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Abstract

The use of spectral analysis for fault detection and diagnostics in real-time has been 
conservative due to concerns over large processing requirements, especially when 
large sample sizes and high sampling frequencies are used. In this work, it is shown 
how such concerns can be allayed, to a large extent, by Autoregressive (AR) 
modelling, as the AR method has enhanced resolution capabilities compared to the 
Fast Fourier Transform (FFT) technique even when small sample sizes are used and 
requires a sampling rate just slightly above the Nyquist rate to give good parameter 
estimates. The use of a parametric method of AR modelling for fault diagnosis and 
prognosis is a relatively new concept in the field of condition monitoring.

In this thesis, a new methodology is proposed that combines AR modelling 
techniques and pole-related spectral decomposition for the detection of incipient 
single-point bearing defects for a vibration-based condition monitoring system. 
Vibration signals obtained from the ball bearings of a dry vacuum pump operating in 
normal and faulty conditions are used as the test signals and are modelled as time- 
variant AR series.

The positions of the poles, which are the roots of the AR coefficient 
polynomial, vary for every frame of vibration data. It is a known fact that as defects 
such as spalls and cracks start to appear on the ball bearings, the amplitude of the 
vibrations of characteristic defect frequencies increases. This is seen as the poles 
moving closer to the unit circle as the severity of the defect increases. Simple 
statistical indicators such as the power and frequency of each bearing defect spectral 
component can be extracted from the residual and position of the AR poles. These 
indicators can be effectively used for fault classification to distinguish between the no­
fault and defective cases as the difference between them is significant.

(300 words)
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1. INTRODUCTION

The research work described in this thesis was intended as a vehicle to develop further 

the theory associated with the traditional diagnostic techniques applied to rotating 

machinery such as time domain methods (Alfredson and Mathew 1985b), cepstral 

analysis (Zheng and Wang 2001), also known as cepstrum analysis, in which the 

spectrum of a logarithmic spectrum is calculated, envelope detection techniques 

(Randall, Antoni et al. 2000), wavelet transforms (He, Zhao et a l  1996) and vibration 

spectrum analysis (Mathew and Alfredson 1983; Mclnemy and Dai 2003) to predict 

failure in such machines. The main motivation for this work was the development of a 

simple and efficient fault detection tool based on vibration measurements for the dry 

vacuum pump.

In this chapter, an introduction to the work carried out in this research is given, 

covering an overview of the thesis itself and the goals and scope of the research are 

presented. The main contributions of the thesis are clearly listed. The key invention, 

which is a vibration based fault detection tool based on the tracking of AR pole 

movements in the complex z domain, is briefly described. The organization of this 

thesis is given at the end of the chapter. Many of the subjects mentioned in this chapter 

will be discussed in more detail in later chapters.

1.1. Overview

In many industries worldwide today, unplanned downtime as a result of machinery 

failure is a costly and time-consuming affair affecting the workers’ safety, production 

efficiency and return on investments. There is a need to find machine faults at an early 

stage and one way of doing this is to use condition monitoring (Isermann 1995; 

Isermann and Balle 1997; Nandi and Toliyat 1999). Condition monitoring is the 

process of tracking the health of a machine by monitoring characteristic parameters or 

variables of the machine such as vibrations, acoustic emissions, pressure 

measurements, temperature and electrical properties (i.e., current and voltage 

measurements) to detect existing or developing faults in the components of the 

machine. A fault is defined as an unallowable deviation of at least one of the 

characteristic properties of the machine. Changes in the condition of the machine
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manifest themselves as increased vibrations, higher temperatures, louder audible 

sounds, increased acoustic emissions transmitted in the structural components of the 

machine and higher currents drawn by the motor of the machine. Condition 

monitoring should be inexpensive, robust and simple to use. The main motivation of 

this work was to find a simple and easy condition monitoring tool to detect the 

development of faults in a dry vacuum pump. The particular machine that was used as 

the test bed in this project belongs to an important class of rotating machines not 

previously studied in this context. It is the BOC-Edwards iGX dry vacuum pump 

which is part of BOC’s so-called ‘dry’ vacuum pump range.

There are many ways to classify machines but for the purpose of this work, it 

is convenient to consider two broad classes, respectively representing machines 

designed to mostly run with variable load and speed and machines designed to mostly 

run with fixed load and speed. A car engine is a good example of the former and a 

vacuum pump, of the latter. Hence a “steady state” machine is defined to be a machine 

in which all system values attain constant values at “steady state” operation (Esch 

2002). It is a known fact that “steady state” machines have to be designed to withstand 

the effects of transients, such as starting loads, but it is not primarily these issues that 

concern us here. From the perspective of this research, the important point is that, for 

most of the operating time, the measurable variables will not be dynamically changing 

and, hence, any degradation in machine performance needs to be inferred from slow 

drifts in nominally constant values and/or in the statistics of “stationary” signals such 

as vibrations. Many rotating machines, such as pumps in vacuum systems, are, in 

contrast, expected to work in “steady state” most of the time. Predictable transient 

loads are still present in these situations but they are present for a much smaller 

fraction of the time. Unpredictable transients are often very brief. Both types of 

transient phenomena are promising sources of diagnostic information for fault 

detection in rotating machinery but the challenge identified as the main research 

problem in this thesis lies in looking for small and subtle changes in the “steady state” 

operation of the dry vacuum pump. The dry vacuum pump can be taken to be an 

example of a “steady state” machine as, during most of its operating time, it runs at a 

constant speed, producing signals of constant mean and variance, except at certain 

operating conditions where the speed fluctuates due to variations in the load and
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during start up and shut down conditions, when it produces transient signals. The dry 

vacuum pump is hence defined as a type of “quasi-steady state” rotating machinery.

The main objective of the work is the complex challenge of fault detection in a 

“quasi-steady state” rotating machine. The dry vacuum pump can be made to operate 

at fixed rotating speeds and at constant operating conditions producing “quasi-steady 

state” signals. By analysing the various signals produced by the pump such as 

pressure, temperature, sound and inverter current (drawn from the 3 phase 2 pole AC 

asynchronous induction motor driving the pump) and particularly the vibration signals 

(Mathew 1989; Sabin 1995; Tang, Tan et al. 2001), faults can at first be detected and 

by studying the behaviour of the signals as faults develop (Mathew and Alfredson 

1984; Mathew and Alfredson 1986; Mathew, Kuhnell et al. 1987b; Zhuge, Lu et al. 

1990), faults can then be predicted at a later stage, if fault patterns can be established.

Fault detection and prognosis of equipment is an established technique in the 

prevention of costly machinery failure in many industries (Mathew, Kuhnell et al. 

1987a; Yang, Mathew et al. 2005; Zhang, Mathew et al. 2005). The equipment 

monitored are different types of rotating machines and the reliability, availability and 

maintainability of these machines are critical to the overall performance and operation 

of the industries to maintain their competitiveness in a global marketplace. Some 

examples of these type of “quasi-steady state” rotating machines are piston pumps, 

rotary pumps, screw pumps, motors, engines, compressors and fans (Peck and 

Burrows 1994; Chen, Du et al. 1995). The various types of faults that can be 

monitored from these rotating machines are misalignment, mechanical looseness, gear 

faults, bearing faults, cavitation problems and lubrication deficiencies (Stammers 

1989; He, Zhao et al. 1996). It is becoming more and more important to receive early 

warning of any problem before failure and outage occurs.

The dry vacuum pump is itself of high value (costing about £10,000) and, since 

it supports a vacuum system involved in silicon chip manufacture, the secondary 

effects of breakdown are often expensive. This type of pump is prevalently used in the 

wafer fabrication process in the semiconductor industry for applications such as 

lithography, Physical Vapor Deposition (PVD) process and silicon and metal etching 

and implanting sources (Bachmann and Kuhn 1990) and it has been estimated that
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pump failure can contribute to significant loss of valuable products e.g. loss of wafer 

batches in excess of $100,000 (Troup and Dennis 1991). Furthermore, loss of 

production time whilst the pump is repaired or replaced incurs additional costs to the 

operator. Therefore continuous condition monitoring of the pump is desirable to allow 

scheduling of maintenance or the replacement of a pump without affecting production. 

Dry vacuum pumps are not only economically important in their own right (British 

export value of several hundred million pounds) but they are also representative of a 

much wider class of similar machines which run mostly in “steady state” but have 

unpredictable failure modes. This machine is, therefore, considered to be a good 

exemplar process to work on and these requirements provide the motivation for the 

development of diagnostic techniques which can be used to predict impending failure 

of dry vacuum pumps and other similar machinery.

The condition monitoring and fault diagnosis scheme that will be developed 

aims to detect possible faults on different subsystems on the dry vacuum pump before 

these faults become serious. One subsystem under consideration is the set of bearings 

of the dry vacuum pump. Bearings are a very common component in industrial 

machinery and their importance in efficient and effective process operation has 

generated considerable interest in the field of condition monitoring.

Monitoring bearing vibration in a pump system is highly cost-effective in 

minimizing the pump downtime, both by providing advance warning for appropriate 

actions to be taken and by ensuring that the system does not deteriorate to a condition 

where emergency action is required. Bearing defects manifest themselves as either 

excessive wear or damage in the rolling ball elements as well as in the inner/outer 

races of the bearings (Mclnemy and Dai 2003). Fault identification of ball bearing- 

related phenomena using condition maintenance techniques has been the subject of 

extensive research for the last two decades (Sawalhi, Randall et al.; McFadden and 

Smith 1984a; McFadden and Smith 1984b; McFadden and Smith 1985; Tandon and 

Choudhury 1999; Choudhury and Tandon 2000; Ho and Randall 2000; McFadden and 

Toozhy 2000; Randall 2001; Randall, Antoni et al. 2001; Randall 2004; Antoni and 

Randall 2005; Harsha 2006a; Harsha 2006b; Tandon, Ramakrishna et al. 2007; 

Tandon, Yadava et al. 2007). One of the possible approaches to fault monitoring of the 

bearings is the processing of mechanical vibration signals obtained from the external
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housings in which the bearings are mounted for extraction of diagnostic features. This 

technique is more commonly known as vibration signature analysis and there are 

many conventional procedures based on time harmonic and power spectrum analysis 

that have shown considerable success in detecting the presence of failures in the 

machines’ components even at an incipient stage (Smith 1982; Alfredson and Mathew 

1985b; Alfredson and Mathew 1985a; Hoffman and van der Merwe 2002; Du and 

Yang 2007; Sheen 2007; Zarei and Poshtan 2007).

This work has been limited to the study of bearing faults in the dry vacuum 

pump but can be easily extended to the study of other types of mechanical faults in the 

pump. Discussed in the thesis is the use of vibration measurements. The vibration 

signal was chosen as the principal signal for investigation as it was known as to be a 

good indicator of rolling element faults (Tandon and Choudhury 1997). The analysis, 

however, can be done with other types of “steady state” stationary signals such as 

acoustic emissions and sound.

The main investigation was validated using vibration signals obtained from the 

BOC Edwards iGX dry vacuum pump. This pump has a single row of deep groove 

ceramic bearings at both the low and high vacuum ends. If faults were to develop in 

the bearings, these can be identified from vibration signals as the signals obtained 

from the faulty conditions are different from those obtained in the non-faulty 

conditions.

Many methods currently used in the analysis of spectral properties of 

mechanical vibrations and acoustic emissions produced by rotating machines 

(Venkatesan GT, Danlu Zhang et a l 1999; Andrade, Esat et al. 2001) are soundly 

based in knowledge of the physical structure of the machine. However there is much 

about key stages in such methods that is arbitrary (or empirically derived), indicating 

scope for optimisation and the need for them to be used in combination with other 

methods. Amongst the different time and frequency domain based diagnostic 

techniques, vibration analysts often rely on the Power Spectral Densities (PSDs) of 

vibration data to monitor the health of moving parts of machinery. The PSD spectral 

components of the vibration signatures allow the identification of several types of 

faults. Common failures such as bearing faults and gear problems can be detected by
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trending major frequency components and their amplitudes. The PSD can also be used 

to identify other types of vibration-related faults such as imbalance, misalignment, 

cavitation problems, shaft imbalance and lubricant deficiency (Mathew 1987) but our 

studies will concentrate mainly on identifying bearing faults.

Most of the PSD methods used are widely based on the FFT (Fast Fourier 

Transform) technique. However, the FFT-based spectrum analysis method does suffer 

from some shortcomings. One of the major setbacks of the spectral estimation 

technique is that a large number of frequency components have to be monitored due to 

the complexity of the system. A standard approach in evaluating the power at a 

particular frequency implies the computation of the whole spectrum first and then 

estimation of the power of a particular frequency of interest. Another concern of the 

FFT technique is that a large enough sample size has to be used for the spectral 

estimation for reasonable resolution capabilities as the resolution of the FFT is 

inversely proportional to the frame size utilized (S. Lawrence Marple Jr. 1987). This 

might not be appropriate in real-time applications. The major shortcomings of the 

FFT-based methods are discussed in detail in Section 2.4.2 of the thesis.

An interesting statistical signal processing alternative is to evaluate directly the 

frequencies of interest. In this case only those frequencies have to be estimated instead 

of the whole spectrum. This provides a reduction in computing time and effort, 

facilitating real-time estimation. In this study, characteristic bearing defect frequencies 

are extracted from the pole frequencies of a parametric time series AR model (Kay and 

Marple 1981; Broersen 2006). The AR model is used to decompose the signals into a 

set of poles which have a correspondence to the peaks of the signal’s PSDs. Using the 

AR estimation technique, it is not necessary to obtain the whole spectrum. Instead, the 

evaluation of the pole frequencies of interest from the derived AR parameters would 

suffice, as AR modelling allows spectral decomposition. This often just involves the 

calculation of the AR coefficients and the variance of the input vibration signal 

(Mainardi, Bianchi et al. 1995). Small order AR models can efficiently estimate the 

pole frequencies which correspond to the poles of the bearing defect frequencies.

The technique of AR estimation has been very widely used as a spectral 

analysis tool in geophysical (Kay 1988; Maiwald, Dalle Molle et al. 1993) and
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biomedical applications (Schlindwein and Evans 1989; Keeton and Schlindwein 1998; 

Boardman, Schlindwein et al. 2002; Kelly, Burke et al. 2002), forecasting in economic 

studies and linear prediction models in speech coding (Oppenheim and Schafer 1975;

S. Lawrence Marple Jr. 1987; Marcek 2000; Prasolov 2004; Ishizuka, Kato et al. 

2005; Batina, Jensen et al. 2006; Gaubitch, Ward et al. 2006) but its application in 

fault prediction studies is less common. Previous studies have reported the use of the 

AR technique as a model based linear one-step ahead predictor of the signal 

(McCormick, Nandi et al. 1998; Wang 2001c) in fault detection studies but pole- 

related spectral decomposition and tracking the trajectory of ‘critical poles’ for fault 

detection purposes is a new method. The AR technique also only requires a fraction of 

the samples that are required by the FFT method for the same resolution (Kay and 

Marple 1981). When compared to the traditional FFT method, the resolution of the AR 

technique is higher due to its implicit extrapolated autocorrelation sequence. This 

means that smaller sample sizes can be used for PSD estimation. The main limitation 

of the FFT method is that it does not work well for short data records and has a limited 

frequency resolution. The AR technique can overcome these limitations by allowing 

the use of smaller sampling rates and sample sizes while achieving a superior spectral 

resolution compared to the FFT methods. The choice of technique to be implemented 

has been driven by the aim of real-time implementation, as the ability to produce 

spectral estimates from short segments of data is important for the analysis of fault 

detection of vibration signals from the dry vacuum pump. The key novelty of the work 

was the development of a tool in software using AR modelling techniques that can 

detect the onset of incipient single-point bearing defects from the vibration data of the 

dry vacuum pump based on the AR pole positions in the z domain.

In summary, these are key issues this thesis will try to address. When there are 

many Commercial-Of-The-Shelf (COTS) products available which can be used as 

spectral analysis tools for frequency estimation of signals for condition monitoring 

purposes, why is it useful to employ an alternative spectral estimation tool using AR 

modelling methods? Is spectral estimation the only way fault detection can be done 

using AR modelling? What benefits are attained by the proposed method of tracking 

the AR pole trajectory movements in the z domain as opposed to existing techniques?
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The current methods used in fault detection are first reviewed and then the 

basic principles of AR modelling are explored in order to use it effectively for fault 

detection. Construction of a fault detection tool that can be systematically used for 

classification and quantification of bearing faults based on vibration data from a type 

of “quasi-steady state” rotating machine (the dry vacuum pump) is considered. In the 

latter half of the thesis, the AR fault detection tool is applied to real data obtained from 

the iGX dry vacuum pump to show its effectiveness in detecting an important class of 

bearing fault, which is the inner race fault.

1.2. Original Contributions

Applying AR modelling techniques for fault detection studies in a “quasi-steady state” 

machine has resulted in the following original contributions:

[1] This work is the first to introduce the concept of tracking of pole movements in the 

complex z domain approach for vibration based fault detection studies. One of the 

objectives of the research is to study the behaviour and stability of the poles as 

fault conditions develop in the pump. From the position of the poles inside the unit 

circle, classification and quantification of the main spectral peak of defect 

frequencies can be easily performed, leading to the possibility of having frame to 

frame monitoring of spectral parameters of interest. To test the efficacy of the 

scheme, the AR pole trajectory tool was applied to increasing frame sizes of 

vibration data captured from a dry vacuum pump in the laboratory and the 

performance of the classification scheme was tested with Receiver Operating 

Characteristic (ROC) analysis. The proposed method achieved high sensitivity and 

specificity rates. This computational method is very attractive for condition 

monitoring applications as it provides a more immediate comprehension of the 

spectral process characteristics when expressed in terms of poles and AR spectral 

components. The pole representation facilitates easier understanding of the spectral 

characteristics of the process because of the one-to-one correspondence between 

the poles and the AR spectral peaks. This main original work presented in the 

thesis has been published in (Thanagasundram, Gurung et a l 2006), 

(Thanagasundram and Schlindwein 2007) and (Thanagasundram and Schlindwein 

2006d).
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[2] As part of the research, an investigation was also conducted to compare the 

performance of two types of vibration sensors, a piezoelectric accelerometer and 

an integrated Micro Electrical Mechanical system (iMEMs) surface 

micromachined accelerometer, to explore alternative cost-effective solutions for 

acquiring reliable vibration data for diagnostics. Surface micromachined 

accelerometers are a new technology and their usage for vibrational analysis has 

been conservative due to concerns over increased noise levels and tolerance to 

high temperatures. It has been shown that such concerns can be allayed and that 

surface micromachined accelerometers can be an effective low cost high-quality 

alternative for machine condition monitoring. This second original contribution 

has been published in (Thanagasundram and Schlindwein 2006c).

[3] Some interesting investigations on finding out the optimum AR model order, 

correct AR sample size to be used and determination of the appropriate estimation 

method to be used in the context of the study of application of vibration data for 

fault detection in the dry vacuum pump were done. As a result of the research 

conducted, a new rule of thumb was also proposed for determining the minimum 

model order for Autoregressive-based spectrum analysis for rotating machinery. 

These original contributions have been published in (Thanagasundram, Feng et al. 

2005), (Thanagasundram and Schlindwein 2006b) and (Thanagasundram and 

Schlindwein 2006e).

In summary, a fault diagnosis system in which AR modelling techniques are used as 

the principal tool for spectral estimation has been established. This way of fault 

detection and classification is new, as opposed to the more traditional way of 

conducting vibrational analysis, where FFT analysis is used for transformation of 

vibration data from time to frequency domain. The work on application of AR 

modelling techniques to fault detection has resulted in a novel concept of using the 

trajectory of the pole locations as a fault classification tool. This method has great 

potential in terms of its applicability to fault detection and fault prediction as the 

signal space is reduced tremendously and this aids fault classification. This new 

method has interesting potential applications in automatic system diagnosis, 

prognostics-related systems and condition monitoring and forms the main core of the 

work done, resulting in an original contribution.
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1.3. Thesis Structure

The remaining part of this thesis is organized as follows:

Chapter 2 presents the major bodies of theories covered in this thesis, including the 

background research conducted to understand the research problem as a whole and its 

related literature. This chapter can be broken into three main sections.

In the first section, the working mechanics of the dry vacuum pump are 

introduced. The ball bearings of the dry vacuum pump upon which the methodology 

introduced in Chapter 3 was applied to obtain data for most of the analysis presented 

in this thesis are introduced and explained. The ball bearing defect frequencies are also 

defined.

The second section explains the principles of AR modelling. Understanding the 

basic fundamentals of AR modelling underpins the link between AR modelling and 

the proposed fault detection tool described in the later chapters. The theory of the 

various estimation methods such as the Yule-Walker and Burg and their variations are 

presented. Justification on the selection of the choice of estimation method of Yule 

Walker is given. The use of AR modelling techniques in condition monitoring studies 

is also reviewed.

The third section reviews the theory and practice of alternative vibration-based 

diagnostic techniques currently used in industry. The FFT method, which is a popular 

spectral analysis technique, is introduced. The boundaries and limitations of both AR 

and FFT methods are considered.

Chapter 3 describes the methodology adopted to solve the research problem presented 

in the thesis. The chapter gives an overview of the experimental setup, the data 

acquisition system and the sensors used in acquiring the vibration data from the dry 

vacuum pump. The performance of two types of vibration sensors, the traditional 

piezoelectric accelerometer and an integrated Micro Electrical Mechanical system 

(iMEMs) surface micromachined accelerometer were evaluated to explore alternative,
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cost effective solutions for acquiring reliable vibration data for diagnostics. The work 

in this chapter has been published in (Thanagasundram and Schlindwein 2006c).

Chapter 4 introduces the notion of AR order selection criteria. This chapter can be 

broken down into two main sections.

The first section presents a thorough investigation conducted to determine the 

optimal AR model order for the vibration data obtained from the dry vacuum pump 

using various formal order selection criteria. Numerical examples are given and the 

need for the estimation of the optimum order is validated. The work in this chapter has 

been published in (Thanagasundram, Feng et al. 2005).

The second section is an extension of the work done in the first section and 

presents a practical, simple rule for determining the minimum model order for 

autoregressive-based spectrum analysis for rotating machinery based on key findings 

arising from the author’s original work. The work in this section has been published in 

(Thanagasundram and Schlindwein 2006b).

Chapter 5 investigates two important facets in the implementation of the AR 

modelling. They are the choice of the sampling size and sampling frequency to be 

used in the implementation of AR modelling. This chapter can be broken down into 

two main sections.

The first section analyses the need for selection of an optimal sample size for 

AR modelling for our studies. Finding the optimum sample size required to 

encapsulate the vibration signal’s behaviour for a given model order is important in 

the development of AR fault detection tool introduced in the later chapters and this 

aspect is investigated in this section. The work in this chapter has been published in 

(Thanagasundram and Schlindwein 2006e).

The second section conducts an investigation to find out what is the optimal 

sampling frequency to be used. First a qualitative explanation is given on what is the 

effect of increasing the sampling frequency on the selection of AR model order. Then
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this explanation is justified with actual analysis conducted on data obtained from the 

dry vacuum pump at three different pump speeds..

Chapter 6 discusses resonance demodulation technique with particular respect to 

application of Hilbert transform. An explanation of why the application of the 

resonance demodulation enhances the chance of successful fault detection is given. 

The work in this chapter has been published in (Thanagasundram and Schlindwein 

2006a).

Chapter 7 formalizes the notion of the AR fault detection tool and explains the 

preliminaries. The novel concept of tracking pole movements in the complex z domain 

for vibration based fault detection studies is clarified.

Chapter 8 presents results obtained with the AR pole-based fault detection tool 

described in Chapter 7. Numerical examples are given with real vibrational data from 

the dry vacuum pump. The performance of the tool for increasing frame sizes, 

validated using ROC analysis, is also presented. An investigation was also conducted 

to explore the stability of the poles for faulty and non-faulty data through the 

calculation of condition numbers. The work in this chapter has been published in 

(Thanagasundram, Gurung et al. 2006), (Thanagasundram and Schlindwein 2006d) 

and (Thanagasundram and Schlindwein 2007).

The performance of the proposed AR pole-based trajectory tool is compared 

with the FFT-based method for fault detection of data obtained from the dry vacuum 

pump. The computational costs of both methods are benchmarked and it is justified 

why the AR-based method is more favourable for real-time implementation.

The last chapter summarizes the work done and gives some concluding remarks.
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2. BACKGROUND

2.1. Introduction

This chapter presents a brief introduction to the dry vacuum pump, which serves as the 

example of the “quasi-steady state” rotating machine in the practical component of the 

work. The working principles of the dry vacuum pump are described. The ‘Root and 

Claw’ mechanisms are explained in detail and the advantages of using dry vacuum 

pumps are presented. A detailed discussion of why condition monitoring of dry 

vacuum pumps is important in industry is also presented. The ball bearing defect 

frequencies which are relevant to the studied research problem are defined and 

calculated in Section 2.2.3.

This chapter also outlines the theory of AR modelling that is going to be 

implemented in the following chapters. The text is not intended to give an exhaustive 

description of the AR technique, which has now been documented in numerous books 

(Jenkins and Watts 1968; S. Lawrence Marple Jr. 1987; Kay 1988; Box, Jenkins et al. 

1994). Instead, a brief review of the key formulae is given here, with a view to their 

use as part of a pre-processing fault detection tool for vibrational analysis of the dry 

vacuum pump.

In the Section 2.4, an overview is also given of the extensive research done in 

the area of alternative vibration-based diagnostic techniques. While these techniques 

are established and have been proved to work effectively in the area of fault detection, 

especially the detection of ball bearing faults, each method does have some 

drawbacks. None has targeted the problem from a real-time aspect as the diagnosis of 

the health of dry pumps in real-time is an important objective in the context of the 

problem studied. The approach used here has been to develop a real-time online fault 

condition monitoring tool for the dry vacuum pump right from the onset of the 

beginning of the research.
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2.2. The Dry Vacuum Pump Introduced

A dry vacuum pump is a positive displacement mechanical rotary pump that can attain 

a vacuum without the use of fluid lubricants or sealant between rotors and stator in the 

pumping chamber (Duval 1989). Hence it is also known as the “oil-free” pump. Dry 

vacuum pumps can be based on different principles: the multistage Roots blowers, 

screw compressors, multistage dry pistons, turbomolecular drag pumps, the scroll type 

and the multistage Claws (Vogelsang, Verhulsdonk et al. 1999; Akutsu, Matsuoka et 

al. 2000; Lessard 2000). The BOC Edwards dry pumping technology (Edwards 1993) 

is based upon successive pairs of non-contacting pump rotors which transfer gases 

from the process to the atmosphere. The particular BOC Edwards iGX pump utilised 

in this project is a modular multistage pump that has one stage of Roots and four 

stages of Claws (refer to Figure A -l and Figure A-2 in APPENDIX A). This pump is 

classified as a high vacuum pump as it can attain an ultimate vacuum level of up to 

0.005 mbar (a pump is termed a high vacuum pump if it can attain base pressure lower 

than 0.1 mbar). Different models of the pump can have different pumping capacities 

and the model that we use has a peak pumping speed of 100 m 3h~l . The typical 

construction of the pump consists of a pump housing having an inlet and an outlet for 

the passage of gas to be pumped, a pair of parallel shafts extending throughout the 

pump housing for supporting the rotary movement of rotors, timing gears for 

synchronising the movement of rotors, rotors arranged in complementary pairs and 

ball bearings at the inlet and outlet to support the rotor shafts.

In the iGX dry vacuum pump, there is one stage of a pair of two lobed rotors in 

the form of figure 8 and they are known as ‘Roots’ (Figure A-3 in APPENDIX A). 

The Roots are valveless positive displacement devices which interlock, synchronize 

and rotate in opposite directions. Very large displacement speeds can be obtained and 

the Roots have high throughput (Wycliffe 1987a). The Roots mechanism is very 

effective in the pressure region 10 to 10"3 mbar but only when delivering against low 

pressure differentials. Hence the Roots mechanism has a low compression ratio but a 

high throughput. The Root stage gives four compressions per revolution.

The iGX pump also has 4-stages of self-valving rotors (Figure A—4 in 

APPENDIX A) that are shaped like Claws at the outlet stage. Claws are true
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compressors. The claw mechanism achieves high compression ratios but because of its 

self-valving action, flow is more restrictive and it has a lower throughput. Claws 

deliver efficiently against high pressure differentials. The four pairs of claw shaped 

rotors on the two shafts rotate in opposite directions to trap and compress the process 

gas that flows along the axis of the shafts between the claw pairs. The claw stage gives 

two compressions per revolution.

The iGX pump also features BOC Edwards patented feature (Edwards 1993), 

reverse claw arrangement (refer to Figure A -l in APPENDIX A). This means that that 

the second claw stage of the pump is reversed so that the outlet of the first stage is 

directly in line with the inlet of the first stage and creates a short direct gas path that 

allows direct transfer of gas from one stage to the next, through a common port in the 

interstage partition. The advantage of having this feature is that, in dusty applications, 

dust contained in the gas rushing through the pump is more likely to pass through the 

outlet rather than drop out and accumulate between the pump stages, thus preventing 

blockages (Troup and Turrell 1989).

By combining both the Roots and claw mechanisms, optimum performance has 

been achieved in the iGX dry vacuum pump. The specific design achieves high 

compression ratios by having several sets or stages of rotors in series. The reduced 

pumping speed performance of the claw design is improved by substituting a Roots 

stage at the pump inlet, the compression ratio of the Roots mechanism being more 

efficient in the lower pressure regions. This is the reason why the iGX pump has one 

stage of Roots at the inlet and four stages of Claws at the outlet.

The iGX dry vacuum pump normally runs hot since it does not have a cooling 

fluid to remove the heat generated by the compression of the gas. Repeated 

compressions that take place in the carry over volume can raise the temperature of the 

pump well above 100°C. The running temperature of the pump is regulated by an 

external cooling water jacket with an adjustable thermostatic valve which prevents the 

pump from overheating (refer to Figure A-2 in APPENDIX A).
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2.2.1. The Advantages of Going Dry

The dry vacuum pump has been successfully used in semiconductor manufacturing 

industries and clean room environments (Troup and Turrell 1989; Konishi and 

Yamasawa 1999; Davis, Abreu et al. 2000) where corrosive gases are abundant, 

temperatures are high and effluents resulting from the processes can cause seizure of 

the pumps. Oil sealed rotary pumps have certain disadvantages in such conditions and 

could not operate continuously in such hostile and aggressive environments, even with 

expensive modifications such as use of filters, traps, forced lubrication and use of inert 

corrosive resistant materials for the construction of the pump housing (Maurice, Duval 

et a l 1979; Bez and Guamaccia 1990). With the advent of oil-free pumping 

technology, dry vacuum pumps have become an effective and reliable alternative for 

such applications (Troup and Dennis 1991). Dry vacuum pumps require no internal 

lubrication and have non-contacting rotors to pump the process vapours; hence they 

have no rubbing components to wear. Since they do not use oil, there is no oil back 

migration and reduced atmospheric pollution (Wong, Laurenson et al. 1988). Hence 

dry vacuum pumps offer a great advantage in comparison to oil-sealed pumps, where 

contamination of the process and environmental constraints are problematical. The dry 

vacuum pumps can also easily handle the toxic vapours since corrosion only takes 

place in presence of moisture. Also the heat produced by the pump minimizes the 

deposition of condensable solids used in the low pressure chemical vapour deposition 

and metal etching processes, as it encourages the condensable products to remain in 

the vapour state (Edwards 1993).

2.2.2. Condition M onitoring of Dry Vacuum Pumps

The aggressive medium in which the pump operates means that, although the key 

factors which affect pump reliability are internal, instrumentation located within the 

flow paths of the pump and connecting pipe-work has a short life expectancy and low 

reliability (Zakrzewski, May et al. 1988). Very little work has been attempted in the 

vacuum community for a systematic and comprehensive approach in studying 

condition monitoring of dry vacuum pumps. The only published work relating to the
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fault detection of dry vacuum pumps has been conducted by the following authors 

(Sabin 1995; Lim, Cheung et al. 2004), however the results presented in these studies 

are very preliminary.

Any proposed diagnostic system must be capable of accurately and reliably 

inferring faults from a set of instruments of a type which can be located externally. A 

pump with a proven, cost-effective self-diagnostic capability such as that described, 

will be desirable for potential customers and therefore of commercial advantage to 

BOC-Edwards. Some work has been attempted to evaluate the running conditions of 

the pump (Figure A-5 in APPENDIX A). Other signals have also being monitored, 

apart from the vibration signals, for the development of the condition monitoring 

system. The figure shows an illustration of how temperature sensors and the coolant 

water flow are monitored on the iGX 100 pump. Also there are other devices used to 

measure exhaust gas pressure, vacuum pressure, air mass flow rates, gear speed and 

pump motor inverter current and voltage measurements. Table A -l in APPENDIX A 

gives a detailed description of the transducers utilized and their respective mounting 

positions on the pump.

Whilst the design of dry vacuum pumps has remained relatively constant over 

the last ten years, more emphasis is being employed in the evolution of intelligent 

pumping systems with embedded sensors and self-diagnostic capabilities as dry 

vacuum pumps have become a critical part of the wafer manufacturing process 

(Hablanian 1981; Hablanian 1986; Duval 1987; Wycliffe 1987b; Hablanian 1988; 

World Pumps 2002). Pump failure can be a costly process. Also some customers are 

affected by the inconvenience of down time. Hence high reliability and availability 

have become primary customer requirements. Early detection of incipient faults is 

vital to avert costly failures. Today, in most wafer fabrication plants, vacuum pumps 

are fitted with integrated sensors and are controlled by microprocessors that monitor 

the status of the health of the dry vacuum pumps (World Pumps 2006). By trending 

and processing the signals by condition monitoring software, early symptoms of pump 

degradation and malfunction can be predicted. Smart vacuum pump condition 

monitoring algorithms can deliver advanced warnings of problems that can avoid 

costly equipment failures and unscheduled breakdowns (Berges 1987; World Pumps 

1999; Myerson 2000; World Pumps 2005). Such software can also help in the pump
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maintenance. It is also the current drive among dry vacuum users for the preference of 

online condition monitoring and remote real-time condition monitoring as this can 

save manpower and can establish connectivity by enabling many dry pumps to be 

monitored at the same time over the internet.

2.2.3. Ball Bearing Defect Frequencies

The purpose of this section is to define the characteristic ball bearing defect 

frequencies. The dry vacuum pump being like other rotating machinery has ball 

bearings at the inlet and outlet ends. By studying the frequency spectra of the vibration 

signature from the dry vacuum pump, bearing failures that can cause pump failure can 

be detected.

Spectral lines of the spectra produced by frequency-based techniques described 

above are correlated with the characteristic bearing frequencies if there are any defects 

present (Wang 2006). The degree of correlation is monitored and, if amplitude of the 

peak of a characteristic bearing frequency exceeds a threshold value defined by 

specific reference standard or baseline spectrum obtained from a pump running in 

normal no-fault conditions, a bearing defect is identified and diagnosed. The diagnosis 

can identify the exact location of the defect bearing as well as specify which 

component of the bearing is defective.

2.2.4. Defining the Ball Bearing Defect Frequencies

Rolling-element bearings generally consist of two concentric rings, namely an inner 

ring and an outer ring, between which a set of balls or rollers rotate in raceways and 

the cage (refer to Figure 2-1). The five bearing parameters that must be known to 

calculate the bearing defect frequencies are, BD - the ball or roller diameter, PD - the

pitch diameter or cage diameter, NB - the number of rolling elements, a  - the contact 

angle a n d /-  the shaft rotational frequency. The contact angle of the bearing is defined 

as the angle between a plane perpendicular to the bearing axis and a line joining the 

two points where the rolling element makes contact with the inner race and outer race.
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Formulae have been developed to calculate bearing defect frequencies for 

every bearing geometry, inner raceway, outer raceway and rolling elements (Tandon 

and Choudhury 1997). These characteristic bearing defect frequencies, which are 

related to the raceways and the balls or rollers, can be calculated once the bearing 

dimensions and the rotational speed of the machine are known.

Inner Race

Outer Race

oiling Element

Figure 2-1 Ball Bearing Parameters

All ball bearings have four distinct components—the inner race, the outer race, cages or retainers 
and the balls or rollers. The inner race of the bearing is connected to the rotating shaft and the

outer race is fixed to a stationary housing.

For a bearing with a stationary outer race and an inner rotating race, 

characteristic defect frequencies ([2.1] to [2.4]) can be obtained for flaws in the outer 

race, inner race, ball bearings or in the cage as follows, assuming that there is no 

slippage for the rolling elements.

N  B
Bearing Pass Frequency Outer Race (BPFO) = / ( ——)[1----—cos(c*r)]

2 Pn [2.1]
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N B
Bearing Pass Frequency Inner Race (BPFI) = / ( —-)[1 + ——cos(or)]

2 PnD [2.2]

Ball Spin Frequency (BSF) = —(-^-)U -(-^ -cos(a))2]
[2.3]

f  B
Fundamental Train Frequency (FTF) = (—)[1---- — cos(or)]

2 PnD [2.4]

Defective bearing components generate a unique frequency response in 

relation to the dynamics of bearing motion and the mechanical vibrations produced are 

a function of the rotational speeds of each component. A single-point defect produces 

one of the four characteristic fault frequencies defined above, depending on which 

surface of the bearing contains the fault. Single-point defects on the bearings begin as 

localized defects on the raceways or ball elements and as the ball elements pass over 

the defective areas, small collisions occur, producing mechanical shockwaves in the 

form of damped sinusoidal impulses. These impacts then excite the natural frequencies 

of mechanical resonance in the machine. This process occurs every time a defect 

collides with another part of the bearing with a period determined by the location of 

the defect and the geometry of the bearing. The rate of occurrence is equal to one of 

the characteristic bearing fault frequencies. Theoretical models of single and multiple 

point defects of the vibration produced by a faulty bearing under constant and varying 

radial loads have been established by McFadden and Smith (McFadden and Smith 

1984a; McFadden and Smith 1985). These models take into account the impulse series 

generated by a point defect in a bearing modelled from first principles as a function of 

the rotation and geometry of the bearing, the modulation of the periodic signal caused 

by non-uniform bearing load distribution, the transfer function of the vibration 

transmission from the rolling element bearing to the transducer as well as the 

exponential decay of vibration.

Vibrational analysis techniques can be used to monitor these frequencies in 

order to determine the condition of the bearing. Upon inception of a defect in the 

bearing component, some or all of the characteristic frequencies and their harmonics 

begin to emerge in the spectrum. Each defect present in the bearing produces vibration
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either at a basic frequency or at some complex combination of several basic 

frequencies. More severe defects produce vibrations of greater amplitudes and result in 

harmonics.

Crack
BPFI

Figure 2-2 Detecting Bearing Inner Race Defect Frequency (Mclnerny and Dai 2003).

For instance, the time response signal captured by a vibration transducer 

mounted on the bearing housing caused by a ball bearing which has a localised single 

point defect on the inner race is shown in Figure 2-2. Periodic impulses are produced 

at a rate of the inverse of the impact frequency, and in this case, the inverse of inner 

race defect frequency (BPFI). The bearing rings at its natural resonating frequency and 

the response decays quickly because of damping.

The Barden bearing specifications for the BOC Edwards iGX dry vacuum 

pump that was used as the test bed in this experimentation are: number of balls = 9, 

pitch diameter = 46.2 mm, ball diameter = 9.5 mm and contact angle = 24.97 degrees. 

A picture of the whole bearing and the bearing components is shown in Figure A-6 

and Figure A-7 respectively. The theoretical ball bearing defect frequencies BSF, 

BPFO, BPFI, FTF were calculated using equations ([2.1] to [2.4]) for a pump set 

running at 100 Hz and were found to be at 468 Hz, 366 Hz, 534 Hz and 41 Hz
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respectively. The actual ball bearing defect frequencies BSF, BPFO, BPFI, FTF were 

obtained from vibrational data were estimated to be at 464 Hz, 363 Hz, 530 Hz and 40 

Hz respectively. The slightly smaller frequencies obtained were due to the running 

speed of the pump being less than the actual set speed of the pump. The calculation of 

the actual running speed of the pump will be explained later in Section 3.5 in Chapter 

3. Slippage in the bearings is another reason which has to be accounted for (slippage is 

typically around 2-5%). It should be noted that the bearing defect frequencies are 

directly proportional to the shaft rotating speed or, in other words, the rate at which the 

inner race is rotating. The outer race and inner race frequencies, BPFO and BPFI, vary 

linearly with the number of rolling elements. Each bearing defect frequency develops 

a unique characteristic vibration signature in the frequency spectrum. The vibration 

spectrum will have peaks at these defect frequencies and at their harmonics too. By 

identifying which defect frequencies are present in the frequency spectrum, we can in 

turn identify which bearing component is defective. A bearing with a seeded inner race 

crack was used to simulate the fault conditions in the study conducted. A picture of the 

defective bearing with the inner race ‘crack’ is shown in Figure A-8.

2.2.5. Conclusion: The Dry Vacuum Pump Explained and the Ball Bearing 
Defect Frequencies Calculated.

This section has reviewed the fundamental working principles of the dry vacuum 

pump and has explained why condition monitoring of dry vacuum pumps is important. 

The ball bearing defect frequencies have also been defined. How these ball bearing 

defect frequencies are produced due to the occurrence of defects which can be located 

at different parts of the bearing component has been explained. The fault detection 

scheme here is limited to work under the assumption that there is only one fault 

present, i.e. a single point defect. However, in reality, multiple faults can develop 

simultaneously. In such a case, the scheme can be modified to incorporate the 

diagnosis of multiple faults. Though the test fault conditions were artificially induced, 

the bearing faults were introduced in test facilities by Barden Bearing specialists to 

replicate bearing damage and wear in the dry vacuum pump in natural semiconductor 

operating conditions.



2.3TheAR Model 23

2.3. The AR Model

The AR model is a stochastic model that stems from linear prediction and allows for 

the demand of high-resolution spectral estimation. The AR model based approach is 

probably the most promising one for implementation into an automated diagnostic 

system due to its simplicity in formulation and in application. In addition, the 

parameter estimation algorithms for the AR model are relatively mature, always 

converge and are computationally efficient.

In this section, the theory of AR modelling is first examined and its merits are 

discussed for application to fault diagnosis. An overview is also given of other work 

on the application of AR modelling to condition monitoring studies.

2.3.1. Reviewing the Basic Principles o f AR M odelling

The parametric models consist of a rational system function and where the innovation 

is a white noise process. There are three types of parametric methods and they are : the 

Autoregressive (AR) process model, the Moving Average (MA) process model and 

the Autoregressive Moving Average (ARMA) process model (Kay and Marple 1981).

2.3.2. Autoregressive Model

In an AR model (Makhoul 1975) the current value of a time series jc[«] at discrete 

time instant n is expressed as a linear combination of p previous values plus an error 

term [2.5]. e[n] is the innovation white noise of the process with zero mean and 

variance cr2. p is the order of the model. ak are known as autoregressive 

coefficients.

p
x[n] = akx[n - k] + e[n]

k=l
[2.5]
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[2.5] is formally equivalent to the standard multiple linear regression model where 

x[n] is the dependent variable and Jt[rc-l],....x[n-k]  are independent variables. The 

value of x[n] is predicted from the past values and e[n\ represents the one-step 

prediction error.

Taking the z-transform of x[n] and e[n\, yields X[z] and E[z] in the 

frequency domain. Equation [2.5] expressed as a linear filter in the z-transform 

domain is stated as [2.6].

X[z] = -X[z] • £ a t z-‘ + E[z\ I2-6!
Ic=l

The rational transfer function of the system, H[z], can be defined by [2.8] relating the 

input to output where z is the forward shift operator.

E[z

*  X\

Figure 2-3 Diagram showing an autoregressive process.
With a white noise driving source input e[t] , transfer function h[t] and output x[?]. 

Representation in time domain (above) and frequency domain (below).
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X[z] = H[z]E[z \ [2.7]

H[z] =
1

i + 2 X z
-k [2.8]

k=1

This is called an Autoregressive (AR) or all-pole Infinite Impulse Response (HR) 

model of order p  and is usually denoted as an AR(p) model. The Power Spectral 

Density (PSD) of the output of the linear filter, P[z] , is related to the PSD of the input 

signal Pe [z] , which is noise. P[z] is defined as

[2.9]

The PSD of white noise is a constant and is given by the variance, cr2, of the driving 

input signal, and A t , the sampling interval, is the inverse of the sampling rate /  .

Pe[z\ = <?2 Af [2.10]

P[z] can be obtained by evaluating along the unit circle z = exp(j2?ifAt) for 

-1/(2At)< f  <l/(2Ar) once the ak coefficients are known and is given by [2.11].

P[z] =
a 2At

i + 2 ^
-k [2.11]

Jk=l
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2.3.3. Autoregressive M oving Average M odel

The rational transfer function of the linear system in [2.8] can be more generally 

expressed as [2.12]

The output sequence of the system then becomes the following difference equation.

The second part of this equation is a weighted average of the previous values of the 

input noise series and is termed a moving average (MA) or all zero model with order q 

and denoted as MA(q). The MA model is suitable for modelling data sequences with a 

spectrum of deep valleys rather than sharp peaks. [2.13] is a combination of the AR 

and MA models and is called an ARMA model or a pole-zero model or order p and q 

and denoted as ARMA(p,q). According to the Wold decomposition theorem (Box, 

Jenkins et al. 1994; Akaike 1969; Makhoul 1975; Kay and Marple 1981; S. Lawrence 

Marple Jr. 1987; Broersen 2000a), any ARMA or MA process can be represented by 

an AR model of infinite order. The most important implication of the Wold 

decomposition is that reasonable approximation can still be achieved by a higher AR 

model order of any MA or ARMA process, although an less efficient model may be 

chosen.

If there is significant background noise in the signal (S. Lawrence Marple Jr. 

1987), the PSD is characterised by poles and zeros and the use of a low order all-pole 

AR model would yield poor results. In this case the use of an ARMA model would be 

able to achieve better results. For the bearing signals it is generally believed that the 

signal is much greater than the background noise (normally electrical noise for voltage 

measurements) and, with the use of an appropriate anti-aliasing filter (more details of

*=i [2.12]

[2.13]



2.3,3 Autoregressive Moving Average Model 27

the anti-aliasing filter used in the study will be given in Section 3.2), the signal to 

noise ratio of the measured vibration signal can be enhanced. Hence the use of an AR 

model seems appropriate and sufficient in the investigation conducted.

2.3.4. Advantages of Using the AR M odel

In this work the use of AR model has been selected for three primary reasons. The first 

fact is that an autoregressive model can be identified well for a system with sharp 

peaks. The AR modelling method is proven appropriate for estimation of power 

spectra with sharp peaks but not deep valleys as in the case of bearing faults. This is 

due to the all-pole nature of the AR model. Many practical vibration generating 

systems have very few deep nulls (McCormick, Nandi et al. 1998) so they are suited 

well for AR modelling. The spectrum of ball bearing vibration may be precisely 

classified into this category.

The second fact deals with the identification of the model. AR parameters and 

the autocorrelation sequence of the signal are related by a set of linear equations if 

Yule-Walker estimation is used. AR parameters may thus be estimated efficiently as 

solutions to linear equations. These are computationally straightforward to solve and 

always converge.

The third reason is the sensitivity of the AR parameters to variations in the 

conditions of the system (Junsheng, Dejie et al. 2006). Traditional vibration condition 

monitoring algorithms are based on the processing of vibration signals through various 

means of filtering and conditioning. Whilst these processes have evolved into well 

established procedures, their application still requires a high level of expertise in the 

selection of filter banks, spectral lines and other components to be removed 

(McCormick and Nandi 1996; McCormick and Nandi 1998). This has been a 

hindrance for automation of fault detection. The AR model can model the system 

dynamics and transients through variations in the autoregressive parameters of the AR 

model. The fault can be identified by the parameters (the AR coefficients and the 

variance of the prediction error) of the AR model after the AR model of the vibration 

signal is established without constructing the mathematical model of the system or
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constructing the fault mechanism. One may not have a priori knowledge on the 

characteristics (e.g. tooth number, cross gear interactions) of the monitored system 

(Wang 2001b; Wang 2001a). Detection of fault conditions for which models are not 

available also becomes easier. Fault diagnosis can be achieved by having models for a 

number of known conditions and a time series of unknown condition can then be 

assigned the condition of the model which predicts the time series best.
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2.3.5. Disadvantages of Using the AR M odel

One of the major concerns when using AR modelling for fault detection studies is the 

selection of the model order. The model order needs to be estimated as part of AR 

PSD estimation. The trade-off between resolution and variance is determined by the 

order in the AR spectra. Use of too low a model order results in a highly smoothed 

spectrum, masking the peaks of frequencies of interest. Conversely, use of too high an 

order significantly increases the resolution and may introduce spurious detail into 

spectrum because of spectral splitting. Spectral line splitting is a phenomenon 

observed as a result of two or more closely spaced peaks occurring in the spectral 

estimate where only one peak should have been present. This behaviour was first 

documented by Fougere (Fougere, Zawalick et al. 1976), where it was noted that the 

extra poles were generated by additional AR parameters due to the use of a higher 

order than required and this gave rise to the spurious peaks. It was also noted that 

spectral line splitting tends to disappear as the length of the data record increases. 

Choosing a model with the smallest order and that best describes the true spectrum is 

an important principle in model selection and this is referred to as the principle of 

parsimony. The spirit of parsimony is against the selection of higher orders and states 

that the simpler the AR model is, the better it is. The true model order p  is not

known a priori. This is the main reason why many are deterred from using AR models 

as they have to determine the model order beforehand and have to spend time and 

effort in predicting the right order for the AR model.
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2.3.6. Algorithm s for Autoregressive M odelling

There are four methods for the estimation of the AR parameters: Yule-Walker or 

autocorrelation method, Burg or lattice filter method, Least squares forward method or 

covariance method and Least squares forward backward method, also known as 

modified covariance method (Kay and Marple 1981; Broersen 2000b).

2.3.6.I. Yule-Walker

The autocorrelation method or the Yule-Walker approach is described in detail in this 

section. In estimating the AR parameters, it is usually convenient to relate the ak

coefficients to the autocorrelation function R„(n) of the time series x[n]. By 

multiplying the shifted conjugate of x[n], i.e. x[n]x x* [n -  k] and taking the 

expectation on both sides of [2.5] (AR equation), the model parameters can be shown 

related to the Autocorrelation Function (ACF) [2.14].

For a given the time series jc[w ] = 1,2, ,N  with real values, the

autocorrelation function at lag k is defined as:

Rjcc (^) = T7 S  ”  x(n)\x(n + k ) -  x(n + £)) [2.14]
A n=i

The normalized value of the autocorrelation is given by

ACF (k) = n =  [2.15]

The ACF is a statistical measure of the dependence of the time series values at one 

time on the values at another time. The ACF of a discrete time series is simply the 

correlation of the process against a time-shifted version of itself. We have used the 

‘biased’ estimator of the ACF. If the term N  is replaced by N - k  in [2.14], then the 

ACF term is defined to be an ‘unbiased’ estimator. The biased estimator is generally
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preferred as it tends to have a smaller mean square error and decays faster to zero with 

growing time lags than the unbiased estimator (Jenkins and Watts 1968).

2.3.6.I.I. Yule-Walker Equations

Assuming that the process under study is an AR process, the theoretical AR 

coefficients and the theoretical autocorrelation function satisfy a set of linear equations 

called Yule-Walker Equations (YWE). The Yule-Walker equations [2.16] allow 

computations of the p+1 model parameters from the p+1 autocorrelation coefficients 

by solving a set of p+1 linear equations. Earlier p  was defined as the order of the AR 

model and a 2 the variance of the noise component. The equations relating all these 

parameters are given in matrix form as:

Jo r-l • •• r-p

li Jo *• V i

,*p rp-l • •• ro

r  i  ‘ V "

- a i 0

• 0

- a P 0

[2.16]

&2 = r0 ~ Z iair_i
i=i

[2.17]

Based on these estimates, the AR parameters can be computed. In practice, 

when the precise form of the autocorrelation sequence is not known, it must be 

replaced by an estimate computed from the available time series x[n]. Since the 

estimation of the AR parameters only involves linear equations, there are well- 

established methods of estimating the AR coefficients and one of the computationally 

efficient methods is the Levinson-Durbin recursion.

The autocorrelation matrix is Hermitian rk = rk and Toeplitz (identical

element along any diagonal). Using the known or estimated (biased) autocorrelation 

function, the YWEs can be solved directly recursively using the Levinson-Durbin
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algorithm. The Levinson-Durbin recursion is a computationally efficient method to 

estimate the AR coefficients since it exploits the fact that the autocorrelation matrix is 

both symmetric and is a Toeplitz matrix.

2.3.6.I.2. Levinson-Durbin Recursion

Partial Autocorrelation Function (PACF) can be seen as the normalized 

autocorrelation that remains at lag k after the effects of shorter lags ( 1 , 2 , . . .  k-1) have 

been regressively removed from the autocorrelation function at lag k (S. Lawrence 

Marple Jr. 1987). Lag k is equivalent to model order p  in a linear regression model. 

The Yule-Walker equations [2.16] can be rewritten based on the partial 

autocorrelation coefficients for an AR (k) model and this is given by [2.18]

where (f)̂  is the partial autocorrelation function (derivation taken from (Box, Jenkins 

et al. 1994)). Levinson and Durbin have derived an iterative way of solving the Yule-

Walker equations (Durbin 1959) and the values <pkl,</>k2, A* can be solved

recursively using the Levinson-Durbin algorithm.

r\ — fikl ~^^k2ri + 0 k k rk-l

r2 = &kiri "I ~^^kkrk -2 [2.18]

r k ~  Q k \r k - \  + 0 k 2 r k -2  + Qkk

k = 1
k-1

PACF(k) = 0t t =< ri ^ " [2.19]
it = 2,3, K

where </>kJ = <f>k_x j -  f or j  = 1>2>.....* ~ 1 • From the solution of YWEs, the

estimation of the AR parameters ak as well as power error cr2 are obtained. In fact the
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solution to the partial autocorrelation parameters looks familiar and it is the same 

solution as the solution of ak autoregressive parameters.

2.3.6.2. Other Estimation Methods

2.3.6.2.1. Burg

The Burg method (de Waele and Broersen 2000) is a widely used AR estimation 

method and it is sometimes also known as the Maximum Entropy Method (MEM). 

The method calculates the AR coefficients directly from the data by estimating the 

reflection coefficients (negative PACFs) at successive orders in a least-square sense by 

employing the Levinson Durbin Recursion to derive the reflection coefficients 

(Broersen and Wensink 1993). The Burg method estimates the reflection coefficients 

by minimizing the sum of error powers from the forward and backward linear 

predictions using the Lagrangian multiplier method. The Burg method is more 

susceptible to spectral line splitting at higher orders than the other estimation methods.

2.3.6.2.2. Covariance and Modified Covariance

The covariance method for AR spectral estimation is based on minimizing the forward 

prediction error. The modified covariance method is based on minimizing the forward 

and backward prediction errors. The Burg and covariance methods produce 

comparable AR spectral estimates. The modified covariance method is best for 

sinusoidal components in data (S. Lawrence Marple Jr. 1987).

2.3.6.3. Reason for Choosing the Yule-Walker Method

The Yule-Walker, Burg, covariance and modified covariance parameter estimation 

methods are comparable in performance when large data records are used (Kay 1988). 

The performance of the Yule-Walker method deteriorates only when used with short 

data records (Kay 1988). Sufficiently large sample sizes which will capture the 

signal’s characteristics have to be used if the Yule-Walker method is to guarantee 

accurate AR coefficients. This research issue of finding the optimal sample size is
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addressed in Chapter 5 and the findings of this investigation are reported in Section

5.2. In this study, the Yule-Walker method with the Levinson-Durbin recursion has 

been chosen to find the AR coefficients (Kay and Marple 1981) as this estimation 

method is guaranteed to converge, resulting in a stable AR filter (roots are all within 

the unit circle). The Yule-Walker method produces a biased estimate of the residual 

variance however it has been shown the effect of bias on order selection is negligible 

(Broersen and Wensink 1993). The Yule-Walker estimation method was chosen 

mainly for its processing speed.

2.3.7. Review o f AR M odelling in Condition M onitoring Studies

J.P. Dron (Dron, Rasolofondraibe et a l  1998; Dron, Rasolofondraibe et a l 2001; 

Dron, Bolaers et a l 2003; Dron, Bolaers et a l 2004) has studied the use of AR 

modelling for vibrational analysis of a forming press for a conditional maintenance 

program in 1998. It was noted that parametric methods are particularly worthwhile in 

the early detection of faults especially when two typical frequencies are close to one 

another and it was acknowledged that the model order selection is one of the major 

problems encountered when implementing parametric spectrum analysis methods.

Parametric modelling has been employed in fault diagnosis studies in low 

speed machinery by Mechefske (Mechefske 1993a; Mechefske 1993b; Mechefske and 

Mathew 1993). Mechefske noted that AR modelling is especially useful in low speed 

machinery as recording long periods of data in low speed machinery is impractical and 

AR method is beneficial in such cases as it can work with short data records and 

achieve the same resolution as the FFT method and at a fraction of the time taken. The 

effects of noise on the vibration signal has been studied by him in the paper 

(Mechefske 1993b). At low rotating speeds, the effects of background noise become 

dominant. Here Mechefske notes that AR modelling has performed consistently better 

than FFT-based techniques when signals are contaminated with various levels of noise 

as fault frequencies could be checked at a lower SNR than the FFT method. It is noted 

that, without being able to average the several frequency spectra, the FFT-based 

procedures had more difficulty in dealing with the noise than the AR-based methods. 

In another paper, Mechefske (Mechefske 1993a) investigates the optimum vibration 

signal length required by AR modelling needed to produce repeatable frequency
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spectra and it is shown that the signal length is largely dependent on the speed of the 

equipment being monitored.

AR modelling, apart from being used as a spectral analysis tool, also has lots 

of potential as a model based automatic diagnostic system. This concept was 

researched by Baillie in 1996, where the concept of fault diagnosis using an observer 

bank of autoregressive time series models was investigated (Baillie and Mathew 

1996). It was found that AR modelling requires much shorter lengths of data than 

traditional pattern classification tools such artificial neural networks and expert 

systems, which require large amounts of data training for successful fault prediction.

In 1996, Huang investigated a machine fault diagnostic system which was built 

by feeding AR parameters as inputs to a Fault Diagnostic Network based on fuzzy 

logic methodologies (Huang and Wang 1996). In 1998, McCormick goes one step 

further and analyses periodic time-varying autoregressive models for detection of 

bearing faults (McCormick, Nandi et al. 1998) to study the cyclo-stationarity nature of 

rotating machines. It was noted that using an AR-model based diagnostic system can 

provide a means to detecting machine faults even if data are only available from the 

machine in its normal condition. Using AR models as one-step ahead predictors, it is 

noted that it is possible to predict machine’s behaviour even if it goes into a condition 

where no training data is available. Mccormick (McCormick and Nandi 1996; 

McCormick and Nandi 1998; McCormick, Nandi et al. 1998) has noted that one of the 

advantages of using AR models is that analysis of the prediction error generated by 

using an autoregressive model of the machine vibrations as a one step ahead predictor 

may provide a set of features which could indicate the presence of faults even in cases 

where fault vibration data is not available.

In a paper by Mathew in 1996 (Baillie and Mathew 1996), a model-based 

condition monitoring system uses autoregressive techniques for detecting changes in a 

machine’s health condition by monitoring the differences between the monitored and 

predicted signal as fault indicator and for classifying faults.

In a recent work in 2001, Wenyi Wang has effectively applied Minimum Phase 

Autoregressive (MPAR) approach for detection and diagnosis of gearbox faults for a
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helicopter application at the Aeronautical and Maritime Research Laboratory (AMRL) 

(Wang and Wong 1999; Wang 2001c; Wang 2001a). A non-minimum phase AR 

model is identified for the gear signal by maximizing the kurtosis of the inverse filter 

error signal of the model. Sudden changes in the error signal are usually indications of 

the existence of localized gear faults. Under the assumption that gear mesh signals 

were derived from an AR system driven by Gaussian noise, an AR model was 

established for signals from the monitored gear under healthy conditions and then used 

as a Linear Prediction Error (LPE) filter. The future signals from the same gear, under 

healthy or fault conditions, were processed by the LPE filter. The output prediction 

error of this LPE filter should resemble random noise if the monitored gear remains in 

a healthy condition. However when a local fault (e.g. a tooth crack) is developed in the 

gear, the fault affected region would not be well predicted by the AR model that was 

established under healthy conditions. The LPE signal would reflect the changes caused 

by the fault. It was shown that the AR modelling approach outperforms the current 

gear fault diagnostic techniques, such as the residual signal method. Wenyi Wang 

notes that using this method there is no need to know the number of teeth on the 

monitored gear, the characteristics of the modulation waveforms or the number of 

gears on the same shaft. Moreover it is not important whether structural resonances or 

additional modulations are present in the signal whereas this information is essential to 

some of the current techniques.

Wenyi Wang noted that in terms of making an early detection of incipient local 

gear faults, the MPAR modelling method can still perform unsatisfactorily and 

proposed a more general linear prediction modelling method -  a Non-Minimum Phase 

AR (NMPAR) method. Here it was assumed that the gear mesh signals were driven 

from a non-minimum phase AR system driven by non-Gaussian noise. The AR 

coefficients are estimated by kurtosis maximization using the inverse filter criteria. 

Kurtosis is a measure of Gaussianity of the residual signal and can be used as an index 

for fault detection. In conclusion, Wenyi Wang noted that the proposed NMPAR 

method by kurtosis maximization for gear fault detection has proved superior to 

current gear fault detection techniques from the following perspectives: 1) earlier and 

more convincing detection of gear tooth cracking 2) capability of detecting faults in 

complex gear boxes such as helicopter transmission gearboxes where cross-gear 

interactions are common. However the author noted the proposed technique requires
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some knowledge of choice of some parameters in the cost function for maximization 

of the kurtosis function. Constraints had to be incorporated into the cost function to 

establish necessary and sufficient conditions for a blind signal recovery. It was noted 

that some work needs to be done for a more systematic approach based on a non-linear 

optimization algorithm suitable for gear fault detection.

In 2000, Fang Wen also applied autoregressive modelling techniques for fault 

detection with helicopter data (Fang, Willett et al. 2000). In this work, it was noted 

that “as regards signal processing, it appears that autoregressive (AR) coefficients 

from a simple linear model encapsulates a great deal of information in relatively few 

measurements; it has also been found that augmentation of these by harmonic and 

other parameters can improve classification greatly.” In this work, the results show 

promising fault detection accuracy, particularly when learning was based on auto­

regressive (AR) coefficient features. Near perfect fault recognition accuracy was 

reported with relatively small feature sets involving autoregressive coefficients. In this 

paper, Fang states that it is possible to use periodogram outputs explicitly as features 

for classification; however in general this implies a great many features and the usual 

curse of dimensionality may ensue. Since it is clear that spectral features do indeed 

yield much relevant information, a concise way of representing the spectrum is 

proposed here: the autoregressive (AR) coefficients. It is noted that AR coefficients 

are able to represent much global spectral information into a small dimension.

2.3.8. Conclusions: The AR M odel Explained

The papers described above are pioneering in their recognition of the use of AR 

modelling for condition monitoring applications. However, none has reported the 

approach adopted here, that is to track the movement of the AR poles trajectory for 

fault classification. The development of the AR pole fault detection tool is discussed 

in detail in Chapters 7 and 8 of the thesis.

In this section, the basic principles of AR modelling have been reviewed. The 

use of AR modelling for PSD estimation brings about benefits in terms of improved 

resolution and smaller sampling rates compared to the more established method of 

FFT. This benefit of AR modelling will be explained more in detail in the next section
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of this chapter. This aspect will be investigated further with supporting results in 

Chapters 4 and 5 of the thesis.

2.4. Overview of Current Vibration Based Diagnostic Techniques

In this section, various condition monitoring techniques which have shown effective 

performance in the detection of bearing faults such as the statistical methods, power 

spectral methods and time-frequency methods will be reviewed.

Every rotating machine exhibits a characteristic vibration signature that is 

unique to the machine. The dry vacuum pump being a “quasi-steady state” rotating 

machine also produces vibrations which can be used as an effective indicator for fault 

diagnosis. If the sources of vibration can be isolated, the exciting frequencies can be 

identified and, together with an understanding of the engineering and physics of the 

system producing it, its dynamic behaviour can be predicted at different operating 

conditions. The use of vibrational analysis for planned and predicted maintenance is 

an established technique (Mathew 1987). The monitoring of vibrations can give an 

indication of a machine’s condition while it is on-line and therefore can allow efficient 

scheduling of maintenance and early detection of potentially critical faults which can 

be costly to fix. Vibration diagnosis has been proven effective in the detection and 

diagnosis of bearing faults.

Vibrational analysis can be used to detect bearing failure, shaft/rotor 

imbalance, misalignment of couplings and bent shafts, lubrication problems and gear 

failure in rotating machines (Mathew and Alfredson 1983; Mathew and Alfredson 

1984; Mathew and Alfredson 1986; Mathew and Alfredson 1987; Mathew, Kuhnell et 

al. 1987b; Mathew, Kuhnell et al. 1987a). Due to adverse operation conditions, 

improper installation or material fatigue, the bearings deteriorate over time. Bearing 

vibration can be used as a representative ‘health index’ for monitoring bearing 

working conditions. Bearing faults are the most common type of electric machine 

failures (Huang and Wang 1996). Early detection of these faults allows service to be 

performed during planned downtimes rather than during costly emergencies.
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It is important to note that any rotating machine has many of the same 

vibration characteristics as any other rotating machine. This is true whether the 

machine is a 180 RPM water pump or a 10000 RPM gas turbine. That is why vibration 

analysis has been successful in condition monitoring, as the basic principles are the 

same.

2.4.1. Time Based Techniques

Rotating machinery produce signals that are randomly varying signals (Zhuge, Lu et 

al. 1990) and examples of these are displacement signals that can be measured with 

proximity probes, vibrations measured with accelerometers, sound measured with 

acoustic emission sensors and pressure signals measured with calibration gauges. One 

such way of achieving fault prediction and prevention is to use directly time domain 

analysis (Alfredson and Mathew 1985b; Dron, Bolaers et a l 2004) where statistical 

parameters such as the Root Mean Square (RMS), standard deviation, variance, crest 

factor, kurtosis, and skewness are used as trend parameters to detect the presence of 

incipient faults. The statistical parameters are then compared with baseline estimates 

obtained from machines in no-fault conditions and an increase in these statistical time 

domain figures may anticipate malfunction. Some of the time based statistical 

parameters which are mentioned above are defined as follows:

The RMS measures the overall vibration level of a rotating machine. The RMS 

of a discrete vibration signal is given by [2.20]. The RMS is calculated by the square 

root of the sum of the squares of the sample xt divided by the sample size N  ? where

xt is from jq to xN

The spread of the data about the mean value (i.e. the RMS) is known as 

standard deviation and is denoted by a .  The unbiased estimate of the standard 

deviation [2.21] is given by:

[2.20]
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I j ^
Standard Deviation = J y i y 5 > . - a )  [2-2i]

where fi is the mean. Variance, which is the second central moment about the mean, 

is defined as a 1.

The skewness [2.22] which is the central third moment of the data is defined as:

1 N
Skewness = — £  (x, -  f i f  [2.22]

The kurtosis [2.23] is the fourth central moment and is stated as:

1 N
Kurtosis [2.23]

The crest factor [2.24] is defined as:

_ ^  MaxiX;) -  Minix-)
Crest Factor = ------— ------------------------------------------- [2.24]

Both the crest factor and kurtosis are measures of spikiness in the time domain 

waveform. When the bearings are in a good condition, the distribution of the 

amplitudes of the time domain signals produced by them are Gaussian-like (Dron, 

Bolaers et al. 2003) and their kurtosis values are close to 3. When the bearings are 

damaged, the appearance of defects such as spalls and cracks disturb the signals. Wide 

band impulse-like signals are generated when the bearings pass over the defect points, 

thus modifying the distribution. Typically the kurtosis value of a defective bearing 

signal is greater than 3.

It is difficult to monitor the development of faults using these indices alone. 

Using these statistical features individually, there would be a possibility of not 

detecting a change of condition of the machine as these scalar indicators are highly



2.4.1 Time Based Techniques 41

non-linear and are very much dependent on external influences such as load and speed 

of the machine (Alfredson and Mathew 1985b). The scalar indicators are sensitive to 

variations of the rotation speed of shafts, band-pass filtering, resonance of the sensor 

and background noise. Values of statistical parameters like the kurtosis comes down to 

the level of an undamaged bearing when the defect is well advanced. Ocak, in his 

paper (Ocak and Loparo 2005) has stated that kurtosis and the crest factor are effective 

only at the early stages of bearing damage and are not sensitive at detecting faults 

when the severity of the damage increases. Other researchers have reported similar 

behaviour too (Tandon and Nakra 1992; Martin and Honarvar 1995; Heng and Nor 

1998). It is noted that the vibration signals become more random-like and the values 

for the crest factor and kurtosis obtained decreased when the damage level of the 

bearing increased. The vibrations obtained from the defective bearings were less 

impulsive and more white-like, mimicking a normal bearing. Thus it is observed that 

the statistical analysis approach based on kurtosis and crest factor lacks the ability to 

detect the bearing defects at the later stages of their development.

2.4.2. Frequency Domain Techniques

The vibration signature produced by the machine is normally complex, being a 

mixture of all the vibration components generated by the machine such as gears 

(Mathew and Alfredson 1987), bearings (Mathew and Alfredson 1984; Mathew and 

Alfredson 1986) and other moving parts. Important features of the vibration signals 

are often not obvious in the time domain signal and it becomes necessary to perform 

spectral analysis. Essentially some signal processing enhancement technique must be 

employed to extract useful diagnostic information from the measured vibration signal.

Another approach towards vibration diagnostics is by using frequency domain 

methods (Alfredson and Mathew 1985a). The conversion of data from time domain to 

frequency domain is achieved using spectral analysis (Besancenez, Dron et al. 2001; 

Broersen 2002) to help identify the frequencies of interest. For example, if the 

machine is rotating at 100 Hz, it should be possible to identify a 100 Hz peak in the 

vibration frequency spectrum. These frequencies are known as forcing frequencies.
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Having identified the various forcing frequencies, the next step is to identify what part 

of the machine is generating what frequency (Mathew, Kuhnell et al. 1987b). Then the 

next step is to measure the amplitude of the individual forcing frequencies and assess 

whether or not they are at acceptable levels.

Spectral analysis of rotating machinery consists of estimating the frequency 

content of a collection of sampled signals. The frequency spectra of the signals are 

compared with baseline spectra obtained from machinery run in normal or no-fault 

conditions (Mathew 1989). The spectral information of the largest peaks as well as the 

amplitudes and their phases can be monitored. The detection of new spectral peaks or 

changes in the Root Mean Square (RMS) values of frequency peaks of interest can 

indicate development of failures. This information can be used for data trend analysis. 

One-time measurements may not be indicative of the machine’s health and normally 

trending of a machine element over a period of time is recommended (Alfredson and 

Mathew 1985b; Alfredson and Mathew 1985a; Mathew 1987). From trending plots, 

gradual changes in the condition of the machine elements can be detected. By 

monitoring the trending levels of vibration for a given machine, we can determine 

whether it is healthy or faulty and also predict the time until failure.

One very common application where this technique is frequently used is in the 

detection of bearing faults (Alfredson and Mathew 1985a) as was explained in Section

2.2.3. Bearing defect frequencies such as inner race fault, outer race fault, rolling 

element faults and cage frequency can be easily computed from the geometrical 

dimensions of the ball bearings (Tandon and Choudhury 1997). Then the defective 

spectra are compared with normal spectra to identify bearing faults (Alfredson and 

Mathew 1985a). Therefore having accurate frequency estimates is a key step to 

identification of bearing faults.

The FFT technique is the favoured method for spectral analysis as it is an 

established method and there exist many COTS products which easily aid in the 

implementation of the spectral analysis tool for frequency estimation of signals as part 

of a larger condition monitoring programs for fault detection in machines.
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There exist other classes of frequency estimation methods and one example of these is 

the class of parametric modelling methods (Kay and Marple 1981) as was explained in 

Section 2.3.1. The parametric approach is based on modelling the signal under 

analysis as a realization of a particular stochastic process and estimating the model 

parameters from its samples. This method is very commonly used in seismic analysis 

and stock market forecasting (S. Lawrence Marple Jr. 1987) and in the field of 

biomedical such the study of the Doppler ultrasound frequency estimation and fetal 

heart rate studies (Schlindwein 1988; Schlindwein and Evans 1989; Schlindwein and 

Evans 1990, Boardman et al. 2002). The interest in using parametric spectral analysis 

compared to the FFT based techniques for fault detection and condition monitoring of 

equipment for rotating machinery has remained low. The main reason for this is 

because the order of the parametric models has to determined beforehand (Mechefske 

and Mathew 1993) and has to be done accurately to get good frequency estimates.

In the following sections, the FFT and AR techniques are compared in terms of 

their PSD performance. The use of the parametric method of AR modelling as a 

spectral analysis tool is discussed in detail. The basic tenets of a PSD estimator are 

also examined.

2.4.2.1.AR Modelling As a Spectral Tool

There are a number of practical considerations to take into account when 

choosing a spectral estimator (Broersen 2002). Some of these include its performance 

in terms of resolution, variance and potential for real time application. Usually the 

PSD is defined in a nonparametric way by Fourier transform of an infinite 

autocorrelation sequence. Another possibility is to estimate PSD is to represent the 

examined process by a parametric description and then estimate PSD in terms of the 

model parameters. Such a PSD has some better properties than classical spectral 

estimators. For example, better frequency resolution is achieved by using parametric 

methods such as AR modelling or ARMA modelling mentioned in Sections 2.3.2 and 

2.3.3. Classical estimation methods use windowed set of data or autocorrelation 

sequence and make the unrealistic assumption that values outside the window are 

implicitly zero and all data are periodic. The choice of window type and size requires 

exact knowledge of the true spectrum but this is hardly the case in real applications.
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This leads to distortions in the spectral estimate. It has been quoted by Broersen 

(Broersen 2002) that “despite all efforts to construct efficient spectral estimators, the 

best or optimal spectral window can only be determined if the true spectrum is known 

a priori” In model based methods more realistic assumptions about the data outside 

the window are made. The data is not assumed to be a periodic process and data is not 

multiplied with windows before the spectral transformation.

2.4.2.2. AR Versus FFT

Over the last 40 years, a primary tool for spectral analysis has been the Fast Fourier 

Transform (FFT). It is not required to explain much about the FFT technique as it is 

very tried and tested tool in many areas of engineering. The main limitation of FFT- 

based methods in the field of machine condition monitoring is the frequency 

resolution when applied to short lengths of signal.

Strictly speaking, the traditional FFT-based methods make the assumption the 

process is periodic and stationary. In practice, processes are not periodic and exhibit 

non-stationarity. The performance of FFT tools degrades when applied to non- 

stationary signals. One way to deal with non-stationary behaviour is to use Short Time 

Fourier Transform (STFT) or Wavelet analysis (these techniques will be explained 

more in detail in Section 2.4.3). These techniques are more applicable to transient 

signals. AR models have been proven to exhibit superior performance for 

nonstationary signals (Zhuge, Lu et al. 1990) than classical non parametric 

methodologies. The AR model doesn’t assume periodicity and models the signals with 

flattest possible spectrum. Also AR-based spectral analysis can produce better spectral 

estimates for short segments of data since it is better able to characterize the time- 

varying behaviour of frequency estimates.

The frequency resolution characterizes the distinguishable minimum frequency 

difference between two sinusoids. Hence, for a given sampling frequency, the more 

samples you have, the higher the frequency resolution for the FFT-based method is. 

However, there is always a limit for the number of samples to use for spectral analysis 

as a bigger sample size translates to bigger memory buffers to hold the data as well as
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longer processing time for each frame, inherently affecting the performance if a real 

time spectral analysis tool is to be implemented and a higher probability that the 

signal, over the extended time frame would be non-stationary. Also, in some 

situations, only short lengths of signal are available.

The relationship between the number of samples and frequency resolution of 

the FFT can be quantified by the following equation [2.25]:

A/• = £  [2.25]

For the AR PSD estimator the resolution of processes consisting of sinusoids in white 

noise [2.26] is given as

Y  = p[swftf°p+i))]“JI [2-26]

As can be seen, the frequency resolution of the FFT technique is bounded by the 

number of data samples available for use. The FFT method fails to work well for short 

data records and will have limited frequency resolution in such cases. The frequency 

resolution of the AR based method is a function of the model order and also the SNR.

The main advantage of the FFT PSD comes from the fact that it is 

computationally efficient. The use of FFT algorithm of Cooley and Tukey for the 

Fourier transformation leads to a reduced computer effort and this advantage in the 

computational influence is the main reason for the popularity of the FFT PSD method 

in the recent years (Broersen 2002). The processing requirement of the FFT method is

proportional to AHog2 N  where N  is the sample size. The processing requirement of 

the AR method mainly depends on two factors, firstly the estimation method 

implemented and secondly it is proportional t o p 2, the square of the order. The Yule- 

Walker-based AR estimation method is computationally less expensive than the 

covariance or Burg counterparts. However it should be noted that even then the Yule-
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Walker algorithm is slower than the FFT method. Schlindwein (Schlindwein 1988; 

Schlindwein and Evans 1989; Schlindwein and Evans 1990) has shown that the AR 

technique is slower than the FFT technique by a factor of 2.58 for the same sample 

size (N=256) and processor (TMS320C25) using the Yule-Walker method.

The main advantages and disadvantages of both PSD methods are summarized 

in Table 2-1.
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Table 2-1 Comparing AR and FFT spectral estimation methods.

AR FFT

Resolution Better than the FFT method. 

Dependent on model order p 

used.

Depends on frame size used.

Sampling Rate Just above the Nyquist rate 

(where Nyquist rate is defined 

as twice the maximum 

frequency of the signal being 

sampled) is sufficient.

Typically 6 or 7 times the 

maximum frequency of the 

signal being sampled is 

required for good spectral 

estimates.

Spectral

Variance

Less than FFT method. Averaging required to reduce 

variance and to get smoother 

spectrum.

Applicability to

non-stationary

signals

Performs better than the FFT 

method because shorter 

segments can be used.

Performs poorly since longer 

segments are required.

Spectral

Leakage

Non-existent as the technique 

does not assume periodicity of 

signal.

Spectral leakage is a problem 

that can be reduced with the 

use of suitable windows, but at 

the cost of frequency resolution

Performance in 

noise

Spectral resolution decreases 

with noise, but AR method 

performs better than FFT.

Performs poorly if SNR of 

signal is low.

Computational

effort

Can be computationally 

intensive. Processing effort 

required is proportional to p2.

Requires less processing power 

than AR method. Processing 

power required is proportional 

to NlogN of frame size N.
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In this section, the reasons for choosing the parametric AR technique over the 

FFT technique for modelling the quasi-stationary vibration signals were explained. 

The main advantage of the AR approach comes from the fact that it can work with 

smaller sample sizes for the same resolution compared to the FFT method. Hence 

essentially the AR technique only requires a fraction of the samples that are required 

by the FFT method for the same resolution and may cost less in computational terms 

as fewer samples are used. This has an advantage especially in real time applications.

2.4.3. Time Frequency Analysis

Classical spectral estimators cannot correctly describe many interesting condition 

monitoring conditions where transient phenomena in the mechanisms of control must 

be investigated and where the basic assumption of stationarity cannot be assumed. The 

AR model is built upon a stationary process and does not perform well for non- 

stationary processes (Zhuge, Lu et al. 1990; McCormick and Nandi 1998; 

McCormick, Nandi et al. 1998). In such situations, the use of time-frequency analysis 

is more appropriate. Over the years, great interest has been focused on the 

development of spectral techniques for studying evolving non-stationary phenomena, 

both in the parametric and non parametric fields.

A time frequency distribution describes the evolution of the signal’s energy in 

both time and frequency domains. Such distributions are particularly useful for 

analyzing signals with time-varying frequency content. By estimating the energy 

distribution of the signal in the time-frequency plane, it would be expected that 

changes in the amplitude of the signal could be located in both the time and frequency 

domains. Among the variety of time-frequency analysis techniques, the wavelet 

analysis, the spectrogram (the squared modulus of Short-time Fourier 

Transform(STFT)) and Wigner-Ville Distribution (WVD) are commonly used for fault 

diagnosis.

The wavelet analysis (Baillie and Mathew 1996; Fang, Willett et al. 2000; 

Abbaszadeh, Rahimian et al. 2002) is regarded as a powerful tool for detection of
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sudden changes in non-stationary signals. It has the property of time-scale localization, 

which is particularly useful in the analysis of vibration signals with short time 

transient phenomena. The wavelet transform uses a finite duration basis function 

called the basis wavelet. The continuous wavelet transform is aimed at achieving a 

constant relative resolution i.e., good time resolution at high frequencies and good 

frequency resolution at low frequencies. This enables the effective analysis Of signals 

consisting of high frequency content of short duration and low frequency content of 

long duration.

The spectrogram applies the Fourier transform for a short-time analysis 

window with the assumption that the signal satisfies the requirement of stationarity 

within the window. By moving the analysis window along the signal, it is expected 

that the time variation of the signal spectrum will be revealed. The spectrogram has 

many desirable properties, including a well-developed general theory. However 

serious difficulties arise when the spectrogram is used to deal with fast varying 

signals, such as transients. If a very narrow analysis window is chosen to catch sudden 

changes in the signal, it is very difficult to resolve the closely spaced frequency 

components of the signal. Thus there is a trade-off between time and frequency 

resolution for the Fourier-based spectrogram (Watts 1968).

The Wigner-Ville Distribution (Wang and Wong 1999; Yang, Mathew et a l  

2005) provides a high-resolution representation in time and frequency for a non- 

stationary signal and possesses many interesting and important characteristics. 

However unlike the spectrogram, its energy distribution contains negative components 

that make interpretation difficult, and often has severe cross-terms between 

components in different time-frequency regions, potentially leading to further 

misinterpretation and confusion.

2.4.4. Conclusion: Frequency Based Param etric M ethod of AR M odelling

is an Appropriate Method

The vibration signals produced by the dry vacuum pump are assumed to be quasi 

stationary and hence the use of the frequency based parametric method of AR 

modelling is appropriate in the context of the problem studied.
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There are also other fault detection and diagnosis methods suggested by 

researchers which have been successfully implemented, especially for the analysis of 

vibration signals, resulting from ball bearings of machines. These are cyclostationary 

analysis (Randall, Antoni et al. 2000), higher order statistics (McCormick and Nandi 

1996; McCormick and Nandi 1998) and cepstral analysis (Zheng and Wang 2001) 

methods. However, many of them are theoretically-based and have failed to address 

the problem from a real-time implementation point of view. Many of these methods 

require some complex and sophisticated analysis, which renders their application 

cumbersome for automated fault detection systems. A compromise has to be achieved 

between the method’s resolution and the feasibility and simplicity required for real­

time implementation. Real-time implementations of the fault diagnostic system in 

industrial machines do not permit high computational costs. As a solution to this, the 

model-based approach of AR modelling is proposed. Building a fault detection tool 

based on AR techniques gives us the possibility of a real-time implementation and the 

ability to detect faults with an acceptable computational cost.

2.5 . Sum m ary

In summary, this chapter has introduced the dry vacuum pump, outlined the 

basic equations of AR modelling, looked at alternative methods for vibrational 

analysis and has given the reasons for choosing the frequency-based parametric 

method of AR Modelling for the study conducted. The next chapter will look at the 

data acquisition setup and instrumentation used in acquiring the vibration signals from 

the dry vacuum pump.
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3. Platform of Experimentation

3.1. Introduction

In this investigation, suitable transducers had to be chosen for studying the vibration 

measurements from the dry vacuum pump. Also, suitable instrumentation had to be 

constructed for collection of vibration signals from the pump. The measurement of 

machine vibration can be made using a wide array of sensors but in our case the 

accelerometers were selected and the performance of two different types of 

accelerometers was evaluated: ADXL105 iMEMs surface micromachined

accelerometer and Briiel & Kjaer (BK) 4370V accelerometer. Reasons for selecting 

these accelerometers will be given in this chapter. This work has been published in 

(Thanagasundram and Schlindwein 2006c).

3.2. Mounting the Accelerometers on the Dry Vacuum Pump

Two different types of accelerometer were mounted radially on different 

measurement points on the dry vacuum pump to capture the vibration signals (please 

refer to Figure B -l in APPENDIX B). One was using a surface micromachined 

accelerometer ADXL105 (Doscher 1997; ADXL105 1999; Doscher 1999b; Doscher 

1999a). The other was using a Briiel and Kjaer 4370V accelerometer. For an in-depth 

analysis of the use of these two accelerometers, please refer to Section 3.4. It was 

noted that the measurement position was critical in affecting the characteristics of the 

vibration signals. The placement of sensors is of critical importance to achieving high 

quality measurement for machine condition monitoring and fault diagnosis and 

effective sensor placement strategy had to be adopted (Huang and Wang 1996; Tang, 

Tan et al 2001). At the incipient stage, a defect-related impact is generally weak in 

magnitude and of short duration due to the small size of the defect (McFadden and 

Smith 1984a). To achieve high signal to noise ratio, the sensors need to be placed as 

closely as possible to the bearings, where signals due to structural defects are 

generated. Machine borne vibrations and other background noise are often 

encountered in the manufacturing environment and hence the signals generated by the 

defective bearing may be overwhelmed by noise contamination in both time and 

frequency domains. Also, for a sensor placed far away from the defect, considerable
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signal attenuation can occur along the propagation path leading to poor signal to noise 

ratio. For bearing condition monitoring, vibration sensors have traditionally been 

placed on the outside surface of the mechanical housing within which the bearing to 

be monitored is located. Since the bearing of interest is mechanically linked to other 

machine structures, the sensors will pick up structural borne vibrations and 

environmental noise in addition to defect impact induced vibrations. For the pump, 

data was acquired from the bearing housing in vertical, radial and axial directions. 

However most of the analysis was done with data obtained in the radial direction as 

the radial measurement point was a convenient mounting point and the data obtained 

were of good quality.

3.3. Elliptic Low-pass Anti-Aliasing Filter

The signals from the ADXL105 accelerometer were filtered with an 8th order 

elliptic low pass anti-aliasing filter that was custom-built in our laboratory. An anti­

aliasing filter is a filter used, before sampling or digitizing the signal, to restrict the 

bandwidth of the signal to satisfy the Shannon-Nyquist sampling theorem (Shannon 

1998; Wyner and Shamai 1998). The purpose of the low-pass anti-aliasing filter built 

was to remove frequencies above 10 kHz since it had a cutoff frequency of 10 kHz. 

The vibration signals were oversampled at a frequency of 40 kHz. The maximum 

frequency that can that can be reconstructed without distortion is 20 kHz according to 

the Nyquist frequency (where Nyquist frequency is defined as half the sampling 

frequency of the discrete digitized signal (Ifeachor and Jervis 2003)). Of the 20 kHz 

range, only 10 kHz (in the range of 0 to 10 kHz) was filtered and retained by the low- 

pass filter to accommodate the practical constraints of anti-aliasing filters since an 

anti-aliasing filter with perfect stop band rejection (also known as brickwall filter) is 

impossible to realise no matter how good the filter is, and in reality, every realizable 

filter will permit some aliasing to occur (Proakis and Manolakis 1995). In summary, 

the use of the filter was for the following two reasons: One was to prevent aliasing of 

the vibration signals before digitization took place in the ADC (Analog to Digital 

Converter) cards. The other was to increase the gain of the signal by 2 to increase its 

SNR. The specifications of the filter and filter design are shown in Figure B-2 in 

APPENDIX B. A high order of 8 was implemented as it was desired to have a sharp 

cut-off rate and a large attenuation in the stop band. The frequency response of the
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filter is shown in Figure B-3 in APPENDIX B. As can be seen from the frequency 

response, the filter constructed achieved a steep attenuation rate at the cut-off 

frequency of 10 kHz with an attenuation of almost 70 dB in the stop band. It is known 

that elliptic filters have a non-linear phase and hence a not-flat group delay, but the 

phase characteristics of the signal were not important in this study -  where the 

amplitude of the vibration signal is of concern. The filter was constructed using a 

positive Single Amplifier Biquad (SAB) configuration to minimize the number of 

operational amplifiers used in the circuit board.

The signals from the Briiel and Kjaer 4370V accelerometer were conditioned 

using a Briiel and Kjaer 2692 preamplifier, which transduced the signal from charge to 

voltage form, changed its gain and band-pass filtered it from 0.1 Hz to 10 kHz. The 

analogue to digital conversion of the signals was performed with a 16- bit NI 6034E 

ADC card with 16 channels of Analog Input (Al) and 2 channels of Analog Output 

(AO). The key features of the card are that it has a maximum sampling rate of 200 

kSamples/sec and an onboard clock which can be used to generate accurate pulses to 

control the sampling rate. The ADC board also features an onboard buffer, which is 

used a temporary storage for the samples while the data is transferred to the 

computer’s memory for processing, thus preventing data overflow.

The vibration signals were digitised at a sampling rate of f s = 40 kHz. The

acceleration signals were suitably amplified by the on-board gain amplifier on the 

ADC card before the A/D conversion took place to make full use of the available 

dynamic range. The signals were originally sampled at 40 kHz. As noted earlier, this 

gives us a frequency range of 0 to 20 kHz to work with but after filtering with the low- 

pass elliptic filter, only the useful part from 0 to 10 kHz was retained (there was a gear 

mesh frequency of the pump occurring around 6 kHz). Later the data was digitally 

low-pass filtered at 1 kHz and downsampled by a factor of 20 to give the frequency 

range of 0-1 kHz as the bearing fault frequencies lie in the range from 0-1 kHz. 

Varying lengths of the signals were obtained as per our requirements. Most of the 

analysis was carried out using the ADXL105 vibration signals. The reason for doing 

so was because this signal had a good anti-aliasing filter which removed most of the 

observation noise (unwanted signals above 10 kHz) before the digitization process 

took place. This provided the opportunity to study the signal without complications
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associated with significant amount of noise corruption. In addition the ADXL105 

vibration signals were better modelled by an AR process than the B&K vibration 

signals. This observation is presented with supporting results of autocorrelation plots 

in Section 4.3.4.5.

For an overview of the details of the robust and efficient data acquisition 

system (hardware and software) for signal acquisition and processing for the purpose 

of condition monitoring for the dry vacuum pump, please refer to the section on 

Condition Monitoring VI in APPENDIX B.

3.4. An Evaluation of an Alternative iMEMs Vibration Sensor

This section presents a brief discussion on the use of inexpensive Micromachined 

Integrated Micro Electrical Mechanical System (iMEMs) accelerometers such as 

ADXL105 as an alternative to piezoelectric accelerometers for obtaining reliable and 

predictable data for diagnostics. The work presented here has been published in 

(Thanagasundram and Schlindwein 2006c).

3.4.1. Instrum entation

It was desired to monitor simultaneously and continuously the health of the iGXIOO 

dry vacuum pump at several measurement points. The use of piezoelectric 

accelerometers for instrumentation is not practical on the basis of cost, since each 

needs an expensive associated charge amplifier. Charge amplifiers are a required piece 

of auxiliary equipment for piezoelectric accelerometers which are necessary to 

transduce the vibration signal from capacitance to voltage form, change its gain and 

band-pass filter it.

Alternative solutions had to be investigated. The ADXL105 accelerometer is a 

second-generation surface micromachined device that carries a differential capacitive 

sensor and electronic signal conditioning circuitry on a single integrated chip. In a 

recent article (Doscher 1999b), it has been demonstrated that surface micromachined 

accelerometers have reduced the cost of real time monitoring diagnostics from $1000 

to $100 US dollars per point. Moreover, it has been illustrated how effectively 

micromachined accelerometers can be used to monitor machine vibrations (Doscher
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1997) and it was also suggested that surface micromachined capacitive ADXL105 

accelerometers can rival the performance of more expensive sensors such as the 

conventional piezoelectric accelerometers (Doscher 1999a) as they have a more stable 

sensitivity as a function of frequency and temperature as compared to piezoelectric 

accelerometers. Consequently, it was decided that the performance of an iMEMs 

accelerometer ADXL105 from Analog Devices would be evaluated as an alternative 

vibration sensor.

The ADXL105 measures accelerations with a full scale range up to ± 5g (g 

being the acceleration of gravity), has a sensitivity of 250mV/g, has a on-board 

‘Uncommitted Amplifier’ (UCA) which can be used to change its output scale factor

with external resistors or to add a 1 or 2-pole active filter, has a 225[lg/^^Hz noise 

floor, a 0-10 kHz bandwidth of frequency response and an on-board temperature 

sensor which can be used for compensating against temperature effects for high 

accuracy applications. The zero-g voltage is 2.5V but it is ratiometric to power supply.

In this application, it was decided to keep the sensitivity at 250mV/g so that the 

full acceleration range may be used. With a 2.5 V zero-g voltage, the accelerometer 

can measure 2.5 V ± 0.25 x 5 V = 2.5 V ± 1.25 V without saturating the output 

waveform with a supply voltage of 5 Volts and having a safety margin of ±1.25 Volts. 

Also a summing amplifier stage with a potentiometer was added using the UCA, so 

that the zero-g voltage can be set at precisely 2.5 V. To keep a stable supply voltage of 

5 V, a regulator stage was also added. In the laboratory, the circuit was built for the 

ADXL105 as shown in Figure B-5 in APPENDIX B. Surface mount capacitors and 

resistors were used to keep the Printed Circuit Board (PCB) size small and for easier 

mounting purposes. The PCB with the soldered components was then fixed into a 

small Nylon plastic box and the space filled up with epoxy. A picture of the 

ADXL105 sensor is shown in Figure B-6 in APPENDIX B.

Piezoelectric accelerometers such as the Briiel and Kjaer (B&K) 4370V 

accelerometer used as a comparison in this study have been around for many years. 

The desirable features of this type of accelerometer are its accuracy, low noise and 

operability at high temperatures. They are, however quite expensive and need extra 

signal conditioning circuitry such as preamplifiers. The specifications of the B&K
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4370V accelerometer are compared to those of the Micromachined Integrated Micro 

Electrical Mechanical ADXL105 accelerometer in Table 3-1. Note that the working 

frequency range of the B&K piezoelectric accelerometer is from 0.1 to 4800 Hz and its 

resonant frequency lies outside this range at 16 kHz. So if there is a small excitation at 

16 kHz, this will cause large amplified measurements at 16 kHz because of the 

resonance. For the ADXL105 accelerometer, the working frequency range is from 0.1 

to 4800 Hz and the resonant frequency occurs at around 6.7 kHz.
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Table 3-1 Piezoelectric Accelerometer Performance compared to ADXL105 as given in datasheet 

specifications

Accelerometer Property Piezoelectric ADXL105

Range Up to 2000 g
± 5 g

Sensitivity lOOpC/g 250 mV/g

Noise density 0.02 mg 0.225 mg

Temperature Range -74 to 250°C -40 to 85°C

Frequency Range 0.1 to 4800 Hz 0 to 10000 Hz 

(includes DC response)

Resonance 16 kHz Around 7 kHz

3.4.2. ADXL Vibration Signals

The noise floor of the ADXL 105 is proportional to square root of the measurement 

bandwidth required. As the measurement bandwidth increases, the noise floor 

increases and the Signal to Noise Ratio (SNR) of the measurement decreases. In this 

application, it was decided that the full frequency response up to 10 kHz would be 

monitored to include resonating frequencies for demodulated envelope spectra 

allowing detection of bearing defect frequencies. The minimum noise resolution for 

the ADXL 105 was calculated from the following formula given in the datasheet 

(ADXL105 1999).

Noise (rms) = 225iig{Hz)~^2 x(KxB)^2 t3 -1]

Noise (rms) = 225jug(Hz)^2 x  (1x10 0 0 0 ) ^  =22. 5

where K depends on the number of poles of the filter used with the uncommitted on- 

chip operational amplifier and B is the bandwidth of the measurement in Hz. Since 

there was no filter stage used in the circuit design, K is 1. Hence the minimum 

theoretical noise floor calculated for the ADXL 105 accelerometer using Equation [3.1] 

is equivalent to 22.5 mg.
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Noise(rms) = 20jug(Hz) ^  x(B )^  [3*2]

Noise(rms) = 2 0 x  (10 0 0 0 ) ^  = 2

The equivalent theoretical noise floor can be calculated for the B&K piezoelectric 

Accelerometer using Equation [3.2] and is found to be 2 mg.

To compare the performance of the accelerometers, the noise levels in both 

accelerometers were quantified. The accelerometers were powered and mounted on 

the same measurement point on the pump (see Figure B-7 in APPENDIX B). The 

pump was not switched on. Spectral analysis of the acceleration signals gave 

estimations of the DC level (bin 0) and the AC level (the Root Mean Square (RMS) 

sum of the rest of the bins). These AC measurements are indicative of the noise 

present in both accelerometers. The experimental RMS value of ADXL105 noise 

measured in the laboratory (23 mg, as shown in Figure 3 -1(a)) agreed very closely 

with the theoretical value of 22.5 mg calculated from equation [3.1]. In comparison, 

the RMS noise value of the Briiel and Kjaer piezoelectric accelerometer (see Figure 3- 

1(b)) was measured to be 1.4 mg (this was slightly less than the value of 2 mg 

calculated using Equation [3.2]).
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Figure 3-1 Measurement of noise level in both accelerometers.

(a) ADXL105 and (b) Briiel& Kjaer (B&K) 4370V accelerometer measured with 1.2% uncertainty 
in the testing environment (pump off, circuitry on). Waveforms shown are actual noise levels. 

RMS values found to give an indicative experimental noise level measurements. Notice the change
of scale from (a) to (b).
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Figure 3-2 Noise floor measurements of accelerometers.

(a)ADXL105 and (b) Briiel& Kjaer (B&K) 4370V accelerometers in the frequency domain in the 
same testing environment (pump off, circuitry on).

Hence the measured noise level of the ADXL 105 accelerometer was 

approximately 16 times greater than the noise level for the piezoelectric accelerometer. 

In the frequency spectrum, the ADXL 105 noise floor was around -60dB and the Briiel 

and Kjaer accelerometer noise floor was around -100 dB as shown in Figure 3-2.

The greater noise level of the ADXL 105 limits the resolution of this 

accelerometer and thus its ability to detect small signal changes (Doscher 1997). This 

becomes important when measuring very low g amplitudes. This was not a major 

limitation for this study, as the pump is known to produce levels of vibration of up to 

±2 g (peak-to-peak) when running at 6000 RPM (revolutions per minute), or 100 Hz.

The accelerometer to be used for condition monitoring must be capable of 

accommodating peak-to-peak values of higher magnitude or at least two orders of the 

magnitude of vibration measured in the normal working conditions in order to be used
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effectively in non-standard operations such as fault conditions. The higher noise level 

of the ADXL105 only becomes a major limitation when used in very low g level 

applications or when used to measure vibrations from very low speed rotating 

machinery (machines which have a rotating speed of much less than 100 Hz). Fault 

detection and diagnosis of low speed machinery (Barret 1993) is a subject of study 

itself where other types of transducers such as displacement transducers or proximity 

probes or special techniques such as pulse shock methods or high frequency resonance 

techniques (Prashad, Ghosh et al. 1985) have to be employed.

3.4.3. Resonance

It was also noted that the ADXL 105 sensor exhibited resonance when the ADXL 105 

Cerpak package chip was not glued to the PCB. Resonance is due to the mechanical 

system made up of the mass of the package and the leads of the IC acting like 

"springs". Resonance is not desirable as it can saturate the output of the accelerometer. 

Much care had to be taken when soldering the ADXL105 chip and after soldering, 

epoxy glue was applied to stick the chip onto the PCB board to prevent the resonance. 

Figure 3-3 shows the time domain responses of the ADXL 105 (a) when the chip was 

not glued and (b) when it was glued to the PCB.

From the results, it can be seen that higher g levels are measured due to 

resonance when the ADXL 105 chip is not glued to the PCB even though the pump 

was rotating at 110 Hz in both cases. The resonance can also be seen in the frequency 

domain spectrum in Figure 3-4(a). The vibration level of the ADXL 105 accelerometer 

spectrum rises above the piezoelectric accelerometer spectrum around 6.7 kHz as 

measured in the experimental setup.
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(b)
Figure 3-3 Resonance measurements in time domain.

(a) Resonance occurring when chip is not glued to PCB; and (b) when it is glued; Pump was 
rotating at 110 Hz in both cases. Notice the change of scale from (a) to (b).
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Figure 3-4 Resonance measurements in frequency domain.

(a) Resonance occurring when chip is not glued to PCB (Rising of the ADXL105 vibration level 
near the resonating frequency 6.7 kHz and (b) when it is glued (the spectrum of the ADXL105 and 
that of the B&K piezoelectric accelerometer are very similar). The pump was rotating at 110 Hz

in both cases.
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Figure 3-5 Difference between the frequency spectra of ADXL and B&K piezoelectric
accelerometer in linear scale.

(a) Large differences in the amplitudes of the spectra are measured in the frequency range 
between 6 to 7.5 kHz when the ADXL 105 chip is not glued to the PCB. (b) Only small differences 
in the amplitudes of the spectra are measured when the ADXL105 chip is glued to the PCB. The

pump was rotating at 110 Hz in both cases.

In Figure 3-4(b), the spectra of both accelerometers are very similar when the 

ADXL 105 chip was glued. The difference between the frequency spectra (obtained by 

subtracting the frequency spectrum of the ADXL accelerometer from the frequency 

spectrum of the B&K piezoelectric accelerometer) can be more clearly seen when the 

spectra are plotted in the linear scale. Figure 3-5(a) shows the difference in the spectra 

when the ADXL 105 chip is not glued to the PCB and (Figure 3-5(b)) shows the 

difference in the spectra when the ADXL 105 chip is glued to the PCB. When the 

ADXL105 chip is not glued to the PCB (Figure 3-5(a)), large differences as much as 

0.5 g are measured in the frequency range between 6 to 7.5 kHz indicating resonance 

occurring around that region. When the ADXL 105 chip is glued to the PCB, only 

small differences in the amplitudes are seen and these occurred around in the regions
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between 1.5 to 3.5 kHz and 6 to 6.5 kHz but they are significantly much smaller and 

the largest difference is only measured to be around 0.01 lg (only about 1/5* of the 

magnitude of the difference measured when resonance had occurred).
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3.4.4. Conclusion : ADXL105- A Low Cost Sensor Solution

The performance of the ADXL 105 accelerometer has been verified and has been 

found to give the same quality of data as that of a piezoelectric accelerometer. The 

main advantages for the use of the ADXL 105 accelerometer are its low cost, its ability 

to measure DC response, its better temperature stability and the presence of on chip 

signal conditioning circuitry. The main drawbacks would be that it cannot be used at 

high temperatures, it can resonate if proper mounting techniques are not adopted and it 

has a higher noise level than piezoelectric accelerometers. However, if proper 

measures are taken, all these limitations can be overcome and micromachined 

accelerometers can be used successfully for machine diagnostics, as validated by 

(Thanagasundram and Schlindwein 2006c). Since this is not a low g application, the 

higher noise level is not a great concern. The low cost of the ADXL105 sensors allows 

permanent sensor placement on multiple measurement points on the dry vacuum pump 

and makes it economically possible to extend on-line monitoring. This is an excellent 

solution for acquiring consistent, reliable and accurate data as many of the errors and 

inconsistencies of temporary mounting can be prevented. The ability to use more data 

also improves the success of automatic fault diagnostic techniques.

3.5 . F inding the R unning Speed o f the Pum p

The iGX dry vacuum pump is driven by a 3 phase, 2 pole AC asynchronous induction 

motor and there is also an inverter acting as variable frequency drive for controlling 

the pump’s fundamental rotor rotational frequency. The relationship between the 

synchronous speed of the pump and the set reference speed is given by the following 

formula [3.3]:

Synchronous Speed of motor (Hz) = — ^ x ^ r^ uenc^— ^
Number o f Poles 1 J

If, say, the reference frequency is set at 110 Hz and since the motor has 2 poles per 

phase, the synchronous actual running speed of the motor achieved should be 110 Hz. 

But in reality, the motor only achieves a speed slightly less than 110 Hz, for example 

108 Hz. This is known as motor slip, is a function of the load, and is characteristic of
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AC induction motors. These effects can be seen clearly in the vibration signature. This 

phenomenon was studied in the laboratory by setting the dry vacuum pump to 

increasing speeds from 50, 60, 70, 80, 90, 100 to 105 Hz and keeping the inlet pressure 

at 0 mbar whilst the outlet pressure was maintained constant at atmospheric pressure 

and the fundamental rotational speed of the shaft (which is equal to the actual 

synchronous speed achieved) was measured.
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Figure 3-6  Set Speed versus Actual Speed of pump.

Actual Speed of Pump was always less than the Set Speed and the difference depends on the

loading factor.

The inlet pressure set is taken to be equivalent to the loading factor of the 

pump. The fundamental rotational speed of the shaft (actual running speed) was noted 

by screening for the frequency of the first harmonic in the spectra of the vibration 

signature of the pump. The first harmonic is equal to the actual rotational speed 

achieved by the pump. Results are shown in Figure 3-6. It can be seen for that for any 

speed, the actual running speed was always less than the set speed. This is because of 

the motor slip. The vibration measurements for the pump were repeated under a higher
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load condition (50 mbar). The slip increased with a bigger load as seen by the bigger 

difference between the set speed and actual speed achieved.

109 5
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- BK Point 1 

ADXL Point5 
- h -  BK Point5
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roZ3
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1065

106

105 5 100
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Figure 3-7 Pump speed set at 110 Hz but under increasing loads.

Inlet Pressure was increased from 0 to 100 mbar. Readings captured using two different 
accelerometers and at two different measurement points. It can be seen that as loading factor 
increased, the actual speed achieved by the pump also decreased because of increasing slip.

The experiment was repeated with the pump set at 110 H z , inlet pressure was 

varied from 0 to 100 mbar and readings were taken from two different measurement 

points and using two different accelerometers. The accelerometers used are discussed 

more in detail in Section 3.4. Point 1 was at High Vacuum (HV) end and point 5 was 

the Low Vacuum (LV) end. Please refer to diagram Figure B -l in APPENDIX B for 

the exact location of the measurement points. It was again observed that the higher the 

load applied to the pump, the more is the motor slip. Slip increased with a bigger load 

because of the higher mechanical damping experienced by the pump. The pump has to 

work harder when a higher load is set as it means that it pumps more molecules of air 

to achieve the required vacuum when the inlet pressure slip is higher. Slip causes the 

pump's total flow rate to be less than the theoretical flow rate, hence decreasing its 

efficiency and slowing down the pump.

Understanding these fundamental working principles of the dry vacuum pump 

is important as the in-depth knowledge gained, of the effects of different operating
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conditions such as speed and load on the vibration of the pump, provided the 

foundation for the development of a sound fault detection tool right from the 

beginning of the project. It was understood that the first key step in the fault detection 

scheme was accurate determination of the running speed of the pump. The rotating 

speed of the pump’s rotor shaft to which the bearing case was directly connected was 

often less than the set speed of the pump due to rotor slip as explained above. The 

effect of the actual speed was predominant in the detection of bearing faults as this 

was the speed that was used in the calculations of the bearing defect frequencies and 

had to be determined very accurately.

3.6. Sum m ary

This chapter gave an overview of the data acquisition system for the dry vacuum 

pump condition monitoring system. The use of a surface micromachined 

accelerometer ADXL 105 for spectral analysis of vibration data from a dry vacuum 

pump was also validated. The implementation details were explained and the 

schematics of the hardware circuits are given in APPENDIX B. It was also shown why 

it was necessary to accurately estimate the running speed of the pump for the 

calculation of the bearing defect frequencies in order to identify the presence of peaks 

associated to known faults in the spectra of faulty bearings.
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4. SELECTION OF AR MODEL ORDER

4.1. Introduction

Model order selection is an important factor in parametric PSD estimation, affecting 

its performance as fault detection tool, and consequently, this aspect is investigated in 

this chapter.

In Section 2.3.7, a review was given of previous work applying parametric 

methods of AR modelling for fault detection and condition monitoring studies. 

However, none of the previously mentioned studies performed a detailed analysis 

comparing various different techniques for estimating the optimum AR model order. 

This is the main issue addressed in this chapter. The order selection criteria and some 

of the limitations in determining the optimum AR model order are analysed with 

supporting results.

Methods of AR order selection criteria such as AIC, FPE, MDL, CAT and 

FSIC are first introduced. The study consists of two main sections. In the first section, 

a study that was conducted to determine the optimum AR model order for vibration 

signals obtained from the dry vacuum pump is presented. It is desirable to minimise 

the computational complexity of the AR model by choosing the minimum value of the 

order that adequately represents the signal being modelled. This study consists of two 

parts. In the first part, the optimum order was determined for real data obtained from 

the pump. Then the optimum order determined was verified with simulated data 

representing “true” AR processes and of varying frame sizes to check whether the 

criteria indeed found the optimum AR model order. The contents of this chapter have 

been published in (Thanagasundram, Feng et al. 2005).

The second section presents a discussion on the formulation of a practical rule 

of thumb for the estimation of the minimum model order for Autoregressive (AR) 

based spectrum analysis for data from rotating machinery. The work in this section has 

been published in (Thanagasundram and Schlindwein 2006b).
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4.2. A R  O rder Selection C riteria

Order selection criteria have been developed to indicate which model order to choose. 

Two of the most established criteria for order selection have been provided by Akaike. 

They are the Final Prediction Error (FPE) (Akaike 1969) and Akaike Information 

Criterion (AIC) (Akaike 1974). The FPE criterion [4.2] selects the order of the AR 

process so that the average error variance for a one-step prediction is minimised. In 

1974, Akaike suggested an order selection criterion using maximum likelihood 

approach and this was the AIC criterion [4.1]. The AIC determines the model order by 

minimizing the information theoretic function. There have been reported to be many 

variants of the AIC method but the one used for this investigation is the original one 

with a penalty factor of 2. As N  approaches infinity, the AIC and FPE criterions are 

asymptotically equivalent. In 1983, Rissanen developed the Minimum Description 

Length (MDL) [4.3] estimator (Rissanen 1984). It is called a minimally consistent 

criterion because pLoge(N) (the product of the AR model order and the log to the

base of the exponential of the sample size) increases with N  faster than with p  . In

1974 another method was proposed by Parzen and is termed Criterion AR Transfer 

(CAT) Function (Parzen 1975) [4.4]. The ‘optimum' order p is selected to be that in

which the estimate of the difference between the mean square error of the true 

prediction filter and estimated filter is minimum. All these techniques for estimation of 

the AR order are termed as asymptotic information criteria.

Kay and Marple have cautioned that the results of spectra using these criteria 

have been mixed particularly when applied to actual data rather than simulated AR 

processes (S. Lawrence Marple Jr. 1987). The criteria presented can only be used as 

guidelines for initial order selection. They are known to work well with computer 

generated synthetic AR signals but may not work well with actual data, depending on 

how well such data can be modelled by an AR process.

All these criteria were designed to reduce the probability of under fit at the cost 

of over fit (Broersen 2000b). For all order estimation criteria listed in Equations [4.1] 

to [4.5], N  is the sample size, k the trial model order and a 2 the variance of the 

prediction error for the given model order. A cost function term in each of them,
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known as the penalty term, penalises for the use of extra AR parameters above the 

‘optimum’ order.

The performance of a more recent method of order selection criterion, Finite 

Information Criterion (FIC) (Broersen 1985; Broersen 1990; Broersen 1998; Broersen 

2000b; Broersen 2000a; Broersen 2002; Broersen, De Waele et al. 2003) was also 

investigated. FIC has been claimed to perform better than the asymptotic criteria when 

the ratio p iN  is large. Samples are called finite if N  < °° and the ratio p iN  is 

greater than a small value such as 0.1. This method has been stated to be more 

accurate than the asymptotic criteria for a finite number of samples as it has been 

shown by Broersen (Broersen and Wensink 1993) that the asymptotic criteria do not 

take into account the distinction that exists in practice between the different estimation 

methods. The FIC criterion calculates the variance coefficients depending on the 

method of estimation used hence this method is meant to be more robust then the other 

order selection methods. The FIC criterion is defined by [4.5] where v. is the finite 

sample variance coefficient for the Yule-Walker method vf = (N -  i)/{N(N + 2)}.

AIC(k) = ln(cr(k)2) + (2k + l)IN [4.1]

FPE(k) =N + k +1 
N - k - 1

cr(k) [4.2]

MDL(k) = a{k)2 1 + [4.3]

CAT(k)= - X1 ±  N - j  N -k
X T  L  K 1 „ ,  ; ^ 2

[4.4]
N % Ncr(j)2 J Na(k)

FIC(k) = ln(cr(A:)2)+ 2̂ T v, [4.5]
/=i

The optimal model order is the order k that minimizes the above criterion Equations 

[4.1] to [4.5]. The variance of the prediction error is defined as
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i n f k ) 2 [4.6]
cr(k)2 =——-  £  {xW  + ̂ O iX in -in

N - k  n=k+1 I «=1

All of the above-mentioned order selection criteria will be used to investigate the 

optimal model order selection for the vibration data obtained from the dry vacuum 

pump in the following sections.

4.2.1. Motivation

It has been pointed out earlier, in Section 2.3.5, that the disadvantage of the AR 

method is that the optimum model order is not known a priori and some 

experimentation with different orders is required before the right order can be selected 

for the given finite record of signal of length N  samples (frame size). If the model 

order is too low, insufficient detail for confident fault diagnosis will be revealed in the 

spectra. If the model order is too high, then the spectral estimate is too peaky and 

spectral line splitting might occur (Fougere, Zawalick et al. 1976). Schlindwein and 

Evans have applied AIC, FPE and CAT model order criteria for spectral analysis of 

Doppler ultrasound signals (Schlindwein and Evans 1990). From this study, it has 

been concluded that, for spectral analysis of these signals, overestimating the model 

order is better than underestimating it. They also noted that that using a smaller frame 

size is more likely to produce an underestimation of the model order.

The task of finding the optimum order is not trivial. The main difficulty arising 

from using the order selection criteria is the need to apply the criteria to a large 

number of frames of data. The optimum order cannot be determined by applying it to a 

single frame of data because that frame might not be representative of the overall 

properties of the signal. Many frames of the signal have to be analysed before the 

optimum order could be determined accurately and conclusively. Some investigators 

compute probabilities while others use more graphical methods, such as histograms. 

The process becomes rigorous with the requirement of processing of orders for many 

frames of the signal.

Secondly, it is unwise to find the optimal order by the application of one order 

selection criterion alone. It has been reported by some researchers that certain criteria,
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like FPE, tend to overestimate the model order (Dron, Rasolofondraibe et al. 2001). 

Criteria like the MDL (refer to Equation [4.3]) have the tendency to underestimate the 

model order. It is advisable to test the performance of a combination of criteria and, if 

all of them select the same order, then that order can be concluded to be the optimum 

order.

In this case, it was desired to keep the model order low as smaller orders 

translate to smaller processing requirements for spectral estimation. The 

computational time needed to calculate the autoregressive coefficients using the 

Levinson-Durbin recursive algorithm is proportional to p 2, the square of the AR 

model order, therefore in real-time applications of the AR algorithm it is sensible to 

avoid high model orders in order to save unnecessary computation.

4.2.2. Method of Finding the Optimal Order

An assessment of the ability for estimating order of AR processes of frames of 

vibration signals of fixed sample sizes was investigated. The study consists of two 

main parts. In the first part, the optimal orders for describing 428 frames of 328 

samples (V=328) of vibration signal using the five criteria were evaluated. The steps 

used in determining the optimum order for each of criteria are stated as follows. A 

maximum order, K, was chosen. In this case this maximum order was fixed to a value 

of 60 (A=60), as it was expected that the optimum order would not exceed this value 

for the chosen data set. Variance cr(k)2 (refer to Equation [4.6]) of the prediction error 

was computed scanning orders from 1 < k > K  using the Yule-Walker estimation 

method (Equation [2.16]). Then, for each specific criterion, the criterion values are 

obtained for the range 1 < k > K using Equations [4.1] to [4.5]. The optimum order is 

independently selected for each criterion as the minimum value for each method. The 

steps are repeated for all the frames in the signal as a Monte Carlo simulation.

The size of the data frames used for this analysis is N=328. The ADXL 

vibration signal captured from the High Vacuum end of the pump was used as the test 

signal.
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4.2.3. Results and Discussion

4.2.3.1.Finding the Optimal Order

Figure 4-1 (a) shows the plot of how the variance of the prediction error for every 

model order p has been transformed into order criteria AIC(k), FPE(k), MDL(k), 

CAT(k) and FlC(k) for orders 1 < k > K . It can be seen that for low model orders, all 

the criteria have close values. A significant finding is that all the criteria have a local 

minimum occurring at an order around 25 for the given AR signal and sample size. 

Hence for this particular frame, the best order M  is equivalent to 25.

For higher model orders, the criterion values do tend to deviate. However for 

some of the frames, FPE and CAT criteria chose higher “best” orders. This can be 

explained if one looks closely at Figure 4-1 (b). The penalty factors built in all the AR 

order selection criteria are monotonically increasing functions. In this particular frame, 

there was a kink occurring at order around 41. The penalty factors built in AIC, MDL 

and FIC criteria weren’t affected much by this kink and these three criteria selected 

order p=25 as the local minimum. FPE and CAT whose penalty seem to be increasing 

more slowly with k, select the next best local minimum as the “best” order. Since the 

optimum order was earlier defined to be minimum criterion value in the range 

1 < k > K , these two criteria indeed select the higher order as the “best” order though 

this was not supposed to be the case. At this point the influence the choice of the 

maximum order K has on the order selection should be questioned. If it had been 

selected somewhere around 40, this problem could have been avoided and all the 

criteria would have given similar results. It can be seen how sensitive asymptotic 

criteria like FPE and CAT can be to the maximum order selected. The performance of 

these two criteria has also degraded because a small sample size was used. In fact it is 

known that FIC was the only criterion designed to work well independently of the 

choice of K and with small number of observations.

Figure 4-2 shows order versus time by the five respective order selection 

criteria for the 428 frames of data tested. It can be confirmed that the FIC criterion is 

the best criterion for order selection and it was found to outperform the other criteria 

when the sample size was small (Broersen and Wensink 1993). The FIC criterion 

exhibits good performance when the sample size is finite. In this case, the sample size
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is Af=328. Hence N <<*> and the ratio p /N  (maximum order K= 60 and 

p /N  = 60/328 ) is greater than 0.1. The FIC criterion also selects the optimal model 

order independent of the maximum order K. The FIC criterion has performed 

considerably well and selected the “best” order of 25 for most of the frames. AIC and 

MDL have almost identical performance, except at some points where the selected 

order differs. The performance of FPE and CAT criteria was poor. There is always a 

split between the orders selected. It is either 25 or 45. This can be explained by the 

earlier discussion for Figure 4-1.
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Figure 4-1 Order selection criteria given as a function of model order using the Yule-Walker
estimation method.

A particular vibration dataset (sample size N=328) was used, (a) Here K=60 and the optimum 
order M=25 for all the order selection criteria, (b) Same simulations as used before but using 

another data frame (sample size also N=328). For this particular frame, the optimum order M 
selected for AIC(k)=MDL(k)=FIC(k)=25. But FPE(k) and CAT(k) chose a slightly higher order of

41.

40411
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30431
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Figure 4-2 Analysis of the order of AR model for the various order estimation criteria. 

428 frames of vibration signal each with a frame size of N=328 were used.
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The distribution of model orders was then plotted as histograms of order 

occurrence versus model order. The order with the highest occurrence is identified as 

the “best” order, M  for each order selection criteria. The occurrence of orders as 

histograms is given in Figure 4—3. The same trend of results can be observed here 

statistically. The distribution for each of the above criteria in selecting the optimum 

order is 42%, 27%, 28%, 30% and 46% in that order. The highest order selected does 

not exceed 45 for more than 98% of the frames. For the MDL criterion, the highest 

order selected is 23 but there is a clustering of orders around 23, 24 and 25. The 

splitting behaviour of the orders can also be observed for the FPE and CAT criteria.

4.2.3.2.Verification of the Optimal Order

From the previous investigation, for 428 frames of this particular vibration signal, the 

optimal order M  is determined to be 25. The method used by investigators 

Schlindwein (Schlindwein and Evans 1989) and Boardman (Boardman, Schlindwein 

et al. 2002) is used to verify the ability of the criteria in identifying the optimal model 

order. In this method, a “true” AR process of known order (in this case, the optimal 

order determined earlier) is first generated by using coefficients extracted from the 

actual signal (this is done in order to preserve the signal characteristics). Then all the 

five criteria are used to predict the (known) AR order. This is repeated for 1000 

realizations of “true” AR processes each created with AR coefficients corresponding 

to a particular selected real signal. This allows an assessment of the abilities of the five 

criteria in estimating the correct order and the statistical performance of the different 

order selection criteria in identifying the optimum order.

In our case, from one typical frame the 25 ak coefficients are obtained and

used to generate 1000 sets of simulated series representing the AR process of various 

lengths N=300, 500 and 800 samples. The first 200 samples in each realization are 

discarded to minimise transient effects. Then the order selection criteria are again 

applied to the 1000 simulated AR processes to test their performance. The effect of 

increasing the sample size on the performance is also investigated.
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Figure 4-3 Histograms of “best” order.

428 frames of vibration signal of length N=328.
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Figure 4—4 Verification of order prediction criteria using a “true” AR process.

M=25 and N=300.
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In all cases the histograms have a peak corresponding to the “best” order M=25 except 

in the case of MDL, which estimated order M- 20 (Figure 4-4). This is expected of 

MDL as it belongs to a class of criteria which tend to select under-fitted models. From 

the spread of orders, it is seen that overestimation of order is negligible in all cases. 

Underestimation of order occurs less frequently as sample size increases. This is good 

as over-fitting is less problematic than under-fitting. Performance is also improved for 

the MDL criterion, as expected, as the sample size increases (see Figure 4-5). The 

distribution of the highest order selected, in this case the optimal order of 25, increases 

from 70% to 90% as sample size increases from 500 to 800 samples.

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

(a)

100

40

Order

(b)

Figure 4-5 Effect of increasing sample size for MDL criterion, 

(a) N=500 and (b) N=800.
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4.2.4. Conclusion: Optimum AR Model Order Found for Vibration 
Signals

The optimal AR model order was estimated via five different order selection criteria 

for the vibration signal. Results show that the minimum order required can be as low 

as 25 and that for 90% of the frames the model order does not exceed 45 for a sample 

size of N=328; The findings show that all five criteria investigated perform well in 

determining the optimum order with little to choose between them unless when a small 

number of samples are available. Asymptotic criteria like AIC, FPE, MDL and CAT 

perform well only when the sample size is large. If the number of observations used is 

small, the ability of the order selection criteria in identifying the correct autoregressive 

order may be affected. In such cases, higher orders may be selected due to the 

occurrence of a second local minimum. The findings of this study can provide useful 

insight on the use of order selection criteria for finding the optimum order for any 

desired signal for fault diagnosis purposes.

It should be noted that in this study the optimum AR model order was 

determined for raw test vibration signals obtained from a pump with no faults. The test 

signal was also not demodulated. This was because the investigation was conducted at 

the beginning of the PhD studies and there was no faulty data available at the time 

when this study was conducted. However, this investigation was repeated once faulty 

data was available. It was found that the optimum order can be as low as 10 for the 

demodulated faulty vibration signatures and this optimal model order was the 

subsequent model order used for the implementation of the fault detection tool based 

on the AR pole trajectory.

4.3. Proposition o f a New  and E asy A pproach to F ind the Optim al 
M odel O rder

The focus of this section is to introduce an easy rule for estimation of the minimum 

model order for Autoregressive (AR) based spectrum analysis for data from rotating 

machinery. As a result of the work done in the previous Section 4.2, it was realised 

that one need not use traditional model order selection criteria such AIC, FPE, MDL, 

CAT and FIC to estimate the optimal order. Though these asymptotic criteria for
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model order estimation are useful, a more straightforward method can be used, 

especially in the case of rotating machinery.

4.3.1. Motivation

From our earlier study on order selection criteria in Section 4.2, a clear repetitive trend 

was seen from the plots. Functions of all above mentioned order selection criteria had 

a steep decrease at a certain order. It was found that this minimum order was a

function of the sampling rate, f s , and the rotating speed of the machine . and

this behaviour was found to be repeatable at different sampling rates and different

rotating speeds.

4.3.2. Problem Formulation

The minimum order for rotating machinery, , was proposed and it is simply the 

ratio of the sampling rate, f s to the rotating speed of the machine, , i.e.

/
p min=---- s-— . The explanation is simply that the minimum model order corresponds

fmachine

to the number of samples collected over a full turn of the machine, that is, p ^ n . The 

suggested AR model order is the number of sample points corresponding to one 

shaft revolution. This finding is not surprising as the AR model can be seen equivalent 

to the standard multiple linear regression model. A current sample of the signal is 

estimated as a linear summation of p  previous samples where p  is the model order. 

Hence the number of samples used for the regression must be equal to at least the 

number of samples in one complete revolution of the signal for the prediction error to 

be low. This is the minimal model order.

The Box-Jenkins methods of order determination using autocorrelation and 

partial autocorrelations plots are also used for justification of the selection of this 

minimal order. Most of the tests were carried using the vibration signals from an 

ADXL105 accelerometer (Thanagasundram and Schlindwein 2006c). Comparisons 

were also made the B&K vibration signal. It will be shown that, although the B&K 

vibration signal has a higher Signal to Noise Ratio (SNR) than the ADXL105 

vibration signal (as shown by noise floor measurement results in Section 3.4.2), the
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B&K signal is less well modelled by an AR process, as it has an autocorrelation 

function which slowly decays with time. The argument is supported by experimental 

results and suggests that can be used as an initial optimal order for parametric 

modelling.

4.3.3. Methodology

The speed of the pump, , was varied at a fixed 0 mbar loading factor and test 

signals were collected with different sampling rates. The theoretical values for p ^ n 

were worked out for the various speeds and sampling rates and are given in Table 4-1.

Table 4-1 Working out the theoretical p ^ n values for various rotating speeds and sampling 
rates

f  machine (Hz) f s (Hz) N s
(Number o f 

Sample 
points per 
revolution)

2 N s 3 N s

100 2000 20 40 60
100 4000 40 80 120
100 5000 60 120 180
80 2000 25 50 75
80 4000 50 100 150
80 5000 75 150 225
60 2000 3 3 % 6 6 % 100
60 4000 6 6 % 1 3 3 % 200
60 5000 S 3 % 1 6 6 % 250

4.3.4. Results and Discussion

4.3.4.1.ADXL Signal at Increasing Rotating Speeds

Order selection criterion values were calculated using equations [4.1] to [4.5] for the 

vibration signals obtained from the pump using the ADXL105 accelerometer. When 

data was acquired for the analysis to generate the diagrams in Figure 4-6, the speed of
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the pump f  aching was kept at 100 Hz. The sampling rate f s was 2000 Hz for Figure 4 - 

6 (a to c). PniD is 20 (refer to Table 4-1). Only the frame size N  was varied. Looking 

at Figure 4-6(a), it can be seen that the behaviour of all order selection algorithms was 

very similar. Initially they showed a dramatic drop in their criterion values. Then this 

decrease becomes more gradual. The point where this occurs is the order of 20. 

The criterion curves then flatten out and remain relatively constant until order 40 

(2Pmin) is reached, where the curves for the 5 order selection criteria show another 

sudden decrease. A third slight decrease in the criterion values is again observed at 

3Pmin> at order 60. After order 60 there is no further ‘step’ decrease in prediction 

error.

From the above we can conclude that there is a relationship between the 

prediction error (all the order selection criteria are functions of the prediction error) 

and the number of samples per revolution N s (which is the same as PniQ). It is

expected of the prediction error of an AR model to decrease monotonically with the 

order, but looking at Figure 4-6(a), we can clearly see that the decrease in prediction 

error has occurred in step changes at multiples of p ^  . For Figure 4-6(b and c), the 

criterion values do begin to increase. This effect is more clearly seen in Figure 4-6(c). 

This happened because the frame length was decreased from 4 s to 1 s and 0.25 s 

respectively. The number of samples N  used for the order selection estimation has an 

effect on the behaviour of the criteria. If the ratio N i p  is large, the penalty factor 

inbuilt in each of these order selection criteria has a greater effect. This explains the 

increase in the values observed in Figure 4-6(c) as a small frame size was used.
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Figure 4-6 Behaviour of order selection criteria for ADXL105 vibration signals (100 Hz).

The speed of pump was fixed at 100 Hz- Sampling rate f s remained constant at 2000 Hz
but the length of frames was set at 4 s, 1 s and 0.25 s respectively for figures (a) to (c) in that 
order. For (d) and (e) the length of frame was 4 s but sampling rate was 4000 Hz for (d) and

5000 Hz for (e).
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Figure 4-7 Behaviour of order selection criteria for ADXL105 vibration signals (80 Hz).

The speed of pump was fixed at 80 Hz. The sampling rate f s remained constant at 2000
Hz but the length of frames was set at 4 s, 1 s and 0.25 s respectively for figures (a) to (c), in that 
order. For (d) and (e) the length of frame was kept constant at 4 s but sampling rate was 4000 Hz

for (d) and 5000 Hz for (e).
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Figure 4-8 Behaviour of order selection criteria for ADXL105 vibration signals (60 Hz).

The speed of pump /machine was 60 Hz. Sampling rate f s remained constant at 2000 Hz but the
length of frames was set at 4 s, 1 s and 0.25 s respectively for figures (a) to (c), in that order. For 

(d) and (e) length of frame was kept constant a t 4 s but sampling rate was 4000 Hz for (d) and
5000 Hz for (e).
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Clearly the order selection criteria are dependent on the number of samples. 

Even then, if one looks closely at Figure 4-6(c), one can see small kinks occurring at 

20, 40 and 60 which are multiples of . If one were to choose an optimal order for 

AR modelling, looking at Figure 4-6(a to c), one can say that the order cannot be less 

than 20, which is p ^ .  There might be an argument for choosing order 40 as there is a 

further slight decrease in the prediction error. Choosing an order above 60 is not worth 

the additional complexity of a higher model order as the benefit of a better fit gained is 

not worth the increase in computational power. Hence it can be seen that the ‘knee of 

the curve’ has occurred at order 20 and one may choose either order 20 or order 40.

When the sampling rate is increased to 4000 Hz and 5000 Hz, the value of p ^  

is 40 and 50 respectively. In Figure 4—6(d and e), kinks are observed occurring at 

multiples of 40 and 50, supporting the hypothesis. The speed of the machine f mmMne

was decreased to 80 Hz and then 60 Hz and the same experimental procedure repeated. 

The results are presented in Figure 4—7 and Figure 4-8. The same kind of analysis as 

that discussed above can be used to explain the results. However there was one effect 

to be noted. The size of the steps in the prediction error changed with the speed of the 

machine. The drop in prediction error was much less for 60 Hz than for 100 Hz. The 

knee of the curve occurs at smaller multiples of the p ^ n value. Looking at Figure 4 - 

8(a), we can say that the knee of the curve has occurred at around 33 (since the 

sampling rate was 2000 Hz and speed of machine was 60 Hz). If one had no 

knowledge of the order selection criteria, they could have easily estimated the optimal 

order from the p ^  formula we propose here because the order selection criteria had 

also predicted orders close to this value as verified by findings in Section 4.2.3.1. 

Using the p ^  formula, one can easily predict a ballpark figure of optimal order 20 for 

the 100 Hz vibration signal. The optimal order found by the order selection criteria for 

the 100 Hz vibration signal was 25 and this value is not far from the value predicted by 

the method proposed here. It should only be noted that if a higher speed of machine 

was used, then there is some advantage in using twice or thrice p ^ n because of the 

characteristic behaviour that was observed.
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4.3.4.2.ADXL Signal Spectrum -  Effect of Increasing Frame Length

The section exploits the effect the frame length has on frequency resolution of the AR 

frequency estimates. Optimal model orders that were earlier determined using the 

order selection criteria are used and it is verified whether they are the right orders 

required to model this ADXL vibration signal’s basic behaviour. For Figure 4-9, the 

speed of the pump f nuchbie was fixed at 100 Hz and the sampling rate f s was 2000

Hz. The figures on the left hand side ((a), (c), (e), (g) and (i) were obtained for a frame 

length of 0.25 s while the figures on the right hand side ((b), (d), (f), (h) and (j) were 

obtained for a frame length of 4 s.
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Figure 4-9 Spectra of ADXL105 vibration signal.

Speed of pump was 100 Hz. Sampling rate f  s was 2000 Hz. Frame length was 0.25 s for
those figures on left hand side and 4 s for figures on right hand side. Figures 5(a) to (h) show AR 

frequency estimates of order 20,40,60 and 80 respectively. 5(i) and (j) shows FFT frequency 
estimate obtained using the Welch method.
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As the order was increased from 20 to 60, the resolution of the spectra 

improves. As order is increased from 60 to 80, there is not much improvement in 

terms of resolution, but only a slight increase in the PSD variance. In fact Figure 4-9 

(e and g) and correspondingly Figure 4-9 (f and h) look very similar. Hence order 60 

is sufficient for this machine speed and sampling rate. The Welch method, an averaged 

modified FFT periodogram, was used to obtain Figure 4-9(i) and Figure 4-9(j). A 

Hamming window and 50% overlap were used to obtain these frequency estimates. 

The frame size used was A=500 and A=8000 samples for Figure 4-9(i) and Figure 4-9 

(j) respectively. The sizes of the sections were 256 and 4096 accordingly. There is 

some significant difference between the spectra in Figure 4-9(i) and Figure 4-9(j). 

The reason for this is that a much larger frame size N  was used in Figure 4-9(j) than in 

Figure 4-9(i). Hence, the strong dependence of the FFT-based methods on frame size 

is clearly observed. It is well known that FFT-based techniques require large frame 

sizes to provide accurate frequency estimates. AR-based techniques can work with 

smaller frame sizes and hence lead to an improvement in the time resolution.
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4.3.4.3.ACF and PACF Plots for ADXL Signal at Increasing Rotating Speeds

Statisticians use ACF and PACF plots to predict the model order of AR models. The 

ACF and PACF were defined in Section 2.3.6. Box and Jenkins have suggested that 

the examination of the behaviour of the Auto-Correlation function (ACF) and Partial 

Auto-Correlation function (PACF) of a time series can give information for the 

identification of the right type of model for its analysis and also aid in the selection of 

the right model order (Box, Jenkins et al. 1994). The plot of the ACF is an indication 

of the randomness in the data. The periodicity of a signal can also be seen in its ACF 

plot. If a signal contains a periodic component with period P, a peak in the curve 

occurs at integral multiples of P. The ACF for an AR(k) model has form of 

exponential decay or a damped sinusoid or a mixture of both. The partial 

autocorrelation function helps to determine the order of the AR process. If a time 

series is a AR(k) process, then the PACF plot for the signal converges to zero for 

orders greater than k.

For a time series of N  observations, Bartlett’s approximation sets the 95% 

confidence region at ± • These approximate confidence bounds provide limits to

help judge the statistical significance of the AR parameters calculated. If a parameter 

is outside the confidence interval limit, then it can be concluded the optimum order of 

the AR process has not been reached yet. Once they are within the limits, the residuals 

of the model are white and the optimum order has been reached.
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4.3.4.4.Determination of Order from ACF and PACF plots
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Figure 4-10 Determination of order from ACF and PACF plots

Speed of pump /machine was ^  at values as those indicated in the figures. ADXL105 vibration 

signal acquired at a sampling rate f  s of 2000 Hz. Length of frames was 2 s. Horizontal lines
denote 95% confidence interval level.

The vibration signals from this ADXL105 transducer are representative of a true AR process, 

as can be seen from their autocorrelation and partial autocorrelation plots. Figure 4-10(a and 

c) show the ACF plots of the vibration signals from the ADXL 105 when the speed of the 

pump /machine was set to 100 Hz and 60 Hz respectively. The corresponding PACF plots are 

shown in Figure 4-10(b and d). The periodicity of the pump can be clearly seen in the ACF 

plots. The repetitive peaks occur at 20 and 33.3 accordingly. Looking at Figure 4-10(a and 

c), it can be seen that ACF has a periodic behaviour with the periods occurring at multiples of 

Pnto . The envelope between the repetitive peaks is a decreasing exponential. It is to be noted 

that as the speed of the machine is increased, the process resembles a true AR process better. 

This can be seen in the well defined ACF plot in Figure 4-10(a). The order of the process is 

the point where the PACF plot cuts off. A 95% confidence limit has been used to judge the 

point where the function has died off. Referring to Figure 4-10(b), spikes can be seen 

occurring at 20, 40 and 60. At orders (or lags) above 60, the PACF becomes white noise-like. 

The same behaviour is observed in Figure 4 - 10(d). Here the spikes occur at multiples of
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33.3. The amplitudes of the spikes decrease and there is a more marked decrease as the speed 

of the machine increases. An optimal order for Figure 4 - 10(d) would be 33 and this is the 

P min value for the vibration signal at that sampling rate and machine speed (refer to Table 4 -  

1). This is in line with the behaviour observed with the order selection criteria plots.

4.3.4.5.Briiel& Kjaer (B&K) Vibration Signals at 100 H z  and 60 H z

Experiments were repeated, in the same test conditions, using vibration signals 

obtained from the pump with a Briiel and Kjaer (B&K) piezoelectric accelerometer. 

The specifications of the accelerometer were given in Section 3.4.1. This 

accelerometer has a frequency response from 0 to 4800 Hz and a smaller noise density 

specification of 0.02 mg/Hz (where g is the acceleration of gravity) compared to the 

ADXL105 accelerometer. It was described in Section 3.4.2 that the SNR of the 

vibration signal obtained using the Brtiel and Kjaer accelerometer is higher than that of 

the ADXL vibration signal. It was investigated whether the proposed technique would 

also work with its signal.

Results are shown in Figure 4-11 and Figure 4-12. The same behaviour is 

observed. The result that the optimal order would occur at p ^  also works for this 

signal. However, the statistical properties of these signals, mainly the autocorrelation plots, 

were different from the ADXL 105 vibration signals. The decrease in prediction error at 

multiples of p ^  is less marked, as the SNR of this signal is higher. The Briiel and 

Kjaer vibration signal has a slowly decaying ACF function (Figure 4 -11(b)) which is 

indicative of a signal that is less well modelled by an AR process. The PACF plot of 

Briiel and Kjaer vibration signal at 100 Hz cuts off below the 95% confidence limit only at 

high model order above 80 (4 p ^ ). For the 60 Hz signal, the PACF plot never cuts off 

below the 95% confidence limit but the biggest decrease in value occurs around 33 

(approximately around the p ^  value).
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Figure 4-11 Vibration signal from Briiel& Kjaer (B&K) at 100 Hz.

Speed of pump was 100 Hz. Sampling rate f s was 2000 Hz. Frame length was 2 s.

(a) Order selection criteria (b) ACF plot and (c) PACF plot.
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Figure 4-12 Vibration signal from Briiel& Kjaer (B&K) at 60 Hz.

Speed of pump was 60 Hz. Sampling rate f s was 2000 Hz. Frame length was 2 s.

(a) Order selection criteria (b) ACF plot and (c) PACF plot.
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4.3.5. Conclusion: A Rule of Thumb for Finding the Optimal Model Order

This section has presented a numerical testing of a simple way of finding the optimum 

order for an AR model for the analysis of data from rotating machinery. The main 

motivation for this work was to devise a simple way to overcome the problem of AR 

order selection, especially for rotating machines, and thus propose the formulation of

/
. The suggested AR model order p min= ---- £—  is the number of sample points in

fm achine

one complete revolution of the shaft at the various sampling frequencies and rotating 

speeds of the machine. Experimental results, using vibration data taken from a dry 

vacuum pump at different sampling rates and rotating speeds, show that at there 

is a marked reduction in the prediction error. For low speed rotating machinery, the 

optimal order is p ^ .  As the speed of the rotating machine increases, there is some 

advantage in using twice or thrice p ^  to produce more accurate frequency estimates. 

Results were also justified using ACF and PACF plots and also for a different 

transducer (B&K accelerometer). The application of the p ^  method can ease the 

estimation of the minimum optimum AR model order required for rotating machinery. 

It is hoped this may lead to increased interest for use of AR modelling for spectral 

analysis of signals from rotating machinery for condition monitoring schemes

Results show that the method is an excellent indicator of what the initial order 

should be. From the results presented a few concluding remarks can be made:

1. AR modelling can be used for spectral analysis in condition monitoring mainly 

because of its ability to work with smaller frame sizes and yet achieve a resolution 

improvements (both in time and frequency) compared to FFT techniques.

2. AR modelling can be effectively used for fault diagnosis as the optimal order can 

be found easily with the formula we propose here.

3. This simple rule of thumb does not replace traditional order selection criteria but 

can be used as a ballpark minimum figure for the optimal order.

4. It was noticed that as the speed of the machine increases, it might be advantageous 

to use twice or thrice the p ^  order.

5. This formula also works with signals with different SNR.
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6. In this work, the AR model was constructed for a test environment with a fixed 

loading factor. If there are changes in the loading factor, it is anticipated that the 

performance of the proposed technique still remains the same. The calculation of 

still applies as increasing the loading factor of the pump only increases the 

level of the strength of the vibration felt by the pump. The number of basic 

harmonics of the fundamental shaft frequency in the AR spectra remains the same, 

hence the minimum order is also expected to be the same.

4.4 . Sum m ary

This chapter has introduced the AR order selection criteria and has presented a 

detailed study on finding the optimal order for the vibration signals obtained from the 

dry vacuum pump using the order selection criteria. This chapter has also outlined an 

easy rule of thumb for finding the optimum order for AR modelling for signals 

attained from rotating machinery. The proposed method does not replace existing AR 

order selection criteria but is supposed to complement them. On these foundations, the 

next chapter proceeds to investigate the effects of the optimum sample size and 

sampling frequency for AR modelling.



SELECTION OF OPTIMUM AR SAMPLE SIZE 100

5. SELECTION OF OPTIMUM AR SAMPLE SIZE

5.1 . In trod uction

Chapter 4 had discussed and addressed the problem of AR model order selection for 

rotating machinery. A rule of thumb using the formula was proposed in Section 

4.3 for a ‘quick and easy way’ to establish the minimum AR model order needed in 

the context of rotating machinery when run at different running speeds.

This chapter aims to investigate the impact of the optimum sample size and 

optimum sampling frequency in applying AR modelling as a fault detection tool. This 

chapter is organized into two main sections. In the first section, an experimental study 

is conducted to determine the optimum sample size for AR modelling in order for the 

AR technique to be used effectively as part of a fault detection toolbox. The technique 

of the parametric method of AR model identification method is sensitive to the 

sampling frequency. In the second section of this chapter, a qualitative discussion is 

given to explain the impact of the sampling frequency on the estimation of the AR 

model order as well as a quantitative study with some findings is reported to support 

the arguments presented.

5.2 . In vestigation  on Selection  o f O ptim um  A R  Sam ple S ize

In Section 2.4.2.2, from the literature review, it was acknowledged that the parametric 

method of AR modelling requires a smaller sample size than FFT (Fast Fourier 

Transform) technique for Power Spectral Density (PSD) estimation (Schlindwein and 

Evans 1989; Mechefske 1993a). The question of how small a sample size can be, and 

yet encapsulate the signal’s behaviour, is unknown. The objective of the study 

reported in this section is to find the minimum sample size required for vibration data 

acquired at various speeds of the pump.
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5.2.1. M otivation

The usage of the right amount of data is vital for accurate prognosis of malfunctions. 

The cost of collecting large amounts of data can be prohibitive in condition monitoring 

applications. The length of data needed clearly affects the precocity of the fault 

detector (the final objective of this wider research project is to have a real-time system 

with a deadline such that appropriate remedial action can be taken in time to save the 

Integrated Chip (IC) batch in the event of an imminent vacuum pump fault). It is 

important to know what is the minimum amount of data needed to produce detailed 

and repeatable spectra for fault detection. Another significant drawback of using too 

large a sample size is that it is difficult to ensure stationarity if too large a sample size 

is used (Pardey, Roberts et al. 1996; Poulimenos, Spridoonakos et al. 2006). The 

vibration signal under study is considered to be quasi-steady stationary. To ensure 

stationarity the signal has to be divided into sufficiently short segments. If large 

sample sizes are used, the monitored segment departs from stationarity and the 

performance of the AR technique degrades. Thus the optimum sample size required to 

encapsulate a vibration signal’s behaviour for a given model order has to be found.

5.2.2. Using the Prediction Error as an Indicator

The measured difference between the actual AR process and the signal formed by the 

estimated samples is termed the experimental Prediction Error (PE) and was defined 

by Equation [4.6] in Section 4.2. The experimental PE is a measure of the AR model’s 

goodness of fit to new data generated by the same time series as data used for 

estimation of the model. The experimental PE always decreases for increasing model 

orders and can be used as guide in determining the optimal model order.

The theoretical Prediction Error (PE) for unbiased AR models is defined using 

Equation [5.1] and this is stated to be equivalent to its asymptotical expectation 

(Broersen 1998).

Theoretical Prediction Error {PE) = <J2fl + [5.1]
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where a 2 is the variance of the signal of the input process and in an AR model, this 

driving signal is assumed to behave like white noise, p is the AR model order and N 

is the sample size.

The theoretical PE is influenced by a 2. a 2 is theoretically a constant that is 

dependent on the energy in the driving signal and gives no information on the quality 

of the models. The theoretical PE is linearly dependent on p , the AR model order. 

Both the estimated PE and the theoretical PE are inversely dependent on the sample 

size, N . Both the theoretical and experimental PE are plotted and investigated in the 

next section because, while the experimental PE is subject to modelling errors such the 

dependence on the estimation method used (such as Yule-Walker or Burg), the 

theoretical PE clearly shows the effect on the PE due to sample size alone.

It is generally recommended that the ratio of the model order to the sample size

should be kept to less than 0.1 as using a ratio bigger than this affects the

empirical statistics of the AR parameters and the model fit degrades depending on the 

estimation method used (Broersen 2000a). Hence the sample size cannot be too small 

for AR spectral estimation. However usage of too large a sample size is also generally 

not recommended as this leads to a wastage in computational effort and does not 

improve the quality of the model.
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5.2.3. M ethodology

To capture the vibration signals, the rotational speed of the pump was set at 60 Hz, 80 

Hz and 100 Hz respectively at ultimate pressure of 0 mbar and the vibration data were 

acquired as detailed in Section 3.2.

5.2.4. Results

5.2.4.1.Increasing the Pump Speed

The effect of increasing the pump speed on the prediction error is investigated. The 

theoretical and experimental PEs are obtained for vibration data acquired from the 

pump at 60 Hz, 80 Hz and 100 Hz (Figure 5-1). The theoretical PEs decrease 

asymptotically with increasing samples sizes and reach constant values which are 

variances of the innovations used and in this case, the variances of the vibration 

signals used at the different speeds. The points where the theoretical PEs reach this 

constant value is deemed to be the required minimum sample size for the AR process. 

The experimental PEs decrease with increasing sample sizes, except at very low model 

orders of 1 and 10 where the experimental PE first seems to increase at small sizes and 

then decrease eventually. It was stated before that the optimal order was found to be 

25 or more from the investigations reported in Chapter 4. The experimental PE is 

highly influenced by the model order used. Clearly both the theoretical and 

experimental PEs are functions of sample size N . From observing Figure 5-1, it can 

be seen that the theoretical PE increases from low to high orders while the reverse is 

true for the experimental PE. Looking at Figure 5-1 (a) and (b) and neglecting the 

trends seen for the low orders of 1 and 10 in the experimental PE, initially the PE 

decreases dramatically as N increases from 0 to 200 samples. The decrease is less 

drastic from 200 to 400 samples. For values of N greater than 400 samples, the 

decrease in PE as a function of N is very slow. Similar trends are observed at 80 Hz 

and 100 Hz. For the 60 Hz vibration data, both the theoretical and experimental PEs 

have the “knees” of the curves occurring at 400 samples and this is the minimum 

sample size required.
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Figure 5-1 Effect of sample size on the variance of the Prediction E rror (PE).

Plots of theoretical and experimental PEs are calculated using Equations [4.6] and [5.1]. Plots (a),
(c) and (e) correspond to theoretical PEs and (b), (d) and (f) correspond to actual PEs. Plots (a) 
and (b) are for 60 Hz vibrational data, (c) and (d) for 80 Hz and (e) and (f) for 100 Hz respectively.
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Similarly for the 80 Hz and 100 Hz data, the minimum sample sizes are 600 and 800 

samples respectively. The “knees” of the PE curves occur at increasing sample sizes as 

the speed of the pump increases. The higher the set speed of the pump, the higher the 

number of samples required to model the signal’s behaviour. The number of samples 

in one complete revolution of the machine can be expressed as:

Number o f samples per shaft revolution = -  —  — — —? r _
Speed of Pump [5. 2]

The number of samples per revolution for 100 Hz, 80 Hz and 60 Hz works out to 

be 20, 25 and 33.33 respectively for a sampling rate of 2000 Hz. The number of shaft 

revolutions required is 40, 24 and 12, in that order. In other words, the faster the speed 

of the pump, the bigger the number of complete shaft revolutions needed to 

encapsulate the pump’s behaviour.
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Figure 5-2 ACF as a function of samples.

MSE decreases as the sample size increases.

The experimental PE decreases with N  because the Yule Walker estimation 

method was used to derive the AR coefficients. The Yule-Walker AR method uses the 

Autocorrelation Function (ACF) of the data to estimate the AR coefficients. A larger 

sample size will yield a more accurate estimate of the ACF. The Yule-Walker 

technique is based on the solution of a set of linear equations using the ACF of the 

samples. The Mean Square Error (MSE) of the ACF decreases as the number of data
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points used increases. Fluctuations on the nonzero autocorrelation lags get smaller as 

the sample size increases (Figure 5-2). The sample variance for nonzero lags in the 

ACF drops off with V # . This translates to a decrease in the variance of the prediction 

error and a better fit of the AR model.

5.2.4.2.Increasing the Frame Size

In this section the effect of increasing the frame size N  on the AR spectra is explored 

and the results are presented in Figure 5-3. Though from the earlier studies it was 

known that a minimum order of 25 would suffice, a slightly higher model order of 30 

was used to generate the plots (in practice, it is better to overestimate the model order 

than underestimate it). Spectra were plotted for increasing frame sizes and the point 

where the spectra stabilised was deemed to be the point where the optimum sample 

size required had been reached. As N  becomes larger, the peaks in the PSD become 

sharper and the valleys deeper as the AR modelling method is appropriate for 

estimation of power spectra with sharp peaks but not deep valleys (Kay and Marple 

1981) as in the case of bearing faults. This is due to the all pole nature of the AR 

model. This characteristic is interesting for fault diagnosis of machines as it is the 

peaks of the characteristic defect frequencies which are important and are monitored 

for detection of malfunctions. The resolution of the AR spectra becomes better as N  

increases.
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Figure 5-3 Increasing the frame size from 250 to 1000 samples (in two dimensional format). 

Plot generated by actual ADXL105 vibration data obtained from the pump running at 100 Hz.
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Figure 5-4 AR spectra for increasing frame sizes from 0 to 2000 samples (in three dimensional
format).

Model order of 30 was used. ADXL105 vibration data obtained from the pump running at 100 Hz
was used for plot.



A
m

pl
itu

de
(g

)

5.2.4.2 Increasing the Frame Size 108

1 5^..-

No of Samples u Frequency(Hz)

Figure 5-5 Same as Figure 5-4, but with AR model order of 60.
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For Figure 5-4 and Figure 5-5, the pump was set to run at 100 Hz and 

vibration data acquired from the ADXL105 accelerometer. The only difference 

between the figures is that a model order of 30 was used for Figure 5-4 whilst an order 

of 60 was used for Figure 5-5. Both figures look very similar even though a higher 

order was used for the latter. This reinforces the point that a model order of 30 is more 

than sufficient for this AR process. The fundamental shaft rotational frequency of 100 

Hz and the 1st and 2nd, 4th, 5th and 6th harmonics can be clearly seen in the AR spectra. 

The improvement in resolution as sample size is increased is also evident. As N  

increases from 0 to 500 samples, the AR spectra are too smooth and the important 

peaks of interest are not very well resolved. As N  increases from 500 to 1000 

samples, the spectral peaks get sharper. The spectra reach stability at a sample size of 

around 800 samples and remain constant thereafter. AR modelling (or all-pole 

modelling) is appropriate for such spectra with sharp peaks (Kay and Marple 1981).

5.2.5. Conclusion: Optimum Sample Size is Speed Dependent

When Yule-Walker estimation method is used, the AR parameters are obtained from 

the ACF of the data sequence. The ACF will reflect the behaviour of the true process 

better as the length of the data record increases. The prediction error of the AR model 

decreases with an increasing sample size. From our earlier studies it was determined 

that the resolution of an AR model mainly depends on the model order. Usage of a 

sample size bigger than the optimum sample size can only lead to a slight 

improvement in terms of resolution. The prediction error of the models can serve as a 

useful indicator to help determine the minimum sample size required for rotating 

machinery such as pumps. AR spectra of increasing frame sizes were also plotted and 

the sample sizes where the spectra stabilised agreed with values obtained from the 

prediction error plots. Results show that the optimum sample size is speed dependent 

and for 100 Hz it corresponds to 40 full shaft rotations of the pump. As the speed of 

the pump was increased, more samples were required and this corresponds to more 

full revolutions of the shaft of the pump. This behaviour can be generally attributed to 

the statistical properties of the signal being observed. It is hoped that findings reported 

in this study give some insight on finding the minimum sample size required for AR 

modelling in rotating machinery such as pumps, motors and gears. Though the study
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was carried out on data obtained from a pump running in a perfectly healthy state, the 

same analysis methodology can be extended to data obtained from a pump with 

defects.

5.3. Investigation on Impact of Sampling Frequency

In AR model estimation, a suitable sampling frequency has to be selected for 

confident AR model identification. In this section, the choice of the use of a sampling 

frequency of 2 kHz reported in the investigations conducted in Chapters 4,6 7 and 8 is 

justified by showing that the effect of using a sampling frequency higher than the 

Nyquist rate is only to increase AR model order. A qualitative explanation is first 

given to illustrate what is the effect of increasing the sampling frequency on the 

estimated AR model order.

5.3.1. A Theoretical Explanation

The AR model order is a function of the required length of time (or the optimum 

record length) and the sampling rate utilised in the AR model identification. As stated 

in Equation [2.5] in Chapter 2, an AR model assumes a linear model structure and 

estimates a future sample of a signal as a linear summation of p  previous points plus a 

noise term (which can be seen as the prediction error in the estimation) where p  is the 

AR model order. The length of time the AR model has to trace in time to predict this 

future sample is a characteristic property of the signal to be examined and depends 

entirely on the statistical properties of the signal (see Figure 5-6). The minimum 

length of time one has to trace back to capture the signal’s behavior is denoted by T  

and this is denoted as the optimal record length. In this example, if the signal is 

sampled at a sampling frequency of f s, this means that one has to step back in time by 

5 points to estimate the future sample of the signal. In this case, the model order p  is 

then said to be optimal and is equal to 5. If the sampling frequency is doubled to 2fs, 

this means that one has to step back in time by 10 samples to traverse the same length 

of time. Now the model order p  has doubled to become 10. So the effect of doubling 

the sampling frequency is to double the optimal model order poptimum- If the sampling 

frequency is tripled to 3/s, this means that one has to step back in time by 15 points 

now to cover the same length of time required.
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Figure 5-6 Effect of increasing sampling frequency on optimal AR model order.

The only effect of increasing the sampling rate is to increase optimum AR model order. The 

length of time required to go back in history to capture the signal’s behaviour still remains the 

same even though the sampling frequency is increased.



5.3,1 A Theoretical Explanation 112

The optimal model order poptimum becomes 15. By doing this again and again, an 

infinitely fine sampling of an infinitesimal time interval is obtained and this translates 

to an infinitely large sampling frequency and infinitely large model order. It can be 

seen the AR model identification method is sensitive to the sampling frequency and as 

a result, the only effect of using a sampling frequency more than the required Nyquist 

rate is to increase the AR model order.

5.3.2. M otivation

In the application studied in Section 5.2, the number of shaft revolutions is a non- 

dimensional quantity. Model order p  is a non-dimensional quantity. Sampling 

frequency is not but it can be non-dimensionalized with respect to the rotating shaft 

frequency so that interesting comparisons can be made across models. Instead of 

merely increasing the sampling frequency and observing its implication on the AR 

model identification process, a better way of studying the effect of sampling rate has 

been adopted here and has been verified with actual data obtained from the dry 

vacuum pump as reported in the data collection section of Chapter 3.

5.3.3. M ethodology

The sampling rate was adjusted until the same number of sample points per shaft 

revolution (at each of the 3 speeds studied) were obtained (refer to Table 5-1 ) and the 

prediction errors of the 3 different AR models, one for each pump speed, were plotted 

for increasing model orders. It was noted what was the minimum model order required 

for each of the signals to obtain acceptable performance.
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Table 5-1 Studying the effect of sampling frequency by fixing the number of samples per 
revolution and adjusting the sampling frequency until the same number of points are obtained 
per shaft revolution for the three different pump speeds.

Pump Speed (Hz) No of Samples per 
rev

Sampling Freq Length of time for 
one complete 

revolution (ms)

60 20 1200 16.7
80 20 1600 12.5
100 20 2000 10
60 30 1800 16.7
80 30 2400 12.5
100 30 3000 10

5.3.4. Results
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Figure 5-7 Prediction error versus model order for three different pump speeds (20 samples per
revolution).

For each signal the sampling frequency was varied until 20 samples per revolution of the shaft 
were obtained. Optimal order for all three signals occurs at model order 20.
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Figure 5-8 Prediction error versus model order for three different pump speeds (30 samples per
revolution).

For each of signal the sampling frequency was varied until 30 samples per revolution of the shaft 
were obtained. Optimal order for all three signals occurs at model order 30.

The prediction error was plotted against the model order for three different pump 

speeds of 60 H z , 80 H z  and 100 Hz  respectively (Figure 5-7 ). The 60 Hz  signal was 

sampled at 1200 Hz  to obtain 20 samples per revolution of the shaft. The 80 Hz  signal 

was sampled at 1600 Hz  and the 100 H z  signal was sampled at 2000 Hz  similarly to 

obtain 20 samples per revolution of the shaft (refer to Table 5-1 ). For the 60 H z  

signal, the ‘knee of the curve’ occurs around model order 20. For the 80 Hz  and 100 

Hz  signals, the ‘knees of the curve’ also occur around model order 20. It is not 

surprising that the optimum model order equals to the number of samples per shaft 

revolution. The same kind of behaviour was observed when the prediction error was 

plotted against the model order for three different pump speeds, but now for 30 

samples per revolution of the shaft (refer to Figure 5-8 ). The 60 Hz  signal was 

sampled at 1800 Hz  to obtain 30 samples per revolution of the shaft. The 80 Hz  signal 

was sampled at 2400 Hz  and the 100 H z  signal was sampled at 3000 Hz  similarly to 

obtain 30 samples per revolution of the shaft (refer to Table 5-1 ). For the 60 Hz  pump
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signal, regardless of whether it is sampled at 1200 Hz or 1800 Hz, the optimal order 

had occurred at the number of samples needed to cover one complete revolution of the 

shaft. This translates to 16.7 ms in time (refer to Table 5-1 ). The same can be said for 

the pump signals run at the different speeds too. For the 80 Hz pump signal, the 

optimum record length is 12.5 ms and for the 100 Hz pump signal, the optimum record 

length is 10 ms regardless of the sampling frequency. This illustrates the point that the 

effect of the sampling frequency is just to increase the model order but the optimal 

record length still remains the same.

Table 5-2 Working out the required number of samples per complete revolution of shaft rotation 
at each of the pump speed and sampling frequency for the 100 Hz pump vibration signal.

Pump Speed {Hz) No of Samples per 
revolution

Sampling Freq {Hz)

100 20 2000
100 30 3000
100 40 4000
100 50 5000
100 60 6000
100 70 7000
100 80 8000

The prediction error is again plotted for the 100 Hz pump signal for increasing 

model orders. The sampling frequency is varied from 2 kHz to 8 kHz corresponding to 

a number of samples of 20 to 80 per complete revolution (refer to Table 5-2 ). For all 

the signals sampled at the various sampling frequencies, initially when the optimum 

AR model order is large relative to the number of data samples observed, the 

prediction error is large. The biggest decrease in prediction error occurs at the 

optimum model order. For the signal sampled at 2 kHz, the ‘knee of the curve’ occurs 

around model order 20. For the signal sampled at 3 kHz, the ‘knee of the curve’ occurs 

around model order 30. Hence at each of the sampling frequency, the optimum model 

order occurs at the number of samples per complete shaft revolution. For the 100 Hz 

pump signal sampled at the sampling frequencies of 4 kHz, 5 kHz, 6 kHz, 7 kHz and 8 

kHz, the optimum model orders occur at 40, 50, 60, 70 and 80 respectively. The 

rationale behind this kind of behaviour can be explained by the same reasoning given 

for Figure 5-7 and Figure 5-8 . It is also to be noted that the higher the sampling
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frequency, the bigger is the prediction error. The prediction error was the biggest for 

the signal which was sampled at the highest sampling frequency of 8 kHz. Hence a 

bigger number of samples per complete revolutions, in this case 80, was required 

before the prediction error stabilized and the biggest decrease in the prediction error 

occurs. By increasing the sampling frequency, it was found necessary to increase the 

model order for obtaining an accurate AR model. This reinforces the fact that it is 

better to sample the signal at a smaller sampling frequency as this gives smaller 

prediction errors and also lower model orders.

100 Hz Vibration Signal
0 012

2 kHz 
  3 kHz

4 kHz
5 kHz 

  6 kHz
7 kHz
8 kHz

0 01

m 0 008 c
0 ~o
1  0 006
75
7=Q)
E
S 0 004
C Lx

LU

0 002

100
Order

Figure 5-9 Pump vibration signal acquired from pump running at 100 Hz sampled at increasing 
sampling frequencies from 2 kHz to 8 kHz.  Prediction error versus model order plotted for

increasing model orders.
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5.3.5. Conclusion: Length o f Record Traversed Back is M ore Important 
than Sam pling Rate for M odel Order Selection in AR M odelling

This investigation has reinforced the fact that to determine the model order, the length 

in time we have to trace back is more important than the sampling frequency. The 

effect of increasing the sampling frequency is merely to increase the model order 

required. The order of AR models influences the estimation accuracy (Smail, Thomas 

et al. 1999) of model identification but having a large model order is not necessarily 

good as this may just be the effect of having a higher sampling rate than the required 

rate according to the Nyquist sampling theorem. As stated by D.A. Linkens, the 

sampling rate should be as low as possible, but commensurate with the Nyquist 

requirement of sampling at greater than twice the highest significant frequency in the 

signal (Linkens 1979). When the sampling frequency is chosen too high, then higher 

model orders are needed and this implies a high computational cost in estimating the 

AR model.

This is the rationale behind downsampling the data for most of the 

investigations conducted in the study and reported in this thesis. Data was originally 

captured at a sampling rate of 40 kHz but to examine the characteristic bearing fault 

frequencies efficiently, the data was downsampled to 2 kHz prior to estimating the AR 

models as the maximum frequency of interest is 1 kHz and all the bearing fault 

frequencies lie in the frequency range between 0 to 1 kHz. Downsampling was useful 

in this case, since the AR spectra fit over a smaller segment of the frequency domain, 

from 0 to 1 kHz. Downsampling had also extended the memory span the AR models 

corresponded in time for given fixed model orders and allowed the investigations to be 

carried out with relatively small AR model orders.
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5.4. Summary

In this chapter, some interesting findings on determining the optimum sample size for 

AR modelling have been presented. The impact of increasing the sampling frequency 

on AR model order selection with particular respect to rotating machinery has been 

considered. It has been concluded that the optimum sample is speed dependent. Also it 

has been verified that a good optimal sampling frequency would be between two to 

three times the maximum frequency (respecting the Shannon’s Nyquist sampling 

theorem) in the signal being observed. In the next chapter an important concept of pre­

processing the vibration signals in the form of resonance demodulation, which is 

necessary to enhance the chances of successful fault detection, is introduced and 

investigated.
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6. RESONANCE DEMODULATION

6.1. Introduction

In the proposed AR fault detection tool to be introduced in Chapters 7 and 8, a critical 

stage before spectral estimation of the vibration signals using AR modelling method 

was the pre-processing of signals using the demodulation resonance technique. The 

spectra of the raw damaged bearings show no remarkable features at the bearing defect 

frequencies and are dominated by the fundamental rotating speed of the machine. A 

method of conditioning of the signal before spectral estimation is necessary and this 

technique is explored in this chapter. This method is demodulated resonance analysis, 

also known as HFRT (High Frequency Resonance Technique) or envelope spectral 

analysis. Some of the results presented in this chapter have been published in 

(Thanagasundram and Schlindwein 2006a).

6.2. Resonance Demodulation Explained

The resonance demodulation technique (Harting 1978; Prashad, Ghosh et al. 1985) has 

been extensively used in the diagnosis of rolling bearings and the approach focuses on 

the analysis of the structural resonance excited by the fault-induced impacts. Vibration 

signals from defective bearings are weak impulses and are buried in the machinery 

induced vibrations and noise. Often environmental conditions such as the 

instantaneous speed variations, as well as the presence of multiple fault conditions, 

obscure the defective vibration signals that are required for reliable diagnostics. 

Application of spectral estimation techniques alone would not help detect the bearing 

defect frequencies. The demodulated resonance analysis technique has been shown to 

overcome some of the limitations of normal spectral analysis for bearing defect 

detection.

Harting proposed the demodulated resonance method (Harting 1978) and this 

technique relies on the fact that the defect generated vibration information is carried 

by high frequency resonances of the bearing elements or pump housing and we can 

make use of the high magnification present in the excitations to successfully extract 

the faults. The impulses of bearing defects are of extremely short durations compared
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to the interval between impulses. The energy in the defective bearings’ impacts is 

distributed across a wide frequency range and is easily masked by noise and frequency 

components generated by the machine. However the structural resonance in the 

bearing housing and surrounding structures acts as an amplifier to low-energy bearings 

impacts when the bearing housing is excited by the impacts.

There are many ways to employ the resonance demodulation technique. One 

way is to band-pass filter the signal to isolate one resonant frequency so as to exclude 

the vibration generated by other parts of the machine. The band-passed filtered signal 

is centred at the carrier frequency and has a bandwidth corresponding to the maximal 

modulating frequency. The carrier frequency is, in this case, the resonant frequency 

and the modulating frequency is the fundamental rotating shaft frequency. An 

envelope detector then demodulates the filtered signal and the resulting signal is 

studied using spectral analysis. If there is a defect in the bearing, this is denoted by the 

appearance of a frequency peak associated with that defect.

Another way to do resonance demodulation is to band-pass filter the signal 

around the resonant peak. The band-passed signal is then squared and low-pass 

filtered. The resulting signal is known as the squared envelope and describes the 

power of the envelope signal (Howard 1994). A third way of extracting the 

demodulated signal has been used, which involves applying the Hilbert Transform for 

the rectification. It has been showed by Randall that the squared envelopes of the 

analytic spectra of damaged bearings are highly correlated to the spectral components 

at the bearing defect frequencies and produce even better results as the application of 

the Hilbert Transform produces one sided spectra, thus avoiding the interference of the 

sum frequencies which result from two-sided spectra (Randall, Antoni et al. 2000). 

The key steps in demodulating the signal are shown in Figure 6-1.
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Raw Vibration Signal

Band-pass filtered at the 
resonant frequency

Spectral
Analysis

Envelope 
Detection / Resonance 
Demodulation Using 

Hilbert Transform Ik L.iL lilt

Figure 6-1 Steps involved in the demodulated resonance technique and the corresponding
waveforms produced.
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6.3. Demodulation using Hilbert Transform

The Hilbert transform can be used to demodulate the complex faulty bearing signal for 

isolation of the low frequency components from the high frequency signal to obtain 

the required and useful part for diagnosing the faulty bearings (Thrane 1984). The 

Hilbert transform is first applied to create an artificial complex signal from the time 

domain signal.

If x(t) represents the time signal,

x(t) = //[x(f)] [6.1]

where H  is the Hilbert transform. The analytic signal is obtained by

x(t) = x(t)+ j  • x (t) [6.2]

where j  is V -l . This is the analytic signal whose real part is the original signal and 

whose imaginary part is the Hilbert Transform of the real part. The mathematical 

operation of the Hilbert Transform is defined as follows

Jc(0 =  x( t)  * —  [6*3]
Tit

The Hilbert transform can be thought of as an interesting kind of filter, in which the 

amplitudes of the spectral components are left unchanged, but their phases are shifted 

by a phase shift of 90°, positively or negatively according to the sign of the frequency 

term.
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/ / ( / )  = -y sign (/)
[6.4]

The positive frequency components are shifted by -  j  (a phase shift of -90°) and 

negative frequency components are shifted by + j  (a phase shift of +90°).

The complex envelope is obtained by

The envelope of the demodulated signal is defined by the modulus of the analytic

is that by transforming the time domain signal to the analytic signal, the negative 

frequencies are removed and only the positive components (with double amplitude) 

are retained facilitating further analysis. Also by applying the Hilbert transform, the 

positive band-pass centre frequency is translated to the origin to produce a baseband 

signal. Hence one can sample the resulting complex envelope signal with a smaller 

sampling rate.

6.4 . F inding the R esonance B andw idth

The tricky part of the envelope demodulation technique is that the most suitable 

bandwidth must be identified before demodulation takes place. The bandwidth of the 

filter should be chosen such that it covers the whole range of the resonance. The main 

idea is to identify the band-pass range so as to eliminate high amplitude signals not 

associated with the bearing faults, yet encompass a frequency range containing the 

bearing fault spectral components that are not negligibly small. Various high and low 

pass settings have to be experimented and normally their choice is related to the 

resonances of the system.

|jc(o|= 4x W2 + x(02 [6.5]

signal. It is always a positive function. The advantage of obtaining the analytic signal

The best frequency band to envelope (the resonance bandwidth) has to be 

identified prior to the demodulation stage. For the faulty bearing with the inner race



6.4 Finding the Resonance Bandwidth 124

crack, the resonance bandwidth was found to be between 6-8 kHz. Figure 6-2 shows 

the raw broadband spectrum (0 to 10 kHz) of the non-defective bearing run at 100 Hz. 

It can be seen that there is some energy in the frequency bands between 2 to 4 kHz and 

6 to 8 kHz. Figure 6-3 shows the same raw broadband spectrum but for the defective 

bearing with an inner race fault run at 100 Hz. The excitation due to the defective 

bearing impacts dominates the spectrum. The elevated bearing energies between 6 to 8 

kHz are indicative of a propagating bearing fault. Resonances excited for the defective 

bearing lie between 6 to 8 kHz. The resonances between 2 to 4 kHz fail to be excited. 

The amount of energy in the defective spectra is much more than for the non-defective 

spectra in the same processing band. So it is the frequency range between 6 to 8 kHz 

that needs to band-pass filtered to isolate the structural resonance induced in the 

system by the defective bearings. Filtering the signal around this frequency extracts 

that part of the signal which is mainly composed of the resonant ringing pulses due to 

the bearing defect. The signal to noise ratio of the defective bearing signals in this 

region is high due to the resonances of the structure. The frequency range excited by 

the bearing defect remained constant for all pump speeds. This frequency range is 

digitally filtered using an elliptic Infinite Impulse Response (DR) band-pass filter of 

order 10 between 6 to 8 kHz. Then the Hilbert Transform is applied to obtain the 

analytic signal as part of resonance demodulation prior to spectral estimation.

Figure 6-4 shows the spectra of the bearing with seeded inner race defect 

obtained using both the AR and FFT techniques for a pump run at 105 Hz. The 

vibration signals were not pre-processed utilizing resonance demodulation method 

before being frequency analysed. It can be seen that the spectra are dominated by the 

fundamental rotating frequency (100 Hz- actual speed of the pump less than the set 

speed due to slip) and its harmonics. The bearing defect frequency does not appear in 

the frequency spectrum because of its low amplitude with respect to the higher energy 

harmonics of the rotating speed. Figure 6-5 shows the spectra of the same vibration 

signal, but resonance demodulated now, before spectral estimation was performed. A 

cleaner spectrum is obtained, free from the fundamental rotating frequency and its 

harmonics and other unwanted components. The inner race defect frequency becomes 

visible. By band-pass filtering in the resonance bandwidth (6 to 8 kHz) and applying 

the Hilbert transform to demodulate the signal, the technique of resonance
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demodulation has amplified the amplitude at the characteristic bearing defect 

frequency and has made the bearing defect more easily identifiable.
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Figure 6-2  Broadband spectrum (0 to 10 kHz) for pump with non-defective bearing.

Pump running at 100 Hz.
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Figure 6-3 Broadband spectrum (0 to 10 kHz) for pump with the defective bearing (inner race
fault).

Pump running at 100 Hz. Note resonance occurring in the 6-8 kHz region.

It is now the simple case of monitoring the level of the characteristic bearing defect 

frequency in the demodulated spectrum to measure the severity of the defect. Shiroshi 

and collaborators have shown that the size of the demodulation peak in the 

demodulated spectrum is linearly related to the severity of the defect when using 

vibration measurements (Shiroishi, Li et al. 1997). The normalized ratio of the

2000.0 4000.0 6000.0 8000.0 10000.0
Frequency [Hz]
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demodulation peak to the ‘carpet’ level (noise floor in the demodulation spectra) 

provides a quantitative measure of the bearing defect condition.

FFT [7v] 
AR ( ~ 1
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Figure 6-4 FFT and AR Spectra for ADXL105 vibration signal.
Obtained from a bearing with a seeded inner race fault prior to resonance demodulation. Speed 

of pump was set to 105 Hz. Sampling rate f s was 2000 Hz. Note absence of bearing defect 

frequency as spectra was dominated by fundamental rotating frequency and its harmonics.
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Figure 6-5 Same vibration signal used as for figure above.
Time domain vibration signal resonance demodulated prior to spectral estimation. The Ball Pass 
Frequency of Inner Race defect is clearly evident at 555 Hz in both FFT and AR-based spectra.

6.5. The Need for Resonance Demodulation

The resonance demodulation technique is assessed with regards to its effectiveness in 

the detection of the bearing condition using the time statistical parameters introduced 

in Section 2.4.1. Using equations [2.21] to [2.24], the statistical parameters of RMS, 

variance, skewness, kurtosis and crest factor are obtained for the normal and defective
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bearing signal with the implanted inner race defect before and after resonance 

demodulation.

Healthy Bearing 

Defective Bearing

Healthy Bearing-Resonance Demodulated

RMS Variance Skewness Kurtosis Crest Factor

Figure 6-6 Obtaining the statistical parameters

RMS, variance, skewness, kurtosis and crest factor for the normal and defective bearing signal 
with the seeded the inner race defect before and after resonance demodulation. The vibration 
signals were band-pass filtered (6 to 8 kHz) and demodulated using the Hilbert transform for

resonance demodulation.

Results are shown in Figure 6-6. For the RMS and variance figures, the 

statistical values obtained after resonance demodulation were of much lower values 

compared to those prior to demodulation. The process of band-pass filtering and 

demodulation using the Hilbert transform has removed a major portion of the vibration 

signals and subsequently the energy content of the demodulated signals was much less 

compared to the raw signals. The RMS and variance parameters are not useful in the 

detection of the bearing fault.
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The vibration response of bearings, subjected to defects, is characterized by the 

presence of sharp peaks. The bearing vibration signal becomes more impulse-like with 

the presence of the localised bearing fault in the form of inner race crack. The 

skewness, kurtosis and crest factor parameters capture this behaviour better and give 

higher values since they respond more to the spikiness of the vibration signal. The 

values of the statistical moments are affected by the presence of the fault. The 

skewness, being the third moment of the data (refer to Equation [2.22]), and kurtosis, 

being the fourth moment (refer to Equation [2.23]), are of higher values for the faulty 

signal than for the non-faulty case. The crest factor (refer to Equation [2.24]) which is 

function of the peak to peak value of the signal divided by the variance, is also of 

higher value for the faulty signal than for the non-faulty case.

The increase in the values of skewness, kurtosis and crest factor, especially for 

the defective bearing, became more significant when compared to the healthy signal 

after resonance demodulation is performed. When pre-processed with resonance 

demodulation, these statistical parameters perform better in encapsulating the spiky 

characteristic of the fault induced impacts by extracting the useful part of the vibration 

signals which was previously masked by the higher energy modulating components. 

The maximum increase occurs in the kurtosis parameter, thus the kurtosis parameter is 

an effective defect indicator. The kurtosis value of the healthy raw signals was close to

3. The kurtosis value of the defective raw signals was slightly higher than 3 indicating 

a propagating fault (the difference between them being approximately equal to 0.2). 

The kurtosis value of the healthy demodulated signals was close to 3.5. The kurtosis 

value of the defective demodulated signals was close to a value of 5 (the difference 

between them being approximately equal to 1.5). Hence the difference in the kurtosis 

values between the healthy and defective signals had become even greater when the 

vibration signals were resonance demodulated.

The use of these statistical indicators can be used to identify that there is a 

bearing fault, however the time domain analysis method is not very helpful in 

identifying which bearing component is defective. The aim of this investigation is to 

show that the application of the resonance demodulation has extracted the more useful 

part of the vibration signals, that is, the impulse-like bearing signals due the impacts 

between the faulty component and the other parts of the bearing components. This
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investigation has illustrated that prior processing in the form of resonance 

demodulation is therefore necessary before spectral estimation to enhance the chances 

of successful fault identification and detection.

6.6. Finding the Optimum Order for the Demodulated Signals

In Chapter 4, it was concluded that the optimum model order for AR modelling of the 

raw vibration signals was p  = 2 5 .  When the vibration signals are demodulated, it was 

found that even lower model orders could be used. Figure 6-7 shows a plot of the 

order selection criteria versus model order for the 5 order selection criteria (refer to 

Equations [4.1] to [4.5]). The knee of the curves occurs at around model order 4. A 

model order of 10 was chosen (higher than what is required) to represent the 

demodulated normal and faulty bearing signals as the vibration signal was quasi­

steady stationary and the model order chosen has to represent all the varying time 

segments. The characteristics of one vibration time segment may differ from another. 

Hence a higher model order was chosen to be on the safer side. This model order was 

found to be more than sufficient to represent the signals’ characteristics in both faulty 

and non-faulty conditions.
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Figure 6-7 Finding the optimum order for the demodulated defective vibration signal.
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6.7. Summary

This chapter discussed the usage of the resonance demodulation technique. The 

resonance excited by the vibration signal was identified and was band-pass filtered 

around the resonant peak (6 to 8 kHz) to extract the fault-induced bearing impacts. 

Hilbert transform was then applied to produce the analytic signal and the magnitude of 

the analytic signal is the demodulated signal. It has been shown that the application of 

resonance demodulation improves the sensitivity of the fault detection. The optimum 

model order was also found for the demodulated signals and justification was given of 

why a model order of 10 was chosen.

The next two chapters focus on the development of the fault detection tool 

using the AR pole trajectory method.
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7. DEFINING A FAULT DETECTION TOOL

7.1. Introduction

So far, the investigations of the AR model have resulted in finding out the optimum 

AR model order for vibration signals obtained from the dry vacuum pump and 

establishing a new rule of thumb for determining the minimum model order for 

Autoregressive (AR) based spectrum analysis for rotating machinery (in Chapter 4) 

and determining the optimum AR sample size to be used (in Chapter 5). The 

application of the resonance demodulation technique to enhance the success of bearing 

fault identification has been investigated in Chapter 6. In this chapter, a novel fault 

detection tool is defined based on the groundwork laid by the previous chapters. The 

key step on the fault diagnosis of the ball bearings is the extraction of fault features 

and identification of the condition from the ball bearing vibration signals. The AR 

fault detection tool proposed here achieves this through pole-related spectral 

decomposition that allows the identification of the fault features. The tool is tested 

with real vibration data captured from the pump and results illustrating its 

performance are presented in the following chapter.

7.2. Motivation

In the extraction and investigation of the time variant spectral parameters, the pole 

representation is a very interesting approach, as it offers an immediate and easy 

comprehension of the associated behaviour of the vibration signals. The pole 

representation offers a qualitative insight into the quasi-steady stationary AR process 

and the spectral process characteristics can be more easily understood when expressed 

in terms of poles and AR spectral components. There is a one-to-one correspondence 

between the AR poles and the spectral peaks. By studying the movement of poles in 

the complex z-plane, the development and progression of bearing faults can be 

monitored. The tracking of pole locations offers a unique way of detecting bearing 

faults in rotating machinery and the proposed method has interesting potential 

applications in condition monitoring, diagnostic and prognostic-related systems, as
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control engineers can relate easily to the idea of mapping poles in the complex 

domain.

The AR spectra can be decomposed into a set of relating poles as the transfer 

function of the AR model can be rewritten as an all-pole model. The AR poles are

This set of AR poles has a one-to-one correspondence to the spectral peaks of the 

signals PSDs. The characteristic bearing defect frequencies, which were defined in 

Section 2.2.3, are directly extracted from the AR pole locations. The following section 

explains the relationship between the AR pole frequencies and the characteristic 

bearing frequencies and a mathematical derivation of how the pole frequencies can be 

obtained from the parametric time series AR model is given.

7.3. Preliminaries: Linking AR Spectra with the AR poles in the z-

The transfer function H[z] of the AR polynomial was defined in equation [2.8]. By 

finding the roots of the AR coefficient polynomial in the denominator of H[z] , the 

poles, pk, are obtained and the transfer function can be rewritten as [7.1]. Hence the 

model transfer function H[z\ can be expressed either in the form of AR coefficients 

ak or poles pk. These two forms of expressions contain essentially the same 

information on the studied AR process and define the process together with the value 

of the variance term a 2. An AR model's transfer function contains poles in the 

denominator plus only trivial zeroes in the numerator at z = 0, so it is referred to as an 

"all-pole" model. Since the coefficients of H[z\ are real, the roots must be real or 

complex conjugate pairs. The number of poles in the z plane equals p , the AR model 

order.

obtained by finding the roots of the AR coefficient polynomial in the transfer function.

domain

H[z] =
1 1 [7.1]

(z + p0)(z + Pj)
k=0
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Why is the pole representation of the AR model [7.1] better than the AR 

coefficient representation [2.8] for fault detection? The AR filter coefficients ak

(defined in Section 2.3.2) are not stable and are highly dependent on the filter order 

and do not directly reflect the signal properties. The poles pk, however, are more 

closely related to the spectral form and contain important information on the system 

condition that can be interpreted directly from the pole diagram. This is the reason 

why the pole representation of the AR transfer function is the preferred one. For a 

stable AR filter, the distance of all the AR poles from the origin, \pk\ , must be less

than 1 and the nearer the pole is to the unit circle, the higher the corresponding peak in 

the AR spectrum. The magnitude of the AR spectral peaks is directly proportional to 

the estimated white noise variance a 2. Hence for two poles (each obtained separately 

from two different signals, with one signal having a higher energy than the other), 

even if both have the same distance from the centre of the unit circle, the pole derived 

from the signal with the higher energy, will translate to a bigger peak in the spectral 

domain because of the bigger variance of the white noise.

Each pair of complex conjugate poles in [7.1] has a one to one relation with a 

peak in the AR spectrum. A  p th order AR model with p  poles will have a maximum

of m peak frequencies in the AR spectrum where m = p /2  when p  is even and 

m = (p +1)/2 when p  is odd (the other pole being real). Not all poles give rise to 

sharp peaks in the AR spectrum. Only the poles which are close to the unit circle give 

rise to sharp peaks in the AR frequency spectrum (see Figure 7-1). The other poles are 

distributed around the unit circle to create an equiripple ‘flat’ PSD estimation. The 

symmetry with respect to the real axis is related to the fact that the signals have real 

values and this advantage can be conveniently exploited by disregarding the poles in 

the negative imaginary plane, reducing the redundancy of poles in the proposed pole 

tracking method.
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Figure 7-1 Monitoring the peaks obtained from the AR model.

In this case, AR model order was 8 and sampling frequency was 2000 Hz. Notice that it is only the 
pole nearest to the unit circle that gives rise to a sharp peak in the AR spectrum.

The process of transforming the AR time process to the AR pole positions is described 

pictorially in Figure 7-2. Figure 7-2(a) displays x[t] , the raw time domain signal to 

be processed. The transfer function described in Equation [2.8] is shown in Figure 7 - 

2(b) first in the AR coefficients ak representation and then being transformed to pk 

poles values as defined by equation [7.1] (in this case, the AR identification process 

indicated has 10 coefficients). Figure 7-2(c) shows the PSD of the jt[f] signal, the AR 

spectra, P(z) , (defined by Equation [2.11]). Figure 7-2(d) shows the corresponding 

pole locations in the unit circle in the z-transform domain. Note that the spectral peaks 

in Figure 7-2(c) correspond to poles closer to the circle with the most dominant peak 

caused by the pole closest to the unit circle.
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E ( z ) . H(z) H z )
a h =

0.0964 0.8706 + 0.3317i
0.7012 0.8706 - 0.3317i
-0.1625 0.3010 + 0.8722i
-0.1512 0.3010 - 0.8722i
-0.0987 -0.2844 + 0.9444i
-0.2099 Pk = -0.2844 - 0.9444i
-0.0033 -0.7550 + 0.3356i
0.4681 -0.7550 - 0.3356i
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Figure 7-2 Pole Zero Representation.

(a) Signal x(t) is modelled by an AR model, (b) Its transfer function H(z) can be described in
terms of coefficients ak or poles p k (c) the corresponding spectrum of the AR process is plotted

(d) the pole diagram. The AR peaks are closely linked with the position of poles. The most 
dominant peak in the AR spectra is caused by the critical pole shown boxed in the pole zero 

diagram which is closest to the unit circle.
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Figure 7-3 Defining the parameters of an AR pole.

Each pole pk has a phase </>k and a magnitude rk which are given by the angular 

position and the distance from the origin (see Figure 7-3). By knowing the pole

phase </>k of the pole if the sampling frequency f s is known (equation [7.2]). Since the

AR time series is quasi-stationary, the positions of the poles vary slightly with every 

frame of data. The trajectory mapped out by the poles can be quantified by finding the 

area traversed by the poles over a period of time. This aspect can be used as a 

parameter to indicate the condition of the bearing. The area mapped out by a 

characteristic bearing frequency pole will be different depending on whether they were 

obtained from no-fault or faulty conditions. The area mapped out by the migratory 

poles is given by equation [7.3].

The power associated with each spectral pole pk is estimated from the residues 

of the complex poles as proposed in (Johnsen and Andersen 1978). The transfer 

function in equation [7.1] can be rewritten as a partial fraction expansion. The residue

position inside the unit circle, the frequency f k of each peak can be obtained from the

[7.2]

[7.3]

(equation [7.4]) is simply the coefficient of the one-pole term
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partial fraction expansion of H[z] at z - p k. Each residue rk provides an estimate

of the integrated power in the neighbourhood of the spectral frequency f k associated

with pole pk . The spectral power Pk of the pole pk is obtained by multiplying the

real part of the residue term with the variance of the driving AR time series cr2 and 

the scale factor n [7.5]. n = 2 for complex conjugate poles and n = 1 for real poles at 

either 0 Hz or at the Nyquist frequency.

rt =z-' { z - p t ) - H ( z ] [7.4]

Pk = a 2 n R e [ r i ^ pi [7.5]

7.4 . L inking the A R  P oles and the C haracteristic B earing D efect 
F requencies

The preceding section described how the AR coefficients can be transformed to AR 

pole locations. The basic equations for finding the angle, area and power or the AR 

pole positions were also defined. In this section, the relationship between the AR pole 

locations and the characteristic bearing defect frequencies are formalized. The 

characteristic bearing defect frequencies for the ball bearings were defined in Section 

2.2.3. The characteristic bearing defect frequencies can also be transformed to AR 

pole locations in the z domain. As an example, consider the case of a defective bearing 

with an inner race crack set to rotate at 105 Hz. The pole locations can be worked out 

for other defects and other rotating speeds but this simple example will allow us to 

elucidate the essence of our arguments without getting bogged down by details.

The theoretical ball bearing defect frequencies BSF, BPFO, BPFI and FTF are 

estimated to be around 492 Hz, 384 Hz, 561 Hz and 43 Hz respectively when the 

pump’s running speed is set to 105 Hz. The theoretical AR pole phase angles <j)k can

be worked out if the sampling rate is known and in this case, the sampling rate f s 

used was 2000 Hz. The angle of the theoretical pole locations of the characteristic
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bearing defect frequencies are then worked out in degrees to be as shown in Figure 7 - 

4 using equation [7.6].

A angle (in deg rees) — CharacteristicBearingD eject Frequeney  ̂  ̂  [7.6]
f s /2

BPFl BSF

\
( \

f ' M l P F C

/  \
t - A

\\\
\

I/
/

— ............................

FTF

BPFO = 384Hz 
BPFI = 56 \H z  
BSF =  492 Hz 
FTF = 43 Hz

384 Hz xl80° = 69.12° 
1000Hz/2

A B P F O  = 384 ̂  )
2000Hz/2

~ —Hz~ xl80° = 100.98° 
>000Hz/2

AB P F l  = — -6— H z -  ?
2000Hz/2

492 HZ xl80° = 88.56° 
>000 H z/2

AB SF =  492 Hz >
2000 H z/2

AFTF = 43 xl80° = 7.74°
2000H z/2

Complex Plane

Figure 7-4 Theoretical location of characteristic defect frequencies in the z plane.

These can be worked out with standard reference formulas if the bearing dimensions are known. 

Pump was set to 105 Hz and sampling frequency used was 2000 Hz.

The angles of the AR pole locations are related to the characteristic bearing 

defect frequencies. For a fixed rotating speed, the AR pole angles are fixed, as they are 

determined by the geometrical shape of the ball bearings used, but the distances of the 

pole locations from the unit circle are determined by the levels of vibration at that 

particular frequency. It is known that, as defects appear on the ball bearings and their 

severity increases with time, the amplitudes of the vibrations of characteristic bearing 

defect frequencies also increase (see Figure 7-5). This can be seen as the poles 

moving closer to the unit circle as the severity of the defect increases. The appropriate 

alarm level for the vibration signal can be determined from standards such as the ISO 

10816 (ISO 1995) and ISO 7919 (ISO 1996). These can be translated to relative 

allowable amplitudes and alarm levels and hence corresponding pole displacements 

for the characteristic ball bearing defect frequencies.
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Characteristic Defect Frequency
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of frequency peak grows
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0.5-

Characteristic Defect Frequency

Figure 7-5 Typical movement of pole as defect becomes more severe (from 1 to 3)

The nearer the pole is to the unit circle, the bigger is the amplitude seen in the frequency 
spectrum. The amplitude of vibration of characteristic defect frequency increases as the pole

moves closer to the unit circle.

larm Level
'Characteristic Defect Frequency

Distance of pole from origi

0.5 Area traversed by migratory poles

A r

0.5

Figure 7-6 Locus of a particular pole versus evolution of time.

Note that pole is migratory and the area pole traverses can be calculated. Alarm levels for the 
characteristic defect frequencies can be determined from standards such as the ISO 10816 and, if 

pole crosses the alarm level, we can conclude that the defect is causing the characteristic 
frequency and hence the pole displacement is severe.
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In this chapter, it is argued that the distance of the poles from the centre of the 

unit circle can be used as a useful indicator to classify between faulty and non-faulty 

conditions. The frequencies of the characteristic bearing defect frequencies also do not 

remain the same due to variations of the speed of the machines, resulting in pole angle 

variations in the complex z domain. The area of the region swept by the loti of the 

migratory poles can be used as another useful fault indicator for diagnostic purposes 

(see Figure 7-6). The power parameter is another good indicator, as it is reflective of 

the energy content of the bearing signal studied. The vibration signal of a defective 

bearing is normally much higher then the vibration signal obtained from good 

bearings, as the energy of certain frequency bands is excited due to the presence of 

faults.

7.5 . A n O verview  o f the A R  P ole T rajectory F au lt D etection  T ool

The proposed fault detection tool consists of two phases: training and detection. It is 

assumed that S bearing faults are to be monitored. These bearing faults can be BPFO, 

BPFl, BSF, FTF or multiples of these, depending on the application to be studied. The 

idea is to compare the frequency, distance, area and power of the poles of the AR 

model in different time segments. It was required to choose a certain model order that 

adequately represents the demodulated vibration data for all time segments. Selection 

of the model order in the AR process is of critical importance. Too low an order 

produces a smoothed estimate, while too high an order may cause spurious peaks and 

spectral line splitting. This aspect has been clearly clarified in Chapter 4. In Chapter 6, 

it was justified why an AR model order of 10 was the chosen for the demodulated 

vibration signals. A 10th order AR model was used to study the behaviour of the 

demodulated ADXL105 vibration signals mounted on the HV end for a pump 

operating in normal conditions and also for a pump fitted with a bearing with defects.

Training Phase:

1. Each training set of vibration data was formed constituting an observation of the 

data when there are no faults in the bearings. First, the AR parameters are found 

for the bearings in a healthy condition and subsequently, <j 2 , the variance of the 

input signal in the no-fault condition, is also derived.
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2. Changes in the condition of the ball bearings and the non-stationarity of the 

vibration signals cause deviations in the AR coefficients, which, in turn, result in 

deviations in the AR pole positions. The positions of the AR poles vary from 

frame to frame. The AR poles, which are the roots of the AR coefficient 

polynomial, are obtained for each frame of data. There are p  poles when a model 

order of p  is used.

3. Out of these, the critical poles for each characteristic bearing defect frequency are 

found. There is a one-to-one mapping between the characteristic bearing defect 

frequencies and the angular frequencies of the critical poles (equation [7.2]). The 

poles of interest are the ones which have their angles closest to the angles 

corresponding to the characteristic bearing defect frequencies. These are termed 

the ‘critical poles' and they are monitored.

4. Next, parameters A are derived from the critical poles in the normal condition. 

The parameter A can be the area of the region swept by the migratory loci of the 

critical poles, their distances from the centre of the unit circle, or the power of the 

critical poles. The parameters A reflect the characteristics of the time invariant 

spectral parameters and comprise important information of the system condition. 

The impulses produced by ball bearings with defects will by modelled by the 

changing system dynamics and this in turn will be reflected in the parameters A . 

The parameters A are the conditional indicators that discriminate between the 

damaged and non-damaged bearings.

Detection phase:

Boundary conditions can be established using the known angles of 

characteristic defect frequencies and acceptable levels obtained from standards, and 

this can help the optimum threshold for the classification boundary to be determined. 

Once the boundary conditions for the healthy signal are extracted and normalised, the 

procedure is repeated for the detection phase with vibration signals from a test 

bearing. If the test bearing is a bearing with a defect, the parameter A of the critical 

poles will not normally be within the acceptable levels of the established boundary 

conditions (refer to Figure 7-6) or be above a certain predetermined threshold. A 

reasonable threshold level can be chosen based on the probabilities calculated from the
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training data. In this case, the threshold value was determined using Receiver 

Operating Characteristics (ROC) analysis.

One important and useful measure of the performance of any diagnostic test is 

ROC curve analysis. A threshold is determined for separation of data into two classes 

based on some decision parameter and, depending on whether the subject falls below 

or above the cut-off level, the subject is termed ‘positive’ or ‘negative’. In reality, 

there will be some overlap between the two classes of data and some subjects will be 

misclassified as ‘false positives’ and ‘false negatives’. The sensitivity and specificity 

of the data are defined as

c _v .  Number o f true positive decisions [7.7]
Number o f actual positive decisions

c _  Number o f true negative decisions [7.8]
Number o f actual negative decisions

ROC curve analysis can be established by taking the parameters A as the fault 

indicators, and then working out the condition and fault patterns of the ball bearings. 

Depending on what defect the bearing has, such as whether it is a defect on the inner 

race or outer race, the defect can be identified. The above explained diagnosis 

approach is under the assumption that only one fault is present. However, in reality, 

multiple faults can develop. In such a case, the scheme can be easily modified to 

incorporate the diagnosis of multiple faults.

7.6 . A  D iagram m atic Illu stration  o f the Fault D etection  Tool

Tracking the parameters A is performed by processing each raw time domain sample 

through the stages shown in the diagram of Figure 7-7. This diagram summarises all 

the key steps in processing the data for obtaining the fault indicators from the critical 

poles. In summary, this diagram is a brief amalgamation of the all the topics addressed 

in this thesis. The vibration signals are captured from the bearings to be diagnosed, 

filtered with an anti-aliasing 10 kHz low-pass filter, and sampled at 40 kHz. The
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filtered vibration signals were then amplitude demodulated by band-pass filtering 

around one of the resonant peaks to remove the structural resonance and to strengthen 

the weak bearing signals. The Hilbert transform is then applied to the band-passed 

signal to obtain the squared envelope and the resulting signal is the demodulated 

vibration signal. The resonance demodulation technique improves the signal-to-noise 

ratio of the vibration signatures for a more effective detection of bearing defects. The 

data is then downsampled to 2 kHz, as it was known that the frequencies of interest lie 

in the range from 0-1 kHz.
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cBearing to be diagnosed

Vibration captured with accelerometers

Low pass filtered (0-10 kHz)

Digitized at 40 kHz sampling rate

Resonance Demodulation

Downsampling to 2 kHz

AR model order p

Estimation of AR parameters

Evaluation of roots H[z] transfer function

Variance of Input Signal

Pole Mapping p k

BPFO Critical Pole BPFl Critical Pole BSF Critical Pole S  Critical Pole

Xs is nominal value of bearing in fault-free condition 
Where X can be the distance, angle, area or power 

traversed by the critical pole

Figure 7-7 Block diagram of the procedure for bearing fault detection using AR Pole Tracking



7.6 A Diagrammatic Illustration of the Fault Detection Tool 145

The AR coefficients are obtained with fixed model order of 10 and 

subsequently, the AR pole positions are determined for each frame of data, as 

described by the previous section. The critical poles corresponding to the bearing 

defect frequencies are identified. From the positions of the AR critical poles, 

parameters X are derived. The parameters X are compared with those obtained from 

non-faulty conditions and the bearing is diagnosed to be whether in faulty condition or 

not.

7.7 . Sum m ary

A formal framework for automated assessment of bearing faults using the AR pole 

positions has been established in this chapter and defined as a fault detection tool. 

Metrics in the form of area, angle, power and distance of the AR pole positions (X 

parameters) were defined for fault detection purposes. By quantifying the values of the 

parameters X, bearing faults are to be identified. The characteristic bearing 

frequencies were modelled and mapped using the AR method in the z domain. The 

critical poles are those closest, in terms of angular position, to the characteristic 

bearing frequencies poles’ positions. It is proposed that the parameters X are then 

compared with baseline figures obtained from healthy bearings to detect the presence 

of faults. A higher power and a bigger distance from the origin of the AR poles will be 

indicative behaviours of faulty bearings.

The proposed method has useful applications in fault classification as faults 

can be detected by studying the movement of poles in the complex plane without 

having to compute the whole PSD spectra (normally done using the FFT method), 

which can be computationally intensive. The bearing defect frequencies can be 

decomposed to spectral pole positions and only the critical pole positions need to be 

tracked.

The novel fault detection tool is tested with actual data obtained from the 

pump. The effectiveness of the tool and results are presented in the next chapter.
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8. AR POLE BASED MONITORING

8.1 . In troduction

In the previous chapter, a fault classification scheme based upon the position of the 

coordinates of the Autoregressive (AR) poles was formally established. The AR 

coefficients for each time sample are obtained from the estimated AR model 

parameters. The poles, which are the roots of the AR coefficient polynomial, are then 

derived. The critical poles are identified and further decomposed into parameters X . 

The parameters X are extracted as features relating to the characteristic bearing defect 

frequencies. In this chapter, experimental tests are conducted to identify the 

differences in the behaviour of the parameters X for vibration signals collected from 

two similar high speed dry vacuum pumps, one with a healthy set of bearings and 

another with a ball bearing with an inner race defect. The effectiveness of the AR pole 

trajectory fault detection tool is verified and characterised using ROC analysis. The 

stability of the AR models is also investigated by calculating the condition numbers in 

the faulty and non-faulty experimental conditions.

In Section 8.7, to demonstrate the competence of the proposed tool, the 

classification performance of the AR pole trajectory tool is compared with the FFT- 

based method. In the final section, both the mentioned techniques are benchmarked to 

give an estimate of their computational cost.

8.2 . T racking the C ritical P ole M ovem ents

A 10th order AR model was estimated for the ADXL105 vibration signals mounted on 

the HV end for a pump operating in normal conditions and also for a pump fitted with 

a bearing with an inner race fault. The BPFl pole was identified as the critical pole. 

The loci of the BPFl critical poles on the z plane were tracked in different time 

segments, considering the mean and standard deviations of the parameters X , and 

seeking differences between results for damaged and undamaged bearings. The BPFl 

pole was chosen as the dominant pole as the fault condition studied was the case of a 

pump fitted with a bearing with an inner race fault. If other bearing defects are to be 

monitored, the corresponding critical pole positions relating to the characteristic defect 

frequencies of significance can also be tracked. Frame sizes of 4000 samples were
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used and 100 frames of data each of length 2 s were processed to monitor the 

movement of the BPFl pole corresponding to the inner race defect frequency. A 10th 

order AR model was used to estimate the parameters X for successive time segments. 

The distance of the BPFl pole from the origin, the power of the BPFl pole, the angle 

mapped by the BPFl pole and the cumulative area traversed by the BPFl pole were 

plotted for the vibration data for both normal and faulty conditions.

Refer to Figure 8—1.'The mean ± standard deviation of the distance of the 

BPFl poles from the origin in the non-faulty case was 0.8005 ± 0.0580. The mean ± 

standard deviation distance of BPFl poles from the origin in the faulty case was 

0.9303 ± 0.0148. It can be seen than the mean distance of the BPFl poles was much 

larger for the faulty condition than in the normal case. This will be seen as bigger 

amplitude of spectral peaks associated with critical poles (amplitude of spectral peaks 

is proportional to the inverse of the distance of pole to the unit circle) when the AR 

spectrum is plotted for the faulty condition.

Refer to Figure 8-2.The mean ± standard deviation of the power of the BPFl 

poles in the non-faulty case was 9.570x 10^ ± 2.83 lx  10-4 and in the faulty case 

0.0369 ± 0.0086 respectively. Clearly the power of the faulty poles is much larger 

than the non-faulty case. The power and distance of the poles from the origin are 

related and are dependent on each other. Though the distance and power of the BPFl 

critical poles can be used as effective indicators for fault classification, the power is a 

better classifier than the distance since it incorporates the variance term of the signal 

(which is equal to the energy of the signal, and energy of faulty signals is much larger 

than for non-faulty signals). In the example shown, the power seemed to increase with 

time as the number of frames monitored increased. This is not surprising as the 

amplitude of vibrations also increased with time, due to the pump heating up and 

increased friction of the bearings when it was running for a longer time.

Refer to Figure 8-3. The mean angle of the BPFl pole was 1.6117 radians (513 

Hz) and 1.7441 radians (555 Hz) for normal and faulty condition respectively. The 

mean angles of the BPFl poles in both cases were nearly the same. However the 

standard deviation of the angles of the BPFl poles ( A ^ =  0.3094) for the normal
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condition was much larger than for the faulty case (A</>k = 0.097). The standard

deviation of the BPFl angles can be used as an indicator for fault classification to 

distinguish between the non-faulty and defective cases as the difference between them 

is significant. The changes in the frequency content of the characteristic defect 

frequencies can be quantified by using AR modelling by looking at the corresponding 

changes in the angles of the BPFl poles. Refer to Figure 8-4. The cumulative area 

traversed by the migratory faulty BPFl poles (less than 0.01) was also markedly 

smaller than the case for the non-faulty condition (0.2). This is because when there is a 

BPFl fault the pole corresponding to the BPFl frequency remains at almost the same 

position, since there is vibration at BPFL When there is no BPFl fault the so-called 

‘critical pole’ is simply the pole closest to the BPFl angular frequency, but since there 

is no strong vibration at that frequency the non-faulty BPFl poles move considerably 

from frame to frame.



D
ist

an
ce

 
of 

BP
Fl

 P
ole

 
fro

m 
O

ri
gi

n

8.2 Tracking the Critical Pole Movements 149

DISTANCE _____  CIRCLE

0 95

0 9

0 85

0 8

075

0 7

0 65

No Fault 
Fault

0 55
0 10 20 30 40 50 60 70 80 90 100

No of Frames 

Figure 8-1 Distance of BPFl pole from origin.

Monitoring the distance parameter A.  Pump running at 105 Hz. 100 frames of ADXL105 
vibration data used each of 2s length. A 10th order AR model was used. The distance of the BPFl 

pole for faulty condition is markedly higher than for normal condition.
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Figure 8-2 Power of BPFl poles.

Monitoring the oower parameters k .  Pump running at 105 Hz. 100 frames of ADXL105 vibration 
data used each of 2s length. A 10th order AR model was used. The power of faulty poles is much

larger than for the non-faulty poles.
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Figure 8-3 Angle BPFl pole traverses.

Monitoring the angle parameters A . Pump running at 105 Hz. 100 frames of ADXL105 vibration 
data used each of 2s length. A 10th order AR model was used. For normal condition, there was 

much variation in the BPFl angles, but for faulty condition the variance was much less.
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Figure 8-4 Cumulative area traversed by the BPFl poles.

Monitoring the area parameters A . Pump running at 105 Hz. 100 frames of ADXL105 vibration 
data used each of 2s length. A 10th order AR model was used. The area mapped out for non-faulty 

condition was much larger than that for faulty condition.

8.3. Testing the Effect of Frame Size

In order to model the changes in the vibratory signatures, the critical poles are 

obtained for 2 different frame sizes, for both normal and faulty conditions. Figure 8-5 

(a and b) shows the BPFl poles plotted for a frame size of 2000 samples. Figure 8-5 (c 

and d) shows the BPFl poles plotted for a frame size of 5000 samples. The BPFl pole 

was chosen as the dominant pole, as the fault condition studied was the case of a pump 

fitted with a bearing with an inner race fault. The AR identification method placed the 

faulty BPFl critical poles centred around 555 Hz.  There was a significant difference in 

the spread of the poles for the cases of damaged and undamaged bearings respectively.

AREA

  NoFault
— Fault



8.3 Testing the Effect o f Frame Size 153

For the faulty condition, the spread of the poles was more concentrated and nearer to 

the unit circle for both frame sizes. For the non-faulty BPFl poles, the spread of the 

poles was much wider. When one compares Figure 8-5 (b and d), plotted using the 

same data it can be seen the frame size can have an effect on the location of the 

coordinates of the AR poles. The difference obtained is probably due to the fact that 

when a bigger frame size was used, the mapping of the poles seems to be more robust. 

For Figure 8-5 (d), the location of the BPFl poles seems to be either on the right or 

left of the BPFl characteristic defect In reality, the demodulated vibration data from a 

good bearing looks more like white noise
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Figure 8-5 Distribution of poles from a pump running in normal conditions (right) and for a case 
with a bearing which has an inner race fault (left).

The dotted red line denotes BPFl frequency of 555 Hz. Note clustering of poles near unit circle for 
BPFl frequency at approximately 555 Hz for faulty data. Spread of poles is much larger for

normal conditions.
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and there is no actual significant peak and hence no corresponding BPFl pole in that 

sense. The definition of the critical pole in this context is ‘the closest pole to the 

characteristic defect frequency’ (the BPFl pole in this case) and the method has 

located the poles which happen to be closest, in angular frequency, to the BPFl 

frequency. The frequency variation of the characteristic bearing defect frequency 

(BPFl) was much less for the faulty data than the normal data. The complex conjugate 

poles fell closer to the unit circle for vibration data obtained from the faulty condition. 

For normal data, the amplitudes of the dominant poles (moduli) were considerably 

smaller than their counterparts for the faulty case.

8.4 . D eterm in ing the T hreshold  using RO C A n alysis

ROC curve analysis was used to determine suitable threshold levels for the fault 

indicators such AR poles distances from the centre of the unit circle and the AR poles 

power for faulty and normal cases. The distributions of the normal and faulty AR 

poles power and distance are shown in Figure 8-6 and Figure 8-7 , as histograms. A 

frame size of 2000 samples was used for these. In terms of power, a near perfect 

classification can be seen. When the power (using Eq. [7.5]) of the AR poles of the 

vibration data of the good bearings were tracked, it can be seen they all had power 

values of less than 0.005. But when the power of the AR poles of the vibration data of 

the bearing with an inner race defect was tracked, the faulty poles’ power had a wide 

distribution. They had values ranging from 0.015 to 0.065. There was no overlapping 

of the values, hence the power of the AR poles can be used as a ‘perfect’ fault 

classifier. For the distance of the AR poles from the centre of the unit circle, the 

normal poles had a distribution ranging from 0.4 to 0.95. The faulty poles had a 

distribution ranging from 0.81 to 0.97. There was some overlapping between the two 

classes. For instance, if 0.9 was chosen as the threshold level to determine if the poles 

corresponded to the case of damaged or non-damaged bearings, there is a chance that 

some normal poles with a distance of more than 0.9 are misclassified as faulty poles 

and vice-versa. However it was noted that the frame size used does have an effect on 

the amount of overlapping between the two classes of data and hence the sensitivity 

and specificity of the analysis. Figure 8-8 shows the distribution of normal and faulty
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poles for the distance indicator but for a bigger frame size of 5000 samples. It can be 

seen that there is less overlapping between the classes compared to Figure 8-7 and 

hence less chance of misclassification.

8.5. Frame Size versus Increase in Accuracy of Classification

The diagnostic effectiveness of the decision parameter (the distance of the critical 

poles from centre of the unit circle) was estimated by constructing a curve of 

sensitivity against 1-specificity for windows of increasing frame sizes of 1100 to 5000 

samples. The poles with a distance from the origin smaller then the threshold were 

termed the ‘true negative’ (non-faulty data). The poles with a distance from the origin 

greater than the threshold were termed the ‘true positive’ (faulty data). The task then 

becomes one of discriminating between the faulty and non-faulty data. Each ROC 

curve was constructed by varying the threshold from 0 to 1 in steps of 0.01 and 

obtaining the sensitivity and specificity values at each of the threshold value. The 

upper ROC curve is for a frame size of 5000 samples and the lower curve is for 1100 

samples per frame. The corresponding ROC curve for the AR BPFl poles distance 

indicator is shown in Figure 8-9 . Each point on the curve represents the combination 

of true positives against false negatives estimated for a given threshold of the 

parameter. The aim is to maximise detection probability while minimizing false alarm 

rates. A good test curve is one for which sensitivity rises rapidly and 1- specificity 

hardly increases at all, until the sensitivity is high. Using a frame size of 2000 samples 

gives a sensitivity of 92% and a 1-specificity of 8%. If it is desired to increase both 

sensitivity and specificity, a bigger frame size can be used. Frames with 4000 samples 

(corresponding to a mere 2 s of data collection) produced excellent results, with 

sensitivity and specificity of 99%. This means that the undamaged and damaged 

bearing with the inner race defect can be distinguished with almost 100% accuracy. It 

is obvious that as the frame size increases the accuracy of the classification also 

increases. The sensitivity and specificity versus distance curves for a frame size of 

4000 samples are shown in Figure 8-10. For example, selecting a distance value of 

0.885 as threshold, leads to a sensitivity of 99% and a specificity of 99%.
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Figure 8-9 ROC curves for increasing frame sizes for the distance of the poles from the centre of
the unit circle as a decision parameter.



8.5 Frame Size versus Increase in Accuracy o f Classification 159

0 99

0 3

0 65 0 7 0 75 0 8 0 85 jO 5
Distance from centre of Unit Circle 0 885

0 9 5

( a )

0 99

0 6

0 4

0 2

0 6 5  0 7 0 7 5  0 8 0 85 |0 <
Distance from centre of Unit Circle 0 885

0 95

(b)

Figure 8-10 Sensitivity (a) and Specificity (b) curves for a frame size of 4000 samples.

Note that distance from centre of unit circle was used as the decision parameter. Even when using 
the distance as the diagnostic parameter, one can obtain 99 % sensitivity and 99% specificity for

frames of 2 seconds duration.
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8.6. Condition Number of Critical Poles

Much of the analysis described is dependant on robust computations of pole locations. 

It becomes necessary to investigate the condition numbers of the system as the AR 

pole positions are obtained as the solution of a system of linear equations and will be 

sensitive to errors in the data. The AR coefficients are derived from the autocorrelation 

matrix in the Yule-Walker estimation method and perturbations in the autocorrelation 

matrix can affect the accuracy of the AR coefficients and subsequently the AR pole 

positions. It is the case that the analysis would be flawed if the poles were highly 

sensitive to small changes in the data, i.e. if the problem is ill-conditioned. An 

investigation was conducted to explore the robustness of the poles for faulty and non- 

faulty data.

The condition number of a matrix A is defined as the product of the norm of that 

matrix and the norm of its inverse.

*(A) = -i [8.1]

The condition number k  is a measure of how close a matrix is to being singular. A 

matrix with a high condition number is said to be ill-conditioned. If the condition 

number is close to one, then the matrix A is said to be well-conditioned. The 

condition number is a measure of the sensitivity of computations to perturbations in 

the matrix A. The perturbations could be due to measurement errors or to 

representation in floating point format. A tolerable limit that is commonly accepted is 

that if the condition number is below 100 then the matrix is not ill-conditioned 

(Ebrahimian and Baldick 2001). In this case, computations involving the matrix can be 

performed with greater confidence.

The eigenvalues, A, or characteristic roots of a k x k  square matrix A are the k 

solutions that satisfy Eq.[8.2].
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|A-/l?| = 0 [8.2]

where | • | is the matrix determinant and I  is the identity matrix with the same 

dimension as A .

For computation of the condition numbers for the AR poles, the first step is to 

transform the vector of AR coefficients, A , of each time sample of data to its 

canonical form or companion square matrix equivalent. From the known vector of AR 

coefficients of p th order, the equivalent canonical matrix has the form

1 0 . . .  0

- V i 0 1 . . .  0

0 0 . . .  1
- a 0 0 0 0 0

The eigenvalues of the A matrix are equivalent to the AR poles. The 2-norm 

condition number of the A matrix for faulty and non-faulty data for increasing frame 

sizes was found using the ‘cond’ function in Matlab Toolbox and results are shown in 

Table 8-1. It can be seen that the pole computations can be performed with confidence 

regarding the numerical conditioning. Noting that the 2-norm condition number of a 

matrix is an upper bound on the sensitivity of the individual pole locations to small 

changes in the data, it can be confirmed that all poles are reasonably well conditioned 

and thus the paradigm of monitoring pole deviations is well founded. Such movement 

is due to engineering phenomena and not due to computational inaccuracy.
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Table 8-1 Condition numbers for increasing frame sizes for Non-faulty and Faulty Data 
obtained using the ‘cond’ function in Matlab.

Sample size of Frame Non-Faulty Data Faulty Data
1100 12.06 13.24
1200 10.85 13.54
1500 13.29 17.99
2000 14.50 19.35 "
3000 16.48 26.73
4000 19.71 36.94
5000 26.60 36.62

It is interesting to note that the condition numbers of the faulty data were 

always more than for the non-faulty counterpart in this case, despite any size of the 

frame of data inferring that they were less well-conditioned than the non-faulty data. If 

the poles of an AR process are located near the unit circle, even small inaccuracies in 

the data can cause deviations in the AR parameters and this can cause the poles to 

move outside the unit circle, resulting in an unstable (and invalid) model. Double 

precision arithmetic was used to minimise chances of ill-conditioning due to the 

numerical floating-point representation. The condition numbers obtained were always 

less than 40, even for the faulty case, indicating that the level of ill-conditioning is 

tolerable.

Another trend observed was that, as the frame size was increased, the condition 

numbers for both types of data increased, indicating that they are more sensitive to 

perturbations in the data for bigger frame sizes. It is believed that there is a tendency 

to overfitting when bigger frame sizes are used. Even then the level of ill-conditioning 

is not large, indicating that larger sample sizes can be tolerated due to the increase in 

sensitivity rates of the detection capability as verified by the ROC analysis.

The smallest sample size that can be used with the AR pole based trajectory 

tool is 1100 samples. Using a smaller sample than this renders the AR model invalid 

as once the data is downsampled to fit into a smaller frequency range, the length of the 

downsampled is too small compared with AR model order, and the autocorrelations 

functions and consequently, the AR parameters cannot be effectively calculated.
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8.7. The AR Pole based Trajectory Technique Versus the FFT- 
based Technique

The performance of the fault detection tool based on AR pole trajectory was compared 

with the FFT technique for an evaluation of its effectiveness at detecting those frames 

of data from the pump with the inner race fault. For the FFT technique, varyirig frame 

sizes of data obtained from the pump running in normal conditions and also for a 

pump running in the faulty condition (pump fitted with the bearing with inner race 

crack) was obtained and transformed into the frequency domain.

For a fair comparison to be made, the data was also demodulated using the 

Hilbert transform and downsampled to 2 kHz prior to the estimation of the maximum 

frequency peak. For the FFT-based technique, no windowing, 0% overlap and no 

averaging was used to obtain the frequency estimates. The amplitude of the maximum 

spectral peak in the frequency range from 0 to 1 kHz was tracked for both types of data 

and results are shown. Figure 8-11, Figure 8-12 and Figure 8-13 show the 

distribution of the maximum spectral peak for a frame size of 2000 samples, 5000 

samples and 10000 samples respectively.

For a frame size of 2000 samples (Figure 8-11), the performance of fault 

classifier based on the FFT technique was very poor, especially for those data obtained 

from the faulty pump. The amplitude of the maximum peak of the faulty data varied 

from a minimum value of 0 up to a maximum value of 0.85. There was also a lot of 

overlapping between the faulty and non-faulty data. When the frame size was 

increased to 5000 samples (Figure 8-12), the spread of the maximum peak decreased 

and there was less overlapping. Only when the frame size was increased to 10000 

samples, there was no overlapping between the faulty and non-faulty data and the 

spread of the faulty data became more deterministic by having a smaller spread of 

values from 0.04 to 0.4.
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Figure 8-11 Distribution of Normal and Faulty peaks for the FFT-based technique plotted for
frame size of 2000 samples.

Note lots of overlapping between faulty and non-faulty peaks and wide distribution of faulty
peaks between 0 and 0.85.
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Figure 8-12 Distribution of Normal and Faulty peaks for the FFT-based technique plotted for
frame size of 5000 samples.

Note less overlapping between faulty and non-faulty peaks compared to those plotted for a frame 
size of 2000 samples and a smaller distribution of faulty peaks between 0 and 0.66.

Fault

NoFault LF h fFFT

175

150

125

100

Amplitude of Maximum Peak

Figure 8-13 Distribution of Normal and Faulty peaks for the FFT-based technique plotted for
frame size of 10000 samples.

Note no overlapping between faulty and non-faulty peaks. Faulty peaks and non-faulty peaks 
nearly separated into two distinct regions compared to those plotted for frame sizes of 2000 and 

5000 samples and a smaller distribution of faulty peaks between 0.03 and 0.4.
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Figure 8-14 ROC curves for increasing frame sizes for FFT-based method using the magnitude of
the maximum peak as a decision parameter.
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The equivalent ROC curve was also obtained for the FFT technique to 

illustrate its diagnostic effectiveness and is shown in Figure 8-14. The upper ROC is 

for 10000 samples and the lower ROC curve is for 2000 samples. Only frames with 

10000 samples produced almost perfect classification with a sensitivity and specificity 

of almost 100% for the FFT-based method. It should be noted the fault detection tool 

based on movement of AR poles in the z-domain had obtained a near perfect 

classification rate of 100% with a sample size of 5000 samples. Hence it can be 

concluded that the FFT-based technique needs twice the amount of samples for near 

perfect classification compared to the AR-based technique. For a frame size of 2000 

samples, the sensitivity and specificity was about 70% for the FFT technique 

compared to the 92% that was obtained with AR pole trajectory classifier. For a frame 

size of 5000 samples, the sensitivity and specificity was about 85% for the FFT 

technique compared to the 99% that was obtained with AR pole trajectory classifier. 

The AR approach clearly converges quicker than the FFT approach for the same frame 

size.
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Figure 8-15 Faulty peak detected at 555 Hz for both AR and FFT-based techniques when a frame
size of 2000 samples is used.
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Figure 8-16 Faulty peak detected at 555 Hz for both AR and FFT-based techniques when a frame 
size of 5000 samples is used.
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Figure 8-17 Faulty peak detected at 555 Hz for both AR and FFT-based techniques when a frame 
size of 10000 samples is used.
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The reason for the poor performance of the classifier based on the FFT 

technique can be more easily explained if one looks more closely at the spectral 

estimates obtained by both the AR and FFT based techniques (see Figure 8-15, Figure 

8-16 and Figure 8-17). The spectral estimates are plotted for both techniques using 

the three frame sizes of 2000, 5000 and 10000 samples. For the 2000 sampler case, the 

spectrum obtained using the FFT technique is very coarse. It can be seen that the 

frequency resolution in the FFT-based technique improves significantly as the frame 

size is increased from 2000 to 5000 samples. The frequency resolution of AR-based 

technique only improves slightly as the frame size is increased from 2000 to 5000 

samples. The main reason behind this is, as stated earlier in the thesis, the fact that the 

frequency resolution FFT technique mainly depends on the frame size of the samples 

used but for the case of the AR technique, this is not true as the frequency resolution 

depends mainly on model order. If the frequency resolution is poor, the peak 

associated with the fault cannot be accurately determined and this explains the poor 

classification performance of the FFT for the smaller sample sizes and also the need of 

the FFT technique for a bigger sample size than the AR technique for the same 

classification performance.

8.8. R eal-tim e C ost E stim ation  o f both  the A R -based and FFT- 
based T echniques

In Section 1.1 of Chapter 1, it was stated that the choice of technique to be 

implemented to solve the research problem has been driven by the aim of real-time 

implementation as the final goal. In Section 2.4 of the literature review Chapter 2, 

alternative fault detection and diagnosis methods suggested by other researchers were 

reviewed but their main limitations were that they were rendered too complex and 

sophisticated to be implemented in a real-time environment.

From the studies reported by Schlindwein, (Schlindwein 1988; Schlindwein 

and Evans 1989; Schlindwein and Evans 1990), it was stated and concluded that the 

AR technique is slower than the FFT technique. Knowing this but with the available 

knowledge drawn from Chapter 2 (in Section 2.4.2) that AR modelling can work with 

smaller sample sizes and achieve far superior resolution capabilities compared to the 

FFT technique, an assumption was made in this research work throughout the thesis
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that AR modelling is more suitable for real-time applications. That assumption is 

validated and verified in this section by benchmarking the AR and FFT applications in 

terms of their real-time cost.

In this section, the computational cost of real time processing of the AR and 

FFT methods are analysed. Code was benchmarked using the sequence structure in 

Lab VIEW as shown in Figure 8-18 using a timestamp obtained before the code had 

begun to run and getting a timestamp after the code had run to completion. The 

algorithms for the AR and FFT were inserted as the benchmark code and the amount 

of elapsed time that it takes for a VI to complete was calculated. The difference 

between the initial and final time given by the timestamps corresponds to the amount 

of elapsed time that it takes benchmarked code to complete. The VI was run a few 

times and the average time was taken for one instance of the benchmarked code to run 

was obtained. The time taken for the AR and FFT methods for the three frame sizes of 

2000, 5000 and 10000 samples are shown in column (c) in Table 8-2.
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Figure 8-18 VI showing sequence structure used in LabVIEW to get execution time of code.

Table 8-2 Benchmarking the AR and FFT methods for 3 different frame sizes.

Method

(a)

Time taken for frame 
to be transmitted(ms)

Ts

(b)

Processing Time 
of Method(ms)

TP

(c)

Total Time(ms)

tt

(d)
AR(2000) 1000 40 1040
AR(5000) 2500 86 2586

AR( 10000) 5000 210 5210
FFT(2000) 1000 10 1010
FFT(5000) 2500 28 2528

FFT( 10000) 5000 61 5061
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The times taken to transmit the various frames of data Ts at the sampling rate of 2 kHz

is given by Equation [8.4] and the timings are shown in column (b) in Table 8-2 for 

the various frame sizes.

*  ,rr- . 1  r  , x No o f Samples 2000 innA [8.4]T (Time taken for each frame) = --------------------= ------------ = 1000 ms
Sampling Rate 2000 Hz

To find the basic processing requirement to acquire the vibration signal and 

process it to the fault classification stage, the time taken for frame to be transmitted Ts

and the time taken for the frame to be processed TP has to be summed, and the total 

time Tt gives an indication of the computational cost of the method. For the FFT 

algorithm, since no overlapping of windowing, no windowing and no averaging was 

used the processing power is proportional to N \og2N  operations where N  is the

sample size. For the AR method, the processing power is a function of the model 

order. Here to find the processing requirements, the model order was kept constant at 

10.

The time taken for the AR method is a sum of 3 basic steps.

1) Time taken finding the autocorrelation functions

2) Time taken for estimation of the AR parameters using the Yule-Walker estimation 

method using the Levinson-Durbin recursion.

3) Time taken to find the roots of the characteristic polynomial of the AR coefficients 

which are the AR poles.

From the results shown in Table 8-2, for a frame size of 2000 samples, the 

processing time Tp of the AR method (40 ms) is nearly 4 times as long as the FFT 

method (10ms) to process data samples of the same size since the algorithms for 

performing AR modelling are computationally more demanding than the FFT
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approach. To acquire a frame size of 2000 samples, a sampling time Ts of 1000 ms is 

required by both methods. It should be noted that the processing time taken by each 

method Tp is only a fraction of the time required to acquire the necessary data. For the 

same frame size of 2000 samples, the total processing time Tt taken by the AR 

method is 1040 ms but the total processing time Tt taken by the FFT method is 1010 

ms. Hence essentially, for the same frame size, the AR method takes a longer time to 

acquire and transmit.

From the analysis done in Section 8.7, it was concluded that AR method 

required 5000 samples for near perfect classification rate but the FFT method needs 

twice the same frame size of 10000 samples for the same diagnostic performance. 

Hence for an almost perfect classification rate, the total processing time Tp taken by 

the AR method is 2586 ms but the total processing time Tp taken by the FFT method 

is 5061ms. An important consideration here is that the amount of time that can be used 

to acquire data for a particular time frame far supersedes the time taken by each of the 

processing methods. This is fundamentally because as stated in Section 2.4.2.2 and 

shown with results in Section 8.7, the frequency resolution capabilities of the AR 

method are far superior to those of the FFT method and as a result of this, one can 

benefit by working with smaller sample sizes when working with the AR method for 

the same resolution. Consequently, savings on the time at acquiring the data can be 

achieved with the added benefit of better classification rates at smaller sample sizes. 

Based on the findings reported in this section, it can be concluded that the method of 

fault detection based on AR pole trajectory is more applicable for real-time 

implementation than the FFT-based method due to its suitability to work with smaller 

record lengths. Hence the assumption that the AR method is more suitable from real­

time point of view is valid.

8.9 . Sum m ary

In this chapter, an automated assessment of bearing faults which relies on the AR pole 

positions in the complex z plane has been introduced. An AR model was used to 

estimate the power and distance of the poles at the characteristic bearing frequency,
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with a higher power and a smaller distance indicative of faulty bearings. It was shown, 

with experimental results, that the AR poles move closer to the unit circle as the 

severity of the defects increases. The application of the proposed scheme enabled the 

detection of the damaged bearings with an inner race defect with a 100 % detection 

rate when a frame size of more than 4000 samples was used and the distance of the 

critical poles was chosen as the fault indicator. With a smaller sample size of 2000 

samples, a lower detection rate of 92% was achieved. When the power of the 

migratory poles was used as the fault indicator, a 100 % detection rate was obtained 

even for small sample sizes such as a sample size of 2000 samples, indicating that this 

processing methodology is very effective even for short data records. The simplicity of 

the use of the classification parameters A, the short length of data needed for the 

diagnostics (2 seconds) and the obtained specificity and sensitivity of the classification 

scheme reveal the relevance and usefulness of a model-based diagnostics system for 

the classification of normal versus faulty bearings.

An investigation was also conducted to investigate the stability of the critical 

poles by computing their condition numbers. The condition numbers for the ‘critical’ 

poles were of small values indicating that the system is well conditioned, even for 

poles close to the unit circle.

Prior classical research work done by Kay and Marple (Kay and Marple 1981) 

has stated AR modelling can work with a smaller sample sizes and achieve better 

resolution capabilities compared to the FFT technique. The findings reported in 

Section 8.7 have been shown to be in agreement with the literature cited in 2.4.2.2. 

The FFT-based method achieved almost perfect classification with a sensitivity and 

specificity of almost 100% only with a frame size of 10000 samples but the fault 

detection tool based on movement of AR poles in the z-domain had obtained the same 

classification rate from half the frame size of 5000 samples. The findings in Section 

8.8 are also consistent with literature cited in Section 2.4.2. In terms of real-time 

applicability, the AR-based method was indeed found to be more suitable than the 

FFT-based because of its ability to work with smaller sample sizes.

In summary, this chapter has introduced a new method in the field of fault 

detection of rotating machinery based on the AR pole based trajectory method. Results
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show that tracking the movement of the AR critical poles as a maintenance decision­

making criterion can be used to differentiate pumps running in normal and defective 

working environments and hence can be successfully used for the real-time fault 

detection of dry vacuum pumps.
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9. CONCLUSIONS AND FUTURE WORK

9.1. Conclusions

This thesis has demonstrated the high potential of the Autoregressive method to detect 

and characterise bearing faults from a “quasi-steady state” rotating machine and 

presented a case study of the detection of an inner race fault of a HV end bearing of a 

dry vacuum pump. The main work presented has shown the applicability of the AR 

modelling technique for vibration-based condition monitoring. Various facets of AR 

modelling were extensively examined to fine tune the AR model before proceeding to 

the final stage of fault classification. The following paragraphs summarise the main 

findings presented in this thesis. Further research is also described that could be 

oriented to confirm and enlarge these findings and to overcome limitations of the 

studies reported here.

Chapter 3 had described the methodology used to collect the data presented in 

this thesis and the performance of an iMEMs ADXL105 surface micromachined 

accelerometer was compared with that of a piezoelectric accelerometer to explore 

alternative, cost-effective solutions for acquiring reliable data for vibration-based fault 

detection and diagnostics. It was validated and showed that the main advantages of the 

ADXL105 accelerometer are its low cost, its ability to measure DC response and its 

better temperature stability. If proper mounting techniques were adopted, it was found 

that the accelerometer can be used successfully for machine diagnostics.

A detailed study was first conducted to analyse the feasibility and suitability of 

AR modelling as a fault detection tool for condition monitoring with applicability to 

the quasi-steady stationary vibration signals. The problem of AR model order 

selection for the vibration signals was investigated and illustrated with supporting 

results in Chapter 4. As there is no general rule for determining the model order and 

the model order depends highly on the signal being investigated, it is hoped that the 

methods introduced in the thesis, especially the proposition of the easy rule for order 

determination with particular reference to rotating machinery alleviates the difficulties 

faced in classical model order determination. This original finding is believed to be a
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potential contribution to research areas that have been identified as relevant to 

condition monitoring with particular respect to “steady state” rotating machinery.

The problem of finding the optimum sample size to use for rotating machinery 

diagnostic was investigated in Chapter 5 and it was concluded that the variance of the 

prediction error of the AR models can be used as a ballpark indicator to determine the 

minimum sample size required and this minimum sample size was speed dependent. A 

general remark that can be made is that the vibration signals from higher speed 

machines required bigger model orders and bigger sample sizes to encapsulate their 

characteristic behaviour. It is reasonable to speculate that, since the Yule-Walker 

estimation method was used and this method is based on the solution of Levinson 

Durbin recursion on a set of linear equations using the ACF of the samples, using a 

larger sample size yields a more accurate estimate of the ACF. As the AR process is a 

linear regression model, a bigger number of samples per complete revolution of the 

signal was required to capture the dynamic characteristics of the bearing condition. 

This also implied higher AR model orders.

The effect of the sampling frequency on AR model selection was also 

investigated in this chapter. With supporting results, it has been verified that the length 

in time one has to trace back is more important than the sampling frequency in the 

context of AR model identification. It was concluded that the effect of increasing the 

sampling frequency was to increase the model order required.

Interestingly, it was found that AR modelling couples the benefits of both time 

domain analysis and frequency domain analysis. It has superior frequency resolution 

capabilities compared to the FFT approach for frequency estimation. It has the ability 

to work with shorter data records and the sampling rate required is just slightly above 

the Nyquist rate. Also, it does not have negative effects such as spectral leakage and 

the need for the use of antileakage windows. The use of shorter records and smaller 

sampling rates has great potential for implementation in real-time applications. Both 

the FFT and the AR technique work on the assumption that the signal to be modelled 

is stationary. From this aspect, the ability to use shorter fragments of data is preferred 

for frequency estimation as stationarity can be more reasonably assumed for shorter 

segments of data. This is an added advantage of the AR technique as it can achieve
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qualitative frequency resolution improvement over the FFT estimation especially for 

short frames of data.

The pre-treatment of the faulty vibration signals using resonance demodulation 

was found to be useful as it enhances the SNR of the signal and removes the 

modulating carrier frequency (fundamental rotating speed of the pump), which can 

obscure weak impulses produced by the defective bearings. Though this work is not 

new and has been proven by other researchers, it was shown how resonance 

demodulation had been carried out in the context of this work in Chapter 6.

In summary, the main original contribution of the thesis was the development 

of a classification scheme based upon the position of the Autoregressive (AR) poles 

for tracking of the time varying behaviour of the spectral components of vibration 

data. The main facets of the novel AR pole trajectory tool were illustrated in Chapters 

7 and 8. The task of condition monitoring and fault diagnosis of ball bearings is often 

cumbersome and labour intensive. Various techniques have been proposed in literature 

for rolling bearing fault detection and diagnosis. The challenge, however, is to extract, 

efficiently and accurately, features from signals acquired from these elements, 

particularly in the frequency domain.

The AR method has offered a unique way of detecting bearing faults by 

spectral decomposition and tracking of the AR poles in the complex z domain. The 

poles of the AR model were extracted as the feature relating to the characteristic 

bearing defect frequencies. As derived in the thesis, the time variant spectral 

parameters needed for diagnosis of the bearing condition can be extracted from 

parameters A of the pole positions in the complex z-plane. The time varying distance, 

power and frequency components were monitored by tracking the movement of 

critical poles. This reduces the signal space tremendously, reducing the complexity of 

the classifier and aiding fault classification.

To test the efficacy of the scheme, the proposed method was measured with 

ROC analysis and applied to increasing frame sizes of vibration data. This ROC 

analysis showed that the proposed AR pole trajectory fault detection tool achieved 

high sensitivity and specificity rates, highlighting the relevance of the method for
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monitoring purposes. The results of Chapter 8 showed that a sample size of 4000 

samples per frame was sufficient for almost perfect detection and classification when 

the AR poles’ distance from the centre of the unit circle was used as the fault 

indicator. The power of the migratory poles was an alternative perfect classifier which 

can be used as a fault indicator.

It was also shown that the equivalent FFT approach had required 10000 

samples per frame for near perfect classification when the magnitude of the biggest 

peak was used as the fault classifier. This finding is in support with theory cited in 

Section 2.4.2.2 that the AR technique has a far superior frequency resolution 

capability compared to the FFT method for the same frame size used and this explains 

its better performance as a fault classifier when small frame sizes (record lengths) are 

used. The real-time computational cost of applying both techniques was also 

benchmarked in this chapter and it was shown that the AR method was more suitable 

for real-time implementation than the FFT-based method.

The work undertaken within this research makes a significant contribution in 

the field of condition monitoring of rotating machinery by introducing a new fault 

detection tool based on AR pole trajectory. All in all, as a model based diagnostic 

approach, it was found that parameterisation of the data signals as either AR 

coefficients or trajectory of the pole locations has great potential in terms of its 

applicability to fault prediction. The AR pole representation has allowed a more 

straightforward quantitative estimation of the spectral parameters and facilitated the 

understanding of the intrinsic spectral characteristics of the process and is particularly 

useful for fault detection.

9.2 . Future W ork

There are several directions in which this research could evolve. One direction in 

which further work could progress is towards the real-time implementation of the AR 

fault trajectory tool for industrial use. The experimental vibration signals used in the 

study were obtained from dry vacuum pumps under laboratory conditions. The 

performance of the AR fault trajectory tool needs to be tested in real industrial
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environments. For purpose of the study conducted, the model order was fixed for the 

AR fault trajectory tool. For a real time-implemented system, there is the possibility of 

moving towards on-line order estimation, for modelling the healthy and faulty 

vibration signals for real-time feature extraction and classification, and even online 

training.

For most of the analysis done the pump was run at constant speed and the load 

was also almost constant. An improvement would be to construct a model which takes 

into account changes in load and speed. The effects of a variable machine speed on 

machine vibration and the implications for bearing fault detection have to be 

investigated further. These effects are important to understand because, when ignored 

they can significantly hinder the ability to detect bearing faults. The speed of the 

machine can potentially be one of the most significant factors affecting the machine 

vibration. If the machine is driven by a power electronic inverter, the speed is 

controlled directly by the drive. If the machine is controlled by an induction motor, 

speed is affected by load level. In either case, machine speed can change continuously 

and this relationship between speed and machine vibration has to be monitored. 

Variable machine speed can directly and nonlinearly alter the level of machine 

vibration. This is due to differences in mechanical damping and resonances at various 

machine speeds. While this effect is difficult to notice in healthy machines, it can 

become significant as the bearing health degrades. An additional effect that speed can 

exert is on the rate of development of bearing fault (Besancenez, Dron et al. 2001). 

Variations in speed can actually retard or temporarily mask the increase in machine 

vibration due to a bearing fault. This phenomenon has been observed in experimental 

trials as the bearing fault enters an advanced or more deteriorated stage. This can 

inadvertently make a machine appear healthy even though a bearing failure is 

imminent. This area of research clearly needs further study.

More data, including data from pumps with different faults (and including 

distributed faults) also needs to be collected in order to validate and expand the results 

already achieved. Due to time constraints and the intention to finish the PhD studies 

within the period of three years, the main analysis was restricted to using only one set 

of localised faulty signals - which was the bearing with the inner race crack. This type 

of fault belongs to the class of localised defects. Another set of faulty data set became
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available towards the end of the project and this was the faulty bearing with an 

oversized ball element. But this set of faulty data set was not utilized in our studies as 

this type of fault belongs to the more complicated class of distributed defects. An 

oversized bore in the bearing affects the radial and axial clearances, introducing 

nonlinearity in the dynamic system. Distributed defects are more difficult to detect as 

their presence cannot be detected from the presence of peaks at characteristic bearing 

defect frequencies alone. An analytic model has to be constructed at the microscopic 

level to include the effects of the race surface waviness and non-linear Hertzian 

contact information (Harsha, Sandeep et al. 2003; Sopanen and Mikkola 2003a). 

Previous researchers have presented conflicting results with regards to the detection of 

distributed defects and this is one area which needs further exploration (Tandon and 

Choudhury 2000; Sopanen and Mikkola 2003b). More studies are necessary to clearly 

elucidate different faulty conditions due to distributed bearings in the dry vacuum 

pump as well. Some part of this research is being carried out by a fellow researcher in 

the team who is looking at other bearing faults apart from the inner race fault. Also, 

this researcher is looking at the transient behaviour of signals such as sound and 

acoustic emissions obtained from the dry vacuum pump.

There are some bearing data centres available online like the seeded fault test 

data centre of the Case Western Reserve University. Tests were not conducted on 

these data as the main idea was to study the development fault conditions in the dry 

vacuum pump. Also analysis based on artificially simulated faulty bearing signals was 

not adopted in our case as it is our opinion that the simulated signals are too simplistic 

and do not represent a ‘true picture’ of the condition of the bearings in the dry vacuum 

pump. The task of building a true mathematical model of the bearing system is a 

difficult one as various factors such as the resonance in the bearing components and 

structure, damping ratios in the propagating path from the source to the transducers 

and environmental conditions are difficult to emulate and estimate. For our case, it 

was unfortunate that the introduction of a seeded fault in bearings of the dry vacuum 

pump was a complicated, time-consuming and costly process, as skilled personnel are 

required to fit and assemble the pump with specialised tools. So we were restricted to 

a limited data set of faulty signals. However, it is important that records from other 

faulty bearings with outer race crack, cracks on the main rolling element and the 

bearing cage are also obtained to study the effectiveness of the tools proposed in this
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study for other bearing fault conditions. In addition, the case of multiple fault 

conditions in a single bearing also needs to be considered for a more thorough 

investigation.

As final remarks, the research work done here is seen to be highly beneficial 

for the semiconductor industry, as dry vacuum pumps are critical components of the 

manufacturing process, and development of reliable and predictable automated real­

time online fault condition monitoring techniques for monitoring the dry pumps can 

reap huge benefits in terms of financial and manpower savings. Initial results show 

that the AR fault trajectory tool provides a novel approach to the detection and 

diagnosis of bearing faults occurring in dry vacuum pumps and it is our sincere hope 

that the techniques proposed here will be employed by those involved in the industry 

to engineer effective solutions for real-time diagnosis of pump applications.
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A APPENDIX

The working principles of the Roots and Claw Dry Vacuum Pump

Roots stage  
(at inlet)

tim ing gears

Figure A -l The Root and Claw mechanism.

A perspective view illustrating the relationship between the rotors. One of the Claw stages is 
mounted in reverse orientation to the other illustrating the reverse Claw mechanism. Note that 

this pump has only 2 stages of Claws whereas the iGXIOO pump used in the study has 4 stages of
Claws. Reproduced from (Wycliffe 1987a).

outlet

Timing gears

cOoKng jacket in terstage surge volume

Figure A-2 Cross section of a three-stage pump, with one Roots and two Claw type stages.

Note that this pump has only 2 stages of Claws whereas the iGXIOO pump used in the study has 4 
stages of Claws Reproduced from (Wycliffe 1987a).
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Lobed Rotors

Exhaust

Figure A-3 Root Stage. Reproduced with permission from (Edwards 1993)

C la w  Rotor

Inlet

E x h a u s t

Figure A-4 Claw Stage. Reproduced with permission from (Edwards 1993)
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Figure showing instrumentation to capture various signals from the 
iGXIOO Dry Vacuum pump and corresponding instrum entation list

7  B O C  E D W A R D BOC EDWARDS

Figure A-5 Monitoring the various pump parameters of the iGXIOO dry vacuum pump in our
laboratory.
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Key Signal Type Fitted Location
1 Vibration Accelerometer Bruel 

and Kiaer tvDe 4370- 
VS

As required

i

1a Accelerometer 
ADXL105 iMEMs

2 Exhaust Pressure ASM Gauae Thermal Break Purge 
gas port

3 Inlet Pressure 
(Vacuum)

CGl6k Dial Gauae Vacuum Vessel Inlet
4 Pirani gauge 

Barocel Gauge5

6 Air mass flow 
transducer

Flow rates > 5slpm 
only

Lucas 4AM

7 Gear tooth proximity Maanetic Pick-UD (RS 
part number 304-172)

Rotor Drive Gear

8 Yasakawa VarisDeed 
606V7 Inverter: 
Current, DC Voltage 
Power Torque, 
Voltage

9 Temperature 1 Tvoe IC LM35 
(Farnell item no. 
409-080)

Cooling Water inlet

10 Temperature 2 Type IC LM35 Cooling Water outlet
11 Temperature 3 Type IC LM35 Atmosphere
12 Temperature 4 Type IC LM35 Pump LV Bearing 

Section (external)
13 Temperature 5 Type IC LM35 Pump HV Bearing 

Section (external)
14 Coolant Mass Flow Pulsed Output Single 

Jet Turbine Water 
Meters. RS No 399- 
5018

Coolant Inlet

Table A - l  Instrum entation list of the iGXIOO Dry Vacuum Pump.

Note in Figure A—5 th a t sensors 4 and 7 were not fitted onto the pum p when the picture was taken 
shown but can be mounted on the pump if required.
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A typical ceramic Barden ball bearing mounted on the HV and LV ends of
the dry vacuum pump

Figure A-6 Barden Bearing Ceramic Bearing at High Vacuum (HV) and Low Vacuum (LV) ends
of iGXIOO Dry Vacuum Pump.
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Parts of a Bearing

The Other Half of Outer 
RaceOne Half of Outer

leiTCeramic Single 
oove Ball Bearings

Figure A-7 Bearing Components-Inner Race , Outer Race and the Ball Bearings.
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A bearing with an inner race crack

Figure A-8 Crack on inner race of bearing. Crack was approximately 2 mm wide and 2 mm deep.
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B APPENDIX

The Experimental Platform

This section gives an overview of the test equipment and instrumentation used for 

obtaining the test signals used for our experimental phase of the work. A multistage 

iGX dry vacuum based on the Roots and Claws principle (described in Chapter 2) and 

located in the laboratories of the University of Leicester was used as the source of the 

“quasi-steady state” rotating machinery. The schematic of the pump, the sensors used 

in capturing the data as well as set-up of the data acquisition system are 

diagrammatically shown in Figure B - l .

The collection of data was done in stages.

1. From the period of Jan 2004 to Feb 2005, tests were carried out on the fault- 

free iGXIOO pump and test data were collected for various pump speed conditions and 

load factors in controlled laboratory conditions.

2. In May 2005, artificially induced bearing fault samples were supplied from 

Barden Bearings and these faulty bearings were returned with the original pump to the 

BOC facility at Shoreham for refitting. The first faulty bearing to be fitted was the 

bearing with a simulated inner race crack. This faulty bearing was fitted on the high
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Sound Signal

Motor 
Bearings &

\  ^JrTCerter
Silencer^

Bearings

Vibration Signals

iGX Dry Vacuum 
Pump

ADXL105 iMEMs j 
Accelerometer

8 pole elliptic 
|  anti-aliasing 

low pass filter 
with 10 kHz cut-off j 

frequency

tZL

Chamber

Outlet

| Briiel and Kjasr 4370V  
! Accelerometer

Briiel and Kjaer 
2692 

preamplifier

Water Coolant High Vacuum End Low Vacuum

Analog—>Digital

16 bit 6034E 
NI ADC 

50 kHz sampling rate

Host PC with 
LabView and 

MATLAB

Figure B -l Schematic of the complete data acquisition system.

The ADXL105 and Briiel and Kjaer 4370V accelerometers were mounted radially on point 
marked X on the dry vacuum pump, near the high vacuum end. The microphone was attached in

the vicinity on the high vacuum end.
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vacuum end of the pump and returned. Data collection was carried in the period of 

June 2006 to the end of Feb 2006.

3. The second fault condition to be tested was an oversized bearing. Data 

collection for this faulty bearing was carried out in the period of Aug 2006 to Oct
j

2006.
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8 Pole Elliptic Low-pass Filter
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Figure B-2 Schematic showing the 8 pole elliptic low-pass filter with a cutoff frequency of 10 kHz. 
The filter has a positive Single Amplifier Biquad (SAB) configuration.
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Frequency Response of Low-pass Elliptic Filter

Frequency (Hz)8th Order L ow  P a s s  Elliptic

Figure B-3 Frequency Response of 8th Order Elliptic Filter.
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Condition Monitoring VI

For the purpose of processing and displaying the vibration signals acquired from the 

dry vacuum pump, a condition monitoring system was developed using LabVIEW and 

MATLAB signal processing packages on a 2.4 G Hz  Pentium-based microcomputer. 

The main program was implemented as a Virtual Instrument (VI) using the LabVIEW 

programming language. LabVIEW is a graphical programming language that uses 

icons instead of lines of text to create applications. In contrast to text-based 

programming languages, where instructions determine program execution, LabVIEW 

uses dataflow programming, where the flow of data determines execution. LabVIEW 

programs are called Virtual Instruments or Vis, because their appearance and 

operation imitate physical instruments, such as oscilloscopes and multimeters. 

LabVIEW contains a comprehensive set of tools for acquiring, analyzing, displaying, 

and storing data, as well as tools to help in troubleshooting code. The VI system 

presents an effective and user-friendly human-machine interface for on-line condition 

monitoring, which is of critical importance to real-time fault diagnosis. Matlab script 

blocks were easily integrated into the LabVIEW VI environment and the signal 

processing capabilities of both LabVIEW and MATLAB were utilized simultaneously 

for our signal processing requirements.

” IMATLAB S crip t
Your matlab script

Instance
data

Figure B-4 Using MATLAB Script nodes in the LABVIEW Environment

The generation of the Fourier and AR spectra and the models for the AR 

technique and other related investigations were carried out using this condition

206



APPENDIX B

monitoring VI. For collection of experimental data, the speed of the pump was varied 

at different loading factors and for different sampling rates, both in the faulty and non- 

faulty conditions, and the test data samples were collected as required. These data 

were stored in LabVIEW Measurement (LVM) file format for subsequent analysis.

The data acquisition setup and the condition monitoring system of the dry 

vacuum pump processes three types of sensor signals. The first is the vibration signal 

from the ADXL105 accelerometer obtained from the dry vacuum pump from the HV 

end, the second is the vibration signal from the Briiel and Kjaer accelerometer and the 

third is the ADXL105 accelerometer signal obtained from the dry vacuum pump from 

the LV end.

The main features of the condition monitoring VI are:

1. Displaying of the raw vibration signatures from both accelerometers in the time 

domain.

2. Displaying of the raw vibration signatures from both accelerometers in the 

frequency domain.

3. Spectral analysis using both the FFT and AR modelling techniques.

4. AR modelling with different model orders and sampling rates of the signal. The 

effect of downsampling of the signal on the frequency resolution of the AR spectra 

can be experimented dynamically.

5. Downsampling that can done using four different methods - linear, cubic, spline or 

FIR interpolation

6. Displaying of the ADXL105 temperature for calibration purposes.

7. Data logging vibration data.

8. Derivation of the bearing defect frequencies online with bearing parameters.

9. Estimating the poles of the AR model.

10. Detecting peaks in the vibration spectra automatically using user set criteria.
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11. Calculating power in interesting frequency bands.

12. Pre-processing of the vibration signals using resonance demodulation technique 

prior to bearing defect analysis.

The key benefits of the condition monitoring VI are:

S  User friendliness of the Graphical User Interface.

V Online data acquisition, processing and display.

S  Easy configuration of the analogue input channels.

S  Signal storage for offline processing.

V Integration of many signal processing functions as a single module.

V Real-time performance.

S  Easy architecture for future system expansion.

By developing and deploying an online real-time fault diagnostics system as a 

LaBVIEW VI, a fully automated condition monitoring software of the dry vacuum 

pump system has been set up.
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Circuit for the iMEMs ADXL105 accelerometer

+12V
O  UCAOUT

ADXL105
OUT

50k0.22uF
8' *-------A/vV—

100k
TOUT

Figure B-5 ADXL105 Accelerometer Circuit.
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Figure showing the ADXL105 prototype built

Figure B-6 ADXL105 PCB with Surface Mount Components
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Both accelerometers mounted on pump

ADXL105

Figure B-7 ADXL105 and B&K accelerometers mounted on high vacuum end of dry vacuum
pump.
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