
m University of
“ LeicesteriBSCizaaill̂ grpnjsl

Management Concerns in Service-Driven
Applications

Thesis submitted for the degree of

Doctor of Philosophy

At the University of Leicester

By

Ahmed Musfer Alghamdi

Department of Computer Science

University of Leicester

July 2008

UMI Number: U508024

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U508024
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

AUTHOR’S DECLARATION

I herby declare that this submission is my own work and that it is the result of my

work done mainly during the period of registration. To the best of my knowledge,

it contains no material previously published or written by another person nor

material which to as substantial extent has been accepted for the award of ant

other degree or diploma of the university or other institute of higher learning,

except where due acknowledgement has been made in the text.

Parts of this submission appeared in the following conjoint publications, to each

of which 1 have made substantial contributions:

• Al-Ghamdi, A. and Fiadeiro, J.L.: Architectural Handling of Management

Concerns in Service-Driven Business Processes. MS W EIS 2006: pages

111-120,2006.

• Al-Ghamdi, A., Fiadeiro, J.L. and Paschke, A.: RBSLA based

Implementation for Architectural Management Laws. 4th International

IEEE Conference on Innovations in Information Technology

(Innovations’07), Dubai, United Arab Emirates: pages 556-560,

ABSTRACT

With the abundance of functionality-similar Web-Services, the offered or agreed-

on qualities are becoming decisive factors in attracting private as well as corporate

customers to a given service, among all others. Nevertheless, the state-of-art in

handling qualities, in this emerging service paradigm, remains largely bound to

the aspects of technology and their standards (e.g. time-response, availability,

throughputs). However, current approaches still ignore capital domain-based

business qualities and management concerns (e.g. customer profiles, business

deadlines).
The main objective of this thesis is to leverage the handling of quality and

management issues in service-driven business applications toward the intuitive

business level supported by a precise and flexible conceptualisation. Thus, instead

of addressing qualities using just rigid IT-SLA (service-level agreements) as

followed by Web Services technology and standards, we propose to cope with

more abstract and domain-dependent and adaptive qualities in an intuitive, yet

conceptual, manner. The approach is centred on evolving business rules and

policies for management, with a clean separation of functionalities as specific

rules. At the conceptual level, we propose specialised architectural connectors

called management laws that we also separate from coordination laws for

functionality issues. We further propose a smooth and compliant mapping of the

conceptualisation toward service technology, using existing rule-based standards.

AKNOWLEDGEMENT

My first and foremost thanks go to ALLAH and then I Offer my sincerest

gratitude to my supervisors Prof. Jos6 Fiadeiro and Dr. Stephan ReifF-Marganiec

for their support throughout this thesis with their patience and knowledge whilst

allowing me the room to work in my own way. They reviewed the drafts of this

thesis carefully and provided lots of important suggestions for improvement; I

greatly appreciate their excellent supervision with time and efforts.

Many thanks to the Department of Computer Science staff working in

different positions for their support during my Ph.D. programme. The Department

has been extremely helpful in financing me to attend conferences which have been

an important and exciting element of my research. Thanks to all the personnel of

the department for creating an inspiring and comfortable research atmosphere. All

my friends and colleagues have made the past few years enjoyable.

Final thanks go to my parents, my brothers Mohammad, Ali, Abdullah,

Abdulaziz, Makhzoom, and Saeed, my sisters Salhehh, Fatemah, Hamdah, my

wife Hoda, my sons Abdulaziz, Mohammad, Saud (I haven’t seen him till now)

and My liltle princes daughter Rand for their understanding and encouragement

which helped me through many tough times.

TABLE OF CONTENTS
CHAPTER ONE.. 1
Chapter 1 2

Introduction.. 2
1.1. General Motivation... 2
1.2. Research scope, objectives, and questions...5

1.2.1. Research objectives...7
1.2.2. Research question(s)................................... 8

1.3. Thesis Contributions and Methodology...9
1.4. Organization of the Thesis... 12

CHAPTER TWO... 15
Chapter 2 16

Background and Preliminary Concepts.. 16
2.1. Web-Services: Concepts and Standards... 16
2.2. Web Services Standards... 18
2.3. Business Rules and their role for adaptable Web Services.................... 20

2.3.1. Business Rules and Web-Services..22
2.4. Architecture techniques and coordination...23

2.4.1. Coordination.. 25
2.5. Chapter Summary... 26

CHAPTER THREE...28
Chapter 3 29

Management in Web Services—State-of- art and Classification..................... 29
3.1. Service Level Agreements and Management concepts......................... 30

3.1.1. Different categories of SLAs..34
3.1.2. Service Level Management..34

3.2. Quality Criteria in SLA: Studies and Classification............................. 36
3.2.1 Qualities criteria related to IT-SLAs...36
3.2.2 Qualities criteria related to the execution of Web-Services............ 38

3.3. State of the art on SLAs for Web-Service...39
3.3.1 Web Service Level Agreement (WSLA)... 39
3.3.2 The Web Service Offering Language (WSOL)............................... 41
3.3.3 Service Level Agreement language SLAng.....................................43
3.3.4 RBSLA: Focused Overview with Illustration.................................. 43
3.3.5 A UDDI extension (UX)...45
3.3.6. UDDIe..46

3.4. Business SLAs for management in service-driven applications............ 47
Chapter Summary.. 48

CHAPTER FOUR.
Chapter 4 51

Architectural Modelling of Management Concerns in Service-driven
Applications... 51

4.1. Business Handling of Management: Approach Milestones and Steps ...52
4.1.1. A Stepwise Approach for Conceptualizing Management Concems55

4.2. Phase-ACT: Illustration with a PC Selling Case study.......................... 59
4.2.1. PC Selling Case Study: General Description.................................. 60
4.2.2. PC Selling Case Study: Different Business Activities.................... 61

4.3. Phase-BRs4ACT: The Request Activity as an Example....................... 62
4.4. Phase-BRsCoordLaws—Modelling Coordination Concerns................ 63

4.4.1. Functionality-focused ECA Business Rules: Description and
illustration.. 64

4.4.1.1. Application to the request activity... 65
4.4.2. From Functionality ECA Business Rules to Coordination Laws66

4.4.2.1. From the Request Rule to the Corresponding Coordination Law
.. 67

4.5. Management concerns: From Rules to Management laws.................... 69
4.5.1. Management-focused Business Rules: Characteristics and Pattern 70

4.5.1.1. The ECA clauses for management concerns........................... 75
4.5.1.2. The request activity as illustration for the management ECAs 76
4.5.2.1. Derivation of the management law interfaces from the partner

names.. 78
4.5.2.2. Derivation of die management law glue from the management

rule.. 78
4.5.2.3. Management law: Illustration using the request activity 79

4.6. Integration of Concerns: Interactions Meet Management..................... 82
4.6.1. Integration of Concerns at the Request Activity............................. 83

4.7. Activity-centric Flexible Business Processes — PC Selling
Illustration... 84

4.8. The Approach-at-Work—Application to All PC Selling Activities 86
4.8.1. Offer Activity: Business Rules, Coordination, and Management

Laws.. 87
4.8.1.1. The coordination concerns in the offer activity...................... 87
4.8.1.2. The management concerns in the offer activity...................... 88

4.8.2. Delivery Activity: Business Rules, Coordination and Management
Laws.. 90

4.8.2.1. The interaction concerns in the delivery activity.................... 90
4.8.2.2. The management concerns in the delivery activity................ 92

4.8.3. The Cancellation Activity: Rules, Coordination and Management
Laws.. 94

4.8.3.1. The Interaction concerns in the Cancellation activity............. 94
4.8.3.2. The management concerns in the Cancellation activity 96

4.8.4. Shipment Activity: Rules, Coordination and Management Laws ...98
4.8.4.1. The interaction concerns in the Shipment activity.................. 98
4.8.4.2. The management concerns in the shipment activity............. 100

4.8.5. Payment Activity: Rules, Coordination and Management Laws... 102
4.8.5.1. The coordination concerns in the payment activity................102
4.8.5.2. The management concerns in the payment activity................103

4.9. Chapter Summary... 105

CHAPTER FIVE... 106
Chapter 5 107

Web Service-based Management laws ... 107
5.1. From Conceptual MLaws toward WS Technology: Motivation and

Translating Milestones...108
5.2. RuleML and RBSLA: An Overview... 112

5.2.1. RuleML: Overview and Illustration.. 113
5.2.2. RBSLA: Focused Overview with Illustration................................113

5.3. Management/Coordination Interfaces into WSDL...............................116
5.3.1. Management in WSDL: Illustration... 117

5.4. From Management Laws to RBSLA-driven Web Services..................117
5.4.1. The Detailed Translating Mechanisms... 119

5.5. A Supporting Tool for Automating the Translation.............................124
5.6. Chapter Summary 126

CHAPTER SIX.. 127
Chapter 6 128

Conclusion......................... 128
6.1. Thesis summary and main achievements... 129
6.2. Shortcomings and projected further work... 132

6.2.1. Early formal validation / verification.. 133
6.2.2. Integrated tools supporting the approach...................................... 134
6.2.3. Runtime adaptability with techniques akin to AOP.......................135
6.2.4. Composition through standards extensions.................................. 136
6.2.5. Consideration of further concerns with security on top.................136

6.3. Closing remarks................... 137

Bibliography.. 138
Appendix A.. 149

List of Abbreviations..149
Appendix B .. 151

Glossary..151
Appendix C .. 154

Management Law Language Syntax... 154

LIST OF FIGURES

Figure 2-1. The SOA architecture illustration..18
Figure 2-2. Web services as efficient and practical instantiation of SOA.......................20
Figure 2-3. The CCC layers...26
Figure 3-1. SLA as a contract between customer and provider.......................................33
Figure 3-2. Web Service Level Agreement Entities [TGR+04].......................................41
Figure 3-3: WSOL Service Specification [TPP+03].. 42
Figure 3-4: Service Provision model [LSE03]... 43
Figure 3-5. UX architecture [ZCB+03]..45
Figure 3-6. Client request with QoS requirements [AOR+03]...47
Figure 4-1. A stepwise Business-Conceptual Approach for Interaction-

Management centred Service-driven business applications...........................56
Figure 4-2. The general view of PC Selling application interaction.................................61
Figure 4-3. The conversational business processes.. 85
Figure 4-4. Required interfaces and coordination law for the Offer activity.................. 88
Figure 4-5. Required interfaces and management law for the Offer activity.................. 90
Figure 4-6. Required interfaces and coordination law for the Deliver activity............... 92
Figure 4-7. Required interfaces and management law for the Deliver activity...............93
Figure 4-8. Required interfaces and coordination law for the Cancel activity................ 95
Figure 4-9. Required interfaces and management law for the Cancel activity................97
Figure 4-10. Required interfaces and coordination law for the Shipment activity......... 99
Figure 4-11. Required interfaces and management law for the Shipment activity 101
Figure 4-12. Required interfaces and coordination law for the Payment activity 103
Figure 4-13. Required interfaces and management law for the Payment activity 104
Figure 5-1. The General Approach Architecture for Deploying MLaws using WS

Technology.. I l l
Figure 5-2. The ViDRE Approach Architecture as given in [RND06]......................... 112
Figure 5-3. WSDL interface for the Request activity... 117
Figure 5-4. Management tool add/edit form... 125
Figure 5-5. Management tool add/edit sub category form..125
Figure 5-6. The management law translator form...126

LIST OF TABLES

Table 4-1. Functionality-focused ECA-driven rule..64
Table 4-2. The extracted ECA-driven business rule.. 65
Table 4-3. Required coordination Customer’s interface for the Request activity.............68
Table 4-4. Required coordination provider’s interface for the Request activity...............68
Table 4-5. Coordination law for the Request activity...69
Table 4-6. Expressing management-focused business rule.. 75
Table 4-7. The extracted management-centric business rule..76
Table 4-8. The general pattern of management law... 78
Table 4-9. Customer Management interface for the Request activity.............................. 79
Table 4-10. Provider Management interface for the Request activity.............................. 80
Table 4-11. Management law for the Request activity...81
Table 4-12. Integration of concern for the Request activity... 84
Table 5-1. Example oblige a customer to pay penalty..115
Table 5-2. Example of procedural attachment..115
Table 5-3. Translation of management law to WSDL.. 117
Table 5-4. The EBNF syntax for the management law...119
Table 5-5. The translation rules..120
Table 5-6. Management law for Request activity...121
Table 5-7. Example for Event translation... 121
Table 5-8. Example for “WHO” condition translation.. 122
Table 5-9. Example for At-Time translating...123
Table 5-10. Example for Manage translating... 123
Table 5-11. Example for translating management law to RBSLA..................................124

CHAPTER ONE
CHAPTER ONE..1
Chapter 1 2

Introduction.. ... 2
1.1. General Motivation... 2
1.2. Research scope, objectives, and questions.

1.2.1 .Research objectives
1.2.2. Research question(s).......................

1.3. Thesis Contributions and Methodology....
1.4. Organization of the Thesis... 12

VO
00

N)

U

l

Chapter 1

Introduction

1.1. General Motivation

Geared by fierce competition, and increasingly globalizing markets, companies

are forced to cooperate, while offering just-in-time solutions as required by their

demanding (private / public, individual / corporate) customers. These facts are

boosted by advancements in the IT world through the use of internet; thus,

changes in technology have been urging organizations to shift from their

traditional integrated vision with centralized control toward more loosely-coupled

Web-based networked cross-organizational applications.

To respond to this challenging shift in organizational realities at the

technological level, the Internet has been promoted from just a glue of

unstructured and static information to a sophisticated enabler of online complex

behavioural and process-centric services, referred to as Web Services. These are

characterized as autonomous Internet-based business-driven applications,

exposing well-described interfaces aimed to be described, published, requested

and composed by any customer or user [KKL+02]. The universality of Web
Services is reflected through the uniform adoption of XML-based standardized

languages for describing, publishing, and composing them (e.g., SOAP, WSDL,

BPEL, etc.; see next chapter). Service-oriented architecture (SOA), as the new

Service Oriented Computing (SOC) paradigm, is based on subscribing, invoking,

binding, and composing different Web Services to fulfil the application problem

at hand.

As this Web-Services technology is maturing, more and more (private as well

as corporate) cross-organizations are embracing it at a rapid pace to automate their

businesses as composite services. This has already resulted in an abundance of

functionality-similar Web-Services covering most potential business areas (e.g.

tourisms, health, banking, etc.). One may just look at the exponential number of

online services offering flight tickets or accommodation all over the world.

Nevertheless, with the keen competition among such (cross-)organizations

geared by market globalization and volatility, it is becoming essential to go

beyond the limited capabilities of functionality-based Web-Services developed

using current standards. Among the severe shortcomings, which are under

intensive exploration by both academia and industry and to which this thesis aims

to contribute, the following are emphasized:

Management concerns on top of functionalities: One main advantage of

Web-Services, among traditional “offline” software, is that service requestors can

freely, quickly and easily switch from one service to another. Towards attracting

and convincing more customers to opt for a given service, from the early days of

this emerging service technology, the quality of services [BK05, OYP03] have

been put at the centre of focus, as an important selection factor between

functionality-similar services. In the state-of-the-art, as will be detailed in Chapter

Three, such quality-of-service (QoS) has been expressed in terms of service-level

agreements (SLA) from their service providers (SPs). The SLA is a “customer-

provider contract” specifying how performance, throughput, time-response, and

availability, among others, are to be measured [DHP02]. Despite the great benefits

of such technology-driven QoS guarantees in advancing the state-of-the-art,

service providers are still facing difficulties when it comes to the

understandability, transparency, abstraction and adaptability of such qualities

[TA03]. This thesis proposes thus to contribute in leveraging the level of handling

management concerns to the business level at a first stage, so that the desired

features outlined above can be achieved. Indeed, we argue and demonstrate that

quality of service and management concerns in general can be tackled at two
different levels of abstraction: (1) the business level, at which management

concerns should be understood, elaborated, communicated, and adapted by

separating them from any other concerns, including the basic functionalities and

interactions concerns; and (2) the technological level, at which qualities are

expressed in terms of corresponding IT features such as time-response,

availability, throughput, etc.

Adaptability and separation of concerns: Although boosting functionality-

similar services with QoS and management concerns represents a crucial

improvement factor towards selecting best services, it remains far from

satisfactory on its own. Indeed, with high-volatility and harsh competitiveness in

the market, high-flexibility and dynamism are required on both services'

functionalities and management concerns. Unfortunately, current standards such

as WSDL and BPEL are well-known for their rigidity. We argue and demonstrate

that handling adaptability at the business level represents an essential requirement

towards achieving highly flexible and adaptable services. In addition, separation

of concerns such as functionalities and management greatly improves flexibility,

understandability and transparency.

Adequate Conceptualization prior to service deployment: It is without

doubt that this emerging service computation paradigm is still technology-centric.

That is, the focus is more on how to use Web-Services standards to implement a

given business application, and not on how to first understand, and reason about

service requirements without referring to any standards. Indeed, the exclusive

adoption of standards and the focus just on deployment are hindering the

development services that are correct-by-construction and highly flexible. Several

ongoing research programmes are aiming to overcome this deficiency, and to

which we are aiming to contribute in this thesis while handling management

concerns at the conceptual level.

This thesis concentrates therefore on the challenges of exploring qualities and

management concerns at the business and conceptual levels where, despite the

high beneficial potentials of ongoing investigations, little has been attempted so

far. We refrain from presenting yet another framework for monitoring, reporting,

and controlling performance quality of Web services, as often presented in the

literature [CCD+03, ZBN+04, DDK+04]. Instead, we are concerned with

business-level elicitation, conceptual modelling, and intrinsic adaptation of

management concerns, without disadvantaging, mixing, or fixing other

functionality and interaction concerns. Moreover, to demonstrate the practicability

of the approach, we are mapping it to the technological level to benefit from both

worlds: business and technology.
The main principles and advantages of the approach we are putting forward,

include:
1. The tackling of management concerns at the business activity level,

thereby taming the complexity of business processes, while promoting

flexibility;

2. The adoption of an event-driven rule-centric approach at the business

level, so that all (cross-)organizational stakeholders can be involved in

eliciting, describing, and evolving management qualities;

3. The modelling and validation of both management and interaction

concerns through business rules encoded as architectural connectors

that we refer to as management and coordination laws;

4. Last but not least, to present the practicability of the approach using

service technology, we map this business-conceptual approach to Web

technology using related recent advances (RBSLA).

The remaining sections of this chapter are as follows: Firstly, we motivate the

general research scope of this thesis within the service paradigm, and then

motivate the challenges we have been focussing on. Secondly, we go into detail

about the main research question tackled in this thesis and its ramifications. In the

third part, we enumerate the main original contributions of this thesis. Finally, this

chapter is wrapped up by highlighting the content of the remaining chapters.

1.2. Research scope, objectives, and questions

After a period of literature research about all facets of Web services and their

enabling service-oriented architecture, we came up with the following

observations as the driving forces toward the formulation of the main research

question. The first observation stipulates that qualities are important within this

“online” service paradigm. Indeed, qualities represent important factors for

attracting customers to providers and vice versa, within the immense internet

world. Building on that first observation, we then moved focus on the state of the

art about existing approaches addressing qualities in Web services. The analysis

of this study could be summarized as follow:

1. Due to the compositional (and thus partnership) nature of Web

Services, the qualities are defined between different partners (e.g.,

customer and providers). Consequently, we discovered that Service

Level Agreements are the dominating framework, as quality-driven

contracts between requestors and the service providers).

2. Moving from one approach to another, we found that the addressed

quality criteria and features vary. Nevertheless, except for some strong

deviations, such as mixing/merging qualities with security issues, the

tackled qualities range over availability, time-response, reputation, and

throughput.

3. As we already pointed out, almost all existing approaches address the

above qualities from an implementation technological perspective.

More specifically, concrete (XML-driven) programming techniques

and languages are being proposed for quantifying, measuring,

monitoring, controlling, and reporting on selected qualities with

respect to concrete running Web services.

4. Since we also were attracted by topical software engineering issues

such as adaptability, separation of concerns, and behaviour-driveness,

we noticed that none of such good principles ever has been mentioned

in the explored literature.

From these observations on the state of the art in handling QoS in Web

services, we decided to investigate QoS with respect to the whole life cycle of

service-driven business applications. Since implementations using Web services

were shown to be unsatisfactory on their own, we proposed to focus first on

qualities at early phases of business requirements and precise conceptualization.

Consequently, instead of speaking directly about Web service quality-driven

solutions, we were attracted by qualities and management concerns at all

development stages, with emphasis on business and conceptual levels.

1.2.1. Research objectives
The global objective of the investigated research consists of leveraging the

handling of management concerns in service-driven business applications to the

business level and the conceptual level without losing the link to service

technology as the deployment phase. Thus, we aim to complement the explored

SLA-driven approaches to qualities at the infrastructural level with application-

level qualities. Indeed, as we just pointed out, the conceptualisation of SLAs at the

business level has received little attention beyond the use of rigid notations, such

as the Unified Modeling Language (UML) through activity diagrams [SLE04].

Yet, addressing SLAs and management concerns in general at the business and

conceptual levels, in complement to the IT level, can provide significant benefits,

including the following, which are the main objectives of this thesis:

1. The involvement of all stakeholders in formulating, describing, and

adapting qualities, without referring to any specific concrete

implementation;

2. The ability to put aside any other concerns (e.g., functionalities and

interactions, security) and focus just on the qualities (perhaps with

devoted teams when required). This essential ability towards separation

of concerns remains difficult if not impossible to realize at the

implementation level;

3. The capacity to decide on the level of granularity in handling such

management concerns. Indeed, whereas most existing approaches

consider the business processes as a whole, as we will present in this

thesis, the business level facilitates a flexible fine-grained handling at

the (business) activity level;

4. Instead of coding qualities as rigid (boolean programmable)

constraints, we are proposing to handle any qualities-driven concerns

as highly flexible specific event-driven (management-centric) business

rules. The same is applied for any other functionalities: we first

explicitly and separately capture using appropriate (functionality-
centric) business rules pattern.

5. The ability to validate any formulated qualities, including the detection

of unwanted or inconsistent integrations / compositions.

6. The complete freedom to choose and adapt the best available service

technology once a satisfactory and reliable conceptualisation is

achieved; when necessary, several implementation alternatives can be

combined, a fact that is difficult to realize at the coding level on its

own.

1.2.2. Research question(s)
The main research question we have been exploring can be formulated as follows:

“How can the handling of management concerns in service-driven
applications be leveraged smoothly, from its dominating Web technology trend
toward more intuitive as well as precise business levels at which separation of
concerns, business rule centricity, and adaptability become the driving forces?"

In order to address this question effectively, we are required to further

decompose/detail it into the followings sub-questions.
1. How can we cope best with management concerns as specific (cross-)

organizational knowledge, in such ways that it remains aligned with

the business goals of the targeted service-driven applications? In other

words, which business mechanisms are most suitable to express

management knowledge while promoting adaptability and separation

of concerns, among other desired properties?

2. At which granularity level should we address such management issues

in service-driven applications, so that separation of concerns and

adaptability could be promoted further? In more detail, is the holistic

business process coarse granularity suitable or is the more fine-grained

activity level better?

3. How could the interaction and manangement concerns be handled in

coherent, yet explicit and separate ways?

4. Which conceptual setting allows for a smooth moving from the

business-level description while promoting the main features such as

separation of concerns, flexibility, and adaptability?

5. Once a business-conceptual handling of management concerns (besides

functionality concerns) is obtained, how can we exploit Web

technology and Web service standards to result in a compliant

implementation?

6. How can a stepwise (business, conceptual, and implementation levels)

approach to management concerns be supported through clear

methodology and validated using case studies?

1.3. Thesis Contributions and Methodology

Considering the above detailed research sub-questions as a roadmap for the whole

investigation, the first contribution concerned tackling the first four questions,

which should bring answers to the following: (1) The appropriate business

artefacts in which adaptability and separation of concerns are targeted; (2) the

granularity level for tackling management concerns, and the conceptual primitives

that preserve the business-level features and enhance them with rigor and

reasoning qualities. In the following, we motivate and report on the forwarded

solutions to these research concerns as driving forces for the rest of our

investigations.

Event-driven Business rules centricity: To tackle adaptability, evolution,

and separation of concerns, in complex agile and knowledge-intensive service

applications, we found that business rules [KL04, WL04, KL05] represent the

most suitable business components. Indeed, business rules, which express policies

and constraints on how to do business, are ubiquitous in any cross-organizations.
They are understandable and independent from any specific process usage, and

thus evolving and promoting separation of concerns. They further represent main

assets to keep any cross-organization complying steadily with national and

international markets and government laws. On the other side, and more

importantly, they represent the main strategic competitive force within any cross

organization, since they require innovative and attractive, yet simple, business

ideas in terms of laws, policies, and rules. Besides, and among other potentials,

they fit well with the event-driven publish / subscribe SOA architecture as they

reflect ECA behaviour: “on the occurrence of events do actions under some

constraints (ECA rules).” Along all business-conceptual and implementation

levels, we therefore adapt an ECA-based development approach, with specific

emphasis on management concerns.

Activities as working granularity-level: By analysing different sources of

rigidity and mixing of concerns while tackling quality service-driven applications,

we discovered that, besides the lack of dealing with (ECA-driven) business rules,

most existing approaches follow a holistic business process vision. To overcome

this limitation, we are proposing to adopt a fine-grained approach, with business

activities as the building-block for handling management concerns. As will be

detailed in the thesis, we present that in contrast to the process-based approaches.

With an activity-centric approach we achieve more flexibility and transparency

not only at the activity level but also at the business process as a whole.

Architectural techniques with ECA-driven connectors: In order to close the

gap between the business level and the more precise conceptual level while

enhancing ECA rule at the activity level, as above, we built our approach on top

of the architectural techniques presented in [Fia02, AFOlb, AF02]. In this sense,

we proposed new forms of architectural connectors that are governed by ECA

rules and focus on qualities at the activity level that we refer to as management

laws.

As answers to those specific research questions, we summarize the achieved
contributions:

Characterisation of management features at the business level: Whereas at

the implementation or Web technology level the term quality is distinguished (e.g.

response time, availability, throughput, reputation, etc.), we were confronted with

the definitions of qualities at the business level. In this sense, we proposed a set of

characteristics for management concerns at the business level that include:

deadlines to meet, partners (e.g., customer, provider), and preferences.

Description of such management characteristics in terms of appropriate

ECA-driven rules at the activity level: To express management concerns,

besides coordination ones, at the business level, we put forward a generic pattern

of ECA-driven rules by recapitulating the explored business characteristics for

qualities in service-driven applications.

Proposition of management laws with mapping steps from the above

management-based ECA rules: To keep the conceptual level aligned with the

above business level, we thus put forward new primitives reflected in terms of

particular architectural connectors that we refer to as management laws. That is,

besides coordination laws that focus on coordination concerns, we derive

management laws from management-based ECA rules.

Integration of management and coordination laws around business
activities: With an aim to describe and conceptualize any service-driven business

process from any business activities, we propose methods to bring together in a

flexible and suitable way both concerns around any activity.

Proceeding from management laws to RBSLA-based deployment: To

demonstrate the relevance and practicability of this business-conceptual approach,

we also implement steps to derive corresponding rule-centric Web technology

deployment. Moreover, we implemented a tool to support this translation and

execute management laws using current implementation of RBSLA, a variant of

the (XML-based) RuleML language (used extensively in semantic Web).

Undertaking of case study as validation of the approach: We considered a

case study variant of an E-shopping application dealing with PC selling. All

management-based characteristics, ECA rules, and management laws are
motivated and explained through this case study. Besides that, in the fourth

chapter, all activities comprising this case study are detailed from both

management and coordination perspectives.

Implementation of tools supports the laws - RBSLA mapping: Since,

RBSLA is associated with advanced language and software environment; we will

focus on how to automate the proposed translation steps from management laws

to RBSLA. An implementation procedure consisting of; an editing, translating and

executing management laws using the RBSLA language is proposed.

Finally, we propose a stepwise methodology that we detailed in the fourth

chapter. It includes the following steps:

1. Given the global goals and intuitive business processes of the service-

driven application at hand, we first propose to understand all involved

activities better.

2. We propose to describe the business rules coping with functionalities

and coordination for each considered business activity.

3. We describe the management concerns in terms of ECA business rules

at the level of each activity.

4. From the coordination-based ECA-driven business rules and for each

activity, we derive the conceptual level in terms of corresponding

coordination laws (i.e., functionality-based ECA-driven architectural

connectors).

5. From the forwarded management-based ECA-driven business rules and
for each activity, we derive the conceptual level in terms of

corresponding management laws (i.e., management-based ECA-driven

architectural connectors).

6. We integrate both coordination and management concerns.

7. We construct the complete business process by putting these two

activities in partial order (i.e., high flexibility in constructing any

business process from the modelled activities).

8. We translate this business conceptual approach toward RBSLA. This

translation is followed by the execution of modelled service-driven

application on current tools supporting RBSLA.

1.4. Organization of the Thesis

The next chapter will present an overview of the general ingredients involved in

this thesis as well as provide concepts and elements required for building the
proposed approach. In detail, first Web services and the service-oriented

architecture are summarised. Secondly, Business rules then are presented in

general and with respect to their specific benefits to Web services by surveying

existing proposals. Finally, architectural techniques are introduced in general and

coordination techniques in particular.

The third chapter delves into the main topic of the diesis that concerns the

quality management in service-driven applications. In this respect, first we survey

related work and existing approaches to the handling of management issues in

Web services. Particular emphasis is put on service-level agreements and their

deployment, using service technology. We survey and classify existing proposals

around established criteria to compare their potentials and weaknesses, and clarify

the main advantages of the new approach and its complementation of existing

implementation-oriented efforts.
The fourth chapter presents the contribution of this thesis toward handling

management (and interaction) concerns in service-driven applications in flexible

and suitable ways. The chapter presents the potential of addressing management

concerns at the business level and its fine-grained activity level, and explains the

use of architectural techniques to enhance flexibility and evolution. The chapter

then provides details of the different conceptual primitives put forward, their

motivations, syntax and intended semantics, and coherent adoption as

management laws. This conceptual framework to management concerns is applied

to a case study dealing with PC selling application.

The fifth chapter bridges the gap between the proposed conceptual framework

of management concerns, namely management laws, and their concrete and

beneficial deployment, using current Web technology. It examines different XML

rule-based languages and their adequacy in capturing management laws with

respect to preserving important properties, such as flexibility, interaction

centricity, and separation of concerns. RBSLA was selected as a suitable Web

language for the deployment of management laws. The following sections

describe the translation of management laws into RBSLA and then assess the

results through a case study. Finally, the chapter describes the general deployment

architecture based on Web services.

The sixth and last chapter recapitulates the goals, achievements, and

contributions of the thesis, and outlines future conceptual and practical extensions

of this work.

CHAPTER TWO
CHAPTER TWO...
Chapter 2 16

Background and Preliminary Concepts.................. 16
2.1. Web-Services: Concepts and Standards... 16
2.2. Web Services Standards...18
2.3. Business Rules and their role for adaptable Web Services.................... 20

2.3.1. Business Rules and Web-Services..22
2.4. Architecture techniques and coordination...23

2.4.1. Coordination.. 25
2.5. Chapter Summary... 26

Chapter 2

Background and Preliminary Concepts

As we emphasized in the previous introductory chapter, the main purpose of this

chapter concerns the leveraging of the handling of management and

functionalities concerns in service-oriented business applications towards more

business and conceptual levels, with adaptability and separation of concerns at the

fine-grained activity level at the core. We further suggested that for such

leveraging event-driven business rules and architectural techniques will be

playing important roles. Besides such conceptualization, we also pointed out that

this thesis will look at the practicability side, namely the benefits from service

technology and available standards.

With the aim of providing all required ingredients for a self-contained thesis,

we are first summarizing all the required knowledge about (Web-) service

technology and its main standards. Secondly, since business rules will be at the

core of the envisioned conceptual model for management concerns, we overview

the main definitions and elements related to business rules in general as well as

most of the emerging attempts to benefit from business rules to bring more

flexibility and behaviour to current Web-Services. Thirdly, as we are working

from an architectural conceptualization, we present the main concepts about

architectural techniques in general, and the so-called coordination laws developed
in our group in particular.

2.1. Web-Services: Concepts and Standards

Although it is still a premature to find a completely agreed-on working definition

for Web Services, there are at least some common characteristics of this emerging

new IT technology. Firstly, Web services (WS) are network-addressable software

units (e.g., components, modules, programs); that is, they are developed to be

used on the Internet. Secondly, and in contrast to other Internet-based applications

(e.g., web sites), WS are accessible using well-defined and explicit interfaces.

Thirdly, such interfaces should be exposed, invoked, and composed easily.

Fourthly, there is a rich package of interoperable technologies and standards (e.g.,

SOAP, UDDI, BPEL, WSDL), well adapted to exploit the potentials of the Web.

An interesting first definition suggested in [CGS01] regards Web services as

application-oriented services using specific Web standards while serving

application-to-application business processes. A more elaborated definition was

forwarded by Sun as one of the significant providers of this technology: any Web

Service corresponds “services offered through the web, where typically any

business application sends a request to a service at a given URL using the SOAP

protocol over HTTP. The service receives the request, processes it, and returns a

response” [Wus02]. An often-cited example of a Web Service is that of a stock

quote service, in which the request asks for the current price of a specified stock,

and the response gives the stock price. Another interesting definition coming from

IBM as one of the first companies building Web Services, says: “Web Services

provide an application integration technology that can be successfully used over

the Internet” [Web08].

It is important to reemphasise that Web Services have been triggered and

boosted by the growing challenges in organisational information systems. Indeed,

with market globalisation and fast advances and confluence of computation and

communication (over the Internet), organisations are coming under huge pressure

to interconnect their know-how in a decentralised and process-aware manner. So,

with the limitations of platform-dependent middlewares such CORBA or DCOM

[Dou03], Web Services have emerged as platform-independent and composition-

driven to boost the aimed decentralisation and loose-coupled cooperation /

integration in a universal setting [OYP03, TAA+01, CGS01].

Before surveying the main standards underlying Web Services technology, we

should recall that service-orientation as new paradigm for software development

over the Internet is governed by the so-called “triangular” service-oriented

architecture. As depicted in Figure 2-1, SOA is based on three main principles:

Publish-Find-Bind. That is, following the SOA architecture, any software used

has to be published (not necessarily over the Internet), where subscribers can

invoke it and finally bind it to others to build complex composite services.

Service Provider

Service ClientService Broker

Publish

Find

Bind

Figure 2-1. The SOA architecture Illustration

2.2. Web Services Standards

The characteristics common to Web standards are: (1) adopt XML as universal

language; (2) linked with the Web; (3) promote the exchange of messages in an

event-driven manner; (4) support heterogeneous protocols for communicating

with each other without being dependent upon the implementation of the

underlying system. These standards are being developed by many leading IT

organisations, including IBM, Microsoft, ARIBA, and many others, and are being

submitted to the World Wide Web Consortium (W3C). The most important

standards for Web Services can be described as follows:

• SOAP: Simple Object Access Protocol. It is a common messaging

protocol that is used over HTTP and other Internet protocols for

communication between applications [TSP+04]. SOAP is simple,

extensible, and platform-independent; that is, designed for sending

XML-based messages over the Internet.

• WSDL: Web Services Description Language. XML-based language for

describing the programmatic interfaces of Web Services and how to

access them [WebOl]. WSDL is an XML document that is used to

locate Web Services.

• UDDI: Universal Description, Discovery, and Integration. A business

registry standard for indexing Web Services so their WSDL

descriptions can be located by development tools and applications

[Oas07]. UDDI communicates through SOAP and acts as a directory

for storing information about Web Services.

• BPEL: Business-process Execution Language. BPEL builds on all the

above basic standards and aims at composing services into complex and

thus realistic services. Indeed, it is very hard to find a given basic

service that satisfies any meaningful customer request so that the

composition belongs to the essence of service orientation [WCL+05].

BPEL is like workflows and business processes; it permits partially

ordered different business activities to build service-oriented business

processes (e.g., using sequence, choice, parallel, switch, and other

operators) [MN05].

W3C says of the Web Service interface WSDL: “A WSDL file contains

descriptions of one or more interfaces and binding information for one or more

services. A service is actually a collection of ports. A port is the combination of a

portType, which describes the interface of the port, and a binding, which

describes the mechanics of invoking the port” [WebOl],

The descriptions of services discovered by Web Services clients should be

published to a service registry, as Figure 2-2 illustrates. This service registry

usually is defined by the UDDI project, UDDI.org. The interaction between the

Web Services and requesting application, which is an important feature of Web

Services, can be established once a service has been discovered, and a binding

established based on information in the registry [UDD07].

SERVICE REGISTRY

FINDo USER

WSDLoREGISTRY

INVOKEoSOAP
RUN TIME

:UN TIM E
SERVICE

Figure 2-2. Web services as efficient and practical instantiation of SOA

The invocation of a service involves sending and receiving an XML message

to the service. These XML interactions are governed by an open standard, SOAP,

which W3C describes in this way: “SOAP defines a message header that describes

the message and indicates which operation in the interface of the service is being

invoked. The header is an envelope that contains an XML message body in which

the parameters are passed. SOAP supports both a remote procedure call and a

general XML document passing paradigm. SOAP messages must be carried on a

communications layer, which most often is the Hyper Text Transport Protocol

(HTTP)” [SoaOl].

2.3. Business Rules and their role for adaptable W eb Services

The Business Rules Group defines a business rule as “a statement that defines or

constrains some aspect of a business.” It is intended to assert a business structure

or to control the behaviour of the business [BRGOO] and reflect the way of doing

business in general.

A significant characteristic of business rules is that they tend to change

whenever the business policies they embody change, which is more often than the

core application functionality does [ArsOl]. In an e-shopping application, typical

business rules include: “If a customer has purchased more than X books, then he

or she becomes a frequent customer” and “If a customer is a frequent customer,

then he or she gets a Y percent discount,” where X and Y may change depending

on the circumstances (e.g., season, time, kind of books, etc.). Business rules are
applied at events that are well-defined points in the execution of the core

application functionality. Examples of typical events are “request a product” and

“confirm payment”. As business domains become more complex, it is

fundamental to capture business processes and policies explicitly as business

rules.

The Business Rules Approach [VonOl] states that it is crucial to implement

them while adhering to four objectives: (1) separate business rules from the core

application, (2) trace business rules to business policies and decisions, (3)

externalise business rules for a business audience, and (4) position business rules

for change. Nevertheless, despite all efforts, and due to diversity of business rules,

this explicit separation still is hard to achieve, for instance for object-oriented

mechanisms.

Business Rules have been classified in the literature [Wag02, BRGOO, TW01]

into four different main types: integrity rules, derivation rules, reaction rules, and

deontic assignments. Integrity rules specify an assertion that must be satisfied in

all stages of the system. They built a core part of databases and information

systems in general. A derivation rule is a statement of knowledge derived from

other knowledge by a mathematical calculation or an inference. Reaction rules, or

event condition action (ECA) rules, are the most frequent ones and include the

others. For this, general ECA rules are the most adopted and investigated form of

business rules. They specify the invocation of action in response to an event, and
under different constraints and/or circumstances. The actions are performed only

when the specified constraints apply [RD05a, RJD05b, RND05].

Business rules, as key factor for regulating intra-organisational activities as

well as fitting and relating to the external environments (e.g., market, institutions),

thus are important elements in any (cross-) organisational information system.

Further, business rules are present in any knowledge-intensive applications, such

as expert and intelligent systems. Illustrations of potential rule-intensive domains

include e-commerce, financial industry, television and radio broadcasting, health

and hospital management, and rental businesses. Business rules capture different

knowledge, ranging over policies, preferences, decisions, advice, and

recommendations [DatOO].

2.3.1. Business Rules and Web-Services
As Web Services applications are going beyond simple applications and investing

domains, such as e-commerce, e-health and e-govemment, among others, it

becomes obvious that pure process-centricity through BPEL no longer is

sufficient. Indeed, WSDL and BPEL standards for describing and composing

services are static and manual, whereas the above potential applications for Web

Services are knowledge-intensive and very volatile.

To leverage Web Services standards toward these challenging rule-intensive

and volatile service-oriented business applications, several attempts are being

made to bring business rules to such standards. In the following sketch are some

of the most referenced ones in the recent Web Services literature.

The first proposal was forwarded by Papazoglou et al. [OYP03,Pap03]. In this

approach, starting from a very general specification, the composition is scheduled,

constructed, and finally executed with the assistance of business rules classified

judiciously in a repository. Besides such basic elements as events, conditions, and

messages, this classification includes rules dealing with activity flows, the data

required for their composition, and the constraints to be respected. The direct

construction and subsequent execution of the composition from the business rules

is performed in terms of XML-like descriptions, without any prior precise

modelling.

Another approach proposed recently in [CM04] consists of explicitly

separating business rules from the flow of business processes (i.e., splitting BPEL

into business flow and business rules). This allows business rules to evolve/be

specified independent of the (reduced) BPEL descriptions. This vision fits well

with the ideas in this study and can be exploited for further concretisation or

implementation of this approach. Other approaches that are close to those in this

work include [QDS04, ZLB04].

Another innovative proposal is the one forwarded by S. Dustdar et al. in

[RND06]. In this work, business rules are considered and externally exposed as

Web Services described using extensions to reactive RuleML [Rul05], instead of

the passive and static WSDL. In this sense, rules can be discovered and composed

like any services while being (internally) processed using logic-based engines

such as Prolog or Jess. The rules thus are considered as independent agreements to

be invoked over the Web as services. The approach is automated with a

supporting tool called ViDRE [RND06]. Nonetheless, the approach does not

tackle the conceptualisation level nor does it cope with the dynamic composition

of the (WS) rules to specific business process activities.

2.4. Architecture techniques and coordination

Software architecture is a high-level software design dealing with the structure

and organisation of large software systems [MPX04]. It describes the components

of the system and how those components interact at a high level [BHHOO]. After

identifying system components, each component is assigned responsibilities that

client components interact with through “contracted” interfaces. The interactions

between components are called connectors. Component interconnections define

control mechanisms and support all interactions between various components

needed to accomplish system behaviour. The configuration of components and

connectors offers a structural and a behavioural view of the system [SNOO].

The software architecture discipline aims to reduce complexity through

abstraction and separation of concerns [SG96]. A good decomposition of a

complex system satisfies the theory of loose coupling between reasonably

independent components that can be undertaken separately. In software

engineering, the concept of software architecture is getting more attention, with

research work concentrating on architectural styles, better known as patterns,
architecture description languages, and formal methods, among others.

To represent software designs at the architecture level, architecture description

languages (ADLs) were developed by either academic or industrial groups. There

are six types of ADL element forms that are a sufficient vocabulary to express any

software architecture [SG96]. They are listed as components, connectors, ports,

roles, representation, and binding. Service-oriented architecture (SOA) is being

promoted in the industry as the next evolutionary step in software architecture to

help organisations meet their complex challenges [CHT03]. SOA existed before

Web services with respect to supporting the software system.

Web services can be used to implement a service-oriented architecture
[ACK+04, WCL+05]. However, Web services do not necessarily translate to

SOA, and not all SOA is based on Web services. The relationship between the

two technology directions is important and they are mutually influential: Web

services momentum will bring SOA to mainstream users, and the best-practice

architecture of SOA will help make Web services initiatives successful [GR05].

The ability to access share services efficiently is a critical step toward the full

deployment of the new on-line economic, political, and social era. Adopting SOA

requires the development of techniques (such as services description, discovery,

querying, composition, monitoring, security, and privacy) to address various

challenging issues [TAA+01].

The advantages of SOA as part of an enterprise can be summarised as follows

[Dou03]:

1. Permits the IT group to be more responsive to the organisation needs.
Implementing a system solution based upon service orientation helps

organisations plan ahead for change rather than respond reactively.

2. The ability to use more packaged software helped reduce the

development and maintenance costs. SOA leverages existing IT

investments so that the overall organisational goals are met and

reduces the cost to manage and maintain them.

3. The adoption of Web services as an integration technique helped to

minimise the costs of integration systems. The service orientation

approach enables stakeholders to create dynamic collaborative

applications that meet the organisational goals.
4. The possibility for smaller organisations to share in Electronic Data

Interchange (EDI) independent of communication and software

technologies.

2.4.1. Coordination
Software architecture modelling techniques have been proposed to support

interaction-centric approaches that promote interconnections to architectural

connectors by separating the code that, in traditional approaches, is included in the

components for handling the way they interact with the rest of the system.

The architectural approach forwarded in [AF01] uses and extends software

architecture techniques in what has become known as the three Cs approach

(Computation, Coordination, and Configuration). These layers can be describe as

follows: semantic primitives that address the "business architecture," i.e. the

means that need to be provided for modelling business entities (Computation); the

business rules that specify how the entities can interact (Coordination); and the

business contexts through which specific rules can be superposed, at run-time, to

specific entities (Configuration). The CCC can be classified as a coordination-

based approach [GC92] that gains essential ideas from software architecture in

order to separate (externalise) interactions from computations, and

superimposition known from parallel program design [Kat93] to support

compositional evolution.
Semantic modelling primitives have been put forward in [AF02, AFG+02] that

rely on architectural connectors to separate the coordination of interactions

between business entities from computations that entities perform to ensure

required services. More precisely, so-called coordination laws and contracts

externalise as first-class entities any intra- or cross-organisational interactions

between business components. This clean separation permits changes to business

rules to be performed at the level that is required without affecting other aspects.

The way coordination aspects can be captured as architectural connectors has

been reported in several publications, for example [AFG+02, AFOla,

Fia02,AF01b, GKW+02,AF02]. From a conceptual modelling point of view, they

are captured in semantic primitives called Coordination Laws. Coordination laws

comprise the connector concept while coordination interfaces depict the roles of

connector types that must be instantiated with components when a law is to be

triggered on them [AG97].
The coordination rules of a law, as shown in Figure 2-3, identify under when a

trigger (such as an event published by one of the partners); under do, they specify

the reaction that is executed if the trigger is accepted. The reaction consists of a

set of operations that are executed atomically as a transaction. The operations

either are local to the law or made available by the partners.

Coordination laws can be instantiated by binding the coordination interfaces to

concrete run-time components. The instantiation creates a connector - co

ordination contract - in die architectural sense that executes the coordination rules

of the law by invoking the services of the components.

Coordination Contract

Coordination rule
when <trigger>
with <condition>
do { synch, set}

Component

Figure 2-3. The CCC layers

2.5. Chapter Summary

In this chapter we presented a background to the Web service area and how the

principles of software engineering can assist Web service engineers to build Web

service applications that promote correctness, knowledge-intensivity, and

adaptability. The survey of existing presentations of business rules and their

application benefits in Web Services shows the need for more explorations,

particularly at the conceptual side.

Finally, we gave an introduction to software architectural modeling techniques

with a focus on coordination techniques, since they will play an important role in

the approach we will develop over the next chapters.

In Chapter 3, we describe existing solutions to handle management issues in

Web Services.

CHAPTER THREE

CHAPTER THREE...
Chapter 3 29

Management in Web Services—State-of- art and Classification..................... 29
3.1. Service Level Agreements and Management concepts......................... 30

3.1.1. Different categories of SLAs..34
3.1.2. Service Level Management ...34

3.2. Quality Criteria in SLA: Studies and Classification............................. 36
3.2.1 Qualities criteria related to IT-SLAs...36
3.2.2 Qualities criteria related to die execution of Web-Services............ 38

3.3. State of the art on SLAs for Web-Service...39
3.3.1 Web Service Level Agreement (WSLA)...39
3.3.2 The Web Service Offering Language (WSOL) 41
3.3.3 Service Level Agreement language SLAng.....................................43
3.3.4 RBSLA: Focused Overview with Illustration.................................. 43
3.3.5 A UDDI extension (UX).. 45
3.3.6. UDDIe..46

3.4. Business SLAs for management in service-driven applications............ 47
Chapter Summary 48

Chapter 3

Management in Web Services—State-of- art and
Classification

As we have suggested in the introduction, this thesis aims at leveraging the

handling of management (as well as functionality) concerns in service-driven

applications towards early business-conceptual-levels, in such a manner that

adaptability and separation of concerns are supported.

Unfortunately, due to the scarcity of research explorations at these early and

essential service requirement levels, in this chapter we report on existing

approaches handling quality-of-service, with respect to Web-Services
deployment, mainly geared by Service-Level-Agreements (SLA) description. This

chapter thus explores in-depth the intensive state-of-the-art literature research on

Web technology-centric quality-of-service.

With respect to the targeted objectives of this thesis, among the envisioned

benefits we aim to achieve by undertaking this extensive exploration, we should

emphasize at least the following:

• We wanted at first to be close to the topic of quality-of-service in Web-

Services, in as much of an exhaustive manner as possible. Indeed, most of

the exposed approaches are dispatched in different publications and thus to

the best of our knowledge, there are no exhaustive surveys on QoS in

Web-Services. Furthermore, we claim that without understanding what is

“going on” at the deployment-level, one can never appreciate the added-

value when tackling management concerns at the business and conceptual

levels.

• Although we were convinced of the benefits of leveraging management
concerns at the domain and conceptual levels, at the beginning we were

puzzled at the core thesis’s research question on how to achieve such

leveraging. Towards that core question, we have first concentrated on

how QoS are tackled at the deployment-level, while keeping in mind how

to benefit from this low-level work and how to abstract it as much as

possible.

• As mentioned in the introduction, this thesis aims also at exploring any

smooth translation of any proposed conceptualization for management

concerns towards Web-Service technology. In other words, by surveying

existing proposals for QoS in Web-Services, our objectives further include

the quest for the existinjg proposal to experience such envisioned

translation.

• As will be detailed in Chapter Five, we have opted for the RBSLA

language [Pas07] as a suitable implementation target for the presented
conceptual model of this thesis. That is to say, without this focused survey

on proposals for QoS in Web-Services, at least we could never be able to

address such translation that is for sure not the only possible one
The remaining sections of this chapter are organised as follows. In the next

section, we present a general overview of service-level agreements in Web

Services, their underlying principles, and management. In the second section, we

classify and enumerate different criteria being (partially) adopted to define and

manage qualities in Web Services. In the third section, we go through different

existing proposals for handling qualities in Web Services. We close this chapter

by emphasising the role of business-level qualities, that is, qualities related to the

business requirements that thus are independent of any specific Web Services

standards, languages, or deployment techniques. Unfortunately these kinds of

qualities have been disadvantaged if not neglected, and this thesis aims at

contributing to fill this serious gap

3.1. Service Level Agreements and Management concepts

First, it is worth mentioning that SLA has been introduced as concept to cope with

qualities in information systems. Indeed, with the development of client / server

enterprise information systems, organisation stakeholders have found themselves

increasingly dependent on these automated systems. At the same time, because of
the dependence of business on the external environment, the users wanted certain

guarantees on the quality of offered functionalities, which later included non

functional qualities such as availability, reliability, and response time. As these

expectations grew in complexity and scope, an explicit agreement on such

qualities was necessary: this is the so-called Service-Level Agreement or SLA for

short.

According to Judith Myerson, SLA is defined as “... a formal contract

between a service provider and a client guaranteeing quantifiable performance at

defined levels” [JM02]. Thus, failing to meet agreed SLAs standards possibly will

have serious financial impact on a provider. SLAs between a service provider and

its customers will guarantee customers that they can get the service they sought

and will force the service provider to deliver its service promises. Therefore,

service providers need to have a deep understanding of what they promise to

deliver and what they actually are capable of delivering. In a highly competitive

business environment, SLAs offer a way to differentiate among similar service

providers [LVA02]. SLAs thus are capital while handling qualities in Web

Services [CSD+03, ZBN+04].
A more detailed definition of SLA was provided by Li-jie Jin et al. [LVA02] in

terms of different characteristics that have to be covered by any two parties.

Besides the involved parties and their roles (e.g., customer, provider), these SLA

characteristics include:

• Purpose - describes the reasons behind the creation of the SLA.

• Validity period - defines the period of time that the SLA will cover.

This is delimited by start time and end time of the term.

• Scope - defines the services covered in the agreement.

• Restrictions - defines the necessary steps to be taken in order for the

requested service levels to be provided.

• Service-level objectives - the levels of service that both the users

and the service providers agree on, and usually include a set of

service level indicators, like availability, performance, and
reliability. Each aspect of the service level, such as availability, will
have a target level to achieve.

• Penalties - spells out what happens in case the service provider
under-performs and is unable to meet the objectives in the SLA. If

the agreement is with an external service provider, the option of

terminating the contract in event of unacceptable service levels

should be built in.

• Optional services - provides for any services that normally are not

required by the user, but might be required as an exception.

• Exclusions - specifies what is not covered in the SLA.

• Administration - describes the processes created in the SLA to meet

and measure its objectives and defines organisational responsibility

for overseeing each of those processes.

“SLA providers need thus to design their SLAs only after understanding their

capabilities. On the other hand, if there is too much leeway in the specification of

SLAs, a Web Service may not be able to fully capitalise on its capabilities. Thus,

it is important to design SLAs that are able to balance between risk and benefit of

all parties. This balance should be based on a good understanding of the impact of

various service levels on business processes in both the service provider and the

customer” [LVA02].

Since there is no fully agreed-on final definition for SLA, we continue to

comment on most significant forwarded definitions. In this respect, Sun

Microsystems Inc. [Wus02] defines the Service Level Agreement (SLA) as a type

of contract that sets the expectations between the consumer and service provider.

Another definition that seems more flexible is provided by Pratt [Pra03]; it defines

a service level agreement “as a statement of various service level options from

which one will be selected by the customer or client specifying timing, frequency,

cost, etc., to match the business need.”

An SLA defines therefore the relationship between the two parties, and can be

considered as the cornerstone of how the service provider sets and maintains

commitments to the service consumer. The purpose of the SLA is to make clear

the provider’s promises and how these promises will be delivered. It is also

intended that it sets out who measures the delivery, in what way and what should

happen if there is a shortfall in the provision.

In graphical terms, we can regards an SLA as a contract relating different

service partners (e.g., customer, provider, third party). Figure 3-1 below illustrates

this concept of Service Level Agreements as a contract.

SLA
(Contract)

- Primary
parties

- Supporting
parties

- Service

ProviderCustomer

Figure 3 -1. SLA as a contract between customer and provider

In order for the SLA to be complete, there must be a description of the agreed

service to be provided to the customer along with a breakdown of the agreed

planned workload for the forthcoming period and any information concerning its

uptake (e.g., in relation to the spread of work or seasonal variation; quality to

which the service is provided, including monitoring and audit arrangements).

Other standards or agreed protocols for use of the service, such as the availability

being on condition of consultant’s signature or second referral also are standard

inclusions. Furthermore, a rundown of the costs of the service provides a

comparative index of resource utilisation [DFG98].

The concept of SLA has been used in many areas of Web Services including:

e-commerce, offline businesses, computer services, construction management

[Hil93], library services [Ash94], and health or hospital services [TGR+04]. To

conclude this introduction to SLA, we emphasise again that QoS in Web Services

is driven by two demands: (1) Clients that seek a good service performance, e.g.,

low waiting time, high reliability, and availability to successfully use services

whenever the need arises [TGR+04]; and (2) providers that seek to stay

competitive by proposing the best qualities to attract such clients and customers.

3.1.1. Different categories of SLAs
In the literature, we can distinguish at least three (complementary) classes of IT-

SLAs [Pio02]. These are performance, reactive, and proactive SLAs. In the

following, we summarise their main characteristics.

Performance Service Level Agreements are those that address continuing

services. These SLAs set the quality of these services based on objective

measurement and a baseline of values that establish acceptable service levels. One

issue that must be dealt with in any performance SLA is control. Typical

Performance Service Level Agreements for Web services contain uptime and
performance of services, connectivity, and satisfied delivery. Performance SLAs

and metrics help define and measure the performance of Web Service systems to
ensure they meet performance requirements.

Reactive Service level agreements are based on the provider’s reaction to

proceedings, and the main measurement is time. Typical reactive SLAs for Web

services address response time, resolution of failures recoveries, and response to

security threats. The fundamental issue for all reactive SLAs is the categorisation
of events, and which provider is accountable for the resolution of problems.

Events can be categorised according to priority and severity. Severity is a

possession of the problem, while priority is a possession of the solution. The event

severity also can be categorised into critical (performance unacceptable or service

not available), urgent (service is working normally but a redundant component or

supporting feature has failed), and routine (service is available and performance

sufficient but there could be other problems).

Proactive SLAs describe services that are intended to prevent problems before

they occur. Typical Proactive SLAs for Web services include constant system

monitoring, backup audits, installation of patches and upgrades, DNS changes,
performance analysis, and tuning and capacity analysis and planning.

3.1.2. Service Level Management
Simply defined, Service Level Management is the process of managing
(composed) services so that they can fulfill SLA requirements. Resources that

should be managed include personnel, infrastructure, applications, and budget

[Git03]. In order to be able to cope with the ever-increasing technological and

infrastructural advances in service-oriented computing, as well as very demanding

customers, service-level management has evolved from a limited to a broad

service portfolio.
A more motivated SLM definition is given in [MS04], where the authors

stated: “The web has become a major vehicle for transforming business processes,

but ineffective management of web-based services can result in high costs and

user dissatisfaction. Service Level Management is therefore a competitive weapon

in the web marketplace, providing the tools needed to improve performance and

reliability of Web Services while simultaneously controlling costs.”. Indeed,

today’s services are becoming sophisticated, and a successful process of SLM

should pull different information from multiple resources and services, including

inventory, fault management, performance management, and customer care, such

are the diverse activities required of it [W301, Kar04].

The International Engineering Consortium [IEC04] defines SLM in direct

relationship with SLA. It is regarded as the set of people and systems that allow

the organisation to ensure that SLAs are being met and that the necessary

resources are being provided efficiently. That is, SLAs represent the main

ingredients for SLM, in addition to the human and environmental factors.

According to Microsoft, “Service Level Management aims to align and

manage IT services through a process of definition, agreement, operation

measurement, and review. The scope of Service Level Management includes

defining the IT services for the organisation and establishing service level
agreements for them. Fulfilling SLAs is assured by using underpinning contracts

(UCs) and operating level agreements (OLAs) for internal or external delivery of

the services. Introducing Service Level Management into a business will not give

an immediate improvement in the levels of service delivered. It is a long-term

commitment. Initially, the service is likely to change very little; but over time, it

will improve as targets are met and then exceeded” [YTS+08].

However, this tight SLA-SLM relationship so far has not been explored

sufficiently. In fact, whereas the process of IT-SLA is defined better through

models and frameworks, there still is a lack of well-established approaches
regarding its management. Basically, it also can be said that the failure to provide

SLA can be traced to poor SLM.

3.2. Quality Criteria in SLA: Studies and Classification

After presenting the essentials about SLA and SLM concepts, we judged it

important to go into more detail about different quality criteria when defining

SLA. In this manner, when we address existing approaches to SLA in Web

Services, we can have clear ideas which criteria are (not) supported by which

approach. Moreover, the detailed description of such existing criteria for qualities

in Web Services will support our investigation of more abstract business-level

criteria, the main focus of this thesis.

Indeed, after intensive exploration of the state of the art on Web Services and

their qualities, we came to the conclusion that there exist two main categories of

approaches in handling management in service-oriented computing: IT SLAs, and

business SLAs. Business SLAs deal with business management at a high

application level, and they aim to cope with the description of service-oriented

management at the business level. In contrast, IT SLAs deal only with system-

related qualities of services. Because business SLAs practically still are absent in
existing approaches, this section will focus on the criteria for defining IT SLAs.

First, we distinguish two main categories of IT-SLA criteria: (1) Those defined as

the qualities of services to be presented in a given SLA; and (2) those inherent to a

particular execution of given Web Services as a business process.

3.2.1 Qualities criteria related to IT-SLAs
The qualities criteria we could recognise from different service level agreements,

approaches, and related literature on Web Services could be summarised in the
following:

Availability: This defines whether the Web service is present or

ready for immediate use. It is represented by a probability value that

reflects the probability of the service being available at a particular

point of time. For instance, a service could be unavailable due to a

failure on its provider system [MN02].

Accessibility: The quality aspect of a service that represents the

degree to which it is capable of responding to a service request.

There could be situations when a Web service is available but not

accessible. Accessibility is related strongly with system scalability.

For example, a system is said to be scalable if it is capable of
providing access to large number of users [MN02].

Accuracy: This defines the error rate produced by the service

[Ran03].

Payment Rate: Rate at which the service/transactions are charged

[SDM02].

Throughput: This metric represents the actual number of user

requests that are handled by the system [Ran03]. The response time

of a Web service is related to its throughput.

Integrity: Integrity is the quality aspect associated with how the

Web service maintains the correctness of the interaction in respect

to the source [MN02].

Response Time: This is the most important QoS metric from a

user’s perspective. Response time measures the time interval

between sending a request to execute a service and the time that the

response has been received by the user [SDM02].

Latency: The time taken between the services request arriving, and

the request being serviced. The throughput of a system is also

related to its latency [Ran03].

Performance: This measure the quality aspect associated with a

Web service. It is measured in terms of throughput, latency, and
possibly other metrics like accuracy. Higher throughput and lower

latency values represent good performance of a Web service

[MN02].

• Reliability: This also measures the quality aspect of a Web service,

and represents the degree of being capable of maintaining the

service and service quality. The number of failures represents a

measure of reliability of a Web service. Reliability is defined as the

probability that a request is responded to correctly within the

maximum expected time frame [MN02].

• Regulatory compliance: A measure of conformance with some

pre-defined (and agreed on) rules, law, standards, or established

SLA [MN02, Ran03].

• Security: Security is the quality aspect of the Web service of

providing confidentiality and non-repudiation by authenticating the

parties involved, encrypting messages, and providing access control
[MN02].

3.2.2 Qualities criteria related to the execution of Web-Services
Another classification of SLAs can be based on the properties of the condition

that is assessed over process execution data to find whether the SLA has been

violated. Particularly, SLAs can be classified according to the nature of the SLAs

section as follows [CCD+03]:

• Duration: This defines the time interval between two steps of the

process workflow. It may impose constraints on the process

execution such that the time between the “receive order” and then

subsequent “confirm shipment” does not exceed a certain threshold.

Human interaction can be a determining factor for the length of a
distributed business-to-business transaction. In some cases, the

workflow might have to wait for human input, i.e., approval by the

administrator. This might take far less than a minute or extend to

several days, depending on the speed of the user. The long duration

could lead to undesirable extensive locking of resources.

• Data: This clause is related to a condition on the service

composition variables. These variables are used to store

intermediate values that relate to the state or history of the process.

For example, it may necessitate that the minimum order quantity is

more than N items. The number of items is assumed to be able to be

determined from service composition variables.

• Path; This SLA clause defines the execution path of a specific

process. For instance, some SLA may impose decoupling of the

shipment path in die flow corresponding to arranging delivery for

premium customers different from that for standard customers.

• Count; The clause defines the frequency of activating a specific

resource. For example, an SLA can be related to a condition stating

that an order should be confirmed two times before shipment. From

an implementation perspective, this corresponds to stating that the

step confirm should be executed at least twice.

• Resource; This clause is related to a condition requiring that a

given step of the flow is to be executed by a resource with specific

properties. For example, an SLA could require that strategy team
members first review projects submitted by certain employees.

3.3. State of the art on SLAs for Web-Service

For the handling of IT-SLAs, we also have distinguished two main categories: (1)

Approaches putting forward new infrastructure for specifying QoS issues

associated with Web Services; and (2) approaches extending existing standards
such as UDDI to cope with qualities through brokers. WSLA, WSOL, and SLAng

are of the first type; UX and UDDIe belong to the second.

3.3.1 Web Service Level Agreement (WSLA)
A WSLA document defines assertions of a service provider to perform a service

according to agreed guarantees for IT-level and business process-level service

parameters, such as response time and throughput. It further specifies the

measures to be taken in case of deviation and failure to meet the asserted service

guarantees, for example, a notification of the service customer. The assertions of

the service provider are based on a detailed definition of the service parameters,

including how basic metrics are to be measured in systems and how they are

aggregated into composite metrics. In addition, a WSLA expresses which party

monitors the service, third parties that contribute to the measurement of metrics,

supervision of guarantees, or even the management of deviations of service

guarantees. Interactions among the parties supervising the WSLA also are defined

[Lud02]. The WSLA language is based on XML; it is defined as an XML schema.
WSLA can be used both by service provider and service customer to configure

their respective systems to provide and supervise their service. This configuration
step includes the creation and parameterisation of relevant services implementing

the system, as well as the WSLA for supervising such services. Parts of the

WSLA (or derived information) could be passed on to third parties that support

the WSLA's supervision. After the configuration step, the WSLA can be enacted

by supervising services.

An important aspect of WSLA is its capability to deal with specifics of

particular domains and technologies. The language is extensible to include

specific types of operation descriptions, measurement directive types for specific

systems, special functions to compose aggregate metrics, and predicates to

evaluate specific metrics. The extension mechanism makes use of the ability to

create derived types using XML schema. By design, the core of the WSLA

language is very compact. To be of immediate use, the WSLA language

encompasses a set of standard extensions to define complete agreements that
relate to Web Services and includes guarantees for response time, throughput and

other common metrics.

Web Service Level Agreement:
• Parties

- signatory partes
- supporting parties

• Service description
- covered service (WSDL)
- monitored SLA parameters
- functions

• Obligations
- Validity Period
- SLOs
- action guarantees

Figure 3-2 . Web Service Level Agreement Entities [TGR+04].

As shown in Figure 3-2, a WSLA description is given as an XML schema, and

is divided into three main sections [Lud02]:

• Parties section: A signatory and supporting part, on which all

signing party sponsors and supporting ones should appear.

• Service description: It contains all information on the service’s

characteristics and the parameters to be observed. Resource Metrics

are derived directly from the managed resources and are to be

specified in the Measurement Directive part. In the SLA Parameters

part, the retrieved metrics are related to a specific customer who

supplies the value and to whom it will be reported.

• Obligations section: It describes guarantees and constraints

imposed on the SLA parameters in the form of SLOs (offers), i.e.,

high/low watermarks for associated SLA parameters that are

promised to be met for a certain period of time. In the case of SLA

violations, appropriate compensating activities are defined in Action

Guarantees.

3.3.2 The Web Service Offering Language (WSOL)
WSOL allows the formal and unambiguous specification of prices, monetary

penalties, management responsibilities, and third parties, especially accounting

parties. The main targets of the WSOL project are creation of service offerings,

definition of QoS constraints, management statements, reusability, and a

mechanism called service offering dynamic relationship (SODR) that allows for a

switching between services [TPP+03].

WSOL Service Offering:
• important/ include of external specification
• subscription
• price
• penalty
• management responsibility
• constrains

• domain (service-/port-/operation-name)
• condition (as Boolean expression)
• metrics (defined in external ontology)
• rules for metrics aggregation
• management entity for measurement

• statement
• domain (service-/port-/operation-name)
• <any definition>

• constraint group/ instantiated CGT
• <any item listed above>

Figure 3-3: WSOL Service Specification [TPP+03].

WSOL has a very low overhead as it defines classes of service instead of

individually managed SLAs. Another important benefit of WSOL is that it

supports the reusability of specifications, through the concept of constraint groups

and constraint group templates. Constraint groups and constraint group templates

include formerly defined elements and the import of elements defined in other

WSOL files. Classes of service are a mechanism for the description and

differentiation of a Web Service and QoS associated with that Web Service. A

service offering also can be seen as a contract or SLA, and consists of several self

explained components as listed in Figure 3-3 [TPP+03].

3.3.3 Service Level Agreement language SLAng
SLAng’s main aims are support for interorganisational service provisioning,

including storage, network, middleware, and applications, as well as the

specification of non-functional parameters at service level in order to enable QoS

description and negotiation [LSE03].

Appl.

ws ws

LJ

Figure 3-4: Service Provision model [LSE03].

Figure 3-4 reflects the service provisioning model of SLAng [LSE03]. "The

three-tier architecture consists of the application tier, the middle tier, and

underlying resources. Applications of the first tier consume the underlying

components or Web Services abstracted by the middle tier. The containers located
in the middle tier support QoS negotiation, establishment, and monitoring, while

the components abstract the resources in the underlying resource tier. The network

and storage facilities are grouped to the underlying resources " [TGR+04].

Nevertheless, SLAng allows only for static SLAs, in the sense that it does not
support dynamic lookup of new services and update of non-functional service

properties at runtime.

3.3.4 RBSLA: Focused Overview with Illustration
Although it is not specifically aimed to address qualities in Web-Services, the

Rule-based Service Level Agreement (RBSLA) project1 [Pas07] is general and

1 h ttp ://ib is.in .tum .de/projects/rbsla/

http://ibis.in.tum.de/projects/rbsla/

open enough to be easily adopted by Web technology as we will demonstrate in

chapter five. RBSLA is particularly devoted to the development of adequate

knowledge representation concepts for the formalization and serialization of

Service Level Agreements and IT service policies. It develops a rule-based
Knowledge Representation (KR) framework [PDK05,Pas07] to describe contracts

in a formal way, execute them in standard generic rule engines such as Prova2,
and manage and interchange them in an XML-based mark-up language, the

RBSLA language [Pas07,Pas05,PKB07].

The RBSLA language is implemented as an extension to RuleML [Rul06] (see

also our overview in chapter five) in order to address interoperability with other

rule languages and tool support. It adds additional modelling power and

expressiveness to RuleML to implement higher-level policies and SLAs

declaratively (in contrast to the above SLA proposals). Among others, RBSLA

main features and characteristics include the followings [Pas07]:

• Global ECA-style reaction rules and event messaging reaction rules for

active monitoring and complex event processing, and workflow-like

communication patterns.

• A Web-based module concept, which allows bundling rule sets to modules

with a unique module id, meta data labels (e.g., authoring information) and

qualifications (e.g. priorities between modules), dynamic imports of

modules from Web URIs, and scopes (constructive views over selected parts

of the knowledge base).

• Test-driven extensions for verification, validation, and integrity testing

leading to self-validating rule bases.

• Order-sorted polymorphic type systems compatible with XML-based

(XSD), relational (SQL data types), Semantic Web ontology languages

RJDF/RDFS and OWL, and object-oriented class hierarchies (e.g. Java).

• Seamless integration of dynamic object-oriented API invocations via

expressive procedural attachments (e.g. Java method invocations or Web
service calls).

2 h ttp ://w w w .prova.w s/

http://www.prova.ws/

• External data access by, e.g. SQL, XQuery, OWL2Prova RDF triple queries,

SPARQL.

• Deontic norms for normative reasoning.

• Defeasible rules and rule priorities between rules and modules (rule sets).

• Rich libraries and built-ins for, e.g. math, date, time, string, interval, list

3.3.5 A UDDI extension (UX)
UX is an architecture providing QoS-aware and cross-organisational support for

UDDI. The first objective of UX is to rate services by reputation in order to

permit service requestors to discover services with high-quality. The second

objective is to share the ratings among UX servers - the proposed extension of

UDDI - in different domains [CLS+03].

Reputation is measured through QoS feedback made by service customers.

The proposed UX server uses the clients’ reports containing response time,

terminating state, and cost to generate summaries in order to predict the services’

future performance. A lookup interface in UX allows the discovery and

distribution of the QoS summaries among different UX servers [TGR+04]. UX

applies a protocol called Cooperating Server Graph (CSG) [BPT98] that

dynamically updates the links between cooperating servers over a WAN

according to different events happening, either to some servers, or to the

underlying WAN. Figure 3-5 depicts the basic architecture of UX.

functions.

Service Requester
— ►

UX server

-*>

■*> Query procedure

► QoS reports

Other
domain

Database

Local UDDI Registry

Figure 3-5 . UX architecture [CLS+03].

- 4 5 -

UX extends UDDI with the ability to predict services’ future performance

based on reputation, which is measured through QoS feedback made by service

customers. The users’ experience is shared in a local and inter-domain way. Since

reputation is influenced mainly by user perception and, furthermore, can be

manipulated easily, a research group from Monash University, Australia, extended

the approach to reputation with a QoS attribute termed “verity.” Verity is used as

an indicator of trustworthiness for the quality driven selection and composition of

services [KKJL03].

3.3.6. UDDIe
It extends UDDI’s functionalities within UDDI. Service providers can associate
their services with QoS properties such as bandwidth, and memory requirements,

which are encoded in the service interface. They can make their services available

by means of leasing. UDDIe presented a concept allowing the definition of three
leasing types: finite, infinite, and future lease. Moreover, UDDIe supports

qualifier-based search by introducing qualifiers such as EQUAL-to, LESS-than,

and GREATER-than [TGR+04].

UDDIe is implemented in the context of the G-QoSM framework for grid

service discovery. The client applications send their requests to the QoS broker of

the G-QoSM system. The broker is not part of UDDIe. It processes the requests

and forwards them to the UDDIe registry. After receiving a list of services that

implement the particular service type, the broker does the final selection of the
most appropriate service for the client by applying a weighted average concept.

Figure 3-6 shows a code fragment of a client request with QoS requirements

[ARW+03].

<?xml version-” 1.0” encoding=”UTF-8’7>
<wsdl definitions
xmlns :wsdl-http://schemas.xmlsoap.org/wsdl/”>

<targetNamespace“”http:// MyService-Interface">
<wsdl :messagename“”printNameResponse”>
<wsdl :message>

<QoS>
<service_cost> 5 </service_cost>
<network_bandwidth> 256K </network_bandwidth>
<memory> 48MB <memory>

<QoS>
<wsdl :definitions>

Figure 3-6. Oient request with QoS requirements [SRA+03].

3.4. Business SLAs for management in service-driven applications

In contrast to IT-SLAs, business SLAs refer to agreements on how a specific

service is delivered, and to the semantics of the service rather than to system or

application level metrics [CCD+03]. For example, a business SLA could state that

orders of 200 PCs should be received within 45 days of the order, or within 20

days from the payment. This clearly has nothing to do with machine-dependent

qualities. Business SLAs and IT SLAs are linked to each other. For instance, a

malfunctioning of the system or part of the system will result in performance

bottlenecks in terms of response time in addition to the total service delivery time,

thus business SLAs.

In comparison to ordinary business SLAs (as in information systems), Web

service business SLAs are more complex and have specific characteristics that

must be conceptualised precisely. These characteristics include:

• the role of customers as decisive partners;

• the involvement, in most cases, of more than one service, as Web

services are composition-driven applications;

• the possibility of (dynamically) including new services or removing

participating services from a given agreement, because Web

services are loosely coupled inter-enterprise applications.

As we presented before, most existing approaches to qualities are restricted to

the handling of SLAs at the infrastructural level provided by chosen IT platforms.

http://schemas.xmlsoap.org/wsdl/%e2%80%9d

The conceptualisation of SLAs at the business level has received little attention

beyond the use of notations, such as the Unified Modeling Language (UML),

through activity diagrams [SLEQ4]. Yet, addressing SLAs at the business domain

level in addition to the IT level can provide significant benefits, such as:

• formulation of quality at the business domain level, independent of

the choice of IT platform;

• participation of a wider community of partners in the organisation,

or across different organisations, concerned with quality (e.g., users,

managers, designers, marketers), and not just service designers and

programmers; and

• The ability to change or enhance management rules without

interfering with the IT level, and vice versa.

In the next chapter, we present how to cope with business SLAs at the

conceptual level while keeping and enhancing all these properties. The mutual

complementarity with IT-SLAs will be tackled in the fifth chapter.

Chapter Summary

A survey of existing approaches to the handling of qualities in Web-services was

the focus of this chapter. This survey allowed us to distinguish between two kinds
of management issues: IT SLAs and business SLAs. Since Business SLAs have

been scarce in literature, we restricted ourselves to the state of the art around IT-

SLAs. Before that, we presented as exhaustive as possible a set of criteria for

qualities. We also distinguished two main classes of criteria: business SLAs and

IT SLAs.

CHAPTER FOUR
CHAPTER FOUR...49
Chapter 4 51

Architectural Modelling of Management Concerns in Service-driven
Applications.. 51

4.1. Business Handling of Management: Approach Milestones and Steps ...52
4.1.1. A Stepwise Approach for Conceptualizing Management Concems55

4.2. Phase-ACT: Illustration with a PC Selling Case study..........................59
4.2.1. PC Selling Case Study: General Description..................................60
4.2.2. PC Selling Case Study: Different Business Activities....................61

4.3. Phase-BRs4ACT: The Request Activity as an Example.......................62
4.4. Phase-BRsCoordLaws—Modelling Coordination Concerns................ 63

4.4.1. Functionality-focused ECA Business Rules: Description and
illustration..64

4.4.1.1. Application to the request activity...65
4.4.2. From Functionality ECA Business Rules to Coordination Laws66

4.4.2.1. From the Request Rule to the Corresponding Coordination Law
... 67

4.5. Management concerns: From Rules to Management laws.................... 69
4.5.1. Management-focused Business Rules: Characteristics and Pattern 70

4.5.1.1. The ECA clauses for management concerns...........................75
4.5.1.2. The request activity as illustration for the management ECAs 76
4.5.2.1. Derivation of the management law interfaces from the partner

names..78
4.5.2.2. Derivation of the management law glue from the management

rule..78
4.5.2.3. Management law: Illustration using the request activity......... 79

4.6. Integration of Concerns: Interactions Meet Management..................... 82
4.6.1. Integration of Concerns at the Request Activity.............................83

4.7. Activity-centric Flexible Business Processes — PC Selling
Illustration...84

4.8. The Approach-at-Work—Application to All PC Selling Activities...... 86
4.8.1. Offer Activity: Business Rules, Coordination, and Management

Laws... 87
4.8.1.1. The coordination concerns in the offer activity....................... 87
4.8.1.2. The management concerns in the offer activity.......................88

4.8.2. Delivery Activity: Business Rules, Coordination and Management
Laws... 90

4.8.2.1. The interaction concerns in the delivery activity.....................90
4.8.2.2. The management concerns in the delivery activity................. 92

4.8.3. The Cancellation Activity: Rules, Coordination and Management
Laws... 94

4.8.3.1. The Interaction concerns in the Cancellation activity............. 94
4.8.3.2. The management concerns in the Cancellation activity.......... 96

4.8.4. Shipment Activity: Rules, Coordination and Management Laws ...98
4.8.4.1. The interaction concerns in the Shipment activity...................98
4.8.4.2. The management concerns in the shipment activity.............. 100

4.8.5. Payment Activity: Rules, Coordination and Management Laws... 102
4.8.5.1. The coordination concerns in the payment activity............... 102
4.8.5.2. The management concerns in the payment activity............... 103

4.9. Chapter Summary...105

Chapter 4

Architectural Modelling of Management Concerns in
Service-driven Applications

To be effective and meet organisational goals, service-driven applications require
clear specification of the management concerns that establish business level

agreements among the parties involved in given business processes. In this
chapter, we show how such concerns can be modelled explicitly and separately

from other concerns through a set of new semantic primitives that we call

management laws. These primitives support a methodological approach that

consists of extracting management concerns from business rules and representing

them explicitly as connectors in the conceptual architecture of the application.

Service-driven business processes are among the topical innovations through

which organisations hope to cope with ever-changing business requirements. This

new trend represents how typical product-oriented business models are

characterised, among other things, by much more flexible, loosely-coupled

interactions that sustain high levels of agility and adaptability to change. From a

technological point of view, the response to the challenges raised by such models

relies on the pervasiveness of Internet technologies, namely on Web services.

These are platform-independent components with explicit interfaces tailored to

the Web that can be used in combination with others to form large-scale,

evolvable business applications. Because the ultimate objective of the service-

driven economy is to match customer requests with optimal services, either

elementary or composed from simpler ones, it becomes clear why the notion of

quality of service plays a central role in this new paradigm [ACD+04]. It is not

surprising that the notion of Service Level Agreement has been placed at the heart

of such Web technologies [CSD+03, BCT+03]. Notions of quality addressed by

these efforts include availability, accessibility, accuracy, throughput, and
reputation, among others.

The remaining sections of this chapter are organized as follows: The next

section brings more motivation and methodological support to the proposed

conceptual framework for handling management concerns in service-driven

business applications. In particular, the approach strengths are emphasized in

connection with the widely explored infrastructural service-level agreements (IT-

SLA). Moreover, the progressive methodological steps supporting the approach

are highlighted. The second section presents the case study that runs through this

thesis, which deals with a realistic variant of Online PC Selling by focusing on its

different business activities. The third section details how business rules govern

any business activity. The fourth section presents an overview of how basic
functionality/interaction concerns are conceptualized by means of interaction-

focused business rules supported by the coordination techniques that have been
explored in [Fia02, AFOlb, AF02]. In the fifth section, the main elements

underlying the new concept of business service-level agreements (BSLA) in terms

of high-level business-driven qualities first are proposed and then illustrated

through activities of the running case study. Then, the method of eliciting BSLA

as management-oriented ECA-driven business rules is presented. Finally, these

are conceptualized as transient architectural connectors; that is, management laws.

In the sixth section, it is shown how to bring together both concerns at the activity

level, using the case study. The seventh section illustrates how flexible and multi-

concern business processes can be derived from the above architectural concepts

of different activities. Finally, section eight emphasizes the scalability and

practicability of the approach, by carrying out the whole PC selling case study

using the stepwise architectural approach. This chapter concludes by outlining the
achieved work.

4.1. Business Handling of Management: Approach Milestones and
Steps

The ultimate objective of service orientation is to present the best service to its
customers and providers, because the quality of services belongs at the heart of

this paradigm. The situation is more acute when it is known that at present there

are plenty of functionality-similar Web-Services (e.g., a plethora of similar

published WSDL interfaces) over the Internet (e.g., UDDI registry); one may

think just about the numbers of airline services.
As reported in chapter two, following the dominating WS technological trend,

the handling of qualities while composing (Web) services has been focusing on

the infrastructural level. Several proposals have been coined for codifying,
enforcing, measuring, and monitoring low-level qualities such as time-response,

availability, throughput, etc. In particular, these implementation-centric qualities

have been proposed as technical agreements or contracts between service partners

in so-called IT-SLA. SLA-tailored language, which is XML-based language, also

has been proposed [LSE03, GR04, Pas07], as reported in the related work of

chapter three.

Addressing such low-level qualities and inherent SLA agreements while

composing Web services has been shown to be very important to increasing

efficiency and competitiveness while attracting technology-proficient partners

(e.g., customers, providers). Specifically, at least the following key issues may be

highlighted, which are by essence of a conceptual nature and thus could not be (by

any innovative technological means) tackled correctly at the technological level

on its own:

• High-level potential qualities and agreements: When stakeholders

(e.g., customers and providers) from different organizations decide
to establish a service-driven cross-organizational alliance, they

negotiate first on high-level business goals. These then are

expressed through conceptual primitives, criteria, and rules [KL05].

Beside basic functionality issues, the formulation of business-level

qualities and inherent agreements also must be tackled. In this

respect, alliances such as service composition are preconditioned by
the reputation, trust, and reliability of the partners (e.g.,

private/public customers and providers). How such high qualities

are to be (semi-) automated (or not at all) should not be an issue
here (e.g., a friend simply may recommend a provider, or a more

complex mining process could suggest best customers). Agreements

on how deadlines (not time-response!) should be respected while

performing a specific activity also aim at improving qualities.

Intrinsic flexibility and adaptability: Speaking directly about low-

level qualities using a particular implementation language leaves no

room to address any form of adaptability and flexibility, except

through artificial codification using complex and inflexible clues. In

contrast, when high qualities such as those emphasized earlier are

described conceptually, all the intrinsic potentials of reformulating,

composing, prioritizing, refining, adapting, and evolving them

without risk or (high) cost are kept. Also, afterward, the most

suitable operational mechanizations can be decided (e.g.,

algorithms, techniques), based on Web technology deployment

technologies.

Explicit separation of concerns: In most proposals focusing on

quality of services in WS [CD01, Hil93], basic functionalities and

other advanced ones (e.g., security, social concerns) are

disadvantaged, if not ignored. This is because separation of

concerns is a conceptual feature, and advanced technologies such as

componentization, aspect orientation, etc., would be needed to

tackle it. It will be attempted to address any concern in a clean,

separate, and intuitive manner at the business level. This thesis

achieves that aim for functionalities (i.e., interaction) and

management concerns. Business rules and transient architectural

connectors represent our business and concepts for this purpose.

Activity- versus process-based perception: Due to the fact that most

technology-based composition standards (e.g., BPEL, WSCI, and

WS-CDL) focus on the process level, they lack scalability and

flexibility [CDK+02, RD05a]. To tackle the composition

complexity and at the same time offer adaptability, the activities are
considered as candidates for describing the composition of business

processes. Besides absorbing that complexity and rigidity, by

addressing functionality and management concerns at that fine

grained activity level, the exploitation of resources (e.g., entities,

services) will be optimized further. Indeed, by focusing on

activities, respective resources are requested dynamically while

performing any specific activity (within a business process). Once

they proceed to the next activity, previous resources will be released

systematically and only the required new ones will be requested.

• Reliability and certification: Although this thesis does not

explicitly investigate the rigorous operational formalization of the

concern-based architectural concept, it is worth emphasizing that

such validation is straightforward. Indeed, different underpinnings
currently are available for architectural modelling, for example,

category theory and graph transformation-based ones

[FM97,HC07].

4.1.1. A Stepwise Approach for Conceptualizing Management
Concerns

The approach being put forward respects the required software engineering

concepts while eliciting and modelling (and validating) complex service-driven

applications. Although the main focus of this thesis is on management concerns

(as business-level service agreements), the arguments as explained at section 4.1

present how important it is to consider functionality concerns; otherwise, the

management problems will be solved but other, more severe, problems about the

basic features of the system will be created. In other words, it is argued that any

serious attempt at tackling management concerns at the business level should be

accompanied by a stepwise methodology for covering the development of flexible
and reliable multi-concern service-driven applications.

To explain and to reflect the above advanced concepts in modelling multi-

concern service-driven business applications, a stepwise methodology is
proposed, depicted graphically in Figure 4-1.

- 5 5 -

-56-

coa>
Z3
cr

CD
O
U)
~G
C
CDCO

ft w
c 5

3 g <«
CO c

.Q
OCD

C
O
'•4—>
c
<D■*—>
C

(/)
3
00
■U
CDo

(/>
if)
a> c

m
m

elicitation
PHASE.ACT

Activities
description

PHASE-Manag.BRs.Mg&Laws
Management concerns Conceptualization

Manag. BRs Manag.Laws

At-time
A t-tim e.
Who ...
Manage Interfface

-mg1 ^
Interfface

-mg ”

Activity
Conceptualization

PHASE-Func.BRs&Laws
Coordination concerns Conceptualization

Func. BRs Func.Laws

Who.
w hen ..
with ...
do .. .

3--------- ra * ni-d
Coord
lawsl

i , "

w s

nterfface
coordl

face
rdn nterfface

-coordl

xace
rdn

PHASE-lnteejConcemstfACT

rlnterfface
coo rd l

r n terfface
-co o rd l

Composition

CO
4>
<ov>4>OOi_a
co
to<uc
WD
CD
jt>
n
x
4>
Li.
U
4>
co<0
n■<n
CL
CO
COc1—
4)
oco
0
m
CO
<
1
CL

Figure 4-1 . A stepw ise B usiness-C onceptual Approach for In teraction-M anagem ent cen tred Service-driven business applications.

Phase-ACT—Activities description: At this early requirements stage,

determining service orientation (i.e., planning for a deployment using service

technology and its standards), any service-driven business application is perceived

as interconnected business entities (mostly to be regarded subsequently as (Web)

services). On the other hand, by pursuing an activity-based approach, it is

proposed further at this initial phase to build more informal descriptions of each

activity that may be a candidate for participating in any envisioned business

process. It is important to emphasize that at this stage any specific or detailed

composition of such activities into service-oriented business processes is not
considered. The following are mentioned as immediate benefits. First, optimal use

of resources is obtained; Secondly, the complexity is understood better, since
business processes are difficult to handle as whole units. Thirdly, flexibility and

evolution are promoted, since different activities’ partial orderings (as tailored

business processes) may be decided depending on the customers/providers

involved, their profiles, and their respective qualities.

Phase-BRs4ACT—Intentional Business Rules for activities: Business rules

should be formulated at this early stage to reflect in a flexible and broad manner

what is to be done and with what means (e.g., resources, services) in any activity.

These rules should be intuitive, intentional, and focused on different concerns, as

they are supposed to be elicited and described by different people and are intended

to reflect general broad business goals. Natural language thus is sufficient to

report on these generic and broad business rules with respect to the identified

activities.

Phase-Func.BRs&Laws—Activity-based functionality ECA rules and
Coordination laws: This is the main phase of the approach. Indeed, at this stage,

it is necessary to focus on functionality/interaction concerns. Nevertheless, instead

of fixing it, we propose to adapt such functionalities to the requesters and the

potentially provided services. For that purpose, a two-step process is proposed.

Firstly, the intentional general-purpose business rules will be refined by focusing

on those dealing with functionalities. This is achieved by fitting these

functionality-specific (ECA-based) business rules to the corresponding identified

activities/tasks (within the respective business processes). Secondly, these

activity- and event-driven functional specific, operational business rules are

levered to a conceptual architectural level. Since cross-organizational interactions

and cooperation are the driving forces in the service paradigm, it is proposed to

tailor ECA-driven architectural connectors for this architectural approach. More

precisely, the approach will capitalize on coordination technology and its

coordination laws (as architectural connectors), proposed and pushed forward

(theoretically and experimentally) in recent years [Fia02, AFOlb, AF02].
Phase-Manag.ECAs&Laws—Activity-based Identification of

Management-specific business rules and Conceptual management laws : In
the same spirit as proposed to capture functionality-specific (ECA-driven)

business rules at the activity level, this phase proposes to concentrate on

management-specific business rules. In contrast to the minimal functionalities

defining an activity, management concerns aim to give each activity high-level

qualities, so that discovery and composition of the involved services become more

competent and more realistic. As will be explained in detail later, at this business

level, the main characteristics are to formulate business rules and to focus on

management concerns. Firstly, it is necessary to express conceptual time-based

constraints, which are relevant and essential in any (service-level) agreement,

such as deadlines and triggering events timing (e.g., invocation/response timing).

Once again, it should be pointed out that deployment-based, time-based

constraints such as time response and throughput are not handled at this level.

Secondly, the level of partnership between the involved partners (e.g., customers,
providers) is considered important. Nevertheless, we will not discuss how to

quantify such relationships. More precisely, such partnerships are expressed in

terms of the history of previous collaborations. On the basis of such business-level

management characteristics, a pattern of management-specific business rules will
be proposed in section 4.5.

To achieve more efficient handling of such extracted management-specific

business rules, it is proposed to move them toward a customized architectural-

driven approach. That is, we propose customized transient architectural

connectors that fit the proposed management-specific business rules. Such

management-driven architectural connectors are referred to as management laws.

Phase-IntegConcerns@ACT—Architectural Integration of functionality

and Management Laws: At this stage, each business activity already should have

been described and validated, using business rules and corresponding

coordination/management laws. The purpose of this phase is to bring together

both concerns, so that the complete meaning of each activity is captured. A

systematic technique is proposed for integrating the different components

comprising the coordination and management laws, while defining the expected

meaning of any activity. The result of this integration is a multi-concem
architectural connector that deals with both concerns.

Phase-ConcernsBPs—Flexible and Multi-concern business processes
Modelling: The proposed final step is the modelling of business process out of the

conceptualized business activities. That is, in contrast to most existing (Web)

service approaches/technologies, which start right away with the process

modelling, it is argued and explained in this thesis that aiming to explore
important requirements (e.g., flexibility/evolution, separation of concerns, taming

of the complexity) can be achieved only through postponing the process
modelling.

4.2. Phase-ACT: Illustration with a PC Selling Case study

This first phase starts by identifying different (concrete and conceptual) business

entities. Since a service-oriented technology is targeted, most business entities
later will be automated as (individual or composite) services. Nevertheless, at this

business stage, the term Web services is avoided, since in the next chapter the

right deployment strategy using Web-service technology is tackled. Secondly, in

order to follow an activity-based methodology, all business activities reflecting
the service-driven business application at hand will be identified.

Due to the fact that concepts such as business entities and activities are well

known, no further explanation is required, but it can be found in textbooks about

object-orientation, business processes, and workflows. Instead, this phase is

illustrated through the case study that will be carried through in this thesis, namely

a case of a service-driven PC Selling business application. This section is divided

into two sub-sections. Firstly, a general presentation of the case study is given by

emphasizing the different business entities/services involved. Secondly, the

different business activities involved in this application will be documented.

4.2.1. PC Selling Case Study: General Description
As depicted in Figure 4-2, this application is composed of several interacting

business entities (all to be deployed as services):

• Customer services (CS): This provides PC Selling with a front end

that handles interactions with the customers (i.e., end-users). That

is, CS allows customers to post their requests, buy PCs, pay their

dues, and cancel/accept offers.

• Provider services (PS): This represents the milestone business entity
in this application. It provides the customer services with tailored

offers satisfying their demands. It controls the delivering of PCs to

customers and also plays a key role in payment procedures (e.g.,

discounts, refunds, penalties, etc.).

• Shipment services (SS): This service intervenes when there is a need
for shipping the goods to the customer (i.e., when there is no

provider branch in the customer’s area or city). In such a case, the

provider enters into interaction with this service to select the

appropriate shipment method, depending on different criteria.

• Banking services (BSs): As shown in figure 4-2, this service also is

crucial as it interacts with all other services to accomplish any

required payment. For instance, the bank has to interact with the
shipment service for paying the shipment cost from the provider.

Besides the payment-related tasks, this service also is needed as
insurance for the customer to proceed with the buying process.

Interaction wring appropriate busmen rates

Figure 4-2. The general view of PC Selling application interaction.

4.2.2. PC Selling Case Study: Different Business Activities
In a typical operational business scenario, the provider service (PS) receives
requests to buy PCs from the customer service (CS) and checks the availability,

customer insurance, etc. At the same time, the customer imposes certain

requirements, such as delivery time, specific providers, specific brand, etc. When

different requirements from both the provider and the customer are agreed, an

offer is made to the customer. Such an offer contains, in particular, the duration of

the validity of the offer, the delivery time, the payment mode, etc. Delivery,

payment, shipment, and possible cancelling then will follow in the same

conversational manner. In some detail, the main activities involved in this service-

oriented business application can be summarized as follows:

• Request: This activity is the first step in this process-driven

application and corresponds to the customer’s request for a number

of PCs.

• Offer: In reply to the customer’s request, this activity consists of an

offer from the provider, including some necessary details such as

the price.

• Cancellation: This optional business activity is performed when the

customer wants just a part of the requested quantity and more

precisely accepts part of the offer. Such a cancellation is possible

only before delivering the initial request; otherwise, penalties are

applied.

• Delivery: This activity begins when the customer accepts the

proposed offer. It notifies the provider to start delivering the PCs

agreed on.

• Shipment: This activity concerns a case in which the customer’s

place of residence requires a shipment (i.e., no provider branch is

available nearby).

• Payment: This activity deals with the execution of all the different

aspects of paying, refunding, penalties, etc.

4.3. Phase-BRs4ACT: The Request Activity as an Example

As stated in chapter two, business rules play a key role in reshaping

interorganizational behavioural existence and its competence. Indeed, business

rules encompass all sorts of regulations, policies, and laws governing the internal

functioning of an organization, as well as its interaction with the external world

(e.g., customers, organizations, market laws). On the other side, as they are

evolving inherently and changing rapidly, business rules represent the main

competence factor within any organization and between collaborating ones.
Service orientation is interaction-driven by essence; that is, in rare cases one

service or one organization can satisfy realistic requests, and this case study is not

an exception. From this fact, those inter-service business rules that cross

organizations are of due importance, and thereby present the behavioural contract
or agreement between partners (e.g., frequently at least customer/requester and

provider). Secondly, since service orientation is event-driven (e.g.,

publish/subscribe and invoke/reply/interact), the study will focus on event-driven
business rules, and more specifically those following the ECA (event-conditions-

actions) paradigm; that is, on the occurrence of some triggering events and under

specific conditions and constraints to perform corresponding necessary actions.

To explain an activity-centric procedure, the focus is more on describing such

cross-service, event-driven business rules with respect to each identified activity.

That is, any global business rule coping with the whole business process is

postponed accordingly until the last phase. At this early stage, business rules will

be described only at an informal, general level and, when possible, addressing any

concerns (specifically functionality and quality ones). This, of course, is due to

the fact that such general-purpose rules will be detailed and refined when

addressing each concern separately.
After the general form and assumption about business rules, the following

section will be focusing on explaining this phase through one of the activities of

the case study, i.e., the request activity.
Request: The customer asks for a specific number of particular PCs. The

customer has the right to opt for a preferred provider; this may depend on the

history of similar operations or recommendations/ads from friends/spots. The

customer also specifies the deadlines for responding, estimated prices, etc. The
provider is entitled to accept or reject the request, depending on his/her workload,

on that client’s trustworthiness, location, etc. When all requirements are fulfilled,

the provider makes this request a pending one by assigning it a reference, and

notifies the customer. When the conditions are hot met, the request is cancelled by

the provider and the customer is notified.

It is worth mentioning that this informal business rule is event-driven, that is,

triggered only when the customer asks for PCs. This business rule deals with

different entities, such as customer, provider, PC Selling service, and so on. This

business rule mentions both functionality and quality concerns, yet without

exploring their detailed descriptions to be addressed at the level of each concern
(i.e., next steps).

4.4. Phase-BRsCoordLaws—Modelling Coordination Concerns

Toward a clean separation of concerns and a high-level of adaptability, we

propose at this stage to focus more on the functionalities in the involved activities;
these already should have been identified and described in the previous phase.

More precisely, a two-step of functionality issues is proposed. First, with respect

to each identified activity, it is proposed to extract and refine all issues dealing

with functionality concerns from the previous general-purpose intentional (cross

service) business rules, in terms of functionality-focused operational ECA

business rules. Secondly, it is proposed to move these functionality business rules
to the architectural level, using architectural connectors and specifically the so-

called coordination laws. Through the case study and its request activity, more

light will be shed on these two steps.

4.4.1. Functionality-focused ECA Business Rules: Description and
illustration

The purpose of this sub-section is to go into detail about the coordination-driven
functionality concerns in terms of ECA business rules, while ignoring completely

any management issues, as they are the subject of the next section. More

precisely, for each business activity, it is proposed to extract first the functionality

concerns from the corresponding (general and intentional) business rules, and to
refine them in a more structured and operational ECA-driven manner. Secondly,

with the aim of bringing these ECA-driven rules closer to the (architectural)

service paradigm, they will be modelled as architectural connectors, i.e.,
coordination laws [Fia02].

More precisely, the straightforward generic pattern proposed to describe

functionality-focused ECA-driven rules can be sketched as follows:

COORD-RULE <Business activity name>

PARTNERS <Involved business entities/services as resources for the rule>

EVENT <Different (composite) events triggering the respective activity>

CONSTRAINTS <Different conditions to hold for performing the mle>

ACTIONS <Actions to perform by events triggering and constraints holding>

Table 4-1. Functionality-focused ECA-driven rule.

It is important to emphasize in this ECA-driven pattern the presence of the

<PARTNERS> clause. Indeed, as illustrated in the case study and in general,
activities in service-driven applications involve in most cases at least two

partners; in other words, the composition remains the essence of the service-

orientation paradigm. For that reason and also to capture in the next steps the

(service) interfaces required from such partners, it is proposed to make this clause
mandatory in any concem-based (i.e., functionality but also management-focused)

ECA-driven business rule. Due to this interaction, these rules are referred to, in an
exchangeable manner, either as functionality or coordination rules. It is noted that

all other clauses are self-explained and require no further clarification at this level.

4.4.I.I. Application to the request activity
From the functionality/coordination perspective, the provider has only to check

the availability of the quantity and type requested to decide whether the request

will be accepted or rejected. More precisely, the extracted ECA-driven business

rule from the already described general-purpose intentional one could be detailed

as follows:

COORD-RULE: Request activity,

PARTNERS: Customer requesting PCs and Providers of PCs,

EVENT: The customer asks for a specific number of particular types of PC.

CONSTRAINTS: After checking the availability and the types, the provider is entitled to accept or reject the

request.

ACTIONS: By accepting the request the provider puts it as a pending one by assigning it a reference, and

notifies the customer in consequence.

EXCEPTIONS: By rejecting the request, the provider cancels the request and notifies the customer.

Table 4-2. The extracted ECA-driven business rule.

It is worth mentioning that besides this basic rule for requests, more “profiled”

yet functionality-focused interactive ECA-driven ones can be proposed. For

instance, the provider may suggest more flexible and attractive constraints for

“privileged” customers, such as discounts and credits, and so on. In other words,

these rules are quite adaptable and evolve depending on the organization’s

policies, market laws, competitiveness, etc.

4.4.2. From Functionality ECA Business Rules to Coordination Laws
This phase aims to bridge the gap between the business level and the more

conceptual level, where architectural decisions are to be taken to validate the

described rules and facilitate/automate the move toward the service technology. In

this respect, instead of opting for any functional/logic-based (e.g., Prolog
[UM00,Zho06]) formalism, a behaviour-intensive architectural approach is

adopted. As already highlighted, architectural techniques with their transient

connectors permit a heightening of the level of rigor and ECA-driven business

rules. Moreover, it is crucial to reemphasize the suitability of architectural
techniques when targeting service technology as the ultimate deployment phase,

as will be presented in the next chapter. More precisely, first, the required roles
for architectural connectors to express any behavioural interaction (as glue)

represent no more than (a selected part of) service interfaces, which are more
likely to be from service components (in service-driven business applications). In

other words, architectural techniques with their connectors already bridge the gap

between the business/conceptual level and service deployment. Secondly,
architectural connectors enhance composition, as their behavioural glues are built

mostly from more than one interface/role. Thirdly, as shown in [MK96],

architectural approaches support dynamic evolution as required for service agility
and reconfigurability.

Intuitively speaking, given a functionality-focused interactive ECA-driven
business rule governing an activity, a smooth refinement-based moving toward a

corresponding architectural connector is proposed through the following steps.
1. Depending on the rule ingredients (e.g., events, attributes, and

messages required from different partners) each involved partner-name

is transformed into a connector role (see chapter 2, section 2.4) by
defining all involved messages, events and/or properties.

2. Still depending on the rule core, specifically the constraint part,

additional messages, attributes, constants, and invariants could be
defined as part of the connector glue.

3. Finally, the rule itself is captured, still following the ECA-driven
paradigm as connector glue by following the coordination law pattern

[Fia02, AFOla, AFG+02, AFOlb]. That is, the mechanisms that are

required for regulating the relationships, functioning, and cooperation

of services are externalized from business rules in terms of semantic
primitives called coordination laws (see chapter 2, section 2.5). These

describe composition mechanisms in terms of event-condition-action

(ECA) rules that can be superimposed dynamically on stable core

business entities and services. Superimposition [Kat93] is non-
intrusive on the code that implements the services. Therefore, business

architectures can be evolved dynamically, as volatile business rules

change or new cross-organizational links come into force, while

ensuring compliance with core business invariants.

4. The semantic modelling primitives being put forward for this phase

rely on architectural connectors to separate the coordination of

interactions between business service interfaces from their hidden

computations. More precisely, so-called coordination laws and
contracts externalize as first-class entities any intra- or cross-

organizational interactions between business services using their

interfaces in the form of roles. This clean separation permits changes to

business rules to be performed at the level that is required without
affecting other aspects.

4.4.2.I. From the Request Rule to the Corresponding Coordination Law
As described above, the first step consists of producing precise interfaces from the
involved partners, in our case the Customer and the Provider. Starting with the

Customer partner, the event part of the rule indicates that the request should be
triggered by the customer. To be precise, such a request event should include the

requested PC item (identity/name) and the requested quantity. Going to the

actions part of that rule, it further is found that the customer has to accept or reject
any request. These two actions thus are declared as services. Moreover, as shown

below in this Customer Interface, to identify the customer, it is included as a type,

and any required data has to be imported, such as Item, RequestRef. Finally, a

meaningful name is assigned to the interface, composed of the name of the
partner, the activity, and the symbol Cl referring here to Coordination Interface.

coordination intarfaca CustReqCI
partnar typa CUSTOMER
inport typa Item,RequestRef
events request(i:Item,Qt:nat)
services cancelled(),accepted(r:RequestRef)
and

Table 4-3. Required coordination Customer's interface for the Request activity.

Similarly, the coordination interface for the provider partner, as described

below ProReqCI, involves the following services that a provider needs to interact

with the customer: (1) make a request pending - makePending(i,Qt); (2) the kinds

of PCs offered by the provider - typePrv(i); and (3) the quantity of PCs currently

available for a given kind - availQt(i).

coordination intarfaca ProvReqCI
partnar typa PROVIDER
import typa Item, Request
services

makePending(i:Item,Qt:nat,Rq:Request)
typePrv(i:Item):bool
availQt(i:Item):nat

and

Table 4-4. Required coordination provider's interface for the Request activity.

Finally, there is the coordination law itself. First, it uses the two interfaces

declared above, by declaring instances of them. With respect to service

orientation, these instances may correspond to concrete services. Secondly, it

reflects precisely the three parts of the above-described request business rule

following the ECA-based paradigm. Syntactically, the connector law adopts the

notation: when events with [or if] conditions do [or then] actions [else actions].

c o o rd in a tio n law RequestCL
p a r tn a r s : Ct:CustReqCI; Pr:ProvReqCI
im p o rt ty p a I te m , Request «
a t t r i b u t e ReqNo:Request

r u l e : Request in coordination
whan Ct.request(i, Qt) do

RequestCL

/• a. a • ,

i f Pr.availQt(i)^ Qt and
Pr.typePrv(i)
Pr.makePending(i,Qt)anc
Ct.accepted()

e l s e Ct.cancelled()
and

CustReqCI ProvReqCI

CUSTOMER
requestO
cancelledO
acceptedQ

PROVIDER
makePendingO
typePrvO
availQt ()

Table 4-5. Coordination law for the Request activity.

Referring again to the request activity and its identified business rule, the

corresponding coordination law, RequestCL, as depicted, can be highlighted as

follows: First, for each of the two involved interfaces, an instance variable is

declared, namely Ct for the customer and Pr to refer to the provider. These

interface instance variables will prefix any associated message or attribute from

the respective interface. It should be noted that, depending on concrete situations,
several instances also may be declared (e.g., when two providers are required, for

instance, two instance variables are declared for the provider interface). Secondly,

the cross-service event-driven ECA business rule now is conceived precisely.

That is, after the clause when, the triggering event Ct.request(I, Qt) (from the

customer Ct) is specified by including the requested item (I) and the quantity (Qt).
At the constraint level (the if clause), the provider then checks for availability of

type and quantity; if available, it assigns the request a number, notifies the

customer, and makes it pending (the then part). When such constraints are not
met, the provider notifies the customer that the request cannot go through, that is,

the request simply is cancelled.

4.5. Management concerns: From Rules to Management laws

The previous section concentrated on the functionality concerns and presented

how they can be elicited and formalized suitably and flexibly, using established

interaction-centric ECA-driven business rules and coordination techniques at the

business activity level. Nevertheless, it already has been emphasized that in order

to get composite services, with stress on the quality, best possible managed

business activities, the management issues have to be taken into account equally.
Moreover, inspired by such functionality/coordination concerns we propose an

approach on how such management concerns are required to be elicited and

conceptualized at the activity level. More precisely, we suggest first to capture
management concerns using management-based ECA-driven business rules.

Secondly, such management-focused business rules are used to form new
behaviour-intensive architectural connectors reflecting the management

characteristics of such focused business rules.
To address management concerns in service-driven business applications, it is

necessary to know that functionality/coordination concerns already have been

conceptualized for any involved business activity in the business application at

hand. In this thesis the main characteristics and features found to be essential

when addressing management concerns at the business level are investigated.

Finally, architectural approach is proposed, centred on management-customized

behavioural connectors, referred to as management laws. How to move from the

business rules to management laws is addressed.

4.5.1. Management-focused Business Rules: Characteristics and
Pattern

Referring to the literature, e.g., [TPP+03,CCD+03, Kay02], quality-of-services

usually are restricted to implementation-related metrics such as performance,
invocation, response time, and availability, among others. These generally are part

of any low-level implementation-driven service level agreement (IT-SLA)

between the requester and web service providers. In contrast,3 this work will focus
first on qualities that may be agreed on at the business level; that is, without

referring to any kind of implementation. In other words, above all business
management concerns that arise between customers and providers at a more
abstract, domain levels are addressed. As direct potentials of handling business

1. In reality, both conceptual- and implementation-centric qualities are achieved complementarity, and the
next chapter will present ways to move the business-conceptual approach to the deployment level, where both
classes of qualities can coexist and complement each other.

qualities, the following again may be singled out: (1) flexibility and evolution,

since no technological constraints are imposed; (2) the involvement of all business
stakeholders in eliciting and manipulating the corresponding rules; and (3) the

separation of qualities from other concerns and from the targeting business

processes and applications.
In the face of these advantages for business-level handling of management

concerns, there is the challenging and decisive question: What should be the

characteristics of management issues/qualities at that business-level? Indeed,

whereas at the concrete implementation level there is a wide consensus as to

which characteristics may improve performance and qualities (e.g., time-response,

throughput, reliability, etc.), little information is found about what really

characterizes business-level qualities, particularly for service-driven business

applications. Toward this objective, we followed two main strands. On one hand,

all approaches were considered that focused on technology-driven handling of

qualities and management in Web services applications and that worked on

abstract them to the business level, by decoupling them from implementation

details. Several case studies also were carried out (e.g., travel agency, auctions,
and of course, the PC Selling) directly at the domain level, by extracting and

understanding their requirements from management perspectives.

The effort of these two complementary explorations revealed the three main

characteristics as potential elements for management issues when addressed at the

business-level. Before reporting on these proposed characteristics, the following

facts should be emphasized. First, it was essential to maintain the identified
characteristics as generic and as minimal as possible. In other words, no specific

or concrete solution on how to tackle the proposed characteristics was suggested.

Furthermore, it is not the intension to attempt a complete handling of all

management issues; instead, it is argued that by putting forward a global
abstraction that may be enriched/refined/specialized depending on the specific

nature of the domain problems at hand, the required level of abstraction and the
consequent deployment may be achieved.

These discovered management-focused characteristics and features, related to

service-driven business applications, were categorized into three main classes.
The first category is the one dealing with time constraints (e.g., deadlines, events

timing, etc.). The second category concerns the importance of the profiles of
involved partners (e.g., partner preferences, trust-level, etc). Finally, the third

category is related to the current records of cooperation between any involved

partners (e.g., history of agreements, activities, etc.). It is important to observe

that all these characteristics indeed are interaction-driven, thus fitting with the

service-orientation paradigm and composition-centricity.

• Timing issues: These represent essential elements for reflecting
(business-level) timing constraints between partners (e.g., customers

and providers). It is proposed to be distinguished explicitly and to
avoid confusing business-level requirement timing issues with those

related to system performance and timing. The latter have been

considered extensively in different approaches [KJL02, CCD+03,

LSE03, LKD03], and consequently do not address the higher business

level agreements.
Deadlines to be observed, particulars of specific periods (weekend,

holidays, Christmas, when discounts, special offers, etc., are at stake),

periods for events invocation/replying and similar timing constraints

represent the driving elements when tackling time-dependent quality

requirements at that business level. In the case study, for instance,

when the customer requests goods/PCs, (s)he has the right to set a

specific time limit for a reply, as well as a specific period limit for

accepting delivery of the goods. The provider in turn may set timing

constraints, such as the duration of the validity of any offer, or the time

for shipment in relation to the delivery time agreed upon with the

customer. Furthermore, requests arriving during the week are handled

slightly differently from those sent during the weekend, depending on
the policy of the provider.

Partner preferences: It is found that such profile-related properties of

service partners (e.g., customer and provider) are deemed essential
when looking for a better output/quality result in a given business

activity associated with a service-based business process. That is, to
satisfy a customer best, his/her preferences have to be taken into

account carefully and addressed. In the case study, when requesting

PCs, the customer may choose some PC providers over others

depending on a number of factors such as: (1) how well-known the
provider is; (2) what kind of PCs may be offered, and so on. The

preferences of the provider also have to be considered in

accepting/rejecting the customer’s request. In summary, the

preferences of the partners play a crucial role in terms of confidence,

trust, and reputation toward better quality and management.

Nevertheless, it is emphasized again that there is no focus on how such
preferences are quantified; it just is assumed that they are to be set by
the customer/provider (interfaces).

History of states of activities: In addition to the two categories above,
it was discovered that acceptance/rejection or adaptation of a given

business activity is influenced by the previous history of similar

transactions made by those partners with respect to such activity (e.g.,

several/few or no rejection/acceptance). Specifically in deciding on a
long-time and persistent and thus costly business activity, the

engagement of (one of) the partners (particularly the provider) depends

heavily on how bad/good were the previous similar experiences. These

previous experiences with respect to a given business activity are
referred to as the state history of such activity, insisting again that the

aim here is not to inspect operations at the system level, but to set
appropriate formulae and primitives at the business level, so that

appropriate management strategies can be built, depending on

assumed, accepted, rejected, adapted, or even skipped business
activities. With respect to the case study, for instance, the formulae that

are of most interest include how many (e.g., low, high, average)

requests or offers have been accepted, rejected, or ignored; delivery or
payment delays, etc. In this way, the behaviour of different activities

can be adapted and/or improved, thus avoiding undesirable results such

as a critical decrease in requests/offers or bottlenecks in the service.

Finally, it is emphasized that although the management of the history
of the states of activities may contribute to the quantification of the

degree of trust of both the customer and the provider, both are kept

separated since such details pertain to the deployment/measurement

level.
Having identified these characteristics for coping with management concerns

at the business activity level, the next logical step consists of supporting the

stakeholders (e.g., designers, analysts, managers, and potential users) in eliciting

and describing management-focused business rules on the basis of these

characteristics, though still proposing to respect consistently the ECA paradigm

for expressing these quality-specific business rules. In this manner, the

stakeholders are helped to focus exclusively on the management issues and

thereby avoid or at least minimize overlapping and cross-cutting between
(interaction and management) concerns. The aim also is to provide the application

designers with primitives for facilitating the description of management concerns

in terms of specialized business rules, and afterwards specialized management-

driven connectors (laws), and finally management-driven implementation-centric
rules (e.g., RBSLA, see next chapter).

More concretely, three corresponding primitives are proposed; they are
distributed over the three ECA clauses, namely the events, constraints, and

actions. These primitives first will be summarized; then the whole corresponding

ECA pattern for management concerns will be given; and finally they will be
illustrated with the request activity of the PC Selling case study.

4.5.1.1. The ECA clauses for management concerns
The event clause: Since the event triggering an activity essentially is independent

of any concern, it is proposed to keep the event clause as defined for the

interaction concerns. However, besides the description of the event itself, the

timing constraints will be included. This is achieved by adding a sub-clause to the

event clause that is explicitly referred to as at-time. At-time allows the expression

of any constraints related to deadlines, specific periods, and so on, as was

explained for the timing issues characteristic.
The constraint clause: To emphasize that the constraints for the management

concerns should be dealing with the preferences and the history of activities as
detailed above, a new constraint clause has been added as management law

primitive, which is denoted by the who clause. This primitive represents
conditions clause constraints in the new form of business rules, and allows all

kinds of constraints related to the preferences and the history of activities to be
expressed. That is, for simplicity under the umbrella of who, both the second and

third categories of management characteristics are merged. Finally, to stress that

management concerns are being dealt with exclusively, it is proposed to adopt the
primitive merge at the actions clause. To recapitulate, the ECA pattern put

forward for expressing management-focused business rules takes the following
form.

MANAG-RUEE <Respective chosen activity-name >

PARTNERS <Involved business entities / services as resources for the rule>

EVENT <Different (composite) events triggering the respective activity>

WHO <Composed of all constraints involving preferences, trust and history>

AT-TIME <Includes all constraints related to the timing issues >

MANAGE <Management-related actions to perform when constraints at the who and at-time clauses hold>

[EXCEPTIONS]<This optional actions part concerns the case when the constraints are not met>

Table 4-6. Expressing management-focused business rule.

Please note that since inter-services and interorganizational agreements for

management are being promoted, as was done for coordination concerns, the

partners clause still is kept as an essential element in this rule pattern.

4.5.I.2. The request activity as illustration for the management ECAs
As was explained, in addition to the functionality concerns, to seek more quality,

each business activity needs to be boosted by management concerns. These
management concerns generally are orthogonal to the interactions that business

relationships impose. In terms of our case study, when a customer requests a batch
of PCs, he/she first may prefer specific providers over others, possibly depending

on previous experience with them or simply because their “reputable” products

are preferred. Secondly, to obtain a quicker response to his/her request, the
customer may set a desired response time to be respected by the provider. The

provider has to consider its response time limit, which has to be smaller than the

requested reply time. The day and the time at which the request is “posted” by the

customer also may play an important role. For instance, dealing with any request

during the weekend or outside normal working hours is more expensive.

Following the proposed template, the extracted management-centric business rule
may be expressed as follows:

MANAG-RULE: The request activity.

EVENT: The customer asks for a specific number of particular types of PC.

PARTNERS: Customers and PCs providers.

WHO: Customer opts for specific (on-line) providers and in turn the providers accept or reject that

customer on the basis of history operations.

AT-TIME: Specific response time from the customer to be respected by the provider.

MANAGE: When both at-time and who constraints are met the request is considered as successful.

EXCEPTIONS: If the constraints do not hold, the management concerns of the request are considered

as having failed and alternatives should considered.

Table 4-7. The extracted management-centric business rule

4.5.2 Management Laws: Concepts and Illustration
In terms of a services-oriented architecture, the way that composite services need

to be constructed not only shall obey a composition “logic” but also a

management logic derived from management concerns. The different timing

constraints, preferences, and degrees of trust between the involved partners, as
well as the history of the relationship, represent important features that need to be

taken into account at the level of management logic.

Following the same spirit undertaken for coordination concerns while moving

from the business world to the service-engineering world, yet preserving all the
strengths of the management-centric business rules, a variant of transient

architectural connectors is put forward, referred to as management laws. More

precisely, inspired by the primitives of coordination laws and more importantly by

the specifics of management-centric business rules, this new concept of
management laws is composed of: (1) management interfaces through which one

can identify all the features (operations and events) that partners should expose to

engage in a given business activity from a management perspective; and (2)

management-centric behavioural glue, which allows accurate yet intuitive

mirroring of the intended corresponding management business rule. In other

words, it is required for such glue that all the rule clauses—and more specifically

those associated with the management characteristics (e.g., at-time and who)—be

reflected. Besides the rule itself, in order to strengthen the rigor, data types also

are associated with every management interface to identify the class of instances,
referred to as the partner type.

With these guidelines for management laws and coordination concerns, a

stepwise methodology is proposed in the remainder of this section for moving

management-focused business rules toward management laws. More, precisely,

the interfaces first are extracted from the involved partners and then the behaviour
of the expected management law is constructed. Afterward, the management laws
are illustrated with the request activity.

4.5.2.1. Derivation of the management law interfaces from the partner names
As developed for moving from interaction-centric business rules toward

conceptual coordination laws, the involved service partners in a given

management-driven business rule should be detailed as interfaces for defining the
associated management architectural connector; i.e., be a part in management law.

More precisely, all informally explicit and/or implicit ingredients such as events,

operations, and other attributes (e.g., variables, data types) required for expressing

the management rule at hand (e.g., events, at-time, who and manage clauses) are
to be defined precisely at the level of each corresponding partner interface. In this

respect, for instance, precise yet meaningful names must be assigned to events,

operations, and their parameter types defined.

4.5.2.2. Derivation of the management law glue from the management rule
Once all required interfaces have been defined precisely, the next step consists of

capturing the informal event-driven management-centric business rule in

equivalent yet architectural connector glue, referred to as management law glue.

To make this move smooth, it is proposed to keep all its clauses as defined at the

business rule level; that is, the primitive when it is proposed for capturing the
event. The primitive at-time is kept for capturing the associated timing constraints

and the primitive who for formally capturing constraints related to preferences,

trusts, and history of state operations. Finally, to specify the management-centric

actions to undertake, the primitive manage is proposed as invoked in the

management business rule. The resulting general pattern of the management laws

being put forward can be expressed as follows.

management law < law-name>
partners cvariables typed with management interfaces>
types coptional clause to import any needed datatype>
rule <rule-name >
when <trigger>
who cconditions on partner preferences and operation

histories>
at-time cconditions on time issues>
manage <set of operations>
else <set of operations>
end

Table 4-8. The general pattern of management law.

Thus, under the clauses when, who, and at-time, the event triggering the

concerned business activity, the related management constraints and conditions
expressing partners preferences, and the degree of trust using the history of

previous operations, if necessary, are specified. Under the clause manage, all
(management) actions to be undertaken when the three above clauses hold are
specified. Finally, when the triggering event happens but some constraints under

who and/or at-time do not hold, the actions identified under else are performed.

4.S.2.3. Management law: Illustration using the request activity
By considering this management-centric business rule governing the request
activity from the quality perspective, the first step consists of deriving the two

interfaces for die customer and provider partners. The second step allows the

capture of the ECA rule itself as management law. The details of the derivation of

these three components (i.e., the two interfaces and the law) are given below.

A. The customer management law interface: The analysis of the corresponding
request management business rule results in the following required customer
interface.

nanaganent intarfaca MaCuReMI
partnar typa CUSTOMER
typa import Item, Request, Time
events request(i:Itern,Qt:nat)
services

TmRsp(): Time
RqHrs(): Time
RqDay(): Day
PreferListPrv():(ProviderNames)
HistPrv(): List(Operations)

and

Table 4-9. Customer Management interface for the Request activity.

More precisely, this management interface first identifies the triggering

event, namely the request that must come from the customer side. Looking

at formality and also for consistency with the coordination side, it is
proposed to denote this event as request(i,Qt)\ that is, on the management

side, the request still involves two required parameters: the identity of die
asked item and its quantity. The datatypes of both parameters are assumed to
be defined elsewhere and imported here for use. Since in the clauses at-time

and who of the request management rule, the customer was required
informally to impose a time response and preference list of providers,

which may depend on the history of operations, it is proposed to formalize

them as attributes with shortened yet meaningful names and associated

sorts. In this respect, TmRspO refers to time-response and PreferListPrvQ

captures the list of preferred providers for each customer. Additionally, since
the day and the hour of the arrival of a given request is important, these two

attributes are captured precisely, using respectively RqHrsQ and

RqDayQ. Finally, because the history of different operations also may also

be relevant to the customer, this is considered through the operation
HistPrvQ.

B. The provider management law interface: Similarly, looking at the request
management business rule straightforwardly results in the following provider
interface.

management intarfaca MaPrReMI
partnar typa PROVIDER
import typa Item, Request
sarvicas

NamePrvO :Name
TmRepLmO :Time
WrkDaysO : List (Days)
WrkHrs():interval(Time)
ManageRequest()

and

Table 4-10. Provider Management interface for the Request activity.

As the management business rule dictates, a number of operations are

required from the provider: name, denoted by NamePrvQ\ current

availability in terms of time for reply, denoted by TmRepLmO; information

for the customer about the possible time for delivering the goods, denoted

by DeliverTmO', and of the working days and hours, denoted by WrkDaysO

and WrkHrsQ, respectively. Finally, there should be an operation for telling

the provider that the management for the activity can proceed -
ManageRequestQ.

C. The Management law for the request activity: Building on these

interfaces while being bound by the general pattern of management laws,
the exploration of different clauses of that business rule results in table 4-

11, which includes the management law for die request activity.

management law RequestML
partnar* MgCt:MaCuReMI; MgPr:MaPrReMI
rula
whan
who
at-tima

managa
alsa
and

Request in Management
MgCt.Request(i,Qt) do
MgPr.NamePrv()in MgCt.PreferListPrv()

RequestML

MgCt.TmRsp()>= MgPr.TmRepLm()and
MgCt.OrdHrs()in MgPr.WrkHrs ()and
MgCt.RqOay() in MgPr.Wrk
MgPr.ManageRequest()
MgCt.Add(HistPrv,Cancel)

----------*
MaCuReMI MaPrReMI

CUSTOMER PROVIDER
RequestO NamePrvO
TmRspO TmRepLmORqHrsO WorkDaysORqDay() WorkHisOPreferListPrv()
HistPrvO ManageRequestQ

Table 4-11. Management law for the Request activity.

As for the coordination law, the management process is triggered by a

request from the customer as specified by the when clause of the business

rule. The condition part, as already mentioned, is split into two parts:

• The time part, under the clause at-time, specifies any conditions

reporting on timing issues. The request activity allows a check that the

time for reply requested by the customer is not beyond the ability of the

provider. Such information is declared as an attribute of the law. The
day and hour of the customer request also should come within the

normal working days and hours of the provider, as stated in this
management law.

• The preference and history part is specified under the clause who. As

the name suggests, this conditional part concerns any condition

regarding the preferences of the customer or the provider, as well as

giving a history of operations in the business activity concerned. For the

request activity, it is necessary only to check that the name of the

provider is among the providers in the customer-preferred list.

The management actions to be performed are declared under the clause

manage. In the case of the request activity, the only action that has to be
performed consists of informing the customer and provider “partners” that the

request activity has fulfilled all the requirements from the management

perspective.
Finally, to describe the case in which there has been a failure to fulfil all the

requirements (whether this is to do with timing or preference or history), the

clause else specifies the actions that need to be undertaken. In the case study

context, it adds the cancellation to the customer’s history.

4.6. Integration of Concerns: Interactions Meet Management

In the previous sections, a stepwise approach associated with a set of business and

conceptual primitives was put forward for handling two crucial concerns while

developing service-oriented business processes: the coordination mechanisms that

are necessary to compose business entities and services with respect to business
rules governing given business activity, and the mechanisms that are responsible

for handling management issues for the same business activities. Among the

already emphasized advantages of this separation of concerns, it must be

emphasized that each dimension can be described/modelled/reasoned on and

evolved independently, where changes in one dimension can be carried out
without interfering with decisions made with respect to the other.

Being able to address these concerns separately at early stages does not mean
that they still should stay independent during the later development life cycle,

particularly during the detailed analysis, deployment, execution, and maintenance
levels. More concretely, during these phases, the way a business activity is

required to be performed within a business process emerges from the coordination

and management laws that apply jointly to that activity. The next paragraph

illustrates this mandatory integration between both concerns for each business

activity and applies it to the requested activity.

4.6.1. Integration of Concerns at the Request Activity
To consider further the necessity of integrating both concerns around a given

business activity, the request activity is considered again. At runtime, the way a

request is processed is not captured by independent coordination and management
partners: rather, both coordination and management interfaces are instantiated by

the same business entities. That is, the request is executed by a (run-time)
customer service that is an instance of both the coordination interface CustReqCI

and the management interface MaCuReMI associated, respectively, with the
request coordination and management laws. In other words, both coordination and

management interfaces are instantiated by the same run-time services or
components; instantiating coordination and management laws means binding the
coordination and management interfaces to services that are running on the

current system configuration.
As depicted in the table 4-12, in the case of the request activity, two services,

CS and PS, will be running, corresponding to the customer and the provider,

respectively, where the event triggering the requested business activity is
request(i,Qt) in both the coordination and management interfaces instantiated by

the customer service. The joint execution of the corresponding coordination and

management rules reflects the conjunction of the conditions and the parallel

composition of the actions. That is, all conditions from both laws have to be
brought together, and at the same time all actions under do and manage have to be

brought together.

Thus, the request activity is performed according to both coordination and
management rules, which share the same trigger - CS.request(i,Qt) - where CS is
the run-time customer service. This means that all parameters are gathered so that

all the information related to both coordination and management is available. The

condition of the reaction to be performed is the conjunction of the condition of the

coordination rule with the two conditional parts of the management rule - the at-

time and who clauses. The operations under the manage clause of the

management rule are combined with those of the then clause of the coordination
rule. Finally, the operations under the after clause of the management rule are

combined with those of the else clause of the coordination rule. As a result, when
all coordination and management conditions are met, the request becomes

pending and the provider service is notified to proceed. In the negative case in

which some conditions are not met, the request is cancelled on the provider

service and added to the history of the consumer service.

ProviderCustomer

PiReqCI

MaCsReMI

CtReqCI

whan CS.Request(i,Qt) do
if PS.AvailQt(i)*Qt

and PS.TypePrv(i)
and CS.TmRsp()>= PS.TmRepLm()
and CS.OrdHrs(inPS.WrkHrs()
and CS.RqDay()inPS.NrkDays()
and PS.NamePrv()in

CS.PreferListPrv.list ()
than

PS.PendingRequest(i,Qt)
and PS.ManageRequest()

•Isa PS.CancelRequest(i,Qt)
and CS.Add(HistPrv,Cancel())

Management Concerni

Coordination Concern*

Run Tine Configuration

Requeit CL

Request
ML

Table 4-12. Integration of concern for the Request activity.

4.7. Activity-centric Flexible Business Processes — PC Selling
Illustration

After integrating both concerns around their respective activities, the next step

consists of building business processes from such activities. That is, in contrast to

most existing proposals for service composition, which start with the holistic

business process modelling, it is judged and presented that “postponing” the
process modelling at this stage brings several strengths. First, by focusing on
activities and their concerns, the challenging problems such as flexibility,

adaptability, and separation of concerns are being tackled. Secondly, by

postponing the modelling of business processes at this level, the service mobility

at the activity level becomes inherently supported since, depending on running
requester/provider and their current context, the most appropriate workflow can be

selected. This issue nevertheless is outside the scope of this thesis, and thus could

be one of the potential research directions for future investigations.

[Accepted Full Offer]
[Available = true]

Cancellation
/PartialOfferRequest

[Partial Accepted][Available = false] [Cancel the Offer]

[Cancel all]Cancel
Request

[Transaction Failed] No

[Shipping Avail =false]

Yes
DeliveryPayment Shipment

[Transaction Complete]
[Shipping Available]

Figure 4-3. The conversational business processes.

A projection of these advantages in the case study can be highlighted in the

following possible candidate business processes. As depicted in Figure 4-3, once

the request is processed and after accepting a part or the whole of the offer from

the customer’s side, and before any delivery activity, the provider has to check

whether a shipment is required (i.e., there are no provider branches in the

customer’s area). In this case, requirements from the shipment service should be
met, such as: respecting the delivery time agreed with customer (i.e., the shipment

time should be within the delivery time), shipment type, the normal cost and extra

cost, etc. Other quite possible and privileged activities that flow (i.e., tailored
business process) from some providers consist of first paying (the goods) and then

shipping as an independent activity from paying. More additional variants consist

of allowing the cancellation after only partial delivery, for instance. Through these

alternatives, the intrinsic flexibility of the proposed activity-centric approach to

service composition is emphasized.

Following the depicted process alternative, the provider service now can
proceed to the delivery of the agreed and signed offer. The requirements that must

be met for this business activity include, for instance, that the received items and
quantity should reconcile with those in the agreed offer, the receipt time should

not exceed the delivery time, and so on. Penalties have to be imposed on the
provider in cases when such requirements are not respected. The final activity to

conclude this conversational process is the payment. Thus, all postponed

payments, penalties, refunds, etc., from all business partners (i.e., the provider, the
customer and the shipment) have to be made.

4.8. The Approach-at-Work—Application to All PC Selling
Activities

This section aims to present the “business-conceptual” approach by considering

all the involved business activities as depicted in Figure 4-3 (without any partial
ordering).

In the following, for each of the identified PC Selling business activities, the

details therefore are delivered in the same spirit as was done for the request

activity; that is, respecting the stepwise methodology of the approach: (1) general-

purpose multi-concem intentional business rule description of the activity at hand;

(2) the coordination-driven business rule and its associated coordination law; (3)
the management-driven business rule and its corresponding management law; and
(4) the integration of both concerns around the considered activity. Nevertheless,

to gain some space, yet without losing expressivity, the details of the concern-

based business rules (i.e., coordination and management) will be skipped and

reported at the integration of the associated laws. Furthermore, since the
integration of concerns is mostly straightforward, it will be left as a trivial training
exercise for the reader.

4.8.1. Offer Activity: Business Rules, Coordination, and Management
Laws

The general-purpose multi-concem business rule governing the description of the

offer activity could be detailed informally as follows.
The offer intentional rule: The provider is entitled to accept or reject the

pending request but must notify the customer of the decision. When the provider

accepts the pending request, an offer is proposed under the following conditions:
with respect to the reply and delivery time and the customer having a budget
sufficient to pay the amount. When the customer intends to pay cash, the provider

encourages the customer with specific discounts. When the above conditions are
fulfilled, the customer puts this offer into a pending state. When the conditions are

violated, the provider rejects the offer and records that the operation has failed.

4.8.1.1. The coordination concerns in the offer activity
As described in the above rule, the coordination focuses in this activity on the
reply and delivery time, and also on the customer’s budget. This means that the

customer has only to check that the budget is sufficient to cover the offered price

and the corresponding type to decide whether to accept or reject the offer. The

part of the business rule that then is of concern may be detailed as follows:
1. The provider is entitled to accept or reject the pending request but must

notify the customer of the decision.

2. When the provider accepts the pending request, an offer is proposed

under the following conditions: the reply and delivery time, and that

the customer has a sufficient budget to pay the amount.

3. When the above conditions are fulfilled, the customer puts this offer
into a pending state.

4. When the conditions are violated, the provider rejects the offer.

A formalization of this business rule in terms of coordination laws, as shown
in figure 4-4, requires the following interfaces and the respective coordination:

The customer CustQfferCI. provides the following operations: (1) sufficient

budget BudgetO', (2) the operation for offer pending - makePendingOffer(i, Qt);

and (3) the operation for cancelling an offer - cancelledQ.

The required interface from the provider ProvOfferCI includes first the event
triggering the offer, that is, OfferQ. Furthermore, the following operations are

required: (1) the quantity price - PricePrvO; and (2) a pending request being
accepted - AcceptedPendingRequest(i, Qt).

coordination intarfaca ProvOfferCI
partnar typa PROVIDER
sarvicas

PricePrvO :money
AcceptedPendingRequest

(i:Item,Qt:nat)
avanta

Offer ()
and

coordination intarfaca CustOfferCI
partnar typa CUSTOMER
sarvicaa
Budget():Money
MakePendingOffer(i:Item,Qt:nat)
Cancelled()

and

coordination law OfferCL
partners Ct: CustOfferCI;

Pr: ProvOfferCI
attribute ReqNo:Request
rule: Offer in coordination
whan Pr.Offer()and Pr.AcceptedPendingRequest(i,Qt)do

if Ct.Budget () >= Pr.PricePrvO than
Ct.MakePendingOffer(i,Qt)

else Ct.CancelledO
and

Figure 4-4. Required interfaces and coordination law for the Offer activity.

By publishing the offer made by the provider service, the customer discovers it

through the first when clause. The customer then checks for the acceptance
pending request and the offer from the provider and checks that there is a budget

sufficient for this transaction using the if clause, in which case the reference
number is assigned to this offer and it is put in a pending state using the do clause.

Otherwise, it is cancelled.

4.8.I.2. The management concerns in the offer activity
The extracted management-focused business rule for the offer activity, from the

above general-purpose business rule, may be expressed as follows:
1. The provider is entitled to accept or reject the pending request, but

must notify die customer of the decision.

2. When the provider accepts the pending request, an offer is proposed
under two conditions in respect to the reply and the delivery time.

3. When the customer intends to pay cash, the provider encourages the

customer by offering specific discounts.

4. When the above conditions are fulfilled, the customer puts this offer
into a managing state.

5. When the conditions are violated, the provider records this as a failed
operation.

The moving of this management business rule for the offer activity toward a

corresponding management law is depicted in Figure 4-5 and can be summarized

as follows:
The customer management interface MaCuQfferMI delivers four operations:

(1) the time that the customer set for replying to the offer reply20jferQ\ (2) the

delivery time deliveryRqstO; (3) the payment method choosepay(type); and (4)
that the customer is managing the offer manageOffer(i,Qt).

The provider management interface MaPrOfferMI publishes above all the
intention to offer a specific quantity of PCs by accepting the pending offer and

then by making an offer to the customer - OfferQ. Also, from the provider’s side,

the following operations are required: the offer validity time - ValidyOfferQ; the

delivery time - DeliveryTmQ; the method of payment - PayMethodPriceQ; the

acceptance of pending request - acceptedPendingRequestO; and finally, the
history of different operations that also are relevant to the customer - HistCstQ.

The management law OfferML that regulates the qualities between customer

and provider during the offer activity first ensures that the pending request is

accepted at the arrival of the offer event. Then, it checks the timing constraints,
including the delivery and the reply imposed timings. Then, the method of
payment is set and checked; in such cases, the offer is considered as being

managed; otherwise it has to be cancelled.

management intarfaca MaCtOfferMI
partnar typa CUSTOMER
sarvicaa

Reply20ffer(): Time
DeliveryRqst(): Time
ChoosepayO : [Credit, Cash]
ManageOffer(i:Item,Qt:nat)

and

management law OfferML
partners MgCt : MaCtOfMI

MgPr : MaPrOfMI
rule: Offer in Management
whan MgPr.Offer(i,Qt)and MgPr.AcceptedPendingRequest(i,Qt) do
at-tima MgCt.DeliveryRqst()<= MgPr.DeliveryTm
and MgCt.Reply20ffer()<= MgPr.ValidyOffer()
and MgCt.Choosepay()= MgPr.PayMetdPrice()

manage MgCt.ManageOffer()
else MgPr.HistCst()
and

Figure 4-5. Required interfaces and management law for the Offer activity.

4.8.2. Delivery Activity: Business Rules, Coordination and
Management Laws

The Deliver intentional rule: When the customer accepts the pending offer,

delivery of the agreed PCs from the provider has to be asked for. For this purpose,
the customer must arrange for a bank deposit not less than the amount the

provider has fixed. On the provider’s part, there has to be a bank ensuring the
customer of the good conduct of the provider (that is, the provider must have a

good bank history). On the customer’s side, the customer insists that the requested

delivery time is respected. Also, depending on the degree of trust of the customer,

adequate discounts may be granted by the provider. Finally, when the customer is
far from any of the provider’s branches or main location, an arrangement for
shipment must be planned.

4.8.2.I. The interaction concerns in the delivery activity
In this activity, when the customer accepts the offer and asks for delivery of the
PCs, the customer must have a bank account and pay a deposit of not less than the

management intarfaca MaPrOfferMI
partnar typa PROVIDER
sarvicaa

ValidyOffer():Time
DeliveryTm(): Time
PayMetdPrice()
AcceptedPendingReque(i:Item,
Qt:nat)
HistCst():List(operations)

events
Offer(i:Item, Qt:nat)

and

amount the provider requests. The extracted coordination-focused business rule

that is of concern here may be detailed as follows:
1. When the customer accepts the pending offer, die customer has to ask

for delivery of the agreed PCs from the provider.

2. For this purpose, the customer must arrange for a bank deposit of not

less than the provider has requested.
3. When these conditions are met, the customer puts this offer into a

pending state.

4. When the conditions are violated, the customer rejects the offer.

This rule may be presented in terms of coordination law as follows:
The customer interface for this activity CustDeliverCl triggers the event for

the delivery through Ask4Deliver(i,Qt). In this event, the item types for delivery
(i.e., the PC types) and the respective quantity are explicitly defined. Also the

acceptance of the pending offer is requested as an operation -
AcceptedPendingQjfer(i, Qt).

The interface from the provider, ProvDeliverCI, delivers in its turn the following

operations: (1) the deposit must be paid by the customer - DepositPrvO', and (2)

there must be an acceptance or refusal to deliver the required quantity of PCs,
denoted by Accept2Deliver (i, Qt) and CancelQ.

The third coordination interface is from the bank, denoted by BankDeliverCI.

That is, the customer should have a bank account and the deposit for the PCs

should be reserved. These two operations are denoted by AccountCstQ and

DepositCtQ.

From the delivery coordination interfaces above, the corresponding
coordination law presents no difficulty and is more or less self-explanatory as it

reflects the business rule described for the coordination concerns of the deliver
activity.

coordination interface
CustDeliverCI
partner type CUSTOMER
services

AcceptedPendingOffer
(i: Item,Qt:nat)

events
Ask4Deliver(i,Qt)

end

coordination interface
ProvDeliverCI
partner type PROVIDER
services
DepositPrvO
Accept2Deliver(i:Item,Qt:nat)
Cancelled ()

end

coordination interface BankDeliverCI
partner type BANK
services

AccountCst ()
DepositCt()

end

coordination law DeliverCL
partners Ct: CustDeliverCI; Pr: ProvDeliverCI;Bk: BankDeliverCI
attribute ReqNo: Request
rule : Deliver in coordination
when Ct.Ask4Deliver(i,Qt) and Ct.AcceptdPendingOffer(i,Qt) do

if BK.DepositCst() >= Pr.DepositPrvO and
BK.Ct.AccountCst() then pr.Accept2deliver(i,Qt)

else Pr.Cancelled ()
end

Figure 4-6. Required interfaces and coordination law for the Deliver activity.

4.8.2.2. The management concerns in the delivery activity
The extracted management-focused business rule can be expressed as follows:

1. When the customer accepts the pending offer, the customer has to ask the

provider to deliver the agreed PCs.

2. For that purpose, the customer must arrange for bank insurance of not less

than the price of the PCs.

3. On the provider’s side, there must be a bank that will guarantee the good
conduct of the customer (good bank history).

4. The customer must ensure that the requested delivery time will be
respected. Also, depending on the degree of trust of the customer,
adequate discounts may be granted by the provider.

5. Finally, when the conditions are violated, the provider records this as a
failed operation.

The corresponding management law as depicted in figure 4-7, requires three

interfaces, exactly as the coordination law; a fact that facilitates the integration of

concerns and shows how coherent are both concerns, though conceived

independently.

managamant intarfaca MaPrDeMI
partnar typa PROVIDER
sarvicas

DeliveryTmO :Time
ListPrefCst:List[Cst,Percent]
Deliver(i:Item, Qt:nat)
ManageDeliver()

and

managamant intarfaca MaCuDeMI
partnar typa CUSTOMER
sarvicas

CstName(): name
Ask2ReceiveTime():Time
HistPrvO :List (operations)
AcceptedPendingOf fer(i,Qt)

avants Ask4Deliver(i:Item,
Qt:nat,Pic:address)

and

managamant intarfaca MaBaDeMI
partnar typa BANK
aarvicas

HistoryCstAcnt():[Good,bad]
BankEnsuranceCst():Boolean
AccounCst()

and

managamant law Deliver ML
partners MgCt : MaCuDeMI; MgPr : MaPrDeMI; MgBk : MaBaDeMI
rule Management Deliver
whan MgCt.Ask4Deliver(i,Qt,pic)and MgCt.AcceptedPendingOffer(i,Qt) do
who MgCt.CstName()in MgPr.ListPrefCst()
at-time MgCt. Ask2ReceiveTime () >= MgPr. DeliveryTmO and

MgBk.HistoryCstAcnt()= Good and MgBk.BankEnsuranceCst()= True
manage

MgPr.ManageDeliver()
else MgCt.HistPrvO
and

Figure 4*7. Required interfaces and management law for the Deliver activity.

The Customer management interface MaCuDeMI identifies the event -

Ask4Deliver(i: Item,Qt.nat,Pic: address) - that will be used as a trigger. Besides

that event, four operations are required: (1) the customer name - CstNameQ\ (2)
the time by which customer asks to receive the goods; (3) the list of previous

history for the provider - HistPrvQ:List(operations); and (4) the accepting of
pending offer - AcceptedPendingOffer(i, Qt).

The Provider management interface MaPrDeMI publishes three operations:

(1) the delivery time - DeliveryTmO; (2) the list of preferred customers -
ListPrefCst:List[Cst, Percent]; and (3) the customer is managing the delivery -

ManageDeliver(i, Qt) .
Finally, the bank management interface MaBaDeMI exposes three operations:

(1) the situation of the customer bank account - HistoryCstAcntO:[good,bad]; (2)
the customer bank insurance - BankEnsuranceCstO; and the customer bank

account - AccounCstQ.

The management law that regulates the management behaviour described
informally at the business rule is more or less self-explanatory, as given in Figure
4.7.

4.8.3. The Cancellation Activity: Rules, Coordination and Management
Laws

The Cancellation intentional business rule: Before any delivery of the goods is
made, the customer has the right to ask for cancellation of a part or all of the

ordered PCs. Nevertheless, if the cancellation is more than a minimum amount of

PCs stipulated by the provider, a penalty will be paid by the customer. In such a

case, the provider has to refund the customer the appropriate amount and deliver

the rest of the PCs, if any.

4.8.3.I. The Interaction concerns in the Cancellation activity
Sometimes the customer wants to cancel some or all of the quantity that already

has been requested and both sides have agreed to do this. This section explains
this activity starting from the request for cancellation from the customer to the

acceptance or refusal to do so by the provider. The coordination part of the above

business rule that is of concern here may be detailed as follows:

1. Before any delivery of goods, the customer has the right to ask for
cancellation of a part or all of the ordered PCs.

2. Nevertheless, the cancellation should be less than a minimum number

of PCs set by the provider when the customer accepted the offer and
decided later to cancel some of his/her entire request.

3. In such a case, the provider has to refund to the customer the

appropriate amount and deliver the rest of the PCs, if any, when this
cancellation came after the acceptance request.

A formalization of this business rule in terms of the corresponding

coordination law is given as depicted in Figure 4-8.

coordination intarfaca CustCancelCI
partnar typa CUSTOMER
sarvicas
AcceptedOffer (i,Qt,)
AccountCst()

avants
Ask4Cancel(i:Item,Qt-Cl: nat)

and

coordination intarfaca ProvCancelCI
partnar typa PROVIDER
sarvicas
MaxCancelPercent(): Percent
AccountPrvO
CancelPrice():Money
Accept2Cancel(i:Item,Qt-Cl:nat)
and

coordination law CancellationCL
partners Ct:CustCancelCI ; PrsprovCancelCI ; Bk.BankCancelCI
rule cancellation in coordination
whan Ct.Ask4Cacel(i,Qt-Cl)and Ct.AcceptedOffer(i,Qt)do
if Ct.Qt-Cl < Ct.AcceptOffer (Qt) than Pr.Accept2Cancel(i,Qt) and

Bk.ToRefund(AccountPrv,AccountCst, Pr.CancelPrice())
and

coordination intarfaca BankCancelCI
partnar typa BANK
sarvicas

AccountCst()
AccountPrvO
ToRefund:(AccountPrv, AccountCst,Money)

and

Figure 4-8. Required interfaces and coordination law for the Cancel activity.

The coordination interface from the customer CustCancelCI first allows the
triggering of the cancellation event Ask4Cancel(i, Qt-Cl). Besides that event, two
operations are required: the accepted offer AcceptedQfferQ, and bank account

AccountCstQ. These are denoted by AcceptedOffer (i,Qt,) andAccountCst().

The coordination interface from the provider ProvCancelCI should publish the
following operations: (1) the maximum percentage that has been allowed -

MaxCancelPercentO; (2) the provider’s bank account details that have been given
- AccountPrvO; (3) the cancellation price for the quantity that has been offered -

CancelPriceO; and (4) the cancellation has been accepted -

Accept2Cancel(i:Item,Qt-Cl:nat).

From the bank, the interface BankCancelCI is required with the following

operations: (1) details of the customer’s and provider’s accounts - AccountCstQ,
AccountPrvO; and (2) the amount that the provider will refund to the customer
regarding the quantity that has been cancelled - ToRefund: (AccountPrv,

AccountCst,Money)

From die above cancellation coordination interfaces, the corresponding

coordination law CancellationCL reflects exactly the intended behaviour reflected
in the business rule.

4.8.3.2. The management concerns in the Cancellation activity
The management-focused business rule for this cancelling activity has to be

extracted and takes the following form:
1. Before any of the goods are delivered, the customer has the right to ask

for cancellation of a part or all of the order placed for PCs.

2. Nevertheless, the cancellation must not go below a minimum amount

of PCs set by the provider: otherwise, a penalty will be paid by the
customer.

3. In such a case, the provider has to refund to the customer the

appropriate amount and deliver the rest, if any.

4. When the conditions are violated, the provider records this failed
operation.

The management law depicted in figure 4-9, requires three interfaces: one for
the customer, the others for the provider and the bank.

The customer management interface MaCuCaMJ first identifies the triggering

event - Ask4Cancel(i, Qt-Cl). Then, two further operations are published: (1) the
cancellation time - CancelTimeQ; and (2) the customer account - AccountCustQ.

The provider management interface MaPrCaMI publishes five operations: (1)
the delivery time - DeliveryTmO; (2) the maximum cancellation percentage -

MaxCancelPercentO; (3) the provider bank account - AccountPrvQ; (4) the list of

previous history for the customer - HistCustQ:List(operations)\ and (5) the

managing of the cancellation - ManageCancelQ.

msnagsmsnt intarfaca MaCuCaMI
partnar typa CUSTOMER
sarvicas

CancelTime():Time
AccountCst()
AcceptedOf fer(i,Qt)

avants
Ask4Cancel(i,Qt-Cl)

and

managamant intarfaca MaPrCaMI
partnar typa PROVIDER
sarvicas

DeliveryTmO : Time
MaxCancelPercent():Percent
AccountPrv()
HistCst:List(operatios)
ManageCancel()

and

managamant law CancellationML
partners MgCt : MaCuCaMI ; MgPr : MaPrCaMI ; MgBk : MaBaCaMI
attribute
rule Cancellation in Management
whan MgCt,Ask4Cancel(i,Qt-Cl)and Mgct.AcceptedOffer(i,Qt)
at-time MgCt.CancelTime()<= MgPr.DeliveryTmOand

MgCt.Qt-ClO <= MgPr.MaxCancelPercent 0
manage MgPr.ManageCancellation() and

MgBk.ToTransfer(AccountCst, AccountPrv)
else MgPr.HistCst()
and

managamant intarfaca MaBaCaMI
partnar typa BANK
sarvicas

AccountCst 0
AccountPrvO
ToTransfer(AccountCst, AccountPrv)

and

Figure 4-9. Required interfaces and management law for the Cancel activity.

The Bank management interface MaBaCaMI exposes three operations: (1) the
customer bank account - AccountCstQ; (2) the provider bank account

AccountPrvO; and (3) the amount that will be transferred -ToRefund(AccounCst,

AccountPrv).

Finally, the management law on the arrival of a cancelling event checks first

whether the offer already has been accepted. Then, it checks if the cancel period
has not already passed, as well as the tolerated percent of PCs to be cancelled. In
this case, the cancel is considered as being managed.

4.8.4. Shipment Activity: Rules, Coordination and Management Laws
The Shipment intentional business rule: The shipment provider has the right to
accept or reject the request for shipment from the provider. When the shipment

request is accepted, the provider has to agree to pay the agreed amount for such a
shipment. The duration of the shipment should be less than the delivery time
agreed between the customer and the provider. Depending on the type of shipment

(special or normal), the distance between the provider and the customer, and the

weight of the shipped PCs, different formulae for either refund or extra payment

can be agreed on.

4.8.4.1. The interaction concerns in the Shipment activity
Each delivery activity needs shipment because the items purchased need to be
delivered to the customer, although sometimes in special cases the provider may

deliver the order, when the customer is based in the same area. The coordination-
driven business rule may be described as follows:

1. First, the provider asks the shipment provider for shipment with details

of die item type, the quantity, and the location.
2. The shipment provider has the right to accept or reject the shipment

request from the provider.
3. When the shipment request has been accepted, the provider has to

agree to pay the agreed amount for such a shipment.

The precise coordination law of this activity from that informal business rule

is depicted in fugure 4-10.

The coordination interface from the customer, CustShipCI, exposes the address,

including the street, post code, city and telephone number. The coordination
interface from the provider ProvShipCI allows the triggering of the shipment event
Ask4Ship(i,Qt,Loc). Two further operations also are required from the provider side:
the address and bank account - addressProvQ and accountPrvQ.

The coordination interface from the shipment provider ShipPrCI gives the
ability to decide whether to accept or refuse the shipment through the operation

ShipAcceptQ. After that, the acceptance to make the shipment for the specific

types and quantity of items to the specific place is denoted by
AcceptShip(i,Qt,Loc); the price for the shipment is denoted by ShipPriceQ.

A coordination interface from the bank BankShipCI provides the shipment
provider’s account number - AccountShPrQ - and the provider’s account number

- AccountPrvQ - from their respective banks. Also, the price to be paid for this
transaction from the provider’s account into the shipment provider’s account -

ToPayO.

Finally, the shipment coordination rule permits reasoning on these interface

operations to capture the intended functional logic of the shipment, as described
informally in the corresponding business rule.

coordination intarfaca CustShipCI
partnar typa CUSTOMER
aarvicas
AddressCst(): address

and

coordination intarfaca ProvShipCI
partnar typa PROVIDER
sarvicas

AddressProv():Address
AccountPrv()

events
ask4Ship(i:Item,Qt:nat,

Loc:address)
and

coordination intarfaca ShipPrCI
partnar typa Shipment Provider
aarvicas

ShipPriceO: Money
ShipAccept(): Boolean
AcceptShip(i:Item,Qt:nat,Loc)
Cancelled()

and

coordination intarfaca BankShipCI
partnar typa BANK
sarvicas
AccountShPr()
AccountPrvO
ToPayO : (AccountPrv,AccountShPr,

Money)
end

coordination law ShipmentCL
partners

Ct:CustShipCI ; Pr:provShipCI ; Bk.bankShipCI ; ShPr.shipPrCI
rule shipment in coordination
whan Pr.Ask4Ship(i, Qt, Loc) do
if ShPr.ShipAccept() = true than ShPr.AcceptShip(i,Qt,Loc)and

Bk.ToPay(AccountPrv, AccountShPr, ShPr.ShipPrice())
else

ShPr.Cancelled()
and

Figure 4-10. Required interfaces and coordination law for the Shipment activity.

4.8.4.2. The management concerns in the shipment activity
The management-driven business rule for the shipment activity can be described

informally as follows:
1. The shipment provider has the right to accept or reject the shipment

requested by the provider.
2. When the shipment request is accepted, the provider has to agree to

pay the agreed amount for such a shipment.

3. The shipment’s duration should be less than the total delivery time
agreed between the customer and the provider.

4. Depending on the type of shipment (special or normal), the distance
between the provider and the customer, and the weight of the shipped

PCs, different formulae for either refund or extra payment must be
agreed on.

The management law itself is derived progressively as depicted in figure 4-11.

The management interface from the customer MaCuShM for this business
activity should expose at least one operation to specify the address needed to

deliver the goods -AddressCstQ.

The management interface from the provider MaPrShM first identifies the

triggering event for the management law, that is the request for shipment -

Ask4Ship(i:Item,Qt:nat). Further required operations are: (1) the delivery time -
DeliveryTmO; (2) the provider bank account - AccountPrvO; (3) the provider address

- AddressPrvO', and (4) the required shipment type - Requiresh typeO', the shipment

price - ShppriceO', and provider history - HistShPrO•

The management interface from the bank denoted by MaBaShM exhibits at
least three operations: (1) the shipment provider bank account - AccountShPrO; (2)

the provider bank account - AccountPrvO’, and (3) the amount to be refunded -
ToRefund(Account, Account).

The management interface to be exposed by the shipment provider is denoted
by MaShPrShM and offers the following operations: (1) the time for shipment -

ShipTimeO’, (2) the shipment type - ShipTypeO; (3) the shipment price -

- 100 -

ShipPriceQy (4) the shipment provider bank account amount - AccountShPrQ; and

(5) the managing of the shipment - ManageShipmentQ.

management intarfaca MaCuShMI
partnar typa CUSTOMER
sarvicas

AddressCst <):Address
and

managamant intarfaca MaPrShMI
partnar typa PROVIDER
sarvicas

DeliveryTmO : Time
AccountPrvO: Money
AddressPrv(): Address
RequireShtype()
ShpPrice(): Money
HistShPr(): List(operatios)

events
Ask4Ship(i:Item,Qt:nat)

and

managamant intarfaca MaBaShMI
partnar typa BANK
sarvicas

AccountShPr()
AccountPrvO
ToRefund(AccountPrv,

AccountShPr)
and

managamant intarfaca MaShPrMI
partnar typa ShipmentPr
sarvicas

ShipTime():Time
ShipType()
ShipPrice0:Money
AccountShPr()
ManageShipment()

and

managamant law ShipmentML
partnars MgCt:MaCuShMI ; MgPr:MaPrShMI ; MgShPr:MaShPrShMI
rula Shipment in management
whan MgPr.Ask4Ship(I,Qt,Loc,ShipType) do
at-tima MgPrSh.ShipTime ()<=MgPr. DeliveryTmO and

MgShpr.ShipType()= MgPr.RequireShtype()and
MgPr.ShpPrice()= MgPrSh.ShipPrice()

manage MgPrSh.ManageShipment()
alsa MgPr.HistShPr()
and

Figure 4*11. Required interfaces and management law for the Shipment activity.

The management law ShipmentML on the arrival of the shipment event,

checks the timing constraints between the requirement of the customer and the
ability of the provider. It also checks for the compatibility of the types of the to-

be-shipped goods (PCs) between the requester and the provider. Finally, the price
given by the provider for shipment should be equal to what is asked by the
shipment provider. In such cases, the shipment is declared to be managed.

-101 -

4.8.5. Payment Activity: Rules, Coordination and Management Laws
The Payment intentional business rule: This conversational business process

ends with the definitive payment process. First, the customer has to pay the

provider the agreed total price for the delivered PCs. Depending on the output of
each of the above activities in terms of refunding amounts, penalties, and so on,
either on the side of the customer or the provider, such refunds have to be

completed at this stage by bank transfer. This last operation is subject to the
condition that the PCs are received in time (i.e., received at a time earlier than the

delivery time).

4.8.5.I. The coordination concerns in the payment activity
At the end of any business transaction, and for the PCs Selling case study in
particular, the payment activity comes as an important stage in the business

process. In this activity, all promises and penalties from both sides (the customer
and the provider) should be completed, depending on what was agreed.

This conversational business process ends with the definitive payment process.

1. First, the customer has to pay the provider the agreed total price of the

delivered PCs.

2. When the provider has agreed to deliver the PCs and the customer has

received the agreed quantity and item type at the agreed price, the

customer has to pay the amount due by bank transfer.

This business rule is expressed formally in terms of the following coordination
law.

The coordination interface from the customer CustPayCI for the payment

activity should expose at least: the bank account number of the customer -

AccountCstO’, and details of the items received - Received(Item-Rc, Qt-Rc,Price-Rc).

The coordination interface from the provider ProvPayCI, besides triggering
payment through the Ask4Payment() event, exposes the provider’s bank
account details as an operation - AccountPrvO.

The coordination interface from the bank BankpayCI exhibits the following

operations: (1) the customer’s and provider’s account numbers must be provided -

AccountCstQ, AccountPrvO; and (2) the agreed amount must be transferred from

the customer’s bank account to the provider’s bank account - ToTransferQ:

(AccountCst, AccountPrv,Money).

The payment rule for the coordination concerns PaymentCL ensures that all
requested items indeed are received by the customer with the agreed quantity and

price. In such a case, the customer is required to proceed to the transfer of the total

amount.

coordination intarfaca CustPayCI coordination intarfaca ProvPayCI
partnar typa CUSTOMER partnar typa PROVIDER
sarvicas sarvicas
Received(i-Rc,Qt-Rc,Price-Rc) AccountPrv()
AccountCust() avants

and Ask4payment()
and

coordination intarfaca BankPayCI
partnar typa BANK
sarvicas

AccountCst ()
AccountPrv()
ToTransfer:(AccountCst,

AccountPrv,Money)
end

coordination law PaymentCL
partners Ct: CustPayCI; Pr: ProvPayCI ; Bk: BankPayCI
rule payment in coordination
whan Pr.Ask4Payment()do
if Ct.Reiceived(i-Rc,Qt-Rc,Price-Rc) and Ct.Item-Rc =i and

Ct.Qt-Rc = Qt and Ct.Price-Rc= Price
than Bk.Totransfer(AccountCst, AccountPrv,Price())
and

Figure 4*12. Required interfaces and coordination law for the Payment activity.

4.8.5.2. The management concerns in the payment activity
The management-focused business rule for the payment activity can be

formulated intuitively as follows:
This conversational business process ends with the definitive payment process.

1. First, the customer has to pay the provider the agreed total price for the
delivered PCs.

2. Depending on the output of each of the above activities in terms of
refunding amounts, penalties, and so on, either on the side of the

customer or the provider, such refunds have to be completed at this

stage through bank transfer.
3. This last operation is subject to the condition that the PCs are received

in time (i.e., the received time is less than the delivery time).
4. Finally, when the conditions are violated, the customer records this as a

failed operation.
The corresponding management law as depicted in figure 4-13 involves three

interfaces: one for the customer, the others for the provider and the bank.

Managamant intarfaca MaCuPaM
Partnar typa CUSTOMER
Sarvicas

ReceivedTime():Time
AccountCst(}
HistPrvO :List (operations)

and

Managamant intarfaca MaPrPaM
Partnar typa PROVIDER
Sarvicas

DeliveryTmO : Time
AccountPrv()

avants
Ask4payment()

and

Management interface MaBaPaMI
Partner type BANK
services

AccountCst ()
AccountPrv ()
ManagePayment()

end

Management law paymentML
Partners MgCt : MaCuPaMI ; MgPr : MaPrPaMI;MgBk : MaBaPaMI
Attribute PenaltyPercent : Percent
Rule: management Payment
when MgPr.Ask4Payment()do
at-time MgCt.ReceivedTime()<=MgPr.DeliveryTm()
manage MgBK.ManagePayment()
else

MgCt .HistPrvO
end

Figure 4-13. Required interfaces and management law for the Payment activity.

The customer management interface is denoted by MaCuPaMI. Three
operations are needed: (1) the goods received time - ReceivedTimeQ; (2) the
customer bank account - AccountCust()\ and (3) the previous history for the
current provider - HistPrvQ.

The provider management interface identifies an event -

Ask4Payment(),which will be used as a trigger in a law. This management
interface is denoted by MaPrPaMI. Two operations are denoted as follows: (1) the
delivery time - DeliveryTmO; and (2) the provider bank account - AccountPrvO.

The bank management interface is denoted by MaBaPaMI. Three operations

are denoted as follows: (1) the customer bank account - CustomerCstO; (2) the
provider bank account - AccountPrvO; and (3) the managing of payment -

Manage?aymentO.

4.9. Chapter Summary

To conclude this chapter, it again is emphasized that business processes require
the cooperation of several organizations; this presents challenging problems such

as adaptive coordination and interaction, suitable handling of management issues.
Service-oriented Architectures (SOAs), as infrastructures, together with their Web

services, are proposed in [RW02, RD05a, Rf)05b, RND05] as useful platforms for
deploying such modem business processes. Nevertheless, with the growing scale

and complexity of service-driven applications and business processes, need

rigorous approaches at an early stage when considering business requirements.
We proposed a stepwise approach based on business rules, architectural

techniques, and a separation of concerns. In this approach, interaction and
management concerns are elicited separately as ECA business rules and then

modelled, validated, and evolved as architectural connectors following an event-
driven methodology. To reflect the semantics of business activities, both concerns
then are integrated in a smooth and clear way. These ideas and concepts are

illustrated using a case study dealing with the selling of PCs.

The next chapter will address enhancing the practicability of this architectural
approach. In particular, it will investigate how both coordination and management

laws should profit best from Web technology, without losing their main strengths
and features.

CHAPTER FIVE
CHAPTER FIVE... 106
Chapter 5 107

Web Service-based Management laws..107
5.1. From Conceptual MLaws toward WS Technology: Motivation and

Translating Milestones..108
5.2. RuleML and RJ3SLA: An Overview..112

5.2.1. RuleML: Overview and Illustration... 113
5.2.2. RJBSLA: Focused Overview with Illustration...............................113

5.3. Management/Coordination Interfaces into WSDL..............................116
5.3.1. Management in WSDL: Illustration.. 117

5.4. From Management Laws to RBSLA-driven Web Services................. 117
5.4.1. The Detailed Translating Mechanisms.. 119

5.5. A Supporting Tool for Automating the Translation............................124
5.6. Chapter Summary 126

Chapter 5

Web Service-based Management laws
In the previous chapter, we put forward a stepwise approach for specifying and
evolving interaction and management concerns in service-driven business oriented

architectures. At the business level, the approach is governed through event-
driven and business rules. At the conceptual level the approach moves toward
service orientation through architectural connectors, i.e. coordination and

management laws. These architectural laws already move the process one step
closer to service orientation. Indeed, on one hand, with their explicit interfaces
composed of messages/events and properties/attributes, both management and
coordination laws capture the concept of service interfaces. Qn the other hand, the

ECA rules governing such laws express the orchestrated exchanges of messages

while composing such services (interfaces).
This chapter aims to present the proposed approach and support its compliance

with service-oriented techniques: event-driven, communication through interfaces,

message-based composition, activity- and process-centricity. More precisely, this

chapter concentrates on “conceptually compliant” moves of both management and

coordination laws toward Web Service technology. Conceptually compliant
means the preservation of strengths and advantages of this approach, including
explicit separation of concerns, activity-centricity, flexibility, and being ECA

driven.

Indeed, whereas the fine-grained activity level is the suitable conceptual level,
WS standards focus on the holistic business process level. Moreover, the aim is to

push for persistent ECA-driven behaviour; WS standards allow only message
exchanges with basic conditions on variables. Finally, this work is looking for

dynamic and evolving management and coordination concerns through transient
connectors and WS standards such as WSDL and BPEL.

To overcome the above limitations of Web Services standards, related fields
were explored, such as the semantic web [MPM+04, BHL01] as well as ongoing

- 107 -

innovative emerging approaches at the research level handling missing issues such

as the integration of Web-Services and business rules [OYP03, Pap03, CM04].

These explorations have allowed the preservation of the potentials of the
deployment approach using WS-based deployment. The main ingredients for the

deployment of this approach consist of: (1) exploiting the potential of available

XML-based reactive RuleML languages, and mainly their management-oriented
variant called RBSLA; and (2) benefiting from recent ideas of bringing such

RuleML-based languages to Web services.
The rest of this chapter is organized as follows. In the next section motivation

is brought to the proposed deployment approach and its translation steps. In the

second section, all concepts about the required ingredients such as RuleML and
RBSLA are presented. The third section, with the support of one of the business
activities of the PC Selling case study, details how the interfaces for
management/coordination laws are translated to WSDL. In the fourth main

section, details are given of how different concepts and ingredients of

management law are translated into RBSLA mechanisms. Since RBSLA
inherently includes all RuleML mechanisms, we will just hint at the

straightforward mapping of coordination laws towards RuleML as a direct result
of the proposed translation of management laws. In the fifth section, the software

prototype implemented for editing management law and automating the

translation is presented. The chapter concludes with a summary of its main

contributions.

5.1. From Conceptual MLaws toward WS Technology:
Motivation and Translating Milestones

In this process we have aimed to preserve the following main capabilities and
advantages of our architectural approach to management concerns:

Explicit separation of concerns: In the proposed architectural approach, not all

concerns are put together in a way that follows the semantics of business activity.
Instead, this integration of concerns is postponed and thus a Web-based
implementation is derived first for each concern separately. This allows the

- 108 -

performance of additional concrete testing. After such separate testing of each

concern, the integration of coordination and management concerns around their

corresponding activity semantics then takes place.
ECA-driven pattern: As was emphasized in the previous section, the event-

driven character of the proposed architectural approach represents the main

building stone for enhancing adaptability, and invocation as event-based
(business) rules. Although most Web standards, such as BPEL, WSDL, or WSCI,

are not explicitly event driven, this gap has been investigated recently by the Web

Semantics community, leading to Reaction RuleML1 [PKJ307] as a sub-language

of the RuleML language family [B0IO6]. These recent advances around RuleML

are respected, while translating the approach to the Web-based implementation.
To preserve one main essence of the management laws, it was necessary to
investigate the state of the art and literature about the Semantic Web, since they
annotate services with richer semantics. It was found that the XML-based
RuleML language and its extensions toward Reaction RuleML fulfil most

requirements on preserving the ECA setting of activity-centric
coordination/management laws. From the coordination perspective, RuleML

definitely caters to all involved ECA clauses, namely, the events, conditions, and

actions to perform.
Web Service-based deployment of rule-based management laws: To

emphasize the service orientation of this Web-based deployment of management
laws effectively, each management law (also coordination law) was considered as

a Web service, with inherent interfaces such as WSDL required protocol

descriptions and the rules themselves as business-logic (called management-logic)
protocols that both providers and requesters must adhere to. In this way,

everything becomes highly transparent and network-centric, whereby the
management laws are agreed or disagreed on conversationally. These RBSLA-
based management laws as Web services could be owned, preferably by the

1 http://ibis.in.tum.de/research/ReactionRuleML/

- 109 -

http://ibis.in.tum.de/research/ReactionRuleML/

provider that handles management concerns between services (providers and

requesters).
Activity-centric compliance: Finally, in contrast to BPEL and WSCI, which

are limited to elementary coordination activities such as invoke, send, and receive
(the so-called composite activities are just basic ordering activities), the complex

application-related business activities as were achieved at the architectural level
must be described explicitly. For that purpose, with the support of different
variants of RuleML languages, the approach supports separating implementation

of activities (by bringing all their concerns) and then projects their causal/timing

ordering.
As depicted in Figure 5-1, putting into force all the above necessary

ingredients and deployment decisions results in a progressive and conceptually-
compliant supporting approach for deploying both management and coordination

laws. More precisely, as illustrated in the figure, at least five mandatory steps are
to be performed.

Step 1 - From Coordination interface to corresponding WSDL: As hinted at
above, the fact that both management mid coordination laws are explicitly

associated with interfaces, this translation is more or less straightforward, as will
be illustrated later.

Step 2 - From Management interface to corresponding WSDL: This

translation is like the one above and presents no difficulties. It is illustrated later

through a business activity from the case study.
Step 3 - From Coordination rule to corresponding RuleML: At this stage it is

proposed to translate the ECA conceptual coordination rule into a similar but
programmable rule using the RuleML language.

Step 4 - From Management rule to corresponding RBSLA: To keep all

peculiarities of management rules, particularly the at-time and the who
characteristics, it is proposed to translate ECA conceptual management rules into
the RBSLA language. The proposed translating ideas are detailed in the main
section.

-Ill-

_ l (A <S>
C S>

—I <J>4-. (Ac s>P a r t n e r l P a r tn e r2

JJ, .[1. Translating steps
conformconform R B S L A -M a n a ^ -a w R uleM _-C oardL aw

a>
R B S L A -B ased

(B ehav ioura l)
W eb -S erv ices
(for M a n a g e m e n t)

T3 £ a> a>
!S S’

R ule M L- B ased
(B ehavioral)

W eb -S erv ic es
(for c o o rd in a t io n)

W SD L-Interface
(Provider)

W SDL-Interface
(Provider)

d>CT)

W SD L-Interface
(C ustom er)

W SD L-Interface
(C ustom er)

a>a>

a> •*-
CO

X M L -b ased p ro g ram m ab le In tegration o f (m a n a g em e n t la w and co o rd in a tio n) serv ices (b eh av io u ra l)
fu n c tio n a lities a ro u n d activ ities and p ro cesses

a>a>

Figure 5-1. The General Approach Architecture for Deploying MLaws using WS Technology.

Step 5 - Coordination/Management laws as rule-centric Web Services: This

phase was inspired by the approach proposed recently by Dustdar et al., namely

the ViDRE [RND06] architecture as graphically illustrated below. The crucial

contribution consists of conceptualizing RuleML-based business rules as Web

Services that can be described, published, and composed (i.e. combined) at the

wish of the customer in this case. Each rule is associated with a WSDL interface

(containing the involved messages) and the rule itself can also be accessed as a

Web service. This capitalizes on this proposal to lever the RBSLA-translated

management/coordination laws to be conceived as Web Services, so that they can

be integrated subsequently, as was done at the conceptual level to reflect the

semantics of each business activity. In contrast to RuleML-based business rules

on which ViDRE is based, the proposed management/coordination laws are

already associated with (management/interfaces) interfaces.

ViDRE Client A ViDRE Client B

ViDRE Service Provider A ViDRE Service Provider B

ViDRE Admin s o a p q **■**!. WSDLWSDL

RuleML Query

I S OAP -R uleML |
WSDL | Gateway | r j c ML

JDBC

JE SS OROOLS

SOAP

Figure 5-2. The ViDRE Approach Architecture as given in [RND06].

5.2. RuleM L and RBSLA: An Overview

In this section, before delving into the detail of the proposed deployment approach

for management / coordination laws, we first present a brief overview of the

RuleML language elements. Then, since we already summarized in chapter three

most general-purpose concepts around RBSLA as a language for SLAs, we devote

- 112 -

the second sub-section to the study of most specific RBSLA concepts that will be

playing important role in the translation of management laws.

5.2.1. RuleML: Overview and Illustration
With the increasing need for describing and reasoning the semantics of Web-

based information and services explicitly, and the limitations of standards such as
WSDL, BPEL, and others in representing knowledge-intensive rules, much effort

has been invested recently in the so-called semantics Web, aimed at developing

rule-based standards. RuleML belongs to the XML-based standard for expressing
rules on the Web [RD05, TWB03]. The fundamental ingredients of the Derivation

RuleML, part of the RuleML language family, can be summarized as follows
[B0IO6, Rul06]:

[Predicate]: is an n-ary relation introduced via an <Atom> element, which has
the following form: Atom(Rel, (Ind|Var|Data|Expr)*): where <Rel> is the relation

(predicate) name, <Var> are variables to be instantiated when the rules are

applied, <Ind> individual constants/objects, <Data> data values, and <Expr>
complex expression.

[Derivation rules]: as in logic programming, rules in RuleML as instance of

derivation rules, e.g. hom clauses, that is, a conjunction of (possibly negated)
premise predicates and a conclusion: H B1 A... A Bn A ~Bn+l A... A ~ Bm .

Syntactically, in RuleML, they are represented as follows:

Implies ((head,body)|(body,head))
body(And) head(Atom)
And(Atom+).

[Facts]: are stated as atoms considered always being true. Their syntax is
Atom(Rel,(Ind|Var|Data|Expr)*).

5.2.2. RBSLA: Focused Overview with Illustration
The main concepts and principles of RBSLA that are of interest to the
management laws translation proposal can be summarized as follows:

Explicit Temporal Qualification of ECA Reaction Rules: RBSLA extends
the ECA paradigm stemming from the active database domain with additional

- 113 -

parts such as a pre-condition part, which is used to specify, e.g. the triggering time

of the event detection or event monitoring, or a post-condition part that specifies

the conditions (e.g. integrity constraints) after the action execution. More

precisely, the general logical form of global ECA rules in RBSLA consists of the
following: eca (Time, Event, Condition, Action, Postcondition, Else), where

the clauses of Event, Condition, Action, Postcondition and Else correspond
closely to the primitives in management or coordination laws. It should be

mentioned here that, besides ECA-driven Mid messaging reaction rules, RBSLA

also allows production rules (condition-action rules), derivation rules of die form
IF-THEN-ELSE and mixed forms between reasoning derivation rules and active
reaction rules, such as serial derivation rules (e.g. serial Horn rules).

Deontic Normative Relations : As (service-level) agreements mean not just
describing rules and actions but also enforcing them, RBSLA is associated with a

set of deontic primitives to express and enforce normative relationships such as

obligations, permissions, and prohibitions between contract partners. The general

construct is norm(S,0,A), where S plays the role of the subject (requester), 0 the
object (provider), and A the corresponding action to be performed. Normative

statements in RBSLA are expressed as modality functions and relations by the
attribute per = "modal," i.e. a function or relation with "modal" use interpreted as

modality. Example: If obliging a customer to pay a penalty to a provider, this is

expressed in RBSLA as shown in table 5-1.

Normative modalities in RBSLA typically are embedded in a temporal KR

event/action logic (Event Calculus axioms) where the norms are managed as
changeable states, which are initiated and terminated by happened events/actions
time, using two additional constructs denoted by Initiates and Terminates. This

approach helps to overcome well known paradoxes of standard deontic logic and
allows temporal state tracking of the valid contractual rights and obligation at a
time.

- 114 -

<Expr>
<Fun per="modal">oblige</Fund>

<Var>Customer</Var>
<Var>Provider</Var>
<ExprXFun>pay</FunXVar>Penalty</Varx/Expr>

</Expr>

Table 5-1. Example oblige a customer to pay penalty.

Procedural attachments: First, recalling that SLA and policy expressions deal

in essence with aggregated and correlated information, such as
number/frequency/percent of requests/selling of a given item/product, frequency

of availability of product offered on a web site, etc. This data is system-based; that
is, it relates to information collected on the IT infrastructure level. Typically,

these kinds of data measurement and data processing are done in highly optimized
and specialized systems, such as system and network management tools and data
bases/data warehouses. To access these systems at run-time and use the low-level

raw system information or the aggregated high-level business data dynamically,
RBSLA supports expressive procedural attachments to call external APIs
seamlessly and use their efficient procedural functionalities and query capabilities.

<!— Bind the constructed Java Calendar object with the
actual system time to the variable Date =
java.io.Calendar.getInstance() — >
<Equal>
<Var>Date</Var>
<Expr>

<!-- class — >
coidxind uri="java: / /java .util.Calendar"/></oid>
<!-- constructor — >
<Fun per="effeet">getInstance</Fun>

</Expr>
</Equal>

Table 5-2. Example of procedural attachment.

In management law, the who primitive is required for expressing
implementation-related knowledge such as the history of operations or the

preference o f provider/customer, which basically depend on the history of the
running components’ configuration services. Therefore, these issues are not
addressed on this level of abstraction.

Moreover, typical SLA domain specific vocabularies and elements are well

represented as metrics in RJBSLA; therefore, it fits with the SLA-based

requirements in our management law.
Finally, it should be emphasized that invariants also can be expressed in

RJBSLA, using the so-called fluents (changeable states represented by an Event

Calculus axiomatization) and query primitives such as holdAt and valueAt. These

are useful in the presence of invariants in the management of coordination laws.

5.3. Management/Coordination Interfaces into WSDL

Proposed by W3C, the Web Service Description Language (WSDL) is an XML-

based standard for describing Web services interfaces. WSDL descriptions are
composed of interfaces and implementation definitions [CGM+04, HHL04].
Interfaces are abstract and reusable descriptions that can be referenced by multiple

implementations.
As described in Chapter Two, a WSDL document defines services as

collections of communication endpoints capable of exchanging messages.
Elements used in the definition of services include: type as a container for data

type definitions; message as a description of data being communicated; operation
as the definition of an action; set of operations as port type protocol; and data
format specification for port type to allow the reuse of abstract definitions, port,

and services. The most important WSDL element is the <portType>; it describes a
Web service through the operations that can be performed and the messages that

are involved.
The translation of management and coordination interfaces into WSDL

programs could be seen as a simple exercise. Indeed, both management and
coordination interfaces manipulate exactly the same elements, such as interface
names and (input/output) messages. Table 5-3 depicts this trivial translation. As
an illustration, the translation of the request management law interfaces is

presented below. Events are considered as inputs from the law point of view. The
operation can be output only or input/output, depending on the existence of the
return type of the service.

- 116 -

Management (Coordination) Interface
' ■ WSDLtoterfa“

Interface name definitions name>
Parinertype * <servlce name>
Event driput message>
Services ' 4 <input / output messaee>

Table 5-3. Translation of management law to WSDL.

5.3.1. Management in WSDL: Illustration
Applied on the request activity of the PC Selling case study, the corresponding

two interfaces thus are translated into corresponding WSDL as follows.

.......................

RequestML

CustReqMI

management interface MaCustReqMI
partnertype CUSTOMER
events request (i:ltem,QLnat)
operations TmRep(), RqHrs() :Time

RqDay():Day,
PreferUstPrv(), HlstoryPrv :l,ist(ops)

end

PrvReqMI

management interface MaProvReqCI
partnertype PROVIDER
operations NamePrv(): Name ,

TmRepLm():Time, DeliverTm() :Time,
WrkDays():List(days), WrkHrs{),
MgRquest(nRequest)

end

Corresponding WSDL -i-
<definitions name = "CustReqMI-'

xmlns = 'http://schemas.xml.soap.org/wscll/">
«service name = "Customer’̂
<message name=“requast">

<part name=“ltem” type='*xsd:ltem7>
<part name=‘‘Qt" type=‘'xsd:positlvelnteger”/>

</ message >
<message name=”TmRep">

<part name='*time“ type="xsd:time7>
</message>
<message name=“RqHrs*>

<part name=‘Hour" type-‘xsd:time7>
</message>

<portType name =" CustReqMIPort">
<operatlon name="placeRequestMI“>

<lnput message = "wsdlns:request7>
<output message ="wsdlns:TmRep7>

</operadon>
</portType>
</definitlons

<definlttons name - “MaCustRsqMI"
xmlns = 'http://schemas.xml.soap.org/wsdl/”>

<serv!ce name = “Provider”>
<message name=‘‘NamePrv">

<part name=‘'name" type=‘-xsd:string7>
</message>
<message name="TmRepLmH>

<part name-'flmeRp" type=“xsd:time7>

</message>
<message name="DellverTm">

<part name=”timeDr type=“xsd:time7>
</message>

<portType name = ’ PrvReqMIPort">
<operation name-"recelveRequestMr>

<output message =“wsdlns:NamePrv7>

<output message =“wsdlns:MgRequest7>
</operation>

</portType>
^/definitions

Figure 5-3. WSDL interface for the Request activity.

5.4. From Management Laws to RBSLA-driven Web Services

This section presents the details of the corresponding RBSLA concepts/primitives
for each clause in management law.

- 117 -

http://schemas.xml.soap.org/wscll/
http://schemas.xml.soap.org/wsdl/%e2%80%9d

Recalling these management clauses, the corresponding RJBSLA translations

are presented. Management laws are in fact composed of the following clauses:

(1) the management interfaces; it already has been shown how they can be

codified using the WSDL Web Service Interface standard; (2) the involved
partners, such as the provider and the requester, who have to enter into a contract
partnership; (3) the management rule, which itself is composed of the following:

• the triggering event with all its parameters;

• the timing constraint, which has conditions reporting on timing issues;

• the who clause, which has conditional part concerns regarding the

preferences of the customer or the provider, as well as giving a history
of operations in the business activity concerned; and finally the actions

to perform.
A management law contains one or more management rules, which are of

ECA structure. Each management rule identifies, under the “when” clause, a

trigger to which the contract will react; the trigger can be just an event observed

directly by one of the partners or can be a more complex condition built from one

or more events. Management has extra clauses like “who” and “at-time”, which

address management concerns. The former are related to partner preferences and
operation histories, and the latter provide conditions on time issues. The reaction
to occurrences of the trigger is identified under the “manage” clause as a set of
operations. If any conditions pertain other than the “when” clause condition, then
the manage clause is not performed and the optional clause “else” will be fired
(see Chapter 4, Section 4.5.1.1).

The main objective of this chapter is to move management laws to Web
services architecture to make use of widespread Web service technologies in the

realm of distributed systems [AFP07]. RBSLA has been found to be the suitable

tool to extend management laws to XML-based Web service extensions.
Although RBSLA seems quite similar to management laws in many aspects,

they fundamentally tackle triggers and time issues in totally different ways and it
is closer to the platform-specific layer than our management laws, which abstract
from the technical perspective in a computational independent view. Therefore,

the next section is devoted to discussing this issue and to presenting a pragmatic

solution for it.

5.4.1. The Detailed Translating Mechanisms
The focus of this section is using RBSLA language for authoring formal rules for

management laws via a set of uniform translation rules. More specifically, rules
written in management laws are taken as input, parsed into RBSLA.

As mentioned before, a management law has various primitives, each of which

has a clause that contains statements. A statement can be an event, a condition, or
an action. Each may contain partner references, methods, and parameters.

Moreover, statements may contain arithmetic, comparison, and list operations.
Following the generic pattern for management law presented in the previous

chapter and as recalled in Table 4-8, the EBNF syntax for the management law is
shown in Table 5-4.

Management law name
partners

{management interfaces}*
types {{par}+:data_type}*
rules
when trigger
who conditions //on partner preferences and histories
at_time conditions //on time issues
Manage {operations}*
else {operations}*
end law

Table 5-4. The EBNF syntax for the management law.

Reaction RuleML (version 0.2), which evolved from the reaction rules event
handling in RBSLA (i.e. ECA RuleML), integrates external API calls and service

invocations as Boolean-valued atomic functions <Atom> if calls return a Boolean
value or as functional expressions <Expr> if calls return one or more objects. The
translation rules are shown in Table 5-5.

- 119 -

Management law RBSLA
When event <on> <!— event —> </on>
event <dn > <Atom><!— event -x /A to m x /o n >
Who
conditions on partner
preferences and histories

<if> <!— condition --> </i£»

at-time condition on time
issues

<i£> <!— condition --> </if>

condition <if > < A to m x !~ condition ~></A tom x/if>

Manage action <do> <!-- action —> </do>
action «*o> < A t6 m x !~ action --></Atomx/do>
X.Y ({parm: data type}*)

X Partner reference <Ind uri=”* “/>

Y method <oTd> <!— method name --> </oid>
P = ({parm: data type}*) <Var>P<fVar>
List operations

In //Set operation <Rel per=“value”>In</Rel>
companson

< <Rel per=“value”>LessEqual</Rel>
< <Rel per=“value’̂ >Less</Rel>
> <Rel per=“vahie”>More</Rel>
> <Rel pe’r=“value”>MoreEqual</Rel>
= <Rel per=“value’’>fequal</Rel>
Arithmetic operations

+ <Rel per=“value”>Add</Rel>
- < R elper= “value”>Sub</Rel>
* <Rel per=“value”>Nlult</ReI>
/ <Rel per=“value”>Div</Rel>Tr

iable 5-5. The translation rules.

[MLaws Event ■) RBSLA Event]: Both management laws and RBSLA global
reaction rules are based on the ECA concept; therefore, they share the idea of

anchoring on events by assuming that each management law trigger refers to a
corresponding RBSLA trigger. Example: Recalling the management rule for the
request activity as detailed in the previous chapter:

- 120 -

management law RequestML
partners MgCt:MaCuReMI; MgPr:MaPrReMI
when MgCt.Request(i, Qt)
who MgPr .NamePrvO in MgCt .PreferListPrvO
at-tine

MgCt.deadline()£ MgPr.TmRepLm()and
MgCt .OrdHrs () in MgPr .WrkHrs () and
MgCt.RqDayO in MgPr.WrkDays()

manage MgPr.ManageRequest()
else MgCt.Add(HistPrv,Cancel)

end

Table 5-6. Management law for Request activity.

Event in R3SLA represents in <on> tag. MgCt is an object reference to the
customer interface (denoted by its URI) that can be translated into <oid> as
individual constant <Ind>. The operation Request should be translated into the
relation tags <Rel> in which the option per - 'effect" can be used to interpret both
the value and the (side)-effect of them. The variables i and Qt are represented by
variable tag <Var>. The complete example for event translation is shown in table
5-7.

Event in MLaws Event in RBSLA

when MgCt.Request(i,Qt)
<on>

<Atom>
< 0 idx lnd uri= ”MgCt”/x /o id >
<Rel per=“effect”>Request</Rel>
<Var>i</Var>
<Var>Qt</Var>

</Atom>
</on>

Table 5-7. Example for Event translation.

[MLaws Who clause RBSLA]: As explained in the previous sections, the
valuation and assessment of history of previous operations and preferences of
providers/customers can be checked by using the if condition.

The full example with explanation is shown Table 5-8.

Who condition in
MLaws

W ho condition in RBSLA

who MgPr.NamePrvO
in
MgCt.PreferListPrv()

<i t>
<Atom>

<!— Boolean relation, which is interpreted —>
<Rel per="value">in</Rel>
<!-- First argument o f in function —>
<Expr>

<!— uri pointer to external object or class ~>
< o id x In d uri="M gPr"/x/oid>
<!— method/function call of the object/class -->
<Fun per="effect">NamePrv</Fun>
<!-- arguments; here no argument —>

</Expr>
<!— second argument of in function -->
<Expr>

< o id x ln d uri="M gCt"/x/oid>
<Fun per="efFect”>PreferListPrv</Fun>

</Expr>
</Atom>
</it>

Table 5-8. Example for "WHO" condition translation.

{MLaws Timing Constraints -> RBSLA Timing Constraints]: The at-time
management law clause can be translated into a condition clause of RBSLA
language by using the <i£> tag. Multiple conditions can be connected via the

<and> tag. The function tag <fun> is used to call external operations from
interfaces and compare them, using comparison operators. In the example, there is

deadline, work hours, and work days as conditions, illustrated in Table 5-9.

[MLaws Manage clause -> RBSLA actions]: Finally, the manage clause
represents no difficulty, since it corresponds clearly to actions to be performed

and thus can be codified directly, using an RBSLA actions clause with the ECAs
rule. In RBSLA, tag <do> is used to represent the action and, like the other part in

RBSLA, the same tag is used to represent the partners and operations. The
example for condition is shown in Table 5-10.

The full example for management law in RBSLA can be presented as shown
in table 5-11.

- 122 -

Time in MLaws Time conditions in RBSLA

at-time
MgCt.deadlineO <
MgPr.TmRepLmO
and
MgCt.OrdHr0to
MgPr.WrkHrsO
and
MgCt.RqDayOin
MgPr.WrkDaysO

< t>
<Atom>

<Rel use=“value”>LessEquai</Rel><ExprXoidxInd
use=“MgCt”/x /o id x F u n use= “efTect”>deadline
</FunX/Expr>
<ExprXoid><Ind per=“MgPr”/X /o id x F u n per®
“effect”>TmRepLm</F unX/Expr>

</Atom>
<Atom>

<Rel per=“value”>in< /R elxE xprX o idx Ind uri=
“M gC f’/x /o id x F y n per® “effect”>O rdH r </Funx/Expr>
<Expr><oidxlnd per=“MgPr”/X /o id x F u n per®
“effect”>W rkHrs</Funx/Expr>

</Atom>
<Atom>

<Rel per=“value”> in< /R elxE xprX oidxInd uri®
“M gCt”/X /o id x F u n per®“effect”>RqDay</Fun> </Expr>
< E x prX o idx lnd per=“MgPr”/X /o id x F u n per®
“effect”>W rkDays</Funx/Expr>

</Atom>
</i£>

Table 5-9. Example for At-Time translating.

Manage condition in MLaws M anage condition in RBSLA

manage MgPr.ManageRequestQ
<do>

<A tom >
< o id x ln d uri=”M gP r”/x /o id >
<Rel per= “effect”>M anageR equest< /R el>

</A tom >
</do>

Table 5-10. Example for Manage translating.

- 123 -

<Rule execution - *active”>
<label><Expr><Rel>name</RelxInd>RequestML</IndxExpr/x/label>
<on>

<Atom>
< oidxInd uri= ”MgCt”/x /o id >
<Rel per= “effect”>Request</Rel>
<Var>i</Var>
<Var>Qt</V ar>

</Atom>
</on>
<if>

<And>
<Atom>

<Rel per=“value”>in</RelxExpr><oid><Ind per=“MgPr”/ix /o id x fu n per=
“effect”>NamePrv</fun></Expr>

<E xprX oidxlnd per“MgCt”/X /o id x fu n per= “effect”> PreferListPrv
</funX/Expr>

</Atom>
<Atom>

<Rel per “value”>L essEqual</R elxE xprX oidxInd per“MgCt”/x /o id x fu n
per= “effect”>deadline </fun></Expr>

<E xprX oidxInd per“MgPr”/X /o id x fu n per=
“effect”>T mRepLm</funX/Expr>

</Atom>
<Atom>

<Rel>in</RelxExpr><oid><Ind uri= “MgCt”/x /o id x fu n per=
“effect”>OrdHr</funX/Expr>

<E xprX oidxlnd per“MgPr”/></oidxfun per=
“effect”>Wr kHrs</funX/Expr>

<Atom>
<R el>in</R elxE xprX oidxInd uri= “MgCt”/></oidxfun pei=

“effect’>RqDay</fimX/Expr>
<E xprX oidxlnd per“MgPr”/x /o id x f im per= “effect”>WrkDays
</funX/Expr>

</Atom x/And>
< /if>
< d o x A to m x o id x ln d uri=”MgPr’7 x /o id x R e l per= “efFect”>

ManageRequest</Rel> </Atom>
</do>
<elseDo> < A to m x o id x ln d uri=”MgCt”/x /o id x R e l per= “effect”>

CanceIRequest</Rel> </Atom>
</elseDo>

Table 5-11. Example for translating management law to RBSLA

5.5. A Supporting Tool for Automating the Translation

To translate management law to RBSLA language, a tool was designed using Java
technology. The tool allows the designer to specify a management law. Once this

- 124 -

law has been checked syntactically, it will be translated automatically into

corresponding RBSLA code following the above detailed steps.

Following the aforementioned rules, the user interface depicted below is

implemented. It includes the main category interface and their subcategories.

The main category form consists of the main primitives of management law

and the corresponding primitives in RBSLA syntax, as illustrated in figure 5-4.

These primitives can be updated using the add/edit form tag.

■fl Add Hull

A..y,.«-Ml^ o r v r K.dH„.-.,orv

when # -:«»»» >
who W <ll>» <11 >
mat # <da
•the i#

m anagecum

Figure 5 -4 . M a n a g e m e n t tool a d d /e d it fo rm .

The subcategory form consists of the arithmetic, comparison, and list

operations in management law and the corresponding operations in RBSLA

syntax, which also can be updated using the add/edit form tag as shown in figure

5-5.

® Add/Edit Tag

M anagem ent Law RBSLA Tag

Cancel

Figure 5 -5 . M an ag e m e n t tool a d d /e d it sub catego ry fo rm .

- 1 2 5 -

The management law translator form consists of two panes as shown in figure

5-6. The first one allows for editing and updating management laws; the second

one is for presenting the resulting output of any translation into RBSLA.

>r» MoCt.K«quMt(t,qt)
» MolJr.rmm»»'tv(> irt Mat* .pr»f«rLI«tHrv()
Mnn Mcjllt .dn.wKI»o() >- Mgl*r . I niHr|tl m() and
It flr.lHfK O tot Monr.WrkHrsO ai«1
;.Ui|OuyO tr« Mu«.r Wrkn..yv()
ioiiu MoPr.ma»iuu«fRuMnuvt() rrtcic * .canrolO

Figure 5-6. The management law translator form.

5.6. C hap ter Summ ary

Tackling the quality of (Web) services through management concerns in general

has been shown to be essential for the success and wide embracing of the service

technology at a large scale [Hil93, CD01, KKL03, MS04, TGR+04]. Handling

management concerns in a flexible manner, still at the business level, was the

main focus in the previous chapter.

In this chapter, we pushed management laws one step further toward applying

them at the technology/implementation level, without compromising the features

on which we laid stress: flexibility, separation of concerns. Toward that end, we

reviewed the RuleML language elements and then the RBSLA concepts were

discussed. More precisely, in our approach, we proposed to move management

rules toward RBLSA representation (RuleML-serialization).

For the interfaces of both management and coordination laws, we proposed to

translate them to corresponding WSDL-based service interfaces. In this sense, the

(management-driven) services are associated with interfaces and also rule-based

behavioural (RBSLA-based) rules. This approach has been applied to the PC

Selling case study. The translation rules have been presented and illustrated by an

example for each clause. Finally, the tool for automatic translation has been

designed.

- 12 6 -

CHAPTER SIX
CHAPTER SIX..127
Chapter 6 128

Conclusion... 128
6.1. Thesis summary and main achievements.. 129
6.2 . Shortcomings and projected further work.. 132

6.2.1. Early formal validation / verification... 133
6.2.2. Integrated tools supporting the approach................ 134
6.2.3. Runtime adaptability with techniques akin to AOP......................135
6.2.4. Composition through standards extensions..................................136
6.2.5. Consideration of further concerns with security on top................ 136

6.3. Closing remarks 137

Chapter 6

Conclusion

As service technology and its Web-Service standards are maturing, world-wide
(cross-)organizations are increasingly embracing this technology at a rapid pace.

This wide acceptance has already resulted in an abundance of functionality-
similar services. One may look just to the “exponential” number of online services

for flight tickets, accommodation or even complete vacation packages. Indeed,

most existing Web-Service standards (e.g. WSDL for service description or BPEL

/ WS-CDL for composition) support only functional features in a rigid and static

manner.
Nevertheless, to stay competitive in such a globalized and highly volatile

economy, organizations opting for this advanced yet emerging service technology
are forced to go beyond rigid functionality-based services to attract more

requestors and thus increase their benefits. For that aim, the quality of service has
been placed at the centre of this technology alongside functionalities. Service
availability and throughput, time response to a specific service query, or cost

management of services have been, among others, explored to support the quality-
of-service in Web-Services. These qualities have been mainly captured as
agreements between requestors and providers, in so-called SLA contracts [JM02]

(see Chapter Three for an extensive survey).

Despite these advances in providing service requestors with quality-of-service
to boost service functionalities and facilitate selecting or composing the right

services, we have observed that severe limitations are still hindering the handling

of quality-of-service and management concerns in general in service-driven
business applications. Among these preoccupations on which this thesis has been
contributing, we recall the following. Firstly, we found that most of the qualities
addressed are technology-centric low-level ones. For instance, by establishing an
agreement between customer and service provider, the two parties are at the start
more concerned about deadlines and preferences than low-level time-response and

-128-

availability. Secondly, we further observed that once specific low-level quality-of-

services are agreed on, there is no room to dynamically change or adapt them.
Thirdly, there is no transparency on what concerns the way of bringing together
such non-functional qualities and service functionalities. In other words, the

separation of concerns has been completely missing in existing approaches to the

handling of qualities in Web-Services.
These shortcomings, akin to the state-of-the-art handling of management

concerns in service-driven applications, have been steering the main objectives of

this thesis. More precisely, in this thesis we have been concerned with
approaching management concerns at the business and conceptual levels while

engineering complex and service-driven business applications. The thesis presents
an integrated approach for addressing management concerns covering phases of

business requirements, as well as the smooth and compliant mapping of the later

phases toward service technology.
The remainder of this conclusion first highlights the main scientific

contributions that have been achieved. Secondly, we point out some of the
shortcomings of the proposed approach, and then we project how to address them
in future investigations.

6.1. Thesis summary and main achievements

With the growing development and acceptance of the service-oriented paradigm,

currently developed (cross-)organization business processes and applications are
based on service-oriented architecture and enabling online Web services.
Although awareness of that central role of qualities has been recognized by both

researchers and academia as early as the first release of Web services, the
handling of qualities until now remained empowered by and centred on that
technology.

As we reported at different occasions in this thesis, this technology-driven
handling of qualities and their inherent IT-SLA remains beneficial and essential in
pushing toward providing, invoking and/or composing better customized services.
Nevertheless, relying on just machine-dependent qualities (e.g., time response,

-129-

availability, throughput, etc.) presents several severe drawbacks in the quest of

developing, providing and/or requesting high quality services. As we presented in
the thesis’s fourth and fifth chapters, coping with just machine-based qualities
implies ignoring the business-level quality-driven requirements inherent in any

service-driven business applications at hand. This is a serious limitation as the

service-oriented paradigm aims at abstracting from any platform and promoting
business applications specificities. While requesting an airline ticket, hotel room,

or a PC, for instance, “/Ac faster” Web service responses represent only a last
selection criteria; instead, we all are interested in qualities like discounts,

preferences, flexibility, variability, and so on. Secondly, when it comes to
separation of concerns, adaptability and all technology-driven solutions become
overcome.

This thesis proposed to leverage the handling of management concerns (i.e.,
all quality-related issues) to the application level where it should belong, while
developing service-driven business applications. We addressed this leveraging in

a way that promotes separation of concerns and adaptability. Without delving
again into the detail of the approach we described in the previous chapters, we
restrict ourselves at this conclusion to reemphasizing the main achievements
underlying the proposed approach:

Business characterization of qualities: Through the analysis of several

service-driven applications, we proposed ways the qualities should be understood

at the application level and their main features. In this respect, we distinguished

time-dependent constraints such as agreed-on deadlines, partner preferences, and
degree of reputation and trust, among others.

Business activity-based handling of concerns: In contrast to most existing

approaches to quality in service-oriented applications that are process coarse

grained- based, we motivated and presented how a more fine-grained activity-
based treatment of qualities and other concerns bring more flexibility and
mastering of the business application at hand. To be more specific, we recall some
of these advantages including: (1) The tractable handling at the activity level of

different (management and coordination) concerns, even if the process itself is

-130-

huge and complex; (2) the wide and optimal use of different resources as the

effective request and the release depend only on which activities currently are
running; (3) The ability to customize the business process once all activities are

addressed (and not before in the fixed way).
ECA-Business rules pattern for qualities: To cope inherently with adaptability

and evolution while tackling the characterized business-level qualities, we
presented how event-driven (cross-services) business rules represent the most

suitable business artefact. We proposed a generic (cross-organizational) ECA
pattern for describing intuitively the business-level qualities we referred to as
ECA-driven management concerns. We then applied to the PCs Selling case

study.
ECA-Business rules pattern for coordination concerns: As we discussed

along this thesis, among the main drawbacks of existing approaches to qualities—
beside the rigid Web technology-centricity—remain their lack of transparency and

tangling of different concerns. To avoid these serious limitations, we proposed, in

the same spirit as we did for management concerns to explicitly extract and

describe coordination-based functionality concerns through ECA-driven business
rules. A simplified pattern inspired from coordination laws proposed within the
group then is forwarded.

Conceptualization of ECA rules as management and coordination laws:
To bridge the gap between the ECA-driven business level and any WS

technology-based implementation, we proposed to move the business description
toward service-oriented conceptualization. We proposed for management
concerns to consider their corresponding ECA-driven qualities-based rules into
suitable behavioural architectural connectors, which we referred to as

management laws. In the same spirit, we proposed to recapitulate coordination
laws to consider functionality concerns in a precise, yet flexible and evolving,
manner.

RBSLA-based WS implementation of both laws: To enhance the
practicability and its compliance to Web technology, yet still remain rule-driven,

we presented how to move from both management and coordination laws toward

RBSLA-based service implementation. More specifically, while different law

interfaces are captured using WSDL standards, the ECA rule-based connectors of
both management and coordination laws are translated into RJBSLA (and

RuleML) rules in a preserving manner.
Conducting of case study on PCsSeUing: In chapter four, beside

demonstrating the forwarded concepts and primitives of the proposed approach,
we carried out the whole PCs Selling business process with all its possible
business activities. At the RJBSLA level, in chapter five, we also automated all

worked out management laws for different business activities of this case study.
Implementation of tools supporting the laws - RBSLA mapping: Since,

RBSLA is associated with an advanced language and software environment, we
concentrated on how to automate the proposed translating steps from management
laws toward it. We implemented a translator to achieve this task and applied it to

the case study.

6.2. Shortcomings and projected further work

We have to acknowledge that the “engineering road” toward effectively serving
any requestors with best customized services and on-time is an aspiration that
remains difficult to reach. We consider as barriers at least the following open

issues:

• Early validation/verification: Despite the fact that RBSLA supports

several (programming) logic-based environments, we are aware that
such late testing and validation could be costly and very limited in
effectiveness. We suggest achieving formal validation at the early

business and conceptual levels, through suitable operational
formalisms with supporting tools such as Graph-transformations
[HHL04] and Coloured Petri Nets [Jen92], just to name these two we
motivate later.

• Supporting environment for all phases: Though we associated the

forwarded approach with management laws automated mappings to the
RBSLA language that itself is associated with complete tools, this

automation tackles just the last phase in the approach. As will be

detailed more hereafter, the business and conceptual phases as main
comers in the approach also need to be systemized by adequate tools as

we described below.

• Runtime adaptability: With ECA business rules and their governing
conceptual management and coordination laws, we showed how design

time adaptability and evolution are assured by construction when

adopting our approach. Unfortunately, when it comes to adaptability
on-the-fly, the approach needs to be upgraded significantly. We

suggest some directions and ideas to bring such runtime adaptability to
the approach.

• WS Standards adaptation/extension: Although we presented benefits

from the WSDL standard and showed how to capture RBSLA rules as

behavioural-intensive Web services, we could not develop the
composition further using BPEL standard. We report on a possible

vision on enriching BPEL with qualities as we developed in this thesis.
In the following, we analyse these open research directions one by one while

suggesting focussed ideas and fresh visions on how they could be tackled by me at
the postdoctoral level and/or by (collaborating with) any interested researcher(s)/

practitioners).

6.2.1. Early formal validation / verification
The conceptualisation of management/coordination laws is a milestone for

ensuring preciseness and rigor. Nevertheless, to detect inconsistencies, conflict, or
even misconceptions, we require the execution of such conceptual modelling at an
abstract level; that is, before investing in any specific WS-based deployment. In

such a way, time and cost will spared, yet effectiveness and reliability will be
scored.

For management laws, which are ECA-driven (transitional) rule-based

architectural connectors, several operational and executable semantics for
governing them may be potential candidates. Herewith, I sketch just two

-133-

possibilities: adopting Coloured Petri nets [Jen92] and graph transformation

[HHL04], Petri nets in general and coloured Petri nets in particular are graphical,
coping with both type and instance level. They are associated with advanced
software tools for editing and simulating any conceptual model. They support

good analysis techniques, such as reachability, invariants, and even temporal

properties. They have been adopted for Web services specification and

verification [YK04].
The interpretation of management laws to CPNets seems at first glance to be

straightforward, such as events/messages to corresponding places, conditions to
transition conditions, and actions to output arcs. The second complement to

CPNets possible operational rule-based semantics is graph transformations, by
which nodes are states and rules are transformations. First attempt interpretation
could consist of capturing law interfaces as nodes and laws themselves as rule
transformations.

We should reemphasize that these possibly could be executable formal

interpretations of management laws, and others—such as temporal semantics,
state machine, and rewriting techniques—could also be adopted depending on the
profile of the investigator.

6.2.2. Integrated tools supporting the approach
Though we implemented a first prototype for automating the translation of
management laws toward RSBLA, as well as the adoption of the advanced

RBSLA environment, we should recognize that much work remains ahead toward

full automated support of the approach. In this direction, we particularly suggest
that the following complementary tooling software could boost the practicability
and the wide embracing of the approach significantly:

• Graphical editor and analyser for ECA business rules. This tool should
automate the description of management and coordination of ECA-
based rules.

• Tool for manipulating and evolving management laws. This tool first

should be able to translate any automated ECA-driven rule for

-134-

management (from the above tool) into corresponding management

laws. Then, we should be able to evolve/adapt such laws in a
systematic and graphical manner. The group development environment
for Community [FL03, WO04] could be a possible source of

inspiration.

• Tool supporting validation/verification. As we developed in the
previous open issue, depending on the adopted executable formal

interpretation, associated tools either should be developed from scratch

or adapted from existing ones.

6.2.3. Runtime adaptability with techniques akin to AOP
As we pointed out, the approach we proposed permits coping with adaptability at

design time and in a constructive manner. Nevertheless, in some service-driven

applications, it is highly required to enforce any management/coordination laws at
runtime time. Since aspect-oriented techniques are the most emerging techniques
for coping with such adaptability on-the-fly, we envision adopting this paradigm
in the future for leveraging the approach to deal with runtime evolution.

Indeed, aspect-oriented programming (AOP) was forwarded first by
[KLM+97], as a consequence to the limitations of the object paradigm in factoring
out cross-cutting concerns (e.g., Persistence, Management, Security, etc.). AOP

allows extracting cross-cutting concerns from different code units (e.g.,

components, modules, or classes) and externalizing them in so-called advices, as
encapsulated behavioural units ready to be "injected" into specific positions in

concerned units. While the right positions, where these advices have to be woven,

are referred to as joinpoints, the different ways of combining such advices before
superposing them on respective units is referred to as pointcuts. All these

primitives and mechanisms have been implemented for the first time on the
AspectJ language [KHH+01].

Concerning the explicit and dynamic handling of business rules as advices

coupled by non-intrusive weaving, the JasCo language [SVJ03] remains the most

-135-

suitable. Moreover, this language has been leveraged to cope with dynamic multi

concerns in Web Services through a variant called WSML [KL03].
We argue that to cope with runtime adaptability, this JasCo language could be

a good starting point for such investigations. A possible way to achieve that could
consist of capturing our management laws as advices and dynamically weaving
them onto corresponding activities. But, of course, more and deeper explorations

are required to realize such moving effectively.

6.2.4. Composition through standards extensions
We presented how activities, after being modelled using management and
coordination laws, are put together flexibly to build any business process at hand.
Nevertheless, what we could not develop further concerns the ability of

composing RBSLA rules as activity-centric Web services into more complex

BPEL-like business processes. That is, though we hinted that RBSLA rules should

be regarded as “behavioural” Web services, the main remaining open question is
how to compose them to build processes using the BPEL or WSCI standards.

As a first approach to this question, we think that by capitalizing on the above

aspect-oriented techniques, we could achieve that process-centric composition by
extending BPEL in this respect. We should be inspired by the work, for instance,

on A04BPEL [CM04, CM07], which allows weaving aspects as rules on BPEL
specifications. However, due to the complexity of our management and
coordination rules, deep investigations are required on this interesting research
stand.

6.2.5. Consideration of further concerns with security on top
Last but not least, we claim that after this separation of management concerns
along all “business conceptual-deployment” development phases, the same

experience could be applied straightforwardly to other concerns. Among these
potential and pressing concerns, we cite in particular the security in service-driven

business applications. Indeed, different recent explorations present that security
also is more a business matter than a technical issue. Role-based access, access
through trust, and so on, are just snapshots confirming this trend [MSS+04]. In

-136-

other words, security concerns are governed by evolving policies that depend on

customer activities, profiles, and surrounding environments.

6.3. Closing remarks

Before concluding this thesis, we would like to reemphasize some important
scientific lessons we learned during this thesis. More precisely, we argue that the
following lessons are of great advantages towards pushing forwards this emerging

service-oriented paradigm. The first lesson is really “separate concerns”. Indeed,
although separation of concerns is one of the main goals in software-engineering,

we found that in service-driven applications it is far from being respected.
For instance, as we already pointed out, when tackling qualities, even concerns

such as basic functionalities either are ignored or mixed up with qualities. The

second lesson is “business and business and business”; that is, to tackle any
service-driven business application, we argue that to result in flexible, evolving,

and sustainable implementation, we have to put all efforts on the early phases of

business and inherent conceptualization. Finally, business rules could be essential
in the handling of any concerns. All that is required is to adjust them judiciously.

-137-

Bibliography
[ACD+04]

[ACK04]

[AFOla]

[AFOlb]

[AF02]

[AF03]

[AF06]

[AFG+02]

[AFL+03]

[AFP07]

[AFWOl]

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne,
J., Rofrano, J., Tuecke, S. and Xu, M.: Web Services Agreement
Specification (WS- Agreement), Version 1.1 (Draft 20), 2004.

Alonso, Q., Casati, F., Kuno, H. and Machiraju, V.: Web Services -
Concepts, Architectures and Applications. 354 pages, 2004. Springer
Verlag.

Andrade, L.F. and Fiadeiro, J.L.: Coordination Technologies for Managing
Information System Evolution. In Advanced Information Systems
Engineering, LNCS, 2068: pages 374-387,2001. Springer Verlag.

Andrade, L.F. and Fiadeiro, J.L.: Coordination: The Evolutionary
Dimension. In Technology of object-oriented languages and systems; Tools
38 Components for Mobile Computing: pages 136-147, 2001. Zurich,
Switzerland: IEEE Computer Society.

Andrade, L.F. and Fiadeiro. J.L.: Coordination Architecture for Evolvable
Event- Based Systems. In International conference on distributed
computing systems workshops: pages 571-572, 2002. Vienna: IEEE
Computer Society.

Andrade, L.F. and Fiadeiro, J.L.: Service-Oriented Business and System
Specification: beyond object-orientation. In H. Kilov and K. Baclwaski
(eds), Practical Foundations of Business and System Specifications: pages
1—23,2003. Kluwer Academic Publishers.

Al-Ghamdi, A. and Fiadeiro, J.L.: Architectural Handling of Management
Concerns in Service-Driven Business Processes. MSVVEIS 2006: pages
111-120,2006.

Andrade, L.F., Fiadeiro, J.L., Gouveia, J., Koutsoukos, G. and
Wermelinger, M.: Coordination for Orchestration, LNCS, 2315: pages 5-
13,2002. Springer-Verlag.

Andrade, L.F., Fiadeiro, J.L., Lopes, A. and Wermelinger, M.:
Coordination for Distributed Business Systems. In J. Eder, R. Mittermeir
and B. Pemici (eds.), Proc. of Information Systems for a Connected
Society: pages 27-37,2003. University of Maribor Press.

Al-Ghamdi, A., Fiadeiro, J.L. and Paschke, A.: RJBSLA based
Implementation for Architectural Management Laws. 4th International
IEEE Conference on Innovations in Information Technology
(Innovations '07), Dubai, United Arab Emirates: pages 556-560, 2007.

Andrade, L.F., Fiadeiro, J.L. and Wermelinger, M.: Enforcing Business
Policies through Automated Reconfiguration. In Proc. of the 16th Intl.
Conf. on Automated Software Engineering: pages 426-429, 2001. Los
Alamitos: IEEE Computer Society Press.

- 138-

[A097]

[ArsOl]

[ARW+03]

[Ash94]

[BCT+03]

[BHHOO]

[BHLOl]

[BK05]

[B0IO6]

[BPT98]

[BRGOO]

[CC03]

[CCD+03]

Allen, R. and Garlan, D.: A Formal Basis for Architectural Connection.
ACM Transactions on Software Engineering and Methodology, 6(3): pages.
213-249,1997.

Arsanjani, A.: A Pattern Language for Adaptive Manners and Scalable
Business Rule Design and Construction: pages 370,2001. IEEE.

Al-Ali, R., Rana, O., Walker, D., Jha, S. and Sohail, S.: G-QoSM: Grid
service discovery using QoS properties. Computing and Informatics
Journal, Special Issue on Grid Computing, 21(5), 2003.
http://www.cse.unsw.edu.au/-nrl/pub/paoers/ciinl.pdf

Ashcroft, M. (Ed.): Service Level Agreements. Proceedings of a Workshop
held in Stanford, Lincolnshire, 25 May, 1994. Capital Planning Information
Ltd.

Benatallah, B., Casati, F., Toumani, F. and Hamadi, R.: Conceptual
Modeling of Web Service Conversations, LNCS, 2681: pages 448-467,
2003.

Barroca, L., Hall, J. and Hall, P.: An introduction and history of software
architectures, components, and reuse. In L. Barroca, J. Hall and P. Hall
(eds.), Software architectures: Advances and applications: pages 1-11,
2000. London: Springer.

Bemers-Lee, T., Hendler, J. and Lassila, O: The Semantic Web. Scientific
American, 284(5): pages 34-43,2001.

Bajec, M. and Krisper, M. Methodology and Tool Support for Managing
Business Rules in Organisations. Information Systems, (30), pages 423-
443,2005.

Boley, H.: The rule-ml family of web rule languages. In 4th Int. Workshop
on Principles and Practice of Semantic Web Reasoning, Budva,
Montenegro, 2006.

Belaid, p., Provenzano, N. and Taconet, C.: Dynamic Management of
CORBA Trader Federation. 4th IJSENIX Conference on Object-Oriented
Technologies and Systems (COOTS), 1998.
http.VAvww.usenix.org/publications/librarv/proceedings/coots98/full paper
s/belaid/belaid.pdf

The Business Rules Group: Defining Business Rules - What Are They
Really? htto://www. businessrulesgroup.org/first paper/brOlcO.htm, July
2000.

Cox, A. and Chicksand, L.: The Impact of the Internet on Marketing and
Sales. In R. ul-haq (ed.), QMRIJ Report, 2003. The Birmingham Business
School, The University of Birmingham.

Castellanos, M., Casati, F., Dayal, U. and Shan, M.C.: Intelligent
Management of SLAs for Composite Web Services, LNCS, 2822: pages
158-171,2003.

- 139-

http://www.cse.unsw.edu.au/-nrl/pub/paoers/ciinl.pdf
http://http.VAvww.usenix.org/publications/librarv/proceedings/coots98/full

[CD01]

[CDK+02]

[CDS+03]

[COM+04]

[CGSOl]

[CHT03]

[CLS+03]

[CM04]

[CM07]

[CSD+03]

[CSS+85]

[DatOO]

Cox, J. and Dale, B.G.: Service Quality and E-commerce: an exploratory
analysis. Managing Service Quality, volume 11, No.2: pages 121-131,
2001.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W. and Mukhi, S.W.N.:
Spotlight-Unraveling the Web Services Web: An Introduction to SOAP,
WSDL, and UDDI. IEEE Internet Computing, 3(4), 6, pages 86-93,2002.

Cibr&n, M.A., D'Hondt, M., Suvde, D., Vanderperren, W. and Jonckers, V.:
JAsCo for Linking Business Rules to Object-Oriented Software. In
Proc.CSITeA, Rio Pe Janeiro, Brazil: pages 1-7,2003.

Chinnici, R., Gudgin, M., Moreau, J.-J., Schlimmer, J. and Weerawarana,
S.: Web Services Description Language (WSDL) Version 2.0 part 1: Core
language. W3C Working Praft, 2004.

Casati, F., Georgakopoulos, p. and Shan, M.C.: Technologies for E-
Services. 2nd International Workshop on Technologies for E-Services,
LNCS, 2193: pages 16-29,2001.

Channabasavaiah, K., Holley, K. and Tuggle, E.M.: Migrating to a service-
oriented architecture, 2003. http://www-
106.ibm.com/developerworks/librarv/ws-migratesoa. (Last accessed: 17
Jan. 2008).

Chen, Z., Liang-Tien, C., Silverajan, B., and Bu-Sung, L.: UX -An
Architecture Providing QoS-Aware and Federated Support for UDDI. The
2003 International Conference on Web Services (ICWS'03), Las Vegas,
Nevada, USA, June 2003, http://www.ntu.edu.sg/home5/PG04878518/
Articles/ICW S03_Paper.pdf

Charfi, A. and Mezini, M.: Hybrid Web Service Composition: Business
Processes Meet Business Rules. In Service Oriented Computing; ICSOC04:
pages 30-38,2004. New York, NY: ACM.

Charfi, A., and Mezini, M.: A04BPEL: An Aspect-oriented Extension to
BPEL. World Wide Web Journal: Recent Advances on Web Services
(special issue), 10: pages 309-344. 2007.

Casati, F., Shan, E., Dayal, U. and Shan, M.C.: Business-Oriented
Management of Web Services. Communications ACM, 46: pages 55-60,
2003.

Czepiel, J.A., Solomon, M.R., Surprenant, C. and Gutman, E.G.: Service
Encounters: an Overview. In Czepiel, J.A., Solomon, M.R. and Surprenant,
C.F., The Service Encounter, Chapter 1, 1985. Lexington, MA: Lexington
Books.

Date, C.J.: What not How: The Business Rules Approach to Application
Development: pages 144, 2000. Addison-Wesley Publishing Company.

- 140-

http://www-
http://www.ntu.edu.sg/home5/PG04878518/

[DDK+04]

[DFG98]

[DHP02]

[Dou03]

[EFB01]

[EGR89]

[Fia02]

[Fia03]

[FK02]

[FM97]

[GC92]

[Git03]

[GKW+02]

Pan, A., Pavis, P., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig,
H., Polan, M., Spreitzer, M. and Youssef, A.: Web services on demand:
WSLA-driven automated management. IBM Systems Journal, 43: pages
136-158,2004.

Dib,N., Freer, J. and Gray, C.: Service-level agreements at the
Huddersfield NHS Trust. International Journal of Health Care Quality
Assurance, volume 11, No.3: pages 96-101,1998.

Piao, Y., Hellerstein, J.L. and Parekh, S.: Using fuzzy Control to Maximize
Profits in Service Level Management. Systems Journal, volume 41, No. 3:
pages 403-420,2002.

Barry, P.K.: The Savvy Manager's Guide to Web Services and Service-
Oriented Architectures, 2003. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Elrad, T., Filman, R.E. and Bader, A.: Aspect-Oriented Programming.
Communications of the ACM, 44(10): pages 29-32,2001.

Edwardson, B., Gustavsson, B.O. and Riddle, D.I.: An Expanded Model of
the Service Encounter with Emphasis on Cultural Context. Research
Report, volume 89, No. 4, 1989. CTF Research Centre, University of
Karlstad.

Fiadeiro, J.L.: Coordination Technologies for Just-in-Time Integration. In
United Nations University, International Institute for Software Technology;
Formal methods at the crossroads from panacea to foundational support
10th anniversary colloquium ofUNU/IIST, 2002. Lisbon: Berlin.

Fiadeiro, J.L.: Service-oriented business and system specification: beyond
object-orientation. In H. Kilov and K. Baclwaski (eds.), Practical
Foundations of Business and System Specifications: pages 1-23,2003.

Farrell, J.A. and Kreger, H.: New Developments in Web Services and E-
commerce Web Services management approaches. IBM System Journal,
Volume 41, Number 2: pages 212-227, 2002. Available at.
http://www.research.ibm.eom/ioumal/si/412/farrell.html. (Last accessed:
12 Jan. 2008)

Fiadeiro, J.L. and Maibaum, T.: Categorical Semantics of Parallel Program
Pesign. Science of Computer Programming 28: pages 111-138,1997.

Gelemter, D. and Carriero, N.: Coordination Languages and their
Significance. CACM35(2): pages 97-107,1992.

Gittlen, S.: Getting to the Heart of SLM, Editorial, Network World.
Available at: www.nwfusion.com, January 2003.

Gouveia, J., Koutsoukos, G., Wermelinger, M., Andrade, L.F. and Fiadeiro,
J.L.: The Coordination Development Environment, LNCS, (2306): pages
323-326,2002. Springer-Verlag.

- 141 -

http://www.research.ibm.eom/ioumal/si/412/farrell.html
http://www.nwfusion.com

[GR04]

[GR05]

[Gra05]

[HC07]

[HHL04]

[Hil93]

[IEC04]

[Jen92]

[JM02]

[Jos06]

[Kar04]

[Kat93]

[Kay02]

Govematori, Q. and Rotolo, A.: Modelling Contracts Using RuleML. In T.
Gordon, (ed.)- Jurix 2004: The Seventeenth Annual Conference, December,
2004.

Gartner Group: Plummer, D.C.: Gartner's Positions on the Five Hottest IT
Topics and Trends in 2005. www.gartnergroup.com, accessed 2005-05-12.
NATIS, Y.: Service-Oriented Architecture Scenario, 2003-04-16: AV- 19-
6751 http://www.gartner.com/resources/114300/114358/114358.pdf, 2006-
12-16.

Graham, I.: Service Oriented Business Rules Management Systems.
TriReme International Ltd, 2005.

Heckel, R. and Cherchago, A.: Structural and behavioural compatibility o f
graphical service specifications. Journal o f Logic and Algebraic Programming,
Volum e 70. Issue 1: pages 1 5 -3 3 , 2007.

Hausmann, J.H., Heckel, R. and Lohmann, M.: Model-based Discovery of
Web Services. ICWS 2004: pages 324-331,2004.

Hiles, A.: Service Level Agreements - Measuring Cost and Quality in
Service Relationships, 1993. London: Chapman & Hall.

International Engineering Consortium: Service-Level Management
Definition and Overview, available at:
http://www.iec.org/online/tutorials/service level. 2004.

Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and
practical Use. Volume 1: Basic Concepts. EATCS Monographs in
Computer Science, 26,1992.

Myerson, J.: 01 Apr 2002 Updated 29 Oct 2004: Use SLAs in a Web
Services context, Part 1: Guarantee your Web service with a SLA.
Available at http://www-128.ibm.com/developerworks/librarv/ws-sla/

Joseph, B.: Service Oriented Architecture (SOA) A New Paradigm to
Implement Dynamic E-business Solutions. Ubiquity 1, (30), 2006.
http://www.acm.org/ubiauitv/views/Df/v7i30 soa.odf (Last accessed:
OlJan. 200‘8).

Carter, F. Apr. 5, 2004, Managing The Bottom Line, Service-level
management is essential to deploying business-critical Web Services
systems, Available at http://webseryices.svs-
con.com/read/44352.htm?CFID=261718&CFTOKEN=l 0C34C34-F49A-
9338-5665FD513 i A63A4D ^

Katz, S.: A Superimposition Control Construct for Distributed Systems.
ACM Transactions on Programming Languages and Systems, 15(2): pages
337-356,1993.

Kaye, D.W.: Strategies for Web Hosting and Managed Services, 2002.
Wiley.

http://www.gartnergroup.com
http://www.gartner.com/resources/114300/114358/114358.pdf
http://www.iec.org/online/tutorials/service
http://www-128.ibm.com/developerworks/librarv/ws-sla/
http://www.acm.org/ubiauitv/views/Df/v7i30
http://webseryices.svs-

[KJffl+01]

[KKL-KJ2]

[KKL03]

[KL02]

[KL03]

[KL04]

[KL05]

[KLM+97]

[LKD03]

[LSE03]

[Lud02]

Kiczales, Q., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and William
G. Griswold.: An Overview of AspectJ. In Proceedings of the European
Conference on Object-Qriented Programming (ECOOP’Ol) LNCS 2072:
pages 327-355,2001.

Keller, A., Kar, Q., Ludwig, H., Pan, A. and Hellerstein, J.L.: Managing
Pynamic Services: A Contract Based. Approach to a Conceptual
Architecture. IEEE/IFIP network operations and management symposium,
Florence, Italy, 2002. IEEE.

Kalepu, S., Krishnaswamy, S. and Loke, S.: Verity: A QoS Metric for
Selecting Web Services and Providers. 1st Web Services Quality Workshop
(WQW 2003), in conjunction with IEEE Computer Society 4th
International Conference on Web Information Systems Engineering (WISE
2003), Rome, Italy, December 2003. http://alarcos.inf-
cr.uclni.es/wqw2003/kalepu%20ABSTRACT.pdf

Keller, A. and Ludwig, H.: Defining and Monitoring Service Level
Agreements for Dynamic e-Business. Systems Administration Conference,
2002. Philadelphia, PN: USENIX Association.

Keller, A. and Ludwig, H.: The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services. Journal of
Network and Systems Management (Special Issue on E-Business
Management), 11(1): pages 57-81. 2003.

Kardasis, P. and Loucopoulos, P.: Expressing and organising business
rules. Information and Software Technology, 46(11): pages 701-718,2004

Kardasis, P. and Loucopoulos, P.: A Roadmap for the Elicitation of Business
Rules in Information Systems Projects. Business Process Management Journal,
11(4): pages 316-348,2005.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,
Loingtier, J-M. and Irwin, J.: Aspect-Oriented Programming. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOQP), LNCS, pages 220-242,1997.

Ludwig, H., Keller, A., Dan, A., King, R. and Franck, R.: A Service Level
Agreement Language for Dynamic Electronic Services. Electronic
Commerce Research, 3(1/2): pages 43-59,2003.

Lamanna, D.D., Skene, J. and Emmerich, W.: SLAng: A language for
defining Service Level Agreements. The Ninth IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS'03), San Juan, Puerto
Rico: pages 100,2003.
Ludwig, H.: Web Service Level Agreement (WSLA) Language
Specification. IBM TJ. Watson Research Centre, IBM Corporation, 2001,
2002, 2003. http://www.research.ibm.com/wsla, (Last accessed: January
20,2008).

http://alarcos.inf-
http://www.research.ibm.com/wsla

[LVA02]

[MB03]

[MK96]

[MN02]

[MN05]

[MPM+04]

[MPX04]

[MS04]

[MSS+04]

[Oas07]

[OYP03]

[Pap03]

Li-jie Jin, Vijay Machiraju and Akhil Sahai: HP Software Technology
Laboratory, 21 June 2002. Available at
http://wwv.hpl.hp.com/techreports/2002/HPL-20Q2-180.pdf

Meredith, L-G. and Bjorg, S.: Contracts and Types. Communications-ACM,
46(10): pages 41-48,2003.

Magee, J. and Kramer, J.: Dynamic structure in software architectures.
Fourth ACM SIGSQFT Symposium on the Foundations of Software
Engineering (FSE4), ACM Software Engineering Notes', pages 3-14, San
Francisco, October 1996.

Mani, A., and Nagarajan, A. Understanding quality of service for web
services. http://www-
106.ibm.coin/developerworks/webservices/library/wsquality.html,2002.

Mendling J., and Ntittgens, M.: A Comparison of XML interchange
formats for business process modelling. In: Fischer L (ed) Workflow
handbook. Future strategies, pages 185-198.2005.

Martin, D.L., Paolucci, M., Mcilraith, S.A., Burstein, N.H., Ncdermott,
D.V., Mcguinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M.,
Srinivasan, N. and Sycara, K.P. (eds.): Bringing Semantics to Web
Services: The OWL-S Approach, volume 3387 of Lecture Notes in
Computer Science, 2004. Springer.

McKenzie, F.D., Petty, M.D. and Xu, Q.: Usefulness of Software
Architecture Description Languages for Modeling and Analysis of
Federates and Federation Architectures. SIMULATION 80: pages 559-576,
2004.
McConnell, J. and Siegel, E.: Practical Service Level Management:
Delivering High-Quality Web-Based Services, 2004. Cisco Press.

Mendling, J., Strembeck, M-, Stermsek, G., and Neumann, G.: An
Approach to Extract RBAC Models from BPEL4WS Processes. In
Proceedings of the 13th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises (WETICE’04).
IEEE Computer Society: pages 81-86,2004.

OASIS.: UDDI Specification, htto://www.uddi.org/soecification.html.
Copyright (c) OASIS Open 2006. All Rights Reserved. (Last accessed: 17
Apr. 2007).

Orriens, B., Yang, J. and Papazoglou, M.: A Framework for Business Rule
Driven Service Composition, LNCS, 2819,14-27,2003.

Papazoglou, M.P.: Service-oriented computing: concepts, characteristics
and directions. In Proceedings of the Fourth International Conference on
Web Information Systems Engineering: pages 3-12,2003.

http://wwv.hpl.hp.com/techreports/2002/HPL-20Q2-180.pdf
http://www-
http://www.uddi.org/soecification.html

[PasOS]

[Pas07]

[PDK05]

[Pio02]

[PKJB07]

[Pra03]

[PW92]

[QDS04]

[Ran03]

[RD05a]

[RD05b]

[RND05]

[Rul05]

[RW02]

Paschke, A.: RJ3SLA - a declarative Rule-based Service Level Agreement
Language based on RulelylL. International Conference on Intelligent
Agents, Web Technology and Internet Commerce (IA WTIC 2005), Vienna,
Austria, 2005.
Paschke, A.: Rule-Based Service Level Agreements - Knowledge
Representation for Automated e-Contract, SLA and Policy Management,
2007. Munich: IDEA Verlag GmbH.

Paschke, A., Dietrich, J. and Kuhla, K.: A Logic Based SLA Management
Framework. Semantic Web and Policy Workshop (SWPW), 4th Semantic
Web Conference, Galway, Ireland, 2005.

Piotr SZYMCZYK.: DEVELOPING SERVICE LEVEL AGREEMENT
FOR OUTSOURCED PROCESSES AND SYSTEMS. International
Carpathian Control Conference ICCC' 2002.

Paschke, A., Kozlenkov, A. and Boley, H.: A Homogenous Reaction Rules
Language for Complex Event Processing. International Workshop on Event
Drive Architecture for Complex Event Process (EDA-PS 2007), Vienna,
Austria, 2007.

Pratt, K.T.: Introducing a Service Level Culture. Facilities, volume 21,
No.l 1/12: pages 253-259, 2003.

Perry, D.E., and Wolf, A.L.: Foundation for the Study of Software
Architectures. ACMSIGSOFT Soft. Engineering Notes 17(4): pages 40-52,
1992.

Quartel, D., Pijkman, R. and van Sinderen, M.: Methodological Support
for Service-oriented Design with ISDL. In Service Oriented Computing;
ICSOC 04: pages 1-10,2004. New York, NY: ACM.

Ran, S.:A Model for Web Services Discovery With QoS. ACMSIGecom
Exchanges, Vol. 4, No. 1, pages. 1—10., 2003.

Rosenberg, F. and Dustdar, S.: Business Rules Integration in BPEL - A
Service-Qriented Approach. In Proceedings of the 7th International IEEE
Conference on E- CommerceTechnology (CEC’05), 2005.

Rosenberg, F. and Dustdar, S.: Towards a Distributed Service-Oriented
Business Rules System. In Proceedings of the 3stIEEE European
Conference on Web Services (ECOWS’05), 2005.

Rosenberg, F., Nagl, C. and Dustdar, S.: Applying Distributed Business
Rules - The VIDRE Approach. IEEE SCC 2006: pages 471^178,2006.

RuleML. :The Rule Markup Initiative, 2005. http:// www.ruleml.org/
(accessed March 2006).

Rosea, D. and Wild, C.: Towards a flexible deployment of business rules.
Expert Systems with Applications, 23(4): pages 385-394, 2002.

-145-

http://www.ruleml.org/

[SDM02]

[SG96]

[SJ04]

[SLE04]

[SNOO]

[SoaOl]

[SRA+03]

[SVJ03]

[TA03]

[TAA+Ol]

[TGR+04]

[TGR04]

Sahai, A., Durante, A. and Machiraju, V.: Towards automated sla
management for web services.
Hewlett-Packard Labs Technical Report HPL-2001-310 (R.1), 2002.

Shaw, M. and Qarlan, D.: Software architecture: Perspectives on an
emerging discipline, 1996. Upper Saddle River, NJ: Prentice Hall.

Sedighi, A. and Johnson, E.: Classification of the Current Constraint and
Capabilities Protocols in Describing Web Services, 2004. Palo Alto:
TIBCO Software.

Skene, J., Lamanna, D. and Emmerich, W.: Precise Service Level
Agreements. In 26th International Conference on Software Engineering
IEEE: ICSE 2004: pages 179-188, 2004. Edinburgh, Scotland: Los
Alamitos Calif.
Schneider, J. and Nierstrasz, O.: Components, scripts, and glue. In L.
Barroca, J. Hall and P. Hall, Software architectures: Advances and
applications: pages 13-25, 2000. London: Springer.

SOAP Version 1.2 Working Draft, World Wide Web Consortium (July
2001), http://www.w3 .org/TR/2001 /WD-soan 12-20010709/. (Last
accessed: May 31, 2007)
ShaikhAli, A., Rana, O.F., Al-Ali, R. and Walker, D.W.: UDDIe: An
Extended Registry for Web Services, 2003 Symposium on Applications and
the Internet Workshops (SAINT'03 Workshops), Orlando, Florida, January
2003, http://csdl.compiiter.org/comp/proceedings/saint-
w/2003/1873/00/18730085abs.htm

Survee, D. and Vanderperren, W., and Jonckers, V.: JAsCo: an Aspect-
Oriented Approach Tailored for Component based Software Development.
In Proc. of 2nd international conference on Aspect-oriented software
development (AOSDV3), pages 21-29,2003. ACM Press.

TeleCom Asia.: Service Level Management: End User’s Drive Need to
Monitor QoS and Content. Available at: www.telecomasia.net, 2003.

Tsur, S., Abiteboul, S., Agrawal, R., Dayal, U., Klein, J. and Weikum, G.:
Are Web Services the Next Revolution in e-Commerce? In Proc.of the 27th
International Conference on Very Large Data Bases: pages 633-636,
Rome, Italy, September 2001.

Tian, M., Gramm, A., Ritter, H. and Schiller, J.: A Survey of current
Approaches towards Specification and Management of Quality of Service
for Web Services. Freie UniversitSt Berlin, Institut flir Informatik Takustr.
9, D-14195 Berlin, Germany. Available at http://page.mi.fu-
berlin.de/~tian/pdf/tian_et_al_wsqos_approaches_PIK032004.pdf

Tian, M., Gramm, A., Ritter, H. and Schiller, J.: Efficient Selection and
Monitoring of QoS-aware Web Services with the WS-QoS Framework.
Available at http://page.mi.fu-berlin.de/~hritter/publications/TGRS04.pdf

http://www.w3
http://csdl.compiiter.org/comp/proceedings/saint-
http://www.telecomasia.net
http://page.mi.fu-
http://page.mi.fu-berlin.de/~hritter/publications/TGRS04.pdf

[TPP+03]

[TSP+04]

[TW01]

[TWB03]

[UDD07]

[UMOO]

[VonOl]

[W301]

[W307]

[Wag02]

[WCL+05]

[WebOO]

[WebOl]

[Web08]

[WL04]

Tosic, V., Pagurek, B., Patel, K., Esfandiari, B. and Ma, W.: Management
Applications of die Web Service Offerings Language (WSOL). In
Advanced Information Systems Engineering, LNCS, 2681: pages 468-484,
2003.

Tsai, W.T., Song, W., Paul, R., Cao, Z. and Huang, H.: Services-Oriented
Dynamic Reconfiguration Framework for Dependable Distributed
Computing. In Proc. of the IEEE COMPSAC 2004: pages 554-559,2004.

Taveter, K. and Wagner, G.: Agent-Oriented Enterprise Modeling Based on
Business Rules. In Proceeding of the 20th International Conference on
Conceptual Modelling (ER ’01): pages 527-540,2001.

Tabet, S., Wagner, G. and Boley, H.: MOF-RuleUML: The Abstract
Syntax of RuleML as a MOF Model. In N. Lenehan, (ed.), Integrate, 2003.

Universal Description, Discovery, and Integration. UDDI.org Consortium,
http://www.uddi.org. (Last accessed: May 31,2007)
Nilsson, U. and Maluszynski, J.: Logic, Programming and Prolog (2 ed.), 2000.
John Wiley & Sons Ltd.

Von Halle, B.: Business Rules Applied: Building Better Systems Using the
Business Rules Approach, 1st edition, 2001. Wiley& Sons Inc.

W3 Consortium. : Web Services Activity Statement, available at:
www. w3 .org/2002/vvs/Acti v i tv. 2001.

World Wide Web Consortium (W3C): Simple Object Access Protocol vl.2
(SOAP), 2007.

Wagner, G.: How to design a general rule mark-up language? In Workshop
XML Technologien juer das Semantic Web (XSW), Berlin, June 2002.

Weerawarana, S., Curbera, F., Leymann, F., Storey, T. and Ferguson, D.F.:
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging, and More, 2005. Prentice
HallPTR.

Web Services architecture overview - the next stage of evolution for e-
business, http://www.l BM .com/developerworks/web/1 ibrarv/w-ovr/.
September 2000.

Web Services Description Language (WSDL) 1.1 W3C Note, World Wide
Web Consortium (March 2001), http://www.w3 .org/TR/wsdl.

Web services architect, Part 2: Models for dynamic-business. http://www-
106.ibm.com/developerworks/webservices/librarv/ws-arc2.html (Last
accessed: Jan 01,2008)

Wan-Kadir, W.M. and Loucopoulos, P.: Relating evolving business rules to
software design. Journal of Systems Architecture, 50 (7): pages 367-382,
2004

-147-

http://www.uddi.org
http://www.l
http://www.w3
http://www-

[WO04]

[Wus02]

[YK04]

[YTS+08]

[ZBN+04]

[Zho06]

[ZLB04]

Wermelinger, M., and Oliveira, C.: The Community Workbench. ICSE,
pages 709-710,2004.

Wustenhoff, E. (Editor): Service level Agreement in the Data Center,
2002. Sun Microsystems Inc.

Yi, X. and Kochut, K.J.: A CP-nets-based Design and Verification
Framework for Web Services Composition. In Proceedings o f2004 IEEE
International Conference on Web Services: pages 756-760, 2004. IEEE
Computer Society.

Yuhas, J., Turner, D., Speake, A., et al.: Program Manager, Microsoft
Corporation, Service Management Functions, Service level Management.
Available at
http://www.microsoft.com/technet/itsolutions/cits/mo/smf/smfslamg.mspx.
2008.

Zeng, L., Benatallah, B., Ngu, A.H. and Dumas, M.: QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on
Software Engineering, 30(5): pages 311-327,2004.

Zhou, N.: Programming finite-domain constraint propagators in action
rules. Theory and Practice of Logic Programming (TPLP), 6(5): pages
483-508,2006.

Zirpins, C., Lamersdorf, W. and Baier, T.: Flexible Coordination of Service
Interaction Patterns. In Service Oriented Computing; ICSOC 04: pages 49-
56,2004. New York, NY: ACM.

http://www.microsoft.com/technet/itsolutions/cits/mo/smf/smfslamg.mspx

Appendix A

List of Abbreviations

ACT ► Activity

ADLs ► Architecture Description Languages

AOP ► Aspect-Oriented Programming

BPEL ► Business-Process Execution Language

BR ► Business Rule

BRs4ACT ► Business Rules for Activity

BS ► Banking Service

CORBA ► Common Object Request Broker Architecture

CS ► Customer Service

DCOM ► Distributed Component Object Model

ECA ► Event Condition Action

Funct ► Function

HTTP ► Hyper Text Transfer Protocol

IntegConcems ► Integration of Concerns

Jess ► Java Expert System Shell

KR ► Knowledge Representation

Manag ► Management

NSP ► Network Service Provider

PS ► Provider Service

QoS ► Quality-of-Service

- 149-

RBSLA ► Rule Based Service Level Agreement

SLA ► Service-level Agreements

SOA ► Service-Oriented Architecture

SOAP ► Simple Object Access Protocol

SOC ► Service Oriented Computing

SP ► Service Provider

SS ► Shipment Service

UDPI ► Universal Description, Discovery, and Integration

UML ► Unified Modeling Language

ViDRE ► Vienna Distributed Rule Engine

WS ► Web Services

WSDL ► Web Services Description Language

WSLA ► Web Service Level Agreement

WSOL ► Web Service Offering Language

- 150-

Appendix B

Glossary

Activity: a process comprises two types of rules: an interaction rule and a

management rule

Banking services (BSs): This service also is crucial as it interacts with all other

services to accomplish any required payment.

Business activity Any task related or taking part in a given business process
Business processes Inter-related partially-ordered business activites defining a
specific process__
Business rule Constraints and policies for doing business.

Business SLAs refer to agreements on how a specific service is delivered, and to

the semantics of the service rather than to system or application level metrics

Cancellation: This optional business activity is performed when the customer

wants just a part of the requested quantity and more precisely accepts part of the

offer. Such a cancellation is possible only before delivering the initial request;

otherwise, penalties are applied.

Coordination Laws Set of primitives in terms of behavioural architectural
connectors. It is composed of (1) interfaces with required events, messages and
attributes to participate in an interaction; and (2) rules expressed in the form ECA.

Coordination the business rules that specify how the entities can interact

Customer services (CS): This provides PC Selling with a front end that handles

interactions with the customers (i.e., end-users). That is, CS allows customers to

post their requests, buy PCs, pay their dues, and cancel/accept offers.

Delivery: This activity begins when the customer accepts the proposed offer. It
notifies the provider to start delivering the PCs agreed on.

ECA business rules On the occurrence events (E), check the holding of constraints
(C) and then perform related actions (A)
High-level management concerns Deadlines, preferences, trust
Low-level management qualities Availability, time-response, throughput, cost

Management laws Similar in form to coordination laws but focuses on the
management concerns. In the rule we have clauses such as: (1) At-time for deadlines
and Who for preferences

Offer: In reply to the customer’s request, this activity consists of an offer from

the provider, including some necessary details such as the price.

Payment: This activity deals with the execution of all the different aspects of

paying, refunding, penalties, etc.

PCs-Selling case-study This is the running case-study of this thesis. It concerns a
service-oriented business applications dealing with the online-selling of PCs to
customers
Phase-ACT It is die first phase in our conceptual-model to management and
interaction concerns. It concerns die detailed informal description of any activity in a
given (service-oriented) business process
Phase-BRs4ACT It is the second phase and allows the informal defmition of any
business rules governing the behaviour of a given business activity
Phase-ConcernsBPs This last phase at the conceptual-level allows inter-relating
different (multi-concern) activities to form die complete business process ______
Phase-Func.BRs&Laws This phase extracts the disciplined formulation of
functionality concerns in any informal business rule in terms of coordination laws
Phase-IntegConcerns@ACT This phase addresses the integration of both
functionalities and management concerns. That is, for a given business activity we
integrate all coordination and management laws to reflect the activity behaviour (at
the running configutation)
Phase-Manag.BRs&Laws This phase extracts the disciplined formulation of
management concerns in any informal business rule in terms of management laws

Provider services (PS): This represents the milestone business entity in this
application. It provides the customer services with tailored offers satisfying their

demands. It controls the delivering of PCs to customers and also plays a key role
in payment.

Request: This activity is the first step in this process-driven application and

corresponds to the customer’s request for a number of PCs.

Rule Based Service Level Agreement language (RBSLA) is based on RuleML.

-152-

With this language SLAs can be implemented in machine readable syntax.

RuleML belongs to the XML-based standard for expressing rules on the Web.

Service Level Agreement (SLA) is defined as a formal contract between a

service provider and a client guaranteeing quantifiable performance at defined

levels.

Service Level Management (SLM) is the process of managing (composed)

services so that they can fulfill SLA requirements
Service-driven business applications Any software-intensive business application
that will be implemented using service technology (i.e. Web-Service standards)

Shipment services (SS): This service intervenes when there is a need for

shipping the goods to the customer.

Shipment: This activity concerns a case in which the customer’s place of

residence requires a shipment.

Software architecture is a high-level software design dealing with the structure

and organization of large software systems.

Web services (WS) are network-addressable software units (e.g., components,

modules, programs); that is, they are developed to be used on the Internet.

-153-

Appendix C

Management Law Language Syntax

Management law name
partners

{management interfaces}*
types {{par}+:data_type}*
rules
when trigger
who conditions //on partner preferences and histories
at_tirae conditions //on time issues
Manage {operations}*
else {operations}*
end law

- 154-

