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Robust Sliding Mode Control

Using Output Information
Sujit Kum ar Bag

Abstract

The thesis considers the development of robust output feedback sliding mode controllers 
for linear tim e invariant uncertain systems where output information alone is available 
to the controller. Two approaches to controller design are discussed. The first uses 
only the plant dynamics and is called static output feedback sliding mode control. It 
is shown that a quadratically stable sliding motion may be attained for a bounded un­
certain system if and only if the system is minimum phase and a particular subsystem 
triple satisfies the output feedback design criteria. Sliding mode controllers are sensitive 
to unmatched uncertainty. Hence a robust design is considered which minimises the ef­
fect of uncertainty. The second approach is developed for systems which have design 
difficulties when only the plant dynamics are considered. E xtra  dynamics are added and 
the m ethod is called dynamic output feedback sliding mode control. Closed-loop anal­
ysis is carried out and stability of the augmented system is observed. Both controllers 
guarantee a stable sliding motion despite the presence of bounded uncertainty.

Finally, two practical uncertain multivariable industrial examples dem onstrate the the­
oretical developments. The first application is a helicopter model. The open loop 
dynamics have unstable poles with two stable invariant zeros, variations in model pa­
rameters and exhibit high levels of cross coupling. A model following sliding mode 
controller is used to force the plant outputs to track the outputs of an ideal model. 
Nonlinear simulation results show the practicality of the method. The second applica­
tion considers the dynamic output feedback sliding mode control of an aircraft model. 
The system possesses unstable invariant zeros and requires a dynamic output feedback 
technique. Simulation results are obtained at different operating points to show the 
effect of unstable invariant zeros. The examples illustrate the benefits of these robust 
output feedback based sliding mode control developments.
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C hapter 1

Introduction

1.1 A n O verview

Much of the research in the area of control systems theory during the seventies and 

eighties has focused towards the issues of nonlinear control and robustness of dynamical 

systems, i.e. designing controllers with the ability to m aintain desired performance 

and stability in the presence of discrepancies between the plant and model due to the 

changes of param eters and disturbances. The subject of nonlinear control increases in 

im portance as modern technology develops and produces more and more complex plants. 

For such systems linear control theory may not be sufficient to solve the associated 

problems although linear control theory is a m ature subject with a variety of powerful 

methods and a long history of industrial application [67, 72, 86]. However, it is limited 

to a relatively small range of operations. W hen the operation range is large, a linear 

controller is likely to perform poorly or to be unstable, because the nonlinearities in 

the system and changes in the dynamics cannot be properly compensated. A nonlinear 

controller , on the other hand, may handle the nonlinearities over a large range of 

operation directly [94, 105]. For the application of linear control, the system model 

must be linearizable. However, in control systems there are many nonlinearities whose 

discontinuous nature does not allow linear approximation. These are so called hard 

nonlinearities [94, 104] such as coulomb friction, saturation, dead zones, backlash, and 

hysteresis. A nonlinear controller may be able to handle these phenomena more easily. 

For controller design, it is necessarily assumed tha t the system model is reasonably well
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known. However, in practice it is impossible to find out an exact model. Moreover, 

while the process is operating and measurements are carried out, the instrum ents add 

some noise, which gives perturbation to the system parameters. The uncertainties and 

perturbations are thus very common in control systems and a linear controller may 

be unable to tolerate these. A nonlinear controller, on the other hand, may introduce 

some bounded nonlinearities into the controller so th a t it can tolerate the uncertainties. 

Two m ajor and complementary approaches to dealing with such model uncertainties are 

robust control and adaptive control. One such robust technique is Variable Structure 

Systems (VSS) with a sliding mode which is the m ain issue of this thesis. The m ethod of 

adaptive control is not discussed in this thesis. The structure of such a robust controller 

is composed of a nominal part, similar to a feedback linearizing control law and of 

additional terms aimed at dealing with model uncertainty or nonlinearity, although 

there are some robust controllers whose structure does not comprise with two parts 

such as Hoo controllers.

There are many other reasons to use a nonlinear controller such as design simplicity, 

cost and performance optimisation. A good nonlinear control design may be simpler and 

more intuitive than  its linear counterparts. In the industrial setting, an ad-hoc extension 

of linear techniques to control advanced processes with significant nonlinearities may 

result in undue cost and a lengthy development process. Linear control may require 

high quality actuators and sensors to produce linear behaviour in the specified range 

of operation, while nonlinear control may perm it the use of less expensive components 

with nonlinear characteristics [94].

It is thus seen tha t the subject of nonlinear control is an im portant area of control 

engineering. In the past, the application of nonlinear control methods had been limited 

due to com putational difficulties, but in recent years, advancement of com putational 

power has increased interest in nonlinear control research. While the analysis of a non­

linear controller may be difficult, serious efforts have been made to develop appropriate 

theoretical tools. Presently, there are various tools available for designing and analysing 

nonlinear systems.

One of the most im portant steps in the development of nonlinear control systems is 

Lyapunov stability analysis. Basic Lyapunov theory comprises two methods, introduced
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by the Russian M athematician Alexander Mikhailovich Lyapunov [77] in the late 19th 

century, and called the indirect method and the direct m ethod respectively [20, 52, 69, 

94, 105]. The indirect m ethod or linearisation m ethod is often used to analyse nonlinear 

control systems. It states tha t the stability properties of the nonlinear system in the 

close vicinity of an equilibrium point are essentially the same as those of its linearised 

approximation [94, 105]. The method has provided the theoretical justification for 

the use of linear control systems. The direct m ethod is most im portant in analysing 

nonlinear systems. It is based on energy concepts associated with mechanical systems 

[94, 105]. The motion of a mechanical system is stable if its to tal energy decreases all 

the time. In using the direct method to analyse the stability of a nonlinear system, 

the idea is to construct a scalar energy like function, called a Lyapunov Function for 

the system, and a control action so that the total energy decreases all the time. The 

big advantage of this m ethod is that it avoids the solution of differential equations. It 

allows engineers to solve many complex design problems such as robotics, spacecraft 

and many adaptive control engineering problems. However, sometimes effort is required 

to find the appropriate Lyapunov function.

Another im portant m ethod to analyse nonlinear systems is the describing function 

method [20, 52, 94, 97]. The basic idea of this m ethod is to approximate the non­

linear components in a nonlinear control system by linear ‘equivalents’ and then use 

frequency domain techniques to design and analyse the resulting systems. Unlike Lya­

punov methods, whose applicability to a specific system hinges on the success of a trial 

and error search for a proper Lyapunov function, its application is straightforward.

Phase plane analysis [4, 20, 52, 94] is another m ethod used to analyse nonlinear systems. 

In this method, the system differential equation is solved graphically, instead of seeking 

an analytical solution. The main disadvantage of this m ethod is that it is restricted 

to two dimensional problems because of its graphical nature. However, the ideas are 

useful to illustrate the concepts of the Variable Structure Systems (VSS) which will be 

discussed in Chapter §2.

The Variable Structure Systems (VSS) [122, 123] methodology is another nonlinear ap­

proach to robust controller design. Although the approach is applicable to systems of 

nonlinear differential equations, much of the research has been directed towards de­
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velopments based on linear uncertain systems. However, now Symbolic Toolboxes are 

available for nonlinear controller design from nonlinear models. Most of the early work 

in the field of variable structure systems has been published in Russian and very few 

publications are available in the open literature describing the methods [102]. One 

such m ethod is described in Chapter §2. Much of the work published in English in 

the literature in the area of variable structure systems considers sliding modes which 

is one of the modern developing robust methods for controlling dynamical systems in 

the presence of nonlinearities and uncertainties. Another im portant area involves vari­

able structure systems with simplex control. However, in this thesis only the ‘variable 

structure systems with sliding mode control’ will be considered.

In general, variable structure control systems comprise a feedback control law which 

employs a discontinuous control action and a decision rule [32, 104]. The decision rule 

is often based upon the behaviour of a switching function and determines which of the 

control laws is activated at any instant in time. The control objective is to force the 

system states to reach and subsequently remain on a pre-determ ined surface, called 

the switching surface or hyperplane. The dynamical behaviour of the system when it 

reaches and remains on the surface is defined as a sliding motion. The system exhibits 

two im portant properties during sliding motion. Firstly, there is a reduction in order of 

the system. In the case of nonlinear systems, an appropriate selection of the switching 

surface may render the reduced order motion to be linear or almost linear. Secondly the 

sliding motion is insensitive to the param eter variations implicit in the input channels, 

the so called matched uncertainty [104, 122]. These invariance properties of the sliding 

mode are attractive to researchers seeking to design robust controllers for uncertain 

systems. The design approach comprises two components: the design of a suitable 

switching surface or hyperplane in the state space, so that the reduced order sliding 

motion satisfies the performance specifications imposed by the designer; and synthesis 

of a control law, discontinuous on the sliding surface, such th a t the trajectories of the 

closed-loop system are directed towards the surface. In other words, the second property 

ensures the discontinuous control action renders the sliding surface invariant, attractive 

and locally stable.

For a variable structure control with a sliding mode, the dynamical behaviour is divided
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into two stages. The first stage or initial phase is to drive the states to the surface. 

During this motion the system is in general affected by any m atched and unmatched 

disturbances present. In practice this initial phase should be kept as small as possible 

to minimise the effect of uncertainty; this causes high control action and some times the 

system may go unstable. The second stage seeks to m aintain the states on the switching 

surface for the remaining period where it is insensitive to all m atched uncertainty. 

This inherent property is well known in sliding mode control. However, the dynamics 

are continuously affected by unm atched uncertainty. It is shown tha t the effect is 

unavoidable but can be minimised using a robust design technique which leads to the 

development of a ‘robust sliding mode controller’. Hence, a robust switching surface 

design may be preferable to minimise this effect. Much of the work in this field considers 

the use of a state feedback control law and assumes tha t all states are available to feed 

through to the controller. In practice only a few states or measurable outputs may 

be available. This leads to the design of an observer system or an output strategy for 

such systems. The former will be discussed briefly in Chapter §6 and the latter will be 

extensively discussed in Chapter §4. First consider a simple example which shows how 

a multivariable system design is performed with a discontinuous function.

In this thesis, linear uncertain systems of the following form are considered;

x(t) = Ax(t )  + Bu(t)  + h (x ,u , t )  (1.1a)

y(t) = Cx(t)  (1-lb)

where A  E ]Rnxn, B  E IRnXm and C  E IRpXn are known plant model matrices where 

n, m  and p are the number of states x , inputs u and outputs y respectively of the 

system and the function h( t ,u ,x )  is considered to represent any nonlinearities and 

model uncertainties in the system. Its contribution is unknown but assumed bounded. 

A m athem atical model as in equation (1.1a) with a discontinuous function on the right 

hand side is feasible as a number of processes in mechanical, chemical and electrical

systems and other areas have a discontinuous function on the right hand side [104], A

typical example of such a system is the dry (Coulomb) friction of the mechanical system 

shown in Figure 1.1. The equation of this system can be w ritten as

M x ( t )  +  P(x)  +  K x { t ) =  0 (1-2)
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where x is displacement, M  is mass, K  is the spring rigidity, and

f P0 if x ( t ) >  0
P ( i )  = { (1.3)

\ - P 0 if x{t) < 0

where P0 is a positive constant. It is quite obvious that the discontinuous surface in

Figure 1.1: Coulomb friction in mechanical mass-spring system

this case is the x axis; i.e. s(x) = x(t) = 0. Here the resistance force may take either 

positive or negative sign depending on the direction of the motion [104], This situation 

may arise in many control application. Another such example is electric motors and 

power converters where the control action is naturally discontinuous [90]. In some cases, 

especially in mechanical systems, the introduction of a discontinuous control action will 

not introduce an ideal sliding motion due to imperfections in the process such as delays 

and hysteresis which create high frequency motion known as chattering. This idea is 

characterised by the states repeatedly crossing rather than  remaining on the surface. 

Such a motion is undesirable in the control system and will result in high wear and 

tear which reduces the life of the actuator components. In this case the discontinuous 

control action is modified such tha t the states lie in a small boundary of the switching 

surface and subsequently remain within the boundary. This type of sliding motion is 

referred to as pseudo sliding motion of the control system [32], The to tal invariance 

properties associated with the ideal sliding motion will be lost. However, an arbitrarily 

close approximation to ideal sliding motion can usually be attained by appropriate 

modification. These results are described in Ryan and Corless [88] in terms of practical 

stability and implementation issues are discussed in Davies and Spurgeon [21].

From the above discussion, the sliding mode approach is embedded within the state- 

space framework. Most of the published work relies on the assumptions that all the
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internal states are measurable and available to feed through to the controller. Under 

this assumption, provided the linear uncertain system described in equation (1.1a) is 

completely controllable and the uncertainty is matched into the input channel and 

bounded, a regulatory controller may always be designed which guarantees asymptotic 

convergence to the zero state [88]. In practice, such an idealised situation is quite rare. 

Usually certain states will be either impossible or expensive to measure. Another factor 

is tha t the linear models may represent an approximation of a distributed param eter 

system or may be obtained using system identification. As a result, all the internal 

states are not possible to define and they do not have any physical meaning. In these 

situations much of the sliding mode control methods are no longer directly applicable. 

An alternative framework is essential for this purpose which is the main issue of this 

thesis. Before going through further discussions, a brief discussion of the contents of 

the thesis is presented.

1.2 Structure o f th e  T hesis

The underlying assumption of this thesis is that only measurable outputs are available 

to feed through to the controller and the system is at least completely controllable and 

the uncertainty is bounded; any additional assumptions will be stated in due course as 

necessary. This will be named O utput Feedback Variable S tructure Control (VSCOF) 

or O utput Feedback Sliding Mode Control. The early chapters of the thesis describe 

im portant m athem atical background for analysis and design of sliding mode controllers. 

A brief description of state and output feedback sliding mode techniques and the invari­

ance properties are described. The existence methods and its limitations, the need for 

further developments including the output feedback sliding mode controller design and 

necessary conditions for the existence of a sliding mode are discussed. The existence 

m ethod is essentially a static output feedback method. Many systems do not fall into 

the static output feedback classes. These problems can be solved using dynamic output 

feedback sliding mode control giving extra freedom in design. Two different approaches 

are given for classes of systems which are difficult to control using static output feedback 

sliding mode control or may require greater freedom in design for better performance. 

The remaining two chapters consider the use of these new developments for practical



Chapter 1. Introduction 8

problems. Two different realistic problems involving the development of helicopter and 

aircraft controllers are emphasised here. In short it can be said that throughout the 

thesis, emphasis is made towards:

• the development of robust hyperplane design techniques and a suitable controller 

law formulation, using output feedback information only, for stabilisation and 

induction of sliding motion.

• the implementation of robust sliding mode control using output information for 

practical examples is also considered.

Finally conclusions are made based on the above work. Possible future investigations 

and the extension of the work are described in the final chapter.

In structure, the thesis may be divided into two parts. The early chapters develop 

new theoretical results whilst the later chapters apply these developments to helicopter 

and aircraft systems. Details of mathematical preliminaries and some im portant results 

pertaining to the development and design of sliding mode controllers are presented as 

Appendices. A brief summary of the chapters is given below.

C hapter (2) presents the background in variable structure systems. The motivation for 

robust multivariable controller design is briefly described. An introduction to variable 

structure systems is dem onstrated with different examples. These examples are given 

to describe the sliding mode behaviour, attainm ent of sliding motion and the effect of 

chattering etc. The condition to ensure the hyperplane or switching surface is reached, 

known as the reaching condition, is also described. The system of equation (1.1a) with a 

discontinuous right hand side is most straightforward to analyse using the concept of the 

equivalent control. This enables the reduced order sliding dynamics to be formulated. 

This is emphasised for the case of output measurements since the switching surface 

design is associated with only the outputs of the system. The invariance properties 

of the reduced order sliding motion to disturbances occurring in the input distribution 

m atrix is examined. The sliding mode technique uses a discontinuous control action. A 

common discontinuous control vector used in output feedback sliding mode control is 

presented. Finally, some continuous approximations to the variable structure controllers
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are described. These are commonly used at the implementation stage to avoid the 

problem of chattering. Details of the existing developments and associated problems in 

output feedback sliding mode design are given in the following chapter.

C hapter (3) considers a brief review of the recent developments in output feedback 

sliding mode control and the limitations of these methods are presented. These may 

be classified in two categories. The class of system which do not require any additional 

dynamics for improvements in the controller performance, or to circumvent design dif­

ficulties associated with dimensionality requirements is called ‘static output feedback 

sliding mode control’. Necessary assumptions and the m ajor problems are pointed out. 

If the system does not satisfy the necessary assumptions, an alternative approach is to 

add extra dynamics to the system, hence giving extra degrees of freedom in design. This 

is known as ‘dynamic output feedback sliding mode control’. Finally, keeping in mind 

existing methods and their limitations, further developments are made in subsequent 

chapters of this thesis.

C hapter (4) introduces a new framework for output feedback sliding mode control. 

It reviews the mathem atical description of the system and the necessary assumptions 

for developing static output feedback sliding mode controllers. The uncertainty on the 

right hand side of the system is given a more general structure which is decomposed 

into unmatched and m atched uncertainty, and the regular form of the system is defined. 

This structure is used throughout the thesis unless mentioned. It enables the class 

of systems considered by other researchers in this field to be extended and provides 

an explicitly realisable controller structure without any additional assumptions. Like 

state feedback sliding mode schemes, the two main design issues associated with the 

output feedback sliding mode schemes, are the switching surface or hyperplane design 

and realisation of a controller. It is shown that there is no freedom of choice in the 

switching surface design for square plant. The switching surface design for non-square 

plant is an output feedback problem which is affected by unm atched uncertainty. The 

conditions for existence of a stable reduced order sliding motion are presented. The 

effects of the invariant zeros and the ‘Kimura-Davison’ condition are described. Two 

m ajor criteria for developing the static output feedback sliding mode control are; the 

invariant zeros must be stable and a particular closed-loop design triple must satisfy the
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‘Kimura-Davison’ condition. To minimise the effect of unm atched uncertainty, a robust 

switching surface design is considered based on a normal m atrix design technique. The 

controller formulation, its freedom in design and reaching conditions are examined. 

Finally, two numerical examples dem onstrate the methods and simulation results show 

the tractability of application. Further details of the application of this theory to a 

nonlinear helicopter system are available in a later chapter and the associated problems 

are solved in Chapters §5 Sz §6. The theoretical results obtained and its application to 

uncertain systems are published in the proceedings of the IFAC and IEE conferences.

C hapter (5) develops the ‘dynamic output feedback sliding mode control strategy’ for 

systems which do not fall into the static output feedback sliding mode control frame­

work or may require greater freedom in design to meet the performance requirements. 

This chapter emphasizes problems which do not satisfy the required ‘Kimura-Davison’ 

condition or may require extra degree of freedom in design and a subsequent chapter 

is presented to develop another type of dynamic output feedback sliding mode control 

for systems with unstable invariant zeros. The plant is augm ented with a compensator 

and the augmented system is considered for static output feedback sliding mode design, 

giving more freedom in calculating the switching surface and controller parameters. 

Hence, the same robust output feedback technique of C hapter §4 is applicable for the 

design of the switching surface and the compensator param eterisation together. The 

controller structure is similar to that described in C hapter §4. However it is used with 

the augmented system param eters. Numerical examples are given to demonstrate the 

effect of dynamic compensator to solve problems with the ‘Kimura-Davison’ condition 

in the static output feedback problem and also to improve the performance. This theo­

retical result is published in the proceedings of an IEEE conference. A article involving 

the work from Chapters §4 Sz §5 has been accepted for publication in the IEE Proc. 

Part-D .

C hapter (6) examines the case of dynamic output feedback sliding mode control for 

systems with unstable invariant zeros. An additional assumption is imposed. Previous 

developments in this area are described in Chapter §3. The idea used here is similar to 

previous work but it extends the contribution to the case of nonlinear systems and the 

effect of uncertainty in the closed-loop dynamics is properly examined. The dynamic
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compensator is parameterised independently and it is nonlinear in nature. The con­

troller formulation and the reaching condition are examined. The closed-loop analysis 

and switching surface design are described together with limitations in the uncertainty. 

The issue of robustness is also applicable during the design of both the compensator 

and controller param eters. Further examples are given to dem onstrate the numerical 

tractability and simulations show the output regulation, the reaching phase and the 

control action etc. More about its application is presented in Chapter §8.

C h ap ter (7) presents the design of a controller for a helicopter system. This is an 

application of static output feedback sliding mode control to a fully nonlinear industrial 

system. The reduced order realisable m athem atical model of the helicopter and its 

uncertainties are described. The objectives of the design are achieved using a model 

following technique. An ideal model is designed based on the Hqq 1-DOF technique. The 

ifoo control produces a higher order controller due to the param eters of the shaped plant. 

The discrepancy between the higher order H ^  controller and the minimum order sliding 

mode controller is solved. The switching surface and controller param eters are calculated 

using the robust output feedback technique. Fully nonlinear helicopter simulation results 

are presented for different flight conditions. These nonlinear simulation results justify 

the theoretical work presented in Chapter §4.

C hapter (8) considers controller design for an aircraft with unstable transmission ze­

ros. The dynamic output feedback sliding mode control technique developed in Chapter 

§6 is applied for controller design. The m athem atical model is derived from a GAR- 

TEUR benchmark problem called the High Incidence Research Model (HIRM). The 

control problem is divided into longitudinal and lateral channels. Each channel is con­

trolled separately. The dynamic compensator and controller are robustly designed for 

each channel as presented in C hapter §6. The simulation results are obtained for lin­

early perturbed systems at different operating conditions. These results illustrate the 

application of dynamic output feedback sliding mode control for systems with unstable 

transmission zeros and the use of robust techniques for uncertain systems.

C hapter (9) summarises the contributions of the thesis highlighting the use of ‘robust 

sliding mode control using output inform ation’ and recommends future work.
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1.3 N otation

The system triple (A, B, C)  is considered as a linear, time invariant, finite dimensional 

representation and the bounded uncertainty /i(t, u, x) comprises of all model uncertain­

ties plus any other nonlinearities present in the system as represented in equation (1.1a). 

The linear system is said to be asymptotically stable if and only if each of the eigenvalues 

of the m atrix A has a strictly negative real part.

1.3 .1  M ath em atica l N ota tion

A T the transpose of the m atrix A

A * the Moore Penrose inverse of the m atrix A

A-1 the inverse of the square m atrix A

det(A) the determ inant of the square m atrix A

Amax(A) the largest eigenvalue of the square m atrix A

^mm(A) the smallest eigenvalue of the square m atrix A

In the n x n identity m atrix

M  lump mass

M. mach number

N ( S )  the null space of S

P  > 0 the m atrix P  has positive eigenvalues

Q = QT > 0 symmetric m atrix Q is positive semi-definite

Re(A) the real part

IR the field of real numbers

IR+ the field of scalar time

]RnXm the set of real matrices with n rows and m  columns

R (B )  the range space of B

E the bounded set

|a| the absolute value of the real number a

dij the ( i , j )  element of the m atrix A

diag{crj} a diagonal m atrix with crj on the main diagonal

h vertical distance
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i \J— 1; sometimes an index, as in

p ( t , u , x ) the scalar function of t ,  u , x

sgn(.) the signum function

t time in seconds

11*11 Euclidean norm of vector

X the derivative of x  w.r.t time

X the double derivative of x  w.r.t

U ‘the union of element of’

C ‘the subset’

n ‘the intersection’

3 ‘there exists’

G ‘an element of’

i ‘not an element of’

V ‘for all’

‘not equal to ’

1.3.2 A bbreviations

DOF degrees-of-freedom

DRA Defence Research Agency

GARTEUR Group for Aeronautical Research and Technology in Europe

LHP left half-plane

LQG linear quadratic Gaussian

LSDP loop-shaping design procedure

HIRM High Incidence Research Model

MIMO m ulti-input m ulti-output

RHP right half-plane

SISO single-input single-output

VSS Variable Structure System

VSCS Variable Structure Control System

VSCOF O utput Feedback Variable Structure Control

sec. time in second



Chapter 2

Background and Scope in Variable Structure  

System s

2.1 In troduction

In this chapter the concepts and ideas of variable structure systems are briefly reviewed. 

Section §2.2 motivates the use of robust control for tackling uncertain multivariable 

design problems. Section §2.3 introduces variable structure systems. The method of 

equivalent control and the invariance properties of variable structure systems to a certain 

class of uncertainty are discussed in subsequent subsections. The existence of a sliding 

mode, the nature of the control law and the effect of chattering are described. Section 

§2.4 summarises the main points of the chapter.

2.2 M otivation  for R obust M ultivariable C ontrol

A m athem atical model of any physical system is always an approximation of the true 

plant system dynamics. The difference between the model and the actual plant dynam ­

ics, i.e. the plant uncertainty, depends on various factors. Typical sources of uncer­

tainties include unmodelled dynamics (high frequency), neglected nonlinearities, effects 

of model reduction, and the plant param eter changes due to environmental factors and 

variations in operating condition with time. These uncertainties enter into the plant 

dynamics either through the input or output channel. In addition the system may 

have unm atched nonlinearities, param eter changes etc. A feedback control system (in
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which the controller design is based on an imperfect plant model) is required to be 

robust to such perturbations; it must m aintain stability and some level of performance 

in the presence of uncertainty. In classical frequency response analysis for single-input 

single-output (SISO) systems, gain and phase margins have been used as measures of 

robustness. It is now well known tha t these measures (taken one loop at a time) are 

not good indicators of robustness for multivariable feedback systems [53].

Many SISO design techniques have been used to tackle multivariable problems. Ex­

amples are the Characteristic Root Locus and Nyquist Array design methods. These 

techniques have also been applied to some design problems. One example is the aircraft 

control problem discussed by Maciejowski [78]. The main drawback of these design 

methods is that they rely mainly on the notion of gain and phase margins to address 

robustness, and these measures, as indicated above, can be poor indicators of robust 

stability. Moreover if designs obtained through such methods do not yield satisfactory 

closed-loop behaviour, it is often not obvious what can be done to improve the perfor­

mance. The question of optimisation is also im portant and one does not know if the 

design can be improved or not. Hence, when faced with the design of controllers for 

complex multivariable systems, one is motivated to look towards techniques which are 

inherently multivariable and which provide a degree of robustness to modelling errors 

and uncertainties. Variable structure systems are one such m ethod which is inherently 

robust in nature and can easily handle multivariable problems with matched uncer­

tainty. However, the effect of unm atched uncertainty can not be tolerated. Hence, 

a robust variable structure control is appreciated to minimise this class of uncertainty. 

Since most of the analysis in variable structure systems is based on state-space methods, 

one robustness measure for this case is the position of the eigenvalues and eigenvectors 

and the norm of the closed-loop system for both MIMO and SISO systems (as shown, 

for example, in [6]). One such approach is considered in this thesis.

2.3 V ariable Structure S ystem s

The concept of variable structure systems first originated in the Soviet literature in 

1955. The pioneer authors are Tsypkin [101], Emel’yanov [41], Aizerman and Gant-
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macher [2], Filippov [46]. Most of this work considered variable structure regulation of 

linear systems. Most of the ideas were not published outside Russia until the end of 

1964. Later, results were more broadly published in the English literature when a book 

edited by Itkis [66] appeared in 1976 and a survey paper was published by Utkin [102] in 

1977. The application of variable structure system theory was first illustrated by Young 

[116] in 1978 for a m anipulator controller design. The combination of sliding controllers 

with state observers was discussed by Bondarev et al.[9] in the linear case, and Hedrick 

and Goplswamy [58] in the nonlinear case. Observers based on sliding surfaces were dis­

cussed in [30, 93, 107]. Variable structure schemes have subsequently been utilised and 

developed for the design of underwater vehicles [115], robust regulators [19, 54, 88, 92], 

model reference systems [99, 100], adaptive control schemes [61], tracking problems [55] 

and state observers [104, 107]. The method has successfully been applied to problems 

in control of electrical motors, chemical process plant and robot manipulators and in 

simulation of autom atic flight control, helicopter stability and space systems etc.

Variable structure systems as the name reflects, are a class of systems whereby the 

‘control law’ is changed during the control process according to predefined rules which 

depend on the system states. The main ideas can be described using phase plane 

analysis for second order systems. For the purpose of illustration consider the example 

of a satellite control system in Figure 2.1. The satellite, depicted in Figure 2.2(a), is

Jets Satellite

Figure 2.1: Satellite control system

simply a rotational unit inertia controlled by a pair of thrusters, which can provide 

either a positive constant torque U (positive firing) or a negative torque — U (negative 

firing). The purpose of the control system is to m aintain the satellite antenna at zero 

angle to the reference axis by appropriately firing the thrusters. The mathem atical
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model of the satellite is

0(t) =  u(t) (2.1)

where u(t)  is the torque provided by the thrusters and 0(t) is the satellite angle. Consider

the phase plane behaviour of the control system when the thrusters are fired according

to the control law defined by

[ - U  if 9{t) > 0 
u{t) = { (2.2)

\  U if 0(t) < 0

which means that the thrusters push the satellite in a counter clockwise direction if 0 

is positive, and vice versa. To generate the complete phase portrait, first consider the 

phase portrait when the thruster provides a positive torque U . The dynamics of the 

system are

0(t) = U (2.3)

which implies th a t the phase trajectories are a family of parabolas defined by

02(t) = 2U9(t) +  ci (2.4)

where c\ is a constant. The corresponding phase portrait of the system is shown in

antenna

u = U u = -U

(a) (b) (c)

Figure 2.2: Satellite control using on - off thrusters

Figure 2.2(b). When the thrusters provide a negative torque —U, the phase trajectories 

are similarly found with the corresponding phase portrait shown in Figure 2.2(c). The 

complete phase portrait of the closed-loop system can be obtained simply by connecting
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parabolic trajectories

-L7

switching line

Figure 2.3: Complete phase portrait of the control system

the above two trajectories as shown in Figure 2.3. The resulting response shows that 

the system is stable while the control actions U and — U simultaneously act on the 

system and the trajectory  directed to the vertical axis x(t).  It is concluded from the 

above discussion th a t the control law changes on the vertical axis which may be called 

the switching line.

Consider now the general form of a double integrator [32, 102] given by

y(t) = u(t) (2.5)

u*(i) =

Using the control law

u{t) =  —ky(t) k > 0 (2-6)

results in simple harmonic motion characterised by an elliptical phase portrait which 

may be considered to be marginally stable. Consider instead the control law

- k 2y(t) if y y  >  0
(2.7)

— k\y{t) otherwise

where k2 >  1 >  k\ >  0. The phase plane (y ,y)  is partitioned by the switching rule into 

four quadrants separated by the Cartesian coordinate axis as shown in Figure 2.4. These 

examples clearly fit the description of the name of ‘Variable Structure Control Systems’. 

The control u(t) = —k2y(t) is effected in the quadrants of the phase plane labelled (a). 

In this region it can be verified that the distance from the origin of the points in the 

phase portrait decreases along the trajectory. Similarly, in the region (6) when the 

control law u( t ) =  —k\y{t) is activated, the distance from the origin of the points in the



Chapter 2. Background and Scope in Variable Structure Systems

u(t)=-k2 y(t)

19

Figure 2.4: Phase portraits of simple harmonic motion

phase plane portrait also decreases. The phase portrait of the closed loop system under 

the variable structure control law u* is obtained by placing together the appropriate 

regions from the two phase portraits. An asymptotically stable motion results as shown 

in Figure 2.5. By introducing a rule for switching between two control structures,

Figure 2.5: Phase portraits of the system under VSC

which independently do not provide stability, an asymptotically stable system has been 

obtained.

A more significant example results from using the control law

f —1 if s(y ,y)  > 0
«*(t) =  (2.8)

1 i ^ s(y,y) < o
where the switching function is defined by

y) =  rny(t) +  y{t) m  >  0 (2.9)
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Now, the term  switching function is clear as s(.) is used to decide which control structure 

is in use at the point (y , y ) in the phase plane. For all values of y( t ) which satisfy the 

inequality m\y\ < 1, the systems total energy will decrease for all time. This can be 

expressed mathematically as

ss =  s (my{t) — sgn(s))  <  —|s| (1 — m\y\)  < 0 (2.10)

where sgn(.) is the signum function. Equivalently it can be written [104] as

andlim s <  0
S - > 0 +

lim s > 0
s—>0 -

This is called the ‘reachability condition’ of the system. Consequently when m\y\ < 1 

the system trajectories lie on either side of the line

c ,  = {(y,y)  ■■ s (y ,y )  = 0} (2.11)

In this case high frequency switching between the two control structures will take place 

as the system trajectories repeatedly cross the line Cs. This type of high frequency mo­

tion is called chattering. If infinite frequency switching were possible, intuitively at least, 

the motion would remain on the line Cs. The motion satisfies the condition s(y ,y)  = 0, 

which generates the first order differential equation obtained from rearranging equation 

(2.9).

y(t) = —my(t)  (2.12)

This represents a first order decay and the trajectories will slide along the line Cs to 

the origin as in Figure 2.6. Such dynamical behaviour is called a sliding mode and the 

line Cs is called a sliding surface. During the sliding motion, the system behaves as a 

free system with all control action expended in ensuring tha t the system maintains the 

reduced order motion, i.e. s(y , y) = 0. The reduced order dynamics is solely dependent 

on the choice of the gradient of the line Cs. The above discussion can easily by extended 

to higher order systems using a state space representation of variable structure control. 

Define a state vector

x(t)  =
y( t )

y(*)
(2.13)

Equation (2.5) can then be rewritten in state space form as

x{t) =
'0  1 ' ‘O'

x(t) +
° 0 1 I—1 L._

u(t) (2.14)
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state trajectory

sliding surface

Figure 2.6: Sliding motion under VSC

and the switching function can also be expressed in the m atrix form as

s(y,y) = [™ 1 ] ar(t) (2.15)

This suggests th a t the state space representation is more convenient for describing multi­

input and m ulti-output variable structure control systems. Now, consider the nth order 

linear time invariant system with m inputs given by

x(t) = Ax(t )  +  Bu(t)  (2.16)

where A  £ ]RnXn, B  £ IRnxm with 1 < m  < n. W ithout loss of generality it can be 

assumed that the input m atrix B  has full rank.

Define a switching function s(x) : IRn —► 3Rm to be the linear map s(x) = Sx( t )  where 

S  £ ]Rmxn is of full rank and let S  be the hyperplane defined by

S  = { x e U n : s(x) = Sx( t )  = 0} (2.17)

Suppose a control law exists such that u* is a function of s(x)  and x(t) where the changes 

in control strategy are dependent on the value of the switching function s(x).  The 

control law can then be considered as a map u* : x —* u*(x) which is discontinuous. It is 

natural to choose a control action and the switching strategy such tha t sliding takes place 

on the hyperplane S , i.e. the system states are driven onto and then subsequently forced 

to remain on the surface S.  Intuitively, all the system trajectories in a neighbourhood 

of S  must be directed to the switching surface. Graphically, it can be represented as in
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X

finite time 
reaching phase

s = O

sliding mode 
exponential convergence

slope -

Figure 2.7: Graphical interpretation of Sliding motion

Figure 2.7. In practice an ideal sliding motion may not be attained due to the presence 

of imperfections such as delays, hysteresis and unmodelled dynamics which will result in 

a chattering motion in the boundary of the sliding surface as shown in Figure 2.8. Such

X

s = O
chattering motion

boundary layer

Figure 2.8: Chattering and boundary layer on the control switching line

a system does not fall w ithin the scope of classical differential equation theory. Ideal 

sliding motion can be thought of as the limiting solution obtained as the imperfections 

diminish. A formal discussion along these lines appears in [104]. The solution concept 

proposed by Filippov [46] for differential equations with discontinuous right hand sides 

is also described in [104]. A rigourous approach for a certain class of variable structure 

controllers is given by Leitmann [74] and Ryan [87]. The chattering can be eliminated 

by replacing the discontinuity in the control law. Slotine and Sastry [95] and many other 

researchers utilise the boundary layer approach, where the discontinuous component is
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replaced by a continuous approximation. This is discussed further in a later section.

Variable structure systems theory has a long history of development. Like other control 

methods, it has many different classifications based upon the particular nature of control 

law used; ‘full state or observer based controller’, ‘output feedback based controller’, 

‘simplex type controller’, ‘adaptive type controller’ etc. Most of the work available in the 

literature on theoretical and practical developments in the area of sliding mode control 

systems are based on the assumption th a t the system state vector is available for use by 

the controller. In practice, it may not be possible or may be impractical to measure all of 

the states. However, researchers have developed methods to estim ate the unmeasurable 

states in order to use the control strategies. The m athem atical model used to generate 

the states is termed an observer and the idea was first developed by Luenberger [76]. 

He proposed a method to observe the states either completely, called a full order state 

observer, or partially called a minimal order state observer for linear systems. Despite 

fruitful research and development in the theory of variable structure control, there 

are very few authors who have applied the underlying principles to the problem of 

observer design. The work of Utkin [103, 104] is fundamental. He has described a 

discontinuous observer strategy where the error between the estim ated and measured 

output vector is forced to exhibit a sliding motion. Dorling and Zinober [29] have 

applied this observer to an uncertain system and observe the difficulties in the selection 

of a proper switching gain which ensures sliding motion without excessive chattering. 

Walcott and Zak [107, 108] studied the sliding observer from a Lyapunov viewpoint. 

Under appropriate assumptions the observer exhibits asymptotic state error decay in the 

presence of bounded matched nonlinearities/uncertainties. Walcott et. al. [106] present 

a direct approach to nonlinear observer design when the nonlinearities present in the 

system are perfectly known. Recently Edwards and Spurgeon [32, 33] have developed a 

methodology for determining the magnitude of the discontinuous gain required by the 

Utkin observer to ensure the existence of a sliding mode despite the presence of a class 

of bounded plant uncertainty. This method explicitly solves the constrained Lyapunov 

problem appearing in the work of Walcott and Zak. An alternative approach to the VSS 

control of systems where the states are not all available for measurement is an output 

feedback sliding mode control which is the main topic of this thesis. The controller will
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be designed based upon output information only.

Many practical systems have limited numbers of measured outputs available where either 

all or few of them  are to be controlled. E xtra measurements increase the complexity in 

im plem entation and the cost of actuator and sensors is also im portant from the economic 

point of view. Hence an alternative framework for state feedback sliding mode control 

is necessarily im portant for economy and easy implementation in industry. An ‘output 

feedback sliding mode control’ can easily circumvent these issue. Before discussion it is 

first necessary to establish the most common approach for system analysis.

2.3 .1  M eth od  o f  Equivalent C ontrol

This section describes a method of establishing the nominal control action required to 

m aintain a sliding motion on the switching surface S  and the equations representing the 

dynamical behaviour of the states while constrained to the surface. These dynamics are 

called the ‘equivalent dynamics’. At this point it is stressed th a t the m ethod about to 

be described is not confined to linear systems. In this regards, more general nonlinear

systems and sliding surfaces are considered in DeCarlo et. dl. [25] and Utkin [104] for

state feedback systems.

Consider the linear system described in equation (2.16) which has outputs y(t) repre­

sented by the equation

y(t) = Cx(t)  (2.18)

where y £ IRP and the output m atrix C is known and full rank. The switching surface 

equation in (2.17) may be defined in terms of outputs by

S  = {y £ IRP : s(y) = Fy(t)  = 0} (2.19)

for some m atrix F  £ IRmXp called the ‘switching surface m atrix’.

Suppose at time t = t s the system output reaches the switching surface S  and an ideal 

sliding motion is attained. This can be expressed mathematically as s(y) = F C x ( t ) =  0 

and s(y) = F C x ( t )  = 0 for all time t > t s. Substituting for x(t)  from equation (2.16) 

gives

F C A x ( t )  +  F C B u ( t )  =  0 V t  > t s (2.20a)
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ueq(t) = - ( F C B ) ~ l F C A x { t ) (2.20b)

This shows th a t the m atrix F C B  is required to be invertible if an ‘equivalent control’, 

ueq(t) is to exist. The singular case may be considered in the way described in Utkin 

[104] for state feedback control. The ideal sliding mode dynamics may be given by 

substituting the equivalent control ueq(t) into equation (2.16). This gives the free motion

x(t)  =  ( j n -  B ( F C B ) ~ 1FC^ Ax(t)  V t > t s and s (x ) =  0 (2.21)

This shows tha t if the m atrix S  = F C  for a state feedback control defined in [32, 121] 

is considered then the properties of a linear projection operator are satisfied. Define the 

linear projection operator Ps = (In — B ( F C B ) -1 F C )  = (In — B(SB)~*S)  which satisfies

S P s = 0 and PSB  = 0 (2.22)

The system m atrix governing the sliding motion PSA  therefore belongs to N (S )  and 

consequently the sliding motion is a reduced order dynamic. Hence the system can be 

decomposed into two sub-dynamics. One is called the range space dynamics R(B)  and 

the other is called the null space dynamics N (S ) .  The stability and the ‘invariance 

properties’ of the ‘range space dynamics’ is discussed in [111]. More about the reduced 

order dynamic behaviour and the design of the switching surface are discussed in later 

chapters. The next section considers the issue of invariance conditions which attracts 

the researcher for further development in this field.

2.3.2 Invariance P rop erty  o f V SS

The invariance conditions for sliding systems were originally formulated by Drazenovic 

[31] for state feedback sliding mode control. The invariance conditions for output feed­

back sliding systems are similar to those described by Drazenovic for the choice of 

S  = FC.  This was also noted by Diong [26] in sliding mode control based on dynamic 

output feedback. Consider the uncertain linear system defined by

x(t) = Ax(t)  +  Bu(t)  +  G£(t, x) (2.23)

where the m atrix G £ ]RnXl and the function t ,(t,x)  : IR+ x ]Rn —► IR/ represents any 

uncertainty or nonlinearity in the system. The outputs are represented by equation
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(2.18). Suppose an output feedback control law exists which induces a sliding motion 

on the plane <S, then the equivalent control ueq(t) represented in Subsection §2.3.1 is 

written as

u eq(t) = —(F C B )~1F C  {A x ( t ) +  G f (*, a:)} V t > t s (2.24)

The equivalent control law is never realised in practice due to the presence of the un­

known function £>(t,x) .  However this does not present any difficulties in analysis. Sub­

stituting equation (2.24) into the uncertain system in equation (2.23) yields the sliding 

motion

x(t) = PsAx(t )  +  PsG£(t , x) V t > t s and s(x) = 0 (2.25)

where Ps is defined in Subsection §2.3.1. Suppose H (G ) C R (B )  then there exists a 

m atrix R  £ IRmX/ such tha t G = BR.  This leads to PSG = 0 since PSB  =  0 as described 

previously. The sliding mode dynamics may be w ritten as

i(£) =  PsAx(t)  V t > t s and s(x) = 0 (2.26)

where the function £(t,x)  does not affect the motion. The reduced order dynamics 

are thus insensitive to any disturbances occurring in the range space R(B).  This class 

of uncertainty is called matched uncertainty. The invariance property with respect 

to the matched uncertainty makes the ‘variable structure systems’ a powerful tool for 

controlling uncertain systems and motivates continuing research in this area.

The remaining uncertainty which does not fall in the range space R (B )  is described

as unmatched uncertainty and it will appear in the null space dynamics. Its affect 

on the sliding motion is thus unavoidable. However, this effect may be reduced by 

using an appropriate robust design technique to prescribe the sliding function and thus 

the reduced order dynamics. It is also one of the main contributions of this thesis. 

Before going into further details, two im portant topics must be discussed relating to the 

robustness property outlined above. The robustness property exists only if the system 

attains and maintains a sliding motion. The choice of control to ensure this is thus 

fundamental.
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2.3 .3  C onditions for E xistence o f S liding M ode

From the definition of a sliding mode, it is clear that motion in the neighbourhood of 

the switching surface S  must be directed towards the surface. The surface must be 

locally stable. Using a Lyapunov1 approach, a sufficient condition for existence of a 

sliding motion is described in DeCarlo et dl. [25], Utkin [102], and also Edwards [32].

T h eorem  2.1 For a domain D  C S  to be the domain of a sliding mode it is sufficient 

that in some region Q, C IRn where D  C O there exists a continuously differentiable 

scalar function V  : IR+ x IRn x IRm —> IR satisfying

i) V ( t , x , s )  is positive definite with respect to s, i.e. V ( t , x , s )  >  0 i /  6 /  0, 

for all x £ £1, and on the spheres ||s || =  r, for all x E 0  and any time t the 

following relations hold

• inf V ( t , x , s )  = hr and hr > 0 for r ^  0

• sup V ( t , x , s )  = Hr > 0

where hr and H r depend on r.

ii) The total time derivative of V ( t , x , s )  has a negative supremum for every 

x £ Q except for x on the switching surface where the control inputs are not 

defined and hence the derivative o f V ( t , x , s ) does not exist.

Proof: The simplest Lyapunov function for a multivariable switching system is the 

quadratic form

V ( t , x , s )  = ^ s Ts (2.27)

which is always a positive function with respect to s and satisfies the supremum and 

infimum conditions. The total derivative is given by

V(t,  x, s) = sTs (2.28)

a sufficient condition for a sliding mode to exist is that the time derivative of the

Lyapunov function is strictly decreasing, i.e.

sTs < 0  V x and t (2.29)

1A brief review of Lyapunov stability ideas is given in Appendix B
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This existence condition is the one most often cited in the literature. In practice, certain 

controller designs are based upon this method which will be discussed in due course. ■

2.3 .4  S tructure o f  C ontrol Law

Most of the control laws used in VSC have two parts; one has a fixed gain, mostly related 

to controlling the linear part of the system, and the other is switched or nonlinear in 

nature and is used to control the uncertain part of the system. Mathematically this is 

given as

u(t) = Giy(t) +  p(t, s) (2.30)

where Gi is linear gain m atrix and v(t, 5 ) is called the discontinuity vector. Its definition

is available in the literature in terms of state feedback control in Slotine and Sastry [95],

Ryan and Corless [88], de Jager [24], Burton and Zinober [14] and Spurgeon and Davies

[98] and in terms of output feedback in Heck and Ferri [56], El-Khazali and Decarlo

[38, 39] and also in Zak and Hui [118]. Edwards and Spurgeon [34] define it as

f p( t ,u , y) |7Sp4|| if s(y) ^  0
v( t ,s )  = _ K y ,T  (2.31)

[ 0 otherwise

where p( t ,u ,y )  is a positive scalar quantity defined by the uncertainty bound param e­

ters. It will be defined precisely in the controller design sections. As discussed earlier, 

chattering is common with this sort of control structure. A continuous approximation 

is used to avoid chattering. This is discussed in the next section

2.3 .5  C ontinuous A p p roxim ation s o f  th e  D iscontinuous Control Law

The most common approach is to soften the discontinuous vector v(t, s) in the control 

law. Slotine and Sastry [95] and many other workers utilise the boundary layer theory 

where the discontinuous component is replaced by a continuous nonlinear approxima­

tion. Ryan and Corless [88] use a variant on this boundary layer approach and advocate 

the power law interpolation structure. A detailed description of this is available in Ed­

wards [32]. An alternative differential approximation is given by Burton and Zinober 

[14] and Spurgeon and Davies [98] who consider

«„ =  - p ( t ,  x )B j"1 ||p 2^ y +  g (2-32)
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where 8 is a small positive constant. As shown in Figure 2.9 the scalar 8 does not define
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Figure 2.9: A differentiable approximation of the s ignum  function

the boundary layer; at ||s || =  8 the nonlinear control action is half of its maximum 

value. However, ultim ate boundedness results can be dem onstrated. Other types of 

approximations are proposed in [80, 119]. A comparison of these different approaches to 

eliminate chattering is made by de Jager [24]. It is suggested th a t there is no significant 

difference between the various methods. Based on the above study of approximation 

methods, the output feedback control discontinuity part is approximated as

[ if s(y)  ^  0
v( t ,s )  =  P ’ _ y y , T  (2.33)

( 0 otherwise

The size of 8 and its effect on the robustness is studied by Davies and Spurgeon [21]. 

Some steady state errors result from this approximation. The introduction of integral 

control action may remove these effect. This approximation is mainly used during the 

simulation of numerical examples in this thesis.

2.4 Sum m ary

A brief discussion of nonlinear multivariable control systems has been presented. The 

basic ideas associated with the use of variable structure systems for controlling multi- 

variable systems are discussed. The sufficient conditions for the existence of a sliding 

mode, the control structure and its effects are also reviewed. These ideas are funda­

m ental to the developments of the proposed approaches which follow in the remaining
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chapters. The exposition has been restricted to linear uncertain multivariable systems. 

In the remaining chapters the ideas of variable structure control will be examined for 

uncertain linear multivariable systems based upon output information. In this situation, 

either the class of hyperplanes or the controllers considered must be restricted to those 

requiring only system output information. A robust technique for switching surface 

design will be investigated.



C hapter 3

D evelopm ents in O utput Feedback Variable 

Structure Control

3.1 Introduction

Most of the techniques for the design of variable structure control systems that are 

available in the literature assume tha t either the state vector is directly measurable or 

tha t an observer is used to reconstruct the states. Even if the states are all measurable, 

implementation with state feedback is necessarily complex, requiring many feedback 

loops. An observer may be used to overcome this problem. Details about observer 

design is available in the literature such as Slotine et al. [93], and W alcott and Zak [108]. 

Young [116] has first applied this control structure to industrial problems. These added 

dynamics increase the integration complexity and cost of implementation. In fact, an 

observer may not be reliable for large order systems. An alternative approach to avoid 

state measurement or observer design is to use an output feedback control. O utput 

feedback for linear systems has generated much interest in the last 20 years. The main 

benefits are that there are no extra dynamics involved in controller implementation and 

there are thus fewer computational loops producing less complexity. There are however, 

inherent problems with output feedback in linear systems th a t are also present in O ut­

put Feedback Variable Structure Control (VSCOF) design. For example, it may not 

be possible to stabilise a system with a given set of plant outputs called ‘static output 

feedback control’. A static output feedback controller is a controller where there are no 

additional compensator or observer dynamics involved. The only dynamics are associ­
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ated with the plant dynamics. The minimum requirement to use such output feedback 

sliding mode control is that the number of outputs must be either equal or greater than 

the num ber of inputs in addition the system must satisfy the general output feedback 

criteria such as controllability, observability etc. [22, 23] and the ‘Kimura-Davison’ con­

ditions [70, 71]. In the case of output feedback sliding mode control, a particular sliding 

mode design triple must satisfy these conditions. Static output feedback sliding mode 

control was first investigated by W hite [110, 111] for a linear system without uncertainty 

and more recently by El-Khazali and DeCarlo [37, 38] and in application the works of 

Heck and Ferri [56] are important. Later on Hui and Zak [63] investigated uncertainty 

models and proposed an algorithm for output feedback dependent hyperplane design 

which is based upon eigenvector methods. The problem has also been addressed by 

Edwards and Spurgeon [34] and this work is fundamental to the developments in this 

thesis.

If the system does not satisfy the static output feedback conditions then the most com­

mon way to overcome this is to add some additional dynamics so th a t the augmented 

system satisfies the conditions. This is called ‘dynamic output feedback control’ or ‘com­

pensation technique’. If the sliding mode design triple does not satisfy these conditions 

then a dynamic compensator is added to the system. This type of output feedback is 

called ‘dynamic output feedback sliding mode control’ as described by El-Khazali and 

DeCarlo [40], Diong and Medanic [27, 28], and also Edwards and Spurgeon [35].

This chapter describes the existing contributions on the developments of output feedback 

sliding mode controller design as outlined above. Section §3.2 describes the general form 

of the system and the developments of static and dynamic output feedback sliding mode 

controllers are described in Sections §3.3 and §3.4 respectively.

3.2 S ystem  D efinition

Different authors invoke different assumptions and also consider different forms for the 

uncertainty and nonlinearity. However, the most common way to define an uncertain 

plant is to consider a linear time invariant state space model with some uncertainties in
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the system

x(t) = Ax(t )  + Bu(t)  + h( t ,u ,x )  (3.1a)

y{t) =  Cx(t)  (3.1b)

where A £  H nXn, B  £ IRnxm and C £ H pXn with m  <  p < n. Assume tha t the nominal 

linear system triple (A, H, C) is known and the input and output matrices B  and C are 

both of full rank. The unknown function h ( t ,u ,x )  : IR+ x IRm x IRn —► IRn represents 

the system nonlinearities plus any model uncertainties present in the system. Different 

authors have imposed different restrictions on the unknown function h{t ,u ,x) ,  but the 

uncertainty is largely assumed to be bounded by known constants. The aim of this 

chapter is to study the existing methods and their associated problems in sliding mode 

output feedback control and then develop a framework for output feedback sliding mode 

control which circumvents the difficulties with the existing methods.

3.3 D evelopm ents in Static O utput Feedback V SC  D esign

This section discusses the developments in output feedback variable structure control. 

The approaches of W hite [110, 111], Heck and Ferri [56] and also El-Khazali and De- 

Carlo [38, 37] use a linear model without nonlinearity and param eter uncertainty. The 

approaches of Zak and Hui [118] and also Edwards and Spurgeon [32, 34] use a linear 

model with bounded nonlinearity and param eter uncertainty. The approaches of all of 

the above authors are based on static output feedback sliding mode control. Another 

recent development by El-Khazali and DeCarlo [40] and Diong and Medanic [27, 28] in 

the field of output feedback variable structure control uses dynamic output feedback. 

The latter discusses the special case where the system cannot be stabilised using only 

output information. Such problems may be solved using a dynamic compensator which 

gives some extra degrees of freedom in output feedback sliding mode design.

3.3.1 T h e A pproach o f  W h ite

W hite [110, 111] developed preliminary results in the field of output dependent variable 

structure control. He used a linear model without uncertainty and the system triple
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(A, B , C )  must be both controllable and observable. He did not consider any particular 

regular form in his design. His approach is quite straight forward and very similar to 

the state feedback approach. The controller u(t)  is chosen as

u(t) = —( K  +  A K )y ( t )  (3.2)

with the switching surface

s(y) = Fy(t )  (3.3)

where K  and F  are design matrices. The switching gain component A Ky( t )  will be 

realised by a relay type action operating on the range space outputs. The closed-loop 

system description is given by

x(t) = (A -  B K C )  x(t)  -  BAI<y{t)  (3.4)

and the range space dynamics are described by

x(t) = F C  (A — B K C )  x(t) -  F C B A K y (t)  (3.5)

He has pointed out th a t the range space dynamics theorem [111] when applied to the 

output feedback sliding mode case is not generally possible as the fixed gain m atrix K  

m ust be chosen as

K  = (F C B ) ' 1F C A  +  Q F C  (3.6)

where Q £ IRmxm is an arbitrary matrix. He has not defined any methods for the 

design of the switching surface m atrix F  and the m atrix Q in equation (3.6). The above 

expression shows tha t the selection of F  to make F C B  full rank is not always possible 

because he has not mentioned the rank of the output m atrix C . This work motivated 

researchers to further develop output feedback variable structure control.

3.3 .2  The A pproach o f  Heck and Ferri

Heck and Ferri [56] describe a simplified linear model without uncertainty and point 

out tha t the hyperplane design in output feedback VSC can be considered as a linear 

output feedback dynamic problem. Their approach has considered the system triple 

(A, jB, C)  to be controllable and observable and in the regular form with

A =
A n A12

B  =
' 0 '

A21 A2 2 . B *.
C = [C1 C2] (3.7)
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where A n  £ Bi  £ j^mxm and q 2 e  jy-xm T h e  s w i t c h i n g  s u r f a c e  js

defined by

s(y) = Fy(t)

The reduced order dynamics can be expressed as

i iW  =  [x411-x 4 12(F C 2) - 1F C 1]:r1(i)

=  [An — Ai2KCi]x i( t )  (3-8)

where the m atrix K  = (F C 2)~l F  can be calculated using pole placement algorithms 

and the switching surface parameter F  can be derived from K  using a pseudo inverse. 

They consider a control law of the form

u =  - ( F C B ) - ' F C A N y ( t )  -  (F C B ) - » (3.9)

which is similar to tha t defined by DeCarlo et a/. [25] in the state feedback case. The 

design m atrix N  is used to ensure the reaching condition, i.e. sT(y)s(y)  <  0 is satisfied 

for all y(t). This gives the condition that

C(N) = (F C f F C A ( I  -  N C )  < 0

i.e. the m atrix C(N)  must be negative semi-definite. It is concluded that the selection 

of the m atrix F  to make F C B  full rank is not always possible with this regular form 

as in the case of W hite’s approach. The work of Yallapragada and Heck [113] and 

Heck et al. [57] relating to the design of the reaching phase in the above control law is 

im portant in this respect. The rate of convergence of the trajectories to the switching 

surface is solely dependent on the freedom of design of the m atrix N.  The asymptotic 

reaching phase shows difficulties in attaining a sliding mode. The work does not consider 

the effect of invariant zeros and also the dimensionality of the sliding mode design triple.

3 .3 .3  T he A pproach o f  E l-K hazali and D eC arlo

El-Khazali and DeCarlo [37, 38, 39] consider only nominal linear systems and do not 

consider the effect of uncertainty. They assume tha t the linear plant triple (A, B , C)  

is both controllable and observable, that the rank of (C B ) is equal to the number of
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inputs and that the system exists in the regular form as in the case of Heck et ah [56]. 

Their work requires tha t the pair (A n, C\)  is completely observable where

A n  = A n  -  A n C f a ,  C, = M TC1

where M  £ ]Rpx(p-m) is a full rank left annihilator of Ci and C\  £ IRmxp is the left 

pseudo inverse of C2 . If the m atrix A \2 has either full row or column rank, and the 

‘Kimura-Davison’ conditions [22, 23, 70, 71], w ritten as

m  +  p — 1 > n and p > rn > 2

are satisfied, then there exists a matrix T £ such that A(An — A ^T C i) can

be assigned arbitrarily close to any set of n — m  poles. They have shown that one choice 

for the sliding surface m atrix F  is

F  = Cl + T M t

In [39] the authors describe an alternative approach for design of the hyperplane based 

on an eigenstructure method. Essentially, they show th a t the eigenvectors associated 

with the eigenvalues of the reduced order system must lie in the null space JN(C). The 

use of the pseudo inverse in the design of switching surface m atrix F  is limiting in their 

work. Also their work does not consider the effects of invariant zeros in the reduced 

order sliding dynamics.

3.3 .4  The A pproach o f  Zak and H ui

The approach of Zak and Hui [63, 118] is similar to th a t of El-Khazali and DeCarlo 

[37, 38]. They have established an appropriate eigenstructure method to define the 

reduced order sliding motion. It is assumed th a t the rank(CH ) =  m  and the system is 

controllable and observable. It is proved th a t the problem of designing the switching 

surface m atrix is equal to finding the m atrix W  £ ]RnX(n”m) Gf fup rank such that

1. R { W ) f ] R { B )  = {0}

2. A W  -  W A  c  R (B )

3. rank(CW ) = p — m
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where A is the diagonal m atrix formed from a self conjugate set of complex numbers 

{Ai....An_m} which represent the desired eigenvalues of the sliding motion. For a given 

m atrix W  satisfying the above conditions, then the hyperplane m atrix F  £ IRmXp exists 

such that F C W  = 0. The main problem arises in designing the m atrix W  which is not 

formally addressed in the paper. An interesting feature of the work is the consideration 

of bounded uncertainty and the role of invariant zeroes. They assume the uncertainty is 

bounded by a known parameter and matched to the input channel, i.e. the uncertainty 

in equation (3.1a) can be expressed as h ( t ,u ,x )  = B£(t ,u ) ,  for some bounded function 

£(£,■«) : H-|_ xIR m —> IRm where ||£(t,w)|| < A"5||u || +  K Q for some known positive 

constants 0 < K g < 1 and K a. They identify th a t the invariant zeros in the system 

play an im portant component of the spectrum of the reduced order model and must be 

included in the proposed set of sliding mode eigenvalues. A necessary condition for the 

existence of a hyperplane providing a stable reduced order dynamic is therefore that the 

nominal system is minimum phase. In addition the structural constraint F C  A  =  M C  

where M  £ IRmXp must be satisfied for the control law. Robustness of the reduced order 

sliding motion is explored in [63].

3.3 .5  The A pproach o f  Edw ards and Spurgeon

Edwards and Spurgeon [33] have given a new framework for the design of output feed­

back sliding mode control. Their approach is quite different to that of Zak and Hui 

[63, 118] and is applicable to a wider class of systems than  those proposed by Heck and 

Ferri [56] and El-Khazali and DeCarlo [38, 39]. They assume that the nominal system 

triple (A, H, C) has the pair (A, H) controllable and th a t the rank(CB) = m.  How­

ever, the pair (A, C) is not necessarily observable as required by Zak and Hui [118]. In 

addition, they consider bounded and matched nonlinearity and parameter uncertainty. 

They also propose a m ethod to find the hyperplane m atrix in the presence of stable 

invariant zeros. The method presents a useful framework for output feedback sliding 

mode control. However, some practical issues such as the effect of unm atched uncer­

tainty, robust switching surface design and tailored controller construction remain to be 

addressed.

The second type of output feedback sliding mode control is ‘dynamic output feedback
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sliding mode control’. Its use and development is discussed in the section below.

3.4 D evelopm ents in D ynam ic O utput Feedback VSC D esign

The developments in Section §3.3 are based on the assumptions that the system satisfies 

the static output feedback sliding mode conditions. If the system does not satisfy 

them  or if the performance is unsatisfactory then usually some extra dynamics, called 

a ‘dynamic compensator’, are used to give some extra degrees of freedom in the design 

process. Its use is also essential if the sliding mode dynamics is not stabilisable or does 

not meet the performance requirements using only measured variables. Two such cases 

are that the reduced order dynamics cannot be stabilised if the system does not satisfy 

the ‘Kimura-Davison’ conditions and /  or if the system possesses any unstable invariant 

zeros. One way to solve those problems is to use dynamic output feedback sliding mode 

control. Some recent developments in this area are described below.

3.4 .1  T he A pproach o f  El-K hazali and D eC arlo

This work [40] extends the work in [37, 38, 39] to the case of dynamic output feedback 

sliding mode control. Again they have considered linear systems without uncertainty. 

The system is considered completely controllable and observable, does not satisfy the 

‘Kimura-Davison’ conditions and does not possess any invariant zeros. It is mentioned 

tha t the observability of the m atrix pair (A , C)  does not guarantee the observability of 

the reduced order sliding dynamics [40]. However no observability condition is presented 

for the reduced order sliding dynamics. A compensator of appropriate size which is 

driven by the output of the plant is used to augment the system. The sliding manifold 

is designed for the augmented system and the compensator param eters are chosen during 

switching surface design. Graphically this type of augmented system is represented in 

Figure 3.1. M athematically the compensator is defined as

x c{t) =  H x c(t) +  Dy(t)  (3.10)

where the compensator param eters H  £ JRqXq and D  6 ]R9Xp are real matrices to be 

designed. The order of the compensator is chosen to ensure the augmented system
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y(t)
P(s)

vsc

K(s)

Figure 3.1: Compensator type dynamic output feedback

satisfies the ‘Kimura-Davison’ conditions where in practice only the output feedback 

design triple should satisfy the ‘Kimura-Davison’ condition. The plant in equations 

(3.1a)-(3.1b) is combined with the compensator dynamics in equation (3.10). This is 

given as

z ( t ) =  Az{t)  -f- Bu(t)  (3.11a)

y(t) =  Cz(t)  (3.11b)

with augmented switching surface

S„ =  {z £ f t 9*’* : s(y) =  F y(i) =  0} (3.12)

where the augmented states z = [x^ x T ]T E !R^+n\  the outputs y = [x^ yT ]T £

]r(<?+p) an(j j-jjg m atrix F  = [Fc F ]  where the matrices Fc and F  are the switching

surface matrices associated with the compensator and plant dynamics respectively and 

the triple (A, B , C ) is given as

' H  D C ' 'O ' ' I q o '
B  = c  =

0 A B 0 c

The augmented reduced order closed-loop sliding mode dynamics yield a static output 

feedback stabilisation problem. As before, a pseudo inverse is used for designing the 

switching surface. The controller has no flexibility in its reaching time and the m ethod is 

applicable only to minimal phase systems satisfying the controllability and observability 

conditions. Diong and Medanic [28] have proposed a dynamic output feedback sliding
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mode control for systems with unstable invariant zeros. Their work is described briefly 

below.

3.4 .2  T h e A pproach o f D iong and M edanic

Diong and Medanic [28] consider dynamic output feedback variable structure control for 

linear systems where a simplex method is used to solve the reachability problem. The 

dynamic output feedback VSC design in [40] is similar to the static output feedback 

design case. Diong and Medanic have proposed an observer based dynamic output 

feedback VSC, where the control vector u(t)  is considered as an additional input to 

the linear compensator dynamics defined in equation (3.10). The nominal plant may 

thus not necessarily be minimum phase. The block diagram in Figure 3.2 describes 

the augmented system for this type of dynamic output feedback sliding mode control. 

M athematically this type of compensator is given by

y(t)
P(s)

K(s)

VSC

Figure 3.2: Observer type dynamic output feedback

xc(t) = H x c(t) + Dy(t)  + Eu(t)  (3.13)

where the m atrix E  E IR9Xm. In this case the index q is dependent on the observer 

structure and the method adopted for the design of the compensator param eters. The 

augmented system defined in equations (3.11a)-(3.11b) has input m atrix

E
B  =

B
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The choice of sliding surface is

5„ =  {zG lR ,+n : s(y) =  [Fcxc(i) +  FCa:(t)] =  0} (3.14)

Using the m ethod of equivalent control and the simplex control method, gives

<Sa =  FcH x c(t) +  (FcD C  +  FCA)x{ t )  +  (FCE  +  FC B)u( t )  =  0 (3.15)

in the sliding regime S a and FCE  +  F C B  = I  respectively. So the equivalent control is

ueq(t) = - F cH x e(t) -  (FcD C  +  FC A)x( t )  (3.16)

which results in the equivalent system dynamics being described by

i c( t ) ’ H  -  E F CH D C - E [ F cD C  + F C A ] ' x c(t)

. *(*) . - B F CH A -  B[FcD C  + FCA] . x(t)

which is required to be stable for a stable sliding motion. Different methods are de­

scribed to solve this problem. The main difficulty is tha t the m ethod is applicable to 

square systems only. The great advantage is that the system does not have to be mini­

mum phase. The simplex control is defined as a function of the switching surface s(y). 

This may have difficulty in achieving a reasonable reaching time. A further publication 

by the same author [27] considers the effect of nonlinearity in the above formulation. A 

Hoo technique is used to minimise the effect of uncertainty on the augmented closed-loop 

system.

Further work relating to static and dynamic output feedback sliding mode control ap­

pears in [15, 18, 42, 43, 89, 109, 114]. Most of this work does not describe new theoretical 

contributions or is irrelevant to the work of this thesis and is thus omitted from the dis­

cussion.

Based on the developments of the static and dynamic output feedback VSC design, a 

framework is proposed in this thesis for output feedback sliding mode control of MIMO 

systems which may be non-square. The cases of stable and unstable invariant zeros, the 

matched and unmatched uncertainties together with robust switching surface design 

techniques are considered. A controller is formulated which shows low control effort 

whilst allowing the reaching time to be monitored.
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3.5 Sum m ary

A full state feedback control or reconstruction of unmeasurable states using an observer 

is a relatively straightforward procedure for variable structure control. However, it es­

sentially increases the computational effort required to implement the control system. 

An alternative approach is to use an output feedback control strategy and there is thus 

less complexity in computation and implementation. The literature relating to static 

and dynamic output feedback sliding mode control is described. The m ajor difficulties 

with existing approaches are pointed out. The dynamic output feedback system may 

be considered as additional dynamics. However its use is essential in many practical 

applications for satisfactory performance and stability. Keeping in mind problems as­

sociated in the existing methods such as invariant zeros, ‘Kimura-Davison’ condition, 

observability of the pair (A, (7), rank deficiency of the m atrix F C B , robustness consid­

erations, multivariable non-square systems and low control effort etc., the next chapter 

develops a static output feedback sliding mode control design method. Later, where 

necessary a dynamic output feedback sliding mode control design m ethod is used. The 

application of both methods to wide classes of industrial systems is presented.



Chapter 4

Static O utput Feedback Sliding M ode Control

4.1 Introduction

Based on the developments and the difficulties associated with static output feedback 

sliding mode control in the work of previous authors, this chapter describes a practi­

cal procedure for variable structure control which is based upon output feedback for a 

class of multivariable uncertain systems. It is shown that the problem of designing a 

suitable hyperplane, and hence ensuring a reduced order stable sliding mode dynamic, 

is equivalent to an output feedback design problem for a particular triple [33, 38, 56]. 

The reduced order motion is affected by the unmatched uncertainty in the system and 

it is thus necessary to consider methods to produce a sliding mode dynamic which is 

robust to this uncertainty. A robust output feedback algorithm is adapted to design 

the hyperplane. The m ethod is based on normal m atrix design as the eigenvalues of a 

normal m atrix are most insensitive to perturbations of the m atrix parameters [75, 112]. 

This result has been used to design a robust controller in the frequency domain by 

Hung and MacFarlane [64]. In the time domain, Davison and Wang [23] solved the 

problem of output feedback pole assignment and Porter [85], based on the Lyapunov 

direct method, solved the closed-loop pole assignment problem with prescribed stability 

by state feedback using these ideas. On the basis of their work, Changsheng [17] has 

worked on the Lyapunov direct method and exploited the design freedom in output 

feedback. Using this work, the hyperplane will be designed to give robustness to the 

reduced order sliding mode dynamics. In this way, when the working triple (A , B, C ) of
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the system varies, the assigned pole positions of the reduced order system will be mini­

mally sensitive. A controller is formulated based on plant outputs only. The controller 

guarantees the sliding mode is attained and maintains stability. The controller has a 

similar structure to th a t described in DeCarlo et ah [25] in state feedback control and 

Heck et al. [56, 57] in output feedback control problems. However, the discontinuous 

vector is different and the controller has extra freedom to change its rate of convergence 

to the sliding mode.

The outline of the chapter is as follows. The system description and necessary assump­

tions, the uncertainty structure and special regular form are presented in Section §4.2. 

The main objective of the design is given in Section §4.3. Sections §4.4 Sz §4.5 describe 

the switching surface design for non-square and square plant respectively. A robust 

switching surface design procedure and its measurements are presented in Section §4.6. 

Section §4.7 gives the controller formulation and the necessary conditions for reachabil­

ity. The design procedure and examples are presented to illustrate the design method 

in Sections §4.9 and §4.8.

4.2 System  D escription

Recall the linear tim e invariant state space model defined in equations (3.1a) and (3.1b) 

with some uncertainties in the system

x(t) = Ax(t)  +  Bu(t)  +  h ( t , u ,x )  (4.1a)

y(t) = Cx(t)  (4.1b)

where x £ IRn, u £ IRm, and y £ IRP with m < p < n and the nominal linear system

triple (A, B , C) is known and the input and output matrices B  and C respectively are

both of full rank. In addition, it is assumed that

A l) the m atrix pair (A ,B )  is completely controllable;

A2) the m atrix C B  has rank m;

The unknown function h ( t ,u ,x )  : IR+ x H m x IRn —► IRn represents the system nonlin­

earities plus any model uncertainties present in the system. It is assumed bounded as
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described below.

4.2.1 C lassification o f U ncerta in ty

The uncertainty/nonlinearity in the problem is assumed to be decomposed into un­

matched and m atched contributions. Consider the decomposition as follows

h ( t ,u ,x )  = +  g ( t ,u ,x )  (4.2)

where

f ( t ,  x) : IR+ x —> Im{B)L

g ( t ,u ,x )  : IR+ x ]Rm x IRn —► I m(B)

and Im(.) denotes the range of the m atrix (.), and the operation (.)± refers to the 

orthogonal component of (.). It is assumed that the unknown function f ( t , x )  can be 

expressed in the form

f ( t ,  x) = Fx(t, y)y{t) +  F2(t, x)  (4.3)

where the matrix Fi( t ,y )  £ IRnXp represents tha t unm atched uncertainty entering 

through the output channels and F2(t,x)  £ IRn denotes th a t unmatched uncertainty 

which is not implicit in the output channels. The unknown function g( t ,u ,x )  is written 

as

g(t, u, x) = Gi(t, u)u(t) +  G2(t, x) (4.4)

where G\(t,u)  £ ]RnXm is matched components tha t multiply with the input u(t) and

^ 2 (^,2;) is that matched uncertainty which does not multiply with the input u(t) but

both are implicit in the input channels. Defining appropriate bounds on the uncertainty

ll-Fi(*,y)ll <  K f ,  \\F2( t , x ) \ \ < K d

| |G i( t ,« , i ) | |  <  Kg-, ||G2(*,a:)|| < K a

this implies that

\ \ f(t ,x)\\  < K f \\y\\ + K d (4.5a)

||flf(i,w,a:)|| < K g\\u\\ + K a (4.5b)

Therefore, from equations (4.5a) and (4.5b), the uncertainty function h(t , u ,x )  in equa­

tion (4.1a) is bounded.
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4.2 .2  R egular Form

For variable structure control design problems, a particular canonical form is most 

useful for analysis. W ith the underlying assumptions, a nonsingular transform ation T  

(in practice a set of transformations) exists [33] such that in the new coordinates, the 

plant matrices (A, £?, C)  have the following form

1. The system state  m atrix can be written as

A =
A n  A 12 

A 21 A 22
(4.6)

where An E ]R(n_m)x(n-m)- If there are any invariant zeros present in the sys­

tem then they m ust appear in the m atrix A n [63]. It can then be partitioned 

accordingly, so th a t the sub-block An has the structure

An —

A0 A0^ 1 2

1

0 A°^*-22

1--
--- 0 A0a 21 L

(4.7)

where A°n  E ]RrXr, A°22 E IR(»-P-')x(n-p-r) and ^  G jRfo-mJxfn-p-r) for some 

r >  0 where r is num ber of invariant zeros in the system and the pair (A22, A 21) 

is completely observable.

2. The input m atrix has the form

B  =
0

B 2
(4.8)

where jB2 £ JRmXm and is nonsingular

3. The output m atrix has the structure

C = [0 T0]

where T0 E IRpXp and is orthogonal.

(4.9)

Proof: W ith the help of successive linear transformations of the system triple (A, R, C), 

it is possible to express the system in the required canonical form. Define a nonsingular
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transform ation matrix Tr as

Tr =
N c

C
(4.10)

where N c E E (n-p)X» is any m atrix whose rows span the null space of C. The new state 

space triple (A c, B c, Cc) has the form

A c = TCATC

a  = C T r 1 =  I o I

-1

Br =  TrB =
B ci

B c 2

where B cl E R (n-P)Xm and B c2 E IRpXm. Then C B  = CcB c = B c2 and so the rank of 

B c2 = m.  Let T22 E IRpxp be any orthogonal transform ation m atrix so that

0
T22B c2 —

B,
(4.11)

where B 2 E ]Rmxm and is nonsingular. Consequently the transform ation Tb can be set 

such that
I n - p  Ti2

Tb =
0 T22

where Ti2 =  —B ci{B^2B c2)~l B^2 and is nonsingular. So the new transformed matrices 

(Ab, B b,C b) are in the form

(4.12)

A l ^•12

A b =  TbA cTb 1 = ^•211

^•212

A 22

B b = TbB c =
' 0 ‘ 

_ B 2 _
Cb = CcTCl = 0 T22 ]

where A bn  G A b2n G ]R(,,- m)x(n~,’> and A b22 G IR,”<,> . In order to examine the

observability of the pair (A jj, A ju ), define a transformation m atrix Tobs E ]R(»-p)x(»-p) 

such tha t the pair ( ^ 1 5 ^ 211) ^ as following observability canonical form

'BobsA11Tobs —
4° A° A \1  12

0 A%22
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and

A n T ; h] = [o ]
where A h  E IRr’Xr,A21 E IR(p_m)x(n_p_7■) and the pair A h )  is observable and r > 0 

where r is number of unobservable states of the pair (A ^, A ^ ) .

Finally, consider Ta be the transformation m atrix which gives the required system canon­

ical form; Ta has the structure

Ta =
T0bs 0

0
and the transform ed matrices are given by

B  = TaBb —

and

(4.13)

0

b 2

C = CbT ~1 = [ 0 T0]

where T0 = which is the required canonical form. Repartitioning the system matrix, 

gives
I" A n  A n

A = T a A .T -1 =
_  A21 A 22

In equation (4.7) , the invariant zeros are the r eigenvalues of m atrix A h  [33], where the 

triple ( A , B , C )  is in canonical form and the nonsingular transform ation T  =  TaTf,Tc. 

The regular form in this section is a special case of the regular form defined in Section 

§3.3.2 of Chapter §3. Throughout the thesis this regular form is used for the analysis and 

design of variable structure output feedback controllers unless it is mentioned otherwise.

4.3 D esign  O bjectives

As in state feedback based variable structure control, the output feedback sliding mode 

design problem can be decomposed into two stages. First construct a switching surface 

so tha t a stable motion can occur on the surface

S  = {y E IRP : s(y) = Fy(t)  = 0} (4.14)

for some selected m atrix F  E lRmXp. Secondly, develop a control law which can induce 

a sliding motion on the switching surface S.  The controller has the proposed form

u(t) = Gy{t) -  v(y)  (4.15)
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where G is a fixed gain m atrix which will be described later in the section and the 

discontinuity vector v(y)  is dependent on outputs only. The key problem is to design 

the switching surface m atrix F  and the gain m atrix G, so that the system is stable and 

robust.

Later sections describe the general procedure for switching surface design. The case 

where the number of outputs is greater than  the number of inputs exhibits a richer 

m athem atical structure than the case of equal number of outputs and inputs. Each 

case is described separately. First consider the case of non-square plant.

4.4 Sw itching Surface D esign  for N on-square Plant

Consider the equations (4.1a) and (4.1b) to represent a non-square plant satisfying the 

assumptions (A l) - (A2) and the uncertainty decompositions in Subsection §4.2.1. Then 

the regular form in equations (4.6) - (4.9) exists for the non-square plant. Assume a 

controller defined in equation (4.15) exists such th a t it induces and maintains a sliding 

motion on the surface S  defined in equation (4.14), then the derivative of the switching 

surface is given as

S  = F C x( t )  = 0 (4.16)

An equivalent control can be derived using equations (4.16) and (4.1a) as

u eq (t) = ~ ( F C B ) ~ l F C  {Ax(t )  +  h(t, u, x)} (4.17)

This shows that for a unique equivalent control law [104] to exist the m atrix F C B  £ 

R mXm must be of full rank for the m atrix F  £ IRmXp. This gives that the m atrix F C B  

must be invertible. This implies th a t rank(C i?) =  m.  To demonstrate this, consider 

the system in canonical form and define

v—m m

F\ F2

From the above definition it follows that

(4.18)
=  FT„

F C  = [F\C\ F2] (4.19)
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where C\ is defined as

^1 [ 0(p_m)x(n—p) I(p—m) ] (4.20)

Then the m atrix F C B  = F2B 2 which implies that if det(F 2 ) ^  0 then the m atrix F C B  

is invertible. It will be shown later tha t the m atrix F2 can be chosen arbitrarily and it 

does not affect the switching surface performance as well as the control action defined 

in a later section. The equivalent dynamics can be written, using the equivalent control 

law in equation (4.17), as follows

x(t) = [/„ -  B ( F C B ) - 'F C \  A x ( t ) +  [/„ -  B { F C B ) - 1F C ] h(t , u , x)

= In - B ( F C B ) - ' F C ] [ A x { t )  + f ( t , x ) + g ( t , u , x ) ]  (4.21)

Consider the state partitions as

x ^ t ) ]  \T ix ( t )  
x ( t ) =  ][ = _  (4.22)

X l ( t ) Tix(t)

_X2( t )_ T2x(t)  _

where aq G IRn-rri and T\ G ]R/n-m)xn are components of x{t) and T  respectively. 

Substituting the regular form of equations (4.6) and (4.8)-(4.9) into equation (4.21) 

and using partitioned states in equation(4.22), the non-square system representation 

becomes

xi( t)  = A n x ^ t )  +  A i2x 2(t) +  f ( t , x 1, x 2)

x2(t) = A 2iXi(t) -|- A 22x 2(t) +  B 2u(t) -1- g ( t , u , x i , x 2)

where the uncertainty functions

f ( t , x i,a?2) = T i f ( t , x )  = T \ f

g ( t , u , x i , x 2) = T2g(t, u, x) = T2g I £, u, T _1

(4.23a)

(4.23b)

Xi

X2
X\

X2

(4.24)

(4.25)

If it is considered that the uncertainty is only matched, i.e. if the unmatched uncertainty 

function

f ( t , x i , x 2) = 0 (4.26)

then the design procedure turns to a matched uncertainty problem. In this case the 

switching surface may be written as

x 2(t) = ~ F 2 FiCxXxit) (4.27)
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and the reduced order sliding dynamics can be written as

(t) = (A n  — A \2F2 1 F\Ci)xi(t)  

Hence, for a stable sliding motion

A s11 = A 11- A 12F2~1F1C1

(4.28)

(4.29)

must be stable. Let the matrix K  E ]RrnX̂ p be defined as K  — F2 1F\, then equation 

(4.28) becomes

iq(f) = (Au  -  A 12K C 1)x1(t) (4.30)

Thus the design of the switching surface is an output feedback stabilisation problem for 

the triple (A n, A i2, C\). The switching surface m atrix F  is finally expressed in terms of 

the output gain m atrix K  as follows

F  = F * \ K  Irr, 1 Ti (4.31)

where the m atrix F2 is merely a scaling of the m atrix F.  It is also possible to model 

the sliding mode dynamics if the system has both the unm atched and matched un­

certainties. In this case the switching surface design also becomes an output feedback 

stabilisation problem and the sliding motion will be constrained to the surface S.  The 

effect of unmatched uncertainty upon the sliding mode dynamics will now be explored. 

In particular the conditions for stability of the sliding system will be developed. In the 

presence of unm atched uncertainty, define a second transformation

T  = (4.32)
-f( n —m )  0

. K C l Im

where K  is a design m atrix and C\ is defined in equation (4.20) then in the new coor­

dinates

x(t)
Xi  (t) X1 ( t )

_ <j)(t) _ KCix-i(t) +  x 2(t) _
= Tx(t) (4.33)

in which the constraints (4.26) and (4.27) are not necessary to be imposed. The system 

equations become

x x (t) = Eaq(<) +  A i2<j>(t) +  f ( t , x u </>)

(j)(t) =  Oxi(t)  +  Q0(t)  +  B 2u(t) +  g( t ,u ,x i ,  <j>)

(4.34a)

(4.34b)
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where the system matrices and uncertainties are given as

E

0

O

g ( t , u ,x  !,</>)

A n  — A 12K C 1

A2i -  A22KCi  + KCiY* 

A22 + K C iA i2 

f(t,xi,(<f> -  K C 1X1))

(4.35a)

(4.35b)

(4.35c)

(4.35d)

=  K C i f  (t, xi,(<j> — K C 1X1)) +  g (t, u, xi,((j> — K C 1X1)) (4.35e)

Assume a control authority exists as in equation (4.15) such that the system trajectories 

are constrained to S  as defined in equation (4.14). In this situation, the states (j)(t) =  0 

must exist. Then the reduced order sliding mode dynamics in equation (4.34a) become

i i ( t )  = Exi( t)  +  f ( t , x i ,  0) (4.36)

It can be proved th a t if the uncertainty function f ( t , x  1 ,0) in equation (4.36) satisfies 

the structural condition

f ( t , x i ,  0) =  AEa?i(t) +  A f ( t , x i , 0 ) (4.37)

where AEa^i(t) corresponds to the uncertainty function Fi(t ,y )y( t)  and A /(£ ,;ri,0 ) 

represents the uncertainty corresponding to the remaining states plus any other uncer­

tainties, then the equation (4.36) can be w ritten as

xi(t)  = t x i  (t) +  A /( t ,  xi ,0 ) (4.38)

where E, A E, A f ( t ,  xi ,  0) are represented by

E

A E

E + A E

Ti \F i { t , y )C T ~ l
I

- K C i

A f ( t , x i , 0 )  = Ti F2 [ t, T - 1
I

■KCi
Xi

(4.39a)

(4.39b)

(4.39c)

Then the motion is globally uniformly ultimately bounded1 [88, 98] to the switching 

surface S . The proof of this is discussed in Lemma 4.1 below.

1The definition of globally uniformly ultimately bounded systems is given in Appendix B.
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L em m a 4.1 I f  the uncertainty function f ( t , x i,0 )  in equation (4-S6) satisfies the struc­

tural constraint in equation (4-S7) such that a Lyapunov equation

P XE +  Er Px <  — v /(n_m)

for v > 0 exists where the matrix P x is symmetric positive definite then

a) the system in equation (4-S6) is globally uniformly ultimately bounded with 

respect to the ellipsoid

S f r ^ L e E " - "  : (4.40)

where
K 2, r lri = 5  +  2-^11^11^ (4.41)
v x

with e > 0 defined to be small constant and

K rl = sup HP,2 TXP211 (4.42)
f2

b) i f  A x i  = xi — x™, where x™ — exp[E(t — t0)] X \ (tQ) defines the correspond­

ing ideal sliding mode dynamics at time t from an initial condition t0 and 

A x \ ( t Q) =  0, then the deviation from ideal sliding motion A x i  is bounded with 

respect to the ellipsoid S(r2) where

i 2 ||F 1||2 (A'r2||F 1l x 1(<0)|| +  A'ri ) 2 i f  * i (t0) i  S(r i )

211Pi112 (P"t-2\/2^4 +  P r i)  if  Xi(t0) G £(rx)
r 2

with

I \ r2 = supH P^A E Pj 21| (4.44)
Fi

i.e. A x i ( t )  G £(^2 ) for all t > t c

P ro o f: The proof largely follows the work in [88, 98].

a) Consider the Lyapunov candidate

Vi(xi) = b ^ P x X i (4.45)
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where Pi is the unique solution of

P1S +  STP1 + / (n_m) =  0 (4.46)

Taking derivatives along the state trajectory and substituting the values of 

Xi(t) from equation (4.36) and f ( t , x i ,0 )  from equation (4.37), gives

Vi(xi) = x^Pi  (Eaq +  /(< ,:r i ,0))

=  x \ P i  (Saq +  AEaq +  A f ( t ,  aq, 0)) (4-47)

Substitute the values from equations (4.39a) and (4.39c) into equation (4.47) 

and simplifying, gives

Vi(xi) = x^Pi  (£aq +  A /(* ,aq ,0 ))

=  ( a s  +  S TP1) Xl +  x^ P 1T1F2(.)

< - ^ I I ^ i IP +  ^ - P i A A ) .)  (4.48)

This implies that

V1(x1) < - ^ ( l O I I A i r '  +  pV^Ol^HP^TjAII (4.49)

The equation (4.49) is negative scalar, i.e. Vi(aq) < 0 if and only if Vi(xi) > 

ri — e where ri is defined in equation (4.41). Hence the motion in equation 

(4.36) is bounded.

b) Ideal sliding motion is defined by the dynamics of the system

x ? (t)  =  E x ? (t)  (4.50)

The dynamics of the error system therefore satisfy

Aaq =  EAaq + /(£ ,  aq, 0) (4-51)

Consider the Lyapunov function in equation (4.45) evaluated with the state 

deviation A xi as

ki(A aq) =  ^ A x fP iA x i (4.52)
&
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with

Vi(A£i) =  — +  A x f P iA ii)

=  — A x f (PiE + ETPi) Aaq +  AxfPiAE^i + AarfP1T1P2
Si

< — ̂  [ | Aar, [ |2 +  ||A z f  P jA E n H  +  \ \AxJP1T1F2\\

< -^ (A x O IIP iir1 +  [2ri(A i,)]' { h p M s p ; 1!!

I IA h , || +  ||P /T iP 2 ||}  (4.53)

Also from part (a)

P \X i ( t0) if x i ( t0) $ S(r  1 )
(4.54)

y f h \  if x \ ( t0) e  £(ri)

It follows directly from equations (4.53) and (4.54) tha t V^Aaq) <  0 if 

Vl(Aa;i) > r 2 where r2 is defined as in equation (4.43). The boundedness 

of the deviation from the ideal sliding mode dynamics is thus proved. Hence 

once the motion attains the sliding mode it is constrained to the switching 

surface S.

■
The structure of E is similar to that of AJj defined in equation (4.29). This has the form 

of a dynamic output feedback problem so the gain m atrix K  can be determined using 

any output feedback technique. The switching surface m atrix F  is similarly expressed 

with the output feedback gain m atrix K  as defined in equation (4.31). The effects of 

the m atrix P2 is already discussed; thus its choice is any invertible arbitrary matrix.

However, the presence of invariant zeros and dimensional constraints affect the design 

process in this output feedback problem. In addition the triple (A n, Ai2, C\)  must be 

completely controllable and observable. The reduced order sliding mode dynamics have 

the same requirements. If there are any invariant zeros in the original system, then 

the invariant zeros will appear in the spectrum of AJj and E [63]. As a consequence it 

follows that the poles of AJX or E cannot be assigned arbitrarily by the choice of the 

gain m atrix K .  However if the matrices Ai2 and A™2 are partitioned as
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where A122 E ^  G R ( n - m - r ) x M  and a new sub-system is formed from

the triple (A n, Ai22, C\)  where

An =
A° Am 22 -̂122
A ° Am

21 22

and

then it can be shown that

C\ [ 0(p_m)x(n_p_r) ^(p—m) ]

A (Asn ) = A (A°u ) U A(An  -  A 122K C 1)

(4.56)

(4.57)

(4.58)

If the invariant zeros are unstable then an unstable sliding motion results. The invariant 

zeros of the system must thus be stable in this approach. The case of unstable invariant 

zeros will be considered in a later chapter.

Note that the m atrix A \22 is not necessarily of rank m. Let the rank of the matrix 

A \22 be m ' where 0 < m! < m. If m'  is zero then the pair (A n ,  A \ 22) is not completely 

controllable which implies (A ,B )  is not completely controllable which violates the as­

sumption (A l). If m' < m  then it is possible to construct a m atrix Tm' E ]R,mXm by 

elementary column operations such that

A i22Tmi — [B\  0] (4.59)

where Bi  E 1R/71 m r^Xm and is of full rank. If the m atrix K  is transformed and 

partitioned as

T~}K =
K x

K 2

X m '

J m —m '
(4.60)

it follows that

A h  — A u —Al22^-Cl 

= A U - B 1K 1C1 (4.61)

therefore ( i n ,  A i22, C\)  is stabilisable by output feedback if and only if ( i n ,  B \ ,  C\) is 

stabilisable by output feedback. If the triple (A n, A \ 2, C \ ), or where the invariant zeros 

are present the triple (A n, 2?i, C\), is completely controllable and observable respectively 

[34] and if it satisfies the condition p m  — 1 > n  or p +  m - f r  — 1 >  n respectively
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then the well known ‘Kimura-Davison’ condition is satisfied for the appropriate design 

triple. Under these circumstances all the poles of the appropriate closed loop subsystem 

can be assigned at the specified desired locations. If these conditions are not satisfied 

then a compensator of appropriate size may be used to give extra freedom in the design 

process. The stable invariant zeros and the dimensionality requirements are discussed 

in Bag et al. [5]. The use of such a dynamical compensator is considered in the next 

chapter. The problem with unstable invariant zeros is also addressed in a subsequent 

chapter.

Note tha t the variable structure control provides insensitivity to matched uncertainty 

only. It could be verified from the reduced order dynamics in equation (4.36) which 

is insensitive to the matched uncertainty g ( t , u , x i,0 )  but sensitive to the unmatched 

uncertainty f ( t , aq, 0). If the unmatched uncertainty f ( t , :r) =  0 and the matched uncer­

tainty g( t ,u ,x )  = B ( ( t ,u )  is considered as a bounded function ||£(£,w)|| < A^HuH +  K a 

where K g and K a are two positive constant then from the equivalent dynamics in equa­

tion (4.21) it is easily concluded from equation (2.22) tha t the dynamics is invariant to 

this matched uncertainty. This is similar to the case described by Edwards [32]. How­

ever, in practice the matched uncertainty may not enter through the input distribution 

m atrix B  but it could be expressed as defined in equation (2.23) and the unmatched 

uncertainty is not always zero. Hence, the uncertainty decomposition in the Subsection 

§4.2.1 is useful. Before going further it is necessary to discuss the switching surface 

design for square plant.

4.5 Sw itching Surface D esign  for Square P lant

Consider the equations (4.1a) and (4.1b) represent a square plant satisfying the assump­

tions (A l) - (A2) and the uncertainty h( t ,u ,x )  is decomposed as defined in Subsection 

§4.2.1. In this case the system regular form in equations (4.6) - (4.9) may be written as

A n A-12 ' 0 ‘
A  = , B  =

A-21 1(M<N b 2
C = [ 0 Im ) (4.62)

where the partition m atrix A n  £ IR/n m)x(n B 2 £ IFtmXm and if there are any 

invariant zeros present in the system then they will appear amongst the eigenvalues of
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the m atrix An. Assume the system is in the above canonical form and a control law, 

as defined in equation (4.15), exists to induce and maintain a sliding motion on the 

surface S  as given in equation (4.14). Then the equivalent control and its dynamics as 

defined in equations (4.17) and (4.21) respectively are satisfied if the m atrix F C B  has 

full rank which further implies tha t det(C B)  ^  0. As for the non-square system, the 

states of the square system are also partitioned as in equation (4.22). Substituting the 

above canonical form into the equation (4.21) and using the state partition in equation 

(4.22), the reduced order sliding dynamics for the square system can be written as

i i ( t )  = A\\Xi(t)  +  f ( t ,  x i ,  0) and x 2(t) = 0 (4.63)

where f ( t , x i,0 )  =  T \ f ( t ,x ) .  Subsequently, the transform ation T  in equation (4.32) 

is the identity. This shows that the reduced order sliding motion is independent of 

the m atrix F.  Consequently the sliding motion should be stable. Hence the necessary 

conditions for the existence of a sliding motion are

1. the determinant of the m atrix (C B ) m ust be non zero;

2. the nominal linear system (A , B , C ) m ust be minimum phase, so that the matrix 

A n has stable eigenvalues.

If the system satisfies the conditions (i) and (ii), without loss of generality it can be 

assumed that the m atrix A n will have stable eigenvalues. Hence the reduced order 

system is stable in the absence of unm atched uncertainty /( t ,a q ,  0). In the presence 

of unmatched uncertainty f ( t , x \ , 0) the sliding dynamics may exhibit a stable sliding 

motion in the sense of Lyapunov. This will further lead to a constrained motion to the 

switching surface S  and it will be globally uniformly ultimately bounded. Its proof is 

similar to that given in Lemma 4.1 for the non-square system. Therefore, the switching 

surface m atrix F  has no effect on the dynamics of the sliding motion for square plant, 

and this gives lim itation in the closed loop design freedom.

In Lemma 4.1, it is shown th a t the reduced order dynamics produces a bounded stability 

for a certain class of unmatched uncertainty. However, it should be noted that in many 

situations the unmatched uncertainty may not be in this form and it could give higher 

control action. This will be further discussed in the example section. The effect of



Chapter 4. Static O utput Feedback Sliding Mode Control 59

unmatched uncertainty is unavoidable but it may be minimised using a number of 

robust design techniques for non-square systems. The poles of the designed system 

m atrix m ust be robust to any unm atched variations in the system param eters which 

is discussed in next section. For the square system this effect may not be minimised. 

However, the m atrix F  may be chosen in the null space of C. This may give maximum 

insensitivity to uncertainty. The section below will describe the robust switching surface 

design procedure for a non-square plant.

4.6 R obust Switching Surface D esign  Technique

The eigenvalues of a normal m atrix are most insensitive to perturbations in the matrix 

param eters [75, 112]. This result is used here to design the hyperplane in output feed­

back variable structure control design. The m ethod is based on the Lyapunov theory 

used in the robust pole placement technique of Changsheng [17]. Some non-normal 

measurements will be described based on the description given by Changsheng [17]. 

First note the following important Theorem.

T heorem  4.1 For any square matrices P  > 0 and Q = QT > 0, of dimension n x n, 

there must exist a unique symmetric negative definite solution A c for the matrix equation 

below.

P t A c + A CP  =  - Q  (4.64)

and the matrix A c can be expressed as

A c = r  epT,Qep,dt 
Jo

P ro o f: By the use of Kronecker product, equation (4.64) can be rewritten as

(P T <g> I  +  I  <g) P T)rsAc = —rsQ (4.65)

where r sA c and rsQ  represent the column vectors spanned by the rows of the matrices 

A c and Q, respectively. Since A*(/ <g) P T +  P T <g) I ) r sA c =  At-(PT) +  Aj (P )  ^  0; (k = 

1 , . . .n n ; j  =  1 ,....n ) then equation (4.65) has a unique solution and so the equation
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(4.64) has a negative define solution. Next, deriving (epTtQePt  ̂ and differentiating it

yields

j t (epTtQePt) = P T (epT‘Qept) +  (epT‘Qep‘) P  

Integrating the above expression over the interval from 0 to — oo,

j T 00 d (epTtQePt) = P T £ ° °  (epTtQept) + (epTtQePt) dtP

Considering Re[A(P)] > 0  , then the above representation becomes

PT  ( Jo °° ePTtQePtdt)  +  ( / ” °° eFT'Q ePid i) P  = - Q  

It is seen from the above that 

A c =  epT,Qeptdt 
Jo

is the unique symmetrical solution of equation (4.64). As Q = QT > 0, it is known that

A c < 0, i.e. Re[A(Ac)] < 0 .  ■

The design approach is based upon minimisation of the norm of the closed-loop system,

i.e. the designed closed-loop matrix behaves as a normal m atrix and hence is insensitive 

to the matrix perturbations.

4.6.1 N orm al M atrix  D esign  A pproach

For simplicity consider the triple (A n, A1 2 , C\)  , A ^  and A", or in case where the in­

variant zeros are present in the original system, the triple (A n,2?i,C i) , AJj and Ah, 

correspond to the triple (Aq, B q,C q), A c and K q respectively where it is assumed that 

the matrices have the following dimension: A q 6 IRnXn,Bq £ IRnXm and Cq £ IRpXn.

Then from Theorem 4.1, let A c = A q — B qK qCq and equation (4.64) can be rewritten as

P TB qK qCq T  B qK qCqP  =  [Q +  P PA q +  A qP  =  Qq (4.66)

Using the Kronecker product, the above equation becomes

(.P TB q <g> C p +  B q ® P T C q )rsK q =  rsQq (4.67)

For simplicity, this can be written down as

Y r s K q = rsQq (4.68)
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where Y  = (P TB q ® C Tq +  B q ® P TC j )  G ]R™x™p is a tall m atrix, and r s K q G H mpXl 

and rsQq G IRnnXl represent the column vectors spanned by the rows of the matrices 

K q and Qq respectively. The solution of equation (4.68) can be divided into three cases.

a ) The unique solution: By assumption the matrices P > 0 and Q = QT > 0 and 

if the matrices are optimised then the following condition holds:

ran k (y ) =  rank[Y, rsQq] = mp  (4.69)

In this case the equation (4.68) has unique solution.

b ) The linear least-square solution: If the conditions in equation (4.69) do not 

hold, the solution of equation (4.68) turns into a least-squares problem, i.e. 

given P  >  0 and Q = QT > 0, th a t is to say, given Y  G JR,nnxmp and rsQq G 

IRnnxi, ma r̂ix y>sKq G IRmpXl can be solved by considering the following 

minimal problem.

min \\YrsKq — r sQ q\\2 (4.70)

The solution can be written as

( Y TY ) r s K q = Y TrsQq (4.71)

and

r sK q =  { Y TY ) - ' Y TrsQq = Y ' r s Q ,  (4.72)

where Y^ = ( Y  Y )~ 1Y T is the Moore Penrose generalised inverse of the matrix 

Y .  If the column rank of Y  is full, the linear least-squares solution is the unique 

solution.

c) The nonlinear least-square solution: If the assumptions of Theorem 4.1 hold, 

the above minimal problem becomes a nonlinear least-squares problem. It 

m ust be minimised first with respect to the matrices P  and Q , and next with 

respect to the vector r s K q. This can be expressed as

min \ \Y (P )rsKq -  rsQq(P,Q)\\2 (4.73)

where P  > 0,<2 =  QT > 0 G IR,nXri and r s K q G IRmpXl. Then the solution of 

rsKq  is given as

rsK„ =  Y \ P ) r s Q q (P, Q) (4.74)
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The equation (4.73) can be solved with the help of any standard optimisation 

technique. One such technique is presented in Appendix C. The following

theorem may be easily concluded from above discussion.

T heorem  4.2 I f  the linear time invariant multivariable system (Aq, B q,C q) is control­

lable and observable and satisfies the ‘Kimura-Davis on’ condition, then the matrices

P  > 0 and Q = QT > 0 can always be chosen to minimise the equation (4-78). The

equation (4-68) may thus have either a unique or a least-squares solution for r s K q. The 

former will make the system normal and the latter will make it nearly normal. The 

eigenvalues Re[\(Ac)\ <0,  for either solution of K q.

It is essential to verify that the designed closed-loop m atrix attains the necessary normal 

properties so tha t the robustness of the system is confirmed. Hence it is necessary to 

consider some norm measurements for the normal m atrix.

4.6 .2  M easurem ents o f R obustness

In Chapter §2, it is mentioned that the robustness measurement for classical frequency 

response analysis is based on the measure of gain and phase margins and it is limited 

to SISO systems [53]. The robustness for MIMO systems may be defined based on 

the following non-normal measurements [17]. If the m atrix A c is non zero then for the 

evaluation of the normal measure of the m atrix  A c consider

1. The non-symmetrical measurement of m atrix

a W ^A ' f  — A f  A c\\fF
L\2,F\Ac) — 77—-T

\ \ A c\\2,F

2. The condition number of the frame

K { W Ac) = \\W\\2 - \ \ W - l \\2

3. The measure of skewness

M S ( A C) -
P C 2
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4. The non-symmetrical measure of the polar decomposition

\\4>Mr — Mr0 ||2
S ( A C)

114=11
or

8(Ac) =  “ W

5. The measure of robustness [68]

v (A c) = nh WQ^Wf

The meaning of the symbols in the above items depends on the following decompositions 

of the matrix A c

A c = W  Characteristic decomposition )

=  S (D  +  T)S*(Schur triangular decomposition )

=  YY>U*( Singular value decomposition )

=  <f>Mr = P e dP* • UY.U* = M rf  = Y Y Y *  • P O dP*{ Polar decomposition )

=  QrAQ -1

where 0 d = diag(eJ0i) andD  =  diag(d,-). Qr = (^1 ,^ 2 , • • • ,9n), \\qi\U = 1, (« =  1 ,2 , . . .  ,n). 

If the m atrix A c is a normal m atrix then K ( W a c) = v (A c) = 1 and A (A C) =  M S ( A C) =  

8(AC) =  0. Therefore, the greater the value of the above items, the worse is the normal 

measure of the m atrix A c.

Once the robust switching surface is designed, the next step is to design a control law 

which can induce a sliding motion and m aintain the system outputs on the surface 

thereafter.

4.7 Controller Form ulation

The controller structure is similar to that described by Ryan and Corless [88] and 

Edwards and Spurgeon [33]. It is modified from the controller presented by El-Khazali 

and DeCarlo [39] and also Yallapragada and Heck [113]. The controller guarantees the 

reachability condition is satisfied and has the power to modify the convergence rate to
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the switching surface S.  An arbitrary choice of invertible m atrix F2 as described earlier 

does not effect the control authority with this controller formulation. The use of the 

pseudo inverse in Yallapragada and Heck [113] is also eliminated in this formulation. 

W ithout loss of generality it can be assumed that the nominal system triple (A, B , C )  

is known. The controller design is based on the Lyapunov stability criteria. Assume a 

Lyapunov function of the form

V(s) =  ^ T(t/)s(y) (4.75)

Here s(y) =  Fy(t)  where F  defines the switching surface matrix. The reachability 

condition is satisfied if T̂ (.s) <  0, i.e. if sT(y)s(y)  <  0 for all y(t). Consider a control 

law of the form

u(t) = - ( F C B ) - 1 [Giy(t) +  u(y)} (4.76)

The gain m atrix Gi is defined as

G ,=
„ „ . a  _
F C A N  +  —F  

2 .

where N  6 ]RnXp is a design matrix and a is some positive constant to be chosen accord­

ingly. It can be shown that the reachability condition can be attained by appropriate 

choice of N  for a certain value of a , where a relates to the rate of convergence of the 

Lyapunov Convergence Lemma2 as suggested in Yallapragada and Heck [113]. The aim 

is to demonstrate that

Y(s) -f <  0 where a > 0 (4.77)

Integrating equation (4.77) over the time limit 0 to t s, implies

V[s(ts)] < V[s(0)}e~at° (4.78)

Thus the parameter a  corresponds to the rate of convergence; the larger the value of 

the smaller will be the reaching time. The component v(y) is defined by

( p ( t ,u ,y ) j f ^ \n  if s(y) ±  0
Ky) =  l  " (v)" . (4.79)

0 otherwise

2For details the Lyapunov Convergence Lemma see for example [94]
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where p(t , u,y)  is a positive scalar quantity defined by the uncertainty bound parameters 

K f ,  Kd and K g, K a such that

k K a\ \G ,y \ \+ K f \\FC\\.\\y\\ + K a\\FC\\
P(t, u , y ) = ---------------------------------   (4-80)

where the denominator is considered to be always positive and the parameter K a = 

Kd +  K a. It follows that K g is lim ited by 0 <  K g < £ and k is defined as k = 

||( ir’C )||.||(A 'C '5)-1 ||. Clearly lower values of k increase the limiting param eter K g, 

which gives a higher bound on the matched uncertainty. The reaching condition and 

time to a ttain  the sliding mode will be shown to be prescribed by the design of the 

m atrix N.  The following Lemma may be concluded for attainm ent of the reaching 

phase.

L e m m a  4.2 It can be shown that the control law in equation (4-16) induces a sliding 

mode on the relevant switching surface S  if  the matrix N  is chosen so that

C(N)  =  ( F C f F C A ( I  -  N C )  -  | F C <  0 (4.81)

for a certain value of a, i.e. the matrix C(N)  is required negative semi-definite .

P ro o f: The proof of this Lemma can be dem onstrated using the Lyapunov function in 

equation (4.75). Taking time derivatives along the system trajectory

r ( s )  =  sT(y)s(y)  (4.82)

which is required to be negative scalar quantity. Substituting equation (4.1a) into the 

reaching condition in equation (4.82), gives

sT(y)s(y) = x T(FC)T(F C A )x  + x T(F C )T(F C B )u  + sT(y )F C h( t ,u ,x )  (4.83)

Inserting the control law from (4.76) into the equation (4.83), gives

sT(y)s(y) = x TC(N)x  -  sT(y) [v(y) -  FCh(t ,  u, z)] (4.84)

The equation above can be rew ritten as

sT{y)Ky) < x t C (N ) x -  ||s(y)|| [p(t,u,y) -  \\FC\\.\\h(t,u,x)\\] (4.85)

3The method for symmetric negative definite matrix design is presented in Appendix C .
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Using the structural constraint in equations (4.5a) and (4.5b), gives

sT(y)Ky)  < xT£ ( N ) x -  ||s(y)|| [p(t,u,y)  -  \ \FC\\ {Kg\\u\\ +  K f \\y\\ +  K a}]

< x TC(N)x  - \\s(y)\\<k(t,u,y) (4.86)

where

■*(t,u,y ) ± l p ( t , u , y ) - \ \ F C \ \ { K g\\u\\ + K J \\y\\ + K a}} (4.87)

It will be shown that 1I/(t,ix,y) is always a positive scalar quantity for all values of y(t). 

Hence, equation (4.76) will meet the reaching condition sT(y)s(y) < 0 if and only if

F C A ( I  — N C )  -  j F C  ) x  < 0 

It is thus necessary to select N  such tha t the m atrix

C(N) = (F C )T F C A ( I  -  N C )  -  | F C (4.88)

is negative semi-definite in order to satisfy the reachability condition sT(y)s(y) < 0 for 

some value of a . ■

P ro p o s itio n  4.1 The function ^ ( t ,w,y)  in equation (4-87) is always a positive scalar 

for all values of u{t) and y(t).

P ro o f: Taking the norm of u(t)  in equation (4.76) and post multiplying on both sides 

by ||F C ||,  equation (4.76) becomes

||F C ||. |M | <  k {p(y) + \\Giy\\} (4.89)

where k = WFCW-WiFCB)-1 ||. Rearranging expression (4.80) and substituting from 

equation (4.89), gives

p( t ,u ,y )  = k K gp(t, u ,y )  + hKg\\Giy\ \ +  if/H-FCH-Ht/H +  K a\\FC\\

> ||F C || {A's ||« || +  if/1|s/1| +  K a} (4.90)

It follows that \I/(t, w, y) >  0 which is justified from the equation (4.90). ■

Numerical methods to design the reaching phase of the output feedback VSC control as

discussed in Heck et al. [57] can be used to find an appropriate N.
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R e m a rk  For the case where (F C )TF C A  < 0, then N  =  0 and a = 0 is sufficient. 

Note that N  and a  influence the time taken to reach the sliding surface and may be 

chosen to meet this particular objective. Recall that the inherent robustness properties 

of sliding mode systems are only exhibited once the sliding mode is reached. For real 

applications, it is necessary to limit the control action while achieving a sufficiently fast 

response to the sliding mode. The sections below dem onstrate the design approach and 

the effectiveness of the proposed m ethod described in this chapter.

4.8 D esign  Procedure

In this section a step by step design procedure for designing robust static output feed­

back sliding mode controller is presented. The design procedure consists of the following 

main steps.

1. Compute the regular form and identify the reduced order sliding dynamics. In this 

step the linear nominal model m atrix triple (A ,B ,  C ) is first checked to see if it 

satisfies the static output feedback sliding mode controller design requirements. 

If the system triple satisfies the assumptions presented in Section §4.2, the triple 

is transformed into regular form and then the system dimension (n , m , p ) and 

the presence of invariant zeros are identified. Finally the working triple for the 

reduced order sliding dynamics is obtained. If the system triple (A, B , C ) does 

not satisfy the dimensionability requirements then it is possible to use dynamic 

output feedback sliding mode control design techniques as illustrated in subsequent 

chapters.

2. Normal closed-loop matrix design for robust sliding dynamics. The robust design 

procedure adopted is based on the normal m atrix design approach as described 

by Changsheng [17]. An optimisation toolbox is used to place the eigenvalues of 

the closed-loop working triple in robust positions. The user is required to supply 

the range of eigenvalues where the closed-loop poles are to be assigned. The 

computational algorithm which assigns the robust poles is given in Appendix C . 

The gain m atrix K q is then obtained from an optimal solution of P  and Q of 

equation (4.74).
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3. Verification of robust properties of the designed closed-loop matrix. Once the re­

duced order closed-loop system is designed, it is necessary to verify the measure­

ments of robustness. This is illustrated explicitly in the design examples below. 

There may be differences in the measurements for the reduced order system and 

the working system when the system possesses any invariant zeros.

4. Calculation of switching surface matrix F. The m atrix F2 does not affect the 

sliding dynamics. Hence it may be chosen arbitrarily. An identity m atrix may be 

a good choice. Then the equation (4.31) is used to calculate the m atrix F  where 

the m atrix K  is obtained from step 2.

5. Computation of controller parameter N .  The controller design involves mainly the 

selection of param eters N  and a. The remaining param eters are associated with 

the uncertainty bounds. These are obtained during simulation. An optimisation 

algorithm is used to find an N  which satisfies the condition given in equation

(4.81) for an initial value of a. The user is required to supply the initial values N  

and a. The computational algorithm is presented in Appendix C.

6. Selection of simulation parameters. The uncertainty bound param eters are chosen 

to control a certain amount of uncertainty. These are obtained in this thesis by a 

trial and error basis at the time of simulation. It is possible to perform analytical 

computations on perturbed system representations. However, these may lead to a 

conservative controller. The value of a  may be adjusted to enhance the reaching 

time. Some knowledge of the uncertainty and the operation range may help the 

user to tune these parameters.

A more general form of the algorithm is presented using the flow chart in Figure 4.1. 

This procedure will be illustrated on the numerical design examples, presented in the 

next section.

4.9 N um erical D esign  E xam ples

The following non-trivial examples substantiate the practicality of the proposed robust 

switching surface and controller design method. Application to a fully nonlinear indus-
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Figure 4.1: Algorithm for output feedback sliding mode design
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trial system is described in a later chapter.

4.9.1 E xam ple 1

Consider the example of a fixed wing aircraft (L-1011) from Sobel and Shapiro [96] 

(which also appeared in Edwards [32]) to dem onstrate the design technique presented 

in this chapter. The design procedure is illustrated in following steps below.

Step 1: Compute the regular form and identify the reduced order sliding dynamics. 

The nominal plant triple (A, B , C )  is presented in the canonical form as described in 

Subsection 4.2.2.

A  =

-0.4631 0.0007 0.0087 -0.0214 -0.0473

-0.0000 -0.0000 -0.0008 -0.9110 0.4125

-0.6986 0.0386 -0.0856 0.4118 0.9102

-0.2539 0.0004 4.0994 -0.7263 0.6161

-0.1352 0.0009 -3.5390 0.2270 -0.4960

B  =

C  =

0 0 0 0 0.8170

0 0 0 1.0335 -0.4328 j

0 0 0.0265 -0.4124 -0.9106

0 0 -0.0008 -0.9110 0.4125

0 -0.0001 0.9996 0.0103 0.0245

0 1.0002 0 0 0.0001

The reduced order system matrices are identified as

A n —

A12 —

-0.4631

-0.0000

-0.6986

-0.0214

-0.9110

0.4118

0.0007 0.0087

-0.0000 -0.0008 

0.0386 -0.0856

-0.0473

0.4125

0.9102

Ci =
0 1 0 

0 0 1

It is clear that there is no invariant zero in A n and it is possible to design a stable reduced 

order closed-loop using pole placement techniques since the sliding mode design triple
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satisfies the necessary output feedback design conditions.

Step 2: Normal closed-loop matrix design for robust sliding dynamics. Based on the 

robust design procedure presented in Section §4.6 the optimal values of the matrices P  

and Q of Theorem 4.1 are computed as

-0.4631 0.0007 0.0087 4.1037 4.3692 3.2605

p  = -0.0000 -0.0000 -0.0008 , Q = 4.3692 4.6612 3.4706

-0.6986 0.0386 -0.0856 3.2605 3.4706 2.5906

This gives a gain matrix

K  =
-0 .3949 0.6366 

0.4411 0.1800

which gives closed-loop poles at (—0.5147, —0.5008 dh 0.3481z). Hence the matrix K  is 

designed to perform robustly. It is noted tha t com putational algorithm has flexibility 

to choose any range of eigenvalues and it will compute the robust positions of the 

eigenvalues.

Step 3: Verification of robust properties of the designed closed-loop matrix. Consider 

the robustness measurements as described in Subsection §4.6.2. The parameters are 

given in Table 4.1. The robustness of the closed-loop m atrix is compared with the 

open-loop system m atrix A  and A n .  This shows tha t the measure parameters in the

No. Measure of 

Robustness

Optimal

Value

Open-loop 

M atrix A

Open-loop 

M atrix A\\

Closed-loop

Matrix

1 A2(Ac) 0 0.9736 0.8876 0.7268

2 & f (Ac) 0 1.1162 1.0528 0.6349

3 K {W Ac) 1 8.3848 6.6048 5.9942

4 M S ( A C) 0 0.9770 0.8416 0.7182

5 6(AC) 0 0.9085 0.7873 0.4600

6 v(Ac) 1 14.6761 7.2736 5.9466

Table 4.1: : Comparison of Robustness Measures of Example 1 

closed-loop system m atrix A*x are reduced when compared to the open-loop system
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F  =

m atrix A  and A\\ .  The behaviour of the switching surface is completely defined by 

the design of the reduced order closed-loop dynamic. Thus the greater the value of 

the resulting robustness param eters the worse the normal measure of the system. It 

is concluded tha t the closed-loop m atrix does not reach the optimal values. It may 

be possible to reduce the normal measurements further using a different set of desired 

closed-loop poles.

Step 4: Calculation of switching surface matrix F. The m atrix F2 has no effect on the 

switching surface and serves merely to scale the m atrix F] let F2 = I 2. Then using 

equation (4.31) the m atrix

r -0.3955 -0.9114 0.6466 -0.3949 

-0.9059 0.4123 0.2044 0.4411

is calculated which is also robustly designed.

Step 5; Computation of controller parameter N . The linear gain m atrix Gi is designed to 

satisfy the reachability criteria. Hence the m atrix N  is obtained to satisfy the equation

(4.81) of Lemma 4.2 as

r -0.7002 -0.0786 0.5516 0.3857

12.2155 3.8089 -7.5342 -0.8980

-9.2473 -2.7829 5.8624 0.9053

-1.9513 -7.8676 4.9498 -3.7824

12.7980 2.6199 -7.0324 -1.5237

with an initial value of a = 0.0.

Step 6: Selection of simulation parameters. To show the effect of uncertainty and robust 

behaviour of the controller, the plant system matrices (A, B)  are perturbed arbitrarily 

and the output m atrix C  is unperturbed. These are given by

0 0 2.0000 0.0004

0 -0.3095 -0.0059 3.0700

0.0100 0.4980 -2.0100 -10.4000

0.0772 -1.9766 -0.0526 -0.2352

N

A n =

0

0.0005

0

0

0 0.1000 0 0 -1.0050

B p =
0 -1.4068 0.6372 0.0378 0

0 -0.0605 -2.1177 0 0
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From the perturbed  plant the effect of structural uncertainty can be demonstrated. 

The matched uncertainty can be tolerated by inherent properties of sliding systems. 

Only the effect of unm atched uncertainty is considered in this discussion. Assume that 

the uncertainty A / ( t ,5 i ,0 )  in equation (4.37) equals zero. If the perturbed plant is 

partitioned accordingly then the amount of unm atched uncertainty entering the reduced 

order system may be w ritten as

A E  =  A A „ -  A A 12K C 1 =

0 -0.0002 -0.9998 

0 -0.4484 0.9759

-0.0100 1.8045 -2.3004

Using the norm bound condition

IIASM < m  [ F ^ C T - 1 1
\  |_— K C \

This gives an approximately ||F i( t,x ) || < K f  = 1.8119. If the value of K j  is chosen

in

Figure 4.2: O utput trajectory of perturbed plant in Example 1

higher than  1.8119, then the system will be stabilised which also increases the control 

action. However in practice the value of K f  = 0.0001 is used which is very small. This 

may be due to the analysis being very conservative. The robustness is im portant since 

it makes the eigenvalues insensitive to its param eter variations. Therefore the system 

is stable in the worst case. The other uncertainty bound param eters are chosen as 

K g = 0.0002, K a =  Kd = 0.0, and a  =  0.005, the initial values of the states at simulation 

are chosen as [1.0 0.05 0.01 0.2 0.0]. A small value of S = 0.05 is added to the

denominator of the discontinuous part of the control law which avoids chattering as 

discussed in Sub-section §2.3.5. It is noted that there is no straightcut way to obtain
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the uncertainty bound param eters. It is based on trial and error method, however some 

knowledge of uncertainty may help to guess these parameters. The simulation results

0.5

0.3

0.2

O. 1

O

O. 1

0.3

-0.5O 0.05 O. 1 0.2 0.30.15 0.25 
0  In S<

0.35 0.5
Tli

Figure 4.3: Switching surface of perturbed plant in Example 1

.......... ............
..........

............

-  . .

Figure 4.4: Control effort of perturbed plant in Example 1

are presented showing the behaviour of the plant outputs in Figure 4.2, switching surface 

in Figure 4.3 and Figure 4.4 shows the controller effort. These show good robustness of 

the design approach. The control action is reasonable.

4 .9 .2  E xam ple 2

Consider the example presented by El-Khazali and DeCarlo in the paper [38].

Step 1; Compute the regular form and identify the reduced order sliding dynamics. The
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regular form of the system triple (A, B , C)  is

A  =

-1.0000 -1.4142 1.4142 0

0 0 0 -1.0000

-0.7071 -1.0000 1.0000 0

-0.7071 0 1.0000 0

B  =

---
---

1

0

1
O r

0 1 0 0
0 0

, c  = 0 0 0 - 1
0 - 1

0 0 - 1 0H
1

__
1 0 -

Using the canonical form the reduced order system is represented by

-1.0000 -1.4142 1.4142 0
A n  — , A\2 —

0 0 0 -1.0000

It is shown th a t the m atrix A n  has an invariant zero at —1, hence it is clear that an 

arbitrary  pole placement is not possible. Eliminating the appropriate row and column 

a new reduced order sub-system A n  = 0,f?i =  — l ,C i  =  1 is formed. This is a system 

with n = m  = p = 1; i.e. the number of inputs is equal to the num ber of states and 

outputs and the pole and the associated eigenvector can be assigned arbitrarily with 

maximum insensitivity to param eter variation. This also demonstrates the results ob­

tained in this design.

Step 2: Normal closed-loop matrix design for robust sliding dynamics. Using the ro­

bust switching surface design m ethod presented in Section §4.6, the gain m atrix K\ = 

—3.0028 is found which places the pole at —3.0082. Using the transform ation

0 1
Tm> ~

1 0

in equation (4.60), the gain m atrix K  = [0 — 3.0028]T is obtained, where K 2 = 0 is

considered.

Step 3: Verification of robust properties of the designed closed-loop matrix. Consider the 

robustness property of the reduced order closed-loop system ^4^ and the sub-system A slx. 

The Table 4.2 shows the measurements of robustness as in Subsection §4.6.2. These show
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No. M easure of 

Robustness

Optimal

Value

Open-loop 

M atrix A

Closed-loop 

M atrix A \ x

Closed-loop 

M atrix AJj

1 ^ 2 (A c) 0 0.9603 0 0.5561

2 A f (Ac) 0 0.9603 0 0.6388

3 K { W Ac) 1 1.0476 x 1053 1 1.9303

4 M S ( A C) 0 1 0 0.4223

5 S(AC) 0 1 0 0.2439

6 v (A c) 1 1.0476 x 1053 1 2.4483

Table 4.2: : Comparison of Robustness Measures of Example 2

that the closed-loop sub-system A ^ has attained its optimal values of the measurements. 

The m easurem ents also show some variations between the reduced order systems A ^ 

and the sub-system A \ x where the robust design is performed. This variation is due to 

the addition of the invariant zero into the new sub-system and cannot be avoided. The 

normal measures of the open-loop m atrix A n are not given because it is a null matrix 

and its comparison is not im portant since the robustness property of the controller and 

the switching surface is solely dependent on the reduced order closed-loop dynamics. 

Step 4; Calculation of switching surface matrix F. The choice of F2 does not affect 

the robustness of the reduced order system, hence it can be chosen arbitrarily. Letting 

F2 =  I 2 the switching surface m atrix

0 0 -1.0000 

-3 .0028 -1.0000 0

is calculated.

Step 5: Computation of controller parameter N .  The next step is to design the linear 

gain m atrix  Gi such th a t equation (4.81) is satisfied so tha t the control law (4.76) 

guarantees the reachability condition holds. The m atrix

0.1000 0 0 

0.4848 0.2018 13.3649 

18.6242 6.3225 5.6101

6.6810 2.1858 15.2017

F  =

N  =
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is chosen to satisfy the condition in equation (4.81) and the value of alpha = 0.0 is 

considered.

Step 6: Selection of simulation parameters. To dem onstrate the robustness of the design 

procedure further choose a perturbed system defining the triple

A n =

0.0050 1.0020 0 0.8500

0 0 1.0250 0

0 0 2.0000

Bn =

-1 .4000

0.0005

0.0010

0

1.0100

0 0

0 - 1.2000

The amount of unm atched structural uncertainty in this example is given by

A S  = A An -  A A i2K C i
-0.0050 0.4484 

0 0

Using the norm  bound condition the ||jFi(£,:r)|| < 0.1002. However the worst case 

param eter of K f  = 0.0001 is sufficient to stabilise the perturbed plant. The affect can 

be similarly explained and it is dem onstrated tha t the value of K g =  0.0002, K a = 0.0 

and the value of a  =  0.0 are sufficient since the rate of convergence is good from the 

design of m atrix N .  Figure 4.5 represents the perturbed plant output responses. The

Figure 4.5: O utput trajectory of perturbed plant in Example 2 

switching surface response of the perturbed plant is shown in Figure 4.6. A sliding
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Figure 4.6: Switching surface of perturbed plant in Example 2

Figure 4.7: Control effort of perturbed plant in Example 2



Chapter 4. Static O utput Feedback Sliding Mode Control 79

mode is attained within 0.005 seconds approximately. These show good robustness to 

the design approach. The control action is given in Figure 4.7; this shows reasonable 

control effort is applied. It is further possible to reduce the control action by increasing 

the reaching time to the switching surface.

4.10 Sum m ary

A unified framework for variable structure output feedback control is presented for 

the case of multivariable linear time invariant uncertain systems which may possess 

stable invariant zeros. The switching surface design in static output feedback sliding 

mode control is equivalent to an output feedback problem for the reduced order system. 

It follows that problems arise when the reduced order system triple does not satisfy 

the ‘Kimura-Davison’ condition and/or invariant zeros are present. Here, a method is 

described which tolerates the presence of stable invariant zeros. The problem of the 

‘Kimura-Davison’ condition and unstable transmission zeros will be discussed in later 

chapters. A robust approach to output feedback stabilisation is used to determine the 

switching surface. There is no need for extra dynamics to be added if the reduced 

order subsystem triple satisfies the output feedback pole placement criteria. The design 

procedure is straightforward and the controller is easy to implement. The measurements 

of robustness are considered.

The controller design is straightforward. The controller gain can be varied to influence 

the reaching time to the switching surface. The closed-loop configuration is shown 

to eliminate the effects of certain model uncertainty and nonlinearity in the system. 

Numerical examples show the effectiveness of the technique. The simulation results 

demonstrate the applicability of the method; the proposed controllers guarantee the 

attainm ent of a sliding mode despite the presence of uncertainty. Some computational 

problems exist for high dimensional systems. As one would expect, the greater the 

design freedom in calculating the output feedback gain, the better the attainable normal 

measure of the closed loop system. The robustness measurements of the two examples 

justify the properties. If the ‘Kimura-Davison’ condition does not hold for the reduced 

order system and stable invariant zeros are present, a compensator may be added to
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the VSCOF framework. This is discussed in the next chapter and the case of unstable 

invariant zeros is considered in the following chapter.



Chapter 5

D ynam ic Output Feedback V SC  w ith  Stable  

Transm ission Zeros

5.1 Introduction

This chapter considers the development of dynamic output feedback sliding mode con­

trollers for a class of uncertain linear systems. The existence problem in variable struc­

ture control by output feedback, where no compensator dynamics are employed, is 

essentially a static output feedback control problem. In order to carry out this proce­

dure the system is usually assumed to satisfy the pole placement conditions relating to 

controllability and observability and the appropriate design subsystem must satisfy the 

well known ‘Kimura-Davison’ condition pertaining to tha t subsystem dimensions. An 

appropriate switching surface matrix which assigns arbitrary  eigenvalues to the sliding 

mode subsystem may not be chosen if tha t appropriate subsystem does not satisfy the 

latter condition. The sufficient conditions for developing static output feedback sliding 

mode controllers were discussed in the previous chapter. If the so-called ‘Kimura- 

Davison’ condition is not satisfied for tha t design triple, it has been shown [70, 71] that 

it may not be possible to determine a static output feedback sliding mode controller. 

A dynamic compensator of appropriate size may be used in the design procedure to 

satisfy this condition. This approach has been investigated in the sliding mode context 

by El-Khazali and DeCarlo [40] for linear systems. It is known from previous discus­

sions that the invariant zeros affect the sliding mode controller design [32, 63]. The 

work of El-Khazali and DeCarlo [40] does not consider the implications of invariant
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zeros or model uncertainty in the system. Recently Diong and Medanic [27, 28] studied 

the dynamic output feedback problem for linear systems based upon a simplex control 

law. A comparison of different classes of compensator and their effect on minimum and 

non-minimum phase systems was considered.

In this work, a dynamic output feedback strategy is proposed which circumvents prob­

lems caused in developing static output feedback sliding mode controllers for linear 

uncertain systems which do not satisfy the ‘Kimura-Davison’ condition for the design 

subsystem triple and may possess stable invariant zeros. In addition, it is shown that 

if the system does not satisfy the required performance specifications then this type of 

compensator may also be used to give some extra freedom in design. This is explained 

with an example. The system must be controllable but it is not necessary for the sys­

tem to be observable as the reduced order sliding mode dynamics do not depend on the 

observability of the system. Here the param eters of the compensator are determined 

explicitly during the switching surface design procedure. As noted in the static case, 

during sliding the system is sensitive to any unm atched uncertainty. Again these effects 

can be minimised by ensuring that the reduced order sliding dynamics are maximally 

robust. The unstable invariant zero case will be considered in Chapter §6 with another 

type of dynamic output feedback sliding mode control.

The outline of the chapter is as follows: The compensator and system definition are 

introduced in Section §5.2. Section §5.3 describes a param eterisation of dynamic out­

put feedback VSC. The control authority required for the augmented system and its 

reachability criteria are discussed in Section §5.6. Numerical examples illustrate the 

technique in Section §5.5.

5.2 C om pensator and System  D escrip tion

Recall the linear time invariant state space model of the plant defined in Section 

§4.2.

x(t) = Ax(t)  +  Bu(t)  +  h( t ,u ,x )  

y(t) = Cx(t)

(5.1a)

(5.1b)
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where x G IRn, u G H m, and y G IRP with m  < p < n. Let the assumptions in Chapter 

§4 hold. In this case, a sufficient condition to solve a static output feedback problem 

was seen to depend on the relative dimensions of a particular subsystem; i.e. the design 

subsystem triple must satisfy the ‘Kimura-Davison’ condition. If this condition is not 

found to hold for this design subsystem triple, then it is natural to explore the effect of 

adding a compensator -  i.e a dynamical system driven by the output of the plant -  to 

introduce extra dynamics to provide additional degrees of freedom. Consider a dynamic 

compensator given by

x c(t) = H x c(t) +  Dy(t)  (5.2)

where the matrices H  G IR9*9 and D  G IR9Xp are to be determined. The uncertain 

system of equation (5.1a) together with the compensator (5.2) will be referred to as the 

augmented uncertain system and the index q is chosen so tha t the augmented reduced 

order sliding dynamics satisfy the ‘Kimura-Davison’ condition. The augmented system 

may be written as

z ( t ) =  Az(t)  +  Bu(t)  +  /i(t, u, ar)

y(t) = Cz(t)

where the augmented state z = [x^ xT ]T G IR^+n  ̂ and output y = [x^ y 

jr(<?+p) anc| thg triple (A , B , C ) is given

(5.3a) 

(5.3b) 

t \ t  s-

'H D C 'O ' 'I, O' 0
A = , B  = , c = IIs

0 A B 0 c h(t , u , x)
(5.4)

Note that the augmented system in equation (5.3a) still satisfies the unmatched and 

matched uncertainty decompositions in Chapter §4. It was demonstrated that the re­

duced order dynamics are unavoidably affected by unm atched uncertainty, but it is pos­

sible to reduce the effects by appropriate robust design of the reduced order closed-loop 

matrix. Hence, for simplicity it is worthwhile to investigate only the case of matched 

uncertainty with a robust closed-loop design for the reduced order sliding dynamics. 

For the purpose of investigation of the effect of a dynamic compensator consider the 

unmatched uncertainty

f ( t , x )  = 0

and the matched uncertaintv

g(t, u, x ) =  Gi{t, u)u{t) +  Gi{t, y) (5.5)
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where Gi(t,u)  G IRnxm, G2(t ,y)  £ H nXl and its boundedness is defined in Subsection 

§4.2.1. It is required that the augmented system must exhibit a stable sliding motion 

in the augmented state space, formed from the plant and compensator state spaces. 

Define a new hyperplane in the augmented state space, as

5« = { z e E ' +" : s(y) = Fcx c(t) + F C x( t )  =  o} (5.6)

where Fc G JRmX<7 and F  define the relevant switching surface matrices. Once the 

switching surface is designed, the second stage is then to develop a control law based 

upon plant and compensator outputs which can induce a sliding motion on the switching 

surface S a of the augmented system. The proposed control law is similar to that used for 

static output feedback sliding mode control but depends on augmented outputs, giving

u(t) = Gy(t)  -  v(y)  (5.7)

where y{t) represents the output of the augmented system. The param eter G is defined 

as a gain m atrix and the discontinuity vector v(y) depends on the augmented outputs 

y(t) only. The key problem is to design the switching surface matrices F  and Fc, the 

compensator parameters H  and D , and the gain m atrix G, so tha t the closed loop 

system is both stable and robust.

5.3 D ynam ic O utput Feedback P aram eterisation

To carry out the design and analysis for dynamic output feedback sliding mode control 

the canonical form defined in Subsection §4.2.2 is also useful. It is considered that the 

plant triple (A , B , C ) is in the canonical form defined in equations (4.6) - (4.9) with 

p > m  and rank(CH) =  m. Having obtained the necessary canonical form, the devel­

opment of a framework for dynamic output feedback sliding mode controller design will 

be considered. It has been seen that the square plant case has no freedom to design the 

switching surface for static output feedback sliding mode control. It is seen that in this 

case the augmented reduced order dynamics become a static output feedback stabilisa­

tion problem and the square system essentially does not have any design freedom. This 

chapter is largely devoted to the case of more outputs than inputs and the effect of the 

dynamics on a square plant is mentioned. It is noted that in many cases a stabilising
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controller gain may be obtained but this might not meet the performance requirements 

due to limited design freedom available. In this case this type of compensator dynamics 

may be used with the plant. One such example is considered.

5.3.1 N on-square Plant

The design subsystem triple (A n, 2?i, Ci) in equation (4.61) is stabilisable by output 

feedback if the so-called ‘Kimura-Davison’ condition holds or it may require more design 

freedom. If it is not possible to synthesis a K\  to stabilise the triple (A n ,i? i, Ci) then 

the plant in equation (5.1a) is augmented with the dynamical compensator defined in 

equation (5.2) to form the augmented uncertain system as in equation (5.3a). As in 

Section §4.4 the m atrix F C  is partitioned as in equation (4.19). In an analogous way 

define D 1 e  and D2 € IR5*”1 as

D\ D 2 D T  (5.8)

If the states of the uncertain system are partitioned as in equation (4.22) then the 

compensator dynamics can be written as

x c(t) = H x c(t) +  D\CiXi{t)  +  D 2x 2(t) (5.9)

where C\ is defined in equation (4.20). Assume that a control action exists which forces 

and maintains motion on the hyperplane S a given in (5.6). As in Section §4.4 in order 

for a unique equivalent control to exist the square m atrix F2 must be invertible. By

writing K  =  F ^ F i ,  defining K c =  F2_1i r'c and using the equation (5.6), the augmented

system m atrix governing the reduced order sliding motion, obtained by eliminating the 

coordinates x 2, can be written as

i t  (t) = (An  — A i2K C i)x i ( t )  — A i2K cx c(t) (5.10a)

x c(t) = (Di — D 2K)CiXi( t )  +  (H  — D 2K c)xc(t) (5.10b)

If the unm atched uncertainty f ( t , x i , x 2) is non zero then it will appear in equation 

(5.10a) as defined in equation (4.24). From the above equations it is clear that the 

introduction of the compensator has introduced more design freedom than was available
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in Section §4.4. It is considered that the unmatched uncertainty f ( t , x) = 0 hence the 

closed-loop analysis is straightforward. Defining

£ > != £ > ! -  D 2K

H i =  H  -  D2K,

(5.11a)

(5.11b)

then the following exposition will determine an optimal choice of K  and K c

and thus the compensator will be parameterised by D 2. Some remarks regarding its 

selection will be made later. Unfortunately the invariant zeros of the uncertain system 

are still embedded in the dynamics. From the definition of the partition of An given in 

(4.7), it can be shown that

A d -Jin  —

A n — A 12K C 1 —A i2K c

(D1 - D 2K ) C 1 h - d 2k (

A° f Ao I A m
^ 1 1  I 12 I 121 A121A 

0 A n  — A \22JK C i 

0 D 1 C 1

—A \2\ K c

—A \22K c

Hi

As in the uncompensated case, it is necessary for the eigenvalues of Ajj to have negative 

real parts. The design problem becomes one of selecting the matrices D\  and Hi,  and 

a hyperplane represented by the matrices K  and K c so tha t the m atrix

Ad -j±n  —

A n — A \22K C \  —A \ 22K c

A C i  £ 1

is stable. Again if there is rank deficiency in the m atrix A122 the problem is over- 

parameterised. As in Section §4.4 suppose rank(A n 2 ) =  m' < m  and let Tm> (E ]RmXm 

be a m atrix of elementary column operations such th a t equation (4.59) holds, then 

is a full rank matrix. Define partitions of the transformed hyperplane 

matrices as in equation (4.60)

T~} K r =
A c i

A C2 J 771—m'

then it follows that

Ad^ 1 1
A n — B \K \C i  —B \ K C\ 

D 1C1 Hi
(5.12)

As before, the unknowns present in the m atrix given in (5.12) will be expressed as the 

result of an output feedback stabilisation problem for a certain known system triple.
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This is comparable to the situation which occurred in the uncompensated case. Note 

that K 2 in equation (4.60) was found to have no effect on i n  — B \K \C \ .  Similarly K 2 

and K c2 have no effect on the equation (5.12). The key observation is that equation

(5.12) can be written as

A n — B \K \C \  —B \ K c\ 

D i C t  H i

Thus by defining

1o1

B i 0 K i A d

1—...orH
1

0 0 0 1
•"T1 rH1 i
r-* 1 O l__

_ ( 5 . 13)

A A A n  0 A A B i  0 ^  A C l 0 ~ A A h

i—

A i  =

0 O g x g

B i  =

I

0 1
I

C l  =
0

A i  =

D i H i

then the param eters K ci, Di and Hi can be obtained from an output feedback pole 

placement controller design on the triple ( A i , i ? i ,  C\). In order to use standard output 

feedback results it is necessary for the triple ( A i , 2? i , C i )  to be both controllable and 

observable:

L e m m a  5.1 The matrix pairs ( A i , I ? i )  and ( A i , C i )  are completely controllable and 

observable respectively i f the matrix pair (A , B ) is completely controllable.

P ro o f: From the definition of ( A i , i ? i )  it follows that

rank s i  — Ai B\ =  rank s i  — A n Hi

It is possible to prove that the rank

+  q for all s 6 C_

=  n — m  — r for all s £s i  — A n  B  i

i.e. the m atrix pair ( A n , i ? i )  is required to be completely controllable. Because the 

m atrix pair ( A ,  B)  is in the canonical form of Section §4.2.2, which is a special case of 

the regular form used in sliding mode controller design, it is well known that the pair 

( A ,  B ) completely controllable if and only if the pair ( A n , A i 2 )  is completely controllable. 

Therefore from the PHB rank test

rank s i  — An A12 =  n — m  for all ,s £ (D_

Substituting for An from equation (4.7) and A i2 from equation (4.55), gives

rank
s i  — Ajj [Aj2 A ^j] A i2i

0 s i  — A n  A J22
=  n — m  for all s G € .
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This implies that

rank s i  — A n  A 122 = n — m  — r for all s £ C_

and therefore ( A n ,  A 1 2 2 )  is completely controllable by PHB rank test. By construction 

(A n, ^ 1 2 2 )  is completely controllable if and only if the pair ( A n ,  I?i) is controllable and 

so the first part of the Lemma 5.1 is established, hence the pair ( A i ,  Bi)  is controllable.

Applying the PHB observability rank test to the pair (Ai, Ci), gives

rank

1

1«0
1

s i  — A n
=  rank

Ci Ci
+  q for all s £ C_

It follows that if the pair ( A n ,  Cl) is observable then the pair ( A i , C i )  is observable. 

Therefore

rank
s i  — A n  

Ci
= rank

sI - A ° 22 —A™22

A°2x s i  -  A g

0 I ( p —m )

s i  — A 22
= rank -f (p — m)  for all s £ C_

4°
21

By construction the pair (A22, A 21) is observable and has

(5.14)

rank
s i  A 22

— 4 °21
= n — p — r for all s G C .

therefore

rank n m  — r for all s G C _
s i  — A n  

Ci

hence the pair (A i ,C i )  is completely observable. ■

Obtaining the matrices K  and K c, the switching surface m atrix sub-block relating to 

the plant states is given as in equation (4.31) and tha t relating to the compensator 

states is given by

Fc = F2K c (5.15)

Note the m atrix D 2 is not yet defined. It is observed that the matrix D2 has no role in 

the augmented reduced order sliding dynamics, so an arbitrary choice of D 2 is possible.
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However, in many situations, especially where a robust output feedback approach is 

used, the design m atrix Hi becomes very large value and may be unstable. This may 

cause very high control authority. An appropriate choice of D 2 can circumvent this 

problem. If the pair ( H i , K c) resulting from the output feedback design in equation

(5.13) is observable, then rearranging the equation (5.11b), an observer gain approach 

may be utilised to evaluate the m atrix D 2 to ensure tha t H  is stable. From a practical 

implementation view point, a stable compensator is preferable. Similarly, rearranging 

the equation (5.11a) gives the m atrix D\.

5.3 .2  Square P lant

The square plant has no design freedom to select a switching surface for the static

output feedback case and the addition of this type compensator does not improve the

situation. Although it is possible to form the reduced order dynamics into an output 

feedback dynamic problem, stability depends on the eigenvalues of the m atrix An which 

must be stable. This can be demonstrated from equations (5.8) and (5.9). If the square 

plant satisfies the sliding conditions in equation (5.6) and the canonical form in equation 

(4.62) exists, then eliminating the states x 2(t), the reduced order sliding dynamics can 

be written as follows

i i ( t )  =  AnXi(t)  -  A i2K cx c(t) (5.16a)

x c(t) = (H — D K c)xc(t) (5.16b)

where K c =  jF-1.Fc. Using the structure of An in equation (4.7) and eliminating the 

invariant zeros from the dynamics in equations (5.16a) and (5.16b), the reduced order 

closed loop m atrix may be written as

Ad —
A n  — B i K d  

0 Hi
(5.17)

where Hi — H  — D K C. The eigenvalues of the m atrix A f x are given as

A ( i f , )  =  H i n J U A f f f , )

Hence it is clear that addition of this compensator does not benefit the switching surface 

design and the eigenvalues of the m atrix An must be stable, i.e. the square plant must
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be minimum phase. This can be further written as an output feedback problem as 

follows
1.. tc A  n r .  n k  . r n

(5.18)A-n —B i K ci A n 0 Bi 0 K c / r -I
_ — QqXn—m—r Iq

0

i 1

o o 1 0 1
1

i
1-H

fci1

Thus by defining

A.! = ---
---

1
h-L 1—

I o
1

B\  =
Bi 0

Ci =
0 Ogxg 0

0 q X n —m —r Iq
x> A Ai =

K cl

Hi

The m atrix pairs ( A \ , B i ) and (A i,C i) are completely controllable and observable re­

spectively and further discussion is irrelevant to this chapter.

The effects of unmatched uncertainty upon the sliding mode for this case can similarly 

be explored as discussed in Chapter §4 and a constrained sliding motion can be ob­

tained. The closed-loop design for this purpose is similar to tha t described for the case 

of matched uncertainty. From the design point of view, all the effort is required to 

find the stabilising gain m atrix Ki  which defines the switching surface parameters and 

compensator parameters. From previous discussion, it is concluded that the closed-loop 

sliding dynamic must be robust to the unmatched uncertainty. As in Chapter §4, of 

Section §4.6 the normal m atrix design approach discussed is also applicable here to 

design the robust switching surface and the compensator param eters since the triple 

(A i , B i ,C i ) resulting from the use of dynamic compensation satisfies the assumptions 

of the ‘Kimura-Davison’ condition in order to use an output feedback approach. The 

output feedback design will seek to maximise the robustness of these reduced order slid­

ing mode dynamics. This will guarantee the stability and robustness of the ideal sliding 

dynamics. The second stage of the design is to find an appropriate controller which 

will bring the augmented system states onto the augmented switching surface. Further 

it is possible that the addition of compensator dynamics, although not necessary, can 

improve the robustness where the system does not a ttain  the required robustness and 

performance specifications. This is demonstrated with an example later. The next sec­

tion will discuss the design of a controller which will force the augmented outputs on to 

the augmented switching surface.
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5.4 Controller D esign

W ithout loss of generality it can be assumed that the plant and the augmented sys­

tem triples (A, B , C )  and ( A , B , C )  respectively are known. The controller formulation 

is similar th a t of described in case of static output feedback sliding mode controller 

and based on the Lyapunov stability criteria, however the augmented parameters are 

applicable in this case. Consider a Lyapunov function

v (s ) = y T(y)s(y) (5.19)

Here s(y) = Fy{t)  where F  = [Fc F]  defines the augmented switching surface matrix. 

The reachability condition as defined in equation (4.86) must satisfy V(s)  < 0, i.e. if 

sT(y)s(y) < 0 for all y(t). Hence the control law of equation (4.76) becomes

u(t) = —(F C B ) - l F C A N  +  —F  
2 .

y( t )  -  (F C B ) - ' u ( y ) (5.20)

where N  E ]£{(«+») *(«+»>) is a design matrix and a  is some positive constant to be chosen 

accordingly. Subsequently the component z/(y) is defined by

f p(t, u , y ) i|i-?|i if s(y)  0
„(5) = J ^ ’ (5.21)

( 0 otherwise

and the positive scalar quantity p(t ,u ,y )  defined by the matched uncertainty bound 

parameters K g and K a such that

k K g\ \ [F C A N  + <IF}y\\ + K a\\FC\\ 
p(t , IZ, y) = ----------------------- ——------------------  (5.22)

(1 -  k K g)

where the denominator is again considered to be a positive scalar quantity.

It follows that K g is limited by 0 < K g < |  where the scalar k is defined as

fc =  ||(F C ) ||. | |(F C B )-1||

and define K a as a positive scalar. Clearly lower values of k increase the limiting 

param eter K g, which gives a higher bound on the matched uncertainty. The reaching 

condition and time to a ttain  the sliding mode will be shown to be prescribed by the 

design of the m atrix N.  The proof of this follows the Lemma 4.2. The next section 

demonstrates the technique using numerical examples.
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5.5 N um erical D esign  E xam ples

The examples below describe the design procedure in this chapter. The first example 

demonstrates the applicability of the proposed theory using a non-square system. The 

second example demonstrates the possibility of increasing the robustness using a dy­

namic compensator, although the compensator is not essential for the design purposes.

5.5.1 E xam ple 1

A system configuration which does not satisfy the ‘Kimura-Davison’ conditions and con­

tains a stable invariant zero is considered in this example. The reduced order dynamics 

cannot be stabilised by static output feedback. The plant triple is presented in the 

canonical form of equations (4.6)-(4.9) for ease of exposition

-0.0800 0 0 1.0000 1.0000

0 0 25.0000 -1.0000 0

0 1.0000 0 0 0

0 25.0074 4.9093 -0.1971 -0.0007

0 -24.9958 0.8948 -0.0391 -0.0033

A =

B  =

0 0 

0 0 

0 0 

1 0 

0 1

c =
0 0 1 0  0 

0 0 0 1 0 

0 0 0 0 1

The triple (A , B , C)  contains a stable invariant zero at —0.08. The triple ( A n ,  A n ,  C\) 

is identified as

A n —

and the m atrix C\ =  [0 0 1]. Since the invariant zero is present in the m atrix

A n ,  it is not possible to apply the output feedback results to the triple ( A n ,  A 1 2 , C\).  

The matrices A n and A12 are partitioned according to equations (4.56) and (4.55)

-0 .08 0 0 1 1

0 0 25.00 , A12 — - 1 0

0 1.00 0 0 0
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respectively. A new subsystem (A n, A122, Ci) is generated by eliminating the invariant 

zero:
0 25 - 1 0

A n — and A122 =
1 0 0 0

The m atrix C\ is reduced to C\ = [0 1]. The m atrix A122 is rank deficient but it

is in the form of equation (4.59). Hence the transform ation Tm/ in equation (4.59) is
-v ~ T

not essential. The m atrix B\  is obtained as B\  =  [ — 1 0] . It is observed that the

triple (A n ,i? i, C\) cannot be stabilised using output feedback since it does not satisfy

the ‘Kimura-Davison’ condition. It is thus not possible to find the stabilisable gain

m atrix for the reduced order sliding mode dynamics by an arbitrary pole placement

using static output feedback. A compensator of minimum first order is necessary to

satisfy the ‘Kimura-Davison’ condition. Using the compensator dynamics defined in

equation (5.2), the augmented reduced order sliding dynamic triple is formed as in

equation (5.13), giving extra freedom to use the output feedback results. These are as

follows

A\  —

0 25 0 - 1 0

1 0 0 , Bi = 0 0

0 0 0 0 - 1

and C\ =
0 1 0 

0 0 1

The m atrix pairs (A i ,B i )  and (Ai, Ci) satisfy Lemma 5.1 and also the ‘Kimura-Davison’ 

condition, hence the triple is output feedback stabilisable. Any output feedback results 

may be utilised. The robust output feedback pole assignment technique [17] is applied 

to the augmented reduced order sliding dynamic as described in Section §4.6. The sta­

bilising gain matrix K q will determine the robust hyperplane m atrix parameters K i , K ci 

and the compensator m atrix param eters D \ ,B \ .  Thereafter the controller matrix N  is 

then calculated to satisfy the reachability condition. The optimal matrices P  and Q of 

Theorem 1 are chosen as

0.4029 -1.1280 1.1254 3.6127 3.5396 -10.0100

p  = 0.0035 0.2623 0.0531 Q = 3.5396 28.5134 -8.4241

-0.1399 -0.1471 0.4516 -10.0100 -8.4241 27.8122
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The closed loop poles of the augmented reduced order system are at {—0.4443 ±  

1.8304z, —2.0000} and the gain m atrix K q is calculated as

K q =
-30.3251 -4.2247 

-1.9615 -2.8887

Hence the matrices K \ = —30.3251, K ci =  —4.2247 and Di  =  —1.9615, Hi = —2.8887 

are isolated. Since K 2 and K c2 have no effect on the sliding dynamics these are chosen 

arbitrarily as K 2 = 0, K c2 = 0. The switching surface parameters

'-3 0 .3251 ' '-4 .2 2 4 7 '
I< = and K c =

0 0

are computed. Since the computed Hi is a stable m atrix, D 2 = [1 0] will define a stable 

compensator state m atrix H  = —7.1134 and input partition m atrix Di = —32.2866. The 

compensator input m atrix D  is calculated from equation (5.8) as

D = f -32.2866 0

The m atrix F2 has no affect on the sliding dynamics. This can be obtained in the 

process of controller design which gives some extra freedom to calculate the matrix N.  

This is given as
f —0.1206 -0.3926

F  =
2 [-0 .0282  -0.7046

and the switching surface matrices in equation (4.31) and (5.15) are given as

F  = and Fr =
0.5094

0.1183

3.6566 -0.1206 -0.3926 

0.8537 -0.0282 -0.7046 

In order to quantify the robustness of the plant closed-loop dynamics, the non-normal 

param eter measurements may be taken to evaluate the normal measure of the matrix A c 

as described in Section §4.6.2. For this example, the measure parameters are compared 

in Table 5.1. If a m atrix is normal, then the measure parameters are equal to the 

optimal values; thus the greater the value of the above parameters the worse the normal 

measure of the system. The measurement of these parameters for both the open-loop 

system matrices are relatively large. The reduced order closed-loop sub-system is 

optimised in the design. The table shows that although the measure parameters A 2{AC) 

and A f (Ac) are not generally reduced, the parameters K ( W ac) and v (Ac) are reduced
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No. Measure of 

Robustness

Optimal

Value

Open-loop 

Matrix A

Open-loop 

Matrix A
Closed-loop 

Matrix Aft
Closed-loop 

Matrix A

1 A 2 (Ac) 0 0.9979 0.9997 0.9688 0.9999

2 A  f (Ac) 0 0.9070 0.9541 1.1336 1.1775

3 K ( W Ac) 1 1.4747 X 105 1.4755 X 105 5.3328 48.1333

4 M S ( A C) 0 1 0.9923 0.9560 0.2103

5 6(AC) 0 0.6689 0.8357 0.8755 0.8593

6 v (Ac) 1 1.6669 x 105 1.8268 x 105 6.5251 55.9815

Table 5.1: Comparison of Robustness Measures of Example 1

significantly, when compared with both the open-loop system matrices. The dynamical 

behaviour of the plant depends on the behaviour of the reduced order closed loop matrix 

it is observed that the non-normal measurements of and A f t are not exactly 

matched due to the presence of the invariant zero in the closed loop system A \x. The 

controller design m atrix N  is evaluated to meet the reaching condition in equation (4.81) 

as
-4.2969 -39.4633 1.3066 11.3990

0 1.0000 -0.0001 -0.0003

-0.0332 0.9093 -0.1339 -28.1755

-26.1279 -186.3348 6.1028 54.4605

0.9387 5.7776 0.1657 -1.9221

-0.0004 -0.0001 -0.0001 -0.0044

with initial value of a = 0.0. The simulation results are based on a perturbed plant 

model.

The controller design is based on the nominal plant presented above and implemented 

on a significantly perturbed system, which induces unmatched and matched uncertainty 

into the matrices A  and B  in order to illustrate the robustness. The perturbed plant
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matrices are given by,

-0.0880 0 0 1.1000 1.1000 0 0

0 0 27.5000 -1.1000 0 0 0

0 1.1000 0 0 0 > B p  = 0 0

0 32.5096 6.3821 -0.2562 -0.0009 0.0199 0

0 -32.4945 1.1632 -0.0508 -0.0043 0 0.0199

and the output m atrix C is unperturbed. The amount of structural uncertainty can 

similarly be calculated and it will be tolerated by the robust consideration as described 

in Section §4.6. At this point it is im portant to note that as in Chapter §4 the control 

law is not augmented with unmatched uncertainty bound parameters. However the 

method can tolerate unmatched uncertainty. This clearly reflects the effect of a robust 

design approach which will be helpful to control the uncertain plant. In order to control 

the matched uncertainty, the discontinuity vector param eters K g and K a are chosen as 

0.001 and 3.0 respectively. A value of a = 15.0 is sufficient to bring the outputs onto 

the switching surface. Due to the discontinuous control action in equation (5.21), the 

responses show some chattering. To eliminate this effect a small param eter 8 =  10-5 is 

added to the denominator in equation (5.21) to smooth the discontinuity.

0.01

.006

O

.006

0.01

.015
6 V2 3 8 9 10o 1

Figure 5.1: Time Response of Output Vector in Example 1

Figure 5.1 represents the perturbed plant output responses. The control action is given 

in Figure 5.2; this shows reasonable control effort is applied. The switching surface 

response of the perturbed plant is shown in Figure 5.3. A sliding mode is attained 

within 4.0 seconds approximately.
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S

Figure 5.2: Actuator Demand in Example 1

Figure 5.3: Sliding Surface Attainment in Example 1 

5.5 .2  E x a m p le  2

Consider the system below which satisfies the static output feedback sliding mode cri­

teria. A controller can be designed without any additional dynamics. The system triple 

(A, B, C ) is given in the canonical form of equations (4.6) - (4.9) as

A  =

1.0000 1.4142 

0 0

0 4.0383 

■0.7071 1.0000 

-0.7071 0

0 1.4142 0

0 0 1.0000 

-5.0000 0 0.8080

0 1.0000 0 

0 1.0000 0

B  = C =

0 0 - 1 0 0

0 - 1 0 0 0

0 0 0 0 - 1

0 0 0 - 1 0
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From the canonical form, the reduced order system matrices are isolated as

A n  =

-1.0000 1.4142 0 1.4142 0

0 0 0 , A12 — 0 1.0000

0 4.0383 -5.0000 0 0.8080

, Ci
0 1 0 

0 0 1

It is showing th a t the m atrix An has an invariant zero at —1, hence it is clear that an 

arbitrary pole placement is not possible at this stage. Eliminating the appropriate row 

and column a new reduced order sub-system

An  =

and C\ = I 2 is formed. However, the m atrix A122 shows rank deficiency of unity. Using 

the transformation Tmi of equation (4.60), giving

0 - 1  

- 1  0

0 0 0 1.0000
, A122 —

4.0383 -5.0000 0 0.8080

Tm> =

and the m atrix B\  =  [— 1 — 0.8080]T. The system triple (A n ,H i,C i)  is completely

controllable and observable and the ‘Kimura-Davison’ condition is satisfied. Hence an 

arbitrarily pole placement is possible. Using the robust switching surface design method 

presented in Section §4.6, the gain m atrix K\ = [570.1885 — 711.9109] is found which

places the poles at {—4.0, —6.0}. Using the transform ation Tm/, the gain matrix

K
0 0 

-570.1885 711.9109

is obtained, where K 2 = [0 0] is considered. Consider the robustness property of

the reduced order closed-loop system Afj and the sub-system Aja. Table 5.2 shows 

the measurements of robustness as in Subsection §4.6.2. These show that the closed- 

loop sub-system A \x has not attained its optimal values of the measurements. The 

measurements also show some variations between the reduced order systems Afj and 

the sub-system A ^ where the robust design is performed. This variation is due to the 

addition of the invariant zero into the new sub-system and cannot be avoided as in the 

other cases. This shows that the attainm ent of the robust measurement are very poor. 

A dynamic compensator is added to give some extra degrees of freedom in design which
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No. Measure of 

Robustness

Optimal

Value

Open-loop 

M atrix A

Closed-loop 

Matrix A Jj

Closed-loop 

M atrix A

1 ^2 (A c) 0 0.8248 1.0 1.0

2 A f ( A c) 0 0.9023 1.1892 1.1892

3 K ( W Ac) 1 2.0379 x 1012 1.1766 x 103 1.2748 x 103

4 M S ( A C) 0 0.6786 1.0 1.0

5 S(AC) 0 0.9983 0.9999 0.9986

6 v (A c) 1 2.2783 x 1012 1.1766 x 103 1.5130 x 103

Table 5.2: Robustness Measures of Example 2 in Static VSCOF

should increase the robustness. Consider the new reduced order subsystem (An , B lyCi) 

where a single order compensator is introduced to form the augmented reduced order 

sliding mode triple as in equation (5.13). These are given as follows

0 0 0 -1.0000 0 1 0 0

Ai — 4.0383 -5.0000 0 , Bi = -0.8080 0 and C\ = 0 1 0

0 0 0 0 -1.0000 0 0 1

The m atrix triple ( A i , C\) satisfies the assumptions for output feedback sliding mode

control. The triple also satisfies Lemma 5.1 and also the ‘Kimura-Davison’ condition, 

hence output feedback results can be utilised. Applying the robust output feedback 

pole assignment technique the stabilising gain m atrix K q is determined as

K q =
-3.7606 1.0000 0.0343

0.0343 0.0343 -6.0000

which places the augmented reduced order closed-loop poles at {—2.9526, —4.9993, 

—6.000} which gives the robust hyperplane m atrix parameters K\,  K c\ and the com­

pensator m atrix parameters Di, Hi  as follows K\  =  [—3.7606 1.0000], K c\ =  0.0343 

and D\  =  [0.0343 0.0343], H\ = —6.0000. For comparison purposes one of the eigen­

values is kept in its original position as in the case of the static output feedback sliding 

mode control. There was rank deficiency in the m atrix A122. Hence, using the inverse 

transformation of equation (4.59), the transformed stabilising gain matrices are given
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as
0 0 0

K  = 5 7ic
3.7606 -1.0000 -0.0343

where the matrices K 2 =  [0 0] and K c2 = 0 are considered. The m atrix D 2 =

[0 — 145.9854] is computed using a state feedback control law giving a stable compen­

sator state m atrix H  =  —1.0 and input partition m atrix D\  =  [—548.9528 146.0197]. 

The compensator input m atrix D  is then calculated from equation (5.8) as

D — [ —146.0197 548.9528 145.9854 0]

The matrix F2 which does not affect the sliding dynamics is taken as the identity matrix

No. Measure of 

Robustness

Optimal

Value

Open-loop 

Matrix A

Closed-loop 

Matrix A ^

Closed-loop 

Matrix Afx

1 ^ 2 (^ 0) 0 1.0 0.0195 0.3613

2 A^(-4c) 0 1.1892 0.0166 0.2994

3 K{WAc) 1 4.5603 x 1045 1.0053 1.7865

4 M S (A C) 0 1.0 0.0011 0.2348

5 S(AC) 0 0.9988 0.2895 0.3387

6 v(Ac) 1 5.5853 x 1045 3.0 4.3515

Table 5.3: Robustness Measures of Example 2 in Dynamic VSCOF

and the switching surface matrices in equation (4.31) and (5.15) are given as

0 0 0 -1.0000 0
F  = and Fc =

1.0000 -3.7606 -1.0000 0 -0.0343

In order to compare the robustness of the closed-loop dynamics between the two design 

methods, the non-normal parameter measurements are tabulated in Table 5.3. Com­

paring the non-normal measures between Tables 5.2 and 5.3, shows that the parameters 

have changed. For comparison one of the eigenvalues was kept in the same position 

where the remaining eigenvalues of the reduced order closed loop dynamics are placed 

at lower convergent rate, so that the control action is kept to a minimum. The results 

may be improved with different sets of eigenvalues. This indicates that for the non­

scalar case if the robust performance is not satisfactory then an additional compensator



Chapter 5. Dynamic Output Feedback VSC with Stable Transmission Zeros 101

may be added to improve the performance in the static output feedback sliding mode 

case. The controller design m atrix N  is given to meet the reaching condition in equation 

(4.81) as

1.9658 -0.0652 0.4295 -1.1284 1.1393

0.2234 1.0212 -0.0045 0.0246 0.0513

0 0 1.0000 0 0

0.2602 -20.0373 71.1697 18.7713 161.8689

1.0323 -8.9429 42.8343 12.2561 -286.4579

0.5306 0.7905 0.2067 -0.6086 658.2398

with initial value of a = 0.0. The simulation results are presented based on the per­

turbed plant model

-1.0800 1.4142 0 2.4142 1.0000 0 0

0 0 5.0000 -1.0000 1.0000 0 0

0 5.0383 -5.0000 0 0.8080 7 = 0 0

-0.7071 26.0074 4.9093 0.8029 -0.0007 0 -1 .25

-0.7071 -24.9958 0.8948 0.9609 -0.0033 -1 .00 0

with initial conditions [1.000, 0.025, 0.500, 0.100, 0.000]. The uncertainty boundeds

0.6

0.6

0.2

O

-0.2

O a1 2 3 6 &5
in S<

1 O
Til

Figure 5.4: Output trajectory of perturbed plant in Example 2

K g = 0.05 and K a = 2.0 are chosen to control the uncertainty and a = 0.0, since the 

reaching time is sufficiently fast. A param eter 8 = 0.10 is used in the denominator of the 

discontinuous control part to avoid chattering. More over it is seen that the parameters 

K f  and Kd are not used in this control law. However the unmatched uncertainty in the 

perturbed plant is controlled. This also signifies the use of the robust design.
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Figure 5.5: Switching surface of perturbed plant in Example 2

Figure 5.6: Control effort of perturbed plant in Example 2

5.6 Sum m ary

A framework for variable structure dynamic output feedback controller design is de­

scribed for the case of linear multivariable time invariant uncertain systems which may 

possess stable invariant zeros and cannot be solved by the static output feedback method 

described in Chapter §4. It is also useful when more design freedom is required to meet 

performance specifications. Here, a method is described which tolerates the presence of 

stable invariant zeros and the dimensional constraint. It is shown that a compensator 

may be added to the output feedback sliding mode control framework and the resulting 

reduced order dynamics is further formulated as a static output feedback problem. A 

robust approach to output feedback stabilisation is used to determine both the switching 

surface and compensator in dynamic output feedback sliding mode controller design. It 

is mentioned that the switching surface design for the square plant does not improve 

using this type of compensator dynamics.

The controller design is similar to that described in static output feedback case. The 

controller gain and reachability condition are satisfied for the augmented system. The
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numerical examples demonstrate the effectiveness of the proposed method. The sim­

ulation results demonstrate the applicability of the method; the proposed controllers 

guarantee the attainm ent of a sliding mode despite the presence of uncertainty. The 

latter example shows that as one would expect, the greater the design freedom in calcu­

lating the output feedback gain, the better the attainable normal measure of the closed 

loop system. The presence of unstable invariant zeros cannot be dealt with using this 

type of compensator. The next chapter will describe the case of unstable invariant zeros 

using another type of dynamic output feedback sliding mode control.



Chapter 6

D ynam ic O utput Feedback VSC w ith  U nstable  

Transm ission Zeros

6.1 Introduction

A static output feedback sliding mode control strategy was developed in Chapter §4. 

The dynamic output feedback sliding mode control strategy which circumvents problems 

caused in developing static output feedback sliding mode controllers for systems which 

do not satisfy the ‘Kimura-Davison’ conditions and /o r contain stable invariant zeros has 

been explicitly investigated in Chapter §5. It is shown that both the switching surface 

design problem for the static case and the switching surface and compensator design for 

the dynamic case may be formulated as a static output feedback problem for particular 

system triples [7]. However, the case of unstable invariant zeros has not been discussed. 

It has been seen tha t the unstable transmission zeros in the system cause difficulties in 

developing an output feedback sliding mode controller. Essentially the reduced order 

dynamics when sliding are seen to have the invariant zeros amongst the poles of the 

closed-loop system. Unstable transmission zeros thus lead to an unstable sliding mode 

dynamic using these techniques. In this chapter, a technique for systems which possess 

unstable transmission zeros is described. The presence of a class of uncertainty is 

considered for design and analysis. In this context, the work of Diong and Medanic 

[28] is useful. They have developed a simplex control strategy for non-minimum phase 

linear systems. Further, they have investigated the case of uncertain systems where the 

switching surface is designed using an technique and implemented with a simplex
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controller [27]. This work is limited to square systems and the invariance properties do 

not strictly hold when simplex control is used.

In this work an augmented system will be formed from the plant dynamics and the 

compensator dynamics. A nonlinear estim ator/observer type dynamic compensator is 

designed first and then a state feedback controller is formulated which produces more 

design freedom. The system requirement is that the linear system matrices (A, B ,C )  

must be completely controllable and observable. It is mentioned that during sliding the 

system is sensitive to any unmatched uncertainty. However, effects can be minimised by 

ensuring that the reduced order closed-loop sliding dynamics are maximally robust to 

such uncertainty. A robust technique based on state feedback design may be utilised to 

design the reduced order sliding dynamics. A controller strategy guaranteeing quadratic 

stability onto the switching surface is also described. The whole design process may be 

divided into three main steps as described in later sections.

The outline of the chapter is as follows: The system definition and necessary assump­

tions are stated in Section §6.2. Section §6.3 describes the dynamic compensator pa- 

rameterisation. The controller design and associated reachability criteria are discussed 

in Section §6.4. The closed-loop analysis and switching surface design are presented in 

Section §6.5. Section §6.6 gives a brief discussion regarding the use of this technique and 

the effect of the uncertainty class on the compensator and plant dynamics. Numerical 

examples illustrate the technique in Section §6.7.

6.2 System  D escription

Consider a linear time invariant state space model with some uncertainties in the sys­

tem

x(t) = Ax(t)  + Bu(t)  + h(t,u ,  x) (6.1a)

y(t) = Cx(t)  (6.1b)

where x E lRn, u E IRm, and y E IRP with m < p < n. The nominal linear system triple 

(A, B,  C)  is assumed known and the input and output matrices B  and C  are both of

full rank so that the regular form in equation (3.7) of the triple ( A ,B ,C )  exists. In
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addition the following assumptions are considered. 

A ssum ptions:

A3) the system triple (A, B, C) is completely controllable and observable;

A4) The unknown function h( t ,u ,x )  in equation (6.1a) represents nonlinearities 

plus model uncertainties which may be written as

h ( t ,u ,x )  = K £ ( t ,u , x ) (6.2)

£( t ,v ,x )  = (6.3)

where K  E H nXp is a m atrix such that the triple (A, A", C)  is minimum phase 

and the m atrix C K  has full rank. The function £( t ,u ,x )  is assumed bounded 

and has the structure below

fi ( t ,x)

where the functions £i( t ,x)  and f 2(£,u,(r) are the unmatched and matched 

parts respectively and the m atrix T  E H pXp is an orthogonal matrix. The 

matrices K  and T  are partitioned as follows

K  =

where the index p is the rank of K\  and should be as small as possible so that 

a minimum amount of unmatched uncertainty enter into the reduced order 

sliding dynamics. The m atrix K T  has the following structure

Ah \ n —m & p - p ' <—>

K 2 \m T  = t 2

K T  =

p p - p p p - p

AhTi k xt 2 "/Ci 0 '

K 2Ti A 2T2 K' /C2

| n —m  

J m

(6.4)

The functions £i( t ,x)  E 1RP and £2( t ,u ,x )  E p are defined as follows

= F1(t,x)y(t)  +  F2(t,x)  

£2( t ,u ,x )  = Gi( t ,u ,x )u( t )  +  G2(t,x)

(6.5a)

(6.5b)
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where the functions are bounded as

| |f \ ( i ,* ) | |  <  K /; | |f i ( t ,* ) | |  < K d

||G fi(i,u ,*)|| <  K,-, ||G 2(< ,x ) ||< A ^

This implies that the function

||C(*,u,aO|| <  p0( t ,u ,y )  = K f \\y\\ + K g\\u\\ + K a (6.6)

where K a = Kd +  K a. Hence by definition p0( t ,u ,y )  is a positive scalar 

function. The uncertainty h ( t ,u ,x )  in equation (6.1a) is thus bounded and 

comprised of unmatched and matched components with respect to the plant. 

Further discussion about the appropriateness of the class of uncertainty is 

available in a later section.

Using the above uncertainty structure, the sections below develop a method to solve the 

difficulties associated in the design of sliding mode controllers for non-minimum phase 

systems.

6.3 Param eterisation  o f D ynam ic C om pensator

W ith the above assumptions it is possible to consider a nonsingular transformation [33] 

T  such th a t the system equations (6.1a) and (6.1b) are written as

xi( t)  = A n x i ( t )  +  A \ 2y{t) +  Biu(t)  (6.7a)

y(t)  =  A 2iX1(t) + A 22y(t) + B2u(t) + K 2( ( t , u , x 1,y)  (6.7b)

where aq E IR(n p\  y £ IRP and the m atrix A n  is stable.

P ro p o s i t io n  6.1 With the help of successive linear nonsingular transformation of the

coordinates (A, C, K),  the observer canonical matrices represented by the coordinates 

CA , B , C , K ) can be formed.

P ro o f: Consider the transformation as defined in equation (4.10) in Chapter 4, rewrit­

ten as

Tc =
C

(6.8)
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where N c G R (n -P)xn is any m atrix whose rows span the null space of C. Performing 

the transformation, the new coordinates are partitioned as follows

n—p P

T cA T -1 =

C T r 1 =

A n A i2 I n-p 'B i \n-p
TCB  =

A 2i a 22 _ I p A . \ P

' K i \n—p
[ 0 Iv) TCK  =

A . Ip

By assumption the m atrix C K  has full rank. This implies that rank(A”2) =  p , hence A"2 

is invertible. Setting a further transformation

-f(n—p)  A u -^-2

0 Ip

the observer canonical form is available as follows

Th =

A  =
A n A i2 A n  — K i K 2 1A 2 1 A 12  — A iA 2 1A 22 -f- A n K i K 2 1

=
A 2i a 22 _ A 2i A 22 +  A 2i K i K 2 1

B =

The matrices

B1

B2

B 1 — K \ K 2 B 2

b 2

C = \ 0 J J and K  =
0

K 2

and the total transform ation may be represented by T  = Tj,Tc. The partitioned matrices 

with the above structure are used for the observer based compensator design. ■

Define a dynamic compensator

x 1 (t) = A\\Xi(t )  +  A i 2y(t) -  A \ 2ey(t) +  Biu{t)  (6.9a)

y(t)  =  A 21xx(t) +  A 22y(t) -  ( A 22 -  A s22)ey(t) +  B2u(t) -  K 2v(ey) (6.9b)

where the m atrix A s22 G IRpXp is any stable m atrix and the discontinuous param eter

v(ey) is defined as

if \ \ k ^ P 2ey\\ ±  0
v{t») = \\KJP2eyW 

0 otherwise
(6.10)
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where p( t ,u ,y )  is a positive scalar function satisfying the condition

p(t ,u ,y )  > p0{t ,u ,y)  +  \ \k 2\\~17o 

where P2 E IRpXp is a symmetric positive definite solution of the Lyapunov equation

P2A22 +  (A2)TPi = -O 2 (6.11)

where Q2 is a symmetric positive definite matrix. The positive scalar constant 7 0 is 

defined later in the section. If the state estimation errors are defined as e\ =  x\ — X\ 

and ey = y — y then the error dynamics can be written as follows

ei (t) =  A n e i ( t )  (6.12a)

ey(t) = A 2\e\(t)  +  A s22ey{t) +  K 2( ( t , u , x i , y )  +  K 2u(ey) (6.12b)

The equation (6.12a) shows that the class of uncertainty £(£,?/, z) does not affect the 

reduced order error dynamics. It is proved in [33] that if an appropriate v(ey) is de­

signed, the error outputs in equation (6.12b) are stabilised in the presence of bounded 

uncertainty £ ( t ,u ,x i , y )  which also ensures a stable sliding motion on the surface

S e = {ey ( E W  : ey = Ce = 0} (6.13)

for a positive constant value y 0 > 11̂ 4.21̂ 111. The proofs of stability and the reachability 

condition for the above error dynamics have been explicitly described in Edwards and 

Spurgeon [33] and further discussion is omitted here. W ith the above formulation, the 

nonlinear dynamic compensator can be conveniently written as

x(t) = Ax(t )  + Bu(t)  — LCe(t)  — K v{ey) (6.14a)

y(t) = Cx(t)  (6.14b)

where the gain m atrix L  is given as

L  =  f " 1

The discontinuous param eter v(ey) and the m atrix K  are as previously defined. The 

final objective of this work is to regulate the plant outputs rather than observe the 

states. It is thus necessary to construct the sliding mode control law which will regulate 

the plant.

A \2  

A22 A22
(6.15)
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6.4 C ontroller Form ulation

If an appropriate discontinuous vector v(ey) is designed then the error in equation 

(6.12a) is asymptotically stable and the output error in equation (6.12b) goes to zero. 

If the inverse of the m atrix T  is partitioned as

71 — p  p

T i T 2
T - 1  =

then in the original coordinate the error states

e(t) = T\ei(t) for all t —*■ [ta, oo]

( 6 . 1 6 )

( 6 . 1 7 )

and the plant states

x(t) = x(t) +  e(t)

=  x(t)  +  Tie^ t ) for all t [ts, oo] (6.18)

where t s is the time taken for the error system to reach a sliding mode.

The aim is to develop a control law which ensures stability and produces desired per­

formance of the plant in equation (6.1a) while sliding on the switching surface

S  = {x E IRn : s(x) = Sx(t)  = 0} (6.19)

where the m atrix S  is the switching surface matrix. This will be designed to ensure the 

stability and performance of the closed-loop system as discussed in the next section. 

Rewrite equation (6.14a) as

x(t) = Ax(t)  — LCe{t)  +  Bu(t)  — K v (e y) (6.20)

Using the sliding condition Sx(t)  = 0 an equivalent control law can be formed as

ueq(t) = —( S B ) -1 {SAx(t )  — S L ey(t) — S K v ( e y)} (6.21)

which is sufficient to attain  and maintain the sliding motion on S.  This gives a controller 

structure similar to tha t employed by DeCarlo et dl. [25]. However, some times it is 

necessary to m anipulate the reaching time onto the switching surface. For this purpose, 

consider the control law as defined below

u(t) = - ( S B ) -1 {Gix(t) -  S L ey(t) -  S K v (ey)} (6.22)
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where the linear gain m atrix Gi = S A  +  and the positive scalar a  is a design 

parameter. The effect of a  has been discussed in Chapters §4 &; §5. The Lemma below 

will prove the compensator dynamics attain  a sliding mode.

L em m a 6.1 The control law defined in equation (6.22) quadratically stabilises the sys­

tem in equation (6.20) and induces a stable sliding motion on S  for any positive scalar 

value of a.

P ro o f: Consider the Lyapunov function

y («) =  ^ T(5 > ( 5 ) (6-23)

The reachability condition can be derived from the derivative of the Lyapunov function 

of equation (6.23) along the state trajectory and using the equation (6.20), gives.

V(a) =  x TS TS { A x { t ) - L C e ( t )  + B u ( t ) - K v ( e y)}

Inserting the control law from equation (6.22) into the above equation, gives

V(s) = - ^ - x TS TSx  < — — ||S z ||2 (6.24)
^ £

which is always a negative scalar quantity for all positive scalar values of a. Equation 

(6.24) satisfies the reaching condition, i.e. U(s) <  0; if and only if the param eter a  is 

chosen to be a positive scalar quantity. ■

Using the equivalent control law from equation (6.21), equivalent compensator dynamics 

can be w ritten as

£(f) =  [/„ -  B (S B )-1S] Ax(t)  + [ln -  B (S B )_1S] Ku(ey) (6.25)

Note tha t the dynamics in equation (6.25) will be completely invariant to the matched 

uncertainty if the m atrix K  =  B R  where the m atrix R  E lRmxp. In this case the 

invariant zeros are required to be stable. The section below describes the switching 

surface design which maintains the stability and performance of the plant and analyses 

the closed-loop dynamics of the augmented system.
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6.5 T he C losed-loop A nalysis and Sw itching Surface D esign

In this section the effort of using an estimated state control law will be explored. In 

particular, the stability of the combined closed-loop system is observed. Assume the 

control action in equation (6.22) is available to both the compensator and plant and 

also that the compensator dynamics attain  and m aintain a sliding motion. Partitioning 

the m atrix S  and the compensator states, the equation (6.19) can be written as

71 —771 771

Si s 2
(6.26)

=  0
xi(t)

x 2 (t)
Then the dynamics x 2(t) can be written as

x 2(t) = —S ^ S i x ^ t )

= —K sxi( t)  (6.27)

where X\ £ IRn-m, x 2 £ lRm and the gain m atrix K s = S 2 XS\ £ jRmX(n_m) js a design 

param eter to be discussed later in this section. The switching surface m atrix S  is then 

represented using the gain m atrix K s as

5  =  S 2 [K s Im ] (6.28)

where the m atrix S 2 does not affect the closed-loop stability, but merely scales the

switching surface S.  The plant states in equation (6.18) can be represented using the

equation (6.27) as

x(t) = x(t) +  Tiei(t)

=  T$x\(t) T iei(t) (6.29)

where Ts = [In-m ~ K j ] T- This shows that the behaviour of the plant dynamics 

depends on the reduced order compensator and error dynamics. Hence, it is useful to 

observe the stability of the augmented reduced order closed-loop dynamics instead of 

the plant dynamics. First rewrite the compensator dynamics (6.20) using an equivalent 

i/(ey) from equation (6.12b) as the derivative of the output error ey(t) =  0 while in the 

sliding mode, and substitute the uncertainty w, aq, y), giving

x(t) = Ax(t )  +  Bu(t)  +  K K ^ 1 ■A2iei(t) +  u, aq, y)

= Ax(t)  +  Bu{t)  +  K K ^ A ^ e ^ t )  +  KT£(t ,  u, x ll y) (6.30)
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Using the partitioned matrices A and B  in equation (3.7), the m atrix K T  and the uncer­

tainty structure in equations (6.4) and (6.3) respectively, the reduced order compensator 

sliding dynamics can be written as

X \ ( t )  — A A K \ K 2 A2i^i(t) +  £i£i(U  Xi ,  y) (6.31)

Substituting for x 2(t) from equation (6.27), the sliding dynamics in equation (6.31) can 

be written as

^ i(0  — (A\\ — A i 2K s) x \ ( t ) K \ K 2 A 2\£\(t)  +  /Ci£i(£, aq, y) 

= A ^ x ^ t )  +  A eei(t) +  JCi£i(t,xu y) (6.32)

where the m atrix A e = K \ K 2 1A 2i - The closed-loop m atrix =  (An -  A UK S) is 

stabilised using the gain m atrix K s which can be designed based on a state feedback 

approach. To carry out such techniques the m atrix pair (A n, A \2) must be completely 

controllable which holds since the m atrix pair (A, B)  is completely controllable. It is 

seen th a t the uncertainty £ i( t ,x i ,y )  affects the reduced order sliding dynamics. Thus 

a robust environment is necessary to minimise the effect of this uncertainty on the 

reduced order sliding dynamics. Hence a robust technique is used during the design 

of the closed loop m atrix A SX1. One such robust method using state feedback control 

technique is presented in Appendix C .

The augmented reduced order closed-loop dynamics is then written using equations 

(6.12b) and (6.32) as follows

i l  =  A CZ! +  r £ i ( i ,  £ ! , ) / )  

where the states z\ =  [ef  x f  ] and the matrices

(6.33)

A n 0 ' '  o  ‘

A c = , r  =
_ Ae As ^ 1 1 .

(6.34)

The closed-loop m atrix A c is made stable by independently stabilising the closed-loop 

matrices A n  and A ^ in equations (6.12a) and (6.32) respectively. Substituting the 

plant states x ( t ) in equation (6.29), the uncertainty in equation (6.5a) may be written 

as

|i(*,a?i,2/) =  F e(f ,e i,5 i)e i( t)  +  F£(t, eu  +  F2(t ,e1, x 1) (6.35)
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where

Fe(t,e i,ah) =  F\ (t, T\e\ +  Tsx i j  CT\

Fx(t,ei,ah) == F\ {t,T\e\ + Tsx\^ CTS

p2(t ,e i ,x i)  = F2 (t, T\ei +  Tsx i j  (6.36)

Substituting the uncertainty structure in equation (6.35) into the equation (6.33), gives

i i  =  A czi -I- Tczi +  TF2( t , e i ,x i )

= A cz1 +  TF2(t,e1,x i )  (6.37)

where

rc =  r [ F e(t ,e1, x 1) F£(t,eu x 1)]
a c = a c + rc

The Lemma below determines the boundedness of these augmented reduced order dy­

namics.

L e m m a 6.2 I f  the augmented reduced order closed-loop matrix A c is stable then the

dynamics in equation (6.33) is globally uniformly ultimately bounded for all e\(t) and

Xi(t) with respect to the ellipsoid

£ ( r )  = j Z l G ; ^ z [ P tZl <  r l  (6.38)

where

r = e  + 2 ^ - | |P i | |2 (6.39)
V

with £ > 0 defined to be small constant and

K r = sup \ \P fTF2\\ (6.40)
f2

for a Lyapunov equation

P\AC + {AC')TPi < —v l n- p (6.41)

where P\ E JR(n-p)x(n-p) is a symmetric positive definite matrix and the parameter v  > 0.
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P ro o f: Consider the Lyapunov function

V(zi)  = (6.42)

which is determined from the unique solution of the Lyapunov equation

Pi Ac + P\ +  l 2 n - p - m  =  0 (6.43)

The derivatives of equation (6.42) along the sta te  trajectory z\ (t) can be written using 

the uncertainty defined in equation (6.35) as

H*i) = y l  {PiAc + (ic)TPi) *1 + z fP iTF2(.)

< - ^ | N | a +  * f P , r F 2(.) (6.44)

It follows that

V ( Zl) < +  [ 2 1 ^ i ) ] ’ | |P , h p 2|| (6.45)

Therefore if there exists

V i ( z i ) > r - £

where r  is defined in equation (6.39), then the derivative of the Lyapunov function V\(zi) 

is a negative scalar, i.e. V\(z\) < 0. Then the motion is globally uniformly ultimately 

bounded 1 [88, 98] for all t. ■

In this way, a globally uniformly ultim ately bounded solution of the non-minimum 

phase uncertain system may be available using output based sliding mode control. Some 

remarks and discussion regarding the application of this method, the class of uncertainty 

and its effect on the dynamics are given below. The subsequent section demonstrates 

the applicability of the proposed theory using numerical examples. The application of 

this theory is further discussed in Chapter §8 using a bench-mark aircraft problem.

6.6 D iscussion

It is seen that an additional assumption relating to  ‘the observability of the matrix pair 

(A, C y  is imposed while the assumption that the ‘rank of C B  is equal to the number of

1The definition of globally uniformly ultimately bounded motion is given in Appendix B
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inputs’ is relaxed. However the case where the rank of C B  equals to zero may not be 

solved using this method. It is further assumed that the triple (A, K , C)  is minimum 

phase and the rank of C K  is equal to the number of outputs. Essentially this does not 

differ from the original assumptions on (A, B , C )  except here the design triple has been 

modified. Hence the uncertainty is also matched with respect to the linear design triple 

(A, K, C). Alternatively it can be said that the uncertainty is acting through the matrix 

K  instead of the m atrix B.  This gives the appropriateness of the uncertainty structure 

used in this chapter and the matched uncertainty considered elsewhere in this thesis. 

If the uncertainty is considered as iz,:r) then the uncertainty £ (t,u ,x ) will appear

in the reduced order error dynamics as well as the augmented reduced order dynamics. 

Hence a strong boundary is necessary for matched uncertainty where the plant can 

easily tolerate this uncertainty. This gives more conservative analysis. However if the 

uncertainty is considered as K£(t,  u , a;) then the analysis shows that the strong boundary 

is necessary only for the unmatched uncertainty and is less restrictive to the matched 

uncertainty for a particular class of uncertainty structure. Moreover, from the structure 

of the m atrix K T ,  it is seen that some of the unmatched uncertainty may appear in the 

input channel where the effect can be easily tolerated. This leads to well known results 

in output feedback sliding mode control [33]. This gives wider classes of uncertainty 

and is different in analysis but is not different in philosophy.

The selection of the m atrix K  is an im portant issue which must be discussed as this 

impacts on the uncertainty channels. In many practical examples, such as electrical and 

mechanical systems where the uncertainty structure is known, an uncertainty distribu­

tion m atrix K  can be obtained and if that m atrix satisfies the necessary assumptions 

then it can be used for the compensator design. Alternatively, if there is no information 

about the uncertainty distribution or the requirements are not satisfied, it can be con­

sidered to be any m atrix such that the observer canonical m atrix A n  is stable which 

will be dem onstrated in the examples below. In equation (6.25) of Section §6.4, it is 

seen tha t the system is completely invariant to the matched uncertainty if the matrix 

K  = B R  and this means the system triple (A, B, C) minimum phase. In practice for 

a non-minimum phase system it is difficult to achieve a K  =  B R , hence this gives a 

contribution of the control action and the matched uncertainty into the reduced order
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sliding dynamics which spoils the novel inherent properties of the sliding mode tech­

nique. However this effect may be minimised in the case where K  is a design parameter. 

This will lead to a multi-objective numerical problem [10, 11, 12, 13, 83, 84] such that 

a m atrix K  close to the matrix B  is sought, i.e. ||B i|| is minimised which will give 

minimum contribution of the unmatched uncertainty into the reduced order dynamics. 

In Section §6.2 it is mentioned that the size of p should be as small as possible. This 

also reflects tha t the m atrix K  may be chosen as close as possible to the m atrix B  while 

simultaneously rendering the triple (A, K, C)  minimum phase. One such method will 

be summarised in the Appendix C . The next section demonstrates the technique with 

examples.

6.7 N um erical E xam ples

The examples below will demonstrate the theory of this chapter. For the ease of under­

standing first consider an example of a square system containing two unstable trans­

mission zeros. The second is a non-square system.

6.7.1 E xam ple 1

Consider the example of Diong and Medanic [28] which contains two unstable trans­

mission zeros at the origin and the system has equal numbers of inputs and outputs. 

The plant is completely controllable and observable and has poles at {±1, —2, —3}

and zeros at {±«}, where i represents the square root of —1. Hence it is both open 

loop unstable and a non-minimum phase system. Static output feedback sliding mode 

control is not possible but the dynamic output feedback sliding mode design method 

of this chapter may be applied. The system also satisfies the assumption of rank(Ci?) 

equals to the numbers of inputs although it is not necessary. The system triple (A, B , C) 

is transformed into the regular form of equation (3.7) and the partitioned matrices are 

obtained as

0  0 0  1 5  6 - 5  - 5
A n  — , A i 2  — , A 21  — , A 22 —

1 0 0  0 0  0 1  0
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ir-H1oi 1
0 1 h—4

I 1....1—1 1o1

b 2 = , Ci = , C2 =
1

1 i—* o 1 0 0

---1
o1

i

K  =

First consider the design of the dynamic compensator parameters. In this case the 

m atrix K  is obtained so that the closed loop m atrix A n  = (A n  — K i K ^ 1 A 2i ) is stable 

as in Proposition 6.1 which gives

r -5.6867 0.1873

1.6894 -0.4318 

0 -1.0000 

-2.6894 0.4318

Here p is equal to 2, which means more uncertainty will appear on the reduced order 

dynamics. However, this was found to be the minimum requirement to overcome the 

non-minimum phase problem and to get a robust controller with rapid decay of the 

error dynamics. The transform ation T  is obtained as

0.7071 -6.7105 0.5643 -5.7105

0.7071 -1.3317 -0.2994 -2.3317 

0 - 1.0000 0 - 1.0000 

0 0 - 1.0000 0 

which gives the observer canonical form and the partitioned matrices as

T  =

-5.5000 0 33.5221 5.4284
.An — II<N1-H

0.0 -4.0000 7.1228 2.0323

-0.7071 -0.7071 5.6867 0.8127
A 21 = j *A22 —

1.9645 -9.0355 4.8497 -1.1867

where the m atrix A n  is verified as stable and the poles are at {—5.500, —4.00} and

the m atrix K 2 is the identity. The matrix A n  is a normal matrix, and hence achieves 

high insensitivity properties. The stable m atrix A%2 in equation (6.9b) is taken to be

- 1  0
A s — </H22  —

0

which gives the Lyapunov solution of equation (6.11) as

0.50 0
Po =

0 0.25
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for a symmetric positive definite m atrix Q2 = h -  Finally the gain m atrix L  is calculated 

using equation (6.15) as

L =

The second stage of the design is to find an appropriate switching surface m atrix S  as 

in equation (6.28), based on estimated states which stabilises the m atrix pair (A n, A12). 

From the reduced order system in equation (6.32) the gain m atrix K s is obtained as

-8.3761 0.8065

-3.9972 -0.6763

-4.8497 -0.8133

-2.6894 -0.1364

Ao =
0 0 

7 12

which gives the switching surface m atrix of equation (6.28) as

5  =

where the m atrix S 2 is considered as the identity. Finally the control law is constructed

0 0 1 0  

7 12 0 1

%
I

Figure 6.1: Time Response of Output Vector in Example 1

as in equation (6.22). The simulation results are obtained using an arbitrary perturbed 

plant representation where the uncertainties are matched to the plant input channels. 

These are given as

A n =

0 0 0 1.0000 0 0

1.0000 0 0 0
? B p =

0 0

5.0716 7.3420 -5.0716 -5.0000 -0 .9 1.25

0 0 1.0143 0 0 1
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fM

Figure 6.2: Time Response of Error O utput Vector in Example 1

f

Figure 6.3: Sliding Surface Attainment of the Compensator Dynamic in Example 1

o

o

Figure 6.4: Actuator Demand in Example 1
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The controller param eter a = 2.50 and the positive scalar constants K f  = 0.0, K g =  

0.50 and K 7  =  K a +  7 0 =  2.5 are chosen to control the uncertainty. The simulation 

results show reasonable response of the perturbed plant. The param eter 8 = 0.001 is 

added to the denominator of the discontinuous component of the control law during 

implementation to avoid chattering. The plant outputs in Figure 6.1 have gone to zero 

in 3.0 seconds and the error in Figure 6.2 has decayed rapidly and attained zero at 0.75 

seconds approximately. The sliding mode is attained within 3.5 seconds as shown in 

Figure 6.3. The control action in Figure 6.4 shows that a reasonable control effort is 

applied.

6 .7 .2  E x a m p le  2

Consider a system configuration which is non-square and contains an unstable invariant 

zero. The reduced order dynamics cannot be stabilised by static output feedback due to 

the presence of the unstable invariant zero. The plant triple is presented in the regular 

form of equation (3.7) for ease of exposition

-0.3000 0 0 . 2 0 0 0 4.0000 3.0000

- 0 . 1 0 0 0 1 . 2 0 0 0 1 . 0 0 0 0 5.0000 2 . 0 0 0 0

1 . 0 0 0 0 0 - 0 . 2 0 0 0  --3.0000 - 1 . 0 0 0 0

0.0005 5.0000 -0.0329 --0.0036 -0.0161

0 . 0 0 2 1 2.5000 -0.0302 0.0064 0.0285

0 0
- 1 0  0 0  0

0 0
0 0  1 0  0

0 0 c =
0 0  0 0  - 1

0  - -1
0 0 0 1- 1  0

- 1 0

Since the unstable invariant zero 1.2 will appear in the m atrix A n  if the system is 

transformed into the canonical form of equations (4.6)-(4.9), it is not possible to apply 

static output feedback results. The dynamic output feedback sliding mode method 

may be used in this case, since the matrix pair (A , C)  is observable. For the purpose 

of param eterisation of the compensator dynamics, define the uncertainty distribution
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matrix

K  =

1.00 0

0 0

0 1.00 

0 0

0 0

0

0

0

0

1.00

0

-1 .34

0

- 1.00

0

which stabilises the closed loop m atrix A n  =  (An — K i K ^ 1 A 21) as in Proposition 6.1 

where the m atrix K 2 is chosen as the identity matrix. The m atrix K  is close to the 

m atrix B  in the sense that P i l l  is equal to 1.34 and thus small. The optimisation 

method described in Appendix C  is used to obtain the m atrix K .  This shows that the 

size of p  = 3. Naturally higher amount of uncertainty will appear in the reduced order 

sliding dynamics. However it is considered to be tolerable due to minimisation of the 

norm of B \ . Hence the inherent robustness properties of the sliding mode technique are 

maximised. The transformation m atrix T  is constructed as

T  =

0

1.00

0

0

0

1.00 0

0 0

0 1.00 

0 0

0 0

1.34

0

0

0

-1.00

0

0

0

-1 .0 0

0

The observer canonical matrices are partitioned as defined in Proposition 6.1, giving 

the matrices

A n  — -5.5 A \ 2  — -0.1007 -1.0441 2.0216 -2.3652

0 -0.3000 -0.2000 3.0000 4.0000

0 -1.0000 -0.2000 1.0000 3.0000
A 2\ — , A22 —

2.5 0.0021 0.0302 0.0285 3.3564

5.0 0.0005 0.0329 -0.0161 6.6964

where the reduced order system m atrix A n  is stable. The reduced order error dynamics 

becomes a scalar problem. The other im portant stable m atrix of the compensator 

dynamics in equation (6.9b) is chosen as A s22 =  —5 x / 4 which produces the Lyapunov
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solution of the equation (6.11) as P2 = 0.10 x / 4 for the symmetric positive definite 

matrix Q2 = I*. The compensator gain m atrix L  in equation (6.15) is given as

L =

-4.7000 0.2000 -3.0000 -4.0000

0.1000 1.0000 -2.0000 -13.3080

-1.0000 4.8000 1.0000 3.0000

-0.0005 -0.0329 0.0161 -11.6964

-0.0021 -0.0302 -5.0285 -3.3564

The above design ensures the stability of the error dynamics but it does not guarantee 

the stability and performance of the plant. For the case of a regulator problem, consider 

a switching surface S  as in equation (6.19) such tha t S x  =  0 for some m atrix S  and a 

control law u{t) in equation (6.22) exists. A reduced order sliding dynamics is formed 

as in equation (6.32). The reduced order system matrices are identified as

A n —

The reduced order closed-loop gain m atrix K s is then calculated using the controllable 

pair (A n, A1 2). This is given as

-0 .30 0 0.20 4 3

-0 .10 1.20 1.00 and A12 = 5 2

1.00 0 -0 .20 - 3 - 1

K s =
-1.3994 -0.3559 -2.7414 

3.5881 4.6999 8.8111

which places the poles of the closed-loop m atrix A ^ at [—4.5 —4.0 —3.0]. The

matrix S 2 does not affect the properties of the switching surface S  and it is taken as 

the identity m atrix which produces the m atrix in equation (6.28) as

S  =
-1.3994 -0.3559 

3.5881 4.6999

-2.7414 1.0000 0

8.8111 0 1.0000

The control law defined in equation (6.22) is used. The simulation results are obtained 

on a linearly perturbed plant model. The controller design is based on the nominal plant 

presented above and implemented on a significantly perturbed system, which induces 

matched uncertainty into the matrices A and B  in order to illustrate the technique.
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S -

Figure 6.5: Time Response of O utput Vector in Example 2

Figure 6.6: Time Response of Error O utput Vector in Example 2 

The perturbed plant matrices are given by,

1.2000 -0.1000 -1.0000 2.0000 5.0000 0 0

0 -0.3000 -0.2000 3.0000 4.0000 0 0

0 -1.0000 -0.2000 1.0000 3.0000 » B p  = 0 0

3.5810 0.0030 0.0433 0.0408 0.0092 1.025 0

7.1620 0.0007 0.0471 -0.0231 -0.0052 0 1.025

and the output m atrix C is unperturbed. In order to control the matched uncertainty, 

the norm bound param eters in Section §6.2 are chosen as K f  = 0.0, K g = 0.50 and 

A"7 =  K a +  7 0 =  10.0. A value of a =  2.50 is sufficient to bring the outputs onto 

the switching surface in reasonable time. Due to the discontinuous control action in 

equation (6.10), the responses show some chattering. To eliminate this effect a small 

param eter 6 =  0.0001 is added to the denominator in equation (6.10) to smooth the 

discontinuity. The simulation results are presented. Figures 6.5 Sz 6.6 represent the 

perturbed plant and error output responses respectively. It demonstrates the efficiency 

of the compensator dynamics. The switching surface response of the perturbed plant 

is shown in Figure 6.7. A sliding mode is attained within 3.75 seconds approximately.
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Figure 6.7: Sliding Surface Attainment in Example 2

Figure 6.8: Actuator Demand in Example 2

The control action is given in Figure 6.8; this shows comparatively higher control effort 

is applied, however this is only a numerical example to dem onstrate the technique.

6.8 Sum m ary

This chapter presents a framework for sliding mode output feedback control design for 

the case of multivariable linear time invariant uncertain systems which may possess un­

stable invariant zeros. The switching surface design is equivalent to an output feedback 

design problem for both the static and dynamic output feedback sliding mode control 

as described in previous chapters. The latter is used for systems where the sliding mode 

design triple lacks freedom in design due to not fulfilling the output feedback design 

criteria. However it does not tolerate the unstable invariant zeros. It follows that the 

sliding dynamics become unstable if the system possesses any unstable invariant zero. 

Here, a m ethod is described which tolerates the presence of unstable invariant zeros. It 

is shown tha t a compensator may be designed in the VSCOF framework where with ap­

propriate choice of a gain matrix, the modified system triple is minimum phase. Further
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it is seen tha t while the modified triple has stable transmission zeros, the sliding dy­

namics may lose its inherent invariance properties. However, it is completely invariant 

to a particular class of uncertainty and in addition an appropriate robust design may be 

performed so tha t sensitivity decreases. A robust approach may be used for the design 

of the reduced order closed-loop matrices for both the plant and compensator dynamics. 

The m ethod presented here may also be utilised for systems for which the rank(CB) is 

greater than zero. This relaxes the previous assumption that rank(CH ) must be equal 

to the number of inputs. However the method increases the total dynamics. The closed- 

loop configuration has shown boundedness instead of absolute stability. The controller 

design is straightforward. The controller gain can be varied to influence the reaching 

time to the switching surface. The numerical examples have shown the effectiveness of 

the technique. The proposed controllers guarantee the attainm ent of a sliding mode 

despite the presence of uncertainty. It can be concluded that although there are some 

inherent difficulties in the design of sliding mode controllers for non-minimum phase 

systems, some bounded results between error and plant may be achieved using output 

feedback sliding mode design.



Chapter 7

O utput Feedback Sliding M ode Control of  

Rotorcraft

7.1 Introduction

This chapter considers the use of output feedback sliding mode controller design for 

rotorcraft dynamics. The dynamics represent a highly nonlinear multivariable system 

which has two invariant zeros and model uncertainty. It has open loop unstable poles, 

exhibits high levels of cross coupling among the states and variations in handling char­

acteristics with flight condition. The use of advanced automatic controllers for stabili­

sation and reduction of cross coupling is a challenging task. This chapter is presented 

to demonstrate the ability of the output feedback sliding mode controllers developed 

in Chapter §4 to control the fully nonlinear helicopter model. It has been shown that 

the switching surface design problem is formulated as a static output feedback dynamic 

problem for a particular subsystem design triple and the VSC design methodology itself 

can tolerate the matched uncertainty. In addition the robust design procedure presented 

in Section §4.6 is also used to solve this static output feedback problem to minimise the 

effects of the unm atched uncertainty which will affect the reduced order sliding motion. 

A model following control configuration is used to perfect the tracking of outputs. The 

ideal model is designed based on an H°° one degree of freedom technique such that inter­

nal cross coupling of the states are minimised. A controller is synthesised to attain  and 

maintain the sliding mode in the presence of unmatched uncertainty. Most of the pre­

vious work for designing a rotorcraft controller using the sliding mode method employs
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full state feedback. If the state vector cannot be measured directly, an estimator is used 

[47, 48]. A state feedback VSC is more complex to implement and increases dynamics. 

The alternative, an output feedback based VSC, is presented here and implemented on 

a fully nonlinear rotorcraft simulation. The rotorcraft is the DRA, Bedford’s Ratio­

nalised Helicopter Model (RHM), representing a ‘Lynx-like’ high performance military 

helicopter [59]. The ability of an output feedback sliding mode controller to guarantee 

quadratic stability and force the output error onto the switching surface is demonstrated 

using this fully nonlinear RHM model.

The outline of this chapter is as follows: The mathematical model of the helicopter 

and the source of uncertainty are presented in Section §7.2. Section 7.3 describes the 

VSC model following output tracking, the design objectives and the ideal model design. 

The switching surface, robustness measurements and controller design are described in 

Sections §7.4 Sz §7.5. The simulation results of the fully nonlinear helicopter model are 

presented in Section §7.6. The summary of the chapter is given in Section §7.7.

7.2 M athem atical M odel o f H elicopter and U ncertainties

A rigid body nonlinear rotorcraft may be mathematically modelled as a linear time 

invariant state space model with some uncertainties in the system of equations (4.1a)- 

(4.1b) as defined in Section §4.2. The helicopter model is linearised at different operating 

points in the flight envelope to produce a number of (A, B , C ) triples. The linearised 

data obtained at hover is considered as the nominal model for the purpose of design and 

it satisfies the assumptions required to develop a static output feedback sliding mode 

controller.

The most common source of uncertainties in this system are due to linearisation at 

various operating points, change of weather, rotor dynamics, actuator dynamics, error in 

modelling and residual terms of higher order. It is assumed that the unknown function 

h ( t ,u ,x )  : IR+ x !Rm x IRn —» IRn which represents the system nonlinearities plus all 

model uncertainties in the system satisfies the norm bound condition in Section §4.2. 

In Chapter §4 it is dem onstrated that in the sliding mode approach, the reduced order 

sliding dynamics mostly affected by the unmatched uncertainty and it is possible to
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minimise the effect using robust design of the closed-loop system. It is shown that 

it may be sufficient to use the matched uncertainty and a robust sliding mode design 

approach. The matched uncertainty in Section §4.2 can then conveniently be written as

g( t ,u ,x )  = B£( t ,u ,x )

where the unknown function £(£, w, x) : IR+ x IR771 x ]Rn —> IRm such that

||{(*,u,a?)|| < K g\\u\\ +  K a

for some known positive constants 0 <  K g < \  and K a. The constant parameters K g, K a 

and k are defined in Chapter §4. This gives the nonlinear equations (4.1a)-(4.1b) in the 

form as

x(t) = Ax(t)  +  Bu(t)  -fi B £( t ,u ,x )  (7.1a)

y(t) = Cx(t)  (7.1b)

The states of the linearised helicopter model are given in Table 7.1 and the output

No. State Description

1 e Pitch Attitude

2 <t> Roll Attitude

3 p Roll Rate

4 q Pitch Rate

5 r Yaw Rate

6 u Forward Velocity

7 V Lateral Velocity

8 w Vertical Velocity

Table 7.1: State Vector

vector representing information available to the control law is given in Table 7.2. For 

this application, any control scheme must decouple the inherent internal cross coupling 

of the states; that is each input should be tracked by a single output without affecting 

the other outputs. This helicopter problem has 4 inputs and 6 measured outputs. It is
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No. Con. O /P Description Pilot I /P Units

1 H ( y l ) Heave Vel. Coll. F t/s

2 0(y2) Pitch Atti Long. Rad.

3 $(y3) Roll Atti Latt. Rad

4 *(y4) Head Rate Pedal R ad/s

5 p(y5) Roll Rate — R ad/s

6 9(2/6) Pitch Rate — R ad/s

Table 7.2: O utput Vector

therefore necessary to define a ‘Controlled Variable’ subset of four outputs which are to 

be independently controlled by the inputs. These are denoted in Table 7.2 in terms of 

‘Pilot I /P ’.

7.3 M odel Following Control in VSC O utput Feedback

Model following control is a technique whereby the plant is required to follow the dy­

namic behaviour of a specified model. Linear model-following control (LMFC) is an 

efficient control method that avoids the difficulties of specifying a performance index 

[124] and also many other problems like de-coupling of states, which are usually encoun­

tered in the application of optimal control to multivariable control systems. The model 

that specifies the design objectives is part of the plant dynamics. The LMFC systems 

are not adequate when there are large param eter variations or disturbances. This has 

led to the development of so-called adaptive model following control systems (AMFC) 

[73, 124]. Most of the work available in this field using sliding mode ideas assumes that 

all plant states are available; for example, the work of Ambrosino et al. [3], Spurgeon 

and Patton [99] and Zinober et al. [120]. Work using only input - output information 

has appeared within the adaptive variable structure control literature. The method was 

utilised by Hsu et al [60, 61] and also the theory was used in nonlinear and time varying 

control systems by Slotine and Sastry [95] and Balestrino et a l [8]. In this section, a 

method of model following is considered which uses only output information. The in­
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tention is to formulate a control law using the model states and the plant outputs which 

forces the plant outputs to follow the exact path  of the model outputs. To effect the 

de-coupling and for performance specification, an ideal model response characteristic is 

defined. The output feedback variable structure scheme is then employed to ensure the 

output vector of the plant faithfully follows that of the ideal model response. The error 

between the ideal model and plant will be controlled using sliding mode control.

7.3 .1  O utput Tracking and D esign  O bjectives

Model following is a method of control in which the plant should behave like an ideal 

model which is also called the reference model. The control system design problem 

is thus that of determining a feedback scheme whereby the output vector of the plant 

faithfully follows tha t of the ideal model. Mathematically the scheme can be represented 

as described below. Consider the ideal model response

x m(t) = A mXm{t) +  B mr(t) (7.2a)

Vm(t) = C x m(t) (7.2b)

where x m G JR™ is the state vector and r  6 IRm and ym 6 IRP are the reference signal 

and output vector respectively of the ideal model. An appropriate gain m atrix Lx can 

be designed based on full state feedback control techniques to meet desired performance 

requirements, ensure the required levels of de-coupling are attained and that the model 

m atrix A m = A-\~ B L X is stable. The input m atrix B m is designed so that each reference 

input affects the corresponding output correctly. One way to choose the gain matrix L r 

is such that the transfer function from the reference input to the model output

G(s) =  Cm( s l  -  A m Y 'B L r

has unity D.C gain, where Cm is the output control m atrix of dimension m  x n to be 

controlled independently by the inputs. Therefore, at steady state, the output from an 

ideal model tracks the reference signal perfectly. This gives

L r =  [ C ^ - A n Y ' B ] - 1

An alternative m ethod of designing the gain m atrix L r is using the theory of O ’ Brien

and Broussard [81]. Then the model input m atrix B m = B L r will ensure steady-state
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output tracking. This structure of L x and B m will ensure the conditions for perfect 

model following of Chan [16] and Erzberger[44] are satisfied, i.e. rank[i? : B L X] = 

rank[F?] =  rank[Z? : B m].

The error dynamics can then be written as

e(t) = Ae(t) +  B u e(t) — i?£(t, u ,x ) (7.3a)

ey(t) = Ce(t)  (7.3b)

where the error states e(t) =  x m(t) — x(t)  and u e(t) is the proposed control law which 

depends only on the output error ey(t) and the ideal model response and is given by

ue{t) =  Lxxm{t) +  L rr(t) -  u(t) (7.4)

The plant control action u{t) can be derived from equation (7.4). The uncertain function 

f(£,w,;r) still satisfies the matching condition. For the purposes of ideal model design, 

an eigenvalue-eigenvector assignment or an ifoo technique may be appropriate since 

these produce good de-coupling properties. One such design method and associated 

implementation issues are considered in the next section.

To develop the variable structure control scheme, first consider a switching surface based 

on error output measurements which will generate a robust stable sliding motion on the 

surface

S e =  {ey e  IRP : s(ey) =  F ey(t) =  0} (7.5)

for a selected m atrix F  E IRmXp and also stabilise the uncertain error system defined

in equation (7.3a). Once the switching surface is designed, the second stage is then to 

design a controller which can induce a sliding motion on the error switching surface S e. 

The proposed variable structure control component in equation (7.4) is represented by

ue(t) = Gey(t) -  v(ey) (7.6)

where G is a fixed gain m atrix and the discontinuity vector v(ey) is dependent on error 

outputs ey(t) only. The key problem is to design an ideal model, the switching surface 

matrix F  and the gain m atrix G, so that the closed-loop system dynamics are both 

stable and robust to the uncertainty.



Chapter 7. O utput Feedback Sliding Mode Control o f Rotorcraft 133

7.3.2 Ideal M odel D esign  based on an L/ool-DOF D esign

The ideal model in equation (7.2a) may be designed using various methods. A robust 

approach is preferable for a good performance of the closed-loop sliding mode controller 

so that the ideal model response is minimally affected by noise. Foster [47] has presented 

different methodologies for designing the ideal model response including eigenstructure 

assignment and H qo design methods. The eigenstructure methodology has been widely 

applied to the helicopter system [36, 49, 50, 51] and many other aerospace controller 

design problems [45, 62]. The theory of eigenstructure assignment for model follow­

ing control is well established in the literature and further discussion is omitted here. 

Further details of the method and its use with a sliding mode state feedback controller 

is available in Foster [47]. The Hoo design technique is well established in theory but 

its application with model following sliding mode control based upon output feedback 

is not addressed in the literature. In this section the ideal model design based on an 

H qo one degree of freedom technique and then implemented with a sliding mode output 

feedback controller will be discussed.

The loop shaping design procedure (LSDP) described in MacFarlane and Glover [79] is 

used to obtain performance/robustness trade-offs, with a robust stabilisation technique 

as a means of guaranteeing the closed-loop system stability. For application of the LSDP 

the plant is weighted which produces a shaped system which has higher order than the 

plant. Hence for design of the sliding mode controller it is necessary to use the shaped 

plant. From a m athem atical point of view, to dem onstrate the ideal model matching 

technique, it is useful tha t the controller produced by the LSDP can be separated into 

a state feedback and a state observer (Kalman filter structure [65]). The LSDP may be 

summarised in the following stages.

1. The shaped plant model, Gs : The singular values of the nominal plant are shaped 

using filters W\  and W 2 to give a desired open-loop frequency response. The 

nominal plant and the shaping weights are combined in Figure 7.1 to form the 

shaped plant
T A s B s '

= W 2G W 1Gs =

where G is the nominal plant.

A s B s 

Cs 0
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Figure 7.1: The shaped plant model Gs

2. Design the robust H 00 stabilising controller, K qo : The robust loop shaping 

techniques using normalised coprime factors [79] are now considered to synthesise 

the robust stabilising controller. It is well known tha t the shaped plant system 

Gs has a normalised left and right coprime factorisation

Gs = M ~ 1N  = N M ~ 1

that satisfy

N N *  +  M M * = I , N * N  +  M * M  = I  

The right and left coprime factor realisations are

M

N

(7.7)

(7.8)

M  N

A s +  B SF B sS~l

F 5 -1

Cs +  D SF D sS~2

As +  H C S H  B s +  H D S

R-'iCs ST* R r iD s

(7.9a)

(7.9b)

where

>-iF  = —S~1(D lCs +  B*X),  H  = ~ ( B SD*S + ZC:)R-  

S  = I  +  D*DS, R  = I  +  D SD*S

where [Aa, B S,C S, D s] is the state space realisation of the shaped plant Gs and the 

star * represents the transpose of the matrix. The m atrix X  is the solution to the 

control Riccati equation and Z  is the solution to the filter Riccati equation, given

by

< r x  +  X $  -  X B sS~lB*sX  +  C*SR C S 

$ Z  +  -  Z C :R ~ l C ,Z  + B sS B :

(7.10a)

(7.10b)

where $  =  A* — /?..5 1D*CS = A„ — B„D*R 1C .
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AN AM

Figure 7.2: Perturbed left coprime factored of plant Gs in closed-loop feedback system

Let the plant Gs be perturbed due to the uncertainty as shown in the feedback 

closed-loop system of Figure 7.2 and represented by

G, = (M  + A m )~ (N  +  A #) (7.11)

where A ^  and A ^  are left coprime factor perturbations or uncertainty. Assume 

that the H qo norm of the perturbations is bounded by

< e, e > 0 (7.12)

Consider the feedback control system in Figure 7.2. It can be shown that

[d\ (7.13)
yi {I + G s K ^ Y ' M - 1

. ~ V 2 . _ K ^ I  + G 'K o o Y 'M - 1

and that

d = -
r -I yi

A m
-y2  _

(7.14)

As the norms of the perturbations are bounded by e as given in equation (7.12) 

then a stabilising controller must be found that satisfies

Tyd Hoo —
( I  + G s K ^ - ' M - 1 

Koo(I +  GsK qoY 1 M ~ x

S o M -1

K oqS qM -1
< e- l

(7.15a)

(7.15b)



Chapter 7. Output Feedback Sliding Mode Control o f Rotorcraft 136

where S 0 =  ( I  +  GsKoo)-1 . It can be seen that this is a special case of the mixed 

sensitivity minimisation problem. The standard problem of the mixed sensitivity 

system could be constructed and solved iteratively, but in the special case that 

7  =  e- 1  then the optimum central controller can be calculated exactly and without 

iteration as

7 o =  \A  +  0  (7*16)

The central controller can be obtained from the set of all stabilising controllers

Figure 7.3: ifoo robust stabilisation of plant Gt

from [79] as

-h no —

A + B F  + 'y2W*~1j 2ZC*(C  +  DF) 7  2W*~l ZC*

B *X -D *
(7.17)

where W  =  I  +  X Z  — 7 2J, which can stabilise the plant G as shown in Figure 7.3.

3. Develop the feedback controller, K  : Finally the feedback controller K  is obtained 

using the robust H qo stabilising controller, A'oo, in combination with the shaping 

weights W\ and W2 as shown in Figure 7.4, giving

K  = W1K oqW2

4. Form the final closed-loop system : The final closed-loop system is as shown in 

Figure 7.5 which also includes a constant gain m atrix pre-filter, K 01 which provides
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Figure 7.4: The feedback controller K

the necessary steady state gain on the reference to give zero error when compared 

with the K qq outputs.

In which case, as shown in [91], the f/ool-DOF loop shaping controller can be 

realised as an observer for the shaped plant plus a state feedback control law. The 

equations are

X s  — -j- f f s  ( C g X g  ?/s) "h B g Z l g

us — RgXg

where x s is the observer state, us and ys are respectively the input and output of 

the shaped plant, and the matrices

K s =  - B i

Hg = -ZC\

I  - j ~ 2I  - j - ' X Z-2 -1
(7.18a)

(7.18b)

stabilise the closed-loop matrices [As +  B SK S] and [As +  H SCS] respectively.

For the purpose of design of the ideal model for the RHM, the linear nominal 

model at hover knots is used with the pre-filter weights W\ and W 2;

Wi = d i a g o n a l [ ^ , s- ^ ,

W 2 = diagonal [ 1 ,1 ,1 ,1 ,0 .2 ,0 .2]

The components of the weight W\ are chosen differently to avoid repetitions of 

the eigenvalues in the shaped plant since it is well known that such systems pro­

duce ill-conditioning. An alignment gain is used to shift the frequency response
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Figure 7.5: Closed-loop system for ideal model with LSDP controller

vertically, thus giving an obtainable ‘cut off ’ frequency of 5.0 rad/sec. The extra 

pre-multiplying gain is used to provide more de-coupling and decrease the steady 

state error in certain channels. Therefore 0.1 and 0.5 are used in the main rotor 

collective channel and tail rotor collective channel respectively. The controller is 

then formulated using robust stabilisation of the normalised left coprime factor of 

the shaped plant and split into the feedback controller K s. An optimal value of 

7 0 =  2.5837 and the gain matrices K s and H s are obtained as follows

=

52.6872 -98.3176 30.1309 -2.4832 -30.0078 -98.1902

-0.3944 5.5035 -0.8229 -0.1045 0.8202 5.4996

-0.1040 1.5452 -0.8081 -0.0621 0.8022 1.5461

0.1420 0.0370 0.1616 -0.5978 -0.1674 0.0490

-2.0952 75.3235 -10.3949 -0.4066 10.3778 75.2462

1.0389 -13.6655 4.6319 -0.8289 -4.6169 -13.6388

0.0469 -0.9984 0.4745 -0.3591 -0.4759 -0.9906

-0.3265 15.9034 -2.1995 -0.1894 2.1946 15.8892

-0.0988 1.5361 -0.7478 1.9085 0.7662 1.4961

0.1440 0.3246 -0.0034 -0.0075 0.0036 0.3243

0.1542 0.2649 -0.0009 -0.0021 0.0011 0.2646

-2.3275 -5.1888 0.1295 0.1133 -0.1321 -5.1840
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-0.0793 -0.0758 0.0130 -0.0304 0.0193 -0.1327

-1.1335 -14.1267 1.3628 -1.3090 2.4231 -22.6909

0.1965 0.6274 6.0121 0.5374 6.0958 0.1327

-0.0635 1.8625 -2.5915 8.7098 -3.4444 3.4563

-0.3606 -4.2081 0.1367 -0.0764 0.2537 -2.3327

-0.0698 0.1367 -3.5714 0.2025 -1.5139 0.0610

-0.1643 1.2687 -7.5695 -2.3838 -10.5405 1.3467

-1.1254 -11.6634 0.3051 -0.6778 1.3467 -15.4656

-0.1267 -0.7002 0.2188 -4.4846 -0.4047 -0.9627

0.5761 45.3116 -0.6507 0.6215 -1.8422 17.5082

-4.1243 1.5085 -34.9540 3.7767 -3.4829 1.5205

1.5525 3.1471 -1.8375 0.3058 -0.2632 1.3522

It is clear th a t the H ^  technique increases the number of states due to the aug­

mentation of the plant. Thus using the shaped plant Gs, the error dynamics in 

equation (7.3a) have higher dimension than the original plant. Hence, for the 

model matching condition to be satisfied, it is necessary to consider the error dy­

namics for the shaped plant. This will be discussed in the next section. Thus the 

Hoo method produces the matrices L x = K s and

-0.4405 0.0535 0.0179 0.0085 -0.0108 0.0063

-0.0369 -0.3779 0.0323 -0.0274 0.0106 -0.1155

-0.0098 -0.0252 -0.3664 0.0032 -0.0854 0.0003

-0.0013 0.0123 -0.0651 -0.4789 0.0022 0.0049

0.0097 0.0248 0.3626 -0.0090 0.0848 -0.0003

-0.0368 -0.3776 0.0343 -0.0175 0.0108 -0.1154

Since the design aim is to control the first four measured outputs via the pilot 

inputs; the final two reference signals are considered to be zero.

The next section will describe the sliding mode controller design of ue based on output 

feedback for the shaped plant parameters (A S, B S, Cs).
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7.4 D esign  o f Switching Surface

It is necessary to assume that the nonlinear plant equations (7.1a) -(7.1b) when multi­

plied with the known weights W\  and W 2 can be written using shaped plant parameters 

(As, B s, Cs). The shaped plant does not satisfy the assumption of rank (CSB S) equal to 

the number of inputs. There is a rank deficiency of 2. Since the pilot has four inputs 

and is required to track only four outputs, a transformation of the input matrix B s can 

easily solve the problem as follows:

B STS = 0] (7.19)

where the m atrix B st has full rank and also satisfies the assumption that the rank of 

(CsB si) is equal to m. Hence the input u e(t) is transformed as

ust(t) = Ts 1ue(t)

where ust(t) can be defined as

0

(7.20)

(7.21)

The param eter uvsc(t) is designed using the output feedback sliding mode design method 

described in Chapter §4 for the triple (As, B st, Cs). Then the error dynamics in equation 

(7.3a) can be represented as

c(t) — A se(t) 4" B stuvsc(t) -(- i?st£(£,iz,:r) 

ey(t) = Cse(t)

(7.22a)

(7.22b)

where the uncertainty £(t, u, x) is further matched and bounded. The numerical values 

of the param eters Ts and B st are obtained as follows:

Ts =

-0.4153 0.8585 -0.0565 0.2955 -0.0000 -0.0000

-0.6371 -0.3061 -0.0322 -0.0122 -0.0009 -0.7065

0.0447 -0.0208 -0.7082 -0.0122 0.7041 0.0003

-0.1259 0.2673 -0.0079 -0.9552 -0.0086 0.0146

-0.0464 0.0236 0.7023 0.0005 0.7100 -0.0013

-0.6337 -0.3112 -0.0304 0.0075 0.0002 0.7075
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0.1764 0 0 0

24.2438 11.7219 0 0

0.5625 -0.2964 -8.5813 0

-5.4418 0.3401 3.1603 -8.3751

0 0 0 0

0 0 0 0

0.5780 1.7801 23.5633 0.1498

11.5198 5.5648 -0.1226 0.0000

1.2621 0.2522 3.6074 1.7315

-13.1594 -6.3778 0.1406 -0.0000

-1.1908 0.4331 5.4150 -1.9668

-0.8595 -0.0045 0.0000 -0.0000

The VSC canonical form of the linear shaped model (A s, B st, Cs) are obtained with the 

orthogonal m atrix

-0.0000 0.0000 0.7869 -0.0710 0.6130 -0.0043

-0.8769 -0.4807 -0.0000 0 0 0

0.4807 -0.8769 0.0000 0 0 0

0.0000 -0.0000 -0.5029 -0.5854 0.5759 -0.2697

-0.0000 0.0000 0.3367 -0.7815 -0.5230 -0.0483

-0.0000 -0.0000 0.1206 0.2037 -0.1380 -0.9617

The system has more outputs then inputs and satisfies the conditions for VSC output 

feedback design. The reduced order matrices are easily be partitioned. This shows 

six invariant zeros are present in the state m atrix A n. Two of these are from original 

plant and the remaining four appear because of the addition of states due to the weight 

W\.  Since the invariant zeros are present in the m atrix An-, the reduced order triple 

(A n, A i2, Ci) cannot be stabilised using an arbitrary pole placement technique, where 

the m atrix C\ is defined as C\ = [O2 X6 h  ]• Eliminating appropriate rows and columns 

corresponding to the invariant zeros, the new reduced order sub-system ( A n ,  ^•122? Ci )  

is constructed as follows

0 0 0.2889 -2.7622 -0.6619 4.1115
A n — , A122 —

0 0 -1.7273 2.9817 2.5803 2.5476
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and Ci = I 2 • Further this shows rank deficiency of 2 in the m atrix Ai22- Using the 

transformation in equation (4.59) in Section §4.4 produces the matrices

Tm> =

The m atrix B\  is given by

0.0577 0.3454 0.0633 -0.93455

0.5518 -0.5968 -0.5059 -0.28895

0.1322 -0.5160 0.8343 -0.14235

0.8214 -0.5083 -0.2100 -0.1513

Bi =
-5.0055

-0.0063

0

-5.0023

It is now clear that the triple ( i n ,  # 1 , C\) satisfies the pole placement criteria including 

the ‘Kimura-Davison’ condition, so an arbitrary pole placement is possible.

The normal m atrix design approach to robust pole placement presented in Section §4.6 

is used. The optimal matrices P  Sz Q of Theorem 4.1 are computed as

1.9476 -0.0046 11.1869 9.1581
P  = , Q  =

2.7393 1.0852 9.1581 7.5298

giving closed-loop poles at {—3.0, —3.5} with gain m atrix

-0.6044 0.0225
Ki =

0.0218 -0.6935

Subsequently the m atrix K\  is transformed into its original coordinates using the trans­

formation m atrix Tm/, giving

0.0424 -0.2408 

-0.3465 0.4263

-0.0912 0.3608

0.4854 0.3340

where the m atrix K 2 =  O2 X2 is considered since it does not affect the reduced order 

closed-loop system. The attainm ent of normal m atrix properties of the reduced order 

closed-loop sub-m atrix

K  =

As —/±n —
-3.0253 0.1129

0.1051 -3.4689
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and the reduced order closed-loop m atrix

-0.0019 -0.0021 -0.0216 0.0650 -0.0382 -0.0018 28.5890 15.1935

-0.0014 -0.0148 -0.2276 0.0764 -0.0357 0.0014 -15.2422 28.9643

-0.0241 -0.1681 -4.9721 -0.0008 0.0013 0.0002 -9.4462 8.7516

0.0295 0.1105 -0.0031 -4.9480 0.0006 0.0003 -13.7987 -12.6113

0.0000 -0.0000 -0.0000 0.0017 -4.8802 0.0040 0.9884 -9.3917

0.0000 -0.0000 0.0002 0.0003 0.0040 -4.9999 0.1063 -0.1693

-0.0000 0.0000 -0.0000 0 -0.0000 0.0000 -3.0253 0.1129

0.0000 0.0000 0.0000 0 -0.0000 -0.0000 0.1051 -3.4689

which reflects the robust properties of the reduced order system and the robust switch­

ing surface S e is verified. The measure parameters are compared in Table 7.3. This

No. Measure of 

Robustness

Optimal

Value

Open-loop 

Matrix A s

Closed-loop 

M atrix A \ x

Closed-loop 

Matrix A h

1 ^2(A c) 0 0.9996 0.0177 0.9963

2 A f {Ac) 0 0.8689 0.0160 0.9813

3 K ( W Ac) 1 291.3011 1.0158 32.4170

4 M S ( A C) 0 0.9967 0.0022 0.9940

5 S(AC) 0 1.0 0.0624 0.9955

6 v (A c) 1 727.9331 2.0002 84.0554

Table 7.3: : Comparison of Robustness Measurement

shows that due to the addition of the invariant zeros and transformation into reduced 

order closed-loop system there is some variation in the optimised closed-loop sys­

tem A p a r a m e t e r s  measure and the reduced order closed-loop system A su  parameters 

measure. At this point it is necessary to say that if the components of the weight W\  are 

indifferent then the measure parameters of AJj increase due to repetition of eigenvalues 

and eigenvectors. Hence the weights are chosen at slightly different locations. Using 

equation (4.31) in Section §4.4 and the value of T0 from equation (7.23), the switching 

surface m atrix F  can be calculated for an arbitrary choice of F2 since this does not affect 

the switching surface and merely acts as a scaling. However in this case the m atrix F2
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is obtained as
0.0091 0.0126 -0.0268 -0.0152

T*2 —
-0.0111 0.0089 0.0016 -0.0607

-0.0024 0.0017 -0.0040 -0.0365

-0.0234 -0.0054 0.0032 0.0437

produces the switching surface m atrix

—0.0101 0.0134 0.0059 -0.0233 0.0080 0.0220

F  =
—0.0081 0.0354 --0.0043 0.0177 -0.0086 0.0586

-0.0043 0.0217 0.0021 0.0078 0.0017 0.0357

-0.0163 -0.0283 --0.0063 0.0050 -0.0074 -0.0464

The above switching surface m atrix F  will show robustness to the bounded uncertainty 

defined in equation (7.1a). The next part of this design approach is choice of the 

appropriate controller param eter N.

7.5 D esign of the Controller

W ithout loss of generality it can be assumed that the plant triple (As, B stl Cs) and the 

switching surface matrix F  are known. Define the control law as

u„,c(f) =  - ( F2B 2r 1 [G,ey(t) + u(ey)} (7.24)

The gain m atrix Gi is defined as

Gt =
a

F C SA SN  +  —F

where N  E lRnXp is a design m atrix and a  is some positive constant to be chosen ac­

cordingly. Details of these are described in Chapter §4. Consider a Lyapunov candidate 

based on error switching function ^(ej,) =  Fey(t) as

1
r ( s )  =  2 s (e»M ev) (7.25)

The reachability condition is satisfied if V(s) < 0, i.e. if sT(ey)s(ey) < 0 for all ey(t). It 

is proved in Chapter §4 of Lemma 4.2 that the reachability condition can be attained

by appropriate choice of N  for a certain value of a. The component v(ey) is defined by

p(t , uvsc, ey) ||s[ê j|| if s(ey) ^  ^

0 otherwise
v (ey) — (7.26)
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Here p(t, uVSC7 ey) is a positive scalar quantity defined by the uncertainty bound param­

eters such that
k K g\\Giey\\ + K a\\FCa\\P{t-, UVSC7 Cy) -- (7.27)

(1 -  k K g)
where the denom inator is considered to be always positive. It follows that K g is limited 

by 0 <  K g <  |  and k is defined as k = ||(FC's) ||. | |( i r2-H2 )-1 ||- Clearly lower values 

of k increase the limiting param eter K g, which gives a higher bound on the matched 

uncertainty and its choice depends on the m atrix F.  The control law in equation (7.24) 

induces a sliding mode on the relevant error switching surface S e if and only if the 

m atrix C(N)  satisfies the condition

C( N)  = (FC.) '
a

F C SA S(I  -  N C S) -  - F C S < 0

by design of the m atrix N  for a certain value of a, i.e. the m atrix C(N)  is required to be 

negative semi definite. An optimisation approach of Heck et al  [57] is used to produce 

the m atrix

N  =

3.4620 0.0469 0.2627 0.4098 0.0281 0.0017

-0.0147 1.1801 -0.0291 -0.0044 -0.0006 0.0284

-0.2204 -0.1100 0.7025 -0.4726 0.0415 0.0045

-0.0385 -0.1563 0.2127 0.7312 0.0482 -0.0096

0.0000 -0.0000 0.0000 0.0000 1.0000 -0.0000

0.0000 -0.0000 0.0000 0.0000 0.0000 1.0000

-0.1646 -0.1132 -0.0704 -0.4371 0.0516 0.0037

-0.0167 0.0772 -0.0952 -0.0547 0.0019 0.0144

-0.0259 -0.1015 0.1600 -0.1933 0.0352 -0.0051

0.0002 0.0023 0.0018 0.0036 0.0510 0.0002

-0.0012 0.0025 -0.0050 -0.0002 -0.0003 0.0004

0.0290 -0.0018 0.0065 0.0007 0.0011 -0.0001

which makes C( N)  negative semi-definite with the maximum eigenvalue of \ c(n ) =  

3.051 x 10-19 which is considered equal to zero for an initial value of a  =  5.0. The 

section below presents the full nonlinear simulation results obtained using the nonlinear 

RHM model.
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7.6 N onlinear H elicopter M odel Sim ulation R esults

The VSC controller uvsc(t) produces only four input signals corresponding to the control 

outputs. For implementation with the overall control structure, a transformation as in 

equation (7.20) is necessary to obtain the VSC controller uvsc(t) which produces the 

control action ue(t) and also the RHM is required to be weighted. The simulation 

results presented are based on the ideal model responses and the VSC controller designed 

at hover is implemented on the fully nonlinear RHM model with initial conditions at 

hover, 60 knots, 100 knots and 120 knots forward speed flight condition which gives 

a significantly perturbed system, to illustrate the robustness. In order to control the 

matched and unmatched uncertainties, the norm bound parameters in Section §7.2 are 

chosen as follows: K g = 0.002, K a =  20.0. The unmatched uncertainty will be partially 

tolerated by the robust design consideration as discussed in Section §4.6. A value of 

a = 20.0 is sufficient to bring the outputs onto the switching surface. Due to the 

discontinuous control action in equation (7.24), the responses show some chattering. 

To eliminate this effect a param eter 6 = 0.10 is added to the denominator in equation 

(7.26) to smooth the discontinuity into a approximately continuous.

7.6.1 Hover Flight C ondition

The following set of time responses are obtained at the hover initial condition of the fully 

nonlinear model of the RHM. The dashed line represents the ideal model response and 

the solid line represents the plant responses. Figure (7.6) represents the step demand 

responses of heave velocity and the other three controlled outputs, which shows minimal 

coupling among outputs. This shows satisfactory tracking of the ideal model responses 

by the plant outputs. The actuator demands for each axis are shown in Figure (7.7). 

These demonstrate the low control effort. The switching surfaces for each axis response 

are shown in Figure (7.8). It is seen that the system has attained close to an ideal 

sliding mode in a reasonably short period. The pitch axis step demand is given in 

Figure (7.9) which also shows good tracking of the ideal model response. The heave 

axis response shows very small error which does not affect the handling qualities. The 

low controller effort is represented in Figure (7.10). Figure (7.11) represents the roll
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axis step demand and shows good tracking. The controller effort is small enough as 

shown in Figure (7.12). Figure (7.13) gives the yaw axis step responses showing perfect 

tracking in all channels except the heave velocity which shows overshoot in the first 

two seconds. The switching surface attainm ent of the outputs for both the pitch axis
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and roll axis are also reasonable. The sliding mode is attained in a short period with 
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switching surface attainm ent respectively which are reasonable.

7.6.2 60 k nots Forward Flight C ondition

This subsection shows the simulation results at 60 knots forward flight condition. Figure 

(7.16) shows good tracking of the outputs and the controller effort is within the limits 

as in Figure (7.17). The pitch axis step demand at 60 knots is given in Figure (7.18)
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Figure 7.16: Heave Axis Step Demand

and tracks the ideal model response but the other three channels show some tracking 

error. In the short term analysis these are with in the range of tolerance of the handling 

qualities. The controller effort and sliding mode in Figures (7.19) and (7.20) are both 

within limits. The next three Figures are the roll axis step demands, controller effort 

and switching surface attainm ents which are self explanatory. Figure (7.24) shows the 

yaw axis step demand which does not track satisfactory but has reached a stable motion 

with some steady state error. This may be tolerable by tuning when implemented or 

using an integral control action. Other channels show small error but are within the 

handling qualities requirements. The control effort and switching surface behaviour in 

yaw axis is satisfactory.



Chapter 7. O utput Feedback Sliding Mode Control o f Rotorcraft 153

Main R otor C ollective  A ctuator Longitudinal C yclic A ctuator

COo>a>■o

-2

- 4

s e c s

3 .5

1.5

s e c s
Lateral C yclic  A ctuator Tail Rotor C ollective A ctuator

15

10
CO
C Da>-o

- 5

-10
s e c s

0 .5

CS)o>a>“O

—0 .5

-1
s e c s

Figure 7.17: Heave Axis Actuator Demands

H ea v e  V elocity Pitch Attitude

Roll Attitude

0 .4

0 .3

o 0.2 
CD

42 0.1

-0.1
s e c s

0 .0 3

0.02
■o
CO 0.01

-0.01
s e c s

0.2

13 0.1

O
21 3 4

H eading R atex 1020
15

CD 10

~55■o _ co 5

O
- 5 1 2O 3 4

Figure 7.18: Pitch Axis Step Demand



Chapter 7. O utput Feedback Sliding Mode Control o f Rotorcraft 154

Main R otor C ollective Actuator
0 .5

- 0 .5

CO

- 1 .5

-2
- 2 .5

s e c s
Lateral C yclic  A ctuator

0.6

0 .4

COo>
CD"O 0.2

- 0 .2
s e c s

Longitudinal C yclic A ctuator

CO
05
CD■o

-1
s e c s

Tail Rotor C ollective A ctuator
0

- 0 .5

-1
- 1 .5

-2
- 2 .5

- 3 O 1 2 3 4

s e c s

Figure 7.19: Pitch Axis Actuator Demands

- 3x 10

—  - 9  0-4

-4,
s e c s

- 3x 10

-8,
s e c s

- 3x 10

-0.5=«=
co
o.o -1.5

-2
-2.5,

s e c s

- 3x 1 0

-2

-4,

s e c s

Figure 7.20: Sliding Surface for Pitch Axis Step Demand



Chapter 7. O utput Feedback Sliding Mode Control of Rotorcraft 155

H ea v e  V elocity
0 .0 4

0.02

8> -0.02
- 0 .0 4

- 0 .0 6

- 0 .0 8

s e c s
Roll Attitude

0.2

"S 0.1

2 3 4O 1

2

O
CO 1  -2

- 4

-6

x 10" Pitch Attitude

//
- -s.

\yN/ / -s. ^ ___

2 
s e c s  

H eading R ate
0 .0 6

0 .0 4

"3$ 0 .0 2

-0.02
s e c s

Figure 7.21: Roll Axis Step Demand

Main R otor C o llective  A ctuator Longitudinal C yclic A ctuator

- 0 .0 5

- 0 .1 5

- 0 .2
s e c s

0 .4

0.2
&>a>-o

- 0 .2
s e c s

Lateral C yclic A ctuator Tail Rotor C ollective Actuator
1.5

03
CD

“O

0 .5

s ecs

O

- 0 .5

-1
2 3 41O

Figure 7.22: Roll Axis Actuator Demands



Chapter 7. O utput Feedback Sliding Mode Control o f Rotorcraft

- 3x  10
4

3

2
1
0
1O 2 4

s e c s
- 4x 1 0

-5

0 -10
Q .

1  -1 5

-20,
s e c s

x 10
15

-5,
s e c s

x  10 ‘41

ro -1
0 .-2

-3

0 2 4

Figure 7.23: Sliding Surface for Roll Axis Step Demand

H eave Velocity
0.01

0 .0 0 5

o
CD
V )32

- 0 .0 0 5

-0.01
s e c s

Roll Attitude
0 .0 2 5

0.02
0 .0 1 5

(/>•o
CO 0.01

0 .0 0 5

-0 .0 0 5

s e c s

Pitch Attitudex 10

c/>■o
CO

-2

s e c s
Heading R ate

0 .2 5

0.2
S  0 .1 5

0 .0 5

secs

Figure 7.24: Yaw Axis Step Demand



Chapter 7. O utput Feedback Sliding Mode Control o f Rotorcraft 157

7.6 .3  100 k n ots Forward Flight C ondition

The next few pages show the simulation results for 100 knots and 120 knots initial 

conditions. The results are self explanatory. These show good tracking in the step
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input channels and the remaining channels do not exceed the handling quality limits.
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The control actions do not hit the actuator limits in all cases. The switching surface is 

also shown to be attained in reasonable short period.
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7.6 .4  120 k n ots Forw ard F ligh t C ondition
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7.7 Sum m ary

This work considers the application of a robust output feedback sliding mode controller 

design strategy to a helicopter control problem. Most of the mathematical and the­

oretical developments are presented in Chapter §4. O ther mathematical models for 

tracking, ideal model response design and implementation are presented in this chapter. 

The ideal model is designed based on an ifool-DOF technique. A method of implemen­

tation of an H oqI-DOF  system with the VSC technique as a model matching problem 

has been discussed. The ideal model following technique enables de-coupling of the in­

ternal states. The switching surface is designed based on a robust output feedback pole 

placement technique. The robustness properties of the switching surface are examined. 

The controller structure in Section §4.7 is implemented. The controller gain is varied to 

influence the reaching time to the switching surface. The technique is enable to control 

the nonlinear multivariable rotorcraft dynamics. The helicopter example shows the ef­

fectiveness of the technique. The simulation results dem onstrate the applicability of the 

method; the proposed controllers guarantee the attainm ent of a sliding mode despite 

the presence of m atched and unm atched uncertainties.



Chapter 8

D ynam ic O utput Feedback Sliding M ode Control of 

Aircraft

8.1 Introduction

This chapter is presented to dem onstrate an application of the dynamic output feed­

back sliding mode controller design procedure described in Chapter §6. A system with 

unstable transmission zeros is considered here. A bench-mark problem of the Group for 

Aeronautical Research and Technology in Europe (GARTEUR) is considered. It is a six 

degree of freedom nonlinear aircraft model called the High Incidence Research Model 

(HIRM). The original system as presented in [1] has 16 states, 11 inputs, including tu r­

bulence inputs, and 20 m easured outputs although some of these are available only for 

simulation. The aircraft is basically stable both longitudinally and laterally. There are 

however combinations of angle of attack and control surface deflection which may cause 

the aircraft to be unstable longitudinally and/or laterally. The control variables are 

separated into longitudinal and lateral controls for the purpose of design. The system 

has unstable transm ission zeros in both the longitudinal and the lateral dynamics. The 

static output feedback sliding mode control described in Chapter §4 is not applicable 

due to the presence of unstable transmission zeros but the dynamic output feedback 

sliding mode control m ethod as presented in Chapter §6 is applicable. Robustness con­

siderations are applied during the design. The simulation results are obtained with 

linearly perturbed systems relating to different operating conditions. The simulation 

results show the ability of the dynamic output feedback sliding mode controller to con­
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trol linear perturbed systems with unstable transmission zeros. The aircraft controller 

design is a tracking control problem. However the results here are presented in regulator 

form. Hence, it is not strictly possible to compare the results obtained with the aircraft 

handling quality requirements. In particular the rate limit of the control action is not 

considered during design. However the aim of this chapter is clearly demonstrated.

The chapter is presented as follows: The aircraft model is described in Section 8.2. 

Sections §8.3 &: §8.4 present the longitudinal channel controller and simulation results 

respectively and Sections §8.5 & §8.6 present the lateral channel controller and simula­

tion results respectively. Finally, a brief summary of the chapter and the utility of the 

method is given in Section §8.7.

8.2 D escrip tion  o f A ircraft M odel

The mathematical model of the aircraft dynamics may be represented as a linear time 

invariant state space model with uncertainties as defined in equations (6.1a)-(6.1b). The 

HIRM dynamics show redundancy in the control surfaces which creates difficulties in 

design. For simplicity it is considered tha t the minimum number of control surfaces are 

available. These are identified as the symmetrical taileron deflection S t d , the differen­

tial taileron deflection S t s  , the rudder deflection Sr and the engine throttle S jh  where 

both the left and right engines have equal command. The nominal linear system triple 

(A, B ,C )  is the linearised data  at level flight with mach number M. =  0.3 at height 

h = 5000 ft., and it is denoted as init3005. Similar notation will be used through out 

this chapter for defining the respective operating point. The longitudinal requirements 

are given in term s of response to commands in flight path angle and airspeed which 

are directly available to the controller. The measurement signals for this channel are 

the pitch rate q and the to tal velocity V.  The longitudinal controller uses the sym­

metrical command Sts  and the engine commends 6th  assuming that both the engines 

are identical. The lateral requirements relate to command of sideslip angle /? and roll 

angle </>, which are also directly available to the controller. The outputs of the controller 

are differential taileron command S t d  and rudder command S r  respectively. The be­

low sections will dem onstrate the controller design and simulation results for both the
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channels.

8.3 L ongitudinal Channel Control

The states, inputs and outputs associated with the longitudinal channels are selected 

from the complete model. The states associated with the longitudinal dynamics are the 

longitudinal velocity u , the normal velocity w, the pitch rate q, the pitch angle 6 and 

the engine states E j12. The latter are merged to achieve equal control action. The two 

inputs (8t s ,^th  = ^thx +  £th2) and two outputs (<7,^) are isolated respectively. This 

gives a six state square plant. The system shows that the m atrix C B  has rank equal to 

zero which gives difficulties in the use of output feedback sliding mode techniques. How­

ever a balanced model reduction produces the five state square system triple (A, B,  C), 

essentially removing the second state of the engine, which satisfies the static output 

sliding mode design criteria; i.e. the input and output matrices B  and C  both have full 

rank. It also satisfies the assumptions

A5) the system triple (A, B , C)  is completely controllable and observable;

A6) the rank of m atrix C B  is equal to the number of inputs.

However the static output feedback sliding mode design is not possible since the triple 

shows mixed (unstable and stable) transmission zeros at {21.3254, —0.5128, 0.0018}. 

Hence, the dynamic output feedback sliding mode design is used where the latter as­

sumption is not essential. The controller is simulated at different operating conditions 

relating to six sta te  linearly perturbed systems. The system regular form is first ob­

tained and the system matrices are partitioned as in equation (3.7) for the design of the 

compensator param eters and switching surface. The im portant partitioned matrices are 

given as

-0.3112 0.3388 0.2149 0.8231 0.1082

A n — -0.1997 -0.3183 0.8459 A12 — -0.0865 -0.4823

0.1295 -0.8799 -0.4635 0.2125 0.0635

1.0387 -0.1895 -0.3946 -3.3719 0.0844
A21 = II<NCS

-0 .1953 0.3384 0.3796 -0.2476 -0.1344
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-0.0000 1.9185

12.4902 -0.5375
<?! = c 7 =

-0.0879 -0.2609 

-0.4511 -0.1172

-0.0972 8.9589 

-0.1487 2.8235 

0.4544 8.4386

First consider the compensator parameterisation. In this respect it is necessary to say 

that the uncertainty distribution is unknown, hence the m atrix K  has to be obtained 

such that it stabilises the closed loop m atrix A n  — (A n  — A2i) as in Proposition

6.1. Using an estim ator design technique for the observable pair (A n, A21), the matrix

K  =

9.9671 -1.2126

-13.5034 1.3306

0.1252 0.0328

-5.3592 0.0672

0.1864 -0.0203

is obtained where the m atrix  K 2 is considered as the identity matrix. The size of the 

index p is equal to 2. This contributes higher uncertainty to the reduced order sliding 

dynamics. However, this is accepted since the error dynamics is required to decay 

rapidly. The transform ation T  which transforms the system to observer canonical form 

is then set as

T  =

0.1724 0.1746 0.0671 -0.0838 0.9787

6.8150 6.2953 2.3123 -3.1760 -1.2239

-12.6854 -11.8899 1.6484 6.4940 2.5751

-0.0074 -0.0117 0.5369 -0.1576 0.0250

-8 .4247 -7.1573 5.2625 2.5513 1.8045

which produces the observer canonical partitioned matrices in equations (6.7a)-(6.7b) 

as

A n  —

A 21 —

-3.4740 0.0034 -0.0571 0.1909 0.0155

5.1649 -2.6995 -0.0665 , A \ 2 — 22.8482 -2.0720

-13.2756 -0.7737 -2.8266 10.5314 3.5119

-0.2121 -0.5200 -0.2610 2.4629 -0.0335
5 A 22 =

-9.8126 -4.5579 -3.8164 12.1035 1.9379
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which verify tha t the eigenvalues of the matrix A n  are stable and the poles are at {—4.0, 

—3.0, —2.0}. The stable m atrix A 22 in equation (6.9b) is considered as

A s — *'h22 —
- 1.0 0 

0 - 2.0

which produces the Lyapunov solution of equation (6.11) as

0.50 0
P2 =

0 0.25

for the symmetric positive definite matrix Q2 = h-  Then the gain matrix L  in equation 

(6.15) is given as

r 11.3627 -2.5627 

-12.3898 2.5256

L = 5.3603 -0.0009

-3.3710 0.1475

-0.2519 0.0293

The state feedback gain m atrix K s is obtained for the controllable matrix pair (A n , A i2) 

as
r 3.0764 1.9234 0.0329

-1.1534 -5.4680 0.3484 

which gives poles at { — 1.0, —2.0, —3.0} for the reduced order compensator dynamics 

in equation (6.32). The switching surface is then calculated using equation (6.28) as

3.0764 1.9234 0.0329 1.0000 0

-1.1534 -5.4680 0.3484 0 1.0000

where the m atrix S 2 is considered as the identity matrix. Its effect has been discussed

in previous chapters and examples. It merely scales the switching surface and has no

effect on the sliding mode dynamics.

K m

S  =

8.4 L ongitudinal Channel Sim ulation R esults

The above compensator and controller parameters are designed with the nominal model 

init3005 and then simulated at various flight conditions. The uncertainty bound param ­

eters in Section §6.2 are obtained by trial and error as follows K f  =  0.02, K g = 0.50
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and A"7 =  K a +  =  3.50 which are sufficient to control the range of uncertainties. The

positive scalar constant a = 2.5 is chosen to bring the state trajectories on the switching 

surface S  with in reasonable time. The system shows chattering as is natural with a 

discontinuous control action as explained. As a remedy the small parameter 8 = 0.01 

is used in the denominator of the discontinuous control vector v(ey). The simulation 

results at different flight conditions are presented below.

8.4.1 Level F light w ith  M  = 0.30 at h = 5000 ft.
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Figure 8.1: Time Response of Error Outputs
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Figure 8.2: Time Response of Plant Outputs

Figure 8.1 shows that the error outputs are small and have gone to zero within 0.75 

seconds and 0.25 seconds respectively. This shows the efficiency of the compensator
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design. The output of the plant in Figure 8.2 has decreased close to the zero value 

within reasonable time. The total velocity is small in magnitude. It is difficult to

iymm. Taileron Deflactic

- 1 O 

-20 

-30 

-40

Throttle

Figure 8.3: Actuator Demands

o. 1

Figure 8.4: Switching Surface Behaviour

understand its appropriateness due to the reduction of the model and elimination of a 

control surface. However, it clearly demonstrates the ability of the control technique. 

The control effort is shown in Figure 8.3. This indicates that the control action has 

reached the maximum limit [10, —40] for symmetrical taileron deflection where the

throttle position is reasonable although a slight negative value is achieved which is 

undesirable since the th ro ttle  position is bounded between zero and two. This may 

be due to numerical error. Figure 8.4 gives the switching surface behaviour of the 

compensator states. It shows very small values and rapid decay to zero.

8.4.2 Level F light w ith  M. = 0.45 at h = 10000 ft.

These simulation results are obtained with linear plant parameters at operating con­

dition init4510. The error outputs in Figure 8.5 are small and reach zero within 0.50 

seconds and 0.25 seconds respectively. Figure 8.6 shows the plant output response and
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the control action is shown in Figure 8.7. Further the switching surface is plotted in
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Figure 8.7: Actuator Demands
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Figure 8.8: Switching Surface Behaviour

Figure 8.8. These responses indicate the ability of the method to control uncertain 

systems containing unstable invariant zeros.

8.4.3 Level F light w ith  M. =  0.50 at h = 15000 ft.

These results are obtained at operating condition init5015. These Figures show that 

there is no significant changes in the behaviour with the results obtained in init4510. 

This indicates th a t the controller may be robust enough to control the linear pertur­

bations at different operating conditions. However the controller demands has slightly 

changed in behaviour when compared with Figures 8.3 &; 8.7.
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8.5 Lateral C hannel Control

The lateral controller is designed analogously to the longitudinal controller. As for 

the longitudinal channel, the lateral channel model is also extracted from the complete 

model. There are four states: the lateral velocity v, the roll rate p, the yaw rate r, and 

the bank angle <j>. The two inputs are (St d -,^r ) and the two outputs are (p, /3). The 

lateral system triple (A, B , C ) satisfies the design assumptions and contains one unstable 

and one stable transmission zeros at {0.0208, —42.1313} respectively. Hence static

output feedback sliding mode design is not possible due to the presence of the unstable 

transmission zero. The dynamic output feedback sliding mode design is applicable. 

Obtaining the regular form as in equation (3.7), the partitioned matrices are given as 

follows

-0.0000 0.2037 -0.2339 0.9741
An = 5* to II

3.7909 -35.4625 -17.1892 3.3176

Aoi —

-8 .3558 77.5905 

-2 .7992 26.6074
A 22

37.4828 -7.1488 

13.4748 -3.8492

0.0000 -5.7662 0 0.0088 -0.3140 0.9494
b 2 = C\ = c 2 =

-6.8951 1.7364 0 0.0039 -0.0087 -0.0029

K  =

The m atrix K  is further obtained to stabilise the closed loop m atrix A n =  (An 

A2 1) as in Proposition 6.1, gives

35.5884 25.6458

0.4895 38.2335

-0.1164 -87.9597 

1.0103 -29.4509

where m atrix K 2 equals to the identity matrix. In this case the index p is equal to 2 and 

the closed loop m atrix A n  is a normal matrix which is designed based on multiobjective 

optimisation technique presented in Appendix C . The transformation matrix

-0.9512 0.6778 -10.6797 31.9482

0.3086 0.7473 4.0202 -10.7679

0 0.0088 -0.3140 0.9494

0 0.0039 -0.0087 -0.0029

T  =
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is chosen which gives the observer canonical form where the closed-loop matrix A n  is 

given as

-2.5000 0.0 35.2977 -362.7966
A n  — ,  A 12 —

0.0 -2.0000 -5.9610 133.5716

0.2166 0.6677 -1.2110 -13.6616
A 2\ = > A 22 =

-0 .3907 -0.8946 3.1047 3.8821

The poles are at {—2.5, —2.0}. The closed-loop matrix A n  is a symmetric matrix, and 

hence achieves high robustness due to its normal matrix properties. The stable matrix 

in equation (6.9b) is

r -1 0 

0 - 2

which gives the Lyapunov solution of equation (6.11) as

A s — 
*/H22  —

p , =
0.50 0

0 0.25

for the symmetric positive definite m atrix Q2 =  h-  The compensator gain matrix in 

equation (6.15) is obtained as

36.6994 50.9661

123.3956 232.0877

-271.0906 -510.0889 

-91.0409 -185.2755

The state feedback gain m atrix K s is obtained which stabilises the controllable matrix 

pair (A n, A 12) as
0.0804 2.0836

K s =
1.5592 0.7094

which gives the poles at {—2.0, —1.5}. The switching surface m atrix as in equation

(6.28) is then given as

r 0.0804 2.0836 1.0000 0

1.5592 0.7094 0 1.0000

where the m atrix S2 is further considered as the identity m atrix since it does not affect 

the sliding dynamics.
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8.6 Lateral Channel Sim ulation R esults

The simulation results at various operating points are obtained using the above com­

pensator and controller parameters designed with the nominal lateral model of init3005. 

The uncertainty bound param eters are chosen as K f  = 0.02, K g =  0.050 and K 7 =  

Ka +  7o — 3.0. The positive scalar constant a  =  3.50 is chosen which is sufficient for at­

tainment of the switching surface S  within reasonable time. A small parameter 8 =  0.01 

is again used in the denom inator of the discontinuous control vector v(ey) of equation 

(6.10) to avoid chattering. The simulation results below are presented at different flight 

conditions.

8.6.1 Level F light w ith  M. = 0.30 at h = 5000 ft.

The simulation results are presented with the nominal linear plant model. The efficiency 

of the compensator design is demonstrated in Figure 8.12. The error outputs have 

attained the zero value within less than 0.12 seconds. The plant outputs in Figure 8.13

R o l l  R a t o

2 
o c  

S i d e s l i p

2
s e c s

Figure 8.12: Time Response of Error Outputs

has achieved the zero value in 2.5 seconds and 2.0 seconds respectively. Sideslip response 

is little higher when compared with other operating conditions. However it is within 

reasonable limits. The control action is shown in Figure 8.14 and is reasonable for the 

differential taileron deflection but the rudder deflection has reached the maximum limit 

of [30, —30]. The control action is too steep, since the rate limit is not considered

during design to dem onstrate that the outputs reach to zero in reasonable time. The
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Figure 8.13: Time Response of Plant Outputs
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switching surface in Figure 8.15 shows small magnitude and the system has attained a 

sliding mode at 3.0 seconds.

8.6.2 Level F light w ith  M . =  0.45 at h =  10000 ft.

These results are obtained at the operating condition of init4510 for the lateral control 

channel. The Figures 8.16,8.17 &: 8.18 show the error output, plant output and control 

effort respectively. The error shows small value and has attained zero within less than
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Figure 8.16: Time Response of Error Outputs
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Figure 8.17: Time Response of Plant Outputs

0.12 seconds. The roll rate has reached a constant value and the sideslip is small as 

necessary. The controller demand for rudder deflection has reached the maximum limit
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and the differential taileron deflection shows reasonable control action is applied. The 

switching surface attains its sliding mode within 3.0 seconds.

8.6.3 Level F light w ith  M . — 0.5 at h =  15000 ft.

The simulation results presented in Figures 8.20, 8.21 Sz 8.22 are represented as error 

outputs, plant outputs and control action respectively for the linear plant model at 

operating condition init5015. Further the controller demand for rudder deflection has
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Figure 8.20: Time Response of Error Outputs
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Figure 8.21: Time Response of Plant Outputs

attained m aximum value. Figure 8.23 shows the switching surface. The results show 

the efficiency of the method.
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8.7 Sum m ary

This chapter is presented to illustrate the application of the theory in Chapter §6 with 

the industrial example of an aircraft model which is nonlinear in nature and has varia­

tions in handling characteristics. For ease of design, the complete aircraft dynamics is 

divided into two sub-dynamics although this is not essential. Both the system dynamics 

have unstable transm ission zero. The theoretical developments in Chapter §6 are then 

utilised to design the controllers. During design it is seen tha t the indexing parameter 

p has not been reduced. However the system dynamics has maintained stability. This 

reflects the use of the robust design method. The simulation results are obtained at var­

ious operating points. The simulation results show the regulation of the outputs of the 

plant although exact specifications are not met. The response shows the efficiency of the 

technique. The results strongly dem onstrate that the method is applicable to systems 

with unstable invariant zeros. These results justify the theoretical developments.



Chapter 9

Conclusions and Future Work

9.1 Concluding R em arks

This thesis has considered the problem of designing robust sliding mode controllers using 

output information. The theoretical developments are presented in the early chapters 

and the applications are presented in later chapters. Two different approaches have been 

proposed: firstly, the development of static output feedback sliding mode controllers, 

where no additional dynamics are used except the plant dynamics, has been considered; 

and secondly, the development of dynamic output feedback sliding mode controllers for 

systems which do not fall into the first category have been developed. The resulting 

closed loop system has additional dynamics other than the plant dynamics which gives 

extra freedom in design and performance. Two different industrial examples involving 

helicopter and aircraft control have been used to show the effectiveness of the theory. 

The major contributions of this work are outlined below:

• The first m ethod uses only the plant dynamics, i.e. only the plant outputs are fed 

thorough to the controller. The analysis of the reduced order closed-loop sliding 

dynamics is an output feedback problem and the unmatched uncertainty affects 

the stability and performance. Results for quadratic stability have been achieved. 

It has been shown that the unmatched uncertainty effects can be reduced by using 

a robust output feedback design method. It is known that for a normal matrix 

the eigenvalues are insensitive to matrix perturbations, and hence the insensitivity 

of the reduced order closed loop sliding dynamics may be maximised by using a
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normal m atrix design approach. Such a normal m atrix design method has been 

proposed to prescribe robustness and examples show the effectiveness.

The static output feedback sliding mode techniques require a particular design 

triple to satisfy the ‘Kimura-Davison’ condition and any transmission zeros to 

be stable. The stable invariant zeros problem has been solved. Essentially the 

transmission zeros are left in their respective positions. The problems with the 

‘Kimura-Davison’ condition and unstable transmission zeros have been solved us­

ing additional dynamics which leads to the development of dynamic output feed­

back sliding mode design methods.

The second m ethod uses a dynamic compensator driven by the plant outputs. 

A minimum order dynamic compensator is used to solve the ‘Kimura-Davison’ 

problem. This m ethod may also be used to generate extra freedom in controller 

design even if the system does not need a compensator. The reduced order closed- 

loop sliding dynamics is formulated as a static output feedback problem. The 

unmatched uncertainty affects the reduced order sliding dynamics as in the case 

of static output feedback sliding mode control. Hence the compensator parame­

ters and sliding param eters are obtained together using a robust output feedback 

design method. The examples demonstrate the applicability of the theory. Both 

the unmatched and matched perturbations are considered in the examples. How­

ever the controller has been formulated based only on matched uncertainty and 

the robust approach has been used in the closed-loop design. This reflects the 

novelty of the robust technique and the use of a dynamic compensator to handle 

the unmatched uncertainty and ‘Kimura-Davison’ problems.

The other type of compensator uses the full order dynamics of the plant. This 

method basically uses a state feedback sliding mode controller and extends the 

idea to non-minimum phase uncertain systems. Basically an observer type non­

linear dynamic compensator is designed and the augmented closed loop dynamics 

are considered. This work shows that if a gain m atrix is obtained such that the 

linear compensator design triple is minimum phase then a quadratically stable 

sliding motion can be achieved for the plant dynamics. More over, it is seen
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that a particular class of uncertainty may be decomposed into matched and un­

matched uncertainties, and only the unmatched uncertainty affects the reduced 

order augmented sliding dynamics. Further a robust design approach is necessary 

to maximise the insensitivity to such unmatched uncertainty. A normal matrix 

design based on a state feedback control is developed. The examples further show 

the effectiveness of the technique. The closed-loop analysis shows that the out­

puts of the plant exactly equal the outputs of the compensator. Hence, for a 

regulation problem, if the compensator outputs are stable then the plant outputs 

are also stable. An estim ated state control law is used and the stability of the 

combined closed loop system is observed. It is demonstrated that the controller 

and compensator can be designed independently. In other words, the well known 

separation principle for linear systems holds for this class of uncertain systems 

controller and compensator design. The examples reflect the use of this robust 

technique in minimising the uncertainties.

The novelty of the robust static output feedback sliding mode design approach 

has been reflected in the controllers designed for a helicopter system. The dy­

namics are nonlinear in nature and have variations in operating conditions. The 

helicopter dynamics satisfy the conditions for static output feedback sliding mode 

controller design and have stable invariant zeros. A nominal linear model has 

been obtained at the hover operating condition and a robust controller design has 

performed as stated  in Chapter §4. In addition, a model following technique is 

utilised so tha t the plant outputs faithfully track the ideal model outputs. Fully 

nonlinear simulation results are obtained at various operating conditions which 

show good output tracking in the model following sliding mode control. This 

industrial example reflects the applicability of the robust static output feedback 

sliding mode technique.

Another industrial example is the aircraft dynamics which demonstrates the use 

of the robust dynamic output feedback sliding mode technique. The dynamics 

are again nonlinear and vary with operating conditions. The aircraft dynamics 

have been separated into two sub-problems, i.e. the longitudinal channel and the 

lateral channel. A linear nominal model is obtained and both longitudinal and
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lateral dynamics satisfy the output feedback sliding mode conditions but have un­

stable invariant zeros. Hence the modified dynamic output feedback sliding mode 

control is applicable. The robust technique is used to design the controllers. The 

problem is formulated to regulate the plant outputs as presented in Chapter §6 

although the aircraft control is a tracking problem. Hence the aircraft handling 

quality specifications are not followed. However the results demonstrate the use of 

dynamic output feedback sliding mode techniques to handle non-miniinum phase 

uncertain systems. The simulation results are obtained using linearly perturbed 

systems at various operating points. The results show the use of a dynamic com­

pensator for a non-minimum phase system.

Both the results above dem onstrate the applicability and the effectiveness of robust 

output feedback sliding mode control in real nonlinear multivariable industrial problems. 

These two industrial multivariable control problems should convince the reader of the 

merits of introducing ‘robust sliding mode control using output information’ into a real 

system where the robustness and practicality of the procedures are substantiated by the 

examples.

9.2 R ecom m endations for Future Work

• Throughout the thesis, especially from a theoretical standpoint, in Chapters [§4, 

§5, §6] where ‘discontinuous’ control components are considered in all proofs and 

induce ideal sliding motions. However, for simulation (and/or practical imple­

mentation), the discontinuous component has been replaced by an approximate 

‘continuous’ control component. This avoids the chattering caused by the discon­

tinuous control but it also reduces the robust properties. A ‘trade-off’ is necessary 

in such cases [21]. An alternative approach may be studied by reformulating these 

controllers, the effect of this modification could be rigourously explored using a 

‘practical stability’ argument as used in Ryan and Corless [88] and Spurgeon and 

Davies [98] and formal performance bounds could be achieved.

• One m ajor step towards verifying such output feedback sliding mode controllers 

is to implement them on a real plant. This would provide a series of exciting and
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challenging practical issues. From an implementation viewpoint, it is relevant to 

examine the effect of output noise, vibration, anti-windup, complex nonlinearities 

etc. on the sliding mode performance which has not been addressed in this thesis. 

Some relevant work has appeared in the literature [29, 93, 117].

• In Chapters §4 and §5 it is seen that the square plant has no design freedom in 

output feedback sliding mode design unless it is used with a full order compen­

sator/estim ator as in Chapter §6. This increases the total dynamics. Hence it is 

useful to study a minimum order dynamic compensator which can produce some 

design freedom and /o r circumvent the problems associated in the controller design 

of the square plant and /or the non-minimum phase systems.

• Output tracking for non-minimum phase systems is not addressed in this thesis. 

An appropriate tracking controller formulation for this system may be studied. 

The complete nonlinear behaviour of a non-minimum phase industrial problem 

with dynamic output feedback sliding mode controller has not been done. This 

represents an area of future research.

• In Chapters §4 and §5, it is assumed tha t the system satisfies the controllability 

assumption and the rank of (C B ) is equal to the number of inputs. In Chapter 

§6, an additional assumption of observability is added. Many practical systems 

do not satisfy the assumption ‘rank(C i?) equal to the numbers of inputs’. This 

may give some clue to future work using dynamic output feedback sliding mode 

control.

• A more divergent and speculative area of future work is to investigate the discrete 

time versions of the robust output feedback sliding mode control considered in 

this thesis. From a practical viewpoint, it is im portant that the sampling period 

required for sliding mode approach is very small due to the nonlinear nature of 

the control structure. A discrete time framework would consequently be beneficial 

for this type controller.



A ppendix A

M athem atical Prelim inaries

A .l  M atrix P roperties

P  =

Consider the m atrix partitioned as

Pn P12 

-P21 P22

where the sub-blocks P „  G TR.1*1 and P22 6  H rXr. The following properties of the matrix 

P  hold.

1. If the m atrix P 21 =  0 then

• det(P ) =  det(P n) det(P 22 )

• a(P ) = cr(Pn) U <t(P22)

2. If the m atrix P  =  P T and P 12 =  P ^ , i.e. the m atrix is symmetric and positive 

definite then

• P  >  0  => P n  > 0  and P 22 >  0

• P 11 >  P12P22 P21 and P 22 >  P2\P\\ P12

where P  >  0 implies the eigenvalues of the m atrix P  are positive.
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A .2 C ontrollability and Observability

190

Consider the linear time invariant system in equations (2.16) and (2.18) then the below 

definition and properties are exist.

D efin ition  A . l  The system, is said to be completely controllable if any given initial 

condition x(to) there exists an input function such that in finite time t the system x(t) = 

0 .

If the above definition holds then the following conditions are equivalent :

• the m atrix rank[I? A B  A 2B  . . .  A n~1B] = n

• the m atrix [ s ln — A  B ]  has full rank for all s  G C

• the spectrum of (A +  B F )  can be assigned arbitrarily by choice of gain matrix 

F  € !Rmxn

D efinition A .2 The system is said to be completely observable if  the output function 

y (t) of equation (2.18) uniquely determines the initial condition x ( t0) over a small time 

interval [t0, t].

The m atrix pair (A, C) is completely observable if and only if the m atrix pair (AT, CT) is 

completely controllable then the above properties are true for the m atrix pair (AT, CT).



A ppendix B

Stability and Boundedness

B .l  Lyapunov S tab ility

Consider the nonlinear system defined as

x(t) = F ( t,x )  (B-l)

where x G !Rn and F  : 1R+ x IRn —* IRn with F ( t , 0) =  0, i.e. the system has

equilibrium point at origin. If a generalised energy function can be found which is non

zero except at an equilibrium point and whose total time derivative decreases along the 

system trajectories then the equilibrium point is stable [94]. Define a scalar function 

V (x) : ]Rn —► 1R to be the quadratic form

V (x) = xTP x  (B.2)

where P  G IRnXn is symmetric positive definite m atrix and the function is non zero 

except at origin.

D efin ition  B . l  The equilibrium point of the nonlinear system in equation (B .l)  is said 

to be quadratically stable if  there exists asymmetric positive definite matrix Q G IRn><n 

such that the total time derivative satisfies

V (x)  =  2xTP F (t, x) < — x t Q x  (B.3)

This implies th a t V  < 'yV  where 7  =  Amt-n(Q)/Amax(P ) and hence the state is asymptot­

ically convergence to the origin with rate of at least 7 . If the equation (B .l) represents
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a linear function as F ( t , x) =  A x (t) where the matrix A  must have stable eigenvalues if 

and only if it satisfies the Lyapunov equation

P A  +  A t P  =  - Q  (B.4)

Therefore the linear system is quadratically stable. However in practice for an uncertain 

system, it may not possible to guarantee asymptotic stability but bounded stability may 

be defined.

B.2 U ltim ate B oundedness

Consider S  E H n as a bounded set such that if the trajectories #(£) enter S  in finite 

time and remain there for all subsequent time, i.e. the system energy always decreases 

outside the set S  then the system is unable to escape the boundary of the set S. This 

may be defined as

D efin ition  B .2 A n uncertain system with state x ( t) is said to be globally uniformly

ultimately bounded with respect to the bounded set E E !Rn if:

• for each uncertainty realisation F ( t ,x ) and for each (t 0,x ( t0)) E IR+ X IRn there 

exists at least one solution :r(.) : [t0,t i )  —* lRn,^i >  t0;

• given any real number S >  0, there exists a real number d(S) > 0 such that, for any 

solution x(.) : [tQ,t i )  —► lRn with ||^ ( t0)|| < 6, ||a?(t)|| <  d(6) for all t E [t0,ti);

all solutions can thus be continued over [t0, oo];

• for every x ( t0) E !Rn there exists a non-negative constant T (x (t0),E) E IR+ such 

that, for every solution x{.) : [t0 ,oo] —> ]Rn with tQ E IR+ arbitrary, x(t) E E

for all t > t 0 +  T (x ( t0),E).

The set E is usually small boundary around origin and the concept is often called 

practical stability.
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N um erical A lgorithm s

C .l M ethod  for N onlinear Least-Square Solution

Solution of nonlinear least square problem using general Gauss-Newton iterative method 

is summarised using the cost function defined as

J(x )  =  ± ( F X f ( F X )  (C .l)

Using the iterative formula of Ortega and Rheinboldt [82], the above equation (C .l) can 

be written as

=  x* - F ’ (xi)T F' (xz) ~ F \x lY F x l (C.2)
- l A\T

where, i = 0 , 1 , 2 ..., the point x*, the minimum of the function x can be derived, as­

suming that the inverse of the above expression is exists, where F '(x%) is the Frechet 

derivative with respect to x*. The corrected form of the general Gauss-Newton itera­

tive formula can be transformed to improve the convergence rate with the help of two 

weighted param eter u>i and At-, such that

X t+1 =  X % — U J i F ' i F f F ' i x 1) +  A i l  ‘ Fr(xtf 'F x t (C.3)i\T

In this equation F '(x l)TF '(x l) is a symmetric positive semi-definite matrix. If A; > 0, 

then the inverse in above equation is always exists and the parameter UJi can be chosen 

so that the J (x t+1) <  J(x*), hence the convergence rate can be controlled.
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C.2 M ethod  for Sym m etric M atrix D esign

194

Consider the m atrix defined in equation (4.88) and setting the initial value of a — 0 .0 , 

giving

C (N ) = (F C )t F C A (I  -  N C )  (C.4)

which is required to be negative semi-definite in order to satisfy the reachability condi­

tion. The symmetric m atrix may be written as

np

2 —  1

where the m atrix

M 0 =

C(M ) = M 0 + J 2 ” M  (C.5)
2 —  1

(.F C f F C A  +  (F C A fF C '
2

is the constant part of the symmetric m atrix C(M ) and the let Mi is defined as

' (F C )T F C  AN iC  +  C t N J (F C A )t FC '
M;

(C.6 )

(C.7)

The value of is defined as the ith element of the vector formed by stacking the columns 

of the N  m atrix : [nn , n21 , . . . ,  nnl; n 12, n22, . . . ,  nn2; . . . ;  n ip, ro2p, . . . ,  nnp]T. Since the 

m atrix N  is a gain m atrix and straightforward minimisation of the eigenvalue might 

yield too large gain. To avoid this problem define the weighted average of the norm 

of m atrix N  and then minimise the maximum eigenvalue of the m atrix C(M ). This is 

defined as the quantity to be minimised :

J ( N)  = \ max{C{M )} +  p \ |iV |r (C.8 )

where p > 0 is a constant and r is the type of norm to be minimised [57].

C.3 M ethod  for R obust M ulti-objective M atrix D esign

Consider the state feedback closed-loop m atrix

A c = A q -  B qK q (C.9)

where the matrices A q G JRnXn,Bq £ ]RnXm and the m atrix gain K q £ ]RmXn is to be 

designed assuming that the m atrix pair (A q,B q) is completely controllable. The normal
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m atrix design approach described in Section §4.6 is applicable in this case. Theorem 

4.1 is to be valid for the closed-loop m atrix A c. Using Theorem 4.1 and equation (C.9), 

the equation (4.64) can be rewritten as

P TB qK q +  B qK qp \ = [Q + P TA q + A qP ] =  Q (C.10)

Using the Kronecker product, the above equation becomes

(P TB q ® In + B q ® P T)rsK q =  rsQ  (C .ll)

For simplicity, this is further written as

Y r s K q = rsQ  

rsK q =  Y 'r sQ  (C.1 2 )

where Y  = {PTB q® I  + B q® P T) e ]RnnXron, rsK q <E JRmnXl and rsQ  e IRnnXl represent 

the column vectors spanned by the rows of the matrices K q and Q respectively and 

Y * =  ( Y t Y )~ 1Y t  represents the pseudo inverse of Y . The solution of equation (C.12) 

can be w ritten as nonlinear least-square solution as defined in equation (4.73), rewriting

J x =  \\Y (P )rsK q — rsQ (P ,Q )\\2 (C.13)

for all matrices P  >  0 and Q =  QT > 0. Introducing the second constrain as

= B i — K qB 2 (C.14)

must be minimum where B \ and B 2 are two appropriate matrices. This can be written 

using the Kronecker product of equation (C.14) and substituting the equation (C.12), 

the solution can be written as follows

= \\rsBi -  I  ® B fy trsQ W 2 (C.15)

The overall cost function is then given as

J  — olJ \ (3J2 (C.16)

where a  and are positive weighting factors. If the equation (C.16) is minimised using 

matrices P  >  0 and Q = QT > 0 , then the corresponding solution of K q produces a

robust stable closed-loop m atrix of equation (C.9), hence minimise the effect of uncer­

tainty and also minimising ||# i ||,  which gives minimum contributions of the matched 

uncertainty into the reduced order channel. This way the closed-loop system may be 

design for an optimal performance.
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