD block # of LD 

blocks 

# of SNPs 

included in LD 

blocks 

# of SNPs in the 

largest LD block 

Median of # of 

SNPs in all LD 

blocks 

Distance of 0.0001cM 7,601 15,764 7 3 

Distance of 0.001 cM 23,078 51,785 192 2 

Distance of 0.01 cM 59,616 181,507 587 2 

𝑟2 0.6 41,180 195,526 21 4 

𝑟2 of 0.2 38,671 283,658 21 6 

𝑟2 of 0 14,475 303,780 21 21 

Standard 𝐷′ 69,280 245341 48 3 

 

From Table 5.7, it can be seen that when an 𝑟2 threshold of 0.2 is used, nearly all SNPs 

are included into LD blocks and the sizes of LD blocks are limited to 21 SNPs by 

Merlin, which results in a flatter distribution of the number of SNPs in LD blocks. 

However, when the distance threshold of 0.001cM is used, the proportion of SNPs that 

are included in LD blocks is very small, which means that most SNPs are not included 

in LD blocks and the LD between them is therefore not accounted for. With the 

distance threshold, there is no upper limit on the size of the LD blocks in Merlin, which 

results in some extremely large LD blocks (the number of these huge blocks is small, 

only 3 blocks have more than 50 SNPs when 0.001cM is the threshold) although it is 

stated that Merlin can only handle LD blocks with fewer than 20 SNPs (Abecasis and 

Wigginton, 2005). 0.001cM threshold and 𝑟2 0.2 are compared because the software’s 

running time for building LD blocks is similar for the two cases. The conclusion is that 

modelling LD with distance as the threshold may be acceptable in simulations to gain 

an insight into the effect of LD, but it is not good for real data. It is very arbitrary to set 
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LD blocks simply based on the distance between markers. Another reason is that SNPs 

are not evenly spaced on the chromosomes physically. If a distance threshold is used, 

some very large LD blocks could be formed at a higher threshold resulting in slow 

running of computers, so a much lower threshold has to be used in practice and then 

most of the LD in the data will not be accounted for. Another reason that distance 

threshold performs badly in modelling LD is that distance between markers does not 

necessarily reflect the level of LD between them. In later sections, I will model LD 

using 𝑟2 as the criterion for building LD blocks which will include more SNPs, on 

average, in each block. But due to an artificially created limit of 21 built into Merlin 

when the 𝑟2 criterion is used, which is very restrictive, neither method is ideal.  

Kling et al. (2012) reported that Merlin is unable to handle extended pedigrees such as 

third cousins or more than 5000 clusters. But my experience shows that Merlin is fine 

with pedigrees as distant as sixth cousin and as many as 50,000 clusters. The only 

problem is that its speed will be very low. It could take a couple of days to build LD 

blocks and estimate frequencies of the haplotypes for all clusters and half hour to 

calculate the likelihood of a HS-6-6 pedigree with around 300,000 SNPs. The problem 

encountered by Kling et al. (2012) could be down to hardware capacity.   

However, the estimate that we get by modelling LD is still not perfect even the 𝑟2 

threshold of 0.2 is used. This could be for several reasons: the LD blocks will certainly 

not be long enough to cover all SNPs that are in LD; Haplotype frequencies were 

estimated for these LD blocks from the sample itself; the presence of high inbreeding 

in the population. But it shows that it is possible for LD to be modelled in this pedigree 

likelihood method and the estimate can be greatly improved.  

Another approach for LD blocks construction (Gabriel et al., 2002) which is 

implemented in the R package ‘LDexplorer’ (Taliun et al., 2014) is also considered. 

Instead of 𝑟2, it uses 𝐷′ (see Section 2.3) to measure LD between markers. Rather than 

arbitrarily choosing a threshold as we have done for 𝑟2, they have proposed standard 

criteria for LD blocks. 
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1) A pair of SNPs is in strong LD if the lower bound of 𝐷′ 90% confidence 

interval is > 0.7 and the upper bound of the 𝐷′ 90% confidence interval is 

>0.98. 

2) A pair of SNPs shows evidence of recombination if the upper bound of 𝐷′ 90% 

confidence interval is <0.9.  

3) SNP pairs which do not fall into either 1) or 2) are called non-informative. 

Informative pairs are those satisfying conditions 1) or 2).  

4) Then, a LD block is defined as a region of adjacent SNPs where the outer-most 

SNPs are in strong LD and 95% of all informative SNP pairs are in strong LD. 

With this approach applied to the real MICROS data, there are 69280 clusters formed 

which put 245341 SNPs into LD blocks. The biggest block has 48 SNPs and the 

median of the block sizes is 3 (Table 5.7). The same estimation process is carried out 

and the results seem inferior to what we obtained using Merlin with threshold 𝑟2 > 0.6 

(Table 5.8).  

Table 5.8 Average posterior probability of several hypothesized pedigrees and the number of times that each 

hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent relationship is 

S-3-3 when standard 𝑫′ threshold is used to form LD blocks. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior 

probability 

0.876 0.124 0 0 0 0 0 

Number of times giving the 

highest likelihood 

88 13      

 

It seems that modelling LD in dense SNPs with strong LD will still give biased results 

because none of the models will necessarily capture the true LD patterns. Modelling 

LD with LD blocks might reduce the bias that arises from ignoring LD while 

maintaining the information provided by dense markers. But it should be used with 

caution and we need to be vigilant of the possible bias in the estimation. It could be 

useful to model LD in dense SNPs if the aim is just to find relatives rather than the 
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exact relationship. However, if unbiased estimates of relationship are required, we need 

either to reduce the number of markers to an essentially LD-free set or to model LD so 

that all SNP pairs with even minimal LD are put into LD blocks and there is no 

association between these blocks. It is the association between LD blocks in the current 

models that is most likely to be causing a problem.  

5.3.3 Estimating relationships in real data with thinned SNPs 

The modelling of LD in the last session is very computationally intensive and the 

results are not very satisfactory. Now let us look at how thinning performs on these 101 

pairs of relatives whose most recent relationship is S-3-3. The estimation results are 

shown in Table 5.9, Table 5.10, Table 5.11, and Table 5.12 respectively for 50K, 30K, 

20K and 10K SNPs. 

Table 5.9 Average posterior probability of several hypothesized pedigrees and the number of times each 

hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent relationship is 

S-3-3 when 300K SNPs in real data are thinned to 50K SNPs. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior 

probability 

0.064 0.567 0.368 0 0 0 0 

Number of times giving the 

highest likelihood 

7 59 35     

 

Table 5.10 Average posterior probabilities of several hypothesized pedigrees and the number of times that 

each hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent 

relationship is S-3-3 when 300K SNPs in real data are thinned to 30K SNPs. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior 

probability 

0.010 0.349 0.632 0.008 0 0 0 

Number of times giving the 

highest likelihood 

1 34 65 1    
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Table 5.11 Average posterior probabilities of several hypothesized pedigrees and the number of times that 

each hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent 

relationship is S-3-3 when 300K SNPs in real data are thinned to 20K SNPs. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior 

probability 

0 0.251 0.740 0.009 0 0 0 

Number of times giving the 

highest likelihood 

 23 78     

 

Table 5.12 Average posterior probabilities of several hypothesized pedigrees and the number of times that 

each hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent 

relationship is S-3-3 when 300K SNPs in real data are thinned to 10K SNPs. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior probability 0 0.112 0.851 0.030 0.005 0.001 0.001 

Proportion of giving the 

highest likelihood 

 10 87 3    

 

We can see that thinning SNPs is an acceptable way to adjust for LD, at least for 

relationships up to the level of second cousins (S-3-3). As the number of SNPs 

decreases, the bias towards closer relationship caused by LD reduces while at the same 

time, the distinguishing power is still high. 

It seems that when the number of SNPs is reduced to around 20K, the effect of LD in 

the data is almost negligible. This is consistent with other findings (Kling et al., 2012). 

It needs to be noted that we do not expect that the S-3-3 is the only correct estimate 

because MICROS pedigree is highly inbred and the true relatedness between some S-3-

3 relatives could be closer than what is suggested by their most recent relationships 

(Figure 6.9). S-2-2 can be regarded as correct for some pairs of relatives when the 

relatedness, rather than the exact relationship, is of interest. When the number of SNPs 

is 10K, the likelihoods of more distant relationships like S-4-4, S-5-5 start to increase. 

This is due to the decrease in distinguishing power of the reduced number of SNPs. So 
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there is a tradeoff between distinguishing power and LD: fewer SNPs reduce bias 

caused by LD, but the distinguishing power is reduced as well.   

Since genome-wide STR data are also available for the MICROS study, the 

applicability of STRs for relationship estimation was investigated as well. All 1285 

individuals were genotyped at 1067 autosomal STRs. Usually STRs are considered 

unlinked when the pedigree likelihood is calculated. But as it would seem unreasonable 

to ignore linkage with this many markers, the Lander-Green algorithm was used to 

calculate the pedigree likelihood with a linkage map, as was done for SNP data. A 

simulation study (results not shown) showed that one unlinked STR has distinguishing 

power analogous to that of about12 SNPs (will depend on allele frequency). But the 

distinguishing power provided by 1067 linked STRs is slightly less than 10,000 SNPs 

with one STR equal to around 8 SNPs. This is because linked markers have less 

information than the same number of unlinked markers. The estimation results using 

1067 STRs on real data are shown in Table 5.13. 

Table 5.13 Average posterior probabilities of several hypothesized pedigrees and the number of times that 

each hypothesized pedigree has the highest likelihood, over 101 pairs of relatives whose most recent 

relationship is S-3-3 when 1,067 STRs in real data are used. 

Hypothesized pedigree S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 S-6-6 Unrelated 

Average posterior 

probability 

0.0014 0.0684 0.7924 0.0769 0.0254 0.0186 0.0169 

Proportion of giving the 

highest likelihood 

1 8 84 7 1   

 

It can be seen that these results are close to the results obtained from 10,000 SNPs 

(Table 5.12). This suggests that 1,067 STRs are adequate for estimating relationships 

up to S-3-3. At the same time, they are less likely to be affected by LD compared with 

SNPs. Therefore when the targeted relationship is not very distant, they are a good 

choice for relationship estimation if available. But for very distant relationships, it is 

expected that they may not provide enough coverage over the shared chromosomal 

segments due to their small number, in which case the dense SNPs have advantage.  
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5.4 Adding the genotype of a third individual in real 

data 

Now that LD has been considered, I return to investigate the effect of including a third 

individual in real data. Only relatives more distant than second cousins are considered 

here because when dense markers are used, close relationships are easy to estimate and 

an extra individual is not needed. Examples of real sub-pedigrees were selected from 

the MICROS dataset. Because the MICROS pedigree is very inbred and outbred 

pedigrees are preferred for my purpose, the software Jenti was used to search for 

relatives whose expected kinship coefficient based on the overall 12-generation 

pedigree is exactly the same as their expected kinship coefficient based on their most 

recent relationship. Thus for a pair of individuals whose most recent relationship is 

defined by 10 separating meioses, a (full pedigree) kinship coefficient of 0.0009765625 

(i.e. 0.5 10) would give us confidence that there is no hidden inbreeding. They also need 

to have some relatives genotyped for us to see the effect of including a third individual 

in estimating their relationships. Relatives of S-5-5 were sought, but other extended 

sibling relatives of the same degree like S-6-4 were also accepted. If we use a new 

notation, S-n, to denote the extended sibling relationships separated by n meioses, they 

could all be denoted as S-10. For S-5-5 relatives, individuals 1173 and 79, there are 

additional genotyped relatives at ‘sibling’, ‘within1’ and ‘outside1’ positions. For 

another pair of S-5-5 relatives, individuals 1021 and 2, there are typed relatives at 

‘sibling’, ‘within1’ and ‘In-avuncular’ positions. For 2 pairs of S-4-6 relatives, 

individuals 183 and 1048, 183 and 1076, there are potential third individuals at 

‘sibling’, ‘within1’, ‘In-avuncular’ and ‘outside1’ positions. MICROS samples were 

genotyped for 303,783 autosomal SNPs. We know there is LD in dense real SNP data 

and it can make the estimated relationship much closer than the true relationship in 

pedigree likelihood methods. Therefore the density of the SNPs was decreased here to 

alleviate the effect of LD. As seen above, 20K, 30K and 50K SNPs, evenly picked out 

from the 303,783 SNPs, are all acceptable subsets. As the true relationships in question 

are distant, the 50K SNPs set was preferred to have better power for distinguishing the 

hypothesized relationship from the single alternative of ‘unrelated’. 
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In earlier simulation studies, average of the posterior probabilities of the hypothesized 

relationships was taken to show the effect of a third individual. Here, when considering 

individual cases, it is more appropriate to report the likelihood ratio of the true 

relationship and alternative relationship as we have shown previously that the posterior 

probability of the true pedigree will nearly always be approximated to 1 when the two 

individuals in question actually do share IBD and so the increase of information 

obtained from the third individuals cannot be seen. The likelihood ratio always reflects 

the additional information.   

Table 5.14 Likelihood ratios between the true relationship and the alternative relationship 'unrelated' when 

only two individuals of interest are observed and when a third individual at different positions is observed. 

Individuals of 

interest 

True 

relationship 

Only two 

individual 

Sibling Within1 In-avuncular Outside1 

79 and 1073 S-5-5 6.1e+20 3.9e+23 6.1e+49  6.5e+45 

2 and 1021 S-5-5 1.3e+21 4.0e+29 1.2e+28 6.9e+15  

1048 and 183 S-4-6 2.5e +5 6.5e+20 2.8e+14 8.7e+6 4.1e+13 

1076 and 183 S-4-6 2.15 4.87e+14 412.47 1.20 0.97 

 

It can be seen from the first three examples (Table 5.14, note that these are ridiculously 

large numbers) that generally the third individual always increases the likelihood of the 

true relationship versus the alternative relationship of ‘unrelated’. But due to the high 

variability in the true IBD sharing between distant relatives, the contribution of 

different third individuals may not be exactly consistent with averaged results for 

simulated data. In fact, due to the limited number of real relatives that were found here, 

the cases where the third individual is potentially most useful are not seen i.e. when 

two relatives that are not detectable become detectable with the genotype of the third 

individual.  

Note that for individuals 1076 and 183, the likelihood ratio between the true 

relationship S-4-6 and ‘unrelated’ is only about 2 without a third individual considered, 

which could imply that they share little or no IBD although they are related. But the 
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increase of information obtained from a ‘sibling’ is much higher than that obtained 

from a ‘within1’ relative, which is unexpected. Extensive check on pairwise 

relationships among all the genotyped individuals in Figure 5.2 (shaded) indicate that 

1076 and 183 are possibly related through another parent 1156 of individual 183, 

which is not represented in the MICROS genealogy. Results imply that both 

individuals 1048 and 1076 have an S-8 relationship with individual 1156 which is 

unrevealed by the constructed genealogy in MICROS study. It could hence be the case 

that 1076 shares little IBD with 1160, and less or no IBD with 183, but shares a lot 

more IBD with the individual 851 through 1156 by an unrecorded relationship 

explaining why the inclusion of 851 as a third individual allows us to clearly 

distinguish the true relationship between 1076 and 183 from ‘unrelated’. These 

unrecorded relationships are plausible as it is confirmed (personal communication) that 

individual 1156 is an immigrant from a nearby village. Therefore it is possible for the 

relationship between her and other individuals missing from the genealogy. 

Figure 5.2 A pedigree extracted from MICROS real pedigree.  

 

 

5.5 Summary 

In this chapter, the pedigree-based likelihood method was applied to real MICROS data 

and the issue of LD, which is inevitable in real data, was investigated. A method of 
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estimating relatedness with pedigrees, when there is no prior information on the true 

relationship, was presented. In this method a series of alternative pedigrees such as S-

1-1, S-2-2, … etc. and ‘unrelated’ were considered and their likelihoods calculated to 

find the pedigree with the highest likelihood (or posterior probability). It would seem 

that when the ‘Template’ method is used to estimate relatedness in real data where 

inbreeding is likely, extended sibling relationships are the sensible choice over 

extended half-sibling relationships for alternative relationships. 

It was seen that LD will bias the estimate of relationship towards closer relationships in 

both simulated and real data. To simulate data with LD, two different datasets, 

WTCCC with 1 million SNPs and MICROS with 300K SNPs, indicated that the results 

are not particular to a given dataset. Then two ways to deal with the problem of LD 

were considered. One such way is to thin the SNPs, another is to model LD with LD 

blocks implemented in Merlin (Abecasis and Wigginton, 2005). As there are two 

approaches to building LD blocks in Merlin, they were compared and it is found that 

the distance threshold performs quite badly. When the 𝑟2 threshold was used, 

estimation is much better than when LD was not modelled, but the effect of LD still 

could not be removed completely. If an unbiased estimate of relationship is desired, it 

is best to thin the SNPs. Thinning SNPs seems to work reasonably well and is easy to 

implement. However, the extent to which we should thin depends on the level of LD in 

the data, the number of SNPs available and, to some extent, the genotyping platform. 

This suggests that although we have high distinguishing power with dense SNP 

markers, in real cases when LD is present, dense SNPs cannot be used without causing 

bias.  
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6 Review of methods of pairwise relatedness 

and relationship estimation without a 

pedigree 

In previous chapters, relationships were described by a well-defined pedigree, where 

the true relationship between two individuals was clearly specified. But this is not 

always what is estimated in practice. There are many estimators which only estimate 

the relatedness (how closely or distantly related) between two individuals, but not the 

exact relationship between them. In this case, only certain parameters need to be 

estimated. The most common parameter used to specify relatedness is the kinship 

coefficient. If we know the pedigree we will know the relatedness, but the reverse is 

not true. All the methods considered in this chapter involve pairwise estimation without 

recourse to a pedigree.  

6.1 Introduction 

Identification of relationship utilizes the concept of IBD. Two alleles are IBD if they 

are both copies of the same ancestral allele. Two alleles are IBS (identical by state) if 

they are of the same type. Obviously IBD alleles must be IBS and non-IBD alleles 

could be IBS as well, just by chance. So IBD will cause an excess of IBS sharing than 

would be expected by chance. Relatives are different from unrelated individuals 

because they share chromosomal segments IBD. The amount of IBD sharing can be 

used to estimate the closeness of relationships. We could not consider all ancestors 

because they can go back infinitely and have to cut a line somewhere, e.g. fifty 

generations back and all individuals earlier than that time is regarded as unrelated and 

call the population at that time as reference population. Astle and Balding (2009) 

reviewed that 15 IBD probabilities are needed to fully describe the relatedness between 

two diploid individuals and this number reduces to 9 if the pair of alleles within each 

individual is regarded as unordered (Jacquard, 1970). Only eight probabilities need to 

be estimated as these probabilities sum to one. These parameters give the probability 

that each subset of the four alleles at an arbitrary locus, two from each of two 
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individuals, is IBD. If no inbreeding is allowed, the number of coefficients can be 

reduced to just three (Cotterman, 1940). These three coefficients specify the 

probabilities that the two individuals share none, one and two alleles IBD, respectively. 

Again only two coefficients need to be estimated as the three coefficients sum to 1. The 

more coefficients we estimate, the more accurately we can estimate the relationship. 

But it is too difficult to estimate all these IBD probabilities accurately, especially when 

the relationship between the two individuals is distant. Hence interest tends to focus on 

the overall degree of relatedness. What is usually estimated for relatedness is either the 

kinship coefficient 𝜃, or the coefficient of relationship 𝑟 which is twice 𝜃. The kinship 

coefficient is defined as the probability that two alleles, one drawn randomly from each 

of the two individuals at the same locus, are IBD. The coefficient of relationship has a 

natural interpretation as the expected fraction of genome shared IBD by two 

individuals. 

The kinship coefficient is easy to compute for pedigrees by tracing allelic lineages back 

to common ancestors. This is called the expected kinship coefficient. Thompson (1986) 

provides a recursive algorithm to evaluate the kinship coefficient between two 

individuals in a complex pedigree. There are many software packages available to 

calculate pairwise kinship coefficients based on pedigrees, such as Merlin (Abecasis et 

al., 2002) and Jenti (Falchi and Fuchsberger, 2008). The relatedness estimated from 

genetic marker data is the realized relatedness and it could be different from the 

expected relatedness evaluated from the underlying pedigree. There is great variation in 

the biological process by which relatives share IBD genes due to the stochastic nature 

of inheritance and this variation will affect every estimation method. There will also be 

variability in the estimated relatedness for the same degree of realized relatedness. This 

is generated by the process of estimation and can be controlled. 

6.2 Method of Moments (MoM) estimators 

One important approach to estimating pairwise relatedness is the method of moment 

estimation (MoM). There have been several MoM methods proposed (Queller and 

Goodnight, 1989, Li et al., 1993, Ritland, 1996, Lynch and Ritland, 1999, Wang, 

2002). Generally, they consider some statistic, T, of the genotype data. The expected 

value of this statistic is expressed as a function of the kinship coefficient or other 



                                                                                                                    

                                                                                                                  Chapter 6 

Page | 117 

 

parameter specifying the relatedness. Then the expected value of T is replaced by its 

observed value and the function is solved to get an estimate of the kinship coefficient 

or other relatedness parameter of interest. All MoM estimators essentially estimate the 

relevant relatedness coefficient from excess IBS between two individuals. They are all 

defined for the population frequencies but these allele frequencies typically have to be 

estimated in practice. The theory of four MoM estimators is described below. Some of 

them estimate coefficient of relationship instead of kinship coefficient. But the kinship 

coefficient can be obtained easily as just half of the coefficient of relationship and these 

estimators will be used to estimate both. 

6.2.1 Estimator LI 

The first MoM estimator to be considered will be denoted as LI here. Li et al. (1993) 

gave a measure of similarity and used this measure to calculate the expected DNA 

similarity of two unrelated individuals due to chance only, and the expected similarity 

between two related individuals due to both chance and relatedness. Based on these 

results, the degree of similarity due to relatedness only can be calculated. If the four 

allelic types at one locus are 𝑎, 𝑏, 𝑐 and 𝑑, traditional methods measure the similarity, 

𝑆, of the two individuals as 1 when the two individuals share two alleles in common 

(e.g. 𝑎𝑎/𝑎𝑎 or 𝑎𝑏/𝑎𝑏), 0 when they share no allele in common (e.g. 𝑎𝑎/𝑏𝑏 or 𝑎𝑏/𝑐𝑑), 

and 0.5 when they share one allele in common (e.g. 𝑎𝑎/𝑎𝑐 or 𝑎𝑏/𝑎𝑐). But Li et al. 

(1993) suggested that 𝑆 should be 0.75 in the case of 𝑎𝑎/𝑎𝑐 and the value of 𝑆 is 

unchanged from traditional measurement for other cases. In their method, the similarity 

is thus defined as the probability that there is an allele IBS in the second individual to a 

randomly chosen allele from the first individual. For example, when the genotypes of 

the two individuals are 𝑎𝑎/𝑎𝑐, if any 𝑎 is chosen, there is an allele IBS in the other 

individual; if the allele 𝑐 is chosen, there is no allele IBS in the other individual. 

Because each of these four alleles has the same probability of being the chosen allele of 

the first individual, the probability that there is an allele in the second individual IBS to 

a randomly chosen allele from the first individual is 0.75. 

Firstly, the similarity 𝑈 of unrelated individuals in a random-mating population is 

given as a benchmark. Then the similarity of relatives of different relatedness can be 

calculated based on 𝑈. 𝑈 can be obtained by a method of enumeration, but this is quite 
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complex and has some unusual notation. Another simpler method of calculating 𝑈 was 

also provided by Li et al. (1993) which is described as follows. Suppose 𝑛 is the 

number of allelic types at the locus and 𝑝𝑖 is the frequency of 𝑖𝑡ℎ allele, x is the first 

individual and y is the second individual. The allele chosen from x could be of any of 

the 𝑛 allelic types with a probability equal to its allele frequency. So allele 𝑖 has a 

probability 𝑝𝑖 of being picked out and the probability that individual y also has an 

allele of type 𝑖 is 𝑝𝑖
2 + 2𝑝𝑖(1 − 𝑝𝑖) = 2𝑝𝑖 − 𝑝𝑖

2, where 𝑝𝑖
2 is the probability that 

individual y is homozygous for type 𝑖 and 2𝑝𝑖(1 − 𝑝𝑖) is the heterozygous probability 

where only one allele of individual y is of type 𝑖. The similarity that we want for one 

locus is just the sum of 𝑝𝑖 × (2𝑝𝑖 − 𝑝𝑖
2) over all 𝑛 allelic types of that locus, which is 

𝑆(𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑) = 𝑈 = ∑ 𝑝𝑖
2𝑛

𝑖=1 (2 − 𝑝𝑖).          (6.1) 

 In the case of a SNP marker, 𝑈 = 𝑝1
2(2 − 𝑝1) + (1 − 𝑝1)2(1 + 𝑝1) = 𝑝1

2 − 𝑝1 + 1. 

The similarity, S, of several other relationships such as parent-child, siblings, 

grandparent-grandchild are also calculated. The formula for these specific relationships 

is then used to derive the formula for general relationships. The general form of 

similarity, S, between relatives with degree of relatedness 𝑟 (𝑟 = 2𝜃)  can be written as  

𝑆 = 𝑟 + (1 − 𝑟)𝑈.                  (6.2) . 

Replace S with the observed similarity, which is either 1, 0.75, 0.5 or 0 for bi-allelic 

loci where more than two types of alleles are possible, and solve for 𝑟 to get an 

estimate of  𝑟: 

𝑟 =
𝑆−𝑈

1−𝑈
.                                 (6.3) 

The multi-locus estimate of 𝑟 is the non-weighted average of the single locus estimates 

and the estimate of kinship coefficient can be obtained by taking half of the estimate of 

𝑟. 

6.2.2 Estimator DW 

A second MoM estimator is proposed by Day-Williams et al. (2011) and will be 

denoted as DW in this thesis. The authors considered estimation of both global kinship 
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coefficient and local kinship coefficient. They defined the global kinship coefficient 

between two individuals in the same way as the kinship coefficient that is normally 

used. The local kinship coefficient between two individuals measures their relatedness 

at a specific locus conditional on all observed genotypes. Here we only focus on their 

method for estimating the global kinship coefficient. They write the expected number 

of IBS matches between individuals x and y as 

𝑒𝑥𝑦 = ∑ [𝜃𝑥𝑦
𝑚
𝑖=1 + (1 − 𝜃𝑥𝑦)(𝑝𝑖

2 + 𝑞𝑖
2)] ,          (6.4) 

where 𝑚 is the number of the SNPs, 𝜃𝑥𝑦 is the kinship coefficient for 𝑥 and 𝑦, 𝑝𝑖 is the 

major allele frequency in the population at SNP 𝑖 and  𝑞𝑖 = 1 − 𝑝𝑖 is the minor allele 

frequency. The first term in the summation accounts for the matches that are IBD and 

the second term accounts for the matches that are not IBD but are IBS. Solve for 𝜃𝑥𝑦, 

to get  

𝜃𝑥𝑦 =
𝑒𝑥𝑦−∑ (𝑝𝑖

2+𝑞𝑖
2)𝑚

𝑖=1

𝑚−∑ (𝑝𝑖
2+𝑞𝑖

2)𝑚
𝑖=1

 .           (6.5) 

To get an estimate of 𝜃𝑥𝑦, we can replace 𝑒𝑥𝑦 with the observed number of IBS 

matches over all SNPs. For each SNP, the number of matches is defined as the 

conditional expectation of number of matches for two alleles, one drawn randomly 

from each individual, given the observed genotypes of individual x and y. Therefore 

the observed number of IBS matches at SNP 𝑖 is 

𝑜𝑥𝑦
𝑖 =

1

4
[1{𝐼𝑖=𝐾𝑖}+1{𝐼𝑖=𝐿𝑖} + 1{𝐽𝑖=𝐾𝑖} + 1{𝐽𝑖=𝐿𝑖}],           (6.6) 

where  𝐼𝑖 and 𝐽𝑖 represent the alleles of 𝑥 at SNP 𝑖, 𝐾𝑖 and 𝐿𝑖 represent the alleles of 𝑦 

at SNP 𝑖 and 1 is the usual indicator function taking the value 1 when the condition is 

met and the value 0, otherwise. The observed number of matches is obtained by 

summing 𝑜𝑥𝑦
𝑖  over all SNPs. 

In DW, the similarity is measured as the probability that two alleles are IBS if one 

allele is picked from each individual randomly. This is different from the similarity in 

the LI estimator, e.g. the genotype pair 𝑎𝑏/𝑎𝑏 is measured as ½ in DW but 1 in LI and 

the genotype pair 𝑎𝑎/𝑎𝑏 is measured as ½ in DW and ¾ in LI. Another feature of the 

DW estimator is that the formula  
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𝑒𝑥𝑦 = ∑ [𝜃𝑥𝑦
𝑚
𝑖=1 + (1 − 𝜃𝑥𝑦)(𝑝𝑖

2 + 𝑞𝑖
2)] is written over all loci, rather than for a single 

locus unlike what most other estimators do.  

6.2.3 Estimator RI 

The third MoM estimator considered was proposed by Ritland (1996) and is denoted as 

RI here. RI estimates the kinship coefficient locus by locus, and then combines the 

estimates over all the loci. Suppose there are 𝑖 types of alleles at a locus (𝑖 will be 2 for 

SNP markers). 

Firstly an indicator variable is defined as 𝑆𝑖 which is the proportion of matches 

between two individuals for allele type 𝑖. There are four ways of sampling two alleles, 

one from each of two individuals. 𝑆𝑖 takes the value of the number of times that a 

match is obtained for allele type 𝑖 averaged by the four ways of sampling. For example 

if the genotypes of the two individuals are 𝑎𝑖𝑎𝑖 and 𝑎𝑖𝑎𝑗, the observed 𝑆𝑖 is 1/2, if the 

genotypes are 𝑎𝑖𝑎𝑗 and 𝑎𝑖𝑎𝑗, the observed 𝑆𝑖 is ¼. The expectation of  𝑆𝑖 is 

𝑠𝑖 = 𝜃𝑝𝑖  + (1 − 𝜃)𝑝𝑖
2,            (6.7) 

where 𝜃 is the kinship coefficient of the two individuals and 𝑝𝑖 is the population 

frequency of allele type 𝑖. The first term is the similarity due to IBD and the second 

term is the similarity due to chance.  

Secondly, by equating the observed quantities to their expectations in (6.7), the 

estimate of kinship coefficient for each allele 𝑖 at a single locus is  

𝜃𝑖 =
𝑆𝑖−𝑝𝑖

2

𝑝𝑖(1−𝑝𝑖)
, 𝑖 = 1, … , 𝑛, 

where 𝑝𝑖 is the estimated frequency of allele 𝑖. To get the full locus estimate, a 

weighting is required to combine the estimates for different alleles. The optimal 

weights are those minimising the variance of θ and the process is complicated. Unless 

𝜃 = 0 or 𝜃 = 1 is assumed, the weights have to be obtained numerically. A simpler 

estimator of kinship coefficient is given by Ritland (1996) by assuming 𝜃 = 0 in the 

calculation of weights. The weighting is 𝑤𝑖 = 𝑞𝑖/(𝑛 − 1) for allele 𝑖, where 𝑞𝑖 = 1 −

𝑝𝑖, when there are n alleles. Therefore the sinlge locus estimator of kinship coefficient 

is 
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 𝜃 = ∑
𝑆𝑖−𝑃𝑖

2

(𝑛−1)𝑃𝑖

𝑛
𝑖=1 , which is equal to 

𝑆1−𝑃1
2

𝑃1
+

𝑆2−𝑃2
2

𝑃2
 in the case of SNP data. 

Finally the estimates over all loci need to be combined. Ritland (1996) showed that the 

variance of a single locus estimator is proportional to 1/(n-1) where n is the number of 

allelic types at that locus and the inverse of this value is used as weight for that locus in 

combining the estimates over all loci. For SNP markers, n takes a fixed value of 2. 

This simplified multi-locus estimator of relatedness is  

𝜃 = ∑ ∑
𝑆𝑖𝑙−𝑃𝑖𝑙

2

𝑃𝑖𝑙
/ ∑ (𝑛𝑙 − 1)𝐿

𝑙=1
𝑛𝑙
𝑖=1

𝐿
𝑙=1 ,         (6.8) 

where L is the number of loci and 𝑛𝑙 is the number of types of allele at locus 𝑙. When 

the markers are SNPs, 𝑛𝑙 = 2, so the multi-locus estimator θ is just an arithmetic 

average of the θ of all loci.  

6.2.4 Estimator LR 

Another MoM estimator was proposed by Lynch and Ritland (1999) which is also 

called the ‘Regression’ estimator. I denote this estimator as LR. It is called a regression 

method because one individual is regarded as a reference and the probability of the 

genotype of the second individual is conditional on the genotype of the first individual; 

however, basically it is still a MoM estimator. The parameter for relatedness used in 

this method is the coefficient of relationship, 𝑟, which is twice the kinship coefficient, 

𝜃, the parameter that is used in most other MoM estimators. This method not only 

estimates the coefficient of relationship, but also estimates the Cotterman coefficients 

of relatedness (𝑘0, 𝑘1, 𝑘2) simultaneously (Section 2.2). Here we denote  𝑘1  as the 

probability that individuals x and y only have one allele IBD and 𝑘2 as the probability 

that two alleles of x are IBD with both alleles of y at a locus, 

𝑟𝑥𝑦 =
 𝑘1

2
+ 𝑘2.              (6.9) 

LR estimates 𝑟𝑥𝑦 and 𝑘2 simultaneously. Previous estimators model the genotypes by 

considering the joint probability of two individuals whereas in the LR approach, the 

probability of the second individual is considered conditional on the genotype of the 

first individual at the same locus. The two alleles of the reference individual x are 
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denoted as 𝑎 and 𝑏, and the two alleles of the individual y are labelled 𝑐 and d.  Then 

the conditional probability of the genotype y is expressed as a function of  𝑘1 and 𝑘2 

and allele frequencies, 

P(y = cd|x = ab) = P0(cd) × (1 − k1 − k2) + P1(cd|ab) × k1 + P2(cd|ab) × k2,   

(6.10) 

where 𝑃1(𝑐𝑑|𝑎𝑏) and 𝑃2(𝑐𝑑|𝑎𝑏) denote the probabilities of the genotype 𝑐𝑑 in y given 

the genotype 𝑎𝑏 in x when y and x share one and two IBD genes, and  𝑃0(𝑐𝑑) denotes 

the probability of the genotype 𝑐𝑑 in y when y and x share no IBD gene, which is just 

the product of the frequencies of alleles 𝑐 and 𝑑.  

Firstly I will show how the LR estimator is obtained for a special case where the 

reference individual is homozygous. Then the general form of this estimator will be 

given.  

𝑃(𝑎𝑎|𝑎𝑎) and 𝑃(𝑎. |𝑎𝑎) denote the conditional probabilities that individual y has two 

and one alleles IBS with the reference individual x, respectively, given that the 

genotype of x is 𝑎𝑎, where . stands for any allele other than 𝑎. We have that ,  

P(aa|aa) = p𝑎
2 + pa(1 − p𝑎)k1 + (1 − pa

2)k2 

P(a. |aa) = 2pa(1 − p𝑎) + (1 − pa)(1 − 2p𝑎)k1 + 2p𝑎(1 − p𝑎)k2 , 

where 𝑝𝑎 is the allele frequency of 𝑎 and is assumed to be known. By replacing 

𝑃(𝑎𝑎|𝑎𝑎) and 𝑃(𝑎. |𝑎𝑎) with their estimates and solving the two equations we get  

k1 =
(1 + pa)P(a. |aa) + 2p𝑎P(aa|aa)  − 2p𝑎

(1 − p𝑎)2
 

k2 =
p𝑎

2 − p𝑎P(a. |aa) + (1 − 2p𝑎)P(aa|aa) 

(1 − pa)2
 

and from Equation (6.9),  rxy =
P(a.|aa)+2P(aa|aa)−2pa

2(1−p𝑎)
.          (6.11) 

𝑃(𝑎𝑎|𝑎𝑎) and 𝑃(𝑎. |𝑎) take the value 1 if the genotype pair 𝑎𝑎|𝑎𝑎 or 𝑎. |𝑎𝑎 are 

observed, otherwise 0. 
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A general form of the LR estimator was given by introducing ‘indicator variables’ for 

the sharing of alleles. They are (𝑆𝑎𝑏 , 𝑆𝑎𝑐, 𝑆𝑎𝑑, 𝑆𝑏𝑐, 𝑆𝑏𝑑, 𝑆𝑐𝑑). If the two indexed alleles 

are of the same type, these indicator variables take the value of 1, otherwise 0.  

If the allele frequencies of 𝑎 and 𝑏 are denoted as 𝑝𝑎 and 𝑝𝑏, the general expression for 

the coefficient of relationship for one locus is finally obtained via 

rxy =
pa(Sbc+Sbd)+pb(Sac+Sad)−4papb

(1+Sab))(pa+pb)−4papb
.          (6.12) 

Because there is no reason to use one of the two individuals as the reference, in 

practice this estimator is computed twice with each individual taken as the reference 

and the average taken as the final estimate. Again note that rxy is twice the kinship 

coefficient that was discussed previously. LR is undefined for diallelic loci when the 

reference individual is heterozygous and pa = pb (Lynch and Ritland, 1999). Such loci 

will be deleted from the calculation when implementing this method. 

To combine the estimates over 𝐿 loci, a weighted average is taken under the 

assumption of unlinked, or statistically independent, loci by which the weights that 

minimize the sampling variance of the overall estimate of 𝑟𝑥𝑦 are just the inverse of the 

sampling variance of rxy at each locus. But the variance of rxy is a function of the 

parameters that we are trying to estimate, so an approximation of this variance is 

obtained by assuming the two individuals are unrelated, which is a similar approach as 

in the RI case for assigning weights. The locus-specific weight is given by the inverse 

of the sampling variance of the estimate of rxy of unrelated individuals x and y. Its 

general expression for locus 𝑙 is  

wr,x(l) =
1

Var[rxy(l)]
=

(1 + Sab))(pa+pb) − 4papb

2papb
 

and the overall estimate of  rxy is  

rxy =
1

∑ wr,x(l)=L
l=1

∑ wr,x(l)rxy(l)L
l=1  .  
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6.2.5 Discussion of MoM estimators 

Although the concepts of IBD and kinship coefficient are used in MoM methods, they 

are not well defined. By definition, the kinship coefficient is the probability that the 

two alleles randomly picked out from two individuals are IBD while being IBD means 

that two alleles are from the same ancestor. Both IBD and ancestor are only well 

defined on pedigrees. But MoM methods consider two individuals without pedigrees. 

One confusing issue is that MoM methods can generate negative value for the kinship 

coefficient which, by definition, is a probability, and therefore should be non-negative. 

The kinship coefficient that is used in MoM really measures the correlation coefficients 

between the allele types in the two individuals, rather than a probability. These 

methods usually have low bias - perhaps because they can assume negative values. 

Like the likelihood method, MoM methods make strong assumptions. Firstly they 

assume markers are unlinked when they average the estimates from all loci to make the 

final estimate and make another assumption about the true value about the kinship 

coefficient when calculating the weights for the estimates at different loci because the 

weights depend on the true value.  

Another problem for MoM methods is that the statistics used in those methods are not 

necessarily sufficient. Hence, some information in the data is not used, potentially 

making the estimates less reliable.  

6.3 Implementing and comparing different MoM 

estimators 

The four chosen MoM estimators will first be compared with each other on a simple 

outbred population. Effects of inbreeding, linkage and LD will be investigated at a later 

point.  

6.3.1 Comparisons of different MoM estimators in an outbred population 

Firstly different estimators wre compared with simulated data on outbred pedigrees. 

The software package Mendel (Lange et al., 2013) was used in the simulation, because 

it enables tracking of simulated alleles at each locus from founders through the 

pedigree and hence the simulated alleles of every non-founder at every locus can be 
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traced back to the founders. The observed, or realized, kinship coefficient can be 

calculated straightforwardly according to the definition of kinship coefficient as now 

the IBD status of the alleles between the two individuals is known. For every locus, 

there are four possible ways of picking out one allele from each individual. The kinship 

coefficient is the number of ways in which the two alleles being picked out are IBD, 

divided by 4. Therefore different estimators can be compared by their accuracy in 

estimating the realized kinship coefficient.   

110,000 SNPs (evenly spaced 5000 SNPs on each autosomal chromosome) selected 

from an Affymetrix 500K dataset (Section 3.1) and their allele frequencies were used 

to simulate genotypes for relative pairs with three levels of relatedness: S-2-2, S-4-4 

and S-6-6. 400 replicates were done for each relationship. 110,000 rather than 500K 

SNPs were used here in order to increase the calculation speed. Because my purpose in 

this section is to compare the performance of the four estimators, the number of SNPs 

is not important as long as the same number of SNPs is used for each estimator. The 

same SNPs and allele frequencies were used and the same number of replicates  were 

done in all the simulation work of this section unless otherwise specified. 

When comparing estimators, other authors tend to choose between two approaches. In 

a more popular method, a large number of replicates of simulation are carried out for a 

specified relationship and the variances of different estimators are compared. The 

estimator with the smallest variance is deemed the ‘best’ (Bink et al., 2008, Day-

Williams et al., 2011). The second method considers a large number of simulations for 

several relationships with different levels of relatedness at the same time and then 

calculates the correlation coefficients between the true pedigree-based kinship 

coefficients with the estimated kinship coefficients for each estimator respectively 

(Santure et al., 2010). The estimator with the highest correlation coefficients is deemed 

to be desirable.  

Here, genotypes were simulated 400 times for each true relationship using Mendel. 

Then correlation coefficients between the realized kinship coefficient and each of the 

estimated kinship coefficients from the four MoM estimators were calculated 

respectively for each replicate. In this way we can know how each estimator performs 

in estimating the actual IBD sharing between the relatives, rather than just estimating 
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the expected IBD sharing. These correlations were plotted in R to show the results 

graphically (Figure 6.1, Figure 6.2, Figure 6.3) and the corresponding correlation 

coefficients are shown in Table 6.1. The plot of a good estimator should be close to a 

straight line. The variance of the estimation is mainly caused by the stochastic nature of 

inheritance which yields a large variation in IBD sharing even for relatives with the 

same relationship. From these plots, increasing variability can be seen when the 

relationship becomes more distant. 

Table 6.1 Correlation coefficients between the realized kinship coefficients and the estimated kinship 

coefficients for different estimators and different true relationships (the number of replicates is 400). 

True pedigree DW LI(1993) RI(1996) LR(1999) 

S-2-2 0.9771734 0.9736674 0.9870069 0.9880383 

S-4-4 0.7394734 0.6693761 0.8711707 0.8710923 

S-6-6 0.2350226 0.2026086 0.3585096 0.3587111 

 

L

R 
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Figure 6.1 Plots of the realized kinship coefficients (x axis) and the estimated kinship coefficients (y axis) from 

the four MoM estimators when the true relationship is S-2-2. 
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Figure 6.2 Plots of the realized kinship coefficients (x axis) and the estimated kinship coefficients (y axis) from 

the four MoM estimators when the true relationship is S-4-4. 
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Figure 6.3 Plots of the realized kinship coefficients (x axis) and the estimated kinship coefficients (y axis) from 

the four MoM estimators when the true relationship is S-6-6. 

  

  

It can be seen from these results that the performance of the RI and LR estimators are 

better than the performance of DW and LI in this outbred situation. When the true 
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relatedness. But this does not necessarily imply that we can estimate the expected 

pedigree-based relatedness accurately because of the variance in the realized 

relatedness. When the true relationship is as distant as S-6-6, none of the four MoM 

estimators can accurately estimate the realized relatedness, let alone expected 

relatedness.  

6.3.2 MoM estimators and inbreeding 

After considering these estimators for unlooped extended sibling pedigrees, I now 
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interested in detecting the relationship between two double first cousins resulting from 

this marriage exchange. The pedigree is shown in Figure 6.4. 

Figure 6.4 Pedigree for double first cousin relationship resulting from a marriage exchange. 

 

Again 110,000 SNPs from the Affymetrix 500K SNP dataset were used to simulate 

genotypes and 400 replicates of the simulation were done. The results are shown in 

Table 6.2 and Figure 6.5. 

Table 6.2 Correlation coefficients between the estimated kinship coefficients and the realized kinship 

coefficients from four different MoM estimators based on 400 replicates when the true relationship is as 

shown in Figure 6.4. 

True relationship DW LI RI LR 

Double cousin 0.989636 0.9894192 0.9920499 0.9938748 
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Figure 6.5 Plots of the estimated kinship coefficients from four MoM estimators against the realized kinship 

coefficients when the true pedigree is as shown in Figure 6.4. 

 

 

It can be seen that the correlations between the realized and estimated kinship 

coefficients are very high. So for this simple looped pedigree, the MoM estimators 

work well, maybe due to the closeness of the relationship (expected kinship coefficient 

is 0.125).   

Next I am going to use the four MoM estimators on an inbred pedigree in Figure 5.1 

which has been extracted from the large 8-generation pedigree in the MICROS dataset. 

The expected kinship coefficient between the individuals 230 and 1193 is 0.0177 based 

on the true pedigree. The distance of their relationship is somewhere between that of an 

S-3-3 and S-3-2 relationship.110,000 SNPs were used in simulation and 400 

simulations were performed.  
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Figure 6.6 Pedigree from Figure 5.1. 

 

The results are shown in Table 6.3. 

Table 6.3 Means and variances of the realized and the estimated kinship coefficients.  

Estimator Realized DW LI RI LR 

mean 0.01756877 0.01735078 0. 01516173 0.01746704 0.01738742 

variance 5.412875e-05 6.090953e-05 6.64343e-05 5.642762e-05 5.579036e-05 

Correlation to 

realized kinship 

coefficient 

1 0. 9530898 0.9016092 0.9760077 0.9763112 

 

Comparing the realized and estimated kinship coefficients, we can see that even for a 

complex pedigree, the MoM estimators are still accurate in detecting the realized 

kinship coefficient between two close relatives. The four estimators all perform 

similarly except the estimator LI in this inbred pedigree. However, if the most recent 

relationship is of interest we can look at this example from a different perspective: 

when the most recent relationship of the two individual is S-3-3 and their common 

ancestor is inbred, both realized kinship coefficient and the estimated kinship 

coefficient are greater than the expected kinship coefficient of an outbred S-3-3 

relationship which is 0.015625. 
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6.3.3 The issue of linkage and LD for MoM 

In most papers discussing these MoM estimators, only a limited number of markers 

(mainly microsatellites) were used. Linkage and LD were not accounted for in all these 

methods. Here I want to investigate whether linkage and LD will cause problems for 

MoM estimators because I am using dense genome-wide SNPs to estimate relationship.  

All current methods ignore the linkage between markers (except the pedigree-based 

likelihood method). They assume the markers are unlinked, which means the data are 

independent on those loci. Linkage is a concept inherent to meiosis and can be taken 

into account in pedigrees easily, but is difficult to take into account in pairwise 

relatedness estimation without a pedigree. In this case, the effect of linkage is to cause 

association between genotypes at different markers. The strength of the association 

between the markers with a specific distance (therefore specific linkage) for different 

degrees of relatedness will be different. If the two individuals are truly unrelated, then 

the two markers are independent because there is no association between them at 

population level. But if the relationship between two individuals is close (e.g. siblings), 

it is wrong to say the genotypes at the two markers are independent. Then here the 

effect of linkage is similar to that of LD: both of them cause association between 

markers. The effect of ignoring linkage and LD in the MoM estimates is not known for 

dense markers because they were mostly used on small numbers of markers by authors 

and linkage was not discussed.  

All pairwise relatedness estimators sum the information over individual loci to estimate 

the relatedness. Assuming no linkage is equivalent to assuming independent sampling, 

but linkage makes these samples dependent when individuals of interest are related. 

Bias due to linkage was not reported in the original papers of the estimators LI, LR and 

RI. That could be because a small number of SNPs were used. The method of Day-

Williams et al. (2011) used dense SNPs and they did not report any problems with 

linkage, but this issue was not really discussed. Milligan (2003) mentioned that the 

performance of the MoM estimators, especially RI, has a strong dependency on the 

actual degree of the relatedness, the unknown quantity that is being estimated. This 

could be caused by ignoring linkage.  
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Simulations to assess the consequences of ignoring linkage were carried out using 

Merlin to simulate data for relationships S-2-2 and S-4-4 and then using all four MoM 

estimators to make estimation. The simulation was repeated 200 times for every case. 

Firstly, I compared the same number of markers with different linkage between the 

markers. Genotypes were simulated for all Affymetrix 500K SNPs. But in the first 

instance the real linkage map was used and in the second instance the linkage map 

distance between the SNPs was scaled up 1000-fold, which should reduce the linkage 

to a minimal level. Secondly, I compared results based on 110,000 linked SNPs, which 

were spaced out from 500K SNP data with the results based on all 500K linked SNPs 

with the real linkage map, so that we increase the number of SNPs, and simultaneously 

strengthen the linkage between SNPs. 

The results are shown in Table 6.4 and Figure 6.7. Looking at the means and variances 

of the estimated kinship coefficients, it seems that ignoring the linkage in dense SNP 

markers does not make MoM estimators more biased. The effect of the linkage 

between markers is just to increase the variance of the estimates. When the same 

number of linked SNPs are used instead of unlinked SNPs (both 500K), the MoM 

estimators behave similarly on average, but the variances of the estimators increase. So 

it seems that disregarding linkage is not causing a big problem for MoM estimators on 

average apart from decreasing the reliability slightly. The variance decreases when the 

number of SNPs increases from 110,000 to 500K although the linkage between SNPs 

increases due to the increased density. This is because the information obtained from 

the larger number of SNPs offsets some of the disadvantages caused by linkage.   
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Table 6.4 Means and variances (in brackets) of the estimated kinship coefficients using linked and unlinked 

markers when the true pedigree is S-4-4 and the expected kinship coefficient is 0.00390625 (the number of 

replicates is 200). 

Estimator DW LI RI LR 

500K Linked markers 0.003842702 

(1.014113e-05) 

0.003979949 

(1.12022e-05) 

0.003931101 

(9.898561e-06) 

0.003931211 

(9.894794e-06) 

500K Unlinked 

markers 

0.003945009 

(1.581985e-06) 

0.003931338 

(2.112009e-06) 

0.003905399 

(6.391839e-07) 

0.003905372 

(6.36612e-07) 

110K Linked markers 0.003707552 

(1.509773e-05) 

0.003565808 

(1.648612e-05) 

0.003703687 

(1.020428e-05) 

0.00370324 

(1.019471e-05) 

 

Figure 6.7 Histograms of the estimated kinship coefficients using 500K linked SNPs, 500K unlinked SNPs and 

110,000 linked SNPs respectively when the true pedigree is S-4-4 and the expected kinship coefficient is 

0.00390625 (the number of replicates is 200). 

 

To see whether it will be problematic to ignore linkage for closer relationships in MoM 

estimators, I repeated this process for a true relationship of S-2-2 and the results are 

shown below.  
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Table 6.5 Means and variances (in brackets) of the estimated kinship coefficients using linked and unlinked 

markers when the true pedigree is S-2-2 and the expected kinship coefficient is 0.0625 (the number of 

replicates is 200). 

Estimator DW LI RI LR 

500K Linked 

markers 

0.0636278 

(1.465987e-04) 

0.06371204 

(1.495493e-04) 

0.06361142 

(1.468686e-04) 

0.06362577 

(1.470662e-04) 

500K Unlinked 

markers 

0.06256129 

(1.750727e-06) 

0.06248735 

(1.910057e-06) 

0.06252397 

(1.29441e-06) 

0.06251913 

(1.179018e-06) 

100K Linked 

markers 

0.06382754 

(1.302056e-04) 

0. 06354161 

(1.359421e-04) 

0. 06359901 

(1.379809e-04) 

0. 0638072 

(1.379809e-04) 

 

Figure 6.8 Histograms of the estimated kinship coefficients using 500K linked SNPs, 500K unlinked SNPs and 

110,000 linked SNPs respectively when the true pedigree is S-2-2 and the expected kinship coefficient is 

0.0625 (the number of replicates is 200). 

 

With the true relationship is S-2-2, the variance of the estimated kinship coefficient is 

increased slightly when the number of SNPs is increased from 110K to 500K. That 

means the estimation becomes less precise by increasing the number of markers. The 

reason could be that when the true underlying relationship is close, the association 

between markers caused by linkage is stronger than when the true relationship is more 

distant and cause higher variance. This is consistent with the statement of Milligan 
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(2003) above that the performance of MoM estimator is dependent on the actual 

relationship. 

My conclusion is that MoM estimators can be used with linked markers. We can get 

generally unbiased estimates and the accuracy will generally increase when the number 

of the linked markers increases.  

I next investigated whether LD in the genotype data will cause problems for these 

MoM estimators in the cases where LD was artificially generated and when haplotype 

frequencies were estimated from real data. LD was modelled by Merlin as described in 

the Chapter 5. To create LD in the simulated genotypes, I arranged that SNPs with 

contiguous pairwise distance less than 0.001cM were put in one cluster and there is 

stronger or weaker LD within a cluster. SNPs from different clusters, or not in any 

cluster, are not in LD. The stronger LD is represented as: within one cluster, allele 1 on 

one SNP is always on the same haplotype with allele 1 of other SNPs and allele 2 on 

one SNP is always on the same haplotype with allele 2 of the other SNPs. The weaker 

LD is represented as: within one cluster, allele 1 on one SNP is three times more likely 

to be on the same haplotype with allele 1 of the other SNPs than to be on the same 

haplotype with allele 2, and allele 2 on one SNP is three times more likely to be on the 

same haplotype with allele 2 of the other SNPs than to be on the same haplotype with 

allele 1.   

Firstly I simulated genotypes for two S-4-4 relatives with artificially created LD and 

compared the MoM estimates with the results when there is no LD. 400 replicates were 

done for each case. Affymetrix 500K SNP allele frequency data and map (Section 3.1) 

were used in the simulation. I went back to the all 500K SNPs because in this 

simulation we want to study LD, which is stronger in denser data. No obvious bias can 

be seen in the results as shown in Table 6.6 (the expected kinship coefficient of a 

relationship of S-4-4 is 0.00390625). The variance remains in the same scale generally. 
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Table 6.6 Means and variances (in brackets) of the estimated kinship coefficients by four MoM estimators for 

the true relationship of S-4-4 when there is artificially created LD in the genotype data over 400 replicates. 

Estimator DW LI RI LR 

Stronger LD 0.003912881 

(1.272177e-05) 

0.003908717 

(1.23142e-05) 

0.003889089 

(1.063776e-05) 

0.003888941 

(1.063574e-05) 

Weaker LD 0.003827033 

(9.076264e-06) 

0.003891193 

(9.416982e-06) 

0.003791742 

(8.605419e-06) 

0.003792179 

(8.602354e-06) 

No LD 0.003842702 

(1.014113e-05) 

0.003979949 

(1.12022e-05) 

0.003931101 

(9.898561e-06) 

0.003931211 

(9.894794e-06) 

 

The process was repeated with true relationship S-4-4 using the haplotype frequencies 

and allele frequencies modelled from the WTCCC dataset and MICROS dataset 

respectively to simulate data with LD. There are 1M SNPs in the WTCCC dataset and 

300K SNPs in the MICROS dataset. The results (Table 6.7) show quite different 

estimates for the two datasets. This could be due to the fact that different SNPs are 

included in these two datasets and different numbers and sizes of LD blocks are 

formed. We cannot conclude whether there is bias due to the limited number of 

replicates. But it seems that the bias, if there is, will be very minor and not strong 

enough to make the estimated relatedness move to another degree, unlike what we saw 

when the pedigree likelihood method was used. 
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Table 6.7 Means and variances of the estimated kinship coefficients by four MoM estimators for the true 

relationship of S-4-4 when there is LD in the genotype data. The LD is simulated with LD blocks and 

haplotype frequencies that are modelled from WTCCC and MICROS real data respectively. The number of 

replicates is 400. 

Estimator DW LI RI LR 

Mean (WTCCC LD) 0.003650581 0.003691031 0.003858229 0.003865781 

Variance (WTCCC LD) 1.027867e-05 1.022799e-05 9.382549e-06 9.372978e-06 

Mean (MICROS LD) 0.004257487  0.00385722 0.004376937 0.004372208 

Variance (MICROS LD) 9.239893e-06 9.64238e-06 8.58513e-06 8.566145e-06 

 

I then considered the complex inbred pedigree in Figure 5.1 and used the haplotype 

frequencies modelled from the MICROS dataset to simulate data with LD. The 

expected kinship coefficient of the two individuals based on the pedigree is 0.0177. 

The results are shown in Table 6.8. Most estimators look unbiased except LI. It is also 

noticed that the variances of the estimates here are higher than what are observed in 

Table 6.7 with the same SNP data. Inbreeding seems to increase the variance of the 

estimate.  

Table 6.8 Means and variances of the estimated kinship coefficients by four MoM estimators when the true 

pedigree is the one in Figure 5.1 and there is LD in the genotype data and the LD is simulated with LD blocks 

and haplotype frequencies that are modelled from MICROS real data. The number of replicates is 400. 

Estimator DW LI RI LR 

Mean  0.01772558 0.01501998 0.0178681 0.01776715 

Variance  4.025724e-05 4.29283e-05 3.931681e-05 3.882128e-05 

 

All results show that the LD in the simulated data does not have a fixed pattern in its 

effect on these MoM estimators, unlike in the likelihood method, where it makes the 

estimated relationship closer than the true relationship. Overall, for MoM estimators 

LD does not cause big problems and does not bias the result greatly. So these methods 

can be used for GWAS data. But they are not good to be used for distant relationships 

since their variances are too high when the relationships are distant. 
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The reason why the pedigree likelihood method makes pairwise relationships look 

closer than they really are when LD is ignored could be as follows. When the 

likelihood is calculated with the Lander-Green algorithm, markers are assumed to 

recombine with a rate determined by their linkage map positions. However, when there 

is LD in the genotype data, markers in LD do not recombine, or recombine with 

extremely low rate, and they will have the same effect as IBD markers. This perceived 

extra ‘IBD’ sharing causes the estimated relationship to be closer than it actually is. 

But MoM methods are not affected by LD in this way, because they measure the 

overall similarity between the two individuals without considering the positions of the 

markers. On average, the similarity between two individuals should be equal to what is 

expected for their relationship, no matter which markers we use and what their 

positions are on the chromosomes.  

6.3.4 Using MoM on real data 

Next I applied these MoM estimators on the real MICROS data. 303,783 autosomal 

SNPs were used. The allele frequencies were estimated from the sampled individuals 

by Merlin because allele frequency data from a big independent population is lacking. 

This could cause bias in the estimation result because firstly, we are estimating allele 

frequencies from the samples and secondly, the samples are related. For example, if 

two relatives share a rare allele, it is possible that this allele has been kept within the 

family for several generations and its estimated allele frequency will be higher than the 

true allele frequency. Then the estimated relatedness based on the higher frequency of 

these alleles will not be as close as their true relatedness because it is not unusual for 

unrelated individuals to share a common allele.  

Five pairs of relatives whose most recent relationship are between S-3-3, S-4-3 or S-4-

4 were first selected and their kinship coefficients estimated using the four MoM 

estimators to show how the MoM estimators perform on real data before a large 

number of pairs of relatives is considered. The results for these first five pairs are 

shown in Table 6.9.  
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Table 6.9 Estimated kinship coefficients for several pairs of relatives by MoM estimators.  

IDs of 

Relatives  

Most recent 

relationship 

Kinship 

based on 

pedigree 

DW LI RI LR 

230 and 1193 S-3-3 0.01833677 -0.005395225 -0.008325708 0.002548815 0.004410028 

415 and 742 S-4-3 0.009594 0.0169984 0.01436857 0.009948151 0.01038311 

1224 and 634 S-3-3 0.0160 0.010727434 0.009113624 0.017961001 0.018094706 

1280 and 607 S-4-4 0.0040779 - 0.006582 -0.0124967 -0.0002911 0.0012308849 

879 and 203 S-4-4 0.004258 -0.011242 -0.032621 0.0001753959 0.0044873295 

 

What can be seen is that: 1) for the inbred MICROS pedigrees, the RI and LR 

estimators perform much better than DW and LI on real data; 2) the estimated kinship 

coefficients are less than the expected kinship coefficients calculated from pedigrees 

which means that the estimated relationships are more distant than the real 

relationships.  

To examine these findings in more detail, 101 pairs of individuals from MICROS 

dataset (the same that are used in Chapter 5) whose most recent relationships are S-3-3 

were used. The pedigree connecting each pair is complex and each pair can be tracked 

to their ancestors back for 12 generations. It needs to be noted that they could have 

common ancestors above the known pedigree which are ignored, but that ignored 

relatedness should be trivial. The expected kinship coefficients between every pair 

based on the large pedigree were calculated. Then MoM estimators were used to 

estimate the kinship coefficients for these relative pairs using their real genotype data.  



                                                                                                                    

                                                                                                                  Chapter 6 

Page | 142 

 

Figure 6.9 The histogram of the expected kinship coefficients based on the large pedigree for 101 pairs of 

relatives whose most recent relationship is S-3-3. 

 

Figure 6.9 shows how varied the expected kinship coefficients between individuals 

could be in an inbred population even though all are 0.015625 if the most recent 

relationships are considered. Unknown background relatedness can change the picture 

greatly. We cannot know the realized kinship coefficients for these relatives because 

these are real data, therefore we cannot see how well the MoM estimators predict the 

realized kinship coefficient. Instead we can see how well the MoM estimators can 

predict the expected kinship coefficient. Although all these relatives have the same 

recent relationship, their expected kinship coefficients based on the large pedigree are 

different. So an average of their expected kinship coefficients was taken and compared 

with the average of the estimated kinship coefficients from MoM estimators in Table 

6.10. The estimated kinship coefficients using the LR estimator are plotted against the 

expected kinship coefficients for all 101 pairs of relatives to have a closer look at the 

estimate of each individual in Figure 6.10. 
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Table 6.10 The average of the expected kinship coefficients of the 101 pairs and the averages of the kinship 

coefficients estimated by MoM estimators. 

Expected Estimated (DW) Estimated (LI) Estimated (RI) Estimated (LR) 

0.02234791 0.01916018 0.01360039 0.01788149 0. 01930725 

Variance  1.347381e-04 2.21402e-04 8.889837e-05 6.858069e-05 

 

Figure 6.10 Scatterplot of the estimated kinship coefficients using the LR estimator against the expected 

kinship coefficients for all 101 pairs of relatives.  

 

From Table 6.10, it can be seen that the estimated kinship coefficients tend to be less 

than the expected kinship. These results are consistent with the findings of Gazal et al. 

(2014). This negative bias could be due to several possible reasons: lack of independent 

estimates of population allele frequencies, population stratification, etc. From Figure 

6.10, it can be seen that the real relatedness can be predicted quite poorly by the 

estimated kinship coefficient. For several pairs of relatives, the estimated kinship 

coefficient is so close to 0, they can hardly be distinguished from ‘unrelated’. This is 

very different from the results obtained in Section 5.3.3 with the pedigree-based 

likelihood method, where all 101 pairs can be clearly distinguished from ‘unrelated’. 
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6.3.5 Comparing MoM with ‘Template’ method 

The pedigree-based likelihood method (‘Template’ in Section 5.2) and Method of 

Moments are the two main approaches that have been discussed in this thesis. In 

previous sections, it has been shown that the two approaches are different in that: the 

pedigree likelihood method gives an estimate of the number of meioses separating two 

individuals while MoM gives an estimate of kinship coefficient; the pedigree 

likelihood method can consider many individuals at the same time while MoM can 

only do pairwise estimation; the likelihood method is biased by LD, but MoM is not. 

Now I will further investigate whether the pedigree-based likelihood method performs 

better than MoM estimators at detecting distant relatives.  

In this part of the simulation study, again the software Mendel was used which labels 

founder alleles so the number of IBD alleles in the simulated genotypes of any two 

relatives is known in each replicate and therefore the realized kinship coefficient can be 

calculated.  

Firstly, 110,000 SNPs selected from the Affymetrix 500K SNP dataset were used to 

simulate genotypes for 400 pairs of S-6-6 relatives. For each pair of relatives, the MoM 

estimator LR, which seems to be the best among the four estimators considered in this 

dissertation, was used to estimate the kinship coefficients. Using the pedigree-based 

method, the likelihoods of the genotypes for eight extended sibling relationships of S-

1-1, S-2-2,…, S-8-8 and ‘unrelated’ were calculated. The relationship with highest 

likelihood is our estimate of the relationship of the two relatives.  

Based on the labels of alleles which track the IBD status between individuals on all 

SNPs, out of those 400 pairs of relatives, 141 pairs share at least one IBD allele, 259 

pairs share no IBD allele. Out of the 259 pairs of relatives with no IBD allele shared 

between them, in 134 pairs (51.7%) the estimated kinship coefficients using the LR 

estimator are higher than 0. Out of 141 pairs of relatives with IBD allele shared 

between them, in 91 pairs the estimated kinship coefficients are higher than 0, so the 

rate of correct detection of S-6-6 relatives when there is IBD shared between them is 

91/141=64.5%. This indicates that the MoM estimator is useless at detecting relatives 

as distant as S-6-6. Even if two individuals share no IBD, LR has about 50% 

probability of giving a positive kinship coefficient. 
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Now consider the performance of the pedigree method on the same data. In 249 pairs 

out of the 259 pairs of relatives with no IBD sharing, ‘unrelated’ gives the highest 

likelihood, with a rate of ‘correct inference’ of 249/259=96.1%. In 40 pairs out of 141 

pairs of relatives with IBD sharing, ‘unrelated’ gives the highest likelihood. In other 

101 pairs of relatives, one of the S-1-1,…, S-8-8 relationships has the highest 

likelihood. That means we can detect that the two individuals are related with a 

probability of 101/141=71.6%. It may not be the true pedigree which has the highest 

likelihood, but we can detect that the two individuals are related. This is very different 

from what we saw for the MoM estimators where the distant relationship S-6-6 was 

detected nearly randomly. So the pedigree-based likelihood method works better in 

detecting distant relatives than the MoM estimators. In particular, the pedigree-based 

method is much better than the MoM method when two relatives share no IBD as it 

nearly always infers them to be unrelated while the MoM method has a 50% 

probability of regarding them as related. 

Secondly, genotype data were simulated 400 times, again using labelled founder 

alleles, for 500K Affymetrix SNPs with allele frequencies estimated from the WTCCC 

data for the true pedigree of S-6-6. The likelihoods of the true pedigree and the only 

alternative pedigree ‘unrelated’ were calculated. Here I would like to know what 

happens to the ‘Template’ method and how well it performs when there is little IBD 

sharing of IBD. 

The expected kinship coefficient of S-6-6 is 0.0002441406 which corresponds to 407 

IBD alleles shared by the two relatives. This is because the kinship coefficient can be 

estimated by the number of shared IBD alleles, either 1 or 0, divided by 4 at each locus 

and the total number of SNPs is 416,854 here i.e. 0. 0002441406 × 4 × 416,854 ≈

407. The results show that out of 400 replicates of the simulation, there are 220 

replicates where the two S-6-6 relatives share no IBD allele at all and out of these 220 

replicates, the alternative ‘unrelated’ has higher likelihood than the true pedigree in 218 

replicates. There are 180 replicates where the two relatives do share some alleles IBD, 

the number of the alleles shared IBD ranges from 12 to 4816 with corresponding 

kinship coefficient of 7.196764e-06 and 0.002888301. When the realized number of 

alleles IBD exceeds the expected value, the true pedigree has posterior probability of 1 
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(see Figure 6.11 in which the x axis represents the realized kinship coefficients and the 

y axis represents the posterior probabilities of the true pedigree). For the MoM 

estimator, when the realized kinship coefficient is around the expected kinship 

coefficient 0.512, the estimate is almost as likely to be positive as negative (Figure 

6.12). 

Figure 6.11 Posterior probabilities of the true pedigree S-6-6 when the only alternative pedigree is ‘unrelated’ 

against the corresponding realized kinship coefficients (the vertical line corresponds to the expected kinship 

coefficient for S-6-6 and the horizontal line corresponds to 0.5). 
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Figure 6.12 Plot of the estimated kinship coefficients by MoM LR with the realized kinship coefficients when 

500K SNP are simulated and the true pedigree is S-6-6. The vertical line shows the expected kinship 

coefficient of S-6-6. 

 

In order to see clearly what happens when the number of alleles shared IBD is small, 

Figure 6.13 only shows the cases where the realized kinship coefficients are less than 

the expected value. 

Figure 6.13 Posterior probabilities of the true pedigree S-6-6 when the only alternative pedigree is ‘unrelated’ 

for cases in which the realized kinship coefficients are between 0 and the expected kinship coefficient (the 
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vertical line corresponds to the expected kinship coefficient for S-6-6 and the horizontal line corresponds to 

0.5). 

 

It can be seen from the above plot, that even when the realized kinship coefficient is 

less than the expected value, the posterior probability of the true pedigree is still 1 in 

most cases. In all cases where the realized kinship coefficient is higher than 0.0001, 

which corresponds to 167 alleles and less than half of the expected value for pedigree 

S-6-6, the likelihood of the true pedigree is higher than 0.5 which means we could 

successfully distinguish the relatives from ‘unrelated’. But when the realized kinship 

coefficient is less than 0.00005, which corresponds to 88 alleles, the likelihood of 

‘unrelated’ is higher than the true pedigree. 

Realized kinship coefficients are plotted against the pedigrees which have the highest 

likelihood among the hypothesized pedigrees from S-1-1…to S-8-8 and ‘unrelated’ in 

all replicates of simulation (Figure 6.14) using the same simulated 500K SNP data. 
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Figure 6.14 Plot of the estimated pedigrees against the realized kinship coefficients when the true pedigree is 

S-6-6 and the number of SNPs is 500K. The number 4 in the y axis represents S-4-4 and so on, except that the 

number 9 represents ‘unrelated’. The vertical line corresponds to 0.0001. 

 

This graph shows that when the realized kinship coefficient is greater than 0.0001 (166 

shared IBD alleles), the pair will be estimated as related. Generally the more IBD 

alleles they share, the closer the estimated relationship could be. Also, the estimated 

relationship for the true relationship S-6-6 ranges from S-4-4 to S-8-8. This graph 

shows information which is not available when looking at the average posterior 

probabilities like in Table 4.2. The hypothesized pedigree which has the highest 

average posterior probability does not necessarily have the highest likelihood in all 

replicates of the simulation. In fact the true pedigree S-6-6 hardly ever has the highest 

likelihood (as shown in Figure 6.14) although it has the highest average posterior 

probability. One interesting point is that when the two relatives do share IBD, their 

IBD sharing is very likely higher than expected for their true relationship. That is why 

the estimated relationship is closer than the true relationship. This implies that those 

relatives who are detectable will tend to be inferred to be closer than their true 

relationship. 

6.4 Other relatedness estimators 

In addition to MoM estimators, there are two other approaches for pairwise relatedness 

and relationship estimation. One is maximum likelihood estimation which will be 
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briefly outlined here as it can only deal with unlinked markers and the focus of this 

thesis is on using genome-wide data. It needs to be noted that this method is the 

‘likelihood method’ that is usually referred to whereas the likelihood approach that I 

have discussed in this thesis is a pedigree-based likelihood method. The second 

approach is based on shared IBD segment detection and is more recent than MoM 

approaches.  

6.4.1 Maximum likelihood estimation of pairwise relatedness 

The maximum likelihood approach to estimating pairwise relatedness from unlinked 

genetic marker data was first proposed by Thompson (1976). Milligan (2003) and 

Anderson and Weir (2007) had extended the method. Under the assumption of no 

inbreeding, maximum likelihood (ML) methods find the three Cotterman coefficients, 

also referred as the k-coefficients (𝑘0,𝑘1, 𝑘2,) which maximize the likelihood of the 

genotype data. Hepler (2005) had extended MLE to inbred populations and the 

estimation of the 9 Jacquard coefficients. However, the maximum likelihood approach 

is limited in its applicability if the number of markers is small (Lynch and Ritland, 

1999, Bink et al., 2008). In particular, the MLE method can be biased for small 

numbers of markers (Ritland, 1996, Milligan, 2003).  

The probabilities for the genotypes of two outbred individuals at one locus can be 

calculated conditional on there being 0, 1 or 2 IBD alleles. These probabilities for all 

possible genotypes are shown in Table 6.11 where 𝑝𝑖 denotes the frequency of the 𝑖𝑡ℎ 

type of allele. Note that there could be more than two types of alleles at one locus for 

STR markers. For example, when the genotypes of the two individuals are both (i,i) at 

this locus, all the four alleles are independent conditional on 0 IBD allele, therefore the 

probability of observing these genotypes are the product of observing each of them and 

should be 𝑝i
4. Conditional on 1 IBD allele, there are only three independent alleles 

because two among the four must be of same type, therefore the probability becomes 

𝑝i
3. Similarly, conditional on 2 IBD alleles, the probability becomes 𝑝i

2. 
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Table 6.11 The probabilities for the genotypes of two outbred individuals at one locus conditional on the 

different number of IBD alleles. 

     (i,i)(i,i) (i,i)(i,j) (i,j)(i,j) (i,i)(j,k) (i,i) (j,j) (i,j)(i,k) (i,j)(k,l) 

0 IBD 𝑝i
4 2𝑝i

3𝑝j 4𝑝𝑖
2𝑝j

2 2𝑝i
2𝑝j𝑝𝑘 𝑝𝑖

2𝑝j
2 4𝑝i

2𝑝j𝑝𝑘 4𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙

+ 𝑝𝑗) 1 IBD 𝑝i
3 𝑝i

2𝑝j 𝑝𝑖𝑝𝑗(𝑝i + 𝑝𝑗) 0 0 𝑝𝑖𝑝𝑗𝑝𝑘 0 

2 IBD 𝑝i
2 0 2𝑝𝑖𝑝j 0 0 0 0 

 

 For pairwise relationships, the algorithm is as follows. The genotypes of the two 

individuals at locus j are denoted as 𝐺𝑗
1 and 𝐺𝑗

2 , then the probability of the genotypes 

(𝐺𝑗
1, 𝐺𝑗

2) can be written as P(𝐺𝑗
1, 𝐺𝑗

2), which can then be written as  

 𝑘0 × P(𝐺𝑗
1, 𝐺𝑗

2 |0 common IBD)+ 𝑘1 × P(𝐺𝑗
1, 𝐺𝑗

2|1 common IBD)+ 𝑘2 × P(𝐺𝑗
1, 𝐺𝑗

2|2 common IBD),  

where 𝑘0, 𝑘1, 𝑘2 are the probabilities that there are 0, 1 or 2 IBD genes between the 

two individuals with relationship of 𝑅𝑖. If we have J unlinked genetic markers, the 

probability for all the genotypes for J markers is the product of P(𝐺𝑗
1, 𝐺𝑗

2), in which the 

set K of (𝑘0, 𝑘1, 𝑘2) contains the parameters which need to be estimated. Then the 

relationship which maximizes the above probability is our maximized likelihood 

estimate for the relationship between the two individuals. If the degree of relatedness is 

all that is required, kinship coefficient can be calculated easily from the estimated K.  

If the exact relationship is of interest, more detailed inference can be obtained by the 

fact that each relationship corresponds to a specific set K (Thompson, 1986), although 

some relationships may have same set of K. In practice, we could try several common 

relationships whose K values are known already rather than try to find an arbitrary 

relationship with the maximized likelihood (Thompson, 1986). 

Below is an example for pairwise relationship estimation when several common 

relationships whose K values are known. This is a simple case for illustration purpose. 

In Table 6.12 are the simulated genotypes over 5 unlinked markers for two individuals, 

whose true relationship is sibling (Thompson, 1986). Then the likelihoods for the 

different hypothesized relationships were compared. 
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Table 6.12 The simulated genotypes over 5 unlinked markers for two individuals. 

Locus L1 L2 L3 L4 L5 

Individual1 12 12 12 59 12 

Individual2 12 12 12 22 22 

 

The number of alleles at these loci and allele frequencies are shown in the Table 6.13. 

Table 6.13 The number of alleles at 5 loci and allele frequencies. 

Locus A1 A2 A3 A4 A5 

No. of alleles 3 4 2 10 2 

Allele 1 0.5 0.3 0.85 0.1 for each 

of 10 alleles 

0.6 

Allele 2 0.25 0.3 0.15 0.4 

Allele 3 0.25 0.3   

Allele 4  0.1   

 

The following table shows the IBD probabilities for common non-inbred relationships 

(Weir et al., 2006) and the likelihood of the above simulated genotypes under the 

hypotheses of these relationships. 

Table 6.14 The IBD probabilities for common non-inbred relationships and the likelihood of the above 

simulated genotypes. 

Relationship 𝑘0 𝑘1 𝑘2 Likelihood for the simulated genotypes 

Full siblings 1/4 1/2 1/4 1.934500e-08 

Parent-child 0 1 0 0 

Identical twins 0 0 1 0 

Double first cousins 9/16 3/8 1/16 1.527958e-08 

Half siblings ½ ½ 0 1.122806e-08 

First cousins ¾ ¼ 0 1.049389e-08 

unrelated 1   8.09015e-09 

 

From the above calculation with these five markers, the likelihood for the true 

relationship (siblings) is the highest among all the hypothesized relationships. 
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This maximum-likelihood estimator only considers unlinked markers as it uses the fact 

that the likelihood for all loci is the product of the likelihood at every locus.  Existing 

software packages for maximum likelihood estimation, such as ML-Relate (Kalinowski 

S.T., 2006), for example, only deal with microsatellite markers (unlinked).  

6.4.2 IBD segment detection 

Another approach to detect relatedness is to look for chromosomal segments 

(haplotypes) that are identical by descent (IBD) between individuals. Firstly let’s look 

at the process of the IBD segment sharing. At any specific locus in the genome, two 

individuals who share a common ancestor from n generations back, have a probability 

𝛽 = 2−(2𝑛−1) of sharing genome IBD because there are 2𝑛 meiosis between them and 

they could share either of the two alleles of the common ancestor. This probability 

decreases quickly when the relationship between the two individuals get more and 

more distant. However, DNA is inherited between generations in large segments and if 

the two relatives do share IBD segments, they can be of substantial length (Donnelly, 

1983, Thompson, 2013). The segments shared from the same ancestors will be broken 

only by recombination with a rate of approximately one recombination per Morgan per 

meiosis. The lengths of IBD segments, that result from a common ancestor n 

generations in the past,  are approximately exponentially distributed with mean 1/(2n) 

Morgans (Thompson, 2013, Browning and Browning, 2012). For example, two 

relatives with 12 meioses (S-6-6) between them more often do not share any IBD 

segment, but the expected length of the shared IBD segment is 8.33cM when they do 

have IBD sharing.  

The principle behind the detection of IBD sharing is that, if the haplotypes shared by 

individuals are so long or rare that they are unlikely to be observed more than once in 

independently sampled individuals, they must be IBD. Current methods for detecting 

shared IBD segments can be divided into two types. The first type is rule-based, which 

uses length threshold to do quick searches for shared haplotypes. The second type is 

model-based, which uses a probabilistic model for the IBD status.   

6.4.2.1 Rule-based methods 

There are different ways to apply the rule-based method for genotype data and 

haplotype data. For genotype data, a simple way to search for IBD segments shared by 
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two individuals is to find long chromosomal segments that are consistent with being 

IBD, which means there is at least one allele common between the two individuals 

(Miyazawa et al., 2007). Loci where both individuals are homozygous for different 

alleles will thus be breakpoints in potential IBD segments. The length threshold for 

consistent segments to be inferred as IBD segments will be affected by several factors. 

The first one is the allele frequency. For SNPs with a higher frequency for the major 

allele, a higher number of IBD-consistent SNPs is needed for the threshold. The second 

factor is LD. When there is LD within SNPs, a higher number of IBD-consistent SNPs 

is needed to infer the segments to be IBD. If the threshold is set too high, the power to 

detect IBD segments will be low, but if the threshold is too low, the false positive rate 

will be too high. So there is a trade-off between false positives and false negatives to 

choose the right threshold. Miyazawa et al. (2007) use a threshold of 3.0cM as they 

argue that it gives a small false positive rate while the false negative rate is acceptable.       

If phased haplotype data are available, the haplotypes can be directly compared to find 

shared haplotypes. If two chromosomal segments with the same haplotype are long 

enough, we have evidence that they could be IBD. Germline (Gusev et al., 2009) and 

Beagle fastIBD (Browning and Browning, 2011) are the two most popular rule-based 

IBD segment methods for haplotype data. Germline uses the length of the shared 

haplotype as the criterion of inferring IBD segment while Beagle fastIBD uses the 

haplotype frequency of the shared haplotypes as the criterion for inferring IBD 

segments. The shared haplotypes are estimated to be IBD if the estimated haplotype 

frequency of those haplotypes is below a predetermined threshold. When phased data 

are not available, unphased genotype data can be phased before applying these 

methods. This will add more uncertainty to the estimation process. 

6.4.2.2 Model-based methods 

Model-based methods for IBD segment detection require modelling IBD status with a 

hidden Markov Model (HMM). The latent IBD status is regarded as a Markov chain 

along the chromosome. Leutenegger et al. (2003) first proposed a HMM method for 

two chromosomes to detect inbreeding within a single individual. Only two IBD states 

(IBD or non-IBD) are considered. Purcell et al. (2007) extend this model to four 

chromosomes (two individuals) and the IBD states considered become 0, 1 and 2 IBD 

alleles shared between two individuals (implemented in the Plink software). The model 
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of Browning and Browning (2010), an older version of BEAGLE before fastIBD, 

applies to two individuals too, but only considers two IBD status: whether there is IBD 

or not between them. These models mainly comprise two components: the probability 

of the observed genotype data conditional on the IBD status and the transition of IBD 

status between markers. LD is not dealt with by Plink, therefore SNP data have to be to 

be thinned before using Plink. Beagle models LD in its newest version. But according 

to Gazal et al. (2014), the HMMs modelling LD did not give better results than HMMs 

with simply pruned, or thinned, SNPs and the relatedness estimation results were still 

highly biased although the bias caused by LD was significantly reduced. This is similar 

to what we found when modelling LD with the pedigree likelihood period in Chapter 5 

that the bias can be reduced but not completely removed by modelling LD and the 

estimation does not necessarily become better when LD is modelled rather than simply 

thinning the SNPs. 

6.4.2.3 Estimating relatedness and relationship from detected IBD segments 

A simple way to infer relatedness from the detected IBD segments is to divide the total 

length of detected IBD segment by the total length of all chromosomes. Browning and 

Browning (2010) claimed that this method is more accurate than MoM for estimating 

the proportion of shared IBD between individuals.  

When only used to calculate the proportion of the genome that is estimated to be IBD, 

IBD segment sharing methods only provide average IBD sharing between individuals, 

and are hence similar to MOM methods. In a very recent paper, Gazal et al. (2014) 

compared the performance of MoM estimators (single-point estimators) and different 

IBD segment estimation methods, both rule-based and model-based, by simulation. 

They found that MoM generally performs similarly to segment sharing methods for the 

above application although rule-based segment sharing methods are best. They also 

found that the performance of segment sharing methods relies heavily on the choice of 

the right threshold for segments of chromosome to be classified as IBD. LD is an issue 

for segment detection methods and there is no perfect way to get around of it. They 

concluded that for IBD segment sharing approaches, better estimation was achieved 

using a sparse set of markers rather than modelling LD for dense markers.   
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There is a theory that all variation of IBD sharing between individuals is represented in 

the variation of the number, length and position of the shared IBD segments (Hill and 

Weir, 2011). If these statistics of IBD segments are known, relatedness can be inferred. 

Both Huff et al. (2011) and Hill and White (2013) have developed likelihood methods 

to estimate relatedness based on detected IBD segment. The software ERSA 

(Estimation of Recent Shared Ancestry) of Huff et al. (2011) uses the numbers and 

lengths of the estimated IBD segments to do likelihood ratio tests. The null hypothesis 

is that two individuals have no recent common co-ancestor and the alternative 

hypothesis is that the two individuals share a recent ancestor. They assume the number 

of shared IBD segments, under the null hypothesis, follows a Poisson distribution with 

mean equal to the sample mean of the number of segments shared in the population 

that they belong to. Moreover, the length of the shared IBD segments is assumed to 

follow an exponential distribution. They also assume the number of the IBD segments 

and the length of the IBD segments are independent of each other. A threshold length 𝑡 

for IBD segments needs to be specified. They then calculate the likelihood under the 

null hypothesis, of the number 𝑛 and the lengths of the shared IBD segments (included 

in the IBD segment set 𝑠). The alternative hypothesis is constructed by introducing 

new parameters: 𝑑, representing the number of generations separating two individuals, 

and 𝑛𝑎, which is the number of shared IBD segments inherited from the recent 

ancestors ( in contrast to the number of IBD segments from the background 

population). A maximum likelihood function under the alternative hypothesis is then 

written with these new parameters. The ratio of the two likelihoods is said to follow a 

𝜒2 distribution approximately and a likelihood ratio test can be done. If the result of the 

test is that the two individuals do share recent common ancestors, a relationship out of 

all possible relationships which maximize the likelihood function in the alternative 

hypothesis is obtained. While they refer to ‘all possible relationships’, what they really 

mean is ‘all possible value for 𝑑’, the number of meioses separating two individuals 

rather than literally all relationships. This is similar to what I did in Section 5.2, where 

my estimate outcomes will be relationships of different degrees.  

Hill and White (2013) have shown that many of the assumptions made in ERSA do not 

hold. For example, according to Huff et al. (2011), the expected length of shared IBD 

segments is 
1

𝑑
 , and the expected number of shared IBD segments for one chromosome 
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is 𝐸(𝑛) = (𝑑𝑙 + 1)(
1

2
)(𝑑−1) for extended half–sibling under the assumption of 

independence between the number and length of IBD segments. But if we divide the 

expected proportion of chromosome IBD, which is (
1

2
)(𝑑−1) for two relatives separated 

by 𝑑 meiosis, by this 𝐸(𝑛), the expected length of the IBD segment should be 
1

𝑑+
1

𝑙

  

rather than 
1

𝑑
. By simulation, Hill and White (2013) also showed departures of the 

expectation 𝐸(𝑛)  from variance 𝑉𝑎𝑟(𝑛) under the Poisson assumption of Huff et al. 

(2011) which should be the same. Hill and White (2013) proposed to calculate the 

likelihood based on the empirical distributions of number, total length of IBD segments 

(not the length for each single segment) and position of the IBD segments that are 

obtained from simulation. Then the likelihood of different pedigrees can be compared 

and to find the one with the highest likelihood. Two relationships can be distinguished 

by their likelihood ratio. This theory is very similar to the ‘Template’ method except 

that it calculates the likelihood for the number and length of IBD segments while 

‘Template’ calculates the pedigree likelihood for the original genotype data. Hill and 

White (2013) also found that in their method, most information is provided by the total 

number of the shared IBD segments without the length and the positions of the 

segments. It seems that segment position hardly gives any extra information unless the 

relationship is very close.  Both methods of Huff et al. (2011) and Hill and White 

(2013) have to assume that the IBD segments are detected accurately. 

Huff et al. (2011) reported that ERSA’s estimates are accurate to within one degree of 

relationship for 80% of sixth-degree and seventh-degree relatives, which correspond to 

S-3-4 and S-4-4 relatives in terminology of this thesis. The degree of relative is usually 

defined by the proportion of genes shared by two relatives which is determined by the 

number of separating meiosis, e.g. first-degree relatives shares about half of their genes 

and second-degree relative shares about one-quarter of their genes, etc. It is of great 

interest to compare ‘Template’ method (Section 5.2) with approach of Huff et al. 

(2011) in estimating relationships up to a certain degree. Implementation of ERSA is 

much more complicated than ‘Template’ method. It requires accurate estimates of IBD 

segments from software Germline and if there is missing data for some loci, which is 

very common for real data, software Beagle is needed to do imputation as Germline 
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does not accept input files with missing data. In this simulation study, 416854 SNPs 

genotype were simulated for relatives of sixth-degree (such as S-4-3) and seventh-

degree (such as S-4-4) using allele frequencies of Affymetrix 500K the same as in 

Section 4.2. Then ERSA and ‘Template’ method were used to estimate the degree of 

the relationships and this process were replicated 400 times for each degree of 

relationship. When all 416854 SNPs were used, the estimate results of ERSA are 

accurate to within one degree of the true relationship for 83% of the sixth-degree 

relatives and 75% of the seventh-degree relatives while the corresponding figures for 

‘Template’ method are 94.5% and 89%. From the results in Chapter 5 we know that 

‘Template’ method is affected by LD seriously. So I reran ‘Template’ method with 

only 22,000 evenly selected SNPs although there is no LD in these specific simulated 

data, to make the comparison fairer to ERSA which was claimed not to be affected 

much by LD (confirmed by another simulation, results not shown). The corresponding 

figures from ‘Template’ method are 85.75% and 81.5% respectively. Therefore even 

with just 22,000 SNPs (with this density of SNPs, we can be quite confident that it will 

not be affected by LD), the ‘Template’ method gives better results than ERSA. Due to 

the variance of the estimate and the limited number of replicates, we cannot say the 

‘Template’ method is better, but it at least has accuracy of the same order with ERSA 

with much less SNPs and it is much easier in implementation.  

Then the real data for sixth-degree (e.g. S-4-3) and seventh-degree (e.g. S-4-4) relatives 

were searched for in the MICROS study. The expected kinship coefficient is 
1

27 for 

sixth-degree relatives and  
1

28  for seventh-degree relatives. Because the pedigrees in 

MICROS study are inbred, the number of relatives with an exact kinship coefficients of 

1

27 or 
1

28 is very small. Relatives with the kinship coefficient within the range of 

(
1

27 ,
1.01

27 ) and (
1

28 ,
1.01

28 ) were searched for respectively. In total, 116 pairs of sixth-degree 

relatives and 148 pairs of seventh-degree are found. Then 20,000 SNPs evenly selected 

from the original 300K SNPs were used to estimate the degree of relationship. The 

estimation result is accurate to within one degree of relationship for 94% of sixth-

degree relatives and 77% of seventh-degree relatives. This is even better than the 

results in the simulated data. Unfortunately, I did not run ERSA successfully for these 

real data as no IBD segment was returned by Germline. My simulations results of 
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ERSA are consistent with the reported results of ERSA in the original paper of Huff et 

al. (2011). Therefore we should have made a reasonable comparison.  

Hill and White (2013) reported that with their method, they can achieve a 75% correct 

assignment of second cousin once removed (S-3-2) and third cousin (S-3-3). I did not 

implement their method, but my simulation results show that ‘Template’ method has 

the rate of correct assignment of 88% for the same problem. 

It may be true that the number, length and positions of IBD segments contain all the 

information that we need for estimating pairwise relatedness. But this information is 

contained in the original genotype data together with the linkage map as well. The 

number, length and positions of IBD segments are, at most, sufficient statistics of the 

original genotype data, which is exploited by ‘Template’ method. Moreover, IBD 

segments have to be estimated before ERSA can be used. Some IBD segment detection 

methods require phased data and phasing need to be done from the original genotype 

data. Calculating the likelihood for the genotypes directly is much simpler and more 

straightforward than going through a phasing process, then detecting IBD segments and 

finally calculating the likelihood. My simulation also shows that ‘Template’ method 

seems to give more accurate estimate than ERSA. However it is slower than ERSA 

(including the process IBD segment detection). So which method is to be used really 

depends on the applications. On the other hand, if the requirement on accuracy is not 

very high or the targeted relationships are not very distant (e.g. only close relative like 

first cousins are needed), MoM methods are even faster than both of ‘Template’ 

method and ERSA, and they are simple both in the theory and implementation.  

6.5 Population stratification and allele frequencies 

Population stratification is the presence of a systematic difference in allele frequencies 

between subpopulations in a population possibly due to different ancestry, which is 

also referred to as population structure. Such stratification is important in association 

analysis because observed association could be caused by underlying population 

structure rather than by disease-associated loci. It will cause problems for relationship 

estimation as well which depends on what is assumed about allele frequencies and 
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these are affected by population stratification. When estimating relationships in a large 

sample, it is desirable to check whether there is population stratification.   

6.5.1 Population stratification causes bias in estimating relatedness 

Population stratification can be considered in two different scenarios. The first scenario 

is that the ancestors are from different subpopulations, but there has been admixture for 

some generations. The second scenario is that the population is composed of different 

subpopulations without admixture. In this section, I will consider the effect of 

population stratification on relatedness estimation by reviewing recent literature on the 

first scenario and doing a simulation study on the second scenario of population 

stratification. 

For these simulations I used the allele frequency data for two populations, CEU (Utah 

residents with Northern and Western European ancestry) and TSI (Toscani in Italia), 

from the HapMap project. After quality control, there are 556,873 SNPs for each 

population. The level of stratification in a population is usually measured by the 

fixation index (𝐹𝑆𝑇). A popular definition of it is based on the variance of allele 

frequencies between subpopulations. 𝐹𝑆𝑇 is defined as 𝐹𝑆𝑇 =
𝜎𝑆

𝜎𝑇 
  (Holsinger and Weir, 

2009) if the variance in the frequency of an allele between different subpopulations is 

𝜎𝑆 and the variance of the allelic state of this allele in the total population is 𝜎𝑇. This 

definition, which is due to Wright, illustrates that 𝐹𝑆𝑇 measures the amount of genetic 

variance that can be explained by population structure. It is frequently estimated from 

genetic polymorphism data, such as SNPs or microsatellites. The estimated value for 

𝐹𝑆𝑇 between the two populations of CEU and TSI using the allele frequency data that I 

obtained is 0.007920339, which is consistent with what is commonly known of the 

population difference between different European countries as the typical range of the 

value between Germans and Italians is 0.0029-0.0080 (Nelis et al., 2009).  
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Figure 6.15  Pedigree of S-3-3 used in population stratification study 

 

Suppose there are two subpopulations and each of them includes 15 S-3-3 pedigrees. 

There are 12 individuals for each S-3-3 pedigree (Figure 6.15), 6 founders and 6 

descendants. So there are 180 individuals, 90 founders and 90 descendants, in each 

subpopulation. Data are simulated for the two subpopulations with different allele 

frequencies. The S-3-3 relatives in the first subpopulation only are chosen for 

relatedness estimation and the MoM estimator RI is used. This process is repeated 20 

times with a different random seed every time and 300 pairs of S-3-3 relatives are 

obtained in total. For every simulation of the genotypes, the kinship coefficients are 

estimated with six different sets of allele frequencies respectively. These allele 

frequencies are: true allele frequencies (i.e. frequencies used to simulate the data) of 

the first subpopulation (AF1), average of the true allele frequencies of two 

subpopulations (AF2), estimated allele frequencies using founders in the first 

subpopulation (AF3), estimated allele frequencies using all individuals in the first 

subpopulation (AF4), estimated allele frequencies using founders in the whole 

population (AF5), estimated allele frequencies using all individuals in the whole 

population (AF6). By comparing the estimation results with these different allele 

frequencies, I can see not only the effect of ignoring the population structure, but also 

the effect of estimating allele frequencies from the samples themselves. We know that 

estimates of relatedness based on allele frequencies estimated from samples, which 

include relatives that we want to infer, will be biased (Wang, 2002).   

Firstly, I want to see the effect of ignoring the population structure. This can be done 

by comparing the estimation results using allele frequencies for the whole population 
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and the estimation results using allele frequencies for the homogeneous first 

subpopulation. Secondly, for the effect of estimating allele frequencies from samples, 

estimation results using estimated frequencies can be compared with results using the 

true frequencies from which the data were simulated. Due to the small number of 

samples, we will reasonably expect the estimated allele frequencies to be different from 

the true allele frequencies. When estimating allele frequencies from samples, I apply 

two options: estimating from founders only and estimating from all individuals. The 

relationship estimation results of these two options are also compared to see which 

option gives better results. The results are shown in Table 6.15. 

Table 6.15 Means and variances of the estimated kinship coefficients by MoM estimator RI for 300 pairs of S-

3-3 relatives from the first subpopulation (expected kinship coefficient is 0.015625) based on, respectively, 

AF1 (true allele frequencies of homogeneous first subpopulation only), AF2 (average of the true allele 

frequencies of two subpopulations), AF3 (estimated allele frequencies using founders in the first 

subpopulation), AF4 (estimated allele frequencies using all individuals in the first subpopulation), AF5 

(estimated allele frequencies using founders in the whole population) and AF6 (estimated allele frequencies 

using all individuals in the whole population). 

 AF1 AF2 AF3 AF4 AF5 AF6 

Mean 0.01553728 0.01974073 0.01074966 0.00735127 0.0161448 0.01144355 

Variance 4.168311e-05 4.122482e-05 4.788052e-05 3.469359e-05 4.187162e-05 4.195883e-05 

 

The results are consistent with the findings of Wang (2002) that MoM estimators are 

sensitive to the allele frequency. From Table 6.15, we can see that the variances of the 

estimated kinship coefficients are similar when different allele frequencies are used, 

but the means of the estimates are very different. If we compare the estimates based on 

the correct subpopulation with estimates based on the whole population (between AF1 

and AF2, or between AF3 and AF5, or between AF4 and AF6) we can see the effect of 

ignoring population structure is that the estimate of kinship coefficient is greater than 

expected. That means the estimate of kinship coefficient is biased when population 

structure is ignored and relatives will tend to appear to be more closely related than 

they really are. If we compare the results between AF3 and AF4 or between AF5 and 

AF6, it can be seen that it is better to use founders only than to use all samples to 

estimate allele frequencies when we use estimated allele frequencies. If we compare 
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the results between AF1 and AF3 or between AF2 and AF5, it can be seen that the 

effect of using estimated allele frequencies instead of true allele frequencies is to make 

the estimated kinship coefficient less than the expected value and relatives will appear 

to be more distantly related than they really are. Interestingly, the effects of ignoring 

population structure and using allele frequencies estimated from small number of 

samples nearly cancelled each other in these simulations as they cause biases to 

different directions.   

These results go some way towards explaining what we observed when estimating 101 

relative pairs in the real MICROS data (Section 5.3.3). We know that the samples in 

the MICROS study are from three different isolated villages although they are of same 

origin anciently. Therefore there is a possibility of population stratification. In previous 

work we have ignored population structure and used estimated allele frequencies from 

the samples. The average expected kinship coefficient is 0.02234791 and the average 

kinship coefficient estimated by RI is 0.01788149, which is 0.00446642 less than the 

expected value. If we look at the results in the above simulation study, the expected 

kinship coefficient is 0.015625. The estimated kinship coefficient using true allele 

frequency is 0.01553728, which is close to the expected value. When the pooled true 

allele frequencies for the whole population (including two subpopulations with equal 

numbers of individuals) are used, the estimated kinship coefficient increases to 

0.01974073. When the allele frequencies estimated from all samples in the whole 

population are used, the estimated kinship coefficient decreases to 0.01144355 from 

0.01974703. Overall, the estimated kinship coefficient 0.01144355 is a decrease of 

0.00418145 from the expected kinship coefficient 0.015625. This is the same pattern 

seen in the results for the real data. So the reason that we observe a lower estimated 

kinship coefficient than is expected in the MICROS data could be a combination of two 

effects: ignoring population structure increases the estimate of the kinship coefficient, 

and using estimated allele frequencies decreases the estimated kinship coefficient even 

more. 

6.5.2 Dealing with population stratification 

Efforts have been made by several authors to obtain accurate estimates of kinship 

coefficients in the first scenario of structured populations (admixed) (Thornton et al., 
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2012, Morrison, 2013). Morrison (2013) proposed a SNP pruning approach to deal 

with population stratification, which is called AIM-based SNP pruning. AIM stands for 

ancestry informative marker and it is based on results from a principal components 

analysis. The idea is to remove those SNPs whose allele frequencies are very different 

in the distinct subpopulations. A principal components analysis is carried out first, then 

a threshold is set on the P-value for the association between SNPs and top principal 

components to find AIMs. Only markers that are supposed to be non-AIMs are used in 

the relationship estimation. Theoretically this is a good approach. Although the 

population is structured generally, it is still possible that there are many markers in 

which there is no difference between subpopulations and the population structure 

problem is avoided if we only these markers are used.   

In Morrison’s simulation, about 600,000 SNPs were reduced to about 110,000 SNPs 

after pruning, which is a big drop in the density of the SNPs. It was shown that AIM-

based pruning reduces the variance and the bias of the estimate. However the effect of 

simply reducing the number of the markers by thinning instead of applying the AIM-

based pruning was not investigated. It is plausible that the reduction in variance after 

AIM-pruning is simply caused by the reduction of the density of the markers. To test 

this, I evenly thinned the number of SNPs from 556,873 to about 110,000 for the 

simulation in the beginning of Section 6.5.1, and found that simply reducing the 

number of SNPs did not achieve the same effect as reported for the AIM method. There 

was no noticeable reduction in the variance of the estimated kinship coefficient. So it 

would seem that it is the AIM pruning rather than simply thinning of SNPs which led 

to the results reported by Morrison (2013) .    

As an alternative, I now consider whether it is possible to cluster samples from 

different subpopulations by simply doing principal component analysis (PCA). Then 

relationship estimation can be carried out within the resulting subpopulations without 

stratification. Simulation results in Section 6.5.1 indicate that we have a better estimate 

of relatedness when it is done in a subpopulation without stratification. The principal 

component analysis was done using the software Eigensoft (Patterson et al., 2006). I 

first tried PCA on the simulated data of Section 6.5.1. A plot of the first two principal 

components is shown in Figure 6.16. 
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Figure 6.16 Plot of the first two principal components of 360 simulated individuals, half with allele 

frequencies of CEU and half with allele frequencies of TSI.  

 

The simulated individuals from the two populations can be clustered successfully in 

this case. However, the simulated data could be too simplistic as the two simulated 

subpopulations have very different sets of allele frequencies. I then tried PCA on the 

real data of MICROS which includes 1285 individuals from three villages and the plot 

of the first two principal components is shown in Figure 6.17. Based on the knowledge 

of the source of the samples in MICROS study, these three arms in the plot most likely 

represent the three villages. Eigensoft has been recommended for unrelated individuals 

while a small number of relatives should not cause problems. In my application on 

simulated and real data, both of which include large number of relatives, but it seems 

that the individuals from different subpopulations can be successfully clustered.  
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Figure 6.17 Plot of the first two principal components of 1285 individual from MICROS study. 

 

 

This result suggests that PCA can be used to cluster samples from a mixed population. 

The estimate of relatedness will be better in each homogenous subpopulation and we 

have seen that even a small difference between the subpopulations can cause serious 

bias of the estimated kinship coefficient. But this approach will work best in the case 

where samples are collected from different homogenous sub-populations. For truly 

admixed cases where individuals from different subpopulations have been mixed for 

generations, the AIM method of Morrison (2013) should be used. In this section, 

population stratification problem is only illustrated by MoM, but it should also affect 

other methods as they all depend on allele frequencies. 

6.6 Summary 

In this chapter, some other methods for estimating relationship and relatedness were 

discussed. Firstly, four MoM estimators for pairwise relatedness were introduced and 

implemented, and their performance in different situations compared. It seems that the 

overall performance of the LR estimator is the best of them and it is chosen to be used 

for clustering in Chapter 8 when we try to reconstruct a pedigree. One MoM estimator 

was chosen to be compared with the pedigree likelihood method. Results show that the 

pedigree likelihood method is better than MoM estimators in detecting distant relatives. 

Linkage and LD will not necessarily bias the estimates of pairwise relatedness, but they 
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may increase the variances of the estimates which can offset the information provided 

by increased density of markers. Genome-wide genetic data can be used for these MoM 

estimators although most of these estimators were proposed when STR data were 

prevalent with a quantity of less than hundreds. Generally if the only aim is to detect 

close relatives, less dense markers can be used which can both reduce the calculation 

time and increase performance. For example, I have shown for relationships as close as 

S-2-2, 110,000 SNPs perform better than 500K SNPs. We could expect that even fewer 

SNPs will perform better for closer relationships like S-1-1. 

Traditional maximum likelihood estimators of relatedness (which estimate the degree 

of relatedness rather than a pedigree relationship) were also discussed along with a 

more recent approach, IBD segment detection and the likelihood methods based on the 

detected IBD segments. It was found that the estimation results from these likelihood 

methods based on the detected IBD segments (such as ERSA) are very similar to what 

can be achieved with the pedigree likelihood approach based on the original genotype 

data. It seems that estimation of IBD segments is perhaps not always necessary for 

relationship estimation purpose. Of course, detecting IBD segments between 

individuals can have other applications, which are not the main focus of this thesis. 

Finally, it was shown that even small levels of population stratification can cause 

serious problems for relationship estimation. Population stratification affects the 

estimators through its effect on allele frequency. In other words, we should use allele 

frequencies that are as accurate as possible when using MoM estimators, i.e. try to do 

the estimation in a homogeneous population and either use independent allele 

frequencies or estimate them from a large sample. 
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7 The use of the Y chromosome and mtDNA 

in pairwise relationship estimation 

7.1 Introduction 

SNP data on the male-specific region of the Y chromosome (MSY) and mitochondrial 

DNA (mtDNA) are routinely collected by many widely-used SNP chips. But they are 

not used in mainstream pairwise relationship estimation. One reason could be that these 

data are difficult to process. Also, it is hard to combine them with autosomal DNA in 

current relationship estimation methods due to haploidy arising from their uniparental 

inheritance. In this chapter I investigate the ways that they can be used in relationship 

estimation. 

The MSY and mtDNA are special in that they pass down the generations unchanged 

except by mutation. MSY only exists in males and it only transmits from father to son, 

since it carries the male-determining gene SRY. By contrast, both males and females 

have mtDNA, but fathers do not pass their mtDNA to their descendants. This is due to 

the relatively low number of copies carried by sperm cells together with a mechanism 

that appears to eliminate paternal mitochondria following fertilization. Since the oocyte 

carries many mitochondria, mothers pass their mtDNA to both male and female 

descendants. In the following Figure 7.1, a genealogy connecting third cousins A and B 

is shown to illustrate the transmission of MSY and mtDNA. 
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Figure 7.1 Illustration of the transmission of MSY and mtDNA. Y represents the MSY haplotype of the 

common male ancestor and m represents the mtDNA haplotype of the common female ancestor. In this 

particular example, A and B do not share either Y or mtDNA IBD. 

 

Two classes of markers on the MSY are short tandem repeats (Y-STRs – also known as 

microsatellites) and single nucleotide polymorphisms (Y-SNPs). STRs on the MSY 

have received more attention than SNPs in forensic application. Y-STRs have been 

used in male-specific identification, paternity testing and estimation of the geographic 

region of origin of a male (Kayser et al., 1997, Jobling et al., 1997). The diversity of Y-

STR haplotypes on the global level makes them suitable for this purpose. One famous 

application of the MSY STRs in relationship inference is the Thomas Jefferson 

paternity case (Foster et al., 1998), in which a shared haplotype between a putative 

male-line descendant and male-line descendants of Jefferson’s paternal uncle supported 

his paternity of Eston Hemings Jefferson, son of one of his slaves. Broader applications 

include making links over many generations between men who carry the same surname 

(King and Jobling, 2009). At present, standard kits contain up to 23 Y-STRs (Purps et 

al., 2014) and up to 186 Y-STRs have been analysed (Ballantyne et al., 2010). 

However, Y-STRs have high mutation rates – typically ~2 x 10-3 per STR per 

generation, but can be as high as 7.44 ×  10−2 (Ballantyne et al., 2010). This gives rise 

to very high haplotype diversity and is an advantage in individual identification, but it 

complicates pairwise relationship estimation as the mutation rate has to be 

incorporated. It also means that sometimes even close relatives may not share the same 

Y-STR haplotype. By contrast, Y-SNPs are less discriminating than Y-STRs. The 
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haplotypes defined by Y-SNPs are usually called ‘haplogroups’, some of which are 

common in particular populations, but their mutation rates are so low (~3 x 10-8 per 

nucleotide per generation (Xue et al., 2009)) that mutation among SNPs can be ignored 

in relationship estimation. Haplogroups formed by Y-SNPs have been used to find 

ancestral origins of populations and their potential in forensic identification has been 

discussed (Geppert et al., 2011, Jobling, 2001). However, a concrete way to apply them 

in general relationship estimation problems has not been proposed.  

mtDNA SNPs have been used in forensic identification as well, and one famous case in 

which they have been applied in relationship inference is in the identification of the 

Romanov royal family (Gill et al., 1994), and later of their two missing children (Coble 

et al., 2009). mtDNA is much shorter than MSY (16.5 kb compared to ~24 Mb of 

usable Y sequence) with almost all variation being due to SNPs. Most forensic analysis 

focuses on the ~350-bp Hypervariable Segment I (HVSI), which has particularly high 

sequence diversity. SNPs in this region have mutation rates about 100 times that of 

SNPs in the nuclear genome including MSY (Soares et al., 2009), but this rate is still 

low enough to be neglected in most pedigree applications. SNPs outside HVSI (in the 

so-called coding region) have mutation rates about 10 times the nuclear genome rate. 

Overall, SNPs on mtDNA can be treated without considering mutation, though it 

should be borne in mind that particular SNPs in HVSI may show recurrent mutation. 

Recurrent mutation is a specific nucleotide change that has occurred more than once. It 

is also worth noting that SNPs can be more reliably typed from degraded DNA than 

STRs and hence have the potential to be of practical use in identification cases.  

7.2 Defining SNP haplotypes for MSY and mtDNA 

from Affymetrix 6.0 SNP chip  

The raw data that I have are the SNP genotypes from the Wellcome Trust Case Control 

Consortium (WTCCC2, 2008) which include 2987 unrelated individuals (1483 males 

and 1504 females) from the two control groups in the study: the 1958 birth cohort and 

the National Blood Service sample (NBS). The platform for genotyping is the 

Affymetrix 6.0 SNP chip. This chip includes 901 SNPs for the MSY and 445 SNPs for 
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mtDNA. SNP haplotypes (referred to as haplogroups here) for both MSY and mtDNA 

were defined from these raw data.  

The majority of MSY SNPs shows no useful variation and thus can be discarded. These 

include some SNPs in which only one type of allele is called for some individuals but a 

proportion of individuals have failed to give an allele call. Genotypes at the remaining 

SNP loci with meaningful variation are then compared and fitted to the standard Y 

haplogroups (the nomenclature system of Y haplogroups in Karafet et al. (2008) was 

used, supplemented with information from: http://www.isogg.org/tree/). 26 distinct 

haplogroups are inferred for the MSY for these data. Recently software including 

YTool (Peng et al., 2014) has been developed to retrieve Y-chromosomal haplogroups 

from GWAS data.  

The software Haplogrep (Kloss-Brandstatter et al., 2011) was used to call mtDNA 

haplogroups. It compares mtSNP calls at specified sites with a database of previously 

analysed whole mtDNA sequences and returns the best fit. 167 haplogroups for 

mtDNA are inferred. The inferred MSY and mtDNA haplogroups and their frequencies 

are shown in Appendix 10.3.  

7.3 Using MSY and mtDNA information as a 

complement to autosomal data 

It could be expected that in most cases, these markers will not help in relationship 

estimation due to their uniparental inheritance, e.g. for the pedigree shown in Figure 

7.1. However, if two individuals happen to be on a patrilineal or matrilineal line of 

descent from a common ancestor, they would share a haplotype of MSY or mtDNA 

even if they were very distantly related (Figure 7.2). This could provide evidence for 

relatedness, but the strength of the evidence would depend on the haplotype frequency 

in the general population from which the individuals derive. Some haplotypes may be 

common, in which case evidence for a particular relationship is weak. However, if the 

shared haplotype is rare, the evidence could be very strong. Donnelly (1983) showed 

that the probability that two relatives share autosomal IBD alleles decays exponentially 

with increasing numbers of separating meioses. When the relationship between two 

individuals is distant, they often share no IBD at all. In that case, based on autosomal 
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data only, their relationship could be undetectable. Provided there are patrilineal or 

matrilineal connections between the individuals, MSY or mtDNA haplotypes are 

expected to be shared IBD no matter how many meioses separate the individuals in 

question.  

Figure 7.2 Pedigrees showing patrilineal and matrilineal lines of descent.  

 

7.3.1 Method 

Here I will present a general way to combine SNPs data of MSY and mtDNA with 

autosomal SNPs in likelihood methods of relationship estimation. Because the 

inheritance of MSY and mtDNA is independent of autosomal DNA, the probability of 

observing autosomal DNA data can be multiplied by the probability of the observed 

MSY and mtDNA data, to get the probability of observing both. This makes it 

convenient to combine the data from MSY and mtDNA with that from autosomal 

chromosomes. Furthermore, the likelihood ratios between hypothesized relationships of 

two individuals obtained from autosomal data, MSY and mtDNA data, respectively, 

can be multiplied as well. The overall likelihood ratio of the two hypotheses of 𝐻𝑖 and 

𝐻𝑗 is hence 

𝐿𝑖

𝐿𝑗
=

𝐿𝑖(𝐴𝑢𝑡𝑜𝑠𝑜𝑚𝑒)

𝐿𝑗(𝐴𝑢𝑡𝑜𝑠𝑜𝑚𝑒)
.

𝐿𝑖(𝑌)

𝐿𝑗(𝑌)
.

𝐿𝑖(𝑚𝑡𝐷𝑁𝐴)

𝐿𝑗(𝑚𝑡𝐷𝑁𝐴)
.     (7.1) 
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Here 𝐿𝑖 represents the likelihood of the hypothesis 𝐻𝑖 based on all the data; 

𝐿𝑖(𝐴𝑢𝑡𝑜𝑠𝑜𝑚𝑒), 𝐿𝑖(𝑀𝑆𝑌) and 𝐿𝑖(𝑚𝑡𝐷𝑁𝐴) represent the likelihoods of the hypothesis 

𝐻𝑖 using autosomal DNA, MSY and mtDNA data respectively. 

The next issue is to calculate the probability of the MSY and mtDNA data. Here I 

consider only the problem of pairwise relationship estimation and assume that the sex 

of the unobserved individuals in the pedigree linking the two individuals in question is 

unknown. This is because all we are concerned with is the distance of the relationship 

between the two individuals and the sex of the ancestors is generally not available. 

Although in previous chapters pedigrees were depicted with sex, this is irrelevant for 

the calculations using autosomal SNP data, whereas the sex of an individual crucially 

matters in the case of MSY- and mtDNA-based estimation. For example, a pedigree 

where only two individuals of interest are observed is shown in Figure 7.3. As is 

convention, individuals with unknown sex are represented by diamonds. Note that, 

even when the sex of an observed individual is unrecorded, males and females can be 

differentiated from SNP-chip data simply by the presence or absence of data for the 

MSY SNPs. 

Figure 7.3 Pedigree of S-3-3 where sex is unknown except those of observed individuals. 

 

Firstly I show how the probability of observed MSY haplotypes for the hypothesized 

pairwise relationship of extended siblings (𝑆 − 𝑛1 − 𝑛2) can be calculated when the 

sex of other individuals in the pedigree is unknown.  

𝑃(𝑌) = 𝑃(𝑌|𝐼𝐵𝐷) ∗ 𝑃(𝐼𝐵𝐷) + 𝑃(𝑌|𝑁𝑜𝑛𝐼𝐵𝐷) ∗ (1 − 𝑃(𝐼𝐵𝐷),  (7.2) 
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where Y represents observed haplogroup data for the two individuals of interest and 

P(IBD) is the probability that the two individuals (both males) inherit their MSY from 

the same male ancestor. 

If the number of meioses between the two relatives is 𝑛 (𝑛 = 𝑛1 + 𝑛2 for a relationship 

𝑆 − 𝑛1 − 𝑛2), P(IBD) =1/2(𝑛−2) because in every generation there is only a 

probability of 0.5 that the connecting individual is a male (assuming a 50:50 sex ratio) 

and therefore inherits a Y chromosome from the common male ancestor. Since we 

already know that the two observed individuals are males, these individuals inherit 

their MSY from their fathers with probability of 1. Values for 𝑃(𝑌|𝐼𝐵𝐷 and 

𝑃(𝑌|𝑁𝑜𝑛𝐼𝐵𝐷), the probability of observing specific Y haplogroups in two males when 

they are IBD and not IBD, are shown in Table 7.1.  

Table 7.1 Probabilities of observing the Y haplotypes of two male individuals when they are and not  IBD. 

Observed Y haplogroup IBD Non-IBD 

i i 𝑝𝑖 𝑝𝑖
2 

      i j 0 𝑝𝑖𝑝𝑗 

 

As an example, consider two males both having the same MSY haplogroup 𝑖 with 

frequency 0.01. The probability of these observed haplogroup data under pedigree S-2-

2 is  

𝑝𝑖 ∗ 𝑃(𝐼𝐵𝐷) + 𝑝𝑖
2 ∗ (1 − 𝑃(𝐼𝐵𝐷) = 0.01 ∗ 1/4 + 0.012 ∗ (1 − 1/4) = 0.002575 

where 𝑝𝑖 represents the frequency of the haplogroup 𝑖. The probability of these MSY 

haplogroups under pedigree ‘unrelated’ is 0.012 × 1 = 0.0001. The likelihood ratio of 

the two pedigrees is 25.75, which gives moderate support for pedigree S-2-2. But if this 

MSY haplogroup is a common one with frequency, say 0.2, the above likelihood ratio 

will become just 2, which gives limited support for pedigree S-2-2. Evett and Weir 

(1998) suggested a convention of interpreting likelihood ratios into evidence to support 

one hypothesis against another (Table 7.2). 
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Table 7.2 Likelihood ratios and their verbal equivalent of support (excerpted from (Evett and Weir, 1998)). 

Likelihood ratio Verbal equivalent 

1 to 10 Limited support 

10 to 100 Moderate support 

100 to 1000 Strong support 

more than 1000 Very strong support 

 

The calculation of the probability with observed mtDNA haplogroups is exactly the 

same as that for MSY, except that it can be done when the two observed individuals are 

of either sex, since all individuals carry mtDNA. The common female ancestor passes 

her mtDNA to all her children with probability 1. After that generation, every 

generation of ancestors of the two individuals in question has a probability of 0.5 to 

pass the common ancestor’s mtDNA to the next generation, because males do not 

transmit mtDNA. So the two observed individuals (of either sex) have a probability of 

1/2(𝑛−2) to share a mtDNA haplogroup IBD. 

7.3.2 Simulation Study 

To show whether we can obtain useful extra information from the MSY and mtDNA 

data, a simulation study was carried out along the lines of what was done for autosomal 

markers. We know that MSY data are only available for males and mtDNA data are 

available for both males and females so, in order to consider both kinds of data 

together, I focused on cases where the two individuals in question are both male. 

11,000 evenly spaced autosomal SNPs, MSY haplogroups and mtDNA haplogroups 

were simulated for different true relationships ranging from S-1-1 to S-5-5. The sex of 

the individuals on the pedigree were supposed unknown (with equal probability of 

being either sex) except for the two observed individuals. Then for each true 

relationship, the likelihoods for several hypothesized relationships - S-1-1, S-2-2, S-3-

3, S-4-4, S-5-5 and ‘unrelated’- were calculated. The purpose was to see how well we 

can distinguish the true relationship from those specific alternative relationships. 

10,000 replicates were carried out for each true relationship. Then the likelihoods were 

converted into posterior probabilities 𝑃𝑖 =
𝐿𝑖

∑ 𝐿𝑖
𝑛
𝑖=1

 assuming a flat prior, where 𝑃𝑖 and 

𝐿  are the posterior probability and likelihood of the 𝑖𝑡ℎ hypothesized relationship 
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respectively (Section 4.1). The reason that 11,000 autosomal SNPs were used is that 

with this number we do not need to consider the issue of LD (Berkovic et al., 2008, 

Pemberton et al., 2010, Kling et al., 2012). 11,000 SNPs usually are not sufficient to 

distinguish distant relatives, but here I just want to see whether the distinguishing 

power is increased when MSY and mtDNA data are combined with these autosomal 

SNPs. The results when only autosomal SNPs were used in the calculation are shown 

in Table 7.3 to be used as a baseline. 

Table 7.3 Average posterior probabilities of several close alternative relationships when 11,000 SNPs are used 

for each true relationship. 

True 

relation(below) 

S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 Unrelated 

S-1-1 1 0 0 0 0 0 

S-2-2 0 0.9941 0.0059 0 0 0 

S-3-3 0 0.0059 0.8194 0.1465 0.0222 0.0061 

S-4-4 0 0 0.1457 0.4275 0.2591 0.1677 

S-5-5 0 0 0.0222 0.2589 0.3545 0.3644 

In the first column are the true relationships. Then the posterior probabilities are shown for each true and 

alternative relationship. Each row may not sum to one due to rounding. 

The results of incorporating MSY and mtDNA haplogroup information in the 

likelihood and corresponding posterior probability calculations are shown in Table 7.4. 

Table 7.4 Average posterior probabilities of several close alternative relationships when 11,000 autosomal 

SNPs, Y chromosome and mtDNA are used for each true relationship. 

True 

relation(below) 

S-1-1 S-2-2 S-3-3 S-4-4 S-5-5 Unrelated 

S-1-1 1 0 0 0 0 0 

S-2-2 0 0.9941 0.0059 0 0 0 

S-3-3 0 0.0055 0.8212 0.1455 0.0219 0.0060 

S-4-4 0 0 0.1449 0.4288 0.2592 0.1670 

S-5-5 0 0 0.02188 0.2588 0.3548 0.3645 

In the first column are the true relationships. Then the posterior probabilities are shown for each true and 

alternative relationship. Each row may not sum to one due to rounding. 

Comparing the values in bold in Table 7.4 with that in Table 7.3, we can see that when 

the true relationship is more distant than S-2-2 the values for the average posterior 

probability of the true pedigree are slightly increased with the addition of MSY and 
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mtDNA data, although the increase is negligible. Because MSY and mtDNA help only 

in a small number of the replicates due to their uniparental inheritance and lack of sex 

information, the information provided by them appears trivial by averaging over a large 

number of the replicates. But in fact, in those cases where two individuals do share an 

MSY or mtDNA haplotype IBD, the increased information could be dramatic. In Table 

7.5, I show that when MSY and mtDNA are included, the number of relatives that can 

be detected increases. This is especially apparent when the true relationship is distant 

and the relatives share fewer autosomal SNPs IBD.  

Table 7.5 The number of replicates where relationship ‘unrelated’ has the highest likelihood among the six 

hypothesized relationships considered out of the 10,000 replicates for each true relationship. ‘Unrelated’ has 

the highest likelihood means that the two individuals of interest are mistakenly estimated as unrelated, 

otherwise they will be estimated somehow related although it may not be the true relationship which has the 

highest likelihood. 

True relationship Only autosomal SNPs MSY and mtDNA 

included 

Reduced 

S-1-1 0 0 0 

S-2-2 0 0 0 

S-3-3 47 44 3 

S-4-4 2416 2389 27 

S-5-5 6228 6185 43 

 

When the true relationship is S-3-3, the number of replicates in which ‘unrelated’ has 

the highest likelihood decreases from 47 to 44, which mean 3 more pairs of relatives 

are estimated as related when MSY and mtDNA are included. Similarly, when the true 

relationship is S-4-4, 27 more pairs of relatives are detected as related when MSY and 

mtDNA are used. And when the true relationship is S-5-5, 43 more pairs of relatives 

are detected as related. When the true relationship is S-1-1 and S-2-2, there are no 

replicates in which ‘unrelated’ has the highest likelihood, which means that the two 

relatives are estimated as related in all replicates.  

The reason that MSY and mtDNA help more for cases of distant relatives is that when 

the true relationship is more distant, there is a higher probability that they share few or 

even no autosomal markers IBD, while for close relationships, there is so much 
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information in the autosomal data that the effect of MSY and mtDNA data  is 

negligible .  

7.4 Special cases 

Above I have shown how MSY and mtDNA SNP haplotypes can be used in a general 

pairwise relationship estimation problem where sex is unknown except for the two 

individuals of interest, and presented a method for systematically combining them with 

autosomal SNPs. In this section I consider their uses in cases where the sex of more 

pedigree members is known. A very simple use of MSY and mtDNA markers is to 

verify pedigrees for sex consistency for any applications requiring pedigrees e.g. 

linkage analysis. 

Next I give examples of four special cases where MSY and mtDNA can be very useful. 

In case 1, I want to know whether two males are siblings or maternal half-siblings 

when no parent is observed. In case 2, I want to know whether the two males are 

maternal half-siblings or unrelated when no parent is observed. In case 1, the question 

that I want to answer is whether the two individuals share a common father, while in 

case 2, the question is whether the two individuals share a common mother.  
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Figure 7.4 Graphs of case 1 and case 2 (individuals with a line crossing are not observed). 

Case 1 

                              vs.                   

Case 2 

          vs.               

In case 1, if the Y haplogroups of the two individuals in question are different, we can 

exclude the first pedigree and choose the second pedigree immediately. In this case it 

becomes a problem of excluding a relationship for inconsistency of MSY haplogroups.  

If they are of the same type and the frequency of this shared haplogroup is denoted as 

𝑝, then the likelihood of the first pedigree is  𝑝 and the likelihood of the second 

pedigree is 𝑝2. Therefore the likelihood ratio of the two pedigrees is 1/𝑝. If the shared 

MSY haplogroup is a rare one with a low 𝑝, we will obtain stronger evidence 

supporting the first pedigree. The idea is the same for case 2, but here I consider their 

mtDNA haplotype. The above constitutes the evidence that we can get from MSY data 

or mtDNA alone. These likelihood ratios could be multiplied by those obtained from 

autosomal data if they are available. 
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Figure 7.5 Graph of case 3. 

 

In case 3, a reported pedigree is as shown in Figure 7.5 in which two individuals share 

a common female ancestor nine generations ago via matrilineal descent. The proposed 

pedigree is known to be credible and A is known. We want to know whether an 

observed individual is the individual labelled B in this pedigree, or just some random 

person, i.e. unrelated to A. In this case, the use of mtDNA is more important because 

for relationships this distant, the autosomal data are unlikely to be very helpful since 

such relatives have a very high probability of sharing no autosomal allele IBD. Sharing 

a rare mtDNA haplogroup with frequency of 0.001 will give a likelihood ratio of 

1000/1 between the reported relationship and the proposition that they are unrelated. 

This situation is not unlike the case of the DNA identification of the remains of King 

Richard III, in which a living individual known to be a 16-generation matrilineal 

descendent of Richard’s sister, Anne of York, has been shown to share a rare mtDNA 

haplotype with the skeletal remains (King et al., 2014). In this case, the whole mtDNA 

genomes were sequenced. 

Autosomal data could tell us how two individuals are related, such as cousins, second 

cousins etc. They can never tell us the sex of the individuals in the pedigree linking the 
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two individuals, which we may want to know in some applications. But MSY and 

mtDNA data can give us some hints. If the two relatives share a rare Y chromosome or 

mtDNA haplotype, we can suspect that they are likely to be linked by a pedigree as 

shown in Figure 7.2 because if there is a break in the patrilineal or matrilineal line of 

descent, the probability that the two relatives share the same rare haplogroup is very 

low. For example, two females A and B are second cousins (Figure 7.6) and we want to 

know whether B is related to A through her father or mother. If m1 is a rare 

haplogroup, the pedigree in part (a) of Figure 7.6 is very unlikely and we have strong 

evidence to support the pedigree in part (b) of Figure 7.6, which means that B is related 

to A through her mother. In another scenario, if we know the mtDNA haplogroup of 

the mother of B is a different type m2, we have evidence to support that B is related to 

A through her father. 

Figure 7.6 Two examples where mtDNA haplotype is used to exclude hypothesized pedigrees (black colour 

represents observed individuals, m1 and m2 are different mtDNA haplotypes) 

 

Clearly, these data (Y and mtDNA) are most useful when sex information is available. 

Such special cases could be generalized to include pedigree verification for any 

applications requiring pedigrees e.g. linkage analysis. 

7.5 Discussion 

It is worth noting that the way of calculating likelihood for MSY and mtDNA data in 

Section 7.3.1, is specially proposed for situations where the sex of the pedigree 

member are all unknown except the two individuals of interest. For situations where 

the sex of the hypothesized pedigree is known (based on prior information perhaps), 
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the probability that the two individuals share IBD MSY or IBD mtDNA should not be 

calculated by the formula  P(IBD) =1/2(𝑛−2)  where 𝑛 is the number of meioses 

between the two individuals of interest. The probability of the IBD status of the MSY 

or mtDNA between two individuals is either 1 or 0 as long as the pedigree (together 

with sex) in specified.  

A case in which MSY and mtDNA data are very useful, is that the two individuals, A 

and B, are distantly related and share little or no autosomal DNA IBD. If we compare 

the true relationship that A and B are distantly related with another two hypotheses that 

A and B are closely related, and that A and B are unrelated, the hypothesis that A and 

B are closely related could be easily rejected by the fact that A and B share little 

autosomal DNA IBD. It may be appealing to increase the weight for the information 

provided by MSY or mtDNA because it could increase our capability of rejecting the 

wrong hypothesis that A and B are unrelated. But doing that will unavoidably increase 

the probability that unrelated individuals, who share the same MSY or mtDNA 

haplogroup simply by chance, are concluded as distantly related because the 

likelihoods obtained from autosomal DNA are similar for the two hypotheses of 

‘distantly related’ and ‘unrelated’, and all that makes difference are their MSY and 

mtDNA data.  

However, when prior information is available which enables us to test a specific 

hypothesis where the sex of all the pedigree member are known such as in the special 

case 3 in this chapter, against a hypothesis of ‘unrelated’, MSY and mtDNA give more 

information than when we test a hypothesis where the sex on the pedigree is unknown. 

Use the special case 3 as an example: the likelihood ratio of this S-9-9 relationship over 

‘unrelated’, based on them sharing a mtDNA haplogroup with frequency 0.001, is 

1/0.001=1000 in this case. If we do not know the sex of the individuals on this S-9-9 

pedigree and simply compare the two hypotheses that the two individuals of interest 

are S-9-9 related and that they are ‘unrelated’, the likelihood ratio is 1.015244 (based 

on method in Section 7.3.1). This example illustrates that we get greater information 

from MSY and mtDNA data in special cases where prior information designates the 

sex of the individuals on the pedigrees that are considered. But when this prior 

information is not available and the sex of the linking individuals between the two 
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individuals of interest is unknown, it is not justified to up-weight the likelihood ratio 

obtained from MSY or mtDNA. We have no way to know whether two individuals 

share a rare mtDNA simply by chance or because they share a distant ancestor. Note 

that this kind of uniparental pedigrees shown in Figure 7.2 are so rare that the 

probability that two individuals share this kind of relationships could even be less than 

the probability they share a rare MSY or mtDNA haplogroup by chance. 

7.6 Summary 

In this chapter, it was studied that how MSY and mtDNA haplogroups can be inferred 

from SNP data and a general way was shown to incorporate MSY and mtDNA SNPs in 

the likelihood method for relationship estimation as a supplement to autosomal SNP 

data. This study showed that they can help to detect distant relatives who may not be 

detectable using only autosomal data. Some other scenarios in which MSY and 

mtDNA SNPs can be useful are discussed as well. It can been seen that in some cases, 

MSY and mtDNA SNPs just provide extra information to autosomal DNA data, but in 

some cases they can solve problems which cannot be solved by autosomal DNA data. 

Since there is no extra cost to obtaining these data for many widely-used SNP chips, it 

makes sense to harness the information.  
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8 Reconstructing pedigrees from genetic 

data 

So far only the relationships between two individuals have been considered although it 

is known that the pedigree-based method can easily incorporate more individuals. 

When data on more than two relatives are available, it is sometimes of interest to 

estimate their relationship altogether and reconstruct a pedigree for them. In traditional 

linkage analysis, pedigrees are needed to ascertain the mode of the trait of interest 

segregating in the family. The co-segregation of the trait and the putative causal genes 

in the pedigree is the foundation of model-based linkage analysis. Pedigree 

reconstruction is also needed in the situation where the remains of many individuals are 

found such as from a grave or a disaster scene, and DNA is the only information 

available to identify their relationships, e.g. the finding of the Romanov family (Gill et 

al., 1994, Coble et al., 2009). Another benefit of considering the relationships of many 

individuals jointly is that we may find relationships that cannot be found by pairwise 

estimation. Imagine a case where all individuals on an S-5-5 pedigree are genotyped 

(this may not be realistic for humans, but is for other species). The relationship of the 

two individuals at the bottom of the pedigree may be hard to find as there is a high 

chance that they do not share any DNA IBD. But when the whole pedigree is 

reconstructed, their relationship is known. In this chapter I consider how to find the 

relationships among a group of individuals by reconstructing a pedigree.  

8.1 Maximum likelihood method  

There have been many approaches to pedigree reconstruction. Most of them are based 

on maximum likelihood pedigree reconstruction approach in which a pedigree with the 

maximum likelihood for observed genetic data is sought. To date, most methods using 

this approach only work well on complete samples. A complete sample is a sample of 

individuals where either both parents of each individual are included in the sample, or 

this individual is a pedigree founder. A maximum likelihood method was first 

developed by Thompson (1976). Here I give a simple description of Thompson’s 

method.  
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When everyone is observed, likelihoods for different hypothesized pedigrees can be 

easily calculated for unlinked markers by decomposing the pedigrees into sets of 

nuclear families which only include parents and children. The following formulae are 

presented by Thompson (1986). The likelihood of the ‘basis pedigree’, where all 

individuals are unrelated, is simply the product of the probabilities of all genetic data 

over individuals and loci: 

P(data|all unrelated) = ∏ ∏ P(data on individual h at locus j)s
j=1h . (8.1) 

This is not a plausible pedigree, but is just as a base point for reconstruction.  

When all individuals are observed, the likelihood of a hypothesized pedigree is the 

product of the founder genotypes probabilities multiplied by the probabilities of 

genotypes of offspring given those of their parents: 

∏ [∏ P(data on founder at locus j) ∏ P(data on individual at locus j|parent data)]nonfounders  founders
s
j=1   (8.2). 

If we denote the mother and father of nuclear family 𝑖 as 𝑀𝑖 and 𝐹𝑖, and the children in 

the family as Cik (k = 1, … , ik is the kth child in the family 𝑖 ), in the log-likelihood 

difference of the two equations (8.1) and (8.2), the terms corresponding to founders 

cancel and leave 

Log[(2)] − log[(1)] =  ∑ ∑ ∑ log {P(Gj(Cik)|Gj(Mi), Gj(Fi)
ik
k=1i

s
j=1 )/P( Gj(Cik))},  (8.3) 

where Gj(Cik) represents the genotype of individual Cik at locus j. 

Every hypothesized pedigree has a value corresponding to Equation (8.3). Thompson 

(1976) regarded pedigrees as a collection of sib-ships and aimed to reconstruct the 

pedigree by finding all compatible sib-ships in the pedigree. She started the pedigree 

reconstruction process from the ‘basis pedigree’ and sequentially updated it. For every 

new sib-ship, the putative parents which gave highest increase in value for Equation 

(8.3) would be selected. With her likelihood approach, the process for the pedigree 

reconstruction is a sequential acceptance of a set of sib-ships which gives the highest 

value for Equation (8.3). In order to guarantee the sib-ships are compatible, some extra 

information is needed. For example, one child cannot have two mothers or two fathers, 

so sex information of the individuals are needed. Similarly age information is needed to 
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exclude the possibility that an individual is his own grandfather, which is possible due 

to the symmetry of the parent-child relationship. A restriction on the size of sib-ship is 

also important as big sib-ship size tends to generate the largest value of Equation (8.3). 

There are some limitations to this method. Firstly, conditional on the non-exclusion of 

the sibling as a parent, the sibling often gives a higher likelihood than the true parent. 

This has been confirmed by my simulations later on in this chapter. Siblings usually 

will not be mistaken as parent-child as parents and children must share at least one 

allele in common. But when siblings happen to share at least one allele in all loci, 

although this becomes less likely when more markers are considered, they are often 

estimated as parent-child relationship. Secondly, a relationship falsely assigned at an 

earlier stage in the sequential procedure may result in the true pedigree never being 

found.  

Almudevar (2003) extended the sequential algorithm of Thompson and developed an 

annealing algorithm for maximum likelihood pedigree reconstruction. He enumerated 

parent-offspring triplets as the first step, then assembled these triplets into a pedigree 

based on the maximization principle. This optimization problem was then reformulated 

to divide the set of all admissible pedigrees into subsets on which the likelihood is 

easily maximized. In his method, age and sex information are not always needed, but a 

complete sample is still required. Both sequential algorithm and annealing algorithm 

can only find a pedigree with high likelihood, but cannot guarantee to find the pedigree 

with maximal likelihood (Cussens et al., 2013). Riester et al. (2009) took an MCMC 

sampling approach to improve the accuracy of the pedigree reconstruction. Cowell 

(2009) adapted the Bayesian network learning algorithm and developed a dynamic 

programming exhaustive search algorithm. This algorithm is guaranteed to return a 

pedigree of highest likelihood, but it is computationally intensive and is feasible only 

for up to around 30 individuals. Cussens et al. (2013), Barlett and Cussens (2013) 

proposed a constraint-based integer programming approach to maximum likelihood 

pedigree reconstruction and it could handle much larger samples. In the next section, 

the method of Cussens et al. (2013) will be introduced in more detail as it seems to 

work best with a complete sample in terms of both ‘guaranteeing a highest likelihood 

estimate’ and ‘handling large numbers of individuals’.  
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Methods have also been proposed to construct sib-ships from a sample of individuals 

which includes siblings or half-siblings and unrelated individuals (Blouin, 2003, Jones 

and Wang, 2010a) without attempting to construct a pedigree. What these methods do 

is just partitioning a sample into sib-ships and they are not pedigree reconstruction 

strictly as they do not do multiple-generation pedigree reconstruction. Instead they can 

be regarded as a special case of clustering (Section 8.2). The fact that they only look 

for sib-ships, which is a very close relationship, makes their use in clustering limited 

although they could have applications in evolution and conservation of wild 

populations (Jones and Wang, 2010b, Carpenter et al., 2005, Gottelli et al., 2007). 

  

8.1.1 Constraint-based integer linear programming approach in maximum 

likelihood pedigree reconstruction 

The method of Cussens et al. (2013) works under the same assumptions as the previous 

algorithms: complete sample, complete genetic data, no mutation, no linkage and 

Mendelian inheritance and linkage equilibrium. The method is implemented in the 

software GOBNILP (www.cs.york.ac.uk/aig/sw/gobnilp/), which is free to be 

downloaded. The integer linear programming optimization problem is to find the 

values to some variables, which maximizes some objective functions while respecting 

all constraints. In order to use integer linear programming to do optimization, both the 

function to be optimized and the constraints need to be expressed as linear functions of 

a set of variables, some of which are integers, then off-the-shelf solvers can be used to 

find the solution. An important task is to formulate the pedigree reconstruction problem 

in the correct form.  

The probability that individual 𝑣 has the observed genotype 𝑔𝑣 on a pedigree 𝐺 

conditional of the genotype of his parent can be denoted as 𝜏(𝑣, 𝑃𝑎(𝑣, 𝐺)) where 

𝑃𝑎(𝑣, 𝐺) denotes the parent set of 𝑣 in pedigree 𝐺, which could include 2, 1, or 0 

elements. When 𝑃𝑎(𝑣, 𝐺) is an empty set, 𝜏(𝑣, ∅) is equal to the marginal probability 

of individual 𝑣 having the genotypes of 𝑔𝑣. Because a pedigree is completely specified 

by parent-child relationships, under the assumption of a complete sample and 

Mendelian inheritance, the probability of any single configuration of genotypes on a 

pedigree, and hence the likelihood, decomposes into a product of conditional 

probabilities and can be written as 𝐿(𝐺) = ∏ 𝜏(𝑣, 𝑃𝑎(𝑣, 𝐺))𝑣∈𝑉 , which is equivalent to 
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Equation (8.2). As it is often more convenient to work with log-likelihood, the 

optimisation problem is to find 𝐺 which maximize the log-likelihood  

l(G) = logL(G) = ∑ τ(v, Pa(v, G))v∈V .                     (8.4) 

In order to reformulate the above log-likelihood as an integer linear programming 

problem, binary indicator variables I(W → v) are created for each possible parent set 

𝑊 of individual 𝑣. Set I(W → v) = 1 if and only if 𝑊 is the correct parent set for 

individual 𝑣 and I(W → v) = 0 otherwise, while⌈W⌉ ≤ 2 for diploid individuals who 

have at most two parents in the pedigree. For example, for a simple pedigree as shown 

in Figure 8.1, I(∅ → 1) = 1 because both parents of individual 1 are missing; I{1,2} →

4 = 1 because {1,2} is the full set of the parents of individual 4 on the pedigree; I{1} →

4 = 0 because {1} does not include all parent of individual 4 on the pedigree; I{1,3} →

4 = 0 because {1,3} is not the correct parent set of individual 4 on the pedigree. 

Figure 8.1 A pedigree used to illustrate how GOBNILP defines variables. 

 

 

The log-likelihood shown in Equation (8.4) can be rewritten in terms of these binary 

variables as  

l(G) = logL(G) = ∑ τ(v, W)I[(W → v)(G)v,W ] ,                   (8.5) 

where I[(W → v)(G)] = 1 only when W = Pa(v, G). Now the maximum likelihood 

pedigree reconstruction problem becomes finding a set of I(W → v) to maximize the 

quantity in Equation (8.5), which is a linear function, subject to the constraint that the 

pedigree represented by such an instantiation is valid. A pedigree is valid if and only if 

every individual is included in the pedigree once; no-one is their own ancestor; every 
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individual only has one father and one mother. These constraints and some prior 

information, if available, can be simply expressed as linear functions. 

In order to see the performance of the software GOBNILP and provide advice to the 

developers on how it behaves when the sample is not complete, I have done extensive 

testing on it for different situations. It is currently designed only for complete sample 

problems and has been shown to work well for that scenario (Cussens et al., 2013, 

Sheehan et al., 2014). I mainly tested it on pedigrees with missing individuals. When 

all individuals on the pedigree shown in Figure 8.2 (Day-Williams et al., 2011) are 

observed (both shaded and unshaded), this pedigree was reconstructed by GOBNILP 

correctly in all 100 replicates with just 30 STRs.  But when there were missing 

individuals on a pedigree, some parts of the pedigree were estimated as unrelated to 

other parts of the pedigree if there was no data on the linking individuals. When some 

individuals had only one single parent observed, the direction of the parent-child 

relation could be wrong sometimes. Again for the pedigree shown in Figure 8.2, when 

only the shaded individuals were observed, individuals 7, 14, 16, 17, 20, 21, 22, 23 

often form one pedigree while individuals 3, 13, and 19 are estimate unrelated to them 

in the results. 

Figure 8.2 A pedigree used to test GOBNILP. 

 

8.2 Clustering 

Rather than reconstruct a pedigree for all individuals altogether, Cowell and Mostad 

(2003) proposed a divide-and–conquer approach for pedigree reconstruction. Firstly 
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people are clustered into small groups of closely related individuals based on the 

distance of their pairwise relatedness. The distance criterion for clustering individuals 

can be adjusted as desired. The pedigree for each group is easier to reconstruct as the 

pedigrees are smaller. Then they suggested that these small pedigrees can be 

constructed together. However they did not propose any new method of reconstructing 

a pedigree either within each cluster or for connecting all clusters. So what they did is 

just clustering, rather than pedigree reconstruction although they used the term 

‘pedigree reconstruction’. Day-Williams et al. (2011) discussed clustering as well 

while they talked about doing linkage analysis with just clusters of relatives rather than 

pedigrees. The criterion used by Day-Williams et al. (2011) to cluster is the kinship 

coefficient, which is a mainstream pairwise relatedness measure while the distance 

measure of Cowell and Mostad (2003) is not quite the same thing and is not commonly 

used. I will concentrate on the work of Day-Williams et al. (2011) when discussing 

clustering individuals. 

In Section 8.1.1, it was mentioned that when there are missing individuals in the 

pedigree, the order of the parent-child relationship reconstructed by GOBNILP can be 

wrong and two groups of individuals with a gap between them will be treated as two 

unlinked pedigrees. Therefore in this situation, GOBNILP can cluster individuals into 

groups that are all connected by parent-child links. I applied GOBNILP on an example 

presented in the paper of Day-Williams et al. (2011) and compared with their results. 

Genotype data were simulated for two independent replicates of the pedigree shown in 

Figure 8.3. What Day-Williams et al. did is to cluster the two pedigrees using their 

method without constructing the pedigree. They calculated the pairwise kinship 

coefficients for all individuals and grouped them in one cluster if their pairwise kinship 

coefficient is greater than a threshold. Three different thresholds were used to do the 

clustering and their results are shown in Table 47 of the supplementary material of their 

paper (Day-Williams et al., 2011). They firstly considered the case where all 

individuals are observed, then moved to the case where individuals on positions of 7, 8, 

9, 10, 11, 12 are unobserved. Basically this means the whole third generation is 

unobserved. Their results show that when all individuals are observed, they can cluster 

the two pedigrees correctly with all three different thresholds. When there are missing 

individuals and a low threshold is used, they can cluster individuals into the two 
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pedigrees correctly as well. When there are missing individuals and a high threshold is 

used, many small clusters are formed and distant relatives are grouped into different 

clusters. 

Figure 8.3 A pedigree used to compare GOBNILP and clustering based on pairwise relatedness (Day-

Williams et al., 2011). 

 

I want to see whether GOBNILP could do the same or better. It is known that 

GOBNILP will do the clustering and reconstructing at the same time. As GOBNILP 

currently does not accept the pedigree IDs when there is more than one pedigree in the 

dataset and every individual needs to have a unique ID, I added number ‘100’ before 

the original ID of the first pedigree and added ‘200’ before the original ID of the 

second pedigree to make every individual have a unique ID number while their 

positions on the original pedigree are kept. The simulation was done for the case that 

all individuals are observed first, then for the case that the individuals on positions of 7, 

8, 9, 10, 11 and 12 unobserved. 100 runs were carried out for both situations and for 

15, 30 and 150 STR markers respectively.  

The results can be summarized as follows. When all individuals are observed, the two 

pedigrees are correctly clustered and both are constructed correctly with just 15 

markers. When the middle generation is missing, generally the top part and bottom part 

of each pedigree will form separate clusters and are not linked together. Therefore the 

clustering method of Day-Williams et al. (2011) has an advantage in that they can 

cluster distant relatives together even if there are missing individuals (with a lower 

threshold for clustering) which GOBNILP cannot do at present since it always seeks 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3290352_nihms-352876-f0001.jpg
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parent-child edges. The advantage of GOBNILP is that when doing clustering, the 

pedigree within each cluster are reconstructed which the method of Day-Williams et al. 

(2011) cannot do. 

8.3 Reconstructing pedigrees using pairwise 

relatedness  

Most methods in literature on pedigree reconstruction are likelihood based, even for 

sib-ship construction. Pairwise relatedness has been utilized to find sib-ships only 

(Bentzen et al., 2001, Rodriguez-Ramilo et al., 2007), but not for multi-generation 

pedigree reconstruction, although the term ‘pedigree reconstruction’ has been used. 

With the clustering method in mind, I propose a method of reconstructing pedigrees 

based on pairwise relatedness. The reason that this method could work is based on the 

fact that with dense SNP markers, first-degree relatives (relatives who are one meiosis 

away from each other and share about 50 percent of their genes, such as parent, 

children and siblings) and second-degree relatives can be separated with minimal 

uncertainty. This method works on a large number of individuals which are not 

necessarily a complete sample and includes two clustering steps and one construction 

step.  

The LR MoM estimator was used to calculate pairwise kinship coefficients between 

every pair of individuals in a sample and build a relatedness matrix. Remember that a 

pedigree determines a relatedness matrix, but a relatedness matrix does not determine a 

pedigree, e.g. a pedigree where 3 individuals all are siblings and a pedigree where 2 

individuals are sibling and 1 individual is their parent, have the same relatedness 

matrix.    

The purpose of the first clustering is to divide the whole sample into groups within 

which all individuals are connected together without a gap. The criterion of the first 

clustering is: put a new individual into an existing cluster as long as he has a first-

degree relationship with at least one individual who is already in the cluster. A 

plausible threshold value for the kinship coefficient is 0.1875 which is the midpoint of 

0.25 for a first-degree relationship and 0.125 for a second-degree relationship. 
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In order to construct the pedigrees for each cluster obtained from the first clustering, 

we need another clustering. The idea is to divide a cluster into ‘units’. A unit is a 

special cluster in that pairwise relationships between any pair of its members are first-

degree. So the criterion for the second clustering is: put a new individual into an 

existing ‘unit’ only if he has a first-degree relationship with all individuals who are 

already in the ‘unit’. The same kinship coefficient of 0.1875 as in first clustering can be 

used. Each unit includes only one parent and all of his children because the pairwise 

relatedness between the two parents are generally very low in outbred population and 

do not meet the criterion of the second clustering. Then these units can be linked up to 

form a pedigree in the construction step by finding those individuals who are parents in 

one unit and children in another unit. The whole pedigree will be known as long as all 

‘units’ are known.   

One important issue that has to be considered in the second clustering is whether we 

could distinguish first-degree relationships from second-degree relationships (where 

relatives share about a quarter of their genes) reliably. Blouin, et al. (1996) showed that 

with 20 unlinked microsatellite markers, they could distinguish half-sib pairs from full-

sib pairs with accuracy of 80%. Bentzen, et al. (2003) reconfirmed the results. Some 

other papers have used pairwise relatedness to distinguish full-siblings from half 

siblings as well (Fernandez and Toro, 2006, Rodriguez-Ramilo et al., 2007), but they 

also used less than 100 STR markers. The rate of correct relationship assignment that 

they reported is not high enough as we need a much higher accuracy to be able to 

construct ‘units’ confidently. Only recently has it been shown that by using dense SNP 

markers the first-degree relationships can be distinguished from second-degree 

relationships. Day-Williams et al. (2011) have shown that with 500K SNPs, there is no 

single overlap in the estimated kinship coefficients for a S-1-1 relationship and a S-1-2 

relationship out of 500 replicates. To confirm this, I did my own simulation with 

relationships S-1-1 and HS-1-1. I found that with 110,000 SNPs selected from 

Affymetrix 500K Array Set, first-degree relatives (represented by S-1-1) can be 

distinguished from second-degree of relatives (represented by HS-1-1) with accuracy 

of higher than 99%.  

There are two ways to achieve this second clustering using the R software. 1) Set one 

individual up as the first ‘unit’. Then check all other individuals respectively. For every 
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individual, if the kinship coefficients between him and all individuals existing in the 

current ‘unit’ are greater than our threshold, add him to the ‘unit’; if he does not meet 

the criterion for any current ‘unit’, build a new cluster for him. 2) Set one cluster for 

each individual first. The number of ‘units’ will be the same as the number of 

individuals. Then for each cluster, search from all other individuals for those who meet 

the criterion and add them into that ‘unit’. There will be repeated ‘units’ after this step 

because the exact same ‘unit’ will be constructed starting from every individual 

included in this ‘unit’. The redundant clusters should be removed. This clustering will 

generate ‘units’ which include full siblings and one of their parents.  

Next what needs to be done is to find who is the parent in the ‘units’ in the construction 

step. We could find who is the parent within this ‘unit’ with the help of pairwise 𝑘2 

(the probability that two individuals share two alleles IBD) and age information. We 

know that parent-child relationship has an expected 𝑘2 of 0 while siblings have an 

expected 𝑘2 of 0.25 although the expected 𝑘1 (the probability that two individuals 

share one allele IBD) is the same for the two relationship. I did a simulation with 110K 

SNPs to see whether the parent-child relationship can be distinguished from the sib-

sips with the estimated 𝑘2. There is only 1 overlap for the 𝑘2 estimate of the two 

relationships, PC-1 and S-1-1, out of 400 replicates. So PC1 and S-1-1 can be 

distinguished from each other with very high accuracy. Another way to distinguish 

relationship PC-1 from relationship S-1-1 is by the fact that parents and children should 

share at least one allele IBS at all loci. We could assign a relationship to be S-1-1 if the 

number of loci with genotypes inconsistent for a PC-1 relationship is greater than a 

threshold. Each ‘unit’ only includes one parent, but the number of children varies. If 

there is more than one child within a ‘unit’, the parent is the individual that has a 

parent-child relationship with everyone else in the ‘unit’. But if there is only one child 

in a ‘unit’, then age information is needed to tell who is parent by symmetry of the 

parent-child relationship. Once the parent in each ‘unit’ is found, ‘units’ can be linked 

by individuals who are a parent in one ‘unit’ and a child in another ‘unit’, hence  the 

pedigree can be reconstructed by linking ‘units’ together.  
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Figure 8.4 Example: A complete pedigree, no missing individual, no inbreeding.  

 

8.3.1 Testing my pedigree reconstructing method based on pairwise relatedness  

I have tested this method on the small pedigree shown in Figure 8.4 with simulated 

SNP and STR data and it performed well. 110, 000 SNPs instead of 500K were used 

because it has been shown that MoM estimators perform better when using 110, 000 

than using 500K SNPs for close relationships and the speed of calculation is faster 

when less markers are used. 1000 STR markers were tested later to check whether we 

can use fewer STR makers to replace dense SNP markers because there are 

𝑛(𝑛 − 1) 2⁄  kinship coefficients to calculate for a sample with 𝑛 individuals and the 

speed of calculation is very important. The results shows that this method works very 

accurately on this small pedigree and 1000 STRs work almost as well as 110,000 

SNPs.  

Unlike most pedigree reconstruction methods that apply a likelihood method, this 

method is based on pairwise relatedness estimates only and does not need a complex 

program or software. It is convenient to be used for small pedigrees. Another 

difference with likelihood methods is the mechanism how they work: this method 

looks for parent and children altogether while likelihood methods tend to look for 

parent sets for each individual. It is quite similar to the sib-ship construction methods 

with pairwise relatedness. The difference is that I apply the pairwise relatedness to 

construct multi-generation pedigrees, rather than just construct sib-ships. Multi-

generation pedigrees could be reconstructed only if there are parents included in the 

sample. If there is no parent in the sample, the resulting ‘pedigrees’ will just be sib-

ships.  
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8.4 Incomplete sample 

This pedigree reconstruction method based on pairwise relatedness may not be superior 

to a likelihood approach for ‘complete sample’ cases. But it provides another 

perspective to the pedigree reconstruction problem and has the potential to link clusters 

together when the ‘complete sample’ assumption is not satisfied. GOBNILP can do 

very well for ‘complete sample’ cases, even without the help of age or sex information. 

It can reconstruct a pedigree with 1614 individuals and 8 generations with high 

accuracy (Sheehan et al., 2014). But when there are missing individuals in a pedigree 

(incomplete sample), what we get is a set of sub-pedigrees. It is a difficult task to link 

these sub-pedigrees to a whole pedigree. Cowell and Mostad (2003) suggested that a 

likelihood method could be used to do this, but this has not been done so far. I am 

currently involved in updating GOBNILP to incorporate missing individuals and a 

paper based on it is expected soon. On an ad hoc basis, these sub-pedigrees can be 

linked by the pairwise relatedness estimates between the members of different sub-

pedigrees, conditional on all pairwise relationships in the formed pedigree being 

consistent with the estimated degree of relatedness. We may not get a completely 

correct pedigree, especially when the sub-pedigrees are distantly related. But we can 

get an idea of the positions of the sub-pedigrees on the overall pedigree. 

A similar approach using the software PRIMUS (Staples et al., 2014) was published at 

the same time as the work in this chapter was being developed. The idea is similar to 

what is mentioned in Section 8.3 in that it attempts to construct the pedigree based on 

pairwise IBD sharing and can handle incomplete samples. Instead of the ad hoc 

approach proposed here, it uses a program to search extensively for ways of linking 

individuals. Up to third-degree relatives (e.g. first cousin) are searched for every 

individual in the sample. Pedigrees in which the pairwise relationships between all 

individuals are consistent with their pairwise relatedness (𝑘0, 𝑘1, 𝑘2) are sought. By 

searching for relatives up to third-degree rather than just parents for every individual, 

PRIMUS could allow some missing individuals in the pedigree which cannot be done 

by maximum likelihood approaches currently. However, PRIMUS cannot distinguish 

between relationships which share the same (𝑘0, 𝑘1, 𝑘2), such as half-sibling and 

avuncular, first cousin and great avuncular. This is perhaps an issue inherent to all 
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approaches on reconstructing pedigrees by estimated pairwise relationships. Potentially 

this issue can be solved by a likelihood approach where the likelihood of all individuals 

is considered altogether using linked markers, although missing individuals have to be 

allowed to outperform PRIMUS. 

8.5 Summary 

In this chapter, firstly the maximum likelihood methods of reconstructing pedigrees 

were introduced. Next, the software GOBNILP, which can do a complete search over 

pedigree space and guarantee the return of a maximum likelihood pedigree, was 

introduced and evaluated. GOBNILP works well with very few genetic markers. But 

no method based on a likelihood approach can allow missing individuals in the 

pedigree. Then another approach to find clusters of relatives based on pairwise 

relatedness estimation was discussed. I found that it is possible to reconstruct pedigrees 

using simple pairwise IBD sharing estimates and indeed the recent approach of Staples 

et al 2014 confirmed this in a more formal way. With this approach, the problem of 

missing individuals can be handled to some extent. Currently work is ongoing, in 

which I am participating, to deal with the problem of missing individuals in pedigree 

reconstruction with likelihood methods. Substantial progress has been made and a 

relevant paper should be available soon.
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9 Discussion 

9.1 Summary of the thesis 

This thesis has considered estimation of relatedness and relationships, especially 

detection of distant relatives, using genome-wide SNP data. Different approaches to 

relatedness estimation were examined and their performances compared. An approach 

based on the pedigree likelihood was given more attention due to some of its obvious 

advantages: it is straightforward to incorporate extra information and it can consider 

extra individuals. For instance, SNP data such as MSY and mtDNA which are usually 

available from the same chips used to genotype autosomal chromosomes can be easily 

incorporated to increase our chance of detecting unknown relatives. When additional 

individuals are genotyped, we can often estimate the relationship between the two 

individuals of interest more accurately. 

 This approach, which is originally used to distinguish one relationship from a specified 

set of alternatives relationships, can also be used as a method for estimating pairwise 

relatedness, or the degree of relationship. The exact relationship for many relative pairs 

can only be given by a pedigree. Non-pedigree-based approaches cannot do this as they 

only do pairwise estimation. The pedigree likelihood approach also yielded satisfactory 

results when used simply as a way of estimating the degree of relatedness. Indeed, 

using this approach, we can detect distant relatives more accurately than current 

published methods based on MoM estimators and IBD segment detection approaches. 

Although a pairwise relatedness estimate, such as by MoM, does not tell us the exact 

relationship between two individuals, lots of pairwise estimates over a group of 

relatives can sometimes suffice to reconstruct a pedigree.  

LD is an issue which cannot be ignored when genome-wide SNP data are used to 

estimate relationship or relatedness. MoM methods are not badly affected by LD and 

generally perform well for close relatives, but they are not accurate in predicting distant 

relatives. The pedigree-based likelihood approach is seriously affected by LD, whether 

we use it to distinguish an exact relationship from putative relationships or to estimate 



                                                                                                                    

                                                                                                                  Chapter 9 

Page | 199 

 

relatedness. The stronger the LD, the more biased the estimate is. However, LD can be 

modelled although it is hard to remove LD completely.  

In Chapter 4, the use of the pedigree likelihood approach for distinguishing a true 

pedigree from alternative pedigrees was studied based on simulated data. It is well 

known that with as many as 500K SNPs we can distinguish relationships as distant as 

second cousins from ‘unrelated’ nearly with certainty but when the relationship is more 

distant we cannot make assertive inference. However this conclusion is based on the 

average posterior probability of the true relationship when the only alternative 

relationship is ‘unrelated’. I found that this average posterior probability is misleading. 

After investigating the distribution of the posterior probabilities of the true 

relationships, I found that even if the relationship between the two relatives is much 

more distant than second cousin, we still have good power to distinguish them from 

‘unrelated’ in some cases. That means that our discriminating power for specific distant 

relatives is, in fact, higher than implied by published findings based on average 

performances. Whether we can distinguish a relationship from ‘unrelated’ is largely 

dependent on whether the two individuals share IBD segments or not. Continuing to 

increase the number of SNPs from SNP data which are already quite dense will not 

necessarily improve the results. But it should be noted that although it may be easy to 

distinguish distant relationships from ‘unrelated’ when they do share IBD, it is far 

harder to distinguish them from a close alternative relationship. 

I found that an extra individual which has a known relationship with one of the two 

individuals of interest always helps to estimate the relationship between the two 

individuals. The information provided by the extra individuals on different positions of 

the pedigree is different. It was recommended to use a sibling as the extra individual 

because siblings provide quite high information and are generally easier to find. More 

importantly, they always help, unlike parents and grandparents who help only if they 

are on the direct line of descent from the common ancestors of the two individuals of 

interest. But I admit that this finding applies more to cases where specific alternative 

pedigrees are hypothesized such as in a forensic or genetic counselling setting where 

the relationship of the third individuals can be known.  
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In Chapter 5, the effect of LD on the pedigree likelihood method was investigated. It 

was shown that when LD is not dealt with, the relationship will look much closer than 

the true relationship. When LD was modelled with a blocking approach, which is a 

standard way of modelling LD, the estimate was greatly improved in general, but the 

effect of LD could not be removed completely. Another simpler approach is to thin the 

density of the SNPs. It reduces the information unavoidably, but we can achieve a 

nearly unbiased estimate of the relationship, although we should be cautious about how 

many SNPs that should be used as the ideal number will vary for different situations. In 

this chapter, I also proposed using a template of pedigrees as a way of estimating the 

degree of relationship, or relatedness rather than distinguishing exact relationship. The 

performance of this method was compared with other pairwise relatedness estimating 

approaches in Chapter 6. The pedigree likelihood approach was applied to the real data 

of MICROS study and the results are generally consistent with what were seen for 

simulated data. 

In Chapter 6, other methods of estimating relatedness without using pedigrees were 

introduced. I have investigated how MoM methods perform on dense genome-wide 

SNPs data as most of them were proposed in the time when only STRs were available. 

Basically, they can perform well for dense SNPs data and it seems the LD will not 

cause too much bias. For close relatives they can give good estimates and predict the 

realized kinship coefficients well. But the accuracy of MoM methods decreases quickly 

when the true relationship gets more and more distant. They will not give reliable 

results for relationships more distant than first cousins. My ‘Template’ method based 

on the pedigree likelihood works much more accurately in estimating distant relatives 

than MoM. Another approach for estimating relatedness is to detect IBD segments and 

then infer degree of relationship based on the number and length of the detected IBD 

segments, such as software ERSA. ERSA is quite accurate in estimating the degree of 

relationship, but it is more complicated to implement than the ‘Template’ method and it 

requires one more step of estimating IBD segments. For example, I did not run it on 

real inbred MICROS data successfully as I could not get any output of IBD segments 

from software Germline. On the other hand, ‘Template’ method seems more accurate 

than ERSA, but it could be slower than ERSA due to the large number of pedigree 

likelihood calculations. So it is dependent on the applications to decide which approach 
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should be used in reality. Population stratification can cause problems for all 

relationship and relatedness estimation methods which use allele frequencies. Care 

needs to be taken to check possible population structure before estimating 

relationships. Estimation should either be done in homogeneous populations or based 

on those non-ancestor-informative markers.  

Chapter 7 was devoted to the incorporation of MSY and mtDNA SNP data into the 

relationship and relatedness estimation. I showed here how to infer haplogroups of 

MSY and mtDNA from SNPs obtained from common genotyping chips. It is 

straightforward to combine MSY and mtDNA SNP data with autosomal SNP data in 

the pedigree likelihood approach. Although information from MSY and mtDNA is 

limited in that each of them can be regarded as a single polymorphic genetic marker, I 

showed that we can increase the number of distant relatives that are detected with these 

extra data and usually there is no extra cost to obtain them. Sometimes they could be 

more useful when there is no or little autosomal DNA shared by two relatives but a rare 

MSY or mtDNA haplogroup is shared by them. 

In Chapter 8, it was discussed how to estimate the relationships of more than two 

individuals jointly and reconstruct a pedigree. When all individuals of the pedigrees are 

genotyped, it is an easy problem. There are many methods proposed and they work 

very well for this scenario. However, when there are missing individuals it is more 

complicated. A large pedigree could be constructed as several small sub-pedigrees 

when there are missing individuals in it. Pairwise relatedness could be used to link 

these sub-pedigrees although the problem becomes harder when the number of missing 

individuals is large. There is software available based on pairwise IBD sharing to 

reconstruct pedigrees with a limited number of missing individuals (Staples et al., 

2014). 

In summary, relatedness and relationships can be inferred from genetic data. It was 

shown that with genome-wide SNP data we can solve more problems than with smaller 

numbers of markers (either SNPs or microsatellites). The approach based on the 

pedigree likelihood seems to be quite accurate for estimating the degree of pairwise 

relationship and is easy to implement. But when really dense SNPs are used, a good 

model for LD has to be found. It was found that with additional information such as an 
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extra genotyped individual, or MSY and mtDNA data, we can increase the accuracy of 

the relationship estimation. Other non-genetic prior information, such as age and sex, 

could be easily combined with genetic data in the pedigree likelihood method, although 

it was not investigated in this thesis. However, all methods are limited by the number 

of alleles shared IBD by individuals, which could vary substantially for the same 

relationship. Having the right allele frequencies or haplotype frequencies is also 

important.  

One limitation to this study is that genotyping error has been ignored whose existence 

is possible in real data. Sieberts et al. (2002) have proposed a model dealing with 

genotyping error. However it seems that genotyping error, if there is any, in the real 

data that were used, MICROS, has not caused any noticeable problem to the work 

carried out in this study.  

9.2 Future work 

9.2.1 Develop software 

The most immediate and relevant further work is to develop software which will 

implement the idea of using pedigrees to estimate relatedness as is proposed in the 

thesis. This software will take the genotypes data as input. Output could include the 

most likely degree of relationship and several other degrees of relationship with high 

likelihood together with the likelihood ratio of the most likely relationship over the two 

individuals being unrelated. Next, more pedigrees with real data can be used to test it 

head-to-head with ERSA, Beagle and other methods based on IBD segments. This 

approach has been shown to work well on simulated data and on the MICROS data. 

The pedigree in MICROS study violates the ‘outbred’ assumption in this approach, but 

it still works well. We could imagine it will work only better if more suitable outbred 

pedigrees can be obtained to test it. 

9.2.2 Modelling LD 

It is noticed that the current model for LD cannot remove the LD completely which 

makes the estimate of ‘Template’ method biased when really dense SNPs are used. As 

a compromise, SNP data have to be thinned. The problem with current LD models 

based on LD blocks is that they are too simplistic. They assume no recombination for 
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SNPs within LD blocks and no LD between LD blocks. If the LD block is too short, 

only part of the LD is modelled and there will still be LD between those markers which 

are not clustered. However if the LD block is too large, the assumption of no 

recombination within blocks is seriously breached. I think there are other possible 

approaches that we can take. One approach could be to allow large LD blocks and at 

the same time, allow recombination within these blocks with a reduced rate, although 

this is computationally intensive.   

9.2.3 Applying methods of MSY and mtDNA on real data 

All work in Chapter 7 is based on simulated data although some real relationships are 

considered. I am still waiting for some real data from my collaborators. Once these data 

are available, extra work can be done on them and a paper is planned to be written 

based on these methods.   

9.2.4 Application in linkage analysis  

One application of estimating relationship is in linkage analysis. Currently one problem 

faced by many genetic association studies is that genes that are found to be associated 

with complex traits often cannot be replicated. This is due to the fact that the effect of 

each single allele is so small in line with the hypothesis of ‘common disease, common 

allele’. Potentially there could be rare alleles with relatively large effects and there 

could be different alleles causing the same disease in different families. Such rare 

alleles will be hard to find in population based association studies of unrelated 

individuals. It is well accepted that linkage studies based on relatives have higher 

power than association analyses in finding rare alleles. Current association studies 

could contain more than ten thousand individuals. It is very likely that they will contain 

some relatives. It is of interest to apply the methods discussed in this thesis to these 

GWAS studies to find some relatives and construct pedigrees. Then linkage analyses 

can be conducted to investigate whether we can improve the power for mapping causal 

genes with current data without incurring extra cost. 
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9.2.5 Dealing with the problem of missing individuals in pedigree reconstruction 

combining pairwise estimates with GOBNILP 

We know that GOBNILP could reconstruct a large pedigree with missing individuals 

into many sub-pedigrees. Each sub-pedigree generally can be reconstructed very 

accurately. It will be of interest to develop a method to link these sub-pedigrees 

systematically by pairwise relatedness estimates from methods, such as MoM. 
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10 Appendix 

10.1 R code to calculate pedigree likelihood for an 

example by Lander-Green algorithm 

𝑞1=c(0.125,0.125,0.125,0.125) 

q2 =c(0.09,0.09,0.09,0.09) 

q3=c(0.1275,0.1275,0.1275,0.1275) 

 q4=c(0.01,0.01,0.01,0.01); q5=c(0.24,0.24,0.24,0.24) 

T=matrix(rep(0.25,16),nrow=4)  

sum(rep(1/4,4)*q1%*%T*q2%*%T*q3%*%T*q4%*%T*q5) 
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10.2 A complete version of Figure 4.4 

Figure 10.1 Frequency histograms of the individual posterior probabilities of the true pedigrees contributing 

to each of the averages reported in Table 4.1 where there is only one alternative pedigree: ‘unrelated’ for 

each true pedigree. The five rows correspond to the numbers of SNPs (22, 220, 2200, 22000, 500K) used in the 

simulation. The six columns (over two pages) correspond to the six different true pedigrees (HS-1-1, HS-2-2, 

HS-3-3, HS-4-4, HS-5-5, HS-6-6). The X-axis represents the posterior probability of the true pedigree. 
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10.3 Likelihood calculation when the extra individual 

is on ‘within1’ or ‘outside1’ position 

Figure 10.2 Example pedigree for likelihood calculation when an extra individual is on ‘within1’ or ‘outside1’ 

position. 

 

𝐿𝑅𝑈 represents the likelihood ratio unconditional on the third individual. 

𝐿𝑅𝐶 represents the likelihood ratio conditional on the third individual. 

P(I = 0) represents the probability that two individuals share 0 IBD allele. 

P(I = 1) represents the probability that two individuals share 1 IBD allele. 

1. When individual 1 is genotyped as 1/1 and individual 7 is genotyped as 2/2. 

𝐿𝑅𝑈=
P(1,7|True)

P(1,7|Claim)
 = 

P(1,7|I = 0)×P(I=0)+P(1,7|I=1)P(I=1)

P(1)P(7)
=

𝑝1
2𝑝2

2(1−0.52)

𝑝1
2𝑝2

2  = 
3

4
 . 

1) Assume individual 5, whose relationship with 7 is undisputed and on a 

‘within1’ position, is genotyped as 1/2. 

P(1,5,7|True)=P(1|True)P(5|1,True)P(7|5,True)= P(1,5|True)P(7|5,True)=0.5𝑝2× 

P(1,5|True) 

=0.5𝑝2 × (2𝑝1
3𝑝2 × 𝑃(𝐼 = 0) + 𝑝1

2𝑝2 × 𝑃(𝐼 = 1)) 

=0.5𝑝2 × (2𝑝1
3𝑝2 × 0.5 + 𝑝1

2𝑝2 × 0.5) 

=0.5𝑝1
2𝑝2

2(𝑝1+0.5) 
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P(1,5,7|Claim)=P(1) ×P(5) ×P(7|5)= 𝑝1
2 × 2𝑝1𝑝2 × 0.5𝑝2= 𝑝1

3𝑝2
2. 

𝐿𝑅𝐶=
P(1,5,7|True)

P(1,5,7|Claim)
=

0.5𝑝1
2𝑝2

2(𝑝1+0.5)

𝑝1
3𝑝2

2 =0.5+
0.25

𝑝1
 > 

3

4
 = 𝐿𝑅𝑈 as 0 < 𝑝1 < 1. 

So when conditional on the genotype of the third individual 5, there is stronger 

evidence for the true pedigree. 

2) Assume individual 6, whose relationship with 7 is undisputed and on an 

‘outside1’ position, is genotyped as 1/2. 

Because individual 5 is a parent of individual 7, his possible genotypes are 1/2 or 2/2  

and we can calculate the probability P(1,6,7|True) conditional on the genotypes of 

individual 5 using the law of total probability. 

 P(1,6,7|True)= P(1,6,7|5= ′1/2′,True) ×P(5= ′1/2′)+ P(1,6,7|5= ′2/2′,True) ×P(5= 

′2/2′) 

 = P(1,6,7,5= ′1/2′,True)+ P(1,6,7,5= ′2/2′,True) 

P(1,6,7,5= ′1/2′|True)=P(1,5= ′1/2′|True) ×P(6|True) ×P(7|5= ′1/2′,6,True) 

= [𝑃(1,5 = ′1/2′|𝐼 = 0,True)× 𝑃(𝐼 = 0)+ 𝑃(1,5 = ′1/2′|𝐼 = 1,True)× 𝑃(𝐼 = 1)]  × 

P(6|True) ×P(7|5,6,True) 

=(2×𝑝1
3𝑝2 ×

1

2
+𝑝1

2𝑝2 ×
1

2
) ×2𝑝1𝑝2 ×

1

4
 

=
1

4
𝑝1

3𝑝2
2(2𝑝1+1) 

 P(1,6,7,5=′2/2′|True)=P(1,5=′2/2′|True)P(6|True)P(7|5=′2/2′,6,True) 

= [𝑃(1,5 = ′2/2′|𝐼 = 0,True)× 𝑃(𝐼 = 0)+ 𝑃(1,5 = ′2/2′|𝐼 = 1,True)× 𝑃(𝐼 = 1)] ×     

     P(6|True) ×P(7|5=′2/2′,6,True) 

=  (𝑝1
2𝑝2

2 ×
1

2
+0×

1

2
) ×2𝑝1𝑝2 ×

1

2
 

=  
1

2
𝑝1

3𝑝2
3. 
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Therefore P(1,6,7|True) = 
1

4
𝑝1

3𝑝2
2× (2𝑝1+1)+ 

1

2
𝑝1

3𝑝2
3 = 

1

4
𝑝1

3𝑝2
2× (2𝑝1+1+2𝑝2) = 

3

4
𝑝1

3𝑝2
2 

P(1,6,7|Claim)=P(1) ×P(6) ×P(7|6)= =𝑝1
2 × 2𝑝1𝑝2 ×

1

2
𝑝2=𝑝1

3𝑝2
2 

𝐿𝑅𝐶=
P(1,6,7|True)

P(1,6,7|Claim)
=  

3

4
 = 𝐿𝑅𝑈. 

In this case, the individual 6 does not increase the information. 

3)  Assume individual 5, whose relationship with 7 is undisputed and on a 

‘within1’ position, is genotyped as 2/2. 

P(1,5,7|True)=P(1|True)P(5|1,True)P(7|5,True)= P(1,5|True)P(7|5,True)= 𝑝2× 

P(1,5|True) 

=𝑝2 × (𝑝1
2𝑝2

2 × 𝑃(𝐼 = 0) + 0 × 𝑃(𝐼 = 1)) 

=𝑝2 × (𝑝1
2𝑝2

2 × 0.5) 

=0.5𝑝1
2𝑝2

3 

P(1,5,7|Claim)=P(1) ×P(5) ×P(7|5)= 𝑝1
2 × 𝑝2

2 × 𝑝2=𝑝1
2𝑝2

3 

 𝐿𝑅𝐶=
P(1,5,7|True)

P(1,5,7|Claim)
=

0.5𝑝1
2𝑝2

3

𝑝1
2𝑝2

3 =0.5 < 
3

4
= 𝐿𝑅𝑈. 

In this case the data of individual 5 decreases the likelihood ratio of the true pedigree 

and the alternative pedigree. But we need to note that it is more likely to have the 

genotype of 1 / 2 than 2 / 2 for individual 5. 

            4) Assume individual 6, whose relationship with 7 is undisputed and on a 

‘outside1’ position, is genotyped as 2/2. 

P(1,6,7|True)=P(1|True)P(6|True)P(7|1,6,True) 

= 𝑝1
2 × 𝑝2

2 × (𝑝1 × 𝑝2 ×
1

2
+ 𝑝2 ×

1

2
×

1

2
+ 𝑝2 ×

𝑝2

2
× 1) 

=𝑝1
2 × 𝑝2

2 ×
3

4
𝑝2 

=
3

4
𝑝1

2𝑝2
3. 
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P(1,6,7|Claim) = P(1) ×P(6) ×P(7|6) = 𝑝1
2 × 𝑝2

2 × 𝑝2 = 𝑝1
2𝑝2

3 

𝐿𝑅𝐶=
P(1,6,7|True)

P(1,6,7|Claim)
=

 3

 4
= 𝐿𝑅𝑈. 

In this case, the individual 6 does not increase the information as well. 

It can be understood that when the two individuals do not share IBD (genotype of 

individual 1 is ‘1/1’, genotype of individual 7 is ‘2/2’ in this case), the third individual 

on ‘outside’ positions does not increase the likelihood ratio of true pedigree and 

‘unrelated’.  

2. When individual 1 is genotyped as 1/1 and individual 7 is genotyped as 1/2.  

         𝐿𝑅𝑈=
P(1,7|True)

P(1,7|Claim)
=

P(1,7|I = 0)×P(I=0)+P(1,7|I=1)P(I=1)

P(1)P(7)
=

2𝑝1
3𝑝2×(1−0.52)+𝑝1

2𝑝2×0.52

𝑝1
2×2𝑝1𝑝2

 

=  

3
2 𝑝1 +

1
4

2𝑝1
 =  

3

4
+

1

8𝑝1
 

As this is a decreasing function of 𝑝1, it can be seen that sharing an uncommon allele 

gives high likelihood ratio in favour of the true pedigree. 

Assume individual 6, whose relationship with 7 is undisputed and on an ‘outside1’ 

position, is genotyped as 2/2. 

   P(1,6,7|True)=P(1|True)P(6|True)P(7|1,6,True) 

=𝑝1
2 × 𝑝2

2 × (𝑝1 × 𝑝1 × 1 + 𝑝1 × 𝑝2 ×
1

2
+𝑝2 ×

𝑝1

2
×1+𝑝2 ×

1

2
×

1

2
) 

= 𝑝1
2 × 𝑝2

2 × (𝑝1
2 +

1

2
𝑝1𝑝2 +

1

2
𝑝1𝑝2 +

𝑝2

4
) 

=𝑝1
2𝑝2

2(𝑝1 +
1

4
𝑝2) 

  P(1,6,7|Claim)=P(1) ×P(6) ×P(7|6)= =𝑝1
2 × 𝑝2

2 × 𝑝1=𝑝1
3𝑝2

2 

𝐿𝑅𝐶=
P(1,6,7|True)

P(1,6,7|Claim)
=

𝑝1
2𝑝2

2(𝑝1+
1

4
𝑝2)

𝑝1
3𝑝2

2 =1+
𝑝2

4𝑝1
=

3

4
+

1

4𝑝1
  >  

3

4
+

1

8𝑝1
 = 𝐿𝑅𝑈. 
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In this case, the data of individual 6 increases the likelihood ratio between the true 

pedigree and the alternative pedigree. 
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10.4 MSY and mtDNA haplogroups inferred from 

2987 unrelated controls of WTCCC2 dataset and 

their frequencies  

Table 10.1 MSY haplogroups inferred from controls of WTCCC2 dataset and their frequencies. 
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E1b1_P181; 0.019125683 

E1b1_P181;(rs9785815) 0.003415301 

F(xG,IJ) 0.00068306 

G_M201. 0.023907104 

G_M201.* 0.00068306 

I1(rs34626372) 0.020491803 

I1. 0.090163934 

I2* 0.00068306 

I2. 0.028688525 

I2a2_P217;S23. 0.010928962 

I2a2a_P223;S117. 0.038251366 

I2a2a1a_L126;S165. 0.005464481 

J 0.011612022 

J(rs1011954) 0.018442623 

P 0.00204918 

R* 0.00136612 

R1_P236; 0.00068306 

R1a 0.032103825 

R1a1a_M512; 0.00068306 

R1b1_(xR1b1a_L320) 0.00068306 

R1b1a2a 0.019125683 

R1b1a2a1a1_ L52; 0.665300546 

R1b1a2a1a1_ P311;S128 0.00068306 

R1b1a2a1a1_(rs1469371) Z278. 0.00136612 

R1b1a2a1a1_(rs4044090) 0.00204918 
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YxK 0.00136612 

 

Table 10.2 mtDNA haplogroups inferred from controls of WTCCC2 dataset and their frequencies.   

A12 0.001339136 

B4j 0.000669568 

H 0.161365919 

H1 0.145965852 

H1+16311 0.002678273 

H11a2a 0.002678273 

H11a4 0.000334784 

H13a2b2 0.002343488 

H13a2c 0.000334784 

H13c 0.000334784 

H14b 0.000334784 

H15a1b 0.001339136 

H1ak1 0.000669568 

H1an2 0.000334784 

H1au 0.000669568 

H1b1e 0.000669568 

H1ba 0.001339136 

H1bt1 0.000669568 

H1bu 0.000334784 

H1f+16093 0.00167392 

H1h1 0.001004352 

H1j7 0.000334784 



                                                                                                                    

                                                                                                                  Appendix 

Page | 216 

 

H1n1b 0.002008704 

H26b 0.000669568 

H27+16093 0.00167392 

H2a 0.005021761 

H2a+152 0.001339136 

H2a1a 0.001339136 

H2a2 0.007030465 

H2a2a 0.00167392 

H2a2a1 0.006695681 

H2a2a1d 0.000669568 

H2a2b5a 0.000334784 

H3+16311 0.006695681 

H3ag1 0.004686977 

H3ap 0.000669568 

H3b1b1 0.000334784 

H3h5 0.000334784 

H3s 0.00167392 

H3u1 0.001339136 

H3v 0.001004352 

H3v+16093 0.003013057 

H3x1 0.000334784 

H3y 0.000669568 

H4 0.017073987 

H5a1+16093 0.014395715 

H5a1b 0.004352193 
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H5a1g 0.003347841 

H5a1g1 0.000334784 

H5a6 0.000669568 

H5a6a 0.000334784 

H5g 0.001004352 

H5j 0.000334784 

H61 0.001004352 

H6a1b 0.008034818 

H6a1b3a 0.001339136 

H8a 0.001339136 

H8c2 0.002008704 

H96 0.001004352 

HV 0.039169736 

HV17 0.001004352 

HV6 0.002008704 

I1a1 0.005021761 

I1d 0.020756612 

I5a1b 0.000334784 

I5a4 0.000334784 

J 0.019417476 

J1 0.067626381 

J1b1a 0.00167392 

J1b1a1 0.012721794 

J1c1b1a 0.001339136 

J1c2a3 0.00167392 
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J1c2b5 0.002343488 

J1c2m 0.001004352 

J1c3c 0.001004352 

J1c3d 0.00167392 

J1c3j 0.000334784 

J1c8 0.000334784 

J1c8a 0.006695681 

J2a1a1a1 0.000669568 

J2b1a6 0.000334784 

J2b1c1 0.000334784 

JT 0.000334784 

K 0.024104453 

K1 0.016739203 

K1a1b1d 0.000334784 

K1a4a1 0.01975226 

K1a4a1a2b 0.001339136 

K1b1+(16093) 0.008034818 

K1b1a 0.003347841 

K1b1c 0.007700033 

K1b2b 0.00167392 

K2a2a1 0.000334784 

K2b1a1 0.001339136 

L0a2 0.000334784 

L1b1a 0.000334784 

L3b 0.000334784 
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L3e 0.001339136 

M 0.001004352 

M12a1a2 0.000334784 

M1a1e2 0.000669568 

M30 0.000334784 

M30b 0.000334784 

M30d1 0.000334784 

M34 0.001339136 

M4\67" 0.000334784 

M7 0.000334784 

N1 0.000334784 

N1a1 0.000669568 

N1a1a 0.001339136 

N1a3a2 0.000334784 

N1a3a3 0.000334784 

N1b 0.00167392 

N2 0.000334784 

N9a1 0.000334784 

N9a3 0.000334784 

R 0.004017409 

R0a1a2 0.000669568 

R0a1b 0.002008704 

R0a2b 0.001004352 

R12'21 0.000334784 

R2b 0.002343488 
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R8a 0.000334784 

T 0.039169736 

T1a1c 0.000669568 

T2 0.041848008 

T2b4a 0.002678273 

T2b6a 0.00167392 

T2c1a1 0.000669568 

T2e 0.003013057 

T2f1a 0.001004352 

U 0.001004352 

U1b 0.000334784 

U2'3'4'7'8'9 0.030800134 

U2e1b1 0.000669568 

U2e1f 0.000334784 

U3a1 0.010043522 

U4a2b 0.000334784 

U4b1a2 0.000334784 

U4b1b1a 0.000334784 

U4b1b2 0.000334784 

U5a2b2 0.057917643 

U5a'b 0.027117509 

U5b1c1a1 0.002343488 

U5b1c2a 0.000669568 

U5b1i 0.000669568 

U5b2a1a 0.002343488 
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U5b2a1a+16311 0.000334784 

U5b2a1a2 0.001004352 

U5b2a1b 0.002343488 

U5b2a2a2 0.000334784 

U6 0.000334784 

U6c 0.000334784 

U6d1 0.000334784 

U8 0.000669568 

U8a 0.002343488 

U8b1b 0.000334784 

V10a 0.002343488 

V2 0.00167392 

V21 0.001004352 

V3 0.001339136 

W 0.013056579 

W1c1 0.000334784 

W1e1a 0.000334784 

W3a 0.003013057 

W6 0.000669568 

X 0.011717442 
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