
Backward Analysis via Over-Approximate Abstraction
and Under-Approximate Subtraction

Alexey Bakhirkin1, Josh Berdine2, and Nir Piterman1

1 University of Leicester, Department of Computer Science
2 Microsoft Research

Abstract. We propose a novel approach for computing weakest liberal safe pre-
conditions of programs. The standard approaches, which call for either under-
approximation of a greatest fixed point, or complementation of a least fixed point,
are often difficult to apply successfully. Our approach relies on a different decom-
position of the weakest precondition of loops. We exchange the greatest fixed
point for the computation of a least fixed point above a recurrent set, instead of
the bottom element. Convergence is achieved using over-approximation, while
in order to maintain soundness we use an under-approximating logical subtrac-
tion operation. Unlike general complementation, subtraction more easily allows
for increased precision in case its arguments are related. The approach is not re-
stricted to a specific abstract domain and we use it to analyze programs using the
abstract domains of intervals and of 3-valued structures.

1 Introduction

Forward static analyses usually compute program invariants which hold of executions
starting from given initial conditions, e.g., over-approximations of reachable states.
Conversely, backward static analyses for universal properties compute program invari-
ants which ensure given assertions hold of all executions, e.g., under-approximations
of safe states. Forward analysis of programs has been a notable success, while such
backward analysis has seen much less research and is done less frequently (a notable
example is [17]).

The standard formulation of forward analyses involves over-approximating a least
fixed point of a recursive system of equations (transformers) that over-approximate the
forward semantics of commands. Conversely, backward analyses for universal proper-
ties usually involve under-approximating a greatest fixed point of under-approximate
equations.

The over-approximating abstractions used by forward analyses are far more com-
mon and well-developed than the under-approximations used by backward analyses.
One approach to under-approximation is via over-approximate abstraction and under-
approximate complementation . � /. For example, lower widening p O q may be seen as
p O q. However, computing the complement is, in many cases, infeasible or impractical
(e.g., for 3-valued structures [22], separation logic [8], or polyhedra [12]).

Here, we suggest an alternative backward analysis approach that uses least fixed-
point approximation, and an under-approximate logical subtraction operation in lieu

of complementation. (Logical subtraction can also be understood as and with comple-
ment or not implies.) We show how to extend a computation of a recurrent set of a
program with a least fixed-point approximation to obtain an under-approximation of
the safe states from which no execution can lead to a failure (such as violating an asser-
tion, dividing by zero, or dereferencing a dangling-pointer – i.e., an event that causes
program execution to immediately abort and signal an error). Soundness is ensured by
subtracting an over-approximation of the unsafe states.

Using subtraction instead of complementation has several advantages. First, it is
easier to define in power set domains for which complementation can be hard or im-
practical. Second, as the approximations of safe and unsafe states are the results of
analyzing the same code, they are strongly related and so subtraction may be more
precise than a general under-approximate complementation.

Our approach is not restricted to a specific abstract domain and we use it to analyze
numeric examples (using the domain of intervals) and examples coming from shape
analysis (using the domain of 3-valued structures).

2 Preliminaries

Let U denote the set of program memory states and � … U a failure state. The concrete
domain for our analysis is the power set P.U/ ordered by �, with least element ∅,
greatest element U , join [, and meet \.

We introduce an abstract domain D (with v, ?, >, t, and u) and a concretization
function
 WD ! P.U/. For an element of an abstract domain, d 2 D;
.d/ is the set
of states represented by it. For example, for a program with two variables x and y, an
element of the interval domain d D hx W Œ1I 2�; y W Œ3I 4�i represents all states satisfying
.1 � x � 2/ ^ .3 � y � 4/, i.e.,
.d/ D f.x; y/ j 1 � x � 2 ^ 3 � y � 4g.

For a lattice L, we define complementation as a function . � / W L! L such that for
every l 2 L;
.l/ \
.l/ D ∅ (i.e., they represent disjoint sets of states – but we do
not require that
.l/[
.l/ D U). For example, if d 2 D over-approximates the unsafe
states, then d under-approximates the safe states. For our concrete domain P.U/ (and
similarly, for every power set of atomic elements), we can use standard set-theoretic
complement: S D U X S .

We define subtraction as a function . � � � / W L! L! L such that for l1; l2 2 L
we have
.l1 � l2/ �
.l1/ and
.l1 � l2/ \
.l2/ D ∅. For example, given a domain
D, we can define subtraction for the power set domain P.D/ as

D1 �D2 D fd1 2 D1j 8 d2 2 D2:
.d1/ \
.d2/ D ∅g (1)

This way, subtraction can be defined in e.g., the domain of 3-valued structures that
does not readily support complementation. We claim that a useful subtraction is often
easier to define than a useful complementation. We also note that for every l0 2 L, the
function �l:.l0 � l/ is a complementation. However, for a given l , the accuracy of this
complement depends on the actual choice of l0.

2.1 Programming Language Syntax and Semantics

We consider a simple structured programming language. Given a set of atomic state-
ments A ranged over by a, statements C of the language are constructed as follows:

C WWD a atomic statement
j C1 I C2 sequential composition: executes C1 and then C2

j C1 C C2 branch: non-deterministically branches to either C1 or C2

j C � loop: iterated sequential composition of � 0 copies of C

We assume A contains: the empty statement skip, an assertion statement assert'
(for a state formula '), and an assumption statement Œ'�. Informally, an assertion im-
mediately aborts the execution and signals an error if ' is not satisfied, and we con-
sider that there are no valid executions violating assumptions. Standard condition-
als if.'/ C1 else C2 can be expressed by .Œ'�IC1/ C .Œ:'�IC2/. Similarly, loops
while.'/ C can be expressed by .Œ'�IC/� I Œ:'�.

A state formula ' denotes a set of non-failure states J'K � U that satisfy '. The
semantics of a statement C is a relation JC K � U � .U [f�g/. For s; s0 2 U , JC K.s; s0/
means that executing C in state s may change the state to s0. Then, JC K.s; �/means that
s is unsafe: executing C from state s may result in failure (may cause the program to
immediately abort). Let �U be the diagonal relation on states �U D f.s; s/ j s 2 Ug.
Let composition of relations in U � .U [f�g/ be defined as S # R D .R [f.�; �/g/ ı

S where ı is standard composition of relations. Fixed points in U � .U [f�g/ are
with respect to the subset order, where lfp�X:F.X/ denotes the least fixed point of
�X:F.X/, and similarly, gfp�X:F.X/ denotes the greatest fixed point of �X:F.X/.
For an atomic statement a, we assume that JaK is a predefined left-total relation, and the
semantics of other statements is defined as follows:

JskipK D �U JC1 I C2K D JC1K # JC2K
JŒ'�K D f.s; s/ j s 2 J'Kg JC1 C C2K D JC1K [JC2K

Jassert'K D f.s; s/ j s 2 J'Kg [
f.s; �/ j s 2 U ^ s … J'Kg

JC �K D lfp�X:�U [.JC K #X/

Note that the assumption that atomic statements denote left-total relations excludes
statements that affect control flow such as break or continue. In what follows, we
constrain considered programs in the following way. Programs cannot have nested loops
and assumption statements Œ'� are only allowed to appear at the start of branches and at
the entry and exit of loops (they cannot be used as normal atomic statements):

C WWD a j C1 I C2 j .Œ'� I C1/C .Œ � I C2/ j .Œ � I C/
�
I Œ'�

We require that for branches and loops, ' _ D 1 (i.e., J'K[J K D U). That is, for a
loop-free statement, the domain of its semantics is U . We also require that the language
of state formulas is closed under negation.

2.2 Fixed-Point Characterizations of Safe and Unsafe States

Given a statement C and a set of states S � U , we define:

– pre.C; S/ D fs 2 U j 9s0 2 S: JC K.s; s0/g. The states that may lead to S after
executing C .

– fail.C / D fs 2 U j JC K.s; �/g. The unsafe states: those that may cause C to fail.
– wp.C; S/ D fs 2 U j 8s0 2 U [f�g: JC K.s; s0/) s0 2 Sg. The weakest liberal

precondition that ensures safety [7] – safe states that must lead to S if execution of
the statement terminates.

We abbreviate pre.C; S/ [fail.C / to pre+fail.C; S/.

Lemma 1. For a statement C and a set of states S � U ,
wp.C; S/ D U X pre+fail.C;U X S/.

The proof is a direct calculation based on the definitions. See the companion technical
report [3] for proofs.

For a programC , our goal is to compute (an under-approximation of) wp.C;U/, and
(an over-approximation of) its complement fail.C /. If we are interested in termination
with specific postcondition ', we add an assert' statement to the end of the program.
We characterize these sets (as is standard [9,10]) as solutions to two functionals P and
N that associate a statement C and a set of states S (resp., V) � U with a predicate
P.C; S/, resp., N.C; V /. P.C; S/ (the positive side) denotes the states that must either
lead to successful termination in S or cause non-termination, andN.C; V / (the negative
side) denotes the states that may lead to failure or termination in V .

P.a; S/ D wp.a; S/ N.a; V / D pre+fail.a; V /

P.Œ'�; S/ D J:'K [S N.Œ'�; V / D J'K \ V
P.assert'; S/ D J'K \ S N.assert'; V / D J:'K [V
P.C1IC2; S/ D P.C1; P.C2; S// N.C1IC2; V / D N.C1; N.C2; V //

P.C1 C C2; S/ D P.C1; S/ \ P.C2; S/ N.C1 C C2; V / D N.C1; V / [N.C2; V /

P.C �; S/ D gfp�X: S \ P.C;X/ N.C �; V / D lfp�Y: V [N.C; Y /

Lemma 2. For a statement C and set of states S � U , P.C; S/ D U XN.C; U X S/.

The proof is by structural induction.

Lemma 3. For a statement C and sets of states S; V � U , P.C; S/ D wp.C; S/, and
N.C; V / D pre+fail.C; V /.

The proof is by structural induction, relying on continuity of pre+fail.

3 Least Fixed-Point Characterization of Safe States

The direct solution of the positive side is by under-approximating a greatest fixed point.
This can be problematic since most domains are geared towards over-approximating
least fixed points. Hence, we are not going to approximate the greatest fixed point for the
positive side directly. Instead, we restate the problem for loops such that the resulting
characterization leads to a least fixed point computation where termination is ensured
by using an appropriate over-approximate abstraction.

In this section, we focus on the looping statement:

Cloop D .Œ � I Cbody/
�
I Œ'� (2)

where Cbody is the loop body; if holds the execution may enter the loop body; and if
' holds the execution may exit the loop. To simplify the presentation, in what follows,
we assume that the semantics of Cbody is directly known. Since Cbody is itself loop-free,
JCbodyK does not induce fixed points, and the transformers for the loop body can be
obtained, e.g., by combining the transformers for its sub-statements.

3.1 Recurrent Sets

We reformulate the characterizations of safe states in terms of least fixed points with
the use of recurrent sets. For the loop in (2), an existential recurrent set is a set R9, s.t.

R9 � J K
8s 2 R9: 9s

0
2 R9: JCbodyK.s; s0/

These are states that may cause non-termination (i.e., cause the computation to stay
inside the loop forever). For the loop in (2), a universal recurrent set is a set R8, s.t.

R8 � J:'K

8s 2 R8:
�
8s0 2 U [f�g: JCbodyK.s; s0/) s0 2 R8

�
These are states that must cause non-termination. For practical reasons discussed later
in Sect. 4.2, we do not require these sets to be maximal.

Lemma 4. For the loop Cloop D .Œ � I Cbody/
� I Œ'�, and a set of states S � U

R8 � P.Cloop; S/ R9 XN.Cloop; U X S/ � P.Cloop; S/

For R8, the proof correlates universal recurrence and wp, relying on monotonicity of
P.Cloop; � /. For R9, the result follows from Lemma 2.

3.2 Positive Least Fixed Point via Recurrent Sets

We begin with an informal explanation of how we move from a greatest fixed point
formulation to a least fixed point one. Observe that for the loop in (2), the positive and
negative sides (following the definition in Sect. 2.2) are characterized by:

P.Cloop; S/ D gfp�X: .J:'K [S/ \
�
J: K [P.Cbody; X/

�
N.Cloop; V / D lfp�Y: .J'K \ V / [

�
J K \N.Cbody; Y /

� (3)

Then, since loops only occur at the top level, a program Cprg that contains the loop Cloop
can be expressed as Cinit I Cloop I Crest (where Cinit or Crest may be skip). Let:

– Prest D P.Crest;U/ – the safe states of the loop’s continuation.
– Nrest D N.Crest;∅/ – states that may cause failure of the loop’s continuation. Note

that Nrest D U X Prest.

U

Ploop Nloop

Tmust R9

(a) Partitioning with existential recurrence.

U

Ploop Nloop

R8 Tmay

(b) Partitioning with universal recurrence.

Fig. 1: Partitioning of the states at the loop entry.

– Ploop D P.Cloop; Prest/ – the safe states of the loop and its continuation.
– Nloop D N.Cloop; Nrest/ – states that may cause failure of the loop or its continua-

tion. Note that Nloop D U X Ploop.
For the loop in (2), Fig. 1 shows how the states entering the loop can be partitioned.
In the figure, by Tmust, we denote the states that must cause successful termination of
the loop (in a state belonging to Prest), and by Tmay, we denote states that may cause
successful termination.

Fig. 1a shows that the positive side for the loop in (2) can be partitioned into the
following two parts:

– R9 XNloop – states that may cause non-termination but may not fail;
– Tmust – states that must cause successful termination of the loop.
Tmust can be characterized as the least fixed point:

Tmust D lfp�X: .J: K \ Prest/ [
��
.J K \ Prest/ [J:'K

�
\ wp.Cbody; X/

�
Intuitively, the states in J: K\Prest cause the loop to immediately terminate (such that
the rest of the program does not fail), those in ..J K\Prest/[J:'K/\wp.Cloop; J: K\
Prest/ can make one iteration through the loop, and so on.

Fig. 1b shows that the positive side can also be partitioned in another way:
– R8 – states that must cause non-termination of the loop;
– Tmay XNloop – states that may cause successful termination but may not fail.

In a way similar to [10], Tmay can be characterized as the least fixed point:

Tmay D lfp�X: .J'K \ Prest/ [
�
J K \ pre.Cbody; X/

�
Intuitively, from states J'K \ Prest, the loop may immediately terminate in a state safe
for Crest, from states J K\ pre.Cbody; J'K\Prest/ the loop may make one iteration and
terminate, and so on. From this, it can be shown that

Tmay XNloop D lfp�X:
�
.J'K \ Prest/ XNloop

�
[

�
.J:'K \ pre.Cbody; X// XNloop

�
We replace with :', since the states in J K \ J'K \ pre.Cbody; X/ are either al-
ready included in the first disjunct (if belonging to Prest), or are unsafe and removed by
subtraction.

Following these least fixed point characterizations, we re-express the equation for
the positive side of the loop (3) using the existential recurrent set R9 as follows, where
N D N.Cloop;U X S/:

P 9.Cloop; S/ D lfp�X: .R9 XN/ [.J: K \ S/

[

��
.J K \ S/ [J:'K

�
\ wp.Cbody; X/

� (4)

or using the universal recurrent set R8 as follows:

P 8.Cloop; S/ D lfp�X:R8 [
�
.J'K \ S/ XN

�
[

��
J:'K \ pre.Cbody; X/

�
XN

� (5)

Theorem 1. The alternative characterizations of the positive side of the loop: (4) and
(5) – under-approximate the original characterization (3). That is, for a set S � U ,

P 9.Cloop; S/ � P.Cloop; S/ P 8.Cloop; S/ � P.Cloop; S/

4 Approximate Characterizations

In Sects. 2.2 and 3.2, we characterized both the negative and the positive sides as least
fixed points. For the negative side, our goal is to over-approximate the least fixed point,
and we can do that using standard tools. That is, we move to an abstract domain D(v,
?, >, t, u, O) where widening O and join t may coincide for domains that do not
allow infinite ascending chains. For the positive side our goal is to under-approximate
the least fixed point, and to do so, we build an increasing chain of its approximations
and use the previously computed negative side and subtraction to ensure soundness.

As before, since we do not allow nested loops, we assume that abstract transformers
for loop bodies are given. For a loop-free statement C and d 2 D, we assume: over-
and under-approximating transformers pre].C; d/ and wp[.C; d/, over-approximating
operation fail].C /; and for assumption statements Œ'�: under- and over-approximate
transformers Œ'; d �[and Œ'; d �] such that:

.pre].C; d// � pre.C;
.d//
.fail].C // � fail.C /

.wp[.C; d// � wp.C;
.d//
.Œ'; d �[/ � J'K \
.d/ �
.Œ'; d �]/

We abbreviate Œ';>�[to Œ'�[and Œ';>�] to Œ'�].
Note that the above includes both over-approximating and under-approximating op-

erations. In section 4.1, we relax the requirements and obtain an analysis where sub-
traction is the only under-approximating operation.

For a statement C and n 2 D, the approximate negative side N].C; n/, which over-
approximates N.C;
.n//, is (non-recursively) defined as follows:

N].a; n/ D pre+fail].a; n/

N].C1 I C2; n/ D N
]
�
C1; N

].C2; n/
�

N]
�
.Œ'�IC1/C .Œ �IC2/; n

�
D Œ';N].C1; n/�

]
t Œ ;N].C2; n/�

]

N]
�
.Œ �ICbody/

�
I Œ'�; n

�
D the first nj 2 fnigi�0 such that njC1 v nj where

n0 D Œ'; n�
] and niC1 D ni O Œ ;N

].Cbody; ni /�
]

For a statement C and a pair of elements p; n 2 D that are disjoint (
.p/\
.n/ D
∅), we define the approximate positive sideP [.C; p; n/ such that it under-approximates
P.C;U X
.n//. P [.C; p; n/ is defined mutually with an auxiliary Q\.C; p; n/ by in-
duction on the structure of C . Optimally, Q\.C; p; n/ represents a tight under-approx-
imation of P.C;
.p//, but actually need not be an under-approximation. Also, note
how n is used to abstractly represent the complement of the set of interest.

For loop-free code, P [and Q\ are (non-recursively) defined as follows:

P [.C; p; n/ D Q\.C; p; n/ �N].C; n/

Q\.a; p; n/ D wp[.a; p/

Q\.C1 I C2; p; n/ D P
[
�
C1; P

[.C2; p; n/;N
].C2; n/

�
Q\

�
.Œ'�IC1/C .Œ �IC2/; p; n

�
D

�
P [.C1; p; n/ u P

[.C2; p; n/
�
t

Œ: ;P [.C1; p; n/�
[
t Œ:'; P [.C2; p; n/�

[

For a loop Cloop D .Œ �ICbody/
�I Œ'�, we define a sequence fqigi�0 of approximants

toQ\.Cloop; p; n/, where qiC1 D qi O �.qi / and the initial point q0 and the transformer
� are defined following either the characterization (4) using an approximation R\

9
2 D

of an existential recurrent set of the loop:

q0 D
�
R

\
9
�N].Cloop; n/

�
t Œ: ;p�[

�.qi / D
�
Œ ; p�[u wp[.Cbody; qi /

�
t Œ:';wp[.Cbody; qi /�

[

or the characterization (5) using an approximation R\
8
2 D of a universal recurrent set:

q0 D R
\
8
t

�
Œ'; p�[�N].Cloop; n/

�
�.qi / D

�
Œ:'; pre].Cbody; qi /�

[
�N].Cloop; n/

�
As for loop-free commands, Q\ can be computed first, and P [defined using the result.
That is, define Q\.Cloop; p; n/ D qj where pj is the first element such that qjC1 v qj ,
and then define P [.Cloop; p; n/ D Q

\.Cloop; p; n/ �N
].Cloop; n/.

Alternatively, P [and Q\ can be computed simultaneously by also defining a se-
quence fpigi�0 of safe under-approximants of P [.Cloop; p; n/, where p0 D q0 and
piC1 D .pi O �.qi // � N

].Cloop; n/. Then P [.Cloop; p; n/ D pj where pj is the first
element such that qjC1 v qj or pjC1 6A pj . In this case, we may obtain a sound P [be-
fore the auxiliary Q\ has stabilized. While we have not yet done rigorous experimental
validation, we prefer this approach when dealing with coarse subtraction.

When analyzing a top-level program Cprg, the analysis starts with N].Cprg;?/ and
precomputes N] (an over-approximation of unsafe states) for all statements of the pro-
gram. Then it proceeds to compute P [.Cprg;>;?/ (an under-approximation of safe
input states) reusing the precomputed results for N].

Note that we are using join and widening on the positive side which means that Q\

may not under-approximate the positive side of the concrete characterization. The use
of widening allows for the ascending chain to converge, and subtraction of the negative
side ensures soundness of P [. In other words, while the alternate concrete characteriza-
tions (4) and (5) are used to guide the definition of the approximate characterizations,
soundness is argued directly rather than by using (4) and (5) as an intermediate step.

Theorem 2. For a statement C and p; n 2 D s.t.
.p/ \
.n/ D ∅, N].C; n/ �

N.C;
.n// and P [.C; p; n/ � P.C;U X
.n//. Hence, for a top-level program Cprg,

.N].Cprg;?// � N.Cprg;∅/ (i.e., it over-approximates input states that may lead to
failure), and
.P [.Cprg;>;?// � P.Cprg;U/ (i.e., it under-approximates safe input
states).

The argument for N] proceeds in a standard way [11]. Soundness for P [then follows
due to the use of subtraction.

4.1 Optimizations of Constraints

Use of over-approximate operations Since we are subtracting N].C; n/ anyway, we
can relax the right-hand side of the definition of Q\.C; p; n/ without losing sound-
ness. Specifically, we can replace under-approximating and must- operations by their
over-approximating and may- counterparts. This way, we obtain an analysis where sub-
traction is the only under-approximating operation.

– For a loop-free statement C , always use pre].C; p/ in place of wp[.C; p/ (note
that we already use pre] on the positive side for loop bodies when starting from a
universal recurrent set). This can be handy, e.g., for power set domains where pre]

(unlike wp[) can be applied element-wise. Also, these transformers may coincide
for deterministic loop-free statements (if the abstraction is precise enough). Later,
when discussing Example 2, we note some implications of this substitution.

– For a state formula ', use Œ'; � �] in place of Œ'; � �[. Actually, for some combina-
tions of an abstract domain and a language of formulas, these transformers coin-
cide. For example, in a polyhedral domain, conjunctions of linear constraints with
non-strict inequalities have precise representations as domain elements.

– For branching statements, use Œ'; P [.C1; p; n/�
] t Œ ; P [.C2; p; n/�

] in place of
the original expression.

– In the definition of Q\, an over-approximate meet operation u] suffices.
The result of these relaxations is:

Q\.a; p; n/ D pre].a; p/

Q\.C1 I C2; p; n/ D P
[
�
C1; P

[.C2; p; n/;N
].C2; n/

�
Q\

�
.Œ'�IC1/C .Œ �IC2/; p; n

�
D Œ'; P [.C1; p; n/�

]
t Œ ; P [.C2; p; n/�

]

q0 D
�
R

\
9
�N].Cloop; n/

�
t Œ: ;p�]

�.qi / D
�
Œ ; p�] u] pre].Cbody; qi /

�
t Œ:'; pre].Cbody; qi /�

]

or

q0 D R
\
8
t

�
Œ'; p�] �N].Cloop; n/

�
�.qi / D

�
Œ:'; pre].Cbody; qi /�

]
�N].Cloop; n/

�
No subtraction for Q\ For a similar reason, subtraction can be removed from the
characterization of Q\ without affecting soundness of P [.
Bound on the positive side Another observation is that for a loop Cloop as in (2), the
positive side P.Cloop; S/ is bounded by J:'K [S , as can be seen from the character-
ization (3). This can be incorporated into a specialized definition for loops, defining
P [.Cloop; p; n/ D

�
Q\.Cloop; p; n/u .Œ:'�

] tp/
�
�N].Cloop; n/ or by performing the

meet during computation of Q\ by defining qiC1 D
�
qi O �.qi /

�
u .Œ:'�] t p/.

4.2 Approximating the Recurrent Set

When approximating the positive side for a loop, the computation is initialized with an
approximation of the recurrent set induced by the loop. Our analysis is able to start with
either an existential or a universal recurrent set depending on what search procedure
is available for the domain. The instantiation of our approach for numerical domains
uses the tool E-HSF [5] that is capable of approximating both existential and universal
recurrence. Other tools for numeric domains are described in [13,24]. The instantiation
of our approach for the shape analysis with 3-valued logic uses a prototype procedure
that we have developed to approximate existential recurrent sets.

Normally, the search procedures are incomplete: the returned sets only imply recur-
rence, and the search itself might not terminate (we assume the use of timeouts in this
case). For this reason, in Sect. 3, we prefer not to define the recurrent sets to be max-
imal. This incompleteness leaves room for our analysis to improve the approximation
of recurrence. For example, sometimes the solver produces a universal recurrence that
is closed under forward propagation, but is not closed under backward propagation. In
such cases, our analysis can produce a larger recurrent set.

5 Examples

In this section, we demonstrate our approach on several examples: first for a numeric
domain, and then for the shape analysis domain of 3-valued structures. We note that
numeric programs are considered here solely for the purpose of clarity of explanation,
since the domain is likely to be familiar to most readers. We do not claim novel results
specifically for the analysis of numeric programs, although we note that our approach
may be able to complement existing tools. Detailed explanations of Examples are in-
cluded in the companion technical report [3].

Example 1 aims at describing steps of the analysis in detail (to the extent allowed
by space constraints). Example 2 is restricted to highlights of the analysis and includes
a pragmatic discussion on using pre] on the positive side. Examples 3 and 4 consider
programs from a shape analysis domain and we only report on the result of the analysis.

1 while x � 1 do
2 if x D 60 then
3 x 50

4 end
5 x x C 1

6 if x D 100 then
7 x 0

8 end
9 end

10 assert 0

(a) With syntactic sugar.

1

�
Œx � 1�I

2..Œx D 60�I 3x 50/C .Œx ¤ 60�I skip//I

5x x C 1I

6..Œx D 100�I 7x 0/C .Œx ¤ 100�I skip//I��
I Œx � 0�I

10 assert 0

(b) Desugared.

Fig. 2: Example program 1.

Example 1. In this example, we consider the program in Fig. 2: Fig. 2a shows pro-
gram text using syntactic sugar for familiar while-language, and Fig. 2b shows the
corresponding desugared program. We label the statements that are important for the
analysis with the corresponding line numbers from Fig. 2a (like in 3x 50).

We assume that program variables (just x in this case) take integer values. For the
abstract domain, we use disjunctive refinement over intervals allowing a bounded num-
ber of disjuncts (e.g., [2]). Recall that hx W ŒaI b�; y W ŒcI d�i denotes a singleton abstract
state of a program with two variables x and y, representing the set of concrete states,
satisfying .a � x � b/ ^ .c � y � d/. Note that for this abstract domain and the
formulas, appearing in the program, Œ � �[and Œ � �] coincide, and we write Œ � �\ to denote
either. To emphasize that the analysis can produce useful results even when using a
coarse subtraction function, we use subtraction as defined in (1). That is, we just drop
from the positive side those disjuncts that have a non-empty intersection with the neg-
ative side. For example, fhx W Œ1I 3�i; hx W Œ5I 7�ig � hx W Œ6I 8�i D hx W Œ1I 3�i. The
analysis is performed mechanically by a prototype tool that we have implemented.

To simplify the presentation, in this example, we bound the number of disjuncts
in a domain element by 2. Also to simplify the presentation, we omit the]- and [-
superscripts, and write, e.g., pre+fail for pre+fail]. For a statement labeled with i , we
write N j

i to denote the result of the j -th step of the computation of its negative side,
and Ni to denote the computed value (similarly, for P).

We start with the analysis of the negative side. For the final statement,

N 1
10 D pre+fail.assert 0;?/ D >

then, we proceed to the first approximation for the loop (for clarity, we compute pre of
the body in steps),

N 1
1 D Œx � 0;N

1
10�

\
D hx W .�1I 0�i

N 1
7 D pre+fail.x 0;N 1

1 / D >

N 1
6 D Œx D 100;N

1
7 �

\
t Œx ¤ 100;N 1

1 �
\
D fhx W .�1I 0�i; hx W Œ100�ig

N 1
5 D pre+fail.x x C 1;N 1

6 / D fhx W .�1I�1�i; hx W Œ99�ig

N 1
3 D pre+fail.x 50;N 1

5 / D ?

N 1
2 D Œx D 60;N

1
3 �

\
t Œx ¤ 60;N 1

5 �
\
D fhx W .�1I�1�i; hx W Œ99�ig

N 2
1 D N

1
1 t Œx � 1;N

1
2 �

\
D fhx W .�1I 0�i; hx W Œ99�ig

then, repeating the same similar sequence of steps for the second time gives

N 2
1 D N

2
1 t Œx � 1;N

2
2 �

\
D fhx W .�1I 0�i; hx W Œ98; 99�ig

at which point we detect an unstable bound. The choice of widening strategy is not
our focus here, and for demonstration purposes, we proceed without widening, which
allows to discover the stable bound of 61. In a real-world tool, to retain precision, some
form of widening up to [14] or landmarks [23] could be used. Thus, we take

N1 D fhx W .�1I 0�i; hx W Œ61I 99�ig

N2 D fhx W .�1I�1�i; hx W Œ61I 99�ig N6 D fhx W .�1I 0�i; hx W Œ61I 100�ig

N3 D ? N7 D >

N5 D fhx W .�1I�1�i; hx W Œ61I 99�ig N10 D >

To initialize the positive side for the loop, we use a universal recurrent set obtained by
three calls to E-HSF with different recurrent set templates. The result is R8 D fhx W
Œ4I 60�i; hx W Œ100IC1/ig. Note that in this example, universal recurrence and safety
coincide, and our analysis will be able to improve the result by showing that the states
in hx W Œ1I 3�i are also safe. Since we are using a power set domain, we choose to use
pre instead of wp for the final statement (as described in Sect. 4.1), not just for the loop
(where we need to use it due to starting with R8). We start with

P 1
10 D pre.assert 0;>/ �N10 D ?�N10 D ?

then proceed to the loop (again, computing pre of its body in steps),

P 1
1 D R8 t Œx � 0; P

1
10�

\
�N1 D fhx W Œ4I 60�i; hx W Œ100IC1/ig

P 1
7 D pre.x 0; P 1

1 / �N7 D ?

P 1
6 D Œx D 100; P

1
7 �

\
t Œx ¤ 100; P 1

1 �
\
�N6

D fhx W Œ4 W 60�i; hx W Œ101IC1/ig �N6

D fhx W Œ4 W 60�i; hx W Œ101IC1/ig

P 1
5 D pre.x x C 1; P 1

6 / �N5 D fhx W Œ3 W 59�i; hx W Œ100IC1/ig

P 1
3 D pre.x 50; P 1

5 / �N3 D >

P 1
2 D Œx D 60; P

1
3 �

\
t Œx ¤ 60; P 1

5 �
\
�N2

D fhx W Œ3I 59�i; hx W Œ60�i; hx W Œ100IC1/ig �N2

D fhx W Œ3I 60�i; hx W Œ100IC1/ig

P 2
1 D .P

1
1 t .Œx � 1; P

1
2 �

\
�N2// �N2 D fhx W Œ3I 60�i; hx W Œ100IC1/ig

at which point we detect an unstable bound, but we again proceed without widening
and are able to discover the stable bound of 1. Also note that (as observed in Sect. 4.1),

P1 is bounded by P10 t Œ:x � 0�\ D hx W Œ1IC1/i. This bound could be used to
improve the result of widening. Thus, we take

P1 D fhx W Œ1I 60�i; hx W Œ100IC1/�ig

P2 D fhx W Œ0I 60�i; hx W Œ100IC1/�ig P6 D fhx W Œ1I 60�i; hx W Œ101IC1/�ig

P3 D > P7 D ?

P5 D fhx W Œ0I 59�i; hx W Œ100IC1/�ig P10 D ?

Thus, in this example, our analysis was able to prove that initial states fhx W Œ1I 60�i; hx W
Œ100IC1/�ig are safe, which is a slight improvement over the output of E-HSF.

Example 2. In this example, we consider the program in Fig. 3. In the program, �
stands for a value non-deterministically chosen at runtime. All the assumptions made
for Example 1 are in effect for this one as well, except that we increase the bound
on the size of the domain element to 4. The analysis is able to produce the following
approximation of the safe entry states:

fhx W Œ100IC1/; y W >i; hx W .�1I 0�; y W .�1I�1�i;

hx W .�1I 0�; y W Œ1IC1/i; hx W Œ1I 99�; y W Œ1IC1/ig

This example also displays an interplay between coarse subtraction and the use of over-
approximate operations (especially, pre) on the positive side. In order to retain precision
when coarse subtraction is used, it seems important to be able to keep the positive side
partitioned into a number of disjuncts. In a real-world analysis, this can be achieved,
e.g., by some form of trace partitioning [16]. In this example, we employ a few sim-
ple tricks, one of those can be seen from Fig. 3. Observe that we translated the non-
deterministic condition in lines 3-7 of the syntactically sugared program (Fig. 3a) into
equivalent nested conditions (statement 3 of the desugared program in Fig. 3b) which
allows the necessary disjuncts to emerge on the positive side.

Shape Analysis Examples In what follows, we demonstrate our approach for a shape
analysis domain. We treat two simple examples using the domain of 3-valued structures,
and we claim that our approach provides a viable decomposition of backward analysis
(for this domain and probably for some other shape analysis domains). For background
information on shape analysis with 3-valued logic, please refer to [22] and accompa-
nying papers, e.g., [19,1,25]. To handle the examples, we use a mechanized procedure
built on top of the TVLA shape analysis tool (http://www.cs.tau.ac.il/~tvla/).

Example 3. In this example, we consider the program in Fig. 4. The program manipu-
lates a pointer variable x, and the heap cells each have a pointer field n. We compare x
to nil to check whether it points to a heap cell. We write x ! n to denote access to the
pointer field n of the heap cell pointed to by x. The program in Fig. 4 just traverses its
input structure in a loop.

The analysis identifies that both cyclic and acyclic lists are safe inputs for the pro-
gram – and summarizes them in eight and nine shapes respectively. Figures 6 and 7
show examples of the resulting shapes.

http://www.cs.tau.ac.il/~tvla/

1 while x � 1 do
2 if x � 99 then
3 if y � 0 ^ � then
4
5 assert 0

6
7 end
8 if � then
9 x �1

10 end
11 end
12 x x C 1

13 end
14 assert y ¤ 0

(a) With syntactic sugar.

1.Œx � 1�I

2..Œx � 99�I

3..Œy � 0�I 4.5 assert 0C skip//

C .Œy � 1�I skip//I

8.9x �1C skip/

/C .Œx � 100�I skip//I

12x x C 1

/�I Œx � 0�I

14 asserty ¤ 0

(b) Desugared.

Fig. 3: Example program 2.

1 while x ¤ nil do
2 x .x ! n/

3 end

Fig. 4: Example program 3.

1 while x ¤ nil do
2 x .x ! n/

3 x .x ! n/

4 end

Fig. 5: Example program 4.

Example 4. In this example, we consider the program in Fig. 5. In this program, the
loop body makes two steps through the list instead of just one. While the first step (at
line 2) is still guarded by the loop condition, the second step (at line 3) is a source
of failure. That is, the program fails when given a list of odd length as an input. The
abstraction that we employ is not expressive enough to encode such constraints on the
length of the list. The analysis is able to show that cyclic lists represent safe inputs, but
the only acyclic list that the analysis identifies as safe is the list of length exactly two.

6 Related Work

In [15], a backward shape analysis with 3-valued logic is presented that relies on the
correspondence between 3-valued structures and first-order formulas [25]. It finds an
over-approximation of states that may lead to failure, and then (as 3-valued structures
do not readily support complementation) the structures are translated to an equivalent
quantified first-order formula, which is then negated. This corresponds to approximat-
ing the negative side in our approach and then taking the complement, with the excep-
tion that the result is not represented as an element of the abstract domain. At least in
principle, the symbolic abstraction Ǫ of [20] could map back to the abstract domain.

For shape analysis with separation logic [21], preconditions can be inferred using
a form of abduction called bi-abduction [6]. The analysis uses an over-approximate

x
rx ;

hn

rx ;

hn

n

n

Fig. 6: Example of a safe structure
causing non-termination.

x
rx ;

hn

rx ;

hn

n

n

rx
n

Fig. 7: Example of a safe structure leading
to successful termination.

abstraction, and it includes a filtering step that checks generated preconditions (by
computing their respective postconditions) and discards the unsound ones. The pur-
pose of the filtering step – keeping soundness of a precondition produced with over-
approximate abstraction – is similar to our use of the negative side.

For numeric programs, the problem of finding preconditions for safety has seen
some attention lately. In [18], a numeric analysis is presented that is based primarily
on over-approximation. It simultaneously computes the representations of two sets: of
states that may lead to successful termination, and of states that may lead to failure.
Then, meet and generic negation are used to produce representations of states that can-
not fail, states that must fail, etc. An under-approximating backward analysis for the
polyhedral domain is presented in [17]. The analysis defines the appropriate under-
approximate abstract transformers and to ensure termination, proposes a lower widen-
ing based on the generator representation of polyhedra. With E-HSF [5], the search for
preconditions can be formulated as solving 89 quantified Horn clauses extended with
well-foundedness conditions. The analysis is targeted specifically at linear programs,
and is backed by a form of counterexample-guided abstraction refinement.

7 Conclusion and Future Work

We presented an alternative decomposition of backward analysis, suitable for domains
that do not readily support complementation and under-approximation of greatest fixed
points. Our approach relies on an under-approximating subtraction operation and a pro-
cedure that finds recurrent sets for loops – and builds a sequence of successive under-
approximations of the safe states. This decomposition allowed us to implement a back-
wards analysis for the domain of 3-valued structures and to obtain acceptable analysis
results for two simple programs.

For shape analysis examples, we employed quite a simplistic procedure to approx-
imate a recurrent set. One direction for future research is into recurrence search proce-
dures for shape analysis that are applicable to realistic programs.

Another possible direction is to explore the settings where non-termination counts
as failure. This is the case, e.g., when checking abstract counterexamples for concrete
feasibility [4].

Acknowledgements We thank Andrey Rybalchenko for helpful discussion and assis-
tance with E-HSF, and Mooly Sagiv and Roman Manevich for sharing the source code
of TVLA. A. Bakhirkin is supported by a Microsoft Research PhD Scholarship.

References

1. Arnold, G., Manevich, R., Sagiv, M., Shaham, R.: Combining shape analyses by intersecting
abstractions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI. LNCS, vol. 3855, pp. 33–48.
Springer (2006)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains. STTT
9(3-4), 413–414 (2007)

3. Bakhirkin, A., Berdine, J., Piterman, N.: Backward analysis via over-approximate abstrac-
tion and under-approximate subtraction. Tech. Rep. MSR-TR-2014-82, Microsoft Research
(2014)

4. Berdine, J., Bjørner, N., Ishtiaq, S., Kriener, J.E., Wintersteiger, C.M.: Resourceful reacha-
bility as HORN-LA. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) LPAR. LNCS,
vol. 8312, pp. 137–146. Springer (2013)

5. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn clauses.
In: Sharygina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp. 869–882. Springer (2013)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: Shao, Z., Pierce, B.C. (eds.) POPL. pp. 289–300. ACM (2009)

7. Calcagno, C., Ishtiaq, S.S., O’Hearn, P.W.: Semantic analysis of pointer aliasing, allocation
and disposal in Hoare logic. In: PPDP. pp. 190–201 (2000)

8. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a spatial
assertion language for data structures. In: APLAS. pp. 289–300 (2001)

9. Clarke, E.M.: Program invariants as fixed points (preliminary reports). In: FOCS. pp. 18–29.
IEEE Computer Society (1977)

10. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S.S., Jones, N.D. (eds.)
Program Flow Analysis: Theory and Applications, pp. 303–342. Prentice-Hall (1981)

11. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. J. Log.
Program. 13(2&3), 103–179 (1992)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) POPL. pp. 84–96. ACM Press
(1978)

13. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving non-
termination. In: Necula, G.C., Wadler, P. (eds.) POPL. pp. 147–158. ACM (2008)

14. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear
relation analysis. Form. Method. Syst. Des. 11(2), 157–185 (1997)

15. Lev-Ami, T., Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantified
preconditions. Tech. Rep. TR-2007-12-01, Tel Aviv University (Dec 2007)

16. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers.
In: Sagiv, S. (ed.) ESOP. LNCS, vol. 3444, pp. 5–20. Springer (2005)

17. Miné, A.: Inferring sufficient conditions with backward polyhedral under-approximations.
Electr. Notes Theor. Comput. Sci. 287, 89–100 (2012)

18. Popeea, C., Chin, W.N.: Dual analysis for proving safety and finding bugs. Sci. Comput.
Program. 78(4), 390–411 (2013)

19. Reps, T.W., Sagiv, S., Loginov, A.: Finite differencing of logical formulas for static analysis.
In: Degano, P. (ed.) ESOP. LNCS, vol. 2618, pp. 380–398. Springer (2003)

20. Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic implementation of the best transformer. In: Stef-
fen, B., Levi, G. (eds.) VMCAI. LNCS, vol. 2937, pp. 252–266. Springer (2004)

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS. pp.
55–74. IEEE Computer Society (2002)

22. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24(3), 217–298 (2002)

23. Simon, A., King, A.: Widening polyhedra with landmarks. In: Kobayashi, N. (ed.) APLAS.
LNCS, vol. 4279, pp. 166–182. Springer (2006)

24. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In: Beckert,
B., Hähnle, R. (eds.) TAP. LNCS, vol. 4966, pp. 154–170. Springer (2008)

25. Yorsh, G., Reps, T.W., Sagiv, M., Wilhelm, R.: Logical characterizations of heap abstrac-
tions. ACM Trans. Comput. Log. 8(1) (2007)

	 Backward Analysis via Over-Approximate Abstraction and Under-Approximate Subtraction

