
Sparse Grid Approximation with

Gaussians

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Fuat Usta

Department of Mathematics

University of Leicester

England, United Kingdom

June 2015



Abstract

Motivated by the recent multilevel sparse kernel-based interpolation (MuSIK)

algorithm proposed in [Georgoulis, Levesley and Subhan, SIAM J. Sci. Com-

put., 35(2), pp. A815-A831, 2013], we introduce the new quasi-multilevel

sparse interpolation with kernels (Q-MuSIK) via the combination technique.

The Q-MuSIK scheme achieves better convergence and run time in compar-

ison with classical quasi-interpolation; namely, the Q-MuSIK algorithm is

generally superior to the MuSIK methods in terms of run time in particular

in high-dimensional interpolation problems, since there is no need to solve

large algebraic systems.

We subsequently propose a fast, low complexity, high-dimensional quadrature

formula based on Q-MuSIK interpolation of the integrand. We present the

results of numerical experimentation for both interpolation and quadrature

in Rd, for d = 2, d = 3 and d = 4.

In this work we also consider the convergence rates for multilevel quasi-

interpolation of periodic functions using Gaussians on a grid. Initially, we

have given the single level quasi-interpolation error by using the shifting prop-

erties of Gaussian kernel, and have then found an estimate for the multilevel

error using the multilevel algorithm for unit function.
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Chapter 1

Introduction

Over the last half century, numerical methods have gained much attention,

not only among mathematicians but also in the scienti�c and engineering

communities. Therefore a number of works concerned with multivariate scat-

tered data interpolation and approximation in Rd × R are considered to be

interdisciplinary studies, namely between mathematics and several applica-

tion areas such as solutions of partial di�erential equations [35], [34], [64],

[65], non-uniform sampling in medicine [21], [94], mapping problems in geo-

physics, geodesy and meteorology [55], [56], [57], [58], Lyapunov function for

a dynamical system [47], [48], �tting of potential energy surfaces in chem-

istry, coupling of engineering models with sets of inconsonant parameters,

derivative pricing in �nancial mathematics [81], [60], [74], learning theory,

neural networks, data mining [6], [49], computer graphics [3], [27], numerical

integration [28], [66] and optimization.

1
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For the above scienti�c areas, researchers are generally confronted with a sig-

ni�cant computational problem since there are a number of parameters which

need to be handled. However, working in high dimensions needs considerable

computer memory and evaluation time which, even given current computa-

tional resources, are still mostly impossible. For this reason, researchers have

embarked on the quest to �nd new methods which are able to cope with the

interpolation problem in high dimensions.

Radial Basis Function (RBF) interpolation is one of the tools which is e�ec-

tive in approximating and interpolating high-dimensional functions when the

data is scattered in its domain. The historical background of the radial basis

function approximation method goes back to 1968 with Hardy, who was the

�rst person to use multiquadric RBFs in academia [58]. Thereafter, the use

of RBFs has become increasingly popular as an approximation method since

it obtains delicate and accurate consequences without using a mesh. This is

true not only in approximation or interpolation of data sets [82] but also in

solving partial di�erential equations; see [65], for example of applications of

the RBF method.

Of course, there are some problems with the RBF method, such as computa-

tional cost and stability, and a number of feasible approaches have been sug-

gested to deal with these problems [43]. In detail, due to the fact that data

density enlarges, the interpolation system is, most of time, ill-conditioned

[36]. There are some precautions one can take to avoid this instability, such

as using compactly supported and sharp-pointed basis functions. However,

this is only e�cient when the degree of freedom is a moderate magnitude. In
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addition to this, a scaling parameter, named the shape parameter, plays a

signi�cant role for some RBF methods. For instance, a small shape parame-

ter obtains good accuracy when one interpolates a given data set. However,

in these circumstances, we obtain enormous interpolation coe�cients since

the interpolation matrix is ill-conditioned. This can lead to cancellation of

terms when the interpolation coe�cients are associated to obtain the inter-

polant, which might result in a consequential loss of computational precision;

see [10].

Another problem is that solving the RBF system, in practice, collapses be-

cause of computational di�culties. For example, solving a non-customized

RBF system with Gaussian elimination demands O(N3) �ops and O(N2)

storage [89]. Furthermore, a direct RBF interpolation needs to evaluate

O(N) operations. It can be seen that there is extensive consideration given

to computational di�culties in the RBF literature. Although, in reality, we

need to use hundreds of thousands of data sites to model a given problem,

classical RBF methods allow us to use only a few thousands data sites. All

in all, it can be said that instabilities and the complexity issue are two major

problems for the RBF method.

In order to overcome and design a better method, a lot of techniques have

been suggested, such as compactly supported radial basis functions (CSRBFs)

[84], domain decomposition [32] , multilevel interpolation techniques [61],

domain decomposition associated with approximate cardinal functions [13],

preconditioning strategies and least square approximate cardinal functions,

etc. Among these methods, [32] and [11] can be said to be faster and more
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e�ective techniques for RBFs interpolation.

Another powerful tool for multidimensional problems is quasi-interpolation,

which is comprehensively used in scienti�c computations, mechanics and en-

gineering, and from which a number of successful results have been gained

[9], [93], [92]. A quasi-interpolation technique based on radial basis functions

is discussed in the sequel. One of the advantages of quasi-interpolation is rel-

evant to features of the generating functions themselves, such as smoothness,

simplicity, good shape properties and their exponential decay behaviour at

in�nity. In addition to these, quasi-interpolation can yield a solution directly

since there is no need to solve any large-scale system of equations. Therefore

this method can approximate the function in a reduced computational time,

even in high dimension, in comparison with other meshless techniques such

as RBF interpolation. Quasi-interpolation has been successfully applied to

scattered data approximation and interpolation, numerical solutions of par-

tial di�erential equations and quadrature.

In the literature of the quasi-interpolation, some methods having conver-

gence rates have been also discussed [71, 72]. Although quasi-interpolation

operators have principally used functions de�ned all over the real line, some

applications require functions de�ned on a speci�c compact interval to allow

for e�cient approximation procedures, such as boundary integral equations

and treatment of partial di�erential equations. Müller and Varnhorn [77] ap-

plied quasi-interpolation operators to such functions. In contrast to all-space

functions, a truncation error has to be controlled for these kind of functions;

in addition to these pointwise error estimates and L1 error estimates have
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also to be given explicitly [77].

Another study of quasi-interpolation has been made by Chen and Cao [24].

In this study, the convergence analysis in the supremum norm has been pre-

sented by modifying the quasi-interpolation operator. Then, in [25], further

investigation of quasi-interpolation has been made on the compact interval.

1.1 Motivation and Objectives

High dimensions usually cause some problems for mathematical modelling

on gridded data. The main problem is known as the curse of dimensionality,

a term due to Bellmann [12]. There is a exponential relationship between

the computational cost of approximation with a given error bound ε and the

dimension d of the space Rd for any given problem. For this reason, classical

approximation techniques are limited to low dimensions. For example, the

complexity of solving an approximation problem on a gridded data over a

bounded domain Ω ∈ Rd is O(Nd), where N is the dimension of the input

data.

In order to cope with this problem, there are a number of remedies pro-

posed in academia. The �rst of these is hyperbolic cross spaces, which were

mentioned by Babenko [4] and Smolyak [87] in the structure of numerical

integration in early 1960's. In these papers, the hyperbolic cross product

was proposed in order to construct a quadrature rule for multidimensional

functions via additional smoothness assumptions. Then, sparse grid methods
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were introduced by Zenger [95] in 1991 as a solution for PDEs. These tech-

niques have also been used for approximation and interpolation. It can be

seen that these methods are similar to hyperbolic cross product hypothesis.

The sparse grid method arises from a sparse tensor product construction

(hyperbolic cross product) and hierarchical basis. Additionally, sparse grid

techniques have also been used as solutions of PDEs for �nite di�erence and

�nite volume methods.

In 2012, Georgoulis, Levesley and Subhan [46] introduced a new kernel-based

interpolation technique which circumvents both computational complication

and conditioning problems. They obtained more reliable and faster results

in higher dimension RBF interpolation problems by means of this technique,

which can be seen as an improved version of hyperbolic cross functions. The

basic principle of this method is the use of anisotropic radial basis function

interpolation. All in all, sparse interpolation with kernels, called SIK, allows

for an enormous reduction in the amount of computing resources required to

solve interpolation problems at a given level of accuracy.

In order to take the advantages of the SIK method a step further, we have in-

troduced the quasi-sparse interpolation with kernels, called Q-SIK. The main

motivation for the proposed method stems from the idea of the SIK method.

The principal point of the proposed algorithm is to use anisotropic Gaussian

interpolation for all directions associated with the sparse grid combination

technique. The combination technique [53] is a sparse grid representation,

where partial solutions are computed on a certain sequence of coarser grids;

one then gets the solution by linearly combining all partial solutions. This
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is the main idea behind the proposed algorithm.

In order to obtain both accelerated convergence and more accurate conse-

quences for the interpolation, multilevel techniques have been suggested by

a number of researchers. The �rst to consider the multilevel approximation

were Floater and Iske [40]. They combined a thinning algorithm and com-

pactly supported radial basis function interpolation. Furthermore, multilevel

interpolation techniques enable us to combine the bene�ts of stationary and

non-stationary standard RBFs interpolation, such that this leads to an accel-

erated convergence. Other researchers have since contributed the multilevel

interpolation literature [54].

The proposed scheme, Q-SIK, can be extended to a multilevel variant, quasi-

multilevel sparse interpolation with kernels (Q-MuSIK). The Q-MuSIK tech-

nique is derived from the Q-SIK method. The main considerations behind

the approach to multilevel techniques can be divided into two steps: the �rst

is to interpolate the data sets at the coarsest level, and the second is to up-

date the interpolation of the residuals on gradually �ner data sets by means

of properly scaled basis functions.

Principally, construction of a sparse grid in Q-SIK techniques is similar to

multilevel methods. When we interpolate given data sets using the Q-MuSIK

method, we need to use sparse grids which are nested, and from lower to

higher levels, i.e., Sn,d ⊂ Sn+1,d where d is dimension and n ∈ N. In addition

to this, properly scaled anisotropic quasi-interpolation should be used for

each level. All in all, it can be said that the Q-MuSIK method does not

adversely a�ect the complexity features of SIK because of the geometric
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progression in the problem dimension in the nested-ness of sparse grids.

1.2 Quasi-interpolation

1.2.1 Quasi-interpolation using Gaussian Kernels

Quasi-interpolation is one of the methods which generates an approximation

de�ned over the whole Rn. In order to construct quasi-interpolation, we need

a function µ, called a basis function, which is, in general, a �nite linear com-

bination of translates of some basic function ϕ. For instance, µ(x) = ϕ(|x|2)

with ϕ(t) = t log t for thin plate splines, or µ may be a B-spline and ϕ a trun-

cated power function. In general, these basis functions are assumed to be

Fourier transformable, even and continuous. The following table lists some

basis functions on R and their Fourier transform in one dimension.

Basis Functions µ(x) Fourier Transform F(ξ)

π−
1
2 e−x

2
e−π

2ξ2

π−1 cosh−1 x cosh−1 π2ξ−1

2xπ−2 sinh−1 x cosh−2 π2ξ−1

2π−1(1 + x2)−2 (1 + 2π|ξ|)e−2π|ξ|

π−
1
2 e−x

2+ 1
2 cos

√
2x e−π

2ξ2 cosh
√

2πξ

Table 1.1: One-Dimensional Basis Functions and their Fourier Transform.

For a multivariate function (n-dimensional case), one can take the tensor
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product of the above one-dimensional functions. Table 1.2 shows some basis

functions and their Fourier transform in the multidimensional case.

Basis Functions µ(x) Fourier Transform F(ξ)

π−
n
2 e−|x|

2
e−π

2|ξ|2

sech(|x|) π2 tanh(π2|ξ|)
|ξ| cosh(π2|ξ|)

4Γ
(
n+5

2

)
3πn+1/2(1 + |x|2)n+5/2

(1 + 2π|ξ|+ 4
3
π2|ξ|2)e−2π|ξ|

Table 1.2: Multidimensional Basis Functions and their Fourier Transform.

The principal advantage of quasi interpolation is that there is no need to solve

for a large algebraic system. In other words, quasi-interpolation can yield

an approximant directly and does not require computation of any linear sys-

tem. This property makes quasi-interpolation considerably faster compared

to other methods. In addition to this quasi interpolation is desirable interpo-

lation technique because of the properties of the basis functions themselves,

such as smoothness, simplicity and exponential decay behaviour at in�nity.

Bernstein's approximation might be seen as the oldest type of quasi-interpolation.

In this approximation, Bernstein polynomials

bnν (x) =

(
n

ν

)
xν(1− x)n−ν , ν = 0, 1, 2, . . . , n. (1.1)

are used to construct a quasi-interpolation of an univariate function f on
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[0, 1], which is
n∑
ν=0

f
(ν
n

)
bnν (x), x ∈ [0, 1]. (1.2)

Although Bernstein's approximation is a fundamental form of approximation

theory, it has a wide range of application areas such as Computer Aided

Geometric Design.

The standard form of quasi-interpolation takes the values of an n-dimensional

function f(kh), k ∈ Zn on a uniform grid with mesh size h and a collection of

basis functions µ(·) to build an approximant of f using linear combination.

In this thesis, we will use the Schoenberg's model [83]

f(x) ∼
∑
k∈Zn

f(kh)µ
(x
h
− k

)
, x ∈ Rn, h > 0. (1.3)

where µ is a basis function type such as univariate splines, multivariate splines

and radial basis functions on Rn.

We will use the Gaussian

µ(x) =
1

(πρ)n/2
e−
‖x‖2
ρ , (1.4)

as a basis function through this and the following sections.

So, one de�nes the quasi-interpolants Qhf with the appropriate function

f ∈ C(Rn) by using the Gaussian kernel such that

Qhf : Rn → R, Qρ,hf(x) :=
1

(πρ)n/2

∑
k∈Zn

f(kh)e
− ‖x−kh‖

2

ρh2 . (1.5)

These types of operator are known as quasi-interpolants and we take a close
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interest in their behaviour as h goes to zero. If one applies Poisson summation

formula (see [73]) to the positive, smooth and bounded function

Φ : R→ R, Φ(x, ρ) :=
∑
k∈Z

ϕ(x, ρ) =
1
√
πρ

∞∑
k=−∞

e−
‖x−k‖2

ρ , (1.6)

these equivalent representations are obtained

Φ(x, ρ)− 1 = 2
∞∑
j=1

e−ρπ
2j2 cos 2πjx. (1.7)

Thus we deduce that

|Φ(x, ρ)− 1| ≤ 2e−ρπ
2

1− e−ρπ2 . (1.8)

Then the integer shift of the Gaussian is an approximate identity and ap-

proaches the Dirac δ as h → 0 in a distributional sense for ρ > 0. In other

words, we can say that the system of Gaussian kernels φ(k) : k ∈ Z is an

approximation of the unit function on R when ρ is positive. We refer to the

book [73], for the detailed explanation of the above calculations.

1.2.2 Anisotropic Quasi-interpolation

Most of the basis functions described above are isotropic, which implies that

the behaviour of the function in any direction is the same. However, in

general, data sets show variety along di�erent directions, such that variation

in one direction is much faster or larger than the other dimensions. Therefore,

it can be easily said that distribution of the data sets in the domain shows
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anisotropic behaviour.

In this study we will focus on the anisotropic behaviour of Gaussian functions.

A signi�cant generalization of the Gaussian can be given by the exponential

function as

e−〈Ax,x〉, x ∈ Rn, (1.9)

where A is a n× n matrix which is non-singular. The key point here is that

the inverse matrix of A must belong to the same set of matrices. That is,

it is an invertible matrix. In our study, we will use anisotropic Gaussian

functions in two di�erent interpolation methods, radial basis functions and

quasi-interpolation.

De�nition 1.1. (Anisotropic Gaussian) Let A ∈ Rn×n be any prop-

erly selected invertible matrix and µ(x) be a Gaussian basis function. The

anisotropic Gaussian function (AG) µA can then be described as

µA(x) :=
e−〈A

−1x,x〉

(π)n/2|A|1/2
, (1.10)

and generates the quasi-interpolant and its Fourier transform

F(µA(ξ)) := e−π
2〈Aξ,ξ〉. (1.11)

In order to aid understanding, isotropic and anisotropic Gaussian basis func-

tions are shown in Figure 1.1 for A =

24 0

0 2

.
Now, we can de�ne the anisotropic quasi-interpolation (AQI) as
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Figure 1.1: Isotrophic Gaussian basis function (left) and Anisotropic Gaus-
sian basis function (right)

QAni.

f (x) =
∑
k∈Zn

f(kh)µA

(x
h
− k

)
, x ∈ Rn, h > 0. (1.12)

We shall use the anisotropic quasi interpolation in next chapters when intro-

duce the proposed algorithm.

1.3 Radial Basis Functions Interpolation

1.3.1 Radial Functions

In order to explain radial basis functions clearly, we need to give some related

de�nitions.

De�nition 1.2. (Vector p−norm) Let p ≥ 1 be a real number. The

p−norm of ν ∈ Rn is de�ned as ‖ν‖p = {
∑n

k=1 |νk|p}
1
p . In general, some
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commonly used p−norm are:

1. ‖ν‖1 =
∑n

k=1 |ν| (the grid norm)

2. ‖ν‖2 = {
∑n

k=1 |ν|2}
1
2 (the Euclidean norm)

3. ‖ν‖∞ = lim
p→∞
‖ν‖p = lim

p→∞
{
∑n

k=1 |νk|p}
1
p = max

i
|νi| (the max norm)

De�nition 1.3. (Matrix p−norm) Let A : Rn → Rm and ν ∈ Rn. The

matrix norm of A induced by the vector norm is ‖A‖p = max
ν∈Rn−{0}

‖Aν‖p
‖ν‖p ,

where ‖ · ‖ is the p-norm. Some of the commonly used matrix norm are:

1. ‖A‖1 = max
1≤j≤n

∑n
k=1 |Akj|

2. ‖A‖2 =
√
σ(A)(ATA) where σ(A) is the spectral radius of matrix A.

3. ‖A‖∞ = max
1≤k≤n

∑n
j=1 |Akj|

De�nition 1.4. A radial function is a function Ψ : Rd → R satisfying

Ψ(· − xk) = ψ(r), where φ is a univariate function such that ψ : [0,∞)→ R

and r = ‖·−xk‖. Here ‖·‖ denotes some norm on Rd - in general, the standard

Euclidean distance.

Radial functions are a particular category of functions. According to the

de�nition, Ψ at any point at a certain distance scale from a �xed point

xk ∈ Rd, called the center, or the origin, is constant; therefore, Ψ is radially

symmetric around its center. Although there are some suggestions about the

choice of centers xk, mainstream thought chooses the centers to coincides

with the data sites. In addition to this, one of the most signi�cant properties
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of radial functions is that the distance from a center point is increasing (or

decreasing) gradually due to its shape.

Moreover, another powerful property of radial functions is that the interpola-

tion problem for multivariate approximation is not a�ected by the dimension

d of the space in which the data sites lie. Hence, we can use the univariate

function ψ for any dimension d whenever we use a multivariate function Ψ,

since the complexity is directly proportional to the dimensionality.

Classical radial basis functions can be classi�ed into two group: piecewise

smooth RBFs and in�nitely smooth RBFs, which are given in Table 1.3 and

Table 1.4.

Radial Basis Functions ψ(r) Parameters m (Order)

Piecewise Polynomial (Rn) rn n > 0, n /∈ 2N m ≥ dn
2
e

Thin Plate Spline (TPSn) r2n ln(r) n ∈ N m ≥ n+ 1

Polyharmonic Spline (PSn) (−1)n+1r2n ln(r) n ∈ N m ≥ n+ 1

Table 1.3: Piecewise Smooth Radial Basis Functions.

In these tables, m represents the order of RBFs, Kn(r) represents a modi�ed

Bessel function of order n > 0 and dre and brc stand for closest integers

that are greater than, and less than, r, respectively. The rate of convergence

using in�nitely smooth RBFs is higher than when using the piecewise smooth

RBFs, which have an algebraical rate of convergence [14].

In some cases, such as the basis functions in Table 1.4, ψ(r) is replaced with
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Radial Basis Functions ψ(r, ε) Parameters m (Order)

Exponentials (EXPs) e−εr ε > 0 m ≥ 0

Gaussians (GAs) e−(εr)2 ε > 0 m ≥ 0

Multiquadrics (MQs) (1 + ε2r2)
n
2 n, ε > 0, n /∈ 2N m ≥ dn

2
e

Inverse Quadrics (IQs) (1 + ε2r2)n n < 0, ε > 0 m ≥ 0

Inverse Multiquadrics (IMQs) (1 + ε2r2)
n
2 n < 0, ε > 0 m ≥ 0

Matern (MAs) 21−n

Γ(n)
rnKn(r) n > 0 m ≥ 0

Table 1.4: In�nitely Smooth Radial Basis Functions.

ψ(r, ε), where ε is called the shape parameter. As its name suggest, this

parameter modi�es and controls the shape of these functions. For instance,

while one can obtain �atter RBFs with large values in the shape parameter,

a more peaked RBF can be obtained with a small ε. Figure 1.2 shows the

property of shape dependence and radial symmetry of Gaussian basis func-

tions. We assume that the shape parameter is some �xed and non-zero real

value throughout this and the next section.

Figure 1.2: Gaussian basis function with ε = 0.5 (left) and ε = 4 (right)
centered at the origin on Rd
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1.3.2 Radial Basis Functions Interpolation

The primary RBF technique is described as follows:

De�nition 1.5. Consider a given data set f = (f1, ..., fN)T ∈ RN of function

values, taken from an unknown function f : Rd → R at scattered data points

xj ∈ Rd, j = 1, ..., N such that fj = f(xj) and d ≥ 1. The RBF interpolation

is given by

If (x) =
N∑
j=1

αjψ(‖x− xj‖), (1.13)

where ψ(·) is a radial function and ‖ · ‖ is the Euclidean distance. The

coe�cient αj can be determined from interpolation requirements If (xj) = fj

by solving the following symmetric linear system:

[
A

]
N×N

[
α

]
N×1

=

[
f

]
N×1

, (1.14)

where the matrix A(N×N) is constructed for ajk such that ajk = ψ(‖xj−xk‖),

j, k = 1, . . . , N .

In this kind of RBF interpolation problem, the order of the basis function

is 0, (m = 0). In other words, the basis function ψ is a positive de�nite

function, such as a Gaussian.

Let us focus on the existence of a unique solution to this kind of RBF in-

terpolation problem. A su�cient condition is that the matrix A should be
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non-singular in order that this system has a unique solution. Although there

has been much research into how to guarantee the non-singularity of the

technique for all other basis functions used, nobody has yet succeeded in

characterizing a category of basis functions which produce a non-singular

system. However, the situation is preferable if we use positive de�nite func-

tions. In order to de�ne positive de�nite functions, we need to make some

de�nitions:

De�nition 1.6. (Completely monotone functions)A function = : [0,∞)→

R is called a completely monotone function if the following conditions hold:

1. = ∈ C[0,∞) ∩ C∞(0,∞)

2. (−1)=()(r) ≥ 0 for r > 0 and  = 0, 1, 2, . . ..

De�nition 1.7. (Positive de�nite matrix) An n × n matrix A is called

positive semi-de�nite if

αTAα =
N∑
i=1

N∑
j=1

αiαjAij ≥ 0, (1.15)

for α = [α1, . . . , αN ]T ∈ R. Then A is called positive de�nite if the above

inequality is zero only for α ≡ 0.

De�nition 1.8. (Positive de�nite functions) A function ψ : Rd → R is

called positive de�nite function if

N∑
i=1

N∑
j=1

αiαjψ(xi − xj) ≥ 0, (1.16)
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for all possible �nite system pairwise distinct points x1, . . . , xN ∈ Rd, and

α = [α1, . . . , αN ]T ∈ RN .

Theorem 1.9. If the function ψ : [0,∞) → R is completely monotone but

not constant, then for any set of distinct points (x1, . . . , xN) the matrix A,

which consists of ajk = ψ(‖xj − xk‖), j, k = 1, . . . , N is positive de�nite.

As a result, the matrix A will be positive de�nite since the basis function ψ

is positive de�nite. For this reason the matrix A is non-singular because of

its positive de�nite property. That is, there is only one solution for the sym-

metric linear system (1.14). In other words, this kind of RBF interpolation

problem is well-posed for the case of m = 0.

However, we cannot solve the interpolation problem by using the above

method when the order of the basis function is equal to or greater than 1.

In this situation the basis function is conditionally positive de�nite of order

(m ≥ 1). For instance, the above method cannot be applied to some types

of basis functions such as a piecewise polynomial, because ψ(r) >, ψ
′
(r) > 0

for r ≥ 0. In order to obtain su�cient conditions for a non-singular matrix

system, Micchelli added some restrictions such as new requirements to (1.14).

These restrictions lead to a technique called the augmented RBF technique.

However, we need to give here some de�nitions in order to understand and

explain it:

De�nition 1.10.
∏d

m is the space of d-variate polynomials of total degree

less than or equal to m. Additionally, M is the dimension of
∏d

m which is

M =
(
m+d
d

)
.
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De�nition 1.11. (Conditionally positive de�nite functions) A func-

tion ψ : Rd → R is called a conditionally positive de�nite function of order

m if
N∑
i=1

N∑
j=1

αiαjψ(xi − xj) > 0 (1.17)

holds for all possible �nite system pairwise distinct points x1, . . . , xN ∈ Rd,

and α = [α1, . . . , αN ]T ∈ RN , satisfying the vanishing moment conditions

N∑
j=1

αjP (xj) = 0, (1.18)

for all P ∈
∏d

m−1.

De�nition 1.12. Consider a given data set f = (f1, ..., fN)T ∈ RN of function

values, taken from an unknown function f : Rd → R at scattered data points

xj ∈ Rd, j = 1, ..., N , such that fj = f(xj) and d ≥ 1. The augmented RBF

interpolation is given by

If (x) =
N∑
j=1

αjψ(‖x− xj‖) +
M∑
k=1

υkdk(x) = f(x), for x ∈ Rd, (1.19)

where (d1(x), . . . , dP (x)) is a basis for
∏d

m and ψ(r), r ≥ 0, is any basis

function. With additional terms there are N +M unknown variables which

are the coe�cients α and υ. In order to determine these coe�cients, the

following restrictions are imposed:

N∑
j=1

αjdk(xj) = 0, for k = 1, . . . ,M, (1.20)
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which cause the following symmetric linear system

 A P

P T O


(N+M)×(N+M)

×

α
υ


(N+M)×1

=

f
0


(N+M)×1

, (1.21)

where A(N×N) is the matrix in (1.14), P(N×M) is the matrix with entries

dk(xj), O(N×N) is a null matrix and 0(M×1) is a null vector.

Theorem 1.13. Let ψm+1(r) for m ≥ 0 be completely monotone but constant

on (0,∞). The full (N+M)×(N+M) matrix in (1.21) is non-singular since

for any set of xj ∈ Rd, j = 1, ..., N satisfy the condition of rank(P ) = M ,

where P is a matrix in (1.18).

As a result, whenever the above theorem holds, the �rst matrix in (1.21)

guarantees the non-singularity, which means the well-posedness of the sym-

metric linear system. Hence, there is only one solution for this system.

The most frequently used RBFs in applications are Gaussians withm = 0, the

multiquadric (MQ) withm = 1, the inverse multiquadric (IMQ) withm = 0

and thin plate splines (TPS2), which are a special case of polyharmonic

splines with m = 2. Although the MQ is CPD is of order m = 1, it has a

unique solution without the additional constant polynomial whenever α = 0

[75].

According to Schoënberg's result [85], the interpolation matrix A is always

non-singular whenever the Euclidean norm is chosen as a distance. Although

we have only focused on the well-posedness problem for Euclidean distance in
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describing the interpolation problem, there has been some research conducted

for other distance types. If the data points are located on vertices of a closed

polygon, the grid norm (p=1) when d = 2 can yield a singular interpolation

matrix [67]. In [7], the well-posedness for p ∈ (0, 1) was proven. In addition

to this, [7] showed that it is possible to construct points which produce a

singular interpolation matrix whenever p and dimension are greater than 2.

Moreover, there are a few RBF interpolation algorithms with �atter basis

functions. One of the methods which uses small shape parameters is the

Contour-Pade of Fornberg and Wright [43], whilst another is the RBF-QR

of Fornberg and Piret [42], which was improved for the case where nodes

are scattered over the surface of a sphere. In addition to these, two di�er-

ent research groups - Fasshauer and McCourt [38], and Fornberg, Larsson

and Flyer [41] - have introduced two stable algorithms in order to evalu-

ate Gaussian RBF interpolation with a �at kernel. In [38], stable Gaussian

RBF interpolation in R4 has been presented by the authors. The aim of this

method is to overcome stability issues, though their solution remains lim-

ited to low dimensional problems because of curse of dimensionality. In [41],

two-dimensional domains have been used in the RBF-QR method of [42].

1.3.3 Anisotropic Radial Basis Functions Interpolation

In order to approximate anisotropic data as discussed above, anisotropic ra-

dial basis functions have been both introduced and used e�ectively in prac-

tice. In [23] and [22], the numerical e�ciency of anisotropic radial basis func-
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tions for local �tting has been showed in various applications. On the other

hand, in [8], the standard error estimation has been improved for anisotropic

radial basis functions and its derivatives. Now we can de�ne the anisotropic

radial basis functions:

De�nition 1.14. (Anisotropic radial basis function) Let A ∈ Rd×d be

any properly selected invertible matrix and ψ(‖x − xj‖) is any given radial

basis function which centred at xj ∈ Rd. Then the anisotropic radial basis

function (ARBF ) ψA is described as

ψA(‖x− xj‖) = ψ(‖A(x− xj)‖), (1.22)

Clearly, if A is the d× d identity matrix, then, ψA(‖x− xj‖) = ψ(‖x− xj‖).

In the light of this information, one can modify the solution of interpolation

problem by using ARBFs.

Consider a given data set f = (f1, ..., fN)T ∈ RN of function values, taken

from an unknown function f : Rd → R at scattered data points xj ∈ Rd,

j = 1, ..., N , such that fj = f(xj) and d ≥ 1. Let A ∈ Rd×d be a properly

selected invertible matrix, and ψ be a CPD radial function of order m and,

�nally, {pi}Mi=1 be a basis of the polynomial space
∏d

m−1. Now we can describe

the anisotropic radial basis functions interpolant IAni.
f

IAni.
f (x) =

N∑
j=1

αjψA(‖x− xj‖) +
M∑
k=1

υkdk(Ax) = f(x), x ∈ Rd. (1.23)
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With the following restrictions

N∑
j=1

αjdk(Axj) = 0, k = 1, . . . ,M, (1.24)

and describing the set of transformed data sites {βi}Ni=1, where βi = Axi, we

can obtain the following transformed symmetric linear system

N∑
j=1

αjψA(‖βi − βj‖) +
M∑
k=1

υkdk(βi) = fi, i = 1, . . . , N, (1.25)

and
N∑
j=1

αjdk(βj) = 0, k = 1, . . . ,M. (1.26)

The �nal transformed symmetric linear system is well-posed because of the

non-singular property of the transformation matrix A and the result of The-

orem 1.13. So there exists only one solution for this transformed symmetric

linear system provided that the transformation matrix A is chosen to be

non-singular.

1.4 Main Achievements

In this thesis, Q-SIK and Q-MuSIK algorithms will be presented and applied

to some test functions to con�rm their performance. In order to show their

superior properties, we have applied the proposed algorithms in numerical

integration schemes. Then, �nally, we have presented a theoretical analysis

of the convergence properties of multilevel quasi-interpolation.
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In order to show the behaviour of the proposed algorithm, we have per-

formed some numerical experiments using six di�erent test functions. We

have observed from numerical results that the Q-MuSIK scheme is superior

in terms of convergence, computational time, and complexity as compared

to classical multilevel quasi-interpolation. In addition, we have compared

Q-MuSIK with MuSIK. According to this comparison, the run time is less in

the Q-MuSIK method because there is no need to solve any large algebraic

systems. Therefore we might propose that the Q-MuSIK algorithm could be

used for problems which need to be completed in a short time, in particular

for high-dimensional problems.

We have presented convergence analysis of multilevel quasi-interpolation for

periodic functions using a Gaussian kernel on a grid. Thus our numerical

experiments have been con�rmed theoretically. In addition to this, we have

shown that the Q-MuSIK algorithm can be applied successfully to numerical

integration.

1.5 Outline

This thesis is composed of 8 chapters and is organised as follows:

In Chapter 2, we discuss linear sparse grid spaces and introduce their indirect

version called the combination technique.

In Chapter 3, we discuss the sparse interpolation with kernels method and

its multilevel version on the nodal exactness.
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In Chapter 4, we introduce the new quasi-sparse interpolation using Gaus-

sian kernels. The Q-SIK method is constructed by evaluating anisotropic

Gaussian kernels for each sub-interpolation problem. The solution will then

obtained by combining these sub-interpolation problems using the combina-

tion technique. At the end of the this chapter, some numerical results will

be presented and compared.

In Chapter 5, we present the multilevel version of the new quasi-sparse in-

terpolation with Gaussian kernels. This scheme has provided more accurate

results with less evaluation time in comparison with the other methods. Nu-

merical experiments will be presented in this chapter.

In Chapter 6, we will present the convergence analysis of multilevel quasi-

interpolation for periodic functions. Firstly, we will give the single level

quasi-interpolation error by using the shifting properties of the Gaussian

kernel. We will then �nd the multilevel error estimation using the multilevel

algorithm for unit function.

In Chapter 7, we will apply the Q-SIK and Q-MuSIK algorithms to numeri-

cal integration. The proposed algorithms are expected to show their superior

properties in the �eld of quadrature, with results to be con�rmed by numer-

ical experiments.

In Chapter 8, we will summarise a number of our conclusions regarding the

new developments presented in this work. Finally, we will brie�y discuss our

future research and ideas on possible extension of the current results.



Chapter 2

Hyperbolic Cross Product Spaces

and Sparse Grid Techniques

In this chapter we deal with hyperbolic cross product spaces and sparse grid

techniques which depend on hierarchical bases of linear splines. Hyperbolic

cross product spaces play a signi�cant role in this context. The approxima-

tion of functions by polynomials from hyperbolic cross product spaces was

introduced by Babenko [4] in 1960. Then, in 1963, Smolyak [87] focused

on quadrature and interpolation formulas based on tensor products of low

dimension operators because of the curse of dimensionality. For instance,

evaluation of N functions or grid points in one dimension causes to Nd grid

points in d-dimensions. So, the exponential behaviour of dimensionality leads

to some strict restrictions for the approximations which can be handled. In

1991, the sparse grid scheme was �rst presented and applied to the �nite

di�erence and �nite element methods - to �nd numerical solutions of par-

27
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tial di�erential equations - by Zenger [95] and Griebel [50]. This technique

made it possible to deal with the curse of dimensionality, at least for suf-

�ciently smooth functions. The sparse grid technique is based upon using

grids which contribute to the interpolation more than other grids, which by

comparison contribute only a little to the interpolation. This allows us to

construct larger multidimensional approximations and interpolations than

were previously possible.

2.1 General Idea of Interpolation on a Full Grid

Let f : C ≡ [0, 1]d → R be a function which is given only computationally,

that is, we only know the value of f at arbitrary points, and consider its

piecewise multi linear interpolation.

One needs to divide C into regular grids which are equally spaced on grid

points in order to interpolate function f . Thus, the grid points xi with

mesh size hn = 2−n are obtained for some re�nement level n. Then the

interpolation function of f are described as follows, with a de�ned, suitable

set of piecewise multi linear basis functions ψj(x)

f(x) ≈ f(x) =
∑
j

γjψj(x), (2.1)

where γj are coe�cients.

Using a full grid leads to the curse of dimensionality in this kind of inter-

polation method. One can prevent this problem by choosing suitable basis
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Figure 2.1: Linear combination of triangle basis functions (solid, blue), one
dimensional piecewise linear interpolation f(x) (dashed, red) and original
function f(x) (solid, green)

functions in the interpolation problem. In other words, some basis functions

can be omitted since their contribution to the interpolation is less than oth-

ers. Thus, the full grid can be reduced to a sparse grid, which provides us

with the means to deal with multidimensional function interpolation. This

kind of basis function can be chosen from a hierarchical basis function, which

will be introduced in the following sections.

2.2 Multi-stage Subspace Decomposition

In order to discuss sparse grids in detail, we need some notation and de�ni-

tions.

De�nition 2.1. (Basic multi-index notations) Let C := [0, 1]d be the

d-dimensional unit cube, x := (x1, . . . , xd) and f : C → R. Let N0 denote

the set of non-negative integers. A d-dimensional multi-index is a d-tuple

α = (α1, . . . , αd) ∈ Nd
0.



2.2. Multi-stage Subspace Decomposition 30

For x = (x1, . . . , xd) ∈ C, the bounded weak mixed derivatives are

Dα =

(
∂

∂x1

)α1

, . . . ,

(
∂

∂xd

)αd
=

∂|α|

∂xα1
1 , . . . , ∂x

αd
d

. (2.2)

Additionally, the discrete L1-norm and L∞-norm of α are described respec-

tively as follows:

|α|1 =
d∑
i=1

αi and |α|∞ = max
1≤i≤d

αi. (2.3)

We will use component-wise arithmetic operations which, given below through-

out this and next sections, can be de�ned as:

α · β := (α1β1, . . . , αdβd), (2.4)

ξ ·α := (ξα1, . . . , ξαd), (2.5)

δα := (δα1 , . . . , δαd), (2.6)

0 := (0, . . . , 0), (2.7)

1 := (1, . . . , 1), (2.8)

and the corresponding element-wise relations are

α ≤ β ⇔ ∀1≤i≤d αi ≤ βi, (2.9)

α < β ⇔ α < β and α 6= β. (2.10)
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For p = 2 and p =∞, we describe the space

χp,s(C) := {f : C→ R : Dαf ∈ Lp(C), |α|∞ ≤ s}. (2.11)

Here, χp,s(C) represents the space of all functions of bounded mixed deriva-

tives up to order s with respect to Lp-norm. One of the subspaces of χp,s(C)

is χp,s0 (C), which consists of those functions f vanishing on the boundary ∂C.

In other words, the homogeneous counterpart of χp,s(C) can be de�ned as

follows:

χp,s0 (C) := {f ∈ χp,s(C) : f |∂C = 0}. (2.12)

Within this context, we will limit ourselves to this subspace. In addition,

the smoothness parameter s is 2 for the case of the piecewise linear approx-

imation. Finally, the semi-norm of function f ∈ χp,s0 (C) can be described as

follows:

|f |2 := ‖D2f‖2 =

(∫
C

|D2f |2dx
)1/2

and |f |∞ := ‖D2f‖∞. (2.13)

2.2.1 One-dimensional Hierarchical Basis Functions

One-dimensional multilevel basis functions play an important role in the

sparse grid method since it will help the solution of the high dimensional

problems. In the classical approach, hierarchical basis functions based upon

one dimensional linear functions are considered. One can choose a triangular

function (also known as a standard hat function) as a one-dimensional linear

function. Let us de�ne the triangular function:
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De�nition 2.2. (Triangular function) The function 4 : R→ R is called

a triangular function, and is de�ned as

4(t) = max(1− |t|, 0). (2.14)

Now, let us consider a set of anisotropic 1-dimensional grids Υl of level l on

the unit interval C = [0, 1] and mesh size 2−l. In this notation, the index l

represents the level of a grid or a space, whereas the multi-index i represents

the location of a basis function or grid point (xl,i) in Υl. So the set of equally

spaced grids xl,i are given by

xl,i := i · hl = i · 2−l, i ∈ [0, 2l]. (2.15)

Now, one can generate a scaled piecewise linear basis function 4l,i(x) with

support [(i− 1)hl, (i+ 1)hl] by translation and dilation by using a triangular

function, i.e.,

4l,i(x) := 4(2lx− i). (2.16)

This basis, in general, is called the nodal point basis; as an example, the

nodal point basis for l = 3 is shown in Figure 2.2.

One can use these basis functions in order to de�ne function spaces $l, which

are constructed from piecewise linear functions. Here, we suppose that the

function value in $l is vanishing on the boundary of C. In order to deal

with this restriction, one can add suitable boundary basis functions. So the
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Figure 2.2: The nodal point basis for the �rst four levels

function space $l is

$l := span{4l,i : i ∈ N0, i ∈ [1, 2l − 1]}. (2.17)

Then, we need to de�ne the index set to construct the hierarchical increment

space ωl, that is

ωl := span{4l,i : i ∈ ℵl}, (2.18)

with

ℵl = {i ∈ N0 : i ∈ [1, 2l − 1], i's are odd}. (2.19)

Additionally, there is a relation between the function space $l and the hier-

archical increment space ωl, such that

$n =
⊕
l≤n

ωl, (2.20)

And the basis related ωl is called a hierarchical basis. For example, the
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piecewise linear hierarchical basis functions for l = 3 are shown in Figure

2.3.
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Figure 2.3: The piecewise linear hierarchical basis for the �rst four levels

In addition to this, one can represent any function f ∈ $n as follows

f(x) =
∑
l≤n

∑
i∈ℵl

λl,i · 4l,i(x), (2.21)

where λl,i ∈ R are coe�cient values.

2.2.2 Multidimensional Construction with Tensor Prod-

uct

Up to this point, we have dealt with 1-D hierarchical basis functions on the

interval C = [0, 1]. In the light of this information, one can obtain a high-

dimensional basis function on the interval C = [0, 1]d from 1-D hierarchical

basis functions by using a tensor product approach.

Now, let us consider a set of anisotropic grids Υl of level l ∈ Nd
0 on the unit
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interval C = [0, 1]d and mesh size 2−l. Here, the multi-index l represents the

level of grid where l = (l1, . . . , ld) ∈ Nd
0 and mesh size hl = (2−l1 , . . . , 2−ld).

In other words, although the points of Υl are placed equidistantly in each

coordinate direction, the mesh sizes are di�erent along di�erent coordinate

directions. So the s-dimensional anisotropic grids Υl are formed from the

following points:

xl,i := i · hl = i · 2l, i ∈ [1, 2l − 1]. (2.22)

Now, one can de�ne the piecewise d-linear basis function 4l,i for each grid

point via a tensor product of one-dimensional basis functions 4l,i in each

direction, that is

4l,i(x) :=
d∏

m=1

4lm,im(xm). (2.23)

In addition to this, the arbitrary dimensional case notations are formulated

by using the one-dimensional situations, e.g., the function space $l con-

structed from piecewise multilinear functions which are vanishing on the

boundary of C is

$l := span{4l,i : i ∈ Nd
0 ∧ i ∈ [1, 2l − 1]}. (2.24)

Similarly, the subspaces ωl are described as follows

ωl := span{4l,i : i ∈ ℵl}, (2.25)
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with the index set ℵl

ℵl = {i ∈ Nd
0 : i ∈ [1, 2l − 1], ∧ ij odd for all j ∈ [1, d]}. (2.26)

Now, $l is the space of piecewise multi linear basis functions related to the

equally located grids of level n, which we represent by $n,d. Thus

$n,d =
⊕
|l|∞≤n

ωl =
n⊕

l1=0

, . . . ,
n⊕

ld=0

ωl, (2.27)

where l = (l1, . . . , ld). Thus, the hierarchical basis function space is

{4l,i : i ∈ ℵl, |l|∞ ≤ n}, (2.28)

which leads to the full grid with (2n − 1)d grid points. Additionally, the

interpolation function f(x) ∈ $n,d is as follows

f(x) =
∑
|l|∞≤n

∑
i∈ℵl

λl,i · 4l,i(x), (2.29)

where λl,i ∈ Rd are coe�cient values. For instance, in two dimensions, the

basis functions of subspace ωl are shown in Figure 2.4, which correspond to

an anisotropic subgrid.
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Figure 2.4: Piecewise bilinear basis function 4l,i on Υl

2.3 Sparse Grids Technique

Now we can choose the subspaces which best provide us with a greater con-

tribution to the solution of the full grid approximation than others by using

the hierarchical representation described above. In order to achieve this,

we restrict ourselves to the functions f which belong to the Sobolev space

χ2,2(C) de�ned in (2.11) and have bounded mixed second derivatives Dαf for

|α|∞ ≤ 2. Thus, the functions f satisfy the smoothness requirement which

is required for sparse grid method. Then, according to a signi�cant result

taken from [15], for functions f ∈ χ2,2(C), the hierarchical coe�cients λl,i are

diminishing as

|λl,i| = O(2−2|l|1). (2.30)

Additionally, the number of degrees of freedom (i.e., the size of the subspace

of ωl) is given by

|ωl,i| = O(2|l|1). (2.31)
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Therefore, the relationship between the resulting approximation accuracy

and the number of degrees of freedom (i.e., the number of grids) directly

causes the sparse grid space denoted by $̂n,d:

$̂n,d =
⊕

|l|1≤n+d−1

ωl, (2.32)

omitting those subspaces from the uniform full grid space $n,d with a num-

ber of basis functions of little contribution. The selection of subspaces and

sparse grids space $̂n,d is shown in Figure 2.5. According to Figure 2.5, black

points represent the optimal selection of subspaces, that is, sparse grids. The

combination of all grid points (the black and red points) represents the full

grids.
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Figure 2.5: The two-dimensional subspaces ωl up to l = 4 in each dimension

Additionally, the basis of the sparse grid space is given by {4l,i : i ∈ ℵl, |l|1 ≤

n} and these subspaces satisfy $̂n,d ⊂ $n,d. The choosing criteria for sub-

spaces are directly related to the norm. For instance, the above result is

preferable for both the L2 and maximum norms. Throughout this and the

next sections, the sparse grid of level n in d dimensions which is constructed



2.3. Sparse Grids Technique 39

from the approximation space $̂n,d is denoted by Sn,d. Additionally, as might

be expected, the sparse grid in one dimension coincides with the one dimen-

sional uniform full grid.

2.3.1 Approximation Properties of Sparse Grid Spaces

One of the most signi�cant properties of this method is that the sparse grid

considerably reduces the computational cost to a reasonable level for the mul-

tidimensional approximation problems. In [15], Bungartz and Griebel have

presented some important results for approximation order and size of sparse

grid spaces. According to this study, the dimension of $̄n,d, in other words

the number of grid points or degrees of freedom, is given by

|$̄n,d| =
n−1∑
j=0

2j · Cd−1+j
d−1

= (−1)d + 2n ·
d−1∑
j=0

Cn+d−1
j · (−2)d−1−j

= 2n ·
(

nd−1

(d− 1)!
+ O(nd−2)

)
= O(2nnd−1)

= O(h−1
n · (log h−1

n )d−1), (2.33)

where Cd
n is binomial coe�cients,

(
d
n

)
, and hn = 2−n. When we compare the

number of degrees of freedom of the full grid space, which is |$n,d| = O(2nd) =

O(h−dn ), it can be easily seen that the computational and storage requirements
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of the sparse grid method are cheaper than for classical methods. In addition

to this, the approximation accuracy of sparse grid spaces for function f ∈

χ2,2(C) is given by

‖f − f‖p = O(2−2nnd−1),

= O(h2
n · (log h−1

n )d−1) (2.34)

in the Lp-norms. The same sensibility for uniform full grid spaces is given by

‖f − f‖p = O(2−2n).

= O(h2
n) (2.35)

In both comparisons, the dimension a�ects the order notation as a logarith-

mic. In other words, sparse grid spaces $̄n,d provide us considerable positive

contribution vis-à-vis the uniform full grid spaces because there is a remark-

able amount of di�erence between the number of grid points of sparse grid

spaces and full grid spaces in the multi dimension approximation. Therefore,

the computation and storage requirements are decreased with a smaller num-

ber of grids. However, there is only a little positive in�uence from sparse grid

spaces for approximation accuracy in comparison with the full grid spaces.

Thus the curse of dimensionality can be dealt with in this manner. Figure

2.6 shows uniform full grids and sparse grids in two and three dimensions for

level n = 4 each.
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Figure 2.6: Uniform full grid and sparse grid in two (left) and three (right)
dimensions for level n = 4

2.3.2 Combination Technique

The sparse grid combination technique, which was �rst introduced by Griebel,

Schneider and Zenger in 1992 [53], has been discussed in a number of stud-

ies [17], [18] and [19]. This technique is derived from the previously intro-

duced sparse grid method in order to increase the amenable properties it

provides us. According to the sparse grid combination technique, sparse grid

interpolation for some functions can be computed from the linear combina-

tion of interpolation fl which is calculated on the respective coarse grids,

since sparse grid Sn,d can be stated as a superposition of a number of (much

coarser) full grids Υl. This combination is shown in Figure 2.7. Thus, this

technique provides us with an acceptable approximation accuracy and low

memory requirements by combining a number of smaller approximations. In

other words, combination technique provides better performance by com-
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puting several sub interpolation problems with using small amount of grid

points. For this reason, it is a highly e�ective method for both RBF inter-

polation and quasi-interpolation.

= ⊕ ⊕ ⊕

	 	 	

Figure 2.7: Sparse Grid S4,2 as a combination of coarser full grids

Let fl be a partial interpolant of function fn on a de�nite sequence of

anisotropic grids Υl, l = (l1, . . . , ld). These grids are placed in each coor-

dinate direction with di�erent but uniform mesh sizes. So, the interpolation

of function fn by using these partial interpolants fl is given by the following

combination formula [30], [70]:

fn(x) =
d−1∑
q=0

(−1)qCd−1
q

∑
|l|1=n+(d−1)−q

fl(x), (2.36)

where

fl =
2l1∑
i1=0

, . . . ,

2ld∑
id=0

λl,i · 4l,i(x). (2.37)

For example, the 2-D case is given by

fn(x) =
∑
|l|1=n+1

fl(x)−
∑
|l|1=n

fl(x), (2.38)
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and the 3-D combination formula is given by

fn(x) =
∑
|l|1=n+2

fl(x)− 2
∑
|l|1=n+1

fl(x) +
∑
|l|1=n

fl(x). (2.39)

There are two signi�cant characteristic properties of the sparse grid combi-

nation technique which leads it to be superior to the direct discretization

on sparse grids. First of all, one can obtain acceptable solutions for compli-

cated problems with this technique by using existing codes. Secondly, easy

computability of di�erent subproblems via parallel computation makes this

technique perfectly suited to modern high performance computers [51], [52],

[63].

Although the sparse grid combination technique uses some points more than

once, it still needs only a small amount of memory for computation and it

provides good results in high dimensions in comparison with the full grids.

In [45] and [59], some recent studies of the sparse grid combination technique

are presented in the literature.



Chapter 3

Multilevel Sparse Kernel Based

Interpolation

As discussed in the previous chapter, the sparse grid technique provides us

with a remarkable decrease in computational cost since it restricts the data

size for linear interpolation. Thus, for this reason, one has obtained logarith-

mic loss of convergence rate for this method when applied to multidimen-

sional cases in comparison with classical techniques. For instance, in [86],

a direct sparse grid method has been applied by means of tensor products

of one-dimensional RBF. In this study, although there is an error analysis

which has been developed by using the tensor product behaviour, computa-

tional evaluation has not given by the author. In addition to these, the new

method of sparse kernel-based interpolation (SIK) has been introduced by

Georgoulis, Levesley and Subhan [46] in 2013. This method uses anisotropic

radial basis function interpolation on partial grids and then linearly combines

44
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them with the combination technique. In other words, SIK can be obtained

by solving many sub-interpolation problems with properly selected subgrids

and then linearly combining them. This technique provides us with a con-

siderable advantage in the interpolation of huge amounts of data in multiple

dimensions.

3.1 Sparse interpolation with Kernels

Let u : Ω→ R, such that Ω := [0, 1]d and u(x) ∈ R for x = {x1, . . . , xd} ∈ Ω.

Let {(xi, ui), ui = u(xi), i = 1, · · · , N}, be data-sampled from an unknown

function u at a �nite point set X = {x1, · · · ,xN} ⊂ Ω. The main goal of

this kind of interpolation problem is to �nd a suitable function, interpolant

I : Rd → R, which holds for the interpolation condition

I(xj) = u(xj), 1 ≤ j ≤ N. (3.1)

The key idea is to use the anisotropic RBF discussed in Chapter 1 because

of the anisotropic behaviour of each subgrid Υl. For this reason we need a

transformation coe�cient matrix A = Al = diag(2l1 , · · · , 2ld), which provides

us anisotropic RBFs ψAl(‖x−xj‖) for dealing with this undesirable property.

Thus the well-posedness problem has been solved as well.

All in all, the anisotropic RBF interpolation IAni.
u (x) of u at the grids Υl is
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then de�ned by

IAni.
ul

(x) =

Pl∑
j=1

αjψAl
(‖x− xj‖) +

M∑
k=1

υkdk(Alx), x ∈ Ω. (3.2)

where Pl is the number of sparse grids and αj needs to be chosen such that

the interpolation requirements

[
IAni.
ul

= u
]

Υl

, (3.3)

must be satis�ed. The SIK method which has been introduced in [46] is then

de�ned by

In(x) =
d−1∑
q=0

(−1)qCd−1
q

∑
|l|1=n+(d−1)−q

IAni.
ul

(x). (3.4)

The above formula was �rst presented in [30] for Lagrange interpolation

and then in [53] for the numerical solution of elliptic PDE using the FEM on

sparse grids by using the combination method. For instance, in 2-D, equation

(3.4) becomes

In(x) =
∑
|l|1=n+1

IAni.
ul

(x)−
∑
|l|1=n

IAni.
ul

(x). (3.5)

3.2 Tensor product kernels give interpolatory

schemes

We shall show that the combination formula (3.4) is, indeed, an interpolant.

To highlight the key ideas of the proof, we �rst consider an example in three
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dimensions. A two dimensional example is too straightforward, and a four

dimensional one is already too complicated.

Setting, for instance, d = 3 and n = 7, we seek to compute the value of

the sparse kernel-based interpolant I7 to the function f at the point a =

(1/4, 1/8, 1/16) = (2−2, 2−3, 2−4), which �rst appears in the grid with multi-

index l = (2, 3, 4). From (3.4), we see that for d = 3, the sub-grids of

the previous two levels are linearly combined to give I7. Hence, the set of

multi-indices which index the approximation are {α : |α| = 7, 8, 9}.

We decompose these sets of multi-indices into two groups: The �rst sets of

grids, let us call them Group 1, have two of the three components of the

multi-index less than the corresponding components for the multi-index for

the point, e.g., the grids represented by the multi-indices {α = (k, 1, 1) :

k = 5, 6, 7}. The remaining grids, let us call them Group 2, have only one

component less than the corresponding component for the point; for instance

the family of grids {α = (k, l, 2) : k + l ≤ 7, k ≥ 2, l ≥ 3}.

We shall now study the values of the function f on a typical set of grids

from Group 1, {(k, 1, 1) : k = 5, 6, 7}. To this end, we consider the cardinal

functions from points on these grids, and their values at the point a. Let

b = (r12−k, r2/2, r3/2), for some ri ∈ N0, i = 1, 2, 3, where 0 ≤ r1 ≤ 2k,

0 ≤ r2, r3 ≤ 2, with cardinal function χ(k,1,1),b. Then

χ(k,1,1),b(a) = χk,r12−k(1/4)χ1,r2/2(1/8)χ1,r3/2(1/16) = 0,
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if r12−k 6= 1/4, since k ≥ 2. If r12−k = 1/4 then

χ(k,1,1),b(a) = χ1,r2/2(1/8)χ1,r3/2(1/16)

which is independent of k.

Thus (1/4, r2/2, r3/2) is a node on all grids {Υ(k,1,1) : k = 5, 6, 7}, and

the value of the cardinal functions χ(k,1,1),b are identical at a. Hence, the

contribution to the interpolant from f(b), on these grids, is

2∑
q=0

(−1)q
(

2

q

)
f(b)χ(7−q,1,1),b(a)

= f(b)χ1,r2/2(1/8)χ1,r3/2(1/16)
2∑
q=0

(−1)q
(

2

q

)
= 0.

If we combine the results of the last two paragraphs we see that the con-

tribution to the interpolant from all of the points on grids from Group 1 is

0.

We now turn to grids from Group 2. Let us consider points on the grids

Υ(k,l,2) for k + l ≤ 7, k ≥ 2, and l ≥ 3, and their values at a. Let b =

(r12−k, r22−l, r3/4), for some 0 ≤ r1 ≤ 2k, 0 ≤ r2 ≤ 2l, and 0 ≤ r3 ≤ 4 with

cardinal function χ(k,l,2),b. Then,

χ(k,l,2),b(a) = χk,r12−k(1/4)χl,r22−l(1/8)χ2,r3/4(1/16) = 0,

unless r12−k = 1/4 and r22−l = 1/8, since k ≥ 2 and l ≥ 3. If r12−k = 1/4
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and r22−l = 1/8, then χ(k,l,2),b(a) = χ2,r3/4(1/16), which is independent of k

and of l.

Thus, (1/4, 1/8, r3/4) is contained on all grids Υ(k,l,2) for k+l ≤ 7, k ≥ 2, and

l ≥ 3, and the value of the cardinal functions χ(k,l,2),b, for all the permissible

values of k are identical at a. Hence, the contribution to the interpolant from

f(b), on these grids, is

2∑
q=0

(−1)q
(

2

q

)
f(b)

∑
k+l≤7−q, k≥2, l≥3

χ(k,l,2),b(a)

= f(b)χ2,r3/4(1/16)
2∑
q=0

(−1)q
(

2

q

)
card {(k, l) : k + l ≤ 7− q, k ≥ 2, l ≥ 3}

= f(b)χ2,r3/4(1/16)
2∑
q=0

(−1)q
(

2

q

)
(3− q) = 0.

Therefore, the contribution to the interpolant from all grids in Group 2 is

also zero.

Thus, the only grid contributing to the interpolant is Υ(2,3,4), and the only

cardinal function from that grid which takes non zero values at a is the

cardinal function at a itself. Therefore, the SIK I7 is, indeed, an interpolant

at all points of Υ7,3. Hopefully, this example highlights clearly the key role

that tensor-product nature of the kernel has in the proof of interpolation

property. The results we shall present in this section are given extendedly in

[31].

Equipped with the insight gained by the above example, we shall now con-

sider the general case. To this end, we begin with the following counting
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result.

Lemma 3.1. Let k ∈ Nd and |k| < p ∈ N. Then,

card {j ∈ Nd : j ≥ k, |j| = p} =

(
p− |k|+ d− 1

d− 1

)
.

Proof: For d = 1, the result is immediate, since for k < p,

card {j ∈ N : j ≥ k, j = p} = 1.

For d ≥ 2, let us write k = (k1, k̃) and consider the set {j̃ ∈ Nd−1 : |̃j| =

p− j1}, for j1 = k1, k1 + 1, · · · , p− |k̃|. Then, by induction,

card {j̃ ∈ Nd−1 : j̃ ≥ k̃, |̃j| = p− j1} =

(
p− j1 − |k̃|+ d− 1

d− 1

)
.

Thus,

card {j ∈ Nd : j ≥ k, |j| = p} =

p−|k̃|∑
j1=k1

card {j̃ : j̃ ≥ k̃, |̃j| = p− j1}

=

p−|k̃|∑
j1=k1

(
p− j1 − |k̃|+ d− 1

d− 1

)

=

p−|k|+1∑
j1=1

(
j1 + d− 2

d− 1

)
=

(
p− |k|+ d

d

)
,

using the well-known summation formula for binomial coe�cients; e.g., [1].

�
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We are now ready to state and prove the main result of this section.

Theorem 3.2. Assuming that the interpolation kernel has the form

µ(y) =
d∏
i=1

ϕ(yi),

then sparse interpolation with this kernel is an interpolatory scheme.

Proof: We wish to compute the value of the sparse grid interpolant In to the

function f at the point a = (a12−l1 , a22−l2 , · · · , ad2−ld), with 0 ≤ aj ≤ 2lj ,

1 ≤ j ≤ d, with at least one of the aj ∈ N0 odd (this ensures that Υl is the

grid with the smallest index in which this points appears). From hypothesis,

the kernel is of tensor-product form, which implies the cardinal functions for

interpolation are of the form

χm,x =
d∏
j=1

χmj ,xj2−mj . (3.6)

In order to create a decomposition of the indices as in the example above,

we need to introduce some notation. Let d1, d2 ∈ N, with d1 + d2 = d. Let

n1 ∈ Nd1 with n1(j) ∈ {1, 2, · · · , d}, j = 1, 2, · · · , d1, and n1(j) < n1(j + 1),

j = 1, 2, · · · , d1 − 1. Similarly, let n2 ∈ Nd2 with n2(j) ∈ {1, 2, · · · , d}, j =

1, 2, · · · , d2, and n2(j) < n2(j+1), j = 1, 2, · · · , d2−1. Additionally, n1(j) 6=

n2(k) for any j, k. In other words, the components of n1 and n2 exhaust the

set {1, 2, · · · , d}, and these numbers are ordered within the vectors n1 and

n2. We should note that once n1 is speci�ed, n2 is uniquely determined and

vice versa.
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Let mi ∈ Ndi , i = 1, 2. Then, let the multi-index m = (n1,m1,n2,m2) ∈ Nd

have components m(k) = mi(j) if ni(j) = k, i = 1, 2. So, for instance, if

n1(3) = 7, then m(7) = m1(3), and if n2(4) = 5, then m(5) = m2(4). In

this way, we break multi-indices into two pieces in a convenient fashion.

On the other hand, for m ∈ Nd, let mn1 ∈ Nd1 with mn1(i) = m(n1(i)),

i = 1, 2, · · · , d1 and mn2 ∈ Nd2 with mn2(i) = m(n2(i)), i = 1, 2, · · · , d2.

Then, we have the identity

m = (n1,mn1 ,n2,mn2).

Now, for each d1 = 1, 2, · · · , d− 1, and n1 ∈ Nd1 , let

I(l, d1,n1) = {m1 : m1 < ln1}.

For each m1 ∈ I(l, d1,n1), de�ne

J(l, d1,n1,m1) = {(n1,m1,n2,m2) : m2 ∈ Nd2 , m2 ≥ ln2}.

The sets J(l, d1,n1,m1) partition all multi-indices into sets with a �xed set

of components of the multi-index less than those of l and the remaining

components greater than or equal to those of l. The only multi-index missing

from this set is l itself.

We compute the cardinality of the subsets of J(l, d1,n1,m1), given by

J(l, d1,n1,m1, q) = {m ∈ J(l, d1,n1,m1) : |m| = n+ d− 1− q},
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for q = 0, 1, · · · , d− 1, which, using Lemma 3.1, is given by

card J(l, d1,n1,m1, q) =

(
n+ d+ d1 − 2− |ln2| − q

d1 − 1

)
. (3.7)

We now consider the contribution to the interpolant from a typical point on

one of the grids indexed by elements of J(l, d1,n1,m1).

Let m = (n1,m1,n2,m2) ∈ J(l, d1,n1,m1). Then, by de�nition, ln2 ≥ m2.

Let x = (x12−m1 , x22−m2 , · · ·xd2−md), for some 0 ≤ xj ≤ 2mj , j = 1, 2, · · · , d,

with cardinal function χm,x. Then,

χm,x(a) =
d∏
i=1

χmi,xi2−mi (ai2
−li).

Hence, χm,x(a) 6= 0 only if xi2−mi = ai2
−li , i = n1(j), j = 1, 2, · · · , d2. In

this case,

χm,x(a) =

d1∏
j=1

χ
mn1(j)

,xn1(j)
2
−mn1(j)

(an1(j)2
−ln1(j)),

which is independent of m2.

So we have, for �xed n1 and m1, the same contribution at a from any individ-

ual point which appears in a grid in J(l, d1,n1,m1). Thus, the contribution
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to from x at point a is

d−1∑
q=0

(−1)q
(
d− 1

q

)
f(x)

∑
m∈J(l,d1,n1,m1,q)

χm,x(a)

= f(x)

d1∏
j=1

χ
mn1(j)

,xn1(j)
2
−mn1(j)

(an1(j)2
−ln1(j))

×
d−1∑
q=0

(−1)q
(
d− 1

q

)
card J(l, d1,n1,m1, q)

= f(x)

d1∏
j=1

χ
mn1(j)

,xn1(j)
2
−mn1(j)

(an1(j)2
−ln1(j))

×
d−1∑
q=0

(−1)q
(
d− 1

q

)(
n+ d+ d1 − 2− |ln2 | − q

d1 − 1

)
= 0,

since the binomial coe�cient is a polynomial in q of degree less than d − 1,

which is thus annihilated by the di�erence operator.

Thus, we see that all contributions from points in other grids other than Xl

are zero at points in Xl. Clearly, the only contribution at a ∈ Xl from points

in Xl will be from a itself. �

3.3 Multilevel sparse interpolation with kernels

In 2013, Georgoulis, Levesley and Subhan [46] introduced the Multilevel

Sparse Interpolation with Kernels (MuSIK, for short) method (previously

referred to as MLSKI). The main motivation of MuSIK is using the residual

interpolation with the SIK method for each level.
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Indeed, the MuSIK algorithm uses the same principle as the classical multi-

level RBF algorithm. One can commence the MuSIK algorithm by computing

the sparse interpolation with kernels In0 on the coarsest sparse grid Sn0,d and

set ∆0 := In0 . Then, for each remaining sparse grid (j = 1, . . . , n), ∆j is the

sparse grid interpolant to the residual

f −
j−1∑
i=1

∆i,

on Sj,d. After all these calculations, multilevel sparse interpolation with

kernels can be obtained, which is

IMuSIK
n :=

n∑
i=1

∆i. (3.8)

3.4 Tensor product of univariate cardinal func-

tions

Gaussian kernels on Rd can be viewed as tensor products of univariate Gaus-

sians. Of course this is also valid for anisotropic version of Gaussian kernels.

This property will be used below result.

Corollary 3.3. Multilevel versions of sparse interpolations with Gaussian

kernels are interpolatory on the kernel centres.

Proof: According to Theorem 3.2 the sparse interpolation with Gaussian

kernels is an interpolatory scheme. By using this result one can say that
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u−
∑k−1

j=0 ∆j is interpolatory on Sk,d, for each k. This implies that the mul-

tilevel versions of the sparse interpolations with Gaussian kernels IMuSIK
n :=∑n

j=0 ∆j is also interpolatory. �

Hence, it is possible to compute the cardinal functions for multivariate ap-

proximation by computing ab initio (to arbitrarily high precision, e.g., by

using symbolic calculators) the cardinal functions for univariate approxima-

tion up to (for instance) 5, 9, 17, · · · , 129 equally spaced points, and store

these.



Chapter 4

Quasi Sparse Interpolation with

Kernels

One of the most powerful aspects of quasi-interpolation is that it can be gen-

eralized easily to the multidimensional case because of its simple structure.

In previous chapters, we have seen some basis functions which have a num-

ber of nice properties for quasi-interpolation on a uniform grid in Rn such

as simplicity, smoothness and exponential decay behaviour at in�nity. Thus,

this kind of basis function makes multidimensional approximation possible

with basic analytical representations.

Another advantage of quasi-interpolation is that there is no need to solve

large algebraic systems. For example, for some approximation techniques,

such as radial basis functions interpolation, one needs to solve large number

of matrix systems to �nd the best approximation and require signi�cant stor-

57
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age for univariate problems solutions. However, due to the nature of quasi-

interpolation, we just need to know function value at speci�c points. Thus,

this makes quasi-interpolation useful in practice not only for low dimensional

approximations but also in multidimensional cases. Also integration using

quasi interpolation methods provides us positive weights because of it nature.

Now, in order to provide more bene�ts from nice properties of quasi-interpolation,

we will propose to apply this new technique to quasi-interpolation, which is

called the quasi-sparse kernel-based interpolation (Q-SIK) method. Thus, we

similarly expect to obtain results with lower computational cost, especially

in the interpolation of huge amount of data in multiple dimensions.

4.1 Sparse Grid Construction

In order to clarify sparse grid construction, we need to introduce some

multi-index notation. Throughout this and next sections we will use l :=

(l1, . . . , ld) ∈ Nd and i := (i1, . . . , id) ∈ Nd as a spatial position. The key

point here is that the multi-index l consists of non zero components. In

other words, non-zero elements are an undesired condition for solving inter-

polation problems.

For the above multi-indices, the cartesian (discrete) full grids Υl on Ω can

be described with mesh size hl; = 2−l = (2−l1 , . . . , 2−ld). That is, the family

of grids Υl consists of the points

xl,i := (xl1,i1 , . . . , xld,id), (4.1)
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where xlp,ip := ip · hlp = ip · 2−lp and ip ∈ {0, 1, . . . , 2lp}. These grids may

have di�erent mesh sizes for each coordinate direction. In addition to this,

one can calculate the number of nodes Σl in Υl by using the formula

Pl :=
d∏
p=1

(2lp + 1). (4.2)

For instance, should one choose constant l, which is equal to n for all p =

1, . . . , d, the cartesian full grid converts to a uniform full grid denoted by Γn,d

with P = (2n + 1)d, where n is the grid level. In addition to this, the sparse

grid Sn,d, discussed in the previous chapter, can be obtained by the union of

a lot of (much coarser) uniform full grids Υl.

As can easily be seen, the sparse grid treatment itself already requires the

use of anisotropic basis functions. For this reason, we will use anisotropic

Gaussian functions for both SIK and Q-SIK.

4.2 Quasi sparse interpolation with kernels

In the previous sections we have discussed the advantageous of both the

quasi-interpolation method and the sparse grid combination technique for

multidimension interpolation. Both tools provide superior features such as

decreasing computational complexity. For example, the SIK method has

been introduced, as given in previous chapter, in order to bene�t the sparse

grid technique.

In this section, we improve on this via a new quasi-SIK interpolation formula
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on a sparse grid for a function of several variables. In accordance with this

purpose, we solve a number of sub-anisotropic quasi-interpolation problems

on well constructed subgrids and then obtain the quasi-SIK interpolant by

combining the resultant sub-quasi interpolants linearly.

In a similar way, all the subgrids for each level can be constructed as per the

previous section. That is, we have Υl with a mesh size hl. Then, in order to

compute each subgrid interpolation problem, we need to use the anisotropic

quasi-interpolation method; the anisotropic quasi-interpolation QAni.

f (x) of

u at the grids Υl is de�ned by

QAni.

ul
(x) =

∑
k∈Υl

u(kh)µAl

(x
h
− k

)
, x ∈ Rn, h > 0, (4.3)

where µA is the anisotropic Gaussian basis function. Then we obtain the

quasi-SKI by combining the all sub-quasi-interpolation problems with the

combination technique. In other words, the quasi-SKI is de�ned by

Qn(x) =
d−1∑
q=0

(−1)qCd−1
q

∑
|l|1=n+(d−1)−q

QAni.
ul

(x). (4.4)

For example, in 3-D the quasi-SIK is

Qn(x) =
∑
|l|1=n+2

QAni.
ul

(x)− 2
∑
|l|1=n+1

QAni.
ul

(x) +
∑
|l|1=n

QAni.
ul

(x). (4.5)

The key idea here is subtracting the redundant grids visited on several oc-

casions. That is, the middle term on the right hand side of equation (4.5)

serves to remove any undesired grids used more than once, which comes from
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the �rst and third term on the right hand side of equation (4.5). We can

summarize the algorithm of sparse kernel-based interpolation in the following

�ow chart.

This technique can be perceived as a modi�ed version of the idea of the

sparse kernel-based interpolation. For this reason, the quasi-SIK algorithm

can be implemented with only a small modi�cation of existing SIK code. Of

course, the quasi-SIK method will help us when constructing the multilevel

algorithm.

Algorithm 1: Q-SIK method

Data: Sparse grid data {(xi, ui), ui = u(xi), i = 1, · · ·N}

Result: The sparse kernel-based interpolation In(x)

1: Create the subgrids for each level

l ∈ Nd, |l|1 = n, . . . , n+ (d− 1) and Υl with mesh size hl.

2: Compute the anisotropic sub-interpolation problems

QAni.

u (x) =
∑

k∈Υl
u(kh)µA

(
x

h
− k

)
3: Combine the all sub-interpolation problems obtained above

Qn(x) =
∑d−1

q=0(−1)qCd−1
q

∑
|l|1=n+(d−1)−qQ

Ani.
ul

(x)

As can be seen in the above explanations, the SIK method is very amenable

to parallel computation since each sub-interpolation problem can be solved

independently. A signi�cant property of this technique is that no return is

needed from long stages of computation, i.e., each sub-interpolation problem

is absolutely independent of any other. Therefore this method can be applied

in a computational cluster or distributed across workstations. Thus, the
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approximation of the entire solution can be obtained after collection of each

sub-interpolation problem. For this reason, the SIK method provides us

with computationally cheap approximation, especially for multidimensional

problems.

4.3 Numerical Experiments in 2-D

In this section, in order to test and compare the SIK and Q-SIK methods,

we will present some interpolation results. In accordance with this purpose

we have used some test functions, which are given below. Of course, we also

will provide classical RBF and quasi-interpolation results to show superior

properties of sparse interpolations.

• F 2d
1 (x, y) (Franke's test function)

F 2d
1 (x, y) =

3

4
e−((9x−2)2+(9y−2)2)/4 +

3

4
e−(9x+1)2/49−(9y+1)2/10

+
1

2
e−((9x−7)2+(9y−3)2)/4 − 1

5
e−((9x−4)2+(9y−7)2).

• F 2d
2 (x, y) = 42x(1− x)y(1− y).

• F 2d
3 (x, y) =

√
18

π
e−(x2+81y2).

• F 2d
4 (x, y) =

1.25 + cos(5.4y)

6 + 6(3x− 1)2
.

• F 2d
5 (x, y) =

√
64− 81((x− 0.5)2 + (y − 0.5)2)/9− 0.5.

• F 2d
6 (x, y) = max(x− 1

2
) max(y − 1

2
).
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The Franke's test function is widely used in RBF literature and can be found

in [44]. The others can be found in [36], [8] and [23], respectively. These test

functions are illustrated in Figure 4.1.

All these numerical experiments have been done using a 160× 160 uniform

grid in the domain [0, 1]2 ⊂ R2. In the numerical experiments, Max-Error

represents the maximum modulus error, i.e., ‖f − g‖∞ and Rms-Error rep-

resents the standard root mean squared error, i.e.

√∑Neval
i=1 |fi − gi|2

Neval
, (4.6)

where f is the exact solution, g is the approximate solution, and Neval is the

number of the test points.

In addition to these, N represents the number of data points for both stan-

dard RBF interpolation and quasi-interpolation. In sparse interpolation with

kernels, SGnode represents the number of nodes in the SIK and Q-SIK meth-

ods. Similarly, DOFs(SG) represents the total amount of nodes visited in the

SIK and Q-SIK methods. Of course, DOFs(SG) is much larger than SGnode

since some nodes are visited several times in every sub-interpolation problem.

Time stands for the CPU time consumed in every numerical experiment.

All these experiments have been performed in MATLAB since it is suitable

for our interpolation algorithm. For the low levels, we have used a stan-

dard desktop computer provided by the University of Leicester. However,

for high levels, we have used SPECTRE, which has allowed us to run sev-
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Figure 4.1: Test functions in two dimensions
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eral experiments simultaneously via access a large number of computational

nodes. Thus SPECTRE provide us the computational capacity which other-

wise would have required a large number of standard computers.

4.3.1 Experiments using Gaussian Tensor Products

In our numerical experiments, we have used the Gaussian basis functions on

sparse grids as discussed previous chapters. The tensor product nature of

Gaussian basis functions play a key role in our numerical implementation.

More speci�cally, one can write a d-dimensional Gaussian basis function

e‖A(ξi−ξj)‖2 = eA|ξ
i
1−ξ

j
1|2eA|ξ

i
2−ξ

j
2|2 · · · eA|ξid−ξ

j
d|

2

, (4.7)

where ξi = (ξi1, ξ
i
2, · · · , ξid) ∈ Rd. By using this motivation, we �rst implement

quasi-sparse interpolation with Gaussian basis functions.

N Maximum Error RMS Error

9 6.402506e-01 1.923844e-01
25 2.617628e-01 6.068551e-02
81 1.707982e-01 2.753333e-02
289 1.028995e-01 1.641467e-02
1089 7.900508e-02 1.490842e-02
4225 7.914526e-02 1.469706e-02

Table 4.1: Quasi-interpolation results using Gaussian basis functions with
shape parameter d = 0.4, test function F 2d

1 (x, y), on an equally spaced 160×
160 evaluation grid.

Numerical results from some of our numerical experiments have been pre-

sented in Table 4.1 and 4.2 for quasi-sparse interpolation with a Gaussian
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SGnode DOFs(SG) Maximum Error RMS Error

9 9 6.402506e-01 1.923844e-01
21 39 4.071659e-01 1.050494e-01
49 109 2.005483e-01 4.512258e-02
113 271 1.202167e-01 2.163062e-02
257 641 7.342570e-02 1.342539e-02
577 1475 6.952113e-02 1.178005e-02
1281 3333 6.339311e-02 1.150994e-02

Table 4.2: Q-SIK results using Gaussian basis functions with shape parame-
ter d = 0.4, test function F 2d

1 (x, y), on an equally spaced 160×160 evaluation
grid.

kernel. These �gures permitted a more detailed understanding of these re-

sults. These experiments have been made on an equally spaced 160 × 160

evaluation grid as test points.

In these results, Q-SIK has reached the stable maximum and root mean

square errors at a low number of points when compared with quasi-interpolation.

Thus, it can be said that Q-SIK obtains interpolation values faster in compar-

ison to classical quasi-interpolation since evaluation time increases in direct

proportion to nodes used. Additionally, since the errors remain stable when

the number of used nodes increases, Q-SIK accords with the multilevel algo-

rithm which will be examined in detailed in subsequent chapters. In other

words, we will apply the multilevel algorithm because the Q-SIK method

does not converge.

We present RMS error in terms of the degrees of freedom. In Figures 4.2 (a)-

(f), RMS error is plotted versus the number of nodes used for six di�erent

test functions. According to this graph, the Q-SIK algorithm provides us
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Figure 4.2: RMS error versus N(Quasi-interpolation) or SG (Q-SIK) nodes
using Gaussian basis functions with ρ = 0.4: Quasi-interpolation (red) and
Q-SIK (blue) on a 160× 160 uniform grid.
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N Maximum Error RMS Error

9 3.841200e-01 2.571824e-01
25 1.503965e-01 7.870755e-02
81 6.140495e-02 2.351856e-02
289 3.556470e-02 1.024405e-02
1089 3.066932e-02 8.037256e-03
4225 2.846629e-02 7.709436e-03

Table 4.3: Quasi-interpolation results using Gaussian basis functions with
shape parameter d = 0.4, test function F 2d

2 (x, y), on an equally spaced 160×
160 evaluation grid.

SGnode DOFs(SG) Maximum Error RMS Error

9 9 3.841200e-01 2.571824e-01
21 39 1.731361e-01 1.009403e-01
49 109 7.123960e-02 3.631736e-02
113 271 3.746303e-02 1.363285e-02
257 641 2.736527e-02 7.253871e-03
577 1475 2.253495e-02 6.036340e-03
1281 3333 2.610709e-02 5.620270e-03

Table 4.4: Q-SIK results using Gaussian basis functions with shape parame-
ter d = 0.4, test function F 2d

2 (x, y), on an equally spaced 160×160 evaluation
grid.

with a high performance interpolation technique. Similarly, in Figures 4.3

(a)-(f), RMS error is plotted verses the computational time for the same

test functions. These �gures show that the Q-SIK method gives a lower

degree of error in comparison with the classical quasi-interpolation within

an identical time frame. In either case, these �gures con�rm that Q-SIK

is superior to classical quasi-interpolation. In addition to these, Q-SIK can

deal with high dimension problems easily because of its nature. Classical full

grid interpolation techniques are limited to solving large problem on high
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performance computers. However, the Q-SIK method can overcome these

problems by using sparse grids.

SGnode DOFs(SG) Maximum Error RMS Error

9 9 5.464474e-01 1.862580e-01
21 39 3.315317e-01 8.431328e-02
49 109 1.219863e-01 2.253456e-02
113 271 9.849219e-02 1.202155e-02
257 641 7.950969e-02 9.890267e-03
577 1475 7.083609e-02 9.483027e-03
1281 3333 6.564442e-02 9.369861e-03

Table 4.5: Q-SIK results using Gaussian basis functions with shape parame-
ter d = 0.4, test function F 2d

3 (x, y), on an equally spaced 160×160 evaluation
grid.

Furthermore, the Q-SIK method shows the same outstanding properties in

comparison with the SIK method, which is based on the classical RBF tech-

nique. In general, quasi-interpolation is one of the fast approximation meth-

ods because of simplicity, smoothness and rapid exponential decay at in�nity.

Additionally, there is no need to solve large algebraic systems like Radial Ba-

sis Function interpolation. For these reasons, one can obtain faster results

with the Q-SIK technique, which combines the superior properties of quasi-

interpolation with those of the sparse grid method. In Figure 4.4, evaluation

time is plotted versus the number of degrees of freedom. According to these

�gures, quasi-interpolation shows better performance with respect to classi-

cal RBF interpolation. Correspondingly, performance of the Q-SIK method

is superior to the SIK method for all the above reasons.
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Figure 4.3: RMS error versus CPU time using Gaussian basis functions with
ρ = 0.4: Quasi-interpolation (red) and Q-SIK (blue) on a 160× 160 uniform
grid.
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Figure 4.4: CPU time versus N(Quasi-interpolation) or SG (Q-SIK) nodes us-
ing Gaussian basis functions with ρ = 0.4 and c = 0.45: Quasi-interpolation,
Q-SIK (red) and RBF interpolation, SIK (blue) on a 160×160 uniform grid.
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4.4 Discussion

The recommended algorithm, Quasi-Sparse Interpolation with Kernels, is ad-

vantageous in dealing with multidimensional problems on a short timescale.

This property of the Q-SIK method has been veri�ed by our numerical ex-

periments, shown in the preceeding tables and �gures. All these experiments

have been done in MATLAB in series.

The main motivation for proposing the Q-SIK method stemmed from the de-

sirable features of the SIK method, as introduced by Georgoulis, Levesley and

Subhan [46] in 2013. The SIK method shows outstanding features over classi-

cal RBF interpolation. In order to take a step forward, the Q-SIK method has

been proposed. One of the most signi�cant properties of quasi-interpolation

is that there is no need to solve a large algebraic system. In other words,

it can yield straight solutions. This property of quasi-interpolation plays a

crucial role in decreasing evaluation time. Furthermore, quasi-interpolation

has a number of desirable features, such as good shape properties, locality,

and simple computation and evaluation. The proposed algorithm combines

all these desirable properties with the advantages of the sparse grid. Thus,

Q-SIK provides fast results in comparison with the SIK method.

In the Q-SIK method, we have used the combination technique which causes

repeated and frequent visits to certain nodes. Therefore, the Q-SIK method

needs more storage space than classical sparse grid algorithms. However,

it still takes advantage of the reduced input data requirements of classical

sparse grid methods. As a consequence, the Q-SIK technique needs less
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memory in comparison to the full grid interpolation method, especially in

high dimensions.



Chapter 5

Quasi Multilevel Sparse

Interpolation with Kernels

Multilevel methods are one of the most e�ective contemporary techniques for

large scale algebraic systems arising out of both the approximation problems

and the discretization of PDEs, which can be found in [78], [80], [68], [39]

and [35], respectively. The main idea of this method may be identi�ed as a

treatment where one works on a number of levels (on coarse levels), at every

turn recovering the residuals which come from the previous level (�ner levels).

These residuals then need to be added to previous level �ts, culminating in

a better approximation. Thus the computational level remains stable, which

leads to a restrainable error bound of approximation.

The multilevel interpolation algorithm was �rst proposed by Floater and

Iske [40] in 1996 by using compactly supported RBFs. Theoretical investiga-

74
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tions of the multilevel approximation method were subsequently presented

by Narcowich, Schaback and Ward [78] and Fasshauer and Jeremo [37] in

1999. The simple point-wise error bounds on the multilevel approximation

using polyharmonic splines was been presented by Hales and Levesley [54]

in 2002. Additionally, a univariate and multivariate multilevel scheme has

been applied to Wu-Schaback's quasi-interpolation formula [93], which was

proposed via polynomial reproduction with modi�cations at the endpoints,

by Ling [68] in 2004 and [69] in 2005 respectively.

In this chapter, we provide a brief overview of multilevel quasi-interpolation

and multilevel sparse kernal-based interpolation. Then, by using a multi-

level version of the Q-SIK method, we will introduce quasi-multilevel sparse

interpolation with kernels.

5.1 Multilevel Quasi interpolation

For the multivariate scattered data interpolation problem, one needs to �nd

a continuous unknown function u : Rd → R such that u(xi) = f(xi) for i =

1, 2, . . . , N by recovering an unknown function f : Rd → R, which comes from

{f(x1), f(x2), . . . , f(xN)} ∈ R sampled at a �nite set X = {x1, x2, . . . , xN} ⊂

Rd of pairwise distinct data sites. Multilevel approximation method brings

leads to successful results for this kind of problem, especially in large N and

with disorganized, distributed points.

In order to construct multilevel quasi-interpolation, we �rstly need to de-
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scribe a nested sequence of sets, that is

X1 ⊂ X2 ⊂ · · ·XK = X ⊂ Rd, (5.1)

where X are pairwise distinct data sites of progressively greater data den-

sity. The principal notion of multilevel interpolation is to interpolate data

sets at the coarsest level and then interpolate the residuals to progressively

�ner levels using properly adjusted basis functions. Although this method

is usually used with radial basis function interpolation, we will describe it

here in the content of quasi-interpolation. Namely we will use the multilevel

algorithm into Q-SIK method since it does not converge which is given in

previous chapter.

We can borrow the idea of formulating multilevel quasi-interpolation in [40],[61]

and [80]. The letter l will denote the �level index�, where l = 1, 2, . . . , L,

throughout this and the following sections. Set

 u0 ≡ 0,

ul = ul−1 + δlfl−1, l = 1, 2, . . . , L,

where ul denotes the multilevel quasi-interpolant of the point set Xl and

δlfl−1 denotes the quasi-interpolant to the residual f − ul−1 at the l-th level.

Note that ul for each l matches f on the subset Xl, i.e.,

ul |Xl= f |Xl for all l = 1, 2, . . . , L. (5.2)

In other words, �rst of all one needs to compute the quasi-interpolant on the
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data sets for the �rst level. Then the residual on all data sets needs to be

calculated. Finally, quasi-interpolation of the residual is computed in order

to recover the corresponding level of the quasi-interpolant.

Since the hierarchy (5.1) of the given sets plays a signi�cant role in multilevel

interpolation, the algorithm for this hierarchy has been presented in [62].

Adaptively constructed hierarchical sets have been given in [61]. In addition

to these, Ling in [69] has showed that the multilevel scheme also conserves

convexity and monotonicity providing the node placings are good enough

in the content of multilevel quasi-interpolation using the dimension-splitting

MQ (DSMQ) basis.

5.2 Quasi multilevel sparse interpolation with

kernels

In this section, we will introduce the quasi-multilevel sparse interpolation

with kernels (Q-MuSIK, for short) method by combining a multilevel algo-

rithm and sparse interpolation with kernels. Indeed, the main motivation

is the same as for MuSIK, as discussed above; the only di�erence is that

we will use the Q-SIK method instead of the SIK method for each subgrid

interpolation problem.

In contrast to the single level quasi-sparse interpolation with kernels method

discussed in the previous chapter, we will now use the nested sparse grids

which sort from the lower level to the higher level. In other words, sparse
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grids with increasingly greater data densities provide us with a hierarchical

decomposition of the sparse grid data, which is

S1,d ⊂ S2,d ⊂ S3,d ⊂ S4,d ⊂ S5,d ⊂ S6,d ⊂ S7,d ⊂ S8,d,

where d is the dimension. It must be noted that although the data density

increases from level 1 to level n, the value of h, which is mesh size in quasi-

interpolation, decreases. Thus, one expects to increase interpolation accuracy

with the nested-ness of the sparse grid. The hierarchical decomposition in

two dimensions can be seen in Figure 5.1.

After obtaining the sparse grid decomposition, the sparse grid interpolation

Qn0 needs to be evaluated for level 1. In other words, the coarsest level

interpolation is set as a �rst residual, that is ∆0 = Qn0 . Then ∆j needs to be

calculated for each level by interpolating the residual f − Qnj−1
on Sj,d, for

2 6 j 6 n. Here, the level j residual comes from the level j − 1 interpolant

on the level j sparse grid. Finally, the quasi-multilevel sparse interpolation

with kernel in level n is found as Qn := Qn−1 + ∆n0 where Q0 = 0.

An algorithm for Q-MuSIK is as follows:
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(a) S1,2 (b) S2,2

(c) S3,2 (d) S4,2

(e) S5,2 (f) S6,2

(g) S7,2 (h) S8,2

Figure 5.1: Sparse grid decomposition, S1,2 ⊂ S2,2 ⊂ S3,2 ⊂ S4,2 ⊂ S5,2 ⊂
S6,2 ⊂ S7,2 ⊂ S8,2.
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Algorithm 2: Q-MuSIK method

Data: Sparse grid data decomposition

Result: Interpolation value

1. Initialize the �rst interpolation value at zero, that is Q0(x) = 0.

2. Construct the nested sparse grids as S1,d ⊂ S2,d ⊂ · · · ⊂ Sn,d.

3. For every value of j = {1, 2, ..., n},

3.a. Solve ∆j(x) = f(x)−Qnj−1
(x) on Sj,d

3.b. Update Qj(x) = Qj−1(x) + ∆j(x).

Because of the nature of the Q-SIK method for each single level, the Q-

MuSIK method has linear complexity, which means it needs a lower amount

of memory and run time. In addition to this, both MuSIK and Q-MuSIK

techniques are amenable to parallel programming because of combination

technique. Thus these methods provide us with a more e�ective implemen-

tation, especially in high dimensions, when using the current generation of

computing systems.

5.3 Numerical Experiments in 2-D

In this section, we will perform some numerical experiments in 2-D in order to

verify the theoretical basis of our technique and demonstrate its advantages

with applications. In order to make an objective comparison, we will use the

same test functions, F 2d
1 (x, y) ,F 2d

2 (x, y), F 2d
3 (x, y), F 2d

4 (x, y), F 2d
5 (x, y) and

F 2d
6 (x, y), which were presented in the previous chapter.
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In addition to these, similarly, N represents the number of data points for

both standard quasi- and multilevel quasi-interpolation. In sparse interpo-

lation with kernels, SGnode represents the number of nodes in the MuSIK

and Q-MuSIK methods. Similarly, DOFs(SG) represents the total number of

nodes visited in the MuSIK and Q-MuSIK methods. Of course, DOFs(SG)

is much more than SGnode since some nodes are visited several times in

every sub-interpolation problem. Time stands for the CPU time consumed

per numerical experiment. All these numerical experiments have been done

using a 160 × 160 uniform grid in the domain [0, 1]2 ⊂ R2. The root mean

squared error has been calculated for quasi-interpolation, multilevel quasi-

interpolation, SIK, Q-SIK, MuSIK and Q-MuSIK for comparison.

5.3.1 Experiments using Gaussian Tensor Products

We present numerical results which were computed with anisotropic Gaussian

basis functions for both MuSIK and Q-MuSIK. Of course, because of the

nature of the multilevel algorithm, Q-MuSIK needs more time in comparison

with the Q-SIK method. However, this might be considered to be reasonable

since the multilevel algorithm has linear complexity with time. This will be

veri�ed by the following experiments.

Numerical results from some of our Q-MuSIK numerical experiments have

been presented in Table 5.1, Table 5.2 and Table 5.3 for F 2d
1 (x, y),F 2d

4 (x, y)

and F 2d
6 (x, y) respectively. Of course, �gures support the �ndings and give

an opportunity to compare them.
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SGnode DOFs(SG) Maximum Error RMS Error

9 9 6.402506e-01 1.923844e-01
21 39 3.846635e-01 9.884292e-02
49 109 1.328952e-01 3.775068e-02
113 271 4.951348e-02 1.223503e-02
257 641 1.771163e-02 3.717801e-03
577 1475 7.715302e-03 1.256865e-03
1281 3333 2.573988e-03 3.750473e-04
2817 7431 6.926234e-04 1.016338e-04
6145 16393 1.973276e-04 2.645588e-05

Table 5.1: Q-MuSIK results using Gaussian basis functions with shape pa-
rameter d = 0.4, test function F 2d

1 (x, y), on an equally spaced 160 × 160
evaluation grid.

In Figure 5.2, RMS errors are plotted verses the number of nodes used for six

di�erent test functions. From the graph below we can see that the Q-MuSIK

method provides us with a better approximation than the Q-SIK method.

Of course, the multilevel algorithm plays a signi�cant role in this situation.

Both the Q-SIK and the Q-MuSIK methods present better performance than

the direct multilevel quasi-interpolation.

In addition to this, from Figure 5.3 we can see that the Q-MuSIK method

is faster than multilevel quasi-interpolation. The main reason of this result

is that Q-MuSIK technique uses a smaller number of points in comparison

with the full grid interpolation. As a result this makes the Q-MuSIK method

faster than the classical multilevel quasi interpolation.

Lastly, the di�erences between MuSIK and Q-MuSIK are compared in Figure

5.4. In this �gure, RMS errors versus computation time are plotted for six

test functions. It can be said that Q-MuSIK is superior when compared
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SGnode DOFs(SG) Maximum Error RMS Error

9 9 1.476663e-01 4.633068e-02
21 39 4.366024e-02 1.432694e-02
49 109 1.605678e-02 4.281684e-03
113 271 7.655495e-03 1.314830e-03
257 641 3.261574e-03 4.088407e-04
577 1475 1.326272e-03 1.273487e-04
1281 3333 5.571766e-04 3.734527e-05
2817 7431 1.772635e-04 1.014380e-05
6145 16393 4.767200e-05 2.875345e-06

Table 5.2: Q-MuSIK results using Gaussian basis functions with shape pa-
rameter d = 0.4, test function F 2d

4 (x, y), on an equally spaced 160 × 160
evaluation grid.

with the MuSIK method since Q-MuSIK is matrix free. As is known, the

MuSIK method needs to solve a large algebraic system in order to compute

interpolation coe�cients. However, Q-MuSIK requires just the function value

for interpolation. Although the MuSIK method convergence is better in

comparison with Q-MuSIK method at high levels, the Q-MuSIK method is

actually superior at low levels since it has the same convergence properties

in less time.
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Figure 5.2: RMS error versus N(Quasi-interpolation, Multilevel Quasi-
interpolation) or SG (Q-SIK, Q-MuSIK) nodes using Gaussian basis func-
tions with ρ = 0.4: Quasi-interpolation (black), Q-SIK (green), Multilevel
Quasi-interpolation (blue) and Q-MuSIK (red) on a 160× 160 uniform grid.
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Figure 5.3: RMS error versus computational time using Gaussian basis func-
tions with ρ = 0.4: Quasi-interpolation (black), Q-SIK (green), Multilevel
Quasi-interpolation (blue) and Q-MuSIK (red) on a 160× 160 uniform grid.



5.3. Numerical Experiments in 2-D 86

10
−1

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CPU Time

R
M

S
 E

rr
or

 

 

MuSIK
Q−MuSIK

(a) F 2d
1 (x, y)

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

CPU Time

R
M

S
 E

rr
or

 

 

MuSIK
Q−MuSIK

(b) F 2d
2 (x, y)

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

CPU Time

R
M

S
 E

rr
or

 

 

MuSIK
Q−MuSIK

(c) F 2d
3 (x, y)

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

CPU Time

R
M

S
 E

rr
or

 

 

MuSIK
Q−MuSIK

(d) F 2d
4 (x, y)

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU Time

R
M

S
 E

rr
or

 

 

MuSIK
Q−MuSIK

(e) F 2d
5 (x, y)

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU Time

R
M

S
 E

rr
or

 

 

MuSIK
Q−MuSIK

(f) F 2d
6 (x, y)

Figure 5.4: RMS error versus computational time using Gaussian basis func-
tions with ρ = 0.4 and c = 0.45: MuSIK (blue) and Q-MuSIK (red) on a
160× 160 uniform grid.



5.4. Numerical Experiments in 3-D 87

SGnode DOFs(SG) Maximum Error RMS Error

9 9 5.105632e-02 4.468879e-03
21 39 3.063097e-02 5.204096e-03
49 109 1.936359e-02 2.278934e-03
113 271 9.304990e-03 7.331817e-04
257 641 4.261802e-03 2.510321e-04
577 1475 1.950718e-03 8.952410e-05
1281 3333 5.952518e-04 3.265428e-05
2817 7431 1.311157e-04 1.056364e-05
6145 16393 5.357728e-05 3.361347e-06

Table 5.3: Q-MuSIK results using Gaussian basis functions with shape pa-
rameter d = 0.4, test function F 2d

6 (x, y), on an equally spaced 160 × 160
evaluation grid.

5.4 Numerical Experiments in 3-D

In this section, we present some results which were performed with 3-D

quasi-interpolation, multilevel quasi-interpolation, SIK, Q-SIK, MuSIK and

Q-MuSIK. Namely, we have considered the following 3-D extension of the

test functions used in the previous chapter.

• F 3d
1 (x, y, z) (Franke's test function)

F 3d
1 (x, y, z) =

3

4
e−((9x−2)2+(9y−2)2+(9z−2)2)/4 +

3

4
e−(9x+1)2/49−(9y+1)2/10−(9z+1)2/10

+
1

2
e−((9x−7)2+(9y−3)2+(9z−5)2)/4 − 1

5
e−((9x−4)2+(9y−7)2+(9z−5)2).

• F 3d
2 (x, y, z) = 43x(1− x)y(1− y)z(1− z).

• F 3d
3 (x, y, z) =

√
18

π
e−(x2+81y2+z2).
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• F 3d
4 (x, y, z) = cos(6z)

1.25 + cos(5.4y)

6 + 6(3x− 1)2
.

• F 3d
5 (x, y, z) =

√
64− 81((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)/9− 0.5.

• F 3d
6 (x, y, z) = max(x− 1

2
) max(y − 1

2
) max(z − 1

2
).

These functions have been considered in a [0, 1]3 ⊂ R3. The 3-D equivalence

of equation (4.4) is

In(x) =
∑
|l|1=n+2

IAni.
u (x)− 2

∑
|l|1=n+1

IAni.
u (x) +

∑
|l|1=n

IAni.
u (x). (5.3)

We have performed our 3-D experiments on an equally spaced 125000 evalu-

ation grid. The results of these experiments can be found in Tables 5.4 and

Table 5.5.

SGnode DOFs(SG) Maximum Error RMS Error

27 27 7.261597e-01 1.058522e-01
81 162 5.955357e-01 7.939472e-02
225 630 3.459408e-01 4.768733e-02
593 1997 1.767444e-01 2.067385e-02
1505 5687 9.231797e-02 8.454461e-03
3713 15188 4.212802e-02 3.357306e-03
8961 38868 1.367273e-02 1.277559e-03

Table 5.4: Q-MuSIK results using Gaussian basis functions with shape pa-
rameter d = 0.4, test function F 3d

1 (x, y, z), on an equally spaced 50× 50× 50
evaluation grid.

Similarly, Figure 5.5 shows that the Q-MuSIK method convergence is better

than both the Q-SIK method and multilevel quasi-interpoaltion in 3-D.
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SGnode DOFs(SG) Maximum Error RMS Error

27 27 2.087103e-01 4.485704e-02
81 162 8.841902e-02 1.660209e-02
225 630 3.112325e-02 5.537253e-03
593 1997 1.070217e-02 1.836291e-03
1505 5687 5.403194e-03 6.165266e-04
3713 15188 2.104470e-03 2.026695e-04
8961 38868 8.392200e-04 6.528286e-05

Table 5.5: Q-MuSIK results using Gaussian basis functions with shape pa-
rameter d = 0.4, test function F 3d

4 (x, y, z), on an equally spaced 50× 50× 50
evaluation grid.

In the numerical experiments, we �nd that the computational time of Q-SIK

is less than the time required by classical quasi-interpolation, especially when

the data density is large. An analogous relationship between evaluation time

and the data density has been showed for Q-MuSIK and multilevel quasi-

interpolation, which can be seen in Figure 5.6. For these reasons, Q-SIK and

Q-MuSIK gain an advantage over classical quasi-interpolation and multilevel

quasi-interpolation, respectively, in terms of computational time.

Compared with the MuSIK method, Q-MuSIK provides us with better results

in terms of reduced computational time because of the reasons discussed

in previous sections. According to Figure 5.7, Q-MuSIK presents better

performance than MuSIK, particularly at low levels. Hence, it can be said

that Q-MuSIK is a good alternative for problems which require a low level

of interpolation.
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Figure 5.5: RMS error versus N(Quasi-interpolation, Multilevel Quasi-
interpolation) or SG (Q-SIK, Q-MuSIK) using Gaussian basis functions
with ρ = 0.4: Quasi-interpolation (black), Q-SIK (green), Multilevel Quasi-
interpolation (blue) and Q-MuSIK (red) on a 50× 50× 50 uniform grid.
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Figure 5.6: RMS error versus computational time using Gaussian basis func-
tions with ρ = 0.4: Quasi-interpolation (black), Q-SIK (green), Multilevel
Quasi-interpolation (blue) and Q-MuSIK (red) on a 50 × 50 × 50 uniform
grid.
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Figure 5.7: RMS error versus computational time using Gaussian basis func-
tions with ρ = 0.4 and c = 0.45: MuSIK (blue) and Q-MuSIK (red) on a
50× 50× 50 uniform grid.
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5.5 Numerical Experiments in 4-D

One of the most di�cult problems in the �eld of approximation is approx-

imation functions, or data in high dimensions. For example, classical full

grid interpolations are limited to about 10000 grid points. For this rea-

son, we need developed interpolation algorithms which require less data den-

sity. In this section, we present some results which were performed with 4-D

quasi-interpolation, multilevel quasi-interpolation, SIK, Q-SIK, MuSIK and

Q-MuSIK. The 4-D equivalence of equation (4.6) is

In(x) =
∑
|l|1=n+3

IAni.
u (x)−3

∑
|l|1=n+2

IAni.
u (x)+3

∑
|l|1=n+1

IAni.
u (x)+

∑
|l|1=n

IAni.
u (x).

Namely, we have considered the following 4-D extension of the test functions

used in previous chapters.

• F 4d
1 (x, y, z, t) (Franke's test function)

F 4d
1 (x, y, z, t) =

3

4
e(−(9x1−2)2−(9x2−2)2−(9x3−2)2)/4−(9x4−2)2)/8

+
3

4
e(−(9x1+1)2)/49−((9x2+1)2)/10−((9x3+1)2)/29−((9x4+1)2)/39

+
1

2
e(−(9x1−7)2)/4−(9x2−3)2−((9x3−5)2)/2−((9x4−5)2)/4

− 1

5
e(−(9x1−4)2)/4−(9x2−7)2−((9x3−5)2)−((9x4−5)2).

• F 4d
2 (x, y, z, t) = 44x(1− x)y(1− y)z(1− z)t(1− t).

• F 4d
3 (x, y, z, t) =

√
18

π
e−(x2+81y2+z2+81t2).
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• F 4d
4 (x, y, z, t) = cos(6z) cos(6t)

1.25 + cos(5.4y)

6 + 6(3x− 1)2
.

• F 4d
5 (x, y, z, t) =

√
64− 81((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 + (t− 0.5)2)/9−

0.5.

• F 4d
6 (x, y, z, t) = max(x− 1

2
) max(y − 1

2
) max(z − 1

2
) max(t− 1

2
).

Table 5.6 shows some numerical results which were computed with the Q-SIK

algorithm on an equally spaced 194481 evaluation grid. According to these

results, Q-SIK and Q-MuSIK algorithms have been successfully implemented

with the 4-D interpolation problems.

SGnode DOFs(SG) Maximum Error RMS Error

81 81 7.235155e-01 6.302388e-02
297 621 6.550276e-01 5.220851e-02
945 2943 5.158184e-01 3.606199e-02
2769 11139 2.886416e-01 2.052927e-02
7681 36901 1.988700e-01 1.121024e-02
20481 112111 1.210933e-01 6.894223e-03

Table 5.6: Q-SIK results using Gaussian basis functions with shape parame-
ter d = 0.4, test function F 4d

1 (x, y, z, t), on an equally spaced 21×21×21×21
evaluation grid.

The numerical results obtained from our experiments are plotted in Figure

5.8. We con�rm the same superiority of the Q-SIK and Q-MuSIK algorithms

over classical quasi-interpolation and its multilevel variant with regards to

complexity, convergence and computational time as already been seen in the

case of lower dimensions. In other words, Q-MuSIK accelerates the conver-

gence of Q-SIK.
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Figure 5.8: RMS error versus N(Quasi-interpolation, Multilevel Quasi-
interpolation) or SG (Q-SIK, Q-MuSIK) using Gaussian basis functions
with ρ = 0.4: Quasi-interpolation (black), Q-SIK (green), Multilevel Quasi-
interpolation (blue) and Q-MuSIK (red) on a 21 × 21 × 21 × 21 uniform
grid.
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5.6 Discussion

In this chapter, we have proposed the quasi-multilevel sparse interpolation

with kernels and presented numerical experiments results. These results have

veri�ed the theoretical basis of our proposed method. According to the

numerical results, we have observed that Q-MuSIK performs considerably

better than classical multilevel quasi-interpolation with regards to computa-

tional time and convergence distinguishably.

Another advantage of the Q-MuSIK algorithm is that it has linear compu-

tational time and complexity since we have applied the Q-SIK algorithm

for each step. For this reason, computational time requirements for the Q-

MuSIK algorithm are remarkably low in comparison with the classical full

grid multilevel interpolation. Q-MuSIK is superior in computational time

and complexity to the classical multilevel quasi-interpolation not only in two

dimensional problems, but also in high-dimensional interpolation problems,

since it has almost one-dimensional complexity.

Furthermore, the Q-MuSIK algorithm is highly amenable to deployment in a

parallel environment due to the inhernetly parallelized nature of the Q-SIK

algorithm. Thus Q-MuSIK algorithm provides us with much better results

in this regard. So, Q-MuSIK might be a good alternative technique for

problems with large data density, especially when low computational time is

particularly desirable.

We have also compared the Q-MuSIK method with MuSIK in terms of

computational time. As might be expected, due to the nature of quasi-
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interpolation, we expect that, of the two, the Q-MuSIK algorithm will have

superior performance with regards to computational time. This expectation

has been proved with our numerical experiments. In particular, Q-MuSIK

could be an alternative technique for interpolation problems which require

low level interpolation.



Chapter 6

Error estimation of Multilevel

Quasi-Interpolation for Periodic

Functions

In this chapter, we consider convergence rates for multilevel quasi-interpolation

of periodic functions which can be represented as a combination of exponen-

tial functions using Gaussian basis functions on a grid. To date, unfor-

tunately, studies of convergence rates for the multilevel approximation are

limited because of di�culties in the multilevel algorithm, such as a changing

approximation space from one level to the next.

In order to �nd a proper error bound for the multilevel approximation, in

[78], Narcowich, Schaback and Ward provided a theoretical foundation in

1999. In this study, the authors found that the multilevel algorithm, which
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is constructed by adding additional boundary conditions, convergences at

least linearly. Then, in 2002, Hales and Levesley [54] showed at least linear

convergence for the multilevel approximation for globally supported polyhar-

monic splines, such as radial powers and thin plate splines. In this study,

Hales and Levesley present the linear convergence as a progress of the form

‖ek‖∞ = C‖ek−1‖∞, k = 1, 2, . . . , N. (6.1)

where ek denotes the error at level k and C < 1 is a level independent positive

constant.

As mentioned above, the main problem facing convergence rate studies of the

multilevel approximation is that there are di�erent approximation spaces for

each level. In other words, since the approximation spaces are not nested,

the native space norms for each level are di�erent from each other. In order

to overcome this problem, Hales and Levesley proposed scaling the uniformly

spaced grids instead of the basis function. Similarly, in [91], Wendland proved

the same convergence rate for thin plate splines.
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6.1 Error Bounds of Quasi-interpolation for Pe-

riodic Functions

The general quasi-interpolation formula given in Chapter 2 is of the form

Qhf(x) =
∑
k∈Z

f(kh)µ
(x
h
− k
)
. (6.2)

where µ(x) = 1√
2π

exp(−x
2

2
), is a Gaussian basis function. In this context,

we wish to analyse the multilevel algorithm for approximating a periodic

function f with Fourier series

f(x) =
∑
m∈Z

ame
2πimx. (6.3)

Although our attention will later be focused on these specialised cases, it is

helpful to explain the multilevel algorithm in the general case. The single

level error is de�ned by

r0(x) = f(x)−Q20f(x), (6.4)

and

rm(x) = rm−1(x)−Q2−mrm−1(x). (6.5)

The above recursive summation gives us the approximations

Sm(x) = Q20f(x) +
m−1∑
j=0

rj(x). (6.6)
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In order to �nd an error bound for quasi-interpolation for periodic functions,

we need to interpolate exponential function. em(x) will denote the exponen-

tial function exp(2πimx) throughout this and the following sections. So, the

quasi-interpolation of em(x) for n = 1, 2, 3, · · · is

Q1/nem(x) =
∑
k∈Z

em(k/n)µ(nx− k)

=
n−1∑
j=0

∑
k∈Z

em((nk + j)/n)µ(nx− (nk − j))

=
n−1∑
j=0

em(j/n)
∑
k∈Z

µ(n(x− k)− j)

=
n−1∑
j=0

em(j/n)
∑
l∈Z

alel(x), (6.7)

where

al =

∫
x∈[0,1]

[∑
k∈Z

µ(n(x− k)− j)

]
e−l(x)dx

=
1

n

∫
x∈R

µ(x− j/n)e−l(x/n)dx

=
1

n

∫
x∈R

µ(x)e−l((x+ j)/n)dx

=
1

n
e−l(j/n)

∫
x∈R

µ(x)e−l(x/n)dx

=
1

n
e−l(j/n)µ̂(−l/n).

Here µ̂ is the Fourier transform of the Gaussian

µ̂(x) =

∫
x∈R

µ(y)ex(y)dy

= exp(−2π2x2);
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see [73]. By substituting into (6.7), we obtain that

Q1/nem(x) =
n−1∑
j=0

em(j/n)
∑
l∈Z

1

n
e−l(j/n)µ̂(−l/n)el(x)

=
∑
l∈Z

µ̂(−l/n)el(x)

[
1

n

n−1∑
j=0

em−l(j/n)

]
=

∑
l∈Z

µ̂(−l −m/n)em+nl(x), (6.8)

from the discrete orthogonality property of the complex exponentials. Then,

using the above result, we have

f(x)−Q1/nf(x) =
∑
m∈Z

amem(x)−Q1/n

[∑
m∈Z

amem(x)

]
=

∑
m∈Z

amem(x)−
∑
m∈Z

amQ1/nem(x)

=
∑
m∈Z

amem(x)−
∑
m∈Z

am

[∑
l∈Z

µ̂(−l −m/n)em+nl(x)

]
=

∑
m∈Z

amem(x)−
∑
m∈Z

µ̂(m/n)
∑
l∈Z

am−nlem(x)

=
∑
m∈Z

amem(x)−
∑
m∈Z

amµ̂(m/n)em(x)

+
∑
m∈Z

amµ̂(m/n)em(x)−
∑
m∈Z

µ̂(m/n)
∑
l∈Z

am−nlem(x)

=
∑
m∈Z

am(1− µ̂(m/n))em(x) +
∑
m∈Z

µ̂(m/n)
∑
l 6=0

am+nlem(x)

=: Enf(x) +Gn(x).

Lemma 6.1. Let

f(x) =
∑
m∈Z

ame
2πimx.
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be a 1-periodic function and let

Q1/nf(x) =
∑
k∈Z

f(k/n)µ(nx− k)

be the quasi-interpolation approximation to f on the spaced grid with mesh

size 1/n. Then

f(x)−Q1/nf(x) = Enf(x) +Gn(x),

where

Enf(x) =
∑
m∈Z

am(1− µ̂(m/n))em(x)

Gn(x) =
∑
m∈Z

µ̂(m/n)
∑
l 6=0

am+nlem(x)

for m ∈ Z and n = 1, 2, 3, . . ..

6.2 Pointwise Error Estimation

In this section, we shall concentrate on pointwise error estimation. It is

straightforward to adapt this analysis to the multilevel case. Therefore we

need to introduce the native space for the approximation of the periodic

functions with Gaussian. In order to de�ne native space let us take a periodic

function φ(x) which is

φ(x) =
∑
z∈Z

µ(x− z). (6.9)
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Then the native space Nφ, associated with φ, is the subspace of L2(Rd)

de�ned by

Nφ :=

f : ‖f‖µ =

[∑
k∈Z

f̂ 2
k

φ̂k

]1/2

<∞

 (6.10)

where f̂k is the Fourier transform of the periodic function f and φ̂k is the

Fourier coe�cient of the φ(x). Thus the native space for the approximation

of the periodic functions with Gaussian

Nφ =

f : ‖f‖µ :=

[∑
k∈Z

exp(2π2k2)|ak(f)|2
]1/2

<∞

 , (6.11)

with the associated norm as given. Then, by using the Cauchy-Schwarz

inequality, we have

‖Enf(x)‖∞ 6
∑
k∈Z

|ak|(1− µ̂(k/n))

=
∑
k∈Z

|ak| exp(π2k2) exp(−π2k2)(1− µ̂(k/n))

6

[∑
k∈Z

|ak| exp(2π2k2)

]1/2 [∑
k∈Z

exp(−2π2k2)(1− µ̂(k/n))2

]1/2

=

[∑
k∈Z

exp(−2π2k2)(1− µ̂(k/n))2

]1/2

‖f‖µ.
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Similarly

‖Gn(x)‖∞ 6
∑
m∈Z

|µ̂(m/n)
∑
l 6=0

am+nl|

=
∑
m∈Z

|cnm|

= |cn0 |+
∑
j 6=0

|cnnj|+
∑
j∈Z

n−1∑
k=1

|cnnj+k| (6.12)

where cnm =
∑

m∈Z µ̂(m/n)
∑

l 6=0 am+nl. Then

• if m = 0

|cn0 | =

∣∣∣∣∣∑
l 6=0

anl

∣∣∣∣∣
6

∑
l 6=0

exp(−π2(nl)2) exp(π2(nl)2) |anl|

6

[∑
l 6=0

exp(−2π2(nl)2)

]1/2 [∑
l 6=0

exp(2π2(nl)2)|anl|2
]1/2

6 2 exp(−π2n2)‖f‖µ. (6.13)

• if m = nj, j ∈ Z

|cnnj| =

∣∣∣∣∣µ̂(j)
∑
l 6=0

anj+nl

∣∣∣∣∣
6 µ̂(j)

∑
l∈Z

exp(−π2(n(j + l))2) exp(π2(n(j + l))2) |anj+nl|

6 µ̂(j)

[∑
l∈Z

exp(−2π2l2)

]1/2 [∑
l∈Z

exp(2π2l2)|al|2
]1/2

6 2µ̂(j)‖f‖µ. (6.14)
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• if m = nj + k, 1 6 n− 1, j ∈ Z

|cnnj+k| =

∣∣∣∣∣µ̂(nj + k/n)
∑
l 6=0

anj+k+nl

∣∣∣∣∣
6 µ̂(j)

∑
l∈Z

exp(−π2(n(j + l) + k)2) exp(π2(n(j + l) + k)2) |anj+k+nl|

6 µ̂(j) exp(−π2k2)

[∑
l∈Z

exp(−2π2l2)

]1/2 [∑
l∈Z

exp(2π2l2)|al|2
]1/2

6 2µ̂(j) exp(−π2k2)‖f‖µ. (6.15)

Using (6.13), (6.14) and (6.15) in (6.12), we get

‖Gn(x)‖∞ 6 |cn0 |+
∑
j 6=0

|cnnj|+
∑
j∈Z

n−1∑
k=1

|cnnj+k|

6 2‖f‖µ exp(−π2n2) + 2‖f‖µ
∑
j 6=0

µ̂(j) + 2‖f‖µ
∑
j∈Z

µ̂(j)
n−1∑
k=1

exp(−π2k2)

6 2‖f‖µ
[
exp(−π2n2) + 2 exp(−2π2) + 2 exp(−π2)

]
6 10‖f‖µ exp(−π2). (6.16)

Consequently, we gain the following result for the uniform norm of quasi-

interpolation with Gaussian basis functions.

Theorem 6.2. Let Q1/nf be the quasi-interpolant to f ∈ Nµ. Then

‖f−Q1/nf‖∞ 6

(∑
k∈Z

exp(−2π2k2)(1− µ̂(k/n))2

)1/2

+ 10 exp(−π2)

 ‖f‖µ.

According to above theorem, the second term of right hand side of above

equation does not a�ect when the n is increasing. In other words it is constant
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for all levels.

6.3 Error analysis of Multilevel Quasi-interpolation

In this section, we shall concentrate on the error analysis for the multilevel

domain decomposition algorithm using the above results. In line with this

objective, we will use the unit function since it will help us when we �nd the

error bound for all functions. The error on level one is de�ned by

r1(x) = f(x)−Q1f(x)

= 1−
∑
k∈Z

µ(x− k)

= 1−
∑
m∈Z

µ̂(m)em(x). (6.17)

Let choose the machine precision ε = 10−10. The coe�cients µ̂(m) , m =

2,−2, 3,−3, . . ., can be very small, as seen from the relation e−8π2 ∼ 10−34.

In other words, we can ignore the terms which are less than the machine

precision. Thus the error on level one is

r1(x) = µ̂(1)(e1(x) + e−1(x)). (6.18)
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In order to �nd an error bound for the second level, we need to interpolate

the �rst level error r1(x) with a half mesh size

Q1/2r1(x) = Q1/2µ̂(1)(e1(x) + e−1(x))

= µ̂(1)Q1/2(e1(x) + e−1(x)). (6.19)

From (6.9) we get

Q1/2e1(x) =
∑
z∈Z

µ̂(z + 1/2)e1+2z(x) = µ̂(−1/2)e−1(x) + µ̂(1/2)e1(x) + µ̂(3/2)e3(x)

Q1/2e−1(x) =
∑
z∈Z

µ̂(z − 1/2)e−1+2z(x) = µ̂(−3/2)e−3(x) + µ̂(−1/2)e−1(x) + µ̂(1/2)e1(x).

So (6.18) becomes

Q1/2r1(x) = µ̂(1) [µ̂(1/2)(e1(x) + e−1(x)) + µ̂(3/2)(e3(x) + e−3(x))] . (6.20)

Since µ̂(1)µ̂(3/2) < ε, we have

r2(x) = r1(x)−Q1/2r1(x)

= µ̂(1)(e1(x) + e−1(x))− µ̂(1)µ̂(1/2)(e1(x) + e−1(x))

= µ̂(1)(1− µ̂(1/2))(e1(x) + e−1(x)).



6.3. Error analysis of Multilevel Quasi-interpolation 109

Similarly

Q1/4r2(x) = Q1/4µ̂(1)(1− µ̂(1/2))(e1(x) + e−1(x))

= µ̂(1)(1− µ̂(1/2))Q1/4(e1(x) + e−1(x)). (6.21)

From (6.9) we get

Q1/4e1(x) =
∑
z∈Z

µ̂(z + 1/4)e1+4z(x) = µ̂(−3/4)e−3(x) + µ̂(1/4)e1(x) + µ̂(5/4)e5(x)

Q1/4e−1(x) =
∑
z∈Z

µ̂(z − 1/4)e−1+4z(x) = µ̂(−5/4)e−5(x) + µ̂(−1/4)e−1(x) + µ̂(3/4)e3(x)

So the equation (6.20) converts

Q1/4r2(x) = µ̂(1)(1− µ̂(1/2))[µ̂(1/4)(e1(x) + e−1(x))

+ µ̂(3/4)(e3(x) + e−3(x)) + µ̂(5/4)(e5(x) + e−5(x))].

Since µ̂(1)µ̂(3/4) < ε and µ̂(1)µ̂(5/4) < ε, we have

r3(x) = r2(x)−Q1/4r2(x)

= µ̂(1)(1− µ̂(1/2))(e1(x) + e−1(x))− µ̂(1)(1− µ̂(1/2))µ̂(1/4)(e1(x) + e−1(x))

= µ̂(1)(1− µ̂(1/2))(1− µ̂(1/4))(e1(x) + e−1(x)).

As a result, the error of the nth iteration is

rn(x) = µ̂(1)(1− µ̂(1/2))(1− µ̂(1/4)) · · · (1− µ̂(1/2n−1))(e1(x) + e−1(x)).
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So the nth level error goes to zero when n increases.

Conjecture 6.3. If f ∈ Nφ. Let rn be the error at level n approximating

the unit function by the multilevel quasi-interpolation using Gaussian basis

functions. Then

‖rn‖∞ = C(1− µ̂(1/2))(1− µ̂(1/4)) · · · (1− µ̂(1/2n−1))‖f‖φ (6.22)

The error analysis of the unit function by the multilevel quasi interpolation

using Gaussian will help us to make a general error bound in the future.



Chapter 7

A Q-MuSIK-based

Multidimensional Quadrature

Formula

In conjunction with approximation and interpolation of high-dimensional

functions, numerical approximation of integrals, which is usually referred to

as quadrature or numerical integration, have a number of applications in ap-

plied sciences, ranging from mathematics, statistics, physics and engineering,

to economics and �nance.

There are numerous quadrature methods, each with its own advantages and

disadvantages. Indeed, the dimension plays a signi�cant role in determining

which method can be utilized with greatest e�ciently. For instance, classi-

cal integration methods are able to address accurate and e�cient results to
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high accuracy [29], [88]. However, when one would like to �nd quadrature of

the multivariate functions for high dimensions, such as 5 or 10 dimensions,

classical approaches are challenged by the curse of dimensionality, which it is

necessary to deal with. In other words, standard numerical integration tech-

niques of a function f : [0, 1]d → R, generally need Nd function computation

to deliver rates of convergence of order N−ε, where ε > 0 is independent

of d, on a d-dimensional grid with N points in each direction. Of course

this leads to computationally expensive algorithms since the interpolation

problem increases in size exponentially.

In order to overcome this problem, a number of techniques have been pro-

posed in the computational mathematics community over the last �ve decades.

For example, some of the these methods, based on randomness, are the

Monte-Carlo, quasi-Monte-Carlo and hierarchical Monte-Carlo methods [20],

[2], [33], [26], [76]. On the other hand, Smolyak, sparse grid, hyperbolic cross

product and boolean interpolation-type constructions are other types of pro-

posed integration techniques [87], [30], [90], [86], [16]. Monte-Carlo methods,

of course, have some advantageous such as robustness, ease of implementa-

tion and convergence rate without the dimension d. However, these methods

have slow convergence rates in a probabilistic sense [20], [2]. In other respects,

sparse grid and hyperbolic cross products provide N(logN)d complexity for

the multivariate functions f . In addition to these, the "p-version" of sparse

grids has been introduced for the computing multidimension integrals arising

from the numerical approximation of elliptic boundary-value problems with

random coe�cients [5], [79]. More recently, a numerical integration algo-
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rithm based on the interpolation of the multidimensional integrand has been

introduced by Dong et al. by using the Multilevel Sparse Interpolation with

Kernels (MuSIK) method [31]. In this study, numerical evidence shows that

multilevel sparse Gaussian kernels integration for high-dimensional problems

is able to deliver accurate and e�cient results to high accuracy. On the

other hand, this method provides more rapid results since undesired grids

are removed from interpolation.

In this chapter, a new numerical integration algorithm has been proposed,

based on the quasi-multilevel sparse interpolation with kernels (Q-MuSIK

quadrature) approach for high-dimensional numerical integration. This method

can be viewed as an alternative to MuSIK quadrature, by o�ering comparable

computational time and convergence rate on a uniform sparse grid. As men-

tioned in previous chapters, Q-MuSIK is able to provide a powerful interpola-

tion method by combining the superior properties of quasi-interpolation such

as simplicity, smoothness and rapid exponential decay at in�nity, and multi-

level sparse grids in an advantageous manner. Thus the Q-MuSIK quadrature

algorithm provides a good approximation for the high-dimensional integra-

tions. In addition to this Q-MuSIK based quadrature formula provide us

positive weights since there is no need to solve large algebraic systems. A

broad range of numerical experiments highlight the fact that the proposed

algorithm for quadrature for high-dimensional problems has practical appli-

cability.



7.1. Quasi-Quadrature Method 114

7.1 Quasi-Quadrature Method

We now give the quasi quadrature method in order to compare our new algo-

rithm, which will be introduced over the next few sections. For this reason,

we will use the quasi-interpolation method for integration over the unit cube.

A quadrature rule will on d dimensions approximate the integral

∫
[a,b]d

f(x)dx ≈
∑
m∈Ω

λmf(m), (7.1)

where m ⊂ [a, b]d is a �nite set of points and λm's are the weights. If we

have the quasi-interpolation operator

Qh,ρf(x) =
1

(πρ)d/2

∑
m∈Zd

f(hm)e−|x−hm|
2/ρh2 , (7.2)

we get the quadrature formula

∫
[a,b]d

f(x)dx ≈ 1

(πρ)d/2

∑
m∈Zd

f(hm)

∫
[a,b]d

e−|x−hm|
2/ρh2dx, (7.3)

where ∫
[a,b]d

e−|x−hm|/ρh
2

dx =
d∏
l=1

∫ b

a

e−|xl−hml|
2/ρh2dxl. (7.4)

Here, the tensor product property of Gaussian basis functions is used to

compute weights. As mentioned in previous chapters, since the Gaussian

basis functions are straightforwardly computed, this algorithm is able to

deliver rapid and highly accurate computation of the integration weights.
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Then by changing the variables ξl = |xl−hml|√
ρh

, we get

WQuasi =
hd

πd/2

∑
m∈Zd

f(hm)
d∏
l=1

ϕ(ml), (7.5)

where

ϕ(ml) = −
√
π

2

[
erf

(
a− hml√

ρh

)
− erf

(
b− hml√

ρh

)]
l = 1, . . . , d, (7.6)

with the error function erf de�ned by

erf (x) =
2√
π

∫ x

0

e−t
2

dt. (7.7)

The error function can be computed to arbitrary precision.

7.2 Q-SIK Quadrature Formula

Now, we introduce a new Q-SIK quadrature formula on a sparse grid for

a function of several variables. In accordance with this purpose, we need

to compute a number of sub-anisotropic quasi-quadrature problems on well

constructed subgrids, and thus obtain the Q-SIK quadrature by combining

the resultant sub-quadratures linearly.

In a similar way, all the subgrids for each level can be constructed in a

similar manner to the method discussed in Chapter 4. In other words, we

will use the grid set Υl with mesh size hl constructed via sparse grids. In
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order to then compute each subgrid quadrature problem, we need to use the

anisotropic quasi-quadrature technique, which uses sparse grids. In detail, by

using the quadrature construction from the previous section, the anisotropic

quasi-quadrature formula of f at the grids Υl can be de�ned by

Wl =
hd

πd/2

∑
m∈Υl

f(hm)
d∏
l=1

ϕl(ml), (7.8)

where

ϕ(ml) = −
√
π

2

[
erf

(
a− hml√

ρh

)
− erf

(
b− hml√

ρh

)]
l = 1, . . . , d, (7.9)

with the error function erf de�ned by

erf (x) =
2√
π

∫ x

0

e−t
2

dt. (7.10)

We then obtain the Q-SIK quadrature formula by combining all sub-quasi-

interpolation problems with the combination technique, that is, the Q-SIK

quadrature is de�ned by

WQ−SIK
n =

d−1∑
q=0

(−1)qCd−1
q

∑
|l|1=n+(d−1)−q

Wl. (7.11)

For example, in 3-D the quasi-SKI is given by

WQ−SIK
n (x) =

∑
|l|1=n+2

Wl − 2
∑
|l|1=n+1

Wl +
∑
|l|1=n

Wl. (7.12)
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The error function can be computed to arbitrary precision. The key idea

here is subtracting the redundant grids visited on several occasions. That is,

the middle term on the right hand side of equation (7.12) serves to remove

the undesired grids used more than once, which come from the �rst and third

term on the right hand side of equation (7.12).

7.3 Q-MuSIK Quadrature Method

As we saw in previous chapters, signi�cant progress for interpolation has

been achieved in terms of computational time, complexity and convergence.

In other words, using quasi-interpolation in sparse interpolation with ker-

nels results in decreasing computational complexity because of the nature of

quasi-interpolation.

In order to take advantage of the outstanding properties of multilevel quasi-

sparse kernel interpolation with kernels, we will use it in numerical integra-

tion, in particular in high dimensions. Thus, this method provides us more

accurate and faster integration values in comparison with the classical full

grid technique.

Along similar lines to multilevel sparse interpolation, we will again use nested

sparse grids which, sorted from lower level to the higher level, are given by

S1,d ⊂ S2,d ⊂ . . . ⊂ Sn,d,

where d is the dimension and n is the quadrature level. Then, by using the
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Test Function Integration Value

F 2d
1 (x, y) 2.452413044563417e-01

F 2d
2 (x, y) 4.444444444441538e-01

F 2d
3 (x, y) 4.462230950426736e-02

F 2d
4 (x, y) 1.163806395814231e-01

F 2d
5 (x, y) 2.865833317365560e-01

F 2d
6 (x, y) 1.562500000000056e-02

Table 7.1: The exact value of test functions on the domain [0, 1]2

same steps with Algorithm 2, Q-MuSIK-based quadrature can be computed.

7.4 Numerical Experiments in 2-D

In this section we give a number of numerical results, which use the same

test functions described in Chapter 4 and Chapter 5. The exact values of

respective integrals on the domain [0, 1]2 with 16 digits are given in Table 7.1

The Q-MuSIK quadrature computation of the �rst test function, recording

the number of nodes used, and the absolute and relative errors, are given in

Table 7.2.

According to this table, the proposed Q-MuSIK method has been success-

fully applied to the numerical integration problems in R2 as shown by its

encouraging performance, especially with regard to complexity.

In order to demonstrate the outstanding features of the proposed technique,

the results of the quasi quadrature, multilevel quasi quadrature, Q-SIK quadra-

ture and Q-MuSIK quadrature can be compared in Figure 7.1. From the data
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SGnode DOFs(SG) Absolute Error Relative Error

9 9 8.663271e-02 3.532550e-01
21 39 4.363387e-02 1.779222e-01
49 109 6.613826e-03 2.696865e-02
113 271 2.128311e-03 8.678435e-03
257 641 6.120334e-04 2.495637e-03
577 1475 1.640092e-04 6.687668e-04
1281 3333 4.251719e-05 1.733688e-04
2817 7431 1.031525e-05 4.206165e-05
6145 16393 2.150008e-06 8.766909e-06

Table 7.2: Q-MuSIK quadrature results using Gaussian basis functions with
shape parameter d = 0.4, test function F 2d

1 (x, y), on the domain [0, 1]2.

in this �gure, the Q-MuSIK quadrature method shows better performance

than the Q-SIK quadrature. Herein, the multilevel algorithm plays a signi�-

cant role. By combining the multilevel algorithm re�nement feature and the

quasi-sparse kernel-based quadrature method, we obtain a better convergence

rate.

In addition to this, the Q-MuSIK quadrature formula performs better than

the multilevel quasi-quadrature method. The superior performance of Q-

MuSIK over the classical multilevel method is clearly observed. We obtain

a smaller error for Q-MuSIK as compared to quasi-multilevel quadrature

approaches.
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Figure 7.1: Absolute error versus N(Quasi-quadrature, Multilevel Quasi-
quadrature) or SG (Q-SIK quadrature, Q-MuSIK quadrature) nodes us-
ing Gaussian basis functions with ρ = 0.4: Quasi-quadrature (black), Q-
SIK quadrature (green), Multilevel Quasi-quadrature (blue) and Q-MuSIK
quadrature (red) on the domain [0, 1]2.
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Test Function Integration Value

F 3d
1 (x, y) 7.766696346045100e-02

F 3d
2 (x, y) 9.999999999999993e-01

F 3d
3 (x, y) 1.460689557604901e-02

F 3d
4 (x, y) -6.185674957636504e-01

F 3d
5 (x, y) 3.885633084290729e-01

F 3d
6 (x, y) 1.953124999999999e-03

Table 7.3: The exact values of test functions on the domain [0, 1]3

7.5 Numerical Experiments in 3-D

Analogically, we present numerical integration results for 3-D in this section.

The exact values of the respective integrals on the domain [0, 1]3 with 16 digits

are given in Table 7.2. The 3-D results of quasi-, multilevel quasi-, Q-SIK and

Q-MuSIK quadrature can be compared in Figure 7.2. These results con�rm

that Q-MuSIK is superior to both the Q-SIK and multilevel quasi-quadrature

methods. The numerical studies of this section suggest that Q-SIK and Q-

MuSIK can be successfully applied in Rd for d ≥ 2 and veri�es its superior

performance over the direct and multilevel quasi-quadrature approaches.

7.6 Numerical Experiments in High Dimensions

In Figure 7.3 we have compared the MuSIK quadrature and Q-MuSIK quadra-

ture in terms of absolute error versus degree of freedom and absolute error

versus evaluation time. In these comparison we have used four, �ve and ten
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dimensional test functions. For the ten dimension our test function is

F 10d
7 =

10∏
i=1

e−xi(1−xi),

and the corresponding exact integral of this function on the domain [0, 1]10

with 16 digits accuracy is 0,194279067580947. These results con�rms that Q-

MuSIK method provide us more rapid results for the same amount of error.

7.7 Discussion

In this chapter we have applied the new quasi-multilevel sparse interpolation

with kernels method to numerical integration. Similar to the interpolation

performance of the proposed Q-MuSIK scheme, the new Q-MuSIK quadra-

ture has achieved better convergence in high dimensions. The proposed tech-

nique provide us positive weights which is desired for numerical integration.

The Q-MuSIK quadrature mostly outperforms both the Q-SIK and classical

multilevel quasi-quadrature methods in terms of accuracy. Numerical results

con�rm the adequacy of the high dimensional numerical integration. In ad-

dition to this, we have compared the MuSIK and Q-MuSIK quadrature with

di�erent test function in high dimensions. This comparison shows that Q-

MuSIK is superior than MuSIK method in terms of speed since the nature

of quasi interpolation.
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Figure 7.2: Absolute error versus N(Quasi-quadrature, Multilevel Quasi-
quadrature) or SG (Q-SIK quadrature, Q-MuSIK quadrature) nodes us-
ing Gaussian basis functions with ρ = 0.4: Quasi-quadrature (black), Q-
SIK quadrature (green), Multilevel Quasi-quadrature (blue) and Q-MuSIK
quadrature (red) on the domain [0, 1]3.
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Figure 7.3: Absolute error versus SG and CPU Time(Q-MuSIK quadrature,
Q-MuSIK quadrature) nodes using Gaussian basis functions with ρ = 0.4
and c = 0.45: MuSIK quadrature (blue) and Q-MuSIK quadrature (red) on
the domain [0, 1]4,5,10.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have presented and compared two algorithms, MuSIK and

Q-MuSIK, as solutions to the multidimensional interpolation problem on

well designed data sets. MuSIK is the multilevel version of the SIK method,

which combines the positive features of radial basis function interpolation and

the sparse grid technique. In other words, this scheme provides us with a

more powerful interpolation method, in particular in high dimensions, since

RBFs extends in its practicability in almost any dimension, whilst sparse

grid methods can deal with the complexity issue in high dimensions. In

addition to this we have presented the MuSIK method with the exactness

of the sparse grid interpolation. However, in order to take the advantage of

the MuSIK method, a further step had to be introduced via the Q-MuSIK

125
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technique, which is the multilevel version of the Q-SIK method, based on

quasi-interpolation.

One of the most signi�cant positive aspects of quasi-interpolation is that it

can yield a solution directly with no need to solve large algebraic systems. In

addition, it has a number of desirable features, such as good approximation

behaviour, easy evaluation and computation, good shape properties, certain

polynomial reproduction, and so on. The Q-SIK algorithm couples these

good properties and the complexity of the sparse grid technique. Although

Q-SIK visits some nodes more than once, it still uses a smaller number of

nodes than the full grid scheme. Thus it still computes the interpolation with

less time when comparised to the classical quasi-interpolation method. Then,

in order to construct the Q-MuSIK scheme, we have used the SIK method at

each level. Thus the Q-MuSIK algorithm computes the interpolation result

on a shorter timescale when compared to the MuSIK method in problems

with the same number of degrees of freedom because of the properties of

quasi-interpolation listed above.

Additionally, a bivariate Q-MuSIK algorithm generally accelerates the con-

vergence rate when compared to both the Q-SIK method and classical quasi-

interpolation and its multilevel variant. The numerical experiments in Chap-

ter 5 con�rm that Q-MuSIK is usually superior to the other methods on

gridded data. Hence the Q-MuSIK scheme gives generally better output in

terms of complexity, accuracy, computational time and stability compared

to the classical quasi-interpolation technique.

Numerical experiments show that the Q-MuSIK scheme is not only e�cient



8.1. Conclusions 127

for bivariate problems, but is also able to solve large multidimensional inter-

polation problems. In Chapter 5, numerical results have been presented for

the interpolation of d-variate functions in R for d = 3 and d = 4. In anal-

ogy to bivariate experiments, the results of high-dimensional interpolation

problems support the idea that Q-MuSIK gives generally preferable output

in proportion to classical quasi-interpolation methods. The similarly supe-

rior performance of the Q-MuSIK method in terms of computational time

and accuracy over the Q-SIK method has been observed in high-dimensional

problems. Additionally, the Q-MuSIK algorithm might be recommended as

an alternative interpolation method to MuSIK at low degrees of freedom

since it has better performance over any given time interval. Of course,

although MuSIK is one of the best interpolation techniques in terms of accu-

racy, stability, etc., Q-MuSIK might be a good alternative, especially in high

dimensions due to its nice properties.

The Q-MuSIK scheme also made a noteworthy improvement to numeri-

cal integration. Combining the sparse grid scheme and quasi-interpolation

method, we have implemented the Q-MUSIK approach to �nd quadrature for

d-variate functions in R for d = 2 and d = 3. The main advantage of using

Q-MuSIK method for quadrature is that it produces the positive weights for

numerical calculation. Numerical results, which were presented in Chapter

7, con�rm the convergence features of the proposed approach in the �eld of

numerical integration.

In order to support our numerical results theoretically, a convergence analy-

sis for quasi-interpolation has been given in Chapter 6. In this chapter, we
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considered the convergence rates for multilevel quasi-interpolation of peri-

odic functions using Gaussian basis functions on a grid. In theory, quasi-

interpolation uses shifts of the Gaussian kernel on a full in�nite grid. Taking

advantage of shifting features of Gaussian functions, we have calculated the

single level error using the exponential function exp(2πimx). Then, by fol-

lowing the multilevel algorithm scheme of Floater and Iske [40], the error

at level n approximating unit function by the multilevel quasi-interpolation

using Gaussian functions has been presented at the end of the Chapter 7.

8.2 Future Work

The main goal of the current study was to develop the Q-MuSIK method by

using the same scheme as MuSIK and presenting its superior performance

with regards to the problems of interpolation, especially in high dimensions.

Its success has been con�rmed both by a number of numerical experiment

results and theoretically.

A further study could assess the convergence analysis of multilevel interpo-

lation for more general functions de�ned over the bounded domain. In order

to make a generalisation along these line our �ndings will, of course, play a

signi�cant role.

Another area of interest is in applying Q-SIK to numerical methods for the

solution of partial di�erential equations (PDE), in particular for high di-

mensions. This would help us for option pricing, which needs to solve the
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Black-Scholes equation. In order to apply the Q-MuSIK method to derivative

pricing problems, we initially need to show that it is able to approximate the

pay-o� function. In line with this purpose, we have used the test function

fnd6 in our experiments. So, for future work, we might be able to apply the

proposed method to option pricing problems.



Bibliography

[1] A. Abramowitz and I. Stegun. Handbook of Mathematical Functions.

1964.

[2] J. Dick andF. Y. Kuo and I. H. Sloan. High-dimensional integration:

The quasi-monte carlo way. Acta Numerica, 22:133�288, 5 2013.

[3] N. Arad, N. Dyn, and D. Reisfeld. Image warping by radial basis func-

tions: applications to facial expressions. CVGIP Graphical Models and

Image Processing, 56(2):161�172, 1994.

[4] K. I. Babenko. Approximation by trigonometric polynomials in a cer-

tain class of periodic functions of several variables. Soviet Mathematics

Doklady, 1:672�675, 1960.

[5] I. Babuska, F. Nobile, and R. Tempone. A stochastic collocation method

for el-liptic partial di�erential equations with random input data. SIAM

Jornal of Numerical Analysis, 45:1005�1034, 2007.

130



BIBLIOGRAPHY 131

[6] M. Bauer, O. Buchtala, H. Timo, K. Ralf, S. Bernhard, and W. Robert.

Technical data mining with evolutionary radial basis function classi�ers.

Applied Soft Computing, 9:765�774, 2009.

[7] B. J. C. Baxter. Conditionally positive functions and p-norm distance

matrices. Constructive Approximation, 7(4):427�440, 1991.

[8] R. Beatson, O. Davydov, and J. Levesley. Error bounds for anisotropic

rbf interpolation. Journal of Approximation Theory, 162(3):512�527,

2010.

[9] R. Beatson and M. Powell. Univariate multiquadric approximation:

quasi-interpolation to scattered data. Constructive Approximation,

8:275�288, 1992.

[10] R. K. Beatson, J. Levesley, and C. T. Mouat. Better bases for radial

basis function interpolation problem. Journal of Computational and

Applied Mathematics, 236(4):434�446, 2011.

[11] R. K Beatson, W. A. Light, and S. Billings. Fast solution of the radial

basis function interpolation equations: domain decomposition methods.

SIAM J. Sci. Comput., 22(5):1717�1740, 2000. electronic.

[12] R. Belmann. Adaptive Control process: a guide tour. Princeton, 1961.

[13] D. Brown, L. Ling, E. Kansa, and J. Levesley. On approximate cardinal

preconditioning methods for solving pdes with radial basis functions. En-

gineering Analysis with Boundary Elements, 29(4):343�353, 2005. Mesh

Reduction Methods - Part III.



BIBLIOGRAPHY 132

[14] M. Buhmann and N. Dyn. Spectral convergence of multiquadric inter-

polation. Proceeding of the Edinburgh Mathematical Society, 36(2):319�

333, 1993.

[15] H. J. Bungartz and M. Griebel. A note on the complexity of solving

poisson's equation for spaces of bounded mixed derivatives. Journal of

Complexity, 15(2):167�199, 1999.

[16] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147�

269, 2004.

[17] H.-J. Bungartz, M. Griebel, D. Roschke, and C. Zenger. Pointwise con-

vergence of the combination technique for the laplace equation. East-

West Journal of Numerical Mathematics, 2:21�45, 1994.

[18] H.-J. Bungartz, M. Griebel, D. Roschke, and C. Zenger. Two proofs of

convergence for the combination technique for the e�cient solution of

sparse grid problems, in Domain Decomposition Methods in Scienti�c

and Engineering Computing. Contemporary Mathematics, 180:15�20,

1994.

[19] H.-J. Bungartz, M. Griebel, and U. Rude. Extrapolation, combination,

and sparse grid techniques for elliptic boundary value problems. Com-

puter Methods in Applied Mechanics and Engineering, 116(1-4):243�252,

1994.

[20] R. E. Ca�isch. Monte carlo and quasi-monte carlo methods. Acta nu-

merica, 7:1�49, 1998.



BIBLIOGRAPHY 133

[21] J. C. Carr, W. R. Fright, and R. K. Beatson. Surface interpolation

with radial basis functions for medical imaging. IEEE Transactions on

Medical Imaging, 16:96�107, 1997.

[22] G. Casciola, D. Lazzaro, L. B. Montefusco, and S. Morigi. Shape

preserving surface reconstruction using locally anisotropic radial basis

function interpolants. Computers and Mathematics with Applications,

51(8):11185�1198, 2006.

[23] G. Casciola, L.B. Montefusco, and S. Morigi. The regularizing prop-

erties of anisotropic radial basis functions. Applied Mathematics and

Computation, 190(2):1050�1062, 2007.

[24] Z.X. Chen and F.L. Cao. Global errors for approximate approximations

with gaussian kernels on compact intervals. Applied Mathematics and

Computation, 217:725�734, 2010.

[25] Z.X. Chen, F.L. Cao, and J. Hu. Error estimates of quasi-interpolation

and its derivatives. Journal of Computational and Applied Mathematics,

236:3137�3146, 2012.

[26] K. A. Cli�e, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel

monte carlo methods and applications to elliptic pdes with random co-

e�cients. Computing and Visualization in Science, 14:3�15, 2011.

[27] L. Condat and D. Van De Ville. Quasi-interpolating spline models for

hexagonally-sampled data. IEEE Transactions on Image Processing,

16(5):1195�1206, 2007.



BIBLIOGRAPHY 134

[28] C. Dagnino, V. Demichelis, and E. Santi. Numerical integration based

on quasi-interpolating splines. Computing, pages 149�163, 1993.

[29] P. J. Davis. Interpolation and approximation. Dover Publications Inc.,

New York, 1975. Republication, with minor corrections, of the 1963

original, with a new preface and bibliography.

[30] F.-J. Delvos. d -variate boolean interpolation. Journal of Approximation

Theory, 34:99�114, 1982.

[31] P. Dong, E. H. Georgoulis, J. Levesley, and F. Usta. On nodal exact-

ness of sparse grid interpolation in the absence of nested subspaces and

application to high dimensional quadrature. preprint.

[32] M. R. Dubal. Domain decomposition and local re�nement for mul-

tiquadric approximations. i. second-order equations in one-dimension.

Journal of Applied Mathematics and Computer Science, 1(1):146�171,

1994.

[33] C. Schwab F. Y. Kuo and I. H. Sloan. Quasi-monte carlo methods

for high-dimensional integration: the standard (weighted hilbert space)

setting and beyond. ANZIAM Journal, 53:1�37, 2011.

[34] G. E. Fasshauer. Hermite interpolation with radial basis functions on

spheres. Advance Computational Mathematics, 11(1):81�96, 1999.

[35] G. E. Fasshauer. Solving di�erential equations with radial basis func-

tions: multilevel methods and smoothing. Advance Computational

Mathematics, 11(2-3):139�159, 1999.



BIBLIOGRAPHY 135

[36] G. E. Fasshauer. Meshfree approximation methods with MATLAB, vol-

ume 6 of Interdisciplinary Mathematical Sciences. World Scienti�c Pub-

lishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[37] G. E. Fasshauer and J. W. Jerome. Multistep approximation algorithms:

improved convergence rates through postconditioning with smoothing

kernels. Advance Computational Mathematics, 10(1):1�27, 1999.

[38] G. E. Fasshauer and M. J. Mccourt. Stable evaluation of gaussian rbf

interpolants. SIAM Journal on Scienti�c Computing, 34(2):737�762,

2012.

[39] G. E. Fasshauer and J. G. Zhang. Iterated approximate moving least

squares approximation. Advances in Meshfree Techniques, page 221�240,

2007.

[40] M. S. Floater and A. Iske. Multistep scattered data interpolation using

compactly supported radial basis functions. Journel of Computational

Applied Mathematics, 73(1-2):65�78, 1996.

[41] B. Fornberg, E. Larsson, and N. Flayer. Stable computation with gaus-

sain radial basis functions. SIAM Journal on Scienti�c Computing,

33(2):869�892, 2011.

[42] B. Fornberg and C. Piret. A stable algorithm for �at radial basis func-

tions on a sphere. SIAM Journal on Scienti�c Computing, 30(1):60�80,

2007.



BIBLIOGRAPHY 136

[43] B. Fornberg and G. Wright. Stable computation of multiquadric inter-

polants for all values of the shape parameter. Computers and Mathe-

matics with Applications, 48(5-6):853�867, 2004.

[44] R. Franke. Scattered data interpolation: tests of some methods. Math-

ematics of Computation, 38(157):181�200, 1982.

[45] J. Garcke and M. Hegland. Fitting multidimensional data using gradient

penalties and the sparse grid combination technique. Computing, 84(1-

2):1�25, 2009.

[46] E. H. Georgoulis, J. Levesley, and F. Subhan. Multilevel sparse kernel-

based interpolation. SIAM Journal of Scienti�c Computing, 35:815�832,

2013.

[47] P. Giesl. Construction of a global lyapunov function using radial basis

functions with a single operator. Discrete and Continuous Dynamical

Systems Series B, 7(1):101�124, 2007.

[48] P. Giesl. Construction of a local and global lyapunov function using

radial basis functions. Journal of Approximation Theory, 153(2):184�

211, 2008.

[49] F. Girosi. Some extensions of radial basis functions and their applica-

tions in arti�cial intelligence. Computers and Mathematics with Appli-

cations, 24(12):61�80, 1992.



BIBLIOGRAPHY 137

[50] M. Griebel. A parallelizable and vectorizable multi-level algorithm on

sparse grids, in Parallel Algorithms for Partial Di�erential Equations.

Notes on Numerical Fluid Mechanics, 31:94�100, 1990.

[51] M. Griebel. The combination technique for the sparse grid solution of

pdes on multiprocessor machines. Parallel Processing Letters, 2(1):61�

70, 1992.

[52] M. Griebel. Sparse grid multilevel methods, their parallelization and

their application to cfd, in Proc. Parallel Computational Fluid Dynam-

ics. Elsevier, pages 161�174, 1993.

[53] M. Griebel, M. Schneider, and C. Zenger. A combination technique

for the solution of sparse grid problems, in Iterative Methods in Linear

Algebra. Elsevier, pages 263�281, 1992.

[54] S. J. Hales and J. Levesley. Error estimates for multilevel approximation

using polyharmonic splines. Numerical Algorithms, 30(1):1�10, 2002.

[55] R. L. Hardy. Multiquadrics of topography and other irregular surface.

Journal of Geophysical Research, 76:1905�1915, 1971.

[56] R. L. Hardy. Geodetic application of multiquadric analysis, avn allg.

Vermess Nachr., 79:389�406, 1972.

[57] R. L. Hardy. Research results in application equations to serveying and

mapping problem. Survg. mapp, 35:321�332, 1975.



BIBLIOGRAPHY 138

[58] R. L. Hardy. Theory and applications of the multiquadric-biharmonic

method. 20 years of discovery 1968-1988. Computers and Mathematics

with Applications, 19(8-9):163�208, 1990.

[59] M. Hegland, J. Garcke, and V. Challis. The combination technique and

some generalisations. Linear Algebra and its Applications, 420(2-3):249�

275, 2007.

[60] Y. C. Hon. A quasi-radial basis functions method for american options

pricing. Computers and Mathematics with Applications, 43:513�524,

2002.

[61] A. Iske and J. Levesley. Multilevel scattered data approximation by

adaptive domain decomposition. Numerical Algorithms, 39(1-3):187�

198, 2005.

[62] Armin Iske. Hierarchical scattered data �ltering for multilevel interpo-

lation schemes. In In Mathematical methods for curves and surfaces,

pages 211�221. Vanderbilt Univ. Press, 2000.

[63] M. Hegland J. Garcke and O. Nielsen. Parallelisation of sparse grids for

large scale data analysis. ANZIAM Journal, 48(1):11�22, 2006.

[64] E. J. Kansa. Multiquadrics | a scattered data approximation scheme

with applications to computational �luid-dynamics. i. surface approxi-

mations and partial derivative estimates. Computers and Mathematics

with Applications, 19(8-9):127�145, 1990.



BIBLIOGRAPHY 139

[65] E. J. Kansa. Multiquadrics | a scattered data approximation scheme with

applications to computational �luid-dynamics. ii. solutions to parabolic,

hyperbolic and elliptic partial di�erential equations. Computers and

Mathematics with Applications, 19(8-9):147�161, 1990.

[66] C. Y. Li and C. G. Zhu. A multilevel univariate cubic spline quasi-

interpolation and application to numerical integration. Mathematical

Methods in the Applied Sciences, 33(13):1578�1586, 2010.

[67] W. A. Light, E. W. Cheney, and N. Dyn. Interpolation by piecewise-

linear radial basis functions. Journal of Approximation Theory,

59(2):202�223, 1989.

[68] L. Ling. A univariate quasi multiquadric interpolation with better

smoothness. Computers and Mathematics with Applications, 48(5-

6):897�912, 2004.

[69] L. Ling. Multivariate quasi-interpolation schemes for dimension-splitting

multiquadric. Applied MAthematics and Computation, 161(1):195�209,

2005.

[70] M. Schneider M. Griebel and C. Zenger. A combination technique for the

solution of sparse grid problems, in Iterative methods in linear algebra.

Journal of Approximation Theory, pages 263�281, 1992.

[71] V. Ma¹ya and G. Schmidt. On approximate approximations using gaus-

sian kernels. IMA Jornal of Numerical Analaysis, 16:13�29, 1996.



BIBLIOGRAPHY 140

[72] V. Ma¹ya and G. Schmidt. On quasi-interpolation with non-uniformly

distributed centers on domains and manifolds. Jornal of Approximation

Theory, 110:125�145, 2001.

[73] V. Mazya and G. Schmidt. Approximate Approximations. 2007. Provi-

dence.

[74] L. Mei and P. Cheng. Multivariate option pricing using quasi-

interpolation based on radial basis functions. Advanced Intelligent Com-

puting Theories and Applications, pages 620�627, 2008.

[75] C. A. Micchelli. Interpolation of scattered data: distance matrices and

conditionally positive de�nite functions. Constructive Approximation,

2(1):11�22, 1986.

[76] G. N. Milstein and M. V. Tretyakov. Multilevel Monte Carlo methods

and applications to elliptic PDEs with random coe�cients. Scienti�c

Computation,. Springer-Verlag, Berlin, 2004.

[77] F. Müller and W. Varnhorn. Error estimates for approximate approxi-

mations with gaussian kernels on compact intervals. Jornal of Approxi-

mation Theory, 145:171�181, 2007.

[78] F. J. Narcowich, R. Schaback, and J. D. Ward. Multilevel interpolation

and approximation. Applied and Computational Harmonic Analysis,

7(3):243�261, 1999.



BIBLIOGRAPHY 141

[79] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic

collo- cation method for partial di�erential equations with random input

data. SIAM Jornal of Numerical Analysis, 46:2309�2345, 2008.

[80] Y. Ohtake, A. Belyaev, and H.-P. Seidel. 3d scattered data interpolation

and approximation with multilevel compactly supported rbfs. Graphical

Models, 67(3):155�165, 2005.

[81] U. Pettersson, E. Larsson, G. Marcusson, and J. Persson. Improved ra-

dial basis function methods for multi-dimensional option pricing. Jour-

nal of Computational and Applied Mathematics, 222(1):82�93, 2008.

[82] M. J. D. Powell. The theory of radial basis function approximation in

1990. Number II. Oxford University Press, New York, 1992.

[83] C. Rabut. An introduction to schoenberg's approximation. Computers

and Mathematics with Applications, 24:149�175, 1992.

[84] R. Schaback. Creating surfaces from scattered data using radial basis

functions. Vanderbilt University Press, Nashville, TN, 1995.

[85] I. J. Schoenberg. On certain metric spaces arising from euclidean spaces

by a change of metric, and their imbedding in hilbert space. Annals of

Mathematics, 38(4):787�793, 1937.

[86] A. Schreiber. The method of Smolyak in multivariate interpolation.

Ph.D. Thesis, der Mathematisch-Naturwissenschaftlichen Fakultaten,

der Georg-August-Universitat zu Gottingen, 2000.



BIBLIOGRAPHY 142

[87] S. A. Smolyak. Quadrature and interpolation of formulas for tensor

product of certian classes of functions. Soviet Mathematics Doklady,

4:240�243, 1963.

[88] S. L. Sobolev and V. L. Vaskevich. The theory of cubature formulas,

volume 415 of Mathematics and its Applications,. Kluwer Academic

Publishers Group, Dordrecht, 1997. Translated from the 1996 Russian

original and with a foreword by S. S. Kutateladze, Revised by Vaskevich.

[89] F. Subhan. Multilevel Sparse Kernel-Based Interpolation. Ph.D. Thesis,

University of Leicester, 2011.

[90] V. N. Temlyakov. Approximation of functions with bounded mixed

derivative. 1989. AMS, 1989.

[91] H. Wendland. Scattered data approximation. Cambridge monographs on

applied and computational mathematics. Cambridge University Press,

Cambridge, 2005.

[92] Z.M. Wu and J.P. Liu. Generalized strang-�x condition for scattered

data quasi-interpolation. Advances in Computational Mathematics,

23:201�214, 2005.

[93] Z.M. Wu and R. Schaback. Shape preserving properties and convergence

of univariate multiquadric quasi- interpolation. Acta Mathematicae Ap-

plicatae Sinica, 10(1):441�446, 1994.



BIBLIOGRAPHY 143

[94] C. A. Zala and I. Barrodale. Warping aerial photographs to orthomaps

using thin plate splines. Advances in Computational Mathematics, 11(2-

3):211�227, 1999.

[95] C. Zenger. Sparse grids, in Parallel Algorithms for Partial Di�erential

Equations (Kiel, 1990). Notes on Numerical Fluid Mechanics, 31:241�

251, 1991.


