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The flow dynamics of a rectangular cavity with a thick incogiboundary layer at low
Mach numbers is investigated by Large Eddy Simulation (L&®) parallel CFD, as a
simplified model of automobile bodywork recesses.

The cavity inflow is generated by means of synthetic stoah#iste-dependent meth-
ods in a precursor simulation, in order to identify and apalguantitatively the streaks
in the spatially developing boundary layer approachingctinety.

In the cavity flow model, no self-sustained oscillation isrid, due to the high value
of the boundary layer thickness. The influence of the appiogcboundary layer
turbulent scales on the cavity instabilities is examinetie Thtermittent cavity flow
behaviour is related to the injection and ejection of vogauctures across the cavity
opening and downstream edge. The space and time resolidtibe bES enables to
identify the flow dynamics of vortical instabilities and dfet three-dimensional struc-
tures in the cavity shear layer. Cavity noise sources amgifted by correlation and
spectral analysis. In the upstream region of the cavity,stheaks break down into
smaller and less coherent structures, as shown by the redwftthe integral length
scale. In the rearmost region of the cavity, a spanwise iegatlocity correlation is
interpreted as a dipole-type noise source, which is likelgeduce the radiated noise
level with respect to a two-dimensional cavity flow. The ¢ty spectra show broad-
band amplification of modes related to the dominant scaldsicavity, as opposed to
the selective mode amplification of cavities with a thin badairy layer inflow.

A novel multivariate non-dimensional analysis of the CFgpaeters is presented, that
explicits the modelling process for a cavity flow test caskisTs used for estimating
the simulation cost and the spatial and temporal resolutaate-dt in the cavity flow
simulation.
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Chapter 1

Introduction

1.1 Context

The development of Computational Fluid Dynamic algoritforsaeroacoustic appli-
cations has grown rapidly during the last two decades dueitrg interest in aero-
dynamic noise phenomena, driven by public demand for quietieicles and a more
silent and comfortable travel experience (ICAO, 2005; UpBrement for Transport,
2003). The industrial, aeronautical and automotive conitiasthave shown a grow-
ing interest in simulating and controlling the noise getetadby unsteady turbulent
flows like cavity flows. While precision laser cutting and quuier aided manufactur-
ing (CAM) has improved the quality of the vehicle outer sheime gaps in the surface
are unavoidable, for instance, to allow the opening of daacshatches. The flow un-
steadiness past these gaps increases aerodynamic duatyrsirvibration and cabin
and airframe noise, leading to a reduced passenger coniRedtangular cavities with
an approaching thick boundary layer have been used as aifsathgjeometry test-
case to model the noise and drag from automobile bodywodsess by FIAT. Cavity
flows with a valud_/6 < 80 are defined as thick boundary layer cavities. Haigermoser
(2009) studied by tomographic PIV a rectangular cavity ficate the investigation
of a real automobile cavity conducted by Ribaldetal.(2005). In this configuration,
at a typical highway cruise speed (140 Kr)) the cavity amplifies the energy modes
throughout in the incoming boundary layer structure. Thstesdy flow interaction
with the cavity walls radiates noise to the far-field. Hargeser (2009) showed that
this mechanism diers from the traditional Rossiter instability mode, typigiecavities
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with a thin inflow boundary layer, and requires resolvingedelies in the thick inflow
inner sub-layer to capture their amplification across thvégapening. A conventional
Reynolds Averaged (RANS) approach to model the complexutart structures em-
bedded in such a flow is not feasible, as the essential flonigggiepends on resolving
the inflow disturbances that generate noise by interactitimtive cavity walls.
Unsteady Reynolds Averaged (URANS) approach requiresdparation of energy
length scales between the unresolved motion by URANS antablkground of ran-
dom noise modelled by the turbulence closure model. Thisoggh was therefore not
appropriate for this application, due to the absence of etsgd@eak over a background
of low energy in the spectra of a cavity with a thick boundayelr.

The turbulent scales can be resolved with a Large Eddy StiooléLES) or a Di-
rect Numerical Simulation (DNS) that can run only on HighfBenance Computing
(HPC) platforms, given the stringent mesh requirements theasolid walls.  From
a computational point of view, one of the main challengesGBD in HPC is to use
efficiently the parallel architecture by accessing the CPUuess in an fficient way.
To do so, an accurate forecast of the simulation computists@nd cluster load is re-
quired. Furthermore, a successful model of a cavity flowlwe®reproducing the flow
physics with adequate accuracy, given the available comtipnal resources. These
two issues can be tackled simultaneously by sizing the Cleblem via dimensional
analysis, separating théfects of the geometry of the enclosure, the boundary layer
resolution, the turbulence model and the numerical schewher @f accuracy. This
analysis, presented by the author in the body of the thesisygeful tool to obtain de-
sign trade-&'s by a multivariate optimization in cavity flow CFD and foriesating the
order of magnitude of the computational resources requoyetthe simulations (Rona
& Monti, 2011).

The generation of unsteady inflow data for spatially devielgpurbulent flows is an-
other challenge that must be addressed to enable the applicALES to cavity flows
with thick boundary layer. Since in LES the unsteady ene@yying eddies are re-
solved, the velocity field specified at the inflow of the congbiain domain should rep-
resent the contribution from the turbulent structures eddbd in the incoming bound-
ary layer. Without this information at the inflow, turbuleeddies are generated from a
condition that is either absent or incorrect, and the resafithe predictions cannot be
expected to be accurate.
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1.2 Aims and objectives

Although a rectangular cavity geometry is fairly simpleg flow it generates hosts a
broad range of fluid dynamic phenomena, like an unsteady &hes developing from
the leading edge, vortex shedding, re-circulation zonelstl@ amplification of flow
instabilities. The latter is particularly important forvily flow with a thick incoming
boundary layer, where the amplification of the boundarydaystabilities constitutes
an important noise source. Haigermoseal. (2008) investigated by PIV a rectangu-
lar cavity with a thick subsonic inflow boundary layer. Theeastigation shows the
presence of discrete scales in the cavity, which altersrinetf of the shear-layer that
spans the cavity opening with respect to a classic equilibriurbulence shear layer,
implicit in a two-equation turbulence closure model. Theahlayer growth rate in-
fluences the mechanisms of momentum transfer into and ouneotavity, which is
important for cavity noise generation (Zhaagal, 1998), as well as for convective
heat transfer.

The main aim of this thesis is to investigate by CFD the dymarof a length to depth
ratioL/D = 4 cavity flow with a thick incoming boundary layef/O ~ 2.2) at low
mach numbersN]l ~ 0.126). LES and time dependent inflow conditions (Pirozzoli
et al, 2008; Sandharat al.,, 2003) are presented and the numerical model predictions
are compared with experimental results from Haigermesat. (2008). LES enables
the study of the full three-dimensional flow and of the dynaswif turbulent structures
in space and time with a level of detail that ifaiult to obtain with experimental tech-
niques. In fact, conventional PIV is notffigient to resolve in time the evolution of
the cavity flow structures, mainly due to the relatively loggaisition rate of the con-
ventional PIV measurements. Time-resolved PIV techniguesecoming available
for acquiring in-plane velocity fields in the kHz range. A gier temporal resolution
is offered by Laser Doppler Velocimetry (LDV), which is howeveniied to single-
point measurement and requires phase averaging to gespeate and time velocity
maps. As the rectangular cavity flow instability and shegelatructures evolve both
in space and time, numerical modelling by LES was selectédeamost appropriate
investigative approach for the unsteady flow past a rectangavity, in agreement
with the simulation cost forecast provided by the multiatgi dimensional analysis
model.
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The CFD work of this thesis aims to produce corroborative ecal evidence of the
turbulent instabilities amplification mechanism for thioundary layer cavity flows.
To date, only experimental evidence has been publisheteirature by Haigermoser
et al. (2008).

The objectives to pursue this final aim are:

1.

To explicit the modelling process for a cavity flow testett'rough a multivari-
ate dimensional analysis model of the CFD parameters (RoN#&ti, 2011).
This model enables to estimatepriori the computational cost and the spatial
and temporal resolution traddfan cavity flow LES;

. To set up an optimized LES rectangular cavity flow model &tain the experi-

ments of Haigermosaeat al. (2008);

. To optimize the ficiency of the MPI version of the CFD code low-order explicit

scheme to tackle the cavity flow LES test-case;

. To generate atime-resolved boundary layer inflow by megsynthetic-stochastic

inflow techniques (Pirozzokt al, 2008; Sandharet al,, 2003), validating its
mean and time dependent parameters, as well as the preflioetguhysical fea-
tures (streaks, structures correlation) against thealitiee;

. To investigate the influence of the flow structures produmnethe LES inflow

generation techniques on the instabilities in the cavityiasure;

. To compare qualitatively the flow structures and validatgecavity flow mean

velocity field and its statistics against the PIV experirsaftHaigermoseet al.
(2008; 2009);

. Taking advantage of the 3D spatial and temporal resolwfahe CFD simula-

tions, to determine the growth rate of individual conveatedex structures over
the shear layer, and to study their evolution and coherence;

. To relate the resolved motion of individual vortex stures to cavity noise gen-

eration at the downstream cavity edge, by frequency arsabsil correlation
analysis.
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The improved understanding of this flow mechanics is an itgpdscientific output of
significant potential impact for industry. Specificallyjgmesearch allows to identify
and comprehend the range of fluid dynamics mechanisms thaasaribed for the
noise generation. Thisfi@rs the opportunity for reducing the time-scales of a tylpica
industrial design by optimizing the vehicle bodywork castfor low drag and low
noise at the design stages for an enhanced passenger comfort

1.3 Thesis outline

This thesis is divided into six chapters. The first chapté&nootuces the context, the
aims and objectives of this work, and the expected outcors. first chapter also
contains a literature review of cavity flow modelling, LE®haiques, and time- de-
pendent inflow boundary conditions for LES.

In Chapter 2 the methodology and the numerical techniquestad are described and
their parallel coding for modern HPC platforms is detaile@hapter 3 presents the
method for regressing the size and cost of cavity flow testathe method is then
used in Chapter 5 to predict the computational cost of théy#low simulations.
This method has enabled to make a formal numerical modejaesithe cavity flow
simulations, which is an innovative contribution of thigsis. Chapter 4 concerns
the spatially developing boundary layer test case thated as a precursor simulation
to provide the inlet flow for the time dependent LES cavity @iation. Chapter 5
presents the test case of a cavity with a thick inflow bountargr. For both models
the computational domain, the parallelisation perforneatize numerical predictions
and their comparison against the experimental work of Haigser (2009); Haiger-
moseret al. (2008) are presented. Chapter 6 reports the conclusionstfiis work,
the scientific research achievements, the limitations @ftbrk, and reports the open
issues that could be addressed in future work.
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1.4 Literature review

1.4.1 Cauvity flows

Cavities are generally classified according to their stigmse length-to-depth ratio,
L/D, and streamwise length-to-width ratlg/,W. A cavity is said to be deep if/D <<

1 and shallow ifL/D >> 1 (Rockwell & Naudascher, 1978), two-dimensional if
L/W << 1 and three-dimensional if/ W >> 1.

A cavity simulation not including the three-dimensionfikeet of the trailing vortices
induced by the presence of the cavity side walls is refersei @apseudo-two dimen-
sionalcavity flow simulation. This simulation is usually less camgtionally demand-
ing than athree-dimensionatavity flow simulation, which requires grid refinement
near the side walls of the cavity domain. A sketch of gseudo-two dimensional
cavity flow and thehree-dimensionatavity flow spatial domains are shown in Fig-
ure 1.1(a) and Figure 1.1(b), respectively.

Cauvity flows in which the shear layer spans across the erdirgycare “open ” (Char-
watet al,, 1961). An open cavity flow is characterized by a main reutaton within
the enclosure and one or two secondary re-circulations ercdkity floor. The flow
separates at the cavity leading edge and reattaches attlegtedge. In a closed
cavity, the flow separates at the cavity leading edge antaakets on the cavity floor.
It then separates from the cavity floor further downstreachraattaches on the down-
stream wall. The upstream separation and reattachmentspd@himit an upstream
region of flow re-circulation.

The high speed flow over an open cavity at certain inflow caomstproduces complex
unsteady interactions that generate an intense acoudidtican. The flow approaching
the cavity separates at the upstream edge, forming a slyearda shown in Figure 1.1.
A typical turbulent free shear layer is visualized in Figdr@8. The presence of the
cavity walls influences the shear layer dynamics. The resuftow comprises of
both broadband small-scale fluctuations, typical of a tietishear layer, and discrete
resonances, the frequency and amplitude of which depenal tingocavity geometry
and the external flow conditions. The size range of the teritustructures in the
near-field region varies from the large-scale structuregained in the shear layer
and within the unsteady re-circulating region inside a tyato small-scale random
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(a) (b)

(b).

Figure 1.2: turbulent free shear layer visualization

fluctuations embedded in the approaching boundary layerr@yi& Ukeiley, 2004;
Rossiter, 1964).

The development of turbulent modelling and simulation teghes for cavity flows
has proven to be very valuable to gain an understanding ajeheration of the main
structures and of the main flow instability processes. Sigadly, turbulence models
enabled to investigate thdfect of the small-scale random fluctuations on the onset,
growth and saturation of the large-scale instabilities tfeen characterize a cavity
flow. A comprehensive review of computational and experitalestudies on cavity
aerodynamics was conducted by Grace (2001). Several déitypredictions were
obtained using RANS turbulence models in the past. RANS wasd tor its compu-
tational d@fordability and prediction accuracy in attached flow regjdng generally
failed to capture in full the dynamics of the complex flow stures embedded in the
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separated regions inside and above the enclosure. Te@ssgah as Direct Numerical
Simulation (DNS) (Bres & Colonius, 2007; Gloerfeltal., 2002b; Hameet al., 2001,
Moon et al,, 2003; Rowleyet al,, 2002; Yaocet al,, 2004) and Large Eddy Simulation
(LES) (Changet al., 2006; Gloerfeliet al,, 2002a; Larchevéequet al,, 2004a,b, 2007,
Rizzetta & Visbal, 2003; Suponitslat al,, 2005) gave a more accurate representation
of the complex flow in the separated region; however the mamsicaint, due to their
high computational cost, is their limitation to low Reynsldumber flows. DES have
been widely used in cavity flow simulations to combine thedybehaviour of RANS
in the attached regions and LES in the separated regiongéfatesan & Sinha, 2001,
2003; Arunajatesaat al., 2002; Bastet al., 2005, 2006; Chang & Park, 2004; Hamed
et al, 2003, 2004; Shieh & Morris, 2001). Evidence of the senigjtiof the turbulence
closure approach on the numerical results is given in liseeaby the works of Basu
and Chang (Basat al., 2004, 2005, 2006; Chang & Park, 2004).

Colonius & Lele (2004) examined the more recent applicatiohLES and DNS to
cavity flows and concluded that these techniques can givityjpaedictions of the
time-averaged statistics, the pressure spectra, andrjfeedaale structures. A classifi-
cation of the cavity modes based on the non-dimensionahpzteas was also proposed
by Colonius (2001). At relatively high Mach numbersA& M < 1.2), the shear layer
mode is driven by an acoustic feedback mechanism due toyseesscillations gen-
erated from impinging vortical structures at the forwardirfig step. At lower Mach
numbers, the flow oscillations are not driven by an acoustdback mechanism but
by periodic oscillations, which are convected downstrehendavity shear layer and
that cause periodic inflow into and outflow out from the cavity

Colonius (2001) highlighted the importance of the inflow bdary layer thickness
in determining the oscillating flow modes and mapped theatian of the dominant
mode number with the thickness of the boundary layer at thé@yckeading edge,
defined by the ratit./6, whereg is the upstream boundary layer momentum thickness.
Cavity flows with a valud./6 < 80 are defined as thick boundary layer cavities and
usually show the existence of peaks in the pressure speSpacifically, the value
L/6 = 80 was found to be a lower limit for cavity self-sustainediltestions to take
place (Gharib & Roshko, 1987). In recent experiments of atgdow at low Mach
number with a thick inflow boundary layer (Haigermoséanl., 2008) was shown that
the flow is highly intermittent, due to the presence of tuelbtistructures embedded
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in the boundary layer, and mechanisms of regular self-siestascillations were not
found, due to the high value of the vorticity thickness of siear layer in the cavity
opening. This experiment extended the understanding afabigy flow physics to the
case of relatively low values af/6 at low Mach numbers and founds the basis for the
numerical work of this thesis.

1.4.2 Large Eddy Simulations review

Turbulence closure models are used in CFD to obtain a redurciEat model descrip-
tion of the fluid dynamics by windowing the wavenumber spauotr DNS techniques
resolve the full spectrum of the turbulent scales down theridgorov length scale.
This approach is extremely demanding in terms of time andpcaational capability
and therefore it is not often available for common CFD amplians. To overcome
this limitation of DNS a coarser representation of the scalas introduced in form of
LES.

The application of LES to a turbulent flow involves three sapasteps (Ghosal &
Moin, 1995). First, to obtain a coarser level descriptiortted scales of motion, a
spatial cut-@ filter A is defined to remove the small scales. Sub-grid scales (SGS)
are any scale that is smaller than the cfitfiter width A. The resulting equation
that describes the space-time evolution of the large edmhatins the SGS tensor
that accounts for theffect of the unresolved small scales on the resolved largescal
The second step is the replacement of the SGS tensor by a .mdtel final step
is the numerical integration of the equations for the larcgdess on a numerical grid
small enough to capture the dynamics of the large eddies bohrarger than the
Kolmogorov length scale. The process of sizing the numksicaulation is described
in detail in Section 3.2.

The unresolved scales can be subdivided into two groupsesitdved sub-filter scales
(SFS) and the sub-grid scales (SGS). The resolved subsfiédes represent the scales
with wavenumbers larger than the cut-evavenumbelk.,.x, but whose ffects are
dampened by the filter. Resolved sub-filter scales only g filters that are non-
local in wave-space are used, such as a top hat or a Gausgan Tihese resolved
sub-filter scales can be modelled using filter reconstractidhe numerical resolution
of SFS is outside of the main objectives of this thesis.
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Two classes of SGS models exist: the functional models aadtifuctural models.
The structural models aim at predicting the sub-grid sadilextly, rather than recov-
ering their éfect on the resolved scales through the use of a forcing teumctinal
models, also called Eddy-Viscosity models, are normatypser than structural mod-
els, as they focus only on representing the SGS energy easgadn artificial eddy
viscosity approach. From a physical viewpoint, tiEeets of turbulent kinetic en-
ergy cascading to higher wavenumbers are lumped into an @ddgsity term with

a molecular-diusion-like dissipation of the length scale kinetic energiiiese mod-
els are easy to be implemented and able to predict the exaavioer of the modelled
guantities, but often fail i posterioritests to evaluate the models ability to accurately
predict the interaction between the modelled and the redajuantities.

Several SGS models have been developed for turbulence imgdshce the first pio-
neering works by Smagorinsky (1963), and Deafid@d970). The Smagorinsky-Lilly
model (Smagorinsky, 1963) is the first SGS model developedsaccessfully ap-
plied to an LES simulation. It is a fully viscosity-based nebth which the sub-grid
scale viscosityuggs is function of the rate-of-strain tens&;j, the densityp, the fil-
ter width A, and a model closure cfiient that is constant in space and time, the
Smagorinsky ca@cientCs. The main theoretical weakness of the Smagorinsky model
is that it is purely dissipative: the energy flows only in omection from resolved to
sub-grid scales. This is also the major numerical streragght greatly enhances the
numerical stability of the modelling procedure. On the othend, the presence of the
backscatter energy transport from sub-grid to resolvettsés neglected. Moreover,
the Smagorinsky model requiragpriori knowledge of the flow in order to define the
codticient Cs, which might not be valid for all parts of the flow in case of quax
flow geometries.

The Wall-Adapting Local Eddy-viscosity (WALE) model by Miad & Ducros (1999)

is another viscosity-based SGS model that introduces awahigrading functions
that acts as a turbulent kinetic energy limiter. In a pratiany assessment of the cavity
inflow of the work of this thesis it was shown that, as long asrttesh is fine enough
near the solid walls of the computational domain and theorgl@rofile is monotonic,
then WALE and LES Smagorinsky models give similar results.

The Algebraic Dynamic model by Germagbal.(1991) is based on the Smagorinsky
formulation of the sub-grid scale viscosity but allows theficient Cs to vary in

10
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space and time. The local calculation@f is obtained at each time step by filtering
the flow variables through a test filter and trying to detesentime local value of the
model constant at the grid filter. This technique overcornedimitations of the purely
viscosity based and Smagorinsky models at the expense nterased computational
cost. The modification of the dynamic model by Lilly (1992)iges the cofficientCq
from a least squares method, making the former version ntabées

A detailed overview of SGS models can be found in Sagaut (R&06@ Wagneet al.
(2007). Other popular SGS models are the model based on Reahpation Group
Theory developed by Yakhat al. (1992), the Localized Dynamic model by Kim &
Menon (1995), and the Dynamic Global-Gheient model by You & Moin (2007).

1.4.3 Time-dependent inflow conditions for Large Eddy Simu-
tions

The development of time dependent inflow conditions for isfigtdeveloping flow
simulations is a stimulating CFD research field that hasvedld the application of
DNS and LES to increasingly complex flows. A comprehensiveere and compari-
son of the existing inflow condition for LES was published bgatinget al. (2004).
Since DNS and LES techniques resolve the three-dimenstoeagy-carrying eddies,
the specification of the inflow velocity should representdtegistical information of
these structures, specifically, the first and second monpteetsmode amplitude and the
phase information between modes. Moments and mode amgditure relatively easy
to be matched with stochastic methods, while phase infeomaequires additional
effort as this is strongly dependent on the particular type of fltat is modelled.

Early simulations of spatially developing turbulent flowsed inflow conditions ob-
tained as a modification of periodic conditions, by the addibf source terms to
transform the governing equations into a self-similar dowate frame (Spalart, 1988;
Spalart & Watmdt, 1993). A more versatile approach was the recycling-resgal
method developed by Lunet al. (1998). This method is based on the similarity laws
of an equilibrium turbulent boundary layer: the law of thdlwathe inner part and the
defect law in the outer part of the boundary layer. It prosida equilibrium turbulent
boundary inflow of arbitrary thickness wall shear stressu? and free stream turbu-
lence intensity. The method consists of extracting at emab-step from a recycling

11
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station downstream of the inlet the inner and outer layeoais} profiles separately,
and rescaling these profiles according the valug'adndy/¢, respectively, to match
inflow target values ofi, ands. This provides a complete (inner, outer, logarithmic)
profile at the inlet. Fluctuations are rescaled from the ey station to produce tar-
get root-mean-square (rms) values at the inlet. The maindion of this method is
the introduction of “spurious "periodicity due to the nohysical initial condition of
the flow that is recycled over a long transient. This oftenl$et® a decreased inlet wall
shear stress. Another limitation is that the method canyapply to an equilibrium
boundary layer region that is not always available in comfilevs. The recycling-
rescaling method was initially tested for the generatiathetime-dependent boundary
layer cavity inflow but, as expected, it required a long tramisto vanish the “spuri-
ous "periodicities. Moreover, it was found complex to cohtn time the values of the
recycling station key parametaisandC;. This approach was therefore abandoned.
A modification of this method is to generate an inflow conditlny running a sep-
arate precursor simulation of an equilibrium boundary tfie@v by use of periodic
boundary conditions and to store at each time step a surtaosahplane of data to be
used as inflow condition subsequently @tial., 2000). This workaround enables the
control of the integral momentum transport, leading to aprowed wall shear stress
at the computational cost of an extra simulation.

Another class of inflow generation methods is based on thergaan of synthetic
turbulence. The most basic technique to generate a tuthalgow is taking a mean
velocity profile with superimposed random fluctuations withany spatial or tempo-
ral correlations. The energy generated is also uniformigag over all wavenumbers
and the pseudo turbulence is quickly dissipated since tweatavenumbers do not
contain the correct energy ratio. A contribution to the depment of such techniques
was initially brought by Leet al. (1997) who detected in the lack of phase informa-
tion of the turbulent eddies a primary source of decayingulence. In the work
by Battenet al. (2004), the turbulent eddies were synthesized by the sopiign of
sinusoidal modes with random frequencies and wavenumivérsamplitudes fitting

a prescribed inlet turbulent energy spectrum. In this aggitponly low-order statis-
tics were described, leading to a rapid decay of Reynoléss#s. In particular, the
(V'V') component is under-predicted and the simulation requinegslat of consider-
able length so that the turbulence production has time tgectfv'v') to levels more

12
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representative of measured values in a turbulent boun@ger.l To overcome this
problem, Spille & Kaltenbach (2001) suggested adding acsot@rm to the discretised
governing equations atfiierent control planes in the simulation domain, to reproduce
a target Reynolds stress. Another contribution to the a@asgnthetic methods is the
work by Jarrinet al. (2006), in which each eddy is represented by specific shape fu
tions of position and time that describes its spatial andotaal characteristics. This
method was able to reproduce specific first and second orégyant statistics as well
as auto-correlation functions of the velocity components.

Sandhanet al. (2003) developed a variation of the synthetic turbulendewmethod
for modelling the time-dependent inflow velocity in LES. Thasic idea is to con-
sider a mean turbulent boundary layer profile with synthiétictuations that mimic
the organized motions in the inner and the outer parts of tundiary layer (lifted
streaks and large eddies, respectively). This approaclhéms extensively tested in
the literature, and shown to yield a fast transition to ayfdiéveloped turbulent state.
Li & Coleman (2010) subsequently extended this method tegmic flows. In or-
der to break any remaining symmetry due to the determinsgtecification of inlet
disturbances, divergence-free random velocity fluctuatwith prescribed mean and
maximum amplitude have been added within the boundary |ég#owing the work
of Pirozzoliet al. (2008).

A combination of the method of Sandhatal.(2003) with the improvement by Piroz-
zoli et al. (2008) was selected in this thesis to model the spatialleldg@ing time-
dependent cavity inflow for its simplicity, robustness atebance. Given the MPI
structure of the CFD solver, it also improved the computaéticiency for providing
at each time-step a full set of inflow information without u@tng any additional run-
ning parameter from the inner computational domain, whiabusd have introduced
MPI time barriers.

13



Chapter 2

Numerical methods

2.1 Governing equations

2.1.1 Direct numerical simulation

A non-reactive adiabatic Newtonian flow under no externatdds governed by the
time-dependent Navier-Stokes equations:

§U+V-(FC+FV):O (2.1)

whereU is the conservative variable vectd¥, the inviscid flux vector, andr, the
viscous flux vector. These are defined as:

P pu 0
U=| pu |, Fe=| puu+pl [, Fv= . (2.2)
P pu (& + p/p) —T-U+(q

whereu is the fluid velocity vector with Cartesian components, is the total energy,
e is the internal energyp is the static pressure, is the densityh = e+ p/p is the
enthalpy,q is the conductive heat flux vectar,is the viscous stress tensar,is the
dyadic product, andl is the identity matrix. In Equation (2.2), the rows relatehe
conservation of mass, momentum, and energy, respectively.

14
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The total energy is related to the fluid temperatufeand velocityu by

1 1
=—RT+=u- 2.3
€ y-1 +ou-u (2.3)
R being the specific gas constant. In this work, air is assuneetfect gas and tem-
perature, pressure and density are related by the equdtsbate:

p =pRT (2.4)

The viscous stress tensor= 1 (Vu+u® V - 2/31V - u), wherey, is the molecular
viscosity. The conductive heat flux vectgpr= —k; VT, wherek; is the thermal con-
ductivity andT is the absolute temperature. Rf = 0, Equation (2.1) becomes the
time-dependent inviscid Euler equations.

Auxiliary algebraic relations for the molecular viscosayd the thermal conductivity
are introduced to solve the system of second-order pairtigrdntial equations (2.1):

3/2

w = 1.458x% wem [kg/ms] (2.5)
YRy
kr = ooPn [W/mK] (2.6)

wherey = C,,/C, is the specific heat rati® = C, — C,, andPr, is the Prandtl number.

2.1.2 Large Eddy Simulation

Direct numerical simulations (DNS) of high Reynolds numti@wvs can be extremely
demanding in terms of computational requirements. A cotemavity flow simulation
cost analysis is presented in Chapter 3. Although modern piRtforms and paral-
lel computation algorithms enables to tackle challengimdSDof complex flows, the
adoption of a turbulence closure model is still the most-effsictive choice for solv-
ing external flows in most industrial applications. To intuge a turbulence model, the
time and space varying flow state variables of DIN&re split into two components,
an averaged oneand a fluctuating one’, so that

u=u+u (2.7)
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In LES, the average is obtained by the convolution of theiooous variablau (y, t)
with a time-invariant filtering kerndb (x; — y):

WmU=ILGm—wum0W (2.8)

A sub-grid scale model (SGS) is then introduced to model flexts of the flow state
fluctuationu’” on the averaged flow. Usually, in CFD of industrial applioas, the
filtering kernel is matched to the computational grid. Theshiaawa (1986) one-
equation LES model assumes this match to resolve the laaessof motion. In
such caseG is defined as the top-hat filter (Lt al., 2008) and is given by:

G(Xi—Y):iH(2

A
(5 - -y 29

whereH is the heavy-side function); is the characteristic length of cell x; is the
cell centre position ang is the position vector. In the Yoshizawa one-equation LES
model,A; is the cubic root of the cell volumé, A = V..

Applying the average in Equation (2.7) to Equations (2.1egithe space averaged
Navier-Stokes equations

%+V-(p‘u) =0 (2.10)
9 (pu) SURQU+Dl + o0 U —
o +V-(pu@u+pl+prew -7) =0 (2.11)
8(E+%Eu'-u') 1
pm +V-(;ﬂh+§puu-u) =
V[0 (T-puew) - ke VT - puly| (2.12)

In Equation (2.12), 12u’ - u’ is the space averaged turbulent kinetic end;rgyl Equa-
tions (2.11) and (2.12pu’ ® U’ is the Reynolds stress tensor, which is modelled by the
Boussinesq approximation (Townsend, 1976) with analogydoous stress tensor as:

t= —pu’®u’:,ut(VJ+LT®V—§IV-LT)—§IﬁE (2.13)

In Equation (2.12)pu’ty is the turbulent transport of heat flux vector and it is masktell
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to be proportional to the temperature gradient (Wilcox,200

uCp
Pr;

G = pu'h = ——LVT (2.14)
wherePr is the turbulent Prandtl number. To close the system of émpugm(2.10)-
(2.12), an additional equation is required to relate theaexariablek to the other
averaged variables. The derivation fois obtained from the scalar product of the
Navier-Stokes conservation of momentum vector equatianiiphied by the fluctuat-
ing velocity vecton’. Averaging this product by Equation (2.8), the transpouzgipn
for kis:

(M
ot
o0 -uUV-u-t:wev-u -Vp+pV-uw (2.15)

— 1
+V-(;Ek—t-u’+§pu'u'-u'+p’u') =

Dahlstrom & Davidson (2003) proposed a one-equation SG&ehior Equation (2.15),
which is applicable to incompressible flows {u = 0):

D (pkscs)

o i )
Dt =t U®V—CdTGS+V'[01| +O'k,ut’|_Es)Vksgs] (216)

where Dt is the material operator [IDt = §/6t +u - V andt is the turbulent stress
tensor, given by:

— . 2 ) 2 _—
t= Mt LES (VU +U®V - §|V . U) — 55'(5(;5' (217)
The eddy viscosity, | s is given by:

MtLES = p—lsgs ESGS (2.18)

where the sub-grid length scalgg;accounts for the modelled part of the total Reynolds
stress tensor.
In the standard Smagorinsky SGS model, the sub-grid scatesity is defined as:

fiLes = PlonagV2S: S (2.19)
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where the Smagorinsky lengthscald dsag = Csmag; CsmagiS @ model constant, the
strain rate tenso; = 1/2(Vu+u®V) and : is the double scalar product. In the
numerical scheme of this work, a limiter is introduced to ®ldtie constraint ithsyaq
due to the presence of a solid wall:

ls = Min(Comagh. «Y) (2.20)

wherex = 0.41 is the Von Karman constant. This can be interpreted Henp&ng a
similar operation to van Driest damping which reduces thgtle scale to zero near to
the wall (McMullan & Page, 2011).

In Equations (2.16), (2.20) and (2.18s andC4 are the Yoshizawa constants and are
related to the Smagorinsky constant by:

C3 0.25
S) (2.21)

Csmag = (C_d

The Smagorinsky constant typically ranges fro@65 to 02 and in this workCsmag=
0.02. The corresponding Yoshizawa constants used in this navdé€; = 0.008,

Cq = 1.05, andox = 1.0. The low value of th&sm,4in this work was used to stop
over-damping and to reduce the re-laminarization of the flothe cavity boundary
layer inflow. This value fectively makes the simulation close to an Implicit Large
Eddy (ILES).

Equations (2.10), (2.11), (2.12) and (2.16) can be reas@dmythe compact form:

%U+V-(FC+FV)+S:O (2.22)

where the conservative variable vectdrthe convective flux vectdf., the turbulent
flux vectorF, and the turbulent source term vec®are given by Chen-Chuan Fan
(2002) as:

18



2. NUMERICAL METHODS 2.2 Spatial discretization

P
ou
U = p (2.23)
pleH
ok
P
oU ® U + pl
F=| 770 _p (2.24)
pu(e+ p/p+k)
ouk
0
—(t+T
F, = B (t+7) B (2.25)
+0+Qi— (t+7)-Uu— (u + o) VK
—(u + 0'k,Ut,LES) VE
0
0
S = (2.26)
0
Caok®2/A —1: VU

2.2 Spatial discretization

In a structured finite volume discretisation, the physiaahdin is mapped to an as-
sembly of topologically rectangular control volun¥swhere subscrigtindicates the
i control volume in the non-uniform mesh.

Integrating Equation (2.22) over each control voluvhgives

f@dV+fV'(FC+FV)dV+ SdvV =0 (2.27)
Vi

0 Vi Vi

19



2. NUMERICAL METHODS 2.2 Spatial discretization

Assuming a stationary of computational domain and applyimegGauss divergence
theorem, Equation (2.27) can be re-written as:

4 UdV+9§Fc'ndS+9§Fv-ndS:O (2.28)
ot Vi S S

whereS; is the closed boundary & andn its inwards normal. Let

1
U == [ uav (2.29)
Vi Vi
Ntaces
9§ Fe-ndS = > Fox- niSi (2.30)
Si k=1
Ntaces
§ Fy- ndS = Z Fv,k . ni,kSi,k (231)
Si k=1
1
s =-| sv (2.32)
Vi Vi

whereN¢acesiS the number of faces of the control volurdg S; is thek!" face ofV;
andn; is its inwards normal. Equation (2.28) can be written in a paot form as:
oy,

Vimr +Ri =0 (2.33)

whereU; is the space-averaged value of the conservative variabteever the cell
volumeV; andR; is the residual generated from the discretised terms asedual to
the sum of three terms:

Nrtaces Ntaces

Ri = ; Fek - NikSik + kZ_; Fuk - NikSik + Vi§ (2.34)

To solve the system of non-linear equations (2.33), thelvasioperatoRR; in Equation
(2.34) needs a linearised flux vectéy. Using the Godunov method, or Flux far-
ence Splitting, interface fluxes normal to the finite-voluoret cell boundaries are
estimated by an approximate Riemann solver based on Ro&)(1Bi8e Roe approxi-
mate Riemann solver is first-order accurate in space, siecedlution is projected on
each cell as a piecewise constant state (Hirsch, 1988).dlicesthe excessive artificial
dissipation of the first order method, Van Leial.(1987) replaced the piecewise con-
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stant state assumption with a quadratic reconstructiadjig to a higher order spatial
reconstruction, the Monotone Upwind Scheme for Conseynataws (MUSCL) inter-
polation. Following Manna (1992), the dtieients in the reconstruction are chosen to
give a third-order accurate reconstruction of the spatedignts in regions of smooth
flow. This reconstruction uses four contiguous cells in tineation of the reconstruc-
tion, thus to connect two computational blocks at least ye@is of ghost cells are
required to make the flow solver block independent.

A flux limiter is then introduced to achieve a monotonic bebawin regions of model
flow discontinuities. Considering the ratio of successnaggents on the solution mesh

U — Ui-1

2.35
Ui+ — Ui ( )

r =

Sweby (1984) proved that to achieve a numerically stablerseh this needs to be
Total Variation Diminishing (TVD) and the flux limiter funicin ¢, must respect the
following conditions:

#(r)=0 Y r<o0 (2.36)
r < ¢(r) <min[l, 2r] Y O<r<1 (2.37)
1< ¢(r) <min[2,r] Y r>1 (2.38)

This means that the limiting function must be designed shahit passes through a
certain region of the(r) versus plane, known as the TVD region which, for second-
order TVD schemes, is shown in the Sweby (1984)’s diagramockyed in Figure 2.1.
Different limiters have been tested in this work to compare trsaillatory behaviour
and eventually select the best limiter to resolve the laogdescavity flow motion in
the LES simulation. These are the SuperBee and MinMod Imsiby Roe (1986),
Equations (2.39) and (2.40), and the Sweby (1984) limitétapiation (2.41):

¢sp(r) = max[Qmin(2r, 1), min(r,2)];  lim ¢sp(r) =2 (2.39)
$mn(r) = max[@min(Lr)];  lim gmn(r) =1 (2.40)
dsu(r) = max[0,min(Br, 1), min(r,B)], (1<B<2); !EEIO dsnlr) =B (2.41)
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@=2r
@=r

v~

Figure 2.1: Region of stable operation of a second-order B¢beme, from Sweby
(1984).

All the above limiters exhibit the symmetry property

@ =¢ (%) (2.42)
that ensures that the limiting actions for forward and baakirgradients operate in
the same way. Equations from (2.39) to (2.41) are plottedguré 2.2. For sake of
clarity, two curves with dierent Sweby limiter cd@&cients are plotted, witg = 1.3
andg = 1.6.

Further details of the implementation of these limiter fumres in the CFD scheme
used are given in El-Dosoky (2009).

At the computational domain boundaries, a frame of one gbelstdeep is used to
preserve the second-order accurate reconstruction inotimaid interior.

To discretize the viscous fluxes, an estimate of the veloeityor gradients is required.
For computing this, a staggered grid is built across theicfaces where these gra-
dients are estimated. The flow state at the surface bouné#rg aew control volume
and the surface boundary unit normal vector are obtained fhe mesh geometry and
then the velocity vector gradient is estimated using thesSdivergence theorem. This
gives up to a second-order accurate reconstruction of tleeitae gradients (Manna,
1992).
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T
MinMod
2 © Superbee
- - Sweby (beta=1.3)
—— Sweby (beta=1.6)
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0 | |
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Figure 2.2: Limiter functions MinMod, Superbee, and Sweby=(1.3 andB = 1.6).
For all limitersg(r < 0) = 0 andg(r > 2) = ¢(r = 2)

Itis important to notice that the present model is driven byesh-based eddy viscosity
1 related to the cell volume by the definition Gfin Equation (2.9).

In the present thesis, the Sweby limiter was used for LEShasight candidate, and
the parametes was selected by testing a range of preliminary wall-devielppound-
ary layer simulations witpg = (1.05, 1.25, 1.3, 1.35, 1.6), among which the best results
were obtained witl8 = 1.3. The parametes = 1.3 is also used for the cavity flow
model.

Among CFD practitioners it is a common practice to de-atéiviniters to introduce
enough dissipation so that the computational stabilityissigation controlled. Due
to the upwind nature of the CFD scheme used in this thesswbuld have turn the
scheme into an unstable finite-volume central scheme. lerdocensure a a stable be-
haviour of the CFD scheme, in this thesis limiters are a#tevely working in place of
the Smagorinsky constant to dissipate the correct amouesofved turbulent kinetic
energy.
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2. NUMERICAL METHODS 2.3 Temporal integration

2.3 Temporal integration

To solve the discrete ordinaryftirential vector Equation (2.33), an explicit multi-
stage Runge-Kutta time step integration is used. This sehemumerically cheap,
requires a small computational memory and is designed 8epre the TVD properties
of the spatial dierentiation scheme. It is implemented as follows:

Ul =ur
FORk =1, RK
Ut = U - i 243
END
UMt = URK

whereRK denotes the number of stages of the Runge-Kutta schemea Hraltime
level. The Runge-Kutta cdigcients at the dierent stages of the integration arg =
1, ark-1 = 0.5, ark_» = 1/3, andark_3 = 1/4.

The stability of this scheme is restricted by the Couraniedfichs & Lewy (1928)
condition which isC = uAt/Ax < Cpax for an incompressible code, a@ = (u +
C)At/Ax < Chax for a characteristic based code. In this th&3igs, = 0.4. The use of
a pressure based code in this work could have brought a spetattor of about 10
with respect to using a characteristic based code.

2.4 Boundary conditions

The CFD scheme used is a multi-block solver that allows theprdgational domain
to be divided into independent blocks. A schema of the coatfutal domain for the
LES cavity simulation, showing the first level multi-blockabmposition is given in
Figure 2.3.

Each block is fully rinded using ghost cells that are gemetdty mirroring the first
interior cell at the boundary plane along the external banied. Along inter-block
boundaries, the first and the second interior cell geonsedfithe abutting block define
the ghost cell rind, that is two cells deep along an intecklzoundary. Boundary flow
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2. NUMERICAL METHODS 2.4 Boundary conditions

Figure 2.3: Independent blocks of the cavity model compartat domain.

states are imposed in the ghost cells. The non-slip ad@batidition is used for the
solid walls of the domain, extrapolation from the inner sél imposed at the outflow
boundary, a non-reflecting condition is applied at the ufgoemdary, opposite to the
flat plate wall, to minimize spurious reflections of disturbas, and periodic boundary
conditions are used at the lateral boundaries in the spardirisction of the domain. A
formal description of these boundary conditions can bedaonGrottadaurea (2009).
A new Time-Dependent Synthetic-Stochastic (TDSS) inletriatary condition is used
in this work, which is novel in the context of cavity flow sinatibns. This method
is based on the original work by Sandhamnal. (2003), subsequently extended to
supersonic flow by Li & Coleman (2010).

In this approach, the organized motions of the inner and- qate: of the inflow bound-
ary layer (lifted streaks and large eddies, respectivet/heodelled by synthetic modes
that are superimposed as velocity fluctuations on a meanlanbboundary layer ve-
locity profile. The choice of this approach against othewneotional synthetic meth-
ods is justified in Section 1.4.3. The mean velocity profikefarms of normalized
streamwise velocity™ = u/u. is the one derived by Rona & Monti (2012)

ut = % Iny" + B+ %nz (1-n)+ 2%772 (3-21) (2.44)

wherey* = yu,/v, is the inner scaling non-dimensional wall-normal distamce y/é§
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is the outer scaling non-dimensional wall-normal distarce 0.41 the von Karman
constantB = 5.0 the logarithmic law constant and the wake parameter igméted
by Coles (1956) as:

I = «/2(uf, - ' InRe - B) (2.45)

The derivation of Equation (2.44) is detailed in AppendixAcomparison of the an-
alytical velocity profile from Equation (2.44) with profilebtained by the successive
complementary expansion method from Cousteix & Mauss (R80@Iso presented
in Rona & Monti (2012) for zero, low and moderate adversegrasgradients.
Velocity fluctuations about the mean velocity profile areaited in space and time by
superimposing five synthetic modesaccording to

5
(% y,21t) = vow/p(y) Us Z amUm(y) sinfwm (X/Ug, — )] €0S(27 2/ Az, + ¢m)
m=1

5
V(x, V. Z t) = pr/p_(Y) Uso Z mem(y) Sin[wm (X/Ucm - t)] COS(ZT" Z/ A, + ¢m)
m=1
(2.46)

where

Un(y) = (/Fm) €9 . Vin(y) = (y/Jm)? €Y, (2.47)

Each synthetic mode has a prescribed convection velagjtyangular frequencyp,
spanwise wavelength, , spanwise phase ang#g, and amplitudesag,, by) in the
streamwise and wall-normal directions, respectively. ifimer-layer disturbances of
the first moderfh = 1) are relative to streaks and streamwise vortices with mami
amplitude ay* = 12, propagating at a speedul2with spanwise spacingf ~ 120 and

a streamwise wavelengilj ~ 500. Outer-layer oscillations(= 2, ..., 5) mimic large
vortical structures moving with a convection velocit@@,, and amplitudesa, bn) as

to match the distribution of the Reynolds stresses foundimonical fully developed
boundary layers (Sandhaet al, 2003). In order to break the symmetries deriving
from the deterministic specification of the inlet fluctuato divergence-free random
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m Ym Am Bm Wm Ucm Acm  $cm
1 12006 1.2 -0.25 O0Q012u./6y 10u, 126, 0.0
2 0.256¢ 0.32 -0.06 12u,/60 O9u, L3 01
3 0.3559 0.2 -005 06u,/6¢ 09u, Ly4 02
4 0.56¢ 0.08 -0.04 0Q4u,/6p 09, L5 03
5 0.66¢ 0.04 -0.03 02u,/6¢ 0O9u, Ly6 04

Table 2.1: Synthetic inlet forcing parameters for Equa(@246)

velocity noise with a maximum amplitudg,,./u. < 4% is superimposed on the syn-
thetic disturbances. The third velocity disturbance congmd in the spanwise direc-
tion is determined assuming that the synthetic fluctuateloaity field is solenoidal,
e.V-i=0.

The prescribed values used for the synthetic inlet forciregraported in Table 2.1.
These values were obtained by an iterative modificationeéthplitude values,, by,)
from the original values of Bernardini (2008), in a prelimig set of cavity inflow sim-
ulations. Hence sensitivity analysis of the related bountiyer mean velociti profile
values respect the analytical formulation by Musker (19t$9bled to select the best
combination of &, b,) parameters. A comparison with the results obtained using
the original values by Sandhaet al. (2003) was also performed before defining the
definitive parameters for the cavity inflow and cavity flow aiations of this work.

2.5 Parallelization strategy

High Performance Computing (HPC) has become increasirggy tor running com-
putationally demanding CFD simulations such as LES and DAI§. medium K

20 x 10° cells) and largeX 30 x 1P cells) CFD test case is currently intractable
without an HPC facility.

Message Passing Interface (MPI) is a message passing/lgteardard that is widely
used for parallel computations. The CFD scheme describéudgrchapter has been
recently recoded for MPI. In the present thesis, the MPlivarsf the solver was
optimized for LES applications and tested on two distriduteemory HPC clusters.

27



2. NUMERICAL METHODS 2.5 Parallelization strategy

The first cluster is the IBM-SP6 of the CINECA HPC centre in@®pia, Italy. This is
a cluster dedicated to massive parallel applications aediagpHigh-End projects. It
is a 168 Power6 with 575 compute nodes, each with 32 flavds, for a total of 5376
cores and a peak performance of just over 100 Tflops. The dedoster used is the
ALICE HPC cluster of the University of Leicester, Great Bit. It is made of 256
standard compute nodes, each with a pair of quad-core 2.871&El Xeon X5550
CPUs and 12GB of RAM, for a total of 2048 CPU cores.

In a Single Domain Decomposition (SDD), each zone of contprtal domain, given
the number of processors available in the cluster, is slicgdblocks along a single
directionk of the domain. This introduces a large memory consumptidnraerblock
communication over-head, which makes the algorithm uablétfor multi-block mas-
sive CFD.

The CFD solver used in this thesis uses a Recursive Domainaasition (RDD)
parallelisation algorithm (Grottadaurea, 2009). The cotaponal domain is built by
an assembly of three-dimensional topologically orthodianaes {, j, k), similarly to
SDD, and each zone is considered as an independent uni dildgated to a selected
group (or sub-cluster) of processors. Each unit is themrdlmverk planes and thus
distributed to each processor in this sub-cluster. By dsmghe memory allocation
benefits from the sub-division of the computational domaithese units. Specifically,
the sub-cluster communication runs independently fronctimamunication between
abutting zones.

The numerical integration is performed asynchronouslyamhesub-cluster of proces-
sors between updates of zone interface data. f®asl performed from the master
node. Further details on the algorithm, the optimizatiothefload balance, and de-
scription of the MPI communicators can be found in Grottaday2009).

The RDD MPI algorithm was re-coded and optimized for the SS$ii&hod and the
specific geometry and mesh constraints of this work by thbeautAlternative tech-
niques were considered, such as MPI - Open MP hybrid algostivhich lends to
less tuning and customization than the RDD MPI algorithmedéhapproach could be
further investigated in a computational research framivi@rfuture works.

The parallelisation performance of the test cases for thédeaeloping boundary
layer inlet and the cavity flow is reported in Chapter 3.
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Chapter 3

Numerical model design

3.1 Introduction

A successful model of a high Reynolds number cavity-flowslves reproducing
the flow physics with adequate accuracy, given the availedmeputational resources.
Basuet al. (2006) studied the dependence of the simulation cost orutbalence clo-
sure approach and on the spatial and temporal discretisiatiaa unique cavity-flow
model, but this dependence has never been quantified paieatigtfor a broader
class of unsteady cavity-flows withftkrent geometrical characteristics and flow pa-
rameters. The process of planning high Reynolds numbetyefiww simulations is
systematically reviewed to extract the dependenceftdrdint programmer’s choice on
the CFD mesh size and on the cost of the computation. Thigpsdtas been broken
down into five phases: i) description of the problem in thettwous domain, ii) prob-
lem order reduction by turbulence modelling, iii) discsation in space and time, iv)
integration of the governing equations, v) costing the nicakoperations of the flow
solver. This chapter examines the influence of each phadee@pectral width and the
grid density that are the key CFD indicators that deternfieecbst of the computation.
A dimensional analysis was conducted to separateffhets of the geometry of the en-
closure, the boundary layer resolution, the turbulenceehaaid the numerical scheme
order of accuracy. Regression analysis on the non-dimealsgroups of published
cavity CFD simulations determined the range of practichlesused by current state-
of-the-art computations. This analysis is a useful toollitam design tradefts by a
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3. NUMERICAL MODEL DESIGN 3.2 Turbulent flow sizing

multivariate optimization of cavity-flow CFD and for estititeg the order of magni-
tude of the computational resources required by the simonigit

An extended explanation of this modelling process can beddan Rona & Monti
(2011). This analysis is applied to obtain approximatpriori cost estimates and
optimize the computational cost of the cavity-flow test gassented in Chapter 5.

3.2 Turbulent flow sizing

The process of modelling and discretising a turbulent floshiswn in the flow chart
of Figure 3.1.

[ I
| |
: Spatial N Grid density |
|
\ discretization | I | (Nc) !
| (. I
Continuous Turbulence ! : ! :
. > I |

flow physics model | I !
| |
l Temporal '\ | Time integration |
_l_,_) |
| discretization | | | (Nt ) :
- o 1

Broadband turbulent Spectral width  Discretization indicators Simulation Cost

spectrum compression Cost=N N

Figure 3.1: Modelling and discretisation process of a tlaiflow.

Consider a flow evolving in a physical flow domain of size@ver a time intervall .
The turbulence model represents the first element for radutie dimensionality of
the problem by considering only the time-space scales efest in the flow (Sagaut,
2002). The time scales of the averaged problem are intahgielated to the charac-
teristic space scales. Therefore, an appropriate levednaf tesolution is required to
represent the entire temporal evolution of the smallegirgat scale of the averaged
problem.

The discrete-spatial computational mesh introduces bdugpproximation to the flow
model. The choice of the discretisation stepis reflected into two main indicators of
the spatial discretisation in a geneyidirection: the spectral width of the simulationin
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3. NUMERICAL MODEL DESIGN 3.2 Turbulent flow sizing

the wavenumber domaiNyj, and the grid density\. ;. The spectral widtiNg ; gives
the dfective size range of turbulent structures of practicalregein the continuous
flow in the j direction:

kj,max _ /lj,max

Nd’j =

3.1
kj,min /lj,min ( )

where 1 max and A;min are respectively the wavelengths of the largest and smhalles
structures of interest in the flow, with corresponding wawabersk;min and Kj max.
N is the number of mesh points jn
/lj,max

Nej = A, (3.2)
whereAX;min is the smallest unit cell length inand3J; (s, (&), S (&), ... s (&) is a
functional that accounts for theftirent mesh stretching functios§s) adopted along
j. Given the minimum number of points per waveleng&P{\) that the solver in
the numerical scheme can work with, an average mesh spa_txijn@r the firstPPW
points of a stretched mesh s = PPW 3PV AX. From Ajmin = AXjminPPPW a
uniform mesh equivalert, ; is obtained

DS; Nc i
Ng, i Nej

J= — = (3.3)
PPWAx; PPW

whereDS; is the computational domain length jn The derivation of Equation (3.3)
is given in Appendix B.

The total number of mesh poinltg in a single block conformal computational domain
is the product of the grid density in each direction:

N, = 1_[ N | (3.4)
j

To integrate the unsteady equations of motion over a timpg@tmnal to the integral
timescale of the motionT, discrete-time integration methods are used that advance
the solutionN; times over a number of time steps. The time steps required to time
march the equations of motion must be multiplied for the nemtf time step sub-
iterations, such as in a multi-stage Runge-Kutta schemeRunge-Kutta ordeNgk),

to obtain the total number of iteratiods used to time-advance a computation. The
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total simulation cost (complexity) is measured by the poadi the total number of
mesh points and the number of discrete time steps:

Cost= NgNr = NeN:Ngk (3.5)

whereN. is a function of the dynamic range of the simulation, whicimsasured by
the Reynolds numbeRe The time step dimension is linked to the dimension of the
smallest eddy via the Courant Friedrichs Lewy (CFL) cowditihenceN; can also be
expressed as a function Beto obtain

Cost= N; (Re N; (Re Nrk (36)

whereNgk is taken as constant for a constant multi-step Runge-Kimtie integration
scheme. This shows the strong dependence of the total cas€D simulation on
the Reynolds number.

In turbulent flow simulations of separated flows, the meshltg®n requirements for
DNS are determined b} /nx o« Rez/“, whereny is the smallest dynamically active
scale, the Kolmogorov length scale, andis the characteristic length of the most
energetic scale, the integral length scale. The total nummibgrid pointsN, required
to perform DNS of isotropic turbulence in a box of volumeé scales asRei/“. The
minimum number of time steps &, /T, « R&/?, hence the minimum complexity of
the simulation is of the order &€/‘Re;” ~ Ré}.

Wall-bounded flows introduce more restrictive discret@atonstraints (Piomelli &
Balaras, 2002) as the relevant scales in the inner layerfdahee @rder of the viscous
length scalels = v/u.. The number of grid points in each direction scales as:

—a/2
AN ARG R 3.7)

N = — = ~
I AX T AXxtv/u v A
] j T

wherea is the Reynolds number scaling af and 02 < o < 0.25 for a turbulent
boundary layer (White, 1991) with free-stream velodity.

The proportionality factor in Equation (3.7) is given by thadficient YAX;, where
AX; is the mesh size in viscous wall units, typically betweerbls in the wall-normal
direction for WR-LES (36- 5015 for WM-LES), and 106- 300l elsewhere. The total
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number of grid point$\. for a three-dimensional wall-bounded simulation is:
N oc RE2) ~ R (3.8)

For DNS, the size of the time steyh and the characteristic time of large events scale as
(A/u;) ReM? andA/U.., respectively. The estimated number of time steps is thezef
of the order ofRe**Y/2 and the overall computation cost from Equation (3.5) is:

Costx RE>*Ngi = RE“*Nry (3.9)

For wall-resolved LES a constant spacing grid in the stremeand spanwise direc-
tion must be used to resolve the inner-layer streaks. Takkig~ 100 andAz" ~ 20
(Chapman, 1978), the number of points to resolve the vissohdayer is

N; « CtR& ~ R&“ ~ Ré:® (3.10)

whereC; = 1,,/0.50U2.

From the CFL stability conditionAt ~ Ax/U.. The governing equations must be
integrated over a number of time stegs~ T/At ~ N3, which leads to estimating
the overall computational cost for a WR-LES as

Costoc RE¥*INgy ~ RE*Nry (3.11)

In WM-LES, DES and RANS, the resolution requirements depmnthe inner-layer
treatment and Equation (3.7) has shown not to be appropoiaterbulence modelling
techniques such as WM-LES, in which the inner-layer is mledebr DES, in which
the whole boundary layer is modelled by using a RANS approakh alternative
formulation of the problem can be implemented using an apgreimilar to the one
adopted by Chapman (1978).
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3.3 Cavity flow sizing

3.3.1 Spectral width

In this section the aim is to characterize a cavity simutasize and cost by the spatial
and temporal discretisation indicatd¥s, Ny andN;. A dimensional analysis enables
to regress from the cavity-flow CFD works published in litara typical values to
obtaina priori cost estimates.

In a cavity-flow simulation, the shortest wavelength is time oelated to the wall-
normal direction Aminw-n, t0 resolve the inner-layer near solid walls. To resolve at
least one acoustic WavelengilgC of the dominant cavity tone, the wall-normal di-
mension of the computational domabs,,_y is SO that/TaC ~ 0.66DS,,_n. From
Equation (3.1) the wavenumber spectral width in the contpmrtas

Ng = Ngw-n = DSw_n/Aminw-n (3.12)

The next step is to relatidy to the cavity geometry, inflow conditions and turbulence
closure model. The flow inside a cavity depends on the cawbngetry parameters
L, D, W, inflow velocity U, inflow boundary layer thickness laminar viscosity,
densityp, gravitational acceleratiogy and speed of sourd By restricting the analysis
to low speed aerodynamic flows, thiéeets ofg andc are neglected. By application of
the Buckinghanil theorem on the remaining variables, the following non-digienal
groups are obtained:/D , L/W, §/D, Re, PPW, which accounts for the numerical

scheme order,
DSj,max

D
which expresses in non-dimensional form the extent of thmprdgational domain
boundaries, and

N, = (3.13)

AXJ'
T ylu,

(3.14)

which expresses the average mesh spacing near the watiduoed by Equation (3.3)
as multiple of the viscous lengihfu,. This gives eight independent non-dimensional
groups.

With simple algebraic manipulations and by introducinggheaciple of orthogonality,
Rona & Monti (2011) show that it is possible to consider thargity Ny as the product
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of six independent non-dimensional groups, each with its emponent:
Ng = (L/D)™ (6/D)" n&\y_nI¥“RE°PPW (3.15)

The exponenta; to a in Equation (3.15) are determined using the smallest nuraleri
wavenumbeky_nmin = 27/DSw_nmax @nd the highest resolved numerical wavenum-
berkw_nmax = 27/ Aw-nmin Wheredw_nmin = (PPWFW_N).

In order to explicit the influence of the Reynolds numbemgn all non-dimensional
variables excepRg can be factorized into a single non-dimensional parant&ter

Ny = C; (L/D, §/D, Npw_n, -, PPW) Rg /2 (3.16)

_ Npw-N (D/5)a/2
PPW(L/D)*?r,
Therefore, the single non-dimensional paramé&gincludes the information of the
turbulence model approach, the domain shape, the bounaey thickness and the
average computational mesh clustering near the solid walis is a new simulation
parameter that enables to identify and clesteris paribughe quality of a simulation
in representing the correct spectral width, given the geommesh, flow and turbu-
lence modelling parameters.
The spectral width of published cavity-flow simulations regented in Figure 3.2,
where the parametéNy = log,, Ny has been estimated by Equation (3.12). In Fig-
ure 3.2, the number of decades of the spectral widithis plotted against the Reynolds
numberRe . Each past simulation in the graph is identified by a tag agsatto its
bibliography reference in Table 3.3. The symbols mark tiiecéive spectral width
of the simulations, allowing for the use of stretching fuowes. TheC; isolines are
plotted following Equation (3.16).
The DNS data is clustered on the left hand side in Figure 8Wards to the top of
the LNy scale, showing a larger spectral width than LES and DES,ldbeakcales
of motion are resolved directly. Nonetheless, most of th& laad DES simulations
present a number of decades comparable with that of a DNSatioruat a lower
Re. The reason is that WR-LES and DES methods use stringenteeggnts in the
viscous sub-layer. For a WR-LES simulation, the computationesh density

1

(3.17)

35



3. NUMERICAL MODEL DESIGN 3.3 Cavity flow sizing

4 LNy C1=2 Cl=1 Cl1=5.E-1 C1=2.E-1 C1=1.E-1 C1=5E-2 C1=2.E-2 C1=1.E-2 N_d 10*
C1=5.E-3
C1=2.E3 |
C1=1E-3
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Figure 3.2. Spectral width of cavity-flow simulations vesdtg for different turbu-
lence modelss 3D and pseudo-3D DNS; 2D DNS; o WR-LES; A WM-LES; ¢
DES; & WM-DES).

Coarse  Medium Fine
DNS DES WR-LES WR-LES WR-LES WM-LES
re 2-140 80-200 >180 < 180 10- 14 600-1200
r. (analysis) 4 80-120 20-50 10-20 10 700

Table 3.1: Mesh size to viscous length ratio for cavity-flovesige of values obtained
from published work.
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required to resolve the inner-layer requires onerous coatipmal capabilities already
at moderate Reynolds numbers and wall-modelling methodypass thevall layer
are required to perform high Reynolds number cavity LEShsascsimulations 5 and
6. The less severe spatial discretisation requirementsadfModelled LES give a
lower number of decaddsNy even at high Reynolds numbers compared to WR-LES
and DNS.

The bunch of DES of cavity-flow models is centred in the redlon10° < Rg < 10°
with a typical number of logarithmic decades between 2.4 28d More spatially
refined simulations like 8 and 10 have a spectral width gretien 3 logarithmic
decades. In order to reproduce approximatelfy I@garithmic decades of turbulent
structures, DNS computations are constrainelddgoless than 1€) whereas WM-LES
and DES have shown able to model up ®en of the order of 10. Three-dimensional
DNS simulations have the same high spatial resolution rements in all three direc-
tions, thus most of the published works is limited to plamay-tlimensional computa-
tions.

A range of values for the parameterhas been extracted from the cavity-flow simu-
lations in literature by fitting Equations (3.16) and (3.10}he mesh size data. These
results are presented in Table 3.1. Thealues are obtained by minimizing the mean
square error of\y for the simulations that have shown best results in thealitee.
The data fit well for DNS and DES. Unfortunately, few WR-LE®siations have
been performed for cavity-flows. A large variation My is obtained for WM-LES,
due to the variety of wall models used. The large uncertahty for WM-LES tech-
nique suggests that the complexity of the current parameggression o, andr.

is insuficient to describe the computational meslieetiveness in reproducing a given
spectral width for WM-LES.

3.3.2 Discretization cost

For the analysis of the discretisation cost of cavity-flowvssinecessary to analyse
separately the techniques that resolve the inner-layett@dnes that aim to model
the dfect of the inner dynamics on the outer boundary layer. Tegles like WM-
LES and DES resolve only the large scale structures in segubflaw regions, hence
the computational grid density scales with the outer layier density.

37



3. NUMERICAL MODEL DESIGN 3.3 Cavity flow sizing

Applying the approach of Chapman (1978) to cavity-flows,rkar-wall flow can be
sub-divided into a carpet of cubes of unit voluidg, wheres is an average boundary
layer thickness covering the full extent of the solid wallkstigd by the fluid. The total
number of mesh points in this near wall mesh is the produdi®fiverage number of
points within a volume 082 and the number of cubes that fill the boundary layer:

Nc = N3Nz (3.18)
Using the same dimensional approach of Section 3.3.1, Enu@.18) becomes:
Ne = Nj (6/D, L/D, L/W, npx, Np », RQ) Ng (3.19)

Using Equation (3.18) and relatigne xRg 2 for a turbulent boundary layer inflow,
the dimensional problem for the grid density of a cavity-fEmulation adopting wall-
modelling techniques such as WM-LES and DES is obtained sdtee algebra (Rona
& Monti, 2011) as:

N = C,Re (3.20)
L\*4[.L/D L
C = (B) |:2|_//_V\/ (1 + B + a) + nD’an’Z] Ng (321)
0, 2D
a= (3.22)
L/W, 3D

wherenp x andnp ; are the computational domain streamwise and spanwise dioren
normalized by the cavity depth and the factoa accounts for the presence of the side
walls on athree-dimensionatavity-flow domain extent, Figure 1.1(b), and is zero for
apseudo-two dimensionahvity-flow simulation, Figure 1.1(a).

DNS WM-LES
NZ 1200- 1500 900~ 1300
Ng (analysis) 1400- 1500 1200- 1300

Table 3.2: Number of points per cub& for wall-modelling cavity-flows simulations:
range of values obtained from published work and suggestkebs for optimization
analysis.
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3. NUMERICAL MODEL DESIGN 3.3 Cavity flow sizing

The new non-dimensional groufy accounts for the geometry of the cavity and the
overall computational domains.

In wall-resolving techniques, like DNS or WR-LES, most oé ttomputational féort
goes into resolving the inner-layer. The main factor in thenputational cost is the
size of the first row of cells along the walls. For DNS, a sagliaw for N, can be
derived as:

N, = CsRe? = C;R&” (3.23)
(D/s)*

_ 3.24

* 7 (L/D)?T Ax* Ay AZF (3.24)

For a cavity-flow WR-LES, the number of grid points scalesagsiptically as:

N = C4R€™® = C,Re® (3.25)

_ (D/s)**

~ (L/D)Z* AX*AY+AZ*
Similairly to C,, the parameter€,, C; and C, are new simulation parameters that
enable for diferent turbulent modelling techniques to identify and ctatsris paribus
the dfectiveness of a simulation in resolving the turbulent s;ajéven the geometry,
the mesh, and the flow parameters.

The grid density of published cavity-flow simulations thaeudiferent turbulence
models is shown in Figure 3.3. The symbols mark tfieative number of grid points
in each simulation, which is identified by Table 3.3.

The isolines ofC, are plotted following Equation (3.20). The isolines@f for DNS
and ofC, for WR-LES are obtained from Equations (3.23) and (3.25peetively.
Typical DNS simulations lie in the range 0< C; < 10*. For completeness, 2D
DNS simulations are included in the graph. For 3D DNS, theest&art simulation
14 used 5 and 122 million cells at aRg = 3 x 10° andRe. = 6 x 10°, respec-
tively. The region of WR-LES simulations610* < Rq < 2 x 10° shows the dense
mesh resolution required to simulate the inner layer dyna@ven at a relatively small
Reynolds number.

DES simulations are grouped in a range of grid density betwi® to 5 millions
cells and 10 < Re < 10°. The finest mesh DES is simulation 8, which gives a

2 (3.26)
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Figure 3.3: Grid density versi®g for different turbulence modelm. 3D and pseudo-
3D DNS; o 2D DNS; o WR-LES; A WM-LES; ¢ DES; ¢ WM-DES; continuous
lines: isolines ofC, slopeR&** (DES, WM-LES); dotted lines: isolines @; slope
Re*® (DNS); dashed-dotted lines: isolines@f slopeRe-® (WR-LES).

spatial resolution comparable to that of an LES. The gridltg®n requirement of
DES is comparable to that of a WM-LES and the reason is th&tteshniques aim to
model the &ects of unresolved inner-layer structures on the outer layé to resolve
mixing layer eddies in the separated regions like in an LEGhBDES and WM-
LES have therefore a comparable computational mesh dehsitys associated with
resolving the outer layer near solid walls. This shows thatidea of DES as a coarser
grid version of LES in massively separated flow regions amofree shear flows
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3. NUMERICAL MODEL DESIGN 3.3 Cavity flow sizing

is incorrect and inappropriate as observed by Spalaat. (2006). DES diers from
LES only in the RANS portion of boundary layers, where th&edence in the required
resolution in the spanwise and streamwise directions ig wid

The non-dimensional grou@, in Equation (3.21) accounts for the geometry of the
cavity and the shape of the computational domain. Like irsfectral width analysis
of Section 3.3.1, a range of values for the number of pointspleeN; in cavity-flow
simulations has been made explicit by calculating thefamentsC, for the simula-
tions in the available literature and minimizing the meamesg error ol from fitting
Equations (3.20) and (3.21) to this data.

In Table 3.2 the range of values from past CFD work is preskeinténe first row while
in the second row a set of values with a narrower range aredstathese are used in
Section 3.3.3 to estimate the cost of WM-LES and DES.

3.3.3 Simulation complexity

From Equation (3.5), witt; ~ T/At ~ N&3, the total complexity of a simulation that
does not resolve the inner-layer (WM-LES and DES) is:

Cost= C*Re"*"Ngk (3.27)

For a WR-LES, considering the operation chisfor time advancement, the complex-
ity is:
Costec Cy°RE"¥* INgy ~ CHR&*Ngx (3.28)
For DNS, the size of the time steyt scales aRe**/? and the total cost of the simula-
tion is:
Costoc CI¥# R IRE2Ngy ~ CLPRE*Ngy (3.29)

Figure 3.4 presents the computational cost for cavity-flomugations in which the
time advancement is by a single step Runge-Kutta time iategr, such that

— NN
Cost= —" = NcN, (3.30)
NRK

Hence, the cost estimate in Figure 3.4 from Equation (3.303trbe multiplied by
the number of temporal integration stages, such as the nushBReinge-Kutta stages,
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to estimate the total cost of the simulation. The resultsigufe 3.4 are obtained
usingN; ~ T/At ~ N&® and are presented only to give a first estimate of the cost of
simulating cavity-flows.

The left y-axis in Figure 3.4 is the cost obtained by Eq. 3.8Be right y-axis is the
same cost in CPU time for a single processor scalar compatatiased on a IBM
Power5 1.9GHz 4.5 Mflgjs processor. The time cost to obtain statistical convergenc
is estimated to be three times the simulation time advanoeoost, which in a cavity-
flow simulation is the flow-through time for a fluid particle timverse once the com-
putational domain in the streamwise direction. The openatount reflects that of a
representative second-order method of an in-house CFRrs@vrottadaurea & Rona,
2007, 2008).

For moderate Reynolds numbers, the cost of the computasoceted with resolv-
ing the inner-layer along solid walls is lower than that tealee the remainder outer
region (Piomelli & Balaras, 2002).

The cost of wall-resolving low Reynolds number flows therefscales as the cost of
resolving the outer layer by a wall-modelling technique.isTitesults inCost(Cs) =
max [Cost(C,) , Cost(C3)] and Cost(C;) = max[Cost(C,), Cost(C,)] and the iso-
lines for C3 andC, are truncated at the appropriate intercept v@thisolines. Fig-
ure 3.4 enables to make arpriori order of magnitude estimate of the computational
cost of a cavity-flow CFD simulation.

Given the cavity shape and boundary layer inflow conditidins,three isolines for a
wall-modelling technique (WM-LES, DES), DNS and WR-LESg d@etermined from
Equations (3.21), (3.24) and (3.26). For instance, for &mgigavity-flow Reynolds
numberRe, the intercept of thé&kg = constant vertical line with the isolin€, (by
using Equation (3.21) and the DES value for of Table 3.1)gamreorder of magnitude
estimate of the total computational cost for a DES simuitatibhe intercept with the
Cs andC, isolines give the cost for the other two turbulence modegltechniques.

If the CFD solver is parallelised, the run time decrease®i@number of processors

increases. Specifically,
NcNiNrk

upNp
whereNp is the number of processor used apds the parallelisationféciency of the

RunTime= (3.31)
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Figure 3.4: Normalized simulation cost verdrig for different turbulence modela
3D and pseudo-3D DN$; 2D DNS; a WR-LES; A WM-LES; ¢ DES; © WM-DES;
continuous lines: isolines @, slopeR&>* (DES, WM-LES); dotted lines: isolines of
C; slopeRe*® (DNS); dashed-dotted lines: isolines@f slopeR&* (WR-LES).

algorithm forNp processors. Parallelisation reduces the run time, buheatamputa-
tional cost, which is higher than that of a scalar computegiven by Equation (3.5).
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Legend tag| Reference

1 Larchevéquet al. (2004b)
2 Larchevéquet al. (2004a)
3 Suponitskyet al. (2005)

4 Changet al. (2006)

5 Rizzetta & Visbal (2003)
6

7

8

9

Gloerfeltet al. (2002b)
Basuet al. (2005)
Basuet al. (2006)

Shieh & Morris (2001)
10 Chang & Park (2004)
11 Arunajatesaret al. (2002)
12 Hamedet al. (2003)

13 Hamedet al. (2001)

14 Bres & Colonius (2007)
15 Rowleyet al. (2002)

16 Moonet al.(2003)

17 Gloerfeltet al. (2002b)

Table 3.3: Cavity flow simulations used in Figure 3.2 to 3.4.
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Chapter 4
Cavity inlet

This chapter presents a spatially developing boundary laelel that uses the SSTD
inflow condition of Section 2.4. This test case is used asyssec simulation to
the cavity flow model of Chapter 5. Section 4.1 gives the disrmmal and non-
dimensional flow parameters that define the boundary layelemdhe computational
mesh is detailed in Section 4.2, the boundary conditionssn@rted in Section 4.3 and
the results of the scalability performance tests on a HP&tetare presented in 4.4.
LES results and comparison with approximate analyticaltsmts and experimental
results are then given in Section 4.5.

4.1 Flow conditions

The SSTD method is used to generate an LES model of a zerapeegadient bound-
ary layer developing over a flat plate. The inlet plane freeash Mach number is
0.126 and the time averaged integral length scales of the lzwyhayer thicknessy,
displacement thicknesk, and momentum thickness give Reg, ~ 5200,Re; ~ 720,
Re, ~ 570, where the subscript O indicates the condition at thepedational domain
inflow.
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4. CAVITY INLET 4.2 Computational domain geometry and mesh

4.2 Computational domain geometry and mesh

The computational domain selected for the precursor LE&indlith the SSTD bound-
ary condition is a rectangular prism the size of whiclbis, x DSy x DS, = 375, X
760 X 460, Whered is the time-averaged boundary layer thickness at the domiaita
The selected spanwise size of the domain is large enouglctorecodate 8 streaks,
the size of each streak being approximately 2010y,

The rectangular prism is discretised by a topologicalliogbnal mesh ofic, X Ngy x
N, = 154x 86x 72~ 1(FP cells.

The mesh spacing in the streamwise directioand in the spanwise directianis
uniform, resulting in a constant spacidx ~ 60yt andAz ~ 14y*. In the wall-
normal direction, the first four cells are of dimensiyp = y* = 1 to ensure a correct
resolution of the boundary layer viscous sub-layer. Thesgecing above the fourth
cell is obtained by using two successive constant propmatistretching ratiose; =
1.058 up to the tenth cell ang = 1.08 thereafter. The two ratios were selected as to
provide a good compromise between numerical resolutidis(adthin the boundary
layer Ns = 55) and computational cost. Mesh resolution of the spgt@giveloping
boundary layer test case in all directions is comparablke thit of the finest WR-LES
simulations by Table 3.3.

4.3 Boundary conditions and starting flow conditions

In this simulation, the boundary condition used were: th€[38oundary condition of
Section 2.4 at the inlet of the rectangular prism, a nonatilabatic condition for the
solid wall of the domain, extrapolation from the inner celtsthe outflow boundary,
a non-reflecting condition at the upper boundary oppositthéoflat plate wall, to
minimize spurious reflections of disturbances, and pecibdundary conditions at the
lateral boundaries in the spanwise direction of the domain.

The initial velocity field was primed in the streamwise dtren by a discrete num-
ber of mean profiles stations by Equations (2.44), and cerisigla 37" power law
growth of the mean profiles, in the same direction. Fully betit fluctuations over
the mean profiles were sumperimposed by Equations 2.45, &xMaising the param-
eters of Table 2.1. Divergence-free random velocity noigk amaximum amplitude
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4. CAVITY INLET 4.4 Parallelisation performance

Unms/Ue < 4% were also superimposed on the synthetic disturbancdsetk the
symmetries arising from the the deterministic specificatod the inlet fluctuations.
The wall-normal mean profile of the turbulent kinetic eneEgyas primed using the
k — w multiscale model by Wilcox (1988), implemented with the rarioal procedure
of Wilcox (1981). Further details of the algorithm and modah be found in Wilcox
(2002).

4.4 Parallelisation performance

The boundary layer inlet LES simulation was run on the IBMsSRister of the HPC
centre CINECA, ltaly.

The cluster fers hardware support for Simultaneous Multi-threading T3Mn a
SMT processor design, multiple instructions from more tbae thread can be issued
in any given pipeline cycle. Unlike other hardware multighd architectures, SMT
permits all thread to simultaneously compete for and shayegssor resources. This
is done without great changes to the basic processor actimiée the main addition
being only a larger register file to hold data from multiplestids.

Preliminary scalability tests were performed on the neBkiycells LES grid to choose
the best solution in terms of number of processors and rtiuitiading mode.

The parameters used for scalability analysis are the coekdspp and the parallelisa-
tion efficiency. LetT, be the scalar time needed to perform one time step (two Runge-
Kutta sub-iterations) using the serial code on a singlegssar of the cluster, anth
the time to perform the same operation by the paralleliseé cmNp processors. The
speed-usp is defined as

Sp=To/Tp (4.1)

and the parallelisationfigciency is

up = Sp/Np (4.2)

The result of the scalability performance analysis obthfioe the RDD parallelisation
algorithm of Section 2.5 is presented in Figure 4.1. Thelidpaed-up corresponds to
the straight green lin® = Np in Figure 5.2(a).
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Figure 4.1: Boundary layer LES with a single block mesh of 10° cells, scalability
performance test on SP6 IBM cluster. (a) Spee&pipnd (b) parallelisationféciency
up (b) for different numbers of processaxs.
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4. CAVITY INLET 4.5 Results

By increasing the number of processors, the speed-up griewtbrmally limited by
the communication time and by the load balance.

For this test cas8p > Np up toNp = 12, hence the code shows a super-linear speed-up
due to cache aligning. Fd¥p > 16, the ratio of communication versus computation
increases to a level where a further reduction in computatiome by domain sub-
division is not achieved. This is caused essentially by thraraunication overhead
through the communication planes, from sub-dividing atnegdy small CFD compu-
tational domain into more zones.

The parallelisation féiciency for SMT mode remains higher than that from single
threading for any number of processors, as shown in Figa(@®).

From Figures 5.2(a) and 5.2(b), the optimal number of premes taking into account
the available CPU time and wall time constraint on the SP6 IBikchine for this
study, was empirically determined & = 32 with SPM enabled. In this configu-
ration, the speed-up wé&s, ~ 16.2, the parallelisationf&ciencyus, ~ 0.5 and the
parallel computation wall time for one time step approxiehalls, = 2.1 seconds.
The flow-through time, which is the time required for a fluidtpde to get across the
computational domain, was equivalent to R2iderations. In a typical LES computa-
tion, the initial transient needs at least three flow-thtotignes to complete (Tessicini
et al, 2006). Hence, the total CPU time for the simulation runrong32 processors
was 1307 x 10° CPU hours and the wall time 410 hours 17 days).

4.5 Results

4.5.1 Computational mean velocity profile

At run time, oscillations were generated by the SSTD teammnaf the inlet section and
propagated throughout the LES scheme.

The three flux limiters of Section 2.2 were tested in this LEBS.$ation to assess which
limiter exhibited the best oscillatory behaviour. Speaillig, it was of interest to deter-
mine which limiter allowed the development of physical bdary layer instabilities

like streaks for a turbulent boundary layer, while preseg\the TVD properties of the
scheme.
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Non-dimensional velocity profiles of the zero pressure igrtdspatially developing
boundary layer were extracted at fouffdrent streamwise stations, at coordinates
X = 860, 1660, 2460, 3200, to analyse the boundary layer growth and flux limiter perfor
mance. The profiles were extracted at three flow-throughstimvlich was estimated
suficient for the initial CFD start up transient to decay. Theoeély profiles are time-
averaged over the last Aerations to filter any velocity fluctuations around the mea
The three flow limiters cover the upper and lower rangeg ohlues satisfying the
conditions (2.39) to (2.41). For the Minmod limiter, lim, ¢(r) = 1, for the Su-
perbee limiter, lim,. ¢(r) = 2, and for the Sweby limiter, lim,., ¢(r) = B with
1<p<2

Figure 4.2 shows the non-dimensional velocity from the LiEESuations that use the
Superbee limiter and the Minmod limiter, which are respetyi the upper and lower
bounds ofg. The normalised mean streamwise velocityis plotted against the nor-
malised wall-normal distangg for each of the four stations.

Figure 4.2(a) shows that the Superbee limiter is not disispanough in the smooth
region of flow and this results in over-amplified oscillatsand time-averaged values
of streamwise velocity higher than that from the law of thdlw®n the contrary,
Figure 4.2(b) shows the more dissipative Minmod limiterse=sia re-laminarisation
of the inner layer velocity profile that prevents the bougdayer from growing the
overlap region at the correct non-dimensional distanceaifrad 3¢ from the wall.
Simulations with diferent values o = (1.05,1.25,1.3,1.35,1.6) were run to test
the Sweby limiter. The best result is shown in Figure 4.3amt&d forg = 1.3. A
transition region is required for the flow to develop streaksd other distinguishing
large-scale structures of a turbulent boundary layer, ie@gent with the work on LES
inflow conditions by Keatinget al. (2004). The shape of the first two time-averaged
velocity profiles downstream of the inlet planeXat= 85, (red circles) an; = 165
(green diamonds) indicates a re-laminarisation of theritayger velocity profile over
the range O< X < 166,. This re-laminarisation is confirmed by low values of the
friction coeficientC; which are in the range of4 < C; < 1.8, whereas a/I/'" power
law (turbulent) boundary layer would giv@ in the range ® < C; < 2.1 over the
Reynolds number range 17580Rg, < 36000. The skin friction cd&cient recovers
slowly betweenX = 165, andX = 246,. FromX = 245, the time-averaged velocity

50



4. CAVITY INLET 4.5 Results

35

T

30

25

T

201
- - —log law |

T

+_ +
u=y 4
X785 |

15

10

T

X,=165 1
X =288,
X, =325 |

0“‘\ P S S S S S | L L P S S S S | L P S S S S S |
10° 10" 10° 10°

25 T T T

20

T

15

T

10

T

(b)

Figure 4.2: Non-dimensional time-averaged velocity pesfibf the zero pressure gra-
dient spatially developing boundary layer at fouffelient streamwise stations, using
the (a) Superbee and (b) the Minmod limiters by Roe (1986).
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Figure 4.3: Non-dimensional time averaged velocity prefdéthe zero pressure gra-
dient spatially developing boundary layer at fouffelient streamwise stations, using
the Sweby (1984) limiter witjg = 1.3.

45.2 Results validation

Figure 4.4 shows the non-dimensional time-averaged wglpoifile from LES (Sweby
limiter, 8 = 1.3) compared against a range of analytical and experimezgalts. The
LES velocity profile was extracted &t = 325, from the computational domain inlet,
giving aRe ~ 7720,Re- ~ 1100, andRe, ~ 910.

In Figure 4.4, the dash-dot line is the Von Karman (1930 & the wall, and the
continuous straight blue line is the Finleyal. (1966) composite velocity profile for
Re = 930 that uses the Musker (1979) law of the wall for the inngeidaCircles are
the PIV measurements by Haigermoser (200Rat= 930 and the squares are the
LDV measurements by De Gria& Eaton (2000) aRe = 1420. There is an appre-
ciable agreement among the numerical, experimental, aalgtaral velocity profiles
across the boundary layer.

Figure 4.5(a) is an enlargement of Figure 4.4 showing theriteyer portion of the
boundary layer. The LES predictions show to closely follne Musker (1979) law
across the inner layer up ¢ = 20, indicating that the LES turbulence closure com-
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Figure 4.4: Comparison of the LES non-dimensional timerayed velocity profiles
versus analytical and experimental profiles

bined with the dissipative characteristics of the secormioscheme with the Sweby
limiter dissipates about the right amount of resolved kanetergy close to the wall. In
the region of transition between viscous sub-layer anddgarithmic overlap region,
there is a good match with the experimental results.

Figure 4.5(b) shows an enlargement of the outer portion ahbary layer. The ve-
locity profile predicted by LES exhibits a good agreemenhulie PIV measurements
by Haigermoser (2009) that are a good match with the LES gtiedi across the full
profile.

Similarity with analytical and experimental curves, argtier detailed in Figures 4.5(a)
and 4.5(b), for the inner and outer regions, respectively.

profile becomes reasonably asymptotic to the viscougtawu* (dotted line) and the
Von Karman (1930) law of the wall (dash-dot line).

53



4. CAVITY INLET 4.5 Results

20 ‘ — ‘ —
+_ o+
u=y
——log law
151 o Exp R%:1430

—— An. Musker
N . LESRe=930
=10 Exp. Rg=930 _ ]
5 - .
gk O
o 1 L L L L L L L L
10° 10" 10°
yt+
(@
O m o -7
22t D PR 1
* +_ o+
* u=y
N 20 ——log law |
S o Exp Rg=1430]

.+ LESRe=930 |

18 Exp Rg=930 7
—— An. Musker
16 .
10° 10°
y-l-

(b)

Figure 4.5: Detail of the inner (a) and outer (b) time-averhgtreamwise velocity
profiles from LES, experimental, and analytical models.
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4.5.3 Unsteady flow

Among the many organized structures observed in near-wddutent flows, streaks
are considered to be of major importance for their role ingéeeration of turbulent
kinetic energy. Streaks are regions of slowly moving fluidngiated in the direction
of the mean flow that are lifted by wall-normal motions frone thall into the higher
speed regions, generating organized and coherent siesdike hairpin vortices.
Figure 4.6 shows the instantaneous predictions of therstkgse velocity on theg™ =

15 plane at four incremental computational times with camisincrementAt = 1.3
FT. At the initial timet = 0, the flow field is populated only by synthetic fluctuations
with small random disturbances, and large periodicity sngtreamwise and spanwise
directions that are imposed by the initialisation procedoir the computation. After
1.3 FT times the field begins to show self-organized cohereuttires, although the
velocity field still exhibits a strongly symmetric organiman. The streaks the region
downstream the re-laminarisation of the flow are not wellrafi After 26 FT times,
the streaks are developed and the initial flow transientlig éxtinguished. The higher
aspect ratio identifies independent structures with a défpanwise lengthscale for
each streak. At.3 FT times, multiple levels of velocity isocontours markiyudevel-
oped streaky structures with evidence of fine scale turloelgeneration and elongated
structures in the streamwise direction.

In Figure 4.7 the three-dimensional turbulent boundareidield is shown by th&-
criterion by Huntet al. (1988). Since in a boundary layer the gradientuah the
wall-normal-direction is large near the wall, any numdrit@aw visualization of the
turbulence by vorticity isocontours will be overshadowgdltie time-averaged veloc-
ity gradient €fect. TheQ-criterion is a vortex identification criterion, defined ket
second invariant of the velocity gradient tensor:

Q= _%(s: S-Q:0)= —%vu: VU (4.3)

WhereS = VU + U®V is the rate of strain anf2 = VU — U ® V is the vorticity tensor.
When theQ-criterion is positive, it represents locations in the flolwase the rotation
dominates the strain and shear. At the initial titne O, the field is populated only
by synthetic fluctuations with no momentum transfer in tlehae generation mech-
anisms. At 13 FT times the flow starts to be organized in coherent strastuith
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Figure 4.6: Streaks at* = 15 slices by isocontours of streamwise velocity (floed
lines)
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4. CAVITY INLET 4.5 Results

random motion. After 3 FT times, the turbulence generati@tmanism in LES is
completely activated. Fine structures can be identifiecbbdythe transition region
near the inlet section where synthetic oscillation are gpd.

4.5.4 Unsteady flow statistics

The determination of the characteristic spanwise lengéhesn a boundary layer can
be performed by velocity auto-correlation analysis. Gitlea streamwise velocity
perturbatiory’ = u — (u), the two-point spanwise auto-correlation function is dedin
as

Ruu(Y: A2) = (U'(t, X, ¥, DU (L, X, Y, Z+ A2)) (4.4)

Angular brackets denote averaging over time and over theogermeous directions
andz. Azin the computation of the discrete auto-correlation is thiestant spanwise
mesh size.

A common method for estimating the streak spacing is to tatleuhe streak span-
wise lengthscale as,(y) = 2Azyin, WhereAz,, is Az at which the minimum of auto-
correlation function is found within the first 300 viscouadghs.

A similar analysis can be performed of the spanwise velqutyurbationv’ = v — (u)
from which the two-points spanwise auto-correlation

Ry, AZ) = (V(L, X, Y, DV (L, X Y, 2+ AZ)) (4.5)

estimates the spanwise lengthscalalagy) = 2Azyn.

In Figure 4.8R,, andR,, are plotted ay* = 15 (continuous line), ang" = 35 (dashed
line). The first minimum irR,, in Figure 4.8(b) is al\zyyly--15 = 80y*, from which
L,(15y") = 160y*. Similarly, L,(35y") = 230y*. A similar result is obtained using the
Ry, function, although the minima gt= 35y* is more like plateau and therefore less
localised inAz.

The results found confirmation in literature, where for sutis boundary layer flows
L,(15y") = 140y*, andL,(35y*) = 230y* (Chernyshenko & Baig, 2005; Hu & Sand-
ham, 2001).
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Figure 4.7: Isocontours of vortical structures @ycriterion atQ = 2.5 x 10°. Incre-
mental time between two successive frames: 1 inlet flow through times.
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Figure 4.8: Time-averaged auto-correlation of (a) strem®welocity perturbations’
and (b) flow-normal velocity perturbationsaty* = 40 above the flat plate
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Chapter 5

Cavity flow

This chapter reports the CFD model and LES simulation resiila rectangular open
cavity-flow at a low Mach number and with a thick inflow boungkayer.

Section 5.1 introduces the flow parameters. In Section ®2Zémputational domain
geometry and the mesh are presented, and in Section 5.3uhedy conditions and
the starting flow condition are detailed. This cavity modelswdesigned using the
method of Chapter 3 that provided ampriori estimate of the computational resources.
These estimations are verifi@dposterioriin Section 5.5 from the actual cost of the
computation. The scalability performance of the cavityfllomputation is presented
in Section 5.4. Finally, the LES simulation results andtlsemparison with the ex-
perimental results of Haigermoser (2009), are detailecettiGn 5.6.

5.1 Flow conditions

The flow conditions of the numerical work of this thesis ardymamic similarity with
the experimental work of Haigermoser (2009), based on tha®&ds number. The
PIV experiments on a rectangular cavity were formerly usedraidealized geometry
test-case to model a real-life automobile bodywork recgdsIAT of a fixture having
the typical sizes of a hatch back door cavity at a cruise spe&d0 Knmyh (Ribaldone
et al, 2005).

The dynamic similarity of the cross-investigation enaltescomparison of the numer-
ical LES computation results against the tomographic Plpeexnents, throughout
this chapter.
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5. CAVITY FLOW

5.2 Computational domain geometry and mesh

Cavity flow parameters LES PIV
L/D 4 4
L/W 0.8 0.115
6c/D 2 2.11
Re ~ 15500| =~ 16000

M ~ 0126 | ~ 2.7 E-04
Re;, ~ 5200 -
Re, ~ 570 -
Re; ~ 720 -
Re, ~ 7750 | =~ 8440
Re, ~ 920 ~ 900
Re; ~1115| =~ 1360

Table 5.1: Cavity-flow conditions and geometrical paramsete

The cavity-flow conditions are summarized in Table 5.1, fierpresented LES numer-
ical computation and the PIV work.

5.2 Computational domain geometry and mesh

The computational domain geometry is sketched in Figure & 1s made by four
computational blocks: the inlet section (zone 1), a bloakvatthe cavity (zone 2), the
outlet section (zone 3), and the cavity enclosure (zone 4).

The dimensions of each block are reported in Table 5.2, nig@etkin terms of the
boundary layer thickness at the cavity leading eélgend of the cavity length. The
streamwise dimension of the cavity inflow of.3d, is slightly larger than the 37 of
the inflow test case of Chapter 4, to match B@, ~ 930 andRg. ~ 16000 inflow
conditions of Haigermoser (2009), whexgis the same inlet boundary layer thickness
value of Chapter 4. The spanwise and the wall-normal dinoexssof blocks 1,2, and
3 are the same of the inflow test case.

The last four columns of Table 5.2 summarize the mesh deimsihe three directions
and the total number of cells. The cavity inlet mesh spaamnge same of the inflow
test case of Chapter 4 in the spanwise and wall-normal dhrectn the streamwise
direction, a constant spacingdk* ~ 36 is used for the first 152 cells (upXo= 225,),
and a negative stretching ratio of about 5% is used to cltisterells near the upstream
top cavity edge. The dimension of the last cell of the inletisa at the upstream cavity

61



5. CAVITY FLOW 5.2 Computational domain geometry and mesh

Zone| DS, | DS, | DS, | Nex | Noy | Nes N tot
37.760 | 700 | 400

1 | 2366 | 445, | 256, | 196| 86 | 72 | ~ 1.21x 10°
118L | 2.2L | 1.26L
3.260

2 | 25, \ . l128| . | . |~079%x10°
L
9.600

3 | 66 \ \ A A \
3L
3.260 | 0.8,

4 | 25, | 055, | A \
L | 0250

Table 5.2: Cavity model computational domain dimensiortsgnd density.

e o e s e B B Bt e e s e e S e B e ua e Can o

Figure 5.1: Cavity-flow computational domain and detailref tavity recess.
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5. CAVITY FLOW 5.3 Boundary conditions and starting flow conditions

edge isAx = 1y*. This matches the dimension of the first cell near the upstizztom
cavity edge. An enlargement of the cavity mesh at the intéime of the four cavity
blocks around the cavity is also given in Figure 5.1.

A constant stretching ratio of.2% is used in the streamwise direction of the cavity
from the cavity forward and backward vertical walls towatids centre of the cavity.
Similarly, a constant stretching ratio of736 is used in the vertical direction towards
the centre of the cavity. Finally, a constant stretchingprat 2.4% is used in the
streamwise direction from the downstream cavity edge tactmputational domain
outflow. At the downstream top cavity edge, the first egll= 1y*.

The total number of cells for the cavity-flow test caséNis~ 3.6 x 1(° cells, with a
number of cells in the caviti¥, cay ~ 0.79x 1CF.

5.3 Boundary conditions and starting flow conditions

The boundary condition used in the cavity-flow simulatiorthee computational do-
main inflow (zone 1) is the SSTD boundary condition of SecBioh Non-slip adia-
batic wall conditions are applied at the solid walls of zofie8 and 4, extrapolation
from the inner cells is used at the outflow boundary of zoner&rareflecting condi-
tion is used at the upper boundaries of zones 2, 3 and 4, pebodndary conditions
are imposed at the lateral boundaries in the spanwise ineztthe domain for zones
1 to 4. Since periodicity was introduced at the lateral b@uied of the cavity domain,
the dfect of the cavity lateral walls was not modelled and the satioih can be referred
to apseudo-two dimensionabvity-flow. Internal connectivities were adopted for the
internal boundaries, edges, and corners in the adjoinigigme of the computational
domain.

The cavity inlet (zone 1) initial velocity field and profile thfe turbulent kinetic energy
k, were primed using the same approach as the inflow test casetiloed in Sec-
tion 4.3. Zones 2 and 3 were primed using the mean profileseobtiflow boundary
of zone 1. In the cavity enclosure, the stagnation flow comulitvas imposed at the
starting time of the computation.
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5. CAVITY FLOW 5.4 Parallelization performance

5.4 Parallelization performance

Preliminary scalability tests for the cavity-flow simulatiwere performed for assess-
ing the CFD scheme MPI parallelisation performance on ba¢hHPC Intel cluster
Alice of the University of Leicester, Great Britain, and dretiIBM-SP6 IBM cluster
of the HPC centre CINECA, Italy. Results of the tests are shfiw code speed-up,
Equation (5.2(a)), and for parallelisatioffieiency, Equation (5.2(b)).

Results of the scalability performance analysis obtairmediHe RDD parallelisation
algorithm of Section 2.5 on the®x 1(° cell LES cavity model are presented in Fig-
ure 5.2. The ideal speed-up corresponds to the straighk lilee S = Np in Fig-
ure 5.2(a). For a number of processdlis < 60 the speed-up of the SP6 cluster in
Simultaneous Multi Thread (SMT) mode is higher than the dpgeachieved by the
Alice cluster. For a number of processdis > 60, the Intel cluster Alice reaches an
higher speed-up, as also shown by the slope of the dashedirtdue

The better performance of the Intel cluster Alice for a nundig@rocessordlp > 88 is
also confirmed by the higher values of the parallelisatt@iciencyup, which is higher
than theup for the SP6 cluster atl> > 88.

The optimal number of processors, taking into account tipeeted queue time, CPU
time, and wall time constraints on the Alice cluster, wasdeined asNp, = 128.

In this configuration, the speed-up w8&s,s ~ 24.4, the parallelisation féciency
128 = 0.19 and the parallel computation wall time for one completed@uiKutta
time integrationT1,3 = 4.1 seconds. The computational domain flow-through time
was equivalent to.@9 x 1(P iterations. Since in a typical LES computation the initial
transient needs at least three flow-through times to comglessiciniet al., 2006),
the total CPU time for the simulation running on 128 processams 133 x 10° CPU
hours and the wall time was 1060 hours44 days).

The scalar time needed to perform one time step (two Rundtakub-iterations)
using the serial code on a single processor of the clusthrgsimulation wa3, = 100
seconds. Hence, the total time to run this simulation on glsiprocessor would have
been approximately 3 years.
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5.4 Parallelization performance
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Figure 5.2: Scalability and parallelisation performanta éour block 36 x 1° cells
LES cavity model on the HPC Intel cluster Alice and IBM SP6. $peed-uspe and
(b) parallelization #&iciencyup versus the number of processd\is
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5.5 Numerical model design predictions

The methodology of Chapter 3 is herein applied to the caesy tase of Section 5.2.
The cavity geometry i€ /D = 4 andD/§ = 2.2. The indicator of the turbulent flow
discretizatiorLN;y is first derived from Equations (3.16) and (3.17). The secunaer
scheme determind®3PW = 10.3 andr, = 10, for a spatially resolved WR-LES. The
mesh height is so thab Ny = 8.75 and, from Equation (3.17¢; ~ 0.02.

At the cavityRg =~ 15500, forC; ~ 0.02, Equation (3.16) gives a spectral width of
LNy ~ 2. Figure 5.3 shows a verification of traspriori estimate of cavity simulation
spectral width. ARRg = 15500, the line€C; = 0.02 is vertically intercepted near value
LNy ~ 2, in agreement with the value obtained from Equation (3.16)

The analysis is then extended to the cavity-flow mesh denSityce the cavity-flow
model uses a WR-LES mesh bf = 3.6 x 1 cells with a near-wall clustering to
Ay" ~ 1, Equation (3.25) is used to obtaih ~ 0.18. Figure 5.4 shows where the
currentN, = 3.6 x 10°, Rg. ~ 15500 cavity-flow simulation lies with respect to the
body of past flow models from the literature in theg(, Nc) plane.

This cavity-flow simulation, marked by an asterisk in Figixd, lies between the
clusters of past LES and DNS. This suggests that théicmntsC; andC,4 used in
Equations (3.24) and (3.26) may not give accueat®iori predictions for the current
cavity model, as their use implies a degree of extrapoldtiom the LES and DNS
simulation clusters reported in the literature.

A new class of isolines for highly resolved LES cavity-flownsilations might be de-
rived as the number of the WR-LES in literature increaseswéier, for the time
being, the present simulation is the first 3D WR-LES opentgelow simulation with

a thick inflow boundary layer and mesh sizing between tyfdi€zh and DNS values
reported in the literature.

Figure 5.5 shows the priori estimate of the current cavity-flow simulation in the con-
text of the cost estimate of previous simulations repontete literature. In this figure,
the current cavity-flow simulation is positioned in a regintbetween the typical cost
ranges for LES and DNS simulations.

The cost of the present simulation is estimated from Equ4880) forN¢ = 3.6x10P,
which givesCost~ 0.56 x 10°.
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Figure 5.3:A priori estimate of the cavity-flow simulation spectral width. Syisbas
in Figure 3.2.
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5.5 Numerical model design predictions
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Figure 5.4: Analysis of the cavity-flow grid density. Sym&ak in Figure 3.3.
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Figure 5.5: Analysis of the cavity-flow grid density. Sym&ak in Figure 3.3.

By Equation (3.31), the estimated equivalent run time focaas computation of the
cavity-flow for ui08 ~ 0.19 (Section 5.4, Figure 4.1) is of the order of 262 days
0.7 year, which is in fair agreement with the 0.9 years neddetesolving one flow
through time of the cavity-flow WR-LES on a single processorshe 44 days on 128
processors, using the Alice HPC Intel cluster, reportedeictisn 5.4.

5.6 Results

In this section, the results of the cavity-flow LES computatare presented and com-
pared against the PIV experiments of Haigermadeaal. (2008) and of Haigermoser
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(2009). The mean flow field and its statistics are discuss&gations 5.6.1 and 5.6.2,
respectively. The time dependent instantaneous flow fieilsteown in Section 5.6.4,
and the unsteady flow statistics are detailed in Sectior5.Binally, Section 5.6.5

presents the spectral analysis of the time-resolved flow.

5.6.1 Mean flow field

Figure 5.6 presents the time-averaged velocity field in g@rgaal x-y plane, in terms of
the streamwise velocity vector profiles and velocity striga@s. In Figure 5.6(a), the
LES mean streamwise velocity vector field indicates theges of a large standing
vortex that dominates almost the 75% of the cavity lengthmfk/L ~ 1 to x/L = 4.
This structure is also identified in the PIV The velocity atrdines from the LES nu-
merical predictions in Figure 5.6(c) and PIV experiment$igure 5.6(d) indicates
the location of the centre of the standing vortexxat ~ 3.2. A secondary weaker
counter-re-circulating zone, that was evident in the Pl@geziments close to the up-
stream cavity edge af/L ~ 0.4, appears in the LES results under the form of a lower
intensity spiral re-circulation, induced by the velocitgidi of the primary vortex. This
secondary re-circulation was not always reported in prevexperiments in literature,
like in Graceet al. (2004). The impingement of the mean shear layer on the upper
part of the front facing step looks more pronounced in the k&ssilts, where a sharp
change of direction of the streamlines near the downstreareavity edge is visible,
as shown in Figure 5.6(c). This is likely to be due to the neall wlustering in the
LES providing a higher spatial resolution in this regionrtii&lV, which is limited by
the wall light reflections.

Figure 5.7 shows the velocity streamlines of a horizontalplane inside the cavity
enclosure ay/H = —0.5. The LES simulation predictions are shown in Figure 5.7(a)
and the PIV experiments are shown in Figure 5.7(b). In therEdults, the flow shows

a small spanwise velocity component that is attributed &rtb-slip wall boundary
conditions at the cavity side walls in Haigermoséal. (2008).

In the LES simulation, the presence of spanwise periodiclary conditions intro-
duces a spanwise velocity component, as evidenced by thetation of the stream-
lines at the centre of the cavity enclosure. Two accumulaliizes are present, at
x/H ~ 0.2 and atx/H ~ 3.2, respectively. These two lines confirm the presence of the
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Figure 5.6: Mean field visualizations in the vertical x-y q@ga Streamwise velocity
vector profile from (a) LES, and (b) PIV experiments by Hargeser (2009). Velocity
streamlines from (c) LES, and (d) PIV experiments by Haigesen (2009).

primary standing vortex core and of the secondary upstreaairculation. A result
similar to the one from the current LES predictions was atadiby Bissessugt al.
(2004) from a three-dimensional DES simulations of a reguigar cavity driven by a
thin inflow boundary layer.
The time-averaged development of the shear layer alongawié/ mpening can be
described by the vorticity thickness

6,09 = 21 5.1)

%)max

where the cavity external flow velocity, = Ui and the velocity inside the cavity,
is assumed to be equal to zero.
The curve o%,(x) normalized by the momentum thicknegsof the incoming bound-
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Figure 5.7: Mean field visualizations in the horizontal ylane aty/H = —0.5. Ve-
locity streamlines from (a) LES and (b) PIV experiments bygeamoser (2009).

ary layer, is plotted by the red circles in Figure 5.8.

The shape of the vorticity thickness profile is in good agreetwith the experimental
PIV data, shown by the black stars in Figure 5.8. For bothgtigations, the growth
of 6,(X) is linear over most of the length of the cavity. However, LS results show
a steeper growth after the cavity upstream edge, uglb~ 0.2. A possible expla-

nation of this higher vorticity thickness growth rate is yaded later in Section 5.6.3,
where the flow mechanics of the streaks at the upstream cadgy is detailed. The
maximum value of the vorticity thickness is reachedk#atl ~ 3.3, both for LES and

PIV. This maximum for the LES is lower lower by approximat&Bt respect the PIV
experiments of Haigermoser (2009). As a result, the LESaitytthickness growth

rate calculated from the cavity leading edge to the voytittitckness maximum value
is & ~ 0.28, while the value obtained from the PIV experimefjis~ 0.30. These

values are driven by the thickness of the incoming boundaygribeing large, as typ-
ical values thin boundary layers in low Mach number cavioy in literature are in

the region of‘% ~ 0.12- 0.14 (Ashcroft & Zhang, 2005).

In order to assess the self-similarity of the streamwise@aig} profiles across the
cavity opening, the non-dimensional varial§le= y/(0.56,) is introduced. The non-
dimensional velocity profilebl (£)/U., are plotted versuéin Figure 5.9. The contin-
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Figure 5.8: Normalised shear layer vorticity thickness daration of streamwise
coordinatex/H.

uous black line represents the streamwise velocity prafiédygical law of a canonical
free-shear layer
U _1

T = 5l +tanhg)] (5.2)

The outer layer region is ne&f(¢)/U., = 1. In this region, as the flow goes down-
stream over the top of the cavity opening, the velocity peaknds to become self-
similar, which increases the wake paramdiein Equation (2.45) in the outer layer.
In the inner layer region, nedd(¢)/U., = 0, the self-similarity is only approxi-
mately reached in the upstream region of the cavityx/&t = 0.5 (green circles)
andx/H = 1.5 (cyan triangles), since significative velocity values iagced by the
bound vortex in the downstream cavity region, as shown bfflpsatx/H = 2.5 (blue
squares) and aH = 3.5 (magenta crosses).
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Figure 5.9: Non-dimensional time-averaged streamwisecityl profiles at diferent
streamwise locations, across the rectangular cavity ogeni

5.6.2 Mean flow statistics

In order to characterize the spatial scales of the eddiesicad in the turbulent shear
layer of the cavity, the two-point spatial correlation ftino p, of the streamwise
velocity fluctuationsu’, obtained from the LES simulation, was computed at three
reference points on the cavity centrelinexat;/H = 0.6, Xef/H = 2, Xef/H = 3.
The results are presented and compared against the PIViregoes by Haigermoser
(2009) in Figure 5.10.

Figure 5.10(a) shows that near the upstream top cavity etlgejntx,es/H = 0.6, y;es/H =
0, the shape of the correlation function is elongated in treamwise direction, due
to the streamwise coherence of the spatial scales in thal&mtboundary layer ap-
proaching the cavity mouth. A smaller positive correlatsprot is shown at a stream-
wise distance B from the reference point, identifying the convection ofblent
structures across the cavity. This is in agreement with ther&sults shown in Fig-
ure 5.10(b), in which a broader second regiop@f > 0.5 correlation is shown
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Figure 5.10: Two-point spatial correlation functig, computed at three refer-
ence points from the LES and PIV time-resolved velocity dd&) LES,ys/H =
0, Xet/H = 0.6. (b) Plv,yref/H = 0, Xer/H = 0.6. (C) LES,yref/H = 0, Xet/H = 2.
(d) PIV, Vret/H = 0,Xet/H = 2. (e) LES,Yret/H = 0,%e/H = 3. (f) PIV,
Vret/H = 0, Xef/H = 3. Contours with constant increments/Ayf,, = 0.1.

spanning a larger portion of the cavity, upxpH = 3. In the middle of the cavity

mouth in Figure 5.10(c), the two-point spatial correlatfanctionp,, referenced to

point Xet/H = 2,yet/H = 0 shows a region gf, > 0.5 that is wider in the wall-

normal direction with respect to Figure 5.10(a). This is tluthe growth of the shear
layer that accommodates thicker self-coherent structiesthe last reference point,
Xref/H = 3, Yret/H = 0, Figure 5.10(e) shows that the two-points correlatiorcfiom
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puww = 0.4 over the rear half of the cavity, where coherent structarexonvected and
then feed in the main re-circulation, characterized by taeding vortex.

A more detailed explanation on the dynamics of the turbusémictures into the cav-
ity will be presented in the section dealing with the timgeedent flow field, Sec-
tion 5.6.3. The PIV experiment results in Figure 5.10(d) &arikdD(f) shown a similar
circular region for the functiop,, centred about the same reference points, although
the LES simulation evidenced a more irregular shape of threletion function due to
the higher spatial resolution of the non-uniform numerioash, as compared to the
uniform PIV vector grid.

The two-point correlation functiop,.,, for the vertical velocity fluctuationg' is pre-
sented in Figure 5.11 and compared versus the PIV expersnaéttie same reference
points along the cavity centrelineats/H = 0.6, Xer/H = 2, Xef/H = 3. The shape
of thep,., contours is more circular for the three reference pointshictvthe corre-
lation function was computed. This reflects the coherenabelr of single vortices
travelling along the shear layer that was shown in the PI\édrpents. The correlation
function from LES data shows the presence of correlatiororegwith a larger extent
with respect the PIV results. This behaviour is in a qualieehgreement with the study
of Ashcroft & Zhang (2005), in which the variation of the temerse integral length
scale in the streamwise direction indicates the linear graf.coherent scales of flow-
normal velocity perturbation across the cavity open enc Vdlues of the correlation
functionp,, predicted by LES are comparatively lower than the corredpmgwvalues
from PIV, which is probably due to LES resolving in time anésp a greater range of
structures than with the PIV. The smaller scales are likelye less coherent, leading
to a lowerpy in the LES predictions.

The distribution of the mean pressure ffméentCp = 2(p — po)/(0U2) in the verti-
cal x-y plane, obtained from LES, is shown in Figure 5.12¢&) aompared against
the PIV results of Figure 5.12(b). The mean pressure digtab from the PIV data
was obtained by integrating numerically the incompresditgynolds Averaged Navier
Stokes (RANS) momentum equation on a RIVv velocity plane. The inertia, viscous
and Reynolds stress terms were calculated from the measwstht velocity field
and the pressure is derived through integrating its gradasrdetailed in Haigermoser
(2009). In the LES numerical predictions, a large region efativeCp is visible,
whose peak is at/H ~ 3 andy/H ~ 0.4, in correspondence of the standing vortex
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Figure 5.11: Two-point spatial correlation functigg,,, computed at three refer-
ence points from the LES and PIV time-resolved velocity dd&) LES,ys/H =
0, Xet/H = 0.6. (b) Plv,yref/H = 0, Xer/H = 0.6. (C) LES,yref/H =0, Xet/H = 2.
(d) PIV, Vret/H = 0,Xet/H = 2. (e) LES,Yret/H = 0,%er/H = 3. (f) PV,
Viei/H = 0, Xe1/H = 3. Contours with constant incrementg\pf.,, = 0.1.

core. Positive values @p are visible close the forward facing step maxima are
predicted at the downstream top cavity edge, where the $figarimpinges, and at
the cavity downstream bottom edge. Finally, a region of tieg&: is visible down-
stream of the cavity downstream edge, which results fromdta flow acceleration
during the mass ejection phase of the unsteady cavity-flverdis a good qualitative
agreement between numerical and experimental resulthiéomean pressure dbe
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Figure 5.12: Time-averaged pressurefiioentCp from (a) LES, and (b) PIV experi-
ments by Haigermoser (2009).

cient. The peak of negative pressure is located at the sasigomoin LES and PIV.
The only qualitative dterence between Figures 5.12(a) and 5.12(b) is in the presenc
of aCp maximum that appears only in the LES predictions at the dowas bottom
cavity edge.

The mean pressure drag per unit spanwise length can be appted by:

Szf p-dl—f p-dl (5.3)
d.w. u.w.

where the pressure is integrated along the upstream Jesatla(u.w.) and the down-
stream vertical wall (d.w.), and computed numerically atsdashcey™ = 30 from the
walls. The computed mean drag €@eent isCp = 25/pU2H = 0.056. The per-
fect agreement of the experimental valDg = 0.056 obtained from PIV experiments
by Haigermoser (2009) is likely to be a fortuitous resultegi the diference in pre-
dicted pressure iso-levels in Figure 5.12.

5.6.3 Unsteady flow field

The study of the time-dependent unsteady flow fields in thei@® gives a contribu-

tion to the understanding of the flow mechanisms governiagifinamics of the shear
layer and the evolution of the coherent structures embeithdée thick boundary layer
across the cavity opening, such as convected vorticesa@ael from instabilities,
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Figure 5.13: Experimental PIV spanwise vorticity fields on the vertical x-y plane
from Haigermoser (2009).
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vortex stretching, vortex pairing, and vortex breakdown.tHe literature of cavity-
flow at low Mach number and with a thick incoming turbulent hdary layer, the
time-resolved tomographic PIV experiments of Haigermageal. (2008) displayed
the dynamics of the élierent scale vortical structures, detecting the flow coniplex
connected with the dynamics of the motions in the shear lapérin the main re-
circulation zone. The shear layer containing the vortitalctures across the cavity
opening was observed to have an intermittent behaviour. taildd analysis of the
spanwise vorticityw, field and vortical identification of the structures in a veatix-y
plane was performed. The flow visualizations are shown imf€i¢.13. The images
correspond to four dierent time intervals during a complete cavity-flow throuiget
cycle. From observing the time-dependent flow, Haigermesat. (2008) postulated
that the shear layer is populated by twdrelient types of structures. The first struc-
tures are vortices formed by the shear layer instabilitiegjenced by the incoming
turbulent boundary layer. The second type of structureshaee-dimensional struc-
tures randomly distributed in space and time, originatnogifthe turbulent boundary
layer.

The level of detail in space and time of the fine LES computaditthis thesis allows
one to further understand the origin and the relationshiywéen the type of structures
observed in the tomographic PIV experiments. Figure 5.&4gnts a sequence of the
spanwise vorticityw, fields in a vertical x-y plane at six fierent time steps (equivalent
to 0.6 cavity-flow through times) from the LES computation. Rigure 5.14(a), two
“swiss roll’eddies, normally present in a typical free shieger flow like the one of
Figure 1.2, are identified by the black outlines. The firaicire spans from/H =
0.8 tox/H = 1.8 and the second structure, which is more elongated, spamsiH =
1.8 to x/H = 3.2. In Figure 5.14(b), the structure B of the first roll, thasliin the
region above the cavity, moves in the streamwise directith igher velocity with
respect to vortex A, that remains almost in the same posifibis is due to structure
B being exposed to a higher speed mean flow outside the cénatydtructure A. At
the same time, a strain region with negative spanwise viyrticpushes structure B in
the wall-normal direction. Both structures D and E from teeand roll move toward
the main cavity re-circulation. In Figure 5.14(c), vorscA and B are completely
separated by the negative vorticity core C. The two rolls B Brare entrained into the
standing vortex. In Figure 5.14(d), vortex B has moved frih the streamwise and
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Figure 5.14: Spanwise vorticity, distribution from LES on the vertical x-y plane at
increasing computational times. Time increment betweenftames isAt = 0.1 of
the cavity-flow through time.
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wall-normal direction. In the region marked with B’ a corethvpositive spanwise
vorticity is being convected from the cavity inflow. In Figus.14(e), vortex B is being
ejected out of the cavity. In the region B’ there are altantppositive and negative
vorticity cores. In Figure 5.14(f), vortex B has been ejdatempletely out of the
downstream top cavity edge. A new pattern similar to the dneigure 5.14(b) is
noticeable, with a “swiss roll "that is made by the positivaticity B’, a strained
vortex C’, and the lower vortex A which has moved very slowlyridg the whole
cycle, due to it being confined in a stagnation region betwlerprimary standing
vortex and the secondary induced re-circulation locatedecto the upstream bottom
cavity edge.

The analysis of the time-dependestfield confirms the presence of vortices that are
generated by the shear layer vortical instabilities andetftimensional structures, as
already pointed out by the PIV tomographic experiments ofjetanoseeet al. (2008).
However, the spatial and temporal resolution of the LES aaatpn enables us to
identify the dynamics of coherent flow patterns in the casitgar layer, which ex-
plains the so far undefined coexistence of the two type otsitras in the enclosure.
The structures can be associated to the approaching bguagiar streaks developing
in the downstream region of the cavity and being perturbethbyKelvin-Helmothz
instability. The main field re-circulations shown in Seaqtis.6.1 determine regions
of low and high convection speed that tilt, separate, andexrthe vortices initially
belonging to coherent patterns towardtelient paths, depending on their stochastic
initial position.

The process shown in Figure 5.14 explains why vortices tieatr@ated from the shear
layer instabilities at the upstream cavity edge are notdveantrained into the cavity,
but can either pass over or impinge the top edge of the casityaird facing step. This
explains the intermittent behaviour of mass injection ajedteon inside and outside
the cavity and the related pressure fluctuation along thigycanalls, which is mainly
responsible for noise emission.

The evolution of the longitudinal streaks contained in thdbtlent boundary layer
approaching the cavity, introduced in Chapter 4, is ingedéd in the LES results.
Figure 5.15 shows a time sequence of the wall-normal vytigj fields on the hori-
zontal plane ay/H = 0.05, at four diterent time steps (equivalent to 0.4 cavity-flow
through times). The flow direction in Figure 5.15 is from lottto top, as indicated
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by theU,, arrow. In Figure 5.15(a) the streak A is approaching thetgavrl hree-
dimensional vortical structures of highey magnitude, labelled as B and C, convect
across the cavity opening downstream of a streak. In Figurg(b) the streaky struc-
tures A reaches the cavity upstream edge. The regions div@osi, value B and C,
in Figure 5.15(a) stretch and tilt in Figure 5.15(b). Thisfiions the process of vortex
shedding, strain and separation presented in the analiyfe spanwise vorticityv,

in the region 1< x/H < 2 of Figure 5.14(a), at the same computational time step.
In Figure 5.15(c), the streak A has gone over the upstreamawoipy edge. The head
of the streak enlarges its core, and tilts it in the wall-nalretirection, as shown by
the increase in they value in Figure 5.15(c) compared to Figure 5.15(b) Thistesci
the shear layer Kelvin-Helmotz type instability that is eectively amplified from this
point onwards. A qualitative explanation of this procesprissented in the sketch in
Figure 5.16 using a potential-flow idealisation. The strealdple is represented by
two opposite vortices V1 and V2. Upstream of the cavity lagdédge, the resulting
effect of the upstream bulkhead on the vortices can be modejledtidomethod of
images using the vortices of the same intensity and oppsigjiteVV3 and V4 located
symmetrically about the horizontal wall. At this condititime vortex V1 is subject
to three induced velocities U2, U3, and U4, generated byioestV2, V3, and V4,
respectively. The resultant induced velocity varies inetibut can be taken as being
null, resulting in the streaks being aligned in the streasewdirection, as shown in
Figure 5.15 atx/H < 0. In the region downstream of the cavity upstream edge, the
induced velocity contribution from vortices V3 and V4 is abt At this condition,
vortex V1 is only subject to the vorticity field of V2. The inded velocity U2 lifts V1
in the positive wall-normal direction and initiates thetadslity that is amplified in the
cavity enclosure. The flow dynamics shown above is confirmethe experimental
tomographic PIV results of Haigermosatral. (2008) presented in Figure 5.17.

The sequence of images reproduce the flow organization é¢sedppy low and high
speed streaks and vorticity strips at the flanks of them. Trelasion from both
the comparison of numerical and experimental results istthek turbulent bound-
ary layer coherent structures are convected into the shgar, Iwhere the observed
streamwise vorticities in PI1V is the consequence of thmgltbreakdown, stretching,
and pairing interaction in the cavity opening, as identibgdhe current LES.
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Figure 5.15: Time sequence of wall-normal vorticity distribution from LES at the
horizontal x-z plang/H = 0.05. Incremental time between successive fraintes 0.1
of the cavity-flow through time.
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Figure 5.18 shows a snapshot of the vorticity field in thetyasmclosure by th€) vor-
tex identification criterion (Hunet al,, 1988). The vortical structures identified in the
iso-vorticity levels of Figures 5.14 and 5.15 are hereirdezad in three dimensions.
The streamwise bulges in the i§psurfaces upstream of the cavity leading edge are
associated to the streaks in the approaching turbulentdaoyrayer. Zones of low
streamwise momentum can be identified between streakshwangclikely to be due
to the presence of hairpin vortices in the boundary layerin#ilar pattern was iden-
tified in the PIV experiments of Gottero & Onorato (2000), ihigh the flow field

in the bufer layer of a flat plate was characterised by a streaky coafigur, where
elongated low speed bands alternate with higher speednsgithe mutual interac-
tion of these quasi-streamwise vortices, convected féerént velocities in the near
wall region, was related to the presence of localized regraracterized by ejec-
tions or sweeps. The structures in the cavity opening carefibve be associated to
the hairpin structures existing in the approaching tunbut®undary layer, being con-
vected in the turbulent shear layer and travelling far ddveasn the cavity upstream
edge. Figure 5.19 shows an equivalent flow visualizatiomftibe PIV measurements
by Haigermoser (2009), in which the iso-surfaces of the labsosorticity and the
horizontal streamwise velocity iso-levels confirm, from walifative viewpoint, the
predicted flow pattern of Figure 5.18 and supports its imtgtion.

V2

V3 \VZ!

Figure 5.16: Potential-flow description of a streak painatibe upstream cavity bulk-
head.

85



5. CAVITY FLOW 5.6 Results

Oy [1/5]

100
90
80
70
60

(c) (d)

Figure 5.17: Time-sequence of wall-normal vorticity distribution from PIV on a
horizontal x-z plane, from Haigermoser (2009).
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Figure 5.18: Snapshot g}-criterion iso-vorticity surface & = 1.2E+09, and stream-
wise velocity slice in the x-z plane. LES computation at time 3 flow through times.

Figure 5.19: Snapshot of absolute vorticity iso-surfacesstreamwise velocity slice
in the x-z plane. PIV experiments from Haigermoser (200R)= U...
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Figure 5.20: Vortex identification by th@-criterion. Time sequence of iso-contours
atQ = 3.3E + 08 andQ = —3E + 09. The incremental time between two successive

framesAt = 0.1 cavity-flow through times.
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The process of mass injection and ejection into and out ot#wity can be further
appreciated in Figure 5.20, where the iso-surfaces of igessind negative vorticity
intensity, related to the vortical structures convectedhim cavity, are identified by
the Q-criterion at the value® = 3.3E + 08 andQ = —3E + 09, respectively. The
instantaneous flow fields are taken at an incremental Atne0.1 cavity-flow through
times. In the regions in whick) > 0 vorticity dominates strain. Regions in which
Q < 0 are dominated by strain. The intermittent mass flow actessavity opening is
generated as result of the opposite actions of vorticitysiradn regions, in which the
turbulent scales resulting from the instability procesdesrtex interaction, stretching
and merging are combined.

5.6.4 Unsteady flow statistics

An auto-correlation analysis allows one to investigatedtelution of the turbulent
structures across the cavity opening. Lilley (1996) dertrated that the value of the
longitudinal velocity correlation function relates to thpace-time properties of tur-
bulence and to the corresponding acoustic power spectraoatidun. This assumption
follows the more general theory of Lighthill (1952) and Lighl (1992), in which the
the acoustic radiated sound power is determined by theHaurder space-retarded
time covariance. Relationship with the fourth-order spastarded time covariance
gives then an information on the noise sources rather treaoutput prediction of the
noise source itself.

The spanwise auto-correlation functiBg, is computed by Equation (4.5) at a distance
y+ = 15 from the cavity centreline, for three traverse velociigfiliations arrays at the
streamwise coordinate§H = [0.4,2,3.6]. The results from LES are presented in
Figure 5.21.

In the thick boundary layer cavity inflow, the streak spacthctates the spanwise
correlation of the velocity fluctuations, with an assodaldtdgegral length scale propor-
tional to the streak spacing. This is shown in Figure 5.21¢&gre the integral length
scaleLy(y) = 2Azy,i, ~ 170 reasonably matches with the streak spacing distance of
160y* obtained in Section 5.6.4.

Above the cavity, in the upstream portion of the enclosureags spacing breaks down
into smaller and less coherent structures, as evidenceaetetuction ot ,(y) ~ 90
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in Figure 5.21(b). This would lead to a decrement in the aoesnission, according
to the integral formulation of Lilley (1996). However, inghlrearmost portion of the
cavity above the bound vortek,, increases. This correlates with an observed elon-
gation of the wall-normal vorticityv, peaks in the spanwise direction in Figure 5.15.
This greater spanwise coherence, which by itself would teadmore &ective acous-
tic emission, is counteracted by the presence of strongtivetyacorrelated velocity
fluctuations, indicated by tH&,, ~ —0.5 minimum in Figure 5.21(c). The positive and
negative areas of velocity correlation would emit sounchwipposite phase, leading
to a dipole-type cancellation in the upstream directionisBupports previous obser-
vations for sound measured from three-dimensional caviieang of lower intensity
respect to modelled

two-dimensional cavity-flow emissions, in which the thetearroller hits the down-
stream cavity edge as a phase-coherent velocity pertarbati

5.6.5 Spectral analysis

To perform a spectral analysis of the time-resolved LESaistathe predicted velocity
history was extracted at the streamwise coordinatés = 1.4 andx/H = 2.7, at a
heighty* = 80 and at half of the cavity spanwise dimensighV = 0.5. Velocity
values were stored at each time step of the LES computatiom Ehe three velocity
components, the spectra of the turbulent kinetic energg wemputed using the FFT
algorithm by Frigo & Johnson (2005). The TKE power spectrahgity is plotted
versus the Strouhal numb8it= fH/U,, in Figure 5.22. The drop#bof both spectra
atSt= 6 is due to the start of the numerical dissipation of the mesblution at the
high enf of the frequency domain.

Both spectra do not display a clearly identifiable spectealipabove the broadband
level, which suggests that no tonal instability is presarthis flow. This is in agree-
ment with the absence of Rossiter tones for a cavity-flow @ithick incoming bound-
ary layer reported by Haigermosetral. (2008). In the region near the cavity forward
facing step (continuous blue line), the TKE shows a loweraye power spectral den-
sity than the one contained in the rearmost region of theyé&yashed red line). This
confirms the amplification of modes of the incoming turbukssdles across the cavity
opening by Kelvin-Helmotz type convective amplificationahanism. Whereas in a
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Figure 5.21: Time-averaged auto-correlation of streamwdocity perturbationg’ at
y* = 15 and streamwise coordinates ¥aH = 0.4, (b)x/H = 2, and (c)x/H = 3.6.
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Figure 5.22: TKE Power Spectral Density at coordinatds = 1.4,y" = 80,z/W =
0.5 (continuous line), and/H = 2.7, y* = 80,z/W = 0.5 (dashed line) from LES.

cavity-flow with a thin inflow boundary layer this amplificati is selective, encourag-
ing the the growth of selected modes (Alvasgzl., 2004), in a cavity-flow driven by
a thick boundary layer the amplification appears to be mavadizand.

The classical energy cascade mechanism from decayin@sotiurbulence is more
established at the back of the cavity, where the velocitgtspm better approximates
the established5/3 logarithmic decay rate of kinetic energy trough the ir@ub-
range, shown by the referene®/3 slope in Figure 5.22 (black line). In this region,
the decay is responsible for the dispersion of the kinetazgynfrom the structures the
wavelength of which matches that of the Rossiter cavitymaroe, to structures that
do not take part in self-excitation.
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Chapter 6

Conclusion

6.1 Designing and costing cavity flow CFD models

A time-dependent CFD model of the flow of over open cavity adrggth to depth ratio
L/D = 4, with a thick incoming boundary layes (D ~ 2.2), at Mach 0126, was used
to study the noise and drag sources of automobile bodywodsees.

The modelling process was explicited through a multi-waridmensional analysis
of the CFD parameters (Rona & Monti, 2011). This analysishsato estimata
priori the computational cost and the spatial and temporal resolin the cavity
flow simulation. In this thesis, the CFD method selected tiigle the best tradefd
between computational cost and flow time and space resolutas a wall-resolved
Large Eddy Simulation (WR-LES).

The CFD solver used is an explicit finite-volume, multi-lkpstructured, Runge-Kutta
time integration scheme that uses a Recursive Domain Deasitign (RDD) paral-
lelisation algorithm (Grottadaurea, 2009) to run on Highf&enance Computing plat-
forms. The parallelisation algorithm was optimized in thisrk for the LES rectangu-
lar cavity flow test case. Scalability tests to assess thienopt number of processors
for the simulations were performed and the results compagaghst the theoretical
cost of the simulation obtained by the multivariate dimenal analysis model.

The cavity flow model was set up to match in Reynolds dynanmularity the PIV
experiments of Haigermoset al. (2008).

The computational cost predicted by th@riori cost estimator is anfective tool for
sizing up a cavity CFD computation in view of the computasibresources available
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and the spatial and temporal resolution requirements ®mtbdeller. In literature,
Basuet al. (2006) studied the dependence of the simulation cost onuttiellence
closure approach and on the spatial and temporal disdietigar a unique cavity flow
model, but this dependence has never been quantified paieatigfor a broader class

of unsteady cavity flows with elierent geometrical characteristics and flow parameters.

6.2 Cavity thick inflow boundary layer by LES

The time-resolved boundary layer for the cavity CFD simatatvas generated by
means of a Time-Dependent Synthetic-Stochastic (TDS8&) lmdundary condition, to
mimic the time-dependent amplitude and phase informatidheoturbulent structures
in the spatially developing thick boundary layer approagtthe cavity. The method is
based on the work by Sandhatal. (2003), subsequently extended to supersonic flow
by Li & Coleman (2010). In this application, velocity flucti@ns in space and time
about the mean velocity profile are emulated by five synthvetiocity Fourier modes.
Stochastic velocity random fluctuations were superimpasethe synthetic modes
in order to break the symmetries deriving from the deterstinispecification of the
Fourier modes. The importance of a correct definition of tleamvelocity profile at
the computational domain inflow required the use of a nuraénwethod by Rona &
Monti (2012) that uses a new mixing length blending function

In the precursor spatially developing boundary layer satiah, three flux limiters
were used to compare the dissipative behaviour and sekebest limiter to resolve the
large-scale cavity flow motion. These are the SuperBee amd/igld limiters by Roe
(1986), and the Sweby (1984) limiter. LES computation resssthown that the Super-
bee limiter is not dissipative enough in the smooth regiofiav¥, causing amplifying
numerical oscillations and time-averaged values of stréiamvelocity higher than
that from the law of the wall. The Minmod limiter caused a aeslnarisation of the
inner layer velocity profile that prevented the boundargldyom growing a logarith-
mic overlap region at the correct non-dimensional distasfcaround 39" from the
wall. The best results were obtained with the Sweby limitéhwhe Sweby cofi-
cient@ = 1.3. A transition region was required for the flow to develogaks and
other distinguishing large-scale structures of a turbiubenindary layer, in agreement
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with the boundary layer LES model by Keatiagal. (2004). Non-dimensional veloc-
ity profiles were compared against the PIV measurements geHaoser (2009) and
the Musker (1979) law of the wall for the inner layer. An appable agreement was
found among the numerical, experimental, and analytickloiy profiles across the
boundary layer. Instantaneous predictions of the streamwelocity on a horizontal
plane at distancg' = 15 to the wall displayed fully developed streaky structuvehl
evidence of fine-scale turbulence generation and elong#tectures in the streamwise
direction. These structures were confirmed by@heriterion vortex visualisation. The
characteristic spanwise length-scale in the boundary lags determined by veloc-
ity auto-correlation analysis. The two-points spanwis®awrrelation function of the
streamwise velocity fluctuatiori®,, and of the wall-normal velocity fluctuatior®,,
determined the characteristic spanwise length dcdlby*™) = Ly (15y7) ~ 160y*, in
agreement with the typical streak spacing results repantétkrature.

The use of time-dependent Synthetic-Stochastic inflowrtiegte is a novel aspect in
the context of cavity flow simulations. The method has showgi¢ld a fast tran-
sition to a fully developed turbulent flow, to resolve cothed¢he three-dimensional
energy-carrying eddies in the thick boundary layer inflomg & match the statisti-
cal information of these structures at the cavity inflow. §da@ims were pursued as
a stringent requirement to correctly predict the turbubmales and large eddies evo-
lution across the cavity opening, and to model the sheaaliilgtes from the cavity
leading-edge onwards.

6.3 Three-dimensional rectangular cavity model

The influence of the flow structures produced by the LES inflemagation techniques
on the instabilities in the cavity enclosure was studiechm LES cavity flow model
and compared against the PIV experiments of Haigermetsar (2008,2009).

The optimization of the original Recursive Domain Decomos (RDD) MPI par-
allelization algorithm by Grottadaurea & Rona (2008), waseatial for running the
wall-resolved LES testcase of 3.6 million cells.

The mean flow field from the LES indicates the presence of alatgnding vortex
that dominates almost 75% of the cavity length, and a secgmrdecirculation, that
appears in the LES results in the form of a weaker spirali@station. The shape of
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the vorticity thickness profilé, is in good agreement with the one form PIV measure-
ments, however, the LES computation predicted a highercityrthickness growth
rate near the forward facing step, where optical accessarPtif experiments was
limited. This newly identified leading edgéfect is likely due to a newly described
unsteady flow mechanism of the streaks in the region of thycagar the upstream
edge.

The non-dimensional streamwise velocity shows a greatesiseilarity in the outer
layer, whereas in the inner layer, self-similarity is onfypeoximately reached in the
downstream cavity region, due to the presence of the bourtdxoThe main vortex
convection across the cavity opening was interpreted tiirabe evaluation of two-
point spatial correlation function of the velocity fluctioats p, pvv, and the mean
pressure cdécientC,. There was an appreciable agreement between the LES predic-
tions and PIV experiments for the two-point spanwise awatiwetations and the pre-
dicted pressure cavity drag dieientCp = 0.056 matched the one from the numerical
integration of RANS equation by Haigermoser (2009) to tvgm#icant figures.

The study of the unsteady flow field was supported by the higdl [&f detail in space
and time obtained from the fine wall-resolved LES computati®ifferent visual-
izations of the instantaneous flow field, in terms of the spa@worticity w, and of
the wall-normal vorticityw, enabled an explanation of the concurrence of vortical
structures generated by the shear layer Kelvin-Helmote tgptability and of three-
dimensional streak-related structures, as already fekuhtn the PIV tomographic ex-
periments of Haigermoset al. (2008). It is thought that the structures are subject to
the combined #ect of the Kelvin-Helmotz type instability, vortex pairimgteraction,
hairpin vortex lift-up momentum of the approaching streaksl induced velocity field

of the standing vortex. The combinefiexts tilt, stretch and separate the vortices ini-
tially belonging to a coherent streak pattern, into smalled less coherent structures.
These structures are convected towalftledent paths and entrained into the cavity or
ejected out of the cavity in a higher free-stream velocitiglfidepending on stochastic
variations in their starting initial condition as they fowwer the cavity leading edge.
The induced velocity of a streak pair approaching the cayitstream edge was mod-
elled with inviscid potential-flow theory. This simple mddaes found to qualitatively
predict the visible tilt of the hairpin vortex heads in thestrpam region of the cavity
enclosure, which acts as the trigger for the Kelvin-Helntgge convected instability.
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The process of mass injection and ejection into and out afdkieey was further appre-
ciated in flow visualizations obtained by tRecriterion, where intermittent mass flow
is generated as result of the opposite actions of vortigity strain regions containing
the turbulent scales.

The velocity auto-correlation analysis allowed to invgste the evolution of the tur-
bulent structures across the cavity opening and to relatedlue of the longitudinal
velocity correlation function to the space-time propertod turbulence and to corre-
sponding noise sources (Lilley, 1996). In the cavity ugstieegion the streak spac-
ing becomes irregular. This leads to a reduction in the kodgnal velocity two-point
correlation which, according to Lilley (1996), is expecteduce the emission of the
sound generated aerodynamically. A greater spanwise @atelin the rearmost por-
tion of the cavity is counteracted by the presence of straggtively correlated veloc-
ity fluctuations. This is expected to generate a dipole-tlipectivity in the transverse
direction.

The absence in the power spectral density analysis of glethtifiable spectral peaks
above the broadband level suggested that no tonal ingyaisifpresent in the flow. A
lower average power spectral density was registered ineiiem near the cavity for-
ward facing step, than the one contained in the rear regigheotavity. This con-
firms the convection amplification across the cavity of thelesrelated to the turbu-
lent scales contained in the approaching thick boundamgriayhe broadband noise
by Kelvin-Helmotz type convective amplification mechanisnthick boundary layer
cavity flow differs from the Rossiter mode tonal noise, which results frarsétective
amplification in a cavity flow of one or two main frequenciestlire kinetic energy
spectrum of a thin incoming boundary layer.

The detailed understanding of the flow dynamics of the inktyabmplification mech-
anism and its relationship with the noise sources in a célatywith a thick boundary
layer represents a contribution to the advancement of dte-sf-the-art in this field.
The level of detail in space and time of the predictions otadiby the LES compu-
tation enhanced the understanding of the cavity flow phytsicke case of relatively
low values ofL/6 at low Mach numbers. The PIV experiments of Haigermeatexl.
(2008,2009) have shown the concurrence of vortical andamahddistributed struc-
tures in the shear layer, but were limited by the low acgoisitate, the wall light
reflection and the lower spatial resolution of the uniforrl Réctor grid, as compared
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to the non-uniform numerical mesh. In the present work it p@ssible to understand
the process of creation and evolution of these structuressathe cavity opening,
from the initial condition of coherent streak patterns &aghing the cavity leading
edge. Amplification of the incoming turbulent scales enargpdes across the cavity
opening by Kelvin-Helmotz type convective amplificationeghanism was shown for
cavity flows with a thick inflow, as opposed to the selectiveghlfication mechanism

of cavities with a thin boundary layer inflow. Evidence ofsttmechanism was pro-
vided by investigating the flow dynamics of the resolved es@h space and time by
LES. The results also explaines the intermittent behawabuonass injection and ejec-
tion inside and outside the cavity and the related pressucefition along the cavity
walls, which are mainly responsible for noise emission.

6.4 Future Work

Further research is required to advance the state-of-tHenawledge on the genera-
tion and propagation of noise generated aerodynamicattgvities with thick bound-
ary layers. This enhanced understanding, enabled by the &fgbbach, could be
of significant help towards reducing automotive noise einiiskevel and enhance the
driver’'s comfort. Toward this direction, the far-field peagation of the near-field noise
sources identified in the present work can be studied by éicarglogy.

Rona & Spisso (2007) and Ghillani (2012) have been devetpaihigh-order finite-
difference scheme as an upgrade of the flow solver used in this Whekhigh-order
method allows to reduce dispersion and dissipation ernorstmictured meshes com-
pared to the second-order accuracy of the scheme used iwahks The high-order
method could be used to model, at the equivalent computdtemst of the LES of the
present study, a computational domain including the caneiyr field and up to a few
acoustic wavelengths of the lowest relevant spectral band.

The cavity flow model developed in this thesis can be extetaladange of cavity ge-
ometries and flow regimes. The results obtained could betogserform a sensitivity
analysis of the quantitative results in this thesis on theggry and flow conditions.
Another important challenge is to control the physical nagsm of momentum trans-
fer into and out of the cavity identified in this thesis, by by passive control
devices. An experimental PIV study on passive cavity flowtadrwas conducted
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by Vesely (2009). Ofterent flow devices like fences, ramps, spoiler, and rods were
selected to suppress the momentum transfer into and oué @ity and the associ-
ated noise radiation. A numerical investigation could qomtihe experimental results
as well as giving an insight into the physics dfeetive noise suppression devices.
The space and time resolution of the LES or DNS computationgdcimprove the
understanding of the flow mechanisms that influence the flalasons, their ampli-
fication, the noise sources, and cavity drag reduction,deiio improve the geometry
of passive flow control devices for real-life engineeringlagations.

Alternative HPC techniques such as MPI - Open MP hybrid algms, that lends to
less tuning and customization than the RDD MPI algorithnul@doe further investi-
gated in a computational research framework for future work
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Appendix A

Asymptotic matching of the inner and
outer velocity profiles

To describe the mean velocity profile in a turbulent boundiygr, similarity solutions
are sought in the inner and the outer regions. In the innéomethe mean streamwise
velocity u scales with the wall friction velocity, and with the viscous length scale
| = v/u,, so that

u +
e f(y") (A1)

wherey* = yu,/v, is the inner scaling non-dimensional wall-normal distarineuter
region, the velocity profile is described by the velocityeizfiaw

U, — U
Uy

= f(n) (A.2)

wheren = y/é is the outer scaling non-dimensional wall-normal distangeis the
free-stream velocity is the laminar kinematic viscosity,is the wall-normal distance
and¢ is the boundary layer thickness, which is taken as the watal distance at
whichu = U.

Based on the existence of an overlap region between the amiethe outer regions,
Coles (1956) proposed the following additive law of the veadd law of the wake in
non-dimensional form:

ut = }Iny++ B+ Ef @)
K K
f (n) = 1 - cos(nn) (A.3)
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PROFILES

whereu* = u/u, is the normalized streamwise velocily,s the wake parameterthe
von Karman constant, ari8lthe logarithmic law constant.
The wake parameter was determined (Coles, 1956) as

I = «/2(uf, - ' InRe - B) (A.4)

whereRe = éu,/v, is the boundary layer Reynolds number arfd = u./u. is the
normalized free-stream velocity.
Let

f () = Avr” + Aa® (A.5)

be a cubic polynomial approximation tb(n) in Equation (A.3). Substituting the
boundary conditions

Uly—s = Ueo (A.6)
and 5
u
—| =0 A7
s (A7)

in Equation (A.3), withf () from Equation (A.5), givesA; = 6[1+ 1/(6I1)] and
A, = —4[1 + 1/(411)], with IT defined by Equation A.4. The law of the wake of Equa-
tion (A.3) then becomes

Log-law of the wall

1 1 IT
ur=  Zlny"+B +E"2 (1-n) +2—n*(3-2p) (A.8)
K K
Pure wall flow Pure wake component

To evaluate Equation (A.8), the following parameters akertax = 0.41 andB = 5.0.
Equation (A.8) is validated over a relatively wide range @fmentum thickness based
Reynolds numbeReg = u..0/v, in the work of Rona & Monti (2012).
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Appendix B

Relationship between spectral width
and grid density

Further considerations are required to express the rekdtip between the maximum
wavenumberk; nax, and the minimum grid spacingX; min.

Given a generia" order numerical scheme, the modified wavenun@ax) ap-
proximates in the discrete computational domain the nomedsional wavenumber
kAX in the continuous space. The accuracy of a numerical methedr@us scales
is illustrated by its ability to approximate the derivatota single Fourier mode*
(Moin & Mahesh, 1998).

Modified wavenumber curves are plotted in Figure B.1.(a)n@merical schemes of
different ordem, where the continuous straight line corresponds to the mawber
relation for an exact diierentiation. The minimum number of points per wavelength,
PPW, that are required to resolve a given wavenumber is associatthe maximum
acceptable relative errde(kAx)| from the spatial discretization (Colonius & Lele,
2004). Figure B.1.(b) shows(kAx)| for numerical schemes offiierent orden.

K(kAX) — KAX

e(kAX) = X

(B.1)

Let 5% be a representative maximum relative error acceptedtypical engineering
application. From Figure B.1.(b), the intercept of thgkAX)| = 5E — 2 line with the
error distribution for each scheme determinesRR&\. Table B.1 shows the results for
the more commonly used finiteftkrence schemes.
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Table B.1: Point per wavelengtRPW) required for a maximum absolute relative error
le(kAX)| = 5% for various finite diference schemes.

‘ Scheme ‘ PPW||8(|<AX)|:5%
2"9 order Explicit 10.3
4™ order Explicit 5.8
6" order Explicit 41
4™ order Compact 4
6™ order Compact 2.9

On uniform meshes, the schel®PW links the minimum wavenumber resolved with

the uniform mesh size by
2n

PPW/(AX;min) (®2)

j,max =

Most simulations, however, use mesh stretching functiotsthese needs to be ac-
counted for to determinie, max.

Given a uniform grid in a generic directignthe uniform spacing variable is:
G=(0-1/(1-1),i=1,..1 (B.3)

wherei is the spatial index of the mesh point ahd the total number of points in
the stretching direction. The clustered point coordinatesobtained by applying a
stretching functiors = s(&) such that 0< s(¢) < 1, to generate the point coordinate
in the arc length parameten(&). Examples of common clustering functions used in
past cavity CFD works are the exponential stretching (EqudB.4)), the hyperbolic
tangent (Equation (B.5)) and the Gaussian (Equation (Bt6@jching functions:

et -1

x(£) = =_1 (B.4)

B tanhc (¢ — 1)/2
X =1+ ~anhgz (B.5)
X(§) = HGTH@ (B.6)

where c is the stretching factor d@eient.
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From Equations (B.4) and (B.6), the minimum grid spacingite\x; min = X (&) li=1
and the minimum wavelengthjmin = X(&)li-ppw. It follows that, on a stretched
conformal structured mesh the maximum wavenumber resaluetkrically in theg-

direction is o o
Ki max = = B.7
HIET dimin X&) lizppw B.7)
In the case of a uniform grid Equation (B.7) reduces to:
2 2n 2n
kj,max = (B'8)

Ajmin - PPW(AXj,min) - PPWX(&) li-1

The number of mesh points required to simulate a structutengfht ; max in the j-
direction depends on the grid spacitug;. The highesN ; requiremenﬁ:j is obtained
when the grid spacing is uniform and is:

—_ /lj,max

ch

= B.9
1= A (B.9)

If a clustering function is adopted, such as in the large aiglayradient region near
the solid walls, the number of mesh points required becomeghramaller and can be
expressed through a functiondl| (s, (¢), 52 (¢) , ..., sn (€)) that consider the flierent
stretching functions adopted along the domain in the doegt
/l.
N.: = —max B.10

C,) ij’mlnsj ( )
However, if an average mesh spacim_gj for the firstPPW points is considered, it
is possible to obtain uniform mesh equivaléyt; for the stretched mesh case. From
Eq. B.8,

AXJ' -PPW= /lj,min (Bll)
which gives a general relationship betwedyy andN:

DS; N

- d_ - (B.12)
PPWAX; PPW

Nd,j
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Legend
T o—
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Figure B.1: (a) Modified wavenumber curves (continuousigittaine: exact difer-
entiation). (b) Minimum number of points per wavelength WPRssociated to the
maximum acceptable relative errfetkAx)| from the spatial discretization. Legend,
scheme order, EX: Explicit, C: Compact, DRP: DispersiomaRen-Preserving Finite
Difference Tam & Web (1993), LUI: Pentadiagonal compact Lui &eL(@001)
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