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Abstract

Massive convergence of input from olfactory receptor neurons (ORNs) with identical tunings 

leads to spatial integration of sensory signals, thereby boosting sensitivity to sensory cues. 

The consequent reduction in detection thresholds is assumed to derive from the pooling of 

elevated firing rates across the ORN population. By comparing detection thresholds at the 

first two stages of the olfactory pathway in an olfactory specialist, the moth, allowed for the 

quantification of the sensitivity boost achieved during early sensory processing. This boost 

was found to be at least 3 orders of magnitude, which was shown to exceed tha t achieved by 

a theoretical model of spike train integration. The sensitivity enhancement achieved by this 

system therefore goes beyond straightforward spatial summation of receptor firing rates, 

suggesting subtler coding and readout mechanisms.

To discount the possibility of ORNs employing a temporal encoding scheme, an inves­

tigation into spike patterns at the periphery was performed. While no temporal patterns 

were evident, a temporal encoding scheme remains a possibility. Despite the inconclusive 

result found here, the analysis demonstrates the need for an investigation of the stationar- 

ity of spike trains, where a statistical basis underlies the analysis method, before drawing 

conclusions.

Regardless of the encoding scheme employed at the periphery, due to the multitude of 

possible synaptic connections within a glomerulus, it seems unlikely tha t this site of conver­

gence of receptor input would be passive. A simple, but biologically plausible computational 

model was developed, where specific zones of the dendritic tree of an output neuron form



individual subunits capable of performing a nonlinear threshold function on ORN inputs. 

This nonhnear model consistently outperformed a comparable linear model when assessing 

the stimulus detection performance of the output neuron.
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Chapter 1

Introduction

1.1 A im  of the Thesis

The initial aim of this thesis was to investigate the stimulus detection thresholds at the first 

two stages of the olfactory pathway of a moth. As time progressed and results indicated 

a signal boost between these stages that was higher than expected, the aim shifted more 

toward investigating how this boost could be achieved. The main emphasis then transferred 

to the development of a computational model used to explore several possible hypotheses.

1.2 O verview of M oth Olfaction

For many animals, olfactory cues play an important role in various activities, in particular, 

reproduction and the search for food. Moths have been shown to be a useful model for the 

investigation of olfaction, both behaviour ally and using electrophysiology (for reviews see 

Hansson, 1995, 2002; Mustaparta, 1996). Female moths are known to use plant-produced 

odours to determine the suitability of sites for feeding and oviposition (Anderson et al., 1993; 

Anton and Hansson, 1994; Jonsson and Anderson, 1999) while insect-released odours are 

used for con-specific communication, often by means of sexual pheromones (Anderson et al., 

1993; Anton and Hansson, 1994, 1995; Mustaparta, 1996). A stationary female usually 

releases these sex pheromones into the air, and it is the male that must detect and find 

the female by following the odour plume, often over large distances (up to 4000m away

1



for some moths, with favourable environmental and wind conditions (Wilson, 1963)). In 

order to achieve this task, the pheromone detection system of the male moth has developed 

into a highly specialised subsystem of the olfactory pathway (Anton and Hansson, 1995; 

Kalinova et al., 2001; Mankin et al., 1991; Mustaparta, 1996). It is so finely tuned, that the 

olfactory system of Bombyx Mori is thought to require only a single pheromone molecule to 

trigger a nerve impulse in the male (Kaissling, 1971; Kaissling and Priesner, 1970; Minor and 

Kaissling, 2003), and as few as six pheromone molecules reaching the antenna are needed 

to alter the heart beat rhythm of the male Spodoptera littoralis (Angioy et al., 2003). The 

remainder of this chapter provides a brief overview of the moth olfactory system, firom odour 

detection at the antenna, to the first levels of processing in the antennal lobe.

1.2.1 Structure o f  the First Stages of th e  M oth  O lfactory Pathw ay
1.2.1.1 Odour R eception at the Sensilla

The very first stage of moth olfaction occurs in the sensilla, the thousands of tiny hair­

like structures covering the surface of the antennae. It is these sensilla that house the 

neurons capable of detecting odour molecules. Each sensillum generally consists of one or 

more bipolar ORNs at its base, surrounded by supporting cells, the details of which are 

described by Keil (1999). Each ORN consists of a primary (or ciliary) dendrite extending 

into the sensillum, and a long axon, which extends along the antennal nerve and into the 

AL (see Figure 1.1 a)). The surface of each sensillum contains many pores through which 

the odour molecules diffuse. These molecules attach to odorant binding proteins (OBPs) 

that have been hypothesised to transport them through the aqueous sensillum lymph until 

they reach a receptor molecule on the ciliary dendrite (Lerner et al., 1990; Van den Berg 

and Ziegelberger, 1991; see Figure 1.1 b)). Activation of the highly specific receptors causes 

ion channels to open, leading to the generation of a dendritic current, which travels along 

the dendrite to the soma of the ORN. This activation of the receptor site may also cause 

the GBP to change so the odorant can no longer activate the receptor (Kaissling, 1986b;



Kasang, 1973). Enzymes in the sensillum lymph then break down the odour molecules into 

inactive metabolites (see Stengl et al., 1999 for a detailed description of the peri-reception 

process). If the electrical signal received by the soma of an ORN is sufficient to raise the 

membrane potential above a threshold voltage, an action potential (or spike) is generated, 

which then travels down the axon to the AL.

b
Odour Molecules 

Pores I -N.
Cuticle

m mTm m w
Odorant Binding f  Sensillum
Proteins (OBPs) ^  ®  Lymph

Olfactory Ciliary
Receptors Dendrite

Ciliary Dendrite

Pores Sensillum
Cuticle k

Antenna

Supporting Cells
ORN soma

Figure 1.1: Odour reception at the sensilla. a) Close up view of a single sensillum containing 
a single ORN at the base with a single ciliary dendrite extending into the sensillum. The 
surface of the sensillum contains many pores through which odour molecules can pass. 
Supporting cells surround the ORN, but these are not shown in detail. (After Keil and 
Steinbrecht, 1987). b) Schematic diagram of a sensillum. Odour molecules in the air pass 
through the pores into the aqueous sensillum lymph. Here, OBPs attach to the molecules 
and transport them to the ciliary dendrite. The odour molecules bind with receptors on the 
surface of the dendrite. This binding causes an electrical signal to travel along the dendrite 
and into the soma of the ORN. In some cases this binding causes a change in the OBP so it 
can temporarily no longer transport odour molecules to the dendrite. (After Stengl et al., 
1999).

1.2.2 Structure of the Antennal Lobe

From the antenna, the ORN axons travel down the antennal nerve into the ipsilateral AL 

(Hansson et al., 1992; Koontz and Schneider, 1987). The AL consists largely of spheroids 

of tightly packed neuropil (dendritic and axonal branches) known as glomeruli. Moths have 

around 60 of these glomeruli (Rospars, 1983; Rospars and Hildebrand, 1992), each of which 

are innervated by ORNs, local interneurons (LNs) and projection neurons (PNs). In general, 

LNs are able to innervate any number of glomeruli, and PNs act as the output neurons of 

the AL. ORNs are thought to house only a single receptor type, and axons from functionally 

characterised ORNs have been found to project in a chemotypic manner to single identified 

glomeruli (Berg et al., 1998; Hansson et al., 1995, 1992; Ochieng’ et al., 1995; Todd et al..



1995; see Figures 1.2 and 1.3). Synaptic connections within the AL are almost entirely 

restricted to within the glomeruh.

Olfactory Receptor 
Neurons (ORNs) Ciliary

Dendrites

Antenna
Axons

Antennal Lobes 
S - ' ( A L ) ' ^Sensilla

Macroglomerular 
Complex (MGC)Glomeruli

Figure 1.2: Basic layout of the moth brain. Two antennae protrude from the front of the 
head. The surface of these antennae is covered with thousands of tiny hair-like structures 
called sensilla. Each sensillum houses one or more ORNs whose main dendrites extend 
into the sensillum, and whose axons extend into the ALs. Axons from each type of ORN 
converge onto specific glomeruli. ORNs tuned to plant odours converge onto the main area 
of the AL, while ORNs tuned to sex pheromones converge onto glomeruli in the MGC.

Projection 
Neuron

Figure 1.3: Antennal lobe neurons. The spherical regions are areaa of densely packed 
neuropil known as glomeruli. The axons from a single type of ORN usually converge on the 
same glomerulus, and different ORN types converge on different glomeruli. LNs innervate 
many glomeruli. Dendrites from PNs can innervate a single glomerulus, or several glomeruli 
depending on their type, and their axons extend out to higher brain areas. (After Chong, 
2003).

1.2.3 The Macroglomerular Complex

Although males and females usually have the same number of ordinary glomeruli in the 

AL, there is a degree of sexual dimorphism (Anton and Homberg, 1999; Christensen et al., 

1989; King et al., 2000). Males have a small number of large glomeruli at the top of the 

AL in an area known as the macroglomerular complex (MGC), at which the axons from 

ORNs responsive to sex pheromones converge (for review see Boeckh et al., 1984). In 

the moth Spodoptera littoralis, the MGC consists of three glomeruli, a large glomerulus



atop two smaller glomeruli (Ochieng’ et al., 1995). These glomeruli are known to respond 

to the major component of the sex pheromone, the minor component, and a behavioural 

antagonist (Ochieng’ et al., 1995). The MGC is the main pheromone processing subsystem, 

and although some LNs innervate both glomeruli in the main AL and the MGC, on the 

whole there is very Httle interaction with the rest of the AL.

1.2.4 N euron T ypes and Function
1.2.4.1 O RN Selectiv ity

ORNs respond most intensively to specific kinds of odour molecules, with other odour 

molecules producing varying response levels (Gustavsson et al., 1997). In this study, the 

ORNs of interest are those that detect sexual pheromones. Electrophysiological studies 

have shown that pheromone detecting receptor neurons on the male moth antennae are 

highly specific for single pheromone compounds (Hansson et al., 1989; Kaissling et al., 1989; 

Ljungberg et al., 1993). While these ORNs have been widely researched, work in this thesis 

appears to be the first to employ signal detection theoretic measures to assess the pheromone 

detection thresholds.

1.2.4.2 Local Interneurons

The LNs form a network linking together many glomeruli, with synapses onto both ORNs 

and PNs (see Figure 5.8 for examples). A large proportion of LNs show G ABA-like im- 

munoreactivity, supporting the physiological findings that output from LNs is inhibitory 

(Christensen et al., 1993; Distler, 1989). The number of glomeruli innervated by an LN varies 

greatly between neurons, and can range from LNs with homogeneous arborisations inner­

vating almost all glomeruli (Anton and Hansson, 1994), to those known as oligoglomerular, 

innervating only a few (Anton and Hansson, 1994).



1.2.4.3 Projection  Neurons

The PNs are commonly referred to as the output neurons of the AL, transmitting the 

olfactory information to higher brain functions for further processing. These PNs often 

innervate only a single glomerulus, although some have been shown to innervate several 

(Anton and Homberg, 1999 and references therein). PNs are greatly influenced by the 

inhibition they receive from LNs, but they also receive exclusively excitatory input from 

ORNs (Christensen et al., 1993; Hildebrand, 1996; Homberg et al., 1989; Sun et al., 1997). 

The complexity of the neuronal circuitry between ORNs, LNs and PNs within the AL 

glomeruh is thought to play an important role not only in the identiflcation of odours, but 

also in the detection of the appropriate blend (Hansson and Anton, 2000 and references 

therein).

1.2.5 Synaptic C onnectivity

Within this thesis, the responses of both ORNs and ALNs to olfactory stimulation are of 

interest, as is the synaptic connectivity within the glomerular structures. Glomeruli are 

densely packed structures containing a multitude of synaptic connections between ORNs, 

LNs and PNs. The incoming message is transferred synaptically from ORNs to LNs and PNs 

(Distler and Boeckh, 1996, 1997a,b). Since LNs often show projections to a large number of 

glomeruli (Anton and Hansson, 1994), specific innervation patterns are unlikely to provide 

insight into exact coding mechanisms, but are likely to distribute incoming signals across 

the AL. PNs on the other hand, often show uniglomerular innervation patterns (Anton and 

Homberg, 1999), and while little is known about the specific synaptic connectivity patterns of 

individual PNs, this synaptic circuitry provides the basis for the modelling study performed 

in this thesis.



1.2.6 T he O lfactory C ode

Information about the intensity and identity of an odour stimulus is encoded at the periph­

ery in the pattern of activation of olfactory receptors, and is translated into action potential 

firing. The firing rates of ORNs are much faster than the rate of any modulation of the 

stimulus (odour plumes often contain pockets of pheromone arriving at a point of intercep­

tion at frequencies around 4-10 Hz; Justus et al., 2002a; Mur lis and Jones, 1981) suggesting 

the probability that the average rate of firing carries most of the stimulus information. It 

is possible however, that temporal factors may form part of the coding, and behavioural 

studies have shown that many moth species are unable to locate a source of odour unless the 

stimulus presentation is intermittent (Baker et al., 1985; Justus et al., 2002b; Mafra-Neto 

and Cardé, 1994, 1995b). This translates into two possible hypotheses, firstly, the ORNs 

could be encoding the stimulus in the form of precise patterns of spikes (within an individual 

ORN response), or secondly, the ORNs could be encoding the stimulus frequency dynamics 

in terms of variations in the firing rates or spike times across multiple neurons. While the 

actual solution is as yet unconfirmed, both of these ideas are investigated further in this 

thesis.

1.2.7 Further Inform ation

This introductory chapter is intended to provide an outline of the basic structure of the 

olfactory pathway, to the level required for understanding the work in this thesis. Later 

chapters exist as self-contained units, and as such contain introductory material relevant to 

that specific area of work.

1.3 O utline o f the Thesis

C h a p te r  2: G en e ra l Techniques. A description of the recording techniques used by 

collaborators to obtain the electrophysiological data. The methods then used to extract the



spike timing information from the two types of neurons are explained, followed by a brief 

look at the verification of spike times.

Chapter 3: Sensitiv ity  Enhancem ent in the O lfactory Pathway. An investiga­

tion into the detection thresholds for neurons at the first two stages of the olfactory pathway 

in response to a pheromone stimulus was performed. The thresholds found are compared 

to a theoretical model of signal convergence between the sensilla and the antennal lobe. A 

simple computational model is developed and used to demonstrate that the boost observed 

in the biology cannot be explained by simple pooling of information. Possible mechanisms 

that could explain the boost are discussed briefly, with further work in later chapters.

Chapter 4: Tem poral Encoding at the Periphery. The calculation of detection 

thresholds in Chapter 3 assumes that the neurons in the sensilla use a change in the firing 

rate to convey the presence of the stimulus. This chapter looks at a couple of methods to 

investigate alternative encoding schemes at the periphery. Unitary Events Analysis (UEA) 

is then used to look for temporal structure in the ORN recordings.

Chapter 5: M odelling o f Glomerular M echanism s. Here, the modelling work is 

taken further with a look at the possible synaptic connections within a single glomerulus, 

and computations that individual neurons may be able to perform. A simple but biologi­

cally plausible computational model is created that demonstrates tha t when the glomerulus 

is considered as an active site of convergence (i.e. synaptic connections are capable of trans­

forming input signals in some way), the signal can be boosted, thus enhancing the detection 

capabihty of an output neuron.

Chapter 6: Frequency Analysis o f Olfactory R eceptor N euron R esponses. 

Since it is known that the male moth must find a female by following an intermittent 

pheromone plume, this chapter looks at the frequency components found in the stimulus 

response of several neurons in the sensilla. The results are comparable with frequencies 

found in a wind tunnel generated plume, suggesting that the dynamics found in the neuronal 

responses cover the frequencies found in natural plumes.

Chapter 7: Conclusions.



Chapter 2

General Techniques

2.1 Chapter Overview

This chapter starts by describing the electrophysiological techniques used by collaborators 

at the Sveriges Lantbruksuniversitet in Sweden, which form the basis for experimental work 

related to this thesis. Recordings were taken from ORNs in the long sensilla on the antennae, 

and from neurons in the AL. The majority of neurons in the AL belong to one of two 

types, LNs or PNs. Discrimination between these two types of neurons is possible using 

morphological staining techniques, but these are not available for this data set. The term 

antennal lobe neuron (ALN) is used throughout the rest of this thesis to represent both 

neuron types.

The recordings obtained consist of a time series of amplified cell voltage values, sampled 

at 13888 Hz and 6380 Hz for ORNs and ALNs respectively. The two different methods 

used to take recordings have different spike sorting problems associated with them. For the 

method used to record from neurons within the AL, spike time extraction can be achieved by 

a simple threshold idea. The method used to record from the ORNs means that extracellular 

signals from multiple neurons may be present within the recording, and more complicated 

spike sorting methods may need to be employed.

Both methods of spike timing extraction, along with the necessary pre-processing per­

formed on recordings are explained in this chapter. In the case of more than one neuron



picked up by the recording electrode, a method to determine which neuron is responding to 

the stimulus is described and verification techniques are briefly explained. The spikes used 

in subsequent analyses in this thesis were all sorted using the techniques described in this 

chapter.

2.2 Electrophysiological Recording Techniques

2.2.1 Insects

Experiments were performed on 1-5 days post-emergence male moths of Spodoptera littoralis. 

The moths had been reared for several generations on a potato-based diet (Hinks and Byers, 

1976). The pupae were separated according to sex and kept in plastic boxes at 70% relative 

humidity, 23°C and a 16 h:8 h light/dark cycle. Adult moths were given excess of water 

until the start of the experiment.

2.2.2 Single Sensillum  Preparation and R ecording

Takuma Takanashi and Niels Skals took the single sensillum recordings used throughout 

this thesis.

The moth was mounted in a truncated pipette tip with one antenna protruding from the 

narrow end. The position of the antenna was fixed with dental wax (Surgident, Heraeus). 

To establish contact with the ORNs, tungsten microelectrodes tha t had been electrolytically 

sharpened in KNOg-solution (Hubei, 1957) were used. The recording electrode and indiffer­

ent electrode (inserted into the abdomen) were positioned using a preparation microscope 

and micromanipulators. The signal was amplified using a high impedance amplifier (Syntech 

INR-02, Hilversum, The Netherlands). Signals from contacted ORNs were displayed on an 

oscilloscope (Tekscope, Tektronix), linked to a loudspeaker for audio monitoring. Recordings 

of signals were digitised using AutoSpikelfi (Syntech, Hilversum, The Netherlands).
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2.2.3 Intracellular Preparation  and Recording

Qian Han took the intracellular recordings used throughout this thesis, with a number of 

prehminary recordings (used mainly for coding of spike sorting algorithms) taken by Anna- 

Carin Backmann.

The moth was restrained in a disposable plastic pipette tip, which was cut to allow 

passage of the head. The head position was fixed with dental wax (Surgident, Heraeus). 

The brain was uncovered and the sheath overlaying the AL was carefully removed. During 

the experiment, the brain was super-fused with a saline solution containing 150 mM NaCl, 

3 mM CaCl2 , 3 mM KCl, 10 mM TES (N-Tris-methyl-2-aminoethanesulfonic acid) buffer, 

and 25 mM sucrose (pH 6.9) to increase osmolarity and prevent swelling of the brain tissue 

(Anton and Hansson, 1995).

Standard intracellular recording techniques were used (Kanzaki et al., 1989). The pen­

etration sites were based on AL maps and previous results (glomerular representations 

(Carlsson et al., 2002; Sadek et al., 2002) and calcium imaging of responses (Carlsson et al., 

2002)). Signals were displayed on an oscilloscope and recorded on FM tape. Signals were 

then digitised using AutoSpike32 (Syntech, Hilversum, The Netherlands).

2.2.4 Stim ulation

A steady stream of charcoal-hltered and humidified air (~0.5 m s“ )̂ was continuously 

dehvered through a glass tube ventilating the antenna (ipsilateral to the recording site 

for intracellular recordings, and the available one for single sensillum recordings). Ten 

microliters of solvent containing the given amount of stimulus was applied to a filter paper 

(5x15 mm) in a Pasteur pipette. The tip of this pipette was inserted into a small opening 

in the glass tube 20 cm from the antenna. A 4 ml s'" ̂  0.5 s air pulse was sent through the 

Pasteur pipette by means of a stimulation device (Syntech, Hilversum, The Netherlands). 

Various stimulus loads of the major component of the female-emitted sex pheromone, (Z, 

E)-9, 11-tetradecadienyl acetate (Z9, Ell-14:OAc) were tested with inter-stimulus-intervals 

ca. 20 seconds, or until the neuron under study had fully recovered.
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2.3 Extraction of Spike Timing
2.3.1 Extraction of ALN Spikes

Recordings from ALNs often showed fluctuations in the baseline voltage of the neuron, 

usually after the onset of the stimulus presentation (see Figure 2.1 a)). Although these 

fluctuations may contain important information relevant to the stimulus, this work is only 

interested in the spikes. Despite these fluctuations, most of the spikes have similar relative 

amplitudes, suggesting a thresholding method for finding the spike times. A profile plot 

from a recording (see Figure 2.1 c)) shows the need to first remove the baseline fluctuations 

by filtering the recording.

I
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>  0
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-10 0 10 
Time (samples, 6380 Hz)

Figure 2.1: Spike Timing Extraction from ALNs. a) Raw Data from an ALN. As well as 
an increase in firing rate in response to the stimulus, recordings often showed an increase 
in the fluctuations of the baseline voltage of the neuron. Horizontal black bar represents 
the stimulus presentation, b) Filtered Data from an ALN. After filtering, the baseline 
fluctuations have been removed, and a threshold voltage can be set to identify spikes (red 
dashed line), c) Raw Profile Plot. Potential spikes (excursions of the voltage above the 
mean voltage level) are plotted, with the maximum value lined up with the 0 time point. 
The baseline fluctuations mean that the spike shapes and baseline cover the same voltage 
range and are indistinguishable, d) Filtered Profile Plot. After filtering, the baseline and 
spike shapes separate, and a threshold voltage can be set (red dashed line) with areas above 
this threshold representing spikes.
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2.3.1.1 F iltering Procedure

A fourth order band-pass Chebyshev type 1 filter was designed to filter the recordings. The 

lower cut-off frequency was set to 100 Hz to ensure low frequency noise was removed (50 Hz 

power supply and the basehne fluctuations). The upper cut-off frequency was set to 1000 Hz 

to remove any high frequency noise that may exist in the system, while retaining as much 

spike information as possible (spike frequency ~320 Hz).

The recordings were processed twice, first the recording were filtered in the forward 

direction, and then the filtered sequence was reversed and run back through the filter. This 

ensured that the resulting sequence had zero phase distortion and had double the filter order. 

The resulting sequences had reduced amplitude, but the spike timing information remained 

the same, and the basefine fluctuations were removed (sée Figure 2.1 b)). When a profile 

plot was created for the filtered recording, the spike shapes became visible (see Figure 2.1 

d)), with good separation between spike shapes and background fluctuations (noise).

2.3.1.2 Threshold M ethod

With the baseline fluctuations removed, all the spikes had similar peak amplitudes. A 

threshold amplitude (usually set to be the mean plus four times the standard deviation of 

the filtered voltages) was selected, which varied for each recording, and sections of the time 

series above this threshold (red line in Figure 2.1 b) and d)) were deemed to be potential 

spikes. The actual spike time was taken to be the time at which the maximum voltage 

occurred.

2.3.2 E xtraction  o f O R N  Spike Tim ing

Recordings from ORNs in the long sensilla tended to have higher amplitude background 

noise in the baseline than those firom ALNs (see Figure 2.2 for example), and since the 

recordings were extracellular, spikes from more than one neuron may be present (Ljungberg 

et al., 1993; Ochieng’ et al., 1995; see Figure 2.2 b)). This posed a problem with using
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the threshold method of spike sorting since an appropriate threshold value was not always 

obvious. However, the ORN spike shapes were consistent, and had a characteristic shape 

not typically seen in the baseline noise. This allowed the use of Principal Components 

Analysis (PCA; Appendix A) to determine which of a set of consecutive samples gave the 

most variation between the shapes of the spikes and the noise.

5 -10 0 10 20 30
Time (samples. 13888 Hz)Time (s)

Time (s)
5-10 0 10 20 30

Time (samples, 13888 Hz)

Figure 2.2: ORN Recordings, a) Raw Data from an ORN. Although each spike has a 
characteristic shape, in the profile plot, the spike shapes and baseline voltage shapes merge 
together, and a threshold method of spike sorting is not possible, b) Raw Data from a 
Recording with Two ORNs. Two spike shapes are seen in some recordings. In this case, the 
positive spike sections have similar amplitudes, but the negative sections show two different 
amplitudes. In the profile plot there are two groups of spike shapes corresponding to the 
two different neurons.

2.3.2.1 P rincipal C om ponent Analysis M ethod (Lewicki, 1998)

To perform PCA, a list of potential spikes was generated for each recording, and aligned 

with sample zero being that of maximum amphtude across a series of samples (usually 10 

samples before, and 30 samples after the sample with maximum amplitude, see Figure 2.2). 

PCA was performed on these sequences of samples using MATLAB (The Mathworks), and 

the standard deviations of principal component scores were plotted, showing that most of 

the variation occurred in the first 2-3 principal components (see Figure 2.3 a) and d)). When 

plotted against each other, the first two principal component scores usually gave groups of 

points which could be identified as corresponding to the different spike and noise shapes 

(see Figure 2.3 b) and e)).
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Figure 2.3: Principal Component Analysis, a) Principal Component Score Standard Devia­
tions. PCA was performed on the ORN recording in Figure 2.2 a). The first three principal 
components account for a large portion of the total variation compared to the rest of the 
components, b) Principal Component Scores. When plotted against each other, the scores 
from the first two principal components form two groups, which can then be separated into 
clusters, c) Example Spike Shapes From Each Cluster, d) Principal Component Score Stan­
dard Deviations. PCA performed on the ORN recording in Figure 2.2 b) results in the first 
principal component accounting for most of the total variation, e) Principal Component 
Scores. When plotted against each other, the first two principal component scores form 
several possible groups, on which cluster analysis can then be performed, f) Example Spike 
Shapes From Each Cluster.

2.3.2.2 C lustering

The groups of points representing the different spike and noise shapes were separated into 

clusters using a hierarchical tree method. First, the Euclidean distance between pairs of 

points was computed using MATLAB's p d is t function, where the distance, drs, between 

any two vectors, and Xg is defined as

dj -g  — ^  ( X r  X g ) ( X r  X g ) (2.1:

These pairs were then linked together giving successively smaller numbers of clusters. In 

general the cluster representing the baseline noise shapes contained far more points than 

clusters representing spike shapes, so the weighted pair-group method using arithmetic av­

erages (WPGMA; Sneath and Sokal, 1973) was used with MATLAB’s linkage function. 

Here, the distance between two clusters is calculated as the average distance between all
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pairs of objects in the two different clusters, weighted by the size of the respective clusters

d{r,s) =  ' ^ ' ^ d i s t { x r i , X s j )  (2.2)
i = i j = i

where and Ur are the numbers of objects in clusters r  and s, Xri is the zth object in 

cluster r  and dist is the distance measure from Equation 2.1. The hierarchical cluster tree 

(Figure 2.4 a)) was then split into clusters, with the initial approach being to create more 

clusters than actual spike shapes, and then to group the excess clusters. Here, MATLAB s 

c lu s te r  function was used, which effectively draws an imaginary horizontal line across 

the hierarchical cluster tree such that the number of vertical lines bisected is equal to the 

requested number of clusters (red dashed line in Figure 2.4 a) with 4 clusters). The number 

of clusters specified were 3 for a neuron with single spike shape, and 4 for a neuron with 

two spike shapes (Figure 2.4 b)). To confirm which clusters were spike shapes, and which 

were noise, members of each cluster were plotted with the original recording data. Clusters 

with points Uning up with the recording spike shapes corresponded to spikes from neurons, 

and all other clusters were noise, and were discarded (Figure 2.4 c)).

2.3.2.3 M ultiple N eurons

Most of the recordings processed contained only a single spike shape, but in recordings where 

more than one neuron was present, it was important to determine which neuron was the one 

responding maximally to the stimulus. A simple method to determine this is to first sort the 

spikes as mentioned above, then plot the peri-stimulus time histograms (PSTHs) for each 

neuron, at several stimulus loads. Depending on the receptor types, several possibilities may 

occur:

• One neuron shows an elevated firing rate in response to the stimulus presentation, 

while other neurons show no response. In this case, the neuron that responds is the 

neuron of interest.
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Figure 2.4; Cluster Analysis, a) Hierarchical Cluster Tree. Scores from the first two princi­
pal components of the recording in Figure 2.2 b) were first linked together in pairs according 
to their distance from other points. These small groups were progressively linked together 
with the weighted pair-group method using arithmetic averages, until all points were linked. 
The connections between the groups (starting when 30 groups remained) are shown, with 
a possible cut-off threshold (red dashed line) resulting in four clusters, b) Principal Com­
ponent Score Clusters. The four clusters from a) are plotted, and form tight groups with 
a small number of stray points assigned to the closest clusters, c) Possible Spikes. The 
four recording segments show the locations of possible spikes from points within the four 
clusters. Points from Cluster 1 correspond to spikes with small negative amplitudes, Cluster 
2 to spikes with larger negative amplitudes, and Clusters 3 and 4 don’t line up with spikes 
in the raw data so correspond to the baseline noise shapes.

• All neurons show an elevated firing rate, but one neuron has a greater increase. In 

this case, the neuron with the largest increase is the neuron of interest.

• All neurons show an equal increase in the firing rate. This suggests that none of the 

neurons are maximally responsive to the stimulus, so the data should not be used.

• No neurons show an increase in the firing rate, so the data should not be used.

For the multiple neurons case shown in Figures 2.2 b), 2.3 and 2.4, clusters 1 and 2 are 

spike shapes from two different neurons, and clusters 3 and 4 are shapes from the baseline
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noise. The PSTHs for these two neurons can be used to aid in the decision of which neuron 

should be used in later analyses. The spikes found from cluster 1 have an increase in firing 

rate to a 10“  ̂ g stimulus load but little change in firing rate to other stimulus loads and 

the blank (Figure 2.5 a)), suggesting a response to the stimulus. The spikes found from 

cluster 2 show a slight increase in response to the stimulus presentation, regardless of the 

stimulus load (Figure 2.5 b)), suggesting a possible mechano-sensory response to the change 

in airflow caused by the stimulus presentation. For these recordings, only the neuron with 

spike shapes represented by cluster 1 would be used.
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Figure 2.5: Choice of Responding Neuron, a) Peri-Stimulus Time Histogram for Cluster 1. 
Using time bins of 0.1 seconds, the PSTH for the 10“  ̂ g stimulus load shows an increase 
in firing rate in response to the stimulus presentation (blank horizontal bars) whereas other 
stimulus loads and the blank show little change, b) Peri-Stimulus Time Histogram for 
Cluster 2. Using time bins of 0.1 seconds, the PSTH for all stimulus loads and the blank show 
a slight increase in firing rate due to the stimulus presentation, suggesting a mechanosensory 
rather than chemosensory response.

2.4 Verification of Spike Timings

As a simple measure to ensure that spikes were correctly identified, the sorted spike timings 

were superimposed onto plots of the raw data. Any misclassified spikes would be seen as 

sorted spike times with no corresponding raw data spike, or vice versa (Figure 2.6). A less 

time-consuming method is to look at the interspike intervals (ISPs) for each recording. All 

neurons have an absolute refractory period after a spike in which no other spikes can be 

generated. For ORNs, this period is ~1 ms, so recordings with any ISPs less than 1 ms may 

have been clustered incorrectly (Figure 2.7).
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Figure 2.6: Spike Timing Visual Verification, a) ALN Raw Data and Spike Times. Spikes 
(red vertical lines) are superimposed on the raw data (grey trace) from an ALN. Misclassified 
spikes would be seen as either red vertical lines with no corresponding data spike, or a data 
spike with no corresponding red vertical line, b) and c) Spike Times with Original and 
Filtered Recordings. Zoomed in section corresponds to the portion of recording between 
the vertical black lines on the x axis in a). Spike times correspond to raw data spike both 
before and after the filtering process.
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Figure 2.7: Inter Spike Interval Histogram. Time bins are 1 ms, with x axis truncated to
0.05 seconds. The absolute refractory period of a neuron means that there should be no 
interspike intervals of less than 1 ms. The histogram contains no intervals in the first three 
bins (i.e. < 3 ms) and in fact, the shortest interval is 3.6 ms.

2.5 Summary

Collaborators in Sweden took electrophysiological recordings from two areas of the olfactory 

system of the male moth Spodoptera littoralis, the antenna and the AL. Recordings from the
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neurons in the AL contained fluctuations in the baseline voltage that could be filtered out 

such that a threshold voltage could be set to identify the spikes. Recordings from neurons 

in the antenna contained spike shapes that were consistent, but a threshold method of spike 

sorting was not possible. Instead, PCA was used, which formed groups of spike and baseline 

noise shapes when the scores from the first two principal components were plotted against 

each other. A weighted method of hierarchical cluster analysis was used to separate clusters 

and identify those clusters representing spike shapes. A simple method of comparing PSTH 

shapes over several stimulus loads was used to determine which the neuron of interest was 

(i.e. the neuron showing maximal response) if spikes from multiple neurons were present. 

Finally, spike times were verified visually, and ISI histograms were used to add confidence to 

the spike sorting and clustering techniques. The spikes sorted using the methods described 

in this chapter were used in the analyses of later chapters.
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Chapter 3

Sensitivity Enhancement in the  
Olfactory Pathway

3.1 C hapter O verview

The main aim of this chapter is to quantify the detection thresholds of the first two stages 

of olfactory processing in the moth, ORNs on the antenna, and ALNs in the AL. These 

detection threshold estimates allow a direct quantification of the boost in the sensitivity 

achieved between these two processing stages in this animal. This boost is later compared 

to the boost expected due to the structure of the biological system.

Electrophysiological recordings were taken firom these two types of neuron, and spike 

train timings were extracted as detailed in Chapter 2. Detection thresholds are here calcu­

lated using statistical methods and a detailed signal detection theoretic approach. The boost 

in the signal detection ability is defined as the difference in detection thresholds between 

the two pheromone processing stages.

A simple theoretical model is developed here. This model is based on the convergence 

of many signals onto a single integration site, and gives rise to an estimate of the  boost 

in signal detection when Poisson spiking statistics are employed. When compared to this 

theoretical boost, the biological pheromone detection system demonstrates a higher than 

expected boost, well beyond that explainable by pooling of elevated firing rates, implicating 

alternative coding and readout mechanisms.
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Assumptions made throughout this investigation are discussed, with none posing a 

significant effect on the outcome. Possible ways in which the biological system achieves 

this observed boost in signal detection are discussed, leading on to work performed to in­

vestigate these hypotheses in later chapters.

3.2 Introduction

The detection performance of a sensory system derives not only from the sensitivity of its 

underlying receptors, but also from the subsequent neural processing. In many sensory sys­

tems this processing achieves a boost in sensory signal-to-noise ratio, resulting in detection 

hmits that are lower than can be supported by an individual receptor (Klein and Levi, 

1985; Ulanovsky et al., 2003; Zanker and Harris, 2002). While many of the neural coding 

principles and processing mechanisms giving rise to these different forms of hyperacuity are 

unclear, one widespread strategy employed by the nervous system is the pooling of sensory 

signals from populations of receptor neurons to decrease uncertainty about the stimulus 

(Pearce et al., 2001a,b; Rieke et al., 1997). This arrangement does not preclude the pos­

sibility, however, that other neural coding strategies might be operating in tandem - for 

instance based upon the principles of temporal coding (Buonomano and Merzenich, 1995), 

synchrony (Gray et al., 1989; MacLeod et al., 1998) or noise-shaping (Mar et al., 1999).

Signal boosting strategies are likely to result from incremental and selective adaptations 

in sensory systems that require high levels of sensitivity to certain environmental stimuli 

(Maynard-Smith, 1998). The olfactory pathway of the moth is such an example, boasting 

extreme levels of sensitivity to highly specific pheromone stimuli. Minute quantities of 

pheromone at less than 10~^^ M (Kaissling, 1971; Kaissling and Priesner, 1970), delivered 

as a blend (Tamaki and Yushima, 1974), are sufficient to elicit stereotypical behavioural 

responses essential for reproduction in this animal (Schneiderman et al., 1986), with as few 

as 6 pheromone molecules hitting the antenna sufficient to alter the heartbeat rhythm of the
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male Spodoptera littoralis (Angioy et al., 2003). Reported detection thresholds for individual 

ORNs to their cognate pheromone ligands are too high to fully account for the detection 

capability necessary to support these behaviours (Mankin et al., 1991; Valeur et al., 2000), 

suggesting that sensory signal enhancement must be achieved through subsequent neuronal 

processing within the olfactory pathway. By acting as key points of convergence and thus 

sensory integration, glomeruli are hkely to be important in this process, potentially lowering 

detection thresholds in different species (Boeckh and Ernst, 1987; Carlsson and Hansson, 

2002; Duchamp-Viret et al., 1989; Hartlieb et al., 1997), by pooling sensory input from 

massive numbers of ORNs expressing identical olfactory receptors (Chen and Shepherd, 

2002).

In order to assess the sensitivity boost possible during early olfactory processing, the 

detection thresholds to a major pheromone component (Z9, Ell-14:OAc) at the first two 

stages of olfactory processing in an olfactory specialist, the moth Spodoptera littoralis, were 

calculated. By collecting a large data set of olfactory receptor and antennal lobe neuron 

electrophysiological recordings, a detailed signal detection theoretic analysis of sensitivity 

enhancement in this system was performed, hitherto not characterised in any animal with 

any statistical power. These detection threshold estimates allow a direct quantification of 

the boost in sensitivity achieved between the first two stages of the olfactory system in this 

animal.

Can the sensitivity boost observed in this system simply result from the pooling of ele­

vated firing rates at the periphery, or conversely, are more subtle stimulus coding strategies 

at play? Specifically, since the early olfactory pathway is highly organised topographically 

in this animal, it was possible to compare the observed sensitivity boost with that suggested 

by theoretical considerations of signal convergence. The results in this chapter demonstrate 

that the sensitivity boost achieved during early olfactory processing by this animal is well 

beyond that explainable by pooling of elevated firing rates, implicating alternative coding 

and readout mechanisms.
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3.3 D ata  A nalysis M ethods

3.3.1 E lectrophysiological Recordings

Recordings from both ORNs and ALNs of the male Spodoptera littoralis were taken by 

collaborators in Sweden (see Chapter 2) in order to investigate and compare the detection 

thresholds at these two processing stages. The stimulus used was a 0.5 second square pulse 

of the major component of the female sex pheromone, Z9, Ell-14:OAc. Stimulus loads 

ranged from 10“ ® to 10“ ® g for ORNs and 10“ ® to 10“ ®̂ g for ALNs. Spike timings were 

extracted from each recording according to the methods described in Chapter 2.

3.3.2 N et Spikes Calculation

In order to quantify the detection thresholds, a measure of the neuronal response to the 

stimulus must first be defined. For this chapter, the activity measure used is the net spikes 

per second, i.e. the number of spikes above the background firing rate that were emitted 

in response to the stimulus. This method allows neurons with different background firing 

rates, and different response durations (see Figure 6.3 for examples), to be compared.

The net spikes, N , are calculated using the formula N  =  Ss — Sp  where Ss  is the 

number of spikes occurring in a given time period t post-stimulus and 5p is the number 

of spikes occurring in the same time period t pre-stimulus. Since each neuron can have a 

different time lag between the onset of the stimulus and the onset of a response, the time 

period t was calculated individually for each neuron. This calculation was performed by 

splitting the repeat recordings into time bins to give the spikes per second per recording 

for the highest stimulus load for each neuron. The time bin in which the maximum spikes 

occurred was taken as the start point. The start and end time of t were taken to be the 

first of three consecutive time bins where the firing rate dropped below a threshold value 

(set to the mean background firing rate plus three standard deviations), before and after 

the maximum time bin respectively (see Figure 3.1). The net spikes s“  ̂ measure can then 

calculated by dividing N  by t to allow for comparison across different neurons.
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Figure 3.1: Calculation of Net Spikes Integration Period. The PSTH for a single ORN, at 
a stimulus load of 10“  ̂ g, with a bin size of 10 ms is shown. The red-dashed horizontal 
line indicates the background firing rate plus three standard deviations. This is used as 
a threshold, where firing rates above this value are identified as the period in which the 
neuron is responding. The actual integration time is calculated by finding a start and end 
time bin. First the time bin containing the highest spikes s~^ was found. The start time 
bin was found by moving left along the time axis until three consecutive time bins contained 
fewer than the threshold number of spikes s“  ̂ (blue dashed line, see also top right). The 
end time bin was found by moving right along the time axis until three consecutive bins 
contained fewer than the threshold number of spikes s“  ̂ (green dashed line, see also bottom 
right). In this example, the net spikes integration period, t, is from 2.2 -3  s.

3.3.3 Statistical M ethods

To accurately define where the detection thresholds lie, multiple t-tests are used. Each 

individual t-test is used to determine whether the response to a single stimulus load is 

statistically different to the response to the blank stimulus, and thus detectable. In this 

case, the null hypothesis used is that the means of the net spikes s“  ̂ with the stimulus load 

(fXs) and blank (fib) are from the same parent distribution, Ho : /is = At6, with the alternative 

hypothesis being that the presentation of a stimulus load elicits a larger response than the 

blank. Hi : /is > /i6-

Since multiple t-tests were used to compare each stimulus load with the blank stimulus 

presentation, the probability of making one or more type 1 errors (rejection of the null 

hypothesis when it is true) over the “family” of t-tests increases. An adjustment can be 

made such that a significance level, o;*, is used for each comparison, ensuring the overall
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significance level of a  is not exceeded (Hsu, 1996). For an overall significance level of 

a  =  0.05, we used a* =  0.0102 for each of our five individual comparisons. It is important 

to note tha t the t-tests must be independent in that the set of blank recordings used for each 

t-test should be a different set to those used for each of the other t-tests. To achieve this 

independence, for each stimulus load, 1000 t-tests were performed with randomly selected 

subsets of blank recordings (without replacement) for both ORNs and ALNs. The final 

p-value for each t-test is then the average of the p-values generated during the 1000 repeats.

3.3.4 R eceiver O perating Characteristic (RO C) Curves

The receiver operating characteristic (ROC) curve, and corresponding area under the ROC 

curve (AUC), provide a non-parametric measure of a neurons ability to discriminate between 

a stimulus being present or not, and hence give an estimate of the detection thresholds. 

The ROC curve is a plot of the probability of a neuron responding to a stimulus load 

( “hits” ) against the probability of a neuron responding to the blank stimulus ( “false alarms” ; 

Green and Swets, 1966). A control curve was created to represent the case of identical 

distributions of stimulus present and stimulus not present. Recordings to the blank stimulus 

were randomly sampled (with replacement) and were assigned to one of two groups. One 

of these groups was treated as if a stimulus load was present, and the other was assumed 

to be the blank stimulus. The hits and false alarms were then calculated. The separation 

process was repeated a number of times (e.g. 30 or 50 times) and the mean values of the 

hits and false alarms were plotted against each other to form the control curve.

The AUC represents the probability of correctly identifying when the stimulus is present. 

An AUC close to 0.5 represents the chance level of completely overlapping stimulus present 

and stimulus not present distributions. Perfect discrimination is signified by an AUC of 1 

and represents totally separate distributions. The AUC has been shown to be equivalent 

to the value of a Mann-Whitney or Wilcoxon non-parametric test (Bamber, 1975) and 

this relationship between the AUC and the Wilcoxon statistic has been used to derive
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statistical properties such as the Standard Error (SE; Hanley and McNeil, 1982). From 

this relationship, a critical ratio, z, can be calculated (Hanley and McNeil, 1982, 1983) to 

determine whether the difference in the area under two ROC curves is due to random or 

real effects.

3.4 R esults

3.4.1 C oncentration-Specific R esponses at Periphery and A ntennal 
Lobe

3.4.1.1 Recorded D ata Sets

Recordings from many ORNs at the periphery and ALNs in the AL were taken with the 

aim of assessing changes in response due to varying stimulus quantities. The stimulus used 

was the major component of the female sex pheromone, Z9, Ell-14:OAc since this is vital 

for the sexual reproduction of Spodoptera littoralis, with neurons tuned to this component 

in plentiful supply. Overall, 28 ORNs were tested with stimulus loads from 10“ ® g to 10“  ̂ g 

(mean numbers of between 8 to 33 repeat recordings were taken at each stimulus load, but 

only the first 5 recordings were used in statistical analyses), and 33 ALNs with stimulus 

loads from 10“ ®̂ g to 10~® g. Both ranges used stimulus loads increasing in decadic steps, 

and represented the range in which the detection thresholds were expected to lie (Anton and 

Hansson, 1995; Ljungberg et al., 1993). Neurons were also tested with blank stimulations 

(pipette and carrier liquid presented with no pheromone) to assess the proportion of the 

neuronal response that is due to airflow changes.

3.4.1.2 R epeatability  o f R esponses

Individual neurons tuned to the same chemical may produce different patterns of firing 

in response to a stimulus, but recordings from a single neuron were found to be highly 

repeatable (see Figure 3.2). This is important for the analysis in this chapter since several 

recordings from each ORN, at each stimulus load, are used to assess the elevation in firing 

rate. Elevated and stereotypical firing rates are best seen at higher stimulus loads, where
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the response stands out from the background firing. An example of an elevated firing rate 

response is shown in Figure 3.2 a). Repeat recordings using a stimulus load of 10“  ̂ g are 

shown from the same ORN. Both recordings show a response characterised by a period of 

high firing activity during stimulus presentation followed by a long silent period (most likely 

to be caused by short-term adaptation). Moreover, this characteristic response pattern was 

conserved over all the recordings taken from this ORN, as demonstrated in the raster plot of 

Figure 3.2 b) and the peri-stimulus time histogram (PSTH) in Figure 3.2 c). It can be seen 

that ALNs also respond in a repeatable manner (see Figures 3.2 d)-f)) with elevated firing 

rates usually beginning after stimulus presentation followed by a weaker period of silence 

(caused by either adaptation, or inhibition from other neurons).

3.4.1.3 Concentration-Specific R esponses

In order to understand how neuronal responses depend upon stimulus load, raster plots were 

constructed from recordings taken from both ORNs and ALNs (see Figure 3.3 a)). Most of 

the ORNs recorded show elevated firing rates in response to higher stimulus loads (subplots 

iv and v in Figure 3.3 a)). Whereas ALNs show a wider variety in background firing rates 

than do ORNs, they also show smaller increases in firing rate due to the stimulus (see Figure

3.3 b)).

As a more quantitative analysis of elevated firing rates in response to increasing stimulus 

load dose response curves for the ORNs and ALNs were constructed (see Figure 3.3 c) and 

d)), which allow the comparison of the response due to the stimulus across all the stimulus 

loads tested. Since the above background firing rates of the neurons in response to the 

stimulus are of interest, the net spikes s“  ̂ (see Section 3.3.2) were calculated and used here. 

This allows the comparison of neurons with differing background firing rates by quantifying 

the response in terms of the number of excess spikes produced above the background rate. 

The individual points in Figures 3.3 c) and d) represent the net spikes s“  ̂ for each recording 

at each stimulus load for the ORNs and ALNs respectively, with the solid lines showing the
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Figure 3.2: Individual Response Properties of Olfactory Receptor and Antennal Lobe Neu­
rons to the Major Pheromone Component, a) Example ORN Recordings. Two example 
recordings taken from the same ORN to a stimulus load of 10~^ g (vertical scale bar: 1 
Volt, horizontal bar represents stimulus duration). Notice the prolonged period of silence in 
the response after a period of strong bursting activity, b) ORN Raster Plot. Raster plot of 
many repeated presentations at a 10“  ̂g stimulus load from the same ORN as in a) (a blank 
presentation occurred between each stimulus presentation, data not shown). This neuron 
shows a highly repeatable response to the stimulus, c) ORN PSTH. PSTH for the spike 
trains in b), with a bin size of 10 ms. There is Httle spontaneous firing with a large increase 
in the firing rate due to the stimulus presentation. This elevated firing rate decreases over a 
period of ~1 s, followed by a period of inhibition, then returns to the background firing rate, 
d) Example ALN Recordings. This neuron shows a repeatable response to this stimulus, f) 
ALN Raster Plot. Raster plot of many repeated presentations at a 10“  ̂ g stimulus load 
from the same ALN as in d). This neuron shows a repeatable response to this stimulus, e) 
ALN PSTH. PSTH for the spike trains in e), with a bin size of 10 ms. The neuron shows 
increased latency compared to the ORN with a short-lived increase in firing rate from the 
background rate due to the stimulus.

average dose response curves for the population of neurons. Higher stimulus loads for both 

ORNs (10“  ̂ g, 10~® g and 10“  ̂ g) and ALNs (10“® g and 10“  ̂ g) generated more net 

spikes s“  ̂ than blanks, suggesting a genuine response. The dose response curves do not 

in themselves provide an accurate estimate of detection thresholds, so these were assessed

29



using signal detection theory, combined with statistical analyses.

3.4.2 Evaluation o f N euronal Firing R ates Provides O R N  and ALN  
D etection  Thresholds

3.4.2.1 Statistical Analysis M ethods

The large amounts of data collected from both the antenna and the AL, enable the use of 

statistical measures to accurately determine the detection thresholds at these first two stages 

of the olfactory pathway. The net spikes s“  ̂ method of quantifying neuronal responses 

was used to generate separate distributions for each stimulus load (as seen in Figure 3.5 

right). Multiple one-tailed t-tests were performed on pairs of these distributions (blank 

compared with individual stimulus loads, see Section 3.3.4) to determine whether differences 

in response were statistically significant. The areas under receiver operating characteristic 

(ROC) curves were also used to quantify how well separated the distributions were for 

varying stimulus loads. Together, these two methods, when applied to both ORN and ALN 

responses, give a robust estimate of their respective detection threshold, which provide one 

measure of the sensitivity enhancement between the first two stages of the olfactory pathway.

3.4.2.2 A ssum ption o f a H om ogeneous Population o f O R N s

In the olfactory pathway of Spodoptera littoralis, odour molecules are detected by ORNs 

present in sensory hairs, sensilla, on the moth antenna. Approximately 10,000 sensilla 

containing Z9, Ell-14:OAc-specific ORNs are present on each male antenna. Each sensillum 

contains two ORNs, identifiable by firing action potentials (spikes) of different amplitude. 

The large spike-firing ORN is tuned to the major component of the sex pheromone, Z9, E ll-  

14:OAc, with a very high specificity. It has been suggested that each of these ORNs expresses 

a single type of olfactory receptor (Buck, 1996; Chess et al., 1994; Ngai et al., 1993). Given 

these ideas, all the ORNs recorded from are assumed to be a homogeneous population and 

to behave in a stereotypical manner when stimulated with a pheromone component. For 

the statistical analyses, all ORNs are considered as members of this population, although 

only the first five stimulus presentations to each ORN (at each stimulus load) were used to 

reduce possible effects of adaptation to the stimulus.
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Figure 3.3: Stimulus Load Dependence of Olfactory Receptor and Antennal Lobe Neurons, 
a) ORN Raster Plots. Raster plots of the spikes from 12 different ORNs at each of 4 stimulus 
loads and a blank presentation. The order in which the neurons are plotted is preserved in 
each subplot. Most of the neurons show an elevated firing rate in response to the stimulus 
loads of 10“ ® g and 10“  ̂g while responses to lower stimulus loads are not obvious, b) ALN 
Raster Plots. Raster plots of the spikes from 12 different ALNs at the same 4 stimulus loads 
and a blank presentation. The order in which the neurons are plotted is again preserved in 
each subplot. The difference in background firing rates across the neurons is evident with 
some neurons only firing in response to the stimulus. The firing rate of most neurons is 
elevated in response to the higher stimulus loads of 10“ ® g and 10“  ̂ g. Although some 
of these neurons show inhibition, all exhibit an initial period of excitation to the stimulus, 
and it is this period of excitation that is used to estimate the detection thresholds, c) ORN 
Dose Response Curves. Dose response curves for the ORNs using the net spikes method. 
Individual points show the net spikes for each of the recordings and the solid line shows 
the population average. The majority of ORN recordings, and the population average, have 
higher net spikes s“  ̂ in response to stimulus loads of 10“® g and 10“ ® g compared with 
the blank stimulus. The recordings and population average net spikes s“  ̂ in response to 
the lower stimulus loads are not noticeably different to the response of the blank stimulus, 
d) ALN Dose Response Curves. Dose response curves for the ORNs using the net spikes 
method. Individual points show the net spikes for each of the recordings and the solid line 
shows the population average. The dashed lines represent a subset of ALNs containing only 
neurons with a higher response, in terms of the number of net spikes s“ ,̂ to all stimulus 
loads compared with the blank stimulus. The overall trend of the net spikes s“ \  for the 
population and individual recordings, is an increase in response to increasing stimulus loads.
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3.4.2.3 A ssum ption o f a H eterogeneous Population o f ALNs

Within the pheromone processing area of the male moth AL, the MGC, three glomeruli 

receive input regarding semiochemicals involved in sexual behaviour. ALNs specifically 

innervate the different glomeruli of the MGC and display different degrees of specificity, 

representing a heterogeneous population. In order to accurately quantify the difference in 

detection thresholds between ORNs and ALNs it is necessary to use ALNs that respond 

maximally (i.e. show a strong response) to this stimulus since these will represent a ho­

mogeneous population. To achieve this, only a subset of the ALNs was considered in the 

statistical analyses. This subset consisted of ALNs with a monotonie increase in firing 

rate with increasing stimulus load at blank and the lower two stimulus loads. ALNs with 

non-monotonic changes in firing rate were assumed to either show some response to con­

tamination from previous stimulus presentations, or to have only partial affinity for this 

particular stimulus odour. Examples of the dose response curves of ALNs used both in 

the subset, and left out of the subset are shown in Figure 3.4 a) and b) respectively. The 

complete subset is shown as dashed lines in Figure 3.3 d).

3.4.2 4 A pplication o f t-tests  to  ORN Population and A L N  Subset

Multiple one-tailed t-tests were performed on distributions of the net spikes s~^ measure 

across the ORN population (Table 3.1 a)). These data demonstrate that the net spikes s~^ 

generated in response to 10“  ̂g stimulus load and above derives from a statistically different 

parent distribution than to the blank stimulus, whereas lower stimulus loads are not statis­

tically different. Thus, an estimate of the detection threshold for the population of ORNs 

can be found to be not more than 10~^ g for this pheromone component when presented 

alone.

Multiple one-tailed t-tests were performed on the ALN subset (Table 3.1 b)). The 

resultant p-values demonstrate that the net spikes s~^ measure obtained across all stimulus 

loads tested are from statistically different parent distributions to that of the blank stimulus.
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Figure 3.4: Selection of Quasi-Homogeneous ALN Subset from Heterogeneous ALN Popu­
lation. a) Examples of ALNs Included in the Subset. A number of ALNs were selected from 
the whole population to represent a homogeneous subset. The requirement for the ALNs 
were that they had a monotonie increase in firing rate with increasing stimulus load for 
blank and the lower two stimulus loads, g and 10"® g (or no increase). For the three
examples shown, the blue example shows monotonie increases between the blank, 10"^® g 
and 10"® g stimulus loads. The red and green examples show monotonie increases between 
some stimulus loads, and no increases between others, b) Examples of ALNs Excluded from 
the Subset. These three examples of ALNs were part of the heterogeneous population, but 
not part of the homogeneous subset. Increases in stimulus load produce either an increase or 
a decrease in firing rate, some of which are not monotonie. These neurons do not appear to 
be maximally responsive to the stimulus load tested, so were not included in the statistical 
analyses.

The detection threshold for the ALNs can therefore be estimated as not more than 10"^® g 

for this pheromone component when presented alone. Note that this is a conservative 

estimate, however, since lower stimulus loads were not tested in this experiment and all 

stimulus loads tested produced statistically different responses compared to blank.

3.4.2.5 A pplication of ROC and AUC Analyses to  O R N  P opu la tion  and ALN 
Subset

ROC curves were then generated (see Section 3.3.4) to assess the ability of the neurons to 

discriminate between a stimulus being present or not. The AUCs provide a non-parametric 

method of estimating the detection thresholds. For this analysis, the whole population of 

ORNs, and the same subset of ALNs were used. The distributions of net spikes s"^ used to 

create the ROC curves are shown on the right of Figures 3.5 a) and b).

For ORNs, the pairs of distributions are well separated for higher stimulus loads (10"^ g 

and 10"® g), allowing for good discrimination between stimulus and blank (see Figure 3.5
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a) ORNs t-tests, blank compared to stimulus loads:
10-^ g 10-6 g 10-^ g 10-6 g 10-^ g 10“ i6 g

p-value 0* 0* 0.00998* 0.93 0.99802 -
N 202 213 208 202 203 -

b) ALNs t-tests, blank compared to stimulus loads:
10-6 g 10-6 g 10-"  ̂ g 10-6 g 10-® g 10-10 g

p-value - 0.0004* 0.00042* 0.00333* 0.00617* 0.00527*
N - 22 22 22 22 22

Table 3.1: Demonstration of Detection Thresholds for Olfactory Receptor and Antennal 
Lobe Neurons based on Second Order Statistics. Asterisks show statistically significant 
differences {p < 0.0102, multiple t-tests). a) ORNs. Multiple one-tailed t-tests comparing 
the net spikes s“  ̂ produced by the population of ORNs in response to individual stimulus 
loads and the blank stimulus. The p-values suggest that the mean net spikes s~^ from the 
stimulus loads of 10“  ̂ g and above are firom statistically different distributions than the 
blank stimulus. This gives an estimate of the detection threshold as 10"^ g. b) ALNs. 
Multiple one-tailed t-tests comparing net spikes s~^ produced by the selected subset of 
ALNs in response to individual stimulus loads and the blank stimulus. The p-values suggest 
that all stimulus loads tested produce distributions of net spikes s“  ̂ that are statistically 
different to the blank stimulus distribution. This gives an estimate of the detection threshold 
of < 10-10 g

a)). This high level of discrimination is demonstrated on the left plot by these stimulus 

loads having AUC values close to 1, implying a probability of misclassification of less than 

10%. Distributions of net spikes s“ i for the lower stimulus loads show strongly overlapping 

distributions with that obtained firom the response to blanks. This signifies poor detection 

accuracy in determining whether the stimulus is present or not, and is demonstrated by 

the ROC curves lying close to the chance line (dashed line along the diagonal), where the 

probability of error is close to 50%.

For ALNs, the distribution of net spikes s“  ̂ at each stimulus load begin to overlap the 

blank distribution as the stimulus load decreases, but in all cases, there is a clear separation 

between the mean values of the distributions (see Figure 3.5 b)). This is represented by the 

ROC curves for all stimulus loads lying in the top left of the plot, resulting in detection 

performance well above chance. The AUC values of 0.81405 for the stimulus load of 10“ ^̂  g 

suggests that even at this low level, individual ALNs are able to correctly determine when
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the stimulus is present 81% of the time. Comparisons of the AUC values for each stimulus 

load with blank, allow for the to calculation of the 2 -ratio (or 2 -score from a standard normal 

table) used to identify detection thresholds (see Section 3.3.4). Values of the 2 -ratio above 

2.569 correspond to the p-value < 0.0102 used in the multiple t-tests.

The 2 -ratio values for the set of ORN recordings show that stimulus loads of 10“  ̂ g 

and above produce statistically different ROC curves to that of the control curve, but lower 

stimulus loads do not (see Table 3.2 a), significantly different AUC values (2 -ratio > 2.569) 

denoted with an asterisk). This provides an estimate of the detection threshold as being 

10~^ g, which corresponds to the threshold that was estimated using multiple one-tailed t- 

tests. In contrast, for the subset of ALNs tested, the 2 -ratios show that all the stimulus loads 

produce ROC curves that are statistically different from the ROC for blank (see Table 3.2

b)). This statistical analysis gives an estimate of the detection threshold as being < 10“ ®̂ g, 

which again corresponds to the threshold estimated using multiple one-tailed t-tests.

a) ORNs Control compared with stimulus loads:
10-^ g 10-6 g lO-'^g 10-8 g 10-9 g 10-^9 g

AUC 0.99534 0.94185 0.68639 0.60955 0.50785 -
2 -ratio 13.826* 10.909* 3.4323* 1.9183 0.03049 -

b) ALNs Control compared to stimulus loads:
1 0 - 5  g 10-6 g 10-^ g 10-8 g 10-9 g 10-19 g

AUC - 0.95868 0.97734 0.88017 0.8595 0.81405
2 -ratio - 3.7328* 3.9401* 3.5572* 3.4391* 3.2475*

Table 3.2: Determination of Detection Thresholds for Olfactory Receptor and Antennal 
Lobe Neurons based on Receiver Operating Characteristics. Asterisks show statistically 
significant differences (z-ratio> 2.569). a) ORNs. Comparison of the AUC of each stimulus 
load with the AUC of the control for the whole population of ORNs. The 2 -ratio suggests 
that stimulus loads of 10"^ g and higher produce ROC curves tha t are statistically different 
to the control curve. This gives an estimate of the detection threshold as 10~^ g. b) ALNs. 
Comparison of the AUC of each stimulus load with the AUC of the control for the selected 
subset of ALNs. The 2 -ratios suggest that all stimulus loads tested produce ROC curves 
that are statistically different to the control curve. This gives an estimate of the detection 
threshold as < 10“ ®̂ g.
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Figure 3.5: Receiver Operating Characteristic Curve Analysis of Olfactory Receptor and 
Antennal Lobe Neurons. The symbols and colours used for each stimulus load are conserved 
in both ROC figures and in the distribution figures. The AUCs are also shown, which is 
directly related to the psychophysical discriminability parameter d \ a) Left: ORN ROC 
Curves. ROC curves generated at each stimulus load for the ORNs. Stimulus loads of 10“  ̂g 
and 10“® g have AUCs close to 1 suggesting almost perfect discrimination between stimulus 
present or not. Lower stimulus loads are closer to chance levels (dashed diagonal), a) Right: 
Net Spikes Distributions. Distributions of net spikes used to create the ROC curves. In each 
subplot, the net spikes distribution for the blank stimulus is depicted in pink. The mean 
net spikes s“  ̂ for the blank distributions are indicated by vertical red dashed lines, and by 
vertical black dotted lines for the stimulus distributions. To create ROC curves, a criterion 
start point is set below the minimum number of net spikes s“  ̂ in the distributions and 
incremented until higher than the maximum number of net spikes s“ U At a given point A, 
blank net spikes above the criterion indicate 'false alarms’ and stimulus net spikes above the 
criterion indicate ‘hits’. The ROC curve is then a plot of the hits against false alarms. The 
distributions of stimulus and blank net spikes are well separated with stimulus loads of 10“ ® 
g and 10“ ® g, indicated by the separation between the mean values of the distributions, but 
these distributions overlap significantly as the stimulus load decreases. At stimulus loads of 
10“® g and 10“ ® g the stimulus load distributions lie on top of that of the blank, b) Left: 
ALN ROC Curves. ROC curves generated at each stimulus load for the subset of ALNs. 
All stimulus loads have AUCs above 0.8, indicating a high level of discrimination over the 
range of stimulus loads tested, b) Right: Net Spikes Distributions. Distributions of net 
spikes used to create the ROC curves. In all cases, the distribution of net spikes for the 
stimulus loads lie to the right of the distribution of blank net spikes, as demonstrated by 
the separation of the mean values of the distributions, indicating a response to the stimulus.
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3.4.3 C om parative A nalysis B etw een O RN and A L N  D etection  
Thresholds Q uantifies Sensitiv ity  Enhancem ent

Two different procedures were used to determine at what stimulus load the response from 

neurons is no longer significantly different to the response due to a blank stimulus. The 

first method used, the multiple t-test, is parametric in that it assumes the data under con­

sideration are normally distributed. This method yields detection thresholds of 10“  ̂ g and 

< 10“ °̂ g, for ORNs and ALNs, respectively. The second method used, the ROC and asso­

ciated AUC analysis, provides a non-parametric method of determining the discriminability 

of a stimulus based on ranking the data. This method generates the same detection thresh­

olds as the t-test method for both ORNs and ALNs for the pheromone component tested. It 

is possible then to conclude that there exists a reduction in detection threshold of at least 3 

orders of magnitude between the neurons at the periphery and in the AL, which corresponds 

to an equivalent boost in sensitivity.

3.4.4 Finer Tem poral R esolution  Fails to  Im prove D iscrim inability  
in O R N  R esponses

While the signal detection theoretic analysis conducted for ORN responses employed rigor­

ous criteria to specify over which time scale the spike events should be integrated, it was 

necessary to try  to discount the possibility that the discriminability of the stimulus could be 

enhanced by considering alternative timescales. To do this, ROC curves were constructed 

for ORN responses over many independent time periods, of differing lengths, from the start 

of the stimulus presentation to the time at which the neurons appeared to stop responding. 

Integration periods of 50 ms, 100 ms, 200 ms and 500 ms were investigated, with each win­

dow moving along by 10 ms to form the next integration period. For each test period, the 

AUC values were compared against that of the control curve, and detection thresholds were 

calculated using the same criteria as previously employed (see Figure 3.6 a)-e) for example 

time periods and ROC curves). These detection thresholds, for each of 590 different integra­

tion time periods, are shown in Table 3.3. In all cases, the discrimination performance was
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worse than that shown in the original analysis (see Figure 3.5 a)), leading to the conclusion 

that alternative integration times do nothing to improve stimulus discriminability.

0 05 1 0.5 1 1 0 05 1 0
False alarms

control

2.4 2.6
Time (s)

Figure 3.6: ROC Analysis of Net Spikes Integration Period. The symbols and colours used 
for each stimulus load in the ROC curves correspond those used in Figure 3.5. Lower Panel; 
PSTH For An ORN. Horizontal bar shows the stimulus duration. The PSTH for an ORN, 
at a stimulus load of 10~^ g is shown. Bars in grey correspond to the integration period 
used when determining the detection threshold for this ORN. Shaded areas labelled a) to 
e) show a subset of the integration periods tested. Upper Panel: ROC Curves For Labelled 
Integration Periods, a) After the stimulus has started, but before the ORN seems to respond, 
the ROC curves for all stimulus loads lie close to the chance line (dashed black line along 
the diagonal), b) At this point the ORN is now responding to the stimulus, and the ROC 
curves for the two highest stimulus loads have moved away from the chance line, c) The 
ORN is still responding to the stimulus with an elevated firing rate, and the curves from the 
two highest stimulus loads are further from the chance line, d) The response of the ORN 
is now dying down, corresponding to the ROC curves returning closer to the chance line, 
e) Only the firing rate of the ORN in response to the g stimulus load is still slightly 
elevated, demonstrated by all other ROC curves again lying close to the chance line.

3.4.5 Inhibitory Responses of ALNs Show Greater Sensitivity to 
Pherom one Stimuli

3.4.5.1 Raw Inh ib ited  ALN D ata

The majority of ALNs encountered showed stereotypical responses: elevated firing rates 

during stimulus presentation, followed in fewer cases by a prolonged suppression in firing 

rate (Figure 3.3 b)). However, there were a small number of ALNs showing an inhibitory 

response to far lower stimulus loads. These particular ALN responses were studied at further 

stimulus loads to provide an estimate of their detection threshold. The response of one such
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Length of ?ime Period
Threshold 50 100 200 500 Total
10-* g 0 0 0 0 0
10-® g 0 0 0 0 0
10-7 g 0 0 3 28 31
10-® g 6 15 23 4 48
10-® g 6 15 16 18 55
None 138 120 98 100 456

590

Table 3.3: Investigation of ORN Integration Period. The signal detection theoretic method 
of determining the detection threshold of ORNs was used on a number of alternative 
timescales to discount the possibihty of lower thresholds being attainable. Independent 
time periods, from the start of the stimulus presentation, moving along by 10 ms each time, 
to where the neurons no longer showed any response, with durations of 50 ms, 100 ms, 200 
ms and 500 ms were used. The AUC values were compared with the control curve, and the 
detection threshold was set to be the lowest stimulus load at which 2 -ratio > 2.569. The 
numbers of integration periods with thresholds at different stimulus loads are shown. Inte­
gration periods where even the highest stimulus load was not significantly different from the 
control are entered in the row labelled ‘None’. From 590 different integration periods, only 
31 (5.25 %) matched the detection threshold of 10~^ g found during the original analysis 
(Table 3.2), with no integration periods yielding a lower detection threshold.

neuron is shown in Figure 3.7 a). This neuron shows an inhibitory response to a stimulus 

load of 10ri2 g, far lower than the earlier statistical analyses based upon excitatory responses 

suggests.

3.4.5.2 Further A nalysis

Since the ALN shows inhibition, the net spikes s“  ̂ method used to quantify the response of 

excitatory neurons is not particularly suitable since the time over which the net spikes are 

calculated uses an increase in the firing rate to determine the start (although it is possible 

to use the net spikes s~^ method using a decrease in the firing rate. Appendix B). Where 

there is a decrease in the firing rate, it is unclear exactly when the inhibition starts, so the 

start of the time interval over which the net spikes s~^ are calculated is unclear. Using 

the last “background” spike as the start of the inhibition onset is not accurate since the 

timing of the last spike depends on the “state” of the neuron i.e. if the neuron has recently
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produced a spike then the perceived start time of the inhibition may appear later than that 

of a neuron that is just about to produce a spike (see Figure 3.8).

Another possible method for creating dose response curves is to use the instantaneous 

spike frequency (ISF). To calculate the ISF, a list of inter-spike intervals are generated and 

then inverted. The time of each ISF is taken as the mid-point of the time between the two 

spikes it relates to. Since inhibition corresponds to a decrease in the firing frequency, the 

dose response curve is created using the minimum ISF in a time period (starting at the 

stimulus onset and ending 1.5 s later). The dose response for the inhibition ALN, created 

using this method, is shown in Figure 3.7 b).

Although insufiicient examples of such responses precluded detailed t-test or ROC analy­

sis, it must be concluded that the previous estimates of sensitivity enhancement are ex­

tremely conservative. Indeed, such inhibitory responses would suggest a sensitivity boost 

closer to 5 orders of magnitude is possible in this system.

3.4.6 T heoretical M odel o f Convergence

Because the convergent architecture of the early olfactory pathway in this animal is highly 

organized topographically, it was possible to compare this empirical boost with a theoretical 

model of signal convergence, to test the hypothesis that the sensitivity boost results from 

the convergence of elevated firing rates alone. It can be assumed that ORN spike trains 

follow an inhomogeneous Poisson point process, with a firing probability that is elevated 

during stimulus presentation. The case where n such ORN spike trains were integrated over 

time, at a single site of convergence such as a glomerulus was considered (see Figure 3.9 a)).

The mean firing rate and variance for an ORN both pre- and peri-stimulus are denoted 

by fipre, &nd /Xpert, CTpert respectively. If an excitatory response to the stimulus is 

assumed, then the signal-to-noise ratio (SNR) for the response of a single ORN is given by

1 ( / X p e r t  / X p r e )
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Figure 3.7: Antennal Lobe Neurons Show Inhibitory Response to Lower Stimulus Loads, 
a) Recordings From an Inhibited ALN. An ALN responding to the major pheromone com­
ponent, Z9, Ell-14:OAc, at different stimulus loads. The neuron shows a response to the 
stimulus presentation with a suppression of the background firing rate. This inhibition is 
evident down to a stimulus load of at least 10“ ^̂  g (horizontal bar shows stimulus dura­
tion, horizontal scale bar is 1 s, vertical scale bar is 100 mV). b) Dose Response Curve. To 
measure the amount of inhibition, the ISF is used (the reciprocal of the time between one 
spike and the next). The ISF is calculated over a period of time similar to that of the net 
spikes calculation, and the lowest ISF is used to create the dose response curve. Lower spike 
frequencies indicate higher levels of inhibition. This neuron shows lower spike frequencies 
for all stimulus loads tested compared to that of the blank stimulus.

Under the simplifying assumption (which is later abandoned) that the role of a secondary 

neuron (ALN) is to emit a spike for every spike received at a point of integration where 

n ORNs converge on a single glomerulus, then the firing rate for the ALN becomes rifXper, 

during the stimulus and n/ipre beforehand. Moreover, since for a Poisson process the variance 

of the firing rate is equivalent to the mean, then the SNR for the ALN becomes

s n R a l n  =  ^̂
 l p̂eri T  fJ-pre

( 3 . 2 :
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Figure 3.8: Perceived Time of Inhibition Onset. Horizontal bar represents the stimulus 
duration. Dashed line represents the time at which the true inhibition starts. Neuron ni 
is just about to fire a spike but becomes inhibited. Neurons n2 fires a spike just before 
becoming inhibited. Times ti  and t 2 are the perceived times of the onset of inhibition for 
the two neurons.

Since the SNR of the ORN does not depend upon n the enhancement in SNR, or 

S N R a l n / S N R o rn  follows n. The ability of an ideal observer to detect the stimulus 

depends upon the psychophysical d’ which is measured in terms of the square root of the 

SNR (Dayan and Abbott, 2001). Thus the discriminability (sensitivity) enhancement of the 

system follows y/n directly.

Using a simple computational model, it was possible to simulate the convergence of large 

numbers of ORNs. Each ORN consisted of 1000 time bins, each of 1 ms in duration. A 

random number generator was used to determine whether each bin contained a spike or not, 

according to a probability set such that the pre-stimulus firing rate (first 500 time bins) was 

Vs that of the post-stimulus firing rate (last 500 time bins). At the site of convergence, 

the input ORN spikes were compressed into a single spike train, again of 1000 time bins, 

containing either a 0 (no ORNs had a spike in this time bin), o r a l  (one or more ORNs 

had a spike in this time bin). These convergence calculations were performed 500 times to 

calculate the psychophysical d \  When cT is plotted against y/n the relationship between 

them can be modelled by a linear best fit (see Figure 3.9 b)).

This improvement in discriminability can potentially be translated directly into a sensi­

tivity enhancement for the system. Therefore, to achieve the observed boost of 3 orders of 

magnitude through pooling of firing rates would require 10® ORNs converging onto a single 

glomerulus, whereas a boost of 10® would require 10̂ ® ORNs.
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Figure 3.9: Theoretical Convergence Model, a) Spike Train Integration at a Glomerulus. A 
schematic view of receptor convergence onto a singe glomerulus in the early stages of olfac­
tory processing. Odour ligands bind to receptor sites on ORNs producing above background 
firing rates. Axons fi-om n ORNs expressing the same receptor gene converge onto a single 
glomerulus in the MGC. b) Boost in Discriminability. A simple computational model of the 
theoretical model shows that when the ORNs are created as Poisson point processes, and 
the output neuron simply sums the input spikes, the boost in discriminability of the system 
follows ^/n. For each n (up to 1000), 500 trials were performed to calculate d'. Dots show 
the actual values of d \  with boost in sensitivity following y/n, shown by the line of best fit.

3.5 Discussion
3.5.1 Receptor Neuron Pooling and Sensitivity Enhancement dur­

ing Early Olfaction

Within the olfactory system, glomeruli act as sites of convergence for large numbers of 

ORNs (Christensen et al., 1996). This convergence is conserved across many species of 

both invertebrates and vertebrates (Allison and Warwick, 1949; Bhatnager and Kalien, 

1975; Gemne and Dpving, 1969), suggesting a fundamental role in the detection of chemical 

cues. Electrophysiological recordings taken from olfactory bulb (OB) of frog compared with 

those at the receptor level show increased sensitivity to odours, which can be interpreted 

as a sensitivity enhancement (Duchamp-Viret et al., 1989), which is also observed in the 

AL of the male moth Agrotis segetum (Carlsson et al., 2002; Hartlieb et al., 1997) and 

male cockroach Periplaneta americana (Boeckh and Ernst, 1987). Taken together, these 

observations suggest that a key property of massive convergence in the olfactory system is 

signal amplification, resulting in increased sensitivity to chemical stimuli.

By conducting a signal detection theoretic analysis of firing rates in the olfactory pathway 

in this chapter, the boost in detectability of the olfactory signal occurring during early
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olfactory processing has been quantified (Figure 3.5, Tables 3.1 and 3.2). This boost is 

shown to operate across a population of ALNs, reliably achieving a sensitivity enhancement 

in excess of 3 orders of magnitude in stimulus load. How should these results be explained? 

A sensitivity boost resulting from receptor convergence should not, in itself, be surprising. 

By poohng receptor input over many sensory neurons, the nervous system is able to decrease 

uncertainty, which can be translated as an overall lowering in the detection threshold, so 

that higher centres of the nervous system can robustly interpret chemical cues. Unlike time 

averaging, such a spatial integration of receptor input incurs no time penalty; in principle 

this can be performed in the same time required to readout the signal from a single neuron.

3.5.2 O lfactory Sensitiv ity  B oost is Beyond P oolin g  o f Firing R ates

Since glomeruli are innervated by axons projected by ORNs with identical tunings, the 

question of whether the sensitivity boost observed could derive from a straightforward inte­

gration of firing rates at these structures was asked. Theoretical considerations of integration 

of Poisson spike trains at a single site of convergence, such as at an individual glomerulus, 

show that discriminability of a stimulus must follow the square root of the number of con­

vergent spike trains (see Section 3.4.6). Thus, to achieve the observed boost of 3 orders 

of magnitude through pooling of firing rates would require 10® ORNs converging on a sin­

gle glomerulus, whereas a boost of 10® would require 10̂ ® ORNs. The known anatomy of 

the sensilla and MGC in the moth, where axons from ORNs expressing the same olfactory 

receptor converge (Berg et al., 1998; Hansson, 1995; Hansson et al., 1992; Ochieng’ et al., 

1995; Todd et al., 1995), puts this figure closer to lO'̂ , suggesting that a maximum of 2 

orders of magnitude boost could be attained by the system through pooling of firing rates 

alone. ALNs showing inhibitory responses in excess of 5 orders of magnitude lower than the 

detection threshold measured at the periphery (Figure 3.7) were found, in itself suggesting 

that an extreme level of sensitivity enhancement exists in this system.
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Before discussing possible mechanisms that could conceivably account for the boost in 

detectabihty of the stimulus, it is first necessary to assess the assumptions made throughout 

this chapter.

3.5.3 A ssessm ent o f A ssum ptions

Throughout this chapter, a number of assumptions have been made, about both ORNs 

and ALNs, and their connectivity. This section examines these assumptions, with brief 

discussions about the relevance of each, and what has been done to try to discount errors 

associated with the assumptions.

1. All ORNs responding to the stimulus are of the same type and have the same sensitivity

i.e. belong to a homogeneous population.

As mentioned in Section 3.4.2.2, ORNs are likely to express only a single type of olfac­

tory receptor (Buck, 1996; Chess et al., 1994; Ngai et al., 1993), and thereby certain 

specificity (Carlsson et al., 2002; Hansson et al., 1992; Ochieng’ et al., 1995). When 

stimulated with pheromone, it can be expected that the population will behave in 

a stereotypical manner. Indeed, investigations have previously been carried out (in­

cluding Ljungberg et al., 1993), which show that the detection threshold for ORNs 

sensitive to the major pheromone component were similar to those found in this chap­

ter, and that pheromone-detecting ORNs are highly specialized (Hansson, 1995 and 

references therein). It can be concluded that the ORNs all show a maximal response 

to the stimulus and can be perceived as a homogeneous population when calculating 

the detection threshold for a specific stimulus.

2. ALNs responding to the stimulus do not behave in the same way i.e. belong to a 

heterogeneous population.

As mentioned in Section 3.4.2.3, ALNs innervating the same glomerulus in the MGC 

may display different degrees of specificity. Unlike ORNs, the specificity of ALNs
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does not arise from a direct interaction with odour molecules, but rather from the 

interconnections between neurons within the AL. This property of ALNs has been 

studied (see Anton and Hansson, 1995) with the conclusion that ALNs may respond 

to several different stimuli, with a maximal response to only one of them. It should 

therefore be acceptable to assume heterogeneity in the ALN population, with a subset 

of maximally responding ALNs used for the detection threshold comparison.

3. The ORNs recorded from pass the signal to the same glomerulus that the ALNs read 

from.

The following points indicate that both types of neurons innervated the same glomeru­

lus:

(a) Spodoptera littoralis has only three glomeruli in the MGC, one each receiv­

ing axons from ORNs responding to the major and minor components of the 

pheromone, and one receiving axons from ORNs responding to a behavioural 

antagonist (Ochieng’ et al., 1995);

(b) Calcium imaging experiments show that ORNs responding to the major phero­

mone component generally innervate a single MGC glomerulus (Carlsson et al.. 

2002);

(c) Innervation sites used to locate ALNs in the MGC that respond to the stimulus 

were based on glomerular representations (Carlsson et al., 2002; Sadek et al., 

2002) and calcium imaging (Carlsson et al., 2002).

However, without having taken simultaneous recordings from ORNs and ALNs, it is 

not possible to confirm that the ORNs and ALNs recorded from were innervating the 

same glomerulus.
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4. PNs and LNs can be grouped together as ALNs.

The grouping of PNs and LNs into ALNs was made due to the lack of morphological 

evidence available to identify the individual types of neurons. W hat this assumption 

really results in is that it is not possible to determine whether the boost seen at the 

AL is confined to the AL (i.e. is a result of the synaptic connectivity and is only seen 

in LNs), or whether the boost is transported to other areas of the moth brain (i.e. 

is carried in the PN output response). Both types of neurons are, however, located 

in the AL, and are found to innervate glomeruli, including those in the pheromone 

processing subsystem. It is therefore still possible to demonstrate an enhancement in 

the sensitivity of the olfactory system between the antennae and the AL.

5. An inhibited ALN can be used to describe further boost than is seen in excitatory 

ALN responses.

In Spodoptera littoralis, the LNs can have an inhibitory effect on other neurons, but 

PNs and ORNs are only able to excite other neurons. For an ALN to show an inhibitory 

response to a stimulus, an LN must have responded to the stimulus and inhibited the 

ALN via synaptic connections. This is similar to the point above, and is nevertheless 

a demonstration of the enhancement in sensitivity between the antennae and the AL.

6. The coding strategy of interest for both the ORNs and the ALNs is a rate code.

For the purposes of this chapter, it has been assumed that the presence of a stimulus 

is portrayed in the firing rate of a neuron, usually by an increase in the firing rate 

(with the exception of the inhibited ALN). However, theoretic and experimental in­

vestigations suggest that sensory information could be transm itted as a temporal code 

(Rieke et al., 1997; Theunissen and Miller, 1995). This idea is discussed in Section 

3.5.4.
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7. The time period over which the response was calculated was of relevance to the bio­

logical system.

This chapter assumes a rate code (see point 6), and to calculate this, an integration 

period is required. The integration period used is described in Section 3.3.2 and was 

the time period in which individual neurons showed an elevated firing rate compared 

with the background firing rate. It weis necessary to try to discount the possibility 

that considering alternative timescales, possibly more relevant to the animal, could 

enhance the discriminability of the stimulus. Section 3.4.4 describes this procedure, 

with the result being that alternative integration times do nothing to improve stimulus 

discriminability. Without knowing exactly what the biological system determines as 

important, it is not possible to discount the possibility that lower detection thresholds, 

particularly in the ORN responses, could not be found if the ideal integration period 

were known.

8. The theoretical model used is a good representation of the biological system.

As an initial theoretical investigation, ORNs were assumed to be inhomogeneous Pois­

son point processes. The real ORNs recorded from were found to have coefficients 

of variation between 0.5-1.5, suggesting non-Poisson properties. The assumption that 

the output neuron emits a spike for every spike received, allows for a simple theoretical 

model, but is not a good representation of an ALN. These issues are addressed in more 

detail in Chapter 5.

These were the main assumptions made whilst assessing the detection thresholds of 

ORNs and ALNs, and during the investigation of enhancement in stimulus discriminability. 

After considering these assumptions, it is still possible to realise that the boost in stimnlus 

detectability, between neurons at the antenna and those in the AL, is greater than can be 

accounted for by simple summation of firing rates of receptor inputs. This suggests that 

alternative coding and/or readout mechanisms are operating in this system, which require 

further scrutiny.
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3.5.4 Further H ypotheses
3.5.4.1 Further Sensitivity at the Periphery

While still assuming a rate code at the periphery, it is not possible to completely discount the 

possibility that ORNs more sensitive to the stimulus exist. Although this is unlikely since 

thousands of sensilla have been recorded from in previous studies (where similar detection 

thresholds were found), recordings have mainly been taken from a single type of sensilla (the 

trichoid sensilla). If ORNs more sensitive to the pheromone component used here do exist, 

there is a possibility they may be housed in other sensilla not yet so rigorously investigated.

When using the current experimental set-up to stimulate the antenna, it is possible that 

only a small section of the antenna actually receives the puff of air containing the pheromone. 

At low stimulus loads, not all sensilla may receive enough pheromone molecules to cause 

a visible response in the ORN housed inside it. In fact, for two of the ORNs used in this 

chapter, the recordings at lower stimulus loads suggest that these neurons didn’t always 

receive enough of the stimulus to provide a response in each repetition. For these two ORNs. 

five recordings were taken at each stimulus load (blank, 10“ ® g, 10“ *̂ g, 10“  ̂ g, 10“ *’ g and 

10“  ̂g) and visual inspection suggests that responses to the stimulus presentation are seen 

at 10“ ® g in 1 out of 5 and 2 out of 5 recordings. Examples of recordings both with and 

without a response are shown in Figure 3.10 a) and b). This hypothesis, that sometimes an 

ORN will receive enough stimulus molecules to evoke a response, but other times it doesn’t, 

suggests that although the overall population average detection threshold is 10“  ̂ g, ORNs 

may be more sensitive. Although this reduces the difference in threshold between ORNs 

and ALNs, there would be far fewer responding neurons converging at the glomerulus than 

assumed in the original investigation of the population, so the boost in discriminability 

remains intact. This hypothesis is also investigated in Chapter 5.
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Figure 3.10: Example of Possible ‘Lucky’ ORNs. a) and b) show two recordings from two 
different ORNs, all with a stimulus load of 10“ ® g (stimulus duration represented by short 
horizontal bars above each recording). Stimulus load tested is below the threshold deter­
mined when considering the whole population of ORNs, but the top row shows an increase 
in firing rate in response to the stimulus, whereas the bottom row does not (although later 
presentations at higher stimulus loads still showed responses, data not shown). Horizontal 
bar: 1 second, vertical bar: 1 Volt.

3.5.4.2 Tem poral P atterns at the Periphery

Throughout this investigation, only the pooling of elevated firing rates has been used to 

assess the boost in detection performance. The comparison of a theoretical model of con­

vergence with the empirical data suggests that other coding mechanisms may be in operation 

to further boost detection performance. If the ALNs were sensitive to temporal information 

in the form of precisely timed spikes, or patterns of spikes generated at the periphery, these 

spikes would not necessarily lead to large excursions in ORN firing rates at low stimulus 

loads. In this coding scheme, an ALN would need to detect a specific, repeatable pattern of 

spikes received from the ORN population. Although it can be seen that the overall struc­

ture of firing rates of ORNs follows a pattern, it has not yet been ascertained whether ORN 

spike trains over repeated trials, at stimulus loads below the current detection threshold, 

consist of an obviously repeatable temporal structure. This will be further investigated in 

Chapter 4.

3.5.4.3 Synchronisation at the Periphery

Another method by which sensitivity enhancement could be further boosted is through 

individual or clusters of spikes generated by the ORNs, which are synchronised in time during

50



stimulus presentation. This encoding strategy, if only required to indicate the presence of 

a stimulus, could be achieved by each ORN transmitting a single spike, synchronised with 

spikes from a population of ORNs, again having little effect of the overall firing rate of the 

sensory neurons. The ALN would need to be sensitive to these coincident events over the 

ORN population innervating its glomerulus, as investigated in Chapter 5.

In order to achieve the synchronous firing of spikes from a population of neurons, a 

mechanism would be required to produce this synchrony. Two possibilities exist: the dy­

namics of the stimulus, common to all receptor neurons, is sufficient to time-lock the ORN 

activity with the degree of precision necessary for synchronous detection; ORNs are able to 

synchronise their activity through other means. In the case of the moth, chemical stimulus 

dynamics up to 25 Hz (Justus et al., 2002b) have been measured in behaviour ally rele­

vant conditions and this could in principle induce highly synchronised stimulus onset times 

across the numerous sensilla. In mammals the signal received at different compartments 

of a single glomerulus has also been shown to be synchronised within the time resolution 

of two-photon calcium imaging (Wachowiak et al., 2004). It is therefore possible that the 

common stimulus dynamics in the moth are able to sufficiently synchronise ORN activity 

to permit downstream detection (further investigated in Chapter 4). Any other method of 

synchronisation seems unlikely, since there is no evidence that ORNs across distinct sensilla 

are able to coordinate their activity to achieve the necessary synchronisation.

3.5.4.4 M odels o f  G lom erular Convergence Sites

Within this chapter, the theoretical model of convergence uses Poisson ORN spike trains, 

with a simple summation of these at the convergence site. The result of this is that the 

enhancement of stimulus discriminability should follow the square root of the number of 

converging inputs. When compared with the biological system, the enhancement observed 

exceeds that predicted by the theoretical model. The theoretical model is, however, very 

basic, with the possibility that using more realistic firing statistics for the input ORNs,
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and a more realistic model of an output neuron could conceivably give rise to a higher 

enhancement than predicted by the theoretical model.

A more biologically reahstic computational model may still not be able to account for 

the enhancement found in the biological system when considering a passive site of conver­

gence. However, research has shown that glomeruli are highly complex units innervated by 

several types of neurons (Distler et al., 1998). Innervating neurons form within-glomerulus 

networks, while also forming neural connections to other glomeruli and to other brain areas. 

It is, however, most likely in the within-glomerulus circuitry that the signal enhancement 

mechanisms should be sought. In a modelling study of LNs, one conclusion was that at 

low concentrations of odours these neurons most likely work in the intra-glomerular space 

(Christensen et al., 2001). It was also shown how PNs, which constitute the main output 

from the AL, innervating the same glomerulus go into synchrony at a much higher degree 

than those present in neighbouring glomeruli. The PNs of neighbouring glomeruli could 

even inhibit the activity of each other (Lei et al., 2004). Chapter 5 looks at ways in which 

synaptic connections between neurons within a glomerulus may result in the formation of 

an active site of convergence, and so enhancing the detection capability of the system.

3.5.5 Tem poral P atterns in th e A ntennal Lobe

For the detection thresholds investigation in this chapter, only a rate-based metric, calcu­

lated for individual ALNs, was considered. Often, however, ALN responses to olfactory 

stimuli are complex, consisiting of excitation and inhibition, and outlast the duration of 

the stimulus presentation (Laurent and Davidowitz, 1994; Laurent et al., 1996; Lemon and 

Getz, 2000). Indeed, neural activity within the antennal lobe appears to be both spatially 

and temporally complex (Gelperin, 1999; Laurent, 1999; Sachse and Galizia, 2002), with 

individual neurons displaying odour-specific spike patterns (and the same odour evoking 

different patterns in different neurons; Laurent et al., 1996). Recordings across multiple 

neurons suggest tha t specific patterns of synchronous firing across a population of neurons
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may encode different aspects of the olfactory stimulus (Christensen and Hildebrand, 2002; 

Christensen et al., 2000; Hansson and Christensen, 1999; Laurent et al., 2001; Lei et al., 

2002). While these ideas are beyond the scope of this thesis, it is conceivable that temporal 

responses to pheromone stimuli in ALNs may result in lower detection thresholds than found 

here, further enhancing the detection performance.

3.6 Conclusions

By conducting detailed signal theoretic investigations of discriminability at the first two 

stages of the olfactory pathway a significant sensitivity boost has been found. Comparing 

this boost to a theoretical model of signal convergence, this boost is beyond that achievable 

by summations of elevated firing rates over a pool of receptor neurons. The assumptions 

made throughout the investigation were discussed, with the conclusion being that none 

caused the overall outcome to deviate significantly. A variety of hypotheses to explain 

the boost observed were suggested, from different coding schemes to alternative readout 

mechanisms, with the aim to investigate some of these further in the following chapters.
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Chapter 4

Temporal Encoding at the  
Periphery

4.1 C hapter Overview

The main aim of this chapter is to perform an initial investigation into the encoding scheme 

used by the ORNs at the periphery of the olfactory system. Chapter 3 suggests that the 

boost in signal detection between ORNs at the antennae and the ALNs in the AL is greater 

than that expected when assuming a rate-based encoding scheme at the ORNs, and a passive 

site of convergence of these ORNs at the ALNs. One solution that could be employed to 

explain this boost by the olfactory system is the use of temporal encoding at the periphery 

(examples of which are described in Sections 3.5.4.2 and 3.5.4.3), producing a code not 

detectable using a firing rate metric.

Several repeats of electrophysiological recordings from a number of different ORNs were 

taken by collaborators in Sweden (see Section 2.2) in response to the major pheromone 

component (at stimulus loads of the rate-based detection threshold and lower), and spike 

trains were generated as detailed in Section 2.3. Stimulus correlation techniques were used 

to initially assess the ORN encoding scheme, the results of which could not discount the 

possibility of a temporal encoding scheme. Patterns of spikes from repeat recordings of 

individual ORNs were then studied using Unitary Events Analysis (UEA) but most were 

found to be unreliable. The problem of non-stationarity of spike trains was investigated.
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Unitary Events by Moving Window Analysis (UEMWA) was used to investigate patterns 

of synchronised spikes across a population of ORNs. Overall, the results were inconclusive, 

mainly due to the non-stationarity of the spike trains, combined with low background firing 

rates of the current data set causing complications when using these techniques.

Assumptions relating specifically to the methods used throughout the chapter are dis­

cussed, with the main assumption, tha t of stationarity of spike trains, being violated result­

ing in an unreliable outcome. Further ideas for investigation are suggested, some based on 

the current data set, and others requiring specific data sets not yet available.

4.2 Introduction

In Chapter 3, the results show that the boost in sensitivity between the first two olfactory 

processing stages, ORNs at the antennae and ALNs of the AL, is beyond that achievable 

by the summation of elevated firing rates from the convergence of the population of ORNs. 

If, however, the ALNs were sensitive to stimulus information encoded temporally by the 

ORNs, the spikes from this type of encoding scheme would not necessarily lead to large 

excursions in ORN firing rate, particularly at lower stimulus loads, which would not have 

been identified as part of the investigation conducted in Chapter 3.

Temporal encoding could be achieved by the ORNs in several ways. Individual ORNs 

could produce patterns of spikes, differing according to the stimulus load and/or stimulus 

odour quality. For these patterns to be transferred to the AL, ORN spike patterns would 

need to be highly repeatable over multiple stimulus presentations, with accurate spike tim­

ings to allow for recognition of the pattern. Another scenario requires spikes (individual or 

in clusters) fi-om ORNs to be synchronised across the population. The ALNs would need 

to be capable of detecting these coincident events, and the synchronisation would also need 

to be repeatable over multiple stimulus presentations. The purpose of this chapter is to 

investigate the possibility of temporal encoding at the ORNs, with Chapter 5 investigating 

possible mechanisms at the AL.
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Assuming then, that these temporal encoding schemes exist in this olfactory system, how 

might they be identified? A set of criteria have been established for the qualification of an 

encoding scheme as either a rate-based or a temporally-based code (Theunissen and Miller, 

1995), according to the degree of correlation between the spike trains and the stimulus. 

This method has been applied in the olfactory system of the cockroach, with the finding 

that the ORNs used a rate-based encoding scheme, which is transformed into a temporal 

encoding scheme at the PNs (Lemon and Getz, 2000). While this procedure can be used to 

identify the presence of a temporal encoding scheme, it does not indicate the structure of 

the encoding scheme.

To further assess temporal encoding schemes, several methods have been developed in­

cluding joint-PSTH (jPSTH; Aertsen et al., 1989), sliding window cross-correlograms (Lau­

rent and Davidowitz, 1994), cost-based metrics (Victor and Purpura, 1996, 1997) and the 

detection of stable spike patterns (Fellous et al., 2004). While these methods serve their 

intended purpose, they only compare one neuron with another, and are not capable of de­

tecting synchrony across a larger population of neurons. A method more suited to this form 

of analysis is unitary events analysis (Griin, 1996; Griin et al., 2001a,b). UEA can be used 

to investigate temporal patterns across repeat trials of single or multiple neurons, with the 

number mainly restricted by the computational time.

To investigate the encoding scheme utilised by ORNs, first, stimulus correlation tech­

niques will be used in this chapter to validate the possibility of the encoding scheme being 

temporal (i.e. the timing of the spikes play an important role in stimulus detection). UEA 

is then used in two different ways: firstly, to investigate the reliability of patterns of spikes 

over repeated stimulus presentations for individual ORNs, and secondly to investigate the 

degree of spike synchrony across a population of ORNs across repeated trials. The analyses 

performed in this chapter find that although the ORN encoding scheme could be temporal, 

the investigation of the specific temporal structure is inconclusive.
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4.3 D ata A nalysis M ethods

4.3.1 E lectrophysiological R ecordings

Collaborators in Sweden performed electrophysiological recordings from many ORNs (see 

Section 2.2). The stimulus used was the major component of the female sex pheromone, 

Z9, E ll-14:0A c. The stimulus duration was 0.5 seconds, with stimulus loads ranging from 

10“ ® g to 10“ ® g. Spike timings were extracted from each recording according to the methods 

described in Chapter 2. For the preliminary analysis (Section 4.4.1), recordings from ORNs 

were only used if there were at least four repeats (with a maximum of the first five repeats 

actually being used) for at least two stimulus loads and blank presentations, resulting in the 

analysis of 15 different ORNs.

4.3.2 Stim ulus C orrelation w ith  Spike Count

The first part of the preliminary analysis in this chapter is used to assess how the stimulus 

is encoded (either as a rate or a temporal code; Lemon and Getz, 2000). Recordings from 

ORNs were organised according to the stimulus load presented, then each spike train was 

divided into 50 ms time bins (the encoding time window, see Section 4.5.2), and the total 

number of spikes tha t occurred during each bin was counted. The average spike frequency 

of each ORN in response to the blank presentations was subtracted from each response to 

odour. Adjusting the responses in this manner removes any mechano-sensory response to the 

change in airflow caused by stimulus presentation. The portion of each response analysed 

started at the stimulus onset, and continued for 1000 ms (the integration time window, see 

Section 4.5.2).

The adjusted sequences of spike counts per 50 ms bin from each spike train, in response 

to two stimulus loads, were then used to calculate the first two principal components (PCs; 

see Appendix A) using MATLAB’s princomp function. The PCs describe the binned spike 

trains according to  the degree of variability explained, with the first PC indicating the
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variability due to change in rate, and the second PC (and higher) indicating other coding 

mechanisms are responsible for producing the variability (Lemon and Getz, 2000). The PC 

scores (or coefficients) describe the projection of the adjusted spike trains onto the new 

subspace formed by the first two PCs, resulting in two PC scores per spike train. These PC 

coefficients were plotted against the total number of spikes found in the adjusted (binned) 

spike trains to assess the degree of correlation (see Figure 4.5 for examples; Lemon and 

Getz, 2000).

4.3.3 C om parison o f Principal C om ponent C oefficients

The second part of the preliminary analysis in this chapter is again used to assess the coding 

strategy at the periphery. In this case, recordings were analysed for all stimulus loads for 

individual ORNs. The same numbers of spike trains for each stimulus load were first split 

into 50 ms time bins and adjusted by subtracting the average number of spike in each window 

in response to the blank presentations (as for Section 4.3.2). Five of these adjusted spike 

trains were sampled uniformly (with replacement) from the pool of all the recordings from 

an individual ORN. The first two PC coefficients were found, and the sampling procedure 

was repeated 1000 times. This resulted in two distributions, one for each of the two first PC 

coefficients, with each containing 5000 coefficients. The same procedure was then carried 

out for the stimulus loads individually, resulting in two distributions for each of the stimulus 

loads presented to the ORN. These distributions were generated for each of the ORNs.

4.3.4 U n itary  E vents A nalysis

The preliminary analyses described in Sections 4.3.2 and 4.3.3 are used to assess the pos­

sibility of a temporal encoding scheme at the periphery, but give no information on the 

structure of the coding strategy. UEA was developed by Griin et al. (Griin, 1996; Griin 

et al., 2001a) to search for these potential temporal patterns across multiple neurons. This 

method uses multiple spike trains, converted to binary sequences, and assesses the prob­

ability of occurrence of sequences of spikes (within the same time bin but across multiple
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spike trains), known as coincidence patterns. If a coincidence pattern has a probability of 

occurring above a threshold (or significance level), it occurs more often than by chance, and 

is called a unitary event (UE). To search for temporal patterns at the periphery, the UEA 

method can be used to find quasi-coincident spikes (spikes that occur at the same time in 

relation to the stimulus across several repeat recordings to the same ORN).

To conduct UEA, individual spike trains are divided into time bins, and the spikes placed 

in these bins. Ideally, the length of time bin should be such that each bin contains 0 or 

1 spike (bins with more than a single spike are truncated). The result is a binary matrix 

with rows consisting of binned spike trains, and columns showing binary patterns of spikes 

across all recordings (see Figure 4.1). Using the initial assumption that each recording is 

independent (the null hypothesis. Equation 4.1), and the assumption that the spike train 

firing probabilities are stationary over the duration of the recording, the predicted number 

of occurrences of each binary pattern (v^) can be calculated. The probability, pi of

a spike occurring in any time bin of a recording from neuron i is calculated from an estimate 

of the firing rate, pi =  C j / T ,  where c* is the number of spikes in an interval containing T  

time steps for neuron i. The probability of occurrence of a binary pattern, v^, can then be 

calculated as the product of the probabilities of the individual spiking events:

ho-.p .=Up(«n' pi-n  = { f 1 ), i f =0

The predicted number of occurrences is then the probability of occurrence multiplied 

by the number of time bins, = PkT. The empirical number of each binary pattern,

can be counted, with patterns of low complexity (containing only a single spike or less) 

discarded since they don’t represent a possible coincidence with spikes firom other recordings.

For each empirical number of occurrences of a binary pattern, it is possible to compute 

the statistical significance of the deviation from independence (the predicted number of

k _  n (4-1)

5 9



V | 1 0 0 0 0 1 0 0 1 1

V2 0 0 1 0 0 0 0 1 0 0

V3 0 0 1 0 0 1 1 0 0 0

V4 0 1 0 0 0 0 0 0 1 0

0
— T

P\ = 4/10 =  0.4 

P2 = 2/10 = 0.2 

Pi = 3/10 =  0.3 

Pa = 2/10  =  0.2

? 5  =  (1 -P (V 4= 1)) • (P(V 3=1)) • (1 -P (V 2= 1)) • (P (v ,=  l ) )

P 5  =  ( 1- 0 .2)  • ( 0 .3)  • ( 1- 0 .2)  • ( 0 .4)  =  0.0768 

=  P ; T =  0 .768; =  1

Figure 4.1: Unitary Events Analysis Method. In this case, spikes from four different record­
ings, V i  to V 4 ,  have been split into T  =  10 time bins such that each time bin contains 0 or 
1 spikes. Each column now shows a binary pattern of spikes, across all recordings. The 
probability of a spike occurring in each time bin for a single recording i can be calculated as 
P i = Ci/T, where c* is the number of spike events in T  time bins. From these firing proba­
bilities, the probability of occurrence each individual binary pattern, v^, can be calculated 
using Equation 4.1. In the example shown, k = 5 (from the decimal representation of the 
binary pattern 0 1 0  1). The number of predicted occurrences of can be calculated as 

and the actual number of occurrences, can be counted from the real
data. Figure adapted from Griin et al., 2001a.

occurrences for that pattern). The probability of finding each binary pattern exactly Uk 

times can be calculated from the Poisson distribution,

( a n " '
'4){nk\Pk\T) =

rik'.
exp {-PkT) (4.2)

A logarithmic scaling, <5 (^ ) =  log of the cumulative probability (^ )  of finding the 

observed number of occurrences (or more), is used in conjunction with a significance

level. Sa, to determine whether this binary pattern occurred more often than expected by 

chance. If S  > Sa, the binary coincidence pattern is denoted a UE. Values

of the threshold. Sa are chosen to correspond to a significance level, a , between 0.05 and

0.01, in order to achieve maximum sensitivity while maintaining a minimum level of false 

positives. For visualisation, UEs can be plotted as squares on raster plots (see Figures 4.7, 

4.8 and 4.9 for examples).
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4.3.5 S yn th etic  Spike Train G eneration

The UEA procedure is fairly complex so to ensure correct implementation, a simulation 

performed by Griin et al.(2001a) is recreated here. Synthetic spike trains were generated as 

independent homogeneous Poisson point processes with firing probabilities that remained 

constant for the duration of the spike train. In this case, the probability of observing 

{N = X )  spikes within a time period St, is governed by the Poisson distribution:

Pi(iV =  X) =  ^ e " ‘ (4.3)

where Ai is the mean firing rate for neuron i. Six of these synthetic neurons were created 

with the following firing rates: neuron 1: 10 spikes s~^; neuron 2: 20 spikes s“ ;̂ neuron 3: 

15 spikes s“ ;̂ neuron 4: 30 spikes s“ ;̂ neuron 5: 25 spikes s“ ;̂ neuron 6: 15 spikes s“  ̂ (as 

used in Griin et al., 2001a). Spikes had a time resolution of 1 ms, with spike train duration 

of 100 seconds.

To generate dependent spike trains, the six neurons already created were copied and 

coincident events were introduced into pairs of these neurons. Coincident events occurred 

at a firing rate of 1 spike s“  ̂ and were created by generating two further independent 

homogeneous Poisson point processes (using Equation 4.3) to produce coincidences that 

were randomly distributed in time. The first of these processes was inserted into neurons 1 

and 3, and the second into neurons 2 and 5. Neurons 4 and 6 remained independent of each 

other and the pairs of dependent neurons (as per Griin et al., 2001a; see Figure 4.2).

4.3 .6  Test o f  th e  S tationarity  o f Spike Trains

The UEA procedure uses an estimate of the firing rate of each recording to predict the 

number of occurrences of each binary pattern (Section 4.3.4). It is assumed that the firing 

rate remains constant (i.e. the rate is stationary) for the duration of the recording. If 

the recordings are non-stationary, will be erroneous, and the comparison with

will over- or under-estimate the occurrences of UEs rendering the results inaccurate. For
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Figure 4.2: Dependent Synthetic Neurons. Six example synthetic neurons were created as 
independent homogeneous Poisson point processes according to Equation 4.3. The mean 
firing rates for these neurons were 10, 20, 15, 30, 25, and 15 spikes s“  ̂ for neurons 1, 2, 3, 
4, 5, and 6 respectively and each neuron consisted of 10 repeats, each lasting for 1000 ms. 
These independent spikes are shown as grey dots. To introduce dependencies between pairs 
of neurons, two further independent homogeneous Poisson point process were generated 
with a firing rate of 1 spike s“ b The first of these extra spike trains was added to neurons
1 and 3 (indicated by blue dots surrounded by a circle) and the other was added to neurons
2 and 5 (indicated by red dots surrounded by a square).

a spike train to be stationary, at the very least, the firing rate should remain constant 

throughout the duration of the recording. On initial inspection of the CRN spike trains, 

the presentation of higher stimulus loads (particularly those above the detection threshold) 

evoked a visible increase in the firing rate indicative of a non-stationary rate around the 

stimulus onset, whilst in lower stimulus loads (below the detection threshold) this increase 

was not as evident (and so could be stationary). To further test the stationarity of the lower 

stimulus loads, the following procedure has been here developed:

1. The spike trains were first converted into either 5 ms or 10 ms time bin representation 

as per the UEA method.

2. The moving average of each individual representation of a spike train was generated 

using the difference equation:

-"t"- Xj— F Xi—2 T ••• "b Xj— —1 ))
Vi = N

(4.4)

where i is the current time bin and N  is the number of time bins required to cover 1 

second of the recording (i.e. the window size)
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3. The mean { ^ i m a )  and standard deviation { c t m a )  o f  the moving average sequence for the 

recording section representing the background-firing rate of the neuron were calculated. 

This section was assumed to be stationary and consisted of the time after which the 

start up transient of the filter ended (taken to be the same length as the filter i.e. 1 

second for this analysis) to the start of the stimulus presentation (~1 second i.e. size 

of the window; see Figure 4.3).

4. Spike trains with any section of the moving average sequence (after the start up 

transient) outside of the ^ m a  ±  (3 x  c f m a )  upper and lower bounds were classed as 

non-stationary. These bounds are not meant as strict guidelines, but used only to 

imply possible non-stationarity.

Using this method, the stationarity of each spike train can be assessed and sorted into 

two groups, stationary or non-stationary, accordingly. Spike trains in response to stimulus 

loads above the detection threshold often exhibit a large increase in firing rate in response 

to the stimulus presentation, and are found to be non-stationary (Figure 4.3 a)). Neurons 

appearing to show no response to the stimulus presentation may still be found to be non- 

stationary (below detection threshold stimulus load. Figure 4.3 b)), but some are found to 

be stationary (blank stimulus presentation. Figure 4.3 c)).

The window size of the filter used to calculate the moving average sequence can be 

altered. Window sizes equivalent to 0.25 seconds, 0.5 seconds and 1 second were used and 

compared, with little diflFerence in the outcome (see Appendix C.2). The number of standard 

deviations used to determine the upper and lower bound were also varied. Using 2 standard 

deviations resulted in a few more spike trains found to be non-stationary, while 4 standard 

deviations resulted in a few more spike trains found to be stationary (see Appendix C.3). 

The choice of number of standard deviations is not vital since the purpose of this stationarity 

test was only to imply tha t not all the analysed spike trains were stationary.
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Figure 4.3: Test of the Stationarity of Spike Trains. Black horizontal bar indicates the 
stimulus presentations. Black dots represent the spike times (in time bins of 1 ms duration). 
Black vertical lines indicate the section of moving average sequence over which the pre­
stimulus mean and standard deviation are calculated. Red horizontal lines show 
the mean pre-stimulus rate (solid line), and the upper and lower limits, ^i m a  ± (3 x  a  m a )  

(dashed lines), a) Highly Non-Stationary Spike Train. An example spike train from an ORN 
in response to a stimulus load of 10“® g (i.e. above the detection threshold). The stimulus 
presentation elicits a firing rate much larger than the background or pre-stimulus firing rate. 
This post-stimulus firing rate exceeds the upper limit of h m  a+ {^ x a  m a )-,  indicating a non- 
stationary process, b) Non-Stationary Spike Train. An example spike train from an ORN 
in response to a stimulus load of 10“ ® g (i.e. below the detection threshold). The stimulus 
presentation results in only a slight increase in firing rate. This increase is, however, still 
sufficient to exceed the upper limit, indicating a non-stationary process, c) Stationary Spike 
Train. The presentation of a blank stimulus results in an ORN spike train with negligible 
change in firing rate. The firing rate remains within both the upper and lower bounds 
throughout, and is consequently regarded as a stationary process.

4 .3 .7  U n ita r y  E v e n ts  by  M o v in g  W in d o w  A n a ly s is

When spike trains are non-stationary, the UEA procedure is not viable since a vital calcula­

tion, the prediction of the number of occurrences of a binary pattern, (Section 4.3.4),

assumes the firing rate remains constant for the duration of the recording. To overcome 

this problem, when the stationarity of recordings cannot be guaranteed for the duration of 

a recording, Griin et al. (2001b) propose an extension of the UEA method, namely Uni­

64



tary Events by Moving Window Analysis (UEMWA). The UEMWA method, described in 

more detail below, uses a sliding window, over the duration of which the firing rate can 

be assumed to be stationary. UEA is performed on individual windowed sections of data, 

allowing each overlapping window to contain a slightly different firing rate.

The main problem with performing UEA on shorter windows of the original data is that 

the firing rate of neurons is such tha t too few spikes occur in a single window to allow 

for the statistical comparison of predicted and observed coincidences. Griin et al. (2001b) 

provide a solution to this problem by performing the analysis on multiple repeats of the 

same experiment. Recordings are first divided into time bins as described in Section 4.3.4 

and then arranged in trials containing one recording from each neuron (Figure 4.4 a)). The 

data inside the current position of the sliding window, across all trials, is then concatenated 

horizontally to produce a ‘pseudo-spike train’, or section (Figure 4.4 b)), upon which UEA 

is performed. The window is then slid along the data, usually by a single time bin, where a 

new section is created on which UEA can be performed. A spike pattern needs to be found 

to be significant in only a single section for it to be classed as a UE, with the spikes within 

the UEs again plotted as squares on a raster plot for visualisation.

4.4 R esu lts

4.4.1 Prelim inary A nalysis o f Peripheral E ncod in g  Schem e
4.4.1.1 C orrelation o f  Spike Count w ith  Principal C om ponent Coefficients

To perform this analysis, the initial step was to perform PCA on the binned data from 

ORN spike trains, as described in Section 4.3.2. The PCs themselves describe a linear 

combination of the spike trains such that all are orthogonal (see Appendix A). The first 

two PCs account for more variation than any other pair of PCs, and can act as a two- 

dimensional subspace onto which the original spike trains can be projected. This projection 

results in two coefficients, one associated with each of the two PCs, which can be used to 

assess the encoding scheme according to the above criteria. When considering the first two
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Figure 4.4: Schematic Representation of Concatenation of Windows for Unitary Events by 
Moving Window Analysis, a) Arrangement of Neurons in Trials. A single recording from 
each neuron make up each of the M  trials. The position of each neuron is preserved across the 
trials. A time window is used to define a segment of data from each trial, b) Concatenation 
of Windows. The data within the time windows in each trial are concatenated horizontally 
producing a ‘pseudo-spike train’, or section, on which UEA can be performed. The window 
is then moved to the next time point and the process is repeated to the end of the data set. 
Figure adapted from Griin et al., 2001b.

PC coefficients of the spike trains from all the ORNs, taken in pairs of stimulus loads, the 

first PC coefficients are correlated with the spike counts (r = 0.6825, p < 0.0001, Figure

4.5 a) top), but the second PC coefficients are not (r = —0.0167, p > 0.5, Figure 4.5 b) 

bottom).

Spike trains with lower spike counts create a cluster of points with little range in the 

first PC coefficients, suggesting little contribution to the overall correlation (see Figure 4.5 

a) top). To further investigate the degree of correlation of spike count with PC coefficients, 

the recordings were split into individual stimulus loads, re-plotted, and the correlation re­

calculated for each subset. Using the detection threshold found in Chapter 3 (stimulus loads 

of 10“  ̂ g and above are detectable by ORNs if a rate encoding scheme is assumed), the 

stimulus loads can be split into two groups, those above the threshold (Figure 4.5 b), c) 

and d)) and those below the threshold (Figure 4.5 e) and f)). Above threshold stimulus
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Figure 4.5: Correlation of Spike Count with the First Two Principal Component Coefficients, 
a) All Stimulus Loads Combined. The coefficients of the first PC, when plotted against the 
spike counts from individual recordings show a high degree of correlation (r — 0.6825, 
p < 0.0001), but the second PC coefficients show no correlation (r =  —0.0167, p > 0.5). 
The cluster of points with low spike count provides little of the correlation seen with the first 
PC coefficients, and this is demonstrated in b) to f) where the recordings have been split 
into individual stimulus loads, b), c) and d) Stimulus Loads Above Detection Threshold. 
Subplots show stimulus loads of 10~^ g, 10~® g and 10“  ̂ g respectively. At each stimulus 
load, different neurons show a range of spike counts, which are correlated with the first 
PC coefficients, with the degree of correlation decreasing with stimulus load (see Table 
4.1). There is no correlation between the second PC coefficients and the spike count for 
these stimulus loads, e) and f) Stimulus Loads Below Detection Threshold. Subplots show 
stimulus loads of 10~® g and 10~® g respectively. In both cases, the spike count is not 
correlated with either of the first two PC coefficients.

loads show significant correlation between the spike count and the first PC coefficients but 

no correlation between spike count and the second PC coefficients (Table 4.1 a) and b)). 

Below threshold stimulus loads show no correlation between the spike count and either of 

the first two PC coefficients suggesting that the individual spike trains at these stimulus 

loads provide no information on the stimulus presentation.
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a) PC 1 Spike Count Correlation with PC 1  Coefficient per Stimulus Load
Combined 1 0 - 5  g

1 0 - ®  g 1 0 - 7  g 1 0 - 8  g 1 0 - ®  g
Pearson’s r 0 . 6 8 2 5 0 0 . 5 0 6 4 1 0 . 6 9 6 6 5 0 . 3 6 9 3 3 - 0 . 0 4 6 7 0 - 0 . 0 4 8 3 4

p-value 0 * 0 . 0 0 9 7 9 * 0 * 0 * 0 . 5 3 4 3 8 0 . 5 1 8 1 2

b) PC 2 Spike Count Correlation with PC 2 Coefficient per Stimulus Load
Combined 10-5 g 10-® g 10-7 g 10-8 g 10-® g

Pearson’s r -0.01669 0.05164 0.05201 -0.00403 -0.04829 0.06458
p-value 0.66300 0.80634 0.49554 0.95592 0.52094 0 . 3 8 7 7 3

Table 4.1: Correlation of Spike Count with the First Two Principal Component Coefficients 
Varies Across Stimulus Loads. Asterisks show correlations that are statistically different 
from no correlation {p < 0.01). a) Spike Count Correlation With First Principal Component 
Coefficients. When all stimulus loads are combined, the spike count is correlated with 
the first PC coefficient, and is statistically different to no correlation. When the stimulus 
loads are considered individually, there is a statistically significant degree of correlation for 
stimulus loads above the detection threshold (10“  ̂g, 10~® g and 10“  ̂g as found in Chapter 
3). For the two stimulus loads below the detection threshold (10~* g and 10“ ® g), the first 
PC coefficient is not correlated with the spike count suggesting tha t the spike train timings 
provide no information on the stimulus presented, b) Spike Count Correlation With Second 
Principal Component Coefficients. The spike count is not correlated with the second PC 
coefficients for any of the individual stimulus loads, or the combined case.

4.4.1.2 Significant D ifferences o f PC  Coefficient D istributions from R andom  
Suggests a Tem poral E ncoding Scheme

Theunissen and Miller (1995; Lemon and Getz, 2000) suggest criteria to assess the encoding 

scheme employed in neuronal responses. These criteria require the principal components of 

a measure of neuronal response and state that:

1. If only the coefficient relating to the first principal component is correlated with a 

feature of the stimulus, the encoding scheme is likely to be rate based.

2. Correlations of a stimulus feature with coefficients of the second principal component 

or higher indicate a temporally based scheme.

To perform this analysis, the coefficients of the first two PCs were compared to determine 

if they differed between stimulus loads (here used to represent a feature of the stimulus). 

Using the sampling method described in Section 4.3.3, distributions of PC coefficients were
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Figure 4.6: Distributions of Principal Component Coefficients. The distributions of pooled 
coefficients were derived from a sample chosen randomly from the ORN responses with no 
prior stimulus load information. The distributions of coefficients from individual stimulus 
loads were generated in a similar manner, but using only ORN responses to the required 
stimulus load, a) Distributions for Above Threshold Stimulus Loads. Example distributions 
of PC coefficients generated from the responses of a single ORN to stimulus loads above the 
detection threshold. The PC coefficients for both stimulus loads are significantly different 
from the random PC coefficients (Kolmogorov-Smirnov, p < 0.01 for both comparisons), 
b) Distributions for Below Threshold Stimulus Loads. Example distributions of PC coeffi­
cients generated fi'om the responses of a single ORN to stimulus loads below the detection 
threshold. The PC coefficients for both stimulus loads are significantly different from the 
random PC coefficients (Kolmogorov-Smirnov, p < 0.01 for both comparisons).

created for individual stimulus loads and for the pooled mixture for each ORN (see Figure

4.6 for two examples).

Kolmogorov-Smirnov tests were performed to determine whether the PC coefficient dis­

tributions for a single stimulus load were statistically different to the distribution for the 

pooled mixture (Sokal and Rohlf, 1995) i.e. random. If significant differences between the 

individual stimulus load distributions and the mixed distribution are only found for the first 

PC coefficients, this suggests that the neurons employ a rate encoding scheme. Significant 

differences between the individual stimulus load distributions and the mixed distribution for 

the second PC coefficients suggests a temporal encoding scheme. For all neurons and stim­

ulus loads tested, the individual stimulus load distributions for both PCs were significantly 

different fi'om the mixed distributions (Kolmogorov-Smirnov, p < 0.01 for all comparisons), 

suggesting the possibility of a temporal encoding scheme.
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4.4.1.3 Prelim inary A nalysis P rom pts Further Investigation

The preliminary analysis of the encoding scheme at the periphery was performed to deter­

mine whether or not it was possible for the ORNs to encode the presence of a stimulus 

in a temporal scheme, and not a rate scheme as assumed in Chapter 3. The first test is 

used to demonstrate tha t the first PC coefficient is correlated with the spike count, but the 

second PC coefficient is not. The second test was based on the notion that the first principal 

component provides information on the variation between spike trains due to rate induced 

differences, while the second, and higher, principal components provide information on the 

temporal properties of spike trains. Results indicate that the distributions of both the first 

and second PC coefficients are significantly different to randomly generated distributions, 

suggesting a temporal encoding scheme. The overall result is inconclusive in terms of deter­

mining whether the type of encoding scheme employed by the ORNs is indeed a temporal 

scheme, but suggests that further analysis using other methods would be beneficial.

4.4.2 Initial T est o f Im plem entation  o f Procedure for th e  D etectio n  
o f U n itary  E vents

Although the UEA procedure has been explained in detail (Griin et al., 2001a), with a brief 

methodology described in Section 4.3.4, this section is used to recreate results from two 

simulations (Griin et al., 2001a) to ensure the method has been correctly implemented. The 

first simulation involves six independent model neurons, with the second simulation using 

the same spike trains, but including the injection of a small number of coincident spikes in 

some pairs of neurons to indicate dependencies between them.

Spike trains from six simulated neurons were created (modelled as independent homo­

geneous Poisson point processes, see Section 4.3.5) with differing firing rates (neuron 1: 10 

spikes s~^; neuron 2: 20 spikes s~^; neuron 3: 15 spikes s“ ;̂ neuron 4: 30 spikes s“ ;̂ neuron 

5: 25 spikes s“ ;̂ neuron 6: 15 spikes s"^). In the first instance, the spike trains from the 

different neurons were independent and stationary, and lasted for 100 seconds. The UEA
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procedure was performed on this group of six neurons using a time bin size of 1 ms, and a 

p-value of 0.05. The resultant spikes are displayed as raster plots (with the spikes from each 

neuron plotted as 1 second long sections per row), with any UEs displayed as red squares 

on these raster plots (Figure 4.7 a) and b) respectively). This independent set of neurons 

shows three different spike patterns as UEs. Each of these patterns only occurs once, with 

two patterns containing three spikes each, and the other containing four spikes. The total 

number of possible patterns containing more than one spike can be calculated as;

For the case of six neurons, Equation 4.5 results in 64 — 1 —6 =  57 patterns, and 

when tested at the a  =  0.05 significance level it is expected that 2.85 patterns will be 

marked as significant, closely matching the actual number of significant patterns. Due to 

the complexity of these patterns, they are likely to be false positives, with the significance 

found being due to statistical fluctuations (Griin et al., 2001a; Roy et al., 2000).

Dependencies were then introduced into the spike trains by first copying the same six 

spike trains already created, and adding pairs of simultaneous spikes into neuron pairs 1, 3 

and 2, 5 respectively. These coincidences occurred at a rate of 1 spike s " \  much lower than 

the baseline firing rates, and were randomly distributed in time. The raster plots of both 

data sets are very similar as expected (compare Figure 4.7 a) and c)). The UEA procedure 

was then performed on this group of dependent neurons, and again displayed as raster plots. 

There are now many more UEs than in the independent case, with many corresponding to 

the injected coincidences. A number of UEs also involve the two independent neurons, but 

these also included the injected dependent spikes as sub-patterns (Figure 4.7 d)).

The preliminary test of the implementation of the UEA method finds that with six 

independent neurons, very few UEs are found, and these are likely to be false positives. 

When dependencies between two pairs of neurons were introduced, far more UEs were
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found, with each containing one of the pairs of dependent neurons as a sub-pattern within 

the UE pattern. Both these findings are comparable with simulations performed by Griin 

et al. (2001a, Figure 3) suggesting the implementation performs as expected, and can be 

used on real neuronal data.

4,4 .3  Investigation  o f Tem poral Patterns over R ep eated  Trials in 
Individual N eurons

In order to determine whether individual ORNs use a temporal encoding scheme to convey 

the presence of a stimulus, the UEA method described in Section 4.3.4 was performed to 

detect precisely timed patterns of spikes. UEA has been traditionally described as a method 

for detecting coincident spikes within a group of simultaneously recorded neurons. For the 

purposes of this chapter, the UEA method has been applied to multiple spike trains recorded 

sequentially from a single ORN. In the case of sequential recordings, it is important to ensure 

the recordings are aligned with each other as accurately as possible, preferably in relation to 

the stimulus arrival at the neurons. Unfortunately, it is not possible to determine this exact 

time, so the recordings are actually aligned with the stimulus onset. This could introduce 

small errors relating to the spike times, but these should be accounted for by adjusting the 

duration of the time bins (see next paragraph). For this particular analysis, patterns of 

spikes are expected to occur whenever the same stimulus is presented, although in reality 

this is not necessarily the case (see Fellous et al., 2004, where different, but stable, spike 

patterns have been found in response to repeats of a single stimulus). For this analysis, only 

the first five recordings from each stimulus load for each ORN were used to minimise the 

possible effects of neuronal adaptation to the stimulus. In addition, recordings to stimulus 

loads above the detection threshold of 10“  ̂ g were not analysed since the presence of a 

stimulus at these higher loads is adequately conveyed to the AL in the form of a rate code 

(Chapter 3).

The UEA procedure requires the spikes times to be placed into time bins. The choice 

of duration of these time bins requires a little consideration. Firstly, the individual ORN
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Figure 4.7: Initial Test of Procedure for the Detection of Unitary Events. Synthetic spike 
trains from six simulated neurons were generated as independent homogeneous Poisson 
processes. Each spike train lasted for 100 s with the firing rate remaining stationary through­
out. The six neurons were simulated such that each had different firing rates: neuron 1: 10 
spikes s“ ;̂ neuron 2: 20 spikes s " \  neuron 3: 15 spikes s~^; neuron 4: 30 spikes s"^l; neu­
ron 5: spikes s~^; neuron 6: 15 spikes s~^. a) Spikes from Six Independent Neurons. Raster 
plot with each dot representing the time of a spike. Neurons were generated as a 100 s spike 
trains, but have been displayed as 1 s segments, b) Unitary Events from Six Independent 
Neurons. Raster plot again shows the spike times, with the addition of the spikes within 
unitary events displayed as red squares. There are three different spike patterns that occur 
more times than expected given the firing rates of the neurons. Each of these patterns occurs 
only once, and contains three or four spikes (in two and one patterns respectively). These 
patterns are likely to be false positives and due to statistical fluctuations, c) Spikes from 
Dependent Neurons. The independent spike trains were copied, and simultaneous spikes 
were inserted into two pairs of neurons, 1 and 3, and 2 and 5. These additional spikes were 
injected at a rate of 1 spikes s“ ,̂ randomly distributed in time, giving rise to a raster plot 
that on first inspection appears the same as that in a), d) Unitary Events Prom Dependent 
Neurons. Again, dots represent the spike times and red squares represent those spikes from 
unitary events. There are now many more unitary events due to the inserted coincident 
spikes. Unitary events involving the two remaining independent neurons (4 and 6) also 
contain either of the pairs of dependent neurons as sub-patterns.

spikes themselves have a duration of ~40 samples, at a sampling rate of 13888 Hz, i.e. ~3 

ms (Figure 2.2). Resolution higher than this would not produce further benefit. Neurons 

are usually considered to exhibit uncertainty, or “noise” in the timing of spikes, although
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the amount is not known conclusively (e.g. Diesmann et al., 1999; Mainen and Sejnowski, 

1995; Shadlen and Newsome, 1998). Experimental evidence from cross-correlation, jPSTHs 

and from spike pattern analysis suggests that the timing accuracy of spiking events can be 

as precise as 1-5 ms (Abeles et al., 1993; Riehle et al., 1997). The possibility of temporal 

jitter suggests that noisy coincidences occurring across ORN recordings would require larger 

time bins for detection. Larger time bins, however, increase the possibility of containing 

multiple spikes, which are then truncated, and possible information is lost. Taking these 

into account, two time bin widths have been used in this section: an initial bin width of 

5 ms (covering the resolution suggested by the spike duration), with a bin width of 10 ms 

used to encompass patterns with more temporal jitter (initial bin width plus a further 5 ms 

to encompass precision suggested by Abeles et al. (1993) and Riehle et al. (1997)).

Since only the first five recordings from each ORN and stimulus load were analysed, the 

total number of patterns of coincident spikes can be calculated from Equation 4.5 as 26 

patterns. At a significance level of a  =  0.05, it can be expected that 1.3 patterns could be 

found to be significant when they are in fact false positives. To reduce the effect of these 

false positives, a set of criteria was defined to aid in determining whether the UEs found in 

the ORN recordings represented true temporal patterns of spikes or not:

1. In order to convey the presence of a stimulus, the stimulus must first occur. Any UEs 

indicating temporal encoding of the stimulus must therefore occur after the stimulus 

onset. Any patterns occurring before this time were not considered as patterns of 

interest.

2. Individual neurons in the AL have been shown to respond within 300 ms of the stimulus 

onset (Christensen and Hildebrand, 1987; Hartlieb et al., 1997; Sadek et al., 2002). 

For this to take place, the signal must have been transmitted from the ORNs within 

this time period. Allowing for a little more flexibility, any UEs occurring later than 

the stimulus onset - f i s  were assumed to not be involved in triggering these types of 

behavioural responses and were not considered as patterns of interest.
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3. Since the moth does not know in advance when the stimulus onset will be, a single 

occurrence of a single UE within a single ORN is not sufficient to indicate the presence 

of the stimulus. In this case, in response to the stimulus, a single ORN produces a 

single spike (which may occur in repeated trials). This single spike is not distinguish­

able from the neurons own background spikes, and these events were consequently 

not considered as patterns of interest. While there is the possibility that these single 

spikes are synchronised in time with those of other ORNs, this is not considered here.

4. Reliable transmission of the presence of a chemical stimulus suggests that the message 

should be conveyed by the ORN in response to every stimulus presentation. While 

this may be unlikely to happen in reality, a limit is set here such that ORNs with fewer 

than 7V/2 recordings (where N  is the total number of recordings from an ORN to that 

stimulus load) involved in at least one UE (although the UEs themselves do not need 

to have this level of complexity) are not considered further. This assumes the ORN 

receives stimulus molecules during every stimulus presentation, so does not currently 

take into account the lucky ORN hypothesis (Section 3.5.4.1) where low amounts of 

stimulus may result in sparse reception across neurons and over repeat trials.

A total of 15 ORNs, at stimulus loads of 10“  ̂ g, 10“ ® g, 10“ ® g and blank, were 

examined using the UEA procedure. The above criteria were then applied to assess how 

many neuron-stimulus load combinations contained UEs that could imply temporal encoding 

of the stimulus. The number of neurons with UEs of interest, UEs that fail the criteria and 

no UEs at all are shown in Table 4.2. In both cases of bin sizes (5 ms in Table 4.2 a)) and 

10 ms in Table 4.2 b)) there are more neurons showing UEs tha t fail the criteria than UEs 

of interest, and the number of neurons with UEs of interest increases with stimulus load. 

The larger bin size (10 ms) results in slightly more neurons with UEs of interest (21% of 

ORN-stimulus load combinations), than the smaller bin size (5 ms; 16% of ORN-stimulus 

load combinations). Three example neurons with UEs of interest using both sizes of time
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bin are shown in Figure 4.8. The size of the time bin has little effect on the numbers of UEs 

found for each neuron.

Before drawing any conclusions from this section, it is important to test whether the main 

assumption of the UEA method holds, that of stationarity of spike trains. If spike trains 

are non-stationary within the period of time for which analysis takes place, the calculation 

of the predicted number of occurrences of each binary pattern, and hence which patterns 

are classed as UEs, is not a true representation of the actual data.

1

i '
3

2 30 3 4 0 I 2 4
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Figure 4.8: Unitary Events in ORN Recordings. Horizontal bar shows the stimulus duration, 
dots show time bins containing at least one spike, and red squares show spikes within UEs. 
a) Unitary Events with Bin Size of 5 ms. Three example ORNs show UEs in response to 
a stimulus load of 10“  ̂ g. Each neuron shows several UEs, with multiple repeats of some 
patterns. All UEs occur after the stimulus onset, and comply with the criteria set out in 
Section 4.4.3. b) Unitary Events with Bin Size of 10 ms. Using the same three neurons (and 
stimulus load) as in a), UEs are again found after the stimulus onset. Neuron 3 displays an 
extra repeat of a UE due to the larger bin size, while neurons 1 and 2 have fewer UEs (or 
repeats) than in a).

4.4.4 N on-Stationarity of Recordings Breaks Fundamental 
A ssum ption of Unitary Events Analysis

The stimulus load with the highest number of neurons exhibiting UEs of interest is also 

the detection threshold (10“ ’̂ g. Table 4.2) as found in Chapter 3. The detection threshold 

was determined assuming a rate encoding scheme, suggesting that the firing rate of the 

neurons increases with the presentation of the stimulus. This implies that the spike trains 

are non-stationary around the stimulus onset time, which breaks one of the fundamental 

assumptions of the UEA method (stationarity is assumed when calculating the predicted
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a) Bin size 5 ms Stimulus loads
0 10-9 g io -« g 10-^ g Total %

No UEs 6 6 5 1 18 31%
No Stim UEs 8 3 3 4 18 31%
Single UEs 1 4 3 2 10 17%
< N /2 0 0 1 2 3 5%
UEs of interest 0 1 2 6 9 16%
Total 15 14 14 15 58
% 0% 7% 14% 40% 16%

b) Bin size 10 ms Stimulus loads
0 10-9 g 10-® g 10-"  ̂ g Total %

No UEs 7 5 4 1 17 29%
No Stim UEs 3 3 4 3 13 22%
Single UEs 3 4 2 2 11 19%
< N / 2 2 2 1 0 5 9%
UEs of interest 0 0 3 9 12 21%
Total 15 14 14 15 58
% 0% 0% 21% 60% 21%

Table 4.2: Neurons Containing Unitary Events. UEs occurring in individual ORNs and 
stimulus loads were separated according to the criteria described in Section 4.4.3. Key: No 
UEs - no UEs at all were found; No Stim UEs - UEs were found, but these do not appear 
to be due to the stimulus presentation (criteria 1 and 2); Single UEs - UEs possibly relating 
to the stimulus were found, but only a single instance of a single UE occurred (criteria 3); 
< N/ 2  - several UEs (and/or instances of UEs) possibly relating to the stimulus occurred, 
but fewer than half of the recordings were involved (criteria 4); UEs of interest - UEs were 
found to comply with all criteria; % (row) indicates the percentage of neurons exhibiting UEs 
of interest at that stimulus load; % (column) indicates the percentage of neurons exhibiting 
different types of UEs across all stimulus loads, a) Breakdown of UEs Found per Neuron 
per Stimulus Load using a Binsize of 5 ms. As the stimulus load increases, the numbers 
of neurons containing no UEs, or UEs that break any of the criteria decreases. However, 
even at the highest stimulus load tested here, 10~^ g, only 40% of the ORNs exhibit UEs 
of interest. Over the total number of ORNs and including all stimulus loads, only 16% of 
possible ORN-stimulus load combinations result in UEs of interest, b) Breakdown of UEs 
Found per Neuron per Stimulus Load using a Binsize of 10 ms. The same general trend is 
observed in that as the stimulus load increases, the number of discarded UEs decreases, with 
the highest stimulus load again producing more UEs of interest (60%). A slightly higher 
proportion of ORN-stimulus load combinations result in UEs of interest (21%) for the larger 
bin size, but this value is low if the UEs are to represent the method by which stimulus 
presence is conveyed to the AL.

number of occurrences of each UE). The stationarity of each spike train was assessed using 

the method described in Section 4.3.6 and the results are displayed in Table 4.3. The 

numbers of stationary spike trains were found not to differ between the two different sizes
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of time bins (5 ms and 10 ms) used for the UEA in Section 4.4.3. In general, the numbers of 

stationary spike trains decreased as the stimulus load increased, with the blank presentation 

having the largest percentage of stationary spike trains (59% for 5 ms bins and 57% for 10 

ms bins). Over all the spike trains for each neuron presented with each stimulus load, only 

39-40% of spike trains were stationary, suggesting that many UEs found using the UEA 

method (Section 4.3.4) should not be further considered. It is possible to perform the UEA 

method on non-stationary data by finding UEs in shorter time windows instead of the whole 

recording (with the firing rate throughout each window being stationary, but allowing each 

window to have a different rate). This is, however, not appropriate for the ORN data in 

its current form since the firing rate in each window is too low to allow for the statistical 

comparison of expected and observed coincidences (Griin et al., 2001b; Roy et al., 2000).

4.4.5 Investigation  o f Synchronous Spikes over R ep eated  Trials 
across M ultip le  N eurons

A possible solution to the non-stationarity issue discovered in Section 4.4.4 is to use UEMWA 

(described in Section 4.3.7). However, for each individual recording from a neuron used in 

the UEA method (Section 4.4.3) the UEMWA method requires further repeats from the same 

neuron, which are not available from the current data set. Instead, the UEMWA method 

can be used to search for temporal patterns of spikes occurring synchronously across the 

population of ORNs, for which multiple repeats are available. In total, five recordings from 

each ORN, at each stimulus load, with at least one spike occurring in the time interval 

from 1 second before stimulus onset to 3 seconds after stimulus onset were used. This 

resulted in different numbers of ORNs being analysed at each stimulus load (10“  ̂ g used 

11 ORNs; 10“ ® g used 8 ORNs; 10“  ̂ g used 10 ORNs; blank presentation used 9 ORNs). 

The analysis was performed using a p-value of 0.05 throughout, with both 5 ms and 10 

ms time bins being tested but with little difference in outcome (representation using the 

10 ms time bins are shown in Figure 4.9). The UEMWA method uses a sliding window
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a) Bin size 5 ms Stimulus loads
0 10“ ® g 10“ ® g 10“  ̂ g Total %

Stationary 41 26 16 23 106 39%
Non-stationary 29 39 48 48 164 61%
Total 70 65 64 71 270
%Stationary 59% 40% 25% 32% 39%

b) Bin size 10 ms Stimulus loads
0 10“ ® g 10“ ® g 10“  ̂ g Total %

Stationary 40 27 18 22 107 40%
Non-stationary 30 38 46 49 163 60%
Total 70 65 64 71 27
%Stationary 57% 42% 28% 31% 40%

Table 4.3; Evaluation of Stationarity of Spike Trains. The stationarity of spike trains was 
assessed using the method described in Section 4.3.6. These tables use a filter size equivalent 
to 0.5 seconds (100 5 ms time bins and 50 10 ms time bins). Filter sizes equivalent to 1 
second and 0.25 seconds were also tested but with little effect on the numbers of stationary 
spike trains (see Appendix C.2). a) Stationary of Spike Trains in 5 ms time bins. Breakdown 
of the stationarity of ORN spike trains according to stimulus load with the general trend 
of increasing stimulus load results in decreasing numbers of stationary spike trains. Over 
all combinations of ORNs and stimulus loads (with a maximum number of five spike trains 
per combination), only 39% of spike trains were deemed stationary, b) Stationarity of 
Spike Trains in 10 ms time bins. The effect of the bin size of the stationarity produces 
little difference in the number of stationary spike trains. As the stimulus load increases, 
the number of stationary spike trains decreases, and overall only 40% of  spikes trains were 
stationary.

upon which UEA is performed. Initially, a sliding window of duration 50 ms was used with 

the aim of creating stationary recording sections, but allowing for differing rates in each 

window. To better assess where the UEs found occurred, a moving average was used to 

measure the rate of UEs along the duration of the recordings. If UEs were found relating to 

the stimulus presentation, the UE rate would be expected to exhibit a peak at these times. 

This clustering of UEs is observed for stimulus loads of 10“  ̂ g and 10“ ® g, but not for 

10“ ® g and blank presentations (Figure 4.9). Since the firing rate of some of the ORNs in 

response to stimulus loads of 10“  ̂ g and 10“ ® g increases, this clustering of UEs could be 

UEs of interest, or they could be due to windows in this time period no longer containing 

stationary spike rates.
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Figure 4.9: Unitary Events by Moving Window Analysis of Multiple Neurons. Short hor­
izontal bar represents the stimulus duration, black dots indicate the spike times, and red 
squares indicate those spikes participating in unitary events. Five recordings from each 
neuron were used, with each neuron separated by a horizontal black line. Lowest panel in 
each subplot shows the rate at which UEs occurred smoothed using a moving average, and 
scaled to show the detail (scaling is different in each subplot). Spike trains were first split 
into 10 ms time bins and analysed using a sliding window of length 50 ms, and a p-value 
of 0.05. a) Stimulus Load of 10~^ g. 11 ORNs satisfied the criteria set out in Section 4.4.5 
and UEMWA was performed. There are a large number of UEs occurring both before the 
stimulus onset, and after the expected response time (Section 4.4.3). There is an increase 
in the firing rate of the ORNs during the stimulus presentation causing a clustering of l^Es 
(indicated by the raised UE rate), b) Stimulus Load of 10"® g. 8 ORNs satisfied the relevant 
criteria at this stimulus load. Again, there are several UEs occurring outside the time period 
of interest, with a slight increase in the ORN firing rates during the stimulus presentation 
resulting in a clustering of UEs. c) Stimulus Load of 10"® g. UEMWA was performed on 10 
ORNs at this stimulus load. The stimulus presentation produces little change in the ORN 
firing rate, and the rate at which UEs were found remains fairly constant througliout the 
duration of the recordings, d) Blank Stimulus Presentation. 9 ORNs were included in the 
UEMWA for the blank stimulus presentation. Again, the stimulus presentation produces 
httle change in the ORN firing rate and the UE rate remains fairly constant throughout.

Further analysis of the size of the sliding window reveals a trade-off: longer sliding 

windows become non-stationary, but shorter windows contain too few spikes for statistical 

analysis of the numbers of predicted and observed spike coincidences. This problem is exam­

ined by assessing the numbers of spikes in each set of concatenated windows (or sections) for
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diflFerent window lengths and stimulus loads (Table 4.4). Up to five repeats at each stimulus 

load are used for each neuron, giving section durations of 250 ms, 500 ms, 2500 ms and 

5000 ms for window durations of 50 ms, 100 ms, 500 ms and 1000 ms respectively. Mean 

numbers of spikes per section are low, especially for the shorter window lengths and lower 

stimulus loads (less than 3 spikes per section). According to Roy et al. (2000), the UEA 

method should only be used with firing rates of 10 spikes s“  ̂ or higher, which translates 

to 2.5, 5, 25 and 50 spikes per section for window durations of 50 ms, 100 ms, 500 ms and 

1000 ms. For the ORNs used in this analysis, the number of spikes per section is much 

lower than this (about half). The problem with low firing rates is that the firequency of 

occurrence of UEs becomes a random variable, making it difficult to determine whether the 

UEs represent a change in actual neural synchrony or are due to random variations (Roy 

et al., 2000). Extending the duration of the sliding window further is unlikely to remove this 

problem, and longer sliding windows result in sections that are no longer stationary (for a 

shding window of 50 ms, 77% of sections are stationary compared to 36% of sections being 

stationary for a sliding window of 1000 ms).

Stimulus loac S

Window Size 0 10-9 g 10-8 g 10-^ g

50 ms 0.83 (7) 0.80 (9) 0.77 (13) 1.26 (22)
100 ms 1.66 (10) 1.59 (13) 1.54 (19) 2.53 (42)
500 ms 8.38 (25) 7.93 (25) 8 . 0 0 (40) 13.01 (98)
1000 ms 16.76 (33) 15.87 (35) 16.79 (47) 27.73 (118)

Table 4.4: Spike Numbers within Concatenated Windows. Mean numbers of spikes are 
shown, along with the maximum number in brackets. For shorter window durations (50 ms 
and 100 ms), the mean average numbers of spikes in the concatenated windows (or sections, 
see Section 4.3.7 for description) are very low, only rising above 2 spikes per section with 
the window length of 100 ms and stimulus load of 10^^ g. Longer window lengths (500 ms 
and 1000 ms) have higher mean average spikes per section.
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4.5 D iscussion

4.5.1 Investigation  into Encoding Schemes at th e  P eriphery is In­
conclusive

Detection limits at the AL cannot be accounted for by averaging the firing rates of converging 

ORNs alone (Chapter 3). It is possible that precise spike times in ORNs, that are not visible 

as a change in firing rate, could be used to pass odour information on to the AL. If this 

were the case, it can be assumed that for the coding scheme to be robust these spikes 

would occur at the same time (in relation to the stimulus) over repeated recordings from 

the same neuron. An initial investigation using stimulus correlation techniques suggested 

that although the peripheral encoding scheme is likely to be rate based, the possibility of 

a temporally based scheme could not be ruled out. Further investigation of the encoding 

scheme within individual ORNs showed little evidence of a stable, repeatable temporal 

pattern of spikes. The main assumption of UEA, that of spike train stationarity, was 

consistently violated by the ORN spike train data, resulting in unreliable occurrences of 

UEs.

Investigation of the encoding scheme across the population of ORNs also showed little 

evidence for a reproducible temporal structure, with the stationarity assumption again vi­

olated, even when analysis windows were reduced in length. This method of population 

stimulus encoding requires a mechanism for synchronisation across multiple ORNs. There 

is no evidence that ORNs across distinct sensilla are able to coordinate their activity to 

achieve the necessary synchronisation, so ORNs would need to be synchronised with the 

stimulus onset. The present study uses recordings from ORNs recorded from at different 

times, in diflFerent animals, resulting in possible differences in time between stimulus release 

from the dispenser and stimulus reception at the sensilla. More conclusive results in terms of 

whether a rate or temporal encoding scheme is employed could arise from the investigation 

of a number of simultaneously recorded ORNs.
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4.5.2 A ssessm ent o f A ssu m p tion s

Each of the methods used in this chapter have some fundamental assumptions associated 

with them. This section examines and discusses the effects of these assumptions in the 

context of the results.

1. The preliminary analysis performed on the ORNs assumes that encoding and integra­

tion time windows can be defined.

The criteria for determining whether an encoding scheme is rate based or temporally 

based stem from stimulus reconstruction analysis techniques and other analytical ap­

proaches (Theunissen and Miller, 1995). These methods require that an encoding time 

window (the duration of a spike train assumed to correspond to a single symbol in 

the code) and an integration time window (the duration of a stimulus that affects the 

response of the neuron) can be identified. The lack of temporal dynamics in the stim­

ulus used throughout this thesis (a single 0.5 second pulse of a pheromone component) 

means th a t the encoding and temporal time windows are not possible to determine 

experimentally, but must be coarsely estimated. Since the results from this investiga­

tion are used only to suggest the possibility of the encoding scheme being temporal, 

and not to specifically state that this is truly the case, the problems associated with 

defining these parameters is reduced.

2. Unitary events indicative of temporal encoding occur within a limited time period 

after the stimulus onset.

Spiking events prior to the stimulus onset can be classified as spontaneous or back­

ground firing. The earliest time at which a neuron can convey the presence of a 

stimulus is the stimulus onset. The time at which a neuron stops responding to the 

stimulus is variable and depends on the neuron in question (some respond for the
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duration of the stimulus while others show responses long outlasting the stimulus pre­

sentation, Anderson et al., 1998; Carlsson and Hansson, 2002). Neurons in the AL, 

the next stage of olfactory processing, have been shown to respond within 300 ms of a 

stimulus (Christensen and Hildebrand, 1987; Hartlieb et al., 1997; Sadek et al., 2002) 

suggesting that at least some of the ORNs convey the presence of the stimulus within 

this time period. For the analysis in this chapter, the latest time considered for UE 

relating to the stimulus has been set at 1 second after the stimulus onset. UEs later 

than this were initially examined, but consisted of low complexity spike patterns and 

were unlikely to be related to the stimulus presentation.

3. ORN recordings are assumed to be stationary for the unitary events analysis.

The statistical test in UEA compares the predicted number of occurrences of a binary 

pattern with the empirical number of occurrences. In order to calculate the predicted 

number of occurrences, the firing rate of the neuron is used to first find the probability 

of observing a spike in each time bin for each spike in a binary pattern. These are 

multiplied together to give the probability of this binary pattern occurring. The 

predicted number of occurrences is the probability multiplied by the number of time 

bins in the recording. The assumption of stationarity of spike trains is essential to 

accurately calculate these predicted occurrences of binary patterns, and any violation 

may result in an invalid statistical test producing unreliable UEs.

These were the main assumptions made whilst assessing the possibility of temporal 

encoding at the periphery. The first assumption, that an encoding and an integration time 

window can be found, is only of high importance if the analysis were used to show that 

a temporal encoding scheme is in use. Here, however, this method is used only to imply 

the possibility of a temporal encoding scheme, with UEA then used to further examine the 

encoding scheme. The second assumption, regarding the timing of UEs with respect to the
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stimulus presentation, was used to reduce the number of spurious UEs, some of which were 

the result of the statistical test level of a  =  0.05, and as such is a very loose constraint. 

By far the most important assumption is that of stationarity. Violation of this assumption 

renders any UEs found to be unreliable and inconclusive.

4.5.3 Further Investigations
4.5.3.1 Further Analysis o f Current O RN D ata Set

If the initial investigation into the encoding scheme is assumed to be valid, i.e. there is 

a possibility that the ORNs employ a temporal encoding scheme; there are a variety of 

other techniques that could be used to further assess these spiking patterns including the 

following:

1. Joint Peri-Stimulus Time Histograms. The jPSTH (Aertsen et al., 1989) is a method 

designed to investigate the dynamics of correlation between neurons. The jPSTH 

matrix is built up by taking each stimulus trial and plotting the spikes of each neuron, 

one horizontally across the columns and one vertically up the rows. Matrix elements 

are incremented if both neurons have a spike at that time. This procedure is repeated 

for each stimulus presentation and the final matrix can be plotted in two dimensions 

with a colour bar representing the numbers of coincident spikes. The jPSTH allows 

the user to infer dependence of spike trains, gives an indication of the nature of the 

relationship, and displays the stimulus-related dynamics of the relationship. Statistical 

calculations are, however, problematic when the data is non-stationary. The jPSTH 

method only compares pairs of neurons, so to compare N  neurons in pairs, (yv-^)!x2! 

different jPSTHs would be required. The investigation of relationships between more 

than two neurons is currently outside the scope of this method.

2. Sliding Window Cross Correlograms. A cross-correlogram can be used to determine 

whether a spike in neuron A at time t affects the probability of neuron B spiking at
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time t + k  (where k can be positive, negative or zero). The relationship is averaged over 

the duration of the spike trains, and no information is available to determine whether 

k is related to a temporal aspect of the recordings (e.g. a stimulus onset). A method of 

performing pair-wise cross-correlation on a sliding window has been described (Laurent 

and Davidowitz, 1994; Laurent et al., 1996). The cross-correlation that is calculated 

in each window can be represented in a matrix with the columns representing specific 

time lags of the cross-correlation, and the rows representing successive sliding windows. 

Correlations can then be interpreted according to external influences, but again there 

is currently no scope for the comparison of more than two neurons.

3. Cost-based Spike Metrics. Victor and Purpura (1996; 1997) propose an approach 

for the analysis of temporal coding using cost-based metrics. A spike train metric is 

basically a rule that assigns a non-negative number to pairs of spike trains expressing 

how dissimilar they are. A simple example would be to set a cost for inserting or 

removing a spike, and a cost to move a spike by time t (i.e. a cost is set for each of a 

number of types of transformations). The cost of the total number of transformations 

required to convert one spike train into another is a measure of how similar the two 

spike trains are.

4. Detecting Stable Spike Patterns. Fellous et al. (2004) found that the same repeated 

stimulus can produce more than one temporal pattern, and the pattern of spikes 

produced may depend on the pre-stimulus history of the neuron. These patterns are 

found by clustering trials according to a measure of trial similarity and reliability. 

The algorithm presented was developed specifically for the purpose of searching for 

patterns in repeated trials from the same neuron, so could be used to find a temporal 

encoding scheme in individual ORNs, and also across the population. A preliminary 

investigation here (see Appendix D) suggests that more repeats from ORNS, especially 

at the lower stimulus loads, would be required for a full analysis.
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4.5.3.2 Further A nalysis Requiring Additional Data Sets

The current data set was recorded sequentially from individual ORNs, with a different 

animal used for each different neuron, with a single 0.5 s odour pulse, resulting in several 

problems. Firstly, when the recordings are lined up with the stimulus onset, they are not 

necessarily lined up with when the stimulus odour molecules actually reach the antenna 

(due to air disturbances, for example), possibly resulting in precisely timed spikes being 

missed with the UEA method. Secondly, when investigating temporal spike patterns over a 

population of ORNs, the use of multiple animals makes success unlikely. Thirdly, the use of 

a single, 0.5 s odour pulse for the stimulus presentation results in a stimulus duration longer 

than that expected in a natural odour plume (see Chapter 6), giving rise to spike patterns 

perhaps not used by the moth when navigating such odour plumes. The current stimulus 

also renders it impossible to determine suitable encoding and integration windows for the 

stimulus correlation method (Lemon and Getz, 2000). To overcome these problems, further 

data sets would be required:

1. Simultaneous Recordings From Multiple Neurons. Using multiple impalement rigs, 

it is possible to record from up to four ORNs on an antenna simultaneously. Using 

recordings taken with this method would greatly reduce problems associated with 

alignment of recordings allowing for investigation of spiking patterns across several 

ORNs together. Both UEA and the method to find stable spike patterns (Fellous 

et al., 2004) are suited to this type of data set.

2. Responses to Variable Stimulus Presentations. Since the male moth usually searches 

for a female by navigating an odour plume (comprising of pockets of stimulus and clean 

air), a 0.5 s stimulus presentation is not realistic. To mimic these pockets of pheromone 

in an odour plume, a variable stimulus can be created. A digital stimulus controller 

(valve is either open or closed to allow air flow through the stimulus pipette) can be
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used to create a stimulus with random pocket and inter-pocket lengths. With a more 

advanced analogue stimulus controller (valve can also be partially opened allowing 

differing amounts of air to pass, effectively altering the perceived odour concentration 

at the antenna) a more realistic representation of an odour plume can be created. 

Both of these stimulus presentations would produce temporal dynamics allowing the 

calculation of encoding and integration time windows used in the preliminary inves­

tigation, and would allow for the investigation of temporal patterns of ORN spikes 

time-locked with the stimulus.

4.6 Conclusions

The preliminary investigation of the ORN encoding scheme, based on information theoretic 

measures, could not rule out completely the possibility of a temporal encoding scheme. 

Investigations of temporal structures as reliable spike patterns across repeated recordings 

from individual neurons (using UEA) were impeded by the violation of the assumption of 

stationarity of spike trains. Using UEMWA to investigate spike patterns across a population 

of neurons revealed a trade off. Shorter window lengths were required to maintain the 

stationarity of individual moving windows, but this resulted in too few spikes per moving 

window upon which to perform statistical analyses. Increasing the duration of moving 

windows to encompass sufficient spikes violated the stationarity assumption. The present 

study into the encoding scheme at the periphery is inconclusive and although the biological 

structure of the antennae suggests that the encoding scheme is likely to be rate-based, 

further analysis of moth olfactory data may prove otherwise. This hypothesis, involving the 

encoding scheme at the periphery (Section 3.5.4.2) is not considered further here. The final 

hypothesis from Chapter 3 (Section 3.5.4.4), an investigation into mechanisms by which the 

discriminability of the system may be boosted in the AL, is reported on in the next chapter, 

and incorporates an investigation into the detection of synchronous spikes (Section 3.5.4.3).



Chapter 5

M odelling of Glomerular 
Mechanisms

5.1 Chapter Overview

The main aim of this chapter is to develop a computational model of the site of convergence of 

many ORNs, as seen in the olfactory system of the moth. In Chapter 3, a simple theoretical 

model was not able to explain how even this vast convergence of receptor inputs could 

achieve the boost in sensitivity observed through assessment of detection thresholds. If the 

convergence site were assumed to be active, rather than passive as in the theoretical model, 

could this explain the boost?

The initial theoretical model described in Section 3.4.6 is first converted to a com­

putational model in which the ORN input spike trains are inhomogeneous Poisson point 

processes, and the output PN simply sums these input spikes. To assess the effect of more 

biologically realistic input spike trains and output neuron dynamics, the computational 

model is expanded to include firing statistics from biological ORNs, and a leaky integrate- 

and-fire output PN.

These modifications to the model were still unable to account for the boost in sensitivity 

observed in the olfactory pathway. A more complex model, involving nonlinear thresholding 

subunits at the site of convergence is developed, with the aim of specifically investigating 

the “lucky ORN” and “synchronous spikes” hypotheses from Chapter 3 (Sections 3.5.4.1
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and 3.5.4.3 respectively). This nonlinear model outperformed its linear counterpart in all 

tests performed.

Assumptions made throughout the design process of the nonlinear subunit model are 

discussed, with the main outcome being that although most of the individual elements are 

biologically plausible, there is as yet no proof that the ideas presented here are actually used 

in the biological olfactory system.

5.2 Introduction

Generation of a reliable chemosensory signal at the antennal lobe requires at least a single 

detection event at the periphery. Yet at extremely low concentrations, such as those detected 

by the moth, these are likely to become relatively rare, discrete events, due to the quantum 

nature of molecular stimuli. Combined radiometric and electrophysiological studies in the 

moth Bombyx mari have demonstrated that a single pheromone molecule is sufficient to elicit 

single action potentials or bursts in pheromone sensitive ORNs (Kaissling and Priesner, 1970: 

Minor and Kaissling, 2003). In this case, the task of the nervous system is to identify these 

events in a background of spontaneous firing activity. These pheromone-elicited action 

potentials occur in a background of spontaneous activity from which subsequent neural 

processing must differentiate a valid spiking response from background firing. This is clearly 

limited by the degree of spontaneous activity in individual ORNs. Results from Chapter 

3 support the notion that population responses of ORNs would be required to reliably 

discriminate discrete stimulus events at very low concentrations.

Detecting one or a few additional firing events from a single ORN at very low concentra­

tions challenges subsequent neural processing when background activity is relatively high. 

The ORNs recorded for this thesis showed a wide range of spontaneous activity with rela­

tively high mean in response to blank stimuli (1.01 - 13.31 spikes s“  ̂ with a mean of 4.28 

spikes s“ ,̂ n =  28 cells). This suggests that discrete molecular detections cannot be reliably 

reported by single ORNs in terms of individual pheromone elicited spikes.
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The problem of efficient transmission of quanta! stimuli in olfaction is shared with early 

retinal processing in the visual system (Field et al., 2005). On a moonless night approxi­

mately one rod in 10,000 in the retina receives a single photon during its integration time 

(Walraven et al., 1990). Yet subsequent processing of rod responses by retinal circuitry and 

interneurons has been shown through behavioural and electrophysiological experiments to 

rehably transmit information on only a handful of photons (Barlow et al., 1971; Mastronarde, 

1983). An important step in this processing is the convergence of 20-100 rod inputs onto 

a single bipolar cell, reminiscent of the convergence seen during early olfactory processing. 

This subsequent processing has been shown to reliably recover information about discrete 

quanta, thereby boosting signal integrity in the face of dark noise generated by rods (Baylor 

et al., 1984; van Rossum and Smith, 1998). Field and Rieke (2002) found that a nonlinearity 

in the signal transfer from rods to bipolar cells boosts the signal to noise properties in the 

case of quanta! photon single transmission by suppressing the dark noise in nonactivated 

rod cells. In the case of detecting valid photon elicited sensory events from rod responses 

in the presence of dark noise generated during the transduction cascade, a strategy of non­

linear summation was shown to outperform a linear summation of background noise during 

pooling of sensory input. By applying a nonlinear thresholding of rod signals prior to sen­

sory integration across a population, it was possible to efficiently reject dark noise from the 

combined response to provide an optimal readout of rod signals at light levels close to visual 

threshold.

The olfactory pathway may adopt a similar strategy to boost weak ORN responses 

for the purpose of reliable signalling. In the highly convergent architecture of early olfac­

tory processing, subsets of ORNs with above background firing activity could be selectively 

boosted and/or used to suppress background noise received from the remainder of the ORN 

population. Hence, it is possible that at very low concentrations in which stimuli take on 

quanta! properties, ALNs may exploit highly heterogeneous firing rates across the total
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ORN population innervating a single glomerulus. In this case a linear summation strategy 

of signal integration would be far from optimal, since spontaneous activity is then weighted 

equivalently to pheromone elicited ORN response. Rather, strategies that impose a non­

linear threshold will be more successful in rejecting background activity by suppressing 

background noise through selective boosting of above threshold responses.

In this chapter, a computational model is developed to incorporate such nonlinear strate­

gies of sensory integration, with the aim of enabling the efficient detection of subsets of ORNs 

with valid responses through the boosting of these signals, but not those from spontaneously 

firing cells.

5.3 Data Analysis M ethods
5.3.1 Synthetic Spike Train Generation

gM

fix)

b

Figure 5.1: Acceptance-Rejection Method of Random Sampling. In order to sample random 
numbers from a distribution, f{x),  in the range [a, b], first find a distribution g{x) — M 
such that M < f{x).  Generate a uniform random number, u, between [a, b], and another. 
V, between [0, M]. If v < /(u ), accept u, otherwise reject it.

To assess whether the firing rate characteristics of biological ORNs could enhance the 

sensitivity boost achieved by a simple model, synthetic spike trains were generated. To 

create these synthetic ORN spike trains, first the ISI distributions from real ORNs were 

created (Figure 5.6 b)). ISTs were then sampled randomly from this distribution using the 

acceptance-rejection method (after von Neumann, 1963; Figure 5.1):

1. Function f{x)  must be known over some range [a, b] (in this case, f{x)  is the ISl 

distribution), then find a second function, g{x) — M such that M > f{x).
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2. Generate a random number, u, from a uniform distribution in the range [a, b].

3. Generate a random number, v, from a uniform distribution in the range [0, M].

4. If V < f{u),  accept random number w, otherwise, reject u and repeat steps 2-4.

Resulting synthetic spike trains have ISI characteristics of real ORNs, but with no specific 

spike timing information.

5.3.2 Poisson  Spike Train G eneration (Inhom ogeneous)

For ease of control of firing rates, the model used to investigate the “lucky ORN” hypoth­

esis (Section 5.4.3) used input ORN spike trains generated as independent inhomogeneous 

Poisson point processes with a different pre- and post- stimulus firing probability. In this 

case, the probability of observing {N = X )  spikes within a time period St, is governed by 

the Poisson distribution:

P ( N  = X )  = ^ e x p ^  (5.1)

where A is the mean firing rate for the neuron. Each ORN generated in this manner contained 

spikes with a time resolution of 1 ms, and a total duration of 1 second. Spike train durations 

were spfit exactly in half, with the first half designated as pre-stimulus, and the second half 

designated as post-stimulus. All ORNs had the same pre-stimulus mean firing rate, with the 

post-stimulus firing rate determined according to whether the ORN received the stimulus 

or not.

5.3.3 Poisson  Spike Train G eneration (H om ogeneous)

Again, for ease of control of firing rates, the model used to investigate the “synchronous 

spikes” hypothesis (Section 5.4.4) used input ORN spike trains generated as independent 

homogeneous Poisson point processes. The general method is the same as that described 

in Section 5.3.2 and Equation 5.1, but with equal pre- and post-stimulus firing rates. Syn­

chronous spikes were then added to those ORNs receiving the stimulus, at 500 ms ± j  ms
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where j  is a variable amount of timing jitter. The exact time of synchronous spikes with 

jitter was determined by randomly sampling a value x, from a uniform distribution over the 

range —j < x <  with the final spike time occurring at 500 +  x ms (see Figures 5.2 and 

5.3).

Z 5
I

600 400

Time (ms)

500 

Time (ms)

Figure 5.2: Variation of Jitter in ORN Synchronous Spike Timing. To indicate the stimulus 
presentation, a subset of ORNs produce a single spike with varying amounts of temporal 
jitter. Grey dots show the spontaneous spikes, with each ORN created as an independent 
homogeneous Poisson point process. Black dots show synchronous spikes representing the 
response to a stimulus presentation, a) Zero Jitter. All synchronous spikes occur at 500 ms. 
b) 10 ms Jitter. Synchronous spikes occur at 500 ms ±10 ms. c) 20 ms Jitter. Synchronous 
spikes occur at 500 ms ±20 ms. d) 50 ms Jitter. Synchronous spikes occur at 500 ms ±50 
ms.

5.3.4 Stim ulus P resen tation

When only a subset of ORNs receive the stimulus, how should these be selected? For the 

purpose of this chapter, two different methods are investigated. The first method, where 

ORNs with consecutive numbers receive the stimulus, starting from ORNi (Figure 5.4 a)), 

gets its inspiration from the natural environment of the moth. In the chemotactic search for
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Figure 5.3: PSTHs of ORNs. Each subplot shows the spikes from 1000 ORNs split into 5 
ms time bins. In each case, half of the neurons were assigned a single spike in response to 
a stimulus, a) Random Distribution. ORNs receiving the stimulus were assigned randomly 
across the population (Section 5.3.4). Stimulus spikes occurred at 500 ms, giving rise to a 
sharp rise in number of spikes above the background level in a single bin. b) Zero Jitter. 
Stimulus was assigned to ORNs 1 to 500, i.e. assigned consecutively (Section 5.3.4), with 
the stimulus spikes occurring at 500 ms. PSTH is the same as in a), indicating that stimulus 
distribution has no effect, c) 10 ms Jitter. Stimulus was assigned as in b), with the stimulus 
spikes occurring at 500 ms ±10 ms. Rise in number of spikes is less dramatic, and is spread 
over 4 time bins, d) 20 ms Jitter. Stimulus was assigned as in b), with the stimulus spikes 
occurring at 500 ms ±20 ms. The increase in number of spikes due to the stimulus is now 
spread over 8 time bins and is much less obvious, e) 50 ms Jitter. Stimulus was assigned 
as in b), with the stimulus spikes occurring at 500 ms ±50 ms. Stimulus spikes are now 
distributed over 20 time bins and are barely discernible from the background spikes.

a female, a male moth flies upwind along a pheromone plume to locate the source (ideally 

a female; David et al., 1983; Vickers and Baker, 1997). The filamentous structure of the 

odour plume suggests that ORNs within localised areas of the antenna could encounter 

pheromone molecules at a particular instant in time. In Periplaneta americana, it has been 

found that some olfactory projection neurons respond only to stimuli applied to a particular 

part of the antenna (Hosl, 1990). A similar modular organisation has been found in the male 

silkmoth. Bombyx mari (Ai and Kanzaki, 2004). It is these ideas of structural organisation 

and projection patterns that gave rise to the consecutive stimulus assignment. Here, ORNs 

in close proximity on the antenna are represented by consecutive numbers and have the 

stimulus assigned to consecutively numbered ORNs.
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The second method, random stimulus assignment, uses a uniform distribution to ran­

domly select the required number of ORNs to receive the stimulus from the whole population 

(Figure 5.4 b)).

« ORNs b ORNs

I 2 3 4 5 6 7 8 9 10 II 12 I 2 3 4 ? 6 7 8 9 10 II 12

•^} I Subunits 2 \-/~J ! I Subunits 2 '-/~1

Figure 5.4: Stimulus Assignment, a) Consecutive Assignment. Four ORNs are to receive 
the stimulus. In this case, the stimulus is assigned to the first four consecutive ORNs. b) 
Random Assignment. Four ORNs are again to receive the stimulus, but in this case, the 
ORNs are assigned randomly from the whole population.

5.3.5 Tuning o f Threshold Param eters

The model developed in this chapter uses a nonlinear threshold in each of a number of 

subunits, with the threshold taking the form of a sigmoid:

where scale and lower represent the maximum and minimum range of scaling factors, lin 

and Sout are the input current and output scaling factor respectively, and the variables a, 

6, and c are used to tune the shape of the sigmoid (Figures 5.5 and 5.9 b)). The sigmoidal 

function acts on the value of the synaptic current at the arrival time of a spike, and provides 

a scaling factor by which the synaptic weight is multiplied for this spike. The values of the 

these parameters are described below:

1. scale: used to ensure a good boost to the signal. Too high a value may cause the PN 

to saturate. A value of scale =  3 is used throughout this chapter.

2. lower: allows a lower limit on the scaling factor. Set to lower =  1.
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3. a: allows for fine tuning of the location of the sigmoidal function. This parameter 

performs a similar function to c, so is not altered in this chapter, and is set to a — 1.

4. 6: changes the overall slope of the sigmoid. Set to 6 =  20 for this chapter, causing a 

sharp sigmoid (Figure 5.5).

5. c: allows for control of the location of the sigmoid, and takes a different value accord­

ing to the number of ORNs in the subunit. To find the required value of c, first, a 

set of representative ORN spike trains were created as inhomogeneous Poisson point 

processes (Section 5.3.2). These were split into subunits containing the required num­

ber of ORNs, and the spike trains were summed to give a single spike train per subunit. 

At the time of each spike, the synaptic current was calculated using Equation 5.4 and 

two distributions were formed, one for the spikes that occurred pre-stimulus, and one 

for the spikes that occurred in response to a stimulus presentation (Figure 5.5). The 

value of c is chosen such that it occurs at a higher current value than most of the 

pre-stimulus spikes, but low enough to affect a proportion of the stimulus response 

spikes.

The selection of parameter values is currently experimental since there is no evidence that 

the olfactory system uses this type of threshold function, and so no data on which to base 

or test the values.

5.3.6 R eceiver O perating Characteristic Curves

To assess the detection performance of the output PN from models in this chapter, ROC 

curves were created. The basic method was the same as that described in Section 3.3.4 and 

Figure 3.5, but with a slight variation in how the blank and response distributions were 

generated. In the case of the “lucky ORN” hypothesis, where the stimulus presentation 

lasted the duration of the second half of the spike train, the blank and stimulus distribu­

tions were generated by counting the number of pre- and post-stimulus spikes respectively,
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Figure 5.5: Selection of Threshold Parameters. A set of ORNs were generated as inhomoge­
neous Poisson point processes. These ORNs were grouped into subunits, and the synaptic 
current was calculated for each spike arrival time. Current values were split according to 
whether the spike time occurred pre-stimulus or in response to the stimulus. These dis­
tributions were plotted, and the current value at the point at which the distributions no 
longer overlapped was used as the parameter c. Black line indicates the sigmoidal function 
generated in this example, with a value of c = 3.2.

emitted by the PN over a number of trials. For the “synchronous spikes” hypothesis, the 

stimulus presentation was of a short duration, so PN spikes in response to the stimulus 

were counted over a period of 100 ms from the stimulus onset to generate the post-stimulus 

distribution. Counting the pre-stimulus PN spikes, and averaging them over a 100 ms time 

period generated comparable blank distributions. The control curve was generated as per 

Section 3.3.4, but using PN spike trains in trials where no ORNs received the stimulus.

5.4 Results
5.4.1 Convergence Models Based on Simple Sum m ation of Inputs
5.4.1.1 Simple M odel of Convergence

The simplest model to describe the convergent architecture of the early olfactory pathway 

is to use an output neuron that simply sums the spikes from a number of input neurons. 

This is based on the theoretical model developed in Section 3.4.6. A computational model, 

with input neurons assumed to generate spike trains following inhomogeneous Poisson point 

processes with a firing probability that is elevated to represent stimulus presentation, and 

an output neuron summing these spike trains (Figure 5.6 c)), was used to demonstrate that 

the discriminability (or sensitivity) enhancement of the system follows >/n (Figure 3.9 b)).
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5.4.1.2 Sim ple Convergence M odel w ith Synthetic Input Spike Trains

To determine whether the biological ORNs can be modelled suflSciently as Poisson processes, 

the coeflScient of variation (CV) of the ORNs used in Chapter 3 were calculated:

C V  = —  (5.3)

where f i jsi  and aj s i  are the mean and standard deviation of the interspike-intervals. CV 

is a measure of the within-trial variabiUty of the neurons, and takes a value of 1 for Poisson 

processes regardless of the value of the mean ISI. The ORNs used in Chapter 3 had a CV 

lying between 0.5 and 1.5 for most values of mean ISI regardless of whether the ISIs were 

from pre-stimulus or during-stimulus times (blue and red dots respectively. Figure 5.6 a)). 

For these ORNs, the CV for the pre-stimulus ISPs lay between 0.78 and 1.69, and the CV 

for the during-stimulus ISPs lay between 0.61 and 1.37, which indicated that the ORNs were 

not Poisson. Further analysis of the ISI histograms of these ORNs showed the real neurons 

exhibited strong refractoriness as well as a longer tail in the ISI distribution (Figure 5.6 b)).

To incorporate these non-Poisson properties of biological ORNs into the model, the 

rejection method (after von Neumann, 1963, Section 5.3.1) was used to randomly sample 

ISIs from the real ISI distributions, with a uniform distribution as the comparison function. 

Resultant synthetic spike trains have ISIs, and hence firing rate characteristics of real ORNs, 

but don’t involve any firing patterns or exact spike timing information. The output neuron 

again summed the input spike trains (Figure 5.6 c)). For each number of input ORNs (n; up 

to 1000), this convergence model was simulated 500 times to calculate the psychophysical 

d\  When plotted, the boost in d’ again follows ^/n (Figure 5.6 d)) demonstrating that 

non-Poisson spike train behaviour of ORNs and a simple summation representation of a 

readout neuron do not further enhance the discriminability of the system.
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Figure 5.6: Convergence Model With Synthetic ORNs. a) Coefficient of Variation of ORNs. 
For a process to be Poisson, the CV should be 1 for all values of mean ISI (dashed line). 
For the biological neurons used in Chapter 3, ORNs display CV values ranging from 0.78 
to 1.69 for pre-stimulus spikes (blue dots) and between 0.61 and 1.37 for spikes occurring 
during the response to the stimulus presentation (red dots), suggesting that real ORNs 
are not Poisson, b) InterSpike Intervals of ORNs. Pre- and post-stimulus ISI histograms 
show long tails in the distributions, with the pre-stimulus distribution being truncated to
0.4 s. The lack of ISIs less than 0.01 s (left most time bin) indicates the refractoriness of 
the neurons, c) Convergence Model. For the simpler models, ORNs are created as either 
independent inhomogeneous Poisson point processes, or by generating spike trains using 
the pre- and post-stimulus ISIs sampled from real neurons. These spike trains travel down 
axons to synapse onto ALN dendrites within a single glomerulus. Action potentials arriving 
at the synapses can be simply summed to produce the output PN spike train, or dendritic 
currents can be generated with exponential decay dynamics which are then integrated in 
the PN soma, modelled as a leaky integrate-and-fire neuron producing a spike train, d) 
Boost in Discriminability. A computational model using synthetic spike trains created by 
sampling from pre- and post-stimulus ISIs and a simple summation at the output was used 
to assess the boost in discriminability. For each n (up to 1000), 500 trials were performed 
to calculate d\  Dots show the actual values of d\  with the boost in sensitivity following 
y/n^ shown by the line of best fit.

5.4.1.3 Simple Convergence M odel using In teg rate  and F ire O u tp u t N euron

To further discount the possibility that a simple convergence model cannot fully account 

for the sensitivity boost seen in the biological system, a model with more realistic signal 

transmission was created. Spikes from synthetic ORNs (Section 5.4.1.2) arrive at synapses,
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which are modelled by generating a dendritic current with exponential decay dynamics:

Ik+\ =  — — Ik) 4- Ik (5.4)
Te

where A is the model time step, Tg is the time constant of the exponential decay, w is 

the synaptic eflScacy (weight), <5 is the Kronecker delta and .. . t j , .. .ti) are the spike

times (Destexhe et al., 1998). The dendritic current is passed into an output neuron (PN), 

modelled as a leaky integrate-and-fire neuron:

Pic+i = ^ 4 ^ 1 -------1 +  j ^ I k  (5.5)

where Tm is the characteristic time constant for the cell, and Cm is the membrane capaci­

tance. When the voltage reaches a fixed threshold potential, Vth, an output spike is emitted 

and the soma resets to the after-hyperpolarisation potential, Vahp (Gabbiani and Koch, 

1998; Mascagni and Sherman, 1998). The time constants have values in the order of tens

of ms (Silver et al., 1992) with the synaptic weight w and soma capacitance Cm adjusted

to ensure the output firing resembled that of a biological ALN (Figure 5.7 a)). Again, 

the boost follows s/n  (Figure 5.7 b)) demonstrating that non-Poisson spike train behaviour 

of ORNs and an integrate-and-fire model of a readout neuron do not further enhance the 

discriminability of the system.

5.4.2 D evelopm ent o f C onvergence M odel B ased  on  G lom erular 
Structure C onsiderations

5.4.2.1 B iological Convergence Sites

The use of more biologically realistic synapses, input firing statistics and output neuronal 

models has not been able to account for the sensitivity boost achieved by the male moth 

olfactory system when considering a simple convergence model. The site of convergence 

in the MGC, for a stimulus consisting of the major pheromone component, is a single 

glomerulus. A glomerulus itself is not strictly a single entity, but rather a densely packed 

area of dendrites from ORNs and ALNs containing many synapses. By staining neurons
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Figure 5.7: Convergence Model Incorporating an Integrate-and-Fire Output Neuron, a) 
Steps Within the Model. Individual spikes from input ORNs are modelled at synapses by a 
step increase in the synaptic current followed by exponential decay dynamics. Each neuron 
is modelled separately (ORN* and Current^ where i = 1,2,3) and these synaptic currents 
are summed at the site of convergence (Current^//). The combined current is passed into 
the soma of the output neuron where it is integrated giving a somatic voltage. A spike is 
emitted from the PN when the voltage in the soma reaches a threshold value, Vth- The 
voltage is then reset to the after-hyperpolarisation value, Vahp- For numerical simplicity, 
the resting potential and Vahp are both zero, b) Boost in Discriminability. A computational 
model using synthetic spike trains created by sampling from pre- and post-stimulus ISIs 
with exponential synaptic properties and a leaky integrate-and-fire output neuron was used 
to assess the boost in discriminability. For each n (up to 1 0 0 0 ), 500 trials were performed to 
calculate d\ Dots show the actual values of d \ with the boost in sensitivity following y/n, 
shown by the line of best fit, indicating that further mimicking the properties of biological 
neurons produces no further boost in discriminability.

within antennal lobe glomeruli of the cockroach, a variety of connections between ORNs, 

LNs and PNs have been found (Distler and Boeckh, 1997a,b; Distler et al., 1998):

1. Monosynaptic connections from ORNs to PNs and LNs (Figure 5.8 a))

2. Polysynaptic (serial) connections from ORNs to PNs via LNs (Figure 5.8 b))

3. LN synapses onto ORNs and PNs (Figure 5.8 c))

4. Dyadic LN output synapses onto a PN and an LN (Figure 5.8 d))

5. Dyadic PN output synapses onto two LNs (Figure 5.8 e))

6 . Reciprocal connections between LNs and PNs, and between two LNs (Figure 5.8 f))

This multitude of serial and reciprocal interconnections between neurons innervating the 

same glomerulus is likely to form the structural basis for feed-forward and feedback excita­

tion and inhibition of neurons, and for modulation of the output activity of the glomerulus.
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Figure 5.8: Synaptic Connections Within Glomeruli, a) ORN Synaptic Connections. ORN 
axons form monosynaptic contacts in a dyadic fashion onto both PN and LN dendritic 
processes, b) Polysynaptic (Serial) Connections. ORN axons form polysynaptic (i.e. several 
synapses in series) connections with the dendrites of PNs via LNs. c) LN Output Synapses
I. LNs form dyadic output synapses onto ORN axons and PN dendrites, d) LN Output 
Synapses II. LNs form dyadic output synapses onto a PN and an LN. e) PN Output Synapses. 
PNs form dyadic output synapses onto two LNs. f) Reciprocal Connections. LNs form 
reciprocal connections to both PNs and other LNs.

Although these particular interconnections were found in the cockroach AL, there is evi­

dence to suggest that similar synaptic connections are also likely to exist in the male moth 

AL (Christensen et al., 1993; Hildebrand, 1996; Homberg et al., 1989; Sun et al., 1997). 

Within this structure of neuropil, it is possible for far more complex mechanisms of signal 

transfer to occur than a simple summation of inputs.

5.4.2.2 C oncept o f N onlinear Current-Based Subunits

The classical model of a neuron, where a weighted sum of synaptic inputs to the neuron 

is passed into a single spike generating mechanism (Section 5.4.1.3; McCullough and Pitts, 

1943; Rosenblatt, 1962; Rumelhart et al., 1986) is now thought to be a poor representation 

of the synaptic integration in neurons with large, many-branched dendritic trees. Profusely 

branched dendritic trees may be capable of multiple independent nonlinear operations (Koch 

et al., 1982; Llinàs and Nicholson, 1971; Mel, 1992a,b, 1993; Rail and Segev, 1987; Shepherd 

and Brayton, 1987), with anatomical, physiological and modelling studies (Hausser et al., 

2000; Segev and London, 2000; Stuart et al., 1999) suggesting that some neurons may be 

better modelled as two-layer models (Archie and Mel, 2000; Mel et al., 1998; Poirazi et al.,
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2003a,b). The first layer is made up of specific zones in the dendritic tree, which act 

as individual functional “subunits” performing some form of internal computation (Schiller 

et al., 2000; Wei et al., 2001). The second layer then operates in the manner of the traditional 

neuron where the subunit outputs are summed and passed through a threshold mechanism 

to produce the overall output of the neuron.

In the olfactory glomeruli, ORN axons synapse onto PNs, which have been shown to have 

large many branched dendritic arbours (Anton and Hansson, 1995; Anton and Homberg, 

1999) suggesting tha t a better representation of the PN could be a two-layer neuronal model. 

In this case, the first layer consists of the ORNs forming synapses onto dendrites at the 

periphery of the PN dendritic tree, with individual dendritic sections acting as thresholding 

subunits. Outputs from these subunits are passed to the second layer, modelled as the soma 

of the PN, represented by a leaky integrate-and-fire-neuron (Figure 5.9 a)). The ideal action 

of this nonlinear signal transfer would be to reject background noise whilst boosting the 

signal in order to boost the sensitivity of the system. The threshold function of the subunits 

is represented by the sigmoid in Equation 5.2, Section 5.3.5. The sigmoidal function acts on 

the value of the synaptic current at the arrival time of a spike, and provides a scaling factor 

by which the synaptic weight is multiplied for this spike. The effect of this scaling factor 

on individual example ORNs is to result in an elevated synaptic current when the interval 

between the arrival of consecutive spikes is sufficiently small, while longer intervals result 

in no difference compared with the synaptic current with no scaling factor applied (Figure 

5.9 c)). Synaptic currents from the individual ORNs are combined to provide the input to 

the second layer, the PN soma. The PN somatic voltage reaches the firing threshold more 

often when the input is the synaptic current with scaling factor applied to ORN spikes than 

without (Figure 5.9 d)).
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Figure 5.9: Example of Two-Layer Model with Sigmoidal Subunits, a) Schematic Repre­
sentation of a Two-Layer Model. Spike trains from individual ORNs form the input to the 
model. These ORNs synapse onto peripheral dendritic branches of the PN, which act as 
individual subunits. Each of these subunits performs a sigmoidal threshold function on the 
synaptic weight of the input ORN spikes. Outputs from these subunits are passed onto 
the second layer, the PN soma, represented as an integrate-and-fire neuron, b) Sigmoidal 
Threshold Function. Example of a sigmoidal function (Equation 5.2) used to provide a 
scaling factor for the synaptic weight given an input current, c) Influence of Scaling Fac­
tor on Synaptic Currents. Horizontal scale bar: 1 00  ms; vertical scale bar: 2 *Synaptic 
Weight. Black lines show the synaptic current with no modifications. Red dashed lines 
show the synaptic current when a scaling factor, dependent on the current and found using 
a sigmoidal function similar to that shown in b), is applied to the synaptic weight as each 
spike arrives. The spikes from four individual ORNs, represented in the dendrites of the 
post-synaptic neuron as exponential decays, are used to demonstrate how the effect of the 
scaling factor changes with interspike interval. ORNi and ORN2 have interspike intervals of 
125 and 62 ms, and 62 and 31 ms respectively. The synaptic current dies away within these 
intervals to the extent that the scaling factor on the synaptic weight induces little difference 
to the post-synaptic current. ORN3 and ORN4 have shorter interspike intervals resulting 
in scaling factors that produce visible increases in the post-synaptic current, d) Influence of 
Scaling Factor on Output Neuron. Using scale bar in c), horizontal scale bar: 1 0 0  ms; ver­
tical scale bar: 2*Synaptic Weight for currents and 0.5*Somatic Threshold Voltage. Black 
lines show the synaptic current and somatic voltage with no modifications. Red dashed lines 
show the synaptic current and somatic voltage after the application of the scaling factor on 
the synaptic weight. Synaptic currents from the individual ORNs are combined on entry to 
the soma of the output neuron. The current produced without scaling results in 2 output 
spikes from the somatic voltage reaching the firing threshold. The current produced using 
a scaling factor on the synaptic weight results in 12 output spikes.

5.4.2.3 In troduc tion  of Local In terneurons to Increase O u tp u t V ariability

To gain most effect from sigmoidal subunits, spikes must arrive at these synapses in a timely

manner. Since the duration of current input to the system lasts ~45 ms per spike (the length
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of time taken for the exponential decay to reduce to less than 1 % of the synaptic weight), 

for the scahng factor applied in the nonlinear subunits to have any effect, the post-stimulus 

firing rate must be such that multiple spikes are likely to arrive within this time interval. 

This is equivalent to spikes arriving at a synapse regularly at a rate of ~22 spikes s“  ̂

suggesting that the firing rates of biological ORNs are suitable for this model (mean of 5 

spikes s“  ̂ pre-stimulus and up to 8 8  spikes s~^ during response to stimulus depending on 

the stimulus load).

20 40 60 80
Time (ms)

20 40 60 80
Time (ms)

\i
20

InterSpike Intervals (ms)
40 0 20

InterSpike Intervals (ms)

Figure 5.10: Variability of Modelled PNs. a) Modelled PN with Excitatory Inputs. When 
the input to the PN (modelled by an integrate-and-fire neuron), are only from excitatory 
ORNs (modelled as inhomogeneous Poisson point processes with a firing probability equiv­
alent to 2 .8  spikes s"^), the irregularity of the input is not preserved in the output spikes, 
resulting in a mean CV of 0.17 (2d.p.). b) InterSpike Intervals of PN with Excitatory Inputs. 
The ISI histogram has a narrow range of intervals between 3 ms and 11  ms. c) Modelled 
PN with both Excitatory and Inhibitory Inputs. Same model as a) but with the addition 
of inhibitory inputs from LNs (modelled as for the ORNs, but with a negative synaptic 
weight). In this case, the irregularity of the input is now conserved in the output spikes, 
resulting in a mean CV of 1.11 (2d.p.). d) InterSpike Intervals of PN with Excitatory and 
Inhibitory Inputs. The ISI histogram is truncated at 40 ms, with a much wider range of 
intervals from 1 ms to 99 ms.

However, increasing the firing rate of the input ORNs causes problems with the output 

PN, even before the nonlinear subunits are incorporated. Previous studies have suggested 

that even with random pre-synaptic inputs, a simple integrate-and-fire neuron is not able 

to preserve this irregularity in its own spike output (Dayan and Abbott, 2001; Koch, 1999; 

Shadlen and Newsome, 1994; Softkey and Koch, 1993). This can be demonstrated using
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the model developed here by using Poisson based ORNs with a pre-stimulus firing rate of 

2.8 spikes s“  ̂ and a simple integrate-and-fire output PN. The resulting output spike train 

appears to contain fairly regular interspike intervals (Figure 5.10 a) and b)), with mean CV 

= 0.17 (Equation 5.3). This is a much lower value than expected from biological ALNs 

(mean CV =1.15). A proposed solution to this lack of output spike time variability is 

to incorporate inhibitory inputs to the system, providing a form of gain modulation, to 

balance the excitation (Calvin and Stevens, 1968; Gerstein and Mandelbrot, 1964; Shadlen 

and Newsome, 1994).

Within the AL of the olfactory system, inhibition arises from LN spikes, with ORNs 

forming excitatory input synapses onto the LNs, and the LNs forming inhibitory output 

synapses onto PNs (example connections 2 from Section 5.4.2.1, Figure 5.8 b)). If an ORN 

excites both an LN and a PN, and the LN inhibits the PN, this is known as afferent inhibition 

(Figure 5.11; Shepherd and Koch, 1998), and is the method by which inhibition is generated 

for the purpose of this model.

&
Figure 5.11: Afferent Inhibition, a) Biological Connections (adapted from Shepherd and 
Koch, 1998). b) Schematic Representation. ORN A excites both PN B and LN C. LN C 
then inhibits PN B.

Here, the synaptic currents are generated individually for the two types of neurons, with 

two synaptic weights, w o r n  taking a positive (excitatory) value for ORN spikes, and w l n  

taking a negative (inhibitory) value for LN spikes (using Equation 5.4). These currents 

are passed together into the PN soma providing both excitatory and inhibitory inputs, 

generating a greater degree of variance in output spike times (Figure 5.10 c) and d)) with 

mean CV =  1 .1 1 .
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5.4.3 U se o f N onlinear C urrent-B ased Subunit M odel for Lucky 
O R N  D etection

5.4.3.1 M odel Specifics

The sensitivity enhancement demonstrated in Chapter 3 gave rise to a number of possible 

hypotheses as to how the biological system achieves this boost. The model developed in 

Section 5.4.2 was used to explore one of these hypotheses, that only a “lucky” subset of 

ORNs from the population received stimulus molecules. In this case, the convergence model 

consisted of the following features:

1 . One thousand input ORNs with firing rate statistics based on inhomogeneous Poisson 

point processes (Section 5.3.2) for flexibility.

2. One thousand inhibitory LNs with the same firing rate statistics as the ORNs.

3. Excitatory ORN synapses (Equation 5.4), grouped into subunits with a sigmoidal 

scahng function on the synaptic weight (Section 5.4.2.2, Equation 5.2). ORNs were 

grouped into subunits such that ORNs 1 , 2 , . . . ,  n were contained in subunit 1 , ORNs 

n +  1 , n +  2 , . . . ,  2 n were contained in subunit 2  . . .  etc., where n is the number of 

ORNs per subunit, and is a factor of 1000 (Figure 5.4). For this investigation, subunits 

contained either 10 or 20 ORNs (i.e. 1% or 2% of the total ORN population).

4 . Inhibitory LN synapses (Equation 5.4) based on the simple summation of all input 

spikes.

5. Integrate-and-fire PN (Equation 5.5) with excitatory and inhibitory inputs from ORNs 

and LNs respectively.

For all simulations, the model was run 50 times in order to generate spike trains from 50 

different PNs. To assess the performance of this model (here called the Nonlinear Subunit 

Model, NSM), the integrate-and-fire model, with incorporated LNs and linear synapses (i.e. 

using simple summation of ORN and LN inputs at the synapses, here called the Linear 

Synapse Model, LSM) was used as a comparison.
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5.4.3.2 D etection  Perform ance is Improved by Incorporating N onlinear  
Subunits

As an initial investigation, the ORNs in the NSM were arranged into 1 0 0  subunits, containing 

10 ORNs each. Input ORNs were given a pre-stimulus firing rate of 2 0  spikes s~ ̂ , increasing 

to 40 spikes s“  ̂ on stimulus presentation. Both these values are similar to those found in 

biological ORNs (see Figure 6.3 for example firing rates). The stimulus was presented to 

a subset of “lucky” ORNs, according to the consecutive ORNs method (Section 5.3.4), so, 

for example, if 10 ORNs were to receive the stimulus, these would be the ORNs numbered 

from 1 to 10, and would all converge onto the first subunit. Simulations were run with 0 , 

1 0 , 50, 1 0 0 , 2 0 0 , 500 and 1 0 0 0  ORNs assigned the stimulus, presented to both the LSM and 

NSM. The ability of the PN to detect the stimulus was assessed using ROC curves, and the 

corresponding AUC values (Sections 3.3.4 and 5.3.6).

For the LSM, higher numbers of ORNs receiving the stimulus allowed for reasonable dis­

crimination from the case where no ORNs received the stimulus (Figure 5.12 a)). However, 

even with all ORNs receiving the stimulus, the probability of misclassification is > 15%, 

with this accuracy decreasing as the number of stimuli ORNs decreased.

For the NSM, all numbers of ORNs receiving the stimulus resulted in higher AUC values, 

and so better discrimination ability, than the LSM (Figures 5.12 b) and 5.14 a)). When only 

5% of the ORN population (i.e. 50 neurons) received the stimulus, the NSM shows almost 

perfect discrimination performance, indicated by AUC values close to 1 . Comparison of the 

AUC values for each number of ORNs receiving the stimulus with the control curve allowed 

for the 2 -ratio to be calculated and used to identify detection thresholds (Section 3.3.4). 

Values of 2 -ratio > 1.96 correspond to a significance level of a  =  0.05.

The 2 -ratios for the LSM suggest that when 50 ORNs or more were presented with 

the stimulus, the ROC curves were statistically different to the control curve (no stimulus; 

Table 5.1 a)). This provides an estimate of the detection threshold as 50 stimuli ORNs, so
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Figure 5.12: Assessment of Stimulus Assignment on Model Performances. Symbols and lines 
representing different numbers of ORNs that received the stimulus are preserved across the 
subplots. In each legend, the values are: #  ORNs with stimulus : AUC value, a) and c) 
show ROC curves using linear synapses. In a), stimulus ORNs were assigned consecutively 
while in c) they were assigned randomly (see Section 5.3.4. For some numbers of stimulus 
ORNs, the random method gave rise to slightly higher AUC values, but for others, the 
consecutive method gave rise to slightly higher AUC values. On the whole, there is little 
difference between the two subplots suggesting that the method of stimulus assignment 
has little effect on the detection ability of the LSM. b) and d) show ROC curves using 
nonlinear subunits. In b), stimulus ORNs were assigned consecutively while in d) they were 
assigned randomly, b) shows better discrimination performance for all numbers of ORNs 
receiving the stimulus than all other subplots, d) shows similar performance to the LSM for 
lower stimulus numbers, but the performance is closer to that by the NSM in b) for higher 
stimulus numbers. This suggests that for the NSM, the method of stimulus assignment 
was important for lower numbers of ORNs receiving the stimulus. However, as the number 
of stimulus ORNs increased, and each subunit contained multiple ORNs that received the 
stimulus, the effect of stimulus assignment was reduced.

for the PN to be able to detect the stimulus, 5% of the ORN population must receive the 

stimulus. At this stimulus level, the NSM displayed almost perfect discrimination (denoted 

by an AUC value close to 1 ; Table 5.1 b)) with a probabihty of misclassification of ~  5%. 

At the lowest number of stimuli ORNs tested, the PN from the NSM was still able to 

detect the stimulus, suggesting a detection threshold of 1% of the ORN population (or less).
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a) LSM Control compared with number of stimulus ORNs:
1 0 40 50 1 0 0 500 1 0 0 0

AUC 0.4928 0.6386 0.6502 0.7470 0.7720 0.8308
2 -ratio 0.1077 1.9302 2.0837* 3.4629* 3.8572* 4.8722*

b) NSM Control compared to number of stimulus ORNs:
1 0 40 50 1 0 0 500 1 0 0 0

AUC 0.6578 0.9442 0.9678 0.9972 1 .0 0 0 0 1 .0 0 0 0

2 -ratio 2.1949* 7.3450* 7.9732* 8.8210* 8.9129* 8.9129*

Table 5.1: Determination of Detection Thresholds for Linear Synapse and Nonlinear Subunit 
Models. Asterisks show statistically significant differences (2 -ratio > 1.96). a) LSM. A 
comparison of the AUC values for each number of stimulus ORNs with the AUC of the 
control (no stimulus) for the model with linear synapses. The 2 -ratio suggests that the 
stimulus must be presented to 50 ORNs (or more) for the ROC curve to be statistically 
different to that of the control curve. This gives an estimate of the detection threshold as 
50 ORNs. b) NSM. Comparison of the AUC for each number of stimulus ORNs with the 
AUC of the control for the model with nonlinear subunits. The 2 -ratios suggest that all 
numbers of stimulus ORNs tested resulted in ROC curves statistically different firom the 
control curve. This gives an estimate of the detection threshold as 10 ORNs.

While the detection thresholds for both the LSM and NSM were similar, the actual levels 

of discrimination achieved (in terms of the probability of misclassification) were far better 

for the NSM than the LSM.

5.4.3.3 D etection  Capability is Reduced by Random  A ssignm ent o f Stim ulus

To investigate the effect of the arrangement of stimulus presentation, the stimulus was 

assigned both randomly and consecutively (Section 5.3.4) to subsets of “lucky” ORNs and 

presented to both the LSM and NSM. Again, subsets used were 0 , 1 0 , 50, 1 0 0 , 2 0 0 , 500 

and 1000 ORNs, and the ability of the PN to detect the stimulus was assessed using ROC 

curves.

Levels of discriminability for the LSM were similar, regardless of the method of stimulus 

distribution (compare Figure 5.12 a) and c), consecutive and random assignment respec­

tively). However, for the NSM, the stimulus assignment played an important role when 

fewer numbers of ORNs received the stimulus (Figures 5.12 b) and d) and 5.14 a)). With 

consecutive stimulus assignment, the PN achieved perfect discrimination when 2 0 0  or more
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ORNs received the stimulus (AUC values of 1 ). With random stimulus assignment, 1 0 0 0  

stimuli ORNs still achieved this level of discrimination, but lower numbers of stimuli ORNs 

resulted in lower AUC values. Detection thresholds were again estimated by the calculation 

of 2 -ratios.

a) LSM Control compared with number of stimulus ORNs:
1 0 60 70 1 0 0 500 1 0 0 0

AUC 0.4746 0.6096 0.6802 0.7226 0.8638 0^:638
2 -ratio -0.1142 1.5534 2.4905* 3.0953* 5.5086* 5.5086*

b) NSM Control compared to number of stimulus ORNs:
1 0 60 70 1 0 0 500 1 0 0 0

AUC 0.4798 0.6394 0.6998 0.7416 0.9794 1 .0 0 0 0

2 -ratio -0.0415 1.9502 2.7751* 3.3902* 8.3002* 8.9129*

Table 5.2: Detection Ability with Random Stimulus Assignment. Asterisks show statistically 
significant differences (2 -ratio > 1.96). a) LSM. Comparison of the AUC values for each 
number of stimulus ORNs with the AUC of the control for the model with linear synapses. 
The 2 -ratio suggests that the stimulus must be presented to 70 ORNs (or more) for the 
ROC curve to be statistically different to that of the control curve. This gives an estimate 
of the detection threshold as 70 ORNs. b) NSM. Comparison of the AUC for each number 
of stimulus ORNs with the AUC of the control for the model with nonlinear subunits. The 
2 -ratio suggests that the stimulus must be presented to 70 ORNs (or more) for the ROC 
curve to be statistically different to that of the control curve. This gives an estimate of the 
detection threshold as 70 ORNs, the same as that of the LSM.

The detection threshold for the LSM using random stimulus assignment can be estimated 

as 70 stimuli ORNs, indicated by the ROC curve being statistically different from the control 

curve (Table 5 .2  a)). This suggests that the method of stimulus distribution had little or 

no effect on the detection ability of the PN.

The detection threshold for the NSM using random stimulus assignment was also found 

to be 70 stimuli ORNs (Table 5.2 b)), and so required more ORNs receiving the stimulus 

than with the consecutive assignment. This suggests that the detection performance of 

the NSM was impeded by the random stimulus assignment. For higher numbers of stimuli 

ORNs, where each subunit consists of multiple ORNs receiving the stimulus, the detection 

performance as measured by the AUC values was similar regardless of stimulus assignment 

(Tables 5.1 b) and 5.2 b) and Figure 5.14 a)).
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5.4.3 4 Nonlinear Subunits are B etter  Able to D etect Sm all Increases in Firing 
R ate than Linear Synapses

Up to this point, a doubling of the pre-stimulus firing rate represented the stimulus pre­

sentations. The next sections investigate the detection performance of the LSM and NSM 

when the pre-stimulus rate remained the same ( 2 0  spikes s~^) but with the stimulus induced 

firing rate set to 25 spikes s“ ,̂ i.e. an increase of 25%. Simulations were run with 0 , 10, 

50, 1 0 0 , 2 0 0 , 500 and 1 0 0 0  ORNs receiving the stimulus (using the consecutive assignment), 

with the PN detection threshold estimated using ROC curves.

With just a small increase in post-stimulus firing rate, the LSM detection performance 

was poor, with all numbers of stimuli ORNs resulting in AUC values close to chance levels 

(AUC =  0.5; Figure 5.13 a)). The NSM showed slightly better discrimination (Figure 5.14 

b)), but most of the AUC values were close to chance levels, even with higher numbers of 

ORNs receiving the stimulus (Figure 5.13 b)).

To assess the detection thresholds, the 2 -ratios were again calculated from the AUC 

values. For the LSM, the 2 -ratio never reached the significance level of 1.96, so the ROC 

curves for different numbers of stimuli ORNs were never statistically different to that of the 

control curve (Table 5.3 a)). The 2 -ratio values for the NSM are also low, but with 1 0 0 0  

ORNs receiving the stimulus, the value rises above 1.96 (Table 5.3 b)), suggesting the PN 

was just about able to detect the increase in firing rate in response to the stimulus.

5.4.3 5 Increased N um bers o f Neurons in Nonlinear Subunits Improve 
Stim ulus D etection

The NSM investigated thus far has incorporated 1 0 0  subunits, each consisting of 1 0  ORNs 

(1 % of the population). In the previous section, the NSM was only just able to detect a 

small increase in firing rate in response to the stimulus. This section uses a model with 20 

ORNs in each of 50 subunits, with the same increase in firing rate, to assess the performance 

enhancement achieved. Simulations were run with 0, 10, 50, 100, 200, 500 and 1000 ORNs
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Figure 5.13: Effect of Firing Rate Increase on Model Performance. Symbols and lines 
representing different numbers of ORNs that received the stimulus are preserved across the 
subplots. In each legend, the values are; #  ORNs with stimulus : AUC value. In all 
cases, the stimulus was assigned consecutively (Section 5.3.4). a) LSM Performance. With 
a small increase in firing rate in response to the stimulus, the AUC values for the LSM were 
close to chance levels (AUC = 0.5) for all values of stimulus ORNs. b) NSM Performance. 
The performance of the NSM was only slightly better than that of the LSM, indicated by 
increases in AUC values, particularly at higher numbers of stimulus ORNs. c) NSM with 2 0  

ORNs per Subunit. When the NSM incorporated 2 0  ORNs into each of 50 subunits (instead 
of the original 1 0  ORNs into each of 1 0 0  subunits), AUC values were much higher for all 
numbers of stimulus ORNs.

receiving the stimulus (using the consecutive assignment), with the PN detection threshold 

estimated using ROC curves.

The AUC values for all numbers of ORNs receiving the stimulus were higher for the 

NSM with 20 ORNs per subunit (NSM20) than for the original NSM with 10  ORNs per 

subunit (Figure 5.13 b) and c) respectively, and Figure 5.14 b)). When 500 or more ORNs 

received the stimulus, the NSM20 showed a probability of misclassihcation of < 15%, a 

level not achieved by the original NSM, even when all of the ORNs received the stimulus. 

The 2 -ratios calculated from the ROC curves were used to provide an estimate for the
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a) LSM Control compared with number of stimulus OR S's;
1 0 50 1 2 0 130 500 1 0 0 0

AUC 0.4668 0.5030 0.5064 0.5150 0.5578 0.5650
2 -ratio -0.4815 -0.0396 0.0018 0.1066 0.6308 0.7197

b) NSM 1 0 Control compared to number of stimulus ORNs:
1 0 50 1 2 0 130 500 1 0 0 0

AUC 0.4710 0.5116 0.5330 0.5512 0.6058 0.6410
2 -ratio 0.1489 0.3462 0.6079 0.8316 1.5152 1.9713*

b) NSM 2 0 Control compared to number of stimulus ORNs:
1 0 50 1 2 0 130 500 1 0 0 0

AUC 0.5120 0.5600 0.6608 0.6750 0.8718 0.9568
2 -ratio 0.0744 0.6623 1.9491 2.1405* 5.3487* 7.3028*

Table 5.3: Determination of Detection Ability when Stimulus Presentation Produces a Small 
Increase in Firing Rate. Asterisks show statistically significant differences (2 -ratio > 1.96). 
a) LSM. Comparison of AUC values for different numbers of stimulus ORNs with that of the 
control for the finear synapse model. The 2 -ratio didn’t reach the threshold for statistical 
significance for any number of stimulus ORNs suggesting that the PN was not able to detect 
the stimulus presentation, b) NSM with 10 ORNs per subunit. Comparison of AUC values 
for different numbers of stimulus ORNs with that of the control for the nonlinear subunit 
model with 10 ORNs per subunit. Detection performance was slightly better than that of 
the LSM, indicated by slightly higher AUC values. The 2 -ratio for 1000 stimulus ORNs 
suggests that the ROC curve was statistically different to that of the control curve, and 
hence gives an estimate of the detection threshold as 1000 ORNs. c) NSM with 20 ORNs 
per subunit. Comparison of AUC values for different numbers of stimulus ORNs with that 
of the control for the nonlinear subunit model with 20 ORNs per subunit. In this case, the 
AUC values were much higher than for the LSM and the original NSM. When 130 ORNs 
received the stimulus, the resultant ROC curve was statistically different to the control 
curve, providing a detection threshold estimate of 130 stimulus ORNs.

detection threshold of the NSM20 model as 130 stimuli ORNs (Table 5.3 c), 2 -ratio > 1.96). 

This is much lower than that of 1 0 0 0  stimuli ORNs for the original NSM suggesting that 

incorporating more ORNs into nonlinear subunits improved the detection performance of 

the PN.

5.4.4 U se o f C urrent-B ased Subunit M odel for th e  D etection  of  
Synchronous O R N  Spikes

5.4.4.1 M odel Specifics

The model developed in Section 5.4.2 was also used to explore the hypothesis that a stimulus 

presentation could induce a single synchronous spike in a subset of ORNs in response. In this
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Figure 5.14: Comparison of AUC Values. Nonlinear R: NSM with random stimulus assign­
ment; Nonlinear C: NSM with consecutive stimulus assignment; Nonlinear 1 0 : original NSM 
with 10 ORNs to each of 100 subunits; Nonlinear 20: NSM with 20 ORNs to each of 50 
subunits, a) AUC Values When Stimulus Response was High. AUC values are shown when 
different numbers of ORNs received the stimulus, when the stimulus presentation resulted 
in a doubling of the pre-stimulus firing rate. The NSM far outperformed the LSM when the 
stimulus was presented to consecutive ORNs, indicated by higher AUC values. The NSM 
provided near perfect discrimination (AUC = 1 ) when 50 or more ORNs received the stimu­
lus. This level of discrimination was not achieved by the LSM, even when all ORNs received 
the stimulus. When the stimulus was assigned randomly, the performance of the NSM was 
degraded, particularly at lower stimulus levels where the AUC values resembled those of 
the LSM. b) AUC Values When Stimulus Response was Low. AUC values are shown when 
different numbers of ORNs received the stimulus, when the stimulus resulted in an increase 
of 25% of the pre-stimulus firing rate (assigned consecutively). Discrimination performance 
was poor for the LSM, with AUC values staying close to the chance level (AUC = 0.5), even 
when all ORNs received the stimulus. The original NSM (with 1 0  ORNs converging onto 
each of 100 subunits) performed slightly better, resulting in slightly higher AUC values. 
When the NSM was modified such that each of 50 subunits received the input spikes from 
20 ORNs, the detection performance was greatly improved.

case, the convergence model consisted of the same features as in Section 5.4.3.1 , but with 

the ORNs represented as homogeneous Poisson point processes (Section 5.3.3) allowing for 

the inclusion of a single response spike, with a variable amount of temporal jitter, in a subset 

of ORNs. While it was possible to vary the number of ORNs per nonlinear subunit, for this 

investigation into the detection of synchronous spikes, the number remained constant, at 10 

ORNs per subunit (i.e. each subunit grouped together 1% of the input ORNs, and there 

were 1 0 0  subunits). The model was again run 50 times for each simulation to generate spike 

trains from 50 diflferent PNs. The performance of the NSM was again assessed against the 

LSM.
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5.4.4 2 Nonlinear Subunits O utperform  Linear Synapses

As an initial investigation, ORN spike trains were generated, with the stimulus presentations 

to a subset of ORNs according to consecutive ORNs (see Section 5.3.4), with a timing jitter 

of 0  on the synchronous spikes. Simulations were run with 0 , 1 0 , 50, 1 0 0 , 2 0 0 , 500 and 1 0 0 0  

ORNs assigned the stimulus. These ORNs were presented to both the LSM and NSM with 

the ability of the PN to detect the stimulus assessed using ROC curves (Sections 3.3.4 and 

5.3.6).

For the LSM, higher numbers of ORNs receiving the stimulus (500 and 1 0 0 0 ) allowed for 

good discrimination from the case where no ORNs received the stimulus (Figure 5.15 a) and 

5.16 a)). This discrimination is demonstrated by AUC values close to 1 , implying probability 

of misclassihcation of ~5% and ~10% for 1000 and 500 ORNs respectively. Lower numbers 

of ORNs receiving the stimulus had much poorer detection accuracy demonstrated by ROC 

curves lying close to the control curve (0 stimuli ORNs), where the probability of error is 

close to 50%.

For the NSM, all numbers of ORNs receiving the stimulus resulted in higher AUC values, 

and so better discrimination ability, than the LSM (Figures 5.15 b) and 5.16 a)). When 

200 ORNs received the stimulus (or more), the PN displayed perfect discrimination (AUC 

=  1), and when as few as 50 ORNs were assigned the stimulus, the PN still showed a 

probability of misclassihcation of less than 20%. Detection thresholds were again estimated 

by the calculation of z-ratios. Values of z-ratio > 1.96 correspond to the signihcance level 

of a  =  0.05.

The z-ratio values for the LSM show that when 220 ORNs or more were presented with 

the stimulus, the ROC curves were statistically different to the control curve (no ORNs 

were presented with the stimulus; see Table 5.4 a)). This provides an estimate of the 

detection threshold as 2 2 0  stimuli ORNs i.e. for the PN to detect the stimulus, 22% of 

ORNs must have received the stimulus presentation. In contrast, at this stimulus level, the
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Figure 5.15: Effect of Assignment of Stimulus ORNs on PN Stimulus Discrimination. Sym­
bols and lines representing different numbers of ORNs that received the stimulus are pre­
served across the subplots. In each legend, the values are: #  ORNs with stimulus : AUC 
value. In all cases, the spikes in response to the stimulus occurred at 500 ms. a) and c) 
show ROC curves using linear synapses. In a), stimulus ORNs were assigned consecutively 
while in c) they were assigned randomly (see Section 5.3.4). There is very little difference 
between the two subplots suggesting that the method of stimulus assignment had little or 
no effect (as could be predicted from Figure 5.3 a) and b)). b) and d) show ROC curves 
using nonlinear subunits. In b), stimulus ORNs were assigned consecutively while in d) 
they were assigned randomly, b) shows better discrimination performance for all numbers 
of ORNs that received the stimulus compared with all other subplots, d) shows similar 
performance to the LSM for lower stimulus numbers, but the performance is closer to that 
by the NSM in b) for higher stimulus numbers. This suggests that for a model containing 
subunits, with lower numbers of stimulus ORNs, the method of stimulus assignment was 
important for the discrimination ability of the PN. For higher numbers of stimulus ORNs, 
the effect of stimulus assignment was much less since each subunit contained multiple ORNs 
that received the stimulus.

NSM showed perfect discrimination (denoted by an AUC value of 1 , Table 5.4 b)). Only 

the lowest number of stimuli ORNs did not produce an ROC that was statistically different 

from the control curve. This statistical analysis gives an estimate of the detection threshold 

as 20 stimuli ORNs, i.e. 2% of the ORN population. Comparing the two different models, 

the LSM required far more ORNs to receive the stimulus to allow for detection by the PN,
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a) LSM Control comparée with number of stimulus ORNs:
1 0 2 0 1 0 0 2 1 0 2 2 0 500 1 0 0 0

AUC 0.5554 0.5550 0.6098 0.6724 0.6792 0.8022 0.9478
z-ratio 0.4329 0.4280 1.1109 1.9275 2.0196* 3.8682* 6.8500*

b) NSM Control comparée to number of stimu us ORNs:
1 0 2 0 1 0 0 2 1 0 2 2 0 500 1 0 0 0

AUC 0.6396 0 .6 8 8 8 0.9558 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

z-ratio 1.4928 2.1504* 7.0530* 8.2795* 8.2795* 8.2795* 8.2795*

Table 5.4: Determination of Detection Ability of Linear Synapse and Nonlinear Subunit 
Models. Asterisks show statistically significant differences (z-ratio > 1.96). a) LSM. Com­
parison of the AUC for each number of stimulus ORNs with the AUC of the control (no 
stimulus presentation) for the model with linear synapses. The z-ratio suggests that the 
stimulus must be presented to 2 2 0  ORNs (or more) for the ROC curve to be statistically 
different from the control curve, and hence for the PN to be able to detect the stimulus 
presentation. This gives an estimate of the detection threshold as 2 2 0  ORNs, or 22% of the 
population, b) NSM. Comparison of the AUC for each number of stimulus ORNs with the 
AUC of the control for the model with nonlinear subunits. The z-ratios suggest that all 
numbers of stimulus ORNs tested, apart from the lowest, resulted in ROC curves that were 
statistically different to the control curve. This gives an estimate of the detection threshold 
as 2 0  ORNs, or 2% of the population.

than required by the NSM.

5.4.4.S R an d o m  D is tr ib u tio n  o f S tim u lus R educes D e te c tio n  C ap ab ility

To investigate the effect of the arrangement of the stimulus presentation, the stimulus was 

assigned both randomly and consecutively (Section 5.3.4) to subsets of 0 , 1 0 , 50, 1 0 0 , 2 0 0 , 

500, and 1000 ORNs. All synchronous spikes in response to the stimulus again occurred at 

500 ms with no timing jitter. These ORNs were presented to both the LSM and NSM with 

the ability of the PN to detect the stimulus assessed using ROC curves.

For the LSM, levels of discriminability according to the number of stimuli ORNs were 

very similar, regardless of method of stimulus presentation (compare Figure 5.15 a) and c), 

and Figure 5.16 a) and b), consecutive and random assignment respectively). For the NSM, 

however, the method of stimulus assignment played an important role when fewer numbers 

of ORNs received the stimulus (compare Figure 5.15 b) and d), and Figure 5.16 a) and b) 

consecutive and random assignment respectively). With consecutive stimulus assignment.
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the PN achieved perfect discrimination when 200, 500, and 1 0 0 0  ORNs received the stimulus 

(AUC values of 1 ). W ith random stimulus assignment, 1 0 0 0  stimuli ORNs still achieved 

this level of discrimination, but lower numbers of stimuli ORNs resulted in much lower 

AUC values, more closely resembling those achieved by the LSM (Figure 5.15 c) and d)). 

Detection thresholds were again determined by comparing AUC values to give z-ratios.

a) LSM Control compared with number of stimulus ORNs:
2 0 160 170 2 1 0 2 2 0 500 1 0 0 0

AUC 0.5522 0.6382 0.6596 0.6678 0.6742 0.8106 0.9478
z-ratio 0.4847 1.5678 1.8494 1.9592 2.0456* 4.1125* 6.9659*

b) NSM Control compared to number of stimulus ORNs:
2 0 160 170 2 1 0 2 2 0 500 1 0 0 0

AUC 0.5520 0.6648 0.6844 0.7294 0.7496 0.9984 1 .0 0 0 0

z-ratio 0.3906 1.8249 2.0900* 2.7265* 3.0274* 8.2319* 8.2795*

Table 5.5: Effect of Random Stimulus Distribution on Detection Thresholds. Asterisks 
show statistically significant differences (z-ratio > 1.96). a) LSM. Comparison of the AUC 
for each number of stimulus ORNs, with random stimulus distribution, with the control 
AUC, for the model with linear synapses. The z-ratios and AUC values are similar to those 
produced with the consecutive stimulus assignment (Table 5.4 a)). For the ROC curve to 
be statistically different to that of the control curve, and thus giving an estimate of the 
detection threshold, 220 ORNs were required to receive the stimulus, b) NSM. Comparison 
of the AUC for each number of stimulus ORNs, using random stimulus assignment, with 
the control AUC of the model with nonlinear subunits. In this case, the z-ratios for the 
higher stimulus loads are similar to those with consecutive stimulus assignment (Table 5.4 
b)). For the stimulus to be detectable by the PN, 170 ORNs must have received the stimulus 
presentation.

The z-ratio values for the LSM show that when 220 ORNs or more were presented with 

the stimulus, using random stimulus assignment, the ROC curves were statistically different 

to the control curve (Table 5.5 a)). This provides an estimate of the detection threshold as 

220 stimuli ORNs, i.e. 22% of the population. This detection threshold is the same as that 

found using the consecutive stimulus assignment (Section 5.4.4.2) suggesting that for the 

LSM, how the stimulus was distributed across the ORN population had no effect.

For the NSM, the z-ratio values show that when 170 ORNs or more received the stimulus, 

with random stimulus assignment, the ROC curves were statistically different to the control
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curve (Table 5.5 b)). This gives an estimate of the detection threshold as 170 stimuli ORNs

i.e. 17% of the ORN population. While the NSM still required fewer ORNs to be presented 

with the stimulus than the LSM, the detection performance of the NSM with consecutive 

stimulus assignment (Section 5.4.4.2) exceeded that with the random stimulus assignment. 

For this NSM model arrangement, there were 100 subunits, each consisting of 1 0  input 

ORNs. For higher numbers of stimuli ORNs, when each subunit was likely to contain several 

stimuli ORNs, the random stimulus assignment slightly reduced the detection performance 

of the NSM compared to the consecutive stimulus assignment (Figure 5.16 b)). For lower 

numbers of stimuli ORNs, however, when each subunit contained fewer than 2  ORNs that 

received the stimulus (on average), the NSM performance was greatly degraded and closely 

resembled that of the LSM (Figure 5.16 b)).

5.4.4.4 Increase in T im ing J itter  o f Synchronous Spikes Degrades D etection  
Capability

Up to this point, all synchronous spikes produced to represent the stimulus presentation 

occurred at 500 ms. This section investigates the detection performance of the LSM and 

NSM when increasing amounts of timing jitter were added. Amounts of jitter added to the 

synchronous spikes started at ±10 ms, increased to ±20 ms, and finally to ±50 ms (see 

Section 5.3.3), with the stimulus presented to consecutive ORNs. Simulations were again 

run with 0, 10, 50, 100, 200, 500 and 1000 stimuli ORNs, with the ability of the PN to 

detect the stimulus assessed using ROC curves.

For the LSM, higher numbers of ORNs that received the stimulus allowed for good dis­

crimination of the stimulus, demonstrated by AUC values close to 1 (Figure 5.17 a), c) and 

e)). The probability of misclassihcation was ~5% for 1000 stimuli ORNs, and ~20% for 500 

stimuli ORNs, regardless of the level of jitter introduced to the synchronous spikes (compare 

Figure 5.17 a), c) and e) where the temporal jitter was 0  ms, ± 1 0  ms and ± 2 0  ms respec­

tively). Lower numbers of ORNs that received the stimulus had poor detection accuracy, 

and again, this was similar regardless of the level of timing jitter.
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Figure 5.16: Comparison of AUC Values, a) AUC Values for Linear Synapse and Nonlinear 
Subunit Models. AUC values are shown, when different numbers of ORNs received the 
stimulus, for both the NSM and LSM. In this case, the synchronous stimulus spikes occurred 
at 500 ms with no temporal jitter, and the stimulus was assigned using the consecutive 
method (Section 5.3.4). The NSM far outperforms the LSM for all numbers of stimulus 
ORNs, indicated by higher AUC values. The NSM shows perfect discrimination (AUC = 
1) when 200 or more ORNs received the stimulus, a level of discrimination not achieved 
by the LSM even when all ORNs received the stimulus, b) AUC Values with Random 
Stimulus Assignment. AUC values are shown, when different numbers of ORNs received 
the stimulus, for both the NSM and LSM. For this case, the stimulus was assigned randomly 
amongst the ORNs (Section 5.3.4), with no jitter on the synchronous stimulus spikes. For 
lower numbers of stimulus ORNs, the NSM and LSM displayed similar detection ability, 
but as the number of ORNs that received the stimulus rose above 2 0 0  (i.e. each subunit 
contained, on average, at least two stimulus ORNs), the NSM outperformed the LSM. c) 
Effect of Jitter on AUC Values. AUC values are shown, for different numbers of stimulus 
ORNs, for the NSM, with differing levels of timing jitter on the stimulus response spikes. 
The stimulus was assigned consecutively in all cases. As the level of timing jitter increased, 
the AUC values decreased, indicating a decrease in detection performance, and an increase 
in the probability of misclassihcation. d) Breakdown of Performance of Nonlinear Subunit 
Model. AUC values are shown, for different numbers of stimulus ORNs, with the consecutive 
stimulus assignment. When the level of timing jitter increased to ±50 ms for the NSM, the 
detection performance was reduced to almost the level of the LSM with no jitter.

For the NSM, higher numbers of stimuli ORNs again allowed for good discrimination 

of the stimulus by the PN. In the case with no jitter, 200 stimuli ORNs or more resulted 

in perfect discrimination, indicated by AUC values of 1 (Figures 5.15 b) and 5.17 b) and
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Table 5.6 a)). As the level of jitter increased, the AUC values, and hence the ability of 

the PN to detect the stimulus, decreased, with 500 stimuli ORNs or more, and 1 0 0 0  stimuli 

ORNs required to achieve perfect discrimination with ± 1 0  ms and ± 2 0  ms jitter respectively 

(Figures 5.17 b), d) and f) and 5.16 c). Table 5.6 a)). With jitter levels of ±50 ms. the 

discrimination ability of the PN was only slightly better than the LSM with no jitter (Figure 

5.16 d)).

a)
AUCs Number of stimulus ORNs:

Jitter 1 0 2 0 30 40 90 1 0 0 160 170
0  ms 0.6396 0 . 6 8 8 8 0.7342 0.7998 0.9390 0.9558 0.9944 0.9984

± 1 0  ms 0.6066 0.6386 0.6628 0.7278 0.8498 0.8892 0.9622 0.9686
± 2 0  ms 0.5756 0.5830 0.5968 0.6164 0.6704 0.6806 0.7664 0.7624
±50 ms 0.5734 0.5698 0.5752 0.5758 0.6178 0.6136 0.6550 0.6734

LSM 0.5554 0.5550 0.5646 0.5642 0.5900 0.6098 0.6388 0.6484

b)
z-ratio Control comparée to number of stimu us ORNs:

Jitter 1 0 2 0 30 40 90 1 0 0 160 170
0  ms 1.4928 2.1504* 2.7971* 3.8272* 6.6311* 7.0530* 8.1140* 8.2319*

± 1 0  ms 1.0553 1.4651 1.7834 2.6879* 4.7001* 5.4849* 7.2012* 7.3714*
± 2 0  ms 0.6478 0.7397 0.9122 1.1599 1.8651 2.0031* 3.2497* 3.1875*
±50 ms 0.7594 0.7148 0.7817 0.7892 1.3178 1.2642 1.8016 2.0481*

LSM 0.4329 0.4280 0.5463 0.5413 0.8617 1.1109 1.4829 1.6083

Table 5.6: Effect of Jitter on PN Detection Thresholds for the Nonlinear Subunit Model. 
Rows labelled LSM show the AUC and z-ratio values using linear synapses with no timing 
jitter, a) AUC Values. The performance of the PN in determining the presence of the 
stimulus increased as more ORNs received the stimulus. As the amount of jitter on the 
synchronous spikes increased, the performance decreased, demonstrated by lower AUC val­
ues. When the jitte r reached ±50 ms, the detection performance was close to that achieved 
by the LSM. b) z-ratio Values. Asterisks show statistically significant differences (z-ratio 
> 1.96). Comparisons of the AUC values for each number of stimulus ORNs with the AUC 
of the control curves. As suggested by the AUC values in a), the z-ratios increase as the 
number of ORNs that received the stimulus increased, but decreased as the level of jitter 
increased. Estimates of the detection thresholds at each level of jitter are: 20 ORNs for no 
jitter, 40 ORNs for ±10 ms jitter, 1 0 0  ORNs for ±20 ms jitter, 170 ORNs for ±50 ms jitter, 
and 220 ORNs for the LSM with no jitter (Table 5.4 a)).

To assess the detection thresholds of the NSM at different levels of jitter, the AUC 

values for different numbers of stimuli ORNs were again compared to the AUC value for
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Figure 5.17: Effect of Jitter on PN Stimulus Discrimination. Symbols and lines representing 
different numbers of ORNs that received the stimulus are preserved across subplots. In each 
legend, the values are #  ORNs with stimulus : AUC value. In all cases, the stimulus was 
assigned consecutively. Subplots on the left, a), c) and e) are the ROC curves from the linear 
synapse model, with no jitter, ±10 ms jitter and ±20 ms jitter respectively. There is little 
difference between the three subplots, suggesting that temporal jitter on the synchronous 
spikes had little or no effect on the ability of the PN to detect the stimulus. Subplots on the 
right, b), d) and f) are the ROC curves from the nonlinear subunit model, with no jitter, 
± 1 0  ms jitter and ±20 ms jitter respectively. The ability of the PN to detect the stimulus 
spikes, indicated by the AUC values, decreased as the amount of timing jitter on these spikes 
increased. This suggests that for a model incorporating nonlinear subunits, the ability to 
detect the stimulus relies to some extent on the precision of synchronous spikes from ORNs 
in response to the stimulus presentation. Even though increasing the jitter degraded the 
performance of the nonlinear subunit model, it still showed better discrimination for all 
numbers of stimulus ORNs, at all levels of temporal jitter, than the model with linear 
synapses.
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the control curve, and z-ratios were calculated (Table 5.6 b)). As the level of timing jitter 

on the synchronous stimulus response spikes increased, the ability of the PN to detect the 

stimulus decreased, indicated by an increase in the number of ORNs required to receive the 

stimulus in order for the ROC curve to be statistically different from the control curve. At 

zero jitter, 2 0  stimuli ORNs were necessary, with this value increasing to 40 stimuli ORNs 

at ±10 ms jitter, 100 stimuli ORNs at ±20 ms jitter, and 170 stimuli ORNs for ±50 ms 

jitter. At the highest level of jitte r tested, ±50 ms, the detection ability of the PN closely 

resembled that of the LSM (Table 5.6 a) and b). Figure 5.16 d)), with the NSM performing 

only shghtly better.

5.5 D iscussion

5.5.1 A  Sim ple C onvergence M odel Cannot A ccount for the  
S en sitiv ity  B o o st O bserved in the B iology

An assessment of detection thresholds of ORNs on the antenna and ALNs in the AL re­

vealed a boost in sensitivity of at least 3 orders of magnitude (Chapter 3). A simple 

theoretical model of converging ORNs could not account for these detection limits at the 

AL (Section 3.4.6). The theoretical model assumed Poisson input firing statistics, with a 

simple summation of these spikes at a convergence site. To discount the possibility that 

more realistic spike trains statistics might further improve stimulus discriminability, a sim­

ple computational model was developed. Here, synthetic spike trains were generated using 

realistic ISI distributions taken from pheromone detecting ORNs (non-Poisson with coeffi­

cient of variation of 0.61-1.69). Unlike the Poisson spike trains considered in the theoretical 

model, these showed strong refractoriness as well as a longer tail in the ISI distribution. 

An integrate-and-fire neuron, incorporating exponential synaptic dynamics acted as the site 

of convergence. The boost again followed y/n, demonstrating that non-Poisson spike train 

behaviour of ORNs and a simple model of a readout neuron do not further enhance the 

discriminability of the system when considering firing rates.
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5.5.2 C onvergence M odel Incorporating N onlinear S ubunits  
D etects  Subsets o f  “LuckyO R N s”

Glomeruli are highly complex units innervated by several types of neurons (Distler et al., 

1998). Within this structure of neuropil, it is possible for far more complex mechanisms 

of signal transfer to  occur than a simple summation of inputs. One possible mechanism, 

here investigated, is that of specific zones in the dendritic arbours of PNs acting as indi­

vidual functional “subunits” performing a nonlinear thresholding action on synaptic inputs 

from subsets of ORNs. This nonlinear subunit model (NSM) was compared with a model 

incorporating the same neuron characteristics as the NSM, but using only linear synapses 

(finear synapse model, LSM). Small subsets of ORNs were assigned a stimulus presentation 

to represent the “lucky ORN” hypothesis (Section 3.5.4.1), and ROC curves were used to 

assess the detection ability of the PNs firom these two models.

When the stimulus presentation resulted in an ORN post-stimulus firing rate of double 

the pre-stimulus firing rate, the detection threshold of the LSM required 5% of ORNs to 

receive the stimulus. For the NSM, the detection threshold was 1 % of ORNs. While this 

seems only a small improvement, ROC curves were able to show that with 5% of ORNs 

receiving the stimulus, the PN from the NSM displayed near perfect discrimination (with a 

probability of misclassihcation of ~  5%). This level of discrimination was not achieved by 

the PN from the LSM even when 1 0 0 % of ORNs received the stimulus.

When the two models were given a more challenging task, an ORN firing rate increase 

of 25% in response to the stimulus presentation, the NSM again outperformed the LSM. 

For this example the PN from the LSM was not able to detect the stimulus, while the 

NSM detected it only with 1 0 0 % of ORNs receiving the stimulus. Increasing the number of 

ORNs per subunit however, resulted in stimulus detection when 13% of ORNs received the 

stimulus.

These results suggest that if PNs were able to incorporate nonlinear subunits, subsets 

of “lucky ORNs” receiving the stimulus could produce a detection threshold in the AL that 

would be lower than tha t expected by measuring responses at the periphery.
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5.5.3 C onvergence M od el Incorporating N onlinear S ubunits  
D etects  S ubsets o f  “Synchronous Spikes”

The same two models were used to investigate another of the possible hypotheses from 

Chapter 3, that of ORNs producing synchronous spikes in response to the stimulus (Section

3.5.4 3). This coding strategy, if only required to indicate the presence of a stimulus, could 

be achieved by each ORN transm itting a single spike, synchronised with spikes from a subset 

of ORNs, having little effect on the overall firing rate of the sensory neurons. Small subsets 

of ORNs were assigned a stimulus presentation, this time by the addition of a single spike 

(with varying amounts of timing jitter) to represent the “synchronous spikes” hypothesis, 

and ROC curves were again used to assess the detection ability of the PNs from these two 

models.

When the stimulus presentation resulted in a single response spike, exactly synchronised 

in time across a subset of ORNs, the detection threshold of the LSM PN required 2 2 % 

of ORNs to receive the stimulus. The PN from the NSM required only 2% of ORNs to 

receive the stimulus, and showed perfect discrimination at the detection threshold of the 

LSM. When timing jitte r was added to the synchronous spikes, as the level increased, the 

performance of the NSM was gradually degraded, requiring 4%, 1 0 % and 17% of ORNs to 

receive the stimulus with jitter of ±10 ms, ±20 ms and ±50 ms respectively.

These results suggest that a PN consisting of nonlinear dendritic subunits is easily capa­

ble of detecting a small number of coincident events at the periphery, resulting in a detection 

threshold much lower than expected by examining the firing rate detection threshold of the 

ORNs.

5.5.4 A ssessm en t o f B iological Relevance

Throughout the development of this nonlinear subunit model, inspiration came from several 

different areas. This section looks briefly at the different elements making up the complete 

model.
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1 . Synaptic Connections Provide a Pathway for Inhibition.

Staining of neurons in the glomeruli of the cockroach revealed a multitude of serial 

and reciprocal interconnections between ORNs, LNs and PNs (Distler and Boeckh, 

1997a,b; Distler et al., 1998). These connections suggest that LNs, as well gis ORNs, 

are likely to play a role in the transmission of signals from olfactory stimuli. In the 

NSM, the idea of afferent inhibition (Shepherd and Koch, 1998) was used to introduce 

inhibitory synapses onto the PN, causing the model output firing statistics to closely 

resemble those of biological ALNs.

2. Dendritic Branches Can Act as Individual Functional Subunits.

Studies of neurons with profusely branched dendritic trees suggested that some neu­

rons might be better modelled as two-layer models (Archie and Mel, 2 0 0 0 ; Mel et al., 

1998; Poirazi et al., 2003a,b), with the first layer as specific zones in the dendritic 

tree acting as functional “subunits” , and the second layer as a more traditional spike 

generating threshold mechanism. Mel (1993) and Poirazi et al. (2003a; 2003b) suggest 

that in the pyramidal neurons of the ra t hippocampus, these individual subunits per­

form a nonlinear thresholding function on the synaptic inputs to dendritic branches. 

Since PNs often have large, many branched dendritic trees (Anton and Hansson, 1995; 

Anton and Homberg, 1999), it is possible that segments of dendritic branches act as 

thresholding subunits, and have here been modelled as such.

3. Groups of ORNs Synapse onto a Specific Area of a Glomerulus.

In the cockroach, a number of olfactory projection neurons were found that responded 

only when a stimulus was applied to a specific area of the antenna (Hosl, 1990), with 

a similar modular organisation found in the silkmoth (Ai and Kanzaki, 2004). It 

follows then th a t individual ORNs located in close proximity on the antenna may 

converge onto a specific section of a glomerulus, and so preserving, in some sense, the
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structural arrangement of the antenna. In the model, this was represented as ORNs 

with consecutive numbers converging onto the same subunit.

4. Threshold Function can be Suitably Located.

Of the various possible parameters used to shape and position the sigmoidal threshold 

function in the subunits, the most important seems to be where to locate it in terms 

of the current coming into the threshold function (Figure 5.5). An experimental and 

modelling study performed at the front end of the visual system of the mouse (Field 

and Rieke, 2002) suggested that locating a nonlinear threshold such that all noise 

was rejected, more than compensated for the elimination of some stimulus responses. 

The threshold for the PN subunits was therefore located such that the nonlinear 

threshold had no boosting effect on pre-stimulus spikes (and noise from ORNs that 

didn't receive the stimulus). While this also meant that some stimulus responses were 

also unaffected, other responses were such that the signal was boosted sufficiently for 

detection.

5. Assignment of Stimulus.

In view of the fact that a model of the convergence site of ORNs has been developed 

here, the distribution of the stimulus presentation, as well as the type and level of 

stimulus response of the ORNs, was a function of the model. The question of which 

ORNs should receive the stimulus presentation was approached in two different ways. 

The simplest approach was to randomly assign the stimulus to the required number 

of ORNs. However, this method was perhaps not well suited to the biological system. 

The actual stimulus presentation in terms of an odour filament in a plume, would be 

likely to interact with a localised area of antenna, and as such would affect a group 

ORNs in close proximity. The second approach incorporates this idea by assigning the 

stimulus to consecutively numbered ORNs in the model.
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While all the features incorporated in the NSM can be found in some form in the biology, 

they come from diverse areas of the central nervous system, from retinal processing in the 

mouse, to pyramidal neurons in the ra t hippocampus. There is as yet no evidence that these 

computational structures exist in the moth olfactory system, but it is still possible to use 

the model developed here to investigate possible boosting strategies, with the aim to then 

explore the biological system in search of the relevant mechanisms.

5.6 C onclusions

Theoretical considerations of signal convergence suggested that the observed biological boost 

in sensitivity (Chapter 3) is beyond tha t achievable by summation of the elevated firing rates 

over a population of receptor neurons. Since it is likely that a glomerulus is actually an active 

site of convergence of receptor input, an enhanced computational model has been developed, 

incorporating dendritic subunits with nonlinear thresholds. This nonlinear subunit model 

was used to investigate two of the hypotheses from Chapter 3, the “lucky ORN” hypothesis 

and the “synchronous spikes” hypothesis. In both cases, the discrimination performance of 

the nonlinear subunit model exceeded that of a comparable model, incorporating only linear 

synapses. This suggests that if biological glomeruli are active convergence sites, the ALNs 

would be able to detect lower stimulus amounts than expected by examining the firing rate 

detection thresholds of ORNs at the periphery.
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Chapter 6

Frequency Analysis of Olfactory 
Receptor Neuron Responses

6.1 C hapter O verview

The main aim of this chapter is to perform an initial investigation into the temporal aspects 

of the ORN response to a stimulus. Chapter 3 describes the vast convergence of these 

neurons on arrival a t the AL, presumably resulting in a high level of redundancy. Do the 

individual neuronal responses provide more information about the stimulus than just the 

chemical identity and /or stimulus load? Is it possible that these ORNs are also capable of 

capturing information on the frequency of interception of odour molecules?

Many repeat electrophysiological recordings from several different ORNs were taken 

in response to the major pheromone component in order to characterise the responses in 

both the time and frequency domains. Spike train timings were first extracted as detailed 

in Chapter 2. To perform the characterisation in the time domain, repeat recordings from 

individual ORNs were pooled to create a single PSTH for each ORN. The temporal responses 

illustrated by the PSTHs were characterised by fitting an exponential decay and calculating 

the decay constant for each neuron. Characterisation in the frequency domain was performed 

by taking fast Fourier transforms (FFT) for each PSTH to identify the frequency dynamics 

of each neurons response, with individual ORNs showing response characteristics in different 

frequency bands.
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In order to compare the frequency dynamics of ORN responses with possible stimulus 

input frequencies, an artificial plume was generated in a wind tunnel using a wind speed 

of ~0.56 ms“  ̂ (navigable by a moth performing chemotactic search behaviour). A hotwire 

anemometer was used to measure local fiow movements at eight different locations in the 

plume. The FFT  was taken of the averaged anemometer signals to identify the frequencies 

that occur in a plume at this velocity. When compared, the frequency dynamics of ORNs 

coincide with those frequency components found in the wind tunnel plume.

Assumptions made throughout the investigation are discussed, with the main outcome 

being that the stimulus used doesn’t  adequately mimic the odour filaments a moth would 

encounter in a  plume. A more realistic stimulus might provide even more interesting tem­

poral and frequency responses in ORNs. Finally, possible biologically plausible reasons for 

why different ORNs appear to be able to code for different frequencies of odour filament 

interception are suggested and discussed.

6.2 Introduction

According to the so-called efficient coding hypothesis (Barlow, 1961, 2 0 0 1 ), sensory systems 

strive to achieve an efficient representation of the multitude of different stimuli in an animal’s 

natural environment. Two strategies are thought to be involved. Firstly, single sensory 

neurons should fully utilize their output capacity when encoding information. This has been 

demonstrated by precisely matching the tuning curve of a single neuron to the statistics 

of natural visual stimuli (Laughlin, 1981). Secondly, sensory neurons should provide a 

statistically independent response from one another. For example, recent investigations in 

the visual system have revealed that the responses of retinal ganglion cells to natural stimuli 

are relatively independent (Nirenberg et al., 2001). Both these strategies refer to the idea 

of natural stimuU, but how should this be defined in the case of an olfactory stimulus?

For the purpose of this chapter, the effects of natural stimuli of the olfactory system of 

the male moth during his search for a reproductive partner are of interest. The olfactory
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environment of the moth includes odours from plants as well as odours from other ani­

mals and different species of moth. Prom this cacophony of odour molecules, transported 

in a shifting odour plume, the male moth must first identify the correct combinations of 

pheromone components from a calling female and then navigate the plume to find her.

Added to the problem of odour identification is the issue of plume structure. Odour 

molecules are not delivered to the moth antennae in a continuous stream, but in short 

bursts interspersed with clean air. Obstacles in the path of the plume, and the fiow dynamics 

themselves, create turbulence, which forms this intermittent filamentous plume structure. 

Surrogate molecules representing the presence of odour molecules can be used to measure 

the structure of these turbulent plumes (using ionised air, Murlis and Jones, 1981; Murlis 

et al., 1992, 2000; using a tracer gas, Justus et al., 2002a, 2005). These studies have 

demonstrated the filamentous structure of the plume, and shown how the intermittency 

varies with distance from the source.

The intermittency of a plume (or the time in which the signal is or is not present) is 

related to the frequency at which the filaments arrive at a detector. This frequency can 

be measured and has been shown to vary according to the plume substance, location and 

velocity (e.g. an air plume of ~4 m s~^ on a fiat coastal strip contains frequencies up to 

~4 Hz (Murlis and Jones, 1981) whilst an air plume of ~5 m s“  ̂ in a wind tunnel contains 

frequencies up to  ~ 1 0  Hz (Justus et al., 2002a) and an artificial aquatic plume fiowing 

at ~0.1 m s~^ contains frequencies up to ~ 2  Hz (Moore and Atema, 1991)). Given the 

variation in fiow velocities and associated plume frequencies it is expected that different 

animals encounter plumes with different time and frequency characteristics in their natural 

environments.

In a plume, there is a range of frequencies at which odour filaments arrive at a stationary 

point, but is this information actually utilised by the animal? It seems that the answer to 

this question is dependent on species. Behavioural experiments of moths in a wind tunnel
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have been used to assess whether the presence, and indeed frequency of filaments in the 

plume influence the upwind flight pattern. Studies have shown that some male moths are 

able to navigate in a homogeneous “cloud” or continuous plume of pheromone (Justus and 

Cardé, 2002), while this environment completely halts the upwind aspect of the flight path 

for other moth species (Baker et al., 1985; Justus and Cardé, 2002; Justus et al., 2 0 0 2 b; 

Mafra-Neto and Cardé, 1994, 1995a,b; Willis and Baker, 1984). These studies show that, 

when in a pulsed pheromone plume, the upwind flight of these moths is resumed, with 

higher pulse frequencies eliciting faster and straighter upwind trajectories (Justus et al., 

2002b; Mafra-Neto and Cardé, 1994, 1995b). It seems that for many moth species, not only 

is it the filamentous structure of the plume that is important for female search strategies, 

but also the frequency at which filaments interact with the antennae.

For behavioural responses to differ according to the firequency at which an odour plume 

is pulsed (Baker et al., 1985; Justus et al., 2002b; Mafra-Neto and Cardé, 1994, 1995b), 

it is possible tha t the neurons at the front end of the olfactory system are able to re­

solve these filaments. Individual neurons in the AL and populations of neurons on the 

antennae have been investigated to determine up to what firequency pulsed stimuli can be 

resolved. Pheromone sensitive projection neurons have been shown to be able to resolve 

artificial odour pulses of up to 1 0  Hz (Christensen and Hildebrand, 1988, 1997). Fourier 

analyses of electroantennogram (EAG) recordings have shown that by measuring the whole 

antenna, it is possible to  resolve the temporal structure of odour filaments of up to 33 Hz 

(Bau et al., 2 0 0 2 ). At present, there have been very few experiments looking at individual 

ORNs, but recordings taken from single sensilla suggest that, depending on the receptor 

type/pheromone component, ORNs can follow pulsed stimuli up to 5 Hz (Kaissling, 1986a; 

Kodadova, 1996; Marion-Poll and Tobin, 1992; Rumbo and Kaissling, 1989).

Are individual ORNs capable of coding for different environmental factors such as plume 

frequency dynamics, along with the odour stimulus? By collecting a large number of elec­

trophysiological recordings fi-om a number of olfactory receptor neurons, it was possible to
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assess the temporal structure of the neuronal response to a pheromone component. By con­

verting these responses into the frequency domain, it has been possible to conduct an initial 

investigation into whether the frequency dynamics of the ORNs are compatible with those 

frequencies found in a natural plume. To mimic a natural plume, the frequencies found in 

an artificial plume generated in a wind tunnel, were compared with the ORN responses, 

with the finding th a t these frequencies overlap. When the responses of individual ORNs 

were examined, it was found tha t even with just a single pheromone pulse, different ORNs 

show different temporal characteristics. The response from each neuron contains dynamics 

at different frequency bands, suggesting the possibility that different ORNs may be able 

to detect different frequencies in a plume, and so providing an independent property as 

suggested by the efficient coding hypothesis.

6.3 D ata  A nalysis M ethods

6.3.1 E lectrophysiological R ecordings

Many recordings from different ORNs, found in the antenna of the male Spodoptera littoralis. 

were taken by collaborators in Sweden (see Chapter 2) in order to assess their frequency 

response. The stimulus used was the major component of the female sex pheromone, Z9. 

Ell-14:OAc. Since this is vital for sexual reproduction in this species, ORNs tuned to this 

component are found in plentiful supply in the base of long sensilla (Ljungberg et al., 1993; 

Ochieng’ et al., 1995). Although the detection threshold is thought to lie below 1 0 “  ̂ g per 

10“ ® 1 of solvent (on filter paper, delivered using a 0.4 ml s“  ̂ pulse of air, Ljungberg et al., 

1993; see Chapter 2), a stimulus load of 10“ ® g, with presentation lasting 0.5 seconds was 

used to ensure a strong response in each recording and neuron. Between 12 and 59 recordings 

(with 2 seconds pre-stimulus, 0.5 seconds stimulus and ~2.5 seconds post-stimulus), were 

taken from 11 different ORNs responding to the presented odour. Spikes timings were 

extracted from each recording according to the methods described in Chapter 2.
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6.3.2 F itting of Exponential Decays

An initial characterisation of different temporal responses exhibited by ORNs was performed. 

To this end, exponential decays of the form y = yoe~^^ were fitted to the PSTHs for each 

neuron to describe the decay of the response (see Figure 6.3 for examples). In this case, y is 

the number of spikes s~^ recording"^ at time f, yo is the spike s~^ recording" ̂  at time t = 0 , 

and A is the decay constant. For this calculation, the start time of the decay was set to 

be the PSTH time bin containing the maximum number of spikes s“  ̂ recording" \  and the 

end time was calculated using the threshold method described in Section 3.3.2, Figure 3.1, 

with no time restriction on this location. The curves were fitted using MATLAB’s c ftoo l 

function in the Curve Fitting Toolbox. This uses a least squares method to minimise the 

summed square of residuals when obtaining the coefficient estimates (see Draper and Smith, 

1998). The time taken for the response to decay to half the original spikes s"^ recording" \  

r^ , i.e. when y = ^  can be calculated from the decay constant A since rearranging the 

equation for the exponential decay gives Ti = .

C'cmrirugal fan and 
cxiraclion hood ^

0.15 m

Axial tans
0.5 m

'  r

3 m

3 m

Figure 6 .1 : Wind Tunnel Setup. A transparent polyethylene wind tunnel, of dimensions 
3 m long by 3 m wide by 0.5 m high, was used to measure flow properties of an artificial 
plume. The intake end was covered with 0.15 m of aluminium honeycomb (Hexcel, 1 cm 
diameter). Air was drawn through the wind tunnel by five axial fans located at the outflow 
end. Air was then expelled using a centrifugal fan and passed through an extraction hood 
containing charcoal filters. Adjusting the speed of the axial fans allows for different flow 
velocities to be created inside the wind tunnel.
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6.3.3 W ind  Tunnel M easurem ents

All wind tunnel measurements were taken by Jing Gu.

To compare the frequency dynamics of the ORNs with the frequency components con­

tained in an odour plume, an artificial plume was generated in a wind tunnel. The wind 

tunnel consisted of a centrifugal fan and five axial fans used to draw air along a transparent 

polyethylene tunnel (3 m long by 3 m wide by 0.5 m high). An aluminium honeycomb (Hex- 

cel, 1 cm diameter) was placed at the intake end of the wind tunnel to minimize external 

flow disturbances. Adjustment of individual fan speeds allowed for the control of airflow 

within the wind tunnel (see Figure 6 .1 ). For this investigation, a wind speed of ~0.56 ms~^ 

was used to generate a plume that would be navigable by a moth performing chemotactic 

search behaviour (Vickers et al., 2001; Willis and Baker, 1984). A hotwire anemometer was 

used to measure local flow movements at this velocity. The anemometer recordings were 

taken at eight different locations in the wind tunnel, and the anemometer output, measured 

in Volts, was sampled a t 1 0  kHz.

6.3.4 U se o f  th e  Fast Fourier Transform
6.3.4.1 The East Fourier Transform

In this chapter, frequencies extracted from a time domain sequence (either a PSTH, or the 

anemometer output) are investigated. To obtain this information, the Fourier transform 

can be used to break down the time domain signal into constituent sinusoids of different fre­

quencies. For a signal, x  (t), which is both analogue and continuous in time, the continuous 

Fourier transform, X  ( / )  is deflned as

/ CX)

(6.1)

-oo

where x  {t) and X  ( / )  are complex functions of the continuous-time variable t and the 

continuous-frequency variable /  respectively.
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For sampled data, such as that obtained throughout in this chapter, Equation 6.1 is not 

suitable and a discrete version must instead be used. Assuming samples are equidistant in 

time, the discrete Fourier transform (DFT) is given by

N - l

X { k ) = J ] x  (n) (6 .2 )
n = 0

where k =  0 ,1 ,2 , . . . ,  N  — 1 . The fast Fourier transform (FFT) used in this chapter is an 

efficient algorithm for computing the DFT (Cooley and Tukey, 1965).

6.3 .4  2 O f P S T H

To assess the frequency components of the neuronal responses, only the time period of the 

PSTH in which each neuron shows a response to the stimulus was used. This time period is 

calculated using the same threshold method as that used to find the net spikes integration 

time period (Section 3.3.2, Figure 3.1), but with no time restriction on the location of the 

end time bin. The individual PSTH segments were first multiplied by a hamming window, 

defined as

w (n) =  0.54 +  0.46 cos (6.3)

where n =  0 , l , 2 , . . . , iV  — 1 and N  is the number of samples covered by the window. The 

purpose of the hamming window was to reduce the effects of discontinuities at the edges of 

the segments (Harris, 1978; Kay and Marple, 1981, Figure 6.2), and then the FFT was used 

to find the frequency components (Kay and Marple, 1981 and references therein).

6.3.4 3 O f A n em om eter R ecordings

The anemometer was placed in the wind tunnel at eight different locations. Data were 

sampled at each of these locations, for a time of 1 0  seconds, with six repeats, giving a total 

of 1 minute a t each recording location. These signals were averaged across the locations, 

and the FFT taken to give the frequencies components in the plume.
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Figure 6.2: Application of Hamming Window to PSTH. Horizontal scale bar: 0 .1  s, vertical 
scale bar: 1 0  spikes s“  ̂ recording" ̂  The Fourier transform assumes a periodic signal of 
infinite duration. For the purposes of this chapter, only segments of PSTH showing response 
to the stimulus are of interest, and these are neither infinite nor periodic. For this reason, 
the PSTH segments were multiplied by a hamming window to ensure a smooth transition 
between the end of a segment, and the start of the next repeat of the segment (shown by 
the red arrows in both subplots), a) shows the join between the end of a PSTH segment and 
the start of the next repeat of the segment with no pre-processing. The general trend of the 
data at the end of the segment is that there are more spikes s"^ recording"^ in each PSTH 
time bin than at the start of the segment. This results in a jump at the transition point, 
b) shows the same join between PSTH segments after multiplication with the hamming 
window. The numbers of spikes s“  ̂ recording"^ in each bin have been suppressed close to 
the join, resulting in a much smoother transition ft-om one PSTH segment to the next.

6 .4  R e s u l t s

6.4.1 Peri-Stimulus Time Histograms Reveal Differing Temporal 
Structure in Neuronal Responses

To assess the temporal structure of the neuronal responses, PSTHs were constructed. All of 

the recordings from each neuron were aligned with the start of the stimulus, spike timings 

were split into 1 0  ms time bins, and each time bin was corrected to display spikes per 

second per recording (grey bar charts. Figure 6.3). Each subplot contains the PSTH for 

each different neuron, with the horizontal bar representing the stimulus presentation. For 

each neuron, there is a short delay between the stimulus onset and a change in firing rate, 

caused mainly by the time taken for the odour molecules to reach the antennae. All neurons 

show a sharp increase in firing rate caused in response to the stimulus, although some 

neurons respond to a much higher degree than others (compare, for example, #11193 with 

#1118). In many cases, the neurons appear to act as “onset” detectors since the response
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starts to wane before the end of the stimulus (#11182 and #920), whereas for other neurons, 

the firing rate remains high for several seconds ( # 1 1 1 1  and #11082).

#11182
0.163 s

#1119
ri/,= 0.179 s

#920
r, 0.190.

#1116
Ti/.= 0.193 s

#11193
0.261 s

#11142 
r%= 0.416 s

#1108 
0.466 s

#1219
ry,= 0.800 s

#1111

Ti;.= 0.802 s

#1118
Ty-0.892 s

L
#11082
1.007 s

Figure 6.3: Olfactory Receptor Neurons Responses to a Pheromone Stimulus. Spikes from 
between 12 and 59 electrophysiological recordings for each of 11 different ORNs in response 
to a pheromone stimulus presentation were put into 10 ms time bins to generate the PSTHs 
shown in gray (horizontal black bars in each subplot show the stimulus presentation; hori­
zontal scale bar represents 1 second; vertical scale bar represents 50 spikes per second per 
recording). All of the neurons show an initial sharp rise in the firing rate corresponding 
to the start of the stimulus presentation, but show differing characteristics as the response 
reduces to the background firing rate. These decay properties can be described by fitting 
exponential decays (see Section 6.3.2), shown as the black curves in each subplot. The time 
required for the response firing rate to decay to half of the maximum firing rate can be 
calculated from the exponential decay, and is shown as Ti for each neuron.
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6.4.2 E xponential D ecays C haracterise N euronal R esp on ses

The decay of the neuronal response can be described by fitting an exponential decay (see 

Section 6.3.2) over the time period from the time of the maximum firing rate to the time 

at which the firing rate returns to the background firing rate (or the end of the recording 

in some cases; black curves in Figure 6.3; selected examples in Figure 6.5 a)). The decay 

curves have been characterised using the time taken (in seconds) for the firing rate to die 

down to half of the maximum, Ti and range from 0.163-1.007 seconds.

The relationship between the maximum firing rate, yo, of a neuron, and the half decay 

time, Ti ,  shows a negative correlation (see Figure 6.4). Most of the neurons, shown as 

individual data points, lie close to the line of best fit (dashed line, calculated using the least 

absolute residuals method. Draper and Smith, 1998), with high firing rates decaying faster 

than lower firing rates. The process of desensitisation (described by Zufall and Leinders- 

Zufall, 2000), a rapid, short term form of adaptation, could explain the faster decay of ORNs 

with higher firing rates. ORNs with lower firing rates show a wider range of decay times, 

with longer decays falling close to the best fit and shorter decays further away (see data 

points enclosed in dashed circles). W ith such a small sample (11 ORNs from a possible 

population of ~ 1 0 ,0 0 0  ORNs), it is not possible to confirm whether the whole population 

conforms to a negative correlation between these two variables, but it is likely that this is 

not the case. As a general hypothesis, it could be expected tha t the line of the negative 

correlation forms a soft upper boundary, with high firing ORNs taking mainly shorter decay 

times, and lower firing ORNs taking a wide range of decay times.

6.4.3 Frequency A nalysis o f  N euronal R esponses Su ggests a Range  
o f Frequencies o f Interest

The variation in the decay rate of the different neurons suggests tha t the neurons them­

selves may be able to detect odour filaments arriving at different frequencies. To assess 

the frequency components, only the time period of the PSTH in which the neuron shows a
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Figure 6.4: Correlation Between Neuronal Firing Rate and Decay Time. The maximum 
firing rate for each neuron {yo, as calculated using the fitted exponential decays) was plotted 
against Tx, the time taken for the response to decay to half of the maximum firing rate. 
The resulting plot shows a negative correlation, with higher firing rates decaying more 
quickly than lower rates, demonstrated by a shorter T i . Although many of the data points 
(representing individual ORNs) fall close to the line of best fit (dashed line), several points 
do not (two of which are surrounded by a dashed circle). These two neurons in particular 
have a much faster decay than other neurons with similar firing rates.

response was used. The FFT  of this section was taken (see Section 6 .3.4.2 ), and by plotting 

the magnitude of the transform against the frequency, it is possible to see that different 

neurons contain different power over a range of frequencies (selected neurons. Figure 6.5

b)). The maximum frequencies of interest range from 2-10 Hz across the different neurons 

(neurons not shown lay between these two extremes).

6.4 .4  Frequency A nalysis o f an Artificial P lu m e Ind icates Frequen­
cies Found in N atural P lum es

Using the wind tunnel set up described in Section 6.3.3, local flow movements were measured 

with a hotwire anemometer. The anemometer recordings (measured in Volts), taken from 

different locations within the plume, illustrate changes in the filamentous structure over 

time and with location (see Figure 6 .6  a)). Voltage levels close to zero indicate very low, or 

zero flow, while higher values indicate more air movement. The filamentous structure seen 

in Figure 6 .6  a) resembles that seen in other wind tunnel experiments (Justus et al., 2 0 0 2 a; 

Murlis and Jones, 1981; Murlis et al., 2000; Vickers et al., 2001). An FFT  was again used
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Figure 6.5: Responses of Selected Neurons, a) Exponential Decays. A selection of the fitted 
exponential decays demonstrates the range of times over which different neurons take for the 
response to decay. The half-decay-time, T^, ranges from 0.163-1.007 seconds, b) Frequency 
Analysis of PSTH Shapes. FFT’s were taken on the section of each PSTH with elevated 
firing in response to the stimulus. The magnitude of the power at each frequency up to 11 

Hz is shown for each of the selected neurons shown in a). The frequencies of interest range 
between 2 -1 0  Hz for the different neurons. The same line styles are used for each neuron in 
both subplots.

to investigate the frequency components in the plume. The averaged anemometer signal 

from 8  locations within the plume, each lasting for 60 seconds, was considered (see Section 

6 .3.4.3). In general, frequencies of interest occur before the power in the frequency spectrum 

flattens out, suggesting that a high proportion of the total energy in the signal from this 

wind tunnel generated plume is contained below 10 Hz (Figure 6 .6  b))

6 .5  D is c u s s io n

6.5.1 Com parison of Neuronal and Artificial P lum e Frequency 
Spectra

Assessment of the frequency components contained within ORN responses, found by trans­

forming the temporal structure of the ORN response to a pheromone stimulus pulse with 

an FFT, suggests that ORN responses contain dynamics up to 10 Hz, which may be ca­

pable of resolving corresponding pulses of the same frequency. Individual ORN responses 

contain very different power in their frequency spectrum over a range of frequencies, with 

the frequencies of interest ranging from 2 - 1 0  Hz.
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Figure 6 .6 : Wind Tunnel Plume Investigation, a) Anemometer Recordings Inside a Wind 
Tunnel. A hotwire anemometer was used to measure the localised air movements under 
low flow conditions (suitable for moth flight, see Section 6.3.3). The anemometer responses 
(measured in Volts and sampled at 1 0  kHz) were recorded from 8  different locations inside 
the wind tunnel. The responses a t two different locations are shown. Levels close to zero 
show very little air movement whereas higher values indicate more rapid changes in local 
flow velocity, b) Frequency Analysis of Wind Tunnel Airflow. The recordings from each 
wind tunnel location were averaged. The FFT of this averaged signal was taken, and the 
magnitude plotted over the frequency scale used for Figure 6.5 b). The power in the spec­
trum decreases and flattens out after ~ 6 - 8  Hz, suggesting that these frequency components 
dominate the chemical signal that a moth would be likely to encounter in a pheromone 
plume.

Do these frequencies of interest to the moth’s receptor neurons exhibit any relation to 

the frequencies observed in naturally occurring odour plumes? To answer this question, the 

frequency spectrum of an artificial plume, generated in a wind tunnel, was calculated. For 

this plume, the power in the spectrum flattens out at ~ 8  Hz, suggesting tha t frequencies 

of interest He below this value. When compared, the frequencies found in the wind tunnel 

plume, and the frequencies found in the ORN temporal responses, are found to both cover a 

similar range of frequencies. This suggests the possibility that individual ORNs themselves 

may be able to capture specific bands of frequency information found within naturally 

occurring odour plumes.

6.5.2 A ssessm ent o f A ssum ptions

A number of assumptions have been made in this chapter, involving both plume and odour 

dynamics, and also relating to the linear analysis of ORN responses. These assumptions are 

stated here, with an assessment of how they may affect the overall findings.
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1 . An artificially created plume mimics a naturally occurring plume.

As mentioned in Section 6.3.3, a wind speed of 0.56 ms“  ̂ was used to generate a plume 

comparable to natural plumes navigable by a moth (Vickers et al., 2 0 0 1 ; Willis and 

Baker, 1984). The use of honeycomb at the intake end, and axial fans to  draw the air 

along the wind tunnel produce a filamentous structure with low levels of disturbance 

(Justus et al., 2002a,b, 2005; Mafra-Neto and Cardé, 1995a). This artificially generated 

plume shows structural components that are similar to those described in natural 

environments (compare Figure 6 .6  a) with those found in Murlis, 1986; Murlis and 

Jones, 1981; Murhs et al., 2 0 0 0 ).

2 . An anemometer measurement of airflow represents the structure of odour filaments.

The output voltage of the anemometer used in this chapter is sampled at 10 kHz. Since 

the frequencies of interest in this generated plume have been shown to lie in the range 0 - 

1 0  Hz, the sampling rate used is far higher than required by the Nyquist criterion where 

a sampling rate of 20 Hz would be required to completely determine the plume signal 

by its samples (Nyquist, 1928; Shannon, 1949). The anemometer recordings themselves 

provide an accurate measurement of the flow of air over a hot wire. Given tha t the 

odour molecules are advected by moving air, and tha t the anemometer recordings 

show similar structure to surrogate plumes (Justus et al., 2005), a measure of the air 

movements is a reasonable representation of odour movements.

3. A single odour pulse represents the odour filaments found in a plume.

Odour filaments have been measured arriving at a detector at frequencies of up to ~  1 0  

Hz in a plume (Justus et al., 2002a; Vickers et al., 2 0 0 1 ). During olfactory search, 

moths often surge upwind, resulting in a higher rate of interception of odour filaments 

(Baker and Haynes, 1989; Justus et al., 2002a). The stimulus used for this chapter 

was a single square pulse of pheromone, lasting for 0.5 s. This is much longer than the
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estimated length of time th a t a  m oth spends in an odour filament (for example, given 

an interception frequency of up to  5 Hz, each filament is a maximum of 0.2 s). A single 

odour pulse is not a good representation of filaments in an odour plume, but ORNs 

still respond to the stimulus and show response dynamics up to ~  1 0  Hz. If a more 

reahstic stimulus were presented, ORN responses may contain dynamics at different 

frequencies than those shown here.

4. Spodoptera littoralis requires a  flickering signal for olfactory search.

Spodoptera littoralis, the Egyptian cotton leaf worm moth, found mainly in Europe 

and Afirica, is a pest on cotton plants and a variety of vegetable crops (Tamaki and 

Yushima, 1974). This suggests th a t the search for a reproductive partner is likely to 

take place predominantly in fields and open spaces. Unlike the moth. Cadra cautella, 

which is a pest of stored products often in enclosed, wind-free environments, and 

appears to not need a flickering signal (Justus and Cardé, 2002), it is likely that 

Spodoptera littoralis, flying in open environments, requires the flickering, filamentous 

structure of natural plumes (Murlis et al., 2000) for olfactory search.

5. Taking the Fourier transform of a  PSTH provides a good representation of the fre­

quency dynamics of a neuron.

The process of creating a PSTH for each neuron involves dividing the spike trains into 

individual discrete bins of duration A t, and summing the numbers of spikes occurring 

in each bin. This procedure generates an estimate of the firing rate of the neuron, 

which is dependent on both the size of the time bin, and their placement. To avoid 

the arbitrariness of this bin placement, a window of duration A t  could be slid along 

the spike train  with numbers of spikes within the window counted at each location. 

Both of these methods of estimating the firing rate perform a linear filtering of the 

spike trains. While this may be acceptable for the initial investigation presented here,
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the underlying behaviour of neurons is not truly linear, and the result is th a t the FFT 

then shows the frequency dynamics of a linear approximation of the neural response 

to the stimulus.

These were the main assumptions made whilst assessing the temporal response structure 

of ORNs. After considering these assumptions, it is likely that the male moth requires a 

flickering signal, which provides the ORNs with different frequencies of stimulus arrival. 

The frequencies found in an artiflcial plume here are similar to those found in naturally 

occurring odour plumes, although the stimulus used here is not a good representation of 

these frequencies. At present, the frequency analysis is performed on a linear approximation 

of the neuronal response (assumption 5). If a better representation of the odour filaments in 

a plume was used to  stimulate the moth antennae (assumption 3), or a white noise stimulus 

was used, a more detailed approximation of these neurons may become available, providing 

further insight into the frequency dynamics of these neurons. Further experimentation and 

a larger subset of ORNs could clarify the presence of further neurons with independent 

coding of frequency information.

6.5.3 Further H yp oth eses
6.5.3.1 Species D eterm ination  o f  the Calling Female

The females of several moth species are known to rhythmically extrude their pheromone 

glands during pheromone release (Cardé and Roelofs, 1973; Cardé et al., 1984; Conner 

et al., 1980; Valeur e t al., 1999). Do the females of différent species release their pheromone 

at different pulse frequencies? There is evidence that the pulsation of the pheromone gland 

is required to increase the emission rate of the pheromone (Schal and Cardé, 1985), and is 

not distinctive for each species. Could the pulsatile release of pheromone be conserved in 

the odour plume and provide the male moth with additional information on the species of 

the calling female? This is doubtful since the structure of the pulsatile pheromone release is 

unlikely to be conserved in natural odour plumes due to the plume interaction with objects
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in the environment creating eddies and causing turbulence. For these reasons, it seems that 

the purpose of different ORNs showing an interest in different frequencies in an odour plume 

to aid in the identification of the species of the calling female is unlikely.

6.5.3 2 D eterm ination  o f Location in Odour Plum e

Since ORNs show frequency dynamics of up to ~  1 0  Hz, if they were capable of resolving 

odour filaments at these frequencies, could this provide information to the moth on its 

current position in a natural odour plume? The plume position can be thought of in two 

ways, firstly, the longitudinal distance from the source, and secondly, the cross-sectional 

position in the plume.

1. Longitudinal distance from the odour source. The males of some species of moths 

have been found to be capable of locating a calfing female from a distance of up to 

4000m away (Wilson, 1963). While this would be an essential skill were there very 

few females in a large area, if many females were calling, it would make sense in 

terms of conservation of energy and time, for a male moth to locate the closest female. 

Is it possible for a male moth in a pheromone plume to estimate his distance from 

the calling female by using information from the frequency of interception of odour 

filaments? The intermittency of a wind tunnel plume (calculated as the proportion of 

the time when the signal is absent, and which can be translated into an interception 

firequency) has been shown to decrease as the distance to the source increased (Fackrell 

and Robins, 1982), suggesting tha t the frequency of interception of odour filaments 

would also vary. There is conflicting research, however, carried out in natural odour 

plumes, tha t show that the length of odour burst and the time between bursts (which 

can be converted to intermittency) do not depend greatly on the distance between 

the plume source and the receiver (Jones, 1983; Murlis and Jones, 1981). It seems 

that in the more controlled environment of a wind tunnel plume, the frequency at
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which odour filaments arrive at a receiver is related to the distance from the source, 

but in the meandering plumes usually found in natural environments, this firequency 

information is not a reliable indicator of distance to the odour source.

2 . Cross-sectional position in an odour plume. Whilst searching for a calling female, 

the male moth employs three main, stereotypical search strategies. Firstly, the moth 

determines the wind direction and fiies perpendicular to it in order to make first con­

tact with a pheromone plume. When a pheromone filament is intercepted, the moth 

performs a “surging” manoeuvre where the main direction of flight is upwind. Should 

the moth leave the pheromone plume, “casting” behaviour is employed where larger 

and larger crosswind excursions are performed until either the plume is re-entered, or 

the moth continues to fly perpendicular to the wind direction, searching for a new 

pheromone plume (reviewed in Arbas et al., 1993; Cardé and Minks, 1997; Hartlieb 

and Anderson, 1999 and references therein). After locating a pheromone plume, the 

optimal strategy for finding the female would be to remain in the plume, and thus 

reducing the time spent performing “casting” behaviour. Do the odour filaments in 

the plume provide a mechanism by which this optimal strategy could be performed? 

In wind tunnel experiments using a stationary EAG, encounters with pheromone fila­

ments in the plume were registered most frequently along the plume centreline, with 

almost no activity a t sampling sites as little as 5 cm from the cross-sectional centre of 

the plume. The same experimental set-up also found tha t with an EAG attached to 

a moth flying in the plume, filaments were encountered most frequently in the centre 

of the plume, with significantly fewer filament contacts recorded towards the plume 

edges (Vickers et al., 2001). In a wind tunnel plume, the frequency of interception of 

odour filaments appears to provide some information on the cross-sectional position 

within the plume, which could be used by the moth to remain in the plume.
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In a natural odour plume, the frequency of arrival of odour pockets is not a reliable 

measure of the distance from the source of the plume, but the frequency does increase as 

the centre of the plume is approached (Vickers et al., 2001). Different ORNs capable of 

following different frequencies of odour interception may help the moth determine where in 

the cross-sectional area of the plume it currently is, and so remain in the plume for longer 

periods.

6.5.3.3 D eterm ination o f the B lend C om ponents

When searching for a calling female, the male moth is only interested in con-specific females 

to allow for successful reproduction. The pheromone released by the female is usually a blend 

of several different components, produced in different ratios. The pheromone blends of some 

species are very similar, differing only in relative ratios or in a single different component 

making up the blend (see Tamaki and Yushima, 1974 for an early example of experiments 

showing different component ratios; and Witzgall et al., 2004 for examples of species with 

at least one pheromone component in common). So for successful reproduction, the male 

moth needs to be able to detect the correct pheromone components in the odour plume. 

These components are detected by different ORNs on the antennae. Although it can be 

assumed that the female releases all of the pheromone together in pulses, what happens if 

the constituent components do not arrive simultaneously at the ORNs? Does the moth still 

detect the correct blend? Taking into account the differences in decay times for ORNs found 

during this investigation could solve the problem of delays between pheromone component 

arrivals at the ORNs. The ORNs with longer decays, that continue to fire for longer than 

the stimulus duration, could create a time window in which other pheromone components 

could arrive to send information on the blend to the AL and higher brain centres, whilst 

ORNs with shorter decays could be used to signal to the moth whether it is still in the odour 

plume or not. While there is currently no evidence that this mechanism of blend detection 

actually exists in the moth, the efficient detection of the different pheromone compounds at 

the antennae is im portant for the moth to allow for the detection of the blend and hence 

confirm the species of the calling female.
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6.6 C onclusions

Electrophysiological studies show that pheromone receptive ORNs have a high selectivity 

for specific pheromone components, and are a highly sensitive group of neurons. In Chapter 

3, this ORN sensitivity is demonstrated, with the convergence of up to ~ 1 0 0 0 0  ORNs at a 

single site in the AL leading to  a further enhancement. This convergence suggests a high 

level of redundancy in the signals from the ORNs, but there is the possibility that each 

ORN also provides some information independent of other ORNs, suggesting a reduction 

in the redundancy in accordance with Barlow’s efficient coding hypothesis (Barlow, 1961, 

2001). By analysing many repeat recordings from several ORNs in response to the major 

pheromone component, the work in this chapter suggests that the temporal response of 

individual ORNs is an independent factor that may be utilised at higher processing centres 

in the AL. While the frequency analysis of these temporal responses was not sufficient to 

prove that ORNs are capable of resolving stimuli at specific frequencies, it can be seen that 

individual ORNs express an interest in different frequency bands, which correspond to the 

range of frequencies of odour filament interception expected in a plume navigable by a flying 

moth.

151



Chapter 7

Conclusions

7.1 O verview  of W ork Com pleted

This section provides a brief description of the work carried out in relation to the aims of 

the thesis, with an assessment of the overall results.

Initial aim: Investigate detection thresholds at the first two stages of the olfactory path­

way (ORNs on the antenna and ALNs in the AL) of a moth.

i. A performance measure, the net spikes s " \  was used to determine the numbers of 

spikes produced by both ORNs and ALNs in response to the stimulus. Distributions 

of these net spikes s~^ were generated for each stimulus load tested, including blank.

ii. Statistical analyses (t-tests and AUC comparisons) were performed to determine which 

stimulus loads produced distributions that were statistically different to tha t of the 

blank. These statistical analyses provided estimates of the detection thresholds for 

the ORNs and ALNs. The difference between these thresholds gave an indication of 

the boost in sensitivity achieved.

iii. A theoretical model assuming Poisson ORNs and a simple summation at a convergence 

site (PN) suggested that the sensitivity enhancement in the biological system exceeded 

that explained by the model.

iv. Several hypotheses to explain the observed boost were suggested:
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a) Temporal Encoding: The encoding method of the ORNs may not be rate based 

at all, but could rely on patterns of spikes.

b) Active Convergence; The glomerulus may actually be an active site of ORN 

convergence, capable of boosting the signal in response to the stimulus.

c) Lucky ORN: Due to the quantal nature of odour stimuh, not all ORNs may 

receive enough stimulus molecules to initiate a response, while others do.

d) Synchronous Spikes: Individual ORNs may be capable of synchronising their 

responses to the stimulus, and so would require only a single spike each to signal 

the presence of a stimulus.

This aim was largely completed, with cogent statistical analyses used to assess the detec­

tion thresholds, and thus quantify the transmission of olfactory information from periphery 

to a more central structure of the nervous system. The addition of a theoretical model al­

lowed for a direct comparison of analytical results with empirical electrophysiological data. 

In this case, the result was greater than the sum of the parts, suggesting that more complex 

coding strategies are at work during early olfaction in this animal.

Further aim: Investigate ways in which this boost could be achieved. For the first part 

of this aim, the encoding scheme at the periphery, hypothesis a), was investigated.

V. If the presence of a stimulus could be coded for by a pattern of spikes, the number of 

spikes necessary could be too few to be detected by the rate metric tha t was employed 

to calculate the detection thresholds. A preliminary investigation into the type of 

encoding scheme used by the ORNs could not discount the possibility of a temporal 

code.

vi. An investigation into the temporal structures of spike patterns across repeat record­

ings from individual neurons was performed using UEA. Unfortunately, results were 

inconclusive due to the strong non-stationary nature of these spike trains in response 

to a stimulus presentation.
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vii. An investigation into the spike patterns across a population of neurons was also incon­

clusive, due to the incompatibility of the data with the statistical basis of underlying 

the method employed (UEMWA).

An investigation into the encoding scheme at the periphery was performed. Several 

methods of assessing this scheme were employed, but were not capable of providing conclu­

sive evidence for either a rate or temporal encoding scheme. While the results from this 

section were inconclusive, it does show that care must be taken when selecting methods 

for the investigation of encoding schemes since some methods assume the data adheres to 

specific structural formats, and so may not be well suited to all data  sets.

For the second part of this aim, a model of a possible glomerular convergence site, related 

to hypothesis b) was created and used to investigate whether the detection of the other two 

hypotheses, c) lucky ORN and d) synchronous spikes, could be enhanced.

viii. A computational model was created using real ORN input spike statistics and an 

integrate-and-fire output PN. Simulations showed that this more realistic model could 

not account for the detection ability of the biological system.

ix. If a glomerulus were to act as an active site of convergence of ORNs, a multitude of 

different calculations could be performed. Here, a model was created incorporating 

subunits representing convergence sites of subsets of ORNs at separate dendritic seg­

ments of a PN. Each subunit performed a nonlinear thresholding function on the input 

spike trains, passing the output onto an integrate-and-fire PN.

X . To assess the nonlinear model, a comparison model was created incorporating all the 

features of the nonlinear model, but with each subunit performing a linear summation 

of the input spikes.
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xi. To investigate hypothesis c), subsets of input ORNs were designated “lucky” i.e. only 

this subset showed a response to a stimulus, in terms of an increase in firing rate, while 

the remainder of the population did not. In this case, the detection performance of 

the nonlinear model exceeded that of the linear version.

xii. To investigate hypothesis d), subsets of input ORNs again responded to a stimulus, 

but with a single spike each, time-locked with those of other responding ORNs. The 

nonlinear model far outperformed the linear model in terms of detecting the stimulus, 

even with the addition of timing jitter on these synchronous spikes.

A nonlinear model was developed that outperformed a linear model, in terms of stim­

ulus detection ability of the output neuron, in two specific areas, when only a subset of 

input ORNs responded to a stimulus presentation, and when ORNs responded with a single 

synchronous spike. While the actual model incorporated features from different types of 

neurons found in different animals, it still suggests that site of receptor convergence in the 

moth olfactory pathway is likely to be active (i.e. capable of transforming input signals in 

some way), rather than  a simple, passive summation of the inputs.

As an additional section, an initial investigation of the frequency dynamics of receptor 

neurons was performed to assess the possibility that ORNs were capable of coding for differ­

ent frequencies of stimulus interception, and so providing an independent factor reducing the 

redundancy in the convergence of many ORNs. While this work assumed a simple first-order 

linear description of an ORN, and used a single square pulse stimulus, different frequency 

dynamics were observed, suggesting that further investigation might provide useful insights 

into the coding capacity of these neurons.

7.2 Further Areas o f Work

Tem poral C oding: Only a couple of methods were implemented here for the investigation 

of temporal patterns in spike trains. Although it is quite likely that the encoding
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scheme at the periphery is rate based, there are various other methods currently 

available which may find a temporal scheme. Another interesting area would be to 

take recordings simultaneously from several different ORNs.

M odelling: On the computational side, further experimentation with the shape of thresh­

olding function within the subunits may provide further enhancement of the detection 

capability of the output neuron. Given the multitude of synaptic connections within 

each glomerulus, a myriad of other structural arrangements may provide insight into 

the boost observed in the biology. On the biological side, it would be interesting to 

further investigate the synaptic connectivity within a moth glomerulus, using a variety 

of staining techniques, in order to produce a more biologically realistic computational 

model.

Frequency A nalysis: The use of a white noise, or variable sequence stimulus would enable 

further analysis of the frequency encoding capabilities of ORNs.

7.3 O utlook

Due to the accessibility and genetic manipulations possible in this system, olfaction is an 

ideal pathway in which to  study the efficient transmission of neural information, particularly 

where converging architecture is involved. But in order to understand the brain and its 

coding mechanisms, an integrative approach is necessary utilising a combination of both 

electrophysiological and computational methodologies.
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Appendix A

Principal Components Analysis

A .l  Overview

The technique of principal components analysis (PCA) has been used in this thesis in two 

different areas. Firstly, in Chapter 2, PCA was used as part of the spike sorting procedure 

to find which aspects of a spike shape can be used to separate out the noisy signal from 

spikes generated by several neurons (Section 2.3.2.1). Secondly, in Chapter 4, PCA was 

used as part of the procedure to find whether the aspects of a binned spike train showing 

the most variation are correlated with the stimulus or not (Section 4.4.1). The purpose of 

this appendix is to clarify the method used to find the principal components.

A .2 P C A  D escription

In data sets with many variables, it is often possible to find that a single driving factor of the 

system may be measured by more than one variable. This redundancy of information allows 

for simplification of the problem by replacing a group of variables by a single new variable. 

This simplification can be achieved using PCA, where each PC is a linear combination of 

the original variables, and since each PC is orthogonal to all other PCs, there is no longer 

any redundancy.

The PCA procedure is such that the projection of each observation onto the first PC 

(a single axis in space), results in a new variable, the variance of which is the maximum
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among all possible choices of the first PC. The projection of each observation onto the second 

PC (another axis in space, perpendicular to the first), results in another new variable, the 

variance of which is the maximum among all possible choices of the second PC. While the 

full set of PCs is the same size as the original data set, a high proportion of the total variance 

of the original data is now explained by the first few new variables.

A 3 P C A  C alculation

Throughout this thesis, PC ’s have been calculated using MATLAB’s princomp function, 

which involves performing singular value decomposition on the normalised covariance matrix 

of the input matrix. For the input matrix, X, (where each row is an observation, and each 

column is a variable), the covariance matrix, C, can be calculated as C =  X X ^ / (n — 1 ), 

where n is the number of observations. The singular value decomposition is then performed 

on C, where the singular value, a , and corresponding singular vectors, u and v, satisfy 

C v =  <TU and C ^ u  =  av . With the singular values on the diagonal of a diagonal matrix, 

S , and the corresponding singular vectors forming the columns of two orthogonal matrices 

U  and V, the singular value decomposition is C =  U E V ^.

Each singular vector is used to calculate the linear combinations of the original variables 

to give the PC scores, and each singular value indicates the variance accounted for by each 

PC. The singular values and vectors are then used to transform the original data set by 

projecting the original points onto the new axes. When C is square, symmetric and positive 

definite, the singular value decomposition is equivalent to the eigenvalue decomposition.

A .4 Further Reading

For further information, see Cooley and Lohnes, 1971; Everitt and Dunn, 1999; Jackson, 

1988; Krzanowski, 1988; Seber, 1984.
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Appendix B

Inhibited ALN Analysis

B .l  O verview

Chapter 3 includes a short analysis involving an ALN showing inhibition to the presented 

pheromone stimulus. The method used to calculate the dose response curve involved the 

instantaneous spike frequency (Section 3.4.5.2 ). Later consideration, described below, shows 

that the net spikes s“  ̂ could also have been used to create the dose response with similar 

outcome.

B .2 M odified N et Spikes M ethod

In order to calculate the net spikes s“  ̂ due to the stimulus, where the response is a reduction 

in firing rate, a similar procedure to that described in Section 3.3.2 can be used. The only 

difference being th a t the start and end of the time period, f, were taken to be the first 

of three consecutive time bins where the firing rate rose above the threshold value (set 

to the mean background firing rate minus three standard deviations). The dose response 

curve created using this method suggests that the ALN responds to the stimulus with a 

suppression of the background firing rate at all stimulus loads tested (Figure B.l).
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Figure B.l: Dose Response Curve of Inhibited Antennal Lobe Neuron using the Net Spikes 
Method. W ith a slightly modified version of the net spikes s“  ̂ calculation, the dose response 
curve of the inhibited ALN from Figure 3.7 shows fewer net spikes s“  ̂ in response to all 
stimulus loads tested compared to tha t of the blank stimulus.
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Appendix C

Effects of Variation of 
Param eters on Stationarity Test

C .l O verview

When designing the test for stationarity described in Section 4.3.6, two main parameters 

could be varied, the length of the window used for the moving average filter, and the 

number of standard deviations used to define the upper and lower bounds. While making 

little difference to the final outcome, variations in these parameters are shown here for 

completeness.

C.2 V ariation o f M oving Average Filter W indow  Size

The stationarity test performed in Section 4.4.4 used a window size equivalent to 0.5 seconds. 

Window sizes equivalent to 0.25 seconds and 1 second were also tested. All three window 

sizes are presented here, for both 5 ms and 10 ms time bin sizes, showing numbers of 

recordings found to be stationary and non-stationary (Tables C.2, C.3 and C.4). For ease of 

comparison, a summary table shows the percentage of stationary recordings at each stimulus 

load using all three window durations (Table C.l).

The timing of the stimulus onset for the real neuronal data itself influenced the final 

decision on window size. Most ORNs had a stimulus onset time of at least 1 second into 

the recording (some had 2 seconds before the stimulus onset). Using a window duration
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a) Bin size 5 ms % Stationary at stimulus loads:
Window Duration 0 10-9 g 1 0 '® g 1 0 -^  g Total
0.25 s 41% 40% 16% 27% 31%
0.5 s 59% 40% 25% 32% 39%
1 s 50% 40% 41% 30% 40%

b) Bin size 10 ms % Stationary at stimulus loads:
Window Duration 0 10-9 g 1 0 -» g 1 0 -"̂  g Total
0.25 s 44% 46% 16% 24% 33%
0.5 s 57% 42% 28% 31% 40%
1 s 50% 43% 42% 25% 40%

Table C.l: Summary of Effect of Moving Average Window Duration. Using boundaries of 
f i M A  ±  (3 X  g m a ) i  the use of moving average filters with different window durations causes 
some modifications of numbers of stationary spike trains across the individual stimulus 
loads. In particular, a t the two higher stimulus loads, the longer the window duration, the 
more recordings are deemed stationary. At the two lower stimulus loads, and over the total 
number of recordings, the window duration shows little effect.

a) Bin size 5 ms 
Window 0.25 s

Stimulus loads
0 10-9 g 1 0 -» g 10-7 g Total %

Stationary 29 26 1 0 19 84 31%
Non-stationary 41 39 54 52 186 69%
Total 70 65 64 71 270
%Stationary 41% 40% 16% 27% 31%

b) Bin size 1 0  ms 
Window 0.25 s

Stimulus loads
0 10-9 g 1 0 -» g 10-7 g Total %

Stationary 31 30 1 0 17 8 8 33%
Non-stationary 39 35 54 54 182 67%

Total 70 65 64 71 27
%Stationary 44% 46% 16% 24% 33%

Table C.2; Moving Average Window Size =  0.25 seconds

equivalent to either 0.25 seconds or 0.5 seconds allowed the initial start up transient of the 

filter to die away before the mean value of the filtered background firing rate was calculated. 

For a window duration of 1 second, the mean of the background firing rate was calculated 

from an end section of recording after the response is assumed to have died down. In a small 

number of cases, the ORNs were still showing a response to the stimulus presentation at the 

end of the recording. The window duration of 0.5 seconds was chosen for the main analysis
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a) Bin size 5 ms 
Window 0.5 s

Stimulus loads
0 10-9 g 1 0 - 8  g 1 0 -^ g Total %

Stationary 41 26 16 23 106 39%
Non-stationary 29 39 48 48 164 61%
Total 70 65 64 71 270
%Stationary 59% 40% 25% 32% 39%

b) Bin size 1 0  ms 
Window 0.5 s

Stimulus loads
0 10-9 g 1 0 - 8  g 1 0 -^  g Total %

Stationary 40 27 18 2 2 107 40%
Non-stationary 30 38 46 49 163 60%
Total 70 65 64 71 27
%Stationary 57% 42% 28% 31% 40%

Table C.3: Moving Average Window Size =  0.5 seconds

a) Bin size 5 ms 
Window 1 s

Stimulus loads
0 10-9 g 1 0 - 8  g 1 0 -^ g Total %

Stationary 35 26 26 2 1 108 40%
Non-stationary 35 39 38 50 162 60%

Total 70 65 64 71 270
%Stationary 50% 40% 41% 30% 40%

b) Bin size 1 0  ms 
Window 1 s

Stimulus loads
0 10-9 g 1 0 - 8  g 1 0 -"  g Total %

Stationary 35 28 27 18 108 40%
Non-stationary 35 37 37 53 162 60%

Total 70 65 64 71 27
%Stationary 50% 43% 42% 25% 40%

Table C.4: Moving Average Window Size =  1 second

since it also gave a smoother representation of the neuronal firing rate for the duration of 

the recording.

C.3 V ariation o f N um ber of Standard D eviations

The stationarity test performed in Section 4.4.4 used boundaries based on / : z m / 1 ± ( 3  x  a M A ) -  

Boundaries based on 2 and 4 standard deviations were also tested. All three values are 

presented here, for both 5 ms and 10 ms time bin sizes, showing numbers of recordings found
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to be stationary and non-stationary (Tables C.3, C .6  and C.7). For ease of comparison, a 

summary table shows the percentage of stationary recordings at each stimulus load using 

all three numbers of standard deviations (Table C.5).

a) Bin size 5 ms % Stationary at stimulus loads:
#  of (7m A 0 1 0 -® g 1 0 -® g 1 0 -"̂  g Total
2 31% 2 0 % 2 2 % 13% 2 1 %
3 59% 40% 25% 32% 39%
4 64% 58% 45% 45% 53%

b) Bin size 1 0  ms % Stationary at stimulus loads:
#  of (Jm A 0 1 0 -® g 1 0 -® g 1 0 -"̂  g Total
2 30% 2 2 % 2 0 % 14% 2 1 %
3 57% 42% 28% 31% 40%
4 63% 58% 41% 45% 52%

Table C.5: Summary of Effect of Number of Standard Deviations. Using a window duration 
of 0.5 s, the number of standard deviations used to classify recordings as stationary or not 
cause differences across the individual stimulus loads, and in the total number. However, 
even with the largest number of standard deviations tested, just over 50% of the recordings 
were deemed stationary.

a) Bin size 5 ms 
2 X oma

Stimulus loads
0 1 0 -® g 1 0 -® g 1 0 -^  g Total %

Stationary 2 2 13 14 9 58 2 1 %
Non-stationary 48 52 50 62 2 1 2 79%
Total 70 65 64 71 270
%Stationary 31% 2 0 % 2 2 % 13% 2 1 %

b) Bin size 1 0  ms 
2 X

Stimulus loads
0 1 0 -® g 1 0 -® g 1 0 -"̂  g Total %

Stationary 21 14 13 1 0 58 2 1 %
Non-stationary 49 51 51 61 2 1 2 79%
Total 70 65 64 71 27
%Stationary 30% 2 2 % 2 0 % 14% 2 1 %

Table C.6 : Boundary using 2 x œma

For the UFA method to be meaningful, stationarity of recordings is essential (Section 

4.3.4), so any of the thresholds tested here could have been used in the final analysis. The 

main point of the this test is to imply that not all recordings are stationary, and therefore
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a) Bin size 5 ms 
4 X (7ma

Stimulus loads
0 10-9 g 1 0 - 8  g 10-7 g Total %

Stationary 45 38 29 32 144 53%
Non-stationary 25 27 35 39 126 47%
Total 70 65 64 71 270
%Stationary 64% 58% 45% 45% 53%

b) Bin size 1 0  ms 
4 X Cm  A

Stimulus loads
0 10-9 g 1 0 - 8  g 10-7 g Total %

Stationary 44 38 26 32 140 52%
Non-stationary 26 27 38 39 130 48%

Total 70 65 64 71 27
%Stationary 63% 58% 41% 45% 52%

Table C.7: Boundary using 4 x aMA

the stationarity assumption is violated.
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Appendix D

Investigation into Spike 
Patterns

D .l  O verview

When investigating the possible structure of temporal encoding in individual ORNs at the 

periphery, the UEA procedure (Griin, 1996; Griin et al., 2001a) was first employed (Section 

4.4.3). Unfortunately, the ORN data set available shows a non-stationary firing rate across 

the duration of many of the recordings (Section 4.4.4), violating a vital assumption of the 

UEA method (Section 4.3.4). A further investigation of the synchrony of spikes across the 

population of available ORNs using the UEMWA procedure (Griin et al., 2001b) encountered 

problems with maintaining a high enough number of spikes for statistical viability whilst 

preserving the stationarity of spike train sections (Section 4.4.5). Another approach to the 

investigation of temporal patterns is perhaps to investigate the similarities between spike 

trains rather than searching specifically for patterns. Fellous et al. (2004) suggest such a 

method, in which both the stationarity and the firing rate of spike trains are not an issue. 

An initial investigation into the use of this method is presented here.

D .2 D iscovering Spike Patterns

This section gives a brief explanation of the method used to discover spike patterns, as 

detailed by Fellous et al. (2004). The basic idea is that by using repeat presentations of a
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stimulus, patterns of spikes can be formed by neurons in response to these presentations, but 

that although reliable, the actual structure of the spike pattern can vary according to the 

pre-stimulus history of the neuron. The different patterns of spikes can be better visualised 

by reordering raster plots, from multiple repeat recordings that are time-locked to the onset 

of a stimulus presentation, according to the similarity between the individual spike trains.

For this particular analysis, the times of the spikes are first found from the voltage 

traces (see Chapter 2), resulting in a sequence of Ô functions, which are then smoothed by 

convolving with a Gaussian kernel of fixed width a. FVom these convolved spike trains, a 

symmetrical similarity matrix, S (see Figure D .l b) for an example) is formed by calculating 

the normalised dot product between all pairs of trials < i , j  >:

-  ^

where g* represent the convolution of spike train i with the Gaussian kernel. Values of Sij 

lie between 0  and 1 resulting in a measure of the similarity or correlation between the input 

vectors g* and g j .

In general, values within the similarity matrix were confined to a small region of the 

overall range (see Figure D .l c)). To increase the range over which the similarity values lay, 

all values within the similarity m atrix were scaled using a sigmoid function;

1 4- exp

The sigmoid was centred at the mean of the similarity values, with the slope, r  determined 

empirically:

i. The similarity values were collected into a histogram containing 50 bins between the 

minimum and maximum possible values of 0  and 1 respectively.

ii. The value of r  was incremented by 0.005 (from 0.01 to 0.3) and the similarity values 

Sij were scaled using Equation D.2 to give new similarity values bij.
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iii. The new values bij were then collected into a new histogram (using the same 50 bins) 

and the standard deviation among all the bins was calculated.

iv. The value of r  yielding the minimum standard deviation (i.e. the flattest histogram) 

was chosen as the flnal value with the search stopping if the smallest bin contained no 

values (i.e. totally dissimilar values no longer existed).

An iV-dimensional vector of the scaled similarities between trial j  and all other trials 

i = l , . . . , iV  now represents each of the N  spike trains (columns of the scaled similarity 

matrix). Using this recoding, trials with similar spike patterns have vectors that are close 

in the Euclidean sense, and can be grouped using a clustering algorithm.

Fellous et al. (2004) suggest using a fuzzy A'-means algorithm for the clustering. This 

is a variant on the standard K-means algorithm where the strict membership condition of 

each point being assigned to only one cluster, is replaced by a probability-like membership 

of belonging to each of the K  clusters (see Bezdek, 1981; Dumitrescu et al., 2 0 0 0 ; Hoppner 

et al., 1999 for further explanation). The scaled similarity matrix, and hence the individual 

spike trains, were then reordered according to the output of the clustering algorithm (see 

Figure D .l).

D .3 In itia l Test U sing Surrogate D ata

To test the implementation of the algorithm, a surrogate data set was used to ensure the 

output from the clustering algorithm performed as expected. Fellous et al. (2004) created 

the surrogate data  sets used here, and these are available from http://www.cnl.salk.edu/ 

~fellous/data/JN 2004data/data.htm l. The data sets were created to contain a known num­

ber of clusters. Each cluster contained between 4 and 6  randomly chosen events around 

which spikes occurred. Each cluster was parameterised by three variables: the percentage 

of missing spikes across all trials; the number of extra non-event related spikes per trial;
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and the average standard deviation of the spike time jitter around each event. The al­

gorithm implemented for this appendix requires only the spike times as input, and these 

were provided with trial order randomised so as to remove the cluster structure (see Figure

D.l a)). The initial similarity matrix was then generated using Equation D .l (Figure D.l 

b)), with the histogram created from the similarity values shown in Figure D .l c). This 

histogram was scaled using the sigmoidal function (Equation D.2 ) to produce the “flattest” 

histogram (Figure D .l d)). The scaling was then applied to the similarity matrix (Figure

D.l e)) producing the input to the clustering algorithm. Input trials were then reordered 

according to the output of the clustering algorithm resulting in similar spike trains being 

grouped together. Timing events around which the initial spike times were grouped are now 

apparent (Figure D .l f)).

D .4 In itia l Test Using ORN D ata

An initial test was performed on repeat recordings at a single stimulus load from a single 

ORN. For this example case, there are 56 available recordings on which to perform the 

analysis. For this analysis, two different values of a, the length of the Gaussian kernel, 

were used. Firstly, with cr =  20 ms, the result of the reordering from the clustering output 

shows the recordings arranged such that the noticeable difference between clusters is the 

time at which the neuron starts to respond to the stimulus (Figure D.2). This difference 

in response onset time appears to be a major feature of the recordings (combined with the 

large increase in firing rate), and could be due to changes with the stimulus delivery system, 

or with the electrode location. Secondly, with a = 5 ms, the result of the reordering shows 

similar structure in the similarity matrix and the raster plot (Figure D.3).

The value of a  plays an important role in deducing the similarity of the recordings, and 

thus the clustering algorithm. When a  is large, the emphasis is on the overall firing rate 

of the recordings, whilst when a  is small, the emphasis is on the finer temporal structure
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Figure D.l: Initial Test of Spike Patterns Implementation, a) Input Spike Trains. A sur­
rogate data set from http://www.cnl.salk.edu/~fellous/data/JN2004data/data.html, was 
used to test the implementation of the clustering algorithm developed by Fellous et al. 
(2004). The ordering of 105 repeated trials, containing several spike events, was randomised 
and when the raw spike times are displayed as a raster plot there is little obvious struc­
ture. b) Similarity Matrix. Input spike trains were convolved with a Gaussian kernel. The 
similarity matrix was then generated using Equation D.l, with lighter shades representing 
high similarity values, c) Similarity Histogram. Similarity values were then split into 50 
bins between 0  (dissimilar spike trains) to 1 (similar spike trains), resulting in a distribu­
tion usually centred below 0.5. d) Scaled Similarity Histogram. A sigmoid function was 
employed to augment the range of similarity values (Equation D.2). The slope of the sig­
moid was chosen such that the scaled histogram had the lowest standard deviation among 
all bins (i.e. the “flattest” histogram) with the constraint that the smallest bin contained 
values (i.e. dissimilar values existed), e) Scaled Similarity Matrix. The scaling was then 
applied to the similarity matrix resulting in the scaled similarity matrix, the input to the 
clustering algorithm, f) Reordered Trials. Input trials were then reordered according to the 
output of the clustering algorithm. The random events around which some of the spikes 
were distributed are now more apparent visually.
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Figure D.2: Test Using ORN Data, cr =  2 0  ms. a) Reordered Similarity Matrix. Lighter 
shades represent higher similarity values. The reordering suggested by the output of the 
clustering algorithm introduces structures in the similarity matrix corresponding to the 
five clusters used, b) Reordered Recordings. Raster plot shows clusters arranged mainly 
according to the onset time of the response to the stimulus (horizontal black bar). Horizontal 
red bars separate recordings into clusters.
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Figure D.3: Test Using ORN Data, cr =  5 ms. a) Reordered Similarity Matrix. Lighter 
shades represent higher similarity values. The reordering suggested by the output of the 
clustering algorithm again introduces structures in the similarity matrix corresponding to 
the five clusters used, b) Reordered Recordings. Raster plot shows clusters again arranged 
according to the onset time of the response to the stimulus (horizontal black bar). Horizontal 
red bars separate recordings into clusters.

(Figure D.4 ). Fellous et al. (2004) suggest that when a was approximately equal to the 

amount of jitter in the data the result was optimal.

Further analyses using this method have yet to be performed. One main constraint is the 

amount of data required. The present data set contains only a maximum of five recordings 

at each of the stimulus loads for most ORNs, but this method of finding patterns in spikes 

requires many more.
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a  = 20 ms 
o = 10 ms 
o = 5 ms
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Figure D.4: Effect of Changing a. A section of a recording is shown with a range of a values 
used in the Gaussian convolution operation. Larger values of a act as a low pass filter, 
smoothing the effect of each spike. Smaller values of cr emphasise individual spikes. Black 
dots at the bottom  represent the actual spike times.
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