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The flow dynamics of a rectangular cavity with a thick incoming boundary layer at low

Mach numbers is investigated by Large Eddy Simulation (LES)and parallel CFD, as a

simplified model of automobile bodywork recesses.

The cavity inflow is generated by means of synthetic stochastic time-dependent meth-

ods in a precursor simulation, in order to identify and analyze quantitatively the streaks

in the spatially developing boundary layer approaching thecavity.

In the cavity flow model, no self-sustained oscillation is found, due to the high value

of the boundary layer thickness. The influence of the approaching boundary layer

turbulent scales on the cavity instabilities is examined. The intermittent cavity flow

behaviour is related to the injection and ejection of vortexstructures across the cavity

opening and downstream edge. The space and time resolution of the LES enables to

identify the flow dynamics of vortical instabilities and of the three-dimensional struc-

tures in the cavity shear layer. Cavity noise sources are identified by correlation and

spectral analysis. In the upstream region of the cavity, thestreaks break down into

smaller and less coherent structures, as shown by the reduction of the integral length

scale. In the rearmost region of the cavity, a spanwise negative velocity correlation is

interpreted as a dipole-type noise source, which is likely to reduce the radiated noise

level with respect to a two-dimensional cavity flow. The velocity spectra show broad-

band amplification of modes related to the dominant scales inthe cavity, as opposed to

the selective mode amplification of cavities with a thin boundary layer inflow.

A novel multivariate non-dimensional analysis of the CFD parameters is presented, that

explicits the modelling process for a cavity flow test case. This is used for estimating

the simulation cost and the spatial and temporal resolutiontrade-off in the cavity flow

simulation.
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Holly. They are the everlasting picture of serenity in my mind.

iv



Contents

Acknowledgements iii

List of figures xi

List of tables xii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Cavity flows . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Large Eddy Simulations review . . . . . . . . . . . . . . . . 9

1.4.3 Time-dependent inflow conditions for Large Eddy Simulations 11

2 Numerical methods 14

2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Direct numerical simulation . . . . . . . . . . . . . . . . . . 14

2.1.2 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . 15

2.2 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Temporal integration . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Parallelization strategy . . . . . . . . . . . . . . . . . . . . . . . . .27

v



CONTENTS CONTENTS

3 Numerical model design 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Turbulent flow sizing . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Cavity flow sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Spectral width . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Discretization cost . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Simulation complexity . . . . . . . . . . . . . . . . . . . . . 41

4 Cavity inlet 45

4.1 Flow conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Computational domain geometry and mesh . . . . . . . . . . . . . .46

4.3 Boundary conditions and starting flow conditions . . . . . .. . . . . 46

4.4 Parallelisation performance . . . . . . . . . . . . . . . . . . . . . .. 47

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Computational mean velocity profile . . . . . . . . . . . . . . 49

4.5.2 Results validation . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.3 Unsteady flow . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.4 Unsteady flow statistics . . . . . . . . . . . . . . . . . . . . . 57

5 Cavity flow 60

5.1 Flow conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Computational domain geometry and mesh . . . . . . . . . . . . . .61

5.3 Boundary conditions and starting flow conditions . . . . . .. . . . . 63

5.4 Parallelization performance . . . . . . . . . . . . . . . . . . . . . .. 64

5.5 Numerical model design predictions . . . . . . . . . . . . . . . . .. 66

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6.1 Mean flow field . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.2 Mean flow statistics . . . . . . . . . . . . . . . . . . . . . . . 74

5.6.3 Unsteady flow field . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.4 Unsteady flow statistics . . . . . . . . . . . . . . . . . . . . . 89

5.6.5 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



CONTENTS CONTENTS

6 Conclusion 93

6.1 Designing and costing cavity flow CFD models . . . . . . . . . . .. 93

6.2 Cavity thick inflow boundary layer by LES . . . . . . . . . . . . . .94

6.3 Three-dimensional rectangular cavity model . . . . . . . . .. . . . . 95

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Asymptotic matching of the inner and outer velocity profiles 100

B Relationship between spectral width and grid density 102

References 120

vii



List of Figures

1.1 Sketch of apseudo-two dimensionalcavity (a) andthree dimensional

cavity (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 turbulent free shear layer visualization . . . . . . . . . . . .. . . . . 7

2.1 Region of stable operation of a second-order TVD scheme,from Sweby

(1984). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Limiter functions MinMod, Superbee, and Sweby (β = 1.3 andβ =

1.6). For all limitersφ(r < 0) = 0 andφ(r > 2) = φ(r = 2) . . . . . . . 23

2.3 Independent blocks of the cavity model computational domain. . . . . 25

3.1 Modelling and discretisation process of a turbulent flow. . . . . . . . 30

3.2 Spectral width of cavity-flow simulations versusReL for different tur-

bulence models (� 3D and pseudo-3D DNS;� 2D DNS;NWR-LES;

△WM-LES; � DES;^WM-DES). . . . . . . . . . . . . . . . . . . . 36

3.3 Grid density versusReL for different turbulence models.� 3D and

pseudo-3D DNS;� 2D DNS; N WR-LES; △ WM-LES; � DES; ^

WM-DES; continuous lines: isolines ofC2 slopeRe0.4
L (DES, WM-

LES); dotted lines: isolines ofC3 slopeRe2.6
L (DNS); dashed-dotted

lines: isolines ofC4 slopeRe1.8
L (WR-LES). . . . . . . . . . . . . . . 40

3.4 Normalized simulation cost versusReL for different turbulence models.

� 3D and pseudo-3D DNS;� 2D DNS;N WR-LES;△ WM-LES; �

DES;^WM-DES; continuous lines: isolines ofC2 slopeRe0.54
L (DES,

WM-LES); dotted lines: isolines ofC3 slopeRe3.6
L (DNS); dashed-

dotted lines: isolines ofC4 slopeRe2.4
L (WR-LES). . . . . . . . . . . . 43

viii



LIST OF FIGURES LIST OF FIGURES

4.1 Boundary layer LES with a single block mesh of 1× 106 cells, scala-

bility performance test on SP6 IBM cluster. (a) Speed-upSP and (b)

parallelisation efficiencyµP (b) for different numbers of processorsNP. 48

4.2 Non-dimensional time-averaged velocity profiles of thezero pressure

gradient spatially developing boundary layer at four different stream-

wise stations, using the (a) Superbee and (b) the Minmod limiters

by Roe (1986). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Non-dimensional time averaged velocity profiles of the zero pressure

gradient spatially developing boundary layer at four different stream-

wise stations, using the Sweby (1984) limiter withβ = 1.3. . . . . . . 52

4.4 Comparison of the LES non-dimensional time-averaged velocity pro-

files versus analytical and experimental profiles . . . . . . . . .. . . 53

4.5 Detail of the inner (a) and outer (b) time-averaged streamwise velocity

profiles from LES, experimental, and analytical models. . . .. . . . . 54

4.6 Streaks aty+ = 15 slices by isocontours of streamwise velocity (flood

+ lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Isocontours of vortical structures byQ-criterion atQ = 2.5 × 106.

Incremental time between two successive frames∆t = 1 inlet flow

through times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Time-averaged auto-correlation of (a) streamwise velocity perturba-

tionsu′ and (b) flow-normal velocity perturbationsv′ aty+ = 40 above

the flat plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Cavity-flow computational domain and detail of the cavity recess. . . 62

5.2 Scalability and parallelisation performance of a four block 3.6 × 106

cells LES cavity model on the HPC Intel cluster Alice and IBM SP6.

(a) Speed-upSP and (b) parallelization efficiencyµP versus the number

of processorsNP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 A priori estimate of the cavity-flow simulation spectral width. Symbols

as in Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Analysis of the cavity-flow grid density. Symbols as in Figure 3.3. . . 68

5.5 Analysis of the cavity-flow grid density. Symbols as in Figure 3.3. . . 69

ix



LIST OF FIGURES LIST OF FIGURES

5.6 Mean field visualizations in the vertical x-y plane. Streamwise velocity

vector profile from (a) LES, and (b) PIV experiments by Haigermoser

(2009). Velocity streamlines from (c) LES, and (d) PIV experiments

by Haigermoser (2009). . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Mean field visualizations in the horizontal y-z plane aty/H = −0.5.

Velocity streamlines from (a) LES and (b) PIV experiments byHaiger-

moser (2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Normalised shear layer vorticity thickness as a function of streamwise

coordinatex/H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Non-dimensional time-averaged streamwise velocity profiles at differ-

ent streamwise locations, across the rectangular cavity opening. . . . . 74

5.10 Two-point spatial correlation functionρu′u′ computed at three reference

points from the LES and PIV time-resolved velocity data. (a)LES,

yre f/H = 0, xre f/H = 0.6. (b) PIV,yre f/H = 0, xre f/H = 0.6. (c) LES,

yre f/H = 0, xre f/H = 2. (d) PIV, yre f/H = 0, xre f/H = 2. (e) LES,

yre f/H = 0, xre f/H = 3. (f) PIV, yre f/H = 0, xre f/H = 3. Contours

with constant increments of∆ρu′u′ = 0.1. . . . . . . . . . . . . . . . . 75

5.11 Two-point spatial correlation functionρv′v′ , computed at three refer-

ence points from the LES and PIV time-resolved velocity data. (a)

LES, yre f/H = 0, xre f/H = 0.6. (b) PIV, yre f/H = 0, xre f/H = 0.6.

(c) LES,yre f/H = 0, xre f/H = 2. (d) PIV, yre f/H = 0, xre f/H = 2.

(e) LES,yre f/H = 0, xre f/H = 3. (f) PIV, yre f/H = 0, xre f/H = 3.

Contours with constant increments of∆ρv′v′ = 0.1. . . . . . . . . . . . 77

5.12 Time-averaged pressure coefficientCP from (a) LES, and (b) PIV ex-

periments by Haigermoser (2009). . . . . . . . . . . . . . . . . . . . 78

5.13 Experimental PIV spanwise vorticityωz fields on the vertical x-y plane

from Haigermoser (2009). . . . . . . . . . . . . . . . . . . . . . . . 79

5.14 Spanwise vorticityωz distribution from LES on the vertical x-y plane at

increasing computational times. Time increment between two frames

is∆t = 0.1 of the cavity-flow through time. . . . . . . . . . . . . . . 81

5.15 Time sequence of wall-normal vorticityωy distribution from LES at the

horizontal x-z planey/H = 0.05. Incremental time between successive

frames∆t = 0.1 of the cavity-flow through time. . . . . . . . . . . . . 84

x



LIST OF FIGURES LIST OF FIGURES

5.16 Potential-flow description of a streak pair above the upstream cavity

bulkhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.17 Time-sequence of wall-normal vorticityωy distribution from PIV on a

horizontal x-z plane, from Haigermoser (2009). . . . . . . . . . .. . 86

5.18 Snapshot ofQ-criterion iso-vorticity surface atQ = 1.2E + 09, and

streamwise velocity slice in the x-z plane. LES computationat time

T = 3 flow through times. . . . . . . . . . . . . . . . . . . . . . . . . 87

5.19 Snapshot of absolute vorticity iso-surfaces and streamwise velocity

slice in the x-z plane. PIV experiments from Haigermoser (2009).

Ue = U∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.20 Vortex identification by theQ-criterion. Time sequence of iso-contours

at Q = 3.3E + 08 andQ = −3E + 09. The incremental time between

two successive frames∆t = 0.1 cavity-flow through times. . . . . . . 88

5.21 Time-averaged auto-correlation of streamwise velocity perturbations

u′ at y+ = 15 and streamwise coordinates (a)x/H = 0.4, (b) x/H = 2,

and (c)x/H = 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.22 TKE Power Spectral Density at coordinatesx/H = 1.4, y+ = 80,

z/W = 0.5 (continuous line), andx/H = 2.7, y+ = 80, z/W = 0.5

(dashed line) from LES. . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1 (a) Modified wavenumber curves (continuous straight line: exact dif-

ferentiation). (b) Minimum number of points per wavelength, PPW

associated to the maximum acceptable relative error|ε(k∆x)| from the

spatial discretization. Legend,n: scheme order, EX: Explicit, C: Com-

pact, DRP: Dispersion-Relation-Preserving Finite Difference Tam &

Web (1993), LUI: Pentadiagonal compact Lui & Lele (2001) . . .. . 105

xi



List of Tables

2.1 Synthetic inlet forcing parameters for Equation (2.46). . . . . . . . . 27

3.1 Mesh size to viscous length ratio for cavity-flows: rangeof values

obtained from published work. . . . . . . . . . . . . . . . . . . . . . 36

3.2 Number of points per cubeN3
0 for wall-modelling cavity-flows simu-

lations: range of values obtained from published work and suggested

values for optimization analysis. . . . . . . . . . . . . . . . . . . . . 38

3.3 Cavity flow simulations used in Figure 3.2 to 3.4. . . . . . . .. . . . 44

5.1 Cavity-flow conditions and geometrical parameters. . . .. . . . . . . 61

5.2 Cavity model computational domain dimensions and grid density. . . 62

B.1 Point per wavelength (PPW) required for a maximum absolute relative

error |ε(k∆x)| = 5% for various finite difference schemes. . . . . . . . 103

xii



Nomenclature

Roman characters

A Integration constant for the outer region velocity profile

B Logarithmic law constant

C Courant number

c Speed of sound

C f Skin friction coefficientC f = τw/0.5ρU2
∞

Cost Simulation complexity

Cs Smagorinsky coefficent

D Cavity depth

d Distance from the nearest wall

DS Computational domain length

e Internal energy

e0 Total energy

F Inviscid fluxes

f Characteristic frequency

f = 0 Function describing the integration surface

h Enthalpy

H ( f ) Heavy-side function,H ( f ) = 0 for f < 0 andH ( f ) = 1 for f ≥ 0

I Identity matrix

xiii



LIST OF TABLES LIST OF TABLES

k Wavenumber

k̄ Average turbulent kinetic energy

kmax Cut-off wave number

kT thermal conductivity

L Cavity length

ls Subgrid length scales

M Mach number

m Synthetic mode order

n Unit outward normal vector tof = 0

NRK Runge-Kutta order

Nc Number of mesh points/cells

Nd Spectral widthNd := kmax/kmin

NP Number of processors

p Pressure

p′ Pressure fluctuation,p′ = p− p∞

Pr Prandtl number

q Heat flux vector

Q Second invariant of the velocity gradient tensorQ = −0.5∇U : ∇U

qt Turbulent heat flux vector

r Ratio of successive gradients

Re Reynolds number,Re= u∞L/ν

rτ Average non-dimensional mesh spacing near walls

S Rate-of-strain tensor

s Entropy

SP Speed-up onNP processors

xiv



LIST OF TABLES LIST OF TABLES

S t Stroual number,S t= f L/u∞

t Reynolds stress tensor

T Absolute temperature

T0 Scalar operation time on single processor

T Lighthill stress tensor with component

TP Parallel operation time onNP processors

U Conservative variable vector

u Fluid velocity vector

v Source surface velocity vector

W Cavity span

Greek characters

β Sweby limiter parameter

δ ( f ) Dirac delta function

∆ Cut-off filter width

δ Boundary layer thickness

ǫ Mesh stretching ratio

η Outer layer non-dimensional coordinate,η = y/δ

ηK Kolmogorov length scale

γ Specific heat ratio

Λ Integral length scale

λ Wavelength

ν Kinematic viscosity

Ω Vorticity tensor,Ω = 0.5(∇U − (∇UT))

ω Wave angular frequency

φ Flux limiter function, limiting the gradient ratio:φ(r)

xv



LIST OF TABLES LIST OF TABLES

Π Wake parameter

ρ Density

ρ′ Acoustic density fluctuation

τ Viscous stress tensor

θ Momentum thickness

Superscripts

(̄) Time average

· Time derivative of

+ Inner layer scaling

′ Fluctuation about the time-mean value

T Transpose operator

Subscripts

b Boundary cell or ghost cell

c cavity domain parameter

i Variable number

∞ Free stream condition

inl cavity inflow domain parameter

j Generic direction in space

out cavity outflow domain parameter

phy First interior cell

ret Quantity evaluated at retarded time

0 Stagnation condition

w Wall condition

x Observer reference system

y Source reference system

xvi



LIST OF TABLES LIST OF TABLES

Other Symbols

D
Dt Material derivative of,DDt := ∂

∂t + u · ∇

∆t Time step

δV Cell volume

δv Vorticity thickness

: Tensor scalar product

⊗ Dyadic product

µl Dynamic viscosity

µP Parallelization efficiency

µt Eddy viscosity

∇ Gradient operator

ρu′u′ Two-point spatial correlation function of the genericu′ velocity fluctuations

Ruu Two-point auto-correlation function of the genericu velocity component

u+ Normalized velocity,u+ = u/uτ

uτ Friction velocity,uτ =
√
τwall/ρ

Acronyms

CFD Computational Fluid Dynamics

DES Detached Eddy Simulation

DNS Direct Numerical Simulation

FT Flow trough (time)

HPC High Performance Computing

LDV Laser Doppler Velocimentry

LES Large Eddy Simulation

PDE Partial Differential Equations

PIV Particle Image Velocimetry

xvii



LIST OF TABLES LIST OF TABLES

PPW Point per wavelength

PSD Power Spectral Density

RANS Reynolds Averaged Numerical Simulation

RDD Recursive domain decomposition

SDD Single domain decomposition

SFS Sub-filter Scales

SGS Sub-grid Scales

SMT Simultaneous Multithrading

SPL Sound Pressure Level

TDSS Time-Dependent Synthetic Stochastic

TVD Total Variation Diminishing

WM-LES Wall modelled Large Eddy Simulation

WR-LES Wall resolved Large Eddy Simulation

xviii



Chapter 1

Introduction

1.1 Context

The development of Computational Fluid Dynamic algorithmsfor aeroacoustic appli-

cations has grown rapidly during the last two decades due to arising interest in aero-

dynamic noise phenomena, driven by public demand for quieter vehicles and a more

silent and comfortable travel experience (ICAO, 2005; UK Department for Transport,

2003). The industrial, aeronautical and automotive communities have shown a grow-

ing interest in simulating and controlling the noise generated by unsteady turbulent

flows like cavity flows. While precision laser cutting and computer aided manufactur-

ing (CAM) has improved the quality of the vehicle outer shell, some gaps in the surface

are unavoidable, for instance, to allow the opening of doorsand hatches. The flow un-

steadiness past these gaps increases aerodynamic drag, structural vibration and cabin

and airframe noise, leading to a reduced passenger comfort.Rectangular cavities with

an approaching thick boundary layer have been used as a simplified geometry test-

case to model the noise and drag from automobile bodywork recesses by FIAT. Cavity

flows with a valueL/θ < 80 are defined as thick boundary layer cavities. Haigermoser

(2009) studied by tomographic PIV a rectangular cavity to replicate the investigation

of a real automobile cavity conducted by Ribaldoneet al.(2005). In this configuration,

at a typical highway cruise speed (140 Km/h), the cavity amplifies the energy modes

throughout in the incoming boundary layer structure. The unsteady flow interaction

with the cavity walls radiates noise to the far-field. Haigermoser (2009) showed that

this mechanism differs from the traditional Rossiter instability mode, typical of cavities

1



1. INTRODUCTION 1.1 Context

with a thin inflow boundary layer, and requires resolving theeddies in the thick inflow

inner sub-layer to capture their amplification across the cavity opening. A conventional

Reynolds Averaged (RANS) approach to model the complex turbulent structures em-

bedded in such a flow is not feasible, as the essential flow physics depends on resolving

the inflow disturbances that generate noise by interaction with the cavity walls.

Unsteady Reynolds Averaged (URANS) approach requires the separation of energy

length scales between the unresolved motion by URANS and thebackground of ran-

dom noise modelled by the turbulence closure model. This approach was therefore not

appropriate for this application, due to the absence of a spectral peak over a background

of low energy in the spectra of a cavity with a thick boundary layer.

The turbulent scales can be resolved with a Large Eddy Simulation (LES) or a Di-

rect Numerical Simulation (DNS) that can run only on High Performance Computing

(HPC) platforms, given the stringent mesh requirements near the solid walls. From

a computational point of view, one of the main challenges forCFD in HPC is to use

efficiently the parallel architecture by accessing the CPU resources in an efficient way.

To do so, an accurate forecast of the simulation computing costs and cluster load is re-

quired. Furthermore, a successful model of a cavity flow involves reproducing the flow

physics with adequate accuracy, given the available computational resources. These

two issues can be tackled simultaneously by sizing the CFD problem via dimensional

analysis, separating the effects of the geometry of the enclosure, the boundary layer

resolution, the turbulence model and the numerical scheme order of accuracy. This

analysis, presented by the author in the body of the thesis, is a useful tool to obtain de-

sign trade-offs by a multivariate optimization in cavity flow CFD and for estimating the

order of magnitude of the computational resources requiredby the simulations (Rona

& Monti, 2011).

The generation of unsteady inflow data for spatially developing turbulent flows is an-

other challenge that must be addressed to enable the application of LES to cavity flows

with thick boundary layer. Since in LES the unsteady energy-carrying eddies are re-

solved, the velocity field specified at the inflow of the computation domain should rep-

resent the contribution from the turbulent structures embedded in the incoming bound-

ary layer. Without this information at the inflow, turbulenteddies are generated from a

condition that is either absent or incorrect, and the results of the predictions cannot be

expected to be accurate.
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1.2 Aims and objectives

Although a rectangular cavity geometry is fairly simple, the flow it generates hosts a

broad range of fluid dynamic phenomena, like an unsteady shear layer developing from

the leading edge, vortex shedding, re-circulation zones and the amplification of flow

instabilities. The latter is particularly important for cavity flow with a thick incoming

boundary layer, where the amplification of the boundary layer instabilities constitutes

an important noise source. Haigermoseret al. (2008) investigated by PIV a rectangu-

lar cavity with a thick subsonic inflow boundary layer. The investigation shows the

presence of discrete scales in the cavity, which alters the growth of the shear-layer that

spans the cavity opening with respect to a classic equilibrium turbulence shear layer,

implicit in a two-equation turbulence closure model. The shear layer growth rate in-

fluences the mechanisms of momentum transfer into and out of the cavity, which is

important for cavity noise generation (Zhanget al., 1998), as well as for convective

heat transfer.

The main aim of this thesis is to investigate by CFD the dynamics of a length to depth

ratio L/D = 4 cavity flow with a thick incoming boundary layer (δ/D ≃ 2.2) at low

mach numbers (M ≈ 0.126). LES and time dependent inflow conditions (Pirozzoli

et al., 2008; Sandhamet al., 2003) are presented and the numerical model predictions

are compared with experimental results from Haigermoseret al. (2008). LES enables

the study of the full three-dimensional flow and of the dynamics of turbulent structures

in space and time with a level of detail that is difficult to obtain with experimental tech-

niques. In fact, conventional PIV is not sufficient to resolve in time the evolution of

the cavity flow structures, mainly due to the relatively low acquisition rate of the con-

ventional PIV measurements. Time-resolved PIV techniquesare becoming available

for acquiring in-plane velocity fields in the kHz range. A greater temporal resolution

is offered by Laser Doppler Velocimetry (LDV), which is however limited to single-

point measurement and requires phase averaging to generatespace and time velocity

maps. As the rectangular cavity flow instability and shear layer structures evolve both

in space and time, numerical modelling by LES was selected asthe most appropriate

investigative approach for the unsteady flow past a rectangular cavity, in agreement

with the simulation cost forecast provided by the multivariate dimensional analysis

model.
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The CFD work of this thesis aims to produce corroborative numerical evidence of the

turbulent instabilities amplification mechanism for thickboundary layer cavity flows.

To date, only experimental evidence has been published in literature by Haigermoser

et al. (2008).

The objectives to pursue this final aim are:

1. To explicit the modelling process for a cavity flow test case through a multivari-

ate dimensional analysis model of the CFD parameters (Rona &Monti, 2011).

This model enables to estimatea priori the computational cost and the spatial

and temporal resolution trade-off in cavity flow LES;

2. To set up an optimized LES rectangular cavity flow model to match the experi-

ments of Haigermoseret al. (2008);

3. To optimize the efficiency of the MPI version of the CFD code low-order explicit

scheme to tackle the cavity flow LES test-case;

4. To generate a time-resolved boundary layer inflow by meansof synthetic-stochastic

inflow techniques (Pirozzoliet al., 2008; Sandhamet al., 2003), validating its

mean and time dependent parameters, as well as the predictedflow physical fea-

tures (streaks, structures correlation) against the literature;

5. To investigate the influence of the flow structures produced by the LES inflow

generation techniques on the instabilities in the cavity enclosure;

6. To compare qualitatively the flow structures and validatethe cavity flow mean

velocity field and its statistics against the PIV experiments of Haigermoseret al.

(2008; 2009);

7. Taking advantage of the 3D spatial and temporal resolution of the CFD simula-

tions, to determine the growth rate of individual convectedvortex structures over

the shear layer, and to study their evolution and coherence;

8. To relate the resolved motion of individual vortex structures to cavity noise gen-

eration at the downstream cavity edge, by frequency analysis and correlation

analysis.

4



1. INTRODUCTION 1.3 Thesis outline

The improved understanding of this flow mechanics is an important scientific output of

significant potential impact for industry. Specifically, this research allows to identify

and comprehend the range of fluid dynamics mechanisms that are ascribed for the

noise generation. This offers the opportunity for reducing the time-scales of a typical

industrial design by optimizing the vehicle bodywork cavities for low drag and low

noise at the design stages for an enhanced passenger comfort.

1.3 Thesis outline

This thesis is divided into six chapters. The first chapter introduces the context, the

aims and objectives of this work, and the expected outcomes.The first chapter also

contains a literature review of cavity flow modelling, LES techniques, and time- de-

pendent inflow boundary conditions for LES.

In Chapter 2 the methodology and the numerical techniques adopted are described and

their parallel coding for modern HPC platforms is detailed.Chapter 3 presents the

method for regressing the size and cost of cavity flow test cases. The method is then

used in Chapter 5 to predict the computational cost of the cavity flow simulations.

This method has enabled to make a formal numerical model design of the cavity flow

simulations, which is an innovative contribution of this thesis. Chapter 4 concerns

the spatially developing boundary layer test case that is used as a precursor simulation

to provide the inlet flow for the time dependent LES cavity simulation. Chapter 5

presents the test case of a cavity with a thick inflow boundarylayer. For both models

the computational domain, the parallelisation performance, the numerical predictions

and their comparison against the experimental work of Haigermoser (2009); Haiger-

moseret al. (2008) are presented. Chapter 6 reports the conclusions from this work,

the scientific research achievements, the limitations of the work, and reports the open

issues that could be addressed in future work.
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1.4 Literature review

1.4.1 Cavity flows

Cavities are generally classified according to their streamwise length-to-depth ratio,

L/D, and streamwise length-to-width ratio,L/W. A cavity is said to be deep ifL/D <<

1 and shallow ifL/D >> 1 (Rockwell & Naudascher, 1978), two-dimensional if

L/W << 1 and three-dimensional ifL/W >> 1.

A cavity simulation not including the three-dimensional effect of the trailing vortices

induced by the presence of the cavity side walls is referred as to apseudo-two dimen-

sionalcavity flow simulation. This simulation is usually less computationally demand-

ing than athree-dimensionalcavity flow simulation, which requires grid refinement

near the side walls of the cavity domain. A sketch of thepseudo-two dimensional

cavity flow and thethree-dimensionalcavity flow spatial domains are shown in Fig-

ure 1.1(a) and Figure 1.1(b), respectively.

Cavity flows in which the shear layer spans across the entire cavity are “open ” (Char-

wat et al., 1961). An open cavity flow is characterized by a main re-circulation within

the enclosure and one or two secondary re-circulations on the cavity floor. The flow

separates at the cavity leading edge and reattaches at the trailing edge. In a closed

cavity, the flow separates at the cavity leading edge and reattaches on the cavity floor.

It then separates from the cavity floor further downstream and reattaches on the down-

stream wall. The upstream separation and reattachment points delimit an upstream

region of flow re-circulation.

The high speed flow over an open cavity at certain inflow conditions produces complex

unsteady interactions that generate an intense acoustic radiation. The flow approaching

the cavity separates at the upstream edge, forming a shear layer, as shown in Figure 1.1.

A typical turbulent free shear layer is visualized in Figure1.2. The presence of the

cavity walls influences the shear layer dynamics. The resulting flow comprises of

both broadband small-scale fluctuations, typical of a turbulent shear layer, and discrete

resonances, the frequency and amplitude of which depend upon the cavity geometry

and the external flow conditions. The size range of the turbulent structures in the

near-field region varies from the large-scale structures contained in the shear layer

and within the unsteady re-circulating region inside a cavity to small-scale random

6



1. INTRODUCTION 1.4 Literature review

y

x

U 8z

δ

L
W

D

(a)

y

W

D

L

x

U 8z

δ

(b)

Figure 1.1: Sketch of apseudo-two dimensionalcavity (a) andthree dimensionalcavity
(b).

Figure 1.2: turbulent free shear layer visualization

fluctuations embedded in the approaching boundary layer (Murray & Ukeiley, 2004;

Rossiter, 1964).

The development of turbulent modelling and simulation techniques for cavity flows

has proven to be very valuable to gain an understanding of thegeneration of the main

structures and of the main flow instability processes. Specifically, turbulence models

enabled to investigate the effect of the small-scale random fluctuations on the onset,

growth and saturation of the large-scale instabilities that often characterize a cavity

flow. A comprehensive review of computational and experimental studies on cavity

aerodynamics was conducted by Grace (2001). Several cavityflow predictions were

obtained using RANS turbulence models in the past. RANS was used for its compu-

tational affordability and prediction accuracy in attached flow regions, but generally

failed to capture in full the dynamics of the complex flow structures embedded in the
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separated regions inside and above the enclosure. Techniques such as Direct Numerical

Simulation (DNS) (Bres & Colonius, 2007; Gloerfeltet al., 2002b; Hamedet al., 2001;

Moon et al., 2003; Rowleyet al., 2002; Yaoet al., 2004) and Large Eddy Simulation

(LES) (Changet al., 2006; Gloerfeltet al., 2002a; Larchevêqueet al., 2004a,b, 2007;

Rizzetta & Visbal, 2003; Suponitskyet al., 2005) gave a more accurate representation

of the complex flow in the separated region; however the main constraint, due to their

high computational cost, is their limitation to low Reynolds number flows. DES have

been widely used in cavity flow simulations to combine the good behaviour of RANS

in the attached regions and LES in the separated regions (Arunajatesan & Sinha, 2001,

2003; Arunajatesanet al., 2002; Basuet al., 2005, 2006; Chang & Park, 2004; Hamed

et al., 2003, 2004; Shieh & Morris, 2001). Evidence of the sensitivity of the turbulence

closure approach on the numerical results is given in literature by the works of Basu

and Chang (Basuet al., 2004, 2005, 2006; Chang & Park, 2004).

Colonius & Lele (2004) examined the more recent applications of LES and DNS to

cavity flows and concluded that these techniques can give quality predictions of the

time-averaged statistics, the pressure spectra, and the large-scale structures. A classifi-

cation of the cavity modes based on the non-dimensional parameters was also proposed

by Colonius (2001). At relatively high Mach numbers (0.4 < M < 1.2), the shear layer

mode is driven by an acoustic feedback mechanism due to pressure oscillations gen-

erated from impinging vortical structures at the forward facing step. At lower Mach

numbers, the flow oscillations are not driven by an acoustic feedback mechanism but

by periodic oscillations, which are convected downstream the cavity shear layer and

that cause periodic inflow into and outflow out from the cavity.

Colonius (2001) highlighted the importance of the inflow boundary layer thickness

in determining the oscillating flow modes and mapped the variation of the dominant

mode number with the thickness of the boundary layer at the cavity leading edge,

defined by the ratioL/θ, whereθ is the upstream boundary layer momentum thickness.

Cavity flows with a valueL/θ < 80 are defined as thick boundary layer cavities and

usually show the existence of peaks in the pressure spectra.Specifically, the value

L/θ = 80 was found to be a lower limit for cavity self-sustained oscillations to take

place (Gharib & Roshko, 1987). In recent experiments of a cavity flow at low Mach

number with a thick inflow boundary layer (Haigermoseret al., 2008) was shown that

the flow is highly intermittent, due to the presence of turbulent structures embedded
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in the boundary layer, and mechanisms of regular self-sustained oscillations were not

found, due to the high value of the vorticity thickness of theshear layer in the cavity

opening. This experiment extended the understanding of thecavity flow physics to the

case of relatively low values ofL/θ at low Mach numbers and founds the basis for the

numerical work of this thesis.

1.4.2 Large Eddy Simulations review

Turbulence closure models are used in CFD to obtain a reducedorder model descrip-

tion of the fluid dynamics by windowing the wavenumber spectrum. DNS techniques

resolve the full spectrum of the turbulent scales down the Kolmogorov length scale.

This approach is extremely demanding in terms of time and computational capability

and therefore it is not often available for common CFD applications. To overcome

this limitation of DNS a coarser representation of the scales was introduced in form of

LES.

The application of LES to a turbulent flow involves three separate steps (Ghosal &

Moin, 1995). First, to obtain a coarser level description ofthe scales of motion, a

spatial cut-off filter ∆ is defined to remove the small scales. Sub-grid scales (SGS)

are any scale that is smaller than the cut-off filter width ∆. The resulting equation

that describes the space-time evolution of the large eddiescontains the SGS tensor

that accounts for the effect of the unresolved small scales on the resolved large scales.

The second step is the replacement of the SGS tensor by a model. The final step

is the numerical integration of the equations for the large scales on a numerical grid

small enough to capture the dynamics of the large eddies but much larger than the

Kolmogorov length scale. The process of sizing the numerical simulation is described

in detail in Section 3.2.

The unresolved scales can be subdivided into two groups: theresolved sub-filter scales

(SFS) and the sub-grid scales (SGS). The resolved sub-filterscales represent the scales

with wavenumbers larger than the cut-off wavenumberkmax, but whose effects are

dampened by the filter. Resolved sub-filter scales only existwhen filters that are non-

local in wave-space are used, such as a top hat or a Gaussian filter. These resolved

sub-filter scales can be modelled using filter reconstruction. The numerical resolution

of SFS is outside of the main objectives of this thesis.
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Two classes of SGS models exist: the functional models and the structural models.

The structural models aim at predicting the sub-grid scalesdirectly, rather than recov-

ering their effect on the resolved scales through the use of a forcing term. Functional

models, also called Eddy-Viscosity models, are normally simpler than structural mod-

els, as they focus only on representing the SGS energy cascade by an artificial eddy

viscosity approach. From a physical viewpoint, the effects of turbulent kinetic en-

ergy cascading to higher wavenumbers are lumped into an eddyviscosity term with

a molecular-diffusion-like dissipation of the length scale kinetic energy.These mod-

els are easy to be implemented and able to predict the exact behaviour of the modelled

quantities, but often fail ina posterioritests to evaluate the models ability to accurately

predict the interaction between the modelled and the resolved quantities.

Several SGS models have been developed for turbulence modelling since the first pio-

neering works by Smagorinsky (1963), and Deardorff (1970). The Smagorinsky-Lilly

model (Smagorinsky, 1963) is the first SGS model developed and successfully ap-

plied to an LES simulation. It is a fully viscosity-based model in which the sub-grid

scale viscosityµsgs is function of the rate-of-strain tensorSi j , the densityρ, the fil-

ter width∆, and a model closure coefficient that is constant in space and time, the

Smagorinsky coefficientCs. The main theoretical weakness of the Smagorinsky model

is that it is purely dissipative: the energy flows only in one direction from resolved to

sub-grid scales. This is also the major numerical strength,as it greatly enhances the

numerical stability of the modelling procedure. On the other hand, the presence of the

backscatter energy transport from sub-grid to resolved scales is neglected. Moreover,

the Smagorinsky model requiresa priori knowledge of the flow in order to define the

coefficient Cs, which might not be valid for all parts of the flow in case of complex

flow geometries.

The Wall-Adapting Local Eddy-viscosity (WALE) model by Nicoud & Ducros (1999)

is another viscosity-based SGS model that introduces a nearwall grading functions

that acts as a turbulent kinetic energy limiter. In a preliminary assessment of the cavity

inflow of the work of this thesis it was shown that, as long as the mesh is fine enough

near the solid walls of the computational domain and the velocity profile is monotonic,

then WALE and LES Smagorinsky models give similar results.

The Algebraic Dynamic model by Germanoet al.(1991) is based on the Smagorinsky

formulation of the sub-grid scale viscosity but allows the coefficient Cs to vary in
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space and time. The local calculation ofCs is obtained at each time step by filtering

the flow variables through a test filter and trying to determine the local value of the

model constant at the grid filter. This technique overcomes the limitations of the purely

viscosity based and Smagorinsky models at the expense of an increased computational

cost. The modification of the dynamic model by Lilly (1992) derives the coefficientCs

from a least squares method, making the former version more stable.

A detailed overview of SGS models can be found in Sagaut (2002) and Wagneret al.

(2007). Other popular SGS models are the model based on Re-normalization Group

Theory developed by Yakhotet al. (1992), the Localized Dynamic model by Kim &

Menon (1995), and the Dynamic Global-Coefficient model by You & Moin (2007).

1.4.3 Time-dependent inflow conditions for Large Eddy Simula-

tions

The development of time dependent inflow conditions for spatially developing flow

simulations is a stimulating CFD research field that has followed the application of

DNS and LES to increasingly complex flows. A comprehensive review and compari-

son of the existing inflow condition for LES was published by Keatinget al. (2004).

Since DNS and LES techniques resolve the three-dimensionalenergy-carrying eddies,

the specification of the inflow velocity should represent thestatistical information of

these structures, specifically, the first and second moments, the mode amplitude and the

phase information between modes. Moments and mode amplitudes are relatively easy

to be matched with stochastic methods, while phase information requires additional

effort as this is strongly dependent on the particular type of flow that is modelled.

Early simulations of spatially developing turbulent flows used inflow conditions ob-

tained as a modification of periodic conditions, by the addition of source terms to

transform the governing equations into a self-similar coordinate frame (Spalart, 1988;

Spalart & Watmuff, 1993). A more versatile approach was the recycling-rescaling

method developed by Lundet al. (1998). This method is based on the similarity laws

of an equilibrium turbulent boundary layer: the law of the wall in the inner part and the

defect law in the outer part of the boundary layer. It provides an equilibrium turbulent

boundary inflow of arbitrary thicknessδ, wall shear stressρu2
τ and free stream turbu-

lence intensity. The method consists of extracting at each time-step from a recycling
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station downstream of the inlet the inner and outer layer velocity profiles separately,

and rescaling these profiles according the value ofy+ andy/δ, respectively, to match

inflow target values ofuτ andδ. This provides a complete (inner, outer, logarithmic)

profile at the inlet. Fluctuations are rescaled from the recycling station to produce tar-

get root-mean-square (rms) values at the inlet. The main limitation of this method is

the introduction of “spurious ”periodicity due to the non-physical initial condition of

the flow that is recycled over a long transient. This often leads to a decreased inlet wall

shear stress. Another limitation is that the method can apply only to an equilibrium

boundary layer region that is not always available in complex flows. The recycling-

rescaling method was initially tested for the generation ofthe time-dependent boundary

layer cavity inflow but, as expected, it required a long transient to vanish the “spuri-

ous ”periodicities. Moreover, it was found complex to control in time the values of the

recycling station key parametersuτ andC f . This approach was therefore abandoned.

A modification of this method is to generate an inflow condition by running a sep-

arate precursor simulation of an equilibrium boundary layer flow by use of periodic

boundary conditions and to store at each time step a surface normal plane of data to be

used as inflow condition subsequently (Liet al., 2000). This workaround enables the

control of the integral momentum transport, leading to an improved wall shear stress

at the computational cost of an extra simulation.

Another class of inflow generation methods is based on the generation of synthetic

turbulence. The most basic technique to generate a turbulent inflow is taking a mean

velocity profile with superimposed random fluctuations without any spatial or tempo-

ral correlations. The energy generated is also uniformly spread over all wavenumbers

and the pseudo turbulence is quickly dissipated since the low wavenumbers do not

contain the correct energy ratio. A contribution to the development of such techniques

was initially brought by Leet al. (1997) who detected in the lack of phase informa-

tion of the turbulent eddies a primary source of decaying turbulence. In the work

by Battenet al. (2004), the turbulent eddies were synthesized by the superposition of

sinusoidal modes with random frequencies and wavenumbers,with amplitudes fitting

a prescribed inlet turbulent energy spectrum. In this approach, only low-order statis-

tics were described, leading to a rapid decay of Reynolds stresses. In particular, the

〈v′v′〉 component is under-predicted and the simulation requires an inlet of consider-

able length so that the turbulence production has time to correct 〈v′v′〉 to levels more
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representative of measured values in a turbulent boundary layer. To overcome this

problem, Spille & Kaltenbach (2001) suggested adding a source term to the discretised

governing equations at different control planes in the simulation domain, to reproduce

a target Reynolds stress. Another contribution to the classof synthetic methods is the

work by Jarrinet al. (2006), in which each eddy is represented by specific shape func-

tions of position and time that describes its spatial and temporal characteristics. This

method was able to reproduce specific first and second order one point statistics as well

as auto-correlation functions of the velocity components.

Sandhamet al.(2003) developed a variation of the synthetic turbulence inflow method

for modelling the time-dependent inflow velocity in LES. Thebasic idea is to con-

sider a mean turbulent boundary layer profile with syntheticfluctuations that mimic

the organized motions in the inner and the outer parts of the boundary layer (lifted

streaks and large eddies, respectively). This approach hasbeen extensively tested in

the literature, and shown to yield a fast transition to a fully developed turbulent state.

Li & Coleman (2010) subsequently extended this method to supersonic flows. In or-

der to break any remaining symmetry due to the deterministicspecification of inlet

disturbances, divergence-free random velocity fluctuations with prescribed mean and

maximum amplitude have been added within the boundary layer, following the work

of Pirozzoliet al. (2008).

A combination of the method of Sandhamet al.(2003) with the improvement by Piroz-

zoli et al. (2008) was selected in this thesis to model the spatially developing time-

dependent cavity inflow for its simplicity, robustness and elegance. Given the MPI

structure of the CFD solver, it also improved the computation efficiency for providing

at each time-step a full set of inflow information without requiring any additional run-

ning parameter from the inner computational domain, which should have introduced

MPI time barriers.
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Chapter 2

Numerical methods

2.1 Governing equations

2.1.1 Direct numerical simulation

A non-reactive adiabatic Newtonian flow under no external force is governed by the

time-dependent Navier-Stokes equations:

∂

∂t
U + ∇ · (Fc + Fv) = 0 (2.1)

whereU is the conservative variable vector,F the inviscid flux vector, andFv the

viscous flux vector. These are defined as:

U =



ρ

ρu

ρe0


, Fc =



ρu

ρu ⊗ u + pI

ρu (e0 + p/ρ)


, Fv =



0

−τ

−τ · u + q


(2.2)

whereu is the fluid velocity vector with Cartesian componentsui, e0 is the total energy,

e is the internal energy,p is the static pressure,ρ is the density,h = e+ p/ρ is the

enthalpy,q is the conductive heat flux vector,τ is the viscous stress tensor,⊗ is the

dyadic product, andI is the identity matrix. In Equation (2.2), the rows relate tothe

conservation of mass, momentum, and energy, respectively.
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The total energye0 is related to the fluid temperatureT and velocityu by

e0 =
1
γ − 1

RT+
1
2

u · u (2.3)

R being the specific gas constant. In this work, air is assumed aperfect gas and tem-

perature, pressure and density are related by the equation of state:

p = ρRT (2.4)

The viscous stress tensorτ = µl (∇u + u ⊗ ∇ − 2/3I∇ · u), whereµl is the molecular

viscosity. The conductive heat flux vectorq = −kT∇T, wherekT is the thermal con-

ductivity andT is the absolute temperature. IfFv = 0, Equation (2.1) becomes the

time-dependent inviscid Euler equations.

Auxiliary algebraic relations for the molecular viscosityand the thermal conductivity

are introduced to solve the system of second-order partial differential equations (2.1):

µl = 1.458× 10−6 T3/2

(T + 110.4)
[kg/ms] (2.5)

kT =
γRµl

(γ − 1) Prl
[W/mK] (2.6)

whereγ = Cp/Cv is the specific heat ratio,R= Cp −Cv, andPrl is the Prandtl number.

2.1.2 Large Eddy Simulation

Direct numerical simulations (DNS) of high Reynolds numberflows can be extremely

demanding in terms of computational requirements. A complete cavity flow simulation

cost analysis is presented in Chapter 3. Although modern HPCplatforms and paral-

lel computation algorithms enables to tackle challenging DNS of complex flows, the

adoption of a turbulence closure model is still the most cost-effective choice for solv-

ing external flows in most industrial applications. To introduce a turbulence model, the

time and space varying flow state variables of DNSu are split into two components,

an averaged oneu and a fluctuating oneu′, so that

u = u + u′ (2.7)
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In LES, the average is obtained by the convolution of the continuous variableu (y, t)

with a time-invariant filtering kernelG (xi − y):

u (xi, t) =
∫

Vol
G (xi − y) u (y, t) dy (2.8)

A sub-grid scale model (SGS) is then introduced to model the effects of the flow state

fluctuationu′ on the averaged flow. Usually, in CFD of industrial applications, the

filtering kernel is matched to the computational grid. The Yoshizawa (1986) one-

equation LES model assumes this match to resolve the large scales of motion. In

such case,G is defined as the top-hat filter (Liuet al., 2008) and is given by:

G (xi − y) =
1
∆i

H

(
∆i

2
− |xi − y|

)
(2.9)

whereH is the heavy-side function,∆i is the characteristic length of celli, xi is the

cell centre position andy is the position vector. In the Yoshizawa one-equation LES

model,∆i is the cubic root of the cell volumeVi, ∆ =
3
√

Vi.

Applying the average in Equation (2.7) to Equations (2.1) gives the space averaged

Navier-Stokes equations

∂ρ̄

∂t
+ ∇ · (ρ̄ū) = 0 (2.10)

∂ (ρ̄ū)
∂t
+ ∇ ·

(
ρ̄ū ⊗ ū + p̄I + ρu′ ⊗ u′ − τ̄

)
= 0 (2.11)

∂
(
ρ̄ē+ 1

2ρ̄u
′ · u′

)

∂t
+ ∇ ·

(
ρ̄ūh̄+

1
2
ρ̄ūu′ · u′

)
=

∇ ·
[
ū ·

(
τ̄ − ρu′ ⊗ u′

)
− kT∇T̄ − ρu′h′

]
(2.12)

In Equation (2.12), 1/2u′ · u′ is the space averaged turbulent kinetic energyk̄. In Equa-

tions (2.11) and (2.12),ρu′ ⊗ u′ is the Reynolds stress tensor, which is modelled by the

Boussinesq approximation (Townsend, 1976) with analogy toviscous stress tensor as:

t̄ = −ρu′ ⊗ u′ = µt

(
∇ū + ū ⊗ ∇ − 2

3
I∇ · ū

)
− 2

3
I ρ̄k̄ (2.13)

In Equation (2.12),ρu′h′ is the turbulent transport of heat flux vector and it is modelled
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2. NUMERICAL METHODS 2.1 Governing equations

to be proportional to the temperature gradient (Wilcox, 2002):

q̄t = ρu′h′ = −
µtCp

Prt
∇T̄ (2.14)

wherePrt is the turbulent Prandtl number. To close the system of equations (2.10)-

(2.12), an additional equation is required to relate the extra variablek̄ to the other

averaged variables. The derivation fork̄ is obtained from the scalar product of the

Navier-Stokes conservation of momentum vector equations multiplied by the fluctuat-

ing velocity vectoru′. Averaging this product by Equation (2.8), the transport equation

for k̄ is:

∂
(
ρ̄k̄

)

∂t
+ ∇ ·

(
ρ̄ūk̄− t · u′ + 1

2
ρu′u′ · u′ + p′u′

)
=

−ρu′ · u′∇ · ū − t : u′ ⊗ ∇ − u′ · ∇p′ + p′∇ · u′ (2.15)

Dahlström & Davidson (2003) proposed a one-equation SGS model for Equation (2.15),

which is applicable to incompressible flows (∇ · ū = 0):

D
(
ρ̄k̄SGS

)

Dt
= t̄ : ū ⊗ ∇ −Cd

ρ̄k̄3/2
SGS

∆
+ ∇ ·

[(
µl + σkµt,LES

)∇k̄SGS

]
(2.16)

where D/Dt is the material operator D/Dt = ∂/∂t + ū · ∇ and t̄ is the turbulent stress

tensor, given by:

t̄ = µt,LES

(
∇ū + ū ⊗ ∇ − 2

3
I∇ · ū

)
− 2

3
ρ̄k̄SGSI (2.17)

The eddy viscosityµt,LES is given by:

µt,LES = ρ̄lsgs

√
k̄SGS (2.18)

where the sub-grid length scaleslsgsaccounts for the modelled part of the total Reynolds

stress tensor.

In the standard Smagorinsky SGS model, the sub-grid scale viscosity is defined as:

µt,LES = ρl
2
smag

√
2S: S (2.19)
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2. NUMERICAL METHODS 2.1 Governing equations

where the Smagorinsky lengthscale islsmag = Csmag∆, Csmag is a model constant, the

strain rate tensorSi j = 1/2(∇ū + ū ⊗ ∇) and : is the double scalar product. In the

numerical scheme of this work, a limiter is introduced to model the constraint inlsmag

due to the presence of a solid wall:

ls = min
(
Csmag∆, κy

)
(2.20)

whereκ = 0.41 is the Von Kármán constant. This can be interpreted as performing a

similar operation to van Driest damping which reduces the length scale to zero near to

the wall (McMullan & Page, 2011).

In Equations (2.16), (2.20) and (2.18),Cs andCd are the Yoshizawa constants and are

related to the Smagorinsky constant by:

Csmag=

(
C3

s

Cd

)0.25

(2.21)

The Smagorinsky constant typically ranges from 0.065 to 0.2 and in this workCsmag=

0.02. The corresponding Yoshizawa constants used in this model are Cs = 0.008,

Cd = 1.05, andσk = 1.0. The low value of theCsmag in this work was used to stop

over-damping and to reduce the re-laminarization of the flowin the cavity boundary

layer inflow. This value effectively makes the simulation close to an Implicit Large

Eddy (ILES).

Equations (2.10), (2.11), (2.12) and (2.16) can be rearranged in the compact form:

∂

∂t
U + ∇ · (Fc + Fv) + S= 0 (2.22)

where the conservative variable vectorU, the convective flux vectorFc, the turbulent

flux vectorFv and the turbulent source term vectorS are given by Chen-Chuan Fan

(2002) as:
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2. NUMERICAL METHODS 2.2 Spatial discretization

U =



ρ̄

ρ̄ū

ρ̄
(
ē+ k̄

)

ρ̄k̄



(2.23)

Fc =



ρ̄ū

ρ̄ū ⊗ ū + p̄I

ρ̄ū
(
ē+ p̄/ρ̄ + k̄

)

ρ̄ūk̄



(2.24)

Fv =



0

− (
t̄ + τ̄

)

+q̄ + q̄t −
(
t̄ + τ̄

) · ū − (µl + σkµt)∇k̄

− (
µl + σkµt,LES

)∇k̄



(2.25)

S =



0

0

0

Cdρk̄3/2/∆ − t̄ : ∇ū



(2.26)

2.2 Spatial discretization

In a structured finite volume discretisation, the physical domain is mapped to an as-

sembly of topologically rectangular control volumesVi, where subscripti indicates the

i th control volume in the non-uniform mesh.

Integrating Equation (2.22) over each control volumeVi gives

∫

Vi

∂U
∂t

dV +
∫

Vi

∇ · (Fc + Fv) dV +
∫

Vi

SdV = 0 (2.27)
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2. NUMERICAL METHODS 2.2 Spatial discretization

Assuming a stationary of computational domain and applyingthe Gauss divergence

theorem, Equation (2.27) can be re-written as:

∂

∂t

∫

Vi

UdV +
�

Si

Fc · ndS +
�

Si

Fv · ndS = 0 (2.28)

whereSi is the closed boundary ofVi andn its inwards normal. Let

Ui =
1
Vi

∫

Vi

UdV (2.29)

�

Si

Fc · ndS =

Nf aces∑

k=1

Fc,k · ni,kSi,k (2.30)

�

Si

Fv · ndS =

Nf aces∑

k=1

Fv,k · ni,kSi,k (2.31)

Si =
1
Vi

∫

Vi

SdV (2.32)

whereNf aces is the number of faces of the control volumeVi, Si,k is thekth face ofVi

andni,k is its inwards normal. Equation (2.28) can be written in a compact form as:

Vi
∂Ui

∂t
+Ri = 0 (2.33)

whereUi is the space-averaged value of the conservative variable vector over the cell

volumeVi andRi is the residual generated from the discretised terms and it is equal to

the sum of three terms:

Ri =

Nf aces∑

k=1

Fc,k · ni,kSi,k +

Nf aces∑

k=1

Fv,k · ni,kSi,k + ViSi (2.34)

To solve the system of non-linear equations (2.33), the residual operatorRi in Equation

(2.34) needs a linearised flux vectorFc. Using the Godunov method, or Flux Differ-

ence Splitting, interface fluxes normal to the finite-volumeunit cell boundaries are

estimated by an approximate Riemann solver based on Roe (1981). The Roe approxi-

mate Riemann solver is first-order accurate in space, since the solution is projected on

each cell as a piecewise constant state (Hirsch, 1988). To reduce the excessive artificial

dissipation of the first order method, Van Leeret al.(1987) replaced the piecewise con-
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2. NUMERICAL METHODS 2.2 Spatial discretization

stant state assumption with a quadratic reconstruction, leading to a higher order spatial

reconstruction, the Monotone Upwind Scheme for Conservation Laws (MUSCL) inter-

polation. Following Manna (1992), the coefficients in the reconstruction are chosen to

give a third-order accurate reconstruction of the spatial gradients in regions of smooth

flow. This reconstruction uses four contiguous cells in the direction of the reconstruc-

tion, thus to connect two computational blocks at least two layers of ghost cells are

required to make the flow solver block independent.

A flux limiter is then introduced to achieve a monotonic behaviour in regions of model

flow discontinuities. Considering the ratio of successive gradients on the solution mesh

r i =
ui − ui−1

ui+1 − ui
(2.35)

Sweby (1984) proved that to achieve a numerically stable scheme, this needs to be

Total Variation Diminishing (TVD) and the flux limiter function φr must respect the

following conditions:

φ(r) = 0 ∀ r ≤ 0 (2.36)

r ≤ φ(r) ≤ min[1, 2r] ∀ 0 < r ≤ 1 (2.37)

1 ≤ φ(r) ≤ min[2, r] ∀ r > 1 (2.38)

This means that the limiting function must be designed such that it passes through a

certain region of theφ(r) versusr plane, known as the TVD region which, for second-

order TVD schemes, is shown in the Sweby (1984)’s diagram reproduced in Figure 2.1.

Different limiters have been tested in this work to compare theiroscillatory behaviour

and eventually select the best limiter to resolve the large scale cavity flow motion in

the LES simulation. These are the SuperBee and MinMod limiters by Roe (1986),

Equations (2.39) and (2.40), and the Sweby (1984) limiter ofEquation (2.41):

φsb(r) = max [0,min(2r, 1) ,min(r, 2)] ; lim
r→∞
φsb(r) = 2 (2.39)

φmm(r) = max [0,min(1, r)] ; lim
r→∞
φmm(r) = 1 (2.40)

φsw(r) = max
[
0,min(βr, 1) ,min(r, β)

]
, (1 ≤ β ≤ 2) ; lim

r→∞
φsw(r) = β (2.41)
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2. NUMERICAL METHODS 2.2 Spatial discretization

Figure 2.1: Region of stable operation of a second-order TVDscheme, from Sweby
(1984).

All the above limiters exhibit the symmetry property

φ (r)
r
= φ

(
1
r

)
(2.42)

that ensures that the limiting actions for forward and backward gradients operate in

the same way. Equations from (2.39) to (2.41) are plotted in Figure 2.2. For sake of

clarity, two curves with different Sweby limiter coefficients are plotted, withβ = 1.3

andβ = 1.6.

Further details of the implementation of these limiter functions in the CFD scheme

used are given in El-Dosoky (2009).

At the computational domain boundaries, a frame of one ghostcell deep is used to

preserve the second-order accurate reconstruction in the domain interior.

To discretize the viscous fluxes, an estimate of the velocityvector gradients is required.

For computing this, a staggered grid is built across the cellinterfaces where these gra-

dients are estimated. The flow state at the surface boundary of the new control volume

and the surface boundary unit normal vector are obtained from the mesh geometry and

then the velocity vector gradient is estimated using the Gauss divergence theorem. This

gives up to a second-order accurate reconstruction of the velocity gradients (Manna,

1992).
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Figure 2.2: Limiter functions MinMod, Superbee, and Sweby (β = 1.3 andβ = 1.6).
For all limitersφ(r < 0) = 0 andφ(r > 2) = φ(r = 2)

It is important to notice that the present model is driven by amesh-based eddy viscosity

µt related to the cell volume by the definition ofG in Equation (2.9).

In the present thesis, the Sweby limiter was used for LES, as the right candidate, and

the parameterβ was selected by testing a range of preliminary wall-developing bound-

ary layer simulations withβ = (1.05, 1.25, 1.3, 1.35, 1.6), among which the best results

were obtained withβ = 1.3. The parameterβ = 1.3 is also used for the cavity flow

model.

Among CFD practitioners it is a common practice to de-activate limiters to introduce

enough dissipation so that the computational stability is dissipation controlled. Due

to the upwind nature of the CFD scheme used in this thesis, this would have turn the

scheme into an unstable finite-volume central scheme. In order to ensure a a stable be-

haviour of the CFD scheme, in this thesis limiters are alternatively working in place of

the Smagorinsky constant to dissipate the correct amount ofresolved turbulent kinetic

energy.
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2. NUMERICAL METHODS 2.3 Temporal integration

2.3 Temporal integration

To solve the discrete ordinary differential vector Equation (2.33), an explicit multi-

stage Runge-Kutta time step integration is used. This scheme is numerically cheap,

requires a small computational memory and is designed to preserve the TVD properties

of the spatial differentiation scheme. It is implemented as follows:

U0
i = Un

i

FORk = 1,RK

Uk
i = U0

i −
αRK∆t

V(RK−k+1)R
k−1

END

Un+1
i = URK

i

(2.43)

whereRK denotes the number of stages of the Runge-Kutta scheme andn the time

level. The Runge-Kutta coefficients at the different stages of the integration areαRK =

1,αRK−1 = 0.5,αRK−2 = 1/3, andαRK−3 = 1/4.

The stability of this scheme is restricted by the Courant, Friedrichs & Lewy (1928)

condition which isC = u∆t/∆x ≤ Cmax for an incompressible code, andC = (u +

c)∆t/∆x ≤ Cmax for a characteristic based code. In this thesisCmax = 0.4. The use of

a pressure based code in this work could have brought a speed-up factor of about 10

with respect to using a characteristic based code.

2.4 Boundary conditions

The CFD scheme used is a multi-block solver that allows the computational domain

to be divided into independent blocks. A schema of the computational domain for the

LES cavity simulation, showing the first level multi-block decomposition is given in

Figure 2.3.

Each block is fully rinded using ghost cells that are generated by mirroring the first

interior cell at the boundary plane along the external boundaries. Along inter-block

boundaries, the first and the second interior cell geometries of the abutting block define

the ghost cell rind, that is two cells deep along an inter-block boundary. Boundary flow
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2. NUMERICAL METHODS 2.4 Boundary conditions
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Figure 2.3: Independent blocks of the cavity model computational domain.

states are imposed in the ghost cells. The non-slip adiabatic condition is used for the

solid walls of the domain, extrapolation from the inner cells is imposed at the outflow

boundary, a non-reflecting condition is applied at the upperboundary, opposite to the

flat plate wall, to minimize spurious reflections of disturbances, and periodic boundary

conditions are used at the lateral boundaries in the spanwise direction of the domain. A

formal description of these boundary conditions can be found in Grottadaurea (2009).

A new Time-Dependent Synthetic-Stochastic (TDSS) inlet boundary condition is used

in this work, which is novel in the context of cavity flow simulations. This method

is based on the original work by Sandhamet al. (2003), subsequently extended to

supersonic flow by Li & Coleman (2010).

In this approach, the organized motions of the inner and outer part of the inflow bound-

ary layer (lifted streaks and large eddies, respectively) are modelled by synthetic modes

that are superimposed as velocity fluctuations on a mean turbulent boundary layer ve-

locity profile. The choice of this approach against other conventional synthetic meth-

ods is justified in Section 1.4.3. The mean velocity profile, in terms of normalized

streamwise velocityu+ = u/uτ is the one derived by Rona & Monti (2012)

u+ =
1
κ

ln y+ + B+
1
k
η2 (1− η) + 2

Π

κ
η2 (3− 2η) (2.44)

wherey+ = yuτ/νl is the inner scaling non-dimensional wall-normal distance, η = y/δ
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is the outer scaling non-dimensional wall-normal distance, κ = 0.41 the von Kármán

constant,B = 5.0 the logarithmic law constant and the wake parameter is determined

by Coles (1956) as:

Π = κ/2
(
u+∞ − κ−1 ln Reτ − B

)
(2.45)

The derivation of Equation (2.44) is detailed in Appendix A.A comparison of the an-

alytical velocity profile from Equation (2.44) with profilesobtained by the successive

complementary expansion method from Cousteix & Mauss (2007) is also presented

in Rona & Monti (2012) for zero, low and moderate adverse pressure gradients.

Velocity fluctuations about the mean velocity profile are obtained in space and time by

superimposing five synthetic modesm according to

ũ (x, y, z, t) =
√
ρw/ρ̄(y) u∞

5∑

m=1

amUm(y) sin[ωm
(
x/ucm − t

)
] cos

(
2π z/λzm + φm

)

ṽ (x, y, z, t) =
√
ρw/ρ̄(y) u∞

5∑

m=1

bmVm(y) sin[ωm
(
x/ucm − t

)
] cos

(
2π z/λzm + φm

)



(2.46)

where

Um(y) = (y/ŷm) e−y/ŷm , Vm(y) = (y/ŷm)2 e(−y/ŷm)2
. (2.47)

Each synthetic mode has a prescribed convection velocityucm, angular frequencyωm,

spanwise wavelengthλzm, spanwise phase angleφm, and amplitudes (am, bm) in the

streamwise and wall-normal directions, respectively. Theinner-layer disturbances of

the first mode (m = 1) are relative to streaks and streamwise vortices with maximum

amplitude aty+ = 12, propagating at a speed 12uτ, with spanwise spacingλ+z ≈ 120 and

a streamwise wavelengthλ+x ≈ 500. Outer-layer oscillations (m= 2, ..., 5) mimic large

vortical structures moving with a convection velocity 0.9u∞ and amplitudes (am, bm) as

to match the distribution of the Reynolds stresses found in canonical fully developed

boundary layers (Sandhamet al., 2003). In order to break the symmetries deriving

from the deterministic specification of the inlet fluctuations, divergence-free random
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2. NUMERICAL METHODS 2.5 Parallelization strategy

m ŷm am bm ωm uc m λc m φc m

1 12.0δv 1.2 −0.25 0.12uτ/δv 10uτ 120δv 0.0
2 0.25δ0 0.32 −0.06 1.2uτ/δ0 0.9u∞ Lz/3 0.1
3 0.35δ0 0.2 −0.05 0.6uτ/δ0 0.9u∞ Lz/4 0.2
4 0.5δ0 0.08 −0.04 0.4uτ/δ0 0.9u∞ Lz/5 0.3
5 0.6δ0 0.04 −0.03 0.2uτ/δ0 0.9u∞ Lz/6 0.4

Table 2.1: Synthetic inlet forcing parameters for Equation(2.46)

velocity noise with a maximum amplitudeu′rms/u∞ < 4% is superimposed on the syn-

thetic disturbances. The third velocity disturbance component in the spanwise direc-

tion is determined assuming that the synthetic fluctuation velocity field is solenoidal,

i.e. ∇· ũ = 0.

The prescribed values used for the synthetic inlet forcing are reported in Table 2.1.

These values were obtained by an iterative modification of the amplitude values (am, bm)

from the original values of Bernardini (2008), in a preliminary set of cavity inflow sim-

ulations. Hence sensitivity analysis of the related boundary layer mean velociti profile

values respect the analytical formulation by Musker (1979)enabled to select the best

combination of (am, bm) parameters. A comparison with the results obtained using

the original values by Sandhamet al. (2003) was also performed before defining the

definitive parameters for the cavity inflow and cavity flow simulations of this work.

2.5 Parallelization strategy

High Performance Computing (HPC) has become increasingly used for running com-

putationally demanding CFD simulations such as LES and DNS.Any medium (≤
20 × 106 cells) and large (> 30 × 106 cells) CFD test case is currently intractable

without an HPC facility.

Message Passing Interface (MPI) is a message passing library standard that is widely

used for parallel computations. The CFD scheme described inthis chapter has been

recently recoded for MPI. In the present thesis, the MPI version of the solver was

optimized for LES applications and tested on two distributed-memory HPC clusters.
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The first cluster is the IBM-SP6 of the CINECA HPC centre in Bologna, Italy. This is

a cluster dedicated to massive parallel applications and special High-End projects. It

is a 168 Power6 with 575 compute nodes, each with 32 cores/node, for a total of 5376

cores and a peak performance of just over 100 Tflops. The second cluster used is the

ALICE HPC cluster of the University of Leicester, Great Britain. It is made of 256

standard compute nodes, each with a pair of quad-core 2.67GHz Intel Xeon X5550

CPUs and 12GB of RAM, for a total of 2048 CPU cores.

In a Single Domain Decomposition (SDD), each zone of computational domain, given

the number of processors available in the cluster, is slicedinto blocks along a single

directionk of the domain. This introduces a large memory consumption and interblock

communication over-head, which makes the algorithm unsuitable for multi-block mas-

sive CFD.

The CFD solver used in this thesis uses a Recursive Domain Decomposition (RDD)

parallelisation algorithm (Grottadaurea, 2009). The computational domain is built by

an assembly of three-dimensional topologically orthogonal zones (i, j, k), similarly to

SDD, and each zone is considered as an independent unit that is allocated to a selected

group (or sub-cluster) of processors. Each unit is then sliced overk planes and thus

distributed to each processor in this sub-cluster. By doingso, the memory allocation

benefits from the sub-division of the computational domain in these units. Specifically,

the sub-cluster communication runs independently from thecommunication between

abutting zones.

The numerical integration is performed asynchronously on each sub-cluster of proces-

sors between updates of zone interface data. The I/O is performed from the master

node. Further details on the algorithm, the optimization ofthe load balance, and de-

scription of the MPI communicators can be found in Grottadaurea (2009).

The RDD MPI algorithm was re-coded and optimized for the SSTDmethod and the

specific geometry and mesh constraints of this work by the author. Alternative tech-

niques were considered, such as MPI - Open MP hybrid algorithms which lends to

less tuning and customization than the RDD MPI algorithm. These approach could be

further investigated in a computational research framework for future works.

The parallelisation performance of the test cases for the wall-developing boundary

layer inlet and the cavity flow is reported in Chapter 3.
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Chapter 3

Numerical model design

3.1 Introduction

A successful model of a high Reynolds number cavity-flows involves reproducing

the flow physics with adequate accuracy, given the availablecomputational resources.

Basuet al.(2006) studied the dependence of the simulation cost on the turbulence clo-

sure approach and on the spatial and temporal discretisation for a unique cavity-flow

model, but this dependence has never been quantified parametrically for a broader

class of unsteady cavity-flows with different geometrical characteristics and flow pa-

rameters. The process of planning high Reynolds number cavity-flow simulations is

systematically reviewed to extract the dependence of different programmer’s choice on

the CFD mesh size and on the cost of the computation. This process has been broken

down into five phases: i) description of the problem in the continuous domain, ii) prob-

lem order reduction by turbulence modelling, iii) discretisation in space and time, iv)

integration of the governing equations, v) costing the numerical operations of the flow

solver. This chapter examines the influence of each phase on the spectral width and the

grid density that are the key CFD indicators that determine the cost of the computation.

A dimensional analysis was conducted to separate the effects of the geometry of the en-

closure, the boundary layer resolution, the turbulence model, and the numerical scheme

order of accuracy. Regression analysis on the non-dimensional groups of published

cavity CFD simulations determined the range of practical values used by current state-

of-the-art computations. This analysis is a useful tool to obtain design trade-offs by a
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3. NUMERICAL MODEL DESIGN 3.2 Turbulent flow sizing

multivariate optimization of cavity-flow CFD and for estimating the order of magni-

tude of the computational resources required by the simulations.

An extended explanation of this modelling process can be found in Rona & Monti

(2011). This analysis is applied to obtain approximatea priori cost estimates and

optimize the computational cost of the cavity-flow test casepresented in Chapter 5.

3.2 Turbulent flow sizing

The process of modelling and discretising a turbulent flow isshown in the flow chart

of Figure 3.1.

Continuous
model

Spatial

discretization

Temporal

discretization

Grid density

Time integration

Broadband turbulent Spectral width Simulation Cost
spectrum compression

Discretization indicators

(N  )

(N  )

Cost=N  Nc t

c

t

flow physics
Turbulence

Figure 3.1: Modelling and discretisation process of a turbulent flow.

Consider a flow evolving in a physical flow domain of sizeL over a time intervalT.

The turbulence model represents the first element for reducing the dimensionality of

the problem by considering only the time-space scales of interest in the flow (Sagaut,

2002). The time scales of the averaged problem are intrinsically related to the charac-

teristic space scales. Therefore, an appropriate level of time resolution is required to

represent the entire temporal evolution of the smallest pertinent scale of the averaged

problem.

The discrete-spatial computational mesh introduces a further approximation to the flow

model. The choice of the discretisation step∆x is reflected into two main indicators of

the spatial discretisation in a genericj-direction: the spectral width of the simulation in
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the wavenumber domainNd, j, and the grid density,Nc, j. The spectral widthNd, j gives

the effective size range of turbulent structures of practical interest in the continuous

flow in the j direction:

Nd, j :=
kj,max

kj,min
=
λ j,max

λ j,min
(3.1)

whereλ j,max and λ j,min are respectively the wavelengths of the largest and smallest

structures of interest in the flow, with corresponding wavenumberskj,min and kj,max.

Nc, j is the number of mesh points inj:

Nc, j =
λ j,max

∆xj,minℑ j
(3.2)

where∆xj,min is the smallest unit cell length inj andℑ j (s1 (ξi) , s2 (ξi) , ..., sn (ξi)) is a

functional that accounts for the different mesh stretching functionss(ξi) adopted along

j. Given the minimum number of points per wavelength (PPW) that the solver in

the numerical scheme can work with, an average mesh spacing∆xj for the firstPPW

points of a stretched mesh is∆xj = PPW−1 ∑PPW
j=1 ∆xj. Fromλ j,min = ∆xj,minPPW a

uniform mesh equivalentNc, j is obtained

Nd, j =
DS j

PPW∆xj

=
Nc, j

PPW
(3.3)

whereDS j is the computational domain length inj. The derivation of Equation (3.3)

is given in Appendix B.

The total number of mesh pointsNc in a single block conformal computational domain

is the product of the grid density in each direction:

Nc =
∏

j

Nc, j (3.4)

To integrate the unsteady equations of motion over a time proportional to the integral

timescale of the motion,T, discrete-time integration methods are used that advance

the solutionNt times over a number of time steps∆t. The time steps required to time

march the equations of motion must be multiplied for the number of time step sub-

iterations, such as in a multi-stage Runge-Kutta scheme (i.e. Runge-Kutta order,NRK),

to obtain the total number of iterationsNT used to time-advance a computation. The
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total simulation cost (complexity) is measured by the product of the total number of

mesh points and the number of discrete time steps:

Cost= NcNT = NcNtNRK (3.5)

whereNc is a function of the dynamic range of the simulation, which ismeasured by

the Reynolds number,Re. The time step dimension is linked to the dimension of the

smallest eddy via the Courant Friedrichs Lewy (CFL) condition, henceNt can also be

expressed as a function ofReto obtain

Cost= Nc (Re) Nt (Re) NRK (3.6)

whereNRK is taken as constant for a constant multi-step Runge-Kutta time integration

scheme. This shows the strong dependence of the total cost ofa CFD simulation on

the Reynolds number.

In turbulent flow simulations of separated flows, the mesh resolution requirements for

DNS are determined byΛ/ηK ∝ Re3/4
Λ

, whereηK is the smallest dynamically active

scale, the Kolmogorov length scale, andΛ is the characteristic length of the most

energetic scale, the integral length scale. The total number of grid pointsNc required

to perform DNS of isotropic turbulence in a box of volumeΛ3 scales asRe9/4
Λ

. The

minimum number of time steps isTΛ/Tη ∝ Re1/2
Λ

, hence the minimum complexity of

the simulation is of the order ofRe9/4
Λ

Re1/2
Λ
≈ Re3

Λ
.

Wall-bounded flows introduce more restrictive discretisation constraints (Piomelli &

Balaras, 2002) as the relevant scales in the inner layer are of the order of the viscous

length scale,ls = ν/uτ. The number of grid points in each direction scales as:

Nc, j =
Λ

∆xj
=

Λ

∆x+j ν/uτ
≃
ΛU∞Re−α/2

Λ

ν
∝ Re1−α/2

Λ
(3.7)

whereα is the Reynolds number scaling ofτw and 0.2 ≤ α ≤ 0.25 for a turbulent

boundary layer (White, 1991) with free-stream velocityU∞.

The proportionality factor in Equation (3.7) is given by thecoefficient 1/∆x+j , where

∆x+j is the mesh size in viscous wall units, typically between 1−5 ls in the wall-normal

direction for WR-LES (30−50 ls for WM-LES), and 100−300ls elsewhere. The total
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number of grid pointsNc for a three-dimensional wall-bounded simulation is:

Nc ∝ Re3(1−α/2)
Λ

≈ Re2.7
Λ (3.8)

For DNS, the size of the time step∆t and the characteristic time of large events scale as

(Λ/uτ) Re−1/2
Λ

andΛ/U∞, respectively. The estimated number of time steps is therefore

of the order ofReα+1/2 and the overall computation cost from Equation (3.5) is:

Cost∝ Re3.5−α/2
Λ

NRK ≃ Re3.4
Λ NRK (3.9)

For wall-resolved LES a constant spacing grid in the streamwise and spanwise direc-

tion must be used to resolve the inner-layer streaks. Taking∆x+ ≃ 100 and∆z+ ≃ 20

(Chapman, 1978), the number of points to resolve the viscoussub-layer is

Nc ∝ C f Re2
Λ ≈ Re2−α

Λ ≈ Re1.8
Λ (3.10)

whereC f = τw/0.5ρU2
∞.

From the CFL stability condition,∆t ∼ ∆x/U∞. The governing equations must be

integrated over a number of time stepsNt ∼ T/∆t ≈ N1/3
c , which leads to estimating

the overall computational cost for a WR-LES as

Cost∝ Re4/3(2−α)
Λ

NRK ≃ Re2.4
Λ NRK (3.11)

In WM-LES, DES and RANS, the resolution requirements dependon the inner-layer

treatment and Equation (3.7) has shown not to be appropriatefor turbulence modelling

techniques such as WM-LES, in which the inner-layer is modelled, or DES, in which

the whole boundary layer is modelled by using a RANS approach. An alternative

formulation of the problem can be implemented using an approach similar to the one

adopted by Chapman (1978).
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3.3 Cavity flow sizing

3.3.1 Spectral width

In this section the aim is to characterize a cavity simulation size and cost by the spatial

and temporal discretisation indicatorsNc, Nd andNt. A dimensional analysis enables

to regress from the cavity-flow CFD works published in literature typical values to

obtaina priori cost estimates.

In a cavity-flow simulation, the shortest wavelength is the one related to the wall-

normal direction,λmin,W−N, to resolve the inner-layer near solid walls. To resolve at

least one acoustic wavelength̄λac of the dominant cavity tone, the wall-normal di-

mension of the computational domainDSW−N is so thatλ̄ac ≈ 0.66DSW−N. From

Equation (3.1) the wavenumber spectral width in the computation is

Nd ≈ Nd,W−N = DSW−N/λmin,W−N (3.12)

The next step is to relateNd to the cavity geometry, inflow conditions and turbulence

closure model. The flow inside a cavity depends on the cavity geometry parameters

L, D, W, inflow velocity U∞, inflow boundary layer thicknessδ, laminar viscosityν,

densityρ, gravitational accelerationg, and speed of soundc. By restricting the analysis

to low speed aerodynamic flows, the effects ofg andc are neglected. By application of

the BuckinghamΠ theorem on the remaining variables, the following non-dimensional

groups are obtained:L/D , L/W, δ/D, ReL, PPW, which accounts for the numerical

scheme order,

nD, j =
DS j,max

D
(3.13)

which expresses in non-dimensional form the extent of the computational domain

boundaries, and

rτ =
∆xj

ν/uτ
(3.14)

which expresses the average mesh spacing near the walls introduced by Equation (3.3)

as multiple of the viscous lengthν/uτ. This gives eight independent non-dimensional

groups.

With simple algebraic manipulations and by introducing theprinciple of orthogonality,

Rona & Monti (2011) show that it is possible to consider the quantityNd as the product
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of six independent non-dimensional groups, each with its own exponent:

Nd = (L/D)α1 (δ/D)α2 nα3
D,W−Nrα4

τ Reα5
L PPWα6 (3.15)

The exponentsα1 toα6 in Equation (3.15) are determined using the smallest numerical

wavenumberkW−N,min = 2π/DSW−N,max and the highest resolved numerical wavenum-

berkW−N,max = 2π/λW−N,min whereλW−N,min =
(
PPW∆xW−N

)
.

In order to explicit the influence of the Reynolds number onNd, all non-dimensional

variables exceptReL can be factorized into a single non-dimensional parameterC1.

Nd = C1
(
L/D, δ/D, nD,W−N, rτ,PPW

)
Re1−α/2

L (3.16)

C1 =
nD,W−N (D/δ)α/2

PPW(L/D)1−α/2 rτ
(3.17)

Therefore, the single non-dimensional parameterC1 includes the information of the

turbulence model approach, the domain shape, the boundary layer thickness and the

average computational mesh clustering near the solid walls. This is a new simulation

parameter that enables to identify and classceteris paribusthe quality of a simulation

in representing the correct spectral width, given the geometry, mesh, flow and turbu-

lence modelling parameters.

The spectral width of published cavity-flow simulations is presented in Figure 3.2,

where the parameterLNd = log10 Nd has been estimated by Equation (3.12). In Fig-

ure 3.2, the number of decades of the spectral widthLNd is plotted against the Reynolds

numberReL. Each past simulation in the graph is identified by a tag associated to its

bibliography reference in Table 3.3. The symbols mark the effective spectral width

of the simulations, allowing for the use of stretching functions. TheC1 isolines are

plotted following Equation (3.16).

The DNS data is clustered on the left hand side in Figure 3.2, towards to the top of

the LNd scale, showing a larger spectral width than LES and DES, as all the scales

of motion are resolved directly. Nonetheless, most of the LES and DES simulations

present a number of decades comparable with that of a DNS simulation at a lower

ReL. The reason is that WR-LES and DES methods use stringent requirements in the

viscous sub-layer. For a WR-LES simulation, the computational mesh density
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Figure 3.2: Spectral width of cavity-flow simulations versus ReL for different turbu-
lence models (� 3D and pseudo-3D DNS;� 2D DNS;N WR-LES; △ WM-LES; �
DES;^WM-DES).

Coarse Medium Fine
DNS DES WR-LES WR-LES WR-LES WM-LES

rτ 2− 140 80− 200 > 180 < 180 10− 14 600− 1200
rτ (analysis) 4 80− 120 20− 50 10− 20 10 700

Table 3.1: Mesh size to viscous length ratio for cavity-flows: range of values obtained
from published work.
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required to resolve the inner-layer requires onerous computational capabilities already

at moderate Reynolds numbers and wall-modelling methods tobypass thewall layer

are required to perform high Reynolds number cavity LES, such as simulations 5 and

6. The less severe spatial discretisation requirements of Wall-Modelled LES give a

lower number of decadesLNd even at high Reynolds numbers compared to WR-LES

and DNS.

The bunch of DES of cavity-flow models is centred in the region2× 105 ≤ ReL ≤ 106

with a typical number of logarithmic decades between 2.4 and2.8. More spatially

refined simulations like 8 and 10 have a spectral width greater than 3 logarithmic

decades. In order to reproduce approximately 2.7 logarithmic decades of turbulent

structures, DNS computations are constrained toReL less than 104, whereas WM-LES

and DES have shown able to model up to aReL of the order of 106. Three-dimensional

DNS simulations have the same high spatial resolution requirements in all three direc-

tions, thus most of the published works is limited to planar two-dimensional computa-

tions.

A range of values for the parameterrτ has been extracted from the cavity-flow simu-

lations in literature by fitting Equations (3.16) and (3.17)to the mesh size data. These

results are presented in Table 3.1. Therτ values are obtained by minimizing the mean

square error ofNd for the simulations that have shown best results in the literature.

The data fit well for DNS and DES. Unfortunately, few WR-LES simulations have

been performed for cavity-flows. A large variation inNd is obtained for WM-LES,

due to the variety of wall models used. The large uncertaintyof rτ for WM-LES tech-

nique suggests that the complexity of the current parametric regression onC1 andrτ
is insufficient to describe the computational mesh effectiveness in reproducing a given

spectral width for WM-LES.

3.3.2 Discretization cost

For the analysis of the discretisation cost of cavity-flows it is necessary to analyse

separately the techniques that resolve the inner-layer andthe ones that aim to model

the effect of the inner dynamics on the outer boundary layer. Techniques like WM-

LES and DES resolve only the large scale structures in separated flow regions, hence

the computational grid density scales with the outer layer grid density.
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Applying the approach of Chapman (1978) to cavity-flows, thenear-wall flow can be

sub-divided into a carpet of cubes of unit volumeNδ̄3, whereδ̄ is an average boundary

layer thickness covering the full extent of the solid walls wetted by the fluid. The total

number of mesh points in this near wall mesh is the product of the average number of

points within a volume of̄δ3 and the number of cubes that fill the boundary layer:

Nc = N3
0Nδ̄3 (3.18)

Using the same dimensional approach of Section 3.3.1, Equation (3.18) becomes:

Nc = Nδ̄3
(
δ/D, L/D, L/W, nD,x, nD,z,ReL

)
N3

0 (3.19)

Using Equation (3.18) and relationδ ∝ xRe−0.2
x for a turbulent boundary layer inflow,

the dimensional problem for the grid density of a cavity-flowsimulation adopting wall-

modelling techniques such as WM-LES and DES is obtained after some algebra (Rona

& Monti, 2011) as:

Nc = C2Re0.4
L (3.20)

C2 =

( L
D

)0.4 [
2

L/D
L/W

(
1+

L
D
+ a

)
+ nD,xnD,z

]
N3

0 (3.21)

a =



0, 2D

L/W, 3D
(3.22)

wherenD,x andnD,z are the computational domain streamwise and spanwise dimensions

normalized by the cavity depthD and the factora accounts for the presence of the side

walls on athree-dimensionalcavity-flow domain extent, Figure 1.1(b), and is zero for

a pseudo-two dimensionalcavity-flow simulation, Figure 1.1(a).

DNS WM-LES
N3

0 1200− 1500 900− 1300
N3

0 (analysis) 1400− 1500 1200− 1300

Table 3.2: Number of points per cubeN3
0 for wall-modelling cavity-flows simulations:

range of values obtained from published work and suggested values for optimization
analysis.
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The new non-dimensional groupC2 accounts for the geometry of the cavity and the

overall computational domains.

In wall-resolving techniques, like DNS or WR-LES, most of the computational effort

goes into resolving the inner-layer. The main factor in the computational cost is the

size of the first row of cells along the walls. For DNS, a scaling law for Nc can be

derived as:

Nc = C3Re3(1−α/2)
L = C3Re2.7

L (3.23)

C3 =
(D/δ)2.7

(L/D)2.7∆x+∆y+∆z+
(3.24)

For a cavity-flow WR-LES, the number of grid points scales asymptotically as:

Nc = C4Re2−α
L = C4Re1.8

L (3.25)

C4 =
(D/δ)2−α

(L/D)2−α ∆x+∆y+∆z+
(3.26)

Similairly to C1, the parametersC2, C3 andC4 are new simulation parameters that

enable for different turbulent modelling techniques to identify and classceteris paribus

the effectiveness of a simulation in resolving the turbulent scales, given the geometry,

the mesh, and the flow parameters.

The grid density of published cavity-flow simulations that use different turbulence

models is shown in Figure 3.3. The symbols mark the effective number of grid points

in each simulation, which is identified by Table 3.3.

The isolines ofC2 are plotted following Equation (3.20). The isolines ofC3 for DNS

and ofC4 for WR-LES are obtained from Equations (3.23) and (3.25), respectively.

Typical DNS simulations lie in the range 10−2 < C3 < 10−4. For completeness, 2D

DNS simulations are included in the graph. For 3D DNS, the state-of-art simulation

14 used 7.5 and 12.2 million cells at aReL = 3 × 103 andReL = 6 × 103, respec-

tively. The region of WR-LES simulations 5× 103 < ReL < 2× 105 shows the dense

mesh resolution required to simulate the inner layer dynamics even at a relatively small

Reynolds number.

DES simulations are grouped in a range of grid density between 0.8 to 5 millions

cells and 105 < ReL < 106. The finest mesh DES is simulation 8, which gives a
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Figure 3.3: Grid density versusReL for different turbulence models.� 3D and pseudo-
3D DNS; � 2D DNS; N WR-LES; △ WM-LES; � DES; ^ WM-DES; continuous
lines: isolines ofC2 slopeRe0.4

L (DES, WM-LES); dotted lines: isolines ofC3 slope
Re2.6

L (DNS); dashed-dotted lines: isolines ofC4 slopeRe1.8
L (WR-LES).

spatial resolution comparable to that of an LES. The grid resolution requirement of

DES is comparable to that of a WM-LES and the reason is that both techniques aim to

model the effects of unresolved inner-layer structures on the outer layer and to resolve

mixing layer eddies in the separated regions like in an LES. Both DES and WM-

LES have therefore a comparable computational mesh densitythat is associated with

resolving the outer layer near solid walls. This shows that the idea of DES as a coarser

grid version of LES in massively separated flow regions and other free shear flows
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is incorrect and inappropriate as observed by Spalartet al. (2006). DES differs from

LES only in the RANS portion of boundary layers, where the difference in the required

resolution in the spanwise and streamwise directions is wide.

The non-dimensional groupC2 in Equation (3.21) accounts for the geometry of the

cavity and the shape of the computational domain. Like in thespectral width analysis

of Section 3.3.1, a range of values for the number of points per cubeN3
0 in cavity-flow

simulations has been made explicit by calculating the coefficientsC2 for the simula-

tions in the available literature and minimizing the mean square error ofNc from fitting

Equations (3.20) and (3.21) to this data.

In Table 3.2 the range of values from past CFD work is presented in the first row while

in the second row a set of values with a narrower range are stated. These are used in

Section 3.3.3 to estimate the cost of WM-LES and DES.

3.3.3 Simulation complexity

From Equation (3.5), withNt ∼ T/∆t ≈ N1/3
c , the total complexity of a simulation that

does not resolve the inner-layer (WM-LES and DES) is:

Cost= C1.3
2 Re0.54

L NRK (3.27)

For a WR-LES, considering the operation costNt for time advancement, the complex-

ity is:

Cost∝ C4/3
4 Re4/3(2−α)

L NRK ≈ C1.3
4 Re2.4

L NRK (3.28)

For DNS, the size of the time step∆t scales asReα+1/2 and the total cost of the simula-

tion is:

Cost∝ C3/2+α
3 Re3(1−α/2)

L Reα+1/2
L NRK ≈ C1.6

3 Re3.3
L NRK (3.29)

Figure 3.4 presents the computational cost for cavity-flow simulations in which the

time advancement is by a single step Runge-Kutta time integration, such that

Cost=
NCNT

NRK
= NCNt (3.30)

Hence, the cost estimate in Figure 3.4 from Equation (3.30) must be multiplied by

the number of temporal integration stages, such as the number of Runge-Kutta stages,

41



3. NUMERICAL MODEL DESIGN 3.3 Cavity flow sizing

to estimate the total cost of the simulation. The results in Figure 3.4 are obtained

usingNt ∼ T/∆t ≈ N1/3
c and are presented only to give a first estimate of the cost of

simulating cavity-flows.

The left y-axis in Figure 3.4 is the cost obtained by Eq. 3.30.The right y-axis is the

same cost in CPU time for a single processor scalar computation, based on a IBM

Power5 1.9GHz 4.5 Mflop/s processor. The time cost to obtain statistical convergence

is estimated to be three times the simulation time advancement cost, which in a cavity-

flow simulation is the flow-through time for a fluid particle totraverse once the com-

putational domain in the streamwise direction. The operation count reflects that of a

representative second-order method of an in-house CFD solver (Grottadaurea & Rona,

2007, 2008).

For moderate Reynolds numbers, the cost of the computation associated with resolv-

ing the inner-layer along solid walls is lower than that to resolve the remainder outer

region (Piomelli & Balaras, 2002).

The cost of wall-resolving low Reynolds number flows therefore scales as the cost of

resolving the outer layer by a wall-modelling technique. This results inCost(C3) =

max [Cost(C2) ,Cost(C3)] and Cost(C4) = max [Cost(C2) ,Cost(C4)] and the iso-

lines for C3 andC4 are truncated at the appropriate intercept withC2 isolines. Fig-

ure 3.4 enables to make ana priori order of magnitude estimate of the computational

cost of a cavity-flow CFD simulation.

Given the cavity shape and boundary layer inflow conditions,the three isolines for a

wall-modelling technique (WM-LES, DES), DNS and WR-LES, are determined from

Equations (3.21), (3.24) and (3.26). For instance, for a given cavity-flow Reynolds

numberReL, the intercept of theReL = constant vertical line with the isolineC2 (by

using Equation (3.21) and the DES value for of Table 3.1) gives an order of magnitude

estimate of the total computational cost for a DES simulation. The intercept with the

C3 andC4 isolines give the cost for the other two turbulence modelling techniques.

If the CFD solver is parallelised, the run time decreases as the number of processors

increases. Specifically,

RunTime=
NCNtNRK

µPNP
(3.31)

whereNP is the number of processor used andµP is the parallelisation efficiency of the
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algorithm forNP processors. Parallelisation reduces the run time, but not the computa-

tional cost, which is higher than that of a scalar computation given by Equation (3.5).
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Legend tag Reference

1 Larchevêqueet al. (2004b)
2 Larchevêqueet al. (2004a)
3 Suponitskyet al. (2005)
4 Changet al. (2006)
5 Rizzetta & Visbal (2003)
6 Gloerfeltet al. (2002b)
7 Basuet al. (2005)
8 Basuet al. (2006)
9 Shieh & Morris (2001)
10 Chang & Park (2004)
11 Arunajatesanet al. (2002)
12 Hamedet al. (2003)
13 Hamedet al. (2001)
14 Bres & Colonius (2007)
15 Rowleyet al. (2002)
16 Moonet al. (2003)
17 Gloerfeltet al. (2002b)

Table 3.3: Cavity flow simulations used in Figure 3.2 to 3.4.
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Chapter 4

Cavity inlet

This chapter presents a spatially developing boundary layer model that uses the SSTD

inflow condition of Section 2.4. This test case is used as precursor simulation to

the cavity flow model of Chapter 5. Section 4.1 gives the dimensional and non-

dimensional flow parameters that define the boundary layer model. The computational

mesh is detailed in Section 4.2, the boundary conditions arereported in Section 4.3 and

the results of the scalability performance tests on a HPC cluster are presented in 4.4.

LES results and comparison with approximate analytical solutions and experimental

results are then given in Section 4.5.

4.1 Flow conditions

The SSTD method is used to generate an LES model of a zero pressure gradient bound-

ary layer developing over a flat plate. The inlet plane free stream Mach number is

0.126 and the time averaged integral length scales of the boundary layer thicknessδ0,

displacement thicknessδ∗0, and momentum thicknessθ0 giveReδ0 ≈ 5200,Reδ∗0 ≈ 720,

Reθ0 ≈ 570, where the subscript 0 indicates the condition at the computational domain

inflow.
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4. CAVITY INLET 4.2 Computational domain geometry and mesh

4.2 Computational domain geometry and mesh

The computational domain selected for the precursor LES inflow with the SSTD bound-

ary condition is a rectangular prism the size of which isDSx × DSy × DSz = 37δ0 ×
7δ0 × 4δ0, whereδ0 is the time-averaged boundary layer thickness at the domaininlet.

The selected spanwise size of the domain is large enough to accommodate 8 streaks,

the size of each streak being approximately 120− 140y+.

The rectangular prism is discretised by a topologically orthogonal mesh ofNcx×Ncy×
Ncz = 154× 86× 72≈ 106 cells.

The mesh spacing in the streamwise directionx and in the spanwise directionz is

uniform, resulting in a constant spacing∆x ≈ 60y+ and∆z ≈ 14y+. In the wall-

normal direction, the first four cells are of dimension∆y = y+ = 1 to ensure a correct

resolution of the boundary layer viscous sub-layer. The cell spacing above the fourth

cell is obtained by using two successive constant proportional stretching ratios:ǫ1 =

1.058 up to the tenth cell andǫ2 = 1.08 thereafter. The two ratios were selected as to

provide a good compromise between numerical resolution (cells within the boundary

layer Nδ = 55) and computational cost. Mesh resolution of the spatially developing

boundary layer test case in all directions is comparable with that of the finest WR-LES

simulations by Table 3.3.

4.3 Boundary conditions and starting flow conditions

In this simulation, the boundary condition used were: the SSTD boundary condition of

Section 2.4 at the inlet of the rectangular prism, a non-slipadiabatic condition for the

solid wall of the domain, extrapolation from the inner cellsat the outflow boundary,

a non-reflecting condition at the upper boundary opposite tothe flat plate wall, to

minimize spurious reflections of disturbances, and periodic boundary conditions at the

lateral boundaries in the spanwise direction of the domain.

The initial velocity field was primed in the streamwise direction by a discrete num-

ber of mean profiles stations by Equations (2.44), and considering a 1/7th power law

growth of the mean profiles, in the same direction. Fully synthetic fluctuations over

the mean profiles were sumperimposed by Equations 2.45, 2.46, and using the param-

eters of Table 2.1. Divergence-free random velocity noise with a maximum amplitude
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4. CAVITY INLET 4.4 Parallelisation performance

u′rms/u∞ < 4% were also superimposed on the synthetic disturbances, tobreak the

symmetries arising from the the deterministic specification of the inlet fluctuations.

The wall-normal mean profile of the turbulent kinetic energyk̄ was primed using the

k− ω multiscale model by Wilcox (1988), implemented with the numerical procedure

of Wilcox (1981). Further details of the algorithm and modelcan be found in Wilcox

(2002).

4.4 Parallelisation performance

The boundary layer inlet LES simulation was run on the IBM-SP6 cluster of the HPC

centre CINECA, Italy.

The cluster offers hardware support for Simultaneous Multi-threading (SMT). In a

SMT processor design, multiple instructions from more thanone thread can be issued

in any given pipeline cycle. Unlike other hardware multi-thread architectures, SMT

permits all thread to simultaneously compete for and share processor resources. This

is done without great changes to the basic processor architecture, the main addition

being only a larger register file to hold data from multiple threads.

Preliminary scalability tests were performed on the nearly1M cells LES grid to choose

the best solution in terms of number of processors and multi-threading mode.

The parameters used for scalability analysis are the code speed-up and the parallelisa-

tion efficiency. LetT0 be the scalar time needed to perform one time step (two Runge-

Kutta sub-iterations) using the serial code on a single processor of the cluster, andTP

the time to perform the same operation by the parallelised code onNP processors. The

speed-upSP is defined as

SP = T0/TP (4.1)

and the parallelisation efficiency is

µP = SP/NP (4.2)

The result of the scalability performance analysis obtained for the RDD parallelisation

algorithm of Section 2.5 is presented in Figure 4.1. The ideal speed-up corresponds to

the straight green lineS = NP in Figure 5.2(a).
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Figure 4.1: Boundary layer LES with a single block mesh of 1× 106 cells, scalability
performance test on SP6 IBM cluster. (a) Speed-upSP and (b) parallelisation efficiency
µP (b) for different numbers of processorsNP.
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By increasing the number of processors, the speed-up growthis normally limited by

the communication time and by the load balance.

For this test caseSP > NP up toNP = 12, hence the code shows a super-linear speed-up

due to cache aligning. ForNP > 16, the ratio of communication versus computation

increases to a level where a further reduction in computational time by domain sub-

division is not achieved. This is caused essentially by the communication overhead

through the communication planes, from sub-dividing a relatively small CFD compu-

tational domain into more zones.

The parallelisation efficiency for SMT mode remains higher than that from single

threading for any number of processors, as shown in Figure 5.2(b).

From Figures 5.2(a) and 5.2(b), the optimal number of processors, taking into account

the available CPU time and wall time constraint on the SP6 IBMmachine for this

study, was empirically determined asNP = 32 with SPM enabled. In this configu-

ration, the speed-up wasS32 ≈ 16.2, the parallelisation efficiencyµ32 ≈ 0.5 and the

parallel computation wall time for one time step approximately T32 = 2.1 seconds.

The flow-through time, which is the time required for a fluid particle to get across the

computational domain, was equivalent to 220K iterations. In a typical LES computa-

tion, the initial transient needs at least three flow-through times to complete (Tessicini

et al., 2006). Hence, the total CPU time for the simulation runningon 32 processors

was 13.07× 103 CPU hours and the wall time 410 hours (≈ 17 days).

4.5 Results

4.5.1 Computational mean velocity profile

At run time, oscillations were generated by the SSTD technique at the inlet section and

propagated throughout the LES scheme.

The three flux limiters of Section 2.2 were tested in this LES simulation to assess which

limiter exhibited the best oscillatory behaviour. Specifically, it was of interest to deter-

mine which limiter allowed the development of physical boundary layer instabilities

like streaks for a turbulent boundary layer, while preserving the TVD properties of the

scheme.
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4. CAVITY INLET 4.5 Results

Non-dimensional velocity profiles of the zero pressure gradient spatially developing

boundary layer were extracted at four different streamwise stations, at coordinates

X = 8δ0, 16δ0, 24δ0, 32δ0, to analyse the boundary layer growth and flux limiter perfor-

mance. The profiles were extracted at three flow-through times, which was estimated

sufficient for the initial CFD start up transient to decay. The velocity profiles are time-

averaged over the last 105 iterations to filter any velocity fluctuations around the mean.

The three flow limiters cover the upper and lower ranges ofφ values satisfying the

conditions (2.39) to (2.41). For the Minmod limiter, limr→∞ φ(r) = 1, for the Su-

perbee limiter, limr→∞ φ(r) = 2, and for the Sweby limiter, limr→∞ φ(r) = β with

1 ≤ β ≤ 2.

Figure 4.2 shows the non-dimensional velocity from the LES simulations that use the

Superbee limiter and the Minmod limiter, which are respectively the upper and lower

bounds ofφ. The normalised mean streamwise velocityu+ is plotted against the nor-

malised wall-normal distancey+ for each of the four stations.

Figure 4.2(a) shows that the Superbee limiter is not dissipative enough in the smooth

region of flow and this results in over-amplified oscillations and time-averaged values

of streamwise velocity higher than that from the law of the wall. On the contrary,

Figure 4.2(b) shows the more dissipative Minmod limiter causes a re-laminarisation

of the inner layer velocity profile that prevents the boundary layer from growing the

overlap region at the correct non-dimensional distance of around 30y+ from the wall.

Simulations with different values ofβ = (1.05, 1.25, 1.3, 1.35, 1.6) were run to test

the Sweby limiter. The best result is shown in Figure 4.3, obtained forβ = 1.3. A

transition region is required for the flow to develop streaksand other distinguishing

large-scale structures of a turbulent boundary layer, in agreement with the work on LES

inflow conditions by Keatinget al. (2004). The shape of the first two time-averaged

velocity profiles downstream of the inlet plane atX1 = 8δ0 (red circles) andX1 = 16δ0
(green diamonds) indicates a re-laminarisation of the inner layer velocity profile over

the range 0< X < 16δ0. This re-laminarisation is confirmed by low values of the

friction coefficientC f which are in the range of 1.4 < C f < 1.8, whereas a 1/7th power

law (turbulent) boundary layer would giveC f in the range 1.9 < C f < 2.1 over the

Reynolds number range 17500< Rex < 36000. The skin friction coefficient recovers

slowly betweenX = 16δ0 andX = 24δ0. FromX = 24δ0, the time-averaged velocity
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Figure 4.2: Non-dimensional time-averaged velocity profiles of the zero pressure gra-

dient spatially developing boundary layer at four different streamwise stations, using

the (a) Superbee and (b) the Minmod limiters by Roe (1986).
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Figure 4.3: Non-dimensional time averaged velocity profiles of the zero pressure gra-
dient spatially developing boundary layer at four different streamwise stations, using
the Sweby (1984) limiter withβ = 1.3.

4.5.2 Results validation

Figure 4.4 shows the non-dimensional time-averaged velocity profile from LES (Sweby

limiter, β = 1.3) compared against a range of analytical and experimental results. The

LES velocity profile was extracted atX = 32δ0 from the computational domain inlet,

giving aReδ ≈ 7720,Reδ∗ ≈ 1100, andReθ ≈ 910.

In Figure 4.4, the dash-dot line is the Von Kármán (1930) law of the wall, and the

continuous straight blue line is the Finleyet al. (1966) composite velocity profile for

Reθ = 930 that uses the Musker (1979) law of the wall for the inner layer. Circles are

the PIV measurements by Haigermoser (2009) atReθ = 930 and the squares are the

LDV measurements by De Graaff & Eaton (2000) atReθ = 1420. There is an appre-

ciable agreement among the numerical, experimental, and analytical velocity profiles

across the boundary layer.

Figure 4.5(a) is an enlargement of Figure 4.4 showing the inner layer portion of the

boundary layer. The LES predictions show to closely follow the Musker (1979) law

across the inner layer up toy+ = 20, indicating that the LES turbulence closure com-
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Figure 4.4: Comparison of the LES non-dimensional time-averaged velocity profiles
versus analytical and experimental profiles

bined with the dissipative characteristics of the second-order scheme with the Sweby

limiter dissipates about the right amount of resolved kinetic energy close to the wall. In

the region of transition between viscous sub-layer and the logarithmic overlap region,

there is a good match with the experimental results.

Figure 4.5(b) shows an enlargement of the outer portion of boundary layer. The ve-

locity profile predicted by LES exhibits a good agreement with the PIV measurements

by Haigermoser (2009) that are a good match with the LES prediction across the full

profile.

Similarity with analytical and experimental curves, are further detailed in Figures 4.5(a)

and 4.5(b), for the inner and outer regions, respectively.

profile becomes reasonably asymptotic to the viscous lawy+ = u+ (dotted line) and the

Von Kármán (1930) law of the wall (dash-dot line).
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Figure 4.5: Detail of the inner (a) and outer (b) time-averaged streamwise velocity
profiles from LES, experimental, and analytical models.
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4.5.3 Unsteady flow

Among the many organized structures observed in near-wall turbulent flows, streaks

are considered to be of major importance for their role in thegeneration of turbulent

kinetic energy. Streaks are regions of slowly moving fluid elongated in the direction

of the mean flow that are lifted by wall-normal motions from the wall into the higher

speed regions, generating organized and coherent structures like hairpin vortices.

Figure 4.6 shows the instantaneous predictions of the streamwise velocity on they+ =

15 plane at four incremental computational times with constant increment∆t = 1.3

FT. At the initial timet = 0, the flow field is populated only by synthetic fluctuations

with small random disturbances, and large periodicity in the streamwise and spanwise

directions that are imposed by the initialisation procedure of the computation. After

1.3 FT times the field begins to show self-organized coherent structures, although the

velocity field still exhibits a strongly symmetric organization. The streaks the region

downstream the re-laminarisation of the flow are not well defined. After 2.6 FT times,

the streaks are developed and the initial flow transient is fully extinguished. The higher

aspect ratio identifies independent structures with a defined spanwise lengthscale for

each streak. At 3.9 FT times, multiple levels of velocity isocontours mark fully devel-

oped streaky structures with evidence of fine scale turbulence generation and elongated

structures in the streamwise direction.

In Figure 4.7 the three-dimensional turbulent boundary layer field is shown by theQ-

criterion by Huntet al. (1988). Since in a boundary layer the gradient ofu in the

wall-normal-direction is large near the wall, any numerical flow visualization of the

turbulence by vorticity isocontours will be overshadowed by the time-averaged veloc-

ity gradient effect. TheQ-criterion is a vortex identification criterion, defined by the

second invariant of the velocity gradient tensor:

Q = −1
2

(S: S−Ω : Ω) = −1
2
∇U : ∇U (4.3)

WhereS= ∇U+U⊗∇ is the rate of strain andΩ = ∇U−U⊗∇ is the vorticity tensor.

When theQ-criterion is positive, it represents locations in the flow where the rotation

dominates the strain and shear. At the initial timet = 0, the field is populated only

by synthetic fluctuations with no momentum transfer in turbulence generation mech-

anisms. At 1.3 FT times the flow starts to be organized in coherent structures with
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(a)

(b)

(c)

(d)

Figure 4.6: Streaks aty+ = 15 slices by isocontours of streamwise velocity (flood+
lines)
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random motion. After 3 FT times, the turbulence generation mechanism in LES is

completely activated. Fine structures can be identified beyond the transition region

near the inlet section where synthetic oscillation are generated.

4.5.4 Unsteady flow statistics

The determination of the characteristic spanwise length-scale in a boundary layer can

be performed by velocity auto-correlation analysis. Giventhe streamwise velocity

perturbationu′ = u− 〈u〉, the two-point spanwise auto-correlation function is defined

as

Ruu(y,∆z) = 〈u′(t, x, y, z)u′(t, x, y, z+ ∆z)〉 (4.4)

Angular brackets denote averaging over time and over the homogeneous directionsx

andz. ∆z in the computation of the discrete auto-correlation is the constant spanwise

mesh size.

A common method for estimating the streak spacing is to calculate the streak span-

wise lengthscale asLu(y) = 2∆zmin, where∆zmin is ∆z at which the minimum of auto-

correlation function is found within the first 300 viscous lengths.

A similar analysis can be performed of the spanwise velocityperturbationv′ = v− 〈u〉
from which the two-points spanwise auto-correlation

Rvv(y,∆z) = 〈v′(t, x, y, z)v′(t, x, y, z+ ∆z)〉 (4.5)

estimates the spanwise lengthscale asnLv(y) = 2∆zmin.

In Figure 4.8,Ruu andRvv are plotted aty+ = 15 (continuous line), andy+ = 35 (dashed

line). The first minimum inRvv in Figure 4.8(b) is at∆zmin|y+=15 = 80y+, from which

Lv(15y+) = 160y+. Similarly, Lv(35y+) = 230y+. A similar result is obtained using the

Ruu function, although the minima aty = 35y+ is more like plateau and therefore less

localised in∆z.

The results found confirmation in literature, where for subsonic boundary layer flows

Lv(15y+) = 140y+, andLv(35y+) = 230y+ (Chernyshenko & Baig, 2005; Hu & Sand-

ham, 2001).
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Figure 4.7: Isocontours of vortical structures byQ-criterion atQ = 2.5 × 106. Incre-
mental time between two successive frames∆t = 1 inlet flow through times.
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Figure 4.8: Time-averaged auto-correlation of (a) streamwise velocity perturbationsu′

and (b) flow-normal velocity perturbationsv′ aty+ = 40 above the flat plate
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Chapter 5

Cavity flow

This chapter reports the CFD model and LES simulation results of a rectangular open

cavity-flow at a low Mach number and with a thick inflow boundary layer.

Section 5.1 introduces the flow parameters. In Section 5.2 the computational domain

geometry and the mesh are presented, and in Section 5.3 the boundary conditions and

the starting flow condition are detailed. This cavity model was designed using the

method of Chapter 3 that provided ana priori estimate of the computational resources.

These estimations are verifieda posteriori in Section 5.5 from the actual cost of the

computation. The scalability performance of the cavity-flow computation is presented

in Section 5.4. Finally, the LES simulation results and their comparison with the ex-

perimental results of Haigermoser (2009), are detailed in Section 5.6.

5.1 Flow conditions

The flow conditions of the numerical work of this thesis are indynamic similarity with

the experimental work of Haigermoser (2009), based on the Reynolds number. The

PIV experiments on a rectangular cavity were formerly used as an idealized geometry

test-case to model a real-life automobile bodywork recess by FIAT of a fixture having

the typical sizes of a hatch back door cavity at a cruise speedof 140 Km/h (Ribaldone

et al., 2005).

The dynamic similarity of the cross-investigation enablesthe comparison of the numer-

ical LES computation results against the tomographic PIV experiments, throughout

this chapter.
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Cavity flow parameters LES PIV
L/D 4 4
L/W 0.8 0.115
δc/D 2 2.11
ReL ≈ 15500 ≈ 16000
M ≈ 0.126 ≈ 2.7 E-04

Reδ0 ≈ 5200 -
Reθ0 ≈ 570 -
Reδ∗0 ≈ 720 -
Reδc ≈ 7750 ≈ 8440
Reθc ≈ 920 ≈ 900
Reδ∗c ≈ 1115 ≈ 1360

Table 5.1: Cavity-flow conditions and geometrical parameters.

The cavity-flow conditions are summarized in Table 5.1, for the presented LES numer-

ical computation and the PIV work.

5.2 Computational domain geometry and mesh

The computational domain geometry is sketched in Figure 5.1. It is made by four

computational blocks: the inlet section (zone 1), a block above the cavity (zone 2), the

outlet section (zone 3), and the cavity enclosure (zone 4).

The dimensions of each block are reported in Table 5.2, normalised in terms of the

boundary layer thickness at the cavity leading edgeδc and of the cavity lengthL. The

streamwise dimension of the cavity inflow of 37.7δ0 is slightly larger than the 37δ0 of

the inflow test case of Chapter 4, to match theReθc ≈ 930 andReL ≈ 16000 inflow

conditions of Haigermoser (2009), whereδ0 is the same inlet boundary layer thickness

value of Chapter 4. The spanwise and the wall-normal dimensions of blocks 1,2, and

3 are the same of the inflow test case.

The last four columns of Table 5.2 summarize the mesh densityin the three directions

and the total number of cells. The cavity inlet mesh spacing is the same of the inflow

test case of Chapter 4 in the spanwise and wall-normal direction. In the streamwise

direction, a constant spacing of∆x+ ≈ 36 is used for the first 152 cells (up toX = 22δ0),

and a negative stretching ratio of about 5% is used to clusterthe cells near the upstream

top cavity edge. The dimension of the last cell of the inlet section at the upstream cavity
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Zone DSx DSy DSz Nc,x Nc,y Nc,z Nc,tot

1
37.7δ0 7δ0 4δ0
23.6δc 4.4δc 2.5δc 196 86 72 ≈ 1.21× 106

11.8L 2.2L 1.26L

2
3.2δ0
2δc „ „ 128 „ „ ≈ 0.79× 106

L

3
9.6δ0
6δc „ „ „ „ „ „

3L

4
3.2δ0 0.8δ0
2δc 0.5δc „ „ „ „ „

L 0.25L

Table 5.2: Cavity model computational domain dimensions and grid density.

Figure 5.1: Cavity-flow computational domain and detail of the cavity recess.
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edge is∆x = 1y+. This matches the dimension of the first cell near the upstream bottom

cavity edge. An enlargement of the cavity mesh at the intersection of the four cavity

blocks around the cavity is also given in Figure 5.1.

A constant stretching ratio of 2.3% is used in the streamwise direction of the cavity

from the cavity forward and backward vertical walls towardsthe centre of the cavity.

Similarly, a constant stretching ratio of 3.7% is used in the vertical direction towards

the centre of the cavity. Finally, a constant stretching ratio of 2.4% is used in the

streamwise direction from the downstream cavity edge to thecomputational domain

outflow. At the downstream top cavity edge, the first cell∆y = 1y+.

The total number of cells for the cavity-flow test case isNc ≈ 3.6 × 106 cells, with a

number of cells in the cavityNc,cav ≈ 0.79× 106.

5.3 Boundary conditions and starting flow conditions

The boundary condition used in the cavity-flow simulation atthe computational do-

main inflow (zone 1) is the SSTD boundary condition of Section2.4. Non-slip adia-

batic wall conditions are applied at the solid walls of zones1, 3 and 4, extrapolation

from the inner cells is used at the outflow boundary of zone 3, anon-reflecting condi-

tion is used at the upper boundaries of zones 2, 3 and 4, periodic boundary conditions

are imposed at the lateral boundaries in the spanwise direction of the domain for zones

1 to 4. Since periodicity was introduced at the lateral boundaries of the cavity domain,

the effect of the cavity lateral walls was not modelled and the simulation can be referred

to apseudo-two dimensionalcavity-flow. Internal connectivities were adopted for the

internal boundaries, edges, and corners in the adjoining regions of the computational

domain.

The cavity inlet (zone 1) initial velocity field and profile ofthe turbulent kinetic energy

k̄, were primed using the same approach as the inflow test case, described in Sec-

tion 4.3. Zones 2 and 3 were primed using the mean profiles of the outflow boundary

of zone 1. In the cavity enclosure, the stagnation flow condition was imposed at the

starting time of the computation.
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5.4 Parallelization performance

Preliminary scalability tests for the cavity-flow simulation were performed for assess-

ing the CFD scheme MPI parallelisation performance on both the HPC Intel cluster

Alice of the University of Leicester, Great Britain, and on the IBM-SP6 IBM cluster

of the HPC centre CINECA, Italy. Results of the tests are shown for code speed-up,

Equation (5.2(a)), and for parallelisation efficiency, Equation (5.2(b)).

Results of the scalability performance analysis obtained for the RDD parallelisation

algorithm of Section 2.5 on the 3.6× 106 cell LES cavity model are presented in Fig-

ure 5.2. The ideal speed-up corresponds to the straight black line S = NP in Fig-

ure 5.2(a). For a number of processorsNP . 60 the speed-up of the SP6 cluster in

Simultaneous Multi Thread (SMT) mode is higher than the speed-up achieved by the

Alice cluster. For a number of processorsNP & 60, the Intel cluster Alice reaches an

higher speed-up, as also shown by the slope of the dashed blueline.

The better performance of the Intel cluster Alice for a number of processorsNP & 88 is

also confirmed by the higher values of the parallelisation efficiencyµP, which is higher

than theµP for the SP6 cluster atNP > 88.

The optimal number of processors, taking into account the expected queue time, CPU

time, and wall time constraints on the Alice cluster, was determined asNP = 128.

In this configuration, the speed-up wasS128 ≈ 24.4, the parallelisation efficiency

µ128 ≈ 0.19 and the parallel computation wall time for one complete Runge-Kutta

time integrationT128 = 4.1 seconds. The computational domain flow-through time

was equivalent to 0.29× 106 iterations. Since in a typical LES computation the initial

transient needs at least three flow-through times to complete (Tessiciniet al., 2006),

the total CPU time for the simulation running on 128 processors was 135.3× 103 CPU

hours and the wall time was 1060 hours (≈ 44 days).

The scalar time needed to perform one time step (two Runge-Kutta sub-iterations)

using the serial code on a single processor of the cluster in this simulation wasT0 = 100

seconds. Hence, the total time to run this simulation on a single processor would have

been approximately 3 years.
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Figure 5.2: Scalability and parallelisation performance of a four block 3.6× 106 cells
LES cavity model on the HPC Intel cluster Alice and IBM SP6. (a) Speed-upSP and
(b) parallelization efficiencyµP versus the number of processorsNP.
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5.5 Numerical model design predictions

The methodology of Chapter 3 is herein applied to the cavity test case of Section 5.2.

The cavity geometry isL/D = 4 andD/δ = 2.2. The indicator of the turbulent flow

discretizationLNd is first derived from Equations (3.16) and (3.17). The secondorder

scheme determinesPPW = 10.3 andrτ = 10, for a spatially resolved WR-LES. The

mesh height is so thatnD,W−N = 8.75 and, from Equation (3.17),C1 ≈ 0.02.

At the cavityReL ≈ 15500, forC1 ≈ 0.02, Equation (3.16) gives a spectral width of

LNd ≈ 2. Figure 5.3 shows a verification of thisa priori estimate of cavity simulation

spectral width. AtReL = 15500, the lineC1 = 0.02 is vertically intercepted near value

LNd ≈ 2, in agreement with the value obtained from Equation (3.16).

The analysis is then extended to the cavity-flow mesh density. Since the cavity-flow

model uses a WR-LES mesh ofNc = 3.6 × 106 cells with a near-wall clustering to

∆y+ ≈ 1, Equation (3.25) is used to obtainC4 ≈ 0.18. Figure 5.4 shows where the

currentNc = 3.6 × 106, ReL ≈ 15500 cavity-flow simulation lies with respect to the

body of past flow models from the literature in the (ReL,NC) plane.

This cavity-flow simulation, marked by an asterisk in Figure5.4, lies between the

clusters of past LES and DNS. This suggests that the coefficientsC3 andC4 used in

Equations (3.24) and (3.26) may not give accuratea priori predictions for the current

cavity model, as their use implies a degree of extrapolationfrom the LES and DNS

simulation clusters reported in the literature.

A new class of isolines for highly resolved LES cavity-flow simulations might be de-

rived as the number of the WR-LES in literature increases. However, for the time

being, the present simulation is the first 3D WR-LES open cavity-flow simulation with

a thick inflow boundary layer and mesh sizing between typicalLES and DNS values

reported in the literature.

Figure 5.5 shows thea priori estimate of the current cavity-flow simulation in the con-

text of the cost estimate of previous simulations reported in the literature. In this figure,

the current cavity-flow simulation is positioned in a regionin-between the typical cost

ranges for LES and DNS simulations.

The cost of the present simulation is estimated from Equation (3.30) forNC = 3.6×106,

which givesCost≈ 0.56× 109.
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Figure 5.3:A priori estimate of the cavity-flow simulation spectral width. Symbols as
in Figure 3.2.
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Figure 5.4: Analysis of the cavity-flow grid density. Symbols as in Figure 3.3.
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Figure 5.5: Analysis of the cavity-flow grid density. Symbols as in Figure 3.3.

By Equation (3.31), the estimated equivalent run time for a scalar computation of the

cavity-flow for µ128 ≈ 0.19 (Section 5.4, Figure 4.1) is of the order of 262 days≈
0.7 year, which is in fair agreement with the 0.9 years neededfor resolving one flow

through time of the cavity-flow WR-LES on a single processors, or the 44 days on 128

processors, using the Alice HPC Intel cluster, reported in Section 5.4.

5.6 Results

In this section, the results of the cavity-flow LES computation are presented and com-

pared against the PIV experiments of Haigermoseret al. (2008) and of Haigermoser
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(2009). The mean flow field and its statistics are discussed inSections 5.6.1 and 5.6.2,

respectively. The time dependent instantaneous flow fields are shown in Section 5.6.4,

and the unsteady flow statistics are detailed in Section 5.6.4. Finally, Section 5.6.5

presents the spectral analysis of the time-resolved flow.

5.6.1 Mean flow field

Figure 5.6 presents the time-averaged velocity field in the vertical x-y plane, in terms of

the streamwise velocity vector profiles and velocity streamlines. In Figure 5.6(a), the

LES mean streamwise velocity vector field indicates the presence of a large standing

vortex that dominates almost the 75% of the cavity length, from x/L ≈ 1 to x/L = 4.

This structure is also identified in the PIV The velocity streamlines from the LES nu-

merical predictions in Figure 5.6(c) and PIV experiments inFigure 5.6(d) indicates

the location of the centre of the standing vortex atx/L ≈ 3.2. A secondary weaker

counter-re-circulating zone, that was evident in the PIV experiments close to the up-

stream cavity edge atx/L ≈ 0.4, appears in the LES results under the form of a lower

intensity spiral re-circulation, induced by the velocity field of the primary vortex. This

secondary re-circulation was not always reported in previous experiments in literature,

like in Graceet al. (2004). The impingement of the mean shear layer on the upper

part of the front facing step looks more pronounced in the LESresults, where a sharp

change of direction of the streamlines near the downstream top-cavity edge is visible,

as shown in Figure 5.6(c). This is likely to be due to the near wall clustering in the

LES providing a higher spatial resolution in this region than PIV, which is limited by

the wall light reflections.

Figure 5.7 shows the velocity streamlines of a horizontal x-z plane inside the cavity

enclosure aty/H = −0.5. The LES simulation predictions are shown in Figure 5.7(a)

and the PIV experiments are shown in Figure 5.7(b). In the PIVresults, the flow shows

a small spanwise velocity component that is attributed to the no-slip wall boundary

conditions at the cavity side walls in Haigermoseret al. (2008).

In the LES simulation, the presence of spanwise periodic boundary conditions intro-

duces a spanwise velocity component, as evidenced by the orientation of the stream-

lines at the centre of the cavity enclosure. Two accumulation lines are present, at

x/H ≈ 0.2 and atx/H ≈ 3.2, respectively. These two lines confirm the presence of the
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Figure 5.6: Mean field visualizations in the vertical x-y plane. Streamwise velocity
vector profile from (a) LES, and (b) PIV experiments by Haigermoser (2009). Velocity
streamlines from (c) LES, and (d) PIV experiments by Haigermoser (2009).

primary standing vortex core and of the secondary upstream re-circulation. A result

similar to the one from the current LES predictions was obtained by Bissessuret al.

(2004) from a three-dimensional DES simulations of a rectangular cavity driven by a

thin inflow boundary layer.

The time-averaged development of the shear layer along the cavity opening can be

described by the vorticity thickness

δv(x) =
U2 − U1

(∂Ū
∂y )max

(5.1)

where the cavity external flow velocityU2 = Uinf and the velocity inside the cavityU1

is assumed to be equal to zero.

The curve ofδv(x) normalized by the momentum thicknessθc of the incoming bound-
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Figure 5.7: Mean field visualizations in the horizontal y-z plane aty/H = −0.5. Ve-
locity streamlines from (a) LES and (b) PIV experiments by Haigermoser (2009).

ary layer, is plotted by the red circles in Figure 5.8.

The shape of the vorticity thickness profile is in good agreement with the experimental

PIV data, shown by the black stars in Figure 5.8. For both investigations, the growth

of δv(x) is linear over most of the length of the cavity. However, theLES results show

a steeper growth after the cavity upstream edge, up tox/H ≈ 0.2. A possible expla-

nation of this higher vorticity thickness growth rate is provided later in Section 5.6.3,

where the flow mechanics of the streaks at the upstream cavityedge is detailed. The

maximum value of the vorticity thickness is reached atx/H ≈ 3.3, both for LES and

PIV. This maximum for the LES is lower lower by approximately5% respect the PIV

experiments of Haigermoser (2009). As a result, the LES vorticity thickness growth

rate calculated from the cavity leading edge to the vorticity thickness maximum value

is dδv
dx ≈ 0.28, while the value obtained from the PIV experimentsdδv

dx ≈ 0.30. These

values are driven by the thickness of the incoming boundary layer being large, as typ-

ical values thin boundary layers in low Mach number cavity-flows in literature are in

the region ofdδvdx ≈ 0.12− 0.14 (Ashcroft & Zhang, 2005).

In order to assess the self-similarity of the streamwise velocity profiles across the

cavity opening, the non-dimensional variableξ = y/(0.5δv) is introduced. The non-

dimensional velocity profilesU(ξ)/U∞ are plotted versusξ in Figure 5.9. The contin-
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Figure 5.8: Normalised shear layer vorticity thickness as afunction of streamwise
coordinatex/H.

uous black line represents the streamwise velocity profile analytical law of a canonical

free-shear layer

U(ξ)
U∞

=
1
2

[1 + tanh(ξ)] (5.2)

The outer layer region is nearU(ξ)/U∞ = 1. In this region, as the flow goes down-

stream over the top of the cavity opening, the velocity profile tends to become self-

similar, which increases the wake parameterΠ in Equation (2.45) in the outer layer.

In the inner layer region, nearU(ξ)/U∞ = 0, the self-similarity is only approxi-

mately reached in the upstream region of the cavity, atx/H = 0.5 (green circles)

andx/H = 1.5 (cyan triangles), since significative velocity values areinduced by the

bound vortex in the downstream cavity region, as shown by profiles atx/H = 2.5 (blue

squares) and atx/H = 3.5 (magenta crosses).
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Figure 5.9: Non-dimensional time-averaged streamwise velocity profiles at different
streamwise locations, across the rectangular cavity opening.

5.6.2 Mean flow statistics

In order to characterize the spatial scales of the eddies contained in the turbulent shear

layer of the cavity, the two-point spatial correlation function ρu′u′ of the streamwise

velocity fluctuationsu′, obtained from the LES simulation, was computed at three

reference points on the cavity centreline atxre f/H = 0.6, xre f/H = 2, xre f/H = 3.

The results are presented and compared against the PIV experiments by Haigermoser

(2009) in Figure 5.10.

Figure 5.10(a) shows that near the upstream top cavity edge,at pointxre f/H = 0.6, yre f/H =

0, the shape of the correlation function is elongated in the streamwise direction, due

to the streamwise coherence of the spatial scales in the turbulent boundary layer ap-

proaching the cavity mouth. A smaller positive correlationspot is shown at a stream-

wise distance 2H from the reference point, identifying the convection of turbulent

structures across the cavity. This is in agreement with the PIV results shown in Fig-

ure 5.10(b), in which a broader second region ofρu′u′ ≥ 0.5 correlation is shown
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Figure 5.10: Two-point spatial correlation functionρu′u′ computed at three refer-
ence points from the LES and PIV time-resolved velocity data. (a) LES,yre f/H =
0, xre f/H = 0.6. (b) PIV,yre f/H = 0, xre f/H = 0.6. (c) LES,yre f/H = 0, xre f/H = 2.
(d) PIV, yre f/H = 0, xre f/H = 2. (e) LES,yre f/H = 0, xre f/H = 3. (f) PIV,
yre f/H = 0, xre f/H = 3. Contours with constant increments of∆ρu′u′ = 0.1.

spanning a larger portion of the cavity, up tox/H = 3. In the middle of the cavity

mouth in Figure 5.10(c), the two-point spatial correlationfunctionρu′u′ referenced to

point xre f/H = 2, yre f/H = 0 shows a region ofρu′u′ ≥ 0.5 that is wider in the wall-

normal direction with respect to Figure 5.10(a). This is dueto the growth of the shear

layer that accommodates thicker self-coherent structures. For the last reference point,

xre f/H = 3, yre f/H = 0, Figure 5.10(e) shows that the two-points correlation function
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ρu′u′ ≥ 0.4 over the rear half of the cavity, where coherent structuresare convected and

then feed in the main re-circulation, characterized by the standing vortex.

A more detailed explanation on the dynamics of the turbulentstructures into the cav-

ity will be presented in the section dealing with the time-dependent flow field, Sec-

tion 5.6.3. The PIV experiment results in Figure 5.10(d) and5.10(f) shown a similar

circular region for the functionρu′u′ centred about the same reference points, although

the LES simulation evidenced a more irregular shape of the correlation function due to

the higher spatial resolution of the non-uniform numericalmesh, as compared to the

uniform PIV vector grid.

The two-point correlation functionρv′v′ for the vertical velocity fluctuationsv′ is pre-

sented in Figure 5.11 and compared versus the PIV experiments at the same reference

points along the cavity centreline atxre f/H = 0.6, xre f/H = 2 , xre f/H = 3. The shape

of theρv′v′ contours is more circular for the three reference points in which the corre-

lation function was computed. This reflects the coherent behaviour of single vortices

travelling along the shear layer that was shown in the PIV experiments. The correlation

function from LES data shows the presence of correlation regions with a larger extent

with respect the PIV results. This behaviour is in a qualitative agreement with the study

of Ashcroft & Zhang (2005), in which the variation of the transverse integral length

scale in the streamwise direction indicates the linear growth of coherent scales of flow-

normal velocity perturbation across the cavity open end. The values of the correlation

functionρv′v′ predicted by LES are comparatively lower than the corresponding values

from PIV, which is probably due to LES resolving in time and space a greater range of

structures than with the PIV. The smaller scales are likely to be less coherent, leading

to a lowerρv′v′ in the LES predictions.

The distribution of the mean pressure coefficientCP = 2(p − p0)/(ρU2
e) in the verti-

cal x-y plane, obtained from LES, is shown in Figure 5.12(a) and compared against

the PIV results of Figure 5.12(b). The mean pressure distribution from the PIV data

was obtained by integrating numerically the incompressible Reynolds Averaged Navier

Stokes (RANS) momentum equation on a PIVu−v velocity plane. The inertia, viscous

and Reynolds stress terms were calculated from the measuredinstant velocity field

and the pressure is derived through integrating its gradient, as detailed in Haigermoser

(2009). In the LES numerical predictions, a large region of negativeCP is visible,

whose peak is atx/H ≈ 3 andy/H ≈ 0.4, in correspondence of the standing vortex
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Figure 5.11: Two-point spatial correlation functionρv′v′ , computed at three refer-
ence points from the LES and PIV time-resolved velocity data. (a) LES,yre f/H =
0, xre f/H = 0.6. (b) PIV,yre f/H = 0, xre f/H = 0.6. (c) LES,yre f/H = 0, xre f/H = 2.
(d) PIV, yre f/H = 0, xre f/H = 2. (e) LES,yre f/H = 0, xre f/H = 3. (f) PIV,
yre f/H = 0, xre f/H = 3. Contours with constant increments of∆ρv′v′ = 0.1.

core. Positive values ofCP are visible close the forward facing step.CP maxima are

predicted at the downstream top cavity edge, where the shearlayer impinges, and at

the cavity downstream bottom edge. Finally, a region of negative CP is visible down-

stream of the cavity downstream edge, which results from thelocal flow acceleration

during the mass ejection phase of the unsteady cavity-flow. There is a good qualitative

agreement between numerical and experimental results for the mean pressure coeffi-
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Figure 5.12: Time-averaged pressure coefficientCP from (a) LES, and (b) PIV experi-
ments by Haigermoser (2009).

cient. The peak of negative pressure is located at the same position in LES and PIV.

The only qualitative difference between Figures 5.12(a) and 5.12(b) is in the presence

of aCP maximum that appears only in the LES predictions at the downstream bottom

cavity edge.

The mean pressure drag per unit spanwise length can be approximated by:

D̄ ≈
∫

d.w.
p · dl −

∫

u.w.
p · dl (5.3)

where the pressure is integrated along the upstream vertical wall (u.w.) and the down-

stream vertical wall (d.w.), and computed numerically at a distancey+ = 30 from the

walls. The computed mean drag coefficient isCD = 2D̄/ρU2H = 0.056. The per-

fect agreement of the experimental valueCD = 0.056 obtained from PIV experiments

by Haigermoser (2009) is likely to be a fortuitous result, given the difference in pre-

dicted pressure iso-levels in Figure 5.12.

5.6.3 Unsteady flow field

The study of the time-dependent unsteady flow fields in this section gives a contribu-

tion to the understanding of the flow mechanisms governing the dynamics of the shear

layer and the evolution of the coherent structures embeddedin the thick boundary layer

across the cavity opening, such as convected vortices developing from instabilities,
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Figure 5.13: Experimental PIV spanwise vorticityωz fields on the vertical x-y plane

from Haigermoser (2009).
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vortex stretching, vortex pairing, and vortex breakdown. In the literature of cavity-

flow at low Mach number and with a thick incoming turbulent boundary layer, the

time-resolved tomographic PIV experiments of Haigermoseret al. (2008) displayed

the dynamics of the different scale vortical structures, detecting the flow complexity

connected with the dynamics of the motions in the shear layerand in the main re-

circulation zone. The shear layer containing the vortical structures across the cavity

opening was observed to have an intermittent behaviour. A detailed analysis of the

spanwise vorticityωz field and vortical identification of the structures in a vertical x-y

plane was performed. The flow visualizations are shown in Figure 5.13. The images

correspond to four different time intervals during a complete cavity-flow through time

cycle. From observing the time-dependent flow, Haigermoseret al. (2008) postulated

that the shear layer is populated by two different types of structures. The first struc-

tures are vortices formed by the shear layer instabilities,influenced by the incoming

turbulent boundary layer. The second type of structures arethree-dimensional struc-

tures randomly distributed in space and time, originating from the turbulent boundary

layer.

The level of detail in space and time of the fine LES computation of this thesis allows

one to further understand the origin and the relationship between the type of structures

observed in the tomographic PIV experiments. Figure 5.14 presents a sequence of the

spanwise vorticityωz fields in a vertical x-y plane at six different time steps (equivalent

to 0.6 cavity-flow through times) from the LES computation. In Figure 5.14(a), two

“swiss roll”eddies, normally present in a typical free shear layer flow like the one of

Figure 1.2, are identified by the black outlines. The first structure spans fromx/H =

0.8 to x/H = 1.8 and the second structure, which is more elongated, spans from x/H =

1.8 to x/H = 3.2. In Figure 5.14(b), the structure B of the first roll, that lies in the

region above the cavity, moves in the streamwise direction with higher velocity with

respect to vortex A, that remains almost in the same position. This is due to structure

B being exposed to a higher speed mean flow outside the cavity than structure A. At

the same time, a strain region with negative spanwise vorticity C pushes structure B in

the wall-normal direction. Both structures D and E from the second roll move toward

the main cavity re-circulation. In Figure 5.14(c), vortices A and B are completely

separated by the negative vorticity core C. The two rolls D and E are entrained into the

standing vortex. In Figure 5.14(d), vortex B has moved further in the streamwise and
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Figure 5.14: Spanwise vorticityωz distribution from LES on the vertical x-y plane at
increasing computational times. Time increment between two frames is∆t = 0.1 of
the cavity-flow through time.
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wall-normal direction. In the region marked with B’ a core with positive spanwise

vorticity is being convected from the cavity inflow. In Figure 5.14(e), vortex B is being

ejected out of the cavity. In the region B’ there are alternating positive and negative

vorticity cores. In Figure 5.14(f), vortex B has been ejected completely out of the

downstream top cavity edge. A new pattern similar to the one of Figure 5.14(b) is

noticeable, with a “swiss roll ”that is made by the positive vorticity B’, a strained

vortex C’, and the lower vortex A which has moved very slowly during the whole

cycle, due to it being confined in a stagnation region betweenthe primary standing

vortex and the secondary induced re-circulation located close to the upstream bottom

cavity edge.

The analysis of the time-dependentωz field confirms the presence of vortices that are

generated by the shear layer vortical instabilities and three-dimensional structures, as

already pointed out by the PIV tomographic experiments of Haigermoseret al.(2008).

However, the spatial and temporal resolution of the LES computation enables us to

identify the dynamics of coherent flow patterns in the cavityshear layer, which ex-

plains the so far undefined coexistence of the two type of structures in the enclosure.

The structures can be associated to the approaching boundary layer streaks developing

in the downstream region of the cavity and being perturbed bythe Kelvin-Helmothz

instability. The main field re-circulations shown in Section 5.6.1 determine regions

of low and high convection speed that tilt, separate, and convect the vortices initially

belonging to coherent patterns toward different paths, depending on their stochastic

initial position.

The process shown in Figure 5.14 explains why vortices that are created from the shear

layer instabilities at the upstream cavity edge are not always entrained into the cavity,

but can either pass over or impinge the top edge of the cavity forward facing step. This

explains the intermittent behaviour of mass injection and ejection inside and outside

the cavity and the related pressure fluctuation along the cavity walls, which is mainly

responsible for noise emission.

The evolution of the longitudinal streaks contained in the turbulent boundary layer

approaching the cavity, introduced in Chapter 4, is investigated in the LES results.

Figure 5.15 shows a time sequence of the wall-normal vorticity ωy fields on the hori-

zontal plane aty/H = 0.05, at four different time steps (equivalent to 0.4 cavity-flow

through times). The flow direction in Figure 5.15 is from bottom to top, as indicated
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by theU∞ arrow. In Figure 5.15(a) the streak A is approaching the cavity. Three-

dimensional vortical structures of higherωy magnitude, labelled as B and C, convect

across the cavity opening downstream of a streak. In Figure 5.15(b) the streaky struc-

tures A reaches the cavity upstream edge. The regions of positive ωy value B and C,

in Figure 5.15(a) stretch and tilt in Figure 5.15(b). This confirms the process of vortex

shedding, strain and separation presented in the analysis of the spanwise vorticityωz

in the region 1< x/H < 2 of Figure 5.14(a), at the same computational time step.

In Figure 5.15(c), the streak A has gone over the upstream topcavity edge. The head

of the streak enlarges its core, and tilts it in the wall-normal direction, as shown by

the increase in theωy value in Figure 5.15(c) compared to Figure 5.15(b) This excites

the shear layer Kelvin-Helmotz type instability that is convectively amplified from this

point onwards. A qualitative explanation of this process ispresented in the sketch in

Figure 5.16 using a potential-flow idealisation. The streakcouple is represented by

two opposite vortices V1 and V2. Upstream of the cavity leading edge, the resulting

effect of the upstream bulkhead on the vortices can be modelled by the method of

images using the vortices of the same intensity and oppositesign V3 and V4 located

symmetrically about the horizontal wall. At this conditionthe vortex V1 is subject

to three induced velocities U2, U3, and U4, generated by vortices V2, V3, and V4,

respectively. The resultant induced velocity varies in time but can be taken as being

null, resulting in the streaks being aligned in the streamwise direction, as shown in

Figure 5.15 atx/H < 0. In the region downstream of the cavity upstream edge, the

induced velocity contribution from vortices V3 and V4 is absent. At this condition,

vortex V1 is only subject to the vorticity field of V2. The induced velocity U2 lifts V1

in the positive wall-normal direction and initiates the instability that is amplified in the

cavity enclosure. The flow dynamics shown above is confirmed by the experimental

tomographic PIV results of Haigermoseret al. (2008) presented in Figure 5.17.

The sequence of images reproduce the flow organization comprised by low and high

speed streaks and vorticity strips at the flanks of them. The conclusion from both

the comparison of numerical and experimental results is that thick turbulent bound-

ary layer coherent structures are convected into the shear layer, where the observed

streamwise vorticities in PIV is the consequence of the tilting, breakdown, stretching,

and pairing interaction in the cavity opening, as identifiedby the current LES.
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(a) (b)

(c) (d)

Figure 5.15: Time sequence of wall-normal vorticityωy distribution from LES at the
horizontal x-z planey/H = 0.05. Incremental time between successive frames∆t = 0.1
of the cavity-flow through time.
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Figure 5.18 shows a snapshot of the vorticity field in the cavity enclosure by theQ vor-

tex identification criterion (Huntet al., 1988). The vortical structures identified in the

iso-vorticity levels of Figures 5.14 and 5.15 are herein rendered in three dimensions.

The streamwise bulges in the iso-Q surfaces upstream of the cavity leading edge are

associated to the streaks in the approaching turbulent boundary layer. Zones of low

streamwise momentum can be identified between streaks, which are likely to be due

to the presence of hairpin vortices in the boundary layer. A similar pattern was iden-

tified in the PIV experiments of Gottero & Onorato (2000), in which the flow field

in the buffer layer of a flat plate was characterised by a streaky configuration, where

elongated low speed bands alternate with higher speed regions. The mutual interac-

tion of these quasi-streamwise vortices, convected at different velocities in the near

wall region, was related to the presence of localized regions characterized by ejec-

tions or sweeps. The structures in the cavity opening can therefore be associated to

the hairpin structures existing in the approaching turbulent boundary layer, being con-

vected in the turbulent shear layer and travelling far downstream the cavity upstream

edge. Figure 5.19 shows an equivalent flow visualization from the PIV measurements

by Haigermoser (2009), in which the iso-surfaces of the absolute vorticity and the

horizontal streamwise velocity iso-levels confirm, from a qualitative viewpoint, the

predicted flow pattern of Figure 5.18 and supports its interpretation.

U4

V4

z

V3

V2

U3
U2

V1

X

y

Figure 5.16: Potential-flow description of a streak pair above the upstream cavity bulk-
head.
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Figure 5.17: Time-sequence of wall-normal vorticityωy distribution from PIV on a
horizontal x-z plane, from Haigermoser (2009).
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Figure 5.18: Snapshot ofQ-criterion iso-vorticity surface atQ = 1.2E+09, and stream-
wise velocity slice in the x-z plane. LES computation at timeT = 3 flow through times.

Figure 5.19: Snapshot of absolute vorticity iso-surfaces and streamwise velocity slice
in the x-z plane. PIV experiments from Haigermoser (2009).Ue = U∞.
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(a)

(b)

(c)

(d)

Figure 5.20: Vortex identification by theQ-criterion. Time sequence of iso-contours
at Q = 3.3E + 08 andQ = −3E + 09. The incremental time between two successive
frames∆t = 0.1 cavity-flow through times.
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The process of mass injection and ejection into and out of thecavity can be further

appreciated in Figure 5.20, where the iso-surfaces of positive and negative vorticity

intensity, related to the vortical structures convected inthe cavity, are identified by

the Q-criterion at the valuesQ = 3.3E + 08 andQ = −3E + 09, respectively. The

instantaneous flow fields are taken at an incremental time∆t = 0.1 cavity-flow through

times. In the regions in whichQ > 0 vorticity dominates strain. Regions in which

Q < 0 are dominated by strain. The intermittent mass flow across the cavity opening is

generated as result of the opposite actions of vorticity andstrain regions, in which the

turbulent scales resulting from the instability processesof vortex interaction, stretching

and merging are combined.

5.6.4 Unsteady flow statistics

An auto-correlation analysis allows one to investigate theevolution of the turbulent

structures across the cavity opening. Lilley (1996) demonstrated that the value of the

longitudinal velocity correlation function relates to thespace-time properties of tur-

bulence and to the corresponding acoustic power spectrum function. This assumption

follows the more general theory of Lighthill (1952) and Lighthill (1992), in which the

the acoustic radiated sound power is determined by the fourth-order space-retarded

time covariance. Relationship with the fourth-order space-retarded time covariance

gives then an information on the noise sources rather than the output prediction of the

noise source itself.

The spanwise auto-correlation functionRuu is computed by Equation (4.5) at a distance

y+ = 15 from the cavity centreline, for three traverse velocity fluctuations arrays at the

streamwise coordinatesx/H = [0.4, 2, 3.6]. The results from LES are presented in

Figure 5.21.

In the thick boundary layer cavity inflow, the streak spacingdictates the spanwise

correlation of the velocity fluctuations, with an associated integral length scale propor-

tional to the streak spacing. This is shown in Figure 5.21(a), where the integral length

scaleLu(y) = 2∆zmin ≈ 170 reasonably matches with the streak spacing distance of

160y+ obtained in Section 5.6.4.

Above the cavity, in the upstream portion of the enclosure, streaks spacing breaks down

into smaller and less coherent structures, as evidenced by the reduction ofLu(y) ≈ 90
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in Figure 5.21(b). This would lead to a decrement in the acoustic emission, according

to the integral formulation of Lilley (1996). However, in the rearmost portion of the

cavity above the bound vortex,Lu increases. This correlates with an observed elon-

gation of the wall-normal vorticityωy peaks in the spanwise direction in Figure 5.15.

This greater spanwise coherence, which by itself would leadto a more effective acous-

tic emission, is counteracted by the presence of strong negatively correlated velocity

fluctuations, indicated by theRuu ≈ −0.5 minimum in Figure 5.21(c). The positive and

negative areas of velocity correlation would emit sound with opposite phase, leading

to a dipole-type cancellation in the upstream direction. This supports previous obser-

vations for sound measured from three-dimensional cavities being of lower intensity

respect to modelled

two-dimensional cavity-flow emissions, in which the the vortex roller hits the down-

stream cavity edge as a phase-coherent velocity perturbation.

5.6.5 Spectral analysis

To perform a spectral analysis of the time-resolved LES velocity, the predicted velocity

history was extracted at the streamwise coordinatesx/H = 1.4 andx/H = 2.7, at a

heighty+ = 80 and at half of the cavity spanwise dimensionz/W = 0.5. Velocity

values were stored at each time step of the LES computation. From the three velocity

components, the spectra of the turbulent kinetic energy were computed using the FFT

algorithm by Frigo & Johnson (2005). The TKE power spectral density is plotted

versus the Strouhal numberS t= f H/U∞ in Figure 5.22. The drop-off of both spectra

at S t= 6 is due to the start of the numerical dissipation of the mesh resolution at the

high enf of the frequency domain.

Both spectra do not display a clearly identifiable spectral peak above the broadband

level, which suggests that no tonal instability is present in this flow. This is in agree-

ment with the absence of Rossiter tones for a cavity-flow witha thick incoming bound-

ary layer reported by Haigermoseret al. (2008). In the region near the cavity forward

facing step (continuous blue line), the TKE shows a lower average power spectral den-

sity than the one contained in the rearmost region of the cavity (dashed red line). This

confirms the amplification of modes of the incoming turbulentscales across the cavity

opening by Kelvin-Helmotz type convective amplification mechanism. Whereas in a
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Figure 5.21: Time-averaged auto-correlation of streamwise velocity perturbationsu′ at
y+ = 15 and streamwise coordinates (a)x/H = 0.4, (b) x/H = 2, and (c)x/H = 3.6.
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Figure 5.22: TKE Power Spectral Density at coordinatesx/H = 1.4, y+ = 80, z/W =
0.5 (continuous line), andx/H = 2.7, y+ = 80,z/W = 0.5 (dashed line) from LES.

cavity-flow with a thin inflow boundary layer this amplification is selective, encourag-

ing the the growth of selected modes (Alvarezet al., 2004), in a cavity-flow driven by

a thick boundary layer the amplification appears to be more broadband.

The classical energy cascade mechanism from decaying isotropic turbulence is more

established at the back of the cavity, where the velocity spectrum better approximates

the established−5/3 logarithmic decay rate of kinetic energy trough the inertial sub-

range, shown by the reference−5/3 slope in Figure 5.22 (black line). In this region,

the decay is responsible for the dispersion of the kinetic energy from the structures the

wavelength of which matches that of the Rossiter cavity resonance, to structures that

do not take part in self-excitation.
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Chapter 6

Conclusion

6.1 Designing and costing cavity flow CFD models

A time-dependent CFD model of the flow of over open cavity of a length to depth ratio

L/D = 4, with a thick incoming boundary layer (δ/D ≃ 2.2), at Mach 0.126, was used

to study the noise and drag sources of automobile bodywork recesses.

The modelling process was explicited through a multi-variate dimensional analysis

of the CFD parameters (Rona & Monti, 2011). This analysis enables to estimatea

priori the computational cost and the spatial and temporal resolution in the cavity

flow simulation. In this thesis, the CFD method selected to provide the best trade-off

between computational cost and flow time and space resolution was a wall-resolved

Large Eddy Simulation (WR-LES).

The CFD solver used is an explicit finite-volume, multi-block, structured, Runge-Kutta

time integration scheme that uses a Recursive Domain Decomposition (RDD) paral-

lelisation algorithm (Grottadaurea, 2009) to run on High Performance Computing plat-

forms. The parallelisation algorithm was optimized in thiswork for the LES rectangu-

lar cavity flow test case. Scalability tests to assess the optimum number of processors

for the simulations were performed and the results comparedagainst the theoretical

cost of the simulation obtained by the multivariate dimensional analysis model.

The cavity flow model was set up to match in Reynolds dynamic similarity the PIV

experiments of Haigermoseret al. (2008).

The computational cost predicted by thea priori cost estimator is an effective tool for

sizing up a cavity CFD computation in view of the computational resources available
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and the spatial and temporal resolution requirements for the modeller. In literature,

Basuet al. (2006) studied the dependence of the simulation cost on the turbulence

closure approach and on the spatial and temporal discretisation for a unique cavity flow

model, but this dependence has never been quantified parametrically for a broader class

of unsteady cavity flows with different geometrical characteristics and flow parameters.

6.2 Cavity thick inflow boundary layer by LES

The time-resolved boundary layer for the cavity CFD simulation was generated by

means of a Time-Dependent Synthetic-Stochastic (TDSS) inlet boundary condition, to

mimic the time-dependent amplitude and phase information of the turbulent structures

in the spatially developing thick boundary layer approaching the cavity. The method is

based on the work by Sandhamet al.(2003), subsequently extended to supersonic flow

by Li & Coleman (2010). In this application, velocity fluctuations in space and time

about the mean velocity profile are emulated by five syntheticvelocity Fourier modes.

Stochastic velocity random fluctuations were superimposedon the synthetic modes

in order to break the symmetries deriving from the deterministic specification of the

Fourier modes. The importance of a correct definition of the mean velocity profile at

the computational domain inflow required the use of a numerical method by Rona &

Monti (2012) that uses a new mixing length blending function.

In the precursor spatially developing boundary layer simulation, three flux limiters

were used to compare the dissipative behaviour and select the best limiter to resolve the

large-scale cavity flow motion. These are the SuperBee and MinMod limiters by Roe

(1986), and the Sweby (1984) limiter. LES computation results shown that the Super-

bee limiter is not dissipative enough in the smooth region offlow, causing amplifying

numerical oscillations and time-averaged values of streamwise velocity higher than

that from the law of the wall. The Minmod limiter caused a re-laminarisation of the

inner layer velocity profile that prevented the boundary layer from growing a logarith-

mic overlap region at the correct non-dimensional distanceof around 30y+ from the

wall. The best results were obtained with the Sweby limiter with the Sweby coeffi-

cient β = 1.3. A transition region was required for the flow to develop streaks and

other distinguishing large-scale structures of a turbulent boundary layer, in agreement

94



6. CONCLUSION 6.3 Three-dimensional rectangular cavity model

with the boundary layer LES model by Keatinget al. (2004). Non-dimensional veloc-

ity profiles were compared against the PIV measurements by Haigermoser (2009) and

the Musker (1979) law of the wall for the inner layer. An appreciable agreement was

found among the numerical, experimental, and analytical velocity profiles across the

boundary layer. Instantaneous predictions of the streamwise velocity on a horizontal

plane at distancey+ = 15 to the wall displayed fully developed streaky structureswith

evidence of fine-scale turbulence generation and elongatedstructures in the streamwise

direction. These structures were confirmed by theQ-criterion vortex visualisation. The

characteristic spanwise length-scale in the boundary layer was determined by veloc-

ity auto-correlation analysis. The two-points spanwise auto-correlation function of the

streamwise velocity fluctuationsRuu and of the wall-normal velocity fluctuationsRvv,

determined the characteristic spanwise length scaleLv(15y+) = Lu(15y+) ≈ 160y+, in

agreement with the typical streak spacing results reportedin literature.

The use of time-dependent Synthetic-Stochastic inflow technique is a novel aspect in

the context of cavity flow simulations. The method has shown to yield a fast tran-

sition to a fully developed turbulent flow, to resolve correctly the three-dimensional

energy-carrying eddies in the thick boundary layer inflow, and to match the statisti-

cal information of these structures at the cavity inflow. These aims were pursued as

a stringent requirement to correctly predict the turbulentscales and large eddies evo-

lution across the cavity opening, and to model the shear instabilities from the cavity

leading-edge onwards.

6.3 Three-dimensional rectangular cavity model

The influence of the flow structures produced by the LES inflow generation techniques

on the instabilities in the cavity enclosure was studied in the LES cavity flow model

and compared against the PIV experiments of Haigermoseret al. (2008,2009).

The optimization of the original Recursive Domain Decomposition (RDD) MPI par-

allelization algorithm by Grottadaurea & Rona (2008), was essential for running the

wall-resolved LES testcase of 3.6 million cells.

The mean flow field from the LES indicates the presence of a large standing vortex

that dominates almost 75% of the cavity length, and a secondary re-circulation, that

appears in the LES results in the form of a weaker spiral re-circulation. The shape of
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the vorticity thickness profileδv is in good agreement with the one form PIV measure-

ments, however, the LES computation predicted a higher vorticity thickness growth

rate near the forward facing step, where optical access in the PIV experiments was

limited. This newly identified leading edge effect is likely due to a newly described

unsteady flow mechanism of the streaks in the region of the cavity near the upstream

edge.

The non-dimensional streamwise velocity shows a greater self-similarity in the outer

layer, whereas in the inner layer, self-similarity is only approximately reached in the

downstream cavity region, due to the presence of the bound vortex. The main vortex

convection across the cavity opening was interpreted through the evaluation of two-

point spatial correlation function of the velocity fluctuationsρu′u′ , ρv′v′ , and the mean

pressure coefficientCp. There was an appreciable agreement between the LES predic-

tions and PIV experiments for the two-point spanwise auto-correlations and the pre-

dicted pressure cavity drag coefficientCD = 0.056 matched the one from the numerical

integration of RANS equation by Haigermoser (2009) to two significant figures.

The study of the unsteady flow field was supported by the high level of detail in space

and time obtained from the fine wall-resolved LES computation. Different visual-

izations of the instantaneous flow field, in terms of the spanwise vorticityωz and of

the wall-normal vorticityωy enabled an explanation of the concurrence of vortical

structures generated by the shear layer Kelvin-Helmotz type instability and of three-

dimensional streak-related structures, as already identified in the PIV tomographic ex-

periments of Haigermoseret al. (2008). It is thought that the structures are subject to

the combined effect of the Kelvin-Helmotz type instability, vortex pairinginteraction,

hairpin vortex lift-up momentum of the approaching streaks, and induced velocity field

of the standing vortex. The combined effects tilt, stretch and separate the vortices ini-

tially belonging to a coherent streak pattern, into smallerand less coherent structures.

These structures are convected toward different paths and entrained into the cavity or

ejected out of the cavity in a higher free-stream velocity field, depending on stochastic

variations in their starting initial condition as they formover the cavity leading edge.

The induced velocity of a streak pair approaching the cavityupstream edge was mod-

elled with inviscid potential-flow theory. This simple model was found to qualitatively

predict the visible tilt of the hairpin vortex heads in the upstream region of the cavity

enclosure, which acts as the trigger for the Kelvin-Helmotztype convected instability.
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The process of mass injection and ejection into and out of thecavity was further appre-

ciated in flow visualizations obtained by theQ-criterion, where intermittent mass flow

is generated as result of the opposite actions of vorticity and strain regions containing

the turbulent scales.

The velocity auto-correlation analysis allowed to investigate the evolution of the tur-

bulent structures across the cavity opening and to relate the value of the longitudinal

velocity correlation function to the space-time properties of turbulence and to corre-

sponding noise sources (Lilley, 1996). In the cavity upstream region the streak spac-

ing becomes irregular. This leads to a reduction in the longitudinal velocity two-point

correlation which, according to Lilley (1996), is expectedreduce the emission of the

sound generated aerodynamically. A greater spanwise coherence in the rearmost por-

tion of the cavity is counteracted by the presence of strong negatively correlated veloc-

ity fluctuations. This is expected to generate a dipole-typedirectivity in the transverse

direction.

The absence in the power spectral density analysis of clearly identifiable spectral peaks

above the broadband level suggested that no tonal instability is present in the flow. A

lower average power spectral density was registered in the region near the cavity for-

ward facing step, than the one contained in the rear region ofthe cavity. This con-

firms the convection amplification across the cavity of the modes related to the turbu-

lent scales contained in the approaching thick boundary layer. The broadband noise

by Kelvin-Helmotz type convective amplification mechanismin thick boundary layer

cavity flow differs from the Rossiter mode tonal noise, which results from the selective

amplification in a cavity flow of one or two main frequencies inthe kinetic energy

spectrum of a thin incoming boundary layer.

The detailed understanding of the flow dynamics of the instability amplification mech-

anism and its relationship with the noise sources in a cavityflow with a thick boundary

layer represents a contribution to the advancement of the state-of-the-art in this field.

The level of detail in space and time of the predictions obtained by the LES compu-

tation enhanced the understanding of the cavity flow physicsto the case of relatively

low values ofL/θ at low Mach numbers. The PIV experiments of Haigermoseret al.

(2008,2009) have shown the concurrence of vortical and randomly distributed struc-

tures in the shear layer, but were limited by the low acquisition rate, the wall light

reflection and the lower spatial resolution of the uniform PIV vector grid, as compared
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to the non-uniform numerical mesh. In the present work it waspossible to understand

the process of creation and evolution of these structures across the cavity opening,

from the initial condition of coherent streak patterns approaching the cavity leading

edge. Amplification of the incoming turbulent scales energymodes across the cavity

opening by Kelvin-Helmotz type convective amplification mechanism was shown for

cavity flows with a thick inflow, as opposed to the selective amplification mechanism

of cavities with a thin boundary layer inflow. Evidence of this mechanism was pro-

vided by investigating the flow dynamics of the resolved scales in space and time by

LES. The results also explaines the intermittent behaviourof mass injection and ejec-

tion inside and outside the cavity and the related pressure fluctuation along the cavity

walls, which are mainly responsible for noise emission.

6.4 Future Work

Further research is required to advance the state-of-the art knowledge on the genera-

tion and propagation of noise generated aerodynamically incavities with thick bound-

ary layers. This enhanced understanding, enabled by the CFDapproach, could be

of significant help towards reducing automotive noise emission level and enhance the

driver’s comfort. Toward this direction, the far-field propagation of the near-field noise

sources identified in the present work can be studied by acoustic analogy.

Rona & Spisso (2007) and Ghillani (2012) have been developing a high-order finite-

difference scheme as an upgrade of the flow solver used in this work. The high-order

method allows to reduce dispersion and dissipation errors on structured meshes com-

pared to the second-order accuracy of the scheme used in thiswork. The high-order

method could be used to model, at the equivalent computational cost of the LES of the

present study, a computational domain including the cavitynear field and up to a few

acoustic wavelengths of the lowest relevant spectral band.

The cavity flow model developed in this thesis can be extendedto a range of cavity ge-

ometries and flow regimes. The results obtained could be usedto perform a sensitivity

analysis of the quantitative results in this thesis on the geometry and flow conditions.

Another important challenge is to control the physical mechanism of momentum trans-

fer into and out of the cavity identified in this thesis, by applying passive control

devices. An experimental PIV study on passive cavity flow control was conducted
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by Vesely (2009). Different flow devices like fences, ramps, spoiler, and rods were

selected to suppress the momentum transfer into and out of the cavity and the associ-

ated noise radiation. A numerical investigation could confirm the experimental results

as well as giving an insight into the physics of effective noise suppression devices.

The space and time resolution of the LES or DNS computations could improve the

understanding of the flow mechanisms that influence the flow oscillations, their ampli-

fication, the noise sources, and cavity drag reduction, in order to improve the geometry

of passive flow control devices for real-life engineering applications.

Alternative HPC techniques such as MPI - Open MP hybrid algorithms, that lends to

less tuning and customization than the RDD MPI algorithm, could be further investi-

gated in a computational research framework for future works.
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Appendix A

Asymptotic matching of the inner and

outer velocity profiles

To describe the mean velocity profile in a turbulent boundarylayer, similarity solutions

are sought in the inner and the outer regions. In the inner region, the mean streamwise

velocity u scales with the wall friction velocityuτ and with the viscous length scale

l = νl/uτ, so that
u
uτ
= f

(
y+

)
(A.1)

wherey+ = yuτ/νl is the inner scaling non-dimensional wall-normal distance. In outer

region, the velocity profile is described by the velocity defect law

u∞ − u
uτ

= f (η) (A.2)

whereη = y/δ is the outer scaling non-dimensional wall-normal distance, u∞ is the

free-stream velocity,νl is the laminar kinematic viscosity,y is the wall-normal distance

andδ is the boundary layer thickness, which is taken as the wall-normal distance at

which u = u∞.

Based on the existence of an overlap region between the innerand the outer regions,

Coles (1956) proposed the following additive law of the walland law of the wake in

non-dimensional form:

u+ =
1
κ

ln y+ + B+
Π

κ
f (η)

f (η) = 1− cos(πη) (A.3)
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whereu+ = u/uτ is the normalized streamwise velocity,Π is the wake parameter,κ the

von Kármán constant, andB the logarithmic law constant.

The wake parameter was determined (Coles, 1956) as

Π = κ/2
(
u+∞ − κ−1 ln Reτ − B

)
(A.4)

whereReτ = δuτ/νl is the boundary layer Reynolds number andu+∞ = u∞/uτ is the

normalized free-stream velocity.

Let

f (η) = A1η
2 + A2η

3 (A.5)

be a cubic polynomial approximation tof (η) in Equation (A.3). Substituting the

boundary conditions

u|y=δ = u∞ (A.6)

and
∂u
∂y

∣∣∣∣∣
y=δ

= 0 (A.7)

in Equation (A.3), with f (η) from Equation (A.5), givesA1 = 6 [1+ 1/(6Π)] and

A2 = −4 [1+ 1/(4Π)], with Π defined by Equation A.4. The law of the wake of Equa-

tion (A.3) then becomes

u+ =

Log-law of the wall︷       ︸︸       ︷
1
κ

ln y+ + B +
1
k
η2 (1− η)

︸                                     ︷︷                                     ︸
Pure wall flow

+2
Π

κ
η2 (3− 2η)

︸              ︷︷              ︸
Pure wake component

(A.8)

To evaluate Equation (A.8), the following parameters are taken: κ = 0.41 andB = 5.0.

Equation (A.8) is validated over a relatively wide range of momentum thickness based

Reynolds numberReθ = u∞θ/νl in the work of Rona & Monti (2012).
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Appendix B

Relationship between spectral width

and grid density

Further considerations are required to express the relationship between the maximum

wavenumber,kj,max, and the minimum grid spacing∆xj,min.

Given a genericnth order numerical scheme, the modified wavenumberK(k∆x) ap-

proximates in the discrete computational domain the non-dimensional wavenumber

k∆x in the continuous space. The accuracy of a numerical method at various scales

is illustrated by its ability to approximate the derivativeof a single Fourier modeeikx

(Moin & Mahesh, 1998).

Modified wavenumber curves are plotted in Figure B.1.(a) fornumerical schemes of

different ordern, where the continuous straight line corresponds to the wavenumber

relation for an exact differentiation. The minimum number of points per wavelength,

PPW, that are required to resolve a given wavenumber is associated to the maximum

acceptable relative error|ε(k∆x)| from the spatial discretization (Colonius & Lele,

2004). Figure B.1.(b) shows|ε(k∆x)| for numerical schemes of different ordern.

ε(k∆x) =
K(k∆x) − k∆x

k∆x
(B.1)

Let 5% be a representative maximum relative error accepted in a typical engineering

application. From Figure B.1.(b), the intercept of the|ε(k∆x)| = 5E − 2 line with the

error distribution for each scheme determines thePPW. Table B.1 shows the results for

the more commonly used finite difference schemes.
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Table B.1: Point per wavelength (PPW) required for a maximum absolute relative error
|ε(k∆x)| = 5% for various finite difference schemes.

Scheme PPW
∣∣∣|ε(k∆x)|=5%

2nd order Explicit 10.3
4th order Explicit 5.8
6th order Explicit 4.1
4th order Compact 4
6th order Compact 2.9

On uniform meshes, the schemePPW links the minimum wavenumber resolved with

the uniform mesh size by

kj,max =
2π

PPW
(
∆xj,min

) (B.2)

Most simulations, however, use mesh stretching functions and these needs to be ac-

counted for to determinekj,max.

Given a uniform grid in a generic directionj, the uniform spacing variable is:

ξi = (i − 1)/(I − 1), i = 1, ..., I (B.3)

where i is the spatial index of the mesh point andI is the total number of points in

the stretching direction. The clustered point coordinatesare obtained by applying a

stretching functionsi = s(ξi) such that 06 s(ξ) 6 1, to generate the point coordinate

in the arc length parameterx (ξi). Examples of common clustering functions used in

past cavity CFD works are the exponential stretching (Equation (B.4)), the hyperbolic

tangent (Equation (B.5)) and the Gaussian (Equation (B.6))stretching functions:

x (ξ) =
ecξ − 1
ec − 1

(B.4)

x (ξ) = 1+
tanhc (ξ − 1)/2

tanhc/2
(B.5)

x (ξ) =
1+ er f (ξ)

2
(B.6)

where c is the stretching factor coefficient.
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From Equations (B.4) and (B.6), the minimum grid spacing results∆xj,min = x (ξi) |i=1

and the minimum wavelengthλ j,min = x (ξi) |i=PPW. It follows that, on a stretched

conformal structured mesh the maximum wavenumber resolvednumerically in thej-

direction is

kj,max =
2π
λ j,min

=
2π

x (ξi) |i=PPW
(B.7)

In the case of a uniform grid Equation (B.7) reduces to:

kj,max =
2π
λ j,min

=
2π

PPW
(
∆xj,min

) = 2π
PPWx(ξi) |i=1

(B.8)

The number of mesh points required to simulate a structure oflenghtλ j,max in the j-

direction depends on the grid spacing∆xj. The highestNc, j requirement̂Nc, j is obtained

when the grid spacing is uniform and is:

N̂c, j =
λ j,max

∆xj,min
(B.9)

If a clustering function is adopted, such as in the large velocity gradient region near

the solid walls, the number of mesh points required becomes much smaller and can be

expressed through a functionalℑ j (s1 (ξ) , s2 (ξ) , ..., sn (ξ)) that consider the different

stretching functions adopted along the domain in the direction j:

Nc, j =
λ j,max

∆xj,minℑ j
(B.10)

However, if an average mesh spacing∆xj for the first PPW points is considered, it

is possible to obtain uniform mesh equivalentNc, j for the stretched mesh case. From

Eq. B.8,

∆xj · PPW= λ j,min (B.11)

which gives a general relationship betweenNd, j andNc, j :

Nd, j =
DS j

PPW∆xj

=
Nc, j

PPW
(B.12)
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Figure B.1: (a) Modified wavenumber curves (continuous straight line: exact differ-
entiation). (b) Minimum number of points per wavelength, PPW associated to the
maximum acceptable relative error|ε(k∆x)| from the spatial discretization. Legend,n:
scheme order, EX: Explicit, C: Compact, DRP: Dispersion-Relation-Preserving Finite
Difference Tam & Web (1993), LUI: Pentadiagonal compact Lui & Lele (2001)
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ichungen der mathematischen physik.Mathematische Annalen, 100, 32–74.

Referenced on page:24

108



REFERENCES REFERENCES

Cousteix, J. & Mauss, J. (2007).Asymptotic analysis and boundary layers. Springer-

Verlag, Berlin Heidelberg.

Referenced on page:26

Dahlström, S. & Davidson, L. (2003). Hybrid RANS/LES employing interface con-

dition with turbulent structure. In I. Begell House, ed.,Turbulence, Heat and Mass

Transfer, vol. 4, 689–696, K. Hanjalić, Y. Nagano and M. Tummers.
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