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Finite Generation of Ext and (D,A)-stacked Algebras
Joanne Leader

Abstract. We introduce the class of (D,A)-stacked algebras, which generalise the
classes of Koszul algebras, d-Koszul algebras and (D,A)-stacked monomial algebras.
We show that the Ext algebra of a (D,A)-stacked algebra is finitely generated in
degrees 0, 1, 2 and 3. After investigating some general properties of E(Λ) for this class
of algebras, we look at a regrading of E(Λ) and give examples for which the regraded
Ext algebra is a Koszul algebra. Following this we give a general construction of a
(D,A)-stacked algebra Λ̃ from a d-Koszul algebra Λ, setting D = dA, with A ≥ 1.
From this construction we relate the homological properties of Λ̃ and Λ, including
the projective resolutions and the structure of the Ext algebra.
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1. Introduction

With complicated, non-commutative algebras came the need to try and simplify

them. Representation theory is a vast branch of Mathematics, with the fundamental

idea that we can represent something complex by something that is easier to un-

derstand but still retaining the properties that we wish to understand. There are

various ways of doing this but the concept we use in this thesis is to consider the

modules and cohomology of an algebra given by quiver and relations.

In particular, we are interested in the Ext algebra, E(Λ), of a finite-dimensional

algebra Λ, where Λ = KQ/I for K a field, Q a finite quiver and I an admissible

ideal. This was introduced into the mainstream by Gabriel in 1972, (see [1]) with his

widely known theorem and classification of finite quivers. In this thesis we look at

when the Ext algebra is finitely generated as an algebra. One class of algebras where

it is known that the Ext algebra is finitely generated is the class of Koszul algebras,

which were introduced by Priddy in 1970, [25]. He introduced the notion of a Koszul

algebra whilst studying Steenrod algebras and defined this class of algebras, which

were a subset of the quadratic algebras, and for which the calculation of E(Λ) was

simple to determine via the Koszul resolution. Since then, Koszul algebras and their

generalisations have occurred in many different places in algebra and they have been

the focus of numerous papers, such as the two papers by Green and Mart́ınez-Villa,

[15, 16].

In this thesis we introduce and study a class of finite-dimensional algebras, which

are a generalisation of Koszul algebras, by extending the (D,A)-stacked monomial
5



algebras of Green and Snashall, introduced in [18]. There are many generalisations

of Koszul algebras in the literature, including D-Koszul algebras which were in-

troduced by Berger [5] and the δ-Koszul algebras of Green and Marcos [12]. The

class of (D,A)-stacked monomial algebras of [18] are a natural extension of Koszul

monomial algebras and D-Koszul monomial algebras; we now extend the theory to

non-monomial (D,A)-stacked algebras.

We begin the thesis with some background information on finite-dimensional alge-

bras given by quiver and relations, and an introduction to Koszul algebras and their

generalisations. In Chapter 2 we remind the reader of the projective resolution of a

module over such an algebra. In Chapter 3, we describe the construction of the Ext

groups ExtnΛ(M,N) for modules M,N over a finite-dimensional algebra Λ, and the

minimal projective resolution of Λ/r of Green, Solberg and Zacharia, given in [20],

where r is the Jacobson radical of Λ. This is followed by an explicit example of an

algebra Λ = KQ/I, where we calculate the minimal projective resolution of Λ/r as

a right Λ-module and compute its Ext groups. This algebra will be shown to be a

(D,A)-stacked algebra further on, in Chapter 5.

Chapter 4 looks at Koszul algebras and some of their generalisations. A natural

question to ask is when is the Ext algebra of a finite-dimensional algebra itself finitely

generated as an algebra? It is well known that the Ext algebra of a Koszul algebra is

finitely generated in degrees 0 and 1. TheD-Koszul algebras of [5] were shown to have

their Ext algebra generated in degrees 0, 1 and 2 in [13] by Green, Marcos, Mart́ınez-

Villa and Zhang. In [18], Green and Snashall introduced (D,A)-stacked monomial

algebras and proved in [19] that the Ext algebra of these algebras is generated in

degrees 0, 1, 2 and 3. After reviewing these classes of algebras, we then give explicit

examples, firstly of a 3-Koszul algebra and then a Koszul algebra.

In Chapter 5, we define the new class of (D,A)-stacked algebras. We show

that these algebras include the previously mentioned Koszul, D-Koszul and (D,A)-

stacked monomial algebras. The main result of this chapter is Theorem 5.7 where
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we show that the Ext algebra of a (D,A)-stacked algebra is finitely generated as an

algebra.

Theorem 5.7 Let Λ = KQ/I be a (D,A)-stacked algebra with D ≥ 2 and A ≥ 1.

Then E(Λ) is generated in degrees 0, 1, 2 and 3.

In Chapter 6 we explicitly look at some general properties of the Ext algebra for

our class of (D,A)-stacked algebras and provide a characterisation of (D,A)-stacked

algebras in Theorem 6.8.

Theorem 6.8 Let Λ = KQ/I where I is generated by homogeneous elements of

length D ≥ 2. Then Λ = Λ0 ⊕ Λ1 ⊕ · · · is length graded. Suppose, in the minimal

projective resolution, (P n, dn), of Λ0 that P 3 is generated in a single degree, D+A,

for A ≥ 1. Then Λ is a (D,A)-stacked algebra if and only if E(Λ) is generated in

degrees 0, 1, 2 and 3 and the following conditions hold:

i) Ext1
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) = 0, if D 6= 2;

ii) ExtnΛ(Λ0,Λ0) × Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0) × ExtnΛ(Λ0,Λ0), for all n odd,

n ≥ 1, if D > 2, D 6= A+ 1;

iii) ExtnΛ(Λ0,Λ0)× Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0)× ExtnΛ(Λ0,Λ0), for all n even,

n ≥ 2, if D > 2, A > 1; and

iv) Ext2m+1
Λ (Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0) = 0, for all m,n ≥ 1, if D 6= 2A,D > 2.

Chapter 7 is motivated by the work of Green, Marcos, Mart́ınez-Villa and Zhang

in [13]. In this paper the authors take the Ext algebra of a D-Koszul algebra and

show that after regrading it is a Koszul algebra. This prompts the question ‘Can the

Ext algebra of a (D,A)-stacked algebra be regraded as a Koszul algebra?’ We give

a regrading of the Ext algebra, and then devote the rest of the chapter to discussing

when this regraded algebra is Koszul. In particular, we give a (6, 2)-stacked non-

monomial algebra, and through the working of this example and the use of Gröbner

bases, we prove that our regrading of its Ext algebra is Koszul. This is followed

by an example of a (6, 2)-stacked monomial algebra, where we also prove that its

regraded Ext algebra is a Koszul algebra. We finish this chapter with a (4, 2)-stacked
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algebra whose regraded Ext algebra is not Koszul, along with a general subclass of

(D,A)-stacked algebras, namely the (2m,m)-stacked algebras, with m ≥ 2, where

the Ext algebra cannot be regraded as a Koszul algebra.

In the rest of the thesis we take a different approach to (D,A)-stacked algebras.

The aim of Chapter 8 is to give a precise construction of a (D,A)-stacked algebra,

Λ̃ = KQ̃/Ĩ, from a given d-Koszul algebra, Λ = KQ/I, where D = dA. For

any chosen A ≥ 1, this construction gives a unique algebra. We begin with the

construction of the new quiver Q̃ and the new ideal Ĩ thus defining a new algebra Λ̃

from a d-Koszul algebra Λ. We then define a map θ : Λ→ Λ̃, which with a minimal

projective resolution of Λ/r as a right Λ-module, allows us to explicitly describe a

minimal projective resolution of Λ̃/r̃ as a right Λ̃-module. Our main result is:

Theorem 8.15 Let Λ be a d-Koszul algebra. Let A ≥ 1 and set D = dA. With

the given construction, the algebra Λ̃ = KQ̃/Ĩ is a (D,A)-stacked algebra.

Chapter 9 begins with the question ‘What is the relationship between E(Λ) and

E(Λ̃)?’. Throughout this chapter we investigate this question, and construct a K-

algebra homomorphism Ψ : Ext>2
Λ (Λ/r,Λ/r)→ Ext>2

Λ̃
(Λ̃/r̃, Λ̃/r̃) in Theorem 9.15.

As a next stage, it is natural to ask what the relationship is between the Hochschild

cohomology rings of Λ and Λ̃. Although we are not yet able to fully answer this ques-

tion, in the final chapter of this thesis, Chapter 10, we construct a minimal projective

bimodule resolution of Λ̃ from a given minimal projective bimodule resolution of Λ.

We use the map θ : Λ→ Λ̃ given in Chapter 8, to define a new map φ : Λe → Λ̃e. Our

construction of a minimal projective bimodule resolution of Λ̃ is given in Theorem

10.16, which is the main result of this chapter. This naturally leads to the question

of how HH∗(Λ) and HH∗(Λ̃) are related. This question would be a good topic for

further research.
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2. Preliminaries

This chapter recalls some of the basic definitions needed to look at algebras given

by quiver and relations, and their modules. The definitions and concepts here can

be found in many good books on representation theory, including [1], [2] and [6].

We begin with a description of an algebra by quiver and relations.

Definition 2.1. A quiver Q = (Q0,Q1, s, t), consists of two sets, Q0 which is a set

of vertices and Q1 which is a set of arrows, together with two maps s, t : Q1 −→ Q0,

which associate to each arrow α ∈ Q1 its source s(α) and its target t(α).

Definition 2.2. (1) A quiver Q is said to be finite if Q0 and Q1 are both finite

sets.

(2) The underlying graph of the quiver Q is denoted Q and means Q with no

orientation on the edges (arrows).

(3) The quiver Q is said to be connected if Q is connected.

Definition 2.3. (1) Let Q be a quiver and let a, b ∈ Q0. A path from a to b is

a sequence of arrows αi such that the first arrow has source a and the last

arrow has target b, and if the αi are ordered so that the path is α1α2 · · ·αn

then s(α1) = a and t(αn) = b, with s(αi+1) = t(αi), for each 1 ≤ i ≤ n − 1.

The length of the path is n and each arrow is of length 1.

(2) The set of paths of length n is denoted by Qn; this ties in well since the set

of paths of length 1 is Q1.

(3) Associated with each vertex a is a trivial path ea; this is a path of length 0.

Note that the above definition means that we write our paths from left to right.

Definition 2.4. Let Q be a finite quiver and let K be a field. The path algebra KQ

of Q is the K-algebra whose underlying vector space has the set of all paths in Q as

its basis. Multiplication is given by concatenation of paths. Thus the product of two

paths β1 and β2 is defined as β1β2 if t(β1) = s(β2), and β1β2 = 0 if t(β1) 6= s(β2).
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We assume throughout this thesis that Q is a finite quiver and K is a field.

It follows that KQ has a direct sum decomposition,

KQ = KQ0 ⊕KQ1 ⊕ · · · ⊕KQn ⊕ · · ·

where KQi is the subspace generated by Qi, the set of paths of length i.

Given any two of these subspaces KQn and KQm then KQn ·KQm ⊆ KQn+m,

so KQ is a graded K-algebra.

Definition 2.5. Let Q be a quiver. The two sided ideal of the path algebra KQ

generated by the arrows of Q is called the arrow ideal of KQ, denoted RQ.

Definition 2.6. Let Q be a finite quiver, RQ the arrow ideal of KQ. A two sided

ideal I of KQ is admissible if there exists m ≥ 2 such that Rm
Q ⊆ I ⊆ R2

Q.

One of the main reasons for using quivers to describe our algebras, is that, essen-

tially, every finite-dimensional algebra can be described in this way. This is due to

the following result by Gabriel, for which see [7].

Theorem 2.7. Any basic finite-dimensional algebra over an algebraically closed field

K is isomorphic to KQ/I for some unique quiver Q and admissible ideal I.

We say that an algebra of the form KQ/I for some admissible ideal I of KQ is

given by quiver and relations. If I is generated by a set of paths in KQ then we

say KQ/I is a monomial algebra. Throughout this thesis all our algebras KQ/I are

finite-dimensional.

We now look at modules, as one of the main tools we will be using is the projective

resolution of a simple module.

Definition 2.8. Let R be a ring. An R-module M is simple if the only submodules

of M are 0 and M .

Definition 2.9. Let R be a ring. An R-module M is projective if whenever

f : X −→ Y is an epimorphism and g : M −→ Y is a homomorphism then there
10



exists h : M −→ X such that fh = g, that is, the diagram commutes:

M
h

~~
g
��

X
f

// Y // 0

Proposition 2.10. Let R be a ring and let e be an idempotent in R, that is, e2 = e.

Then eR is projective as a right R-module. In particular, R is a projective R-module.

Definition 2.11. Let R be a ring. A complex is a sequence of R-modules Mn,

together with homomorphisms dn

· · · // Mn
dn
// Mn+1

dn+1

// Mn+2
dn+2

// · · ·

such that dn+1 ◦ dn = 0 for all n.

Definition 2.12. An exact sequence of R-modules is a complex

· · · // Mn
dn
// Mn+1

dn+1

// Mn+2
dn+2

// · · ·

such that Im dn = Ker dn+1 for all n.

Definition 2.13. Let R be a ring. A projective resolution of an R-module M is an

exact sequence

· · · // Pm
dm
// Pm−1

dm−1

// · · ·
d2

// P 1
d1

// P 0
d0

// M // 0

such that all the Pm are projective R-modules.

In the next chapter we look at minimal projective resolutions for modules over a

finite-dimensional algebra Λ = KQ/I, following the construction of Green, Solberg

and Zacharia [20].
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3. Minimal Projective Resolutions and the Ext Algebra

In this chapter we look at minimal projective resolutions and the Ext algebra. We

start with a definition of the Ext groups, taken from [1], [24] and [26].

Let Λ = KQ/I be a finite-dimensional algebra over a field K with Jacobson

radical r.

Definition 3.1. Let M,N be right Λ-modules, and let

· · · // P 2
d2

// P 1
d1

// P 0
d0

// M // 0

be a projective resolution of M as a right Λ-module. Apply HomΛ(−, N) to give the

complex

· · · // HomΛ(P n−1, N)
dn−1∗

// HomΛ(P n, N)
dn∗
// HomΛ(P n+1, N) // · · ·

where dn∗ : HomΛ(P n, N)→ HomΛ(P n+1, N) is the map induced from dn+1 : P n+1 →

P n. The module ExtnΛ(M,N) is defined by ExtnΛ(M,N) = Ker dn∗/ Im dn−1∗ for all

n ≥ 0.

Theorem 3.2. Let M,N be right Λ-modules. The module ExtnΛ(M,N) is indepen-

dent of the choice of projective resolution of M , for all n ≥ 0.

The above theorem means that we can use any projective resolution of M as a

right Λ-module to determine the Ext groups ExtnΛ(M,N). We will consider minimal

projective resolutions. A projective resolution

· · · // Pm
dm
// Pm−1

dm−1

// · · ·
d2

// P 1
d1

// P 0
d0

// M // 0

of a Λ-module M is minimal if Im dm ⊆ rad(Pm−1) = Pm−1r for all m ≥ 1.

We are interested in the Ext groups ExtnΛ(Λ/r,Λ/r) for n ≥ 0, so we use a minimal

projective resolution of the right Λ-module Λ/r. We use the resolution of Green,

Solberg and Zacharia, given in [20]. We give a brief summary of the construction in
12



this paper. We begin with hereditary algebras, for which see [6], and the definition

of a uniform element.

Definition 3.3. Let R be a ring. Then R is hereditary if every submodule of a

projective module is also projective.

Theorem 3.4. Let KQ be a path algebra. Then KQ is hereditary.

Corollary 3.5. Let KQ be a path algebra. For every x ∈ KQ, the KQ-module

xKQ is projective.

Definition 3.6. Let x be an element in KQ. Then x is uniform if there exist vertices

ei, ej ∈ Q0 such that x = eix = xej.

We now look at [20] and a minimal projective resolution (P n, dn) for Λ/r.

Let Λ = KQ/I and let Λ/r =
⊕

i Si, a finite sum of simple modules. Choose a set

of elements {g0} of KQ such that
⊕

i g
0
iKQ/

⊕
i g

0
i I is a projective Λ-module and

there is a surjective map d :
⊕

i g
0
iKQ/

⊕
i g

0
i I 7→ Λ/r. Without loss of generality,

we can choose g0
i = ei for each vertex ei of KQ. Let d0 :

⊕
i g

0
iKQ → Λ/r be the

canonical surjection of KQ-modules; then we have

0→ Ker d0 →
⊕
i∈Q0

g0
iKQ → Λ/r→ 0.

We can now choose a set of elements {g1∗
i } of

⊕
i∈Q0

g0
iKQ such that

⊕
i g

1∗
i KQ =

Ker d0. From this set we eliminate the elements that are contained in the set
⊕

i g
0
i I,

and let {g1
i } be the subset of {g1∗

i } containing the elements that are not in
⊕

i g
0
i I.

Clearly we have
⊕

i g
1
iKQ ⊆

⊕
i g

0
iKQ.

The remaining terms are defined inductively. We assume that we have the sets

{gki }, for all k = 0, . . . , n. To find {gn+1
i } we proceed as follows. Consider all the

elements in the intersection (
⊕

i g
n
i KQ)

⋂
(
⊕

j g
n−1
j I). We stop if this intersection is

zero and set it equal to
⊕

l g
n+1∗
l KQ otherwise. From this set {gn+1∗

l } we eliminate

the elements that are contained in the set
⊕

i g
n
i I and take {gn+1

i } to be the subset
13



of {gn+1∗
l } containing the elements that are not in

⊕
i g

n
i I. If each gn+1∗

l is in
⊕

i g
n
i I

we again stop.

We assume, for each n, that the elements gni are uniform.

Setting T n =
⊕

i g
n
i KQ, the construction of [20] gives a filtration

· · · ⊆ T n ⊆ T n−1 · · · ⊆ T 2 ⊆ T 1 ⊆ T 0.

For each n ≥ 0, let P n =
⊕

i g
n
i KQ/

⊕
i g

n
i I. Then P n ∼=

⊕
i t(g

n
i )Λ and is a

projective right Λ-module. Let dn : P n → P n−1 be the Λ-homomorphism induced

from the inclusion
⊕

i g
n
i KQ ⊆

⊕
j g

n−1
j KQ.

Theorem 3.7. [20, Theorem 1.2] Let (P n, dn) be the resolution

· · · // P n
dn
// P n−1 // · · · // P 1

d1

// P 0
d0

// Λ/r // 0

with P n and dn as given above. Then (P n, dn) is a projective resolution of Λ/r as a

right Λ-module.

For our setting, [20] shows that this construction gives a minimal projective reso-

lution of Λ/r.

Theorem 3.8. [20, Theorem 2.4] Let (P n, dn) be a projective resolution of Λ/r as a

right Λ-module, as given above. Then the sets {gni } can be chosen so that for each n,

no proper K-linear combination of a subset of {gni } lies in
⊕

j g
n−1
j I+

⊕
i g

n∗
i J , where

J denotes the arrow ideal of KQ. Moreover, in this case the resolution (P n, dn) is

minimal.

To summarize the resolution of [20] to give a minimal projective resolution of Λ/r

• Let g0 be the set of vertices in Q.

• Let g1 be the set of arrows in Q.

• Let g2 be a minimal set of uniform relations in the generating set of I.
14



• For n ≥ 3 each x ∈ gn is a uniform element with

x =
∑

y∈gn−1

yry =
∑

z∈gn−2

zsz

where ry and sz are unique elements in KQ.

• These sets gn are such that there is a minimal projective resolution of Λ/r

with the following properties:

(1) for each n ≥ 0, P n =
⊕

x∈gn t(x)Λ

(2) for x ∈ gn there are unique elements rj ∈ KQ with

x =
m∑
j=1

gn−1
j rj

where m = |gn−1|.

(3) For each n ≥ 1 , the map P n −→ P n−1 is given by

t(x)λ 7→
m∑
j=1

t(gn−1
j )rjt(x)λ

where t(gn−1
j )rjt(x)λ is in the component of P n−1 corresponding to t(gn−1

j ).

In examples it may be simpler to start by computing a projective resolution for

each simple Λ-module. The following theorem shows that given a minimal projec-

tive resolution for each simple Λ-module, we can write down a minimal projective

resolution of Λ/r, since Λ/r =
⊕

i Si, where {Si} is a complete set of pairwise non-

isomorphic simple modules for Λ.

Proposition 3.9. If 0 −→ A −→ B −→ C −→ 0 is a short exact sequence and

P1, P̄1 are projective resolutions of A and C respectively, then there exists a projective

resolution of B such that the following diagram is commutative:
15



0

��

0

��

0

��

0

��
· · · // P2

//

��

P1
//

��

P0
//

��

A //

��

0

· · · // P2 ⊕ P̄2
//

��

P1 ⊕ P̄1
//

��

P0 ⊕ P̄0
//

��

B //

��

0

· · · // P̄2
//

��

P̄1
//

��

P̄0
//

��

C //

��

0

0 0 0 0

with exact rows and columns.

We now give an example where we compute the minimal projective resolution of

Λ/r as a right Λ-module and give the sets gn of the construction of [20].

Example 3.10. Let Q be the quiver given by

2
α2

��
1

α1
@@

α7

��

3

α3

��

7

α8
@@

6

α6

OO

4

α4��
5

α5

^^

and let Λ = KQ/I, where I = 〈(α1α2 − α7α8)α3α4, α3α4α5α6, α5α6(α1α2 − α7α8)〉.

The indecomposable projective modules are eiΛ and the simple modules are Si =

eiΛ/eir, for i = 1, . . . , 7. We begin by finding projective resolutions of the simple

modules.
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For S1, the resolution begins

e1Λ
d0

// e1Λ/e1r // 0

where P 0 = e1Λ and d0 is the canonical surjection. So Ker d0 = e1r = α1Λ + α7Λ.

Let P 1 = e2Λ⊕e7Λ and let d1 : P 1 −→ P 0 be given by d1(e2λ1, e7λ2) = α1λ1 +α7λ2,

where λ1, λ2 ∈ Λ. Then we have Ker d1 = {(e2λ1, e7λ2) ∈ P 1|α1λ1 + α7λ2 = 0}.

It is straightforward to show that Ker d1 = (α2α3α4,−α8α3α4)Λ. Let P 2 = e5Λ,

and define d2 : P 2 −→ P 1 by d2(e5λ) = (α2α3α4,−α8α3α4)λ. Here Ker d2 = α5α6Λ.

Let P 3 = e1Λ and define d3 : P 3 −→ P 2 by d3(e1λ) = α5α6λ. Then Ker d3 =

(α1α2 − α7α8)Λ. Continuing in this way, we let P 4 = e3Λ and define d4 : P 4 −→ P 3

by d4(e3λ) = (α1α2 − α7α8)λ, giving Ker d4 = α3α4Λ. Let P 5 = e5Λ and define

d5 : P 5 −→ P 4 by d5(e5λ) = α3α4λ, giving Ker d5 = α5α6Λ = Ker d2.

We can see inductively that the projective resolution (P n, dn) for S1 then repeats

with

• P n = e1Λ, dn(e1λ) = α5α6λ,Ker dn = (α1α2 − α7α8)Λ, if n = 3m,m ∈ N.

• P n = e3Λ, dn(e3λ) = (α1α2 − α7α8)λ,Ker dn = α3α4Λ, if n = 3m+ 1,m ∈ N.

• P n = e5Λ, dn(e5λ) = α3α4λ,Ker dn = α5α6Λ, if n = 3m+ 2,m ∈ N.

Note that we use the convention that 0 /∈ N.

This sequence is a minimal projective resolution (P n, dn) for S1 as a Λ-module.

For S2, let P 0 = e2Λ and d0 be the canonical surjection, P 0 → S2. Then Ker d0 =

e2r = α2Λ. Let P 1 = e3Λ and define d1 : P 1 −→ P 0 by d1(e3λ) = α2λ. Now,

Ker d1 = {0} and so we have P 2 = 0 and we are finished, that is,

0 // e3Λ
d1

// e2Λ
d0

// e2Λ/e2r // 0

is a projective resolution of S2 as a Λ-module.

In this way we can see that the simple modules S2, S4, S6 and S7 have finite

projective resolution, whilst S1, S3 and S5 have infinite projective resolution. We

can now write down a projective resolution (P̄ n, d̄n) of Λ/r:
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· · · // P̄ n
d̄n
// P̄ n−1

d̄n−1

// · · · // P̄ 2
d̄2

// P̄ 1
d̄1

// P̄ 0
d̄0

// Λ/r // 0

where P̄ 0 = e1Λ ⊕ e2Λ ⊕ e3Λ ⊕ e4Λ ⊕ e5Λ ⊕ e6Λ ⊕ e7Λ, P̄ 1 = e2Λ ⊕ e7Λ ⊕ e3Λ ⊕

e4Λ ⊕ e5Λ ⊕ e6Λ ⊕ e1Λ ⊕ e3Λ and P̄ 2 = e5Λ ⊕ e1Λ ⊕ e3Λ. The remaining terms of

the resolution are given by:

• If n = 3m,m ∈ N, P̄ n = e1Λ⊕ e3Λ⊕ e5Λ,

d̄n(λ1, λ2, λ3) = (α5α6λ1, (α1α2 − α7α8)λ2, α3α4λ3),

Ker d̄n = (α1α2 − α7α8)Λ⊕ α3α4Λ⊕ α5α6Λ.

• If n = 3m+ 1,m ∈ N, P̄ n = e3Λ⊕ e5Λ⊕ e1Λ,

d̄n(λ1, λ2, λ3) = ((α1α2 − α7α8)λ1, α3α4λ2, α5α6λ3),

Ker d̄n = α3α4Λ⊕ α5α6Λ⊕ (α1α2 − α7α8)Λ.

• If n = 3m+ 2,m ∈ N, P̄ n = e5Λ⊕ e1Λ⊕ e3Λ,

d̄n(λ1, λ2, λ3) = (α3α4λ1, α5α6λ2, (α1α2 − α7α8)λ3),

Ker d̄n = α5α6Λ⊕ (α1α2 − α7α8)Λ⊕ α3α4Λ.

We remark that P̄ n ∼= P̄ 2 for n ≥ 2. Since Im d̄n ⊆ P̄ n−1r for n ≥ 1, the sequence

(P̄ n, d̄n) is a minimal projective resolution of Λ/r as a right Λ-module.

For the above algebra, the sets gn are given as follows:

• g0 = {e1, e2, e3, e4, e5, e6, e7}

• g1 = {α1, α2, α3, α4, α5, α6, α7, α8}

• g2 = {(α1α2 − α7α8)α3α4, α3α4α5α6, α5α6(α1α2 − α7α8)}

• g3 = {(α1α2 − α7α8)α3α4α5α6, α3α4α5α6(α1α2 − α7α8),

α5α6(α1α2 − α7α8)α3α4}

• If n = 3m,m ∈ N, gn = {((α1α2 − α7α8)α3α4α5α6)m,

(α3α4α5α6(α1α2 − α7α8))m, (α5α6(α1α2 − α7α8)α3α4)m}.

• If n = 3m+ 1,m ∈ N, gn = {((α1α2 − α7α8)α3α4α5α6)m(α1α2 − α7α8),

(α3α4α5α6(α1α2 − α7α8))mα3α4, (α5α6(α1α2 − α7α8)α3α4)mα5α6}.
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• If n = 3m+ 2,m ∈ N, gn = {((α1α2 − α7α8)α3α4α5α6)m(α1α2 − α7α8)α3α4,

(α3α4α5α6(α1α2−α7α8))mα3α4α5α6, (α5α6(α1α2−α7α8)α3α4)mα5α6(α1α2−

α7α8)}.

Given the minimal projective resolution of Λ/r as a right Λ-module and the sets

gn for all n ≥ 0, we now have all the information we need to look at the Ext algebra

of Λ.

Definition 3.11. The Ext algebra of Λ is

E(Λ) = Ext∗Λ(Λ/r,Λ/r) =
⊕
n≥0

ExtnΛ(Λ/r,Λ/r).

In order to see that E(Λ) is an algebra, we need to describe the product structure

of E(Λ). The product is given by the Yoneda product.

We start with a minimal projective resolution (P n, dn) of Λ/r as a right Λ-module,

so Im dn ⊆ P n−1r. As above, let dn∗ : HomΛ(P n,Λ/r) → HomΛ(P n+1,Λ/r) be the

map induced from dn+1 : P n+1 → P n. Then Im dn∗ = {0} for all n ≥ 0, so that

Ker dn∗ ∼= HomΛ(P n,Λ/r) and ExtnΛ(Λ/r,Λ/r) ∼= HomΛ(P n,Λ/r) for all n.

Given g ∈ HomΛ(Pm,Λ/r) and f ∈ HomΛ(P n,Λ/r) which represent elements in

ExtmΛ (Λ/r,Λ/r) and ExtnΛ(Λ/r,Λ/r) respectively, the product g · f is the element in

Extm+n
Λ (Λ/r,Λ/r) given by the map g ◦ Lmf : Pm+n → Λ/r where Lmf is the m-th

lifting of f . Thus

· · · // Pm+n
dm+n

//

Lmf
��

Pm+n−1 //

Lm−1f
��

· · · // P n+1
dn+1

//

L1f
��

P n

f

!!
L0f

��

· · · // Pm

dm
//

g $$

Pm−1 // · · · // P 1

d1

// P 0

d0

// Λ/r // 0

Λ/r
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The liftings are not unique; nevertheless the product g · f in Extn+m
Λ (Λ/r,Λ/r) is

independent of the choice of liftings. In this way E(Λ) has an algebra structure. We

have seen that ExtmΛ (Λ/r,Λ/r) × ExtnΛ(Λ/r,Λ/r) ⊆ Extm+n
Λ (Λ/r,Λ/r), so E(Λ) is a

graded algebra, with the homomlogical degree. When we refer to E(Λ) as a graded

algebra, we mean graded by the homological degree, unless otherwise specified.

The main aim of this thesis is to consider how E(Λ) is generated and whether or

not it is finitely generated. Do we need the basis elements of ExtnΛ(Λ/r,Λ/r) for all n

or can we find a finite n such that E(Λ) is generated in degrees 0, 1, 2, . . . , n? In the

next chapter we look at Koszul algebras and some generalisations where it is known

that E(Λ) is finitely generated.
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4. Koszul algebras and some generalisations

In this chapter we define Koszul algebras and some of their generalisations. All

the algebras have their Ext algebra finitely generated. The algebras in this chapter

motivate the (D,A)-stacked algebras which we introduce in Chapter 5 and which

will form the main objects of study of this thesis.

Koszul algebras play an important role in algebra and in topology, see [3], [15],

[16] and [25]. They are graded algebras. We start with some definitions.

Definition 4.1. (1) Let Λ be a K-algebra, for some field K. Then Λ is a graded

algebra if Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ · · · , with Λm · Λn ⊆ Λm+n for all m,n ≥ 0.

(2) Let Λ be a graded algebra, Λ = Λ0⊕Λ1⊕· · · , and let M be a right Λ-module.

Then M is a graded Λ-module if

M = ⊕i Mi and MiΛj ⊆Mi+j, for all i, j with j ≥ 0.

(3) Let Λ be a graded algebra, Λ = Λ0 ⊕ Λ1 ⊕ · · · , and let M be a graded Λ-

module, M = Mi ⊕Mi+1 ⊕Mi+2 ⊕ · · · . Then M is generated in degree i if

for each j ≥ 0, Mi+j = MiΛj.

Definition 4.2. [15] Let Λ = KQ/I be a finite-dimensional algebra. Then Λ is a

Koszul algebra if Λ is a graded algebra Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ · · · and if Λ/r ∼= Λ0

considered as a graded Λ-module in degree 0 has a graded projective resolution

· · · // P 2 // P 1 // P 0 // Λ0
// 0

such that P i is generated in degree i. In this case, we say that Λ0 has a linear

resolution.

A finite-dimensional algebra KQ/I is graded whenever I is a homogeneous ideal

of KQ. We note that [15, Corollary 7.3] shows that if a finite-dimensional graded

algebra KQ/I is Koszul then I is a quadratic ideal. In this case I is generated by

linear combinations of paths of length 2.
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Theorem 4.3. [15] Let Λ = KQ/I be a finite-dimensional algebra and let I be

generated by length homogeneous elements. Then Λ is a Koszul algebra if and only if

E(Λ) is generated in degrees 0 and 1, that is, by Ext0
Λ(Λ/r,Λ/r) and Ext1

Λ(Λ/r,Λ/r).

The class of D-Koszul algebras was introduced by Berger in [5] as a generalisation

of Koszul algebras. In a D-Koszul algebra KQ/I, the ideal I is homogeneous (so

KQ/I is graded), and is generated by linear combinations of paths of length D ≥ 2.

Definition 4.4. [5] Let Λ = KQ/I be a finite-dimensional algebra. Then Λ is a

D-Koszul algebra if, for each n ≥ 0, the nth projective P n in a minimal projective

resolution of Λ/r is generated in exactly one degree, δ(n), where

δ(n) =


n
2
D if n is even

(n−1
2

)D + 1 if n is odd.

Green, Marcos, Mart́ınez-Villa and Zhang showed that the Ext algebra of a D-

Koszul algebra is finitely generated in the following theorem.

Theorem 4.5. [13, Theorem 4.1] Let Λ = KQ/I where I is generated by homoge-

neous elements of length D for some D ≥ 2. Then Λ is D-Koszul if and only if the

Ext algebra E(Λ) can be generated in degrees 0, 1 and 2.

We now give two examples, the first is a D-Koszul monomial algebra, and the

second is a Koszul algebra.

Example 4.6. Let Q be the quiver given by

2
α2

��
1

α1
@@

3
α3

oo

and let I = 〈α1α2α3, α2α3α1, α3α1α2〉. Let Λ = KQ/I.
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The minimal projective resolution of Λ/r is given by

· · · // P n
dn
// P n−1

dn−1

// · · · // P 2
d2

// P 1
d1

// P 0
d0

// Λ/r // 0

where we define the terms P n and the maps dn as follows;

• Let P 0 = e1Λ⊕ e2Λ⊕ e3Λ. We define the map d0 : P 0 → Λ/r by

d0(e1λ1, e2λ2, e3λ3) = e1λ1 + e2λ2 + e3λ3 + r so we have

Ker d0 = α1Λ⊕ α2Λ⊕ α3Λ.

• Let P 1 = e2Λ⊕ e3Λ⊕ e1Λ. We define the map d1 : P 1 → P 0 by

d1(e2λ1, e3λ2, e1λ3) = (α1λ1, α2λ2, α3λ3) so then

Ker d1 = α2α3Λ⊕ α3α1Λ⊕ α1α2Λ.

• For all n ≥ 2, n even, we have P n = e1Λ ⊕ e2Λ ⊕ e3Λ. We define the

map dn : P n → P n−1 by dn(e1λ1, e2λ2, e3λ3) = (α2α3λ1, α3α1λ2, α1α2λ3) so

Ker dn = α1Λ⊕ α2Λ⊕ α3Λ.

• For all n ≥ 3, n odd, we have P n = e2Λ ⊕ e3Λ ⊕ e1Λ. We define the map

dn : P n → P n−1 by dn(e2λ1, e3λ2, e1λ3) = (α1λ1, α2λ2, α3λ3) so

Ker dn = α2α3Λ⊕ α3α1Λ⊕ α1α2Λ.

To be able to use this resolution to find the Ext algebra, we need the sets gn. They

are:

• g0 = {e1, e2, e3}.

• g1 = {α1, α2, α3}.

• g2 = {α1α2α3, α2α3α1, α3α1α2}.

• Then, for all n ≥ 3, n odd, the set gn = {(α1α2α3)(n−1)/2α1,

(α2α3α1)(n−1)/2α2, (α3α1α2)(n−1)/2α3}.

• For n ≥ 4, n even, the set gn = {(α1α2α3)n/2, (α2α3α1)n/2, (α3α1α2)n/2}.

We can now see that the sets gn have length δ(n) for D = 3. Hence each projective

term P n is generated in degree δ(n), so Λ is a 3-Koszul algebra.
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Example 4.7. Let Q be the quiver given by

1
α1 ++
α4

33 2

α2

yy
3

α3

XX

and let I = 〈(α1 − α4)α2, α2α3, α3(α1 − α4)〉. Let Λ = KQ/I.

We note that Λ is a monomial algebra, with a change of generators, γ1 = α1 −

α4, γ2 = α1. However, we will come back to this example in Chapter 8 and so choose

to give I with non-monomial generators.

The sets gn are given as follows;

• The set g0 is given by {e1, e2, e3}.

• The set g1 is given by {α1, α4, α2, α3}.

• The set g2 is given by {(α1 − α4)α2, α2α3, α3(α1 − α4)}.

• The set g3 is given by {(α1 − α4)α2α3, α2α3(α1 − α4), α3(α1 − α4)α3}.

For n ≥ 3, we have;

• If n = 3m,m ∈ N, gn = {((α1 − α4)α2α3)m, (α2α3(α1 − α4))m, (α3(α1 −

α4)α2)m}.

• If n = 3m+ 1,m ∈ N, gn = {((α1−α4)α2α3)m(α1−α4), (α2α3(α1−α4))mα2,

(α3(α1 − α4)α2)mα3}.

• If n = 3m+ 2,m ∈ N, gn = {((α1 − α4)α2α3)m(α1 − α4)α2,

(α2α3(α1 − α4))mα2α3, (α3(α1 − α4)α2)mα3(α1 − α4)}.

We label the elements of the set gn by gn1 , g
n
2 , . . . in the order they are given here.

A minimal projective resolution of Λ/r is;

· · · // P n
dn
// P n−1

dn−1

// · · · // P 2
d2

// P 1
d1

// P 0
d0

// Λ/r // 0

where

• P 0 =
⊕

eiΛ = e1Λ⊕ e2Λ⊕ e3Λ

d0(e1λ1, e2λ2, e3λ3) = (e1λ1 + e2λ2 + e3λ3 + r)
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• P 1 =
⊕

t(αi)Λ = e2Λ⊕ e2Λ⊕ e3Λ⊕ e1Λ

d1(e2λ1, e2λ2, e3λ3, e1λ4) = (α1λ1 + α4λ2, α2λ3, α3λ4)

• P 2 =
⊕

t(g2
i )Λ = e3Λ⊕ e1Λ⊕ e2Λ

d2(e3λ1, e1λ2, e2λ3) = (α2λ1,−α2λ1, α3λ2, (α1 − α4)λ3).

• For n = 3m,m ∈ N, P n =
⊕

t(gni )Λ = e1Λ⊕ e2Λ⊕ e3Λ,

dn(e1λ1, e2λ2, e3λ3) = (α3λ1, (α1 − α4)λ2, α2λ3).

• For n = 3m+ 1,m ∈ N, P n =
⊕

t(gni )Λ = e2Λ⊕ e3Λ⊕ e1Λ,

dn(e2λ1, e3λ2, e1λ3) = ((α1 − α4)λ1, α2λ2, α3λ3).

• For n = 3m+ 2,m ∈ N, P n =
⊕

t(gni )Λ = e3Λ⊕ e1Λ⊕ e2Λ,

dn(e3λ1, e1λ2, e2λ3) = (α2λ1, α3λ2, (α1 − α4)λ3).

Since each gn has length n, we have shown that Λ/r has a linear resolution. Hence

Λ is a Koszul algebra, and thus the Ext algebra E(Λ) is generated in degrees 0 and

1. We now look at a basis of the Ext algebra. For each n ≥ 0 and each gni ∈ gn, we

let fni ∈ HomΛ(P n,Λ/r) be the map given by t(gnj ) 7→

 t(gni ) + r if i = j

0 otherwise.

The elements fni for all n and all i form a K-basis for E(Λ).

Let us now consider Ext2
Λ(Λ/r,Λ/r). Then f 2

1 = f 1
2 · f 1

1 = f 1
2 ◦ L1f 1

1 , where the

lifting L1f 1
1 can be chosen as L1f 1

1 : P 2 −→ P 1, t(g2
1)λ = e3λ 7→ e3λ = t(g1

2)λ, else 7→

0. Similarly f 2
2 = f 1

3 · f 1
2 = f 1

3 ◦L1f 1
2 , where the lifting L1f 1

2 can be chosen as L1f 1
3 :

P 2 −→ P 1, t(g2
2)λ = e1λ 7→ e1λ = t(g1

3)λ, else 7→ 0. And f 2
3 = f 1

1 · f 1
3 = f 1

1 ◦ L1f 1
3 ,

where the lifting L1f 1
3 can be chosen as L1f 1

3 : P 2 −→ P 1, t(g2
3)λ = e2λ 7→ e2λ =

t(g1
1)λ, else 7→ 0.

For this algebra, and all n ≥ 2, we can write each element fni as a product

of the form f 1
j · fn−1

k for suitable j, k. Thus ExtnΛ(Λ/r,Λ/r) = Ext1
Λ(Λ/r,Λ/r) ×

Extn−1
Λ (Λ/r,Λ/r) in this case. This provides a second proof that E(Λ) is generated

in degrees 0 and 1.

Another class of algebras which generalise Koszul monomial algebras were intro-

duced by Green and Snashall in [18], and see [19].
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Definition 4.8. [18, Definition 3.1] Let Λ = KQ/I be a finite-dimensional monomial

algebra. Then Λ is said to be a (D,A)-stacked monomial algebra if there is some

D ≥ 2 and A ≥ 1 such that, for all n ≥ 2 and gni ∈ gn, where the gn are the sets of

a minimal projective resolution of Λ/r from [20], then

l(gni ) =


n
2
D if n is even

(n−1
2

)D + A if n is odd.

In particular I is generated by paths of length D.

Remark. Let Λ be a (D,A)-stacked monomial algebra.

(1) For D = 2, A = 1,the (2, 1)-stacked monomial algebras are precisely the

quadratic monomial algebras, or equivalently, the Koszul monomial algebras.

In this case E(Λ) is generated in degrees 0 and 1.

(2) For A = 1, the (D, 1)-stacked monomial algebras for D ≥ 2 are the D-Koszul

monomial algebras. In this case, E(Λ) is generated in degrees 0, 1 and 2. We

note that this new class of algebras include both non-monomial and monomial

algebras.

Proposition 4.9. [18, Proposition 3.3] Let Λ be a (D,A)-stacked monomial algebra.

Then

(1) if gldim Λ ≥ 3 then D > A;

(2) if gldim Λ ≥ 4 then D = dA for some d ≥ 2.

The Ext algebra of a (D,A)-stacked monomial algebra is finitely generated as the

following result shows.

Theorem 4.10. [19, Theorem 3.6] Let Λ be a (D,A)-stacked monomial algebra.

Then E(Λ) is generated in degrees 0, 1, 2 and 3.

Moreover, for monomial algebras of infinite global dimension, the (D,A)-stacked

monomial algebras are precisely the monomial algebras for which every projective
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module in the minimal projective resolution of Λ/r over Λ is generated in a single

degree and for which the Ext algebra of Λ is finitely generated. For a (D,A)-stacked

monomial algebra of infinite global dimension, the nth projective P n in the minimal

projective resolution of Λ/r is generated in degree

0 if n = 0

1 if n = 1

n
2
D if n ≥ 2, n even

(n−1
2

)D + A if n ≥ 3, n odd.

This class of monomial (D,A)-stacked algebras leads to our (D,A)-stacked alge-

bras which we now introduce.
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5. (D,A)-Stacked Algebras

In this chapter we introduce a new class of algebras, which we call (D,A)-stacked

algebras. This class is motivated by the (D,A)-stacked monomial algebras of [18] and

includes all the Koszul algebras, D-Koszul algebras and (D,A)-stacked monomial

algebras of Chapter 4. We start with the definition of a (D,A)-stacked algebra.

Definition 5.1. Let Λ = KQ/I be a finite-dimensional algebra. We define Λ to be

a (D,A)-stacked algebra if there is some D ≥ 2 and some A ≥ 1 such that for all n

the projective module P n in a minimal projective resolution of Λ/r is generated in

degree δ(n), where

δ(n) =



0 if n = 0

1 if n = 1

n
2
D if n = 2r, r ∈ N

(n−1
2

) D + A if n = 2r + 1, r ∈ N.

Remark. Let Λ be a (D,A)-stacked algebra. If A = 1, then Λ is D-Koszul and we

have seen in Theorem 4.5 that E(Λ) is generated in degrees 0, 1 and 2. Moreover, if

A = 1 and D = 2 then Λ is Koszul and E(Λ) is generated in degrees 0 and 1.

Clearly the (D,A)-stacked algebras contain the (D,A)-stacked monomial algebras

of [18]. Thus (D,A)-stacked algebras are a natural generalisation of Koszul algebras,

containing all the Koszul algebras, D-Koszul algebras and (D,A)-stacked monomial

algebras. We note that this new class of algebras contains both monomial and non-

monomial algebras.

The main result in this chapter is Theorem 5.7 where we show that E(Λ) is finitely

generated and moreover is generated in degrees 0, 1, 2 and 3. In order to prove this,

we need the following results from [12] and [13].

Proposition 5.2. [13, Proposition 3.6] Let Λ be a graded algebra and let

· · · → P 2 → P 1 → P 0 → Λ0 → 0
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be a minimal graded projective resolution of Λ0 as a right Λ-module. Suppose that

P i is finitely generated with generators in degree di, for i = α, β, α+β. Assume that

dα+β = dα + dβ.

Then the Yoneda map

ExtαΛ(Λ0,Λ0)× ExtβΛ(Λ0,Λ0)→ Extα+β
Λ (Λ0,Λ0)

is surjective. Thus

Extα+β
Λ (Λ0,Λ0) = ExtαΛ(Λ0,Λ0)× ExtβΛ(Λ0,Λ0)

= ExtβΛ(Λ0,Λ0)× ExtαΛ(Λ0,Λ0).

If Λ is a (D,A)-stacked algebra then the projective module P 2 in a minimal projec-

tive resolution of Λ0 is generated in degree D. Hence the ideal I of KQ is generated

by homogeneous elements of length D. Thus there is a length grading on Λ so

that Λ is a graded algebra, Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λm, with m finite since Λ is

finite-dimensional. In particular, each element λi ∈ Λi is homogeneous of length i.

Definition 5.3. [12] Let · · · → P 2 → P 1 → P 0 → Λ0 → 0 be a minimal graded

projective resolution of Λ0 over Λ. We say that Λ is δ-resolution determined if there

is a function δ : N→ N such that for all n ≥ 0, P n is generated in degree δ(n).

It is clear that a (D,A)-stacked algebra is δ-resolution determined, with δ as in

Definition 5.1.

Definition 5.4. [12] A δ-resolution determined algebra Λ is δ-Koszul if E(Λ) is

finitely generated as an algebra.

Theorem 5.5. [12, Theorem 3.6] Let Λ = KQ/I be a graded algebra where I is an

ideal generated by length homogeneous elements in KQ and the grading is induced

from the length grading in KQ. Assume that Λ is δ-resolution determined. Then
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Λ is a δ-Koszul algebra if and only if there is some positive integer t, such that, if

k > t, then there exists i, with 0 < i < k, such that δ(i) + δ(k − i) = δ(k).

We are now ready to consider the Ext algebra of a (D,A)-stacked algebra.

Theorem 5.6. Let Λ = KQ/I be a (D,A)-stacked algebra with D > 2 and A > 1.

Then E(Λ) is generated in degrees 0, 1, 2 and 3.

Proof. Let Λ = KQ/I be a (D,A)-stacked algebra, with D > 2 and A > 1. Then

I is generated by homogeneous elements of length D, so Λ is length graded and is

δ-resolution determined.

We now show that there exists some appropriate positive integer t, namely t = 3,

so that the hypotheses of Theorem 5.5 are satisfied and hence Λ is δ-Koszul. We

have,

δ(n) =



0 if n = 0

1 if n = 1

n
2
D if n = 2r, r ∈ N

(n−1
2

) D + A if n = 2r + 1, r ∈ N.

Let t = 3 and i = 2. Then, for all n > 3, we have:

• if n odd, δ(n− 2) + δ(2) =

((
(n− 2)− 1

2

)
D + A

)
+

(
2

2

)
D

=

(
n

2
D −D − 1

2
D + A

)
+D

=
n

2
D − 1

2
D + A

=
(n− 1)

2
D + A

= δ(n),
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and

• if n even, δ(n− 2) + δ(2) =

(
n− 2

2

)
D +

2

2
D

=
n

2
D −D +D

=
n

2
D

= δ(n).

So Λ is a δ-Koszul algebra (with t = 3, i = 2). Hence E(Λ) is finitely generated.

We note that we need t = 3, since if n = 3 then necessarily t = 2 and i = 1.

However, δ(3) = D + A and δ(1) + δ(2) = D + 1 but A > 1, so δ(1) + δ(2) 6= δ(3).

It remains to show that E(Λ) is generated in degrees 0, 1, 2 and 3. For all n > 3,

we have δ(2) + δ(n− 2) = δ(n) and so from Proposition 5.2 we have

ExtnΛ(Λ0,Λ0) = Ext2
Λ(Λ0,Λ0)× Extn−2

Λ (Λ0,Λ0).

Thus, E(Λ) is generated in degrees 0, 1, 2 and 3. �

Using the fact that the Ext algebra of a Koszul algebra is generated in degrees 0

and 1, and the Ext algebra of a D-Koszul algebra is generated in degrees 0, 1 and 2,

we have the following theorem.

Theorem 5.7. Let Λ = KQ/I be a (D,A)-stacked algebra with D ≥ 2 and A ≥ 1.

Then E(Λ) is generated in degrees 0, 1, 2 and 3.

Note that the comment following Definition 5.3 together with Theorem 5.7 shows

that every (D,A)-stacked algebra is a δ-Koszul algebra.

In the next chapter we give a full characterisation of (D,A)-stacked algebras.
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6. Properties of the Ext Algebra

In this chapter we look at some of the general properties of the Ext algebra, E(Λ),

where Λ is a (D,A)-stacked algebra, as given in Definition 5.1. We start by recalling

some well known definitions, see for example, [13], [14], [26].

Definition 6.1. (1) Let M,N be graded modules. A homomorphism of degree

n is a homomorphism f : M → N such that f(Mi) ⊆ Ni+n, for all i.

(2) Let Λ be a graded algebra, Λ = Λ0 ⊕ Λ1 ⊕ · · · , and let M be a graded Λ-

module, M = ⊕i Mi. We define the nth shift of M , denoted M [n], to be the

graded Λ-module X = ⊕i Xi, where Xi = Mi−n.

If M is generated in degree n, so M = Mn ⊕Mn+1 ⊕ · · · , then M [−n] =

X0⊕X1⊕· · · , where X0 = Mn, X1 = Mn+1, . . ., and hence M [−n] is generated

in degree 0.

Notation Let Gr(Λ) be the category of graded right Λ-modules together with the

set of degree 0 homomorphisms and let F denote the forgetful functor, F : Gr(Λ)→

ModΛ.

Definition 6.2. [13] Let Λ be a graded algebra, Λ = Λ0⊕Λ1⊕· · · . Let M = ⊕i Mi

and N = ⊕i Ni be graded Λ-modules. If M is finitely generated then the abelian

group HomΛ(F (M), F (N)) can be graded as follows;

HomΛ(F (M), F (N))i = HomGr(Λ)(M,N [i]).

This is called the hom-grading. More generally, suppose we have a graded projective

resolution (Qn, dn) of M where each Qn is finitely generated. We define

ExtnΛ(F (M), F (N))i = ExtnGr(Λ)(M,N [i])

which is the homology of the complex obtained by applying HomGr(Λ)(−, N [i]) to

(Qn, dn). This is called the shift-grading.
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Proposition 6.3. [13, Theorem 2.1] Let Λ be a graded algebra. Let (Qn, dn) be a

minimal graded projective resolution of a graded Λ-module M . Assume that each Qn

is finitely generated. Suppose that N is a graded Λ-module such that radN = (0),

where radN denotes the radical of N . Then

ExtnΛ(F (M), F (N))i ∼= HomGr(Λ)(Ω
n(M), N [i]) ∼= HomGr(Λ)(Ω

n(M)[−i], N),

where Ωn denotes the nth syzygy of M with respect to the resolution (Qn, dn).

We will now look at when products in the Ext algebra E(Λ) are zero, for a

(D,A)-stacked algebra Λ. Since rad Λ0 = (0), we will use the above proposi-

tion and Proposition 5.2 to show that if δ(n) + δ(m) 6= δ(n + m) then we have

ExtnΛ(Λ0,Λ0) × ExtmΛ (Λ0,Λ0) = 0. Throughout this chapter, we let (P n, dn) denote

a minimal projective resolution of Λ0 for our (D,A)-stacked algebra Λ.

Proposition 6.4. Let Λ be a (D,A)-stacked algebra with D 6= 2. Then

Ext1
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) = 0.

Proof. The projective module P 1 is generated in degree 1 and Ext1
Λ(Λ0,Λ0) ∼= Hom(P 1,Λ0),

so every element of Ext1
Λ(Λ0,Λ0) can be viewed as a short exact sequence of graded

modules of the form 0→ Λ0[−1]→ E → Λ0 → 0. Let

(1) 0→ Λ0[−1]→ E → Λ0 → 0

and

(2) 0→ Λ0[−1]→ Ê → Λ0 → 0

be two short exact sequences in Ext1
Λ(Λ0,Λ0). We can shift the sequence (2) by −1

to get

(3) 0→ Λ0[−2]→ Ê[−1]→ Λ0[−1]→ 0.
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We then splice the sequences (1) and (3) together to obtain

0→ Λ0[−2]→ Ê[−1]→ E → Λ0 → 0.

Thus the image of Ext1
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) is contained in Ext2
Λ(Λ0,Λ0)2. How-

ever, we know that P 2 is generated in degree D 6= 2, so Ext2
Λ(Λ0,Λ0)2 = 0. Therefore,

Ext1
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) = 0, when D 6= 2. �

Proposition 6.5. Let Λ be a (D,A)-stacked algebra with D > 2.

i) If D 6= A+1 then ExtnΛ(Λ0,Λ0)×Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0)×ExtnΛ(Λ0,Λ0),

for all n odd, n ≥ 1.

ii) If A > 1 then ExtnΛ(Λ0,Λ0)× Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0)× ExtnΛ(Λ0,Λ0),

for all n even, n ≥ 2.

Proof. The case n = 1 follows from Proposition 6.4. Thus we may assume n ≥ 2.

The projective module P n is generated in degree δ(n). So, since ExtnΛ(Λ0,Λ0) ∼=

Hom(P n,Λ0), each extension can be viewed as an exact sequence of graded modules

of the form

0→ Λ0[−δ(n)]→ En → · · · → E1 → Λ0 → 0.

Using the shift-grading, we can shift this sequence by −1 to obtain

0→ Λ0[−δ(n)− 1]→ En[−1]→ · · · → E1[−1]→ Λ0[−1]→ 0.

We can then splice this with an extension from Ext1
Λ(Λ0,Λ0),

0→ Λ0[−1]→ E ′ → Λ0 → 0

to obtain

0→ Λ0[−δ(n)− 1]→ En[−1]→ · · · → E1[−1]→ E ′ → Λ0 → 0.

Thus the image of ExtnΛ(Λ0,Λ0) × Ext1
Λ(Λ0,Λ0) lies in Extn+1

Λ (Λ0,Λ0)δ(n)+1. How-

ever, we know the projective module P n+1 is generated in degree δ(n + 1), so
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Extn+1
Λ (Λ0,Λ0) = Extn+1

Λ (Λ0,Λ0)δ(n+1). If n = 2r + 1 is odd, then δ(n + 1) =

δ(2r+2) = (r+1)D and δ(n)+1 = δ(2r+1)+1 = rD+A+1, and since D 6= A+1

we have Extn+1
Λ (Λ0,Λ0)δ(n)+1 = 0, for n odd.

On the other hand, if n = 2r is even, the projective module P n+1 is generated in

degree δ(n+1) = δ(2r+1) = rD+A and δ(n)+1 = δ(2r)+1 = rD+1, and sinceA > 1

we have Extn+1
Λ (Λ0,Λ0)δ(n)+1 = 0 for n even. Hence ExtnΛ(Λ0,Λ0)×Ext1

Λ(Λ0,Λ0) = 0

for all n even, n ≥ 2.

The case for Ext1
Λ(Λ0,Λ0) × ExtnΛ(Λ0,Λ0) = 0 is similar. This completes the

proof. �

Proposition 6.6. Let Λ be a (D,A)-stacked algebra with D > 2, D 6= 2A. Then

Ext2m+1
Λ (Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0) = 0, for all m,n ≥ 1.

Proof. Let m ≥ 1, n ≥ 1. The projective modules P 2m+1 and P 2n+1 are generated in

degrees δ(2m+ 1) and δ(2n+ 1), respectively. So each extension in Ext2m+1
Λ (Λ0,Λ0)

can be given as an exact sequence of graded modules of the form

(4) 0→ Λ0[−(δ(2m+ 1))]→ E2m+1 → · · · → E1 → Λ0 → 0

and each extension in Ext2n+1
Λ (Λ0,Λ0) can be given by an exact sequence of graded

modules of the form

(5) 0→ Λ0[−(δ(2n+ 1))]→ E ′2n+1 → · · · → E ′1 → Λ0 → 0.

Shifting the sequence (5) by −(δ(2m+ 1)) we get

(6) 0→ Λ0[−δ(2n+ 1)− δ(2m+ 1)]→ E ′2n+1[−δ(2m+ 1)]

→ · · · → E ′1[−δ(2m+ 1)]→ Λ0[−δ(2m+ 1)]→ 0.

Then splicing together (4) and (6), we get
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0→ Λ0[−δ(2m+ 1)− δ(2n+ 1)]→ E ′2n+1[−δ(2m+ 1)]

→ · · · → E ′1[−δ(2m+ 1)]→ E2m+1 → · · · → E1 → Λ0 → 0

which is an extension in Ext2m+2n+2
Λ (Λ0,Λ0)δ(2m+1)+δ(2n+1). However, P 2(m+n+1) is

generated in degree δ(2(m + n + 1)) = (m + n + 1)D and δ(2m + 1) + δ(2n + 1) =

mD + A+ nD + A = (m+ n)D + 2A. Since D 6= 2A, we have

Ext
2(m+n+1)
Λ (Λ0,Λ0)δ(2m+1)+δ(2n+1) = 0, so Ext2m+1

Λ (Λ0,Λ0)× Ext2n+1
Λ (Λ0,Λ0) = 0.

Hence, for all m,n ≥ 1, we have Ext2m+1
Λ (Λ0,Λ0) × Ext2n+1

Λ (Λ0,Λ0) = 0 and this

completes the proof. �

We summarise Propositions 6.4, 6.5 and 6.6 in the following result.

Theorem 6.7. Let Λ be a (D,A)-stacked algebra. Then

i) Ext1
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) = 0, if D 6= 2,

ii) ExtnΛ(Λ0,Λ0)× Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0)× ExtnΛ(Λ0,Λ0), for all n odd,

n ≥ 1, if D > 2, D 6= A+ 1,

iii) ExtnΛ(Λ0,Λ0)×Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0)×ExtnΛ(Λ0,Λ0), for all n even,

n ≥ 2, if D > 2, A > 1, and

iv) Ext2m+1
Λ (Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0) = 0, for all n,m ≥ 1, if D > 2, D 6= 2A.

We now use Theorems 6.7 and 5.7 to give the following characterisation of (D,A)-

stacked algebras.

Theorem 6.8. Let Λ = KQ/I where I is generated by homogeneous elements of

length D ≥ 2. Then Λ = Λ0 ⊕ Λ1 ⊕ · · · is length graded. Suppose, in the minimal

projective resolution, (P n, dn), of Λ0 that P 3 is generated in a single degree, D +A,

for A ≥ 1. Then Λ is a (D,A)-stacked algebra if and only if E(Λ) is generated in

degrees 0, 1, 2 and 3 and the following conditions hold:

i) Ext1
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) = 0, if D 6= 2;

ii) ExtnΛ(Λ0,Λ0) × Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0) × ExtnΛ(Λ0,Λ0), for all n odd,

n ≥ 1, if D > 2, D 6= A+ 1;
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iii) ExtnΛ(Λ0,Λ0)×Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0)×ExtnΛ(Λ0,Λ0), for all n even,

n ≥ 2, if D > 2, A > 1; and

iv) Ext2m+1
Λ (Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0) = 0, for all m,n ≥ 1, if D 6= 2A,D > 2.

Proof. Suppose Λ = KQ/I is a (D,A)-stacked algebra. Then from Theorem 5.7 we

know that E(Λ) is generated in degrees 0, 1, 2 and 3. From Theorem 6.7 we know

that conditions (i), (ii), (iii) and (iv) hold.

To show the other direction, we will look at this in 3 cases.

Case 1: D = 2, A = 1.

Assume Λ = KQ/I where I is generated by homogeneous elements of length

2 and E(Λ) is generated in degrees 0, 1, 2 and 3. We know that in a minimal

projective resolution (P n, dn) of Λ0 we have P 0 is generated in degree 0, P 1 is

generated in degree 1 and P 2 is generated in degree 2. By hypothesis P 3 is gen-

erated in degree D + A = 3. By Proposition 5.2 with α = 1, β = 1 we have

Ext1
Λ(Λ0,Λ0) × Ext1

Λ(Λ0,Λ0) = Ext2
Λ(Λ0,Λ0). Putting α = 1, β = 2 we have

Ext1
Λ(Λ0,Λ0) × Ext2

Λ(Λ0,Λ0) = Ext3
Λ(Λ0,Λ0). Therefore E(Λ) is generated in de-

grees 0 and 1, so Λ is Koszul and therefore a (2, 1)-stacked algebra.

Case 2: D > 2, A = 1. Assume Λ = KQ/I where I is generated by homogeneous

elements of length D and, in the minimal projective resolution of Λ0, P 3 is generated

in degree D + 1. Assume E(Λ) is generated in degrees 0, 1, 2 and 3. We know that

in a minimal projective resolution of Λ0 we have P 0 is generated in degree 0, P 1

is generated in degree 1 and P 2 is generated in degree D. By Proposition 5.2 with

α = 1, β = 2 we have Ext1
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) = Ext3
Λ(Λ0,Λ0). Therefore E(Λ)

is generated in degrees 0, 1 and 2 and by [13, Theorem 4.1] Λ is D-Koszul and hence,

Λ is a (D, 1)-stacked algebra.

Case 3: D > 2, A > 1.

Suppose that P 3 is generated in degree D + A and E(Λ) is generated in de-

grees 0, 1, 2 and 3, with conditions (i), (ii), (iii) and (iv) holding. We know that
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Ext0
Λ(Λ0,Λ0) = Ext0

Λ(Λ0,Λ0)0 and Ext1
Λ(Λ0,Λ0) = Ext1

Λ(Λ0,Λ0)1 because the pro-

jective modules P 0 and P 1 in the minimal resolution of Λ0 are generated in degrees

0 and 1 respectively. By hypothesis, we have Ext2
Λ(Λ0,Λ0) = Ext2

Λ(Λ0,Λ0)D and

Ext3
Λ(Λ0,Λ0) = Ext3

Λ(Λ0,Λ0)D+A.

We now need to look at Ext4
Λ(Λ0,Λ0). Since E(Λ) is generated in degrees 0, 1, 2

and 3 we have

Ext4
Λ(Λ0,Λ0) = Ext1

Λ(Λ0,Λ0)× Ext3
Λ(Λ0,Λ0) + Ext2

Λ(Λ0,Λ0)× Ext2
Λ(Λ0,Λ0)

+ Ext3
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0).

Now, either D = A + 1 or D 6= A + 1. Assume first that D 6= A + 1. Then from

condition (ii), Ext3
Λ(Λ0,Λ0) × Ext1

Λ(Λ0,Λ0) = 0 = Ext1
Λ(Λ0,Λ0) × Ext3

Λ(Λ0,Λ0). So

Ext4
Λ(Λ0,Λ0) = Ext2

Λ(Λ0,Λ0)× Ext2
Λ(Λ0,Λ0).

An element of Ext2
Λ(Λ0,Λ0) can be viewed as an exact sequence

(7) 0→ Λ0[−D]→ E2 → E1 → Λ0 → 0

and, using the shift grading, we can shift the sequence (7) by −D to obtain

(8) 0→ Λ0[−2D]→ E2[−D]→ E1[−D]→ Λ0[−D]→ 0.

Let

(9) 0→ Λ0[−D]→ E ′2 → E ′1 → Λ0 → 0

be another element of Ext2
Λ(Λ0,Λ0) then we can splice sequences (8) and (9) together

to obtain

0→ Λ0[−2D]→ E2[−D]→ E1[−D]→ E ′2 → E ′1 → Λ0 → 0.

Thus the image of Ext2
Λ(Λ0,Λ0) × Ext2

Λ(Λ0,Λ0) lies in Ext4
Λ(Λ0,Λ0)2D, and P 4 is

generated in degree 2D.
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Now assume thatD = A+1. We can similarly show that the image of Ext3
Λ(Λ0,Λ0)×

Ext1
Λ(Λ0,Λ0) and the image of Ext1

Λ(Λ0,Λ0)×Ext3
Λ(Λ0,Λ0) lies in Ext4

Λ(Λ0,Λ0)D+A+1

but D = A+ 1 so Ext4
Λ(Λ0,Λ0)D+A+1 = Ext4

Λ(Λ0,Λ0)2D. The same argument above

also shows that the image of Ext2
Λ(Λ0,Λ0) × Ext2

Λ(Λ0,Λ0) lies in Ext4
Λ(Λ0,Λ0)2D.

Hence Ext4
Λ(Λ0,Λ0) = Ext4

Λ(Λ0,Λ0)2D and P 4 is generated in degree 2D.

Let n = 5. Then

Ext5
Λ(Λ0,Λ0) = Ext1

Λ(Λ0,Λ0)× Ext4
Λ(Λ0,Λ0) + Ext2

Λ(Λ0,Λ0)× Ext3
Λ(Λ0,Λ0)

+ Ext3
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) + Ext4
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0).

By condition (iii), since D > 2 and A > 1, Ext1
Λ(Λ0,Λ0) × Ext4

Λ(Λ0,Λ0) = 0 =

Ext4
Λ(Λ0,Λ0) × Ext1

Λ(Λ0,Λ0). So Ext5
Λ(Λ0,Λ0) = Ext2

Λ(Λ0,Λ0) × Ext3
Λ(Λ0,Λ0) +

Ext3
Λ(Λ0,Λ0) × Ext2

Λ(Λ0,Λ0). As before, an element in Ext2
Λ(Λ0,Λ0) can be viewed

as a exact sequence of the following form

(10) 0→ Λ0[−D]→ E2 → E1 → Λ0 → 0

and an element in Ext3
Λ(Λ0,Λ0) can be given by

(11) Λ0[−D − A]→ E ′3 → E ′2 → E ′1 → Λ0 → 0

The sequence (11) can be shifted by −D to obtain

(12) Λ0[−2D − A]→ E ′3[−D]→ E ′2[−D]→ E ′1[−D]→ Λ0[−D]→ 0

and we can splice the sequences (10) and (12) to obtain

0→ Λ0[−2D−A]→ E ′3[−D]→ E ′2[−D]→ E ′1[−D]→ Λ0[−D]→ E2 → E1 → Λ0 → 0.

Thus the image of Ext2
Λ(Λ0,Λ0) × Ext3

Λ(Λ0,Λ0) is contained in Ext5
Λ(Λ0,Λ0)2D+A.

Similarly, the image of Ext3
Λ(Λ0,Λ0)×Ext2

Λ(Λ0,Λ0) is contained in Ext5
Λ(Λ0,Λ0)2D+A.

Hence Ext5
Λ(Λ0,Λ0) = Ext5

Λ(Λ0,Λ0)2D+A and P 5 is generated in degree 2D + A.

Let n = 6. Then
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Ext6
Λ(Λ0,Λ0) = Ext1

Λ(Λ0,Λ0)× Ext5
Λ(Λ0,Λ0) + Ext2

Λ(Λ0,Λ0)× Ext4
Λ(Λ0,Λ0)

+ Ext3
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0) + Ext4
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0)

+ Ext5
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0).

We begin by looking at Ext2
Λ(Λ0,Λ0)×Ext4

Λ(Λ0,Λ0). Using exact sequences, we have

(13) 0→ Λ0[−D]→ E2 → E1 → Λ0 → 0

is an element of Ext2
Λ(Λ0,Λ0) and

(14) 0→ Λ0[−2D]→ E ′4 → E ′3 → E ′2 → E ′1 → Λ0 → 0

is an element of Ext4
Λ(Λ0,Λ0). We can shift the sequence (14) by −D to obtain

(15) 0→ Λ0[−3D]→ E ′4[−D]→ E ′3[−D]→ E ′2[−D]→ E ′1[−D]→ Λ0[−D]→ 0

and splicing together the sequences (13) and (15) we obtain

0→ Λ0[−3D]→ E ′4[−D]→ E ′3[−D]→ E ′2[−D]→ E ′1[−D]→ E2 → E1 → Λ0 → 0.

Thus the image of Ext2
Λ(Λ0,Λ0)×Ext4

Λ(Λ0,Λ0) is contained in Ext6
Λ(Λ0,Λ0)3D. Sim-

ilarly, the image of Ext4
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) is contained in Ext6
Λ(Λ0,Λ0)3D.

Again, we can view the elements of Ext3
Λ(Λ0,Λ0) as exact sequences. Let

(16) 0→ Λ0[−D − A]→ E3 → E2 → E1 → Λ0 → 0

and

(17) 0→ Λ0[−D − A]→ E ′3 → E ′2 → E ′1 → Λ0 → 0

be two elements of Ext3
Λ(Λ0,Λ0). We can shift the sequence (17) by −D − A to

obtain

(18)

0→ Λ0[−2D−2A]→ E ′3[−D−A]→ E ′2[−D−A]→ E ′1[−D−A]→ Λ0[−D−A]→ 0
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and splicing together the sequences (16) and (18) we obtain

0→ Λ0[−2D − 2A]→ E ′3[−D − A]→ E ′2[−D − A]→ E ′1[−D − A]

→ E3 → E2 → E1 → Λ0 → 0.

Thus the image of Ext3
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0) is contained in Ext6
Λ(Λ0,Λ0)2D+2A.

In the same way we can show that the image of Ext5
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) and

the image of Ext1
Λ(Λ0,Λ0)× Ext5

Λ(Λ0,Λ0) are contained in Ext6
Λ(Λ0,Λ0)2D+A+1

Now, we have 3 cases to consider:

(1) Let D = 2A. If D = A + 1, then A = 1, which is a contradiction, so we

must have D 6= A + 1. Then by condition (ii), we have Ext5
Λ(Λ0,Λ0) ×

Ext1
Λ(Λ0,Λ0) = 0 = Ext1

Λ(Λ0,Λ0)× Ext5
Λ(Λ0,Λ0). So Ext6

Λ(Λ0,Λ0) =

Ext2
Λ(Λ0,Λ0)×Ext4

Λ(Λ0,Λ0) + Ext3
Λ(Λ0,Λ0)×Ext3

Λ(Λ0,Λ0) + Ext4
Λ(Λ0,Λ0)×

Ext2
Λ(Λ0,Λ0). Now, the image of Ext3

Λ(Λ0,Λ0)×Ext3
Λ(Λ0,Λ0) is contained in

Ext6
Λ(Λ0,Λ0)2D+2A but D = 2A, so Ext3

Λ(Λ0,Λ0)× Ext3
Λ(Λ0,Λ0) is contained

in Ext6
Λ(Λ0,Λ0)3D. It follows from above that Ext6

Λ(Λ0,Λ0) = Ext6
Λ(Λ0,Λ0)3D.

(2) Let D 6= 2A and D = A + 1. Since D 6= 2A then by condition (iv), we

have Ext3
Λ(Λ0,Λ0) × Ext3

Λ(Λ0,Λ0) = 0. Now, the images of Ext5
Λ(Λ0,Λ0) ×

Ext1
Λ(Λ0,Λ0) and Ext1

Λ(Λ0,Λ0)× Ext5
Λ(Λ0,Λ0) are contained in

Ext6
Λ(Λ0,Λ0)2D+A+1 and 2D + A + 1 = 3D, since D = A + 1. Hence

Ext6
Λ(Λ0,Λ0) = Ext6

Λ(Λ0,Λ0)3D.

(3) LetD 6= 2A andD 6= A+1 then by condition (ii), Ext5
Λ(Λ0,Λ0)×Ext1

Λ(Λ0,Λ0) =

0 = Ext1
Λ(Λ0,Λ0)× Ext5

Λ(Λ0,Λ0) and by condition (iv),Ext3
Λ(Λ0,Λ0)×

Ext3
Λ(Λ0,Λ0) = 0. So Ext6

Λ(Λ0,Λ0) = Ext6
Λ(Λ0,Λ0)3D.

Therefore Ext6
Λ(Λ0,Λ0) = Ext6

Λ(Λ0,Λ0)3D and P 6 is generated in degree 3D.

We now use induction on n to show that ExtnΛ(Λ0,Λ0) = ExtnΛ(Λ0,Λ0)δ(n) for

n ≥ 7. We can assume that for 2 ≤ m ≤ 6 we have ExtmΛ (Λ0,Λ0) = ExtmΛ (Λ0,Λ0)δ(m)

and Pm is generated in degree δ(m).
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We consider two cases. First suppose that n is odd, so let n = 2r + 1, with

r ≥ 3. Assume that for m < n we have ExtmΛ (Λ0,Λ0) = ExtmΛ (Λ0,Λ0)δ(m) and Pm is

generated in degree δ(m). Since E(Λ) is generated in degrees 0, 1, 2 and 3, we have

ExtnΛ(Λ0,Λ0) = Ext1
Λ(Λ0,Λ0)× Extn−1

Λ (Λ0,Λ0) + Ext2
Λ(Λ0,Λ0)× Extn−2

Λ (Λ0,Λ0)

+ · · ·+ Extn−mΛ (Λ0,Λ0)× ExtmΛ (Λ0,Λ0) + · · ·+

Extn−2
Λ (Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) + Extn−1
Λ (Λ0,Λ0)× Ext1

Λ(Λ0,Λ0).

By condition (iii) since D > 2, A > 1, Ext1
Λ(Λ0,Λ0)× Extn−1

Λ (Λ0,Λ0) = 0 =

Extn−1
Λ (Λ0,Λ0)×Ext1

Λ(Λ0,Λ0), so we need to look at Extn−mΛ (Λ0,Λ0)×ExtmΛ (Λ0,Λ0)

for m ≥ 2 and n − m ≥ 2. We begin by supposing m is odd, so n − m is even.

Then Pm is generated in degree ((m− 1)/2)D+A and P n−m is generated in degree

((n−m)/2)D. An element of Extn−mΛ (Λ0,Λ0) can be viewed as an exact sequence of

the form

(19) 0→ Λ0[−((n−m)/2)D]→ En−m → · · · → E1 → Λ0 → 0

and an element of ExtmΛ (Λ0,Λ0) can be viewed as an exact sequence of the form

(20) 0→ Λ0[−((m− 1)/2)D − A]→ E ′m → · · · → E ′1 → Λ0 → 0.

We can shift the sequence (19) by −((m− 1)/2)D − A to obtain

(21) 0→ Λ0[−((n− 1)/2)D − A]→ En−m[−((m− 1)/2)D − A]

→ · · · → Λ0[−((m− 1)/2)D − A]→ 0.

Splicing the sequences (20) and (21) we get

0→ Λ0[−((n− 1)/2)D − A]→ En−m[−((m− 1)/2)D − A]→ · · · → E ′1 → Λ0 → 0.

Thus the image of Extn−mΛ (Λ0,Λ0)× ExtmΛ (Λ0,Λ0) is contained in

ExtnΛ(Λ0,Λ0)((n−1)/2)D+A.
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Similarly, if m is even then n−m is odd and again we get that Extn−mΛ (Λ0,Λ0)×

ExtmΛ (Λ0,Λ0) is contained in ExtnΛ(Λ0,Λ0)((n−1)/2)D+A. Thus for all m ≥ 2, n−m ≥

2 we have Extn−mΛ (Λ0,Λ0) × ExtmΛ (Λ0,Λ0) is contained in ExtnΛ(Λ0,Λ0)((n−1)/2)D+A.

Hence for n odd, P n is generated in degree ((n− 1)/2)D + A.

Now we need to consider the even case. Let n = 2r with r ≥ 4. Again we assume

that for m < n we have ExtmΛ (Λ0,Λ0) = ExtmΛ (Λ0,Λ0)δ(m) and Pm is generated in

degree δ(m). We have

ExtnΛ(Λ0,Λ0) = Ext1
Λ(Λ0,Λ0)× Extn−1

Λ (Λ0,Λ0) + Ext2
Λ(Λ0,Λ0)× Extn−2

Λ (Λ0,Λ0)

+ · · ·+ Ext
n/2
Λ (Λ0,Λ0)× Ext

n/2
Λ (Λ0,Λ0) + · · ·+

Extn−2
Λ (Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) + Extn−1
Λ (Λ0,Λ0)× Ext1

Λ(Λ0,Λ0.)

We begin with the case m ≥ 2. Suppose m is even then n−m is even. So Pm is

generated in degree ((m)/2)D and P n−m is generated in degree ((n −m)/2)D. An

element of Extn−mΛ (Λ0,Λ0) can be viewed as an exact sequence of the form

(22) 0→ Λ0[−((n−m)/2)D]→ En−m → · · · → E1 → L0 → 0

and an element of ExtmΛ (Λ0,Λ0) can be viewed as an exact sequence of the form

(23) 0→ Λ0[−((m)/2)D]→ E ′m → · · · → E ′1 → L0 → 0.

We can shift the sequence (22) by −((m)/2)D and we obtain

(24) Λ0[−(n/2)D]→ En−m[−(m/2)D]→ · · · → Λ0[−(m/2)D]→ 0.

We can then splice the sequences (23) and (24) together to get

0→ Λ0[−(n/2)D]→ En−m[−(m/2)D]→ · · · → E ′m → · · · → E ′1 → Λ0 → 0.

Thus the image of Extn−mΛ (Λ0,Λ0)× ExtmΛ (Λ0,Λ0) is contained in

ExtnΛ(Λ0,Λ0)(n/2)D.
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Now suppose m is odd, m ≥ 3, so n − m is also odd. Then Pm is generated in

degree ((m − 1)/2)D + A and P n−m is generated in degree ((n −m − 1)/2)D + A.

An element of Extn−mΛ (Λ0,Λ0) can be viewed as an exact sequence of the form

(25) 0→ Λ0[−((n−m− 1)/2)D − A]→ En−m → · · · → E1 → Λ0 → 0

and an element of ExtmΛ (Λ0,Λ0) can be viewed as an exact sequence of the form

(26) 0→ Λ0[−((m− 1)/2)D − A]→ E ′m → · · · → E ′1 → Λ0 → 0.

We can shift the sequence (25) by −((m− 1)/2)D − A and we obtain

(27) 0→ Λ0[−((n− 2)/2)D − 2A]→ En−m[−((m− 1)/2)D − A]

→ · · · → Λ0[−((m− 1)/2)D − A]→ 0.

We then splice together the sequences (25) and (27) to get the following sequence

0→ Λ0[−((n− 2)/2)D− 2A]→ En−m[−((m− 1)/2)D−A]→ · · · → E ′1 → Λ0 → 0.

Thus the image of Extn−mΛ (Λ0,Λ0)× ExtmΛ (Λ0,Λ0) is contained in

ExtnΛ(Λ0,Λ0)((n−2)/2)D+2A.

In a similar way we can show that the images of Ext1
Λ(Λ0,Λ0) × Extn−1

Λ (Λ0,Λ0)

and Extn−1
Λ (Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) are contained in ExtnΛ(Λ0,Λ0)(n−2
2

)D+A+1.

Now, we have 3 cases to consider:

(1) LetD = 2A soD 6= A+1. Then by condition (ii) Ext1
Λ(Λ0,Λ0)×Extn−1

Λ (Λ0,Λ0) =

0 = Extn−1
Λ (Λ0,Λ0)×Ext1

Λ(Λ0,Λ0). The image of Extn−mΛ (Λ0,Λ0)×ExtmΛ (Λ0,Λ0)

is contained in ExtnΛ(Λ0,Λ0)(n
2

)D for m even and ExtnΛ(Λ0,Λ0)(n−2
2

)D+2A for m

odd, m ≥ 3. However, D = 2A, so for allm ≥ 2, the image of Extn−mΛ (Λ0,Λ0)×

ExtmΛ (Λ0,Λ0) is contained in ExtnΛ(Λ0,Λ0)(n
2

)D. So ExtnΛ(Λ0,Λ0) = ExtnΛ(Λ0,Λ0)(n
2

)D.

(2) Let D 6= 2A,D = A+1. Then the image of Extn−mΛ (Λ0,Λ0)×ExtmΛ (Λ0,Λ0) =

0 for m odd, m ≥ 3, by condition (iv). The images of Ext1
Λ(Λ0,Λ0) ×
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Extn−1
Λ (Λ0,Λ0) and Ext1

Λ(Λ0,Λ0)× Extn−1
Λ (Λ0,Λ0) are contained in

ExtnΛ(Λ0,Λ0)(n−2
2

)D+A+1 = Ext1
Λ(Λ0,Λ0)(n

2
)D, since D = A + 1. The image of

Extn−mΛ (Λ0,Λ0)×ExtmΛ (Λ0,Λ0) is contained in ExtnΛ(Λ0,Λ0)(n
2

)D, for m even.

So ExtnΛ(Λ0,Λ0) = ExtnΛ(Λ0,Λ0)(n
2

)D.

(3) Let D 6= 2A,D 6= A + 1. By conditions (ii) and (iv), Ext1
Λ(Λ0,Λ0) ×

Extn−1
Λ (Λ0,Λ0) = 0 = Extn−1

Λ (Λ0,Λ0) × Ext1
Λ(Λ0,Λ0) and Extn−mΛ (Λ0,Λ0) ×

ExtmΛ (Λ0,Λ0) = 0, for m odd. The image of Extn−mΛ (Λ0,Λ0)×ExtmΛ (Λ0,Λ0) is

contained in ExtnΛ(Λ0,Λ0)(n
2

)D, form even. So ExtnΛ(Λ0,Λ0) = ExtnΛ(Λ0,Λ0)(n
2

)D.

Hence for n even, ExtnΛ(Λ0,Λ0) = ExtnΛ(Λ0,Λ0)(n
2

)D, and therefore P n is generated

in degree n
2
D.

Thus, for all n ≥ 0, P n is generated in degree δ(n), where δ(n) is given by

δ(n) =



0 if n = 0

1 if n = 1

n
2
D if n = 2r, r ∈ N

(n−1
2

) D + A if n = 2r + 1, r ∈ N.

Therefore, Λ is a (D,A)-stacked algebra. �
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7. Regrading of the Ext Algebra

In this section we consider the following question. Given a (D,A)-stacked algebra,

Λ, can the Ext algebra, E(Λ), be regraded as a Koszul algebra? This is inspired by

the work of [13], where the authors take the Ext algebra of a D-Koszul algebra Λ,

and show that there is a regrading, given by

Ê(Λ)0 = Ext0
Λ(Λ0,Λ0)

Ê(Λ)1 = Ext1
Λ(Λ0,Λ0)⊕ Ext2

Λ(Λ0,Λ0)

Ê(Λ)n = Ext2n−1
Λ (Λ0,Λ0)⊕ Ext2n

Λ (Λ0,Λ0), for n ≥ 2.

With this hat-degree grading, Ê(Λ) = ⊕n≥0Ê(Λ)n is a Koszul algebra, [13, section

7]. We note that for D = 2, A = 1, then Λ is a Koszul algebra and it is well known

that E(Λ) is a Koszul algebra without any regrading.

We now define a grading on our (D,A)-stacked algebras with certain conditions

on D and A, which we also call the hat-degree grading.

Definition 7.1. Let Λ = KQ/I be a (D,A)-stacked algebra, with D > 2, A > 1,

D 6= 2A and D 6= A+ 1.

We define Ê(Λ)0 = Ext0
Λ(Λ0,Λ0)

Ê(Λ)1 = Ext1
Λ(Λ0,Λ0)⊕ Ext2

Λ(Λ0,Λ0)⊕ Ext3
Λ(Λ0,Λ0)

Ê(Λ)n = Ext2n
Λ (Λ0,Λ0)⊕ Ext2n+1

Λ (Λ0,Λ0), for n ≥ 2.

Let Ê(Λ) = ⊕n≥0Ê(Λ)n.

We now proceed to show that the hat-degree gives a well defined grading, with

certain conditions on D and A. This will be followed by explicit examples.

Theorem 7.2. Let Λ be a (D,A)-stacked algebra with D > 2, D 6= 2A,D 6= A +

1, A > 1, with Ê(Λ) = ⊕n≥0Ê(Λ)n. Then the Ext algebra Ê(Λ) is graded in this

hat-degree.

Proof. We need to show Ê(Λ)m× Ê(Λ)n = Ê(Λ)m+n, for all m,n ≥ 0. This is clearly

true for either m = 0 or n = 0. We start with the case m = n = 1. Then
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Ê(Λ)1 × Ê(Λ)1 =

(
Ext1

Λ(Λ0,Λ0)⊕ Ext2
Λ(Λ0,Λ0)⊕ Ext3

Λ(Λ0,Λ0)

)
×
(

Ext1
Λ(Λ0,Λ0)⊕ Ext2

Λ(Λ0,Λ0)⊕ Ext3
Λ(Λ0,Λ0)

)
=

(
Ext1

Λ(Λ0,Λ0)× Ext1
Λ(Λ0,Λ0)

)
⊕
(

Ext1
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0)

+ Ext2
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0)

)
⊕
(

Ext2
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0)

+ Ext3
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) + Ext1
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0)

)
⊕
(

Ext2
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0) + Ext3
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0)

)
⊕
(

Ext3
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0)

)
.

From Theorem 6.7, we find Ext1
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) = 0,

Ext1
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) = 0 = Ext2
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0),

Ext1
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0) = 0 = Ext3
Λ(Λ0,Λ0)× Ext1

Λ(Λ0,Λ0) and

Ext3
Λ(Λ0,Λ0)×Ext3

Λ(Λ0,Λ0) = 0. This leaves us with only Ext2
Λ(Λ0,Λ0)×Ext2

Λ(Λ0,Λ0),

Ext2
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0) and Ext3
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0).

Now, by Proposition 5.5, Ext2
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) = Ext4
Λ(Λ0,Λ0) and

Ext2
Λ(Λ0,Λ0)× Ext3

Λ(Λ0,Λ0) = Ext3
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0) = Ext5
Λ(Λ0,Λ0).

Thus Ê(Λ)1 × Ê(Λ)1 = Ê(Λ)2, as required.

47



Let m = 1, n ≥ 2. Then

Ê(Λ)1 × Ê(Λ)n =

(
Ext1

Λ(Λ0,Λ0)⊕ Ext2
Λ(Λ0,Λ0)⊕ Ext3

Λ(Λ0,Λ0)

)
×
(

Ext2n
Λ (Λ0,Λ0)⊕ Ext2n+1

Λ (Λ0,Λ0)

)
=

(
Ext1

Λ(Λ0,Λ0)× Ext2n
Λ (Λ0,Λ0)

)
⊕
(

Ext1
Λ(Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0)

+ Ext2
Λ(Λ0,Λ0)× Ext2n

Λ (Λ0,Λ0)

)
⊕
(

Ext2
Λ(Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0)

+ Ext3
Λ(Λ0,Λ0)× Ext2n

Λ (Λ0,Λ0)

)
⊕
(

Ext3
Λ(Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0)

)
Using Proposition 5.2 and Theorem 6.7, we have

Ê(Λ)1 × Ê(Λ)n = Ext2n+2
Λ (Λ0,Λ0)⊕ Ext2n+3

Λ (Λ0,Λ0) = Ê(Λ)n+1, as required.

Similarly, Ên(Λ)× Ê1(Λ) = Ên+1(Λ), for n ≥ 2.

Finally, let m ≥ 2, n ≥ 2. Then

Ê(Λ)m × Ê(Λ)n =

(
Ext2m

Λ (Λ0,Λ0)⊕ Ext2m+1
Λ (Λ0,Λ0)

)
×
(

Ext2n
Λ (Λ0,Λ0)⊕ Ext2n+1

Λ (Λ0,Λ0)

)
=

(
Ext2m

Λ (Λ0,Λ0)× Ext2n
Λ (Λ0,Λ0)

)
⊕
(

Ext2m
Λ (Λ0,Λ0)×

Ext2n+1
Λ (Λ0,Λ0) + Ext2m+1

Λ (Λ0,Λ0)× Ext2n
Λ (Λ0,Λ0)

)
⊕
(

Ext2m+1
Λ (Λ0,Λ0)× Ext2n+1

Λ (Λ0,Λ0)

)
=

(
Ext2m+2n

Λ (Λ0,Λ0)⊕ Ext2m+2n+1
Λ (Λ0,Λ0)

)
,

from Proposition 5.2 and Theorem 6.7,

= Ê(Λ)m+n, as required.
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This completes the proof. �

Now that we have shown Definition 7.1 gives a grading on our algebra E(Λ), we

will look at some specific examples of (D,A)-stacked algebras and their Ext algebras.

In particular we ask the question, with the regrading of Definition 7.1 do we obtain

a Koszul algebra? We begin by considering a (6, 2)-stacked algebra in Section 7.1,

in which we find that we need to use Gröbner Bases; these are introduced in Section

7.2. We return to this example in Section 7.3 and show that, after regrading, the

Ext algebra is indeed a Koszul algebra. In Section 7.4 we consider an example

of a (6, 2)-stacked monomial algebra which has the same underlying quiver as the

previous example but with monomial relations. After these two examples we then

briefly look at an example of a (4, 2)-stacked algebra in which Definition 7.1 does

not define a grading. We conclude this chapter with Theorem 7.25, (in Section 7.5),

in which we show that there are some (D,A)-stacked algebras for which there is no

regrading such that Ê(Λ) is Koszul. Finally, we give an example of a (D,A)-stacked

algebra which justifies the hypothesis of Theorem 7.25.

7.1. Example 1: A (6, 2)-stacked algebra.

Example 7.3. Let Q be the quiver given by

3
α3
// 4

α4
// 5

α5

  

14

α15

��

2

α2
@@

6
α6

  

13

α14
>>

1

α1
@@

α7 ��

12

α13
>>

15

α16

��

7

α8 ��

11

α12

>>

17

α18

``

8
α9

// 9
α10

// 10

α11

>>

16

α17

``
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and let Λ = KQ/I where I = 〈α1α2α3α4α5α6 − α7α8α9α10α11α12, α3α4α5α6α13α14,

α5α6α13α14α15α16, α9α10α11α12α13α14, α11α12α13α14α15α16, α13α14α15α16α17α18,

α15α16α17α18α13α14, α17α18α13α14α15α16〉.

We start by finding a minimal projective resolution of Λ/r in order to show that

Λ is a (6, 2)-stacked algebra.

A minimal projective resolution for Λ/r as a right Λ-module is given by

· · · → P n → · · · → P 2 → P 1 → P 0 → Λ/r→ 0

where

• P 0 =
⊕17

i=1 eiΛ and d0 is the canonical surjection , d0 : eiλ 7→ eiλ+ r.

• P 1 =
⊕18

i=1 t(αi)Λ and d1 : t(αi)λ 7→ αiλ.

• P 2 = e12Λ⊕ e14Λ⊕ e16Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ and

d2(e12λ1, e14λ2, e16λ3, e14λ4, e16λ5, e12λ6, e14λ7, e16λ8)

= (α2α3α4α5α6λ1, 0, α4α5α6α13α14λ2, 0, α6α13α14α15α16λ3, 0,−α8α9α10α11α12λ1,

0, α10α11α12α13α14λ4, 0, α12α13α14α15α16λ5, 0, α14α15α16α17α18λ6, 0, α16α17α18α13α14λ7,

0, α18α13α14α15α16λ8).

• P 3 = e14Λ⊕ e16Λ⊕ e12Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ and

d3(e14λ1, e16λ2, e12λ3, e16λ4, e12λ5, e14λ6, e16λ7, e12λ8)

= (α13α14λ1, α15α16λ2, α17α18λ3, α15α16λ4, α17α18λ5, α13α14λ6, α15α16λ7, α17α18λ8).

• For n ≥ 4, if n is even, P n = e12Λ⊕ e14Λ⊕ e16Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ

and dn(e12λ1, e14λ2, e16λ3, e14λ4, e16λ5, e12λ6, e14λ7, e16λ8)

= (α15α16α17α18λ1, α17α18α13α14λ2, α13α14α15α16λ3, α17α18α13α14λ4,

α13α14α15α16λ5, α15α16α17α18λ6, α17α18α13α14λ7, α13α14α15α16λ8).

• For n ≥ 5, if n is odd, P n = e14Λ⊕ e16Λ⊕ e12Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ

and dn(e14λ1, e16λ2, e12λ3, e16λ4, e12λ5, e14λ6, e16λ7, e12λ8)

= (α13α14λ1, α15α16λ2, α17α18λ3, α15α16λ4, α17α18λ5, α13α14λ6, α15α16λ7, α17α18λ8).

The sets gn are given as follows;

• g0 = {e1, e2, . . . , e17}.
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• g1 = {g1
1 = α1, g

1
2 = α2, . . . , g

1
18 = α18}.

• g2 = {g2
1 = α1α2α3α4α5α6 − α7α8α9α10α11α12, g

2
2 = α3α4α5α6α13α14,

g2
3 = α5α6α13α14α15α16, g

2
4 = α9α10α11α12α13α14, g

2
5 = α11α12α13α14α15α16,

g2
6 = α13α14α15α16α17α18, g

2
7 = α15α16α17α18α13α14, g

2
8 = α17α18α13α14α15α16}

• g3 = {g3
1 = (α1α2α3α4α5α6 − α7α8α9α10α11α12)α13α14,

g3
2 = α3α4α5α6α13α14α15α16, g

3
3 = α5α6α13α14α15α16α17α18,

g3
4 = α9α10α11α12α13α14α15α16, g

3
5 = α11α12α13α14α15α16α17α18,

g3
6 = α13α14α15α16α17α18α13α14, g

3
7 = α15α16α17α18α13α14α15α16,

g3
8 = α17α18α13α14α15α16α17α18}

• For n ≥ 4, if n = 2r, n ≥ 2,

gn1 = {gn1 = (α1α2α3α4α5α6 − α7α8α9α10α11α12)(α13α14α15α16α17α18)r−1,

gn2 = (α3α4α5α6α13α14)(α15α16α17α18α13α14)r−1,

gn3 = (α5α6α13α14α15α16)(α17α18α13α14α15α16)r−1,

gn4 = (α9α10α11α12α13α14)(α15α16α17α18α13α14)r−1,

gn5 = (α11α12α13α14α15α16)(α17α18α13α14α15α16)r−1,

gn6 = (α13α14α15α16α17α18)r, gn7 = (α15α16α17α18α13α14)r,

gn8 = (α17α18α13α14α15α16)r}.

• For n ≥ 5, if n = 2r + 1, r ≥ 2,

gn1 = {gn1 = (α1α2α3α4α5α6 − α7α8α9α10α11α12)(α13α14α15α16α17α18)r−1α13α14,

gn2 = (α3α4α5α6α13α14)(α15α16α17α18α13α14)r−1α15α16,

gn3 = (α5α6α13α14α15α16)(α17α18α13α14α15α16)r−1α17α18,

gn4 = (α9α10α11α12α13α14)(α15α16α17α18α13α14)r−1α15α16,

gn5 = (α11α12α13α14α15α16)(α17α18α13α14α15α16)r−1α17α18,

gn6 = (α13α14α15α16α17α18)rα13α14, g
n
7 = (α15α16α17α18α13α14)rα15α16,

gn8 = (α17α18α13α14α15α16)rα17α18}.

Looking at the length of gn, it is clear from Definition 5.1 that Λ is a (6, 2)-stacked

algebra. Then we can use Theorem 5.7 to say that E(Λ) is generated in degrees 0, 1, 2

and 3. We now describe E(Λ) by quiver and relations.
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Since (P n, dn) is a minimal projective resolution of Λ/r then ExtnΛ(Λ/r,Λ/r) ∼=

HomΛ(P n,Λ/r), as discussed in Chapter 3. We can take a basis fn of HomΛ(P n,Λ/r)

for each n ≥ 0 as follows.

Let fni be the Λ-module homomorphism P n → Λ/r given by

t(gnj )λj 7→

 t(gni )λi + r if i = j

0 otherwise.

We set fn = {fni } so that |fn| = |gn|.

We have the following products in the Ext algebra. If n = 2r and r ≥ 2 then, fn1 =

f 2
6 ·fn−2

1 in ExtnΛ(Λ/r,Λ/r), since fn1 = f 2
6 ◦L2fn−2

1 as maps, where the lifting L2fn−2
1

can be chosen as L2fn−2
1 : P n −→ P 2, t(gn1 )λ = e12λ 7→ e12λ = t(g2

6)λ, else 7→ 0.

fn2 = f 2
7 · fn−2

2 in ExtnΛ(Λ/r,Λ/r), since fn2 = f 2
7 ◦ L2fn−2

2 as maps, where the

lifting L2fn−2
2 can be chosen as L2fn−2

2 : P n −→ P 2, t(gn2 )λ = e14λ 7→ e14λ =

t(g2
7)λ, else 7→ 0.

fn3 = f 2
8 · fn−2

3 in ExtnΛ(Λ/r,Λ/r), since fn3 = f 2
8 ◦ L2fn−2

3 as maps, where the

lifting L2fn−2
3 can be chosen as L2fn−2

3 : P n −→ P 2, t(gn3 )λ = e16λ 7→ e16λ =

t(g2
8)λ, else 7→ 0.

fn4 = f 2
7 · fn−2

4 in ExtnΛ(Λ/r,Λ/r), since fn4 = f 2
7 ◦ L2fn−2

4 as maps, where the

lifting L2fn−2
4 can be chosen as L2fn−2

4 : P n −→ P 2, t(gn4 )λ = e14λ 7→ e14λ =

t(g2
7)λ, else 7→ 0.

fn5 = f 2
8 · fn−2

5 in ExtnΛ(Λ/r,Λ/r), since fn5 = f 2
8 ◦ L2fn−2

5 as maps, where the

lifting L2fn−2
5 can be chosen as L2fn−2

5 : P n −→ P 2, t(gn5 )λ = e16λ 7→ e16λ =

t(g2
8)λ, else 7→ 0.

fn6 = f 2
6 · fn−2

6 in ExtnΛ(Λ/r,Λ/r), since fn6 = f 2
6 ◦ L2fn−2

6 as maps, where the

lifting L2fn−2
6 can be chosen as L2fn−2

6 : P n −→ P 2, t(gn6 )λ = e12λ 7→ e12λ =

t(g2
6)λ, else 7→ 0.
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fn7 = f 2
7 · fn−2

7 in ExtnΛ(Λ/r,Λ/r), since fn7 = f 2
7 ◦ L2fn−2

7 as maps, where the

lifting L2fn−2
7 can be chosen as L2fn−2

7 : P n −→ P 2, t(gn7 )λ = e14λ 7→ e14λ =

t(g2
7)λ, else 7→ 0.

fn8 = f 2
8 · fn−2

8 in ExtnΛ(Λ/r,Λ/r), since fn8 = f 2
8 ◦ L2fn−2

8 as maps, where the

lifting L2fn−2
8 can be chosen as L2fn−2

8 : P n −→ P 2, t(gn8 )λ = e16λ 7→ e16λ =

t(g2
8)λ, else 7→ 0.

If n = 2r + 1 and r ≥ 2 then, fn1 = f 2
7 · fn−2

1 in ExtnΛ(Λ/r,Λ/r), since fn1 =

f 2
7 ◦ L2fn−2

1 as maps, where the lifting L2fn−2
1 can be chosen as L2fn−2

1 : P n −→

P 2, t(gn1 )λ = e14λ 7→ e14λ = t(g2
7)λ, else 7→ 0.

fn2 = f 2
8 · fn−2

2 in ExtnΛ(Λ/r,Λ/r), since fn2 = f 2
8 ◦ L2fn−2

2 as maps, where the

lifting L2fn−2
2 can be chosen as L2fn−2

2 : P n −→ P 2, t(gn2 )λ = e16λ 7→ e16λ =

t(g2
8)λ, else 7→ 0.

fn3 = f 2
6 · fn−2

3 in ExtnΛ(Λ/r,Λ/r), since fn3 = f 2
6 ◦ L2fn−2

3 as maps, where the

lifting L2fn−2
3 can be chosen as L2fn−2

3 : P n −→ P 2, t(gn3 )λ = e12λ 7→ e12λ =

t(g2
6)λ, else 7→ 0.

fn4 = f 2
8 · fn−2

4 in ExtnΛ(Λ/r,Λ/r), since fn4 = f 2
8 ◦ L2fn−2

4 as maps, where the

lifting L2fn−2
4 can be chosen as L2fn−2

4 : P n −→ P 2, t(gn4 )λ = e16λ 7→ e16λ =

t(g2
8)λ, else 7→ 0.

fn5 = f 2
6 · fn−2

5 in ExtnΛ(Λ/r,Λ/r), since fn5 = f 2
6 ◦ L2fn−2

5 as maps, where the

lifting L2fn−2
5 can be chosen as L2fn−2

5 : P n −→ P 2, t(gn5 )λ = e12λ 7→ e12λ =

t(g2
6)λ, else 7→ 0.

fn6 = f 2
7 · fn−2

6 in ExtnΛ(Λ/r,Λ/r), since fn6 = f 2
7 ◦ L2fn−2

6 as maps, where the

lifting L2fn−2
6 can be chosen as L2fn−2

6 : P n −→ P 2, t(gn6 )λ = e14λ 7→ e14λ =

t(g2
7)λ, else 7→ 0.

fn7 = f 2
8 · fn−2

7 in ExtnΛ(Λ/r,Λ/r), since fn7 = f 2
8 ◦ L2fn−2

7 as maps, where the

lifting L2fn−2
7 can be chosen as L2fn−2

7 : P n −→ P 2, t(gn7 )λ = e16λ 7→ e16λ =

t(g2
8)λ, else 7→ 0.
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fn8 = f 2
6 · fn−2

8 in ExtnΛ(Λ/r,Λ/r), since fn8 = f 2
6 ◦ L2fn−2

8 as maps, where the

lifting L2fn−2
8 can be chosen as L2fn−2

8 : P n −→ P 2, t(gn8 )λ = e12λ 7→ e12λ =

t(g2
6)λ, else 7→ 0.

Now that we have this information, the Ext algebra, E(Λ), can be represented by

quiver and relations.

Let Γ be the quiver given by
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and let A = KΓ/I where I is the ideal generated by

• α2α1, α3α2, α4α3, α5α4, α6α5, α8α7, α9α8, α10α9, α11α10, α12α11, α13α6,

α13α12, α13α18, α14α13, α15α14, α16α15, α17α16, α18α17,

• α13β1, α15β2, β2α2, α17β3, β3α4, α15β4, β4α8, α17β5, β5α10, α13β6, β6α6,

β6α12, β6α18, α15β7, β7α14, α17β8, β8α16,

• α15γ1, α17γ2, γ2α2, α13γ3, γ3α4, α17γ4, γ4α8, α13γ5, γ5α10, α15γ6, γ6α6, γ6α12,

γ6α18, α17γ7, γ7α14, α13γ8, γ8α16,

• β7γ1−γ6β1, β8γ2−γ7β2, β6γ3−γ8β3, β8γ4−γ7β4, β6γ5−γ8β5, β7γ6−γ6β6,

β8γ7 − γ7β7, β6γ8 − γ8β8,

• γ7γ1, γ8γ2, γ6γ3, γ8γ4, γ6γ5, γ7γ6, γ8γ7, γ6γ8.
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This algebra A is the algebra E(Λ) given by quiver and relations, where we write

αi for f 1
i , βi for f 2

i and γi for f 3
i . This gives the following result.

Proposition 7.4. Let Λ be the algebra given in Example 7.3, and let A = KΓ/I as

defined above. Then A ∼= Ê(Λ) where αi, βi and γi are all in degree 1, corresponding

to the elements of Ê(Λ)1.

With this hat-degree grading, we wish to show A is a Koszul algebra. From

Definition 4.2, we know that if A is Koszul then there is a linear minimal projective

resolution of A/r as a right A-module. We start by trying to construct a minimal

projective resolution of A/r as a right A-module:

· · · // P n
dn
// · · · // P 2

d2

// P 1
d1

// P 0
d0

// A/r // 0.

The projective modules are denoted by P n in the usual way, however these are not

to be confused with the projective modules in the minimal projective resolution of

Λ/r.

We know P 0 = e1A ⊕ e2A ⊕ · · · ⊕ e17A, d0 is the canonical surjection given by

d0 : eiλ 7→ eiλ + r. Then Ker d0 ∼= r, so P 1 = t(α1)A ⊕ · · · ⊕ t(α18)A ⊕ t(β1)A ⊕

· · · ⊕ t(β8)A ⊕ t(γ1)A ⊕ · · · ⊕ t(γ8)A and d1(t(pi)λ) = piλ, where pi is an arrow in

Γ1, λ ∈ A.

Let g2 be the set of minimal generators of I, labelled g2
i for i = 1, . . . , 68. For

each i we have g2
i =

∑
j g

1
j qi,j, as in [20]. Then P 2 =

⊕68
i=1 t(g

2
i )A, d

2(t(g2
i )λ) =∑

j qi,jλ, where g2
i =

∑
j g

1
j qi,j, for qi,j ∈ Q1.

Let g3 be the set of g3
i , as given in [20]. So g3

i =
∑

j g
2
j qi,j, where qi,j ∈ KQ. In

particular, for A, the set g3 is given by
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{α3α2α1, α4α3α2, α5α4α3, α6α5α4, α9α8α7, α10α9α8, α11α10α9, α12α11α10,

α13α6α5, α13α12α11, α13α18α17, α14α13α6, α14α13α12, α14α13α18, α14α13β1,

α14α13β6, α14α13γ3, α14α13γ5, α14α13γ8, α15α14α13, α16α15α14, α17α16α15,

α18α17α16, α18α17β3, α18α17β5, α18α17β8, α18α17γ2, α18α17γ4, α18α17γ7,

α15β2α2, β2α2α1, α17β3α4, β3α4α3, α15β4α8, β4α8α7, α17β5α10, β5α10α9,

α13β6α6, α13β6α12, α13β6α18, β6α6α5, β6α12α11, β6α18α17, α15β7α14, β7α14α13,

α17β8α16, β8α16α15, α17γ2α2, γ2α2α1, α13γ3α4, γ3α4α3, α17γ4α8, γ4α8α7,

α13γ5α10, γ5α10α9, α15γ6α6, α15γ6α12, α15γ6α18, α15γ6γ3, α15γ6γ5, α15γ6γ8,

γ6α6α5, γ6α12α11, γ6α18α17, α17γ7α14, α17γ7γ1, α17γ7γ6, γ7α14α13, α13γ8α16,

α13γ8γ2, α13γ8γ4, α13γ8γ7, γ8α16α15, γ8γ2α2, γ6γ3α4, γ8γ4α8, γ6γ5α10,

γ7γ6α6, γ7γ6α12, γ7γ6α18, γ7γ6γ3, γ7γ6γ5, γ7γ6γ8, γ8γ7α14, γ8γ7γ1, γ8γ7γ6,

γ6γ8α16, γ6γ8γ2, γ6γ8γ4, γ6γ8γ7, (β8γ2 − γ7β2)α2, (β6γ3 − γ8β3)α4, (β8γ4 − γ7β4)α8,

(β6γ5 − γ8β5)α10, (β7γ6 − γ6β6)α6, (β7γ6 − γ6β6)α12, (β7γ6 − γ6β6)α18,

(β8γ7 − γ7β7)α14, (β6γ8 − γ8β8)α16)}.

From this set we can write down the projective module P 3 and the map d3 : P 3 → P 2.

We label the elements of g3 by g3
1, g

3
2, . . . , g

3
99 in the order they are listed above. Then

P 3 =
⊕99

i=1 t(g
3
i )A and the map d3 : P 3 → P 2 is the A-module homomorphism where

d3(t(g3
i )) has entry t(g2

j )qi,j in the component of P 2 corresponding to t(g2
j ), where

g3
i =

∑
j g

2
j qi,j, with qi,j ∈ KΓ.

We now find the set g4. Each g4
i is found following the same method, from [20], in

particular g4
i =

∑
j g

3
jpi,j, for some pi,j ∈ KΓ. The following table gives the elements

g4
i that begin at e5, e6, e10 and e11 respectively; they end at the vertex with which

the column is indexed. In all cases, the element g4
i is given by the element g3

j , as

indexed by the rows, composed with the single elements given within the rows.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17

α4α3α2 α1 - - - - - - - - - - - - - - - -

α5α4α3 - α2 - - - - - - - - - - - - - - -
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α10α9α8 α7 - - - - - - - - - - - - - - - -

α11α10α9 - - - - - - α8 - - - - - - - - - -

The following table shows the elements of g4 that begin at e12, end at ek, for

k = {1, 2, . . . , 17}, as the columns are indexed.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17

α6α5α4 - - α3 - - - - - - - - - - - - - -

α12α11α10 - - - - - - - α9 - - - - - - - - -

α18α17α16 - - - - - - - - - - - - α15 - - - -

α18α17β3 - - - α4 - - - - - - - - - - - - -

α18α17β5 - - - - - - - - α10 - - - - - - - -

α18α17β8 - - - - - - - - - - - - α16 - - - -

α18α17γ2 - α2 - - - - - - - - - - - - - - -

α18α17γ4 - - - - - - α8 - - - - - - - - - -

α18α17γ7 γ1 - - - - - - - - - - γ6 α14 - - - -

β6α6α5 - - - α4 - - - - - - - - - - - - -

β6α12α11 - - - - - - - - α10 - - - - - - - -

β6α18α17 - - γ2 α4 β3 - - - - β5 - - - γ7 α16 β8 -

γ3α4α3 - α2 - - - - - - - - - - - - - - -

γ5α10α9 - - - - - - α8 - - - - - - - - - -

γ8α16α15 γ1 - β2 - - - - β4 - - - γ6 α14 β7 - - -

γ8γ2α2 α1 - - - - - - - - - - - - - - - -

γ8γ4α8 α7 - - - - - - - - - - - - - - - -

γ8γ7α14 - - - - - - - - - - - α13 - - - - -

γ8γ7γ6 - - - - γ3 α6 - - - γ5 α12 - - - - γ8 α18

(β6γ3 − γ8β3)α4- - α3 - - - - - - - - - - - - - -

(β6γ5 − γ8β5)α10- - - - - - - α9 - - - - - - - - -

(β6γ8 − γ8β8)α16- - - - - - - - - - - - - α15 - - -
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The next table consists of the elements g4
i with s(g4

i ) = e13. Where there is no

column headed ej, this means there is no element of g4 starting at e13 and ending at

ej.

e1 e2 e3 e4 e5 e7 e8 e9 e10 e12 e13 e14 e15 e16

α13α6α5 - - - α4 - - - - - - - - - -

α13α12α11 - - - - - - - α10 - - - - - -

α13α18α17 - γ2 - - β3 - - γ4 β5 - - γ7 α16 β8

α13β6α6 - - - - α5 - - - - - - - - -

α13β6α12 - - - - - - - - α11 - - - - -

α13β6α18 - - - - - - - - - - - - - α17

α13γ3α4 - - α3 - - - - - - - - - - -

α13γ5α10 - - - - - - α9 - - - - - - -

α13γ8α16 - - - - - - - - - - - α15 - -

α13γ8γ2 - α2 - - - - - - - - - - - -

α13γ8γ4 - - - - - α8 - - - - - - - -

α13γ8γ7 γ1 - - - - - - - - γ6 α14 - - -

The next table consists of the elements g4
i with s(g4

i ) = e14.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17

α14α13α6 - - - - α5 - - - - - - - - - - - -

α14α13α12 - - - - - - - - - α11 - - - - - -

α14α13α18 - - - - - - - - - - - - - - - α18

α14α13β6 - - - - - α6 - - - - α12 - - - - - α18

α14α13γ3 - - - α4 - - - - - - - - - - - - -

α14α13γ5 - - - - - - - - α10 - - - - - - - -

α14α13γ8 - - γ2 - - - - γ4 - - - - - γ7 α16 - -
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β7α14α13 β1 - - - γ3 α6 - - - γ5 α12 β6 - - - γ8 α18

(β7γ6 − γ6β6)α6 - - - - α5 - - - - - - - - - - - -

(β7γ6 − γ6β6)α12 - - - - - - - - - α11 - - - - - - -

(β7γ6 − γ6β6)α18 - - - - - - - - - - - - - - - α17 -

γ6α6α5 - - - α4 - - - - - - - - - - - - -

γ6α12α11 - - - - - - - - α10 - - - - - - - -

γ6α18α17 - - γ2 - β3 - - γ4 - β5 - - - γ7 α16 β8 -

γ6γ3α4 - - α3 - - - - - - - - - - - - - -

γ6γ5α10 - - - - - - - α9 - - - - - - - - -

γ6γ8α16 - - - - - - - - - - - - - α15 - - -

γ6γ8γ2 - α2 - - - - - - - - - - - - - - -

γ6γ8γ4 - - - - - - α8 - - - - - - - - - -

γ6γ8γ7 γ1 - - - - - - - - - - γ6 α14 - - - -

The next table consists of the elements g4
i with s(g4

i ) = e15.

e1 e3 e4 e5 e6 e8 e9 e10 e11 e12 e14 e15 e16 e17

α15α14α13 β1 - - γ3 α6 - - γ5 α12 β6 - - γ8 α18

α15β2α2 α1 - - - - - - - - - - - - -

α15β4α8 α7 - - - - - - - - - - - - -

α15β7α14 - - - - - - - - - α13 - - - -

α15γ6α6 - - - α5 - - - - - - - - - -

α15γ6α12 - - - - - - - α11 - - - - - -

α15γ6α18 - - - - - - - - - - - - α17 -

α15γ6γ3 - - α4 - - - - - - - - - - -

α15γ6γ5 - - - - - - α10 - - - - - - -

α15γ6γ8 - γ2 - - - γ4 - - - - γ7 α16 - -
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The next table consists of the elements g4
i with s(g4

i ) = e16.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17

α16α15α14 - - - - - - - - - - - α13 - - - - -

β3α3α4 - α2 - - - - - - - - - - - - - - -

β5α10α9 - - - - - - α8 - - - - - - - - - -

β8α16α15 γ1 - β2 - - - - β4 - - - γ6 α14 β7 - - -

(β8γ2 −

γ7β2)α2

α1 - - - - - - - - - - - - - - - -

(β8γ4 −

γ7β4)α8

α7 - - - - - - - - - - - - - - - -

(β8γ7 −

γ7β7)α14

- - - - - - - - - - - α13 - - - - -

γ7α14α13 β1 - - - γ3 α6 - - - γ5 α12 β6 - - - γ8 α18

γ7γ6α6 - - - - α5 - - - - - - - - - - - -

γ7γ6α12 - - - - - - - - - α11 - - - - - - -

γ7γ6α18 - - - - - - - - - - - - - - - α17 -

γ7γ6γ3 - - - α4 - - - - - - - - - - - - -

γ7γ6γ5 - - - - - - - - α10 - - - - - - - -

γ7γ6γ8 - - γ2 - - - - γ4 - - - - - γ7 α16 - -

The next table consists of the elements g4
i with s(g4

i ) = e17.

e1 e3 e5 e6 e8 e10 e11 e12 e13 e14 e16 e17

α17α16α15 γ1 β2 - - β4 - - γ6 α14 β7 - -

α17β3α4 - α3 - - - - - - - - - -

α17β5α10 - - - - α9 - - - - - - -

α17β8α16 - - - - - - - - - α15 - -
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α17γ2α2 α1 - - - - - - - - - - -

α17γ4α8 α7 - - - - - - - - - - -

α17γ7α14 - - - - - - - α13 - - - -

α17γ7γ6 - - γ3 α6 - γ5 α12 - - - γ8 α18

We have now given the sets gn for n = 0, 1, 2, 3 and 4. From this it is clear that

the minimal projective resolution so far looks to be linear. However, since the sets

are growing very large, it is not possible to determine the whole resolution of A/r,

and therefore we cannot show it is a linear resolution. This means that we need to

find another way to show that our new algebra is Koszul. Let us look instead at

Gröbner bases.

7.2. Gröbner Bases. We give an introduction to Gröbner bases following [8] and

[9].

In this section we assume that Γ is a finite quiver, and let B be the basis of the path

algebra KΓ which consists of all paths in KΓ. We remark that B is a multiplicative

basis of KΓ, that is, if p, q ∈ B then p · q ∈ B or p · q = 0.

Definition 7.5. [9] Let KΓ be a path algebra and let B be the basis of all paths.

We say > is a well-order on B if > is a total order on B and every non-empty subset

of B has a minimal element.

Definition 7.6. [9] Let KΓ be a path algebra and let B be the basis of all paths. An

admissible ordering on B is a well-order > on B that satisfies the following properties:

(1) if p, q, r ∈ B and p > q then pr > qr if both are not zero and rp > rq if both

are not zero;

(2) if p, q, r ∈ B and p = qr then p ≥ q and p ≥ r.

Definition 7.7. [9] Let KΓ be a path algebra and let B be the basis consisting of all

paths. The left length lexicographic order is an admissible order defined as follows.

Arbitrarily order the vertices and arrows such that every vertex is less than every
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arrow. For paths of length greater than 1, if p = α1α2 · · ·αn and q = β1β2 · · · βm

where the αi and βi are arrows and p, q ∈ B, then p > q if n > m or, if n = m, then

there is some 1 ≤ i ≤ n with αj = βj for j < i and αi > βi.

Given an admissible order >, we are now concerned with finding a Gröbner basis

of I, where I is an ideal in KΓ.

Definition 7.8. [11] Let KΓ be a path algebra and let B be the basis of all paths,

with admissible order >.

(1) Let x be an element of KΓ, so x is a linear combination of paths pi. Then

Tip(x) is the largest pi, in the ordering >, occurring in x.

(2) If I is an ideal in KΓ then Tip(I) is the set of paths that occur as Tips of

non-zero elements of I.

(3) We let Nontip(I) be the set of finite paths in KΓ that are not in Tip(I).

(4) Let CTip(x) denote the coefficient of Tip(x).

(5) An element x ∈ I is sharp if x = p +
∑

i αiqi where Tip(x) = p, αi ∈ K and

qi ∈ Nontip(I) for all i.

Definition 7.9. [9] Let KΓ be a path algebra with basis B consisting of all paths.

Every element γ ofKΓ can be written as a linear combination of elements in B. Those

elements of B which occur in γ with non-zero coefficients are called the support of

γ, denoted Supp(γ).

Definition 7.10. [8] Let KΓ be a path algebra and let B be the basis consisting of

all paths. Let a, b ∈ B. We say a divides b if there exist u, v ∈ B such that b = uav.

Definition 7.11. [8] Let KΓ be a path algebra and let I be an ideal of KΓ. A

Gröbner basis for I is a non-empty subset G ⊆ I such that the tip of each nonzero

element of I is divisible by the tip of some element in G.

Definition 7.12. [8] Let KΓ be a path algebra and let B be the basis consisting

of all paths. Let a be a non-zero element of KΓ. A simple (algebra) reduction for
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a is determined by a 4-tuple (λ, u, f, v) where λ ∈ K∗, f ∈ KΓ\{0} and u, v ∈ B,

satisfying

(1) uTip(f)v ∈ Supp(a) and

(2) uTip(f)v /∈ Supp(a− λufv).

We say that a reduces over f to a − λufv. We say that a reduces to a′ over a set

X = {f1, . . . , fn} and write a⇒X a′ if there is a finite sequence so that a reduces to

a1 over f1, a1 reduces to a2 over f2, and so on, with an−1 reducing to a′ over fn.

Definition 7.13. [9] Let KΓ be a path algebra, let B be the basis consisting of all

paths of KΓ and let > be an admissible order on B. Let ξ1, ξ2 ∈ KΓ and suppose

there are elements p, q ∈ B such that

(1) Tip(ξ1)p = qTip(ξ2),

(2) Tip(ξ1) does not divide q and Tip(ξ2) does not divide p.

Then the overlap difference of ξ1 and ξ2 by p, q is

o(ξ1, ξ2, p, q) = (1/CTip(ξ1)) ξ1p− (1/CTip(ξ2)) qξ2.

The next theorem uses the concept of uniform elements for which we refer the

reader back to Definition 3.6.

Theorem 7.14. [8, Theorem 13] Let KΓ be a path algebra and let H = {hj : j ∈ J }

be a subset of non-zero uniform elements in KΓ, which generates the ideal I. Assume

that the following conditions hold;

i) CTip(hj) is 1, for each j ∈ J ,

ii) hi does not reduce over hj for i 6= j, and

iii) every overlap difference for two (not necessarily distinct) members of H always

reduces to zero over H.

Then H is a reduced Gröbner basis of I.

We note that in [8] a reduced Gröbner basis of I is called MINSHARP(I).
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Theorem 7.15. [11, Theorem 3] Let KΓ be a path algebra and I a quadratic ideal

in the path algebra KΓ. Fix an admissible ordering and let A = KΓ/I. Then:

(1) The reduced Gröbner basis of I consists of homogeneous elements.

(2) If the reduced Gröbner basis of I consists of quadratic elements then A is a

Koszul algebra.

7.3. A Return to Example 1. Now we are in a position to use Gröbner bases to

continue looking at the example introduced in Section 7.1. We want to show that

the set H given below is indeed a reduced Gröbner basis for I, where I is the ideal

for the Ext algebra given as A = KΓ/I. Recall that Γ is the quiver given by
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and let K be a field. Let B be the basis of KΓ which consists of all paths.

Let the vertices be ordered e1 > e2 > · · · > e17 and let the arrows be ordered

α1 > α2 > · · · > α18 > β1 > β2 > · · · > β8 > γ1 > γ2 > · · · > γ8. Let the admissible

order on B be the left length lexicographic order as given in Definition 7.7.
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Let H ⊆ I be the minimal generating set for I as given in Section 7.1, that is, H

is the set consisting of

• α2α1, α3α2, α4α3, α5α4, α6α5, α8α7, α9α8, α10α9, α11α10, α12α11, α13α6, α13α12,

α13α18, α13β1, α13β6, α13γ3, α13γ5, α13γ8, α14α13, α15α14, α15β2, α15β4, α15β7,

α15γ1, α15γ6, α16α15, α17α16, α17β3, α17β5, α17β8, α17γ2, α17γ4, α17γ7, α18α17,

• β2α2, β3α4, β4α8, β5α10, β6α6, β6α12, β6α18, β6γ3−γ8β3, β6γ5−γ8β5, β6γ8−γ8β8,

β7α14, β7γ1 − γ6β1, β7γ6 − γ6β6, β8α16, β8γ2 − γ7β2, β8γ4 − γ7β4, β8γ7 − γ7β7,

• γ2α2, γ3α4, γ4α8, γ5α10, γ6α6, γ6α12, γ6α18, γ6γ3, γ6γ5, γ6γ8, γ7α14, γ7γ1, γ7γ6,

γ8α16, γ8γ2, γ8γ4, γ8γ7

and let us label the elements in the order presented here as hi for i ∈ {1, . . . , 68}.

Proposition 7.16. Let KΓ be the path algebra, I be the ideal of KΓ and H be the

subset of I as given above. Then H is a reduced Gröbner basis of I.

Proof. We will use Theorem 7.14 to show that H is a reduced Gröbner basis of I. It

is clear that H is a generating set for I. We examine each of the conditions in turn.

Condition i) CTip(hi) is 1 for all i ∈ {1, . . . , 68}. This is clear from looking at the

set H.

Condition ii) hi does not reduce over hj for i 6= j.

We now show that this condition is satisfied for all i 6= j. Assume hi reduces over hj.

Then there are elements u, v ∈ B such that uTip(hj)v ∈ Supp(hi). Looking at the

element Tip(hj) and the elements that are in Supp(hi), it is clear that they are all of

length 2 for all i, j, hence u, v ∈ Γ0. In particular, u = s(Tip(hj)) and v = t(Tip(hj)).

Therefore if hi reduces over hj then Tip(hj) ∈ Supp(hi). By inspection of H we can

see this is not the case. So hi does not reduce over hj for i 6= j.

Condition iii) every overlap difference for two (not necessarily distinct) members

of H always reduces to zero over H.

We now show that the elements of H satisfy this condition. Let us consider the set
65



H as two distinct subsets, let H1 be the set of monomial elements of H and let H2

be the set of non-monomial elements of H. Clearly, H1 ∪H2 = H.

Now, consider two arbitrary elements of H1. It follows that in this set, hi =

Tip(hi). Assume we have elements p, q ∈ B such that Tip(hi)p = qTip(hj), with

Tip(hi) does not divide q and Tip(hj) does not divide p. Then the overlap difference

is defined as o(hi, hj, p, q) = ( 1
CTip(hi)

)hip − ( 1
CTip(hj)

)qhj. Now, by condition i), we

know CTip(hi) = 1 and CTip(hj) = 1. So o(hi, hj, p, q) = hip − qhj and since

Tip(hi)p = hip, qTip(hj) = qhj, we have o(hi, hj, p, q) = 0.

Now we are left with two possibilities, hi, hj ∈ H2 and hi ∈ H1, hj ∈ H2. Before

looking at these explicitly we can look at a more general property of the overlap

difference.

An overlap difference of two elements hi, hj ∈ H requires Tip(hi)p = qTip(hj).

Note that Tip(h) has length 2 for all h ∈ H. Now, l(p) = l(q) < 2, since we also

require Tip(hi) does not divide q and Tip(hj) does not divide p. If p and q have

length 0, then Tip(hi) = Tip(hj); by looking at the elements of H we can see this

is true if and only if i = j. In this case, the overlap difference will be 0. So if

Tip(hi)p = qTip(hj) then we may assume l(p) = 1 = l(q) and p, q are arrows.

Let us consider two elements hi, hj ∈ H2. The second arrow of Tip(hi)p is γk and

the second arrow of qTip(hj) is βl, for some k, l. This cannot happen, so there are

no overlap differences except when i = j, which will be 0.

Finally, we look at the overlap difference of one monomial element and one non-

monomial element. Let us first consider o(h, h′, p, q) where h ∈ H1 and h′ ∈ H2. We

will consider o(h′, h, p, q) for h ∈ H1 and h′ ∈ H2 afterwards. There will be some

non-zero overlap differences here and we can work through the possibilities to show

that every overlap difference reduces to zero over H.

The elements of H2 are: h42 = β6γ3 − γ8β3, h43 = β6γ5 − γ8β5, h44 = β6γ8 −

γ8β8, h46 = β7γ1−γ6β1, h47 = β7γ6−γ6β6, h49 = β8γ2−γ7β2, h50 = β8γ4−γ7β4, h51 =

β8γ7 − γ7β7.
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We start with h′ = h42 = β6γ3 − γ8β3 . From above, we know that the second

arrow of the term qTip(h42) is β6. So we need to find all overlap differences with h′,

and it is easy to see that there is only one possible overlap. Let h = h15 = α13β6.

Then Tip(h42) = β6γ3 and Tip(h15) = α13β6. Let p = γ3 and q = α13. The overlap

difference is given by

o(h, h′, p, q) = o(h15, h42, γ3, α13)

= α13β6γ3 − α13β6γ3 + α13γ8β3

= α13γ8β3.

This non-zero overlap difference can be reduced. Let λ = 1, u = e13, f = h18 =

α13γ8 and v = β3. Then o(h15, h42, γ3, α13)− λufv = 0, so o(h15, h42, γ3, α13) ⇒H 0.

Hence this overlap difference reduces to zero over H.

Let h′ = h43 = β6γ5 − γ8β5 and h = h15 = α13β6. Then Tip(h43) = β6γ5 and

Tip(h15) = α13β6. Let p = γ5 and q = α13. The overlap difference is given by

o(h15, h43, γ5, α13) = α13β6γ5 − α13β6γ5 + α13γ8β5

= α13γ8β5.

Let λ = 1, u = e13, f = h18 = α13γ8 and v = β5. Then o(h15, h43, γ5, α13)−λufv =

0. Hence this overlap difference reduces to zero over H.

Similarly o(h15, h44, γ8, α13), o(h23, h46, γ1, α15), o(h23, h47, γ6, α15), o(h20,

h49, γ2, α17), o(h20, h50, γ4, α17), o(h20, h51, γ7, α17) all have an element of H1 as a sub-

path and so these overlap differences all reduce to zero over H.

We now consider the overlap difference o(h′, h, p, q) where h′ ∈ H2, h ∈ H1.

The overlap differences o(h42, h53, α4, β6), o(h43, h55, α10, β6), o(h44, h65, α16, β6),

o(h47, h56, α6, β7), o(h47, h57, α12, β7), o(h47, h58, α18, β7), o(h49, h52, α2, β8),

o(h50, h54, α8, β8), o(h51, h62, α14, β8) also have an element of H1 as a subpath and so

reduce to zero over H.

Finally, o(h44, h66, γ2, β6), o(h44, h67, γ4, β6), o(h44, h68, γ7, β6), o(h47, h59, γ3, β7),

o(h47, h60, γ5, β7), o(h47, h61, γ8, β7), o(h51, h64, γ6, β8) need more than a simple reduc-

tion. We now give explicit details for these.
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Let us take h66 = γ8γ2, and let p = γ2, q = β6. The overlap difference is

o(hi, hj, p, q) = o(h44, h66, γ2, β6) = β6γ8γ2 − γ8β8γ2 − β6γ8γ2 = −γ8β8γ2. This non-

zero overlap difference can be reduced. Let λ1 = −1, u1 = γ8, f1 = h49 = β8γ2− γ7β2

and v1 = e3. Then o(h44, h66, γ2, β6) − λ1u1f1v1 = −γ8γ7β2. This can be further

reduced, let λ2 = −1, u2 = e12, f2 = h68 = γ8γ7 and v2 = β2. Then we have

o(h44, h66, γ2, β6) − λ1u1f1v1) − λ2u2f2v2 = 0. Therefore this overlap difference can

be reduced to zero.

Let us take h67 = γ8γ4, and let p = γ4, q = β6. The overlap difference is

o(hi, hj, p, q) = o(h44, h67, γ4, β6) = β6γ8γ4 − γ8β8γ4 − β6γ8γ4 = −γ8β8γ4. This non-

zero overlap difference can be reduced. Let λ1 = −1, u1 = γ8, f1 = h50 = β8γ4− γ7β4

and v1 = e8. Then o(h44, h67, γ4, β6) − λ1u1f1v1 = −γ8γ7β4. This can be further

reduced, let λ2 = −1, u2 = e12, f2 = h68 = γ8γ7 and v2 = β4. Then we have

o(h44, h67, γ4, β6) − λ1u1f1v1) − λ2u2f2v2 = 0. Therefore this overlap difference can

be reduced to zero.

Let us take h68 = γ8γ7, and let p = γ7, q = β6. The overlap difference is

o(hi, hj, p, q) = o(h44, h68, γ7, β6) = β6γ8γ7 − γ8β8γ7 − β6γ8γ7 = −γ8β8γ7. This non-

zero overlap difference can be reduced. Let λ1 = −1, u1 = γ8, f1 = h51 = β8γ7− γ7β7

and v1 = e14. Then o(h44, h68, γ7, β6) − λ1u1f1v1 = −γ8γ7β7. This can be further

reduced, let λ2 = −1, u2 = e12, f2 = h68 = γ8γ7 and v2 = β7. Then we have

o(h44, h67, γ4, β6) − λ1u1f1v1) − λ2u2f2v2 = 0. Therefore this overlap difference can

be reduced to zero.

Let us take h59 = γ6γ3, and let p = γ3, q = β7. The overlap difference is

o(hi, hj, p, q) = o(h47, h59, γ3, β7) = β7γ6γ3 − γ6β6γ3 − β7γ6γ3 = −γ6β6γ3. This non-

zero overlap difference can be reduced. Let λ1 = −1, u1 = γ6, f1 = h42 = β6γ3− γ8β3

and v1 = e5. Then o(h47, h59, γ3, β7) − λ1u1f1v1 = −γ6γ8β3. This can be further

reduced, let λ2 = −1, u2 = e14, f2 = h61 = γ6γ8 and v2 = β3. Then we have

o(h47, h59, γ3, β7) − λ1u1f1v1) − λ2u2f2v2 = 0. Therefore this overlap difference can

be reduced to zero.

68



Let us take h60 = γ6γ5, and let p = γ5, q = β7. The overlap difference is

o(hi, hj, p, q) = o(h47, h60, γ5, β7) = β7γ6γ5 − γ6β6γ5 − β7γ6γ5 = −γ6β6γ5. This non-

zero overlap difference can be reduced. Let λ1 = −1, u1 = γ6, f1 = h43 = β6γ5− γ8β5

and v1 = e10. Then o(h47, h60, γ5, β7) − λ1u1f1v1 = −γ6γ8β5. This can be further

reduced, let λ2 = −1, u2 = e14, f2 = h61 = γ6γ8 and v2 = β5. Then we have

o(h47, h60, γ5, β7) − λ1u1f1v1) − λ2u2f2v2 = 0. Therefore this overlap difference can

be reduced to zero.

Let us take h61 = γ6γ8, and let p = γ8, q = β7. The overlap difference is

o(hi, hj, p, q) = o(h47, h61, γ8, β7) = β7γ6γ8 − γ6β6γ8 − β7γ6γ8 = −γ6β6γ8. This non-

zero overlap difference can be reduced. Let λ1 = −1, u1 = γ6, f1 = h44 = β6γ8− γ8β8

and v1 = e16. Then o(h47, h61, γ8, β7) − λ1u1f1v1 = −γ6γ8β8. This can be further

reduced, let λ2 = −1, u2 = e14, f2 = h61 = γ6γ8 and v2 = β8. Then we have

o(h47, h61, γ8, β7) − λ1u1f1v1) − λ2u2f2v2 = 0. Therefore this overlap difference can

be reduced to zero.

Let us take h64 = γ7γ6, and let p = γ6, q = β8. The overlap difference is

o(hi, hj, p, q) = o(h51, h64, γ6, β8) = β8γ7γ6 − γ7β7γ6 − β8γ7γ6 = −γ7β7γ6. This non-

zero overlap difference can be reduced. Let λ1 = −1, u1 = γ7, f1 = h47 = β7γ6− γ6β6

and v1 = e12. Then o(h51, h64, γ6, β8) − λ1u1f1v1 = −γ7γ6β6. This can be further

reduced, let λ2 = −1, u2 = e16, f2 = h64 = γ7γ6 and v2 = β6. Then we have

o(h51, h64, γ6, β8) − λ1u1f1v1) − λ2u2f2v2 = 0. Therefore this overlap difference can

be reduced to zero.

Thus we have now shown that, for all elements hi, hj in the set H, the overlap

difference of two elements reduces to zero. Therefore the setH satisfies the hypothesis

of Theorem 7.14, and H is a reduced Gröbner basis of the ideal I. �

Remark. We have shown above that the overlap difference of two monomial relations

is always zero.

Now we have a reduced Gröbner basis of I, we can use Theorem 7.15 to give the

following result.
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Theorem 7.17. Let A = KΓ/I be the algebra given in Section 7.1. Then A is a

Koszul algebra.

Proof. It is clear by looking at H that it consists of quadratic elements, and the

proof immediately follows from Theorem 7.15, part 2). �

We recall from Proposition 7.4 that A ∼= Ê(Λ) where Λ is the (6, 2)-stacked algebra

of Example 7.3. This gives the following result.

Theorem 7.18. Let Λ be the (6, 2)-stacked algebra of Example 7.3. Let A = Ê(Λ)

be the Ext algebra of Λ with the hat-degree grading. Then A is a Koszul algebra.

7.4. Example 2: A (6, 2)-stacked monomial algebra. We now give an example

of an algebra with the same underlying quiver as Example 7.3. The ideal I is now

generated by monomial relations, this produces a monomial algebra. For monomial

algebras, the projective resolution of Λ/r and the Ext algebra were studied by Green

and Zacharia in [21]. Here we give a single example.

Example 7.19. Let Q be the quiver given by

3
α3
// 4

α4
// 5

α5

  

14

α15

��

2

α2
@@

6
α6

  

13

α14
>>

1

α1
@@

α7 ��

12

α13
>>

15

α16

��

7

α8 ��

11

α12

>>

17

α18

``

8
α9

// 9
α10

// 10

α11

>>

16

α17

``

and let Λ = KQ/I where I is the admissible ideal given by

I = 〈α1α2α3α4α5α6, α3α4α5α6α13α14, α5α6α13α14α15α16, α7α8α9α10α11α12,
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α9α10α11α12α13α14, α11α12α13α14α15α16, α13α14α15α16α17α18, α15α16α17α18α13α14,

α17α18α13α14α15α16〉.

A minimal projective resolution for Λ/r as a right Λ-module is given by

· · · → P n → · · · → P 2 → P 1 → P 0 → Λ/r→ 0

where

•P 0 =
⊕17

i=1 eiΛ and d0 is the canonical surjection , d0 : eiλ 7→ eiλ+ eir.

•P 1 =
⊕18

i=1 t(αi)Λ and d1 : t(αi)λ 7→ αiλ.

•P 2 =
⊕9

i=1 t(g
2
i )Λ = e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ

and

d2(e12λ1, e14λ2, e16λ3, e12λ4, e14λ5, e16λ6, e12λ7, e14λ8, e16λ9)

= (α2α3α4α5α6λ1, , α4α5α6α13α14λ2, α6α13α14α15α16λ3, α8α9α10α11α12λ4

α10α11α12α13α14λ5, α12α13α14α15α16λ6, α14α15α16α17α18λ7, α16α17α18α13α14λ8,

α18α13α14α15α16λ9).

For n ≥ 3,

• If n is odd, P n = e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ and

dn(e14λ1, e16λ2, e12λ3, e14λ4, e16λ5, e12λ6, e14λ7, e16λ8, e12λ9) = (α13α14λ1, α15α16λ2,

α17α18λ3, α13α14λ4, α15α16λ5, α17α18λ6, α13α14λ7, α15α16λ8, α17α18λ9).

• If n is even, P n = e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ⊕ e12Λ⊕ e14Λ⊕ e16Λ

and dn(e12λ1, e14λ2, e16λ3, e12λ4, e14λ5, e16λ6, e12λ7, e14λ8, e16λ9)

= (α15α16α17α18λ1, α17α18α13α14λ2, α13α14α15α16λ3, α15α16α17α18λ4, α17α18α13α14λ5,

α13α14α15α16λ6, α15α16α17α18λ7, α17α18α13α14λ8, α13α14α15α16λ9).

The sets gn are given as follows;

• g0 = {e1, e2, . . . , e17}.

• g1 = {α1, α2, . . . , α18}.
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• g2 = {α1α2α3α4α5α6, α3α4α5α6α13α14, α5α6α13α14α15α16, α7α8α9α10α11α12,

α9α10α11α12α13α14, α11α12α13α14α15α16, α13α14α15α16α17α18,

α15α16α17α18α13α14, α17α18α13α14α15α16}

• For n ≥ 3 if n = 2r + 1, r ∈ N, the set {gn} is given by;

{(α1α2α3α4α5α6)(α13α14α15α16α17α18)r−1α13α14,

(α3α4α5α6α13α14)(α15α16α17α18α13α14)r−1α15α16,

(α5α6α13α14α15α16)(α17α18α13α14α15α16)r−1α17α18,

(α7α8α9α10α11α12)(α13α14α15α16α17α18)r−1α13α14,

(α9α10α11α12α13α14)(α15α16α17α18α13α14)r−1α15α16,

(α11α12α13α14α15α16)(α17α18α13α14α15α16)r−1α17α18,

(α13α14α15α16α17α18)rα13α14, (α15α16α17α18α13α14)rα15α16,

(α17α18α13α14α15α16)rα17α18}.

• For n ≥ 4 if n = 2r, r ∈ N, the set {gn} is given by;

{(α1α2α3α4α5α6)(α13α14α15α16α17α18)r−1, (α3α4α5α6α13α14)(α15α16α17α18α13α14)r−1,

(α5α6α13α14α15α16)(α17α18α13α14α15α16)r−1, (α7α8α9α10α11α12)(α13α14α15α16α17α18)r−1

(α9α10α11α12α13α14)(α15α16α17α18α13α14)r−1, (α11α12α13α14α15α16)(α17α18α13α14α15α16)r−1,

(α13α14α15α16α17α18)r, (α15α16α17α18α13α14)r, (α17α18α13α14α15α16)r}.

Looking at the length of the elements gn it is clear that this is a (6, 2)-stacked

monomial algebra. From [18], we know that since Λ is a (6, 2)-stacked algebra then

E(Λ) is generated in degrees 0, 1, 2 and 3. We have

The sets fn are given by

• f 0 = {f 0
i , for i = 1, . . . , 17}, f 0

i : eiλ 7→ eiλ+ r, else 7→ 0.

• f 1 = {f 1
i , for i = 1, . . . , 18}, f 1

i : t(αi)λ 7→ t(αi)λ+ r, else 7→ 0.

• f 2 = {f 2
i , for i = 1, . . . , 9}, f 2

i : t(g2
i )λ 7→ t(g2

i )λ+ r, else 7→ 0.

• f 3 = {f 3
i , for i = 1, . . . , 9}, f 3

i : t(g3
i )λ 7→ t(g3

i )λ+ r, else 7→ 0.

These are the generators of E(Λ). For n ≥ 4 the products are given in [18].

The Ext algebra, E(Λ), can be represented by quiver and relations, as described

in [21]. Let Γ be the quiver given by
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and let A = KΓ/I where I is the ideal generated by;

• α2α1, α3α2, α4α3, α5α4, α6α5, α8α7, α9α8, α10α9, α11α10, α12α11, α13α6,

α13α12, α13α18, α14α13, α15α14, α16α15, α17α16, α18α17,

• α13β1, α15β2, β2α2, α17β3, β3α4, α13β4, α15β5, β5α8, α17β6, β6α10, α13β7,

β7α6, β7α12, β7α18, α15β8, β8α14, α17β9, β9α16,

• α15γ1, α17γ2, γ2α2, α13γ3, γ3α4, α15γ4, α17γ5, γ5α8, α13γ6, γ6α10, α15γ7,

γ7α6, γ7α12, γ7α18, α17γ8, γ8α14, α13γ9, γ9α16,

• γ8γ1, γ9γ2, γ7γ3, γ8γ4, γ9γ5, γ7γ6, γ8γ7, γ9γ8, γ7γ9,

• β8γ1 − γ7β1, β9γ2 − γ8β2, β7γ3 − γ9β3, β8γ4 − γ7β4, β9γ5 − γ8β5,

β7γ6 − γ9β6, β8γ7 − γ7β7, β9γ8 − γ8β8, β7γ9 − γ9β9.

This algebra A is the algebra E(Λ) given by quiver and relations, where we write

αi for f 1
i , βi for f 2

i and γi for f 3
i . This gives the following result.
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Proposition 7.20. Let Λ be the algebra given in Example 7.19 and let A = KΓ/I as

defined above. Then A ∼= Ê(Λ) where αi, βi and γi are all in degree 1, corresponding

to the elements of Ê(Λ)1.

With this hat-degree grading, A is a Koszul algebra and we can show this by using

Gröbner bases, as in the previous example.

Let B be the basis of KΓ which consists of finite paths. Let the vertices be ordered

e1 > e2 > · · · > e17 and let the arrows be ordered α1 > α2 > · · · > α18 > β1 >

β2 > · · · > β9 > γ1 > γ2 > · · · > γ9. Let the admissible order on B be the length

lexicographic order as given in Definition 7.7.

Let H be the minimal generating set for I as given above, that is, H is the set

consisting of

• α2α1, α3α2, α4α3, α5α4, α6α5, α8α7, α9α8, α10α9, α11α10, α12α11, α13α6, α13α12,

α13α18, α13β1, α13β4, α13β7, α13γ3, α13γ6, α13γ9, α14α13, α15α14, α15β2, α15β5,

α15β8, α15γ1, α15γ4, α15γ7, α16α15, α17α16, α17β3, α17β6, α17β9, α17γ2, α17γ5,

α17γ8, α18α17,

• β2α2, β3α4, β5α8, β6α10, β7α6, β7α12, β7α18, β7γ3−γ9β3, β7γ6−γ9β6, β7γ9−γ9β9,

β8α14, β8γ1 − γ7β1, β8γ4 − γ7β4, β8γ7 − γ7β7, β9α16, β9γ2 − γ8β2, β9γ5 − γ8β5,

β9γ8 − γ8β8,

• γ2α2, γ3α4, γ5α8, γ6α10, γ7α6, γ7α12, γ7α18, γ7γ3, γ7γ6, γ7γ9, γ8α14, γ8γ1,

γ8γ4, γ8γ7, γ9α16, γ9γ2, γ9γ5, γ9γ8.

and let us index these elements hi, for i ∈ {1, . . . , 72}.

Proposition 7.21. The set H as given above is a reduced Gröbner basis of I.

Proof. We will show that the set H is a reduced Gröbner basis using Theorem 7.14.

It is clear that H is a subset of A consisting of non-zero elements, and 〈H〉 = 〈I〉.

Condition i) CTip(hi) is 1 for all i ∈ {1, . . . , 72}. This is clear from looking at the

set H.
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Condition ii) hi does not reduce over hj for i 6= j.

We now show that this condition is satisfied for all i 6= j. Assume hi reduces over hj

then there are elements u, v ∈ B such that uTip(hj)v ∈ Supp(hi). Looking at the

element Tip(hj) and the elements that are in Supp(hi), it is clear that they are all of

length 2 for all i, j, hence u, v ∈ Γ0. In particular, u = s(Tip(hj)) and v = t(Tip(hj)).

Therefore if hi reduces over hj then Tip(hj) ∈ Supp(hi). By inspection of H we can

see this is not the case. So hi does not reduce over hj for i 6= j.

Condition iii) every overlap difference for two (not necessarily distinct) members

of H always reduces to zero over H.

We now show that the elements of H satisfy this condition. Let us consider the set

H as two distinct subsets, let H1 be the set of monomial elements of H and let H2

be the set of non-monomial elements of H. Clearly, H1 ∪H2 = H.

Now, consider two arbitrary elements ofH1, it follows that in this set, hi = Tip(hi).

Assume we have elements p, q ∈ B such that Tip(hi)p = qTip(hj), with; Tip(hi)

does not divide q and Tip(hj) does not divide p. Then the overlap difference is

defined as o(hi, hj, p, q) = ( 1
CTip(hi)

)hip − ( 1
CTip(hj)

)qhj. Now, by condition i), we

know CTip(hi) = 1 and CTip(hj) = 1. So o(hi, hj, p, q) = hip − qhj and since

Tip(hi)p = hip, qTip(hj) = qhj, we have o(hi, hj, p, q) = 0.

Now we are left with the possibility of hi, hj ∈ H2 and hi ∈ H1, hj ∈ H2. We will

use the property l(p) = 1 = l(q), that is, p, q are arrows.

Let us consider two elements hi, hj ∈ H2. The second arrow of Tip(hi)p is γk and

the second arrow of qTip(hj) is βl. This cannot happen, so there are no overlap

differences except when i = j, which will be 0.

Finally, we look at the overlap difference of one monomial element and one non-

monomial element. Let us first consider hi ∈ H1 and hj ∈ H2, we will later consider

hi ∈ H2, hj ∈ H1. There will be some non-zero overlap differences here and we can

work through the possibilities to show that every overlap difference reduces to zero

over H.
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Now, let hj = h43 = β7γ3 − γ9β3. We know that the second arrow of the term

qTip(h43) is β7. So we need to find all hi with this property. For these next 9

relations, it is easy to see that there is only one possible overlap. Let hi = h16 =

α13β7. Then Tip(h43) = β7γ3 and Tip(h16) = α13β7. Let p = γ3 and q = α13. The

overlap difference is given by

o(hi, hj, p, q) = o(h16, h43, γ3, α13)

= α13β7γ3 − α13β7γ3 + α13γ9β3

= α13γ9β3.

This non-zero overlap difference can be reduced. Let λ = 1, u = e13, f = h19 =

α13γ9 and v = β3. Then o(h16, h43, γ3, α13) − λufv = 0. Hence this overlap can be

reduced to zero.

Let hj = h44 = β7γ6 − γ9β6. Let hi = h16 = α13β7, p = γ6 and q = α13. The

overlap difference is given by

o(hi, hj, p, q) = o(h16, h44, γ6, α13)

= α13β7γ6 − α13β7γ6 + α13γ9β6

= α13γ9β6.

This non-zero overlap difference can be reduced. Let λ = 1, u = e13, f = h19 =

α13γ9 and v = β6. Then o(h16, h44, γ6, α13) − λufv = 0. Hence this overlap can be

reduced to zero.

Similarly o(h16, h45, γ9, α13), o(h24, h47, γ1, α15), o(h24, h48, γ4, α15), o(h24, h49, γ7, α15),

o(h22, h51, γ2, α17), o(h22, h52, γ5, α17), o(h22, h53, γ8, α17) all have a single element of

H1 as a subpath and so these overlap differences all reduce to zero over H.

We now consider the overlap difference for hi ∈ H2, hj ∈ H1.

Let hi = h43 = β7γ3 − γ9β3. The possibilities for hj are those which have γ3 as

the first arrow, in this case, h56 = γ3α4 is the only possible overlap. Let p = α4 and

q = β7. The overlap difference is given by

o(hi, hj, p, q) = o(h43, h56, α4, β7)

= β7γ3α4 − γ9β3α4 − β7γ3α4

= −γ9β3α4.
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This non-zero overlap difference can be reduced. Let λ = −1, u = γ9, f = h38 =

β3α4 and v = e4. Then o(h43, h56, α4, β7) − λufv = 0. Hence this overlap can be

reduced to zero.

Let hi = h44 = β7γ6− γ9β6. The possibilities for hj are those which have γ6 as the

first arrow, in this case, h58 = γ6α10 is the only possible overlap. Let p = α10 and

q = β7. The overlap difference is given by

o(hi, hj, p, q) = o(h44, h58, α10, β7)

= β7γ6α10 − γ9β6α10 − β7γ6α10

= −γ9β6α10.

This non-zero overlap difference can be reduced. Let λ = −1, u = γ9, f = h40 =

β6α10 and v = e9. Then o(h44, h58, α10, β7) − λufv = 0. Hence this overlap can be

reduced to zero.

Let hi = h45 = β7γ9 − γ9β9. The possibilities for hj are those which have γ9 as

the first arrow, in this case there are four possibilities; h69 = γ9α16, h70 = γ9γ2, h71 =

γ9γ5, h72 = γ9γ8. These need to be looked at separately.

i) Let us take hj = h69 = γ9α16 and let p = α16, q = β7. The overlap difference

is given by

o(hi, hj, p, q) = o(h45, h69, α16, β7)

= β7γ9α16 − γ9β9α16 − β7γ9α16

= −γ9β9α16.

This non-zero overlap difference can be reduced. Let λ = −1, u = γ9, f =

h50 = β9α16 and v = e15. Then o(h45, h69, α16, β7) − λufv = 0. Hence this

overlap can be reduced to zero.

ii) Let us take hj = h70 = γ9γ2 and let p = γ2, q = β7. The overlap difference is

given by

o(hi, hj, p, q) = o(h45, h70, γ2, β7)

= β7γ9γ2 − γ9β9γ2 − β7γ9γ2

= −γ9β9γ2.
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This non-zero overlap difference can be reduced. Let λ1 = −1, u1 = γ9, f1 =

h51 = β9γ2 − γ8β2 and v1 = e3. Then

o(h45, h70, γ2, β7)− λ1u1f1v1 = −γ9β9γ2 + γ9β9γ2 − γ9γ8β2

= −γ9γ8β2.

This can be further reduced. Let λ2 = −1, u2 = e12, f2 = h72 = γ9γ8 and

v2 = β2. Then o(h45, h70, γ2, β7) − λ1u1f1v1) − λ2u2f2v2 = 0. Hence this

overlap can be reduced to zero.

iii) Let us take hj = h71 = γ9γ5 and let p = γ5, q = β7. The overlap difference is

given by

o(hi, hj, p, q) = o(h45, h71, γ5, β7)

= β7γ9γ5 − γ9β9γ5 − β7γ9γ5

= −γ9β9γ5.

This non-zero overlap difference can be reduced. Let λ1 = −1, u1 = γ9, f1 =

h52 = β9γ5 − γ8β5 and v1 = e8. Then

o(h45, h71, γ5, β7)− λ1u1f1v1 = −γ9β9γ5 + γ9β9γ5 − γ9γ8β5

= −γ9γ8β5.

This can be further reduced. Let λ2 = −1, u2 = e12, f2 = h72 = γ9γ8 and

v2 = β5. Then o(h45, h71, γ5, β7) − λ1u1f1v1) − λ2u2f2v2 = 0. Hence this

overlap can be reduced to zero.

iv) Let us take hj = h72 = γ9γ8 and let p = γ8, q = β7. The overlap difference is

given by

o(hi, hj, p, q) = o(h45, h72, γ8, β7)

= β7γ9γ8 − γ9β9γ8 − β7γ9γ8

= −γ9β9γ8.

This non-zero overlap difference can be reduced. Let λ1 = −1, u1 = γ9, f1 =

h53 = β9γ8 − γ8β8 and v1 = e14. Then

o(h45, h72, γ8, β7)− λ1u1f1v1 = −γ9β9γ8 + γ9β9γ8 − γ9γ8β8

= −γ9γ8β8.

This can be further reduced. Let λ2 = −1, u2 = e12, f2 = h72 = γ9γ8 and

v2 = β8. Then o(h45, h72, γ8, β7) − λ1u1f1v1) − λ2u2f2v2 = 0. Hence this

overlap can be reduced to zero.
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For hi = h47 or hi = h48 there are no possible hj, therefore no possible overlaps.

For hi = h50 = β8γ7 − γ7β7. The possibilities for hj are those which have γ7 as

the first arrow, in this case there are six possibilities; h59 = γ7α6, h60 = γ7α12, h61 =

γ7α18, h62 = γ7γ3, h63 = γ7γ6, h64 = γ7γ9. In the same way as above for h45 we look

at the overlaps separately and we see that we get;

• o(h50, h59, α6, β8) = −γ7β7α6, which reduces using λ = −1, u = γ7,

f = h41 = β7α6, v = e6 then o(h50, h59, α6, β8)− λufv = 0

• o(h50, h60, α12, β8) = −γ7β7α12, which reduces using λ = −1, u = γ7,

f = h42 = β7α12, v = e11 then o(h50, h60, α12, β8)− λufv = 0

• o(h50, h61, α18, β8) = −γ7β7α18, which reduces using λ = −1, u = γ7,

f = h43 = β7α18, v = e17 then o(h50, h61, α18, β8)− λufv = 0

• o(h50, h62, γ3, β8) = −γ7β7γ3, which reduces using λ1 = −1, u1 = γ7,

f1 = h44 = β7γ3 − γ9β3, v1 = e5 then o(h50, h62, α6, β8)− λ1u1f1v1 = −γ7γ9β3,

this can be further reduced using λ2 = −1, u2 = e14f2 = h64 = γ7γ9, v2 = β3

then o(h50, h62, γ3, β8)− λ1u1f1v1)− λ2u2f2v2 = 0

• o(h50, h63, γ6, β8) = −γ7β7γ6, which reduces using λ1 = −1, u1 = γ7,

f1 = h45 = β7γ6 − γ9β6, v1 = e10 then o(h50, h63, γ6, β8)− λ1u1f1v1 = −γ7γ9β6,

this can be further reduced using λ2 = −1, u2 = e14f2 = h64 = γ7γ9, v2 = β6

then o(h50, h63, γ6, β8)− λ1u1f1v1)− λ2u2f2v2 = 0

• o(h50, h64, γ9, β8) = −γ7β7γ9, which reduces using λ1 = −1, u1 = γ7,

f1 = h46 = β7γ9 − γ9β9, v1 = e16 then o(h50, h64, γ9, β8)− λ1u1f1v1 = −γ7γ9β9,

this can be further reduced using λ2 = −1, u2 = e14f2 = h64 = γ7γ9, v2 = β9

then o(h50, h64, γ9, β8)− λ1u1f1v1)− λ2u2f2v2 = 0

For hi = h52 = β9γ2−γ8β2. The only possible hj = h55 = γ2α2 and o(h52, h55, α2, β9)

= −γ8β2α2, which reduces using λ = −1, u = γ8, f = h37 = β2α2, v = e2 then

o(h52, h55, α2, β9)− λufv = 0.
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For hi = h53 = β9γ5−γ8β5. The only possible hj = h57 = γ5α8 and o(h53, h57, α8, β9)

= −γ8β5α8, which reduces using λ = −1, u = γ8, f = h39 = β5α8, v = e7 then

o(h53, h57, α8, β9)− λufv = 0.

For hi = h54 = β9γ8 − γ8β8. The possibilities for hj are those which have γ8 as

the first arrow, in this case there are four possibilities; h65 = γ8α14, h66 = γ8γ1, h67 =

γ8γ4, h68 = γ8γ7. In the same way as above we look at the overlaps separately and

see that we get;

• o(h54, h65, α14, β9) = −γ8β8α14, which reduces using λ = −1, u = γ8,

f = h47 = β7α6, v = e13 then o(h54, h65, α14, β9)− λufv = 0

• o(h54, h66, γ1, β9) = −γ8β8γ1, which reduces using λ1 = −1, u1 = γ8,

f1 = h48 = β8γ1 − γ7β1, v1 = e1 then o(h54, h66, γ1, β9)− λ1u1f1v1 = −γ8γ7β1,

this can be further reduced using λ2 = −1, u2 = e16f2 = h68 = γ8γ7, v2 = β1

then o(h54, h66, γ1, β9)− λ1u1f1v1)− λ2u2f2v2 = 0

• o(h54, h67, γ4, β9) = −γ8β8γ4, which reduces using λ1 = −1, u1 = γ8,

f1 = h49 = β8γ4 − γ7β4, v1 = e1 then o(h54, h67, γ4, β9)− λ1u1f1v1 = −γ8γ7β4,

this can be further reduced using λ2 = −1, u2 = e16f2 = h68 = γ8γ7, v2 = β4

then o(h54, h67, γ4, β9)− λ1u1f1v1)− λ2u2f2v2 = 0

• o(h54, h68, γ7, β9) = −γ8β8γ7, which reduces using λ1 = −1, u1 = γ8,

f1 = h50 = β8γ7 − γ7β7, v1 = e12 then o(h54, h68, γ7, β9)− λ1u1f1v1 = −γ8γ7β7,

this can be further reduced using λ2 = −1, u2 = e16f2 = h68 = γ8γ7, v2 = β7

then o(h54, h68, γ7, β9)− λ1u1f1v1)− λ2u2f2v2 = 0.

Thus we have now shown that for all elements hi, hj in the set H, the overlap

difference of two elements reduces to zero. Therefore the setH satisfies the hypothesis

of Theorem 7.14, and H is a reduced Gröbner basis of the ideal I. �

Now we have a reduced Gröbner basis of I, we can use Theorem 7.15 to give the

following result.
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Theorem 7.22. Let Λ be the (6, 2)-stacked monomial algebra of Example 7.19. Let

A = Ê(Λ) be the Ext algebra of Λ with the hat-degree grading. Then A is a Koszul

algebra.

Proof. It is clear by looking at H that it consists of quadratic elements, and the

proof immediately follows from Theorem 7.15, part 2). �

7.5. Further Examples and a Generalisation. We have seen that we can regrade

E(Λ) in the hat-degree, to give a Koszul algebra, for two examples. This raises the

question, can this be done for all (D,A)-stacked algebras? The answer is no. If Λ

is a (D,A)-stacked algebra with D = 2A, A 6= 1 and gldim ≥ 6, then we cannot

regrade E(Λ) in this way. We illustrate this with an example, with a generalised

theorem following in Theorem 7.25.

Example 7.23. Let Q be the quiver given by

2
α2

%%
1

α1
99

α7 %%

3

α3

��

7
α8

99

6

α6

OO

4

α4yy
5

α5

ee

and let Λ = KQ/I, where I = 〈(α1α2 − α7α8)α3α4, α3α4α5α6, α5α6(α1α2 − α7α8)〉.

Using Definition 8.1, we can construct this algebra from Example 4.7, which is a

Koszul algebra (so d = 2). We set A = 2, D = dA to obtain this (4, 2)-stacked

algebra Λ. This is also the algebra of Example 3.10, where we constructed a minimal

projective resolution of Λ/r.
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We can represent the Ext algebra, E(Λ), by quiver and relations. Let Γ be the

quiver given by

2
α1

xx
1γ1 66

α6

��

β2
// 3 γ2hh

α2

ff

α8

xx

β3

��

7

α7

ff

6

α5
&&

4

α3

OO

5

γ3

VV

α4

88

β1

XX

and let A = KΓ/I, where I is the ideal generated by;

• αiαj for all i, j ∈ {1, . . . , 8}

• αiβj, βjαi, for all i ∈ {1, . . . , 8} and for all j ∈ {1, 2, 3}

• αiγj, γjαi for all i ∈ {1, . . . , 8} and for all j ∈ {1, 2, 3}

• β3γ3 − γ2β3, β2γ2 − γ1β2, β1γ1 − γ3β1

• β1β2β3 − (γ3)2, β2β3β1 − (γ1)2, β3β1β2 − (γ2)2.

Then A ∼= E(Λ), where we write αi for f 1
i , βi for f 2

i and γi for f 3
i .

Proposition 7.24. Let Λ be the algebra of Example 7.23 and let A = KΓ/I as given

above. Then there is no regrading so that A is Koszul.

Proof. Assume that we can give this algebra a grading so that it is Koszul. By

definition we need the generators to be in degree 0 and 1. So we have to have

Ê0(Λ) = Ext0
Λ(Λ0,Λ0),

Ê1(Λ) = Ext1
Λ(Λ0,Λ0)⊕ Ext2

Λ(Λ0,Λ0)⊕ Ext3
Λ(Λ0,Λ0)
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with

Ê2 ⊇ Ê1(Λ)× Ê1(Λ)

and

Ê3 ⊇ Ê1(Λ)× Ê1(Λ)× Ê1(Λ).

Now consider the element β1β2β3 in A. We know that βi ∈ Ext2
Λ(Λ0,Λ0) ⊂

Ê1(Λ) so β1β2β3 ∈ Ê1(Λ) × Ê1(Λ) × Ê1(Λ) ⊆ Ê3(Λ). However β1β2β3 = (γ3)2

and (γ3)2 ∈ Ext3
Λ(Λ0,Λ0) ⊂ Ê1(Λ) so (γ3)2 ∈ Ê1(Λ) × Ê1(Λ) ⊆ Ê2(Λ). Therefore

β1β2β3 ∈ Ê2(Λ) ∩ Ê3(Λ), which is a contradiction. �

Example 7.23 is not an isolated case. There is a subset of (D,A)-stacked algebras

for which we cannot regrade the Ext algebra to be Koszul. This is made clear in the

following theorem.

Theorem 7.25. Let Λ be a (D,A)-stacked algebra, with D = 2A,A > 1 and

gldim Λ ≥ 6. Then there is no regrading such that the Ext algebra is Koszul.

Proof. Let Λ be a (D,A)-stacked algebra, with D = 2A,A > 1 and gldim Λ ≥ 6. For

E(Λ) to be Koszul we need a hat-degree grading Ê(Λ) such that Ê(Λ) is generated

in degrees 0 and 1. From Theorem 5.6 we know that E(Λ) is generated in degrees

0, 1, 2, 3 and cannot be generated in degrees 0, 1 and 2. So we can assume that we

require Ê(Λ) to have the following structure:

Ê0(Λ) = Ext0
Λ(Λ0,Λ0)

Ê1(Λ) = Ext1
Λ(Λ0,Λ0)⊕ Ext2

Λ(Λ0,Λ0)⊕ Ext3
Λ(Λ0,Λ0).

Assume that there is a grading, so Ê1(Λ)× Ê1(Λ) ⊆ Ê2(Λ) and Ê1(Λ)× Ê1(Λ)×

Ê1(Λ) ⊆ Ê3(Λ).

Now, let us consider Ext6
Λ(Λ0,Λ0). This is non-empty, since gldim Λ ≥ 6. From

Proposition 5.2 and using the fact that D = 2A, we know

Ext6
Λ(Λ0,Λ0) = Ext3

Λ(Λ0,Λ0)× Ext3
Λ(Λ0,Λ0),

Ext6
Λ(Λ0,Λ0) = Ext4

Λ(Λ0,Λ0)× Ext2
Λ(Λ0,Λ0) and

Ext4
Λ(Λ0,Λ0) = Ext2

Λ(Λ0,Λ0)× Ext2
Λ(Λ0,Λ0).
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So, Ext6
Λ(Λ0,Λ0) = Ext3

Λ(Λ0,Λ0)× Ext3
Λ(Λ0,Λ0)

= Ext2
Λ(Λ0,Λ0)× Ext2

Λ(Λ0,Λ0)× Ext2
Λ(Λ0,Λ0).

We can assume that there exists a non-zero element z ∈ Ext6
Λ(Λ0,Λ0) such that

z = x1x2x3 =
∑
yiy
′
i, for xj ∈ Ext2

Λ(Λ0,Λ0) and yi, y
′
i ∈ Ext3

Λ(Λ0,Λ0). But yi, y
′
i ∈

Ê1(Λ) so
∑
yiy
′
i ∈ Ê2(Λ) and x1, x2, x3 ∈ Ê1(Λ) so x1x2x3 ∈ Ê3(Λ). This contradicts

the definition of grading. �

The necessity of the hypothesis gldim ≥ 6 is illustrated in the following example.

Example 7.26. Let Q be the quiver given by

1
α1
// 2

α2
// 3

α3
// 4

α4
// 5

α5
// 6

α6
// 7

and let I = 〈α1α2α3α4, α3α4α5α6〉. Let Λ = KQ/I. Then Λ is a monomial algebra,

so using [18] we have that Λ is a (4, 2)-stacked algebra with a minimal projective

resolution given by

0 // P 3 // P 2 // P 1 // P 0 // Λ0
// 0.

This algebra has global dimension 3. It is clear that ExtnΛ(Λ0,Λ0) ∼= Hom(P n,Λ0) = 0

for n ≥ 4. Let Ê0(Λ) = Ext0
Λ(Λ0,Λ0) and let Ê1(Λ) = Ext1

Λ(Λ0,Λ0)⊕Ext2
Λ(Λ0,Λ0)⊕

Ext3
Λ(Λ0,Λ0). Since Λ is a (4, 2)-stacked algebra we know from Propositions 6.4 and

6.5 that Ext1
Λ(Λ0,Λ0) × Ext1

Λ(Λ0,Λ0) = 0 and Ext1
Λ(Λ0,Λ0) × Ext2

Λ(Λ0,Λ0) = 0 =

Ext2
Λ(Λ0,Λ0) × Ext1

Λ(Λ0,Λ0). Thus the Ext algebra Ê(Λ) = Ê0(Λ) ⊕ Ê1(Λ) is a

graded algebra with this hat-degree grading.

We have g1
i = αi for i = 1, . . . , 6, g2

1 = α1α2α3α4, g
2
2 = α3α4α5α6 and g3

1 =

α1α2α3α4α5α6. Let fni be the Λ-module homomorphism P n → Λ/r given by

t(gnj ) 7→

 t(gni ) if i = j

0 otherwise
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so that {fni } is a K-basis of E(Λ). Then fni f
m
j = 0 for all m ≥ 1, n ≥ 1, and all i

and j. Thus Ê(Λ) is a quadratic monomial algebra and hence is a Koszul algebra

with this regrading.

We have now shown 3 examples of our regrading that result in a Koszul algebra,

and a collection of (D,A)-stacked algebras whose Ext algebra is not Koszul under

regrading. A future research project is to investigate the regrading further. In

particular the use of overlaps to construct the Ext algebra of a monomial algebra as

given by Green and Zacharia in [21] may provide a way of showing that our regrading

on the Ext algebra of a (D,A)-stacked monomial algebra with D 6= 2A is such that

this regraded Ext algebra is Koszul.

In the next chapter we take a different approach in studying (D,A)-stacked alge-

bras, and give a precise method to construct a (D,A)-stacked algebra from a d-Koszul

algebra.
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8. Constructing (D,A)-stacked Algebras

Our aim in this section is to construct a (D,A)-stacked algebra, Λ̃, from a given

d-Koszul algebra, Λ, where D = dA, A ≥ 1 and d ≥ 2. Given this relationship

between Λ and Λ̃, then, if we know the structure of the smaller algebra Λ, we hope

to obtain homological information about the infinite family of algebras Λ̃. We will

consider this question later in Chapter 9.

Fix d ≥ 2. We assume throughout this section that Λ = KQ/I is a d-Koszul

algebra. Thus I is an ideal of KQ generated by homogeneous elements of length

d. Let A ≥ 1 and set D = dA. To construct our (D,A)-stacked algebra, we begin

by using the quiver Q and ideal I of KQ to define a new quiver Q̃ and ideal Ĩ of

KQ̃. We then set Λ̃ = KQ̃/Ĩ. In order to show that Λ̃ is a (D,A)-stacked algebra,

we construct a minimal projective resolution of Λ̃/r̃ as a right Λ̃-module. We will

then be able to see that each of the projective modules in this resolution of Λ̃/r̃ is

generated in the correct degree. Our main result is Theorem 8.15 in which we show

that Λ̃ is a (D,A)-stacked algebra. We set r to be the Jacobson radical of Λ and r̃

to be the Jacobson radical of Λ̃.

In Chapter 3, we described the sets gn from [20] which determine a minimal

projective resolution of Λ/r. We recall that

• g0 is the set of vertices of Q,

• g1 is the set of arrows of Q, and

• g2 is a minimal generating set of I consisting of uniform elements.

We start with our construction of the quiver Q̃ and ideal Ĩ of KQ̃.

Definition 8.1. Let Q be a finite quiver and let I be an ideal of KQ which is

generated by homogeneous elements of length d where d ≥ 2. Let A ≥ 1 and set

D = dA.
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• We construct the new quiver Q̃ as follows. For each arrow α in Q we have

A arrows α1, α2, . . . , αA in Q̃ and additional vertices v1, v2, . . . , vA−1 in Q̃, in

such a way that :

s(α1) = s(α)

t(α1) = s(α2) = v1

t(α2) = s(α3) = v2

...
...

t(αA−1) = s(αA) = vA−1

t(αA) = t(α)

and the only arrows incident with the vertex vj are αj and αj+1. In this way

the arrow α in Q corresponds to a path α1 · · ·αA of length A in Q̃ and the

set of vertices of Q is contained in the set of vertices of Q̃.

The following diagram illustrates this process of defining Q̃ from Q.

in Q in Q̃

e1

α
// e2 e1

α1
// v1

α2
// · · ·

αA−1
// vA−1

αA
// e2

• We construct the ideal Ĩ of KQ̃ as follows. Let g2 = {g2
1, g

2
2, . . . , g

2
m} be the

minimal generating set of uniform elements of I. Write g2
i =

∑
cjαj1αj2 · · ·αjd ,

for i = 1, . . . ,m where ci ∈ K and the αjk are arrows in Q. The arrow αjk

corresponds to the path αjk,1αjk,2 · · ·αjk,A in Q̃.

Define g̃2
i =

∑
cj(αj1,1αj1,2 · · ·αj1,A)(αj2,1αj2,2 · · ·αj2,A) · · · (αjd,1αjd,2 · · ·αjd,A),

and let g̃2 = {g̃2
1, g̃

2
2, . . . , g̃

2
m}. Define Ĩ to be the ideal of KQ̃ generated by

the set g̃2.

• Let Λ̃ = KQ̃/Ĩ.

We now have our new algebra Λ̃ = KQ̃/Ĩ. If m0 is the number of vertices of Q,

and if m1 the number of arrows of Q then the quiver Q̃ has m0 +m1(A− 1) vertices
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and m1A arrows. It is clear from the construction that Λ̃ is again a finite-dimensional

algebra.

Proposition 8.2. With the notation above, each of the elements g̃2
i in the minimal

generating set of Ĩ has length D.

Proof. Since every arrow in Q has been replaced by A arrows in Q̃, it follows that

g̃2
i is homogeneous with l(g̃2

i ) = d · A = D. �

We now illustrate this construction with two examples. Our first example uses a

monomial d-Koszul algebra.

Example 8.3. Let Q be the quiver given by

e2
α2

  
e1

α1
>>

e3
α3

oo

and let I = 〈α1α2α3, α2α3α1, α3α1α2〉. Let Λ = KQ/I. We have previously seen in

Example 4.6 that this is a 3-Koszul monomial algebra.

Let A ≥ 1 and let D = 3A. Let Q̃ be the quiver given by

e2

α2,1

��
. .
.

α1,A
??

v2,1

α2,2

��

v1,1

α1,2

@@

. . .

α2,A

��
e1

α1,1
??

· · ·
α3,A

oo v3,1
α3,2

oo e3
α3,1

oo

and let Ĩ = 〈α1,1 · · ·α1,Aα2,1 · · ·α2,Aα3,1 · · ·α3,A, α2,1 · · ·α2,Aα3,1 · · ·α3,Aα1,1 · · ·α1,A,

α3,1 · · ·α3,Aα1,1 · · ·α1,Aα2,1 · · ·α2,A〉. Let Λ̃ = KQ̃/Ĩ. Then Λ̃ is the related algebra.
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It is clear that Λ̃ is a monomial algebra. The fact that Λ̃ is a (D,A)-stacked algebra

follows from Chapter 4 where we discussed the (D,A)-stacked monomial algebras of

[19].

Our second example begins with the Koszul algebra of Example 4.7.

Example 8.4. Let Q be the quiver given by

1
α1 ++
α4

33 2

α2

yy
3

α3

XX

and let I = 〈(α1 − α4)α2, α2α3, α3(α1 − α4)〉. Let Λ = KQ/I. We have already

seen in Chapter 4 that this is a Koszul algebra and we remark again, that this is

a monomial algebra with the specified change of generators. The ideal is given by

non-monomial generators.

Let Q̃ be the quiver given by

v1,1
// · · · // v1,A−1

α1,A

##
1

α1,1

;;

α4,1

##

2

α2,1

��
v3,A−1

α3,A

OO

v4,1
// · · · // v4,A−1

α4,A

;;

v2,1

α2,2

||. . .

α3,A−1

bb

. .
.

α2,A

||
3

α3,1

``

and let Ĩ = 〈(α1,1 · · ·α1,A − α4,1 · · ·α4,A)α2,1 · · ·α2,A, α2,1 · · ·α2,Aα3,1 · · ·α3,A,

α3,1 · · ·α3,A(α1,1 · · ·α1,A − α4,1 · · ·α4,A)〉. Let Λ̃ = KQ̃/Ĩ. It is clear that Λ̃ is not

a monomial algebra. This construction produces a non-monomial (2A,A)-stacked

algebra, Λ̃. The proof of this will follow as we prove the general case.
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Let Λ = KQ/I be a d-Koszul algebra and let Λ̃ be the algebra given by the

construction above, for some A ≥ 1 and D = dA. In order to prove Λ̃ is a (D,A)-

stacked algebra, we begin by defining a map θ : Λ → Λ̃. Then given a minimal

projective resolution, (P n, dn), of Λ/r as a right Λ-module, we use the maps dn and

θ to define projective Λ̃-modules P̃ n and maps d̃n : P̃ n → P̃ n−1. We then show that

(P̃ n, d̃n) is indeed a minimal projective resolution of Λ̃/r̃ as a right Λ̃-module. This

will enable us to show Λ̃ is a (D,A)-stacked algebra.

Definition 8.5. We keep the above notation. Let θ∗ : KQ → KQ̃ be the map

defined as follows;

θ∗(e) = e for e ∈ Q0,

θ∗(α) = α1α2 · · ·αA for each arrow in Q,

θ∗(γ1γ2 · · · γr) = θ∗(γ1)θ∗(γ2) · · · θ∗(γr), where γi are arrows in KQ,

θ∗(c1γ1 + c2γ2) = c1(θ∗(γ1)) + c2(θ∗(γ2)), for c1, c2 ∈ K, γ1, γ2 ∈ KQ.

The map θ∗ is a K-algebra homomorphism and is 1−1, by construction. It follows

that g̃2
i = θ∗(g2

i ) so the ideal Ĩ is generated by the elements θ∗(g2
i ), where {g2

i } is a

minimal generating set of uniform elements of I.

Definition 8.6. We keep the above notation. Define θ : KQ/I → KQ̃/Ĩ by

θ(x+ I) = θ∗(x) + Ĩ for all x ∈ KQ.

From the definition of Ĩ it is straightforward to verify that θ is well-defined, a

K-algebra homomorphism and 1− 1.

Let (P n, dn) be a minimal projective resolution of Λ/r as a right Λ-module as

constructed by Green, Solberg and Zacharia in [20]. We recall from Chapter 3 that

• P n =
⊕

i t(g
n
i )Λ,

• d0 : P 0 → Λ/r is the canonical surjection given by d0(eλ) = eλ+ r for e ∈ Q0.

• d1 : P 1 → P 0 is defined by d1(t(α)λ) = αλ, where the entry αλ is in the summand

of P 0 corresponding to s(α), for each α ∈ Q1.

• Let g2
i ∈ g2. Then g2

i =
∑

j αjβj, where αj is an arrow in Q and βj ∈ KQ. The
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map d2 : P 2 → P 1 is such that d2(t(g2
i )λ) has entry βjλ in the summand of P 1

corresponding to t(αj).

• Let n ≥ 3 with gni ∈ gn. Then gni =
∑

j g
n−1
j qj, with qj ∈ KQ. The map

dn : P n → P n−1 is such that dn(t(gni )λ) has entry t(gn−1
j )qjλ in the summand of

P n−1 corresponding to t(gn−1
j ). Moreover, if n is odd, n = 2r + 1, r ≥ 1, we have

l(qj) = 1, since l(gni ) = rd + 1 and l(gn−1
j ) = rd. If n is even, n = 2r, r ≥ 2, then

l(qj) = d− 1, since l(gni ) = rd and l(gn−1
j ) = (r − 1)d+ 1.

We now use P n, dn and θ∗ to find a minimal projective resolution of Λ̃/r̃.

Definition 8.7. Define the sets g̃n, for n ≥ 0, as follows. Let

• g̃0 be the set of vertices of Q̃,

• g̃1 be the set of arrows of Q̃,

• g̃2 be the generating set of Ĩ as given in Definition 8.1.

• For n ≥ 3, we define g̃ni = θ∗(gni ) for each gni ∈ gn, and set g̃n = {g̃ni }.

Observe that g̃2
i = θ∗(g2

i ) for each g2
i ∈ g2. Moreover, for n ≥ 3, it follows from

above that we have

g̃ni = θ∗(gni )

= θ∗(
∑

j g
n−1
j qj)

=
∑

j θ
∗(gn−1

j qj)

=
∑

j g̃
n−1
j θ∗(qj),

where gni =
∑

j g
n−1
j qj for some qj ∈ KQ.

Proposition 8.8. Let Λ be a d-Koszul algebra, with d ≥ 2, and Λ̃ be the related

algebra as defined above, with D = dA and A ≥ 1. Let n ≥ 2, let gni ∈ KQ and

g̃ni ∈ KQ̃. Then s(gni ) = s(g̃ni ) and t(gni ) = t(g̃ni ) under the identification of Q0 as a

subset of Q̃0.
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Proof. For n ≥ 2,

g̃ni = θ∗(gni )

= θ∗(s(gni )gni t(g
n
i ))

= θ∗(s(gni ))θ∗(gni )θ∗(t(gni ))

= s(gni )g̃ni t(g
n
i ) by definition of θ∗.

Hence s(gni ) = s(g̃ni ) and t(gni ) = t(g̃ni ). �

Since each of the sets gn consists of uniform elements, it follows that each of the

sets g̃n also consists of uniform elements. So we may define P̃ n =
⊕

i t(g̃
n
i )Λ̃, for all

n ≥ 0.

We now need to define maps d̃n : P̃ n → P̃ n−1. Then we will show in Proposition

8.14 that (P̃ n, d̃n) is a minimal projective resolution of Λ̃/r̃ as a right Λ̃-module.

Given the maps θ and dn, we can construct the following diagram:

· · · // Pn
dn //

θn
��

Pn−1
dn−1

//

θn−1

��

· · · // P 2
d2

//

θ2
��

P 1
d1

//

θ1
��

P 0
d0

//

θ0
��

Λ/r //

θ̄
��

0

· · · // P̃n // P̃n−1 // · · · // P̃ 2 // P̃ 1 // P̃ 0 // Λ̃/r̃ // 0

where the maps θn : P n → P̃ n and θ̄ : Λ/r → Λ̃/r̃ are induced from the map θ as

given in Definition 8.6, that is, θn and θ̄ are K-module homomorphisms given by:

θ0 : P 0 → P̃ 0, θ0(eλ) = eθ(λ)

θ1 : P 1 → P̃ 1, θ1(t(α)λ) = t(αA)θ(λ)

θn : P n → P̃ n, θn(t(gni )λ) = t(g̃ni )θ(λ), for all n ≥ 2

θ̄ : Λ/r→ Λ̃/r̃, θ̄(λ+ r) = θ(λ) + r̃

for all e ∈ Q0, all arrows α ∈ Q1, with θ∗(α) = α1 · · ·αA, and all λ ∈ Λ.

It is clear that since θ is well-defined and 1 − 1, then θn, for all n ≥ 0, and θ̄ are

also well-defined and 1− 1 .

The first stage is to show that θ̄ and θn are Λ-module homomorphisms, for all

n ≥ 0. We start by showing that we can define Λ̃/r̃ and P̃ n as right Λ-modules.
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Definition 8.9. We define Λ̃/r̃ to be a non-unital right Λ-module via the map θ by

(λ̃+ r̃) · µ = (λ̃+ r̃)θ(µ), for all λ̃+ r̃ ∈ Λ̃/r̃ and all µ ∈ Λ.

We define P̃ n to be a non-unital right Λ-module via the map θ, where for all

eλ̃ ∈ P̃ n and all µ ∈ Λ we have eλ̃ · µ = eλ̃ θ(µ).

Proposition 8.10. The maps θ̄ and θn for n ≥ 0, are right Λ-module homomor-

phisms.

Proof. We start with θ̄ and need to show that θ̄((λ + r)µ) = θ̄(λ + r) · µ for all

λ, µ ∈ Λ. We have θ̄((λ + r)µ) = θ̄(λµ + r) = θ(λµ) + r̃. On the other side we have

θ̄(λ+ r) · µ = (θ(λ) + r̃) · µ = (θ(λ) + r̃)θ(µ) = θ(λ)θ(µ) + r̃ = θ(λµ) + r̃. Hence θ̄ is

a right Λ-module homomorphism.

Let n ≥ 0. We now consider θn and need to show that θn(eλµ) = θn(eλ) ·µ, where

e ∈ Q0 and λ, µ ∈ Λ. From the definition, we have θn(eλµ) = eθ(λµ) = eθ(λ)θ(µ).

Now θn(eλ) ·µ = θn(eλ)θ(µ) = eθ(λ)θ(µ). Hence θn(eλµ) = θn(eλ)µ and θn is a right

Λ-module homomorphism as required. �

Now we define Λ̃-module homomorphisms d̃n : P̃ n → P̃ n−1, that are analogous to

the maps dn : P n → P n−1.

Definition 8.11. Keeping the same notation, let Λ̃ = KQ̃/Ĩ, let P̃ n =
⊕

i t(g̃
n
i )Λ̃

and let λ̃ ∈ Λ̃.

• For n = 0, we define d̃0 : P̃ 0 → Λ̃/r̃ to be the canonical surjection given by

d̃0(ẽλ̃) = ẽλ̃+ r̃, for all ẽ ∈ Q̃0.

• Let n = 1 and let α̃ be an arrow in Q̃1. We define d̃1 : P̃ 1 → P̃ 0 to be the

Λ̃-module homomorphism given by d̃1(t(α̃)λ̃) = α̃λ̃, where the entry α̃λ̃ is in

the summand of P̃ 0 corresponding to s(α̃).

• Let n = 2 and let g̃2
i ∈ g̃2. We can write g̃2

i =
∑

j α̃j η̃j, where η̃j ∈ KQ̃ and

α̃j is an arrow in Q̃. We define the map d̃2 : P̃ 2 → P̃ 1 to be the Λ̃-module

homomorphism such that d̃2(t(g̃2
i )λ̃) has entry η̃jλ̃ in the summand of P̃ 1

corresponding to t(α̃j).
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• Let n ≥ 3 and let g̃ni ∈ g̃n. We may write g̃ni =
∑

j g̃
n−1
j θ∗(qj). Then we define

d̃n : P̃ n → P̃ n−1 to be the Λ̃-module homomorphism such that d̃n(t(g̃ni )λ̃) has

entry t(g̃n−1
j )θ(qj)λ̃ in the summand of P̃ n−1 corresponding to t(g̃n−1

j ). Thus

d̃n(t(g̃ni )λ̃) = θn−1(dn(t(gni )))λ̃.

Remark. The Λ̃-module homomorphisms d̃n : P̃ n → P̃ n−1 are also Λ-module homo-

morphisms when we consider P̃ n and P̃ n−1 as right Λ-modules. For, suppose λ̃ ∈ Λ̃

and µ ∈ Λ. Then

d̃n(t(g̃ni )λ̃ · µ) = d̃n(t(g̃ni )λ̃θ(µ))

= d̃n(t(g̃ni )λ̃)θ(µ)

= d̃n(t(g̃ni )λ̃) · µ.

We now look at whether we have a commutative diagram using the maps we have

defined, that is, do we have θn−1 ◦ dn = d̃n ◦ θn.

Proposition 8.12. Let A > 1. In the following diagram of right Λ-modules

· · · // Pn
dn

//

θn

��

Pn−1 //

θn−1

��

· · · // P 2
d2

//

θ2

��

P 1
d1

//

θ1

��

P 0
d0

//

θ0

��

Λ/r //

θ̄

��

0

n 2 1 0

· · · // P̃n
d̃n

// P̃n−1 // · · · // P̃ 2

d̃2

// P̃ 1

d̃1

// P̃ 0

d̃0

// Λ̃/r̃ // 0

the squares, n , commute for n = 0 and n ≥ 3. The squares 1 and 2 do not

commute.

Proof. Let n = 0. Then the square labelled 0 is given as follows;

P 0
d0

//

θ0
��

Λ/r

θ̄
��

P̃ 0

d̃0

// Λ̃/r̃

Let y be an element of P 0 with entry eλ in the summand corresponding to e and 0

otherwise. Then d0(y) = eλ+ r. So θ̄ ◦ d0(y) = θ(eλ) + r̃.
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On the other hand, θ0(y) has entry θ(eλ) in the summand of P̃ 0 corresponding to

e and 0 otherwise. So d̃0 ◦ θ0(y) = θ(eλ) + r̃.

It is now clear that this square commutes.

Let n = 1. Then the square 1 is given as follows;

P 1
d1

//

θ1
��

P 0

θ0
��

P̃ 1

d̃1

// P̃ 0

Let α be an arrow in Q and let θ(α) = α1α2 · · ·αA. Let x be an element of P 1 with

entry t(α)λ in the summand corresponding to t(α) and 0 otherwise. Now d1(x) has

entry αλ in the summand of P 0 corresponding to s(α) and 0 otherwise.

So θ0 ◦ d1(x) has entry

 θ(αλ) in the s(α)-summand of P̃ 0

0 otherwise.

On the other hand, θ1(x) has entry θ(λ) in the summand of P̃ 1 corresponding to

t(αA) and 0 otherwise.

So d̃1 ◦ θ1(x) has entry

 αAθ(λ) in the s(αA)-summand of P̃ 0

0 otherwise.

So this square does not commute for A > 1.

Let n = 2. The square 2 is given as follows;

P 2
d2

//

θ2
��

P 1

θ1
��

P̃ 2

d̃2

// P̃ 1

Let g2
i ∈ g2 with g2

i =
∑

j αjβj, where αj is an arrow in Q1 and βj ∈ KQ. Let

g̃2
i = θ∗(g2

i ) = θ∗(
∑

j αjβj) =
∑

j θ
∗(αj)θ

∗(βj) =
∑

j αj,1αj,2 · · ·αj,Aθ∗(βj). Thus

g̃2
i =

∑
j αj,1η̃j, where η̃j = αj,2 · · ·αj,A θ∗(βj).
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Let y be an element in P 2 with entry t(g2
i )λ in the summand corresponding to t(g2

i )

and 0 otherwise. Now d2(y) has entry t(αj)βjλ in the summand of P 1 corresponding

to t(αj).

So θ1 ◦ d2(y) has entry


t(αj,A)θ(βj)θ(λ) in the t(αj,A)-summand of P̃ 1

0 otherwise.

On the other hand, θ2(y) has entry t(g̃2
i )θ(λ) in the summand of P̃ 2 corresponding

to t(g̃2
i ) and 0 otherwise.

So d̃2 ◦ θ2(y) has entry


t(αj,1)η̃jθ(λ) in the t(αj,1)-summand of P̃ 1

0 otherwise.

Since t(αj,1) 6= t(αj,A), this square does not not commute for A > 1.

Let n = 3. Then the square 3 is given as follows;

P 3
d3

//

θ3
��

P 2

θ2
��

P̃ 3

d̃3

// P̃ 2

Let g3
i ∈ g3 and write g3

i =
∑m2

j=1 g
2
j qj where m2 is the number of elements in the

set g2. Let g̃3
i = θ∗(g3

i ) = θ∗(
∑m2

j=1 g
2
j qj) =

∑m2

j=1 θ
∗(g2

j )θ
∗(qj) =

∑m2

j=1 g̃
2
j θ
∗(qj). Let x

be an element in P 3 with entry t(g3
i )λ in the summand of P 3 corresponding to t(g3

i )

and 0 otherwise. Now, d3(x) has entry t(g2
j )qjλ in the summand of P 2 corresponding

to t(g2
j ), for j = 1, 2, . . . ,m2. So θ2 ◦ d3(x) has entry t(g̃2

j )θ(qj)θ(λ), in the t(g̃2
j )-

summand of P̃ 2, for j = 1, 2, . . . ,m2.

On the other hand, θ3(x) has entry t(g̃3
i )θ(λ) in the t(g̃3

i )-summand of P̃ 3 and 0

otherwise. So, d̃3 ◦ θ3(x) has entry t(g̃2
j )θ(qj)θ(λ) in the t(g̃2

j )-summand of P̃ 2, for

j = 1, 2, . . . ,m2. Hence the square 3 is commutative.

Let n ≥ 4. Then the square n is given as follows;
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P n
dn
//

θn
��

P n−1

θn−1
��

P̃ n

d̃n

// P̃ n−1

Let gni ∈ gn, with gni =
∑mn−1

j=1 gn−1
j qj where mn−1 is the number of elements in

the set gn−1. Let g̃ni = θ∗(gni ) =
∑mn−1

j=1 θ∗(gn−1
j )θ∗(qj) =

∑mn−1

j=1 g̃n−1
j θ∗(qj).

Let y be an element in P n with entry t(gni )λ in the summand of P n correspond-

ing to t(gni ) and 0 otherwise. Now dn(y) has entry t(gn−1
j )qjλ in the summand of

P n−1 corresponding to t(gn−1
j ), for j = 1, 2, . . . ,mn−1. So, θn−1 ◦ dn(y) has entry

t(g̃n−1
j )θ(qj)θ(λ) in the t(g̃n−1

j )-summand of P̃ n−1, for j = 1, 2, . . . ,mn−1.

On the other hand, θn(y) has entry t(g̃ni )θ(λ) in the summand of P̃ n corresponding

to t(g̃ni ) and 0 otherwise. So, d̃n ◦ θn(y) has entry t(g̃n−1
j )θ(qj)θ(λ) in the t(g̃n−1

j )-

summand of P̃ n−1, for j = 1, 2, . . . ,mn−1.

Hence, the square n is commutative for n ≥ 4.

In summary, the diagram

P n
dn

//

θn

��

P n−1

θn−1

��

n

P̃ n

d̃n

// P̃ n−1

is commutative for n ≥ 3 and n = 0, but not for n = 1 or 2. �

Proposition 8.13. Let P̃ n and d̃n be as given above. Then (P̃ n, d̃n) is a complex.

Proof. To show (P̃ n, d̃n) is a complex we need to show, for all n ≥ 0, that we have

d̃n ◦ d̃n+1 = 0.

Let n = 0. Let α̃ be an arrow in Q̃1. We can write α̃ = eα̃, where e is a

vertex in Q̃0. Let x be an element of P̃ 1 with entry t(α̃)λ̃ in the summand of P̃ 1
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corresponding to t(α̃) and 0 otherwise. Then d̃1(x) has entry α̃λ̃ in the summand

of P̃ 0 corresponding to s(α̃) and 0 otherwise. Now d̃0 is the canonical surjection, so

d̃0 ◦ d̃1(x) = α̃λ̃+ r̃ = 0. Hence d̃0 ◦ d̃1 = 0.

Let n = 1. Let g̃2
i ∈ g̃2 and write g̃2

i =
∑

j α̃j η̃j with α̃j an arrow in Q̃1 and

η̃j ∈ KQ̃. Let y be an element of P̃ 2 with entry t(g̃2
i )λ̃ in the summand of P̃ 2 corre-

sponding to t(g̃2
i ) and 0 otherwise. Then d̃2(y) has entry t(α̃j)η̃jλ̃ in the summand of

P̃ 1 corresponding to t(α̃j). Since g̃2
i is uniform, we have that all these arrows α̃j start

at the same vertex, namely s(g̃2
i ). So d̃1 ◦ d̃2(y) has entry

∑
j α̃j η̃jλ̃ in the summand

of P̃ 0 corresponding to s(g̃2
i ). But

∑
j α̃j η̃jλ̃ = g̃2

i λ̃ = 0 in Λ̃. Hence d̃1 ◦ d̃2(y) = 0.

It follows that d̃1 ◦ d̃2 = 0.

Let n = 2. Let g̃3
i ∈ g̃3 and g3

i ∈ g3 where g3
i =

∑m2

j=1 g
2
j qj,i with qj,i ∈ KQ and

where m2 is the number of elements in g2. Then g̃3
i = θ∗(g3

i ) = θ∗(
∑m2

j=1 g
2
j qj,i) =∑m2

j=1 g̃
2
j θ(qj,i). For each g2

j ∈ g2, write g2
j =

∑r1
k=1 αkβk,j with αk an arrow in

Q1, βk,j ∈ KQ and r1 is the number of arrows in Q1. Then g̃2
j = θ∗(g2

j ) =

θ∗(
∑r1

k=1 αkβk,j) =
∑r1

k=1 αk,1αk,2 · · ·αk,Aθ∗(βk,j) with αk,l an arrow in Q̃1. Thus

we can write g̃2
j =

∑r1
k=1 αk,1η̃k,j where η̃k,j = αk,2 · · ·αk,Aθ∗(βk,j).

Let x be an element of P̃ 3 with entry t(g̃3
i )λ̃ in the summand of P̃ 3 corresponding

to t(g̃3
i ) and 0 otherwise. Then d̃3(x) = (t(g̃2

1)θ(q1,i), t(g̃
2
2)θ(q2,i), . . . , t(g̃

2
m2

)θ(qm2,i))λ̃

in P̃ 2. Then d̃2 ◦ d̃3(x) has entry
∑m2

j=1 t(αk,1)η̃k,jθ(qj,i)λ̃ in the summand of P̃ 1

corresponding to t(αk,1), for k = 1, . . . , r1, and 0 otherwise.

Now, let y be the element of P 3 with t(g3
i ) in the summand of P 3 corresponding to

t(g3
i ) and 0 otherwise. Then d2 ◦ d3(y) has entry

∑m2

j=1 t(αk)βk,jqj,i in the summand

of P 1 corresponding to t(αk) for k = 1, . . . , r1, and 0 otherwise. But (P n, dn) is a

minimal projective resolution of Λ/r, so d2 ◦ d3 = 0. In particular, d2 ◦ d3(y) = 0.

Hence∑m2

j=1 t(αk,1)η̃k,jθ(qj,i)λ̃ =
∑m2

j=1 t(αk,1)αk,2 · · ·αk,At(α̃k,A)θ∗(βk,j)θ(qj,i)λ̃

= t(αk,1)αk,2 · · ·αk,At(αk,A)θ∗(
∑m2

j=1 βk,jqj,i)λ̃

= 0
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for k = 1, . . . , r1. So d̃2 ◦ d̃3(x) = 0 and it follows that d̃2 ◦ d̃3 = 0.

Let n ≥ 3. Let y be an element of P̃ n+1 with entry t(g̃n+1
i )λ̃ in the summand of

P̃ n+1 corresponding to t(g̃n+1
i ) and 0 otherwise. Then d̃n+1(y) = d̃n+1(t(g̃n+1

i ))λ̃ =

θn(dn+1(t(gn+1
i )))λ̃. So d̃n◦d̃n+1(y) = d̃nθn(dn+1(t(gn+1

i )))λ̃ = θn−1d
n(dn+1(t(gn+1

i )))λ̃

using Proposition 8.12. But (P n, dn) is a resolution of Λ/r, so dn ◦ dn+1 = 0. Hence

d̃n ◦ d̃n+1(y) = 0. It follows that d̃n ◦ d̃n+1 = 0.

Hence, for all n ≥ 0, d̃n ◦ d̃n+1 = 0 and (P̃ n, d̃n) is a complex. �

We are now able to show that (P̃ n, d̃n) is a minimal projective resolution of Λ̃/r̃

as a right Λ̃-module.

Theorem 8.14. Let P̃ n and d̃n be as given above. Then (P̃ n, d̃n) is a minimal

projective resolution of Λ̃/r̃ as a right Λ̃-module.

Proof. From Proposition 8.13 we have that (P̃ n, d̃n) is a complex, so, for (P̃ n, d̃n) to

be a projective resolution of Λ̃/r̃ it remains to show Ker d̃n ⊆ Im d̃n+1.

In the cases n = 0 and n = 1, we use [20] to see that the complex is exact at P̃ 0

and P̃ 1, since g̃0 is the set of vertices of Q̃, g̃1 is the set of arrows of Q̃ and g̃2 is a

minimal set of uniform elements which generate the ideal Ĩ.

Let n = 2. Let x̃ ∈ Ker d̃2, so x̃ is an element of P̃ 2 with entry t(g̃2
i )λ̃i in the

summand of P̃ 2 corresponding to t(g̃2
i ), that is, x̃ = (t(g̃2

1)λ̃1, t(g̃
2
2)λ̃2, . . . , t(g̃

2
m2

)λ̃m2),

where m2 is the number of elements in the set g̃2. We recall that g2
i =

∑r1
j=1 αjβj,i

where r1 is the number of arrows in Q1, and g̃2
i = θ∗(g2

i ) = θ∗(
∑r1

j=1 αjβj,i) =∑r1
j=1 αj,1 · · ·αj,Aθ∗(βj,i), so g̃2

i =
∑r1

j=1 αj,1η̃j,i where η̃j,i = αj,2 · · ·αj,Aθ(βj,i).

Assume first that for each i we have λ̃i = θ(λi) for some λi ∈ Λ. Then x̃ = θ2(x),

where x = (t(g2
1)λ1, t(g

2
2)λ2, . . . , t(g

2
m2

)λm2) ∈ P 2. Since x̃ ∈ Ker d̃2, we have

0 = d̃2(x̃) and d̃2(x̃) has entry
∑m2

i=1 η̃j,iλ̃i in the summand of P̃ 1 corresponding

to t(αj,1). Now x̃ ∈ Ker d̃2 so, for each j = 1, . . . , r1, the entry
∑m2

i=1 η̃j,iλ̃i =∑m2

i=1 αj,2 · · ·αj,Aθ(βj,i)θ(λi) = αj,2 · · ·αj,A
∑m2

i=1 θ(βj,iλi) = 0. The path αj,2 · · ·αj,A ∈

Λ̃ has no proper subpath q̃ such that q̃ = θ(q) for q ∈ Λ, and t(αj,A) = t(αj). Since
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the ideal Ĩ is generated by uniform elements g̃2
i , which all begin at a vertex in Q0, we

must have
∑m2

i=1 θ(t(αj)βj,iλi) = 0. As θ is a monomorphism, we have
∑m2

i=1 βj,iλi = 0,

so x ∈ Ker d2. As (P n, dn) is a resolution, then Ker d2 = Im d3, so x = d3(y) for

some y ∈ P 3. We now have x̃ = θ2(x) = θ2(d3(y)) = d̃3(θ3(y)), by Proposition 8.12.

Therefore x̃ ∈ Im d̃3 as required.

Now suppose x̃ = (t(g̃2
1)λ̃1, t(g̃

2
2)λ̃2, . . . , t(g̃

2
m2

)λ̃m2) is an arbitrary element in Ker d̃2.

We can write x̃ = x̃e +
∑

w∈Q̃0\Q0
x̃w, where e =

∑
v∈Q0

v and w ∈ Q̃0\Q0. Since

Ker d̃2 is a right Λ̃-module, then x̃e ∈ Ker d̃2. From the construction of KQ̃, recall

that if an element p̃ ∈ Λ̃ has s(p̃) ∈ Q0 and t(p̃) ∈ Q0 then p̃ = θ(p) for some

p ∈ KQ. Thus we may write t(g̃2
i )λ̃ie = t(g̃2

i )θ(λi) for some λi ∈ Λ and for all

i = 1, . . . ,m2. So

x̃e = (t(g̃2
1)θ(λ1), t(g̃2

2)θ(λ2), . . . , t(g̃2
m2

)θ(λm2)) = θ2(z)

where z = (t(g2
1)λ1, t(g

2
2)λ2, . . . , t(g

2
m2

)λm2) ∈ P 2. The above argument now gives

that x̃e ∈ Im d̃3.

Now consider x̃w, where w ∈ Q̃0\Q0. Then

x̃w = (t(g̃2
1)λ̃1w, t(g̃

2
2)λ̃2w, . . . , t(g̃

2
m2

)λ̃m2w).

By construction of the quiver Q̃, for each i = 1, . . . ,m2, the element t(g̃2
i )λ̃iw =

t(g̃2
i )θ(µi)p̃w where µi ∈ Λ, and p̃w is the unique shortest path in KQ̃ which starts

at a vertex in Q0 and ends at w. Note that p̃w contains no proper subpath q̃ such

that q̃ = θ(q) for some q ∈ Λ, and that l(p̃w) < A. Hence

x̃w = (t(g̃2
1)θ(µ1)p̃w, . . . , t(g̃

2
m2

)θ(µm2)p̃w) = (t(g̃2
1)θ(µ1), . . . , t(g̃2

m2
)θ(µm2))p̃w.

The element d̃2(x̃w) has entry t(αj,1)αj,2 · · ·αj,A
∑m2

i=1 θ(βj,i)θ(µi)p̃w in the summand

of P̃ 1 corresponding to t(αj,1), and 0 otherwise. But x̃w ∈ Ker d̃2. Hence d̃2(x̃w) = 0

gives that αj,2 · · ·αj,A
(∑m2

i=1 θ(βj,i)θ(µi)

)
p̃w = 0 for all j = 1, . . . , r1. Since the ideal

Ĩ of KQ̃ is generated by uniform elements θ(g2
1), . . . , θ(g2

m2
), which all start and end
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at a vertex inQ0, we must have that
∑m2

i=1 t(αj,A)θ(βj,i)θ(µi) = 0, for all j = 1, . . . , r1.

Now θ is a monomorphism, so it follows that
∑m2

i=1 βj,iµi = 0 for j = 1, . . . , r1. Let

ξw = (t(g2
1)µ1, t(g

2
2)µ2, . . . , t(g

2
m2

)µm2) ∈ P 2. Then x̃w = θ2(ξw)p̃w, and d2(ξw) = 0.

Hence ξw ∈ Ker d2. Since (P n, dn) is a resolution, Ker d2 = Im d3, so ξw ∈ Im d3

and thus ξw = d3(yw) for some yw ∈ P 3. Then θ2(ξw) = θ2(d3(yw)) = d̃3θ3(yw) by

Proposition 8.12. So θ2(ξw) ∈ Im d̃3. But x̃w = θ2(ξw)p̃w, so x̃w ∈ Im d̃3 for all

w ∈ Q̃0\Q0.

We have shown that x̃e ∈ Im d̃3 and x̃w ∈ Im d̃3, for all w ∈ Q̃0\Q0 . Hence

x̃ ∈ Im d̃3 and Ker d̃2 ⊆ Im d̃3 as required.

Let n ≥ 3. Let x̃ ∈ Ker d̃n, so x̃ is an element of P̃ n with entry t(g̃ni )λ̃i in the

summand of P̃ n corresponding to t(g̃ni ), that is, x̃ = (t(g̃n1 )λ̃1, . . . , t(g̃
n
mn)λ̃mn), where

mn is the number of elements in the set g̃n.

Assume first that for each i we have λ̃i = θ(λi) for some λi ∈ Λ. Then x̃ = θn(x)

where x = (t(gn1 )λ1, . . . , t(g
n
mn)λmn) ∈ P n. Since x̃ ∈ Ker d̃n, we have 0 = d̃n(x̃) =

d̃n(θn(x)) = θn−1(dn(x)), by Proposition 8.12. Now, θn−1 is 1 − 1 so dn(x) = 0.

Hence x ∈ Ker dn. As (P n, dn) is a minimal projective resolution of Λ/r as a right

Λ-module, then x ∈ Im dn+1, so x = dn+1(y) for some y ∈ P n+1. Then x̃ = θn(x) =

θn(dn+1(y)) = d̃n+1(θn+1(y)) by Proposition 8.12. Therefore x̃ ∈ Im d̃n+1 as required.

Now suppose that x̃ = (t(g̃n1 )λ̃1, . . . , t(g̃
n
mn)λ̃mn) ∈ Ker d̃n. Again, we can write

x̃ = x̃e +
∑

w∈Q̃0\Q0
x̃w, where e =

∑
v∈Q0

v is an element in Λ̃. Since Ker d̃n is a

right Λ̃-module, x̃e ∈ Ker d̃n. From the construction of KQ̃, if p̃ is an element of

KQ̃ with s(p̃) ∈ Q0 and t(p̃) ∈ Q0 then p̃ = θ(p) for some p ∈ KQ. Thus we may

write t(g̃ni )λ̃ie = t(g̃ni )θ(λi) for some λi ∈ Λ and for all i = 1, . . . ,mn. So x̃e =

(t(g̃n1 )θ(λ1), . . . , t(g̃nmn)θ(λmn)) = θn(z) where z = (t(gn1 )λ1, . . . , t(g
n
mn)λmn) ∈ P n.

Our argument above now gives that x̃e ∈ Im d̃n+1.

We now show that x̃w ∈ Im d̃n+1 for all w ∈ Q̃0\Q0. Since x̃ ∈ Ker d̃n, we

have x̃w ∈ Ker d̃n for all w ∈ Q̃0\Q0 and x̃w = (t(g̃n1 )λ̃1w, . . . , t(g̃
n
mn)λ̃mnw). By

construction of the quiver Q̃, for each i = 1, . . . ,mn, the element t(g̃ni )λ̃iw =
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t(g̃ni )θ(µi)p̃w where µi ∈ Λ, and p̃w is the unique shortest path in KQ̃ which starts at

a vertex in Q0 and ends at w, and p̃w contains no proper subpath q̃ such that

q̃ = θ(q) for some q ∈ Λ. Hence x̃w = (t(g̃n1 )θ(µ1)p̃w, . . . , t(g̃
n
mn)θ(µmn)p̃w) =

(t(g̃n1 )θ(µ1), . . . , t(g̃nmn)θ(µmn))p̃w.

We may write gni =
∑mn−1

j=1 gn−1
j qj,i so that g̃ni =

∑mn−1

j=1 g̃n−1
j θ∗(qj,i). Then the

element d̃n(x̃w) has entry
∑mn

i=1 t(g̃
n−1
j )θ(qj,i)θ(µi)p̃w in the component of P̃ n−1 corre-

sponding to t(g̃n−1
j ). Hence (

∑mn
i=1 t(g̃

n−1
j )θ(qj,i)θ(µi))p̃w = 0 for all j = 1, . . . ,mn−1.

Since the ideal Ĩ of KQ̃ is generated by uniform elements θ(g2
1), . . . , θ(g2

m2
), which all

start and end at a vertex in Q0, we must have that
∑mn

i=1 t(g̃
n−1
j )θ(qj,i)θ(µi) = 0, for

all j = 1, . . . ,mn−1. Hence the element (t(g̃n1 )θ(µ1), . . . , t(g̃nmn)θ(µmn)) has image 0

under the map d̃n. Let ξ̃w = (t(g̃n1 )θ(µ1), . . . , t(g̃nmn)θ(µmn)). Then d̃n(ξ̃w) = 0 and it

follows that we have ξ̃w = θn(ξw) where ξw = (t(gn1 )µ1, . . . , t(g
n
mn)µmn) ∈ P n. Again

our previous argument gives that ξ̃w ∈ Im d̃n+1. But x̃w = ξ̃wp̃w so x̃w ∈ Im d̃n+1.

We have shown that if x̃ ∈ Ker d̃n then x̃e and x̃w are in Im d̃n+1 for all w ∈ Q̃0\Q0.

Hence x̃ ∈ Im d̃n+1 and Ker d̃n ⊆ Im d̃n+1 for all n ≥ 3, as required.

Therefore, for all n ≥ 0, we have Ker d̃n = Im d̃n+1. Hence (P̃ n, d̃n) is a projective

resolution of Λ̃/r̃ as a right Λ̃-module.

From the definition of the maps d̃n it is clear that Im d̃n ⊆ P̃ n−1r̃ for all n ≥ 0,

Hence the resolution (P̃ n, d̃n) is a minimal projective resolution of Λ̃/r̃ as a right

Λ̃-module. �

We finish this section with our main result, which shows that the algebra Λ̃ we

have constructed is indeed a (D,A)-stacked algebra.

Theorem 8.15. Let Λ be a d-Koszul algebra. Let A ≥ 1 and set D = dA. With the

above construction, the algebra Λ̃ = KQ̃/Ĩ is a (D,A)-stacked algebra.

Proof. Looking at the length of each g̃ni it is clear that we have
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l(g̃ni ) = δ(n) =



0 if n = 0

1 if n = 1

n
2
D if n = 2r, r ∈ N

n−1
2
D + A if n = 2r + 1, r ∈ N.

Hence Λ̃ is a (D,A)-stacked algebra. �

In the next chapter we look at the relationship between E(Λ) and E(Λ̃).
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9. Properties of the Ext Algebra under this Construction

We have shown, in Chapter 8, that we can construct a (D,A)-stacked algebra Λ̃

from a given d-Koszul algebra Λ, with D = dA. We also constructed a minimal

projective resolution of Λ̃/r̃ from a minimal projective resolution of Λ/r. In Chapter

6, we looked at some general properties of the Ext algebra of a (D,A)-stacked algebra.

This begs the question, ‘What is the relationship between E(Λ) and E(Λ̃)?’

Let d ≥ 2, A ≥ 1 and set D = dA. We assume throughout this section that Λ is a

d-Koszul algebra, with d ≥ 2 and that Λ̃ is the related (D,A)-stacked algebra using

the construction of Chapter 8.

We have seen in Chapter 3 that ExtmΛ (Λ/r,Λ/r) ∼= HomΛ(Pm,Λ0), so we can take

a basis fm of HomΛ(Pm,Λ0) for each m ≥ 0.

Definition 9.1. Let fmi be the Λ-module homomorphism, Pm → Λ0, given by

t(gmj ) 7→

 t(gmi ) + r if j = i

0 otherwise.

We set fm = {fmi } so that |fm| = |gm|.

Let f̃mi be the Λ̃-module homomorphism, P̃m → Λ̃0, given by

t(g̃mj ) 7→

 t(g̃mi ) + r̃ if j = i

0 otherwise.

We set f̃m = {f̃mi } so that |f̃m| = |g̃m|.

Recall from Chapter 8, that |gm| = |g̃m| for m ≥ 2. So |fm| = |gm| = |g̃m| = |f̃m|

for m ≥ 2.

Remark. With the maps θm, θ̄ from Chapter 8 and with m ≥ 2 we have

f̃mi (t(g̃mj )) =

 θ̄(t(gmi ) + r) if i = j

0 otherwise.
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Hence f̃mi θm(t(gmj )) = θ̄fmi (t(gmj )), so the diagram below commutes as right Λ-

modules, for m ≥ 2.

Pm
fmi
//

θm
��

Λ0

θ̄
��

P̃m

f̃mi

// Λ̃0

Definition 9.2. Let Λ be a d-Koszul algebra, with d ≥ 2 and let Λ̃ be the related

(D,A)-stacked algebra, with A ≥ 1, D = dA. Let Ext>2
Λ (Λ/r,Λ/r)

=
⊕

m>2 ExtmΛ (Λ/r,Λ/r) and let Ext>2

Λ̃
(Λ̃/r̃, Λ̃/r̃) =

⊕
m>2 Extm

Λ̃
(Λ̃/r̃, Λ̃/r̃).

We define a K-module homomorphism Ψ : Ext>2
Λ (Λ/r,Λ/r)→ Ext>2

Λ̃
(Λ̃/r̃, Λ̃/r̃) as

follows;

Ψ(fmi ) = f̃mi for m ≥ 2.

The aim of this chapter is to show that Ψ is a K-algebra homomorphism, and we

do this in Theorem 9.15.

We remind the reader that the product structure in E(Λ̃) is given by the Yoneda

product, and was discussed in Chapter 3. We will show that if we have all the liftings

required for elements of E(Λ), then we can use these to give the liftings for elements

of E(Λ̃).

We start by looking at liftings of fmi in E(Λ).

Definition 9.3. Let Λ be a d-Koszul algebra, with d ≥ 2. Let fmi ∈ ExtmΛ (Λ/r,Λ/r),

with m ≥ 2. Define L0fmi to be the right Λ-module homomorphism as follows;

L0fmi : Pm → P 0, t(gmj ) 7→

 t(gmi ) if i = j

0 otherwise.

Proposition 9.4. The lifting L0fmi , as defined above, is a lifting of fmi , for m ≥ 2.

Proof. To show L0fmi is a lifting of fmi , we need to show that d0 ◦ L0fmi (t(gmj )) =

fmi (t(gmj )), for all j, that is, the following diagram commutes:
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Pm

L0fmi
��

fmi

!!

P 0

d0

// Λ0

The map d0 : P 0 → Λ/r, is the canonical surjection. Thus,

d0 ◦ L0fmi (t(gmj )λ) =

 d0(t(gmi )λ) if i = j

0 otherwise.
=

 t(gmi )λ+ r if i = j

0 otherwise.

So we have d0 ◦ L0fmi (t(gmj )λ) = fmi (t(gmj )λ). Hence d0 ◦ L0fmi = fmi and L0fmi is a

lifting of fmi . �

We can now look at the first lifting L1fmi of fmi .

Definition 9.5. Fix i and consider the element fmi ∈ ExtmΛ (Λ/r,Λ/r) where m ≥ 2.

To define a lifting we need to consider the elements of gm+1 in which the element

gmi occurs. For each gm+1
j ∈ gm+1, write gm+1

j =
∑rm

k=1 g
m
k qj,k = gmi qj,i +

∑
k 6=i g

m
k qj,k.

Now qj,i is in the arrow ideal of KQ, so write qj,i =
∑

α αγj,i,α where each α is an

arrow in Q.

Define the map L1fmi : Pm+1 → P 1 to be the right Λ-module homomorphism

given by t(gm+1
j ) 7→

∑
α t(α)γj,i,αt(g

m+1
j ) where each t(α)γj,i,αt(g

m+1
j ) is in the t(α)

component of P 1.

Proposition 9.6. With the definition above, L1fmi is a lifting of fmi , for m ≥ 2.

Proof. To show L1fmi is a lifting of fmi we need to show that the diagram below

commutes as right Λ-module modules.

Pm+1
dm+1

//

L1fmi
��

Pm

L0fmi
��

P 1

d1

// P 0
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Recall that dm+1 : t(gm+1
j )λ 7→

∑
k t(g

m
k )qj,kt(g

m+1
j )λ. Then the entry L0fmi ◦

dm+1(t(gm+1
j )λ) in the t(gmk ) component of P 0 is

 t(gmk )qj,kλ if k = i

0 otherwise.

We know d1 : P 1 → P 0, t(α)λ 7→ αλ, where αλ is in the s(α) component of P 0.

So d1 ◦ L1fmi (t(gm+1
j )λ) =

∑
α αγj,i,αλ with αγj,i,α in the s(α) component of P 0.

Since
∑

α αγj,i,α = qj,i from Definition 9.5 and qj,i is a uniform element, then each

α in the element
∑

α αγj,i,α will start at the same vertex, namely s(qj,i) = t(gmi ). So

we have d1 ◦ L1fmi (t(gm+1
j )λ) has entry t(gmi )qj,iλ in the t(gmi ) component of P 0 and

0 otherwise.

Therefore we have L0fmi ◦ dm+1(t(gm+1
j )) = d1 ◦ L1fmi (t(gm+1

j )) so that L0fmi ◦

dm+1 = d1 ◦ L1fmi . Hence L1fmi is a lifting for fmi . �

Definition 9.7. Letm ≥ 2, n ≥ 2, and let fmi ∈ ExtmΛ (Λ/r,Λ/r). Since we know that

liftings of fmi exist, we can fix liftings Lnfmi . We write Lnfmi : Pm+n → P n as the

right Λ-module homomorphism such that Lnfmi (t(gm+n
j )) has entry t(gnk )σni,j,kt(g

m+n
j )

in the t(gnk ) component of P n, for some σni,j,k ∈ Λ and for all j, k. Since this is a

lifting, we have dn ◦ Lnfmi = Ln−1fmi ◦ dm+n.

Although liftings are not unique, we have now fixed a lifting Lnfmi of fmi for all

n ≥ 0.

We will now look at the liftings of the f̃mi .

Definition 9.8. Let Λ be a d-Koszul algebra, with d ≥ 2 and let Λ̃ be the related

(D,A)-stacked algebra, with D = dA and A > 1. Let f̃mi ∈ Extm
Λ̃

(Λ̃/r̃, Λ̃/r̃), with

m ≥ 2. Let L0f̃mi be the Λ̃-module homomorphism defined as follows:

L0f̃mi : P̃m → P̃ 0, t(g̃mj ) 7→ θ0L0fmi (t(gmj ))

for all j, since t(g̃mj ) = θ0(t(gmj )) for m ≥ 2, and where L0fmi is the lifting of

Definition 9.3.
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Proposition 9.9. Let L0f̃mi : P̃m → P̃ 0 be the map as given above. Then L0f̃mi is

a lifting of f̃mi for all i and all m ≥ 2.

Proof. We need to show that d̃0 ◦ L0f̃mi (t(g̃mj )) = f̃mi (t(g̃mj )) for all j. We have

d̃0 ◦ L0f̃mi (t(g̃mj )) = d̃0 ◦ θ0(L0fmi (t(gmj )))

= θ̄ ◦ d0(L0fmi (t(gmj ))), by Proposition 8.12,

= θ̄(d0 ◦ L0fmi (t(gmj )))

= θ̄(fmi (t(gmj ))), by Proposition 9.4

= f̃mi (t(g̃mj )).

Hence L0f̃mi is a lifting of f̃mi . �

Now that we have L0f̃mi , we can look at the next lifting, L1f̃mi . We use the

notation of Definition 9.5.

Definition 9.10. Fix i and consider the element f̃mi ∈ Extm
Λ̃

(Λ̃/r̃, Λ̃/r̃) for m ≥ 2.

Let g̃m+1
j ∈ g̃m+1; since m ≥ 2, g̃m+1

j = θ∗(gm+1
j ). Write gm+1

j =
∑rm

k=1 g
m
k qj,k. Then

g̃m+1
j = θ∗(

∑rm
k=1 g

m
k qj,k) =

∑rm
k=1 g̃

m
k θ
∗(qj,k). Let θ∗(qj,k) = q̃j,k, so that g̃m+1

j =∑rm
k=1 g̃

m
k q̃j,k = g̃mi q̃j,i +

∑
k 6=i g̃

m
k q̃j,k.

Using the notation of Definition 9.5, we have

q̃j,i = θ(qj,i)

= θ(
∑

α αγj,i,α), where each α is an arrow in Q,

=
∑

α θ(s(α))θ(α)θ(γj,i,α)

=
∑

α θ(s(α))α̃1α̃2 · · · α̃Aθ(γj,i,α),

where for each α ∈ Q1, the image θ(α) is the path, α̃1α̃2 · · · α̃A, of A arrows in Q̃.

Define L1f̃mi to be the Λ-module homomorphism L1f̃mi : P̃m+1 → P̃ 1 where

L1f̃mi (t(g̃m+1
j )) has entry t(α̃1)α̃2 · · · α̃Aθ(γj,i,α) in the t(α̃1) component of P̃ 1, and 0

otherwise.

Proposition 9.11. With the above notation L1f̃mi is a lifting of f̃mi , for all i and

all m ≥ 2.
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Proof. To show L1f̃mi is a lifting of f̃mi we need to show that the diagram below

commutes as right Λ̃-modules.

P̃m+1
d̃m+1

//

L1f̃mi ��

P̃m

L0f̃mi��

P̃ 1

d̃1

// P̃ 0

We first consider L0f̃mi ◦d̃m+1(t(g̃m+1
j )). Keeping the above notation and from Def-

inition 8.11, d̃m+1(t(g̃m+1
j )) has entry t(g̃mk )θ(qj,k) in the summand of P̃m correspond-

ing to t(g̃mk ). Using Definition 9.8, we can see that the entry of L0f̃mi ◦ d̃m+1(t(g̃m+1
j ))

in the summand of P̃ 0 corresponding to t(g̃mi ) is t(g̃mi )q̃j,i and is 0 otherwise.

We now consider d̃1 ◦ L1f̃mi (t(g̃m+1
j )). We know d̃1 : P̃ 1 → P̃ 0, t(α̃) 7→ α̃, for

all α̃ ∈ Q̃1, where α̃ is in the s(α̃) component of P̃ 0. Then d̃1 ◦ L1f̃mi (t(g̃m+1
j )) has

entry α̃1α̃2 · · · α̃Aθ(γj,i,α) = θ(αγj,i,α) in the s(α̃1) component of P̃ 0 and 0 otherwise.

Now, g̃mi is uniform, so t(g̃mi ) = s(q̃j,i,). But q̃j,i =
∑

α θ(αγj,i,α); so each θ(αγj,i,α)

lies in the same component of P̃ 0, namely in the t(g̃mi ) component of P̃ 0. Hence

d̃1 ◦ L1f̃mi (t(g̃m+1
j )) has entry

∑
α θ(αγj,i,α) = q̃j,i in the t(g̃mi ) component of P̃ 0 and

0 otherwise. Thus L0f̃mi ◦ d̃m+1(t(g̃m+1
j )) = d̃1 ◦ L1f̃mi (t(g̃m+1

j )).

Hence L0f̃mi ◦ d̃m+1 = d̃1 ◦ L1f̃mi and L1f̃mi is a lifting of f̃mi . �

Definition 9.12. Let Λ be a d-Koszul algebra, with d ≥ 2 and let Λ̃ be the

related (D,A)-stacked algebra, with D = dA and A > 1. Let m,n ≥ 2, let

f̃mi ∈ Extm
Λ̃

(Λ̃/r̃, Λ̃/r̃) and let Lnfmi be the lifting of Definition 9.7. We define Lnf̃mi
to be the right Λ̃-module homomorphism such that:

Lnf̃mi : P̃m+n → P̃ n, t(g̃m+n
j ) 7→ θnLnfmi (t(gm+n

j ))

for all j.

In order to prove that Lnf̃mi is a lifting of f̃mi , we consider the cases n = 2 and

n ≥ 3 separately.
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Proposition 9.13. Let m ≥ 2 and let n = 2. Let L2f̃mi : P̃m+2 → P̃ 2 be the map

as given above. Then L2f̃mi is a lifting of f̃mi .

Proof. If L2f̃mi is a lifting then the following diagram commutes:

P̃m+2
d̃m+2

//

L2f̃mi ��

P̃m+1

L1f̃mi��

P̃ 2

d̃2

// P̃ 1

So we need to show L1f̃mi ◦ d̃m+2(t(g̃m+2
j )) = d̃2 ◦ L2f̃mi (t(g̃m+2

j )) for all j. Let us

consider L1f̃mi ◦ d̃m+2(t(g̃m+2
j )). Since m ≥ 2, g̃m+2

j = θ∗(gm+2
j ), and we may write

gm+2
j =

∑rm+1

k=1 gm+1
k pj,k. Then g̃m+2

j = θ∗(
∑rm+1

k=1 gm+1
k pj,k) =

∑rm+1

k=1 g̃m+1
k θ∗(pj,k).

Let θ∗(pj,k) = p̃j,k, so g̃m+2
j =

∑rm+1

k=1 g̃m+1
k p̃j,k. We know that d̃m+2(t(g̃m+2

j )) has

entry t(g̃m+1
k )p̃j,k in the summand of P̃m+1 corresponding to t(g̃m+1

k ). So L1f̃mi ◦

d̃m+2(t(g̃m+2
j )) = L1f̃mi (t(g̃m+1

1 )p̃j,1, t(g̃
m+1
2 )p̃j,2, . . . , t(g̃

m+1
rm+1

)p̃j,rm+1).

Keeping the notation of Definitions 9.5 and 9.10, gm+1
k =

∑rm
l=1 g

m
l qk,l, qk,i =

∑
α αγk,i,α

and θ(α) = α̃1α̃2 · · · α̃A.

So, L1f̃mi (t(g̃m+1
k )) has entry t(α̃1)α̃2 · · · α̃Aθ(γk,i,α) in the t(α̃1) component of P̃ 1

and 0 otherwise. So, for each α the entry of the t(α̃1) component of P̃ 1 of L1f̃mi ◦

d̃m+2(t(g̃m+2
j )) is

rm+1∑
k=1

t(α̃1)α̃2 · · · α̃Aθ(γk,i,α)p̃j,k =

rm+1∑
k=1

t(α̃1)α̃2 · · · α̃Aθ(γk,i,αpj,k).

We now consider d̃2 ◦ L2f̃mi (t(g̃m+2
j )). With the notation of Definition 9.7,

L2f̃mi (t(g̃m+2
j )) = θ2(L2fmi (t(gm+2

j )))

= θ2(t(g2
1)σ2

i,j,1, t(g
2
2)σ2

i,j,2, . . . , t(g
2
r2

)σ2
i,j,r2

)

= t(g̃2
1)θ(σ2

i,j,1), t(g̃2
2)θ(σ2

i,j,2), . . . , t(g̃2
r2

)θ(σ2
i,j,r2

))

.

For l = 1, . . . ,m2, write g2
l =

∑
α∈Q1

αβl,α. Then

g̃2
l = θ∗(g2

l ) =
∑
α∈Q1

α̃1α̃2 · · · α̃Aθ∗(βl,α)
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where θ(α) is the path α̃1α̃2 · · · α̃A of arrows in Q̃. So d̃2 ◦ L2f̃mi (t(g̃m+2
j )) has entry

r2∑
l=1

t(α̃1)α̃2 · · · α̃Aθ(βl,α)θ(σ2
i,j,l)

in the t(α̃1) component of P̃ 1 for all α.

Now, L2fmi is a lifting of fmi , so d2 ◦ L2fmi = L1fmi ◦ dm+1. We have that d2 ◦

L2fmi (t(gm+2
j )) has entry

r2∑
l=1

t(α)βl,ασ
2
i,j,l

in the t(α) component of P 1, for all α ∈ Q1. And L1fmi ◦ dm+1(t(gm+2
j )) has entry

rm+1∑
k=1

t(α)γk,i,αpj,k

in the t(α) component of P 1, for all α ∈ Q1. Thus

r2∑
l=1

t(α)βl,ασ
2
i,j,l =

rm+1∑
k=1

t(α)γk,i,αpj,k

for all α ∈ Q1. Now, t(α) = t(α̃A) for all α ∈ Q1. Thus
∑rm+1

k=1 t(α̃1)α̃2 · · · α̃Aθ(γk,i,αpj,k)

=
∑r2

l=1 t(α̃1)α̃2 · · · α̃Aθ(βl,α)θ(σi,j,l) for all arrows α̃. Hence we have

d̃2 ◦ L2f̃mi (t(g̃m+2
j )) = L1f̃mi ◦ d̃m+2(t(g̃m+2

j ))

for all j, and L2f̃mi is a lifting of f̃mi as required. �

Proposition 9.14. Let m ≥ 2 and let n ≥ 3. Let Lnf̃mi : P̃m+n → P̃ n be the map

as given in Definition 9.12. Then Lnf̃mi is a lifting of f̃mi .

Proof. Let n ≥ 3 and assume that L0f̃mi ,L1f̃mi , . . . ,Ln−1f̃mi are liftings of f̃mi . In or-

der to show Lnf̃mi is a lifting, we need d̃n◦Lnf̃mi (t(g̃m+n
j )) = Ln−1f̃mi ◦ d̃m+n(t(g̃m+n

j ))

for all j. On the left hand side we have
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d̃n ◦ Lnf̃mi (t(g̃m+n
j )) = d̃n(θnLnfmi (t(gm+n

j )))

= θn−1 ◦ dn(Lnfmi (t(gm+n
j ))), by Proposition 8.12,

= θn−1(Ln−1fmi ◦ dm+n(t(gm+n
j ))), since Lnfmi is a lifting,

= θn−1 ◦ Ln−1fmi (dm+n(t(gm+n
j ))).

On the right hand side, we have

Ln−1f̃mi ◦ d̃m+n(t(g̃m+n
j )) = Ln−1f̃mi (θm+n−1(dm+n(t(gm+n

j )))) from Definition 8.11.

Now, write gm+n
j =

∑s
k=1 g

m+n−1
k qk, with qk ∈ KQ, where s = |gm+n−1|. Then

Ln−1f̃mi ◦ d̃m+n(t(g̃m+n
j ))

= Ln−1f̃mi (θm+n−1(t(gm+n−1
1 )q1, t(g

m+n−1
2 )q2, . . . , t(g

m+n−1
s )qs),

= Ln−1f̃mi (t(g̃m+n−1
1 )θ(q1), t(g̃m+n−1

2 )θ(q2), . . . , t(g̃m+n−1
s )θ(qs))

=
∑s

k=1 Ln−1f̃mi (t(g̃m+n−1
k ))θ(qk), since Ln−1f̃mi is a

Λ̃-module homomorphism,

=
∑s

k=1 θn−1Ln−1fmi (t(gm+n−1
k ))θ(qk)

=
∑s

k=1 θn−1(Ln−1fmi (t(gm+n−1
k )qk))

= θn−1Ln−1fmi (
∑s

k=1 t(g
m+n−1
k )qk)

= θn−1Ln−1fmi (dm+n(t(gm+n
j ))).

Hence, we have the equality and Lnf̃mi is a lifting of f̃mi . �

We now have liftings Lnf̃mi for all n ≥ 0,m ≥ 2 and for all i. Our final result in

this chapter uses these liftings in order to show that the map Ψ : Ext>2
Λ (Λ/r,Λ/r)→

Ext>2

Λ̃
(Λ̃/r̃, Λ̃/r̃) as given in Definition 9.2, is a K-algebra homomorphism.

Theorem 9.15. Let Ψ : Ext>2
Λ (Λ/r,Λ/r) → Ext>2

Λ̃
(Λ̃/r̃, Λ̃/r̃) be the map given in

Definition 9.2. Then Ψ is a K-algebra homomorphism.

Proof. We need to show that Ψ(fmi ◦fnk ) = Ψ(fmi )◦Ψ(fnk ), for all m ≥ 2, n ≥ 2, i and

k. We have Ψ(fmi ◦ fnk ) = Ψ(fmi (Lmfnk )). Now Lmfnk (t(gm+n
j )) has entry t(gml )σmk,j,l

in the summand corresponding to t(gml ). So fmi (Lmfnk (t(gm+n
j )) = t(gmi )σmk,j,i + r.

Now, t(gmi )σmk,j,i + r = t(gmi )σmk,j,it(g
m+n
j ) + r since fmi and Lmfnk are Λ-module homo-

morphisms. So t(gmi )σmk,j,it(g
m+n
j ) + r is non-zero precisely when t(gmi ) = t(gm+n

j )

and t(gm+n
j )σmk,j,it(g

m+n
j ) + r = cmk,j,it(g

m+n
j ) + r for some cmk,j,i ∈ K \ {0}. So
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fmi ◦ fnk =
∑
cmk,j,if

m+n
j , where the sum is over j such that t(gmi ) = t(gm+n

j ) and

t(gm+n
j )σmk,j,it(g

m+n
j ) + r = cmk,j,it(g

m+n
j ) + r for some cmk,j,i ∈ K \ {0}. Hence Ψ(fmi ◦

fnk ) = Ψ(
∑
cmk,j,if

m+n
j ) =

∑
cmk,j,if̃

m+n
j , where the sum is over those j described

above.

On the right hand side we have Ψ(fmi ) ◦Ψ(fnk ) = f̃mi ◦ f̃nk = f̃mi (Lmf̃nk ). Now

f̃mi (Lmf̃nk (t(g̃m+n
j )) = f̃mi (θmLmfnk (t(gm+n

j )))

= f̃mi (θm(
∑s

k=1 t(g
m
l )σmk,j,l)

= f̃mi (
∑s

k=1 t(g̃
m
l )θ(σmk,j,l))

= t(g̃mi )θ(σmk,j,i) + r.

Now, t(g̃mi )θ(σmk,j,i) + r̃ = t(g̃mi )θ(σmk,j,i)t(g̃
m+n
j ) + r̃ since f̃mi and Lmf̃nk are Λ̃-module

homomorphisms. Then t(g̃mi )θ(σmk,j,i)t(g̃
m+n
j ) + r̃ is non-zero when t(g̃mi ) = t(g̃m+n

j )

and t(g̃mi )θ(σmk,j,i)t(g̃
m+n
j ) + r̃ = dmk,j,it(g̃

m+n
j ) + r̃, for some dmk,j,i ∈ K \ {0}. So

f̃mi (Lmf̃nk ) =
∑
dmk,j,if̃

m+n
j where the sum is over j such that t(g̃mi ) = t(g̃m+n

j ) and

t(g̃m+n
j )θ(σmk,j,i)t(g̃

m+n
j ) + r̃ = dmk,j,it(g̃

m+n
j ) + r̃ for some dmk,j,i ∈ K \ {0}. However,

t(g̃mi ) = t(g̃m+n
j ) and t(g̃m+n

j )θ(σmk,j,i)t(g̃
m+n
j ) + r̃ = dmk,j,it(g̃

m+n
j ) + r̃ precisely when

t(gmi ) = t(gm+n
j ) and t(gm+n

j )σmk,j,it(g
m+n
j )+r = cmk,j,it(g

m+n
j )+r, since m ≥ 2 and θ is a

K-algebra monomorphism, so that dmk,j,i = cmk,j,i. Hence, Ψ(fmi ◦fnk ) =
∑
cmk,j,if̃

m+n
j =

Ψ(fmi ) ◦Ψ(fnk ) and Ψ is a K-algebra homomorphism. �

The above result means that given the product structure of E(Λ) for a d-Koszul

algebra Λ, we also know the product structure of E(Λ̃) for the related (D,A)-stacked

algebra Λ̃. From Chapter 5 we know that Ext2
Λ̃
(Λ̃/r̃, Λ̃/r̃) × Extn−2

Λ̃
(Λ̃/r̃, Λ̃/r̃) →

Extn
Λ̃
(Λ̃/r̃, Λ̃/r̃) is surjective. Hence for all n ≥ 4, if fni =

∑
j,k cj,kf

2
j ◦ fn−2

k with

cj,k ∈ K then f̃ni = Ψ(fni ) = Ψ(
∑

j,k cj,kf
2
j ◦ fn−2

k ) = Ψ(
∑

j,k cj,kf
2
j ) ◦ Ψ(fn−2

k ) =∑
j,k cj,kf̃

2
j ◦ f̃n−2

k .

This chapter now ends our study of the Ext algebra of (D,A)-stacked algebras

and in the next chapter we show how we can construct a bimodule resolution of Λ̃

over Λ̃e from a given bimodule resolution of Λ over Λe.
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10. A Bimodule Resolution

We have spent a considerable amount of time in this thesis concerned with the

Ext algebra of a finite-dimensional algebra Λ. The Ext algebra is obtained by taking

the cohomology of the complex gained by applying the functor HomΛ(−,Λ/r) to the

deleted projected resolution of Λ/r as a right Λ-module. The Ext algebra is then

given a product structure via the Yoneda product.

If we follow the same process, but beginning with a minimal projective resolution

of Λ as a right Λe-module and applying the functor HomΛe(−,Λ), we obtain the

Hochschild cohomology groups, HHn(Λ). The Hochschild cohomology ring, HH∗(Λ),

also has a product structure given by the Yoneda product. After the work of Chap-

ter 9 the immediate question arises ‘What is the relationship between HH∗(Λ) and

HH∗(Λ̃)?’ where Λ is a d-Koszul algebra and Λ̃ is the related (D,A)-stacked algebra.

We start this chapter by reviewing the construction of the beginning of a bimodule

as given by Green and Snashall in [17]. Using the ideas of Chapter 8, in which we

constructed a minimal projective resolution (P̃ n, d̃n) of Λ̃/r̃ as a right Λ̃-module from

a given resolution (P n, dn) of Λ/r as a right Λ-module, we then use a similar method

to construct a minimal projective resolution for Λ̃ as a right Λ̃e-module from a given

minimal projective resolution for Λ as a right Λe-module. Throughout this chapter

we write ⊗ instead of ⊗K .

We begin with some background information and some definitions; these are taken

from [26].

Definition 10.1. Let Λ be a K-algebra. Then Λop is a K-algebra with the same

underlying vector space structure as Λ. The multiplication in Λop is defined as

λ ∗ µ = µλ, for all λ, µ ∈ Λ.

The enveloping algebra of Λ is defined to be

Λe = Λop ⊗ Λ
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with multiplication in Λe given by (λ1⊗µ1)(λ2⊗µ2) = λ2λ1⊗µ1µ2, for all λ1, λ2 ∈ Λop

and for all µ1, µ2 ∈ Λ.

Sometimes it is easier to work with Λ-Λ-bimodules rather than right Λe-modules.

With this in mind it is advantageous to realise that given a Λ-Λ-bimodule M , this

is equivalent to M being a right Λe-module, and then all the properties of modules

can be applied to bimodules.

Proposition 10.2. Let Λ be a K-algebra. If M is a Λ-Λ-bimodule, then M is a

right Λe-module with scalar multiplication m(λ ⊗ µ) = (λm)µ = λ(mµ), for all

λ ∈ Λop, µ ∈ Λ and m ∈M.

The projectives in a minimal projective resolution of Λ as a Λ-Λ-bimodule were

given by Happel, [22].

Proposition 10.3. [22] Let Λ be a finite-dimensional algebra and let

· · · // Qn // Qn−1 // · · · // Q2 // Q1 // Q0 // Λ // 0

be a minimal projective resolution of Λ as a Λ-Λ-bimodule. Then

Qn =
⊕
i,j

P (i, j)dimExt
n
Λ(Si,Sj)

where P (i, j) is the projective Λ-Λ-bimodule Λ(ei ⊗ ej)Λ, and Si, Sj are the simple

modules corresponding to eiΛ and ejΛ respectively.

If Λ/r has a minimal projective resolution (P n, dn) as a right Λ-module, following

[20], with P n =
⊕

i t(g
n
i )Λ then the nth projective Qn in a minimal projective

bimodule resolution of Λ is given by Qn =
⊕

i Λs(g
n
i )⊗ t(gni )Λ.

Having the projective modules Qn for all n, it remains to determine the maps δn :

Qn → Qn−1. The maps δn, for n = 0, 1, 2 and 3 for an arbitrary finite-dimensional

algebra Λ are given in [17]. We give a brief introduction to this paper.
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Definition 10.4. [17] Write Q0 =
⊕

i Λei ⊗ eiΛ. The map δ0 : Q0 → Λ is the

multiplication map, that is, δ0(λei ⊗ eiµ) = λeiµ, for all i and all λ, µ ∈ Λ.

We have Q1 =
⊕

α Λs(α)⊗t(α)Λ. The map δ1 : Q1 −→ Q0 is defined by δ1(s(α)⊗

t(α)) = s(α)⊗ α− α⊗ t(α) for all arrows α in the quiver Q, where s(α)⊗ α lies in

the s(α)⊗ s(α) component of Q0 and α⊗ t(α) lies in the t(α)⊗ t(α) component of

Q0.

The map δ1, and indeed δn for all n ≥ 1, is easier to use in matrix form. We

represent the map δ1 by the matrix A1, which has rows indexed by g0 and columns

indexed by g1. So A1 is a |g0| × |g1| matrix.

For e ∈ g0 and α ∈ g1, the (e, α) entry of A1 is

s(α)⊗ α if s(α) = e and t(α) 6= e

−α⊗ t(α) if t(α) = e and s(α) 6= e

s(α)⊗ α− α⊗ t(α) if s(α) = e and t(α) = e

0 otherwise.

.

Definition 10.5. [17] Write Q2 =
⊕

x∈g2 Λs(x)⊗t(x)Λ. Let the matrix A2 represent

the map δ2 : Q2 −→ Q1. Then A2 is a |g1| × |g2| matrix with rows indexed by g1

and columns indexed by g2. Let α ∈ g1 and let x ∈ g2 be an arbitrary element of g2

given by x =
∑r

j=1 cjα1,jα2,j · · ·αsj ,j. The (α, x) entry of A2 is given by

r∑
j=1

cj

sj∑
k=1

εk,jα1,j · · ·αk−1,j ⊗ αk+1,j · · ·αsj ,j

where

εkj =

 1 if αkj = α

0 otherwise.

Definition 10.6. [17] Write Q3 =
⊕

y∈g3 Λs(y)⊗t(y)Λ. Let the matrix A3 represent

the map δ3 : Q3 −→ Q2. Then A3 is a |g2| × |g3| matrix with the rows indexed by

g2 and the columns indexed by g3. Let y be an arbitrary element of g3 given by
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y =
∑

i g
2
i pi =

∑
i qig

2
i ri. The (g2

i , y) entry is given by

s(g2
i )⊗ pi − qi ⊗ ri.

We now have the information required to give the start of a minimal bimodule

resolution.

Theorem 10.7. [17, Theorem 2.9] With the above definitions, the following sequence

forms part of a minimal projective bimodule resolution of Λ:

Q3 // Q2 // Q1 // Q0 // Λ // 0

with maps Ai : Qi → Qi−1 for i = 1, 2, 3.

For a more detailed account and the proof of minimality and exactness, see [17].

In the same way, we can construct the beginning of a minimal projective bimodule

resolution (Q̃n, δ̃n) of Λ̃. Thus, we have

Q̃3
δ̃3

// Q̃2
δ̃2

// Q̃1
δ̃1

// Q̃0
δ̃0

// Λ̃ // 0

where Q̃0 =
⊕

ẽ∈g̃0 Λ̃ẽ⊗ ẽΛ̃, Q̃1 =
⊕

α̃∈g̃1 Λ̃s(α̃)⊗ t(α̃)Λ̃, Q̃2 =
⊕

x̃∈g̃2 Λ̃s(x̃)⊗ t(x̃)Λ̃

and Q̃3 =
⊕

ỹ∈g̃3 Λ̃s(ỹ)⊗ t(ỹ)Λ̃.

It now remains to use a minimal projective bimodule resolution of Λ to determine

the higher maps δ̃n : Q̃n → Q̃n−1, for n ≥ 4. We remark that there is no explicit

formula for a map δn : Qn → Qn−1, for n ≥ 4, in terms of the gn that works for

all finite-dimensional algebras. However, there has been extensive work on certain

classes of algebras for which the minimal bimodule resolution has been explicitly

constructed. For example, the minimal projective bimodule resolution of a Koszul

algebra was given by Green, Hartman, Marcos and Solberg in [10] and the minimal

projective bimodule resolution of a monomial algebra was given by Bardzell in [4].

In [28] Snashall and Taillefer described a minimal bimodule resolution for a class of
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special biserial algebras. Other examples include a minimal bimodule resolution for

Hecke algebras of type A, constructed by Schroll and Snashall in [27].

We now wish to describe a method for constructing a minimal bimodule resolution

of Λ̃ as a Λ̃-Λ̃ bimodule from that of Λ as a Λ-Λ-bimodule. We already have the

projectives for all n ≥ 0, and we have the maps Q̃n → Q̃n−1 for n = 0, 1, 2 and 3.

In order to define maps δ̃n : Q̃n → Q̃n−1, for n ≥ 4, we first use the map θ from

Definition 8.6 to define a map φ : Λe → Λ̃e.

Definition 10.8. Let Λ be a d-Koszul algebra and let Λ̃ be the related (D,A)-

stacked algebra with D = dA. Let η ∈ Λe, so η =
∑

i ηi ⊗ η′i for some ηi ∈ Λop and

η′i ∈ Λ. The map θ clearly induces a K-algebra homomorphism Λop → Λ̃op which we

also call θ. We define a K-module homomorphism φ : Λe → Λ̃e by

φ(η) =
∑
i

θ(ηi)⊗ θ(η′i).

Proposition 10.9. Let φ : Λe → Λ̃e be as defined above. Then φ is a monomor-

phism.

Proof. Fix a K-basis B of Λ consisting of paths. Then Λe has a K-basis B =

{b⊗ b′| b, b′ ∈ B}. However, we know that for each b ∈ B, θ(b) is a non-zero path in

Λ̃, and thus Λ̃e has a K-basis B̃ which contains the set {θ(b)⊗ θ(b′)| b, b′ ∈ B}.

Let η ∈ Λe and write η =
∑

i cibi ⊗ b′i, where ci ∈ K and bi, b
′
i ∈ B. Suppose that

φ(η) = 0. Then φ(
∑

i cibi⊗b′i) =
∑

i ciθ(bi)⊗θ(b′i) = 0. Since for each i, θ(bi)⊗θ(b′i) is

an element of a K-basis for Λ̃e then the elements θ(bi)⊗θ(b′i) are linearly independent

and thus ci = 0 for all i. Hence η = 0 and φ is a monomorphism. �

For n ≥ 2, the map φ from Definition 10.8 induces K-module homomorphisms

φn : Qn → Q̃n by

φn(η1s(g
n
i )⊗ t(gni )η2) = θ(η1)s(g̃ni )⊗ t(g̃ni )θ(η2), for η1, η2 ∈ Λ.

It is clear that φn is also a monomorphism.
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We now wish to show that φn is a Λ-Λ-bimodule homomorphism, but we first need

to give Q̃n the structure of a Λ-Λ-bimodule.

Definition 10.10. Let n ≥ 2 and let Q̃n =
⊕

i Λ̃s(g̃
n
i )⊗ t(g̃ni )Λ̃. Then we may write

Q̃n =
⊕

i(s(g̃
n
i )⊗ t(g̃ni ))Λ̃e. We define Q̃n to be a right Λe-module via the map φ in

the following way

(s(g̃ni )⊗ t(g̃ni ))(λ̃1 ⊗ λ̃2) · η = (s(g̃ni )⊗ t(g̃ni ))(λ̃1 ⊗ λ̃2)φ(η)

for all η ∈ Λe. Thus, as a Λ-Λ-bimodule

η1 · (λ̃1s(g̃
n
i )⊗ t(g̃ni )λ̃2) · η2 = θ(η1)λ̃1s(g̃

n
i )⊗ t(g̃ni )λ̃2θ(η2)

for all η1, η2 ∈ Λ.

Proposition 10.11. Let n ≥ 2 and let φn : Qn → Q̃n be as defined above. Then φn

is a Λ-Λ-bimodule homomorphism.

The proof is straightforward and can easily be verified.

Using these maps we now define the maps δ̃n : Q̃n → Q̃n−1 for n ≥ 3.

Definition 10.12. Let (Qn, δn) be a minimal projective bimodule resolution for Λ

with the part up to Q3 as given by [17]. Let n ≥ 3. Define δ̃n : Q̃n → Q̃n−1 to be

the Λ̃-Λ̃-bimodule homomorphism given by

δ̃n(s(g̃ni )⊗ t(g̃ni )) = φn−1(δn(s(gni )⊗ t(gni ))).

Proposition 10.13. The definition of δ̃3 from Definition 10.12 coincides with that

of Definition 10.6.

Proof. From Definition 10.12 we have δ̃3(s(g̃3
j ) ⊗ t(g̃3

j )) = φ2(δ3(s(g3
j ) ⊗ t(g3

j ))).

Let g3
j =

∑
i g

2
i pi,j =

∑
i qi,jg

2
i ri,j. Now g̃3

j = θ∗(g3
j ), so g̃3

j = θ∗(
∑

i g
2
i pi,j) =

θ∗(
∑

i qi,jg
2
i ri,j) =

∑
i g̃

2
i θ
∗(pi,j) =

∑
i θ
∗(qi,j)g̃

2
i θ
∗(ri,j). Now δ3(s(g3

j ) ⊗ t(g3
j )) is

given by the matrix A3 where each (g2
i , g

3
j )-entry is given by s(g2

i )⊗ pi,j − qi,j ⊗ ri,j.
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Then we have φ2(s(g2
i ) ⊗ pi,j − qi,j ⊗ ri,j) = s(g̃2

i ) ⊗ θ(pi,j) − θ(qi,j) ⊗ θ(ri,j). So

the matrix representation of δ̃3 : Q̃3 → Q̃2 from Definition 10.12 has (g̃2
i , g̃

3
j )-entry

s(g̃2
i )⊗ θ(pi,j)− θ(qi,j)⊗ θ(ri,j).

From Definition 10.6, the matrix Ã3 has (g̃2
i , g̃

3
j )-entry s(g̃2

i ) ⊗ θ(pi,j) − θ(qi,j) ⊗

θ(ri,j). Hence the two definitions coincide. �

We have now defined Λ̃-Λ̃-bimodule homomorphisms δ̃n : Q̃n → Q̃n−1, for all

n ≥ 0, giving us a sequence

· · · // Q̃n
δ̃n
// Q̃n−1

δ̃n−1

// · · · // Q̃2
δ̃2

// Q̃1
δ̃1

// Q̃0
δ̃0

// Λ̃ // 0.

We need to show that this is indeed a minimal projective bimodule resolution of

Λ̃. We start by considering the commutativity of the following diagram of Λ-Λ-

bimodules.

· · · // Qn
δn
//

φn
��

Qn−1
δn−1

//

φn−1
��

· · · // Q3
δ3

//

φ3
��

Q2
δ2

//

φ2
��

· · ·

· · · // Q̃n

δ̃n

// Q̃n−1

δ̃n−1

// · · · // Q̃3

δ̃3

// Q̃2

δ̃2

// · · ·

Proposition 10.14. For all n ≥ 2, the following square is commutative as Λ-Λ-

bimodules.

Qn+1
δn+1

//

φn+1
��

Qn

φn
��

Q̃n+1

δ̃n+1

// Q̃n

Proof. Let n ≥ 2 and let x be the element of Qn+1 with entry s(gn+1
i ) ⊗ t(gn+1

i ) in

the Λs(gn+1
i )⊗ t(gn+1

i )Λ component and 0 otherwise. Then
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φn ◦ δn+1(x) = φn ◦ δn+1(s(gn+1
i )⊗ t(gn+1

i ))

= δ̃n+1(s(g̃n+1
i )⊗ t(g̃n+1

i )), by Definition 10.12.

= δ̃n+1(θ(s(gn+1
i ))⊗ θ(t(gn+1

i )))

= δ̃n+1 ◦ φn+1(s(gn+1
i )⊗ t(gn+1

i )))

= δ̃n+1 ◦ φn+1(x).

Hence for all n ≥ 2, δ̃n+1 ◦ φn+1 = φn ◦ δn+1 and the square commutes. �

Proposition 10.15. Let (Q̃n, δ̃n) be as given above. Then (Q̃n, δ̃n) is a complex.

Proof. For n = 0, 1, 2 it follows from [17, Theorem 2.9] that δ̃n ◦ δ̃n+1 = 0.

For n ≥ 3, we have

δ̃n ◦ δ̃n+1(s(g̃n+1
i )⊗ t(g̃n+1

i )) = δ̃n(φn(δn+1(s(gn+1
i )⊗ t(g̃n+1

i ))))

= φn−1(δn(δn+1(s(gn+1
i )⊗ t(gn+1

i )))),

by Proposition 10.14,

= 0, since δn ◦ δn+1 = 0.

Hence (Q̃n, δ̃n) is a complex. �

Theorem 10.16. Let (Q̃n, δ̃n) be as given above. Then (Q̃n, δ̃n) is a minimal pro-

jective bimodule resolution of Λ̃ as a Λ̃-Λ̃-bimodule.

Proof. Let (Q̃n, δ̃n) be the complex of Proposition 10.15, so we have Im δ̃n+1 ⊆ Ker δ̃n

for all n ≥ 0. From [17] we know that the complex is exact at n = 0, 1 and 2. It

remains to show that Ker δ̃n ⊆ Im δ̃n+1 for n ≥ 3.

Let n ≥ 3. Let x̃ ∈ Ker δ̃n and write

x̃ = (λ̃1s(g̃
n
1 )⊗ t(g̃n1 )µ̃1, . . . , λ̃mns(g̃

n
mn)⊗ t(g̃nmn)µ̃mn)

with λ̃i, µ̃i ∈ Λ̃.

First let us assume that there are λi and µi in Λ such that θ(λi) = λ̃i and

θ(µi) = µ̃i for each i. Then we have x̃ = (θ(λ1s(g
n
1 ))⊗θ(t(gn1 )µ1), . . . , θ(λmns(g

n
mn))⊗

θ(t(gnmn)µmn)), so x̃ = φn(x) where x = (λ1s(g
n
1 )⊗t(gn1 )µ1, . . . , λmns(g

n
mn)⊗t(gnmn)µmn)

∈ Qn. Now x̃ ∈ Ker δ̃n, so δ̃n(x̃) = 0 = δ̃n(φn(x)) and from Proposition 10.14,
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δ̃n(φn(x)) = φn−1(δn(x)). We know that φn is 1 − 1, so δn(x) = 0. Hence x ∈

Ker δn = Im δn+1, and we have x = δn+1(y) for some y ∈ Qn+1. Therefore x̃ =

φn(x) = φn(δn+1(y)) = δ̃n+1(φn+1(y)) and x̃ ∈ Im δ̃n+1.

Now let x̃ be an arbitrary element of Ker δ̃n, and write

x̃ = (λ̃1s(g̃
n
1 )⊗ t(g̃n1 )µ̃1, . . . , λ̃mns(g̃

n
mn)⊗ t(g̃nmn)µ̃mn).

Then x̃ = ex̃e+
∑

w,w′∈Q̃0\Q0
(ex̃w + wx̃e+ wx̃w′) where e =

∑
v∈Q0

v is an element

in Λ̃. Now Ker δ̃n is a Λ̃-Λ̃-bimodule. So ex̃e, ex̃w, wx̃e, wx̃w′ ∈ Ker δ̃n for all w,w′ ∈

Q̃0\Q0. From the construction of KQ̃, if p̃ is an element of KQ̃ with s(p̃) ∈ Q0 and

t(p̃) ∈ Q0 then p̃ = θ(p) for some p ∈ KQ. Thus we can write eλ̃is(g
n
i )⊗ t(gni )µ̃ie =

eθ(λi)s(g
n
i )⊗t(gni )θ(µi)e for some λi, µi ∈ Λ and for all i = 1, . . . ,mn. So ex̃e = φn(z)

where z = (λ1s(g
n
1 ) ⊗ t(gn1 )µ1, . . . , λmns(g

n
mn) ⊗ t(gnmn)µmn) ∈ Qn. The argument

above now gives that ex̃e ∈ Im δ̃n+1.

We now show that ex̃w ∈ Im δ̃n+1 where w ∈ Q̃0\Q0. By construction of the

quiver Q̃, for each i = 1, . . . ,mn, we can write t(gni )µ̃iw = t(gni )θ(ηi)p̃w where ηi ∈ Λ

and p̃w is the unique shortest path in KQ̃ which starts at a vertex in Q0 and ends

at w, and p̃w contains no proper subpath q̃ such that q̃ = θ(q) for some q ∈ Λ.

Hence ex̃w = (eθ(λ1)s(gn1 )⊗ t(gn1 )θ(η1)p̃w, . . . , eθ(λmn)s(gnmn)⊗ t(gnmn)θ(ηmn)p̃w) for

λi ∈ Λ. Let z = (λ1s(g
n
1 )⊗ t(gn1 )η1, . . . , λmns(g

n
mn)⊗ t(gnmn)ηmn) ∈ Qn. Then ex̃w =

φn(z)p̃w. We now show that z ∈ Ker δn. The entry of δn(z) in the component of Qn−1

corresponding to s(gn−1
i )⊗ t(gn−1

i ) may be written
∑

j ci,jbi,j ⊗ b′i,j for some ci,j ∈ K

and bi,j, b
′
i,j ∈ B, where B is a K-basis of Λ consisting of paths. Then φn−1 ◦ δn(z)

has entry
∑

j ci,jθ(bi,j)⊗θ(b′i,j) in the component of Q̃n−1 corresponding to s(g̃n−1
i )⊗

t(g̃n−1
i ). However, δ̃n(ex̃w) = 0 and δ̃n(ex̃w) = δ̃n(φn(z))p̃w = (φn−1 ◦ δn(z))p̃w from

Proposition 10.14. Thus (φn−1 ◦ δn(z))p̃w = 0 and so
∑

j ci,jθ(bi,j) ⊗ θ(b′i,j)p̃w = 0

for all i = 1, . . . ,mn. Now t(θ(b′i,j)) = s(p̃w), so by the construction of Λ̃, θ(b′i,j)p̃w

is a non-zero path in Λ̃, and thus {θ(bi,j) ⊗ θ(b′i,j)p̃w} is a linearly independent

set in Λ̃e. Therefore, ci,j = 0 for all j and all i = 1, . . . ,mn−1 so we must have
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that δn(z) = 0. Since (Qn, δn) is a projective resolution for Λ as a Λ-Λ-bimodule,

Im δn+1 = Ker δn so z ∈ Im δn+1. Thus z = δn+1(y) for some y ∈ Qn+1. Therefore

φn(z) = φn ◦ δn+1(y) = δ̃n+1 ◦ φn+1(y) from Proposition 10.14. So ex̃w = φn(z)p̃w =

(δ̃n+1 ◦ φn+1(y))p̃w = δ̃n+1(φn+1(y)p̃w) so ex̃w ∈ Im δ̃n+1.

A similar argument shows that wx̃e and wx̃w′ are in Im δ̃n+1 for all w,w′ ∈ Q̃0\Q0.

Hence x̃ ∈ Im δ̃n+1 and Ker δ̃n ⊆ Im δ̃n+1, for n ≥ 3, as required.

Therefore, for all n ≥ 0, we have Ker δ̃n = Im δ̃n+1. Hence (Q̃n, δ̃n) is a projective

bimodule resolution of Λ̃ as a Λ̃-Λ̃-bimodule. From Happel [22] (see Proposition

10.3) we know that the Q̃n are the projectives of a minimal projective bimodule

resolution, and hence (Q̃n, δ̃n) is a minimal projective bimodule resolution of Λ̃. �

In this thesis we have introduced a new class of algebras called (D,A)-stacked

algebras, which are motivated by and generalise the Koszul algebras, D-Koszul alge-

bras and (D,A)-stacked monomial algebras. We have shown that the Ext algebra is

always finitely generated as an algebra and given a characterisation of these algebras.

We have also given an explicit construction for a family of (D,A)-stacked algebras Λ̃

from a d-Koszul algebra Λ, where D = dA, for A ≥ 1. Included in this is an explicit

construction of a minimal projective resolution of Λ̃/r̃ as a right Λ̃-module from a

given minimal projective resolution of Λ/r as a right Λ-module, and a minimal pro-

jective bimodule resolution of Λ̃ as a Λ̃-Λ̃-bimodule from a given minimal projective

bimodule resolution of Λ as a Λ-Λ-bimodule.

Future directions for research would be to investigate whether every (D,A)-stacked

algebra arises from a d-Koszul algebra with D = dA via our construction, and to

investigate the relationship between HH∗(Λ) and HH∗(Λ̃).
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