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Chapter 1. 

Introduction

1.1 Preamble

Advances in subsurface nuclear logging techniques in recent years have resulted in the 
ability to determine the abundance of the major elements that constitute most lithologies. 
These include Si, Al, Ti, Fe, Ca, K, S (indirectly Mg + Na), as well as the minor elements Gd, 
Th and U (Hertzog et a i, 1989). Elements are measured continuously down-hole using a 
string of four separate logging tools that exploit various nuclear reactions and measurement 
techniques; in particular - neutron induced capture, activation and passive gamma-ray 
spectroscopy. The only commercially available tool is the Geochemical Logging Tool (GLT) 
of Schlumberger.

Appropriate calibration and conversion of the initial elemental yields to weight percent 
elemental (or oxide) form allows a continuous measurement of chemistry, typically at 0.15m 
intervals, down-hole, with the exception of the volatile phases H 20 and C02. Virtually all of 
these elements measured by the GLT tool reside exclusively in the minerals that make up 
sedimentary rock sequences, and not in the fluid brine or hydrocarbon phases. Measurements 
therefore are primarily the response of the solid matrix lithology (H and Cl are in fact 
measured but they represent responses, primarily, from the borehole fluid).

Tools such as the GLT therefore provide a whole new set of previously unavailable data 
related to down-hole rock chemistry. The use of these data in the study of sediments, 
particularly its application in reservoir characterisation formation evaluation, is still at 
an early stage. Different ideas exist on how to use these data to best advantage.

One of the more straight-forward applications of continuous down-hole geochemical logs 
is as an indication of lithological variation in a sedimentary sequence. Conventional wireline 
logging tools, routinely used to estimate lithology, offer neither the accuracy, dynamic range 
or independence from porosity (fluids) that can, potentially, be provided by these 
geochemical measurements. This is because tools, such as bulk density, neutron porosity and 
acoustic travel time, are primarily sensitive to changes in porosity. As porosity varies and 
formations become more compositionally complex, interpreting lithologies from these logs 
becomes more difficult or impossible. Geochemical concentrations, as primary responses of 
the solid matrix, offer greater diagnostic qualities for lithological evaluation.

Herron and Herron (1990) use the elemental ratios of three of the eleven possible 
elements. Si, Al and Ca as a 'rapid screen ' to distinguish carbonates, from sandstone and 
shales in the borehole environment. Their contribution illustrates the enhanced diagnostic 
strengths possible, especially in complex shaly-sand lithologies, when compared with 
conventional tools.

In an alternative approach, elemental data have been employed to classify siliciclastic 
(and carbonate) lithologies. Such a system has been employed in geology for three decades
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(Middelton 1960; Garrels & McKenzie 1971; Pettijohn et a l, 1972). In the scheme of 
Pettijohn et a l, (1972), oxide ratios Si02/A1203 and Na20/K 20 are used to differentiate 
between the various sandstone classes. Si02/A1203 is used to distinguish the pureness of 
sandstone (maturity), while Na20/K 20 is used to distinguish greywackes from arkosic 
sands. A more specific 'Sandclass' system was employed by Herron (1988), for 
concentrations derived from the GLT tool. Primary ratios, for this scheme include the 
Si02/A1203 ratio used in a similar context to the Pettijohn scheme, to separate arenites from 
shales, with a plethora of intermediate sandstones between. However, as Na is not measured 
directly by the GLT tool the ratio Fe203/K20 is used in place of Na20/K20. This in effect 
separates lithic sandstones (with relatively high levels of Fe) from feldspathic sandstones. A 
third, (carbonate) axis is also deployed to distinguish non-calcareous, calcareous and 
carbonate lithologies. Both schemes, however useful, do have pitfalls in the assumptions that 
define the classes. For example, in the Pettijohn scheme the Na20/K 20 is not well suited to 
distinguishing greywackes from arkosic arenites when albite is abundant, while the sandclass 
scheme incorrectly identifies sandstone when shaly clasts are abundant (Herron, 1988).

In a slightly different context, multivariate statistical analysis techniques, such as non 
hierarchical cluster analysis (INCA) and Principal Components Analysis have been 
employed to better understand element relationships (Brewer et a l, 1990). These techniques 
allow oxide or element data to be classified into geochemically similar groups. Interpretation 
of such elemental data can be made in terms of geological processes that give rise to a 
particular abundance or pattern. Attempts at deriving the chemostratigraphy from such 
geochemical groups, derived from geochemical logs in an igneous environment, have been 
made by Pelling et a l (1989, 1991). Similar statistical techniques have been employed for 
the evaluation of mudrocks (Primmer et al, 1990).

One of the most potentially useful ways, however, of using elemental data derived from 
logging tools, especially for reservoir characterisation, is to convert geochemical data into 
quantitative estimates of mineralogy.

There are no simple relationships that exist between elemental abundances and 
petrophysical parameters traditionally sought by petrophysicists for reservoir 
characterisation. A relationship often exists, however, between the mineralogy of a rock and 
these parameters. Therefore, resulting estimates of accurate mineralogy, besides being 
valuable in their own right for formation evaluation, can in effect allow the direct estimation 
of many of physical and chemical parameters important in reservoir characterisation. 
Potential applications include the measurement of grain (matrix) density, porosity, cation 
exchange capacity (Chapman et a l, 1987; Herron, 1987; Herron & Grau, 1987), thermal 
conductivity (Dove & Williams 1987), heat flow (Anderson & Dove, 1987), magnetic 
susceptibility (P. Harvey pers.comm.), fluid saturation (Hastings, 1988), neutron capture 
cross-section (Herron, 1987), source rock evaluation (Herron, (S.), 1987), enhanced 
measurement of Archie's exponent '«' through improved resistivity estimates (Herron et al, 
1990) and, tentatively, estimates of permeability (Herron, 1987(b)).

- 2-
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1.1.1 The norm

The conversion of geochemical data to mineral abundances (mineral transformation or 
inversion) has long been employed as an investigative technique by geologists. One 
possibility is to re-compute a chemical analysis to a fixed set of minerals (usually with ideal 
or 'theoretical' compositions) to produce a norm. The CIPW norm (Cross et al, 1902; Kesly, 
1965), still widely used today by igneous petrologists, is probably the best known procedure 
of this type. Similar ideas have been used for metamorphic rocks, using Niggli's normative 
procedures (Burri, 1964; Barth, 1969); and for sediments (Imbrie & Poldervaart, 1959; 
Nicholls, 1962; Cohen & Ward, 1991).

The CIPW norm and Niggli schemes are subtractive norms in that the chemical analyses 
are assumed to be correct and minerals are subtracted one at a time from the analysis, usually 
with one chemical constituent acting as a limiting concentration. Subtractive norms were 
originally developed for the classification or 'pigeon holing' purposes much like the 
sandclass or Pettijohn  scheme. Niggli's scheme is considerably more versatile and can 
approach the mode if mineral analyses are incorporated. Such a normative approach has been 
tailored, by Herron and Herron, 1990 (chem-modes), for geochemical logging measurements.

1.1.2 The Mode

The chemical mode, on the other hand (Wright & Doherty, 1970), represents the actual 
mineral phases present in a given rock sample, unlike the norm  which represents the 
percentage of theoretical mineral phases calculated from a given analysis. It is the mode (or 
modal proportion) that should be sought after if accurate estimates of mineralogy are to be 
made. The mode is usually estimated in the laboratory by techniques such as X-ray 
diffraction, thin section point-counting or infra-red spectroscopy.

The estimation of a mode is considerably more involved than computing a simple norm 
where the rules of calculation are fixed. For the mode the relationship between the 
composition of a formation, at a given point, and the amount of each phase (both fluid and 
mineral), and constituent compositions must be considered. In borehole sequences, with new 
elemental data measured every 15 cm, it is possible the mineral assemblage and composition 
of phases will vary. Each depth interval must therefore be regarded as new problem requiring 
independent solution.

Various approaches at estimating an accurate mode from elemental data have been 
attempted. These have employed various algebraic procedures such as solution to sets of 
simultaneous equations, linear programming, factor analysis and constituent analysis. Most 
techniques can be easily manipulated in terms of matrices and therefore easily handled and 
programmed on computer. In the context of sediments such techniques have been attempted 
by Imbrie and Poldervaart (1959); Pearson (1978); Miesch, (1962); Gold et al,(l9S3), and 
Kornder (1984), although none are considered in the context of the logging-borehole 
environment.

- 3-
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1.2 Aims and objective of this study

The aim of this study is a thorough investigation and evaluation of the process of mineral 
transformation (or inversion) in sediments. A selection of techniques have been developed 
and programmed for this exercise that transform (or invert) elemental oxides, derived from 
the GLT tool string, into a set of geologically 'viable' mineral phases. Primarily, this study 
assesses the implementation of these mineral transform models on elemental data derived 
from nuclear logging measurements and it addresses the question ..'can an accurate 
mineralogy be successfully obtained from geochemical logging instruments?' A secondary 
objective assesses the potential for the application of such mineralogy in reservoir 
characterisation. These objectives are summarised in Figure 1.1.

If a model is to be proved successful in producing an accurate modal mineralogy at each 
sample or depth interval, it must be provisionally assessed using well constrained data, free 
from the random and systematic errors associated with nuclear logging data. Emphasis is 
therefore placed on evaluating transform techniques using constrained laboratory and core 
data, before using nuclear logging data. The evaluation procedure adopted is summarised in 
Figure 1.2.

Each transform model is firstly evaluated using a) numerically 'produced' data and b) 
laboratory measurements from synthetically 'produced' rock samples which cover a wide 
variety of lithologies. Core from an almost continuous 40m section of reservoir through the 
Brent Group of the North Sea Thistle Field is then used, in a further stage, to evaluate 
transform models in an 'actual' reservoir lithology. The Ness, Etive and Rannoch formations 
of the Brent Group, sampled here, offer an excellent range of lithologies in which to evaluate 
these inversion techniques; with lithologies ranging from quartz-rich arenites through 
subarkose sandstones to micaceous-subarkosic arenites, siltstones and mudstones.

It is only when these models are fully evaluated should they be applied to real logging 
data. In this context, nuclear logging data, including geochemical measurements, from a 
nearby hole in the Thistle Field are used for the final step in the evaluation procedure. 
Strategies and conclusions developed from previous modelling are applied in an attempt to 
best model this data. A critical look at the quality of the tool measurement and the processing 
required to produce geochemical (elemental) concentrations is undertaken, as any errors in 
either will ultimately affect the estimate of mineralogy.

The potential for derived mineralogy to be applied in reservoir characterisation is 
assessed; firstly as a correlative tool in inter-well correlation and secondly to produce 
estimates of matrix density and porosity for petrophysical characterisation. Examples from 
the Thistle data used through the study are included in addition to a case example from the 
Statfjord Field, UK North Sea.

Throughout this investigation emphasis is placed on further understanding the 
relationship between nuclear measurements and the mineral phases present in a rock 
formation. Such a close study of nuclear logging data, as undertaken in the final evaluation

- 4-
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here, allows a further insight into the relationship between the two. This is a very important 
step in the assessment of the usefulness of nuclear tools in reservoir characterisation.

1.3 Structure of this thesis

After a review of the methods of obtaining elemental concentrations from spectroscopy 
measurements made by the GLT tool (Chapter 2), the theory and philosophy of each mineral 
model is reviewed (Chapter 3). Careful evaluation and identification of inherent problems are 
then addressed, using a set of synthetic rocks produced from mixtures of minerals. In Chapter 
4 reservoir core from the Thistle Field is used to evaluate techniques in an attempt to validate 
and extend earlier conclusions. For this exercise extensive core analysis was performed to 
determine the modal mineralogy, mineral composition and elemental analysis of all sample 
intervals. A section at the beginning of the chapter is therefore dedicated to the introduction 
to the Brent Group and a full characterisation of the studied section, including wireline log 
interpretation.

Strategies developed which alleviate some of the problems faced in mineral inversion are 
introduced in Chapter 5. These are demonstrated by examples from the synthetic and Thistle 
data sets and a successful case study, employing a combination of these strategies, is detailed 
at the end of the chapter.

In Chapter 6, the modelling procedures developed over chapters 3 - 5 are applied to real 
geochemical logging data acquired from the Thistle Field. This includes a critical assessment 
of the quality of data from post processing and possible enhancements to processing. Models 
and associated strategies are then evaluated using measurements from core and are discussed. 
Chapter 7 critically demonstrates two different applications possible from a direct knowledge 
of modal mineralogy down-hole. Examples are taken from data modelled during this study in 
an attempt to assess the feasibility of these applications. The final chapter draws together 
conclusions and suggestions for further work.

In summary....

Can we produce meaningful mineralogy from chemical analysis o f elements? Can this be 
attempted successfully in a borehole environment ? and can these data be relied on to use in

subsequent applications ?

- 5-
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Chapter 2 

Elemental measurements from the Geochemical Logging Tool (GLT)

2.0 Introduction

Down-hole logging measurements can be used to characterise the geophysical, 
geochemical and intrinsic structural properties of a borehole sequence. After drilling and 
coring, various different sondes are lowered down-hole on a wireline and each of several 
measuring devices continuously monitor properties adjacent to the formation. The advantages 
of these quasi-continuous, in-situ measurements of formation properties are well recognised 
in comparison and as a complement to core-based measurements.

These may be summarised as:
-Logs are effectively continuous over an entire interval and independent of core disturbance or loss or 

incomplete recovery.
-Logs are representative of sampling a much greater volume of rock.
-Log acquisition is very efficient in terms of measurement time and turn around.
-Logs measure properties at in-situ conditions (ie, temperature and pressure).

Geochemical logs do, however, suffer from disadvantages:
-Not all elements can be determined
-Precision and accuracy of laboratory analysis, such as XRF are well known and high, 

while that of geochemical logs is still relatively unknown and because of the hostile environment, 
inevitably lower.

The Geochemical Logging Tool String (GLTO of Schlumberger is currently the only 
commercially available tool capable of measuring a comprehensive elemental analysis of a 
subsurface formation. Although most techniques were pioneered for the petroleum industry, 
the tool is routinely deployed in the Ocean Drilling Program, ironically, well ahead of any 
routine deployment in hydrocarbon exploration.

This chapter aims to review the procedure in which elemental measurements are derived 
by the GLT tool string and subsequently processed to derive estimates of the major element 
oxides. It serves to illustrate this state-of-the-art logging technology with a view to 
summarising the performance and behaviour of such a tool. An idea may then be perceived of 
the levels of accuracy and confidence of the derived estimates for use in applications such as 
mineral transformation.

The GLT integrates three separate modes of gamma-ray spectroscopy to obtain elemental 
measurements. This is a result of a complex interaction of physics and chemistry. The tool 
uses natural gamma-ray activity to detect the abundance of K, U, Th; delayed neutron 
activation to detect Al, and the prompt capture gamma-ray spectrum to measure relative 
concentrations of Si, Ca, Fe, S, Ti, Gd (H & Cl). These relative concentrations are then 
converted to absolute weight percent using a geochemical oxide closure model, which in

1 All logging tool acronyms used in this thesis are summarised in Appendix AA.
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essence, assumes all elemental oxides present sum to unity. Mg and Na are not directly 
measured by the tool but can be inferred, in favourable conditions, from the photoelectric 
factor derived from the Litho-density tool. The GLT tool is described in detail by Hertzog et 
al., (1989); the theory by Hertzog & Plesek (1979), Hertzog (1980), Serra (1984), Schweitzer 
etal., (1988), Grau etal., (1987,1988,1989); and in review by Ellis (1987) and Herron (S) et 
a i,  in press;. Critical views and independent test work include Anderson et al., (1988), 
Wendlandt and Bhuyan (1990), Van den Oord (1991), Georgi (1991), Jarrard and Lyle 
(1992), Bristow & deMenocal (1992) and Pelling (1992).

2.1 Fundamentals of gamma-ray spectroscopy

Reconfiguration of an unstable, excited atom into a stable form often results in energy in 
the form of gamma-rays being emitted. The laws of Quantum mechanics govern the amount 
of energy emitted by this gamma-ray photon. In general the energy is equivalent to the 
difference in the energy states of the initial and final energy shells an electron, in a particular 
atom, has moved between to gain stability. Emitted gamma-rays thus have energies that are 
characteristic or unique to a particular atomic species.

Only three of the elements present in the earth's crust, K, U and Th, contribute a large 
enough natural gamma-ray signal (by the spontaneous natural emission of gamma-rays), to 
allow detection in the borehole environment. This is due essentially to the naturally occurring 
concentrations and the length of half life of their isotopes and the associated decay series. 
Concentrations of these elements can therefore be measured from their natural gamma-ray 
signature. For other elements that make no significant contribution to the natural gamma-ray 
flux, it is necessary to artificially create instability within atoms to induce the emission of 
gamma-rays that can then be measured. This is achieved by bombarding a formation with 
high energy neutrons (Hertzog & Plesek, 1979). The exploitation of several possible nuclear 
reactions which are the consequence of bombardment by neutrons, allows characteristic 
gamma-rays to be measured as an indication of the abundance of that particular element. 
Such measurements were recognised as possible in the borehole environment and 
implemented in the current GLT tool by Hertzog et al. (1989). Two groups of useful neutron 
interactions include a) moderation and b) absorption.

a) Moderating interactions

These reactions occur when neutron collision with a target nuclei results in a reduction in 
neutron energy (speed). These collisions include (1) inelastic scatter and (2) elastic scatter.

(1) In inelastic scatter collisions, a proportion of the incident energy from the neutron 
manifests in the excitation of the target nucleus. Besides reducing the energy of the incident 
neutron, it induces the target nucleus to produce and emit one or more gamma-rays. Such an 
interaction only occurs at high neutron energies Çfast' neutron speeds), shown in Figure 2.1.
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Common elements with identifiable gamma-rays include C, O, Si, Ca, Fe, S and Cl (Hertzog, 
1980).

(2) Elastic scatter is the primary interaction which occurs to fast neutrons leaving tool 
sources. This is where neutron collision results in a reduction in its energy before continuing 
to travel with a reduced velocity and modified direction of propagation. The energy of a fast 
neutron is reduced more efficiently in collisions with nuclei similar in mass, such as H. It is 
the sensitivity of elastic scatter energy loss due to hydrogen that is exploited by neutron 
porosity devices (Ellis, 1987).

Another useful interaction is activation, where neutron collision promotes the 
transformation of the target nucleus to an unstable intermediate isotope which decays with a 
relatively long half life (2.3 minutes for Al) to another isotope with the simultaneous 
production of a gamma-ray. Elements that produce resolvable gamma-rays by activation 
include Al, Mn, F, I and O (Scott & Smith, 1973).

b) Absorption interactions

These involve the capture of a neutron by a target nucleus that results in an unstable 
nucleus and annihilation of the neutron. The unstable nucleus reacts in two categories - 
Radiative capture and reactions which produce nuclear particles. The former is exploited in 
logging. Radiative capture ('prompt capture') occurs when neutrons reach thermal energy 
levels (due principally to elastic scatter moderating interactions). The neutron is absorbed 
then by a target nucleus which produces an unstable compound nucleus. Electrons in this 
nucleus jump temporarily to higher energy shells and the instantaneous decay of electrons 
back to their original stable shell results in the emission of characteristic gamma-rays o f 
capture (Scott, 1973; Hertzog & Plesek, 1979). It is this prompt capture reaction that is 
exploited by the GST (Gamma-ray Spectroscopy Tool) component of the GLT string (see 
Section 2.2.3).

All these interactions are therefore dependent on neutron energy; inelastic scatter only 
occurs at high energies, elastic scatter reactions occur reasonably consistently through 'fast' 
energies, and prompt capture reactions only at low thermal energies, as summarised in Figure 
2.1. Strength of the neutron source and logging speed are therefore important parameters.

All of neutron (and gamma-ray) interactions have cross-sections which describe the 
probability of their occurrence. For geochemical logging and neutron tools involving capture 
reactions the cross-section at thermal energies is most significant. A useful parameter in 
nuclear logging is the macroscopic thermal neutron absorption cross-section of the formation 
(E Fm) and of the borehole fluid (E bb), Ellis (1987). This is simply the sum of individual 
elemental thermal neutron cross-sections multiplied by the number of atoms per cm^. It 
therefore describes the probability of a prompt capture reaction occurring.

Other useful parameters are the neutron slowing down length (Lg) and the diffusion 
length (Ld). Lg is the computed average distance a neutron travels (in cm) at fast energy levels
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before it is slowed down to thermal energies (0.025 eV) and is related to the neutrons initial 
energy and the probability of a moderating reaction occurring {neutron slowing down 
density). During this slowing down process the neutrons direction of propagation will be 
modified. The actual penetration distance of a fast neutron into a formation will approximate 
Lg. The diffusion length (Ld) describes the distance a neutron travels at thermal energies 
before it is involved in a capture reaction and it is dependent on the E pm- The total migration 

length (Lm) describes the total slowing down and diffusion length of a neutron from its birth 
to capture, calculated as the square root of (Lg + Ld).

Gamma-ray interactions

Since gamma-ray interactions are commonly exploited in nuclear logging (for bulk 
density and PEF measurement [photoelectric absorption factor]) it is worth a note on the three 
main types; these include two absorption interactions, the photoelectric effect and pair  
production; and a scattering interaction, Compton scatter. The regions of dominance of these 
reactions are shown in Figure 2.1 (b).

The photoelectric effect results from the interaction of a very low energy gamma-ray with 
an atom of the incident material. This take place at energies below which the other two 
reactions can usually occur, becoming the dominant reaction below gamma-ray energies of 
100 keV. In this process the incident gamma-ray disappears and transfers its energy to a 
bound electron. If this energy is enough then the electron is ejected from the atom and 
interacts with the adjacent material. An ejected electron will be replaced with a less tightly 
bound electron and an accompanying emission of an X-ray (with an energy dependent on the 
atomic number of the material). The cross-section for the photoelectric effect is strongly 
dependent on the incident gamma-ray energy and more importantly the atomic number of the 
absorbing medium. The Lithodensity tool measures the photoelectric absorption factor (PEF) 
which is proportional photoelectric cross-section per electron (Pe). Since this is very sensitive 
to the average (mean) atomic number it is important for distinguishing lithologies. It is also 
used to determine Mg and Na; refer to Section 2.2.4.

Compton scatter is an interaction whereby only part of the gamma-ray energy is imparted 
to the electron, resulting in a reduction in the gamma-ray energy. The attenuation of gamma- 
rays by Compton scattering is a function of the bulk density and the ratio between the atomic 
number (Z) and the atomic mass (A). This process is not so dependent on energy and its 
upper and lower limits are non-exclusive with other reactions. The fact that Z/A is constant 
for most elements of interest (= 1/2) is the basis for the determination of bulk density by the 
density tools.

Pair production involves gamma-ray interaction with the electrical field of the incident 
nucleus at high energies. If the gamma-ray energy is above a threshold of 1.022 MeV, it will 
disappear and a electron/positron pair will form. The positron is subsequently annihilated 
resulting in the emission of two gamma-rays (at 511 keV each).

- 9-
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Gamma-ray detection

The gamma-rays emitted as a result of neutron interactions are recorded by a crystal that 
reacts or 'scintillates' when incident photons deposit energy into the atomic lattice of the 
crystal, such that the intensity of the scintillation is related to the energy of the incident 
gamma-ray, which in turn is related to the concentration of the contributing element and its 
capture cross-section. It is possible then to amplify and produce, through a photo multiplier 
tube, an electrical pulse which is proportional to the magnitude of the gamma-ray. By 
recording the energy distribution of a number of gamma-rays, which enter the crystal, it is 
possible to interpret the gamma-ray signal from a formation as an energy spectrum from 
which specific elements and their concentration yields may be determined.

For an element to be detected by prompt capture its thermal neutron absorption cross- 
section (X) must be sufficiently large to make the reaction possible and it must emit enough 

gamma-rays to contribute to a resolvable signal. The sensitivity of a device in detecting a 
given element is therefore a function of the abundance of the element and the distinctiveness 
of the emitted gamma-ray spectrum. The latter pertains to the combined effect of other 
interfering spectra and the resolution of the detector. Table 2.1 details the typical abundance 
and capture cross-sections for common elements in formations along with typical sensitivity 
products. The sensitivity product expresses the detectability of an element and it is the 
product of the elements typical concentration and thermal neutron cross-section, divided by 
it's atomic weight (Hertzog et a l, 1989).

Table 2.1 Common prompt capture elemental sensitivities, (from Hertzog e t a l ,  1989). 
Sensitivity provides an indication of the 'detectability' of an element through gamma-ray 
spectroscopy. Note the very low sensitivity products for Na and Mg

Element typical 
abundance 

(wt %)

capture 
cross section 

(barns)

typical
sensitivity

product

typical
abundance

(wt%)

capture
cross-section

(bams)

typical
sensitivity
product

Si 40 0.16 0.23 K 1 2.1 0.054
Ca 20 0.43 0.21 Al 3 0.23 0.026
Fe 5 2.55 0.23 Gd 0.0005 49000.0 0.16
S 2 0.52 0.030 Na 1 0.053 0.002
Ti 0.2 6.1 0.025 Mg 1 0.063 0.002

An additional consideration is that of similar or overlapping gamma-ray spectra of 
individual elements. Good detection sensitivities occur when elements have very different 
spectra; however, those with similar spectra are hard to resolve into individual components 
with any precision. Such is the case with Gd and Sm and as a consequence they can only be 
determined together (Gd + Sm).

2. 2 Tool configuration

The basic configuration of the GLT tool is shown in Figure 2.2. It consists of a string of 
four main tool components. At the top of the string is the first tool, the Natural Gamma-ray 
Spectrometry Tool (NGT- acronym o f Schlumberger, see Appendix AA).
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2.2.1 The NGT tool

This tool measures the natural gamma-ray radiation signal of a formation, due to 
isotope and the complex isotopic decay series of and ^^^Th (Lock and Hoyer, 1971). 
With a prior knowledge of the individual contribution each of these three isotopes make to the 
natural gamma-ray spectrum, it is possible to resolve the measured gamma-ray spectrum from 
the rock into components attributable to K, U and Th (Serra, 1984). The incident gamma-ray 
spectrum is divided into five discrete windows (energy ranges), see Figure 2.3. Three 
windows lie in the high energy part of the spectrum (windows 3 - 5 )  and cover the 
characteristic peaks of K, U and Th. Contributions from two additional 'low' energy windows 
(windows 1 & 2) help to reduce statistical variations. The number of gamma-rays emitted 
from each isotope is proportional to its abundance, and after suitable calibration (Mathews et 
a l, 1987) it is possible to convert counting rates from each window into absolute abundances. 
This tool is positioned at the top of the tool string so that the measurement is taken before any 
irradiation of the formation from the sources below.

2.2.2 The AACT tool

The next component of the GLT tool string is the Aluminium Activation Clay Tool 
(AACT) which measures the concentration of Al in the formation (Scott & Smith, 1973; 
Hertzog et a l, 1989). Unfortunately Al does not contribute a resolvable signal to the prompt 
capture gamma-ray spectrum (described next), but is suitably detected by delayed activation. 
Gamma-rays are produced by delayed activation when the stable ^7a1 atom absorbs a low 
energy thermal neutron and is transformed into its unstable ^^Al isotope, emitting a 1779 keV 
gamma-ray as it decays to stable ^^Si. The half life of this reaction is 2.24 minutes and so at 
normal logging speeds (500-600 ft/hr) a delay of 40-50 seconds is required between emitting 
the neutron and measurement of the gamma-ray. A Californium (252cf) natural source is used 
to generate neutrons at 2.35 MeV. This is housed in a conventional neutron tool (the CNT-G), 
positioned above the AACT in the string. The actual AACT tool is itself a modified natural 
gamma-ray tool (NGT) adapted to detect induced gamma-rays as well as the natural gamma- 
ray signal. The net spectrum from Al is then determined by subtracting the NGT contribution 
determined from the NGT tool above. The Al gamma-ray peak falls into window 4 of the 
energy spectrum. Interference is possible due to the 56mu activation, causing a gamma-ray 
peak at 1811 MeV which, due to detector resolution, can not be resolved from Al. An 
additional spectral window between 800-900 keV(window 6) is incorporated over the lower 
energy peak of Mn which allows correction for any Mn. This is usually a minor problem as 
Mn is not common and Al abundant; it may cause a problem, however, when logging through 
drill pipe. The choice of a source below the more conventional 4 MeV (AmBe) source is due 
to spectral interference from Si which is activated by fast neutrons above 3.9 MeV(Hertzog et 
a l, 1986, Grau et al, 1989). Even with the Cf source a proportion of neutrons may be emitted 
above 3.9 MeV threshold and it may be necessary to correct the Al count rate after estimation
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of Si (Schweitzer, 1991). The tool can be pressed against the formation wall to increase 
gamma-ray signal emitted from the formation.

2.2.3 The GST tool

The third component of the GLT tool string is the Gamma-ray Spectrometry Tool (GST) - 
carried at the base of the tool string. This consists of a 'minitron' tritium source producing 
pulsed 14 MeV neutrons and a gamma-ray scintillation detector. The GST exploits the 
prompt neutron capture reactions induced after bombardment of the formation with fa st  
neutrons. Fast neutrons lose energy through moderating scatter interactions (Section 2.1) and 
on reaching thermal energy levels are captured by elemental nuclei causing 'element specific', 
gamma-rays of capture to be emitted. It is possible to resolve the spectral 'yields', or 
contributions, of the elements Si, Fe, Ca, S, Ti, (Gd+Sm) in addition to Cl and H (Hertzog et 
a l, 1989).

The pulsed nature of the GST 'minitron' source allows for multiple spectral measurements 
to be made. These measurements are 'gated' at different times to the neutron pulse, to optimise 
sensitivity to the gamma-ray signals produced by the various neutron reactions and optimise 
the signal-to-noise ratio. (Serra, 1984; Schlumberger, 1982, Ellis, 1987). The use of 'minitron' 
neutron accelerator source is advantageous for safety reasons as it can be turned off, but due 
to factors such as down-hole temperature variation and varying capture cross-sections, the 
neutron accelerating voltage, and therefore neutron flux produced, is not constant. For this 
reason it is not possible, like the AACT tool (where the neutron flux is constant), to directly 
convert count rates from the GST into absolute abundances. The elemental yields derived 
from spectral stripping of the total recorded spectrum, are used in conjunction with elements 
derived from the NGT and AACT tools to derive the weight percent of all these elements in 
the geochemical oxide closure model (described later in Section 2.5).

Elements with similar or overlapping gamma-ray spectra are hard to resolve into 
individual components with any precision (ie, detection sensitivities). Such is the case with 
Gd and Sm and as a consequence they can only be determined together (Gd + Sm). A1 suffers 
from partial interference with the Fe spectra and is difficult to separate due to the low 
resolution of the scintillation crystal. Luckily A1 can be detected, as shown, by delayed 
activation.

H and Cl both contribute significantly to the measured gamma-ray spectrum, but are not 
determined as part of the rock chemistry as they are primarily the response of the borehole 
fluid. Their spectral contributions are included, however, in the processing to calculate the 
other elements. Cl (and H) has a very large thermal neutron capture cross section (Z) and is 

also an e f f e c t i v e n e u t r o n  stopper. If it is present in the borehole fluid it has a great effect 
on the neutron flux entering the formation, the gamma-ray signal returned and therefore the 
elemental yields measured. The addition of a boron sleeve to the tool reduces the signal from 
the borehole. Boron effectively reduces the number of capture reactions in the borehole
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induced by Cl, and in the tool housing by Fe, by 'mopping up' thermal neutrons, thereby 
increasing the signal derived from the formation and improving the signal-to-noise ratio 
(Schweitzer, 1984).

2.2.4 Additional tools

In addition to the three gamma-ray spectrometry devices, two other tools are coupled at 
the top of the string. The Auxiliary Measurement Sonde (AMS) records the resistivity and 
temperature of the borehole fluids. This allows the borehole fluid salinity and consequently 
the abundance of Cl to be determined. It therefore provides an idea of the borehole neutron 
capture cross-section (X bh)- ^  bh is an important parameter for the calculation of the neutron 

flux entering the formation and is essential in the calculation of elemental abundances by 
delayed activation. A Telemetry Cartridge is coupled beneath the AMS with the sole purpose 
of relaying digitised log measurements up the wireline to the surface. This offers a superior 
quality of data in comparison to sending analogue data for digitising at the surface. A 
compensated neutron tool CNT-G (as previously mentioned in Section 2.2.2) is deployed to 
carry the ^^^Cf source for the AACT tool and also to measure the apparent neutron slowing 
down length (Lg) for input to the aluminium measurement.

The only major elements not measured are Mg and Na. Neither has a large enough 
capture cross section relative to their typical abundance (sensitivity product) to be detected by 
the GST (See Table 2.1). An estimate of their concentration can, however, be derived from 
the photoelectric factor (PEF) measured by the Litho-density tool. PEE is an estimate of the 
probability of photoelectric absorption (Pe), a reaction induced by gamma-ray bombardment 
of a formation at very low energies (<100 keV) below which Compton Scatter reactions can 
occur, see Figure 2.1 (b) and Section 2.1. Pe is very sensitive to the average atomic number of 
a formation , and is especially sensitive to the low atomic number elements, most of which 
have been recorded by the GLT (except Mg and Na). Thus the recorded PEF log estimate is 
compared to a PEF estimate derived from the summation of all the photoelectric contributions 
of elements measured by the GLT tool. Any difference is attributed to the un-measured major 
elements Mg + Na. (Hertzog et al., 1989).

2.2.5 The detection of gamma-rays

All of the spectrometry tools in the GLT employ a Nal Thallium (Tl) doped scintillation 
crystal. This is the most commonly used detector in spectrometry tools. Tools such as the 
NGT and AACT divide the energy spectrum from this crystal into broad energy windows 
aimed at detecting specific, target peaks. In contrast, the GST records counts-rates through a 
series of 256 energy channels, covering the energy spectrum from 1 to 8 MeV. It should be 
theoretically possible to measure the total spectrum from either situation and decompose it, 
quite simply, into the relative spectral components of each element. However, Nal(Tl) 
crystals have some factors that may compromise their performance. In the first instance,
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discrete gamma-ray peaks are broadened as a result of a) Doppler Shift, due recoil and 
vibration in the crystal (Serra, 1984); b) Compton Scatter resulting in degradation of gamma- 
ray energies (Ellis, 1987); c) the production of three, triplet peaks for each gamma-ray, due to 
nuclear interactions in the crystal (Willard, 1988); and finally d) the finite energy resolution 
of the detector. Scintillation deadtime must also be short to allow operation at high count 
rates and to avoid pile up peaks (Ellis, 1987). The result is an indistinct 'bumpy’ spectrum as 
illustrated in Figure 2.4.

The resolution of the detector crystal is a function of its size and scintillation efficiency. 
Typical crystals have resolutions of between 6  -10%, which suggests that even a sharp, full 
energy peak can lie within +/- 5% of its true intensity. A poor resolution (>9%)will result in 
allocation of a gamma-ray to the wrong energy window, leading to its mis-identification and 
contaminating that window. This will decrease the differences between individual spectra 
being resolved, and will increase the signal-to-noise ratio. It is therefore necessary to ensure 
that gamma-rays are being counted in the correct window by monitoring gain in the crystal. 
Crystal gain is monitored by a secondary gamma-ray source and feed-back loop (Bateman,
1985), and appropriate changes accounted for.

Unfortunately the scintillation crystal is also sensitive to temperature effects which will 
reduce resolution and scintillation efficiency. An operational maximum temperature for a 
typical 50 x 150 mm Nal(Tl) crystal is 150^0 (Schlumberger, 1982). Scintillation crystals 
also degrade through time (Grau, 1980) resulting in a loss in resolution. Appropriate 
calibration can be used, however, to check for bad crystals. Cable speed and crystal size will 
also affect the counting statistics from a detector. For this reason cable speed and crystal size 
are input to the operators signal-processing routine, and can be corrected. Problems do occur, 
however, when a tool gets stuck and continues to record. Figure 2.4 illustrates the broad 
spectrum created by a Nal(Tl) crystal. In Figure (a) the difference in resolution due to 
temperature is illustrated and Figure (b) the difference between a 'good' and 'bad' crystal. As 
long as the aforementioned effects are considered in processing, they can be accounted for 
under normal logging conditions, however; a bad crystal will have to be replaced.

Future advancements in detector technology, especially with high resolution germanium 
based detectors, will allow much more accuracy and better spectral de-convolution to be 
achieved. The dramatic improvement in peak detection makes it practical to analyse elements 
which do not make vast contributions to the gamma-ray signal. The detection of 24Na, ^7Mg, 
5^Mn and as wt% concentrations, from a pilot germanium logging tool, has recently been 
achieved through delayed activation (Schweitzer & Peterson, 1992).

2.3 Processing of log data

Processing is required to transform GST derived elemental yields to more familiar wt% 
elemental oxide fractions. This processing requires the addition of the independent tool 
derived measurements of K, A1 (and X). PreliminaryyZgW processing is performed 'on site' to
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produce 'working logs’; later post acquisition processing is performed to allow a more 
comprehensive correction for temperature, borehole size, logging speed, borehole fluid 
salinity and drill pipe effects. This processing is performed using a series of programs 
implemented by Schlumberger (Bristow et a l, 1992). These are now summarised. A flow 
diagram of these routines, depicting the integration of tool measurements, is illustrated in 
Figure 2.5.

2.3.1 Spectral stripping - derivation of GST elemental yields

The assumption taken in this first step of the processing is that the acquired gamma-ray 
spectrum from the GST at each depth interval can be represented by a linear combination of a 
number of standard spectra (Grau et al, 1980). These standard spectra, shown in Figure 2.6, 
approximate to the contributed spectrum of each element. Spectral standards are combined 
together, and matched with the recorded spectrum, in an inversion routine that best fits  the 
two spectra, and the relative elemental yields determined. Field processing conventionally 
has a six-element inversion which include the elements Si, Ca, Cl, H, S and Fe. Three 
additional spectra - Ti, Gd and K, are added in subsequent processing to substantially 
improve the fit of the elements to the recorded spectra (Grau & Schweitzer, 1989). In some 
environments elements may occur below the detection capability of the tool (Jarrard & Lyle 
1991, Bristow & deMenocal, 1992); removal and insertion of other elemental standards is 
possible at this stage to improve the fit and reduce instability in the inversion process. A 
simple 7 point (3.5') arithmetic averaging is then applied to yields to reduce statistical noise 
levels.

2.3.2 Depth shift

In the course of geochemical processing data from different tool runs are combined. It is 
important to depth correlate all data to one reference run. By deploying the NGT on all tool 
strings run, the natural gamma-ray curve is used to match and correlate depths; and the 
reference run selected on the basis cable tension. This indicates the tool speed and whether 
any tool sticking occurred, and thus the quality of the run. The Lithodensity tool (measuring 
bulk density and PEF) is usually run separately to the GLT tool due to differences in the 
optimum measurement speed of each tool and tool string lengths.

2.3.3 Calculation of potassium

This stage of the processing involves the calculation of potassium in wet wt% from the 
natural gamma-ray spectrum obtained from the NGT tool (in addition to U and Th in ppm). 
Total gamma-ray ([SGR], K + U + Th) and computed gamma-ray curves([CGR], Th + K) are 
also derived. Counts from five energy windows utilised in the recording of the spectrum (see 
Section 2.2.1) are inverted at each depth interval to give the concentrations of K, U, Th, using
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Figure 2.5 Flow diagram summarising the processing of geochemical logging data. 
Schlumbeiger tool acronyms: FMS - formation microscanner, CNT - compensated neutron 
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- natural gamma spectrometry tool, AACT - aluminium activation clay tool, GST - gamma 
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processing routine names.Numbers refer to these routines as described, in order in the text ( 
Adapted from Bristow et., al., 1991).
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calibration coefficients derived from laboratory spectral standards. Inclusion of caliper and 
temperature data and the correction for the presence of potassium and barite in drilling fluid 
(KCl is added to inhibit clay swelling) compensates for any un-wanted environmental 
perturbations. The NGT spectrum is often derived from the GLT tool run, not from other 
runs, as this is deployed at the slowest logging speed {viz. 500 ft/hr) facilitating the best 
gamma-ray count statistics. K is converted to dry wt% in the next routine.

2.3.4 Calculation of Aluminium

The fourth processing routine calculates the concentration of dry wt% Al, from the 
Aluminium Activation Clay Tool (AACT) measurement. The count rates from the natural 
gamma-ray contribution of the spectrum are subtracted by combining the spectrum from the 
NGT tool with that from the AACT tool; the residual spectrum is attributed to Al wet wt%. 
The neutron source strength is fundamental for derivation of Al measurement; this is 
calculated in the routine from calibration data. Raw data are corrected for environmental 
effects such as borehole fluid, borehole diameter, in addition to Xpm and Z Bh» formation 

density and neutron slowing down length (Lg), which all have a large effect on the neutron 
flux entering the formation.

Porosity and density logs, derived from separate logging runs, are then used to convert 
both Al and K to dry weight percent. Porosity can be derived from induction logs using 
Archie's Law (Archie, 1942) or more commonly from the density (LDT), neutron (CNT) or 
sonic logs (SDT) (Ellis, 1987). Comparison with core porosity indicates the best log to use. 
The final step in the routine makes a correction for Si activation and transformation to 28Al, 
induced by the fast neutron interactions (Section 2.2.2.). This reaction affects the Al 
spectrum. Any background Si interference is calculated by combining Al data from the 
AACT with the elemental yields from the GST, and K from the NGT; and the contributions 
from Si, subsequently subtracted out.

2.3.5 The geochemical oxide closure model

Due to the variable neutron flux generated by the GST minitron source, it is not possible 
to directly convert elemental spectral count rates into absolute abundances. Relative 
concentrations of the GST derived elemental concentrations can be determined, however, by 
dividing each elemental yield by a relative spectral sensitivity factor S/. (Hertzog etal., 1989; 
Grau et al., 1989). This parameter is related to the thermal neutron cross-section of each 
element (Li), as well as detection and transport efficiencies, and it is a laboratory derived tool 

constant. Relative elemental concentrations are then related to absolute concentrations by an 
interval/depth dependent normalisation factor, F, as defined in the relationship:

Wt/ =FY//S/ (..1)

where Wt/ is the absolute elemental concentration, F = normalisation factor, Y/ = the 
relative elemental yield, and S/ = the spectral sensitivity factor. F i s a  complex function of
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almost every physical variable in the borehole environment. It cannot be determined directly 
due to the variable and unknown neutron source strength. The approach adopted therefore is 
to calculate F on the basis that the sum of all the elemental weight fractions is unity (100 
wt%). The approximation that each element combines, or is locked up, in an oxide or 
carbonate allows this closure model to cope with the absence of carbon and oxygen, which 
are not measured by the tool but are abundant. K and Al concentrations (dry wt%), derived 
from previous routines, are then normalised with the reconstructed elemental yields to 
determine F at each depth interval from the following equation:

+ —1.0 (..2)

Where: X\ is the weight of the oxide or carbonate divided by the weight of element i; WtK 
and WtAi are the independently determined weight fractions of K and Al from there 
respective tools. In effect, F forces the equation to closure at each depth interval. Only 
elements contained in the formation (and formation fluids) are therefore included in the 
model, and those that may be present in the borehole fluid (Cl & H) are excluded.

An enhancement in processing is provided by comparing the relatively poor GST derived 
potassium spectrum with an estimated spectrum for K, back-calculated through the closure 
model from the wt% K NGT measurement. Any difference between the two spectra is 
redistributed amongst other elemental yields. This in turn produces an improved estimate of 
F leading to improved elemental abundances (Grau & Schweitzer, 1989). By nature of the 
closure relationship the model compensates automatically for tool standoff and washouts by 
increasing F .

2.3.6 Calculation of Mg + Na

This closure model as it stands does not take into account Mg and Na which may be 
present, due to their poor spectral contribution (detectability). If a large amount of MgC03 is 
present the normalisation factor (F) will be over estimated, possibly by up to a factor of 2 in 
pure dolomite (Hertzog et a l, 1989). It is possible to make an estimation of Mg (see section 
2.2.4) from the difference in the PEF values measured from the Lithodensity tool and a value 
for PEF determined from the initial elemental abundances gained from the closure model. The 
assumption is that this difference is Mg (or Na) as they are the most abundant elements not 
measured by the GLT. Any estimate of Mg (or Na) can be included into the closure model of 
Eqn. (2) and the other variables are re-normalised, thus obtaining a better estimate of F. 
Caution must be exercised when using the Mg+Na estimate as its derivation is compromised 
by the borehole environment especially when barite mud (BaS04) is used; this masks 
formation PEF. It should only be attempted when quality of the GLT and LDT data are high, 
or Mg is present in large quantities.
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2.3.7 Final calculation of oxide percentages

The final routine converts the elemental abundances (wt %) into oxide percentages by 
multiplying each element by its associated oxide factor as used in the previous normalisation 
step. Table 2.2 summarises the oxide typical oxide factors employed for this routine. 
Discretion is needed in determining which oxide or carbonate species is deployed, depending 
on the minerals present and geological environment being logged.

Table 2.2 Elemental oxide factors used for different geological environments as deployed in the geochemical 
oxide closure model. From Hertzog et al, 1989 and J. F. Bristow pers. comm., 1992. Values relate to different 
geological environments, sst - sandstone, sed-carb - carbonate environment.

element oxide theoretical igneous sed-carb sst/mixed

SI 8102 2.139 2.139 2.139 2.139
Ca CaO 1.399 1.399 2.497 1.399<6

CaCo3 2.497 2.497>12
F« FeO 1.287 1.358 2.075 2.075

Fe203 1.43 1.43
FeCo3 2.075

S CaSo4 1.125 1 0.064 0.064
FeS 0.064

K K20 1.205 1.205 0.615 0.615
Al AI203 1.889 1.889 2.741 2.741
Mg MgO 1.658 1.658 3.472 1.658

MgCo3 3.472

2.4 Volume and depth of investigation.

The distance that a fast neutron travels through a material is governed by the neutrons 
initial energy and nuclear properties of that material. Considering the AACT tool source is 
2.35 MeV and the GST tool is 14 MeV, it is likely that the distance that a neutron slows down 
to induce a capture reaction and therefore the distance a neutron flux penetrates into a 
formation, will vary. Simulation studies (Felling, 1992) show that differences in slowing and 
migration lengths (thus area of rock measured) between the two source strengths will occur 
above a certain threshold of porosity. In a s i m u l a t e d water filled sandstone this is at 
15% porosity, and in a limestone it is 10%. In general, this is where the 14 MeV slowing 
down distance (L§, see section 2.1) and 2.35 MeV migration distance (Lm) cease to overlap, 
see Figure 2.7 (a & b). An increase in porosity is seen also to have a greater effect on 
reducing the total migration length of lower energy (2.35 MeV) neutron sources. This is such 
that in a simulated sandstone with 40% porosity, 14 MeV neutrons slow to a capture reaction 
over a distance of 13.8 cm, while a 2.35 MeV source will slow in only 8.1 cm (Felling, 1992). 
Figure 2.6 a & b illustrate (from Felling, 1992) the neutron distances travelled in a sandstone 
and limestone for two neutron sources and the effect porosity has on both. Forosity and 
source strength clearly affect neutron distance travelled thus the area and the volume of 
investigation. The AACT tool does not necessarily have the same investigation depth as the 
GST tool.
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The volume of investigation of GLT data is also partially dependent on lithology. Most 
formations do not have high neutron capture cross sections (ie, sandstone and limestone) and 
therefore have a lower probability of capturing a neutron and inducing a measurable gamma- 
ray, in comparison with, for example, a basalt. This may mean that any signal from a rock 
matrix may be overshadowed by reactions taking place in the formation fluids. This is 
especially so for high porosity formations and must be considered in processing.

The borehole fluid, in terms of the thermal neutron cross-section that it exhibits (X bh), 

will also have an effect on the neutron transport behaviour. This tends to be influenced by the 
salinity of the fluid, due essentially to Cl - with its extremely large neutron capture cross- 
section. Figure 2.7 (c) shows the effect of the increased volume of saline borehole fluid, (in 
this case by tool standoff) on the percentage of total gamma-ray yield contributed by the 
formation. It is clear that with 5 inches of saline fluid between the tool and the formation, the 
contribution of gamma-rays from the formation is 2 - 3% of the total gamma-ray yield. Figure
2.7 (d & e) demonstrate the effect of salinity and porosity, respectively, on the thermal 
neutron cross-section (X). A boron sleeve helps to alleviate this problem.

Hertzog et a l (1989) quote the average volume of investigation of the GLT tool to be in 
the order of Im^, presiding as a spherical geometry. Theoretical simulation of neutron 
transport in the borehole environment by Felling (1992) suggests that such a volume is 
reduced to 0.3 m^ in some rocks (in his case a basalt) and the geometry, in adverse 
conditions, takes on a bell shape with the apex of the bell furthest into the formation, 
perpendicular to the borehole axis. The best data quality will be derived where the matrix 
material predominates the gamma-ray signature. This is more likely to happen in low porosity 
formations where the borehole diameter is uniform and close to the tool and a boron sleeve 
deployed.

2.5 Accuracy and precision of GLT measurements

2.5.1 Precision

Through a series of multiple pass evaluations in a siliciclastic test well, Hertzog et a l
(1989) have predicted estimates of the precision of the GLT tool. These estimates of 
precision, quoted in Table 2.3, column 2, are 1 sigma standard deviations for typical 
concentration ranges expected for each element (column 1). Grau et a l (1989) looked at 
predicted uncertainties of GLT measurements in more detail using a different approach. They 
suggest such uncertainties in GLT measurements depend weakly on elemental abundance 
itself, and strongly on other measurement and environmental parameters. They considered the 
statistical uncertainties associated with elemental determination by numerically simulating a 
number of spectra, for different concentrations; and then deriving elemental concentrations by 
processing each spectrum using the closure model. By applying noise they could simulate 
different environmental perturbations in the spectra. In this way different environmental 
effects could be simulated and uncertainties in each elemental measurement calculated.
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Standard deviations, as measures of precision, derived from 2000 simulations are summarised 
in Table 2.3, column 3 + 4. In summary, their results suggest typical uncertainties under 
normal logging conditions of between 2 - 3  wt% for Ca and Si, just over 1 wt% for S, a few 
tenths of a percent for Fe and Ti, and 0.2 ppm for Gd. Adverse effects such as tool standoff 
and abnormally large borehole fluid X, will increase these uncertainties. In such conditions 

they advocate use of slower logging speeds or multiple passes.

Table 2.3 GLT precision from multiple pass evaluations (Hertzog et al., 1989), columns 1 & 2; and 
uncertainties calculated from 2000 numerical simulations (Grau et al, 1989), columns 3 + 4 ;  column 3 shows 
the standard deviation of simulated measurements (SDm), column 4 - SD (no k or ai) - shows calculated 
uncertainty without K and Al in the closure model. Al* from Grau et al, 1989. K* from Chapman et al, 1987.

Range Precision SDm SD(no K or Al)
Si 25 - 47wt% 2.3 - 6.4 wt% 2.76 wt% 3.67 Wt%
Al 0-15 0.1 - 0.8% - -
Al* 2 0.2% -
Al* 18 0.9% -
TI 0.1 -0.3 0.1 -0.3 0.19 0.19
Fe 1 -5 0.3 - 0.8 0.41 0.46
Ca 0 - 40 1.6-4.2 2.29 2.52
Gd 0 -1 0ppm 0.4 -1.1 ppm 0.99 ppm 0.70 ppm
8 - - 1.29 1.28
K* 0 - 4 0.25 - -

Georgi (1991) also looks at precision estimates using time-series analysis of multiple-pass 
data. From this he produced estimates of the signal-to-noise ratios and vertical resolution for 
restricted set of elements in two high porosity (33%) heavy oil wells. Signal-to-noise ratio 
should, of course, be maximised to reduce error from noise in the spectral measurement. His 
conclusions suggest that the quality of the signal from each element is not equal, an 
observation also made by Felling (1992) and Jarrard & Lyle (1991) who also consider the 
problem. In Georgi's data, Fe has a reasonable signal to noise ratio of 6:1 and a vertical 
resolution of 0.55m while Si and Ca are of less quality, with 5.1:1 and 2:1 ratios respectively, 
and both a resolution of lm. Estimates of S, however, have the best resolution of 0.3m and 
signal-to-noise ratio of 64:1.

Lower estimates of precision are generally encountered in CDF logging environment, 
(Jarrard & Lyle, 1991; Felling, 1992; Bristow et a l, 1992), where harsh borehole conditions 
and a tool string compromised by modifications for the drilling environment increse 
uncertainties.

2.5.2 Accuracy

In theory, it is extremely difficult to test the accuracy of GLT measurements in the 
borehole environment. The best available test is to compare elemental weight fractions 
obtained from logging measurements with laboratory elemental analyses of sidewall plugs or 
core such as by XRF spectrometry. This has been performed for a number of wells in an 
attempt to establish limits of accuracy. There are, however, two potential problems that must 
be considered when comparing such data. First is the substantial disparity in the volumes of
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rock measured, the GLT measurement being hundreds of times larger. The GLT typically 
samples a volume between 0.3 and 1.0  m^, while a typical XRF sample maybe as little as 
10'^ m 3 The second is the problem of correlating core samples, of relatively low frequency, 
with the abundant, high frequency, measurements from the GLT.

Through a series of published examples Felling (1992) studied the performance of the 
GLT data in the ODF environment. He revealed mixed results, which point to the GLT being 
restricted to detecting gross changes in geochemistry compared with XRF, which are none- 
the-less sufficient to allow geochemical classification of sedimentary rocks. The most 
comprehensive, non ODF study (besides Schlumberger in house studies), was undertaken by 
Van Den Cord (1991) who used core sampled specifically to accommodate, as best as 
possible, sample volume disparities. These results, presented in Table 2.4, fall, surprisingly, 
within those predicted by Schlumberger. Results from other independent field tests by 
Anderson et al. (1988) Wendlandt & Bhuyan (1991) and Carpenter and Ryan (1991) are also 
listed. Anderson et al. also employed a rigorous sampling procedure, which may reflect the 
good results, but they made no effort to quantify accuracy. Values for these data are derived 
from visual inspection of core-log cross plot data, as are data from Wendlandt & Bhuyan
(1990) and Carpenter and Ryan (1991). Wendlandt & Bhuyan (1991) found that K, Fe and Si 
are determined most accurately, followed by Al, Ca and Ti, with Mg+Na the least accurate. 
Jarrard & Lyle (1992) illustrate poor quality of results obtained from the 'compromised' tool 
deployed in the ODF.

Table 2.4 Reported accuracy of GLT wt% elemental data from different field tests. Values 
for Van Den Oord are standard errors derived from a number of sub-populations. Values in 
brackets indicate the typical range of abundances. Standard deviations for each sub­
population will be less than these values quoted here. Schlumberger data is from promotional 
material.

Van Den Oord 
(1990)

Schlumberger
(1988)

Andereon etal. 
(1988)

Wendlant & Bhuyan 
(1990)

Carpenter» 
Ryan (1991)

Si 2.0 1.6-6.5 2.33 (50 - 75%) 5.0 (0 - 50%) 2.74 (14-40%)
TI 0.2 0.1 - 0.6 0.18 (0.2- 1.2%) - - (0-0.6%)
Al 0.8 0.1 -0.8 2.11 (10 - 20%) 3.0 (0-12%) 1.15 (0-10%)
Fe 0.4 0.2 - 0.6 1.55 (1-10%) 2.0 (0 - 5%) 1.23 (0-7%)
Ca 2.0 0.7-3.1 2.86 (0-10%) 3.0 (0-10%) 1.62 (0-12%)
K 0.3 0.3 0.83 (0 - 4%) 1.0 (0 - 3%) 0.26 (0-4%)
Mg+Na 2.0 1.0-2.0 2.4- 2.9 (3-10%) - - - -
8 0.8 0.1 -1.8 - - - - - -

Even with these poor data they conclude that real geochemical changes could be detected 
above the following limits: Si 2 - 6  wt%, Al 0.4 wt%, Fe 0.5 wt%, Ca 2 wt%, K 0.5 - 1.0 
wt%. One example from Chapman et al. (1987), shown in Figure 2.8, demonstrates a 
relatively close tracking of core and GLT elemental estimates that may be obtained in a 
clastic reservoir with favourable hole conditions. In this case it is for a range of siliciclastic 
Ethologies from the Conoco test well, Fonco City, Oklahoma.
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2.6 Errors

Any attempt at the appraisal of a new technique must include identifying the source of 
potential errors. The potential sources of error in terms of the GLT tool can manifest as errors 
related to the data acquisition or as errors in post acquisition processing. In the data 
acquisition phase, the quality of gamma-ray signal in the borehole may be caused by poor 
count rates and detector resolution as well as poor signal-to-noise ratios caused by 
environmental effects. Post-acquisition spectral analysis and processing of GST data, will 
suffer as a result of such errors, in addition to possible signal contributions and interference 
effects from unmeasured elements which are likely to manifest as an incorrect spectral 
inversion and element re-partitioning. The geochemical oxide closure model will then suffer 
from erroneous input yields and any errors passed from independent measurement of K, Al 
and Mg+Na, as well as any oxide assumptions that do not hold true for the particular 
lithology being logged. In any assessment of the quality of GLT elemental data it is therefore 
important to gain as much of an insight into the magnitude or severity of such errors. This is 
demonstrated with data acquisition and post acquisition errors in Chapter 6 .

2.7 Synopsis

It is hoped that this chapter has not just introduced the method of gathering elemental data 
in the logging environment, which as can be seen is a tortuous exercise. It also identifies 
certain aspects which may compromise, or improve, measurements. This is in addition to 
gaining an appreciation of the accuracy and precision, as we currently know it, of the tool. 
The study of elemental data from the GLT will now be left until Chapter 6  and in the 
meanwhile well constrained laboratory data will be used to introduce and independently 
evaluate mineral transform models developed to handle such elemental data as derived from 
the GLT.
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Chapter 3.

Part 1. Mineral transform models 

3.1 Introduction

The Geochemical Logging Tool (GLT) provides seven or more elemental concentrations, 
and when converted to oxide form, the problem posed is what approach is available to convert 
these data to useful, accurate estimates of mineralogy. In determining such an approach it is 
important to re-emphasise the distinction between the calculation of a norm  and mode. The 
mode, as previously introduced, is the proportion of 'actual' mineral phases occurring in a 
rock. This is what is required for this exercise. The norm is a hypothetical assemblage that 
may or may not be a true reflection of mineralogy, but is rather a scheme used for the 
distillation of elemental data into more useful 'groups' for subsequent comparison 
(classification). In the well constrained case the norm may approach the mode with 
considerable accuracy if a) the minerals to be subtracted match the mode, b) the mineral 
compositions vary significantly for each phase, and c) they remain correct.

This chapter is concerned with establishing several different approaches available for 
producing as accurate an estimate of the mode as possible (Part 1). A selection of different 
techniques {models) that attempt this transformation of element chemistry to modal mineral 
proportions are introduced here. These models have been developed with particular attention 
to their application to downhole geochemical measurements. As part of this development, 
models are critically compared and evaluated in this chapter using numerically produced 
samples and synthetic rock samples produced in the laboratory (Part 2). This allows a 'first 
stage' assessment of the usefulness of each model. The data are well constrained, with 
minimal or no measurement error to construe the relative performance of each model. A 
quantification of the limitations and inherent problems of individual techniques can therefore 
be attempted before more general application to real rocks (the 'second stage'), where the 
introduction of measurement errors, inhibit m y  formal evaluation. Models introduced here, in 
their current algorithms, have been used previously only in brief attempts to calculate modal 
mineralogy in sediments and basement rocks (Harvey et al., 1990; Harvey & Lovell 1992). 
These attempts in the early stages of development, however, offer no formal or extensive 
evaluation of the performance of each model on laboratory or sediment data. An attempt is 
therefore made to evaluate these further in the sedimentary reservoir environment.

3.2 Assumptions for mineral modelling

Any attempt to accurately represent the bulk chemical composition of a rock in terms of 
an accurate assemblage of mineral and fluid phases is a complex problem. Indeed it is more 
complex than generating a subtractive norm which follow pre-defined rules.

Minerals have different habits and origins, such as well preserved detrital minerals, 
secondary authigenic minerals and leached detrital minerals. All may be present in one rock.
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In addition to these minerals, fluids can be freely circulating in the connected pore space of a 
permeable rock, or bound within mineral structures. All of these are part of the modal 
mineralogy and should be considered in a calculation.

In consideration of the possible complexities of generating a continuous mineralogy from 
borehole measurements, some assumptions need to be made about the relationship between 
the bulk chemistry of a sample and its constituent phases. These include:

1) The first and the most important when attempting mineral modelling is the assumption 
that a linear relationship exists between the bulk geochemical composition of a sample and 
the mineral and fluid phases present in that sample. Total rock composition is assumed then 
to be related to mineral and fluid phases by the relationship:

j = l.n. (..1)
i=i

Where xy is the weight percentage of the ith oxide in the jth constituent phase; pj the 
proportion of the jth phase present in the mode, and c, is the weight percentage of the ith 
oxide in the rock; n being the number of oxides analysed and m the number of phases 
present. The rock is considered to be made from no more than m mineral phases and the sum 
of minerals equals one. Thus:

m
Z  Pj= 1 (-2)

i=  I

A linear system may not fully exist, however, for every single sedimentary rock type 
encountered; at least in terms of total geochemistry measured by the geochemical logging 
tool. Examples of this include the metaliferous ores, such as galena (PbS), or uranium oxide 
deposits (uraninite - UO2), where a large proportion of the bulk chemistry is composed of the 
elements that are not measured by the GLT tool.

Table 3.1 shows the average sedimentary rock composition in terms of the four dominant 
mineral groups (in sediments) and the typical abundance of each of the major elements. On 
average >99% of crustal rocks consist of the major elements which can be measured by the 
GLT tool (Table 3.1(b)). In addition a wide variety of sediments are dominated by only ten or 
so minerals (Table 3.1(a); Pettijohn, 1975; Blatt e ta l,  1972); these effectively contribute all 
of a major element analysis. Together, these observations draw some validity to our 
assumption and make the task of mineral modelling seem more feasible. It at least provides an 
initial framework in which to begin mineral modelling. The ten most common minerals 
include quartz; the four clay minerals kaolinite, illite, chlorite and smectite; three end-member 
feldspars (k-feldspar, albite and anorthite); as well as two carbonates, calcite and dolomite.

2) A second assumption takes into account the lithological changes that occur through a 
sedimentary sequence. The assumption here is that the assemblage of constituent phases in a 
sample (the paragenesis), implicit in the first assumption, may vary between individual 
sample intervals in a borehole sequence.
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3) A third assumption follows that the composition of each individual constituent mineral 
phase, even in two samples with identical mineral assemblages, may differ between each 
sample interval in a borehole sequence.

Table 3.1 (a)The average mineral composition of common sedimentary rocks, (after Blatt et al, 1972; Pettijohn, 
1975). (b) Typical major element composition of the earth's crust (weight percent & volume percent), from 
Carmichael, 1989.

(a) Mineral Sandstone Shale Carbonate (b) Element Wt% Volume %

quartz 65-70 20-30 0-5 O 46.40 94.04
feldspar 10-25 5-20 0 Si 28.15 0.88
clay 5-10 50-60 0-5 Al 8.23 0.48
caÂonate 0-5 0-10 95 Na 2.36 111

Ca 4.15 1.18
Fe 5.63 0.49
Mg 2.33 0.33
K 2.09 1.49
total 99.34% 99.99%

4) A fourth assumption is one of error in the geochemical analysis. Both systematic and 
random errors from geochemical measurements (the latter being especially a problem in 
nuclear logging tools, see Chapter 2) will propagate through to the modal analysis and final 
solution. This will have the effect of degrading the modal estimate or in extreme cases 
rendering it totally erroneous. In a similar fashion measurement error can also be expected in 
the mineral composition analysis. This is a subject discussed in the previous chapter and will 
be discussed again in the context of 'real' logging data.

To generate an accurate mineralogy within these constraints a model must treat each 
sample as a new problem requiring independent solution. While the basic assumptions may 
not hold true for every rock type measured, they will apply to the vast majority of sediments 
and it may be a matter of geological 'common sense' to exclude samples which do not 
conform.

3.2.1 Model parameterisation - setting up a transform model

Given the assumption that a linear relationship exists between total rock chemistry and 
the mineral/fluid phases present in a rock, they can be related by a set of physical parameters 
or model parameters. In this situation the model parameters will be the possible minerals and 
their compositions that may be found in the mode, denoted Xy in Eqn. 1. The mineral 
transform problem is summarised in Figure 3.0. Initial elemental yields as measured by the 
GLT logging tool are processed through the oxide closure model to gain oxide estimates 
(Chapter 2). These are input as the response logs (called the input response vectors) for 
mineral modelling (denoted c/ in Eqn. 1). For each sample interval it is necessary to choose 
an appropriate mineral assemblage in addition to compositional values of each mineral (Xy). 
These act as the input model parameters to the mineral model (called here, the components 
matrix). With the response vector and the components matrix known, the problem is then one
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of performing an inversion, using an algebraic procedure, to produce a mineral proportion in 
weight percent.

3.3 Models for mineral transformation

Various approaches to the calculation of an accurate mode have been investigated over 
the last twenty-five years. These have involved a plethora of algebraic procedures such as 
solution of sets of simultaneous equations (often by matrix inversion) (Marquardt, 1962; 
Perry, 1967; Bryan et a l, 1969; Wright & Doherty, 1970; Reid et a l, 1973; Albarede & 
Provost, 1977; Doveton, 1986); Linear Programming (Gass, 1975; Wright & Doherty, 1970; 
Banks, 1979; LeMaitre 1982; Walsh 1985); constituent analysis and euclidian geometry 
(Fuh, 1973) diVitX factor analysis ( Miesch, 1976; Klovan and Miesch, 1976; Full e ta l,  1981 
& 1982). Fortunately procedures such as the solution to simultaneous equations or Linear 
Programming can be easily manipulated in terms of matrices and therefore easily handled and 
coded on computer. In the context of sediments such techniques have previously been 
attempted by Pearson (1978), Miesch (1962), Gold et a l (1983), Komder (1984) and Ehrlich 
and Full (1991), although none pertain to the borehole environment.

Having assumed the calculation of a mode as a linear problem, the basic limitation will be 
the number of oxides (input responses) available for modelling. This limitation, as seen 
commonly in conventional geophysical and log analysis inversion problems, means that the 
number of responses should at least match the number of unknowns (mineral proportions) and 
the system is fully-determined. In many instances this condition is not always met, the 
number of responses (oxides) being insufficient to provide a unique solution. The system is 
then under-determined. In contrast, if the number of responses is greater than unknowns the 
system is over-determined. The determinacy of the solution will predict the model or 
algebraic approach that may be taken in calculating the mode. In general, with eight available 
oxides (from the GLT tool), or more, and considering that the vast majority of sedimentary 
lithologies contain 5-10 mineral phases, models must be at least capable of handling fully and 
over-determined systems.

A selection of models aimed directly at transforming elements to minerals have been 
developed as computer algorithms. These are simply alternative algebraic procedures to the 
problem, each having individual features that are useful. Until now no particular transform 
has been deemed more superior. The evaluation of these techniques forms the basis for this 
study. The philosophy of each technique is now reviewed as a reasoning for its deployment.

Modelling is performed in oxide form, in preference to elemental form, as it offers a more 
geologically familiar way of handling geochemical data and the ultimate GLT tool output is 
in oxide weight percent. These models could, however be performed using element 
concentrations through appropriate conversion of oxides using the oxide factor in Table 2.4 
(Section 2.3).
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3.3.1 Basic linear algorithms (fully-determined systems).

If, as in Eqn. 1, we assume a linear relationship between the minerals present and their 
elemental compositions, then for a system with three minerals, each of which may be 
characterised by their concentration of two oxides, the proportions of the minerals necessary 
to satisfy a whole rock analysis are given more fully by:

PI • X i j  + P2. X^2  + P3 • Xi,3 = Cl

PI • X2,l + P 2 . %2,2 + P3 • X2,3 = C2

to which may be added the 'geological' constraint that the proportions must sum to unity:

PI . 1.0 + p 2 .1.0 + p3 .1.0 = 1.0 (c=3)

These three simultaneous equations may then be solved directly to yield exact solutions 
for the proportions, pi, p2» and p3 (direct solutions involve the elimination of unknowns one 
by one, using elementary operations). Any error in the analysis (c l, c2), however will be 
passed directly to the derived proportions.

The more normal way of expressing these equations is in a matrix form:

'Xi.i Xl.2 X 1 3 ' > 1 ' cl
X2.1 X 2 . 2 X 2.3 • p 2 = c2

1.0 1.0 1.0 .p3 . c3_

or in conventional matrix format:

X p = c where p is the unknown vector. (..3)

A solution can be obtained, in contrast to the direct solution, by the inversion of the 
matrix X and the multiplication with c will give the indirect solution to p:

p = X‘l . c (X’  ̂being the inverse of X) (..4)

Straight forward (indirect) inversion such as this will only work when the number of 
'descriptive' oxides (in the response vector) equals the number of phases in the unknown 
vector, and the system is fully-determined.

Indirect inversion has been in use for some time in log analysis for the conversion of 
physical logs to lithological logs (Savre, 1963; Doveton, 1986; Marret and Kimminau, 1990). 
The physical components matrix (typical values of each tool response for a particular 
lithology) is set up and inverted once and simply multiplied with the response vector at each 
depth interval to yield the result. However, this approach requires that the mineral assemblage 
and compositions are the same at every interval and the small probability that equal numbers 
of oxides and minerals will always be present for an exact solution. Our previously discussed 
assumptions indicate that a different approach is, however, needed.

A plethora of Direct inversion methods also exist for solving the system of equations in 
Eqn. 3, of which Gaussian elimination is probably the most widely used (Forsythe & Moler,
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1967). Although the computational details are not within the remit of this study, they offer a 
different, and often preferred, approach to the indirect solutions shown in Eqn. 4.

3.3.2 Error Minimisation (over-determined systems)

Fortunately, lithologies will often contain fewer mineral phases than available oxides and 
the system will be over-determined, with more knowns than unknowns. In this situation more 
equations will be defined and a large number of possible solutions available (Quirein, 1986, 
Harvey et ah, 1990). For example, where six oxides are measured on a sample containing 
three mineral phases, equations will appear as for a fully-determined system except there are 
now seven equations, instead of three, and a large number of possible solutions to p if the 
equations are taken three at a time.

One computational method, in this situation, is to attempt to match the composition of a 
rock sample, c';, 'back' calculated from an estimated mineralogy, to the composition of the 
actual rock (c;) determined by the logging instrument. Success of the modal analysis can be 
defined by the misfits (d;) between the two:

cr - Ci = di (..5)

The mathematical problem therefore to be solved in modal analysis is that of finding a 
solution - Pj of Eq. (1), which minimises the misfit (di). The proportions (pj) of three 
minerals are determined by direct or indirect inversion and estimates of the composition 
vector (c) calculated from three equations at a time. These are compared with the original 
values in c and good estimates of p accepted if the difference between the calculated vector 
(o') and measured vector (c) is small. The most common method of this Error Minimisation 
approach employs a Least Squares solution (Wright & Doherty 1970; Reid 1973, Bjerhammar 
1973). This approach aims to estimate p in such a way that e is minimised, where e is the sum 
of the squares of the differences between o' and c, and in matrix format is defined by:

e = ( c ' - c ) T  (o' - c) (T denotes a transpose) (..6)

The best fit values of p are chosen in such way that the difference between c and o' is as 
small as possible. The Least Squares solution for p is :

p =  ( . X  ) ■!• X T . c (T denotes a transpose) (..7)

One indirect inversion method and three direct methods were deployed for evaluation in this 
study; these include Gaussian Elimination (most commonly used), Choleski decomposition 
(for computational speed), Gauss-Jordan direct solutions (advantageous in sparse matrices). 
They are included, simply, as alternatives on-a-theme. Details of these techniques can be 
found in Forsythe & Moler (1967) and Fox (1964).
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3.3.2.1 Weighted Least Squares model

An addition to the previous model allows weights of uncertainty to be applied to the input 
response vector (c). These weights (w) can be implemented, for example, if uncertainties in 
measurement of a particular response are known. In the context of the geochemical 
measurements from the GLT, the inverse elemental precisions, calculated from calibrated tool 
measurement variances, may be used as weights (Herron & Herron, 1990, Van Den Oord, 
1990); refer to Section 2.5.1.

Using the first example, a weighted model would be defined, where weights associated 
with each response are W i , and n the total number of responses, as:

P l - X i , i  + P 2 .X i ,2  + P3 Xi,3 = w i C i

P I . X2,l + P 2 . X2,2 + P3 X2,3 = W2 C2

PI . 1.0 + p 2 . 1.0 + P 3 . 1.0 = wn 1.0

The weighted Least Squares solution in matrix form is then

p = (XtwX)- ! .  X» .w . c  (..8)

Where W = Diagonal matrix of elements, (with elements of the weight vector in the main diagonal).

3.3.3 Potential problems with Least Squares - Error Minimisation models

When modelling minerals, error in any analysis is most likely to be in the response vector 
and an explicit solution can be readily sought without validation of the linearity assumption 
from Section 3.2. In the area of conventional field geophysics there is often a degree of 
experimental error in the components matrix as well, which can cause the linearity of the 
model to break down. This is usually not a problem with mineral transforms since 
compositions, in general, are better constrained than field geophysical measurements. 
Extensions to the Least Squares methods can be implemented which take into account the 
uncertainty of all the derived coefficients in both constrained and unconstrained systems. This 
is often by way of calculating bounding errors for all model parameters postiori, to ascertain 
where doubtful data exists. An attempt to apply this approach to petrologic problems has been 
made using maximum-likelihood minimisation (Albarede & Provost, 1976) and in more 
conventional geophysics - such as iterative Most-Squares solutions, a modification of a Least 
Squares solution (refer to Marquardt, 1970; Jackson, 1976; Meju & Hutton, 1992; Meju, 
1992). For general mineral modelling purposes it is not considered necessary at this stage.

One problem with Least Squares solutions is that derived mineral proportions can either 
be positive or negative, with the constraint of unity still in place. In the context of a modal 
analysis a negative mineral estimate is a physical impossibility and such a solution therefore 
meaningless. This could arise from errors in the response vector (rock analysis) but usually 
results from the use of an incorrect mineral assemblage, or incorrect choice of mineral 
composition.
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This is demonstrated using an example where silica (Si02) and alumina (A1203) exist in 
terms of two minerals - quartz (100% [Si02]) and Kyanite (represented as 50% [Si02] & 
50% [A1203] brackets notate molecular proportions). Figure 3.1 shows the region of 
acceptable (the stippled region) and impossible solution for this system (after Harvey et al, 
1990). The stippled region represents the unconstrained solution. With a summation to unity 
constraint implied, a modelled analysis must lie on the line XY (a constrained solution). 
Acceptable results occur between X and K, with negative, meaningless values for quartz
between Y and K. Changing the composition of an end-member will move this point. If the
sample is incompatible it can move completely into the negative region rendering a useless 
solution. In a multivariate system with six or more oxides, the line XY becomes a hyper-plane 
and adding or removing minerals will totally alter the position of such a plane. Unfortunately 
with a Least Squares solution there is no way to prevent negative values.

3.3.4 Linear Programming - Optimisation transform models.

This method is intended as an alternative method primarily to overcome the negative 
phase proportions commonly predicted in Least Squares methods. Wright & Doherty (1970) 
suggested the use of Linear Programming as a primary stage in selecting a paragenesis for 
eventual solution by Least Squares methods. However, Banks (1979) advocates the use of 
Linear Programming as a stand-alone method for modal estimation. Stochastic approaches 
have also been proposed (Vajda, 1961), but are not considered here.

Linear Programming itself is designed to solve in an under-determined system. Such an 
under-determined system can have an infinite number of solutions. Linear Programming, 
however, uses a set of implied constraints to limit the number of solutions, and a solution is 
chosen that maximises (or minimises) some specified objective function. This is compatible 
with mineral modelling as the objective function, and in this sense, can be used to maximise 
the proportion of modal minerals estimated. The constraints implied are that the oxides used 
to make the mineral proportions do not exceed the total amount available in the original 
analysis, and mineral proportions cannot become negative or in turn collectively exceed unity. 
The definition of the objective function to be maximised is then:

z = PI + P2 + P3,   , Pm
with the constraints :

PI X i , i  + P2.X1,2 + Pm Xl,m ^ ci

PI X2,l + P 2 . X2,2 + Pm X2,m ^ c2

PI Xn,l + p2 • Xn,2 + Pm. Xn,m ^ Cn 

with the closure constraint:
m

j .  Pj< 1.
1 =  1
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m
and: % p i> 0 .

i= 1

where individual mineral proportions (pj) themselves: pj > 0

In this sense the constraints do not allow negative assemblages to occur as pj is 
constrained to be positive, and whilst the sum of the mineral proportions is maximised, it can 
not exceed unity. Other constraints can be added to the model, a useful one being to ensure a 
constant ratio of a number oxides between coexisting minerals (Harvey & Lovell, 1992).

In a model, if a mineral does not fit, it is simply determined as a zero proportion. Any 
residual chemistry not used in the solution (di in Eq. (5)), while by definition of the objective 
function this is minimised, allows a useful direct measure of the effectiveness of the solution. 
It may be helpful in determining where errors may lie in mineral choice, compositional choice 
or not so easily, error in input response measurements. One problem, however, with this 
model is that there is no way of incorporating any uncertainties in the components matrix or 
of weighting input responses, although it is reported possible (Harbaugh & Bonham-Carter, 
1981). Linear Programming can be performed in a variety of ways of which the Simplex 
algorithm is most commonly used (Walsh, 1985). This algorithm is employed in this study.

3.3.5 Euclidian Distance model

An alternative technique applies a different approach to the estimation of modal 
mineralogy - one used conventionally in metamorphic petrology; and which employs the 
principle of constituent analysis (Fuh, 1973). In essence, this algorithm treats the input 
chemistry (response vector) in terms of the normalised Euclidian distances between mineral 
phases (end-members) present in the components matrix and therefore takes advantage of the 
multi-dimensional geometry inherent in the components matrix. Figure 3.2 best explains the 
methodology of this technique. Taking the system quartz (Si02), sillimanite (Al2Si0 5 ) and k- 
feldspar (KAlSigOg), with ideal compositions, they can be represented in a three dimensional 
compositional space (simplex) defined by the axes: Si02, K20 and A1203 (Figure 3.2). A 
rock composed of these three minerals (point +) will lie on the plane that contains these 
minerals, and at the same time within the two dimensional compositional triangle defined by 
them. In terms of the minerals quartz-sillimanite-k-feldspar (qsk), acting as the apices of this 
two dimensional triangle, the composition of the rock (+) is directly related to the normalised 
Euclidian distances between itself and these apices. Samples which lie outside of this 
compositional simplex will produce negative results. For example, if there was sufficient 
silica to form sillimanite and k-feldspar but not enough remaining to produce quartz, then the 
sample would plot outside the compositional triangle (qsk) beyond the s-k join, away from 
the q comer. A solution from this composition based on these three minerals would therefore 
give a negative quartz abundance.

Although it is hard to illustrate, (although much easier in mathematical (matrix) form) this 
can be extended from the three dimensional space, illustrated here, to multi-component
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systems involving a hyper-polygonal space. Such a system is the components matrix from our 
transform model. The model algorithm used here allows up to the same number of minerals 
as oxide components (fully and over-determined systems) and the constraint implied, as in 
other models, is that the sum of the derived mineral proportions does not exceed unity. In 
computational terms, the chemical analysis (response vector) is input within the 
multidimensional geometry of the components matrix and the Euclidian distances calculated 
between the end-member minerals and the analysis. Appropriate mineral proportions are then 
calculated from the resulting geometry.

In a similar sense to Least Squares solutions, negative mineral proportions are possible 
from this model. Typically this occurs when wrong minerals are present, when minerals are 
compositionally similar, or as a result of measurement error in the response vector.

3.4 A summary of transform models

Error Minimisation and Euclidian Distance models both have the disadvantage that they 
can derive negative mineral proportions. On the other hand, negative phases do draw the 
attention to a problematical solution which can then be investigated. Both models have the 
slight advantage that they contravene the assumption that there is no error in the analysis; and 
in the weighted  form. Least Squares models allow apriori estimates of uncertainty to 
influence the solution. Whilst having the advantage of being constrained not to derive 
negative proportions, the Linear Programming, Simplex algorithm employed here does 
assume an input analysis to be correct. Meanwhile residual estimates (di) from Linear 
Programming are useful as a direct measure of excess chemistry. This is advantageous, as it 
provides a good measure of the success of the solution and also indicates where errors lie; for 
example, in the choice of the mineral assemblage or individual mineral composition.

Having considered the strategy of each transform model, it is worth elaborating on the 
subtractive norm procedure as a contrast to these models. In the normative approach, fractions 
of chemistry in the form of minerals are subtracted successively from the original analysis 
until the entire analysis is 'exhausted'. For example, if apatite (Ca(P0 4 )3F) is to occur in the 
norm then the percentage of normative apatite becomes a function of P2 O 5 and a 
corresponding stoichiometric amount of Ca subtracted; P2O5 is then set to zero. In this way a 
set of pre-defined minerals are in turn removed in a 'hierarchical' order until no chemistry 
remains. The rules determining such an order must allow procedures, such as the partitioning 
of certain elements, like Fe and Mg, between coexisting phases. As stated previously, there is 
a wide initial choice of minerals which could be selected for inclusion in a calculation. In a 
ridged scheme the minerals chosen will, to some extent, be determined by the rules chosen. 
The main problem lies in the order in which minerals are removed. For igneous rocks this 
may be straight forward, but for sediments, (which are not necessarily in equilibrium), it 
becomes considerably more difficult. There is also no room for error in the chemical analysis 
and such error will be passed to the resultant norm . Data produced from subtractive 
procedures, however, will either be positive or zero even from under-determined systems.
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Originally intended as a useful distillation of elemental data for classification, some 'tailor 
made' schemes, involving actual analyses, such as Niggli's norms (Burri, 1964), do in a very 
constrained situation allow the norm to be compared with the mode in igneous/metamorphic 
rocks. They do, however, prove unfeasible for large volumes of logging data as they are 
almost impossible to code in a completely general way in sediments (P. Harvey pers. comm. 
1992).

3.4.1 Ten mineral normative and modal transformation model

A model developed by Herron and Herron (1990) use both subtractive-normative and 
modal methods in an attempt to determine the ten most common minerals in sediments from 
GLT data (termed chem-minerals). Their model involves three normative steps that assume 
pyrite, illite, and siderite are present, if the appropriate chemistry is available. The first 
normative stage involves the calculation of excess S, after S is used to calculate pyrite. A 
second stage involves the calculation of excess Fe, after subtraction for pyrite, to estimate the 
abundance of illite, and the corresponding stoichiometric proportions of K20, A1203 and 
Si02 are subtracted. Any excess Fe is taken to be siderite. Thirdly, a calculation to remove 
minerals with bound water (clay minerals) is included. Finally, the determination of mineral 
abundances of seven or eight other 'pre-defmed' minerals is achieved by the solving of 9 or 10 
simultaneous equations which relate the remaining chemistry from the GLT tool to mineral 
abundance.

These normative minerals will agree with the mode if two assumptions are valid (Herron,
1986). The first assumes a constant chemical composition for each mineral and that each 
mineral is chemically distinct from the rest. The second assumption is that all minerals 
residing in the formation will be present in the model. Problems with using this model to 
predict accurate mineralogy lie with these two assumptions. Mineral compositions of the ten 
defined minerals in reality can and do vary. Herron uses the average composition of mineral 
families, ie, for feldspars, a mix of k feldspar, albite and anorthite is taken (A1 10%, Si 30% 
and Ca 1% (Na is not determined). Providing the elemental input data is accurate, and the 
algorithm to compute excess Fe is correct the most common problem lies with the second 
assumption - the choice of minerals. Formations may contain minerals which are absent (due 
to mis-identification) from the model, and yet still contribute to the total element chemistry. 
For example, if chlorite was not recognised although present in an analysis, its chemistry 
would appear as a combination of kaolinite, illite and siderite. In this respect there is no room 
for the possibility of residual chemistry from minor phases or an error in the analysis. Another 
problem is with the large influence of the excess Fe calculation. If less Fe is attributed to 
siderite, then more illite will be calculated (Van den Oord, 1990). Small changes in the 
calculated percentage of excess siderite will result in large changes in the calculated amount 
of illite. These problems are recognised by Herron (1990) who advocates that this normative 
sequence be used as a start and minerals be replaced which are appropriate to the local 
regional geology. This demonstrates, itself, the lack of a completely general approach.
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In a similar fashion Harvey et a/..(in press) use this approach to remove the minor oxides 
- Ti02, BaO, Zr02, P205 and S, which are assumed each to lie exclusively in minor mineral 
phases. The advantage of this procedure is to reduce the sparseness introduced to the 
components matrix, which occurs when a large number of single-oxide, exclusive phases are 
present. Each of these oxides is removed by subtracting the ideal stoichiometric compositions 
of the common minerals rutile, barite, zircon, apatite, and pyrite, respectively. This leaves the 
remaining oxides to be input in to a modal transform model.

Herrons normative model does not strictly adhere to the assumptions defined at the 
beginning of the chapter and as a part consequence suffers the problems just discussed. For 
the purposes of estimating an accurate mode this procedure is not considered further.

3.5 Measurement of errors and assessment of models

It is imperative when examining estimates of mineralogy derived from a mineral model to 
have an idea of the measure of the quality of the solution, or an estimate o f error. No true 
statistic, it seems, is present that serves to provide a discrete 'error log' for all the mineral 
models described. A number of error estimates are partially successful in achieving this goal, 
especially when combined.

Assessment of error in a modal analysis can either be based on (1) the derived mineral 
proportions (pi), or (2 ) comparison of the difference (di) between the original analysis 
(response vector) Ci and the estimated vector Ci', commonly termed the error vector (e).

Two common statistics exist that are based on the mineral proportions:
(1) Proportional Variance (Pvar) is related to the maximum entropy (variance) in the 

system and is defined as

Pvar =
m - 1 «=1

(..9)

Where m is the number of minerals and P(i) the derived mineral proportions. Pvar will 
vary between 0 and 1. Larger estimates of Pvar indicate greater variance and will equal one at 
maximum variance, this is when equal mineral proportions are present. This statistic is useful 
in under-determined systems (Doveton, 1986) but is considered in the context of over­
determined systems with less reverence.

(2) The Absolute Sum Error (ASE), can be useful for exact or fully-determined systems 
where it indicates the presence of negative proportions. It is defined as:

f  i=r,

ASE = Z k l
V i=i y

-1  ( . .10)

Small values of ASE may suggest minor measurement error while large values suggest 
gross measurement errors, or more commonly, an incorrect mineral assemblage.

In a similar way the negative sum error (NSE), the sum of all negative proportions (pi), 
while having no true statistical significance, can be of equal use in over-determined systems
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(Error Minimisation and Euclidian Distance models) where negatives can be common. 
Another error estimate (also lacking any true statistical significance) is the Sum of 
Proportions (pi) (SUMP). In a constrained system such as Error Minimisation, SUMP will 
equal one; however deviations from unity indicate an unstable solution. This is useful for 
Linear Programming which although constrained not to exceed unity or become negative can 
vary between the two values. A measure of SUMP in terms of percentages, called P%acc, is 
used in this study.

Perhaps more useful quantitative measures of error are estimates that involve the error 
vector (e). There are two common estimates which indicate a general measure of fit and can 
be applied to mineral modelling. These are the Standard Error of the Estimate (SE) and the 
Mean Absolute Deviation (Mad). From the error vector calculated in Eqn (6 ) Standard Error 
is computed, where n is the number of oxides, m the number of minerals and ej the difference 
between Ci and Ci' for oxide j :

SE =

j= n

7=1 (..11)

In terms of geochemical fit, SE is most appropriate for Error Minimisation and Euclidian 
Distance models and can viewed in terms of units of standard deviation of the chemistry, as 
estimates of the error vector can be positive or negative. It varies from zero (a perfect fit, ie, 
di = 0) upwards, but experience with mineral modelling suggests values greater than 1-1.5 
imply a poor fit and inevitably a poor solution. It must be noted that a perfect fit, (zero 
Standard Error value), although impractical in reality due to measurement and rounding 
errors, does not necessarily imply a correct derived mineralogy, simply a good fit. SE is not a 
meaningful error for Linear Programming due to the constraint imposed that the residual 
vector can not be negative (ie, Ci' can not exceed ci).

Mean absolute deviation (Mad) is a similar statistic to SE but is more meaningful and 
appropriate for optimisation methods (Linear Programming). It is defined as the absolute sum 
of the error vector divided by the number of variables (n), such that:

Shi
Mad = ^ —  (..12)

n

Mad offers an almost equivalent measure to SE for comparing Linear Programming with 
Error Minimisation and Euclidian Distance models. Mad does have the advantage that it can 
be computed for all models, but values must be compared between models with caution.

As an example of the use of these errors in evaluation of a models solution. Table 3.2 
demonstrates two sets of calculated chemistry (ci') for a modelled gabbroic rock (from Harvey 
et a l, 1990). Ci* in column 2 is from an Error Minimisation m odel, and Ci' in column 4 from a 
Linear Programming model. The observed chemistry (ci) from the input response vector is 
shown in column one. The difference (di) is shown for each solution in columns 3 and 5. For
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the Error Minimisation model differences are both negative and positive (column 3) and Se 
therefore has some statistical significance.

Table 3.2 Example gabbro solution illustrating the different errors calculated for the Least 
squares - Error Minimisation and Linear Programming models. See Text.

E rror Minimisatiffli Linear programming

observed(ci) calc (cp) diff(di) calc (ci'> diffO
1 2 3 4 5

Si02 46.55 46.53 -0.019 45.31 1.237
A1203 18.93 18.96 0.025 18.93 0.000
Ti02 1.46 1.46 0.002 1.46 0.000
Fe203 10.64 10.67 0.028 10.73 0.000
MgO 8.89 8.93 0.041 8.89 0.000
CaO 10.77 10.84 0.070 10.77 0.000
Na20 2.31 2.51 0.198 2.31 0.000
K20 0.28 0.00 -0.280 0.00 0.280
MnO 0.080 -0.080 -0.080 0.00 0.080

SE 0.083 -

Mad 0.182 0.177
P%acc - 98.40

The differences (dO from Linear Programming (column 5, compare both K20 values) are 
all positive (as the result of the constraint of the method) and Se therefore meaningless. Mad 
can be calculated for both solutions as a comparative measure. In absolute terms. Mad is not 
as meaningful for the Error Minimisation model because negatives, as in this example, are 
often present P%acc (SUMP) is very high indicating that a lot of the chemistry has been used 
in the models solution.

It can be seen that there are a number of errors that can be used to assess the quality of a 
mineral model, but no clear single statistic that can be broadly used. In summary, for fully- 
determined inversion models, as well as over-determined Error Minimisation and Euclidian 
Distance models, SE is very useful in assessing the geochemical fit of the data, and NSE 
important as an indication of negative phase proportions.

For optimisation models. Mad allows a similar measure with which to compare other 
models and P%acc (or SUMP) provides a very useful measure of residual or 'unused' 
chemistry. Table 3.3 summarises the available estimates of error and their application to the 
transform models.

3.6 Validation of a mineral model

Perhaps the single largest problem common to all proposed mineral transform models is 
that of validation of the solution. Rejection may be obvious due to negative mineral 
proportions (an impossibility in reality) and an appropriate measure of error used to detect 
this, ie, NSE or ASE. Rejection may also be obvious from a geologically 'silly' or meaningless 
solution and can be discarded. It is almost impossible, or at least very hard, to validate the 
accuracy of a reasonable solution directly during routine processing. Yet, we must have 
some idea of the severity of any problems that might arise from modelling a particular 
assemblage and recognise these at an early stage in processing.
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Any evaluation procedure must involve comparing the model derived mineralogy with a 
value derived from independent physical measurements on the sample. Similarly, comparison 
of the differences between a chemical analysis, 'back calculated' from the derived estimate of 
the mode, with the initial chemical analysis will assist in validation.

Table 3.3 Summary table of available estimates of error for mineral modelling and their application to 
appropriate models

Error
Estimate

PVAR ASE SUMP
(P%acc)

NSE SE Mad

Proportional
variance

Absolute 
Sum Error

Sum of 
Proportions

Negative Sum 
Error

Standard 
Error of the 
Estimate

Mean
Absolute
Deviation

Mathematical
Determinacy

Under
determined

Fully
determined

All All Fully & Over 
determined

Fully & Over 
determined

Range of 
values

0 - 1
Possible
negatives

0 unless 
negative

0 - 1
1 if proportions 
equal unity

0 unless 
negative

0 upwards 
zero = perfect 
>1.5 poor

0 upwards 
zero = perfect

Model most 
suitable for

none Exact
inversion
model

Linear
Programming

Error Min. & 
Euclidian Dist 
models.

Error Min. & 
Euclidian Dist 
models.

Error Min. & 
Euclidian Dist 
models., Lin. 
Prog, models

Comments Useful 
for assessing 
residual 
chemistry

Useful 
for assessing 
erroneous 
solutions

Good measure 
of geochemical 
fit.
Seen in terms of 
a Standard Dev.

Comparison 
of Lin. Prog to 
other models. 

More meaningful 
for Lin. Prog.

Physical methods readily available for the analysis of a mode (on core samples) include 
whole-rock or orientated X-ray diffraction (XRD), thin-section point counting and infra-red 
spectroscopy (MINERALOGY). Unfortunately these techniques are often neither precise or 
accurate enough for absolute verification of the mode, especially at low concentrations. There 
also exists a difference in sample volume of typical core and GLT derived elemental 
measurements (or geostatistical support; Clark, (1984)) which may seriously complicate any 
comparison. These factors must be considered in any comparative exercise (refer to Sections
2.5.1 and Chapter 6 , 6.7.1). Physically derived modal estimates provide, however, as close as 
possible an estimate (in the absence of any other procedure), in which to validate a solution 
and through necessity they are deployed, with caution, in this study.

Y Trade mark of Corelabs Inc.
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Chapter 3, Part 2.

Laboratory assessment of mineral transform models

3.7 Introduction

For the reasons outlined in Section 3.6 the initial evaluation stages of the relative 
performance of transform models, demonstrated next, have been undertaken on 'numerically' 
produced rocks - rock analyses synthesised by mixing together the compositions of a number 
of minerals. This allows no error in the analysis and provides a strict validation that each 
model actually works.

A second procedure adopted is to crush and analyse pure minerals and make up a series of 
synthetic 'rocks' by mixing together known amounts of the minerals in the laboratory. All 
parameters, including the mode, are known to within the laboratory analytical, weighing and 
mixing errors. In this way the evaluation of each transform model is free of any bias or 
inaccuracy of tool measurement while remaining realistic. The rest of this chapter is devoted 
to using this synthetic data set to evaluate the behaviour of these different transform models 
and establish the problems associated with element to mineral transformation in sediments.

3.7.1 Behaviour of algorithms: numerical modelling of the synthetic data-set

Knowing the XRF derived chemical analysis of each mineral and the proportion of each 
mineral mixed in the synthetic rock it is possible to 'back-calculate' a rock analysis 
numerically. Computed analysis for the synthetic rocks were used here in the 'numerical' 
modelling exercise as the input response vector. Eleven oxides were modelled, including 
Si02, Ti02, A1203, Fe203, MgO, CaO, Na20, K 20 MnO, P205 and S. The system is 
therefore over-determined (as there are between 2  and 6  minerals to solve) and all models 
can be evaluated. Two decimal places have been kept throughout to assist evaluation, 
although this level of accuracy is never expected to be seen in a normal modal analysis. 
Standard Error and Mean (absolute) deviation of the residuals are quoted as comparative 
measures of geochemical fit, as is P%acc, for the Linear Programming solution. The actual or 
'target' mineralogy is quoted in the results as a direct measure of accuracy and for validation 
of the correct mineral assemblage.

3.7.1.1 Results of numerical modelling

Table 3.4 shows the estimated mineral proportions from all models for synthetic 'pelite' 
and 'arenite'. Transform models employed include three Error Minimisation models (an 
indirect 'inversion' solution and two direct solutions). Linear Programming and the Euclidian 
Distance models. Table 3.4 demonstrates the accuracy in estimation of the mineral 
proportions by all models. Standard Error is negligible and is due only to rounding in 
computation. This exercise demonstrates that the five different models being evaluated, under 
ideal conditions, solve perfectly.
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Table 3.4 Modelling performed on numerically produced 'arenite' and 'semi pelite' rocks to 
demonstrate estimation of mineral proportions by different mineral transform techniques.
Key for tables: Target - Target mineral proportions, Lsq-INV -Least Squares (indirect) model, Lsq-Chol - 
Least Squares (direct) Choleski model, Lsq-Gj -Least Squares (direct) Gauss-Jordan model, LP - Linear 
Programming, Eue - Euclidian Distance model. SE -Standard Error of the chemical fit. Mad -mean (absolute) 
difference of the residuals, P%acc - Percent of chemistry accounted for.

Arenite Target Lsq-INV Lsq-GJ Lsq-chol LP Eue
quartz 80.00 80.01 80.01 80.01 80.16 80.01
muscovite 10.00 10.03 10.03 10.03 10.10 10.00
K-feldspar 5.0 4.97 4.97 4.96 4.76 4.96
dolomite 2.50 2.50 2.50 2.50 2.50 2.50
calcite 2.50 2.50 2.50 2.50 2.51 2.50

SE 0.003 0.003 0.003 0.003
Mad 0.002 0.002 0.002 0.00 0.002
P%acc - - - 99.97 -

Semi Pelite
ablte 15.00 15.00 15.00 15.00 14.85 15.00
kaolinite 15.00 15.05 15.04 15.04 15.09 15.03
quartz 40.00 39.97 39.97 39.97 39.20 39.97
k-feidspar 15.00 15.09 15.09 15.08 15.12 15.08
muscovite 10.00 9.91 9.91 9.91 10.06 9.91
dolomite 5.00 5.01 5.01 5.01 5.24 5.00

SE 0.005 0.003 0.003 0.005
Mad 0.003 0.002 0.002 0.005 0.002
P%acc - - - 100.00

3.7.2 The production of synthetically produced rocks in the laboratory

Six 'rock' mixtures have been produced in the laboratory by mixing together pure minerals in 
proportions that span the range of the most common argillaceous-arenaceous-carbonate 
sedimentary rocks. These six 'rocks' include a 'shale/pelite', a 'semi pelite', a pure 'arenite', a 
'carbonate' (calcite-dolomite mix) and two mixes of minerals that âie compositionally 
colinear. These are referred to as Mix 1 and Mix 2. Compositions of the synthetic rocks were 
taken from average values for sediments quoted in Carmichael (1989; p 105) and are given in 
Table 3.5. 'Illite' is replaced, however, by muscovite as a respectable illite standard was 
unobtainable. The intention of this data set is to reflect a range of lithologies from a simple 
two mineral 'rock' to a more complex six mineral rock.

Carefully selected mineral phases were picked and crushed using a flypress, then re­
picked to remove any weathering or possible contaminants. 50g of each picked mineral was 
reduced to a size of approximately 50 |im using an agate tema mill for 8 minutes. A 15g 

subsample was split and removed for elemental analysis. Each synthetic rock was then 
accurately weighed (to 4 decimal places ) in the proportions of minerals shown in Table 3.5, 
and mixed thoroughly for 30 minutes in a mechanical shaker. The sample was subsequently 
split and 8g reduced in a microniser to 5|im for whole-rock X-ray diffraction analysis (XRD).

Careful major element analysis of the chosen minerals before mixing (the mineral 
analysis) and of the synthetic 'rock', after mixing (the rock analysis), were conducted using X- 
ray fluorescence spectroscopy (XRF). Verification of the mineral proportions was performed 
by whole rock XRD analysis and infra-red spectroscopy, MINERALOG. Details of all 
analytical techniques are given in Appendix 2.0, and XRF results in Appendix 1.0.
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Table 3.5 Minerals and their proportions used to make 'synthetic' mixtures (wt %)

quartz K-feldspar albite kaolinite muscovite calcite dolomite
pelite 20 15 15 45 5
semi-pelite 40 15 15 15 10 5
arenite 80 5 10 2.5 2.5
carbonate 50 50
mix 1 60 10 20 10
mix 2 30 45 25

3.7.3 Evaluation of models using laboratory measured data

The synthetic data set is now used more extensively to demonstrate the accuracy of each 
model. In this exercise, unlike the numerical modelling the input response vector comprises 
XRF measurements of real rock material, where measurement error (accuracy & precision) 
and other errors (for example, effects of weathering) are included in the data. In this sense, 
the system is more realistic although better constrained than logging data.

3.7.3.1 Accuracy of the models

Table 3.6 shows solutions for the six synthetic mixtures derived from the same models 
deployed in the numerical exercise. The overall prediction of mineral proportions is very 
good, ranging between 0.5% and 10% from the 'target' mineralogy. Rock Mix T shows a very 
accurate prediction of mineral mode, within 0.5% of the target value for quartz and kaolinite, 
<1% for albite and K-feldspar. 'Semi pelite' with the largest assemblage of minerals (6 ) shows 
the largest discrepancy, 7 wt% for muscovite (10% for Linear Programming), 5.5% for k- 
feldspar and other phases <2%. The other four rocks have minor differences between 
calculated and observed modal proportions of < 2 .0 %.

3.7.3.2 Comparison of models

All Least Squares models behave in an identical fashion deriving the same proportions 
and errors. The Euclidian model shows only a slightly less accurate estimate of mineralogy 
(mostly less than 0.1 of a percent) and a slightly larger error estimate as a result. The Linear 
Programming model tends to be the least accurate in the more complex (5-6 mineral) 
mixtures - pelite and semi pelite. Although the P%acc statistic is good (between 97.5% and 
99%) for all rocks (ie, most of the chemistry has been used up), discrepancies in mineral 
prediction occur, up to 10%. Linear Programming estimates of other rocks (Mix 1, Mix 2, 
arenite and carbonate) are within 2.5% of the target, which is similar to the other models.
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Table 3.6 Estimated mineral proportions, modes' of the six synthetic rocks calculated by the different mineral 
transform techniques (11 oxides used Si02, Ti02, A1203, Fe203, MgO, CaO, Na20, K20, MnO, P205, S) 
Diff% - percent difference between target and Euclidian model mineralogy.
Key for tables: Target - Target mineral proportions, Lsq-INV -Least Squares inversion model, Lsq-Chol - 
Least Squares direct choleski model, Lsq-Gj -Least Squares direct Gauss-Jordan model, LP - Linear 
Programming, Eue - Euclidian Distance model. SE -Standard Error of the chemical fit. Mad -mean (absolute) 
difference of the residuals, P%acc Percent of chemistry accounted for.mode diff% is the percent diference 
between calculated and observed Euclidian model estimates.

Pelite Target Lsq-INV Lsq-GJ Lsq-chol LP Eue mode dlff%
Kaolinite 15.00 13.42 13.44 13.44 15.87 13.47 -1.53
Quartz 20.00 20.54 20.53 20.53 24.06 20.50 +0.50
K-feidspar 15.00 14.38 14.40 14.39 5.74 14.45 -0.55
Muscovite 45.00 46.88 46.85 46.86 48.751 46.81 +1.81
dolomite 5.00 4.78 4.74 4.74 2.964 4.77 -0.23

Standard error 0.307 0.307 0.307 0.330
Mad 0.143 0.142 0.142 0.003 0.144
P%Acc 98.04

Semi Pelite
albite 15.00 14.83 14.82 14.82 12.95 14.82 -0.18
kaolinite 15.00 18.71 18.70 18.70 22.21 18.74 +3.74
quartz 40.00 38.08 38.08 38.08 38.05 38.06 -1.94
k-feidspar 15.00 20.47 20.47 20.47 22.70 20.53 +5.53
Muscovite 10.00 3.04 3.03 3.03 0.00 2.98 -7.02
dolomite 5.00 4.86 4.86 4.86 3.158 4.89 -0.11

SE 0.35 0.35 0.35 0.38
Mad 0.146 0.144 0.144 0.002 0.146
RAC 99.05

Arenite
qtz 80.00 78.30 78.30 78.3 79.09 78.26 -1.74
K-feidspar 10.00 10.35 10.35 10.35 8.65 10.42 +0.42
muscovite 5.00 6.87 6.86 6.87 7.25 6.88 +1.88
dolomite 2.50 2.07 2.07 2.07 1.15 2.16 -0.34
calcite 2.50 2.27 2.27 2.07 2.1 2.28 -0.22

SE 0.260 0.260 0.260 0.294
Mad 0.167 0.167 0.167 0.001 0.176
PAC 98.20

Mix 1
abite 20.00 19.22 19.22 19.22 18.62 19.38 -0.62
kaolinite 10.00 9.71 9.71 9.71 9.95 9.68 -0.32
quartz 60.00 59.85 59.85 59.85 60.56 59.68 -0.32
k-feidpsar 10.00 11.06 11.06 11.06 10.19 11.27 +1.27

Standard error 0.246 0.246 0.246 0.276
Mad 0.120 0.120 0.120 0.011 0.133
PAC 99.34

MIX 2
Kao 45.00 44.96 44.96 44.96 44.71 44.92 -0.08
quartz 30.00 30.61 30.61 30.61 30.63 30.59 +0.59
muscovite 25.00 24.38 24.38 24.38 24.47 24.49 -0.51

Standard error 0.204 0.204 0.204 0.219
Mad 0.088 0.088 0.088 0.00 0.092
PAC 99.81

CARBONATE MIX
dolomite 50.0 50.01 50.01 50.01 50.00 50.01 +0.01
calcite 50.0 49.99 49.99 49.99 50.00 49.99 -0.01

Standard error 0.001 0.001 0.001 0.001
Mad 0.002 0.002 0.002 0.000 0.002
P%acc 100.00
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3.7.4 Behaviour of algorithms with a reduced input data (oxides)

The above solutions from these models, in general, show very accurate mineral estimates, 
with low Standard Error estimates. It is very rare, however; that eleven oxides are available to 
model a particular rock, especially in the logging environment. P205, MnO and occasionally 
N a20 and MgO will not be available. The next exercise illustrates the prediction of 
mineralogy when fewer oxides are present, such as may be expected from a logging tool. The 
same synthetic data set is used except fewer oxides are made available for solution. Table 3.7 
shows the solution from five models for the 'pelite' synthetic rock. 'Target' mineralogy is 
included, as is the previous Euclidian solution with full 11 oxides, for comparison. Between 5 
and 7 oxides have been used in this modelling, these being the oxides measured specifically 
by the geochemical tool. The effect of different oxides on the solution is demonstrated by 
adding or subtracting different oxides Fe203 and MgO, CaO and Na20.

3.7.4.1 Results of modelling with fewer oxides

Example (a). Table 3.7, shows no change in the solution when minor oxides P205, MnO, 
S, T i02 removed. Example (b) shows a reasonably close estimate with six oxides, worst 
estimates being within 5% of the target. The most affected phases are the compositionally 
'colinear' minerals - muscovite, k-feldspar and kaolinite. The important missing oxide, MgO 
in this example, clearly is important in constraining the solution of these colinear minerals. 
Improved estimates can be seen in example (c) if the missing oxide, MgO, is substituted in 
place of CaO and Na20. CaO and Na20 are clearly less important oxides for solving this 
mineral transform. Example (d) shows that with Fe203 and MgO missing the solution has 
deteriorated further than with just MgO missing, indicating the importance of Fe203. Again 
all solutions for the Linear Programming model are inferior to the Error Minimisation and 
Euclidian distance models.

Table 3.8 illustrates how a simple mineral assemblage (Mix 2) comprising muscovite, k- 
feldspar and quartz can be determined accurately from only three or four oxides, (but only if 
the relevant oxides that consitiute the minerals are present). The three oxide example, column 
4, is close in its modal estimation (<0.5% from the observed values); the addition of a fourth 
oxide, Fe203, (column 3) however improves the estimation.

Table 3.8 Estimated mineral proportions, 'modes' calculated for synthetic 'mix 2' using a reduced set of oxides. 
Euclidian distance model used . Column 3 Fe203, A1203, K20, Si02 oxides used; column 4 - A1203, K20, 
Si02 oxides used.

1 2 3 4
Target 11 oxides 4 oxides 3 oxides

kaolinite 45.00 44.92 44.74 44.54
quartz 30.00 30.59 30.58 30.58
muscovite 25.00 24.49 24.68 24.79

SE 0.219 0.139 0.103
Mad 0.092 0.064 0.058
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Table 3.7 Estimated mineral proportions, 'modes' calculated for synthetic pelite' by different mineral transform 
techniques using a reduced set oxides.
Key for table: Target - Target mineral proportions,Euc-full - Euclidian Distance model with 11 oxide 
modelled, Lsq-INV -Least Squares inversion model, Lsq-Gj -Least Squares direct Gauss-Jordan model, LP - 
Linear Programming, Eue - Euclidian Distance model. SE -Standard Error of the chemical fit. Mad -mean 
(absolute) difference of the residuals, P%acc Percent of chemistry accounted for.

E xam ple a  7  ox ide  s  Oxides: SIG2, AI203, Fe203, MgO, CaO, Na20, K20

Target Euc-Full Lsq-inv Lsq-Gj Eue LP

kaolinite 15.00 13.47 13.54 13.53 13.57 15.87
quartz 20.00 20.50 20.47 20.47 20.44 24.06
K-feldspar 15.00 14.45 14.56 14.62 14.55 5.74
muscovite 45.00 46.81 46.66 46.60 46.67 48.75
dolomite 5.00 4.77 4.74 4.77 4.74 2.97

SE 0.330 0.467 0.466 0.573 0.538
MAD 0.140 0.212 0.210 0.213 0.003
P%acc 97.38

E xam ple b 6 o x id es Oxides: Si02, AI203, Fe203, CaO, Na20, K20 i.e., no i

kaolinite 15.00 13.47 11.17 11.17 11.17 43.42
quartz 20.00 20.50 21.99 21.99 22.00 22.62
K-feldspar 15.00 14.45 10.79 10.79 10.78 11.61
muscovite 45.00 46.81 50.80 50.80 50.80 15.05
dolomite 5.00 4.77 5.34 5.34 5.26 7.40

SE 0.330 0.384 0.347 0.508
MAD 0.144 0.149 0.148 0.152 0.699
P%acc 100.00

Exam ple c 5  ox ide Oxides: Si02, AI203, Fe203, K20, MgO

kaolinite 15.00 13.47 14.08 14.07 14.22 38.11
quartz 20.00 20.50 19.86 19.86 19.76 7.66
K-feldspar 15.00 14.45 15.97 15.98 16.23 49.22
muscovite 45.00 46.81 45.59 45.61 45.33 0
dolomite 5.00 4.77 4.36 45.61 4.46 4.09

SE 0.330 0.485 0.486 0.521
MAD 0.144 0.182 0.182 0.196 0.261
P%acc 99.07

E xam ple d 5 ox ide Oxides: Si02, AI203, CaO, Na20, K20 ie no Fe203 or Mi

kaolinite 15.00 13.47 7.55 7.57 7.63 3.06
quartz 20.00 20.50 23.84 23.81 23.81 25.90
K-feldspar 15.00 14.40 5.78 5.88 5.88 0.00
muscovite 45.00 46.81 57.53 57.51 57.51 66.15
dolomite 5.00 4.77 5.32 5.32 5.32 4.89

SE 0.330 0.497 0.484 0.484
MAD 0.144 0.167 0.156 0.156 0.120
P%acc 97.38
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Standard Error is much lower than with 11 oxides, due simply to there being less oxides 
present to contribute to the error. This is a pertinent observation; and the number of oxides 
used must therefore be taken into account when using Standard Error. This exercise 
demonstrates that the choice of the oxides is very important for a correct solution. As long as 
the system has the same number of oxides or more (fully-determined) and the oxides are 
relevant to the minerals to be estimated, a good solution is possible.

3.8 Potential problems witb mineral inversion

3.8.1 Effect of mineral composition on a models solution.

The fact that the agreement of model derived and known mineralogy is good in the 
synthetic rocks is hardly surprising (if the models do work), because the correct mineral 
assemblage, and 'true' mineral compositions have been used. In a real situation the mineral 
assemblage will generally not be known, though from core or other studies a list of possible 
mineral assemblages can be collated, and each fitted in turn. In practice the mineral 
compositions are very important and rarely known, and model solutions can deteriorate 
rapidly if these are incorrect.

In choosing mineral compositions the possibilities are to use a) 'ideal' (theoretical) 
compositions, b) 'typical' or 'average' compositions, c) the actual mineral compositions. Ideal 
compositions are only really appropriate for minerals with very limited ranges of 
composition, such as quartz or rutile. Some minerals belong to (ideal) binary systems, or can 
be treated as such for modelling purposes. The modelling of olivines (system: forsterite- 
fayalite) and Fe-Ti oxides (system: magnetite-ilmenite), for example, has worked well in 
igneous rocks (Harvey et a i, 1991) by iterating between the binary end-members. This 
approach could be applicable to feldspars in sediments, using either albite-anorthite 
(plagioclase) or albite-k-feldspar (alkali-feldspar) binaries and is discussed later.

Due to the natural variation in composition that can occur, ideal compositions are not 
appropriate for other minerals, such as micas, chlorites, clays and carbonates, which are 
common constituents of sediments. For these minerals, in the absence of any specific 
knowledge about a formations mineralogy, the normal procedure would be to use 'typical' or 
'average' compositions. Unfortunately mineral chemistry, particularly of clay minerals, is not 
easy to determine, and there is a paucity of appropriate data available in the literature from 
which meaningful 'average' compositions can be derived. Hertzog and Herron (1990) 
illustrate these problems in their attempt to provide such average compositions.

The effects of varying the mineral compositions can be illustrated using the synthetic rock 
data-set where the actual mineral compositions are known, at least within the range of 
analytical accuracy. In the examples which follow, solutions were obtained using the 
Euclidian Distance model, and all 11 major element oxides modelled. Table 3.9 shows four 
different solutions for the synthetic 'Mix 1'. Solution 1 uses the 'actual' mineral compositions, 
and as might be expected has the smallest Standard Error of all four solutions. Solution 2,
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with largest Standard Error, uses 'ideal' (theoretical) mineral compositions for all four 
minerals. For solutions 3 and 4, the actual k-feldspar and quartz compositions have been 
used respectively in the two models, along with 'iViga/'compositions for the other minerals. It 
is clear from Table 3.9 that the differences between the solutions are quite small. The largest 
discrepancies are with the albite and kaolinite abundances in Solution 3, where the actual k- 
feldspar composition was used. In this example all four solutions are acceptable in the sense 
that they could not be distinguished in a 'real' case, and this arises from the fact that the four 
minerals involved are chemically distinct and do have close to 'ideal' or 'theoretical' 
compositions.

Table 3.9 The effect of swapping observed input compositions for typical (theoretical or 
'ideal') compositions in Mix 1 , Euclidian model used.

Solution 1 Using actual mineral compositions.
Solution 2 Using theoretical mineral compositions.
Solution 3 Using theoretical values except K-feldspar.
Solution 4 Using theoretical values except quartz.

Target 1 2 3 4
quartz 60.00 59.68 58.00 58.20 59.59
k-feldspar 10.00 11.27 10.42 10.85 11.42
albite 20.00 19.38 20.37 17.40 18.98
kaolinite 10.00 9.680 11.21 13.55 10.01

SE 0.280 0.386 0.356 0.346
Mad 0.133 0.215 0.201 0.179

In the next example, the synthetic "Mix 2', composed only of kaolinite, quartz and 
muscovite, is used. The muscovite is phengitic in composition, and further from its 'ideal' 
composition than are the other two minerals. Five solutions for this sample are summarised 
in Figure 3.3, where somewhat greater variation in the estimated mineral percentages is seen. 
Solution 1, using the actual mineral compositions, again shows the closest agreement with the 
target composition, and the lowest Standard Error. For solutions 2, 3 and 4 either 'average' or 
'ideal' compositions have been used for the muscovite, actual compositions being used for the 
other two minerals. While the quartz figures remain essentially constant throughout all the 
solutions, kaolinite varies between 40% and 50%, while muscovite ranges between 20% and 
289L

Slightly greater discrepancies are seen in models for the synthetic 'arenite' shown in 
Figure 3.4. Solutions 1 and 2 were obtained using the 'actual' and 'ideal' compositions 
respectively for all minerals. The other solutions were generated using 'ideal' or theoretical 
values throughout except for one of the phases, for which the 'actual' value was used. It is 
clear that there is generally good agreement between the models, particularly with respect to 
the calcite and dolomite. Significant differences do, however, occur where muscovite and K- 
feldspar are involved. Indeed, the best of solutions 3 to 7 is obtained where the actual 
muscovite composition is included, while the greatest deviation from the target composition 
is solution 6 , involving the actual k-feldspar composition.
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More serious are the effects of mineral composition in the case of the synthetic ’pelite'. 
This rock contains kaolinite, quartz, k-feldspar, muscovite and dolomite. Muscovite has 
already been seen to vary somewhat from its ideal composition though the other minerals 
have compositions close to their theoretical values. Figure 3.5 shows a number of solutions 
for the pelite. The use of the actual mineral compositions shows a result close to the target 
composition. The second solution uses ideal mineral compositions throughout. This solution 
is totally erroneous with a high negative estimate for muscovite, and a slight negative 
estimate for quartz. For solutions 1 to 5 ideal compositions have been used except for one 
mineral for which the actual composition has been employed. Only solution 2 (using the 
actual muscovite composition) and 3 (using the actual k-feldspar composition) are valid in 
that they contain no negative estimates; only then does solution 2  approach the 'target' 
composition, though the difference remains significant for k-feldspar.

In the pelite example of Figure 3.5, besides the 'actual' solution, the closest solution to the 
target composition is solution 2 which utilised the 'actual' muscovite composition. Compared 
to the target composition, it is a relatively poor fit with muscovite too high by 6 %, k-feldspar 
low by over 5% and kaolinite by 3%. However, that this solution is significantly better than 
the alternatives, implies that the main problem lies in the composition of the muscovite in 
this particular example. This is illustrated further in Figure 3.6 where a further set of 
solutions for the pelite are given. For these solutions the 'actual' mineral compositions have 
been used throughout except for muscovite, where a variety of different muscovite 
compositions have been employed. In Figure 3.6 the kaolinite and k-feldspar estimates are 
seen to be consistently higher than the target composition, while quartz and muscovite are 
consistently lower. Only dolomite is determined correctly within about 1% absolute by all 
models. For most solutions kaolinite is too high by a factor of about two; the factor for k- 
feldspar is slightly higher. To balance, quartz is low by a factor of about two while muscovite 
varies upwards from a negative estimate. It is notable that one solution (1) is significantly 
better than all the others. A wide range of solutions result, despite the fact that all muscovite 
compositions used for modelling are, except for the 'ideal' solution, naturally occurring 
compositions. It is clear that the compositions of the minerals used in modelling are of 
particular importance and the models very sensitive to variations in mineral composition. 
The corollary is that if the model mineral composition is close to the actual composition then 
the model fit will be excellent.

3.8.2 Compositional colinearity

One problem, in particular, that was addressed in the choice of 'synthetic' samples was 
that of compositional colinearity. This is potentially one of the most serious problems in 
mineral inversion.

Compositional colinearity occurs when three or more minerals included in a model lie on, 
or close to, the same compositional plane or vector. Where three phases lie precisely on the 
same compositional vector any input response vector can be inverted to give a result with
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respect to any two of the phases. With respect to all three phases, however; an infinite number 
of solutions will be possible. The latter situation, produces a matrix singularity, and a 
resulting solution failure. More realistically the phases do not lie exactly on the such a 
compositional plane and the effect may not be seen so vividly, but will produce an inherent 
instability in the system.

This problem becomes particularly important in sedimentary rocks where chemical 
equilibrium is not generally achieved. For example, consider the system (Si02-Al203-K20- 
H2 O) which in clastic sediments could involve quartz, muscovite, illite, k-feldspar and 

kaolinite. The 'ideal' compositions of all these minerals consist of at least three of the oxides: 
Si02, Al2 0 ĝ  K2 O and H2 O. Water is often not available as a discrete measurement in the 

laboratory or from logging tools. Figure 3.7 illustrates the problem of compositional 
colinearity in the system [Si02-AI2 O3 -K2 O]. Theoretically there are four possible mineral 

reactions within this system, as follows:

k-feldspar + kaolinite = illite

k-feldspar + kaolinite = muscovite + quartz

quartz + muscovite + kaolinite = illite
quartz + muscovite = k-feldspar + illite

The problem arises because, taking the first reaction, and appropriate chemistry, an 
algorithm cannot allocate the chemistry in a unique way between the phases (an 
indeterminate solution). As [k-feldspar + kaolinite] is, in effect, equivalent to [illite], there 
are an infinite number of solutions possible, for the same chemical composition, between the 
two 'end-member' phase assemblages. If the mineral compositions are precisely colinear, as 
may occur if theoretical mineral compositions are used, then it may simply not be possible to 
solve the algorithm. In natural rocks fortunately, complete compositional colinearity of this 
type rarely occurs. In clastic sediments, however, where minerals are not necessarily in 
equilibrium, the problem may occur. Fortunately, clays and micas may vary significantly 
from their ideal compositions and therefore become drawn-off the colinear plane. This can 
often offer the extra degrees-of-freedom to enable a sensible solution. The latter may or may 
not be geologically meaningful as some of the 'pelite' solutions in Figure 3.6 demonstrate. It 
was for this reason, the pelite and semi-pelite compositions were chosen to contain four 
colinear minerals of the system K20-Si02-A1203. Compositional colinearity is the major 
cause of the inaccuracy of these two solutions as shown in Table 3.5.

3.8.3 The contribution of minerals to the total oxide proportion in a sample.

In the light of compositional colinearity it is pertinent, at this stage, to consider the 
contribution that each mineral, present in a rock, makes towards a particular oxide in a 
chemical analysis. Figure 3.8 (A & B) illustrates the contribution that certain potassic 
minerals, commonly found in the sediments, make to the total K20 contribution in a sample
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analysis. Data is represented from a large 'global' compilation (Figure A) and a specific 
compilation from one stratigraphie unit, the Brent Group (Figure B).

In terms of mineral transforms, where compositionally colinear minerals are present and a 
solution is indeterminable, the relationships seen in Figure 3.8 are destroyed, and no possible 
distinction can be made between the contributions of two minerals.

This sort of data also helps, in the logging scenario, to understand the contribution that 
certain minerals make to tool measurements. For example; K 20 may be dominated by one 
mineral in a rock, say K-feldspar at 10 wt % of the sample. If another potassic mineral phase 
were also present, say illite (at 2 wt%); because of the difference in the K 20 concentration of 
each mineral, illite would have to be present in a proportion a factor of four times greater than 
the K-feldspar concentration to make the same contribution to K20. In terms of the natural 
gamma-ray spectrometry logging tool (NOT, Section 2.2.1), if 10 wt% K-feldspar were 
present, the contribution of gamma-rays recorded from any illite present would be masked 
until illite reached a value >40 wt%. Illite discrimination by the NOT alone (as has been 
advocated possible) in the presence of K-feldspar is therefore impossible (Hurst, 1990).

Diagrams such as Figure 3.8 are useful in mineral modelling for understanding the 
relationship of a minerals oxide contribution to the total oxide composition of a sample. 
Figure 3.9 a, b and c show similar plots calculated for the oxides A1203, MgO and Fe203. 
Such relationships are, of course, inherent in the components matrix.

3.9 Synopsis and conclusions

The early part of this chapter introduced the different philosophies adopted for mineral 
transformation and appropriate measures of error assessment. The exercises in the later part of 
the chapter are concerned with the evaluation of a well constrained, idealised data set as a 
means to test the accuracy and predictive power of the different mineral transform techniques. 
The main problems that can seriously affect a solution are also established. As a summary, a 
comparison of the main features of each mineral transform model are presented in Table 3.10.

Numerical modelling verifies that each of the mineral transform models can produce a 
perfect solution (and therefore work!). Estimates of error indicate the closeness of fit of the 
solution. In the 'numerical' evaluation these errors are negligible and due only to rounding.

The use of real mineral data, from a range of synthetically produced rocks that span the 
spectrum of sedimentary Ethologies, provides a more realistic, yet well constrained indication 
of how each transform model 'behaves'. With the correct input mineral compositions all 
models except Linear Programming, solve almost identically (to 1 decimal place). Accuracy 
of the solution ranges through the data set from within 0.2% of the target mineralogy to 7% 
(10% for Linear Programming). Semi pelite, with the largest number of phases (6 ) and 
consisting in part of minerals that are compositionally colinear, produces the least accurate 
modal estimate.
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When a reduced number o f oxides are available to model, as is the case in the logging 
environment, it is possible to gain similar estimates of mineralogy as long as the correct 
oxides are chosen for the minerals being solved.

Compositional colinearity is a serious potential source of error. It can result in modal 
estimates that are only slightly in error (as in the semi pelite solution), or estimates with large 
negative values and the ’silly’ solutions of Figure 3.6. In the case of slightly inaccurate 
solutions, these are probably the most dangerous as they can go undetected. The gross 
instability in the pelite solutions of Figure 3.5, while sensitive to the mineral compositions, 
are primarily the effected by compositional colinearity in the system.

Care must be taken in the choice of correct mineral composition for each mineral in the 
components matrix. This especially so for the clay minerals and mica minerals where 
compositional variation, due to ionic substitution, is common.

The inherent problems identified in this chapter are now investigated on reservoir core 
material in the next chapter. Strategies that address the problem of compositional colinearity, 
identification of correct mineral phases, and the correct mineral composition for solution are 
then dealt with in Chapter 5.

Table 3.10 A summary comparison of the different mineral transform models, (adapted and updated from 
Harvey et ai,  1990). Subtractive (norm) model is also included for completeness. (*) Depends on inclusion of 
additional constraints to the unity constraint. (@) Linear Programming is deterministic although other 
optimisation techniques may allow for uncertainties.

Error
minimisation
models

Linear
programming
model

Euclidian
Distance
model

subtractive
(norm)
model

Maximum no 
of minerals

No. of
components +1

(*) No. of 
components -kl

No. of
components 4-1

Effectively 
no limit

Errors in the 
chemistry

minimised as 
part of model

(@)not
considered

averaged
out.

not
considered

Weighting straightforward possible with 
extra
constraints

not possible not possible

Negative
minerals

possible can 
be common

none possible possible can 
be conunon

none possible

stability of 
solution

colinearity - ill 
conditioned 
matrix problems 
not uncommon

colinearity is 
a problem

colinearity is 
a problem

no problem

Useful
error measures

ASE, NSE 
SE (MAD)

P%acc(SUMP)
MAD

ASE, NSE 
SE (MAD)

none

Constraint of unity 
in place

yes yes yes not
necessarily
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Chapter 4. 

Mineral Modelling of the Brent Group. 

4.0 Introduction

The aim of this chapter is evaluate the performance of mineral transform models on a 
range of Ethologies from a real sedimentary envEonment. The use of a data-set derived from 
laboratory measurements of core, rather than logging tool measurements, is the next step in 
evaluating how transform models behave. It is used here as an important intermediary step 
between an evaluation of well constrained synthetic rock data (Chapter 3) and less well 
constrained log derived data (Chapter 6 ). Obtaining carefully measured laboratory data from 
core allows us to accumulate all the variables required to evaluate the mineral inversion 
problem; namely the sample geochemistry, mineral assemblage, mineral composition and for 
the purpose of evaluation, the mineral proportions, in a manner similar to that used in the 
previous the synthetic rock exercise.

The familiarity, through previous research, coupled with the variable Ethology of the 
Brent Group (northern North Sea), provide an excellent example of a reservoE in which to 
study mineral modelling. Extensive laboratory analysis has been performed on a cored 
section through the Brent Group, in the Thistle Oil Field, to provide the appropriate data for 
this exercise.

4.1 Overview of the Brent Group.

The middle Jurassic (Aalenian-Bathonian) Brent Group has been intensively studied 
since the first well was drilled in 1971 in block 211/19 (Brenand, 1984). Since the early 
seventies the Brent Group has become the single largest oil producer in the UK, with over 25 
separate fields covering an area over 6000 square km. Total reserves to date are in the order 
of 30 billion barrels equivalent Morton et a l (1992).

The Thistle Field lies in the general tectonic framework of the Viking Graben system 
(Rhys, 1974) and stratigraphie framework of the Brent Province (Bowen, 1975). The Brent 
Group has been described as a regressive-transgressive wedge (Brown et a l, 1987). It is 
thought to be part of an extensive Bajocian (173.5 Ma) to Bathonian (161.3 Ma) regressional 
phase that affected an area twice the size of Britain (Blanche and Whitaker, 1978). Many 
paleogeographical models for the Brent Group have been put forward to explain the sediment 
patterns. A number of workers, including Bowen, (1986), Zeigler (1982), Johnson & Stewart 
(1985), Graue et a l  (1987); Fait et a l  (1989) and Fait & Steel (1990) support the widely 
favoured opinion of Budding & Inglin (1981) that the Brent sequence is a northerly 
prograding offshore sandsheet - coastal barrier to delta top, wave dominated delta complex. 
Other models suggest different variations on a theme; Procter (1980), a northerly derived fan 
delta; Chauvin & Valachi (1980), a south-easterly derived fan delta; Eynon (1981) a
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transgression interrupted south-easterly derived fan delta; Moiola et al. (1986) a fluvial 
dominated delta. Morton & Humphreys (1983), Leeder (1983), Richards et a l (1988) and 
Richards (1990), however, advocate a less unimodal source, with more complex sediment 
origins from surrounding basin margins and shelves.

Deegan & Scull (1977) recognised five major subdivisions of the Brent Group. These 
five subdivisions are summarised along with reservoE zones in Figure 4.1, in context of the 
northern area of the Brent Province. Thick sub-arenite to arkosic (micaceous) sandstones and 
thinner shales (with minor coal-beds of varying thickness) dominate the Ethology. These 
sediments distinguish different environments including fluvial distributary channel sands; 
inter distributary and lagoonal fine sands, silt and shales; as well as shallow marine and 
coastal (sheet sand) deposits and delta front and slope sand deposits. Recent sediment 
provenance studies (Morton, 1985 & 1992 ), using garnet assemblages, identify three 
possible sediment sources; these include the Orkney-Shetland platform and two metamorphic 
terrains, namely, the Norwegian landmass & part of the Orkney-Shetland platform. Sandstone 
porosities range from 20-35% (average 25%), with permeability in localised intervals 
recorded up to twenty darcies (Bowen, 1975; Jones et a l, 1975). In some areas this porosity 
and permeability is suggested to be sustained regionally (Brennand and Ski, 1975).

4.1.1 Thistle Field: Introduction and structural setting of the reservoir

The Thistle Field is located 130 miles northeast of the Shetland Islands in the northern 
part of the Viking Graben, see Figure 4.2 A & B; sea depth is roughly 160m. The field was 
discovered in 1973 by a consortium of oil companies principally operated by the then BNOC 
Development (Hallett, 1981). The field covers an area of 3970 acres and originally had an 
estimated one billion barrels of oil in place with a recoverable 520 million barrels originating 
from the middle Jurassic Brent Group sandstones. A production platform was installed in 
1976 and production commenced in 1978 from six injection wells (5 water, one water/gas). 
Total oil production in 1990 was in excess of 355 million barrels (C. Bajsaiowicz pers. 
comm. 1992). The original oil/water column (1981) extends some 240m, with the oil water 
contact at 2800m (9322 ft) below sea floor.

The Thistle Field comprises a major easterly dipping half graben fault block, bounded to 
the North, South and West by faults (see Figure 4.2 (D)). A rollover anticline is interpreted 
on the western margin (increasing thickness of upper Jurassic shales). Development of the 
reservoE units varies throughout the area due to growth faulting during sediment deposition 
(Hallett, 1981). Extensive faulting is interpreted within the field, having occurred 
incrementally throughout the Brent and later Kimmeridge times although the major phase of 
faulting occurred post late Jurassic deposition. The field is divided into three separate 
pressure areas by faulting which effectively halts fluid flow between these areas, (Figure 
4.2c), and affects the net pay of the field. Where fully developed, the reservoir units are 
divided into four zones which are vertically separated by shale/siltstone permeability barriers 
(Hay, 1977; Hallett, 1981); these zones are summarised in Figure 4.1.
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Key: Lithology and interpretation of each Brent Group formation

The lowermost B w om  Fonnation a thin (<50m thick) poorly sorted argillaceous to arkosic 
sandstone with sheet like geometry, generally interpreted as a tidal flat sands & marine sand 
sheet (Budding and Inglin, 1981; Hay, 1978), although of possible fan-delta origin in areas, 
coeval with the Oseberg Fonnation .

The overlying Rannoch Fonnation is interpreted as a prograding delta front or shoreface 
(Johnson and Stewart, 1985, Budding and Inglin, 1981) comprising a very fine highly 
micaceous sandstone with 2-25%  mica content, (Morton and Humphreys, 1985) coarsening 
upwards from its shaley base (Rannoch mudstone). It is dominated by flat bedding with few low 
angle cross beds (Pevararo and Russell, 1984) and contains a few localised diagenetic calcite 
doggers (Hay, 1978, Hallett, 1981, Pevararo and Russell, 1984).

The overlying Etive Fonnation has a variable interpretation from regressive bar (Hay, 
1977;Brown et al 1987); tidal channel and distributary mouth bar (Davies and Watts, 1977); 
upper shore face beach and barrier/bar top sediments (Johnson and Stewart, 1985, Budding and 
Inglin, 1981); and distributary channel sands (Chauvin and Valachi, 1980). They consist of well 
sorted fine to medium grained subarkosic crossbedded sandstones very coarse in places 
becoming fine grained and more massive in the upper part. Thin mica beds and zircon 
concentrations have been identified (Pevararo and Russell, 1984, Morton and Humphreys,

i^e^]VeJi Fonnation is interpreted as a delta-plane, fluvial dominated environment with 
identifiable delta plain, tidal flat-lagoonal sediments and rare fluvial channel - splay and tidal 
sands (Budding and Inglin, 1981; Davies and Watts, 1977; Hay, 1978). The sediments of this 
fonnation consist o f heterolithic very fine to coarse grained sub-arenite to sub-arkose sandstones 
and siltstones interbedded with thin coals and organic shales, often with pyrite and rootlets.

The uppermost Tarben Fonnation sediments are suggestive of a retunto more marine conditions 
due to the end o f the Bathonian regression, although some rootletted coals are locally present 
(Moiola, 1975, Brown et al., 1987). They consist of a dominantly very fine to medium grained 
often micaceous and burrowed sand sequence (Hodson, 1975) with few coarse sandstone 
intervals (Graue et, al., 1987) and few shale sequences (Albright et a i ,  1980). Thickness is 
variable due to the erosion reworking and periods of non deposition (Stow and Jackson, 1986).

Figure 4.1 Subdivisions o f the Brent Group and surrounding formations and placement 
o f reseivoir units in the Thistle Field.
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4.1.3 Summary of the existing petrography of the Thistle field

Previous studies by Blanche & Whitaker (1978), Pevararo & Russell (1984) and Stow & 
Jackson (1986) (unpublished), of the petrography and mineralogy of the Thistle field are 
summarised in Table 4.1. These data are derived by thin section point counting. They serve 
to give an indication of the mineralogy present through the field. The values for quartz given 
by Pevararo & Russell tend to be lower than for the other authors while Stow & Jackson 
noted more feldspar and rock fragments. The amount of end-member feldspar in the reservoir 
sandstones is conflicting. Hallett (1981) suggests more sodic plagioclase, Pevararo and 
Russell (1984) equal proportions, while Humphreys & Lott (1990), and this study, suggest 
greater amounts of K-feldspar.

Table 4.1 Summary of the Thistle field sandstone mineralogy (Vol%). Summaries of point 
count data from different sources; Blanche & Whitaker (1978) and Stow & Jackson (1986) 
(range); BNOC 211/18a-a33 core report (Russell, 1982), Pevararo & Russell (1984).

Blanche and Whitaker Stow & Jackson BNOC 211/18a-a33 Pevararo & Russell 1984

Mean Max Min range Etive Ran Lr. Ness Tar Ness Etive Ran
quartz 70 83 54 60-80 52-64 43-50 61 51 56 74 44
feldspar 2 4 0.1 10-25 4-12 6-15 7 10 12 14 15
mica 7 12.5 0.1 1-8 0-1 8-13 trace 8 1 19
clays 13 31 2 3-15 7-22 7-13 0-7 13 15 10 15
heavy minerals 4 14 0.4 0-2 trace trace 8 2.5 1 2
others* 3 8 0.4 0-25 trace trace trace 1 4-5 1 3
cement (siderite) 0-7 0-2 1 - - -

* - incl. rock fragments; Tar = Tarbert Formation, Ran = Rannoch Formation

4.2 Characterisation of the Thistle 211/18a-a33 reservoir section

Well 211/18a-a33 is currently a producing well. It is situated towards the south of the 
Thistle Field in the western pressure area (Figure 4.2). Production to date exceeds 4800 
million standard barrels (MMStb).

Thirty-three metres of core (100 feet^) through part of the B & C reservoir sections, 
(Figure 4.3), has been extensively sampled. Core was slab sampled, along its axis, in 0.3m (1 
foot) intervals, then crushed and homogenised. Each sample was treated as a bulk sample for 
geochemical analysis (XRF and carbon/sulphur analysis) and mineralogical analysis (XRD). 
Chip samples were preserved for the production of polished thin sections, for verification of 
mineralogy; for electron microprobe analysis of individual mineral grains; and for study 
under the scanning electron microscope (SEM). The homogenisation of each one-foot 
sample is a process that better approximates the volume measured by the geochemical 
logging tool in an attempt to reduce the effect of heterogeneity. Due to a reasonable amount 
of geological work having been undertaken in the Thistle Field, this study has aimed to 
collate and use existing data in combination with the generation of new data where none has 
previously existed. A review of parameters obtained for modelling follows.

 ̂ Imperial units are used here to define depth intervals, to remain consistent with original core and log data.

-50-



T H IST L E  FIEL D  H O L E  211/18a-a33
45  N P H 1 ( % ) -----------| i iCore description  

E Core

Core heipor%
N C R  (A P I) K-Log% PEF (barns/elec)

2.0 Bulk density___________
(g/cniJ, r  A T (sj/m i* F  =  « Lithology> w5 c Log porosity %

Bulk density

10429 NPHI

1 0 4 4 6  -

10 5 0 6 KKM <)\ KI 
F O R  SCA I

REE phosphate 
cement horizon Section

studied

10545

REM O V ED  
FO R  SC A L

10 5 9 6

Figure 4.3 Composite plot of wireline and core data for the reservoir section studied in Thistle well 211/18a-a33. 
Depth in Feet. Compiled from data courtesy of BP and data from Humphreys and Lott (1990). NPHI - neutron 
porosity, NOT - natural gamma-ray log, K-log - spectral contribution from K to NOT log. PEF - photelectric 
factor, delta T -sonic travel time. Depth is not true vertical depth.



Chapter 4, Mineral modelling o f  the Brent Group

4.2.1 Mineralogy of the 211/18a-a33 section

Each homogenised 'bulk' sample was analysed by whole rock semi-quantitative X-ray 
diffraction. These results are summarised in Figure 4.4. and are tabulated in Appendix 3.0. 
Thin section point-counting, performed on twelve samples, and infra-red spectroscopy 
(MINERALOG), on six samples, were used to verify the mineralogy. A comparison of the 
advantages of MINERALOG with XRD is made by Harville and Hamish (1990) and between 
XRD and point-counting by Kaye et a l (1968). Details of analytical techniques are given in 
Appendix 2.0.

Quartz, K-feldspar (both orthoclase and microcline), albite, muscovite and biotite mica, 
volumetrically important authigenic kaolinite, and locally siderite, are the main mineral 
phases. Minor phases include organic material, pyrite, illite-smectite, chlorite, zircon and 
garnets. The main mineral phases identified are the product of diagenetic overprinting, and 
alteration of the primary detrital minerals. This is a result of sediment burial to depths of 
greater than 3000m (10,000 ft) (Blanche and Whitaker, 1978; Pevararo and Russell, 1984; 
Humphreys & Lott, 1990). No complete core was available for a study of the 
sedimentological/macroscopic features; these features are therefore summarised briefly here 
from the original BNOC geological report along with mineralogical features from this study. 
For the reservoir units in the interval these are summarised:

4.2.1.1 Upper Rannoch Formation (B1 unit) Core depth 10561'-10580'

This Rannoch section is reported to be a monotonous parallel laminated, oil stained, 
micaceous, very fine grained sandstone; see Plate 1 (from this study). It contains occasional 
moderate to low angle crossbeds and rare thin ripple marks with a slight coarsening in grain 
size upwards. Localised calcite-cemented intervals occur below the section studied.

Mineralogy
Semi-quantitative whole-rock XRD, and thin section point counting show this section to 

be dominated by quartz (40-58 wt%i , XRD data), K-feldspar (14-20%), albite feldspar (7- 
10.5%) and abundant mica (3-7%). Thin section estimates suggest slightly higher levels of 
mica (8-13.2 wt% muscovite in addition to 6-13% biotite); this is probably due to poor XRD 
calibration standards (and orientation effects) and a slight bias by thin section due to the 
generally larger grain size of micas. Kaolinite is the other abundant phase present (11-26%). 
Diagenetic siderite (1-2%) is seen under the SEM to grow small rhombs (Plate 4E). Trace 
amounts of garnet, zircon and rutile have been detected by microprobe and thin section 
analysis.

Texture
Minor pressure solution is seen at grain contacts with little quartz overgrowth. Quartz 

shows both monocrystalline and polycrystalline grains suggesting different sources, although 
both show undulose extinction suggestive of a derivation from a predominantly metamorphic 
or fold belt terrain (Hallett, 1981). Micas show a strong parallel orientation to bedding (see

 ̂ All percentage (%) values for elements/oxides/minerals refer to weight percent, except where stated.
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Plate 1). Expansion and ’splaying’ in micas is common due to diagenetic alteration of crystal 
ends. It is most prominent in biotite, where diagenetic siderite grows in pore spaces between 
grains (Plate 4 C) and along cleavage planes of rotting grains. This is best observed with 
back-scattered images from the microprobe, see Plates 5 A-C.

Factors affecting reservoir quality
Quartz overgrowths are developed to a minor extent and do not significantly effect 

porosity. A more important factor is the presence of bedding parallel ’platy’ micas which act 
as an effective barrier to vertical permeability. Volumetrically important authigenic kaolinite 
is seen growing out into pore spaces from grain surfaces, although this is suggested only to 
exert a minor effect on porosity-permeability (Russell, 1982).

4.2.1.2 Etive Formation (B2 reservoir unit) Core interval 10475’-10546’

This is the most densely sampled interval of the current study. It is also the most 
important reservoir unit of the Brent Group reservoir, principally due to its consistent 
mineralogy and petrophysical character.

Core from the lower section is described as medium grained cross-bedded sandstone, 
(Plate 2), fining up to a fine sandstone in the upper section, where bedding becomes faint and 
massive. The sequence is interrupted by a 30 cm interval of organic mudstone (viz. 10486.2’) 
and a mottled and rootletted, medium sandstone grading up into a 75 cm thick carbonaceous 
sandstone/coaliferous horizon (viz. 10495-96’) with a mudstone interval directly above (viz. 
10495-96’). Total carbon values for the carbonaceous horizons are in excess of 10%.

Mineralogy
XRD results suggest a reasonably pure sandstone succession consisting dominantly of 

quartz (61-84%), with less K-feldspar (5-23%) and albite (0-8%) than the Rannoch 
Formation. Micas do not appear in any great abundance (<1%) whilst kaolinite (3-17%) is the 
major clay phase. This is verified by orientated clay XRD analysis, (Figure 4.5). Authigenic 
kaolinite ’accordions’ similar to the Rannoch unit are present in the cleaner sandstones. These 
are seen under the SEM to be filling pore spaces as well crystallised ’accordion booklet’ 
structures and less crystallised vermicular structures, (Plate 4 A & B). This suggests it is 
authigenic (Blanche & Whitaker, 1978, Russell, 1982), and probably an alteration product of 
the leaching of K-feldspar (Plate 4D). Authigenic siderite and detrital rutile are also identified 
by XRD, garnet and zircon by thin section and microprobe (together approximately < 0.25 
wt%). Minor pyrite is detected in samples surrounding the coaliferous layer (viz. 10491’ and 
10498-99’), see Plate 4E. Albite feldspar appears more altered than K-feldspar, often being 
partially or totally rotted. Microprobe analysis identifies K-feldspars with partially 
rotted/leached rims, that have altered to form kaolinite, although no significantly voluminous 
secondary porosity is present. K-feldspars may have been partially preserved, as elsewhere in 
the Brent Province, due to buffering of the pore waters with K by mica alteration (Bjorlykke 
& Brendsal, 1986). Quartz overgrowths are rare.
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Factors affecting reservoir quality
The Etive unit has no mica present to affect vertical permeability. It has a larger overall 

grain size and a net reduction in clay mineral proportions, all of which make the Etive a 
cleaner reservoir. Russell (1982) suggests the upper fine-grained unit of the Etive has more 
kaolinite resulting in a decreased permeability value; this is not observed in the current study. 
A restriction on vertical permeability comes from the shale intervals through the Etive 
section, although Russell (1982) reports that the carbonaceous/mudstone horizon does not 
extend to adjacent cored wells and is therefore not laterally persistent.

4.2.1.3 Lower Ness Formation (C la  reservoir unit) Core depth 10452'-10474'

The base of the Ness rests Formation conformably on the underlying Etive B2 unit. The 
first 75 cm consists of a silty shale passing rapidly into 4m of dark grey faintly laminated 
shales. These pass into a ripple laminated, burrowed, fine grained sandstone with frequent 
silty/mud drapes. Rippled sands comprise the rest of the Ness Formation studied, coarsening 
slightly upwards to include some medium grain sandstones (Plate 3).

Mineralogy
This appears the most heterogeneous unit of the interval. Only six samples were analysed, 

four from the basal mudstone, two from the overlying sandstone. The sandstone section 
above the shale sequence appears well sorted comprising a similar mineralogy to that of the 
Etive, locally with very clean sandstones, where quartz (80-83%), K-feldspar (10%), albite 
(1-3%) and kaolinite (4%) are the dominant phases. Trace amounts of detrital garnet and 
zircon have been identified by probe and thin section. Mica is rare.

Factors affecting reservoir quality
Locally mudstone drapes are reported in the upper sands which would affect net 

permeability. The two sandstone samples analysed {viz. 10452-54', 56-58') appear to be the 
purest of the whole section and interval viz. 10455' produces a helium porosity of 29.8%, a 
vertical permeability of 5310 mD and horizontal of 3790 mD. The shale interval between the 
underlying Etive provide the largest barrier to permeability. The reported heterogeneous 
nature of the formation suggests these localised pure sands (probable channel-splay sands) do 
not exist in great enough volume to make it as important as the Etive B2 reservoir unit.

4.2.3 Mineralogy of the mudstones in the upper Etive and Ness Formations

Five mudstone samples were analysed, four from the base mudstone of the Ness, one 
from the thin interval in the upper Etive {viz. 10486.2') sandstone unit.

A combination of techniques have been employed to characterise the mudstone 
Ethologies seen in this Thistle section. These include whole-rock XRD, for the identification 
of the detrital phases; orientated and unorientated XRD of the <2|im fraction, for verification 
of the clay mineral species and SEM to verify mineral morphology. Whole-rock XRD
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identifies eight mineral phases in the mudstone sequence. The dominant mineral is kaolinite 
{tentative estimates of between 64-73 wt%), with detrital quartz (20-26%), K-feldspar (4- 
5%), plagioclase (2-7%), and mica (2-7%); see Plate 6  A - B and Appendix 4.4. Detrital rutile 
(1-2.5%) and siderite (1-3%), as well as diagenetic pyrite, are also identified. Clay mineral 
phases identified by orientated XRD analysis are dominated by poorly crystalline, amorphous 
kaolinite (up to 80% of the clay fraction); see Plate 6  B-D. Authigenic illite is also observed 
(by SEM) to be growing as a replacement of the detrital mica in conjunction with authigenic 
kaolinite (Plate 6 A). A mixed layer disordered illite/smectite (Plate 6 F) and a chlorite phase 
are also identified but it is not possible to gain a reliable estimate of these phases except to 
suggest they occur as relatively minor clay phases, together forming less than 1 0% of the clay 
mineral fraction. Figure 4.6 indicates the tentative proportions of clay phases, using XRD 
relative peak intensities of the minor clays.

4.2.4 Geochemistry of the main mineral phases

In terms of mineral modelling, the variation in composition of the minerals through the 
section is an important requirement. A wavelength dispersive (WD) electron microprobe, 
was employed to analyse the composition of individual silicate mineral species. Up to fifty 
individual grains of each mineral were analysed. An energy dispersive electron microprobe 
(ED) system was used to analyse beam sensitive clays and mica minerals. A statistical 
summary of the major minerals is presented in Table 4.2. Analyses are presented in Appendix
4.3 and analytical details in Appendix 2.0. Variations in the major phases are listed below and 
summarised in Figure 4.7.

Feldspar - feldspar end-members K-feldspar and albite are reasonably pure, although 
K-feldspars shows a minor amount {viz. 1%) of Na substitution while albite shows a few 
excursions up to 3% CaO. One perthite analysis was recorded.

Kaolinite - analyses show very little substitution into their structure (mainly Fe and 
minor K) with Fe203 and K20 oxides to 0.7 wt% and 0.2 wt% respectively.

Muscovite - This phase shows the widest variability in composition. As no distinction 
can be made between the Fe species, Fe2+ and Fe3+ with probe analysis, all Fe is plotted 
here as FeO. The AKF^ diagram in Figure 4.7 shows muscovites to be of a muscovite- 
phengitic composition. Between 1-7 wt% FeO^ and 0.5-3.6 wt% MgO both substitute for 
A1203.

Biotite - Few grains of biotite were successfully analysed due to the intense alteration 
and diagenetic growth of siderite. Respectable analysis shows a fairly typical Fe-Mg 
composition (22% FeO and 9% MgO).

Siderite - Due to the fine-grained nature of siderite, analyses using the WD program were 
contaminated with Si and Al. Subsequent analysis using the ED system (although no C03

 ̂ Apices of the Eskola's AKF diagram are A1203, K20 and [FeO+MgO+MnO] in molecular proportions. 
2 All Fe is quoted here as FeO for familiarity; it is however converted to Fe203 for modelhng.
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Table 4.2 Summary statistics and cation proportions for individual minerals derived from
microprobe analysis. Thistle hole 211/18a-a33.

n -  - Number of samples,
z - Number of zero values (not detected),
z+ - Number of Non zero entries

K-FELDSPAR ..no. samples....31 ALBITE.no. samples....20

Variable n- z Z+ mean StdDev Min Max Variable n- z Z+ mean StdDev Min Max

SKD2 31 0 31 64.18 0.77 61.94 65.58 8102 20 0 20 68.14 1.54 64.92 70.75
TI02 31 4 27 0.0 0.00 0.00 0.0 TI02 20 0 20 0.00 0.05 0.01 0.22
AI203 31 0 31 18.23 0.22 17.83 18.79 AI2Q3 20 0 20 19.64 0.80 18.75 21.71
Fe203 31 3 28 0.00 0.04 0.0 0.14 Fe203 20 0 20 0.08 0.06 0.01 0.22
MnO 31 5 26 0.00 0.00 0.0 0.0 MnO 20 0 20 0.00 0.00 0.00 0.00
MgO 31 7 24 0.00 0.00 0.0 0.0 MgO 20 1 19 0.00 0.00 0.00 0.00
CaO 31 3 28 0.00 0.06 0.0 0.32 CaO 20 0 20 0.55 0.86 0.02 2.70
Na20 31 1 30 1.02 0.59 0.0 3.10 Na20 20 0 20 11.18 1.01 8.54 11.98
K20 31 0 31 15.52 0.84 13.21 16.77 K20 20 0 20 0.54 1.24 0.07 4.18

total 99.088 total 100.15

SI 2.993 SI 2.980
Ti 0.0 TI 0.001
Al 1.002 Al 10.012
Fe3+ 0.001 Fe3+ 0.003
Ca 0.001 Ca 0.026
Na 0.092 Na 0.948
K 0.923 K 0.030

cations 5.013 cations 5.000
oxygens 8.0 oxygens 8.0

KAOLINITE ...no. samplesi.... 27 MUSCOVITE ..no. samples.. 29

Variable n- z Z+ mean StdDev Min Max Variable n- z Z+ mean StdDev Min Max

SI02 27 0 27 45.95 1.99 41.88 49.04 SI02 29 0 29 47.11 2.19 43.55 51.88
TI02 27 20 7 0.20 0.66 0.00 3.39 TI02 29 2 27 0.74 0.35 0.00 1.26
AI203 27 0 27 36.38 1.90 30.92 39.70 AI203 29 0 29 29.68 2.85 24.48 35.78
Fe203 27 17 10 0.80 1.63 0.00 7.60 Fe203 29 0 29 4.17 1.601 1.10 7.50
MgO 27 22 5 0.22 0.74 0.00 3.66 MgO 29 0 29 1.77 0.65 0.76 3.34
CaO 27 23 4 0.00 0.05 0.00 0.23 CaO 29 21 8 0.00 0.08 0.00 0.41
Na20 27 22 5 0.06 0.15 0.00 0.55 Na20 29 17 12 0.35 0.61 0.00 2.77
K20 27 11 16 0.23 0.34 0.00 1.39 K20 29 0 29 10.32 1.08 7.94 11.63

total 83.87 total 93.79

SI 4.075 SI 3.197
TI 0.013 TI 0.038
Al 3.803 Al 2.374
Fe3+ 0.052 Fe3+ 0.213
Mn 0.0 Mn 0.001
Mg 0.028 Mg 0.179
Ca 0.0 Ca 0.001
Na O.O Na 0.045
K 0.026 K 0.893

cations 7.997 cations 6.941
oxygens 14.0 oxygens 11.0



Table 4.2 Cont. Summary statistics and cation proportions for individual minerals derived
from microprobe analysis. Thistle hole 211/18a-a33.

n -  - Number of samples,
z - Number of zero values (not detected),
z+ - Number of Non zero entries

BIOTITE MICA ..no. samples....4 SIDERITE ..no. samples,,, 3

Variable n ■ Z Z+ mean StdDev Min Max Variable n- Z Z+ mean StdDev Min Max

SI02 4 0 4 35.31 0.51 34.71 35.85 SI02 3 3 0 0.00 0.00 0.00 0.000
TI02 4 0 4 3.45 0.28 3.22 3.82 TI02 3 3 0 0.00 0.00 0.00 0.000
AI203 4 0 4 16.09 0.08 15.99 16.16 AI203 3 3 0 0.00 0.00 0.00 0.000
Fe203 4 0 4 23.13 0.27 22.85 23.37 FeO 3 0 3 49.18 5.41 44.35 55.02
MnO 4 0 4 0.51 0.04 0.47 0.56 MnO 3 1 2 0.30 0.28 0.00 0.546
MgO 4 0 4 8.91 0.16 8.75 9.13 MgO 3 0 3 5.21 2.96 2.09 7.990
CaO 4 0 4 0.00 0.00 0.00 0.00 CaO 3 0 3 5.28 1.67 3.37 6.430
Na20 4 0 4 0.14 0.01 10.13 0.16 Na20 3 3 0 0.00 0.00 0.00 0.000
K20 4 0 4 9.01 0.26 8.61 9.16 K20 3 3 0 0.00 0.00 0.00 0.000

total 94.29 total 54.66

SI 2.59 SI 0.0
Ti 0.019 TI 0.0
Al 0.131 Al 0.0
Fe3+ 1.277 Fe2+ 7.504
Mn 0.032 Mn 0.046
Mg 0.973 Mg 1.417
Ca 0 Ca 1.032
Na 0.020 Na 0
K 0.843 K 0

cations 7.317 cations 10
oxygens 11.0 oxygens 0

QUARTZ n o  o f  s a m p l e s  ....3 CHLORITE no. of samples .... 3

Variable n Z Z+ mean StdDev Min Max Variable n- Z Z+ mean StdDev Min Max

SKD2 3 0 3 98.68 0.28 98.38 98.92 SI02 3 0 3 27.90 1.71 25.94 29.10
TI02 3 0 3 0.00 0.00 0.00 0.00 TI02 3 0 3 1,25 1.03 0.06 1.85
AI203 3 0 3 0.00 0.00 0.00 0.00 AI203 3 0 3 18.90 2.53 17.43 21.83
Fe203 3 0 3 0.00 0.00 0.00 0.00 Fe203 3 0 3 28.77 4.88 23.13 31.64
MnO 3 0 3 0.00 0.00 0.00 0.00 MnO 3 0 3 0.32 0.06 0.25 0.37
MgO 3 0 3 0.10 0.16 0.00 0.28 MgO 3 0 3 11.08 5.43 7.85 17.35
CaO 3 0 3 0.21 0.35 0.00 0.61 CaO 3 0 3 0.25 0.21 0.00 0.39
Na20 3 0 3 0.28 0.47 0.00 0.83 Na20 3 0 3 0.22 0.09 0.12 0.28
K20 3 0 3 0.00 0.00 0.00 0.00 K20 3 0 3 0.45 0.35 0.05 0.71

total 99.44 total 86.28

SI 5.995
TI 0.202
Al 4.786
Fe2+ 4.650
Mn 0.058
Mg 3.555
Ca 0.058
Na 0.092
K 0.123

cations 19.518
oxygens 28.0
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measurable) yield slight contamination from Si. This contamination was subtracted out and 
the analyses re-calculated. The composition of siderite is variable, ranging from 44 - 55 wt% 
FeO, with substitutions by MnO (0.7-0.5%), MgO (2-7%) and CaO (2.5-6 %).

An interesting point to note, although not in the remit of this study, is the composition of 
the slightly phengitic muscovite. This may reflect an origin from a low/medium grade 
metamorphic (possibly greenschist) terrain which, itself, will have implications for basin 
analysis and provenance studies.

4.2.5 Whole-rock geochemistry of the 211/18a-a33 section

The geochemical characterisation for this section was performed using XRF spectrometry 
for all major and selected minor elements. Figure 4.8(A) summarises the major element 
chemistry through the section. Total carbon and sulphur was independently determined using 
a Leco (carbon and sulphur) analyser. Elemental geochemistry for each sample is presented 
in Appendix 4.2, analytical details in Appendix 2.0. The only significant minor elements are 
Zr and Ba see Figure 4.8(B). Ba is present throughout the section, up to 5000 ppm (0.5 wt%) 
(mean 2500 ppm), probably reflecting the presence of baryte. Zr is only present in the Ness 
and upper Etive (mean 300 ppm) associated mainly with the mudstone/carbonaceous layers 
(up to 600 ppm) in the Etive and both muds and sands in the Ness. Zr reflects the presence of 
detrital zircons (ZrSi04) identified also by the microprobe and SEM, (Plate 4C).

4.2.6 Diagenetic sequence in the 211/18a-a33 section

Pétrographie observations from this study verify the overall Thistle Field diagenetic 
history documented by past workers including Blanche and Whitaker (1978), Hallett (1981), 
Russell (1982), Pevararo and Russell (1984), Bjorlykke and Brendsel (1986) and Humphreys 
and Lott (1990). Diagenesis is most evident in the Rannoch (Bl) Formation and in localised 
patches through the coarser Etive. It is suggested that the formation of authigenic kaolinite 
was synchronous with the leaching of feldspar, and siderite with the alteration of micas 
(Blanche and Whitaker, 1978). Minor quartz overgrowths in the lower section may suggest a 
later phase of silica solution, probably from slight grain pressure solution after the main 
diagenetic event. Russell (1982) reports that further down in the Rannoch section calcite is 
seen to envelope kaolinite suggesting a later diagenetic event. Diagenesis is envisaged to pre­
date the migration of oil into the reservoir, which would have effectively prevented any 
further diagenesis.

4.2.7 Wireline log interpretation of the 211/18a-a33 section

A conventional suite of wireline logs run in 211/18a-a33 are summarised in Figure 4.3 
This combines a composite sedimentary log, core measurements and wireline log curves to 
enable full characterisation of the interval. The physical wireline log responses can be seen to 
respond to relative changes in mineralogy through the section.
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4.2.7.1 Rannoch Formation

This Formation is known throughout the Brent Province to a give a high natural gamma- 
ray signature (Hodson et a l, 1976; Nyberg et a l, 1978; Suau and Spurlin, 1982; Pevararo 
and Russell, 1984) and is recorded through the Rannoch of this section. The presence of high 
natural radioactivity (GR curve) is primarily due to the high content of K bearing minerals, 
mica (muscovite, 8-13% and biotite, 6-13%) and K-feldspar (14-20%). Total gamma-ray 
curve is up to 25 API higher than in the Etive, showing up to 1.5% more potassium from the 
spectral gamma response (SO or K-Log curve). K-feldspar dominates the contribution due to 
a higher content of K within the mineral structure (refer to Section 3.8, and Figure 3.8). 
Excursions in the litho-density tool, photoelectric absorption index curve (PEF), are due to 
Fe in siderite. Humphreys and Lott (1990) attribute 80% of the PEF curve in this hole to the 
presence of siderite (FeC03), the remaining 20% being attributed to background muscovite, 
biotite, and minor pyrite. The response to siderite is particularly well seen in thin layers 
bordering mudstones, (Figure 4.3). The neutron porosity and density curves are constant 
through the interval (28-30% porosity and 2.3 g/cm^ respectively) suggesting no large 
variations in porosity and mineralogy. Three marked increases in the PEF curve do, however, 
occur lower in the Rannoch (not studied here). These are interpreted to be due to Fe-calcite 
cement horizons (calcite doggers, see Chapter 6). This is mirrored by a drop in GR (no K, U 
or Th) and neutron responses (less hydrogen), sonic interval transit time values (less porous, 
cement filled), an increase in density (calcite being denser than silica) typical of a Fe- 
carbonate lithology log response.

4.2.T.2 Etive Formation

A marked difference is seen in most physical logs from the Rannoch to Etive Formation 
due to the variation in mineralogy. The GR and K-log both fall to a more typical value for 
sub-arenite sandstone (<30 API GR units), attributable to the lack of mica and less feldspar, 
although K-feldspar is still reasonably abundant. Excursions in physical logs occur in the 
shale intervals; for example, the GR curve goes up to 75 API GR units. Only a slight increase 
in the K-log is seen suggesting the presence of Th and U at these intervals. A GR increase at 
one sandstone horizon (interval viz. 10530-10535 and to a lesser extent viz. 10550-55') up to 
70 API units also shows no increase in the K-log. This is attributed to the increase in the Th, 
due to the presence of phosphatic cement enriched in rare earth elements (REE) (Humphreys 
and Lott, 1990). This excursion is also mirrored by the increase in the PEF log at this interval, 
as may be expected from heavier (REE) elements. Phosphates may also account for the 
increase in Th seen in Figure 4.8 at viz. 10550-55'. The neutron log tends to remain similar to 
the Rannoch Formation (28-30 % NPHI) suggesting no large change in porosity. The bulk- 
density log drops to a value of 2.15 g/cm^ in the Etive, attributable to less dense minerals 
(less siderite, micas and pyrite). An increase in density does, however, occur at the shale and 
REE phosphate horizons, mirroring the PEF curve.
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4.2.7.3 Ness Formation

The basal shales give classical mudstone responses from the physical logs; GR, neutron, 
density and PEF curves all showing an increase. PEF excursions mirror the siderite horizons 
in the mudstone. In contrast the clean sand above the mudstones shows a reversal of log 
responses with the lowest GR, PEF and density measurements of the section. The neutron log 
measurement is highest in these sands, attributable to the higher porosities observed by core 
helium porosity measurements.

4.3 Evaluation of transform models

Having extensively characterised the 21 l/18a-a33 section, it is now possible to use these 
data to evaluate transform models.

4.3.1 Evaluation strategy

Four different transform models have been evaluated here. These include the Euclidian 
Distance model, two direct Least Squares Error Minimisation models (Choleski and Gauss- 
Jordan) and the Linear Programming model. Individual sandstone samples have been 
evaluated for this exercise. Examples are used to illustrate a) the accuracy of each transform 
model in a clastic lithology; b) the variation in modal estimation due to different mineral 
compositions; and c) to further illustrate some of the problems, such as compositional 
colinearity, encountered during modelling of the synthetic data-set. Sandstone samples from 
the Etive Formation represent a less lithologically complex problem, and are used initially in 
the evaluation. Sandstones from the Rannoch Formation and mudstones from the Ness/Etive 
represent more complex lithologies and are modelled thereafter.

4.3.2 Model Parameterisation

XRF analyses for each sample form the input response vector for modelling. A full set of 
nine oxides; Si02, Ti02, A1203, Fe203, MnO, MgO, CaO, Na20, K20, (wt%) have been 
used for this evaluation. P205, C and S have been left out of sandstone modelling due to their 
low abundance (<0.04 wt%). Other elements are not present in high enough concentrations to 
be 'usefully' included in the model. Principal minor elements are Zr, viz. < 0.25 wt% 
(assumed to be zircon), and Ba, viz. < 0.5% (assumed barite as no evidence of barium in 
feldspar). These concentrations, in terms of mineral modelling, are trivial and their inclusion 
would create unnecessary noise resulting from a sparse components matrix.

For the purpose of modelling, it has not been necessary to remove any minor mineral 
phases in a 'pre-processing step', suggested in Section 3.4.1. This is the strategy that could be 
implemented if the system is underdetermined, ie, if there are more minerals than oxides. 
Minor minerals such as barite or zircon, the two most abundant (in Wt %) minor minerals 
through this section, however, could be removed at this stage if deemed necessary.
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The components matrix is constructed from the suite of minerals analysed by the micro­
probe. Mineral analyses, shown in Table 4.2 , have been separated into formation or hole 
specific data-sets and the mean mineral composition for either data-set used in modelling. 
These are summarised in Appendix 4.1.

4.3.3 Results - modelling of sandstones

4.3.3.1 Model accuracy

Table 4.3 demonstrates the solution derived for two Etive sandstone samples by the 
different models; the Etive Formation representing a clean quartz-feldspathic sandstone 
mineralogy. Considering the accuracy of XRD is, at best, within +/- 5 wt% (Appendix 2.0), 
agreements with core mineralogy are excellent for both samples, lying within 3.5% of both 
the thin section and MINERALOG estimates. These results are comparable to the synthetic 
sandstones previously evaluated.

Figure 4.9 shows the close fit of model derived mineralogy to core XRD estimates for the 
five dominant mineral phases present over the complete Thistle section, using the Euclidian 
Distance model. Again, good core agreement suggests accurate modal estimates are possible. 
This supports conclusions from the previous modelling of synthetic rocks, that the prediction 
of a very accurate modal estimate is possible if the correct mineral assemblage is known.

Table 4.3. Estimation of mineral proportions by different mineral transform models. Thistle 
sandstone samples 10482 and 10485-86.

Column 1 XRD observed mineral proportions,
Column 2 MINERALOG observed mineral proportions .(M-log)
Columns 3 Euclidian Distance solution
Columns 4 Error Minimisation-Choleski direct solution
Columns 5 Linear Programming model.

10482-83 XRD MIog 3 4 5
kaolinite 5.38 5.0 7.22 6.48 4.48
K-feldspar 9.95 10.0 12.95 12.16 9.71
abite 8.80 7.0 6.64 6.38 7.41
quartz 74.38 72.0 73.19 73.82 74.05

SE 0.975 0.743
Mad
P%acc.
10485-86

0.534 0.453 0.209
95.65

kaolinite 7.80 - 6.80 6.78 8.89
K-tekjspar 11.38 - 11.50 11.48 11.46
abite 5.42 - 3.74 3.74 0.00
quartz 70.58 - 73.57 73.58 74.20
siderite 0.64 - 3.34 3.32 2.96
rutile trace - 1.05 1.05 1.01

SE 0.091 0.071
Mad
P%acc

0.042 0.038 0.091
98.52

In contrast. Table 4.4 shows a bad example. The Euclidian and Least Squares solutions, 
solved for using all the observed mineral phases for the sample (column 3) show negative 
mineral estimates for kaolinite and K-feldspar, the Euclidian model solving slightly less 
negatively (column 2). The estimate of muscovite from core in this sample is 0.5 wt%. If this 
is removed from the model, however, good estimates of mineralogy are obtained (column 1).
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Besides a difference in absolute estimates in columns 2 and 3 it is clear that both Euclidian 
and Least Squares models behave in a similar manner. Linear Programming (column 4), 
provides a positive result; but it is clear from the estimation of 30% muscovite that the 
solution is in error. The problem with muscovite is one of compositional colinearity.

Table 4.4 Estimation of mineral proportions by different mineral transform models. Thistle 
sandstone sample 10501-02.

Column 1 - Euclidian solution without mica, in the model
Columns 2 - 3  Euclidian Distance, Error Minimisation-Choleski direct solution.
Columns 4 - Linear Programming solutions with mica included.

1 2 3 4
XRD E u c /n o  m ica E u e L sq -C h o l LP

kaolinite 5 .1 4 8 .74 -4 .51 -8 .1 5 8 .5 4
K -feidspar 8 .3 2 12 .38 -1 .9 8 -5 .7 3 10 .89
a b ite 1 .89 1.89 2.31 2 .64 2 .8 2
quartz 7 5 .4 0 7 5 .4 0 7 9 .9 0 8 0 .5 0 4 0 .5 0
m u scov ite 0 .4 - 2 3 .1 8 3 0 .3 3 3 0 .3 3
rutile trace 1.59 1 .25 1.03 1.11

S E 0 .3 7 4 0 .3 7 4 0 .6 0 6 0 .6 0 6
Mad 0 .1 7 7 0 .1 7 7 0 .3 4 4 0 .3 4 4
P % acc 9 4 .1 9

4.3.3 2 Compositional colinearity

The Rannoch Formation provides an excellent example of a compositionally colinear 
mineralogy^ . Table 4.5 shows two samples from the section. Muscovite, K-feldspar, 
kaolinite and quartz all occur here together; these being essentially coplanar in the K20- 
A1203-Si02 system. Columns 1 and 3 indicate a solutionyhi/wrg resulting in large negatives 
and widely erroneous modal estimates. This is due to the inability of the model to solve for 
these four colinear minerals simultaneously. In contrast, columns 2 and 6  show very close 
estimates of mineralogy, when muscovite is excluded from the model. Similar results occur 
in sample 10574.

Table 4.5 Estimation of mineral proportions by different mineral transform models. Thistle- 
Rannoch Formation samples 10561, 10574. M-log - MINERALOG core estimates, note mica 
(muscovite & biotite) and illite is combined in brackets.

Column 1 + 3  Euclidian Model (Eue), all observed minerals solved for (including muscovite)
Column 2 + 6  Euclidian Model muscovite not included
Column 4 Error Minimisation model, (Lsq-Chol) all observed minerals solved for (including muscovite)
Column 5 Linear programming model (LP), all observed minerals solved for (including muscovite)

SAMPLE 10561 SAMPLE 10574
1 2 3 4 5 6

XRD Eue Eue XRD M-log Eue Lsq-Chol LP Eue
kaolinite 15 .64 3 9 .8 2 13.26 kaolinite 18 .89 13 .0 4 8 .3 3 4 8 .7 3 2 1 .8 9 19 .65
K-feidspar 12 .52 5 3 .4 8 17.35 K -feidspar 18 .58 12 .0 51.71 5 2 .1 3 2 3 .0 6 2 1 .1 6
a b ite 7 .0 3 5 .3 6 7 .5 8 a b ite 7 .9 8 10 .0 5 .0 2 5.01 7 .3 7 7 .3 0
quartz 4 8 .0 9 4 1 .9 2 5 0 .7 3 quartz 40.81 4 4 .0 29 .11 2 8 .9 8 3 7 .8 6 3 7 .8 6
biotite 8.41 16 .14 10.01 biotite 7 .5 7 (15.0) 2 0 .6 2 2 0 .8 0 3 .7 3 10 .23
m u scov ite 7 .4 8 -5 7 .7 7 - M uscovite 4 .9 2 -5 7 .6 6 -5 8 .3 0 0 .0 0 -

rutile trace 1 .04 1 .06 siderite 1 .25 2 .0 2 .6 5 2 .6 4 5 .77 3 .8

S E 0 .0 6 4 0 .4 0 7 S E 0.311 0 .2 4 4 0 .2 8 3
Mad 0.021 0 .2 0 4 Mad - - 0 .0 9 8 0 .0 7 7 0 .1 1 4 0 .1 1 6
P % acc - - - - - - 9 9 .6 7 -

 ̂ the term compositional colinearity is used here as a generic name, although the systems observed are infact 
coplanar.

-59-



Chapter 4, Mineral modelling o f  the Brent Group

Linear Programming shows reasonable estimates for some minerals, but fails to include 
any muscovite in the solution (column 5) and is therefore in error. Compositional colinearity 
is common throughout the rest of the Rannoch Formation.

4.3.3 3 Estimation of mineralogy with a reduced set of oxides.

It was demonstrated previously (Section 3.7.4) that a correct choice of oxides must be 
present to solve a mineral transform correctly. Two important elemental oxides not always 
recorded by the Geochemical Logging Tool are sodium and magnesium (See Chapter 2). An 
example is given here of how important these two oxides are in the solution of the Thistle 
mineralogy. Na is the dominant cation in albite (viz. 11 wt%); which, itself, is present through 
the Thistle section up to 15 wt%. Na is also found in muscovite, and to a small degree in K- 
feldspar and kaolinite. Mg is found chiefly in biotite {viz. 11 wt %), siderite {viz. 5 wt%) and 
muscovite {viz. 1.75 wt%) all of which are present throughout the section. It will be shown 
that these are clearly important 'descriptive' oxides for most solutions through the section.

Table 4.6, sample (a) illustrates the effect that Na and Mg oxides have on a solution. 
Column 2 demonstrates the effect on modal estimates solved without MgO (and MnO). Here, 
there is a only a small change in mineral estimates indicating that MgO, in this example, is 
not critical for a reasonable solution. In contrast, column 3, solved without Na20 (and MnO), 
shows a drastic change in estimates. This is due principally to sodium rich albite feldspar in 
the sample (5.4 wt % in XRD). The minerals most affected are the minerals now constrained 
only by Si02 and A1203. These are albite, quartz and kaolinite. The problem is one of 
colinear compositions as two oxides are present for the solution of three minerals. Without 
N a20 to constrain the estimation of albite the solution becomes unstable, resulting in 
negative values. Column 4 demonstrates the effect of neither MgO or Na20 being present; 
the result is clearly erroneous.

Table 4.6 The effect of using a reduced number of oxides on the estimation of modal 
mineralogy. Euclidian Distance model used in all solutions.

column 1 full set of 9 oxides modelled 
column 2 no MgO modelled 
column 3 no Na20 modelled 
column 4 no Na20 and MgO modelled

XRD 1 2 3 4
kaolinite 7.80 6.64 6.02 -40.48 -40.50
K-feidspar 11.38 10.90 11.94 6.71 6.71
abite 5.42 4.28 6.63 96.05 96.08
quartz 70.58 73.52 70.83 33.95 34.05
siderite 0.64 3.58 1.34 1.15 1.15
rutile trace 1.07 3.25 2.55 2.55

SE 0.148 0.922 0.001 0.260
Mad

lie 10580-82, Rannoch Fm
0.042 0.311 0.365 0.084

XRD 1 2 3 4
kaolinite 13.97 9.29 9.99 -33.09 -45.73
K-feidspar 15.87 23.18 25.00 19.50 16.34
abite 6.82 19.23 20.82 89.14 105.49
quartz 39.74 37.49 35.91 7.58 0.63
biotite 11.84 3.72 -0.41 15.07 26.41
siderite 1.06 6.32 8.68 1.81 -3.11

SE 0.533 1.199 0.477 0.268
Mad 0.215 0.400 0.143 0.086
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Table 4.6b, shows an example where MgO is critical for a solution. Biotite (column 2) 
shows a small negative (itself containing 9 wt% MgO). The instability of the solution 
apportions MgO incorrectly to siderite, and over-estimates siderite. The Fe203 here, 
originally in biotite is therefore being reallocated to siderite, resulting in an increase in 
siderite and a negative value for biotite. Na20 also has a large effect on the solution (for the 
same reason as sample 10485) producing negative estimates (column 3). Column 4 
demonstrates how the lack of MgO and Na20, together, further degrade the solution.

4.3.3.4 Effect of mineral composition on modal estimates

It was demonstrated in Section 3.8.1 that the choice of mineral composition may 
ultimately effect a solution. Table 4.7 shows a variety of solutions, obtained by the Euclidian 
model, where different mineral compositions are substituted into the components matrix. In 
this example, mean compositions specific to: a) the sample interval {viz. 10485-86'); b) the 
Formation; c) the complete Brent Group of the section; and d) a theoretical 'text book' 
composition were substituted and solved for (columns 1-4).

No real difference is seen in the estimation of modal mineralogy between sample (column 
I), formation (column 2) and hole  specific (column 3) compositions, with a 0.5 wt% 
difference at the most. The 'theoretical' composition, however, shows a discrepancy in the 
estimation of albite and kaolinite, yet a closer estimate of quartz. An increased Standard Error 
suggests, however, that the overall fit of theoretical chemistry is not as accurate as the 
localised Thistle compositions. Note: the XRD siderite estimate is below any reasonable 
detection limit and is meaningless here, except perhaps to suggest that siderite is present.

Table 4.7 The effect of a change in composition on the estimation of modal mineralogy. 
Euclidian Distance model used in all solutions. Thistle Sample 10485-86.

column 1 Sample specific composition used 
colunm 2 Formation specific composition used 
column 3 Hole (Brent Group )specific composition used 
column 4 Theoretical compositions used
column 5 Theoretical quartz , siderite and rutile compositions used, others are actual (probe),compositions 
column 6 + 7 Theoretical siderite and rutile compositions used respectively, others are actual compositions

1 2 3 4 5 6 7
XRD sample formation hole theoretical Th-q Th-s Th-r

kaolinite 7.80 6.80 6.64 6.54 5.18 6.37 7.19 6.80
K-feidspar 11.38 11.50 10.90 11.03 11.54 12.63 11.96 11.50
abite 5.42 3.74 4.28 4.35 7.94 5.49 3.56 3.74
quartz 70.58 73.57 73.52 73.49 70.55 71.12 73.35 73.57
siderite 0.64 3.34 3.58 3.51 3.37 3.11 2.77 3.35
rutiie trace 1.05 1.07 1.08 1.41 1.29 1.18 1.05

SE 0.091 0.148 0.158 0.463 0.478 0.286 0.091

This demonstrates, as in the previous chapter, that for minerals with reasonably fixed  
compositions (all minerals in this example), consistent solutions may be expected. In fact the 
first three compositions are almost identical. In some instances the formation specific 
averages provide better compositions for modelling than sample specific compositions. This 
is understandable, as the mean composition of the formation, on a core scale, provides a 
statistically more meaningful composition than a single sample. Formation specific 
compositions are therefore used in the majority of subsequent modelling. This is quite
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important in that it points to the way in which models could be used 'generally' within a 
formation following only a moderate amount of core/mineral input.

Column 5 illustrates a solution where a mix of actual compositions (for the minerals 
kaolinite, albite, K-feldspar), and theoretical compositions, (for the single fixed composition 
minerals; quartz, rutile and siderite) are used together. Columns 6  and 7 demonstrate how the 
modal estimates can vary with just the alteration of one of the compositions of the minor 
phases, rutile or siderite. This can have a marked effect on modal estimates.

Table 4.8 demonstrates the effect on a solution when different compositions of one 
mineral which has a variable composition are substituted. In this case, mica is only present in 
a small quantity. Compositions specific to the formation and to the section as a whole are 
used in addition to a set of theoretical compositions. An increasing discrepancy in mineral 
estimates, from former to latter, is clearly seen; ihQ formation specific solution in fact being 
the only sensible answer without negative phase estimates. Column 4 shows an alternative 
solution where a slightly Fe-rich muscovite is substituted and whose solution is equally poor. 
In this example the hole specific composition is clearly too generalised a composition to use 
in the model (computed as a combination of all minerals from the Etive, Rannoch and Ness 
formations). It indicates that a reasonable level of detail, to di formation specific level at least, 
should be used when modelling minerals such as mica, whose change in composition may 
affect a solution drastically.

4.3.4 Modelling of mudstone samples

Ten mineral phases were identified in the two mudstone sequences from the section. They 
provide a different lithology to the sandstone examples and provide an example of a more 
mineralogically-complex problem.

Table 4.8 The effect of a change in mica composition on the estimation of modal 
mineralogy. Euclidian Distance model used in all solutions^. Thistle sample 10518.

column 1 Formation specific composition used 
column 2 Hole (Brent Group) specific composition used 
column 3 Theoretical compositions used 
column 4. Fe rich muscovite used

1 2 3 4
kaolinite 1.93 5.98 48.64 30.06
K-feldspar 8.12 13.96 58.67 60.33
abite 12.59 12.41 13.58 15.96
quartz 71.82 70.43 49.18 60.39
siderite 3.68 4.06 2.58 11.52
muscovite 1.32 -8.41 -73.91 -80.30
rutiie 1.54 1.55 1.19 1.89

SE 0.699 0.667 0.286 0.325
Mad 0.286 0.276 0.083 0.100

It was not possible to obtain respectable microprobe analyses for illite from either of the 
sandstone or shale samples during this study. The estimation of such a fine grain phase by 
microprobe is difficult due to surrounding matrix contributions and in this sample set is 
compounded by the paucity of identifiable illite. More appropriate equipment (such as

1 The Euclidian model is used arbitrarily here, Least Squares (direct solution) -models behave the same.
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analytical transmission microscopy - ATEM) was not available for this study. Coupled with 
the problem that no published illite analyses from the Brent Group were found for use in 
modelling, a collection of 'global' illite analyses have been compiled to discern an average 
value to be used in modelling from Deer et a l, (1966); Weaver and Pollard, (1973); and G. 
Christidis pers. comm., (1992). See Appendix 4.1. S. Burley pers. comm., (1992) suggests 
that authigenic illites, such as observed in the Brent Group can have reasonably consistent 
compositions within a formation. Through necessity, this is assumed for modelling, although 
detrital illite compositions could remain a problem. (The problem of variable clay mineral 
compositions is addressed more fully in Chapter 5). Chlorite and mixed layer illite/smectite 
also occur in low concentrations although, again, it was also not possible to obtain analyses 
of these clay minerals by microprobe analysis.

The compositions of all remaining mineral phases have been kept consistent with 
sandstone compositions. The assumption here is that the small vertical thickness of the 
mudstone intervals (<0.3m) and lack of lateral continuity (Russell, 1982) suggest that the 
source area did not deviate strongly from that of the sandstones. It is conceivable, however, 
that the source area may have changed and compositions may therefore vary, especially with 
differences in diagenesis. Any minor change in composition of these relatively fixed  
composition phases should not affect the modelling to a great extent.

Initial attempts to model mudstones appeared problematical. An immediate problem is 
encountered when such a large number of mineral phases is present and the solution under­
determined. Table 4.9 demonstrates different transform model solutions of three mudstones. 
The identification of illite and illite/smectite, in addition to detrital K-feldspar and muscovite, 
kaolinite and quartz further increase the problem of colinearity in the system K20-A1203- 
Si02 (Section 4.3.3.2). The presence of chlorite and illite/smectite, which both contain MgO 
and Fe203, in addition to siderite and biotite also tend to increase the degree of colinearity in 
the Si02-M g0-Fe203 system. In these examples K-feldspar and plagioclase have been 
modelled as one phase (see binary modelling strategy, next chapter) to reduce the number of 
phases to be determined.

In column 1, Table 4.9 (a), chlorite is not modelled, so as to reduce the number of 
minerals. Columns 2-3 use the same assemblage of minerals (chlorite included this time) 
solved by Error Minimisation, Euclidian and Linear Programming models respectively. In all 
cases (columns 1-4) estimates are poor with kaolinite under-estimated by a factor of two and 
illite over-estimated by up to a factor of 5. Note that the illite estimation is only tentative and 
that there may possibly be another phase present, a trace amount of mixed-layer 
illite/smectite (refer to Section 4.2.3 and Figure 4.4).

In Table 4.9 (b), sample 10473-74', notice that two estimates of core mineralogy strongly 
contradict one another. This, itself makes any comparison with model derived mineralogy 
strongly subjective and indicates one of the largest problems encountered when evaluating 
mineral modelling in mudstone mineralogies. The Linear Programming solution in Table 4.9 
(b), sample 10473-74', provides the most feasible result of the different models, (column 1 to
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3) simply because no negatives are recorded. In fact it corresponds remarkably well with the 
MINERALOG mode. Compared to XRD; however, estimates of kaolinite are low by a factor 
of 2 and illite is over-estimated by up to a factor of five. Column 4 shows a Euclidian solution 
with illite left out and estimates are at least positive, although still in error. Sample 10486.2 
also shows an erroneous solution.

Table 4.9 Modal estimates from two different shale intervals in the Thistle section 
demonstrating the poor solution by various mineral transform models.
Target - estimated mineral proportions. Mineral mnemonics: binary fsp- total feldspar (66% k-fsp-33% albite)., 
M-log - MINERALOG core estimate (NOTE, illite + muscovite are quoted TOGETHER as illite in Table b) 
Illite composition is that of a Fithian illite (average from Weaver and Pollard, 1973), chlorite- a MgO rich 
variety (Deer et al., 1966). All other compositions are specific to tlie Thistle hole 21 l/18-a33.

Table a), sample 10472-73 column 1 Euclidian Distance solution (no chlorite) 
column 2 Euclidian Distance solution (with chlorite) 
column 3 Choleski direct solution (with chlorite) 
column 4 Linear Programming solution (with chlorite)

Target 1 2 3 4
quartz 20.00 12.94 15.69 15.70 15.78
binary fsp 6.00 5.95 13.36 13.38 13.09
Kaolinite 64.00 38.34 37.76 37.97 38.62
Illite? 5.00? 29.87 21.87 21.79 22.72
muscovite 7.00 6.90 1.61 1.63 0.00
chlorite trace - 3.29 3.30 3.34
siderite 1.48 4.93 5.17 5.17 5.18
rutile 2.32 1.07 1.25 1.25 1.26

SE 0.015 0.010
Mad - 0.004 0.004 0.019
P%acc 99.99

Table b)

sample 10473-74

colunm 1 Euclidian Distance solution (no chlorite) 
colunm 2 Linear Programming solution (with chlorite) 
colunm 3 Choleski direct solution (with chlorite) 
column 4 Euclidian Distance solution(no illite) 
column 5 Euchdian Distance solution

sample 10486.2-8
Target M-log 1 2 3 4

quartz 20.10 9.0 0.99 9.36 4.81 27.42
bln- tsp 10.50 2.0 5.03 5.23 7.91 23.24
Kaolinite 73.28 42.0 33.38 43.96 38.86 29.52
illite 5 40.0 76.56 26.25 47.79 -

muscovite 2.17 - -20.00 6.84 -7.23 2.17
chlorite 1.00 6.0 - - 2.45 4.85
siderite 2.10 1.0 2.78 5.07 3.92 10.49
rutile 2.16 n/a 1.28 1.30 1.38 2.30

SE 0.399 0.276 0.653
Mad - - 0.141 0.079 0.118 0.280
P%acc - - - 95.31 -

quartz
bin-fsp
kaolinite
lillte
muscovite
chlorite
siderite
rutiie

SE
Mad

Target
28.57
13.10
44.91

5?
5.00

trace
5.60
3.44

M-log
21.0
10.0
30.0
26.0

3.0
10.0

n/a

5
18.60
17.02
15.07
65.70
-27.03

1.33
7.28
1.97

0.572
0.250

This assemblage of minerals provides an example one of the most severe forms of 
compositional colinearity, the result being that the components matrix becomes ill- 
constrained, producing in erroneous modal estimates. The lack of very good quantitative 
mineral estimates of the clay phases has also hampered the evaluation. It may be, for 
instance, that the Linear Programming solution for sample 10473-74 (column 2) provides a 
closer estimate of modal mineralogy than the core estimates.

Summary o f the problems with modelling the mudstone interval.
a) Severe compositional colinearity:

i)- illite-muscovite (mica) - K-feldspar - kaolinite phases (K20-A1203-Si02 system).
ii) -siderite-biotite-mixed layer illite (Fe203-Mg0 system).

b) Presence of a large number of mineral phases causing an under-determined system.
Ten mineral phases to be 'solved for' by 9 oxides.
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c) Presence of clay and detrital phases which exhibit a high degree of ionic substitution 
and therefore compositional variation.

4.4 Synopsis and conclusions.

It is only possible to accurately evaluate mineral transform models on real sediments if 
extensive and careful analysis of all the variables in the problem are known and characterised. 
This has been attempted at the beginning of the chapter and the data preparation 
(parameterisation) for mineral modelling described. Mineralogy has also been related to the 
responses seen in wireline log data.

Subsequent mineral modelling results show that modal estimates that agree with core 
estimates are possible. Verification with core estimates can, however, be problematic; for 
example, where phases such as siderite and rutile are present at concentrations below their 
realistic detection limit by XRD, and cannot be compared directly with modal mineralogy 
(such as in Table 4.7). MINERALOG and thin-section estimates help to verify the existence 
of these phases.

Similar observations to Chapter 3 can be seen between models. Least Squares Error 
Minimisation models tend to solve in an identical fashion to the Euclidian Distance model in 
all examples, while Linear Programming produces different, often inferior solutions.

Compositional colinearity is a significant problem especially in the Rannoch Formation 
and mudstone Ethologies. It must be recognised early in processing to avoid erroneous 
solutions and inaccurate estimates. Modelling of the Ness and Etive mudstone samples 
demonstrate one of the worst cases of colinearity possible. They also demonstrate how an 
inadequate set of oxides (under-determined system) will affect a solution. This should be 
considered apriori.

Different input mineral compositions also affect a solution. In general, the sample 
specific, formation specific and hole specific compositions show very similar estimates in 
modal mineralogy through the Thistle field if minerals with highly variable compositions are 
not present. For minerals that can vary in composition, such as muscovite, it is very important 
to get as close an estimate of the actual composition as possible; this is discussed in the next 
chapter. At the very least these compositions should be specific to a formation or single 
lithology scale.

In the light of the problems faced in the modelling of the synthetic and Thistle data sets, the 
next chapter looks at some of the strategies for overcoming these problems, drawing on 
examples from both data sets.
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Chapter 5. 

Strategies for overcoming the main problems faced by transform models 

5.1 Introduction & Objectives

This chapter introduces and evaluates some strategies which attempt to overcome 
problems encountered by mineral transformation models, examples of which have been 
illustrated in the previous two chapters. Some of these strategies have been developed 
previously by Harvey et a l  (1990) but lack a complete and extensive evaluation of their 
validity. These are therefore illustrated and evaluated using examples from the synthetic rock 
and Thistle reservoir data sets. Other strategies are introduced as new options and their 
usefulness evaluated on the same data set. At the end of the chapter, data from the Thistle 
211/18a-a33 section provides a case study for the implementation and combination of some 
relevant strategies. This is in an attempt to produce, in a single pass, accurate mineral 
estimates that are unaffected by the inherent problems of mineral inversion. In the case study, 
strategies are deployed on three different transform models and the performance of each 
compared.

In summary, the main problems experienced by the various mineral transform models
are:

-An incorrect choice of the mineral assemblage.

-The number of mineral phases exceeds the number of descriptive oxides available for
modelling (the under-determined system).

-The compositional colinearity between three or more minerals, reducing rank of the matrix.

-An incorrect choice of the mineral composition.

5.2 Choice of mineral assemblage.

All mineral transform examples in the last two chapters have been performed on 
individual samples where the assemblage of minerals was known (from prior core 
knowledge) and could be modelled accordingly. Erroneous solutions will result if a single, 
fixed, assemblage were used to model a complete borehole interval, where substantially 
different Ethologies and widely varying mineral assemblages might occur. This is an 
approach, however, that is used in conventional log analysis, where the components matrix is 
inverted once (commonly using an indirect inversion model. Section 3.3.1) and applied to all 
intervals (Doveton, 1986). None-the-less, for mineral modelling it is crucial that the correct 
mineral assemblage is chosen at each sample (depth) interval. If a wrong assemblage of 
minerals is chosen then the chemistry will be allocated to the wrong phases, resulting in 
erroneous mineral estimates.
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5.2.1 Selected assemblage strategy

One strategy is to draw up a table of possible mineral assemblages, from local-field 
knowledge prior to modelling (Harvey et a l, 1990). This model in-tum solves for each of 
these assemblages. The mineral assemblage whose solution 'best fits' the given (observed) 
chemistry, shown by the lowest estimate of Standard Error, is selected as the most suitable 
mineral phase. Table 5.1 shows a summary 'output' for the six synthetic 'rocks' (using the 
Error Minimisation model). The six pre-selected assemblages are solved, in-tum, on each 
synthetic rock mixture, and the assemblage with the lowest Standard Error chosen. In this 
case we know the assemblages and can verify the results. The strategy both chooses the 
correct assemblage and the correct modal estimates. The results are in fact identical to the 
results from individual modelling in Chapter 3.

Table 5.1 Summary data for the selected phase assemblage strategy, performed on the 
synthetic data set Summary data includes the possible mineral assemblages chosen, the 
Standard Error estimates (SE) and the chosen assemblage for each sample.

Table of possible mineral assem blages
1 quartz + albite + kaolinite + K-feldspar Equivalent to synthetic Mix 1
2 quartz + K-feldspar + calcite + dolomite + muscovite Equivalent to synthetic arenite
3 quartz + albite + K-feldspar + dolomite + kaolinite + muscovite Equivalent to synthetic semi- pelite
4 quartz + kaolinite + muscovite Equivalent to synthetic Mix 2
5 quartz + K-feldspar + dolomite + kaolinite + muscovite Equivalent to synthetic pelite
6 calcite + dolomite Equivalent to synthetic carbonate

Assemblage chosen and Standard error estimate
Mix 1 SE 0.105 assemblage chosen [ 1]
arenite SE 0.243 assemblage chosen [ 2 ]
semi-pelite SE 0.303 assemblage chosen [ 3 ]
Mix 2 SE 0.216 assemblage chosen [ 4]
pelite SE 0.286 assemblage chosen [ 5 ]
carbonate SE 0.001 assemblage chosen [ 6 j

It is often possible to obtain a detailed idea of mineral combinations from core or local 
knowledge. A computer program can then be used to collate all possible combinations of 
assemblages from such a list of minerals. These assemblages can be fed, then, into the model. 
An example of the use of this strategy is given in the case study later.

The Standard Error is used here as an appropriate measure for choosing the optimum 
assemblage. Care must be taken in interpretation as a negative, erroneous solution, may in 
fact produce the best fit (and lowest Standard Error), but it may not be 'geologically correct'. 
In fact a possible artefact in the use of Standard Error, is that phases not present in the mode 
are sometimes present with small, meaningless proportions (viz. <0.1 wt%). This is not a 
severe problem and may be eliminated by not 'accepting' phases with proportions below an 
arbitrary figure (viz. 0.5-1 wt%). In general, however, it is observed through this study that 
the 'geologically correct' assemblage of minerals will often predict a Standard Error estimate 
far lower than any wrong combination, for a given degree of freedom. This provides some 
validity for the strategy which has become (through this study) a routine part of most 
borehole mineral models.
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5.2.2 Reducing phase strategy

This is an alternative approach which has no formal or geological basis. This strategy can 
only be used with the Euclidian and Least Squares models where negative estimates may be 
produced. The model iteratively subtracts any negative phases present in a solution, one by 
one (taking the largest negative first), and re-running the model without that phase. This 
process is repeated until all negatives are absent. The assemblage with the lowest Standard 
Error is chosen then as the correct assemblage. Linear Programming models, in effect, do 
this automatically, by virtue of the non-negative constraint in place. In extreme cases, where 
no information is present to construct a set of assemblages to use in the previous strategy, this 
strategy may be considered. There is no 'geological' validity, however, for this approach and 
for this reason it is not considered further.

5.3 Making a solution over-determined

One problem faced when a large number of mineral phases are present is that the 
transform model becomes under-determined and a solution not possible. It is also important 
in Least Squares models to keep the number of mineral phases to a minimum, for statistical 
reasons as well as the ill-conditioning of the components matrix. The initial attempts at 
modelling the mudstone sequence of the Thistle demonstrated the effect a large number of 
mineral phases has on a solution (Section 4.3.4). Strategies may be implemented that reduce 
the number of minerals to be solved for, in effect, allowing the solution to work.

5.3.1 Binary iteration strategy

Certain minerals have compositions that vary between end-member phases, or can be 
treated as such in modelling. Such mineral groups in sediments include feldspars (plagioclase 
series, or K-feldspar series [albite-orthoclase]), muscovite (phengite-muscovite), chlorites, 
and Fe-Ti oxides (ilmenite-magnetite). In sedimentary systems where minerals are not 
necessarily in equilibrium, two such end members may often be found in an analysis. In such 
a situation by iterating between end-member compositions for the best fitting solution a 
suitable binary phase composition will be found that represents the two minerals. In samples 
which are under-determined such binary phases can be used to reduce mineral numbers.

This strategy inputs into the model all intermediate compositions (at specified 
increments) between each end-member. The Standard Error is used then as a suitable 
measure of fit to determine the optimum binary composition. Figure 5.1, purely for 
illustration, shows a 'map' of Standard Error values for such a model, shown at 5% intervals, 
for one gabbro sample containing two binary systems. The size of the square is proportional 
to the Standard Error estimate when that composition was input to the model. The smallest 
square is the composition chosen for inclusion in the model. In practice it is not necessary, 
however, to compute the whole map.
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Figure 5.1 Diagrammatic estimation of the best fitting values for An% (Plagioclase) 
and Fo% (olivine) in a gabbro. An unweighted Least Squares model was used and 
the size of the square is proportional to the Standard Error for each model fitted. The 
optimum composition occurs at An % = 67.1, Fo = 48.8.(after Harvey et. al., 1990)



C hapters, Modelling strategies

Table 5.2, sample (a) shows an example solution using the synthetic Mix 1. This is a four 
mineral rock, reduced here to three phases by the binary iteration of K-feldspar and albite 
feldspar. The final choice of composition, in terms of each end-member, is very close to the 
observed value (65% albite, 30% K-feldspar) and the estimates of modal mineralogy are in 
very good agreement. For the semi-pelite example (Table 5.2, sample b) the choice of end- 
member proportions is good {approx. 50:50) but because of the problem of colinearity in the 
sample the modal estimates appear slightly erroneous. The 'Thistle' sample (Table 5.2, 
sample (c)) also shows a good solution and demonstrates the general applicability of the 
strategy.

Table 5.2 Modal estimates from two Synthetic rocks and a sample from the Thistle section 
employing the binary-iteration strategy. Binary feldspar represents combined albite and K- 
feldspar. M-log - mineralog core estimates. Least Squares (Choleski) model usedk

a. Mix 1

quartz
binary feldspar 
Kaolinite

SE
Mad

Column 1 Model with feldspars modelled separately
Column 2 Model with feldspars modelled as one binary phase

1 2 b. Semi-pelite 1 2
XRD Full Binary XRD Full Binary
60.00 59.85 61.57 quartz 40.00 38.08 37.81
30.00 30.28 29.54 binary feldspar 30.00 35.30 36.05
10.00 9.71 8.89 kaolinite 15.00 18.71 19.66

dolomite 5.00 4.86 4.88
muscovite 10.00 3.04 2.57

0.246 0.325 SE 0.35 0.217
0.120 0.147 Mad 0.146 0.075

Binary composition chosen 65% albite, 35% K-feldspar 
core feldspar ratios 66% albite, 33%K-feldspar

45% albite, 55% K-feldspar 
50% albite, 50% K-feldspar

c. Thistle sample 10482-83 1 2
XRD M-log Full Binary

kaolinite 5.38 5.00 6.84 4.85 binary composition chosen 50% albite, 50% K-feldspar
binary feldspar 18.75 17.00 18.54 17.68 core ratios 50% albite, 50% K-feldspar
quartz 74.38 72.00 73.82 74.69
SE 0.743 0.246
Mad 0.453 0.251

A binary phase strategy was employed for the Thistle model shown in Figure 4.9 
(Chapter 4), where it was used to combine muscovite and biotite phases as a single mica 
phase. The modelling of binary phases has also worked well in igneous rocks such as for 
olivines (fosterite-fayalite) and pyroxenes (Harvey et al, 1990).

A step further is to iterate between two such mineral series reducing further the number 
of minerals to be solved, as illustrated in Figure 5.1. Table 5.3 shows the solution of two 
Thistle samples modelled with albite and K-feldspar as one binary phase. Biotite and 
muscovite, for modelling purposes, at least, form a second binary phase', although they do 
not form solid solution series sensu stricto.

The solutions with all minerals modelled as separate phases (columns 1 and 3), show 
widely erroneous estimates due to compositional colinearity; the binary solution in both 
cases is far superior. It is not necessary, in general, to implement the binary strategy in the 
Thistle section, as the number of phases is not great enough to cause an under-determined

 ̂ The choice of mineral model used in examples in this chapter is arbitary, except where stated.
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system. Its usefulness is therefore limited to the mudstone intervals, but as discussed next it 
can help considerably in alleviating compositional colinearity.

Table 5.3 Modal estimates from Thistle samples 10561 and 10574 using the binary-iteration 
strategy. XRD and MINERALOG values for binary phases are the sum of two independent 
minerals. Least Squares (Choleski) model used.

Column 1 feldspars modelled separately ("full")
Column 2 feldspars modelled as one binary phase ("binary")

a. Sam ple 10561 1 2 b. Sam ple 10574 1 2
XRD Full binary XRD M-Log full binary

kaolinite 15.64 39.82 10.47 Kaolinite 16.42 13.0 48.73 16.42
binary feldspar 19.55 53.48 17.99 binary feldspar 26.83 22.0 57.14 23.49
quartz 48.90 58.84 52.94 quartz 40.81 44.0 28.98 39.65
binary mica 15.89 -41.63 17.26 binary mica 12.49 15.0 -37.50 16.13
rutile trace 1.04 1.06 siderite 1.25 2.0 2.64 4.24

SE 0.407 0.324 0.244 0.236
Mad 0.021 0.228 0.077 0.12
Compositions chosen by Standard Error mapping 
30% aibite, 70% K-feidspar, (XRD feldspar 40%:60%) 
0% muscovite 100% biotite, (XRD 50%:50%)

26% aibite, 74% K-feidspar, (XRD ratio 42%:58%) 
0% muscovite 100% biotite, (XRD ratio 35%:60%)

5.4 Strategies that overcome compositional colinearity

Certain strategies have been developed in an attempt to overcome the problem of 
compositional colinearity in mineral modelling.

5.4.1 Binary phase strategy

Section 5.3.1 demonstrated the usefulness of binary phases in reducing the number of 
mineral phases for solution. It was realised during this study that binary phases can also be 
used effectively to overcome compositional colinearity. Phases such as muscovite, are 
colinear with K-feldspar, kaolinite, illite and quartz in the Rannoch Formation. When treated 
as a binary phase (with biotite), however, muscovite is 'drawn off the K20-Si02-A1203 
compositional plane, with the effect of reducing colinearity. This accounts for the superior 
solutions in Table 5.3, using the binary phase strategy. The solution has become more 
constrained due to more chemistry being 'locked up' in the binary phases, alleviating 
colinearity (and reducing the ill-conditioning in the components matrix).

5.4.2 Iterative removal strategy

One strategy adopted by Herron and Herron (1990) in their normative model was to 
subtract a certain amount of the available chemistry from the analysis and allocate this to 
specific mineral phases before inversion of the remaining chemistry (see Section 3.4.1). The 
aim of allocating chemistry to minerals was to reduce the number of mineral phases for 
eventual solution. Such phases chosen for apriori subtraction were phases wholly or 
dominantly responsible for the presence of one particular oxide. Applied in a general sense a 
normative estimate is generated instead of a modal estimate, as the subtracted minerals may
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not necessarily be present in the actual rock. This would be the case in the Thistle section 
studied here where pyrite and illite, which are present in Herrons model, are rare. The result 
would be an erroneously high prediction of these uncommon phases. It is possible to 'tailor' 
this so that any mineral is subtracted but it is impossible to program in a completely general 
way (refer to Chapter 3, Section 3.4.1).

If a local mineralogy is familiar so that an idea of the range in concentration of a phase 
that is likely to cause colinearity is known, a modified subtractive approach may be 
employed. This strategy involves subtracting a mineral phase that is likely to cause 
colinearity.

The composition of the mineral to be subtracted is firstly determined, and corresponding 
amounts of chemistry subtracted from the sample analysis in various increments up to a 
geologically realistic maximum concentration for that mineral. The transform model is 
performed on each remaining analysis, having been re-normalised to 100%. The analysis that 
has the lowest estimate of Standard Error is used to define the most likely modal mineralogy, 
in addition to identifying the most likely amount of subtracted mineral. The mineral estimates 
are then re-normalised to include the mineral originally subtracted.

For example, this was performed on the Thistle samples by subtracting muscovite mica, 
whose presence causes the colinearity seen in previous examples (Chapter 4). Muscovite is 
present in the Rannoch Formation, up to 13% although uncommon in the overlying Etive 
Formation (0-1 wt%). Figure 5.2A demonstrates the variation in modal estimates derived for 
a mica free Etive sample (10512-14). Muscovite was subtracted from the analysis in various 
increments up to 15% and the remaining chemistry modelled in a usual fashion. The 
optimum sample chosen here (the one with the lowest Standard Error (Figure 5.2 B), is the 
one with no muscovite. This is in agreement with core estimates of viz. <0.5% muscovite. 
Figure 5.2B illustrates the increase in estimates of Standard Error generated for solutions 
which have up to 10% muscovite subtracted before modelling. Erroneous negative modal 
estimates in fact occur for the models that include muscovite, see Figure 5.2C. Figure 5.3 
shows a similar plot for a Rannoch sample, 10574. Erroneous results are present when 
muscovite is included in the model; good results occur (with the lowest Standard Error) with 
4% muscovite subtracted. Again this is in good agreement with core estimates (viz. 5% 
XRD).

5.4.3 The Weighted Model - to enhance the mineral transform solution.

A further strategy to enhance a solution, especially if hampered by compositional 
colinearity, is to employ a weighted model. The weighted Least Squares model (Section 
3.3.3) allows the input responses (contained in the input response vector) to be weighted in 
such a way that one or more oxides have a greater influence over the solution. The oxide with 
the greatest weighting therefore has greater influence over estimated mineral proportions. 
With geochemical logging data there is a considerable range in the accuracy and precision of
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each of the measured elements. Such weights can be assigned to some arbitrary measurement 
o f  uncertainty in each input variable. Such weighting can allow, in the context of 
geochemical logging, elements to be weighted according to the size of these uncertainties. 
The reciprocal of the average uncertainty for each elemental measurement, is usually used for 
the GLT tool.

Weighting may also be used to emphasise certain oxides in a solution. The purpose of 
this being to constrain the solution in a way that the least dependence is given to the oxides 
that are colinear. Such an example of this is included in Table 5.4 where an extra parameter, 
H20+ ^ is included in the model, and is weighted strongly against other oxides. The solution 
is superior to the un-weighted solution.

5.4.4 Addition of ’physical’ parameters to the mineral transform model

In a situation where severe compositional colinearity occurs, as in the Rannoch 
Formation, the addition of extra physical parameters into a solution can help ’alleviate' 
colinearity. In a similar way, addition of extra parameters may help in the 'under-determined' 
situation to produce an over-determined system. Parameters derived from other routine log 
measurements may be used for this (Herron, 1990; Wendlandt & Bhuyan, 1990; Van den 
Oord, 1990). These additional measurements are derived from conventional tools, where the 
tool response is primarily a function of the fluid fraction. Care must therefore be taken in 
using them in the context of mineral modelling. Some of these parameters are, however, 
more closely linked to the matrix rather than the fluid portion; for example, density. 
Photoelectric absorption, (Fe), and bound water H20+, and therefore may be considered 
valid as useful additional parameters.

Table 5.4 The use of a weighted model to improve the solution of synthetic arenite.

Column 1 Least squares inversion with H20^
Column 2 Weighted Least squares inversion with H20^ weighted 55:1 with oxides 
Column 3 Weighted Least squares inversion with H20^ weighted 100:1 with oxides

Target XRD 1 2 3
quartz 80.00 79.27 80.16 80.66
K-feldspar 5.00 7.85 5.58 4.27
muscovite 10.00 7.97 8.98 9.56
dolomite 2.50 2.62 3.12 3.41
calcite 2.50 2.27 2.27 2.27

SE 0.376 0.414 0.466
Mad 0.217 0.232 0.257

5.4.4.1 The use of bound water (H20+) as an additional parameter

Clay minerals such as the smectite or kaolinite, and the mica minerals, are hydrous 
minerals in that they contain varying amounts of chemically 'bound' water (H20+) within 
their atomic structure. In a situation where severe compositional colinearity occurs, as in the 
Rannoch Formation here, the addition of an accurate estimate of H20+ can effectively draw

 ̂ Modelling with H20+ is formally introduced in Section 5.4.4.1
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kaolinite and muscovite, (which contain, on average, 13 wt% and 4.5 wt% H20+ 
respectively), from the colinear plane defined by the oxides common to them, namely Si02- 
A1203-K20. Values of H20+ for some common hydrous minerals are summarised in Table 
5.5.

It is possible to gain an estimate of the 'bound water' in a formation from the epithermal 
neutron tool porosity and density porosity measurement (Ellis, 1986; Herron & Herron, 
1990). The difference between the density porosity (a measure of the hydrogen in pore 
spaces, i.e. H 20‘ and pore water) and epithermal neutron porosity (a measure of total 
hydrogen, both H20+, H 20 ' and pore water), is ascribed to the amount of bound water 
contained in hydrous minerals. The difference, when converted to a dry weight percent is 
called Wmin (Herron & Herron, 1990). This tool derived estimate Wmin is investigated in 
Chapter 6 .

An improvement in the estimate of the synthetic pelite and semi-pelite is seen in Table
5.6 where bound water (H20+) is included in the model. For this exercise an estimate of 
H20+ for the sample was calculated from the known proportion of kaolinite and muscovite in 
the sample, this being included in the model input response vector. Similarly, respective 
values of H20+ were ascribed to all minerals in the components matrix, namely zero for all 
minerals except the hydrous phases kaolinite and muscovite.

A clear improvement in estimates of both hydrous phases, compared with the oxide only 
solution, is seen the pelite and semi-pelite solutions (Column 2) modelled with H20+ in these 
well constrained examples. In the pelite solution the estimate of kaolinite has been improved 
to within 0.06% of the target value.

Table 5.5 Summary of some typical water contents (H20+ and/or H 20 ) in common hydrous 
minerals. ** figures in brackets are calculated uncertainties for that estimate.

Edmunson (1979) 
H20+ H20‘

Hertzog & Herron (1990) 
H20+ "

Deere/a]., (1966) 
H20+ H20"

Used in this study 
H20+

Muscovite mica - . 6.08 (0.04) 4.31 0.19 4.50
biotite mica 4.0 0.75 3.96(1.10) 3.28 0.23 4.00

1.89 0.60 - - - -
Zeolite (Heulandite) 12.0 3.60 - - - -

kaolinite 13.46 0.71 13.82 (0.08) 13.92 0.17 13.00
illite 6.49 2.92 7.21 (0.20) 5.98 2.86 6.92
chlorite (Mg -Fe rich) 11.09 0.51 12.93 (0.10) 11.45 1.80 11.65
Fe chlorite - - 12.60 (0.80) 11.07 0.51 -
montmoriiionite 7.71 12.48 8.05 (0.10) 7.99 14.81 -
mixed layer aggregate 6.78 7.73 - -

In the semi-pelite the kaolinite estimate is lowered by 3%, approaching the target. This is 
mirrored by an increase of 4% in muscovite and quartz 0.5%. All contribute to a better 
agreement with core estimates. H20+ helps to alleviate colinearity, especially in the semi- 
pelite solution, kaolinite and muscovite both contributing towards the mild compositional 
colinearity in the original solutions.

Improvements in kaolinite estimates for a subset of samples from the Thistle section can 
be seen in Figure 5.4 when modelled with (dotted line) and without an estimate of H20+.
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Estimates of H20+ for these samples were calculated from the proportion of the hydrous 
phases found in core samples. Discrepancies in the original estimates occur in the lower 
samples, which are from the Rannoch Formation (viz. > 10545' depth), due to compositional 
colinearity effecting the solution.

Table 5.6 Estimated mineral proportions, 'modes' for two synthetic rocks with H20+ as an 
additional physical input parameter. (9 oxides used. Euclidian model), * improved hydrous estimates

Column 1 Least Squares inversion without H20'*'
Column 2 Least squares inversion with H20"''

Pelite Semi Pelite
Target 1 2 Target 1 2

kaolinite 15.00 13.42 14.93* abite 15.00 14.83 15.98
quartz 20.00 20.54 20.02 kaoiinite 15.00 18.71 15.87*
K-fekJspar 15.00 14.38 15.80 quartz 40.00 38.08 38.56
muscovite 45.00 46.88 44.38* K-feidspar 15.00 20.47 17.96
doiomite 5.00 4.78 4.84 muscovite 10.00 3.04 6.86*

doiomite 5.00 4.86 4.71

SE 0.307 0.334 SE 0.350 0.389
Mad 0.143 0.164 Mad 0.146 0.166

Table 5.7 illustrates an example where the more complex Rannoch lithology has been 
modelled with bound water using both a weighted and un-weighted model. In the weighted 
model H20+ is heavily weighted in favour of the oxides (100:1) and therefore has a greater 
influence on the solution. Addition of water decreases the wild negatives previously observed 
(column 2 -1-3 ) providing a closer agreement to core mineralogy in the case of the weighted 
model. H2 0 + has effectively constrained the solution by 'pulling' the hydrous phases, 
muscovite and kaolinite, off the compositional colinear plane, K20-A1203-Si02, shared with 
K-feldspar and quartz. Anhydrous phases such as rutile and albite, in this case, remain 
relatively constant throughout the solutions, indicating that addition of a hydrous phase does 
not effect them greatly.

Perhaps the main problem faced with this strategy is the acquisition of reliable estimates 
of H20+ in the laboratory and in the borehole environment. The H20+ values for this 
exercise were calculated from knowledge of the minerals and their proportions present.

Table 5.7 Improvement of the Rannoch sample 10561 solution by using H20+ as an 
additional input parameter.

Column 1 Euclidian solution (oxides only)
Column 2 Euclidian solution with H20^ added (no weighting) (1.8% H20+ in sample)
Column 3 Weighted Least Squares solution (H20+ weighted 100:1 with oxides)

XRD 1 2 3
kaoiinite 15.64 39.82 15.95 10.27
K-feidspar 12.52 53.48 23.01 15.24
abite 7.03 5.36 8.81 9.33
quartz 48.90 41.92 49.02 51.03
rutiie trace 1.04 1.16 1.15
muscovite 7.48 -57.7 -6.56 6.18
biotite 8.41 16.14 7.07 8.41
siderite trace 1.04 1.53 1.85

SE 0.064 0.441 0.361
Mad 0.021 0.171 0.161

Figure 5.5 illustrates how a change of just 1.5% in the input H20+ estimate can make the 
difference between a geologically 'acceptable' mineral estimate and one that is totally
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meaningless. An input H20+ value of 3.34 wt% results in a clearly erroneous mineralogy 
with kaolinite being over-estimated by 50% and a negative estimate of muscovite. Only the 
weighted solution with 1.8% H20+ produces a very close, acceptable, result.

In the case where this strategy may be applied in the logging scenario, such as the use of 
the 'Wmin' estimate of H20+, it is important to obtain at least as accurate an estimate of 
H20+ as that of the other oxide variables. This is considered further in Chapter 6 . Care must 
also be taken because the amount of bound water in a particular mineral can vary like oxides. 
For example bound water in biotite can vary by 2-3%. As seen in Figure 5.5, this may have a 
severe effect on a solution.

5.4.4 2 Density as an extra parameter

It is also theoretically possible to add density as an extra input parameter to the mineral 
transform model in an attempt to further constrain a solution. Its implementation, from 
experience during this study, even using synthetic rocks where density for each mineral can 
be accurately calculated, however, remains sceptical. All minerals have reasonably specific 
densities, of which typical values for some more common ones are quoted in Table 5.8. 
Minerals with greater densities, such as siderite and rutile, may be more readily distinguished 
from lighter minerals if density is modelled with oxides.

Bulk density is a common physical measurement run routinely in most wells. From this, 
it is possible to gain an estimate of the matrix density (density of just the minerals present - 
without borehole fluids) by subtracting an estimate of porosity from bulk density. This matrix 
density estimate may be modelled with oxides as an input response with the appropriate 
assignment of mineral densities to each mineral phase in the components matrix.

Table 5.8 Commonly quoted mineral densities. For hydrous minerals that contain water as 
part of their atomic structure (hydroxyls) the density quoted is for a dry analysis, ie, analysis 
with only H20+ present, denoted (d).
Mineral Edmunson (1979) Ellis (1988) Carmichaei (1989) Wendiandt (1990) Used in this study

quartz 2.65 2.65 2.648 2.4 2.65
K-feldspar 2.55 2.57 2.570 2.52 2.57
Albite 2.62 2.61 2.620 - 2.62

muscovite mlca(d) 2.83 2.84 2.831 - 2.83
biotite mlca(d) 3.12 3.22 2.900 - 3.12

kaollnite(d) 2.44 2.62 2.594 2.61 2.61
Illite (d) 2.65 2.78 2.660 2.8 2.80
ctiiorlte (Mg ricti)(d) 2.79 2.65 2.800 - 2.65
smectite(d) 2.7 2.7
pyrite 5.00 5.01 5.011 -
rutile 4.25 4.23 4.245 - 4.25
siderite 3.94 3.96 3.944 - 3.94
dolomite 2.87 2.87 ? - 2.87
calcite 2.71 2.71 ? - 2.71

Table 5.9 illustrates the effect on modal estimates of three synthetic rock samples when 
density is included in a model. For modelling purposes mineral densities were calculated by 
multiplying the average mineral density for each mineral (from Table 5.8) by its mineral
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proportion (wt %). Slight improvements (but not vast) are seen in the pelite and semi-pelite 
examples especially for weighted solutions. For the synthetic arenite sample (Table 5.9), the 
extra density parameter has no effect on the colinear discrepancy between K-feldspar and 
muscovite (column 2 ), although weighting of density heavily against all oxides, begins to 
improve the solution.

Table 5.9 Estimated mineral proportions, 'modes' for three synthetic rocks with density as an 
additional physical parameter, Least Squares model used (9 oxides, +/- density (g/cm^)).

Column 1 Solution without density modelled 
Column 2 Solution with density modelled
Column 3 Weighted solution with density added (100:1 weighting of density)

Pelite Target 1 2 Semi Pelite Target 1 2 3
Kaolinite 15.00 13.42 14.38 abite 15.00 14.83 14.84 16.13
Quartz 20.00 20.54 20.44 kaolinite 15.00 18.71 18.66 13.60
K-feldspar 15.00 14.38 14.64 quartz 40.00 38.08 38.08 39.77
Muscovite 45.00 46.88 46.55 K-feldspar 15.00 20.47 20.44 14.51
doiomite 5.00 4.78 4.74 Muscovite 10.00 3.04 3.09 11.18

doiomite 5.00 4.86 4.89 4.80
SE 0.307 0.330 SE 0.350 0.430 0.397
Mad 0.143 0.149 Mad 0.146 0.159 0.166

Arenite Target 1 2 3
quartz 80.00 78.30 78.29 78.35
K-fekJspar 5.00 10.35 10.37 10.19
muscovite 10.00 6.87 6.85 6.97
dolomite 2.50 2.07 2.07 2.08
calcite 2.50 2.27 2.27 2.27
SE 0.260 0.281 0.282
Mad 0.167 0.179 0.180

Two examples from the Thistle section, Etive and Rannoch (viz. 10540, 10580), do not 
show significant change in modal estimates between the straight oxide solution and one 
modelled with density (Table 5.10). Matrix density values for modelling have been 
calculated from the XRD mineralogy estimate. A less negative estimate is seen for the 
Rannoch sample (10580), when density is weighted, but worse when un-weighted. All 
solutions show unrealistic, negative, estimates and are clearly not acceptable. This sample is 
also hampered by compositional colinearity; the addition of density does not appear to 
resolve the problem, although it does cause a move towards a 'better' solution.

In general little improvement is seen in estimation of mineralogy when density is 
included. In theory, an extra density parameter may help in a solution in a way similar to the 
H20+ parameter. Even with a well constrained 'synthetic' data set it is hard to achieve any 
significantly improved results. This can be attributed to the fact that many of the common 
minerals have very small differences in mineral densities, such as seen in the two data sets 
here. The difference between the most dense mineral (dolomite) and the least dense (K- 
feldspar) phase is only 0.32g/cm^. In contrast, with H20+, a difference of up to 13 wt% 
between minerals allows it to be a useful parameter. Only with a large weighting of density, 
in the best case, does a solution improve; however, any error in the density will also be 
magnified by the weighting.
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Table 5.10 Estimated mineral proportions, 'modes' for two Thistle rocks with density as an 
additional physical parameter; Least Squares model. 9 oxides +/- density (g/cm^).

Column 1 Solution with no density modelled 
Column 2 Solution with density modelled
Column 3 Weighted Least Squares solution (density weighted 1(XD:1 with oxides)

Sample 10540 (Etive Fm) Sample 10580 (Rannoch Fm)
XRD 1 2 3 XRD 1 2 3

kaolinite 6.59 3.68 3.58 3.42 kaoiinite 7.02 57.02 60.59 9.31
K-feldspar 15.11 13.74 13.79 13.41 K-feldspar 15.87 89.29 94.37 24.96
abite 5.40 7.38 7.46 7.27 abite 6.82 14.98 14.67 19.14
quartz 73.07 74.15 74.15 74.48 quartz 39.74 20.03 18.59 35.68
rutile trace 1.04 1.03 0.91 rutile trace 0.47 0.43 0.65

muscovite 11.40 -113.86 -122.72 -9.24
biotite 11.84 30.98 33.86 19.30

SE 0.662 0.593 0.447 0.257 0.219 0.625
Mad 0.340 0.308 0.259 0.063 0.076 0.333

We can not forget that the calculation of mineral densities based on core estimates in this 
exercise may have been in error. Any error in the core estimate would produce erroneous 
sample matrix densities in which to model. Such an uncertainty may totally 'mask' the subtle 
differences in density (viz. 0.3g/cm^) between the different mineral species and may lead to 
incorrect modal estimates. This is pertinent to the log environment, as slight inaccuracies in 
tool measured porosity and/or a bulk density estimate would ultimately cause inaccuracies in 
mineral estimates, probably to much greater extent than observed in the examples here. 
Experience suggests that transform models are not sensitive enough to discriminate between 
such small values of change in a parameter, even if a heavy weighting is applied.

Mineral densities, like compositions, also vary (as a function of composition). For 
example, the density of the clay mineral smectite can vary between 2.1 and 2.7 g/cm^ 
depending on ionic composition. Such a wide range of possible variation for an individual 
phase should be considered when modelling. However, if a lithology is dominated by heavy 
minerals, such as pyrite (5g/cm^) or siderite (3.95g/cm^) and possibly dolomite (2.87cm^) 
then density may be useful in discriminating between these phases and much lighter quartz- 
feldspathic phases (viz. 2.60g/cm^) common through the Thistle.

5.5 Variation in composition

Results from previous mineral modelling (Chapters 3+4) demonstrate that it is necessary 
to obtain a good idea of mineral composition, for any model to successfully estimate 
mineralogy. It is especially important for minerals, such as clay minerals, which have widely 
varying compositions, although variation is more likely to be restricted within a specific 
lithology or unit than throughout a complete hole. Knowledge of mineral composition and 
variation has, conventionally, come from a careful study of core material using microprobe or 
similar techniques. Even then, variation is still possible and may inevitably lead to an 
incorrect choice of composition in a model. An alternative is to apply a strategy that is 
directly sensitive to compositional variation.
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5.5.1 Binary iteration strategy

The binary strategy is a strategy that can be employed to determine the composition of 
minerals with variable compositions within a solid-solution series. Examples of this strategy 
were shown in Section 5.3.1 and 5.4.1, where an optimum composition was sought by binary 
iteration between two end-member phases. This proved a feasible strategy for reducing the 
number of phases in a solution and as an aid in reducing compositional colinearity. In another 
sense the composition of certain phases is allowed to vary within constraining limits of the 
end-member compositions and as a result the solution is more flexible.

In a different context, if a reasonably constant proportion of the two end-members exist 
through a formation, a binary phase can be constructed without iteration, simply by 'mixing' 
the compositions in an appropriate quantity. This is used as a strategy to model muscovite 
and biotite mica in the case example later. Theoretically it can also be applied to any two 
minerals as long as the ratio between the two is known (and is realistic).

5.5.2 Stochastic modelling strategy

A modelling approach is introduced here that allows a mineral composition to vary 
within an implied multivariate normal distribution, as described by the mean and variance- 
covariance matrix of a sample of representative compositional analyses. In this way, 
compositionally variable minerals, such as mica or clay minerals, are allowed to fluctuate in 
composition within specified statistical limits. Such a stochastic approach provides a 
'geologically' viable method for overcoming the need to accurately know compositions of 
highly variable mineral species at each depth interval.

Due to the stochiometric nature of minerals, some elements exert a certain amount of 
interdependence on one another; for example, when ionic substitution is present between 
cations of similar diameter. Low temperature metamorphic, Mg-Fe mica (phengite), is a good 
example of a mineral whose oxides are interdependent. With increasing metamorphism 
phengite will lose Mg^+ and Fe^+ in replacement for Al^+ in its octahedral sites, and the 
composition approaches that of an ideal muscovite. This trend is illustrated on the AKF 
diagram in Figure 4.7, Chapter 4. In effect, a negative correlation exists between Mg or Fe 
and Al. Preserving such a relationship between oxides in a mineral is crucial if the 
composition is to be allowed to vary in a geologically 'viable' way. This strategy allows such 
interdependence to be taken into account.

For any given lithological unit, the variation in a mineral composition may be 
characterised by its composition mean vector, and the variance-covariance matrix of oxide 
variables. Figure 5.6 (A) illustrates a surface plot defining the joint probability distribution of 
two independent normal distributions that could, for example, be two oxides that constitute a 
mineral. Each separate (marginal) normal distribution, itself, is described by the mean and 
variance where as the joint distribution is described by the covariance of the two variables
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surface created by two independent normal distributions, such that may exist between 
two oxides that constitute a mineral (adapted from Davis, 1986).
B) Plan view plot illustrates a symmetrical nature (in this case) of the joint distribution 
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C) Plan view illustrating two independent normal distributions whose joint distribution 
surface has a strong negative correlation. The cigar shape illustrates the variation of the 
two variables about the joint mean, as described by the variance-covariance matrix.
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(Davis, 1986). In Figures 5.6 (B & C), the variance describes the shape of the independent 
distributions while the covariance describes the orientation and the shape of the joint 
distribution, here a circle and cigar, with no correlation and a negative correlation 
respectively. When modelling a mineral with nine such major oxides a hyper-space of nine 
normal distributions is required. Although not an easy thing to illustrate, it is easily described 
mathematically by the variance-covariance matrix.

Such a set of compositional data can easily be acquired for a given lithology, unit or 
formation from core data; or more globally, from literature of that mineral species. The 
approach then is to allow samples, at random, to be picked from within the defined 
multivariate distribution using a Monte Carlo modelling technique. These samples are fitted 
in turn to the transform model employed, the best fitting solution being accepted and used as 
the most accurate mineral estimate. The criterion for this is the solution with the mineral 
composition that produces the lowest Standard Error and remains positive. Figure 5.7 is a 
flow chart which demonstrates this strategy. Subtleties of the model allow the number of 
repeated trials to be varied, of which, from experience, a minimum should be at least 1 0 0 0 ; 
and a choice to repeat the same random sample pattern as previously used.

As an example, a sample of fifty phengitic micas from the Thistle section are used to 
demonstrate the distribution of a typical mineral that may be modelled stochastically because 
of its variable mineralogy. Figure. 5.8 shows the distributions of the five dominant oxides 
that make up muscovite-phengite. These serve, simply to illustrate that a unimodal, 
symmetrical distribution is a reasonable expression for each oxide. The mean, standard 
deviation and correlations matrix describing this data set are summarised in Table 5.11.

Table 5.11 Mean, standard deviation and linear correlations matrix for 50 muscovite micas 
from the hole 211/18a-a33, Thistle Field, Brent Group. NB Fe is quoted as Fe203 here to be 
consistent with modelling.

S i02  A1203 Fe203 MgO CaO Na20 K 20
Mean 46.74 29.80 3.88 1.76 0.05 0.42 10.19
Std. Deviation 1.945 3.025 1.767 0.748 0.166 0.676 1.140

Si02 1.0
AI203 -0.298 1.0
Fe203 -0.121 -0.774 1.0
MgO 0.424 -0.645 0.281 1.0
CaO -0.167 0.134 0.011 -0.267 1.0
N a20 0.015 0.414 0.402 -0.328 -0.022 1.0
K 20 0.218 0.196 0.483 0.424 -0.307 -0.4611 1.0

Figure 5.9 shows two three dimensional plots that illustrate the distribution of the 
important major components (K20-Si02-A1203 and Fe203-M g0-K20). Plot A (K20- 
S102-A1203) shows a tight cluster with little interdependence of variables, whereas Plot B 
(Fe203-M g0-K20) shows a loose cluster which, as more closely observed in Figure 5.10, is 
strongly interdependent, manifested as negative correlations between Al and Mg, and Al and 
Fe. This is ascribed to the phengitic signature of these micas (refer to Section 4.2.4). Both 
relationships from plots A and B in Figure 5.9 are taken into consideration when modelling 
stochastically.
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oxides in a sample of 50 phengitic moscovites from the Thistle Field, Brent Group.
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dots and indicate the close estimation of the true composition by the model. The 
distribution of random compositions closely follows that seen in Figure 5.10 for real 
muscovite compositions.
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Five 'numerical' rocks ('greywackes'), each containing four minerals - albite, kaolinite, 
quartz and muscovite, serve here to illustrate the stochastic model. The only difference 
between these five rocks is the composition of muscovite. The first rock (called mean-mus) 
contains the mean muscovite composition of the sample of Brent muscovites whose normal 
distribution is given in Table 5.11. The other muscovites were chosen at random from within 
the sample-set Each rock was in turn modelled stochastically using the input variance- 
covariance data (Table 5.11) with 2000 repeated trials for each sample. Table 5.12 shows the 
predicted mineralogy and Standard Error for the model; and demonstrates respectable modal 
estimates for each sample. Also shown is the close similarity between the model generated 
and actual, muscovite composition used to make the rock.

Table 5.12 An example of the stochastic modelling strategy. Close solution of four 
theoretical 'greywackes'. Below, shows a comparison of the muscovite composition chosen 
by the model (ie, Mus-1) with the actual muscovite (ACTUAL) used to 'produce' the rock.

quartz albite muscovite kaolinite Standard Error
Target mode 75.0 10.0 10.0 5.0

mean-mus 75.14 9.69 11.67 3.50 0.008
mus-1 75.12 9.81 10.73 4.27 0.024
mus-2 75.40 10.16 10.10 4.33 0.008
mus-3 74.55 9.54 12.05 3.86 0.013
mus-4 75.10 9.80 10.74 4.41 0.014

Sam ple S i02 T i02 AI203 Fe203 MgO CaO N a20 K 20

mean-mus 47.08 0.70 30.93 3.70 1.38 0.02 0.66 9.02
ACTUAL 47.11 0.743 29.68 4.17 1.77 0.02 0.35 10.32

mus-1 51.25 0.68 26.76 2.80 3.16 0.00 0.30 10.88
ACTUAL 51.88 0.89 25.39 3.44 3.34 0.00 0.00 11.35

mus-2 47.10 0.39 32.23 3.01 1.78 0.03 0.56 10.60
ACTUAL 49.67 0.49 30.51 3.05 1.72 0.00 0.71 10.78

mus-3 50.49 0.94 30.89 3.82 1.46 0.04 1.18 9.57
ACTUAL 47.75 1.18 31.79 4.70 1.78 0.00 0.79 11.24

mus-4 45.70 0.82 27.74 4.70 1.65 0.05 0.23 9.11
ACTUAL 45.58 0.82 27.15 5.22 2.03 0.00 0.00 9.64

Mineral compositions used to produce rock samples
Rock 8102 T i02 A1203 Fe203 MgO CaO N a20 K 20
mean-mus 87.97 0.08 7.17 0.57 0.28 0.19 1.21 1.16
musl 88.45 0.10 6.74 0.50 0.44 0.19 1.18 1.26
mus2 88.23 0.06 7.25 0.46 0.28 0.19 1.25 1.20
raus3 88.04 0.13 7.38 0.63 0.28 0.19 1.26 1.25
mus4 87.82 0.09 6.92 0.68 0.31 0.19 1.18 1.09

albite 65.81 0.02 21.33 0.11 0.05 1.86 9.82 0.67
kaolinite 47.62 0.06 37.94 0.65 0.01 0.03 0.71 0.86
quartz 100.00 0.01 0.00 0.0 0.0 0.0 0.0 0.0

Figure 5.11 illustrates all 2000 compositions generated by the model during the solution 
of the 'mean-mus' sample, in terms of A1203 and Fe203 (Figure A) and MgO (Figure B). 
The actual and model generated compositions are included to demonstrate the successful 
choice of a composition close to the real composition. The distribution (a negative 
correlation) generated by the model in both Figures, closely reflects (as expected) the realistic 
distribution shown in the real examples in Figure 5.10.
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Increasing the number of repeated trials will inevitably result in a closer approach to the 
true composition, thus improving the correlation of the 'actual' and 'model generated' 
composition in Table 5.12. Restrictions on the number of trials are limited by computational 
time available. Other approaches, such as pseudo-random walk or hill-climbing algorithms, 
may be introduced to significantly reduce computational time (P. Harvey pers. comm., 1992).

This example shows that the stochastic strategy can accurately predict mineralogy and 
accurately predict the change in composition of a variable, problematical, mineral. It is much 
harder with a real data set to illustrate such an example as the individual composition of, say, 
muscovite will never be known at each sample. The strategy has, however, been tested on the 
Rannoch Formation of the Thistle section with encouraging results. This is demonstrated in 
the following case study .

5.6 Combination of modelling strategies - a case study

A case study now demonstrates how a combination of strategies can be implemented to 
optimise the estimation of modal mineralogy in a single pass, such as would be expected 
when processing a borehole. Individual strategies, such as just described, can be selected and 
combined in an attempt to overcome the problems encountered by a specific lithology or 
formation. The strategies chosen here aim to alleviate problems both specific to modelling 
the Brent Group, such as compositional colinearity in the Rannoch Formation; and problems 
more generic to the borehole environment, such as the variation of mineral assemblages and 
lithology down-hole. Specific problems can often be identified from core or other evidence 
previous to modelling. A different strategy might therefore be employed for a different region 
or lithology.

In the following case study three mineral transform models were identically processed on 
the complete Thistle 211/18a-a33 section using the same combination of strategies. The 
Euclidian Distance model is primarily compared with core data to evaluate the 
closeness/accuracy of the modelling strategy. This model is then compared to the Least 
Squares Error Minimisation and Linear Programming models in order to evaluate the relative 
performance of each model.

5.6.1 Model Parameterisation

In previous examples from the Thistle section, nine oxides were employed for 
modelling, using XRF data from core. Nine oxides are modelled here, except MnO is not 
included as it does not occur in a great quantity, this being an attempt to reduce the 
sparseness of the components matrix. Sulphur, on the otherhand, is included as there is 
evidence of minor pyrite in a few samples. The other oxides modelled include Si02, Ti02, 
A1203, Fe203, MgO, CaO, Na20 and K20.
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The components matrix is made up of the suite of fixed  composition minerals used 
throughout the chapter, that represent the average compositions for the section, (ie, hole 
specific compositions).

5.6.2 Adopted strategies

Strategies chosen include the selected assemblage option. This allows the mineral 
assemblage to vary at each depth interval. Quartz, kaolinite and K-feldspar known to be 
ubiquitous, and rutile, to act as a 'mop' for any surplus Ti02, were used in all assemblages. 
The model was then set up with a selection of 9 mineral assemblages representing all 
possible combinations of minerals recognised from core analysis.

The second strategy adopted is the binary phase strategy. The presence of muscovite 
mica, in samples from the Rannoch, is known to cause compositional colinearity in the K20- 
A1203-Si02 plane. In this model, muscovite and biotite micas are treated as one binary 
'mica' phase. This both reduces the number of minerals to be solved for, (making the system 
more determined) and also reduces colinearity. The 'mica' composition chosen for the hole is 
made up of 50% of each mica (named "a33mica"), in reasonable correspondence with core 
observations throughout the Rannoch.

5.6.3 Modelling results

5.6.3.1 Selected assemblages

The assemblages chosen by the selected strategy for each model are summarised in 
Table 5.13. Four out of the 9 available assemblages were chosen by all three models. These 
are the assemblages that include all phases, except two assemblages which do not have mica 
and/or pyrite. The remaining five assemblages represent subtle differences in the occurrence 
of minor phases - pyrite and siderite; whose presence may have not been correctly identified 
by core techniques.

Table 5.13 Selection of mineral assemblages identified from core (XRD) estimates. The last 
four columns summarise the assemblages picked by XRD and each model respectively. LP- 
Linear Programming, Eue- Euclidian, Em- Least Squares - Error Minimisation model.

Assemblage core model chosen
Kaolinite Quartz K-feldspar albite mica siderite Pyrite rutile XRD LP Eue Em

1 * * * * * 13 m m
2 * * * * * * * 2 m m
3 * * * * * * * 4 10 11 9
4 * * * * * * 1 m m
5 * * * * * * 1 m —

6 * * * * * * 17 -  m
7 * * * * * * 1 28 9 4
8 * * * * * * * 0 0 24 28
9 * * * * * * * * 0 18 13 16

The inclusion of mica in the assemblage for samples in the 'mica rich' Rannoch 
Formation and exclusion through the mica-free Ness and Etive intervals, in the Euclidian and 
Least Squares models, is in good agreement with core observations. In general, an acceptable
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choice of assemblages is chosen. Some discrepancy in the Linear Programming model occurs 
where mica is included in some mica free intervals and a mica free assemblage is included in 
the mica rich Rannoch Formation.

5.6.3 2 Comparison of model and core derived mineralogy

Plots showing core versus log estimated mineralogy for each of the major phases for the 
Euclidian Distance model were illustrated in Figure 4.9 (Chapter 4) where a good correlation 
with core was seen. Cross-plots in Figure 5.12 compare mineral proportions estimated by the 
Euclidian Distance model and whole-rock XRD core estimates. Plots of the major minerals 
quartz, K-feldspar and kaolinite clay indicate a very good correlation mineralogy with core 
XRD data; with correlation coefficients of r = 0.901,0.8, 0.813, respectively. The spread of 
all points being well within the uncertainty of the XRD technique. Albite feldspar (r = 0.560) 
and 'mica' show reasonable correlations below concentrations of 10% and 5% respectively. 
Concentrations above that appear over-estimated by the model. Only 6  samples of albite are 
over-estimated, this may be due to XRD inaccuracies or to an excess of Na20 in the sample 
chemistry, perhaps due to an unidentified phase. It has already been noted that XRD under­
estimates mica at high concentrations (1 0 -2 0 %); this is reflected by the apparent over­
estimation of mica here. Verification with thin section point counting and MINERALOG, 
suggest the higher concentrations of mica determined by the model are similar (or slightly 
under-estimated) and are most probably more accurate than the XRD estimates.

The remaining three m inor  minerals pyrite, siderite and rutile are present at 
concentrations below the level of detection of the XRD technique. It is not possible to verify 
these minor minerals quantitatively although estimates are not unreasonable when verified 
with thin section and SEM observations. They therefore show rather meaningless plots 
except to demonstrate that no real quantitative comparison can be made for such 'minor' 
phases. Siderite estimates are not unreasonable considering the high proportion of biotite 
mica alteration and subsequent growth of siderite (see Plate 5). The cluster of points at very 
low concentrations on the X axis of all three minor minerals indicate that although the model 
has chosen the mineral, it is not identified by XRD. An increase in model siderite (and minor 
pyrite) estimates in the mudstone intervals, and through the Rannoch Formation, correspond 
well (qualitatively) to core observations.

In general the Euclidian model predicts mineralogy throughout the Thistle section very 
accurately for the dominant mineral phases (refer to Figure 4.9). The adopted strategy has 
accurately estimated the quartz-rich, kaolinite-poor, subarkose mineralogy of the Ness and 
Etive sandstones and the reduced quartz, kaolinite-mica-feldspar dominant mineralogy of the 
Rannoch Formation. The drop in quartz over the three mudstone horizons at the base of the 
Ness and in the upper Etive can also be seen mirrored by an increase in kaolinite, mica and 
siderite. No negative mineral phases are present and evidence of colinearity in the 
'problematical' Rannoch Formation is minimal.
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As a contrast, Figure 5.13 shows a model processed for the same section where the 
mineral assemblage is fixed (for all depth intervals) and muscovite and biotite mica are 
modelled as separate phases. The model is heavily in error with large positive values (up to 
350 wt%!) of kaolinite, K-feldspar, and biotite corresponding to large negative values of 
muscovite (down to -700 wt%). Compositional colinearity between muscovite-K-feldspar- 
kaolinite quartz causes the meaningless solutions in addition to the fixed  mineral assemblage 
forcing the minerals, not present, to be solved for. The cross-plots for these minerals. Figure 
5.14, show the effect of such an erroneous solution. A set of significant negative correlations 
are produced between muscovite estimates and all three minerals. This is a response to the 
system becoming unstable, so that when muscovite is violently negative the model 
compensates by estimating more, K-feldspar, kaolinite (and biotite) to balance the solution. 
This results in increased positive values for these minerals. Biotite is effected here as the 
muscovites contain reasonable amounts of Fe and Mg.

5.6 3.3 Comparison of different transform models

Table 5.14 summarises correlation coefficients for mineral estimates between the 
Euclidian model and the Least Squares, and Linear Programming models, respectively. Least 
Squares Error-minimisation and Euclidian Distance models predict almost identical mineral 
estimates (perfect correlations) consistent with previous observations in Chapter 3 and 4.

Table 5.14 Correlation coefficients of mineral phases predicted by Euclidian Distance model 
and Least Squares (first row) and Linear Programming (2nd row). Ksp = K-feldspar

Quartz Ksp albite Kaolinite Mica Pyrite Siderite Rutile
1.0 0.999 1.0 1.0 0.999 0.976 0.995 0.999
0.998 0.885 0.903 0.995 0.682 0.959 0.794 0.845

Linear Programming shows less of a correlation with the Euclidian model. Modal 
estimates are compared in Figure 5.15 although correlation between models is best observed 
on the cross-plots in Figure 5.16. Quartz and kaolinite show near perfect correlations (Figure 
5.16 plots A & B). Albite shows a consistent over-estimation of 3-5% by Linear 
Programming. K-feldspar, siderite and rutile all show good correlations except for slight 
deviations by a few samples, (notably less than 7% albite, and more than 5% siderite).

The most notable discrepancy is that of mica (plot D). Samples with high concentrations 
of mica have a reasonable correlation with the Euclidian model. At concentrations below 
15% the majority of Linear Programming solutions do not identify mica even in the mica rich 
Rannoch Formation (points lying on the X axis). It is these samples from the Rannoch, that 
produce the scatter of points on the cross-plots for K-feldspar, albite and siderite.

5.6.4 Stochastic modelling of the Rannoch Formation.

As a final enhancement to the processing case study, muscovite was stochastically 
modelled on all samples from the Rannoch Formation. The same input parameters (Section
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5.6.3.1-2) and strategies were used in this model except that K-feldspar and albite feldspar 
were modelled as a binary phase, using equal proportions of both minerals. Muscovite and 
biotite micas were modelled as separate phases. Muscovite is chosen to be stochastically 
modelled, although biotite could alternatively be modelled, except that there is insufficient 
compositional data from this study to produce a meaningful sample. The mean and 
covariance-variance data in Table 5.12 was used to generate the relevant compositions in the 
model.

Results of the model show reasonable muscovite estimates of between 3-13 wt%, fairly 
typical for the formation, see Figure 5.17. Estimates of kaolinite appear closer to core 
estimates than the first pass estimates. Feldspar estimates are in close agreement over the 
section except for a spike (viz. 10578') in which the sample is clearly in error. This is 
probably a manifestation of compositional colinearity as it corresponds to a large increase in 
muscovite. Cross-plots in Figure 5.18 show the distribution of model generated muscovite 
compositions for all samples. Plots of Fe203-A1203 and Mg0-A1203 (plots E & F) are in 
good agreement with the distributions seen in Figure 5.10 (actual mineral data). The model is 
reasonably successful in that it allows independent estimates of biotite and muscovite without 
the severe colinearity problems previously encountered. It is, of course, helped by having the 
two feldspars combined as a binary phase.

5.7 Synopsis and conclusions from the case study

This case study demonstrates how through careful choice and implementation of suitable 
strategies it is possible to effectively alleviate the problems that previously rendered a 
solution poor or meaningless.

Good correlations between mineral estimates from core and the Euclidian Distance and 
Least Squares-Error minimisation models are seen throughout the Thistle section, especially 
for the major minerals. This suggests that both models predict sensible, viable, mineralogy 
for the majority of the samples. A few excursions inevitably occur, such as at 10499 for K- 
feldspar, which could be due to inaccuracies in either element chemistry or the core 
estimates, or simply due to the inherent problems with the comparison of such different 
sample volumes. Once problematic variable minerals are recognised, stochastic modelling 
may then be employed to further enhance the solution. It is less easy to assess the prediction 
of the minor mineral phases simply because core mineralogy is not reliable. On qualitative 
grounds, the minor minerals (as verified by thin section, MINERALOG and SEM), are not 
unreasonable predictions for the mineralogy present.

Linear Programming predicts mineralogy in a similar fashion to the Euclidian and Least 
Squares models throughout the Ness and Etive intervals, except for a slight over-estimation 
of albite feldspar and minor spikes which correspond to intervals with poor solution 
(decreased P%acc, seen in Figure 5.15). In the Rannoch, however, erroneous solutions of 
muscovite, K-feldspar and siderite, occur frequently suggesting that the model has difficulties
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solving for the mineralogy. The problem lies in the inability of the model to correctly 
partition K 20 and Fe203 oxides between the three problematical phases K-feldspar-mica- 
siderite . This suggests that Linear Programming is more affected by colinearity than other 
models. This is discussed further in Chapter 6 .

5.8 Synopsis and discussion of strategies

A desirable transform model and strategy should be capable of handling at least the 
number of phases present in a rock sample and yet be sensitive to the effects of compositional 
colinearity and variation in mineral composition. In part, this has been demonstrated possible 
by the implementation of modelling strategies described through this chapter. The possible 
mineral modelling routes are summarised in Figure 5.19

In terms of variable assemblages through a sequence, the selected assemblage strategy 
appears most appropriate. Standard Error, as used in this strategy, may not necessarily mean 
a geologically 'correct' answer, although experience has shown that the correct solution 
invariably derives the lowest estimate. The reducing strategy is not considered a valid option 
in the light of compositional colinearity, which may produce large negative estimates, for 
phases that do actually exist in a rock. With this strategy such phases would be erroneously 
subtracted before solution.

Reducing the number of mineral phases to make a system over-determined is a very 
important consideration for measurements from the GLT tool, where there are often fewer 
oxides than in a conventional laboratory analysis. The binary strategy is effective for 
reducing mineral numbers. It does rely, however, on an accurate knowledge of mineral 
phases prior to modelling, and on the mineral assemblage present. These are fundamental 
prerequisites to the whole modelling approach anyway. Both the iterative binary approach 
and the 'manual' combination of two phases prove successful for estimating the feldspar 
series and the micas through the Thistle section. Use of this strategy does mean a reduction in 
the overall usefulness of a model, as the two phases are no longer independent estimates. 
This may be important for minerals such as clays which may need to be determined 
independently to estimate their effect on cation exchange capacity (CEC). For feldspars, 
however, are independent estimates necessary?

Compositional colinearity must be recognised early in processing. Strategies such as the 
binary or iterative removal strategy may then be employed. The binary strategy, which in 
effect 'pulls' a mineral phase off such a compositional plane, is very useful in alleviating 
colinearity. The iterative removal strategy offers a different approach in which to subtract 
problematic phases prior to solution. In the examples illustrated, muscovite was subtracted as 
an arbitrary choice, although any colinear phase can be subtracted. One drawback with the 
current strategy is that no variation in composition of the subtracted phase can be taken into 
consideration; for this reason muscovite may not be the most suitable phase to subtract here.
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The inclusion of additional physical parameters to a model, in the case of bound water, 
can significantly improve a model's solution if estimates are at least as accurate as the other 
input responses. Improved estimates of kaolinite, an important diagenetic (hydrous) phase 
through the Thistle section, occurred when H20+ was included. Additional parameters may 
also contribute towards the 'suppression' of compositional colinearity, again by pulling 
phases from the under-determined compositional plane. It is doubtful, however, that H20+ 
estimates from logging tools can provide accurate enough estimates to model; this is 
discussed in Chapter 6 .

Modelling with density in quartz-feldspar lithologies, in which minerals exhibit similar 
densities, should be avoided. Such a variable introduces 'noise' to the solution and a sparsity 
to the components matrix. It may, however, be useful when a clear contrast in the density of 
minerals being modelled, is present.

The weighted Least Squares model provides an important method, especially for logging 
measurements, of allowing a solution to be weighted in favour of more accurate oxides. This 
method was successful in improving a solution when H20+ was weighted with respect to the 
oxides.

In terms of establishing correct mineral compositions for a model, the binary strategy can 
be useful for determining composition of reasonably fixed solid solution systems. Stochastic 
modelling provides an alternative approach, one that is geologically viable, and extremely 
important if an attempt is to be made to model minerals with highly variable compositions. 
The number of trials in composition the model can make is important. Sufficient trials should 
be made to satisfy the spread of the population; this should be no less than 1 0 0 0  iterations per 
sample, although computational time, at present, is the restriction on the upper limit chosen. 
Different computational approaches may improve this. Drawbacks with the current 
algorithm include the restriction of this strategy to model one phase only, where quite often 
more than one phase may be present. The model may also be improved to account for bi- 
modal populations of compositional data; a property that could easily be expected in detrital 
sediments with more than one contributing source area. For such data, the establishment of 
boundaries, that restrict the compositions chosen by a model, could be implemented.

The majority of the models discussed above are shown to be effective in the relevant 
situations when modelled with laboratory-core data. These models and strategies remain now 
to be evaluated on real logging data where fewer oxides are present and where greater 
measurement errors exist.
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Chapter 6.
Mineral transform modelling and evaluation of GLT data from the

Thistle hole 211/18-A50(40).

6.1 Objectives

Until now, the evaluation of mineral transform techniques has involved using well 
constrained elemental data acquired in the laboratory. The primary aim of this chapter is to 
extend the evaluation study to the borehole environment, and demonstrate the capabilities and 
limitations of mineral modelling using log derived elemental measurements.

Geochemical Logging Tool (GLT) derived elemental measurements, acquired from a 
different section of reservoir in the Thistle Field, are used as input chemistry for the 
determination of mineral estimates. The first section of this chapter looks at the logging results 
from the GLT tool string and identifies areas of poor measurement quality. This involves a 
critical evaluation of the processing techniques and derived elemental estimates. This is 
important because the quality of measurement made from the GLT tool will influence the final 
mineral estimates by any transform model. The second section of the chapter presents the 
different attempts at mineral modelling these log data, using three previously introduced 
transform models. Each model is critically compared with core and with the other models in an 
attempt to further assess accuracy (and therefore usefulness), as well as associated problems of 
each model. Work in this chapter draws on the observations made throughout earlier chapters, 
and attempts to verify and extend those conclusions. Familiarity of the Brent Group mineralogy 
from Chapters 4 and 5 helps considerably with the interpretation of data from this hole.

A secondary aim of the chapter is to demonstrate the effect that mineralogy has on nuclear 
wireline logs, something which can only be attempted with a good prior knowledge of the 
formation being logged, as is the case here.

6.2 Introduction

It was fortunate for this study to be able to acquire logging data from the same field as the 
previous hole. Besides the acquisition of weight percent elemental concentrations from the GLT 
tool, more conventional nuclear, sonic and electric logs were obtained from hole 211/18- 
a50(40). Only nuclear logs, however, will be discussed here.

Hole 211/18-a50(40) lies 1.75 km due north of hole 211/18a-a33 (see Figure 4.2) and 
consists of the same Brent Group sequence except that a major fault displaces the middle 
section of the Group. The missing sequence includes the lower and mid Ness, the complete 
Etive and the upper Rannoch formations. It is unfortunate, however, that no correlation can be 
made with hole 211/18a-a33, as it contains precisely those formations! Chapter 4 details the 
petrography of the Brent sequence, so only a brief summary of the specific sedimentological 
and pétrographie features of the hole is given. This is summarised concisely in Figure 6.1.
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6.3 Geology and lithological/petrological trends of the section

Each of the formations in the Brent Group section studied here contain essentially the same 
mineralogy. It is possible, however, to see changes in sandstone composition on three scales. 
These include broad compositional changes between formations (lithological units) as seen in 
the first hole; changes within formations as gradually increasing/decreasing trends, often by 
individual minerals; and thirdly, local changes between sample intervals, notably in minerals 
with low abundance such as siderite cements, pyrite and calcite.

Both semi-quantitative whole-rock XRD analysis (calibrated using standard mixtures and 
peak area/height measurements) and thin section data (300 points) were available for 39 
samples, spaced at approximately 3’ intervals; considered as being representative lithologies. 
These were analysed by Lomond Associates and documented in a report to Britoil (Russell, 
1987). These modal estimates are subjectively compared later, as any discrepancies between the 
two will be critical in the evaluation of the mineral models. XRD totals have not been re­
normalised to 100 except where they deviate greater than 5% from 100%. Thin section data was 
converted to dry wt% after subtracting porosity, so as to be compatible with XRD and 
modelling results; see Appendix 6.1. The average mineralogical composition of each formation 
is summarised in Table 6.1. A brief summary of the main pétrographie trends is given here, 
primarily to familiarise the reader for later evaluation of the logging data and mineral modelling 
results.

Tarbert Formation
This consists of four distinct lithological units (Tl-4, see Figure 6.1), composed 

dominantly of very fine micaceous, sub-arkosic sandstones. The main compositional variation 
takes place in the cements, micas and feldspars. A im  'calcite dogger' in unit T3 iyiz. 9223'- 
9226' core depth) causes a local increase in calcite and siderite and reduction in quartz (often to 
below 30%). Other localised siderite concentrations also occur. Mica is prominent throughout, 
but varies locally (from 4-38 wt%, [combined biotite and muscovite]) muscovite being slightly 
predominant over biotite (average 8 %-XRD, 12.5% -Thin section). The highest feldspar 
values for the complete interval are found in this formation (average 26.5% XRD, 17.7% - thin 
section). A noticeable variation in feldspar occurs between samples, although not in any 
observable pattern. Pvrite is low in abundance except for local concentrations (up to 17% - 
XRD). Kaolinite is the dominant clay (average 18%), chlorite is identified at the base (<4%), 
and mixed layer illite/smectite between 9205' and 9211'.

Upper Ness Formation
This consists of a less micaceous, very fine to medium sandstone which coarsens upwards 

from silty-sand at the base of the unit. These sands are interbedded with thin organic rich 
mudstone/shales (considered terrestrial) in the upper half of the unit, notably between 9271- 
9274.5'. The lower and mid Ness Formation are considered absent due to major faulting. The 
highest quartz values are seen in this formation (average 65 wt% ) although a drop below 30% 
occurs where siderite cement is present, i.e. 9246.6'. Mica is virtually absent in the upper half,
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increasing in abundance at the base of the unit to 12.5% (average 3-4%). Feldspar (K-feldspar 
and albite) and kaolinite are both lower in abundance than the Tarbert, although a slight increase 
is seen in feldspar in the coarser units above 9271' (average-18% (XRD), 13%-thin section). 
Kaolinite is significantly lower than all other formations (average 7-10%) and pyrite is locally 
present up to 5%.

Table 6 .1 Summary of minerals observed by XRD (wt %) and thin section point-counting (vol. 
%- 300 points) for each formation in hole 211/18-a50(40). Number of samples = 39. Max- 
maximum concentration, min- minimum concentration, std- Standard Deviation.

Tarbert Fm. Mean
XRD
std min max Mean

Thin section 
std min max

quartz 42.6 16.70 15 80 43.3 15.24 11 63
kaolinite 18.5 16.70 5 35 16.8 728 4 30
total feldspar 26.5 5.56 10 35 17.7 3.07 11 23
mica 8 4.96 4 20 12.6 8.43 1 38
siderite 2.1 6.48 0 23 4.9 13.43 0 50
pyrite OS 4.04 0 17 2.56 3.87 0 13
calcite 1.42 4.32 0 15 2.13 6.29 0 26
Ness Fm
quartz 64.3 16.8 36.5 80 69 13.47 45 79
kaolinite IB 6.54 0 27 10 10.35 0 27
total feldspar 18.8 3.94 15 24 13.7 3.12 8 16
mica 3 528 0 12 4 527 0 13
siderite 12 2.92 0 6 1.1 1.55 0 3
pyrite 1.88 2.06 0 5 1.5 2.0 0 4
calcite 0 0 0 0 0 0 0 0
Rannoch Fm
quartz 40 6.45 14 75 45 13.70 19 69
kaolinite 19 6.45 5 30 13.7 7.07 5.3 25.5
total feldspar 22 7.89 10 36 10 127 8.3 12
mica 16 9.51 2 44 23 14.23 2 53
siderite 1.1 1.53 0 4.4 72 3.73 1 14
pyrite 0 0 0 0 0.5 0.57 0 1
calcite 0 0 0 0 0 0 0 0

Minor mineral phases (<2 wt %) (absolute estim ates are speculative)

mille Fe-dolomlte llllte llllte/smectlte

Rannoch Formation
This lies unconformably below the upper Ness Formation. It appears lithologically similar 

to the Tarbert, composed dominantly of a micaceous very fine sandstone in the top half. The 
bottom half consists of a coarsening upwards sequence from silt and silty-sandstone to 
argillaceous very fine sandstone. Mica here has the highest concentration of the section, 
increasing towards the centre of the formation (average 16% (XRD) 23% (- thin section)), 
biotite being slightly predominant over muscovite. A discrepancy in feldspar estimates occurs 
between thin section and XRD most notably in this unit; the average for XRD is 22% and thin 
section 12%, however, thin section is reported to under-estimate feldspar. Siderite cement is 
generally present, but variable (up to 14%). Quartz decreases towards the base of the formation 
particularly where mica and siderite content is higher. Kaolinite is significantly more abundant 
than in the Ness Formation (19% XRD, 13% - thin section) although similar to the Tarbert

Broom Formation and Dunlin Group
The Broom Formation consists of dark grey shaly siltstone interbedded with poorly sorted 

very coarse sandstone (only one core XRD sample was collected). Quartz and kaolinite are 
most abundant with localised siderite cement. K-feldspar becomes more abundant towards the 
base, mica towards the top. Minor Fe-calcite is observed by thin section staining. The Dunlin 
Group lies conformably below the Brent sequence. This is a shale lithology representing the
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fully marine environment before the onset of the Brent Group "regression". Only the very top 
part is present although no samples are available.

6.3.1 Comparison of core XRD data and thin section point count data

Due to the inherent problems with both thin-section point counting and whole-rock XRD, 
both methods of modal estimation are included in this study in order to establish as good an 
estimate of mineralogy as possible for the validation of wireline data and mineral models. 
Figure 6.2 shows the cross-plots of XRD and thin section estimates for the main minerals in the 
section. The thin section data has porosity removed to be compatible with XRD (and with 
modelling results). Agreements are reasonable; however a few discrepancies do occur:

a) A notable problem with thin section point counting (besides a rather low 'contractors' 
choice of 300 points for a very fine sandstone), was the suggestion by the contractor that quartz 
was over-estimated at the expense of feldspar. This was attributed to the problem of uneven 
staining in differentially weathered feldspar crystals. An empirical correction factor involving a 
decrease in quartz of 8 % and an increase of 8 % for feldspar (3% for albite, 5% for k-feldspar) 
was suggested by the contractor. The data presented here include this correction but compared 
to XRD estimates, feldspar is still under-estimated at higher values (plot d. Figure 6.2).

b) Conversely, mica is under-estimated by XRD relative to thin section (plot c) and this 
may be due to orientation effects or a poor calibration standard.

When compared, both techniques show significant correlations for both quartz and 
kaolinite, quartz being very high (correlation coefficient of r= 0.95). XRD-kaolinite is 
hampered slightly by preferred orientation effects and variable crystallinity between sandstone, 
siltstone and shale; a well crystalline standard (from a sandstone) was used. Thin section, on 
the other hand, only identifies crystalline, matrix, kaolinite. The less crystalline, clayey 
kaolinite was identified and 'lumped' with other clays. In general the 'low abundance' mineral 
phases, siderite, calcite and pyrite (plots e, f, g), show very poor correlations. This is inevitable 
with such different methods of mineral estimation and variable limits of detection.

6.4 Evaluation and interpretation of wireline data from hole 211/18- 
a50

6.4.1 Introduction

The borehole environment is often a very hostile place for delicate logging instruments. 
Tools will either fail to operate under adverse conditions, or more commonly, produce 
erroneous measurements. Such errors will normally either mask or totally exclude any changes 
in formation mineralogy and fluids. This section looks at the quality of elemental data recorded 
by the geochemical logging tool and demonstrates how bad hole conditions, as well as bad 
processing, will affect the final estimates. It aims to identify some of the pitfalls in the 
geochemical processing of GLT data, and show how reprocessing, with geological input, can 
increase the data quality.
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Figure 6.2. Cross-plot of core mineralogy (wt%) estimated by thin-section point counting 
(Y axis) and whole-rock X-ray diffraction (X axis) from hole 211/18-a50, Thistle Field.



Chapter 6, Mineral modelling o f GLT derived data

From the GLT measurements in 211/18-a50 it is possible to estimate the elemental 
abundance of Si, Ti, Al, Fe, Ca, K, S, and Gd. The steps deployed to produce these estimates, 
and the errors involved, have been introduced in Chapter 2. A first pass attempt at processing 
the log data was performed in 1986 using early prototype processing routines, which were 
predecessors to the routines described in Chapter 2. Due to a number of discrepancies within 
this data, it was reprocessed in 1992 (by Schlumberger) on request of the author. Reprocessing 
provided logs of seemingly sufficient quality to allow mineral modelling of this data.

We shall now look at the discrepancies in the original log data (pass 1), attributed, firstly, 
to data acquisition problems and, secondly, to post-acquisition processing problems.

6.4.2 Data acquisition problems

Bad hole conditions, washouts and tool stand-off

The indication of bad borehole wall conditions can be clearly seen in Figure 6.3 on the 
caliper reading (DCAL). This shows an increase up to 30 cm from the standard hole diameter, 
primarily between intervals 9150'-9200' and as small spikes at viz. 9380', 9387', 9318', 
9322'. This corresponds to the occurrence of shaly and sand/shale lithologies where drilling 
has caused washouts. The immediate effect can be seen by large excursions on the porosity 
(NPHI), the PEF (photoelectric factor) and bulk density (RHOB) nuclear logs. The effect of 
washouts is to increase the distance between the tool and the formation, and therefore volume 
of drilling fluid separating the two. The magnitude of the effect on logs is partially dependent 
on the drilling mud used. Washouts affect the tool measurements in various ways:

a) In the case of the bulk density log (RHOB), an increased volume of drilling 
fluid, in this case, decreases density, see Figure 6.3. This is attributed to an increase in H2O, 
which is less dense (density, viz. Ig/cm^). A lower density results in less Compton Scatter 
reactions occurring; which allows more gamma-rays to be returned to the detector. If barite 
(BaS04) were present as a drilling fluid, because of its large density (due to the atomic weight 
of Ba), it would induce an increase in Compton Scatter reactions, with the effect of increasing 
density. Barite was not used as a weighting material, as is common; magnetite was used instead 
(M. Herron pers. comm., 1992). The density tool only works well when forced against the 
borehole wall (effectively like a pad device). The dual sensors compensate for mudcake build­
up but generally not for stand-off.

b) Magnetite, however, has a high photoelectric absorption cross section 
(PEF)(see Section 2.2.4) which is attributable to its Fe content. This is the cause of the increase 
in the photoelectric factor (PEF) over these washed out zones. PEF is required to calculate the 
Mg (-f Na) in processing (refer to Section 2.3.6). No attempt was therefore made at calculating 
Mg (+ Na) as the PEF is effected by the mud. It is also observed that Mg is not abundant 
through the section and any estimate is considered below any sensible detection limit for this 
calculation (Hertzog et a l, 1989), refer to Section 2.2.4.
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c) The use of magnetite, as with barite (as a drilling mud additive), in the 
situation of an extreme washout will also affect the natural gamma-ray signal that is measured 
by the NOT tool (see Section 2.2.1). Both of these mud additives will induce more Compton 
Scatter reactions through the borehole, reducing the count rate at the detector. The net effect is a 
reduction in the K, U, Th estimates. Estimates are relatively reduced through the interval 9150'- 
9200', but remain high due to the contribution of K, U, Th from the mudstone lithologies.

d) The effect of washouts on neutron porosity is to increase estimates over such 
intervals. This is a consequence of increased H in the drilling fluid (in H20). H is an excellent 
neutron attenuator and has the effect of annihilating thermalised neutrons, reducing the neutron 
count at the detector; which increases the porosity estimate (see Section 2.1). The presence of 
Cl in saline drilling fluids will also affect neutrons at thermal energies (see Section 2.4). The 
neutron measurement may also be influenced by H+ present in the shale lithology (in clay 
minerals) that dominates these washouts. Porosity increases to as much as 95% at viz. 9280'.

Effects from tool stand-off, as described here, can be corrected for by most tools, but here, 
extended washouts occur (> 25 cm) in radius, for intervals up to 16m (50') in vertical depth. 
Density and NOT tools commonly have a depth o f investigation of less than 25 cm; any 
measured signal will therefore only be from the borehole and rendered useless. This was 
discussed in Chapter 2, where the effects on the GST tool were demonstrated in Figure 2.7. 
Unfortunately severe tool stand-off effects cannot be solved by enhanced processing. Effects 
are therefore present in the second pass (pass 2 ) processing and measurements from that 
particular interval deemed unreliable. All logs for pass 1 are summarised in Appendix 5.0.

6.4.3 Poor post-acquisition geochemical processing.

This following section is by no means a slur on the techniques employed by Schlumberger; 
it is instead an exercise to demonstrate that careful processing of GLT data, and recognition of 
errors, is imperative if elemental estimates are to be acquired for mineral modelling.

For most measured elements, poor estimates were obtained from the first (pass 1) 
processing. This includes very low values for Fe (mean value viz. 0.010 wt%, standard 
deviation (Sd.) = 0.058 wt%), higher than expected values for Ca (mean 7.4 wt%, Sd. = 3.66 
wt%) and S (mean 5.19 wt%, Sd. = 1.99 wt%). There is also a marked negative correlation 
between Si and Ca abundance, as shown in Figure 6.4. These are all the result of a) the input 
of wrong constants in the processing routines (such as drill fluid composition or gain and offset 
values), and b) to poor spectral inversion. Unfortunately, no details of the former were 
available and so cannot be commented on except to suggest it is a serious problem and one that 
probably accounts for the poor Fe concentration. The latter is, however, the cause of the 
inverse correlation of the Si and Ca, which inadvertently affect all other GST estimates.
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6.4.3.1 Spectral inversion and element re-partitioning

To explain this effect it is necessary to examine in more detail the method of resolving the 
spectrum into different elemental components to produce elemental yields.

The assumption when determining the relative contribution of an element from the total 
GST spectrum (refer to Section 2.2, and 2.3) is that the recorded spectrum (U) can be 
represented as a linear combination of a set of 'standards' or basis spectra of each element 
(Grau et a l, 1980); such that the spectrum (U) is given by:

Un = Sni . Yj + 6n (1)

Where n is the number of channels in the spectrum (normally 181). Yi is the spectral yield 
coefficient which represents the number of counts in spectrum U which can be attributed to 
element i; and Sni. is the standard spectra for element i, called a linear estimator. These 
standards (Sni) are laboratory determined for each element. Two linear estimators, for the 
elements Si and H, are shown in Figure 6.5 (other elemental standards, in conventional spectral 
form, are shown in Figure 2.6). £n is an associated error for each elemental yield.

With the spectrum (U) known and spectral standards (Sni) known, the determination of the 
relative elemental contributions (yields; ie, Yi) from this spectrum can be performed by 
inversion. A weighted Least Squares inversion is used, as described in Chapter 3 (section
3.3.3), such that the best estimate of Yi is the set which minimises the sum of the squares of the 
errors (£n) over all channels (n). Weighting the inversion takes into account any statistical 
uncertainties (precision) for each element in each channel. For a simple spectrum like H, the 
linear estimator is more or less just an image of the standard spectrum (like in Figure 2.6). 
However, for other elements, such as Si, it is more complicated, see Figure 6.5. Each linear 
estimator is positive in channels where its elements have spectral peaks and negative where 
other spectra have peaks. As these spectra overlap one-another, the negative parts of the linear 
estimators keep one elements counts from making a net registration as another element. Each 
linear estimator must be orthogonal (n-1) to the other standards. This forces a closure constraint 
on the calculated spectrum. A side effect of the induced closure is a forced correlation between 
some standards; for example, between Cl and Ca, and Ca and Si. Elemental yields are therefore 
not only determined by the counting statistics but also by these correlation statistics (ie, the 
extent the peaks either overlap or mutually interfere).

To illustrate an example; in the event of a high Cl yield, such as in a washout zone or with 
high porosity, the Cl spectra will dominate the spectrum. The effect of the massive interference 
spectra of Cl is to mask the real signature of the other spectra by forcing an increase (or 
decrease) in an elements yield which corresponds to its correlation with Cl. Cl has a strong 
negative correlation with Ca spectra. In such a case the Ca yield will be decreased. Because Ca 
and Si also have an inverse correlation; a decrease in Ca will force a increase in Si. In this 
situation the inversion becomes unstable and negative yields can occur. The net effect is to 
make the resolving of true elemental yields impossible. This probably occurs in the washout 
interval between 9150' and 9200'.
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Such a correlation between Si and Ca is present in the first pass processing of Figure 6.4, 
in the large washed-out interval (9159-9200') and in smaller intervals between 9200' and 
9400'. A correlation is more likely to occur for Si and Ca than other elements as either element 
is typically the most abundant in a sandstone-carbonate lithology. The original processing here 
cut Ca off at zero although the inversion is likely to have caused negatives. This correlation will 
cause an effect on all the other elemental yields in a similar way to the Cl effect.

In Chapter 2 (Section 2.3.5) it was shown that spectral standards may be removed in the 
absence of an element, or alternatively new spectra added. This involves the re-partitioning of 
that spectral contribution between the remaining spectra for which proprietary re-partitioning 
coefficients are used. This is routinely done for K if there is any difference between the 
relatively poor GST measured spectrum and a 'back-calculated' K spectrum derived from the 
NOT tool (which represents a better estimate of K). The Cl problem may therefore, in less 
severe situations, be partially resolved by re-partitioning small scale Cl changes in the Cl 
spectrum to the other spectra (Jarrard & Lyle, 1991)

The introduction of new spectral standards recently allows a more accurate inversion to be 
performed especially for the resolving of Ca and Gd ( M. Herron, pers. comm. 1992). The 
new Cl standard more closely reflects the Cl signature from the borehole and less from the 
formation Cl. This reduces the effect on other elements which are more closely correlated to 
formation Cl and is especially a problem from older tools which had no boron sleeve fitted ( J. 
Bristow, pers. comm. 1992). The effect is to reduce the correlation between Cl - Ca and Gd - 
Sm in particular.

Figure 6 .6  demonstrates the improvement in the Fe, Ca and Si estimates in the second pass 
processing. This is due to enhanced spectral standards and improved input parameters. Pass 2 
estimates of Si and Ca (see Figure 6.4) show no correlation with each other and probably 
represent contributions from the real spectrum. Unfortunately no elemental data were available 
to compare the accuracy and precision of these estimates. Calculated oxide percentages do, 
however, closely mirror the gross changes in lithology seen through the interval 9200 - 9400' 
as demonstrated in the next section.

6.5 Correlation of log derived element chemistry to mineralogical & 
geochem ical trends.

Log derived elemental and physical measurements are now compared with the small scale 
mineralogical - lithological changes observed throughout the interval from viz. 9200' to 9390' 
(core depth). The aim of this is to illustrate the effect of both measurement resolution and 
lithology on GLT elemental measurements. The logs considered here include: the elemental 
oxides - K20, Si02, CaO, A1203, Fe203, Ti02; bulk density, Xtotai» natural gamma-ray 

(SGR), neutron porosity and caliper. These are illustrated in Figure 6.7 a & b. The geochemical 
measurements shown here are represented in their most common oxide form and the one used 
in later mineral modelling. With the exception of the neutron and bulk density measurements,
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all of the above logs respond primarily to the formation matrix and are therefore lithology 
dependent.

6.5.1 Tarbert

The most prominent log excursion in the Tarbert is caused by the calcite 'dogger' {viz. 
9225'). Increases in CaO and Fe203 respond to the Fe-carbonate, mirrored by decreases in 
S i02, natural gamma-ray (SGR), K20, A1203 logs respectively; see Figure 6.7 a & b. 
Porosity (NPHI) also drops in response to the tightly cemented Fe-carbonate, while density 
increases in response to increased Fe in the carbonate. Refer to Chapter 3, Figures 3.8 and 3.9 
for the extent that the common minerals in the Thistle Field, Brent Group, contribute to the 
oxide proportions - A1203, K20, MgO and Fe203.

The upper T2, quartz rich, unit above the 'dogger', shows a high Si02 excursion (78%) 
and porosity (NPHI) reflecting the medium to coarse sandstone. These mirror decreases in 
A1203 and K20, CaO, Fe203 (see Figure 6.7b) relative to the surrounding (Tl) lithology. The 
micaceous fine sandstone (Tl) lithology that dominates most of the Tarbert reflects the overall 
increase in the K20, A1203 and SGR signature, especially between 9225' and 9245'. Two 
siderite cement horizons through the Tarbert give high Fe203 and density spikes {viz. 9240' 
and 9260') and CSIG is also increased, while Si02 is decreased. CSIG is a measure of the total 
thermal neutron absorption cross-section of the borehole and formation (Ztotai)- Increases in 
CSIG are the direct response of Fe cement at 9240' (Fe having a large Z); but at 9260', (a 
siderite-siltstone at the boundary of the Ness and Tarbert) increases in CSIG are due to the 
combined effect of increased borehole fluid Cl influence - induced by a washout (indicated by 
the caliper log), and also the effect of the Fe in the carbonate.

6.5.2 Ness

The Ness is hampered by a number of washout zones, shown by an increase in the caliper 
and CSIG. These washouts coincide with the finer grain mudstone - siltstone lithologies (Nl, 
N2, N5 units) present throughout this heterogeneous unit. The most prominent mudstone/shale 
interval (N2 - viz. 9272' - 9276') shows classic shale-mudstone responses - including 
increased SGR, NPHI, CSIG as well as increased A1203 and K20 and Fe, which reflect the 
dominant kaolinite clay - mica mineralogy; while Si02 and RHOB are decreased. Caution must 
be exercised in interpreting the absolute values obtained when large caliper increases occur, in 
view of the borehole effects referred to in Section 6.4.

The coarser sandstone units of the Ness show some interesting trends. The N4 unit, 
described as coarsening upwards, from 9295' to 9276', shows a gradual increase in Si02 from 
60 - 80%; with mirrored decreases in A1203 and K20, SGR, Fe203. This clearly reflects the 
coarsening up trend caused primarily by an increase in quartz and decrease in mica and clay 
minerals. Localised siderite or pyrite horizons, however, cause the Fe203 log to deviate 
locally. The unit N l (top Ness) shows a decreasing Si02 trend reflecting a gradual fining
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Upwards, however, influences from other minerals tend to obscure this trend on the other log 
curves. The low A1203 and K20 signature in the N4 sandstone unit, relative to the sandstones 
in the Tarbert and Rannoch, reflect the lack of mica and kaolinite in this unit.

The base N5 unit has the worst caliper deviation (up to 40cm) and this correctly reflects the 
major fault between the Ness and the Rannoch that is implied from core data.

6.5.3 Rannoch

The top, R l, micaceous Rannoch unit shows a similar elemental signature to the Tarbert 
sandstones; notably a reasonable K20 and A1203 signature which reflects the feldspar,
kaolinite and mica content. It shows very consistent values for most elements reflecting its
homogeneity. The minor fault {viz. 9328.5'), between the R l and R2 units, is recorded as a 
small caliper deviation (with an increase in CSIG). Another coarsening upwards sequence, unit 
R3, manifests as a decrease in K20, A1203 and SGR and a small increase in Si02 upwards. 
Pyrite causes an increase in Fe203 at the top of the R3 unit.

6.5.4 Broom and Dunlin Formations

The Broom Formation is not clearly resolved by any logs and this is probably an artefact of 
the mixed sand-silt character of this small (Im thick) interval. The Dunlin shows the highest 
SGR measurements (150 API units) and low Si02, Fe203 and A1203 signatures characteristic 
of a return to a shale lithology.

6.6 Mineral modelling of GLT derived elemental data

Section 6.4 demonstrated the importance of assessing the validity of log derived elemental 
measurements before attempting any mineral modelling. The Pass 2 elemental data are 
considered to be good enough, from assessment in section 6.5, to use for the mineral 
modelling. The exception to this is where washouts in the hole are large. For this reason only 
the interval viz. 9200' - 9375' (9217'-9390' log depth) was selected for modelling.

6.6.1 Model parameterisation

The elemental data available for this interval, converted to oxide form include: Si02, Ti02, 
A1203, Fe203, CaO, K20 and S. No estimates of Na20 or MgO are possible from the tool in 
the hole, due to the poor PEF estimates effected by the Fe rich drilling mud (Section 6.5). 
Elemental measurements are tabulated in Appendix 6.2.

Collection of mineral composition data for this hole was beyond the scope of this study as 
no core was available. In the absence of such mineral data the compositions used in the earlier 
Thistle modelling, were employed. This choice is considered reasonable because of the 
similarity in the mineralogy and petrology of the two Thistle holes and the relatively short 
distance between them (1.75 Km). In any case, these mineral data probably represent the most
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likely sort of data that would be available for a typical field-wide study. The major phases 
identified throughout the Brent Group here are very similar to those in the previous hole 
211/18a-a33 although calcite and pyrite appear more common. These include quartz, K- 
feldspar, albite, muscovite, biotite, siderite, kaolinite. Some sandstones also contain negligible 
amounts of mixed illite/smectite, illite or chlorite which are too small to model independently.

6.6.2 Adopted strategies

It is clear that with the absence of MgO and Na20 oxides that a reduced set of oxides is 
present The system to be solved is essentially under-determined with 7 oxides and 9 minerals. 
Without Na20, albite (sodium) feldspar cannot be estimated. The strategy adopted to overcome 
this is to combine the two feldspar minerals into one 'binary phase' in equal proportions, as 
suggested from core estimates {binary phase option, refer to Section 5.3). Similarly, muscovite 
mica and biotite mica are combined in to a single phase, 'mica'. Producing binary phases has 
the effect of reducing the minerals to be solved for by 2 , making the system fully-determined. It 
was also shown that binary phases in fact help to reduce the effect of compositional colinearity, 
which occurs in the Rannoch and Tarbert Formations (refer to Section 5.4.1). Phases that are 
therefore available to model include quartz, total-feldspar, total-mica, kaolinite, siderite, calcite, 
pyrite, +/- rutile. Adopted mineral compositions are listed in Appendix 6.0

The selected assemblage strategy (Section 5.2) has been implemented to allow the mineral 
assemblage to vary at each sample interval. This has proved to be the preferable strategy in 
previous modelling (Section 5.6), in essence, allowing the best of a choice of assemblages to 
be chosen. The twelve assemblages of minerals identified from core observations are 
summarised in Table 6.2. These were the initial choice of assemblages input to the model. It 
was expected that the assemblages depicted by 39 core samples would not, however, satisfy the 
complete range of assemblages likely to be found in the 350 log measurements made.

Table 6.2. Different assemblages of minerals identified by XRD & thin section point counting core samples 
from the Thistle hole 211/18-a50 column. 'Eue' illustrates die number of times each assemblage was chosen by 
the Euclidian model. No. core samples = 39.
X - identified by XRD; t - identified by thin section; @ additional 'viable' assemblages included. Kao -
kaolinite, Qtz - quartz, Fsp - total feldspar, sid - siderite.

A ssem blage Mica Kao Qtz Fsp Sid Pyrite caicite Eue
1 x/t * * * 0
2 xA * * 11
3 X * * 0
4 x/t * * * * * 33
5 X * * 0
6 X * 11
7 X * * * 49
8 X * * 8
9 X * * * 23
10 t * * 0
11 t 0

1 @ * * 58
2 @ * * * * 5
3 @

* * * * 151
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6.6.2.1 Selection of the best assemblage: 'three pass attempt’

In Chapter 3 it was demonstrated that any solution with a correct (or perfect) mineral 
assemblage will produce a very low Standard Error as a result of a good fit between the 
observed and calculated chemistries. Similarly, this estimate of Standard Error was seen to 
deteriorate rapidly if a wrong assemblage were substituted. In view of this observation, a series 
of three passes were made before accepting a final assemblage to model. Starting with the 
selection of assemblages identified from core estimates, any assemblages that were not chosen 
by the model were withdrawn. Other possible, or sensible, combinations of minerals were 
substituted if a large Standard Error remained for a sample. The final criteria for selecting an 
assemblage being that the Standard Error, as a measure of geochemical fit, was less than one. 
Figure 6 .8  demonstrates the reduction in Standard Error on each of the three passes. The third 
pass shows an excellent average Standard Error of 0.093 and 0.103 (for the Least Squares- 
Error Minimisation and Euclidian models respectively). Most assemblages chosen with good 
Standard Errors on the first pass in fact do not alter through the second and third passes. The 
strategy therefore has some validation in the discrimination of the optimum assemblage within 
just a few attempts.

6.6.3 Modelling with an alternative 'clay' composition

An additional pass was run with the same set of assemblages and compositions except that 
the pure kaolinite clay composition was exchanged for a composition, approximating to a 
mixture of kaolinite and the minor clay minerals identified from core (termed "a50-clay"). This 
composition represents the average concentrations for all clay phases identified in sandstone-silt 
lithologies by XRD. For modelling purposes this comprises of a mixture similar to previous 
'binary mixtures' (refer to Section 5.5.1); including kaolinite (60 wt%), mixed layer 
illite/smectite (32 wt%), illite ( 3.5 wt%) and chlorite (5.7 wt%). Its implementation, as an 
alternative to kaolinite, is to demonstrate what a change in composition may make on mineral 
estimates.

6.6.4 Modelling with an additional estimate of bound water

An additional pass is also presented where an extra input parameter, bound water, is 
modelled with the oxide data. This is to evaluate its usefulness in constraining the estimation of 
minerals that contain 'bound' inter-layer or lattice water, which in this lithology is kaolinite and 
mica. An estimate of bound water (Wmin) is derived, here, from epithermal neutron and bulk 
density porosity measurements (refer to Section 5.4.4.1). Typical values of bound water are 
ascribed to the hydrous minerals, kaolinite (13%), 'a50 clay' (12.6%) and mica (4.2%), and 
correspondingly input in the components matrix.
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6.7 M odelling results

6.7.1 Comparison of model and core derived mineralogy

Figure 6.9 shows cross-plots of core mineralogy and estimates from the Euclidian and 
Linear Programming models for the four major mineral phases present through the section. 
Discrepancies in estimates between core techniques have been discussed (Section 6.3.1) and it 
is imperative that these are considered in any comparison with modelled mineralogy. In terms 
of sample volume differences, problems of heterogeneity, core sampling bias and an XRD 
absolute error of within +/-5 wt% (at best), any comparison with core is only semi-quantitative. 
Sample size/volume differences are especially a problem here because unlike the earlier Thistle 
'a33' data set, XRD samples were not taken from homogenised strip samples of core.

6.7.1.1 Cross-plot comparisons

Quartz in Figure 6.9 (plots A & E), follows a linear trend that is satisfactory for both 
models, as is mica by Euclidian model (plot B). The points lying on the mica Y axis (plot B & 
F), indicate that mica is not selected by the model even-though up to 20% has been identified by 
core. This remains a problem and is worse in the Linear Programming model (plot F). Mica, at 
higher concentrations, is over-estimated by thin section compared to both models. This is 
probably an error related to the thin section technique that does not necessarily suggest the 
numerical model is at fault. For the Euclidian model kaolinite has a scattered distribution (plot 
D), although slightly better for Linear Programming (plot H). Feldspar estimates tend to be 
slightly over-estimated by both models above 25% (plot C & G), especially by four 
erroneously high predictions of >50% feldspar. Linear Programming fails to choose a number 
of assemblages which include feldspar, although it is identified in core up to 30% (plot G). 
Feldspar is perhaps the least accurate major mineral phase predicted by the model and this is 
probably due to the colinearity of the potassium rich minerals and core measurement 
discrepancies mentioned in Section 6.3.1.

In general, the correlation with core is far from good, although reasonable qualitative 
similarities and trends recognised in core can be seen in mineralogy derived from both models. 
Another way to compare estimates, in light of the afore-mentioned discrepancies, is by 
comparison of the mean values of mineralogy calculated from each formation; see Table 6.3. It 
can be seen that model estimates for the major minerals quartz-feldspar-kaolinite-mica are 
(surprisingly) close to values from the core analysis (within 5%). Deviations occur in the 
Tarbert, where the kaolinite clay phase is under-estimated and feldspar over-estimated.

6.7.1.2 Comparison of mineralogical trends in model and core data.

Mineralogical features and trends from core studies were summarised in Figure 6 .1 and 
Section 6.3. In Figure 6.10, core-model log plots illustrate the general mineralogical trends that 
are 'predicted' by the Euclidian Distance model. The alternative "a50 clay" pass (refer to Section
6.6.3) is also included. Estimates from both passes do in fact follow most of the mineralogical
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trends observed through the section by core techniques. Differences between the two passes lie 
mainly in the estimation of kaolinite and mica. The most prominent features/trends and 
comments on their correlation with core are now summarised.

Table 6.3 Mean formation values for the common minerals derived from model and core 
estimates, Thistle 211/18-a50. Model estimates, in general, show a close approximation to core 
values. Brackets are core values known to be in error; + over-estimated value; under-estimated. 
Number of core samples = 39. LPrg - Linear Programming model, TS - thin section estimates.

Tarbert
Euclidian model

quartz 'feldspar' clay mica' pyrite siderite caicite

41.20 30.62* 11.32- 7.47 1.27 2.08 5.63
LPrg model 41.72 26.18 13.91- 7.34 0.63 3.55 6.32
XRD 42.69 26.46 18.55 (8.04) 0.92 2.14 1.42
TS
Ness

43.26 (17.72) 16.83 12.50 2.25 4.90 2.13

Euclidian 60.05 16.83 6.98 6.47 2.84 1.67 4.39
LPrg 60.98 15.30 7.34 6.42 2.27 2.21 4.74
XRD 65.49 20.25 8.34 (4.62) 1.88 1.20 0.0
TS
Rannoch

69.07 (13.86) 8.85 5.71 1.50 1.10 0.0

Euclidian 39.54 19.31 15.48 15.09 1.53 5.3 3.29
LPrg 41.26 16.72 16.05 13.89 0.73 6.84 4.29
XRD 34.56 24.31 20.15 (17.53) 0.00 1.25 0.00
TS 38.31 (9.42) 16.28 24.75 0.77 10.56 0.00

Model-quartz very closely mirrors core data estimates through the section. The coarse 
sandstone unit ,T2, in the upper Tarbert is clearly discerned by an increase in quartz up to 80%, 
and then a drop over the siltstone-sand (T3). A marked drop to below 20% is seen at the calcite 
'dogger' (9239-9244' log depth) which is consistent with core. An overall increase in quartz 
(up to 75-80%) is observed in the Ness. N l & N3 sandstones, consistent with core estimates. 
This decreases sharply in the organic rich mudstone of N2. A decrease in quartz is seen in the 
lowest Ness unit, (N5), corresponding to the fining downwards of the sequence, from very 
fine sand to silty-sand. In the Rannoch. quartz is less prominent (40-55%) and more constant, 
although another decreasing trend downwards through the silty-sands and silts of the lower 
units, R2-R3, is seen. Quartz drops very low throughout the Dunlin shale, at the base of the 
section.

M odel-feldspar shows a very spiky distribution throughout the section, with sharp 
increases most notably in the Tarbert. The Tarbert feldspar prediction is (correctly) the highest 
of all formations, especially over the basal units (T3 & T4), below the 'calcite dogger'. In the 
T3 unit, feldspar is over-estimated relative to core XRD by up to 20% in both models. Thin 
section estimates are under-estimated for feldspar (see Section 6.3.1) and XRD probably 
represents a more realistic value. A marked drop in feldspar (down to 1%), is seen over the 
calcite 'dogger' and also in the coarse sand unit T2 (13-20%). The Ness has the lowest feldspar 
content (15-20%) except for increases in the shale interval N2. Similar increases are seen in the 
Dunlin shale at the base. This rise in feldspar in the shale is a colinearity problem with 
modelling shales and is discussed later. Over the Rannoch feldspar values tend to rise again, 
although variable, but fairly consistent with core XRD.

M odel-kaolinite is variable through all formations, typically the lowest in the Ness 
Formation, except for a large increase over shale interval, N2. Kaolinite, in the Tarbert. drops
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over the coarser T2 sand unit and at the calcite dogger as seen in the core. The mean formation 
feldspar of 11-13% is 5-8% lower than core estimates and could therefore be under-estimated. 
The a50-clay model estimate (dashed line) tends to model kaolinite slightly higher, resulting in a 
better comparison with core XRD. The Rannoch has similar values to the Tarbert, although a 
notable increase is seen towards the base of the formation in correspondence with the increase 
in silt between R3 and R4. Kaolinite (correctly) rises in the Dunlin Group in response to the 
change to a shale lithology.

Model-mica has perhaps the spikiest appearance of the major minerals. The Tarbert has a 
moderate mica concentration, which increases either side of the calcite 'dogger', and a marked 
decrease over coarser T2 unit. The Ness is mica poor, except for an increase at the base, (N5 
silt) and is consistent with core observations for this unit. Conversely, the Rannoch has the 
highest concentration of mica, again exhibiting very similar values to core XRD (and some thin 
section).

Model-pyrite, siderite and calcite tend to mirror the more local changes in lithology within 
the section. Siderite and calcite are abundant in the calcite 'dogger', together accounting for up 
to 50% of the sample. Model-siderite appears as localised 'spikes' through the Tarbert and 
Ness. These represent localised siderite cements, a feature consistent with core observations. 
The 15 cm interval of 'siderite-siltstone' at the base of the Tarbert (Sections 6.3 & 6.5) is not, 
however, identified by the modelling. Siderite increases in the Rannoch (up to 15%) with a 
downward increasing trend that mirrors the fining of the R3 to R4 units at the base. The Broom 
and Dunlin Group both have concentrations locally up to 20%. Model-pyrite has a background 
presence through the section of 1-2 %, notably increasing at the calcite 'dogger' (up to 1 2%) 
and in the Ness shale-siltstone lithologies (5%) as well as the Dunlin shale (5%). Model-calcite 
has a similar background presence (3-6%) which appears inconsistent with core, which 
indicates little through the section except over the 'dogger'. This may reflect the inability of the 
pétrographie techniques to determine calcite at such detection levels, or may still be an artefact 
of GLT processing.

Table 6.4 Mean formation values for each mineral, derived from two Euclidian models. Pass 1 
has a clay phase of just kaolinite; Pass 2 has a clay phase composed of a mixture of kaolinite, 
illite, mixed layer illite/smectite and chlorite denoted 'a50 clay'. The main differences are in 
estimates of clay and mica. * greatest deviation in estimates between passes.

Tarbert
Pass 1 ('kaolinite')

quartz 'feldspar' clay 'm ica' pyrite siderite calcite

41.2 30.62* 11.32* 7.47 1.27 2.08 5.63
Pass 2 ('a50 clay) 40.73 28.87* 15.17* 6.39 1.67 1.22 5.51
Ness
Pass 1 60.05 16.83 6.98* 6.47 2.84 1.67 4.39
Pass 2 59.52 16.55 9.00* 5.57 2.80 1.47 4.32
Rannoch
Pass 1 39.54 19.31* 15.48* 15.09 1.53 5.3 3.29
Pass 2 39.23 15.84* 20.46* 14.95 1.52 4.42 3.24

6.7.1.3 Alternative "a50 Clay" Model

Only slightly different modal estimates are obtained when the kaolinite clay is exchanged 
for a clay mineral mixture ('a50 clay'. Section 6.6.3). The main differences are a Xo^ qt feldspar
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estimate and an increased 'clay' estimate. Comparison of formation averaged mineral estimates 
from each model, see Table 6.4 and Figure 6.10, illustrate this. In general, the greater the 
kaolinite originally predicted, the greater the increase seen in the prediction of clay in second 
model.

6.7.2 Comparison of transform models

6.7.2.1 Least Squares & Euclidian Distance models

Throughout the entire section these two models behave in an almost identical fashion. Table
6.5 summaries the correlation coefficients between minerals derived from both models; 
effectively illustrating their closeness in solution. For all except 10 of the 350 sample intervals 
both models predict the same assemblage of minerals and mineral estimates. With the ten 
samples that do differ, the difference is only negligible; for example, for interval 9244'(log 
depth) the difference between assemblages is in the additional selection of pyrite by the Least 
Squares model (lowering the standard error by 0.0077!). The amount of pyrite calculated is 
negligible (0.03 wt%), as is the difference between mineral estimates of all other phases. The 
identical behaviour of these models was also observed in previous modelling exercises 
(Chapters 3, 4, 5). The results from Euclidian Distance model in the remainder of this chapter 
are also applicable to Least Squares, Error Minimisation models.

Table 6.5 Correlation coefficients between mineral phases predicted by Euclidian Distance 
model and Least Squares (first row) and Linear Programming (second row).

quartz 'feldspar' clay 'm ica' pyrite siderite calcite rutile

L east S q u a re s  0.999 0.982 1.0 0.979 0.994 0.996 0.999 0.984

Linear p rog 'ng  0.506 0.316 0.824 0.375 0.609 0.773 0.992

6.7.2.2 Euclidian Distance and Linear Programming models

Correlation coefficients in Table 6.5 suggest that there is a marked difference between 
Linear Programming and the Euclidian/Least Squares models. A number of solutions from the 
Linear Programming model appear to have a very low amount of chemistry accounted for in 
their solutions (P%acc of between 22% - 96%). The consequence of such a poor fit are 
erroneous estimates of mineralogy, including negative mineral proportions (by definition, an 
impossibility with Linear Programming).

For the remainder of the evaluation, samples with low "fits" have been removed to enable a 
comparison of the models to be completed. The remainder of the samples are compared to the 
Euclidian model in Figure 6.11 and cross-plots are shown Figure 6.12. It is apparent that 
estimates of quartz, kaolinite, & calcite appear very similar for both models. Discrepancies are 
indicated in Figure 6.11. Mica and feldspar have a number of samples that trace a 1:1 
correlation, but also have a number of samples that are scattered, see Figure 6.12. A large 
number of samples lie on the X-axis for both minerals (the same is for the Y-axis but not so 
severe). This indicates the Linear Programming model has chosen an assemblage without these
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minerals (although chosen by the Euclidian/Least Squares models). A sub-set of samples 
appears to over-estimate mica and under-estimate feldspar in the Linear Programming model, 
relative to Euclidian estimates. These two phases are colinear and the observations here reflect 
the way in which each model handles this colinearity.

This can be more easily observed in the cross-plot of feldspar and mica by the Linear 
Programming model, Figure 6.13 (A). It is apparent that there is a strong negative correlation 
between these two phases (r= -0.6) and that in a great number of cases, points lie on the X or Y 
axis (Figure 6.13 plot A), suggesting that where feldspar is chosen by the model, mica is not 
and vice-versa. This is not so evident in the Euclidian model, except a few (probably real cases) 
see plot D. It is apparent that a similar negative correlation exists between siderite and mica, and 
siderite - pyrite (plots B & C). Again this is not so evident for the Euclidian model (plots E & 
F). The conclusion is that Linear Programming has difficulty allowing certain phases to be 
modelled together at certain horizons, namely, feldspar with mica, siderite with mica and 
siderite with pyrite. This, in effect, is a problem of handling compositional colinearity by the 
Linear Programming model.

This is verified by earlier cross-plots of core and model mineralogy (see Figure 6.9 plots E- 
H). A large number of points lie on the Y-axis for both mica and feldspar (plots F & G), 
indicating that the model has not predicted these phases. As a result, mica and feldspar have a 
much more patchy distribution on the log-plot in Figure 6.11 (a result of the strong negative 
correlations), especially in the bottom half of the section. On this plot siderite is therefore 
present when pyrite is not. In general. Linear Programming (although having similar estimates 
of few phases), shows a less superior solution than that of the Least Squares and Euclidian 
models.

6.7.3 Results of modelling with bound water (H20+)

Figure 6.14 shows the pass that was modelled with the inclusion of an estimate of the 
'bound water' (H20"'') as an additional input parameter ('wet' model). Plot A shows the 
relationship of the bound water (Wmin) estimate (derived from logging tool epithermal porosity 
and density porosities), to the estimate of kaolinite from the 'wet' model. A significant 
correlation is seen between the two curves, as may be expected, because kaolinite is the 
dominant hydrous phase. Plot B, however, shows curves of the amount of Wmin used in the 
'wet' model solution, and the amount of actual Wmin available. It is clear from this plot that 
not all of the available H20+ (Wmin) is used in the solution of mineralogy. This results in high 
Standard Error values for samples especially in the kaolinite rich silty-shaly mineralogies 
(Standard Error is also included in plot B). Plots C to F demonstrate how the addition of Wmin 
to the model alters the estimation of K-feldspar, kaolinite and mica considerably. Quartz 
remains reasonably consistent in both models (plot C ) .

The effect of the Wmin parameter is demonstrated by a sample from the Ness 
mudstone/shale interval (core depths viz. 9271.5' - 9276'). This sample consists of a mudstone
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lithology dominated by kaolinite and mica, both minerals that contain 'bound water'. Table 6 .6  

illustrates four solutions for sample interval 9277'. Estimates of core mineralogy are strictly 
qualitative as no successful calibration of phases (for XRD quantification) was reported 
possible in the mudstones.

From Table 6 .6  it can be seen that the closest estimate to the shale lithology is achieved by 
the solution modelled without Wmin (column 2). The solution modelled with the Wmin 
estimate (column 3) clearly shows an over-estimation of clay and under-estimation of mica. A 
noticeable discrepancy between the calculated H20+ and observed H20+ (Wmin), and similarly 
for K20, suggest the model is behaving as a response to the H20+ variable introduced. An 
excess of H2 0 + makes the model predict more of the clay phases, and less of the mica phase. 
The under-estimation of mica results in less K20 being used in the solution, resulting in the 
K20 discrepancy between calculated and observed estimates.

Table 6 .6 . Estimation of mineral proportions by a Least Squares model with and without
bound water added (top section). Below, calculated chemistry for each solution. Thistle 21/18-
a50, shale interval 9277'.

Column 1 Qualitative best estimate of shale whole rock composition, based on bulk and oriented XRD 
Column 2 Solution with no water (Wmin) included in solution
Column 3 Solution with Wmin estimate included (9.4% H20" )̂
Column 4 Solution with half Wmin estimate (4% H20'*')
Column 5 Chemistry calculated from core estimates of mineralogy (back-calculation)
Column 6 Weighted model, H20'*' weighted 10:1 against oxides.
SE -standard error of the chemical fit. Mad -mean (absolute) difference of the residuals. 7 oxides used : Si02, 
Ti02, A1203, Fe203, CaO, K20, S and H20+, where stated. 'A50 clay' comprises 60% kaolinite, 30% low 
illite/smectite, 6% Fe-chlorite, 4% illite. n/a - not applicable

Sample 9277'
1 (XRD) 2 3 4 5 6

total clays 45 38.16 53.75 32.36 n/a 78.28
mica 15 21.52 4.28 27.18 n/a -24.16
siderite 5-10 10.63 13.59 8.60 n/a 18.20
Quartz 15 15.50 15.05 15.52 n/a 14.75
caicite 5 5.60 4.83 5.84 n/a 327
pyrite 5 8.10 8.15 8.09 n/a 827
SE 1.076 1.974 0.986 n/a 3.516
Mad 0.507 0.965 0.459 n/a 1.020

Si02 41.90 42.39 42.27 41.96 42.47 41.97
Ti02 0.92 0.54 021 0.64 0.41 0.99
Ai203 16.12 16.82 17.73 16.31 17.14 18.86
Fe203 14.63 15.44 15.24 14.91 15.70 14.75
CaO 3.03 3.90 3.68 3.90 3.55 3.16
K20 2.48 2.69 1.27 3.14 2.17 -1.10
S 4.48 4.29 4.32 4.29 5.30 4.38
H20''’(Wmin) 9.44 - 6.95 5.23 6.31 8.84

This is verified in column 4, which shows the solution if half of the log derived Wmin 
H20+ were present in the sample. Here the mica estimate is increased at the expense of the 
clay. All other phases remain constant in each solution except siderite (and mica), which varies 
as a direct result of changes in Fe (due to mica estimates). Further validation that the Wmin 
estimate for the sample interval is too large, comes from the back-calculation of an estimate of 
mineral composition derived from core mineralogy estimates (column 5).

Column 5 suggests that around 6.3 H20+ would be produced from such a mineralogy, 
while column 6  demonstrates the result if the H20+ estimate is weighted heavier in solution
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(10:1) with all other variables. In this process of forcing  a solution, so that all the Wmin 
estimate is used, the model is thrown in to error, infact causing negatives for mica (resulting in 
a deficit of K20 in column 6 ).

These results suggest that the values of Wmin for this sample interval, as for the majority of 
the section, are over-estimated. This manifests throughout the reservoir section, especially in 
the Rannoch, Broom and Dunlin lithologies (9353-9390') as an over-estimation of kaolinite 
(plot E, Figure 6.14, and an under-estimation of mica and k-feldspar (Plots D and F).

6.8 Synopsis and discussion

Having discussed the potential acquisition and processing problems that might account for 
the discrepant data from first pass processing of the GLT data, the second pass processing 
illustrates the staggering difference in the quality of data that can be acquired through careful 
processing. A check on elemental log quality must, therefore, always be made prior to any 
subsequent application of such data.

It is encouraging that almost all of the GLT derived elemental trends observed through this 
reservoir section, both within and between formations, can be explained by the variations in 
mineralogy - lithology, often just by one mineral species. This suggests (in the absence of core 
elemental data with which to compare results), the GLT data from this hole, in a relative sense 
at least, is reasonably accurate and informative. This is encouraging for the application of GLT 
derived elemental data in mineral modelling. The rhetoric presented in Chapter 1 that log 
derived elemental responses are much more sensitive to subtle changes in matrix lithology than 
conventional nuclear tool logs originally used to discriminate lithology (bulk density and 
neutron porosity), is further substantiated through this careful study.

The ability of the Euclidian Distance and Least Squares (Error-Minimisation) models to 
predict the mineralogical features and trends throughout the 211/18-a50 interval is again 
encouraging. This is especially so in view of the fact that two oxides, (MgO and Na20) were 
unavailable. The strategies adopted allow all the major mineral phases to be predicted, and 
alleviate the majority of the effects of colinearity, previously found when modelling the 
Rannoch Formation. The micas (biotite and muscovite) and the feldspars (K-feldspar and 
albite), however, cannot be interpreted separately without Na20 and MgO.

Sample size differences ( mainly its effect on heterogeneity) between core and log data, as 
well as sample bias remain the two largest problems in the validation of the accuracy of log 
derived mineralogy. Discrepancies between the two sets of core data (Figure 6.2) were also 
identified. In consideration of these problems, correlation between core and model estimates of 
the dominant minerals is fair (except quartz which is significant) and at least point to where a 
model is, relatively, in error. Mica trends are well predicted throughout the section as are the 
quartz rich, slightly coarser units of the Tarbert T2 and Ness formation. The calcite 'dogger' is 
very well characterised by the models, as are the fining-up sequences which manifest as 
decreases in quartz/feldspar and increases in kaolinite/mica/siderite. There is a slight problem,
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however, with the over-estimation of feldspar in the lower Tarbert. This may be due to the 
fixed  binary composition of feldspar, (50% k-feldspar & 50% albite). One feldspar may in fact 
dominate over part of the section, which would put the fixed binary composition at error. It 
may therefore be a better strategy to allow the feldspar composition to vary, at each sample, 
either between both end-members; or alternatively stochastically. A  small over-estimation of 
background calcite by all models relative to core observations {viz. 3-4 wt%) may still be an 
artefact of geochemical processing but is most probably due to the finite level of detection of 
calcite by the core techniques.

The exchange of a kaolinite for a composition that encompasses minor clays as well as 
kaolinite (the 'a50 clay' model) demonstrates the effect a change in composition of one mineral 
phase has on the estimation of modal mineralogy. In this model a slight improvement in 
feldspar and kaolinite clay estimates increases their overall correlation with core estimates. Both 
passes are illustrated in a final plot that combines all modelled mineral phases, in Figure 6.15. 
A sedimentological/lithological log is included for comparison with core sedimentology.

The addition of extra physical parameters to the components matrix, while allowing a model 
to be more fully-determined, can seriously effect the modal mineralogy if inaccurate. The 
addition of a log derived estimate of Wmin fails to enhance the solution through the reservoir 
section. This reiterates that caution must be taken, especially with logging tool estimates, if 
additional parameters such as bound water, are included in a transform model. The inaccuracy 
of the Wmin estimate (although a separate problem), is most probably due to the implicit 
assumption in its calculation, that the matrix density, used in the density porosity calculation, is 
2.65 g/cm^. With a considerable siderite and mica presence through this interval, with core 
matrix densities up to 2.71 g/cm^ not uncommon, this would be clearly in error. This 
assumption may well affect the calculation of Wmin parameter especially in shales and siderite 
rich silts where Wmin is highest.

While Euclidian and Least Squares models behave identically, and in an acceptable fashion. 
Linear Programming shows inconsistancies in its ability to accurately estimate modal 
mineralogy. This ranges from determining a correct solution, similar to the other models, (such 
as in the lower Tarbert and Ness intervals), to failure to solve for a sample (samples with a low 
percentage fit, P%acc). A common problem is its mis-identification of a phase, such as mica, 
resulting in an erroneous prediction of mineralogy (which can go unnoticed). This observation 
was also made in Chapter 5. Computational differences with Linear Programming lie in the way 
the model partitions oxides between phases that are partly or fully colinear. In the worst case. 
Linear Programming fails to partition an oxide between two or three phases if colinearity is 
severe. Instead, all (or most) of the oxide is assigned to one phase. This results in the mis- 
identification of a mineral phase, over-estimation of another phase and the negative correlations 
seen in the processing of this hole.

The problem which caused the low estimates o f accounted chemistry (P%acc) and 
negative mineral estimates in the Linear Programming model (Section 6.7.2.2) was later found 
to be a fault with the program, which was affected by very small oxide values, such as S and
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Ti02, in the input composition matrix. This makes no effect to the conclusions above as these 
samples were not used in the evaluation.

Throughout this exercise it has become apparent that two factors may compromise estimates 
of mineralogy that are derived from log data.

The first is a problem that inhibits the quantitative estimation of small, localised, changes in 
mineralogy from logs - namely, the resolving power and averaging effects of GLT log 
measurements. Local changes in minerals, such as siderite cement, pyrite and calcite are 
indicated on elemental logs. Due, however, to the vertical resolution (0.5-Im), the volume o f 
investigation of the GLT tool of Im^, and the seven point averaging applied to data in 
processing (see Section 2.3.5), the elemental response of a thin horizon will be averaged over 6 

sample intervals that lie directly above and below the sample. The result is a 'smearing 'of the 
elemental data over those sample intervals. An example is seen at the base of the Tarbert over a 
15cm siderite rich silt horizon (viz. 9260' core depth, see Figure 6.7(b)). The Fe203 curve 
predominantly from siderite is averaged over Im. This is also most notable at the boundaries of 
the 'calcite dogger' and over the Ness shale/mudstone interval.

The fact that a point sample (from the point the sample was taken) is not analysed is a 
considerable problem for mineral inversion. In effect, it will dilute the actual response of two 
contrasting lithologies if a boundary is present (bed boundary effect), or if a small localised 
interval is present. In contrast, in a homogeneous medium, such averaging may well provide a 
more representative estimate of composition than the traditional, small, core plug sample. This 
win bear great consequences on the applicability of mineral data in the estimation of accurate, 
representative, petrophysical parameters.

The second factor is the magnitude of the effect that relative errors (precision), in GLT tool 
estimates, will have on mineral modelling. This can be demonstrated by a simple simulation 
using the synthetic rock mixtures introduced in Chapter 3. Implementing the estimates of tool 
measurement uncertainties (precision) from Grau et al. (1989) (see Chapter Two, Section 
2.5.1) the effect of relative error on the modelled mineral estimates for four of the synthetic 
rocks introduced in Chapter 3, has been be calculated. These are tabulated in Table 6.7. 
Estimated modes and compositions used in calculations, are quoted in Appendix 6.3. In these 
simulations the composition of the input synthetic rock composition was firstly increased, then 
decreased by the quoted values of precision for each element. In this sense they represent a 
worst-case scenario. Mineral models were then performed on these data.

For these four rocks (chosen because their compositions span the range of most clastic 
sediments), the variation in the prediction of most minerals due just to relative error can be as 
much as 12 wt %. Precision can therefore be a major source of error in mineral modelling.
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Table 6.7. The amount of variation possible in mineral estimates as a result of extremes in 
quoted relative error (precision) of GLT measurements (wt %).Four synthetic rocks

quartz kaolinite K-feidspar muscovite doiomite aibite

Mix 1 12% 4% 6% - - 4%
Mix 2 0.2% 11% - 10% - -

Arenite 5% 3% 11% 8% 6% -
Pelite 7% 6% 13% 8% 4% —

Range 0 -12w% 3 -1 1 1% 6-11% 8-10% 4 - 6% 4%

In holes of reasonable quality, where good data acquisition is possible and lithological units 
are greater than the intrinsic resolution of the GLT tool (viz. Im), quantitative mineral estimates 
can be expected, provided a correct model and strategy is employed. These mineral estimates 
may then be used to accurately predict additional petrophysical parameters such as grain 
density, CFG or enhanced estimates of porosity. Although mineralogical features and trends are 
well characterised it is doubtful, however, that the data from areas near bed boundaries (at least 
Im) of the 211/18-a50 reservoir section are of sufficient resolution and therefore quality to 
allow an accurate estimation of such mineral data.
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Chapter 7 
The application of GLT derived mineralogical data 

7.1 Introduction

It was stated in Chapter One that there are numerous potential applications for information 
gained from geochemical logging tools. Herron (1987) categorised these into direct, indirect 
and inferred applications. Direct applications make use of the raw elemental data acquired from 
the GLT, and include such applications as lithological classification, hydrocarbon detection and 
mineral estimation. Indirect applications use the latter (mineralogical data), produced by mineral 
transform models, to estimate certain parameters that relate more to mineralogy than element 
chemistry; examples are grain density, porosity, cation exchange capacity (CEO), and thermal 
conductivity. Inferred applications, on the other hand, integrate mineralogical data (from the 
GLT) with existing geological knowledge to infer geological processes and conditions. They 
include, for example, the estimation of depositional environment, grain size analysis and 
hydrocarbon viscosity. A summary of these different applications is presented in Table 7.1. At 
present there is very little direct work documented on this subject and plenty of scope for future 
workers.

This chapter focuses, as an example, on investigating two different types of indirect 
application. Both are relevant to sedimentary reservoir characterisation and are pertinent to this 
study. Indirect applications form an important category in reservoir characterisation because of 
the direct relationship between mineralogy and petrophysical or sedimentological parameters.

The first aim of the chapter is to ascertain if modelled mineralogy can be used as a 
correlative tool for identifying and mapping sand units horizontally between exploration holes 
in the same reservoir/field. In contrast, the second aim is to assess if mineralogy (modelled 
from the GLT derived elemental chemistry) can be successfully used to calculate the 
petrophysical parameters matrix (grain) density and porosity.

7.2 Cross-hole correlation of mineralogical data.

7.2.1 Introduction

Mineralogy can, theoretically, provide an enhanced 'tool' for the correlation of lithological 
units between exploration holes, especially when compared to conventional correlation tools 
such as gamma-ray and neutron-density logs. The task sometimes becomes difficult with 
conventional techniques when a formation undergoes spatial sedimentological variations that 
can effect porosity, fluid content and composition, all of which can obscure correlation. 
Minerals are the fundamental 'building blocks' which affect the textural and geochemical 
features recorded. As mineralogy responds primarily to these compositional changes and not to 
fluid  changes (like the neutron and density logs), it is less affected by fiuid-porosity variations. 
Greater confidence in correlation should result from using mineralogy, since it is more 
geologically meaningful and subjective. For example, conventional gamma-ray curves, often



C ategory A pplication Derivation Knowing: C om m en ts/u ses I
Direct

Geochemial analysis 
by grouping elemental 
trends:
a)Mudrock facies 
analysis.
b) sand-shale 
litho-classification.

Statistical analysis 
and cross plots

GLT derived cones of;

Fe. S, U.

GLT derived 
Si. Ca, Al, Fe.

Prior knowledge by 
Calibration with core 
is required.

Inter-well
correlation

simultaneously 
cross correlating 
well chemistry

GLT derived 
mineral or element 
oxide abundances.

Hydrocarbon
detection Inelastic detection of 

C and O spectra
measure ratio of C/0 Independent of 

salinity
Determination of 
formation mineralogy

Mineral transform 
calculations

See this study.

Indirect Source rock 
evaluation

Subtracting inorganic 
0, (GLT derived 
Cacog) from organic 0

Formation Og,
0 tearing elements in 
formation

Clay volume 
determination Vd

Sum of all GLT derived 
clay mineral species

Clay mineralogy 
from GLT.

Potentially more 
accurate than 
GR and SP tools

CEO estimation Differentiating clay 
mineral species

Clay mineral species 
Theoretical CEC of 
each species.

Helps correct 
resistivity readings.

Formation 
grain density 
determination

Difference between 
bulk and grain density

Fluid, bulk 
density and miner­
alogy. Mineral 
densities

Relies on fixed 
(averaged) 
mineral densities

Porosity
determination

Subtraction of grain 
density from bulk 
density

GLT derived grain 
density. Bulk density 
from density tool

Determination of 
fondation neutron 
capture cross 
section (L)

mineral £& mineral 
concentration

GLT derived mineral 
modes &
typical mineral I

Useful for inferred 
applications

Inter-well
correlation

cross correlation 
of mineralogy

Formation mineralogy 
or geochemistry

Useful in basin 
analysis & pet­
roleum exploration

Formation
ttiermal
conductivity

Mineral volume & 
thermal conductivity 

values

GLT derived mineral 
estimates. Typical 
thermal conductivities 
of mineral species.

Allows a continuous 
measure of a form­
ations heat cond­
uctance.

inferred
applications

Depositional 
environment 
(marine / fresfiwater)

Elemental oxide and 
mineral abundances

Clay mineral comp- 
osition(illite-marine 
and kaolinite- F/W)

Diagenesis Mineral compostion 
variations & trends

Mineralogy Important to know 
for estimation of 
permeability

Intrinsic
permeability

Substitution of min­
eral parameters into 
the Kozeny-Carman, 
porosity dependent 
relationship

'Enhanced' porosity, 
mineralogy and 
grain density from the 
GLT.

VERY
TEfslTATIVEII 
restricted to homo­
geneous lithologies

Enhance­
ment of 
other 
logs

Entianced estimate 
of Archies of 'n' 
exponent (resistivity 
Syy determination

Improved estimate of 
invasion resitivities 
(Roxo & Sxo)

^ Formation 
CEC & grain density 
fro m the GLT

Allows a real, not 
empirically derived, 
'n' to be calculated

Enhance­
ment of 
other 
logs

Enhanced estimate 
of Qÿ for formation 
resistivity - Rq 
determination

Estimation of Qv 
from DEC. matrix 
density and porosity

Formation CEC, matrix 
density and porosity

Formation heat flow 
estimation

Thermal conductivity 
X temp, gradient

GLT derived formation 
conductivity. Log meas­
ured thermal gradient.

Allows continuous 
heat flow to be 
calculated.

Table 7.1 Summary o f the different 'literature quoted' applications for elemental data derived from the 
geochemical logging tool.
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used for inter-well correlation, have been known in the Brent Group of Rannoch and Tarbert 
formations to be indistinguishable between sands and mudstones because of the high potassium 
content in the sandstones (due to feldspar & mica). This is so that inter-well correlation is often 
impossible (Sau and Spurlin, 1982). A mineralogy log, on the other hand, would distinguish 
lithologies immediately, allowing a confident correlation.

This study makes use of core data from two holes, 33/12-b26 and 33/12-b41, from the 
Norwegian Statfjord Field. This lies approximately 25 km South-East of the previously studied 
Thistle Field, North Sea (see Figure 7.1). Two 30m reservoir sections from these holes have 
been selected in this study. These have been confidently correlated previously by 
lithologic/wireline log data and by core elemental data across the 3 km separating the holes 
(Stow and Jackson, 1986 unpublished). Mineralogy is modelled here using elemental estimates 
from core and after validation with core data, the success of the cross-hole correlation is 
investigated.

7.2.2 Previous correlation of sections by Ethology and elemental geochemistry

Both reservoir sections lie directly above the mid-Brent Shale in the lower part of the Ness 
Formation. Each section consists of four vertically stacked subarkosic sandstone packets (3 of a 
meso-scale’, Stow and Jackson, 1986), separated by organic rich mudstones, thin coals and 
rootletted siltstones. These are all interpreted as deposits of a cyclic delta environment. Section 
b26 consists essentially of three well defined and continuous, sandstone packets (units 1 ,3 ,4) 
and one slightly less continuous, heterogeneous, silt/sand packet (unit 2). In Section b41 this 
unit is more continuous and better defined. On the basis of lithology and sedimentology, each 
individual sand-packet and intervening mud/coal - silt horizon can be correlated between 
sections. The textural similarities, as well as the trends in major element geochemistry, form the 
basis of the correlation between sections. These are summarised in Figure 7.2.

Natural gamma-ray/density/neutron wireline logs have also correlated these units. The 
sandstone units show a density/neutron negative separation and low GR response, 
characteristic of clean sandstones. The coaliferous mudstones show a high gamma-ray response 
(from organic mudstones), a low density (due to coals), and high neutron porosity log (due to 
combined shale and coal).

7.2.3 D ata acquisition

The Statfjord Field consists of the same lithological formations and sediment petrography, 
as the Thistle Field. A summary of the mineral species from both sections is shown in Table 
7.2.

XRF data from core-plugs, taken at 30 cm intervals throughout the four sandstone packets 
from both intervals, are used as the input elemental data. Core mineralogy was measured by 
whole-rock XRD for the purpose of validating the modelling results. Samples include 13 core 
trim samples from the b26 section and 15 from of the b41 section. These were regarded as
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representative of each of the 4 sand units and intervening siltstone horizons. XRD sample 
preparation, operating conditions and interpretation methods are equivalent to those employed 
for the Thistle section (Chapter 4, Appendix 2.0). XRD analyses are listed in Appendix 7.1,. 
XRF data is proprietary.

Table 7.2 Summary of minerals observed in sandstones of the Statfjord b26 and b41 sections 
by XRD (wt %). Number of samples = 39

Mean std min max
quartz 65.18 18.48 21.91 87.81
kaolinite 12.76 11.03 2.37 42.83
K-feldspar 11.58 3.39 6.34 17.50
albite 6.19 2.36 2.40 12.01
mica 3.09 4.48 0 22.00
siderite 2.05 4.24 0 22.18

Minor mineral phases (<2 wt %) (absolute estim ates are speculative)
pyrite calcite
rutile dolomite

7.2.4 Mineral transformation - model parameterisation and strategy

The Euclidian Distance model was used for this exercise. Laboratory determined elemental 
input data were modelled with seven oxides (replicating the elements available from the GLT 
tool). Input compositions consist of average values of microprobe-analyses derived from both 
the Thistle and Statfjord fields. 'Mica' was modelled as a binary composition of 50 wt% 
muscovite and 50 wt% biotite, consistent with thin section estimates. This was chosen 
primarily both to reduce the compositional colinearity (See Section 5.4) and the number of 
phases to model. A 'selected assemblage' strategy (Section 5.2.1) was implemented to allow 
mineral assemblages to vary with depth. Minerals identified by XRD (and verified by thin 
section) make up the selection of minerals available in the model. Rutile and siderite are, 
however, kept in all assemblages as 'mops' for Fe and Ti respectively.

7.2.5 Verification of modelled mineralogy

Cross-plots in Figure 7.3 compare the mineral proportions estimated by the model and 
XRD whole-rock estimates for both sections. Model estimates of the four major mineral phases 
quartz, K-feldspar, albite and kaolinite have a significant correlation with XRD estimates for 
both sections (Figure 7.3). An excellent correlation is seen for quartz (correlation coefficients of 
r=0.91, 0.97 for b26 and b41 intervals respectively) and for kaolinite in both sections (r=0.91, 
0.97). A slightly less significant correlation is seen for the K-feldspar (r= 0.64,0.88) and albite 
plagioclase (r= 0.57,0.88). Model albite is slightly over-estimated (up to 3%) relative to XRD 
estimate, as is kaolinite in just the b26 section (up to 5%). Model K-feldspar is, in contrast, 
over-estimated (up to 4%). Bearing in mind that XRD estimated concentrations generally have 
an absolute accuracy of within 5 wt%, the comparisons for these mineral phases are 
surprisingly good. Minor discrepancies occur mainly in the interval between sand units (ie, low 
quartz intervals)
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Siderite is defined by two poorly defined clusters of points in Figure 7.3 (plots E & K). 
The first cluster lies around the 1:1 line and represents reasonable correlation between modelled 
and core estimates (most notable in b41). The second cluster lies on the X axis around 0.5% 
and relates to where siderite has been included in the solution to 'mop' up excess Fe203 and is 
not observed by core estimates. This low level {viz. 0.5 wt%) is below any sensible detection 
limit for XRD and may well be real. Two discrepancies in Section b26, occur at 4201.0' and 
4208.3' where siderite is over-estimated by 15-16% It is possible that XRD is in error here but 
more probable that the model is in error due to there being an excess of Fe203 at this horizon. 
An excess of Fe may be due to another mineral phase not identified and therefore not included 
in the model.

Mica shows a scattered distribution in Figure 7.3 with some model estimates over-estimated 
(up to 8 %) or under-estimated (by up to 10%). Low levels of mica through the section, under­
estimated values of mica by the XRD technique (refer to Chapter 4 & 6 ) and possible 
compositional colinearity all contribute to this discrepancy in estimates. However, it only 
affects a few samples and as negative solutions are not present and as it does not adversely 
affect the estimation of other mineral phases it is not considered a serious problem in the overall 
solution.

In general, these results suggest strongly that the model is predicting the correct mineral 
proportions for the major mineral phases (an excellent overall Standard Error estimate for the 
model of < 0.170). Due to the low concentration levels of the minor minerals, validation of 
these phases is difficult.

7.2.6 Comparison of modelled mineralogy with lithological and elemental data

A composite summary relating core lithology, elemental trends and model derived 
mineralogy is presented for each section in Figures 7.4 and 7.5. These demonstrate that the 
model derived mineralogy relates very closely to textural and lithological observations, as well 
as spatial trends in elemental chemistry. Trends such as an increase in Si and a mirrored 
decrease of Al, K, Mg, Fe and Na content, are representative of an increase in quartz and a 
decrease in kaolinite, feldspar and/or mica minerals. This, in turn, manifests texturally as an 
increase in grain size. The rapid fining in grain size, for example, at the top of both units 1 and 
3, in both sections, corresponds to a decrease of Si and increase an increase in Al, K, Mg, Fe 
and Na. This is in response to an increase in clay (kaolinite) and feldspar concentration. In 
general, a very good comparison of model mineralogy with existing observations is seen 
through both sections.

7.2.7 Cross-hole correlation of derived mineralogy

Figure 7.6 summarises the correlation in derived mineralogy cross-hole. Subtle changes, in 
mineralogy can be correlated between sections. Correlative observations for each unit can be 
summarised as follows:
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For unit one an increase in quartz from 45% to 70% is mirrored by a decrease in kaolinite 
in both sections; feldspar in both remains constant. At the top of both units quartz drops quickly 
and kaolinite increases. Mica is present in both sections although more prolific in b26, up to 
10% (possibly mirroring a slight sediment source supply change across the 3 km distance 
between wells, or a change in hydraulic conditions).

The second unit shares a slightly heterogeneous mineralogy, b41 appearing more sandy. 
This is probably the least well correlated unit in the section. This could be due to a sub-facies 
change between wells explaining a slight change in sand-silt ratios. A general trend of 
increasing quartz, and decreasing kaolinite is, however, observed upwards. Section b26 has a 
minor amount of mica (3%), b41 has none. A slightly higher value of kaolinite in section b26 
may be an artefact of the presence of mica in the section and its subsequent degradation to 
kaolinite; this was observed in the Rannoch Formation of the Thistle Field (Section 4.2).

Unit three shows a very homogeneous mineralogy of 81-85 wt% quartz, 2-4% kaolinite, 
11-14% feldspar in both sections and the correlation is perhaps best of all units. A rapid fining 
and reduction in quartz is observed at the very top of the unit in both sections.

Unit four can only be tentatively correlated for trends because only one sample is present 
for the b41 section; however, the mineralogy of the sample from b41 is in good agreement with 
b26.

In general, the prediction of mineralogy is excellent throughout both sections, although the 
minor mineral phases prove slightly harder to validate due to the detection limits of the XRD 
technique. It is apparent that this modelled mineralogy (although not implementing GLT derived 
elemental data) can be well correlated between sections, and that this correlation does correctly 
follow the previous correlative trends. It may therefore be an important tool for correlation in 
the future.

7.3 Estimation of petrophysical parameters

One of the essential parameters required in petrophysical formation evaluation is the 
porosity, or the 'fraction of the total volume of a sample that is occupied by pore spaces'. It is 
most often acquired from either neutron, resitivity or density log measurements.

The density tool measures the bulk density of a formation. This is a combination of the 
density of both the mineral and fluid fractions of the rock and is directly related to the porosity 
if the average matrix density (grain density) and fluid density are known, such that:

( - 1 )

Where pb is the bulk density, pma is the matrix density and pfi the fluid density (usually 
set at l.lg/cm ^ , although changed depending salinity ) and 0 is porosity. In practice, the 

average matrix density is rarely known and so is set to a constant value, typically a value of 
2.65g/cm3 for sandstone and 2.7 g/cm^ for limestone. Alternatively it may be estimated from a 
combination of PEF and pb (Schlumberger, 1989).
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Log derived estimates of porosity (0) from the bulk density tool can then be calculated 

using a relationship derived from Eqn. 1 such that:

^ = Pnu.-Pb ( 2 )
P™ -p fi

7.3.1 Matrix density

In conventional log analysis without the facility of expensive core calibrations or 
customised interpretation models, a constant matrix density value is often used in the calculation 
of porosity (using Eqn. 2). Considering that the density of a sandstone matrix will vary with 
mineralogy, improved estimates of porosity may be acquired if a more exact matrix density can 
be determined. It is theoretically possible to estimate the average matrix density from the 
mineralogical estimates derived from the GLT tool, by the simple relationship shown in Eqn. 3. 
This can then be used to produce an enhanced estimate of porosity.

where pj is the matrix density of the mineral j  and M the weight % proportion of the mineral. 

Standard values for grain densities are quoted in Table 5.8, Section 5.5.4.

Matrix density has been calculated, using Eqn. 3 from the mineralogical data derived from 
Thistle 211/18a-a33 interval in Chapter 5, (refer to Section 5.6) These estimates are compared 
to core measured estimates of matrix density in Figure 7.7 (A & B). A good correlation is 
observed over the section between matrix density estimates, suggesting that a reasonably 
accurate matrix density can be estimated (in this example to approximately +/- 0.05 g/cm^). The 
slight systematic error noticeable in plot A is due to a rounding of the core derived estimates. 
The largest discrepancies of 0.06 g/cm^ occur for the most dense matrix densities. This may be 
due to the inherent sample size differences that may effect the heterogeneity of each sample.

It is not surprising that a reasonable correlation exists with core because laboratory 
elemental data was used and the subsequent mineral modelling well constrained (refer to 
Chapter 4). Figure 7.8 shows the matrix density estimated from modelled mineralogy acquired 
using GLT derived elemental data from hole 211/18-a50 (data from Chapter 6 ). Excepting the 
circled area, correlation of estimates is again very good. From plot B, Figure 7.8, it is clear that 
the good correlation exists down to viz. 9340' with only small systematic discrepancies of < 
0.02 g/cm^ between viz. 9200' - 9340". The two larger discrepancies in calculated estimates, 
at 9280' and 9308', are due to localised siderite rich intervals and probably represent a 
sampling discrepancy. Below 9340' a larger overall discrepancy occurs in estimates, up to 0.2 
g/cm^ (circled in plot A). These coincide with the presence of silty-sands and muds at the base 
of the Rannoch through to the Dunlin Formation.
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Chapter 7, The application o f  GLT derived mineralogy

One interesting observation from Figure 7.8, plot A is the spread in density values {viz. 
2.58 - 3.0 g/cm^ ). Conventional estimates of porosity, calculated from one assumed value of 
matrix density {usually 2.65 g/cm^) would clearly produce porosity values in error for the 
majority of samples in this section. This is also noted by Moss (1992).

7.3.2 Porosity

Estimates of porosity have been calculated, using Eqn. 2, for the 211/18-a50 section. 
These estimates were calculated using matrix density derived in Section 7.3.1 from modelled 
mineralogy, the log derived bulk density estimate pi,; and the assumption of a fluid density {pfi 
) of 1.1 g/cm^. These estimates of porosity are compared in Figure 7.9 to core derived 
estimates of porosity (helium porosity); see plot A. In general, there is a good correlation of 
both porosities, although some core estimates are under-estimated (circled in plot A). These 
represent the calculated porosity values below depth viz. 9340’ and are the effect of the poor 
matrix estimates seen in Figure 7.8.

Plot B, Figure 7.9 shows a comparison of core helium porosity with a porosity estimate 
derived from the density tool. The correlation with core is poor in comparison to plot A; this is 
emphasised in plot C. Estimates below 9340' are widely in error; and this may point to the 
density tool measurement being adversely affected through this interval. A corresponding 
increase in CSIG at this point, (refer to Section 6.5) also indicates possible environmental 
effects.

Independent model derived estimates of matrix density produce, in this example, a more 
accurate porosity estimate than the conventional log estimates. This is particularly encouraging 
as the mineralogy is derived directly from the GLT tool.

7.4 Synopsis and discussion

A continuous log of the mineralogy is potentially valuable on its own for creating a 
geological model (almost in real-time) in which reservoir characterisation can be based on in 
the absence of (or to enhance) core measurements. This may be a particularly valuable in 
formation evaluation stages for the characterisation of clay minerals.

The potential for derived mineralogy to be used as a correlative tool between holes is also 
made quite clear from Section 7.2. Inter-well correlation is made much more subjective when 
mineralogy is used, as all minerals responsible for producing the trends on conventional curves 
are fully identified. This should therefore allow greater confidence in the placement of 
correlative markers between wells. The power of mineralogy as a correlative tool remains to be 
investigated using real GLT data where the problems of tool precision and volume of 
investigation, mentioned in Chapter 6 , (Section 6 .8 ) may compromise the accuracy of mineral 
estimates and their usefulness as a correlative tool.
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Chapter 7 , The application of GLT derived mineralogy

As a second indirect application, the calculation of porosity and matrix density in the Thistle 
211/18-a50 section appears very encouraging. This is especially so for the upper part of the 
studied section (viz. 9216' - 9340) where estimates of both parameters are in very good 
agreement with core and in the case of porosity, appear superior to those values estimated by 
conventional log-based petrophysical methods. The discrepancies below 9340’ may be due to 
a) sampling problems (in measurement of helium porosity in silty sands), b) sample size 
differences, c) errors in the bulk density estimate at this interval, d) incorrect mineral estimates 
from the modelled mineralogy.

Most samples over thick and consistent lithological units (most samples above 9340') have 
accurate estimates of matrix density. Discrepancies occur, however, at the boundary between 
two contrasting lithologies. The averaging of mineral estimates (the bed boundary effect), as an 
artefact of GLT processing (refer to Section 6 .8 ), has a clear effect on estimates of matrix 
density in more localised horizons through the section. For example, the increase in calculated 
matrix density up to 2.9 g/cm^, at the 'calcite dogger', is verified by core measurements, see 
Figure 7.8. Core measurements on the boundary indicate a sharp drop, to more typical 
sandstone densities (viz. 2.65 g/cm^) as illustrated in Figure 7.10. The model calculated matrix 
density values for sandstone samples surrounding the 'dogger' on the boundary, however, 
show a smooth drop in calculated matrix density, over l-2 m, before a more typical sandstone 
density is recorded. This smooth drop in density values is a good example of the bed boundary 
effect indirectly produced from GLT derived chemistry which has been passed through into the 
mineralogy. This, in turn, affects the calculation of matrix density and will therefore ultimately 
affect porosity. The effect of a 0.2 g/cm^ error (increase) in estimation of matrix density at 
9244', for example, is to double the porosity estimate.

Enhanced estimates of both grain density and porosity appear possible, over good intervals, 
using GLT derived data. This will hold true as long as the mineralogy model is correct and the 
interval is reasonably homogeneous. It is not unreasonable to expect that estimates may, in fact, 
be superior to the core measured values by the nature of the sample volume measured. Great 
care must be taken in interpreting these derived parameters over bed boundaries and in thin 
bedded, heterogeneous units as these bed boundary effects may seriously affect estimates.
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Chapter 8. 

Conclusions

It is at this point that we can now consider the questions posed in Chapter 1. These were....

Can we produce meaningful mineralogy from a chemical analysis?

Can this be attempted successfully on data from a borehole environment?

Can a mineralogy derived from nuclear log measurements be relied on to use in
subsequent applications?

8.1 C an a m ean ingfu l, accurate m odal m ineralogy be derived from  a 
chem ical analysis?

Apart from its application to the borehole environment, mineral transformation itself can 
be considered as a purely geological problem. This is the situation to which the first question 
is addressed.

A desirable mineral transform model should be capable of handling at least the number of 
phases present in the rock sample yet be sensitive to the effects of compositional colinearity, 
and variation in mineral composition. It has been demonstrated that it is possible to obtain 
accurate mineral modes from numerically and synthetically produced data using all the 
models considered. Accurate modelling is also demonstrated to be possible in a real reservoir 
scenario, as seen in the Brent Group, but it is important to have an idea of the range in 
variation of mineral assemblages as well the compositional variation of any mica or clay 
mineral species. Strategies that reduce these problems are shown to be successful, with help 
from localised core input.

Compositional colinearity, as seen in the Rannoch Formation, is a serious potential source 
of error and must be recognised early in any routine processing. Strategies which ’puli' 
mineral phases from such colinear planes help to alleviate this problem.

The stochastic strategy, although in its infancy, provides, potentially, the greatest recent 
advancement in mineral modelling. It allows a means of overcoming the problem of 
compositional variation within an individual mineral species without having to accurately 
know a composition apriori at each depth interval. Its success will be limited, however, by 
the data available to form the appropriate statistical distribution.

Shale - mudstone lithologies represent the worst case scenario for transform models and 
in general they prove impossible to model successfully because of a) the under-determined 
system produced by the large number of detrital and authigenic phases present; b) the 
compositional colinearity often present between three or more phases; and c) the large 
variation in composition of the clay species. Further studies, in the future, on the relationship 
between geochemistry and the individual clay minerals (especially involving the elements
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Gd, Sm and Th, U, Mn and V) may allow minor elements to be modelled successfully along 
with existing elements, enabling a solution to become more constrained.

The addition of extra physical parameters in the case of bound water (H20+) may also 
improve a solution, but only if estimates are at least as accurate as the other input responses. 
Modelling with density in quartz-feldspar rich lithologies should be avoided as this introduces 
'noise' to the solution and produces a sparse components matrix. It may, however, be useful 
when a clear contrast in density between minerals being modelled is present.

In terms of the effectiveness of each transform model, the Euclidian Distance and Least 
Squares - Error Minimisation (direct solution) models appear very similar in behaviour and in 
their determination of modal mineralogy. However interpretation of residual unused 
chemistry remains perhaps more meaningful for the Euclidian model in terms of a failure in 
mineralogy. Linear Programming appears as proficient in simple lithologies but it is generally 
inferior in cases of acute compositional colinearity and should be avoided. Least Squares 
indirect solution methods should also be avoided as they defy the basic assumptions for 
mineral modelling. Conclusions more specific to each model have already been discussed in 
Chapters 3 ,4  and 6 .

At present there is no direct measure that can validate the accuracy of a solution, apart 
from cross-checking with core data, which on a regular basis would prove expensive and 
impractical. Although the two former techniques may produce negatives, in the authors view 
this can be regarded as a helpful indication that something is in error in the model and in this 
sense provides a means of rejecting a poor solution. It is hoped a 'feel' for the use of Standard 
Error, in the case of Euclidian Distance and Least Squares models, and P%acc in the case of 
the Linear Programming model, has been achieved throughout this study. They both serve as 
useful indicators of error in terms of the 'geochemical fit' of a solution (but cannot tell us 
directly about the validity of a solution).

8.2 C an a m in era logy  be derived  su ccessfu lly  from  the b orehole  
environm ent?

It has been necessary to look at the physics of the Geochemical Logging Tool to 
understand the way in which errors in data acquisition and subsequent processing may affect 
the final elemental measurements that form the input responses for mineral modelling. It is 
shown that any error will be passed through to subsequent modelled mineralogy and 
ultimately through to applications that involve the derived mineralogy (or element chemistry). 
From the tool physics discussed in Chapter 2 and processing in Chapter 6  it is seen that it is 
imperative to have good idea of the quality of the GLT data. This can be assessed visually 
from the caliper log and Normalisation Factor log.

One of the largest problems with evaluating the accuracy of GLT derived mineralogical 
data is the difference in sample volume that exists between core and the geochemical 
measurements. This would not pose a problem if the two were homogeneous. Inevitable
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differences in the homogeneity between core and log samples (particularly due to the size 
differences) must be considered when comparing data sets. This problem can be reduced by 
careful, representative, core sample selection and treatment.

Consideration must also be given to the substantial uncertainties (accuracy and 
precision) associated with existing core techniques. In the absence of a better method, these 
techniques at least provide a means of validating derived mineralogy. Poor lower limits o f 
detection of existing core petrographic/mineralogical techniques are also found to inhibit any 
effective semi-quantitative comparison of the less abundant mineral phases. Careful depth 
matching of core and log data must also play a considerable role in the success of any 
correlation of data sets.

Establishment of accuracy and precision of the tool elemental measurements could not, 
unfortunately, be included in the remit of this study because no core data were available 
(although it has been addressed by a number of other authors, as seen in Chapter 2). Tool 
derived elemental chemistry does, however, correlate surprisingly well with the 
sedimentological and mineralogical features seen through the a50 reservoir section. Careful 
comparison of mineralogical trends helps to substantiate the link between nuclear logging 
measurements and mineralogy.

The bed boundary or 'smoothing ' effect coupled with the vertical resolution of the tool 
measurement are a problem in thin-bedded and heterogeneous intervals and do lead to a 
compromise in estimates of derived mineralogy over such zones. This is a serious problem 
with the GLT derived data, and use of mineralogy over such horizons should be avoided.

Tool precision may also affect the estimation of mineralogy considerably, and in a worst 
case-scenario it is shown that mineral estimates may vary by up to 12 wt%. This is again 
potentially a serious problem. Observation, during processing, of the calculated elemental 
uncertainties (derived using the Normalisation factor, Grau et a l, 1989, refer to Section 
2.5.1), help to indicate where elemental measurements are poor and subsequent derived 
mineralogy likely to be in error.

In conclusion, GLT data may derive reasonably accurate estimates of bulk mineralogy, if
a) borehole conditions are known to be good; b) the horizon that is being logged is reasonably 
homogeneous and substantiates a thickness greater than the intrinsic vertical resolution of the 
tool (and is free of the possible bed boundary effect); and c) the specific problems pertaining 
to mineral inversion mentioned in Section 8.1 are alleviated by appropriate strategies 
(introduced in Chapter 5). It is likely, for instance, that the modelled mineralogy in the larger 
units through the a50 section (viz. Units T l, T3 and R l) are representative estimates of the 
actual modal mineralogy present. The lack of the availability of Na203 and MgO (as seen in 
the a50 section) currently remains a large disadvantage with the current GLT tool set-up 
especially for the more complex lithologies where extra oxides are crucial. As for the 
identification of minor phases or rare element specific phases, however, its use remains 
highly sceptical.
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8.3 C an a m ineralogy derived from  the nuclear log m easurem ents be 
relied on to use in subsequent applications?

Reliability can only be placed on parameters subsequently derived from mineral 
transform models if accurate chemical modes are performed. This is shown to be possible 
with well constrained laboratory data and in certain situations (as just discussed) with 
mineralogy derived from the GLT tool data.

The use of the derived mineralogy in inter-well correlation is encouraging but it remains 
to be seen whether some of the more subtle mineralogical trends can be correlated using GLT 
derived measurements. The mineralogical trends observed in derived mineralogy, and 
accurately verified by core, in the 211/18-a50 section suggest that this is feasible. Again, care 
in interpretation over bed boundaries must be taken.

Estimation of matrix density and of subsequently derived porosity in the 211/18-a50 
section indicate that a) it is possible to use mineralogy to predict (or enhance) petrophysical 
parameters where bed boundary effects are not present, b) they may produce a more reliable 
estimate in terms of the sample volume measured, than a conventional side-wall core 
measurement. Log data, at least, provide a continuous estimate of such important parameters 
which can be used to characterise a formation in the absence of core.

8.4 Recom m endations for future work  

Tool related.

1) Further advancement in the physics of gamma-ray detection in the extremes of the 
borehole environment will lead to improved counting statistics and through enhanced spectral 
de-convolution the ability to measure less detectable elements. This has already proved 
possible for the measurement of Na, Mg, Mn and V by delayed activation using cryogenic 
detectors (Schweitzer & Peterson, 1992). These detectors provide infinitely better counting 
statistics than conventional Nal crystals and should lead to radically improved elemental 
estimates. Greater, information and more accurate estimates from improved detectors will 
lead to the availability of more input responses, resulting in a better constrained mineral 
model.

2) Further work could be directed at reducing the bed boundary effect currently present 
between two contrasting lithologies. One way of overcoming the bed boundary effect may be 
to use other high resolution logs, (such as the FMS, Formation Micro Scanner) to identify the 
location of individual bed boundaries coupled with advancements in tool response de- 
convolution. The normal 7 point averaging applied to GLT data could then be truncated 
exactly at the boundary with the result of reducing the 'averaging' effect. In this way more 
reliable mineral predictions may be obtained over such intervals.
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Mineral modelling related

1) In terms of mineral modelling, the stochastic model has great potential for over coming 
the need to accurately estimate compositions of highly variable mineral species at every depth 
interval. Further work could be undertaken in allowing the model to account for bi-modal 
populations of data and secondly developing a technique to model more than one phase 
stochastically. Further work could be undertaken in terms of establishing a large, 
representative data-base of compositional data that may be implemented in the stochastic 
modelling strategy. This could be implemented on different scales; for example, a single 
lithological unit or Formation specific scale or on a Group specific scale. Illite analyses from 
the Brent Group, for instance, would have helped in the modelling performed in this study.

2) With knowledge of mineral modelling in the borehole environment from this current 
study future work may be directed towards non-linear systems seen in conventional 
geophysics, where all measurement uncertainties may be formally accounted for. This would 
have to take on the formulation of a complete set of new algorithms which attempt to model 
when one or more of the assumptions set out in Chapter 3 (Section 3.2) become violated.

3) Finally, further work could be undertaken in further quantifying the effect that GLT 
uncertainties (precision) have on modelled mineralogy. This would need to take the form of a 
formal Monte Carlo algorithm that was designed to vary each oxide independently, at 
random, in a stochastic model. Results would then ameliorate the worst case scenario 
presented in Chapter 6 .

* * * * * * * * * *
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Sample 10580-82 Rannoch Formation, hole 211/18a-a33 (Scale x 200)

Moderately-well sorted, fine grain sandstone with subhedral-rounded grains. Porosity is 
moderate-poor. Composition is dominated by detrital, strained, subhedral quartz grains 
(K4-5,C13, N ,l) and platy micas. Pale brown/green biotite (H7-I1,R7,B8) and clear muscovite 
(A13,D3,05) are present in equal proportions. Biotite is strongly altered, replacement 
amorphous kaolinite and siderite forming at grain ends and along cleavages (G4-6,A8).
Detrital albite and K-feldspar with moderate to high alteration (P3,) are subordinate. Kaolinite 
is the dominant poor filling clay mineral(A7).Trace opaques and heavy minerals.
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Sample 10540 Etive formation, hole 211/18a-a33 (Scale x 200)

Moderately sorted, fine grain sandstone with subhedral-rounded grains. Porosity is moderate, 
picked out by pale green, low relief mounting cement in a, (R5). Composition is dominated by 
detrital, strained, quartz grains (DIO-II, 0 5 , A ll) .  Detrital albite, K-feldspar with moderate to 
high alteration (07). Kaolinite is patchy as a grain coating - pore filling cement (09-12). Mica 
is rare or absent.
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Sample 10452 Ness formation, hole 211/18a-a33 (scale x200)
Moderately sorted, fine-medium grain quartz rich sandstone with subhedral-rounded grains. 
Porosity is moderate to good, picked out by pale green, low relief, mounting cement 
(OI4,Hl I,E11). Pore space is locally filled with clay (T3, M3). Composition is dominated by 
detrital, variously strained, quartz grains (KlO-13, B6-7,S5). Subordinate detrital albite and 
K-feldspar with moderate to high alteration (Q8). Trace opaques (including organic matter) and 
zircon grains (N6). Kaolinite is dominant pore filling and replacement clay mineral.

PLATE 3



Description of plate 4.

S EM micro-photographs from the Etive and Rannoch formations 
of Thistle well 21 l/18a-a33

A. Sample 10499, Etive Formation.
Well formed kaolinite ’accordion’ booklets (vermicules) and less well formed 
amorphous kaolinite on the surface of a striated quartz grain. Scale bar 10pm.

B. Sample 10499, Etive Formation.
Enlargement of kaolinite ’accordion’ booklet in a background of amorphous kaolinite. 
Scale bar 5pm.

C. Sample 10584, Rannoch Formation.
Centre grain possibly an Fe-carbonate (siderite, Fe-rich EDX spectrum). Bottom centre, 
a leeched K-feldspar grain. Bottom left a detrital zircon grain (Zr spectrum). Centre top, 
detrital quartz grains. Scale bar 10 pm

D. Sample 10584, Rannoch Formation,
Leeched K-feldspar grain, corroded along cleavage planes, kaolinite in background. 
Scale bar 50 pm.

E. Sample 10499, Etive Formation,
Well formed accordion kaolinite crystals just below centre with small scattered cubic 
pyrite grains. Background of amorphous or poorly formed kaolinite and detrital mica 
flakes. Centre left, rhombohedral siderite grain. Scale bar 5 pm.
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Description of plate 5.

Electron microprobe photo-micrographs of micas in the Rannoch Formation
of Thistle well 211/18a-a33

A. Sample 10561, Rannoch Formation.

Prominent light crystal is a detrital biotite mica, displaying very clear cleavage and 
’splaying' at die bottom left end. Light grains ’wedged’ along mica cleavage planes are 
authigenic siderite, forming at the expense of biotite. Minor clays also line some of the 
cleavage planes. The crystals to the top left of the biotite are quartz and albite feldspar. 
Scale bar 50 pm

B. Sample 10561, Rannoch Formation.

Heavily altered biotite grain (centre) showing heavy a growth of small siderite grains 
along cleavage planes. The clear crystals either side of the biotite are quartz grains. The 
elongated crystM at centre left is a muscovite mica with a ’splayed’ end. The splaying is 
partially altered to kaolinite (slightly dull colour). Amorphous kaolinite forms between 
grains to the right of the ’splayed end’ and between grains in the bottom right comer. 
Scale bar 50 pm.

C. Sample 10561, Rannoch Formation.

Close-up of an altered biotite crystal showing the displacesive habit of a siderite grain. 
Siderite is replacing biotite primarily along the cleavage planes. Scale bar 10 pm.
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Description of plate 6.

SEM micro-photographs of the mudstone lithology from the Ness and Etive formations
of Thistle well 21 l/18a-a33

A. Sample 10470-71, Ness Formation.

Detrital mica grain, bottom and centre left, clear of authigenic illite/smectite clays 
except in far bottom left comer where it partially obscure and infills between splayed 
cleavage. Bottom right and top right, amorphous kaolinite. Scale bar 2 pm.

B. Sample 10470-71, Ness Formation.

Detrital grains of K-feldspar, bottom left comer; mtile, just left of centre (light grain) 
and two detrital mica flakes, top right quarter. Background composed partially of 
detrital mica and amorphous kaolinite. Scale bar 3 pm.

C and D. Sample 10471-72, Ness Formation.

Amorphous and massive kaolinite. Scale bar 3pm.

E. Sample 10471-72, Ness Formation.

Amorphous and massivç kaolinite background with small authigenic siderite crystals, 
centre. Scale bar 10 pm.

F. Sample 10486.2 - 86.7, Etive Formation.

Poorly defined illite-smectite phase showing partially curly 'boxwork' texture. Far 
bottom right and far top left, amorphous kaolinite. Scale bar 2 pm.
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Appendix AA.

Logging tool acronyms used in this thesis

GLT Geochemical Logging TooU

NGT Natural Gamma-ray Spectroscopy Tool^

AACT Aluminium Activation Clay TooF

GST Gamma-ray Spectroscopy TooF

LOT Lithodensity TooF

CNG-T Compensated Neutron TooF

AMS Auxiliary Measurement Sonde ̂

SDT Digital Sonic TooF

CALI Caliper tool

DITE Dual Induction TooF

FMS Formation Micro Scanner^

Additional acronyms used

Pe Photoelectric effect

PEF Photoelectric factor (from LOT)

CSIG Total capture sigma measurement

RHOB Bulk Density (from LDT)

NPHI neutron porosity

1 Trade Mark of Schlumberoer



Appendix one
Composition of different minerals used in synthetic modelling; com position of each 

synthetic rock; composition of different moscovites used in modelling

Q uartz A lbite K aolin ite  K -fe ld sp a r M u sco v ite D olom ite c a lc ite
S i0 2 99.07 65.81 47.63 64.33 45.78 0 0
A I203 0.23 21.33 37.95 19.04 34.21 0 0
T i02 0.01 0.02 0.06 0.01 0.24 0 0
F e 2 0 3 0.15 0.11 0.65 0.11 3.04 0 0
MgO 0.13 0.05 0.01 0.01 0.69 21 .34 0.04
C aO 0.00 1.86 0.03 0.04 0.00 31.27 55.92
N a 2 0 0.21 9.82 0.72 2.49 1.01 0 0
K 20 0.02 0.67 0.86 13.16 10.24 0 0
MnO 0.00 0.00 0.01 0.01 0.12 0 0
P 2 0 5 0.01 0.03 0.11 0.48 0.22 0 0
S 0.01 0.00 0.00 0.00 0.00 0 0

Total 99.84 99.7 88.03 99.68 95.55 52.61 55.98

XRF analyses of synthetic rock 

Mix 1 A ren ite

mixtures

S em i-p e lite Mix2 P elite C a rb o n a te
S I0 2 83.54 87.22 70.90 62.84 57.40 0
A I203 9.83 4.30 0.03 25.41 23.85 0
T i02 0.02 0.12 15.22 0.10 0.13 0
F e 2 0 3 0.14 0.50 0.40 0.99 1.62 0
MgO 0.06 0.51 1.05 0.18 1.30 15.66
C aO 0.41 1.45 1.95 0.07 1.58 38.52
N a 2 0 2.28 0.92 2.07 0.04 0.80 0
K 20 1.57 1.90 3.27 2.90 6.81 0
MnO 0.00 0.00 0.0 0.00 0.07 0
P 2 0 5 0.71 0.03 0.10 0.06 0.10 0
S 0.00 0.00 0.00 0.00 0.00 0

Total 98.56 96.96 94.99 92.61 93.66 54.17

Composition of moscovites used in Figure 3.6

th e e -  ideal 1 2 3 4 5

S I02
re tica l

45 .25 47.08 45.87 46.01 47.11 48.42 48.54
T i02 0.00 0.20 0.00 0.00 0.74 0.87 0.66
A I203 38.40 30.81 38.69 35.64 29.68 27.16 21.99
F e 2 0 3 0.00 3.08 0.00 0.01 4.17 7.47 9.37
MnO 0.00 0.00 0.00 0.00 0.01 0.00 0.00
MgO 0.00 1.71 0.10 0.00 1.77 0.00 3.09
C aO 0.00 0.35 0.00 1.12 0.19 0.00 0.35
N a2 0 0.00 0.75 0.64 1.89 0.34 0.35 0.75
K 20 11.82 10.11 10.08 8.19 10.32 11.23 11.27



Appendix 2.0 Analytical techniques 

X-ray diffraction analysis 

Sample preparation
Two types of samples have been prepared for quantitative analysis, a) unorientated bulk
powders (5pm) for analysis of the matrix minerals; b) <2pm orientated samples for the 
analysis and quantification of clay minerals.
Unorientated clay traces
Unorientated bulk powder samples (5pm) were made of all samples being studied, including 
the synthetic rocks. Thistle and Statfjord cores. A microniser was employed for the reduction
of powders to the optimum size of 5 pm for X-ray diffraction. Unorientated mounts were 
prepared by packing powders into a holder, as described by Moore & Reynolds, 1989. Traces
were run using Ni filtered CuKa monochromatic radiation generated at 40kV, 30mA, 
scanning at 1 degree per minute using a Phillips 1729 X-ray generator and Phillips 1710 
diffractometer control unit.
Orientated clay traces
Oriented <2pm clay aggregates were prepared by pipette extraction (Folk, 1974), 
subsequently centrifuged for five minutes and then dropped on to glass slides (Moore & 
Reynolds, 1989). Analysis was performed under the same conditions as the unorientated 
samples. Two runs were made for most samples, a) after air drying at room temperature, b). 
after glycolation for 12 hours. This was performed to verify the clay species present. Results 
and p e ^  traces are presented in appendix 4.4 and Figure 4.5.

Two unorientated bulk samples of pipette separated 2|im clay aggregates were also analysed 
for the identification and semi-quantification of the mineral phases from the mudstone 
intervals (10472-73,10486.2) in the Thistle well, see Appendix 4.4.

Whole rock data- quantification of mineral proportions.
The abundance of non clay mineral species, kaolinite and mica has been interpreted from the 
height of the strongest undisturbed diffraction peak for each mineral. Identified unorientated 
peaks are those suggested by Schultz (1964). If more than one good peak was present, an 
average of all peak heights for the mineral was taken for quantification. The peak, its 100% 
intensity on an external standard and mineral mass absorption coefficient are summarised in 
Table A l.
Quantitative/semi-quantitative analysis was performed using the mass absorption coefficient 
of the sample calculated from the XRF chemical compositional data, the 100% peak heights 
of the pure standard of each expected mineral (an external standard) and the mass absorption 
coefficient of each mineral phase, (Brinley and Brown, 1980). These were used to derive 
mineral percentages present such that:

Ip / Ipo = [|i/|Lio] wp (1..)
where Ip is the peak height from the mineral in the sample, Ipo is the 100% external
standard peak height, | L i  is the mass absorption coefficient of the mineral phase; po is the mass 
absorption coefficient of the sample and wp the weight percent of the mineral.
By not using an internal standard, a diluting effect on diffracted intensities is avoided as is the 
interference of reflections from the internal standard and the seven or so mineral species.This
method is seldom used because of the reluctance to measure/xo (Brinley and Brown, 1980), 
which is not a problem in this study.
A check on the accuracy of this technique by analysis of the synthetic data set (with mineral 
proportions known) suggest an average absolute error of 4-/- 3 -3.5 wt% for the estimation of 
mineral phases. Mica is worse up to 8 wt%. It is expected that due to crystallinity and lack of 
good internal standards for the Brent formations that the errors may be greater (c/.+/- 5%)

Kaolinite peak intensity and crystallinity
A calibration curve was constructed using five different mixes of the two minerals quartz and 
kaolinite, which are the dominant minerals in all sandstones analysed. The curve suggests an 
over-estimation of kaolinite at higher concentrations (due to the orientation effects of



kaolinite). This is the opposite to the kaolinite quantified in silt-mudstones of the Brent 
Group and is probably due to the low crystallinity of the kaolinite in this formation. SEM 
suggests the crystallinity of kaolinite in the purer sandstones is of a high order. From the 
calibration curve, sediments with less than 10% kaolinite (sandstones) were treated as having 
kaolinite with good crystallinity and the external standard intensities can be applied to these 
in quantification. Samples with greater than 10% kaolinite (silts-mudstones) have been 
quantified using an internal standard separated by pipette extraction from the whole-rock 
mudstone samples. Unorientated XRD traces are shown for this <2um extraction in Appendix 
4.4. Subtraction of the minor phases (micro-quartz, feldspar, siderite) and subsequent scaling 
of the kaolinite intensity to 1 0 0 % gives a reasonable internal standard for analysis of the 
mudstone rocks of the well 211/18a-a33.
Table A l. Peak heights used and 100% external standard intensities used for XRD 
analysis, calculated from minerals used to make up the synthetic data set.

mineral Identification External mineral
peak (2 standard absorpt
Theta) 100% coefficic

intensity
c/sec

Kaolinite (sandstones) 12.35 1850 39.9
24.9 2070

Kaolinite (silt/muds) 12.35 1250 39.9
24.9 1200

Quartz 36.5 1020 36.4
39.45 1020
40.3 580
50.1 1920
59.9 1300

K-feldspar 25.6 1360 50.6
27.5 2350
41.8 300

Plagioclase (albite) 22.1 1300 34.3
27.9 7100

Dolomite 30.9 11250 48.8
Calcite 29.43 6200 73.4
Mica (muscovite/illite) 8.8 4450 43.9

17.8 1305
Siderite 32.0 (31.7- 3330 151.5

32.0)
Rutile(Ti02) 25.3 4650 125.5

48.1 1100
Pyrite 33.07 1870 190.9

37.1 1000
56.3 2200

chlorite 6.24 29.4

Oriented clay fraction XRD

Six Oriented slides with the clay fraction (2pm) were run under the similar analytical 
conditions to determine the clay phases present throughout the Thistle section. Semi­
quantification of the area of basal reflections was performed as described by Biscaye (1965), 
on the assumption that all basal reflections were made solely by clay minerals. Appropriate 
multiplication factors were applied to the basal peak areas (2 x 002 kaolinite peak, 4 x 001 
kaolinite peak) and the approximate wt% derived from the ratios of peak areas to the summed 
peak area. This technique was only crudely attempted on the mudstone sample 10486.2 as 
there is the probable identification of poorly ordered illite/smectite with a broad 2.8 - 3.0 
degree peak and a small shoulder peak on the high angle side of the 002 illite peak (9.3A). 
Figure 4.5 shows the XRD traces from the analysis of the six samples.



Appendix 2.0 (cont.) analytical techniques 

X R F spectrom etry analysis.

Method

All Thistle samples were fly pressed and crushed to 50|xm in a tungsten carbide swing mill 
for the period of one minute, thoroughly cleaned between samples, to avoid cross­
contamination. Powders where then dried for 12 hours at 150c to remove most of the oil 
residue from the samples.
A 5-10 gram fraction was then ignited at 1000c for three hours to remove volatile and 
hydrous fractions and loss on ignition determined. One gram of ignited powder was then 
made into a 46mm fused disc consisting of a mix of 80:20 lithium metaborate and lithium 
tetraborate flux (similar to Johnson Mathey Spectroflux JMIOOB). Fused beads were then 
analysed for the major elements on an ARL8420+ XRF spectrometer using a 3K Rhodium 
anode X-ray tube at 50kV 50mA. Processing was performed on an IBM using ARL386 Phase 
1 software. Analytical details are given in Table A2.
The remaining powder was used to make 46mm pressed powder pellets for selected trace 
element analysis. This was performed on a Phillips 1400 XRF spectrometer with either a 3K 
Rh or W anode X-ray tube, operated at 80kV 30mA. The trace elements Nb, Zr, Y, Sr, Rb, 
Th, Ga, Zn, and Ni were analysed with the Rh tube; V, Cr, (Co?), Cu, Ba, La, Ce, and Nd 
using the W anode. Analytical details are given in Table A2. Full details of the equipment, 
operating and processing conditions for both instruments are given by Tamey et., al., 1991 
and Pickering et., al., 1993.
In order to control the quality of the output data, both internal monitor samples (m) and 
international standards (s) were run within each batch of samples (u). Monitors allow the 
performance and instrumental drift of the machine to be monitored (precision) while 
comparison of standards to their reference compositions allows an indication of accuracy. 
Accuracy, precision are detailed in Table A2.

Problematic mudstone totals
The more pelitic lithologies in the Thistle hole were observed to contain a lot of organic 
material, (plant debris) and most of the results for the mudstone samples yield poor major 
element (fusion bead) totals, averaging 91%. Consistent repeat analysis (between two and 
five re-makes) suggest that it is not a sample preparation error.
Other reasons for a low total have been investigated. These include:
a) improper ignition of the sample, yielding low totals. This was overcome by re-weighing 
the sample before casting and adding the weight of material (for sample 10486.2-86.6 this 
was a weight loss of 0.6% and for 10496-97 a weight loss of 0.7%) the weight loss was not 
sufficient to lower the totals by 3%.
b) The high organic content could have been the problem where improper ignition failed 
drive off all carbon in the mudstone; the carbon turning to graphite and staying fixed to the 
clay molecule only to be ignited, forming C02 at the higher temperature of 1100c on bead 
production. Carbon-sulphur analysis (Leco analyser) of the original un-ignited powder, 
ignited powder and a lack of carbon in the fused beads suggests that the carbon is not the 
source of error (For example, 0.0828 wt% carbon in the analysed bead for sample 10472-73).
c) Similarly sulphur in the sample is not a problem, i.e., the formation of unresolvable 
anhydrite (CaS04), due to the break down of carbonate material producing free lime (CaO) 
and C02. The free lime reacts with any free S to produce anhydrite. Siderite is known to be 
the only carbonate present in the section but carbon-sulphur analysis suggest that minimal 
sulphur exists. XRF 2-theta scans, on pressed pellets, from Oxygen upwards in the periodic 
table, confirm that no undetermined element is abundant, such as C and S, in any great 
quantity to produce the observed low totals. No collective or single trace element is present in 
a significant a quantity to lowers totals by 3%. The most common trace element are Zr and 
Ba and Y which together contribute less than 0.5 wt %, see appendix 4.2.



AnaJytical conditions for m ajor elem ent analysis of fusion disks on the University of Leicester D epartm ent of Geology 
\Hl.Xd2l)* XRF spectrom eter.

l - . I c m c n i L i n e C r y s t a l P e a k  a n g l e
C o u n t  t i m e

( s )
U a c k g r o u n d  1 

a n g l e
C o u n t  t u n c  

( s )
B a c k g r o u n d  2  

a n g l e
C o u n t  t u n e  

( * ) C o l l i m a t o r D e t e c t o r

( i i H i i i i m u i e r  1 
l ‘ K a l . 2 p e r S 9 . 5 4 3 0 9 1 . 9 7 2 5 8 6 . 7 2 5 F i n e F P C
S i K a l . 2 P h T 1 0 9 , 2 1 2 0 1 1 2 . 4 4 5 1 0 3 . 3 7 5 S t d .  C o a r s e F P C
A l K a l . 2 P h T 1 4 5 . 1 2 3 0 1 4 8 . 8 5 1 5 1 4 0 . 4 4 1 5 S i d .  C o a r s e F P C

K a l . 2 A X 0 6 2 0 . 2 5 0 2 2 . 2 5 2 0 1 8 . 9 8 2 0 S t d .  C o a r s e F P C
\ a K a l . 2 A X 0 6 2 4 . 3 7 5 0 2 6 . 9 9 2 0 2 2 . 2 5 2 0 S i d .  C o a r s e F P C

( J n n i n m e t e f  2
I c K a l . 2 L i h 2 0 0 5 7  5 2 2 5 6 0 . 4 2 1 0 5 5 . 2 5 1 0 F i n e F P C
I I K a l . 2 L t P 2 0 0 8 6 . 1 4 4 0 8 8 . 8 2 0 8 4 . 2 5 2 0 F i n e F P C

C a K a U L i F 2 0 0 1 1 3 . 0 9 2 5 1 1 5 . 1 1 0 1 1 0 . 1 1 0 F i n e F P C
K K a U L i F 2 0 0 1 3 6 . 6 9 5 0 1 3 9 . 3 6 2 0 1 3 1 . 6 7 2 0 F i n e F P C
M n K a U L t F 2 2 0 9 5 . 2 5 0 9 8 2 5 9 2 . 8 5 2 5 F i n e F P C

Mean values and I-sigma standard  deviations for the m ajor elem ents determ ined on the ARUWZO^ from a selccthm of reference niaterialsi

S a m p l e n o n  I N1M (!

N u m b e r N u m b e r N u m b e r
R e f e r e n c e M e a n S t d .  d e v . % S t d  d e v o f  r u n s M e a n S t d  d e v . t f c S t d .  d e v . o f  r u n s M e a n S t d .  d e v % S t d .  d e v . o f  r u n s

S i O , 5 0  5 9 0  1 0 2 1 0 7 7 . 7 5 0 4 9 0 6 3 5 6 6  0 6 0 . 2 7 0 4 1 5
T i O , 1 2 9 0 0 5 0 . 3 5 1 0 0  1 0 0 . 2 5 0 8 8 0 0 5 7 5
A 1 , 0 , 1 6 4 0 0 4 0 2 4 1 0 I I  5 2 0 0 7 0 6 3 5 1 4  3 5 0 0 5 0 3 2 5
l c , 0 , 8 . 5 5 0 0 1 0  1 6 1 0 2  0 2 0 0 2 1 . 0 4 5 7 . 0 3 0 . 0 2 0 2 3 5
M n O 0  1 4 0 0 9 6 1 0 0  0 1 0 1 5 . 3 8 5 0 1 4 0 0 . 7 1 5
M g O 7 6 6 0 0 3 0 3 4 1 0 0 0 9 0 0 1 1 3  3 3 5 1 6 1 0 0 2 0 . 9 9 5
C a O 1 1  1 3 0 0 2 0 2 1 1 0 0  7 5 0 0 . 4 5 5 . 6 8 0 0 3 0 4 8 5
N a , 0 3  1 2 0 0 1 0 4 1 0 2 9 1 0 . 0 1 0 . 3 4 5 3  3 0 0 3 0 8 8 5
K , 0 0 3 7 0 0 . 3 2 1 0 4  9 4 0 0 1 0 . 2 4 5 0  7 5 0 0 . 4 5
p,o, 0  1 6 0 0 9 2 1 0 0 0 1 0 6 5 0 1 7 0 1 . 2 1 5
1 . 0 1  1 0 7 3 1 0 6 3 1 0 . 3 8 1
1 . 0 1  2 0 5 9 1 0 . 3 4 1

N o t e :  A n a l y s e s  f o r  l l O n  I  w e r e  r e p e a l e d  o n  t h e  s a m e  f u s i o n  d i s k s  a n d  t h e r e f o r e  r c n c c t  i n s u u m e n i a l  p r e c i s i o n .  T h e  a n a l y s e s  a r e  l e p o n e d  o n  a  f u U y  o x i d i z e d ,  v o l a l i l c - f r c e  b a s i s  
A n a l y s e s  f o r  N I M - O  p e r f o r m e d  o n  t h r e e  s e p a r a t e  f u s i o n  d i s k s  a n d  r e f l e c t  t h e  p r e c i s i o n  o f  t h e  s a m p l e  p r e p a r a t i o n  p r o c e e d u r e s  a  l t d  t h e  i n s t r u m e n t a l  p r e c i s i o n .

Analytical conditions for tracc-clcm cnt determ inations on the University of Leicester D epartm ent of Geology Philips PW 1400 
and AKLX420+.

l - J c m i a i t U n e C r y s t a l
P e a k  a n g l e

(a)

C o u n t  t u n e  
a n g l e

B a c k g r o u n d  1 
(I)

C o u n t  t u n c  
a n g l e

B a i d t g r o u n d  2  
(a) C o u n t  t i m e C o l l i m a t o r D e t e c t o r

N b K a l . 2 U - ^ 2 0 3 0 . 4 3 1 0 0 3 3 . 0 2 5 5 0 2 9 . 8 3 5 0 F i n e S c u t u
/s K a l . 2 I . 1I I 2O 3 2 . 1 1 5 8 0 3 3 . 0 2 5 5 0 2 9 . 8 3 5 0 F i n e S c i n L
Y K a l . 2 L 1F 22O 3 3 . 9 2 5 8 0 3 3 . 0 2 5 5 0 2 9 . 8 3 5 0 F i n e S d n L
S r K a l . 2 L i F 2 2 U 3 5 . 8 8 8 0 3 6 . 5 8 5 0 3 3 . 0 2 5 5 0 F i n e S c i n L
K b K a l . 2 L d - 7 2 0 3 8 . 0 4 5 8 0 3 8 . 7 5 0 3 6 . 5 8 5 0 F i n e S o n L
I h U 1 L i F 2 2 0 3 9  3 1 0 0 4 1 . 0 1 5 5 0 3 8 . 7 5 0 F i n e S c i n L

C a K a l . 2 f . U ' 2 0 0 3 8 . 9 6 5 4 0 3 9  5 6 5 2 0 3 8 . 2 6 5 2 0 F i n e F P C  +  S c i n L
/ j i K a l . 2 U 1 2 ( N 1 4 1 . 8 0 5 4 0 4 2 . 6 0 5 2 0 3 9 . 5 6 5 2 0 F i n e F P C  ♦  S c i n L
N i K a l . 2 L i i - 7 0 0 4 8 . 6 2 5 4 0 4 9 . 8 8 5 2 0 4 7 . 1 2 5 2 0 F i n e F P C  ♦  S c i n L
C u U > 1 L 1F 220 1 1 1 . 6 4 1 6 0 1 1 4  0 7 1 6 0 1 1 0 . 1 4 1 6 0 S t d  C o a r s e F P C
N U L a i L i l - 3 2 0 1 1 2 . 6 7 1 6 0 1 1 4 . 0 7 1 6 0 1 1 0 . 1 4 1 6 0 S t d .  C o a r s e F P C
U U 1 I . 1I 220 1 3 8 . 7 8 1 6 0 1 4 1 . 7 8 8 0 1 3 6 . 7 8 8 0 S t d .  C o a r s e F P C
l i a l a l U I - 2 2 0 1 5 4  1 7 I C O 1 5 3 . 1 7 1 0 0 S t d .  C o a r s e F P C
l e K a l . 2 L d - 2 0 0 5 7 . 5 2 2 5 6 0 . 4 2 1 0 5 5 . 2 5 1 0 F i n e F P C
l i K a l . 2 L i F 2 0 0 8 6 . 1 4 4 0 8 8 . 8 1 5 8 4 . 2 5 1 5 F i n e F P C

C r . K a U L i F 2 0 0 7 7 . 8 3 1 0 0 8 1 . 0 3 4 0 7 4 . 0 3 4 0 F i n e F P C
C r K a U L t F 2 0 0 1 0 7 . 0 2 1 0 0 1 0 9 . 8 1 4 0 1 0 4  6 1 4 0 F i n e F P C
V K . U U I 7 0 0 1 2 3 . 1 7 1 0 0 1 2 6 . 3 7 4 0 1 2 1 . 1 7 4 0 F i n e F P C
S c K a U L i F 2 0 0 9 7 . 7 1 0 0 9 5 . 9 1 0 0 F i n e F P C
C a K a U L i F 2 0 0 1 1 3 . 0 9 2 5 1 1 5 . 1 1 5 1 1 0 . 1 1 5 F i n e F P C
C u K a U 4 5 . 0 3 6 0 4 5 . 6 3 3 0 44.43 3 0 F i n e F P C

W -l
Precision and accuracy o f XRF results based '------------------------

on analyses o f three standard rocks: BOB-1, W -l, and
B F - N  " M ean o  M ean

Rh X-ray tuoe uace element program

BE-N
Mean

Nb 4.5 ±0.2 7 J ±0.5 H U ±0.6
Zr 102.2 ±1.0 93.3 ±2.0 280.1 ±2.6
Y 27.9 ±1.0 22.7 ±0.7 29.7 ±0.1
Sr 194.8 ± I J 188.5 ±1.3 1431.9 ±9.4
Rb 6.1 ±0.9 22.6 ± 0 J 50.4 ±0.4
T 1.6 ±1.2 2.5 ±1.2 13.7 ±0.6
Ga 15.3 ±0.7 18.6 ±0.7 18.2 ±0.7
Zn 68.1 ±0.6 90.1 ±1.0 132.1 ±1.1
Ni 109.9 ±3.0 75.8 ±1.1 291.6 ±3.4

W X -ray tube trace element program

V 244.0 ±4.4 270.9 ±3.4 254.2 ±1.6
Cr 305.2 ±1.7 133.2 ±0 .8 374.2 ±4.0
Ba 3 7J ±0.8 166.9 ±3.2 1106.0 ±12.2
La 5.8 ±0.9 11.8 ±1.0 85.3 ±1.3.
Ce 12.8 ±1.9 23.8 ±1.3 151.4 ±1.4.
Nd 10.7 ±1.0 12.7 ±1.8. 64.2 ±0.4



Appendix 2.0 (cont.) analytical techniques

Microprobe analysis
Polished thin sections, with a < 1 |im finish were made from core chip samples. These were 
carbon coated by vacuum evaporation and mineral analyses performed using a JEOL 8600S 
wave-length dispersive (WD) electron microprobe with three automated crystal spectrometers 
or a LINK 860 Series, energy-dispersive (ED) system.

WD analysis
For the WD system the electron beam was operated at an accelerating voltage of 15kV and 
probe current of 30 nA with a probe diameter of 5 |im. This was increased to 10-15 |xm to 
minimise damage when analysing beam-sensitive large feldspar crystals. X-ray intensities 
were standardised against a range of pure elements, synthetic oxides and natural minerals. 
Dead-time and background corrections were applied to X-ray intensities followed by ZAP 
correction to the measured oxide concentrations. Software employed was for the routine 
quantitative analysis of the common silicate minerals by analysis of the elements SI, Ti, Al, 
Cr, Mn, Mg, Ca, Na, K, Ni and subsequent recalculation to oxide weight percent. White et., 
at., (1983). Detection limits for each of these elements are variable, depending on background 
interference, but range between 0.03 wt% (Na - As) and 0.05 wt%(Ge-Bi). Precision is also 
variable for the same reasons as detection limits. Values from 100% relative at the lower 
detection limit to 1% relative at higher concentrations (>40%). Precision may be computed 
from count rate data for each individual analysis.

ED analysis
Ed system was employed for analysis the beam sensitive clay minerals and mica . The system 
employed was operated using a 15kV accelerating voltage and 3 nA probe current. A 5 
micron beam was used, and focused for small grains. Analysis of similar silicate minerals 
using the same elements as the WD system was performed on LINK ZAF4-FLS+ software. 
Detection limits are genrally higher than the WD system, 0.2 % for elements except Na 
(0.5%). For analytical details of the technique refer to Dunham and Wilkinson, (1978).

SEM  analysis
SEM was employed to observe the morphology of sandstones and mudstones. A Hitachi 520 
scanning electron microscope coupled to a LDJK AN1000 energy-dispersive (EDX) detector, 
were deployed, using vacum coated (gold) core chippings; refer to Goldstein et., al., (1981).

Thin section analysis
Pétrographie modal analysis were made on standard thin sections following Chayes (1956). 
An average of 400 - 600 points being counted per 1.5 cm^ using a Swift integrating stage and 
counter (Nb. for 211/18a-a33 used contractors 300 points). Modal analyses were attempted 
on sandstone samples only; mudstones being much to fine.

M ineralog analysis
Modal estimates were also obtained by Fourier Transform infra-red spectroscopy (FTTR) for 
some Thistle samples, see Appendix 4.0. Mineralog is a trademark of Core Labs Inc. Samples 
were reduced to 2|im. The principle of measurement being that molecular vibrations are 
measured. The frequency of vibration is a function of bond strengh, atomic mass and radius; 
and crystal structure and FTIR is sensitive to "short range order", whereas XRD is sensitive 
to "long range order". Accuracy is quoted as similar to XRD {cf. approx 5%) and bulk 
samples can be used to distinguish clay phases, although illite can not be distinguished from 
mica. Refer to Harville and Hamish 1990.

Leco A nalysis (C & S)
Accurate analysis of C and S (to 3 decimal places) were dertermined by a Leco Anayser from 
powders prepared for XRF analyis.



Appendix 3
XRD mineralogy for the Thistle211/18a-a33 reservoir section

Sample kaolinite quartz K-feldspar albite muscovite siderite pyrite rutile chlorite Total

10452 4.11 83.64 10.12 1.81 0 0 0 0 0 99.68
10456 4.2 79.19 10.74 3.5 0 0 0 0 0 97.63
10458 0 0 0 0 0 0 0 0 0 0
10469 0 0 0 0 0 0 0 0 0 0
10470 54.4 26.75 4.18 3.5 6.98 2.16 0 1.08 0 99.04
10471 64.39 20.39 5.48 2.13 5.17 3.06 0 2.02 1 102.9
10472 64.05 20.16 4.56 2.19 5.27 1.48 0 2.32 1 100.04

10473 73.28 12.25 1.89 7.75 2.71 2.08 0 2.16 1 101.94

10475 5.61 80 8.93 3.76 0 0 0 0 0 98.3
10479 7.12 78.47 8.99 4.13 0 0 0 0.37 0 99.09
10482 5.38 74.38 9.44 8.8 0 0 0 0 0 98
10483 11 72.35 10.08 4.78 - 0 0 0 0.51 0 98.73
10484 6.77 79.18 8.75 5.18 0 0 0 0.27 0 100.15
10485 7.86 70.58 11.38 5.42 5.63 0.64 0 0 0 101.92
10486 44.91 28.57 9.5 3.65 4.79 5.62 0 3.44 0 100.47
10487 8.29 70.99 8.96 4.45 0.1 0 0 0 0 92.8
10487 8.68 67.18 9.33 5.11 0.2 0 0 0 0 90.51
10488 6.83 78.13 9.05 2.36 0 0 0 0 0 96.87
10490 6.67 77.48 9.95 3.93 0 0 0 0 0 98.03
10491 8.28 72.31 8.6 4.06 0.58 0 0.52 0 0 94.34
10493 7.56 77.8 8.28 3.84 0.2 0 0 0 0 97.67
10494 25.49 51.13 9.17 4.5 1.44 1.38 0 1.16 0 94.28
10496 65.95 28.32 3.79 0.5 0.46 0 0 1.47 1 100.27
10497 12.77 78.93 6.09 0 0.5 0 0.96 0 0 99.24
10498 9.67 82.9 5.92 0.33 0 0 0.96 0.47 0 100.25
10499 4.85 84.51 8.17 1.49 0 0 0 0 0 99.02
10500 2.85 84.19 8.05 1.65 0 0 0 0 0 96.73
10501 5.14 81.57 8.32 2.21 0.4 0 0 0 0 9-7.63
10506 10.52 75.96 8.57 3.13 0.4 0 0 0 0 98.58
10507 13.17 70.62 7.57 3.59 0.36 0 0 0.27 0 95.58
10508 11.05 76.36 8.35 3.24 0.4 0 0 0 0 99.4
10511 8.08 77.65 8.62 3.12 0.39 0 0 0 0 97.86
10512 11.67 75.53 8.37 3.67 0.4 0 0 0 0 99.64
10513 11.65 76.34 6.63 3.36 0 0 0 0 0 98
10514 5.45 82.51 11.26 3.76 0.39 0 0 0 0 103.38
10515 16.62 68.28 12.11 3.77 0.61 0 0 1.36 0 102.74
10516 8.24 78.81 9.33 3.01 0.41 0.72 0 0.59 0 101.11
10517 8.53 74.48 7.28 3.91 0.2 0.85 0 0 0 95.24
10518 7.02 74.93 12.06 2.84 0.42 0.81 0 0.49 0 98.57
10526 9.34 73.58 9.12 3.07 0 0.31 0 0.27 0 95.69
10530 6.26 75.13 9.73 7.13 0 0 0 0.26 0 98.52
10536 6.94 75.13 12.32 3.53 1.16 0 0 0 0 99.08
10540 6.59 73.07 15.11 5.54 0.39 0 0 0 0 100.69

10542 6.36 78.22 13.23 4.42 1.2 0 0 0 0 103.43
10543 7.49 69.14 16.72 6.69 1.96 0 0 0 0 101.99
10544 6,9 68.74 17.36 4.94 1.25 0 0 0 0 99.19
10545 7.87 61.33 23.08 6.14 1.88 0.24 0 0 0 100.54

10561 17.47 54.59 13.98 7.34 3.8 0 0 0 0 97.18

10562 13.89 55.83 14.72 7.53 2.88 0 0 0.87 0 95.72
10564 13.32 58.84 14 7.27 3.85 0.88 0 0 0 98.15

10566 15.87 55.15 18.48 8.51 3.31 0.83 0 0 0 102.17

10568 10.95 51.75 19.99 10.45 3.03 1.17 0 0 0 97.33
10570 17.91 52.89 18.7 6.52 2.9 1.01 0 0 0 99.94
10574 19.94 43.08 19.61 8.42 5.19 1.38 0 0 0 97.61
10576 15.55 48.22 15.34 8.9 3.71 1.1 0 0 0 102.94
10578 24.96 40.06 18.33 7.16 5.14 1.79 0 0 0 97.45
10580 16.04 45.71 18.26 7.85 2.36 1.22 0 0 0 91.44

10582 26.5 44.25 17.33 8.84 4.59 1.13 0 0 0 102.63



Appendix 4.0 Thin section point count data and mineralog modal data for 
211/18a-a33 reservoir section (wt%)

Thin section analysis (converted to wt%)

ID/DEP Qtz wt% Fspwt% Muse wt% Bio wt% OPaq wt% lay m wt% ement wt% hm wt%

455 89.85 10.15 0 0 0 0 0 0
480 76.17 5.17 0 0 7.95 9.01 0 1.69
490 75.21 7.42 8.07 0.5 0.83 7.48 0 0.48
492 71.69 15.41 0 0 3.95 8.95 0 0
499 66.49 7.3 0 0 1.7 24.17 0 0.35
501 71.67 9.91 0 0 0 16.47 0 1.94
502 64.39 8.08 1.25 2.58 5.32 18.38 0 0
520 61.15 4.63 0 0 1.77 13.84 12.28 6.13
540 60.59 19.83 1.75 0 0.29 12.42 4.72 0.33
541 59.12 6.35 0 0 4.88 23.2 4.71 1.67
561 43.89 17.49 8.35 9.39 5.04 9.04 4.25 2.48
567 52.72 6.23 7.92 6.96 0 22.75 1.57 1.83
580 44.85 12 13.27 13.6 1.77 13.58 0.73 0.17

Mineralog analysis (wt%)

sample kaolinite quartz K-feldspar albite muscovite siderite pyrite rutile chlorite Total
10473/ml 42 " 9 0 2 40 1 0 0 6 100
10482/ml 5 72 10 7 6 0 0 0 0 100
10486/ml 30 21 5 5 26 10 0 0 3 100
10491/ml 4 73 9 7 4 0 0 0 3 100
10545/ml 6 58 15 10 10 1 0 0 0 100
10574/ml 13 44 12 10 15 2 0 0 4 100
repeat analysis
10473/m2 38 9 0 3 47 3 0 0 0 100
10482/m2 0 69 6 12 12 1 0 0 0 100
10486/m2 29 22 4 5 30 10 0 0 0 100
10491/m2 0 74 9 7 10 0 0 0 0 100
10545/m2 6 58 15 10 10 1 0 0 0 100
10574/m2 11 46 12 10 18 3 0 0 0 100



Appendix 4.1 Mineral compositions used in modelling
the Thistle 211/18a-a33 reservoir section (wt%)

Mineral S102 Ti02 
Specific compositions

A1203 Fe203 MnO MgO CaO Na20 K20 S total

a33-albite 68.14 0 19.64 0 0 0 0.55 11.18 0.54 0 100.1
a33-ksp 64.18 0 18.23 0 0 0 0 1.01 15.52 0 98.94
a33-kaollnlte 45.94 0.2 36.83 0.8 0 0.22 0 0 0.23 0 84.22
a33"day' 45.71 0.25 33.96 2.59 0 1.43 0.16 0 0.9 0 85
a33-muscovlte 47.1 0.74 29.68 4.17 0 1.76 0 0.34 10.32 0 94.11
a33-blotite 35.51 3.44 16.08 23.12 70 8.91 0 0.14 9 0 166.2
a33-mica 41.21 2.09 22.88 13.65 0 5.4 0.13 0.5 9.67 0 95.53
a33-slderlte 0 0.13 0 54.66 0.3 5.21 5.28 0 0 0 65.58
a33-quartz 98.68 0 0 0 0 0 0.21 0.28 0 0 99.17
Et-alblte 68.58 0 19.64 0.06 0 0 0.43 11.08 0.82 0 100.6
Et-kaolinlte 46.19 0.25 36.68 0.08 0 0 0 0.08 0.22 0 83.5
Et-k-feldspar 64.22 0 18.27 0 0 0 0 1.01 15.52 0 99.02
Et-muscovite 45.49 0.61 30.44 3.97 0 1.45 0.05 0.23 9.19 0 91.43
Ran-albite 67.47 0 19.62 0.09 0 0 0.73 11.32 0.13 0 99.36
Ran-kaollnlte 45.45 0.09 35.77 2.24 0 0.62 0 0 0.24 0 84.41
Ran-k-feldspar 64.07 0 18.12 0.06 0 0 0 1.02 15.51 0 98.78
Ran-muscovite 47.22 0.79 29.4 4.24 0 1.88 0 0.38 10.52 0 94.43

Theoretical
siderite

compositions 
0 0 0 66.69 2.86 0.2 0.08 0 0 0 69.83

siderite-1 0 0 0 67.88 1.12 0.13 0.1 0 0 0 69.23
rutile 0 100 0 0 0 0 0 0 0 0 100
quartz 100 0 0 0 0 0 0 0 0 0 100
rutile 0 100 0 0 0 0 0 0 0 0 100
calcite 0 0 0 0 0 0 56.03 0 0 0
dolomite 0 0 0 0 0 30.41 21.86 0 0 0
pyrite 0 0 0 67.24 0 0 0 0 0 53
Mg - chlorite 27.64 0.22 22.48 13.46 0 24.32 0 0.17 0.06 0 88.35
Fe - chlorite 25.62 0.88 21.19 27.83 0 15.28 0.16 0 0 0 90.96
illite-theoreticai 56.91 0.81 18.5 5.28 0 2.07 1.59 0.43 5.1 0 90.69
Fithian-iiiite 51.74 0.68 23.98 5.78 0 1.99 0.97 0.36 5.59 0 91.09
■global" illite 49.78 0.42 26.35 4.98 0 2.75 0.32 0.25 7.02 0 91.87
High -ili/smectite 47.26 0 31.06 2.49 0 2.26 0 0 10.7 0 93.77
Low ili/smectite 53.65 0 22.22 3.1 0 3.89 1.23 0 3.95 0 88.04
smectite-1 53.52 0 18.89 5.08 0 3.9 1.52 0.54 0.51 0 83.96
smectite -2 59.27 0 22.28 2.9 0 4.72 1.79 0.51 0 0 91.47

Notes.
prefix »33' - average value of compositions derived from microprobe analysis of minerals fkom the section, 
prefix 'Et' • average value of compositions derived fkom microprobe analysis of minerals fTom the Etive Formation 
prefix 'Ran' • average value of compositions derived fl-om microprobe analysis of minerals fkom the Rannoch Formation

All compositions include volatile fractions.
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Appendix 4.3 Electron microprobe analyses from the Brent Group

Prefix 211/ - Sample from 21 l/18a-a33
Prefix B41 & B26 - Sample from the Statfjord holes -B26 and- B41 
Suffix analysis using energy dispersive probe (ED) probe system 
albite Kaolinite cont..

sample SI02 TÎ02 AI203 Fe203 MnO MgO CaO Na20 K20 total sample SI02 T102 AI203 Fe203 MnO MgO CaO Na20 K20 total

B26/420 68.25 0.02 19.42 0.07 001 0.01 0.70 11.27 0.20 99 98 B41/456/2 46.84 0.00 38.21 0.00 0.00 0.00 0.00 0.00 0.00 85.04

211/540/1 70 72 0.01 19.44 0.08 001 0.00 0.02 11.77 0.21 102.32 B41/456/3 46.20 0.00 35.91 0.68 0.00 0.66 0.00 0.00 1.72 84.33

211/540/2 70.13 0.01 19.48 0.05 0.03 0.00 0.20 11.71 0.20 101.84 B41/456/4* 46.3 0.0 35.3 0.6 0.0 0.0 0.0 0.0 0.0 82.08

211/485.8 70.60 0.04 19.50 0.07 0.00 0.00 0.06 11.98 0.07 102.38 B41/456/5* 46.9 0.0 36.4 1.3 0.0 0.7 0.0 0.0 0.5 85.67

211/485.8/2 66.85 0.04 21.71 0.18 0.05 0.00 2.51 10.13 0.19 101.68 B41/456/6* 47.5 0.0 35.3 1.9 0.0 1.4 0.0 0.0 1.7 87.63

211/500 67.74 0.02 19.37 0.06 0.02 0.00 0.11 11.69 0.14 99.18 B41/456/7* 46.0 0.8 32.2 2.4 0.0 2.1 0.0 0.0 2.7 85.98

211/580 66.66 0.04 20.82 0.19 003 0.00 2.26 10.59 0.08 99.67 B41/456/8" 47.4 0.0 36.2 0.7 0.0 1.0 0.0 0.0 1.7 86.96

211/580/2 68.13 0.02 19.26 0.04 0.02 001 025 11.58 0.13 99.37 B41/511* 44.8 0.0 37.1 14 0.0 1.6 0.0 0.0 0.0 84.73

211/580/3 64.92 0.01 21.52 0.06 0.01 0.00 2.70 10.09 0.20 99.54 B41/511/2* 46 5 0.0 38.5 0.0 0.0 0.6 0.0 0.0 0.3 85.93

211/580/4 68.24 001 19.21 0.04 0.03 0.00 0.13 11.60 0.10 99.37 B41/511/3* 43.9 0.0 36.5 1.2 0.0 0.8 0.0 0.0 0.0 82.31

211/580/5 68.19 0.01 19.20 0.09 0.03 0.00 0.14 11.63 0.17 99.47 626/575* 47.2 0.0 36.8 0.0 0.0 0.0 0.0 0.0 0.6 84.66

211/580/6 68 26 0.02 18.92 0.06 0.01 0.00 0 09 11.78 0.10 99.25 626/575/2* 47.0 0.0 37.7 0.0 0.0 0.0 0.0 0.0 0.8 85.63

211/580/7 67.24 0.02 18.75 0.22 0.03 0.00 0.12 11.63 0.16 98.18 626/575/3* 45.2 0.0 35.4 0.5 0.0 0.0 0.0 0.0 1.1 82.12

211/580/8 68.14 0.22 19.31 0.07 0.02 0.00 0.20 11.65 0.09 99.75

211/512 68.77 0.02 19.39 0.01 0.03 0.00 0.12 11.84 0.20 100.41 K-feidspar

211/512/2 69.01 0.02 19.57 0 0 3 0.03 0 00 0.17 11.83 0.10 100.77 B26/406 60.71 0.02 17.65 0.08 0.02 0.00 0.05 0.95 18.49 98.00

211/512/3 67.04 0.01 18.81 0.02 0.03 0.00 0.13 11.47 0.12 97.64 B41/511 62.06 0 04 18.24 0.03 0.01 0.00 0.17 2.41 16.18 99.19

211/512/4 67.83 0.01 19.57 0.01 0.01 0.01 0.50 11.56 0.09 99.61 B26/409 61.14 0.03 17.50 0.03 0.03 0.00 0.03 0.72 19.27 98.77

b26/575* 68 44 0 0 0 1926 0.00 000 0 00 000 9.15 0.00 96.85 B26/575 64.70 0.01 15.74 0.02 0.03 0.00 0.02 0.62 16.58 97.75

211/512per 66.65 001 19 68 0 14 0.03 0.00 061 8 54 4.13 99 84 B26/575 60.59 0.05 17.31 0.03 0.03 0.00 0.01 0.59 19.28 97.96

211/512per 66 89 001 19.40 0 04 002 0.00 063 885 4 18 100.08 B26/575 62.00 004 17.68 0.18 0.01 0.00 001 0 98 18 98 99.91

B26/575 61.75 001 17.64 0.22 0.03 0 0 0 0.09 1.38 17.86 98 99

kaolinite B26/404 60 76 0.03 17 58 0.04 0.03 0.00 0.01 0.72 18.49 97 69

211/500/1 46.54 0 0 0 37.44 0.00 000 0.00 0.00 0.00 0.00 83.99 B26/404 64.44 0.03 1806 0.06 0.03 0.00 0.01 1 44 16.05 100.14

211/500/2 45.96 0.00 36.48 0.00 0.00 0 00 00 0 0.00 000 82 65 B26/404 64.13 0.02 17 97 0.03 0.03 0.00 0 0 5 2.13 16.97 101.36

211/500/3 44.89 0 5 3 37.22 0.00 000 0.00 0.00 0.53 0 38 83.60 B26/420 60.87 0.13 17.34 0.11 0.03 0.00 0.00 0.64 18.32 97.48

211/500/4 47 97 0.51 38.51 0.00 000 0 00 0 0 0 0.55 0.21 87 54 B26/420 6269 0 05 17.77 0.03 0.01 0.00 0.01 0.62 19.71 100 89

211/500/5 47.49 0 00 38.01 0.00 000 0.00 00 0 000 0.23 85.74 B26/437 59.79 0.18 26.47 2.83 0.02 0.59 0 0 5 0.90 8.33 9889

211/500/6 47.40 0.00 37.17 0 0 0 0.00 0.00 0.00 0.00 000 84 56 211/540 65.33 0.01 18.56 0.04 0.04 0.00 0.01 0.97 14.96 99 93

211/500/7 48.18 0.00 38.32 0.00 000 0.00 023 0.00 0 23 87.50 211/540 64.23 0.02 18.23 0.05 0.03 0.00 0.06 0.95 15.58 99.20

211/500/8 46.31 3.39 35.71 0.00 0.00 0.00 0.00 0.00 0.00 85 46 211/540 64 10 0.02 18.05 0.01 0.02 0 0 0 0.01 1.10 14.97 98.28

211/500/9 48.52 0.00 37.15 0.00 0.00 0.00 0.00 0.00 0.34 86 01 211/540 64.12 0.02 18.08 0.02 0.05 0 0 0 0.01 1.04 15.21 98.59

211/500/10 46.15 0.00 36.30 0.00 000 0.00 0.00 0.00 0.00 82.45 211/540 64.35 0.07 18.10 0.01 0.00 0.00 0.01 0.64 15.79 99.01

626/575 49.56 0 00 38.08 0.00 0.00 0.00 0 0 0 0.00 0.55 88.18 211/540 63.43 0.01 17.93 0.10 0.01 0.00 0.04 1.25 14.86 97.67

B41/485 42.17 0.78 30.85 5.52 0.00 2.13 000 0.00 1.77 82.67 211/540 64.51 0.01 17.89 0.02 0.01 0.00 0.01 0.61 16.15 99.25

B41/485/2 43.41 0.31 33.85 3.16 0.00 1.02 0.00 0.00 0.52 81.96 211/540 6375 0.02 18.11 0.14 0.01 0.00 0.01 1.13 14.87 98.07

211/580/1 48.83 0.00 38.08 0.00 0.00 0.00 00 0 0.00 0.17 89.02 211/540 64.07 0.04 18.27 0.10 0.03 0.00 0.01 0.92 15.30 98.77

211/580/2 4 6 6 5 00 0 36 84 1.35 000 0.00 0.00 0.00 0.00 84.71 211/560 64.09 0.01 18.08 0.03 0.02 0.00 0.01 0.76 15.78 98.78

211/550 47.89 0.00 37.64 1.70 0.00 0 00 0.00 000 0.29 87 35 211/540 64.73 0.01 1827 0.13 0.00 0.00 0 0 0 0.37 16.77 100.30

211/580/3 47.13 00 0 38.03 0 80 000 0 00 0 00 0.00 000 85.88 211/540 62.83 0.00 18 79 0.01 0.01 0.00 0.03 0.83 15.36 97.90

211/580/4 41.88 00 0 32.61 7.60 000 3 66 000 0.00 0.26 8524 211/540 65 23 001 18.65 0.01 0.03 0.00 0.01 3.10 13.21 100.32

211/580/5 44.53 00 0 35.94 2 87 000 0.63 0.00 0.00 0.24 83.83 211/500 63 85 0.01 18 42 0.02 0.03 0.00 0.01 0.71 16.26 99.36

211/580/6 45.49 0.00 36.79 0.97 000 0.00 00 0 0.00 0.00 83.15 211/580/1 64 07 0.19 18.05 0.04 0.01 0.00 0.00 0.97 15.70 98.95

211/580/7 44 80 06 0 35.12 2.19 000 0 00 0.00 000 0.00 82.74 211/580/2 64 58 0.06 18 42 0.14 0.02 0.00 0.16 2.18 13.80 99.39

211/502 46.12 0.00 37.42 0.00 000 0.00 0.00 0.00 0.21 83.74 211/580/3 63.91 0.02 18 02 0.00 0.00 0.00 0.01 1.26 15.40 98 68

B26/404 47.69 0 03 37.61 0.02 003 0.00 001 0.12 0.33 85.87 211/580/2 63.54 0.04 18.19 0.02 0.01 0.00 0.01 0.54 16.47 98.86

B26/420 47 50 0.01 37.27 0.03 0.03 0.01 0.02 0.07 0.16 85.14 211/580/3 64.15 0.01 1804 0.03 0 0 0 0.00 0.01 0.83 16.07 99.15

211/485.8 45.98 0.02 36.51 0.07 001 0.01 0.02 0.11 0.11 82.89 211/512/1 64 68 0.03 1806 0.01 0 0 2 0.00 001 0.56 16.43 99.83

211/500/11 49.04 0.00 39 70 0.00 0.00 0.00 00 0 0 00 0.00 88 73 211/512/2 64 75 0.00 18 12 0.09 001 0.00 0.01 0.75 16.32 100.08

B41/485 45.00 0 0 0 35.70 1.54 0.00 0.90 0.09 0.00 0.25 83.23 211/512/3 64.71 0.03 18.43 0.07 0.00 0.00 0.16 2.02 1406 99.50

B41/456 42.58 1.32 24.66 68 6 000 2.17 0.46 0.00 4.63 82 04 211/512/4 64.58 0.04 1841 0.03 001 0.00 0.07 1.89 14.43 99 59



K -fe ldspar  c o n t . ch lo r i te
sam ple Si02 TÎ02 AI203 Fe203 MnO MgO CaO NaZO K20 total sample

211/512/5 64 33 0 02 18.36 0.02 0 02 0.00 0.01 1.22 15 28 99.31 561/1*

211/512/6 64 80 0.04 18.16 0.05 0.02 0.00 0.06 1.13 15.56 99.87 561/2*

211/512/7 64.78 0.01 18.18 0.04 0.01 0.00 0.03 1.20 15.24 99.52 561/3*

211/512/8 63 55 0.06 18.42 0.03 0.03 0.00 0.01 0.70 15.92 98.75

211/512/9 64.60 0.01 18.25 0.04 0.01 0.00 0.01 0.51 16.44 99.89 siderlte

B41/456* 64.0 0.0 19 0 0.0 0 0 0.0 0.6 2 2 13.6 99.39 580-1-sid

B41/456* 61.5 0.0 19.0 0 0 0 0 6.4 0.0 0.6 160 97.89 580-2

B41/456* 62.1 0.0 19.0 0.0 0.0 0 0 0 0 0.8 16.3 98.15 580-3

211/500* 65.6 0.0 18 6 0.0 0 0 0.0 0 0 0.0 15 9 100.01 B26-575

211/502* 62.4

muscovite

0.0 17.8 0 0 0.0 0.0 0.3 0.6 167 98.60

B26/575 48.51 0 50 29.17 1.82 0 00 0.84 0.01 3.10 9.53 93.34

B26/437 47.79 0.83 27.80 5.72 0.04 1.92 0.01 0.36 12.79 96.73

B26/437/2 45.62 0.96 2907 5.10 006 1.39 0.00 0.27 11.88 93.88

211/485.8 47.40 0.95 34.81 1.10 0.03 0.76 0.00 0.77 7.93 93.68

211/561 4 647 0.93 30.54 4.34 0.06 1.29 0.01 0.18 8.30 91.77

211/561/2 45.72 1.10 27.16 6.58 0 05 1.81 0.01 0.34 10.44 92.60

211/561/3 46.95 0.96 29 44 52 4 0.04 1.58 0.01 0.44 10 60 94.74

211/500* 4 4 7 0.1 32.0 4.1 0.0 1.0 0.4 0.0 10.7 93.45

211/500/3* 46.0 0 9 28.7 5.6 0 0 1.6 0.0 0.0 103 92.64

626/575* 46 8 1.6 28.0 5.4 0.0 1.4 0 0 0.0 10.1 92.74

626/575/2* 47.3 0 5 32.9 2.1 0.0 0 0 0 0 0 0 9 6 92.14

626/575/3* 45 8 0 8 2 72 6.1 0.0 1.5 0.0 0.0 105 91.19

626/575/4* 46 9 1.0 31.9 2.1 0.0 1.8 0.0 0 0 10.5 94.68

826/575,5* 46.9 1.0 31.9 2.1 0.0 1.8 0.0 0.0 105 93 95

211/580* 4 8 2 0.9 31.8 4.0 0 0 1.3 0.0 2.8 8 5 94.92

211/580/1* 51.9 0.9 254 3.4 0 0 3 3 0.0 0 0 11.3 96.10

211/580/2* 49 7 0 5 306 3.0 0.0 1.7 0 0 0 0 108 96 77

211/580/3* 4 7 4 0 5 32 2 1.7 0 0 1.9 0.0 0.8 104 94.75

211/580/4* 47.6 0.5 3 03 2.9 0.0 2 3 0.0 0.0 11.2 95.11

211/580/5* 48 2 0.6 28 0 5.0 0.0 2 5 0.0 0.0 11.6 95.43

211/580/6* 51.4 0.0 24 5 4.6 0 0 2.8 0 0 0.0 108 93 70

211/580/7* 46 7 0 3 35.8 1.7 0.1 0 8 0.1 1.4 9 9 96.09

211/580/8* 46.7 1.3 29.1 5.1 0 0 1.9 0 0 0.0 11.4 95.01

211/580/9* 48.2 0 9 31.8 4.0 0 0 1.3 0.0 0.0 8.5 94.41

211/580/10’ 51.9 0.9 2 54 3 4 0.0 3.3 0.0 0.0 11.3 95.93

211/580/11' 49.7 0.5 30.5 3.0 0 0 1.7 0.0 0.7 10.8 96.62

211/502* 46.0 0 0 34.4 1.2 0.0 0.8 0.0 1.1 8.4 91.75

B41/456" 44.9 0.7 30.2 4.2 0.0 2.1 0.0 0.7 9.7 91.95

B41/511/1* 45.3 0.8 35.7 0.7 0.0 1.4 0.3 1.0 7.5 91.71

B41/511/2* 45.5 0.7 30 9 4.3 0.0 2.0 0.0 0.7 10.8 94.92

B41/511/3* 44 6 0.4 35 9 1.2 0 0 1.3 0 3 1.2 8 3 93.12

B41/511/4* 4 8 2 0 4 28 3 3 7 0 0 3 6 0.0 0.7 10.1 94 48

B41/511/5* 46 5 0.4 28.2 3 5 0.0 2.8 0.0 0.0 11.0 91.96

blotlte

561/1* 35.8 3.3 160 2 2 9 0.5 9.1 0.0 0.1 9 2 94 64

561/2* 34.7 3 2 16.1 23.0 0.5 8.9 0.0 0.1 8 6 93.02

561/3* 35.1 3.8 16.2 23 3 0 6 8 9 0.0 0.1 9.1 94 84

561/4* 35.6 3.5 16.0 23.3 0 5 8.7 0.0 0.2 9.1 94 65

quartz

211/540/1 98 92 0.01 0.14 0.08 0.03 0.28 061 0.82 0.08 100.96

211/540/2 98 76 0.01 0 00 0.02 003 0.00 0.02 0.01 0.01 98.88

25.9

29.1

2 8 6

0.1

1.8

1.8

21.8 23.1

17.4 31.6

17.4 31.5

0.2

0.4

0.4

17.3

8.1

7.8

0.0

0 4

0.4

0 1 

0.3 

0.3

0 1 86.45 

0.7 86.66 

0.6 8574

0.00 0.00 0.00 55.03 0 55 2.09 3 37 0.00 0.00 61.03

0 00 0.00 0.00 44.36 0.35 7.99 6.43 0.00 0.00 59.13

0.00 0.00 0.00 48.17 0.00 5.54 6.04 0.00 0.00 59.75

0.00 0.00 0.00 51.59 1.00 5.94 2.58 0.00 0.00 61.12

211/561 98.38 0 01 0.00 0.04 0.01 0 00 0.00 0 01 0 01 98 48
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APPENDIX 4.4 Example whole-rock (un-orientated) X-ray diffraction scans of a 
sandstone (10472-73) and a mudstone (10486.2) from hole 211/18a-a33, Thistle Field.



AL203 CaO Fe203
. K20 1 VGD S102 S 1102
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0.00
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12.00

0.00
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Appendix 5.0 Oxide logs (wt%) from the "Pass 1 processing" of hole 
21 l/18-a50 GLT data, interval 9110 to 9499'. Depth in feet, (log depth)



Appendix 6.0 Compositions (wt%) used in modelling hole 211/18-a50; not-normalsed.

mineral SI02 TI02 AI203 Fe203 CaO K20 S
albite 68.14 0 19.64 0.08 0.55 0.54 0
K-feldspar 64.18 0 18.23 0 0 15.52 0
"feldspar 66.18 0 18.93 0.04 0.28 8.03 0
kaolinite 45.94 0.2 36.83 0.8 0 0.23 0
muscovite 47.1 0.74 29.68 4.17 0 10.32 0
biotite 35.31 3.44 16.08 23.13 0 9 0
'altered' biotite 34.97 2.73 16.86 20.82 0.25 5.91 0
'altered' mica 41.05 1.73 23.27 12.5 0.12 8.11 0
mica 41.21 2.09 22.88 13.65 0 9.67 0
a33- siderite 0 0.13 0 54.66 5.28 0 0
quartz 98.68 0 0.05 0 0.21 0 0
"aSOclay" 47.74 0.19 31.15 3.24 0.43 1.58 0
siderite 0 0 0 66.69 0.08 0 0
siderite-1 0 0 0 67.88 0.1 0 0
rutile 0 100 0 0 0 0 0
calcite 0 0 0 0 56.03 0 0
pyrite 0 0 0 67.24 0 0 53
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Appendix 6.2 GLT elemental data from Thistle 211/18-a50 
interval 9199 - 9872.5 (wt% oxide form)

Depth Depth Si02 Ti02 AI203 CaO Fe203 K20 S WMIN Depth Depth Si02 Ti02 AI203 CaO Fo203 K20 S WMIN

(log) (core)

9216 9199 78.86 0.53 12.14 0 0.71 2 36 0.35 1.24 9247 9230 66.6 0.15 13.74 3.75 2.84 4.09 0.01 6.07

9216.5 9199.5 77.88 0.48 12.45 0 0.68 2 27 0.95 0.95 9247.5 9230.5 68.34 0 26 14.22 2.43 268 4.15 0 5.4

9217 9200 74.81 0.46 12.18 1.26 0.66 2.31 2.06 0.23 9248 9231 68.05 044 14.69 1.88 2 82 4.27 0.11 4.66

9217.5 9200.5 78.28 0.48 11.51 0.04 0 66 2.41 1.75 0.5 9248.5 9231.5 70.98 0.45 15.36 0.15 2 2 9 4.26 0.08 4.61

9218 9201 74.4 04 4 11.53 2.04 0 93 2.42 1.68 0.18 9249 9232 70.36 0.5 15.6 0 2.24 4.21 0.58 4.87

9218.5 9201.5 76.02 0.46 11.72 1.01 0.92 236 1.63 0.01 9249.5 9232.5 67 93 0.47 15.16 1.75 2.12 4.11 0.77 532

9219 9202 77.01 0.49 11.93 0.53 0 63 2 32 1.6 0 9250 9233 65.71 0.44 14.8 3.53 2.19 4.04 0.35 4.46

9219.5 9202.5 78.14 0.43 12.17 0 0.61 238 1.18 0.7 9250.5 9233.5 69.99 0.48 14.34 1.66 22 9 39 5 0 4.48

9220 9203 74.28 0.31 124 1.97 0 8 2 2 37 1.02 0.55 9251 9234 69 82 0.23 13.27 2.95 2.14 3.8 0 4.23

9220.5 9203.5 74.95 0.36 12.96 1.28 0.77 2.33 0.81 0 9251.5 9234.5 71.13 02 8 11.77 3.58 2.05 3 53 0 4.45

9221 9204 72 29 0 2 6 13.12 2.44 1.15 2 37 0.7 0 9252 9235 76.41 03 6 10.43 1.85 1.94 32 8 0 5.2

9221.5 9204.5 72.48 0 19 13 2 6 1.09 2.45 0.54 0.44 9252.5 9235.5 76.79 0.37 10.87 1.47 1.74 3.18 0 4 3 2

9222 9205 72.17 0.34 12.55 26 5 1.42 2 54 0.73 1.8 9253 9236 73.48 051 13.2 1.27 1.38 3 52 0.38 2.51

9222.5 9205.5 73.62 0 2 5 11.86 2.3 1.55 2 56 0.8 2.01 9253.5 9236.5 68 57 06 5 16.72 0.82 1.24 3.94 0.69 0.14

9223 9206 78.31 0.43 1089 0 1.92 2.54 0.91 2.67 9254 9237 65.32 0.67 1845 1.08 1.27 421 0.72 0

9223.5 9206.5 80.96 0 3 5 9.84 0 1.94 2 56 0 285 9254.5 9237.5 64 29 0.88 18.43 0.86 1.74 4.24 1.2 0.69

9224 9207 81 47 0 36 8 8 0 2.13 2 49 0.68 3.24 9255 9238 65.99 0.92 17.07 0 47 2.18 4.3 1.44 1.8

9224.5 9207.5 83 38 0 2 9 8.15 0 2.08 2.42 0 26 2 9255.5 9238.5 66 82 091 15.91 0.61 2.34 4.42 1.78 2.77

9225 9208 76.9 0.35 7 98 3.05 2 5 2 38 0 54 4.11 9256 9239 67.51 0.79 1531 1.74 2.17 4.39 0.48 2.71

9225.5 9208.5 75.94 0.29 784 3.95 2 66 236 0 4 2 5 9256.5 9239.5 67.9 0.63 15.12 1.76 2.37 4.37 0.28 3.48

9226 9209 73.21 0 2 7.53 526 2 83 2 43 0 6 6.5 9257 9240 66 55 0.38 14.89 3.31 2 02 4.34 0 3.61

9226.5 9209.5 75.41 0.25 6 98 4 18 2 92 2.41 0.92 6.67 9257.5 9240.5 62 26 0 55 14.96 5.3 22 2 4 32 0.15 2.78

9227 9210 74.33 0 32 684 4.34 3.13 2 49 1.41 8.01 9258 9241 61.17 0.51 15.21 5 3 2 77 4.09 0.22 2 4
9227.5 9210.5 78.18 0 35 6 74 2 52 281 2 49 1.42 7.38 9258.5 9241.5 58 68 0.69 15 53 4 86 4 48 3.98 0.33 1.08

9228 9211 78 84 04 5 664 288 241 247 0 85 7 8 9259 9242 54 88 0 75 15 59 4 8 6 56 3 85 0.98 1.24

9228.5 9211.5 79 85 0.5 605 2.61 2 45 2 26 1.14 6.86 9259.5 9242.5 52 56 0.71 15.27 4.86 8.43 3.79 0 9 7 2.82

9229 9212 81.27 0.57 5.3 2 98 2 3 2.07 0.51 668 9260 9243 54 71 0 6 1529 28 3 9.16 3.72 1.39 6.16
9229.5 9212.5 83.8 0.65 4.9 202 1.97 1.97 0.72 5.18 9260.5 9243.5 54.11 043 16.07 3.42 8.47 3.9 09 4 82 5
9230 9213 88.01 0.69 5 23 0 1.56 1.97 0.25 4 14 9261 9244 56.49 0.52 16.55 2.59 6.67 4.06 1.77 8.48

9230.5 9213.5 86 25 0 62 5.83 089 1.29 2.07 0 3.03 9261.5 9244.5 60 16 0.71 17.14 2.02 4.59 4 4 1.05 6 88

9231 9214 84.39 0.5 7 1 091 1.29 2.14 0 238 9262 9245 61.29 0.79 17.59 2.65 3.32 4.49 0 0 3 5.06

9231.5 9214.5 8261 0 4 5 8 8 066 1.06 23 8 0 1 95 9262.5 9245.5 64 29 1.08 16.72 1.68 2.87 4 57 0.33 3.94

9232 9215 79.55 0 52 10.98 0.55 0.92 26 8 0 1.74 9263 9246 65 93 1.28 148 2.36 3.07 4 2 7 0.03 4.53

9232.5 9215.5 72.56 0.61 12.88 2.53 1.11 3.28 0 3.1 9263.5 9246.5 64.7 1.39 12.91 4.19 3 4 5 4.05 0.21 4 4 6

9233 9216 72.21 0.79 13.6 1.4 1.77 3.57 0 4.35 9264 9247 63.72 1.31 11.5 6.14 3.37 3.66 0.19 3.9

9233.5 9216.5 70.25 08 4 1386 227 1.73 365 0 4 83 9264.5 9247.5 66.01 1.07 9 39 6 32 3 4 6 3.27 0.9 2.32

9234 9217 68 31 0 58 1406 341 1.58 329 022 40 7 9265 9248 67.67 0.85 7.43 8 3.03 2.74 0.32 1 82

9234.5 9217.5 64 3 04 8 15 23 44 2 1.55 3.29 0.76 2.57 9265.5 9248.5 68.23 0.58 7.08 8.45 2 3 8 2.38 0.81 0.93

9235 9218 64.74 0.51 16.48 2.3 2.11 3 5 1.24 2 23 9266 9249 69.58 0.34 7.74 82 3 1.67 2 29 0.28 1 38

9235.5 9218.5 61 68 0.53 17 05 3.28 2.19 3.79 1.39 2 32 9266.5 9249.5 72.14 0.35 8.78 6.03 1.3 2 37 0.59 1.54

9236 9219 61.82 0.53 16.55 369 2 53 3.88 0.81 3.21 9267 9250 76.24 0.34 9.37 3.72 0.87 2 5 0.33 1.24

9236.5 9219.5 64 48 0 6 3 15.18 2.45 3 26 3.87 1.17 394 9267.5 9250.5 77.14 0.37 9.77 2.9 1.06 2 56 0 0.56

9237 9220 67.35 0 6 7 14.14 1.57 36 2 3.91 0.86 4.24 9268 9251 79.04 0.5 10.22 1.3 1 13 2.7 0 0

9237.5 9220.5 68.76 0.63 13.72 1.41 3.81 3.87 0.2 4.05 9268.5 9251.5 77.57 0.53 10.51 1.7 1.29 2.85 0 0

9238 9221 65.84 0.5 13.3 2.41 5.24 3.77 0.04 4 09 9269 9252 76.54 0.57 10.55 2 2 1.27 2.98 0 0.08

9238.5 9221.5 66.95 0.57 12.33 1 22 6 77 3.37 0.32 5 32 9269.5 9252.5 75.49 0.4 10.42 2 82 1.46 3,07 0 0.45

9239 9222 61.55 0.39 1056 4.51 8.68 3.04 0.01 6.34 9270 9253 7637 0.67 10 2 3 8 1.63 3.06 0 1

9239.5 9222.5 56.45 0.16 9.61 7.03 10.32 2.64 0 6.61 9270.5 9253.5 76 83 0.53 9.8 2 3 7 1.61 3.1 0 0.71

9240 9223 50.96 0.44 9 11 995 10.87 2.49 0 5.27 9271 9254 77.38 0.74 9.9 1.59 1.74 3.14 0.24 0

9240.5 9223.5 49.32 0 38 851 11.21 10.89 2.38 0.31 4.32 9271.5 9254.5 78.5 0.96 9.96 0.19 1.88 3.24 0.96 0

9241 9224 42.55 0.25 766 15.36 11.08 2.33 0.76 4.11 9272 9255 77.51 1.19 10.28 0 1.96 3.39 1.34 0

9241.5 9224.5 43.78 0.28 6.95 15.37 11.08 2 32 0.58 5.51 9272.5 9255.5 77 65 1.14 10.43 0.1 2.02 3.36 0.85 0

9242 9225 41.03 0.46 6 8 15.93 11.56 2 28 1.55 70 6 9273 9256 76.45 1.23 10.48 0.5 2.22 3.28 0.9 0.39

9242.5 9225.5 39.73 0.45 6.91 16.73 11.85 2.34 0.88 7.45 9273.5 9256.5 77.16 1.15 10.2 0.62 1.98 3.13 0.89 1.71

9243 9226 41 41 0.46 7.66 15.56 11.43 2.42 0.77 7.56 9274 9257 73.23 0.92 962 3.89 2.11 3.15 0 3.38

9243.5 9226.5 49 1 0.34 8.82 11.74 10.1 286 0.14 7.95 9274.5 9257.5 73.14 0.84 9.05 4.35 2 2 3 3 2 0 4.11

9244 9227 54.41 041 10.19 8.98 8.36 3 4 0 8.35 9275 9258 74.42 0.93 8.84 3.31 2.29 3.13 0.65 4.08

9244.5 9227.5 56.91 0.15 11.61 8.17 621 3.97 0 7.24 9275.5 9258.5 78.34 0.91 8.71 1.23 2.18 2.89 0.91 3.76

9245 9228 62.84 0.33 1283 382 5 43 4.26 0.79 6.95 9276 9259 7524 0 96 8.42 3.12 2.28 26 6 0.96 3.8

9245.5 9228.5 64.99 0.22 1365 3.77 38 6 43 9 0 6.8 9276.5 9259.5 78.81 0.97 7.66 2.05 2.07 2.48 0.84 4.84

9246 9229 6347 0 4 2 13 74 44 9 3.76 4.37 0.03 7.25 9277 9260 83 24 1.11 6.85 0 2.05 2 39 1.17 4.97

9246.5 9229.5 64.24 0.2 13.71 4.67 3.3 4.19 0 6.52 9277.5 9260.5 79.13 1.2 6 32 2.71 1.99 2 27 1.25 4.73



Appendix
Depth Depth

6.2 (cont.. ]
Si02 T102 AI203 CaO Fe203 K20 S WMN Depth Depth SÎ02 TÎ02 AI203 CaO Fe203 K20 S WMN

(log)

9278.5

(core)

9261.5 80.64 1.45 5.14 2.07 2.14 2.11 2.14 2.54

(log)

9311.5

(core)

9294.5 73.45 1.23 9.1 0.16 6.73 2.16 0.48 6.78

9279 9262 80.32 1.31 4.84 1.94 2 53 2.02 268 1.53 9312 9295 72.17 1.02 9.28 0 7.7 2.11 0.54 7.54

9279.5 9262.5 78 1.03 5.11 2 58 2.93 1.9 3.14 2.97 9312.5 9295.5 66.1 0.89 9.79 2.09 8 2.05 1.72 8.16

9280 9263 76.01 0.96 5 95 2 32 3.79 2 11 307 3.94 9313 9296 68 82 0.63 9.91 0 82 7 2.08 2.3 7.64

9280.5 9263.5 66 93 0.8 7.35 4.98 5.72 2 38 2 53 646 9313.5 9296.5 64.85 0.57 11.19 1.47 7.49 2 2 2.84 4.76

9281 9264 65.11 0.68 7 98 3.53 7.55 2 65 3.21 936 9314 9297 61.9 0 52 14.57 2.11 5.08 2.51 3.06 0

9281.5 9264.5 61.72 0.54 7.79 4 6 9 8 69 2 69 323 11.24 9314.5 9297.5 54 58 0.56 19.16 3.82 3.6 2.81 261 0

9282 9265 63.21 0.61 7.48 4.01 8 78 2.84 3.14 12.18 9315 9298 58.44 0.57 18.52 34 2 2.94 2.62 1.59 0

9282.5 9265.5 66.64 0 52 7.1 4.09 7.1 2 86 2.77 12.3 9315.5 9298.5 62 46 0.63 15.69 4.2 2.42 2.2 1.31 0

9283 9266 75.09 0 56 6.53 1.78 4.95 2.65 2.56 10.01 9316 9299 65.56 0.64 14.33 3.86 2.48 1.94 0.93 0

9283.5 9266.5 76.75 0.45 5.9 3.09 3.24 2.07 2.45 3 9316.5 9299.5 67.19 0.72 14.96 2.5 2 6 6 2 0.47 0

9284 9267 77.93 0.54 566 4 2.08 1.61 1.91 0 9317 9300 66 66 0.9 14.99 2.61 2.95 2.19 0.1 0.28

9284.5 9267.5 83.31 0.52 5.29 2.04 1.36 1.39 1.77 0 9317.5 9300.5 68.71 0.9 14.62 1.21 3 64 2.36 0 44 5

9285 9268 83.91 0 4 9 5.18 2 2 0.81 1.29 1.92 0 9318 9301 66.91 0.94 14.06 2.17 4.18 2.5 0 6 23

9285.5 9268.5 83.41 0.4 5.03 2.97 0 68 1.28 1.62 0 9318.5 9301.5 62 73 1 04 15.24 3 36 4.07 2.75 0.23 0.45

9286 9269 85.02 0.4 4.93 2.13 0.77 1.24 1.52 0 9319 9302 64.38 1.15 15.07 1.89 4.48 295 0.6 0

9286.5 9269.5 83.03 0.25 4.99 2.77 0 92 13 2.11 0 9319.5 9302.5 66.18 0.99 14.83 1.5 4.4 3 05 0.16 0

9287 9270 80.27 0.21 5.48 3 79 1.12 1.39 2.04 0 9320 9303 61.43 1.11 14.02 2 5 4 5.15 3.03 2.73 0

9287.5 9270.5 80 74 0.3 6.26 2.8 1.51 1.53 1.5 0.08 9320.5 9303.5 60.87 0 99 12.81 33 6 5.4 3.09 3 2 3 0

9288 9271 77.69 0 2 6 7.33 2.48 2.04 1.85 2 5 0 9321 9304 61 82 1.25 11.72 3.8 4.86 3.11 3.6 0

9288.5 9271.5 79 18 0.45 837 0 3 32 2 2 1.75 2 83 9321.5 9304.5 61.31 1.15 10.34 6.21 4.71 3.03 2 39 1.51

9289 9272 72.69 0.41 10.25 0 4 2 5 2.74 3 62 5.52 9322 9305 65.49 1.15 9.89 4.99 4 2 9 2.8 1.87 5.49

9289.5 9272.5 65 6 1.06 13.03 0 5 4 3.31 3.93 7.44 9322.5 9305.5 68.53 0.79 10.96 3.81 3 59 2 7 7 0.85 5.73

9290 9273 57.04 1.23 15.22 0 8.37 3.7 4.4 8.57 9323 9306 66.99 0.78 12.69 3.73 3.14 2.7 0.7 4.85

9290.5 9273.5 51.03 1.07 17.16 0 11.07 366 3.78 10.85 9323.5 9306.5 66 88 0.56 13.31 3.67 3 2 26 6 0.21 3.83
9291 9274 45 97 0.88 16.2 0.74 14 68 3 11 4 02 8.76 9324 9307 68 32 0.34 12.46 3.39 3.1 2.51 0.9 3.06

9291.5 9274.5 38 84 1.04 148 2 4 18.1 2.39 5.24 686 9324.5 9307.5 69.7 026 11.21 3.71 3.38 2.47 0 53 3 9

9292 9275 37 88 1.03 14 51 3.29 18 32 2.12 4.9 7.05 9325 9308 69.88 0.27 9.68 4 51 3 64 2.55 0 73 453

9292.5 9275.5 40.24 1.05 14 82 3.42 1658 2.12 445 9 9 9325.5 9308.5 72 68 0.29 8.88 346 3.87 2.62 0.61 541

9293 9276 41.9 0.92 16 12 3.03 1463 248 4.4 9.44 9326 9309 75.3 056 8 54 1.78 4.16 2 65 0.75 4 91

9293.5 9276.5 50.73 0.81 158 0 12.6 2 65 449 10.23 9326.5 9309.5 75.78 065 8.37 1.7 4.3 2.64 0.42 4.94

9294 9277 54.6 0.69 15 73 0 10.75 2.76 3.65 10.72 9327 9310 78 46 063 8 08 0 4.45 2.71 091 4.7

9294.5 9277.5 50.89 0.62 1699 2.31 9.4 291 3.37 10.14 9327.5 9310.5 78.33 0 72 7.68 0 4.55 2 8 1.3 5.83

9295 9278 55 55 0.82 18 58 0 7 69 3.11 2.8 8 76 9328 9311 77.24 0.62 7.74 1.01 4 6 5 2.82 0 54 6.34

9295.5 9278.5 53.69 0.95 20 79 0 694 3.38 2 3 743 9328.5 9311.5 73.9 0.39 7 9 2.85 4.69 2.77 0.54 6.75

9296 9279 54.18 0.94 21.05 0 6.14 3.46 2.55 7.71 9329 9312 71.99 0.19 829 4.35 4 2 9 2.88 0 6.66

9296.5 9279.5 63 38 0.62 16.52 0 5.41 3 22 1.69 8.38 9329.5 9312.5 72.15 0.19 8.62 3.85 4.41 3.06 0 7.14

9297 9280 72.17 0.73 11.57 0 4 3 8 2 59 1.95 8 52 9330 9313 73.46 0.33 8.99 2.94 4.1 3.2 0 7.24

9297.5 9280.5 73.39 0.49 7.88 3.61 3.14 1.92 2.14 7.93 9330.5 9313.5 74 82 0.2 9.61 1 48 4.45 3.13 0 6.91

9298 9281 83.99 0 72 6.21 0 2.5 1.41 1.5 5.82 9331 9314 74.68 0.29 10.46 0.97 4 2 3 3.12 0 5.92

9298.5 9281.5 82.14 0 9 7 5.97 1.74 1.57 1.27 1.77 2 89 9331.5 9314.5 72.77 0.62 11.36 1.36 3.91 3.18 0 5.5

9299 9282 82.28 1.2 6.44 1.52 0.93 1.33 2 0.51 9332 9315 70.53 0.67 11.91 1.83 4.1 3.27 0.17 5 65

9299.5 9282.5 79.84 1 18 7.12 2.54 0.78 1.46 1.81 0 9332.5 9315.5 66 63 0.52 12.4 3.41 4.09 3.26 0.67 6.42

9300 9283 83.63 1.42 7.43 0 0.79 1.56 1.78 0 9333 9316 66 49 0.47 12.55 2.75 4.42 3.21 1.26 7.22

9300.5 9283.5 82.39 1.37 7 72 0 1.25 1.64 1.92 0 9333.5 9316.5 68 0.56 12.33 2 25 4.5 3.16 0.84 6.66

9301 9284 82.17 1.18 766 0 1.71 1.7 1.73 0.06 9334 9317 69 48 0.48 11.69 1.37 4.8 3.18 1.41 5.91

9301.5 9284.5 79 86 1.05 7.22 1 81 2 33 1.65 0.81 1.15 9334.5 9317.5 71.55 0.5 10.94 1.91 4.15 3.14 0.58 5.39

9302 9285 78.11 0.74 6 6 3.43 2.61 1.52 0.57 2.15 9335 9318 75.48 0.63 102 0 4.2 3.09 0.93 5.34

9302.5 9285.5 80.23 0.63 6.36 2.87 2 42 1.37 0.29 2.6 9335.5 9318.5 7692 0.73 9.7 0 3.62 3 1.02 481

9303 9286 79.63 0.62 6.25 3.81 2 04 1.36 0 2.4 9336 9319 77.46 0.77 9.37 0 3.27 2.91 1.45 5.64

9303.5 9286.5 77.05 0.49 6.58 5 33 1.68 1.42 0 1.71 9336.5 9319.5 78 29 0.69 9.64 0 2.78 2.84 1.09 4.95

9304 9287 77.35 0.56 6 76 4.99 1.22 1.56 0.52 077 9337 9320 77.04 0.84 10.26 0 291 2 8 1.1 5.15
9304.5 9287.5 77.38 0.84 7.34 4.03 0 94 1.7 1.32 0.29 9337.5 9320.5 75.21 0.68 11.63 0 2.91 2.93 1.01 4.04

9305 9288 74 39 1.06 8.08 4.3 1.8 1.88 1.18 0.89 9338 9321 73.85 0.58 12.87 0 3 2 2 3.02 0.22 4.71

9305.5 9288.5 71 74 1.22 8.9 4.07 2.21 2.09 2.04 2.13 9338.5 9321.5 73.18 0.64 13.1 0 3.46 3.08 0.13 5.31

9306 9289 72 54 1.41 947 2 57 2 93 226 1.76 2.95 9339 9322 71 48 0.45 12.74 0 97 3.97 3 12 0.06 5 92

9306.5 9289.5 71 24 1.4 969 1.54 4 34 2.28 2.42 3.75 9339.5 9322.5 6889 0.34 12.52 2.54 4.13 3.21 0 0 2 6 43

9307 9290 66.84 1.35 9 39 2.29 6.3 2.08 3.04 5.61 9340 9323 66.05 0.31 12.54 4.19 4.06 3 2 0.01 6.06

9307.5 9290.5 65.54 1.12 8.7 2.54 7.86 1.83 2.98 8.51 9340.5 9323.5 66 81 0.35 13.09 3.55 3.75 3.18 0 4 8 7

9308 9291 66.9 0.95 784 2.15 8.44 1.66 2 98 10.05 9341 9324 68.08 0.31 13.03 3.1 3 5 2 3.16 0.01 3.57

9308.5 9291.5 67.59 0.77 7.37 2.44 8 62 1.71 2.43 10.16 9341.5 9324.5 68.45 0.36 12.89 2.82 3.44 3.3 0.33 3 32

9309 9292 68 35 0 6 7 7.79 3.39 7.58 1.81 1.12 929 9342 9325 69.69 0.31 11.73 3.18 33 4 3 36 0.32 3.47

9309.5 9292.5 70 51 1 8 43 271 6.5 1.99 0.49 8.17 9342.5 9325.5 7549 0.55 10.32 0.66 3.52 3.43 0.54 3.19

9310 9293 77.11 1.1 892 0 4 9 9 2.1 0.14 8 9343 9326 77.05 0.56 9 92 0 3.4 3.4 0.9 1.87

9310.5 9293.5 77 41 1.13 9.16 0 4.4 2.21 0.27 6.81 9343.5 9326.5 76.79 0.51 10.21 0.31 3 2 3 32 0.58 1.5



Appendix 6.2 (cont.. )
Depth

(log)

Depth

(core)

SI02 Ti02 ,AI203 1CaO Fe203 K20

9344.5 9327.5 74.51 0.64 10.9 0.92 3.46 3.12

9345 9328 71.43 0.63 12.84 0.9 3.73 3.08

9345.5 9328.5 66.84 0.59 13.59 236 4.2 3.1

9346 9329 66 65 0.82 13.98 0.61 5 3 3.08

9346.5 9329.5 61.1 0.72 14.1 3.3 6.15 3.14

9347 9330 64.88 0.99 14.83 0 6.82 3.04

9347.5 9330.5 55.76 0.64 15.68 4.22 7.19 3.09

9348 9331 56.1 0.66 15.11 4.02 7.89 3

9348.5 9331.5 59.17 0.67 12.8 3.73 8.27 301

9349 9332 64.64 0.73 9.59 3.71 7.76 3.01

9349.5 9332.5 66 77 0.4 8.08 441 7.11 3.03

9350 9333 68.8 0.52 8.55 4.08 5.66 3.05

9350.5 9333.5 68 28 0.41 9.61 3.31 5.64 3.08

9351 9334 66 24 0.27 10.76 3.96 5.31 3.1

9351.5 9334.5 62.47 0.3 13.01 427 542 3.16

9352 9335 57.73 0.4 15 06 4.28 599 3.15

9352.5 9335.5 57.76 0.34 145 3.79 7.11 3.17

9353 9336 56 06 0.35 13.52 4.85 7.95 3.01

9353.5 9336.5 57 52 0.31 12.82 4.54 7.68 2 85

9354 9337 56.21 0.47 13.41 5.27 6.83 2.76

9354.5 9337.5 62.21 0.49 13.58 20 5 68 4 294

9355 9338 64 88 0.71 14.14 0 681 3.16

9355.5 9338.5 6568 0.87 14 11 0 7 333

9356 9339 63 22 0 9 2 14 55 1.13 7.17 3.37

9356.5 9339.5 62 59 0.82 14 84 1,45 69 9 3.37

9357 9340 55.77 0.99 148 3.95 82 8 3.12

9357.5 9340.5 53.93 071 14 59 5.5 8.46 2.79

9358 9341 55 42 0 7 139 361 99 4 244

9358.5 9341.5 54 78 0.88 1334 3 23 11.01 2.43

9359 9342 56 03 0.78 13 23 344 10 9 2 59

9359.5 9342.5 58.91 0.86 11.8 2.58 11 284

9360 9343 60.59 0.91 9.05 266 12.05 296

9360.5 9343.5 61.04 0 94 8.57 2.91 11.9 2 95

9361 9344 58.82 0.84 8.62 354 12.65 2.77

9361.5 9344.5 56 52 0.77 8.98 5 13 11.9 2.68

9362 9345 56.68 0.98 8.98 401 13.06 2 76

9362.5 9345.5 5 69 0.98 10.28 3.18 12.78 2.97

9363 9346 54 98 0.98 13.11 2.13 12.51 3.08

9363.5 9346.5 54 62 0.89 15.88 1 54 10 96 303

9364 9347 59.52 0.85 14 93 0 10.3 2 92

9364.5 9347.5 61.93 0.87 1445 0 96 9 2 87

9365 9348 62.67 1.23 14.81 0 80 4 2 92

9365.5 9348.5 61.59 0.89 16 38 0 7 73 3 03

9366 9349 53.39 1.17 19 59 1.85 706 333

9366.5 9349.5 55.96 111 1982 0 7.18 346

9367 9350 56.33 0.99 19.24 0.19 7.7 3.43

9367.5 9350.5 59.77 0.77 17.92 0 741 3.1

9368 9351 58.17 0.98 17.78 0.81 7.7 2.84

9368.5 9351.5 59.34 0.83 18.3 0 7.47 2.77

9369 9352 55.75 0.79 18.83 1.01 7.88 2.83

9369.5 9352.5 54.3 0.89 19.73 0.28 8 19 296

9370 9353 51.63 0 83 20.22 1 04 8 3.11

9370.5 9353.5 54.6 0.69 1992 0 8.15 3.15

9371 9354 54.33 0.77 20.45 0 7.42 3.16

9371.5 9354.5 55.04 0.7 20.57 0 66 2 3.21

9372 9355 57.65 0.72 185 0 7 52 3.33

9372.5 9355.5 57.12 0.94 17.76 0 8.24 3.34

9373 9356 52.75 1 17.84 2 22 7 9 2 32 2

9373.5 9356.5 54.61 0 9 6 17.62 1.57 7.63 3.06

9374 9357 50.62 0 9 6 18.82 3 15 7.27 2 93

9374.5 9357.5 45.16 0.75 21.3 5.24 5.74 2.89

9375 9358 45.62 0.5 20.97 6 2 52 9 288

9375.5 9358.5 52 77 0.53 20 23 2.48 6.03 2.81

9376 9359 55.15 0 59 19 16 1.73 6.74 2.71

9376.5 9359.5 61 0.62 1602 0 7.89 2.54

0.36

0.25

0.44

1.23

0.65

WMIN

1.98 

1.85

3.43

5.43 

8.4

0.49 10.01 

0.59 10.58 

0.44 10.51 

0.72 10.65 

10.5 

961 

6.7 

5.01 

4.91 

364  

5.14

6.99 

9.27

0.75 

0.87 

0.77 

1.16 

0.98 

0.67 

1.34 

1.38 

1.46 

2.05 10.08 

2.27 10.35

1.72

1.61

0.46

0
0

0 39 

0

078

1.15

0

9 69 

9.19 

8.93 

8.66 

9.14 

9.02 

9.44 

878  

931 

9 44

0.37 10.63 

0.89 10.09

0.92 10.36

1

1.15

10.13

11.3

1.02 11.24

0.71 11.71

0.68 10.65 

041 10.15

0.73 10.25 

0 10 98

0.7 11.57

0.27 10.16

0.9

1.08

0.65

8 81 

8.4 

10.6

0.35 10.71 

0.21 10.16 

0.23 9.38

0.62 10 34

1.31 1062

2 09 10 98

1.39

1.81

2.1

1.27

1.56

2.24

2.4 

2.36 

2.87 

2.19 

1.74 

1 29

1.5

9.48

9.34 

8.01 

8.11

8.67 

9,36

8.68 
8.4

8.34 

8 92 

8.44 

827

8 9

Depth

(log)

Depth

(core)

Si02 Ti02 AI203 CaO Fe203 K20 S WMIN

9377.5 9360.5 57.74 0.9 19.04 0 6.17 2.37 2.51 8.83

9378 9361 56 63 1.06 18.37 0 6 36 2 53 4 9.28

9378.5 9361.5 57.37 1.17 16.93 0 7 0 9 2.75 4 10.66

9379 9362 59 75 1.21 14.02 0 8 44 3.02 3.79 10,92

9379.5 9362.5 636 1.07 12.94 0 7.86 3.12 2.64 10.45

9380 9363 64.68 0.88 11.15 0 8.81 3.11 2.96 10.27

9380.5 9363.5 60.6 0.92 11.43 2.77 8.81 2.99 1.85 9.79

9381 9364 60.58 0.78 12.3 2.9 8.21 291 1.43 9.49

9381.5 9364.5 57 78 0.88 15.51 1.85 7.65 29 6 1.99 9.09

9382 9365 56 09 09 5 17.09 1.65 7.2 3.07 222 9.13

9382.5 9365.5 54.38 1.14 17.11 2.68 7.02 3.04 2.15 9.28

9383 9366 55.44 1.29 17.07 1.43 7.2 2.96 2.93 10.09

9383.5 9366.5 57.21 1.26 17 0.9 6 7 6 2 97 2 9 10.17

9384 9367 59 03 09 3 167 0.81 6.8 3.02 2.05 10.14

9384.5 9367.5 59 94 0.66 16.46 1.29 6.22 3.06 1.75 9.34

9385 9368 60.2 0.5 16.84 1.35 5 79 3.07 1.64 9 56

9385.5 9368.5 59 33 0 52 17.35 1.54 572 3.06 1.51 9 18

9386 9369 56 44 0.41 17.8 3.43 5.7 3.1 0.6 9.39

9386.5 9369.5 56 44 0.59 17.76 3.26 5.79 3.13 0.64 9.02

9387 9370 58.01 0.66 17.66 1.72 6.26 3.24 1.08 10.25

9387.5 9370.5 61.12 08 4 17.32 0 6.55 3.32 0.93 10.71

9388 9371 62 32 0.89 16.79 0 6 9 3.41 0 11.38

9388.5 9371.5 61 15 0.79 17.3 0 6.88 3.46 0.47 10.69

9389 9372 60.87 0.91 17.02 0 7.04 356 0.72 10.85

9389.5 9372.5 57 73 0.7 16.19 3 26 6 75 3.51 0.04 10.05



Appendix  6 .3

Modelled mineral estimates from compositions that represent the 
upper and lower limits of uncertainty (precision) of GLT derived 
chemistry. Four synthetic rocks modelled. High- upper estimates.
low- lower estimates

quartz albite K-felspar kaolinite
Mixl 59.976 19.330 10.929 9.765
low 50.037 27.445 19.429 3.089
high 67.904 17.628 2.606 11.862

quartz muscovite kaolinite
Mix2 30.62 24.39 44 . 97
low 25.54 34.85 39.60
high 35.51 14.32 50.16

quartz K-feldspar Dolomite kaolinite muscovite
arenite 74.99 16.24 4.19 4.55 0.00
low 52.21 29.06 7.23 11.49 0.00
high 81.17 0.00 0.56 0.00 18.26

quartz K-feldspar Dolomite kaolinite muscovite
pelite 20.47 14.56 4.74 13.54 46.67
low 8.11 35.85 9.41 24.46 22.14
high 30.70 0.00 1.03 4.19 64.06

Compositions used in precision modelling. Chapter 6.
Si02 Ti02 A1203 Fe203 MgO CaO Na20 K20

Mixl
actual 85.384 0.020 10.044 0 .140 0 .060 0.420 2.331 1.600
(low) 87.386 0 . 000 8.551 0.000 0.066 0 . 000 2.571 1.426
(High) 81.438 0.338 10.473 0.652 0.054 3.283 2.073 1. 691
arenite
actual 90.005 0 .124 4 . 437 0.514 0.522 1.492 0.949 1.957
(low) 93.526 0 . 000 2.994 0.000 0.583 0.000 1.059 1. 838
(high) 85.532 0.315 5.505 0.989 0 .464 4.263 0.844 2.017
Mix2
actual 67.921 0.111 27.460 1.073 0.192 0.071 0.039 3.131
(low) 67.855 0 . 010 28.300 0 . 489 0.212 0.000 0.043 3.100
(high) 65.805 0.404 25.905 1.504 0.170 3.122 0.034 3.056
Pelite
actual 61.406 0.136 25.514 1.733 1.386 1.688 0.854 7.283
(low) 61.785 0.000 26.625 1.250 1.558 0.000 0.959 7.823
(high) 60.051 0.423 24.200 2.084 1.228 4.526 0.756 6.732



Appendix 7.1 Statfjord holes 33/12-b26, 33/12-541 
Model calculated mineral estimates and core XRD estimates (wt%)

Section b26 

Mineral Modes for two sections XRD estimates, where present.
Depth quartz kaolinite C-feldapa albite mica siderite rutiie calcite pyrite kaolinite quartz C-feldspa aibite dolomite mica siderite rutiie pyrite calcite

4174 8 5 .8 1.01 6 .41 5 .3 6 0 1 0 .4 2 0 0 2 .7 5 8 6 .7 2 7 .9 2 .8 3 0 0 .3 8 0 0 0 0

4175 8 8 .8 1 .3 9 5 .0 8 3.71 0.31 0 .1 9 0 .2 9 0 .2 3 0 4 .2 4 8 5 .0 4 7 .3 8 2 .7 6 0 0 .3 9 0 0 0 0

4176 8 5 .1 1 1 .5 6 3 .6 3 3 .3 9 0 5 .4 5 0 .8 5 0 0
4177 7 7 .0 8 1 1 .6 5 5 .4 8 3 .2 3 1 .5 0 .3 9 0 .5 3 0 .1 4 0 3 0 .5 1 4 3 .1 4 8 .0 2 6 .9 4 0 .4 9 9 .4 5 6 .6 5 0 0 0

4178 6 2 .4 2 1 2 .5 4 9 .8 3 9.11 4 .1 9 0 .8 8 0 .8 0 .2 3 0
4179 6 8 .7 5 7 .7 6 8 .9 2 9 .0 7 2 .4 4 2 .31 0 .5 6 0 0 .1 9
4180 3 6 .7 8 2 0 .8 5 1 3 .7 2 9 .6 8 4 .0 4 1 1 .0 4 1 .0 9 0 2.81
4180 7 8 .1 9 4 .21 6 .7 7 7.91 0 .1 5 2 .2 9 0 .4 4 0 .0 4 0
4181 8 7 .5 3 1 .5 4 5 .2 8 4 .9 7 0 0.51 0 .1 6 0 0
4182 8 6 .8 1 1 .3 7 5 .3 3 5 .7 9 0 .0 7 0 .4 0 .1 3 0.1 0 2 .3 7 8 6 .3 8 7 .9 9 4 .2 3 0 0 .3 9 0 0 0 0

4184 8 3 .9 2 0.81 5 .6 6 8 .1 7 0 1 .1 6 0 .2 8 0 0
4186 8 8 .1 8 1 .5 3 4 .6 8 4 .1 9 0 1 .1 9 0 .2 2 0 0
4187 8 4 .7 3 1 .6 4 5 .4 6 5 .7 4 0 2 .1 2 0 .3 0 0
4188 8 5 .1 4 1 .4 4 5 .3 6 .4 4 0 1 .3 9 0 .2 9 0 0
4188 8 4 .9 2 1 .4 5 4 .61 5 .7 0 3.1 0 .2 2 0 0 3 .7 8 8 4 .3 1 7 .6 5 0 0 .3 1 .0 2 0 0 0

4189 8 5 .4 5 2 .2 4 5 .3 8 5 0 1 .7 0 .2 3 0 0
4193 4 1 .0 7 2 7 .5 7 1 5 .3 8 .7 5 0 5 .8 3 1 .4 7 0 0 3 1 .5 3 4 3 .1 4 1 3 .3 5 6 .5 5 0 .3 7 2 .6 4 0 .1 6 0 1 .2 2 0

4193 7 7 .3 9 5 .0 9 7 .2 5 7.41 0 1 .7 1 .1 6 0 0
4194 6 4 .3 4 9 .2 8 11 .21 8 .1 4 3.91 2.51 0 .4 9 0.11 0 8 .2 5 6 7 .4 5 1 3 .8 8 .5 0 3 .0 5 0 .8 2 0 0 0

4195 4 7 .5 3 1 9 .8 7 1 1 .0 6 7 .2 6 5 .8 2 5 .6 3 0 .9 3 0 1 .8 9
4195 5 7 .3 9 1 4 .5 5 1 2 .1 3 8 3 .4 7 3 .6 0 .7 3 0 .1 3 0
4196 4 5 .1 2 18 .3 1 3 .2 2 7 .1 4 5 .5 8 8 .6 9 0 .8 2 0 1.1 3 1 9 .3 6 5 0 .6 7 1 6 .2 9 9 .9 9 0 .1 8 7 .5 9 3 .0 3 0 0 0

4198 2 2 .9 8 2 4 .7 3 4 .5 5 4 .5 9 1 4 .8 2 1 .9 1 0 5 .4 4

4199 3 7 .9 4 2 5 .4 9 8 .4 2 6 .6 2 1 2 .9 3 3.1 0 .9 9 0 4.51 3 1 .1 1 4 4 .4 3 9 .3 9 5 .7 2 0 6 .6 8 4 .4 3 0 0 0

4201 15 .4 3 2 .3 1 16 .41 6 .4 3 6 .4 7 2 1 .6 1 1 .2 0 .1 8 0 4 2 .8 2 2 1 .9 1 8 .6 2 4 .3 0 2 2 .1 9 4.6 1 0 0 .4 9 0

4202 3 8 .4 1 8 .7 3 12.1 9 .2 4 1 4 .2 2 5 .6 6 0 .5 0 1 .1 5
4202 5 4 .6 7 12 .91 1 3 .01 9 .0 9 6 .1 2 3 .6 9 0 .4 6 0 .0 6 0
4203 5 8 ,9 6 1 1 .1 8 1 3 .3 9 9 .4 2 2 .2 3 .9 5 0 .7 9 0 .1 2 0
4204 6 5 .6 8 5 .3 5 8 .8 7 7 .8 6 0 .0 9 7 .5 5 0 ,4 2 0 4 .1 8
4205 5 9 .8 1 0 .6 7 1 2 .7 3 8 .5 7 0 .6 2 6 .5 1 .1 2 0 0 1 5 .2 3 6 3 .1 7 1 2 .0 9 6 .6 3 0 1 .9 3 2 .7 9 0 0 0

4206 6 3 .6 7 9 1 2 .1 6 9 .4 7 2 .1 3 2 .1 5 1 .2 2 0 .1 9 0
4206 6 1 .5 9 1 0 .0 9 1 3 .2 8 8 .4 3 1 .7 6 3 .7 1.01 0 .1 3 0 1 3 .4 9 5 9 .7 4 1 6 .2 7 .5 5 0 3 .2 8 1 .6 9 0 0 0

4207 5 6 .3 3 12.1 1 2 .7 9 8 .2 3 5 .2 2 4 .6 2 0 .6 7 0 .0 4 0
4208 5 4 .0 7 1 3 .5 7 1 3 .4 4 1 0 .1 6 4 .7 4 2.81 0 .9 5 0 .2 5 0
4208 3 6 .4 7 2 4 .5 4 1 3 .2 7 7 .5 8 1 0 .4 5 6 .6 9 0.91 0 .0 8 0
4208 2 3 .4 9 7 .5 7 2.1 1 4 .4 9 1 2 .3 3 3 5 .6 3 0 .0 9 1 4 .3 0 1 9 .9 2 2 6 .3 2 1 0 .2 3 3 .9 9 1 .5 5 5 .6 7 2 1 .9 5 0 0 9 .9 8

4209 2 9 .6 19 .11 7 .5 5 .0 3 12.1 2 0 .2 7 0 .5 5 5 .8 3 0
4209 4 4 .9 4 2 0 .1 9 1 4 .1 8 8 .0 2 7 .5 2 4 .1 3 0 .7 0 .3 2 0
4210 43 .8 1 1 9 .2 2 13 .41 9 .8 2 9 .0 8 3 .7 4 0 .7 3 0 .1 9 0

Section b41

4137 6 8 .2 3 9.71 10 .21 7 .4 9 0 1 3 .3 6 0 0 1 1 .6 2 6 4 .0 5 1 2 .3 8 6 .9 0 1 .6 6 1 .0 4 0 0

4144 4 6 .9 2 7 .3 5 1 2 .1 7 7 .1 5 0 1 .3 4 5 .0 8 0 0 2 1 .1 7 5 7 .3 6 1 2 .7 4 .4 3 0 .2 6 4 .3 1 0 .9 8 0 0

4145 6 1 .7 9 11 .01 1 0 .2 9 7 .0 5 0 0 .9 2 8 .9 4 0 0
4145 8 1 .8 6 2.41 7 .3 5 6 .4 8 0 0.61 1 .2 8 0 0 2 .3 6 8 5 .4 8 7 .5 3 4 .6 4 0 0 0 0 0

4146 8 1 .4 6 2 .8 3 7 .5 8 6 .3 8 0 0 .5 2 1 .2 4 0 0
4147 8 3 .0 7 1 .4 8 6 .6 8 7 .6 8 0 0 .2 5 0 .8 3 0 0
4148 74 .5 1 4 .7 2 1 0 .3 9 8 .3 4 0 0 .5 5 1 .4 9 0 0
4149 8 4 .4 2 1.7 6 .3 7 6.51 0 0.31 0 .6 9 0 0 2 .3 5 8 3 .9 2 8 .2 5 4 .4 6 0 0 .5 8 0 0 0

4156 4 1 .6 3 5.31 2 1 .2 1 2 .9 5 0 4 .4 4 1 4 .4 6 0 0
4157 7 8 .7 9 3 .5 6 8 .4 6 .8 5 0 0 .5 7 1 .8 3 0 0 3 .6 3 83 .51 9 .8 2 5.61 0 0 .5 8 0 0 0 .4 9

4157 7 8 .7 9 3 8 .5 2 8 .4 2 0 0 .4 5 0 .8 0 0 2 .8 2 7 9 .1 7 1 2 .2 5 7 .9 5 0 0 .6 8 0 0 0

4157 7 6 .6 2 2 .9 9 9 .2 3 9.51 0 0 .5 1 .1 4 0 0 3 .0 5 7 7 .8 8 9.81 11 0 0 .5 8 0 0 0

4158 7 6 .1 2 2 .7 7 9 .6 6 9 .7 8 0 0 .4 8 1 .2 0 0
4160 8 0 .6 4 2 .0 4 7 .0 6 9 .3 8 0 0 .3 8 0 .5 0 0
4161 7 2 .4 5 4 .8 6 1 1 .1 5 8 .5 5 0 0 .7 5 2 .2 4 0 0
4162 71 .1 4 .4 3 1 0 .5 5 11.71 0 0 .4 7 1 .7 4 0 0
4162 63 .9 1 7 .4 7 1 2 .2 3 1 1 .9 0 0 .7 4 3 .7 5 0 0 6 .6 2 6 5 .8 5 1 4 .3 8 12.01 0 1 .0 2 0 .91 0 0

4162 6 3 .4 4 6 .7 5 1 2 .7 8 1 2 .3 6 0 0 .9 2 3 .7 5 0 0
4163 7 2 .2 8 3 .8 8 1 1 .1 2 1 1 .2 0 0 .3 3 1 .1 9 0 0
4167 8 4 .6 2 2 .8 2 6 .3 2 3 .5 8 0 0 .2 3 2 .4 3 0 0 3 .2 5 8 7 .8 1 6 .6 3 2 .4 0 0 .4 0 0 0 .9 9

4168 5 0 .7 8 16.81 1 4 .1 7 7 .1 2 4.21 0 .7 5 5 .7 7 0 0 .3 8 1 8 .8 5 5 3 .9 8 1 7 .5 6.41 0 3 .7 8 1.21 0 0

4169 5 8 .6 8 1 2 .1 9 1 5 .21 8 .9 9 0 0 .7 5 4 .1 8 0 0
4170 8 6 .2 9 2 .6 7 .1 5 3 .0 7 0 .5 4 0 .2 2 0.01 0 0.11
4171 7 2 .2 9 6 .6 4 1 2 .3 8 6 .91 0 0 .6 2 1 .1 6 0 0 4.21 7 1 .3 9 1 6 .5 9 5 .7 0 .2 8 0 .7 9 0 0 0

4172 7 2 6.71 1 1 .7 3 7 .2 2 0 0 .7 2 1 .6 2 0 0
4172 7 2 .9 9 6 .0 2 1 1 .4 7 .4 3 0 0 .5 8 1 .5 7 0 0
4173 6 8  12 7 .9 7 1 2 .8 9 7 .7 6 0 0 .7 4 2 .5 2 0 0 8 .0 9 7 2 1 2 .5 3 5 .4 9 0 .2 2 1 .0 2 0 .5 1 0 0

4174 6 4 .6 1 0 .5 2 1 2 .1 9 7 .9 0 1 .2 8 3 .5 2 0 0
4175 6 9 .2 7 7 .7 2 1 0 .9 3 8 .0 7 0 1 .4 9 2 .5 2 0 0
4175 6 2 .4 4 1 0 .9 5 1 2 .2 2 8 .2 0 0 .8 2 5 .3 7 0 0 9 .4 7 6 1 .6 4 1 6 .7 8 7 .1 8 0.31 1 .0 8 1 .7 6 0 0

4176 7 0 .7 4 5 .9 7 1 1 .2 8 9 .3 2 0 0 .7 7 1 .9 2 0 0
4177 6 3 .5 5 1 1 .4 6 1 2 .4 3 7.31 0 0 .8 6 4 .3 9 0 0 1 1 .8 5 6 8  9 7 1 3 .7 6 5 .7 2 0 1 .5 5 1 .0 9 0 0

4177 5 5 .2 1 5 .6 5 1 4 .1 5 7 .2 8 0 0 .9 8 6 .7 4 0 0
4178 4 7 .3 6 2 1 .6 7 1 4 .8 4 6 .5 8 0 .6 8 0 .8 2 8 .0 5 0 0 2 2 .7 9 4 9 .4 9 1 4 .6 5 8 .4 4 0 4 .5 2 2 .8 2 0 0



Appendix 7.2. Petrohysical data from hole 211/18-a50.
Density in g/cm3, porosity in percent.
Prefix - "core" means calculated on core samples in the laboratory.
Prefix-' calculated" estimate is derived GLT derived estimates of mineralogy.

Depth calculated core core RHOB Calculated core calc Depth calculated core RHOB Calculated

grain density pcrodly grain deadly porodly bulk density grain density pcrodty grain dendty porodly

9216 2 .6 5 2 6 .0 0 2 .6 4 2 .2 5 2 4 .2 9 2 .2 4 9251 2 .6 8 1 6 .8 0 2 .6 6 2 .3 6 1 8 .9 3
9216.5 2 .6 6 2 5 .2 0 2 .6 5 2 .2 4 2 5 .7 5 2 .2 6 9251.5 2 .6 7 2 .3 6 1 9 .0 5

9217 2 .6 9 2 .2 2 2 7 .8 2 9252 2 .6 7 2 8 .1 0 2 .6 5 2 .3 5 1 9 .5 4

9217.5 2 .6 5 2.21 2 6 .5 6 9252.5 2 .6 7 2 .3 0 2 2 .0 2

9218 2 .6 9 2 4 .5 0 2 .6 4 2.21 2 8 .2 8 2 .2 6 9253 2 .6 7 2 7 .5 0 2 .6 5 2 .2 4 2 5 .6 4

9218.5 2 .6 8 2.21 2 7 .9 8 9253.5 2 .6 6 2 .2 0 2 8 .1 1

9219 2 .6 8 2 .2 2 2 7 .5 5 9254 2 .6 6 1 8 .3 0 2 .6 5 2 .2 1 2 7 .2 0

9219.5 2 .6 7 2 .2 3 2 6 .4 8 9254.5 2 .6 9 2 .2 5 2 5 .6 6

9220 2 .6 7 2 2 .4 0 2 .6 5 2 .2 4 2 5 .6 8 2 .3 0 9255 2 .7 0 1 6 .4 0 2 .6 7 2 .3 2 2 2 .6 2

9220.5 2 .6 6 2 .2 7 2 3 .8 9 9255.5 2.71 2 .3 4 2 1 .7 9

9221 2 .6 7 1 8 .9 0 2 .6 6 2 .2 9 2 3 .0 6 2 .3 7 9256 2 .6 9 1 7 .8 0 2 .6 5 2 .3 5 1 9 .8 3

9221.5 2 .6 6 2 .3 0 2 1 .7 3 9256.5 2 .6 9 2 .3 4 2 0 .3 6

9222 2 .6 8 2 .3 3 2 0 .7 9 9257 2 .6 7 1 8 .1 0 2 .6 6 2 .3 4 1 9 .6 3

9222.5 2 .6 8 2 .3 4 2 0 .3 4 9257.5 2 .6 9 2 .3 2 2 1 .8 1

9223 2 .6 9 2 1 .7 0 2 .6 5 2 .3 4 2 1 .0 4 2.31 9258 2 .7 0 2 2 .1 0 2 .6 5 2 .3 1 2 3 .2 2

9223.5 2 .6 7 2 .3 3 2 0 .41 9258.5 2 .7 4 2 .2 9 2 5 .8 8

9224 2 .7 0 2 .3 2 2 2 .3 4 9259 2 .8 0 1 5 .4 0 2 .7 8 2 .3 0 2 8 .0 7

9224.5 2 .6 7 2.31 2 1 .4 2 9259.5 2 .8 5 2 .3 3 2 7 .9 9

9225 2.71 1 7 .8 0 2 .6 5 2.31 2 3 .3 7 2 .3 7 9260 2 .8 6 1 7 .7 0 2 .9 7 2 .4 0 2 4 .6 1

9225.5 2.71 2.31 2 3 .4 2 9260.5 2 .8 4 2 .5 0 1 8 .2 4

9226 2 .7 2 1 4 .3 0 2 .7 0 2 .3 4 2 2 .0 7 2 .4 7 9261 2.81 1 5 .7 0 2 .6 7 2 .5 4 1 4 .6 8

9226.5 2 .7 2 2 .3 7 2 0 .7 3 9261.5 2 .7 6 2 .5 2 1 3 .9 5

9227 2 .7 4 1 7 .2 0 2 .6 4 2 .3 9 2 0 .4 5 2 .3 8 9262 2.71 2 .4 4 1 5 .5 6

9227.5 2 .7 3 2 .3 7 2 0 .8 9 9262.5 2 .7 0 2 .41 17 .51

9228 2.71 14 .6 0 2 .6 6 2 .3 4 2 1 .6 3 2 .4 3 9263 2 .7 2 1 6 .1 0 2 .6 8 2 .4 0 1 8 .6 9

9228.5 2 .7 2 2 .3 5 2 1 .8 7 9263.5 2 .7 3 2 .41 1 8 .4 7
9229 2.71 2 5 .6 0 2 .6 7 2 .3 3 2 2 .4 7 2 .2 7 9264 2 .7 4 1 2 .6 0 2 .6 7 2 .4 2 1 8 .1 9

9229.5 2.71 2 .3 0 2 4 .0 0 9264.5 2 .7 4 2 .4 3 1 7 .7 6

9230 2 .6 8 2 7 .7 0 2 .6 4 2 .2 3 2 7 .0 2 2.21 9265 2 .7 3 2 .4 5 1 6 .1 5

9230.5 2 .6 8 2 .2 0 2 8 .4 5 9265.5 2 .7 2 2 .4 9 1 3 .3 6

9231 2 .6 7 2 2 .7 0 2 .6 5 2 .1 9 2 8 .61 2 .3 0 9266 2 .6 9 2 4 .9 0 2 .6 5 2.51 1 0 .5 9
9231.5 2 .6 7 2.21 2 7 .1 8 9266.5 2 .6 8 2 .4 7 1 2 .4 0

9232 2 .6 6 2 .6 5 2 .2 5 2 4 .3 8 2 .2 7 9267 2 .6 6 1 9 .0 0 2 .6 7 2 .3 8 1 6 .7 8
9232.5 2 .6 6 2.31 2 0 .8 3 9267.5 2 .6 6 2.31 2 0 .9 2

9233 2 .6 7 2 1 .1 0 2 .6 6 2 .3 5 19.11 2 .3 3 9268 2 .6 6 2 7 .4 0 2 .6 5 2 .2 7 2 3 .6 7

9233.5 2 .6 7 2 .3 4 1 9 .6 0 9268.5 2 .6 6 2 .2 4 2 5 .2 7

9234 2 .6 7 2 5 .0 0 2 .6 3 2 .3 3 2 0 .5 2 2 .2 5 9269 2 .6 6 2 .6 6 2 .2 3 2 6 .0 8

9234.5 2 .6 8 2 .2 9 2 3 .5 5 9269.5 2 .6 6 2 .2 3 2 5 .8 6

9235 2 .7 0 14 .8 0 2 .7 0 2 .2 7 2 5 .1 9 2 .4 6 9270 2 .6 7 2 4 .6 0 2 .6 6 2 .2 4 26 .1 1

9235.5 2 .7 0 2 .2 9 2 4 .21 9270.5 2 .6 7 2 .2 3 2 6 .5 3

9236 2 .7 0 1 6 .0 0 2 .6 5 2 .3 5 2 1 .0 2 2 .4 0 9271 2 .6 8 2 4 .1 0 2 .6 5 2 .2 1 2 8 .2 0

9236.5 2 .7 3 2 .4 0 19.41 9271.5 2 .7 0 2 .2 1 2 8 .6 5

9237 2 .7 3 1 6 .3 0 2 .6 6 2 .4 0 1 8 .7 4 2.41 9272 2.71 2 .2 2 2 8 .6 7

9237.5 2 .7 3 2 .4 0 1 9 .0 3 9272.5 2 .7 0 2 .2 4 2 7 .0 7

9238 2 .7 6 1 4 .5 0 2 .6 7 2 .4 0 2 0 .5 8 2 .4 4 9273 2.71 2 .2 8 2 5 .4 6

9238.5 2 .8 0 2 .4 2 2 1 .4 9 9273.5 2.71 2.3 1 2 3 .1 3

9239 2 .8 5 1 8 .6 0 2 .8 9 2 .4 4 2 2 .1 4 2 .5 6 9274 2 .6 9 2 2 .7 0 2 .6 6 2 .3 4 2 0 .7 2

9239.5 2 .8 9 2 .4 5 2 3 .0 3 9274.5 2 .6 9 2 .3 5 2 0 .4 7

9240 2.91 19 .7 0 2 .8 3 2 .4 5 2 4 .1 6 2 .4 9 9275 2.71 2 2 .8 0 2 .6 6 2 .3 3 2 2 .0 6

9240.5 2 .9 2 2 .4 4 2 4 .9 0 9275.5 2.71 2.3 1 2 3 .5 0

9241 2 .9 3 2 0 .9 0 2 .8 4 2 .4 8 2 3 .01 2 .4 8 9276 2 .7 2 2 4 .6 0 2 .6 5 2 .2 9 2 5 .0 3

9241.5 2 .9 3 2 .5 6 1 9 .1 8 9276.5 2.71 2 .2 9 2 4 .6 5

9242 2 .9 5 16 .3 0 2 .9 2 2 .6 3 1 6 .5 5 2 .6 2 9277 2 .7 2 2 .2 8 2 5 .2 6

9242.5 2 .9 6 2 .6 5 1 5 .7 4 9277.5 2 .7 2 2 .2 7 2 6 .2 4

9243 2 .9 4 9 .7 0 2 .9 7 2 .6 8 1 3 .6 8 2 .7 9 9278 2 .7 4 2 3 .5 0 2 .6 6 2 .2 6 2 7 .5 2

9243.5 2 .8 9 2 .6 8 1 1 .0 8 9278.5 2 .7 5 2 .2 6 2 8 .1 2

9244 2 .8 4 1 4 .3 0 2 .6 6 2 .6 3 1 1 .6 5 2 .4 4 9279 2 .7 4 1 5 .6 0 2 .6 7 2 .2 6 2 7 .8 5

9244.5 2 .7 8 2 .5 3 1 4 .3 3 9279.5 2 .7 8 2 .2 5 2 9 .5 7

9245 2 .7 7 1 2 .7 0 2 .6 8 2 .4 6 1 7 .2 5 2 .4 8 9280 2 .8 0 2 .2 6 3 0 .1 1

9245.5 2 .7 2 2 .4 5 1 5 .4 6 9280.5 2 .8 4 2.3 1 2 8 .8 8

9246 2 .7 2 1 6 .0 0 2 .6 7 2 .4 6 1 5 .2 3 2 .4 2 9281 2 .8 7 2 .3 8 2 6 .2 3

9246.5 2 .7 0 2 .4 5 1 4 .9 9 9281.5 2 .8 9 2 .4 6 2 3 .1 8

9247 2 .6 9 1 9 .3 0 2 .6 5 2 .4 2 1 5 .9 4 2 .3 5 9282 2 .9 0 2 3 .7 0 2 .6 6 2 .4 0 2 6 .0 6

9247.5 2 .6 9 2 .3 9 1 7 .7 8 9282.5 2 .8 5 2 .3 1 2 9 .4 8

9248 2 .7 0 1 6 .4 0 2 .6 6 2 .3 8 1 8 .7 3 2 .4 0 9283 2.81 2 3 .1 0 2 .6 5 2 .2 0 3 3 .6 8

9248.5 2 .6 8 2 .3 8 1 7 .6 4 9283.5 2 .7 7 2 .1 7 3 3 .7 4

9249 2 .6 8 1 7 .9 0 2 .6 6 2 .3 9 1 7 .4 4 2 .3 8 9284 2 .7 3 2 2 .6 0 2 .6 5 2 .1 9 3 1 .3 8

9249.5 2 .6 9 2 .3 9 17.51 9284.5 2.71 2 .21 2 9 .3 1

9250 2 .6 8 1 8 .4 0 2 .6 5 2 .3 7 1 8 .5 8 2 .3 6 9285 2 .7 0 2 .2 2 2 8 .2 9

9250.5 2 .6 8 2 .3 7 1 8 .2 2 9285.5 2 .6 9 2 .21 2 8 .3 7



Appendix 7.2 cont..

Depth calcul eted core RHOB Calculated core cak- Depth calculated core core RHOB Calculated

grain dendty porodty grain dendty perodty bulk dendty grain dendty porodty grain dendty p«-odty

9286.5 2.70 2.22 28.20 9351 2.77 10.80 2.73 2.35 23.54
9287 2.71 23.50 2.65 2.23 28.22 2.29 9351.5 2.77 2.32 25.63
9287.5 2.71 2.24 27.51 9352.5 2.82 2.39 23.56
9298 2.73 2.41 18.67 9353 2.84 11.20 2.68 2.48 19.79
9298.5 2.72 2.34 22.27 9353.5 2.84 2.54 16.69
9299 2.71 2.27 25.68 9354 2.83 15.10 2.65 2.54 15.85
9299.5 2.71 2.24 27.65 9354.5 2.82 2.50 17.66
9300 2.71 2.23 27.93 9355 2.82 10.20 2.69 2.49 18.46
9300.5 2.72 2.24 27.77 9355.5 2.82 2.48 18.51
9301 2.72 21.90 2.64 2.26 26.75 2.30 9356 2.81 9.30 2.70 2.49 17.91
9301.5 2.73 2.29 25.42 9356.5 2.81 2.49 17.71
9302 2.72 24.90 2.65 2.32 23.49 2.26 9357 2.85 14.50 2.68 2.49 19.27
9302.5 2.72 2.34 21.89 9357.5 2.85 2.51 18.36
9303 2.70 2.34 21.52 9358 2.89 12.20 2.72 2.53 19.19
9303.5 2.69 2.31 22.51 9358.5 2.92 2.56 18.52
9304 2.69 20.10 2.68 2.27 24.71 2.36 9359 2.90 11.00 2.72 2.58 16.70
9304.5 2.70 2.25 26.46 9359.5 2.91 2.62 14.92
9305 2.72 19.50 2.77 2.24 27.62 2.44 9360 2.95 2.60 18.13
9305.5 2.74 2.25 28.18 9360.5 2.95 2.56 19.69
9306 2.76 26.50 2.65 2.27 27.52 2.24 9361 2.97 16.80 2.53 2.54 21.58
9306.5 2.81 2.31 27.56 9361.5 2.95 2.53 21.27
9307 2.87 25.20 2.65 2.37 26.92 2.26 9362 2.98 13.10 2.80 2.53 22.83
9307.5 2.89 2.45 23.22 9362.5 2.95 2.52 22.05
9308 2.90 24.80 2.66 2.54 19.06 2.27 9363 2.95 2.52 22.25
9308.5 2.89 2.59 15.77 9363.5 2.91 2.50 21.09
9309 2.84 18.90 2.68 2.58 14.56 2.38 9364 2.90 2.48 21.91
9309.5 2.82 2.51 16.66 9364.5 2.86 11.80 2.72 2.48 20.64
9310 2.77 17.50 2.67 2.47 17.14 2.40 9365 2.85 2.49 19.34
9310.5 2.76 2.43 18.66 9365.5 2.83 2.43 21.92
9311 2.78 16.20 3.08 2.42 20.02 2.76 9366 2.82 2.38 24.19
9311.5 2.82 20.70 2.68 2.38 24.17 2.35 9366.5 2.82 2.37 25.04
9325.5 2.74 2.33 23.30 9367 2.83 2.43 22.02
9326 2.75 21.70 2.65 2.33 23.89 2.31 9367.5 2.82 2.45 20.70
9326.5 2.75 2.34 23.44 9368 2.82 2.48 18.85
9327 2.77 18.50 2.68 2.35 23.63 2.39 9368.5 2.82 2.45 20.17
9327.5 2.77 2.37 22.88 9369 2.82 2.43 21.86
9328 2.76 19.10 2.68 2.38 21.90 2.38 9369.5 2.85 2.40 24.13
9328.5 2.76 2.38 21.91 9370 2.86 2.39 25.01
9329 2.74 19.90 2.67 2.37 21.47 2.36 9370.5 2.85 2.37 25.72
9329.5 2.74 2.38 21.08 9371 2.83 2.36 26.01
9330 2.74 18.10 2.68 2.39 20.02 2.39 9371.5 2.81 2.36 25.34
9330.5 2.74 2.39 20.16 9372 2.83 2.40 23.78
9331 2.73 17.90 2.68 2.38 20.73 2.40 9372.5 2.86 2.45 21.71
9331.5 2.74 2.37 21.13 9373 2.86 2.43 22.86
9332 2.74 18.30 2.68 2.38 21.01 2.39 9373.5 2.85 2.36 26.88
9332.5 2.74 2.38 20.99 9374 2.87 2.30 30.51
9333 2.76 13.10 2.69 2.37 21.87 2.48 9374.5 2.83 2.29 29.86
9333.5 2.75 16.60 2.67 2.39 20.89 2.41 9375 2.81 2.31 27.34
9334 2.77 2.41 20.03 9375.5 2.79 2.32 26.49
9334.5 2.74 2.42 18.78 9376 2.81 2.32 26.88
9335 2.75 23.50 2.65 2.40 20.08 2.29 9376.5 2.85 2.35 27.00
9335.5 2.74 2.38 20.77 9377 2.82 2.38 24.06
9336 2.74 19.70 2.66 2.37 21.27 2.35 9377.5 2.82 2.46 19.90
9336.5 2.72 2.34 22.20 9378 2.87 15.80 2.73 2.50 19.69
9337 2.73 14.90 2.67 2.31 24.20 2.44 9378.5 2.88 2.54 18.15
9337.5 2.72 2.29 25.24 9379 2.91 2.53 20.03
9338 2.72 18.50 2.67 2.29 24.87 2.38 9379.5 2.87 2.52 18.48
9338.5 2.72 2.31 23.75 9380 2.89 26.10 2.92 2.52 19.62
9339 2.73 19.60 2.67 2.36 21.60 2.36 9380.5 2.88 2.52 19.41
9339.5 2.73 2.37 20.73 9381 2.86 9.90 2.77 2.53 17.91
9340 2.73 20.10 2.67 2.38 20.34 2.35 9381.5 2.85 2.52 17.92
9340.5 2.72 2.35 21.44 9382 2.86 2.51 19.10
9341 2.72 19.30 2.67 2.34 21.86 2.37 9382.5 2.86 2.51 19.04
9341.5 2.72 2.33 22.40 9383 2.88 2.52 19.16
9342 2.72 18.70 2.67 2.34 21.86 2.38 9383.5 2.87 2.52 18.40
9342.5 2.73 2.34 22.14 9384 2.83 2.52 16.98
9343 2.73 2.34 22.62 9384.5 2.80 2.51 16.22
9343.5 2.72 2.35 21.68 9385 2.79 2.51 15.34
9344 2.72 11.80 2.60 2.35 21.92 2.42 9385.5 2.79 2.50 15.87
9344.5 2.73 2.34 22.10 9386 2.77 2.50 15.07
9345 2.73 11.10 2.70 2.33 22.96 2.52 9386.5 2.77 2.49 16.22
9345.5 2.74 2.35 22.38 9387 2.80 2.47 18.01
9346 2.78 9.50 2.73 2.41 20.91 2.58 9387.5 2.81 2.47 18.43
9346.5 2.79 2.46 18.59 9388 2.81 2.49 17.46
9347 2.82 9.70 2.77 2.51 16.95 2.61 9388.5 2.81 2.52 15.91

9347.5 2.81 2.51 16.53 9389 2.82 2.53 16.10

9348 2.83 19.70 2.67 2.53 16.41 2.36 9389.5 2.80 2.52 15.28
9348.5 2.85 2.55 15.96 9390 2.79 2.53 14.47
9349 2.84 20.20 2.67 2.56 15.13 2.35
9349.5 2.82 2.53 16.33
9350 2.79 10.10 2.74 2.42 20.31 2.57
9350.5 2.78 2.35 24.13
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