
The Complexity of Greedy

Algorithms on Ordered Graphs

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

Antonio Puricella

Department of Mathematics

and Computer Science

University of Leicester

August 2002

UMI Number: U 153592

All rights reserved

INFORMATION TO ALL U SE R S
The quality of this reproduction is d ep en d en t upon the quality of the copy subm itted.

In the unlikely even t that the author did not sen d a com plete m anuscript
and there are m issing p a g es , th e se will be noted. A lso, if material had to be rem oved,

a note will indicate the deletion.

Dissertation Publishing

UMI U 153592
Published by ProQ uest LLC 2013. Copyright in the D issertation held by the Author.

Microform Edition © ProQ uest LLC.
All rights reserved . This work is protected against

unauthorized copying under Title 17, United S ta tes C ode.

P roQ uest LLC
789 E ast E isenhow er Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6

The Complexity of Greedy Algorithm s on
Ordered Graphs

Antonio Puricella
A bstract

Let 7r be any fixed polynomial time testable, non-trivial, hereditary property
of graphs. Suppose that the vertices of a graph G are not necessarily linearly
ordered but partially ordered, where we think of this partial order as a col
lection of (possibly exponentially many) linear orders in the natural way. In
the first part of this thesis, we prove that the problem of deciding whether
a lexicographically first maximal (with respect to one of these linear orders)
subgraph of G satisfying 7r, contains a specified vertex is NP-complete. For
some of these properties n we then show that by applying certain restrictions
the problem still remains NP-complete, and show how the problem can be
solved in deterministic polynomial time if the restrictions imposed become
more severe.

Let H be a fixed undirected graph. An H -colouring of an undirected graph
G is a homomorphism from G to H. In the second part of the thesis, we
show that, if the vertices of G are partially ordered then the complexity of
deciding whether a given vertex of G is in a lexicographically first maximal H-
colourable subgraph of G is NP-complete, if H is bipartite, and S^-complete,
if H is non-bipartite. We then show that if the vertices of G are linearly, as
opposed to partially, ordered then the complexity of deciding whether a given
vertex of G is in the lexicographically first maximal /f-colourable subgraph
of G is P-complete, if H is bipartite, and A^-complete, if H is non-bipartite.

In the final part of the thesis we show tha t the results obtained can be
parallelled in the setting of graphs where orders are given by degrees of the
vertices.

A cknow ledgem ents

I would like to thank my supervisor, Professor Iain Stewart, for all the sup
port, guidance and advice provided during the preparation of this thesis. I
would also like to thank my family, for being a constant source of encourage
ment and for always being there for me when I needed them.

Contents

1 Introduction 1

1.1 A bit of h is to r y .. 1

1.2 Efficient a lgorithm s.. 3

1.3 The th e s is .. 7

2 Definitions 9

2.1 Introduction ... 9

2.2 Complexity t h e o r y .. 9

2.3 Graph theoretical defin itions... 13

2.4 Greedy algorithms ... 17

2.5 GREEDY(tt) ... 18

3 A class o f N P -com plete problem s 24

3.1 In troduction .. 24

i

3.2 Tree orderings... 25

3.3 Independent s e t s .. 27

3.4 Polynomial time hereditary properties.. 33

3.5 Directed g ra p h s .. 43

3.6 Conclusion... 50

4 Boundaries betw een P and N P 51

4.1 In troduction .. 51

4.2 The reduction schem e.. 52

4.3 Optimal degree b o u n d s ... 60

4.3.1 3-cycle free ... 61

4.3.2 A;-cycle free, k > 5...67

4.3.3 B ipartite .. 70

4.3.4 P la n a r ... 73

4.3.5 O u te rp lan ar... 76

4.3.6 Edge g r a p h ... 80

4.3.7 Interval g r a p h .. 83

4.3.8 Acyclic... 86

4.3.9 C h o rd a l ..89

4.4 Near optimal degree b o u n d s .. 90

ii

4.4.1 4-cycle free ...90

4.4.2 Maximum degree 1 .. 92

4.4.3 Independent s e t .. 95

4.5 Conclusion.. 96

5 A com plexity-theoretic dichotom y result 98

5.1 In troduction .. 98

5 . 2 A complete problem .. 100

5.3 The c o n s tru c tio n ... 108

5.4 Conclusion.. 120

6 Linear orderings 122

6.1 Introduction... 122

6 . 2 Deterministic S atisfiab ility ...123

6.3 The complete p ro b le m ... 126

6.4 The dichotomy r e s u l t ...140

6.5 Conclusion.. 141

7 M axDegree 142

7.1 In troduction ...142

7.2 MaxDegree(7r) ..143

7.3 Another class of NP-complete p ro b le m s 148

iii

7.4 Another S 2 -comPlet;e p ro b le m ...157

7.5 Conclusion...167

Bibliography 168

iv

List of Figures

3.1 A digraph G .. 30

3.2 The graph G' corresponding to G .. 30

3.3 The partial ordering P' corresponding to G31

3.4 Our basic construction.. 37

3.5 The partial ordering...47

4.1 The structure of G ... 55

4.2 The partial ordering...57

4.3 Oi and A\ for property 3-cycle free...62

4.4 GREEDY(3-cycle free) for maximum degree 3 65

4.5 Oi, Ai and A{ for property 5-cycle free... 6 8

4.6 Oi, Ai and A* for property planar.. 74

4.7 O i, A\ and Ai for property outerplanar...78

4.8 Forbidden graphs for property edge graph.. 81

v

4.9 Oi and A\ for property edge graph... 81

4.10 Forbidden graphs for property interval graph.................................... 84

4.11 Oi and A\ for property interval graph..84

4.12 Oi, Ai and Ai for property acyclic.. 87

4.13 0 \ and A\ for property 4-cycle free.. 91

4.14 0 \ and A\ for property maximum degree 1...................................... 93

5.1 Phases (a), (c) and (d) of constructing G from 0104

5 . 2 The construction of (G, P, s , x) from 0 ..105

5.3 The indicator construction.. 109

5.4 Building (G, P, s, x) from (G*, P*, s*, x*)... I l l

5.5 Building H from H and J ... 113

5.6 Building G from H , copies of J and G ...114

5.7 Building H from H and J ... 116

5.8 Building G from H , copies of J and G ...118

6.1 Phase 1 of the construction...128

6.2 Phase 2 of the construction...128

6.3 Phase 3 of the construction...129

6.4 Phases 4 and 5 of the construction... 132

6.5 Phases 6 and 7 of the construction... 133

vi

7.1 The graph G corresponding to {x\ V x 2 V £ 3) A (-1X5 V £ 4 V

-irr3) A (rri V - 1 X 2 V - 1X4) .. 150

7.2 The construction of G' from G ... 155

7.3 The phases of the construction of G from Z , 160

7.4 The construction of G from Z ... 163

Chapter 1

Introduction

1.1 A bit of history

The development of modern computers started in the 1930s, and their speed

has consistently increased to achieve levels of performance that would have

been unimaginable only decades ago. The history of this development is fas

cinating, and the interested reader can find more about it in many books,

for example [8 , 41]. Of course even the most powerful computer would be

useless without programs and the underlying algorithms. Although mod

ern computers really came into existence only decades ago, the idea of an

algorithm is much older.

The word algorithm derives from the name of the mathematician Mo

hammed al-Khowarizmi, who lived in the ninth century and devised precise

rules for the addition, subtraction, multiplication and division of decimal

numbers. The name was translated into Latin as Algorismus, and then it

1

became, in English, algorithm [2 2]. An algorithm is normally defined as a

set of rules for calculation, to be carried out either by hand, or more often,

on a machine [7].

In this thesis we will be interested in algorithms related to graph theory,

an area of discrete mathematics that has provided researchers with interesting

problems for several centuries. One of the first graph-theoretic problems

is known as the Konigsberg Bridge problem. There were two islands in

Konigsberg, linked to each other and to the banks of the Pregel River by

seven bridges. The problem was to cross each bridge exactly once starting

from any of the four land areas, and to return to the start point [21]. The

Konigsberg Bridge problem was solved by Leonhard Euler [1 2], who proved,

by modelling the problem using a mathematical structure called a graph,

that this is not possible.

A graph is basically a diagram consisting of points, called vertices, joined

by lines, called edges, and such that each edge joins exactly two vertices

(a precise definition will be given in the following chapter). Virtually every

problem that can be represented as a collection of objects that are somehow

related to each other can be modelled by a graph, by assigning a vertex to

each element and joining two vertices with an edge if the two corresponding

elements are related. Graphs have been used to model all sorts of real life

situations, from computer networks, roadways and databases to the world

wide web, and research in the area of graph theory is in constant development.

2

1.2 Efficient algorithms

It is common practice to consider algorithms that terminate their execution in

a time polynomial in the size of the input instance as efficient, and algorithms

that terminate in a time which is not a polynomial, say exponential or worse,

as inefficient (of course, an algorithm need not even terminate). One point

should be made clear; that is, that the complexity of a problem relates to

its worst case instance; that is, some (possibly pathological) instance for

which the known algorithm requires the most time. The performance of the

algorithm might be much better on average, but in this thesis we will only

consider the worst case scenario.

All problems for which efficient algorithms are known belong to the com

plexity class P , while many problems for which the only known algorithms

require exponential time belong to N P . Both classes P and N P contain

problems that seem to represent the complexity of the class: these problems,

known as P-complete and NP-complete problems respectively, are such that

every other problem in the class can be translated into them, and if these

complete problems can be solved more efficiently then so can all problems in

the respective class.

With the constant increase in computational power, it might seem rea

sonable to assume that all problems can now be solved by a computer, and

that there is no real need to worry about the efficiency of algorithms any

more. As it is explained in almost every book on the theory of algorithms, see

for example [7, 22], this is not the case. Inefficient algorithms can solve only

instances of limited size even on the most powerful machines, and many prob

3

lems in N P are therefore (under the assumption that P ^ N P) considered

intractable.

There are thousands of problems for which efficient algorithms are not

known, and the list is ever growing. Indeed books have been written in

this regard [15]. These problems are not only interesting from a theoretical

point of view, but relate to practical problems, and they occur in areas like

cryptography, DNA sequence analysis, operations research, facility location

problems and so on. A common example, often used because it is as easy

to understand as it is difficult to solve, is that of the Travelling Salesman

problem. A salesman has to visit a number of cities, and return to the

start point, in such a way that each city is visited exactly once, and the

distance travelled is as small as possible. Given the distance between any

two cities, what route should he choose? Such a problem can be modelled by

a weighted graph, where cities are represented by the vertices and there is an

edge between any two vertices. Each edge has an associated weight, which

represents the distance between the two corresponding cities. This is an

example of an optimisation problem; that is, a problem where the objective

is to find the best of all possible solutions. No polynomial time algorithm to

solve the Travelling Salesman problem is known.

Even if we do not know how to do so efficiently, it is still often necessary

to solve this kind of problem in practice. To quickly obtain a solution on any

instance, some relaxations can be made. For example, it might be possible

to devise a simple algorithm that efficiently produces a good or possibly even

optimal solution to the problem in certain cases, but which returns a solution

that is far from optimal in others. This kind of algorithm is generally known

4

as a heuristic algorithm: a simple set of rules is applied to quickly solve

the problem but where there is no guarantee on the quality of the solution

returned.

Heuristic algorithms have been devised for numerous problems. Going

back to the example of the Travelling Salesman, the following algorithm

can be used. Start at a given city, and then, at each step, visit the closest

unvisited city. When all cities have been visited, return to the starting point.

The performance of this algorithm is not far from optimal on some instances,

and the algorithm quickly returns a solution on every instance, but there are

cases for which the route chosen is much longer than the shortest possible

one (for more details see [7]).

The kind of heuristic algorithms that we will be interested in are known

as greedy algorithms, and they work by making, at any stage, an ‘obvious’

choice (generally based upon maximising or minimising some parameter) and

selecting the element that appears more promising at the moment. In some

sense, they can be considered as local algorithms. They are generally quick

to devise, always return an answer, and they are efficient, but are not always

guaranteed to return the optimal answer. We give an example of this method

by considering how it is possible to obtain a solution to a very well known

graph theoretical problem, again not known to be solvable in polynomial

time, called the maximum independent set problem. An independent set is a

collection of vertices of a graph that are pairwise nonadjacent. The problem

consists of finding the independent set of largest size in a given graph. By

relaxing our expectations it is possible to devise a greedy algorithm that

finds a maximal independent set of vertices, that is, a collection of vertices

5

from the graph, all pairwise nonadjacent, such that every other vertex in

the graph, which is not in the set, is adjacent to at least one vertex in the

set. Such an independent set is called maximal, as opposed to maximum,

because it is not necessarily the largest possible one. The algorithm takes

as input an undirected graph with the vertices labelled 1 , 2 , . . . ,n , where

n is the number of vertices in the graph. It greedily computes a maximal

independent set of vertices. The algorithm is as follows.

Greedy M aximal Independent Set algorithm

begin

S' := 0

for i := 1 to n

if vertex i is not adjacent to any vertex in S th en S := S U {z}

end

The algorithm examines the vertices according to the linear order given

by the labels on the vertices. At each stage it tries to add to the set of chosen

vertices the lowest numbered untried vertex. This algorithm always returns

an answer in polynomial time, but the size of the independent set depends

on the order, that is, the labels, given to the vertices. For at least one order

the solution returned will be the maximum independent set, while for others

its size could be far from optimal (for more details see [19]).

Even when efficient algorithms for a problem exist, and are practically

useful, given the availability of multi-processor computers, it is only natural

to wonder whether such algorithms can be transformed into much faster

6

ones that take full advantage of the number of processors at their disposal.

The kind of speedup that is sought, in this case, should bring the running

time of the algorithm from a polynomial in the size of the input instance

to a polylogarithmic one, while keeping the number of processors used at a

reasonable level. Problems that can be solved in polylogarithmic time by a

multiprocessor machine that uses a polynomial number of processors belong

to the class N C (and trivially N C C P).

Just as there are problems for which it does not seem to be possible to

devise polynomial time algorithms, there are also problems that can be solved

using a single processor machine in polynomial time, but for which using

many processors does not seem to provide a significant advantage over having

just one. These problems, that appear to possess an inherent sequentiality,

are known as P-complete problems. As in the case of P and N P , it is widely

believed that the classes P and N C differ, but so far a proof has not been

found. We will give precise definitions of the concepts introduced in this

section in the next chapter.

1.3 The thesis

In this thesis we will introduce two generic greedy algorithms, respectively

called GREEDY(7t) and MaxDegree(7r), and we will consider the complexity

of problems that involve their use to solve graph theoretical questions.

We are strongly motivated by results obtained by Satoru Miyano in the

paper The lexicographically first maximal subgraph problems: P -completeness

7

and N C algorithms [29], and by the results obtained by Pavol Hell and

Jaroslav Nesetril in the paper On the complexity of H-colouring [23]; and,

often using the same style of proof seen in these two papers, we will ob

tain results that parallel their results but in different complexity classes. Of

course, this does not mean that our results trivially follow from these papers;

our proofs are combinatorially more complex and require different structures

due to the different complexity classes involved.

The thesis is structured as follows. In Chapter 2 we will introduce the

terminology and give the definitions that will be used in the rest of the the

sis; in Chapter 3 we will exhibit a whole class of NP-com plete problems

(based around our algorithm GREEDY(7r)); and in Chapter 4 we will exam

ine the boundaries between P and N P for some specific problems, following

the style used by Miyano in [29]. In Chapters 5 and 6 we will show that

the proof used by Hell and Nesetril in [23] can be modified to obtain other

dichotomy results involving the classes N P and £ 3 , aRd P and A£, re

spectively. Finally, in Chapter 7 we will introduce and examine the greedy

algorithm MaxDegree(7r), and study the complexity of related problems.

Chapter 2

Definitions

2.1 Introduction

In this chapter we will define the terminology that will be subsequently used

in the document. We will start with some definitions related to complexity

theory and then continue with some graph theoretical concepts needed later

in the thesis. We will then consider the notion of a greedy algorithm before

concluding the chapter by introducing and explaining the generic algorithm

GREEDY(7t), on which most of this thesis is focused.

2.2 Complexity theory

In this section we will give a brief introduction to complexity theory: for

any concept used in the thesis but not defined here we refer the reader to

9

[6 , 15, 31, 39].

A function is a string relation of arity 2 in which each string x € {0 , 1 }*

is the first element of exactly one pair. In this thesis we will only be con

cerned with decision problems (as opposed to function problems); that is,

with functions in which the only possible solution to each instance is 1 or

0. A language is any subset of {0,1}*. Given a language L, the correspond

ing decision problem R l is: {(z, 1) : x G L} U {(£,0) : x ^ L}. Given a

decision problem R , we will refer to {a; G {0 , 1 }* : (* , 1) 6 1 ?} as the set of

yes-instances, and to {x G {0,1}* : (a;,0) G R} as the set of no-instances

of the problem. If L is a language then the corresponding complementary

language is co-L = {0,1}* — L [39].

Fundamental to complexity theory is the concept of a complexity class.

A complexity class consists of all problems of a certain kind, decision or

function problems for example, that can be solved using a particular model

of computation using only a limited quantity of resources. The resources that

most researchers tend to be interested in are space and time, and we will take

as our model of computation the classical Turing machine (see for example

[15, 31]), and, in the case of the class N C , the PRAM (see [16, 19]). The

complexity classes that we will consider are: L, N C , P , N P , A%, E? and H%.

For any Turing machine M and any language L, we say that M accepts L if,

given as input any string x\ if x G L then there is an accepting computation

of M on input x\ if x 0 L then there is no accepting computation of M on

input x.

• Complexity class L is the class of languages that can be accepted by a

10

deterministic Turing machine in logarithmic space.

• Complexity class NC is the class of all languages that are accepted in

polylogarithmic time by a PRAM that uses a polynomial number of

processors.

• Complexity class P is the class of languages that can be accepted by a

deterministic Turing machine in polynomial time.

• Complexity class N P is the class of languages that can be accepted by

a nondeterministic Turing machine in polynomial time.

In order to define the last 3 complexity classes, that is, A 2 , and n ^ ,

we need to define oracle Turing machines first.

An oracle Turing machine M ? is a multi-tape Turing machine (deter

ministic or nondeterministic) with a special write-only tape called the query

tape, and three special states <7? (the query state) and qy , qn (the answer

states). If we take A to be an arbitrary language, the computation of oracle

machine M ? with oracle A proceeds like an ordinary Turing machine, except

that when a symbol is written on the query tape, the head moves one cell

to the right. Depending on whether the current string on the query tape

is in A or not, M ? moves from the query state to qy or qjy, respectively,

and the contents of the query tape are erased (the head moves back to the

start of the tape). The answer states allow the machine to behave differently

according to the answer obtained from the oracle. We will denote as M A a

Turing machine such that A is its oracle.

11

We can now define the polynomial time hierarchy [37]. Let A be a lan

guage. P "4 (resp. NP"4) is the class of languages accepted by M A where

M is a deterministic (resp. nondeterministic) oracle Turing machine which

operates in time p(n) for some polynomial p(n).

For a class of languages C,

P c = (J P A, N P C = |J N P-4.
A e c A e c

The polynomial time hierarchy is {Eg, Ilg , Ag : k > 0}, where

Eg = n g = Ag = p

and for any k > 0

E£+1 = N P s E,

n £+1 = co-NPEt,

A p — P Ek k+1 ~ r

As previously mentioned, we will not go beyond the second level of

the polynomial time hierarchy, and will therefore only consider problems

in Ag = P NP, Eg = N P NP and ng = co -N P n p .

Given two decision problems X and Y, a reduction from X to Y is a

function / : {0,1}* —> {0,1}* such that any instance x of X is a yes-instance

if, and only if, f (x) is a yes-instance of Y. Of course, it is necessary to

consider the resources used to derive f (x) from x: in this thesis we will deal

with reductions that can be performed in deterministic logarithmic space.

Two decision problems X and Y are logspace-equivalent ii X is reducible to Y ,

12

Y is reducible to X , and each reduction can be performed using deterministic

logarithmic space.

Given a complexity class C and a language L in C, we will say that L is

complete for C (or C-complete) if any language L' G C can be reduced to it.

If any language in C is reducible to L, but L is not known to be in C, then

the problem is C-hard.

All the problems that we will consider are related to graph theory, and

we will introduce the relevant definitions in the next section.

2.3 Graph theoretical definitions

In this section we will define most of the graph theoretical concepts that will

be used in the rest of the document. For any concepts used in the thesis but

not defined here, or for an introduction to graph theory, see [4, 20, 21].

A graph G = (V, E) is a mathematical structure consisting of a finite set

V of elements called vertices (or nodes), and a set E of unordered pairs of

distinct vertices from V , called edges. Adjacent vertices are two vertices that

are joined by an edge. If vertex v is an endpoint of edge e then v is said to be

incident on e, and e is incident on v. The degree of a vertex v in a graph G,

denoted deg(v)c (or deg(v) if the graph G is understood), is the number of

edges incident on v. The maximum degree of a graph G is denoted by A (G).

A directed graph (or digraph) is such that the edges are ordered pairs of

distinct vertices in V. If e = (x , y) is an edge of a digraph then x is the

initial endpoint of e and y is the terminal endpoint of e. If there is an edge

13

from a vertex a: to a vertex y , but not one from y to x, then we will say that

y is a child of x , and x is the predecessor (or parent) of y. When referring to

digraphs, the out-degree of a vertex x is the number of edges that have x as

their initial endpoint, and the in-degree is the number of edges that have x

as their terminal endpoint. The underlying graph of a digraph G is the graph

obtained by replacing each edge of G by the corresponding undirected edge.

The order of a graph G = (V, E) is given by the number of vertices,

and it is denoted by |G| or |V|. A path is a sequence of edges of the form

{vo,vl) ,(v i ,v2) , .. ■ ,(vn -i ,vn). A cycle is a path in which vq = vn and all

vertices on the path are distinct. Given a subset U of the vertices of a

graph (or digraph) G = (V,E), the subgraph of G induced by U, (U)q , is:

(U) g — (U,Eu), where Eu = {(x ,y) £ E \x ,y G U}. These definitions hold

for both graphs and digraphs.

In this thesis we will mainly deal with properties on graphs (only dis

cussing properties on digraphs in one theorem). Let 7r be some property

of graphs. In the following chapters we will often say that a graph is (or

possesses property) 7r. We will now define the properties 7r that we will

consider.

• A graph has bounded degree, where the bound is A:, if every vertex has

degree at most k.

• A graph is acyclic if it does not contain any cycle. It is k-cycle free if

it does not contain a cycle of length k.

• A clique (or complete graph) with n vertices (denoted K n) is a graph

14

with n vertices in which each vertex is adjacent to all the others.

• A graph is planar if it can be drawn on the plane without any two

edges crossing.

• A planar graph is outerplanar if it can be drawn on the plane with

all its vertices on the same face, which is generally chosen to be the

exterior face.

• A graph is bipartite if its vertices can be partitioned into two disjoint

subsets Ui and U2 such that each edge joins a vertex from U\ to one

from t/2 . A complete bipartite graph has edge set E = {(u,v)\u G

U\,v G U2 }, and we will denote it as K niyTl2, where Hi is the number

of vertices in Ui. The complete bipartite graph K\^n is called a star of

size n, or n-star: we will refer to the single vertex in U\ as the centre

of the star, and to the vertices in U2 as the leaves.

• Given a graph G = (V,E), the corresponding edge graph L(G) —

(E, D) is the graph that has as vertex set the edge set of G, and such

that 2 vertices in L(G) are adjacent if, and only if, the corresponding

edges in G have a vertex in common. We say that a graph G is an edge

graph if there exists a graph H such that G is isomorphic to the edge

graph L(H) of H.

• An interval graph is a graph such that there exists a set of intervals

on the real line in a one-to-one correspondence with the vertices of the

graph. Two vertices are adjacent if, and only if, their corresponding

intervals intersect.

15

• Given a cycle C in a graph G , a chord of C is an edge of G joining two

vertices of C which are not adjacent in the cycle. A graph G is called

chordal if every cycle in G of length > 4 has a chord.

• Let G and H be graphs. A homomorphism from G to H is a map / from

the vertices of G to the vertices of H such tha t if (u, v) is an edge of G

then {f{u), f(v)) is an edge of H. It is an isomorphism if / is also onto,

one-to-one and the inverse map is a homomorphism. The H-colouring

problem is the problem whose instances are graphs G and whose yes-

instances are those graphs G for which there is a homomorphism from

G to H. We will refer to a graph G that possesses such a property as

being H-colourable.

• A graph is 3-colourable if each vertex can be coloured with a unique

colour from red, white and blue so that two adjacent vertices are

coloured differently; and the 3-colouring problem has as an instance

a graph G and as a yes-instance a graph G tha t is 3-colourable.

When talking about graph theoretical properties, we will often say that

a property 7r is hereditary: by this we mean that whenever we have a graph

with the property 7r, the deletion of any vertex and its incident edges does

not produce a graph violating 7r, i.e., n is preserved by induced subgraphs.

A property n is non-trivial on a class of graphs C if there are infinitely many

graphs from C satisfying n and infinitely many violating it. Note that the

definition of hereditary and non-trivial property is valid for both graphs and

digraphs.

16

In the following chapters, we will use graph theoretical properties in the

context of greedy algorithms. We will discuss greedy algorithms in the next

section.

2.4 Greedy algorithms

On page 6, we showed a greedy algorithm that finds a maximal independent

set of vertices. The algorithm examines the vertices of a graph following

some particular order and chooses and rejects vertices one at a time. This

procedure will also be used in the algorithms defined later in the thesis. In

this section we will show that the strategy used by the algorithm can be

generalised and applied to structures different from graphs.

An independence system is a pair I = (E, T \ where E is a finite ordered

set of elements {ei , . . . , en}, and T is a family of subsets of E\ each element

of T is called an independent set. In addition we require that independent

sets have the property that 0 E .T7, and that independence is hereditary , that

is, if a set is in T ', then so are all its subsets. The related problem consists

of greedily finding the independent set G = {ejx, . . . , ejk} for / , where

• 1 = jo < j i < 3 2 < • • • < jk < jk + 1 = n + 1

• for all ji < I < j i+i, G{ U {e^} is not independent.

The problem can be solved by the following generic greedy algorithm.

17

G eneric G reed y M axim al In d e p e n d e n t Set a lg o r ith m

b eg in

G : = 0

for % :— 1 to n

if G U {e*} E T th e n G := G U {e^}

en d

It is clear that the algorithm proceeds as the one on page 6, but instead

of examining the vertices of a graph, it considers the elements of an ordered

set. In this thesis we will only deal with graph theoretical properties, and

we will not therefore pursue this topic any further, but more details on the

subject can be found, for example, in [19].

2.5 GREEDY(tt)

Let G = (V, E) be a graph (directed or undirected) and suppose that the

vertices of V are linearly ordered. Given a subset S = {so> Si, $2, • • • >

of V , where the induced ordering is s0 < Si < • • • < Sjt, we can define

a lexicographic order on the set of all subsets of S as follows (we call it

lexicographic because we consider so, s \ , . . . , Sk to be our alphabet):

• for subsets U = {ui,U2 , . . . , up} and W = {wi,W 2 , . . . , Wk} of S, where

Ui < u2 < . . . < up and Wi < w2 < . . . < Wf-, we say that U is

lexicographically smaller than W if:

18

— there is a number t , where 1 < t < p, such that ut < wt and

Ui = Wi, for all i such that 1 < i < t; or

— k > p and ui — Wi, for all i such that 1 < i < p.

Miyano [29] proved that the problem of computing the lexicographically

first maximal subgraph of a given graph, where this subgraph should satisfy

some fixed polynomial time testable, non-trivial, hereditary property 7r, is

P -hard (even when the given graph is restricted to be either bipartite or

planar and 7r is non-trivial on the class of bipartite or planar graphs, respec

tively). Because of the stipulations on 7r, the lexicographically first maximal

subgraph satisfying the property 7r can be computed by a generic greedy al

gorithm. Note that Miyano’s result is widely applicable; to any polynomial

time testable, non-trivial, hereditary property 7r, such as whether a graph

is planar, bipartite, acyclic, of bounded degree, an interval graph, chordal,

and so on. Miyano states that his work was inspired by tha t of Asano and

Hirata [2], Lewis and Yannakakis [27], Watanabe, Ae and Nakamura [40] and

Yannakakis [42] on node- and edge-deletion problems in N P . Typical in this

work is the result of Lewis and Yannakakis [27] that the problem of finding

the minimum number of nodes needing to be deleted from a graph so that

the graph satisfies a fixed polynomial time testable, non-trivial, hereditary

property 7r is NP-hard.

Of course, a tacit assumption in Miyano’s work is that the vertices of any

graph are linearly ordered. In the following chapters, inspired by Miyano’s

results, we consider computing lexicographically first maximal subgraphs of

given graphs, where these subgraphs should satisfy some given non-trivial,

19

hereditary property 7r, except that now the graphs come equipped with not

just one linear ordering of their vertices but several. Hence, for a given graph

we will be involved with a collection of lexicographically first maximal sub

graphs and not just one. Note that if we gave our linear orderings explicitly

then a graph on n vertices could only come with a polynomial (in n) number

of such linear orderings (as otherwise it would be unreasonable to define that

the whole input has size n). In order to work with an exponential number of

linear orderings, we present our collection of linear orderings in the form of

a partial order, i.e., an acyclic digraph, with a source vertex providing the

(common) least element of any of the linear orderings. Let s be our source

vertex. We think of a partial ordering P as encoding a collection of linear

orderings of the form s = Sq < S\ < S2 < . . . < s*;, where Sj+1 is a child of

Sj, for 0 < j < k, and s* has no children. Note that we will always assume

that every vertex v € V is reachable from s in P, that is, there is at least

one path starting from s that contains vertex v.

Similarly to Miyano’s deterministic scenario, we will use a nondetermin-

istic polynomial time greedy algorithm that computes all lexicographically

first maximal subgraphs. Our algorithm, called GREEDY(7r), takes as input

3 arguments: a graph (directed or undirected) G = (V,E), a directed graph

P = (V ,D) and a specified vertex s 6 V. The algorithm GREEDY(7r) is as

follows:

i n p u t (G , P , s)

S := 0

c u r r e n t - v e r t e x := s

20

i f 7r (S U { c u r r e n t - v e r t e x } , G) t h e n (*)

S := S U { c u r r e n t - v e r t e x }

f i

w h i l e c u r r e n t - v e r t e x h a s a t l e a s t o n e c h i l d i n P do

c u r r e n t - v e r t e x := a c h i l d o f c u r r e n t - v e r t e x i n P

i f i r (S U { c u r r e n t - v e r t e x } , G) t h e n (**)

S := £ U { c u r r e n t - v e r t e x }

f i

od

o u t p u t (5)

where ir(S U {current-vertex}, G) is a predicate evaluating to ‘true’ if, and

only if, the subgraph of G induced by the vertices of S U {current-vertex}

satisfies n. We say that a vertex v is the current-vertex if we have ‘frozen’

an execution of the algorithm GREEDY(7r) immediately prior to executing

either line (*) or line (**) and the value of the variable current-vertex at this

point is v.

We will now explain why GREEDY(7r) fits the description of the greedy

procedure detailed in Section 2.4. Given as instance a graph G and a partial

ordering P , the algorithm selects a path in the ordering and then proceeds

to examine the vertices on the path following a linear order. Once the choice

of the path has been made, only the subgraph of G induced by the vertices

on the path is considered, and such vertices are examined one at a time

like in the case of the outlined procedure. The algorithm chooses the vertices

during the execution, instead of making the choice before and then operating

21

according to the linear order, but it is straightforward to see that this does

not make a difference.

The algorithm GREEDY(7r) is very general, and its behaviour changes

according to the structure of the graph P which from now on will be called

the ordering. If the ordering consists of a simple path from vertex s then

GREEDY(7r) becomes a deterministic algorithm, because at any stage in

the execution of the algorithm current-vertex has at most one child, and the

order in which vertices are examined is dictated by their distance from vertex

s. The output of the algorithm is, in this case, always the same after every

execution, and it consists of a set of vertices.

If the ordering, that is, the graph P , is not a simple path, but is such

that there are two or more different paths starting from vertex s, then the

algorithm becomes nondeterministic and produces a collection of sets of ver

tices as outputs. Note that we will only consider orderings P tha t contain no

cycles, but the reader is invited to check that the complexity of the problem

does not change even if we allow P to contain cycles. A slightly modified

version of the algorithm could remember which vertices have been already

examined, therefore always choosing a child of the current vertex that has

not been considered before, and otherwise proceed exactly as GREEDY(7t).

Since our acyclic approach is a subproblem of the general digraph problem,

our results will hold in both cases. We have not found any results regarding

the complexity of the problem involving linear extensions of partial orderings.

Let C be a class of graphs and let 7r be some property of graphs. The

problem GREEDY(ordering, C, 7r) has: as its instances tuples (G, P, s,t),

22

where G is a graph from C, P is an ordering of the vertices of G and s and

t are vertices of G; and as its yes-instances those instances for which there

exists an execution of the algorithm GREEDY(7r) on input (G, P , s) resulting

in the vertex t being output.

In the following chapters we will discuss the complexity of the problem

GREEDY(ordering, C, 7r) for different values assigned to the parameters

ordering, C and 7r. We will begin, in the next chapter, by considering prop

erties 7r that are testable in polynomial time, hereditary and non-trivial on

the chosen class of graphs C.

23

C hapter 3

A class o f N P -com plete

problem s

3.1 Introduction

The decision version of the problem lexicographically first maximal subgraph

satisfying property 7r, LFSMP(7t), discussed by Miyano in [29], and men

tioned in the previous section, can be restated as GREEDY(linear ordering,

C, 7r); and therefore Miyano’s main result from [29] can be stated as follows.

T h e o rem 3.1 Let n be a polynomial time testable, non-trivial, hereditary

property on the class of graphs C, where C is the class of all graphs, the

class of planar graphs or the class of bipartite graphs. Then the problem

GREEDY (linear ordering, C, ir) is P - complete. □

24

In this chapter we will parallel this result in the class N P by showing

th a t the problem GREEDY(partial ordering, C, n) is NP-complete for any

property 7r which is hereditary, testable in polynomial time and non-trivial

on C, where C is the class of all graphs or the class of planar bipartite graphs.

We will s tart our discussion by considering the conditions that we need to

apply to our ordering to move from the setting of P to the setting of N P . We

will prove th a t the problem GREEDY(partial ordering, planar bipartite, in

dependent set) is NP-com plete and we will use this result as a base to prove

that for any property n tha t is testable in polynomial time, hereditary and

non-trivial, the problem GREEDY(partial ordering, undirected graphs, 7r) is

complete for N P as well. We will conclude the chapter by showing that the

result holds also if we restrict to planar bipartite graphs and if we consider

directed graphs. We remark here that many of the results of this chapter

appeared in the paper by A. Puricella and I. A. Stewart, A generic greedy al

gorithm, partially-ordered graphs and NP-completeness, Proceedings of 27th

International Workshop on Graph-Theoretic Concepts in Computer Science

{WG'01) [33].

3.2 Tree orderings

In this section we will show tha t if we equip graphs with a tree ordering, that

is, with a partial ordering of their vertices in the form of a rooted out-tree

then the problem GREEDY(tree ordering, C, 1r) still resides in P . Note that

this is essentially the same as considering graphs equipped with a polynomial

25

number of linear orderings of their vertices, because in a directed tree there

is at most one path between any two given vertices. It is straightforward

to see th a t the problem GREEDY(tree ordering, C, ir) is in P , because a

deterministic algorithm can be used to find the unique path between vertices

s and t, for any instance (G,T, s,t), and the vertices on such a path can be

used as a linear ordering on G. We actually prove here a stronger result.

P ro p o s itio n 3.2 Let C be any class of graphs and let tt be any property of

graphs. The problems GREEDY (tree ordering, C, 7r) and GREEDY (linear

ordering, C, n) are N C -equivalent.

P ro o f Let G be a graph of size n\ let T be a tree ordering of the vertices

of G , with root s; and let t be some vertex of G. Consider the following N C

algorithm. Assign a processor to every vertex v in T. In shared-memory cell

M[v\, register the parent of vertex v in T (if there is one). Consequently,

we have hidden away in shared-memory cells M [1 . . . n] a collection of linked

lists, with the root s of the tree as the head of every linked list, representing

the paths emanating from the root in T. Perform the usual list-ranking

algorithm on these linked lists (see, for example, [16]), and also (as part of

the list-ranking process) mark all those vertices which lie on a path between

s and t. After list-ranking, we can ascertain the precise path in T from s

to t. Hence, we have reduced the problem GREEDY(tree ordering, C, 7r) to

the problem GREEDY(linear ordering, C, n). Our algorithm can easily be

implemented in Q (log n) time using n processors on an EREW PRAM. The

result follows. □

The following is now immediate from Miyano’s result.

26

C o ro lla ry 3.3 Let it be a polynomial time testable, non-trivial, hereditary

property on the class of graphs C where C is the class of all graphs, the

class of planar graphs or the class of bipartite graphs. Then the problem

G REED Y {tree ordering, C, ir) is 'P-complete. □

In [29], N C algorithms for certain problems of the form GREEDY(linear

ordering, C, n) (for specific classes of graphs C and properties 7r) were derived.

Proposition 3.2 yields N C algorithms for these problems when the graphs are

equipped with tree orderings of their vertices, as opposed to linear orderings.

We therefore obtain (using the results of [29]) the following corollaries.

C o ro lla ry 3.4 The problem GREEDY {tree ordering, graphs with maximum

degree 2, independent set) is in N C .

Note that graphs with maximum degree 2 simply consist of cycles, paths

and independent sets of vertices.

C o ro lla ry 3.5 I f we take 7r to be the property 3-cycle free or the property

4-cycle free we obtain the following result. The problem GREEDY {tree or

dering, graphs with maximum degree 3, 7r) is in N C .

3.3 Independent sets

In order to prove our main result of the chapter, in the next section, we need

to first establish a completeness result for the problem GREEDY (partial or

dering, planar bipartite, independent set). In the following theorem we will

27

in fact prove a stronger result, and show tha t GREEDY(partial ordering, pla

nar bipartite acyclic of maximum degree 3, independent set) is NP-complete.

As every acyclic graph is planar and bipartite, the problem could alterna

tively be stated as GREEDY(partial ordering, acyclic of maximum degree 3,

independent set).

T h e o re m 3.6 The problem G R E E D Y(partial ordering, planar bipartite and

acyclic of maximal degree 3, independent set) is N P -complete.

P ro o f The problem is clearly in N P as it can be solved in polynomial

time by GREEDY(independent set); to prove completeness we reduce from

the known NP-com plete problem Directed Hamiltonian Path (DHP): whose

instances are triples (G , s, t), where G is a digraph and s and t are vertices

of G\ and whose yes-instances are instances for which there is a Hamiltonian

path in G from s to t (see [15]).

Let (G = (V ., E), s, t) be an instance of DHP of size n. W.l.o.g. we assume

that |V| > 2, tha t the vertex set of G is {1,2, . . . , n) and that s = 1 and

t — n. Corresponding to this instance, we build an instance (G', P ' , s', t') of

GREEDY(partial ordering, planar bipartite, independent set) (for brevity,

we call this problem TL). The vertex set V' of G' and P' is

{'U'i,j , Vij, ujij, Zj : i, j = 2 ,3 , . . . ,n — 1} U {x ,s ', t '} .

The edges of G' are

{(^*j5 ^ i , j) • 3 2, 3 , . . . , n 1}

U{ (w ij ,u i+hj) : i = 2 ,3 , . . . ,n — 2; j = 2 , 3 , . . . ,n — 1}

28

U{(wn-I,j, Zj) : j = 2 , 3 , . . . , n - 1}

U{(zj, wn- i j+i) : j = 2, 3 , . . . , n - 2}

and the edges of P' are

3, . . . , n - 2j ji j — 2,

U{ s ',v2,i) ■ j = 2,3

U{ x) : j — 2 , 3 , . . . , n - 1 ; (j, n

U{ X, «2,2)}

U{ ^i,j > ̂ -= 2 , 3 , . . . , n - 2 ; j = 2

U{ ul+ij) : i = 2, 3, . . . , n - 2 ; j =

U{ ^ n —l , j ? 'U*2, j + \

COcTII . . . , n - 2 }

U{ ^ n —l ,n —11 ^ n - ■1,2)}

U{ i Z j) • J = 2,3, . . , n - 1}

U { Zj •) 'UJn— l j - f l) : j = 2,3, .. ,n — 2}

U{ Zn—\ i t }

The construction of the instance (G', P ' , s', t ') is illustrated in Figures

3.1, 3.2 and 3.3 which depict: a digraph G\ the resulting graph G'\ and the

resulting partial ordering P ', respectively. Note that the graph G' is always

planar and bipartite. Note also that G' depends solely upon n and not on

the edges of G; and that the only portion of P' depending upon the edges

of G is the initial portion involving the ^-vertices (the rest of P' is a linear

ordering).

29

1

Figure 3.1: A digraph G.

Figure 3.2: The graph G' corresponding to G.

Suppose that (G , s, t) is a yes-instance of DHP. Then there is a Hamilto

nian path s = si, s2, -s3, . . . , sn- 1 , sn = t in G. Consider the following path in

P':

S 3 ^ 2 , 5 2 3 ^ 3 , S 3 3 • • • 3 ^ n — l , S n _ l 3

(note that this is indeed a path in P'). In the execution of the algorithm

GREEDY(independent set) on (Gf, P \ s ' , t'), following this path in P' clearly

30

• t'

Ii z 5

t• ™ 5, 5

I

I ,

1

L

t
• * 2

t
► 4 ^ 5,2

Figure 3.3: The partial ordering P' corresponding to G.

results in the vertices of {s', u2)S2, u3)S3, . . . , vn- i jSn_1,x } all being output.

Henceforth, the path chosen in P' is fixed. With reference to Figure 3.2,

following this path we work down the first column of u- and rc-vertices of

G' (that is, the column with index 2, i.e., involving vertices of the form u_)2

and ic_;2) then the second column (the column with index 3), until having

worked down the last column (the column with index n — 1), we work along

the bottom row of w- and z-vertices. For every j = 2, 3 , . . . , n — 1, a vertex

Vij, for some z, has been output by the algorithm GREEDY(independent

vy
• <

w.
vy

w-

w.

31

set); th a t is, there is exactly one u-vertex output from every column. Hence,

as we work down the columns of u- and w-vertices, the vertex wn- 2 ,j is output

by the algorithm GREEDY(independent set) but the vertex wn_ i s not, for

all j = 2 , 3 , . . . , n — 1 . Consequently, when we work along the bottom row of

w- and z-vertices of G', the vertex wn- i j is output but the vertex Zj is not,

for all j = 2 , 3 , . . . , n — 1 . Finally, the vertex t' is output. Hence, (G', P', s', t')

is a yes-instance of 'H.

Conversely, suppose tha t (G', P 1, s’, t') is a yes-instance of P and consider

an execution of the algorithm GREEDY(independent set) witnessing this

fact. The path chosen in P' from s' to x yields a path of length n — 1 in G

from 1 to n. Suppose th a t this path in G is such that a vertex j appears

on it more than once. This means that vertices Vij and Vi>j appear on the

path in P' from s' to x, where i ^ i ' . Hence, with reference to Figure 3.2,

there must be some column in G' for which a u-vertex has not been output

by the algorithm GREEDY(independent set). Let the largest index of any

such column be k. When we work down the u- and w-vertices of column k in

G' in our execution of the algorithm GREEDY(independent set), the result

is that all of the w-vertices are output and none of the ^-vertices are. When

we work down the u- and ic-vertices of column m, for any m > k, in our

execution of the algorithm GREEDY(independent set), the result is that the

vertex un_i>m is not output. Hence, when we work along the bottom row of

w- and 2:-vertices in our execution of the algorithm GREEDY(independent

set), the vertices zjt, 2^+1 , . . . , zn- \ are all output but not the vertex t ' . This

yields a contradiction; and so we have a Hamiltonian path in G from 1 to n.

Hence, (G, s, t) is a yes-instance of DHP.

32

As the construction ((?', P', s', t ') from (G , s, t) can clearly be completed

using logspace, the result follows. □

3.4 Polynom ial tim e hereditary properties

In this section, we consider the problem GREEDY(partial ordering, planar

bipartite, n) where n is a polynomial time testable, non-trivial, hereditary

property. We begin with some graph-theoretic definitions specific to the

proofs in this section.

We refer to a set of disjoint edges as independent edges. A cut-point of a

connected graph G is a vertex c such that its removal (along with its incident

edges) from G results in a graph with at least 2 connected components. A

component relative to a cut-point c is a subgraph consisting of c, one of the

derived connected components and all those edges of G joining c and a vertex

of the component. If a connected graph does not have any cut-points then

it is biconnected. Later in the proof, in order to decide whether a graph

possesses a property 7r, we will need to examine the size of the connected

components relative to a cut-point. The following definitions will be used for

this purpose.

Let a — (ai, 0 2 , . . . , as) and b = (6 1 , 6 2 , . . . , bt) be two tuples of positive

integers. We order these tuples lexicographically as follows. We say that

a >l b if either:

• there exists some i € { 1 , 2 , . . . , min{s, £}} such that aj = bj, for all

j G {1 , 2 , . . . , i — 1 }, and a* > 6 *; or

33

• s > t and clj = bj, for all j G {1 , 2 , . . . , t}.

The a-sequence a c of a connected graph G is defined as follows. Suppose

that G is not biconnected. If c is a cut-point of G whose removal results

in a graph with k connected components then define a C)c = (rz-i, rz-2 , • • •, n*,),

where ri\ > n 2 > . . . > are the numbers of vertices in the components

relative to c. We define otG to be the lexicographically-minimal tuple of the

(non-empty) set { a Cic ■ c is a cut-point of G}, and we define cq to be any

cut-point for which olq = a CG,G• If G is biconnected then it does not contain

any cut-points; therefore the number of vertices in any connected component

relative to a vertex has size |G|. We then define a c = (|G|) and cq as any

vertex.

Given a graph G with connected components Gi, G2 , . . . , Gjt, the j3-

sequence /3g of G is defined as (aG1,ctG2i ■ ■ ■ , a Gk), where >l o l g 2 >l

• • • &Gk- A /2-sequence is therefore a tuple of tuples of integers.

Now for the main result of this section.

T h eo rem 3.7 Let 1t be a property satisfying the following conditions:

(i) 7r is non-trivial on planar bipartite graphs;

(ii) 7r is hereditary on induced subgraphs;

(in) 7r is satisfied by all sets of independent edges', and

(iv) 7r is polynomial time testable.

Then the problem G REED Y (partial ordering, planar bipartite, 7r) is complete

for N P .

34

P ro o f For brevity, we refer to the problem GREEDY (partial ordering, pla

nar bipartite, 7r) as Q. The property 7r is, by assumption, non-trivial on

planar bipartite graphs. It follows that amongst all planar bipartite graphs

violating 7r, there must be (at least) one with smallest /3-sequence, where

/3-sequences are ordered lexicographically and where the comparison of com

ponents, i.e., a-sequences, is according to >l - Let us call such a graph J;

that is,

Pj = min{/3(7 . G is a planar bipartite graph violating 7r}.

Let J i, J 2 , . . . , Jk be the connected components of J ordered according to

o /i >L a j 2 >l . . . > l &jk- It follows that J has /3-sequence /3j = (a jx,Oij2,

. . . , a jk). Let c = c jx and let the connected components of J\ relative to c be

/ 0 U {c}, / 1 U {c}, . . . , Im U {c}, where |/0| > \I\\ > . . . > \Im\. Denote by I *

the subgraph of J\ induced by the vertices of I\ U . . . U /m. By (ii) and (in) it

follows that 7r is satisfied by any independent set of vertices, and so To U {c}

must contain at least one edge (otherwise J would be a set of independent

vertices).

To prove the NP-completeness of the problem Q, we reduce from the prob

lem GREEDY(partial ordering, planar bipartite, independent set), which, for

brevity, we denote by and which was proven to be NP-complete in The

orem 3.6. That is, from an instance (G ,P ,s , t) of we create an instance

(G', P ', s', t') of Q (with the appropriate properties).

We will divide the construction of G' from G into three phases. For any

subset of vertices U of J , we denote by (U) the subgraph of J induced by

the vertices of U. Note th a t as (70 U {c}) contains at least one edge and is

35

connected, there exists a vertex d of Iq U { c } such that (c, d) is an edge of

</0 U { c }) .

Phase 1 For each vertex u of G, we attach a copy of (7* U {c}) by identifying

u with c (all such copies are disjoint). Call the resulting graph G. Note that

the vertex set of G consists of the vertices of G , which we call the G-vertices,

together with disjoint copies of the vertices of /*. As both (/*) and G are

planar and bipartite, G maintains these properties.

Phase 2 We replace each edge (u, v) of G, where u and v are G-vertices, by

a copy of (I0 U { c }) by identifying u with c and v with d (all such copies

are disjoint). Note tha t our choice of d results in the graph so formed being

planar and bipartite.

Phase 3 We add disjoint copies of J 2 , J 3 , . . . , Jk to obtain G', which is clearly

planar and bipartite.

The partial ordering P' consists of a linear ordering onto which is concate

nated the partial ordering P (of the G-vertices). The linear ordering consists

of: all vertices of G' th a t are vertices of some copy of (Iq \ {d}); followed by

all vertices in the copies of (/*); followed by all vertices of J 2 , J 3 , . . . , Jk- It

does not m atter how we order the vertices of some copy of (/*), for example,

in the linear ordering. We concatenate this linear ordering prior to P by

including an edge from the last vertex of the linear ordering to the vertex s

of P. Denote the vertex s' to be the first vertex of the above linear ordering,

and denote the vertex t' to be the G-vertex of G' formerly known as t. Our

construction can be visualised in Figure 3.4.

36

the partial
ordering H

\

the graph G the graph J x

the graph G the graph G'

vertices o f/.
- > • ► • ► ► • — ► • —)
vertices of I0 vertices of Jt

the partial ordering H'

Figure 3.4: Our basic construction.

37

We will now prove three lemmas to be used in the remainder of the proof.

Lem m a 3.8 Any graph K consisting of any number of disjoint copies of

(70 \ {d}) plus any number of disjoint copies of (/*) plus a disjoint copy of

each of J 2 , J 3 , J k satisfies 1r.

P ro o f The connected components of K consist of J 2 , J3 , ■ ■ ■, Jt together

with the connected components of the copies of (70 \ {d}) and (/*). Consider

the o-sequence a of a connected component of either (7q \ {d}) or (7*). All

components of a are strictly less than |70| + 1; and so a is strictly less than

a jx. Hence, (3k has one less component equal to a j x than (3j, with all other

components strictly less than a j x; and so K satisfies ir by minimality of /3j.n

Lem m a 3.9 Take a single copy of (7* U {c}) and any number of disjoint

copies of ((7o \ {d}) U {c}); and identify the vertices named c in all of these

graphs. Then the resulting graph M satisfies 7r.

P ro o f We will start by remarking tha t M could be disconnected: this would

be the case if ((7o \ {d}) U {c}) was not connected. Let M ' be the connected

component of M containing c. Note that any other connected component

of M has an cn-sequence strictly less than the cn-sequence (|7q| + 1); and so

strictly less than a j x.

Suppose that c is a cut-point of M '. Then q^m' has components |7i| +

1 ? 1 ^ 2 1 + !)•••) |An| -f 1 as well as possibly some other components which are

all strictly less than |70| + 1 . Hence, by arguing as in the proof of Lemma 3.8,

aM' is strictly less than a j x. By the remark above, (3m is strictly less than

(3j and so M satisfies ir by the minimality of (3j.

38

Suppose tha t c is not a cut-point of M '. Then /* — I\, i.e., m = 1, and

M ' = (/*); hence, is at most (|/ i | + 1). Any connected component of M

different from M ' has size at most | /0| — 2, and so a j 1 = (|/0| + 1, |/ i | + 1)

is strictly greater than the a-sequence of any connected component of M.

Consequently, /3M is strictly less than (5j; and M satisfies n by the minimality

of (5j. □

L em m a 3.10 Any graph N consisting of disjoint copies of J 2 , J 3 , . . . , Jk plus

any number of disjoint copies of the graph M from Lemma 3.9 satisfies ir.

P ro o f By the proof of Lemma 3.9, the graph M is such that the maximal

component of (5m is strictly less than a j x. By reasoning as we did in the proof

of Lemma 3.8, it follows th a t (5n is strictly less than (5j and so N satisfies ir

by the minimality of (5j. □

Throughout, we refer to a G-vertex in G' and the corresponding vertex

in G by the same name (and also to a vertex of P and the corresponding

vertex in the portion of the partial ordering P' corresponding to P by the

same name).

Consider the algorithm GREEDY(7r) on input (G1 ,P ',s ' , t ') . The partial

ordering P' consists of a linear ordering, whose vertices are So, say, con

catenated with the partial ordering P. The subgraph of G' induced by the

vertices of So is as the graph K of Lemma 3.8 and consequently every vertex

of So is always placed in every output from GREEDY(7r). Note that the

algorithm GREEDY(7r) on input (G', P 1, s', t ') with current-vertex s is work

ing with exactly the same partial ordering, namely P, as is the algorithm

39

GREEDY(independent set) on input (G, P, s ,t) with current-vertex s.

Suppose, as our induction hypothesis, that:

• the algorithm GREEDY(independent set) on input (G ,P ,s ,t) has

current-vertex u, for some descendant u of s in P , and has so far output

the set of vertices S;

• the algorithm GREEDY(7r) on input (G ', P ', s', t') has current vertex u

in P' and has so far output the set of vertices So U S; and

• the subgraph of G' induced by the vertices of So U S is in the form of

a subgraph of the graph N in Lemma 3.10.

Note tha t the induction hypothesis clearly holds, in the base case, when the

vertex u is actually s.

Suppose tha t the algorithm GREEDY(7r) outputs the vertex u. If u is

such that adding u to So U S completes a copy of / 0 U {c} then we would have

a copy of J within the subgraph of G' induced by the vertices of So U S U

{u}. This would yield a contradiction because this subgraph satisfies 7r (by

definition), 7r is hereditary on induced subgraphs, and J would then have to

satisfy 7r. Hence, the vertex u is not joined to any vertex of S in G and so u

is output by the algorithm GREEDY(independent set).

Conversely, if the algorithm GREEDY(independent set) outputs u then

this is because S U {«} is an independent set in G\ and consequently So U

S U {w} induces in G' a subgraph of the form of a subgraph of the graph

N in Lemma 3.10. Hence, by Lemma 3.10, u is output by the algorithm

GREEDY(tt).

40

By induction, we obtain that if S is a set of vertices output by the algo

rithm GREEDY(independent set) on input (G, P, s, t) then So U S is output

by the algorithm GREEDY(7r) on input (G ', P ', s', t1), and conversely. Hence,

we have a reduction from P to Q, and this reduction can clearly be completed

using logspace. □

As Miyano did in [29], we can now remove the reliance in Theorem 3.7

that 7r is satisfied by all sets of independent edges. In order to do so, we will

use Ramsey’s Theorem [35].

T h e o rem 3.11 (R a m se y ’s T h e o rem) L e tt ,q andr be given positive inte

gers such that q > r. Then there exists a number m, whose value depends on

t , r, q, with the property that i f the r-subsets (subsets of r elements) of any set

S o fn > m elements are partitioned into t disjoint components A\, A 2, . . . , A t

then there is a q-subset of S all of whose r-subsets belong to Ai, for some i.

Let V be the set of vertices of a graph G , let t = 2 and let r = 2 . Define

A\ to be the set of 2 -subsets of V corresponding to the edges of G\ and let A 2

be all other 2 -subsets of V. T hat is, A\ corresponds to the set of edges of G

and A 2 to the set of non-edges. Applying Theorem 3.11 yields the following

[!] •

C o ro lla ry 3.12 Given any positive integer q, there is a positive integer m,

depending on q, such that every graph with at least m vertices contains either

a clique or an independent set of size q.

We can now prove the following lemma, also used in the proof of Theorem

4 in [27].

41

L e m m a 3.13 Any graph property 7r that is non-trivial on a class of graphs

C and hereditary is either satisfied by all independent sets of vertices or by

all cliques.

P ro o f Let q be any positive integer. By Corollary 3.12, there exists a

positive integer m such th a t any graph with at least m vertices contains

either a clique or an independent set of size q. As property 7r is non-trivial

on the class of graphs C, there must be a graph G in C with at least m vertices

satisfying 7r. As 7r is hereditary, it is satisfied by either every clique of size

at most q or by every independent set of size at most q. This holds for any

q, therefore the result follows. □

We can now prove the following two corollaries.

C o ro lla ry 3.14 Let n be a polynomial time testable, hereditary graph prop

erty non-trivial on planar bipartite graphs. The problem GREEDY [partial

ordering, planar bipartite, ir) is complete for N P .

P ro o f For every n , there exists a number b(n) (take for example b(n) = 2n)

such tha t all planar bipartite graphs with b(n) or more nodes contain an

independent set of n nodes. As 7r is non-trivial on planar bipartite graphs,

and hereditary, it follows th a t all independent sets of nodes satisfy 7r. The

corollary now follows by Theorem 3.7. □

C o ro lla ry 3.15 Let n be a polynomial time testable, hereditary graph prop

erty non-trivial on undirected graphs. The problem GREEDY (partial order

ing, undirected graphs, 7r) is complete for N P .

42

P ro o f If property n is satisfied by all independent sets of vertices then the

result follows using the techniques in the proof of Theorem 3.7. If this is not

the case then for any hereditary property 7r, non-trivial on undirected graphs,

we define the complementary property W as follows: a graph G satisfies 7f if,

and only if, its complement G satisfies 7r. Clearly, the property 7f is heredi

tary and non-trivial on undirected graphs, as the class of undirected graphs is

closed under complementation. As 7r is not satisfied by all independent sets

then, by Lemma 3.13, 7r is satisfied by all cliques; and therefore 7f is satisfied

by all independent sets, because the complement of a clique is an independent

set. As the problems GREEDY(partial ordering, undirected graphs, ir) and

GREEDY(partial ordering, undirected graphs, 7f) are logspace-equivalent, it

is possible to prove our result by using the same techniques used in the proof

of Theorem 3.7 (i.e., prove the theorem for GREEDY(partial ordering, undi

rected graphs, 7f) and then reduce to GREEDY(partial ordering, undirected

graphs, 7r) by the map (G , P, s, v) —> (G , P,s ,v)). □

3.5 D irected graphs

Having considered properties on undirected graphs, we will now examine the

problem GREEDY(partial ordering, C, 7r) when we take C to be the class of

directed graphs. As we shall see, this problem remains NP-complete. How

ever, before stating the theorem, we will give some graph theoretic definitions

that will be used during the proof.

A complete symmetric (CS) digraph is a directed graph D = (V , E) such

43

tha t for any pair of vertices V\, V2 , where V\ ^ V2 , (v\,V2) G E and (V2 , Ui) G

E. A complete antisymmetric transitive (CAT) digraph is a digraph D =

(V, E), where V = {1, . . . , n} and is such that for all 1 < i < j < n , (i , j) G E

but (j, i) 0 E. A digraph G is connected if the underlying undirected graph

is. A cut-point of a connected digraph G is a vertex c such that its removal

(along with its incident edges) from G results in a digraph with at least 2

connected components. If a connected digraph does not have any cut-points

then it is biconnected. These definitions will apply to our instance digraph

G: our partial ordering P remains an acyclic directed graph.

T h e o rem 3.16 Let n be a polynomial time testable, hereditary, non-trivial

property on directed graphs. The problem GREEDY (partial ordering, di

rected graphs, 1r) is complete for N P .

P ro o f Ramsey’s Theorem is widely applicable. If V is the set of vertices

of a directed graph D = (V, E), and we assume that the vertices are labelled

U\,U2 , . . . ,u n, where n is the size of V, we can partition the 2-subsets of V

in 4 components A \ , A 2, A 3 and A 4 as follows:

A\ = {{ui,Uj} : (ui,Uj), (Uj,Ui) £ E }

A 2 = {{uf, Uj} : (Ui, uj), (u j , Ui) G E }

A 3 = {{Ui, uj] : (Ui, uj) G E , (uj, u{) £ E , i < j }

A 4 = {{ui, uj} : (Ui, Uj) £ E, (Uj, G E , i < j }

Any subgraph of D induced by a subset Si of V, such that all the 2-

subsets of Si are in A\ is an independent set. Any subgraph of D induced

by a subset S 2 of V, such th a t all the 2-subsets of S 2 are in A 2, is a CS,

as there is an edge between any two vertices in 52- It is also not difficult

44

to see th a t any subgraph of D induced by a subset S 3 of V, such that all

the 2-subsets of S 3 are in A 3 , is a CAT digraph; and so is any subgraph

of D induced by a subset of V such tha t all the 2-subsets of the set is in

A 4 (after an appropriate relabelling of the vertices). It follows by Ramsey’s

Theorem th a t for any positive integer q > 2, there is a positive integer m,

whose value depends on q, such that every directed graph with at least m

vertices contains either a) an independent set, or b) a complete symmetric

digraph, or c) a complete antisymmetric transitive digraph of q vertices.

Since property 7r is hereditary and non-trivial on the class of directed

graphs, it follows th a t 7r must be satisfied by a) all independent sets, b)

by all CS digraphs or c) by all CAT digraphs. We will now show that the

theorem can be proved in all 3 cases.

Case a) Property 7r is satisfied by all independent sets of vertices, therefore

the technique used in the case of undirected graphs, i.e., the technique used

in the proof of Theorem 3.7, can be used here as well. We reduce from

the problem GREEDY(partial ordering, undirected graphs, independent set).

The definition of a- and /^-sequences of directed graphs follows immediately

from the definition of a- and /^-sequences relative to undirected graphs. The

only difference in the proof derives from the fact that the forbidden graph for

property n is now a directed graph, and therefore applying the construction

explained in the theorem results in a digraph.

Case b) For any hereditary property 7r, non-trivial on directed graphs, we

will consider the complementary property W. Clearly, the property W is non

trivial on directed graphs, as the class of directed graphs is closed under

45

complementation and hereditary. If 7r is satisfied by all complete symmetric

graphs then W is satisfied by all independent sets, because the complement of

a CS digraph is an independent set. As the problems GREEDY(partial or

dering, directed graphs, 7r) and GREEDY(partial ordering, directed graphs,

7f) are logspace-equivalent, it is possible to prove the theorem by using the

same technique used in Case a).

Case c) Using the same strategy seen in Theorem 7 of [29], we will assume

that 7r is satisfied by all CAT digraphs but not by all independent sets. If

7r were satisfied by all independent sets then we could prove the theorem as

in Case a). Let s be the largest integer such that any graph consisting of s

independent vertices iq , U2 , • • •, us and a CAT digraph of any size satisfies 7r,

but there exists a CAT digraph C such that the directed graph consisting of

C and s + 1 independent vertices violates 7r. The existence of s derives from

the fact th a t 7r is not satisfied by all independent sets.

To prove the theorem, we will reduce from GREEDY(partial ordering,

undirected graphs, independent set). From an instance (G, P, 1, n) of this

problem, where G — (V ,E) ,P = (V,D) and V = {1, 2 , . . . , n}, we derive

an instance (G', P ', iq, Vk,n) of GREEDY(partial ordering, directed graphs,

7r). Let k be the number of vertices in G. Graph G' — (U', E') is a directed

graph, and its vertex set is composed of s independent nodes, iq, 7/2 , . . . , us,

plus k copies of V . The zth copy of V is denoted U, and its vertices are

labelled viti , vi)2, . . . , vi>n.

The edge set E' of G' is defined as follows:

E ' = {(vP,ji vq,j) ’ 1 < P < q < k, l < j < n }

46

> •
n3

V 2,1

H'

Figure 3.5: The partial ordering.

u U : {*>■?}
p = 1

U{(wp,*,%i) : 1 < P < ? < k, 1 < i , j < n, {«, j } 0 £ } .

The construction of G' is such that for every i , where 1 < i < n, vertices

V i ^2 ,1 , . . . , v* * form a CAT of size &.

The ordering on the vertices of G' is given by P' = (V7, /) '), where

D = {('Uj, . 1 < i < s 1}C {(w ,̂ Ui}i) }

V(i+i)j : 1 < i < k - 1,1 < j < n} U {(vk)i, vhj) : (t, j) € D}

See Figure 3.5 for an example.

The ordering P' begins with a linear ordering on the vertices Ui, W2 , .. •, us

47

and u1(1, V2 ti , . . . ,Vk,\- The first vertex in this initial segment is u\ and the

last one is Vk,\. Let Lo denote the set consisting of these vertices. This linear

ordering is concatenated to a partial ordering on the remaining vertices of P'

by joining Vk,i to v \ j , where j is any vertex such that (1,J) is an edge in P.

We will now show by induction tha t a vertex b G V is chosen by a run of

the algorithm GREEDY(independent set) on instance (G, P, 1) if, and only

if, vertices v \ ,*>, u2)6, . . . , Vk,b are chosen by a run of GREEDY(7r) on instance

(G " , P ' , U : l).

The first vertex examined by every run of GREEDY (independent set) on

instance (G, P, 1) is vertex 1, therefore such a vertex will always be chosen.

By construction the subgraph of G' induced by ^1 ,1 , ^2 ,1 , • • • ,Vk, 1 consists of

a CAT of k vertices. It follows that the subgraph induced by the vertices of

Lo consists of s independent vertices and a CAT of size k : and therefore it

satisfies 7r. As every run of GREEDY(-7r) on instance (G ',P ',U i) starts by

examining the vertices in L o , vertices u2)i , . . . , will always be chosen.

This proves the base case of the following induction hypothesis.

Suppose, as our induction hypothesis, that:

• the algorithm GREEDY(independent set) on input (G, P, 1) has so far

chosen the set of vertices / , and vertex b is the next vertex to be

examined;

• the algorithm GREEDY(7r) on instance (G', P',Wi) has so far output

the set of vertices {vij, v2,u . . . , vkj : I G 1} U {ui, u2, . . . , us}, and

the next vertex to be examined is V\^. As the vertices in I form an

independent set of G, the subgraph of G' induced by {i^j, v2,u • • •»vk,i •

48

/ G 1} forms a CAT digraph; therefore the subgraph of G' induced by

{^1 v2,h .. •, vkj : I e 1} U {ui, u2, . . . us} satisfies 7r.

When GREEDY(independent set) examines vertex b, if for some vertex

I G / , (/, b) G E, then the subgraph induced by /U {6 } is not an independent

set, and vertex b is not chosen.

The partial ordering on the vertices of G' is such that, for any two given

vertices % and j in P , (i , j) e D if, and only if, in P' there is a path from

V\,i to th a t visits vertices u2)i, v3 ^ , . . . , vk)i and v ij , v2 j , . . . , vk- i j (in this

order).

For some vertex / G / , (/ , 6) G E\ therefore in G', by construction, there

will not be an edge between vpj and vPtb, for 1 < p < k. Choosing any vertex

from v2 jb, . . . , vk,b} would induce a subgraph of G' that contains s + 1

independent vertices and a CAT of size A;, and therefore violates it. It follows

that none of the vertices {ui^, v2̂ , . •. , vk,b} will be chosen by GREEDY(7t).

If vertex b is chosen by GREEDY(independent set) then it follows that

for every vertex / G / , (/, b) 0 E. The subgraph of G' induced by the set of

vertices {v x̂ v2 j , . . . , vkj : I G 1} U {ui>6, v2>b, . . . , vk)b} forms a CAT digraph;

therefore vertices v itb, v2̂ , . . . , vk,b will be chosen by GREEDY(7r) (as the

other vertices chosen so far form an independent set of size s).

Instance (G, P, 1, n) is a yes-instance of GREEDY(partial ordering, undi

rected graphs, independent set) if, and only if, vertex n appears in one of

the subgraphs returned by GREEDY(independent set) on instance (G, P, 1).

This is the case if, and only if, for some run of GREEDY(7r) on instance

(G', P ', u\), vertices {ui)n, u2,n? • • •, vk,n} appear in a subgraph of G' satisfying

49

7r. Instance (G 7, P 7, ui, Vk,n) is a yes-instance of GREEDY(partial ordering,

directed graphs, ir) if, and only if, vertex Vk,n appears in a solution returned

by the algorithm. It follows tha t (G , P , l , n) is a yes-instance if, and only

if, (G ',P ',U i,Vktn) is a yes-instance. As the construction of (G 7, P 7, Mi, Vk,n)

from (G , P , 1, n) can be completed using logspace, the result follows. □

3.6 Conclusion

In this chapter we proved several general results concerning the complexity

of the problem GREEDY(partial ordering, C, 7r) when 7r is a property hered

itary, non-trivial on C and testable in deterministic polynomial time. When

the class of graphs C under consideration is the class of undirected graphs,

we proved in Corollary 3.14 tha t we can impose additional restrictions to our

instance graphs so tha t the problem remains NP-complete. In particular,

we proved th a t the problem GREEDY (partial ordering, planar bipartite, n)

is complete for N P . It is of interest to consider what restrictions we can

impose on the maximum degree of the vertices of a graph G in an instance

of GREEDY(partial ordering, undirected graphs, 7r) without changing the

complexity of the problem. Of course these restrictions will vary according

to the property 7r, and we cannot therefore state a general result; but we

can examine specific properties and try to obtain the boundary between P

and N P for each one of them. We will focus on such problems in the next

chapter.

50

C hapter 4

B oundaries betw een P and N P

4.1 Introduction

In this chapter we will examine the problem GREEDY(partial ordering, C,

7r) for some specific properties 7r which are hereditary, testable in polynomial

time and non-trivial on the class of undirected graphs. For every one of these

properties we know from Corollary 3.15 that the problem is NP-complete.

We will now establish some restrictions that we need to impose on the class

of graphs C so that the problem becomes solvable in polynomial time. Like

Miyano did in [29], we will consider restrictions on the maximum degree of

the vertices of our instance graph.

For each of these properties we will show that by applying certain re

strictions the problem still remains NP-complete, and we will show how the

problem can be solved in deterministic polynomial time if the restrictions

imposed become more severe.

51

In order to show tha t the problem GREEDY(partial ordering, C, 7r) is

N P-com plete for a specific C and a particular 7r, we will always reduce from

the problem 3-SAT. As all reductions follow the same pattern, we will de

scribe the reduction scheme for an unspecified property 7r that satisfies the

aforementioned requirements and then, for each considered property, we will

only show the part of the reduction that is particular to n. We will there

fore use a strategy similar to the one used by Miyano, with the difference

that he reduces from different versions, depending on the property 7r, of the

circuit value problem and only deals with linear orders (for more details see

[29]). The reader might wonder why we did not reduce from the problem

GREEDY(partial ordering, C, n) itself, instead of taking the problem 3-SAT

as our base case. The reason is tha t by using such a problem we have man

aged to devise a reduction scheme tha t is applicable to all the properties

considered in this chapter, and which might be used in the future for other

properties not considered here.

4.2 T he reduction schem e

We will reduce from the known NP-com plete problem 3-SAT, whose in

stances are: a set of literals X = {xi, -irci, x 2, ->x 2 , . . . , x n, ~>xn} and a se

quence of clauses C = (ci, C2 , • • ., cm) where each clause c* is a subset of X

containing 3 elements. Yes-instances of 3-SAT are instances such that there

is a tru th assignment on the Boolean variables x\, . • •, x n that satisfies all

the clauses in C, i.e., a subset X ' C X such that \X' Pi | = 1, for

1 < i < n, and such th a t \X ' D Cj\ > 1, for 1 < j < m.

52

We refer to the literals appearing in clause c* as /*,i, /*,2 » ^* ,3 and to their

negations as lit 1 , /i)2, h,3 - So, for example, if clause c3 is (- 1x 1 V x 2 V x3) then

3̂ ,1 = “^ i , 3̂ ,2 = and / 3)3 = x 3 while /3)i = xi, Z3>2 = -*x2 and / 3)3 = -»a:3

(note th a t it might be the case that /3)i = Z3)3, for example).

From an instance (C, X) of 3-SAT we shall derive an instance (G , P, s, t) of

GREEDY (partial ordering, C, t t) where: C is our chosen class of graphs and G

is an undirected graph belonging to C; P is a partial ordering on the vertices

of G\ and s and t are two distinguished vertices. W hat is more, (C, X) will be

a yes-instance if, and only if, (G, P, s, t) is a yes-instance. The construction

will be such tha t it can be completed using logspace. All instance graphs

G obtained in the reductions will have the same underlying structure. They

are built using blocks, whose form depends on the considered property 7r,

joined according to a tem plate tha t we will define below. Essentially, the

template consists of a skeleton containing ‘empty spaces’ that will be filled

by inserting gadgets particular to each property t t . There are two types of

gadgets and we will call them, respectively, O and A: these gadgets will be

given for each property t t in the corresponding section.

Gadget O contains, regardless of the property 7r, 7 vertices which are

labelled, respectively, o , l i , l2,ls and / i , /2, /3. It also contains a number of

vertices labelled 6 1 , b2, . . . , 6 ^, where A; is a number that depends on t t . We

will refer to such a set of vertices as b-vertices. The gadget A contains a

vertex labelled a and two vertices labelled, respectively, U\ and u2. As in the

case of O, such vertices do not depend on t t . The gadget A also contains a

number of vertices labelled, respectively, ei, e2, . . . , er , where r is determined

by n. Such vertices will be called e-vertices. The gadgets are used to emulate

53

the structure of a Boolean formula: O represents a clause and A represents

the conjunction of two clauses.

The graph G is constructed from C as follows. For each clause c* we add

to G a copy of gadget O, and we call such a copy Oi (all copies are disjoint).

It follows th a t the graph will contain m copies of O, where m is the number

of clauses in C. We will label the vertices of Oi in the following way. Vertex

o is labelled oz. Vertices Z1? l2 ,I3 are labelled as Ẑ i, ^,2 , h, 3 respectively, where

h ,h h ,2 and /*)3 are the literals appearing in clause i. We will call vertices

of the form literal-vertices. We will label vertices h , h , h as ^,1 , ^ 2 , h ,3

respectively; tha t is, with the negations of the literals appearing in clause i.

We will refer to vertices of the form 1 - - as negated-vertices. Note tha t there

might be more than one vertex in G with the same label. All b-vertices in

O , that are of the form bj, will now be labelled as 6^-, depending on which

copy of Oi they lie in.

The graph G also contains (m — 1) disjoint copies of gadget A: these

copies will be referred to as A\, A 2 , . . . , A m- 1 . In each copy Ai we will label

vertex a as a*. We will also label the e-vertices in each copy of A as we did

in the case of the 6-vertices; tha t is, every node labelled ej will be labelled

depending upon which copy of Ai it lies in.

To construct our tem plate we then proceed as follows. In copy A\ we will

identify vertex u\ with Oi from 0 1 and U2 with vertex 0 2 from 0 2- In every

other gadget A*, where 2 < i < m — 1, we will identify U\ with vertex a*_ 1

from A ^ 1 and identify vertex u 2 with oi+1 from Oi+\.

The construction is concluded by adding an independent vertex named

54

O,

m - 3 •m -2

m-1

'm , 1 « ,3 ,

om

Figure 4.1: The structure of G.

(and corresponding to) s, and by renaming the vertex am_i as t. In Figure

4.1 we show an illustration of the structure of G. In the figure we represent

each copy of graph Oi as an oval, and each copy of Ai as a rectangle (note

that e- vertices and b-vertices are not shown to avoid cluttering the figure). To

obtain the finished graph it is only necessary to insert in place of the ovals

and rectangles the gadgets O and A that are relevant to each considered

property.

55

The partial ordering P is defined as follows. We will start by ordering

the Boolean variables { x i , x 2, ■■•>#«} lexicographically in the obvious way,

tha t is:

Xi < x 2 < . . . < x n

and denote such an ordering as <x. We then divide literal-vertices and

negated-vertices according to the associated literals. All vertices labelled

with literals of the form x_ will be called positive-vertices, while all labelled

with an associated literal of the form -vr_ will be called negative-vertices.

We can now order all positive-vertices according to <x. So if a vertex gi is

less than a vertex g2 in this ordering then the associated literals are such

that the one associated with g i is less than or equal to the literal asso

ciated with g2. We proceed analogously to order the negative-vertices by

taking complements. By construction of G, for every positive-vertex there is

a corresponding negative-vertex, and vice versa, and the two corresponding

vertices are in the same position in both orderings. By this we mean that

if a positive-vertex is, say, the third in the ordering of the positive-vertices

then the negative-vertex corresponding to it will be the third in the order

ing of the negative-vertices. We will denote the ordered positive-vertices as

Ai, A2 , . . . , Afc, and the ordered negative-vertices as pi, p2, • • •, fJ>k-

The partial ordering P begins as follows. The vertex s is less than Ai and

P i . We then have the orderings Ai < A2 < . . . < Afc and p i < p 2 < . . . < p k .

For any index z e { 1 , 2 , . . . , / c — 1}, if the associated literal of A * is different

from the literal associated with Aj+i then we also have A; < p i + i and p i <

Aj+i. The partial ordering continues with a linear ordering on the vertices

56

Figure 4.2: The partial ordering.

of each copy of A and O which are not literal- or negated-vertices. Such an

ordering is defined as follows:

&i,i < ^1 ,2 < • • • < bi,k < 0 \ < 6 2 ,1 < 2̂ ,2 < • • • < 0 2 < . . . < om

° m < e l , l < e l,2 < • • • < &l,r < CLl < ^2,1 < ^2,2 < - . . < U 2 < • • • < £

Finally we define tha t both A* and /i^ are less that 6 ^ 1 . Note tha t we chose

t to be vertex am_ 1 .

The partial ordering P emulates an assignment of tru th values to the

variables x \, X2 , . . . , x n. Each path starts from vertex s and visits either

all positive-vertices labelled x\ or all negative-vertices labelled —»rz;i, then it

visits either all positive-vertices labelled x<i or all negative-vertices labelled

- 1X2 , and so on until vertex 6 ^ 1 is reached. It is important to note that for

any pair of vertices {a:*, exactly one of the components will appear on

the path, thus ensuring th a t the corresponding tru th assignment is valid.

The remaining vertices of P induce a linear ordering on the other vertices of

G. An example of the structure of P is shown in Figure 4.2.

We will now explain the mechanism of the reduction. By construction

57

every execution of GREEDY (t t) on instance (G, P, s) starts by choosing a

path in the partial ordering on the vertices of G corresponding to a truth

assignment on the variables in X . A variable X{ in X is assigned the value

true if a vertex labelled Xi appears on the path, and it is assigned the value

false if a vertex labelled ->Xi appears on the path.

For each property t t , the graph G obtained after inserting in our template

the copies of the appropriate gadgets A and O has the characteristic (and this

will be clearly visible when we will show the gadgets in the relevant sections)

that the subgraph of G induced by the literal-vertices and by the negated-

vertices is an independent set. Note that all properties t t with which we will

use this reduction scheme are satisfied by all independent sets of vertices.

As every execution of GREEDY (t t) on instance (G, P, s) starts by visiting

s and a collection of literal and negated-vertices, and t t is satisfied by all

independent sets of vertices, it follows that all such vertices will be selected.

By construction, in P every path continues by visiting all b-vertices in Oi,

and then vertex 0 \. For all reductions, the gadget O is such that the set of

vertices chosen by GREEDY (t t) on instance (G, P, s) will contain vertex 0 \

if, and only if, at least one of {liti, h,2 , 1̂ ,3 } has been chosen. If this was not

the case then choosing vertex oi would induce a subgraph of G that violates

property t t . This is achieved by using gadgets that consist of forbidden graphs

for the property “glued” together. For example, in the case of property 3-

cycle free the gadgets consist of collections of triangles (see Figure 4.3 on

page 62). So, if vertex 0 \ is chosen then at least one of the literals appearing

in clause C\ in C evaluates to true in the assignment corresponding to the

chosen path. The same process is repeated for all vertices in O2 , 0 3 , . . . , Om.

58

That is, vertex o* is chosen if, and only if, at least one of {Z î, ^2, 4,3} appears

on the path.

When all vertices in Om have been examined the algorithm proceeds by

examining the vertices in A\ \{ o i, 02}- If both 0\ and 02 have previously been

chosen then vertex a\ will be selected, else it will be rejected. This is because

of the construction of the gadget A. If one (or both) of the vertices 01 and

02 were previously rejected then the algorithm would proceed by choosing

a set of vertices which, with vertex ai, form a subgraph of G that violates

property t t . It follows th a t vertex a \ will be rejected. The execution then

proceeds by visiting the vertices in A 2 \ {ai, 03}. If both a\ and 03 have been

chosen then vertex a2 will be selected, else a2 will be rejected. So vertex a2

is chosen if, and only if, vertices oi, o2 and 03 have been chosen.

The process is repeated until the algorithm examines the vertices of

A m- 1 \ {am_2,om}. If both vertices am_2 and om have been selected then

vertex am_ 1, which has been designated vertex t , will be chosen, else it will

be rejected. This will only happen if vertices 01, o2, . . . , om have previously

been selected. It is straightforward to notice that if vertex t is chosen then the

tru th assignment corresponding to the path chosen in P will satisfy (C, X).

Conversely, if there exists a satisfying tru th assignment for (C ,X) then the

corresponding path in P will induce an execution of GREEDY(7r) on instance

(G, P, s) tha t results in vertex t being chosen. This means that (G, P, s, t) is

a yes-instance of GREEDY (t t) if, and only if, there exists a tru th assignment

satisfying C. Note th a t for all the properties considered, the construction

can be completed using logspace.

59

No. Property Restriction Degree

(1) 3-cycle free planar 4

(2) k-cycle free k > 5 planar 3

(3) bipartite planar 3

(4) planar bipartite 3

(5) outerplanar planar and bipartite 3

(6) edge graph planar and bipartite 3

(7) interval graph planar and bipartite 3

(8) acyclic planar and bipartite 3

(9) chordal planar and bipartite 3

(10) 4-cycle free planar and bipartite 4

(11) maximum degree 1 planar and bipartite 3

(12) independent set planar and bipartite 3

Table 4.1: NP-complete problems

In the following section we will give the gadgets O and A for the consid

ered properties, and will explain why vertices Oi and in each copy of the

gadgets are chosen or rejected according to the preceding explanation.

4 .3 O p t i m a l d e g r e e b o u n d s

We will now give the optimal degree bound for some specific properties 7r.

For each considered property we will exhibit the gadgets O and A and will

illustrate the details of the proof which were previously omitted. Note that

60

by construction of our linear ordering P, for every gadget Oi exactly three

of the vertices in {Uti, k,3, h,\, h,2, ^,3} appear on every path from vertex

s to vertex t\ and note also that such vertices will be examined before the

corresponding b-vertices and o*. Our results are summarised in Table 4.1,

numbers 1-9. The column Property indicates the property 7r under consider

ation. The columns Restriction and Degree, together, characterise the class

C of undirected graphs considered (the ordering is always a partial order

ing). So, for example, the first row of the table indicates that the problem

GREEDY(partial ordering, planar with maximum degree 4, 3-cycle free) is

NP-complete. We will discuss the various problems by following the order

of the table 4.1; th a t is, we will begin with the property 3-cycle free.

4.3.1 3-cycle free

L em m a 4.1 The problem GREEDY(partial ordering, planar with maximum

degree 4, 3-cycle free) is N P -complete.

P ro o f We explained in the reduction scheme that the graph G is con

structed from C by connecting m copies of the gadget O and m — 1 copies of

gadget A. When our property 7r is 3-cycle free (a graph is /c-cycle free if it

does not contain a cycle of length k), the gadgets are as in Figure 4.3, where

we show the first copies of the graphs, 0\ and A\.

We will now describe an execution of the algorithm GREEDY(3-cycle

free) on an instance (G ,P ,s) . We will assume that some positive- and

negative-vertices have been chosen and that the next vertex on the path

is bi \. We will show th a t if at least one of /i,i,/i,2, 1̂,3 has been chosen so

61

Figure 4.3: 0\ and A\ for property 3-cycle free.

far by the algorithm then this will result in vertex 0\ being chosen. If all

vertices in /i)2, ^3} are chosen then vertex 0\ will be rejected. Note that,

by construction of our partial ordering P, < &i)2 < . . . < 6^9 < o\.

In the O gadget 01, if Zi;i is chosen then biti will be chosen, but &i)2 will

be rejected. This means th a t vertex b\)5 will be chosen, regardless of whether

bit4 is selected or not. Vertex b ij will then be rejected and vertex 0\ will

therefore be chosen. If Zi)2 is chosen then vertex bi^ will be rejected and

therefore b\$ will be chosen, resulting in 0\ being chosen. If Zi(i and Zi)2 are

not chosen, but vertex l\$ is, then this means that vertex will be chosen,

but b\ t9 will be rejected, and therefore 0\ will be chosen.

Conversely, if none of Z^i, Zi)2, Zi;3 is chosen then Z^i, Zi)2, Z1)3 are, and there

fore both vertices &i)2 and 6^4 will be chosen; this means that 6^5 will be

rejected. It follows th a t b \j will be chosen. As has not been chosen,

vertex Z?i)9 will be chosen, which implies that 0\ is rejected. Although the

62

example is given on Oi, this clearly holds for all vertices o*. That is, if at

least one of i, ^2,^,3 is chosen then Oi will also be chosen, while if all of

h,hh,2ih,3 are chosen then o* will be rejected.

In the case of gadget Ai, if Oi and 02 are chosen then vertex e^i will be

rejected, which in turn implies tha t vertex ai will be chosen. If at most one of

Oi and 02 is chosen then vertex e^i will be chosen, which means that a\ will

be rejected. The execution continues by visiting all vertices in A 2 \ {03,01}-

If both 03 and ai were previously chosen then vertex a2 will also be chosen,

otherwise it will be rejected. This holds for all a*, where 2 < i < m — 1. As

vertex am_i is our vertex t , it will be chosen if, and only if, all vertices Oj,

where 1 < i < m, have been chosen. This, as was explained in the description

of the template, means th a t the tru th assignment corresponding to the chosen

path in P satisfies all the clauses in C . Vice versa, similar reasoning yields

that if a tru th assignment satisfying all the clauses in C exists then the

corresponding path will be chosen by an execution of GREEDY (3-cycle free)

on instance (G, P , s); and the output of the execution will contain vertex t.

The only vertices th a t connect copies of O and A gadgets are of the form

o_ and a_; it is therefore clear tha t the graph G is planar and every vertex

has degree at most 4 . The result follows. □

We will now show th a t if we consider graphs with degree at most 3, the

problem GREEDY(partial ordering, maximum degree 3, 3-cycle free) can be

solved in polynomial time. Let us consider an instance (G, P, s, t) of the

problem GREEDY(partial ordering, maximum degree 3, 3-cycle free). For

any 3 vertices th a t induce a triangle in G , and that appear on a path in P ,

63

in a particular execution of GREEDY(3-cycle free) only the first 2 vertices

appearing on the path will be chosen. Also, any 3 vertices that do not induce

a triangle in G and appear on a path in P will all be chosen.

We will often need to check if a vertex is reachable from another in a

directed graph P. It is well known that this problem is solvable in polynomial

time [31]. We also say th a t vertex t is reachable in P \ 5 , where S is a set

of vertices, when we mean tha t there is a path in P from s that reaches our

chosen vertex without encountering any of the nodes in S on the path. If such

a path exists then one of the executions of the algorithm GREEDY(3-cycle

free) will choose it.

In any graph of degree at most 3, any vertex can be in at most 3 cycles

of length 3. We therefore only need to examine a limited number of cases

concerning vertex t and its neighbours. If degG(t) = 1 the problem is trivial

(t is always output). So we only need to focus on the 2 remaining possibilities,

that is, degG(t) = 2 and degG(t) = 3. All cases refer to Figure 4.4. Case 1:

degoM = 2-

(a) As vertex t does not appear on any triangle, it will be chosen by any

execution of the algorithm GREEDY(3-cycle free) such that t appears

on the path.

(b) Vertex t will be chosen if, and only if, there exists at least one path

from s to t in P \ {1} or P \ {2}.

(c) If vertex t is reachable from s in P \ {1} or P \ {2} then it will be

chosen. If vertex 1 or vertex 2 are reachable from vertex 3, for at least

64

(a)

(e)

C a se 1

1

< 1 r < I >
(b)

2

(c)

C a se 2

1

^ 2

3

(1) (n)

(h)

4

(o)

Figure 4.4: GREEDY(3-cycle free) for maximum degree 3

one execution of GREEDY(3-cycle free), vertex 3 will be chosen and at

most one of 1, 2 will be selected. This means that t will be chosen as

well. If none of these two conditions occurs, vertex t will not be chosen.

Case 2: degG(t) = 3 .

(d) Vertex t will be chosen by any execution of GREEDY(3-cycle free) such

that t appears on the path.

65

(e) Vertex t will be chosen if, and only if, there exists at least one path

from s to t in P \ {1} or P \ {2}.

(/) Vertex t will be chosen if, and only if, there exists at least one path

from s to t in P \ {2} or P \ {3}.

(g) Vertex t will be chosen if, and only if, there exists at least one path

from s to t in P \ {1} or P \ {3}.

(h) Vertex t will be chosen if, and only if, there exists at least one path

from s to t in P \ {1} or P \ {2, 3}.

(z) Vertex t will be chosen if, and only if, there exists at least one path

from s to t in P \ {3} or P \ {1, 2}.

(/) Vertex t will be chosen if, and only if, there exists at least one path

from s to t in P \ {2} or P \ {1, 3}.

(m) Vertex t will be chosen if there exists at least one path from s to t in

P \ { 1, 2} or P \ {1, 3} or P \ {2, 3}.

(n) If vertex t is reachable from s in P \ { 1} or P \ { 2} then it will be

chosen. If vertex 1 or vertex 2 are reachable from vertex 4, for at least

one execution of GREEDY(3-cycle free), vertex 4 will be chosen and at

most one of 1, 2 will be selected. This means that t will be chosen as

well. If none of these two conditions occurs, vertex t will be rejected.

(o) If vertex t is reachable from s in P \ {2} or P \ {3} then it will be

chosen. If vertex 2 or vertex 3 are reachable from vertex 4, for at least

one execution of GREEDY(3-cycle free), vertex 4 will be chosen and at

66

most one of 2, 3 will be selected. This means that t will be chosen as

well. If none of these two conditions occurs, vertex t will be rejected.

It is clear tha t the structure of the connected component containing t , as

shown in Figure 4.4, can be found in polynomial time, therefore the prob

lem GREEDY(partial ordering, maximum degree 3, 3-cycle free) can also be

solved in polynomial time.

4.3.2 k-cyc\e free, k > 5.

Lem m a 4.2 The problem GREEDY(partial ordering, planar with maximum

degree 3, k-cycle free) is N P -complete.

P ro o f We describe the O and A gadgets with reference to Figure 4.5 where

we take A; to be 5. The size of the gadgets increases according to the value

of k , but the structure remains the same. The only thing that changes is the

length of the cycles. So, for example, if we take A; to be 6 then the graph

is composed of a collection of hexagons instead of a collection of pentagons.

Note that the gadgets A\ and Ai, for 2 < i < m — 1, are connected to the

skeleton slightly differently. In A\ e-vertex e+3 is joined to 6-vertex 6+13

from 01, and e-vertex e+6 is joined to 6-vertex 62)13 from 0 2. For all other A

gadgets A{, for 2 < i < m — 1, vertex is adjacent to vertex e;_ 1^4 from

Ai_ 1, and vertex is adjacent to 6-vertex 61+1,13 from O^+i.

In 0\, if vertex /+1 is chosen then 6+1,61^ and 6+3 are also chosen, while

6+4 is rejected (if this was not the case then the induced subgraph would

contain a cycle of length 5). This means that 6+9 will be selected. Vertices

67

Ox

1,13

,1 ha
1,11

1,10

1,12

A\ Ai

e\,\ ef,i

£ i-l,14'1,13

1,12 '1.101,10

i+l
'1+1,13

Figure 4.5: O i, A\ and Ai for property 5-cycle free.

hi# and b \ j are always chosen, and bi^o will be selected. Vertex &i>n will be

rejected and this results in vertex oi being chosen.

If vertex is chosen, 61,5, &i,6 and b \j are chosen while vertex bi$ is

rejected, and therefore 6^9 is chosen. This, as explained before, results in 0\

being chosen. If /i)3 is chosen then bi^2 is rejected, and therefore o\ will be

68

chosen.

If none of /i,i, /i,2, 1̂,3 are chosen then both 61,4 and 61,3 are selected, and

therefore 61,9 is rejected. This results in vertices 61,i0 and 61,11 both being

chosen. As Zi,3 was not selected then vertex 61,12 is chosen. Vertex 61,13 is

selected and therefore oi is rejected.

When examining gadget Ai, vertices 61,13 and 62,13, that are part of 0 \

and O2, respectively, are always chosen. If vertices 01 and 02 are chosen then

vertices ei,3 and ei,6 are rejected, and this means that vertices ei,9 and ei,i9

will be chosen. Vertex ei,i2 will therefore be rejected and a\ will therefore be

chosen.

If oi is not chosen then ei,3 is selected, and ei,9 is therefore rejected. This

results in vertex ei,i2 being chosen and in a\ being rejected.

If vertex o2 is not chosen then ei,6 is chosen; this means that ei,io is

rejected and ei,i2 is chosen, resulting in ai being rejected. It follows that

ai will be chosen if, and only if, both Oi and 02 have been chosen. Note

that vertex ei,i4 is always chosen, so the same holds for all gadgets for

2 < i < m — 1. Similar reasoning results in vertex t being chosen if, and only

if, all vertices where 1 < i < m, have been chosen. Therefore t is chosen

if, and only if, the truth assignment corresponding to the chosen path in P

satisfies all the clauses in C. Vice versa, similar reasoning yields that if a

truth assignment satisfying all the clauses in C exists then the corresponding

path will be chosen by an execution of GREEDY(A;-cycle free) on instance

(G, P, s); and the output of the execution will contain vertex t. It is not

difficult to notice that the graph obtained by joining the O and A gadgets is

69

planar and has maximum degree 3. □

We will now show that the problem GREEDY (partial ordering, maximum

degree 2, /c-cycle free) is solvable in polynomial time. Note that any vertex

can be in at most one cycle in a graph G of maximum degree 2. We will

assume that vertex t is on a cycle of length k ; if this was not the case then,

as we assumed that every vertex is reachable from s in our partial order P,

t would trivially be chosen by at least one execution of the algorithm. For

every vertex x G G such that x is on the cycle containing t and x ^ t, we

can check whether t is reachable from s in P \ {x}. If for any x this is true

then for at least one execution of GREEDY(&-cycle free), vertex t will be

chosen, and (G, P, s, t) will therefore be a yes-instance. If t is not reachable

in P \ {j;}, for any x on the cycle, then every path from s to t will visit all

vertices on the cycle before reaching t, and all such vertices will be chosen. It

follows that t will be rejected by every run of the algorithm, and so (G, P, s, t)

is a no-instance of the problem.

4.3.3 B ipartite

Lem m a 4.3 The problem GREEDY(partial ordering, planar with maximum

degree 3, bipartite) is N P -complete.

P ro o f It is well known that a bipartite graph does not contain any cycles

of odd length. We will use this in our reduction to force all vertices Oj

to be chosen if, and only if, at least one of the corresponding G,i, G,25 G,3

appears on a path, and is, by construction of G, chosen by an execution of

70

GREEDY(bipartite) on instance (G , P, s). We use the same strategy to force

vertices to be chosen or rejected appropriately.

The result is proved by using the same gadgets given for the property

5-cycle free: we simply take a 5-cycle as a forbidden subgraph for the prop

erty bipartite. With reference to Figure 4.5, we will now show that, by

construction of our graph G , any set of vertices returned by an execution of

GREEDY (bipartite) is such that the induced subgraph of G does not contain

any cycles.

• In Oi, if none of Zi,i,/i,2 and Zi>3 are chosen, the algorithm will choose

vertices 61,i, 61,2, 61,3, 61,4, 61,5, 61,6, 61,7, 61,8, &i,io, 1̂,117 61,12 and 61,13. The

induced subgraph is clearly acyclic.

• If vertex Zi,i is chosen, while Zi,2 and Zi,3 are not, the algorithm will

choose vertices 61,1, 61,2, 61,3, 61,5, 61,6, 61,7, 61,8, 61,9,61,10,61,12,61,i3 and ox.

The induced subgraph is acyclic.

• If vertex Zi,2 is chosen, while Zi,i and Zi,3 are not, the algorithm will

choose vertices 61,1, 61,2, 61,3, 61,4, 61,5,61,6, 61,7, 61,9, 61,10, 61,12, 61,i3 and 01.

The induced subgraph is acyclic.

• If vertex Zi,3 is chosen, while /i,i and Zi,2 are not, the algorithm will

choose vertices 61,1, 61,2, 61,3, 61,4, 61,5,61,6, 61,7, 61,3, 61,10, 61,11, 61,i3 and 01.

The induced subgraph is acyclic.

• If vertices Zi,i and Zi,2 are chosen, while Zi,3 is not, the algorithm

will choose vertices 61,1,61,2, 61,3, 61,5,61,6,61,7,61,9,61,10,61.12,61,i3 and o\.

The induced subgraph is acyclic.

71

• If vertices /i;i and are chosen, while li# is not, the algorithm will

choose vertices b\^, 6^2, 61,3, 6^5, 61,7, b\sg, bi$, 61,10, 1̂,13 and °i- The

induced subgraph is acyclic.

• If vertices l\$ and 1̂,3 are chosen, while /ij 1 is not, the algorithm will

choose vertices bit 1,6^2, 61,3,61,4, 6 ^ 5 , 6 1 , 7 , &i,g, &i,io, 1̂,13 and o\. The

induced subgraph is acyclic.

• If vertices Ziti, Zi)2 and are chosen, the algorithm will choose vertices

1̂,1» 1̂,2, 1̂,3, 1̂,5, 1̂,6, 1̂,7, 1̂,9, 1̂,10, 1̂,13 and o x . The induced subgraph

is acyclic.

• In j4i, if vertex Oi is chosen, while 02 is not, the algorithm will choose

ei,e2,e4,es,e6,e7,eg,eg,en ,ei2,ei3 and ei4. The induced subgraph is

acyclic.

• If vertex 02 is chosen, while 0\ is not then the algorithm will choose

ei, e2, e3, e4, es, e7, eg, eio, en, ei2 and ei3 and ei4. The induced subgraph

is acyclic.

• If both vertex 01 and 02 are chosen then the algorithm will subsequently

choose ei, e2, e4, e5, e7, eg, eg, eio, en, ei3, ei4 and a\. Again the induced

subgraph is acyclic.

Similar reasoning shows that vertex t will be chosen if, and only if, all

vertices Oi, where 1 < i < m, have been chosen. Therefore t is chosen if, and

only if, the truth assignment corresponding to the chosen path in P satisfies

all the clauses in C. Vice versa, if a truth assignment satisfying all the clauses

72

in G exists then the corresponding path will be chosen by an execution of

GREEDY(bipartite) on instance (G, P, s); and the output of the execution

will contain vertex t. The result follows. □

To show that the problem GREEDY(partial ordering, maximum degree

2, bipartite) is solvable in polynomial time, we simply point out that, as G

has maximum degree 2, vertex t can be in at most one cycle of odd length.

To decide whether (G, P, s, t) is a yes-instance it is sufficient to check if all

vertices on such a cycle appear in every path from s to t in P.

4.3.4 Planar

Lem m a 4.4 The problem GREEDY(partial ordering, bipartite with maxi

mum degree 3, planar) is N P -complete.

P roof We will start the reduction with some graph theoretical definitions.

Two graphs are homeomorphic if they can both be obtained from the same

graph by a sequence of subdivisions of edges. For example, any 2 cycles are

homeomorphic [21]. To prove this result we will use Kuratowski’s Theorem.

Theorem 4.5 (K uratow sk i’s Theorem) A graph G is planar if, and only

if, no subgraph of G is homeomorphic to K3j3 or K5.

We will use the fact that a graph homeomorphic to the complete bipartite

graph K3)3 is not planar. We describe the gadgets with reference to Figure

4.6. Note that the gadgets A\ and Ai, for 2 < i < m — 1, are connected

73

136

134

130

139

1,17 1,18

1,15 1,16

143

1,20 '1,11 1,12

A,i ^ 1 3

'137

K .
^133

1,21

1,17

1,161,15

1,13 1,14

1,11

O,1

A3 1̂,10 ' 1 ,19 1,35 2,35

e i - l ,16 i+1,35

Figure 4.6: 0 1, A\ and Ai for property planar.

to the skeleton slightly differently. In Ai 6-vertex 61,35 from 0 \ is joined to

6-vertex 62,35 from O2. For all other A gadgets Ai, for 2 < i < m — 1, vertex

from Ai- 1 is joined to 6-vertex 6j+i,35 from Oi+1.

In Oi, if vertex Zi,i is chosen then {/i,i, 6^1, 61,2,..., 61,3} induce a pla-

74

nar subgraph of G , and therefore all vertices in the set will be chosen. The

subgraph of G induced by {/i,i, 61,i, 61,2, • • •, 61,9}, on the other hand, is home-

omorphic to K 3,3 and therefore 61,9 will be rejected. For the same reason, if

vertex /i,2 is chosen then vertices 61,10, 61,n, • ■ •, 61,17 will be chosen, but 61,is

will not. If vertex /i,3 is chosen, vertices 61,19,61,20? • • • > 61,26 will be selected,

but 61,27 will be rejected. If none of /i,i, Zi,2, b,3 is chosen, then 61,9,61,1s and

61,27 will be selected.

The execution of the algorithm proceeds by visiting vertices 61,28 to 61,36,

and they will all be chosen. If any of the vertices 61,9,61,18,61,27 have been

rejected then vertex 01 will be chosen, as the induced subgraph is still planar;

while if they have all been chosen, 01 will be rejected, as the subgraph of G

induced by {61,8, 61,9, 61,17, 61,i8, 61,26, 61,27, • • •, 61,36, 01} is homeomorphic to

i f 3,3. It follows that Oi will be chosen if, and only if, at least one of /i,i, /i,2, Zi,3

is selected.

In A\, vertices e^i, e ij2, •. •, ei,7, are chosen in every execution of the al

gorithm. Vertices 61,3s and 62,3s from 0 \ and 0 2, respectively, are also always

chosen. If at least one of 01, o2 was rejected then vertex ei>8 will be selected,

else, as the subgraph of G induced by {61,35, 62,35, o\, o2, ei,i, e i>2, . . . , ei,8} is

homeomorphic to i f 3)3, ei,8 will be rejected. The algorithm proceeds by

visiting vertices e i>9,e i,io ,. . . , ei,i7, and they will all be chosen. If ei,8 was

previously rejected, that is, if both Oi and o2 have been chosen, then vertex

ai will be chosen, else it will be rejected. The choice and rejection of vertices

in the remaining gadgets Ai, where 2 < i < m — 1, is almost identical. The

only difference is that vertices ej_i,i6 from Ai_i and 6j+i,35 from Oj+i are

always chosen, and vertex 0* is chosen if, and only if, both vertex aj_ 1 and

75

oi+1 are chosen. Similar reasoning shows that vertex t will be chosen if, and

only if, all vertices o*, where 1 < i < m, have been chosen. Therefore t is

chosen if, and only if, the truth assignment corresponding to the chosen path

in P satisfies all the clauses in C. Vice versa, if a truth assignment satisfying

all the clauses in C exists then the corresponding path will be chosen by an

execution of GREEDY(planar) on instance (G ,P ,s); and the output of the

execution will contain vertex t.

The graph obtained by joining the copies of the gadgets is bipartite with

maximum degree 3. To see that the graph is bipartite, we can think of a

bipartite graph as a graph which is 2-colourable. As the gadgets O and A are

bipartite, any 2 adjacent vertices must be coloured with 2 different colours.

Whenever two copies of the gadgets are joined, this is done by identifying

two adjacent vertices in one gadgets with two adjacent vertices in the other.

It is clear that any proper 2-colouring on one gadget can be expanded to a

proper colouring on the graph resulting from the union, and therefore such

a graph must be bipartite as well. □

To show that the problem GREEDY(partial ordering, maximum degree 2,

planar) is solvable in polynomial time, we simply point out that any graph of

maximum degree 2 cannot be homeomorphic to or K 5, and is therefore

planar.

4.3.5 O uterplanar

Lem m a 4.6 The problem GREEDY(partial ordering, planar and bipartite

with maximum degree 3, outerplanar) is N P -complete.

76

P ro o f To prove this result we will use a theorem from [21] (stated below).

An outerplanar graph is a planar graph that can be drawn with all its vertices

on the same face, which is generally chosen to be the exterior face. We point

out that the graph does not have to be connected, and that therefore all

independent sets of vertices are outerplanar.

T heorem 4 .7 A graph G is outerplanar if, and only if, every subgraph of G

is either isomorphic to K± — x (where x is any edge), or is not homeomorphic

to K a or K 2,3-

We use the fact that any cycle of length > 4 which contains a path (not

on the cycle) of length > 2 between any two nonadjacent cycle nodes, is

homeomorphic to AT2)3, and use it as a forbidden graph for outerplanarity.

We describe the gadgets with reference to Figure 4.7. Note that the

gadgets A\ and Ai, for 2 < % < m — 1, are connected to the skeleton slightly

differently. In A\ b-vertex &ij26 from 0 \ is joined to b-vertex fe2)26 from 0 2.

For all other A gadgets A {, for 2 < i < m — 1, vertex ej_itn , from Aj_i is

joined to b-vertex bi+1)26 from Oi+\.

In gadget Oi, if vertex Zij 1 is chosen then the subgraph induced by

{Zi 1, 611, 6ij2, • • •, is outerplanar, and therefore all the vertices in the

set will be selected. The addition of vertex b ij , on the other hand, would

induce a subgraph of G homeomorphic to Zf2j3, and b \j will therefore be

rejected. If /i,i is not chosen then b i j is selected. Using the same sort of

reasoning, it is not difficult to see that if vertex /i)2 is chosen then vertices

61 8,61 ,9 ,..., 61,13 will be selected, while 6̂ 14 will be rejected. If Zi)2 is not

77

O,

'1,26

1,24 '1,25

'1,14U 3 1,20

1,191,11 147 148140 1,12

A A s

1,10

ai.i

f̂-i,ii

^1,11 ^ i+ l ,2 6 O

e <a

e ti,3

e,i, 4

Figure 4.7: Oi, Ax and Ai for property outerplanar.

chosen then 61,14 is added to the set of selected vertices. If £1)3 is chosen

then vertex 6i,2i is rejected, else it is chosen. Vertices &i)15, &1;16, . . . , 6i,2o are

always chosen.

The algorithm proceeds by examining vertices 61,22, 61,23,..., 6i,26- Re

gardless of whether Zi,i, /i,2 and h,3 are chosen or rejected, the addition of

vertices 61,22, 61,23,..., h,26 to the set of chosen vertices does not result in a

78

graph homeomorphic to K 2$ (or K±), therefore all such vertices will be cho

sen by any run of the algorithm. If 61,7, 61,14 and 61,21 have all been chosen

then oi will be rejected, as choosing it would induce a subgraph of G home

omorphic to K 2,3 • If at least one of 6 1 ,7 , 6 1 ,1 4 , 6 1 ,2 1 was rejected, which means

tha t at least one of Zi,i, 1̂,2? 1̂,3 was selected, then vertex 01 will be chosen.

When considering gadget Ai, vertices 61,26 and 62,26? from Oi and 0 2

respectively, are always chosen. If 01 and o2 are selected then the algorithm

will choose e^i, ei,2,. . . , e i)5, but it will reject ei,6, as the subgraph of G

induced by {oi, o2, 61,2e, 62,26, ei,i, e ij2, . . . , ei,e} is homeomorphic to K 2j3. If

ei,6 is rejected then vertices ei,7, e i,s ,. . . , ei,n will be chosen, and ai will be

selected as well. If at least one of 01, 02 is rejected then ei,6 will be chosen, and

this will result in vertex ai being rejected. It follows that a\ will be chosen if,

and only if, both Oi and o2 are selected. The choice and rejection of vertices

in the remaining gadgets A*, where 2 < i < m — 1, is almost identical. The

only difference is that vertices ej_i,n from 4̂*_i and 6j+i,26 from Oi+i are

always chosen, and vertex a* is chosen if, and only if, both vertex a^-i and

Oi+1 are chosen. Similar reasoning results in vertex t being chosen if, and only

if, all vertices o*, where 1 < i < ra, have been chosen. Therefore t is chosen

if, and only if, the truth assignment corresponding to the chosen path in P

satisfies all the clauses in C. Vice versa, if a truth assignment satisfying all

the clauses in C exists, then similar reasoning yields that the corresponding

path will be chosen by an execution of GREEDY(outerplanar) on instance

(G, P , 5); and the output of the execution will contain vertex t.

It is straightforward to notice th a t graph G is planar, bipartite and has

maximum degree 3. □

79

To show that the problem GREEDY(partial ordering, maximum degree

2, outerplanar) is solvable in polynomial time, it is sufficient to point out

that any graph of degree 2 or less is outerplanar because it cannot be home

omorphic to K 2,3 or K4.

4.3.6 Edge graph

Given a graph G = (V ,E), the corresponding edge graph L(G) = {E ,D) is

the graph that has as vertex set the edge set of G , and such that 2 vertices in

L{G) are adjacent if, and only if, the corresponding edges in G have a vertex

in common. We say that a graph G is an edge graph if there exists a graph

T such that G is isomorphic to the edge graph L(T) of T . It is possible to

describe this property in terms of forbidden subgraphs [21].

T h e o re m 4.8 A graph is an edge graph if, and only if, it does not contain

any of the 9 graphs in Figure 4.8 as an induced subgraph.

L em m a 4.9 The problem GREEDY(partial ordering, planar and bipartite

with maximum degree 3, edge graph) is N P -complete.

We describe the gadgets with reference to Figure 4.9.

In gadget Oi, if vertex 1 is chosen then 6i;i and bi)2 will be chosen, but

61)3 will be rejected as the subgraph induced by {/i,i,6 i,i,6 ij2, 6i,3} is one of

the forbidden subgraphs shown in Figure 4.8 (G1). If /i,i is not chosen then

61j3 will be selected. For the same reason, if vertex /i)2 is chosen then vertices

6i)4 and 6ij5 will be selected, but 6i)6 will be rejected. If /i)2 is not chosen then

80

Figure 4.8: Forbidden graphs for property edge graph.

a A

1,10

* b, 1,16 1,19

1,14 1,15 1,17 1,18

°1
1.4

e e e &
, C 1,1 1,2 1,3 1

A ,3 ^1 ,1 1 ^ 1 ,1 3

Figure 4.9: Oi and A\ for property edge graph.

6i,6 will be selected. If ,̂3 is chosen then vertices 61,n and 61,i2 are chosen,

but 61,13 is rejected. If Zi,3 is not chosen then 61,13 is selected. Vertex 61,7 is

chosen by every execution of the algorithm. If at least one of 61,3,61,6 was

rejected, that is, if at least one of /i,i and Zi,2 was previously chosen, then

vertex 61,g will be selected. Vertex 61,9 will then be chosen, and 61,10 will be

rejected. If vertex 61,g was rejected then 61,10 will be chosen. Vertex 61,14

is always chosen. If both vertices 61,i0 and 61,13 are chosen, that is, none of

1̂,1, h,2, h,3> was selected, then 61,15 will be rejected, while 61,17 will be chosen;

this means that vertex Oi will be rejected. If either 61,10 or 61,13 are rejected,

which happens if, and only if, at least one of Zi,i, Zi,2, Zi,3 was chosen, then

61,15 and 61,i6 will be chosen, vertex 61,17 will be rejected, while 61,i8, 61,19 and

Oi will be chosen.

In gadget Ai, if both oi and 02 are chosen then vertex ei,i is selected, but

ei,2 is rejected, which in turn means that ei,3,ei,4 and ai will be chosen. If

at most one of 01, 02 is chosen then vertices ei,i, ei,2, ei,3, ei,4 will be selected,

but vertex ai will be rejected. Similar reasoning shows that vertex t will be

chosen if, and only if, all vertices where 1 < i < ra, have been chosen.

Therefore t is chosen if, and only if, the truth assignment corresponding to

the chosen path in P satisfies all the clauses in C. Vice versa, if a truth

assignment satisfying all the clauses in C exists then the corresponding path

will be chosen by an execution of GREEDY(edge graph) on instance (G, P, s);

and the output of the execution will contain vertex t.

It is not difficult to see that the graph formed by the union of the gadgets

is planar, bipartite and has maximum degree 3. □

82

To show that the problem GREEDY(partial ordering, maximum degree

2, edge graph) is solvable in polynomial time, it is sufficient to point out that

all forbidden subgraphs shown in Figure 4.8 have degree > 3, and therefore

all graphs of degree < 2 are edge graphs.

4.3.7 Interval graph

L em m a 4.10 The problem GREEDY(partial ordering, planar and bipartite

with maximum degree 3, interval graph) is N P -complete.

P ro o f An interval graph is a graph such that there exists a set of inter

vals on the real line in a one-to-one correspondence with the vertices of the

graph. Two vertices are adjacent if, and only if, their corresponding intervals

intersect. The property can be described in terms of forbidden subgraphs by

using the following theorem [26].

T h e o rem 4.11 A graph G is an interval graph if, and only if, it does not

contain any of the graphs shown in Figure 4.10 as a subgraph.

We describe the gadgets with reference to Figure 4.11.

In gadget Oi, vertices b\^ and b\$ are always chosen. If vertex was

previously selected then 61j3 will be rejected, as the subgraph induced by

{Zi i, 6i;i, &i,2, 61,3} is a 4-cycle, which is one of the forbidden graphs {Gf)

shown in Figure 4.10. If l i ti is not chosen then &i)3 will be selected. Vertices

&i)4 and 6i)5 are chosen next. When &i)6 is examined, it will be chosen if b,2

was previously rejected, and it will be rejected otherwise. Vertices b \ j and

83

• — •

G

1 2 . . . n

(n > 1)

1 2 n

■ 0*
(n > 4)

1 2

(« > 0)

Figure 4.10: Forbidden graphs for property interval graph.

° i A .

1.12

1,10

1,11

1,13

1,15

144

O,1
o e,

Figure 4.11: Oi and A\ for property interval graph.

84

&i;8 are always selected. Vertex 61,9 is chosen if at least one of 61,3 and 61,6

was rejected, which means that at least one of /i,i,/i,2 was chosen. This is

because the subgraph induced by {61,1,61.3,61,7,61,6,61,5,61,8,61,9} is one of

the forbidden graphs (Gi), shown in Figure 4.10. Vertices 61,10 and 61,n are

examined next, and they are chosen by every execution of the algorithm,

while 61,12 will be selected if, and only if, 61,9 was rejected. Vertices 61,13 and

61,14 are always selected, while 61,15 is chosen only if Zi,3 is rejected. Vertices

61,i6 and 61,17 are always selected, and Oi is chosen if, and only if, at least

one of 61,12,61,15 was rejected. It follows that Oi is chosen if, and only if, at

least one of Zi,i, Zi,2, /i,3 is chosen.

In the gadget if both vertex Oi and 02 are selected, then vertices

ei.i, ei,2, ei,3 and ei,4 will be chosen, but vertex ei,5 will be rejected. Vertex

ei,6 will then be chosen, while ei,7 will be rejected. Vertex a\ will then be

chosen. If at least one of Oi and 02 is not chosen then vertices ei,i, ei,2,. • •, ei,7

will be selected and vertex a\ will therefore be rejected. Similar reasoning

results in vertex t being chosen if, and only if, all vertices o*, where 1 < i < m,

have been chosen. Therefore t is chosen if, and only if, the truth assignment

corresponding to the chosen path in P satisfies all the clauses in G. Vice

versa, similar reasoning yields that if a truth assignment satisfying all the

clauses in G exists then the corresponding path will be chosen by an execution

of GREEDY(interval graph) on instance (G ,P ,s); and the output of the

execution will contain vertex t.

Graph G is planar, bipartite and has maximum degree 3. □

85

To show that 3 is the optimal degree bound for the property “interval

graph”, we will show that the problem GREEDY (partial ordering, maximum

degree 2, interval graph) can be solved in polynomial time. Let us consider

an instance (G , P, s , t) of the problem. The forbidden graphs for the property

“interval graph” all have degree > 3 apart from G3, which is a cycle of length

> 4. As the maximum degree of any vertex in G is 2, it follows that vertex

t in G can be in at most one cycle. We can determine in polynomial time if

this is the case, and, if t is in a cycle of length > 4, which vertices lie on the

cycle. Like in the case of the property “k-cycle free”, by determining whether

it is possible to reach vertex t from s in P \ {x}, where x is any vertex on

the cycle containing t, we can determine if (G , P, s, t) is a yes-instance or a

no-instance of the problem in polynomial time.

4.3.8 A cyclic

L em m a 4.12 The problem GREEDY(partial ordering, planar and bipartite

with maximum degree 3, acyclic) is N P -complete.

P ro o f We describe the gadgets with reference to Figure 4.12. Note that

the gadgets A \ and Ai, for 2 < i < m — 1, are connected to the skeleton

slightly differently. In A \ e-vertex e^i is adjacent to b-vertex 6 ^ 1 9 from 0 \.

For all other A gadgets Ai, for 2 < i < m — 1, vertex e^i is adjacent to vertex

e*_i)2o from A {- 1.

In the gadget 0 \ , if /i,i is chosen then bit 1, &i)2, &i)3, b\>4 will be chosen, but

vertex &i)5 will be rejected, as the subgraph of G induced by {Z î, b ^ i , . . . , 61,5}

is a cycle. If liti is not chosen then vertex b\$ will be selected. The next

86

a
1̂,18 1̂,19

I 1.2 1̂.6

A x A t

e i,6 / e i,9 e U 0 e\,\l

'i-1,20

*+1,19

Figure 4.12: Oi, A\ and Ai for property acyclic.

vertices to be examined will be 6i,6,61,7, 61,8 and 61,9, and they will all be se

lected. If vertex Zi,2 was previously selected then vertex 61,10 will be rejected,

if Zij2 was not chosen then 61,10 will be selected. The next vertex to be chosen

is 61,11, and the algorithm will proceed by examining 61,12- If both vertex 61,5

and 61,10 were chosen, which means that none of Zi,i and Zi,2 were selected,

then 6112 will be rejected. If at least one of Zi,i and Zi,2 was chosen then 61,12

will be selected. Then vertices 61,13 and 61,14 will be chosen, and 61,15 will be

87

selected if, and only if, 61,12 was rejected. Vertex 61,16 is examined next, and

it is always chosen; as vertices b i j , 6i)8 and 61,14 were previously chosen, it

follows that 6117 will be selected if, and only if, Zi,3 is not chosen. Then the

algorithm examines 61,13 and 61,19, and they are always chosen. If at least

one of 61,15 and 61,17 have been rejected, that is, at least one of /i,i,/i,2, 1̂,3

was chosen then 01 will be selected, else it will be rejected.

In gadget A\ vertices 61,19 and 62,19, from Oi and O2 respectively, are

always chosen. If oi is selected then vertices ei,i, ei,2 and ei,3 will be chosen,

but ei,4 will be rejected, or the induced subgraph would contain a cycle. If 01

is rejected then ei,4 will be chosen. If o2 is selected then vertices ei,5, ei,6, ei,7

will be chosen, but ei,8 will be rejected. If o2 is not chosen then ei,8 will be

selected. Vertices ei,g, ei,io, ei,n and ei,i2 will be examined next, and they

will all be chosen. The execution of the algorithm proceeds by visiting ei,i3,

which will be chosen if, and only if, ei,4 was rejected, that is, if 01 was chosen.

Vertex ei,i4 is chosen if, and only if, ci,8 was rejected, that is, if 02 was chosen.

Then vertices ei,i5 and ei,i6 are chosen. Vertex ei,i7 is examined next, and it

will be rejected if, and only if, both ei,i3 and ei,i4 were previously chosen. If

ei,i7 is rejected, this will result in a\ being chosen, while if ei,i7 is selected,

then ai will be rejected. It follows that a\ will be chosen if, and only if, both

Oi and 02 are chosen. The choice and rejection of vertices in the remaining

gadgets Ai, where 2 < i < m — 1, is almost identical. The only difference

is that vertices ej_i,2o from A i- i and 6̂ +1,19 from 0 {+1 are always chosen,

and vertex a* is chosen if, and only if, both vertex a*_ 1 and Oj+i are chosen.

Similar reasoning results in vertex t being chosen if, and only if, all vertices

Oi, where 1 < i < m, have been chosen. Therefore t is chosen if, and only if,

88

the truth assignment corresponding to the chosen path in P satisfies all the

clauses in C. Vice versa, if a truth assignment satisfying all the clauses in

C exists, then similar reasoning yields that the corresponding path will be

chosen by an execution of GREEDY(acyclic) on instance (G, P, s); and the

output of the execution will contain vertex t.

The graph obtained by the union of the gadgets is planar, bipartite, and

with maximum degree 3. □

The degree bound 3 is optimal for this property because the problem

GREEDY(partial ordering, maximum degree 2, acyclic) can be solved in

polynomial time. Given an instance (G, P, s, t) of the problem, we can deter

mine whether it is a yes- or a no-instance by simply checking if there exists

a path in P from s to t that does not visit all vertices in the (at most) one

cycle that contains vertex t in G. If such a path exists then (G, P, s, t) is a

yes-instance of the problem, else it is a no-instance.

4.3.9 Chordal

L em m a 4.13 The problem GREEDY{partial ordering, planar and bipartite

with maximum degree 3, chordal) is N P -complete.

P ro o f The result follows from the proof of property “acyclic”, because the

same gadgets can be used to prove property “chordal”. We just point out

that we take as our forbidden graph a cycle of length 6, like we did in the

previous section, and stress the fact that any subgraph of a graph, in which

the smallest cycle has length 6, is acyclic if, and only if, it is chordal. □

89

We will now show that the problem GREEDY (partial ordering, maximum

degree 2, chordal) is solvable in polynomial time. Note that every chordal

graph G is such that every cycle in G of length > 4 has a chord. As our

instance graph has maximum degree 2, it follows that every vertex can be

in at most one cycle. If vertex t appears on a cycle of length at least 4, we

proceed like we did in the case of property acyclic and check if there is a path

in P that does not visit all the vertices on the cycle before reaching t.

4 . 4 N e a r o p t i m a l d e g r e e b o u n d s

In this section we consider properties for which the best degree bound we

have obtained might not be optimal. We have not been able to find the exact

boundary between NP-completeness and tractability, but we know that by

restricting the degree bound on the instance graph by two more units we

obtain a problem solvable in polynomial time. The corresponding results are

summarised in Table 4.1, numbers 10-12, on page 60.

4.4.1 4-cycle free

L em m a 4.14 The problem GREEDY(partial ordering, planar and bipartite

with maximum degree 4, A-cycle free) is N P -complete.

P ro o f We describe the gadgets with reference to Figure 4.13.

In gadget 0 \, if vertex Ẑ i is chosen then vertices and &i)2 will be

chosen, but 61,3 will be rejected, because the subgraph of G induced by

90

6,

A i h -> A -»1,1 1,3 1,12

Figure 4.13: 0 \ and A\ for property 4-cycle free.

&i,ij 1̂,2? 61,3} is a 4-cycle. If Zi,i is not chosen then 6i)3 will be selected.

If /i)2 is chosen, then vertices 61,4 and 6̂ 5 will be selected, but 61,5 will be

rejected. If Zi)2 is not chosen then vertex bi$ will be selected. Vertex b ij

is always chosen. If at least one of b\)3 and b\$ was rejected, that is, if at

least one of l i t 1 and Zi;2 was chosen then 6i;8 will be selected, else it will

be rejected. Vertices 61,9 and 61,10 will be examined next, and they will be

chosen by every execution of the algorithm. Vertex 6i,n will be selected if,

and only if, vertex 6i)8 was rejected. If Zi>3 was chosen then vertices &i;i2 and

61,13 will be selected, but 61,14 will not. If Zi,3 was rejected then 61,14 will be

chosen. Vertex 61,15 is examined next, and it is always chosen. If at least

one of 6i5h and 61,14 was rejected, that is, if at least one of Zi,i, Zi,2, Zi,3 was

chosen, then vertex 01 will be selected, else it will be rejected.

In the gadget A\, vertex ei,i is always selected. If both 01 and o2 are

selected then vertex ei,2 will be rejected, which means that a\ will be chosen.

91

If at least one of oi, 02 was rejected then e it2, ei^ and eis4 will be chosen, but

a\ will be rejected. Similar reasoning shows that vertex t will be chosen if,

and only if, all vertices ô , where 1 < i < m, have been chosen. Therefore t is

chosen if, and only if, the truth assignment corresponding to the chosen path

in P satisfies all the clauses in C. Vice versa, if a truth assignment satisfying

all the clauses in C exists then the corresponding path will be chosen by an

execution of GREEDY(4-cycle free) on instance (G, P, s); and the output of

the execution will contain vertex t.

It is straightforward to notice that G is planar, bipartite and each vertex

has degree at most 4. □

We do not know the complexity of the problem GREEDY(partial or

dering, maximum degree 3, 4-cycle free) but we know that the problem is

solvable in polynomial time if we restrict the instance graph to have degree

at most 2. To see this, consider an instance (G, P, s, t). As the degree bound

is 2, vertex t can be in at most one 4-cycle. By checking whether there exists

a path in P from s to t that does not contain all vertices on the (at most)

one 4-cycle containing t in G, we can determine whether (G, P, s, t) is a yes-

or a no-instance of our problem.

4.4.2 M axim um degree 1

L em m a 4.15 The problem GREEDY(partial ordering, planar and bipartite

with maximum degree 3, maximum degree 1) is N P -complete.

P ro o f We describe the gadgets with reference to Figure 4.14.

92

Figure 4.14: 0 \ and A \ for property maximum degree 1.

In the gadget O i, vertices 61,1,61,5 and 61,9 are always chosen, as they

have degree 1. If Zi,i is chosen then 61,2 will not be selected or, in the induced

subgraph, Zi,i would have degree 2. Then vertices 61,3 and 61,4 will be selected,

vertex 61,6 will be rejected, 61,7 and 61,3 will be chosen, and 61,i0 will be

rejected. Vertex 61,n , which is examined next, will be chosen and so will 0\.

If vertex /i,i is not chosen then vertices 61,2 and 61,3 will be selected, while

61,4 will be rejected. If vertex Zi,2 was chosen then vertex 61,6 will be rejected,

or otherwise Zi,2 would have degree 2 in the induced subgraph. The fact that

6i,6 is rejected results, as explained before, in 0\ being chosen. If Z1;2 is not

chosen then 61,6 will be selected; 61,7 will be chosen, and therefore 61,3 will be

rejected. If vertex /i,3 was chosen then 61,i0 will be rejected, and therefore

Oi will be chosen. If /i,3 was not chosen then 6i,i0 will be selected, and this

results in o\ being rejected. It follows that 0 \ is chosen if, and only if, at

least one of /i,i, Zi,2 , / i ,3 is selected.

Vertices &1>n and 6 2 ,1 1 from 0 \ and 0 2 are always selected. In the gadget

Ai, if both oi and 0 2 are chosen then vertices e^i and e\$ will be rejected,

or in the induced subgraph 0 1 and o2 would have degree 2 . The execution

proceeds by visiting e i ,3 and ei,4 , and they will both be chosen. Vertex ei ,5

will be rejected, and therefore ei ,6 and ai will be chosen. If vertex 0 1 is not

chosen then ei,i will be selected, vertex ei ,3 will be chosen, but ei ,4 will be

rejected, or otherwise e i ,3 would have degree 2 in the induced subgraph. Then

vertices e i ,5 and e i ,6 will be chosen, and will be rejected. If vertex 0 2 is not

chosen then e1>2 will be selected, and as ei , 3 is always chosen, vertex e1>4 will

be rejected. Again this results in ax being rejected. The choice and rejection

of vertices in the remaining gadgets where 2 < i < m — 1 , is almost

identical. The only difference is that vertices e*_ 1 ,6 from Ai-i and 6 1+1 ,1 1

from Oi+ 1 are always chosen, and vertex a* is chosen if, and only if, both

vertex a;_i and Oj+i are chosen. Similar reasoning results in vertex t being

chosen if, and only if, all vertices ô , where 1 < i < m, have been chosen.

Therefore t is chosen if, and only if, the tru th assignment corresponding to the

chosen path in P satisfies all the clauses in C. Vice versa, similar reasoning

yields th a t if a tru th assignment satisfying all the clauses in C exists then the

corresponding path will be chosen by an execution of GREEDY(maximum

degree 1) on instance (G, P, s); and the output of the execution will contain

vertex t.

The graph obtained by joining the gadgets is planar, bipartite and with

maximum degree 3. □

94

We do not know the complexity of the problem GREEDY(partial order

ing, maximum degree 2, maximum degree 1) but it is straightforward to

notice th a t the problem becomes trivial if the instance graph has maximum

degree 1.

4.4.3 Independent set

L em m a 4.16 The problem GREEDY(partial ordering, planar and bipartite

with maximum degree 3, independent set) is N P -complete.

P ro o f The result follows from Theorem 3.6. □

We do not know the complexity of the problem GREEDY(partial order

ing, maximum degree 2, independent set) but the problem becomes trivial

if, in the instance graph, vertices have degree at most 1.

We conclude the section by showing, in Table 4.2, a summary of the degree

bounds th a t we have found for which the problem GREEDY(partial order,

C, 7r) is solvable in polynomial time. The column Property indicates the

property 7r under consideration. The columns Restriction and Degree char

acterise the class C of undirected graphs considered (the ordering is always

a partial ordering). So, for example, the first row of the table indicates that

the problem GREEDY(partial ordering, maximum degree 3, 3-cycle free) is

solvable in polynomial time.

95

No. Property Restriction Degree

(1) 3-cycle free undirected graphs 3

(2) /c-cycle free k > 5 undirected graphs 2

(3) bipartite undirected graphs 2

(4) planar undirected graphs 2

(5) outerplanar undirected graphs 2

(6) edge graph undirected graphs 2

(7) interval graph undirected graphs 2

(8) acyclic undirected graphs 2

(9) chordal undirected graphs 2

(10) 4-cycle free undirected graphs 2

(11) maximum degree 1 undirected graphs 1

(12) independent set undirected graphs 1

Table 4.2: Polynomial time solvable problems

4.5 Conclusion

In this chapter we considered restrictions on the maximum degree of the

vertices of the instance graph G for which the problem GREEDY (partial or

dering, C, 7r) remains NP-com plete; we have also shown how it is possible to

solve the problem in deterministic polynomial time if we restrict the degrees

any further. The natural direction in which to extend the research would be

to try to answer the question:

96

Can we obtain optimal degree bounds for properties: 4-cycle free, inde

pendent set and maximum degree one?

So far we have not been able to find an answer, and we leave this question

open. Instead, we explore the complexity of the problem GREEDY(partial

ordering, C, tt) when we consider properties 7r which are not testable in de

terministic polynomial time, but are testable in nondeterministic polynomial

time. This will be the topic of the next chapter.

97

C hapter 5

A com plexity-theoretic

dichotom y result

5.1 Introduction

In the previous two chapters we dealt with the problem GREEDY (partial or

dering, C, 7r) under the assumption that 7r is a hereditary property, non-trivial

on C and testable in deterministic polynomial time. In this chapter we will

examine the complexity of the problem if we drop the requirement that the

property be testable in deterministic polynomial time. We remark here that

the results of this chapter were presented in the paper by A. Puricella and

I. A. Stewart, Greedy algorithms, H-colourings and a complexity-theoretic

dichotomy, Theoretical Computer Science, to appear [34].

In what is now a seminal result, Hell and Nesetril [23] established a di-

98

chotomy for the H -colouring problem when H is an undirected graph with

no self-loops (if H contains a loop the problem becomes trivial as all vertices

can be mapped to the vertex with the loop): the H -colouring problem is in

P , if H is bipartite, and is NP-com plete otherwise (notice that the existence

of an H -colouring of an undirected graph G , i.e., a homomorphism from G

to H, is a particular hereditary property of G). Such a (dichotomy) result

can also be thought of as a generic result in that it provides a complete,

exact classification of the computational complexities of an infinite class of

problems (in this case, the class of //-colouring problems).

A number of other dichotomy results (involving unequivocal complexity-

theoretic classifications) and generic results (applicable to an infinite class of

problems) have since been obtained. Some examples are: Feder and Hell’s re

sult [13] th a t the list homomorphism problem for reflexive graphs is solvable

in polynomial time if the target graph is an interval graph, and NP-complete

otherwise; Feder, Hell and Huang’s [14] result that the list homomorphism

problem for irreflexive graphs is solvable in polynomial time if the comple

ment of the target graph is a circular arc graph of clique covering number

two, and N P-com plete otherwise; Diaz, Serna and Thilikos’s result [10] that

the complexity of the list (H, C , A")-colouring problem mirrors that of the list

homomorphism problem; and Dyer and Greenhill’s result [11] that the prob

lem of counting the .//-colourings of a graph is solvable in polynomial time if

every connected component of H is a complete reflexive graph with all loops

present or a complete bipartite irreflexive graph (with no loops present), and

JP-complete otherwise.

Dichotomy and generic results such as those highlighted above are partic

99

ularly attractive as they give a concise and simplified view of a parameterised

world of natural problems. In this chapter, we consider the problem of de

ciding whether a given vertex of a given undirected graph G , whose vertices

are partially ordered, lies in a lexicographically first maximal ^-colourable

subgraph of G (where the undirected graph H is fixed). That is, we examine

the complexity of the problem GREEDY (partial ordering, undirected graphs,

i/-colourable). In particular, we prove that this problem is NP-complete,

if H is bipartite, and E^-complete, if H is non-bipartite; thus establish

ing yet another complexity-theoretic dichotomy result. Our proofs use the

techniques established by Hell and Nesetril in [23] although they are com-

binatorially adapted according to our circumstances. However, part of Hell

and Nesetril’s constructions can be applied verbatim and this substantially

shortens our exposition. Essentially, we assume that H is a non-bipartite

graph for which the problem GREEDY (partial ordering, undirected graphs,

/f-colourable) is not S^-complete and apply a sequence of constructions to

yield th a t a known E^-complete problem is not complete, thereby obtain

ing a contradiction. Our ‘known’ XiJj-complete problem is GREEDY(partial

ordering, undirected graphs, 3-colourable).

5.2 A com plete problem

T h e o re m 5.1 The problem GREEDY {partial ordering, undirected graphs,

3-colourable) is complete.

P ro o f Consider the problem GREEDY (partial ordering, undirected graphs,

100

3-colourable) (defined using the algorithm introduced in Chapter 2). Note

th a t the basic property of a graph being 3-colourable is an NP-complete

property (and not a polynomial time property like the ones considered be

fore), therefore the complexity class in which this problem resides is

Throughout this proof, the problem GREEDY(partial ordering, undirected

graphs, 3-colourable) shall be denoted Q. We shall prove completeness by

reducing from the problem NOT CERTAIN 3-COLOURING OF BOOLEAN

EDGE-LABELLED GRAPHS, henceforth to be abbreviated as problem M .

An instance of H of size n consists of an undirected graph O on n vertices,

some of whose edges are labelled with the disjunction of two (possibly iden

tical) literals over the set of Boolean variables { X i j : i , j = 1 , 2 , . . . , n} (the

same literal may appear in more than one disjunction). A tru th assignment t

on the Boolean variables of { X i j : z, j = 1 , 2 , . . . , n) makes some of the labels

on the edges of O true and some false. Form the graph t (0) by retaining the

edges labelled true, as well as any unlabelled edges, and dispensing with the

edges labelled false. A yes-instance is an instance O for which there exists a

tru th assignment t resulting in a graph t (0) that cannot be 3-coloured. This

problem was proven to be E^-complete in [36].

Given an instance O of the problem A/”, we shall construct an instance

(G ,P ,s ,x) of the problem Q where G is an undirected graph, P is a partial

ordering on these same vertices and s and x are two distinguished vertices.

Moreover, O will be a yes-instance of J\T if, and only if, (G, P, s , x) is a yes-

instance of Q\ and the construction will be such that it can be completed

using logspace.

Let O = (U, F) and suppose that U = {1, 2 , . . . , n}. We build the undi-

101

rected graph G from O as follows.

(a) For each vertex i G U, ‘a ttach’ a copy of K 4 by identifying vertex i

with one of the vertices of the clique. Denote the other three vertices

by ai, bj and bf. We refer to the original vertices of U as O -vertices,

the vertices of {ai : i = 1, 2, . . . ,71} as a-vertices and the vertices of

{ b i b] : i = 1, 2 , . . . , n) as b-vertices.

(b) Retain any unlabelled edge (i, j) of F (between O-vertices i and j).

(c) For any labelled edge (i, j) of F (between O-vertices i and j) , where

i < j and where the label is L\ • V L? •, replace the edge with a copy of

the graph G\ shown in Figure 5.1. We use, for example, Lj j to refer to

the first literal labelling edge (i, j) and also a vertex within a graph G\ \

this causes no confusion. The vertices of {Ljj , Lif j, L \p Lf j : (i , j) G

F, where i < j } are called L-vertices. Every L-vertex of any G\ has

an associated literal, e.g., if the literal L\ 6 = then the associated

literal of vertex L\ 6 is - 1X 3 ,2 and the associated literal of vertex L\ 6 is

X 3 f2 - So, an L- vertex of some G\ might have the same associated literal

as an L -vertex of some other G\. Finally, the vertices of {cjj : i , j =

1 , 2 , . . . , n } are called c-vertices, the vertices of {dij : i, j = 1, 2 , . . . , n}

are called d-vertices and the vertices of {eF, eF -. i, j — 1 , 2 , . . . ,n} are

called e-vertices.

(d) Include a disjoint copy of K 4 , whose vertices are { y , z ,w ,x } and join

vertices y, z and w to every a-vertex. Include the vertex s as an inde

pendent vertex.

102

Our partial ordering P is defined as follows. First, order the Boolean

variables { X itj : i , j = 1, 2 , . . . , n} lexicographically as

Xi,s, ■ • •, X \>n, ^ 2 ,1 5 X 2 ,2 ,. • •, x njU

and denote this ordering by < * ; so < x X i >2 <x • • • < x X n,n. Next,

consider the L-vertices. We obtain the notions of a positive L-vertex, where

the vertex has an associated positive literal, and a negative L-vertex, where

the vertex has an associated negative literal. Order the positive L-vertices

so tha t if vertex A* is less than vertex A j in this ordering then the associated

literal of A* is less than or equal to the associated literal of A j with respect to

the ordering < * (note th a t there may be a number of such orderings on the

positive L-vertices: it does not m atter which of them we use). We obtain an

analogous ordering of the negative L-vertices by taking complements (note

that for every positive L-vertex Lj™ or L*™- with label /, the vertex Lj™ or L|™,

respectively, is a negative L-vertex with label — and vice versa). As we walk

down these two orderings in a synchronous fashion, the pairs of L-vertices are

always complementary as are the pairs of associated literals. Denote these

orderings as Ax < A2 < . . . < Afc and jJL\ < 1*2 < . . . < Hk, respectively, where

{Ai, Hi : i = 1, 2 , . . . , &} = {Lj j , L ^ , L]d , I ? , : (i, j) € F, where i < j} .

Our partial ordering P begins as follows. The vertex s is less than both

Ai and yLq; and then we have the orderings Ai < A2 < . . . < \k and jii <

H2 < < Hk:■ Also, for any index i € {1, 2 , . . . , k — 1 }, if the associated

literal of A* is different from the associated literal of Â +i then additionally

Ai < Hi+ 1 and fi{ < A*+i. In order to complete P , choose any linear ordering

of the c-vertices, followed by any linear ordering of the d-vertices, followed

103

the graph Gx

i

&x
a

(c)

i 4 T \
i j i j

i > •i
e ; *

i j

2 „ / C‘JV
r \ > •

J Z2 I 2V U

Figure 5.1: Phases (a), (c) and (d) of constructing G from O.

by any linear ordering of the e-vertices, followed by the ordering 1,2, . . . , n

of the O-vertices, followed by any linear ordering of the b-vert ices, followed

by any linear ordering of the a-vertices, followed by the ordering w , y , z, x\

and additionally define th a t both A* and pk are less than the least c-vertex

(if there are no L-vertices then just concatenate the linear ordering of the

c-vertices after the vertex s).

The construction of (G , P, s, x) from O is illustrated in Figure 5.2 (note

that to avoid cluttering the figure, not all vertices are named; and that the

bold edges correspond to the structure of O). Clearly, this construction can

be completed using logspace.

Suppose that O is a yes-instance of problem J\f. Hence, there exists a truth

assignment t such tha t t (0) is not 3-colourable. Consider the execution of

the algorithm GREEDY (3-colourable) on instance ((7, P, s) where the chosen

linear ordering in P is th a t induced by the truth assignment t\ that is, an

104

the labelled
graph H

associated
the graph Gliteral

2̂,1
associated ^ 2-2 a 2 ^ i

literal ri v JK 23

^ivx,

the partial
ordering P v

1,4 J 1

4 3’4

<

* u * 2il * 2il * 2>1 * 2>2 * 3(1
r 2 r 1 r 1 r 1 t 2 t 2 associated

^ 2,3 2,3 -^ U 3,4 -^1,2 -^3,4 \ ,^ literals
l \ C , C 2 C3 C 4 d x

4,3 4 > 4 , 4,4 4 ,2 4,4
^ 1 , 3 ^ 2 , 1 - * 2>1- * 2, i - * 2^ * 3 , l

associated
" literals

Figure 5.2: The construction of (G , P , s , x) from O.

L-vertex is chosen if, and only if, its associated Boolean literal is set at true

by t. The first point to note is that s and every L-vertex chosen is output

by GREEDY(3-colourable), as is every c-vertex. Let us freeze the execution

at this point. Note th a t if the tru th assignment t makes the label of some

edge (i , j) of F true then at our freeze-point, the vertex diyj is adjacent to

at most 2 vertices of S (the set of chosen vertices), and so this vertex dij is

105

subsequently output by GREEDY(3-colourable).

Conversely, if the tru th assignment t makes the label of some edge (i, j)

of F false then at our freeze-point, the vertex dij is adjacent to 3 mutually

adjacent vertices of S and so this vertex dij is not subsequently output

by GREEDY(3-colourable). Unroll the execution of GREEDY(3-colourable)

until every d-vertex and e-vertex has been considered. Note that every e-

vertex is output regardless. Let us freeze the execution for a second time at

this point.

Our next task in the execution is to consider the O-vertices as to whether

they are output or not. Let (z, j) be some edge of F which is either unlabelled

or whose label has been made true by t. It may or may not be the case that

the vertices z and j are output; but if they are both output then at the point

after the second of these vertices is output, the subgraph induced by the

vertices of S can be 3-coloured but not so that z and j have the same colour.

This is so because each of the vertices d i j , ejj and ej • is in S. Hence, as we

know th a t t (0) cannot be 3-coloured, there must be some O-vertex that is

not output; and, consequently, there is at least one a-vertex output. Having

an a-vertex output means tha t not all of {y, z, w} are output which in turn

means th a t x is output. Hence, (G , P, s,x) is a yes-instance of problem Q.

Conversely, suppose th a t (G, P, s ,x) is a yes-instance of problem Q. Fix

an accepting execution of the algorithm GREEDY(3-colourable) on input

(G, P, s) and denote the linear ordering chosen within P by r. This execution

gives rise to a tru th assignment t on the literals labelling the edges of the

graph O ’, if r is such th a t a positive L-vertex, with associated literal X i j , say,

106

is chosen then set t (X i j) to be true; and if r is such that a negative L-vertex,

with associated literal -iX i j , say, is chosen then set t (X i j) to be false (note

th a t this tru th assignment is well-defined). As before, every L-vertex on r

is output by GREEDY(3-colourable); and, by arguing as we did earlier, for

any i, j G {1, 2 , . . . , n} with i < j and where (i , j) is a labelled edge of O,

the tru th assignment t makes Ljj V Lf^ true if, and only if, the vertices

ejj and eT are output.

At various points in the execution of GREEDY(3-colourable), a check is

made to see whether the vertices of S induce a 3-colourable graph. Consider

such a check and suppose tha t the vertices of {dij, eP , eT} have been placed

in S. Consider the subgraph K of G induced by those vertices tha t are both

in S and in the copy of G\ pertaining to the labelled edge (i , j) of O. In

particular, consider the role of K when it comes to attem pting to colour

the subgraph of G induced by the vertices of S. A simple combinatorial

verification yields th a t the role of the vertices of K is to allow i and j to

be coloured with any pair of distinct colours but not with identical colours.

Hence, any check to see whether the subgraph of G induced by the vertices of

S can be 3-coloured is equivalent to a check of whether the subgraph of t (0)

induced by (vertices corresponding to) the O-vertices of S can be 3-coloured.

We know th a t our accepting computation on (G, P, s, x) outputs x. This can

only happen if not all of {y ,z , w} are output, i.e., if at least one a-vertex,

am, say, is output, i.e., if the O-vertex m is not output, i.e., if the graph t(0)

can not be 3-coloured. The result follows. □

107

5 .3 T h e c o n s t r u c t i o n

We now prove our main result using the techniques originating with Hell and

Nesetril. Of course, these techniques have to be adapted to our scenario.

T h e o re m 5.2 The problem GREEDY [partial ordering, undirected graphs,

H-colourable) is N P -complete, i f H is bipartite, and complete, i f H is

non-bipartite.

P ro o f Throughout the proof we shall denote the problem GREEDY (partial

ordering, undirected graphs, 77-colourable) by Qg. Clearly, QH can be solved

in Sgj if H is non-bipartite, and in N P , if H is bipartite (the latter because

the 77-colourability problem, for 77-bipartite, can be solved in polynomial

time [23]). Moreover, because the property of being 77-colourable, for H

bipartite, is non-trivial on undirected graphs, hereditary, and polynomial

time testable, by Corollary 3.15 we have that Qg is NP-complete if H is

bipartite. Actually, note tha t if 77 is bipartite then Qg and the problem

GREEDY(partial ordering, undirected graphs, bipartite) are one and the

same.

To prove th a t for any non-bipartite graph H , the problem Qg is £ 3 -

complete, we will modify the proof of Theorem 1 of [23] which states that:

‘7/ H is bipartite then the H-colouring problem is in P . I f H is non-bipartite

then the H-colouring problem is N P -complete.' The proof begins by detailing

three ways of constructing a graph H' from a graph H such that if the 77'-

colouring problem is N P-com plete then the Tf-colouring problem is N P -

complete as well. We will show that such constructions can be used to prove

108

7
• — • — • — •

Figure 5.3: The indicator construction.

th a t the problem QH is Ej-com plete.

Construction A: The indicator construction.

Let / be a fixed graph and let i and j be distinct vertices of I such that

some automorphism of I maps i to j and j to i. The indicator construction

(with respect to (I, i , j)) transforms a given graph 77 into a graph 77* defined

to be the subgraph of 7/ induced by all edges (h , h') for which there is a

homomorphism of I to H mapping i to h and j to h!. Because of our

assumptions on 7, the edges of 77* will be undirected. The construction

is illustrated in Figure 5.3. Note tha t we will always make sure that H* does

not contain any loops, i.e., th a t no homomorphism of I to 77 can map i and

j to the same vertex.

L e m m a 5.3 I f the problem Qh * is Y^-complete then so is Qh -

P ro o f Assume th a t Qh* is E^-complete; and so, in particular, 77* has at

least one edge (otherwise 77* would be the empty graph and Qh* would not

be E^-complete). We will reduce Qh* to QH (via a logspace reduction). Let

109

(G*j P*, s*, x*) be an instance of Qh* • From it, we shall construct an instance

(G ,P , s , x) of g H.

Graph G is obtained from G* as follows. For any vertex i of G*, there is a

corresponding vertex i of G: we will refer to such vertices of G as G*-vertices

(note how we consider the G*-vertices of G and the vertices of G* as being

identically named). For any edge (u,v) of G*, we add a copy of graph I to

G by identifying the G*-vertex u with vertex i in I and the G*-vertex v with

vertex j in I (all added copies of I are disjoint).

The partial ordering P consists of a linear ordering L (any one will do)

on the vertices of G which are not G*-vertices, and we concatenate on to this

linear ordering the partial ordering P* (of the G*-vertices). Vertex s is the

first vertex of the linear ordering L and vertex x is the G*-vertex x*. An

illustration of this construction is depicted in Figure 5.4 (where the graphs

I , H and H* are as in Figure 5.3).

Consider the algorithm GREEDY(f/-colourable) on the input (G, P, s).

As H* contains at least one edge, there is a homomorphism from I to

H. Hence, as the linear ordering L consists of disjoint copies of I \ {z, j } ,

GREEDY(i/-colourable) outputs every vertex of L. After consideration of

the vertices of L, GREEDY(i/-colourable) is working with essentially the

same partial ordering as is the algorithm GREEDY(JT*-colourable) initially

on input (G *, P*,s*); so consider executions of these algorithms with respect

to the same subsequent linear ordering.

Our induction hypothesis is as follows: ‘The current-vertex in both ex

ecutions is So; GREEDY(#-colourable) has so far output the vertices of

110

the partial ordering P* the graph G *

s '

the partial ordering P the graph G

Figure 5.4: Building (G , P , s , x) from

L U {si, s2, • • •, sm}, where vertex s* is a G*-vertex, for i = 1 , 2 , . . . , m; and

GREEDY(i/*-colourable) has so far output the vertices of {si, s2, ■ . . , sm}.’

Suppose th a t the induction hypothesis holds at some point (it certainly

holds when s0 = s*).

Suppose tha t GREEDY(i/*-colouring) outputs the vertex s0- This means

tha t there exists an homomorphism /* : ({s0, s i , . . . , sm})G* H*. By con

struction of H *, there must exist a homomorphism / : (Lu{so, Si, • • •, sm})G

—> H, where f{st) = for i = 0 , 1 , . . . , m, and f (v) is the ‘natural’ map

for v £ L (derived from the definition of H* from H). Hence, GREEDY(/f-

colourable) outputs the vertex So-

Conversely, suppose th a t GREEDY(//-colourable) outputs the vertex sQ.

This means th a t there exists a homomorphism / : (L U {so, Si , . . . , s m }) G

H. Again by construction of H*, there must exist a homomorphism f* :

({ 50 , S i , . . . , s m }) G. -» H *, where f*{si) = /(«»), for i = 0, 1, . . . , m . Hence,

GREEDY(/7*-colouring) outputs the vertex s0. The result follows by induc

tion. □

Construction B : The sub-indicator construction.

Let J be a fixed graph with specified (distinct) vertices j, k\, k2, . . . , kt, for

some t > 1. The sub-indicator construction (with respect to J , j , k \ , k 2 , . . . , kt)

transforms a given graph H with t (distinct) specified vertices hi, h2, . . . , ht

to its subgraph H induced by the vertex set V defined as follows. A vertex v

of H belongs to V just if there exists a homomorphism of J to H taking k{ to

hi, for i = 1 ,2 , . . . ,t, and taking j to v. An illustration of this construction

is depicted in Figure 5.5 (where, for clarity, we have shown the vertices of H

excluded from H).

L e m m a 5 .4 I f the problem Qfj is Yf^-complete then so is Qh -

P r o o f Assume th a t Qfj is Sj-com plete; and so, in particular, H has at

least one vertex. We will reduce to Qh (via a logspace reduction). Let

(G , P , s , x) be an instance of Q^. From it, we shall construct an instance

(G , P , s , x) of Qh .

112

J

k\

H K

H

*A.

Figure 5.5: Building 77 from 77 and J.

The graph G is built from: a copy of G , of size n; a copy of 77; and

n copies of J (with J and 77 prior to the statem ent of the lemma), by

identifying the vertex k{ in any copy of J with the vertex hi of 77, for i =

1 , 2 and identifying the vertex j in the ith copy of J with the ?th

vertex of G*, for i = 1,2, The vertices of G corresponding to the

vertices of G (and the vertices j of the copies of J) are called G-vertices, the

vertices of G corresponding to the vertices of the copies of J but different

from j , k\, &2 , . . . , kt are called J-vertices, and the vertices of G corresponding

to the vertices of H are called H-vertices.

The partial ordering P consists of any linear ordering of the 77-vertices,

concatenated onto any linear ordering of the J-vertices concatenated onto

the ordering P of the G-vertices. The vertex s is the first 77-vertex in the

ordering P and the vertex x is the vertex x of P. The whole construction

113

the copies of J k x k 2 k t k x k 2 k t

h h

the graph G

the //-vertices and J-vertices the partial ordering P

the partial
ordering P

x •

Figure 5.6: Building G from / / , copies of J and G.

can be pictured in Figure 5.6. Clearly, this construction can be undertaken

using logspace.

We begin by showing tha t any execution of GREEDY(//-colourable) on

input (G, P, s) outputs every //-vertex and J-vertex of G. Clearly every H-

vertex is output. Consider some copy of J (used in the formation of G). As

H has at least one vertex, there is a homomorphism from J to H taking k{

to hi, for i = 1,2, . . . ,£. Hence, every J-vertex is output. Denote the set of

114

//-vertices and J-vertices of G by L.

Consider the algorithm GREEDY(Zf-colourable) on the input (G ,P , s),

where the current-vertex is s (with the vertices of L having been output

so far), and the algorithm GREEDY(//-colourable) on the input (G, P , s)

where the current-vertex is s (note how we consider the G-vertices of G

and the vertices of G as being identically named). Essentially, these two

algorithms work with the same partial ordering; so consider executions of

these algorithms with respect to the same subsequent linear ordering.

Our induction hypothesis is as follows: ‘The current-vertex in both ex

ecutions is so; GREEDY(//-colourable) has so far output the vertices of

L U {si, S2 , .. •, sm}, where each s* is a G-vertex, for i = 1 , 2 , . . . , m; and

GREEDY(//-colourable) has so far output the vertices of {si, S2 , . . . , sm}.’

Suppose that the induction hypothesis holds at some point (it certainly

holds when s0 = s).

Suppose tha t s0 is output by GREEDY(//-colourable). That is, there is a

homomorphism / : (L u { s0, Si , . . . , Sm})^ —»• H. In particular: /(s j) is a ver

tex of H , for * = 0 , 1 , . . . , m\ and if (siy Sj) is an edge of G then (/ (s z), f (s j))

is an edge of H y for i , j = 0 , 1 , . . . , m. Hence, we have a homomorphism

/ • ({so, 5 i , . . . , sm})g —¥ H , and so s0 is output by GREEDY(^-colourable).

Conversely, suppose th a t s0 is output by GREEDY(//-colourable). That

is, there is a homomorphism / : ({s0, S\ , . . . , —> H. Consider the copy

of J corresponding to the G-vertex Si of G. As f(s i) is a vertex of H , / can

be extended to a homomorphism / : (L U {s0, Si , . . . , sm})G —> H. Hence, s0

is output by GREEDY(iZ-colourable). The result follows by induction. □

115

J J J

V
>

H
h

&
Figure 5.7: Building H from H and J.

Construction C : The edge-sub-indicator construction.

Let J be a fixed graph with a specified edge (j, j ') and t specified vertices

k\, k2, . . . , k t, such tha t all vertices j, j ' , k\, k2, • • •, kt are distinct and some

automorphism of J keeps hi, &2 , • • •, kt fixed while exchanging the vertices

j and j The edge-sub-indicator construction transforms a given graph H

with t (distinct) specified vertices hi, h2, . . . , ht into its subgraph H induced

by those edges (h , h') of H for which there is a homomorphism of J to H

taking ki to hi, for i = 1 ,2 , . . . ,t, and j to h and / to h'. The construction

can be visualised as in Figure 5.7.

L em m a 5.5 I f the problem Qfj is complete then so is Qh -

P ro o f Assume th a t is S 2 -comP êtei an^ so, in particular, H has at

least one edge. We will reduce to Qh (via a logspace reduction). Let

(G ,P , s , x) be an instance of Q^. From it, we shall construct an instance

116

(G , P , s , x) of Qh -

The graph G is constructed from: a copy of G, with e edges; a copy of H;

and e copies of J (with H and J as prior to the statem ent of this lemma),

by identifying every vertex ki in any copy of J with the vertex hi of H, for

i — 1 ,2 , . . . , t, and each edge e of G with the edge (j, j ') of a unique copy of J.

The vertices of G corresponding to the vertices of G (and the vertices j and

f of the copies of J) are called G-vertices, the vertices of G corresponding

to the vertices of the copies of J but different from j, ki, A:2, . . . , kt are called

J-vertices, and the vertices of G corresponding to the vertices of H are called

H-vertices.

The partial ordering P consists of any linear ordering of the H-vertices,

concatenated onto any linear ordering of the J-vertices concatenated onto

the ordering P of the G-vertices. The vertex s is the first H-vertex in the

ordering P and the vertex x is the vertex x of P. The whole construction

can be pictured in Figure 5.8. Clearly, this construction can be undertaken

using logspace.

We begin by showing th a t any execution of GREEDY(iT-colourable) on

input (G, P, s) outputs every if-vertex and J-vertex of G. Clearly every H-

vertex is output. Consider some copy of J (used in the formation of G). As

H has at least one edge, there is a homomorphism from J to H taking ki

to hi, for i = 1 ,2 , . . . ,t. Hence, every J-vertex is output. Denote the set of

//-vertices and J-vertices of G by L.

Consider the algorithm GREEDY(//-colourable) on the input (G , P , s),

where the current-vertex is s (with the vertices of L having been output

117

the copies of J k x k 2 k t k x k 2 k, k x k 2 k ,

the graph G

the partial ordering Pthe //-vertices and J-vertices

the partial
ordering P

x •

Figure 5.8: Building G from / / , copies of J and G.

so far), and the algorithm GREEDY (.//-colourable) on the input (G,P ,s)

where the current-vertex is s (note how we consider the G-vertices of G

and the vertices of G as being identically named). Essentially, these two

algorithms work with the same partial ordering; so consider executions of

these algorithms with respect to the same subsequent linear ordering.

Our induction hypothesis is as follows: ‘The current-vertex in both ex

ecutions is s0; GREEDY(//-colourable) has so far output the vertices of

118

L U {si, s2, • • •, sm}, where each Si is a (5-vertex, for i = 1 , 2 , . . . , m; and

GREED Y(^-colourable) has so far output the vertices of {si, s2, • • •, sm}.’

Suppose tha t the induction hypothesis holds at some point (it certainly

holds when s0 = s).

Suppose tha t s0 is output by GREEDY(//-colourable). That is, there is

a homomorphism / : (L U {so, Si , . . . , sm})c —> H. In particular, if (si} Sj) is

an edge of G then (/(s i) , f{s j)) is an edge of H, for i , j = 0 , 1 , . . . , m. Hence,

we have a homomorphism f : ({so> Si, • • •, Sm})c H-> and so So is output

by GREEDY (//-colourable).

Conversely, suppose th a t so is output by GREEDY(iY-colourable). That

is, there is a homomorphism / : ({so, Si , . . . , sm})^ —>• H. Consider the copy

of J corresponding to the G-vertex s* of G. As f (s i) is a vertex of H , there

must be a G-vertex Sj of G such tha t (/(s^), f (s j)) is an edge of JT, and so /

can be extended to a homomorphism / : (L u {s0, Si , . . . , sm})G —» H. Hence,

So is output by GREEDY(iY-colourable). The result follows by induction. □

Now we can proceed as Hell and Nesetril did in [23]. Assume that there

exists a non-bipartite graph H for which the problem Qh is not Ef-complete.

Choose H so th a t it is non-bipartite and the problem Qh> is S 2 _comPlete for

any non-bipartite graph H'\

(i) with fewer vertices than H; or

(ii) with the same number of vertices as H but with more edges.

It is straightforward to see that, under the assumption above, such an H

must exist.

119

In [23], working from a similar hypothesis and graph H, the proof pro

ceeds by using the indicator, sub-indicator and edge-sub-indicator construc

tions, in tandem with lemmas analogous to Lemmas 5.3, 5.4 and 5.5, to show

th a t H must be a 3-clique; and hence that the 3-colouring problem is not

N P-com plete, thus yielding a contradiction. The sections of the proof of the

main theorem of [23] entitled ‘The structure of triangles’ and ‘The structure

of squares’ can be applied verbatim to our graph H (as the constructions we

use are identical and we have our analogous Lemmas 5.3, 5.4 and 5.5). Hence,

we may assume th a t H is 3-colourable, i.e., that H is a 3-clique. However,

Theorem 5.1 yields a contradiction as the problem GREEDY(partial order

ing, undirected graphs, iL-colourable) is none other than QH when H is a

3-clique, and the result follows. □

5.4 Conclusion

In this chapter, we have exhibited a complexity-theoretic dichotomy result

concerning the nondeterministic computation of lexicographically first max

imal i/-colourable subgraphs of graphs. Our dichotomy result is different

from other dichotomy results in that it is concerned with NP-completeness

and Sj-com pleteness, as opposed to computability in polynomial time and

NP-completeness as is more often the case. There are natural directions in

which to extend this research.

Can we obtain a constructive proof (as opposed to the proof by contra

diction above) of our main result?

120

Can we obtain a similar result in the case of directed graphs or other

structures?

What is the complexity of the analogously defined lexicographically last

maximal subgraph problem [again, with respect to an appropriate prop

erty 7r), in the cases when a graph is linearly ordered and partially

ordered?

The only result we know of as regards computing lexicographically last

subgraphs is tha t of [25] where it is proven that deciding whether a given

set of vertices of a given linearly ordered graph is the lexicographically last

such maximal independent set is co-NP-com plete. Regarding the first two

questions, it is open as to whether there is a constructive proof of Hell and

Nesetril’s result and also whether it can be extended to directed graphs; and

it therefore not surprising th a t so far we have not been able to answer these

questions. We have therefore decided to extend our research to try and obtain

another dichotomy result when our partial ordering is replaced with a linear

ordering (so tha t the two relevant complexity classifications are ‘computable

in polynomial tim e’ and ‘computable in P NP’). We will present our results

in the next chapter.

121

C hapter 6

Linear orderings

6.1 Introduction

In the previous chapter we presented a dichotomy result involving the prob

lem GREEDY(partial ordering, undirected graphs, iif-colourable): we proved

th a t the problem is N P-com plete if H is bipartite, and E^-complete other

wise. In this chapter we will consider the analogous problem except when

the vertices of any graph are linearly, as opposed to partially, ordered. We

will therefore return to the world of lexicographically first maximal subgraph

problems considered by Miyano in [29]. Miyano [30] also proved that if a

property n is hereditary, determined by the blocks, non-trivial on connected

graphs and testable in polynomial time then the problem of deciding whether

a given vertex of a given undirected graph G, whose vertices are linearly or

dered, lies in the lexicographically first maximal connected subgraph of G

satisfying n is Aj-com plete. His results do not apply to our problem be-

122

cause we consider properties testable in nondeterministic polynomial time,

and because we do not require the subgraph induced by the set of vertices

output by our algorithm, on a specific instance, to be connected.

We will prove here another dichotomy result; tha t is, that the problem

GREEDY (linear ordering, undirected graphs, Ff-colourable) is P-complete if

H is a bipartite graph, and A^-complete otherwise. Following the strategy

used in Chapter 5, we will first show that a particular problem is complete

for A £, and then use such a result to derive a contradiction and so obtain

our main result.

6.2 D eterm inistic Satisfiability

In order to prove the completeness of the problem GREEDY (linear ordering,

undirected graphs, 3-colourable) for A£, we will reduce from the problem De

terministic Satisfiability, tha t was proved complete for A£ by Papadimitriou

in [32].

Definition 1. Let Y i,. . . , Y*, {aq,. . . , Xk-i} be disjoint sets of Boolean

variables. A Boolean formula F in conjunctive normal form involving these

variables is said to be deterministic if it consists of the conjunction of the

following clauses.

• For each y G Y\ U Yk either (y) or (->?/) is a clause of F.

• For each j = 1 , . . . , k — 1 and each variable y G Yy+i, there are two sets

of conjunctions of literals over Y j\j{x j} , called, respectively, Cy and Dy,

123

such tha t for each conjunction a E Cy and each conjunction (3 G Dy,

(a —> y) and (/3 —>> ->y) are both clauses of F\ and, furthermore, for

any tru th assignment on Yj U {^j}, exactly one of the conjunctions in

Cy U Dy is true (note th a t F can be written in conjunctive normal form

because a and (3 are conjunctions of literals, and therefore (a —> y)

and (f3 —> ->y) can be written as disjunctions of literals).

We will now show a very simple example of a deterministic formula F,

where k = 3, Yx - { y j , Y2 = {y2} and Y3 = {y3}.

(Vi) A (- » 2 / 3)

A((yiAxi) -> y2)A({~^yiAxi) -)• 2/2)A((-<2/iA-<a;i) -> —>2/2)A((2/iA--Xi) -> ~̂ y2)

A((y2Ax2) y3)A((^y2Ax2) -> y3)A((^y2A^x2) -u/3)A ((2/2A~̂ x2) -> ~>y3)

The first row corresponds to the first part of the definition, that is, for

every variable y in Y\ U Y3 there is a clause in F. Because every satisfying

tru th assignment on the variables of F must satisfy these clauses, the values

of yi and y3 are effectively fixed. The second and third rows of the example

correspond to the second part of the definition of a deterministic formula

(note tha t we have written the clauses in the form of implications only for

clarity). The sets of conjunctions are as follows: Cy2 = {(2/1 Arci), (“>2/1 Axi)},

D y2 = {(->2/1 A -.x i), (?/i A -^ri)}, Cyz = {(y 2 A x 2), (->y2 A x 2)} and Dyz =

{(~'2 /2 A “'^ 2), (2 /2 A ~'X2)}. For each tru th assignment on Y\ U {xi}, exactly

one of the conjunctions in CV2 UD y2 evaluates to true. Therefore, as the value

of 2/1 is effectively fixed, assigning a value to variable x\ fixes the values of

the variables in Y2, tha t is, the variable y2. Variable y2 must have value true

124

if one of the conjunctions in C y2 evaluates to true, and 2 /2 must have value

false if one of the conjunctions in D y2 is true.

Once a tru th value has been given to all variables in Y\ U {^i}, effectively

all the variables in Y2 have been given a fixed value. The process can therefore

be repeated with variable x 2. If assigning a value to x 2 makes one of the

conjunctions in Cyz true then y3 must evaluate to true, and if one of the

conjunctions in Dyz evaluates to true then y3 must be assigned the value

false. After x 2 has been given a value, and effectively the value of ? /3 has

been fixed, then such a value of ? /3 must satisfy the clause consisting of a

literal from Y3, tha t is, the clause (—*2/3).

Having given the definition of a deterministic formula, we can now define

the problem.

Definition 2. Deterministic Satisfiability is defined as follows.

Instance: F0(x 1 , . . . , x k- \ , Y u . . . , V*), F i(Y i ,Z x) , . . . ,F k- i{Y k- U Z k-i) where:

{a?!,. . . , £a;_i}, Y i , . . . , Yjt, Z i , . . . , Zk - 1 are disjoint sets of Boolean variables;

Fq is a deterministic formula; and F \ , . . . ,Fk-i are Boolean formulae in 3-

conjunctive normal form.

Question: Is there a tru th assignment t (x 1 , . . . , X k - i ,Y i , . . . , Yk) such that:

• F0 is satisfied by r , and

• F j (r (Y j), Zj) is satisfiable if, and only if, t (xj) = true.

Deterministic Satisfiability can be solved in A f by using the following

algorithm. For every variable y £ Yi, there is either a clause (y) or a clause

(—iy) in Fo. Let t (Y\) denote a tru th assignment on Y\ that satisfies such

125

clauses. Clearly any satisfying tru th assignment on Fq must agree with t(Y i).

Using an oracle for satisfiability, check whether the formula Fi (t (Y \) , Z\) is

satisfiable. If it is then set the value of xi to true, else set it to false. The

obtained tru th assignment on Y\ U {xi} fixes the value of the variables in Y2

(because of the structure of To); therefore this gives us a well defined tru th

assignment t { Y 2) on the variables in Y2 . The algorithm can now check, using

an oracle for satisfiability, whether F2(t (Y 2), Z 2) is satisfiable. If it is then

set the value of x 2 to be true, else set it to be false. The obtained tru th

assignment on Y2 U {x2} gives us a well defined tru th assignment on >3. The

execution continues as described above until the unique tru th value on Xk-i

has been obtained. This, together with r(y)t_1) (the tru th assignment on the

variables in Yk~ 1 obtained using the method outlined before) uniquely gives

us a tru th assignment r(Yk) on the variables in Y*. For every variable y G

there is either a clause (y) or a clause (->y) in F0. If r(Yk) satisfies all such

clauses from F0 then the given instance is a yes-instance of the problem. It

is straightforward to notice tha t if a tru th assignment cannot be found using

such a procedure then the given instance of Deterministic Satisfiability is a

no-instance.

6.3 T he com plete problem

T h e o re m 6.1 The problem GREEDY(linear ordering, undirected graphs, 3-

colourable) is -complete.

P ro o f The problem (as defined in Chapter 2) is clearly in as it can be

126

solved in polynomial time by a deterministic Turing machine that has access

to an oracle for 3-colourability. To prove the completeness of GREEDY (linear

ordering, undirected graphs, 3-colourable), we will reduce from the prob

lem Deterministic Satisfiability (DSAT). Given an instance (F0, . . . , Fk-i) of

DSAT we will construct an instance (G , P, u, v) of GREEDY(linear ordering,

undirected graphs, 3-colourable), where G is an undirected graph, P is a

linear ordering on the vertices of G, u is the first vertex in the linear ordering

and v is a vertex of G. The instance (G ,P ,u ,v) will be a yes-instance of

GREEDY(linear ordering, undirected graphs, 3-colourable) if, and only if,

(F0, • • •, Pfc-i) is a yes-instance of DSAT, and the construction will be such

th a t it can be completed using logspace.

Let Yi = {y} , . . . , y f1}, for i = 1 , . . . , k, and let Z* = {z\ , . . . , m'}, for

1 = 1 , . . . , fc — 1 . We will divide the construction of G from (F0, . . . , Fk-i)

into several phases.

Phase 1 We construct a triangle, whose vertices are labelled u , £, / . For each

variable e in { x i , . . . , x fc- i } u Y i U . . .U YkU ZiU .. .UZk- i , we add to the graph

2 vertices labelled, respectively, e and ->e, where ->e is the negation of variable

e. We will refer to such vertices as literal-vertices, and to the set containing

all literal-vertices as L. Each vertex e is adjacent to the corresponding vertex

->e, and both are adjacent to vertex u. See Figure 6 . 1 for an illustration.

Phase 2 For each clause in F 0 consisting of a literal from Yi, y \ , say, we

add to the graph a triangle whose vertices are labelled y\ Q, y\^j, y\ 2. We

then join y\ x and y\ 2 to literal-vertex y \ , and join vertex y\ u to vertex /

(note th a t if the literal was, say, -iy\ then we would add to the graph three

127

Phase 1

Figure 6.1: Phase 1 of the construction.

Phase 2

Figure 6.2: Phase 2 of the construction.

vertices labelled, respectively, and we would join them as

explained above). Notice that, by construction, in every proper 3-colouring

of the graph, vertices t , y\ 0 and literal-vertex y\ must be assigned the same

colour. We will refer to the set of vertices added in this phase as V\. See

Figure 6.2 for an example relative to clauses (?/J) and (~i2/i).

Phase 3 The gadgets used in this phase are similar to the ones seen in Section

11.4.5 of [28]. For each formula Fj, where i = 1 , 2 , . . . , k — 1, we proceed

as follows. For each clause j in Fi, we add to the graph 3 vertices labelled,

128

m

m

Phase 3

Figure 6.3: Phase 3 of the construction.

respectively, Zj /F , ZF. Such vertices correspond to the literals in the clause.

Each of these vertices is adjacent to its corresponding literal-vertex, and is

also adjacent to t. For each clause j in formula F , we then add to the graph

a copy of a K 4 , whose vertices are labelled c ^ ,m F ,r a F and m F (all such

copies are disjoint). We then join vertex m F to /F , m -j to /F and m F to /F .

Finally, for each formula F , we add to the graph a triangle whose vertices

are labelled 0 ^ 1 , 0 ^2 , F (all such triangles are disjoint). We then join vertices

Oi,i, Of,2 , F to all vertices of the form c^-. We will refer to the set of vertices

added in this phase, relative to each formula F , for 1 < i < k — 1 , as Pf. See

Figure 6.3 for an example relative to F\ = (y\ VzJ V -i^J) A (-■ z \ V -*z\ V ~1?/}).

Phase 4 We attach a copy of a K 4 to each vertex labelled F , where i =

1, 2 , . . . , k — 1, by identifying F with one of the vertices of the clique (all

129

such copies are disjoint). We label the remaining 3 vertices dJ,df,F j. We

then add to the graph (for each i) 4 vertices labelled s } , s j , s j , s j . We join

vertices sj and sj to literal-vertex Xi and to vertex F*. We then join sj and

sj to literal-vertex ->Xi and to vertex F*. Vertex sj is also joined to s?, and sj

is joined to sj. Finally, we join F; and F̂ to vertex / . We will refer to the set

of vertices added in this phase, relative to each vertex F* (that corresponds

to formula F*), as P*. See Figure 6.4 for an example.

Phase 5 For each r = 1,2, . . . , & — 1, and each variable y G Yr+1 , there are

two sets of conjunctions of literals over Yr U{xr }, called, respectively, Cy and

D y, such tha t for each conjunction a G Cy and each conjunction (3 G Dy,

(a —> y) and (/3 -> ~^y) are both clauses of F0. The constructions relative to

conjunctions of type a and of type {3 are very similar. For each variable y in

Vi, where 2 < i < k, we proceed as follows. Let y = yj, say.

• For each conjunction a , relative to yj, we add to the graph the following

vertices. Let a = (gi A # 2 A . . . A #*,), where each g- is a literal. For

each e = 1 , 2 , . . . , 6 , we add to the graph a triangle (all such copies are

disjoint) whose vertices are labelled p l j , p2j, pSj. Note that e indicates

the position of literal ge in a. We subsequently join p lj and p2j to

literal-vertex ->ge, th a t is, to the vertex corresponding to the negation

of literal ge in a , and join pSj to vertex / . For each a, relative to

variable yj, we then add to the graph a triangle whose vertices are

labelled p4^,p5^, aj (all such copies are disjoint). We then join p4j,p5j

and a\ to all vertices of the form pSj (relative to conjunction a), and

we join aj to vertex / .

130

• For every conjunction /?, relative to yj, we proceed as follows. Let

P — {9i A # 2 A . . . A <?b). For each e = 1 , 2 , . . . , b, we add to the

graph a triangle (all such copies are disjoint) whose vertices are la

belled p l j , p 2j , p 3j, and join pi? and p2j to literal-vertex ~̂ ge, tha t is,

to the vertex corresponding to the negation of literal ge. We then join

pSj to vertex / . For each ft, we then add to the graph a triangle whose

vertices are labelled p4j , p 5j ,bj (all such copies are disjoint). Vertices

p4j , p 5j and bj are then joined to all corresponding vertices of the form

p3j (relative to conjunction /?), and vertex tij is joined to / .

For q = 2 ,3 , . . . ,k , we refer to the set of vertices added in this phase

relative to variables in Yq as Pq . In Figure 6.4 we show an example relative

to a conjunction a = (-iyj A y\ A ^i) and a clause, ((—ij/J A y\ A X \) —> y\), in

F0.

Phase 6 For each vertex of the form a l , aj, say, corresponding to a clause

(a —> yj) in Fo, we add to the graph 2 adjacent vertices labelled, respectively,

r l j and r2j, and join them to aj. We then join every vertex of the form

r l j and r 2j to literal-vertex yj. For each vertex of the form bZ, bj, say,

corresponding to a clause (/? —> ->yj) in F0, we add to the graph 2 adjacent

vertices labelled, respectively, w l j and w 2j and join them to frj. We then join

every vertex of the form w l j and w 2j to literal-vertex - 1 yj. For g = 2 ,3,

we refer to the set of vertices added in this phase relative to variables in Yq

as P%. See Figure 6.5 for an illustration relative to: variable y\, two clauses

of the form (a —> y\) and one clause of the form (p —> ~^y\). Note that, in

the figure, each vertex labelled a\ corresponds to a conjunction a.

131

Phase 4 Phase 5

Figure 6.4: Phases 4 and 5 of the construction.

Phase 7 For each clause in F0 consisting of a literal from 1*, yk say, we add

to the graph 6 vertices labelled, respectively, q lk, q2 k, q3lk, q4lk, q5lk and q6 k.

We then join vertices q l \ and q2 \ to q3k and y*k. Vertex q3lk is then joined

to vertex / , and q l lk is joined to q2k. Vertices q3k, q4lk, q5k and ^6 .̂ are then

joined to form a K 4 . Note th a t if the literal was of the form ~̂ yk , the labelling

of the added vertices would not change. We conclude the construction of

graph G by adding a triangle whose vertices are labelled 2 1 , 2 :2 ,*;. We join

such vertices to all vertices of the form q6 k . We will refer to the set of vertices

added in this phase as V7. See Figure 6.5 for an illustration relative to clauses

(- ‘Vit) and (yl) in F0.

Clearly the construction can be completed using logspace.

132

Phase 6 Phase 7

Figure 6.5: Phases 6 and 7 of the construction.

The linear ordering P is as follows:

u < t, < f < L < V, < P? < P* < P i < P i < P i < P i

< p* < p i < . . . < p i , < p i , < p i < ^ < v-7

We will now show th a t vertex v appears in the set of vertices output

by the algorithm GREEDY(3-colourable) on instance (G ,P ,u) if, and only

if, (F0, . . . , Fk~i) is a yes-instance of DSAT. Consider the execution of the

algorithm GREEDY(3-colourable) on instance (G ,P ,u). The first 3 vertices

in the linear ordering P are w, t and / , and it is clear that they will all be

chosen by the algorithm; as they form a triangle, in any proper 3-colouring

such vertices must be assigned 3 different colours. The execution continues

133

by examining all vertices in L, tha t is, all literal-vertices (in any order), and

they will all be chosen. As all vertices in L are adjacent to u, they must be

coloured identically to either t or / .

The execution will continue by examining the vertices in Vi, that is,

those vertices added to the graph during Phase 2 of the construction. First

all vertices of the form y and - > will be examined (in any order) then all

vertices of the form y ^ 2 and ~>yi2 (again in any order), and finally all vertices

of the form y ^ 0 and ~^y^ 0 (in any order). All such vertices will be chosen, but

this will have the effect that, in any proper colouring, every literal-vertex I

from Yi, such th a t (/) is a clause in F0, will be coloured as t , while -■/ (the

literal-vertex corresponding to the negation of I) will be coloured as / . This

corresponds to assigning a tru th value to all variables in Yi that satisfies

the clauses in Po consisting of one literal over the set of variables Y\. The

tru th assignment sets the value of every variable y 6 Y\ to be true if the

corresponding literal-vertex y is coloured with the same colour as t , and sets

the value of y to be false if -«y is coloured with the same colour as t. We will

denote such a tru th assignment as ti(Y i).

The linear ordering continues with the vertices in P f, that is, the vertices

added in Phase 3 relative to formula Pi. For each clause c* in Pj (the order

in which the clauses are examined is irrelevant), the corresponding vertices

in G are examined in the following order.

• First /};, and are examined and chosen. As / } i5 l \ { and /J {

are adjacent to t, they can only be coloured identically to either / or

u. Note tha t /} t is adjacent to the literal-vertex corresponding to the

134

first literal in clause q , l\ f is adjacent to the literal-vertex correspond

ing to the second literal in q and { is adjacent to the literal-vertex

corresponding to the third in q .

• The execution continues by visiting m\ m f and m \ Vertices m \ i

and m \ { are always chosen, but m \ { can be selected if, and only if, at

least one of vertices l\ i: ^ (which can only be coloured as vertex u

or vertex /) can be coloured as / . Note that this can only happen if at

least one of the literal-vertices adjacent to /} f, If { or If • is coloured as t.

As the vertices in V\ have already been examined, the colouring on the

literal-vertices from Y\ is now fixed. The colouring of a chosen literal-

vertex from Z\ is still not fixed, however. This phase corresponds to

checking that a satisfying tru th assignment exists that satisfies clause

q in Fi; if a colouring exists such that mf^ can be chosen then this

corresponds to a satisfying tru th assignment on clause C{.

• Vertex ci,* is examined next, and it is chosen if, and only if, was

rejected (note that this means that a corresponding satisfying tru th

assignment cannot exist, or vertex m \ f would have been chosen).

After all vertices corresponding to each clause in Fi, tha t is, all vertices of

the form /} , If , Zj , m \ , m \ , m \ and have been examined, vertices

Oi5i and o \ t2 will be considered. It is clear that such vertices are always chosen.

Vertex F\ will be examined next, and it will be chosen if, and only if, none

of the vertices of the form c \ - have previously been selected. As there is a

vertex C\j for each clause q in Fi, by assigning value true to each variable

in Y\ U Z\ such tha t its corresponding literal-vertex has been coloured with

135

the same colour as t , it would be possible to satisfy formula F\, if vertex

F\ was chosen. If F\ was not chosen then such a tru th assignment cannot

exist, or else by colouring the vertices accordingly, vertex F\ would have been

chosen. Note that, as the vertices in V\ have previously been chosen, this

phase corresponds to checking the satisfiability of F i(ti(Y i), Z\).

The execution continues by visiting the vertices in P 4, tha t is, the vertices

added in Phase 4 corresponding to formula F \ . The vertices are examined in

this order: first d\ then d\ and finally F\. Vertex F\ can be chosen if, and

only if, F\ was rejected, because F i ,d \ ,d l and F\ form a K±. The execution

continues by examining and choosing vertices s},Si , sf , s4. This results in

fixing the colouring of literal-vertices x\ and - ix \ . Vertex x\ is coloured as

t if, and only if, F\ is chosen, while -ix\ is coloured as t if, and only if, Fi

is chosen. This corresponds to deriving a tru th assignment on variable x\

according to the satisfiability of F i(ti(Y i), Z\). Variable x\ is set to true if

literal-vertex x\ is coloured with the same colour as t, and it is set to false if

-ixi is coloured identically to t. Note tha t at this stage all literal-vertices from

Yi U {xi} have a fixed colouring. We can therefore derive a corresponding

tru th assignment ri(Yi U {xi}).

The execution will continue by examining the vertices in P2i that is, the

vertices added in Phase 5 relative to all implications (a —>• y) and (j3 —> -iy)

in Fq, for every variable y G Y2. The vertices in P 25 are examined in the

following order. For each j = 1,2, . . . , d 2 (in any order), where c?2 is the

number of variables in Y2 , first all vertices with labels of the form p l J2 are

examined, then all vertices of the form p 2 J2 and then finally all vertices of the

form p32 (in any order). After these vertices have been examined, all vertices

136

of the form p42 and p5J2 will be examined (in any order). Finally all vertices

of the form a2 and bP2 will be considered (again in any order).

We will now explain how, for any variable y in Y2 , the corresponding

vertices in G will be chosen or rejected. Let y = y2, say, and consider an

implication (a —>■ y2) . Let a = (gi A g2 . . . A g{) (each is a literal).

• For each e — 1 , 2 , . . . , / (in any order), the algorithm will first examine

the corresponding vertices p l 2 and p 2 2, and such vertices will be chosen.

The corresponding vertex p32 is examined afterwards. Vertex p32 is

adjacent to vertex / , and it must be coloured with the same colour as

the corresponding literal-vertex -ige (the literal-vertex corresponding

to the negation of the literal in position e in conjunction a); it follows

th a t p32 can be chosen if, and only if, -■ ge (which has already been

assigned a colour) has been coloured as vertex t. Note that this means

tha t literal-vertex ge has been coloured identically to / . If ->ge has been

coloured with the same colour as vertex / (and ge as t) then p32 will

be rejected.

• After all vertices of the form p l 2, p 2 2 and p32 have been examined, the

algorithm continues the execution by visiting p42 and p52, and such

vertices are clearly always chosen. When vertex a2 is examined, it will

be chosen if, and only if, none of the corresponding p32 have previously

been chosen. Note th a t this means that all literal-vertices gi,g2, . . . ,gi

have been coloured identically to vertex t.

The same holds for every implication of the form (/? —> ~'y2)\ when vertex

b2 is examined, it will be chosen if, and only if, all of the corresponding p32

137

have previously been rejected, which means th a t every literal-vertex corre

sponding to a literal in (3 has been coloured as vertex t. It follows that the

derived tru th assignment t i(Y \ U {^i}) will satisfy a conjunction a if, and

only if, the corresponding a2 is chosen. The same holds for all vertices b̂ ; b2

is chosen if, and only if, under the current tru th assignment corresponding

to the colouring of the vertices, the corresponding (3 is satisfied.

The execution continues by visiting all vertices in P2 , tha t is, all vertices

of the form r l 2 , r22 , w l 2 and w22 added in Phase 6 (in any order). By the

definition of deterministic formula, for each set of clauses of the form (a —> y)

and (j3 —>■ -iy) relative to a variable y , exactly one of the conjunctions a or (3

evaluates to true for any tru th assignment. In the graph this is reflected by

the fact that, for each pair of literal-vertices corresponding to a variable in

Y2, { y i i ^ y i } ’ say, exactly one of the vertices a2 (each of which corresponds

to a conjunction o?) or one of the vertices b̂ (each of which corresponds to

a conjunction (3) is chosen. This results in forcing one of the literal-vertices

V25 t° be coloured with the same colour as t. Literal-vertex y 2 must be

coloured identically to t if any of the corresponding vertices a2 is chosen,

while vertex ->y2 must be coloured with the same colour as t if any of the

corresponding vertices F2 is chosen. This is equivalent to deterministically

deriving a tru th assignment on all variables in Y2. A variable y2 is assigned

value true if literal-vertex y2 is coloured with the same colour as t , and it is

assigned value false if literal-vertex -■ y2 is coloured with the same colour as

t. We therefore obtain a corresponding tru th assignment ri(Yi U ^ U {^i})-

The execution continues by visiting all vertices in P2 then P2 , P35 and then

P®, tha t is, all vertices added in Phases 3 and 4 relative to F<i, and all vertices

138

added in Phases 5 and 6 relative to the clauses (a: —> y) and (/? —»• ~^y) for

all variables y G Y3. Then the algorithm continues its execution by visiting

all vertices in P 3 then P3 , P® and then P®, and so on, until the vertices

in Pk have been examined, which results in fixing a colouring on all literal-

vertices corresponding to the variables in y*. Note that the ordering on the

vertices in each set of the form P 3, P 4, Pf+l and Pj+l5 for i = 2 , 3 , . . . , k — 1,

is the same as the one shown on the corresponding vertices in P 3, P 4, P25

and P®, respectively. This corresponds to deterministically deriving a tru th

assignment t \(Y i U . . . U Yk U { x \ , . . . ,

The execution terminates by examining the vertices in V7 , that is, the

vertices added in Phase 7. For each clause in P 0 (in any order) consisting

of a literal from Yk, yl, say, the algorithm will first visit vertex q lJk then

q2 Jk and finally q3k. As q3k is adjacent to / , and it must have the same

colour as the corresponding literal-vertex, it follows that q3k can be chosen

if, and only if, yk has been assigned colour t. The execution proceeds by

examining, and choosing, vertices q4k and q5k. Then vertex q6 Jk is examined,

and it can be chosen if, and only if, vertex q3k was previously rejected.

So, if vertex q6 k is chosen, then the tru th assignment corresponding to the

colouring on the chosen vertices does not satisfy the clause involving variable

yk and vice-versa. When all vertices of the form q lk ,q2k ,q3k ,q4k ,q5k ,q6k

have been examined, vertices z\ and z2 are examined and always chosen.

Finally vertex v is examined, and it will be chosen if, and only if, all vertices

of the form q6 k have been rejected, which means that all literal-vertices from

Yk that appear in a clause from P 0 have been assigned colour t. Vertex

v, therefore, can be chosen if, and only if, the corresponding derived tru th

139

assignment t\(Y i U . . . Y* U { x \ , . . . ,x^_i}) satisfies F0. W hat is more, for

1 < j < k ~ 1, Fj(ri(Yj), Zj) is satisfiable if, and only if, T\{xj) = true. If

vertex v is chosen, then 7i (xi , . . . , Xk-u Y\, • • •, Yk) satisfies the conditions of

Definition 2 of Deterministic Satisfiability, and (Fq, . . . , Fk_i) is therefore a

yes-instance of DSAT.

Conversely, if (F0, . . . , Fjt_i) is a yes-instance of DSAT, a tru th assignment

t (x i , . . . , X k - i ,Y i , . . . , Yk) with the required characteristics must exist. By

similar reasoning, all vertices of the form q6 f will be rejected, and vertex v

will therefore be chosen. The result follows. □

6 . 4 T h e d i c h o t o m y r e s u l t

T h e o re m 6.2 The problem GREEDY {linear ordering, undirected graphs,

H-colourable) is P -complete, if H is bipartite, and A^-complete, if H is

non-bipartite.

P ro o f In the proof we will refer to the problem GREEDY(linear ordering,

undirected graphs, i/-colourable) as L H. L H can clearly be solved in if

H is non-bipartite and in P if H is bipartite (the latter because L# is exactly

the same problem as the lexicographically first maximal subgraph problem

for the property bipartite, and such a problem was proved P-complete in

[29].) To prove th a t L h is Ajj-complete, we will follow the strategy used by

Hell and Nesetril in [23], and which we also used in Chapter 5.

Using the constructions detailed in the previous chapter, that is, the indi

cator construction, the sub-indicator construction and the edge-sub-indicator

140

construction, we obtain the following 3 lemmas.

L e m m a 6.3 I f the problem C h * is A £-complete then so is C h -

L e m m a 6.4 I f the problem Cfj is A^-complete then so is Ch -

L e m m a 6.5 I f the problem Cfj is A^-complete then so is Ch -

The proof of the lemmas follows immediately from the proofs of the cor

responding 3 lemmas in Chapter 5, by simply encoding our linear ordering

as a directed graph consisting of an Hamiltonian path.

To conclude the proof we proceed exactly as we did in the previous

chapter, with the only difference being that our complete problem is now

GREEDY(linear ordering, undirected graphs, 3-colourable). The result fol

lows. □

6 .5 C o n c l u s i o n

In this chapter we showed a dichotomy result for the problem GREEDY (linear

ordering, undirected graphs, /f-colourable), and this concludes our study of

the complexity of the problem GREEDY(ordering, C, 7r).

In the following chapter we will introduce a new general greedy algorithm,

called MaxDegree(7r). Like we did in the case of GREEDY(7r), we will ex

amine the complexity of the related problem MaxDegree(C, n) and we will

obtain new complete problems for the classes N P and ££ .

141

C hapter 7

M axD egree

7 .1 I n t r o d u c t i o n

In the previous chapters we discussed, for different values of the parameters:

ordering, C and 7r, the complexity of the problem GREEDY(ordering, C, 7r),

and we have obtained new problems complete for the classes P , N P , A £ and

In this final chapter we will show that the techniques used to obtain

these results can be applied again with only relatively simple modifications

to problems relative to another greedy algorithm, MaxDegree(7r).

We will begin the chapter by defining our new greedy algorithm, we will

then move on to obtain a new class of NP-complete problems and we will

finish the chapter by proving the completeness of a problem for ££.

142

7.2 MaxDegree(7r)

Given an undirected graph G = (V,E), where \V\ = n , removing a vertex

of highest degree from G, and then recursively applying the same procedure

to the obtained subgraph until the empty graph is obtained, gives rise to an

elimination sequence on V. We can think of any such sequence as a linear

order v\ <s v2 < s . . . < s vn on V . Greenlaw [17] proved that, given an

undirected graph G = (V ,E) and 2 vertices Xi,X2 in G, it is NP-complete

to decide whether there is an elimination sequence on V such tha t X\ <s x 2.

He also proved tha t if the vertices of G are numbered 1,2, . . . , n , and at

any stage the removed vertex is the smallest numbered vertex of highest

degree, deciding whether there exists an elimination sequence on V such

th a t x\ <s x 2 is P-complete. Inspired by such results, we will consider the

complexity of deciding whether, given an undirected graph G and a vertex

v in G , v appears in any of the lexicographically first maximal subgraphs of

G, satisfying a certain property 7r, when the linear order on the vertices of

G is given by any of the elimination sequences on V.

Let 7r be a property on graphs, and let G be an undirected graph. The

algorithm MaxDegree(7r) is as follows:

i n p u t (G)

S := 0

W : = G

w h i l e W / 0 do

c u r r e n t - v e r t e x a v e r t e x o f h i g h e s t d e g r e e i n W

i f 7r (S U { c u r r e n t - v e r t e x } , G) t h e n

143

S := S U { c u r r e n t - v e r t e x }

f i

r e m o v e c u r r e n t - v e r t e x a n d i t s i n c i d e n t e d g e s f r o m W

o d

o u t p u t (5)

The execution of the algorithm begins by creating a copy, called W, of

the input graph G. At every execution of the while loop, a vertex of highest

degree in W is chosen, and the subgraph of G induced by the set of vertices

S U { curren t —vertex} is tested for property 1r. If the subgraph satisfies 7r

then current-vertex is added to the set 5 , else it is rejected. Regardless of

whether current-vertex is selected or not, it is subsequently removed from

graph W, and the execution continues with another repetition of the while

loop. The program terminates when the graph W does not contain any more

vertices. The algorithm MaxDegree(7r) is nondeterministic and it outputs

sets of vertices that induce, if the property 7r is hereditary, maximal subgraphs

of the input graph G that satisfy property 7r.

Let C be a class of graphs and let 7r be some property on graphs. The prob

lem MaxDegree(C, 7r) has as its instances tuples (G, v), where G is a graph

from the class C and v is a vertex in G. A yes-instance of the problem is an

instance for which there exists an execution of the algorithm MaxDegree(7r)

on input G that results in vertex v being output.

We stress here that MaxDegree(7r) is a nondeterministic algorithm be

cause there is no rule on how the algorithm should choose the next vertex

if there is more than one vertex of highest degree in the graph W. If we

144

give a heuristic that always makes such a decision, the algorithm becomes

deterministic.

One possible such heuristic is the following. Let us assume that the ver

tices of our instance graph are labelled each with a different natural number

between 1 and n, where n is the number of vertices. We can therefore obtain

the following algorithm, which we will call DetMaxDegree(7r).

i n p u t (G)

S : = 0

W := G

w h i l e W 7 ̂ 0 do

c u r r e n t - v e r t e x := t h e s m a l l e s t n u m b ered v e r t e x

o f h i g h e s t d e g r e e i n W

i f t i { S U { c u r r e n t - v e r t e x } , G) t h e n

S := S U { c u r r e n t - v e r t e x }

f i

r e m o v e c u r r e n t - v e r t e x an d i t s i n c i d e n t e d g e s f r o m W

od

o u t p u t (5)

The algorithm always chooses the vertex with highest degree and smallest

numbered label and, if the property 7r is hereditary, it outputs a set of vertices

that induce a maximal subgraph of the input graph G satisfying the property

7r. We can define the problem DetMaxDegree(C, 7r) as we did in the case

of the algorithm MaxDegree(7r). We will now show that the problem Det-

MaxDegree(undirected graphs, 7r) is P-complete for any property 7r which is

145

hereditary, non-trivial on undirected graphs and testable in polynomial time

(via a logspace reduction).

T h e o re m 7.1 Let 1t be a polynomial time testable, hereditary graph prop

erty non-trivial on undirected graphs. The problem DetMaxDegree(undirected

graphs, 7r) is complete for P .

P r o o f For any property 7r testable in polynomial time, hereditary and non

trivial on undirected graphs, the problem DetMaxDegree(undirected graphs,

7r) is clearly in P . By [29], we know that the problem (from now on called

LFMSP(7r)) of deciding whether a given vertex of a given undirected graph G ,

whose vertices are linearly ordered, lies in the lexicographically first maximal

subgraph of G satisfying 7r is P-complete. For any property 7r satisfying

the aforementioned conditions, we reduce an instance (G , v) of the problem

LFMSP(7r), where: G = (V ,E) is an undirected graph, V = {1,2, . . . , n }

and v £ V, to an instance (G', v') of the problem DetMaxDegree(undirected

graphs, 7r), such th a t {G,v) is a yes-instance of LFMSP(7r) if, and only if,

(G ',v ') is a yes-instance of DetMaxDegree(undirected graphs, 7r).

We begin the construction of G' with a copy of G and we take v' to be the

vertex previously known as y: we refer to the vertices of G1 that belong to the

copy of G as G-vertices. In order to force the algorithm DetMaxDegree(7r)

to examine the vertices of G 1 following the linear ordering on G , we identify

each vertex in G' with the centre of a star. The size of each star depends on

the position of the vertex in the linear ordering. Let p(x) denote the position

of a vertex x in the linear ordering: the size of the star attached to the G-

vertex x in Gr will be n (n —p(x)). So, for example, if x is the first vertex in

146

the linear ordering then p(x) = 1, and the size of the added star is n (n — 1).

It is clear th a t all the G-vertices will be examined before any other vertex in

G ', because they are at any stage the vertices of highest degree in W (the

copy of G 1 created by the algorithm). The order in which the G-vertices

will be visited by DetMaxDegree(7r) is given by the linear ordering in G,

and therefore if a vertex in G appears in the lexicographically first maximal

subgraph of G, then the corresponding G-vertex in G' will be output by

the execution of DetMaxDegree(7r) on instance G', because the subgraph of

G' induced by the G-vertices is exactly graph G. As vertex v 1 is the G-

vertex corresponding to vertex v in G, it will be chosen if v appears in the

lexicographically first maximal subgraph of G satisfying property 7r. Note

th a t at any stage in the execution of the algorithm the vertices of G' that

are not G-vertices have degree at most one, and will therefore be examined

after every G-vertex has been examined. It follows that they will not affect

the choice or rejection of vertex v ' . By similar reasoning it is not difficult to

see tha t if vertex v' is output by DetMaxDegree(7r) then vertex v will also

appear in the lexicographically first maximal subgraph of G satisfying 7r. As

the reduction can clearly be performed using logspace, the result follows. □

In the next section we will examine the complexity of the problem MaxDe-

gree(undirected graphs, n) for properties ir which are testable in polynomial

time, hereditary, non-trivial on the class of undirected graphs and satisfied

by all independent sets of vertices. Paralleling the results shown in Chapter

3, we will obtain a class of NP-com plete problems. To obtain this result, we

will begin by proving a problem complete for N P , and then use it as a base

of a reduction to obtain our main result.

147

7.3 A nother class o f N P-com plete problems

We will begin the section by proving our base case problem, that is, we

will prove the completeness for N P of the problem MaxDegree(undirected

graphs, independent set).

T h e o re m 7.2 The problem MaxDegree(undirected graphs, independent set)

is N P -complete.

P r o o f As the property “independent set” is testable in polynomial time, the

problem MaxDegree(undirected graphs, independent set) is clearly solvable

in N P . To show completeness we will reduce from the NP-com plete problem

3-SAT, defined in Section 4.2.

From an instance (C, X) of 3-SAT with m clauses and n variables, we

construct an instance (G, v) of MaxDegree(undirected graphs, independent

set) as follows. For each literal lij appearing in clause c*, where j € {1, 2,3},

there are 2 corresponding vertices in G , labelled liyj and respectively,

corresponding to the literal and to its negation. We will refer to such vertices

as literal-vertices and negation-vertices respectively. We join any two vertices

th a t correspond to literals which are the negations of each other; so for

example, all vertices labelled X\ will be joined to all vertices labelled ->xi.

For each clause i , where 1 < i < m, we add to the graph a corresponding

vertex labelled o* adjacent to Z î, Zj)2, and Zj)3. We will refer to such vertices

as o-vertices. We join all o-vertices to a newly added vertex, which we choose

to be v. The construction is concluded by adding to the graph a series of

stars, as follows. To each literal-vertex /*j, corresponding to a literal in a

148

clause, we attach a (ra + 5)-star by identifying with the centre of the star

(m is the number of clauses in C). To each negation-vertex corresponding

to the negation of a literal in one of the clauses, we attach a (m + 6)-star

by identifying I jj with the centre of the star. Finally we attach a copy of a

m -star to each o-vertex. See Figure 7.1 for an example relative to instance

(xi V X2 V x 3) A (~>x5 V x 4 V - 1X3) A (x\ V - 1X2 V ^ x 4) of 3-SAT.

We will now show tha t (C , X) is satisfiable if, and only if, vertex v appears

in one of the sets of nodes output by the algorithm MaxDegree(independent

set) on instance G.

Suppose tha t (G, v) is a yes-instance of MaxDegree (undirected graphs,

independent set), that is, vertex v appears in at least one of the sets of

vertices output by an execution of MaxDegree(independent set) on instance

G. We will show tha t we can derive a tru th assignment that satisfies all the

clauses of (C, X) from the set of vertices output by the algorithm.

The algorithm always examines a vertex of highest degree in W (the

graph obtained from a copy of G). In W every literal-vertex and every

negation-vertex has degree at least m + 6 , while every other vertex has lower

degree. It follows that every execution will start by choosing a literal- or a

negation-vertex.

By construction every literal- and every negation-vertex is adjacent to all

vertices th a t correspond to its negation; therefore if a vertex labelled Xi, say,

is examined and chosen then all literal-vertices and negation-vertices corre

sponding to its negation, th a t is, all vertices labelled - 1 will subsequently

be rejected, while every vertex labelled X{ will be chosen. At the beginning of

149

Figure 7.1: The graph G corresponding to (^i V x 2 V x3) A (-1X5 V x 4 V ^ x 3) A

(xi V - » x 2 V - 1 0 : 4) .

150

the execution, every two vertices labelled Xi and - » have the same degree,

and the algorithm will therefore nondeterministically choose one of them.

This corresponds to assigning a tru th value to variable Xi G X: true if Xi is

selected, and false if ->Xi is selected. The execution will proceed by examin

ing all literal- and negation-vertices, as they are, at any stage, the vertices

of highest degree in W . The examination of all literal- and negation-vertices

therefore corresponds to guessing a tru th assignment on all the variables in

X . The algorithm will then examine all o-vertices, as they now have degree

m + 1 in W , while every other vertex has smaller degree. Every o-vertex

will be examined and it will be chosen if, and only if, none of its adjacent

literal-vertices have previously been selected. After all o-vertices have been

examined, graph W consists of an independent set, and all the vertices that

constitute it will be examined one after the other. All vertices tha t were

leaves of a star will be rejected if the centre of the corresponding star was

previously chosen, and they will be selected otherwise. Vertex v will be se

lected if, and only if, all o-vertices were rejected. We assumed tha t v was

selected, which means th a t none of the o-vertices were chosen; which also

means th a t for every o-vertex, at least one literal-vertex adjacent to it has

been selected. The tru th assignment that corresponds to the chosen literal-

vertices appearing in G, satisfies each clause in C.

Conversely, suppose th a t (C, X) is satisfiable by some truth assignment

t. An execution of the algorithm will select literal-vertices and negation-

vertices tha t correspond to t and, as such an assignment satisfies (C, X) , this

will result in every o-vertex being rejected. When vertex v is examined, it

follows tha t it will be chosen by the algorithm, because none of its neighbours

151

appears in S. The construction can clearly be completed in logspace, and

the result therefore follows. □

We can now prove our main result of the chapter by reducing from the

problem MaxDegree (undirected graphs, independent set).

T h e o re m 7.3 Let 1t be a graph property that is polynomial time testable,

hereditary, non-trivial on undirected graphs and satisfied by all sets of inde

pendent vertices. The problem MaxDegree(undirected graphs, ir) is complete

fo r N P .

P r o o f To prove the theorem we will use a technique similar to the one

used in Theorem 3.7. If n is a polynomial time testable property then the

problem MaxDegree(undirected graphs, n) is clearly solvable in N P . For the

definition of a- and /2-sequences see Section 3.4. By assumption property n

is non-trivial on graphs, therefore there must be (at least) one graph with

smallest /2-sequence amongst all graphs that violate 7r. We will refer to such

a graph as J.

(3j = min{(3q '■ G is a graph violating 7r}.

Let J\, J 2 , . . . , Jk be the connected components of J ordered according to

> l &j2 &jk- It follows that J has /2-sequence (3j = (aj x, a j 2,

. . . , a j k). Let c = cjx (the cut point relative to a j x) and let the connected

components of J\ relative to c be 70 U {c},/i U { c } , . . . , /m U {c}, where

| /0| > | i i | > ••• > | i ’m I- Denote by /* the subgraph of J\ induced by the

vertices of i i U . . . U I m .

152

Property ir is, by definition, satisfied by all independent sets of vertices;

we therefore obtain without loss of generality that (/0 U {c})j must contain

a t least one edge (or J would be an independent set, and it would not violate

7r).

To prove the NP-completeness of the problem MaxDegree(undirected

graphs, 7r), we reduce from the problem MaxDegree(undirected graphs, in

dependent set). From an instance (G, v) of MaxDegree(undirected graphs,

independent set), we derive an instance (G ',v ') of MaxDegree (undirected

graphs, 7r) with the appropriate properties.

Choose d to be any vertex of / 0 adjacent to c in J; let s = max{degj(c),

degj(d)}, let / = sA(G) + degj(c) + 1 and let e = m ax{/, A (J)} (these

numbers are used later in the construction).

We will refer as /*_e to the graph obtained by adding one copy of an

e-star to each vertex in /* by identifying such a vertex with the centre of the

star (all such copies are disjoint). To define J i-e, where i = 2, 3 we

will use the same strategy with graphs J 2 , J 3 , . . . , J*, that is, we will add to

each vertex p in Ji one copy of an e-star by identifying p with the centre of

the star to obtain J;_e. We obtain / 0_e from 70 by adding to each vertex p in

I 0 \ {d} a copy of an e-star as previously explained. Notice that /o_e contains

vertex d.

We will divide the construction of G' from G in several steps.

Phase 1 For each vertex u of G, we attach a copy of (/* U {c})j by identifying

u with c (all such copies are disjoint). Call the resulting graph G. Note that

the vertex set of G consists of the vertices of G, which we call the G-vertices,

153

together with disjoint copies of the vertices of 7*.

Phase 2 We replace each edge (u , v) of G , where u and v are G-vertices, by

a copy of (I q U { c }) j by identifying u with c and v with d (all such copies are

disjoint). Notice that, as vertices c and d are adjacent in (7o U {c})j, vertices

u and v are also adjacent in G ' .

Phase 3 We replace each copy of 7* added in Phase 1 with a copy of 7*_e, and

replace each copy of 70 added in Phase 2 with a copy of 70_e. This means

th a t each vertex in a copy of 7* and each vertex in a copy of (7o \ {d}) j is

now the centre of an e-star.

Phase 4 We add disjoint copies of J 2_*, J$-*, . . . , Jk~* to obtain G ', and we

choose v' to be the G-vertex which was previously known as v in G.

See Figure 7.2 for an example.

By construction, the degree of every vertex which is the centre of an e-

star is, at any stage of the execution of the algorithm, higher than any other

vertex in W ' (the copy of graph G' generated by MaxDegree(7r)). We will

refer to the set of vertices which are the centre of an e-star as So- As the

algorithm always chooses a vertex of highest degree, it follows that all the

vertices in So will be examined first. The subgraph of G' induced by So has

the form of graph K of Lemma 3.8, and all such vertices will therefore be

chosen by every execution of MaxDegree(7r) on instance G'.

Graph W \ after the removal of all vertices in So, consists of a copy

of graph G plus an independent set of vertices (the leaves of the added e-

stars). Therefore if for some execution of MaxDegree(independent set) on

154

the graph Jx

O-e

the graphs I^e and L*

2-e
O-e

O-eO-e

the graph G'

Figure 7 .2 : The construction of G' from G.

155

instance (G, v) vertex g\ is examined before g2 then for some execution of

MaxDegree(7r) on instance (G ',v '), G-vertex g\ will be examined before G-

vertex g2.

Suppose, as our induction hypothesis, that:

• the algorithm MaxDegree (independent set) on input (G , v) has current-

vertex u, and has so far output the set of vertices 5;

• the algorithm MaxDegree(7r) on input (G ', v') has current vertex u in

G' and has so far output the set of vertices So U S; and

• the subgraph of G' induced by the vertices of So U S is in the form of

a subgraph of the graph N in Lemma 3.10.

In the base case, when the current-vertex is any vertex of highest degree in

W , and S = 0, the induction hypothesis clearly holds, because all vertices in

So are chosen before any other vertex in W '.

Suppose that the algorithm MaxDegree(7r) outputs the vertex u. If u is

such th a t adding u to SoUS completes a copy of Iq then we would have a copy

of J within the subgraph of G' induced by the vertices of S0 U S U { u } . This

would yield a contradiction because this subgraph satisfies ir (by definition),

7r is hereditary on induced subgraphs, and J would then have to satisfy 7r.

Hence, the vertex u is not joined to any vertex of S in G and so u is output

by the algorithm MaxDegree (independent set).

Conversely, if the algorithm MaxDegree (independent set) outputs u then

this is because S U {u} is an independent set in G; and consequently So U

156

S U {«} induces in G' a subgraph of the form of a subgraph of the graph

N in Lemma 3.10. Hence, by Lemma 3.10, u is output by the algorithm

MaxDegree(7r).

Every execution of MaxDegree(7r) will terminate by examining the ver

tices which were previously leaves of some e-star (and that now have degree

zero in W ' because the centres of the respective stars have already been ex

amined). Such vertices might or might not be chosen, but this will not affect

the outcome of the execution, as vertex v' will have already been examined.

We refer to the set of chosen vertices from the leaves of the stars as S i : note

th a t Si might be empty.

By induction, we obtain th a t if S is a set of vertices output by the al

gorithm MaxDegree(independent set) on input (G, v) then So U Si U S is

output by the algorithm GREEDY(7r) on input (G ',u'), and conversely. As

the construction can clearly be carried out in logspace, the result follows. □

In the next section we will abandon the requirement that our property n is

testable in deterministic polynomial time, and examine the complexity of the

problem MaxDegree (undirected graphs, tt) for a graph theoretical property

7r testable in N P .

7 .4 A n o t h e r S ^ - c o m p l e t e p r o b l e m

In this section we will show th a t the problem MaxDegree(undirected graphs,

7r) considered in the setting of N P testable properties 7r, is not solvable in

N P any more but is instead solvable in ElJ. The techniques used in Chapters

157

5 and 6 to prove the complexity of the problem when we take our property

7r to be //-colourable do not appear to work in this setting, and therefore we

did not manage to prove a general result as in the case of polynomial time

testable properties. Nevertheless we showed the completeness of a specific

problem for the complexity class £ 3 .

T h e o re m 7.4 The problem MaxDegree(undirected graphs, 3-colourable) is

Y^-w m plete .

P r o o f In this proof we will refer to the problem MaxDegree (undirected

graphs, 3-colourable) as V . It is clear that V can be solved in £ 3 ; to prove the

completeness of V for £ 3 we will reduce from the problem NOT CERTAIN

3-COLOURING OF BOOLEAN EDGE-LABELLED GRAPHS, which will

be abbreviated as Af. Problem A f was defined in the proof of Theorem 5.1.

Given an instance Z of A f , we shall construct an instance (G , v) of T>,

where G is an undirected graph and v is a distinguished vertex of G. More

over, Z will be a yes-instance of A f if, and only if, (G , v) is a yes-instance of

V ; and the construction will be such that it can be completed using logspace.

The reduction follows very closely the schema seen in Theorem 5.1, with the

main difference being th a t to force vertices to be examined in a certain order

we will increase their degree by identifying them with the centres of stars of

different sizes.

Let Z = (U, F) and suppose that U = {1, 2, . . . , n}. We build the undi

rected graph G from Z as follows.

(a) For each vertex i G U, ‘attach’ a copy of by identifying vertex i

158

with one of the vertices of the clique. Denote the other three vertices

by a*, b} and bf. We refer to the original vertices of U as Z-vertices,

the vertices of {a ̂ : i = 1 , 2 , . . . , n } as a-vertices and the vertices of

{b},bi : i = 1 , 2 , . . . , n} as b-vertices.

(b) Retain any unlabelled edge (i , j) of F (between Z-vertices i and j).

(c) For any labelled edge (i , j) of F (between Z-vertices i and j) , where

i < j and where the label is L) , V L? • (L), refers to the first literal

labelling edge (i , j) and Lf j to the second), replace the edge with a

copy of the graph G\ shown in Figure 7.3. The vertices of {Lj -,L? - :

(i , j) G F, where i < j } are called L-vertices. Every L -vertex of any

G\ has an associated literal, e.g., if the literal L\ 6 = - 1X 3 ,2 then the

associated literal of vertex L \ 6 is ^ 3 ,2 , that is, the negation. So vertices

L lj and L f j in G\ correspond, respectively, to the negation of L\ -

and Lf j . Notice that an L -vertex of a copy of G\ might have the

same associated literal as an L -vertex of another copy of G\. The

vertices of {cjj : i , j = 1 , 2 , . . . , n } are called c-vertices, the vertices

of {di j : i , j = 1 , 2 , . . . , n } are called d-vertices and the vertices of

{ejj, e'fj : i , j = 1 , 2 , . . . , n} are called e-vertices.

(d) Include a disjoint copy of X 4 , whose vertices are {y, z, w, v} and join

vertices y , z and w to every a-vertex.

(e) For every variable X i j such that at least one occurrence of X i j or

- iXi j appears as a label of an edge in Z, construct the graph (from

now on called the variable-graph) shown in Figure 7.3. Note th a t in

every such graph the number of pairs of vertices labelled X fj and

159

the graph Gx

(a) (c)

the variable-graph

(e)

Figure 7.3: The phases of the construction of G from Z.

is determined by the number of occurrences of literals labelled X i j or

-iX i j in Z : there is a pair for each occurrence. We will refer to the

vertices labelled p\ and P2 as p-vertices, and to the vertices of the

form X \ _ and ~̂ X]_ _ as variable-vertices. Variable-vertices will be

considered positive if they are of the form X* , and negative if of the

form -*X}_

(/) Connect every L-vertex to the corresponding variable-graph (by corre-

160

sponding we mean that a L-vertex, X i j say, is connected to the variable

graph containing vertex X}^) using the gadget shown in Figure 7.3. No

tice th a t if the label of the L -vertex is a negative literal then the gadget

will join the L-vertex to a negative variable-vertex. And if the corre

sponding literal is positive then the L -vertex will be joined to a positive

variable-vertex. We will refer to the vertices of the form f l_ , where

1 < i < 5, as / -vertices. Note that every variable-vertex is connected

through a gadget to at most one L-vertex.

(g) Increase the degree of the vertices by identifying them with the centre

of stars of different sizes as explained below. Note that n is the number

of vertices in graph Z. Next to each vertex is the size of the associated

star.

• Vertex v. 1-star.

• Vertices {z , y , w}: 2-star.

• a-vertices: (n + 5)-star.

• b-vertices: (n + ll)-s ta r.

• Z-vertices: (n 4- 15)-star.

• e-vertices: (3n + 16)-star.

• d-vertices: (3n + 17)-star.

• c-vertices: (3n + 24)-star.

• L-vertices: (3n + 27)-star.

161

• Vertices f t - and f t - ' - (3n + 33)-star.

• Vertices f t - ' - (3n + 36)-star.

• Vertices f t - and f t - ' - (3n + 42)-star.

• Variable-vertices: (3n + 45)-star if the vertex is adjacent to some / -

vertices: (3n + 48)-star otherwise.

• p-vertices: (n2 4- 3n + 50)-star.

We give an example of the construction of (G , v) from Z in Figure 7.4

(note th a t to avoid cluttering the figure we did not label all the vertices

nor add the stars as detailed in phase g). Suppose that Z is a yes-instance

of problem Af. Hence there exists a tru th assignment t such that t(Z) is

not 3-colourable. By construction of the graph G , at the beginning of the

execution of the algorithm the vertices of highest degree in W (the copy

of G) are the p-vertices, and they will be examined (and chosen) before

any other vertex in the graph. The execution of the algorithm will then

continue by examining all the variable-vertices, as after the removal of the p-

vertices from W , they are now the vertices of highest degree. Every positive

variable-vertex forms a copy of a K 4 with the vertices pi, p2 and with each

negative variable-vertex in the corresponding variable-graph: it is therefore

clear tha t either the positive or the negative variable-vertices can be chosen,

but not both. For any variable-graph, for any execution of the algorithm

exactly one of the groups of positive or negative variable-vertices will be

chosen, and such a choice will correspond to a tru th assignment for the

variable. Notice that, in any variable-graph, each variable-vertex has the

162

•2,3

'2,3

Figure 7.4: The construction of G from Z.

same degree, so they could potentially all be the first vertex chosen by an

execution of the algorithm. We can therefore consider the execution of the

algorithm MaxDegree (3-colourable) where the set of chosen variable-vertices

corresponds to the tru th assignment t.

After all p- and variable-vertices have been considered, and removed from

W, the vertices of highest degree in W are the /-vertices, and they will all

163

be examined before any other remaining vertex. First all vertices of the form

f \ _ and /£ are examined, and always chosen. Then all vertices labelled

/£ are chosen if, and only if, the corresponding variable-vertices, that is

the ones th a t form a K 4 with them, have been rejected. Finally all vertices

of the form / I and /£ are examined (because of their degree in W), and

always selected by every execution of the algorithm.

The algorithm will then continue the execution by visiting the L-vertices,

as they are now the vertices of highest degree in W . It is straightforward to

notice th a t any such vertex can be chosen if, and only if, the corresponding

variable-vertex was previously chosen. At this point the algorithm will ex

amine all c-vertices, and they will clearly be chosen in every execution of the

algorithm.

The vertices of highest degree in W are now the d-vertices. Let us freeze

the execution at this point. Note that if the tru th assignment t makes the

label of some edge (i , j) of F true then, at our freeze-point, the vertex dij is

adjacent to at most 2 vertices of S (the set of vertices chosen so far), and so

this vertex dij is subsequently output by MaxDegree(3-colourable).

Conversely, if the tru th assignment t makes the label of some edge (i , j)

of F false then, at our freeze-point, the vertex dij is adjacent to 3 mutually

adjacent vertices of S and so this vertex di j is not subsequently output

by MaxDegree(3-colourable). After all d-vertices have been examined, the

vertices of higher degree are the e-vertices, and they will be chosen by every

execution of the algorithm. The vertices of higher degree are now the Z-

vertices, and they will be examined by the algorithm next. Let (z, j) be some

164

edge of Z which is either unlabelled or whose label has been made true by

t. It may or may not be the case that the vertices i and j are output; but

if they are both output then at the point after the second of these vertices

is output, the subgraph induced by the vertices of S can be 3-coloured but

not so th a t i and j have the same colour. This is so because each of the

vertices d i j , e}j and efj is in S. Hence, as we know that t (Z) cannot be 3-

coloured, there must be some Z-vertex that is not output. The algorithm will

then examine all the 6-vertices and, subsequently, all the a-vertices because

they are now the vertices of highest degree. Clearly all the 6-vertices will be

chosen. Every a-vertex can only be chosen if the corresponding Z -vertex is

rejected, therefore it follows that there is at least one a-vertex output. The

vertices of highest degree in W are now y , z and w and they will therefore

be examined next (they all have the same degree, but the order in which

they are examined is not important). The first two vertices to be examined

will be chosen, while the third will be rejected, as at least one a-vertex has

been chosen. At this point the vertex of highest degree in W is vertex v

and, as only two of y, z, w have been chosen, vertex v will be selected as well.

Hence, (G, v) is a yes-instance of problem Q. The algorithm will terminate

its execution by examining the leaves of the added stars: their choice or

rejection will not affect the outcome of the execution.

Conversely, suppose that (G, v) is a yes-instance of problem Q. Fix an ac

cepting execution of the algorithm MaxDegree(3-colourable) on input (G, v)

and denote the tru th assignment given by the chosen variable-vertices by

r . This execution gives rise to a tru th assignment t on the literals labelling

the edges of the graph Z: if r is such that a positive variable-vertex, with

165

label Xi j , say, is chosen then set t (X{j) to be true; and if r is such that a

negative variable-vertex, with label - 'Xi j , say, is chosen then set t (X{j) to

be false (note th a t this tru th assignment is well-defined). By arguing as we

did earlier, for any i, j € {1, 2, . . . , 77.} with i < j and where (z, j) is a labelled

edge of Z, the tru th assignment t makes Lj ■ V Lf j true if, and only if, the

vertices dij , ej j and are output.

At various points in the execution of MaxDegree(3-colourable), a check is

made to see whether the vertices of S induce a 3-colourable graph. Consider

such a check and suppose that the vertices of {di j , ejj, ef j } have been placed

in S. Consider the subgraph K of G induced by those vertices that are both

in S and in the copy of G\ pertaining to the labelled edge (z,j) of Z. In

particular, consider the role of K when it comes to attem pting to colour

the subgraph of G induced by the vertices of S. A simple combinatorial

verification yields tha t the role of the vertices of K is to allow z and j to

be coloured with any pair of distinct colours but not with identical colours.

Hence, any check to see whether the subgraph of G induced by the vertices of

S can be 3-coloured is equivalent to a check of whether the subgraph of t{Z)

induced by (vertices corresponding to) the Z-vertices of S can be 3-coloured.

We know tha t our accepting computation on [G, v) outputs v. This can only

happen if not all of {y, z, w} are output, i.e., if at least one a-vertex, am, say,

is output, i.e., if the Z-vertex m is not output, i.e., if the graph t (Z) can not

be 3-coloured. The result follows. □

166

7.5 Conclusion

In this chapter we discussed the complexity of the problem MaxDegree(C, 7r)

for properties n that are hereditary and non-trivial on C. We considered

properties testable in deterministic polynomial time, and obtained a class

of NP-complete problems. We discussed the complexity of the problem

MaxDegree(undirected graphs, 3-colourable), which we proved complete for

££. There are natural directions in which to further extend the research.

Modifying our algorithm so that it always chooses vertices of smallest

degree we can similarly define the problem MinDegree(iT). Does the

complexity of MinDegree(7r) mirror that of MaxDegree(ir)l Note that

our proof technique does not work with this problem.

Can we obtain a dichotomy result for the class of problems MaxDe-

gree(undirected graphs, H-colourable), where H is an undirected graph?

These questions conclude our study of the complexity of problems related

to greedy algorithms on ordered graphs. We think tha t there is scope for a

considerable amount of further research in this field, and we will therefore

continue its development in the future.

167

Bibliography

[1] S. S. Anderson, Graph theory and finite combinatorics, Markham Pub

lishing Company (1970).

[2] T. Asano and T. Hirata, Edge-deletion and edge-contraction problems,

Proceedings of 14th Annual ACM Symposium on the Theory of Comput

ing (1982) 245-254.

[3] L.W. Beineke, On derived graphs and digraphs, in Beitrage zur Graphen-

Theorie (H. Sachs, H. J. Voss and H. Walther, eds), Teubner, Berlin

(1968) 17-23.

[4] C. Berge, Graphs and Hypergraphs, North-Holland (1973).

[5] N. L. Biggs, E. K. Lloyd and R. J. Wilson, Graph Theory 1736-1936,

Clarendon Press (1976).

[6] D. Bovet and P. Crescenzi, Introduction to the Theory of Complexity,

Prentice Hall (1994).

[7] G. Brassard and P. Bratley, Fundamentals of Algorithmics, Prentice Hall

(1996).

168

[8] P. E. Ceruzzi, A History of Modern Computing, The MIT Press (1998).

[9] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algo

rithms, McGraw-Hill (1991).

[10] J. Diaz, M. Serna and D. M. Thilikos, (H,C,K)-colorings: fast, easy and

hard cases, Proceedings 26 th International Symposium on Mathemati

cal Foundations of Computer Science (MFCS-2001), Lecture Notes in

Computer Science Vol. 2136, Springer-Verlag, Berlin (2001) 304-315.

[11] M. Dyer and C. Greenhill, The complexity of counting graph homomor-

phisms, Random Structures and Algorithms 17 (2000) 260-289.

[12] L. Euler, Solutio problematis ad geometriam situs pertinentis, Com-

metarii Academiae Scientiarum Imperialis Petropolitanae 8 (1736) 128-

MO.

[13] T. Feder and P. Hell, List homomorphisms to reflexive graphs, Journal

of Combinatorial Theory Series B 72 (1998) 236-250.

[14] T. Feder, P. Hell and J. Huang, List homomorphisms and circular arc

graphs, Combinatorica 19 (1999) 487-505.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide

to the Theory of NP-Completeness, Freeman (1979).

[16] A. M. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge

University Press (1988).

[17] R. Greenlaw, Ordered vertex removal and subgraph problems, Journal

of Computer and System Sciences 39 (1989) 323-342.

[18] R. Greenlaw and H. J. Hoover, Fundamentals of the Theory of Compu

tation Principles and Practice, Morgan Kaufmann (1998).

[19] R. Greenlaw, H. J. Hoover and W. L. Ruzzo, Limits to Parallel Com

putation: P-Completeness Theory, Oxford University Press (1995).

[20] J. Gross and J. Yellen, Graph Theory and its Applications, CRC Press

(1999).

[21] F. Harary, Graph Theory, Addison-Wesley (1969).

[22] D. Harel, Algorithmics : the Spirit of Computing, Addison-Wesley

(1987).

[23] P. Hell and J. Nesetril, On the complexity of H-colouring, Journal of

Combinatorial Theory Series B 48 (1990) 92-110.

[24] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Com

puter Science Press (1978).

[25] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, On generating

all maximal independent sets, Information Processing Letters 27 (1988)

119-123.

[26] C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph

by a set of intervals on the real line, Fundamenta Mathematicae 51

(1962/1963) 45-64.

[27] J. M. Lewis and M. Yannakakis, The node deletion problem for hered

itary properties is NP-complete, Journal of Computer and System Sci

ences 20 (1980) 219-230.

170

[28] U. Manber, Introduction to Algorithms : A Creative Approach, Addison-

Wesley (1989).

[29] S. Miyano, The lexicographically first maximal subgraph problems: P-

completeness and NC algorithms, Mathematical Systems Theory 22

(1989) 47-73.

[30] S. Miyano, Aj-complete lexicographically first maximal subgraph prob

lems, Theoretical Computer Science 88 (1991) 33-57.

[31] C. H. Papadimitriou, Computational Complexity, Addison-Wesley,

(1994).

[32] C. H. Papadimitriou, On the complexity of unique solutions, Journal of

the Association for Computing Machinery 31 (1984) 392-400.

[33] A. Puricella and I. A. Stewart, A generic greedy algorithm, partially-

ordered graphs and NP-completeness, Proceedings of 27th International

Workshop on Graph-Theoretic Concepts in Computer Science (WG’01),

Lecture Notes in Computer Science Vol. 2204, Springer-Verlag, Berlin

(2001) 306-316.

[34] A. Puricella and I. A. Stewart, Greedy algorithms, H-colourings and a

complexity-theoretic dichotomy, Theoretical Computer Science, to ap

pear.

[35] F. P. Ramsey, On a problem of formal logic, Proceeding of the London

Mathematical Society, 30 (1930) 264-286.

171

[36] I. A. Stewart, Complete problems involving Boolean labelled structures

and projection translations, Journal of Logic and Computation 1 (1991)

861-882.

[37] L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer

Science 3 (1977) 1-22.

[38] C. R. Subramanian and C. E. Veni Madhavan, The existence of hcmeo-

morphic subgraphs in chordal graphs, Applied Mathematics Letters 10

(1997) 17-22.

[39] J. van Leeuwen, Handbook of Theoretical Computer Science A : Algo

rithms and Complexity, Elsevier (1990).

[40] T. Watanabe, T. Ae and A. Nakamura, On the removal of forbidden

graphs by edge-deletion or by edge-contraction, Discrete Applied Math

ematics 3 (1981) 151-153.

[41] M. R. Williams, A History of Computing Technology, IEEE Computer

Society Press (1997).

[42] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM

Journal of Computing 10 (1981) 310-327.

172

