The Functionalisation of 2-Azanorbornanes and Approaches to Novel Epibatidine Analogues

Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester

by

Richard White MChem Department of Chemistry University of Leicester

December 2006

UMI Number: U220757

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U220757 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

Statement

The accompanying thesis submitted for the degree of Ph.D. entitled 'The Functionalisation of 2-Azanorbornanes and Approaches to Novel Epibatidine Analogues' is based on work conducted by the author in the Department of Chemistry at the University of Leicester mainly during the period between October 2003 and September 2006. All the work in this thesis is original unless indicated otherwise in the text or references. None of the work has been submitted for another degree in this or any other university.

Signed. Mart

Date. 13:12-06

Parts of this thesis have been published:

- Malpass, J. R.; White, R. J. Org. Chem. 2004, 69, 5328-5334.
- Malpass, J. R.; Handa, S.; White, R. Org. Lett. 2005, 7, 2759-2762.
- White, R.; Malpass, J. R.; Handa, S.; Baker, S. R.; Broad, L. M.; Folly, L.; Mogg, A. Bioorg. Med. Chem. Lett. 2006, 16, 5493-5497.

i

Acknowledgements

I would like to thank my supervisors Dr John Malpass and Dr Sandeep Handa for their guidance, support, advice and continuing enthusiasm.

I am grateful to the following people. Dr Graham Eaton for mass spectrometry; Dr John Fawcett for X-ray crystallography; Dr Gerry Griffith for NMR; Mick Lee for technical help; and Dr Richard Baker and Dr Adrian Mogg for nicotinic binding assays. Ben Pibworth undertook a project related to work in Chapter 4 and I thank him for his efforts and results.

I wish to thank my colleagues for their support and friendship, in particular, Waleed Alkhuraiji, Dr Thomas Bell, Dr Kim Hirst (née Curtis), Birgit Groetzl, Dr Anup Patel and James Wilson.

I could not have completed this thesis without the support of my family and I dedicate it to my Mum, Dad and my brother.

Abstract

The functionalisation of 2-Azanorbornanes and Approaches to Novel Epibatidine analogues

By Richard White

Epibatidine (*exo*-2-(6-chloro-3-pyridyl)-7-azabicyclo[2.2.1]heptane) is an alkaloid found on the skin of the Ecuadorian poison-dart frog *Epipedobates tricolor*. It has extremely high affinity for nicotinic acetylcholine receptors and is a potent analgesic but it can not be used therapeutically as it is highly toxic. A wide range of epibatidine analogues and isomers has been produced in order to identify compounds with medicinal potential and to help elucidate the nicotinic pharmacophore. This thesis describes synthetic routes to novel epibatidine analogues, in particular, derivatives based on the 2-azabicyclo[2.2.1]heptane (2-azabornane) molecular framework.

A general method for the synthesis of 7-functionalised 2-azanorbornanes has been devised. Bromination of *N*-benzyl-2-azanorborn-5-ene and treatment of the resulting tricyclic salt with hydride occurs with skeletal rearrangement to give *N*-benzyl-7-bromo-2-azanorbornane. Nucleophilic substitution reactions of this compound were found to occur with retention of configuration, consistent with neighbouring group participation of the bicyclic nitrogen lone pair. Heterocycles have been introduced at the 7-position of 2-azanorbornanes and manipulation of the stereochemistry at this position gave the novel epibatidine analogues isoepiboxidine and isoepibatidine. Both have very high affinity for nicotinic receptors; isoepibatidine is equipotent with epibatidine.

The synthesis of fluorinated 2-azanorbornanes was investigated leading to the synthesis of a fluorinated isoepibatidine molecule (syn-7-(6-chloro-pyridin-3-yl)-exo-6-fluoro-2-azabicyclo-[2.2.1]heptane). In addition, a novel rearrangement was discovered which results in functionalisation of the bridgehead position (C1) of 2-azanorbornanes.

An oxidation-reduction strategy of *anti*-7-hydroxy-2-azanorbornanes gave the corresponding *syn*-alcohols and the introduction of pyridine moieties gave ether-linked nicotinic receptor ligands with the general structure 7-(pyridinyloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane. Routes have also been devised to novel isotropane-based epibatidine analogues; chloropyridine heterocycles have been introduced to the 8-positions of the 2-azabicyclo[3.2.1]octane and 3-azabicyclo[3.2.1]octane frameworks.

Abbreviations

AChBP	Acetylcholine binding-protein
°C	Degrees Celsius
COD	Cyclooctadiene
COSY	Correlation spectroscopy
cm ⁻¹	Per centimetre
CNS	Central nervous system
DAST	(Diethylamino)sulfur trifluoride
DCM	Dichloromethane
DEAD	Diethyl azodicarboxylate
DEPT	Distortionless enhancement by polarisation transfer
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
EI	Electron impact
FAB	Fast atom bombardment
g	Grams
GC	Gas chromatography
GCMS	Gas chromatography mass spectrometry
h	Hours
Hz	Hertz
IR	Infra-red
М	Molar
M ⁺	Molecular ion
mCPBA	Meta-chloroperoxybenzoic acid
MHz	Megahertz
ml	Millilitre
mm	Millimetre
mmol	Millimoles
mol ⁻¹	Per mole
nAChR	Nicotinic acetylcholine receptor
NGP	Neighbouring group participation
MS	Mass spectrometry
NMR	Nuclear magnetic resonance
NOESY	Nuclear Overhauser effect spectroscopy

Pyridinium dichromate PDC Positron emission tomography PET PNS Peripheral nervous system Parts per million ppm RT Room temperature Quantitative structure activity relationship QSAR SAR Structure activity relationship TBAF Tetrabutylammonium fluoride THF Tetrahydrofuran Trifluoroacetic acid TFA TLC Thin layer chromatography

v

Contents

Statement			
Ack	Acknowledgements		
Abs	Abstract		
Abbreviations			iv
Cha	pter 1	Introduction	1
1.1		The nicotinic acetylcholine receptor	2
1.2		Naturally-occurring nicotinic receptor agonists	3
1.3		Epibatidine	5
1.4		The nicotinic pharmacophore	7
1.5		Epibatidine analogues	10
	1.5.1	Alternative heterocycles	11
	1.5.2	The azabicyclo[2.2.1]heptane framework	12
	1.5.3	Higher analogues of epibatidine	13
	1.5.4	Smaller azabicyclic frameworks	15
	1.5.5	Heteroatom incorporation	16
	1.5.6	Epibatidine analogues with ether linkages	17
1.6		7-Substituted 2-azabicyclo[2.2.1]heptanes	18
	1.6.1	The proposed route to 7-substituted 2-azabicyclo[2.2.1]heptanes	20
Cha	pter 2:	Functionalisation of the 7-position of 2-azanorbornanes and	22
арр 2.1	roache	Synthesis of 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene	23
2.2		Bromination of 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene	23
2.3		Nucleophilic ring opening of aziridinium salts	24
2.4		Substitution at the 7-position of 2-azabicyclo[2.2.1]heptanes	26
	2.4.1	Determination of C7 stereochemistry in substitution products	27
	2.4.2	Neighbouring group participation in 2-azabicyclo[2.2.1]heptanes	28
2.5		Epimerisation at the 7-position of 2-azabicyclo[2.2.1]heptanes	30
2.6		Construction of the methylisoxazole heterocycle	33
Cha	pter 3:	Approaches to isoepibatidine	37
3.1		Introduction	38
3.2		Suzuki cross-coupling reactions	38
3.3		Cross-coupling to anti-7-bromo-2-boc-2-azabicyclo[2.2.1]heptane	41

Cha	pter 4:	Epibatidine analogues with ether-linkages	46
4.1		Nicotinic ligands with ether-linkages	47
4.2		Target selection	49
4.3		Approaches to 7-keto-2-azabicyclo[2.2.1]heptanes	50
4.4		The reduction of 7-keto-2-azabicyclo[2.2.1]heptanes	51
4.5		Facial selectivity in 7-norbornanones and related systems	53
	4.5.1	Discussion of facial selectivity in 7-keto-2-azabicyclo[2.2.1]heptanes	54
4.6		Pyridyl derivatives of 7-hydroxy-2-azabicyclo[2.2.1]heptane	56
	4.6.1	Approaches to pyridyl derivatives of	56
		anti-7-hydroxy-2-azabicyclo[2.2.1]heptane	
	4.6.2	Approaches to pyridyl derivatives of	57
		syn-7-hydroxy-2-azabicyclo[2.2.1]heptane	
		4.6.2.1 2-Pyridyl and 4-pyridyl derivatives of	57
		syn-7-hydroxy-2-azabicyclo[2.2.1]heptane	
		4.6.2.2 Routes to 3- pyridyl derivatives of	58
		syn-7-hydroxy-2-azabicyclo[2.2.1]heptane	
4.7		Attempted synthesis of a conformationally restricted analogue of	59
		isoepibatidine	
Cha	pter 5:	Fluorinated analogues of epibatidine	62
5.1		Introduction	63
5.2		Fluorinated analogues of epibatidine	63
5.3		Fluorinated 2-azabicyclo[2.2.1]heptanes	64
5.4		6-exo Fluorinated analogues of isoepibatidine	66
	5.4.1	Synthesis of exo-6-fluoro-2-azabicyclo[2.2.1]heptanes	66
	5.4.2	Substitution reactions of dibromo-2-Cbz-2-azabicyclo[2.2.1]heptane	67
	5.4.3	Coupling reactions of	68
		exo-6-fluoro-anti-7-bromo-2-azabicyclo[2.2.1]heptanes	
5.5		3-Substituted 1-azatricyclo[2.2.1.0 ^{2,6}]heptanes	70
5.6		Attempted routes to 3-Fluorinated 2-azabicyclo[2.2.1]heptanes	72
5.7		Routes to 1-substituted 2-azabicyclo[2.2.1]heptanes	74
	5.7.1	Attempted routes to 6-fluoro-2-azabicyclo[2.2.1]hept-5-enes	74
	5.7.2	Rearrangement reactions of 6-keto-2-azabicyclo[2.2.1]heptanes	75

44

5.8		Routes to 7-fluorinated 2-azabicyclo[2.2.1]heptanes	80		
Cha	pter 6:	Approaches to isotropane analogues of epibatidine	82		
6.1		Introduction	83		
6.2		Analogues of epibatidine based on 3-azabicyclo[3.2.1]octane	84		
	6.2.1	Synthesis of 8-hydroxy-3-benzyl-3-azabicyclo[3.2.1]octane	84		
	6.2.2	Synthesis of 8-bromo-3-azabicyclo[3.2.1]octanes	84		
	6.2.3	Attempted substitution reactions of 8-bromo-3-azabicyclo[3.2.1]octanes	86		
	6.2.4	Attempted synthesis of	86		
		syn-8-(6-Chloro-pyridin-3-yl)-3-azabicyclo[3.2.1]octane			
6.3		Analogues of epibatidine based on 2-azabicyclo[3.2.1]octane	88		
	6.3.1	Synthesis of 2-benzyl-2-azabicyclo[2.2.2]hept-5-ene	89		
	6.3.2	Synthesis of 8-bromo-2-benzyl-2-azabicyclo[3.2.1]octane	89		
	6.3.3	Synthesis of homoisoepibatidine	90		
Chapter 7: Nicotinic receptor binding studies		93			
7.1		Nicotinic receptor binding assays	94		
7.2		The nicotinic receptor affinities of isoepibatidine and the	94		
		isoepiboxidines			
7.3		The nicotinic receptor affinities of pyridyl-ether analogues of	97		
		epibatidine	ı		
Cha	Chapter 8: Experimental				
Арр	Appendix I: Crystal structure data Appendix II: Selected ¹³ C NMR spectra Appendix III: Publications				
Арр					
Арр					
Refe	References				

Chapter 1 Introduction

1.1 The nicotinic acetylcholine receptor

Nicotinic acetylcholine receptors (nAChRs) are vital for neurotransmission and have many biological roles; they are ligand-gated ion channels and are part of the superfamily of neurotransmitter receptors that includes the γ -aminobutyric acid (GABA_A), glycine and serotonin (5-HT) receptors. The discovery and study of the alkaloids nicotine (1) and muscarine (2) resulted in the division of nicotinic receptors into two principal classes, the muscle and neuronal types (Fig. 1.10). Muscarine binds to the muscle nAChR, which is found at the neuromuscular junction and mediates muscle contraction; nicotine acts at the neuronal type which is found in autonomic ganglia and in the brain. Nicotinic receptors are pivotal in the initiation of muscle contraction and in autonomic neurotransmission, but have a more regulatory role in the central and peripheral nervous systems, where they are widespread but in relative low abundance.^{1,2}

Fig. 1.10 The nicotinic receptor,³ nicotine and muscarine.

Nicotinic receptors are cell membrane-spanning pentameric ion-channels; five subunits combine to form the nAChR, a trans-membrane protein with a cation-conducting water-filled pore.⁴ Each subunit comprises an extra-cellular domain, which contains the acetylcholine binding site, four hydrophobic membrane-spanning domains and an intra-cellular loop. A range of different subunits are known to exist, they combine in various combinations to give the distinct nAChR subtypes. The subunit composition of muscle nAChRs is $(\alpha 1)_2(\beta 1)\delta\epsilon$;⁵ neuronal nAChRs, however, are much more diverse but are assembled from only α and β subunits; twelve mammalian neuronal nAChR subunits have been discovered ($\alpha 2-\alpha 10$; $\beta 2-4$).⁶ Despite the plethora of potential subunit permutations, only a small number of neuronal nAChR subtypes are known. These include ($\alpha 4$)₂($\beta 2$)₃ which is the most abundant nAChR in the CNS, ($\alpha 7$)₅ and ($\alpha 3$)₂($\beta 4$)₃ which is prevalent in autonomic ganglia;⁴ these receptors are

usually referred to as the $\alpha 4\beta 2$, $\alpha 7$, and $\alpha 3\beta 4$ subtypes respectively. The physiological and pharmacological roles of the different receptor subtypes are poorly understood but are the subject of intense research efforts.⁷

The neurotransmitter acetylcholine (3; Fig. 1.20) is the endogenous agonist for the nAChR. Upon agonist binding the receptor undergoes a conformational change from the resting, closed state to an open state, through which the cations of sodium, potassium and calcium can be conducted. There are other naturally-occuring nicotinic agonists which have particular relevance to this study.

1.2 Naturally-occurring nicotinic receptor agonists

A large range of compounds that interact with nicotinic receptors has been discovered.⁸ Agonists and competitive antagonists bind to sites at the interface of α and β subunits; there are two binding sites per receptor.⁴ Non-competitive antagonists and positive allosteric modulators act at sites distinct from the agonist binding site and will not be discussed here. Agonists can loosely be termed 'activators' as they show a higher affinity for the open state of the nAChR causing influx of cations (principally sodium) into the cell. The resulting depolarisation of the cell leads to neurotransmission. The binding of antagonists does not cause such changes as they do not show preference in binding to the closed/open states. The potency of an agonist depends on two factors: affinity (how well it binds to the receptor) and efficacy (the tendency, once bound to cause the channel to open).² The affinity of a compound is indicated by its K_i, which is an equilibrium-based term derived from how well a labelled nicotinic ligand, such as tritium-labelled nicotine, is displaced from the receptor by the ligand under investigation; low Ki values indicate high affinity.9 Efficacy is quantified as the percentage of the maximum response a ligand can achieve and gives rise to the terms fullagonist, partial-agonist and antagonist. The EC₅₀ value gives an indication of the functional potency of a substance, and is the dose required to give 50% of the maximum response. However, the affinity and efficacy values for any particular compound are not absolute as there are discrepancies due to the exact origins of the receptors being used and variations in experimental procedures.⁷ The binding, efficacy and potency figures quoted in this thesis are not definitive; they are intended to give an indication of biological properties and to illustrate trends.

The first naturally occurring nicotinic receptor agonist to consider is acetylcholine (3), the ester product of acetate and choline. It is a neurotransmitter and mediates the transmission of nerve signals across synapses; it binds with high affinity ($K_i \sim 10$ nM) at $\alpha 4\beta 2$ nAChRs.¹ Acetylcholine is released by the presynaptic membrane and diffuses to the postsynaptic

membrane where two molecules bind to each nicotinic receptor. The subsequent channel opening and influx of sodium ions causes depolarisation of the postsynaptic membrane triggering an action potential.¹⁰

Fig. 1.20 Some naturally-occurring nicotinic agonists. The naturally-occurring enantiomers are shown where appropriate.

Nicotine (1) consists of a pyridine ring linked to a pyrrolidine ring, it acts at the nAChR and indeed, gives the receptor its name; like acetylcholine, nicotine binds with high affinity $(K_i = 1-11 \text{ nM})$ to $\alpha 4\beta 2$ receptors.¹ Nicotine is the addictive component of tobacco but it also has some beneficial properties, including cognitive enhancement, analgesia, neuroprotection and anxiolytic properties.¹¹ The incidence of Parkinson's disease in smokers is twofold less than in non-smokers and evidence suggests that smokers are also less likely to suffer from Alzheimer's. It is thought that nicotine combats these neurodegenerative diseases by activating nicotinic receptors that mediate dopamine release in the CNS.² Nicotine can increase alertness and enhance learning and memory; it is also known to have antinociceptive (pain killing) effects, although antinociception in mammals is of short duration and is attenuated with repeated dosing. Despite these properties, nicotine is not used therapeutically for various reasons, including its addictive nature and the adverse effects it has on autonomic function.⁴

Cytisine (4) is a natural product found in plants of the *leguminosae* family, such as laburnum; it also binds with high affinity ($K_i \sim 1 \text{ nM}$) to $\alpha 4\beta 2$ receptors, akin to acetylcholine and nicotine.¹ The rigid structure of cytisine has led to its use as a research tool, particularly as a template for modelling nicotinic ligands. The efficacy of cytisine is dependent on the identity of the β -subunit that forms the binding site. For instance, cytisine shows full efficacy

at β 4-containing subtypes but greatly reduced efficacy at β 2-containing nAChRs. This is in contrast to many nicotinic agonists and emphasises the importance of the β -subunit in determining agonist-nAChR interactions,¹ it also helps to illustrate the distinction between affinity and efficacy.

Ferruginine (5) is unusual in that the naturally occurring (+)-enantiomer has an extremely low affinity for $\alpha 4\beta 2$ receptors (K_i = 7600 nM) but the unnatural (-)-enantiomer has 60-fold higher affinity.¹² Epiquinamide (6), a quinolizidine alkaloid found recently on the skin of an Ecuadorian frog (see Section 1.3), is selective for $\beta 2$ -containing subtypes and more detailed pharmacological characterisation of this compound is being undertaken.¹³

Anatoxin A (7) is an extremely potent nicotinic agonist and has higher affinity ($K_i = 0.34 \text{ nM}$) for the $\alpha 4\beta 2$ subtype than nicotine ($K_i \sim 1 \text{ nM}$). It is a product of the freshwater blue-green algae *Anabaena flosaquae* and is a semi-rigid azabicyclononene; the natural (+)-enantiomer is much more potent than the (-)-enantiomer. Anatoxin A has been used to study nicotinic currents in brain neurons and nAChR-mediated dopamine release.^{1,4,7} Epibatidine (8), like anatoxin A, is azabicyclic and it is the most potent nicotinic agonist yet discovered.

1.3 Epibatidine

Epibatidine (8) was first isolated in 1974 from the skin of the Ecuadorian poison-dart frog *Epipedobates tricolor* (Fig 1.30); in 1992 analytical techniques, particularly NMR, became sensitive enough to elucidate the structure.¹⁴ Epibatidine or *exo*-2-(6-chloro-3-pyridyl)-7-azabicyclo[2.2.1]heptane (8) is composed of a 2-azanorbornane bicycle attached to a chloropyridine heterocycle, an unusual structure for an alkaloid natural product.

In 1994 the first total synthesis of epibatidine was achieved, allowing its absolute stereochemistry to be determined.¹⁵ Approaching 100 syntheses of epibatidine have been published to date (SciFinder Scholar, 2006) and current efforts are focussed on enantioselective preparations. Recent examples include the total syntheses by Aggarwal,¹⁶ Ley,¹⁷ and Takemoto.¹⁸ Before synthetic routes to epibatidine were developed, detailed pharmacological study of the compound was not possible since a particularly epibatidine-laden frog will possess only about 1 μ g of the substance. Frogs kept in captivity do not harbour epibatidine precursor, from an unidentified arthropod present in its diet.⁸ In addition, the frog is now very rare and collection has been outlawed since 1984 by the international treaty for the protection of endangered species.¹⁹

Pharmacological characterisation indicated that epibatidine binds with exceptionally high affinity ($K_i = 19 \text{ pM}$) at $\alpha 4\beta 2$ nAChRs, and with approximately tenfold lower affinity at $\alpha 3\beta 2$ ($K_i = 230 \text{ pM}$) and $\alpha 3\beta 4$ ($K_i = 380 \text{ pM}$). The functional potency of epibatidine is also extremely high at these receptor subtypes with EC₅₀ values typically in the sub-micromolar range - only at $\alpha 7$ and muscle nAChRs are the EC₅₀ values in the low micromolar range.¹ Unlike anatoxin and nicotine, the two enantiomers of epibatidine show similar biological activities ((-)-**8** K_i = 0.045 nM; (+)-**8** K_i = 0.058 nM; measured at rat brain membranes),²⁰ the naturally occurring (-)-enantiomer has marginally higher affinity for all nAChR subtypes.^{21,22}

Fig. 1.30 Epibatidine (8) with atom numbering; Epipedobates tricolor (www.anaesthetist.com).

Epibatidine was found to be a potent analgesic,¹⁴ having antinociceptive activity 200 times greater than morphine in the hot-plate test, and to be effective against a range of pain types.⁷ In contrast to epibatidine, morphine acts at opioid receptors the more usual site of action for an analgesic.² Many nicotinic agonists have some degree of antinociceptive activity but the discovery of the potent analgesic properties of epibatidine renewed interest in the role of nAChRs in pain transmission and as targets for painkillers. Exactly how nicotinic agonists mediate pain relief is unclear although it is known to involve both peripheral and central nicotinic receptors and $\alpha 4\beta 2$ nAChRs are thought to have an important role.^{4,23}

The potency of epibatidine made it the source of much pharmacological interest. However, its high activity and lack of receptor-subtype selectivity result in epibatidine being extremely toxic; it protects *Epipedobates tricolor* from potential predators.⁷ Epibatidine cannot be used therapeutically: the antinociceptive effects of epibatidine decay substantially in the first thirty minutes after administration and toxic side effects are seen at doses similar to those required for analgesic activity. These include reduction in body temperature and locomotor activity, disruption of motor coordination, hypertension, convulsions and respiratory distress. Epibatidine is acutely lethal at doses six times higher than the fully efficacious antinociceptive dose; repeated administration at doses in the antinociceptive range is also lethal.⁴

Although there are inherent problems in using epibatidine medicinally, the study of the compound has inspired a large amount of research into the synthesis of epibatidine analogues

as potential therapeutic agents. In addition to analgesia, nicotinic receptors have been implicated in numerous other diseases and conditions (see Section 1.5). When selecting target structures as possible drug candidates, it is desirable to have a good knowledge of drugbinding site interactions and how the structure of a compound affects its activity.

1.4 The nicotinic pharmacophore

A pharmacophore is considered to be the minimal structural features necessary for a compound to bring about a pharmacological response, that is, to behave as an agonist, partial agonist or competitive antagonist.²⁴ The nicotinic pharmacophore is not well defined; the compounds already considered begin to give an indication of the wide range of structural types that can mediate nicotinic activity. The situation is further complicated by the multiple subtypes of nAChRs and the range of different allosteric receptor conformations.

Knowledge of the nAChR binding site was attained only recently and is discussed below. Prior to these developments, binding models were based purely on the binding affinities of known nicotinic ligands and are limited in view of the fact that they do not take efficacy, that is, if the compound is an agonist, partial agonist or anatagonist, into account. The $\alpha 4\beta 2$ subtype is by far the most abundant receptor in the CNS; the pharmacophore of this receptor type is the only one to receive concerted attention and will be considered here.²⁴

The Sheridan pharmacophore was first proposed in 1986 when few nicotinic ligands were known and understanding of the nAChR subtypes was poor. The Sheridan model attempts to define the optimum distances between three pharmacophoric elements (Fig. 1.40A).²⁵ Once the structure of epibatidine was determined it was found to be compatible with the Sheridan model. As further nicotinic agonists were evaluated, a parabolic relationship between affinity and inter-nitrogen distance (X-N⁺) was shown to exist (Fig. 1.40B), a low energy conformation of epibatidine possesses the optimum inter-nitrogen distance, 5.5 Å.²⁶ Recent developments (see below) have indicated that this distance is not representative of the active conformations of nicotinic ligands. An improved, four-point binding model was postulated (Fig. 1.40C), this pharmacophore defines the distance between two binding site elements. A modified version of this model also includes the 'aryl centroid' present in the Sheridan model (Fig. 1.40D). These binding models do not account for the binding of all ligands and there remains a need for multiple pharmacophores. Some binding models have also been investigated which include the coordination of a water molecule between the ligand and the binding site.²⁴

7

Fig. 1.40 Nicotinic pharmacophore models. A: The Sheridan pharmacophore; B: The relationship of internitrogen distance to nicotinic affinity; C and D: 4-point binding models.²⁴ For epibatidine: N^+ /onium group = the bicyclic nitrogen; X/hydrogen bond acceptor = pyridyl nitrogen; c/aryl centroid = the centre of the pyridine ring. Site point a and site point b are points in space.

The synthesis and discovery of new nAChR ligands has gone hand-in-hand with increased understanding of the nicotinic pharmacophore;^{27,28} as the pharmacological properties of new compounds are determined their structures are fitted to existing binding models, which are then refined. Some compounds have been synthesised for the principal purpose of probing the nicotinic pharmacophore. Acetylcholine, and to a lesser extent nicotine and epibatidine, have a plethora of low energy conformations and rigid analogues of these compounds have been produced in attempts to determine their active conformations.^{27,29-32}

Key to understanding the nicotinic pharmacophore is the elucidation of the receptor structure, particularly the extra-cellular domain and the agonist binding site. No X-ray or NMR data on the nAChR have been reported, although the muscle nAChR has been examined by electron microscopy at low resolution (4.6 Å).³³ In 2001 the crystal structure of a ACh-binding protein (AChBP) from *Lymnaea stagnalis* (a snail) was obtained at atomic resolution, allowing the features of an ACh binding pocket to be determined for the first time.^{34,35} Since this breakthrough, crystal structures of snail AChBP with nicotine and carbamylcholine bound have been determined.³⁶ In 2005, the crystal structure of an

epibatidine-bound AChBP from *Aplysia californica* (another snail) was published by Hansen *et al.*³⁷ The binding mode of epibatidine to AChBP was found to be similar to that for nicotine with an inter-nitrogen distance of 4.5 Å observed for both ligands. The pyridyl nitrogen forms hydrogen bonds to two amino acid residues via a solvent molecule; the bicyclic nitrogen is bound by two hydrogen bonds and the aromatic chlorine makes polar contacts with the carbonyl oxygens of two amino acids (Fig. 1.41).³⁷

Fig. 1.41 The crystal structure of epibatidine bound to *A*-AChBP. A: The electron density map of epibatidine (blue) is shown. B: An expanded view with hydrogen bonding; the molecular surface of epibatidine is shown in grey.³⁷ C/Cys: cysteine; I: isoleucine; M: methionine; V: valine; W: tryptophan; Y: tyrosine.

The agonist binding sites of nAChRs have high amino acid sequence homology (40-60%) with the AChBPs,⁶ and this together with electron microscopy have helped to confirm the structural similarity between AChBPs and nAChRs.³⁸ These new findings are facilitating computational studies including modelling of nicotinic receptor subtypes, docking experiments and quantitative structure activity relationship (QSAR) studies,^{6,39-44} that are beginning to aid rational nACh drug design.⁶ As understanding of the nicotinic pharmacophore and the nAChR binding site increases, it will begin to have greater influence on the design of novel nicotinic agonists and epibatidine analogues. Ideally, an individual pharmacophore model for each nAChR subtype will direct the search for subtype-selective analogues of epibatidine. Most epibatidine analogues that have been synthesised to date are the result of making structural changes to compounds with known nicotinic activity.

1.5 Epibatidine analogues

Many novel nicotinic ligands have been and continue to be synthesised, the principal aim being to produce compounds that have therapeutic potential. A plethora of diseases and conditions are candidates for treatment with agents that act at nAChRs. As has already been alluded to, Alzheimer's and Parkinson's disease are associated with a decrease in neuronal nAChR density.⁷ The antinociceptive properties of epibatidine suggest that there is scope for the use of nAChR agonists/epibatidine analogues as analgesics.⁴ Other conditions that could potentially be treated with nAChR agonists include schizophrenia, Tourette's syndrome, attention deficit hyperactivity disorder, familial frontal lobe epilepsy, depression, anxiety and compounds may find use as smoking cessation agents.^{5,7,45} A recent patent even describes how nicotinic agonists could be used to improve joint lubrication.⁴⁶ Some of these applications are considered to be speculative and future drugs may be used to augment current therapies rather than replace them. Compounds to treat pain and neurodegenerative diseases such as Parkinson's and Alzheimer's are probably the most likely near-term applications of novel nAChR ligands.⁷

The major challenge is to synthesise compounds that show improved receptor subtype selectivity, leading to an improved separation of activity and toxicity. That is, produce novel agents which have therapeutic properties without significant side effects.⁷ Agonists or competitive antagonists that show nAChR subtype selectivity can also be used as research tools to further our understanding of the roles and locations of the receptor subtypes.¹ Indeed, since the first division of acetylcholine receptors into the muscarinic and nicotinic types, the discovery and synthesis of new nicotinic agents has gone hand-in-hand with increased understanding of receptor structures and functions.

The quest for novel epibatidine analogues is directed towards the synthesis of therapeutically and scientifically valuable substances. However, many of these compounds, akin to epibatidine, are toxic and have the potential to be misused. Therefore, some of the interest in these compounds lies in their ability to harm and hence, their ease of preparation and the regulation of precursor availability.

Many analogues of epibatidine have been developed with these aims in mind; a selection will be discussed here. Particular consideration will be given to the influence of structural features on pharmacological properties, *i.e.* structure activity relationships (SARs). Taking epibatidine as a starting point, various structural aspects have been altered to give a multitude of novel molecules.

10

1.5.1 Alternative heterocycles

Perhaps the simplest change that can be made to the structure of epibatidine (8) is to exchange the chlorine for an alternative atom; a range of 6-substituted deschloro-epibatidine analogues have been synthesised and their pharmacological properties determined. The chlorine atom has been replaced by hydrogen, fluorine and bromine. Despite the differing sizes of these substituents in relation to chlorine, the resulting compounds **9a-c** have binding affinities (K_i) for neuronal nAChRs similar to those of epibatidine. The chlorine atom is required for the exquisite properties of epibatidine but the functional potencies of **9a-c** are also high, being greater than nicotine but reduced in comparison to epibatidine. In contrast, when a methyl substituent (**9g**), amino groups (**9d-e**) or strongly electron-withdrawing groups (**9f**) are present, both the binding affinity and potency are greatly reduced.^{27,47} This is probably due to the reduced basicity of the pyridine nitrogen and therefore its ability to act as a hydrogen bond acceptor. With the exception of **9d,e** all the deschloro analogues behaved as agonists and none of these compounds showed improved receptor subtype selectivity.⁴⁷

Fig. 1.50 Alterations to the chloropyridine ring of epibatidine.

A range of epibatidine analogues with an additional 5'-substituent (10a-g) have also been synthesised. These compounds have binding affinities for the $\alpha 4\beta 2$ receptor very similar to that of epibatidine (even when a phenyl ring is attached).^{27,48} suggesting that the nature of the substituent at this position is not important for binding. However, the bulk of the group at the 5'-position does affect the efficacy of the compound; 10f, has much lower antinociceptive activity and functional potency than epibatidine and 10a-e,g.⁴⁹ Indeed, when the chlorine of 10f is replaced with H the resulting compound (11) shows only antagonistic properties at nAChRs.⁵⁰ Derivatives of 11 have been produced and progress has been made towards subtype-selective novel nicotinic antagonists.⁵¹⁻⁵⁴

Bioisoteric heterocycles have been substituted into the structure of epibatidine with the aim of improving receptor subtype selectivity and elucidating structure activity relationships.²⁷ Most notable among this class of epibatidine analogues is epiboxidine (**12a**), which contains a methylisoxazole moiety and was first synthesised by the Daly group in 1997. Epiboxidine has approximately ten-fold lower affinity and antinociceptive activity than epibatidine but has an improved activity/toxicity ratio.⁵⁵ The analogues containing an unsubstituted isoxazole (**12b**) and the 3-phenylisoxazole (**12c**) have also been studied; **12b** has a two-fold lower affinity than epiboxidine (**12a**), whilst the bulkier **12c** has a much lower affinity.²⁷ The 2-thiazolyl and 4-pyrazolyl analogues **12d** and **12e** also have very low affinities for nAChRs,⁵⁶ whilst the pyrimidine analogue (**12f**) shows high affinity for nAChRs (K_i ~ 0.31 nM *cf.* epibatidine 0.18 nM).²⁷

Fig. 1.51 Epibatidine analogues bearing bioisoteric heterocycles.

Some of the heterocyclic variants discussed here have been substituted into the structure of nicotine, replacing the pyridine ring, to give analogue molecules. For example, the methylisoxazole analogue of nicotine, ABT-418, was developed by Abbott laboratories as an antinociceptive agent.⁵⁷ In general, when alterations to the pyridyl ring of nicotine are made, the same trends described above for epibatidine are observed.⁵⁸

1.5.2 The azabicyclo[2.2.1]heptane framework

Compounds have been made in which the bicyclo[2.2.1]heptane framework is retained but the positions of the nitrogen atom and heterocycle have been altered. *endo*-Epibatidine (13) has a relatively low affinity for nAChRs as might be expected due to the increased inter-nitrogen distance.⁵⁸ Analogues in which the heterocycle is attached to the bridgehead position of the 7-azabicyclo[2.2.1]heptane system, 14 and 15, have been synthesised, and although these compounds have N-N distances close to that of epibatidine, both have low affinity and activity at neuronal nAChRs.^{30,59}

Previous work at Leicester on 2-azabicyclo[2.2.1]heptanes led to the synthesis of the *endo*-5- and 6-chloropyridyl analogues of epibatidine **16** and **17** using a strategy based on Heck coupling reactions; both compounds have been shown to possess binding affinities and potencies very similar to epibatidine.^{58,60} In contrast, the corresponding *exo*-5- and 6-analogues **18** and **19** have low affinities for nAChRs, again, a consequence of increased internitrogen distance.^{58,61,62}

The 1-azabicyclo[2.2.1]heptane system has also been investigated; **20** has been used as a tool for probing the nicotinic pharmacophore^{28,32} and is receiving current interest as a potential α 7 selective agonist.⁶³

Fig. 1.52 Analogues based on the azabicyclo[2.2.1]heptane framework.

Carroll has recently investigated the possibility of positioning an amine group at C7 of the norbornane framework; **21** has similar properties to nicotine but ~10-fold lower receptor affinity. Hence, the location of the bicyclic nitrogen in epibatidine is of utmost importance. Attachment of a benzyl group to the amine functionality of **21** results in extremely low affinity.⁶⁴ However, *N*-substitution in epibatidine itself is tolerated to a limited extent in that *N*-methylation has little effect on nicotinic affinity and pharmacological properties.²⁷ In fact, *N*-methyl epibatidine has now been found on the skin of *Epipedobates tricolor*.¹¹ The introduction of larger *N*-substituents, even ethyl, causes marked reductions in nicotinic affinity.^{27,65}

1.5.3 Higher analogues of epibaidine

Epibatidine analogues containing larger azabicyclic frameworks have also been synthesised. Homoepibatidine (22) and dihomoepibatidine (23) were first produced at Leicester and are based on the 8-azabicyclo[3.2.1]octane and 9-azabicyclo[4.2.1]nonane frameworks respectively. (-)-Homoepibatidine (22) binds with high affinity to nAChRs (rat brain membrane preparation) ($K_i = 0.3$ nM; *cf.* (-)-epibatidine $K_i = 0.1$ nM, (-)-nicotine $K_i = 7.8$ nM); the larger, less strained dihomoepibatidine (23) binds with lower affinity $K_i = 2.85$ nM.⁶⁶ The synthesis of homoepiboxidine (24) was published very recently and is the methylisoxazole equivalent of homoepibatidine (22). Homoepiboxidine has affinity for $\alpha 4\beta 2$ receptors comparable with epiboxidine (12a) but has lower affinity for α 3-containing receptors. Homoepiboxidine also has functional activity similar to epiboxidine yet is less active as an analgetic.⁶⁵

Fig. 1.53 Higher analogues of epibatidine.

Trudell and co-workers have produced a range of epibatidine analogues based on the 8azabicyclo[3.2.1]octane framework but in which the heterocycle is attached to the propano[3] bridge rather than the ethano[2] bridge.⁶⁷⁻⁶⁹ The 2-substituted compounds **25** and **26** have high, but reduced affinity for nAChRs in comparison to homoepibatidine (**22**) and homoepiboxidine (**24**). When the configuration at the 2-position is altered, as in **27** and **28**, or when the heterocycle is at the 3-position (**29**) very low affinities for nicotinic receptors are observed.^{27,67-69} The 2-azabicyclo[2.2.2]octane system has also been investigated and compounds **30** and **31** have receptor affinities comparable to homoepibatidine (**22**). The vicinal analogue **30** is about one-quarter as potent as epibatidine as an analgesic; however, the distal analogue **31** has very low antinociceptive activity.^{27,70} Gallagher and co-workers produced UB-165 (32) a hybrid of epibatidine (8) and anatoxin A (7).⁷¹ The nicotinic affinity of UB-165 is intermediate to those of the parent compounds and shows a similar lack of selectivity between $\alpha 4\beta 2$, $\alpha 3\beta 4$ and $\alpha 7$ receptor subtypes.⁵² Work on UB-165 analogues continues to be published, particularly concerning alternative heterocycles and their effect on biological properties.^{12,72}

Epibatidine analogues based on the bulky and unusual azahomoadamantane ring system have also been synthesised; **33** binds to α 7 nAChRs with affinity comparable to that of nicotine. Unlike most of the analogues already considered, the *N*-methyl derivative of **33** shows extremely low affinity.⁷³ This may be due to the relatively close proximity of the two nitrogen centres; the methyl group is able to disrupt the interaction of the heterocycle with the receptor binding site.

The effect of linking two molecules of epibatidine by oligo-methylene chains of varying lengths has recently been reported. Compound **34** shows similar low nanomolar affinities to epibatidine at a range of nAChRs but, significantly, has low affinity and weak partial agonist properties at α 3 β 4 receptors. This slight improvement in selectivity may result in decreased toxicity and bivalent ligands are believed to warrant further study.⁷⁴

During the course of this Ph.D. study a patent was published which includes a large number of epibatidine homologues;⁷⁵ it will be considered in Chapter 6.

1.5.4 Smaller azabicyclic frameworks

Some epibatidine analogues are based on smaller, less sterically demanding and more strained azabicyclic frameworks such as the 2-azabicyclo[2.1.1]hexane (**35-36**), 2-azabicyclo[2.2.0]-hexane (**37-38**) and pyrrolizidine (**39-40**) frameworks. Piotrowski succeeded in positioning the chloropyridyl heterocycle at the 1-position of the 2-azabicyclo[2.1.1]hexane system (**35**)⁷⁶ and recent work at Leicester has also led to isoxazole incorporation at this position (**36**).⁷⁷ Disappointingly, **36**, and some chain extended variants of this molecule, have very low affinities for α 4β2 and α 3β4 receptors.⁷⁸

Fig. 1.54 Smaller azabicyclic epibatidine analogues.

The Krow group has produced 2-azabicyclo[2.2.0]hexane-based epibatidine analogues (37-38). The *endo*-isomers 37 and 38 show moderately high affinity for nAChRs but do not demonstrate antinociceptive properties.⁷⁹ Various heterocycles have been attached to the 5-position of the pyrrolizidine (1-azabicyclo[3.3.0]octane) framework, 39-40. These molecules are considered to be hybrids of the two enantiomers of nicotine and their symmetry means that the stereochemical issues associated with nicotine do not have to be considered. The pyrrolizidine analogues 39 and 40 retain high nAChR affinity and show marginally increased $\alpha 4\beta 2$ affinity in comparison to the analogous pyrrolidine (nicotine analogue) compounds.⁵⁸

1.5.5 Heteroatom incorporation

All the analogues of epibatidine considered so far retain an unfunctionalised azabicycle. Investigations into the effects of heteroatom incorporation into the bicyclic core have been undertaken in the hope that favourable interactions will form within the binding site of the receptor, resulting in improved nAChR subtype selectivity. Kozikowski has published the syntheses of hydroxylated analogues of epibatidine (41-43) and the carbonyl compounds 44a-b.^{80,81}

Fig. 1.55 Hydroxylated analogues of epibatidine.

These molecules were tested against a range of receptor subtypes; all had reduced affinity compared to epibatidine but moving the hydroxyl group around the molecule did have a profound effect on binding strength. The 3-*exo*-OH and 5-*endo*-OH compounds (43a and 41b) had extremely low receptor affinities (low μ M range) whilst the others had moderately high affinity (low nM range). Hence, the 3-*exo* and 5-*endo*-positions of epibatidine were least tolerant of the presence of an OH group. The carbonyl compounds 44a and 44b had very low

binding affinities. None of the epibatidine analogues 41-44 showed improved subtype selectivity.⁸¹

A hydroxylated analogue of homoepibatidine, **45**, has also been prepared; this compound has been pharmacologically evaluated and binds to nAChRs with affinity comparable to nicotine. Compound **45** showed no significant improvement in receptor selectivity.⁸² Fluorine has also been introduced to the azabicycle of epibatidine and these analogues will be discussed in Chapter 5. It is not yet clear whether heteroatom incorporation is a valid strategy in the design of potent subtype-selective nicotinic agonists.

1.5.6 Epibatidine analogues with ether linkages

Epibatidine analogues containing a 3-pyridyl ether moiety and lacking a bicycle are structurally distinct from the compounds already discussed. Certain compounds of this class, such as **46-48** (Fig. 1.56), have very high affinity for nAChRs (A-84543 (**46**) K_i = 0.15 nM; A-85380 (**47**) K_i = 0.05 nM; ABT-594 (**48**) K_i = 0.04 nM).^{83,84} Additionally, these compounds show higher selectivity for $\alpha 4\beta 2$ receptors than, but are not as potent as, epibatidine.⁵⁸ ABT-594, also known as Tebanicline (**48**), is the most famous amongst these compounds; Abbott (the pharmaceutical company) chose this compound for development on the basis of screens for analgesic properties.⁸³ The improved separation of antinociceptive effects and nicotinic side-effects⁴ allowed **48** to enter phase II clinical trials as a broad-scope analgesic in the late 1990s. However, ABT-594 has been shown to have analgesic and toxic effects resembling those of epibatidine and nicotine⁸⁵ and it is now known that clinical trials were ceased due to gastrointestinal side-effects.⁸⁶ Abbott are developing second-generation derivatives of ABT-594 the structures of which are not in the public domain.

The discovery of this new structural class of nicotinic ligand has led to synthetic endeavours towards novel ether-containing molecules in the hope of finding compounds with high nicotinic affinity and improved receptor sub-type selectivity. Developments in this area are discussed in Chapter 4.

Fig. 1.56 3-Pyridyl ether analogues.

This review of epibatidine analogues is not exhaustive but gives an indication of the structural features that can be manipulated, and how these changes affect pharmacological properties. The race to produce therapeutic compounds that act at neuronal nAChRs is intensifying and there is increasing desire to elucidate the structure and function of nAChR subtypes. Hence, syntheses of novel epibatidine analogues continue to be published.

1.6 7-Substituted 2-azabicyclo[2.2.1]heptanes

The major aim of this study was to synthesise epibatidine analogues based on the 2azanorbornane framework with a heterocycle attached to the methano-bridge (7-position). Interest in the chloropyridyl and methylisoxazole heterocycles remains particularly high; a large proportion of recently published analogues contain them (see Section 1.5). Hence, compounds 49-52 (Fig. 1.60) were particularly attractive targets; they are isomers of epibatidine (8) and epiboxidine (12a), in which the positions of the bicyclic nitrogen atom and the heterocycle have been switched. This has implications in terms of inter-nitrogen distances which will be very similar to that of epibatidine. Indeed, molecular modelling indicated that the syn derivatives 49 and 51 have low energy conformations with inter-nitrogen distances of 4.5 and 4.4 Å respectively (epibatidine: 4.5 Å).^a It was hoped, therefore, that 49 and 51 would show high affinity for nicotinic receptors; the anti compounds 50 and 52 have larger N-N distances (5.9 and 5.6 Å respectively) and were not expected to have such high affinity. Internitrogen distances were used throughout this study to predict and rationalise the observed nicotinic receptor affinities. This approach is reasonable for the derivatives discussed in this thesis as they have structures similar to that of epibatidine and the recent epibatidine-bound AChBP crystal structure confirms the active conformation of epibatidine. However, there are limitations to the inter-nitrogen distance approach; not all nicotinic ligands fit the hypothesis and for molecules which are more structurally distinct from epibatidine the approach is less valid.

Regardless of how tightly **49-52** bind to nicotinic receptors, 7-heterocycle-substituted 2azabicyclo[2.2.1]heptanes represent a novel class of epibatidine analogue. Their synthesis will serve to further the series of 2-azabicyclo[2.2.1]heptane analogues discussed in section 1.5.2 and comparisons of the pharmacological properties of **49-52** with those of existing molecules will contribute to our understanding of the nicotinic pharmacophore.

^a See Chapter 8 for details regarding molecular modelling techniques.

Chapter 1 - Introduction

Fig. 1.60 7-Heterocycle 2-azabicyclo[2.2.1]heptanes; a 7-heterocycle 7-azabicyclo[2.2.1]heptane.

The chemistry of 2-azanorbornanes has been the subject of much research⁸⁷ and continues to draw attention. 2-Azanorbornanes have been used as a rigid molecular scaffold for the construction of other biologically active molecules; for example, as conformationally restricted proline and glutamic acid analogues.^{88,89} The introduction of substituents to the 7-position of 2-azabicyclo[2.2.1]heptanes is not straightforward and has received little attention. Hodgson has developed a radical rearrangement of 7-azanorbornadienes to 2-azanorbornenes, which has led to the synthesis of a limited number of 7-substituted 2-azanorbornenes.⁹⁰⁻⁹⁵ The radical addition of thiols to **53** was found to give rearranged 7-substituted 2-azanorbornene products (**54**) exclusively via the mechanism shown in Fig. 1.61.^{90,92} During the course of this Ph.D. study (2005) the analogous addition of alkyl radicals to a derivative of **53** was also reported to give rearrangement thus leading to 7-alkyl 2-azanorbornenes.^{93,95}

Fig. 1.61 The radical rearrangement of 2-azanorbornanes.^{90,93}

Hodgson and co-workers have applied the radical rearrangement of 7-azanorbornanes to an alternative synthesis of the highly potent epibatidine isomer 17 (Fig. 1.52).⁹¹ More recently, progress towards the epibatidine analogue targets of this study (e.g. 49) was alluded to. Thus, the epoxide 55 was treated with 4-MeOC₆H₄MgBr and subsequent desulfonylation gave 56. Preparation of the corresponding xanthate, followed by radical-catalysed deoxygenation and concomitant rearrangement then gave the *syn*-7-substituted 2-azanorbornane product 57.

Fig. 1.62 A radical-rearrangement route to syn-7-aryl-2-azanorbornanes; $Ar = 4-MeOC_4H_6MgBr$.⁹⁴

We wished to devise practical methods to functionalise the 7-position of 2azanorbornanes and to introduce heterocycles. Manipulation of the C7 stereochemistry was of utmost importance, since the *syn*- compounds **49** and **51** were expected to have nicotinic activity whilst the corresponding *anti*- compounds **50** and **52** were not. The synthetic route envisaged is outlined below.

1.6.1 The proposed route to 7-substituted 2-azabicyclo[2.2.1]heptanes

Bromination of 2-azabicyclo[2.2.1]hept-5-ene derivatives (e.g. **58**) is known to bring about skeletal rearrangement to give rearranged products (e.g. **59**; Fig. 1.63). Thus, neighbouring group participation (NGP) by the bicyclic nitrogen results in the opening of the bromonium intermediate (**60**) to give **61**; attack of the bromide counter-ion on **61** yields **59** (Fig. 1.60).⁹⁶ Recent publications by Sosonyuk and co-workers have demonstrated that in certain cases, when R is alkyl, the tricyclic salts (**61**) are favoured in the equilibrium between **61** and **59**. These salts are stable and can be isolated.^{97,98}

Fig. 1.63 Bromination of 2-azabicyclo[2.2.1]hept-5-ene derivatives.

As the equilibrium between **61** and **59** suggests, the aziridinium ring of **61** can be opened by nucleophiles including alcohols and amines.⁹⁹ Subsequent removal of the 7-bromine allowed a range of 6-substituted 2-azabicyclo[2.2.1]heptanes to be accessed.¹⁰⁰ In order to produce 7-substituted systems the opposite must be achieved: the aziridinium

functionality should be removed leaving the 7-bromine in place. To this end, attempts will be made to treat azaniotricyclic salts (61) with hydride to give 62 (Fig. 1.64).

With the 7-bromo-2-azabicyclo[2.2.1]heptane compound **62** in hand, functional group interconversions will be undertaken. However, substitution reactions at the 7-position of norbornanes are unfavourable^{101,102} and may prove to be equally problematic in azanorbornanes.

Fig. 1.64 The proposed route to 7-substituted 2-azabicyclo[2.2.1]heptanes.

Heterocycles will be assembled at the 7-position or introduced using cross-coupling reactions (62 to 63). The stereochemistry at the 7-position must be manipulated so that the both the *syn*-7- and *anti*-7- series of derivatives can be accessed. Results in these areas are discussed in Chapters 2 and 3. Chapter 4 concerns the synthesis of epibatidine analogues containing ether-linkages, Chapter 5 describes research into the incorporation of fluorine into the 2-azanorbornane skeleton and studies into the synthesis of isotropane-based analogues of epibatidine are discussed in Chapter 6.

Chapter 2

Functionalisation of the 7-position of 2-azanorbornanes and approaches to isoepiboxidine

2.1 Synthesis of 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene

The 2-azanorbornane system was used extensively in these studies and the key precursor, 73, was formed through a well-known aqueous aza Diels-Alder reaction (Fig. 2.10). Under Mannich conditions, benzylamine hydrochloride and formaldehyde react *in situ* to give an iminum salt which undergoes a $4\pi + 2\pi$ cycloaddition with cyclopentadiene to give 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene (73).^{103,104}

Fig. 2.10 Aza Diels-Alder reaction to form 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene (73).

The product of the cycloaddition, **73**, is conveniently *N*-benzyl protected; conversion to an alternate *N*-protecting group by hydrogenation followed by re-protection will be shown to be straightforward. The benzyl protecting group preserves the basicity of the nitrogen atom, which is well placed to anchimerically assist reactions in the ring system, an important feature in the context of this thesis. It is also notable that, unlike some other *N*-protecting groups, an alkyl group such as benzyl allows nitrogen inversion. Nitrogen inversion is rapid in **73** and is therefore not generally a concern, although it can result in reactions giving a mixture of isomers.¹⁰⁵ The double bond in **73** will enable functionalisation and subsequent heterocycle incorporation.

The yield of **73** was 86%, ¹H NMR analysis and comparison to literature data¹⁰⁴ indicated that no further purification was required.

This reaction is not enantioselective but this is not a concern as a racemic mixture of an epibatidine analogue could be resolved at a suitable later stage if desired or required. Additionally, the two enantiomers of epibatidine itself have similar biological properties and therefore racemic mixtures were targeted.²² The discussion in the remainder of this thesis concerns racemic mixtures of compounds.

2.2 Bromination of 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene

As previously described, bromination of 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene (73) occurs with rearrangement (see Section 1.6.1). The benzyl protecting-group maintains the nucleophilicity of the nitrogen atom allowing it to form the aziridinium salt 74 which can be attacked by the bromide counter-ion to establish the equilibrium between 74 and 75 (Fig. 2.20). A two-step bromination procedure of 73 has been developed recently by Sosonyuk *et*

al.. This gives quantitative yields, improving on the previously described methodology reported by Pombo-Villar *et al.* whose procedure involved adding the alkene 73 drop-wise to a solution of bromine and gave a yield of 82%.¹⁰⁶

Treatment of the alkene 73 with two equivalents of bromine gives a tricyclic salt with a tribromide counter-ion (76); addition of a second equivalent of the alkene 73 essentially converts the counter-ion to monobromide.^{97,98} It is not clear why this procedure gives improved yields but it is likely to be solvent-related as the first step is carried out in DCM and the second in acetonitrile. Previously published bromination methods gave poorer yields, principally due to the formation of side-products.¹⁰⁶

Fig. 2.20 The two-step bromination of 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene (73).97,98

The quantitative yields reported by Sosonyuk *et al.* were found to be reproducible. However, there was no evidence that the tricyclic product 74 was in equilibrium with the bicycle 75. There was little difference in the ¹H NMR spectra of compounds 74 and 76, indicating that any equilibrium between 74 and 75 is overwhelmingly in favour of 74. Both tricyclic compounds 74 and 76 were found to be stable; ¹H NMR indicated no degradation after storage at ~5 °C for three months. This is contrary to the observations of Sosonyuk *et al.* who suggest that the nitrogen atom of 74 is able to eliminate HBr from 74 causing degradation via an unstable olefinic intermediate.^{97,98}

2.3 Nucleophilic ring-opening of aziridinium salts

The equilibrium of 74 and 75 (Fig. 2.20) involves attack of the bromide counter-ion on the three-membered ring. Although the bicyclic tautomer (75) was not observable, this equilibrium has been studied in related systems and demonstrates the potential of the aziridinium functionality to be opened by nucleophiles. Bulanov *et al.* have reported that

nucleophilic attack is at the 6-position rather than the 2-position, probably due to the closer proximity of the bulky bromine atom to the 2-position.^{97,98} A recent publication indicates that a variety of O, N, S and C nucleophiles can intercept the tricycle **77**, to give 6-substituted 7-bromo-2-azabicyclo[2.2.1]heptanes (e.g. **78**). Radical-mediated removal of the 7-bromine atom provides a route to 6-substituted 2-azabicyclo[2.2.1]heptanes (**79**).¹⁰⁰

Fig. 2.30 Nucleophilic ring opening of the aziridinium ring in 1-alkyl-1azoniatricyclo[2.2.1.0^{2,6}]heptanes.¹⁰⁰

In order to access 7-substituted 2-azabicyclo[2.2.1]heptanes attempts were made to open the aziridinium ring of 74 using hydride (Fig. 2.31). The use of sodium borohydride in methanol resulted in solvolysis rather than hydride addition; methanol opened the aziridinium ring to give 80 as the only isolable product (17% yield). A switch of solvent to diethyl ether with only a catalytic amount of methanol gave no discernable reaction.

Fig. 2.31 Reaction of hydride with 1-benzyl-1-azoniatricyclo[2.2.1.0^{2,6}]heptane.

As NaBH₄ did not give the desired product, LiAlH₄ was used as the hydride source. At room temperature LiAlH₄ gave the defunctionalised compound, **81** (59%) in which the aziridinium ring had been opened but the 7-bromine substituent had also been removed. This compound (**81**) had been made at Leicester previously and confirmation of its formation was

by comparison to earlier spectra.¹⁰⁷ The conditions were changed: the reaction of **74** with LiAlH₄ was started at -78 °C and allowed to warm to -20 °C over one hour. The reaction was quenched at -20 °C and this resulted in ring opening with retention of the bromine atom at the 7- position (**82**)(58% yield). A recent patent indicated that hydride addition can also be achieved using Red-Al;¹⁰⁸ following this procedure gave **82** in an improved 93% yield. For more detailed discussion of this patent see Chapter 4.

2-Benzyl-2-azabicyclo[2.2.1]hept-5-ene (73) is observed as a side-product in the reaction of 74 with LiAlH₄ or Red-Al, typically in ~10% yield by ¹H NMR. A possible explanation of the formation of 73 is shown in Fig. 2.32. This involves hydride attack at the 2-position of the tricycle 74 to give the *exo*-5-bromo compound 83; Bulanov *et al.* have reported that nucleophilic attack is only at the 6- position. Elimination of HBr from 83 would result in the formation of the alkene 73.

Fig. 2.32 Possible mechanism of side-product (73) formation.

In conclusion, through the two-step bromination of a 2-benzyl-2azabicyclo[2.2.1]heptane and opening of the resulting aziridinium salt with hydride, the 7position of the 2-azabicyclo[2.2.1]heptane ring system was selectively functionalised in good overall yield.

2.4 Substitution at the 7-position of 2-azabicyclo[2.2.1]heptanes

With the *anti*-7-bromo compound **82** in hand, nucleophilic substitution at the 7-position of 2azanorbornanes could now be investigated. Substitution reactions at the 7-position of bicyclo[2.2.1]heptanes (norbornanes) are disfavoured due to angle constraints and steric factors.^{101,102} The transition states for both S_N1 and S_N2 reactions ideally have 120° bond angles but the rigid bicycle in **84** prevents this bond angle being achieved at the 7-position (C₁-C₇-C₄ = 93°) (Fig. 2.40). In addition, the approach of the nucleophile is hindered by the *exo*-2- and *exo*-3-protons. The reactivity of the 7- position of norbornanes can be increased by the presence of carbonyl groups at the 2- and 3- positions, apparently due to electric field effects.^{102,109}

Fig. 2.40 The 7- position of norbornanes (e.g. 84) is unreactive towards nucleophiles X = leaving group, Y = nucleophile.

The 7-position of 2-azabicyclo[2.2.1]heptanes (azanorbornanes) was expected to be similarly unreactive towards nucleophiles in this study but *anti*-7-bromo-2-benzyl-2-azabicyclo[2.2.1]-heptane (82) was found to participate in substitution reactions (Fig. 2.41). A range of nucleophiles were successfully introduced to 82 but relatively harsh conditions were required (100 $^{\circ}$ C, 24 h, DMF). Similar conditions have been used in the electric-field-facilitated substitution reactions of 1,2-diketo-7-bromo-norbornanes.^{102,109}

Fig 2.41 Nucleophilic substitution reactions of 82 occur with retention of configuration.

The use of Cl⁻, HO⁻, NC⁻ and the imidazoyl anion as nucleophiles gave the compounds **85**, **86**, **87** and **88** respectively; the introduction of a cyano- group was particularly satisfying as heterocycles can be built up from it. The removal of the bromine atom to give **81** (Fig. 2.31) by hydride ion is also an example of nucleophilic substitution at the 7-position.

As indicated in Fig. 2.41, the *anti*-stereochemistry at the 7-position was maintained in the products of the nucleophilic substitution reactions, this was verified by COSY and NOESY NMR experiments (Section 2.4.1). None of the corresponding *syn*- compounds were observed.

2.4.1 Determination of C7 stereochemistry in substitution products

Detailed NMR studies confirmed the *anti*-7-stereochemistry in all of the substitution products **85-88**. Discussion of the 2D NMR analysis of the alcohol **86** follows, in order to demonstrate how the 7- position configuration was determined in **85-88**.

Signals in the ¹H NMR spectrum of **86** could be assigned unambiguously; COSY and NOESY experiments were performed in order to glean further information regarding the spatial relationships of protons. The 2D NOESY spectrum of **86** is shown in Fig. 2.42.

The NOESY spectrum of the alcohol **86** showed cross-peaks between H_7 and $H_3(exo)$ (red) and also to the methylene protons of the inverting benzyl group (blue). ¹H-¹H COSY analysis of **86** showed 'W' couplings (~1Hz) between H_7 and the *endo*- protons in positions 5- and 6-. This spectroscopic information is compatible only with the hydroxyl group being *anti*-

to the bicyclic nitrogen atom.

Similar, detailed 2D NMR analysis of compounds **85**, **87** and **88** indicated that all the substitution reactions studied occur with complete retention of stereochemistry.

2.4.2 Neighbouring group participation in 2-azabicyclo[2.2.1]heptanes

The unexpected substitution at the 7- position of **82** and the retention of configuration are consistent with neighbouring group participation (NGP) by the bicyclic nitrogen atom (Fig. 2.43). Anchimeric assistance by the nitrogen lone pair aids the loss of bromide from the 7- position and results in the formation of the non-classical cation **89**; nucleophilic attack on this

intermediate must be *anti* to the nitrogen atom. Essentially, a double inversion of configuration at C7 gives the substituted product **90** with retention of stereochemistry.

Fig. 2.43 Neighbouring group participation in 82 gives retention of configuration.

A recent patent describes an alternative procedure (1-methyl-2-pyrrolidinone/water rather than LiOH) for the synthesis of the hydroxyl compound **86** from **82**, but claims the *syn*-7-configuration for the product; no spectroscopic data were given.¹⁰⁸ In our hands this alternative procedure gave only *anti*-**86**; the spectra of the product were identical to those for **86** synthesised using LiOH. For a more detailed discussion of this patent see Chapter 4. The use of 1-methyl-2-pyrrolidinone/water as an efficient source of nucleophilic oxygen was first reported by Hutchins and Taffer in 1982.¹¹⁰

Fig. 2.44 Neighbouring group participation in norbornanes and 7-azanorbornanes.^{111,114}

The participation of 2-position electrons in reactions at the 7-position of bicyclo[2.2.1]heptanes is not without precedent. Reactions of norbornanes and azanorbornanes involving NGP are well documented; these bicyclic systems often exhibit unusual chemistry, for example, simple substitution reactions can be disfavoured due to the need to pass through highly strained transition states (see Fig. 2.40). Norbornenes in particular have been used for many years as tools for probing reaction mechanisms as their rigid

framework has allowed fundamental questions regarding reactivity and stereochemistry to be tackled. For example, participation by π bonds in norbornenes facilitates the loss of a 7-position substituent giving rise to unexpected solvolysis products (Fig. 2.44A).¹¹¹⁻¹¹³ Similar π -participation is observed in the loss of chloride from the 7-position of 7-azabicyclo[2.2.1]heptane derivatives. Here nitrogen inversion becomes an important factor, the product shown in Fig. 2.44B can only form when the *N*-Cl is *anti*- to the participating π bond (as shown).¹¹⁴

In 2-azabicyclo[2.2.1]heptanes the nitrogen lone pair is able to overlap with areas of developing positive charge, as described in Section 2.2; in this example the nitrogen lone pair opens a bromonium ion causing skeletal rearrangement.⁹⁸ Similar opening of 5-/6-position epoxides in the 2-azabicyclo[2.2.1]heptane system has also been studied.¹¹⁵

Participation of the bicyclic-nitrogen lone-pair in reactions at the 7-position of 2azanorbornanes is a novel observation. It clearly adds to the body of work in the literature regarding NGP in norbornanes and azanorbornanes and increases understanding of NGP and rearrangements in 2-azanorbornanes.

To summarise, the presence of the nitrogen atom in the bicycle facilitates substitution at the 7-position. However, the associated retention of stereochemistry may cause difficulties in synthesising compounds with a heterocycle *syn*- to the nitrogen atom, that is, epibatidine analogues with appropriate inter-nitrogen distances.

2.5 Epimerisation at the 7-position of 2-azabicyclo[2.2.1]heptanes

It was postulated in Section 1.6 that for a 7-heterocycle-substituted 2-azabicyclo-[2.2.1]heptane to have nicotinic activity the heterocycle must be *syn*- to the bicyclic nitrogen, due to the inter-nitrogen distance requirements of the nicotinic pharmacophore. Substitution reactions at the 7-position of azanorbornanes were shown to occur with complete retention of configuration, giving only the *anti*-7- products **85-88**. There was clearly a need to epimerise in order to access the potentially active *syn*-7-compounds.

Fig. 2.50 Base-induced epimerisation of 7-substituted 2-azanorbornanes, B^{-} = base.

A 7-position substituent capable of stabilising a negative charge α to it will lower the pK_a of the 7-position proton. Treatment with an appropriate base would give the anion **91** which has the potential to invert (**91** to **92**); protonation would yield the epimerised *syn*-product **93**. 7-Norbonyl anions have been produced and studied,^{116,117} and inversion of the 7-position carbanion of 2-azanorbornanes is analogous to nitrogen inversion in 7-azanorbornanes, a well documented process.¹¹⁴

Some total syntheses of epibatidine involve an epimerisation step, for example, Fletcher *et al.* obtained a mixture of the *endo-* and *exo-* epimers **94** and **95** (Fig. 2.51). Treatment of **94** with potassium *tert*-butoxide at 100 °C for 30 hours gave a mixture containing 50% **95**; the anion formed during this reaction is stabilised by resonance into the pyridyl system.¹⁵ Epimerisation at the 7-position of norbornanes involves inversion at the more strained one-atom bridge but is precedented; Buske and Ford demonstrated that epimerisation at the 7-position of the ester **96** is possible. Compound **96** was treated with sodium methoxide in methanol and HMPA and the equilibrium between **96** and **97** was achieved after 165 hours at $65^{\circ}C$ (K_{eq} = **96/97** = 0.73).¹¹⁸

Fig. 2.51 Literature examples of epimerisation.^{15,118}

In our studies, the cyano compound 87 was hydrolysed and the resulting acid converted to the ester 98 in 77% overall yield (Fig. 2.52). The *anti*-ester (98) was subjected to conditions similar to those described by Buske and Ford, *i.e.* sodium ethoxide in ethanol and HMPA at reflux. The use of ethoxide was necessitated by the ethyl ester; the products of ester exchange reactions would be observed in the presence of alternative alkoxide bases. Equilibrium between the two esters **98/99** (45:55) was achieved within 24 hours, as determined by gas chromatography. The epimers were separable by column chromatography (87% total isolated yield) and detailed NMR analysis established the *syn*-ester (**99**) as the major isomer. Fig. 2.52 shows the 2D NOESY spectrum of the major (*syn*-) epimer **99**. The cross peak between the *anti*-7-position proton and H_{5exo} and H_{6exo} is indicated; there is no interaction between H_7 and H_{3x} . These data confirm that the ester group is *syn*- to the bicyclic nitrogen; hence NOESY experiments allow clear determination of C7 stereochemistries.

Fig. 2.52 Epimerisation of *anti*-2-benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (98) and the NOESY spectrum of 99.

Following the successful conversion of **98** to **99** and subsequent analogous interconversions of 7-heterocycle-substituted 2-azanorbornanes (see Section 3.3) the mechanism of epimerisation (Fig. 2.50) was re-evaluated. Epimerisation via a ring opening/closing mechanism is feasible. Base-induced ring-opening of **93** could occur via the mechanism shown in Fig. 2.53 to give a monocyclic intermediate which could then close to

give the epimerised product 93. A similar mechanism could be involved in the epimerisation of 94 to 95 (Fig. 2.51) and would help to explain how butoxide is able to remove the relatively non-acidic pyridylic proton of 94.

Fig. 2.53 Alternative epimerisation mechanisms.

The epimerisation of the *anti*-hydroxy compound **86** (Fig. 2.54) has also been explored (see Chapter 4). The finding that epimerisation can be achieved at the 7-position of 2-azanorbornanes is crucial and allows access to the novel *syn*-7- 2-azabicyclo[2.2.1]heptane derivatives.

Fig. 2.54 Epimerisation of anti-7-hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (86) (see Chapter 4).

2.6 Construction of the methylisoxazole heterocycle

The methylisoxazole heterocycle has been used successfully as a bioisosteric replacement of chloropyridine in many nicotinic receptor ligands (see Section 1.5.1). Most notable among these compounds is epiboxidine (12a) an analogue of epibatidine in which the chloropyridyl moiety has been replaced by methylisoxazole. As previously explained, epiboxidine is only 5-10 times less potent than epibatidine but less toxic.⁵⁵ The success of the methylisoxazole heterocycle and the fact that it can be readily built up from an ester functionality led to the selection of the isoepiboxidines (**51** and **52**) as the first target compounds. The isoepiboxidines are isomers of epiboxidine (**12a**) in which the heterocycle and bicyclic nitrogen have switched positions.

epiboxidine (12a)

N I NH

anti-isoepiboxidine (52)

syn-isoepiboxidine (51)

Fig. 2.60 Epiboxidine and the isoepiboxidines.

The methylisoxazole heterocycle can be readily obtained from an ester group (Fig. 2.61). The *syn*- ethyl ester (**99**) was reacted with the dianion of acetoxime (formed *in situ* from acetoxime and *n*-butyllithium); subsequent treatment with acid gave the heterocycle-bearing compound (**100**) in 36% yield. The methylisoxazole heterocycle formation reaction gives notoriously poor yields, typically 20 to 50%. ^{55,65,77} A possible explanation for this concerns the dianion of acetoxime. After deprotonation of the oxime oxygen, a proton is removed from either the methyl group *syn* or *anti* to the oxygen (Fig. 2.61). Addition of the *syn* anion to **99** would give **101**, while the *anti* anion would give **102**. The *syn*-oxime **101** appears well positioned to attack the ketone, leading to **100**. But in the *anti*-oxime **102**, the greater distance between the oxygen atom of the oxime and the carbonyl carbon may prohibit cyclisation. Hence the formation of *syn* and *anti* oximes as intermediates in the formation of methylisoxazole may explain why yields above 50% are rarely reported for reactions of this type.

Fig. 2.61 Methylisoxazole construction and a mechanistic hypothesis to explain low yields.

Palladium-catalysed hydrogenation of **100** to give the de-protected *syn*-isoepiboxidine (51) was unsuccessful; de-benzylation was accompanied by reduction of the heterocycle. Addition of quinoline to attenuate the activity of the catalyst did not alter the outcome of the reaction. Similar reduction of the methylisoxazole substituent under these conditions was observed by the Daly group in their recent publication of the synthesis of homoepiboxidine.⁶⁵

To circumvent heterocycle degradation, previous syntheses of methylisoxazole-bearing compounds have involved deprotection/reprotection strategies. Hence, the *anti*- ester **98** was de-benzylated and re-protected with a Boc group in 43% overall yield (Fig. 2.62). Heterocycle

formation proceeded smoothly (48%, based on recovered starting material) and subsequent acid-catalysed de-protection gave *anti*-isoepiboxidine (52). A non-aqueous source of HCl (ethanol and acetyl chloride in ethyl acetate) was used to remove the Boc group from 105 since de-protection with trifluoroacetic acid gave poor yields.

An unexpected observation removed the need to re-protect with Boc. Thus methylisoxazole formation was found to be successful even when the bicyclic nitrogen was not protected; the 24% yield for this direct conversion (103 to 52) is comparable with the route *via* 104 and 105 (30%). Prior to this finding, protection of the secondary amino-nitrogen was thought to be an essential requirement; the demonstration of the direct conversion (103 to 52) is a significant observation that is expected to have wider application.

Fig. 2.62 The synthesis of anti-isoepiboxidine.

syn-Isoepiboxidine (51) was produced analogously (Fig. 2.63), the direct conversion from the de-benzylated *syn*- ester (106) proceeded in 26% yield, the de-/re-protection route via 107 and 108 gave an overall yield of 33%.

Fig. 2.63 The synthesis of syn-isoepiboxidine (51).

In conclusion, this Chapter has described a protocol for the functionalisation of the 7position of 2-azanorbornanes. Nucleophilic substitution reactions of *anti*-7-bromo-2-benzyl-2azanorbornane (82) have been shown to occur with retention of configuration. Functional group interconversions gave esters which were epimerised under basic conditions allowing the *syn*-7-series of molecules to be accessed. Construction of the methylisoxazole heterocycle, which was possible even when the bicyclic nitrogen was not protected, gave *anti*- and *syn*isoepiboxidine.

The syntheses of the isoepiboxidines were published, along with the general route to *anti-* and *syn-*7-substituted 2-azabicyclo[2.2.1]heptanes in *The Journal of Organic Chemistry*.¹¹⁹ Nicotinic receptor binding data have been obtained for *anti-* and *syn-*isoepiboxidine and are discussed in Chapter 7.

Chapter 3 Approaches to isoepibatidine

3.1 Introduction

Following the successful synthesis of the isoepiboxidines (Chapter 2) attention was shifted to the chloropyridyl-bearing isoepibatidine **49**. The rationale for targeting this compound was discussed in detail in Section 1.6. Construction of the isoepiboxidines involved building up the methylisoxazole heterocycle from an ester precursor; for isoepibatidine, direct coupling of the chloropyridine moiety was envisioned (Fig. 3.10). Metal-catalysed cross-coupling reactions have been used previously in total syntheses of epibatidine and its analogues.^{15,60-62} For instance, Heck reactions were used to access 5- and 6- chloropyridyl-substituted 2-azabicyclo[2.2.1]heptanes, which are potent isomers of epibatidine (Fig 1.52).⁶⁰⁻⁶²

Fig. 3.10 The proposed route to syn-isoepibatidine (49).

A suitable metal-catalysed coupling procedure was sought for the attachment of a chloropyridyl derivative 118 to an *anti*-7-bromo compound 119. Cross-coupling reactions of sp^3 hybridised centres are not well established but recent advances have been made. We wished to use Suzuki-type methodology to couple a pyridyl boronic acid (118) to 119. Some of the developments that made this approach possible are reviewed below.

3.2 Suzuki cross-coupling reactions

The Suzuki coupling reaction was first published in 1979 and has since found wide application; it involves palladium(0)-catalysed coupling of a halide or triflate to an organoboron compound. The general catalytic cycle (Fig. 3.20) consists of an oxidative addition of 1-alkenyl, 1-alkynyl, allyl, benzyl or aryl halides to a Pd(0) complex to give a stable *trans-* σ -palladium(II) complex. Transmetallation with an organoboron species followed by reductive elimination gives the coupled product. Transmetallation is aided by the presence of a base, which is thought to form a reactive boronate species with the organoboron compound.¹²⁰

Fig. 3.20 The general catalytic cycle for Suzuki cross-coupling reactions.¹²⁰

Traditionally, applications of the Suzuki reaction involve the coupling of sp^2 halides to sp^2 organoboron compounds. Until relatively recently, the coupling of alkyl halides with β -hydrogens was rare in Suzuki reactions, the main reason for this being that β -hydride elimination becomes feasible and competes with transmetallation. In addition, oxidative addition (usually the rate limiting step) of unactivated halides is slow. Pioneering studies by Suzuki, in which long-chain primary alkyl iodides were coupled to alkyl boranes indicated that Pd-catalysed coupling of sp^3 alkyl halides was possible and that β -hydride elimination can be overcome.¹²¹ This work has been developed to include magnesium, tin, silicon and zirconium couplings and the range of alkyl halides has been extended, particularly in terms of increased functional group tolerance.^{122,123} However, only very recently have methods been developed allowing the use of unactivated *secondary* alkyl halides, an important step in broadening the application of the Suzuki reaction.

In 2004 Zhou and Fu published the first examples of Suzuki cross-couplings of unactivated secondary alkyl bromides and iodides.¹²³ These couplings involve a nickel(0) catalyst; optimum conditions for these reactions are shown in Fig. 3.21 and give yields in the 50-90% range. Even slight deviations from the 'standard' procedure tend to reduce yields substantially. An illustrative selection of these coupling reactions is tabulated (Fig. 3.21). Most of these examples involve a phenyl boronic acid but the successful introduction of thiophene (Entry B) suggested that certain heterocyclic couplings are viable. In addition, coupling of the boronic acid in Entry E to bromine rather than chlorine (dimerisation)

indicates that the reaction is selective for sp³ carbon atoms. However, the secondary alkyl halides used lack functionality; a footnote in the paper states that 'reactions of functionalised alkyl electrophiles proceed in lower yield'.¹²³

Fig. 3.21 Suzuki cross-coupling of unactivated secondary alkyl bromides.¹²³

Zhou and Fu do not specifically address the issue of stereochemistry, but in Entry C (Fig. 3.21) the *exo* product is formed, that is, inversion of configuration occurs. In Entry F, retention of configuration is observed as the *trans* product is produced.¹²³ These findings could indicate that the thermodynamic products were produced, either during the coupling reaction or by epimerisation of the initial product by the tertiary butoxide present in the reaction mixture.

3.3 Cross-coupling to anti-7-bromo-2-Boc-2-azabicyclo[2.2.1]heptane

The procedure for the Suzuki coupling of unactivated secondary alkyl bromides recently developed by Zhou and Fu¹²³ (above) was applied to the coupling of heterocycles to the 7-position of the 2-azanorbornane framework. The heterocycle degradation observed when attempting to de-benzylate the methylisoxazole derivative (**100**; Fig. 2.61) prompted a change of protecting group prior to attempting the coupling reactions. The 7-bromo compound **82** was de-benzylated then re-protected with Boc to give **121**, which was used as the substrate for all cross-coupling reactions.

Fig. 3.30 Cross-coupling reactions at the 7-position of *anti*-7-bromo-2-Boc-2-azabicyclo[2.2.1]heptane (121). Conditions: Ni(cod)₂, bathophenanthroline, ^tBuOK, *s*-butanol. a: 100 °C, 48 h. b: 50 °C, 12 h.

Initial attempts to couple to 121 were made using benzyl boronic acid and the same conditions described by Zhou and Fu^{123} The reaction gave some of the coupled product but in low yield. Hence, the temperature was increased from 60 °C to 100 °C and an isolated yield of 50% was achieved after 48 hours. It was clear that a mixture of the *anti* and *syn* products (122 and 123) had been obtained, (40:60) but the two isomers could not be separated and the identity of the major epimer could not be determined at this stage. Having established that the Suzuki coupling reaction tolerated the presence of the Boc group, the coupling of pyridyl

boronic acids was undertaken. 3-Pyridyl boronic acid was coupled to **121** using the same conditions as in the coupling of benzene boronic acid; after 48 hours a 33% isolated yield of the combined *anti* and *syn* products **124** and **125** was obtained. The epimer ratio was 25:75, but again, separation and identification of the major epimer was not possible at this stage. Attempts were then made to couple the all-important 4-chloro-3-pyridyl boronic acid to **121**. As in the couplings described above, an adapted procedure involving a temperature of 100 °C rather than 60 °C was implemented but this gave rise to solvolysis - the unwanted products **126** and **127** were formed (Fig. 3.31). These compounds were not isolated but were observed by mass spectrometry and as a broad quartet (~5.1 δ) in the crude ¹H NMR spectrum corresponding to the methine protons of the ether group. Coupling had clearly occurred but the high temperature used and the presence of potassium tertiary butoxide had resulted in substitution of the chlorine substituent for a secondary butyl-ether group. The conditions of the coupling reaction were altered. The temperature was reduced to 50 °C and after 12 hours **128** and **129** (25:75) were produced in a combined, isolated yield of 30%; there was no observable solvolysis.

Fig. 3.31 By-products from Suzuki coupling-reactions.

The coupling reactions discussed above, and those in the remainder of this thesis, involved significantly higher catalytic loadings than in the original procedure, typically ~20-30% rather than 4%. As the reactions were performed on relatively small scales, this was principally to make experimental procedures easier, in terms of weighing reasonable amounts of material. Where yields for coupling reactions were low, the molar amount of catalyst was not limiting, that is, a catalytic cycle was established. The yields were generally in line with those reported by Zhou and Fu in view of their observation that reactions of functionalised alkyl electrophiles give lower yields. The three coupling reactions (Fig. 3.30) consistently gave the defunctionalised **130** as a by-product, typically in approximately 20% yield.

The mixture of *syn* and *anti* chloropyridyl derivatives **129** and **128** was subjected to very careful flash chromatography and a small sample of the major epimer was isolated (the minor epimer could not be isolated). 2D NMR experiments were performed as in Chapter 2 and, most notably, NOE interactions were seen between H_7 and the *exo* hydrogens at H_5 and

 H_6 (shown in Fig. 3.32). This indicated that in the major epimer the heterocycle was *syn* to the bicyclic nitrogen and this was confirmed by X-ray crystallography (Fig. 3.32). Careful analysis of the 2D NMR spectra of the mixtures of 122/123 and 124/125, and comparison to the 2D spectra of the chloropyridyl derivatives 128 and 129, allowed the major epimers in the coupling reactions of 3-pyridyl and benzene boronic acids to be established. Again, the *syn* epimers 123 and 125 were the major products (Fig. 3.30).

Fig. 3.32 Confirmation of the stereochemistry of 129 by X-ray crystallography and 2D NOESY experiments. [For crystallographic data see Appendix I]

The issue of stereochemistry in this Suzuki-coupling methodology was alluded to in Section 3.2. The formation of syn and anti products could arise during the coupling reaction itself or alternatively, in a subsequent base-catalysed epimerisation step, in which case the syn epimers 123, 125 and 129 would appear to be more thermodynamically stable than the corresponding anti derivatives. Attempts were made to prevent epimerisation, in the hope of obtaining a pure sample of the anti chloropyridyl compound 128: the coupling of the chloropyridyl boronic acid to 121 was attempted at 0 °C. On cooling, the purple colour (which indicates the presence of the active catalytic-complex) dissipated leaving a colourless solution; only unchanged starting material was obtained. A coupling reaction at room temperature was stopped after three hours; the crude ${}^{13}C$ NMR spectrum showed ~10% conversion and the *anti* epimer 128 as the major product (anti: syn; ~75:25). Interestingly, when this mixture was treated with strong base (^tBuOK/BuOH) the ratio reversed in favour of the syn epimer (anti: syn; $\sim 25:75$). This is consistent with the hypothesis that the Suzuki methodology gives thermodynamic mixtures of epimeric products. This could be by retention of configuration at the 7-position followed by a base-catalysed epimerisation step but a coupling reaction in which tertiary butoxide was replaced with potassium carbonate was ineffective, giving no conversion. Hence, a pure sample of the anti derivative, 128, was not forthcoming.

In summary, development of the Suzuki-coupling procedure described by Zhou and Fu^{123} allows the introduction of pyridine derivatives at the 7-position of 2-azanorbornanes. Notably, we have extended the range of heterocyclic derivatives that can be coupled beyond thiophene and indole, and shown that certain functional groups, *e.g.* the carbamate of the Boc protecting-group, are tolerated. The yields for these transformations are reasonable and, gratifyingly, the inherent epimerisation provides access to the desired *syn*-7-series of compounds.

3.4 Synthesis of isoepibatidine

The difficulties encountered when attempting to separate the Boc-protected epimers 128 and 129 prompted their deprotection as a mixture. 128 and 129 (25:75) were stirred in a non-aqueous source of HCl (Fig. 3.40) to give the hydrochloride salts of *anti*- and *syn*-isoepibatidine (50 and 49). Fortuitously, the HCl salt of *syn*-isoepibatidine (49) was found to be more soluble in DCM than the HCl salt of 50; a solid-liquid extraction was undertaken and gave a pure sample of 49 (46% recovery from the initial mixture of 49 and 50). The *anti*-isomer 50 could not be completely separated from 49. In view of earlier difficulties regarding the separation of epimers, this method was acceptable; not least because it allowed the more important *syn*-compound (49) to be isolated.

Fig. 3.40 The synthesis and isolation of syn-isoepibatidine (49).

This Chapter has described how a recently reported Suzuki coupling procedure was developed to allow the introduction of pyridine heterocycles to the 7-position of 2-azanorbornanes. This led to the successful preparation and isolation of *syn*-isoepibatidine (**49**). The synthesis of the isoepibatidines was published in *Organic Letters*.¹²⁴ Nicotinic binding data have been obtained for *syn*-isoepibatidine and are discussed in Chapter 7.

Chapter 4 Epibatidine analogues with ether-linkages

4.1 Nicotinic ligands with ether-linkages

Since the identification of ABT-594 (48) in 1998, the production of nicotinic agents containing ether functionalities has been a growth area. As described previously (see Section 1.5.6), ABT-594 is a potent and subtype selective nicotinic agonist, showing high affinity for $\alpha 4\beta 2$ receptors and reduced affinity for the $\alpha 3\beta 4$ subtype in comparison to epibatidine. It entered phase II clinical trials as an analgesic^{83,125} but was abandoned recently due to side-effects.⁸⁶ However, interest in this class of compound continues, not least because the introduction of ether-linkages has been one of the few fruitful avenues in the search for receptor subtype selective molecules.

Fig. 4.10 Selected examples of nicotinic ligands with ether-linkages.¹²⁶⁻¹²⁸

Analogues of ABT-594 (48) have been made in which the chlorine atom was absent and various groups were positioned around the pyridine ring (e.g. 140). Similar structure activity relationships (SAR) were reported to those observed for epibatidine (see Section 1.5.1): no increases in receptor binding-affinity were attained and substituents at the 5'-position were tolerated best.¹²⁶ Kozikowski and co-workers further developed the concept of introducing 5'-substituents; they investigated the selectivity exhibited by compounds with the general structure 141. The variable group (R) was phenyl, a primary alkyl-fluoride or a primary alkyl-alcohol; all of the derivatives tested had significantly improved $\alpha 4\beta 2/\alpha 3\beta 4$ selectivity compared to their parent structure (46).¹²⁷ Compounds have been produced in which the azetidine ring of ABT-594 was replaced with the unsaturated 3-pyrroline heterocycle; 142 was found to have favourable analgesic properties, being approximately two-fold less potent than ABT-594. In addition to these advances, which have been published in the open literature, Abbott is developing second-generation versions of ABT-594. The structures of these molecules are not available.

All the examples above are based on azamonocycles; this Chapter explores the concept of attaching an azabicycle to a pyridine heterocycle via an ether-linkage. The biological properties of ABT-594 and related compounds were unexpected: the azabicyclic moiety of epibatidine and its isomers was thought to be an essential requirement for potent nicotinic activity. By creating hybrids of ABT-594 and epibatidine, we hoped to achieve the selectivity demonstrated by the ether-linked analogues and also maintain the exquisite affinity resulting from the azabicycle of epibatidine. Additionally, the binding of ether-linked derivatives to nicotinic receptors is now being elucidated through docking to homology models and an understanding of how these structures give rise to selectivity is being established.⁴³ The synthesis of a new class of selective nicotinic ligands would greatly aid these SAR studies.

Fig. 4.11 Nicotinic ligands with an ether-linkage to an azabicycle.^{79,129,130}

In the literature there is a very limited range of nicotinic ligands which combine a pyridyl-ether moiety with an azabicycle (Fig. 4.11). Trudell and co-workers produced an analogue of epibatidine in which a pyridyl ether moiety is attached to the *exo*-2-position of the 7-azanorbornane framework (143). This derivative exhibited low affinity (740 nM) for $\alpha 4\beta 2$ receptors compared to (±)-epibatidine (0.14 nM) leading to the postulation that the structural features of ABT-594 and epibatidine could not be combined to give highly active compounds.¹²⁹ However, 143 does not have the same atom connectivity (N-N) as ABT-594 and in 2006 Mu *et al.* published the syntheses and receptor binding affinities of 144 and 145. These derivatives (144 and 145) also had greatly reduced affinities in comparison to epibatidine, K_i = 17.4 nM and 620 nM respectively (epibatidine: 0.053 nM).¹³¹

Ether-linked epibatidine analogues with smaller azabicycles have been produced. The 2azabicyclo[2.2.0]hexane derivatives (146, 147 and 148) produced by Krow are structurally similar to ABT-594; but these compounds had only moderate binding affinities at $\alpha 4\beta 2$ receptors; K_i = 14, 2.3 and 12 nM respectively ((±)-epibatidine, K_i = 0.043 nM).⁷⁹ Recently at Leicester, research into the manipulation of substituents at the neopentyl position of the methanoproline bicyclic framework has been undertaken. Mitsunobu coupling reactions led to the production of 2-azabicyclo[2.1.1]hexane pyridyl ethers (e.g. 149).^{77,130} 149 was designed as a potential nicotinic agonist with a structure very similar to that of compounds with known high activity (Fig. 4.10). However, receptor binding assays have now established that it has very low affinity for the $\alpha 4\beta 2$ and $\alpha 3\beta 4$ subtypes.⁷⁸

Despite this poor track record in combining the molecular features of epibatidine and ABT-594, it was suspected that certain molecular architectures would allow the pyridyl and bicyclic nitrogen atoms to assume spatial relationships conducive to high nicotinic affinity.

4.2 Target selection

The importance of inter-nitrogen distance for nicotinic receptor binding has already been discussed extensively. The active conformation of epibatidine has N-N of ~4.5 Å and other nicotinic agonists, including ABT-594, assume conformations that give similar N-N distances.^{37,43} With this in mind the structures shown in Fig. 4.20 were selected as targets.

Fig. 4.20 Target compounds: hybrids of epibatidine and ABT-594.

Preliminary molecular modelling indicated that a number of these structures have low energy conformations with appropriate inter-nitrogen distances (\sim 4.5–5.0 Å). It was reasoned that producing compounds with 2-, 3- and 4-pyridines, with both *syn*- and *anti*- C7

configuration, would maximise the chance of achieving nicotinic receptor affinity. However, of the compounds **150-155**, **154** was thought the most likely to have activity as it has the same atom connectivity (N to N) as ABT-594 and *syn*-7-stereochemistry. Further discussion of the molecular modelling of **150-155** can be found in Chapter 7. The absence of a chlorine atom in **150-155** is not expected to influence nicotinic receptor affinity greatly and so is not a concern. In epibatidine, the removal of the chlorine atom has little effect on nicotinic receptor affinity but does reduce functional potency.²⁷

The structures in Fig. 4.20 are novel targets but a relevant patent by Mitch and Quimby¹⁰⁸ came to our attention as we were publishing the syntheses of the isoepiboxidines.¹¹⁹ This patent describes how compounds with the general structure **156** (e.g. **157**) could be used as selective muscarinic receptor antagonists. But it contains significant stereochemical oversights: all of the stereoisomers of **156** are claimed but the synthetic route used is similar to that which we developed for the synthesis of the isoepiboxidines (Chapter 2) and clearly gives *anti*- derivatives only. No spectroscopic or receptor binding data were given for these compounds.¹⁰⁸

Fig. 4.21 Compounds included in a patent by Mitch and Quimby.¹⁰⁸

Production of the *syn*- series of compounds **153**, **154** and **155** requires manipulation of the C7 stereochemistry. The following Sections describe how *anti*-7-hydroxy-2-azabicyclo-[2.2.1]heptane (**86**) can be converted to the *syn*-alcohol precursor **158**.

4.3 Approaches to 7-keto-2-azabicyclo[2.2.1]heptanes

The epimerisation of the *anti*-alcohol **86** has been explored; we wished to reverse the 7-position configuration via an oxidation-reduction strategy.

Equilibrium between an alcohol and the corresponding ketone can be established using the conditions of the Oppenauer oxidation and the Meerwein-Ponndorf-Verley reaction. Typically, an alcohol is treated with aluminium isopropoxide and acetone; this procedure has been applied to the racemisation of secondary alcohols.^{132,133} Attempts were made to

epimerise the *anti*-alcohol **86** using this method but were unsuccessful; only unchanged starting material was isolated (Fig. 4.30).

Fig. 4.30 Attempted epimerisation of 86 using the Oppenauer oxidation.

As the one-step epimerisation of the *anti*- alcohol **86** had failed, it was converted into the ketone **159** using a Swern oxidation. The use of Jones and Dess-Martin conditions was unsuccessful, as was use of PDC. Protecting-group inter-conversions were straightforward and the Boc and Cbz protected alcohols **161** and **162** were converted to the corresponding ketones using the same methodology; yields for these transformations were mediocre. Column chromatography of the ketones **159**, **163** and **164** had a detrimental effect on the appearance of the ¹H NMR spectra. This may be attributable to the formation of hydrates and acetals.

Fig. 4.31 Synthesis of 7-keto-2-azabicyclo[2.2.1]heptanes.

4.4 The reduction of 7-keto-2-azabicyclo[2.2.1]heptanes

The ketones 159, 163 and 164 were treated with sodium borohydride (Fig. 4.40); it was hoped that in addition to the initial *anti*-alcohols, the *syn*-alcohols would also be obtained. The facial selectivity of borohydride attack was found to be largely dependent on the nature of the *N*-protecting group. Reaction of the benzyl-protected 159 gave a mixture of the alcohols 86 and 158, with the *syn*- alcohol 158 as the major product (95:5). These epimers were separable, with difficulty, by column chromatography. Interestingly, similar reaction of the *N*-Boc and

N-Cbz-protected ketones **163** and **164** with NaBH₄ appeared to give only the *anti*-7- alcohols **161** and **162**.

Epimer ratios were determined by ¹H NMR peak integrations and epimer identification was by 2D NOESY experiments as described in Chapter 2. For additional stereochemical verification, the 3,5-dinitrobenzoate of **158** was prepared; a crystal of this derivative was obtained and an X-ray structure confirmed the *syn* configuration of the 7-substituent (Fig. 4.40).

Fig. 4.40 Preliminary findings into the facial selectivity of 7-keto-2-azabicyclo[2.2.1]heptanes and the X-ray crystal structure of the 3,5-dinitrobenzoate of 158. [For crystallographic data see Appendix I].

These initial findings regarding facial selectivity on 7-keto-2-azanorbornanes were explored further by B. Pibworth, as part of a final-year undergraduate project at Leicester.¹³⁴ The range of hydride sources was extended and the alcohol epimer-ratios were accurately determined by GCMS and GC. The principal results of this study are summarised in Fig. 4.41. Most notably, the facial selectivity does not change significantly when either LiAlH₄ or Red-Al is used in place of NaBH₄. The reaction of the *N*-Boc protected ketone (**163**) with NaBH₄ gives a ratio of 92:8 *anti:syn*; the presence of the *syn* epimer was not detected in the preliminary study due to broad overlapping signals in the ¹H NMR spectrum.

Fig. 4.41 Further studies on the facial selectivity in the reduction of 7-keto-2-azabicyclo[2.2.1]heptanes.¹³⁴

To summarise, oxidation of the *N*-benzyl-protected *anti*-alcohol **86**, followed by reduction of the resulting ketone with NaBH₄ affects the epimerisation of **86** to the desired *syn*-alcohol **158**. It is clear that when the bicyclic nitrogen is *N*-benzyl-protected, attack on the 7-ketone is predominantly *anti* to the protecting-group. This selectivity is reversed when a carbamate protecting-group is present. Possible reasons for these preferences are discussed below, in the context of published work on facial selectivity in 7-norbornanones and related systems.

4.5 Facial selectivity in 7-norbornanones and related systems

The facial selectivity of attack on carbonyl groups in rigid molecular frameworks has been studied extensively and is an issue of some complexity.¹³⁵⁻¹³⁸ The adamantane ring system and norbornanes in particular, have been used as tools to probe the facial selectivity of reactions. It is well established that 2-norbornanones preferentially react with nucleophiles on the *exo* face of the ring system.¹³⁵ The facial selectivity of 7-norbornanones has also been studied, most notably by Mehta and Le Noble, and some illustrative examples from these investigations are presented below.

Attack of both sodium borohydride and methyl Grignard on 7-norbornenone (166) occurs preferentially from the face of the ketone adjacent to the double bond, giving the *anti*-alcohol (168) as the major product (Fig. 4.50A).^{138,139} The argument that this is reasonable on

steric grounds can be made: the double bond might be expected to provide less hindrance to nucleophile approach than the *exo* hydrogens on the opposite side of the molecule. However, when **166** is treated with C_2F_5MgBr a complete reversal of selectivity is observed; clearly the electronic nature of the attacking nucleophile is also a factor.¹³⁸

Fig 4.50 Selected literature examples of facial selectivity in 7-norbornanones.¹³⁸⁻¹⁴⁰

Electronic substituent effects have been investigated extensively by Mehta and coworkers. For example, in the reaction of **169** with methyl lithium, the R groups can have no significant steric influence but their nature has a profound effect on facial selectivity (Fig. 4.50B). When R = H nucleophilic attack is preferentially from over the double bond to give **170** as the major product but when R is an electron-withdrawing group, such as methyl ester, then the selectivity is reversed yielding **171** predominantly. It is thought that electronic substituent effects may effect facial selectivity through hyperconjugative stabilisation of the transition state, distortion of the bicycle or pyrimidalisation of the ketone. There is no real consensus on how these different factors combine to influence facial selectivity.¹⁴¹ For discussion of how 7-norbornanones have been used as sterically unbiased probes see the review by Kaselj *et al.*¹³⁶

4.5.1 Discussion of facial selectivity in 7-keto-2-azabicyclo[2.2.1]heptanes

Whilst the facial selectivity of 7-norbornanones has been considered relatively extensively (see above), our studies are the first into the facial selectivity of 7-keto-2-azanorbornanes.

Some possible explanations for the selectivity observed in this system will be discussed, starting with the *N*-benzyl-protected ketone **159**.

Sodium borohydride and other hydride reagents attack 159 anti to the bicyclic nitrogen (see Section 4.4). The first rationale for this observation is a relatively simple steric argument. An N-alkyl group in a 2-azanorbornane molecule can assume either an exo or endo configuration; from previous work at Leicester, the exo invertomer is known to be more thermodynamically stable and hence predominates at equilibrium.¹⁴² Attempts were made to determine the invertomer ratio of 159 but kinetic protonation experiments were inconclusive. Addition of trifluoro acetic acid to an NMR sample of 159 gave complex spectra with an abundance of overlapping signals; accurate peak integrations could not be obtained but there appeared to be predominantly one invertomer (>80-90%). Low temperature (-60 °C) NMR studies did not resolve the two invertomers. However, it is reasonable to assume that the exo invertomer will be more abundant. With the benzyl group in 159 exo it is clear that the anti face of the ketone will be more sterically accessible for the attacking species (Fig. 4.51A). Alternatively, neighbouring group participation (NGP) may explain the anti attack. The ability of the nitrogen lone pair to displace an anti-7-nucleofuge was discussed in Chapter 2 (see Section 2.4.2). Similar participation in the ketone, 159, would lead to a tricyclic intermediate 172. Hydride attack on 172 would give the syn-alcohol (158) (Fig. 4.51B).

Fig. 4.51 Explanations of facial selectivity in 7-keto-2-benzyl-2-azanorbornanes.

Nucleophilic attack on 7-keto-2-Boc-2-azanorbornanes is principally at the carbonyl face adjacent to the protecting-group. Again, steric arguments can be made: the carbamate group is planar due to electron delocalisation; this is likely to result in the *syn* face of the ketone being more sterically accessible (Fig. 4.51C). Another hypothesis is that the approach of the attacking species may be directed by the Boc group. That is, coordination of the hydride reagent to the carbamate functionality may occur, increasing the probability of *syn* attack. The electron withdrawing nature of the Boc protecting-group can also be considered; Mehta showed that electron withdrawing groups at the 2- and 3- positions of 7-norbornanones cause increased *syn* attack (Fig 4.50B).¹⁴⁰ This could similarly be the case in 7-keto-2-azanorbornanes.

The true underlying factors controlling the facial selectivity of 7-keto-2-azanorbornanes are likely to be no less complex than those influencing the selectivity of 2-norbornanones and warrant further investigation.

4.6 Pyridyl derivatives of 7-hydroxy-2-azabicyclo[2.2.1]heptane

With the *anti* and *syn* alcohols **86** and **158** in hand, routes to their pyridyl derivatives were explored. We wished to attach 2- 3- and 4- pyridines for reasons explained previously (see Section 4.2); the following sections describe the syntheses of these compounds.

4.6.1 Approaches to pyridyl derivatives of anti-7-hydroxy-2-azabicyclo[2.2.1]heptane

The 2-pyridyl derivative **173** was produced by nucleophilic displacement of chloride from 2chloropyridine using KO^tBu as base (65%). The 3-pyridyl compound **174** could not be accessed by a similar method. The 3-position of pyridines is not reactive with nucleophiles and predictably, when **86** is treated with 2-chloro-5-iodopyridine, displacement of chloride, rather than iodide occurs.

Hence, compound 174 was approached using Mitsunobu methodology; reaction of the alcohol **86** with 3-hydroxypyridine gave 174 (30%). The 4-pyridyl derivative 175 was made in an analogous fashion using 4-hydroxypyridine (29%). The debenzylations of 173, 174 and 175 were effected by hydrogenolysis using palladium on carbon as catalyst. Reduction of the pyridine heterocycles is competitive with debenzylation, resulting in only modest yields for these transformations (and those in Sections 4.6.2.1 and 4.6.2.2).

Fig. 4.60 The syntheses of pyridyl derivatives of anti-7-hydroxy-2-azabicyclo[2.2.1]heptane.

4.6.2 Approaches to pyridyl derivatives of syn-7-hydroxy-2-azabicyclo[2.2.1]heptane

The following discussion concerns the production of the *syn* pyridyl derivatives **153**, **154** and **155**. This involved methodology similar to that employed for the synthesis of the *anti* compounds (above). However, certain changes were necessary in order to overcome problems associated with the *syn*-7- configuration.

4.6.2.1 2-Pyridyl and 4-pyridyl derivatives of *syn-7-hydroxy-2-azabicyclo*[2.2.1]heptane The 2- and 4- pyridyl compounds 176 and 177 were produced by nucleophilic displacements of chloride from 2-chloropyridine and 4-chloropyridine hydrochloride respectively, in reasonable yields. Notably, the debenzylation of 177 went with excellent yield, in contrast to the moderate yields attained for the other ether-linked analogues.

Chapter 4 – Epibatidine analogues with ether-linkages

Fig. 4.61 Syntheses of 2-pyridyl and 4-pyridyl derivatives of syn-7-hydroxy-2-azabicyclo[2.2.1]heptane.

4.6.2.2 Routes to 3- pyridyl derivatives of *syn*-7-hydroxy-2-azabicyclo[2.2.1]heptane

Nucleophilic displacement is not easily achieved for the *anti*-3-pyridyl compound **174** so alternative routes were sought to the *syn* derivative **154**. The Mitsunobu procedure used earlier to produce **174** and **175** was implemented but was unsuccessful, giving only unreacted starting material. Indeed, attempts to couple 2-hydroxypyridine and 4-hydroxypyridine to the *syn*-alcohol (**158**) also failed. It is likely, therefore, that the Mitsunobu reactions of the *anti*-alcohol **86** are enabled by neighbouring group participation of the bicyclic nitrogen lone-pair (see Section 2.4.2).

Fig. 4.62 A copper-catalysed pyridine coupling.¹⁴³

A recent copper-catalysed coupling published by Buchwald and co-workers describes the coupling of aryl iodides to aliphatic alcohols.¹⁴³ One particular example from this work is the coupling of 3-iodopyridine to isopropyl alcohol (Fig. 4.62). Although the yield for this

reaction is excellent, the alcohol is used as the solvent. A procedure is described for when using the alcohol neat is not practical; it involves two equivalents of the alcohol and a small amount of toluene as the solvent (0.5 ml toluene/1 mmol of substrate).¹⁴³ This method was adapted for use with the *syn*-alcohol **158**: four equivalents of **158** were used and the reaction mixture was mobilised with the minimum volume of toluene (1 ml). After 96 hours at 110 °C **178** was obtained in only 4% yield and the excess alcohol (**158**) was not easily recovered.

Fig. 4.63 The synthesis of the 3- pyridyl derivative of syn-7-hydroxy-2-azabicyclo[2.2.1]heptane (154).

Recent syntheses of receptor subtype selective nicotinic agents with 5'-substituted pyridine rings have involved nucleophilic attack of an alcohol on 3,5-dibromopyridine, allowing later elaboration at the 5'- position.¹²⁷ The presence of bromine atoms at the 3- and 5- positions of pyridine activates these positions sufficiently for nucleophilic displacement to occur. Hence, **158** was treated with sodium hydride and 3,5-dibromopyridine to give **179** (34%) (Fig. 4.63). Careful simultaneous removal of the benzyl protecting-group and the superfluous bromine substituent under hydrogenolytic conditions gave the elusive *syn-* 3- pyridyl derivative **154** (38%).

To summarise, an oxidation/reduction strategy facilitated the epimerisation of the *anti*alcohol **86** to the *syn*-alcohol **158** and procedures have been developed to access their 2-, 3and 4- pyridyl derivatives **150-155**. These six epibatidine/ABT-594 hybrids have been assessed for their nicotinic receptor binding affinities and preliminary results are discussed in Chapter 7.

4.7 Attempted synthesis of a conformationally restricted analogue of isoepibatidine

Conformationally restricted nicotinic ligands have been produced principally to probe the nicotinic pharmacophore and generally have low nicotinic receptor affinities compared to their parent structures.^{27,29-32} Very recently, a restricted analogue of epibatidine has been discovered on the skin of *Epipedobates tricolor* by Daly and co-workers; the frog is also known as the Phantasmal poison-arrow frog and the new compound has been dubbed 'phantasmidine'. Only a partial structure of phantasmidine has been published (**180**) but the remainder of the molecule resembles epibatidine.¹¹ In view of the active conformation of

epibatidine, the probable structures of phantasmidine are **181** and **182**. The ether-linkage rigidifies the compound and results in a fixed inter-nitrogen distance (Fig. 4.70).

Fig. 4.70 Probable structures of phantasmidine.

We considered the possibility of producing isomers of phantasmidine; routes were sought towards the conformationally restricted isoepibatidine analogue **183**. Structure **183** has an N-N distance of 4.1 Å and is an attractive target in terms of potential nicotinic activity. The successful synthesis of this 'isophantasmidine' would also add to our understanding of the nicotinic pharmacophore.

The strategy implemented to access 183 is outlined in Fig. 4.71 and involved the coupling of a hydroxy pyridine to 184 followed by oxidation of the amine to an imine. It was hoped that the hydroxyl group would attack the imine resulting in ring closure. Before trying to couple a pyridyl derivative to 184, attempts to couple 2-hydroxy benzene boronic acid (185) were made. The Suzuki methodology used to access isoepibatidine (Chapter 3) was unsuccessful; only unreacted starting material was obtained. Coupling of the Boc-protected boronic acid (186) also failed.

Fig. 4.71 The synthetic strategy towards an isophantasmidine. Suzuki-coupling conditions as in Fig. 3.30.

Although these attempts to produce isophantasmidines were unsuccessful, it is likely that the publication of the structure and biological properties of phantasmidine will renew interest in the synthesis of rigid molecules as potent nicotinic agonists.

Chapter 5 Fluorinated analogues of epibatidine
5.1 Introduction

As the most electronegative element, fluorine has unique chemical properties and is present in a large proportion of currently used drugs.¹⁴⁴ The incorporation of fluorine atoms into molecules can lead to profound changes to their biological properties.^{145,146} Fluorination affects the lifetime of a drug; positioning fluorine atoms at metabolically labile sites of a molecule increases its metabolic stability by retarding oxidation by enzymes such as cytochrome P450.¹⁴⁵ The presence of fluorine also increases the lipophilicity of a compound which contributes to the bio-availability of a drug by influencing its ability to penetrate cell membranes.¹⁴⁶ This is particularly relevant in the context of this study as CNS-acting compounds must pass the blood-brain barrier. Fluorination can also affect how a molecule interacts with the target protein; the substitution of fluorine for hydrogen has little steric effect (Van der Waals radii: F = 1.35 Å; H = 1.20 Å) but often has a profound influence on the binding of a ligand with its target. The general increase in lipophilicity resulting from fluorine substitution often gives rise to a non-specific increase in affinity. More importantly, the electronegative nature of fluorine can significantly alter the pK_a of other functionalities, in particular by altering the acidity and basicity of groups within the molecule. This often results in changes to ligand-protein interactions and also influences bioavailability by altering the polarity of the molecule. In addition, fluorine is also able to form polar interactions in protein binding-sites (e.g. to a carbonyl oxygen).¹⁴⁶

5.2 Fluorinated analogues of epibatidine

A range of epibatidine analogues containing fluorinated heterocycles has been produced, particularly for use in Positron Emission Tomography (PET) (see Section 1.5.1)¹⁴⁷ but examples of analogues with fluorinated azabicycles are fewer in number.

The work of Kozikowski and co-workers, in which hydroxylated epibatidines have been produced, was discussed in Section 1.5.5;⁸⁰ these studies have been extended to give the fluorinated compounds **196** and **197** (Fig. 5.20).⁸¹ Fluorination of the azabicyclic core of epibatidine can be considered to be more synthetically challenging than introducing fluorinated heterocycles and, to the best of our knowledge, these are the only examples in the literature of epibatidine analogues with fluorinated azabicycles. Kozikowski's syntheses of **196** and **197** are outlined in Fig. 5.20. Reductive Heck coupling of the chloropyridyl moiety to **198** gave **199** and **200**; subsequent conversion to the corresponding alcohols with NaBH₄, treatment with DAST and de-protection of the bicyclic nitrogen with TFA yielded the fluorinated epibatidines **196** and **197**.^{80,81}

Fig. 5.20 The synthesis of fluorinated analogues of epibatidine.^{80,81}

Nicotinic receptor affinity studies of 196 and 197 at a range of receptor subtypes indicated binding affinities lower than those of epibatidine but still in the low nM range ($K_i \approx 0.2-10$ nM; epibatidine $K_i \approx 0.03-0.2$ nM). The *exo*-6-fluoro derivative 197 showed higher affinities at all subtypes compared to 196; both 196 and 197 showed similar selectivity profiles to epibatidine. Both compounds are currently being explored in brain imaging (PET) studies.⁸¹

The relative lack of fluorinated-azabicyclic epibatidine analogues in the literature, the demonstration (above) by Kozikowski that fluorinated epibatidines can retain nicotinic receptor affinity, and the hope of achieving receptor sub-type selectivity, led us to the investigation of the synthesis of fluorinated 2-azanorbornanes.

5.3 Fluorinated 2-azabicyclo[2.2.1]heptanes

The only known examples of directly-fluorinated 2-azanorbornanes were produced in the following study by Toyota *et al.*^{148,149} Molecular fluorine was added to 2azabicyclo[2.2.1]hept-5-en-ones as part of a program to produce fluorinated carbocyclic nucleosides. Fluorination of **201** gave the *exo*-5,6-difluoro compound **202** as the major product as well as the minor products **203**, **204** and **205** (Fig. 5.30). The authors suggest that the trifluoride **205** is formed from the rearranged product **204**.^{148,149}

Fig. 5.30 The fluorination of the 2-azabicyclo[2.2.1]hept-5-en-one (201).^{148,149}

We wished to devise methods for the controlled introduction of fluorine atoms to the 2azanorbornane framework. There are two basic strategies to produce organofluorine molecules, the building-block method and the fluorination method (of which the work of Toyota *et al.* (Fig. 5.30) is an example).¹⁵⁰ The building block method was considered for fluorinated 2-azanorbornanes. An aza-Diels-Alder approach similar to that described in Chapter 2 would require fluorinated cyclopentadiene and/or a fluorinated dienophile (Fig. 5.31). Difluoromethanimine (**206**) can be produced by hydrolysing **207** with wet triethylamine but it is unstable and must be handled at pressures below 5 mmHg;¹⁵¹ hence, attempts to synthesise this compound and react it with cyclopentadiene were not made. There are reports of highly fluorinated cyclopentadienes¹⁵² but examples of monofluorinated derivatives are fewer in number.¹⁵³⁻¹⁵⁵ 5-Fluorinated cyclopentadiene (**208**) has been prepared by treating cyclopentadienylthallium (**209**) with selectfluor (**210**) and can be trapped by certain dienophiles to give substituted norbornenes (*e.g.* **211**) in low yields (Fig. 5.31). All the norbornanes produced by this method had fluorine at the *syn*-7-position.¹⁵³ This method was not developed for the synthesis of 2-azanorbornanes (*e.g.* **212**).

Fig. 5.31 Literature syntheses of difluoromethanimine and 5-fluorocyclopentadiene. Potential building-block routes to fluorinated 2-azanorbornanes.^{151,153}

Whilst it would be possible to investigate these building-block approaches, it was decided that using fluorination methods would allow greater control and access to a larger range of fluorinated 2-azanorbornanes. The remainder of this Chapter concerns investigations into the incorporation of fluorine at various positions of the 2-azanorbornane framework.

5.4 6-exo Fluorinated analogues of isoepibatidine

Fluorinated epibatidine analogues with an *exo*-6-fluoro moiety (the fluorinated isoepibatidine **213** in particular) were targeted. It was envisaged that fluoride could be incorporated at the 6-position by treating the tricyclic salt **61** with fluoride; following the route to isoepibatidine described in Chapter 3 would give **213** via **214** (Fig. 5.40).

Fig. 5.40 Retrosynthesis of exo-6-fluoro-isoepibatidine.

5.4.1 Synthesis of exo-6-fluoro-2-azabicyclo[2.2.1]heptanes

In Chapter 2 it was described how the tricyclic salt 74 could be intercepted with hydride; in order to access *exo*-6-fluoro-2-azanorbornanes similar interception of 74 with fluoride was implemented. Reaction of 74 with potassium fluoride in acetonitrile gave 215 in good yield (84%). The *exo*- configuration of the 6-fluorine was confirmed by detailed NMR analysis. Most notably, 2D COSY experiments indicated 'W' coupling between H_{6endo} and H_{7anti} (~1.3 Hz).

Fig. 5.41 Reaction of KF with 3-bromo-1-benzyl-1-azoniatricyclo[2.2.1.0^{2,6}]heptane bromide (74) and the attempted synthesis of *exo*-6-fluoro-*syn*-isoepiboxidine (216).

Before attempting Suzuki coupling-reactions, that is, the production of the fluorinated isoepibatidine **213**, the synthesis of the fluorinated isoepiboxidine **216** was considered. We wished to follow a synthetic route analogous to that described in Chapter 2. Nucleophilic substitution of the 7-bromine in **215** with potassium cyanide proceeded smoothly (81%).

Despite neighbouring group participation of the bicyclic nitrogen with nucleofuges at C6 being a lower energy process than participation at C7, 217 was the only product isolated: no displacement of the C6 fluorine was observed.

However, hydrolysis of the nitrile 217 was unsuccessful; when 217 was treated with either HCl or NaOH only unidentifiable mixtures of products were obtained. It was clear, from ¹⁹F NMR, that displacement of fluoride was occurring under the reaction conditions. The protecting-group of 217 was changed to Boc (47% overall) but base-catalysed hydrolysis and esterification of this compound was also unsuccessful. Due to these problems, and as increased attention was attached to the chloropyridyl heterocycle, attention was shifted away from the synthesis of 216 and towards the original target, namely the fluorinated isoepibatidine 213.

5.4.2 Substitution reactions of dibromo-2-Cbz-2-azabicyclo[2.2.1]heptane

Although opening the three-membered ring of 74 with fluoride allowed the *exo*-6-fluoro compound **215** to be accessed, attempts to introduce nucleophiles to the 6-position of the Cbz-protected dibromide **218** were also made. Initial results¹⁵⁶ regarding the nucleophilic substitution reactions of the Cbz-protected compound **218** were alluded to in the publication of the synthesis of the isoepiboxidines; it was reported that displacement of the 6-Br in **218** could not be achieved.⁶¹ More recently, Krow and co-workers have observed that certain analogous substitution reactions of the Boc-protected dibromide **219** do occur.^{157,158} Hence, verification of our initial results was sought.

Fig. 5.42 Synthesis of anti-7-exo-6-dibromo-2-azabicyclo[2.2.1]heptane 2-carboxylic acid benzyl ester (218).

The Cbz-protected dibromide **218** was synthesised as follows (Fig. 5.42). *N*-Boc-2azanorbornene (**220**) was prepared using a known procedure involving an aza-Diels-Alder reaction, analogous to that described in Chapter 2, followed by protection of the bicyclic nitrogen with Boc (22% overall).^{104,159} Bromination of **220** gave **219**, which was deprotected and reprotected with Cbz yielding **218** (Fig 5.42). More usually, **218** might be prepared from *N*-Cbz-2-azanorborn-5-ene¹⁵⁶ but a copious quantity of the Boc-protected alkene precursor **220** was available.

Fig. 5.43 Synthesis of *anti*-7-bromo-*exo*-6-hydroxy-2-Boc-2-azabicyclo[2.2.1]heptane (221). Reactions of 221 with other nucleophiles (CN⁻, N₃⁻ and F⁻) were unsuccessful.

The substitution reactions of the Cbz-protected dibromide **218** were investigated. The carbamate nitrogen participates in additions to *N*-alkoxycarbonyl-2-azanorborn-5-enes.¹¹⁵ Hence, it was hoped that the bicyclic nitrogen of **218** would assist the loss of the *exo*-6-bromine resulting in nucleophilic substitution with retention of configuration. Treatment of **218** with a 1:1 mixture of water and acetonitrile at 65 °C gave the hydroxylated product **221** (97%) (Fig. 5.43); the analogous reaction of the Boc-protected dibromide **219** also occurs but at room temperature.¹⁵⁸ Further substitution reactions on **218** were attempted but disappointingly, and perhaps surprisingly, were unsuccessful. Treatment of **218** with sodium azide, fluoride and cyanide failed to give the corresponding substitution and there was an indication that degradation of the starting material occurred more readily in the presence of NaN₃ compared to NaCN or NaF (60-100 °C compared to 160 °C). Therefore, the substitution reactions of **218** and **219** can not yet be generalised or rationalised and are receiving further attention.^{157,158}

5.4.3 Coupling reactions of exo-6-fluoro-anti-7-bromo-2-azabicyclo[2.2.1]heptanes

The Suzuki coupling procedure described in Chapter 3 was implemented to access the fluorinated isoepibatidine 213. In order to minimise the number of steps in the synthetic scheme to 213 attempts were made to couple benzene and pyridyl boronic acids to the *N*-benzyl-protected precursor 215 (Fig. 5.44). However, these reactions gave only unreacted starting material and unidentifiable compounds; it was evident from NMR analysis of the crude reaction mixtures that no incorporation of the boronic acids was taking place. Although a degree of functional-group tolerance for this Suzuki protocol was demonstrated in Chapter 3, this clearly does not extend to tolerance of the tertiary amine in 215. Hence, the benzyl group of 215 was removed and replaced with Boc to give 222 (28% overall). The coupling reactions of 222 with benzene, pyridyl and chloropyridyl boronic acids were more successful; results

similar to those described for the non-fluorinated compounds (Fig. 3.30, Chapter 3) were observed (Fig. 5.44).

Fig. 5.44 The Suzuki coupling reactions of *anti*-7-bromo-*exo*-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (**222**). Conditions: Ni(cod)₂, bathophenanthroline, ¹BuOK, *s*-butanol, a: 100 °C, 48 h; b: 40 °C 24 h.¹²³

The same conditions described in Fig 3.30 were used: refluxing conditions for the coupling of benzene and pyridyl boronic acids and 40 °C for the chloropyridyl boronic acid to avoid solvolysis (see Fig. 3.31). Again, mixtures of *anti* and *syn* epimers were formed but the presence of the *exo*-6-fluorine shifted the epimer ratios in favour of the *syn* compounds (**224**, **226** and **228**); epimer ratios were determined by integration of NMR signals, particularly ¹⁹F. The yields for the coupling reactions are significantly reduced in comparison to the non-fluorinated series of reactions (*cf.* Fig. 3.30). It seems apparent that, as alluded to by Zhou and Fu,¹²³ their coupling procedure, whilst being ground-breaking in terms of the couplings that can be achieved, has limited functional-group tolerance. Additionally, it was shown in Fig. 5.41 that the *exo*-6-fluorine was unstable to acidic and basic conditions. Hence, the presence of ^tBuOK in the coupling reactions was potentially also a factor contributing to their low yields (Fig. 5.44).

The minor (*anti*) epimers (223, 225 and 227) could not be isolated pure but this was deemed to be of minor importance due to the greater significance attached to the *syn* derivatives. The C7 stereochemistry of the major products from the coupling reactions was determined by NOESY NMR analysis as described in Section 3.3; most notably, cross-peaks were observed between H_7 and H_{5exo} .

The Boc-protected compound **228** was deprotected with a non-aqueous source of HCl (Fig. 5.45) to give the target compound **213**, which was isolated and characterised as its hydrochloride salt (see Section 5.5).

Fig. 5.45 Synthesis of exo-6-fluoro-syn-isoepibatidine (213).

The nicotinic receptor binding-affinity of *exo*-6-fluoro-isoepibatidine (213) has been assessed and is discussed in Chapter 7.

5.5 3-Substituted 1-azatricyclo[2.2.1.0^{2,6}]heptanes

The fluorinated compound **213** is stable as its hydrochloride salt but on treatment with base was found to lose HF to give the tricyclic compound **229** (Fig.5.50). This transformation was originally observed serendipitously when attempts were made to basify the hydrochloride salt of the phenyl derivative **230**; the only product isolated was the tricyclic compound **231**. A more controlled reaction of the chloropyridyl derivative **213** with sodium hydroxide gave **229** (26%).

Fig. 5.50 Formation of 3-substituted 1-azatricyclo[2.2.1.0^{2,6}]heptanes.

There are a limited number of literature examples of 3-substituted 1azatricyclo[2.2.1.0^{2,6}]heptanes (Fig. 5.51). Raasch demonstrated that bromination of the azanorbornene **232** followed by treatment of the resulting dibromide **233** with tertiary butoxide gave the tricyclic product **234**, in an analogous fashion to the transformation of **213** to **229** (Fig. 5.50).⁹⁶ This work was extended by Nagaev *et al.* who achieved the transformation of **232** to **234** directly using a source of Br⁺ (the use of Cl⁺ or I⁺ gave the corresponding chloro and iodo derivatives respectively). It was also shown that **234** could be ring-opened by a range of nucleophiles in the presence of H₂SO₄ (*e.g.* **234** to **235**).¹⁶⁰ Malpass and co-workers at Leicester described an alternative route to a 3-substituted 1azatricyclo[2.2.1.0^{2,6}]heptane which involved skeletal rearrangements due to π -participation in the loss of nucleofuges from the bicyclic nitrogen atom (Fig. 5.51). Exposure of the *N*chloro derivative **236** to alumina caused rearrangement to give **237** which rearranged further when treated with MeOH and AgNO₃ yielding the tricyclic compound **238**.¹⁶¹

Fig. 5.51 Literature examples of 3-substituted 1-azatricyclo[2.2.1.0^{2,6}]heptanes.^{96,160,161}

The presence of these 3-substituted 1-azatricyclo[$2.2.1.0^{2,6}$]heptanes in the literature and careful NMR analysis enabled the structural assignment of **229** and **231**. The ¹H NMR spectrum of **229** is shown in Fig 5.52.

Fig. 5.52 ¹H NMR spectrum of syn-3-(6-Chloro-pyridin-3-yl)-1-azatricyclo[2.2.1.0^{2.6}]heptane (229).

The tricyclic epibatidine analogue **229** has not been assessed for its nicotinic receptor affinity but it will be interesting to investigate the effect on receptor binding of substituting a tertiary for a secondary amine. Particularly as in **229** only minor changes to the relative orientations of the pharmacophoric elements of isoepibatidine have been made. Additionally, the aziridine functionality of **229** has the potential to be opened within the binding site, resulting in irreversible binding and thus could show value in the labelling of nicotinic receptors.

5.6 Attempted routes to 3-Fluorinated 2-azabicyclo[2.2.1]heptanes

2-azabicyclo[2.2.1]heptanes targeted, in particular, 3-fluoro-3-Fluorinated were isoepibatidines (e.g. 239). Positioning fluorine atoms at the 3-position of the 2-azanorbornane framework is likely to result in a pronounced reduction of the basicity of the bicyclic nitrogen-atom and hence, to have a profound effect on nicotinic-receptor binding. We had concerns about the stability of 3-fluorinated 2-azanorbornanes since there are few literature examples of α -fluoroamines and those that have been produced are typically used as fluorinating agents.¹⁶² If compounds such as 239 could be produced there is a distinct possibility that loss of fluoride could occur, leading to intermediates such as 240 and subsequent degradation (Fig. 5.60). Indeed, α , α -diffuoroamines (e.g. 239) are considered to exist predominantly in their eliminated forms (e.g. 240).¹⁶³ It was hoped that careful protecting-group manipulation and handling the final products (secondary amines) as salts would avoid this problem.

Fig. 5.60 3-Fluoro-isoepibatidine and its potential route of degradation.

2-Azabicyclo[2.2.1]hept-5-en-3-one (241) is commercially available and was chosen as the starting point in the quest for 3-fluorinated 2-azanorbornanes (Fig. 5.61). Benzylation of 241 gave the tertiary amide 242 in modest yield. There are very few examples in the literature involving the conversion of the carbonyl of amides to *gem*-difluorides. However, a recent patent describes how this transformation can be effected in a range of different amides; a representative example is shown in Fig. 5.61. Treatment of the lactam 243 with oxalyl chloride gives the *gem*-dichloride 244 which is converted to the *gem*-difluoride 245 using sodium fluoride.¹⁶² The same methodology was applied to **242** but with no success, neither the difluoride **246** or the corresponding dichloride precursor were isolable; only starting material (**241**) (~ 2% recovery) and an unidentifiable mixture of decomposition products was obtained.

Fig. 5.61 A representative example from a patent which describes methodology for the conversion of amides to α -fluoroamines.¹⁶² The attempted conversion of 2-benzyl-2-azabicyclo[2.2.1]hept-5-en-3-one (242) to the corresponding *gem*-difluoride (246).

Following the failure of the route via the *gem*-dichloride other approaches were considered and a ring opening/closing strategy was envisioned. Hence, 242 was treated with LiAlH₄ to give the ring opened alcohol 247 (Fig. 5.62). Attempts were made to oxidise 247 to 248 with the Swern reaction and Dess-Martin periodinane but they appeared to cause decomposition only. It had been hoped that treatment of the aldehyde 248 with DAST would give the *gem*-difluoride 249 which could then be reacted with base to produce the ring-closed 2-azanorbornane 250.

Fig. 5.62 The attempted incorporation of fluorine at the 3-position of 2-azanorbornanes via a ring opening/closing strategy.

The difficulties experienced in producing 3-fluorinated 2-azanorbornanes, their anticipated instability and the potential for overly-convoluted synthetic routes led to the suspension of these endeavours. Thus, attention was shifted to more fruitful areas.

5.7 Routes to 1-substituted 2-azabicyclo[2.2.1]heptanes

The incorporation of fluorine at the bridgehead position (C1) of 2-azanorbornanes was investigated next. There are very few examples of 1-substituted 2-azanorbornanes in the literature; it is not straightforward to access this class of compound and devising methods of incorporating groups at the bridgehead position is an attractive challenge. In particular, the 1-fluorinated isoepibatidine **251** was targeted; again, the close proximity of the fluorine atom to the bicyclic nitrogen was expected to have a significant effect on its pK_a .

Fig. 5.70 The proposed route to 1-fluoro-isoepibatidine.

The retrosynthesis of **251** is outlined in Fig. 5.70; a synthetic scheme analogous to that described in Chapters 2 and 3 for isoepibatidine was envisioned. Bromination of the fluoroalkene **252** would give the tricyclic salt **253** which could be opened with hydride and the resulting 7-bromo-1-fluoro-2-azanorbornane **254** would then be subjected to a Suzuki cross-coupling reaction yielding 1-fluoro-isoepibatidine **251**. Hence, attempts were made to produce the fluoroalkene precursor **252**.

5.7.1 Attempted routes to 6-fluoro-2-azabicyclo[2.2.1]hept-5-enes

Efforts were made to produce the fluoroalkene 252 via an epoxide (Fig. 5.71). The *N*-Bocprotected alkene 220 was made using a known procedure which involved an aza-Diels-Alder reaction to give 2-azanorbornene which was treated with Boc₂O (22% overall).¹⁵⁹ Reaction of 220 with mCPBA gave the epoxide 255a (56%); only *exo* attack occurs giving the *exo* epoxide exclusively. The *N*-Cbz-protected epoxide 255b had been made previously at Leicester by C. D. Cox^{159} and a sample was available. The *N*-benzyl-protected epoxide was not produced as mCPBA is known to react with the bicyclic nitrogen lone-pair of 2azanorbornanes to give *N*-oxides, which can undergo Meisenheimer rearrangements and Cope eliminations.¹⁶⁴

Fig. 5.71 The attempted synthesis of fluoroalkenes.

It was hoped that the epoxides 255a and 255b could be opened with fluoride to give the fluoro-alcohols 256a and 256b from which water could be eliminated to give the fluoroalkenes 257a and 257b. However, all attempts to open the epoxides were unsuccessful. Literature examples of opening epoxides with fluoride include the use of BF₃.Et₂O^{165,166} and TBAF.¹⁶⁷ Treatment of 255a and 255b with BF₃.Et₂O or BF₃.Et₂O in the presence of KF using either toluene or diethyl ether as the solvent caused decomposition; starting material was the only identifiable product (~5% recovery). When 255b was refluxed with TBAF in benzene or heated to 110 °C in the presence of potassium fluoride and 18-crown-6 only starting material was observed. Olah's reagent (HF-pyridine) was also unsuccessful, giving decomposition and no identifiable products.

Previous attempts at Leicester to open the epoxide 255b with cyanide were also unsuccessful.¹¹⁵ It is likely that the lack of success in opening the epoxides 255a and 255b is due to the unwillingness of 2-azanorbornane derivatives to undergo reactions at their *endo* face. In addition, literature examples suggest that the opening of epoxides with fluoride requires relatively harsh conditions (*e.g.* HF or refluxing BF₃.Et₂O).^{165,166} An alternative route to the fluoroalkene 252 was therefore sought.

5.7.2 Rearrangement reactions of 6-keto-2-azabicyclo[2.2.1]heptanes

As the synthetic route to the fluoroalkene **252** outlined in Fig. 5.71 was unsuccessful an alternative strategy was devised. It was hoped that **252** could be produced by base-induced elimination of HF from the geminal-difluoride **258** which, in turn, would be accessed by treating the ketone **259** with DAST (Fig. 5.72).

Fig. 5.72 The proposed route to 6-fluoro-2-benzyl-2-azabicyclo[2.2.1]hept-2-ene (252) from the ketone 259.

Carroll and co-workers described the synthesis of 259;¹⁶⁸ this existing procedure was followed. Hydroboration of 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene (73) gave the *exo*-5- and 6- alcohols 260 and 261 in a ratio of 21:79. The literature report indicated that only a trace amount of the *exo*-5-alcohol 260 was formed;¹⁶⁸ 260 was slow to elute during purification by flash chromatography and this may explain the difference in the observed product ratios. Swern oxidation of 261 afforded the ketone 259 albeit in moderate yield 39% (*cf.* 80% reported by Carroll).¹⁶⁸

Fig. 5.73 The synthesis of 6-keto-2-benzyl-2-azabicyclo[2.2.1]heptane (259).¹⁶⁸

Treatment of **259** with DAST gave the expected *gem*-difluoride **258** but also the rearranged product *exo*-6,1-difluoro-2-benzyl-2-azanorbornane **262** in a 1:1 ratio (Fig. 5.74). This finding provided a fast-track method of placing a fluorine atom at the bridgehead position (C1) of the 2-azanorbornane framework. It was hypothesised initially that **262** was formed under the reaction conditions from the *gem*-difluoride **258** via the mechanism shown in Fig. 5.74. However, attempts to convert **258** to **262** failed; when **258** was refluxed in CDCl₃ or in DMF only unreacted starting material was observed. It is likely, therefore, that the rearrangement to **262** occurs during the reaction of the ketone **259** with DAST. The mechanism of difluoride formation from ketones using DAST is thought to involve ionic intermediates¹⁶⁹ and a potential mechanism which could explain the formation of **258** and **262** is outlined in Fig. 5.74. The details of this mechanism are speculative but it seems necessary for a tricyclic intermediate (*e.g.* **263**) to be involved in the rearrangement and the proposed mechanism explains the 1:1 mixture of **258** and **262**, assuming that paths a and b occur at similar rates.

76

Fig. 5.74 The rearrangement of the ketone 259 when treated with DAST. The attempted conversion of 258 to 262. A potential mechanism for the formation of the difluorides 258 and 262.

Investigations were undertaken to establish how the DAST-induced rearrangement of **259** to **262** might be applied to the synthesis of fluorinated epibatidine analogues. Hence, the ketone **259** was treated with bromine in acetic acid and gave a mixture of *exo* and *endo* α -brominated 2-azanorbornanes **264** and **265** (~1:1). It is likely that the *exo* bromide **264** formed first, as attack on the enol of **259** would be expected to be preferentially from the *exo* face; equilibrium was then established under the reaction conditions leading to the thermodynamic mixture of **264** and **265**. The α -bromo-ketones **264** and **265** were not separated prior to reaction with DAST, as it was reasoned that subsequent Suzuki coupling-reactions were likely to give mixtures of epimers. Rearrangement of **264** and **265** occurred to give the difluorides **266** and **267** (~2:1; *syn:anti*); in contrast with the reaction of **259**, only ~10% of the unrearranged *gem*-difluorides were observed in the crude ¹⁹F NMR. If the postulated mechanism in Fig. 5.74 is reconsidered this seems reasonable; it is likely that the presence of an α -bromine atom in the tricyclic intermediate **263** would impede opening of the aziridinium functionality via pathway-b leading to a greater proportion of rearrangement via pathway-a (*cf.* the bromination of the alkene **73** in Fig. 2.20, Chapter 2).

Fig. 5.75 The synthesis of 7-bromo-exo-6,1-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptanes 266 and 267.

The rearrangement of 264/265 with DAST went some way to demonstrating the generality of this reaction. With precursors 266/267 in hand, protecting-group interconversion and Suzuki coupling reactions could have been undertaken. However, rather than pursuing *exo*-6,1-difluoro-isoepibatidine, attention was focused on further investigation of the novel rearrangement and associated reactions.

Potential transformations of the difluorides 258 and 262 were considered (Fig. 5.76). Attempts were made to displace the *exo*-6-fluorine of 262 with bromide and deuteride; reaction of 262 with LiBr in DMF or LiAlD₄ in THF failed to give 268, yielding only unreacted starting material. As might be expected, loss of fluoride from the *exo*-6-position of 2-azanorbornanes is a higher energy process than the loss of bromide. The elimination of HF from 262 was also investigated, but treatment with *n*-BuLi gave decomposition to an unidentifiable mixture of products; the 1-fluorinated 2-azanorbornene 269 was not observed.

Fig. 5.76 Attempted transformations of exo-6,1-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (262).

The rearrangement of the ketone 259 was further probed and the importance of the *N*-benzyl protecting-group in this transformation was investigated. A sample of the *N*-Cbz-protected ketone 270 was available (C. D. Cox) and was treated with DAST (Fig. 5.77). The *gem*-difluoride 271 was the only observed product (68%), that is, no rearrangement occurred. The bicyclic nitrogen atom is more nucleophilic (and better able to participate in reactions at C6) when benzyl-protected compared to when Cbz-protected; this is clearly an important factor in the rearrangement of 6-keto-2-azanorbornanes to *exo*-6,1-difluoro-2-azanorbornanes.

Fig. 5.77 The treatment of 270 with DAST does not result in rearrangement.

The generality of the rearrangement was also investigated, in particular, it was hoped that a range of different substituents could be placed at the bridgehead position (C1) of the 2-azanorbornane framework. This position is very difficult to functionalise hence, a general route to 1-substituted 2-azanorbornanes would be extremely valuable. The synthesis of the diol **272** was considered by rearrangement of the hydrate of **259**. The ketone **259** was refluxed in a mixture of water and THF (1:1) with a catalytic amount of HCl present but only unreacted starting material was isolated; none of the rearranged hydrate **272** was observed. The treatment of **259** with PCl₅ was also studied, in the hope of positioning chlorine at C1; however, reaction in DCM, chloroform and hexane gave only a complex mixture of products. Mass spectrometry indicated that tricyclic chloride salts may have formed but attempts to purify these by chromatography and crystallisation were unsuccessful, suggesting that the products of the reaction were unstable.

Fig. 5.78 Attempted synthesis of the diol 272 and the reactions of 259 with PBr₅.

The successful handling of certain azoniatricyclo bromide salts was discussed in Chapter 2. Hence, PBr₅ was used in place of PCl₅. It was hoped that reaction of 259 with PBr₅ would result in the formation of 273, which could be isolated, characterised and then ringopened with hydride (or an alternative nucleophile) to yield 1-bromo-2-azanorbornanes (e.g. 274). However, after reaction of 259 with PBr₅ (in the same solvents as for PCl₅), at room temperature and at reflux, similar complex mixtures of products were obtained as in the reaction with PCl₅ and again no products could be isolated. The crude residue produced by reacting 259 with PBr₅ in CDCl₃ (used rather than chloroform only because a freshly distilled batch had been prepared) was treated with Red-Al in an attempt to trap any unstable tricyclic products such as 273 that may have formed. Column chromatography of the resulting residue gave the bromo-alcohol 275 as only isolable product (2% overall). It seems that in addition to the formation of unstable intermediates and products, reaction of 259 with PBr₅ is also causing α -bromination. The α -bromo-ketone 276 was not detected in the ¹H NMR spectrum of the crude residue probably due to its complexity and the small relative quantity of 276. The reduction of 276 with Red-Al gave 275; the substitution pattern of the hydroxyl and bromo substituents in 275 was determined by COSY experiments and careful analysis of coupling constants in the ¹H NMR spectrum.

The transformation of 6-keto-2-azanorbornanes to 1-substituted 2-azanorbornanes warrants further study but the apparent instability of the products will need to be overcome.

5.8 Routes to 7-fluorinated 2-azabicyclo[2.2.1]heptanes

In an effort to introduce fluorine to the 7-position of 2-azanorbornanes, the reaction of *N*-benzyl-7-keto-2-azanorbornane **159** with DAST was also investigated. It had been established previously (Chapter 2) that the bicyclic nitrogen lone-pair of 2-azanorbornanes is able to participate in substitution reactions at C7 as well as C6. However, treatment of **159** with DAST gave only the *gem*-difluoride **277** (38%) and no rearrangement was detected. This observation builds upon those discussed in Sections 2.4, 5.4.1 and 5.4.2 to provide further evidence that NGP of the nitrogen lone-pair with the 7-position of 2-azanorbornanes is a higher energy process than participation at the 6-position. However, it is conceivable that a tricyclic intermediate formed but was unable to react further to give rearrangement. The nucleophilic substitution of the fluorine of **277** for bromine was attempted but perhaps unsurprisingly gave no reaction. Any potential anchimeric assistance from the bicyclic nitrogen or transition-state stabilisation by the remaining fluorine atom was not enough to confer reactivity to **277**.

Fig. 5.80 The synthesis of 7,7-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (277) and attempted substitution reactions.

This Chapter has described some exploratory work concerning the incorporation of fluorine into the 2-azanorbornane framework. Introduction of fluorine to the *exo*-6-position of the 2-azanorbornane framework was achieved by attack of fluoride on the tricyclic salt 74. This allowed *exo*-6-fluoro-isoepibatidine to be accessed. During the course of this work loss of HF from *exo*-6-fluoro-2-azanorbornanes was observed leading to a novel tricyclic analogue of epibatidine, which has the potential to have interesting biological properties. A novel rearrangement has been discovered which leads to the functionalisation of the bridgehead position (C1) of 2-azanorbornanes. The mechanism and generality of this rearrangement have been investigated. Attempts to position fluorine at other positions of the 2-azanorbornane framework were less successful but a late precursor towards *exo*-6,1-difluoro-isoepibatidine has been synthesised. The mechanistic findings discussed in this Chapter warrant further investigation and to be applied to the synthesis of more fluorinated epibatidine analogues.

Chapter 6 Approaches to isotropane analogues of epibatidine

6.1 Introduction

Many epibatidine analogues based on the azabicyclic tropane skeleton have been produced (see Chapter 1). For example, homoepibatidine (22) and dihomoepibatidine (23) were first made at Leicester and have high affinity for nicotinic receptors; additional compounds based on 22 and 23 in which the heterocycle point-of-attachment has been altered have also been produced (Fig. 1.53). In addition, a patent filed by Breining *et al.* in 2005 described the syntheses of a large number of epibatidine analogues based on the general structure 287; these derivatives were designed to treat pain and CNS disorders.⁷⁵

Fig. 6.10 Selected literature examples of epibatidine analogues with larger azabicyclic frameworks and isotropane-based targets (288 and 289). [For 287: k, m, n and p are individually 0, 1, 2 or 3; when k + p = 1, m or n or both are greater than 0].

Although epibatidine analogues with larger azabicyclic frameworks have been reported, the heterocycle point-of-attachment is invariably on one of the larger bridges of the azabicycle, e.g. the ethano-bridge in the cases of 22 and 23. The previous Chapters in this thesis have described the successful positioning of heterocycles at the methano-bridge of 2azanorbornanes; hence we envisioned the introduction of heterocycles to the methano-bridges of larger, isotropane molecules. Molecular modelling suggested that *syn*-8-(6-chloro-pyridin-3-yl)-3-azabicyclo[3.2.1]octane (288) and *syn*-8-(6-chloro-pyridin-3-yl)-2-azabicyclo[3.2.1]octane (289) were reasonable targets in terms of inter-nitrogen distances.^b This Chapter describes routes towards the isotropane-based analogues of epibatidine 288 and 289.

^b The isotropane structures in this Chapter are discussed using nomenclature similar to that used for azanorbornanes in previous Chapters. That is, substituents are said to be *exo* or *endo* and *syn* or *anti* to the bicyclic nitrogen atom (Fig. 6.10). Strictly, α/β terminology might be used but was avoided in order to achieve consistency and to avoid confusion.

6.2 Analogues of epibatidine based on 3-azabicyclo[3.2.1]octane

Molecular modelling studies of **288** indicated a low energy conformation with an internitrogen distance of 5.4 Å (cf. epibatidine: 4.5 Å) but if the boat conformation of **288** is specified (Fig. 6.10) the inter-nitrogen distance is reduced to 4.5 Å. The route envisioned to **288** involved the Suzuki cross-coupling of the pyridine moiety to the bromo-precursor **290**. This, in turn, could be produced by functional group inter-conversions from the known ketone **291** (Fig. 6.20).

Fig. 6.20 The retrosynthesis of the isotropane-based epibatidine analogue 288.

6.2.1 Synthesis of 8-hydroxy-3-benzyl-3-azabicyclo[3.2.1]octane

Literature procedures were followed for the synthesis of 8-hydroxy-3-benzyl-3-azabicyclo-[3.2.1]heptane (**292a**).^{170,171} The 3-azabicyclo[3.2.1]octane framework was constructed using a Manich procedure; reaction of cyclopentanone, benzylamine and formaldehyde gave the ketone **291**. The low yield (4%) is consistent with the original report.¹⁷⁰

Fig. 6.21 Synthesis of 8-hydroxy-3-benzyl-3-azabicyclo[3.2.1]octane (292a).

Reduction of **291** with sodium borohydride occurs in good yield and gives the *syn* alcohol **292a** exclusively:¹⁷¹ NOE interactions were observed between the *anti*-8- proton and those at the *exo*-6 and 7- positions. Nucleophilic attack on **291** and similar derivatives is known to occur at the *anti* face of the ketone for steric reasons;¹⁷² *anti* attack on **291** can be equated to equatorial attack on a cyclohexanone.

6.2.2 Synthesis of 8-bromo-3-azabicyclo[3.2.1]octanes

Attempts were made to convert the alcohol 292a to the bromide 293a. Initially, direct methods were trialled, but both refluxing hydrobromic acid¹⁷³ and thionyl bromide gave only unchanged starting material (292a). Hence, 292a was converted to the triflate 294a using a

procedure described by Kim *et al.*¹⁷¹ Reaction of **294a** with LiBr in the presence of a catalytic amount of $AlCl_3$ gave **293a** (36% overall); tosic acid could be used in place of $AlCl_3$ but no reaction occurred in the absence of acid.

Fig. 6.22 Synthesis of the 8-bromo-3-azabicyclo[3.2.1]octanes 293a and 293b.

The Boc-protected bromo-compound **293b** was required as a substrate for Suzuki crosscoupling reactions. Protecting group interconversion (**292a** to **292b**) was straightforward and **293b** was accessed via the triflate **294b**, analogously to the production of **293a**, in 67% overall yield. The substitution reactions of the triflates **294a** and **294b** occurred with inversion of configuration (S_N2); only the *anti* epimers **293a** and **293b** were isolated. The C8 stereochemistry was confirmed by NOESY experiments; in particular, NOE cross-peaks were observed between H₈ and the *exo* hydrogens at C2 and C4 (Fig 6.23).

Fig 6.23 NOESY confirmation of the anti C8 stereochemistry of 293a.

6.2.3 Attempted substitution reactions of 8-bromo-3-azabicyclo[3.2.1]octanes

Attempts were made to effect nucleophilic substitution reactions at the 8-position of 3-azabicyclo[3.2.1]octanes. It was hoped that neighbouring group participation (via **295**), akin to that observed in the substitution reactions of 7-substituted 2-azanorbornanes (Chapter 2), would be observed. The bromo-compounds **293a** and **293b** were reacted with lithium chloride in DMF and *N*-methylpyrrolidinone (NMP); for both protecting-groups (Bn and Boc) only unreacted started material was obtained (Fig. 6.24). Under refluxing conditions, decomposition to an unidentifiable mixture of products occurred prior to any substitution; the chlorinated products **296a** and **296b** were not observed. It appears that NGP in this system does not take place and that simple S_N1 and S_N2 reactions when the 7-nucleofuge is *anti* are unfavourable. It is possible that approach of a nucleophile *syn* to the bicyclic nitrogen is too sterically hindered for reaction to occur.

Fig. 6.24 Unsuccessful substitution reactions of the 8-bromo-3-azabicyclo[3.2.1] octanes 293a and 293b.

The lack of NGP in **293a** is consistent with the observations of House *et al.*; IR spectroscopy indicated that there was no appreciable participation of the amine functionality with the carbonyl group in **297** (Fig. 6.25).¹⁷⁴ As alluded to previously, the facial selectivity in the reduction of **291** is a result of nucleophilic attack from the least sterically hindered face of the ketone (Fig. 6.21).¹⁷²

Fig 6.25 The amine functionality of 297 does not participate with the carbonyl group.¹⁷⁴

6.2.4 Attempted synthesis of syn-8-(6-Chloro-pyridin-3-yl)-3-azabicyclo[3.2.1]octane

The Suzuki coupling procedure described in Chapter 3¹²³ was used to couple 4-chloro-3pyridyl boronic acid to 293b. Only the undesired *anti* product 298 was obtained (54% yield based on recovered starting material); NOE interactions were observed between H_8 and the *exo* protons at the 2- and 4-positions.

Fig 6.26 The synthesis and attempted epimerisation of *anti*-8-(6-Chloro-pyridin-3-yl)-3-boc-3azabicyclo[3.2.1]octane (**298**). The equatorial invertomer **300** is favoured in nitrogen inversion of tropanes.¹⁷⁵

As previously discussed, many syntheses of epibatidine and its analogues have involved epimerisation of the chloropyridyl moiety.¹⁵ Attempts were made to epimerise **298** to the *syn* epimer **299**; treatment of **298** with ^tBuOK in refluxing ^tBuOH (83 °C) for 96 hours gave only unchanged starting material. This lack epimerisation (**298** to **299**), is further evidence that this cross-coupling methodology yields thermodynamic mixtures of products. It is reasonable to assume that the *anti* epimer **298** is more thermodynamically stable than **299**; interconversion of the C8 anions of **298** and **299** is analogous to nitrogen inversion in tropanes. In these equilibria the equatorial (R *syn* to ethano bridge) invertomer **300** is greatly favoured over the axial invertomer **301**.¹⁷⁵

Fig. 6.27 Attempted synthesis of syn-8-(6-chloro-pyridin-3-yl)-3-benzyl-3-azabicyclo[3.2.1]octane (304).

The Suzuki-coupling approach was unsuccessful in giving the target compound 288; an alternative route was explored (Fig 6.27). Some syntheses of epibatidine and its analogues involve addition of a lithiated pyridine to a ketone;¹⁵ a similar tactic was envisaged in order to access 288. The ketone 291 was reacted with chloropyridyl lithium, yielding the alcohol 302 (refluxing conditions gave only a 16% yield based on recovered starting material). The anti configuration of the heterocycle at C8 was not confirmed, but can be reasonably assumed based on existing knowledge of the facial selectivity in 8-keto-3-azabicyclo[3.2.1]octanes (see Section 6.2.1).¹⁷² Conversion of 302 to the triflate 303 was successful as indicated by ¹⁹F NMR (signal at -78 ppm) but the transformation to 304 could not be effected. It was hoped that inversion of configuration at C8 during displacement of the triflate with hydride would be observed, to give the syn-chloropyridyl derivative 304. Treatment of 303 with sodium borohydride, with and without a catalytic amount of AlCl₃ present, failed to give 304; after work up only the alcohol 302 was observed. The lack of success in achieving displacement of the triflate from 303 and the poor yield for the formation of 302 led to the prioritisation of areas that provided more positive results, in particular, the production of syn-8-(6-chloropyridin-3-yl)-2-azabicyclo-[3.2.1]octane (289).

6.3 Analogues of epibatidine based on 2-azabicyclo[3.2.1]octane

The isotropane analogue of epibatidine **289** is structurally similar to isoepibatidine (Chapter 3), containing just an extra methylene group. Homoepibatidine, similarly, contains an extra methylene in comparison to epibatidine and has high nicotinic affinity (Fig 1.53).⁶⁶ Molecular modelling indicated a low energy conformation of homoisoepibatidine (**289**) with an internitrogen distance of 4.9 Å, which is within the range that can be expected to lead to nicotinic affinity.

Fig. 6.30 Retrosynthesis of syn-8-(6-chloro-pyridin-3-yl)-2-azabicyclo[3.2.1]octane (289).

The structural similarity of **289** and isoepibatidine led to the implementation of a synthetic route analogous to that described in Chapters 2 and 3. That is, bromination of the alkene **305** and reaction with hydride to give the rearranged bromo-compound **306**; again, the Suzuki-coupling methodology would be used to introduce the chloropyridyl moiety (Fig 6.30).

6.3.1 Synthesis of 2-benzyl-2-azabicyclo[2.2.2]hept-5-ene

A literature aza-Diels-Alder procedure was used to give 2-benzyl-2-azabicyclo[2.2.2]hept-5ene (**305**).¹⁰⁴

Fig. 6.31 Synthesis of 2-benzyl-2-azabicyclo[2.2.2]hept-5-ene (305).

The synthesis of **305** was analogous to the construction of the 2-azanorbornane framework in Chapter 2. Reaction of cyclohexadiene with the imminium ion formed from formaldehyde and benzylamine hydrochloride, gave **305** in 15% yield, after distillation.

6.3.2 Synthesis of 8-bromo-2-benzyl-2-azabicyclo[3.2.1]octane

A two-step bromination of the alkene **305** followed by treatment of the resulting tricycle with hydride, akin to that used to functionalise the 7-position of 2-azanorbornanes (Chapter 2) was envisioned. Bromination of **305** appeared to give the tricyclic salt **307** but it could not be purified, isolated or characterised, suggesting it is not particularly stable. Treatment of this crude mixture with Red-Al initially gave only a very low yield of 8-bromo-2-benzyl-2-azabicyclo-[3.2.1]octane (**308**) but the yield of **308** was increased by adaptation of the bromination/hydride procedure (Fig. 6.32).

Fig. 6.32 Synthesis of 8-bromo-2-benzyl-2-azabicyclo[3.2.1]octane (308).

Thus, **305** was treated with two equivalents of bromine, the DCM was removed under a stream of nitrogen and the resulting residue was dissolved in THF without exposure to air. Addition of Red-Al gave **308** in 28% isolated yield (37% based on recovered starting material (**305**)). The *anti* C8 stereochemistry of **308** was confirmed by 2D NOESY experiments; most notably there were NOESY interactions between H_{3x} and H_8 (Red), and the benzyl protons and H_8 (Blue)(Fig 6.23).

Chapter 6 - Approaches to isotropane analogues of epibatidine

Fig 6.33 NOESY confirmation of the C8 stereochemistry of *anti*-8-bromo-2-benzyl-2-azabicyclo[3.2.1]octane (308).

Nucleophilic substitution reactions of **308** were not investigated as, very recently, Krow and co-workers have been studying the substitution reactions of molecules related to **308**.¹⁵⁷ Nucleophiles have been found to react at the 8-position of 2-azabicyclo[3.2.1]octanes with retention of configuration, due to neighbouring group participation of the bicyclic nitrogen lone-pair.^{157,176}

6.3.3 Synthesis of homoisoepibatidine

The results discussed in Section 5.4.3 suggested that the Suzuki coupling-reaction is less successful with a benzyl group present. Hence, the benzyl protecting-group of **308** was removed and replaced with Boc to give **309** (Fig 6.33). The coupling methodology described in Chapter 3^{123} was used to introduce the chloropyridyl heterocycle to the 8-position of **309**. The reaction proceeded in 23% yield and only one epimer of the product was observed. Detailed NMR analysis was performed and showed, fortuitously, that the desired *syn*-derivative **310** had formed.

Chapter 6 - Approaches to isotropane analogues of epibatidine

Fig. 6.34 The synthesis of syn-8-(6-Chloro-pyridin-3-yl)-2-boc-2-azabicyclo[3.2.1]octane (310).

The 2D NOESY spectrum of **310** is shown in Fig. 6.34. There are cross-peaks between H_8 and the *exo*-protons at the 5- and 7-positions and no cross-peaks from H_8 to H_{3x} , indicating the *syn*-stereochemistry at C₈. Again, it seems likely that the thermodynamically more favourable equatorial (in this case *syn* to the bicyclic nitrogen) product is produced, either in the coupling reaction itself or as a result of epimerisation of an initial mixture of isomeric products.

Fig. 6.35 NOESY spectrum of 310, indicating the syn-8-configuration.

Compound **310** was purified then de-protected using ethanol and acetyl chloride as a non-aqueous source of HCl. Homoisoepibatidine (**289**) was isolated as a dihydrochloride salt.

Fig. 6.36 The synthesis of syn-8-(6-Chloro-pyridin-3-yl)-2-azabicyclo[3.2.1]octane (homoisoepibatidine) (289).

The nicotinic receptor affinity of 289 has yet to be established. Given the extremely high affinity of isoepibatidine (Chapter 7), and that the affinity of homoepibatidine is comparable to that of epibatidine,⁶⁶ 289 is expected to be a potent nicotinic ligand.

Chapter 7 Nicotinic receptor binding studies

7.1 Nicotinic receptor binding assays

The target molecules synthesised in this thesis were chosen on the basis of potential nicotinic activity, as discussed in previous Chapters. Epibatidine analogues previously synthesised at Leicester were designed to have a rigid azabicyclic framework and a freely rotating heterocyclic substituent. Target compounds were selected on the basis of the distance between the bicyclic and pyridyl nitrogen atoms, which were in the appropriate range (~4-5 Å) in one or more of the structures' minimum energy conformations. These analogues, notably homoepibatidine (22; Fig 1.53) and the endo-2-azanorbornane derivatives 16 and 17 (Fig 1.52) have very high affinities for nicotinic receptors.^{60,66} Hence, similar criteria were retained for the design of the target structures in this thesis. Most of the epibatidine analogues that were produced have been assessed for their nicotinic binding affinities. Competition binding assays were performed against $\alpha 4\beta 2$ and $\alpha 3\beta 4$ nAChR subtypes by our collaborators at Eli Lilly; full experimental details are described in Chapter 8. Although there is a wide range of nicotinic receptor subtypes in humans, assessment of binding at $\alpha 4\beta 2$ and $\alpha 3\beta 4$ subtypes is thought to be most informative of a compound's potential therapeutic use. The $\alpha 4\beta 2$ is the most prevalent subtype in the brain and has been targeted in the treatment of a range of conditions, including pain and neurodegenerative diseases. The α 3 β 4 receptor is principally found in autonomic ganglia and binding to this subtype is believed to be a major contributor to the toxicity of nicotinic agents.¹⁷⁷

7.2 The nicotinic receptor affinities of isoepibatidine and the isoepiboxidines

The nicotinic receptor binding data for *syn*-isoepibatidine (**49**), the isoepiboxidines (**51** and **52**) and *exo*-6-fluoro-isoepibatidine (**213**) are presented on the following page. The most notable figures are those for isoepibatidine (**49**) which indicate that it is an extremely potent nicotinic receptor ligand. It has higher nicotinic receptor affinity than previously synthesised epibatidine isomers and has binding affinities at both $\alpha 4\beta 2$ and $\alpha 3\beta 4$ subtypes very similar to those of epibatidine (K_i = 0.0785 and 0.16 nM; cf. epibatidine: K_i = 0.0558 and 0.191). Isoepibatidine shows no improvement in subtype selectivity compared to epibatidine. The methylisoxazole-bearing *syn*-isoepiboxidine (**51**) also has high affinity for both receptor subtypes, about ten-fold lower than epibatidine; this modest reduction in affinity and the slight improvement in subtype selectivity mirrors the properties of epiboxidine (4.5 and 4.4 Å respectively; cf. 4.5 Å for epibatidine). In contrast, the two major minimum energy conformations of *anti*-isoepiboxidine (**52**) have N-N distances of 5.6 and 5.8 Å, which are not within the range typical of nicotinic receptor ligands and indeed, **52** showed no affinity for

either nAChR subtype at 1000 nM. Although nicotinic pharmacophore models have increased in sophistication over recent years (see Section 1.4), inter-nitrogen distances are still used extensively in recent reports of novel nicotinic agents in order to predict whether compounds will exhibit nicotinic receptor affinity. However, there are limitations to the approach; N-N distances are a relatively crude and indirect way of predicting or rationalising the interaction of a ligand with nAChRs. As might be expected, many other, less well understood factors are also involved and some active compounds have N-N distances outside the 'ideal' range.²⁴

syn-Isoepiboxidine (51)

Epibatidine (8)

anti-Isoepiboxidine (52)

exo-6-Fluoro--syn-isoepibatidine (213)

Cytisine (4)

Compound	Calculated N-N distances (Å) ^a		K _i (nM) ^d		α3β4/α4β2
	N-N ^b	N-N ^c	α4β2	α3β4	
(±)-(8)	4.5	5.5	0.0558 (±0.0056)	0.191 (±0.0075)	3.42
(±)-(49)	4.5	5.2	0.0785 (±0.0062)	0.16 (±0.0019)	2.05
(±)-(5 1)	4.4	4.8	0.763 (±0.092)	9.51 (±0.428)	12.5
(±)-(52)	5.6	5.8	ne at 1000 nM	ne at 1000 nM	-
(±)-(213)	4.5	5.2	66.4	ne at 1000 nM	>15.1
Cytisine (4)	-	_	2.59 (±0.202)	525 (±6.32)	203

Fig. 7.20 Nicotinic receptor binding affinities of 49, 51-52 and 213.

^a Calculated N-N distances for free amines using Spartan Pro; equilibrium geometry by Hartree-Fock, 6-31G^{*}.

^b Minimum energy conformation.

^c After 180° rotation about the C-heterocycle bond.

^d Values are geometric means of at least three experiments, standard error is given in parantheses (ne = no effect).

The recent publication of the crystal structure of an epibatidine-bound ACh bindingprotein indicated the active conformation of epibatidine and hence revealed the active internitrogen distance to be 4.5 Å.³⁷ This finding has arguably increased the credibility of using an N-N distance approach in designing nicotinic agents, certainly for structures that are closely related to epibatidine. The compounds described in this thesis and those previously produced at Leicester are generally isomers or homologues of epibatidine and those with N-N distances of ~4.5 Å invariably have high nicotinic affinity.

It seems that the 'simple' switch of the positions of the heterocycle point-of-attachment and the bicyclic nitrogen of epibatidine (8) to give isoepibatidine (49) has little effect on nicotinic receptor affinity. Indeed, the superposition of epibatidine (active conformation; taken from the crystal structure published by Hansen *et al.*³⁷) and isoepibatidine (energy minimised) shows excellent overlap of the two structures (Fig. 7.21A). The superposition of epibatidine and isoepiboxidine also shows how the two compounds might behave similarly in the receptor binding-site (Fig 7.21B).

Fig. 7.21 A: Superposition of epibatidine (8) (grey) and *syn*-isoepibatidine (49) (pink). B: Superposition of epibatidine (8) (grey) and *syn*-isoepiboxidine (51) (orange).

The fluorinated isoepibatidine **213** had only modest affinity at the $\alpha 4\beta 2$ receptor. This was disappointing in that the fluorinated epibatidine molecules produced by Kozikowski and co-workers have K_i values in the low nM range (see Section 5.2).⁸¹ However, the lower affinity of **213** by no means indicates that all fluorinated isoepibatidines will have similar properties.

Although binding data for the *syn*-isoepibatidines (49), the fluorinated analogue 213 and the isoepiboxidines (51 and 52) have been obtained and the subtype-selectivity of these compounds has, to some extent, also been elucidated, more detailed pharmacological

evaluation has not taken place. Hence, the compounds can only be assumed to be agonists based on their structural similarity to epibatidine.

7.3 The nicotinic receptor affinities of pyridyl-ether analogues of epibatidine

The compounds discussed above, whilst having very high nicotinic affinities, show no real improvement in receptor subtype selectivity in comparison to epibatidine. Some molecules with ether-linkages have demonstrated improved discrimination between subtypes (see Section 1.5.6); perhaps the most notable member of this class of compound, ABT-594 (48), showed promise as an analgesic and progressed to phase II clinical trials.^{85,86} The concept of attaching an azabicycle to a pyridyl moiety via an ether linkage was discussed in Chapter 4 along with descriptions of the syntheses of 150-155.

Fig. 7.30 Hybrids of epibatidine and ABT-594.

Nicotinic binding assays of **150-155** have been carried out, again at Eli Lilly, against $\alpha 4\beta 2$ and $\alpha 3\beta 4$ subtypes but only preliminary results have been obtained, which require verification. Initial indications are that **151**, **152**, **153** and **155** have very low affinities for both receptor subtypes. Compound **154** has a *syn*-7- configuration and the same atom connectivity (N-N) as ABT-594 (**48**) and it appears to have very similar receptor binding properties to ABT-594 (**48**). This has implications on the possible active conformation of ABT-594 and the superposition of **48** and **154** (Fig. 7.31A; both energy minimised) shows good overlap of the two structures. Similarly, the superposition of epibatidine (**8**) (active conformation³⁷) and **154** (energy minimised) shows excellent overlap (Fig. 7.31B). The *anti*-7-(pyridinyl-2-yloxy)-derivative **150** also showed high affinity for the $\alpha 4\beta 2$ receptor (K_i in low nM range). This molecule, at first examination, appears to have N-N distances beyond the range usually

expected to give nicotinic affinity (~4.5-5.0 Å) but further molecular modelling indicated a low energy conformation with N-N distances within the desired range. The pharmacological properties of **150** are currently under further investigation.

Fig. 7.31 A: Superposition of syn-7-(pyridin-3-yloxy)-2-azabicyclo[2.2.1]heptane (154) (green) and ABT-594 (48) (purple). B: Superposition of epibatidine (8) (grey) and syn-7-(pyridin-3-yloxy)-2azabicyclo[2.2.1]heptane (154) (green).

Some of the binding data discussed have been published in *Bioorganic and Medicinal* Chemistry Letters.¹⁷⁸

This Chapter has indicated that the target structures, which were selected on the basis of their potential nicotinic activity, do indeed have high affinities for nAChRs. Notably, isoepibatidine is almost as potent as epibatidine and preliminary data regarding the etherlinked analogues suggest that some have both high affinity and improved receptor subtype selectivity. These findings will also contribute to greater understanding of structure activity relationships and the nicotinic pharmacophore.

The previous chapters described the journey (including detours) to the targeted nicotinic agents. The majority of these studies involved 2-azanorbornanes, a molecular framework that continues to provide a source of mechanistic and synthetic interest and challenges. It is hoped that the contents of this thesis will contribute to the improved understanding of 2-azanorbornane chemistry.
Chapter 8 Experimental

This Chapter contains the experimental procedures and spectroscopic data for the compounds discussed in the previous Chapters. When experiments were repeated the most successful is recorded.

NMR spectra were recorded using Bruker ARX 250, DPX 300 and DRX 400 spectrometers. Chemical shifts are expressed in p.p.m. (δ) relative to the internal standard tetramethylsilane (TMS) or CFCl₃ in ¹⁹F NMR spectra. Signal characteristics are described using standard abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Signal multiplicities in ¹³C NMR were determined by DEPT experiments. The numbering of bicyclic and tricyclic compounds is as follows.

IR spectra were obtained using a PerkinElmer Spectrum One FT-IR spectrometer as films; band intensities are described as follows: s (strong), m (medium), w (weak). Mass spectra were recorded using a Micromass Quattro L.C. Triple Quadropole spectrometer (ionisation by electrospray). Accurate masses were measured on a Kratos Concept 1H Sector mass spectrometer with ionisation by fast atom bombardment (FAB) or electron impact (EI). Mass spectra are recorded in units of mass relative to charge $\binom{m}{z}$. Where only low resolution mass spectrometry data is given the compound was not suitable for accurate mass determination. Melting points were determined using a Kofler hot stage apparatus.

All reactions were carried out in oven-dried glassware under dry nitrogen unless stated otherwise. Reagents were supplied by Aldrich, Lancaster and Strem. Solvents were distilled by standard methods¹⁷⁹ or dried using an Innovative Technology Inc. Pure Solv solvent purification station. 'Petrol' refers to petroleum ether 40-60. Removal of solvents *in vacuo* was done using a Buchi rotary evaporator followed by a high vacuum pump. Solvents for chromatography were routinely basified with ammonia. Thin-layer chromatography was carried out using silica gel (Fisher 60).

2-Benzyl-2-azabicyclo[2.2.1]hept-5-ene (73)

Using the procedure described by Grieco et al.,¹⁰⁴ formaldehyde (6.3 ml 37% aqueous solution, 84 mmol) was added to a solution of benzylamine NBn hydrochloride (8.6 g, 60 mmol) in water (24 ml). Freshly distilled cyclopentadiene (9.9 ml, 120 mmol) was added; the flask was stoppered tightly and stirred vigorously at 20 °C for 9 h. The reaction mixture was poured into water (50 ml) and washed with diethyl ether: hexane 1:1 (4 \times 20 ml). The aqueous phase was basified by addition of solid potassium hydroxide (4.1 g); then extracted with diethyl ether (3 \times 60 ml). The combined diethyl ether extracts were dried over anhydrous MgSO₄ and then filtered; the solvents were removed in vacuo to give 73 as a pale yellow oil (9.57 g, 51.7 mmol, 86%). Rf (1:1, diethyl ether:petrol) 0.35. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.40 (dd, J = 2, 8 Hz, 1H, H_{7a}), 1.52 (dd, J = 2, 9 Hz, 1H, H_{3n}), 1.63 (d, J = 8 Hz, 1H, H_{7s}), 2.92 (brs, 1H, H₄), 3.16 (dd, J = 3, 9 Hz, 1H, H_{3x}), 3.33 (d, J = 13 Hz, 1H, CH₂Ph), 3.57 (d, J = 13 Hz, 1H, CH₂Ph), 3.81 (d, J = 2 Hz, 1H, H₁), 6.08 (dd, J = 2, 6 Hz, 1H, H₆), 6.37 (ddd, J = 1, 3, 6 Hz, 1H, H₅), 7.21 (m, 5H, Ph). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 43.9 (C₄), 48.1 (C₇), 52.5 (C₃), 59.1 (CH₂Ph), 64.3 (C₁), 130.9 (C₆), 136.2 (C₅), 126.7, 128.1, 128.6 (5 × aryl CH), 140.0 (aryl C). v_{max} 2992s, 2872s, 1504m, 1463m, 1375m, 1242m, 1202s cm⁻¹. $m_{7}C_{13}H_{15}N$ [M⁺] requires 185.12045; observed 185.12052.

3-Bromo-1-benzyl-1-azoniatricyclo[2.2.1.0^{2,6}]heptane tribromide (76)

Br Br Br Br Br Br Br Br Br Using the procedure described by Sosonyuk *et al.*,⁹⁸ 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene (73) (12.03 g, 64.9 mmol) was dissolved in dry DCM (120 ml). Bromine (6.0 ml, 129.5 mmol) was added drop-wise at -78 °C. The mixture was stirred as the temperature rose to 20 °C. Removal of the solvents *in vacuo* gave 76 as an orange oil (32.80 g, 64.9 mmol, 100%). $\delta_{\rm H}$ (250 MHz, CDCl₃) 2.39 (d, J = 13.5 Hz, 1H, H₅₈), 2.54 (d, J = 13.5 Hz, 1H, H_{5a}), 2.89 (brs, 1H, H₄), 3.37 (d, J =9.2 Hz, 1H, H_{7a}), 3.73 (d, J = 9.2 Hz, 1H, H_{7s}), 4.24 (d, J = 4.2 Hz, 1H, H₆), 4.28 (d, J = 4.2Hz, 1H, H₂), 4.68 (brs, 1H, H₃), 5.08 (brs, 2H, CH₂Ph), 7.45-7.61 (m, 5H, Ph). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 31.1 (CH₂Ph), 37.6 (C₄), 43.9 (C₂), 46.0 (C₆), 47.1 (C₃), 56.1 (C₇), 56.7 (C₅), 128.3 (Aryl C), 130.1, 131.0, 131.1 (5 × aryl CH). v_{max} 3053s, 3050w, 2307w, 1432w, 1280s, 923m cm⁻¹. C₁₃H₁₅NBr [M⁺] requires 264.03879; observed 264.03874.

3-Bromo-1-benzyl-1-azoniatricyclo[2.2.1.0^{2,6}]heptane bromide (74)

Using the procedure described by Sosonyuk *et al.*,⁹⁸ 3-bromo-1-benzyl-1azoniatricyclo[$2.2.1.0^{2,6}$]heptane tribromide (**76**) (32.80 g, 64.9 mmol) was dissolved in dry acetonitrile (100 ml). This solution was cooled to 0 °C and stirred vigorously under nitrogen whilst 2-benzyl-2-azabicyclo[2.2.1]hept-5-

ene **73** (12.06 g, 65.0 mmol) in dry acetonitrile (60 ml) was added drop-wise. After warming to 20 °C, the solvents were removed *in vacuo* yielding **74** as pale yellow crystals (22.3 g, 64.6 mmol, 100%). m.p. 128-130 °C. $\delta_{\rm H}$ (250 MHz, CDCl₃) 2.42 (brs, 2H, H₅), 2.83 (brs, 1H, H₄), 3.41 (d, J = 8.9 Hz, 1H, H_{7a}), 3.94 (d, J = 8.9 Hz, 1H, H_{7s}), 4.32 (d, J = 4.4 Hz, 1H, H₆), 4.42 (d, J = 4.4 Hz, 1H, H₂), 4.86 (brs, 1H, H₃), 5.34 (s, 2H, CH₂Ph), 7.42-7.73 (m, 5H, Ph). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 30.9 (CH₂Ph), 37.6 (C₄), 44.5 (C₂), 44.8 (C₆), 46.2 (C₃), 55.1 (C₇), 55.3 (C₅), 129.4 (Aryl C), 129.5, 130.3, 131.1 (5 × aryl CH). v_{max} 3049s, 3003w, 2318w, 1426m, 1278m, 898m cm⁻¹. ^m/_z C₁₃H₁₅NBr [M⁺] requires 264.03879; observed 264.03884.

7-Bromo-6-methoxy-2-benzyl-2-azabicyclo[2.2.1]heptane (80)

Br MeO NBn 3-Bromo-1-benzyl-1-azoniatricyclo[$2.2.1.0^{2,6}$]heptane bromide (74) (0.1449 g, 0.42 mmol) was dissolved in dry methanol (2 ml) and sodium borohydride (8.8 mg, 0.23 mmol) was added slowly with stirring and cooling with ice. The reaction mixture was refluxed under nitrogen for 0.5 h then water (3 ml) was added. This mixture was extracted with diethyl ether (4 × 2.5 ml); the combined diethyl ether extracts were dried over anhydrous MgSO₄ then filtered. The solvents were removed *in vacuo* yielding **80** as a pale yellow oil (18.6 mg, 0.07 mmol, 17%). $\delta_{\rm H}$ (250 MHz, CDCl₃) 2.02 (m, 1H, H_{5n}), 2.12 (m, 1H, H_{5x}), 2.56 (brs, 2H, H_{3n}, H₄), 2.63 (brs, 1H, H_{3x}), 3.30 (s, 3H, MeO), 3.33 (brs, 1H, H₁), 3.77 (brs, 1H, H₆), 3.81 (brs, 2H, CH₂Ph), 4.14 (brs, 1H, H₇), 7.24 (m, 5H, Ph). ν_{max} 3065s, 3020m, 2304w, 1433m, 1267m, 1116w, 900w cm⁻¹. $m/_{z}$ 279 (MH⁺).

2-Benzyl-2-azabicyclo[2.2.1]heptane (81)

Lithium aluminium hydride (0.145 g, 3.82 mmol) then 3-bromo-1-benzyl-1azoniatricyclo[$2.2.1.0^{2,6}$]heptane bromide (74) (0.0925 g, 0.27 mmol) were placed in the reaction flask and held under nitrogen. Dry THF (5 ml) was added slowly. The reaction mixture was stirred under nitrogen at 60 °C for 24 h. Excess lithium

aluminium hydride was quenched by adding water-saturated diethyl ether. The resulting mixture was filtered and the residue washed with DCM. All solvents were removed *in vacuo* yielding **81** as a yellow oil (29 mg, 0.16 mmol, 59%). R_f (7:3, petrol: diethyl ether) 0.68. [The

spectra were identical to those of an existing sample of **81**]. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.22-1.88 (m, 6H, H_{5x}, H_{5n}, H_{6n}, H_{7s}, H_{7a}), 2.24 (d, J = 9.1 Hz, 1H, H_{3n}), 2.35 (brs, 1H, H₄), 2.78 (ddd, $J \approx 9.1$, 3.5, 3.5 Hz, 1H, H_{3x}), 3.21 (brs, 1H, H₁), 3.63 (brs, 2H, CH₂Ph), 7.29 (m, 5H, Ph). $\nu_{\rm max}$ 3065s, 2980w, 2295w, 1425m, 1259m, 911w cm⁻¹. ^m/_z C₁₃H₁₈N [MH⁺] requires 188.14392; observed 188.14398.

anti-7-Bromo-2-benzyl-2-azabicyclo[2.2.1]heptane (82)

Lithium aluminium hydride (0.53 g, 13.97 mmol) and 3-bromo-1-benzyl-1-Br~ azoniatricyclo[2.2.1.0^{2,6}]heptane bromide 74 (3.056 g, 8.85 mmol) were cooled to -78 °C under nitrogen in a dry flask. Dry THF (100 ml) was added with ŃBn stirring and the mixture allowed to warm to -20 °C over a period of 1 h followed by addition of water-saturated diethyl-diethyl ether until effervescence stopped. The mixture was filtered, the residue was washed with DCM and, after drying with anhydrous MgSO₄, the solvents were removed in vacuo to give crude 82. Purification by flash chromatography (petrol: diethyl ether, 7:3) gave a pale yellow oil (1.359 g, 5.11 mmol, 58%). R_f (7:3, petrol: diethyl ether) **0.36**. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.42, 1.77-2.13 (m, 4H, H_{5.6}), 2.43 (brs, 1H, H₄), 2.47 (d, J = 9.2Hz, 1H, H_{3n}), 2.82 (ddd, $J \approx 9.2$, 3.3, 3.3 Hz, 1H, H_{3x}), 3.23 (brs, 1H, H₁), 3.68 (dd, J = 13.4, 17.2 Hz, 2H, CH₂Ph), 4.24 (d, J = 1.7 Hz, 1H, H_{7s}), 7.18 (m, 5H, Ph). δ_{C} (62.9 MHz, CDCl₃) 25.2, 26.7 (C₅, C₆), 44.0 (C₄), 53.4 (C₇), 58.0 (C₃), 59.0 (CH₂Ph), 64.9 (C₁), 126.9, 128.1, 128.2 (5 × aryl CH), 139.2 (aryl C). v_{max} 3064s, 2982m, 2276w, 1504m, 1463m, 1430m, 1380w, 1279s, 1150w, 907m cm⁻¹. m_{z} 266/268 (1:1) (MH⁺). C₁₃H₁₆NBr [M⁺] requires 265.04661; observed 265.04659. Alternatively, reduction using Red-Al¹⁰⁸ (65+ % wt. solution in toluene, 7.65 ml, 26.0 mmol) and 74 (8.96 g, 26.0 mmol) in dry THF (225 ml) at -10 °C for 2 h gave 82 as a pale yellow oil (6.42 g, 24.1 mmol, 93%).

anti-7-Chloro-2-benzyl-2-azabicyclo[2.2.1]heptane (85)

LiCl (218 mg, 5.13 mmol) was added to a solution of 7-bromo-2-benzyl-2azabicyclo[2.2.1]heptane (82) (63.7 mg, 0.24 mmol) in dry DMF (1.0 ml) in a reaction-vial. The reaction mixture was heated to 100 °C for 24 h, cooled, poured into water (2 ml) then extracted with diethyl-diethyl ether (3 × 2 ml). The combined organic extracts were dried over anhydrous MgSO₄, filtered, and the solvents evaporated *in vacuo* yielding 85 as a pale yellow oil (41 mg, 0.18 mmol, 77%). R_f (EtOAc:MeOH, 9:1) 0.79. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.41, 1.80-2.08 (2 × m, 1H, 3H, H_{5,6}), 2.34 (brs, 1H, H₄), 2.38 (d, J =9.2 Hz, 1H, H_{3n}), 2.85 (ddd, $J \approx$ 9.2, 3.2, 3.2 Hz, 1H, H_{3x}), 3.16 (brs, 1H, H₁), 3.66 (brs, 2H, CH₂Ph), 4.20 (brs, 1H, H_{7s}), 7.27 (m, 5H, Ph). δ_{C} (62.9 MHz, CDCl₃) 24.2, 26.2 (C₅, C₆), 43.5 (C₄), 58.0 (C₃), 58.5 (CH₂Ph), 62.0 (C₇), 64.5 (C₁), 126.8, 128.1, 128.3 (5 × aryl CH), 139.1 (aryl C). ν_{max} 3064m, 2991m, 2318w, 1683s, 1500w, 1453w, 1289w, 1256s, 843w cm⁻¹. ^m/_z C₁₃H₁₇NCl [MH⁺] requires 222.10495; observed 222.10500.

anti-7-Cyano-2-benzyl-2-azabicyclo[2.2.1]heptane (87)

NC KCN (2.36 g, 35.70 mmol) and 18-crown-6 (~ 0.1 mg) were added to 7-bromo-2-benzyl-2-azabicyclo[2.2.1]heptane (82) (0.765 g, 2.88 mmol) in anhydrous DMF (10 ml) and the mixture was stirred vigorously under nitrogen at 110 °C for 24 h. The reaction mixture was filtered and washed with diethyl ether; removal of solvents *in vacuo* gave a yellow oil. Purification by flash chromatography (3:7, petrol: diethyl ether) yielded 87 as a yellow oil (0.405 g, 1.91 mmol, 66%). R_f 0.32. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.49, 1.94 (2 × m, 1H, 3H, H₅, H₆), 2.45 (d, *J* = 9.4 Hz, 1H, H₃n), 2.73 (m, 3H, H_{3x}, H₄, H_{7s}), 3.47 (brs, 1H, H₁), 3.67 (AB, *J* = 13.4 Hz, 2H, CH₂Ph), 7.29 (m, 5H, Ph). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 26.2, 26.6 (C₅, C₆), 35.3 (C₇), 42.6 (C₄), 58.6 (C₃), 58.7 (CH₂Ph), 64.3 (C₁), 119.5 (CN), 127.0, 128.2, 128.3 (5 × aryl CH), 138.7 (aryl C). v_{max} 2973s, 2874s, 2234s, 1494s, 1453s cm⁻¹. m'_z C₁₄H₁₇N₂ [MH⁺] requires 213.13917; observed 213.13914.

anti-7-(Imidazole-1-yl)-2-benzyl-2-azabicyclo[2.2.1]heptane (88)

Butyllithium (0.31 ml, 1.6 M, 0.49 mmol) was added drop-wise to imidazole (34 mg, 0.50 mmol) in anhydrous DMF (1.5 ml) and this mixture was stirred under nitrogen at 20 °C for 0.25 h. A solution of 7-bromo-2-benzyl-2-azabicyclo[2.2.1]heptane (82) (103 mg, 0.39 mmol) in anhydrous DMF (4 ml)

was added and after stirring under nitrogen at 100 °C for 96 h, the mixture was filtered and the residue washed with diethyl ether. The combined organic extracts were washed with water (2 × 2 ml), and the solvents removed *in vacuo*. Purification by flash chromatography (diethyl ether) gave **88** as a yellow oil (52 mg, 0.206 mmol, 53%). R_f 0.20. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.42 (m, 1H, H_{6x}), 1.47 (m, 1H, H_{5n}), 1.68 (m, 1H, H_{5x}), 2.00 (m, 1H, H_{6n}), 2.45 (d, J = 9.4 Hz, 1H, H_{3n}), 2.81 (brs, 1H, H₄), 3.15 (ddd, $J \approx 9.4$, 3.2, 3.2 Hz, 1H, H_{3x}), 3.63 (brs, 1H, H₁), 3.69 (brs, 2H, CH₂Ph), 4.36 (brs, 1H, H₇), 6.87 (brs, 1H, imidazole), 7.06 (brs, 1H, imidazole), 7.14 (m, 5H, Ph), 7.46 (brs, 1H, imidazole). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 23.9, 26.6 (C₅, C₆), 41.1 (C₄), 57.9 (C₃), 58.2 (CH₂Ph), 61.6 (C₇), 62.9 (C₁), 118.5 (imidazole CH), 127.0, 128.2, 128.3 (5 × aryl CH), 129.0, 136.6 (2 × imidazole CH), 139.0 (aryl C). v_{max} 3052m, 2972m, 2305w, 1501w,

1452w, 1374w, 1265s, 1082w, 910w cm⁻¹. $m/_z C_{16}H_{20}N_3$ [MH⁺] requires 254.16572; observed 254.16564.

anti-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (86)

7-Bromo-2-benzyl-2-azabicyclo[2.2.1]heptane (82) (110 mg, 0.41 mmol) and HO. LiOH (173 mg, 4.1 mmol) in anhydrous DMF (8 ml) were stirred at 100 °C for 24 h. The reaction mixture was cooled, added to water (30 ml), and extracted ŃВп with diethyl ether (4 \times 25 ml). The combined extracts were washed with water (3 \times 35 ml), dried over anhydrous MgSO4 then filtered. Removal of solvents in vacuo gave a yellow oil which was chromatographed (9:1, EtOAc: MeOH) yielding 86 as a pale yellow oil (47 mg, 56 %). R_f 0.53. δ_H (300 MHz, CDCl₃) 1.34-1.43 (m, 1H, H_{5n}), 1.70-1.78 (m, 1H, H_{6x}), 1.88-2.00 (m, 2H, H_{5x} , H_{6n}), 2.11 (brs, 1H, H_4), 2.19 (d, J = 9.3 Hz, 1H, H_{3n}), 2.40 (brs, OH), 3.03 (brs, 1H, H₁), 3.05 (ddd, $J \approx 9.3$, 3.6, 3.0 Hz, 1H, H_{3x}), 3.65, 3.70 (AB, J = 13.4 Hz, 2H, CH₂Ph), 4.29 (brs,1H, H₇), 7.21-7.35 (m, 5H, Ph). δ_C (75.5 MHz, CDCl₃) 22.7, 26.5 (C₅, C₆), 41.6 (C₄), 57.7, 58.1 (CH₂Ph, C₃), 62.9 (C₁), 76.3 (C₇), 126.8, 128.2, 128.5 (5 × aryl CH), 139.2 (aryl C). v_{max} 3053m, 2970m, 2303w, 1421w, 1265s cm⁻¹. $m/_z$ C₁₃H₁₈NO [MH⁺] requires 204.13884; observed 204.13886. Using the procedure described by Mitch et al.¹⁰⁸, 82 (3.06 g, 11.5 mmol) and 1-methyl-2-pyrrolidinone (containing 15% v/v H₂O; 56 ml) were stirred at 100 °C for 67 h. The reaction mixture was diluted with water (150 ml), basified with aqueous NaOH, and extracted with diethyl ether (4 \times 100 ml). The combined organic extracts were washed with water (4 \times 100 ml), dried over anhydrous MgSO₄ then filtered and evaporated to yield 86 as a yellow oil (1.54 g, 66%) showing identical NMR spectra to the sample obtained above.

anti-2-Benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (98)

EtOOC Aqueous HCl (4 ml, 8 M) was added to 7-cyano-2-benzyl-2azabicyclo[2.2.1]heptane (87) (0.309 g, 1.46 mmol) and stirred under nitrogen at 90 °C for 65 h. The mixture was evaporated to dryness; thionyl chloride (4 ml) was added then stirred at 40 °C for 6 h. The thionyl chloride was removed *in vacuo* then dry ethanol (5 ml) was added and stirred at 20 °C for 0.5 h. After removal of the solvents *in vacuo*; the resulting yellow oil was dissolved in HCl (4 ml, 1 M) and washed with DCM (3 × 4 ml). The aqueous layer was basified with ammonium hydroxide solution (8 ml, 35% ammonia) and extracted with DCM (3 × 4 ml). The organic layers were combined and dried over anhydrous MgSO₄. Removal of solvents *in vacuo* gave **98** as a yellow oil (0.290 g, 1.12 mmol, 77%; the sample was sufficiently pure for the epimerisation to give **99**). R_f (3:2 diethyl ether:petrol) 0.41. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.24 (t, J = 7.1 Hz, 3H, CH₃), 1.40, 1.60-1.95 (2 × m, 4H, H₅, H₆), 2.40 (d, J = 9.4 Hz, 1H, H_{3n}), 2.61 (brs, 1H, H₄), 2.86 (ddd, $J \approx 9.4$, 3.4, 3.4 Hz, 1H, H_{3x}), 2.93 (brs, 1H, H₁), 3.44 (brs, 1H, H_{7s}), 3.66, 3.74 (AB, J = 13.5 Hz, 2H, CH₂Ph), 4.13 (q, J = 7.1 Hz, 2H, CH₂CH₃), 7.33 (m, 5H, Ph). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 14.0 (CH₃), 25.5, 26.9 (C₅, C₆), 40.1 (C₄), 51.2 (C₇), 58.4 (CH₂Ph), 59.9 (C₃), 60.0 (<u>C</u>H₂CH₃), 62.2 (C₁), 126.8, 128.2, 128.2 (5 × aryl CH), 138.9 (aryl C), 171.7 (CO₂). $v_{\rm max}$ 3053s, 2982s, 2305w, 1725s, 1452m, 1370m, 1265s, 1214m, 1180m, 1043m, 896w cm⁻¹. ^m/_z C₁₆H₂₂NO₂ [MH⁺] requires 260.16505; observed 260.16510.

syn-2-Benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (99)

COOEt To anti-2-benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (87) (3.387 g, 13.10 mmol) was added NaOEt in EtOH (0.63 M, 42 ml) and dry HMPA (0.1 ml) and the mixture was stirred at 65 °C for 24 h. After addition ν́Вп of the mixture to water (50 ml) and extraction with DCM (5 \times 60 ml), the organic extracts were combined, dried over anhydrous MgSO₄ and filtered. Capillary GC analysis [25 m HP-FFAP column] indicated the presence of both 87 and 99 (anti/syn = 55:45). Chromatography (3:2 diethyl ether: petrol) yielded 87 (1.399 g; 41%), Rf 0.41 and 99 (1.56 g, 6.02 mmol, 46%), Rf 0.59. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.28 (t, J = 7.1 Hz, 3H, CH₃), 1.32-1.54, 1.54-1.69, 1.84 (3 × m, 2H, 1H, 1H, H₅, H₆), 1.93 (d, J = 8.4 Hz, 1H, H_{3n}), 2.48 (brs, 1H, H₇), 2.55 (brs, 1H, H₄), 3.28 (ddd, $J \approx 8.4$, 3.5, 3.5 Hz, 1H, H_{3x}), 3.48 (brs, 1H, H₁), 3.68 (brs, 2H, CH₂Ph), 4.18, 4.20 (complex - 2 overlapping dq, J = 7.1 Hz, 2H, CH₂CH₃), 7.25-7.28 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 14.3 (CH₃), 23.7, 29.7 (C₅, C₆), 39.4 (C₄), 53.7 (C₇), 55.5, 56.5, 60.0 (<u>C</u>H₂CH₃, CH₂Ph, C₃), 62.7 (C₁), 126.5, 128.0 (5 × aryl CH), 140.0 (aryl C), 172.2 (CO₂). ν_{max} 2976s, 2870s, 1733s, 1453s, 1186s cm⁻¹. ^m/_z C₁₆H₂₂NO₂ [MH⁺] requires 260.16505; observed 260.16509.

syn-2-Benzyl-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (100)

Using the procedure described by Badio *et al.*,⁵⁵ acetoxime (129 mg, 1.77 mmol) was dissolved in dry THF (4 ml) and held at 0 °C. Butyllithium (2.21 ml, 1.6 M, 3.53 mmol) was added and the mixture was stirred at 20 °C for 0.8 h. *syn*-2-benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (**99**) (174 mg, 0.67 mmol) dissolved in dry THF (2 ml) was added. After stirring at

60 °C for 1 h the solvent was evaporated using nitrogen. HCl (8 ml, 10.2 M) was added and the mixture stirred at 80 °C for 4.5 h then 12 h at RT. The reaction mixture was basified with

saturated NaHCO₃ solution (~ 15 ml) and extracted with DCM (4 × 40 ml). The organic layers were combined and removal of the solvents *in vacuo* gave an orange oil which was dissolved in HCl (1M, 3ml) and washed with diethyl ether (4 × 2 ml). The aqueous layer was basified (NH₄OH solution) and extracted with DCM (4 × 2 ml). The DCM extracts were dried over MgSO₄ and filtered. Flash chromatography (9:1, diethyl ether: MeOH) gave **100** as a colourless oil (65 mg, 36%), R_f 0.56. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.45-1.62 (m, 2H, H_{5n}, H_{6x}), 1.74-1.87 (m, 1H, H_{5x}), 2.00-2.13 (m, 1H, H_{6n}), 2.02 (d, *J* = 9.1 Hz, 1H, H_{3n}), 2.30 (s, 3H, CH₃), 2.52 (brs, 1H, H₄), 2.88 (brs, 1H, H₇), 3.09 (ddd, *J* ≈ 9.1, 3.5, 3.5 Hz, 1H, H_{3x}), 3.46 (brs, 1H, H₁), 3.68, 3.74 (AB, *J* = 13.8 Hz, 2H, CH₂Ph), 6.16 (s, 1H, isoxazole CH), 7.17-7.33 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 11.5 (isoxazole CO), 24.1, 29.9 (C₅, C₆), 41.8 (C₄), 46.6 (C₇), 55.8, 56.2 (CH₂Ph, C₃), 63.0 (C₁), 102.3 (isoxazole CH), 126.6, 128.1 (5 × aryl CH), 138.8 (aryl C), 159.6, 172.3 (2 × isoxazole C). v_{max} 2961s, 1601s, 1494m, 1418s, 1370m, 1184m, 1010m. m'_z C₁₇H₂₁N₂O [MH⁺] requires m'_z 269.16539; observed 269.16537.

anti-2-Azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (103)

EtOOC

A solution of *anti*-2-benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (**98**) (1.399 g, 5.40 mmol) in dry MeOH (40 ml) was hydrogenolyzed over Pd/C (10%, 0.25 g) with stirring for 24 h. The reaction mixture was filtered through celite and the solvent removed *in vacuo* to leave

a yellow oil which was chromatographed (17:3, diethyl ether: MeOH) to provide **103** (0.612 g, 3.62 mmol 67%), R_f 0.29. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.25 (t, J = 7.1 Hz, 3H, CH₃), 1.48-1.57, 1.77-1.98 (2 × m, 2H, 2H, H₅, H₆), 2.62 (brs, 1H, H₄), 2.69 (d, J = 9.5 Hz, 1H, H_{3n}), 2.73 (brs, 1H, H₇), 3.01 (ddd, $J \approx 9.5$, 3.0, 3.0 Hz, 1H, H_{3x}), 3.61 (brs, 1H, H₁), 4.12 (q, J = 7.1 Hz, 2H, CH₂CH₃). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 13.9 (CH₃), 26.8, 30.9 (C₅, C₆), 39.2 (C₄), 51.9 (C₃), 53.6 (C₇), 57.4 (C₁), 60.0 (CH₂CH₃), 171.5 (CO). $\nu_{\rm max}$ 3407b, 2979s, 1730s, 1541m, 1372m, 1226s, 1051m cm⁻¹. $m/_z$ C₉H₁₆NO₂ [MH⁺] requires 170.11810; observed 170.11811.

anti-2-Boc-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (104)

EtOOC anti-2-Azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (103) (103 mg, 0.61 mmol), Boc₂O (202 mg, 0.93 mmol) and NaHCO₃ (187 mg, 2.23 mmol) were stirred in THF (2 ml) and water (6 ml) at RT for 20 h. The reaction mixture was extracted with diethyl ether (4 × 4 ml), the organic extracts were combined, dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. The resulting colorless oil was chromatographed (7:3 diethyl ether:petrol) yielding 104 (105 mg, 0.39 mmol, 64%), R_f 0.54. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication (slow N-CO rotation - ratio ~52:48) the minor rotamer signal is shown in italics] 1.27 (bt, J = 7.0 Hz, 3H, CH₃), *1.45*, 1.46 (2 × s, 9H, Boc), 1.57-1.88 (m, 4H, H₅, H₆), 2.76 (m, 2H, H₄, H₇), *3.01*, 3.07 (2 × d, J = 9.7 Hz, 1H, H_{3n}), 3.32, *3.35* (2 × brs, 1H, H_{3x}), 4.15 (bq, J = 7.0 Hz, 2H, CH₂CH₃), 4.31, 4.45 (2 × brs, 1H, H₁). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 14.1 (CH₂CH₃), *25.8*, 26.0, [28.5 (Boc CH₃)] *29.1*, 29.3 (C₅, C₆), 39.1, *39.6* (C₄), *52.6*, 53.0 (C₇), 53.1, *53.7* (C₃), *57.3*, 58.1 (C₁), 60.5 (CH₂CH₃), *79.2*, 79.3 (Boc C), *153.7*, 154.1 (Boc CO), 170.5 (CO). $\nu_{\rm max}$ 2977s, 1736s, 1697s, 1408s, 1173s, 1101s, 1048s cm⁻¹. ^m/_z C₁₄H₂₄NO₄ (MH⁺) requires 270.17053; observed 270.17050.

anti-7-(3-Methyl-isoxazol-5-yl)-2-Boc-2-azabicyclo[2.2.1]heptane (105)

Using the procedure described by Fitch *et al.*,⁶⁵ a solution of butyllithium (0.58 ml, 1.6 M in hexanes, 0.93 mmol) was added drop-wise over 10 min to a solution of acetoxime (34 mg, 0.47 mmol) in dry THF (1 ml) under nitrogen at 0 $^{\circ}$ C. After stirring for 2 h at 0 $^{\circ}$ C a solution of *anti-*2-

Boc-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (**104**) (58 mg, 0.22 mmol) in dry THF (1 ml) was added over 10 min. The reaction mixture was stirred under nitrogen at 0 °C for 20 h then transferred to vigorously stirred HCl (1 M, 8 ml) over 40 min. This mixture was neutralized (NaHCO₃) and extracted with DCM (5 × 15 ml), the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. The resulting yellow oil was chromatographed (7:3 diethyl ether:petrol) yielding **105** (19 mg, 48% based on recovered **104**), R_f 0.21 and **104** (19 mg), $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication (slow N-CO rotation - ratio ~2:3) the minor rotamer signal is shown in italics] 1.47 (s, 9H, Boc), 1.60-1.86 (m, 4H, H₅, H₆), 2.28 (s, 3H, CH₃), 2.85 (brs, 1H, H₄), 3.14 (brs, 1H, H_{3n}), 3.45 (brddd, $J \approx 9.6$, 2.7, 2.7 Hz, 1H, H_{3x}), 4.43, 4.51 (2 × brs, 1H, H₁), 5.88 (brs, 1H, isoxazole CH). $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 11.4 (isoxazole CH₃), 25.9, [28.5 (Boc CH₃),] 28.9, 29.2 (C₅, C₆), 40.1, 40.7 (C₄), 46.0, 46.3 (C₇), 53.2, 53.7 (C₃), 58.3, 59.3 (C₁), 79.6 (Boc C), 102.6 (isoxazole CH), 154.2 (Boc CO), 159.7, 170.0 (2 × isoxazole C). v_{max} 2976m, 1694s, 1406s, 1173m, 1112m cm⁻¹. ^m/_z C₁₅H₂₃N₂O₃ (MH⁺) requires 279.17087; observed 279.17085.

anti-7-(3-Methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (anti-isoepiboxidine) (52)

anti-2-Boc-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (105) (8.3 mg, 0.030 mmol) was stirred in a mixture of EtOH (0.435 ml), ethyl acetate (1.205 ml) and acetyl chloride (0.359 ml) at 0 °C for 1 h. The reaction mixture was evaporated to dryness to give the hydrochloride salt

of **52** (6.4 mg, 99 %). Data for the free amine **52**: $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.40-1.75 (m, 4H, H₅, H₆), 1.9 (brs, NH), 2.27 (s, 3H, CH₃), 2.71 (brs, 1H, H₄), 2.77 (d, J = 9.6 Hz, 1H, H_{3n}), 3.09 (brs, 1H, H₇), 3.13 (m,1H, H_{3x}), 3.71 (brs, 1H, H₁), 5.85 (s, 1H, isoxazole CH). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 11.4 (isoxazole CH₃), 26.8, 31.0 (C₅, C₆), 40.4, 47.2 (C₄, C₇), 52.3 (C₃), 58.7 (C₁), 102.3 (isoxazole CH), 159.6, 171.4 (2 × isoxazole C). $v_{\rm max}$ 3392b, 2968s, 2876m, 1725w, 1602s, 1534m, 1415s cm⁻¹. $m/_z$ C₁₀H₁₅N₂O [MH⁺] requires $m/_z$ 179.11844; observed 179.11839.

Direct formation of *anti*-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (52) from 103

The procedure described for 105 was followed using acetoxime (76 mg, 1.04 mmol) in dry THF (3 ml), butyllithium (1.43 ml, 1.6 M, 2.29 mmol) and the *anti*-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (103) (65 mg, 0.38 mmol) in dry THF (2 ml). HCl (8 ml, 10.2 M) was used in the

second step and, after work-up 52 was isolated as an orange oil (28 mg). Quantitative ¹H NMR analysis gave a yield of 16.2 mg, 24%.

syn-2-Azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (106)

syn-2-Benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (99)(1.56 g, 6.02 mmol) in dry MeOH (40 ml) was hydrogenolyzed as described for 103 to yield 106 as a yellow oil (0.625 g, 3.67 mmol 61%), R_f 0.30. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.27 (t, J = 7.1 Hz, 3H, CH₃), 1.40-1.77 (m, 4H, H₅, H₆), 2.0 (brs NH), 2.51 (brs, 1H, H₇), 2.59 (brs, 1H, H₄), 2.61 (d, J = 9.8 Hz, 1H, H_{3n}), 3.13 (ddd, $J \approx 9.8$, 3.1, 3.1 Hz, 1H, H_{3x}), 3.61 (brd, ≈ 2.6 Hz, 1H, H₁), 4.14 (complex 'q', J = 7.1 Hz, 2H, CH₂CH₃). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 13.9 (CH₃), 28.8, 30.8 (C₅, C₆), 40.0 (C₄), 49.8, [52.2, 52.4 (C₇), 58.27, 58.31 (C₁),] 60.0 (C₃, CH₂CH₃), 172.3, 172.7 (CO). v_{max} 3406b, 2977s, 1728s, 1542m, 1409s, 1303m, 1192m, 1037m cm⁻¹. ^m/_z C₉H₁₆NO₂ [MH⁺] requires ^m/_z 170.11810; observed 170.11812.

syn-2-Boc-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (107)

Treatment of syn-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (106) (128 mg, 0.76 mmol) with Boc₂O (262 mg, 1.20 mmol) and NaHCO₃ (200 mg, 2.38 mmol), in THF (2 ml) and water (6 ml) using the method described for 104 gave 107 as a pale yellow oil (130 mg, 0.49 mmol, 64%),

R_f (7:3, diethyl ether: petrol) 0.39. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication due to slow N-CO rotation (ratio ~45:55) the minor rotamer signal is shown in italics.] 1.24 (t, J = 7.1 Hz, 3H, CH₃), *1.44*, 1.46 (2 × s, 9H, Boc), 1.64-1.80 (m, 4H, H₅, H₆), 2.53 (brs, 1H, H₇), 2.72, 2.75 (2 × brs, 1H, H₄), 2.94, 3.00 (2 × d, J = 9.8 Hz, 1H, H_{3n}), 3.51 (m, 1H, H_{3x}), 4.13 (m, 2H, CH₂CH₃), 4.39, 4.51 (2 × brs, 1H, H₁). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 14.2 (CH₂CH₃), 27.4, [28.5 (Boc CH₃),] 30.7 (C₅, C₆), 39.4, 40.0 (C₄), 50.6, 51.2 (C₃), 52.2, 53.0 (C₇), 58.2, 58.9 (C₁), 60.4, 60.5 (CH₂CH₃), 79.0, 79.1 (Boc C), 154.2, 154.5 (Boc CO), 170.6, 170.9 (CO₂). v_{max} 2974m, 1735s, 1696s, 1406s, 1163s, 1104s cm⁻¹. ^m/_z C₁₄H₂₄NO₄ [MH⁺] requires 270.17053; observed 270.17057.

syn-7-(3-Methyl-isoxazol-5-yl)-2-Boc-2-azabicyclo[2.2.1]heptane (108)

Acetoxime (74 mg, 1.01 mmol), butyllithium in hexanes (1.27 ml, 1.6 M, 2.03 mmol) and *syn*-2-Boc-2-azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (107) (133 mg, 0.49 mmol) were reacted using the procedure described for 105 to give 108 (61 mg, 52% based on recovered 107). R_f (7:3, diethyl ether: petrol)

0.35, and recovered 107 (19 mg). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] *1.43*, 1.47 (2 × s, 9H, Boc), 1.57-1.95 (m, 4H, H₅, H₆), *2.24*, 2.25 (2 × s, 3H, CH₃), 2.74, *2.80* (2 × brs, 1H, H₄), 2.94, *2.95* (2 × brs, 1H, H₇), *2.96*, 3.03 (2 × d, *J* = 10.0 Hz, 1H, H_{3n}), 3.15, *3.27* (2 × ddd, *J* ≈ 10.0, 2.7, 2.7 Hz, 1H, H_{3x}), *4.35*, 4.51 (2 × brs, 1H, H₁), 5.84, *5.91* (2 × brs, 1H, isoxazole CH). $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 11.4 (isoxazole CH₃), 28.1, [*28.5*, 28.6 (Boc CH₃)], *30.6*, 30.9 (C₅, C₆), *40.8*, 41.4 (C₄), 45.6, *46.1* (C₇), 50.1, *50.8* (C₃), *58.6*, 59.7 (C₁), *79.4*, 79.6 (Boc C), 102.1, *102.3* (isoxazole CH), 154.5 (Boc CO), 159.8, *170.2*, 170.4 (2 × isoxazole C). $\nu_{\rm max}$ 2976s, 2359s, 1694s, 1406s, 1150s, 1112s cm⁻¹. ^m/_z C₁₃H₂₃N₂O₃ [MH⁺] requires ^m/_z 279.17087; observed 279.17088.

syn-7-(3-Methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (syn-isoepiboxidine) (51)

syn-2-Boc-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (108) (12.5 mg, 0.0450 mmol) was deprotected as described for compound 52, yielding the hydrochloride salt of compound 51 (9.6 mg, 99 %). Data for the free amine 51: $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.49-1.68 (m, 2H, H_{5n}, H_{6n}), 1.72-1.91 (m, 2H, H_{5x}, H_{6x}), 2.27 (bs, 3H, CH₃, NH), 2.66 (brs, 1H, H₄), 2.67 (d, J = 9.9 Hz, 1H, H_{3n}),

2.91 (brs, 1H, H₇), 2.99 (ddd, $J \approx 9.9$, 3.2, 3.2 Hz, 1H, H_{3x}), 3.66 (brd, J = 2.5 Hz, 1H, H₁), 5.96 (s, 1H, isoxazole CH). δ_{C} (75.5 MHz, CDCl₃) 11.3 (isoxazole CH₃), 29.0, 31.9 (C₅, C₆), 40.8, 46.5 (C₄, C₇), 49.9 (C₃), 59.2 (C₁), 102.4 (isoxazole CH), 159.7, 171.6 (2 × isoxazole C). ν_{max} 3400b, 2966s, 2877s, 1602s, 1418s cm⁻¹. ^m/_z C₉H₁₆NO₂ [MH⁺] requires 179.11844; observed 179.11842.

Direct formation of syn-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (51) from 106

Acetoxime (72 mg, 0.99 mmol) in dry THF (3 ml) was treated with butyllithium (1.30 ml, 1.6 M, 2.08 mmol) and the *syn-2*azabicyclo[2.2.1]heptane-7-carboxylic acid ethyl ester (**106**) (54 mg, 0.32 mmol) in dry THF (2 ml) following the procedure described for **105**. Following work-up using HCl (8 ml, 10.2 M), **51** was isolated as an orange oil

(30 mg). Quantitative ¹H NMR analysis using an internal standard (DCM) gave a yield of 14.6 mg, 26%.

anti-7-Bromo-2-azabicyclo[2.2.1]heptane (120)

Br *anti*-7-Bromo-2-benzyl-2-azabicyclo[2.2.1]heptane (82) (2.80 g, 0.012 mol) in dry methanol (60 ml) was hydrogenated as described for 103, flash chromatography (diethyl ether: methanol; 9:1) gave 120 as a colourless oil (32%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.42-1.63 (m, 2H, H_{5n}, H_{6n}), 1.97-2.17 (m, 2H, H_{5x}, H_{6x}), 2.40 (dd, 3.8, 3.8 Hz, 1H, H₄), 2.68 (d, 9.7 Hz, 1H, H_{3n}), 3.00 (ddd, $J \approx 9.7$, 3.4, 3.4 Hz, 1H, H_{3x}), 3.37 (dd, J = 3.1, 3.1 Hz, 1H, H₁), 4.04 (dd, 1.5, 1.5 Hz, 1H, H₇). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 26.5, 29.3 (C₅, C₆), 42.3 (C₄), 49.9 (C₃), 55.0 (C₇), 60.2 (C₁). $\nu_{\rm max}$ 2976s, 2524m, 1636s, 1522m, 1421s cm⁻¹. ^m/_z C₆H₁₁NBr [MH⁺] requires 176.00749; observed 176.00751.

anti-7-Bromo-2-Boc-2-azabicyclo[2.2.1]heptane (121)

Following the procedure described for 104 using: *anti*-7-bromo-2azabicyclo[2.2.1]heptane (120) (344 mg, 1.95 mmol); Boc₂O (694 mg, 3.18 mmol), NaHCO₃ (595 mg, 6.77 mmol); THF (4 ml), H₂O (12 ml). After reaction at RT for 72 h 121 was obtained as a white semi-solid (448 mg, 1.62 mmol, 83%) R_f (diethyl ether:petrol) 0.57. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.45 (brs, 9H, Boc), 1.04-1.88, 2.02-2.23 (2 × m, 4H, H₅, H₆), 2.57 (brs, 1H, H₄), 3.05, 3.10 (2 × d, *J* = 9.6 Hz, 1H, H_{3n}), 3.34 (ddd, *J* ≈ 9.6, 3.1, 3.1 Hz, 1H, H_{3x}), 4.05 (brs, 1H, H₇), 4.05, 4.25 (2 × brs, 1H, H₁). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.6, 28.1 (C₅, C₆), 28.4 (Boc CH₃), 43.0, 43.5 (C₄), 51.9 (C₇), 51.3, 52.1 (C₃), 59.7, 60.8 (C₁), 79.7 (Boc C), 153.9 (Boc CO). $\nu_{\rm max}$ 2977s, 1692s, 1398s, 1331m, 1304m, 1246m, 1155s, 1111s cm⁻¹. ^m/_z C₁₁H₁₉NO₂Br [MH⁺] requires 276.05987.

anti- and syn-7-phenyl-2-Boc-2-azabicyclo[2.2.1]heptane (122 and 123)

Using a procedure adapted from that described by Zhou and Fu.¹²³ In a glove box, Ni(cod)₂ (20 mg, 0.073 mmol) was placed in a two-necked flask. Bathophenanthroline (49 mg, 0.147 mmol), benzene boronic acid (57 mg, 0.467 mmol)

and freshly sublimed ¹BuOK (103 mg, 0.918 mmol) were added, the reaction vessel was evacuated and refilled with nitrogen thrice. Dry *s*-BuOH (7 ml) was added and the reaction mixture stirred for 10 min at RT under nitrogen, the reaction mixture colour changed to deeppurple, indicating the formation of the active complex. A solution of the halide (121) (105 mg, 0.380 mmol) in *s*-BuOH (2 ml) was added and the resulting mixture stirred under nitrogen at reflux for 48 h, then cooled and passed through a short pad of silica. Solvents were removed *in vacuo*, the resulting residue was flash chromatographed (diethyl ether:petrol; 1:1) to give **122** and **123** as a pale yellow oil (~ 40:60; *anti-:syn-*)(52 mg, 0.19 mmol, 50%) R_f 0.49. $\delta_{\rm H}$ [300 MHz, CDCl₃; the signals corresponding to the minor (*anti-*) epimer are underlined; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.37, 1.45, 1.48, 1.50 (4 × brs, 9H, Boc), 1.50-1.73, 1.73-2.01 (2 × m, 4H, H₅, H₆), *2.64*, 2.65, <u>2.86</u> (3 × brs, 1H, H₄), 2.86-3.02, 3.10-3.27 (2 × m, 2H, H_{3n}, H₇), <u>3.42-3.52</u>, 3.06 (m, ddd, *J* ≈ 9.9, 2.7, 2.7 Hz, 1H, H_{3x}), <u>4.43</u>, *4.47*, <u>4.59</u>, 4.63 (4 × brs, 1H, H₁), 7.14-7.35 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.1, 25.2, 28.4, 30.8, 31.1 (C₅, C₆), 28.1, 28.2, 28.5, 28.6 (Boc CH₃), <u>39.1, 39.6</u>, 41.6, 42.4 (C₄), 49.7, 50.4, [<u>51.9</u>, 52.1, <u>52.3</u>, 52.5 (C₇)] <u>53.6</u>, 54.2 (C₃), 57.4, <u>58.4</u>, 58.6, <u>59.4</u> (C₁), 78.8, 79.0, 79.1 (Boc C), 126.2, 126.3, 127.3, 127.5, 127.6, 128.2, 128.3, 128.4 (Ph CH), 138.1, 138.3, 138.4 (Ph C), 154.1, 154.5 (Boc CO). v_{max} 2972s, 2879s, 1694s, 1498m, 1477m, 1407s, 1365s, 1161s, 1100s cm⁻¹. ^m/_z C₁₇H₂₄NO₂ [MH⁺] requires 274.18070; observed 274.18072.

anti- and syn-7-(pyridin-3-yl)-2-Boc-2-azabicyclo[2.2.1]heptane (124 and 125)

The procedure described for the synthesis of 122 and 123 was followed using: Ni(cod)₂ (14 mg, 0.051 mmol); bathophenanthroline (34 mg, 0.102 mmol); 3-pyridyl boronic acid (43 mg, 0.35 mmol); ^tBuOK (145 mg, 1.29 NBoc ŃВос mmol) and anti-7-bromo-2-Boc-2-azabicyclo[2.2.1]heptane (121) (80 mg, 0.29 mmol). Flash chromatography (diethyl ether) gave a mixture of 124 and 125 as a pale yellow oil (~ 25:75; anti-:syn-)(26 mg, 0.095 mmol, 33%) R_f 0.12. $\delta_{\rm H}$ [300 MHz, CDCl₃; the signals corresponding to the minor (anti-) epimer are underlined; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.27-2.05 (m, 4H, H₅, H₆), 1.38, 1.48, 1.50 (3 × brs, 9H, Boc), 2.71, 2.92 (2 × brs, 1H, H₄), 2.93-3.04, 3.13-3.25, 3.44-3.53 (3 × m, 3H, H_{3x} , H_{3n} , H_7), 4.48, 4.51, 4.65, 4.65 (4 × brs, 1H, H₁), 7.16-7.29, 7.47-7.64, 8.43-8.58 (3 × m, 4H, pyridyl). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 24.9, 25.1, 28.0, 28.2, 28.3, 30.3, 30.7, 31.1 (C₅, C₆), 28.4, 28.6 (Boc CH₃), <u>39.0</u>, <u>39.5</u>, 41.5, 42.3 (C₄), 49.6, 50.2, 53.5, 54.0 (C₃), 49.9, 50.4 (C₇), 57.3, 58.4, 58.5, 59.1 (C₁), 79.2, 79.4 (Boc C), 123.3, 123.7, 135.0, 135.3, 147.7, 147.8, 148.2, 149.0, 149.3, 149.5 (pyridyl CH), 133.6, 134.0, 134.4 (pyridyl C), 154.4 (Boc CO). v_{max} 2971m, 1690s, 1479w, 1408s, 1365m, 1148m, 1102m cm⁻¹. $m_z C_{16}H_{23}N_2O_2$ [MH⁺] requires 275.17595; observed 275.17591.

anti- and syn-7-(6-chloro-pyridin-3-yl)-2-Boc-2-azabicyclo[2.2.1]heptane (128 and 129)

The procedure described for the synthesis of 122 and 123 was followed using: $Ni(cod)_2$ (95 mg, 0.35 mmol); bathophenanthroline (228 mg, 0.69 mmol); 4-chloro-3-pyridyl boronic acid (148 mg, 0.94

mmol); ^tBuOK (136 mg, 1.22 mmol) and *anti*-7-bromo-2-Boc-2-azabicyclo[2.2.1]heptane (121) (210 mg, 0.76 mmol) except the reaction mixture was stirred at 50 °C for 12 h rather than 100 °C for 48 h. Flash chromatography (diethyl ether) of the crude residue gave a mixture of 128 and 129 as a pale yellow oil (~ 25:75; *anti-:syn-*)(69 mg, 0.22 mmol, 30%) R_f 0.73. $\delta_{\rm H}$ [300 MHz, CDCl₃; the signals corresponding to the minor (*anti-*) epimer are

underlined; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.39, 1.48, 1.50 ($3 \times brs$, 9H, Boc), 1.44-2.04 (m, 4H, H₅, H₆), 2.69, 2.91 (2 × brs, 1H, H₄), 2.95, 3.02, 3.13-3.25, 3.44-3.53 (brs, brs, m, m, 3H, H_{3x} , H_{3y}), 4.45, 4.48, 4.61 4 × brs, 1H, H_1), 7.22-7.33 (m, 1H, H_5), 7.47-7.60 (m, 1H, H_4), 8.23-8.32 (m, 1H, H₂). δ_C (75.5 MHz, CDCl₃) 28.1, 28.2, 30.6, 31.0 (C₅, C₆), 28.3, 28.5 (Boc CH₃), 39.0, 39.4, 41.5, 42.4 (C₄), 49.1, 49.5 (C₇), <u>53.3</u>, <u>53.8</u>, 49.4, 50.0 (C₃), 57.2, <u>58.0</u>, 58.4, <u>59.0</u> (C₁), 79.3, 79.5 (Boc C), 123.8, 123.9, 124.0 (C₅), 132.5, 132.8, 132.9 (C_{3'}), 138.0, 138.2 (C_{4'}), 148.8 (C_{6'}), 149.3, 149.4 (C_{2'}), 154.2, 154.3 (Boc CO). v_{max} 2974m, 2878m, 2242w, 1684s.1586m, 1560m, 1462m, 1404s, 1365m cm⁻¹. Further chromatographic separation (diethyl ether) allowed the isolation of a sample of the major (syn-) epimer 129 as a yellow oil: $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.41, 1.50 ($2 \times brs$, 9H, Boc), 1.61-2.04 (m, 4H, H₅, H₆), 2.97, 3.03 (brs, m, 3H, H_{3x} , H_{3n} , H_7), 2.69 (brs, 1H, H₄), 4.49, 4.63 (2 × brs, 1H, H₁), 7.26 (m, 1H, H₅), 7.55 (m, 1H, H₄), 8.32 (m, 1H, H₂)). δ_{C} (75.5 MHz, CDCl₃) 28.2, 28.3, 30.7, 31.1 (C₅, C₆), 28.4, 28.6 (Boc CH₃), 41.7, 42.5 (C₄), 49.2, 49.8 (C₇), 49.5, 50.1 (C₃), 57.4, 58.5 (C₁), 79.4, 79.6 (Boc C), 123.9, 124.0, 138.0, 138.2, 149.3, 149.5 (pyridyl CH), 132.9, 133.0 (pyridyl C), 154.3 (Boc CO). v_{max} 2970s, 2934s, 1696s, 1606m, 1488s, 1406s, 1284s cm⁻¹. $m_z C_{16}H_{22}N_2O_2C1$ [MH⁺] requires 309.13698; observed 309.13692.

2-Boc-2-azabicyclo[2.2.1]heptane (130)

The de-functionalised by-product 130 was isolated from all cross-coupling reactions (i.e. in the preparation of 122-125, 128 and 129) typically in $\sim 20\%$ yield. An accurate mass determination for 130 could not be obtained but the

product of de-protection was found to be 2-azabicyclo[2.2.1]heptane. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.15-1.48, 1.53-1.75 (2 × m, 6H, H₅, H₆, H₇), 1.46 (brs, 9H, Boc), 2.50 (brs, 1H, H₄), 2.93, 3.00 (2 × brd, J = 9.5 Hz, H_{3n}), 3.23 (m, 1H, H_{3x}), 4.13, 4.26 (2 × brs, 1H, H₁). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 27.4, 27.5, 30.6, 30.9 (C₅, C₆), 28.6 (Boc CH₃), 36.9 (C₄), 37.3, 37.8 (C₇), 52.8, 53.3 (C₃), 55.9, 57.0 (C₁), 78.8 (Boc C). v_{max} 2970s, 1670s, 1412m, 1102m cm⁻¹. Removal of the Boc protecting-group from **130** using the procedure described for **52** gave 2-azabicyclo[2.2.1]heptane m/z 98 (MH⁺).

syn-7-(6-Chloro-pyridin-3-yl)-2-azabicyclo[2.2.1]heptane (syn-isoepibatidine) (49)

syn- and *anti-*7-(6-Chloro-pyridin-3-yl)-2-Boc-2-azabicyclo[2.2.1]heptane (**129** and **128**, 75:25) (476 mg, 1.54 mmol) were dissolved in ethyl acetate (50 ml), ethanol (10.4 ml) and acetyl chloride (8.6 ml) were added with cooling in ice, the reaction mixture was allowed to reach RT and stirred for

4 h before being evaporated to dryness. The crude mixture of epimers of isoepibatidine hydrochloride salts was subjected to a solid-liquid extraction using DCM to give a sample of pure 49 (94 mg) and a sample containing 49 and 50 (2:1, 107 mg)(53% total yield). Data for free amine of 49: $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.24-1.50, 1.50-1.72, 1.72-1.93 (3 × m, 4H, H₅, H₆), 2.63 (brs, 1H, H₄), 2.68 (d, J = 10.1 Hz, 1H, H_{3n}), 2.76 (ddd, $J \approx 10.1$, 2.9, 2.9 Hz, 1H, H_{3x}), 3.71 (brs, 1H, H₁), 2.89 (brs, 1H, H₇), 7.26 (s, 1H, pyridyl H₂), 7.69 (dd, J = 3.1, 0.5 Hz, 1H, pyridyl H₄), 8.36 (d, J = 2.4 Hz, 1H, pyridyl H₅). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 29.1, 32.9 (C₅, C₆), 40.7 (C₄), 48.9 (C₃), 49.8 (C₇), 58.4 (C₁), 124.0, 138.5, 149.4 (pyridyl). ^m/_z 209/211 (MH⁺). v_{max} 2970s, 2750w, 2706w, 1622m, 1588w, 1561w cm⁻¹. ^m/_z C₁₁H₁₄N₂Cl [MH⁺] requires 209.08455; observed 209.08454. Tosic acid salt of 49 (white crystalline solid): m.p. 186-190 °C. Analysis: C₁₈H₂₁N₂O₃SCl requires: C, 56.76; H, 5.56; N, 7.35; observed: C, 56.82; H, 5.46; N, 7.26.

7-Keto-2-benzyl-2-azabicyclo[2.2.1]heptane (159)

DMSO (0.19 ml, 2.80 mmol) in dry DCM (3 ml) was added drop-wise to oxalyl chloride (0.12 ml, 1.40 mmol) in dry DCM (3 ml) at -78°C and stirred under nitrogen for 0.5 h. The alcohol **86** (114 mg, 0.56 mmol) in dry DCM (3 ml) was added and the resulting mixture stirred under nitrogen at -78°C for 0.25 h, triethylamine (0.47 ml, 3.36 mmol) was added and the mixture allowed to reach RT slowly. The reaction mixture was washed with water (2 × 6 ml) then saturated NaHCO₃ solution (5 × 6 ml), the organic layer was dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*, flash chromatography (diethyl ether) gave **159** as an orange oil (70 mg, 0.35 mmol, 62%) R_f 0.13. $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.67-2.15 (m, 4H, H₅, H₆), 2.05 (t, *J* = 4.1 Hz, 1H, H₄), 2.65 (d, *J* = 3.3 Hz, 1H, H₁), 2.81 (d, *J* = 9.3 Hz, 1H, H_{3n}), 2.99 (ddd, *J* = 9.3, 4.1, 2.7 Hz, 1H, H_{3x}), 3.70 (brs, 2H, CH₂Ph), 7.20-7.42 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 22.5, 23.9 (C₅, C₆), 39.6 (C₄), 55.5, [58.1 (C₁)], 59.3 (C₃, <u>C</u>H₂Ph), 127.2, 128.4, 128.7 (Ph). v_{max} 2960s, 1770m, 1726m, 1650m, 1494m, 1454m, 1278m cm⁻¹. ^m/_z C₁₃H₁₆NO [MH⁺] requires 202.12319; observed 202.12312.

syn-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (158)

Sodium borohydride (85 mg, 2.24 mmol) was added to 7-keto-2-benzyl-2-OH azabicyclo[2.2.1]heptane (159) (66 mg, 0.33 mmol) in dry methanol (10 ml) with cooling in ice; the reaction mixture was stirred under nitrogen at 60 $^{\rm o}{\rm C}$ for ŃBn 48 h. Water (6 ml) was added and the resulting mixture extracted with DCM (4×7 ml), the combined organic extracts were dried over anhydrous magnesium sulphate, filtered and the solvents removed in vacuo. The crude residue contained 158 and anti-7-hydroxy-2-benzyl-2azabicyclo[2.2.1]heptane (86) (95:5 by integration of ¹H NMR signals). Flash chromatography (ether) gave 158 as a pale yellow oil (49 mg, 0.24 mmol, 73%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.25-2.00 (m, 5H, H_{3n}, H₅, H₆), 2.11 (brs, 1H, H₄), 3.00 (brs, 1H, H₁), 3.22 (ddd, J = 9.2, 3.6, 3.6 Hz, 1H, H_{3x}), 3.83 (AB, J = 9.0 Hz), 2H, CH₂Ph), 3.96 (brs, 1H, H₇), 7.18-7.42 (m, 5H, Ph). δ_C (75.5 MHz, CDCl₃) 20.3, 27.2 (C₅, C₆), 41.9 (C₄), 54.9, 55.0 (C₃, CH₂Ph), 62.9 (C₁), 78.0 (C₇), 126.9, 128.3, 128.4 (5 × aryl CH), 139.4 (aryl C). v_{max} 3124br, **2866s**, 1668m, 1497m, 1452m, 1316s, 1278s cm⁻¹. $m_z C_{13}H_{18}NO [MH^+]$ requires 204.13884; observed 204.13881. The 3,5-dinitrobenzoate derivative of 158 was synthesised as follows. syn-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (158) (67 mg, 0.33 mmol) was dissolved in benzene (3 ml) and 2,3-Dinitrobenzoyl chloride (165 mg, 0.72 mmol) was added. The reaction mixture was stirred vigorously at 80 °C for 4 h then diluted with water and extracted with diethyl ether; the combined extracts were washed with sodium bicarbonate solution and water, dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. Flash chromatography (diethyl ether: petrol; 1:1) afforded the 3,5-dinitrobenzoate derivative of 158 as yellow crystals (63 mg, 0.16 mmol, 48%). A crystal was prepared and X-ray crystallography (see appendix I) confirmed the syn- configuration of the derivative and hence **158**.

syn-7-Hydroxy-2-Boc-2-azabicyclo[2.2.1]heptane (165)

OH syn-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (158) (55 mg, 0.35 mmol) was dissolved in methanol (5 ml), palladium on carbon (10%, ~ 30 mg) was added and the reaction mixture was stirred under hydrogen for 48 h. After filtration through celite the methanol was removed *in vacuo* and the residue was dissolved in THF (2 ml) and water (6 ml). Boc₂O (150 mg, 0.69 mmol) and NaHCO₃ (147 mg, 1.75 mmol) were added and stirred at RT for 24 h. Then the reaction mixture was extracted with diethyl ether (6 × 6 ml), the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo* to give 165 as a yellow oil (41 mg, 0.19 mmol, 55%). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.23-1.77 (m, 4H, H₅, H₆), 1.46 (brs, 9H, Boc), 2.23 (brs, 1H, H₄), 3.05 (m, 1H, H_{3n}), 3.60 (brd, 1H, H_{3x}), 3.85, 3.94 (2 × brs, 1H, H₁), 4.00 (brs, 1H, H₇). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 22.9, 23.7, 25.0 (C₅, C₆), 28.5 (Boc CH₃), 40.8, 41.1 (C₄), 49.6, 50.5 (C₃), 59.8, 60.7 (C₁), 76.0 (C₇), 79.2 (Boc C), 155.4 (Boc CO). v_{max} 3325s, 2977m, 2951m, 2889m, 1667s, 1648s, 1482m, 1462m, 1423s, 1360s, 1334m, 1292m, 1255m, 1157s, 1127s, 1109s, 1087s cm⁻¹. ^m/_z C₁₁H₂₀NO₃ [MH⁺] requires 214.14432; observed 214.14440.

anti-7-Hydroxy-2-azabicyclo[2.2.1]heptane (160)

HO anti-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (**86**) (1.83 g, 9.01 mmol) in dry methanol (40 ml) was hydrogenated as described for **103**, flash chromatography to give **160** as a pale yellow oil (0.604g, 5.35 mmol, 59%), which was converted to **161** and **162** without further purification. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.37-1.54, 1.88-2.07 (2 × m, 2H, 2H, H₅, H₆), 2.11 (brs, 1H, H₄), 2.48 (brs, NH), 2.62 (d, *J* = 9.8 Hz, 1H, H_{3n}), 3.00 (ddd, *J* = 9.8, 3.1, 3.1 Hz, 1H, H_{3x}), 3.08 (brs, 1H, H₁), 4.21 (brs, 1H, H₇). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.9, 29.9 (C₅, C₆), 40.4 (C₄), 49.8 (C₃), 58.0 (C₁), 77.3 (C₇). v_{max} 3359s, 2955s, 1623m, 1395m, 1172s, 1111s cm⁻¹. ^m/_z 114 (MH⁺).

anti-7-Hydroxy-2-Boc-2-azabicyclo[2.2.1]heptane (161)

anti-7-Hydroxy-2-azabicyclo[2.2.1]heptane (160) (404 mg, 3.58 mmol) was HO. treated with Boc₂O (1.091 g, 5.00 mmol) and NaHCO₃ (862 mg, 10.26 mmol), in THF (9 ml) and water (27 ml) using the method described for 104. Flash / NBoc chromatography (diethyl ether) gave 161 as a white crystals (430 mg, 2.02 mmol, 56%). Alternatively, treatment of 7-keto-2-Boc-2-azabicyclo[2.2.1]heptane (163) (40 mg, 0.19 mmol) with sodium borohydride (55 mg, 1.45 mmol) in dry methanol (2 ml) for 96 h followed by dilution with water and extraction into DCM gave 161 and syn-7-hydroxy-2-Boc-**2-azabicyclo**[2.2.1]heptane (165) (92:8) (33 mg, 0.15 mmol, 82%). m.p 63-66 °C. R_f 0.32. δ_H [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.439, 1.444 (2 × brs, 9H, Boc), 1.56-1.80, 1.88-2.03, 2.04-2.20 (3 × m, 1H, 2H, 1H, H_5 , H_6), 2.28 (brs, 1H, H_4), 2.96, 3.03 (2 × d, **9.8 Hz, 1H, H_{3n}), 3.31 (ddd, J = 9.8, 3.1, 3.1 Hz, 1H, H_{3x}), 3.87, 3.97 (2 × brs, 1H, H_1), 4.15** (brs, 1H, H₇). δ_C (75.5 MHz, CDCl₃) 24.9, 25.1, 27.5, 27.7 (C₅, C₆), 28.5 (Boc CH₃), 40.6, 41.0 (C₄), 50.9, 51.6 (C₃), 58.0, 59.0 (C₁), 75.9, 76.0 (C₇), 79.3 (Boc C), 154.7 (Boc CO). v_{max}

3455m, 2971s, 1659s, 1423s, 1366s, 1229s, 1217 cm⁻¹. $m_z C_{11}H_{20}NO_3$ [MH⁺] requires 214.14432; observed 214.14437.

7-Keto-2-Boc-2-azabicyclo[2.2.1]heptane (163)

The procedure described for 159 was followed, using *anti*-7-hydroxy-2-Boc-2azabicyclo[2.2.1]heptane (161) (126 mg, 0.59 mmol), DMSO (0.20 ml, 2.95 mmol), oxalyl chloride (0.13 ml, 1.48 mmol), triethylamine (0.49 ml, 3.54

mmol) and dry DCM (16 ml, total) to give **163** as an orange oil (51 mg, 0.24 mmol, 41%). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.46, 1.48 (2 × brs, 9H, Boc), 1.66-2.09 (m, 4H, H₅, H₆), 2.32 (brs, 1H, H₄), 3.39 (m, 1H, H_{3x}), 3.57 (m, 1H, H_{3n}), 3.92, 4.06 (2 × brs, 1H, H₁). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 23.3, 25.3 (C₅, C₆), 28.4, 28.5 (Boc CH₃), 40.0 (C₄), 49.7 (C₃), 54.9 (C₁), 79.4, 80.3 (Boc C), 128.8, 130.9 (C₇). v_{max} 3340m, 3237m, 2976w, 1653s, 1420m, 1401m cm⁻¹. ^m/_z (M-55)⁺ 156.

anti-7-Hydroxy-2-azabicyclo[2.2.1]heptane-2-carboxylic acid benzyl ester (162)

Adapted from a procedure described by Malpass et al.⁷⁷ Benzyl chloroformate HO 0.23 mmol) was added to anti-7-hydroxy-2-(47 μl, 56 mg, ŃCbz azabicyclo[2.2.1]heptane (160) (26 mg, 0.23 mmol) in water (5 ml), the pH was adjusted to 12.6 with NaOH solution. The reaction mixture was stirred for 72 h, then diluted with water (5 ml) and extracted with DCM (5 \times 20 ml), the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. The resulting residue was flash chromatographed (diethyl ether) to give 162 as a colourless oil (23 mg, 0.094 mmol, 41%). Rf 0.30. Alternatively treatment of 7-keto-2-azabicyclo[2.2.1]heptane-2carboxylic acid benzyl ester (164) (14 mg, 0.06 mmol) with sodium borohydride (28 mg, 0.74 mmol) in dry methanol (2 ml) for 96 h followed by dilution with water and extraction into DCM gave 162 (11 mg, 0.04 mmol, 75%). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.36-1.44, 1.60-1.75, 1.97 (3 × m, 1H, 1H, 2H, H₅, H₆), 2.27 (brs, 1H, H₄), 3.04, 3.07 (2 × d, J = 5.9 Hz, 1H, H_{3n}), 3.56 (m, 1H, H_{3x}), 3.96, 4.00 (2 × brs, 1H, H₁), 4.11 (brs, 1H, H₇), 5.09 (m, 2H, CH₂Ph), 7.25-7.35 (m, 5H, Ph). δ_C (75.5 MHz, CDCl₃) 24.9, 25.0, 27.4, 27.8 (C₅, C₆), 40.3, 40.7 (C₄), 51.29, 51.34 (C₃), 58.6, 58.9 (C₁), 66.5, 66.7 (CH₂Ph), 75.6, 75.8 (C₇), 127.7, 127.8, 128.4 (5 × aryl CH), 136.7 (aryl C), 154.4, 155.0 (CO). ν_{max} 3406s, **2944s**, **2884s**, **1678s**, **1498m**, **1428s**, **1361s**, **1300s**, **1247m**, **1213m** cm⁻¹.

7-Keto-2-azabicyclo[2.2.1]heptane-2-carboxylic acid benzyl ester (164)

The procedure described for 159 was followed, using *anti*-7-hydroxy-2azabicyclo[2.2.1]heptane-2-carboxylic acid benzyl ester (162) (39 mg, 0.16 mmol), DMSO (0.053 ml, 0.80 mmol), oxalyl chloride (0.035 ml, 0.40 mmol), triethylamine (0.134 ml, 0.96 mmol) and dry DCM (7 ml, total) to give 164 as a brown oil (20 mg, 0.08 mmol, 51%). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.32-2.29 (m, 5H, H₄, H₅, H₆), 3.06-3.18 (m, 1H, H_{3n}), 3.56-3.72 (m, 1H, H_{3x}), 3.90 (m, 1H, H₁), 5.12 (m, 2H, CH₂Ph), 7.26-7.36 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.9, 26.0, 28.8, 29.0 (C₅, C₆), 41.0, 41.7 (C₄), 52.16, 52.24 (C₃), 57.6, 58.1 (C₁), 66.6, 66.7 (CH₂Ph), 127.6, 127.8, 128.4 (5 × aryl CH), 136.7 (aryl C), 155.2, 155.4 (CO). v_{max} 3410m, 2962s, 1792m, 1700s, 1420s, 1261s, 1108s cm⁻¹. $m/_z$ 246 (MH⁺).

anti-7-(Pyridin-2-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (173)

anti-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (86) (162 mg, 0.796 mmol) was dissolved in anhydrous DMSO (10 ml), potassium tertiary NBn butoxide (116 mg, 1.034 mmol) was added and stirred under nitrogen at RT for 0.5 h. Then 2-chloropyridine (0.1 ml, 1.057 mmol) was added and the mixture was stirred for a further 48 h at 55 °C. The reaction was quenched with water (10 ml) and extracted with ethyl acetate; the organic extracts were combined and dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. The crude residue was flash chromatographed (diethyl ether) to give 173 as a pale yellow oil (144 mg, 0.51 mmol, 65%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.35-1.47, 1.72-1.97 (2 × m, 1H, 3H, H₅, H₆), 2.33 (d, J = 9.1 Hz, 1H, H_{3n}), 2.48 (brs, 1H, H₄), 3.08 (ddd, J = 9.1, 3.1, 3.1 Hz, 1H, H_{3x}), 3.34 (brs, 1H, H_1), 3.76 (brs, 2H, CH₂Ph), 5.24 (brs, 1H, H₇), 6.69 (d, J = 8.3 Hz, 1H, H_{3'}), 6.84 (dd, J = 7.1, 5.0 Hz, 1H, H_{5'}), 7.18-7.49 (m, 5H, Ph), 7.53 (ddd, J = 8.3, 7.1, 1.8 Hz, 1H, H_{4'}), 8.17 (dd, J = 5.0, 1.8 Hz, 1H, H₆). δ_C (75.5 MHz, CDCl₃) 24.4, 26.7 (C₅, C₆), 39.9 (C₄), 57.7 (C₃), 58.4 (<u>C</u>H₂Ph), 61.3 (C₁), 79.1 (C₇), 111.0 (C_{3'}), 116.7 (C_{5'}), 126.7, 128.1, 128.5 (5 × aryl CH), 138.4 (C_{4'}), 139.7 (aryl C), 147.1 (C_{6'}), 163.6 (C_{2'}). v_{max} 2970m, 2834m, 1589m, 1568m, 1469s, 1429s, 1285s, 1269s, 1250s cm⁻¹. $m_z C_{18}H_{21}N_2O [MH^+]$ requires 281.16539; observed 281.16532.

anti-7-(Pyridin-3-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (174)

NBn

Using a procedure adapted from that described by Krow *et al.*⁷⁹ A solution of *anti*-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (**86**) (108 mg, 0.53 mmol) in dry THF (4 ml) was added to 3-hydroxypyridine (61 mg,

0.64 mmol) and triphenylphophine (180 mg, 0.69 mmol). This mixture was stirred under nitrogen at 5 °C and DEAD (123 mg, 0.71 mmol) in dry THF (2 ml) was added drop-wise. The reaction mixture was allowed to reach RT and stirred under nitrogen for 48 h, it was then evaporated to dryness. The resulting residue was dissolved in aqueous HCl (1M), washed with diethyl ether, basified with ammonium hydroxide solution and extracted with DCM. The organic extracts were combined and dried over anhydrous MgSO₄, filtered and reduced *in vacuo*; the crude product was flash chromatographed (diethyl ether) to give 174 as a pale yellow oil (44 mg, 0.16 mmol, 30%). R_f 0.38. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.38-1.48 (m, 1H, H₆n), 1.66-1.79 (m, 1H, H₆x), 1.87-2.04 (m, 2H, H₅), 2.29 (d, J = 9.3 Hz, 1H, H₃n), 2.43 (brs, 1H, H₄), 3.13 (ddd, J = 9.3, 3.4, 3.4 Hz, 1H, H₃x), 3.33 (brs, 1H, H₁), 3.73 (AB, J = 13.4 Hz, 2H, CH₂Ph), 4.71 (brs, 1H, H₇), 7.14-7.37 (m, 7H, Ph, H₄·, H₅·), 8.20 (brd, J = 4.9 Hz, 1H, H₆·), 8.34 (brs, 1H, H₂·). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 23.1, 26.8 (C₅, C₆), 39.8 (C₄), 57.3 (C₃), 61.0 (C₁), 81.3 (C₇), 121.8, 123.7, [126.9, 128.3, 128.5 (5 × aryl CH)], 138.7, [139.1 (aryl C)], 142.2 (4 × pyridyl CH), 154.3 (pyridyl C). v_{max} 2970m, 1576s, 1474s, 1431m, 1269s, 1230s cm⁻¹. ^m/_z C₁₈H₂₁N₂O [MH⁺] requires 281.16539; observed 281.16546.

anti-7-(Pyridin-4-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (175)

The procedure described for **174** was followed using *anti*-7-hydroxy-2benzyl-2-azabicyclo[2.2.1]heptane (**86**) (230 mg, 1.13 mmol), THF (10 ml), 4-hydroxypyridine (128 mg, 1.35 mmol), triphenylphosphine (459 mg, 1.75 mmol) and DEAD (261 mg, 1.50 mmol in THF (2 ml)). Flash chromatography of the crude residue (diethyl ether) gave **175** as a yellow oil (91 mg, 0.325 mmol, 29%). R_f 0.28. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.30-1.47, 1.64-1.77, 1.84-2.04 (3 × m, 1H, 1H, 2H, H₅, H₆), 2.27 (d, *J* = 9.2 Hz, 1H, H_{3n}), 2.44 (brs, 1H, H₄), 3.12 (ddd, *J* = 9.2, 3.5, 3.5 Hz, 1H, H_{3x}), 3.34 (brs, 1H, H₁), 3.71 (AB, *J* = 13.3 Hz, 2H, C<u>H</u>₂Ph), 4.71 (brs, 1H, H₇), 6.84 (d, *J* = 6.2 Hz, 2H, H₃·, H₅·), 7.28-7.36 (m, 5H, Ph), 8.38 (d, *J* = 6.2 Hz, 2H, H₂·, H₆·). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 22.9, 26.7 (C₅, C₆), 39.6 (C₄), 57.0, 57.4 (C₃, <u>C</u>H₂Ph), 60.8 (C₁), 80.7 (C₇), 110.7 (C₃·, C₅·), 128.2, 128.3, 128.4 (5 × aryl CH), 138.9 (aryl C), 150.7 (C₂·, C₆·), 164.1 (C₄·). ν_{max} 2971m, 1592m, 1569m, 1496m, 1454m, 1366m, 1279m, 1229m, 1210s cm⁻¹. ^m/_z C₁₈H₂₁N₂O [MH⁺] requires 281.16539; observed 281.16534.

anti-7-(Pyridin-2-yloxy)-2-azabicyclo[2.2.1]heptane (150)

anti-7-(Pyridin-2-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (173) (154 mg, 0.550 mmol) was dissolved in dry methanol and stirred with Palladium on carbon (10%, \sim 40 mg) under an atmosphere of hydrogen. After 24 h the

reaction mixture was filtered through celite; after reduction *in vacuo* the crude residue was flash chromatographed (9:1; diethyl ether: methanol) to give **150** as an orange oil (52 mg, 0.27 mmol, 49%). R_f 0.28. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.43-1.62, 1.88-2.03 (2 × m, 2H, 2H, H₅, H₆), 2.46 (brs, 1H, H₄), 2.70 (d, J = 9.7 Hz, 1H, H_{3n}), 3.44 (brs, 1H, H₁), 3.19 (ddd, J = 9.7, 3.0, 3.0 Hz, 1H, H_{3x}), 5.09 (brs, 1H, H₇), 6.72 (d, J = 8.4 Hz, 1H, H_{3'}), 6.86 (ddd, J = 6.3, 5.1, 0.8 Hz, 1H, H_{5'}), 7.56 (ddd, J = 8.4, 6.3, 1.4 Hz, 1H, H_{4'}), 8.15 (dd, J = 5.1, 1.4 Hz, 1H, H_{6'}). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 26.0, 28.3 (C₅, C₆), 38.1 (C₄), 49.0 (C₃), 56.3 (C₁), 80.1 (C₇), 111.0 (C_{3'}), 117.0 (C_{5'}), 138.6 (C_{4'}), 146.9 (C_{6'}), 163.2 (C_{2'}). v_{max} 2958m, 2727w, 1597s, 1571m, 1473s, 1435s, 1374m, 1276m, 1250m, 1237m cm⁻¹. ^m/_z C₁₁H₁₅N₂O [MH⁺] requires 191.11844; observed 191.11846.

anti-7-(Pyridin-3-yloxy)-2-azabicyclo[2.2.1]heptane (151)

N NH

The procedure described for **150** was followed using *anti*-7-(pyridin-3-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (**174**) (230 mg, 0.82 mmol). The crude product was flash chromatogaphed (9:1; diethyl ether: methanol)

to give **151** as a yellow oil (98 mg, 0.52 mmol, 63%). $\delta_{\rm H}$ (300 MHz, MeOD) 1.69-1.84, 2.00-2.18 (2 × m, 1H, 3H, H₅, H₆), 2.80 (brs, 1H, H₄), 3.25 (d, *J* = 11.2 Hz, 1H, H_{3n}), 3.55 (ddd, *J* = 11.2, 3.0, 3.0 Hz, 1H, H_{3x}), 4.11 (brs, 1H, H₁), 5.07 (brs, 1H, H₇), 7.45 (dd, *J* = 8.5, 4.6 Hz, 1H, H_{5'}), 7.70 (ddd, 8.5, 2.6, 1.1 Hz, 1H, H_{6'}), 8.24 (d, *J* = 4.6 Hz, 1H, H_{4'}), 8.40 (d, *J* = 2.6 Hz, 1H, H_{2'}). $\delta_{\rm C}$ (75.5 MHz, MeOD) 24.6, 25.6 (C₅, C₆), 38.5 (C₄), 49.5 (C₃), 58.3 (C₁), 81.3 (C₇), 124.3 (C_{6'}), 126.2 (C_{5'}), 139.3 (C_{2'}), 143.7 (C_{4'}). $v_{\rm max}$ 2951m, 1580s, 1476m, 1420m, 1255m cm⁻¹. $m/_z$ C₁₁H₁₅N₂O [MH⁺] requires 191.11844; observed 191.11846.

anti-7-(Pyridin-4-yloxy)-2-azabicyclo[2.2.1]heptane (152)

The procedure described for **150** was followed using *anti*-7-(pyridin-4-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (**175**) (50 mg, 0.179 mmol). The crude product was flash chromatogaphed (9:1; diethyl ether: methanol)

to give **152** as a yellow oil (20 mg, 0.11 mmol, 58%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.26-1.67 (m, 4H, H₅, H₆), 2.49 (brs, 1H, H₄), 2.80 (brd, J = 9.7 Hz, 1H, H_{3n}), 3.10-3.26 (m, 1H, H_{3x}), 3.49 (brs, 1H, H₁), 4.69 (brs, 1H, H₇), 6.88 (d, J = 5.2 Hz, 2H, H₃, H₅), 8.43 (d, J = 5.2 Hz, 2H, H₂,

H_{6'}). δ_C (75.5 MHz, CDCl₃) 26.1, 29.6 (C₅, C₆), 38.5 (C₄), 49.3 (C₃), 56.2 (C₁), 82.0 (C₇), 110.8 (C_{3'}, C_{5'}), 151.2 (C_{2'}, C_{6'}), 164.2 (C_{4'}). v_{max} 2943w, 1568s, 1470m, 1450m, 1250m cm⁻¹. ^m/_z C₁₁H₁₅N₂O [MH⁺] requires 191.11844; observed 191.11840.

syn-7-(Pyridin-2-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (176)

syn-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (**158**) (0.655g, 3.23 mmol) was dissolved in dry *N*-methyl pyrrolidinone (40 ml); 2-chloropyridine (0.75 ml, 0.90 g, 7.93 mmol) and sodium hydride (60% dispersion, 2.19 g) were added and the reaction mixture was stirred under

nitrogen at 140 °C for 96 h. The reaction was quenched by the addition of water (30 ml) and extracted into ethyl acetate; the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. The crude product was flash chromatographed (1:1; diethyl ether: petrol) to give **176** as an orange oil (0.546 g, 1.99 mmol, 60%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.36-1.50, 1.62-1.83 (2 × m, 1H, 3H, H₅, H₆), 2.45 (brs, 1H, H₁), 2.68 (d, *J* = 8.9 Hz, 1H, H_{3n}), 3.14 (ddd, *J* = 8.9, 2.6, 2.6 Hz, 1H, H_{3x}), 3.30 (brs, 1H, H₁), 3.89 (AB, *J* = 13.7 Hz, 2H, CH₂Ph), 5.03 (brs, 1H, H₇), 6.84 (m, 2H, H_{3'}, H_{5'}), 7.14-7.32 (m, 5H, Ph), 7.56 (ddd, *J* = 7.3, 7.3, 2.0 Hz, 1H, H_{4'}), 8.15 (dd, *J* = 5.0, 2.0 Hz, 1H, H_{6'}). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.0, 26.5 (C₅, C₆), 40.0 (C₄), 58.3 (C₃), 60.0 (CH₂Ph), 61.6 (C₁), 80.8 (C₇), 111.3 (C_{3'}), 116.6 (C_{5'}), 123.3, 126.5, 128.0 (5 × aryl CH), 138.5 (C_{4'}), 140.7 (aryl C), 146.9 (C_{6'}), 163.6 (C_{2'}). v_{max} 2971m, 2858m, 1596m, 1569m, 1469s, 1432s, 1367s, 1229s, 1216s cm⁻¹. ^m/_z C₁₈H₂₁N₂O [MH⁺] requires 281.16539; observed 281.16531.

syn-7-(Pyridin-3-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (178)

Using a procedure adapted from that described by Wolter et al.¹⁴³ Toluene was added to the syn-7-hydroxy-2-benzyl-2-(1)ml) azabicyclo[2.2.1]heptane (158) (470 mg, 2.32 mmol) followed by copper N Rn iodide (137 mg, 0.72 mmol), 1,10-phenanthroline (250 mg, 1.39 mmol), caesium carbonate (1.000 g, 2.96 mmol) and 3-iodopyridine (115 mg, 0.56 mmol). This heterogeneous mixture was stirred at 110 °C for 96 h then filtered through silica with rinsing with (ethyl acetate: methanol; 9:1); the solvents were removed in vacuo and the crude residue was flash chromatographed (diethyl ether) to give 178 as a yellow oil (24 mg, 0.084 mmol, 4%). R_f $0.27. \delta_{\rm H}$ (300 MHz, CDCl₃) 1.47-2.00 (m, 4H, H₅, H₆), 2.50 (brs, 1H, H₄), 2.80 (m, 1H, H_{3n}), 3.15 (ddd, J = 9.2, 3.0, 3.0 Hz, 1H, H_{3x}), 3.33 (brs, 1H, H₁), 3.95 (brs, 2H, CH₂Ph), 4.44 (brs, 1H, H₇), 7.17-7.37 (m, 7H, Ph, H_{4'}, H_{5'}), 8.26 (dd, J = 4.3, 1.5 Hz, 1H, H_{6'}), 8.39 (d, J = 2.6

Hz, 1H, H₂). δ_C (75.5 MHz, CDCl₃) 24.9, 26.2 (C₅, C₆), 40.1 (C₄), 57.9, 59.9 (C₃, <u>C</u>H₂Ph), 61.3 (C₁), 83.4 (C₇), 122.0, 123.9 [128.2, 128.5 (5 × aryl CH), 138.6 (aryl C)], 148.9 (4 × pyridyl CH). $m_z C_{18}H_{21}N_2O [MH^+]$ requires 281.16539; observed 281.16534.

syn-7-(5-Bromo-pyridin-3-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (179)

Br ν́Вп

Using a procedure adapted from that described by Wei et al.¹²⁷ Sodium hydride (24 mg, 60% suspension in mineral oil, 0.60 mmol) was added to a solution of syn-7-hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (158) (93 mg, 0.49 mmol) in anhydrous DMF (7 ml). This mixture was

stirred under nitrogen at RT for 2 h prior to the addition of 3,5-dibromopyridine (142 mg, 0.60 mmol); the temperature was raised to 50 °C and stirred for a further 6 h. The reaction mixture was diluted with water (5 ml) and extracted with ethyl acetate; the combined organic extracts were dried over anhydrous magnesium sulphate, filtered and the solvents removed in vacuo. The resulting residue was flash chromatographed (diethyl ether) to give the alcohol 158 (28 mg) and 179 (38 mg, 0.11 mmol, 34% based on recovered starting material). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.31-1.84 (m, 4H, H₅, H₆), 2.40 (brs, 1H, H₄), 2.62 (d, J = 9.3 Hz, 1H, H_{3n}), 3.05 (ddd, J = 9.3, 2.9, 2.9 Hz, 1H, H_{3x}), 3.22 (brs, 1H, H₁), 3.81 (AB, J = 13.4 Hz, 2H, CH₂Ph), 4.37 (brs, 1H, H₇), 7.13-7.27 (m, 5H, Ph), 7.37 (m, 1H, pyridyl), 8.24 (m, 2H, pyridyl). δ_C (75.5 MHz, CDCl₃) 24.9, 26.2 (C₅, C₆), 40.1 (C₄), 57.7, 59.7 (C₃, <u>C</u>H₂Ph), 61.3 (C1), 83.8 (C7), 120.3 (pyridyl C), 124.8 (pyridyl CH), 126.7, 128.2, 128.3 (5 × aryl CH), 137.1, 143.1 (2 × pyridyl CH), 154.8 (pyridyl C). $^{m}/_{z}$ C₁₈H₂₀N₂OBr [MH⁺] requires 359.07590; observed 359.07592.

syn-7-(Pyridin-4-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (155)

Potassium tert-butoxide (128 mg, 1.14 mmol) was added to a solution of syn-7-hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (158) (87 mg, 0.43 mmol) in anhydrous DMSO (7 ml) and stirred under nitrogen at RT for 0.5 h. 4-Chloropyridine hydrochloride (73 mg, 0.49 mmol) was added and the temperature was raised to 50 °C. The reaction mixture was stirred for a further 6 h, then quenched with water (5 ml) and extracted with diethyl ether. The combined organic extracts were dried over anhydrous MgSO₄, filtered and solvents removed in vacuo to give 155 as a pale yellow oil (94 mg, 0.34 mmol, 78%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.45-1.56, 1.59-1.86 (2 × m, 1H, 3H, H₅, H₆), 2.49 (brs, 1H, H₄), 2.74 (d, J = 9.1 Hz, 1H, H_{3n}), 3.11 (ddd, J = 9.1, 2.9, 2.9 Hz, 1H, H_{3n}), 3.30 (brs, 1H, H₁), 3.86 (AB, J = 13.7 Hz, 2H, CH₂Ph), 4.48 (brs, 1H, H₇), 6.88 (dd, J = 5.0,

1.5 Hz, 2H, pyridyl), 7.17-7.34 (m, 5H, Ph), 8.45 (d, J = 5.0 Hz, 2H, pyridyl). δ_{C} (75.5 MHz, CDCl₃) 24.9, 26.6 (C₅, C₆), 40.1 (C₄), 57.9 (C₃), 60.0 (<u>C</u>H₂Ph), 61.1 (C₁), 82.7 (C₇), 110.9 (pyridyl CH), 126.6, 128.2, 128.3 (5 × aryl CH), 151.2 (pyridyl CH), 164.3 (pyridyl C). ν_{max} 2969m, 1594s, 1563m, 1496m, 1451m, 1417m, 1366m, 1302m, 1279s cm⁻¹. ^m/_z C₁₈H₂₁N₂O [MH⁺] requires 281.16539; observed 281.16546.

syn-7-(Pyridin-2-yloxy)-2-azabicyclo[2.2.1]heptane (153)

The procedure described for **150** was followed using *syn*-7-(pyridin-2yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (**176**) (298 mg, 1.064 mmol) to give **153** as a pale yellow oil (106 mg, 0.558 mmol, 52%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.38-1.91 (m, 4H, H₅, H₆), 2.43 (brs, 1H, H₄), 2.72 (d, J = 9.6 Hz, 1H, H_{3n}), 3.28 (ddd, J = 9.6, 3.2, 3.2 Hz, 1H, H_{3x}), 3.44 (brd, J = 2.3 Hz, 1H, H₁), 5.02 (brs, 1H, H₇), 6.75 (d, J =7.2 Hz, 1H, H₃'), 6.88 (dd, J = 7.2, 5.0 Hz, 1H, H₅'), 7.57 (ddd, J = 7.2, 7.2, 1.6 Hz, 1H, H₄'), 8.15 (dd, J = 5.0, 1.6 Hz, 1H, H₆'). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.3, 27.6 (C₅, C₆), 38.7 (C₄), 49.6 (C₃), 57.5 (C₁), 79.9 (C₇), 111.3 (C₃'), 116.9 (C₅'), 138.6 (C₄'), 146.8 (C₆'), 163.3 (C₂'). $\nu_{\rm max}$ 2951m, 1598m, 1570m, 1470s, 1432s, 1367m, 1311m, 1271s, 1252s, 1144m cm⁻¹. ^m/_z C₁₁H₁₅N₂O [MH⁺] requires 191.11844; observed 191.11838.

syn-7-(Pyridin-3-yloxy)-2-azabicyclo[2.2.1]heptane (154)

syn-7-(5-bromo-pyridin-3-yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (179) (38 mg, 0.11 mmol) was dissolved in dry methanol (10 ml) and reduced using 10% palladium on charcoal (~ 10 mg) under an atmosphere of hydrogen. After stirring for 6 h the reaction mixture was filtered through celite; the methanol was removed *in vacuo* and the residue flash chromatographed (eluting with diethyl ether followed by 7:3 diethyl ether: methanol) to give **154** as a yellow oil (8 mg, 38 %). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.43-1.82 (m, 4H, H₅, H₆), 2.3 (NH), 2.42 (brs, 1H, H₄), 2.71 (d, *J* = 9.6 Hz, 1H, H_{3n}), 3.25 (ddd, *J* = 9.6, 2.9, 2.9 Hz, 1H, H_{3x}), 3.39 (brd, *J* = 2.6 Hz, 1H, H₁), 4.44 (brs, 1H, H₇), 7.19-7.29 (m, 2H, 2 × pyridyl), 8.23 (dd, *J* = 4.4, 1.8 Hz, 1H, pyridyl), 8.36 (d, *J* = 2.6 Hz, 1H, pyridyl). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.4, 27.9 (C₅, C₆), 38.7 (C₄), 49.5 (C₃), 57.4 (C₁), 82.4 (C₇), 122.0, 123.8, 138.5, 142.4 (4 × pyridyl CH), 154.3 (pyridyl C). v_{max} 2949m, 1575s, 1475m, 1424s, 1371m, 1269s, 1232s, 1189w cm⁻¹. ^m/_z C₁₁H₁₅N₂O [MH⁺] requires 191.11844; observed 191.11843.

syn-7-(Pyridin-4-yloxy)-2-azabicyclo[2.2.1]heptane (155)

The procedure described for **150** was followed using *syn*-7-(pyridin-2yloxy)-2-benzyl-2-azabicyclo[2.2.1]heptane (**177**) (72 mg, 0.26 mmol) to give **155** as a yellow oil (49 mg, 99%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.41-1.82 (m, 4H, C₅, C₆), 2.45 (brs, 1H, H₄), 2.74 (d, *J* = 9.9 Hz, 1H, H_{3n}), 3.24 (ddd, *J* = 9.9, 2.6, 2.6 Hz, 1H, H_{3x}), 3.43 (brs, 1H, H₁), 4.47 (brs, 1H, H₇), 6.86 (dd, *J* = 4.7, 1.5 Hz, 2H, pyridyl), 8.43 (dd, *J* = 4.7, 1.5 Hz, 2H, pyridyl). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.2, 27.7 (C₅, C₆), 38.6 (C₄), 49.4 (C₃), 57.3 (C₁), 81.8 (C₇), 110.7 (pyridyl CH), 151.0 (pyridyl CH), 164.1 (pyridyl C). $v_{\rm max}$ 2972w, 2879w, 1592s, 1569m, 1499m, 1419m, 1277s, 1211s, 1151w cm⁻¹. ^m/_z C₁₁H₁₅N₂O [MH⁺] requires 191.11844; observed 191.11844.

anti-7-(Pyridin-2-yloxy)-2-Boc-2-azabicyclo[2.2.1]heptane

The procedure describe for **176** was followed using *anti*-7-hydroxy-2-Boc-2-azabicyclo[2.2.1]heptane (**161**) (14 mg, 0.066 mmol), *N*-methyl pyrrolidinone (8 ml), 2-chloropyridine (0.0.15 ml, 18 mg, 0.159 mmol) and sodium hydride (60% dispersion, 39 mg). The crude product was flash chromatographed (1:1; diethyl ether: petrol) to give the title compound as a beige semi-solid (14 mg, 0.049 mmol, 74%) R_f(diethyl ether) 0.72. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.46 (brs, 9H, Boc), 1.62-2.04 (m, 4H, H₅, H₆), 2.61 (brs, 1H, H₄), *3.04*, 3.13 (2 × d, *J* = 9.9 Hz, 1H, H_{3n}), 3.44 (m, 1H, H_{3x}), 4.20, *4.34* (2 × brs, 1H, H₁), *5.06*, 5.09 (2 × brs, 1H, H₇), 6.71 (d, *J* = 8.4 Hz, 1H, H₃), 6.89 (m, 1H, H₅), 7.57 (m, 1H, H₄), 8.15 (m, 1H, H₆). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.5, *25.7*, *28.0*, 28.3 (C₅, C₆), 28.5 (Boc CH₃), 38.9, *39.3* (C₄), 50.5, *51.3* (C₃), *56.4*, 57.5 (C₁), *79.1*, 79.3 (Boc C), 111.1 (C₃·), 117.1 (C₅·), 138.7 (C₄·), 147.0 (C₆·), 154.7 (Boc CO), 163.0 (C₂·). v_{max} 2963m, 1683s, 1590m, 1568m, 1471s, 1429s, 1399s, 1366s cm⁻¹. ^m/_z C₁₆H₂₃N₂O₃ [MH⁺] requires 291.17087; observed 291.17083.

anti-7-(5-Iodo-pyridin-2-yloxy)-2-Boc-2-azabicyclo[2.2.1]heptane

anti-7-Hydroxy-2-Boc-2-azabicyclo[2.2.1]heptane (161) (52 mg, 0.24 mmol) was dissolved in dry DMF (10 ml), 2-chloro-5-iodopyridine (68 mg, 0.28 mmol) and ^tBuOK (52 mg, 0.46 mmol) were added and

the reaction mixture was stirred under nitrogen at RT for 3 h. Water (10 ml) was added and the mixture was extracted with diethyl ether, the organic extracts were combined, dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. Flash chromatography of the

crude residue (diethyl ether: petrol; 1:1) gave the title compound as a yellow oil (72 mg, 0.17 mmol, 72%). R_f 0.59. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.30-1.54, [1.46 (brs, 9H, Boc)], 1.60-1.83, 1.83-2.04 (3 × m, 1H, 1H, 2H, H₅, H₆), 2.60 (brs, 1H, H₄), *3.05*, 3.13 (2 × d, *J* = 9.8 Hz, 1H, H_{3n}), 3.45 (brd, *J* = 9.8 Hz, 1H, H_{3x}), 4.18, *4.32* (2 × brs, 1H, H₁), *4.99*, 5.02 (2 × brs, 1H, H₇), 6.56 (d, *J* = 8.6 Hz, 1H, H₃·), 7.78 (dd, *J* = 8.6, 2.0 Hz, 1H, H₄·), 8.34 (d, *J* = 2.0 Hz, 1H, H₆·). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.5, *25.6*, *27.9*, 28.1 (C₅, C₆), 28.5 (Boc CH₃), 38.7, *39.2* (C₄), 50.4, *51.2* (C₃), *56.2*, 57.3 (C₁), 78.6 (C₇), 82.7 (Boc C), 113.4 (pyridyl CH), 146.5 (pyridyl CH), 152.8 (pyridyl CH), *153.9*, 154.5 (Boc CO), 162.3 (pyridyl C). v_{max} 2975m, 1687s, 1576m, 1557w, 1457m, 1404s, 1352s, 1278s cm⁻¹. ^m/_z C₁₆H₂₀N₃ [MH⁺] requires 417.06752; observed 417.06755.

anti-7-Bromo-exo-6-fluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (215)

Potassium fluoride (13.62 g, 234 mmol) and 18-crown-6 (~ 20 mg) were Br added to a suspension of 3-bromo-1-benzyl-1-azoniatricyclo[2.2.1.0^{2,6}]heptane bromide (74) (15.41 g, 44.7 mmol) in dry acetonitrile (125 ml). ŃBn After vigorous stirring at reflux under nitrogen for 48 h the reaction mixture was diluted with water then extracted with DCM, the organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. The resulting residue was crystallised from diethyl ether/ethyl acetate to give 215 as an orange oil (10.62 g, 37.4 mmol, 84%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.97-2.13 (m, 1H, H_{5n}), 2.17-2.42 (m, 1H, H_{5x}), 2.43 (d, J = 8.7 Hz, 1H, H_{3n}), 2.53 $(ddd, J = 8.7, 6.0, 3.0 \text{ Hz}, 1\text{H}, \text{H}_{3x}), 2.57 \text{ (brs, 1H, H}_4), 3.36 \text{ (brd, } J = 3.7 \text{ Hz}, 1\text{H}, \text{H}_1), 3.72$ $(AB, J = 13.4 \text{ Hz}, 2H, CH_2Ph), 4.11 \text{ (brs, 1H, H}_7), 4.86 \text{ (dddd, } J = 54.8, 7.2, 1.3, 1.3 \text{ Hz}, 1H,$ H_{6n}), 7.18-7.34 (m, 5H, Ph). δ_{C} (75.5 MHz, CDCl₃) 36.1 (d, J = 20 Hz, C₅), 43.3 (C₄), 48.3 (C_7) , 55.8 (C_3) , 59.7 (CH_2Ph) , 65.9 $(d, J = 22 Hz, C_1)$, 93.0 $(d, J = 195 Hz, C_6)$, 127.2, 128.3, 128.4 (5 × aryl CH), 138.4 (aryl C). δ_F (282.3 MHz, CDCl₃) -63.8 (ddd, 54, 34, 12 Hz). ν_{max} 2978m, 2874m, 2801m, 1494m, 1455m, 1439m, 1374m, 1354m, 1311w, 1269w, 1122s cm⁻¹. $m_{z} 284/286 (MH^{+}).$

anti-7-Cyano-exo-6-fluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (217)

NC Potassium cyanide (2.18 g, 33.5 mmol) and 18-crown-6 (~ 10 mg) were added to a solution of *anti*-7-bromo-*exo*-6-fluoro-2-benzyl-2azabicyclo[2.2.1]heptane (215) (907 mg, 3.19 mmol) in dry DMF (40 ml).

After stirring under nitrogen at 100°C for 48 h the reaction mixture was cooled and passed

through a pad of silica, solvents were removed *in vacuo*, the resulting residue was flash chromatographed (diethyl ether) to give **217** as a pale yellow oil (595 mg, 2.59 mmol, 81%). R_f 0.69. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.98-2.24 (m, 2H, H_{5x}, H_{5n}), 2.48 (brs, 2H, H_{3x}, H_{3n}), 2.71 (brs 1H, H₇), 2.83 (brs, 1H, H₄), 3.59 (brd, J = 3.2 Hz, 1H, H₁), 3.67 (AB, J = 13.4 Hz, 2H, CH₂Ph), 4.85, 4.87 (2 × dddd, $J \approx 53.0$, 6.5, 1.4, 1.4 Hz, 1H, H_{6n}), 7.18-7.36 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 32.6 (C₇), 36.4 (d, J = 21 Hz, C₅), 41.2 (C₄), 57.0 (C₃), 59.2 (CH₂Ph), 66.4 (d, J = 24 Hz, C₁), 92.1 (d, J = 193 Hz, C₆), 118.1 (CN), 127.4, 128.3, 128.4 (5 × aryl CH), 137.9 (aryl C). $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -164.2 (ddd, J = 55, 18, 18 Hz). $v_{\rm max}$ 2976m, 2939m, 2871m, 2236m, 1495m, 1453m, 1440m, 1375m, 1357m, 1337m, 1310m, 1240w, 1206w cm⁻¹. ^m/_z C₁₄H₁₅N₂O [M⁺] requires 230.12193 observed 230.12197. *anti*-7-Cyano-*exo*-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane

Using a procedure adapted from that described by Malpass et al.⁷⁷ anti-7-NC. Cyano-*exo*-6-fluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (217) (59 mg, 7-70.257 mmol), Boc₂O (143 mg, 0.655 mmol) and NaHCO₃ (104 mg, 1.24 Cyano-*exo*-6-fluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (217) (59 mg, íonn 0.257 mmol), Boc₂O (143 mg, 0.655 mmol) and NaHCO₃ (104 mg, 1.24 **N**Boc mmol) were dissolved in dry methanol (10 ml). 10% Paladium on carbon (~ 250 mg) was added, the atmosphere was changed to hydrogen (ballon fitted) and the reaction mixture was stirred vigorously for 72 h then filtered through celite. Methanol was removed in vacuo, the resulting residue was flash chromatographed (diethyl ether) to give the title compound as a colourless oil (29 mg, 0.121 mmol, 47%), $R_f 0.38$. δ_H [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio \sim 45:55), the minor rotamer signal is shown in italics.] 1.46 (brs, 9H, Boc), 2.05-2.37 (m, 2H, H_{5x}, H_{6n}), 2.80 (brs, 1H, H₇), 2.91 (m, 1H, H_{3n}), 2.99 (brs, 1H, H₄), 3.25 (ddd, J = 9.9, 2.6, 2.6 Hz, 1H, H_{3x}), 4.55, 4.69, 4.88 (3 × brs, 2H, H_1, H_{6n} , δ_C (75.5 MHz, CDCl₃) 28.3 (Boc CH₃), 35.4 (C₇), 36.4 (d, J = 22 Hz, C₅), 40.3 (C₄), 49.8 (C₃), 61.1 (d, J = 27 Hz, C₁), 81.2 (Boc C), 90.7 (d, J = 198 Hz, C₆), 116.4 (CN), 153.1 (Boc CO). δ_F (282.3 MHz, CDCl₃) -161.8. $m_z C_{12}H_{18}N_2O_2F$ [MH⁺] requires 241.13523 observed 241.13527.

anti-7-Bromo-exo-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (222)

Br Palladium on carbon (10%, ~ 250 mg) was added to *anti*-7-cyano-*exo*-6fluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (215) (3.18g, 11.20 mmol) dissolved in methanol (50 ml) in a high pressure reaction vessel and stirred under hydrogen (20 bar) for 24 h. The reaction mixture was filtered through celite, the methanol removed *in vacuo* and the resulting residue dissolved in THF (30 ml) and water (90 ml); Boc₂O (4.88 g, 22.4 mmol) and NaHCO₃ (3.90 g, 46.4 mmol) were added and the mixture stirred at RT for 24 h. The reaction mixture was extracted with diethyl ether, the organic extracts combined and dried over MgSO₄, filtered and the solvents removed *in vacuo* the crude product was flash chromatographed (petrol:diethyl ether, 3:1) to give **222** as a colourless oil (0.911 g, 3.10 mmol, 28%) R_f 0.29. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.46 (brs, 9H, Boc), 2.05-2.18 (m, 1H, H_{5n}), 2.30-2.53 (m, 1H, H_{5x}), 2.74 (brs, 1H, H₄), 2.94 (brd, J = 9.6 Hz, 1H, H_{3n}), 3.25 (ddd, J = 9.6, 3.4, 3.4 Hz, 1H, H_{3x}), 4.04 (brs, 1H, H₇), 4.37, 4.49 (2 × brs, 1H, H₁), 4.57-4.72, 4.72-4.88 (2 × m, 1H, H_{6n}). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 28.3 (Boc C), 36.1 (d, J = 20 Hz, C₅), 42.7 (C₄), 47.3 (C₇), 49.3 (C₃), 61.8 (d, J = 23 Hz, C₁), 80.8 (Boc C), 91.6 (d, J = 201 Hz, C₆). $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -162.2, -161.6. v_{max} 2976m, 2896w, 1683s, 1483m, 1456m, 1393s, 1365s, 1330m, 1293m, 1268m, 1250m, 1227m, 1154s, 1102s cm⁻¹. ^m/_z C₁₁H₁₈NO₂FBr [MH⁺] requires 294.05049; observed 294.05054.

anti- and syn-7-phenyl-exo-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (223 and 224)

The procedure described for the synthesis of 122 and 123 was followed using: $Ni(cod)_2$ (23 mg, 0.084 mmol); bathophenanthroline (56 mg, 0.168 mmol); benzene boronic acid (60 mg, 0.492 mmol); ^tBuOK (66 mg, 0.588

mmol) and *anti*-7-bromo-*exo*-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (**222**) (103 mg, 0.350 mmol). Flash chromatography (diethyl ether:petrol, 1:1) gave a mixture of **223** and **224** as a pale yellow oil (~ 18:82; *anti*-:*syn*-, from ¹⁹F peak integration)(39 mg, 0.134 mmol, 38% by ¹⁹F internal standard). **224**: $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.31, 1.43 (2 × s, 9H, Boc), 1.80-2.10 (m, 2H, H_{5x}, H_{5n}), 2.62 (brs, 1H, H₄), 2.64, *2.72* (2 × d, *J* = 9.9 Hz, 1H, H_{3n}), *2.81*, 2.90 (2 × m, 1H, H_{3x}), 3.26 (brs, 1H, H₇), 4.49, *4.67* (2 × brs, 1H, H₁), 4.72, 4.80 (2 × dddd, *J* = 54.1, 6.3, 2.5, 2.5 Hz, 1H, H_{6n}), 7.12-7.27 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) *28.3*, 28.5 (Boc CH₃), 38.6 (d, *J* = 20 Hz, C₅), 39.7, *40.5* (C₄), 48.0, [48.2 (C₇)], *48.8* (C₃), *60.1*, 60.4 (2 × d, *J* = 91 Hz, C₁), *79.7*, 80.0 (Boc C), 91.3, *91.5* (2 × d, *J* = 203 Hz, C₆), 127.5, 127.6, 128.5 (5 × aryl CH), 136.9 (aryl C), 154.4 (Boc CO). $\delta_{\rm F}$ (282.3 MHz, CDCl₃) *-164.4*, -163.7. ^m/_z C₁₇H₂₃NO₂F [MH⁺] requires 292.17128; observed 292.17122. **223** (was not isolable): $\delta_{\rm F}$ (282.3 MHz, CDCl₃) *-162.6*, -161.9.

anti- and syn-7-(pyridin-3-yl)-exo-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (225 and

226)

The procedure described for the synthesis of 122 and 123 was followed using: $Ni(cod)_2$ (25 mg, 0.091 mmol); bathophenanthroline (61 mg, 0.184 mmol); 3-pyridyl

boronic acid (47 mg, 0.382 mmol); 'BuOK (64 mg, 0.570 mmol) and anti-7-bromo-exo-6mmol). fluoro-2-Boc-2-azabicyclo[2.2.1]-heptane (222) (104 mg, 0.354 Flash chromatography (diethyl ether) gave a mixture of 225 and 226 as a pale yellow oil (only 226 was characterisable, deprotection to (see below) indicated: ~ 13:87; anti-:syn-, from ¹⁹F peak integration)(18 mg, 0.062 mmol, 18%). 226: $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.39, 1.50 (2 × s, 9H, Boc), 1.90-2.14 (m, 2H, H_{5x}, H_{5n}), 2.76 (brs, 1H, H₄), 2.76- $3.08 \text{ (m, 2H, H_{3x}, H_{3n})}, 3.34 \text{ (brs, 1H, H_7)}, 4.60, 4.76 (2 \times \text{brs, 1H, H_1)}, 4.82, 4.91 (2 \times \text{dddd}, J)$ = 53.4, 6.3, 2.1, 2.1 Hz, 1H, H_{6n}), 7.25 (m, 1H, H_{5'}), 7.56 (m, 1H, H_{4'}), 8.50 (m, 1H, H_{6'}), 8.54 (m, 1H, H_{2'}). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 28.3, 28.5 (Boc CH₃), 38.5 (d, J = 25 Hz, C₅), 39.6, 40.3 (C₄), 46.1, 46.6 (C₇), 47.8, 48.6 (C₃), 59.8, 60.2 (2 × d, J = 81 Hz, C₁), 80.1, 80.4 (Boc C), 91.0, 91.3 (2 × d, J = 193 Hz, C₆), 123.4, [132.5, 132.7 (pyridyl C)], 135.0, 135.1, 148.19, 148.28, 149.3, 149.5 (4 × pyridyl CH), 154.2, 154.5 (Boc CO). δ_F (282.3 MHz, CDCl₃) -164.4, -163.7. v_{max} 2975m, 1691s, 1480m, 1399s, 1366s, 1267m, 1147s, 1105m cm⁻¹. m/z $C_{16}H_{22}N_2O_2F$ [MH⁺] requires 293.16653; observed 293.16645. 225 (was not isolable): δ_F (282.3 MHz, CDCl₃) -162.0, -161.3.

anti- and syn-7-(pyridin-3-yl)-exo-6-fluoro-2-azabicyclo[2.2.1]heptane

Ethanol (2.6 ml) then acetyl chloride (2.1 ml) were added to a solution of *anti-* and *syn-7-*(pyridin-3-yl)-*exo-6*fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (**225** and **226**) (15 mg, 0.051 mmol) in ethyl acetate (7ml) with stirring

and cooling in ice. The reaction mixture was allowed to reach RT then evaporated to dryness to give the dihydrochloride salts of the title compounds (13 mg 96 %) (~ 13:87; *anti-:syn-*, from ¹⁹F peak integration). Data for dihydrochloride salt of *syn-*7-(pyridin-3-yl)-*exo-*6-fluoro-2-azabicyclo[2.2.1]heptane. $\delta_{\rm H}$ (300 MHz, CD₃OD) 2.12-2.30 (m, 1H, H_{5x}), 2.30-2.44 (m, 1H, H_{5n}), 3.08-3.24 (m, 2H, H_{3x}, H_{3n}), 3.51 (brs, 1H, H₄), 3.96 (brs, 1H, H₇), 4.95 (brd, J = 2.8 Hz, 1H, H₁), 5.26 (dd, J = 50.7, 6.4 Hz, 1H, H_{6n}), 8.17 (dd, J = 7.9, 5.6 Hz, 1H, H₅·), 8.78 (d, J = 7.9 Hz, 1H, H₆·*), 8.89 (d, J = 5.6 Hz, 1H, H₄·*), 9.09 (brs, 1H, H₂·), *denotes interchangeable

assignments. $\delta_{\rm C}$ (75.5 MHz, CD₃OD) 38.2 (C₄), 38.4 (d, J = 22 Hz, C₅), 48.2 (C₃), 48.5 (C₇), 62.7 (d, J = 29 Hz, C₁), 90.2 (d, J = 189 Hz, C₆), 128.9, [136.4 (pyridyl C)], 142.2, 143.1, 148.2 (4 × pyridyl CH). $\delta_{\rm F}$ (282.3 MHz, CD₃OD) -172.7. ^m/_z C₁₃H₁₅NOBr [MH⁺] requires 193.11410; observed 193.11405. *anti*-7-(Pyridin-3-yl)-*exo*-6-fluoro-2azabicyclo[2.2.1]heptane (was not isolable): $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -170.4.

anti- and *syn*-7-(6-chloro-pyridin-3-yl)-*exo*-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (227 and 228)

The procedure described for the synthesis of 122 and 123 was followed using: $Ni(cod)_2$ (30 mg, 0.109 mmol); bathophenanthroline (75 mg, 0.226 mmol); 4-chloro-3-pyridyl boronic acid (108 mg,

0.686 mmol); ^tBuOK (105 mg, 0.936 mmol) and anti-7-bromo-exo-6-fluoro-2-Boc-2azabicyclo[2.2.1]heptane (222) (154 mg, 0.524 mmol) except reaction mixture stirred at 40 °C for 24 h rather than 100 °C for 48 h. Flash chromatography (diethyl ether:petrol, 1:1) gave a mixture of 227 and 228 as a pale yellow oil (~22:78; anti-:syn-, from ¹⁹F peak integration)(20 mg, 0.062 mmol, 12%). 228: $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.41, 1.50 $(2 \times brs, 9H, Boc)$, 1.89-2.13 (m, 2H, H_{5x}, H_{5n}), 2.73 (brs, 1H, H₄), 2.78, 2.86 (2 × d, J = 9.9) Hz, H_{3n}), 2.91 (m, 1H, H_{3x}), 3.28 (brs, 1H, H₇), 4.56, 4.72 (2 × brs, 1H, H₁), 4.82, 4.88 (2 × dddd, J = 53.4, 6.3, 2.4, 2.4 Hz, 1H, H_{6n}), 7.27, 7.30 (2 × d, J = 8.4 Hz, 1H, H₅), 7.51, 7.53 (2 × dd, 8.4, 2.4 Hz, 1H, H₄), 8.30, 8.31 (2 × d, J = 2.4 Hz, 1H, H₂). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 28.3, 28.5 (Boc CH₃), 38.5 (d, J = 21 Hz, C₅), 39.7, 40.5 (C₄), 45.5, 46.1 (C₇), 47.8, 48.5 (C₃), 59.9, 60.2 (2 × d, J = 97 Hz, C₁), 80.3, 80.6 (Boc C), 91.0, 91.3 (2 × d, J = 194 Hz, C₆), 124.1, 124.2 [131.7 (pyridyl C)], 137.9, 138.1, 149.1, 149.3 (3 × pyridyl CH), 154.1, 154.4 (Boc CO). δ_F (282.3 MHz, CDCl₃) -164.4, -163.7. ν_{max} 2976m, 1690s, 1587w, 1563w, 1464m, 1392s, 1366s, 1333m, 1289m, 1257m, 1171m, 1146s, 1102s cm⁻¹. ^m/_z C₁₆H₂₁N₂O₂ClF [MH⁺] requires 327.12756; observed 327.12747. 227 (was not isolable): $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -161.7, -160.9.

syn-7-(6-Chloro-pyridin-3-yl)-exo-6-fluoro-2-azabicyclo[2.2.1]heptane (213)

syn-7-(6-Chloro-pyridin-3-yl)-exo-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (228) was dissolved in ethanol (0.52 ml) and ethyl acetate (1.43 ml). Acetyl chloride (0.43 ml) was added with cooling in ice and the reaction mixture was stirred at RT for 2 h. The solvents were removed in vacuo to give the hydrochloride salt of 213 as a white solid

(14 mg (by NMR integration against an internal standard) 88%). Data for hydrochloride salt of 213: δ_H (300 MHz, CD₃OD) 1.92-2.29 (m, 2H, H_{5x}, H_{5n}), 2.96 (brs, 1H, H₄), 3.20-3.30 (m, 2H, H_{3x} , H_{3n}), 3.65 (brs, 1H, H_7), 4.69 (brd, J = 3.2 Hz, 1H, H_1), 5.12 (dddd, J = 51.2, 6.0, 2.0, 2.0 Hz, 1H, H_{6n}), 7.48 (brd, J = 8.5 Hz, 1H, H₅), 7.89 (brdd, J = 8.5, 2.6 Hz, 1H, H₄), 8.42 (brd, J = 2.6 Hz, 1H, H₂). δ_{C} (75.5 MHz, CD₃OD) 38.3 (C₄), 38.5 (C₅), 48.15 (C₇), 48.18 (C₃), 62.7 (d, J = 28.7 Hz, C₁), 90.4 (d, J = 187.9 Hz, C₆), 126.3 (C_{5'}), 130.9 (C_{3'}), 141.5 (C_{4'}), 148.4 (C₆), 150.1 (C₂). δ_F (282.3 MHz, CD₃OD) -172.9. ^m/_z C₁₁H₁₃N₂ClF [MH⁺] requires 227.07513; observed 227.07506.

syn-3-Phenyl-1-azatricyclo[2.2.1.0^{2,6}]heptane (231)

syn-7-Phenyl-exo-6-fluoro-2-Boc-2-azabicyclo[2.2.1]heptane (230)was deprotected as described for 52. The crude residue was dissolved in ammonium hydroxide solution and extracted with DCM; the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. The only product observed was 231. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.56 (AB, J =

11.2 Hz, 2H, H₅), 2.17, 2.39 (2 × m, 2H, 2H, H₂, H₆, H₇), 2.49 (d, J = 3.7 Hz, 1H, H₄), 2.88 (brs, 1H, H₃), 7.22-7.36 (m, 5H, Ph). δ_C (75.5 MHz, CDCl₃) 32.8, [33.2 (C₅)], 34.5, 35.2 (C₂, C_4 , C_6), 48.6 (C_3), 51.9 (C_7), 126.5, 128.0, 128.2 (5 × aryl), 139.8 (aryl C). $m/_z$ (MH⁺) 171.

syn-3-(6-Chloro-pyridin-3-yl)-1-azatricyclo[2.2.1.0^{2,6}]heptane (229)

The hydrochloride salt of syn-7-(6-chloro-pyridin-3-yl)-exo-6-fluoro-2azabicyclo[2.2.1]heptane (213) (12 mg) was stirred in sodium hydroxide solution (1 M, 3 ml) for 5 h. The reaction mixture was extracted with DCM; the organic extracts were combined and dried over anhydrous MgSO₄,

filtered and the solvents removed in vacuo. The crude residue was flash chromatographed (19:1; diethyl ether: methanol) to give 229 (2.4 mg, 0.012 mmol, 26% isolated yield). $R_f 0.35$. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.59 (AB, J = 12.0 Hz, 2H, H₅), 2.16 (brs, 1H, H₄), 2.23 (AB, J = 10.5Hz, 2H, H₇), 2.45 (m, 2H, H₂, H₆), 2.84 (brs, 1H, H₃), 7.28 (d, J = 8.2 Hz, 1H, H₅), 7.55 (dd, J = 8.2, 2.6 Hz, 1H, H₄·), 8.31 (d, J = 2.6 Hz, 1H, H₂·). δ_{C} (100.6 MHz, CDCl₃) 32.7, [33.2 (C₅)], 34.2, 35.1 (C₂, C₄, C₆), 45.7 (C₃), 52.0 (C₇), 123.8 (C₅·), 134.2 (pyridyl C), 138.3 (C₄·), 149.3 (C₂·), 149.8 (pyridyl C). ^m/_z C₁₁H₁₂N₂Cl [MH⁺] requires 207.06890; observed 207.06886.

2-Boc-2-azabicyclo[2.2.1]hept-5-ene (220)

Based on the procedure described by Cox.¹⁵⁹ Aqueous formaldehyde solution (37%, 10 ml, 0.120 mol) was added to ammonium chloride (14.2 g, 0.265 mol) in water (100 ml) and stirred for 0.5 h, freshly distilled cyclopentadiene (19 ml, NBoc 0.230 mol) was added. The reaction mixture stirred at RT for 21 h then washed with diethyl ether (3 \times 20 ml), basified with NaOH to pH 10 and extracted with DCM (4 \times 20 ml). The organic extracts were evaporated to dryness and the resulting residue was dissolved in THF (20 ml) and water (60 ml), Boc₂O (13.5 g, 0.062 mol) and sodium bicarbonate (14.22 g, 0.169 mmol) were added. The mixture was stirred at RT for 24 h then extracted with diethyl ether (4 × 30 ml), the combined organic layers were dried over MgSO₄, filtered and the solvents removed in vacuo to give 220 as a pale yellow oil (10.06 g, 51.6 mmol, 22%). $\delta_{\rm H}$ [300 MHz, CDCl₃: where there is signal duplication because of slow N-CO rotation (ratio \sim 45:55), the minor rotamer signal is shown in italics.] 1.44 (brs, 9H, Boc), 1.47-1.63 (m, 2H, H_{7s}, H_{7a}), 2.62 (m, 1H, H₄), 3.16 (brs, 1H, H_{3n}), 3.30 (dd, J = 9.1, 3.0 Hz, 1H, H_{3x}), 4.58, 4.71 (2 × brs, 1H, H₁), 6.27 (brs, 1H, H₅), 6.28, 6.38 (2 × brs, 1H, H₆). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 28.5 (Boc CH₃), 42.9, 43.4 (C₄), 45.9, 46.3 (C₃), 59.9, 61.1 (C₁), 79.0 (Boc C), 133.7, 134.4 (C₅, C₆). v_{max} 2978m, 1810w, 1691s, 1478m, 1455m, 1365s, 1308m, 1249m, 1212m cm⁻¹. $m/_z$ 196 $(MH)^+$.

6-Boc-3-oxa-6-azatricyclo[3.2.1.0^{2,4}]octane (255a)

mCPBA (7.48 g, 70% maximum, 30.4 mmol maximum) was added to a solution of **220** (4.89 g, 25.1 mmol) in dry DCM (50 ml). After stirring under nitrogen at RT for 48 h the reaction mixture was washed with sodium bicarbonate solution (2 × 20 ml) then water (2 × 20 ml), the organic layer was dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. The resulting residue was flash chromatographed (diethyl ether) to give **255a** as a yellow oil (2.94 g, 13.9 mmol, 56%). R_f 0.63. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.17-1.20, 1.43-1.65 (2 × m, 2H, H_{7s}, H_{7a}), 1.46 (brs, 9H, Boc), 2.77 (brd, J = 1.4 Hz, 1H, H₄), 2.89-3.05 (m, 1H, H_{3n}),

3.15-3.27 (m, 2H, H_{3x}, H₅), 3.41 (m, 1H, H₆), 4.30, 4.45 (2 × brs, 1H, H₁). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.6, 25.9 (C₇), 28.4 (Boc CH₃), 37.3, 37.9 (C₄), 46.7, 47.0 (C₃), 49.2, 49.4 (C₅, C₆), 56.5, 57.6 (C₁), 79.6 (Boc C), 154.8 (Boc CO). $v_{\rm max}$ 2976m, 1683s, 1479m, 1403s, 1364s, 1254m, 1176m, 1156s cm⁻¹. $m_{/z}$ C₁₁H₁₈NO₃ [MH⁺] requires 212.12867; observed 212.12863.

2-Benzyl-2-azabicyclo[2.2.1]hept-5-en-3-one (242)

Using a procedure adapted from that described by Buston *et al.*¹⁸⁰ 2azabicyclo[2.2.1]hept-5-en-3-one (**241**) (80 mg, 0.733 mmol) was dissolved in dry THF (10 ml), sodium hydride (60%, 91 mg, 2.28 mmol) was added and stirred under nitrogen at RT for 0.5 h. Benzyl bromide (0.2 ml, 1.69 mmol) was added and the reaction mixture was stirred under nitrogen at RT for a further 24 h. Addition of ammonium hydroxide solution was followed by extraction with diethyl ether, the combined organic extracts were washed with water then dried over anhydrous MgSO₄, filtered and solvents removed *in vacuo*. The residue was flash chromatographed (diethyl ether: petrol; 1:1) to give **242** as a colourless oil (47 mg, 0.236 mmol, 32%). R_f 0.17. $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.08, 2.30 (2 × ddd, J = 7.6, 1.9, 1.9 Hz, 1H, 1H, H_{7s}, H_{7a}), 3.39 (brd, J = 1.9 Hz, 1H, H₄), 3.97, [4.04 (brdd, J = 1.9, 1.9 Hz, 1H, H₁)], 4.46 (2 × d, 1H, 1H, CH₂Ph), 6.56, 6.57 (2 × d, J = 1.9 Hz, 1H, 1H, H₅, H₆), 7.16-7.35 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 47.9 (C₇), 53.7 (C₄), 58.3 (CH₂Ph), 62.6 (C₁), 127.5, 128.3, 128.5 (5 × aryl CH), 136.4 (aryl C), 137.3, 139.5 (C₅, C₆), 179.9 (C₃). v_{max} 3006w, 1697s, 1558m, 1496m, 1454m, 1391m, 1355m, 1305m, 1230m cm⁻¹. m/_z C₁₃H₁₄NO [MH⁺] requires 200.10754; observed 200.10752.

(4-Benzylamino-cyclopent-2-enyl)-methanol (247)

Lithium aluminium hydride (42 mg, 1.11 mmol) was added to a solution of 2-benzyl-2-azabicyclo[2.2.1]hept-5-en-3-one (**242**) (44 mg, 0.221 mmol) in dry THF (5 ml) with cooling in ice. The reaction mixture was allowed to reach RT and stirred under nitrogen for 4 h; then quenched with ether saturated with water (~ 5 ml) followed by water (~ 5 ml) and extracted with DCM. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo* to give **247** (24 mg, 53%) in high enough purity for further reactions. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.59 (d, J = 13.4 Hz, 1H, H_{5s}), 2.19 (ddd, J = 13.4, 8.8, 6.7 Hz, 1H, H_{5a}), 2.94 (brd, J = 8.8 Hz, 1H, H₁), 3.3 (NH, OH), 3.61 (t, J = 3.0 Hz, 2H, CH₂OH), 3.70 (ddd, J = 6.7, 1.5, 1.5 Hz, 1H, H₄), 3.78 (AB, J = 12.9 Hz, 2H, CH₂Ph), 5.90 (brs, 2H, H₂, H₃), 7.21-7.35 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 34.4 (C₅), 45.8 (C₁), 50.8 (CH₂Ph), 60.0 (C₄), 62.1 (CH₂OH), 126.2, 127.2, 127.5 (5

× aryl CH), 131.7, 135.4 (C₂, C₃), 138.3 (aryl C). $^{m}/_{z}$ C₁₃H₁₈NO [MH⁺] requires 204.13884; observed 204.13889.

exo-5- and exo-6-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (260 and 261)

Following the procedure described by Carroll et al.¹⁶⁸ Borane-THF complex (1M, 28.9 ml, 28.9 mmol) was HO drop-wise to a solution of 2-benzvl-2added azabicyclo[2.2.1]hept-5-ene (73) (3.60 g, 19.5 mmol) in dry THF (40 ml) at 0 °C under N₂ and stirred for 2 h. THF:water (1:1; 20 ml) was added, followed by NaOH solution (3M, 6 ml), then H₂O₂ (30%, 7 ml) the temperature was raised to 40 °C and the reaction mixture was stirred for a further 1.5 h. Potassium carbonate (1.8 g) was added, the THF was removed in vacuo and the residue was extracted with DCM; the combined organic extracts were washed with water and dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. exo-6-hydroxy-2-benzyl-2ether) Flash chromatography (diethyl gave azabicyclo[2.2.1]heptane (261) (2.252 g, 11.09 mmol, 57%) Rf 0.64; and exo-5-hydroxy-2benzyl-2-azabicyclo[2.2.1]heptane (260) (0.576 g, 2.84 mmol, 15%) Rf 0.32 as pale yellow oils. Data for *exo*-5-hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (260): $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.16 (brd, J = 14.0 Hz, 1H, H_{6x}), 1.59 (m, 2H, H_{7s}, H_{7a}), 1.90 (d, J = 9.9 Hz, 1H, H_{3n}), 2.15-2.25 (m, 2H, H₄, H_{6n}), 2.2 (OH), 2.66 (dd, J = 9.9, 4.4 Hz, 1H, H_{3x}), 3.13 (brd, J = 1.5Hz, 1H, H₁), 3.48 (AB, J = 13.4 Hz, 2H, CH₂Ph), 3.81 (ddd, J = 7.0, 1.2, 1.2 Hz, 1H, H_{5n}), 7.11-7.27 (m, 5H, Ph). δ_C (75.5 MHz, CDCl₃) 32.2 (C₇), 38.6 (C₆), 45.6 (C₄), 54.5 (C₃), 58.3 (CH₂Ph), 59.4 (C₁), 73.2 (C₅), 126.7, 128.2, 128.5 (5 × aryl CH), 139.5 (aryl C). v_{max} 3320m, 2963s, 1495m, 1453s, 1368s, 1325s, 1211s, 1113s, 1045s, 1008s cm⁻¹. $m_z C_{14}H_{18}N [MH^+]$ 204.13877. Data for exo-6-hydroxy-2-benzyl-2requires 204.13884; observed azabicyclo[2.2.1]heptane (261): $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.31 (dddd, J = 13.2, 4.4, 2.1, 0.6 Hz, 1H, H_{5x}), 1.53 (brs, 2H, H_{7s} , H_{7a}), 1.81 (dd, J = 13.2, 7.0 Hz, 1H, H_{5n}), 2.38 (brs, 1H, H_4), 2.48 (ddd, J = 8.8, 3.2, 2.6 Hz, 1H, H_{3x}), 2.99 (brs, 1H, H₁), 3.31 (d, J = 8.8 Hz, 1H, H_{3n}), 3.67 (brs, 2H, CH₂Ph), 4.05 (brd, J = 6.7 Hz, 1H, H_{6n}), 7.19-7.36 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 31.1 (C₇), 36.5 (C₄), 40.3 (C₅), 58.6 (C₃), 59.5 (<u>C</u>H₂Ph), 65.6 (C₁), 72.5 (C₆), 126.7, 128.2, 128.5 (5 × aryl CH), 139.9 (aryl C). v_{max} 3348m, 2963s, 1495m, 1453s, 1368s, 1330s, 1229 m cm^{-1} . $^{\text{m}}_{\text{z}} \text{ C}_{13}\text{H}_{18}\text{NO} \text{ [MH}^{+}\text{]}$ requires 204.13884; observed 204.13890.
6-Keto-2-benzyl-2-azabicyclo[2.2.1]heptane (259)

Following the procedure described by Carroll *et al.*¹⁶⁸ Trifluoroacetyl anhydride (2.3 ml, 16.5 mmol) in dry DCM (7 ml) was added to a solution of DMSO (1.56 ml, 22.2 mmol) in dry DCM (11.5 ml) under nitrogen at -78 $^{\circ}$ C

and stirred for 10 min. *exo*-6-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (**261**) (2.252 g, 11.09 mmol) was added in dry DCM (7 ml) and the reaction mixture was stirred for a further 30 min. Triethylamine (9.2 ml) was added and the reaction mixture was allowed to reach RT overnight; addition of water (15 ml) was followed by extraction into DCM. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*; the residue was flash chromatographed (petrol: diethyl ether; 6:4) to give **259** as a pale yellow oil (0.880 g, 4.38 mmol, 39%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.65-1.75, 1.94 (m, ddd, *J* = 10.5, 4.4, 2.3 Hz, 2H, 1H, H_{5n}, H_{7s}, H_{7a}), 2.05 (dd, *J* = 9.1, 1.5 Hz, 1H, H_{3n}), 2.19 (ddd, *J* = 17.8, 4.4, 1.8 Hz, 1H, H_{5x}), 2.64 (brs, 1H, H₄), 3.21 (brs, 1H, H₁), 3.30 (ddd, *J* = 9.1, 2.9, 2.0 Hz, 1H, H_{3x}), 3.59 (AB, *J* = 13.7 Hz, 2H, CH₂Ph), 7.20-7.36 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 35.6 (C₄), 36.7 (C₇), 44.2 (C₅), 55.9 (C₃), 57.4 (CH₂Ph), 66.8 (C₁), 127.0, 128.3, 128.5 (5 × aryl CH), 136.8 (aryl C), 208.1 (C₆). v_{max} 2973m, 1734s, 1494m, 1453m, 1407m, 1370m, 1209m, 1184m, 1159m cm⁻¹. ^m/_z C₁₃H₁₆NO [MH⁺] requires 202.12319; observed 202.12314.

exo-6,1-Difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (262) and 6,6-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (258)

DAST (0.18 ml, 1.37 mmol) was added to a solution of 6keto-2-benzyl-2-azabicyclo[2.2.1]heptane (**259**) (55 mg, 0.274 mmol) in dry DCM (4 ml) and stirred under nitrogen

at RT. After 24 h, the reaction mixture was quenched by the addition of NaHCO₃ solution (5 ml) and extracted with DCM. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. The crude product residue was flash chromatographed (19:1; petrol: diethyl ether) to give **262** (19 mg, 0.085 mmol, 31%, R_f 0.17) and **258** (19 mg, 0.085 mmol, 31%, R_f 0.09) as colourless oils. Data for *exo*-6,1-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (**262**): $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.87-2.22 (m, 5H, H_{3n}, H_{5x}, H_{5n}, H_{7s}, H_{7a}), 2.26 (brs, 1H, H₄), 3.32 (m, 1H, H_{3x}), 3.43, 4.20 (2 × d, *J* = 13.2 Hz, 1H, 1H, C<u>H</u>₂Ph), 4.95 (dd, *J* = 56.4, 6.4 Hz, 1H, H_{6n}), 7.20-7.34 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 31.1 (d, *J* = 5.3 Hz, C₄), 36.0 (d, *J* = 14.3 Hz, C₇), 38.8 (dd, *J* = 20.4, 5.3 Hz, C₅), 52.4 (CH₂Ph), 58.7 (d, *J* = 5.3 Hz, C₃), 87.3 (dd, *J* = 196.9, 30.2 Hz, C₆), 127.0, 128.0, 128.3 (5 × aryl CH), 138.9 (aryl C). $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -180.3 (d, *J* = 24.8 Hz, F₁), -174.7 (dddd,

J = 75.9, 43.4, 24.8, 4.6 Hz, F_{6x}). v_{max} 2883m, 1494m, 1454m, 1431m, 1378m, 1346m, 1295m, 1260m, 1231s, 1161s, 1136s cm⁻¹. ^m/_z C₁₃H₁₅NF₂ [MH⁺] requires 223.11726; observed 223.11732. Data for 6,6-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (**258**): $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.61-1.86 (m, 3H, H_{5n}, H_{7s}, H_{7a}), 1.94-2.18 (m, 1H, H_{5x}), 2.47 (d, J = 9.0 Hz, 1H, H_{3n}), 2.50 (brs, 1H, H₄), 2.84 (ddd, J = 9.0, 5.6, 2.9 Hz, 1H, H_{3x}), 3.25 (brs, 1H, H₁), 3.86 (AB, J = 13.7 Hz, 2H, CH₂Ph), 7.20-7.38 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 34.5 (d, J = 3.6 Hz, C₇), 36.6 (dd, J = 3.6, 3.6 Hz, C₄), 41.4 (dd, J = 20.3, 23.9 Hz, C₅), 57.3 (C₃), 58.6 (d, J = 3.6 Hz, CDCl₃) -111.8 (d, J = 223.5 Hz), -86.0 (d, J = 223.5 Hz). v_{max} 2968w, 2913w, 2843m, 1492m, 1452m, 1440m, 1369m, 1336s, 1230s cm⁻¹. ^m/_z 223 (MH⁺).

7,7-Difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (277)

F DAST (0.22 ml, 1.70 mmol) was added to a solution of 7-keto-2-benzyl-2azabicyclo[2.2.1]heptane (**159**) (68 mg, 0.34 mmol) in dry DCM (5 ml) and stirred under nitrogen at RT. After 24 h the reaction mixture was quenched by the addition of NaHCO₃ solution (5 ml) and extracted with DCM. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. The crude product residue was flash chromatographed (3:1; petrol: diethyl ether) to give **277** as a yellow oil (29 mg, 0.13 mmol, 38%). R_f 0.57. δ_H (300 MHz, CDCl₃) 1.48-1.58, 1.81-1.96 (2 × m, 1H, 3H, H₅, H₆), 2.20 (dd, J = 3.8, 3.8 Hz), 2.72 (brd, J = 9.1 Hz, 1H, H_{3n}), 2.90 (brs, 1H, H₁), 2.98 (m, 1H, H_{3x}), 3.80 (AB, J = 13.4 Hz, CH₂Ph), 7.20-7.37 (m, 5H, Ph). δ_C [75.5 MHz, CDCl₃; * denotes interchangeable assignments] 25.0, (d, J = 6.0 Hz, C₅*), 26.4 (d, 4.8 Hz, C₆*), 39.9 (dd, J = 19.1, 19.1 Hz, C₄), 57.4 (d, J = 7.2 Hz, C₃), 59.4 (CH₂Ph), 59.8 (dd, J = 20.3, 18.0 Hz, C₁), 126.9, 128.3, 128.4 (5 × aryl CH), 139.3 (aryl C). δ_F (282.3 MHz, CDCl₃) -131.4 (d, J = 200.4 Hz), -128.5 (d, J = 200.4 Hz). v_{max} 2985m, 2865m, 1495m, 1454m, 1353s, 1327m, 1288m, 1248m, 1201s, 1173s, 1149s cm⁻¹. ^m/_z C₁₃H₁₆NF₂ [MH⁺] requires 224.12508; observed 224.12510.

6,6-Difluoro-2-azabicyclo[2.2.1]heptane 2-carboxylic acid benzyl ester (271)

6-Keto-2-azabicyclo[2.2.1]heptane 2-carboxylic acid benzyl ester (270) (43 mg, 0.176 mmol) (sample obtained from C. D. Cox) was dissolved in dry DCM (4 ml), DAST (0.1 ml, 0.76 mmol) was added and the reaction mixture was stirred under nitrogen at RT for 24 h. Sodium bicarbonate

solution (5 ml) was added and extracted with DCM, the combined organic extracts were dried

over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. The crude product was flash chromatographed (diethyl ether: petrol) to give **271** as a yellow oil (32 mg, 0.120 mmol, 68%). R_f 0.25. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.68-1.92, 2.03-2.23 (2 × m, 3H, 1H, H₅, H₇), 2.65 (brs, 1H, H₄), 3.13, 3.17 (2 × brd, *J* = 9.7 Hz, 1H, H_{3n}), 3.44 (ddd, *J* = 9.7, 2.5, 2.5 Hz, 1H, H_{3x}), 4.31, 4.41 (2 × brs, 1H, H₁), 5.15 (brs, 2H, CH₂Ph), 7.26-7.43 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 35.2, 35.8 (C₄), 35.5, 36.1 (C₇), 40.3, 40.4 (2 × dd, *J* = 27, 27 Hz, C₅), 50.9 (C₃), 59.4, 59.8, 60.1, 60.4 (C₁), 66.9, 67.0 (CH₂Ph), 127.78, 127.93, 128.42 (5 × aryl CH), 136.6 (aryl C), 154.8, 155.0 (CO). $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -114.13, -113.84 (2 × d, *J* = 220.0 Hz), -91.98, -91.96 (2 × d, *J* = 220.0 Hz).

exo- And endo-5-bromo-6-keto-2-benzyl-2-azabicyclo[2.2.1]heptane (264 and 265)

Bromine (0.6 ml, 11.7 mmol) was added to a stirred solution of 6-keto-2-benzyl-2-azabicyclo[2.2.1]heptane (259) (226 mg, 1.124 mmol) in acetic acid (20 ml) drop-

wise at 0 °C. The temperature was raised to 50 °C and the reaction mixture was stirred under nitrogen for 18 h then cooled, washed with DCM, basified with NaOH (soln.) and extracted into ethyl acetate. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo yielding the exo-bromo-compound 264 Rf 0.50 and the endo-bromo-compound 265 (~1:1, 52 mg, 0.186 mmol, 17%) Rf 0.21 which were deemed pure enough for further reaction. Flash chromatography (diethyl ether: petrol; 1:1) allowed pure samples of 264 and 265 to be isolated for separate characterisation. exo-5-Bromo-6-keto-2-benzyl-2-azabicyclo[2.2.1]heptane (264): $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.03 (brd, J = 11.1 Hz, 1H, H_{7s}), 2.15 (d, J = 10.1 Hz, 1H, H_{3n}), 2.31 (dd, J = 11.1, 1.3 Hz, 1H, H_{7a}), 2.78 (brs, 1H, H_4), 3.35 (brs, 1H, H₁), 3.40 (dd, J = 10.1, 3.4 Hz, 1H, H_{3x}), 3.58 (AB, J = 13.5 Hz, 2H, C<u>H</u>₂Ph), 3.66 (brd, J = 3.1 Hz, 1H, H_{5n}), 7.25-7.35 (m, 5H, Ph). δ_{C} (75.5 MHz, CDCl₃) 34.0 (C₇), 44.5 (C₄), 47.6 (C₅), 54.6, 57.1 (C₃, <u>CH</u>₂Ph), 65.9 (C₁), 127.3, 128.4, 128.5 (5 × aryl CH), 138.0 (aryl C) ${}^{m}/{}_{z}$ C₁₃H₁₅NOBr [MH⁺] requires 280.03370; observed 280.03371. endo-5-Bromo-6keto-2-benzyl-2-azabicyclo[2.2.1]heptane (265): $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.92 (brd, J = 11.1 Hz, 1H, H_{7a}), 2.27 (brd, J = 11.1 Hz, 1H, H_{7s}), 2.77 (brd, J = 9.6 Hz, 1H, H_{3n}), 2.90 (brs, 1H, H₄), 3.19 (brd, J = 9.6 Hz, 1H, H_{3x}), 3.30 (brs, 1H, H₁), 3.60 (AB, J = 13.5 Hz, 2H, CH₂Ph), 4.46 $(d, J = 4.3 \text{ Hz}, 1\text{H}, \text{H}_{5x}), 7.25-7.38 \text{ (m, 5H, Ph)}, \delta_{C} (100.6 \text{ MHz}, \text{CDCl}_{3}) 35.2 \text{ (C}_{7}), 42.8 \text{ (C}_{4}),$ 50.6, [55.0 (C₅)], 56.4 (C₃, CH₂Ph), 64.9 (C₁), 127.2, 128.4, 128.6 (5 × aryl CH), 198.8 (C₆).

 v_{max} 2874w, 1739s, 1494m, 1454m, 1371m, 1317w, 1257m, 1194m, 1147m, 1072m cm⁻¹. ^m/_z C₁₃H₁₅NOBr [MH⁺] requires 280.03370; observed 280.03368.

syn-7-Bromo-*exo*-6,1-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (266) and *anti*-7-bromo-*exo*-6,1-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane (267)

DAST (0.20 ml, 1.02 mmol) was added to a solution of exo- and endo-5-bromo-6-keto-2-benzyl-2azabicyclo[2.2.1]heptane (264 and 265) (~1:1) (52 mg, 0.186 mmol) in dry DCM (5 ml) and stirred under

nitrogen at RT. After 48 h, the reaction mixture was quenched by the addition of NaHCO₃ solution (5 ml) and extracted with DCM. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. The crude product residue was flash chromatographed (diethyl ether: methanol; 9:1) to give an inseparable mixture of 266 and 267 (~2:1 syn: anti) (28 mg, 0.093 mmol, 50%). $\delta_{\rm H}$ [300 MHz, CDCl₃; the signals corresponding to the minor (anti) epimer are underlined] 1.96-2.39, 2.44, 2.50-2.74 (m, brs, m, 4H, H_{3n}, H₄, H_{5x}, H_{5n}), 3.25, [3.48, 3.58 (2 × d, J = 13.3 Hz, J = 13.8 Hz, 1H, H₇)], 3.65 (2 \times m, 1H, H_{3x}), 4.18-4.33 (m, 2H, CH₂Ph), 4.85, 5.04 (2 × m, 1H, H_{6n}), 7.22-7.39 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) <u>36.7</u> (dd, J = 21.5, 5.6 Hz, C₅), 36.9, [37.3 (dd, J = 20.5, 5.4 Hz, C₅)], <u>37.7</u> (C₄), 49.1 (dd, J = 15.5, 2.3 Hz, C₇), <u>50.11</u> (dd, J = 15.3, 3.0 Hz, C₇), <u>51.14</u>, 52.3 (CH₂Ph), 55.9, 56.0 (2 × d, J = 4.6 Hz, C₃), 85.0 (dd, J = 201.8, 28.9 Hz, C₆), 86.0 (dd, J = 201.8, 88.9 Hz, C₆), 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆), 88.9 Hz, C₆, 88.9 Hz, C₆, 88.9 Hz, C₆, 88 205.2, 27.3 Hz, C₆), 127.1, 127.3, 127.6, 128.1, 128.4 (5 × aryl CH), 137.6, 138.5 (aryl C). δ_F $(282.3 \text{ MHz}, \text{CDCl}_3) - 182.62 \text{ (d, } J = 23.9 \text{ Hz}), -181.34 \text{ (d, } J = 22.8 \text{ Hz}), -175.26 \text{ (d, } J = 22.8 \text{ Hz})$ Hz), -173.76 (d, J = 23.9 Hz). v_{max} 3030w, 2984w, 2924w, 2869w, 1604w, 1495m, 1455m, 1439m, 1368m, 1347m, 1320m, 1295m, 1266m, 1224m, 1187m, 1164m cm⁻¹. ^m/_z C₁₃H₁₄NF₂Br [M⁺] requires 301.02777; observed 301.02781. The mixture of 266 and 267 contained ~10% (by ¹⁹F NMR signal integrations) of the unrearranged products exo-5-bromo-6,6-difluoro-2-benzyl-2-azabicyclo[2.2.1]heptane and endo-5-bromo-6,6-difluoro-2-benzyl-2azabicyclo[2.2.1]heptane. δ_F [282.3 MHz, CDCl₃; the minor epimer is underlined] -111.89 (d, J = 221.7 Hz, -109.00 (d, J = 223.8 Hz), -87.30 (d, J = 223.8 Hz), <u>-85.98</u> (d, J = 221.7).

exo-5-Bromo-endo-6-hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (275)

Phosphorus pentabromide (163 mg, 0.379 mmol) was added to a solution of Br 6-keto-2-benzyl-2-azabicyclo[2.2.1]heptane (259) (38 mg, 0.189 mmol) in NBn dry CDCl₃ (5 ml); the reaction mixture was stirred under nitrogen at reflux for ÔН 24 h then guenched with water (5 ml) and extracted into ethyl acetate. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. The resulting residue was dissolved in dry THF (4 ml), Red-Al (65+ % wt. solution in toluene, 0.06 ml, 0.20 ml) was added and the mixture was stirred at -10 °C for 2h. Sodium bicarbonate solution (4 ml) was then added and extracted into ethyl acetate. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo; flash chromatography of the crude residue gave 275 as the only isolated product (1.2 mg, 0.0043) mmol, 2%). $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.85 (ddd, J = 11.0, 4.2, 2.0 Hz, 1H, H₇), 2.05 (d, J = 11.0Hz, 1H, H₇), 2.63 (brs, 1H, H₄), 2.54 (dd, J = 10.5, 3.9 Hz, 1H, H_{3x}), 2.80 (brd, J = 10.5 Hz, 1H, H_{3n}), 3.27 (brs, 1H, H_1), 3.58 (brs, 1H, H_{5n}), 3.72 (AB, J = 12.9 Hz, 2H, CH₂Ph), 4.23 (m, 1H, H_{6x}), 7.25-7.36 (m, 5H, Ph). $m_z 282/284$ (1:1) [MH⁺].

anti-7-exo-6-Dibromo-2-Boc-2-azabicyclo[2.2.1]heptane (219)

Using a procedure adapted from that described by Sosonyuk et al.,98 2-Br Boc-2-azabicyclo[2.2.1]hept-5-ene (220) (575 mg, 2.95 mmol) was Brdissolved in dry DCM (6 ml). Bromine (0.27 ml, 5.9 mmol) was added NBoc drop-wise at -78 °C. The mixture was stirred as the temperature rose to 20 °C. Removal of the solvents in vacuo gave a residue which was dissolved in dry acetonitrile (3 ml). This solution was cooled to 0 °C and stirred vigorously under nitrogen whilst more 220 (575 mg, 2.95 mmol) in dry acetonitrile (3 ml) was added drop-wise. After warming to 20 °C, the solvents were removed in vacuo; flash chromatography (petrol: ether; 9:1) gave starting material (220) (305 mg) and 219 as a colourless oil (1.057 g, 2.98 mmol, 69% based on recovered starting material). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio \sim 45:55), the minor rotamer signal is shown in italics.] 1.44, 1.47 (2 × brs, 9H, Boc), 2.41 (ddd, J = 13.7, 8.2, 1.2 Hz, 1H, H_{5n}), 2.55-2.76 (m, 2H, H_4 , H_{5x}), 2.94-3.06 (m, 1H, H_{3n}), 3.34 (ddd, J = 9.9, 2.9, 2.9 Hz, 1H, H_{3x}), 3.90-4.05 (m, 1H, H_{6n}), 4.10 (brs, 1H, H_7), 4.37, 4.49 (2 × brs, 1H, H₁). $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 28.3 (Boc CH₃), 39.1 (C₅), 43.1 (C₄), 44.6, 45.1 (C₆), 47.7 (C₇), 49.4, 50.1 (C₃), 62.9, 64.9 (C₁), 81.0 (Boc C). v_{max} 2977m, 1694s, 1587w, 1477m, 1456m, 1386s, 1366s, 1330m, 1298m, 1249m, 1228m, 1152s, 1101s cm⁻¹. m/z $C_{11}H_{17}NO_2Br_2$ [M⁺] requires 352.96260; observed 352.96258.

anti-7-exo-6-Dibromo-2-azabicyclo[2.2.1]heptane 2-carboxylic acid benzyl ester (218)

anti-7-exo-6-Dibromo-2-Boc-2-azabicyclo[2.2.1]heptane (219) (384 mg, anti-7-exo-6-Dibromo-2-Boc-2-azabicyclo[2.2.1]heptane (219) (384 mg,

р. Br Br

1.082 mmol) was dissolved in a mixture of ethyl acetate (4 ml) and ethanol 'he (2 ml) after cooling to 0 °C acetyl chloride (2 ml) was added. The **ÍC**bz he temperature was allowed to reach RT and the reaction mixture was stirred for 3 h before the solvents were removed in vacuo. The resulting residue was dissolved in water (14 ml); benzylchloroformate (0.30 ml, 1.468 mmol) was added and the pH was adjusted to ~ 11 with NaOH (aqueous). After stirring at RT for 2 h the reaction mixture was extracted into DCM; the organic extracts were combined, dried over anhydrous MgSO₄, filtered and reduced in vacuo. The crude residue was flash chromatographed (ether: petrol; 1:1) yielding 218 as a colourless oil (223 mg, 0.574 mmol, 53%). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio $\sim 40:60$), the minor rotamer signal is shown in italics.] 2.36 (dd, J = 14.0, 8.2 Hz, 1H, H_{5n}), 2.56 (brd, J = 14.0 Hz, 1H, H_{5x}), 2.77 (brs, 1H, H₄), 3.02-3.10 (m, 1H, H_{3n}), 3.37 (brd, J = 9.7 Hz, 1H, H_{3x}), 3.99 (m, 1H, H_{6n}), 4.07 (brs, 1H, H_7), 4.43, 4.50 (2 × brs, 1H, H_1), 5.09-5.21 (m, 2H, C H_2 Ph), 7.28-7.42 (m, 5H, Ph). δ_C (100.6 MHz, CDCl₃) 39.1 (C₅), 44.1, 44.6 (C₄), 47.4 (C₇), 49.8 (C₃), 55.2, 55.4 (C₆), 63.8, 64.3 (C₁), 67.5 (<u>CH</u>₂Ph), 128.0, 128.9, 129.4 (5 × aryl CH), 136.1 (aryl C). ν_{max} 2952w, 2892w, 1698s, 1498w, 1444m, 1408m, 1355m, 1329m, 1313m, 1258m, 1225m, 1210m, 1098m cm⁻¹. Alternatively, 218 can be made by brominating 2-azabicyclo[2.2.1]hept-5-ene 2-carboxylic acid benzyl ester.¹⁵⁶ Bromine (0.25 ml, 4.87 mmol) was added drop-wise to a solution of 2azabicyclo[2.2.1]hept-5-ene 2-carboxylic acid benzyl ester (1.00 g, 4.37 mmol) in dry DCM (25 ml). After stirring for 24 h the reaction mixture was washed with sodium thiosulfate solution (20 ml), dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo to give 218 (1.47 g, 3.78 mmol, 86%).

anti-7-Bromo-exo-6-hydroxy-2-azabicyclo[2.2.1]heptane 2-carboxylic acid benzyl ester (221)

anti-7-exo-6-Dibromo-2-azabicyclo[2.2.1]heptane 2-carboxylic acid Br benzyl ester (218) (13.3 mg, 0.034 mmol) was stirred in a mixture of HO water (2 ml) and acetonitrile (2 ml) at 65 °C for 24 h. Then the acetonitrile ŃCbz was removed in vacuo and the remaining mixture extracted with diethyl ether. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed in vacuo. Flash chromatography (petrol: ether; 3:1) of the crude residue gave 221 as a pale yellow oil (10.8 mg, 0.033 mmol, 97%). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~ 30.70), the minor rotamer signal is shown

in italics.] 2.07-2.30 (m, 2H, H_{5n}, H_{5x}), 2.36, 2.41 (2 × d, J = 11.0 Hz, 1H, OH), 2.77 (brs, 1H, H₄), 3.02 (brd, J = 9.4 Hz, 1H, H_{3n}), 3.31 (brd, J = 9.4 Hz, 1H, H_{3x}), 4.31, 4.37 (2 × brs, 1H, H₁), 4.07 (brs, 1H, H₇), 4.98 (m, 1H, H_{6n}), 5.06-5.21 (m, 2H, CH₂Ph), 7.29-7.40 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 38.8, 39.0 (C₅), 42.7, 43.2 (C₄), 49.6, 49.8 (C₃), 49.4, 49.6 (C₇), 62.7, 63.0 (C₁), 67.1, 67.3 (CH₂Ph), 74.1, 74.5 (C₆), 128.1, 128.2, 128.5 (5 × aryl CH), 136.2 (aryl C). $v_{\rm max}$ 3427w, 2947w, 1695s, 1498w, 1417s, 1358s, 1329m, 1265m, 1224m cm⁻¹. ^m/_z C₁₄H₁₇NO₃Br [MH⁺] requires 326.03918; observed 326.03911.

8-Keto-3-benzyl-3-azabicyclo[3.2.1]octane (291)

Using the procedure described by Lowe *et al.*¹⁷⁰ Benzylamine hydrochloride (55 g, 0.38 mol), cyclopentanone (27 ml, 25.7 g, 0.31 mol), and formaldehyde (37%, 150 ml, 0.74 mol) were dissolved in glacial acetic acid (200 ml) and stirred at 80 °C for 15 h. The reaction mixture was concentrated *in vacuo*, taken

into water and washed with diethyl ether; the aqueous layer was basified with sodium carbonate then extracted with DCM. The combined organic extracts were reduced *in vacuo*, the residue was dissolved in ethanol (150 ml) and acetic anhydride (50 ml) and stirred at RT for 2 h, then HCl (12 M, 50 ml) was added and the mixture was stirred for a further 12 h. The reaction mixture was concentrated, taken into water and washed with DCM, basified with sodium carbonate and extracted with DCM, the combined organic extracts were dried over anhydrous MgSO₄, filtered and solvents removed *in vacuo*. Flash chromatography (petrol: diethyl ether; 3:1) gave **291** as a yellow oil (1.705 g, 7.9 mmol, 3%). R_f 0.36. $\delta_{\rm H}$ [300 MHz, CDCl₃; * and # indicate interchangeable assignments] 1.82 (m, 2H, H_{6n}, H_{7n}),# 2.04 (m, 2H, H_{6x}, H_{7x}),# 2.13 (m, 2H, H₁, H₅), 2.51 (d, *J* = 10.8 Hz, 2H, H_{2x}, H_{4x}),* 2.94 (dd, *J* = 10.8, 3.1 Hz, H_{2n}, H_{4n}),* 3.57 (s, 2H, C<u>H</u>₂Ph), 7.21-7.40 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 22.7 (C₆, C₇), 45.4 (C₁, C₅), 60.2 (<u>C</u>H₂Ph), 61.7 (C₂, C₄), 127.2, 128.3, 128.6 (5 × aryl CH), 138.8 (aryl C), 220.1 (C₈). v_{max} 2939m, 2792m, 1750s, 1674m, 1495m, 1453m, 1360m, 1345m, 1271m cm⁻¹. m/_z C₁₄H₁₈NO [MH⁺] requires 216.13884; observed 216.13877.

syn-8-Hydroxy-3-benzyl-3-azabicyclo[3.2.1]octane (292a)

Using the procedure described by Kim *et al.*¹⁷¹ 8-Keto-3-benzyl-3azabicyclo[3.2.1]octane (**291**) (0.972 g, 4.52 mmol) was dissolved in dry methanol (15 ml) and stirred at 0 $^{\circ}$ C under nitrogen. Sodium borohydride (243

^NBn mg, 6.42 mmol) was added, the temperature was allowed to reach RT slowly and the reaction mixture was stirred for a further 24 h. Water (20 ml) was added and extracted

with DCM, the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. Trituration with petrol gave **292a** as a white semi-solid (905 mg, 4.17 mmol, 92%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.54 (m, 2H, H_{6n}, H_{7n}), 1.73 (m, 2H, H_{6x}, H_{7x}), 1.85 (brs, 2H, H₁, H₅), 2.33 (dd, J = 10.7, 3.3 Hz, 2H, H_{2n}, H_{4n}), 2.52 (brd, J = 10.7 Hz, 2H, H_{2x}, H_{4x}), 3.42 (brs, 2H, C<u>H</u>₂Ph), 3.83 (t, J = 4.7 Hz, 1H, H₈), 7.17-7.26 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.3 (C₆, C₇), 38.5 (C₁), 52.1 (C₂, C₄), 62.2 (<u>C</u>H₂Ph), 72.6 (C₈), 127.3, 128.4, 128.6 (5 × aryl CH), 139.5 (aryl C). $v_{\rm max}$ 3299m, 2936s, 2812s, 1493m, 1453s, 1387m, 1341m, 1277m cm⁻¹. ^m/_z C₁₄H₂₀NO [MH⁺] requires 218.15449; observed 218.15449. Analysis: C₁₄H₁₉NO requires: C, 77.48; H, 8.70; N, 6.46; observed: C, 77.56; H, 8.70; N, 6.53.

syn-8-Hydroxy-3-Boc-3-azabicyclo[3.2.1]octane (292b)

Syn-8-Hydroxy-3-benzyl-3-azabicyclo[3.2.1]octane (292a) (35 mg, 0.164 mmol) was dissolved in dry methanol (4 ml) and palladium on carbon (10%, ~ 50 mg) was added. The reaction mixture was stirred under hydrogen for 24 h then filtered through celite, the filtrate was evaporated to dryness and the residue was dissolved in water (7.5 ml) and THF (2.5 ml). Boc₂O (72 mg, 0.33 mmol) and NaHCO₃ (55 mg, 0.66 mmol) were added. This mixture was stirred at RT for 24 h then extracted with diethyl ether, the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo* to give 292b as a white solid (30 mg, 0.132 mmol, 81%). δ_H [300 MHz, CDCl₃; * indicates an interchangeable assignment] 1.46 (brs, 9H, Boc), 1.43-1.75 (m, 4H, H₆, H₇), 1.99 (m, 2H, H₁, H₅), 3.80, 3.38 (2 × brd, *J* = 12.3 Hz, 1H, 1H, H_{2x}, H_{4x}),* 3.54, 3.67 (2 × brd, *J* = 12.3 Hz, 1H, 1H, H_{2n}, H_{4n}),* 4.03 (t, *J* = 4.9 Hz, 1H, H₈). δ_C (75.5 MHz, CDCl₃) 23.15, 23.23 (C₆, C₇), 27.5 (Boc CH₃), 36.5, 36.6 (C₁, C₅), 42.3, 43.2 (C₂, C₄), 70.8 (C₈), 78.2 (Boc C), 155.4 (Boc CO). ν_{max} 3415m, 2938m, 1666s, 1418s, 1365s, 1249s cm^{-1. m/}/_z C₁₂H₂₂NO₃ [MH⁺] requires 228.15997; observed 228.15990.

anti-8-Bromo-3-benzyl-3-azabicyclo[3.2.1]octane (293a)

Using a procedure adapted from that described by Kim *et al.*¹⁷¹ *syn*-8-Hydroxy-3-benzyl-3-azabicyclo[3.2.1]octane (**292a**) (318 mg, 1.465 mmol) was dissolved in dry DCM (10 ml), pyridine (1.2 ml, 14.7 mmol) and Tf₂O (0.74 ml,

Bn 4.40 mmol) were added and the mixture was stirred under nitrogen at 0 °C for 2 h. Sodium bicarbonate solution was added and extracted with DCM, the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo* to give the triflate (**294a**): $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.69, 1.97 (2 × m, 2H, 2H, H₆, H₇), 2.31 (brs, 2H, H₁, H₅), 2.58 (m, 4H, H₂, H₄), 3.56 (brs, 2H, C<u>H</u>₂Ph), 4.99 (t, J = 5.0 Hz, 1H, H₈), 7.14-7.40 (m, 5H, Ph). $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -75.3. The triflate was dissolved in dry DMF (10 ml), lithium bromide (1.116 g, 12.8 mmol) and aluminium chloride (102 mg, 0.765 mmol) were added and the reaction mixture was stirred at 50 °C under nitrogen for 24 h. Sodium bicarbonate solution was added and extracted with DCM, the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. Flash chromatography (petrol: diethyl ether; 1:1) gave **293a** as a yellow oil (149 mg, 0.532 mmol, 36%). R_f 0.60. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.82 (d, J = 7.1 Hz, 2H, H_{6n}, H_{7n}), 2.05 (m, 2H, H_{6x}, H_{7x}), 2.21 (d, J = 11.5 Hz, 2H, H_{2x}, H_{4x}), 2.37 (brs, 2H, H₁, H₅), 2.72 (dd, J = 11.5, 4.4 Hz, 2H, H_{2n}, H_{4n}), 3.45 (brs, 2H, C<u>H</u>₂Ph), 4.16 (brs, 1H, H₈), 7.19-7.27 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 26.5 (C₆, C₇), 44.7 (C₁, C₅), 60.3 (C₂, C₄), 61.5 (<u>C</u>H₂Ph), 63.0 (C₈), 126.9, 128.2, 128.6 (5 × aryl CH), 139.0 (aryl C). v_{max} 2943s, 2794s, 1454s, 1364s, 1265m, 1217m cm⁻¹. ^m/_z 280/282 (1:1) (MH⁺).

anti-8-Bromo-3-Boc-3-azabicyclo[3.2.1]octane (293b)

Using a procedure adapted from that described by Kim *et al.*¹⁷¹ *syn*-8-Hydroxy-3-Boc-3-azabicyclo[3.2.1]octane (**292b**) (223 mg, 0.982 mmol) was dissolved in dry DCM (10 ml), pyridine (0.8 ml, 9.8 mmol) and Tf₂O (0.5 ml, 2.95 mmol) were added and the mixture was stirred under nitrogen at 0 °C for

2 h. Sodium bicarbonate solution was added and extracted with DCM, the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo* to give the triflate (**294b**): $\delta_{\rm H}$ [300 MHz, CDCl₃; * indicates interchangeable assignments] 1.40 (s, 9H, Boc), 1.54-1.77 (m, 4H, H₆, H₇), 2.22-2.35 (m, 2H, H₁, H₅), 3.14, 3.24 (2 × brd, J = 12.3 Hz, 1H, 1H, H_{2x}, H_{4x}),* 3.63, 3.78 (2 × brd, J = 12.3 Hz, 1H, 1H, H_{2n}, H_{4n}),* 4.96 (t, J = 5.2 Hz, 1H, H₈). $\delta_{\rm F}$ (282.3 MHz, CDCl₃) -75.1. The triflate was dissolved in dry DMF (10 ml), lithium bromide (842 mg, 9.69 mmol) and aluminium chloride (67 mg, 0.502 mmol) were added and the reaction mixture was stirred at 50 °C under nitrogen for 24 h. Sodium bicarbonate solution was added and extracted with DCM, the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. Flash chromatography (petrol: diethyl ether; 3:1) gave **293b** as a white solid (190 mg, 0.655 mmol, 67%). m.p. 60-62 °C. $\delta_{\rm H}$ [300 MHz, CDCl₃] 1.12-1.74 (m, 4H, H₆, H₇), 1.38 (brs, 9H, Boc), 2.03, 2.36 (2 × m, 1H, 1H, H₁, H₅), 2.86 (m, 2H, H_{2x}, H_{4x}), 3.77, 3.93 (2 × brd, J = 12.5 Hz, 1H, 1H, H_{2n}, H_{4n}), 4.17 (brs, 1H, H₈). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.3 (C₆, C₇), 28.4 (Boc CH₃),

43.8 (C₁, C₅), 50.9, 51.8 (C₂, C₄), 60.9 (C₈), 79.8 (Boc C). v_{max} 2969m, 1689s, 1456m, 1417s, 1364s, 1326m, 1247m, 1218m cm⁻¹. $m/_z$ 290/292 (1:1) (MH⁺).

anti-8-(6-Chloro-pyridin-3-yl)-3-Boc-3-azabicyclo[3.2.1]octane (298)

The Suzuki coupling procedure described for **122** and **123** was used with: *anti*-8-Bromo-3-Boc-3-azabicyclo[3.2.1]octane (**293b**) (76 mg, 0.262 mmol), Ni(cod)₂ (24 mg, 0.087 mmol), bathophenanthroline (58 mg, 0.174 mmol), 4-chloro-3-pyridyl boronic acid (54 mg, 0.343 mmol), Potassium *tert*-butoxide (49 mg, 0.437 mmol) and s-butanol (13 ml).

After 24 h at 60 °C the reaction was stopped and the crude residue flash chromatographed (3:1; petrol: diethyl ether) to give **293b** (29 mg) and **298** as a white solid (28 mg, 0.087 mmol, 33%; 54% based on recovered starting material). m.p. 100-102 °C. R_f 0.21. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.48 (brs, 9H, Boc), 1.61 (brs, 4H, H₆, H₇), 2.49, 2.54 (2 × brs, 2H, H₁, H₅), 2.91 (brs, 1H, H_{8s}), 3.00, 3.08 (2 × brd, J = 12.3 Hz, 2H, H_{2x}, H_{4x}), 3.94, 4.08 (2 × brd, J = 12.3 Hz, 2H, H_{2n}, H_{4n}), 7.27 (d, J = 8.2 Hz, 1H, H₅°), 7.52 (dd, J = 8.2, 2.6 Hz, 1H, H₄°), 8.28 (d, J = 2.6 Hz, 1H, H₂°). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.6, 25.8 (C₆, C₇), 28.4 (Boc CH₃), 39.2 (C₁, C₅), 50.2 (C₈), 51.3, 52.3 (C₂, C₄), 79.6 (Boc C), 123.8 (C₅°), 136.9 (C₄°), 148.1 (C₂°), 149.2 (pyridyl C), 155.9 (Boc CO). $\nu_{\rm max}$ 2965m, 2934m, 2867m, 1687s, 1586w, 1560w, 1466m, 1420s, 1389m, 1361m, 1318m, 1284m, 1238s, 1220m, 1158s, 1105s cm⁻¹. ^m/_z C₁₇H₂₄N₂O₂Cl [MH⁺] requires 323.15263; observed 323.15265.

anti-8-(6-Chloro-pyridin-3-yl)-syn-8-hydroxy-3-benzyl-3-azabicyclo[3.2.1]octane (302)

Using a procedure adapted from that described by Fletcher *et al.*¹⁵ Butyllithium (1.6 M, 0.183 ml, 0.292 mmol) was added to a solution of 2-chloro-3-iodopyridine (70 mg, 0.292 mmol) in dry diethyl ether (6 ml) and dry THF (3 ml) at -78 $^{\circ}$ C under nitrogen. The reaction mixture was stirred for 0.5 h then a solution of 8-keto-3-benzyl-3-

azabicyclo[3.2.1]octane (291) (64 mg, 0.298 mmol) in diethyl ether (4 ml) was added and stirred at reflux for 48 h. Saturated ammonium chloride solution (3 ml) then water (10 ml) were added to quench the reaction mixture, which was then extracted into ethyl acetate. The organic extracts were combined, dried over MgSO₄, filtered and the solvents removed *in vacuo*. The crude residue was flash chromatographed (diethyl ether: petrol; 1:1) to give the ketone 291 (37 mg, R_f 0.65) and 302 as an orange oil (9 mg, 0.026 mmol, 16% based on recovered starting material). R_f 0.31. $\delta_{\rm H}$ [300 MHz, CDCl₃; ^{*} denotes interchangeable assignments] 1.40, 1.88 (2 × m, 2H, 2H, H₆, H₇), 2.38 (brs, 2H, H₁, H₅), 2.64 (dd, J = 10.6, 3.4 Hz, 2H, H_{2n}, H_{4n}),^{*} 2.87 (d, J = 10.6 Hz, 2H, H_{2x}, H_{4x}),^{*} 3.62 (brs, 2H, C<u>H</u>₂Ph), 7.21-7.39 (m, 6H, Ph, H₅), 7.78 (dd, J = 8.2, 2.6 Hz, 1H, H₄), 8.48 (d, J = 2.6 Hz, 1H, H₂). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.4 (C₆, C₇), 41.8 (C₁, C₅), 53.6 (C₂, C₄), 61.7 (<u>C</u>H₂Ph), 124.1 (C₅), 126.8, 128.2, 128.6 (5 × aryl CH), 136.6 (C₄), 139.5 (aryl C), 147.5 (C₂), 150.5 (pyridyl C). v_{max} 2924s, 1598m, 1565m, 1453m, 1394m, 1359m cm⁻¹. ^m/_z C₁₉H₂₂N₂OCl [MH⁺] requires 329.14207; observed 329.14213.

2-Benzyl-2-azabicyclo[2.2.2]oct-5-ene (305)

Using the procedure described by Larsen *et al.*,¹⁰³ 1,3-cyclohexadiene (26 ml, 0.27 mol) was added to a mixture of benzylamine hydrochloride (17.67 g, 0.14 mol) and aqueous formaldehyde (37%, 16 ml) in water (54 ml). The reaction

mixture was stirred under nitrogen at 60 °C for 48 h then cooled and diluted with water (70 ml), washed with diethyl ether: petrol (1:1), basified with sodium hydroxide (~ 17 g) and extracted with diethyl ether. The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. Distillation (1 mm Hg) of the crude residue gave **305** as a colourless oil (4.23 g, 0.021 mol, 15%). b.p. 105-110 °C. $\delta_{\rm H}$ [300 MHz, CDCl₃; * indicates an interchangeable assignment] 1.15-1.34, 1.52-1.63, 1.92-2.03 (3 × m, 2H, 1H, 1H, H₇, H₈), 1.97-2.13 (m, 1H, H_{3n}),* 2.48 (m, 1H, H₄), 3.48 (AB, *J* = 13.2 Hz, 2H, CH₂Ph), 3.00 (dd, *J* = 9.8, 2.0 Hz, 1H, H_{3x}),* 3.34 (m, 1H, H₁), 6.27 (m, 1H, H₆), 6.42 (m, 1H, H₅), 7.18-7.37 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 22.1, 26.8 (C₇, C₈), 30.9 (C₄), 51.2 (C₁), 55.5 (C₃), 62.0 (CH₂Ph), 126.7, 128.1, 128.8 (5 × aryl CH), 131.7 (C₆), 133.4 (C₅), 139.8 (aryl C). v_{max} 3027w, 2941s, 1495m, 1453s, 1347m, 1168w, 1132m cm⁻¹. ^m/_z C₁₄H₁₈N [MH⁺] requires 200.14392; observed 200.14386.

anti-8-Bromo-2-benzyl-2-azabicyclo[3.2.1]octane (308)

2-Benzyl-2-azabicyclo[2.2.2]oct-5-ene (**305**) (128 mg, 0.641 mmol) was dissolved in dry DCM (4 ml) and stirred under nitrogen at -78 °C; bromine (0.059 ml, 1.282 mmol) was added drop-wise. The reaction mixture was allowed to reach RT over 1 h then evaporated to dryness with a stream of

nitrogen followed by a high vacuum pump, without exposure to air. The residue was dissolved in dry THF (10 ml) and Red-Al (65% solution, 0.38 ml, 1.292 mmol) was added; the mixture was stirred at RT under nitrogen for 15 h. Saturated sodium bicarbonate solution (12 ml) then brine (12 ml) were added and extracted with ethyl acetate, the combined organic

extracts were combined and dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo*. Flash chromatography (petrol: diethyl ether; 3:1) gave starting material (**305**) (29 mg) and **308** as a yellow oil (51 mg, 0.182 mmol, 28% (37% based on recovered **305**)). R_f 0.60. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.38-1.47 (m, 1H, H_{5n}), 1.49-1.59 (m, 2H, H_{6x}, H_{7n}), 1.72-1.85 (m, 1H, H_{6n}), 1.94-2.13 (m, 2H, H_{5x}, H_{7x}), 2.40 (brd, J = 4.1 Hz, 1H, H₄), 2.86 (ddd, J = 9.6, 5.3, 1.1 Hz, 1H, H_{3x}), 2.93 (d, 9.6 Hz, 1H, H_{3n}), 3.08 (t, J = 4.7 Hz, 1H, H₁), 3.85 (brs, 2H, CH₂Ph), 4.32 (t, J = 4.9 Hz, 1H, H₈), 7.24-7.43 (m, 5H, Ph). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 17.9 (C₆), 25.0, 25.2 (C₅, C₇), 40.0 (C₄), 53.2 (C₈), 55.8 (C₃), 59.7 (<u>C</u>H₂Ph), 61.4 (C₁), 126.9, 128.2 (5 × aryl CH), 139.3 (aryl C). $\nu_{\rm max}$ 2941s, 2862m, 1494m, 1453s, 1372m, 1331m, 1272m, 1216s cm⁻¹. ^m/_z C₁₄H₁₈NBr [MH⁺] requires 279.06226; observed 279.06211.

anti-8-Bromo-2-Boc-2-azabicyclo[3.2.1]octane (309)

*anti-*8-Bromo-2-benzyl-2-azabicyclo[3.2.1]octane (**308**) (141 mg, 0.50 mmol) was de-benzylated in methanol (10 ml) with 10% palladium on charcoal (~ 20 mg) under an atmosphere of hydrogen. After vigorous stirring for 3 h, the reaction mixture was filtered through celite and the methanol was removed *in*

vacuo. The resulting residue (97 mg) was dissolved in THF (5 ml) and water (15 ml); Boc₂O (251 mg, 1.15 mmol) and NaHCO₃ (170 mg, 2.02 mmol) were added and stirred at RT for 24 h. The reaction mixture was extracted with diethyl ether, the combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvents removed *in vacuo* to give **309** as a yellow oil (53 mg, 0.183 mmol, 37%). $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.39, 1.40 (2 × brs, 9H, Boc), 1.44-1.82, 1.88-2.12 (2 × m, 4H, 2H, H₅, H₆, H₇), 2.36 (brs, 1H, H₄), 3.24-3.44 (m, 2H, H_{3x}, H_{3n}), 3.99, 4.10 (2 × brt, J = 4.7 Hz, 1H, H₁), 4.16 (brd, J = 4.5 Hz, 1H, H₈). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 17.0 (C₆), 23.3, 24.0, 24.8 (C₅, C₇), 28.5 (Boc CH₃), 37.8, 38.5 (C₄), 48.8, 49.5 (C₃), 51.3 (C₈), 56.2, 56.8 (C₁), 79.6 (Boc C).

syn-8-(6-Chloro-pyridin-3-yl)-2-Boc-2-azabicyclo[3.2.1]octane (310)

The Suzuki coupling procedure described for **122** and **123** was used with: *anti-*8-Bromo-3-Boc-2-azabicyclo[3.2.1]octane (**309**) (53 mg, 0.183 mmol); Ni(cod)₂ (22 mg, 0.080 mmol); bathophenanthroline (51 mg, 0.153 mmol); 4-chloro-3-pyridyl boronic acid (38 mg, 0.241 mmol); potassium *tert*-butoxide (38 mg, 0.339 mmol) and s-butanol (10 ml). After

24 h at 60 °C the reaction was stopped and the crude residue flash chromatographed (3:1;

petrol: diethyl ether) to give **310** as a pale yellow solid (13.3 mg, 0.041 mmol, 23%). m.p. 97-99 °C. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.34-1.65, [1.40, 1.42 (2 × brs, 9H, Boc)], 1.72, 1.97-2.16 (3 × m, 3H, 2H, 1H, H₅, H₆, H₇), 2.32 (brs, 1H, H₄), 2.78 (d, J =6.4 Hz, 1H, H₈), 3.04-3.27 (m, 2H, H_{3x}, H_{3n}), 4.18, 4.34 (2 × d, J = 4.7 Hz, 1H, H₁), 7.18, 7.19 (2 × d, J = 8.2 Hz, 1H, H₅'), 7.35, 7.36 (2 × dd, J = 8.2, 2.6 Hz, 1H, H₄'), 8.16, 8.17 (2 × d, J =2.6 Hz, 1H, H₂'). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 18.0, 18.1 (C₆), 28.5, 28.6 (Boc CH₃), 30.2, 30.3, 31.8, 31.9 (C₅, C₇), 40.6, 41.8 (C₄), 48.0, 48.4 (C₃), 50.5, 51.3 (C₈), 56.8, 57.8 (C₁), 79.5, 79.6 (Boc C), 124.0, 124.1 (C₅'), 136.8, 136.9 (C₄'), 148.6, 148.7 (C₂'), 149.5 (pyridyl C), 153.8, 153.9 (Boc CO). $v_{\rm max}$ 2974m, 2938m, 2878m, 1687s, 1584w, 1568m, 1458m, 1388s, 1364s, 1340m, 1325m, 1273m, 1255m, 1208m, 1175m, 1145m, 1135m, 1105s cm⁻¹. ^m/_z C₁₇H₂₄N₂O₂Cl [MH⁺] requires 323.15263; observed 323.15255.

syn-8-(6-Chloro-pyridin-3-yl)-2-azabicyclo[3.2.1]octane dihydrochloride (289)

syn-8-(6-Chloro-pyridin-3-yl)-2-Boc-2-azabicyclo[3.2.1]octane (**310**) (9.3 mg, 0.029 mmol) was dissolved in ethanol (1 ml) and ethyl acetate (2.9 ml); acetyl chloride (0.9 ml) was added with cooling in ice. The reaction mixture was stirred at RT for 2 h then was evaporated to dryness; the crude residue was triturated with CDCl₃ to give the hydrochloride salt of

289 as a white powder (7.5 mg, 99%). m.p. 150-155 °C (decomp.). $\delta_{\rm H}$ (300 MHz, CD₃OD) 1.59-2.08 (m, 6H, H₅, H₆, H₇), 3.08 (brs, 1H, H₄), 3.24-3.36 (m, 3H, H₁, H_{3x}, H_{3n}), 4.83 (brs, 1H, H₈), 7.48 (d, J = 8.5 Hz, 1H, H₅·), 7.88 (dd, J = 8.5, 2.5 Hz, 1H, H₄·), 8.39 (d, J = 2.5 Hz, 1H, H₂·). $\delta_{\rm C}$ (75.5 MHz, CD₃OD) 18.0 (C₆), 30.3, 31.6 (C₅, C₇), 39.3 (C₄), 48.7 (C₃), 51.5 (C₈), 63.0 (C₁), 126.2 (C₅·), 135.4 (C₃·), 140.5 (C₄·), 148.6 (C₂·), 150.6 (C₆·). ν_{max} 2943s, 1641m, 1599s, 1586s, 1553m, 1472s, 1423m, 1373s, 1294m cm⁻¹. ^m/_z C₁₂H₁₆N₂Cl [MH⁺] requires 223.10020; observed 223.10025.

Membrane Preparation

Cell pastes from large-scale production of HEK-293 cells expressing cloned human nAChR were homogenized in 4 volumes of buffer (50 mM Tris.HCl, 150 mM NaCl and 5 mM KCl, pH 7.4). The homogenate was centrifuged twice (40,000 g, 10 minutes, 4 °C) and the pellets re-suspended in 4 volumes of Tris.HCl buffer after the first spin and 8 volumes after the second spin. The re-suspended homogenate was centrifuged (100 g, 10 minutes, 4 °C) and the supernatant kept and re-centrifuged (40,000 g, 20 minutes, 4 °C). The pellet was re-suspended

in Tris.HCl buffer supplemented with 10% w/v sucrose. The membrane preparation was stored in 1ml aliquots at -80 °C until required. The protein concentration of the membrane preparation was determined using a BCA protein assay reagent kit.

Nicotinic Receptor Radioligand Binding Scintillation Proximity Assay (SPA)

SPA radioligand binding assays were performed in 96 well plates in a final volume of 250µl Tris-HCl buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM KCl, pH 7.4) using the following conditions: [³H]-epibatidine (53 Ci/mmol; Amersham) - $\alpha 4\beta 2 = 1$ nM, $\alpha 3\beta 4 = 2$ nM; WGA-coated PVT SPA beads (Amersham) - $\alpha 4\beta 2 = 1$ mg/well, $\alpha 3\beta 4 = 1.5$ mg/well; membrane protein = 30 µg/well for both assay types. Non-specific binding (<10% for both assay types) was determined using 10 µM epibatidine. Reactions were allowed to equilibrate for 2-4 h at RT prior to reading on a Trilux Scintillation counter (Perkin Elmer). Data were analyzed using a standard 4 parameter logistic equation (Multicalc, Perkin Elmer) to provide IC₅₀ values that were converted to K_i values using the Cheng-Prusoff equation.⁹

Molecular modeling

Molecular models were determined using the Spartan Pro program; equilibrium geometries were calculated with the Hartree-Fock, 6-31G^{*} method. The superpositions in Chapter 7 were produced with the 'Fit' function of the PyMOL software package.

Appendix I Crystal structure data

Crystal data and structure refinement for 129

Figure shows 50% displacement ellipsoids.

Figure shows the molecular structure as arbitrary spheres, H atoms omitted for clarity.

Empirical formula	C16 H21 Cl N2 O2	
Formula weight	308.80	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 13.2093(17) Å	α= 90°.
	b = 6.6337(9) Å	β=105.829(3)°.
	c = 18.646(3) Å	$\gamma = 90^{\circ}$.
Volume	1571.9(4) Å ³	
Z	4	
Density (calculated)	1.305 Mg/m ³	
Absorption coefficient	0.249 mm ⁻¹	
F(000)	656	
Crystal size	0.21 x 0.04 x 0.04 mm ³	
Theta range for data collection	1.69 to 25.00°.	
Index ranges	-15<=h<=15, -7<=k<=7, -	22<=1<=22
Reflections collected	9626	

Independent reflections Completeness to theta = 25.00° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole 2770 [R(int) = 0.0565] 100.0 % Empirical 0.981 and 0.767 Full-matrix least-squares on F^2 2770 / 0 / 193 0.851 R1 = 0.0426, wR2 = 0.0737 R1 = 0.0752, wR2 = 0.0804 0.325 and -0.232 e.Å⁻³

Crystal data and structure refinement for the 3,5-dinitrobenzoate of 158

Figures show 50% displacement ellipsoids.

Empirical formula	C20 H19 N3 O6	
Formula weight	397.38	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.013(3) Å	α= 76.674(7)°.
	b = 11.227(5) Å	β= 84.349(7)°.
	c = 12.175(5) Å	$\gamma = 84.149(7)^{\circ}.$
Volume	925.2(7) Å ³	
Z	2	
Density (calculated)	1.426 Mg/m ³	
Absorption coefficient	0.107 mm ⁻¹	
F(000)	416	
Crystal size	0.32 x 0.11 x 0.08 mm ³	
Theta range for data collection	1.72 to 25.00°.	
Index ranges	-8<=h<=8, -13<=k<=13, -14<=l<=14	
Reflections collected	6517	
Independent reflections	3212 [R(int) = 0.0684]	
Completeness to theta = 25.00°	98.4 %	

Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole None Full-matrix least-squares on F² 3212 / 0 / 262 1.010 R1 = 0.1142, wR2 = 0.2749 R1 = 0.1993, wR2 = 0.3233 0.611 and -0.417 e.Å⁻³

Appendix II Selected ¹³C NMR spectra

Isoepibatidine (49)

syn-Isoepiboxidine (51)

anti-Isoepiboxidine (52)

syn-8-(6-Chloro-pyridin-3-yl)-2-azabicyclo[3.2.1]octane (289)

Appendix III Publications

- 7-Substituted 2-Azabicyclo[2.2.1]heptanes as Key Intermediates for the Synthesis of Novel Epibatidine Analogues; Synthesis of *syn* and *anti*-Isoepiboxidine. Malpass, J. R.; White, R. J. Org. Chem. 2004, 69, 5328-5334.
- Approaches to Syn-7-Substituted 2-Azanorbornanes as Potential Nicotinic Agonists; Synthesis of syn- and anti-Isoepibatidine. Malpass, J. R.; Handa, S.; White, R. Org. Lett. 2005, 7, 2759-2762.
- Epibatidine isomers and analogues: Structure-activity relationships. White, R.; Malpass, J. R.; Handa, S.; Baker, S. R.; Broad, L. M.; Folly, L.; Mogg, A. *Bioorg. Med. Chem. Lett.* 2006, 16, 5493-5497.

7-Substituted 2-Azabicyclo[2.2.1]heptanes as Key Intermediates for the Synthesis of Novel Epibatidine Analogues; Synthesis of synand anti-Isoepiboxidine

John R. Malpass* and Richard White

Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom

jrm@le.ac.uk

Received May 1, 2004

Neighboring group participation by the 2-nitrogen in anti-7-bromo-2-benzyl-2-azabicyclo[2.2.1]heptane allows ready nucleophilic substitution at the 7-position by C, N, O, and halogen nucleophiles and opens the way to a range of novel 7-substituted 2-azabicyclo[2.2.1]heptanes. Conversion of an anti-7-ethoxycarbonyl group into a methylisoxazole ring provides anti-isoepiboxidine, a conversion that is possible even without protection of the secondary bicyclic nitrogen. Successful base-induced epimerization α to the carbonyl of the anti-7-ethoxycarbonyl derivative gives the syn-stereoisomer and hence syn-isoepiboxidine.

Introduction

Interest in the 7-azabicyclo[2.2.1]heptane (7-azanorbornane) ring system has increased dramatically since the discovery of epibatidine 1a, a natural product with unusually high activity at the nicotinic acetylcholine receptor (nAChR).¹ Intense synthetic interest has led to a large number of approaches to 1a, together with an ever-increasing variety of analogues bearing different heterocycles;² prominent among these is epiboxidine 2a in which replacement of the chloropyridyl substituent by methylisoxazole leads to high nAChR affinity but lower toxicity compared to 1a.2ª Homologous systems showing high nAChR affinity include homoepibatidine 1b,3 and interest in the methylisoxazole substituent has been

further reinforced by the very recent report of the potent nAChR agonist homoepiboxidine 2b by the Daly group.⁴ The emphasis in the search for therapeutically useful compounds is now on high nAChR subtype selectivity.⁵ We have recently reported analogues based on the more highly strained 2-azabicyclo[2.1.1]hexane ring system^{6a} together with epibatidine isomers 3-6 in which the heterocycle is attached to the 5- and 6-positions of 2-azanorbornane.^{6b-d} Compounds 3 and 4 have shown sufficient promise in this and other $work^{6b,e,f}$ to encourage us to explore routes to the remaining 2-azanorbornane derivatives syn-7 and anti-7 in which the positions of the bicyclic nitrogen and the heterocycle of 1a have simply

^{*} To whom correspondence should be addressed. Ph: + 44 116 252 2126. Fax: +44 116 252 3789. (1) (a) Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. **1992**, 114, 3475-3478. For leading references to epibatidine analogue synthesis, see: (b) Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Ma, W.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I., Martin, B. R. J. Med. Chem. **2002**, 45, 4755-4761. (c) Wei, Z.-L.; George, C.; Kozikowski, A. P. Tetrahedron Lett. **2003**, 44, 3847-3850.

^{4755-4761. (}c) Wei, Z.-L.; George, C.; Kozikowski, A. P. Tetrahedron Lett. 2003, 44, 3847-3850.
(2) Recent examples of alternative heterocycles incorporated into the epibatidine framework and into analogues include the following.
(a) Methylisoxazole: Badio, B.; Garraffo, H. M.; Plummer, C. V.; Padgett, W. L.; Daly, J. W. Eur. J. Pharmacol. 1997, 321, 189-194.
(b) Isoxazoles: Silva, N. M.; Tributino, J. L. M.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Eur. J. Med. Chem. 2002, 37, 163-169. (c) Pyridazines: Che, D.; Wegge, T.; Stubbs, M.; Seitz, G. Meier, H.; Methfessel, C. J. Med. Chem., 2001, 44, 47-57. (d) Substituted pyridines: Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Ma, W.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I., Martin, B. R. J. Med. Chem. 2002, 45, 4755-4761. Avalos, M.; Parker, M. J.; Maddox, F. N.; Carroll, F. I.; Luetje, C. W. J. Pharmacol. Exp. Ther. 2002, 302, 1246-1252. Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2001, 44, 4039-4041. (e) 6-Chloropyridazin-3-yl derivatives: Toma, L.; Quadrelli, P.; Bunnelle, W. H.; Anderson, D. J.; Meyer, M. D.; Cignarelli, G.; Gelain, A.: Barlocco, D. J. Med. Chem. 2003, 46, 2031-2048 for recent work on 3D QSAR analysis in the design of heterocyclic substituents for high nAChR subtype selectivity in epibatidine analogues and homologues.

^{(3) (}a) Malpass, J. R.; Hemmings, D. A.; Wallis, A. L.; Fletcher, S.; Patel, S. J. Chem. Soc., Perkin Trans. 1 2001, 1044–1050. Malpass, J. R.; Hemmings, D. A.; Wallis, A. L. Tetrahedron Lett. 1996, 37, 3911– 3914. (b) Xu, R.; Bai, D. L.; Chu, G. H.; Tao, J. N.; Zhu, X. Z. Bioorg. Med. Chem. Lett. 1996, 6, 279–282. Bai, D. L.; Xu, R.; Chu G. H.; Zhu, X. Z. Locz, Chem. 1996, 6, 279–282. Bai, D. L.; Xu, R.; Chu G. H.; Zhu,

^{Sili, B. Xu, R.; Bai, D. L.; Chu, G. H.; Tao, J. N.; Zhu, X. Z. Bioorg.} Med. Chem. Lett. 1996, 6, 279–282. Bai, D. L.; Xu, R.; Chu G. H.; Zhu, X. Z. J. Org. Chem. 1996, 61, 4600–4606.
(4) Fitch, R. W.; Pei, X.-F.; Kaneko, Y.; Gupta, T.; Shi, D.; Federova, I.; Daly, J. W. Bioorg. Med. Chem. 2004, 12, 179–190.
(5) For leading reviews and references to nAChR affinities, see: (a) Carroll, F. I. Bioorg. Med. Chem. Lett. 2004, 14, 1889–1896. (b) Bunnelle, W. H.; Dart, M. J.; Schrimpf, M. R. Curr. Top. Med. Chem. 2004, 4, 299–334. (c) Astles, P. C.; Baker, S. R.; Boot, J. R.; Broad, L. M.; Dell, C. P.; Keenan, M. Curr. Drug Targets: CNS Neurol. Disord. 2002, 1, 337–348. (d) Tønder, J. E.; Olesen, P. H. Curr. Med. Chem. 2001, 8, 651–674. (e) Lloyd, G. K.; Williams, M. J. Pharmacol. Exp. Ther. 2000, 292, 461–467. (f) Curtis, L.; Chiodini, F.; Spang, J. E.; Bertrand, S.; Patt, J. T.; Westera, G.; Bertrand, D. Eur. J Pharmacol. 2000, 393, 155–163. (g) Tønder, J. E.; Davies, J. W.; Fulford, S. Y. J. Org. Chem. 1999, 42, 4970–4980. (h) Holladay, M. W.; Dart M. J.; Lynch, J. K. J. Med. Chem. 1997, 40, 4169–4194.
(6) (a) Malpass, J. R.; Patel, A. B.; Davies, J. W.; Fulford, S. Y. J. Org. Chem. 2003, 68, 9348–9355. (b) Cox, C. D.; Malpass, J. R.; Rosen, A.; Gordon, J. J. Chem. Soc., Perkin Trans. 1 2001, 2372–2379. (c) Malpass, J. R.; Cox, C. D. Tetrahedron 1999, 40, 1419–1422. (e) Dart, M. J.; Wasicak, J. T.; Ryther, K. B.; Schrimpf, M. R.; Kim, K. H.; Anderson, D. J.; Sullivan, J. P.; Meyer, M. D. Pharm. Acta Helu. 2000, 74, 115–123. (f) Hodgson, D. M.; Maxwell, C. R.; Wisedale, R.; Matthews, I. R.; Carpenter, K. J.; Dickenson, A. H.; Wonnacott, S. J. Chem. Soc., Perkin Trans. 1 2001, 2372–2379.
(a) 1021/io0492564 CCC: \$2750. © 2004 American Chemical Society

^{10.1021/}jo0492564 CCC: \$27.50 © 2004 American Chemical Society Published on Web 07/03/2004

Synthesis of syn- and anti-Isoepiboxidine

CHART 1

IOC Article

been reversed.⁷ Although 7-substituted-7-azabicyclo[2.2.1]heptyl (7-azanorbornyl) derivatives 8 have been reported recently,⁸ we are not aware of any compounds having heterocycles directly attached to the 7-position of 2azanorbornanes.

We chose syn-isoepiboxidine 9 as our first target. We demonstrate here that this and related 7-substituted-2azanorbornanes are available by way of the key anti-7substituted intermediates 10. Neighboring group participation by the 2-azanorbornyl nitrogen is the key to displacements from the 7-position, extending its established role in the loss of 6-substituents. Epimerization at the 7-position [e.g., for the ester $10 (R = CO_2Et)$] provides the essential first entry into the 7-syn series and hence a route to 9.

Discussion

Neighboring group participation by σ and π bonds is a key feature of the rearrangement chemistry of bicyclo-[2.2.1]heptanes (norbornanes), and similar participation has also been established in the chemistry of azanorbornanes and -enes; σ or π electrons can participate in displacement of a nucleofuge from nitrogen in the 2-9 or the 7-position¹⁰ of the azanorbornane skeleton. More usually, nitrogen is seen to participate in the displacement of leaving groups from carbon,^{9,11} and the nitrogen lone pair can also overlap with centers of developing

positive charge during electrophilic addition to double bonds, leading again to skeletal rearrangement.^{11,12} Such involvement of N-acyl and N-alkoxycarbonyl nitrogen in skeletal rearrangement is well established during electrophilic addition to derivatives of the 2-azanorborn-5ene system 11,12 leading for example to dibromo derivatives such as 12a.^{12b} In the case of N-alkyl derivatives, the pioneering work of Raasch¹¹ has been developed, leading to isolation of the aziridinium intermediates 13b during bromination.^{13a} Indeed when R is alkyl, the equilibrium shown in Scheme 1 is biased completely in favor of the aziridinium salt 13b with none of the dibromide 12b.

SCHEME 1

We had hoped that addition of nucleophiles to the N-ethoxycarbonyl derivative 12a - 13a might allow interception of a small equilibrium concentration of 13a (effectively achieving substitution at the 6-position), but we were unable to demonstrate any replacement of the 6-bromine in 12a,^{14a} despite the fact that carbamate

J. Org. Chem, Vol. 69, No. 16, 2004 5329

⁽⁷⁾ Clearly, the N-N distances and orientation will be important in determining the binding ability of these ligands. Compounds 3 and

in actermining the binding ability of these ligands. Compounds 3 and 4 show much higher affinities and subtype selectivity than 5 and 6,^{6b} and it is reasonable to expect syn-7 to be a better ligand than anti-7. (8) Cheng, J.; Zhang, C.; Stevens, E. D.; Izenwasser, S.; Wade, D.; Chen, S.; Paul, D.; Trudell, M. L. J. Med. Chem. **2002**, 45, 3041–3047. In addition, 7-substituted 1-azabicyclo[2.2.1]heptanes have been re-ported: Ullrich, T.; Binder, D.; Pyerin, M. Tetrahedron Lett. **2002**, 43, 177–179.

^{(9) (}a) Davies, J. W.; Malpass J. R.; Walker, M. P. J. Chem. Soc., Chem. Commun. **1985**, 686–687. (b) Durrant, M. L.; Malpass J. R.; Walker, M. P. J. Chem. Soc., Chem. Commun. **1985**, 687–688 and

<sup>Walker, M. F. J. Chem. Soc., Chem. Commun. 2003, 607 202 101
references to earlier work.
(10) Durrant, M. L.; Malpass J. R. Tetrahedron 1995, 51, 70637076. Davies, J. W.; Durrant, M. L.; Naylor, A.; Malpass, J. R.
Tetrahedron 1995, 51, 8655-8664.
(11) Raasch, M. S. J. Org. Chem. 1975, 40, 161-172.</sup>

^{(12) (}a) For work in the 2-azabicyclo[2.2.1]hept-5-ene-3-one system, See: Faith, W. C.; Booth, C. A.; Foxman, B. M.; Snider, B. B. J. Org. Chem. 1985, 50, 1983–1985. Evans, C.; McCague, R.; Roberts, S. M.;

^{Chem. 1985, 50, 1983–1985. Evans, C.: McCague, R.; Roberts, S. M.;} Sutherland, A. G. J. Chem. Soc., Perkin Trans. 1 1991, 656–657.
Palmer, C. F.; McCague, R. M. J. Chem. Soc., Perkin Trans. 1 1998, 2977–2978. (b) Bromination of N-ethoxycarbonyl-2-azanorborn-5-ene also proceeds smoothly with rearrangement to give 12a (R = CO₂CH₂-Ph): Cox, C. D. PhD thesis, University of Leicester, 2000.
(13) (a) Sosonyuk, S. E.; Bulanov, M. N.; Leshcheva, I. F.; Zyk, N. V. Russ. Chem. Bull. 2002, 51, 1254–1261. For other azatricyclene intermediates, see: Portoghese, P. S.; Sepp, D. T. Tetrahedron 1973, 29, 2253–2256 and ref 9. (b) A 6-methoxy derivative was isolated on treatment of 13 (R = Me) with sodium methoxide in MeOH (ref 12a). A very recent paper from the same group has widened the range of nucleophiles: Bulanov, M. N.; Sosonyuk, S. E.; Zyk, N. V.; Zefirov, N. S. Russ. J. Org. Chem. 2003, 39, 415–421.
(14) (a) Barth, G. S.; (b) Fulford, S. Y.; (c) Rimmington, S. Unpub-lished work, University of Leicester.

IOC Article

SCHEME 2

Malpass and White

nitrogen participates during additions to N-alkoxycarbonyl-2-azanorborn-5-enes and also electrophilic ring opening of the derived *exo*-5,6-epoxides.^{14b} However, interception of **13** using a wider range of nucleophiles is possible in the N-alkyl series and has been used to make 6-substituted 2-azabicyclo[2.2.1]heptanes following reductive removal of the 7-substituent.^{13b}

We were concerned to do the opposite: to remove the 6-substituent and introduce a range of functional groups at the 7-position. Treatment of **13b** ($\mathbf{R} = \mathbf{Bn}$) with hydride allows effective removal of the 6-bromine yielding the 7-bromo derivative **14a** (Scheme 2). At low temperature (-78 °C followed by warming to -20 °C over 1 h), LiAlH₄ gave **14a** in 58% yield after chromatography on silica.¹⁵ The use of Red-Al¹⁶ is preferable.

Nucleophilic substitution at the 7-position of 14a was then attempted, despite the fact that direct $(S_N 2)$ substitution is difficult to achieve at this position in simple norbornanes.¹⁷ The key substitution reactions occurred at elevated temperatures (ca. 100 °C). Thus, treatment of 14a with LiCl in DMF gave the chloro analogue 14b in 77% yield (Scheme 2),¹⁸ and LiOH in DMF provided 14c in 56% yield.^{16b}

All of the substitutions based on **14a** occurred with complete retention of configuration at C-7. For example, the *anti* stereostructure of **14b** was confirmed by COSY experiments that identified "W" coupling between H_{7syn} and H_{5endo}/H_{6endo} .¹⁹ In addition, NOE interactions were

(17) (a) See: Jenkins, M. N.; Nash, J. J.; Morrison, H. Tetrahedron Lett. 2002, 43, 3773-3775 and references therein to earlier work. (b) The work in ref 17a indicates, for example, that carbonyl groups in the 2-/3-position(s) of the norbornyl skeleton can exert a significant effect on substitution at C-7.
(18) Yields in these reactions have not been optimized in all cases.

(18) Yields in these reactions have not been optimized in all cases. Typical reactions were performed on a 5-20 mmol scale but smaller-scale reactions in sealed reaction vials were effective down to a 0.1 mmol scale.

(19) See: Belkacemi, D.; Malpass, J. R. *Tetrahedron* **1993**, 40, 9105–9116 for examples of W-coupling in 2-azanorbornanes.

5330 J. Org. Chem., Vol. 69, No. 16, 2004

seen between H_{7syn} and H_{3exo} and between the CH_2 of the inverting *N*-benzyl group and both H_{7syn} and H_{6endo} . Similar reaction of 14a with KCN in DMF yielded 14d in 66% yield, and use of the imidazolyl anion followed the same pathway, producing 14e in 53% yield. Here, the protons H_{5exo} and H_{6exo} appeared ca. 0.5 ppm upfield of the corresponding signals in 14b-d, shielded by the ring current of the *anti* imidazole ring.

The anti stereochemistry in all of the 7-derivatives 14a-f was confirmed by detailed spectroscopic analysis and is presumably the result of participation by nitrogen, as shown by $14a \rightarrow 15$ (Scheme 2). Such involvement of the 2-nitrogen in displacements from the 7-position is clearly more energetically demanding than in displacement from the 6-position $(12 \rightarrow 13)$, Scheme 1) so that there was no competition during the earlier substitution at C-6 in the 6,7-dibromo compound 12b.

Participation by the nitrogen lone pair in displacement of an *anti* substituent from C-7 is closely analogous to the involvement of π -electrons in the overall retention of stereochemistry observed in the classic studies by Cristol, Winstein, and others on the solvolysis of 7-substituted norbornenyl tosylates and brosylates²¹ (e.g., Scheme 3). Similar π -participation has been observed in the loss of chloride ion from a range of N-chloro-7azanorbornadienes.¹⁰

SCHEME 3

It is not unreasonable, in principle, that $S_N 2$ substitution at the 7-position might proceed (with inversion), and on the basis of existing work in norbornanes¹⁷ a slow reaction would be expected and a high temperature would

⁽¹⁵⁾ Addition of NaBH₄ in MeOH to 13 led only to isolation of the 6-methoxy compound (17% yield).^{13b} Treatment of 13 with LiAlH₄ at room temperature led to loss of both bromines and gave *N*-benzyl-2-azanorbornane, which was identical to a sample obtained by careful hydrogenation^{14c} of 11.

room temperature led to loss of ooth bromines and gave N-benzyl-2azanorbornane, which was identical to a sample obtained by careful hydrogenation¹⁴ of 11. (16) (a) Mitch, C. H.; Quimby, S. J. Patent WO 00/75140 A1, 2000; US 6,559,171 B1, 2003. (b) The reaction conditions described in this patent were different to ours and were claimed to provide the 7-endohydroxy compound (OH syn to nitrogen). In our hands they gave only the anti stereoisomer, identical to our sample 14c. (17) (a) See: Jenkins, M. N.; Nash, J. J.; Morrison, H. Tetrahedron Lett. 2002, 43, 3773-3775 and references therein to earlier work. (b)

^{(20) (}a) We and others have previously exchanged N-benzyl for N-Cbz or N-Boc groups, e.g., ref 6a and references therein. (b) Conversion of N-benzyl into N-Boc was carried out prior to methylisoxazole formation in the recent work by Fitch et al.⁴

<sup>isotazole formation in the recent work by Fitch et al.⁴
(21) (a) Cristol, S. J.; Nachtigall, G. W. J. Am. Chem. Soc. 1968, 90,</sup> 7132-7133; 7133-7134. (b) Tanida, H. Acc. Chem. Res. 1968, 1, 239-245. (c) Winstein, S. J. Am. Chem. Soc. 1961, 83, 1516-1517 and earlier references therein.

Synthesis of syn- and anti-Isoepiboxidine

SCHEME 4

IOC Article

be required. However, our demonstration of anti stereochemistry for all of the derivatives 14a-f strongly suggests that participation of the 2-nitrogen is general and provides a lower-energy alternative to S_N2 displacement for all of the nucleophilic substitutions studied. We are currently exploring alternative routes to the syn-7hydroxy compound. Calculations make it clear that syn-7-heterocyclic derivatives will have more appropriate N-N distances for interaction with nicotinic receptors than anti stereoisomers, and it was thus important to achieve inversion of configuration at C-7.

The conversion of 14d into the ester 14f proceeded in an overall yield of 77% (Scheme 2). Crucially, epimerization of 14f with base led to a mixture containing approximately 55% of the syn-epimer 16 (Scheme 4).22.23 Base-induced epimerization at the 7-position in norbornanes is precedented²⁴ but is more difficult than at normal unstrained sp^3 carbon. This area is currently under active investigation, as is the influence of substituents elsewhere in the azanorbornyl ring system on the ease of bimolecular nucleophilic substitution at the 7-position.17

Chromatographic separation of the stereoisomers 14f and 16 was straightforward. The syn-ester 16 was

(22) This situation is reminiscent of early syntheses of epibatidine (22) This situation is reminiscent of early syntheses of epidatome la, which gave predominantly the *endo*-stereoisomer, requiring sub-sequent epimerization at the 2-position of the 7-azanorbornyl ring system, for example: Fletcher, S. R.; Baker, R.; Chambers, M. S.; Herbert, R. H.; Hobbs, S. C.; Thomas, S. R.; Verrier, H. M.; Watt, A. P.; Ball, R. G. J. Org. Chem. **1994**, 59, 1771–1778. For a significant improvement to the epimerization methodology for epibatidine, see: Habermann, J.; Ley, S. V.; Scott, J. S. J. Chem. Soc., Perkin Trans. I **1999**, 1253–1256.

(23) The methylene protons of the syn-ester ethyl group in 16 (23) The methylene protons of the syn-ester ethyl group in 16 appeared as a complex pattern, interpreted as an overlapping pair of doublets of quartets. These complex signals collapsed to an AB pattern on double irradiation of the ester methyl triplet, confirming the diastereotopic relationship (in keeping with the position over the unsymmetrical C-N bond). The syn-ester 22 showed similar complexity for the methylene "quartet". The ester CH₂ protons in the *anti* isomers 14f and 18 sit over a near-symmetrical C-C linkage and do not show diastereotopicity. In the case of 16, the CH₂ protons of the N-benzyl group appear as a simplet: benzyl protons in these compounds often The second se

converted into the syn-methylisoxazole derivative 17 using standard methods^{2a,4} in 36% yield. However, attempts to deprotect the N-benzyl compound 17 by hydrogenolysis were unsuccessful (Scheme 4); not surprisingly, the methylisoxazole ring did not survive such treatment.

Our failure to obtain 9 from 17 prompted exchange of the N-benzyl for an N-alkoxycarbonyl protecting group in the 7-esters prior to heterocycle formation.²⁰ In the anti series, hydrogenolysis of 14f gave the secondary amine 18, which was N-Boc-protected to give 19 prior to heterocycle formation and N-deprotection of 20: antiisoepiboxidine 21 was formed in an overall yield of 30% from 18. However, an unexpected observation avoided this reprotection/deprotection strategy and compensated for our earlier inability to enter the N-alkoxycarbonyl series by direct interception of 13a (R = CO₂Alkyl) with nucleophiles. Thus, treatment of 18 with the dianion of acetoxime^{2a} gave the methylisoxazole derivative antiisoepiboxidine 21 directly (Scheme 4) in 24% yield. In similar fashion, debenzylation of 16 gave 22, which was successfully converted into the target syn-isoepiboxidine 9 directly in 26% yield. The overall yield using the alternative 3-step procedure (via 23 and 24) was 33%. Reported yields for the construction of methylisoxazoles are consistently low,^{2a,4,6a} and mechanistic interest in this conversion⁴ deserves to be extended. In the meantime, we believe that formation of the methylisoxazole ring without protection of the secondary amino-nitrogen (previously assumed to be an essential requirement) is a significant observation that will have wider application.

Further studies of substitution at the 7-position of the 2-azabicyclo[2.2.1]heptane ring system are under way. The application of coupling reactions to 7-halo compounds is being explored as a means of extending the range of available heterocyclic substituents as part of our program of synthesis of compounds having potential as highaffinity nAChR ligands.

Experimental Section

NMR spectra were recorded in CDCl3 using tetramethylsilane as internal standard. Routine mass spectra were measured using electrospray and accurate mass measurements

J. Org. Chem, Vol. 69, No. 16, 2004 5331

JOC Article

using FAB or EI. IR spectra were measured as films. All reactions were performed in oven-dried glassware under dry nitrogen unless stated otherwise. Commercially available solvents were purified and dried, when necessary, prior to use. "Ether" refers to diethyl ether and "petrol" to petroleum ether, bp 40-60 °C. Flash chromatography was carried out using silica gel (60).

Flash chromatography was carried out using silica gel (60). Thin-layer chromatography was conducted on silica 60-254plates. Chromatography solvents were routinely saturated with ammonia gas for amine (and *N*-protected amine) separations.

3-Bromo-1-benzyl-1-azoniatricyclo[2.2.1.0^{2,6}]**heptane Bromide (13).** Using the procedure described by Sosonyuk et al., ^{13a} 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene (11)²⁵ (12.03 g, 64.9 mmol) was dissolved in dry CH₂Cl₂ (120 mL). Bromine (6.0 mL, 129.5 mmol) was added dropwise at -78 °C. The mixture was stirred as the temperature rose to 20 °C. Evaporation in vacuo gave an orange oil, which was dissolved in dry CH₃CN (100 mL), cooled to 0 °C, and stirred vigorously while more **11** (12.06 g, 65.0 mmol) in dry CH₃CN (60 mL) was added dropwise. After warming to 20 °C, the solvents were evaporated in vacuo, yielding **13** as pale yellow crystals (22.3 g, 100%), mp 128-130 °C. [The NMR spectra are broadly similar to those described for the corresponding *N*-Me compound and the *N*-benzyl derivative having a Br₃⁻ counterion^{13a}]. $\delta_{\rm H}$ (250 MHz, CDCl₃) 2.42 (brs, 2H), 2.83 (brs, 1H), 3.41 (d, *J* = 8.9 Hz, 1H), 3.94 (d, *J* = 8.9 Hz, 1H), 4.42 (m, 2H), 4.86 (brs, 1H), 5.34 (s, 2H), 7.42-7.73 (m, 5H). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 30.9, 37.6, 44.5, 44.8, 46.2, 55.1, 55.3, 129.4, 129.5, 130.3, 131.1. $\nu_{\rm max}$ 3049s, 3003w, 2318w, 1426m, 1278m, 898 m cm⁻¹. *m/z* 264/ 266 (1:1) (M⁺). C₁₃H₁₅NBr [M⁺] requires *m/z* 264.03879; observed 264.03884.

anti-7-Bromo-2-benzyl-2-azabicyclo[2.2.1]heptane (14a). LiAlH₄ (0.53 g, 13.97 mmol) and 13 (3.056 g, 8.85 mmol) were cooled to -78 °C in a dry flask. Dry THF (100 mL) was added with stirring, and the mixture allowed to warm to -20 °C over a period of 1 h followed by addition of water-saturated ether until effervescence stopped. The mixture was filtered, the residue was washed with CH₂Cl₂, and after drying with MgSO₄ the solvents were removed in vacuo to give crude 14a, which was chromatographed (petrol/ether 7:3; NH₃) to give a pale yellow oil (1.359 g, 58%), R_f (7:3, petrol/ether). $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.42, 1.77–2.13 (m, 4H), 2.43 (brs, 1H), 2.47 (d, J =9.2 Hz, 1H), 2.82 (ddd, $J \approx$ 9.2, 3.3, 3.3 Hz, 1H), 3.23 (brs, 1H), 3.67, 3.69 (AB, J = 13.4 Hz, 2H), 4.24 (d, J = 1.7 Hz, 1H), 7.18 (m, 5H). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 25.2, 26.7, 44.0, 53.4, 58.0, 59.0, 64.9, 126.9, 128.1, 128.2, 139.2. $\nu_{\rm max}$ 3064s, 2982m, 2276w, 1504m, 1463m, 1430m, 1380w, 1279s, 1150w, 907m cm⁻¹. m/z 266/268 (1:1) (MH⁺). Cl₃H₁₆NBr [EI, M⁺] requires m/z 265.04661; observed 265.04659.

Alternatively, reduction using Red-Al¹⁶ (65+ wt % solution in toluene, 7.65 mL, 26.0 mmol) and **13** (8.96 g, 26.0 mmol) in dry THF (225 mL) at -10 °C for 2 h gave **14a** as a pale yellow oil (6.42 g, 24.1 mmol, 93%).

anti-7-Chloro-2-benzyl-2-azabicyclo[2.2.1]heptane (14b). To a solution of 14a (63.7 mg, 0.24 mmol) in anhydrous DMF (1.0 mL) in a reaction vial was added LiCl (217.5 mg, 5.13 mmol). The mixture was heated to 100 °C for 24 h, cooled, and poured into water (2 mL), followed by extraction with ether (3 × 2 mL). The combined organic extracts were dried over MgSO₄ and filtered, and the solvents were evaporated in vacuo, yielding 14b as a pale yellow oil (41 mg, 77%). R_f 0.79 (EtOAc/ MeOH, 9:1). $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.41 (m, 11H), 1.80–2.08 (m, 3H), 2.34 (brs, 11H), 2.38 (d, J = 9.2 Hz, 1H), 2.85 (ddd, $J \approx$ 9.2, 3.2, 3.2 Hz, 1H), 3.16 (brs, 1H), 3.66 (brs, 2H), 4.20 (brs, 1H), 7.27 (m, 5H). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 24.2, 26.2, 43.5, 58.0, 58.5, 62.0, 64.5, 126.8, 128.1, 128.3, 139.1. $\nu_{\rm max}$ 3064m, 2991m, 2318w, 1683s, 1500w, 1453w, 1289w, 1256s, 843w cm⁻¹. m/z222.10500 (MH⁺); C₁₂H₁₁₇NCI requires 222.10495.

anti-7-Hydroxy-2-benzyl-2-azabicyclo[2.2.1]heptane (14c). The 7-bromo compound 14a (110 mg, 0.41 mmol) and

(25) Larsen, P. A.; Grieco, P. A. Org. Synth. 1990, 68, 206-209.

5332 J. Org. Chem., Vol. 69, No. 16, 2004

Malpass and White

LiOH (173 mg, 4.1 mmol) in dry DMF (8 mL) were stirred at 100 °C for 24 h. The reaction mixture was cooled, added to water (30 mL), and extracted with ether (4 × 25 mL). The combined extracts were washed with water (3 × 35 mL), dried over MgSO₄, and then filtered. Removal of solvents in vacuo gave a yellow oil that was chromatographed (9:1, EtOAc/ MeOH, NH₃), yielding 14c as a pale yellow oil (47 mg, 56%). R_r 0.53. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.34–1.43 (m, 1H), 1.70–1.78 (m, 1H), 1.88–2.00 (m, 2H), 2.11 (brs, 1H), 2.19 (d, J = 9.3 A, J = 13.4 Hz, 2H), 4.29 (brs, 1H), 7.21–7.35 (m, 5H). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 22.7, 26.5, 41.6, 57.7, 58.0, 62.9, 76.3, 126.8, 128.2, 128.5, 139.2. $\nu_{\rm max}$ 3053m, 2970m, 2303w, 1421w, 1265s cm⁻¹. m/z 204.13886 (MH⁺); C₁₃H₁₈NO requires 204.13884.

Using the procedure described in ref 16a, **14a** (3.06 g, 11.5 mmol) and 1-methyl-2-pyrrolidinone (containing 15% v/v H₂O; 56 mL) were stirred at 100 °C for 67 h. The reaction mixture was diluted with water (150 mL), basified with aqueous NaOH, and extracted with ether (4 × 100 mL). The combined organic extracts were washed with water (4 × 100 mL), dried over anhydrous MgSO₄, filtered, and evaporated to yield **14c** as a yellow oil (1.54 g, 66%) showing NMR spectra identical to those of the sample obtained above.

anti-7-Cyano-2-benzyl-2-azabicycl[2.2.1]heptane (14d). KCN (2.36 g, 35.70 mmol) and 18-crown-6 (~1 mg) were added to 14a (0.765 g, 2.88 mmol) in anhydrous DMF (10 mL), and the mixture was stirred vigorously at 110 °C for 24 h. After filtration, the solid residue was washed with ether, and the combined organic extracts were dried prior to removal of solvent in vacuo to give a yellow oil that was chromatographed (3:7 petrol/ether, NH₃), yielding 14d as a yellow oil (0.405 g, 66%), R_f 0.32. $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.49 (m, 1H), 1.94 (m, 3H), 2.45 (d, J = 9.4 Hz, 1H), 2.73 (m, 3H), 3.47 (brs, 1H), 3.59, 3.67 (AB, J = 13.4 Hz, 2H), 7.29 (m, 5H). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 26.2, 26.6, 35.3, 42.6, 58.6, 58.7, 64.3, 119.5, 127.0, 128.2, 128.3, 138.7. $\nu_{\rm max}$ 2973s, 2874s, 2234s, 1494s, 1453s cm⁻¹ m/z 213.13914; C₁₄H₁₇N₂ (MH⁺) requires m/z 213.13917.

anti-7-(Imidazole-1-yl)-2-benzyl-2-azabicyclo[2.2.1]-heptane (14e). Butyllithium (0.31 mL, 1.6 M in hexanes, 0.49 mmol) was added dropwise to imidazole (34 mg, 0.50 mmol) in anhydrous DMF (1.5 mL), and the mixture was stirred at 20 °C for 0.25 h. A solution of 14a (103 mg, 0.39 mmol) in anhydrous DMF (4 mL) was added, and after stirring at 100 °C for 96 h the mixture was filtered, the residue was washed with diethyl ether, the combined organic extracts were washed with water (4 × 2 mL), and the solvents were removed in vacuo. After chromatography (ether, NH₃), 14e was isolated as a yellow oil (52 mg, 53%), R_f 0.20 δ_H (250 MHz, CDCl₃) 1.42 (m, 11H), 1.47 (m, 11H), 1.68 (m, 11H), 2.00 (m, 11H), 2.45 (d, J = 9.4 Hz, 11H), 2.81 (brs, 11H), 3.15 (ddd, $J \approx 9.4$, 3.2, 3.2 Hz, 11H), 3.63 (brs, 11H), 3.69 (brs, 2H), 4.36 (brs, 1H), 6.6(29 MHz, CDCl₃) 23.9, 26.6, 41.1, 57.9, 58.2, 61.6, 62.9, 118.5, 127.0, 128.2, 128.3, 129.0, 136.6, 139.0. v_{max} 3052m, 2972m, 2305w, 1501w, 1452w, 1374w, 1265s, 1082w, 910w cm⁻¹. m/2 254.16572; C₁₆H₂₀N₃ [MH⁺] requires 254.16564.

anti-2-Benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic Acid Ethyl Ester (14f). Aqueous HCl (4 mL, 8 M) was added to 14d (0.309 g, 1.46 mmol) and stirred at 90 °C for 65 h. The mixture was evaporated to dryness; thionyl chloride (4 mL) was added, and the mixture was stirred at 40 °C for 6 h. Excess thionyl chloride was removed in vacuo, dry ethanol (5 mL) was added, and the mixture stirred at 20 °C for 0.5 h. After removal of the solvents in vacuo, the resulting yellow oil was dissolved in HCl (4 mL, 1 M) and washed with CH_2Cl_2 (3 × 4 mL). The aqueous layer was basified with ammonium hydroxide solution (8 mL, 35% ammonia) and extracted with CH_2Cl_2 (3 × 4 mL). The organic layers were combined and dried over anhydrous MgSO₄. Removal of solvents in vacuo gave 14f as a yellow oil (0.290 g, 77%; the sample was sufficiently pure for the epimerization to give 16). R_r 0.41 (3:2

Synthesis of syn- and anti-Isoepiboxidine

ether/petrol). $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.24 (t, J = 7.1 Hz, 3H), 1.40, 1.60–1.95 (m, 4H), 2.40 (d, J = 9.4 Hz, 1H), 2.61 (brs, 1H), 2.86 (ddd, $J \approx 9.4$, 3.4, 3.4 Hz, 1H), 2.93 (brs, 1H), 3.44 (brs, 1H), 3.66, 3.74 (AB, J = 13.5 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 7.33 (m, 5H). $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 14.0, 25.5, 26.9, 40.1, 51.2, 58.4, 59.9, 60.0, 62.2, 126.8, 128.2, 128.4, 138.9, 171.7 $\nu_{\rm max}$ 3053s, 2982s, 2305w, 1725s, 1452m, 1370m, 1265s, 1214m, 1180m, 1043m, 896w cm⁻¹. m/z 260.16510; C₁₆H₂₂NO₂ [MH⁺] requires m/z 260.16505.

syn-2-Benzyl-2-azabicyclo[2.2.1]heptane-7-carboxylic Acid Ethyl Ester (16). To the ester 14f (3.387 g, 13.10 mmol) was added NaOEt in EtOH (0.63 M, 42 mL) and dry HMPA (0.1 mL), and the mixture was stirred at 65 °C for 24 h. After addition of the mixture to water (50 mL) and extraction with CH₂Cl₂ (5 × 60 mL), the organic extracts were combined, dried over anhydrous MgSO₄, and filtered. Capillary GC analysis [25 m HP-FFAP column] indicated the presence of both 14f and 16 (anti/syn = 45:55). Chromatography (3:2 ether/petrol, NH₃) yielded 14f (1.399 g; 41%), R_7 0.41, and 16 (1.56 g, 6.02 mmol, 46%), R_7 0.59. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.28 (t, J = 7.1 Hz, 3H), 1.32-1.54, 1.54-1.69, 1.84 (3 × m, 2H, 1H, 1H), 1.93 (d, J = 8.4 Hz, 1H), 2.48 (brs, 1H), 2.55 (brs, 1H), 3.28 (ddd, $J \approx 8.4$, 3.5, 3.5 Hz, 1H), 3.48 (brs, 1H), 3.68 (brs, 2H), 4.18, 4.20 (complex, 2 overlapping dq.²³ J = 7.1 Hz, 2H), 7.25-7.28 (m, 5H). δ_C (75.5 MHz, CDCl₃) 1.43, 23.7, 29.7, 39.4, 53.7, 55.5, 56.5, 60.0, 62.7, 126.5, 128.0, 140.0, 172.2. $\nu_{\rm max}$ 2976s, 2870s, 1733s, 1453s, 1186s cm⁻¹. m/2 260.16509 (MH⁻); C₁₆H₂₂NO₂ [MH⁺] requires m/z 260.16505.

syn-2-Benzyl-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo-[2.2.1]heptane (17). Using the procedure described by Badio et al., 2n acetoxime (129 mg, 1.77 mmol) was dissolved in dry THF (4 mL) and held at 0 °C. Butyllithium (2.21 mL, 1.6 M 3.53 mmol) was added, and the mixture was stirred at 20 $^{\circ}\mathrm{C}$ for 0.8 h. The ester 16 (174 mg, 0.67 mmol) dissolved in dry THF (2 mL) was added. After stirring at 60 °C for 1 h the solvent was evaporated using nitrogen. HCl (8 mL, 10.2 M) was added, and the mixture was stirred at 80 °C for 4.5 h and then 12 h at room temperature. The reaction mixture was basified with saturated NaHCO₃ solution (~15 mL) and extracted with CH₂Cl₂ (4 × 40 mL). The organic layers were combined, and removal of the solvents in vacuo gave an orange oil that was dissolved in HCl (1 M, 3 mL) and washed with ether (4 \times 2 mL). The aqueous layer was basified (NH₄OH solution) and extracted with CH_2Cl_2 (4 × 2 mL). The CH_2Cl_2 extracts were dried over MgSO4 and filtered. Flash chromatography (9:1, ether/MeOH, NH₃) gave 17 as a colorless oil (65 mg, 36%), R_f 0.56. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.45–1.62 (m, 2H), 1.74-1.87 (m, 1H), 2.00-2.13 (m, 1H), 2.02 (d, J = 9.1 Hz, 1H), 2.30 (s, 3H), 2.52 (brs, 1H), 2.88 (brs, 1H), 3.09 (ddd, $J\approx$ 9.1, 3.5, 3.5 Hz, 1H), 3.46 (brs, 1H), 3.68, 3.74 (AB, J = 13.8Hz, 2H), 6.16 (s, 1H), 7.17–7.33 (m, 5H). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 11.5, 24.1, 29.9, 41.8, 46.6, 55.8, 56.2, 63.0, 102.3, 126.6, 128.1, 138.8, 159.6, 172.3. $\nu_{\rm max}$ 2961s, 1601s, 1494m, 1418s, 1370m, 1184m, 1010m. m/z 269.16537; C_{17}H_{21}N_2O [MH^+] requires m/z 269.16539

anti-2-Azabicyclo[2.2.1]heptane-7-carboxylic Acid Ethyl Ester (18). A solution of 14f (1.399 g, 5.40 mmol) in dry MeOH (40 mL) was hydrogenolyzed over Pd/C (10%, 0.25 g) with stirring for 24 h. The reaction mixture was filtered through Celite, and the solvent was removed in vacuo to leave a yellow oil that was chromatographed (17:3, ether/MeOH, NH₃) to provide 18 (0.612 g, 67%), R_f 0.29. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.25 (t, J = 7.1 Hz, 3H), 1.48–1.57, 1.77–1.98 (2 × m, 2H, 2H), 2.62 (brs, 1H), 2.69 (d, J = 9.5 Hz, 1H), 2.73 (brs, 1H), 3.01 (ddd, $J \approx 9.5$, 3.0, 3.0 Hz, 1H), 3.61 (brs, 1H), 4.12 (q, J = 7.1 Hz, 2H). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 13.9, 26.8, 30.9, 39.2, 51.9, 53.6, 57.4, 60.0, 171.5. $\nu_{\rm max}$ 3407b, 2979s, 1730s, 1541m, 1372m, 1226s, 1051m cm⁻¹. m/z 170.11811; C₉H₁₆NO₂ [MH⁺] requires 170.11810.

anti-2-Boc-2-azabicyclo[2.2.1]heptane-7-carboxylic Acid Ethyl Ester (19). The anti-ethyl ester 18 (103 mg, 0.61 mmol), Boc₂O (202 mg, 0.93 mmol), and NaHCO₃ (187 mg, 2.23 mmol)

JOCArticle

were stirred in THF (2 mL) and water (6 mL) at room temperature for 20 h. The reaction mixture was extracted with ether (4 × 4 mL), the organic extracts were combined, dried over anhydrous MgSO₄, and filtered, and the solvents were removed in vacuo. The resulting colorless oil was chromatographed (7:3 ether/petrol, NH₃) yielding **19** (105 mg, 64%), R_f 0.54. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication (slow N–CO rotation, ratio ~52:48) the minor rotamer signal is shown in italics] 1.27 (bt, J = 7.0 Hz, 3H), 1.45, 1.46 (2 × s, 9H), 1.57–1.88 (m, 4H), 2.76 (m, 2H), 3.01, 3.07 (2 × d, J = 9.7 Hz, 1H), 3.32, 3.35 (2 × brs, 1H), 4.15 (bq, J = 7.0 Hz, 2H), 4.31, 4.45 (2 × brs, 1H). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 14.1, 25.8 & 26.0, 28.5, 29.1 & 29.3, 39.1 & 39.6, 52.6 & 53.0, 53.1 & 53.7, 57.3 & 58.1, 60.5, 79.2 & 79.3, 153.7 & 154.1, 170.5 v_{max} 2977s, 1736s, 1697s, 1408s, 1173s, 1101s, 1048s cm⁻¹. m/z 270.17050; C₁₄H₂₄NO₄ (MH⁺) requires 270.17053.

anti-2-Boc-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (20). Using the procedure described by Fitch et al., a solution of butyllithium (0.58 mL, 1.6 M in hexanes, 0.93 mmol) was added dropwise over 10 min to a solution of acetoxime (34 mg, 0.47 mmol) in dry THF (1 mL) under argon at 0 °C. After stirring for 2 h at 0 °C, a solution of the *anti*ethyl ester 19 (58 mg, 0.22 mmol) in dry THF (1 mL) was added over 10 min. The reaction mixture was stirred under argon at 0 °C for 20 h and then transferred to vigorously stirred 1 M HCl (8 mL) over 40 min. This mixture was neutralized (NaHCO₃) and extracted with CH_2Cl_2 (5 × 15 mL), the combined organic extracts were dried over anhydrous MgSO₄ and filtered, and the solvents were removed in vacuo. The resulting yellow oil was chromatographed (7:3 ether/ petrol), yielding **20** (19 mg, 48% based on recovered **19**), R_f 0.21 and **19** (19 mg). NMR signals were broadened; where there is signal duplication (slow N-CO rotation, ratio \sim 2:3) the minor rotamer signal is shown in italics. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.47 (s, 9H), 1.60-1.86 (m, 4H), 2.28 (s, 3H), 2.85 (brs, 1H), 3.14 (brs, 1H), 3.45 (bddd, $J \approx 9.6$, 2.7, 2.7 Hz, 1H), 4.43, 4.51 (2 × brs, 1H), 5.88 (brs, 1H). $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 11.4, 25.9, 28.5, 28.9 & 29.2, 40.1 & 40.7, 46.0 & 46.3, 53.2 & 53.7, 58.3 & 59.3, 79.6, 102.6, 154.2, 159.7, 170.0. $\nu_{\rm max}$ 2976m, 1694s, 1406s, 1173m, 1112m cm⁻¹. m/z 279.17085; C₁₅H₂₃N₂O₃ (MH⁺) requires 279.17087.

anti-7-(3-Methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (21) from 20. The ester 20 (8.3 mg, 0.030 mmol) was stirred in a mixture of EtOH (0.435 mL), ethyl acetate (1.205 mL), and acetyl chloride (0.359 mL) at 0 °C for 1 h. The reaction mixture was evaporated to dryness to give the hydrochloride salt of 21 (6.4 mg, 99%). Data for the free amine 21: $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.40–1.75 (m, 4H), 1.9 (brs, NH), 2.27 (s, 3H), 2.71 (brs, 1H), 2.77 (d, J = 9.6 Hz, 1H), 3.09 (brs, 1H), 3.13 (m,1H), 3.71 (brs, 1H), 5.85 (s, 1H). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 11.4, 26.8, 31.0, 40.4, 47.2, 52.3, 58.7, 102.3, 159.6, 171.4, $\nu_{\rm max}$ 3392b, 2968s, 2876m, 1725w, 1602s, 1534m, 1415s cm⁻¹. m/z 179.11839; C₁₀H₁₅N₂O [MH⁺] requires m/z 179.11844.

Direct Formation of 21 from 18. The procedure described for **17** was followed using acetoxime (76 mg, 1.04 mmol) in dry THF (3 mL), butyllithium (1.43 mL, 1.6 M, 2.29 mmol), and the ester **18** (65 mg, 0.38 mmol) in dry THF (2 mL). HCl (8 mL, 10.2 M) was used in the second step, and after workup **21** was isolated as an orange oil (28 mg). Quantitative ¹H NMR analysis gave a yield of 16.2 mg, 24%.

syn-2-Azabicyclo[2.2.1]heptane-7-carboxylic Acid Ethyl Ester (22). The ester 16 (1.56 g, 6.02 mmol) in dry MeOH (40 mL) was hydrogenolyzed as described for 14f to yield 22 as a yellow oil (0.625 g, 61%), R_f 0.30. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.27 (t, J = 7.1 Hz, 3H), 1.40–1.77 (m, 4H), 2.0 (brs NH), 2.59 (brs, 1H), 2.61 (d, J = 9.8 Hz, 1H), 2.51 (brs, 1H), 3.13 (ddd, $J \approx 9.8$, 3.1, 3.1 Hz, 1H), 3.61 (bd, ≈ 2.6 Hz, 1H), 4.14 (complex "q", ²³ J = 7.1 Hz, 2H). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 13.9, 28.8, 30.8, 40.0, 49.8, 52.2 & 52.4, 58.27 & 58.31, 60.0, 172.3 & 172.7. $\nu_{\rm max}$ 3406b, 2977s, 1728s, 1542m, 1409s, 1303m, 1192m, 1037m cm⁻¹. m/z 170.11812; C₉H₁₆NO₂ [MH⁺] requires m/z 170.11810.

J. Org. Chem, Vol. 69, No. 16, 2004 5333

JOC Article

syn-2-Boc-2-azabicyclo[2.2.1]heptane-7-carboxylic Acid Ethyl Ester (23). Treatment of the ester 22 (128 mg, 0.76 mmol) with Boc₂O (262 mg, 1.20 mmol) and NaHCO₃ (200 mg, 2.38 mmol) in THF (2 mL) and water (6 mL) using the method described for 19 gave 23 (130 mg, 64%). R_{f} (7:3, ether/petrol, NH₃) 0.39. δ_{H} [300 MHz, CDCl₃; where there is signal duplication due to slow N-CO rotation (ratio ~45:55) the minor rotamer signal is shown in italics.] 1.24 (t, J = 7.1 Hz, 3H), 1.44 & 1.46 (2 × s, 9H), 1.64–1.80 (m, 4H), 2.53 (brs, 1H), 2.72 & 2.75 (2 × brs, 1H), 2.94 & 3.00 (2 × d, J = 9.8 Hz, 1H), 3.51 (m, 1H), 4.13 (m, 2H), 4.39 & 4.51 (2 x brs, 1H). δ_{C} (75.5 MHz, CDCl₃) 14.2, 27.4, 28.5, 30.7, 39.4, 40.0, 50.6, 51.2, 52.2, 53.0, 58.2, 58.9, 60.4, 60.5, 79.0, 79.1, 154.2, 154.5, 170.6, 170.9. ν_{max} 2974m, 1735s, 1696s, 1406s, 1163s, 1104s cm⁻¹. m/z 270.17057; Cl₄H₂₄NO₄ (MH⁺) requires m/z 270.17053.

syn-2-Boc-7-(3-methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (24). Acetoxime (74 mg, 1.01 mmol), butyllithium in hexanes (1.27 mL, 1.6 M, 2.03 mmol), and the ester 23 (133 mg, 0.49 mmol) were reacted using the procedure described for 20 to give 24 (61 mg, 52% based on recovered 23), R_f (7:3, ether/petrol, NH₃) 0.35, and recovered 23 (19 mg). δ_H [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.43 & 1.47 (2 × s, 9H), 1.57-1.95 (m, 4H), 2.24 & 2.25 (2 × s, 3H), 2.74 & 2.80 (2 × brs, 1H), 2.94 & 2.95 (2 × brs, 1H), 2.96 & 3.03 (2 × d, J = 10.1 Hz, 1H), 3.15 & 3.27 (2 × ddd, $J \approx 9.9, 2.7, 2.7$ Hz, 1H), 4.35 & 4.51 (2 × brs, 1H), 5.84 & 5.91 (2 × brs, 1H). δ_C (100.6 MHz, CDCl₃) 11.4, 28.5 & 28.6, 30.6 & 30.9, 40.8 & 41.4, 45.6 & 46.1, 50.1 & 50.8,

Malpass and White

 $58.6~\&~59.7,~79.4~\&~79.6,~102.1~\&~102.3,~154.5,~159.8,~170.2~\&~170.4,~\nu_{max}$ 2976s, 2359s, 1694s, 1406s, 1150s, 1112s cm $^{-1}$. m/z 279.17088; C1_3H_{23}N_2O_3 [MH^+] requires m/z 279.17087.

syn-7-(3-Methyl-isoxazol-5-yl)-2-azabicyclo[2.2.1]heptane (syn-isoepiboxidine) (9). The N-Boc compound 24 (12.5 mg, 0.0450 mmol) was deprotected as described for compound 20, yielding the hydrochloride salt of compound 9 (9.6 mg, 99%). Data for the free amine 9: $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.49-1.68 (m, 2H), 1.72-1.91 (m, 2H), 2.27 (bs, 3H & NH), 2.66 (brs, 1H), 2.67 (d, J = 9.9 Hz, 1H), 2.91 (brs, 1H), 2.99 (ddd, $J \approx 9.9$, 3.2, 3.2 Hz, 1H), 3.66 (bd, J = 2.5 Hz, 1H), 5.96 (s, 1H). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 11.3, 29.0, 31.9, 40.8, 46.5, 49.9, 59.2, 102.4, 159.7, 171.6). $\nu_{\rm max}$ 3400b, 2966s, 2877s, 1602s, 1418s cm⁻¹. m/z 179.11842; C₉H₁₆NO₂ [MH⁺] requires 179.11844.

Direct Formation of 9 from 22 Acetoxime (72 mg, 0.99 mmol) in dry THF (3 mL) was treated with butyllithium (1.30 mL, 1.6 M, 2.08 mmol) and the ester **22** (54 mg, 0.32 mmol) in dry THF (2 mL) following the procedure described for **17**. Following workup using HCl (8 mL, 10.2 M), **9** was isolated as an orange oil (30 mg). Quantitative ¹H NMR analysis using an internal standard gave a yield of 14.6 mg, 26%.

Supporting Information Available: Spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0492564

ORGANIC LETTERS 2005 Vol. 7, No. 13 2759-2762

Approaches to Syn-7-Substituted 2-Azanorbornanes as Potential Nicotinic Agonists; Synthesis of *syn-* and *anti-*Isoepibatidine

John R. Malpass,* Sandeep Handa, and Richard White

Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom irm@le.ac.uk

Received May 5, 2005

Coupling of *N*-Boc-7-bromo-2-azabicyclo[2.2.1]heptane with aryl and pyridyl boronic acids incorporates aryl and heterocyclic substituents at the 7-position and leads to a preference for syn over anti stereoisomers. Incorporation of a chloropyridyl group followed by N-deprotection gives *syn*-isoepibatidine. Facial selectivity in attack on 7-keto-2-azanorbornanes depends heavily on the N-protecting group leading to the first *syn*-7-hydroxy-2-azabicyclo[2.2.1]heptane derivative.

The discovery of epibatidine 1, a naturally occurring derivative of the 7-azabicyclo[2.2.1]heptane (7-azanorbornane) ring system that has unusually high activity at the nicotinic acetylcholine receptor (nAChR),¹ has stimulated intense synthetic activity. The search for therapeutically useful compounds having higher nAChR subtype selectivity and lower toxicity has encouraged the synthesis of a wide range of analogues and isomers.²

We have been intrigued by the potential of the elusive isomer isoepibatidine 6 in which all the key features of 1are retained but the positions of the bicyclic nitrogen and

10.1021/ol0510365 CCC: \$30.25 © 2005 American Chemical Society Published on Web 06/02/2005 the heterocycle are simply reversed. Other epibatidine isomers 2 and 3 (having the heterocycle attached to the 5and 6-*endo* positions of 2-azanorbornane)^{3a} retain high nAChR affinity, as do many homologues and analogues.⁴

The *exo* orientation of the heterocycle in the isomers **4** and **5** leads to a much greater N-N distance and reduced nAChR affinity as anticipated.^{3a}

We have recently reported the synthesis of novel syn- and anti-7-derivatives of 2-azanorbornane, including *syn*isoepiboxidine 7 (and the anti stereoisomer) via the corre-

(4) Malpass, J. R.; Hemmings, D. A.; Wallis, A. L.; Fletcher, S.; Patel, S. J. Chem. Soc., Perkin Trans. 1 2001, 1044–1050. Malpass, J. R.; Patel, A. B.; Davies, J. W.; Fulford, S. Y. J. Org. Chem. 2003, 68, 9348–9355.

⁽¹⁾ Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. **1992**, *114*, 3475-3478. For leading references to epibatidine analogue synthesis, see: Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Ma, W.; Bricaddy, L. E.; Abraham, P.; Damaj. M. I.; Martin, B. R. J. Med. Chem. **2002**, *45*, 4755-4761.

M. H., Marun, B. K. J. Med. Chem. 2002, 45, 4755-4761.
 (2) For reviews and leading references to analogues and to nAChR affinities, see: Carroll, F. I. Bioorg. Med. Chem. Lett. 2004, 14, 1889-1886. Bunnelle, W. H.; Dart, M. J.; Schrimpf, M. R. Curr. Top. Med. Chem. 2004, 4, 299-334.

 ⁽³⁾ Sec: (a) Cox, C. D.; Malpass, J. R.; Rosen, A.; Gordon, J. J. Chem.
 Soc., Perkin Trans. 1 2001, 2372-2379 (2-5). (b) Hodgson, D. M.;
 Maxwell, C. R.; Wisedale, R.; Matthews, I. R.; Carpenter, K. J.; Dickenson,
 A. H.; Wonnacott, S. J. Chem. Soc., Perkin Trans. 1 2001, 3150-3158 (3).

sponding 7-ethoxycarbonyl derivatives.⁵ Interest in 7-substituted 2-azanorbornanes has also been extended to their use as precursors to α -kainic acids.⁶ We now report the first successful direct attachment of aryl and heterocyclic rings to the 7-position of 2-azanorbornanes via metal-catalyzed coupling reactions, opening the way to *syn*-isoepibatidine **6** and a wider range of analogues.^{2,7} Additionally, further investigation of the manipulation of syn/anti stereochemistry in 7-substituted 2-azanorbornanes has allowed us to resolve a disagreement over the stereochemical assignment of the 7-hydroxy compounds unambiguously.

The key anti-7-substituted intermediate 9a is available from *N*-benzyl-2-azanorborn-5-ene 8 as described earlier.⁵ The conversion of 9a into 10a and modification to give the *N*-Boc and *N*-Cbz examples 10c and 10d was achieved using standard methods⁵ (Scheme 1).

The anti stereochemistry is retained at C-7 during the substitution owing to neighboring group participation by the 2-azanorbornyl nitrogen. This allows smooth exchange of the bromine by a range of other nucleophilic groups⁵ but clearly precludes direct $S_N 2$ displacement with inversion, leading to the syn compounds which we had chosen as precursors for coupling chemistry. This is a problem since the syn-7-substituted derivatives are of much greater interest pharmacologically, bearing in mind the importance of N–N distances in achieving high nAChR affinity and the current level of understanding of the nAChR pharmacophore.² Our earlier synthesis of *syn*- and *anti*-isoepiboxidines involved the construction of the methylisoxazole ring in situ from a nitrile substituent via an ester group of established syn configuration.⁵

The key objective of the present work was the *direct* incorporation of pyridyl heterocycles at the 7-position of 2-azanorbornanes, preferably with control of syn stereochemistry. We hoped to use metal-catalyzed cross-coupling reactions to couple the heterocycle and the syn-bromo compound but were faced by two issues. First, studies of this type of reaction involving nonprimary sp³ centers are in their infancy;⁸ second, only the anti-7-bromo precursors **9** were available. A significant recent report describing the coupling of nonactivated secondary bromo- and iodo- compounds with aryl boronic acids using a Ni(0) catalyst illustrates recent developments that are increasing the versatility of crosscoupling reactions substantially.⁹ This work included examples of two (thiophene- and indole-based) heterocyclic boronic acids, and we applied this procedure to our more complex substrates, despite earlier observations on difficulties using functionalized alkyl electrophiles.⁹

We had intended to use the syn-7-bromo isomers of **9** as precursors but based our initial studies on the Boc-protected anti isomer **9c**, which was prepared from the readily available **9a** in 70% yield (Scheme 1). Coupling with phenylboronic acid required modification of the conditions described by Zhou and Fu.⁹ A significantly higher catalyst loading was used (20 mol % instead of 4 mol %), and the low reactivity of **9c** necessitated a temperature of 100 °C for 48 h (rather than 60 °C for 5 h). Flash chromatography provided both epimers **11** and **12** in a total yield of 50%. The syn/anti ratio was 60:40 (Scheme 2).

The same conditions were applied to the coupling of 3-pyridyl boronic acid with 9c and gave 13 and 14 in a combined isolated yield of 33%. The syn epimer was again preferred (syn/anti ratio of 75:25). Yields were generally in line with those reported by Zhou and Fu.⁹

The fact that β -elimination is impossible in our system may contribute to the success of our reactions. Having demonstrated that this catalytic system can be utilized successfully with pyridyl boronic acids and functionalized secondary bromides, we applied similar conditions to the coupling of 4-chloro-3-pyridyl boronic acid¹⁰ with **9c**. The

Org. Lett., Vol. 7, No. 13, 2005

⁽⁵⁾ Malpass, J. R.; White, R. J. Org. Chem. 2004, 69, 5328-5334.
(6) Hodgson D. M.; Hachisu, S.; Andrews, M. D. Org. Lett. 2005, 7, 815-817.

⁽⁷⁾ For recent examples of alternative heterocycles incorporated into the epibatidine framework and into analogues, see leading references in: Carroll, F. I.; Ma, W.; Yokota, T.; Lee, J. R.; Brieaddy, L. E.; Navarro, H. A.; Damaj, M. I.; Martin, B. R. *J. Med. Chem.* **2005**, *48*, 1221-1228. See also citations 2 and 4 in ref 5.

⁽⁸⁾ Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346. 1525–1532. Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674–688. Coupling of pyridylboronic acids and heteroaryl systems has been reported: Parry, P. R.; Wang, C.; Batsanov, A. S.; Bryce, M. R.; Tarbit, B. J. Org. Chem. 2002, 67, 7541–7543.
(9) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340–1341. This

⁽⁹⁾ Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340-1341. This report concentrated on secondary alkyl halides that lacked functionality. A footnote in the paper states that "reactions of functionalized alkyl electrophiles proceed in lower yield".

⁽¹⁰⁾ Bouillon, A.: Lancelot, J.-C.; Collot, V.; Bovy, P. R.; Rault, S. *Tetrahedron* **2002**, *58*, 2885–2890. This reagent is now commercially available.

isolated material contained some of the desired products, but there was also evidence of defunctionalization¹¹ and solvolysis (incorporation of a 2-butoxy group in place of the 2-chloropyridyl substituent). Lowering the temperature to 50 °C and the reaction time to 12 h avoided loss of the pyridyl chlorine and produced the desired 15 and 16 in an overall 30% yield (Scheme 3).

The mixture of N-protected products was not easy to separate, but the major epimer 16 was isolated by careful chromatography and characterized with the aid of a crystal structure (Figure 1). Removal of the N-Boc group was

Figure 1. X-ray crystal structure of N-Boc isoepibatidine 16.

straightforward (using acetyl chloride in ethanol/ethyl acetate⁵), giving syn-isoepibatidine as the hydrochloride salt 6:HCl in 88% isolated yield.

The use of strong base and elevated temperatures inevitably raised the likelihood of epimerization at the 7-posi-

Org. Lett., Vol. 7, No. 13, 2005

tion^{5,12} and made the question of stereocontrol in the actual coupling reactions somewhat academic.

Nevertheless, we performed a chloropyridyl coupling at room temperature and interrupted the conversion after 3 h (ca. 10% conversion). The ratio of 15 and 16 in the isolated sample was 75 anti:25 syn. When this same mixture was treated with base (KO'Bu/BuOH) at 50 °C, the ratio reversed in favor of the syn isomer (25 anti:75 syn). This is in agreement with initial retention of configuration at C-7 followed by base-induced epimerization.

While it is now clear that syn-7 isomers of 9 are not required for synthesis of 6, our early development work toward the syn-7-hydroxy isomers of 10 has allowed us to extend the range of syn derivatives and to resolve a recent disagreement over the orientation of the hydroxyl group.5,13 We approached the syn-7-hydroxy compounds 18 via a simple oxidation/reduction strategy (Scheme 4).

Swern oxidation of 10a,c,d provided the corresponding 7-keto-compounds 17a,c,d, but perversely, hydride reduction of the latter two derivatives using borohydride occurred only from the syn face, re-forming the starting compounds 10. Fortunately, the facial selectivity was reversed in the case of the N-benzyl aminoketone 17a and led to a substantial preference for the syn-hydroxy derivative 18a.

The syn stereochemistry of 18a was confirmed by an X-ray crystal structure of the 3,5-dinitrobenzoate derivative (Figure 2).

Standard methods allow attachment of a range of O-linked heterocycles using the oxy-anions of 10a, c, d, 13 and it is now clear that a range of claimed syn derivatives that were synthesized as potential muscarinic antagonists¹³ are in fact the anti isomers 19. The availability of the syn compounds 18 now opens the way to the preferred range of syn derivatives 20.

These include novel analogues of ABT-59414 that contain the chloropyridyloxy group and have the same sequence of atoms between the two nitrogens.

2761

⁽¹¹⁾ Quantities of defunctionalised N-Boc-2-azanorbornane (ca. 20%) were isolated from each of the coupling reactions.

⁽¹²⁾ This situation recalls early syntheses of epibatidine 1 that gave predominantly the unwanted *endo* stereoisomer, requiring subsequent epimerization at the 2-position of the 7-azanorbornyl ring subsequent example: Fletcher, S. R.; Baker, R.; Chambers, M. S.; Herbert, R. H.; Hobbs, S. C.; Thomas, S. R.; Verrier, H. M.; Watt, A. P.; Ball, R. G. J. Org. Chem. 1994, 59, 1771–1778. For a significant improvement to the construction methodolaum for explorations can eleboration. epimerization methodology for epibatidine, see: Haberman, J.; Ley, S. V.; Scott, J. S. J. Chem. Soc., Perkin Trans. 1 1999, 1253–1256. (13) Mitch, C. H.; Quimby, S. J. Patent WO 00/75140 A1, 2000; U.S. Perkin, 550, 171 PL 2000; U.S.

Patent 6, 559, 171 B1 2003.

Figure 2. X-ray crystal structure of the 3,5-dinitrobenzoate of 18a

Syn-7 isomers have N-N distances that are more conducive to nAChR activity than the anti isomers but have less conformational freedom than ABT-594. We continue to

(14) Holladay, M. W.; Wasicak, J. T.; Lin, N. H.; He, Y.; Ryther, K.
B.; Bannon, A. W.; Buckley, M. J.; Kim, D. J. B.; Decker, M. W.; Anderson, D. J.; Campbell, J. E.; Kuntzweiler, T. A.; Donnelly-Roberts, D. L.; Piattoni-Kaplan, M.; Briggs, C. A.; Williams, M.; Arneric, S. P. J. Med. Chem. 1998, 41, 407-412.
(15) For significant work on facial selectivity in attack on carbonyl groups in bicyclic environments, see: Kaselj, M.; Wen-Sheng, C.; Le Noble, W. J. Chem. Rev. 1999, 99, 1387-1413.

explore this area and examine the factors that determine facial selectivity in attack on the 7-keto group.15

In summary, facial selectivity in attack on 7-keto-2azanorbornanes is profoundly dependent on the N-protecting group and allows isolation and characterization of syn-7hydroxy-2-azanorbornane (a precursor of novel potential nicotinic and muscarinic ligands). Significantly, we have demonstrated the first successful coupling of 4-chloro-3pyridyl boronic acid with the functionalized secondary alkyl bromo compound 9c and have shown that epimerization occurs under the reaction conditions. The observed thermodynamic preference for the syn-7-chloropyridyl derivative allows the use of the more readily accessible anti-7-bromo compound as the substrate in the synthesis of the novel epibatidine isomer syn-isoepibatidine 6. This compound is a potential nicotinic agonist and will be screened for nAChR subtype selectivity. The coupling reaction itself has significance for the direct synthesis of other epibatidine analogues.

Acknowledgment. We are grateful to Dr. John Fawcett for the crystal structures and to Dr. Gerry Griffith for NMR data.

Supporting Information Available: Experimental procedures for coupling reactions and spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0510365

Org. Lett., Vol. 7, No. 13, 2005

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters 16 (2006) 5493-5497

Bioorganic & Medicinal Chemistry Letters

Epibatidine isomers and analogues: Structure-activity relationships

Richard White,^a John R. Malpass,^{a,*} Sandeep Handa,^a S. Richard Baker,^b Lisa M. Broad,^b Liz Folly^b and Adrian Mogg^b

^aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, UK ^bEli Lilly and Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey GU20 6PH, UK

> Received 6 July 2006; revised 9 August 2006; accepted 9 August 2006 Available online 28 August 2006

Abstract—Binding affinities for a range of epibatidine isomers and analogues at the $\alpha 4\beta 2$ and $\alpha 3\beta 4$ nAChR subtypes are reported; compounds having similar N–N distances to epibatidine show similar, high potencies. © 2006 Elsevier Ltd. All rights reserved.

The remarkable affinity of epibatidine (1) for the nicotinic acetylcholine receptor (nAChR) is now well known.¹ Epibatidine is a potent but non-selective agonist, its pharmacological effects probably being mediated by a variety of nAChR subtypes including α 7, $\alpha 4\beta 2$, $\alpha 3\beta 4$ and the $\alpha 1\beta 1\gamma \delta$ receptor at the neuromuscular junction.² The recognition of a wide variety of receptor subtypes has encouraged the exploration of epibatidine analogues in the hope of developing subtype-selective therapeutic compounds.² These compounds could then be employed as treatments for several neurological and psychiatric disorders including Parkinson's and Alzheimer's diseases, schizophrenia, chronic pain and tobacco dependence.² Greater subtype selectivity is likely to be associated with lower toxicity and fewer undesirable side effects.² The $\alpha 4\beta 2$ nAChR is absent from the periphery but widely expressed within the CNS and may be a useful therapeutic target in several of the disorders described above. In contrast, activity at either the neuromuscular junction or the $\alpha 3\beta 4$ ganglionic nAChR might be expected to lead to undesirable side effects. Work on defining the full role of each of the nAChR subtypes is highly dependent on the availability of subtype-specific ligands.²

We designed our target compounds to include: a bicyclic secondary nitrogen centre (the source of the quaternary nitrogen which is essential for binding); a freely rotating heterocyclic substituent; a rigid bicyclic framework which is capable of providing an appropriate N–N distance in one or both of the minimum-energy conformations (based on rotation about the C-pyridyl bond).³ Our earlier work with tropanes (8-azabicyclo[3.2.1]octanes) and with 2- and 7-azabicyclo[2.2.1]heptanes (2and 7-azanorbornanes)⁴ has led us to synthesize a range of analogues and isomers based on these azabicyclic frameworks (Fig. 1). These include homoepibatidine (2),⁵ dihomoepibatidine (3)⁵ and isoepibatidine (4)⁶ in which the positions of the bicyclic nitrogen and the heterocycle have been reversed. The epibatidine isomers 5 and 6,⁷ in which the bicyclic nitrogen is now in the 2-position and the 5- (or 6-)heterocyclic substituents are *endo*-, produce a calculated N–N distance in the appropriate range (Table 3).

The *exo*-isomers 7 and 8,⁷ having greater N–N distances, were included in these studies for comparison and contrast. In addition, the *syn*- and *anti*-isoepiboxidines 10 and 11,⁸ in which the chloropyridyl substituent of 4 has been replaced by a methylisoxazole ring, were synthesized in the hope of retaining potency but with lower toxicity (as reported for epiboxidine (9)).⁹

The synthesis and spectroscopic properties of these compounds have been published but full experimental details for *syn*-isoepibatidine (4) are recorded at the end of this letter since our very recent report⁶ gave only a general procedure.

Activity data at the $\alpha 4\beta 2$ and $\alpha 3\beta 4$ receptors are listed in Table 1. Some previously published $\alpha 4\beta 2$ and $\alpha 7$ binding data for selected compounds^{7a} are included for

Keywords: Epibatidine analogues; Epibatidine isomers; nAChR affinity; Nicotinic receptor subtypes; Structure-activity relationships.

^{*} Corresponding author. Tel.: +44 0116 252 2126; fax: +44 0116 252 3789; e-mail: jrm@le.ac.uk

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.08.049

R. White et al. | Bioorg. Med. Chem. Lett. 16 (2006) 5493--5497

Figure 1. Epibatidine isomers and analogues.

Table 1. Inhibition of binding at human recombinant nicotinic receptors for compounds 1,2, 4-7,10 and 11

Compound	K_i^a (nM)		α3β4/α4β2
	α4β2	α3β4	
(±)-1	0.0558 (±0.0056)	0.191 (±0.0075)	3.42
(+)-2	0.127 (±0.011)	0.925 (±0.032)	7.28
(-)-2	0.343 (±0.026)	0.527 (±0.053)	1.54
(±)-4	0.0785 (±0.00617)	0.16 (±0.00189)	2.05
(+)-5	0.182 (±0.33)	0.944 (±0.058)	5.19
(-)-5	1.23 (±0.025)	8.73 (±0.179)	7.1
(±)-6	0.771 (±0.067)	2.35 (±0.122)	3.05
(±)-7	ne at 1000 nM	ne at 1000 nM	
(±)-10	0.763 (±0.092)	9.51 (±0.428)	12.5
(±)-11	ne at 1000 nM	ne at 1000 nM	
Cytisine	2.59 (±0.202)	525 (±6.32)	203

Preliminary data have been reported earlier.¹⁰

^a Values are geometric means of at least three experiments, standard error is given in parentheses (ne = no effect).

comparison (Table 2). Differences between the K_i binding constants in Tables 1 and 2 (and early data recorded in Ref. 5) may be due to the fact that in Table 1, binding was at human recombinant nAChR, whereas the nAChR used to generate the values in Table 2 were from native rat tissue. These native receptors may be subtly different from the human recombinant nAChR in terms

Table 2. Inhibition of binding at native rat nicotinic receptors for compounds 1, 2 and 5-87a

Compound	$\alpha 4\beta 2 K_i^a (nM)$	$\alpha 7 K_i^b$ (nM)	α7/α4β2
1	(+)0.019	$4.9 (\pm 0.7) (n = 3)$	258
	(-)0.020	7.0 (± 1.8) $(n = 4)$	350
(±)- 2	0.23	13 (n = 2)	56.5
(±)- 5	0.056	6.3	112.5
(±) -6	0.045	3.9	86.7
(±)- 7	ca. 40	3300	<87
(±)- 8	ca. 40	1600	<42

^a [³H]Nicotine binding to rat cortical membranes. ^b [¹²⁵I- α]Bungarotoxin binding to rat hippocampal membranes.

of their unit stoichiometry (ratio of $\alpha 4$ and $\beta 2$ subunits) and composition (inclusion of other subunits, for example, α 5).¹¹

The most significant result is that isoepibatidine (4) is almost as potent as epibatidine $((\pm)-1)$. It shows similar activity to (\pm) -1 at both the $\alpha 4\beta 2$ and $\alpha 3\beta 4$ receptors. This confirms earlier indications⁵ that the unusual chemical properties^{4b} of the nitrogen atom in the 7-azanorbornane ring system are not an essential factor in the unusual biological properties of 1. Earlier results for homoepibatidine (2) have shown that incorporation of an extra methylene group into the 2-carbon bridge has little effect on binding affinity^{5,12} (see also Table 2); thus the 7-azanorbornane system is not a pre-requisite for high activity although we have demonstrated that insertion of a second additional methylene group in dihomoepibatidine (3) leads to an order of magnitude reduction in activity, presumably because of the substantially greater bulk of the tetramethylene portion.⁵ The new data for the enantiomers of 2 (Table 1) confirm the high

5494
R. White et al. | Bioorg. Med. Chem. Lett. 16 (2006) 5493-5497

potency; the two enantiomers shows similar $\alpha 4\beta 2$ selectivity.

Of the other 2-azanorbornane isomers, the endo-5substituted compound **5** shows an almost 10-fold difference in the binding ability of the two enantiomers at both the $\alpha4\beta2$ and $\alpha3\beta4$ subtypes (Table 1), with the values for the (+)-enantiomer at the $\alpha4\beta2$ being only 3-fold more than those for epibatidine ((±)-1). The enantiomers of **5** show little subtype selectivity. The K_i values for the racemic endo-6-substituted compound **6** are close to the average values for the enantiomers of **5** despite the difference in position of the heterocycle.

The previously accepted 'ideal' N-N distance of ca. 5.5 Å has been revised; recent X-ray studies suggest a value of 4.4-4.5 Å for the active conformation.^{3b} ' This is in agreement with calculations for the compounds in Table 3. Interestingly, the methylisoxazole-substituted 10 is the only isomer which shows N-N distances close to the 'ideal' in both minimum energy conformations. Whatever the minor structural differences between the epibatidine isomers 1, 4, 5 and 6, they all retain the key pre-requisites, including a broadly similar N-N distance, and show high potency. Significant changes are only observed when the two nitrogen centres are widely separated, as in the exo-isomers 7 and 8. The exo-compounds are essentially inactive; the $\alpha 4\beta 2$ and $\alpha 3\beta 4$ data for 7 in Table 1 augment the earlier $\alpha 4\beta 2$ and $\alpha 7$ results (Table 2).7a

Variation of the heterocyclic substituent has been widely investigated as a means of modifying the properties of nicotinic agonists.^{2b} One of the more successful bioisosteric replacements for the chloropyridyl ring is the methylisoxazole ring, introduced by Daly in epiboxidine (9)⁹ and, more recently, in the higher homologue homoepiboxidine.¹³ We have recently reported the synthesis of the isoepiboxidine isomers 10 and 11 based on the 2-azanorbornane framework.⁸ The *syn*-isomer (10) has approximately 13-fold weaker affinity than epibatidine at the $\alpha4\beta2$ receptor (Table 1); this modest reduction mirrors that reported for epiboxidine (9).⁹ The potency of 10 at the $\alpha3\beta4$ receptor is lower but the discrimination is modest. The inactivity of the anti-isomer 11, even at 1000 nM, is not surprising given the distance between the secondary nitrogen and the heterocycle (Table 3).

Table 3.	Calculated	N-N	distances	for	amines"

Compound (unprotonated)	Minimum energy conformation (Å)	After 180° rotation about the C-heterocycle bond (Å)
1	4.5	5.5
2	4.6	5.6
4	4.5	5.2
5	4.8	5.9
6	4.3	5.3
7	6.4	6.6
8	5.7	6.1
10	4.4	4.8
11	5.6	5.8

^aCalculated using Spartan Pro; equilibrium geometry by Hartree-Fock, 6-31G*. We recognise that calculated minimum energy N-N distances are a crude, indirect measure of the efficiency of interaction between the ligand and receptor and that many other factors are involved which are not yet fully understood.³ Nevertheless, our work shows good correlations between calculated N-N distances and binding affinities for a homologue (2) of epibatidine, for epibatidine isomers (4-6) and for a variant (10) in which methylisoxazole replaces chloropyridine. Whilst the new compounds show similar high potency to epibatidine, there is no increase in selectivity between the $\alpha 4\beta 2$ and $\alpha 3\beta 4$ receptor subtypes.

Membrane preparation. Cell pastes from large-scale production of HEK-293 cells expressing cloned human $\alpha 4\beta 2$ or $\alpha 3\beta 4$ nAChR were homogenized in 4 volumes of buffer (50 mM Tris-HCl, 150 mM NaCl and 5 mM KCl, pH 7.4). The homogenate was centrifuged twice (40,000g, 10 min, 4 °C) and the pellets re-suspended in 4 volumes of Tris-HCl buffer after the first spin and 8 volumes after the second spin. The re-suspended homogenate was centrifuged (100g, 10 min, 4 °C) and the supernatant kept and re-centrifuged (40,000g, 20 min, 4 °C). The pellet was re-suspended in Tris-HCl buffer supplemented with 10% w/v sucrose. The membrane preparation was stored in 1 ml aliquots at -80 °C until required. The protein concentration of the membrane preparation was determined using a BCA protein assay reagent kit.

Nicotinic receptor radioligand binding scintillation proximity assay (SPA). SPA radioligand binding assays were performed in 96-well plates in a final volume of 250 µl Tris-HCl buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM KCl, pH 7.4) using the following conditions: [³H]epibatidine (53 Ci/mmol; Amersham)- $\alpha 4\beta 2 = 1$ nM, $\alpha 3\beta 4 = 2$ nM; WGA-coated PVT SPA beads (Amersham)- $\alpha 4\beta 2 = 1$ mg/well, $\alpha 3\beta 4 = 1.5$ mg/ well; membrane protein = 30 µg/well for both assay types. Non-specific binding (<10% for both assay types) was determined using 10 µM epibatidine. Reactions were allowed to equilibrate for 2-4 h at room temperature prior to reading on a Trilux Scintillation counter (Perkin Elmer). Data were analyzed using a standard 4-parameter logistic equation (Multicalc, Perkin Elmer) to provide IC₅₀ values that were converted to K_i values using the Cheng-Prusoff equation.¹⁵

Synthesis of isoepibatidine 4

anti-7-Bromo-2-azabicyclo[2.2.1]heptane (13). anti-7-Bromo-2-benzyl-2-azabicyclo[2.2.1]heptane 12⁶ (2.80 g, 0.012 mol) in dry MeOH (60 ml) was hydrogenolyzed using a standard procedure;⁸ flash chromatography (Et₂O/MeOH; 9:1) gave 13 as a white crystalline solid (32%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.42–1.63 (m, 2H, H_{5n}, H_{6n}), 1.97–2.17 (m, 2H, H_{5x}, H_{6x}), 2.40 (dd, 3.8, 3.8 Hz, 1H, H₄), 2.68 (d, 9.7 Hz, 1H, H_{3n}), 3.00 (ddd, $J \approx 9.7$, 3.4, 3.4 Hz, 1H, H_{3x}), 3.37 (dd, J = 3.1, 3.1 Hz, 1H, H₁), 4.04 (dd, 1.5, 1.5 Hz, 1H, H₇). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 26.5, 29.3 (C₅, C₆), 42.3 (C₄), 49.9 (C₃), 55.0 (C₇), 60.2 (C₁). $v_{\rm max}$ 2976s, 2524 m, 1636 s, 1522m, 1421s cm⁻¹. m/z 176/178 (MH⁺). C₆H₁₁NBr [MH⁺] requires 176.00749; observed 176.00751.

5495

anti-2-Boc-7-bromo-2-azabicyclo[2.2.1]heptane (14).The procedure described for compounds 19 and 23 in Ref. 8 was followed using the anti-isomer 13 (344 mg, 1.95 mmol), Boc_2O (694 mg, 3.18 mmol), NaHCO₃ (595 mg, 6.77 mmol), THF (4 ml) and H₂O (12 ml). After reaction at rt for 72 h, 14 was obtained as a white crystalline solid (448 mg, 1.62 mmol, 83%) R_f (Et₂O/petrol; 1:1) 0.57. $\delta_{\rm H}$ [300 MHz, CDCl₃; where there is signal duplication because of slow N-CO rotation (ratio ~45:55), the minor rotamer signal is shown in italics.] 1.45 (br s, 9H, Boc), 1.04-1.88, 2.02-2.23 (2× m, 4H, H₅, \dot{H}_6), 2.57 (br s, 1H, H₄), 3.05, 3.10 (2× d, J = 9.6 Hz, 1H, H_{3n}), 3.34 (ddd, $J \approx 9.6$, 3.1, 3.1 Hz, 1H, H_{3x}), 4.05 (br s, 1H, H₇), 4.05, 4.25 (2× br s, 1H, H₁). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 25.6, 28.1 (C₅, C₆), 28.4 (Boc CH₃), 43.0, 43.5 (C₄), 51.9 (C₇), 51.3, 52.1 (C₃), (Boc C113), 45.0, 45.7 (C4), 51.9 (C7), 51.3, 52.7 (C3), 59.7, 60.8 (C1), 79.7 (Boc C), 153.9 (Boc CO). ν_{max} 2977s, 1692s, 1398s, 1331m, 1304m, 1246m, 1155s, 1111s cm⁻¹. *m/z* 276/278 (MH⁺). C11H19NO2Br [MH⁺] requires 276.05992; observed 276.05987.

anti- and syn-2-Boc-7-(6-chloro-pyridin-3-yl)-2-azabicyclo[2.2.1]heptane (15 and 16). Procedure adapted from Ref. 14. In a glove box, Ni(cod)₂ (95 mg, 0.35 mmol) was placed in a two-necked flask. Bathophenanthroline (228 mg, 0.69 mmol), 4-chloro-3-pyridyl boronic acid (148 mg, 0.94 mmol) and 'BuOK (136 mg, 1.22 mmol) were added, the reaction vessel was evacuated and refilled with N₂ thrice. Dry s-BuOH (10 ml) was added and the mixture stirred for 10 min at rt under N2; the colour changed to deep-purple, indicating the formation of the active complex. A solution of anti-14 (210 mg, 0.76 mmol) in s-BuOH (2 ml) was added and the resulting mixture stirred under N₂ at 40 °C for 24 h, then cooled and passed through a short pad of silica. Solvents were removed in vacuo. Flash chromatography (Et₂O) of the crude residue gave a mixture of 15 and 16 as a pale yellow oil (\sim 25:75; anti-:syn-) (69 mg, 0.22 mmol, 30%) $R_{\rm f}$ 0.49. $\delta_{\rm H}$ [300 MHz, CDCl₃; signals corresponding to the minor (anti-) epimer are underlined; where there is signal duplication because of slow N–CO rotation (ratio \sim 45:55), the minor rotamer signal is shown in italics.] 1.39, 1.48, 1.50 (3× br s, 9H, Boc), 1.44-2.04 (m, 4H, H₅, H₆), 2.69, 2.91 (2× br s, 1H, H₄), 2.95, 3.02, <u>3.13-3.25</u>, <u>3.44-3.53</u> (br s, br s, m, m, 3H, H_{3x}, H_{3n}), <u>4.45</u>, 4.48, 4.61 (4× br s, 1H, H_1 , 7.22–7.33 (m, 1H, $H_{5'}$), 7.47–7.60 (m, 1H, $H_{4'}$), 8.23–8.32 (m, 1H, $H_{2'}$). δ_C (75.5 MHz, CDCl₃) 28.1, 28.2, 30.6, 31.0 (C₅, C₆), 28.3, 28.5 (Boc CH₃), <u>39.0</u>, <u>39.4</u>, 41.5, 42.4 (C₄), 49.1, 49.5 (C₇), <u>53.3</u>, <u>53.8</u>, 49.4, 50.0 (C₃), 57.2, <u>58.0</u>, 58.4, <u>59.0</u> (C₁), 79.3, 79.5 (Boc C), 123.8, 123.9, 124.0 (C₅), 132.5, 132.8, 132.9 (C₃), 138.0,

138.2 ($C_{4'}$), 148.8 ($C_{6'}$), 149.3, 149.4 ($C_{2'}$), 154.2, 154.3 (Boc CO). Further chromatographic separation (Et₂O) allowed the isolation of a sample of the major (*syn*-) epimer **16** as a yellow oil: $\delta_{\rm H}$ [300 MHz, CDCl₃; signal descriptors as described above (rotamer ratio ~ 45:55).] 1.41, 1.50 (2× br s, 9H, Boc), 1.61–2.04 (m, 4H, H₅, H₆), 2.69 (br s 1H, H₄), 2.95, 3.02 (br s, m, 3H, H_{3x}, H_{3n}, H₇), 4.48, 4.61 (2× br s, 1H, H₁), 7.25 (m, 1H, H_{5'}), 7.54 (m, 1H, H_{4'}), 8.31 (m, 1H, H_{2'}). $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 28.1, 28.2, 30.6, 31.0 (C₅, C₆), 28.3, 28.5 (Boc CH₃), 41.6, 42.4 (C₄), 49.1, 49.5 (C₇), 49.4, 50.0 (C₃), 57.3, 58.4 (C₁), 79.3, 79.5 (Boc C), 123.8, 123.9 (C_{5'}), 138.0, 138.2 (C_{5'}), 149.3, 149.4 (C_{2'}), 132.9, 133.0 (C_{3'}), 154.2 (Boc CO). $v_{\rm max}$ 2970s, 2934s, 1696s, 1606m, 1488s, 1406s, 1284s cm⁻¹. m/z 309 (MH⁺). C₁₆H₂₂N₂O₂ [MH⁺] requires 309, 13698; observed 309, 13692.

syn-7-(6-Chloro-pyridin-3-yl)-2-azabicyclo[2.2.1]heptane (syn-isoepibatidine) (4). A 75:25 mixture of epimers 15 and 16 (476 mg, 1.54 mmol) was dissolved in EtOAc (50 ml); EtOH (10.4 ml) and CH₃COCl (8.6 ml) were added with cooling in ice and the reaction mixture was allowed to reach rt and stirred for 4 h before being evaporated to dryness. The crude mixture of epimers of isoepibatidine-HCl salts was triturated with CH₂Cl₂ to give a sample of pure 4 (94 mg) and a sample containing 17 and 4 (2:1, 107 mg) (53% total yield). Data for free amine 4: $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.24–1.50, 1.50–1.72, 1.72-1.93 (3× m, 4H, H₅, H₆), 2.63 (br s, 1H, H₄), 2.68 (d, J = 10.1 Hz, 1H, H_{3n}), 2.76 (ddd, $J \approx 10.1$, 2.9, 2.9 Hz, 1H, H_{3x}), 3.71 (br s, 1H, H₁), 2.89 (br s, 1H, H₇), 7.26 (s, 1H, H_{2'}), 7.69 (dd, J = 3.1, 0.5 Hz, 1H, $H_{4'}$), 8.36 (d, J = 2.4 Hz, 1H, $H_{5'}$). δ_C (75.5 MHz, CDCl₃) 29.1, 32.9 (C₅, C₆), 40.7 (C₄), 48.9 (C₃), 49.8 (C₇), 58.4 (C₁), 124.0, 138.5, 149.4 (pyridyl). *m/z* 209/ 211 (MH⁺). v_{max} 2970s, 2750w, 2706w, 1622m, 1588w, 1561w cm⁻¹. *m*/*z* 209 (MH⁺). C₁₁H₁₄N₂Cl [MH⁺] requires 209.08455; observed 209.08454. Tosic acid salt of 4: mp 186-190 °C. Analysis: C18H21N2O3SC1 requires: C, 56.76; H, 5.56; N, 7.35; observed: C, 56.82; H, 5.46; N, 7.26.

References and notes

- Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475.
- For a review, see: (a) Jensen, A. A.; Frolund, B.; Liljefors, T.; Krogsgaard-Larsen, P. J. Med. Chem. 2005, 7, 565; For a review of epibatidine structure-activity relationships, see: (b) Carroll, F. I. Bioorg. Med. Chem. Lett. 2004,

5496

R. White et al. | Bioorg. Med. Chem. Lett. 16 (2006) 5493-5497

14, 1889, and 5713. For leading references to epibatidine analogue synthesis see: Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Ma, W.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2002, 45, 4755; Bunnelle, W. H.; Dart, M. J.; Schrimpf, M. R. Curr. Top. Med. Chem. 2004, 4, 299.

- For leading references to pharmacophore models and binding geometry, see: (a) Cashin, A. L.; Petersson, J.; Lester, H. A.; Dougherty, D. A. J. Am. Chem. Soc. 2005, 127, 350; Glennon, R. A.; Dukat, M. Bioorg. Med. Chem. Lett. 2004, 14, 1841. Crystal structure determinations of proteins which bind acetylcholine; (b) Hansen, S. B.; Sulzenbacher, G.; Huxford, T.; Marchot, P.; Taylor, P.; Bourne, Y. EMBO J. 2005, 24, 3635.
- 4. (a) See key references to earlier work in Ref. 5 (tropanes), and Ref. 7 (2-azanorbornanes); (b)The 'bicyclic effect' for the 7-nitrogen in the 7-azanorbornyl system was first proposed by Lehn, J. M.. Fortsch. Chem. Forsch. 1970, 15, 311. This effect was invoked to explain unusually high nitrogen inversion barriers in this case. Barriers to inversion at nitrogen can be almost as high in 7-azanorbornanes as in aziridines (where the angle strain is much greater). The suggestion that contributions from groundstate stabilization in 7-azanorbornanes might be important was made by: Nelsen, S. F.; Ippoliti, J. T.; Frigo, T. B.; Petillo, P. A. J. Am. Chem. Soc. 1989, 111, 1776; Durrant, M. L.; Malpass, J. R. Tetrahedron 1995, 51, 7063 (footnote 4e). See also discussion in: Davies, J. W.; Durrant, M. L.; Walker, M. P.; Malpass, J. R. Tetrahedron 1992, 48, 4379. Additional delocalization of electron density from nitrogen into the bicyclic framework is supported by the unusual deshielding of the bridging

nitrogen in these systems:Belkacemi, D.; Davies, J. W.; Malpass, J. R.; Naylor, A.; Smith, C. R. *Tetrahedron* 1992, 48, 10161; Malpass J. R.; Alkhuraiji, W. unpublished work.

- Malpass, J. R.; Hemmings, D. A.; Wallis, A. L.; Fletcher, S.; Patel, S. J. Chem. Soc., Perkin Trans. 1 2001, 1044.
 Malpass, J. R.; Handa, S.; White, R. Org. Lett. 2005, 7,
- 6. Malpass, J. R.; Handa, S.; White, R. *Org. Lett.* 2005, 7, 2759.
- (a) Cox, C. D.; Malpass, J. R.; Rosen, A.; Gordon, J. J. Chem. Soc., Perkin Trans. 1 2001, 2372. For work with compound 6 see:(b) Hodgson, D. M.; Maxwell, C. R.; Wisedale, R.; Matthews, I. R.; Carpenter, K. J.; Dickenson, A. H.; Wonnacott, S. J. Chem. Soc., Perkin Trans. 1 2001, 3150.
- Malpass, J. R.; White, R. J. Org. Chem. 2004, 69, 5328.
 Badio, B.; Garraffo, H. M.; Plummer, C. V.; Padgett, W.
- L.; Daly, J. W. Eur. J. Pharmacol. 1997, 321, 189.
 10. White, R.; Malpass, J. R. Abstracts of papers, 230th National Meeting of the American Chemical Society, Washington DC, 2005; American Chemical Society: Washington, DC, 2005; abstract ORGN-645.
- See: Siviloti, L.; Colquhoun, D.; Millar, N. S. In *Neuronal Nicotinic Receptors*; Clementi, F., Fornasari, D., Gotti, C., Eds.; Springer, 2000; Chapter 15, p 379 for discussion of factors leading to variance in K_i values.
- 12. Bai, D. L.; Xu, R.; Chu, G. H.; Zhu, X. Z. J. Org. Chem. 1996, 61, 4600.
- Fitch, R. W.; Pei, X.-F.; Kaneko, Y.; Gupta, T.; Shi, D.; Federova, I.; Daly, J. W. *Bioorg. Med. Chem.* 2004, 12, 179.
- 14. Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340.
- 15. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.

5497

References

- 1. Sharples, C. G. V.; Wonnacott, S. Tocris Reviews 2001, 19.
- 2. Rang, H. P.; Dale, M. M.; Ritter, J. M. *Pharmacology*; 4th ed.; Churchill Livingstone: London, 1999.
- 3. www.cnsforum.com
- 4. Decker, M. W.; Rueter, L. E.; Bitner, R. S. Curr. Top. Med. Chem. 2004, 4, 369-384.
- Dani, J. A.; De Biasi, M.; Liang, Y.; Peterson, J.; Zhang, L.; Zhang, T.; Zhou, F. M. Bioorg. Med. Chem. Lett. 2004, 14, 1837-1839.
- 6. Dutertre, S.; Lewis, R. J. Eur. J. Biochem. 2004, 271, 2327-2334.
- Clementi, F.; Fornasari, D.; Gotti, C. Neuronal Nicotinic Receptors; Springer, 2000; Vol. 144.
- 8. Daly, J. W. Cellular and Molecular Neurobiology 2005, 25, Nos. 3/4.
- 9. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
- 10. Stryer, L. Biochemistry; 4th ed.; Freeman, 1995.
- 11. Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556-1575.
- 12. Gohlke, H.; Gundisch, D.; Schwarz, S.; Seitz, G.; Tilotta, M. C.; Wegge, T. J. Med. Chem. 2002, 45, 1064-1072.
- Fitch, R. W.; Garraffo, H. M.; Spande, T. F.; Yeh, H. J. C.; Daly, J. W. J. Nat. Prod.
 2003, 66, 1345-1350.
- Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475-3478.
- Fletcher, S. R.; Baker, R.; Chambers, M. S.; Herbert, R. H.; Hobbs, S. C.; Thomas, S. R.;
 Verrier, H. M.; Watt, A. P.; Ball, R. G. J. Org. Chem. 1994, 59, 1771-1778.
- 16. Aggarwal, V. K.; Olofsson, B. Angew. Chem. Int. Ed. 2005, 44. 5516-5519.
- 17. Habermann, J.; Ley, S. V.; Scott, J. S. J. Chem. Soc., Perkin Trans. 1 1999, 1253-1255.
- Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe, H.; Takemoto, Y. *Tetrahedron* 2006, 62, 365-374.
- Kimura, H.; Fujiwara, T.; Katoh, T.; Nishide, K.; Kajimoto, T.; Node, M. Chem. Pharm. Bull. 2006, 54, 399-402.
- 20. Badio, B.; Daly, J. W. Mol. Pharmacol. 1994, 45. 563-569.
- 21. Damaj, M. I. Brain. Res. 2003, 982, 293-296.
- Damaj, M. I.; Creasy, K. R.; Grove, A. D.; Rosecrans, J. A.; Martin, B. R. Brain. Res. 1994, 664, 34-40.
- 23. Cucchiaro, G.; Chaijale, N.; Commons, K. G. Neuropharmacology 2006, 50, 769-776.

- 24. Glennon, R. A.; Dukat, M. Bioorg. Med. Chem. Lett. 2004, 14, 1841-1844.
- 25. Sheridan, R. P.; Nilakantan, R.; Dixon, J. S.; Venkataraghavan, R. J. Med. Chem. 1986, 29, 899-906.
- 26. Glennon, R. A.; Herndon, J. L.; Dukat, M. J. Med. Chem. Res. 1994, 4. 461-473.
- 27. Carroll, F. I. Bioorg. Med. Chem. Lett. 2004, 14, 1889-1896.
- 28. Tonder, J. E.; Hansen, J. B.; Begtrup, M.; Pettersson, I.; Rimvall, K.; Christensen, B.; Ehrbar, U.; Olesen, P. H. J. Med. Chem. 1999, 42, 4970-4980.
- 29. Villeneuve, G.; Cecyre, D.; Lejeune, H.; Drouin, M.; Lan, R.; Quirion, R. *Bioorg. Med. Chem. Lett.* 2003, 13, 3847-3851.
- Xu, Y.-z.; Choi, J.; Calaza, I.; Turner, S.; Rapoport, H. J. Org. Chem. 1999, 64, 4069-4078.
- Ullrich, T.; Krich, S.; Binder, D.; Mereiter, K.; Anderson, D. J.; Meyer, M. D.; Pyerin, M. J. Med. Chem. 2002, 45, 4047-5334.
- 32. Ullrich, T.; Binder, D.; Pyerin, M. Tetrahedron Lett. 2002, 43, 177-179.
- 33. Miyazawa, A.; Fujiyoshi, Y.; Stowell, M.; Unwin, N. J. Mol. Biol. 1999, 288, 765-786.
- Brejc, K.; van Dijk, W. J.; Klaassen, R. V.; Schuurmans, M.; van Der Oost, J.; Smit, A. B.; Sixma, T. K. *Nature* 2001, *411*, 269-276.
- Smit, A. B.; Syed, N. I.; Schaap, D.; van Minnen, J.; Klumperman, J.; S., K. K.; Lodder, H.; van der Schors, R. C.; van Elk, R.; Sorgedrager, B.; Brejc, K.; Sixma, T. K.; Geraerts, W. P. *Nature* 2001, 411, 261-268.
- Celie, P. H. N.; van Rossum-Fikkert, S. E.; van Dijk, W. J.; Brejc, K.; Smit, A. B.; Sixma, T. K. Neuron 2004, 41, 907-914.
- Hansen, S. B.; Sulzenbacher, G.; Huxford, T.; Marchot, P.; Taylor, P.; Bourne, Y. The EMBO Journal 2005, 24, 3635-3646.
- 38. Unwin, N. J. Mol. Biol. 2005, 346, 967-989.
- 39. Novere, N. L.; Grutter, T.; Changeux, J.-P. Proc. Natl. Acad. Sci. U.S.A 2002, 99, 3210.
- Gohlke, H.; Schwarz, S.; Gundisch, D.; Tilotta, M. C.; Weber, A.; Wegge, T.; Seitz, G.
 J. Med. Chem. 2002, 46, 2031-2048.
- 41. Cashin, A. L.; Petersson, E. J.; Lester, H. A.; Dougherty, D. A. J. Am. Chem. Soc. 2005, 127, 350-356.
- 42. Chou, K.-C. Biochem. Biophys. Res. Commun. 2004, 319, 433-438.
- Bisson, W. H.; Scapozza, L.; Westera, G.; Mu, L.; Schubiger, P. A. J. Med. Chem. 2005, 48, 5123-5130.
- 44. Zhang, H. B.; Liu, C. P. Chin. Chem. Lett. 2004, 15, 1380-1382.

- 45. Dwoskin, L. P.; Sumithran, S. P.; Zhu, J.; Deaciuc, A. G.; Ayers, J. T.; Crooks, P. A. Bioorg. Med. Chem. Lett. 2004, 14, 1863-1867.
- 46. Yerxa, B. R.; Cowlen, M. S. Patent US 2003069272 A1, 2003.
- 47. Avalos, M.; Parker, M. J.; Maddox, F. N.; Carroll, F. I.; Luetje, C. W. J. Pharmacol. Exp. Ther. 2002, 302, 1246.
- 48. Zhang, N.; Tomizawa, M.; Casida, J. E. Bioorg. Med. Chem. Lett. 2003, 13, 525-527.
- 49. Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Ma, W.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2002, 45, 4755.
- Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2001, 44, 4039-4044.
- Carroll, F. I.; Ma, W.; Yokota, Y.; Lee, J. R.; Brieaddy, L. E.; Navarro, H. A.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2005, 48, 1221-1228.
- 52. Karig, G.; Large, J. M.; Sharples, C. G. V.; Sutherland, A.; Gallagher, T.; Wonnacott, S. Bioorg. Med. Chem. Lett. 2003, 13, 2825-2828.
- 53. Huang, Y.; Zhu, Z.; Xiao, Y.; Laruelle, M. Bioorg. Med. Chem. Lett. 2005, 15, 4385-4388.
- Abdrakhmanova, G. R.; Damaj, M. I.; Carroll, F. I.; Martin, B. R. Mol. Pharmacol. 2006, 69, 1945-1952.
- 55. Badio, B. H.; Garraffo, H. M.; Plummer, C. V.; Padgett, W. L.; Daly, J. W. Eur. J. Pharmacol. 1997, 321, 189-194.
- 56. Seerden, J. P.; Tulp, M. T.; Scheeren, H. W.; Kruse, C. G. *Bioorg. Med. Chem.* **1998**, *6*, 2103-2109.
- Garvey, D. S.; Wasicak, J. T.; Decker, M. W.; Brioni, J. D.; Buckley, M. J.; Sullivan, J. P.; Carrera, G. M.; Holladay, M. W.; Arneric, S. P.; Williams, M. J. Med. Chem. 1994, 37, 1055-1059.
- Dart, M. J.; Wasicak, J. T.; Ryther, K. B.; Schrimpf, M. R.; Kim, K. H.; Anderson, D. J.;
 Sullivan, J. P.; Meyer, M. D. *Pharm. Acta Helv.* 2000, 74, 115-123.
- 59. Avenoza, A.; Busto, J. H.; Cativiela, C.; Dordal, A.; Frigola, J.; Peregrina, J. M. *Tetrahedron* 2002, 58, 4505-4511.
- 60. Cox, C. D.; Malpass, J. R.; Gordon, J.; Rosen, A. J. Chem. Soc., Perkin Trans. 1 2001, 2372-2379.
- 61. Malpass, J. R.; Cox, C. D. Tetrahedron Lett. 1999, 40, 1419-1422.
- 62. Cox, C. D.; Malpass, J. R. Tetrahedron 1999, 55, 11879-11888.
- 63. Groppi, V. E.; Jacobsen, E. J.; Myers, J. K.; Piotrowski, D. W.; Rogers, B. N.; Walker, D. P.; Wishka, D. G. Patent WO 2004052461 A1, 2004.

- 64. Carroll, F. I.; Brieaddy, L. E.; Navarro, H. A.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2005, 48, 7491-7495.
- 65. Fitch, R. W.; Pei, X.-F.; Kaneko, Y.; Gupta, T.; Shi, D.; Federova, I.; Daly, J. W. Bioorg. Med. Chem. 2004, 12, 179-190.
- 66. Malpass, J. R.; Hemmings, D. A.; Wallis, A. L.; Fletcher, S. R.; Patel, S. J. Chem. Soc., Perkin Trans. 1 2001, 1044-1050.
- 67. Zhang, C.; Gyermek, L.; Trudell, M. L. Tetrahedron Lett. 1997, 38, 5619-5622.
- 68. Nishiyama, T. Eur. J. Pharmacol. 2003, 470, 27-31.
- 69. Cheng, J.; Izenwasser, S.; Zhang, C.; Zhang, S.; Wade, D.; Trudell, M. L. Bioorg. Med. Chem. Lett. 2004, 14, 1775-1778.
- Krow, G. R.; Cheung, O. H.; Hu, Z.; Huang, Q.; Hutchinson, J.; Liu, N.; Nguyen, K. T.; Ulrich, S.; Yuan, J.; Xiao, Y.; Wypij, D. M.; Zuo, F.; Carroll, P. J. *Tetrahedron* 1999, 55, 7747-7756.
- 71. Wright, E.; Gallagher, T.; Sharples, C. G. V.; Wonnacott, S. *Bioorg. Med. Chem. Lett.* 1997, 7, 2867-2870.
- Sharples, C. G. V.; Karig, G.; Simpson, G. L.; Spencer, J. A.; Wright, E.; Millar, N. S.;
 Wonnacott, S.; Gallagher, T. J. Med. Chem. 2002, 45, 3235-3245.
- 73. Tataridis, D.; Kolocouris, A.; Fytas, G.; Kolocouris, N.; Foscolos, G. B.; Poulas, K.; Tzartos, S. J. *Il Farmaco* 2002, *57*, 979-984.
- 74. Wei, Z.-L.; Xiao, Y.; Kellar, K. J.; Kozikowski, A. P. Bioorg. Med. Chem. Lett. 2004, 14, 1855-1858.
- Breining, S. R.; Bhatti, B. S.; Hawkins, G. D.; Miao, L.; Mazurov, A.; Philips, T. Y.; Miller, C. H. Patent WO 2005037832 A2, 2005.
- 76. Piotrowski, D. W. Synlett 1998, 7, 1091-1093.
- 77. Malpass, J. R.; Patel, A. B.; Davies, J. W.; Fulford, S. Y. J. Org. Chem. 2003, 68, 9348-9355.
- 78. Patel, A. B. Unpublished work.
- 79. Krow, G. R.; Yuan, J.; Huang, Q.; Meyer, M. D.; Anderson, D. J.; Campbell, J. E.; Carroll, P. J. *Tetrahedron* **2000**, *56*, 9233-9239.
- 80. Wei, Z.-L.; George, C.; Kozikowski, A. P. Tetrahedron Lett. 2003, 44, 3847-3850.
- Wei, Z.-L.; Xiao, Y.; George, C.; Kellar, K. J.; Kozikowski, A. P. Org. Biomol. Chem.
 2003, 1, 3878-3881.
- Bremner, J. B.; Godfrey, C. A.; Jensen, A. A.; Smith, R. J. Bioorg. Med. Chem. Lett.
 2004, 14, 271-273.

- Holladay, M. W.; Wasicak, J. T.; Lin, N.-H.; He, Y.; Ryther, K. B.; Bannon, A. W.; Buckley, M. J.; Kim, D. J. B.; Decker, M. W.; Anderson, D. J.; Campbell, J. E.; Kuntzweiler, T. A.; Donnelly-Roberts, D. L.; Piattoni-Kaplan, M.; Briggs, C. A.; Williams, M.; Arneric, S. P. J. Med. Chem. 1998, 41, 407-412.
- Lin, N.-H.; Gunn, D. E.; Li, Y.; He, Y.; Bai, H.; Ryther, K. B.; Kuntzweiler, T.; Donnelly-Roberts, D. L.; Anderson, D. J.; Campbell, J. E.; Sullivan, J. P.; Arneric, S. P.; Holladay, M. W. *Bioorg. Med. Chem. Lett.* 1998, *8*, 249-254.
- Boyce, S.; Webb, J. K.; Shepheard, S. L.; Russell, M. G. N.; Hill, R. G.; Rupniak, N. M. J. *Pain* 2000, *85*, 443-450.
- 86. http://media.corporate-ir.net/media_files/nys/abt/rdday/NeuroPain.pdf
- 87. Blondet, D.; Morin, C. Heterocycles 1982, 19, 2155-2182.
- 88. Tararov, V. I.; Kadyrov, R.; Kadyrova, Z.; Dubrovina, N.; Borner, A. Tetrahedron: Asymmetry 2002, 13, 25-28.
- 89. Bunch, L.; Liljefors, T.; Greenwood, J. R.; Frydenvang, K.; Brauner-Osborne, H.; Krogsgaard-Larsen, P.; Madsen, U. J. Org. Chem. 2003, 68, 1489-1495.
- 90. Hodgson, D. M.; Bebbington, M. W. P.; Willis, P. Chem. Commun. 2001, 889-890.
- 91. Hodgson, D. M.; Maxwell, C. R.; Wisedale, R.; Matthews, I. R.; Carpenter, K. J.; Dickenson, A. H.; Wonnacott, S. J. Chem. Soc., Perkin Trans. 1 2001, 3150-3158.
- Hodgson, D. M.; Bebbington, M. W. P.; Willis, P. Org. Biomol. Chem. 2003, 1, 3787-3798.
- 93. Hodgson, D. M.; Hachisu, S.; Andrews, M. D. Org. Lett. 2005, 7, 815-817.
- Hodgson, D. M.; Jones, M. L.; Maxwell, C. R.; Ichihara, O.; Matthews, I. R. Synlett 2005, 2, 325-327.
- 95. Hodgson, D. M.; Hachisu, S.; Andrews, M. D. J. Org. Chem. 2005, 70, 8866-8876.
- 96. Raasch, M. S. J. Org. Chem. 1975, 40, 161-172.
- 97. Bulanov, M. N.; Sosonyuk, S. E.; Zyk, N. V. Russ. Chem. Bull. 2001, 50, 917-918.
- Sosonyuk, S. E.; Bulanov, M. N.; Leshcheva, I. F.; Zyk, N. V. Russ. Chem. Bull. 2002, 51, 1254-1261.
- 99. Portoghese, P. S.; Sepp, D. T. Tetrahedron 1973, 29, 2253-2256.
- Bulanov, M. N.; Sosonyuk, S. E.; Zyk, N. V.; Zefirov, N. S. Russ. J. Org. Chem. 2003, 39, 415-421.
- 101. Lumb, J. T.; Whitham, G. H. Chem. Commun. 1966, 400.
- 102. Jenkins, M. N.; Nash, J. J.; Morrison, H. Tetrahedron Lett. 2002, 43, 3773-3775.
- 103. Larsen, S. D.; Grieco, P. A. J. Am. Chem. Soc. 1985, 107, 1768-1769.
- 104. Grieco, P. A.; Larsen, S. D. Org. Synth. 1990, 68, 206-209.

- 105. Durrant, M. L.; Malpass, J. R. Tetrahedron 1995, 51, 7063-7076.
- 106. Pombo-Villar, E.; Boelsterli, J.; Cid, M. M.; France, J.; Fuchs, B.; Walkinshaw, M.; Weber, H.-P. *Helv. Chim. Acta* 1993, 76, 1203-1215.
- 107. Rimmington, S. MChem, University of Leicester, 2002.
- 108. Mitch, C. H.; Quimby, S. J. Patent US 6,559,171 B1, 2003.
- 109. Nash, J. J.; Waugh, T.; Morrison, H. Tetrahedron Lett. 1998, 39, 6449-6452.
- 110. Hutchins, R. O.; Taffer, I. M. J. Org. Chem. 1982, 48, 1360-1362.
- 111. Cristol, S. J.; Nachtigall, G. W. J. Am. Chem. Soc. 1968, 90, 7132-7133.
- 112. Tanida, H. Acc. Chem. Res. 1968, 1, 239-245.
- 113. Winstein, S. J. Am. Chem. Soc. 1961, 83, 1516-1517.
- 114. Davies, J. W.; Durrant, M. L.; Naylor, A.; Malpass, J. R. Tetrahedron 1995, 51, 8655-8664.
- 115. Fulford, S. Y. Unpublished work, University of Leicester, 2001.
- 116. Sauers, R. R. Tetrahedron 1998, 54, 5143-5150.
- 117. Peoples, P. R.; Grutzner, J. B. J. Am. Chem. Soc. 1980, 102, 4709-4715.
- 118. Buske, G. R.; Ford, W. T. J. Org. Chem. 1976, 41, 1998-2006.
- 119. Malpass, J. R.; White, R. J. Org. Chem. 2004, 69, 5328-5334.
- 120. Diederich, F.; Stang, P. J. Metal-catalyzed Cross-coupling Reactions; Wiley-VCH, 1998.
- 121. Netherton, M. R.; Dai, C.; Neuschutz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099-10100.
- 122. Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 114, 2025-2027.
- 123. Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340-1341.
- 124. Malpass, J. R.; Handa, S.; White, R. Org. Lett. 2005, 7, 2759-2762.
- 125. Cassels, B. K.; Bermudez, I.; Dajas, F.; Abin-Carriquiry, J. A.; Wonnacott, S. Drug Discovery Today 2005, 10, 1657-1665.
- Holladay, M. W.; Bai, H.; Li, Y.; Lin, N.-H.; Daanen, J. F.; Ryther, K. B.; Wasicak, J. T.; Kincaid, J. F.; He, Y.; Hettinger, A.-M.; Huang, P.; Anderson, D. J.; Bannon, A. W.; Buckley, M. J.; Campbell, J. E.; Donnelly-Roberts, D. L.; Gunther, K. L.; Kim, D. J. B.; Kuntzweiler, T. A.; Sullivan, J. P.; Decker, M. W.; Arneric, S. P. *Bioorg. Med. Chem. Lett.* 1998, *8*, 2797-2802.
- 127. Wei, Z.-L.; Xiao, Y.; Yuan, H.; Baydyuk, M.; Petukhov, P. A.; Musachio, J. L.; Kellar, K. J.; Kozikowski, A. P. J. Med. Chem. 2005, 48, 1721-1724.
- 128. Baraznenok, I. L.; Jonsson, E.; Claesson, A. Bioorg. Med. Chem. Lett. 2005, 15, 1637-1640.

- 129. Cheng, J.; Izenwasser, S.; Wade, D.; Trudell, M. L. Med. Chem. Res. 2001, 10, 356-365.
- 130. Patel, A. B., Ph.D. Thesis, University of Leicester, 2005.
- Mu, L.; Drandarov, K.; Bisson, W. H.; Schibig, A.; Wirz, C.; Schubiger, P. A.; Westera,
 G. Eur. J. Med. Chem. 2006, 41, 640-650.
- 132. Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams, J. M. J.; Harris, W. Tetrahedron Lett. 1996, 37, 7623-7626.
- Klomp, D.; Maschmeyer, T.; Hanefeld, U.; Peters, J. A. Chem. Eur. J. 2004, 10, 2088-2093.
- 134. Pibworth, B. Unpublished work, University of Leicester, 2006.
- 135. Martinez, A. G.; Vilar, E. T.; Fraile, A. G.; Cereno, S. d. l. M.; Ruiz, P. M. *Tetrahedron: Asymmetry* **1998**, *9*, 1737-1745.
- 136. Kaselj, M.; Chung, W.-S.; Le Noble, W. J. Chem. Rev. 1999, 99, 1387-1413.
- 137. Brown, H. C.; Muzzio, J. J. Am. Chem. Soc. 1966, 88, 2811-2822.
- 138. Gassman, P. G.; O'Reilly, N. J. Org. Chem. 1987, 52, 2481-2490.
- 139. Giddings, M. R.; Hudec, J. Can. J. Chem. 1981, 59, 459.
- 140. Mehta, G.; Khan, F. A. Tett. Lett. 1992, 33, 3065.
- 141. Tomoda, S. Chem. Rev. 1999, 99, 1243-1263.
- 142. Belkacemi, D.; Malpass, J. R. Tetrahedron 1993, 49, 9105-9116.
- 143. Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973-976.
- 144. Thayer, A. M. Chemical & Engineering News 2006, 84, 15-24.
- 145. Park, K. B.; Kitteringham, N. R.; O'Neill, P. M. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443-470.
- 146. Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Muller, K.; Obst-Sander, U.; Stahl, M. *ChemBioChem* 2004, *5*, 637-643.
- 147. Roger, G.; Saba, W.; Valette, H.; Hinnen, F.; Coulon, C.; Ottaviani, M.; Bottlaender, M.; Dollé, F. Bioorg. Med. Chem. 2006, 14, 3848-3858.
- 148. Toyota, A.; Aizawa, M.; Habutani, C.; Katagiri, N.; Kaneko, C. *Tetrahedron* 1995, *51*, 8783-8798.
- 149. Toyota, A.; Habutani, C.; Katagiri, N.; Kaneko, C. Tett. Lett. 1994, 35, 5665-5668.
- 150. Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214-231.
- 151. Burger, H.; Pawelke, G. J. Chem. Soc., Chem. Commun. 1988, 105-106.
- 152. Tarrant, P. Fluorine Chemistry Reviews 1; Arnold: London, 1967.
- 153. McClinton, M. A.; Sik, V. J. Chem. Soc., Perkin Trans. 1 1992, 1891-1895.
- 154. Roth, W. R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.-W. Chem. Ber. 1982, 115, 2508-2515.

- 155. Dolbier, J. W. R.; Al-Fekri, D. M. Tetrahedron 1987, 43, 39-44.
- 156. Barth, G. S. Unpublished work. University of Leicester 2004.
- 157. Krow, G., Personal communication.
- 158. Cannon, K. C., Personal communication.
- 159. Cox, C. D., Ph.D. Thesis, University of Leicester, 2000.
- Nagaev, V. M.; Sokolski, G. A.; Khokhlov, S. S.; Yeleyev, A. F. Russ. Chem. Bull.
 1998, 47, 134-138.
- 161. Durrant, M. L.; Malpass, J. R.; Walker, M. P. J. Chem. Soc., Chem. Commun. 1985, 687-689.
- 162. Ebenbeck, W.; Hilgers, P.; Marhold, A.; Barten, J. A.; Kolomeitsev, A.; Roeschenthaler, G.-V. Patent EP 1437342 A2, 2004.
- 163. Ebenbeck, W.; Marhold, A.; Kolomeitsev, A.; Roeschenthaler, G.-V. Patent US 7,045,662 B2, 2006.
- 164. Malpass, J. R.; Skerry, P. S.; Rimmington, S. L. Heterocycles 2004, 62, 679-691.
- 165. Islas-Gonzalez, G.; Benet-Buchholz, J.; Maestro, M. A.; Riera, A.; Pericas, M. A. J. Org. Chem. 2006, 71, 1537-1544.
- 166. Nowak, I. J. Fluor. Chem. 2000, 104, 201-206.
- 167. Shimizu, M.; Iwasaki, Y.; Shimazaki, M.; Amano, Y.; Yamamoto, K.; Reischl, W.; Yamada, S. Bioorg. Med. Chem. Lett. 2005, 15, 1451-1455.
- 168. Carroll, F. I.; Abraham, P.; Chemburkar, S.; He, X.-C.; Mascarella, S. W.; Kwon, Y. W.; Triggle, D. J. J. Med. Chem. 1992, 35, 2184-2191.
- 169. Smith, M. B.; March, J. March's Advanced Organic Chemistry; 5th ed.; Wiley Inter-Science, 2001.
- 170. Lowe III, J. A.; Drozda, S. E.; McLean, S.; Bryce, D. K.; Crawford, R. T.; Snider, R. M.; Longo, K. P.; Nagahisa, A.; Tsuchiya, M. J. Med. Chem. 1994, 37, 2831-2840.
- 171. Kim, D.-I.; Schweri, M. M.; Deutsch, H. M. J. Med. Chem. 2003, 46, 1456-1464.
- 172. House, H. O.; Bryant III, W. M. J. Org. Chem. 1965, 30, 3634-3642.
- Martins, F. J. C.; Viljoen, A. M.; Kruger, H. G.; Fourie, L.; Roscher, J.; Joubert, A. J.;
 Wessels, P. L. *Tetrahedron* 2001, *57*, 1601-1607.
- 174. House, H. O.; Wickham, P. P.; Muller, H. C. J. Am. Chem. Soc. 1962, 84, 3139-3147.
- 175. Naylor, A.; Howarth, N.; Malpass, J. R. Tetrahedron 1993, 49, 451-468.
- 176. Centafont, R. A.; Krow, G.; Rapolu, D. In *37th Middle Atlantic Regional Meeting of the American Chemical Society* New Brunswick, NJ, United States, 2005.
- 177. Xiao, Y.; Kellar, K. J. J. Pharmacol. Exp. Ther. 2004, 310, 98-107.

- 178. White, R.; Malpass, J. R.; Handa, S.; Baker, S. R.; Broad, L. M.; Folly, L.; Mogg, A. Bioorg. Med. Chem. Lett. 2006, 16, 5493-5497.
- 179. Perrin, D. D.; Armarego, W. L. F. Purification of laboratory chemicals; 3rd ed.; Butterworth Heinemann, 1988.
- 180. Buston, J. E. H.; Coldham, I.; Mulholland, K. R. J. Chem. Soc., Perkin Trans. 1 1999, 2327-2334.