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“The important thing is not to stop questioning. Curiosity has its own reason

for existing. One cannot help but be in awe when he contemplates the myster-

ies of eternity, of life, of the marvelous structure of reality. It is enough if one

tries merely to comprehend a little of this mystery every day. Never lose a holy

curiosity."

Albert Einstein

“A computer would deserve to be called intelligent if it could deceive a human into

believing that it was human."

Alan Turing



Abstract

The k nearest neighbor rule or the kNN rule is a nonparametric algorithm that

search for the k nearest neighbors of a query set in another set of points. In this

thesis, application of the kNN rule in predictability analysis of stock and share

returns is proposed. The first experiment tests the possibility of prediction for

‘success’ (or ‘winner’) components of four stock and shares market indices in a se-

lected time period [1]. We have developed a method of labeling the component with

either ‘winner’ or ‘loser’. We analyze the existence of information on the winner–

loser separation in the initial fragments of the daily closing prices log–returns time

series. The Leave–One–Out Cross–Validation with the kNN algorithm is applied

on the daily log–returns of components. Two distance measurements are used in

our experiment, a correlation distance, and its proximity. By analyzing the error,

for the HANGSENG and the DAX index, there are clear signs of possibility to

evaluate the probability of long–term success. The correlation distance matrix

histograms and 2–D/3–D elastic maps generated from the ViDaExpert show that

the ‘winner’ components are closer to each other and ‘winner’/‘loser’ components

are separable on elastic maps for the HANGSENG and the DAX index while for

the negative possibility indices, there is no sign of separation.

In the second experiment, for a selected time interval, daily log–return time series

is split into “history”, “present” and “future” parts. The kNN rule is used to search

for nearest neighbors of “present” from a set. This set is created by using the

sliding window strategy. The nearest neighbors are considered as the predicted

“future” part. We then use ideas from dynamical systems and to regenerate “future”

part closing prices from nearest neighbors log–returns. Different sub–experiments

are created in terms of the difference in generation of “history” part, different

market indices, and different distance measurements. This approach of modeling or

forecasting works for both the ergodic dynamic systems and the random processes.

The Lorenz attractor with noise is used to generate data and the data are used in

the kNN experiment with the Euclidean distance. The sliding window strategy is

applied in both test and training set. The kNN rule is used to find the k nearest

neighbors and the next ‘window’ is used as the prediction. The error analysis



of the relative mean squared error RMSE shows that k = 1 can give the best

prediction and when k → 100, the average RMSE values converge. The average

standard deviation values converge when k → 100. The solution Z(t) is predicted

quite accurate using the kNN experiment.
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Chapter 1

Introduction

Concepts of data mining have been developed for decades and it has become a
popular subject in today’s world. This subject is a combination of computer sci-
ence and statistics, and it is widely applied in different areas such as decision
making, prediction and forecasting, pattern recognition, artificial intelligence and
so on. Data mining techniques have been developed and applied in the prediction
of stock and share returns and predictability studies. The future stock returns
can be well forecast by applying neural network models and cross–validation is
applied to improve the generalization ability of selected models [2]. A study of
finding non–linear regularities of asset price movements by using the neural net-
work and learning methods would be another application on applying data mining
techniques on IBM daily stock returns [3]. A self–organizing fuzzy neural network
is computed by using historical data of Dow Jones Industry Average and selected
twitter mood dimensions can improve the prediction accuracy of DJIA closing
prices [4]. In prediction process of five selected components of Jordanian market,
by setting k = 5 and prepared training dataset, the k Nearest Neighbor algorithm
is applied and the predicted results are close to the real prices [5]. Combinations
of several data mining algorithms such as k Nearest Neighbor, neural network,
and decision tree are tried to predict the DJVA closing prices. After applying the
Hurst exponent, the prediction accuracy for chosen period is higher [6]. k Nearest
Neighbor algorithm is simple and it has no models to fit. The generalizations of
this algorithm are reviewed in the next section. In this thesis, it is used in pre-
dictability analysis for stock and share closing prices time series and modeling the
stock and share closing prices time series.

1



Introduction 2

1.1 The reviews of (k) Nearest Neighbor rules

The nearest neighbor technique is widely applied in many fields such as pattern
recognition, text categorization, object recognition. This technique is generalized
and surveyed in [7]. Many NN techniques are reviewed and they are classified into
two major types, the structure–less techniques and structure–based techniques.
Different methods are described in terms of memory limitation and computational
complexity. In general, the structure–less techniques required no model to fit.

1.1.1 The structure–less Nearest Neighbor rules

k Nearest Neighbor (or kNN) is one of the simplest algorithms of this type. This
algorithm is able to classify a test point based on voting of the nearest k neighbors
(i.e. when nearest neighbors are searched, the label of test point depends on the
majority votes of k nearest neighbor labels). The term ‘nearest’ can be measured
in terms of distance function of various forms (i.e. Euclidean distance). This
algorithm has a fast training time and is easy to implement. However, a large
memory is required. Also, the choice of k becomes a problem since it depends on
the structure of the data. Another drawback is that this algorithm can be easily
affected by irrelevant attributes. The classification results kNN rule are affected
by the structure of dataset and the choice of the parameter k [8].

The first k Nearest Neighbor discriminatory rule was introduced in [9]. Let
X1, X2, . . . , Xm be observations from an unknown distribution F and Y1, Y2, . . . , Yn

be observations from unknown distribution G. Suppose we have an observation
Z from an unknown distribution which is neither F nor G. All observations
are defined in p–dimensional space. By defining the concept of ’closeness’ in p–
dimensional space between Z and all observations from distributions F and G, the
discriminatory rule is then defined as assigning Z to distribution F if the majority
of its k nearest observations are from distribution F and assigning Z to distribu-
tion G otherwise, for a chosen odd number k. Also, if F and G are known, then
as m→∞ and n→∞, we have:

P1 = Pr(Z is assigned to F |Z comes from F ),

P2 = Pr(Z is assigned to G|Z comes from G), (1.1)
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such that P1 and P2 will achieve theoretical minimum values. It is noted that no
restrictive assumptions on F , G or measure of distance.

After Fix and Hodge discussed the kNN discriminantory rule, error analysis and
study of admissibility for the rule is discussed. For a classification problem in data
mining, the nearest neighbor rule simply classifies the sample point with unknown
label with the label of nearest set of points. It is shown that for the nearest
neighbor rule (1NN rule) in the n–sample problem, the probability error is:

Pe(1;n) = (
1

2
)n,

and if we set k = 2k0 + 1, the probability error for the kNN rule in this problem
is:

Pe(k;n) =

(
1

2

)n k0∑
j=0

(
n

j

)
.

Since Pe(1;n) < Pe(k;n) with k 6= 1, the 1NN rule is admissible among kNN rule
for n–sample problems [10].

Consider (x, θ) and (x1, θ1), (x2, θ2), . . . , (xn, θn) be n+1 idenpendently identically
distributed random variables with values in X×Θ where X in metric space ρ and
Θ in an abstract parameter space. Nearest neighbor rule estimate θ of x to be θ′n
with known (x1, θ1), (x2, θ2), . . ., (xn, θn). The loss function L is defined on Θ×Θ

assigns loss L(θ, θ̂) such that θ̂ estimates the true parameter θ. The conditional
Bayes risk r∗(x) and unconditional Bayes risk R∗ are defined as:

r∗(x) = E
θ
{L(θ, θ∗(x)|x} ≤ E

θ
{L(θ, θ̂)|x},

R∗ = E
θ
r∗(x),

(1.2)

where:
E
θ
{L(θ, θ∗(x))|x} =

∫
Θ
L(θ, θ∗(x))f(θ|x)dθ, (1.3)

and
E
θ
r∗(x) =

∫
X
r∗(x)f(x)dx =

∫
Θ

∫
X
L(θ, θ∗(x))f(θ, x)dxdx, (1.4)

such that the probability densities f(x, θ), f(θ|x), f(x) exist.

Let us define x′n ∈ {x1, x2, . . . , xn} the nearest neighbor to x and θ′n is the associ-
ated parameter. The conditional n –sample NN risks are defined as:

rn(x, x′n) = E
θ,θ′n
{L(θ, θ′n)|x, x′n},
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and
rn(x) = E

x′n
rn(x, x′n).

The asympotic conditional NN risk is defined as:

r(x) = lim
n→∞

rn(x).

The unconditional n–sample NN risk Rn is defined as:

Rn = E
θ
rn(x) = E

θ,θ′n
L(θ, θ′n),

and when n is large, the NN risk R is defined as:

R = lim
n→∞

Rn = lim
n→∞

E
θ,θ′n

L(θ, θ′n).

An important proof from Cover and Hart’s paper is that by applying Bayes pro-
cedure, the probability error R of the NN rule in the classification problem with
M categories is bounded as:

R∗ ≤ R ≤ R∗(2− MR∗

M − 1
),

such that these boundaries are the tightest possible where R∗ is Bayes error [10].

The rate of convergence of NN risk Rn is investigated. It is concluded that the
n–sample NN risk Rn converges to R on the order of 1/n2 [11]. The NN classifier
result in (n + 1)–sample case is different from the result in n samples only if the
(n + 1) sample is the closest and the probability when this happens is 1/(n + 1).
And we have:

Theorem 1.1. |Rn −Rn+1| ≤ 1/(n+ 1), and in general Rn −Rn+k ≤ k/(n+ 1).

The theorem below shows that the rate of convergence for Rn:

Theorem 1.2. Let f1(x) and f2(x) have unifromly bounded thrid derivatives and
be bounded away from zero on their (probability one) support sets. Then Rn =

R∞ + O(1/n2).
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For large sample size, Under mild continuity conditions, the conditional risk of
NN rule satisfies:

r(x) ≤ 2r∗(x), formetricloss,

r(x) = 2r∗(x), forsquared−−errorloss.
(1.5)

The unconditional NN risk R under certain additional moment conditions satisfies:

R ≤ 2R∗, formetricloss,

R = 2R∗, forsquared−−errorloss,

R = (1 + 1/k)R∗, forsquared−−errorlosswithakNNestimate.

(1.6)

These results show that when n is large, the NN risk no greater than twice the
Bayes risk for both the squred–error loss function and the metric function [12].

After the kNN algorithm formulated, development of this algorithm could classify
the unclassified samples with faster computational speed [13]. A preprocessing
method that could reduce the computational time for classifying an unknown
sample is developed. This method is aimed to partition the featuring space in order
to speed up the kNN algorithm. Then the point is classified use information from
the centroid of these feature space and the idea is to compute fewer distances than
the original kNN algorithm. The new algorithm saved some storage but enlarge
the computational complexity since the computation of partitioned feature spaces
can be complicated.

One of the drawbacks of the nearest neighbors rule is caused by the storage of
distances. To find the nearest neighbor for a test point, all distances between the
test point and every point in the training set are computed. The Nearest Neighbor
rule (NN rule) for a given point search for its nearest neighbor from this set of
points. The Condensed Nearest Neighbor rule (or CNN rule) select the subset
of this set of points and then apply NN rule for a given test point [14]. It is
assumed that the data is in some orders before applying this algorithm. Let us
define STORE and GRABBAG to be two bins. The algorithm for the CNN rule
is listed in Algorithm 1. The input is the training set and output is the subset of
this set contains prototype points selected using CNN rule.

CNN rule select data points as ’prototype points’ based on Bayes risk. A small
Bayes risk leads to a small overlap of underlying densities of the different classes.
In this case, CNN rule picks out the points near the boundary between classes.
For a large Bayes risk, all data points will be put in STORE hence there will be no
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Algorithm 1 Condensed Nearest Neighbor (CNN) rule
1. Place the first data point of an input set of data in STORE.
2. Use NN rule to classify the second data point is classified with training set
is set to be current STORE. Put the second data point in GRABBAG if it is
correctly classified. If not, put this data point in STORE.
3. Repeat the process such that: put the ith data point in GRABBAG if it is
correctly classified with the training set of current STORE. If not, put the ith
data point in STORE.
4. After applying this procedure once for every point in the input set of points,
it continues to run through GRABBAG. This procedure will be terminated if
one of the two conditions is satisfied:
(a) There is no data point in GRABBAG. i.e. all data points are now put

into STORE.
(b) After applying this procedure once for every point in GRABBAG and

there are no more points transferred into STORE.
5. The set of data points in STORE when the algorithm finishes are used as
the training set for NN rule and data points from GRABBAG are abandoned.

Algorithm 2 Fast Condensed Nearest Neighbor (FCNN) rule
S = ∅;
∆S = Centroids(T );
while ∆S 6= ∅ do

S = S ∪∆S;
∆S = ∅;
for each (p ∈ S) do

∆S = ∆S ∪ rep(p, V or(p, S, T ))
end for

end while
return S

important reduction. This rule is introduced to solve the storage problem of NN
rule by reducing the size of the training set. Fast Condensed Nearest Neighbor
rule (FCNN rule) is studied based on the idea of CNN. This rule aims to compute
a consistent subset of the training set with order independent and sub–quadratic
worst case time complexity but the convergence rate to the final subset of the
training set is faster [15]. Consider a training set T with labels and the distance
metric is defined as d. The label of p is defined as l(p). For a test point q, NN rule
assign label of q with the label of the nearest neighbor of q from the training set
T . Let S be a consistent subset of T such that we have for every p ∈ T , we have
l(p) = NN(p, S). Let Vor(p, S, T ) be the set {q ∈ T |∀p′ ∈ S, d(p, q) ≤ d(p′, q)} and
let Voren(p, S, T ) be the set q ∈ Vor(p, S, T )|l(q) 6= l(p). Let Centroids(T ) be the
set of centroids of each class label in T . The algorithm for fast condensed nearest
neighbor rule is defined in Algorithm 2.
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From the result of the experiment, FCNN rule can have a relatively competitive
accuracy in terms of the size of the model. The speed of convergence to the
resultant subset of original training set is generally faster than the original CNN
rule.

The classification problem such as assignment of a given input to one of several
classes is widely studied. The Condensed Nearest Neighbor rule (CNN) before
using the formal algorithm of solving classification problem. Let dji be the result
computed from the learning method when the classifier is j for class i. The voting
is to assign the input to the class c with maximum vote:

ri =
m∑
j=1

djiβj,

x = arg
n

max
i=1

[ri].

The weights βj ≥ 0,
∑m

j=1 βj = 1. In simple voting, the weights are taken as the
same: βj = 1/m. For weighted voting, βj is computed as: if for classifier j, e is
the most probable class and f is the next most probable,

αj = pj(e|x)− pj(f |x),

and βj = αj/
∑m

l=1 αl. These two types of voting techniques are reviewed and
compared. It is concluded that when there is a relatively small training set, voting
could improve the results for specific problems; when there is a relatively large
training set, the voting results converge [16].

An updated version of CNN rule is introduced with concept of mutual nearest
neighborhood and a new measurement of similarity named the mutual neighbor-
hood value or (MNV for short) [17]. Consider a set of data points X1, X2, . . . , XN

in L–dimensional metric space with metric d. Let Xj be the mth nearest neighbor
of Xi and let Xi be the nth nearest neighbor of Xj. The mutual neighborhood
value is defined as:

MNV(Xi, Xj) =

0 if i = j

m+ n otherwise,
(1.7)

where m ∈ {0, 1, 2, . . . , N − 1} and n ∈ {0, 1, 2, . . . , N − 1}. The modified
algorithm for CNN rule using concept of MNV is listed in Algorithm 3. There are
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Algorithm 3 Two–stages algorithm of CNN rule using the concept of MNV
Stage 1
1. For each data point X of the training set T , apply NN rule to find the nearest
neighbor Y among data points from opposite class. Then for Y , find the nearest
neighbor rank for X from the opposite class, i.e. rank J of X. The MNV of
X with respect to Y is MNV(X, Y ) = 1 + J . This MNV is associated with X
alone and not with Y . The Euclidean distance d between X and Y is computed
and associate this value with X. Hence, data points that are near the decision
boundary will have low values of MNV and d.
2. After computing MNV for all data points, sort all data points by MNV in
ascending order. If some of the MNV’s are equal, these data points can be
sorted by d in ascending order. Put the ordered data points in ORDER.
3. Put the first data point of ORDER in STORE.
4. The next data point in ORDER is classified by NN rule uses points in
STORE as the training set. Compare the original label with the classified label,
if they are not the same, this data point is misclassified .If this data point is
misclassified, put it in STORE.
5. Step 4 is repeated until every data point in ORDER is classified.
6. After running this process through every point in ORDER once, apply last
step 4 and step 5 to the points left in ORDER. This procedure is terminated
when there are no more transfers of data points from ORDER to STORE.
Stage 2
Further reduction is then required to make a modified condensed set.
7. Put a data point X from STORE (result from step 6 in SIFT.
8. Apply NN rule on every data point in ORDER and they are classified using
the current STORE as the training set. If it is misclassified, put Z back to
STORE; if it is successfully classified, keep it in SIFT.
9. Repeat step 7 and step 8 for all data points in STORE.

two stages for this algorithm and input is a set T of data points and the output is
the subset of T .

The STORE, in the end, is the output of this algorithm. By comparing the results
of modified CNN rule with original CNN rule, the modified rule is able to deal with
the case if a data point is not near the decision boundary. However, it requires
more steps to get the condensed set of data points.

An extension of the CNN rule is studied to have a further reduction on the data
set. Reduced Nearest Neighbor rule (or RNN rule) is introduced and the com-
parison is studied with original CNN rule [18]. Consider there are M classes
for a data set. Let each data point is defined in N–dimensional feature space
and for each class, there are K data points in the training set. Each data
point is associated with a class. Each pair of them is defined as: (xi, θi), where
1 ≤ i ≤ K and θi ∈ {1, 2, . . . ,M}. Let xi = (xi1, x

i
2, . . . , x

i
N) denote the set of
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Algorithm 4 Algorithm of Reduced Nearest Neighbor Rule (RNN rule)
1. Put all data points of TCNN in TRNN.
2. Remove the first data point in TRNN.
3. Classify all data points of TNN by using TRNN as training set:
(a) If all data points are correctly classified, then proceed to the step 4.
(b) If one of data points is misclassified, then put the removed data point

back to TRNN and go to step 4.
4. If all data points in TRNN are removed once or replaced once, the algorithm
terminates. If not, remove the next data point in TRNN go to step 3.

feature values for data point xi. The nearest neighbor training set is defined as
TNN = {(x1, θ1), (x2, θ2), . . . , (xK , θK)}. Let TCNN be the result set of data points
from original CNN rule. The algorithm of RNN rule with input of set TCNN and
output is a set TRNN is described in Algorithm 4.

The idea of RNN rule is to reduce the size of the training set by deleting the
points that are not affecting the classification results. From the experiment on
IRIS dataset, it shows that original CNN rule has good performance while RNN
rule is slightly better. However, the complexity of cost in computation of the
algorithm is higher.

The “curse of dimensionality” has been studied for Nearest Neighbor rule (NN
rule) and there is evidence show that in high dimensional space, the results of NN
rule has bias [19] [20]. Discriminant Adaptive Nearest Neighbor rule (or DANN
rule) is studied to try to reduce this bias by estimating a new metric for searching
nearest neighbors [21]. This estimation idea could be concluded as searching for
local boundaries with details given in centroid then use these local boundaries to
shrink the original neighborhood in directions which are orthogonal to the local
boundaries. The summary of the iterating procedure is described in Algorithm 5.

Hence, this adaptive method of DANN rule has increased the performance of
original NN rule for some problems.

kNN rule has been considered as one of important data mining algorithms by
its applications in many areas. kNN rule is used to detect intrusion of program
behaviour and it is proven to be effective when 1998 DARPA BSM audit data is
used in experiment that kNN rule can detect intrusive attacks [22]. kNN rule is
applied to in text categorization by using training documents [23] [24]. This rule
is also applied tin diagnosis of breast cancer [25], pattern classification [26], face
detection [27], image classification [28], regression problems [29], query dependent
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Algorithm 5 Iterating procedure for Discriminant Adaptive Nearest Neighbor
rule
1. The metric Σ is initialized as identity matrix Σ = I.
2. For a test point x0 the nearest neighborhood of KM points are launched in
metric Σ, where KM is the number of nearest neighbors in the neighborhood for
estimation of metric.
3. For points in the neighborhood, use them to compute the weight within sum–
of–square matrix W and the weighted between between sum–of–square matrix
B.
4. Update the metric Σ = W−1/2(W−1/2BW−1/2 + ε)W−1/2, where ε is a
parameter in the metric.
5. Repeat steps 2 3 4.
6. When iteration process stops, metric Σ is used for kNN classification at test
point x0.

ranking [30], multivariate time series analysis [31] [32], time series classification [33]
etc.

1.1.2 The structure–based Nearest Neighbor rules

The second type of the technique requires the structure of data before applying
the algorithms. Examples of this typed techniques are ball tree nearest neighbor
(or KNS1), k–d tree nearest neighbor (or kdNN), principal axis tree (or PAT),
orthogonal structure tree (or OST), nearest feature line (or NFL) etc. Ball tree
structure is used such that the nearest neighbor is searched efficiently from internal
nodes and their information is stored in the leaves of the tree. This method has
good performance for high dimensional entities and the implementation is easy [34].
However, the drawback is it is expensive to use insertion algorithm and the increase
of distance would make KNS1 degrade. The Feature Line (FL) can be used in the
computation of nearest neighbor. For each class, the distance between each point
in the test set and each pair of FL is computed. Then the set of distances are
sorted into ascending order and the Nearest FL distance is assigned as rank 1. This
algorithm has an improved accuracy in classification problem and it is efficient for
a smaller dataset. It also uses information that is ignored in the nearest neighbor.
The drawback of this rule is that this fails when the prototype in NFL is far away
from the test point. The computational complexity is higher. It is also difficult to
use a straight line to represent the data points. The local nearest neighbor rule
which evaluates feature line and the feature point in each class can improve the
performance of NFL rule. Instead of concentrating on data points, this algorithm
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focuses on the nearest neighbor prototype of the test points. Hence, it covers the
drawbacks of NFL rule. However, due to the modified method, the number of
computations is higher. In NFL rule, the training set is transformed into feature
line. Then distances between test points and feature lines are computed where
the nearest neighbor is selected with the smallest distance between feature line
and test point. This method could have improvement on accuracy of classification
results and it is efficient for a relatively small size of dataset [35]. A local nearest
neighbor classifier is studied to improve the performance of NFL rule. This method
focuses on computing the feature points and feature lines and uses the points
only as prototypes, search for the nearest neighbor of the test points [36]. PAT
rule transforms the training set into more efficient form for searching of nearest
neighbors [37]. PAT is constructed first by using principal component analysis and
then splits the whole dataset into a number of a subset with the same size. Then
kNN rule is used to search for nearest neighbor in this tree. The speed of searching
for nearest neighbors is fast but the process is becoming more complex. An update
of PAT rule is OST rule. OST rule uses the idea of orthogonal vector and the
search tree is constructed with a root node. Then all data points are assigned to
this node [38]. Comparing with PAT rule, it shorten the computation time for
tree construction and it is efficient for large dataset. In this paper, methods of
structure–less are mainly studied and applied.

1.2 Some backgrounds of research

In this section, we recall the basic mathematical notions and present the back-
ground of the method developed in the thesis. The predictability of log–return
time series is analyzed by using different experiments constructed from ideas of
kNN in this thesis. Time series is the main object of research. It has important
properties such as stationarity and ergodicity. A time series can be discrete or
continues. Discretization is considered as an important way to transfer a con-
tinues time series to discrete state. kNN algorithm has convergence properties
for density. The combination of this properties and the convergence in conditional
probability is applied to show that our experiment works for both ergodic dynamic
systems and ergodic random process. This would again imply further to the as-
sumptions of technical analysis and efficient market hypothesis. In this section,
some backgrounds are introduced.
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1.2.1 Time series, random processes, stationarity, and er-

godicity

A time series is a sequence of numbers over a time interval. It is widely seen in
present life, especially in financial and econometric disciplines. An example of
time series could contain prices of stock and shares, prices of financial securities,
daily temperature, earthquake indicator etc. Properties of time series is always an
interesting question for researchers. Time series can be defined in both continuous
or discrete frameworks. A discrete time series has a value at each specific time and
this value is unchanged at this time. A continues time series has a value for a very
short amount of time and in other words, for a value, there are infinite numbers
of time data between two time data. Discretization is a method applied to a
continuous function or data and transfers them into discrete parts. An application
of discretization of time series is the clustering discretization of time series, the
time series is used to discover rules and patterns [39]. In analysis of predictability
in this thesis, sliding window strategy is applied as discretization of input time
series.

From probabilistic point of view, we consider a time series a trajectory of a random
process in discrete time.

Definition 1.3. A random process in discrete time is a random variable Xt which
depends on time t ∈ Z. A random process is given if for every finite set of time
moments {t1, . . . , tn} ⊂ Z and for every Borel set U in Rn a probability of a
cylindrical set P ((Xt1 , Xt2 , . . . , Xtn) ∈ U) is defined.

Extension of the probability distribution on the sigma–algebra of sets produced
from the cylindric sets by countable unions, intersections and subtractions should
satisfy the probability axioms.

Remark 1.4. It is sufficient to define the probability on the simplest cylindrical
sets with sufficiently small cubic backgrounds

U = {(Xt1 , Xt2 , . . . , Xtn) | |Xti − xi| < ε},

for any set of numbers {x1, . . . , xn} and ε > 0

For the mathematical theory of random processes we refer to the classical
books [40] [41]. Examples of random process include simple random walk,
Brownian motion etc.
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Definition 1.5. Consider a sequence of independent and identically distributed
random variables (Xn;n ≥ 1). Set

Sn =
n∑
r=1

Xr + S0

Then (Sn, n ≥ 0) is a general random walk. Consider a sequence of independent
random variables (Xn;n ≥ 1) such that:

P (Xn = 1) = p, P (Xn = −1) = q, p+ q = 1, n ≥ 1.

Then Sn = S0 +
∑n

r=1Xr is called simple random walk on integers starting from
some integer S0. This random walk is symmetric if p = q = 1

2
[42].

Random processes can be considered as collections of time series trajectories, for
example, Brownian motion, random walks [43] etc. Brownian motion is defined as
below.

Definition 1.6. A Brownian motion is a stochastic process {X(t); t ≥ 0} with
following properties [44]:

1. Every increment X(t + s) −X(s) is normally distributed with mean 0 and
variance σ2t; σ is a fixed parameter.

2. For every pair of disjoint time intervals [t1, t2] , [t3, t4], say t1 < t2 ≤ t3 < t4,
the increments X(t4) − X(t3) and X(t2) − X(t1) are independent random
variables with distributions given in 1, and similarly for n disjoint time in-
tervals where n is an arbitrary positive integer.

3. X(0) = 0 and X(t) is continuous at t = 0.

One of most famous studies of financial time series is prediction or forecast of
future prices when the historical prices are given. Every financial time series
exists in a unique version and cannot be ‘restarted’. Therefore, for empirical
evaluation of the probabilities (through frequencies) we have to consider different
time series as trajectories of the same (‘universal’) random process (may be, after
some transformations) or to use hypotheses about stationarity (stationary property
of time series) and ergodicity (ergodicity property of time series). For example,
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researchers use conditions of time series such as stationarity and ergodicity to
construct methods of prediction.

Definition 1.7. A random process Xt (t ∈ Z) is stationary if for every finite set
of time moments {t1, . . . , tn ⊂ Z}, for every Borel set U in Rn, and every time
shift δ ∈ Z

P ((Xt1+δ, Xt2+δ, . . . , Xtn+δ) ∈ U) = P ((Xt1 , Xt2 , . . . , Xtn) ∈ U).

This means that the probability does not depend on the shift of time scale. White
noise is an example of a stationary random process. White noise is widely studied
in area of signal processing, telecommunications, statistical forecasting, etc. The
characteristics of white noise is studied using the empirical mode decomposition
method (or EMD method) [45].

Definition 1.8. A process Xt is white noise if its values Xti and Xtj are uncorre-
lated for every t, and tj 6= ti:

ρ(ti, tj) = 0,

for ti 6= tj. It is assumed that the mean of a white noise process is identically
0 [46].

Definition 1.9. A stationary random process Xt (t ∈ Z) is
ergodic if the expectation of every measurable function g(X)

(X = (. . . , X−t, X−t+1, . . . , Xt−1, Xt, . . .)) can be computed by time average on a
trajectory x = (. . . , x−t, x−t+1, . . . , xt−1, xt, . . .): with probability one [47] [48]:

E[g(X)] = limT→∞
1

T

T−1∑
δ=0

g(xδ),

where the sequence xδ is produced from x = x0 by the time shift on δ: in xδ the
values of variables Xt are: Xt = xt−δ.

The following proposition is just a law of large numbers applied to a stationary
ergodic random process [49].

Proposition 1.10. Let Xt (t ∈ Z) be a stationary ergodic random process, xt
(t ∈ Z) be a trajectory of this process, {t1, . . . , tn ⊂ Z}, U ⊂ Rn be a Borel set
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and

hU(τ) =

{
1 if (xt1+τ , xt2+τ , . . . , xtn+τ ) ∈ U,
0 if (xt1+τ , xt2+τ , . . . , xtn+τ ) /∈ U.

Then
1

T

T−1∑
τ=0

hU(τ)→ P ((Xt1 , Xt2 , . . . , Xtn) ∈ U), (1.8)

with probability one when T →∞ (T ∈ Z).

Remark 1.11. In Definition 1.9 and Proposition 1.10 we can use averaging on [0, T ],
[0,−T ], or symmetric intervals [−T, T ] (T →∞). These methods of averaging will
give the same results because of the stationarity assumption.

There are many tests for detection of non–stationarity of time series and many
tools for the transformation of time series to a stationary form. Evidence has shown
that macroeconomic time series are well characterized if they are transformed into
stationary time series with a trend [50]. For example, a random walk is obviously
non–stationary because its variance grows in time but the time series of returns,
Xt+1 − Xt or log–returns ln(Xt+1/Xt) (for a geometric random walk) may be
stationary. Other standard tools are detrending and extraction of seasonality.
Econometric time series can be detrended into a random walk with a drift and the
detrended data could be used in a regression model [51]. For climate data, an
adaptive Empirical Mode Decomposition (EMD) method is used as a detrending
algorithm [52].

Filters in time series transform an input sequence of data to a required sequence
of data for different purposes. Band–pass filter is a type of filters that delete
frequencies of a pre–defined range. Low–pass filters are filters which aim to extract
and delete the low–frequency components from sequences of data. For example,
an RLC filter is applied in an RLC circus to change the frequency of input data
[53] [54]. In application of time series, infinite impulse response and impulse
response filters use Fourier transformations are normally used.

1.2.2 The prediction problem and the conditional probabil-

ity

The problem of prediction is of great practical importance. Suppose we know a
piece of history: X0 = x0, X−1 = x−1, . . . , X−k = x−k. We need to evaluate the
future development of the process, i.e., we need the probability distribution for
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(X1, X2, . . . , Xm) for some m > 0. This problem may be formulated as estimation
of conditional probabilities:

P ((X1, . . . , XM) ∈ U |X0 = x0, X−1 = x−1, . . . , X−k = x−k),

for an open set U with non-zero probabilistic measure. Let Bn
ε (ε > 0) be a ball

in Rn of radius ε with center at the origin. Assume the U is an open set. Almost
everywhere

P ((X1, . . . , Xm) ∈ U |X0 = x0, X−1 = x−1, . . . , X−k = x−k)

= lim
ε→0

P ((X1, . . . , XM) ∈ U |(X0, X−1, . . . , X−k) ∈ (x0, x−1, . . . , x−k) +Bk+1
ε ).

(1.9)

This use of the vicinity of the history ((X0, X−1, . . . , X−k) ∈ (x0, x−1, . . . , x−k) +

Bk+1
ε ) instead of exact values is necessary for estimation of probabilities from

statistics of empirical samples. At the same time, from the practical point of view,
we never have an absolutely precise real values of x, therefore use of the vicinities
is even more reasonable than the exact values.

Combine (1.9) with (1.8) the estimate of conditional probability is produced. Let
Xt (t ∈ Z) be a stationary ergodic random process, xt (t ∈ Z) be a trajectory of
this process. For a given piece of history X0 = x0, X−1 = x−1, . . . , X−k = x−k ,
m ∈ Z+ (the depth of prediction and ε > 0 find all τ < −m, for which

(xτ , xτ−1, . . . , xτ−k) ∈ (x0, x−1, . . . , x−k) +Bk+1
ε .

Denote this set Tε. For each τ ‘the future of length m’ is defined as
(xτ+1, xτ+2, . . . , xτ+m).

Proposition 1.12. For τ ∈ Z define

θε,U(τ) =

{
1 if (xτ+1, xτ+2, . . . , xτ+m) ∈ U,
0 if (xτ+1, xτ+2, . . . , xτ+m) /∈ U.

Then with probability one

P ((X1, . . . , Xm) ∈ U |(X0, X−1, . . . , X−k) ∈ (x0, x−1, . . . , x−k) +Bk+1
ε )

= lim
T→∞

1

|Tε ∩ [0,−T ]|
∑

τ∈Tε,τ>−T

θε,U(τ),
(1.10)
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and for conditional probability we get (almost always, with probability one).

P ((X1, . . . , Xm) ∈ U |(X0, X−1, . . . , X−k) = (x0, x−1, . . . , x−k))

= lim
ε→0

lim
T→∞

∑
τ∈Tε,τ>−T θε,U(τ)

|Tε ∩ [0,−T ]|
.

(1.11)

The order of limits ε→ 0 and T →∞ cannot be changed. Practically, this means
that for fixed (sufficiently small) ε we have to analyze the behaviour of the fraction∑

τ∈Tε,τ>−T θε,U(τ)/|Tε ∩ [0,−T ]| when T grows.

Remark 1.13. We do not assume any Markov condition or hypothesis that the
probability of the future is completely defined by a fragment of the past history of
a given length. We consider the prediction problem: we know a fragment of history
with some accuracy; evaluate the conditional probability of the future development.

1.2.3 The kNN sampling for the probability distribution es-

timation

One of important properties of kNN is its convergence property. Let x1, x2, . . . , xp

be observations of dimension p. Consider a point z of dimension p with prob-
ability density function f at this point to be f(x1, x2, . . . , xp). Let k(n) be a
non–decreasing sequence of positive integers such that:

lim
n→∞

k(n) =∞, (1.12)

and
lim
n→∞

k(n)/n = 0. (1.13)

Let the volume of the hypersphere of dimension p about point z with radius r be
Ar,z. The measure of the hypersphere f̂n(z) is defined as:

f̂n(z) = (k(n)− 1)/nAr,z, (1.14)

and f̂n(z) is proved to be consistent (i.e. f̂n(z)→ f(z1, . . . , zp)) [55]. This density
estimator is proved to be unbiased under assumptions when the sample size is
finite [56]. Let Ln be the error of probability that a kNN classifier on random
training set and L̂n be its deleted estimate. For unconditional error of probability
Rn, if the feature vector X has a density in Rp and the class probabilities are
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continous, it is shown that:

n
1
2 (L̂n − Ln)

w→ N (0, σ2), (1.15)

and
n

1
2 (L̂n −Rn)

w→ N (0, σ2), (1.16)

where w→ represents converge weakly, σ2 depends on the joint distribution of feature
vector and the true class [57].

1.2.4 The kNN sampling for the time series prediction prob-

lem and historical Monte–Carlo

As we can see, selection of k nearest neighbors is equivalent to selection of ε–
vicinity in the following sense. Consider a probability distribution in Rn and a
condition f(x) = a, where f is a continuous map from Rn to Rq. Assume that we
have to find the conditional distribution on a preimage a for variable a. This means
that for every open set U ⊂ Rn we have to find the probability P (X ∈ U |f(X) =

a). For every ε > 0 we can evaluate the probabilities P (f(X) ∈ Bq
ε+a) and P (X ∈

U&f(x) ∈ Bq
ε + a). For this purpose, let use find N values of X in independent

trials. Let #(f(X) ∈ Bq
ε + a) be the number of those values of X for which

f(X) ∈ Bq
ε + a and let #(X ∈ U&f(x) ∈ Bq

ε + a) be the number of such values
of X that f(X) ∈ Bq

ε + a and X ∈ U . Assume that #(f(X) ∈ Bq
ε + a) > 0. Then

the relative frequency gives the frequentist estimate of conditional probability:

Proposition 1.14. With probability one

P (X ∈ U |f(x) = a) = lim
ε→0

lim
N→∞

#(X ∈ U&f(x) ∈ Bq
ε + a)

#(f(X) ∈ Bq
ε + a)

.

This is just the law of large numbers combined with the definition of conditional
probability. The kNN sampling (instead of ε vicinity) also gives the estimate of
conditional probability. Take a positive integer k. Let us find N values of X in
independent trials, N > k. Select from this N values k values, for which f(X)

are the closest to a. (Order empirical values of X in the order of the distance
ρ(f(X), a), from smallest to largest; if there are several samples with the same
value of distance then order then according to the number of the trial). Select
from this k nearest neighbor samples those, which belong to U . Let their number
be #(kNN’s ∈ U).
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Proposition 1.15. With probability one

P (X ∈ U |f(x) = a) = lim
k→∞

lim
N→∞

#(kNN’s ∈ U)

k
.

This is the version of the law of large numbers with kNN sampling.

Using the kNN version of the law of large numbers we can formulate the kNN
sampling rule for prediction of the future for stationary ergodic processes. Let Xt

(t ∈ Z) be a stationary ergodic random process, xt (t ∈ Z) be a trajectory of this
process. Select a piece of history of length q + 1, X0 = x0, X−1 = x−1, . . . , X−q =

x−q, and the depth of prediction m.Let us use for prediction and selection of
nearest neighbors the fragment of the past trajectory xτ (−N−q−m ≤ τ < −m).
For each τ ‘the future of length m’ is defined as (xτ+1, xτ+2, . . . , xτ+m) and ‘the
past of the length q+1’ is defined as πτ = (xτ , xτ−1, . . . , xτ−q). Select from the set
{πτ | −N − q−m ≤ τ < −m} k nearest neighbors to the known piece of history
(x0, x−1, . . . , x−q). The ensemble of the futures of length m corresponding to these
kNNs gives the sample that predicts the future distribution. This ensemble is the
set of k sequences of length m. Let us denote him Mk,N .

Proposition 1.16. For every open subset U ⊂ Rm with probability one:

P ((X1, X2, . . . , Xm) ∈ U |X0 = x0, X−1 = x−1, . . . , X−q = x−q = lim
k→∞

lim
N→∞

Mk,N

k
.

The order of limits k →∞ and N →∞ cannot be changed. Practically, it means
that for fixed k we have to analyze behavior of the fraction Mk,N

k
when N grows

and then increase k keeping the condition k � N .

1.2.5 The efficient market hypothesis

There are many researchers believe that the historical data contains some infor-
mation about future while some others believe that the stock prices react as a
random walk. The Efficient Market Hypothesis (EMH) is introduced in 1969,
evidence shows that the new information of the split would effect on the share
prices at the end of a split month or maybe instantaneously after the announce-
ment date [58]. In general, three major forms of this hypothesis are discussed
over decades, the weak–form, semi–strong form and strong–form efficiencies. The
weak–form suggests that the future prices could not be predicted by analysis of
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historical prices in any form while for the strong–form, the share prices contain
all information that it is impossible to have an opportunity to earn excess re-
turns. Many critics of this hypothesis are discussed in 1970s–1980s to discuss the
‘efficiency’ of the market such that if a market is efficient with respect to some
information, then the prices fully reflected this information [59] [60]. Studies on
testing efficient market hypothesis of European stock and share markets for se-
lected time period shows that for 6 selected European countries, Germany market
has the highest efficiency [61].

1.2.6 The technical analysis

Technical analysis is applied by many traders and investors to discover trends
and patterns for historical time series (i.e. stock and share daily closing prices)
to forecast the future direction of time series. By analyzing the charts and de-
veloping indicators, technical analysis can assist traders in building an efficient
trading strategy. The assumption of technical analysis contradicts the Efficient
Market Hypothesis (EMH). The assumption of research for technical analysis be-
lieves that strategy could be built to gain consistent profit [62]. The application
results of technical analysis vary according to types of financial time series and dif-
ferent regions of markets. Survey of technical analysis on foreign exchange market
shows that there are significant amounts of dealers considered technical analysis
as complementary analysis [63]. The study on the results of simulating four tech-
nical trading rules over the 1960 to 1983 period indicates that it is too difficult
for technical analysis to forecast subsequent prices [64]. Filter rules constructed
from the technical analysis are used on intra–daily foreign exchange market. These
rules can generate some profits but not for the general case [65]. Many surveys
study about profitability, theorems and empirical work regarding technical trad-
ing strategies are reviewed but they cannot agree on a consistent profitability of
technical analysis [66]. The positive profitability of technical analysis could imply
that historical prices contain information about future prices. Another interesting
analysis of 20 new equity markets in emerging economies shows that the correla-
tion is lower for the developed country returns [67] in other words, for markets in
developed countries, it is more difficult to gain profit by using technical analysis.
Studies of using decomposition–based vector autoregressive model had shown that
the significant information that technical analysis provides for FTSE100 index be-
tween 1984–2002 [68]. Another study of technical analysis has partially prediction
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power to US equity index returns [69]. Technical analysis and nearest neighbor
technique are combined to construct an automatic trading rule and it makes higher
profit than general buy–and–sell strategy [70].

The Efficient Market Hypothesis and profitability of technical analysis are leading
to an interesting question: does historical price contains information about the
future price? To answer this question, we developed 2 different experiments using
idea of kNN. In the first experiments, a label system is developed for components
of selected markets to label components with ‘winner’ or ‘loser’. Then apply
Leave–One–Out Cross–Validation of kNN algorithm to label the components with
either ‘winner’ or ‘loser’. From the results of error analysis and visualization of
data using ViDaExpert, it shows that for HANGSENG index, there is a positive
predictability while for DAX index, FTSE index and NASDAQ index, there is only
limit predictability. Hence, technical analysis could be applied to the market with
positive predictability. In the second experiment, we propose a universal approach
based on developing experiments using kNN to test the predictability on both
ergodic dynamical systems (EMH assumption) and stationary ergodic random
process (technical analysis assumptions) for selected stock and share markets over
a time period.

1.3 Outline of thesis

The main topic of my Ph.D research is to develop models and experiments using
kNN to analyze the predictability for stock and share time series. In Chapter 1,
generalizations, modifications and applications of NN and kNN algorithms are re-
viewed. The NN rules are split into 2 different types: structure–less and structure–
based methods. In this thesis, the basic structure–less kNN algorithm is mainly
applied. The motivation of this thesis is also discussed with reviews on technical
analysis, the predictability of time series and efficient market hypothesis. Some
background knowledge for time series, random process, ergodicity and stationarity
are reviewed as a support for the motivation.

In Chapter 2, a case study is performed with four stock and shares indices within a
3–year time period between 02–07–2009 and 02–07–2012. After labeling the com-
ponent with ‘winner’ or ‘loser’ by selecting first 1/3 percent and last 1/3 percent
of sorted average price ratios. Components labeled with ‘winner’ are those who
has 1/3 smallest average prices ratios. This means that the mean price of the
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final time period is relatively higher than the beginning time period. Components
labeled with ‘loser’ are those who have the 1/3 largest average prices ratios. It
means they have higher mean prices of beginning time period. The information
about ‘winner’–‘loser’ separation in the initial fragments of the daily log–returns
time series can be shown in error analysis of Leave–One–Out Cross–Validation.
Leave–One–Out Cross–Validation with kNN algorithm are applied on the daily
log–return of components using a distance and proximity in the experiment. By
looking at the error analysis, we see that for the HANGSENG and DAX indices,
there are clear signs that one can evaluate the probability of long–term success.
The correlation distance matrix histograms and 2–D and 3–D elastic maps gener-
ated from ViDaExpert show that the ‘winner’ components are closer to each other
and ‘winner’ \‘loser’ components are separable on elastic maps for HANGSENG
and DAX index while for the negative possibility indices, there is no sign of sepa-
ration.

In Chapter 3, we develop a kNN based universal technique or ‘historical Monte
Carlo’ method which allows one to predict and model stationary ergodic time
series. For selected stock and share closing prices, the daily log–returns are com-
puted for the time series. The log–returns are split into 3 parts, the “history” part,
the “present” part and the “future” part. The idea of this approach is to apply
kNN rule for “present” part log–return time frame, search for k nearest neighbor
time frame from the training set. These k nearest neighbors are then used as
log–return factors for predict “future” part. Then the log–return factors are trans-
formed into closing prices using the concept of dynamical systems. There are four
measurements of distances applied in the experiment, Euclidean distance, City
Block distance, correlation distance and cosine similarity. A different training set
of “history” part could change the prediction results. By analyzing 3 extreme cases
on different data, the predicted results are close to the real data. The large training
set would lead to a better result however this would increase the storage of dis-
tance matrix. A comparison between the ARMA(1,1) and the kNN experiment is
made and it has been shown that the prediction results from the kNN experiment
and the ARMA(1,1) are similar. Hence, we conclude that this approach works
well for both ergodic dynamic systems and for various types of random process.
A Lorenz system is a deterministic and chaotic system of differential equations.
Data generated from the Lorenz attractor with a random noise is used to test the
performance of the kNN experiment. From the analysis of average RMSE and
average standard deviations, it shows that average RMSE converges as k → ∞.
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When k = 1, average RMSE can be very small. This means that the best k
is acheived when k = 1. Chapter 4 includes the conclusion and future research
directions of our research program.



Chapter 2

Is it possible to predict long–term

success with kNN? Case Study of

four market indices (FTSE100,

DAX, HANGSENG, NASDAQ)

2.1 Introduction

Prediction of time series is an essential and difficult task in the real world. Many
methods have been studied these days such as constructing complex models for
simulating the prices, different types of regression models and so on. It is impor-
tant to study the predictability of the time series separately from constructing the
models because in the creation of each model we assume some additional hypothe-
ses about the model structure. It is also interesting to study this problem as when
there is a positive predictability or sign of changes in the time series, traders may
use this as a sign to discover crisis to prepare a response for some critical situations.
For example, during crisis, the correlation and variance is higher [71][72].

In this work, we test the possibility of prediction of long–term success on the
financial market. The time interval is three years. We evaluate the success of the
companies during these three years. The main question is: was there a similarity
between the most successful companies and dissimilarity between them and the
least successful ones at the beginning of this time period? In other words, is there
anything in the previous history that may give us information about the success
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in the following three years? We use movement of prices only and our study
should demonstrate the possibility of using historical data for long–term success
prediction.

Our case study is aimed to find the likelihood of the prediction of “success” within
three years’ time interval from 02–JUL–2009 to 29–JUN–2012 for four selected
stock and share market indices. We compare their performance in the two time
frames: initial three–month frame at the beginning (02/07/2009–30/09/2009) and
the final three– month frame (02/04/2012–29/06/2012). The idea of the main
experiment is based on the backward analysis. Backward analysis can be defined
as an analysis to determine properties of the inputs of a program from properties
or contexts of outputs. This case study is aimed to construct experiments on the
data to test if it is possible to predict long–term success. The possibility of long–
term “success” of the selected indices is tested from the results of the experiment
in the three years’ time interval. For each stock market index, the closing prices
of all components are collected from Yahoo! Finance website. After data pre–
processing step, the remaining components are labeled with “winner” companies
or “loser” companies (or simply just “winner”, “loser”) by using the “1/3 average
price” approach. For this approach, we compute the average price ratio which
is defined as the mean price of the end period divided by the mean price of the
beginning period. The companies are then sorted by the descending order of this
computed ratio. We label the first 33.3% of companies as “winner” and label the
last 33.3% of the companies as “loser”. Then the log-return prices are computed
on this data. The kNN algorithm with Leave-One-Out Cross-Validation with two
distance measurements is used as the indicator to test the possibility of prediction.

We use Leave–One–Out Cross–Validation for kNN classifier to test the possibility
of prediction of “success” components for each market index. The data is collected
from data and cleaned. Then we did an experiment of Cross–Validation for kNN
using two different forms of distance measurements. Then we analyze the total
error and separate error and use two methods to visualize our result. We show
that there is a possibility of predictions for long–term success for HANGSENG
and DAX indices in Section 2.3. We summarize our result and conclude in Section
2.4.
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2.2 Methods and backgrounds

2.2.1 Date pre–processing

The closing price is the final price at which a security (in this case study, the stock
exchange) is traded on a given trading day. It represents the value of this security
on a trading day until it changes again on the next trading day. The raw data
used for the experiments of this paper are the closing prices of all components for
each index for different time frames (3 months, 6 months, 9 months, 12 months, 15

months and 18 months). These closing prices are collected from Yahoo! Finance.
The first cleaning step is to compare the dates of each company with the index’s
date. The prices on the dates that are not in the trading date of the index are
deleted. The second step is dealing with the missing values. Companies which have
more than 20% of missing values are deleted from the list of companies for further
experiment. For the rest of companies with missing values, the missing values are
filled with the attribute mean (mean of the closing price on a specific date). The
closing prices are sorted from the oldest to most recent and they are saved in a
matrix with each column represents each company and each row represents each
date.

2.2.2 The Log–return

The kNN algorithm is applied using the next day’s daily log–return of closing
prices. There are two main reasons for using returns. First, for average investors,
the return of an asset is a complete and scale–free summary of the investment
opportunity. Second, return series are easier to handle than prices series as they
have more attractive statistical properties [73]. Let Pt be the closing price of each
company at time t. The log–return at time t is defined as:

rt = ln
Pt
Pt−1

(2.1)

Hence, if consider the log–returns as a matrix defined as the form of closing prices,
the matrix of log returns will have one less row than the matrix of closing prices.
The advantages of log returns over the simple net returns are obvious. First, the
log return is the sum of continuously compounded one-period returns involved.
Second, statistical properties of log returns are more tractable.
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2.2.3 The Pearson’s product–moment correlation coefficient

Two types of distance measurements are used in kNN algorithm in this case study.
They are distinguished as different functions of correlation coefficients. The corre-
lation coefficient measures the dependence of two random variables. The Pearson’s
Correlation or Pearson’s product–moment coefficient is defined as the covariance
of two random variables divided by the product of the individual standard devi-
ations. For a series of n measurements of X and Y written as xi and yi , where
i = 1, 2, . . . , n. The correlation coefficient is defined as:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(2.2)

The coefficient is bounded between +1 and −1. When coefficient equals to 0,
it means there is no linear relationship between X and Y . When the coefficient
equals +1, it means there is a positive linear relationship between X and Y . When
it equals −1, it means there is a negative linear relationship between X and Y .

2.2.4 The Correlation distance

In cluster analysis, the correlation distance is used in a specific metric. The cor-
relation distance on returns of time series (X,Y ) is defined as:

d(X,Y ) =
√

2(1− cXY ) (2.3)

where X = (x1, x2, . . . , xτ ) , Y = (y1, y2, . . . , yτ ) and cXY is the correlation coef-
ficient between X and Y [74]. It is used as in the analysis of a case study for the
Italian hospitality sector [75]. Proximity of this distance measurement is computed
as:

d(X,Y ) =
√

1− c2
XY (2.4)

where X = (x1, x2, . . . , xτ ) , Y = (y1, y2, . . . , yτ ) and cXY is the correlation coeffi-
cient between X and Y . Consider the geometric interpretation of the correlation
coefficient, it can be thought as the cosine of the angel between xi − x̄ and yi − ȳ
where xi ∈ X and x̄ is the mean of all xi, yi ∈ Y and ȳ is the mean of all yi.
Using double formulas of cosine, the distance function can take another expression
2 sinα where α ∈ [0, π

2
].

2 sinα =
√

2(1− 2 cosα) (2.5)
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Figure 2.1: Graph of 2 sin(α) (Distance) and sin(2α) (Proximity of Distance)
for α ∈ [0, π2 ].

The distance d(X,Y ) can have another expression of 2 sinα. The proximity is
defined in the similarly way, with an expression of sin(2α):

sin(2α) =
√

1− cos2(2α) (2.6)

This expression is 0 when α = 0 and α = π
2
.

The comparison of these two expressions is shown in Figure 2.1. These two ex-
pressions are the same when α is small and grows linearly as α increases. But the
plot of proximity starts to reach its maximum at 1 when α is approaching to 0.8

approximately and then it starts to decreases and reaches zero again at around
α = 1.6. This small difference has almost no effect on the later experiments.

2.2.5 The average price and the long term success

Before applying the kNN algorithm, the training data (data with labels) are re-
quired. The “1/3 average method” is used to label the components (i.e. label
them with either “winner” or “loser”). The “winner” companies are the companies
that have a relatively higher average price in the last time frame while the “loser”
companies are the ones have a relatively higher average price in the beginning time



Is it possible to predict long–term success with kNN? Case Study of four market
indices (FTSE100, DAX, HANGSENG, NASDAQ) 29

Figure 2.2: Graph of company BP, component of FTSE100 index with date
against its closing price in GBP between 01/07/2009 and 29/06/2012.

frame. The average price of the time series in the specific time period is defined
as the sum of the total prices in this period divided by the number of prices. (i.e.
if in a time period there are n prices, each specific price in this period is denoted
as P1, P2, . . . , Pn , the average price Avp = 1

n

∑n
i=1 Pi).

For example, Figure 2.2 is a time series of a component of FTSE100 index. The
red lines labeled with ‘t2’ and ‘t3’ represent the two border lines of the beginning
and last 3 month time period. The average prices of the first and last time period
are calculated using the definition introduced earlier and let Avp1 be the average
price for the first three months, and let Avp2 be the average price for the last
three months. The ratio of the average price of this company is then defined as
the ratio of Avp1 and Avp2. (i.e. ratio = Avp1

Avp2
) The next step of “1/3 average

price” method is to sort this ratio in descending order. The first 1
3
companies are

labeled as “winner” while the last 1
3
companies are labeled as “loser”.

The Nearest–Neighbors (NN) predictors were studied in several papers. The NN
predictor is applied for the analysis of forecasting daily exchange data in foreign
exchange markets [76]. This paper gives an interesting application of NN in fi-
nancial time series. A similar study, using Simultaneous Nearest–Neighbor (SNN)
predictors is, applied to nine EMS currencies using daily data [77]. Hence, it is
interesting to use k-Nearest Neighbor as an indicator to test predictability.
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2.2.6 The kNN algorithm and the LOOCV

The k–Nearest–Neighbor Classifier is one of the famous and simplest classification
algorithms. It requires no models to fit [67]. The classification rule is for a specific
test point with no label, it can be classified using majority vote among the k–
Nearest–Neighbors. The nearest neighbors of a test point are found by looking for
the k smallest distances between the test point and the training points. There are
many potential distance functions. One of them is the Euclidean distance in the
feature space:

d(i) = ||x(i) − x0|| (2.7)

where x0 is a test point and x(i) are points in the training set. In this Chapter,
the distances used will be the two distances introduced earlier. To estimate the
prediction error, cross–validation is used. This is probably the simplest and most
widely used method when we do not have enough amount of data [78]. This
predictor is also The K–fold cross–validation uses part of the data to fit the model,
in my experiment, the kNN classifier, and a different part to test it. In K–fold
cross–validation, the data is split into K equal–sized parts. For the Kth part,
when using a model to predict the Kth part of data, the K − 1 parts of data are
used to fit the model. The leave–one–out cross–validation is a special case when
K is the total number of data points. When applying this method to kNN, it
extracts one point from the original data and this point is considered as a test
point. Then the rest of them are used as the training points.

The time period of the experiments is chosen between 01/07/2009 and 29/06/2012
(For some stock markets, it may vary as it might not have prices at 01/07/2009 or
29/06/2012, and the next trading date will be counted as the boundary). Because
of the financial crisis occurred in 2007/2008, the stock and exchange indices time
series were affected.

Figure 2.3 shows the movement of the closing prices of four market indices between
01/07/2009 and 29/06/2012.The closing prices are relatively low in the beginning
for all markets. Then they begin to increase and except for HANGSENG index,
they have a generally up trend. This uptrend stands for the recovery of the market
from the crisis. For HANGSENG index, the closing price was increasing then at
some date, it starts the downward trend and it was likely to be hit by the second
wave of crisis.
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(a) FTSE (b) DAX

(c) HANGSENG (d) NASDAQ

Figure 2.3: Figures of market index in the three years period between
01/07/2009 and 29/06/2012 (For HANGSENG index, it does not have price
on 01/07/2009 hence it starts from the next trading date) (a) Closing price of
FTSE (b) Closing price of DAX (c) Closing price of HANGSENG (d) Closing

price of NASDAQ

2.2.7 Estimation of proportion

In statistics, sampling theory studies the relationship between the population and
sample from this population. Estimate of proportion is considered as an interval
estimate of the population proportion [79]. Suppose that a population is infinite
and the probability of occurrence of an event is p , and consider all possible samples
of size N drawn from this population, a sampling distribution of proportions with
mean µ and standard deviation σ is given by:

µ = p and σ =

√
p(1− p)

N
(2.8)

In Section 2.3, the sampling distributions of “winner” and “loser” companies are
computed. It gives more information in the case if the testing number of companies
is small.



Is it possible to predict long–term success with kNN? Case Study of four market
indices (FTSE100, DAX, HANGSENG, NASDAQ) 32

Index Name Total Used Deleted Winner Loser
FTSE100 101 98 3 32 32
DAX 30 30 0 10 10
HANGSENG 50 49 1 16 16
NASDAQ 100 100 0 33 33

Table 2.1: Table of Number of Companies contained in the experiment for
specific market index. “Total” means the total number of components (compa-
nies) in the index. “Used” means the number of companies left after the data
pre–processing step. “Deleted” means the number of companies deleted in the
data pre-processing step. “Winner”/“Loser” means the number of companies are

labelled with “Winner”/“Loser”.

2.3 Results and analysis

The experiment is computed using MATLAB. It begins with the data
pre–processing step. The companies that do not have enough amounts of closing
prices are deleted from the company list.

From Table 2.1, the number of deleted companies is relatively small compared
to the total number of components. The next step is to apply the “1/3 Average
Price” method for the remaining companies, labels them with “winner” if the cor-
responding average prices are the largest 1/3 of the sequence of average prices,
and “loser” if the average prices are the last 1

3
of the sorted sequence. The re-

sulting data is generated by joining the “winner” and “loser” companies in matrix
form vertically. In this matrix, each column represents each date and each row
represents each company. The daily log-return matrix is computed from the joint
matrix. This log-return matrix is then used for leave–one–out cross–validation of
1NN algorithm.

2.3.1 The analysis of total error and separate error

The error of leave–one–out cross–validation for 1NN is performed for different
time periods. (i.e. from 3 months to 18 months) The total error is referred to the
number of misclassified points for both “winner” and “loser” companies. Figure 2.4
shows the results of total error analysis for different indices. The errors generated
using different functions of measurement are almost identical. The proximity can
generate a bit smaller error than the distance function for several months. The
total error for the time period of 3 months is the minimum for three indices. For
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(a) FTSE (b) NASDAQ

(c) DAX (d) HANGSENG

Figure 2.4: Figures of total error analysis of leave–one–out cross–validation for
1–NN results from 3 months initial time period to 18 months initial time period
for different markets (a) FTSE index (b)DAX index (c) HANGSENG index (d)

NASDAQ index

indices FTSE, DAX and NASDAQ, the errors are mostly around 50%. This means
the prices are random and there is no sign of the possibility of prediction. For
HANGSENG index, the error percentage is less than 50%. This shows that this
market is not completely random. To analyze the characteristics for “winner” and
“loser” companies, a separate error analysis is applied. The sum of “winner” error
number and “loser” error number should be the same as the total error number.

The result of this analysis is shown in Figure 2.5. For indices FTSE and NASDAQ,
the error percentages are around 50% for both “winner” and “loser” companies.
Hence, the separate error analysis shows that there is no sign of the possibility of
prediction. For the DAX index, the errors range from 30% to 60%, it can be seen
that a border case and the “loser” companies, in general, have slightly lower errors
than “winner” companies. For the HANGSENG index, both errors are below 50%

and the errors of “winner” companies are much smaller than the errors of “loser”
companies. Hence, this means for HANGSENG index, there are some conclusions
about predictability for the “winner” companies.
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(a) FTSE (Distance) (b) FTSE (Proximity)

(c) NASDAQ (Distance) (d) NASDAQ (Proximity)

(e) DAX (Distance) (f) DAX (Proximity)

(g) HANGSENG (Distance) (h) HANGSENG (Proximity)

Figure 2.5: Figures of separate error analysis of leave–one–out cross–validation
for 1–NN results from 3 months initial time period to 18 months initial time

period for different markets.
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(a) FTSE WW LL (Distance) (b) FTSE WW LL (Proximity)

(c) FTSE WL (Distance) (d) FTSE WL (Proximity)

Figure 2.6: Histograms of different expressions of correlation distances for
FTSE index when using first 3 months closing prices for experiment. (a) Using
Distance between winner/winner and loser/loser companies (b)Using Proximity
between winner/winner and loser/loser companies (c) Using Distance between
winner and loser companies (d) Using Proximity between winner and loser com-

panies

2.3.2 Visualization using the histograms of the correlation

distance matrix

The results from Figure 2.4 and Figure 2.5 shows the minimum error rate occurs
when the time interval is within 3 months for FTSE, DAX, and HANGSENG in-
dex. The sign of the possibility of prediction in this time period is most dominant
among all. The histograms of correlation distances can be used to study the distri-
bution of correlation distance. For each index, four histogram plots are generated.
They represent the distributions of in–class (winner/winner or loser/loser) correla-
tion distances and cross–class (winner/loser) correlation distances. In Figure 2.6,
Figure 2.7, we have histograms for FTSE and NASDAQ indices. They have no
signs of possibility of prediction.
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(a) NASDAQ WW LL (Distance) (b) NASDAQ WW LL (Proximity)

(c) NASDAQ WL (Distance) (d) NASDAQ WL (Proximity)

Figure 2.7: Histograms of different expressions of correlation distances for
NASDAQ index when using first 3 months closing prices for experiment. (a) Us-
ing Distance between winner/winner and loser/loser companies (b)Using Prox-
imity between winner/winner and loser/loser companies (c) Using Distance be-
tween winner and loser companies (d) Using Proximity between winner and loser

companies

Figure 2.5 shows the result of LOOCV error analysis for “winner” and “loser” com-
panies separately. For the figures on the same row, these represent the result of
the experiment using companies from the same market but different expressions
of distance (use Distance or Proximity). (a)FTSE index use Distance expression
(b)FTSE index with Proximity expression (c)DAX index use Distance expression
(d)DAX index with Proximity expression (e)HANGSENG index use Distance ex-
pression (f)HANGSENG index with Proximity expression (g)NASDAQ index use
Distance expression (h)NASDAQ index with Proximity expression.

The in–class histograms show that the distribution of distances between “winner”
themselves and “loser” themselves are almost identical. The distributions of in–
class distances and cross–class distances are quite similar as well. This makes
“winner” and “loser” companies not easily separated. Since kNN is an algorithm
which is sensitive to the data structure. If the points are mixed together, this
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(a) DAX WW LL (Distance) (b) DAX WW LL (Proximity)

(c) DAX WL (Distance) (d) DAX WL (Proximity)

Figure 2.8: Histograms of different expressions of correlation distances for
DAX index when using first 3 months closing prices for experiment. (a) Using
Distance between winner/winner and loser/loser companies (b)Using Proximity
between winner/winner and loser/loser companies (c) Using Distance between
winner and loser companies (d) Using Proximity between winner and loser com-

panies

algorithm generates errors. Hence, if “winner” and “loser” companies are mixed
together, this market has no sign of the possibility of prediction. Figure 2.8 is the
histogram of correlation distances for the DAX index.

The DAX index has some possibility of prediction but this sign is not very clear.
From the in-class distributions, the “winner” and “loser” seems to be separated,
but this separation is not clear enough since the distribution peak of winner/win-
ner distances is slightly shifted to the left– hand side of the distribution peak of
loser/loser distances. Figure 2.9 shows the distributions of correlation distances
for the HANGSENG index. For this index, it has a clear sign of the possibility of
prediction. The distribution of winner/winner distances is on the left–hand side of
the distribution of loser/loser distances. Hence, the “winner” companies are more
compact than “loser” companies. There is a good separation between “winner” and
“loser” companies.
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(a) HANGSENG WW LL (Distance) (b) HANGSENG WW LL (Proximity)

(c) HANGSENG WL (Distance) (d) HANGSENG WL (Proximity)

Figure 2.9: Histograms of different expressions of correlation distances for
HANGSENG index when using first 3 months closing prices for experiment.
(a) Using Distance between winner/winner and loser/loser companies (b)Using
Proximity between winner/winner and loser/loser companies (c) Using Distance
between winner and loser companies (d) Using Proximity between winner and

loser companies

The figures of companies are used to visualize this characteristic. The most diffi-
cult part of plotting is the dimension of the dataset. For this data, the dimension
is relatively high. (i.e. each date is a dimension) The principal graphs and mani-
folds can be used to produce the plots with lower dimension. In previous studies,
the metaphor of elastic membrane and plate is used to construct one–, two– or
three–dimensional principal manifold approximations of various topologies. The
mean squared distance approximation error and the elastic energy of the mem-
brane together formed a functional to be optimized [80]. This idea of using elastic
graphs is demonstrated on several practical examples: from comparative political
science, data analysis in molecular biology and analysis of dynamical systems for
biochemical modeling [81]. The software “ViDaExpert” [82] developed by Dr. An-
drei Zinovyev uses this idea of elastic energy to compute elastic map and net using
the principal manifolds. This software enables users to visualize multidimensional
data with the idea of using principal object to reduce the dimension of this data.
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In our experiment, we use this software to visualize the log-return prices for all
companies within a time period of the initial first 3 months. There are two pa-
rameters of this elastic map algorithm to generate the graph, the coefficients of
“stretching elasticity” λ and the “bending elasticity” µ . To have the good per-
formance approximation for the principal manifold, I fixed λ ≈ 0 and µ ≈ 8.1.
For each index, two types of graphs are generated using ViDaExpert. The first
one is the “2D–Elastic Map”. It displays the estimation of 2D density of compa-
nies in the internal manifold coordinates. The second graph is the “3D–Principal
Manifold Graph”, it displays the companies in the first three principal component
coordinates.

For the HANGSENG index with first 3–month time frame, Figure 2.10 of elastic
maps are generated. From (a), it shows that the winners and losers are almost
separated nicely. The losers generate 4 “clusters” within the internal coordinates.
These “clusters” are located on each corner of the coordinate plane. From (b),
it shows the winners are closer to each other than the loser companies as the
red points are more compact to each other. However, the map boundary is not
linear since some loser companies that are very close to the winner companies.
There are around six points close to the red points. These green points can be
considered as outliers. As the error of kNN is dominated by the structure of data,
this visualization supports the LOOCV error analysis.

For the DAX index, Figure 2.11 shows elastic maps have a bit worse results than
the one for the HANGSENG index. From (a), the losers generate 2 main “clusters”
one near the top left corner and another one on the right–hand side. It is still
possible to separate the “winner” and “loser” companies but it is not as clear
as the result for the HANGSENG index. From (b), it seems that the “winner”
company are close to each other in the middle of the map while the losers formed
two “clusters” on the bottom. Both “winner” and “loser” companies have similar
closeness between their own points. Hence from the figure, it is different to the
kNN analysis that there is still a small amount of possibility of predicting the
future “success”.

For the elastic maps of companies of the FTSE index (Figure 2.12) and the NAS-
DAQ index (Figure 2.13), there is no sign of separation. There is a small cluster
of “loser” companies for the FTSE index but there are no clusters for “winner”
companies. For the NASDAQ, there is no clear sign of clusters in the internal co-
ordinate maps. The elastic maps give negative results for the companies of these
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(a) 2D–Elastic Map

(b) 3D–Principal Manifold Graph

Figure 2.10: Visualization of components (companies) of HANGSENG index
(log–returns) using elastic maps: (a)2D–Elastic Map (b)3D–Principal Manifold

Graph The Hand–made green lines show the “clusters” of loser companies
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(a) 2D–Elastic Map

(b) 3D–Principal Manifold Graph

Figure 2.11: Visualization of components (companies) of DAX index (log–
returns) using elastic maps: (a)2D–Elastic Map (b)3D–Principal Manifold

Graph The Hand–made green lines show the “clusters” of loser companies
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(a) 2D–Elastic Map

(b) 3D–Principal Manifold Graph

Figure 2.12: Visualization of components (companies) of the FTSE index
(log–returns) using elastic maps: (a)2D–Elastic Map (b)3D–Principal Manifold

Graph The Hand–made green lines show the “clusters” of loser companies
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(a) 2D–Elastic Map

(b) 3D–Principal Manifold Graph

Figure 2.13: Visualization of components (companies) of the NASDAQ index
(log–returns) using elastic maps: (a)2D–Elastic Map (b)3D–Principal Manifold

Graph The Hand–made green lines show the “clusters” of loser companies
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Winner (Distance)
µ σ

3 months 0.0625 0.0605
6 months 0.1875 0.0976
9 months 0.1875 0.0976
12 months 0.1875 0.0976
15 months 0.1875 0.0976
18 months 0.1875 0.0976

Loser (Distance)
µ σ

3 months 0.3750 0.1210
6 months 0.4375 0.1240
9 months 0.4375 0.1240
12 months 0.3750 0.1210
15 months 0.3750 0.1210
18 months 0.3750 0.1210

Winner (Proximity)
µ σ

3 months 0.0625 0.0605
6 months 0.1875 0.0976
9 months 0.1250 0.0827
12 months 0.1250 0.0827
15 months 0.1250 0.0827
18 months 0.1875 0.0976

Loser (Proximity)
µ σ

3 months 0.3750 0.1210
6 months 0.4375 0.1240
9 months 0.4375 0.1240
12 months 0.3750 0.1210
15 months 0.3750 0.1210
18 months 0.3750 0.1210

Table 2.2: Table of result using proportion estimate analysis for “winner” and
“loser” companies using Distance and Proximity. µ is the sample distribution

mean, and σ is the sample distribution standard deviation.

two indices. The kNN classifier is structure sensitive the elastic maps support
the LOOCV error analysis. Therefore, the experiments have negative results and
there is no evidence showing the possibility of predicting future success.

Consider the error to be the probability of occurrence event, the sample distri-
bution of error is computed by applying proportion estimate. Table 2.2 shows
the results of proportion estimate analysis. In general, the “loser” companies have
sampling standard deviation of 0.1210 > 0.1 where the sampling standard devi-
ation for “winner” companies are approximately 0.0900 < 0.1. The results using
different correlation distances do not make much difference. There is no overlap
in the interval between “winner” and “loser” companies.

2.4 Conclusions

In this case study, a backward analysis is used as the principal idea of experiments.
The past and future data are used for labeling but only the past data is used in kNN
classification. From the experiments, the results show that in this specific period
of time, there is a phenomenon (i.e. the winner companies are closer to each other)
for the HANGSENG index which means that there could be some conclusion about
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the predictability of long–term success of companies in the HANGSENG index.
Using different expressions of distances do not make much difference in the kNN
LOOCV error analysis. For the only index with positive result, the more closing
prices given (i.e. the longer initial time frame for initial information) does not
improve the predictability for the kNN predictor since the LOOCV error analysis
does not decrease when time period is larger.

For experiment results of the DAX index, the error analysis rejects the possibility
of future prediction. However, the for the first 3–month experiment, the LOOCV
error is just a bit below than 50%. Therefore, this is the boundary case for our
experiment and it is the reason why it gives different results in the visualization
result of the elastic map. In this case, it can be concluded that there is still a small
amount of possibility of future success prediction. For the FTSE and the NASDAQ
indices, it can be concluded that the long–term success is not predictable on the
basis of daily closing prices in the initial time frame as the LOOCV error analysis
is higher than 50%.

The positive result can also indicate for the HANGSENG index, the past prices
have information about future prices. Hence, there is a high possibility that tech-
nical analysis is profitable for this case. Since the HANGSENG index is the index
of developing market, this success in predictability can show that for the index of
developing markets, the long–term success is more predictable. Technical analy-
sis may be applied these young markets since for the HANGSENG and the DAX
index, the historical prices may have some information. For the FTSE and the
NASDAQ index, the prices have less information about the long–term success.



Chapter 3

A kNN historical Monte Carlo

approach of modeling and predict

daily stock returns

3.1 Introduction

Financial time series is one of the raw data of financial markets. It is a series
of prices against time within a pre–defined time interval. Examples of financial
time series are stock and share prices, commodity prices, currency prices etc. The
stock returns are computed from the stock prices time series and they are com-
monly used in the study of predictability of stock returns. There is a significant
degree of predictability in monthly stock returns in terms of the economic con-
text [83]. In the short term horizon, the stock returns are predictable since there
is a positive result in bivariate regression with short rates [84]. For a significant
positive predictability, it is much easier to forecast the future. On the other hand,
the predicted models would give a more accurate prediction.

Forecasting the prices of time series is widely studied but it is extremely difficult
to obtain a good prediction result. Many forecast methods had been studied
for years on these topics such as fundamental analysis, technical analysis (trend
and patterns analysis), regression analysis, stochastic modeling etc. Stochastic
modeling in time series forecasting could be defined as a process to analyze the
probability distribution of the output of the model under assumptions that some

46
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of the inputs are random. These random inputs are usually selected from the
historical data from this time series.

Studies of technical analysis and efficient market hypothesis (EMH) leads to the
question: do historical prices contain information on future prices? The motivation
of this chapter is to use a kNN experiment constructed with the application of the
dynamical system to look for k nearest neighbors of a single period closing price
time series from a selection of historical prices time windows and use these nearest
neighbors to construct predictions for the single period closing price time series.
This approach is a universal method aimed for both ergodic dynamic system or
random processes. Hence, this approach is applicable both in the predictable mar-
ket (assumptions of technical analysis) and non–profitable market (assumptions
of EMH). We use only the historical data to predict the future data and 95%

confidence interval is used to analyze the predicted prices.

The experiment in this chapter, a new idea of stochastic modeling using kNN
algorithm and application of dynamics systems is demonstrated. For a chosen
market and a chosen time interval, the raw data are collected from the internet as
closing prices. The daily log–returns are computed and for each component of the
market index, “history”, “present” and “future” part time fragments are defined.
Then for “present” part of time fragment, the nearest neighbors time fragments are
chosen from the “history” part of time fragments by application of kNN algorithm.
The predicted “future” would be the next time fragment after the “present” part
time fragment. This predicted “future” time fragment is then transformed from
the log–returns into closing prices by using the idea of dynamic system and they
are visualized to compare with the original closing prices.

This chapter is arranged as follows: Section 3.2 outlines the background knowl-
edge, methodology and working hypothesis of this experiment; Section 3.3 demon-
strate the result and analysis of different experiments (different parameters and
different market). Section 3.4 demonstrate the comparison the ARMA(1,1) model
prediction and kNN prediction. Section 3.6 conclude this chapter.
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3.2 Backgrounds and methodology

3.2.1 The data selection and the data pre–processing

The raw data selected are the time series of daily closing prices of selected stock
and share market index components. The closing prices are selected within a pre–
defined time interval and they are downloaded from the Yahoo!Finance website.
The closing prices are sorted from oldest to most recent. By comparing the length
of components time series with the length of market index time series, the closing
prices are considered as missing values if on the specific date when the market
index has closing price while on the same date, the components time series do not
have a closing price. For the case when the components time series have closing
prices while the market index does not have the closing price on the specific date,
this closing price of the component time series is deleted. The missing values
are filled using linear interpolation hence the closing prices of components time
series should have the exactly same length as the closing prices of market time
series. The daily log–returns of the closing prices are then computed and they are
used as the data for the kNN experiment. The daily log–returns time series for a
component time series of length T is defined as:

LRts(i+ 1) = ln

(
CPts(i+ 1)

CPts(i)

)
(3.1)

where i = 1, 2, . . . , T − 1 and CPts(i) is the closing prices of this component at
date i. Use of daily log–return rather than plain closing prices has several advan-
tages. The daily log–return have mean value around zero and some good statistical
properties. Since we are interesting in searching for the nearest neighbors, it has a
greater possibility to found the similar log–returns rather than the closing prices.
Note that the log–return time series only contains one less element than the closing
prices time series. (i.e. for a component time series of length T − 1, the length of
log–returns time series is T − 1.)

The market index measures the prices movements for components of the market
index. The closing prices of the market index are generally computed from the
closing prices of components, they indicate the general trend of the market prices
and help investors to make trading decisions. The market index could be defined
by different regions of markets. The Deutscher Aktien index (or DAX index) was
opened on the 1st October 1988. It is the blue chip stock and shares index of
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Name Category Name Category
ADS Clothing ALV Insurance
BAS Chemicals BAYN Pharmaceuticals and

Chemicals
BEI Consumer goods BMW Manufacturing
CBK Banking CON Manufacturing
DAI Manufacturing DB1 Securities
DBK Banking DPW Communications
DTE Communications EOAN Energy
FME Medical FRE Medical
HEI Building HEN3 Consumer goods
IFX Manufacturing LHA Transport Aviation
LIN Industrial gases LXS Chemicals
MRK Pharmaceuticals MUV2 Insurance
RWE Energy SAP IT
SDF Chemicals SIE Industrial, electronics
TKA Industrial, manufac-

turing
VOW3 Manufacturing

Table 3.1: Table of names and categories of all DAX components from
Wikipedia website.

the German market. The DAX index measures the prices movements of 30 major
components traded in Frankfurt Stock Exchange.

Table 3.1 lists the names and categories for all 30 components of DAX index. For
experiment described later in this paper, the closing prices of DAX components are
downloaded from Yahoo!Finance website within the time interval from 04–Jan–
2010 to 30–Dec–2011. Approximately one year of closing prices are downloaded
from the website and after data–preprocessing step, the length of closing prices
time series for each component is 516. Figure 3.1 is the graph of DAX index closing
prices from 04–Jan–2010 to 30–Dec–2011. It is observed that the price drop from
beginning to approximately date 70. Then it bounced up and down around 6000

EUR until at date 200, a general upward trend is formed. At date 300 there is a
small drop in the price but it goes up again when there is another strong decreasing
trend at date 400. The prices reach 5100 EUR at around date 430 and it starts to
oscillate around 6000 EUR again till the end of the time interval. Hence, it could
tell within this interval, it shows the time moment before the market collapsed at
around date 400. It is interesting to see if the history could have any information
on this collapsed market.
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Figure 3.1: Graph of closing prices for DAX index from 04–Jan–2010 to 30–
Dec–2011

The components are defined into different categories by the nature of their busi-
ness. The financial sectors could contain categories such as Banks, Insurance,
Investment, Securities, financial series etc. It is interesting to see the performance
of components time series for this sector. For DAX index, there are 5 components
in the financial sector (i.e. components ALV, CBK, DB1, DBK, and MUV2).

The Financial Times Stock Exchange 100 Index (or FTSE100 index) was opened
on 3rd January 1984. This index is held by FTSE group and it measures the top
100 highest capitalization components of the market in the UK. The FTSE100 is
traded in London Stock and Exchange and it contains 100 components. It is also
taken approximately 81% of capitalization traded in London Stock and Exchange.
The list of components of FTSE100 components from Wikipedia website contains
101 components since component RSD has two shares, that is A class and B class.
Table 3.2 is the list of financial sector components of FTSE100 index. There are
18 components in this sector with categories such as Banks, Financial Services,
Life/Nonlife Insurance. The closing prices are selected in a time interval from
02–Jan–2012 to 31–Dec–2013 for approximately 1 year. Originally there were 19

components in this sector but one of them was deleted from this list since for
this component the length of time series is too short (too many missing values).
After the raw data is downloaded from the website and the time series of each
component after data pre–processing step has length of 522. Figure 3.2 shows the



A kNN historical Monte Carlo approach of modeling and predict daily stock
returns 51

Name Category Name Category
ADM Nonlife Insurance ADN Financial Services
AV Life Insurance BARC Banks
HSBA Banks HL Financial Services
III Financial Services LGEN Life Insurance
LLOY Banks LSE Financial Services
OML Life Insurance PRU Life Insurance
RBS Banks RSA Nonlife Insurance
SDR Financial Services SL Life Insurance
STAN Banks STJ Life Insurance

Table 3.2: Table of names and categories of selected FTSE100 components
from London Stock Exchange website for financial sectors.

Figure 3.2: Graph of closing prices for FTSE100 index from 02–Jan–2012 to
31–Dec–2013

closing prices of FTSE100 index from 02–Jan–2012 and 31–Dec–2013. The prices
starts with around 5700 GBP in the beginning, then it goes up to 6000 GBP at
around date 65. Then it decreases and reach 5300 GBP at around date 100. The
prices then have a general upward trend and reach around 7900 at date 390. In
the end, the prices bounced up and down around 6600 GBP and in the end the
price is approximately 6700. The FTSE100 index has a general increasing trend
within this time interval, hence it could conclude the market capitalization is rising
during this time interval.

From Figure 3.3 it is observed that the distributions of log–returns for DAX and
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(a) DAX index (b) FTSE100 Index

Figure 3.3: Graphs of Histograms of log–returns for all components for DAX
and FTSE100 index.

Index DAX FTSE100
Mean −2.87× 10−5 1.2× 10−3

Medean 0 5.68× 10−4

Mode 0 0
Std. 2.05× 10−2 2.06× 10−2

Kurtosis 7.04 1.11× 102

Skewness −1.75× 10−1 −1.29

Table 3.3: Table of descriptive statistics for log–returns of all components for
DAX and FTSE100 index.

FTSE100 index forms bell shape distribution. For both indices, the distributions
are symmetrical around 0 but the log–returns of DAX index components has a
much lower kurtosis than the log–returns of FTSE100 index components as seen
from Table 3.3. The peak of histogram for FTSE100 index is higher than the peak
of histogram for DAX index.

3.2.2 The kNN algorithm and methodology

After the data pre–processing step, the data is partitioned into three parts, the
“history”, “present” and “future”. The key idea of experiments is to find the nearest
neighbor log–return time fragment for the “present” part from the “history” part
time fragments. The closing price time series for “future” part can be regenerated
by applying a function of the nearest neighbor log–return time fragment. This
regeneration of future prices is an application of Taken’s embedding theorem on
time series. The generalized idea is studied as the nearest trajectory strategy
and it shows that the dynamical system could be reconstructed by lagged time
windows accurately [85] [86]. Predictions of time series would have two common
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forms, one–steps prediction and free–run prediction [87]. The method described
here would be an example of a free–run prediction since the regeneration of the
“future” prices would need a subset of time–lagged log–returns. By analyzing the
predicted prices using kNN, it can conclude if this prediction method works for
both ergodic time series and stationary time series.

The kNN algorithm is one of the most popular algorithms in machine learning.
It is a model–free algorithm and requires no training process. It is widely used
in classification and regression analysis. The output of this algorithm is the set
of k points that are the “closest” points to the query point. Let us define the
query point to be Xquery and the set of points that the algorithm selects nearest
neighbors from being Y = {Y1, Y2, . . . , Yn}, where there are n points in this set.
All points have dimension p. The measure of closeness is computed between the
query point and every point in the set Y such that d(i) = f(X, Yi) where f() is a
defined function depending on the type of distance metric used in the algorithm.
Then the k points in Y contains the least distance are considered as the k nearest
neighbors. In our experiment, the time fragment of each component in “present”
part is considered as the query point. The time fragments of “history” part are
the set Y .

Before applying the kNN algorithm, the length of a time fragment need to be
defined. A time fragment of the time series is part of whole time series with fixed
length. Let us define τpre be the length of time fragment of “present” part, τfut be
the length of time fragment of “future” part and t be the date of time series for
each component, such that t = {1, 2, . . . , T} and t = 1 represents date 1 and date
T represents the last date of the whole price time series. Let us define the date
of “history” part be thistory = {2, 3, . . . , T − τpre − τfut}, the date of “present” part
be tpresent = {T − τpre − τfut + 1, . . . , T − τfut} and the date of “future” part be
tfuture = {T − τfut + 1, . . . , T}.

The nearest neighbors log–return time fragment of each component in
“present” part are selected from “history” part. The “sliding window”
strategy is used for getting the time fragment from the whole
“history” part log–return time series. For a “history” part time series
{LRts(2), LRts(3), . . . , LRts(Thist)} of length Thist, let us define “window” of the
log–return time series be a subset time series with fixed length τpre. We start to
define the “window” be {LRts(2), LRts(3), . . . , LRts(τpre + 1)} and
let the first time fragment be this “window”. Then the “window” is
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shifted to the next date, therefore, the next “window” is defined as
{LRts(3), LRts(4), . . . , LRts(τpre + 2)}. The next time moment is assigned to
this “window”. This process would repeat until it the last time fragment is
defined as {LRts(Thist − τpre + 1), LRts(Thist − τpre + 2), . . . , LRts(τpre)}. The
general formula of the time fragment for this “history” part can be defined as:

Frag(i) = {LRts(1 + i), LRts(2 + i), . . . , LRts(1 + τpre + i)} (3.2)

where i = {1, 2, . . . , Thist − τpre + 1}.

The experiment may vary on different formations of “history” part. There are 3

parameters in the experiments, the number of nearest neighbors k, the length of
“present” part τpre and the length of “future” part τfut. For DAX index, the whole
experiment uses all historical prices across all components as the “history” part.
This experiment uses a relatively large size of “history” part. For the partition of
the log–returns, the “history” part is defined as the collection of log–returns from
date 2 to date 297, the “present” part is defined as the collection of log–returns
from date 298 to date 357, the “future” part is defined as the collection of log–
returns from date 358 to date 357 + τfut for different values of τfut. If we have
k = 60, τpre = 60 and τfut = 40, and the length of each component in “history”
part is 296. By applying the “sliding window” strategy, the “history” part contains
(296 − 40) × 30 = 7680 time fragments. The number of time fragments does
not reach the end to avoid the case when there is a overlap between the set of
predicted “future” part log–returns and the set of “present” part log–returns. This
small process ensures that the predicted “future” part log–returns are from the
“history” part. For the whole experiment of DAX index, changing of τfut means
the change in the length of the “future” part. This experiment also uses τfut = 60

and τfut = 100 in order to see the performance of experiments for a longer future.

Different formation of “history” part could lead to different results. The indepen-
dent experiment of DAX index searches for a specific component nearest neighbor
log–returns time fragments from “history” of this component itself. Therefore, for
a specific component, the “history” part is much smaller compared with the “his-
tory” part of DAX index whole experiment. In this experiment we set k = 60,
τpre = 60 and τfut = 40. There are 256 fragments computed from “history” part
for each component. The financial sector experiment of DAX index is slightly dif-
ferent. Only the components of the category in finance are used as the raw data.
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The “history” part contains the components of financial sector only. Hence there
are 256× 5 = 1280 time fragments computed from the “history” part.

3.2.3 Various Distance Measurement

The distance measurements are key factors in kNN algorithm. Different metrics
could lead to different results and it is interesting to see the results of different
distance metrics and similarities. In our experiments three distance metrics (i.e.
Euclidean distance, city block distance and correlation distance) and one similarity
(i.e. cosine similarity) are applied. The Euclidean distance or Euclidean norm
between points p and q such that p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) is
computed as:

dEuc(p,q) =

√√√√ n∑
i=1

(qi − pi)2 (3.3)

if p and q are in n–dimensional space. This is the measurement of length between
two points in Euclidean space. Another metric used is the City Block distance.
The City Block distance or Manhattan distance between p and q is defined as:

dCit(p,q) =
n∑
i=1

|pi − qi| (3.4)

and this is widely used in urban design. The correlation distance uses concept of
product moment correlation coefficient. It is computed as:

dCor(p,q) = 1−
∑n

i=1(pi − p̄)(qi − q̄)√∑n
i=1(pi − p̄)2

√∑n
i=1(qi − q̄)2

(3.5)

where p̄ = 1
n

∑n
i=1 pi and q̄ = 1

n

∑n
i=1 qi. One similarity is applied in this experi-

ment. Unlike distance matrix, the similarity measure has large values on similar
objects and negative or zero value for objects that are very dissimilar to each
other. The cosine similarity measures the cosine of the angle between the two
points. This is computed as:

dCos(p,q) = 1−
∑n

i=1 piqi√∑n
i=1 pi

2
√∑n

i=1 qi
2
. (3.6)

These distance metrics would select different nearest neighbors for the same point.
Different prediction results of selecting nearest neighbors would be compared in
the later sections to analyze their performance on this method.
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3.2.4 The Taken’s theorem and regeneration of predicted

“future” part time series

Taken’s theorem shows that under several states the dynamics system could be
reconstructed from sequences of dynamic systems [88]. This theorem could also
be applied in forced and stochastic systems and the theorem could have slightly
different forms [89]. Let us define a dynamical system with state x(t) ∈ R which
is solution of some differential equation:

ẋ = ψ(x) (3.7)

where ψ is a smooth function and ψ : RN → RN . For a submanifoldM⊂ RN , let
us define a flow function G :M× R→M with state x(t) ⊂M by:

x(t0 + T ) = GT (x(t0), T ), (3.8)

for some real number T and:

x(t0 + kT ) = Gk
T (x(t0), T ) = GT ◦GT ◦ · · · ◦GT︸ ︷︷ ︸

k times

(x(t0)) (3.9)

for some positive integer k. For a smooth measurement function φ where y(t) =

φ(x(t)) such that φ = RN → R. A delay map with M delays F(φ,G−Ts ):M→RM is
defined as:

F (x(t) = F(φ,−GTs )(x(t))

= [y(t), y(t− Ts), · · · , y(t− (M − 1)Ts)]
T

= [φ(x(t)), φ ◦G−Ts(x(t)), · · · , φ ◦GM−1
−Ts (x(t))]T ,

(3.10)

for sampling time Ts. A version of Taken’s embedding theorem is stated as [90]:

Theorem 1. LetM be a compact manifold of dimension K and suppose we have
a dynamical system defined by 3.7 that is confined on this manifold. Let M > 2K

and suppose:

1. the periodic points of G−Ts s with periods less than or equal to 2K are finite
in number and,

2. G−Ts has distinct eigenvalues on any such periodic points.
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Then the observation functions φ for which the delay coordinate map F 3.10 is an
embedding form an open and dense subset of C2(M,R).

The idea of Taken’s theorem is applied in the current paper to regenerate the
closing prices of “future” part time series from the “future” part log–return time
series. After k nearest neighbors are selected, the log–return time fragment are
selected by selecting the log–returns of next τfut dates after the last log–return
prices of the nearest neighbors. Then the system of closing prices time series
are regenerated from these log–return time series. Let us define the last closing
price of the “present” part of log–return time series to be defined as tscom

last . The
nearest neighbor time series is defined as NNtscom(j) where j = 1, 2, . . . , τfut. The
regenerated time series could be defined as a flow map using the inverse function
of 3.1:

tscom
fut (j) = tscom

fut (j − 1)efutLR
com(1)

= tscom
fut (j − 2)efutLR

com(2) × efutLRcom(1)

= tscom
last e

futLRcom(j) × efutLRcom(j−1)×, . . . ,×efutLRcom(1)

(3.11)

where futLRcom(j) represent the log–return time series for “future” part for jth
date within the date of “future”, j = 1, 2, . . . , τfut and tscom

fut (0) = tslast.

3.2.5 Visualization of experiment result

The regeneration of k predicted prices of “future” part would produce k time series.
To analyze the predicted, the plot of 95% confidence interval for each component
is plotted together with the real prices for “present” part and “future” part. The
95% confidence interval plot with average of predicted prices is computed if k > 1,
i.e. µ± 1.96σ where µ = 1

k

∑k
i=1 futts(i) and

σ =

√√√√ 1

k − 1

k∑
i=1

(futts(i)− µ)2. (3.12)

The 95% confidence interval computes the range of values that means a good
estimation of real prices. If the real prices lies inside this interval, then this would
indicate that this method is giving a stochastically prediction. Together with the
real price in the future, it is straight forward to compare with the original price
for “future” part.
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3.2.6 The development of the GARCH model

In 1983, the autoregressive conditional heteroscedastic (ARCH) processes were
introduced in field of econometrics. Rather than assuming forecast variance to
be constant, these processes are uncorrelated processes with zero mean and non–
constant conditional variances on the past values but constant unconditional vari-
ances [91].

Definition 3.1. The discrete time stochastic processes {εt} are referred as an
ARCH model with the form:

εt = ztσt,

zt i.i.d.,E(zt) = 0, var(zt) = 1,
(3.13)

where σt is positive and depends on time. σt is modeled as:

σ2
t = α0 +

q∑
i=1

αiε
2
t−i,

where α0 > 0, αi ≥ 0, and i > 0.

εt can be both a univariate process and multivariate process. The ARCHmodelling
in finance is reviewd and the extensions of ARCH modelling such as the GARCH
model, the EGARCH model etc [92]. The linear ARCH(q) model is suggested as
a linear function of past squared values of the process.

Definition 3.2. Consider a process for σt, the linear ARCH(q) model compute
σ2
t as linear function of past squared values of the process,

σ2
t = ω +

q∑
i=1

αiε
2
t−i,

where ω > 0 and αi ≥ 0.

ARCH model can be applied in estimating the variance for U.S. inflation [91] and
United Kingdom inflation [93]. This model is applied in Value–At–Risk (VAR)
model [94]. Combining linear ARCH model with moving average model, the linear
generalized ARCH(p) model or the GARCH(p, q) model is developed.

Definition 3.3. The linear Generalized ARCH(p) or GARCH(p, q) model [95] was
introduced as:

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i,
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where σ2
t is nonnegative.

The GARCH(p, q) model is applied in estimating the conditional variances of as-
set [96] [97]. Consider innovation zt has Gaussian or student’s t distribution with
ν > 2. If the history of a process ht at time t = 1, 2, . . . , N is given and the inno-
vations are conditionally independent. The likelihood function for the innovation
is given as:

f(ε1, ε2, . . . , εN |hN−1)
N∏
t=1

f(εt|ht−1),

where f is a standardized Gaussian or t density function. If zt has a standard
Gaussian distribution, the likelihood function is:

−N
2

log(2π)− 1

2

N∑
t=1

log σ2
t −

1

2

N∑
t=1

ε2
t

σ2
t

,

if zt has a standardized student’s t distribution with ν > 2 degrees of freedom, the
likelihood function is:

N log

(
Γ(ν+1

2
)√

π(ν − 2)ΓΓ
2

)
− 1

2

N∑
t=1

log σ2
t −

ν + 1

2

N∑
t=1

log

(
1 +

ε2
t

ε2
t (ν − 2)

)
.

After p, and q is chosen, parameters such as αi and βi can be estimated via max-
imum likelihood method. The stock returns volatility in Tokyo Stock Exchange
from 1986 to 1989 is forecasted using the GARCH models [98]. The volatility of
FTSE–100 index is forecasted using the GARCH model [99] and it is shown that
future trading increases volatility. A pricing method of Hang Seng index options
around the Asian financial crisis using the GARCH model [100]. By comparing
with the Black–Scholes model, the GARCH approach have good performance.

The comparison between the kNN experiment and the GARCH model is interest-
ing but the kNN experiment predict stock daily returns while the GARCH model
predicts volatility and conditional variance with given historical prices. By using
idea of integrated model, µ generated from the ARMA process and σ generated
from the GARCH model [101], the next day return can be regenerated as:

Rt = µ+ σ × i.i.d.N(0, 1)

Xt = Rt +Xt−1.
(3.14)
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However, this approach does not work for log–returns hence the comparison be-
tween our the kNN experiment is incompatible. The ARMA model is used instead
to predict the daily log–return and compared with the kNN experiment results.

3.2.7 The Autoregressive Moving Average model

In time series analysis, Autoregressive–moving–average model (or the ARMA
model) is used to predict future time series with given history time series. This
model is generalized in 1951 [102]. The ARMA(p, q) model or process is formulated
as in [103]:

z̃t = φ1z̃t−1 + . . .+ φpz̃t−p + at − θ1at−1 − . . .− θqat−q. (3.15)

In the polynomial form:

(1− φ1B − φ2B
2 − . . .− φpBp)z̃t = (1− θ1B − θ2B

2 − . . .− θqBq)at (3.16)

or, φ(B)z̃t = θ(B)at where φ(B) and θ(B) are polynomials with degree p and q in
B. The ARMA(p, q) process could forecast time series with finite known history
time series [104]. The parameters of the ARMA(p, q) process are computed by
maximum likelihood estimation based on historical time series, then the future
time series is fitted into a linear model with these parameters [105] [106]. The
ARMA(p, q) process is widely studied and applied in studies of time series, it is
one of the classical method of prediction. The comparison of the ARMA(1,1)
model and the kNN experiment is shown in Section 3.4. For forecasting of closing
prices using the ARMA(1,1) model, “history” part and “present” part are used
as historical time series to predict “future” part time series. By comparing the
forecasting results, conclusions on predictability of historical time series can be
shown.

3.2.8 The Lorenz system

The Lorenz system is proposed by Edward Lorenz in 1973 [107]. It is a nonlinear
deterministic system (a system with no randomness involved in generating its
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future state) of three differential equations. The Lorenz system is defined as:

dx
dt

= σ(y − x),
dy
dt

= x(ρ− z)− y,
dz
dt

= xy − βz,
(3.17)

where t is time and the system parameters are σ, ρ and β. This solution has
chaotic behaviour. Some elementary properties of the Lorenz system had been
studied. The three parameters of the Lorenz system are assumed to be positive.

Proposition 3.4. Suppose ρ < 1. Then all solutions of the Lorenz system tend
to the equilibrium point at the origin.

Proposition 3.5. The equilibrium points Q± are sinks provided:

1 < ρ < ρ∗ = σ

(
σ + β + 3

σ − β − 1

)
,

where the Hopf bifurcation occurs at ρ∗ [108]. In the Lorenz attractor, Lorenz
used σ = 10, β = 83 and ρ = 28. Figure 3.4 represents the plot of solution to

(a) X(t) against Y (t) (b) Z(t) against X(t) (c) Z(t) against Y (t)

Figure 3.4: Example of Lorenz attractor

the Lorenz system. They are generated using MATLAB for t = [1, 1000] and the
initial condition is set to be x(0) = 1, y(0) = 1 and z(0) = 1 for simplicity.

3.2.8.1 The Lorenz attractor in kNN experiment

The Lorenz system is a deterministic system. Theoretically, if the initial condition
is given, the future is achievable. In our kNN, we add a random noise to the Lorenz
attractor with random initial conditions. Then we apply the kNN experiment on
these data. MATLAB is used to compute the solution of system defined in (3.17).
The algorithm of the the kNN experiment using the Lorenz attractor is described
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Algorithm 6 The kNN experiment for data generated from the Lorenz attractor
with noise
1. Set a time step for solution of differential system, i.e. τ = 0.5.
2. Generate random initial conditions x(0), y(0), z(0) using MATLAB function
‘rand’ (i.e. ‘rand’ function generates random numbers from U(0, 1)).
3. Use MATLAB function ‘ode45’ to compute solution of the Lorenz system x(t),
y(t) and z(t) with σ, β and ρ from the Lorenz attractor for time t ∈ [0, 1000]
with time step size τ .
4. Choose one solution to the system, i.e. select x(∆t) for ∆t = 1, 2, ..., 2000.
Set a noise level αε, i.e. αε = 0 and the noise is ε(t) = αε × D(t) where
D(1), D(2), . . . , D(t) are random samples from U(0, 1). Add noise to this solu-
tion, i.e. xε(∆t) = x(∆t) + ε(t) for ∆t = 1, 2, ..., 2000.
5. Define the first 1000 data points of xε(∆t) as ‘history’ part and the rest 1000
as test set.
6. Define a frame length for sliding window strategy, i.e. nwindow = 20. In sliding
window strategy, let 20 data points be ‘present’ and the next 20 be ‘future’.
7. For each fragment of 20 data points in test set, select k nearest neighbors in
collection of fragments of ‘history’ part. Use the next 20 data points of nearest
neighbor as predicted ‘future’.
8. Repeat Step 4 – Step 7 for y(t) and z(t).

in Algorithm 6. In this algorithm, sliding window strategy is applied for creating
both set of fragments of both ‘history’ part and test set. Similarly to the other
kNN experiment, the same sliding window strategy is used. The ‘present’ fragment
length and ‘future’ fragment length are defined as 20 (or the ‘window’ length is
set to 20). Hence, there are 960 ‘windows’ or fragments in ‘history’ part and
another 960 ‘windows’ in test set. For each fragment in ‘present’ part, the k
nearest neighbors are searched from set of ‘history’ part fragments. The predicted
‘future’ part is the next fragment of k nearest neighbors fragments. To analyze
the accuracy of this experiment, mean squared error and standard deviation are
used. From the Algorithm 6, for each ‘window’, there are k fragments. Consider
xjest(i) be predicted ith ‘future’ for ‘window’ j and xj(i) be real ith ‘future’ for
‘window’ j, where m = 1, 2, . . . , nwindow and j = 1, 2, . . . , 960. The mean squared
error (MSE) for window j is defined as:

MSE(j) =
1

nwindow

nwindow∑
m=1

(xjest(m)− xj(m))2.

MSE measures accuracy of prediction for each nearest neighbor prediction for
each ‘window’. The average MSE for ‘window’ j is the average MSE of k nearest
neighbor predictions for ‘window’ j (i.e. MSEaverage(j) = 1

k

∑k
i=1 MSEj(i)). For

predicted ‘future’ of each solution, there are 960 average MSE (i.e. one MSE
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for each ‘window’). Relative mean squared error (RMSE) is rather applied in the
experiment to measure the relative difference between the estimated and real data.
The relative mean squared error is defined as:

RMSE(j) =
MSE(j)

1
nwindow

∑nwindow

m=1 (xj(m))2,

where RMSE(j) ∈ [0, 1]. And the average RMSE is defined similarly as MSE (i.e.
RMSEaverage(j) = 1

k
RMSEj(i)). Another measurement applied in error analysis

is the standard deviation. Consider we have k nearest neighbor predictions for
each ‘window’ and let i = 1, 2, . . . , k. The standard deviations of the ith nearest
neighbor prediction in ‘window’ j are defined as:

σikNN(m) =

√√√√ 1

960

960∑
j=1

(xmest(j)− µmkNN)2,

where m = 1, 2, . . . , nwindow and µmkNN = 1
960

∑960
j=1 x

m
est(i). Hence, there are nwindow

standard deviation for each ith nearest neighbor prediction for each ‘window’.
The average standard deviation of k nearest neighbor prediction is the average of
k standard deviations (i.e. average σkNN(m) = 1

k

∑k
i=1 σ

i
kNN(m)).

3.3 Results and Analysis

Various experiments are performed in Section 3.3. The results are presented by the
variance of log–return factors and 95% confidence intervals. It is also interesting
to see the change in the results when the parameters and “history” part changes.
For the DAX index, the whole experiment, independent experiment, and financial
sectors experiment are performed. For FTSE100 index, only the financial sector
experiment is performed. In different experiments, different formation for the set
used to search for k nearest neighbors are formulated:

1. For the whole experiment, this set is a combination of time series trajectories
of all components of the index in “history” part.

2. For the individual experiment, this set is a combination of time series tra-
jectories of one component in “history” part.

3. For financial sector experiment, this set is combination of time series trajec-
tories of selected financial sector components in “history” part.
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3.3.1 The DAX Index

There are three experiments of DAX index components, the whole experiment,
individual experiment and financial sector experiment. The results of experiments
are visualized with the variance of log–return factors plot and confidence interval
plots for chosen components. The confidence interval plots for chosen components
would present the result of predictability for components with extreme variances.

3.3.1.1 Whole Experiment

The whole experiment is performed and let us set the parameter k = 60, “present”
length of 60, “future” length of 60 and the distance measurement is Euclidean
distance. The variances of “future” fragment predicted log–return factors against
time plot for all 30 components are plotted within on graph. In this graph, it
is easier to observe the trend of predicted log–return variances and the trend of
the variances. Figure 3.5 shows variance of predicted log–return factors against
time plot has linear trend from date 1 in “future” part time fragment to date
41. After this date, the variance plot has a horizontal trend and it converges
to approximately 0.005 till the end of “future” part time fragment. For some
components, the variance is relatively high (i.e. component “CBK”). It is observed
that 1 cluster is formed from variances. The component “CBK” is considered
as outlier as its variance is relatively far away from this cluster. This cluster
contains variances of the rest of components and it seems that the variances have
a general upward trend and the variances, in the end, lie within the range between
0.002 and 0.007. For the components with extreme value of variance , let us
define the components with high variance are defined as “high variance” case. For
those components with the variance that is closed to the average variance, let
us define those components are the “average variance” case or neutral result for
our prediction. (i.e. component “BAYN”) For those components with relatively
small variance, let us define them to be “small variance” case. (i.e. component
“BEI”) Let us choose component CBK to be “high variance” case, component
BAYN to be “average variance” case, and component BEI to be “small variance”
case. From Figure 3.6 it is observed that the “small variance” component has
the best prediction results among these 3 components. The trend of predicted
prices are extremely close to the real prices and all real prices lie in the confidence
interval. For “average variance” component, some of the real prices lie outside the
confidence interval and the trend of predicted prices are different if compared with
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Figure 3.5: Graph of variance of predicted log–return factors against time
for all 30 components when k = 60, “present” fragment has length 60 and “fu-
ture” fragment has length 60 (Euclidean Distance). The name of component is
presented on the last variance and the thick black line represents the average

variance of these factors of 30 components.

the real prices. The prices movement between date 75 and date 95 is not predicted
since the real prices lie outside the confidence interval and the real prices have a
general downward trend in this time interval. The “high variance” component
has the worst result of distribution predictions. The average values of predicted
prices have a general horizontal trend while the real prices have downward trend
and almost 30% of real prices lie outside the confidence interval. By setting a
longer length of “future” time fragment, the longer trend on prediction prices
variance is analyzed. Let us set the length of “future” fragment to 100 when the
other parameters remain the same. Using the same “history” and find the nearest
neighbors of the same “present”, the performance of the experiments on longer
“future” is analyzed. Figure 3.7 presents the variances of log–return factors for
“future” time fragment of all 30 components. The variance plots have upward
linear trend from the beginning to date 41, then the variances have a horizontal
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) variance plot

Figure 3.6: 95% Confidence interval of predicted price and real price plots
of “present” and “future” for k = 60, present fragment length 60, future frag-
ment length 60 for selected “high variance”, “average variance” and “high vari-
ance” components (Euclidean Distance). Variance of predicted log–return fac-

tors against time for these components plot is shown in the end.

line for approximately 20 dates (this is similar to the variances plot for “future”
part of length 60). There is an another upward linear trend till the end of the
graph. The second upward linear trend has a larger gradient than the first one
and it has an upward trend till the end of time fragment. It is also observed that
in this variances plot, 2 clusters of variances are formed. The first cluster contains
several components with relatively high variance while the second cluster contains
the most of the components with relatively smaller variance.

Let us choose three components the same way as the experiment for setting “future”
fragment to be 60. The “average variance” component has changed to component
BAS and the “small variance” component has changed to component HEN3. The
results are a bit worse than the experiment with “future” fragment of length 60.
For “small variance” case, a small amount of the real prices lie outside the confi-
dence interval and prediction result is bad from date 1 to date 110. This result
becomes better from date 111 and the average predicted prices are very close to the
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Figure 3.7: Graph of variance of predicted log–return factors against time
for all 30 components when k = 60, “present” fragment has length 60 and “fu-
ture” fragment has length 100 (Euclidean Distance). The name of component
is presented on the last variance and the thick black line represents the average

variance of these factors of 30 components.

real prices. For “average variance” case, around 60% of the real prices lie outside
of the confidence interval. Particularly, the real price from “future’âĂŸ fragment
date 8 till “future” fragment date 40 lie outside of the confidence interval and
the prediction result become better from date 41. For “high variance” case, most
of the real prices lie outside of the confidence interval and the prediction result
is worse than the first two cases. Compared with the results for “future” length
60, setting a smaller “future” time fragment would lead to a better prediction.
In result of experiment with “future” length of 60 and 100, there is a horizontal
trend from date 41 to date 60. Let us focus on the time interval of the first linear
trend by setting the length of “future” to be 40. Figure 3.9 presents the variances
of log–return factors of “future” part. It is observed that the variances form one
cluster except for component CBK which has a relatively higher variance. All
variances have a general linear trend from the beginning till the end. From Fig-
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) variance Plot

Figure 3.8: 95% Confidence interval of predicted price and real price plots
of “present” and “future” for k = 60, present fragment length 60, future frag-
ment length 100 for selected “high variance”, “average variance” and “high vari-
ance” components (Euclidean Distance). Variance of predicted log–return fac-

tors against time for these components plot is shown in the end.

ure 3.10, 3 components are selected for “high variance” case, “average variance”
case and “small variance” case. Component MUV2 is selected to be “small vari-
ance” case, the predicted result is best among these 3 components. The most of
the real prices lie within the confidence interval and the average predicted prices
have similar trend in the beginning and the end. Component BMW is selected to
be “average variance” case and component CBK is selected to be “high variance”
case. For these two cases, most of real prices lie outside the confidence interval and
the trend of real prices are quite different as the trend of average prices. The City
Block distance is chosen for distance measurement for whole experiment. Let us
set the parameters with k = 60, “present” fragment length 60, “future” fragment
length 40. From figure 3.11, the variances have an upward linear trend in general
most of the variances curves are quite closed to each other. It is observed that
the variances of several components have slightly higher gradients. They forms
approximately 2 clusters that the first cluster contains approximately 4 compo-
nents with relatively higher variances and the second cluster contains the rest of
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Figure 3.9: Graph of variance of predicted log–return factors against time
for all 30 components when k = 60, “present” fragment has length 60 and “fu-
ture” fragment has length 40 (Euclidean Distance). The name of component is
presented on the last variance and the thick black line represents the average

variance of these factors of 30 components.

components with variances closer to average variance. Let us select component
CBK for “high variance” case, component RWE for “average variance” case and
component DPW for “small variance” case. The “average variance” case has the
best prediction results among these 3 cases. Approximately 25% of the real prices
lie outside the confidence interval and the trend of the real prices in the end are
predicted since the predicted prices are close to the real prices. For the “high
variance” and “small variance” cases, more than 50% of real prices lie outside the
confidence interval and the trend of real prices are not successfully predicted. The
correlation distance is applied as the distance measurement for whole experiment.
From Figure 3.13, the variances form one cluster only and all variances of com-
ponents are close to the average variance. The general trend of variances for all
components is linear upward trend. Let us choose component SIE for “high vari-
ance” case, component DPW for “average variance” case and component SDF for



A kNN historical Monte Carlo approach of modeling and predict daily stock
returns 70

(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) variance Plot

Figure 3.10: 95% Confidence interval of predicted price and real price plots
of “present” and “future” for k = 60, present fragment length 60, future frag-
ment length 40 for selected “high variance”, “average variance” and “high vari-
ance” components (Euclidean Distance). Variance of predicted log–return fac-

tors against time for these components plot is shown in the end.

“small variance”. The “small variance” case has the best result since most of real
prices lie within the confidence interval and the trend of predicted prices and real
prices are quite close. For “average variance” case, approximately half of real prices
lie outside the confidence interval and the trend of real prices and predicted prices
are not the same. For “high variance” case, all real prices lie within the confidence
interval. However, the trend of the real prices and predicted prices are not close.
The cosine similarity is applied as distance measurement for whole experiment.
In Figure 3.15, the variances of all components form one cluster. The trend of
the variances is a linear upward trend. The variances of all components are close
to the average predicted prices. Let us choose component SIE for “high variance”
case, component HEN3 for “average variance” case and component DB1 for “small
variance” case. For these three cases, it is observed that the trend of real prices
and the trend of predicted prices are not very close. However, for “high variance”
case and “average variance” case, all real prices lie within the confidence intervals.
The “small variance” case has the worst results among these three components
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Figure 3.11: Graph of variance of predicted log–return factors against time
for all 30 components when k = 60, “present” fragment has length 60 and “fu-
ture” fragment has length 40 (City Block Distance). The name of component
is presented on the last variance and the thick black line represents the average

variance of these factors of 30 components.

but only quite a few of real prices lie outside the confidence interval. From the
results, by analysis of three extreme components, the results of the experiment
using Euclidean distance and correlation distance gives a better prediction on the
prices. If comparing the value of variances for different distance measurements,
it is observed that experiment using Euclidean and city block distance have rel-
atively smaller variances than experiment using correlation distance and cosine
similarity. It is also observed that the formation of the variances plots are similar
between Euclidean distance case and City Block distance case while the formation
of the variances plots are similar between the correlation distance case and cosine
similarity case.
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.12: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 100 for selected “high variance”, “average variance” and “high variance”
components (City Block Distance). Variance of predicted log–return factors

against time for these components plot is shown in the end.

3.3.1.2 Individual Experiments

The individual experiment is performed since the change of “history” part is an
important factor of our experiment. Let use set k = 60, “present” part of length
60, and “future” part of length 40 as parameters of individual experiments. The
experiment using Euclidean distance is performed. Figure 3.17 represents the vari-
ances of predicted log–return factors for all components when choosing Euclidean
distance as distance measurement. It is observed that the variances have a lin-
ear upward trend. The variances of several components are relatively high while
the variances of most components are smaller. It is clear from the figures that 3

clusters of variances are formed and the average variance is located in the second
cluster. In the first cluster, the components have large variances in general. In
the second cluster, the components have variances which are close to the average
variance. In the third cluster, the components have small variances in general. Let
us choose component LXS for “high variance” case, component CBK for “average
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Figure 3.13: Graph of variance of predicted log–return factors against time
for all 30 components when k = 60, “present” fragment has length 60 and “fu-
ture” fragment has length 40 (Correlation Distance). The name of component
is presented on the last variance and the thick black line represents the average

variance of these factors of 30 components.

variance” and component MRK for “small variance” case. Figure 3.18 visualizes
the confidence interval for selected components and the variances of these 3 com-
ponents. For these 3 cases, it is observed that the trend of predicted prices is
different to the trend of real prices. For “high variance case”, approximately 25%

of the real prices lie outside the confidence interval. The predicted prices have
completely different trend as when the real prices fall, the predicted prices have a
upward trend. For the “average variance” case, approximately 40% of real prices
lie outside the confidence interval but the general trend of the predicted prices
are similar to the real prices. For “small variance” case, the component has small-
est variance among these 3 components. The result is similar to the “average
variance” case with fewer real prices lie outside the confidence interval. The city
block distance is applied as the distance measurement in this experiment. Unlike
the results in the whole experiment, in the individual experiment with city block
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.14: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 100 for selected “high variance”, “average variance” and “high variance”
components (Correlation Distance). Variance of predicted log–return factors

against time for these components plot is shown in the end.

distance, the variances form 3 clusters. One cluster contains several components
with high variances. The second cluster contains several components which is close
to the average variance. The third cluster contains most of components and the
variances are smaller than the average variance but they are closer to the average
variance. Let us choose component LXS to be the “high variance” case, component
SDF to be the “average variance” case, component MRK to be the “small variance”
case. They are selected as representations for three clusters. For “high variance”
case, the component has largest variances among these 3 components. There are
about 30% of the real prices lying outside the confidence interval. It is observed
that the predicted prices have a completely different trend. The real prices have
a general upward trend while the real prices fall. For “average variance” case, the
result is the best among these 3 cases. It has the smallest number of real prices
lying outside the confidence interval. The trend of predicted prices are close to
the real prices from the beginning, but in the end, the real prices drop when the
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Figure 3.15: Graph of variance of predicted log–return factors against time for
all 30 components when k = 60, “present” fragment has length 60 and “future”
fragment has length 40 (Cosine Distance). The name of component is presented
on the last variance and the thick black line represents the average variance of

these factors of 30 components.

predicted prices still have an upward trend. For “small variance” case, approxi-
mately 30% of real prices lie outside of confidence interval and the trend of the
predicted prices and the trend of real prices are different. The correlation distance
is applied as the distance measure for an individual experiment. From Figure 3.21,
3 clusters of variance are formed in this experiment. The first cluster has several
components with high variance. The second cluster has several components with
variances that are close to the average variance. The third cluster contains most
of the components with small variance. The second and third clusters are closer
than the first cluster. Let us choose component VOW3 for “high variance” case,
component BMW for “average variance” case and component DTE for “small vari-
ance” case. Figure 3.22 visualizes the confidence interval for selected components
and the variances plot against time. For “high variance” case, most real prices lie
within the confidence interval. However, the predicted prices are not the same as
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.16: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 100 for selected “high variance”, “average variance” and “high variance”
components (Cosine Distance). Variance of predicted log–return factors against

time for these components plot is shown in the end.

the real price since the real prices have downward trend while the predicted prices
go upward. For “average variance” case, approximately half of the real prices lie
outside the confidence interval. The predicted prices have different trend than the
real prices. For “small variance” case, the variances are relatively much smaller
than the other 2 cases. It is observed that most of the real prices lie within the
confidence interval and the predicted prices have similar trend as the real prices in
the beginning but they have an upward trend and the real prices have downward
trend and an upward trend in the end. The cosine similarity is applied as the
distance measurement for individual experiment. From Figure 3.23, the variances
form only 2 clusters, one with high variances contains several components and the
other cluster contains most components with smaller variances. The variances of
all components have general linear upward trend. Let us choose component VOW3
to be the “high variance” case, component BMW to be the “average variance” case
and component DTE to be the “small variance” case. Figure 3.24 visualizes the
confidence interval for these selected components. For “high variance” case, only
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Figure 3.17: Graph of variance of predicted log–return factors against time for
all 30 components when k = 60, “present” fragment has length 60 and “future”
fragment has length 40 (Euclidean Distance) for individual experiment. The
name of component is presented on the last variance and the thick black line

represents the average variance of these factors of 30 components.

quite a few of the real prices in the end, lie outside the confidence interval. The
trends of the real and predicted prices are different. For “average variance” case,
approximately 20% of real prices lie outside the confidence interval and the trends
of the real and predicted prices are different as well. For “small variance” case,
most of the real prices lie within the confidence interval. The trends of the real
and predicted prices are similar in the beginning, but this experiment fails to pre-
dict the trend of real prices from approximately date 75 (i.e. the real prices go
down and then goes up while the predicted prices have a horizontal trend). From
these results, the variances of the log–return factors plot of predicted prices are
similar between experiment using Euclidean distance and city block distance and
the variances plot are similar between experiment using correlation distance and
cosine similarity. However, the prediction results of individual experiments with
all distance measurement are not very good since the trends between predicted
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.18: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 100 for selected “high variance”, “average variance” and “high variance”
components (Euclidean Distance) for individual experiment. Variance of pre-
dicted log–return factors against time for these components plot is shown in the

end.

prices and real prices are quite different. The experiment results using Euclidean
distance gives the best prediction among these four cases since the “average vari-
ance” case gives a good prediction while for the other distance measurements, the
trends between predicted prices and real prices are different.

3.3.1.3 Experiment of Financial Sectors

The components of DAX index is categorized into several types (i.e.clothing, insur-
ance, chemicals etc.). The components of the financial sector are mainly studied
in this experiment. Table 3.1 lists the categories for all DAX components. Let
us choose the components with category insurance, banking, and securities to be
the components of the financial sector. The components chosen are ALV, CBK,
DB1, DBK, and MUV2. In this experiment, the “history” part only contains log–
return time fragments for these 5 components. The kNN algorithm is applied for
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Figure 3.19: Graph of variance of predicted log–return factors against time for
all 30 components when k = 60, “present” fragment has length 60 and “future”
fragment has length 40 (City Block Distance) for individual experiment. The
name of component is presented on the last variance and the thick black line

represents the average variance of these factors of 30 components.

“present” part log–return time fragments of each one of 5 component, searching
the nearest k neighbors from the new “history” time fragments. For the financial
sector experiment, let us set k = 60, “present” part of length 60 and “future” part
of length 40. Figure 3.25 is the combined variance graphs of selected 5 components
for the individual experiment, whole experiment and financial sectors experiment.
In general, the variances for individual experiment are higher than the variances
for the other two experiments. Particularly, for component DBK, the variance for
the individual experiment is about 7 times of the variances for other two exper-
iment. It is also observed that the trend of variances for the whole experiment
and financial sectors experiment are similar. Comparing the variances of the other
3 components (i.e. component ALV, DBK, and MUV2), the variances for the
whole experiment are slightly smaller than the variances for financial sectors ex-
periment. The variances for financial sectors experiment have a linear upward
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.20: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 100 for selected “high variance”, “average variance” and “high variance”
components (City Block Distance) for individual experiment. Variance of pre-
dicted log–return factors against time for these components plot is shown in the

end.

trend from date 1 till date 35. Then the variances have a horizontal trend from
date 36 till date 40 (for several components, the variances have a small down-
ward trend). Let us choose component DBK and component MUV2 for further
analysis. From Figure 3.25, the variances of component DBK is extremely high
for individual experiment while for component MUV2 the variances are relatively
small. From Figure 3.26, component MUV2 has a better prediction result than
component DBK. For component MUV2, the predicted prices have similar trend
with the real prices in the beginning and the end, and approximately 20% of real
prices lie outside the confidence interval. For component DBK, only quite few real
prices lie within the confidence interval and the predicted prices have completely
different trend as the real prices. The city block distance is used as the distance
measurement for financial sector experiment. From Figure 3.27, the variances have
a linear trend. Comparing with the variance plot of individual experiment, the
formation of variances plot is similar. The variances for individual experiment
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Figure 3.21: Graph of variance of predicted log–return factors against time for
all 30 components when k = 60, “present” fragment has length 60 and “future”
fragment has length 40 (Correlation Distance) for individual experiment. The
name of component is presented on the last variance and the thick black line

represents the average variance of these factors of 30 components.

are higher than the variances for independent experiment and whole experiment.
Component DBK is selected since its different experiment results in individual
experiment and component MUV2 is selected since the variances are the lowest
for all experiments. From Figure 3.28, for component DBK, the predicted prices
have different trend as the real prices and most of the real prices lie outside the
confidence interval. For component MUV2, the prediction is good in the beginning
and in the end and most of real prices lie within the confidence interval. For both
component, this method failed to predict the double bottom pattern. For case
of using correlation distance, it is observed from Figure 3.14 that the variances
have a general linear trend and the variances for all 5 components are close to
the average variances comparing to the whole experiment and individual exper-
iment. For component DBK, the variance plot in financial sector experiment is
different comparing to the variance plot in individual experiment as the variances
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.22: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 100 for selected “high variance”, “average variance” and “high variance”
components (Correlation Distance) for individual experiment. Variance of pre-
dicted log–return factors against time for these components plot is shown in the

end.

are smaller. The variances of other components in financial sector experiment are
a bit higher than the variances in other two experiments. Component DBK and
MUV2 is chosen as two examples in visualization of result in confidence interval
plot. From Figure 3.30, component DBK has worse result than component MUV2.
For component DBK the real prices in the beginning and in the end are included
in the confidence interval in financial sector experiment. For component MUV2,
all real prices are included in the confidence interval and this gives a perfect result.
For the experiment using cosine similarity, from Figure 3.31 the variances in finan-
cial sector experiment have general linear upward trend with a bit higher gradient
than the whole and individual experiments. The variances of all components are
close to the average variance and component DBK is observed have difference in
the variances if comparing with the plot in financial sector experiment and the in-
dividual experiment. For the rest of components, the variances in financial sector
experiment are similar to the variances in whole experiment. Components DBK
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Figure 3.23: Graph of variance of predicted log–return factors against time for
all 30 components when k = 60, “present” fragment has length 60 and “future”
fragment has length 40 (Cosine Distance) for individual experiment. The name
of component is presented on the last variance and the thick black line represents

the average variance of these factors of 30 components.

and MUV2 are selected as 2 cases to visualize the result of financial sector experi-
ment using confidence interval plot. From Figure 3.32, it is clear that the result for
the case of component DBK is slightly worse than the result for the case of com-
ponent MUV2. For component DBK, approximately 30% of real prices from date
70 to date 95 lies outside the confidence interval. While for component MUV2,
all real prices lie within the confidence interval hence this result is perfect. Hence,
it is concluded that for selected 5 components, the variances of most components
(except for component DBK) are similar to the variances of individual experiment
and whole experiment. From the visualization of results using confidence interval
plots, the selected 2 components have different performance. For all 4 types of
distance measurements, the result in individual experiment is the best among the
three experiment for component DBK. However, for component MUV2, the result
in financial sector experiment is the best. In general, it could be concluded that
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.24: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for selected “high variance”, “average variance” and “high variance”
components (Cosine Similarity) for individual experiment. Variance of predicted
log–return factors against time for these components plot is shown in the end.

changing “history” part could lead to a better performance in this data.

3.3.2 The FTSE100 index

After running the program on components of DAX index, it is interesting to see
the results of experiments for FTSE100 index. The financial sector experiment
is performed for selected components of FTSE100 index. In this experiment, 18

components in financial sector are chosen. Similar to experiments using data from
DAX index, the variances of predicted “future” part log–return factors and confi-
dence interval of closing prices plots are used to visualize the results of experiment.
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(a) Individual Experiment (b) Whole Experiment

(c) Financial Factors Experiment

Figure 3.25: Graph of variance of predicted log–return factors against time
for selected 5 components when k = 60, “present” fragment has length 60 and
“future” fragment has length 40 (Euclidean Distance) for individual experiment,
whole experiment and financial factors experiment. The name of component is
presented on the last variance and the thick black line represents the average

variance of these factors of 5 components.

3.3.2.1 Financial Sector Experiment

In the financial sector experiment, 19 components with categories such as insur-
ances (life or non–life), bank and financial services are chosen initially. Due to
huge amount of missing values on closing prices, 1 component is ignored and the
closing prices of 18 components listed in table 3.2 are used as raw data in this
experiment. Similar to experiments of DAX index, four different distance mea-
surements are applied to test this experiment. The variances plot of log–return
factors for all components and the confidence interval plots for 3 selected compo-
nents are used to visualize the result. In Figure 3.33, Euclidean distance is applied
in the experiment. The variances form a general linear upward trend and the vari-
ances form one cluster except for component RSA. Hence for most of components,
the variances are close to the average variance and the changes of the log–return
factors of closing prices are similar. Let us choose component STJ for “high vari-
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(a) Individual Experiment (b) Individual Experiment

(c) Whole Experiment (d) Whole Experiment

(e) Financial Sectors Experiment (f) Financial Sectors Experiment

Figure 3.26: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for component DBK and MUV2 (Euclidean Distance) for individual
experiment, whole experiment and financial sectors experiment. Variance of
predicted log–return factors against time for these components plot is shown in

the end.
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(a) Individual Experiment (b) Whole Experiment

(c) Financial Factors Experiment

Figure 3.27: Graph of variance of predicted log–return factors against time
for selected 5 components when k = 60, “present” fragment has length 60 and
“future” fragment has length 40 (City Block Distance) for individual experiment,
whole experiment and financial factors experiment. The name of component is
presented on the last variance and the thick black line represents the average

variance of these factors of 5 components.

ance” case, component HSBA for “average variance” case and component RSA for
“small variance” case. From Figure 3.34, it is observed that the result of “high
variance” case is best among these 3 components since all real prices lie within the
confidence interval . For “average variance” and “small variance” case, the results
are similar and approximately 80% of real prices lie within the confidence interval
since the experiment fails to predict the downward trend of prices in the end. It
is interesting that the trend of real closing prices of “future” part for these two
components are quite similar hence this experiment is giving a similar prediction
result. City Block distance is then applied in this experiment. From Figure 3.35,
the variances form a main cluster with one component has high variances and two
components have small variances. The variances form a general linear upward
trend and the average variance is positioned in the centre of main cluster. Let us
choose component RBS for “high variance” case, component HSBA for “average
variance” case and component BARC for “small variance” case. From the figure
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(a) Individual Experiment (b) Individual Experiment

(c) Whole Experiment (d) Whole Experiment

(e) Financial Sectors Experiment (f) Financial Sectors Experiment

Figure 3.28: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for component DBK and MUV2 (City Block Distance) for individual
experiment, whole experiment and financial sectors experiment. Variance of
predicted log–return factors against time for these components plot is shown in

the end.
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(a) Individual Experiment (b) Whole Experiment

(c) Financial Factors Experiment

Figure 3.29: Graph of variance of predicted log–return factors against time
for selected 5 components when k = 60, “present” fragment has length 60 and
“future” fragment has length 40 (Correlation Distance) for individual experiment,
whole experiment and financial factors experiment. The name of component is
presented on the last variance and the thick black line represents the average

variance of these factors of 5 components.

of confidence interval 3.36, it is observed that the results for “high variance” and
“small variance” case are good since all real prices lie within the confidence interval.
For “average variance” case, this experiment failed to predict the downward trend
in the end of “future” part and approximately 15% of real prices lie outside the con-
fidence interval. The correlation distance is applied in the experiment. Figure 3.37
represents the variances of log–return factors and from this figure, approximately
2 clusters are formed. One cluster contains higher variances have 6 components.
Comparing to the average variance, they have higher variances in the beginning
and there is a small fall at around date 20. The other cluster contains the rest of
components with low variances in the beginning and unusual peak at around date
13. In general, the variances have a linear upward trend and the average variance
is in between of two clusters and it has a general linear upward trend but with a
small spike at around date 13. Let us choose component RBS for “high variance”
case, component LGEN for “average variance” case and component III for small
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(a) Individual Experiment (b) Individual Experiment

(c) Whole Experiment (d) Whole Experiment

(e) Financial Sectors Experiment (f) Financial Sectors Experiment

Figure 3.30: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for component DBK and MUV2 (Correlation Distance) for individual
experiment, whole experiment and financial sectors experiment. Variance of
predicted log–return factors against time for these components plot is shown in

the end.
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(a) Individual Experiment (b) Whole Experiment

(c) Financial Factors Experiment

Figure 3.31: Graph of variance of predicted log–return factors against time
for selected 5 components when k = 60, “present” fragment has length 60 and
“future” fragment has length 40 (Cosine Similarity) for individual experiment,
whole experiment, and financial factors experiment. The name of component is
presented on the last variance and the thick black line represents the average

variance of these factors of 5 components.

component case. The confidence interval plots are presented in Figure 3.37. Since
the closing prices for component III are relatively much smaller, the prices have
different scale as the other two components to make it possible to see the plot.
For all 3 cases, all of the closing prices lie within the confidence interval. This is a
perfect result. Especially for component LGEN, the average variance has almost
the same trend as the trend of real prices in “future”. Cosine similarity is applied
as the distance measurement in the experiment. In Figure 3.39, the variances of
log–return factors of predicted “future” part are plotted against time. Approxi-
mately 2 clusters formed with the first cluster contains relatively higher variances
and there are only 3 components within. The second cluster contains the rest of
components. The general trend of variances is a linear upward trend but there is
a sharp peak at around date 13 and the average variance is positioned between
the first and second cluster. Let us choose component RBS for “high variance”
case, component HSBA for “average variance” case and component III for “small
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(a) Individual Experiment (b) Individual Experiment

(c) Whole Experiment (d) Whole Experiment

(e) Financial Sectors Experiment (f) Financial Sectors Experiment

Figure 3.32: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for component DBK and MUV2 (Cosine Similarity) for individual
experiment, whole experiment and financial sectors experiment. Variance of
predicted log–return factors against time for these components plot is shown in

the end.
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Figure 3.33: Graph of variance of predicted log–return factors against time
for selected components of financial sectors of FTSE100 index when k = 60,
“present” fragment has length 60 and “future” fragment has length 40 (Euclidean
Distance). The name of component is presented on the last variance and the
thick black line represents the average variance of these factors of selected com-

ponents.

variance” case. From Figure 3.40, it is observed that the results for all 3 cases are
good since all real prices lies within the confidence interval. For “high variance”
and “average variance” cases, the predicted mean prices are closed to the real price
which means this experiment has good performance for these 2 components. The
results of the experiment applying some distance measurement are quite good. In
general, the results using correlation distance and cosine similarity are better than
the results using Euclidean distance and City Block distance while the variances of
log–return factors are approximately 3 times larger. Hence it could be concluded
that for data from closing prices of components of FTSE100, the results using
correlation distance and cosine similarity are better since the confidence interval
could have good results.
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.34: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for selected “high variance”, “average variance” and “high variance”
components (Euclidean Distance) for financial sectors experiment of FTSE100
index. Variance of predicted log–return factors against time for these compo-

nents plot is shown in the end.

3.4 The comparison between the ARMA model

forecasting with the kNN experiment

Autoregressive moving average model (or the ARMA model) is mainly studied in
time series forecast problem. Comparison between the result of the ARMA model
and the kNN experiment is mainly studied in this section. For simplicity, p = 1

and q = 1 are chosen as parameters for the ARMA model. The kNN experiment,
k = 30, “present” length is 60, “future” length is 40. Figure 3.41 is the plot of
DAX index closing prices against time and the maximum “history” part, “present”
part and “future” part is shown in different colors. It is clear that the DAX index
closing prices have generally linear upward trend over the whole “history” part.
Then in the middle of “present” part, there is a sharp drop in the closing price. A
crisis can be detected for such case. The closing prices reach the bottom in the
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Figure 3.35: Graph of variance of predicted log–return factors against time
for selected components of financial sectors of FTSE100 index when k = 60,
“present” fragment has length 60 and “future” fragment has length 40 (City-
block Distance). The name of component is presented on the last variance and
the thick black line represents the average variance of these factors of selected

components.

beginning of “future” part and then it has a general horizontal trend. 4 different
lengths of “history” part are set. The total length of whole“history” part is 355 and
4 different lengths represents 25%, 50%, 75% and 100% of the whole “history” part.
4 measurements of distances are chosen as similar as in the previous experiment.
The results of comparisons between the ARMA(1,1) and the kNN experiment are
represented as figures of time series. In the result figures, the blue time series
is the closing prices of the component over a specific time interval. The whole
time series is split by red lines into 3 parts, “history” part with 4 different lengths,
“present” part and “future” part. Two components are selected from the list of com-
ponents of DAX index as “Good” and “Bad” results for our prediction. For each
component, 4 figures are generated as result of comparison. Euclidean distance is
applied as the distance measure for the kNN experiment. Figure 3.42 represents
the forecast closing price for the ARMA(1,1) model and average closing prices of
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.36: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for selected “high variance”, “average variance” and “high variance”
components (City Block Distance) for financial sectors experiment of FTSE100
index. Variance of predicted log–return factors against time for these compo-

nents plot is shown in the end.

nearest neighbors generated from the kNN experiments, the 95% confidence inter-
vals are plotted in the same plot. All sub–Figures 3.42a3.42c3.42e3.42g show the
comparison result for component FME. It is clear to show that both models give
good approximation for “future” part. These results are quite similar since the
95% confidence intervals are almost the same. However, when the length of “his-
tory” part is increased to 100%, the average predicted closing price from the kNN
experiment gives a better prediction result since it successfully predict an upward
trend when the real prices go up in “future” part. The results of component FME
is positive. The sub–Figures 3.42b3.42d3.42f3.42h show the comparison result for
component DB1. In general, these sub–figures show that the predicted results are
not accurate. The ARMA(1,1) forecast result and kNN average predicted clos-
ing prices have completed different trend as the real closing prices. The reason
may because there is a sharp drop at the end of “present” part. Both methods
are limited to predictability by using a history of “normal” prices to predict the
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Figure 3.37: Graph of variance of predicted log–return factors against time
for selected components of financial sectors of FTSE100 index when k = 60,
“present” fragment has length 60 and “future” fragment has length 40 (Correla-
tion Distance). The name of component is presented on the last variance and
the thick black line represents the average variance of these factors of selected

components.

crisis. Cityblock distance is applied for the kNN experiment and then the result
is compared with the ARMA(1,1) model forecast closing prices. Figure 3.43 list
the presents the results for component FME and component DB1. The Subfig-
ures 3.43a 3.43c 3.43e 3.43g of results for component FME gives a good forecast for
both models. However, when “history” part is longer, the predicted average prices
from the kNN experiment has a better prediction than the ARMA(1,1) model
since the ARMA(1,1) model gives a horizontal trend when “history” part is longer.
For component DB1, Subfigures 3.43b 3.43d 3.43f 3.43h show that both models
have relatively bad performance. For this component, the ARMA(1,1) model gives
an upward trend while the real prices are having a downward trend. Almost all
real prices lie outside the confidence interval. Although the kNN experiment gives
an upward trend as well, but the average predicted prices are closer to the real
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.38: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for selected “high variance”, “average variance” and “high variance”
components (Correlation Distance) for financial sectors experiment of FTSE100
index. Variance of predicted log–return factors against time for these compo-

nents plot is shown in the end.

closing price than the forecast results from the ARMA(1,1) model. For both com-
ponents, it is obvious that the confidence intervals for both models are similar and
the prediction results are having similar trend. Correlation distance is applied as
distance measurement for kNN method. Figure 3.44 represents the comparisons
between the kNN experiment and the ARMA(1,1) model for component FME and
DB1. From Subfigures 3.44a 3.44c 3.44e 3.44g, prediction results of two models
for component FME is relatively good since the average prediction prices are very
close to the real closing prices. It is also shown that, when “history” part is longer,
the kNN experiment improves its performance of prediction while the ARMA(1,1)
gives a worse prediction when “history” part is longer. However, for component
DB1, the Subfigures 3.44b 3.44d 3.44f 3.44h show that the prediction results for
both methods are quite bad. They failed to predict the trends of the real closing
prices since the predicted prices have upward trend when the real closing prices
have downward trend. The prediction results of two methods are quite similar and
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Figure 3.39: Graph of variance of predicted log–return factors against time
for selected components of financial sectors of FTSE100 index when k = 60,
“present” fragment has length 60 and “future” fragment has length 40 (Cosine
Similarity). The name of component is presented on the last variance and the
thick black line represents the average variance of these factors of selected com-

ponents.

the confidence intervals are almost the same except for several specific length of
“history” part, the confidence interval is relatively wide in the end. Cosine similar-
ity is then applied as distance measurement for the kNN experiment. Figure 3.45
represents the comparison between prediction results of the kNN experiment and
the ARMA(1,1) model. For component FME, Subfigures 3.45a 3.45c 3.45e 3.45g
show that average predicted closing prices from the kNN experiment have similar
trend as the trend of real closing prices and the longer the “history” part is, the
better quality of the prediction. The ARMA(1,1) model has slightly worse pre-
diction results than the kNN experiment since when real prices have an upward
trend, the ARMA(1,1) model predicted prices have a horizontal trend. The Sub-
figures 3.45b 3.45d 3.45f 3.45h represents the comparison results for component
DB1. These results give bad prediction since the predicted prices have upward
trend while the real prices have downward trend. Almost all real prices lie outside
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(a) “high variance” case (b) “average variance” case

(c) “small variance” case (d) Variance Plot

Figure 3.40: 95% Confidence interval of predicted price and real price plots of
“present” and “future” for k = 60, present fragment length 60, future fragment
length 40 for selected “high variance”, “average variance” and “high variance”
components (Cosine Similarity) for financial sectors experiment of FTSE100 in-
dex. Variance of predicted log–return factors against time for these components

plot is shown in the end.

the 95% confidence intervals. Hence for this component, both models failed to
predict the “future” part closing prices. By looking at the results of comparisons
for selected components with 4 distance measurements for the kNN experiment,
it is clear that for all various distance types, for component FME, an example of
“good” results, both the kNN experiment and the ARMA(1,1) model have good
prediction and successfully predict the trend of the real closing prices. Almost all
real prices lie within the 95% confidence interval and the average predicted prices
of the kNN experiment and the ARMA(1,1) predicted prices are very close. For
component DB1, an example of “bad” results, both the kNN experiment and the
ARMA(1,1) have bad prediction and they cannot predict the closing prices of “fu-
ture” part. Almost all real prices lie outside the 95% confidence interval. By mean-
ing of changing the distance measurement, experiment using Euclidean distance
and City block distance have similar results. The average predicted prices have
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Figure 3.41: Graph of DAX index closing price against time for the
ARMA(1,1) model comparison experiment

slightly worse performance but the confidence interval is relatively narrower. Ex-
periment using Correlation distance and Cosine similarity, the average predicted
prices have slightly better performance but the confidence interval is relatively
wider. Overall, by looking at comparison results for all 30 components, the results
of the kNN experiment are similar to the ARMA(1,1) model. Hence it can be con-
cluded that for these components, the kNN experiment could predict some future
closing prices and therefore this experiment has checked that the history contains
some information about future closing prices.

3.5 The application of the Lorenz attractor in the

kNN experiment

Random initial conditions are used to solve the system of differential equations
and the solutions of the Lorenz system are computed for t ∈ [0, 1000] with step
size 0.5. In Figure 3.46, the solutions of the Lorenz attractor with random initial
conditions for t ∈ [0, 1000] with step size 0.5 are computed. These figures have
general similar shape to our example in Figure 3.4. The figures are less smooth
since we set a larger step size. Figure 3.47 are the solutions of the Lorenz attractor
against time. There exists oscillation phenomenon for all three solutions and no
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(a) 25% “history” FME (b) 25% “history” DB1

(c) 50% “history” FME (d) 50% “history” DB1

(e) 75% “history” FME (f) 75% “history” DB1

(g) 100% “history” FME (h) 100% “history” DB1

Figure 3.42: 95% Confidence interval comparison between the ARMA(1,1)
and the kNN experiment (Euclidean Distance) for component FME (all LEFT

figures) and DB1 (all RIGHT figures)
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(a) 25% “history” FME (b) 25% “history” DB1

(c) 50% “history” FME (d) 50% “history” DB1

(e) 75% “history” FME (f) 75% “history” DB1

(g) 100% “history” FME (h) 100% “history” DB1

Figure 3.43: 95% Confidence interval comparison between the ARMA(1,1)
and the kNN experiment (City block Distance) for component FME (all LEFT

figures) and DB1 (all RIGHT figures)
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(a) 25% “history” FME (b) 25% “history” DB1

(c) 50% “history” FME (d) 50% “history” DB1

(e) 75% “history” FME (f) 75% “history” DB1

(g) 100% “history” FME (h) 100% “history” DB1

Figure 3.44: 95% Confidence interval comparison between the ARMA(1,1)
and the kNN experiment (Correlation Distance) for component FME (all LEFT

figures) and DB1 (all RIGHT figures)
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(a) 25% “history” FME (b) 25% “history” DB1

(c) 50% “history” FME (d) 50% “history” DB1

(e) 75% “history” FME (f) 75% “history” DB1

(g) 100% “history” FME (h) 100% “history” DB1

Figure 3.45: 95% Confidence interval comparison between the ARMA(1,1)
and the kNN experiment (Cosine Similarity) for component FME (all LEFT

figures) and DB1 (all RIGHT figures)
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Figure 3.46: The Lorenz attractor with random initial conditions for t ∈
[0, 1000] with step size 0.5.
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(c) Z(t) against time

Figure 3.47: The Lorenz attractor against time with random initial conditions
for t ∈ [0, 1000] with step size 0.5.

clear trend is discovered. The solution X(t) is roughly oscillating between −15

and 15; the solution Y (t) is roughly oscillating between −20 and 20; the solution
Z(t) is roughly oscillating between 10 and 40. Among these 3 solutions, Z(t) has
better trend than the other two solutions. Hence, the prediction result for Z(t) is
expected to be better than the other two solutions. To visualize the change in the
results for different k and αε, plots of average RMSE and standard deviations are
computed. The level of noise αε is chosen between 0 and 0.2 with step size 0.05. In
this section, we use average RMSE against time steps plot and average standard
deviation against ‘future’ time plot to visualize the kNN experiment result. For
different k and αε, we would like to discuss the changes in kNN results.

3.5.0.1 The average relative means square error

RMSE measures the relative the kNN experiment prediction accuacy for every
‘window’ in our test set (i.e. there are 960 ‘windows’ prediction in test set,
(21, 22, . . . , 40), (22, 23, . . . , 41), . . . , (981, 982, . . . , 1000)). Average RMSE
measures the average prediction accuacy and this gives us information on how
the average changes for different k (i.e. k = 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100).
Figure 3.48, Figure 3.49 and Figure 3.50 are average RMSE plots against time
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(a) k = 1 (b) k = 10 (c) k = 20

(d) k = 30 (e) k = 40 (f) k = 50

(g) k = 60 (h) k = 70 (i) k = 80

(j) k = 90 (k) k = 100

Figure 3.48: Average RMSE of all k predictions against ∆t (change in time
step) for solution X(t).

step for solution X(t), Y (t) and Z(t). In general, the average RMSE plots of
each solution for different αε are almost identical. When αε is higher, the
amplitude of average RMSE is higher. Comparing with the average RMSE across
all solution, it is clear that the average RMSEs for solution X(t) and Y (t) are
similar and they are much higher than the average RMSE for solution Z(t) (i.e.
all average RMSE for Z(t) are less than 0.45). The average RMSE for all
solutions are having oscillating trend. For plots when k = 1, the average RMSE
plots have larger peaks for some values. In other words, the kNN experiment
results can be very good or very bad when k = 1. When k increases to 100, the
average RMSE plots have smaller peaks but the trend is similar to the average
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(a) k = 1 (b) k = 10 (c) k = 20

(d) k = 30 (e) k = 40 (f) k = 50

(g) k = 60 (h) k = 70 (i) k = 80

(j) k = 90 (k) k = 100

Figure 3.49: Average RMSE of all k predictions against ∆t (change in time
step) for solution Y (t).

RMSE when k = 1. The distribution of average RMSE for all k for all solutions
are represented in Figure 3.51. It is easy to see that the mean values of average
RMSE for each solution for all k are similar. But the tails of boxplots are
converge to some values when k → 100. For X(t) and Y (t), the values Q1 and Q3

converge as k increases while for Z(t), the values Q1 and Q3 are generally similar.
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(a) k = 1 (b) k = 10 (c) k = 20

(d) k = 30 (e) k = 40 (f) k = 50

(g) k = 60 (h) k = 70 (i) k = 80

(j) k = 90 (k) k = 100

Figure 3.50: Average RMSE of all k predictions against ∆t (change in time
step) for solution Z(t).

3.5.0.2 The average standard deviation

Standard deviations calculated in this experiment measure the spread of prediction
at a specific day for all ‘window’. The average standard deviation is the mean of k
standard deviations. Figure 3.52, Figure 3.53 and Figure 3.54 contain the standard
deviations of real ‘future’ and average standard deviations of k predicted future.
By comparing the standard deviation of real ‘future’ with the average standard
deviation of k predicted future, it seems that solution X(t) has the most similar
standard deviation. For solution X(t), when k = 1 we have an oscillation of
average standard deviation with a horizontal trend. The oscillation amplitude is
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slightly reduced as k → 100. It is interesting to see that there is a sharp increase at
date 20. For solution Y (t), the predicted average standard deviations are generally
smaller than the standard deviations of real ‘future’. When k = 1, the average
standard deviations have a generally decreasing trend and at date 20, there is a
sharp peak. As k → 100, the average standard deviations have horizontal trend
and they have oscillations and the amplitudes are similar. For solution Z(t),
the average standard deviation predictions are generally higher than the standard
deviation of real ‘future’. For k = 1, there is an uptrend and at date 20, a peak
forms. When k → 100, the average standard deviations converge to a parabola
with a high peak in the end.

3.6 Conclusion

A new approach of time series predictability method using kNN algorithm is for-
mulated and different experiments have been performed based on this idea. For
“present” time frame daily log–returns, k nearest neighbors are searched by apply-
ing kNN algorithm from a set of “history” time frame. These nearest neighbors are
treated as the log–returns for “future”. This approach also uses ideas of dynami-
cal system to reconstruct the “future” closing prices from these nearest neighbors.
For different experiments, extreme cases analysis are analyzed. All DAX index
components are used in the following experiments. In the whole experiment, the
prediction results of experiments using Euclidean distance and correlation distance
are relatively better than the results of experiments using City Block distance and
cosine similarity. While the variances of log–returns of “future” part time series
when using correlation distance and cosine similarity are higher than using Eu-
clidean distance and City Block distances. Then we use the component itself
only to construct sets of time frames in “history” part, the prediction results are
slightly worse than the whole experiment but the prediction results are not com-
pletely random. This makes sense since when a better k nearest neighbors could
be searched within a larger set of “history” time frames. The financial sector ex-
periment uses the financial sector components as “history” and search k nearest
neighbors of financial sector components only. The results of the financial sec-
tor experiment are quite similar to the results of individual experiments. The
average predicted prices are similar but for the component with relatively high
variance, the predicted prices are similar but the confidence interval is narrower.
Comparing with the financial sector and individual experiment, it is obviously
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that a smaller “history” set is used to achieve a similar result. Hence, the choice
of “history” part is important in the kNN experiment. The kNN experiment of
the financial sector is performed with selected components of FTSE100 from the
financial sector such as banks, financial services etc. Compared to the DAX in-
dex financial sector experiment, more components are selected for FTSE100 index
financial sector experiment. The results show that the for all distances and simi-
larity measurement, the prediction results are relatively good since almost all real
prices are within the confidence interval. The trend of predicted prices is closer to
the trend of real prices. Therefore, selection of “history” is again playing a key role
in this experiment. Hence, this approach of modeling and prediction using kNN
works for ergodic dynamic systems. Comparison between the ARMA(1,1) model
and kNN whole experiment shows that the prediction results are similar for the
chosen components. The results also show that, when the ARMA(1,1) model has
bad prediction results, the kNN experiment would have a bad prediction as well.
Hence, some evidence could be concluded that this approach of using kNN is able
to predict the random processes generated by using the ARMA model. Hence, we
can conclude that using this kNN method, it shows that this approach works using
data generated from the ARMA model. Since the nearest neighbor of a random
process is simply a random process. Hence, it can conclude that this approach
works for random process. This kNN historical Monte Carlo approach can be used
to model or predict the daily log–returns. This algorithm is model free and the
computation is relatively easy. In general, this method would predict ergodic time
series if historical price time series is ergodic and this method predicts random
process if historical prices are in a random process (i.e. white noise). However,
optimization of parameters can be an interesting question to ask, i.e. values of
k, the length of “present” and “future” part. The choice of “history” would be
another interesting question to ask since kNN has limitation in storage of all dis-
tances between each point. Data generated from the Lorenz attractor with noise
and random initial conditions are used in our kNN experiment with Euclidean
distance. The Lorenz attractor is a deterministic system and the ‘future’ can be
predicted. Our kNN experiment can find the k nearest neighbor predictions and
for k = 1, the nearest neighbor case, we may still have some accurate predictions
with small average RMSE. When k → 100, the average RMSEs converge and the
average standard deviation converge. This implies the convergence property of
kNN as the density function converges when k → ∞ and n → ∞. From average
standard deviation results, a sharp peak exists at the end. It may suggest that
there is a limitation on how long can we predict for a fixed ‘present’ (i.e. if we
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have ‘present’ length of 20, the prediction power of ‘future’ length of more than
20 is weak).
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(a) X(t), αε = 0 (b) Y (t), αε = 0 (c) Z(t), αε = 0

(d) X(t), αε = 0.05 (e) Y (t), αε = 0.05 (f) Z(t), αε = 0.05

(g) X(t), αε = 0.1 (h) Y (t), αε = 0.1 (i) Z(t), αε = 0.1

(j) X(t), αε = 0.15 (k) Y (t), αε = 0.15 (l) Z(t), αε = 0.15

(m) X(t), αε = 0.2 (n) Y (t), αε = 0.2 (o) Z(t), αε = 0.2

Figure 3.51: Boxplots of average RMSE for all k for different solution and
different αε.
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(a) Real ‘future’ (b) k = 1 (c) k = 10

(d) k = 20 (e) k = 30 (f) k = 40

(g) k = 50 (h) k = 60 (i) k = 70

(j) k = 80 (k) k = 90 (l) k = 100

Figure 3.52: Standard deviation of all ‘windows’ real ‘future’ data and average
of k prediction SD of all ‘windows’ against ‘future’ time t for solution X(t).
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(a) Real ‘future’ (b) k = 1 (c) k = 10

(d) k = 20 (e) k = 30 (f) k = 40

(g) k = 50 (h) k = 60 (i) k = 70

(j) k = 80 (k) k = 90 (l) k = 100

Figure 3.53: Standard deviation of all ‘windows’ real ‘future’ data and average
of k prediction SD of all ‘windows’ against ‘future’ time t for solution Y (t).
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(a) Real ‘future’ (b) k = 1 (c) k = 10

(d) k = 20 (e) k = 30 (f) k = 40

(g) k = 50 (h) k = 60 (i) k = 70

(j) k = 80 (k) k = 90 (l) k = 100

Figure 3.54: Standard deviation of all ‘windows’ real ‘future’ data and average
of k prediction SD of all ‘windows’ against ‘future’ time t for solution Z(t).



Chapter 4

Conclusion and future direction

In this thesis, applications of kNN rule in stock and share time series are studied.
We aim to develop approaches using kNN rule to analyze the predictability of
this time series and approaches using kNN to model and predict stock and share
time series. We believe that there are 2 assumptions of the markets. The first as-
sumption believes that ‘history repeats itself’ which means historical prices have
information on future prices. Hence, the market is profitable by applying indica-
tors and methods from technical analysis. The second assumption the market is
efficient and it is not possible to gain profits by using historical prices. This is the
idea of EMH and this contradicts the first assumption that with this assumption,
the prices are random. In Chapter 2, the components of four market indices are
labeled with ‘winner’ or ‘loser’ based on the ordering strategy we created. We
consider the prices of initial 3 months and last 3 months and compute the average
prices and average price ratios. Then we reorder the components with descend-
ing order of average price ratios and label the first 1/3 to be ‘winner’ and last
‘loser’. From the result of LOOCV error analysis, the LOOCV errors for compo-
nents of HANGSENG index and DAX index are lower. Hence, it concludes that
components of HANGSENG and DAX indices have positive predictability. And it
further implies that technical analysis could be applied and have a higher possi-
bility to gain profit. The LOOCV errors for FTSE and NASDAQ index are much
higher. This could mean that the market prices are independent in terms of long
term success and therefore it further implies that they are efficient markets. The
2–D and 3–D principal manifold graphs generated from VidaExpert show that
for HANGSENG and DAX index, the ‘winner’ and ‘loser’ components are well
separated and clusters are formed. For NASDAQ and FTSE index, there is no
sign of separation on the manifold plots. Therefore, it can be concluded that for a
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young market as HANGSENG and DAX index, there are positive predictabilities
and technical analysis could be applied to obtain a high possibility of profit. For
mature markets as NASDAQ and FTSE index, the markets are efficient and there
is no predictability in terms of long–term success. Since clusters of ‘winner’ and
‘loser’ are shown in the principal manifold graphs, an interesting future research
direction based on this would be cluster analysis on components that are closed
together for positive predictability time series. There may be a link between the
structure of cluster with predictability and it is interesting to study on this ques-
tion. The distance ratio between centroid of ‘winner’ and ‘loser’ can be studied
in relation with the length of time interval chosen in the beginning to optimize
our results. In Chapter 3, we aimed to develop a kNN–based universal indicator
for both ergodic dynamic system (under the assumption of technical analysis) and
random process (under the assumption of EMH). Daily log–returns are computed
from closing prices. The log–returns time series is split into 3 parts, “history” part,
“present” part and “future” part. The training set is constructed from “history”
part from a set of shifted time frames of “history” part time series. k nearest
neighbors of “present” part is searched from this training set and these are con-
sidered as predicted “future” part log–return factors. The log–return factors are
then transformed back to closing prices to construct the predicted “future” part
time series. The data are closing prices of DAX index components and FTSE100
index components from financial sectors. The different experiment uses a slightly
different training set to search for nearest neighbors. For a preset k = 60, “present”
part length is 60 and “future” part length is 40, the kNN experiment with training
set from whole experiment have better prediction results. For FTSE100 compo-
nents from financial sectors, the prediction results are ok. Four measurements of
distances are applied for all experiments. It shows that the results of Euclidean
distance and City Block distance are similar. The results of experiments using
correlation distance and cosine similarity are similar. In general, the Euclidean
distance and City Block distance results have better confidence interval while the
correlation distance and cosine similarity gives a better average prediction prices.
At this stage, by analyzing 3 extreme cases, our approach work well for ergodic
dynamic system time series. Hence, we conclude that the historical prices contain
information on future prices and this approaches works in a predictable market,
or ‘world of technical analysis’. In the end, the ARMA(1, 1) model is applied and
the prediction results are compared with the kNN experiment. From the graphs,
the predicted closing prices and confidence intervals are quite similar. Hence, this
would indicate that our kNN approach works for stationary time series and it
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indicates that this approach also works for random process or ‘world of EMH’.

Data generated from the Lorenz attractor with Gaussian noise are used for the
kNN experiment. The test set and training set are chosen and sliding window
strategy is applied on test set and training set. k nearest neighbors are computed
and the next ‘window’ is used as the prediction for ‘future’. For each solution, the
k nearest neighbors are computed for each ‘window’ and they are chosen from the
‘history’ part of each solution. Average RMSE is used to measure the error between
the predicted values and real values. From the results, it shows that different level
of noise does not make many differences in average RMSE and when k → 100, the
average RMSE values converge. When k = 1, average RMSE can be very small.
The prediction for solution Z(t) is best overall. Average standard deviations are
applied to measure the spread of predictions for all ‘windows’. There is a peak in
the end for all three cases and this would show that there is a limit of prediction
power. This would imply that the ‘future’ time ‘window’ lengths should not be
larger than the ‘window’ length. When k → ∞, the average standard deviations
converge. This can be explained as the convergence property of kNN.

A good extension of the question could be the optimization of parameters for kNN
approach. Five parameters are used in theKNN experiment (i.e. k, the measure of
distance, choice of “history” part, “present” part length and “future” part length).
The methods to developed a best k can be studied since kNN has a lack of storage
of distance. Since for longer lengths of “future” part, in our experiment, the results
are not getting better and the variances of log–return factors seem to converge.
Another interesting extension could be using modified nearest neighbor techniques
to fight against the limitation of kNN and apply weights on kNN to solve the border
issue.
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(a) 25% “history” ADS (b) 25% “history” ALV

(c) 50% “history” ADS (d) 50% “history” ALV

(e) 75% “history” ADS (f) 75% “history” ALV

(g) 100% “history” ADS (h) 100% “history” ALV

Figure A.1: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component ADS (all LEFT figures)

and ALV (all RIGHT figures)



Appendix of rest of plots for comparison between kNN approach and ARMA(1,1)
model (Euclidean Distance) 122

(a) 25% “history” BAS (b) 25% “history” BAYN

(c) 50% “history” BAS (d) 50% “history” BAYN

(e) 75% “history” BAS (f) 75% “history” BAYN

(g) 100% “history” BAS (h) 100% “history” BAYN

Figure A.2: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component BAS (all LEFT figures)

and BAYN (all RIGHT figures)
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(a) 25% “history” BEI (b) 25% “history” BMW

(c) 50% “history” BEI (d) 50% “history” BMW

(e) 75% “history” BEI (f) 75% “history” BMW

(g) 100% “history” BEI (h) 100% “history” BMW

Figure A.3: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component BEI (all LEFT figures)

and BMW (all RIGHT figures)
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(a) 25% “history” CBK (b) 25% “history” CON

(c) 50% “history” CBK (d) 50% “history” CON

(e) 75% “history” CBK (f) 75% “history” CON

(g) 100% “history” CBK (h) 100% “history” CON

Figure A.4: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component CBK (all LEFT figures)

and CON (all RIGHT figures)
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(a) 25% “history” DAI (b) 25% “history” DBK

(c) 50% “history” DAI (d) 50% “history” DBK

(e) 75% “history” DAI (f) 75% “history” DBK

(g) 100% “history” DAI (h) 100% “history” DBK

Figure A.5: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component DAI (all LEFT figures)

and DBK (all RIGHT figures)
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(a) 25% “history” DPW (b) 25% “history” DTE

(c) 50% “history” DPW (d) 50% “history” DTE

(e) 75% “history” DPW (f) 75% “history” DTE

(g) 100% “history” DPW (h) 100% “history” DTE

Figure A.6: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component DPW (all LEFT figures)

and DTE (all RIGHT figures)
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(a) 25% “history” EOAN (b) 25% “history” FRE

(c) 50% “history” EOAN (d) 50% “history” FRE

(e) 75% “history” EOAN (f) 75% “history” FRE

(g) 100% “history” EOAN (h) 100% “history” FRE

Figure A.7: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component EOAN (all LEFT figures)

and FRE (all RIGHT figures)
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(a) 25% “history” HEI (b) 25% “history” HEN3

(c) 50% “history” HEI (d) 50% “history” HEN3

(e) 75% “history” HEI (f) 75% “history” HEN3

(g) 100% “history” HEI (h) 100% “history” HEN3

Figure A.8: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component HEI (all LEFT figures)

and HEN3 (all RIGHT figures)
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(a) 25% “history” IFX (b) 25% “history” LHA

(c) 50% “history” IFX (d) 50% “history” LHA

(e) 75% “history” IFX (f) 75% “history” LHA

(g) 100% “history” IFX (h) 100% “history” LHA

Figure A.9: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component IFX (all LEFT figures)

and LHA (all RIGHT figures)
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(a) 25% “history” LIN (b) 25% “history” LXS

(c) 50% “history” LIN (d) 50% “history” LXS

(e) 75% “history” LIN (f) 75% “history” LXS

(g) 100% “history” LIN (h) 100% “history” LXS

Figure A.10: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component LIN (all LEFT figures)

and LXS (all RIGHT figures)
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(a) 25% “history” MRK (b) 25% “history” MUV2

(c) 50% “history” MRK (d) 50% “history” MUV2

(e) 75% “history” MRK (f) 75% “history” MUV2

(g) 100% “history” MRK (h) 100% “history” MUV2

Figure A.11: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component MRK (all LEFT figures)

and MUV2 (all RIGHT figures)
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(a) 25% “history” RWE (b) 25% “history” SAP

(c) 50% “history” RWE (d) 50% “history” SAP

(e) 75% “history” RWE (f) 75% “history” SAP

(g) 100% “history” RWE (h) 100% “history” SAP

Figure A.12: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component RWE (all LEFT figures)

and SAP (all RIGHT figures)
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(a) 25% “history” SDF (b) 25% “history” SIE

(c) 50% “history” SDF (d) 50% “history” SIE

(e) 75% “history” SDF (f) 75% “history” SIE

(g) 100% “history” SDF (h) 100% “history” SIE

Figure A.13: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component SDF (all LEFT figures)

and SIE (all RIGHT figures)



Appendix of rest of plots for comparison between kNN approach and ARMA(1,1)
model (Euclidean Distance) 134

(a) 25% “history” TKA (b) 25% “history” VOW3

(c) 50% “history” TKA (d) 50% “history” VOW3

(e) 75% “history” TKA (f) 75% “history” VOW3

(g) 100% “history” TKA (h) 100% “history” VOW3

Figure A.14: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component TKA (all LEFT figures)

and VOW3 (all RIGHT figures)
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(a) 25% “history” ADS (b) 25% “history” ALV

(c) 50% “history” ADS (d) 50% “history” ALV

(e) 75% “history” ADS (f) 75% “history” ALV

(g) 100% “history” ADS (h) 100% “history” ALV

Figure B.1: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component ADS (all LEFT figures)

and ALV (all RIGHT figures)
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(a) 25% “history” BAS (b) 25% “history” BAYN

(c) 50% “history” BAS (d) 50% “history” BAYN

(e) 75% “history” BAS (f) 75% “history” BAYN

(g) 100% “history” BAS (h) 100% “history” BAYN

Figure B.2: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component BAS (all LEFT figures)

and BAYN (all RIGHT figures)
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(a) 25% “history” BEI (b) 25% “history” BMW

(c) 50% “history” BEI (d) 50% “history” BMW

(e) 75% “history” BEI (f) 75% “history” BMW

(g) 100% “history” BEI (h) 100% “history” BMW

Figure B.3: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component BEI (all LEFT figures)

and BMW (all RIGHT figures)
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(a) 25% “history” CBK (b) 25% “history” CON

(c) 50% “history” CBK (d) 50% “history” CON

(e) 75% “history” CBK (f) 75% “history” CON

(g) 100% “history” CBK (h) 100% “history” CON

Figure B.4: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component CBK (all LEFT figures)

and CON (all RIGHT figures)
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(a) 25% “history” DAI (b) 25% “history” DBK

(c) 50% “history” DAI (d) 50% “history” DBK

(e) 75% “history” DAI (f) 75% “history” DBK

(g) 100% “history” DAI (h) 100% “history” DBK

Figure B.5: 95% confidence interval comparison between ARMA(1,1) and kNN
experiment (City Block Distance) for component DAI (all LEFT figures) and

DBK (all RIGHT figures)
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(a) 25% “history” DPW (b) 25% “history” DTE

(c) 50% “history” DPW (d) 50% “history” DTE

(e) 75% “history” DPW (f) 75% “history” DTE

(g) 100% “history” DPW (h) 100% “history” DTE

Figure B.6: 95% confidence interval comparison between ARMA(1,1) and kNN
experiment (City Block Distance) for component DPW (all LEFT figures) and

DTE (all RIGHT figures)
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(a) 25% “history” EOAN (b) 25% “history” FRE

(c) 50% “history” EOAN (d) 50% “history” FRE

(e) 75% “history” EOAN (f) 75% “history” FRE

(g) 100% “history” EOAN (h) 100% “history” FRE

Figure B.7: 95% confidence interval comparison between ARMA(1,1) and kNN
experiment (City Block Distance) for component EOAN (all LEFT figures) and

FRE (all RIGHT figures)
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(a) 25% “history” HEI (b) 25% “history” HEN3

(c) 50% “history” HEI (d) 50% “history” HEN3

(e) 75% “history” HEI (f) 75% “history” HEN3

(g) 100% “history” HEI (h) 100% “history” HEN3

Figure B.8: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component HEI (all LEFT figures)

and HEN3 (all RIGHT figures)
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(a) 25% “history” IFX (b) 25% “history” LHA

(c) 50% “history” IFX (d) 50% “history” LHA

(e) 75% “history” IFX (f) 75% “history” LHA

(g) 100% “history” IFX (h) 100% “history” LHA

Figure B.9: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component IFX (all LEFT figures)

and LHA (all RIGHT figures)
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(a) 25% “history” LIN (b) 25% “history” LXS

(c) 50% “history” LIN (d) 50% “history” LXS

(e) 75% “history” LIN (f) 75% “history” LXS

(g) 100% “history” LIN (h) 100% “history” LXS

Figure B.10: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component LIN (all LEFT figures)

and LXS (all RIGHT figures)
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(a) 25% “history” MRK (b) 25% “history” MUV2

(c) 50% “history” MRK (d) 50% “history” MUV2

(e) 75% “history” MRK (f) 75% “history” MUV2

(g) 100% “history” MRK (h) 100% “history” MUV2

Figure B.11: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component MRK (all LEFT figures)

and MUV2 (all RIGHT figures)
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(a) 25% “history” RWE (b) 25% “history” SAP

(c) 50% “history” RWE (d) 50% “history” SAP

(e) 75% “history” RWE (f) 75% “history” SAP

(g) 100% “history” RWE (h) 100% “history” SAP

Figure B.12: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component RWE (all LEFT figures)

and SAP (all RIGHT figures)
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(a) 25% “history” SDF (b) 25% “history” SIE

(c) 50% “history” SDF (d) 50% “history” SIE

(e) 75% “history” SDF (f) 75% “history” SIE

(g) 100% “history” SDF (h) 100% “history” SIE

Figure B.13: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component SDF (all LEFT figures)

and SIE (all RIGHT figures)
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(a) 25% “history” TKA (b) 25% “history” VOW3

(c) 50% “history” TKA (d) 50% “history” VOW3

(e) 75% “history” TKA (f) 75% “history” VOW3

(g) 100% “history” TKA (h) 100% “history” VOW3

Figure B.14: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (City Block Distance) for component TKA (all LEFT figures)

and VOW3 (all RIGHT figures)
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(a) 25% “history” ADS (b) 25% “history” ALV

(c) 50% “history” ADS (d) 50% “history” ALV

(e) 75% “history” ADS (f) 75% “history” ALV

(g) 100% “history” ADS (h) 100% “history” ALV

Figure C.1: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component ADS (all LEFT figures)

and ALV (all RIGHT figures)
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(a) 25% “history” BAS (b) 25% “history” BAYN

(c) 50% “history” BAS (d) 50% “history” BAYN

(e) 75% “history” BAS (f) 75% “history” BAYN

(g) 100% “history” BAS (h) 100% “history” BAYN

Figure C.2: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component BAS (all LEFT figures)

and BAYN (all RIGHT figures)
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(a) 25% “history” BEI (b) 25% “history” BMW

(c) 50% “history” BEI (d) 50% “history” BMW

(e) 75% “history” BEI (f) 75% “history” BMW

(g) 100% “history” BEI (h) 100% “history” BMW

Figure C.3: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component BEI (all LEFT figures)

and BMW (all RIGHT figures)
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(a) 25% “history” CBK (b) 25% “history” CON

(c) 50% “history” CBK (d) 50% “history” CON

(e) 75% “history” CBK (f) 75% “history” CON

(g) 100% “history” CBK (h) 100% “history” CON

Figure C.4: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component CBK (all LEFT figures)

and CON (all RIGHT figures)
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(a) 25% “history” DAI (b) 25% “history” DBK

(c) 50% “history” DAI (d) 50% “history” DBK

(e) 75% “history” DAI (f) 75% “history” DBK

(g) 100% “history” DAI (h) 100% “history” DBK

Figure C.5: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component DAI (all LEFT figures)

and DBK (all RIGHT figures)
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(a) 25% “history” DPW (b) 25% “history” DTE

(c) 50% “history” DPW (d) 50% “history” DTE

(e) 75% “history” DPW (f) 75% “history” DTE

(g) 100% “history” DPW (h) 100% “history” DTE

Figure C.6: 95% confidence interval comparison between ARMA(1,1) and kNN
experiment (Correlation Distance) for component DPW (all LEFT figures) and

DTE (all RIGHT figures)
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(a) 25% “history” EOAN (b) 25% “history” FRE

(c) 50% “history” EOAN (d) 50% “history” FRE

(e) 75% “history” EOAN (f) 75% “history” FRE

(g) 100% “history” EOAN (h) 100% “history” FRE

Figure C.7: 95% confidence interval comparison between ARMA(1,1) and kNN
experiment (Correlation Distance) for component EOAN (all LEFT figures) and

FRE (all RIGHT figures)
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(a) 25% “history” HEI (b) 25% “history” HEN3

(c) 50% “history” HEI (d) 50% “history” HEN3

(e) 75% “history” HEI (f) 75% “history” HEN3

(g) 100% “history” HEI (h) 100% “history” HEN3

Figure C.8: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component HEI (all LEFT figures)

and HEN3 (all RIGHT figures)
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(a) 25% “history” IFX (b) 25% “history” LHA

(c) 50% “history” IFX (d) 50% “history” LHA

(e) 75% “history” IFX (f) 75% “history” LHA

(g) 100% “history” IFX (h) 100% “history” LHA

Figure C.9: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component IFX (all LEFT figures)

and LHA (all RIGHT figures)
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(a) 25% “history” LIN (b) 25% “history” LXS

(c) 50% “history” LIN (d) 50% “history” LXS

(e) 75% “history” LIN (f) 75% “history” LXS

(g) 100% “history” LIN (h) 100% “history” LXS

Figure C.10: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component LIN (all LEFT figures)

and LXS (all RIGHT figures)
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(a) 25% “history” MRK (b) 25% “history” MUV2

(c) 50% “history” MRK (d) 50% “history” MUV2

(e) 75% “history” MRK (f) 75% “history” MUV2

(g) 100% “history” MRK (h) 100% “history” MUV2

Figure C.11: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component MRK (all LEFT figures)

and MUV2 (all RIGHT figures)
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(a) 25% “history” RWE (b) 25% “history” SAP

(c) 50% “history” RWE (d) 50% “history” SAP

(e) 75% “history” RWE (f) 75% “history” SAP

(g) 100% “history” RWE (h) 100% “history” SAP

Figure C.12: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component RWE (all LEFT figures)

and SAP (all RIGHT figures)
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(a) 25% “history” SDF (b) 25% “history” SIE

(c) 50% “history” SDF (d) 50% “history” SIE

(e) 75% “history” SDF (f) 75% “history” SIE

(g) 100% “history” SDF (h) 100% “history” SIE

Figure C.13: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component SDF (all LEFT figures)

and SIE (all RIGHT figures)
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(a) 25% “history” TKA (b) 25% “history” VOW3

(c) 50% “history” TKA (d) 50% “history” VOW3

(e) 75% “history” TKA (f) 75% “history” VOW3

(g) 100% “history” TKA (h) 100% “history” VOW3

Figure C.14: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Correlation Distance) for component TKA (all LEFT figures)

and VOW3 (all RIGHT figures)
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(a) 25% “history” ADS (b) 25% “history” ALV

(c) 50% “history” ADS (d) 50% “history” ALV

(e) 75% “history” ADS (f) 75% “history” ALV

(g) 100% “history” ADS (h) 100% “history” ALV

Figure D.1: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component ADS (all LEFT figures) and

ALV (all RIGHT figures)
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(a) 25% “history” BAS (b) 25% “history” BAYN

(c) 50% “history” BAS (d) 50% “history” BAYN

(e) 75% “history” BAS (f) 75% “history” BAYN

(g) 100% “history” BAS (h) 100% “history” BAYN

Figure D.2: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Euclidean Distance) for component BAS (all LEFT figures)

and BAYN (all RIGHT figures)
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(a) 25% “history” BEI (b) 25% “history” BMW

(c) 50% “history” BEI (d) 50% “history” BMW

(e) 75% “history” BEI (f) 75% “history” BMW

(g) 100% “history” BEI (h) 100% “history” BMW

Figure D.3: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component BEI (all LEFT figures) and

BMW (all RIGHT figures)
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(a) 25% “history” CBK (b) 25% “history” CON

(c) 50% “history” CBK (d) 50% “history” CON

(e) 75% “history” CBK (f) 75% “history” CON

(g) 100% “history” CBK (h) 100% “history” CON

Figure D.4: 95% Confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component CBK (all LEFT figures)

and CON (all RIGHT figures)
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(a) 25% “history” DAI (b) 25% “history” DBK

(c) 50% “history” DAI (d) 50% “history” DBK

(e) 75% “history” DAI (f) 75% “history” DBK

(g) 100% “history” DAI (h) 100% “history” DBK

Figure D.5: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component DAI (all LEFT figures) and

DBK (all RIGHT figures)
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(a) 25% “history” DPW (b) 25% “history” DTE

(c) 50% “history” DPW (d) 50% “history” DTE

(e) 75% “history” DPW (f) 75% “history” DTE

(g) 100% “history” DPW (h) 100% “history” DTE

Figure D.6: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component DPW (all LEFT figures)

and DTE (all RIGHT figures)
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(a) 25% “history” EOAN (b) 25% “history” FRE

(c) 50% “history” EOAN (d) 50% “history” FRE

(e) 75% “history” EOAN (f) 75% “history” FRE

(g) 100% “history” EOAN (h) 100% “history” FRE

Figure D.7: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component EOAN (all LEFT figures)

and FRE (all RIGHT figures)
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(a) 25% “history” HEI (b) 25% “history” HEN3

(c) 50% “history” HEI (d) 50% “history” HEN3

(e) 75% “history” HEI (f) 75% “history” HEN3

(g) 100% “history” HEI (h) 100% “history” HEN3

Figure D.8: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component HEI (all LEFT figures) and

HEN3 (all RIGHT figures)
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(a) 25% “history” IFX (b) 25% “history” LHA

(c) 50% “history” IFX (d) 50% “history” LHA

(e) 75% “history” IFX (f) 75% “history” LHA

(g) 100% “history” IFX (h) 100% “history” LHA

Figure D.9: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component IFX (all LEFT figures) and

LHA (all RIGHT figures)
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(a) 25% “history” LIN (b) 25% “history” LXS

(c) 50% “history” LIN (d) 50% “history” LXS

(e) 75% “history” LIN (f) 75% “history” LXS

(g) 100% “history” LIN (h) 100% “history” LXS

Figure D.10: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component LIN (all LEFT figures) and

LXS (all RIGHT figures)
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(a) 25% “history” MRK (b) 25% “history” MUV2

(c) 50% “history” MRK (d) 50% “history” MUV2

(e) 75% “history” MRK (f) 75% “history” MUV2

(g) 100% “history” MRK (h) 100% “history” MUV2

Figure D.11: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component MRK (all LEFT figures)

and MUV2 (all RIGHT figures)
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(a) 25% “history” RWE (b) 25% “history” SAP

(c) 50% “history” RWE (d) 50% “history” SAP

(e) 75% “history” RWE (f) 75% “history” SAP

(g) 100% “history” RWE (h) 100% “history” SAP

Figure D.12: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component RWE (all LEFT figures)

and SAP (all RIGHT figures)
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(a) 25% “history” SDF (b) 25% “history” SIE

(c) 50% “history” SDF (d) 50% “history” SIE

(e) 75% “history” SDF (f) 75% “history” SIE

(g) 100% “history” SDF (h) 100% “history” SIE

Figure D.13: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component SDF (all LEFT figures) and

SIE (all RIGHT figures)
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(a) 25% “history” TKA (b) 25% “history” VOW3

(c) 50% “history” TKA (d) 50% “history” VOW3

(e) 75% “history” TKA (f) 75% “history” VOW3

(g) 100% “history” TKA (h) 100% “history” VOW3

Figure D.14: 95% confidence interval comparison between ARMA(1,1) and
kNN experiment (Cosine Similarity) for component TKA (all LEFT figures)

and VOW3 (all RIGHT figures)
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