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Finite Generation of Ext and (D, A)-stacked Algebras

Joanne Leader

Abstract. We introduce the class of (D, A)-stacked algebras, which generalise the
classes of Koszul algebras, d-Koszul algebras and (D, A)-stacked monomial algebras.
We show that the Ext algebra of a (D, A)-stacked algebra is finitely generated in
degrees 0, 1,2 and 3. After investigating some general properties of E(A) for this class
of algebras, we look at a regrading of E(A) and give examples for which the regraded
Ext algebra is a Koszul algebra. Following this we give a general construction of a
(D, A)-stacked algebra A from a d-Koszul algebra A, setting D = dA, with A > 1.
From this construction we relate the homological properties of A and A, including
the projective resolutions and the structure of the Ext algebra.
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1. INTRODUCTION

With complicated, non-commutative algebras came the need to try and simplify
them. Representation theory is a vast branch of Mathematics, with the fundamental
idea that we can represent something complex by something that is easier to un-
derstand but still retaining the properties that we wish to understand. There are
various ways of doing this but the concept we use in this thesis is to consider the
modules and cohomology of an algebra given by quiver and relations.

In particular, we are interested in the Ext algebra, E(A), of a finite-dimensional
algebra A, where A = KQ/I for K a field, Q a finite quiver and I an admissible
ideal. This was introduced into the mainstream by Gabriel in 1972, (see [1]) with his
widely known theorem and classification of finite quivers. In this thesis we look at
when the Ext algebra is finitely generated as an algebra. One class of algebras where
it is known that the Ext algebra is finitely generated is the class of Koszul algebras,
which were introduced by Priddy in 1970, [25]. He introduced the notion of a Koszul
algebra whilst studying Steenrod algebras and defined this class of algebras, which
were a subset of the quadratic algebras, and for which the calculation of E(A) was
simple to determine via the Koszul resolution. Since then, Koszul algebras and their
generalisations have occurred in many different places in algebra and they have been
the focus of numerous papers, such as the two papers by Green and Martinez-Villa,
[15, 16].

In this thesis we introduce and study a class of finite-dimensional algebras, which

are a generalisation of Koszul algebras, by extending the (D, A)-stacked monomial
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algebras of Green and Snashall, introduced in [18]. There are many generalisations
of Koszul algebras in the literature, including D-Koszul algebras which were in-
troduced by Berger [5] and the §-Koszul algebras of Green and Marcos [12]. The
class of (D, A)-stacked monomial algebras of [18] are a natural extension of Koszul
monomial algebras and D-Koszul monomial algebras; we now extend the theory to
non-monomial (D, A)-stacked algebras.

We begin the thesis with some background information on finite-dimensional alge-
bras given by quiver and relations, and an introduction to Koszul algebras and their
generalisations. In Chapter 2 we remind the reader of the projective resolution of a
module over such an algebra. In Chapter 3, we describe the construction of the Ext
groups Ext’t (M, N) for modules M, N over a finite-dimensional algebra A, and the
minimal projective resolution of A/t of Green, Solberg and Zacharia, given in [20],
where v is the Jacobson radical of A. This is followed by an explicit example of an
algebra A = K'Q/I, where we calculate the minimal projective resolution of A/t as
a right A-module and compute its Ext groups. This algebra will be shown to be a
(D, A)-stacked algebra further on, in Chapter 5.

Chapter 4 looks at Koszul algebras and some of their generalisations. A natural
question to ask is when is the Ext algebra of a finite-dimensional algebra itself finitely
generated as an algebra? It is well known that the Ext algebra of a Koszul algebra is
finitely generated in degrees 0 and 1. The D-Koszul algebras of [5] were shown to have
their Ext algebra generated in degrees 0,1 and 2 in [13] by Green, Marcos, Martinez-
Villa and Zhang. In [18], Green and Snashall introduced (D, A)-stacked monomial
algebras and proved in [19] that the Ext algebra of these algebras is generated in
degrees 0, 1,2 and 3. After reviewing these classes of algebras, we then give explicit
examples, firstly of a 3-Koszul algebra and then a Koszul algebra.

In Chapter 5, we define the new class of (D, A)-stacked algebras. We show
that these algebras include the previously mentioned Koszul, D-Koszul and (D, A)-

stacked monomial algebras. The main result of this chapter is Theorem 5.7 where



we show that the Ext algebra of a (D, A)-stacked algebra is finitely generated as an
algebra.

Theorem 5.7 Let A = KQ/I be a (D, A)-stacked algebra with D > 2 and A > 1.
Then E(A) is generated in degrees 0, 1,2 and 3.

In Chapter 6 we explicitly look at some general properties of the Ext algebra for
our class of (D, A)-stacked algebras and provide a characterisation of (D, A)-stacked
algebras in Theorem 6.8.

Theorem 6.8 Let A = KQ/I where [ is generated by homogeneous elements of
length D > 2. Then A = Ay & Ay & --- is length graded. Suppose, in the minimal
projective resolution, (P",d"), of Ay that P3 is generated in a single degree, D + A,
for A > 1. Then A is a (D, A)-stacked algebra if and only if E(A) is generated in

degrees 0, 1,2 and 3 and the following conditions hold:

i) Exty (Ao, Ag) x Ext) (Ao, Ag) =0, if D # 2;
i) Exth (Ao, Ag) x Ext) (Ao, Ag) = 0 = Ext} (Ao, Ag) x Ext} (Ag, Ag), for all n odd,
n>1,ifD>2,D#A+1;
i) Ext} (Ao, Ag) x Ext) (Ao, Ag) = 0 = Ext} (Ao, Ag) x Ext} (Ag, Ag), for all n even,
n>2iD>2A>1;and
iv) Exti™ (Ao, Ag) x Ext3"t(Ag, Ag) = 0, for all m,n > 1, if D # 24, D > 2.

Chapter 7 is motivated by the work of Green, Marcos, Martinez-Villa and Zhang
in [13]. In this paper the authors take the Ext algebra of a D-Koszul algebra and
show that after regrading it is a Koszul algebra. This prompts the question ‘Can the
Ext algebra of a (D, A)-stacked algebra be regraded as a Koszul algebra?” We give
a regrading of the Ext algebra, and then devote the rest of the chapter to discussing
when this regraded algebra is Koszul. In particular, we give a (6, 2)-stacked non-
monomial algebra, and through the working of this example and the use of Grobner
bases, we prove that our regrading of its Ext algebra is Koszul. This is followed
by an example of a (6,2)-stacked monomial algebra, where we also prove that its

regraded Ext algebra is a Koszul algebra. We finish this chapter with a (4, 2)-stacked
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algebra whose regraded Ext algebra is not Koszul, along with a general subclass of
(D, A)-stacked algebras, namely the (2m,m)-stacked algebras, with m > 2, where
the Ext algebra cannot be regraded as a Koszul algebra.

In the rest of the thesis we take a different approach to (D, A)-stacked algebras.
The aim of Chapter 8 is to give a precise construction of a (D, A)-stacked algebra,
A = KQ/I, from a given d-Koszul algebra, A = KQ/I, where D = dA. For
any chosen A > 1, this construction gives a unique algebra. We begin with the
construction of the new quiver Q and the new ideal I thus defining a new algebra A
from a d-Koszul algebra A. We then define a map 6 : A — A, which with a minimal
projective resolution of A/t as a right A-module, allows us to explicitly describe a
minimal projective resolution of A /T as a right A-module. Our main result is:

Theorem 8.15 Let A be a d-Koszul algebra. Let A > 1 and set D = dA. With
the given construction, the algebra A = KQ/I is a (D, A)-stacked algebra.

Chapter 9 begins with the question ‘What is the relationship between E(A) and
E(A)?". Throughout this chapter we investigate this question, and construct a K-
algebra homomorphism W : Ext7*(A/t, A/t) — Ext?\Q(/NX/f‘, A /%) in Theorem 9.15.

As a next stage, it is natural to ask what the relationship is between the Hochschild
cohomology rings of A and A. Although we are not yet able to fully answer this ques-
tion, in the final chapter of this thesis, Chapter 10, we construct a minimal projective
bimodule resolution of A from a given minimal projective bimodule resolution of A.
We use the map 6 : A — A given in Chapter 8, to define a new map ¢ : A — A¢. Our
construction of a minimal projective bimodule resolution of A is given in Theorem
10.16, which is the main result of this chapter. This naturally leads to the question
of how HH*(A) and HH*(A) are related. This question would be a good topic for

further research.



2. PRELIMINARIES

This chapter recalls some of the basic definitions needed to look at algebras given
by quiver and relations, and their modules. The definitions and concepts here can
be found in many good books on representation theory, including [1], [2] and [6].

We begin with a description of an algebra by quiver and relations.

Definition 2.1. A quiver Q = (Qg, Q1, s, 1), consists of two sets, Qy which is a set
of vertices and Q; which is a set of arrows, together with two maps s,t: Q1 — Qy,

which associate to each arrow o € Q; its source s(«) and its target ¢(«).

Definition 2.2. (1) A quiver Q is said to be finite if Qy and Q; are both finite
sets.
(2) The underlying graph of the quiver Q is denoted Q and means Q with no
orientation on the edges (arrows).

(3) The quiver Q is said to be connected if Q is connected.

Definition 2.3. (1) Let Q be a quiver and let a,b € Q. A path from a to b is
a sequence of arrows «; such that the first arrow has source a and the last
arrow has target b, and if the «; are ordered so that the path is ajas -+ -«
then s(ay) = a and t(a,) = b, with s(a;11) = t(«;), for each 1 < i <n — 1.
The length of the path is n and each arrow is of length 1.

(2) The set of paths of length n is denoted by Q,; this ties in well since the set
of paths of length 1 is Q.

(3) Associated with each vertex a is a trivial path e,; this is a path of length 0.
Note that the above definition means that we write our paths from left to right.

Definition 2.4. Let Q be a finite quiver and let K be a field. The path algebra K Q
of @ is the K-algebra whose underlying vector space has the set of all paths in Q as

its basis. Multiplication is given by concatenation of paths. Thus the product of two

paths 3; and B3, is defined as (315, if t(81) = s(B2), and B18> = 0 if £(B1) # s(B2).
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We assume throughout this thesis that Q is a finite quiver and K is a field.

It follows that K Q has a direct sum decomposition,
KQ=KQoKQ & - ®KQ, -

where K Q; is the subspace generated by Q;, the set of paths of length 7.
Given any two of these subspaces KQ,, and KQ,, then K9, - KQ,, € KQ,.,
so KQ is a graded K-algebra.

Definition 2.5. Let Q be a quiver. The two sided ideal of the path algebra K Q

generated by the arrows of Q is called the arrow ideal of K Q, denoted Ry.

Definition 2.6. Let Q be a finite quiver, Ro the arrow ideal of K Q. A two sided

ideal I of K'Q is admissible if there exists m > 2 such that RG C I C R%.

One of the main reasons for using quivers to describe our algebras, is that, essen-
tially, every finite-dimensional algebra can be described in this way. This is due to

the following result by Gabriel, for which see [7].

Theorem 2.7. Any basic finite-dimensional algebra over an algebraically closed field

K is isomorphic to KQ/I for some unique quiver Q and admissible ideal I.

We say that an algebra of the form K Q/I for some admissible ideal I of K'Q is
given by quiver and relations. If I is generated by a set of paths in KQ then we
say KQ/I is a monomial algebra. Throughout this thesis all our algebras K Q/I are
finite-dimensional.

We now look at modules, as one of the main tools we will be using is the projective

resolution of a simple module.

Definition 2.8. Let R be a ring. An R-module M is simple if the only submodules
of M are 0 and M.

Definition 2.9. Let R be a ring. An R-module M is projective if whenever

f X — Y is an epimorphism and g : M — Y is a homomorphism then there
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exists h : M — X such that fh = g, that is, the diagram commutes:

Proposition 2.10. Let R be a ring and let e be an idempotent in R, that is, e? = e.

Then eR 1is projective as a right R-module. In particular, R is a projective R-module.
Definition 2.11. Let R be a ring. A complex is a sequence of R-modules M,
together with homomorphisms d”

an dn+1 dn+2
e M S Mt D 2 T

such that d**! o d™ = 0 for all n.

Definition 2.12. An exact sequence of R-modules is a complex

an dn+1 dn+2
s MM s M 2 T

such that Im d" = Ker d"*! for all n.
Definition 2.13. Let R be a ring. A projective resolution of an R-module M is an
exact sequence

am dmfl d2 dl dO
pPm pmi e P! PO M 0

such that all the P™ are projective R-modules.

In the next chapter we look at minimal projective resolutions for modules over a
finite-dimensional algebra A = K Q/I, following the construction of Green, Solberg
and Zacharia [20].

11



3. MINIMAL PROJECTIVE RESOLUTIONS AND THE EXT ALGEBRA

In this chapter we look at minimal projective resolutions and the Ext algebra. We
start with a definition of the Ext groups, taken from [1], [24] and [26].
Let A = KQ/I be a finite-dimensional algebra over a field K with Jacobson

radical t.

Definition 3.1. Let M, N be right A-modules, and let

d? d! d°

P? Pt PO M 0

be a projective resolution of M as a right A-module. Apply Homy (—, N) to give the

complex

. Homa(P™,N) " Homa(P", N) —— Hom,(P"*', N) —— -
where d"* : Homy (P", N) — Homy (P™™, N) is the map induced from " : P+t —
P". The module Ext} (M, N) is defined by Ext} (M, N) = Kerd™/Imd"* for all

n > 0.

Theorem 3.2. Let M, N be right A-modules. The module Exty (M, N) is indepen-

dent of the choice of projective resolution of M, for all n > 0.

The above theorem means that we can use any projective resolution of M as a
right A-module to determine the Ext groups Ext} (M, N). We will consider minimal

projective resolutions. A projective resolution

dm qam—1 d2 dt d0
pm pm-1 . p! P M 0

of a A-module M is minimal if Im d™ C rad(P™ ') = P™ 't for all m > 1.
We are interested in the Ext groups Ext){ (A/t, A/t) for n > 0, so we use a minimal
projective resolution of the right A-module A/v. We use the resolution of Green,

Solberg and Zacharia, given in [20]. We give a brief summary of the construction in
12



this paper. We begin with hereditary algebras, for which see [6], and the definition

of a uniform element.

Definition 3.3. Let R be a ring. Then R is hereditary if every submodule of a

projective module is also projective.
Theorem 3.4. Let KQ be a path algebra. Then KQ is hereditary.

Corollary 3.5. Let KQ be a path algebra. For every x € KQ, the KQ-module

K Q is projective.

Definition 3.6. Let 2 be an element in K Q. Then x is uniform if there exist vertices

e;,e; € Qo such that x = e;x = we;.

We now look at [20] and a minimal projective resolution (P",d") for A/t.

Let A= KQ/I and let A/t = @D, S;, a finite sum of simple modules. Choose a set
of elements {¢°} of KQ such that @, )’ KQ/ P, ¢°I is a projective A-module and
there is a surjective map d : @, ¢ KQ/ €D, 9?1 — A/r. Without loss of generality,
we can choose g? = ¢; for each vertex e; of KQ. Let d : @Z g?KQ — A/t be the

canonical surjection of K Q-modules; then we have

O—>Kerd0—>®g?KQ—>A/t—>0.

i€Q0

We can now choose a set of elements {g;*} of @,.o, ) K Q such that @, g/*KQ =
Ker d”. From this set we eliminate the elements that are contained in the set @, /7,
and let {g;} be the subset of {g;*} containing the elements that are not in €@, ¢?1.
Clearly we have @@, g; KQ C @, ¢/ K Q.

The remaining terms are defined inductively. We assume that we have the sets
{gF}, for all k = 0,...,n. To find {g"™} we proceed as follows. Consider all the
elements in the intersection (B, g;' K Q) (D, g} ~'I). We stop if this intersection is

nt1x

zero and set it equal to €0, g;"t"* K'Q otherwise. From this set {g;"*"*} we eliminate

the elements that are contained in the set @, gi'l and take {g?™'} to be the subset
13



of {g/""*} containing the elements that are not in €0, g1 If each g/""'* is in €, gI'1
we again stop.
We assume, for each n, that the elements ¢ are uniform.

Setting T = @, 97 K Q, the construction of [20] gives a filtration

For each n > 0, let P*" = @, 97 KQ/ @, 971. Then P" = P, t(g")A and is a
projective right A-module. Let d® : P* — P"! be the A-homomorphism induced
from the inclusion €, g KQ C €P; g;‘_lKQ,

Theorem 3.7. [20, Theorem 1.2] Let (P™,d") be the resolution

dan dt d°
pr pr-1 P! Po Aft —= 0

with P™ and d" as given above. Then (P™,d") is a projective resolution of A/t as a

right A-module.

For our setting, [20] shows that this construction gives a minimal projective reso-

lution of A/.

Theorem 3.8. [20, Theorem 2.4] Let (P™,d") be a projective resolution of A/t as a
right A-module, as given above. Then the sets {gl'} can be chosen so that for each n,
no proper K-linear combination of a subset of {gi*} lies in EBj g?_lf—i-@i g J, where
J denotes the arrow ideal of KQ. Moreover, in this case the resolution (P™,d") is

mainimal.

To summarize the resolution of [20] to give a minimal projective resolution of A/t

e Let ¢° be the set of vertices in Q.
e Let g' be the set of arrows in Q.

e Let ¢ be a minimal set of uniform relations in the generating set of I.
14



e For n > 3 each x € ¢g" is a uniform element with

=Y = Y

yegn—1 zegn—2
where 7, and s, are unique elements in K Q.
e These sets g™ are such that there is a minimal projective resolution of A/t
with the following properties:
(1) for each n > 0, P" = P, ,n t(x)A

(2) for z € ¢g" there are unique elements r; € KQ with

where m = [¢g"!|.

(3) For each n > 1, the map P" — P"~! is given by
tHx)d = Y (gl )t () A
j=1

where ¢(g7~ ! )r;t(x) X is in the component of P"~! corresponding to ¢(g}*).

In examples it may be simpler to start by computing a projective resolution for
each simple A-module. The following theorem shows that given a minimal projec-
tive resolution for each simple A-module, we can write down a minimal projective
resolution of A/t, since A/t = @, S;, where {S;} is a complete set of pairwise non-

isomorphic simple modules for A.

Proposition 3.9. If0 — A — B — C — 0 is a short exvact sequence and
P, P, are projective resolutions of A and C' respectively, then there exists a projective

resolution of B such that the following diagram is commutative:
15



- — Pz@pg _— Pl@pl _— Po@po —— B —— 0

pg Pl 130 c 0
0 0 0 0

with exact rows and columns.

We now give an example where we compute the minimal projective resolution of

A/t as a right A-module and give the sets g" of the construction of [20].

Example 3.10. Let Q be the quiver given by

2
N
1 3
Yj ay
Qg 7 a3

6 4
Ox %4
5)

and let A = KQ/I, where I = ((a1a — arrag)aizaug, sy, g (g — aiparg) ).
The indecomposable projective modules are e;A and the simple modules are S; =
ei\/exe, for t = 1,...,7. We begin by finding projective resolutions of the simple

modules.
16



For S;, the resolution begins

el _ eih/e;t — 0
where P° = ¢;A and d° is the canonical surjection. So Kerd® = e;t = ay A + a7 A.
Let P! = esA@erA and let d' : P! — P? be given by d'(eaA1, e7X2) = ai Ay +azde,
where A, Ay € A. Then we have Kerd' = {(e2)\1, e7)\2) € PHay A + azhy = 0}.

It is straightforward to show that Kerd' = (apazay, —agasay)A. Let P2 = esA,
and define d* : P? — P! by d?(es)\) = (e, —agazay)\. Here Ker d? = azagA.
Let P? = e;A and define d® : P> — P? by d®(e;\) = asag)h. Then Kerd® =
(a1ay — azag)A. Continuing in this way, we let P* = e3A and define d* : P* — P3
by di(es)) = (a1ay — azag) ), giving Kerd* = azayA. Let P5 = esA and define
d® : PP — P* by d®(es)\) = azau ), giving Ker d® = asagA = Ker d°.

We can see inductively that the projective resolution (P",d") for S; then repeats
with
o P = e\, d"(e1\) = asap), Ker d" = (aqan — azag)A, if n=3m,m € N.

o P" =e3\,d"(e3)\) = (aqag — azag)\, Kerd" = azayA, if n =3m+1,m € N.
o P" =es5A,d"(es\) = azaq\, Kerd" = asagh, if n =3m +2,m € N.
Note that we use the convention that 0 ¢ N.

This sequence is a minimal projective resolution (P",d") for S; as a A-module.

For S, let P° = e;A and d° be the canonical surjection, P° — Sy. Then Ker d° =
eat = aoA. Let P! = e3A and define d' : P! — P° by d'(es\) = ax\. Now,

Kerd' = {0} and so we have P? = (0 and we are finished, that is,

dl d°
0 €3A €2A —— €2A/€2t — 0

is a projective resolution of Sy as a A-module.
In this way we can see that the simple modules S, S4, S¢ and S; have finite
projective resolution, whilst Si,. S35 and S5 have infinite projective resolution. We

can now write down a projective resolution (P",d") of A/x:

17



I S - N
pr pr-1 p? p! po AJt —= 0

where P° = e;A @ esA @ esA @ esA B esA B egA @ er A, P1 = eaA ® ez A @ esA @
e @ esA @ egA @ et A @ esA and P? = e;A @ et A @ esA. The remaining terms of
the resolution are given by:

elf n=3m,méeN,P"=eA®esADesA,

d" (A1, A2, A3) = (asaeAr, (a1 — azag)Ag, azauds),

Ker d" = (o — azag) A @ asag\ @ asagA.

olf n=3m+1,meN,P"=esA®e;AD e,

d" (A1, A2, A3) = ((anaa — azag) A, o de, asa6)s),

Kerd" = asauA @ asash © (g — azag)A.

elf n=3m+2,meN, P"=e AP e ADesA,

d" (A1, Ao, A3) = (azauhs, asag)a, (a1as — arzag))s),

Ker d" = asagh @ (a1ap — arag) A @ asayA.

We remark that P™ = P? for n > 2. Since Imd" C P" 't for n > 1, the sequence

(P",d") is a minimal projective resolution of A/t as a right A-module.

For the above algebra, the sets ¢" are given as follows:

0 _
g = {61762763764765766767}

1 __
g — {Oél,062,053,(14,055’@67067,058}

92 = {(041062 - 047048)043044; Q3045 Qg 045046(041042 - 047048)}

93 = {(041042 - CY7048)043044C¥5046, 0636Y4045046(041(12 - 047048)7

asag(aag — arag)azoy b
o If n=3m,meN,g" ={((cnay — ayag)azagasog)™,
(agagasag(anas — azag))™, (asag(agae — arag)agay)™}.
e lfn=3m+1,meN,g¢g"={((cnas — arag)asasasag)™ (s — arag),

(063044055(16(061042 - Oé7068))m0630447 (Oé5066(041052 — 047068)0430[4)m0é5066}.
18



e Ifn=3m+2meN,g"={((v1as — arag)asasasag)™(aias — arag)agay,
(03614045&6(@1042 - a7048))ma3044(¥5a6, (045046(041042 - a7048)a3a4)ma5a6(041a2 -

arag) }

Given the minimal projective resolution of A/t as a right A-module and the sets
g" for all n > 0, we now have all the information we need to look at the Ext algebra

of A.

Definition 3.11. The Ext algebra of A is

E(A) = Ext}(A/r, Afr) = @D Ext} (A/r, Afv).

n>0

In order to see that E(A) is an algebra, we need to describe the product structure
of E(A). The product is given by the Yoneda product.

We start with a minimal projective resolution (P™,d") of A/t as a right A-module,
so Imd" C P" 't. As above, let d™* : Homy(P", A/t) — Homy(P""!, A/t) be the
map induced from d"*' : P"*! — P"  Then Imd™ = {0} for all n > 0, so that
Ker d™ = Homy (P™, A/v) and Ext} (A/t, A/r) = Homy (P", A/x) for all n.

Given g € Homy (P™,A/t) and f € Homy(P", A/t) which represent elements in
Ext}'(A/t, A/r) and Ext)(A/v, A/t) respectively, the product g - f is the element in
Ext"*"(A/t, A/t) given by the map go L™f : P™™ — A/t where L™ f is the m-th
lifting of f. Thus

. pmtn dmrn Pm+n71 Pn+1 i pn
!
U”fl LmlfL Llfl £°fl \
pm pm—1 P! PY At —= 0
am dl dO
S
A/
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n+m

The liftings are not unique; nevertheless the product ¢ - f in Ext}™™(A/v, A/v) is
independent of the choice of liftings. In this way E(A) has an algebra structure. We
have seen that Ext}'(A/r, A/t) x Ext}(A/v,A/r) C ExtPT"(A/r, A/r), so E(A) is a
graded algebra, with the homomlogical degree. When we refer to F(A) as a graded

algebra, we mean graded by the homological degree, unless otherwise specified.

The main aim of this thesis is to consider how E(A) is generated and whether or
not it is finitely generated. Do we need the basis elements of Exty (A/t, A/t) for all n
or can we find a finite n such that E(A) is generated in degrees 0,1,2,...,n? In the
next chapter we look at Koszul algebras and some generalisations where it is known

that F/(A) is finitely generated.
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4. KOSZUL ALGEBRAS AND SOME GENERALISATIONS

In this chapter we define Koszul algebras and some of their generalisations. All
the algebras have their Ext algebra finitely generated. The algebras in this chapter
motivate the (D, A)-stacked algebras which we introduce in Chapter 5 and which
will form the main objects of study of this thesis.

Koszul algebras play an important role in algebra and in topology, see [3], [15],

[16] and [25]. They are graded algebras. We start with some definitions.

Definition 4.1. (1) Let A be a K-algebra, for some field K. Then A is a graded
algebraif A=Ay DA B AP -+, with A, - A, T A,ip, for all m,n > 0.
(2) Let A be a graded algebra, A = Ag® A1 @ - -, and let M be a right A-module.
Then M is a graded A-module if

(3) Let A be a graded algebra, A = Ag @ Ay @ ---, and let M be a graded A-
module, M = M; ® M; ;1 & M;,o @ ---. Then M is generated in degree 7 if
for eachj Z 0, Mi-l—j = MZAJ

Definition 4.2. [15] Let A = KQ/I be a finite-dimensional algebra. Then A is a
Koszul algebra if A is a graded algebra A = Ag @ Ay & Ay @ -+ and if A/v = Ay

considered as a graded A-module in degree 0 has a graded projective resolution

P2 P! PP Ao 0

such that P’ is generated in degree i. In this case, we say that Ay has a linear

resolution.

A finite-dimensional algebra K Q/I is graded whenever [ is a homogeneous ideal
of KQ. We note that [15, Corollary 7.3] shows that if a finite-dimensional graded
algebra K'Q/I is Koszul then [ is a quadratic ideal. In this case I is generated by

linear combinations of paths of length 2.
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Theorem 4.3. [15] Let A = KQ/I be a finite-dimensional algebra and let I be
generated by length homogeneous elements. Then A is a Koszul algebra if and only if

E(A) is generated in degrees 0 and 1, that is, by ExtS (A/t, A/t) and Ext) (A/t,A/¢).

The class of D-Koszul algebras was introduced by Berger in [5] as a generalisation
of Koszul algebras. In a D-Koszul algebra K'Q/I, the ideal I is homogeneous (so

KQ/I is graded), and is generated by linear combinations of paths of length D > 2.

Definition 4.4. [5] Let A = KQ/I be a finite-dimensional algebra. Then A is a
D-Koszul algebra if, for each n > 0, the nth projective P™ in a minimal projective

resolution of A/t is generated in exactly one degree, §(n), where

gD if n is even
o(n) =

(D +1  ifnis odd.

Green, Marcos, Martinez-Villa and Zhang showed that the Ext algebra of a D-

Koszul algebra is finitely generated in the following theorem.

Theorem 4.5. [13, Theorem 4.1] Let A = KQ/I where I is generated by homoge-
neous elements of length D for some D > 2. Then A is D-Koszul if and only if the

Ezt algebra E(A) can be generated in degrees 0,1 and 2.

We now give two examples, the first is a D-Koszul monomial algebra, and the

second is a Koszul algebra.

Example 4.6. Let Q be the quiver given by

and let I = (s, asagar, azaias). Let A= KQ/I.
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The minimal projective resolution of A/t is given by

dn dnfl d2 dl dO
pn pr-l P2 pt PO Afe —= 0

where we define the terms P" and the maps d" as follows;

o Let P = e A @ ey A ® esA. We define the map d° : P° — A/t by
d®(e1 )1, €22, €303) = 1M1 + €29 + e3A3 + t so we have
Kerd® = oy A & asA & asA.

o Let P! = ey A @ esA @ e;A. We define the map d* : P! — P° by
d'(eaA1, e3M2, €103) = (11, Qoda, az\3) so then
Kerd' = asas\ @ azo A @ aqasA.

e For all n > 2.n even, we have P" = eiA & esA ® esA. We define the
map d" : P" — P by d"(e1)1, e2)2, €3)3) = (anasi, azay g, apaip\3) SO
Kerd” = a; A ® asA @ asA.

e For all n > 3,n odd, we have P" = esA @ e3A & e;A. We define the map
d": P — P! by d™(ea)q, e3)ha, 103) = (a1, ada, azA3) SO
Ker d" = ayasA @ asa A @ aqas.

To be able to use this resolution to find the Ext algebra, we need the sets g". They

are:

90 - {617 €2, 63}'

gt = {ay, as, as}.
¢ 92 = {041042063, Qo3 agalag}.

Then, for all n > 3,n odd, the set g" = {(a1a0a3) ™ D/ 2qy,

(042063041>(n_1)/2042, (043041042)(71_1)/2043}‘

n/2
7

e For n > 4,n even, the set ¢g" = {(a10003)"2, (apas0)™?, (azaran)™/?}.

We can now see that the sets g™ have length d(n) for D = 3. Hence each projective

term P™ is generated in degree d(n), so A is a 3-Koszul algebra.
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Example 4.7. Let Q be the quiver given by

11— T=02
- =

/
N s

3

and let I = ((a1 — ay)ag, oz, az(ag — ay)). Let A= KQ/I.

We note that A is a monomial algebra, with a change of generators, v = a3 —
g, Y2 = ay. However, we will come back to this example in Chapter 8 and so choose
to give I with non-monomial generators.

The sets g" are given as follows;

e The set ¢° is given by {ey, s, e3}.

e The set g' is given by {ay, ay, az, asz}.

e The set ¢g* is given by {(a; — ay)ag, asas, az(a; — ay)}.

e The set g3 is given by {(a; — ay)asas, asaz(a; — ay), as(ag — ay)as}.
For n > 3, we have;

elf n = 3mm € N,g" = {((a1 — au)azaz)™, (was(ar — ay))™, (as(ag —
ay)ae)™}

o Ifn=3m+1,meN,g"={((a1 —as)asas)™ (a1 — ayg), (231 — ay)) "o,
(g — ag)an)™as}.

e lfn=3m+2,meN,g¢g"={((a; — ag)asaz)" (a1 — ay)as,

(voaz(g — )™ agas, (as(ar — ag)an)™ag(a; — ayg)}.

We label the elements of the set ¢g" by g7, g5, ... in the order they are given here.

A minimal projective resolution of A/t is;

an dn— 1 d2 dl dO

pr prt P? P! PO AJt —= 0

where

[ P0:®€Z‘A:€1A@€2A€B€3A

do(el/\l, 62)\2, 63/\3) = (61/\1 + 62)\2 + 63/\3 + 'C)
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o Pl=@t(vi)A = eaA ® eaA B e3A D e A
d'(eaA1, €22, €3M3, €104) = (1 A1 + agda, oAz, s \y)

o P2=Pt(g?)A = e3A D e; A D e\
d*(esA1, €10, €2)3) = (a1, —an)1, azha, (a — ag)A3).

e Forn =3m,m € N, P" = @ t(g")A = e1 A ® eaA @ e3A,
d"(e1 A1, e2)a, €3A3) = (g1, (1 — aq) A, o A3).

e Forn=3m+1,meN P"=@t(g")A = eaA D e3A D el A,
d"(eaA1, e3)a, €103) = (1 — g) A1, oo, a3 A3).

e Forn=3m+2,meN P"=@Pt(g")A =esA D e A D e,
d"(esA1, €19, €2A3) = (a1, agAe, (1 — ay)A3).

Since each g™ has length n, we have shown that A/t has a linear resolution. Hence
A is a Koszul algebra, and thus the Ext algebra E(A) is generated in degrees 0 and

1. We now look at a basis of the Ext algebra. For each n > 0 and each g € ¢g", we

tgh)+tv ifi=y
let fi* € Homy(P", A/v) be the map given by ¢(g7) —
0 otherwise.

The elements f/* for all n and all ¢ form a K-basis for E(A).

Let us now consider Exti(A/t,A/t). Then f2 = f} - fi = f3 o L'f] , where the
lifting £' f{ can be chosen as L' f{ : P? — P! t(g?)\ = e3\ > e3\ = t(g3) A, else —
0. Similarly f3 = f1- f2 = fioL'f} , where the lifting £!f; can be chosen as £ f] :
P? — Pl t(gHN = et — et A = t(gi)\else — 0. And f3 = fl - f3 = floL'f],
where the lifting £'f} can be chosen as L1f] : P> — P!, t(g3)\ = e\ > ex\ =
t(gi)A, else +— 0.

For this algebra, and all n > 2, we can write each element f/' as a product
of the form f} - fi~' for suitable j, k. Thus Ext}(A/¢, A/t) = Exty(A/v,A/t) x
Ext} ' (A/t, A/t) in this case. This provides a second proof that F(A) is generated

in degrees 0 and 1.

Another class of algebras which generalise Koszul monomial algebras were intro-

duced by Green and Snashall in [18], and see [19].
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Definition 4.8. [18, Definition 3.1] Let A = K Q/I be a finite-dimensional monomial
algebra. Then A is said to be a (D, A)-stacked monomial algebra if there is some
D > 2 and A > 1 such that, for all n > 2 and g} € g", where the ¢g" are the sets of

a minimal projective resolution of A/t from [20], then

%D if n is even

(251D + A if nis odd.

In particular [ is generated by paths of length D.

Remark. Let A be a (D, A)-stacked monomial algebra.

(1) For D = 2, A = 1,the (2,1)-stacked monomial algebras are precisely the
quadratic monomial algebras, or equivalently, the Koszul monomial algebras.
In this case F(A) is generated in degrees 0 and 1.

(2) For A =1, the (D, 1)-stacked monomial algebras for D > 2 are the D-Koszul
monomial algebras. In this case, E(A) is generated in degrees 0, 1 and 2. We
note that this new class of algebras include both non-monomial and monomial

algebras.

Proposition 4.9. [18, Proposition 3.3] Let A be a (D, A)-stacked monomial algebra.
Then

(1) if gldim A > 3 then D > A;

(2) if gldim A > 4 then D = dA for some d > 2.

The Ext algebra of a (D, A)-stacked monomial algebra is finitely generated as the

following result shows.

Theorem 4.10. [19, Theorem 3.6] Let A be a (D, A)-stacked monomial algebra.
Then E(A) is generated in degrees 0,1,2 and 3.

Moreover, for monomial algebras of infinite global dimension, the (D, A)-stacked

monomial algebras are precisely the monomial algebras for which every projective
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module in the minimal projective resolution of A/t over A is generated in a single
degree and for which the Ext algebra of A is finitely generated. For a (D, A)-stacked
monomial algebra of infinite global dimension, the nth projective P™ in the minimal

projective resolution of A/t is generated in degree

0 ifn=20

1 ifn=1
< 5D if n > 2,n even
(%53)D + A if n > 3,n odd.

This class of monomial (D, A)-stacked algebras leads to our (D, A)-stacked alge-

bras which we now introduce.
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5. (D, A)-STACKED ALGEBRAS

In this chapter we introduce a new class of algebras, which we call (D, A)-stacked
algebras. This class is motivated by the (D, A)-stacked monomial algebras of [18] and
includes all the Koszul algebras, D-Koszul algebras and (D, A)-stacked monomial

algebras of Chapter 4. We start with the definition of a (D, A)-stacked algebra.

Definition 5.1. Let A = KQ/I be a finite-dimensional algebra. We define A to be
a (D, A)-stacked algebra if there is some D > 2 and some A > 1 such that for all n
the projective module P™ in a minimal projective resolution of A/t is generated in

degree d(n), where

0 ifn=20
1 ifn=1
6(n) =
5D ifn=2r,reN
k(”T_l)D—i—A ifn=2r+1,reN.

Remark. Let A be a (D, A)-stacked algebra. If A =1, then A is D-Koszul and we
have seen in Theorem 4.5 that E(A) is generated in degrees 0, 1 and 2. Moreover, if
A=1and D =2 then A is Koszul and E(A) is generated in degrees 0 and 1.
Clearly the (D, A)-stacked algebras contain the (D, A)-stacked monomial algebras
of [18]. Thus (D, A)-stacked algebras are a natural generalisation of Koszul algebras,
containing all the Koszul algebras, D-Koszul algebras and (D, A)-stacked monomial
algebras. We note that this new class of algebras contains both monomial and non-

monomial algebras.

The main result in this chapter is Theorem 5.7 where we show that E(A) is finitely
generated and moreover is generated in degrees 0, 1,2 and 3. In order to prove this,

we need the following results from [12] and [13].

Proposition 5.2. [13, Proposition 3.6] Let A be a graded algebra and let

= P2 Pt P Ay =0
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be a minimal graded projective resolution of Ay as a right A-module. Suppose that

Pt is finitely generated with generators in degree d;, fori = o, B, a+ 3. Assume that
dotp = do + dg.
Then the Yoneda map
Ext§ (Ao, Ao) x Ext}(Ag, Ag) — Ext3™ (Ao, Ag)
15 surjective. Thus
Exty ™ (Ao, Ao) = Ext§ (Ao, Ao) x Ext? (Ao, Ag)
= Exth (Ag, Ag) x Ext§(Ag, Ag).

If Ais a (D, A)-stacked algebra then the projective module P? in a minimal projec-
tive resolution of Ag is generated in degree D. Hence the ideal I of K Q is generated
by homogeneous elements of length D. Thus there is a length grading on A so
that A is a graded algebra, A = A¢ B A1 B Ay B --- D A,,, with m finite since A is

finite-dimensional. In particular, each element \; € A; is homogeneous of length i.

Definition 5.3. [12] Let --- — P? — P! — PY — Ay — 0 be a minimal graded
projective resolution of Ay over A. We say that A is d-resolution determined if there

is a function 0 : N — N such that for all n > 0, P" is generated in degree §(n).

It is clear that a (D, A)-stacked algebra is d-resolution determined, with ¢ as in

Definition 5.1.

Definition 5.4. [12] A d-resolution determined algebra A is d-Koszul if E(A) is

finitely generated as an algebra.

Theorem 5.5. [12, Theorem 3.6] Let A = KQ/I be a graded algebra where I is an
ideal gemerated by length homogeneous elements in K Q and the grading is induced

from the length grading in KQ. Assume that A is d-resolution determined. Then
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A is a 0-Koszul algebra if and only if there is some positive integer t, such that, if

k > t, then there exists i, with 0 < i < k, such that §(i) + 6(k — i) = 6(k).

We are now ready to consider the Ext algebra of a (D, A)-stacked algebra.

Theorem 5.6. Let A = KQ/I be a (D, A)-stacked algebra with D > 2 and A > 1.
Then E(A) is generated in degrees 0,1,2 and 3.

Proof. Let A = KQ/I be a (D, A)-stacked algebra, with D > 2 and A > 1. Then
I is generated by homogeneous elements of length D, so A is length graded and is
d-resolution determined.

We now show that there exists some appropriate positive integer ¢, namely ¢ = 3,

so that the hypotheses of Theorem 5.5 are satisfied and hence A is d-Koszul. We

have,
0 ifn=20
1 ifn=1
o(n) =
5D ifn=2rreN
(%) D+A ifn=2r+1reN
\

Let t = 3 and ¢ = 2. Then, for all n > 3, we have:

(=)= ()

n 1
—-D—-D—-—-D+ A D
(30-0-g+4)+

e if n odd, d(n —2) + J(2)

n 1
2
= d(n),



and

e if n even, d(n —2) 4+ 4(2) = (ng2)D+§D

:gD—D+D

~-"p
2

=0(n).

So A is a §-Koszul algebra (with ¢t = 3,7 = 2). Hence E(A) is finitely generated.
We note that we need t = 3, since if n = 3 then necessarily t = 2 and ¢ = 1.

However, §(3) = D+ A and 6(1) +(2) = D+ 1 but A > 1, s0 §(1) +6(2) # 4(3).
It remains to show that E(A) is generated in degrees 0, 1,2 and 3. For all n > 3,

we have 6(2) 4+ 6(n —2) = (n) and so from Proposition 5.2 we have
EXtX(Ao, AQ) = EXti(Ao, A()) X EXtXﬁQ(Ao, Ao)

Thus, E(A) is generated in degrees 0, 1,2 and 3. O

Using the fact that the Ext algebra of a Koszul algebra is generated in degrees 0
and 1, and the Ext algebra of a D-Koszul algebra is generated in degrees 0,1 and 2,

we have the following theorem.

Theorem 5.7. Let A = KQ/I be a (D, A)-stacked algebra with D > 2 and A > 1.
Then E(A) is generated in degrees 0,1,2 and 3.

Note that the comment following Definition 5.3 together with Theorem 5.7 shows
that every (D, A)-stacked algebra is a d-Koszul algebra.

In the next chapter we give a full characterisation of (D, A)-stacked algebras.
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6. PROPERTIES OF THE EXT ALGEBRA

In this chapter we look at some of the general properties of the Ext algebra, F(A),
where A is a (D, A)-stacked algebra, as given in Definition 5.1. We start by recalling

some well known definitions, see for example, [13], [14], [26].

Definition 6.1. (1) Let M, N be graded modules. A homomorphism of degree
n is a homomorphism f : M — N such that f(M;) C Ny, for all 7.

(2) Let A be a graded algebra, A = Ag @ A; @ ---, and let M be a graded A-
module, M = @; M;. We define the nth shift of M, denoted M|n], to be the
graded A-module X = &®; X;, where X; = M,_,,.

If M is generated in degree n, so M = M, & M, & ---, then M[—n| =
Xo®X @ - -, where Xg = M,,, X1 = M, 11, ..., and hence M[—n] is generated

in degree 0.

Notation Let Gr(A) be the category of graded right A-modules together with the
set of degree 0 homomorphisms and let F' denote the forgetful functor, F' : Gr(A) —
MOdA.

Definition 6.2. [13] Let A be a graded algebra, A = Ag@ Ay & ---. Let M = @; M;
and N = @; N; be graded A-modules. If M is finitely generated then the abelian
group Homy (F'(M), F(N)) can be graded as follows;

Homy (F(M), F(N)); = Homg,a) (M, N[i]).

This is called the hom-grading. More generally, suppose we have a graded projective

resolution (Q",d") of M where each Q" is finitely generated. We define
Exty(F(M), F(N)); = Extg, ) (M, Ni)

which is the homology of the complex obtained by applying Home,a)(—, N[i]) to

(Q",d"™). This is called the shift-grading.
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Proposition 6.3. [13, Theorem 2.1] Let A be a graded algebra. Let (Q",d™) be a
minimal graded projective resolution of a graded A-module M. Assume that each Q"
is finitely generated. Suppose that N is a graded A-module such that rad N = (0),
where rad N denotes the radical of N. Then

Ext{ (F(M), F(N)); = Homg,a) (" (M), N[i]) = Homg,x)(Q"(M)[=d], N),

where " denotes the nth syzygy of M with respect to the resolution (Q",d").

We will now look at when products in the Ext algebra E(A) are zero, for a
(D, A)-stacked algebra A. Since radAy, = (0), we will use the above proposi-
tion and Proposition 5.2 to show that if d(n) + d(m) # d(n + m) then we have
Ext}} (Ao, Ag) x Ext}'(Ag, Ag) = 0. Throughout this chapter, we let (P",d") denote

a minimal projective resolution of Ay for our (D, A)-stacked algebra A.

Proposition 6.4. Let A be a (D, A)-stacked algebra with D # 2. Then
EXt}X(AO, Ao) X EXt}\(A(), Ao) =0.

Proof. The projective module P! is generated in degree 1 and Ext} (Ag, Ag) = Hom(P*', A),
so every element of Ext} (Ag, Ag) can be viewed as a short exact sequence of graded

modules of the form 0 — Ag[—1] - E — Ag — 0. Let

and
(2) 0—>A0[—1]—>E—>A0—>0

be two short exact sequences in Ext} (Ao, Ag). We can shift the sequence (2) by —1

to get

(3) 0 — Ag[—2] = E[—1] = Ag[—1] = 0.
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We then splice the sequences (1) and (3) together to obtain

A

0— Ag[—2] = E[-1] = E — Ay — 0.

Thus the image of Ext} (Ao, Ag) x Ext} (Ao, Ag) is contained in Ext?3 (Ag, Ag)s. How-
ever, we know that P? is generated in degree D # 2, so Ext3 (Ag, Ag)2 = 0. Therefore,
Ext} (Ao, Ag) x Ext}(Ag,Ag) = 0, when D # 2. O
Proposition 6.5. Let A be a (D, A)-stacked algebra with D > 2.
i) If D # A+1 then Ext} (Ao, Ag) xExt} (Ao, Ag) = 0 = Ext} (Ag, Ag) xExt} (Ag, Ag),
for alln odd, n > 1.
i) If A > 1 then Ext} (Ao, Ag) x Ext} (Ao, Ag) = 0 = Ext} (Ao, Ag) x Ext} (Ag, Ag),

for all n even, n > 2.

Proof. The case n = 1 follows from Proposition 6.4. Thus we may assume n > 2.
The projective module P" is generated in degree 6(n). So, since Ext}(Ag, Ag) =
Hom(P™, Ay), each extension can be viewed as an exact sequence of graded modules
of the form

0— Ao[—0(n)] = E, = -+ — Ey — Ay — 0.

Using the shift-grading, we can shift this sequence by —1 to obtain
0— Ao[—d(n) — 1] = E,[-1] = -+ = Ei[—1] — Ag[—1] — 0.
We can then splice this with an extension from Extj}(Ag, Ao),
0— Ag[-1] > E - Ay —0
to obtain
0— Ao[—d(n) —1] = E,[-1] = -+ = E1[-1] = E' = Ay — 0.
Thus the image of Ext}(Ag, Ag) X Ext)(Ag, Ag) lies in Ext}™ (Ag, Ag)s(ny+1. How-

ever, we know the projective module P"™! is generated in degree d(n + 1), so
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Exth™ (Ao, Ag) = Ext}™ (Ao, Ao)sns1). If m = 2r + 1 is odd, then d(n + 1) =
02r+2)=(r+1)Dand 6(n)+1=012r+1)+1=rD+A+1, and since D # A+1
we have Exty (A, Ao)s(my+1 = 0, for n odd.

On the other hand, if n = 2r is even, the projective module P"*! is generated in
degree (n+1) = 0(2r+1) = rD+Aand 6(n)+1 = §(2r)+1 = rD+1, and since A > 1
we have Ext} ™ (Ao, Ag)sm)+1 = 0 for n even. Hence Ext} (A, Ag) X Exty (Ao, Ag) = 0
for all n even, n > 2.

The case for Ext)(Ag, Ag) x Ext}(Ag,Ag) = 0 is similar. This completes the

proof. O

Proposition 6.6. Let A be a (D, A)-stacked algebra with D > 2, D # 2A. Then

Ext3" (Ao, Ag) x Ext3 ™ (Ag, Ag) = 0, for all m,n > 1.

Proof. Let m > 1,n > 1. The projective modules P?"*1 and P?"*! are generated in
degrees §(2m + 1) and 6(2n + 1), respectively. So each extension in Ext3™**(Ag, Ag)

can be given as an exact sequence of graded modules of the form
(4) 0—>A0[—(5(2m—|—1))] _>E2m+1 — = B —>A0—>0

and each extension in Ext3"™!(Ag, Ag) can be given by an exact sequence of graded

modules of the form

(5) 0— Ao[—(6(2n+1))] = E5ppqy = -+ = B = Ay — 0.
Shifting the sequence (5) by —(6(2m + 1)) we get

(6) 0— Ao[-0(2n+1) —0(2m +1)] — E, . [-0(2m + 1)]

— - = E[=0(2m +1)] = Ag[—0(2m + 1)] — 0.

Then splicing together (4) and (6), we get
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0= Ao[—6(2m + 1) — 6(2n + 1)] — E}, 4 [~0(2m + 1)]

— o= E[-02m+1)] - Eoyppp1 — - > Ey =5 Ag— 0
which is an extension in Extim+2"+2(A0,A0)5(2m+1)+5(2n+1). However, P2(m+n+1) ig
generated in degree 6(2(m+n+1)) = (m+n+1)D and §2m + 1) +d(2n+1) =
mD+ A+nD+ A= (m+n)D+2A. Since D # 2A, we have
Ext 2™ (Mg, Ao)sam1)ra@nst) = 0, 50 Ext2™H(Ag, Ag) x Ext2!(Ag, Ag) = 0.

Hence, for all m,n > 1, we have Ext3™*(Ag, Ag) x Ext3""!(Ag, Ag) = 0 and this

completes the proof. O
We summarise Propositions 6.4, 6.5 and 6.6 in the following result.

Theorem 6.7. Let A be a (D, A)-stacked algebra. Then
i) Ext} (Ao, Ao) x Exty(Ag, Ag) =0, if D # 2,
i) Ext} (Mg, Ag) x Ext} (Ag, Ag) = 0 = Ext} (Ag, Ag) x Ext} (Ao, Ag), for all n odd,
n>1, ifD>2D#A+1,
i11) Ext (Ao, Ao) x Exty (Ao, Ag) = 0 = Exty (Ao, Ag) x Ext} (Ao, Ag), for all n even,
n>2 if D>2A>1, and

i) BExti™ ! (Ag, Ag) x Exty ™ (Ao, Ao) =0, for alln,m > 1, if D > 2, D # 2A.

We now use Theorems 6.7 and 5.7 to give the following characterisation of (D, A)-

stacked algebras.

Theorem 6.8. Let A = KQ/I where I is generated by homogeneous elements of
length D > 2. Then A = Ag ® Ay ® - -+ 1is length graded. Suppose, in the minimal
projective resolution, (P™,d"), of Ay that P3 is generated in a single degree, D + A,
for A > 1. Then A is a (D, A)-stacked algebra if and only if E(A) is generated in
degrees 0,1,2 and 3 and the following conditions hold:

i) Exty (Ao, Ag) x Ext} (Ao, Ag) =0, if D # 2;

i) Ext} (Ao, Ao) x Exty (Ag, Ag) = 0 = Ext (Ao, Ag) x Ext} (Ao, Ag), for all n odd,

n>1,ifD>2D#A+1;
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i) Exty (Ao, Ag) X Ext) (Ag, Ag) = 0 = Ext} (Ag, Ag) x Ext} (Ao, Ao), for all n even,
n>2iD>2A>1;and
i) BExti™ ! (Ag, Ag) x Exti" ™ (Ao, Ao) =0, for all m,n > 1, if D #2A, D > 2.

Proof. Suppose A = KQ/I is a (D, A)-stacked algebra. Then from Theorem 5.7 we
know that E(A) is generated in degrees 0, 1,2 and 3. From Theorem 6.7 we know
that conditions (i), (i), (732) and (iv) hold.

To show the other direction, we will look at this in 3 cases.

Case 1: D=2 A=1.

Assume A = KQ/I where I is generated by homogeneous elements of length
2 and E(A) is generated in degrees 0,1,2 and 3. We know that in a minimal
projective resolution (P",d") of Ay we have P° is generated in degree 0, P! is
generated in degree 1 and P? is generated in degree 2. By hypothesis P? is gen-
erated in degree D + A = 3. By Proposition 5.2 with a« = 1,8 = 1 we have
Exty (Ao, Ag) x Exty(Ag, Ag) = Exti(Ag,Ag). Putting a = 1,8 = 2 we have
Ext} (Ao, Ag) x Ext3(Ag, Ag) = Exti (Ao, Ag). Therefore E(A) is generated in de-
grees 0 and 1, so A is Koszul and therefore a (2, 1)-stacked algebra.

Case 2: D > 2, A= 1. Assume A = KQ/I where [ is generated by homogeneous
elements of length D and, in the minimal projective resolution of Ay, P? is generated
in degree D + 1. Assume E(A) is generated in degrees 0,1,2 and 3. We know that
in a minimal projective resolution of Ay we have PY is generated in degree 0, P!
is generated in degree 1 and P? is generated in degree D. By Proposition 5.2 with
a = 1,8 =2 we have Exty(Ag, Ag) x Ext3 (Ao, Ag) = Ext}(Ag, Ag). Therefore E(A)
is generated in degrees 0, 1 and 2 and by [13, Theorem 4.1] A is D-Koszul and hence,
Ais a (D, 1)-stacked algebra.

Case 3: D>2 A> 1.

Suppose that P? is generated in degree D + A and E(A) is generated in de-

grees 0,1,2 and 3, with conditions (i), (i7), (74¢) and (iv) holding. We know that
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Ext (Ao, Ag) = Ext) (Ag, Ag)o and Ext} (Ag, Ag) = Ext} (Ao, Ag)1 because the pro-
jective modules P? and P! in the minimal resolution of Ay are generated in degrees
0 and 1 respectively. By hypothesis, we have Ext} (Ao, Ag) = Ext3 (Ao, Ag)p and
Ext3 (Ao, Ag) = Ext3 (Ao, Ag)pra.

We now need to look at Ext}(Ag, Ag). Since E(A) is generated in degrees 0, 1,2

and 3 we have
Ext} (Ao, Ag) = Ext} (Ao, Ag) x Ext} (Ao, Ag) + Ext} (Ag, Ag) X Ext3 (Ao, Ag)

+ EXti(Ao, Ao) X EXt/l\(Ao, Ao)

Now, either D = A+ 1 or D # A+ 1. Assume first that D # A 4+ 1. Then from
condition (Z’L), EXti(Ao, Ao) X EXt}\(Ao,Ao) =0= EXt}\(Ao, Ao) X EXti(Ao,Ao). So
EthL\(A(), A()) = EXti(Ao, A()) X EXTE\(A(), A())

An element of Ext3(Ag, Ag) can be viewed as an exact sequence
(7) 0—= Ao|-D] = Ey > FEy — ANy — 0

and, using the shift grading, we can shift the sequence (7) by —D to obtain

(8) 0 — Ag[—2D] — Ey[—D] — Ey[—-D] — Ao[-D] — 0.
Let
9) 0— Ao[—D] = Ey = B} — Ag— 0

be another element of Ext? (Ag, Ag) then we can splice sequences (8) and (9) together

to obtain
0 — Ag[—2D] — Es[—D] — E1[-D] — Ey — E} — Ay — 0.

Thus the image of Ext}(Ag, Ag) x Ext3(Ag, Ag) lies in Exti (Ao, Ag)ap, and P* is

generated in degree 2D.
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Now assume that D = A+1. We can similarly show that the image of Ext? (Ag, Ag)x
Ext} (Ag, Ag) and the image of Ext} (Ag, Ag) x Ext} (Ao, Ag) lies in Ext} (Ao, Ag) pratt
but D = A+ 1 so Ext} (Ao, Ag)prar1 = Ext}(Ag, Ag)2p. The same argument above
also shows that the image of Ext3(Ag, Ag) x Ext3(Ag, Ag) lies in Ext} (Ao, Ag)ap.
Hence Ext? (Ao, Ag) = Ext? (Ao, Ag)2p and P* is generated in degree 2D.

Let n = 5. Then

Exti (Ao, Ag) = Exty (Ao, Ag) x Exti (Ao, Ao) + Ext} (Ao, Ag) x Ext3 (Ao, Ao)
+ EXti(Ao, Ao) X EXti(Ao, Ao) + EXti(A()? Ao) X EXt}\(Ao, Ao)

By condition (i), since D > 2 and A > 1, Ext}(Ag, Ag) x Ext}(Ag, Ag) = 0
Ethl\(Ao,Ao) X EXt/l\(Ao,A(]). So EXti(Ao,Ao) = EXt%(Ao,Ao) X EXti(AQ,Ao) +
Ext? (Ao, Ag) x Ext3 (Ao, Ag). As before, an element in Ext3 (Ag, Ag) can be viewed

as a exact sequence of the following form

(10) 0— Ao[—D] = Es - E; = Ay — 0

and an element in Ext? (Ag, Ag) can be given by

(11) M[-D — Al = E; - E, — E] -5 A —0

The sequence (11) can be shifted by —D to obtain

(12) Ao[-2D — A] — Ei[-D] — E})[—D] — E{[-D] — Ao[-D] = 0

and we can splice the sequences (10) and (12) to obtain

0 — Ag[—2D—A] — E5|—D] — Ey[—D] — E{[-D] — Ao[-D] — E3 — E; — Ay — 0.

Thus the image of Ext?(Ag, Ag) x Ext}(Ag, Ag) is contained in Ext?}(Ag, Ao)2psa-

Similarly, the image of Ext3 (Ag, Ag) x Ext3 (Ag, Ag) is contained in Ext? (Ag, Ag)apasa-

Hence Ext} (Ao, Ag) = Ext} (Ag, Ag)2pia and PP is generated in degree 2D + A.
Let n = 6. Then
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EXt?\(AO, Ao) = EXt/l\(Ao, Ao) X EXt?\(AQ, Ao) + EXti(Am Ao) X EXti(Ao, AQ)
+ EXti(Ao, Ao) X EXti(Ao, Ao) + EXti(Ao, Ao) X EXt?\(Ao, Ao)
+ EXti(Ao, Ao) X EXt}x(Ao, AQ)

We begin by looking at Ext3 (Ag, Ag) x Ext} (Ag, Ag). Using exact sequences, we have
(13) 0— Ao[—D] = Es - E; =5 Ay — 0

is an element of Ext3 (Ao, Ag) and

(14) 0— Ag[-2D] = E}, > E5y = E), —» E{ = Ag — 0

is an element of Ext} (Ag, Ag). We can shift the sequence (14) by —D to obtain
(15) 0 — Ao[-3D] — E}[-D] — E3|—D] — E)[—D] — E{[-D] — Ag[—D] — 0
and splicing together the sequences (13) and (15) we obtain

0 — Ag[—3D] — E}|—D] — E}|—D] — Ej|—D] — Ej[-D] — Ey — Ey — Ay — 0.

Thus the image of Ext3 (Ag, Ag) x Ext} (Ao, Ag) is contained in Ext{ (Ag, Ag)sp. Sim-
ilarly, the image of Ext} (Ao, Ag) x Ext3 (Ag, Ag) is contained in ExtQ (Aq, Ag)sp.

Again, we can view the elements of Ext? (Ag, Ag) as exact sequences. Let

(16) 0= A[-D—A] 5 E3s— Ey— FE; - A —0
and
(17) 0— Ao[-D—Al = E; > E,— E — A —0

be two elements of Ext}(Ag, Ag). We can shift the sequence (17) by —D — A to
obtain

(18)

0 — Ag[—2D—2A] — E5[—-D—A] = Ey|[-D—A] — Ej[-D—A] = Ag|-D—A4] = 0
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and splicing together the sequences (16) and (18) we obtain
0 — Ag[—2D — 2A] — E}[-D — Al — E4[-D — A] — E|[-D — A]
— F3 — FEy — E1 — Ay — 0.
Thus the image of Ext3 (Ao, Ag) x Ext? (Ag, Ag) is contained in ExtS (Ao, Ag)apioa.
In the same way we can show that the image of Ext? (Ag, Ag) x Ext}(Ag, Ag) and
the image of Ext} (Ao, Ag) x Ext’ (Ag, Ag) are contained in Ext§ (Ag, Ag)apsast

Now, we have 3 cases to consider:

(1) Let D =2A. If D = A+ 1, then A = 1, which is a contradiction, so we
must have D # A + 1. Then by condition (ii), we have Ext}(Ag, Ag) X
Ext) (Ao, Ao) = 0 = Ext} (Ao, Ag) x Ext} (Ao, Ag). So Ext§(Ag, Ag) =
Ext3 (Ao, Ag) x Ext’ (Ag, Ag) + Ext? (Ag, Ag) x Ext3 (Ao, Ag) + Exth (Ag, Ag) x
Ext3 (Ao, Ag). Now, the image of Ext? (Ag, Ag) x Ext? (Ag, Ag) is contained in
Ext§ (Ao, Ag)aproa but D = 2A, so Ext? (Ag, Ag) x Ext? (Ag, Ag) is contained
in Ext} (Ao, Ag)sp. It follows from above that Ext§ (Ag, Ag) = Ext§ (Ao, Ag)sp.

(2) Let D # 2A and D = A+ 1. Since D # 2A then by condition (iv), we
have Ext} (Ao, Ag) x Ext} (Ao, Ag) = 0. Now, the images of Ext}(Ag, Ag) X
Ext} (Ao, Ag) and Ext} (Ao, Ag) x Ext? (Ao, Ag) are contained in
ExtS (Ao, Ag)opsas: and 2D + A + 1 = 3D, since D = A + 1. Hence
Ext§ (Ao, Ag) = ExtS (Ao, Ag)sp.

(3) Let D # 2A and D # A+1 then by condition (i7), Ext} (Ao, Ag) x Ext} (Ag, Ag) =
0 = Ext} (A, Ag) x Ext} (Ao, Ag) and by condition (iv), Ext}(Ag, Ag) X
Ext} (Ao, Ag) = 0. So Ext§ (Ao, Ag) = ExtS (Ao, Ag)sp-

Therefore Ext§ (Ao, Ag) = Ext} (Ao, Ag)sp and PY is generated in degree 3D.

We now use induction on n to show that Ext}(Ag, Ag) = Ext} (Ao, Ag)sm) for
n > 7. We can assume that for 2 < m < 6 we have Ext}' (Ao, Ag) = Ext){' (Ao, Ao)sm)

and P™ is generated in degree d(m).
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We consider two cases. First suppose that n is odd, so let n = 2r + 1, with
r > 3. Assume that for m < n we have Ext}' (Ao, Ag) = Ext}' (Ao, Ao)sem) and P™ is

generated in degree 6(m). Since E(A) is generated in degrees 0, 1,2 and 3, we have

EXtX(AO, Ao) = EXt/l\(Ao, Ao) X EXtXﬁl(AQ, Ao) + EXti(Ao, Ao) X EXtX72(A0, Ao)
+- EXtX7m<A0, Ao) X EXtT(AQ, Ao) —+ -+
Eth_2<AQ, Ao) X EXti(Ao, A()) + EXtX_l(Ao, A()) X EXt}X(AQ, Ao)

By condition (4ii) since D > 2, A > 1, Exty (Ag, Ag) x Ext}y ™ (Ag, Ag) = 0 =
Ext} 1 (Ao, Ag) x Exty (Mg, Ag), so we need to look at Ext} ™ (Ag, Ag) x Ext}(Ag, Ag)
for m > 2 and n — m > 2. We begin by supposing m is odd, so n — m is even.
Then P™ is generated in degree ((m —1)/2)D + A and P™"~™ is generated in degree
((n—=m)/2)D. An element of Ext}y ™ (Ag, Ag) can be viewed as an exact sequence of

the form

(19) 0— Ao[—((n—m)/2)D] = Eppey = -+ = By = Ag — 0

and an element of Ext}'(Ag, Ag) can be viewed as an exact sequence of the form
(20) 0— Ao[-((m—1)/2)D—-A] - E, — -+ — E] = Ay — 0.

We can shift the sequence (19) by —((m — 1)/2)D — A to obtain

(21) 0— Ao[—((n—1)/2)D — Al = E_p|—((m —1)/2)D — A]

— - = No[—((m —1)/2)D — A] — 0.

Splicing the sequences (20) and (21) we get
0= Ao[—((n—1)/2)D — Al = Eyppn|[—((m —=1)/2)D — A] = --- — E] = Ay — 0.
Thus the image of Ext}™™ (Ao, Ag) x Ext}{'(Ag, Ag) is contained in

Ext} (Ao, Ao)((n-1)/2)D+4-
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Similarly, if m is even then n —m is odd and again we get that Ext}~™ (Ao, Ag) X
Ext}' (Ao, Ag) is contained in Ext} (Ao, Ao)(n—1)/2)p+4. Thus for all m > 2,n —m >
2 we have Ext} ™" (Ao, Ao) x Ext}'(Ag, Ap) is contained in Ext}{ (Ao, Ao)(n—1)/2)D+A-
Hence for n odd, P" is generated in degree ((n —1)/2)D + A.

Now we need to consider the even case. Let n = 2r with r > 4. Again we assume
that for m < n we have Ext}'(Ag, Ag) = Ext}'(Ag, Ao)sm) and P™ is generated in
degree 6(m). We have

Ext (Ao, Ag) = Ext} (Ao, Ag) x Ext} (Ao, Ag) + Ext? (Ag, Ag) x Exty 2(Ag, Ag)
F o Ext?(Ag, Ag) x Exth*(Ag, Ag) + - +
Ext} (Ao, Ag) x Ext3 (Ao, Ag) + Exti (Ao, Ag) X Exty(Ag, Ag.)
We begin with the case m > 2. Suppose m is even then n — m is even. So P™ is

generated in degree ((m)/2)D and P"™ is generated in degree ((n —m)/2)D. An

element of Ext’y ™ (Ao, Ag) can be viewed as an exact sequence of the form
(22) 0— Ao[—((n—m)/2)D] - Eyyy = -+ = Ey — Ly — 0
and an element of Ext{'(Ag, Ag) can be viewed as an exact sequence of the form
(23) 0— Ao[—((m)/2)D] = E,, — -+ — E} — Ly — 0.
We can shift the sequence (22) by —((m)/2)D and we obtain
(24) No[—(n/2)D] = E,—|[—(m/2)D] — - -+ — No[—(m/2)D] — 0.
We can then splice the sequences (23) and (24) together to get
0— Ao[—(n/2)D] = Ep_p|—(m/2)D] = -+ = El — -+ = E] — Ay — 0.
Thus the image of Exty ™ (Ao, Ag) x Ext}{'(Ag, Ag) is contained in

EXtX (Ao, AO)(n/2)D .
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Now suppose m is odd, m > 3, so n — m is also odd. Then P™ is generated in
degree ((m —1)/2)D 4+ A and P" ™ is generated in degree ((n —m — 1)/2)D + A.

An element of Ext}™™(Ag, Ag) can be viewed as an exact sequence of the form
(25) 0—=Ao[—(n—m—-1)/2)D—-Al > Epy = -+ = E - A —0

and an element of Ext{'(Ag, Ag) can be viewed as an exact sequence of the form
(26) 0— Ao[-((m—1)/2)D—-A] - E,, = -+ — E] = Ay = 0.

We can shift the sequence (25) by —((m —1)/2)D — A and we obtain

(27) 0= Ao[=((n—2)/2)D = 24] = E,n[=((m = 1)/2)D — A]

— - = N[ ((m —1)/2)D — A] — 0.

We then splice together the sequences (25) and (27) to get the following sequence
0— Ao[—((n—2)/2)D —24] = E_p[—((m—1)/2)D — A] = -+ = E} — Ay — 0.

Thus the image of Exty ™ (Ag, Ag) x Ext}{'(Ag, Ag) is contained in

Ext} (Ao, Ao)((n—2)/2)D+24-

In a similar way we can show that the images of Ext} (Ao, Ag) x Ext} ' (Ag, Ag)
and Exty (Ao, Ag) x Ext} (Ao, Ag) are contained in Ext} (Ao, AO)(%Q)DJFAH.

Now, we have 3 cases to consider:

(1) Let D = 2450 D # A+1. Then by condition (i) Ext} (Ag, Ag) x Exth ™ (Ag, Ag) =
0 = Ext} (Ao, Ao) xExt} (Ag, Ag). The image of Exty ™ (Ag, Ag)x Ext}(Ag, Ag)
is contained in Ext§ (Ao, Ag)(z)p for m even and Ext (Ao, AO)("T*"’)DHA for m
odd, m > 3. However, D = 2A, so for all m > 2, the image of Ext} ™" (Ag, Ag) X
Ext’{' (Ao, Ap) is contained in Ext’} (Ao, Ao)(g)D- So Ext{ (Ao, Ag) = Ext (Ao, AO)(%
(2) Let D # 2A, D = A+1. Then the image of Ext} ™" (Ao, Ao) x Ext{'(Ag, Ag) =

0 for m odd, m > 3, by condition (iv). The images of Ext}(Ag, Ag) X
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Ext} (Ao, Ag) and Ext} (Ag, Ag) x Ext} ™ (Ag, Ag) are contained in

EXtK(AO,AO)(anz)D+A+1 = Ext}\(AO,AO)(%)D, since D = A+ 1. The image of

Exti ™" (Ao, Ao) X Ext{'(Ao, Ag) is contained in Ext§ (Ao, Ao)(z)p, for m even.

So EXtX(Ao, AQ) = EXtX(Ao, AO)(%)D

(3) Let D # 2A,D # A+ 1. By conditions (i) and (iv), Ext}(Ag, Ag) X

)
EXtX_1<A0, Ao) =0= EXJCK_1<A0,A0) X EXt}\(AQ,Ao) and EXtX_m(A(),Ao)

X

Ext}' (Ao, Ag) = 0, for m odd. The image of Exty ™ (Ao, Ag) X Ext}’(Ag, Ao) is

contained in Ext (Ao, Ag)(

n
2

)
)b, for m even. So Ext} (Ao, Ag) = Ext}{ (Ao, Ao)(z)p-

Hence for n even, Ext} (Ao, Ag) = Ext} (Ao, Ao)(z)p, and therefore P" is generated

in degree 3D.

Thus, for all n > 0, P" is generated in degree §(n), where d(n) is given by

0
1
D

|3

(22) D+ A

\

Therefore, A is a (D, A)-stacked algebra.
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7. REGRADING OF THE EXT ALGEBRA

In this section we consider the following question. Given a (D, A)-stacked algebra,
A, can the Ext algebra, E(A), be regraded as a Koszul algebra? This is inspired by
the work of [13], where the authors take the Ext algebra of a D-Koszul algebra A,

and show that there is a regrading, given by
E(A)O = EXt?\(Ao, Ag)

E(A); = Ext} (Ao, Ag) @ Ext2(Ag, Ao)

E(A), = Ext™(Ag, Ay) & Ext2*(Ag, Ao), for n > 2.
With this hat-degree grading, E(A) = @,>0E(A), is a Koszul algebra, [13, section

7]. We note that for D = 2, A = 1, then A is a Koszul algebra and it is well known
that E(A) is a Koszul algebra without any regrading.
We now define a grading on our (D, A)-stacked algebras with certain conditions

on D and A, which we also call the hat-degree grading.

Definition 7.1. Let A = KQ/I be a (D, A)-stacked algebra, with D > 2, A > 1,

D+#2Aand D4 A+ 1.
We define E(A)y = Ext(Ag, Ag)

S(A); = Ext) (Ao, Ag) @ Ext2 (Ao, Ao) & Ext3 (Ao, Ao)
E(A), = Ext2"(Ag, Ag) & Ext2™ ™ (Ag, A), for n > 2.
Let E(A) = @ps0E(A),.

We now proceed to show that the hat-degree gives a well defined grading, with

certain conditions on D and A. This will be followed by explicit examples.

Theorem 7.2. Let A be a (D, A)-stacked algebra with D > 2, D # 2A,D # A+
1,A > 1, with E(A) = @,50E(A),. Then the Ext algebra E(A) is graded in this

hat-degree.

Proof. We need to show E(A)y, X E(A)n = E(A)min, for all m,n > 0. This is clearly

true for either m = 0 or n = 0. We start with the case m = n = 1. Then
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E(A); x E(A), = (Extk(Ao,Ao) @ Ext3 (Ao, Ag) @ Exti(Ao,A0)>
X (Extk(Ao, Ao) @ Ext3 (Ag, Ao) ® Ext’ (Ao, Ao))
— (Ext}\(AO,AO) X Ext}A(AO,AO)) ® (Ext}\(Ao,Ao) x Bxt3 (Ag, Ag)
+ BExt3 (Ao, Ag) X ExtlA(AO,AO)) ® (Exti(AO,AO) x Ext} (Ag, Ag)
+ Ext} (Ao, Ag) x Exty (Ao, Ag) + Ext (Ao, Ag) x Ext3 (Ao, A0>>
@ (Exti(Ao, Ag) x Ext3 (Mg, Ag) + Ext? (Ag, Ag) ¥ Exti(Ao,A0)>
s (Exti(Ao,Ao) X Exti(Ao,Ao))

From Theorem 6.7, we find Extj (Ao, Ao) % Ext} (Ao, Ag) = 0,
Exty (Ao, Ag) x Ext3 (Mg, Ag) = 0 = Ext} (Ao, Ag) x Ext} (Ag, Ao),

Exty (Ao, Ag) x Ext3 (Ag, Ag) = 0 = Ext} (Ag, Ag) x Exty (Ao, Ap) and

Ext} (Ao, Ag) x Ext3 (Ag, Ag) = 0. This leaves us with only Ext3 (Ag, Ag) x Ext3 (Ag, Ao),
Ext3 (A, Ag) x Ext (Ao, Ag) and Ext? (Ag, Ag) x Exti(Ag, Ag).

Now, by Proposition 5.5, Ext? (Ag, Ag) x Ext3 (Ao, Ag) = Ext} (Ag, Ag) and

Ext} (Ao, Ag) x Ext3 (Ao, Ag) = Ext? (Ag, Ag) x Exti (Ag, Ag) = Ext} (Ag, Ag).
Thus E(A); x E(A); = E(A),, as required.
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Let m =1,n > 2. Then
E(A), x E(A), = (Ext}\(Ao, Ao) @ Ext (Ao, Ag) @ Ext3 (Ao, A0)>
X <Exti"(A0, Ao) ® Ext}"! (A, Ao))
— (ExtlA(Ao, Ao) x Ext3" (Ao, A0)> ® (Ext}\(Ao, Ao) x Ext3" (A, Ag)
+ BExt3 (Ao, Ag) X Exti”(AO,AO)) ® (Exti(Ao,Ao) x Ext3"(Ag, Ao)
+ Bxt? (Ao, Ag) x Exti"(AO,AO)) & (Exti(Ao,Ao) X Exti”“(Ao,Ao))
Using Proposition 5.2 and Theorem 6.7, we have

E(A); x E(A), = Ext2"2(Ag, Ag) ® Ext2""3(Ag, Ag) = E(A)py1, as required.

Similarly, E,(A) x Ey(A) = E,1(A), for n > 2.

Finally, let m > 2,n > 2. Then
E(A), x E(N), = (Extﬁm(z\o, Ao) @ Extim“(Ao,Ao))
X <Ext2A”(A0, Ao) @ Ext?" (A, AO))
— (Extgm(AO,Ao) X Exti”(Ao,AO)) S (Extim(Ao,Ao)x
Ext?" (Ao, Ag) + Exti™ ! (Ag, Ag) x Ext?"(Ay, Ao))
® (Extim“(/\o,/\o) X Exti"H(AoaAo))
= (Extf{”“"(Ao, Ao) ® Extim“”“(Ao, AO)),

from Proposition 5.2 and Theorem 6.7,

= E(A)pmyn, as required.
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This completes the proof. O

Now that we have shown Definition 7.1 gives a grading on our algebra E(A), we
will look at some specific examples of (D, A)-stacked algebras and their Ext algebras.
In particular we ask the question, with the regrading of Definition 7.1 do we obtain
a Koszul algebra? We begin by considering a (6, 2)-stacked algebra in Section 7.1,
in which we find that we need to use Grobner Bases; these are introduced in Section
7.2. We return to this example in Section 7.3 and show that, after regrading, the
Ext algebra is indeed a Koszul algebra. In Section 7.4 we consider an example
of a (6,2)-stacked monomial algebra which has the same underlying quiver as the
previous example but with monomial relations. After these two examples we then
briefly look at an example of a (4,2)-stacked algebra in which Definition 7.1 does
not define a grading. We conclude this chapter with Theorem 7.25, (in Section 7.5),
in which we show that there are some (D, A)-stacked algebras for which there is no
regrading such that E(A) is Koszul. Finally, we give an example of a (D, A)-stacked

algebra which justifies the hypothesis of Theorem 7.25.

7.1. Example 1: A (6,2)-stacked algebra.

Example 7.3. Let Q be the quiver given by

as Qg
33— 4 ——= 35 14
2 6 13 ais
a/ Y QV
1 12 15
047\{ A2 a&
7 11 17 aie
OA Al 0:7\
8§ — 9 ——= 10 16
[eXe] 10
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and let A = KQ/I where I = (ajasasayasag — araggaoti g, 03005000300 4,
Q5060130140 5006, A9l o011 (120134, (V11 Q1201314 56, (L1314 50601 7CN 8,
A15016001 71813014, CY1704180413CY1404150416>-

We start by finding a minimal projective resolution of A/t in order to show that

A is a (6, 2)-stacked algebra.

A minimal projective resolution for A/t as a right A-module is given by
e PP s PP P PP 5 At — 0

where
o PV = @lel e; A and d° is the canonical surjection , d° : e;\ — e;\ + t.
o P! =@ t(e)A and d" : t(ap) )\ — ;)\,
[ P2 = 612/\ ) 614A &P 616A >, 614A b 616A &b 612A b 614A e, 616A and
d2(€12>\1, €142, €163, €144, €165, €126, €14 A7, 616>\8)
= (305061, 0, 0506003001402, 0, Ag13004015006A3, 0, — s g g1 i A1,
0, ajpai1a12013004A4, 0, 20013001400150016 A5, 0, g5Q16017018 A6, 0, g 700813014 A7,
0, aqgai3014005016As8).
[ ] P3 = 614A @ 616A @ 612A EB 616A ED 612A @ 614A @ 616A EB 612A and
d3(€14)\1, €162, €123, €164, €125, €146, €167, 612>\8)
= (0413&14)\17 Q15016 A2, A17Q18A3, Q15016 A4, Q1718 A5, 13014 Ag, Q15016 AT, 04170418>\8)-
e Forn Z 47 if nis even, P = 612A D 614A D 616/\ D 614A D 616A D 612A D 614A D 616A
and dn(€12>\17 €142, €163, €144, €165, €126, €14 A7, 616/\8)
= (04156116%70418/\1, Q1700800130014 A2, Q13004050016 A3, Q70830 44,

Q13014015016 A5, QL1506 TOLIR G, (L 7QLIR O 3CN 4 AT, 0413a14a150516)\8)-
e For n Z 5, if n is Odd, P = €14A () 616A () 612A () 616A () 612A ) 614A ) 616A ) 612A
and dn(€14)\1, €16A2, €12A3, €164, €125, €146, €16 A7, 612>\8)
= (04130414>\1, 150062, X178, Q5016 A4, Q178 A5, (13046, Q1506 AT, 04170418>\8)-

The sets g" are given as follows;
[ ] go = {61, €9, ..., 617}.
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1,1 _ 1 _ 1 _
¢ g = {gl = Q1,05 = Q2,...,018 = alS}'
12
= {91 = 03050t — Q7 Qigrgv19i11 12, 92 = 30051314,
_ 2 _ 2 _
g3 = Q506001300140 15016, gy = Qo111 1201314, G5 = (V1101201314001 5016,
_ 2 __ 2 _
g = (130014005016Q17Q018, 7 = 1516171813004, g = 0417@180413041406150416}
3 _ .3 __ _
® g = {91 = (041062043044045046 047048049041004110412)&130414,
3 _ 3 _
go = Q304500130014 150016, 3 = Q5013001415160 7018,
3 _ 3 _
gy = Q9190111213004 01506, J5 = (V1112001300140 501601 7N 8,
3 _ 3 _
g = 1301415016001 70018 1314, §7 = (1501601718130 141506,
3 _
gs = 06170618041304140415C¥1606170418}
e Forn >4 ifn=2rn>2,

_ _ -1
g = {g? = (041(12043044045(16 - 047048%061004110412)(041304140415(11604170418)T )

-1

gy = (azoyasagonzong) (arsaigairaisazong)’

n r—1
gs = (&5(16(113&1404156116)(a17a1sa13a14a15a16) )

n __ r—1
g4 = (069a1004110412a130é14)(a1506160417a1804130414) ,

n o __ r—1

g5 = (0411041206130414@150416)(0617(%180413041406150416) )

n T T
96 = (041304140415041604170618) ) 9 (041504160417061804130614) )
g8 = (ronsaizaiaonsasg)”

2
ekForn>5ifn=2r+1,r>2,

n __ n __ r—1

g1 = {91 = (041@2@3044045@6 - 047048@9@1004110412)(&136114@15@160417018) 130014,
n __ r—1

g9 = 043044045(1604130414)(061504160417041804130414) 1506,

-1
04504606130414(1150616)(0617&180413041406150416)T 17018,

r—1
Oé110412a13(11404150é16)(a17@18041306140415@16) 170018,

Q
o'z
|

(
(
gy = (049%00411041204130414)(041504160417&1804130414)T_loé150416,
(
(aq3014015016017018) 3004, g7 = (1501601701801 3004)" Q15065
(arraigizigasang) arraag )

Looking at the length of ¢", it is clear from Definition 5.1 that A is a (6, 2)-stacked
algebra. Then we can use Theorem 5.7 to say that E(A) is generated in degrees 0, 1, 2

and 3. We now describe E(A) by quiver and relations.
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Since (P",d") is a minimal projective resolution of A/t then Ext}(A/t,A/t) =
Homy (P, A/¢), as discussed in Chapter 3. We can take a basis f™ of Hom (P, A/t)
for each n > 0 as follows.

Let fI" be the A-module homomorphism P™ — A/t given by

Ka, HgM i+t ifi=j
0 otherwise.
We set f* = {f"} so that |f"| = |¢"|.

We have the following products in the Ext algebra. If n = 2r and r > 2 then, f{' =
fE- 7% in Ext} (A/t, AJv), since fI' = f20L2f"? as maps, where the lifting £2f]' >
can be chosen as L2f]""2: P? — P2 t(g7)\ = ennA > e = t(g2)\, else > 0.

= f2. f27%in Ext}(A/t, A/v), since f§ = f2 o L2f3? as maps, where the
lifting £2f5~2 can be chosen as L2f52 : P* — P2 t(gh)\ = e — ey =
t(g2)\, else > 0.

o= f2. f27% in Ext}(A/v, A/v), since f§ = f2o L2f3? as maps, where the
lifting £2f372 can be chosen as L2fy 7% 1 P" — P2 t(g})\ = egh — e\ =
t(g3)\, else +— 0.

= f2. f7%in Ext}(A/t, A/v), since f§ = f2 o L2} as maps, where the
lifting £2f7~2 can be chosen as L2ff2 : P* — P2 t(gP)\ = e — ey =
t(g3)\, else +— 0.

o= f2. 2% in Ext}(A/v, A/v), since ff = f2o L2f2? as maps, where the
lifting £2f272 can be chosen as L2fI'"% 1 P" — P? t(gP)\ = egh — e\ =
t(g3)\, else +— 0.

fo = f2- 2% in Ext}(A/t, A/v), since f§ = f2o L2 ? as maps, where the
lifting £2f72 can be chosen as L2ff™2 : P" — P2 t(gi)\ = e\ > epp) =

t(g2)\, else 0.
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o= f2. f27% in Ext}(A/v, A/v), since f* = f2o L2772 as maps, where the
lifting £2f2~2 can be chosen as L2fI2 : P — P2 t(g")\ = e\ — e =
t(g2)\, else 0.

o= f2. f27% in Ext}(A/t, A/v), since f§ = f2o L2f3 2 as maps, where the
lifting £2f52 can be chosen as L2ff2 : P* — P2 t(g8)\ = eig)\ > e\ =
t(g2)\, else +— 0.

If n =2r +1and r > 2 then, f = f2. f% in Ext}(A/t, A/v), since f =
f2 o L2f]"? as maps, where the lifting £2f]" 2 can be chosen as £2f}% : P" —
P2 t(gP)\ = epah > e\ = t(g2)\, else — 0.

o= f2. f27%in Ext}(A/t, A/v), since f§ = f2o L2f3 2 as maps, where the
lifting £2f5~2 can be chosen as L2f5~2 : P* — P2 t(gh)\ = eig)\ — e\ =
t(g2)\, else +— 0.

o= f2. f27% in Ext}(A/v, A/v), since fp = f2o L2f3? as maps, where the
lifting £2f52 can be chosen as L2ff2 : P" — P2 t(g})\ = e\ = ep) =
t(g3)A, else +— 0.

= f2. f7%in Ext}(A/t, A/v), since f§ = f2o L2f7? as maps, where the
lifting £2f7~2 can be chosen as L2ff2 : P* — P2 t(gP)\ = eig\ — e\ =
t(g2)\, else +— 0.

o= f2. f2% in Ext}(A/v, A/v), since fP = f2o L2272 as maps, where the
lifting £2f2~2 can be chosen as L2ff72 : P" — P2 t(g0)\ = e = ep) =
t(g3)\, else +— 0.

fo = f2. f2%in Ext}(A/t, A/v), since f§ = f2 o L2f#? as maps, where the
lifting £2f7~* can be chosen as L2f§™2 : P" — P2 t(gi)\ = e\ = e\ =
t(g3)\, else +— 0.

o= f2. f2% in Ext}(A/v, A/v), since f? = f2o L3272 as maps, where the
lifting £2f772 can be chosen as L2f77% 1 P" — P2 t(gF)\ = egh — e\ =

t(g3)\, else +— 0.
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fa = f2. f&7% in BExt}(A/v,A/v), since f = f2o L2f%* as maps, where the
lifting £2f32 can be chosen as L2ff72 : P" — P2 t(g?)\ = e\ = ep) =
t(g2)\, else 0.

Now that we have this information, the Ext algebra, F(A), can be represented by
quiver and relations.

Let T" be the quiver given by

Bs
~ 4/// Bs

and let A = KT'/Z where Z is the ideal generated by

® (a(p, Qi3Qig, iy(rg, A5y, g5, AigQiy, OigQlg, (X1pQlg, (11 (X0, (120011, (1306,
(1302, (13008, (1413, A1500 4, Q1601 5, 17006, 18017,

o ai301, 152, Patra, 0173, Baais, avis B, Baas, arrfs, Psvio, i3 Bs, Be s
Beri2, Peuig, 1507, Brang, a7 By, Bsaue,

® (vi571, (1772, Y22, (11373, Y3y, (1774, Y4Olg, (1375, V5(X10, 1576, V66, V612,
Y618, (1777, Y7114, X137Y8, V816,

® Bry1 =61, Bsve —v1B2, Bevz— 1803, Bsva—viBas Bevs —8Ps, Brve — Ve s,
Bsyr — 167, Beys — V8Bs;

® Y7V, Y872, V673, V8 Y4, V65, V7V65 V8 V7 V6V8-
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This algebra A is the algebra F(A) given by quiver and relations, where we write

a; for fl, B; for f? and ~; for f2. This gives the following result.

Proposition 7.4. Let A be the algebra given in Example 7.3, and let A = KT'/Z as
defined above. Then A = E(A) where a;, B; and v; are all in degree 1, corresponding
to the elements of E(A);.

With this hat-degree grading, we wish to show A is a Koszul algebra. From
Definition 4.2, we know that if A is Koszul then there is a linear minimal projective
resolution of A/t as a right A-module. We start by trying to construct a minimal

projective resolution of A/t as a right A-module:

dan d? d! d°
pr - P? P! P° Al 0.

The projective modules are denoted by P™ in the usual way, however these are not
to be confused with the projective modules in the minimal projective resolution of
AJe.

We know P° = ¢/ A @ eaA D --- @ erA, d° is the canonical surjection given by
d® : e\ — e;A+ 1. Then Kerd® = v, so P! = t(a))A® -+ @ t(ag) A D t(B1)A D
B t(By)ABt(n)AD - D t(yg)A and d'(t(p;)\) = pi\, where p; is an arrow in
', e A

Let g* be the set of minimal generators of I, labelled g? for i = 1,...,68. For
each i we have g7 = >°.gjq;;, as in [20]. Then P? = BE t(g)A, E(tgHN) =
>, @i\, where g7 = 37 giqi;, for ¢i; € Qi

Let g* be the set of g}, as given in [20]. So g} = 37, ¢7¢;;, where ¢;; € KQ. In

particular, for A, the set ¢ is given by
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{043042061, Qyi3Qg, 5043, Qg5 iy, gQig ey, (Y10 Qlg g, (11 (oA, (12001 (X0,
13006005, (130200 1, (3OO T, (1401306, (140300 2, (1403008, (140331,
1400336, 1401373, 140135, 1401378, Q1501400 3, Q160500 4, Q1760 5,
(1801706, (1801733, (181735, tigri7 33, CLigui7Ya, Q18 C17Ya, QL1877
ai5B202, Bacipar, B0y, By, ansfaas, Baagar, anrBsang, By,
a13Bs0s, 13 PBei12, 138618, Beie s, Peizant, Bsigur, Qs Prans, Bransns,
a1788016, Bsieiis, Qi7Yalia, YaQraQur, (1137300, Y304 (k3, (177400, Y48y,
1375010, V51009, A157Y606, X15Y6(N12, X1576CX18, X157673, A157675, X157678;
Y665, YeX12QX11, YeX18X17, Cl17Y714, C17Y77Y1, C17Y77V6, Y7X14X13, (1137816,
Qi137872, (1137874, (137877, V81615, V8V20¥2, Y6 V3 k4, V8 V4 X8, V6 V5(X10,

Y7 V66, V7 Y6 12, V7 Y6 18, V7 V6V35 V7 V6 V55 V7 V67Y8s V8 V714, V8V V1, V8V 7 V6,

Yo V816, V6 V82, V6V8 V45 V67V VTS (ﬁs% - 7752)062, (5673 - %353)044, (5874 - 7754)048,
(5675 - 78/35)@10, (5776 - 7656)046, (5776 - 7656)0612, (/87'76 - %ﬂﬁ)am
(Bsyr — veBr)aus, (Bevs — VsBs)aie) }-

From this set we can write down the projective module P? and the map d* : P? — P2,
We label the elements of g2 by g3, g5, . . ., goy in the order they are listed above. Then
P3 =@ t(¢?)A and the map d® : P> — P2 is the A-module homomorphism where

=1

d*(t(gy)) has entry t(g7)g;; in the component of P? corresponding to t(g?), where
g = > 9345, with ¢;; € KT.

We now find the set g*. Each g} is found following the same method, from [20], in
particular g} = i gj-’pm-, for some p; ; € KT'. The following table gives the elements
g} that begin at es, eg, €19 and eq; respectively; they end at the vertex with which
the column is indexed. In all cases, the element g; is given by the element g7, as

indexed by the rows, composed with the single elements given within the rows.

€1 | €2 | €3 | €4 | €5 |€E6 | E7T | €8 | €9 | €10| €11| €12| €13| €14]| €15| €16| €17

e e S | e 2 T A N I I N e I I N R R R i e T

oy e | I e e I e e e I O i I I N I I I




1909y Qg | - - - - - - - - - - - - - - - -

T I e e e e e e e e e R T i e

4

The following table shows the elements of g* that begin at ejs, end at ey, for

={1,2,...,17}, as the columns are indexed.

€1 | €2 | €3 | €4 | €5 |€Eg | E7 | €8 | €9 | €10| €11| €12| €13] €14]| €15| €16| C17

g5y - - Qg | - - - - - - - - - - - - - -

Qrando| - |- |- |- |- |7 |7 Q- |- T

18001706~ |- |- |- | | T s Qs ||t

ogonrBs |- |- |- oal- |- |- |- - |- - - - - -

awonrfBs |- |- |- |- |- |- |- |- |- |- |- |- |- |- |- |-

agarrfs |- |- |- |- |- |- |- |- |- |- |- |- |oag- |- |- |-

QgQyrYe (|- | Q2= = |~ |~ |~ |~ |~ A~ A

e I e e e e e R e e e N e

et Yr (Y- |- | | T T Ve |Gy |- |

66056055 - - - Qg | - - - - - - - - - _ _ _ _

Bearorr |[- |- |- |- |- |- |- |- |- |- [- |- |- |- |- |-

Beaigaar | - - Yo | o | B3| - - - - Bs | - - - Y7 | cel Bs | -

e I K e e e i e I S IS N N

T I e e e e e K O e e N S e N

Ysoues |1 |- [ B2 |- |- |- |- |Bal- |- |- |ve|auBr|- |- |-

5307107 N | I @S N el N A A et N el e N A e N Bl A A B

R0 7T @ G e el A Al el e Al e e S e i e M R

304 {C VRN I I E I I I N E i I R R LS E: I I e I B

Y8YV7 V6 S Y3 Qs | | Y QA - - |- | Y8 | Gas

(Beva—sBslpa |- |[Q3|- |- |- |- |- |- |- |- |- |- |- |- |- |-

Bovs —veBs)eo | = |~ |~ |- |- |- | Q|- |- |- |~ |~ |~ |~ |~ |~

Bevs —vsBslprs | = |- |- |- |- |- |- |- |- |- |- |- |©@- |- |-
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The next table consists of the elements g} with s(g}) = e;3. Where there is no

column headed e, this means there is no element of g* starting at e;3 and ending at

ej.

€1

€2

€3

€4

€5

€7

€8

€9

€10

€12

€13

€14

€15

€16

Q130605

Oy

Q130120077

Q10

Q1301817

B

V4

16

a3 600

(67

0413560412

a13f60t1s

(137304

as

1375010

Qg

137816

Q15

Q137872

(8%

Q137874

Qg

Q137877

§a!

Ve

o5y

The next table consists of the

elements ¢! with s(g}) = e.

€1

€2

€3

€4

€5

€6

€7

€s

€9

€10

€11

€12

€13

€14

€15

€16

€17

Q1400130

(673

Q1400130019

(551

Q14013¢018

Q18

0414061356

Qg

Q19

Q18

1401373

Qg

14001375

Q19

1401378

Y2

V4

Y7

g
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57(1140413

A

V3

Qg

V5

Q12

Be

V8

Q18

(B7v6 — Y6 86) 6

(€7

(Brv6 — v686) 12

6551

(B7v6 — Y6 B6)u1g

Yeg 5

Oy

Ye120011

Q19

Y1817

Y2

Y4

Q16

Y6304

(6%

Y6 V5C10

Qg

Y6816

Q15

Y6872

&%)

Y68 V4

ag

Y6877

4!

Ve

5y

The next table consists of the

elements g with s(g') = e;

5.

€1

€3

€4

€5

€6

€g

€9

€10

€11

€12

€14

€15

€16

€17

Q150014013

A

V3

(67

V5

*q19

Be

Vs

(05K

041552042

aq

a5 a0

Q7

0415570414

Q13

157606

(6751

15776012

a1

157618

Qg7

a157673

Oy

a157675

Q10

157678

V2

V4

Y7

16
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The next table consists of the elements ¢! with s(g}) = eys.

€1 | €2 | €3 | €4 |C5 | €6 |C7 |Cg|C9 |Cl0|€11] €12| €13| C14| €15| €16| €17
a160015004( - |- |- |- |- |- |- |- |- |- |- ogs - |- |- |- |-
Bzazay S e 2 N S N I I T R I I R AR N T
Bsaoag |- |- |- |- |- |- |asg|- |- |- |- |- |- |[- |- |- |-
Bsaueuis || M1 | - Ba | - - - - By | - - - Y6 | 14 B | - - _
(Bsye — 1|~ |- |- |- |- |- |- |- |- |- |- |- |- 1- |- |-
Y7 2)
(Bsya — | az|- |- |- |- |- |- |- |- |- |- |- |- |- 1- |- |-
V7 Ba)as
Bsyr — |- |- |- |- |- |- |- |- |- |- |- |oag- |- |- |- |-
Y7 Br) s
yroaous || Bi|- |- |- |y las|- |- |- | load Be|- |- |- | s | ous
Y7V6 X6 S I e e eV e I I e e N L I R I
Yrve12 |- |- |- |- |- |- |- |- |- |ou|- |- |- |- |- |- |-
YrveQas |- |- |- |- |- |- |- |- |- |- |- |- |- |- |- |of-
Y17v67Y3 N e e e 7 e e e I I IR O A A A S S
Y7675 - - - - - - - - Qo - - - - - - - -
Y7 V678 S S e > IS R N I N /1 N S T B A Mo s A N0 ST I
The next table consists of the elements g! with s(g}) = ej7.

€1 | €3 | €5 |€C | €8 | €l0| €11| C12| €13| €14| €16 €17

arraieaas| 1| B2 |- |- [ Ba|- |- |6 | oud Br |- |-

Q7300 - Qs | - - - - - - - - - _

ap7Bsano |- |- |- |- ag |- |- |- |- |- |- |-

arrfBsog |- |- |- |- |- |- |- |- |- |ous- |-
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Qu7Yea | Qu{- |- |- |- |- |- |- |- |- |- |-

L T e e e e e e R R R

(€5 140 047 V'S | N Ml e Ml Hal Ee A @S [ e S
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We have now given the sets ¢g" for n = 0,1,2,3 and 4. From this it is clear that
the minimal projective resolution so far looks to be linear. However, since the sets
are growing very large, it is not possible to determine the whole resolution of A/t,
and therefore we cannot show it is a linear resolution. This means that we need to
find another way to show that our new algebra is Koszul. Let us look instead at

Grobner bases.

7.2. Grobner Bases. We give an introduction to Grobner bases following [8] and
[9].

In this section we assume that I is a finite quiver, and let B be the basis of the path
algebra KT which consists of all paths in KT'. We remark that B is a multiplicative
basis of KT, that is, if p,q € Bthenp-qg€ Bor p-q=0.

Definition 7.5. [9] Let KT" be a path algebra and let B be the basis of all paths.
We say > is a well-order on B if > is a total order on B and every non-empty subset

of B has a minimal element.

Definition 7.6. [9] Let KT be a path algebra and let B be the basis of all paths. An

admissible ordering on B is a well-order > on B that satisfies the following properties:

(1) if p,q,r € B and p > ¢ then pr > ¢r if both are not zero and rp > rq if both
are not zero;

(2) if p,q, 7 € B and p = gr then p > g and p > r.

Definition 7.7. [9] Let KT be a path algebra and let B be the basis consisting of all
paths. The left length lexicographic order is an admissible order defined as follows.

Arbitrarily order the vertices and arrows such that every vertex is less than every
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arrow. For paths of length greater than 1, if p = ayas---«,, and ¢ = 5182+ B
where the «; and §; are arrows and p,q € B, then p > ¢ if n > m or, if n = m, then

there is some 1 <17 <n with a;; = 3; for 7 <i and «o; > f3;.

Given an admissible order >, we are now concerned with finding a Grobner basis

of I, where [ is an ideal in KT'.

Definition 7.8. [11] Let KT be a path algebra and let B be the basis of all paths,

with admissible order >.

(1) Let x be an element of KT, so x is a linear combination of paths p;. Then
Tip(x) is the largest p;, in the ordering >, occurring in z.

(2) If I is an ideal in KT then Tip([) is the set of paths that occur as Tips of
non-zero elements of I.

(3) We let Nontip(/) be the set of finite paths in KT that are not in Tip([).

(4) Let CTip(z) denote the coefficient of Tip(x).

(5) An element x € [ is sharp if x = p+ >, a;q; where Tip(z) = p,; € K and
¢; € Nontip([/) for all i.

Definition 7.9. [9] Let KT be a path algebra with basis B consisting of all paths.
Every element v of KT can be written as a linear combination of elements in 5. Those
elements of B which occur in v with non-zero coefficients are called the support of

7, denoted Supp(7).

Definition 7.10. [8] Let KT be a path algebra and let B be the basis consisting of

all paths. Let a,b € B. We say a divides b if there exist u,v € B such that b = uawv.

Definition 7.11. [8] Let KT be a path algebra and let I be an ideal of KT. A
Grobner basis for I is a non-empty subset G C [ such that the tip of each nonzero

element of [ is divisible by the tip of some element in G.

Definition 7.12. [8] Let KT be a path algebra and let B be the basis consisting

of all paths. Let a be a non-zero element of KT. A simple (algebra) reduction for
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a is determined by a 4-tuple (A, u, f,v) where A € K*, f € KI'\{0} and u,v € B,
satisfying

(1) uTip(f)v € Supp(a) and

(2) uTip(f)v & Supp(a — Aufv).
We say that a reduces over f to a — Aufv. We say that a reduces to a’ over a set

X ={fi1,..., [n} and write a = x a’ if there is a finite sequence so that a reduces to

ay over f1, a; reduces to as over fy, and so on, with a,,_; reducing to a’ over f,,.

Definition 7.13. [9] Let KT be a path algebra, let B be the basis consisting of all
paths of KT and let > be an admissible order on B. Let &,& € KT and suppose
there are elements p, ¢ € B such that

(1) Tip(&)p = ¢ Tip(&2),
(2) Tip(&) does not divide ¢ and Tip(&;) does not divide p.

Then the overlap difference of & and & by p, q is

0(&1,62,p,q9) = (1/ CTip(&1)) &up — (1/ CTip(&e)) ga.

The next theorem uses the concept of uniform elements for which we refer the

reader back to Definition 3.6.

Theorem 7.14. [8, Theorem 13| Let KT be a path algebra and let H ={h;:j € J}
be a subset of non-zero uniform elements in KT', which generates the ideal I. Assume
that the following conditions hold;

i) CTip(h;) is 1, for each j € T,

ii) h; does not reduce over h; for i # j, and

iii) every overlap difference for two (not necessarily distinct) members of H always

reduces to zero over H.

Then H is a reduced Grobner basis of 1.

We note that in [8] a reduced Grébner basis of I is called MINSHARP(T).
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Theorem 7.15. [11, Theorem 3] Let KT be a path algebra and I a quadratic ideal
in the path algebra KT'. Fiz an admissible ordering and let A = KU /I. Then:

(1) The reduced Grébner basis of I consists of homogeneous elements.
(2) If the reduced Grébner basis of 1 consists of quadratic elements then A is a

Koszul algebra.

7.3. A Return to Example 1. Now we are in a position to use Grébner bases to
continue looking at the example introduced in Section 7.1. We want to show that
the set ‘H given below is indeed a reduced Grobner basis for Z, where Z is the ideal

for the Ext algebra given as A = KT'/Z. Recall that T is the quiver given by

68 ~<Q9— 69 ~<Q10— 610

Bs A
~ 4/// Bs

and let K be a field. Let B be the basis of KT' which consists of all paths.

Let the vertices be ordered e; > e; > --- > ey7 and let the arrows be ordered
> > >8> 1> P> > P> > Y > - > s, Let the admissible

order on B be the left length lexicographic order as given in Definition 7.7.
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Let H C Z be the minimal generating set for Z as given in Section 7.1, that is, H

is the set consisting of

® (v, (i3xg, QiyQx3, 50y, g5, AgliT, (gQlg, (X10Qg, (1110, (12QX11, (13006, (X13(X]2,
a1301g, 131, 1306, 1373, 1375, 1378, 14013, (15014, O1502, 1504, 1507,
1571, Q15765 16015, 17006, 1733, 75, 7 B8, Qiry2, Qi7Ya, Q77Y7, gy,

o (o, B3y, Baaig, Bsrio, Betts, Beniz, Beaus, Beyz—853, Bs7s—sBs, Bsvs—780s:
Brana, Bryr — Y651, Brve — Yels, Bstie, Bsya — V72, Bsva — y2Ba, Bsyr — Vi,

® oo, Y30y, Y4Q8, V5010, V66, Y6 X12, V6CX18, V6V3, V675, V68, V714, V7 V1, V7 7V6;

V8016, YRY2, Y8 V4s VYT

and let us label the elements in the order presented here as h; for ¢ € {1,...,68}.

Proposition 7.16. Let KT be the path algebra, Z be the ideal of KT and H be the

subset of T as given above. Then H is a reduced Grobner basis of L.

Proof. We will use Theorem 7.14 to show that H is a reduced Grébner basis of Z. It
is clear that H is a generating set for Z. We examine each of the conditions in turn.

Condition i) CTip(h;) is 1 for all i € {1,...,68}. This is clear from looking at the
set H.

Condition i7) h; does not reduce over h; for i # j.
We now show that this condition is satisfied for all 7 # j. Assume h; reduces over h;.
Then there are elements u,v € B such that u Tip(h;)v € Supp(h;). Looking at the
element Tip(h;) and the elements that are in Supp(h;), it is clear that they are all of
length 2 for all 7, j, hence u, v € I'y. In particular, u = s(Tip(h;)) and v = ¢(Tip(h;)).
Therefore if h; reduces over h; then Tip(h;) € Supp(h;). By inspection of H we can
see this is not the case. So h; does not reduce over h; for ¢ # j.

Condition iii) every overlap difference for two (not necessarily distinct) members
of ‘H always reduces to zero over H.

We now show that the elements of H satisfy this condition. Let us consider the set
65



‘H as two distinct subsets, let H; be the set of monomial elements of H and let Hs
be the set of non-monomial elements of H. Clearly, H; U Hs = H.

Now, consider two arbitrary elements of H;. It follows that in this set, h; =
Tip(h;). Assume we have elements p,q € B such that Tip(h;)p = ¢ Tip(h;), with
Tip(h;) does not divide g and Tip(h;) does not divide p. Then the overlap difference
is defined as o(h;, hj,p,q) = (m)th — (m)th. Now, by condition i), we
know CTip(h;) = 1 and CTip(h;) = 1. So o(h;, hj,p,q) = hip — qh; and since
Tip(hi)p = hip, ¢ Tip(h;) = qh;, we have o(h;, hj,p,q) = 0.

Now we are left with two possibilities, h;, h; € Hy and h; € Hi, h; € Ha. Before
looking at these explicitly we can look at a more general property of the overlap
difference.

An overlap difference of two elements h;, h; € H requires Tip(h;)p = q Tip(h;).
Note that Tip(h) has length 2 for all h € H. Now, I(p) = I(¢) < 2, since we also
require Tip(h;) does not divide ¢ and Tip(h;) does not divide p. If p and ¢ have
length 0, then Tip(h;) = Tip(h;); by looking at the elements of H we can see this
is true if and only if 7 = j. In this case, the overlap difference will be 0. So if
Tip(hi)p = q Tip(h;) then we may assume [(p) =1 = [(¢) and p, ¢ are arrows.

Let us consider two elements h;, h; € Hy. The second arrow of Tip(h;)p is v, and
the second arrow of ¢ Tip(h;) is 3, for some k, . This cannot happen, so there are
no overlap differences except when ¢ = 7, which will be 0.

Finally, we look at the overlap difference of one monomial element and one non-
monomial element. Let us first consider o(h, ', p, q) where h € H; and b’ € Hy. We
will consider o(h, h,p,q) for h € H; and h' € Hy afterwards. There will be some
non-zero overlap differences here and we can work through the possibilities to show
that every overlap difference reduces to zero over H.

The elements of Hy are: hays = Bsv3 — V803, has = Bsvs — 1805, hua = Bers —
Y88, hus = Bry1 — Y651, har = Brve — V6565 hag = Bsy2 — 782, hso = Bsya — V7 P4, hsr =

Bsyr — V7B7.
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We start with A/ = hyo = Bgv3 — V803 . From above, we know that the second
arrow of the term ¢ Tip(hys) is Bs. So we need to find all overlap differences with A/,
and it is easy to see that there is only one possible overlap. Let h = his = a130.
Then Tip(hss) = Beys and Tip(hys) = aq3fs. Let p = v3 and ¢ = ay3. The overlap
difference is given by

0(h7 h',p, Q) = 0(h15, ha2, 73, 0413)
= 30673 — u3fsys + 13Ys s

= 13783
This non-zero overlap difference can be reduced. Let A = 1,u = ey3, f = hig =

a137s and v = fB3. Then o(hys, haz, 73, a13) — Aufv = 0, so o(hys, hya, 3, 13) =% 0.
Hence this overlap difference reduces to zero over H.
Let h' = hys = B¢75 — 1805 and h = hys = ai30s. Then Tip(hys) = Be7ys and
Tip(h15) = a1386. Let p = v5 and ¢ = ay3. The overlap difference is given by
0(h1s, huz, ¥5, 013) = Q13675 — q13f675 + Q13785

= a137305.
Let A\ =1,u = €13, f = higs = o133 and v = 5. Then 0(h15, Pz, s, 0413) —Aufv =

0. Hence this overlap difference reduces to zero over H.

Similarly 0(h15, P, V8, 0413), 0(h23, hag, 71, 0415)7 0(h23, haz, 76 0415), O(hzo,
hag, Y2, @17), 0(hao, hso, Y4, a17), 0(hag, hs1, V7, i17) all have an element of H; as a sub-
path and so these overlap differences all reduce to zero over H.

We now consider the overlap difference o(h', h, p, q) where h' € Ho, h € H;.

The overlap differences o(hys, hss, a4, Bs), 0(has, hss, a10, Bs), 0(haa, hes, a6, Bs),
0(haz, hse, s, B7), 0(haz, hsz, ana, Br), 0(haz, hsg, aus, Br), 0(hag, hsa, a2, Bs),
o(hso, hsa, s, Bs), 0(hs1, hea, a14, Bs) also have an element of H; as a subpath and so
reduce to zero over H.

Finally, o(hua, hes, V2, Bs), 0(haa, hez, Va4, Bs), 0(haa, hes, 7, Bs), 0(haz, s, V3, B7),
o(haz, heo, Vs, B7), 0(har, he1,7s, B7), 0(hs1, hes, V6, Os) need more than a simple reduc-

tion. We now give explicit details for these.
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Let us take hgg = 872, and let p = 79,9 = Bs. The overlap difference is
o(hs, hj, p,q) = 0(has, hes, V2, Bs) = BesV2 — 188872 — Be¥sY2 = —Y8Ps72. This non-
zero overlap difference can be reduced. Let A\ = —1,u; = 73, f1 = hag = BsY2 — V702
and vy = eg. Then o(hyg, hes, V2, ) — Mg frvr = —7sy7P2. This can be further
reduced, let Ay = —1,us = €19, fo = hgs = 7gy7 and vy = P5. Then we have
0(haa, hes, Y2, Bs) — A1 frv1) — Aaug fovg = 0. Therefore this overlap difference can
be reduced to zero.

Let us take hg;y = 7874, and let p = 74,9 = B¢. The overlap difference is
o(hi, by, p,q) = 0(haa, her, Vs, Bs) = Bevsva — ¥sBsva — BeysVa = —7¥8Bsv4. This non-
zero overlap difference can be reduced. Let A\ = —1,u; = 73, f1 = hso = BsVa — V704
and v; = eg. Then o(hyy, her, V4, B) — Mur frvn = —vsy70s. This can be further
reduced, let Ay = —1,us = e19, fo = hgs = Vg7 and v = [4. Then we have
0(has, her, V4, Bs) — Aup frv1) — Aaus fove = 0. Therefore this overlap difference can
be reduced to zero.

Let us take hgs = 7s7y7, and let p = 77,9 = B¢. The overlap difference is
o(hi, hj,p,q) = 0(hay, hes, V7, Bs) = Bevs¥r — ¥8Bsv7 — Bevsyr = —¥sPs7y7. This non-
zero overlap difference can be reduced. Let A\ = —1,u; = ~s, fi = hs1 = Bsy7 — v757
and v; = eyy. Then o(hyg, hes, V7, Bs) — Auy fivr = —7s7y707. This can be further
reduced, let Ay = —1,us = €19, fo = hgs = 7sy7 and vy = F7. Then we have
0(haa, he7, 74, Bs) — Mg frv1) — Agug fovg = 0. Therefore this overlap difference can
be reduced to zero.

Let us take hsg = 7673, and let p = 73,9 = (7. The overlap difference is
o(hi, hj,p,q) = o(haz, hso, V3, B7) = Bry6Ys — Y6BeV3 — B3 = —V6B67y3- This non-
zero overlap difference can be reduced. Let A\ = —1,u; = 74, f1 = has = B3 — V803
and v; = e5. Then o(hyr, hsg, V3, B7) — Murfivy = —v67803. This can be further
reduced, let Ay = —1,us = €14, fo = hgt = Y67s and vy = P3. Then we have
0(haz, hsg,v3, Br) — Mg fiv1) — Aaug fovg = 0. Therefore this overlap difference can

be reduced to zero.
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Let us take hgy = 675, and let p = ~v5,¢ = B7. The overlap difference is
o(hs, hj,p,q) = 0(haz, heo, Vs, B) = Brye¥s — V68675 — Brv6Ys = —Y6675- This non-
zero overlap difference can be reduced. Let A\ = —1,u; = 74, f1 = has = BsY5 — V1805
and v; = ejp. Then o(hyr, heo, Vs, B7) — Muifivy = —767s05. This can be further
reduced, let Ay = —1,us = ey, fo = hgt = Y678 and vy = P5. Then we have
o(haz, heo, Vs, B7) — Mg frv1) — Aaug fovg = 0. Therefore this overlap difference can
be reduced to zero.

Let us take hg1 = 7678, and let p = 75,9 = B7. The overlap difference is
O(hi: hj,p, Q) = 0(h47, he1, V85 57) = Brv67s — V68678 — BrYes = —V6/367s- This non-
zero overlap difference can be reduced. Let A\ = —1,u; = 75, f1 = has = Bz — V1308
and v; = ejg. Then o(hyr, he1, Vs, B7) — Muifivy = —v67sfs. This can be further
reduced, let Ay = —1,us = ey, fo = hgt = Y678 and v = fs. Then we have
o(haz, he1, Vs, B7) — Aug frvr) — Aaus fove = 0. Therefore this overlap difference can
be reduced to zero.

Let us take hgsy = Y77, and let p = 74,9 = [s. The overlap difference is
o(hi, hj,p,q) = o(hs1, hes, Ve, Bs) = Bsyrv6e — V7876 — Bsvrve = —V7Br7s. This non-
zero overlap difference can be reduced. Let A\ = —1,uy = 7, fi = har = B — V656
and v; = eja. Then o(hsy, hes, V6, Bs) — Aur fivr = —y77%06- This can be further
reduced, let Ay = —1,us = e14, fo = hgs = Y775 and vy = Fg. Then we have
o(hs1, hea, Y6, Bs) — Mg frv1) — Agug fovg = 0. Therefore this overlap difference can
be reduced to zero.

Thus we have now shown that, for all elements h;, h; in the set H, the overlap

difference of two elements reduces to zero. Therefore the set H satisfies the hypothesis

of Theorem 7.14, and H is a reduced Grobner basis of the ideal Z. O

Remark. We have shown above that the overlap difference of two monomial relations

is always zero.

Now we have a reduced Grobner basis of Z, we can use Theorem 7.15 to give the

following result.
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Theorem 7.17. Let A = KT'/Z be the algebra given in Section 7.1. Then A is a

Koszul algebra.

Proof. 1t is clear by looking at H that it consists of quadratic elements, and the

proof immediately follows from Theorem 7.15, part 2). 0

We recall from Proposition 7.4 that A 2 E(A) where A is the (6, 2)-stacked algebra

of Example 7.3. This gives the following result.

Theorem 7.18. Let A be the (6,2)-stacked algebra of Example 7.3. Let A = E(A)

be the Ext algebra of A with the hat-degree grading. Then A is a Koszul algebra.

7.4. Example 2: A (6,2)-stacked monomial algebra. We now give an example
of an algebra with the same underlying quiver as Example 7.3. The ideal I is now
generated by monomial relations, this produces a monomial algebra. For monomial
algebras, the projective resolution of A/t and the Ext algebra were studied by Green

and Zacharia in [21]. Here we give a single example.

Example 7.19. Let Q be the quiver given by

as oy
33— 4 ——= 5 14
2 6 13 ais
a/ X QV
1 12 15
047\{ A2 a&
7 11 17 aie
OA /(11,1 Oéx
8§ — 9 ——= 10 16
[e7e] 10

and let A = KQ/I where I is the admissible ideal given by

I = <Oé1062a30440450467 Q30050013001 4, 5 (V1314 150016, Q789 Y19 (Y11 (Y12,
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Q101112001300 4, (11 1213014150016, 13014 5161 T8, (15161 7(N18(N13(X1 4,
Cl170418(113a140415a16>-

A minimal projective resolution for A/t as a right A-module is given by
i PP s PP P PP 5 At — 0

where
oV = @171 e; A and d° is the canonical surjection , d° : e;\ — e; A + e;t.

i=
oP' =P t(a;)A and d' : tHa)\ = ;.
P2 = @?:1 t(g?)A = epaA ® e1a\ D ergA B e19\ B g\ B e\ B e12A B ey A & e
and
d2(612)\1, €142, €163, €124, €145, €166, €12A7, €148, 616)\9)
= (042@304615046/\17 , Q40500130 4 A2, GO 30N 4O 5063, QR Q9O 0Ol 1 (12 A4
Q0012003014 A5, (200130 40 506 A6, 140 56O TR AT, (16178 30N 4 g,
(11806130614&150416)\9)-

For n > 3,
e lfnis Odd, P = 614A D 616A D €12A D 614A D 616A D 612A D €14A D 616A D 612A and
dn(€14)\1, €162, €123, €144, €165, €126, €147, €168, 612>\9) = (04130414)\1, Q15016 A2,
Q17018 A3, 13014 Ay, Q1506 A5, Q1718 AG, Q1314 AT, (506, 04170418)\9)-
o If n is even, P = 612A D 614A D 616A D 612A D 614A D 616A D 612A D 614A D 616A
and dn(€12)\1, €142, €163, €124, €145, €166, €127, €148, 616>\9>

= (0615%604170418)\17 Q1700180130 4 Ag, (11301405016 A3, Q516 QLT QU8 AL, (L1TQLIR O3V 14 A5,

Q1300140150066 V151600 7OZAT, 1783014, 04130414(1150416)\9)-
The sets g™ are given as follows;

L] gO = {61,62, .. .,617}.

® gl = {0417062,. .. ,0618}.
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b 92 = {@1%043044045%7 Q304050 (v13001 4, Q50013 4 (N 5 6, A7 ig Cig X1V 11 (X112,
Q19 Qr11 112030014, (N1 (120030405006, (L3040 50160 700,
A15006Q1 718013001 4, 0417041804130414%50416}

e Forn >3 if n=2r+ 1,r € N, the set {¢g"} is given by;

{(041042043064045046)(041304140415041604170418)r_10é130414,
360 3004) (6078 304) T o5,
045&6%30414(1150416)(Oé170é1s&130414CY15OZ16)T710417&18,

r—1
a7a8a9a10a11a12)(a13a14a15a16a17a18) 130014,

-1
Q1101201300141 5016 (@1706180413(11404150416)T 17018,

”
Q1301405001600 7008 ) (X134, (04150416@1704180613%4) Q15Q06,

(

(

(

(0490610041104120413@14) 061504160417041804130414)T_IOé150416,
(

(

( r

)7”
041706186113@14@150416) CY170418}-

e For n > 4 if n =2r,r € N, the set {¢g"} is given by;
{(a1azasayasag)(arsarsosarearrars) L (asasasasarzans) (asaisanrarsarsang) "L,

—1 —1
(asasaizanaonsane)(raigaisaracnsane)”  (aragagaioarionz)(azonaaisaigarzons)”

(agarpariarzarzarg)(arsaisarraigsarzans)” L (a1 aiaazaisarsare) (Qrraigsaisarsarsang) L,

(a1314015016017018)", (saiei7a1s13014)”, (171801301401 50016)" }-

Looking at the length of the elements g" it is clear that this is a (6, 2)-stacked
monomial algebra. From [18], we know that since A is a (6, 2)-stacked algebra then
E(A) is generated in degrees 0,1,2 and 3. We have
The sets f" are given by
o fO={f0 fori=1,....17}, f2:eA = e+, else — 0.

o fl={fl fori=1,...,18}, fl : t(a;)\ — t(a;)\ + ¢, else — 0.
o f2={f fori=1,...,9}, f2:t(g))) — t(g} )X+, else — 0.
o 3={f3 fori=1,...,9} f2:t(g)\ — t(g})\ +t, else — 0.
These are the generators of E(A). For n > 4 the products are given in [18].
The Ext algebra, E(A), can be represented by quiver and relations, as described

in [21]. Let T be the quiver given by
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B
("
€14
a14
pd
€13 opo
e 7
a13
\ 7){/
€1578

¢

a1

/ 6
68<—€9'Tw610< _//616
B

and let A = KT'/Z where Z is the ideal generated by;

® (Qi(vy, (i3xg, Qiyx3, 50y, g5, AgiT, (gQlg, (X109, (1110, (1211, (130,
(302, 13008, (1413, 154, A5, 1706, X181 7,

o ay301, 1502, Pacra, 0173, Baars, i3, s Bs, Bsas, a7 Bs, Betio, i3,
Bras, Branz, Brans, aisBs, Bsais, airBy, Bocuss,

® (1571, 01772, V202, (113773, V30, (1574, O1775, V5(X8, (1376, Y6(X10, (1577,
Y7Qe, Y712, Y78, Q177Y8, V814, (1379, Y916,

® Y8V1, Y9V2, V73, V8V4, Y95, Y7V6, V8V7, V98, VTV

® Bsv1 — V7B, Bove — V882, Bryz — V983, Beva — V184, Bovs — sBs,
Brve — Y986, Bsvr — V757, Boys — 8B Brve — YolSo-

This algebra A is the algebra F(A) given by quiver and relations, where we write

a; for f1 B; for f? and ~; for f2. This gives the following result.
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Proposition 7.20. Let A be the algebra given in Example 7.19 and let A = KT'/T as
defined above. Then A == E(A) where oy, B; and v; are all in degree 1, corresponding
to the elements of E(A);.

With this hat-degree grading, A is a Koszul algebra and we can show this by using
Grobner bases, as in the previous example.

Let B be the basis of KT' which consists of finite paths. Let the vertices be ordered
e1 > ey > --- > eqp and let the arrows be ordered oy > ap > --+ > a3 > 1 >
By > -+ > g > >y >+ > 7. Let the admissible order on B be the length
lexicographic order as given in Definition 7.7.

Let H be the minimal generating set for Z as given above, that is, H is the set

consisting of

® (a(xy, (30, (iy(rg, Ol50y, g5, g, QigQig, i1y, (X11(X10, (120011, 1306, (1312,
a1308, 01351, a13fBs, 3B, 1373, 136, 13V, 14013, A150014, 1532, 1555,
158, Q15Y1, 15745 Q157Y7, Q1605 Ai70l6, 1733, 1786, Q17 By, Qti7Ya, C17Ys,
778, 1817,

o [, B3auy, S50, Betio, Bravs, Branz, Braas, Bryz—983, Brve—Y9B6, Bryo—Y9Ba,
B, Bsyr — 2B, Bsva — V7B, Bsyr — b7, Bacue, Bovz — YsB2, Bovs — V835,
Boys — Vsbs,

® Yalvg, Y3Qy, V508, YeX10, V76, V712, V718, V77V3, V776, V779, Y814, V871,

Y8V4, V875 Y916, Y9V25 V9 V5, Y97Y8-

and let us index these elements h;, for i € {1,...,72}.
Proposition 7.21. The set H as given above is a reduced Grobner basis of L.

Proof. We will show that the set H is a reduced Grobner basis using Theorem 7.14.
It is clear that H is a subset of A consisting of non-zero elements, and (H) = (Z).
Condition 7) CTip(h;) is 1 for all i € {1,...,72}. This is clear from looking at the

set H.
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Condition i7) h; does not reduce over h; for i # j.

We now show that this condition is satisfied for all 7 # j. Assume h; reduces over h;
then there are elements u,v € B such that u Tip(h;)v € Supp(h;). Looking at the
element Tip(h;) and the elements that are in Supp(h;), it is clear that they are all of
length 2 for all 4, j, hence u, v € I'y. In particular, v = s(Tip(h;)) and v = t(Tip(h;)).
Therefore if h; reduces over h; then Tip(h;) € Supp(h;). By inspection of H we can
see this is not the case. So h; does not reduce over h; for i # j.

Condition iii) every overlap difference for two (not necessarily distinct) members
of H always reduces to zero over H.

We now show that the elements of H satisfy this condition. Let us consider the set
‘H as two distinct subsets, let H; be the set of monomial elements of H and let Ho
be the set of non-monomial elements of H. Clearly, H; U Hy = H.

Now, consider two arbitrary elements of H1, it follows that in this set, h; = Tip(h;).
Assume we have elements p,q € B such that Tip(h;)p = ¢ Tip(h;), with; Tip(h;)
does not divide ¢ and Tip(h;) does not divide p. Then the overlap difference is
defined as o(h;, hj,p,q) = (m)th — (m)th. Now, by condition ), we
know CTip(h;) = 1 and CTip(h;) = 1. So o(h;, h;,p,q) = h;p — qh; and since
Tip(hi)p = hip, ¢ Tip(h;) = gh;, we have o(h;, h;, p,q) = 0.

Now we are left with the possibility of h;, h; € Hy and h; € Hi, hj € Ha. We will
use the property [(p) = 1 =(q), that is, p, ¢ are arrows.

Let us consider two elements h;, h; € Hy. The second arrow of Tip(h;)p is v, and
the second arrow of ¢ Tip(h;) is £;. This cannot happen, so there are no overlap
differences except when ¢ = j, which will be 0.

Finally, we look at the overlap difference of one monomial element and one non-
monomial element. Let us first consider h; € H; and h; € Hsy, we will later consider
hi € Ha, hj € Hy. There will be some non-zero overlap differences here and we can
work through the possibilities to show that every overlap difference reduces to zero

over H.
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Now, let h; = has = B7773 — Y9f3. We know that the second arrow of the term
qTip(hy3) is B7. So we need to find all h; with this property. For these next 9
relations, it is easy to see that there is only one possible overlap. Let h; = hig =
ag3f7. Then Tip(hys) = Prys and Tip(hig) = ai387. Let p = 3 and ¢ = a13. The
overlap difference is given by

o(hi, hj,p,q) = o(hig, has, 73, 013)
= 138773 — u3Brys + a1z 3

= Q13793
This non-zero overlap difference can be reduced. Let A = 1,u = ey3, f = hig =

1379 and v = 3. Then o(hig, hyz, 73, 13) — Aufv = 0. Hence this overlap can be
reduced to zero.
Let h; = has = Brys — V986. Let hy = hig = au3f7, p = v and ¢ = ay3. The
overlap difference is given by
o(hi, hj,p,q) = o(hie, has, 76, Q13)
= o307 — 13P7v6 + 13796

= 1379 56-
This non-zero overlap difference can be reduced. Let A = 1,u = ey3, f = hig =

139 and v = fBg. Then o(hig, has, V6, 013) — Aufv = 0. Hence this overlap can be
reduced to zero.

Similarly o(hig, hus, Y9, 13), 0(haa, bz, Y1, ais), 0(haa, hag, V4, @1s), 0(haa, hag, 7, Q15),
o(haz, hs1, 72, a17), 0(hag, hsa, s, a17), 0(hag, hss, Vs, 17) all have a single element of
H1 as a subpath and so these overlap differences all reduce to zero over H.

We now consider the overlap difference for h; € Ho, h; € H;.

Let h; = haz = B77y3 — Y9P3. The possibilities for h; are those which have 73 as
the first arrow, in this case, hss = Y304 is the only possible overlap. Let p = a4 and
q = P7. The overlap difference is given by

o(hi hj,p,q) = o(hag, hse, o4, Br)
= Brysa — Yo Pz — Bryzau

= —Y9f304.
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This non-zero overlap difference can be reduced. Let A = —1,u = 79, f = h3gs =
Psay and v = e4. Then o(hys, hse, oy, 57) — Aufv = 0. Hence this overlap can be
reduced to zero.

Let h; = haa = B776 — Y9P6. The possibilities for h; are those which have 7 as the
first arrow, in this case, hss = g1 is the only possible overlap. Let p = a9 and
q = (7. The overlap difference is given by

O(hz‘, hjap> Q) = 0(h44, hss, o, 57)
= BrY610 — Y9610 — Br6t10

= —Y9 8610
This non-zero overlap difference can be reduced. Let A = —1,u = 79, f = hy =

Pearg and v = eg. Then o(hyy, hss, @10, 57) — Aufv = 0. Hence this overlap can be
reduced to zero.

Let h; = hys = Bry9 — Y9P9. The possibilities for h; are those which have 7y as
the first arrow, in this case there are four possibilities; hgg = Yot16, hro = YoY2, hr1 =

YoYs, hra = Y973- These need to be looked at separately.

i) Let us take hj = hgg = Y916 and let p = ay6,¢ = B7. The overlap difference
is given by
o(hi, hyj,p,q) = o(has, hey, 16, B7)
= Bryscis — Yobotie — Bryscuis

= —Y9Be16-
This non-zero overlap difference can be reduced. Let A = —1,u = 7y, f =

hso = Pocris and v = ey5. Then o(hys, heo, 16, 57) — Aufv = 0. Hence this
overlap can be reduced to zero.
ii) Let us take h; = h7g = Y972 and let p = 75, ¢ = f7. The overlap difference is
given by
o(hi, hj,p,q) = o(has, hro, V2, Br)
= Bryer2 — Yobov2 — Bryee

= —Y9B972-
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This non-zero overlap difference can be reduced. Let A\ = —1,u; = 9, f1 =
hs1 = Bgy2 — vsP2 and v; = e3. Then
o(has, hro, Yo, B7) — Mur five = —voBoy2 + Yo Boy2 — Yoys o

= =798
This can be further reduced. Let Ay = —1,uy = €19, fo = h7s = Y975 and

vy = [a. Then o(hys, hro, V2, B7) — Muifivi) — Ausfovs = 0. Hence this
overlap can be reduced to zero.
iii) Let us take h; = hy; = 975 and let p = v5,q = 7. The overlap difference is
given by
o(hi, hj,p,q) = o(has, ha1, s, Br)
= B79%5 — Y959Y5 — BrYos

= —79597s-
This non-zero overlap difference can be reduced. Let Ay = —1,u; = 79, f1 =

hsy = Byys — V805 and vy = eg. Then
0(has, hr1, 75, B7) — Murfivr = —Y98975 + Yoboys — Y9805

= —%9780s-
This can be further reduced. Let Ay = —1,uy = €19, fo = h7s = Y975 and

vy = 5. Then o(hys, hr1,7s, B7) — Muifivi) — Ausfovs = 0. Hence this
overlap can be reduced to zero.
iv) Let us take h; = h7y = 7975 and let p = vs,¢ = f7. The overlap difference is
given by
o(hi by, p,q) = o(hus, hra, s, Br)
= Brv97s — 195978 — BrY97s

= —9597s-
This non-zero overlap difference can be reduced. Let A\ = —1,u; = 9, f1 =

hss = Boys — vsPs and vy = es. Then
0(has, hra, 78, B7) — Murfivr - = —Y9897s + YoSoys — Y9s0s

= —79780s-
This can be further reduced. Let Ay = —1,uy = €19, fo = h7s = Y975 and

Vy = 58. Then 0(h45,h72,’78,57) — Alulflvl) — )\QUQfQ’UQ = 0. Hence this

overlap can be reduced to zero.
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For h; = h47 or h; = hyg there are no possible h;, therefore no possible overlaps.

For h; = hso = Bsyr — v757. The possibilities for h; are those which have 77 as
the first arrow, in this case there are six possibilities; hsg = Y705, heo = Y712, hg1 =
Yra1s, hgo = V77¥3, hes = V7%, hea = Y779. In the same way as above for hys we look

at the overlaps separately and we see that we get;

e 0(hso, hso, g, fs) = —y787i6, which reduces using A = —1,u = 7,

f = ha1 = Brog, v = eg then o(hso, hsg, a6, fs) — Aufv =0

e 0(hs0, heo, 12, fs) = —7787t12, which reduces using A = —1,u = 7y,
[ = hya = Bronz, v = €1 then 0(h50, heo, 0412,58) —Aufv=0
e o(hso, he1, aus, Bs) = —7y7PBraa1s, which reduces using A = —1,u = 7,

[ = hag = Braug, v = er7 then o(hs, hei, ais, Bg) — Aufv =0

e 0(hso, hea, 73, fs) = —y7577y3, which reduces using \; = —1,u; = 77,

f1 = has = Bryz — 7983, v1 = e5 then o(hso, he, a6, B3) — Mur frvr = =770 53,

this can be further reduced using Ao = —1,us = e14fo = hgs = V7Y9, V2 = O3

then o(hso, he2, 73, B3) — AMur fivr) — Agug fova = 0

e 0(hso, hes, V6, Ps) = —y7577v6, which reduces using \; = —1,u; = 77,

J1 = has = Brv6 — V9%, v1 = €10 then 0(h50, h63>76,58) — Auy fivr = —y7795,

this can be further reduced using Ao = —1,us = e14fo = hgs = V77Y9, V2 = g

then o(hso, hes, Ve, Bs) — A1ur fiv1) — Agua fova = 0

e 0(hso, hes, Yo, Ps) = —775779, which reduces using \; = —1,u; = 77,

J1 = has = Bry9 — Y99, v1 = €16 then 0(h50, h64779,58) — Mg fivr = —y7%9 B9,

this can be further reduced using \o = —1,us = e14fo = hgsa = Y79, V2 = By

then o(hso, hea, Y9, Bs) — Arur frv1) — Agua fovg =0

For h; = hsy = Boy2—7sf2. The only possible h; = hgs = Y20 and o(hsz, hss, a2, o)

= —gf2a, which reduces using A\ = —1,u = g, f = h3; = Poas, v = ey then

0(h527 Duss, 042759) — Aufv = 0.
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For h; = hs3 = Byy5—7s05. The only possible h; = hs; = Y505 and o(hss, hsr, as, o)
= —gfs5as, which reduces using A\ = —1,u = g, f = h3yg = [sag,v = e; then
o(hs3, hsz, as, fo) — Aufv = 0.

For h; = hss = Boys — V8Ps. The possibilities for h; are those which have 75 as
the first arrow, in this case there are four possibilities; hgs = V14, hgg = V871, her =
Ys8Y4, hes = Y377. In the same way as above we look at the overlaps separately and

see that we get;

® 0(hsy, hes, 014, o) = —78 314, which reduces using A = —1,u = s,

[ = har = Bras, v = ez then o(hsy, hes, ara, fo) — Aufv =0

® 0(hsa, hes, 71, Bo) = —7sfs71, which reduces using Ay = —1,u; = s,

f1 = hag = Bsy1 — 2B, v1 = €1 then o(hsa, hes, 11, B9) — M fror = —s7751,

this can be further reduced using Ao = —1,us = e15fo = hgs = VsY7, V2 = 1

then o(hss, hes, V1, Bo) — Murfivr) — Aaua fova = 0

® 0(hsy, her, V4, Po) = —780s7v4, which reduces using \; = —1,u; = 73,

f1 = hag = Bsva — Y7B4,v1 = ey then o(hsy, her, V4, Bo) — Mur frvr = —8774,

this can be further reduced using Ao = —1,uy = e5fo = hgs = Vs7Y7, V2 = P4

then o(hs4, her, V4, Bo) — Arur fiv1) — Aaua fovg = 0

® 0(hsy, hes, vr, Bo) = —7ss7y7, which reduces using A} = —1,u; = s,

f1 = hso = Bsyr — 7287, v1 = e1a then o(hsy, hes, V7, Bo) — Mua frvr = —y87707,

this can be further reduced using \o = —1, us = ey5fo = hgs = V877, V2 = B7

then o(hsa4, hes, V7, Bo) — Arur frv1) — Aaua fave = 0.

Thus we have now shown that for all elements h;, h; in the set H, the overlap

difference of two elements reduces to zero. Therefore the set H satisfies the hypothesis

of Theorem 7.14, and H is a reduced Grobner basis of the ideal Z. O

Now we have a reduced Grobner basis of Z, we can use Theorem 7.15 to give the

following result.
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Theorem 7.22. Let A be the (6,2)-stacked monomial algebra of Example 7.19. Let
A= E(A) be the Ext algebra of A with the hat-degree grading. Then A is a Koszul

algebra.

Proof. 1t is clear by looking at H that it consists of quadratic elements, and the

proof immediately follows from Theorem 7.15, part 2). 0

7.5. Further Examples and a Generalisation. We have seen that we can regrade
E(A) in the hat-degree, to give a Koszul algebra, for two examples. This raises the
question, can this be done for all (D, A)-stacked algebras? The answer is no. If A
is a (D, A)-stacked algebra with D = 24, A # 1 and gldim > 6, then we cannot
regrade F/(A) in this way. We illustrate this with an example, with a generalised

theorem following in Theorem 7.25.

Example 7.23. Let Q be the quiver given by

a6

6 4

2
2N
1 3
7 o3
N
and let A = KQ/I, where I = ((ajae — arrag)azoy, azoyasag, asag(aag — azag)).
Using Definition 8.1, we can construct this algebra from Example 4.7, which is a
Koszul algebra (so d = 2). We set A = 2,D = dA to obtain this (4, 2)-stacked

algebra A. This is also the algebra of Example 3.10, where we constructed a minimal

projective resolution of A/t.
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We can represent the Ext algebra, F(A), by quiver and relations. Let T' be the

quiver given by

Qg 7 a3
B1 B3
x /

5)

W)

and let A = KT'/Z, where Z is the ideal generated by;
o a;a; foralli,je{l,..., 8}
o o;f3;, Bjay, forallie{l,...,8} and for all j € {1,2,3}
o a;yj, ;o forallie{l,...,8} and for all j € {1,2,3}
® 5373 — Y233, Bava — b, L1 — 30

o 3152033 — (73)2, B2B381 — (71)2, B3 82 — (72)2-

Then A = E(A), where we write a; for f!, 8; for f? and ; for f?.

Proposition 7.24. Let A be the algebra of Example 7.23 and let A = KT'/Z as given

above. Then there is no regrading so that A is Koszul.

Proof. Assume that we can give this algebra a grading so that it is Koszul. By

definition we need the generators to be in degree 0 and 1. So we have to have

Eo(A) = Ext} (Ao, Ao),

El (A) = EXt}\(A(), Ao) D EXti(Ao, AQ) D EXti(Ao, Ao)
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with

A ~ A

E2 2 E1 (A) X E1 (A)

and

A ~

E3 D Ey(A) x Ey(A) x Ey(A).

Now consider the element 313,85 in A. We know that 3; € Exti(Ag, Ag) C
Ei(A) so BiBafBs € Ev(A) x Ey(A) x Ey(A) C Es(A). However 810y = (7s)?
and (v3)% € Ext3 (Ao, Ag) C E1(A) so (13)2 € Ey(A) x Ey(A) C Ey(A). Therefore
B1B235 € Fa(A) N E3(A), which is a contradiction. O

Example 7.23 is not an isolated case. There is a subset of (D, A)-stacked algebras
for which we cannot regrade the Ext algebra to be Koszul. This is made clear in the

following theorem.

Theorem 7.25. Let A be a (D, A)-stacked algebra, with D = 2A,A > 1 and

gldim A > 6. Then there is no regrading such that the FExt algebra is Koszul.

Proof. Let A be a (D, A)-stacked algebra, with D = 24, A > 1 and gldim A > 6. For
E(A) to be Koszul we need a hat-degree grading E(A) such that E(A) is generated
in degrees 0 and 1. From Theorem 5.6 we know that E(A) is generated in degrees
0,1,2,3 and cannot be generated in degrees 0,1 and 2. So we can assume that we
require E(A) to have the following structure:

Eo(A) = Ext} (Ao, Ao)

Ei(A) = Ext) (Ao, Ao) & Ext (Ao, Ao) @ Ext} (Ao, Ag).
Assume that there is a grading, so E1(A) x Ey(A) C Ey(A) and Ey(A) x Ey(A) x

Ei(A) C E3(A).
Now, let us consider Ext}(Ag, Ag). This is non-empty, since gldim A > 6. From

Proposition 5.2 and using the fact that D = 2A, we know
Eth(Ao, Ao) = EXt?\(Ao, AO) X EXti(AQ, Ao),

EXt?\(Ao, Ao) = EXti(Ao, AD) X EXtIQX(Ao, Ao) and

Ext} (Ao, Ag) = Ext} (Ao, Ag) x Ext} (Ao, Ao).
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So, Extq (Ao, Ag) = Ext} (Ag, Ag) x Ext? (Ao, Ag)
= Ext} (Ao, Ag) x Ext3 (Ao, Ag) x Ext3(Ag, Ag).
We can assume that there exists a non-zero element z € Ext$(Ag, Ag) such that
2 = 217913 = Y. yiyh, for x; € Exti(Ag, Ag) and y;,y, € Exti(Ag, Ag). But i,y €
Ei(A) so Yy € Ey(A) and 21, 29, 5 € Ey(A) s0 zy2015 € E3(A). This contradicts

the definition of grading. O

The necessity of the hypothesis gldim > 6 is illustrated in the following example.

Example 7.26. Let Q be the quiver given by

and let I = (ajanazay, azagasag). Let A = KQ/I. Then A is a monomial algebra,
so using [18] we have that A is a (4,2)-stacked algebra with a minimal projective

resolution given by

0 pP3 P? P! PY Ao 0.

This algebra has global dimension 3. It is clear that Ext’} (Ag, Ag) = Hom(P™, Ag) =0
for n > 4. Let Eo(A) = Extq (Ao, Ag) and let Ey(A) = Ext} (Ag, Ag) @ Ext3 (Ao, Ag) &
Ext} (Ao, Ag). Since A is a (4, 2)-stacked algebra we know from Propositions 6.4 and
6.5 that Exty(Ag, Ag) x Ext}(Ag, Ag) = 0 and Exty(Ag, Ag) x Ext} (Ao, Ag) = 0 =
Ext3 (Ao, Ag) x Exth (Ao, Ag). Thus the Ext algebra E(A) = Eo(A) @ Ei(A) is a
graded algebra with this hat-degree grading.

We have gi = a; for i = 1,...,6, ¢} = aiasazay, g3 = asauasag and g3 =

ajasazayasag. Let f1* be the A-module homomorphism P™ — A/t given by

t(g') ifi=j

0 otherwise
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so that {f'} is a K-basis of E(A). Then fI'f" = 0 for all m > 1,n > 1, and all i
and j. Thus E (A) is a quadratic monomial algebra and hence is a Koszul algebra

with this regrading.

We have now shown 3 examples of our regrading that result in a Koszul algebra,
and a collection of (D, A)-stacked algebras whose Ext algebra is not Koszul under
regrading. A future research project is to investigate the regrading further. In
particular the use of overlaps to construct the Ext algebra of a monomial algebra as
given by Green and Zacharia in [21] may provide a way of showing that our regrading
on the Ext algebra of a (D, A)-stacked monomial algebra with D # 2A is such that

this regraded Ext algebra is Koszul.

In the next chapter we take a different approach in studying (D, A)-stacked alge-
bras, and give a precise method to construct a (D, A)-stacked algebra from a d-Koszul

algebra.
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8. CONSTRUCTING (D, A)-STACKED ALGEBRAS

Our aim in this section is to construct a (D, A)-stacked algebra, A, from a given
d-Koszul algebra, A, where D = dA, A > 1 and d > 2. Given this relationship
between A and A, then, if we know the structure of the smaller algebra A, we hope
to obtain homological information about the infinite family of algebras A. We will
consider this question later in Chapter 9.

Fix d > 2. We assume throughout this section that A = KQ/I is a d-Koszul
algebra. Thus [ is an ideal of K'Q generated by homogeneous elements of length
d. Let A > 1 and set D = dA. To construct our (D, A)-stacked algebra, we begin
by using the quiver Q and ideal I of KQ to define a new quiver Q and ideal T of
K Q. We then set A = KQ/I. In order to show that A is a (D, A)-stacked algebra,
we construct a minimal projective resolution of /~\/ t as a right A-module. We will
then be able to see that each of the projective modules in this resolution of /~\/ T is
generated in the correct degree. Our main result is Theorem 8.15 in which we show
that A is a (D, A)-stacked algebra. We set t to be the Jacobson radical of A and t
to be the Jacobson radical of A.

In Chapter 3, we described the sets g" from [20] which determine a minimal

projective resolution of A/t. We recall that

e ¢ is the set of vertices of Q,
e ¢! is the set of arrows of Q, and

e ¢% is a minimal generating set of I consisting of uniform elements.

We start with our construction of the quiver Q and ideal I of K Q

Definition 8.1. Let Q be a finite quiver and let I be an ideal of KQ which is
generated by homogeneous elements of length d where d > 2. Let A > 1 and set

D = dA.
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e We construct the new quiver Q as follows. For each arrow « in Q we have
A arrows aq, am, ..., a4 in Q and additional vertices vy, vo,...,v4_1 in O, in

such a way that :

s(a) = s(a)

t(a) =s(ag) =y
tlag) = s(ag) =y
tlaa1) =s(aa) =va

t(aa) =t(a)

and the only arrows incident with the vertex v; are o; and ;1. In this way
the arrow o in Q corresponds to a path aq - -- a4 of length A in Q and the
set of vertices of Q is contained in the set of vertices of Q.

The following diagram illustrates this process of defining Q from Q.

in Q in Q

[e% a1 g aA—1 ap
€1 —— €2 €1 U1 Vag—1 — €2

e We construct the ideal I of KQ as follows. Let g2 = {¢?,¢2,..., 92} be the
minimal generating set of uniform elements of I. Write g2 = Y cjaj,aj, -+ - i,
for i =1,...,m where ¢; € K and the a;, are arrows in Q. The arrow o,
corresponds to the path aj, 1, 2+ j, 4 in Q.

Define g7 = 3~ cj(aj, 10,2+~ iy a) (@ 105.2 -+ Qg a) -+ (0, 105,,2  + Qj),
and let 2 = {32,33,...,3%}. Define I to be the ideal of K Q generated by
the set g°.

o Lot A= KO)T

We now have our new algebra A=K Q/ I.1f my is the number of vertices of Q,

and if m; the number of arrows of Q then the quiver O has mo +my(A—1) vertices
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and my A arrows. It is clear from the construction that A is again a finite-dimensional

algebra.

Proposition 8.2. With the notation above, each of the elements g3 in the minimal

generating set of I has length D.

Proof. Since every arrow in Q has been replaced by A arrows in Q, it follows that

g? is homogeneous with ((g?) =d- A= D. O

We now illustrate this construction with two examples. Our first example uses a

monomial d-Koszul algebra.

Example 8.3. Let Q be the quiver given by
€2
N

a3

€1 €3

and let I = (ajasas, asasag, azaias). Let A = KQ/I. We have previously seen in
Example 4.6 that this is a 3-Koszul monomial algebra.

Let A>1 and let D = 3A. Let Q be the quiver given by

€2
a1,7 \i\’l
a V2.1
1,2 y?g

V1,1 T
ay \\Oéi,A
€1 s e Vg1 < €3
a3 A a3z 2 a3z 1

and let [ = <041,1 ot AQg (g AQ3 1t (X3 A4, Qg c (g A3t (3 AN (Y] A,

Q31 Q3 AQ1 1" Q1 AQ7 -+ - Q. 4). Let A= KQ/f Then A is the related algebra.
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It is clear that A is a monomial algebra. The fact that A is a (D, A)-stacked algebra
follows from Chapter 4 where we discussed the (D, A)-stacked monomial algebras of

[19].
Our second example begins with the Koszul algebra of Example 4.7.

Example 8.4. Let Q be the quiver given by

1 — T=9
-

/
N

3

and let I = ((a1 — ay)ag, asag, ag(a; — ay)). Let A = KQ/I. We have already
seen in Chapter 4 that this is a Koszul algebra and we remark again, that this is
a monomial algebra with the specified change of generators. The ideal is given by
non-monomial generators.

Let O be the quiver given by

V1,1 V1,A-1
e Y
1 2
a3 A T \044,\ /044,/ l 21
U3 A-1 V41 V4,A—1 V21
az A—1 042,2/

Q3.1 a4

3
and let I= <(041,1 A — Oygq e CY4,A)CY2,1 0 A, Qg1 s Qg A3 (3 4,
azy--razalar e —gr-oraga)). Let A= KQ/f. It is clear that A is not
a monomial algebra. This construction produces a non-monomial (24, A)-stacked

algebra, A. The proof of this will follow as we prove the general case.
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Let A = KQ/I be a d-Koszul algebra and let A be the algebra given by the
construction above, for some A > 1 and D = dA. In order to prove A is a (D, A)-
stacked algebra, we begin by defining a map 6 : A — A. Then given a minimal
projective resolution, (P",d"), of A/t as a right A-module, we use the maps d" and
0 to define projective A-modules P" and maps d": P" — P!, We then show that
(P",d") is indeed a minimal projective resolution of A/T as a right A-module. This

will enable us to show A is a (D, A)-stacked algebra.

Definition 8.5. We keep the above notation. Let 8* : KQ — KQ be the map

defined as follows;
0*(e) =efore e Qy,

0* (o) = ajag---ay for each arrow in Q,

O (2 v) =0 ()0 (y2) - - 0*(), where ~; are arrows in K Q,
) =

0*(c1m1 + caye c1(0*(m)) + c2(0*(2)), for ci,c2 € K 71,72 € KQ.

The map 0* is a K-algebra homomorphism and is 1 —1, by construction. It follows
that g2 = 6*(g2) so the ideal I is generated by the elements 8*(g2), where {2} is a

minimal generating set of uniform elements of I.

Definition 8.6. We keep the above notation. Define 6 : KQ/I — KQ/I by
O(x + 1) =0*(x) + 1 for all x € KQ.

From the definition of I it is straightforward to verify that 6 is well-defined, a
K-algebra homomorphism and 1 — 1.

Let (P",d™) be a minimal projective resolution of A/t as a right A-module as
constructed by Green, Solberg and Zacharia in [20]. We recall from Chapter 3 that
o P @, g,

e d°: P — A/t is the canonical surjection given by d’(e\) = e\ +t for e € Q.
o d': P! — PYis defined by d'(t(a)\) = A, where the entry @\ is in the summand
of PY corresponding to s(a), for each a € Q;.

o Let g7 € g°. Then g7 = 3>, a;f;, where a; is an arrow in Q and ; € KQ. The
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map d* : P? — P! is such that d*(t(¢?)\) has entry §;\ in the summand of P!
corresponding to t(c;).

o Let n > 3 with ¢ € ¢". Then ¢ = Ejg;?_lqj, with ¢; € KQ. The map
d" : P" — P! is such that d"(t(g]')A) has entry ¢(¢/"')g;A in the summand of
P! corresponding to t(g;hl). Moreover, if n is odd, n = 2r + 1,7 > 1, we have
I(g;) = 1, since I(g]") = rd+ 1 and I(¢]"') = rd. If nis even, n = 2r,r > 2, then
l(¢;) =d —1, since l(g}') = rd and l(g;‘_l) =(r—1)d+1.

We now use P",d" and 6* to find a minimal projective resolution of A /T

Definition 8.7. Define the sets §", for n > 0, as follows. Let

e §° be the set of vertices of O,
e §' be the set of arrows of Q,
e §* be the generating set of I as given in Definition 8.1.
e For n > 3, we define g = 6*(gl") for each ¢ € ¢", and set " = {g"'}.
Observe that g7 = 6*(g?) for each g? € g*>. Moreover, for n > 3, it follows from
above that we have
g =0"(g7")
=0 (397 ')
=209 a)
=3, 07710%(q)),
where g = > . g;-l_lqj for some ¢; € KQ.
Proposition 8.8. Let A be a d-Koszul algebra, with d > 2, and A be the related
algebra as defined above, with D = dA and A > 1. Let n > 2, let g € KQ and
Gt € KQ. Then s(g?) = s(g") and t(g?) = t(§?) under the identification of Qy as a
subset of QO.
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Proof. For n > 2,

g =0"(g7)
= 0"(s(g;")g7't(gi"))
= 0"(s(gi"))0"(97")0" ((g;"))
= s(g!")gt(g") by definition of 6*.
Hence s(g}') = s(g7") and t(g7) = #(g7). =

Since each of the sets g™ consists of uniform elements, it follows that each of the
sets §" also consists of uniform elements. So we may define P" = b, t(gf)]\, for all
n > 0.

We now need to define maps d" : P* — P" 1. Then we will show in Proposition
8.14 that (P",d") is a minimal projective resolution of A /% as a right A-module.

Given the maps 6 and d", we can construct the following diagram:

an dnfl d2 dl dO
pP" pn—1 p? p! P Ajv —= 0
l On j On—1 l 02 j 01 l 0o l 0
pr pr-1 P? P! P Aff —= 0

where the maps 6, : P* — P" and 6 : A/t — A/t are induced from the map 6 as
given in Definition 8.6, that is, 6,, and # are K-module homomorphisms given by:
o : P°— P° fy(e)) = ef(N)
0, : P'— P, 01(t(a)N) = t(aa)0(N)
0, : P — P, 0,(t(gM)N) = t(§")0(N), for all n > 2
0 A/t — AJE OO\ +1) =0\ +7
for all e € Qy, all arrows a € Qy, with 0* () = - - - s, and all A € A.
It is clear that since @ is well-defined and 1 — 1, then 6,,, for all n > 0, and 6 are

also well-defined and 1 — 1 .

The first stage is to show that # and 6, are A-module homomorphisms, for all

n > 0. We start by showing that we can define /~X/ t and P" as right A-modules.
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Definition 8.9. We define /~\/ t to be a non-unital right A-module via the map 6 by
A48 -pn=\+00(p), forall \+F € A/f and all € A.
We define P" to be a non-unital right A-module via the map 0, where for all

ed € P" and all € A we have e) - 1 = el 0(y).

Proposition 8.10. The maps 0 and 0, for n > 0, are right A-module homomor-

phisms.

Proof. We start with § and need to show that O((A + v)u) = O(A +t) - u for all
A € Ao We have (A +v)u) = 0\ + t) = O(Au) + t. On the other side we have
OAN+1) - = (ON) +5) - = (0N +0)0(u) = 0(N)O(1) + Tt = O(\t) + t. Hence 0 is
a right A-module homomorphism.

Let n > 0. We now consider 6,, and need to show that 6,,(e\u) = 6,,(e)) - p, where
e € Qpand A\, € A. From the definition, we have 6,,(eAn) = ef(Au) = eB(N)0(p).
Now 0,,(eX) - = 0,(eN)0(p) = ed(N)0(n). Hence 0,,(eApn) = 0,(e\)p and 6, is a right

A-module homomorphism as required. O

Now we define A-module homomorphisms dn: Pn—s P=1 that are analogous to

the maps d" : P* — P71,

Definition 8.11. Keeping the same notation, let A = KQ/I, let P" = @, t(g")A
and let A € A.
e For n =0, we define d° : P° — A/ to be the canonical surjection given by
d°(EX) = eX+ T, for all € € Q.
e Let n =1 and let & be an arrow in Q;. We define d' : P! — P° to be the
A-module homomorphism given by d'(t(@)\) = @&\, where the entry @ is in
the summand of P° corresponding to s(&).
o Let n =2 and let g7 € §°>. We can write g7 = >, a;7;, where 7; € KQ and
@, is an arrow in Q. We define the map d? : P2 — P! to be the A-module
homomorphism such that d?(¢(§2)A) has entry ;A in the summand of P!

corresponding to (&;).
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e Let n > 3andlet g;' € g". We may write g = >_; g77'0%(g;). Then we define
d" : P* — P" ! to be the A-module homomorphism such that d"(£(g?)\) has
entry t(g?_l)ﬁ(qj)j\ in the summand of P"! corresponding to t(g7~"). Thus

d"(t(3)N) = Ona (d"(t(g1)))A.

Remark. The A-module homomorphisms d" : P* — P"~! are also A-module homo-
morphisms when we consider P* and P! as right A-modules. For, suppose A € A

and p € A. Then

We now look at whether we have a commutative diagram using the maps we have
defined, that is, do we have #,_; o d" = d" o 0,
Proposition 8.12. Let A > 1. In the following diagram of right A-modules

an d2 dl d()
.. > pr ——— pr~l > ... > p2 P! PO AJr 0

@ | " @ e @ |e@ |

A.Q.Pnéﬁn*l ++P2 151 PO A/E 0
d~" d"2 Jl d‘O

the squares, @, commute forn = 0 and n > 3. The squares @ and @ do not

commute.

Proof. Let n = 0. Then the square labelled @ is given as follows;

0
p L AJr

N
PO — = A%
4o
Let y be an element of P° with entry e\ in the summand corresponding to e and 0

otherwise. Then d’(y) = eA +t. So # o d’(y) = O(eA) + t.
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On the other hand, 6,(y) has entry f(e)) in the summand of P° corresponding to
e and 0 otherwise. So d° o fy(y) = A(e)) + T

It is now clear that this square commutes.

Let n = 1. Then the square @ is given as follows;

Let a be an arrow in @ and let #(a) = ajas -+ - 4. Let x be an element of P! with
entry t(a)) in the summand corresponding to ¢(a) and 0 otherwise. Now d'(x) has

entry o\ in the summand of P° corresponding to s(«) and 0 otherwise.

(o)) in the s(a)-summand of PP
So 0y o d'(x) has entry

0 otherwise.

On the other hand, 6;(z) has entry #()\) in the summand of P' corresponding to

t(as) and 0 otherwise.

N as0(\) in the s(ay)-summand of P°
So d' o 6y(x) has entry 46(2) (a)

0 otherwise.
So this square does not commute for A > 1.

Let n = 2. The square @ is given as follows;

P2i>P1

W |

-

d2

Let g7 € g* with g7 = > a;f3;, where a; is an arrow in Q; and f3; € KQ. Let
g = 0°(g7) = 0° (32, 058;) = 22, 0%(a)0%(8)) = X2, a2+ aja0%(8;). Thus
gf = Zj aj,lﬁj7 where ’F]j =595 4 Q*(ﬁ])
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Let y be an element in P? with entry ¢(g?)\ in the summand corresponding to ¢(g?)
and 0 otherwise. Now d?(y) has entry t(a;)3;\ in the summand of P! corresponding
to t(a;).

t(a;.4)0(B;)0(N\) in the t(a; 4)-summand of P!
So 6y o d*(y) has entry

0 otherwise.

On the other hand, 65(y) has entry #(§?)8()\) in the summand of P? corresponding

to t(g?) and 0 otherwise.
t(a;1);0(N) in the t(a;,)-summand of P!
So d? o B,(y) has entry

0 otherwise.
Since t(cyj1) # t(j,4), this square does not not commute for A > 1.

Let n = 3. Then the square @ is given as follows;

P?’LPQ

o e

p? —— p?
a3

Let g} € ¢° and write g7 = 377" g7q; where my is the number of elements in the
set g% Let g7 = 0°(¢7) = 0" (222, 97q;) = D272, 0°(97)0%(q5) = 22572, G707 (q5)- Let 2
be an element in P? with entry ¢(¢g3)\ in the summand of P? corresponding to #(g7)
and 0 otherwise. Now, d*(z) has entry ¢(g7)g;A in the summand of P? corresponding
to t(g?), for j = 1,2,...,my. So 6, o d*(z) has entry t(§7)0(q;)0()),in the t(g7)-
summand of P2, for j = 1,2,...,mo.

On the other hand, 65(z) has entry t(§7)0()\) in the ¢(j3)-summand of P? and 0
otherwise. So, d® o f3(x) has entry t(37)0(q;)0(A) in the t(g?)-summand of P2, for
7 =1,2,...,my. Hence the square @ is commutative.

Let n > 4. Then the square @ is given as follows;
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Let g € g", with g = Z?L"{l g?_lqj where m,,_; is the number of elements in
the set "' Let g = 0"(g') = D27 07 (97 )0 (q5) = 22700 9707 (ay).

Let y be an element in P" with entry t(¢g)\ in the summand of P™ correspond-
ing to t(g7) and 0 otherwise. Now d"(y) has entry t(g}~"')g;A in the summand of
P! corresponding to t(g?_l), for j = 1,2,...,mu_1. So, 0,1 0 d"(y) has entry
t(g?_l)ﬁ(qj)é’()\) in the t(g}‘_l)—summand of P! for j =1,2,... mp_1.

On the other hand, 6,,(y) has entry ¢(§?)()) in the summand of P" corresponding

to t(§") and 0 otherwise. So, d" o 6,(y) has entry t(g?_l)ﬁ(qj)e()\) in the t(g;‘_l)—
summand of P for j =1,2,...,mp,_1.
Hence, the square @ is commutative for n > 4.

In summary, the diagram

dn
pn pn— 1

is commutative for n > 3 and n = 0, but not for n = 1 or 2. O
Proposition 8.13. Let P" and d" be as given above. Then (]5”, CZ”) 15 a complex.

Proof. To show (f’", (f”) is a complex we need to show, for all n > 0, that we have
d" o dntt = 0.
Let n = 0. Let & be an arrow in Ql. We can write @ = ea, where e is a

vertex in Q. Let = be an element of P' with entry t(@)\ in the summand of P
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corresponding to t(@&) and 0 otherwise. Then d'(z) has entry @&\ in the summand
of P corresponding to s(&) and 0 otherwise. Now d® is the canonical surjection, so
d®od'(z) =a\+t=0. Hence d’ o d" = 0.

Let n = 1. Let §? € §® and write §? = Y d;ij; with d&; an arrow in Q; and
ii; € KQ. Let y be an element of P? with entry ¢(§2)\ in the summand of P? corre-
sponding to ¢(j?) and 0 otherwise. Then d(y) has entry ¢(&;)7;A in the summand of
P! corresponding to t(&;). Since §? is uniform, we have that all these arrows &; start
at the same vertex, namely s(§2). So d' o d*(y) has entry > &;f;A in the summand
of P corresponding to s(§?). But > a;7;A = g2\ = 0 in A. Hence d" o d*(y) = 0.
It follows that d' o d* = 0.

Let n = 2. Let g} € g*> and g} € ¢g* where g} = 37 g7q;; with ¢;; € KQ and
where mj is the number of elements in g*. Then g7 = 0*(g}) = 0" (3.1, giq;:) =
> 2 G70(q;4). For each g7 € g%, write g7 = D71, apf,; with ai an arrow in
Q1, Br; € KQ and r; is the number of arrows in Q;. Then gf. = 6’*(9?-) =
0 (O, auBrj) = D opiy Qg1 - oy a0 (Brj) with oy an arrow in Q,. Thus
we can write g7 = Y )1 o1k Where g = agz -+ - g a0 ()

Let x be an element of P? with entry #(§?)\ in the summand of P3 corresponding
to t(g?) and 0 otherwise. Then d®(z) = (£(52)0(q1.s), 1(33)0(g2.0); - - - + 1(52,,)0(Gmz.s) ) A
in P2. Then d? o d3(x) has entry P t(ck1)7k;0(gj0)A in the summand of P!
corresponding to t(ay1), for k=1,...,r;, and 0 otherwise.

Now, let y be the element of P? with ¢(g?) in the summand of P? corresponding to
t(g7) and 0 otherwise. Then d* o d*(y) has entry > "™ t(ax)fy ;g;i in the summand
of P! corresponding to t(ay) for k = 1,...,7;, and 0 otherwise. But (P",d") is a
minimal projective resolution of A/r, so d* o d® = 0. In particular, d? o d3(y) = 0.

Hence

Z] L ta,1)7n,50(q5, 1)5\

S (o) 2 <+ e at (G )0 (Br)0(q7.0) A
tloma)aks - - o at(on,a)0" (372 Brjgja) A

I
o
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for k=1,...,7. So d® o d*(z) = 0 and it follows that d? o d® = 0.

Let n > 3. Let y be an element of P"*! with entry £(§"*')\ in the summand of
P corresponding to t(g8t!) and 0 otherwise. Then d"+!(y) = d"'(t(gr)\ =
O (@ (g7 )N So drod™ (y) = d 6, (4™ (t(g71)A = uad™ (& (t(g71))A
using Proposition 8.12. But (P",d") is a resolution of A/t, so d” o d"™' = 0. Hence
d" o d"(y) = 0. Tt follows that d" o d"' = 0.

Hence, for all n > 0,d" o d**' = 0 and (P",d") is a complex. O

We are now able to show that (P" d") is a minimal projective resolution of A/%

as a right A-module.

Theorem 8.14. Let P" and d" be as given above. Then (P™,d") is a minimal

projective resolution of ]\/E as a right A-module.

Proof. From Proposition 8.13 we have that (P, d") is a complex, so, for (P",d") to
be a projective resolution of /~X/ t it remains to show Kerd" C Im d™*!.

In the cases n = 0 and n = 1, we use [20] to see that the complex is exact at P°
and P!, since §° is the set of vertices of Q, §' is the set of arrows of Q and 2 is a
minimal set of uniform elements which generate the ideal I.

Let n = 2. Let & € Kerd?, so & is an element of P? with entry #(§?))\; in the
summand of P? corresponding to t(§2), that is, & = (£(§2) A1, t(§3) Az, - . - ,t(gfnz)jxm),
where my is the number of elements in the set g2. We recall that g? = E:lzl a;Bj,i
where 7y is the number of arrows in Qi, and g7 = 0*(g7) = 0*(3_0L, ;8;:) =
Z;l 19,1 Oéj,AQ*(ﬁj,z’)a S0 gz? = 25111 ;17 where 7;; = ajo -+ Oéj,Ae(ﬁj,i).

Assume first that for each 7 we have \; = 6()\;) for some \; € A. Then 7 = (),
where © = (t(g2)A1,t(92)Na, - .- t(g2,)Amy) € P2 Since & € Kerd?, we have
0 = d*(%) and d*(%) has entry Y7 7;,A; in the summand of P' corresponding
to t(aj1). Now 7 € Ker d? so, for each j = 1,...,r1, the entry > ﬁj,i&- =

ey a0(B)0(N) = o ajad i 0(BM) = 0. Thepath o+ aja €

A has no proper subpath § such that § = 6(q) for ¢ € A, and t(a;4) = t(c;). Since
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the ideal I is generated by uniform elements g2, which all begin at a vertex in Qp, we
must have > "% 0(¢(cv;)B;:A\:) = 0. As 6 is a monomorphism, we have Y "3 5;:\; = 0,
so z € Kerd?. As (P",d") is a resolution, then Kerd* = Imd?, so x = d®(y) for
some y € P3. We now have & = 6y(x) = 05(d3(y)) = d*(05(y)), by Proposition 8.12.
Therefore 7 € Im d® as required.

Now suppose & = (£(§2) A1, t(§3) s, - . ., t(f]fm):\m) is an arbitrary element in Ker d2.
We can write & = Te + ), 5\ g, TW, Where e = 37 o v and w € Q\Qy. Since
Kerd? is a right A-module, then Ze € Ker d?. From the construction of K 9, recall
that if an element p € A has s(p) € Qy and #(p) € Qp then p = #(p) for some
p € KQ. Thus we may write t(§2)\e = t(G2)0()\;) for some \; € A and for all

izl,...,mg. So

Te = (t<§%)0<>‘1)7 t(gg)@()\g), st 7t(§72n2)6()\m2)) - 92(2)

where z = (t(g7)A1,t(g5) A2, - -, t(g2,)Ams) € P2. The above argument now gives
that Ze € Tm d°.

Now consider zw, where w € QO\QO. Then
Fw = (HG)Mw, H(G3)Aaw, . ., H(Fh,) Amsw).

By construction of the quiver Q, for each i = 1,...,ms, the element t(gf):\iw =
t(52)0(1:)pw where p; € A, and p,, is the unique shortest path in K Q which starts
at a vertex in Qp and ends at w. Note that p, contains no proper subpath ¢ such

that § = 0(q) for some ¢ € A, and that [(p,,) < A. Hence

zw = (H(G1)0(11)Pw, - - - (G, )0y )Pw) = (H(G7)0(112), - - 1330 (timy ) Do

The element d?(Zw) has entry t(aj1)oja - -~ ja S 0(B1.4)0(11:)pw in the summand
of P! corresponding to t(aj1), and 0 otherwise. But w € Ker d?. Hence CZQ(aEw) =0
gives that ajo -+ - v 4 ( > 6(6]-,1-)(9(%))]5“, =0forall j =1,...,7. Since the ideal

I of KO is generated by uniform elements 6(g?), ...,0(g2,), which all start and end
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at a vertex in Qp, we must have that » ;-2 t(a; 4)0(8;:)0(p;) = 0, forall j =1,...,m
Now 6 is a monomorphism, so it follows that » "% f;;; = 0 for j = 1,...,ry. Let
bw = (t(9D) 11, t(g3) p2y - - -, 1(G2, ) ims) € P?. Then Zw = 05(&y)Pw, and d*(&,) = 0.
Hence &, € Kerd?. Since (P",d") is a resolution, Kerd? = Imd?, so &, € Imd®
and thus &, = d®(y,) for some y,, € P?. Then 65(£,) = 02(d®(yw)) = d*03(yw) by
Proposition 8.12. So 6(£,) € Imd®. But fw = 65(£,)Pw, so Zw € Imd® for all
w e QO\QO«

We have shown that e € Imd® and 7w € Imd®, for all w € QO\QO . Hence
7€ Imd® and Kerd? C Imd® as required.

Let n > 3. Let # € Kerd®, so Z is an element of P" with entry #(§?)\; in the
summand of P" corresponding to ¢(§"), that is, = (£(G7) A1, . . . ,t(gfnn))\mn), where
m,, is the number of elements in the set g".

Assume first that for each i we have \; = A();) for some \; € A. Then & = 6,,(z)
where x = (t(g7) M1, ..., t(gh, )Am,) € P". Since T € Ker d", we have 0 = d"(i) =
d"(0,(z)) = 0,_1(d"*(x)), by Proposition 8.12. Now, 6,_; is 1 — 1 so d"(z) = 0.
Hence z € Kerd". As (P",d") is a minimal projective resolution of A/t as a right
A-module, then z € Imd"*!, so x = d"*(y) for some y € P"™!. Then 7 = 0,(z) =
0,(d" ' (y)) = d"(6,,41(y)) by Proposition 8.12. Therefore Z € Im d"t! as required.

Now suppose that & = (£(§") Ay, ... ,t(g;gn)ﬂmn) € Kerd". Again, we can write
T =1Te+ ) ,co00, TW;, Where e = 37 v is an element in A. Since Kerd" is a
right A-module, Ze € Ker d". From the construction of KQ, if j is an element of
K Q with s(p) € Qo and t(p) € Qp then p = (p) for some p € KQ. Thus we may
write t(§7)\ie = t(G7)0(\;) for some \; € A and for all i = 1,...,m,. So e =
(t(GD)OAL),s - -, t (G, )0(Am,)) = On(2) Where z = (t(g7) A1, ..., t(gm, ) Am,) € P™
Our argument above now gives that e € Im dntt,

We now show that 7w € Imd"! for all w € QO\QO. Since 7 € Kercf” we
have #w € Kerd” for all w € Qy\Qp and Zw = (t(G})Mw, . .. (gmn)j\ w). By

construction of the quiver O, for each i = 1,...,m,, the element t(g;‘)/\iw =
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t(g")0 (i) pw where p; € A, and p,, is the unique shortest path in K Q which starts at
a vertex in Qp and ends at w, and p, contains no proper subpath ¢ such that
¢ = 0(q) for some ¢ € A. Hence 2w = (t(g7)0(11)Pw, - - - t(Gm, )0(tm, ) Dw) =
@(g1)0(p), - - t(Gp, )01, ) ) Pro-

We may write g = > 7" 95 i so that g = > 377'0%(g;4). Then the
element d"(Fw) has entry 31" t(g?_l)e(qjvi)Q(ui)ﬁw in the component of P"~! corre-
sponding to ¢(g7 ). Hence (327 t(g7")0(q;:)0(1s) )P = 0 for all j =1,... m,_1.
Since the ideal I of K Q is generated by uniform elements 8(g?), ... ,0(g2,), which all
start and end at a vertex in Qo, we must have that Y/ ¢(g7")0(q;.:)0(p:) = 0, for
all j = 1,...,my_1. Hence the element (¢(g7)0(u1), ..., t(qp,, )0(ttm,)) has image 0
under the map d”. Let &, = (t(g7)0(111), . - - ,t(gr, )0ty ))- Then d"(£,) = 0 and it
follows that we have &, = 0,(£,) where &, = (t(¢") 1, - .- t(gm,. Jim,) € P". Again
our previous argument gives that &, € Imd"™!. But #w = &Py s0 fw € Im d™.

We have shown that if # € Ker d" then Ze and Zw are in Im d"*! for all w € QO\QO.
Hence # € Imd™*! and Kerd" C Imd™*! for all n > 3, as required.

Therefore, for all n > 0, we have Ker d” = Im d"'. Hence (]5”, CZ") is a projective
resolution of A/% as a right A-module.

From the definition of the maps d" it is clear that Im d" - P15 for all n >0,

Hence the resolution (P",d") is a minimal projective resolution of A/t as a right

A-module. O

We finish this section with our main result, which shows that the algebra A we

have constructed is indeed a (D, A)-stacked algebra.

Theorem 8.15. Let A be a d-Koszul algebra. Let A > 1 and set D = dA. With the
above construction, the algebra A = KQ/I is a (D, A)-stacked algebra.

Proof. Looking at the length of each g it is clear that we have
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Hence A is a (D, A)-stacked algebra.

if

if

if

if

n=20
n=1
n=2rreN

n=2r+1,reN.

In the next chapter we look at the relationship between E(A) and E(A).
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9. PROPERTIES OF THE EXT ALGEBRA UNDER THIS CONSTRUCTION

We have shown, in Chapter 8, that we can construct a (D, A)-stacked algebra A
from a given d-Koszul algebra A, with D = dA. We also constructed a minimal
projective resolution of A /¢ from a minimal projective resolution of A/t. In Chapter
6, we looked at some general properties of the Ext algebra of a (D, A)-stacked algebra.
This begs the question, ‘What is the relationship between E(A) and E(A)?’

Let d > 2, A>1 and set D = dA. We assume throughout this section that A is a
d-Koszul algebra, with d > 2 and that A is the related (D, A)-stacked algebra using
the construction of Chapter 8.

We have seen in Chapter 3 that Ext’{'(A/t, A/t) = Homy (P™, Ag), so we can take

a basis f of Homy (P™, Ay) for each m > 0.

Definition 9.1. Let f/” be the A-module homomorphism, P™ — A, given by

tgm) +v ifj=i
t(gj") —
0 otherwise.

We set f™ = {f"} so that |f™| = [¢g"|.
Let me be the A-module homomorphism, P™ — Ay, given by
] M) +E =
t(g5") =
0 otherwise.
We set f™ = {f™} so that |f™| = |§™|.
Recall from Chapter 8, that |¢™| = |§™| for m > 2. So |[f™| = |¢™| = |§"| = | /™|

for m > 2.

Remark. With the maps 6,,,6 from Chapter 8 and with m > 2 we have

: 0(t(g") +v) ifi=j

0 otherwise.
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Hence ﬂmﬁm(t(g]m)) = 0f™(t(g]")), so the diagram below commutes as right A-
modules, for m > 2.

g
P A

AT

P —— Ag
fir

Definition 9.2. Let A be a d-Koszul algebra, with d > 2 and let A be the related
(D, A)-stacked algebra, with A > 1, D = dA. Let Ext3*(A/t, A/t)
= @, Bxt}'(A/r, AJr) and let Ext=*(A/t, A/t) = @,,., Ext} (A /T, A/7).

We define a K-module homomorphism ¥ : Ext3*(A /v, A/t) — Ext?f(f\/f, AJ?) as
follows;

U(fmy = f™ for m > 2.

The aim of this chapter is to show that ¥ is a K-algebra homomorphism, and we
do this in Theorem 9.15.

We remind the reader that the product structure in E(A) is given by the Yoneda
product, and was discussed in Chapter 3. We will show that if we have all the liftings

required for elements of E(A), then we can use these to give the liftings for elements

of E(A).
We start by looking at liftings of f/* in E(A).

Definition 9.3. Let A be a d-Koszul algebra, with d > 2. Let f/™ € Ext}'(A/t, A/¢),

with m > 2. Define £°f™ to be the right A-module homomorphism as follows;

t(gi") ifi=j

0 otherwise.

[,szm . pm™ — PV t(g;”) —

Proposition 9.4. The lifting L°f™, as defined above, is a lifting of ", for m > 2.

Proof. To show L°f]" is a lifting of f]", we need to show that d® o L°f"(t(g]")) =

fi(t(g7")), for all j, that is, the following diagram commutes:
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Pm

i
£ofm

P' —— A,
dO

The map d° : P° — A/x, is the canonical surjection. Thus,

d°(t(gm)\) ifi=j Ha™N+t ifi=q
&0 LOfM(H(gMA) = (t(g")A) o _ ) e J

0 otherwise. 0 otherwise.
So we have d° o L0 f"(t(gi*)\) = f{"(t(g]")A). Hence d° o LOf" = fi™ and LOf]" is a

lifting of f/". O
We can now look at the first lifting £! f™ of f™.

Definition 9.5. Fix ¢ and consider the element f/* € Ext}'(A/t, A/v) where m > 2.

m+1

To define a lifting we need to consider the elements of g in which the element

m—+1

gi" occurs. For each g™ € gmtt

, write g7t = 3T 0 Gk = 977G+ D i IE Dk
Now g;; is in the arrow ideal of K'Q, so write ¢;; = >, @7 Where each a is an
arrow in Q.

Define the map £'f™ : P™*1 — P! to be the right A-module homomorphism
given by t(g7"") = > t(@)7at(g]"t!) where each t(a)v;iat(g)""") is in the t(a)

component of P!.
Proposition 9.6. With the definition above, L' f™ is a lifting of f™, for m > 2.

Proof. To show L£'f™ is a lifting of f™ we need to show that the diagram below
commutes as right A-module modules.
Pm+1 i pm

Uﬁl lﬂﬁ
Pl PO
dl
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Recall that d™ : (g7 ™A — >, t(g)gint(g) " )A. Then the entry LOf" o

d™ (g )A) in the ¢(gy") component of P is Hoiaiuh k=i
0 otherwise.
We know d' : P* — P° #(a)\ — a), where a is in the s(a) component of PP.
So d' o L f(t(g7 1 )A) = 3, ajia) With ayjiq in the s(or) component of P°.
Since Y, ;o = ¢;; from Definition 9.5 and ¢;; is a uniform element, then each
« in the element ) avy;; o will start at the same vertex, namely s(g;;) = t(¢;"). So
we have d' o L' f/"(t(g]""")A) has entry ¢(g/")g;iA in the t(g/") component of P? and

0 otherwise.

Therefore we have L£°f™ o dm“(t(g}nﬂ)) =d'o /llflm(t(g;nﬂ)) so that L£0f" o

d™tt =d' o L1 f™ . Hence L' f™ is a lifting for f™. [

Definition 9.7. Let m > 2,n > 2, and let f/™ € Ext'(A/r, A/t). Since we know that
liftings of f™ exist, we can fix liftings L™ ™. We write L"f/™ : P — P™ as the
right A-module homomorphism such that £ f7"(t(¢7"*")) has entry t(g;)o}; ,t(g7™")

in the t(g) component of P", for some ik € A and for all j, k. Since this is a

lifting, we have d™ o L f™ = L7 f" o ™.

Although liftings are not unique, we have now fixed a lifting £"f™ of f™ for all
n > 0.

We will now look at the liftings of the f™.

Definition 9.8. Let A be a d-Koszul algebra, with d > 2 and let A be the related
(D, A)-stacked algebra, with D = dA and A > 1. Let f* € Ext™(A/%, A/%), with

m > 2. Let £L2f™ be the A-module homomorphism defined as follows:
LOF 2 P = PO H(G)) = 0oL f (1))
for all j, since t(g;*) = 6o(t(g}*)) for m > 2, and where LOf]" is the lifting of

Definition 9.3.
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Proposition 9.9. Let £L0f™ : P™ — P° be the map as given above. Then LOf™ is
a lifting of ﬁm for all i and all m > 2.

Proof. We need to show that d° o L°f™(¢(§")) = f(¢(g")) for all j. We have
d"o LOFI(t(g)) = d° o Ou(Lf7(t(g"))

0o d(Lf™(t(g7"))), by Proposition 8.12,

)(d° o LOf"(t(g]")))

= 0(f"(t(g)"))), by Proposition 9.4

= [ (H(g").
Hence £°f™ is a lifting of f7. O

I
o

Now that we have £°f”, we can look at the next lifting, £'f™. We use the

notation of Definition 9.5.

Definition 9.10. Fix i and consider the element f™ e Ext’}\l(f\/f, AJ?) for m > 2.
~m+1 ~m—+1. .: ~m+1 __ pgx/, m+1 : m+1 _ ™m m
Let g7 e g™ since m > 2, g7 = 0% (g™, Write ¢ = 371" g¢'¢j k- Then
gyttt = 0O g k) = Yo i (gik)- Let 0%(qjk) = Gk, so that gt =
Dok GE ik = G Qi+ D TGk
Using the notation of Definition 9.5, we have
i = 0(g5:)
=0(>_, aVjia), where each « is an arrow in Q,
= 3 0500001
= o 0(s(a))ards - - aab(vjia),

where for each o € Qp, the image 6(«) is the path, a1z -« - &4, of A arrows in 0.
Define £1f™ to be the A-module homomorphism £'f™ : P™1 — P! where
L fm(t(g)) has entry £(dq)dn -+ 2a0(7jiq) in the ¢(A;) component of P!, and 0

otherwise.

Proposition 9.11. With the above notation Elfim 1s a lifting of fim, for all i and

allm > 2.
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Proof. To show L! f[” is a lifting of f[” we need to show that the diagram below
commutes as right A-modules.
pm+1 dmt pm
crjm L l L0 frm

p1_>]50

q

We first consider £° flmocim“(t(g};”*l)). Keeping the above notation and from Def-
inition 8.11, Jm“(t(g;”“)) has entry t(§;")0(g;x) in the summand of P™ correspond-
ing to t(gj"). Using Definition 9.8, we can see that the entry of £°f/" od™+L(¢(g"™))
in the summand of P° corresponding to t(§/") is t(§")d;; and is 0 otherwise.

We now consider d' o ﬁlﬁm(t(g;?‘“)). We know d' : P! — P° t(&) — a, for
all & € Qy, where & is in the s(&) component of P°. Then d* o £!f(t(g7"")) has
entry dq@s - - - @al(Vjia) = 0(yjiq) in the s(Gq) component of PY and 0 otherwise.
Now, ¢/ is uniform, so t(g/") = s(g;,,). But ¢;; = >_,0(aVjia); so each 0(av;;q)
lies in the same component of P°, namely in the #(§") component of P°. Hence
d'o ﬁlﬁm(t(gg’l“)) has entry 3. 0(ay;ia) = G in the (") component of P and
0 otherwise. Thus £°f™ o Jm“(t(g;”“)) =d'o Elﬁm(t(g?;”“)).

Hence LOf™ o d™' = d' o L' f* and L' f™ is a lifting of f™. O

Definition 9.12. Let A be a d-Koszul algebra, with d > 2 and let A be the
related (D, A)-stacked algebra, with D = dA and A > 1. Let m,n >
fme Ext7(A/%,A/%) and let £" f* be the lifting of Definition 9.7. We define Lo fm

2, let
to be the right A-module homomorphism such that:

Enﬁm : pm—I—n N pn7 t(g}n—i—n) — Hnﬁnff”(t(gTJr"))
for all j.

In order to prove that £"f™ is a lifting of f, we consider the cases n = 2 and

n > 3 separately.
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Proposition 9.13. Let m > 2 and let n = 2. Let L2f™ : P™2 — P? be the map

as given above. Then ,CQJF[” s a lifting of flm

Proof. If L2 f[” is a lifting then the following diagram commutes:

- Jm+2 ~
Pm+2 Pm+1
P2 Pl
42

So we need to show £!f™ o Jm“(t(g;””)) = d?o L2fM(t (g7"*?)) for all j. Let us

consider £ f™ o d™+2(t (g;"”)). Since m > 2, gm+2 = 0*(g m+2), and we may write

g;n+2 — 7’m+1 g};"ﬂp],k. Then gm+2 _ 0*( 'I‘m+1 g]rcn+1pjjk> — 7’m+1 §m+1‘9*(pj,k)-
Let 6*(pjx) = Djk, SO gj = Y g, . We know that dm+2(t(§;”+2)) has

entry t(g7"*1)p;x in the summand of P! corresponding to t(g"™). So L'f™ o

A (47 2)) = LGB 135 Bs2s - G ) B
Keeping the notation of Definitions 9.5 and 9.10, g7"*" = 327", 07ty Gri = >0 OVhia
and 0(«a) = s -« - Qa.

So, L1f™(t(g"*1)) has entry t(Gy)ds - - - @af(Ykia) in the t(&;) component of P
and 0 otherwise. So, for each a the entry of the #(&;) component of P! of £1fim o

() s

D t(an)an- - @ab(Yhia)Dik = D H(E)ds - - GaO(VhiaDik)-

bl
—
Eond
—

We now consider d? o £2f"(t (g7 +?).
L2 (G 2) = 0L f(t(g]2)))
= 02@(9%) 22] 1 t(g%)azg 250 (grg) 7, 7'2)

- t(gl)e( zg 1) (92)9( %7, 2) t(grg)e(azg,j,rg))
For [ =1,...,my, write g? = > aco, @Bia- Then

With the notation of Definition 9.7,

g = Z Q10+ Al (Bra)

acQy
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where 6(a) is the path Gydy - @ of arrows in Q. So d2 o L2 f"(¢(§"?)) has entry

72

> Uan)ds - aB(50)0(0F,)

=1

in the t(&;) component of P! for all a.
Now, L£L2f™ is a lifting of f, so d? o L2f™" = L1 f™ o d™1. We have that d? o

£2f[”(t(g;-"+2)) has entry

Z t(a)/ﬁl,agzj,l

I=1
in the ¢(a) component of P!, for all @ € Q;. And L'f™ o d™*'(t(g7"?)) has entry

Tm+1

Z t(a)Pyk,Lapj,k

k=1

in the () component of P!, for all « € Q;. Thus

792 Tm+1
Z t(a)ﬁl,agzj,z = Z () Ve .aljk
=1 k=1

forallaw € Q;. Now, t(a) = t(ay) foralla € Qq. Thus Y, "1 t(an)ds - - @Al (VkiaPik)

=2 t(ar)as - - @ab(B10)0(0ij) for all arrows &. Hence we have

P o L2fMH(G2) = L o dm (1)

J

for all j, and £2f" is a lifting of f as required. 0J

Proposition 9.14. Let m > 2 and let n > 3. Let L”fim . Pmin s Pnobe the map
as giwen in Definition 9.12. Then E”f;-m s a lifting of ﬁm

Proof. Let n > 3 and assume that £0f™, L1 f7 ... L7 f™ are liftings of f™. In or-

der to show £ f™ is a lifting, we need d" o£"f[”(t(§?*”)) = Lrlfm odm+"(t(§;?””))

for all 7. On the left hand side we have
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dro LM (t(gi™) = dM(0.L" [ (Hg5 ™))
= Op_y 0 d"(L"f"(t(g]"™))), by Proposition 8.12,
= O 1 (LY f 0 d™(t(g]T))), since L™ fi™ is a lifting,

= Oy 0 LA™ (H(g])).
On the right hand side, we have

LrLfm o gmin(t (g;””)) = L7 (O (™ (8(g1)))) from Definition 8.11.
Now, write ¢7"*" = 30| g™ gy, with ¢, € KQ, where s = [g™""~!|. Then
Lot o dm (t(g )
= L7 O (Hg7 ™" N, 195 a2, - (g2 ),
= L G090 455 D0(g), - (G )6(g))
=S LV (G ) 0(qr), since L7 s a
A-module homomorphism,
= 2t Ona L7 (g )0 (ar)
=it Onma (L1 (g aw))
= Ont L7 (s g™ ar)
= Ot L7711 (d™ T (E(g5" ™))
Hence, we have the equality and £" fzm is a lifting of f/™. OJ
We now have liftings £" f[" for all n > 0,m > 2 and for all 2. Our final result in

this chapter uses these liftings in order to show that the map W : Ext7?(A/t, A/t) —

Ext?f(]\ /%, A/%) as given in Definition 9.2, is a K-algebra homomorphism.

Theorem 9.15. Let ¥ : Ext7?(A/v, AJt) — Ext/Q(A/t AJ%) be the map given in

Definition 9.2. Then V¥ is a K-algebra homomorphism.

Proof. We need to show that W(f"o fi*) = W(f™)oW(f}), forall m > 2,n > 2,i and

B We have W(f" o ff) = (S (L™ 7). Now L™ fp(t(g™)) has entry H(g" o,

in the summand corresponding to t(g;"). So fi*(L™ fi(t(gy"™™")) = t(g]" )i + .

Now, t(gi")oy;; +1t = t(gi") o t(g] ") + v since f]" and L™ f}* are A-module homo-
m4n

morphisms. So t(g;")o; ;t(g7"™) + v is non-zero precisely when t(g") = t(g]"™")

and (g7 "o t (g7 ") + v = b t(gl") + ¢ for some ¢, € K\ {0}. So
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flho fit = >0cp fi", where the sum is over j such that #(g") = t(g]"*") and
g7 o g7 + v = (gl ") 4 v for some ¢, € K\ {0}. Hence U(f/" o
) = Vo) = Zc%)iff”", where the sum is over those j described
above.
On the right hand side we have W(f™) o W(f?) = f* o fI' = f™(L™f). Now
FrEm (@) = f Om L™ f (g™ ™))
= [ (O (o g7 o1)
= ﬁm(22=1 t(g)e (ngl>>

= 1(g")0(0y;,) + v
Now, t(g7")0(a};;) + T = t(g7)0(op; )t (g7 ™) + T since fmand £™f are A-module

homomorphisms. Then #(g;")0(o}; )t(37"™) + T is non-zero when ¢(g") = t(g;"™")
and t(g;")0(o; (G + € = dif; t(g7"") + €, for some df;; € K\ {0}. So

fremfry = deﬂfm“ where the sum is over j such that ¢(gj*) = t(g;""") and
(g 0o gy + T = di t(g7) + ¢ for some dy;; € K\ {0}. However,
t(g7) = t(g;™™") and t(g7)0(o (g7 + € = di; (g7 ") + T precisely when
t(gm) = t(gm+") and t(g m+”)0k” (g;n+")+t =i (g;nJ“”)-I—t, sincem > 2 and f is a
K-algebra monomorphism, so that dj';; = ¢;"; ;. Hence, W(f/"o fi') = C%,iﬁnjm =

U(fm) oW (fy) and ¥ is a K-algebra homomorphism. O

The above result means that given the product structure of E(A) for a d-Koszul
algebra A, we also know the product structure of F(A) for the related (D, A)-stacked
algebra A. From Chapter 5 we know that Ext%(]\/%, AJF) x Ext%’Q(]\/f, A —
EXt%(]\/‘E, A/?) is surjective. Hence for all n > 4, if f* = > ik Cikfi o 72 with
¢ € K then fI' = U(f1) = (T, cnf? o fi™?) = U, cinf}) 0 Ui ?) =
>k i f2 -2,

This chapter now ends our study of the Ext algebra of (D, A)-stacked algebras
and in the next chapter we show how we can construct a bimodule resolution of A

over A¢ from a given bimodule resolution of A over A°®.
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10. A BIMODULE RESOLUTION

We have spent a considerable amount of time in this thesis concerned with the
Ext algebra of a finite-dimensional algebra A. The Ext algebra is obtained by taking
the cohomology of the complex gained by applying the functor Homy (—, A/t) to the
deleted projected resolution of A/t as a right A-module. The Ext algebra is then
given a product structure via the Yoneda product.

If we follow the same process, but beginning with a minimal projective resolution
of A as a right A°~module and applying the functor Homye(—, A), we obtain the
Hochschild cohomology groups, HH"(A). The Hochschild cohomology ring, HH*(A),
also has a product structure given by the Yoneda product. After the work of Chap-
ter 9 the immediate question arises ‘What is the relationship between HH*(A) and
HH*(A)?” where A is a d-Koszul algebra and A is the related (D, A)-stacked algebra.

We start this chapter by reviewing the construction of the beginning of a bimodule
as given by Green and Snashall in [17]. Using the ideas of Chapter 8, in which we
constructed a minimal projective resolution (P", d") of A/% as a right A-module from
a given resolution (P™,d") of A/t as a right A-module, we then use a similar method
to construct a minimal projective resolution for A as a right A®-module from a given
minimal projective resolution for A as a right A°-module. Throughout this chapter
we write ® instead of ®x.

We begin with some background information and some definitions; these are taken

from [26].

Definition 10.1. Let A be a K-algebra. Then A% is a K-algebra with the same
underlying vector space structure as A. The multiplication in A° is defined as
Ak = pA, for all A\, u € A.

The enveloping algebra of A is defined to be

AN =AP®A
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with multiplication in A€ given by (A ®pu1)(A2®@pu2) = Ao\ ® g1 g, for all Ay, Ay € AP

and for all py, us € A,

Sometimes it is easier to work with A-A-bimodules rather than right A°-modules.
With this in mind it is advantageous to realise that given a A-A-bimodule M, this
is equivalent to M being a right A°-module, and then all the properties of modules

can be applied to bimodules.

Proposition 10.2. Let A be a K-algebra. If M is a A-A-bimodule, then M is a
right A®-module with scalar multiplication m(A @ p) = (Am)u = A(mpu), for all
A€ AP e N and m e M.

The projectives in a minimal projective resolution of A as a A-A-bimodule were

given by Happel, [22].

Proposition 10.3. [22] Let A be a finite-dimensional algebra and let

Qn Qn—l . Q2 Ql QO A 0
be a minimal projective resolution of A as a A-A-bimodule. Then

Qn _ @ P(i)j)dimEu’CtX(Si,Sj)

12
where P(i,j) is the projective A-A-bimodule A(e; ® e;)A, and S;,S; are the simple

modules corresponding to e;A and e; A respectively.

If A/t has a minimal projective resolution (P",d") as a right A-module, following
[20], with P* = @,t(g]")A then the nth projective Q™ in a minimal projective
bimodule resolution of A is given by Q" = @, As(g") @ t(g")A.

Having the projective modules Q" for all n, it remains to determine the maps 6" :
Q" — Q™ '. The maps 0", for n = 0,1,2 and 3 for an arbitrary finite-dimensional

algebra A are given in [17]. We give a brief introduction to this paper.
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Definition 10.4. [17] Write Q° = @, Ae; ® e;A. The map 6° : Q° — A is the
multiplication map, that is, 6°(Ae; ® e;1) = Ae;u, for all 7 and all A,y € A.

We have Q' = @, As(a) @t(a)A. The map 6' : Q' — QV is defined by 6'(s(a)®
t(a)) = s(a) ® a — a @ t(a) for all arrows « in the quiver Q, where s(a) ® a lies in
the s(a) ® s(a) component of Q° and o @ t(«) lies in the (o) ® t(«) component of
Q°.

The map 6%, and indeed §" for all n > 1, is easier to use in matrix form. We
represent the map ' by the matrix A;, which has rows indexed by ¢° and columns
indexed by g'. So A; is a |¢°| x |g'| matrix.

For e € ¢° and a € g', the (e, a) entry of A; is

.

s(a) @ aif s(a) = e and t(a) # e
—a®t(a)if t(a) =€ and s(a) # e
s(a) @ a—a®t(a)if s(a) =e and t(a) =€

0 otherwise.
\

Definition 10.5. [17] Write Q? = @, » As(z)®t(x)A. Let the matrix Ay represent

reg

the map 6% : Q* — Q'. Then A, is a |g'| x |¢g?| matrix with rows indexed by ¢!
and columns indexed by ¢*. Let o € ¢ and let x € ¢* be an arbitrary element of g2
given by x = 7", cjay jag ;- as; 5. The (a,z) entry of Aj is given by

r

Sj
E ch EkjO1 " Ok—1,§ @ Q1,5 - Qs j
j=1 k=1

where

lifakj = «

gkj =
0 otherwise.

Definition 10.6. [17] Write Q* = @, s As(y) ®t(y)A. Let the matrix Aj represent

yeg

the map 6% : Q* — Q2. Then Aj is a |g?| X |¢g?| matrix with the rows indexed by

¢? and the columns indexed by ¢3. Let y be an arbitrary element of ¢® given by
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y=>.9:pi = > @g;ri- The (g7,y) entry is given by
3(912) Qpi—q QT

We now have the information required to give the start of a minimal bimodule

resolution.

Theorem 10.7. [17, Theorem 2.9] With the above definitions, the following sequence

forms part of a minimal projective bimodule resolution of A:

Q’° Q? Q' Q° A 0

with maps A; : Q° — Q! fori=1,2,3.

For a more detailed account and the proof of minimality and exactness, see [17].
In the same way, we can construct the beginning of a minimal projective bimodule

resolution (Q",0") of A. Thus, we have

where Q0 = Dicio Ae@ el Q' = Dics As(a) @ t(@)A, Q* = Dicse As(Z) @ t(@)A
and Q* = @5 As(9) @ t(H)A.

It now remains to use a minimal projective bimodule resolution of A to determine
the higher maps on Q" — Q" !, for n > 4. We remark that there is no explicit
formula for a map 6" : Q" — Q" !, for n > 4, in terms of the ¢" that works for
all finite-dimensional algebras. However, there has been extensive work on certain
classes of algebras for which the minimal bimodule resolution has been explicitly
constructed. For example, the minimal projective bimodule resolution of a Koszul
algebra was given by Green, Hartman, Marcos and Solberg in [10] and the minimal
projective bimodule resolution of a monomial algebra was given by Bardzell in [4].

In [28] Snashall and Taillefer described a minimal bimodule resolution for a class of
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special biserial algebras. Other examples include a minimal bimodule resolution for
Hecke algebras of type A, constructed by Schroll and Snashall in [27].

We now wish to describe a method for constructing a minimal bimodule resolution
of A as a A-A bimodule from that of A as a A-A-bimodule. We already have the
projectives for all n > 0, and we have the maps Q" — Q" ! for n = 0,1,2 and 3.
In order to define maps on Q" — Q" L, for n > 4, we first use the map 6 from

Definition 8.6 to define a map ¢ : A¢ — A°.

Definition 10.8. Let A be a d-Koszul algebra and let A be the related (D, A)-
stacked algebra with D = dA. Let n € A®, so n =), 1n; ® ) for some n; € A’ and
n; € A. The map 6 clearly induces a K-algebra homomorphism A% — A°? which we

also call 8. We define a K-module homomorphism ¢ : A — A¢ by
o) =>_ 0(m) @ 6().

Proposition 10.9. Let ¢ : A° — A¢ be as defined above. Then ¢ is a monomor-

phism.

Proof. Fix a K-basis B of A consisting of paths. Then A® has a K-basis B =
{b@ V] bl € B}. However, we know that for each b € B, 6(b) is a non-zero path in
A, and thus A® has a K-basis B which contains the set {8(b) ® 8(b')| b,V € B}.

Let n € A® and write n = ), ¢;b; ® b}, where ¢; € K and b;, b, € B. Suppose that
¢(n) = 0. Then ¢(>_, ¢;b;@b;) = > . ¢;0(b;)®@6(V;) = 0. Since for each 7, 8(b;) ®6(V}) is
an element of a K-basis for A then the elements 8(b;)@6(b,) are linearly independent

and thus ¢; = 0 for all 7. Hence n =0 and ¢ is a monomorphism. 0J

For n > 2, the map ¢ from Definition 10.8 induces K-module homomorphisms

Gn : Q" — Q" by
On(ms(g)) @ (g )n2) = 0(m1)s(g;") @ t(g;")0(n2), for ni,me € A.

It is clear that ¢,, is also a monomorphism.
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We now wish to show that ¢, is a A-A-bimodule homomorphism, but we first need

to give Q" the structure of a A-A-bimodule.

Definition 10.10. Let n > 2 and let Q" = @, As(§?) ®t(g1")A. Then we may write
Q" = @, (s(g7) @ t(gr))A°. We define Q" to be a right A~module via the map ¢ in

the following way

(s(3) @ U3 (A ® he) -1 = (s(3) @ £(31)) (M1 @ A)d(n)

for all n € A°. Thus, as a A-A-bimodule

- (Ars(37) @ (@A) <12 = 0(m) Ms(GF) @ t(G7) Aa01(n2)
for all ny,n. € A.

Proposition 10.11. Let n > 2 and let ¢, : Q" — Q" be as defined above. Then ¢,

is a A-A-bimodule homomorphism.

The proof is straightforward and can easily be verified.

Using these maps we now define the maps 6™ : Q" — Q™! for n > 3.

Definition 10.12. Let (Q™,0") be a minimal projective bimodule resolution for A
with the part up to Q? as given by [17]. Let n > 3. Define 6" : Q" — Q™' to be

the A-A-bimodule homomorphism given by

0"(s(g") @ £(g7')) = Pn-1("(s(gi") ® 1(g7'))).

Proposition 10.13. The definition of 0° from Definition 10.12 coincides with that
of Definition 10.6.

Proof. From Definition 10.12 we have 6%(s(¢3) ® t(33)) = ¢2(8*(s(g?) @ t(g?))).
Let gf = >2,0ipi; = 32 059:mi5- Now gi = 0°(g}), so gj = 0"(32, gipiy) =
0" (i 4iggiria) = 2:9:0"(pig) = 22:07(4i3)3707(ri). Now &°(s(g)) ® t(g})) is

given by the matrix Az where each (g7, g7)-entry is given by s(g7) @ pij — ¢i; @ 7.
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Then we have ¢o(s(97) @ pij — ¢ij @ 1i5) = $(37) ® 0(pij) — 0(qij) @ O(rij). So
the matrix representation of 6* : Q* — Q? from Definition 10.12 has (f]iz,g?)-entry
s(37) ® 0(pig) — 0(ai,5) ® O(rs ).

From Definition 10.6, the matrix A; has (52, 3 )-entry s(3?) ® 0(p;;) — 0(qi;) ®

6(r; ;). Hence the two definitions coincide. O

We have now defined A-A-bimodule homomorphisms 6" : Q" — Q™ !, for all

n > 0, giving us a sequence

We need to show that this is indeed a minimal projective bimodule resolution of
A. We start by considering the commutativity of the following diagram of A-A-

bimodules.

Qn o Qn—l gt Q3 s Q2 il
(i)n j ¢n71 l ¢3 l ¢)2 l
Qn anl - Q3 Q2 -
o 677.71 63 62

Proposition 10.14. For all n > 2, the following square is commutative as A-A-

bimodules.
5n+1

QnJrl . Qn

¢n+1 l l/ ¢n

QnJrl . Qn

Sn«l»l

Proof. Let n > 2 and let z be the element of Q™! with entry s(¢/™') ® t(¢/™) in

the As(g"™") ® t(g'"™)A component and 0 otherwise. Then
120



G 0 6" (2) = ¢y, 0 6" (s(gP ) @ t(gPH))
= 57 1(s(g") @ ¢(gr™)), by Definition 10.12.
= 0" (B(s(g7 ™)) @ O(t(g7 ™))
= 6" o g (s(gr ) @ (g ))
= 6" 0 gy (2).

Hence for all n > 2, " o Gni1 = ¢p 00"t and the square commutes. O
Proposition 10.15. Let (Q”,Sn) be as given above. Then (Q™,0") is a complex.

Proof. For n = 0,1,2 it follows from [17, Theorem 2.9] that 4" o "1 = 0.
For n > 3, we have
0" 0 0" (s(g ) @A) = 0" (@n(0" (s(g7) @ 1(5)))
= Gn1(8"(6" (s(g7™) @ t(g7)))),
by Proposition 10.14,

=0, since d" o 6" = 0.

Hence (Q",0") is a complex. O

Theorem 10.16. Let (Q", 5") be as given above. Then (Q”,S”) is a minimal pro-

jective bimodule resolution of A as a A-A-bimodule.

Proof. Let (Q", 5”) be the complex of Proposition 10.15, so we have Im 6"+! C Ker 6"
for all n > 0. From [17] we know that the complex is exact at n = 0,1 and 2. It
remains to show that Ker " C Im 5"t for n > 3.

Let n > 3. Let € Ker 6" and write

7= (Ms@) @G-y Ay s(@ ) @G Vi)

with 5\,,[1;1 € /~\
First let us assume that there are )\; and p; in A such that 6()\;) = ):l and
O(p;) = fu; for each i. Then we have & = (0(A1s(g7)) @O(L(97)11), - - - O(Am, 5(gp, ) ®

Ot (g, )Hm,)), 50 T = ¢n(x) where x = (A1s(g7)®t(g7 )1, - - -, Am, (g, ) RL(G, N ibm,, )

€ Q". Now Z € Kerd”, so 0"(&) = 0 = 6"(¢n(z)) and from Proposition 10.14,
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6" (¢n(x)) = ¢p_1(0™(x)). We know that ¢, is 1 — 1, so 6"*(z) = 0. Hence z €
Ker " = Im ™"t and we have x = §"*1(y) for some y € Q"™'. Therefore 7 =

bul) = 6"+ (y)) = 5" ($nya(y)) and & € Im 5741,

Now let # be an arbitrary element of Ker 6", and write

7= (Ms(@) @@, - Amas(G,) @ 1@, ) fim,)-

Then & = eTe + 3, e 0, (€TW + wTe + wiw') where e = 3 o v is an element
in A. Now Ker " is a A-A-bimodule. So eze, etw, wie, wiw' € Ker d" for all w,w' €
QO\QO. From the construction of K Q, if p is an element of K Q with s(p) € Qp and
t(p) € Qp then p = A(p) for some p € KQ. Thus we can write eX;s(g") @ t(g?)fie =
ef(\;)s(gl)@t(gl)0(pi)e for some \;, pi; € Aand foralli =1,...,m,. SoeZe = ¢,(2)
where z = (A1s(g]) ® t(97)11, - -, Am,S(g.,) @ t(gh, Jm,) € Q™. The argument
above now gives that eze € Im 6™*!.

We now show that ezw € Im ™! where w € QD\QO. By construction of the
quiver Q, for each i = 1,...,m,, we can write t(¢")ji;w = t(g)0(1;) P where 1; € A
and fy, is the unique shortest path in K'Q which starts at a vertex in Qy and ends
at w, and p, contains no proper subpath ¢ such that § = 6(q) for some ¢ € A.
Hence e7w = (e0(M)s(gf) ® UGR)00)Bun - 00 )3(50h.) © g )0 ) for
Ai € Ao Let 2 = (Ais(97) @ t(97)m1, - -, Amn5(9m,,) @ (g, )1Im,) € Q™. Then exw =
®n(2)Pw- We now show that z € Ker 6. The entry of §"(z) in the component of Q™!
corresponding to (g’ ') @ t(¢"!) may be written > Cijbiy @V ; for some ¢;; € K
and b; ;,b; ; € B, where B is a K-basis of A consisting of paths. Then ¢, 0 "(z)
has entry >, ¢; ;0(bi ;) ®0(b; ;) in the component of Q"' corresponding to s(§" 1) ®
t(g*1). However, 0"(ezw) = 0 and 6" (edw) = 6™(¢n(2))Pw = (¢n_1 © 6"(2))pw from
Proposition 10.14. Thus (¢,—1 © 6"(2))pw = 0 and so . ¢; ;0(bi ;) @ 0(b; ;)pw = 0
for all i = 1,...,m,. Now t(0(b;;)) = s(Pu), so by the construction of A, OV ;) Pu
is a non-zero path in A, and thus {0(b;;) ® O(b; ;)Pw} is a linearly independent
set in A®. Therefore, ¢ij = 0 forall j and all ¢ = 1,...,m,_; so we must have
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that 0"(z) = 0. Since (Q",d") is a projective resolution for A as a A-A-bimodule,
Im 6" = Kerd” so z € Im§"*1. Thus z = 6" (y) for some y € Q™. Therefore
On(2) = Gy 0 6" (y) = 6" 0 ¢4 (y) from Proposition 10.14. So edw = ¢, (2)pw =
(6" 0 i1 ()P = 0" (Sny1 (y)Pu) s0 €Fw € Tm 5",

A similar argument shows that wZe and wiw’ are in Im 6" for all w, w' € QO\QO.
Hence 7 € Im 0™ and Ker 6" C Im 6™, for n > 3, as required.

Therefore, for all n > 0, we have Ker 6" = Im 6”1, Hence (Q”, S”) is a projective
bimodule resolution of A as a A-A-bimodule. From Happel [22] (see Proposition
10.3) we know that the Q" are the projectives of a minimal projective bimodule

resolution, and hence (Q”, 5”) is a minimal projective bimodule resolution of A O

In this thesis we have introduced a new class of algebras called (D, A)-stacked
algebras, which are motivated by and generalise the Koszul algebras, D-Koszul alge-
bras and (D, A)-stacked monomial algebras. We have shown that the Ext algebra is
always finitely generated as an algebra and given a characterisation of these algebras.
We have also given an explicit construction for a family of (D, A)-stacked algebras A
from a d-Koszul algebra A, where D = dA, for A > 1. Included in this is an explicit
construction of a minimal projective resolution of A/i‘ as a right A-module from a
given minimal projective resolution of A/t as a right A-module, and a minimal pro-
jective bimodule resolution of A as a A-A-bimodule from a given minimal projective
bimodule resolution of A as a A-A-bimodule.

Future directions for research would be to investigate whether every (D, A)-stacked
algebra arises from a d-Koszul algebra with D = dA via our construction, and to

investigate the relationship between HH*(A) and HH*(A).
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