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META-ANALYSIS METHODS FOR COMBINING 
INFORMATION FROM DIFFERENT SOURCES IN 

EVALUATING HEALTH INTERVENTIONS

Alexander Julian Sutton B.Sc., M.Sc.

Abstract

This thesis considers the quantitative synthesis of evidence from different study types 
in order to assess the effectiveness of health interventions. Bayesian MCMC 
methodology is used extensively, but not exclusively, for the analyses described 
herein. The thesis commences with consideration of different study designs used in 
health and related disciplines together with consideration of the validity of these 
sources. Existing synthesis methods for combining information, first, from a single 
study design (often referred to as meta-analysis), and then from multiple sources of 
evidence are then reviewed.

A meta-analysis of the randomised evidence on cholesterol lowering observations is 
presented. This analysis is then extended to a more generalised synthesis by including 
data from aetiological cohort studies in the analysis using hierarchical modelling 
methods. Such models allow for heterogeneity between study types. A second 
generalised synthesis considers evidence from three sources relating to the use of 
electronic fetal heart rate monitoring during labour. The particular problem of 
publication bias, and how it can be addressed in a generalised synthesis framework, 
where there are potentially differential levels of publication bias for the different 
sources of evidence, is discussed. Adverse events from interventions are often rare, 
and hence, difficult to detect and quantify using randomised controlled trials. The use 
of generalised synthesis to quantify adverse events is illustrated using data relating to 
adverse events of hormone replacement therapy and breast implants. The sparseness 
of the event data in these examples presents specific statistical problems which are 
explored. A sensitivity analysis framework for assessing the robustness of results to 
under-reported adverse events is outlined. A final example, the use of warfarin to 
prevent strokes in patients with atrial fibrillation, illustrates how disparate sources of 
data can be synthesised to construct a net-clinical-benefit model where potential 
benefits of treatment are weighed up against potential harm due to adverse events. 
This analysis synthesises clinical event data from randomised controlled trials, 
observational cohort studies for both benefit and harms as well as quality of life data. 
The net-clinical-benefit of the treatment is expressed, together with corresponding 
uncertainty measures, for patients with different underlying risks.

This thesis illustrates that with the increase in computer power and development of 
software to fit complex models using Bayesian MCMC methodology, it is now 
possible to think beyond the models currently used to synthesise medical data. It is 
hoped that such efforts will be seen as tentative first steps in a future where 
quantitative models are created routinely to summarise the totality of evidence, and 
inform models to make decisions for future patients.
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Chapter I Introduction

Chapter 1 Introduction

1.1 Background

Over the last fifty years of the twentieth century there has been an ever-accelerating 
increase in the volume of medical and related literature published. The lack of 
systematic summaries of one (very important) part of this literature, namely randomised 
clinical trials of medical interventions, lead Archie Cochrane to comment in 1979 that:

“It is surely a great criticism of our profession that we have not organised a critical 
summary, by speciality or sub-speciality, adapted periodically, of all relevant 
randomised controlled trials” (Cochrane, 1979)

In subsequent years, this has changed. Since the early 1980s, when the first systematic 
reviews including quantitative summaries, or meta-analyses, were published, the 
number of systematic review/meta-analyses papers has also increased at an accelerating 
rate. In addition, the last decade has witnessed the inception of the Cochrane 
Collaboration, (Chalmers et al. 1997) a worldwide group whose principal aim is to 
provide accessible, thorough, up to date reviews of as many interventions as their 
largely voluntary manpower permits. These developments are crucial aspects of the 
Evidence Based Medicine drive, (Sackett et al. 1996) which now underpins much 
clinical practice and training throughout the world.

Just as the number of meta-analyses carried out has exploded, so too has the 
methodological literature concerned with the methods used to undertake such syntheses. 
A recent (systematic) review of this literature (Sutton et al. 1998) identified well over 
500 references providing novel information on some aspect of systematic review 
methodology. Hence, although it is only 24 years ago that the term ‘meta-analysis’ was 
first used in this context, (Glass, 1976) much has been written in the intervening years, 
and many of the methods have attained some degree of refinement.

The main bulk of this PhD has been written in a climate during which the use of meta
analysis has become routine. In these five years (1996-2001) the output of the Cochrane 
Collaboration has expanded from a single floppy disk to multiple CD ROMs; specific
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Chapter I Introduction

meta-analysis software has been written making the majority of statistical analyses 
routine; (Steme et al. 2000; Sutton et al. 1998) and several textbooks on the subject 
have appeared. (Sutton et al. 2000a; Egger et al. 2000) Indeed it would seem that the 
world is finally catching up and taking stock of the vast array of randomised evidence as 
Archie Cochrane hoped.

However, it should not be forgotten that the RCT reports are only a fraction of the total 
medical and related literature. Indeed, for example, aetiologically orientated meta
analyses of observational studies are being produced in nearly the same quantities as 
those appearing on interventions combining RCTs.

A third distinct fraction of the total medical literature comprises the reports of 
observational studies assessing interventions. (Stroup et al. 2000) Over the years such 
studies have received less attention from meta-analysists, even though with the increase 
in the use of electronic databases and record linkage the routine audit of healthcare has 
been greatly facilitated. Although, guidelines for their reporting have now been 
published. (Stroup et al. 2000) There is a simple and good reason why such studies are 
often ignored by meta-analysts when assessing interventions; this is the fear of 
introducing bias into the analysis. Potential design weaknesses in observational studies, 
allowing possible confounding, and hence bias, raises concerns that such studies can 
give the wrong answers and therefore are not to be relied upon.

There is growing wisdom however that such a “closed door” approach to observational 
evidence is not always optimal. After completing several years work on this thesis it is 
heartening to observe a growing interest in the potential value of observational studies 
of interventions. This is highlighted by the registration in 1999 of a Cochrane 
Collaboration methods group to develop guidelines and methods for the inclusion of 
non-randomised evidence into Cochrane reviews (Oxman, 2001) (see also 
http://www.cochrane.dk/nrsmgA.

Alex Sutton Ph.D. Thesis, December 2001 2
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Chapter I Introduction

1.2 Non-randomised study designs

The various non-randomised study designs in common use in healthcare which may 
provide evidence, in addition to that from randomised studies, in a meta-analysis of 
effectiveness are described below.

Non-randomised controlled trial

The distinction between these studies and RCTs is that in these the treatment allocation 
is not randomised. Patients may have been recruited in a similar manner to an RCT but 
either for reasons of ethics, feasibility, or simply due to poor study design the treatment 
allocation was not randomised. For example, some trials allocate patients to treatments 
on an alternating basis; such studies are sometimes called pseudo-randomised trials.

Historically-controlled trial

In historically controlled trials, either the treatment, but more often the control group(s), 
may have been created retrospectively by searching through existing patient records. 
These sorts of studies produce a comparative treatment effect, much like an RCT. 
However, the lack of a concurrent treatment allocation mechanism may introduce bias 
through lack of comparability between the groups being compared.

Cohort designs

Cohort studies are very common in epidemiology. (Farmer & Miller 1996) They can be 
either prospective, or retrospective. Subjects are followed up over a period of time and 
comparisons of interest, such as mortality rates, can be compared either between 
subgroups of the whole cohort or other cohorts or data sources. By comparing groups 
defined by intervention received, treatment comparisons can be made.

Alex Sutton Ph.D. Thesis, December 2001 3
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Case-control studies

Case-control studies are another very common study design in epidemiology. (Farmer 
& Miller 1996) Diseased individuals (the cases) are compared with a sample of non
diseased subjects (the controls). Cases and controls can be matched, on known 
confounding factors, often gender or age. Although not usually a natural design for 
assessing effectiveness, they have been used with success in several areas, including the 
assessment of the effectiveness of bicycle safety-helmets. (Thompson et al. 1999)

Before and after studies/interrupted time series

The name of these studies is largely self-explanatory: outcomes are monitored, often in 
a given hospital or clinic before and after a new intervention is implemented. The 
effectiveness of the new intervention is assessed by comparing performance before and 
after it was introduced. Interrupted time series designs are conceptually very similar; but 
here the same subjects are assessed before and after the new intervention is introduced.

Case series/ n o f 1 studies

The response of individual patients to treatment may be published. This occurs 
frequently for relatively rare diseases. Although less common in medical studies than 
the social sciences, studies assessing multiple alternative therapies sequentially on 
individual patients (n of 1 studies) are still used in some areas, such as speech therapy 
(Enderby & Emerson, 1995), or pain management. These studies are distinct from 
crossover trials since here patient treatment allocation order is not randomised.

Routine database/audit data

Database/audit data is becoming increasingly accessible in principle, following 
improvements in data storage and retrieval methods. Hlatky (Hlatky, 1991) notes that 
descriptive studies and analyses of prognostic factors are established research uses of 
databases, but using them to compare therapies remains controversial, due to the
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potential for bias. Indeed it has been suggested that the problems with databases are 
even bigger than those for historical control studies. (Byar, 1991) However, large 
administrative databases are available that could be used to compare therapies in large 
populations of patients, and some feel if the data are of high enough quality that their 
use to compare therapies is justified. (Hlatky, 1991)

Other study types

Other study types including surveys, animal studies and earlier phase clinical trials may 
also provide valuable information regarding the effectiveness of an intervention; the list 
above is not exhaustive, but fully demonstrates the range of potential non-randomised 
data relevant to the assessment of interventions.

13 The debate over the value of observational evidence in assessing 

effectiveness

There clearly is not unanimous support for raising the profile of observational studies of 
interventions, and their use for evaluation purposes remains a contentious issue. As 
mentioned above, there is concern that biases may invalidate observational studies 
results. Allocation bias may be particularly serious since patients are not randomly 
allocated, but chosen for a particular intervention. If the allocation indication is 
influenced by either practitioner or patient preferences then confounding by indication 
may exist. (Psaty et al. 1999) If differences are known about they can be adjusted for at 
the analysis stage, (Psaty et al. 1999) using methods used to adjust for other forms of 
confounding in observational studies. However it is impossible to be certain all such 

differences have been identified.

There are instances where carrying out a randomised controlled trial would be: (Black, 

1996)

a) unnecessary, when the treatment effect is so large that unknown confounding 
factors can be ignored;
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b) inappropriate, for assessing or preventing rare events; investigating outcomes of 
interest far into the future, or interventions of which the effectiveness is 
dependent on the subject’s beliefs and preferences. (The analysis of rare events 
is given considerable attention in this thesis in Chapter 7.)

c) impossible, due to the reluctance of clinicians to participate, ethical objections, 
political or legal blocking or administrative impracticability problems and the 
complexity of the intervention. (MRC Health Services and Public Health 
Research Board, 2001)

d) inadequate due to a lack of generalisability of the trial results. Even when 
efficacy of an intervention has been proven in trials, this has not always 
translated into real gains in effectiveness when such interventions were put into 
routine practice. In such instances the artificial, experimental, nature of a trial 
has been blamed, possibly due to restrictive patient inclusion criteria, and 
artificially high levels of care, for not giving a realistic idea of what can be 
achieved in routine practice. (Sutton and Abrams, 1998) (An example of where 
observational evidence is used to extrapolate results to patients with 
characteristics not necessarily present in the RCTs is detailed in Chapter 8.)

There are further instances where timeliness of RCT evidence is problematical: policy 
decisions are required, but the randomised evidence currently available is not adequate 
to give a conclusive answer. Areas where observational evidence may be particularly 
valuable (as identified by the Cochrane Non-randomised studies working group 
(unpublished)) include public health promotion interventions, assessments of 
organisational change, and surgery.

In conclusion, Black (Black, 1996) suggests that the complementary roles of 
randomised and non-randomised studies should be acknowledged in the quest for 
scientific rigour in evaluation. This is the view held by the author. However, the how to 
combine the complementary strengths of randomised and observational evidence is far 
from obvious. It is this serious deficiency in the literature regarding methods for 
quantitatively combining the results from experimental and non-experimental designs 
(see Chapter 3) that provided the motivation for undertaking this thesis.
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1.4 The validity of findings from observational studies and non- 
randomised trials assessing medical interventions

Recently, the validity of the results of observational studies of interventions has been 
assessed in several investigations. (Concato et al. 2000; Benson and Hartz, 2000;
Briton etal. 1998; Reeves et al. 1998) These empirical investigations have compared 
the results obtained from observational studies with those from RCTs on the same topic 
and examined how closely they agree. All four of these investigations reported that, 
contrary to the belief that non-randomised studies give larger estimates of treatment 
effect, no obvious trends emerged. In some instances there was close agreement in the 
estimates produced by the two types of evidence. (Benson and Hartz, 2000) However, 
Kunz and Oxman (Kunz and Oxman, 1998) compared the results of randomised and 
non-randomised controlled trials of the same interventions, but came to different 
conclusions. In many instances the discrepancy between results was large, and on 
average the non-randomised trials gave a larger treatment effect, sometimes 150% or 
more larger than the randomised trials. The overestimation was neither consistent nor 
predictable and relative decreases of 90% were also observed for the non-randomised 
studies. This led the authors to conclude that failure to use adequately concealed 
random allocation can cause distortions as large or larger than the size of the effects that 
are to be detected. Clearly, this is an area where further empirical research is required 
before a generally interpretable pattern emerges.

1.5 Hierarchies of evidence

In their guidelines for carrying out systematic reviews, Deeks et al. (Deeks et al. 1996) 
produced an example hierarchy of evidence, which is reproduced below (Figure 1.1). 
This grades study types according to the reliability of their results.

Although this is a useful starting point for considering the relative merits of evidence 
from different sources, it is of limited use as study validity not only depends on the type 
of study, but also how well it was designed, carried out and analysed. Indeed, a poor 
RCT may be less reliable than a well-conducted observational study. (Deeks et al.
1996) Further, a consistent assessment of quality across different study designs is very
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difficult, despite generic scoring criteria having been developed. (Downs and Black, 
1998)

The issue of study quality and the magnitude and direction of biases to which 
observational studies are susceptible to are very important issues when synthesising 
such information. This is not the main theme of this thesis but is discussed further in 
Chapter 9.

Figure 1.1 An Example of a Hierarchy of Evidence (reproduced from Deeks et al.
(Deeks etal. 1996))

I Well-designed randomised controlled trials

Other types of trial:
II-la Well-designed controlled trial with pseudo-randomisation
H-lb Well-designed controlled trials with no randomisation

Cohort studies:
H-2a Well-designed cohort (prospective study) with concurrent controls
H-2b Well-designed cohort (prospective study) with historical controls
H-2c Well-designed cohort (retrospective study) with concurrent controls

H-3 Well-designed case-control (retrospective) study

m  Large differences from comparisons between times and/or places with and
without intervention, (in some circumstances these may be equivalent to level 

Hor I)

IV Opinions of respected authorities based on clinical experience; descriptive
studies and reports of expert committees
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1.6 Aims of this thesis

Introduction

This thesis considers methods for synthesising data from different sources, with special 
emphasis on the role of non-randomised evidence in a meta-analysis of the effectiveness 
of a medical intervention, and how it can be combined with randomised evidence. The 
standpoint taken is that non-randomised studies are distinct from RCTs and hence 
should be treated distinctly. That is to say the examples considered, and the methods 
developed herein, do not simply ‘lump* together and pool randomised and non- 
randomised studies using standard meta-analysis models.

Bayesian statistical methods have been used extensively, but not exclusively throughout 
this work. Their implementation in the software package WinBUGS (Speigelhalter et al. 
2000a) provides a flexible environment in which, non-“off the peg” statistical models 
can be implemented with relative ease, as well as providing certain theoretical 
advantages over classical alternatives. Although the WinBUGS code is usually not 
included in this thesis, the models used are always explicitly described which should be 
sufficient to allow the methods to be replicated. When the code is less straightforward, 
this is given in an appendix.

In all examples the data used were that which were available from study reports, and, 
hence, aggregated across patients. No attempt to use individual patient data (ipd), either 
to carry out further analyses on individual studies, or to synthesise at the patient level 
was made. Consideration is given in the discussion (Chapter 9) to ways in which ipd 
may be used advantageously.

1.7 Outline of the Thesis

Chapter two briefly reviews the standard meta-analysis methods used for combining 
studies with the same designs, and highlights problematic issues in doing so.

Chapter three then critically considers the methods that have been developed previously 
for synthesising information from studies with different designs.

Chapter four reports a synthesis of the evidence relating to the effect on mortality and 
coronary events of reducing blood cholesterol levels. This topic was chosen because it
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is an area of high research output where many studies of different designs are available. 
The analysis was originally carried out in 1998, and the data were up-to-date at the time, 
but much of the analysis was updated in 2001, using data available up-to-date as of the 
end of2000. This analysis provided the opportunity to implement the current ‘state of 
the art’ methods for synthesising evidence, and forms the base for which much of the 
work described in future chapters develops.

Following a detailed analysis of the randomised evidence in Chapter four, Chapter five 
considers the non-randomised evidence from aetiological studies on the relationship 
between blood cholesterol levels and mortality. Bayesian three-level hierarchical 
models and mixed effect regression models (previously only implemented using 
ffequentist methods) are implemented which illustrate contrasting approaches to how 
the evidence can be combined. In addition, a multivariate model to combine multiple 
continuous outcomes simultaneously is described and applied to a meta-analysis of 
dental interventions. Previously only ffequentist formulations of such a model had been 
described; here advantages of the Bayesian approach are discussed. A random effects 
model for estimating indirect comparisons is also described and applied to a meta
analysis of treatments for the prevention of pneumonia in HIV infection. Previously 
only fixed effects models had been used to combine this data, but the random effect 
model developed here would appear more appropriate.

Chapter six considers the issue of publication bias when combining studies from 
different sources, and specifically considers the issue of different publication bias 
mechanisms being important for different study designs. An assessment of publication 
bias using data on the use of electronic fetal heart rate monitoring is described. The use 
of fetal monitoring is still a contentious issue with no clear benefits on overall mortality 
being demonstrated in trials, but benefits are apparent when the non-randomised 
literature is considered. Much of the data in this example are sparse; the problems 
associated with synthesising such evidence are considered further in Chapter seven. The 
analysis considered here raises some interesting issues regarding how to deal with 
publication bias in a generalised synthesis framework. This includes the use of the Trim 
and Fill method in combination with the methods for combining data described in 
Chapter five providing a way of ‘adjusting’ for publication bias in a generalised
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synthesis framework. Limitations of the Trim and Fill method are highlighted and two 
promising approaches to improving this method are outlined.

Chapter seven considers meta-analysis of rare events, an area where non-randomised 
evidence may be particularly valuable due to the lack of data often available from 
RCTs. Before considering generalised synthesis models, the suitability of traditional 
meta-analysis models for the combination of extremely rare events is questioned. 
Bayesian “exact” simulation methods, bootstrapping, and data-inflation are all 
examined as potential alternatives. Data on the use of hormone replacement therapy and 
risk of breast cancer and coronary heart disease are used to illustrate these methods. The 
randomised evidence on this subject consists of extremely sparse data, and a previous 
meta-analysis of it met with a critical reaction. In order to address some of these 
criticisms, a novel simulation-based sensitivity analysis approach to dealing with 
uncertainties in the reported data is described. A less technical method than the

i
hierarchical models of Chapter 4 is used to synthesise observational with this 
randomised evidence, and an intuitive diagram that allows the randomised and non- 
randomised evidence to be summarised and “weighed up” against each other is 
presented. Finally, an exact random effect method for combining rare events from 
observational studies with different designs is described. Previously, only a fixed effect 
model was developed for combining such data. This new model is then applied to a 
meta-analysis of the risk of connective tissue diseases from breast implants.

Chapter eight, is still directly concerned with the synthesis of evidence from studies 
with different designs, and in particular addresses the question of how to assess whether 
a particular intervention will be beneficial for an individual patient (a question first 
considered in Chapter 4). However it departs from the use of hierarchical models used 
thus far. The net-benefit model of Galziou and Irwig (Glasziou and Irwig, 1995) is 
revisited and implemented using Bayesian methods. This model provides a method of 
extrapolating a general (aggregate) measures of effect to individual patients with 
different characteristics that are believed to modify the treatment effect magnitude. The 

warfarin and atrial fibrillation example originally used to illustrate the method is re
evaluated. In this analysis RCT effectiveness data, observational data on adverse 
effects, quality of life data and information from multivariate risk equations are all 
synthesized. This advances the original work by providing a framework for including
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uncertainty related to the estimation of all model parameters, and permits both direct 
probability statements and a credible interval for an individual’s net benefit to be 
expressed.

Chapter nine concludes the thesis, discussing issues raised in previous chapters, and 
makes recommendations for areas of further work.

Bayesian methods are used in many places in this thesis; while the application of such 
methods to evidence synthesis and health technology assessment more generally is in its 
infancy, guidelines (Bayeswatch) have recently been developed to encourage 
comprehensive reporting when such methods are used. (Spiegelhalter et al. 1998) 
While such guidelines were followed for the analyses described herein, due to space 
limitations, it was not possible to report all the recommended information for every 
analysis. Hence, for the first substantial Bayesian analysis, reported in section 5.1, 
results are given in their entirety as recommended in Bayeswatch; for subsequent 
analyses such information is available on request.
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Chapter 2 Critical review of current methods for meta

analysis

2.1 Introduction

In this chapter the methods for meta-analysis are reviewed. Many of these methods have 
been used routinely for several years, while others, such as the methods to address 

publication bias, are somewhat more recent developments. Due to limitations in space, 

consideration is not given here to the important pre-synthesis components of a 

systematic review, including protocol specification, literature searching and data 

extraction; however these have been reviewed by the author elsewhere. (Sutton et al. 

1998) Similarly, since the current literature is considerable, attention is focused on the 

most mainstream and commonly used methods that are used and extended in this thesis. 
Notable omissions include methods for vote-taking and combining p-values, analysis of 

individual patient data and analysis of survival data. More comprehensive reviews of the 

meta-analysis methodology literature, which include these and other topics, can be 

found elsewhere. (Sutton et al. 1998; Sutton et al. 2000a)

Since Bayesian methods are used extensively in the latter chapters, this review includes 

the Bayesian formulations, where they exist, alongside their Classical equivalents, as 

well as extensions unique to the Bayesian approach.

2.2 Fixed effect models

The simplest meta-analysis methods which produce an overall pooled estimate are fixed 

effect models. Using a fixed effect model to combine treatment estimates assumes no 

heterogeneity between the study results; the studies are assumed all to be estimating a 

single true underlying effect size. Clearly, in many instances this may not be realistic, 

and hence the need for the more sophisticated methods described later.
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2.2.1 General fixed effect model - the inverse variance-weighted method

The general form of the fixed effect model, the inverse variance-weighted method, was 

first described by Birge (Birge, 1932) and Cochran (Cochran, 1937) in the 1930s, and 
more recently placed in a formal meta-analysis framework by Whitehead and Whitehead 

(Whitehead and Whitehead, 1991). Each study estimate is given a weight directly 

proportional to its precision (that is inversely proportional to its estimated variance). For 

i = 1, . . ,  k independent studies to be combined, let 7/ be the observed effect size with 

estimated variance v„ #  the true underlying effect size, and erf, for the rth study. For a

fixed effect model all population effect sizes are assumed equal i.e. 6i =.. ~ 9k = 6\ 

where 6 is the true common underlying effect size. Hence, the model is given by 

7 = 6 + et , where ei are error terms and are realisations of normally distributed random

variables with expected value 0 and variance a f  . It follows that Ti satisfies the

distributional relationship Ti ~ n (o, erf) A pooled estimate of the treatment effect is

given by:

T.= / - ]

W i

«-l

(2 .1)

The weights that minimise the variance of T., and hence are routinely used, are 

inversely proportional to the variance in each study: (Shadish and Haddock, 1994)

The details of the variance formulae depends on the effect measure being combined. An 

estimate of the variance of the pooled estimate T. is given by the reciprocal of the sum 

of the weights, i.e.
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var(7\) = l/]T
/ l-l

(2.3)

In the formulae above, the variances of the effect sizes (1/) used to derive the weightings 

( via ) are estimated from the data but are treated if they were the true variance, hence no 

allowance is made for error in the calculated term vt i.e. it is assumed that

then T . would be the maximum likelihood estimate of the true underlying effect size.

If T. is assumed to be normally distributed, an approximate 100(l-a)% confidence 

interval for the population effect, 0, is given by:

where z100(1_c/2) is the 100(1-a/2) percentage point of a Standardised Normal 

Distribution. The global null hypothesis that the treatment effect in all studies is equal to

distribution with 1 degree of freedom. It should be noted that the variance estimation 

formula for the standard inverse variance-weighted method can sometimes be biased 

and too sensitive to the minimum of the estimates of the variances in the K studies; an 

adjusted variance formula is available. (Li et al. 1994)

The above calculations require an estimate of effect size and corresponding variance 

from each study. The maximum likelihood estimates of these can be used, or, 

alternatively, if using efficient score and Fisher’s information statistics, given by Zf and

Vj respectively (the first and second order derivatives of the log likelihood evaluated at

Tt ~ n (0,w~'). If Wj were the true inverse variance of 7], rather than being an estimate,

0 is tested by comparing the statistic U = 2 > .  with the chi-squared
i-i

k

0 = 0 (Whitehead, 1992)), 7] = —■ and wf = V.t . Also let T[wi = Z(, then
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* /  
i v

T . = ,ml . The approximate distributional result Z ~ N(OV,V) can be used when

/ V '

0  is small. The ratio Z/V  is an approximate maximum likelihood estimate for#. The
r k y  Ik

test statistic can be expressed as U = ^ Z / /  'j[Vi .It has been termed the ‘one-step’
V i - l  J /  i - l

estimate because it is obtained on the first step of a Newton-Raphson procedure to 

maximise the log-likelihood function when the starting value for 6 is 0. Although this 

estimate is asymptotically unbiased under the null hypothesis that 0=0, it becomes 

increasingly biased the further that 0 moves from 0.

2.2.2 Bayesian fixed effect models

Most authors who have considered a Bayesian approach to meta-analysis have 

implemented random effects models, but fixed effects models are possible. Bayesian 

methods differ from frequentist ones in that both the data and model parameters are 

considered to be random quantities, and the likelihood function is thought of as defining 

the plausibility of the data given values of the model parameters. The model parameters 

are considered unknown random quantities and prior distributions may be specified for 

them, which can be based on evidence external to the study, in this case meta-analysis, 

in question or on subjective a priori beliefs. The joint prior probability density function 

for all the model parameters is then combined with the likelihood function using Bayes’ 

Theorem (Lee, 1989) to obtain the joint posterior probability density function. In this 

thesis, all posterior densities for all model parameters are derived using MCMC 
simulation. For example, if the outcome is assumed to be normally distributed, then:

7) ~  N[0,v2i] i= 1........ k

(2.5)

0 ~ N [-,-],

where 0 is the estimate for the underling effect size, v? is the estimated variance of the 

effect size (n.b.as for the classical approach the v,- are treated as if they were the true
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variances, when in fact they are estimated from the data) and [-,-] indicates a prior 

distribution to be specified. An important aspect of any Bayesian analysis is the choice 

of prior distributions. Sutton and Abrams (Sutton and Abrams, 2001) review priors used 
previously for meta-analyses. This aspect of the analysis is considered further in Chapter 
7; as are further Bayesian fixed effect models, which appear appealing for combining 
data where the outcome is rare

2.2.3 Alternative fixed effect models for combining odds ratios

Other fixed effect methods specific to combining odds ratios have been developed. 

Under most conditions the estimates obtained from each method should be very similar 

to one another. However, when the data are sparse, results may differ and some 

traditional methods may break down altogether. This issue is explored in detail in 

Chapter 7.

If a comparative binary outcome is being considered, generally it will be possible to 

construct a 2 by 2 table, for each study, including all the information required for the 

commonly used outcome measures. Typical 2 by 2 tables for an RCT and a case-control 

study are presented in Figures 2.1a and 2.1b respectively.

Figure 2.1a - Outcome data from a single RCT

Failure

/Dead

Success

/Alive

New Treatment a b

Control c d
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Figure 2.1b - Outcome data from a single Case-control study

Diseased

(cases)

Non

diseased

(controls)

Exposed a b

Not exposed c d

Mantel-Haenszel method for combining odds ratios

This method was first described by Mantel and Haenszel (Mantel and Haenszel, 1959). 

The pooled estimate is calculated by:

A
T mh(or) = -------t— , (2.6)

l W " ,
i-i /

where bt, c» and d/are the four cells of the 2x2 table illustrated in Figure 2.1a and b 

for the i = 1.. .  k studies, and n\ is the total number of persons in the rth study.

A variance estimate for the estimated summary odds ratio, T mh(or) , is required in order 

to calculate a confidence interval around this point estimate. The formula commonly 

used was derived by Robins et al. (Robins et al. 1986a; Robins et al. 1986b) This

formula computes a variance estimate for the log of Tmh(or) , as:

'Zp.r, iotf+a*,) zas,
V = _£!____ + -£!___________ + _£!_____  (2 1)
v u h <m o *)) ( t  y + / ,  Y  * V  f* A2’

2|I*< 4 l *  I */.] / '1-1 '  M-l ' \/.|

where P-x = (a\+dx)/nx, Qx = (bx+cx)/nx, Rx=axdx/nit and Si = bxcx/nx.
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A 100(l-a)% confidence interval for the summary odds ratio, 6, is thus given by: 

exp [ln̂ TMH(()R) )— ̂ i00(l-a/2) (VMH(OR) J J — @ — eXP [ln(j’A///(CR) )+ Z]oo(i_a/2) (yMH(OR) ) J’ (2*8)

where z100(1_a/2) is the 100(l-a/2) percentage point of a Standardised Normal

Distribution. Several other variance estimates have been proposed; these are further 

explored elsewhere (Phillips and Holland, 1987; Robins et al. 1986a; Robins et al. 

1986b; Emerson, 1994). Sato (Sato, 1990) has developed a method that works directly 

on the odds ratio scale (as opposed to In OR). Simulations have shown (Sato, 1990) that 

this works as well as the method of Robins et al. given above. If any of the cells of the 
2x2 tables are 0 (i.e. there are no events or every person experiences an event) then a 

continuity correction factor is required, and hence 0.5 is usually added to every cell of 

the 2x2 table in question.

Peto 's method for combining odds ratios

This method was first described by Peto et al. (Peto et al. 1977) and more thoroughly by 

Yusuf et al. (Yusuf et al. 1985). It can be regarded as a modification of the Mantel- 

Haenszel method. An advantage over the Mantel-Haenszel method is that it can still be 

used when cells in individual studies 2 by 2 tables are zero; it is also easy to calculate. 

Unfortunately Peto’s method may produce serious under estimates, (Fleiss, 1994) when 

the odds ratio is far from unity (i.e. there are large treatment or exposure effects). This is 
unlikely to be a problem in clinical trials, but could be so in the meta-analysis of 

epidemiological studies. (Spector and Thompson, 1991)

Defining nx as the number of patients in the ith trial and nti as the number in the 

treatment group of the ith trial, let di equal the total number of events from both 

treatment and control groups, and O, the number of events in the treatment group. Then 

£/, the ‘expected’ number of events in the treatment group (in the ith trial), can be 
calculated as E, = (nti/nj)di. For each study two statistics are calculated: 1) O-E, the
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difference between the observed and the number expected under the hypothesis that the 

treatment is no different from the control; and 2) v, the variance of the difference O-E. 
For k studies the pooled estimate of the odds ratio is given by (Berlin et al. 1989):

TpETO(OR) ~  eXP Vi

L/-1 i- i
(2.9)

where v, = £.[(«, -  n„ ) / n, ][(«, i, -1)].

An estimate of the approximate variance of the natural log of the estimated pooled odds 

ratio is provided by:

var^nr,™ ,^) — f  k A
2 > , 

v i-i y

(2 .10)

A 100(l-a)% (non symmetric) confidence interval is thus given by:

exp i-i i-i

2 > ,
I - I

(2 .11)

where za/2 is the oc/2 percentage point of a Standardised Normal Distribution.

Combining odds ratios via maximum-likelihood techniques

Maximum likelihood estimates are difficult to compute exactly, but they are the most 

efficient for large sample sizes. Unfortunately, there is no way of knowing how large the 

sample sizes must be for this property to hold. (Hasselblad and McCrory, 1995)

Emerson (Emerson, 1994) reports that Breslow found that unconditional maximum 

likelihood estimation, which had earlier been investigated by Gart, not consistent for 

estimating the odds ratio when the number of counts remained bounded.
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Conditional maximum likelihood estimates also exist. They use the conditional 

distribution of the data in each table, given the fixed values for the total counts in the 
margins. This leads to an estimator that is consistent and asymptotically normal. 

(Emerson, 1994; Hauck, 1984) It is superior to the unconditional maximum likelihood 

estimator, and equal or superior to the Mantel-Haenszel estimator in both bias and 
precision. (Hauck, 1984)

Exact methods of interval estimation

The above methods for interval estimation are all asymptotic; their justification assumes 

either that the counts are large or that the number of strata is large. Exact methods do 

exist that are not restrained in this way, and are based on exact distribution theory. 

Although these methods have long been available in principle, modem computer power 

(using network algorithms) now makes them routinely available. See Emerson 
(Emerson, 1994) for a review of this topic.

The relationship between the different classical methods o f meta-analysing odds ratios

Using the 2 by 2 table notation outlined in Figure 2.1, the efficient score for the 

underlying log odds ratio in the zth study is Z, = bt -  {at + bi){bi + di)/(ai + bt + ci + dt) 

and Fisher’s information is

K = + b, Xc; + d, + d, \a t + c, )/(ai + b, + c, + d, J  (a,. + b; + c, + d, - 1) when

analysis proceeds using a likelihood which conditions on the total number of successes 

in the study (b + d). It can be seen that Zi can be expressed as O, -  Et of the Peto

method in equation (2.9) and is thus based on the above formulae. Hence, estimation 

could proceed using efficient score statistics and Fisher’s information as explained in 
Section 2.2.1. It should be noted that the Mantel-Haenszel test statistic is the U statistic 

calculated from the Peto approach. Therefore, the Mantel-Haenszel test statistic is 

connected with the Peto estimate rather than the Mantel-Haenszel estimate. The Mantel-
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Haenszel estimate can be considered as a weighted average of the individual odds ratios, 

with weights bjci / ni which approximate the inverse variances of the individual

estimates when 0 is near 1. (Breslow & Day, 1980) The inverse variance weighed 

estimate would be optimal, in the sense that it has minimum variance, if the variance of 

the individual study estimates were known and not estimated from the data.

Bayesian “exact ” methods for combining odds ratios

It is possible combine odds ratios using method (2.5), however, more appealing, are 

specifications which do not require the assumption of normality for pooling odds ratios. 

Two models are described below that both make the assumption that the number events 

in each arm of each study are binomially distributed.

A model which only assumes the underlying effect difference between groups is the 

same between studies (the assumption of the Classical fixed effect approaches) is 

specified below, using the a, b, c, d notation as before

a,. -  Bin[pu, (a,. + bi)] c, ~ Bin[p1:, (c, + )] i = 1..........k

log it(pu) = Mi log it(p2i) = Mt + delta (2.12)

Mi delta

OR = exp(d),

Where pi, and /??/ are the probabilities of events in the two groups being compared for 

the /th study. is the estimated ln(odds) of an event in group one, and delta is the 

ln(odds ratio) between groups; priors are required for these parameters.

If it is assumed that the underlying proportion of events in corresponding arms of each 

of the studies is the same, then the following model can be fitted.
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a. ~ Bm[p,,(a, +*,)] c, ~ Bin[p2,(c, + </,.)] i=  1.........*

p, ~ Bete[-,-] p2 ~ Beta[--} (2.13)

O/t = (p, X (l -  P, ))/(p2 X (l -  P, ))

Note, pi and P2 do not have to be given Beta distribution priors, however these are the 
conjugate choice (Lee 1989).

The key difference between these models and (2.5) is the assumption that at the lowest 

level of the model the responses in each arm of a study can be modelled directly. In (2.5) 

calculation of the log odds ratio, when there are zero or complete responses in either 

arm of a study, requires a continuity correction factor to be added. It is this assumption 

of Normality of the log odds ratio, or other transformed measures of binary data, in 

models such as (2.5) that is frequently not valid. Similar “exact” models have been 
developed for the risk difference outcome (Carlin, 2000); these are described in Chapter 

7.

2.2.4 Discussion of the relative merits of each method

With a number of different approaches to combine odds ratios available, it would be 

desirable to have guidelines indicating which particular method is most appropriate in 

which circumstances.

As mentioned previously, the Peto method has come under strong criticism. It has been 

demonstrated that this method may produce seriously biased odds ratios and 

corresponding standard errors when there is severe imbalance in the numbers in the two 

groups being compared. (Greenland and Salvan, 1990) Bias is also possible when the 
estimated odds ratio is far from unity. (Fleiss, 1993) Fleiss (Fleiss 1981) describes 
conditions under which the inverse-weighted and the Mantel-Haenszel method are to be
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preferred: if the number of studies to be combined is small, but the within-study sample 

sizes per study are large, the inverse-weighted method should be used. If there are many 

studies to combine, but the within-study sample size in each study is small, the Mantel- 
Haenszel method is preferred.

A comparison between the Mantel-Haenszel and (conditional and unconditional) 

maximum likelihood techniques has been carried out. Generally if the sample sizes of 

the studies are large (all cells >=5) the methods will give almost identical results, 

otherwise differences between the methods will be small. As there seem to be no clear 

benefits to be reaped from the difficult computation of the maximum likelihood method, 
using the inverse-weighted and Mantel-Haenzel methods when indicated would seem 
the best strategy in most cases. If, however, samples sizes are small for individual 

studies exact methods may be preferred. (Greenland and Salvan, 1990)

Another consideration when deciding which method to use is whether any of the trials 

arms have zero observed events. Using the Mantel-Haenszel estimate, a study with zero 
total events is completely excluded from the analysis if no continuity correction is used. 

This is unappealing as a trial with zero events from 200 subjects would then be equally 

as non-informative as a trial with only 20 subjects. A recent investigation into this 

problem recommended that a continuity correction (adding 0.5 to each cell) should be 

used for sparse data in meta-analysis, except in the situation when there is strong 

evidence suggesting that very little heterogeneity exists among component studies. 

(Sankey et al. 1996) The issue of continuity correction factors for meta-analysis are 

considered in detail in Chapter 7. At the time of writing, simulation studies appeared to 

show that the Peto method outperformed other simple methods, including the Mantel- 

Haenszel method and the standard inverse variance-weighted method (section 2.2.1) 

when there were small numbers of events in one or more cells of studies 2 by 2 tables. 

(Deeks et al. 1999)

None of the comparative assessments cited above have compared the performance of the 
Bayesian “exact” models against the classical ones.
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2.3 Random effect models

Random effects models have been advocated as a more conservative alternative to fixed 

effect models. This approach assumes the studies are estimating different (underlying) 

effect sizes, and takes into account the extra variation implied in making this 

assumption.(Whitehead and Whitehead, 1991) More specifically, these underlying 

effects are assumed to vary at random, and typically the distribution of such effects is 

assumed to be normal. Hence this model includes two sources of variation; the between- 

and within-study variance.

While many consider random effects models always to be preferable for combining data 

from medical studies, the decision on which model to use can also be made by
t

considering a statistical test for heterogeneity. Several slightly different formulae for a 

general test are, for the most part, essentially equivalent, being based on %2 or F 

statistics. (Dickersin and Berlin, 1992). The one devised by Cochran (Cochran, 1954), 

which is widely used, is given below. It tests the hypothesis that the true treatment 

effects are the same in all the primary studies (Ho: 0j -  02 = • • • = 0k, where the 0?s are 

the underlying true treatment effects of the corresponding, i = 1 to k, studies in the meta

analysis), versus the alternative that at least one of the effect sizes (#) differs from the 

remainder.

Essentially, this is testing whether it is reasonable to assume that all the studies to be 

combined are estimating a single underlying population parameter and whether variation 

in study estimates is likely to be wholly random. This is essentially testing the 

assumption underlying the fixed effect model. The test statistic is

where k is the number of studies being combined, 7} is the treatment effect estimate in 

the /th study, T. is the inverse variance weighed estimate of treatment effect, and w, is

(2.14)
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the weight attached to that study in the meta-analysis. Q is approximately distributed as 

a x2 distribution on k-1 degrees of freedom under Ho. Unfortunately, when the number of 

studies in a meta-analysis is only small or moderate, the low power of the test can make 
interpretation difficult.

2.3.1 Standard Classical model

The standard random effects model used in meta-analysis was described by 

DerSimonian and Laird.(DerSimonian and Laird, 1986) The model assumes that the 
study specific effect sizes come from a random distribution of effect sizes with a fixed 

mean and variance. Expressed algebraically, where 7} is an estimate of effect size and 6, 

is the true effect size in the zth study

(2.15)

where et is the error with which 7} estimates 6t, and

Var(7))= v,, (2.16)

where r  e is the random effects between study variance and v, is the variance due to 

sampling error in the zth study. If the random effects variance was zero the above model 

would reduce exactly to the fixed effects model.

Formulae can be derived using both a weighted and an un-weighted approach; these can 

be estimated using four different methods; weighted and un-weighted least squares 
(WLS, UWLS), and maximum and restricted maximum likelihood (ML & REML); the 

latter two assume normality of the underlying effect parameters. The likelihood to be 

maximised is slightly modified using REML (from that of ML), to adjust for the fact 
that the underlying mean and variance are being estimated from the same data. The 
REML estimates are the iterative equivalent to the weighted estimators. (DerSimonian 
and Laird, 1986) The relative merits of each of the above methods have not been widely
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investigated, however the WLS approach has become the standard.(Shadish and 

Haddock, 1994) For derivations and formulae see Shadish and Haddock (Shadish and 
Haddock, 1994).

2.3.2 Extensions to the Classical model

Including uncertainty induced by estimating the between study variance

Although the random effects model gives wider confidence intervals than that of a 
corresponding fixed effect analysis, they are still too narrow, because the method 

assumes the between study variance is known, when in fact it is estimated from the 
data.(Hardy and Thompson, 1996; Biggerstaff and Tweedie, 1997; Biggerstaff, 1997) 

Two modifications have addressed this problem. Hardy and Thompson (Hardy and 
Thompson, 1996) developed an approach using profile likelihood methods, which 

assumes normality of the data, to calculate appropriate confidence regions. This method 

still uses the study estimates of each individual study variance as the true underling 

variance. If a full likelihood method were pursued, allowing for this uncertainty, the 

confidence intervals for the overall treatment effect would be expected to be even wider. 

Except when all the trials are small, the additional uncertainty would not be expected to 

have a great impact on the results and so pursuing a full likelihood approach is 

unnecessarily sophisticated for most practical purposes.(Hardy and Thompson, 1996) 
(However, a full likelihood approach for binomial data (which includes the conditional 

distribution of each 2 by 2 frequency table given its margins), is discussed below(Van 

Houwelingen et al. 1993) since it offers other advantages.)

Biggerstaff and Tweedie (Biggerstaff and Tweedie, 1997) address the same problem by 

developing a variance estimator for Q (the between study heterogeneity statistic), that 

leads to an interval estimation of r 2, utilising an approximating distribution for Q. They 

also develop asymptotic likelihood methods for the same estimate. This information is 

then used to give a new method of calculating the weight given to the individual studies 

which takes into account variation in these point estimates of r 2. These new weights are 

between the standard fixed and random effects, in terms of effect on down-weighting
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the results of large studies and up-weighting those of small. (A past concern has been 

that when t2 is large the standard random effects model gives too much weight to the 

relatively small studies.) These new weights will differ most from those of the standard 

random effects model when the number of studies to be combined is small; the results 

are similar to the standard random effects model when 20 or more studies are to be 
combined.

Exact approach to random effects meta-analysis of binary data

Van Houwelingen developed a likelihood based approach to random effects, for binary 

data, (Van Houwelingen et al. 1993) which avoids use of approximating Normal 

distributions and can be used when the assumptions of normality are violated, an 

assumption which is rarely checked in meta-analyses. Solutions are obtained via the EM 

algorithm (Dempster et al. 1977). An extension is given to a bivariate random effects 

model, in which the effects in both groups are supposed random. In this way inference 
can be made about the relationship between improvement and baseline effect. This is a 
non-parametric procedure, and has been recommended (Hardy and Thompson, 1996) 

when the normality assumption is violated.

2.3.3 Bayesian random effect models

General model for normally distributed data

Many of the authors who have considered a Bayesian approach to meta-analysis have 

implemented a hierarchical model in which various assumptions of Normality have been 
made. (DuMouchel, 1989; DuMouchel, 1994b; DuMouchel and Harris, 1983;

Watemaux and DuMouchel, 1993; DuMouchel, 1994a; Abrams and Sanso, 1998; 

Verdinelli et al. 1995) This mirrors the Classical approach of DerSimonian and Laird.

<Ti ~ i =

0, ~ N[/j; /]  (2.17)
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It should be noted that full uncertainty in the parameter estimates is (automatically) 

taken into account in the estimation of posterior parameters, so that unlike the Classical 
approach, no extension is required to allow for this.

“Exact ” model for combining odds ratios

An exact random effect Bayesian models can be constructed by extending (2.12), and 

has been adopted by a number of authors (Skene and Wakefield, 1990; Rogatko, 1992; 
Smith et al. 1995b; Smith et al. 1995a; Waclawiw and Liang, 1994; Higgins and 
Whitehead, 1996; Spiegelhalter et al. 1994).

a,. ~Bin[pii,{ai + *>,.)] c, ~Bin[p2l,(cl +d,.)] j = l  k

log it(pu) = Mi log it(p2l) = Mi + delta i

(2.18)

delta/ ~ N[$ ■?]

/ / , - [ - - ]

where ^represents the overall pooled effect, on a log odds ratio scale, and t* is a 

measure of the between-study heterogeneity. A similar extension of (2.13) has also been 
implemented, (Byar, 1980) however this is not pursued here.

An alternative to equations (2.17) or (2.18) is to assume the random effects are t rather 

than normally distributed. (Smith et al. 1995b; Seltzer, 1991) This may be sensible 

when the number of studies being combined is small, and it is difficult to assess whether 

the normality assumption of the random effects has been violated since it provides a 

more robust estimation procedure.
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2.3.4 Comparison of random with fixed effect models

The argument over which model is theoretically and/or practically superior has been 

running for many years with many comments scattered through the literature. 

Investigations into the differences between results obtained from the two methods have 

been made. (Berlin et al. 1989; Mengersen et al. 1995) For example, Berlin et al. 

(Berlin et al. 1989) compared the results of 22 meta-analyses; in three, different 

conclusions would have been drawn about the treatment effect, (Dickersin and Berlin,

1992) the Peto fixed effect method suggesting a beneficial treatment effect while the 
random effect method did not. Random effects models have been criticised on grounds 

that unrealistic/unjustified distributional assumptions have to be made.(Peto, 1987) 
However it has also been argued that they are consistent with the standard specific aims 

of generalisation.(Raudenbush, 1994) A further consideration is that random effects 

models are more sensitive to publication bias because of the greater relative weight 
given to smaller studies (see Chapter 6).(Greenland, 1994) Perhaps it is wise to 
conclude that neither fixed nor random effect analyses can be considered 
ideal. (Thompson, 1993)

In the context of the generalised synthesis of evidence, a random effect approach would 

often appear to be the obvious choice, since, by definition, data from heterogeneously 

designed studies is being combined.

2.4 Exploring heterogeneity

Random effect models account for heterogeneity between studies, but they do not 

provide a method of exploring and potentially of explaining the reasons study results 
vary. Investigating why study results vary systematically may lead to the identification 

of associations between study or patient characteristics and the outcome measure, which 

would not have been possible in single studies. For meta-analyses of RCTs this in turn 
may lead to clinically important findings and may eventually assist in individualising 

treatment regimes.(Gelber and Goldhirsch, 1987)
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Regression type models can be used to explore reasons why study results may 

systematically differ. Alternatively, if discrete factors are being explored, simple 
subgroup methods may suffice, although this special case is not pursued explicitly in 

this thesis. Both study and patient characteristics can be explored using these methods. It 

should be stressed, however, that this type of analysis should be treated as exploratory as 

associations between their characteristics and the outcomes can occur purely by chance, 

or due to the presence of confounding factors. Further, regression analysis of this type is 

also susceptible to aggregation bias, which occurs if the relation between patient 

characteristic study means and outcomes do not directly reflect the relation between 

individuals’ values and individuals’ outcomes.(Lau et al. 1998; Lambert et al. 2001a)

A further restriction is that the data available for analysis from original study reports 

may be limited.

2.4.1 Meta-regression

Two types of regression models are possible; one is an extension of the fixed effect 

model, commonly known as a meta-regression model, and the other an extension of the 

random effects model, called a mixed model (because it includes both fixed and random 

terms). The fixed-effect methods are most appropriate when all variation (above that 

explainable by sampling error) between study outcomes can be considered accountable 

by the covariates included. A mixed-model is more suitable when the predictive 

covariates explain only part of the variation/heterogeneity, and a random effect term is 

used to account for the remainder. However, as with fixed and random models 

themselves, it has been argued that one should always include a random effect term as 

there will always be some degree of between study heterogeneity not captured by the 

covariates. It should be noted that regression models are most useful when the number 
of studies is large, and cannot be sensibly attempted when very small numbers of studies 

are being combined. (Raudenbush, 1994)

The fixed standard fixed effect regression model is not outlined explicitly, since it can 

be considered a special case of the more general mixed effect model, with the 

heterogeneity term set to zero.
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2.4.2 Classical mixed effect model (random-effects regression)

As a starting point take the random effects model outlined previously (2.15): 7} = <9,+ e„ 

where Tl is the estimated effect size of the true effect size for each of the k studies, i = 

1, . . . ,  k. We also assume the e, are statistically independent, each with a mean of zero 

and estimation variance v,-. The variance for these estimates of treatment effect, as 

before (2.15) can be expressed as: Var(Ti)= i?e+ v,, where 1?e is the between study, or 

random effects variance and v, is the within study variance. Now we extend this to 

formulate a model for the true effects depending on a set of study characteristics plus 

error: (Raudenbush, 1994)

Qi =  f io  +  f i j X u  + @ 2X12 + . . . + p p X ip  + «/, (2 .19)

t

where

p o  is the model intercept;

Xu, . . . ,  Xip are coded characteristics of studies hypothesised to predict the study 

effect size;

p i P p are regression coefficients capturing the association between study 

characteristics and effect sizes;

ui is the random effect of study i, that is, the deviation of the true effect in study i 

from the value predicted on the basis of the model. Each random effect, wt , is assumed 

independent, with a mean of zero and variance crz.

Under the fixed effects specification, the study characteristics Xu, . . . ,  Xip are presumed 

to account completely for variation in the true effect sizes. In contrast, the random 

effects specification assumes that part of the variability in these true effects is 

unexplainable by the model. This model is a consistent extension of the models

presented previously. If the model has no predictors, i.e. pi =....= pp= 0, then it reduces

to that of the random effects model. If the random effects variance is null i.e. i?q-  0, 

then the results will be identical to that of the fixed effects meta-regression model.
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Estimation of the parameters of this model can be achieved using an iterative least 

squares algorithm; see Raudenbush (Raudenbush, 1994) for details. Several other 

methods can be used to obtain solutions, for example the method of maximum 

likelihood can be used. This requires a further assumption that each Tt is normally 
distributed (see section 6.4.1). (Huque and Dubey, 1994) Small biases have been found 

using the iterative least squares approach (Berkey et al. 1995) which can be eliminated 

if an empirical Bayes estimate is used. (Berkey et al. 1995) Although not 

straightforward, it is also possible to derive a moment estimator for x2, the between 

study variance in a mixed model, when only one covariate is included. This is a direct 
extension of the DerSimonian and Laird weighted least squares random effect model; 
Thompson et al. provide equations (Thompson et al. 1997) and also discuss further ML 
and REML estimates.

2.4.3 Alternative formulation of Classical meta-regression models

Probably the most notable alternative to the regression models above is the use of 

a logistic regression model when the outcome is an odds ratio. Such an approach has 

advantages similar to those of the exact Bayesian models for combining odds ratios, 

including the removal of the normality assumption of the individual effect sizes, and the 

need for continuity correction factors for studies with arms with no/all events.

A fixed effect logistic regression model is simple to implement, and has been used by 

several authors. (Detsky et al. 1992; L’Abbe et al. 1987; Thompson, 1993; Thompson 
et al. 1997) Recently, due to advances in computational power and software, it is 

possible to implement random effect logistic regression models (Thompson et al. 1997) 

which include a between study variation term.

2.4.4 Bayesian meta-regression models

Covariates can be included in a Bayesian meta-analysis model in a straightforward way. 

For example, including a study level covariate, denoted x\ in equation (2.18) produces 
the following model. (Smith et al. 1995b)
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a, ~ Bin[pu, (a, + b,)] c; ~ Bin[p2i, (c, + d,)] i = 1 k

log it(pu) = Pi \ogit(p2i) = Pi + delta i + /&,.

(2.20)

delta/ ~ N[$ r2] P  ~

<t>~ ~

The equivalent extension of model (2.17) for normally distributed outcomes, and for the 

fixed effect models ((2.12) and (2.13)) are all straightforward.

2.4.5 Modelling patients’ underlying risks

Studies may appear heterogeneous because of differences in the baseline risk of the 

patients. If the overall effectiveness of a new treatment is related to the severity of the 

disease, this could affect decisions about which patients should be treated. (Thompson 

et al. 1997). The usual way of investigating baseline risk within trials is to consider the 

observed risk of events in the control group (or sometimes the average risk in the 

control and treatment groups).(Brand and Kragt, 1992) This variable could be included 
in a regression model in an effort to explain heterogeneity between study results. 

However, this type of analysis can lead to bias, (Senn, 1994) since this measure of 

baseline risk forms part of the definition of the treatment difference (i.e. the event risk in 

the control group is used in the calculation of an odds ratio, relative risk etc.). In other 

words, if by chance, the risk of an event in the control group is low then the estimated 
treatment effect will be greater (OR will be further from 1). If, on the other hand the 
event risk in the control group is high, then the OR will be nearer 1. Thus, even if there 
is no true relationship between baseline risk and treatment effectiveness, one is likely to 

be observed due to this statistical artefact - regression to the mean. (Thompson et al. 

1997) This problem is reduced if studies are large (leading to less random variation in 

control risk) and if there are a large number of studies. Alternative models have been 
developed to avoid the problem of “regression to the mean”.(McIntosh, 1996; Cook and
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Walter, 1997; Thompson et al. 1997) One of these, an extension of the Bayesian 

random effects model described in equation (2.18), is outlined below

a, ~ Bin[pu ,(a, + b,)] c, ~ Bin[pv, (cf + d:)] i = 1 k

log "(/>„) = Mi logit(p2l) = p t + delta,

(2.21)

deltai = delta,'+ fi{ju: -  ft) p ~

delta,' ~ N[(A

Mi ~ h -]

where fj. denotes the average of the trials, and d] the treatment effect in trial i

adjusted for underlying risk. This model can be extended to include further study level 

covariates following model (2.20). One potential drawback is that this method only 

works on the log odds ratio scale; using other scales is possible in principle but currently 

difficult in practice.

One method of avoiding the use of patient risk directly would be to use a prognostic 

score based on patient covariates (i.e. predictors of risk) and then relate treatment effects 

to this score for individual patients. (Thompson et al. 1997) Thompson et al. suggest 
the prognostic score would best be based on data other than that from the trials which 

form the meta-analysis for treatment effects. A related approach is considered using the 

net benefit model; see Section 3.11 and Chapter 8.

Another alternative, if individual patient data are available, is to relate treatment effects 
to individual patient covariates in an attempt to investigate heterogeneity. This avoids 

the problems discussed above and would be directly useful to the clinician considering 
treatment for an individual patient.(Thompson et al. 1997)
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2.4.6 Generalisation and extensions to meta-regression models

Stram (Stram, 1996) presents a very general mixed-effects regression model framework. 

He developed a model from which most other models used in meta-analysis can be 

viewed as special cases. Explicitly this model builds on the standard random effects 

model, (Peto, 1987) the mixed model, the model of Begg and Pilote (Begg and Pilote, 

1991)- to incorporate single arm studies with two-arm studies (see Section 3.4), and the 

model of Tori et al.(Tori et al. 1992) for combining surrogate endpoints. The general 
form of the model is:

Yj = Xjd + ZjPi + + ej, (2.22)

where there are i = 1 ,2 ,...., K independent studies. 7, is an («, x 1) vector of one or

more related estimates of treatments or treatment comparisons of interest; Xi is an (nj x 

p) matrix of known covariates related to the p  vector of unknown fixed effect 

parameters, a, and Z, is an («, x q) vector of known covariates related to a (q x 1) vector 

of unobserved random effects, /?„ for each study. The two remaining x 1 unobserved 

random vectors, Q and eiy specify two types of error in 7,. The Q specify the sampling 

errors in 7„ and et specifies other sources of error or heterogeneity between studies and 

between arms of the same study.

In this model it is assumed that /?„ u, and e, are each independent multivariate normal 

random vectors. One of the new extensions offered by this model is the possibility for 

random effect covariates.

Multi-level or hierarchical models, which can also implement weighted random effect 
regression, have been applied to meta-analysis (Lambert and Abrams, 1996). This is an 
area of current research. Such models have the potential to combine summary data with 

individual patient data, including both study level and patient level covariates. 

(Goldstein et al. 2000; Turner et al. 2000) Further extensions of mixed models are 

discussed in Chapter 3 for the generalised synthesis of evidence.
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2.5 Issues/methods in the synthesis of observational studies

Meta-analyses of epidemiological studies, seeking to identify risk factors for disease, are 

carried out and inform public health initiatives. The use of such a technique in this area 

is not without dispute, and certainly problems additional to those encountered when 

carrying out a meta-analysis of RCTs arise. (Spitzer, 1991; Greenland, 1987)

One particular problem is the lack of standardisation in the way in which results of 

epidemiological studies are reported. For example, exposure groups using different 

exposure level cut-off points may have been used, and estimates adjusted for different 
covariates. There is also the concern that biases from the individual studies may 
propagate through the analysis. Two papers which consider many of the difficulties in 
the pooling of observational study in detail are Greenland (Greenland, 1987) and Chene 

and Thompson (Chene and Thompson, 1996).

Clearly, if evidence is being combined from observational and randomised sources, full 

consideration needs to be given to the special problems of the synthesis of the 

observational evidence.

2.6 Publication bias: a threat to the validity of a meta-analysis

In order to avoid drawing unbiased conclusions from a meta-analysis it is important that 

all, or at the very least, the majority of, the relevant primary studies be identified on a 
given subject. Unfortunately, even comprehensive searches of the literature (including 

grey material) and the use of other less formal methods such as personal communication 

may not produce an unbiased sample of studies. It has long been accepted that research 

yielding statistically significant results is potentially more likely to be submitted, 

published or published more rapidly than work with null or non-significant results 

(Easterbrook et al. 1991), which leads to an over representation of false-positive results 

in the literature (Begg and Berlin, 1989). The implications of this for meta-analysis are
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that, combining only the identified published studies uncritically may lead to an 

incorrect, usually over optimistic, conclusion.

2.6.1 Detecting publication bias

Several methods are available to assess if publication bias is present in a meta-analytic 

dataset. These include the visual inspection of a funnel plot and two statistical tests.

Funnel plot

The results from smaller studies will be more widely spread around the mean effect 
because of larger random error. A plot of sample size versus treatment effect from 

individual studies in a meta-analysis should thus be shaped like a funnel if there is no 

publication bias. (Light and Pillemar 1984) If the chance of publication is greater for 

studies with positive statistically significant results, or larger effect size estimates, or 

some other less defined mechanism, the shape of the funnel plot may become skewed. 

When the true outcome effect is small but not zero, small studies reporting a small 

effect size will not be statistically significant and therefore less likely to be published, 

while small studies reporting a large effect size may be statistically significant and more 

likely to be published. Consequently there will be a lack of small studies with small 

effect estimates in the funnel plot, and the funnel plot will be skewed with a larger effect 

among smaller studies and a smaller effect among larger studies. (Light and Pillemar 

1984) This will result in an overestimation of the treatment effect in a meta-analysis.

A problem with the funnel plot assessment is that the appearance of the plot may change 
depending the scale which is used to represent the notion of study size, and the outcome 

measure used. Additionally, a skewed funnel plot may be caused by factors other than 
publication bias. (Egger et al. 1997) For example, it has been shown that if the quality 

of studies varies with the study size, a funnel plot may give the visual impression of 

publication bias when this is really confounded by study quality. (Petticrew et al. 1999) 

Other possible sources of asymmetry in funnel plots include different intensity of 
intervention, differences in underlying risk, poor methodological design of small
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studies, inadequate analysis, fraud, choice of effect measure, and chance. (Egger et al. 

1997) Funnel plots for sparse data are explored in Chapter 6.

Rank correlation test

The rank correlation test (Begg and Mazumdar, 1994) examines the association between 
effect estimates from the primary studies and their variances, to exploit the fact that 

publication bias will tend to induce a correlation between the two factors (i.e. smaller 

studies (with larger variances) will tend to have larger effect size estimates), and 
constructs the rank-ordered sample on the basis of one of them. The test is a 

distribution-free method, which involves no modelling assumptions, but it suffers from 

a lack of power and so the possibility of publication bias cannot be ruled out even when 

the test is non-significant. Define the standardised effect sizes of the k studies to be 

combined to be

and Tj and v, are the estimated effect size and sampling variance from the /th study,

It is then necessary to evaluate P, the number of all possible pairings in which one factor 

is ranked in the same order as the other, and Q, the number in which the ordering is 

reversed. A normalised test statistic is obtained by calculating

(2.23)

where (2.24)

and
v > i J

(2.25)

which is the variance of (7; -  T.).
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Z = (P -  Q)/[k(k -  1X2 A + 5)/l 8]^, (2.26)

which is the normalized Kendall rank correlation test statistic for data that have no ties, 

though this can be relaxed. (Steichen, 1998) This statistic is compared to the 

standardised normal distribution. Any effect size scale can be used as long as it is 
assumed its distribution is asymptotic normal.

This test can be considered complementary to the funnel plot. Begg (Begg, 1994) 

suggests using a very liberal significance level. Additionally, due to the test having very 

low power for meta-analyses including only small numbers of studies, more emphasis 
should then be given to an informal visual inspection of the funnel plot. (Begg and 
Mazumdar, 1994)

Linear regression test

To test the asymmetry of a funnel plot, Egger et al. (Egger et al. 1997) suggested a 

method based on a regression analysis of Galbraith’s radial plot (Galbraith, 1988). As 

before, for / = 1 . . .  k studies in the meta-analysis, let 7} and v/ be the estimated effect 

sizes and sample variances from each study. Define the standardised effect (z-statistic) 

as T* -  T,/v'/2 , the precision as s~l = l/vV2, and the weight as normal ( w/ = Vv/ )• To 

perform the test T* is fitted to s~l using standard weighted linear regression with 

weights w and equation T* = a  + fis~l.

The intercept a is used to measure asymmetry; if it is estimated to be significantly 

different from 0 then it is concluded that there is evidence of publication bias in the 

meta-analysis dataset. A negative intercept indicates that smaller studies are associated 

with bigger effects. In their original paper Egger et al. also performed an un-weighted 

regression (Egger et al. 1997) and reported the most statistically significant of the 

weighted and un-weighed results. By applying this method, Egger et al. (Egger et al. 
1997) observed significant asymmetry in 38 per cent of published meta-analyses in a 

selection of journals and in 13 per cent of Cochrane reviews. From comparisons (Egger
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et al. 1997; Sutton et al. 2000) between the tests it would appear that the linear 

regression test is more powerful that the rank correlation test, however, a considerable 

discrepancy in the results of the two tests has been observed. (Sutton et al. 2000)

2.6.2 Assessing the likely impact of publication bias

The development of methods to assess the impact of publication bias on the results of a 

meta-analysis has been an active area of interest for several years. While it is only 
possible to give a brief summary of most of them here, a detailed review of the area has 
been published elsewhere. (Sutton and Song, 1999)

The first method to be developed was called the ‘file drawer estimate’. In essence, this 

method considers the question: “how many new studies averaging a null result are 

required to bring the overall treatment effect to non-significance? ” (Rosenthal, 1979).

It was developed by Rosenthal (Rosenthal, 1978; Rosenthal, 1979), as it could be seen 

as estimating the number of studies filed away by researchers’ without being published.

Following this more sophisticated methods were developed using weight functions. 

Weight functions are used to adjust results where only partial information is available, 

and the chance of having particular data is related to a feature of the data. (Iyengar and 
Greenhouse, 1988). Hence, in a meta-analysis setting, weight functions are used to 
model the selection process and develop estimation procedures that take that selection 

process into account. (Hedges, 1992) These were first introduced into meta-analysis by 

Hedges.(Iyengar and Greenhouse, 1988) There are two aspects to such models: a) the 
effect size model which specifies what the distribution of the effect size estimates would 

be if there were no selection; and b) the selection model which specifies how this effect 
size distribution is modified by selection. (Hedges and Vevea, 1996) Usually these 

models assume that the chance of a study being included in the meta-analysis is related 

to the statistical significance of its outcome (implying journals are more likely to publish 

significant results than non-significant ones). In these instances the outcome considered 

is the observed p-value. Both Classical and Bayesian formulations have been developed.
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Recently, Copas (Copas, 1999) has presented a method for adjusting for publication bias 
based on a method described by Copas and Li. (Copas and Li, 1997) Using this method, 

the process of study selection is assumed to be described by a separate regression model 

with residuals which are correlated with study outcome. A random effects meta-analysis 

model is used, (DerSimonian and Laird, 1986) together with a separate selection 

equation with a single correlation parameter p  linking selection to outcome. A 

likelihood approach is taken but the model cannot be fully identified without strong and 
unverifiable assumptions, so a sensitivity approach based on an overall probability of 
study selection is adopted.

Trim and Fill

Finally another new method called ‘trim and fill* is considered in more detail here, since 

it is employed/developed further in Chapter 6. This new development formalises the use 
of funnel plots, and estimates and adjusts for the numbers and outcomes of missing 

studies. (Duval and Tweedie, 2000a; Duval and Tweedie, 2000b) An iterative rank- 

based algorithm estimates how many studies are missing. This number of studies are 

“trimmed” from the asymmetric outlying part of the funnel (i.e. those with the largest 

effect size estimates): these can broadly be thought of as studies which have no 

counterpart on the other side of the funnel plot (i.e. this is the truncation that is picked 
up by ‘eye-balling’ a funnel plot). Then the symmetric remainder are used to estimate 

the ‘true centre’ of the funnel using standard meta-analysis techniques. The Trimmed' 

studies are then replaced and their 'missing counterparts' imputed or 'Filled': these are 

mirror images of the 'Trimmed' studies with the mirror axis placed along the adjusted 

pooled estimate. This last stage is necessary for the variance of the pooled estimate to be 

calculated correctly.

This approach assumes studies are suppressed and not published under a scenario where 

it is the magnitude of the effect size, and not the p-value which determines the chance of 

publication (the size of the studies is not taken into consideration). The key assumption 

of the method is that it is the most extreme negative studies (i.e. those with the smallest 

outcome estimates) which have not been published. Three different iterative estimators 

for the number of missing studies have been derived. Simulation studies (Duval and
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Tweedie, 2000a; Duval and Tweedie, 2000b) suggest two of these estimates work well 

in all but very extreme cases, however no one estimate is always superior to another. 

The first is

where y * is the rightmost run of ranks associated with positive values of the values of

the observed effect sizes minus the current estimate of the global effect size (£,). These

values change iteratively as the current estimated Ro extreme studies are trimmed before 
calculation of the next iteration. The second estimate is

where Tn is the sum of the ranks of the absolute values of the 8t for positive 8i only

(the Wilcoxon statistic for the dataset). Like, Ro, Lo is calculated iteratively until 

convergence is achieved.

A test based on this approach also appears powerful compared to those described 

previously, (Begg and Mazumdar, 1994; Egger et al. 1997) if there are more than 5 or 6 

missing studies. This method is much simpler to compute than those using selection 

modelling, which was a motivating reason for its development.

2.7 Study quality: a further threat

The concept of judging research quality in synthesis dates back to Glass in 1976 (Glass, 

1976). The primary concern is that combining study results of poor quality may lead to 

biased, and therefore misleading, pooled estimates being produced. Sophisticated 

analyses will not eliminate the limitations of poor data,(Thacker, 1988)"... in some 

respects, the quantitative methods used to pool the results from several studies in a 
meta-analysis are arguably of less importance than the qualitative methods used to 

determine which studies should be aggregated.” (Naylor, 1988) However, assessment of

(2.27)

(2.28)
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quality is controversial; Greenland (Greenland, 1994) has indicated that quality 

assessment is the most insidious form of bias in the conduct of meta-analysis.

There are at least three approaches for assessing research quality. The first system 
(Wortman, 1983) applies the validity framework developed by Cook and Campbell 

(Cook and Campbell 1979), and focuses on non-randomised studies often found in the 

social science literature (Wortman, 1994). The second is via a quality scoring system, 

the first of which was developed by Chalmers et al. (Chalmers et al. 1981; Sacks et al. 
1987) for assessing RCTs exclusively, although checklists were available before this 
(Moher et al. 1995). The objective of these scales is to provide an overall index of 

quality (a comparison with the validity framework approach can be found in Wortman 

(Wortman, 1994)). Since these first attempts, many different scales and checklists have 

been developed; for a review of these for RCTs see, Moher et al. (Moher et al. 1995) 

and for those for observational studies see Deeks et al (Deeks et al. 1996). Recently, a 

scale which could assess the quality of both randomised and observational studies has 

been developed, (Downs and Black, 1998) which obviously has implications for quality 

assessments made in the generalised synthesis of evidence, since studies with different 

designs can be assessed using the same instrument. Finally, using individual markers of 

quality e.g. randomisation procedure, can be considered as a third alternative. (Moher et 

al. 1996)

An appealing feature about using a scale is that it provides an overall quantitative 
estimate of quality. However the validity of many of the present scales has been 
criticised. It has been suggested (Moher et al. 1998a) that most scales have been 

developed in an arbitrary fashion with no attention to accepted methodological 

standards. Additionally, many scales are not truly measuring quality but focus on 

extraneous factors more related to the adequacy of reporting or generalisability. (Moher 

etal. 1998a)

Unfortunately, no clear association between study quality and study results exists 

consistently across all trials. However, an empirical study has shown (Schulz et al.

1995) that over a large number of RCTs, encompassing many subject areas, inadequate 

methodological approaches, particularly those representing poor allocation concealment,
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are associated with bias. Dickersin and Berlin (Dickersin and Berlin, 1992) review of 

meta-analyses of both RCTs and observational studies which have addressed this issue.

While a detailed review of the specific scales and checklists and their pros and cons is 

beyond the scope of this chapter, it is important to note that large differences in results 
can be observed by using different scales, at least those for RCTs, which is where 

empirical investigations have been focused. (Moher et al. 1996; Moher et al. 1998a; 

Juni et al. 1999)

2.7.1 Incorporating study quality into a meta-analysis

Once a formal assessment of study quality has been made, using a measurement scale, 

or individual quality markers, a decision has to be made how to use this information. 

Incorporating study quality into a meta-analysis can be considered a special case of 

exploring heterogeneity, i.e. to what extent does variation in measures of quality 

between studies explain variation in estimates of treatment or exposure effects?

A plot of study effect against quality score can be examined, or a cumulative meta

analysis, ordering by quality score can be carried out. (Detsky et al. 1992) Alternatively, 

a regression analysis can be carried out either including indicator variables for 

individual components of quality, or a quality score based on a scale.

Rather than weight each study by a measure derived from its precision, as is normally 

done in a meta-analysis, each of the individual study estimates could be weighted by a 
variable which measures the perceived quality of the study.(Detsky et al. 1992) In doing 

this it should be noted that although actual estimates are affected only by the relative 

weights used, the width of the confidence intervals is affected by the absolute weights 

used. (Detsky et al. 1992) To avoid this problem each study’s score can be divided by 

the mean score, to leave the width of confidence intervals unchanged.

A further possibility is to multiply the precision of the study by its quality score, and to 

use this product as the weighting for each study. (Moher et al. 1998b; Berard and
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Bravo, 1998) In such a way both the size and quality of the study are incorporated into 

the weighting calculation. This could be done using either a fixed or random effects 

model. (Berard and Bravo, 1998) For a fixed effect model, the new weights become,

™; = (QS,)(™) (2.29)

and similarly for the random effects model,

(2.30)

where QSi is the quality score allocated to the fth trial in the analysis and w, and w,* are 
the original weights given to the zth trial in fixed and random effects analysis 

respectively, as defined by equation 2.2 and the reciprocal of 2.15. The pooled estimate 

can now be calculated as before using the new weights. The variance of the pooled 

estimate can be calculated using: (Berard and Bravo, 1998)

t , Q S r f
var(7\) = —------ r

( M
(2.31)

Caution has been expressed at incorporating or using quality score in the weighting 

given to studies because, while weighting study estimates by the precision has desirable 

statistical properties, quality scores are not direct measures of precision and this 
approach lacks statistical or empirical justification.(Detsky et al. 1992)

Finally, another approach is to exclude the studies of poor(est) quality altogether. This 

can be viewed as an extreme form of weighting - giving the poorest studies zero weight, 

(Light, 1987) but sensitivity analysis of the effect of cut-off on the results is essential.

There would appear to be little consensus concerning the optimum way of dealing with 

study quality in meta-analysis (although there is broad agreement that a quality 

assessment should always be carried out). There is growing support for using individual
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indicators rather than an overall quality score, following a comparative assessment. 

(Moher et al. 1998b; Juni et al. 1999) Perhaps the best path to take is to consider the 
methods outlined below as part of a sensitivity analysis (see below), and assess the 
influence adjustment for quality has on the results of an analysis unmodified by study 

quality. The key problems are that: a) the influence of factors affecting validity will 

differ depending on the question and context of the trial; and b) studies do not uniformly 

report sufficient details of the methods used in their design, conduct and analysis, to 
allow these factors to be measured in the same way in each study. If studies of different 
designs are being considered, as is the case for much of this thesis, a further problem 
exists. For studies of different designs, the factors influencing internal validity are likely 
to differ and so standard scores will not be generically relevant.

While not being a central topic of this thesis, the issue of study quality is discussed 

further in Chapter 9.

2.8 Sensitivity analyses

Sensitivity analysis provides an approach to testing the robustness of the results of a 

meta-analysis to key decisions and assumptions that were made in the process of 

conducting it. (Oxman 1996) While such a process is relatively straightforward if only a 

small number of specific issues are to be explored, it becomes more cumbersome if 
there is uncertainty regarding many aspects of the analysis. Chapter 7 re-analyses a 

meta-analysis where there is uncertainty regarding the data from several studies, and 

considers a multi-dimensional simulation approach to addressing it.

2.9 The limitations of current meta-analysis practice. Is taking a 

weighted average always appropriate?

The methods predominantly used at present for pooling study results are fixed (Fleiss, 

1993) and random effect models.(DerSimonian and Laird, 1986) Put simply, these 

methods take weighted averages of the estimates obtained from each of the studies being
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combined. Both types of analysis produce an overall pooled estimate, together with a 

confidence interval, which is considered as the “bottom line” when assessing the 

effectiveness/efficacy of an intervention.

Naylor (Naylor, 1989) discusses ways in which apparently similar RCTs may differ; 
these are summarised below.

• Differences in inclusion and exclusion criteria

• Other pertinent differences in baseline states of available patients despite identical 

selection criteria

• Variability in control or treatment interventions (e.g. doses, timing, and brand)

• Broader variability in management (e.g. pharmacological co-interventions, responses 

to intermediate outcomes including cross-overs, different settings for patient care)

• Differences in outcome measures, such as follow-up times, use of cause-specific 

mortality, etc.

• Variation in analysis, especially in handling withdrawals, drop-outs, and cross-overs

• Variation in quality of design and execution, with bias of imprecision in individual 

estimates of treatment effect.

When treatment estimates from studies that differ in such ways as these are combined, 

what interpretation can be given to the pooled estimate? The answer to such a question 

is that it probably depends on the degree to which these factors do really vary, and to 

what extent these factors affect the effectiveness of the intervention; but the potential 

for producing results with little interpretability is very real. When considering multiple 
sources of evidence, clearly the potential for qualitative differences between studies is 

much greater still.

Adjustment for the factors outlined above is possible using the meta-regression methods 

outlined in Section 2.4.1. Covariates can either relate to study characteristics, such as a 

quality score; or a summary measure of individual values, such as mean age of patients. 

(Lau et al. 1998)
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Concerned with such issues Rubin considered a “new” approach to meta-analysis which 

does not rely simply on study averaging, and can be viewed as a very detailed and 

complete multiple-(meta)-regression model. (Rubin, 1992) In this he aimed to estimate 

the effect of an ideal study, rather than simply take an average of those that had actually 
been carried out, providing insights into the underlying science, using an extension of 

meta-regression ideas. This method involved building and extrapolating a response 

surface, by considering factors related to each of the studies being combined. A 

distinction is made between factors of scientific interest (such as gender or age of 

subjects), and scientifically uninteresting design variables (e.g. the sample sizes of the 

studies or year the studies were completed). The response surface of interest is the effect 
of treatment as a function of these two kinds of factors, and it expresses the typical 

treatment effect as a function of these. For the design variables - these can then be set at 
values for a perfect study, so the answer can be expressed as a function of only the 

factors of interest. If one considers multiple sources of evidence, some with greater 

potential for bias than others then the specification (and hence adjustment for) these 

design variables is going to be even more crucial than if one considers only a single 

design type. This approach has been implemented in an econometrics setting, 

(Vanhonacker, 1996) but not in a health research setting. One serious drawback of the 

method is the requirement for a large number of studies to estimate a response surface 

successfully. Indeed after recent research into the power of meta-regression, (Lambert et 

al. 2001a) orders of magnitude more studies would be required to fit such models than 
are typically available in medical research.

It should be noted that the ideal study profile described by Rubin has aims in common 

with the original motivation for cross-design synthesis, (see Section 3.7)(Droitcour et al.

1993) where results from a theoretically ideal study, (a study which may actually be 
impossible to implement in practice) could be produced, in someway maximising the 

strengths and minimising the weaknesses of particular designs. Indeed, it has been 

questioned whether a meta-analysis is simply an extension of clinical trials seeking to 
confirm a single answer or whether it is it a unique discipline aiming to explore multiple 

answers? (Anello and Fleiss, 1995)
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Currently, meta-analyses are primarily carried out to pool treatment effects from 

individual trials in an attempt to get a more accurate, and precise estimate of the true 
average effect of the intervention. All inferences regarding such an analysis pertain to 

the effect size typically seen in an ‘average’ subject in the trials. In some, possibly 
many, situations this may be adequate, the effect of the intervention on individuals may 

not vary predictably to any great degree. However, in some situations, there may be 

differential treatment effects across patients with different characteristics. For example, 

there may be a certain amount of risk involved due to a side effect of a treatment. 

Identifying patients for whom the potential benefit of the treatment outweighs the 

potential harm, possibly through calculating their risk for the disease, would be 

desirable. (Schmid et al. 1998) This aim is considered further in Chapter 8 . 

Additionally, with ever growing pressure to demonstrate cost-effectiveness, when new 

expensive drugs show only moderate benefit over cheaper existing treatments, 

knowledge of subgroups of patients in which the marginal benefit is greatest is 

desirable. Indeed it has been stated that knowing how best to treat the individual should 
be the ultimate goal of both clinical trials and meta-analyses. (Lau et al. 1998)

Meta-regression and the ideas of Rubin, data availability permitting, provide one way to 

investigate intervention effects beyond the overall mean. This idea is illustrated clearly 

in Figure 2.1, reproduced from Lau et al. (Lau et al. 1998) who also question whether 

meta-analysis should be producing a single or multiple answers.

Alex Sutton Ph.D. Thesis, December 2001 50



Chapter 2 Review o f current methods

Figure 2.1 Summing-up evidence in single and multiple dimensions. Reprinted from 

Lau et aL (Lau et aL 1998) with permission from Elsevier Science.
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The first panel of this figure shows the result obtained from a simple fixed or random 

effect meta-analysis; panel two a regression line showing how the mean treatment effect 

varies with respect to a single covariate of interest; and panel three a response surface, 

in this case with an effect response surface described for two (continuous) covariates. If 
the two covariates represent patient characteristics, say for example age and blood 
pressure, then a treatment estimate for any combination of those values can be 

calculated. Clearly it is possible to extend this to many covariates, data permitting.

Lau et al (Lau et al. 1998) went on to state that

“Large trials, while more precise than smaller trials, may miss important 
treatment variation and may not be any more generalisable than smaller 

studies unless their inclusion criteria and recruitment capture broad 

populations and different settings.”

This idea of extrapolation to specific patients, or individualisation of treatment regimes 

clearly is often difficult to establish in practice. Mega-trials with tens of thousands of 
patients are set up just obtain an accurate estimate of the average intervention effect for
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what are usually modest treatment benefits; what hope is there of ever saying, for a 
patient with characteristics xj-xn, suffering from y, drug z at dose d is the best treatment?

Subgroup analyses in trials are carried out, with the intention of investigating the 

influence of factors other than treatment factors on the treatment effect, (Schneider,
1989) and indeed with the advent of multi-centre trials these do have considerable 

numbers of patients in them, however they very often still lack power to detect 

differences in treatment effects and there are issues with over-interpretation of patient 
subgroups.

Meta-analysis has the advantage of increased power over individual trials for finding 

differences in effectiveness in subgroups of patients. (Yusuf et al. 1991) However, if 

summary data are being used (i.e. which it is in the majority of meta-analyses), 
covariates are limited to those aggregated at the patient level (i.e. if patient age is being 

investigated, only the average age for patients in the study are available and data on 
individual ages of patients are not available). Unfortunately, it has recently been 

demonstrated that meta-regression using aggregated patient level characteristics has 

much reduced power compared to individual patient data analyses.(Lambert et al.

2001a) Such a finding suggests that extension of meta-regression analyses of summary 
data, as suggested above, will not be feasible and individual patient data will be required 

to fit models with multiple covariates. (Whitehead et al. 2001; Higgins et al. 2001) The 
issue of obtaining and analysing individual patient data is not considered in detail in this 

thesis.

2.10 Limitations of meta-analysing solely randomised controlled trial 

data

RCTs have been established as the gold standard study design for establishing the 

efficacy of a new medical intervention. This is primarily due to the fact that such a 

design minimises the potential of biases which could lead to misleading results being
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produced. However, this does not imply that RCTs answer all questions pertaining to 
the use of an intervention in every context.

Section 1.3 considered instances where the observational evidence would be desirable in 
addition to, or instead of, the randomised evidence. One of the issues raised there was 
the potential lack of generalisability of RCTs due to restrictive inclusion criteria. For 

example, is it wise to extrapolate results to the treatment of very elderly persons, if the 

elderly had been excluded from all the RCTs? A related issue is that, while an RCT 

may produce a good estimate of the efficacy of an intervention, its effectiveness, or 

effect in routine practice may be somewhat different. The difference may be due to 

factors such as more intense care being provided in a trial etc. A side issue is that it 
could be argued that the effect of care may vary with the size of a trial, smaller trials 

being more artificial and mega-trials not deviating as noticeably from routine practice. 

This could be one reason why recently mega-trials produced different results than 

previous smaller trials. (Anonymous, 1995b)

2.11 Summary

This chapter has reviewed all the methods commonly used currently to perform meta

analysis. While these methods are largely geared to estimating “average” effects on 

“average” patients, methods are less developed for the ultimately desirable aim of 

predicting treatment effects for individual patients. Although methods which aim to do 
this have been outlined, they are currently hampered due to restrictions on the quantity 

of data available, especially randomised data. Indeed, the sheer amount of data required 

to identify the treatment interactions necessary to begin to individualise treatment 

regimes means examining observational data may be the only feasible way to proceed 

towards this end in general. Hence, on these grounds a strong case for considering 

evidence from studies other than RCTs in a synthesis examining treatment effectiveness 

can be made. The crucial issue that remains is how can these extra sources of evidence 
be advantageously included in a synthesis? The next chapter reviews methods that have 

been developed to do so.
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Chapter 3 Critical review of methods for synthesising 

disparate sources of evidence

3.1 Introduction

Although currently either meta-analyses are limited to including data from a single 
study type, or data from different study types are combined ignoring the different 
sources, several methods have been developed specifically to synthesise disparate 
sources of information. These are briefly outlined and discussed below. Broadly, as this 
chapter progresses, the methods described consider the synthesis of increasingly 
disparate sources of evidence.

3.2 Combining different randomised designs

Perhaps the most logical place to start this chapter is to consider the synthesis of results 
from the common randomised designs -  the single period standard RCT, the crossover 
trial and the cluster-randomised trial. No new methods are required to pool crossover 
trials, provided there is no treatment carry-over effect in the second period. If there is, 
then the second period results should be excluded from the analysis. (Fortin et al. 1995) 
Similarly, provided a cluster randomised trial has been analysed correctly, taking into 
account the inter-class correlation, then these can also be combined with standard RCTs 
using regular methods outlined in Chapter 2.

3.3 Combining matched and unmatched data

Duffy et al. (Duffy et al. 1989) present a method for combining matched and 
unmatched data from RCTs, though the same methodology is directly applicable to 
case-control studies, including the situation of several controls per case. The motivating 
example for this methodology was to provide an estimate for the effect of 
photocoagulation on the rate of visual deterioration. In this instance a matched study 
was one where each patient had one of their eyes (selected at random) treated while the 
other one remains untreated. The methodology is an extension of the Mantel-Haenszel
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procedure (Mantel and Haenszel, 1959; Sutton et al. 1998). To combine the results 
from the matched studies, each matched pair within a study is treated as a stratum. By 
doing this, stratification by study is performed automatically.

Moreno et al. (Moreno et al. 1996) describe the use of (logistic) regression methods for 
combining matched and unmatched case-control studies, using individual patient data. 
The logistic regression model proposed combines conditional logistic regression 
likelihood function for the matched cases and controls and an unconditional logistic 
regression likelihood function for the unmatched study.

3.4 Combining studies with historical controls (single-arm studies)

Begg and Pilote (Begg and Pilote, 1991) present a random effects model to estimate an 
overall treatment effect when some comparative studies (e.g. RCTs) are to be combined 
with non-comparative, historically controlled “single arm” studies, (Section 1 .2) where 
the historical controls are ignored.

The model differs from the standard random effects meta-analysis model for two 
reasons. Firstly, an estimate for the event rate for each study arm is found (rather than a 
difference or a ratio between treatments). Secondly, in this model the treatment effects 
are fixed but a random effect baseline term is included. In this way, uncontrolled (non
comparative) studies can now be included in the analysis, thus creating the potential to 
combine extra information compared with the standard model, which may be of 
particular value when a dominant proportion of information on a treatment exists from 
the uncontrolled studies. A test for systematic bias in the uncontrolled studies and an 
extension to include a random effects term for the treatment effect as well as the 
baseline effect are also discussed. Li and Begg provide an extension to this (Li and 
Begg, 1994), by presenting a more general theory removing the need for distributional 
assumptions and they use empirical Bayes estimators for the variance terms. A fully 
Bayesian formulation of this model has also been recently applied; (Stevenson, 1998) 
this model is outlined below.
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Consider two treatments to be compared, where there are n comparative trials, yielding 
data summaries (xit yi), i = 1 , . . . ,  «, where xt is the observed effect of treatment A and 
y, is the observed effect of treatment B. Additionally, there are k uncontrolled studies of 
treatment A with observed effects m„ and m uncontrolled studies of treatment B with 
observed effects v,-. All outcomes are assumed to be normally distributed with known 
variances. Hence, algebraically:

x. ~ jv(0,.,5,2(x)) i = l , -- ,n

y.t ~ n (0i +£,s|.2(y)) i ' = l , -- , n

U; ~ tffo,*,2^)) i = {n + 1),------ ,(« + &)

(3.1)

v,. ~ + 8,s^ (v)) i = (« + &+ 1) , . . . . , ( «  + k + m)

0i ~N{m,ct2) / / - [ - - ]

^ a 2 ~[- , -]

where 0, is the true effect of treatment A in study i, and <5is the additional benefit of 

treatment B over treatment A (assumed constant across studies). An extension which 
allows the treatment effect, S, to vary between studies is possible.

An important, and desirable, aspect of this model is that the relative contribution of the 
uncontrolled studies is directly related to the degree of homogeneity between the 
studies, as evidenced by the closeness of the estimated baseline effects (i.e. the 
uncontrolled studies are given more weight the more homogeneous the results are). 
Models combining multiple and single arm studies are considered further in Chapter 5.
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3.5 Combining studies containing multiple and/or arms administered 
different interventions

Different comparisons are made in the different RCTs investigating similar questions as 
a result of allocation of different treatments to various arms in each study. For example, 
suppose two new treatments (Treatment A and Treatment B) are developed at similar 
times. Initially, trials comparing each treatment to placebo (Treatment C) are carried 
out. Hence trials of Treatment A v Treatment C, and Treatment B v Treatment C exist. 
Later, in an attempt to establish which of the new treatments is superior, trials of 
Treatment A v Treatment B are carried out. In a meta-analyses of Treatment A, both 
Treatment A v Treatment C and Treatment A v Treatment B trials provide information, 
but taking account of the different comparisons being made is essential in combining 
the two types of trial. Further, trials with three arms (Treatment A, Treatment B and 
Treatment C ) may also exist.

Several extensions of the standard fixed and random effect meta-analysis models have 
been described to deal with these situations. These include the approach of Gleser and 
Olkin (Gleser and Olkin, 1994) who describe a model capable of combining studies in 
which more than one type of treatment has been compared to a control group. Hence, it 
could combine studies comparing Treatment A v Treatment C and Treatment B v 
Treatment C, but not Treatment A v Treatment B, because no control group (C) is 
included in such studies.

Berkey et al. have developed models where multiple comparisons (e.g. A vs B and A vs 
C etc.) can be combined simultaneously. (Berkey et al. 1996; Berkey et al. 1998) This 
framework is also capable of combining studies comparing multiple treatments where 
any study may consider only a subset of treatments. A Bayesian formulation of this 
model is developed in Section 5.3.

Perhaps, most flexible of all is the model of DuMouchel, (DuMouchel, 1998) which 
allows many extensions of the standard random effect model and mixed models, 
including the combination of studies with heterogeneous designs. It has the capacity to 
model multiple outcomes from trials, provided they are all reported on the same scale.
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Different study designs are accounted for because subjects receiving different treatment 
regimes are treated distinctly, allowing variable numbers of study arms and even 
multiple treatment cross-over combinations to be modelled appropriately. So, for 
example, if one is considering a binary outcome, the log odds in each group could be 
modelled (for each treatment if cross-over combinations exist), rather than a 
comparative effect such as the log odds ratio; this is conceptually very similar to the 
modelling approach of Begg et al. (Section 3.4) which allows the inclusion of single 
arm trials in a meta-analysis. By constructing contrasts of parameters in the model 
comparative effects can be calculated after parameters in the model have been 
estimated. This method has a drawback, which is not explicitly stated, that has to be 
weighed against the added flexibility the approach allows. Namely, it “breaks” the 
randomisation of patients since it models each group of patients from each study 
individually (although random study effect terms are included, hence some 
acknowledgement of results from the same study being ‘linked’ is made). This model is 
explained in greater detail in Chapter 5, where it is implemented using a Bayesian 
formulation.

A model that does preserve the randomisation, allowing direct comparison of two active 
treatments when they are both only compared in trials to a control/placebo is described 
by Bucher et al. (Bucher et al. 1997) This extends only a fixed effect model however, 
and does not allow combination of trials with more than two arms. A Bayesian approach 
that does allow trials with three arms and evaluates all two-way comparisons of three 
treatments, (A, B and C) has been described by Higgins and is outlined below. (Higgins 
and Whitehead, 1996)

TABi ~~ N ( @ ABi > V ABi ) T a g  ~  W a g  » v a g  )

TBC-i ~  N ( & bG  »V BG )
\  / I U /  \ \  / I V «  /  \  / I V I  ✓  J

(3.2)
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@BCi ~ ^ { M bC ’ T  )

MbC ~~ Mac MaB

MaB ~ [ » 1 Mac ~ [ - - ]

This model can be considered an extension of equation 2.17 (the random effect model 
for Normally distributed data), and the notation used here is a simple extension of that 
for 2.17, where the suffixed two letters indicate the two-way comparisons. The 
covariance between the treatment effects, d, is assumed known. Note, this model does 
require the assumption that the between study variance is the same among all studies 
being combined irrespective of which treatments they compare. A version of this model 
for combining binary data on the log odds ratio scale, which is a direct extension of 
equation 2.18 is given elsewhere. (Higgins, 1997)

In section 5.4 a variation of this model is fitted to a meta-analysis dataset on 
sulphamethoxazole-trimethoprim or dapsone/pyrimethamine as prophylaxis against 
Pneumocystis carinii in HIV infected patients. This data was previously analysed by 
Bucher et al. using their fixed effect approach.

3.6 The Confidence profile method

Eddy (Eddy, 1989) first presented the confidence profile method in 1989. It has been 
put forward as a general Bayesian method for assessing health technologies. It has been 
described as:

“a set of quantitative techniques for interpreting and displaying the 
results of individual experiments; exploring the effects of biases that 
affect the internal validity of experiments; adjusting experiments for
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factors that affect their comparability or applicability to specific 
questions (external validity); and combining evidence from multiple 
sources” (Eddy et al. 1992)

An analysis which combined information from RCTs, case-control studies, and simple 
observational studies to assess the value of mammography screening in women under 
the age of 50 years using this method, has been cited as one of the first examples of 
bringing together evidence from randomised and non randomised studies (Eddy et al. 
1988). Specifically, the early results (five to seven years) of four controlled studies were 
combined using this method together with a long-term study (18 years) whose results 
were adjusted for incomplete compliance and differences in the screening protocol.

This method can accommodate the following problems which may occur when trying to 
synthesise evidence: multiple pieces of evidence, different experimental designs, 
different types of outcomes, different measures of effect, biases to internal validity, 
biases to comparability and external validity, indirect evidence, mixed comparisons, 
gaps in experimental evidence. (Eddy et al 1992) Despite often being described as a 
Bayesian method, it can be formulated under classical conditions where maximum 
likelihood estimates and covariances for the parameters in a problem can be derived. 
(Eddy et al 1992)

A key feature of this method is that it models biases explicitly. Hence, the result of an 
analysis by this method, a posterior distribution for the parameter of interest, 
incorporates all the uncertainty the assessor chooses to describe about any of the 
parameters used in the analysis. Biases that may be considered include misclassification 
rates, measurement error probabilities, and contamination rates. These biases may not 
be known precisely, but some evidence may exist from which estimates can be 
obtained. However the difficulty in the specification of this area of the model is a 
serious drawback of the method. As with more standard Bayesian analyses it is possible 
to incorporate subjective judgements into the model in a structured way via prior 
distributions, though this is not a requirement of the method.

Hasselblad and Me Crory (Hasselblad and McCrory, 1995) claim that the method 
eliminates the need for sensitivity analysis, stating that every parameter, if properly
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modelled, contains all the information about biases and uncertainty. Thus the final 
answer includes uncertainty about all of the parameters in the model. This is a curious 
statement as it is generally advocated that the robustness of parameter estimates should 
be tested over a range of prior distributions, especially since certain parameters 
including estimates of bias will not be known precisely.

A piece of software, which is available commercially, called FAST*PRO (Eddy and 
Hasselblad, 1992) has been developed to carry out the confidence profile analysis, but 
mistakes in this have been noted. (Egger et al. 1998) This is a brief overview of a 
method which is complex (Eddy et al 1992; Eddy, 1989; Eddy et al. 1990b; Eddy et al. 
1990a) and has not gained widespread acceptance, only being used occasionally. This 
can be partly attributed to the fact that when it appeared the approach was vastly 
different from any other mainstream methods. The problems with model specification, 
alluded to above, are also certainly contributing factors. However, it is probably true 
that the method was “ahead of its time”. Recently, the approach was re-visited 
(Spiegelhalter et al. 2000b) using the WinBUGS software (Speigelhalter et al 2000a) 
which uses a similar graphical modelling framework, and to which it translated very 
naturally. Implementation in this WinBUGS software has several advantages over 
FAST*PRO including relaxing of some of the modelling assumptions including 
symmetry of posterior distributions. (Speigelhalter et al. 2000b) The method has also 
been cited as an influencing factor in the cross-design synthesis approach described 
below.

Although the Confidence Profile method is not considered further explicitly in this 
thesis, many of the models developed are in the same spirit, and although the graphical 
representation of models are not given in favour of algebraic specifications, equivalent 
representations could be produced. In particular, the net benefit model described in 
Chapter 8  is very close to the modelling ideas first expressed under the Confidence 
Profile framework with the notable omission of bias parameters in favour of a 
sensitivity analysis approach.
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3.7 Cross-design synthesis

The initial work on cross-design synthesis was carried out by the Program Evaluation 
and Methodology Division of the U.S. General Accounting Office (GAO). (General 
Accounting Office., 1992) Their idea was to create methodology for a new form of 
meta-analysis that aims at capturing the strengths of multiple-study designs while 
minimising their weaknesses. Its purpose is to provide better answers to difficult 
research questions, (Droitcour et al. 1993) and, “relates to improving cost- 
effectiveness of health services, against a backdrop of concern about perceived 
spiralling health care expenditure.” (Lancet, 1992) Its motivation comes from many of 
the ideas discussed previously in this thesis, including: 1 ) the low generalisability of 
RCTs; 2) limitations of meta-analysis from moving from judging whether a treatment is, 
in principle, efficacious, to deciding how to manage a particular patient; and 3) the 
questionable reliability of subgroup analyses of (individual) RCTs.(Lancet, 1992)

Droitcour et al. (Droitcour et al. 1993) state that definitive answers about the effects of 
various treatments in medical practice can be provided only by a body of research that 
meets two key criteria: (a) scientific rigour in comparing treatment outcomes and (b) 
generalisability to the conditions of medical practice. Randomised controlled trials are 
designed to provide unbiased comparisons of outcomes following treatment, but often 
fall short of meeting the generalisability criterion. Conversely, statistical analyses of 
databases are uniquely suited to covering outcomes across the full range of patients, but 
they rarely provide convincing evidence of unbiased comparison (Droitcour et al.
1993). Thus, most RCTs and most database analyses probably fail to meet at least one 
of the two criteria for providing valid answers to questions about a treatment’s effect in 
medical practice. However, if the strengths of complimentary study designs can be 
combined both criteria can be met. It is interesting to note that Droitcour et al. (General 
Accounting Office., 1992) comment that although their work reviews methods for 
assessing, adjusting, and combining study results, its greatest emphasis is placed on 
methods for assessing study weaknesses.
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Droitcour et al. (Droitcour et al. 1993) acknowledge the previous work of Rubin 
(Rubin, 1992) (see section 2.9) and Eddy (Eddy et al. 1992; Eddy et al. 1990b; Eddy et 
al. 1990a; Eddy, 1989) (see section 3.6) who separately explored ways of synthesising 
results from studies with a diversity of designs. They say cross-design synthesis builds 
on these directions but with two key differences: 1) it focuses on combining results 
from studies with complementary designs; 2 ) it uses a two-pronged approach to study 
assessment. The first prong consists of an overall quality assessment of each study. The 
second prong is a focused assessment of the potential biases that derive from the 
primary weakness(es) inherent in a study’s design. This second prong is the heart of the 
strategy of cross-design synthesis; its findings are used only to a) adjust the results of an 
individual study, and b) identify each study’s most appropriate contribution to a 
synthesis model.

As mentioned above, RCTs and database analyses have complimentary strengths, but 
one cannot assume that in combining their study results, their strengths will be 
preserved while their weaknesses counteract each other. For this reason Droitcour et al. 
(Droitcour et al. 1993) devised the following three stage strategy for minimising 
weaknesses of study designs:

• Focused assessment of the key study biases that may derive from characteristic 
design weaknesses to provide the information needed to compensate for specific 
weaknesses (Droitcour et al. 1993; General Accounting Office., 1992)

• Individual adjustment of each study’s results to “correct for” identified biases

• Development of a synthesis framework and an appropriate model for combining 
results (within and across designs) in light of all assessment information

Droitcour et al. (Droitcour et al. 1993) comment that despite secondary adjustments, 
there is a possibility that the weaknesses of each design may continue to bias study 
results. This may be because some patient groups may have been totally excluded from 
randomised studies, which is a problem that cannot be fixed by standardising individual 
studies’ results to correct for over- or under representation. Similarly, focused
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assessment of a database analysis may not detect every imbalance in the comparison 
groups.

The solution put forward to this problem is to devise a framework for organising, 
analysing, and combining results from different categories of study designs. Although 
this general approach has its roots in meta-analysis, the framework derives directly from 
the work of Hlatky. (Hlatky, 1991)

Once this has been done the investigator must decide whether to: a) present results from 
each stratum separately; b) present only estimates from certain strata (e.g., strata that 
contain only those studies deemed to be of high quality); or c) combine estimates across 
strata using adaptations of the various methods of meta-analysis.

Droitcour et al. (Droitcour et al. 1993) point out three major strengths of cross-design 
synthesis, namely: 1) It can draw upon different kinds of studies that, in combination, 
can tell more about how medical treatments work than any single type of study can; 2 )
It can be applied to existing results in several areas because diverse study designs are 
increasingly being used to evaluate treatment effectiveness; and 3) It has the ability to 
produce the generalisable information needed to support credible medical practice 
guidelines.

A limitation, the authors point out, is the necessity of relying on investigator judgement 
for many decisions. Until refinements of this strategy are developed, GAO believes it is 
best applied by those knowledgeable about both a specific medical treatment and 
evaluation methods in general. (Chelimsky et al. 1993) This is a crucial point; while the 
method is conceptually sensible and appealing, the assessments and adjustments 
required will be difficult to make with the instruments currently developed for such 
purposes. This echoes the concerns made about dealing with study quality in a 
generalised synthesis framework discussed in Chapter 1, section 2.7 and Chapter 9; a 
problem that remains largely unresolved in this thesis.

An anonymous editorial in the Lancet was cautious about this new methodology 
arguing risk with cross design synthesis is that the more expensive, time-consuming, 
and reliable component - RCTs - will increasingly be replaced by database analyses.
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(Lancet, 1992) Chelimsky et al. (Chelimsky et al. 1993) disagreed with this, 
commenting that RCTs were a necessary part of cross-design synthesis.

3.8 Bayesian hierarchical models

Several authors have considered the flexible approach offered by the use of hierarchical 
models to combine data; these are considered below and utilised throughout this thesis.

3.8.1 Bayesian three-level hierarchical model for the general synthesis of evidence

Prevost et al. (Prevost et al. 2000) developed a model to include studies with disparate 
designs into a single synthesis, acknowledging that when considering the effectiveness 
of an intervention evidence from non-randomised studies may be relevant in addition to 
the RCTs. Although this work follows in the cross design synthesis spirit of Droitcour et 
al. (General Accounting Office., 1992), the methodology used is somewhat different 
and is more specifically operationalised. More generally, this approach presents a 
framework for sensitivity analysis to include evidence from different study types.

The hierarchical nature of the model specifically allows for the quantitative within and 
between sources heterogeneity, whilst the Bayesian approach can accommodate a priori 
beliefs regarding qualitative differences between the various sources of evidence. These 
prior distributions may represent subjective beliefs elicited from experts, or other data- 
based evidence, which though pertinent to the issue in question is not of a form that can 
be directly incorporated, such as data from animal experiments. (Abrams et al. 1997) It 
is important to note however, that the specification of informative priors is far from 
automatic. See Sutton and Abrams (Sutton and Abrams, 2001) for an example of this 
approach in practice. (A further alternative is to use non-randomised studies to derive a 
prior for the pooled treatment effect for a meta-analysis of RCTs, this is also pursued 
elsewhere (Sutton and Abrams, 2001))

This model can be viewed as an extension of the standard random effects model for 
meta-analysis, (DerSimonian and Laird, 1986) but with an extra level of variation to
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allow for variability in effect sizes between different sources of evidence. Figure 3.1 

outlines the generic structure of the model, fi is the overall pooled effect across all 

sources of evidence, the 9is are the pooled effects within study types (z = 1,2,. . I), 

where study types may indicate RCTs, cohort studies, case-control studies etc., and <pjis 
(/ = 1 ,2,. l \ j  = 1 , . . . ,  ni) are the individual study-specific estimates. Extensions 
including incorporation of prior constraints, prior beliefs, and study level covariates are 
also feasible.

Figure 3.1 3 level model for synthesising studies of different designs
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The full model specification is as follows

Tij ~ N[^..,v<y] , (z = 1 , I\j = 1,. . . ,  n i)

(Pi-, =  & i +  V iZ ij, Zij ~ N(0,1),

(3.3)
0i = {J + T £ i ,  £i ~ N(0,1),

U/~[-,-], M " ] , M-r] ,

where (pri is the true intervention effect in theyth study of type i, 0  is the true effect in

the z'th type of study and v/2 is the variance between studies of type z. jj. is the overall 

mean effect of the populations and z2 represents the between study type variance. The
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random effects, z,y, reflect the differences in the true intervention effect in the individual 

studies from the overall study type effect. The random variable, $, allows variation of 

the mean effect size between study types. This model is further considered, developed 
and applied to the evidence on cholesterol levels and mortality in Chapter 5.

3.8.2 Grouped random effects models for Bayesian meta-analysis

Larose and Dey (Larose and Dey, 1997a) observe that in meta-analysis results from 
dissimilar studies are often inappropriately combined. They present a method which 
addresses this problem using a Bayesian hierarchical model framework, similar to that 
of Prevost et al. (Prevost et al. 2000), although no third level is included in their model. 
Their illustrative example considers 15 comparative studies of progabide, a new anti
epileptic drug, all of which use a crossover design. A distinction is made between 
double-blind (closed) studies and those in which the investigator had knowledge of the 
treatment regime (open studies). A random effect model is used which calculates an 
overall mean plus a group-specific random effect; in the example this is for the open 
and closed studies though other design feature could be dealt with in this way. This 
model, which considers the proportion of patients who improve on the active treatment 
as outcome, is outlined below

iogit(piJ) = ft + ^ l

where j  indexes the number of studies in each of the i distinct categories of study (e.g. i 
= 2 for open and closed studies in the original example). The effect in the ith study 

grouping is estimated by(// + with between study variance r f . Hence, each group’s

effect size estimate has a specific between-study variance term. It is assumed that there 
is exchangeability between studies within each group. The authors’ main purpose was 
not to produce a single overall pooled estimate, but to develop a framework in which 
heterogeneity between study types could be quantified, (i.e. using a traditional fixed or 
random effect model) a conclusion of no treatment effect would be made, however 
using the grouped random effects model demonstrates that the open studies support the

i = 1, , /  7 = 1 , .........k

A, ~ N[3, r,2]

(3-4)
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efficacy of progabide while the closed studies support the reverse hypothesis. The 
authors comment that the model could easily incorporate covariate information through 
the use of linear structure in the overall mean. (Larose and Dey, 1997b) This model is 
not considered in detail in this thesis, however, possible extensions are discussed in 
Chapter 9.

3.9 Exposure risk assessments

When considering the risk associated with the exposure to a certain agent, evidence may 
be available from several types of observational study (only rarely is randomised 
evidence available on exposures to potentially harmful substances). Although risk 
assessment is not a main focus of this thesis, a brief account of the methods developed 
in this area is given below as they provide examples of the application of generalised 
synthesis models..

3.9.1 Combining the results of cancer studies in humans and other species

DuMouchel and Harris (DuMouchel and Harris, 1983) propose a class of Bayesian 
statistical methods for interspecies extrapolation of dose-response functions. In their 
original analysis, their motivation for considering information from non-human species 
stemmed from the fact that there was an abundance of precise data available from 
animals concerning the assessment of cancer risks from environmental agents, but little 
accurate information on direct effects in humans. A formal distinction is made between 
conventional measurement error within each dose-response experiment and a novel 
error of uncertain relevance between experiments. Dose-response data from many 
substances and species is used to estimate the inter-experimental error. From the data 
the estimated error of interspecies extrapolation, and prior biological information on the 
relations between species or between substances, posterior densities of human dose- 
response are calculated.
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3.9.2 Stratified ordinal regression: a tool for combining information from 
disparate toxicological studies

Cox and Piegorsch discuss the development of methodology for combining studies on 
acute inhalation assessment. (Cox and Piegorsch, 1994; Carroll et al. 1994) Their goal 
was to develop methodology for data combination that incorporates the range of 
endpoint severity, exposure concentrations, and exposure durations. The method is 
based on severity modelling, wherein concentration, duration, and response are 
integrated to determine potential risks to humans after acute inhalation exposure to 
some environmental toxin.

3.9.3 Combining epidemiological and biochemical evidence

Tweedie and Mengersen (Tweedie and Mengersen, 1992) investigate the relationship 
between lung cancer and passive smoking. Previously, two approaches had been taken 
for investigating this: 1) the biochemical approach, using cotinine in the main as a 
marker; and 2) the epidemiological approach. The paper uses both sorts of studies in 
one meta-analysis. The authors comment on using the now-standard ‘Wald adjustment’ 
(Wald et al. 1986) for differential misclassification, this estimates the effect of 
differential bias introduced by the misclassification of smokers and non-smokers.

3.9.4 Combining sparse outcomes from observational studies with different designs

Epidemiological studies often examine the risks related to rare outcomes. If cohort 
studies are used to examine rare outcomes, then they have to be large even to observe a 
small number of events. Case-control studies are often used in such situations due to 
greater ease of implementation. Austin et al. (Austin et al. 1997) developed a fixed 
effect exact procedure to combine these results across different study designs using 
‘exact’ methods. This methodology is developed further in Section 7.9 where a 
Bayesian random effect model is described which would appear a superior method for 
combining results from studies with different designs.
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3.9.5 Combining case-control and prospective studies

Muller et al (Muller et al. 1999) consider methods for combining case-control studies 
with prospectively collected confirmatory information concerning effects of risk factors 
that have been identified based on the case-control studies for the purposes of 
developing risk predictions. A Bayesian hierarchical model is utilised, but the method 
assumes individual patient data is available.

3.10 Combining heterogeneously reported outcomes

An issue which has not received much attention until recently is the need for methods to 
combine heterogeneously-reported information. Section 3.5 has already considered the 
case when different comparisons are being made within studies. A further problem 
exists when the results of studies are reported on scales of different types. This is a 
common occurrence when results studies with different designs are to be combined.

Abrams et al. (Abrams et al. 2000) consider continuous outcomes, where in some 
instances, the difference from baseline is reported, while in others only baseline and 
follow-up measures are reported. For the latter situation the correlation is often not 
known, and hence the standard deviation for the mean change cannot be calculated and 
hence included in a meta analysis of difference. A Bayesian meta-analysis model is 
used which places an informative prior derived from pertinent background information 
on the correlation between baseline and follow up measurements in the individual 
studies where no difference estimate is given allowing a synthesis of all studies, 
irrespective of reporting method, to proceed.

Further methodology has been developed by Dominici et al. (Dominici et al. 1999), 
who combine information on various treatments for headaches. In this situation 
outcomes were reported as continuous treatment effects for individual treatments, as 
differences between treatments, and as 2 x 2 contingency tables for dichotomised 
responses in the different studies. A hierarchical Bayesian grouped random-effects
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model is described which introduces latent auxiliary variables to create a common scale 
for combining the information.

3.11 Net benefit: Generalising RCT results using additional 
information from observational studies

Glasziou and Irwig (Glasziou and Irwig, 1995) consider generalising randomised trial 
results using additional information. They employ ‘Net Benefit’ as defined by:

Net Benefit = (Risk Level x Risk Reduction) - Harm (3.5)

This model suggests potential benefit increases with risk, but that harm will remain 
relatively fixed. Thus at low levels of risk, the benefits will not outweigh the harm and 
we should refrain from intervening, but at higher levels, the benefit will outweigh the 
harm. Estimating all elements on the right hand side of equation (3.5) for population 
subgroups generally requires several sources of data. The authors suggest that the 
estimate of relative risk reduction should come from (a meta-analysis of) randomised 
trials, the adverse event rates may come from both randomised trials and other 
epidemiological studies; risk level will usually come from multivariate risk equations 
derived from large cohort studies. This model is considered in Chapter 8, where a fully 
stochastic model, which takes into account uncertainty from all evidence sources, is 
used to implement the method.

3.12 Propensity scores

Although propensity scores (Rosenbaum and Rubin 1983) are not used to combine 
studies of different designs, they can be used to compare and consolidate the results 
from RCTs and routine treatment databases. (General Accounting Office 1994) 
Propensity scores aim to control for all known confounding factors in an observational 
study, by regressing all potential cofounders on the treatment regimen actually 
followed. This function of confounders is each individual’s propensity score (and is a
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measure of the propensity of each individual to be allocated to the treatment they 
received), which can be used to adjust for all confounders in an analysis which 
compares outcomes. Patients can then be sub-classified on the basis of their scores and 
treatment comparisons made within these subgroups. The results of such analyses can 
be compared with RCTs to explore whether similar effects are evident in practice from 
the trial situation, and whether such effects are consistent across patient subgroups.

It is interesting to note that this approach has much in common with cross-design 
synthesis. (Section 3.7) Propensity scores are not considered further in this thesis, 
although their potential for use in the generalised synthesis of evidence is 
acknowledged.

3.13 Synthesis of evidence and the clinical/policy decision making 

process

Meta-analysis is only part of the process of implementing new clinical/policy 
procedures; decisions still have to be made once treatment effect estimates have been 
produced.

Figure 3.3 illustrates the process of synthesis of medical evidence. Solid boxes relate to 
evidence, while dashed boxes relate to peoples beliefs. The various sources of evidence 
are displayed across the top of the figure. These lead into the synthesis box, as do the 
synthesisers’ beliefs about the credibility of the various forms of evidence. This box 
influences which evidence is included, the form of analysis, and hence the relative 
contribution of the different sources of evidence. Following synthesis and the 
production of effect estimates, policy/clinical decisions are made based on these 
estimates. At this stage beliefs may also be included in the decision making process, 
possibly including consideration of economic issues derived through cost-benefit 
analyses. Following this, the intervention may be recommended for routine practice and 
then further routine evaluations of its effectiveness are carried out which feed back into 
the synthesis sources.
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Figure 3.3 Synthesis of medical evidence
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It is important to note that currently the meta-analyst is only concerned with the 
synthesis stage of the model, and others then decide on policy. Midgette et al.,
(Midgette et al. 1994) in their assessment of the effectiveness of intravenous 
streptokinase on short term survival after suspected acute myocardial infarction, do 
provide a rare example of a combined decision analysis and meta-analysis. They only 
include point estimates from the meta-analysis in the decision making process, so that 
the uncertainty surrounding parameter values is not taken into consideration. Inclusion 
of the posterior distributions (assuming a Bayesian analysis has been carried out) for 
parameters in the decision model would be preferable. The subject of decision analysis 
and how it interfaces with meta-analysis is not the focus of this work but one needs to 
give consideration to which results are most informative to the decision making part of 
the process when carrying out the synthesis. Additionally, there is a need to further 
develop methods for synthesising economic assessment data, (Jefferson et al. 1996) 
which may be available from a number of sources since this is a crucial aspect of 
decision modelling. Finally, the whole research process, including the design and 
monitoring of primary studies, as well as secondary analyses such as meta-analysis and 
the generalised synthesis of evidence, can be viewed in a decision theoretic framework, 
which potentially offers a coherent structure to the whole research process. (Claxton,
1999) Such an approach can inform in which areas further research would be most 
informative. Further discussions of the need to include economic data in a generalised 
synthesis framework are included in Section 8.6.

3.14 Summary

The preceding sections provide a largely non-technical description of the various 
approaches to combining evidence from disparate sources. Firstly, simple extensions of 
the standard meta-analysis methods were considered which accommodate crossover 
trials, matched with unmatched data. Next, methods which allow indirect comparisons 
to be made, including the combination of single arm, historical control, studies with 
RCTs, and studies comparing different combinations of treatments.
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More general methods for combining different sources of data were then discussed. The 
first of these, the confidence profile approach has been developed with a large number 
of examples, however it does have drawbacks, not least due to the necessity of 
explicitly defining all biases present. Cross-design synthesis considers the combination 
of RCT data with database data. The method is conceptually appealing, however there 
are a lack of practical examples. The specific use of Bayesian hierarchical models to 
combine distinct sources of data, which offers methods which are practical to 
implement are reviewed. These are used extensively in Chapters 5 and 6.

Several methods which focus on the combination of observational evidence exclusively 
are also included. DuMouchel’s relatively early work explores the idea of extrapolation 
from related but not directly relevant studies, and hence considers a broader array of 
evidence that could be accommodated in a traditional meta-analysis. Using a Bayesian 
framework, shrinkage between studies is exploited. Tweedie and Mengersen’s 
application is noteworthy for combining information from studies using two different 
approaches to address the same problem; the example also flags up the issue of 
adjustment of individual study estimates for known biases before synthesis takes place. 
This is conceptually similar to the adjustments for publication bias in individual study 
types before synthesis described in Chapter 6. Austin et al describe a logical extension 
of the fixed effect model to allow exact estimation in the meta-analysis of rare outcomes 
from observational studies with different designs.

Two methods that rely heavily on the synthesis of evidence, but use the different 
sources of evidence to estimate different parameters in the model are described.
Glasziou and Irwig consider a wholly different approach using risk functions, for which 
meta-analysis provides part of the information. Their method then explores net-benefits 
in subgroups of patients as a way of providing treatment effect estimates for different 
individuals. Rosenbaum and Rubin develop propensity scores, which allow adjustment 
of databases, looking at effectiveness of interventions, for multiple confounders. The 
results of such analyses can be compared with RCTs to explore whether similar effects 
are evident in practice from the trial situation, and whether such effects are consistent 
across patient subgroups. Both these methods consider the idea of using synthesis to go 
beyond producing overall averages and provide an array of estimates for different
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patient groups discussed at length in section 2.9. This is an appealing idea, and a 
recurring theme throughout this thesis.

Finally, brief consideration if given to how evidence synthesis can be used within the 
decision making process. There is clearly scope for decision models that utilise 
evidence syntheses of effectiveness data, combined with economic data. Such an 
approach is appealing, as the whole decision process can be made rational, transparent 
and objective.

Thus, many different approaches have been suggested for the generalised synthesis of 
evidence. Clearly much groundwork has been laid, and ideas described, but practical 
applications of such methods are relatively scarce. (Sutton et al. 1998) One possible 
reason why such methods have been slow to develop is because the potential 
permutations of the types of evidence available, and the specific problems encountered 
are huge. By definition, such analyses are going to be larger and more complex than 
traditional meta-analyses. If a general methodology were to be produced, it would have 
to be very broad to accommodate all the different sorts of evidence and all their 
associated problems, yet it would also have to be detailed to make practical 
implementation possible. The development of a single framework in which all these 
methods could contribute is an appealing idea, however far beyond the scope of this 
thesis and probably several years away if, in fact, it is a desirable or achievable target at 
all. However, the thesis does provide extensions to many of the methods described 
above, as well as to the more standard meta-analysis methods described in the previous 
section.
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Chapter 4 Combining randomised and observational studies: 
the example of cholesterol lowering and risk of coronary heart

disease and ail cause mortality

4.1 Introduction

The relationship between total serum cholesterol and risk of coronary heart disease 
(CHD) or all cause mortality was chosen as the first topic to explore using generalised 
synthesis of evidence. Several methods which synthesise observational and randomised 
data are reported in Chapter 5, however, initially, individual meta-analyses of individual 
data types are described in this chapter. Such analyses provide the reader with the 
necessary background for the generalised synthesis.

The topic of cholesterol lowering was chosen for several reasons. Firstly, it was 
apparent, through reading previous reviews (see sections 4.3 and 4.4), that the potential 
literature was substantial, with evidence being available from several different types of 
study. Additionally, it has been a topic of much interest due to the potentially high 
clinical impact measures to reduce CHD have, and some controversy (see below and 
section 4.4), which invites an analysis using novel methods.

Using the results from observational studies, it has been known for some time that 
people with low serum cholesterol levels have lower incidences of CHD than people 
with elevated levels.(Calvert, 1994) Cholesterol lowering interventions were first 
suggested in the 1950s as providing potential benefit by reducing the risk of 
death/further cardiovascular event in patients surviving one such event. Since then a 
large number of trials have been carried out investigating the effect of cholesterol 
lowering and future risk of several major outcomes such as CHD events and total 
mortality, using a variety of drug, diet and even surgery interventions. Some of the 
earlier secondary intervention trials (i.e. in patients who already had CHD) found 
reduced risks of CHD events in the study arms where cholesterol had been lowered, but 
overall mortality in many of these studies showed no similar reduction. (Muldoon et al.
1990) Various theories have been put forward to explain this inconsistency. It has been
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noted that in several trials that risk of suicides and violent deaths has been inflated in 
patients receiving cholesterol lowering treatments, leading to the suggestion that 
lowering cholesterol may alter moods and behavioural patterns. (Muldoon et al. 1990; 
Cummings and Psaty, 1994) There has also been the suggestion that interventions which 
lower cholesterol may modestly increase the risk of certain cancers, although this is still 
under debate (Macmahon, 1994; Davey Smith and Pekkenen, 1992) Recently, however, 
with the introduction of newer drugs, called statins, which are capable of lowering 
cholesterol levels by greater amounts than could be achieved previously, considerable 
reductions in the risk of CHD mortality demonstrate benefits which almost certainly 
outweigh the risks as a secondary intervention in persons with elevated cholesterol 
levels. Less clear is the benefit of cholesterol lowering as a primary intervention when 
considering overall mortality, (Anonymous1998) and for people who already have 
moderate or low cholesterol levels. (Rubins, 1995)

The issues of identifying: 1) which people would benefit from a cholesterol lowering 
intervention and 2) the optimal intervention strategy for such persons identified are 
addressed in the analysis which follows.

4.2 Literature identification methods

Originally, this analysis was conducted in 1998 when I started work on this thesis, 
however, it was updated in 2001 and hence the evidence it contains should be up-to-date 
as of the end of 2000.

After brief pilot searches, it became apparent that many meta-analyses of the cholesterol 
lowering RCTs had been carried out previously; these are reviewed in section 4.4. Since 
many of these cross-referenced each other, it was relatively straightforward to identify 
what is suspected to be the majority of the previous meta-analyses.

Through scrutinising each of the reference lists from these meta-analyses, RCTs 
investigating cholesterol lowering interventions were identified. Since the randomised 
evidence in the area of cholesterol lowering appeared to be so well documented, it was
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decided to rely on these previous meta-analysis as the source of evidence to compile a 
comprehensive list of RCTs by. In addition, Medline was searched for any recent trials 
reported after the meta-analyses had been carried out (1997- 2000). As a final check, a 
researcher with an active interest in the area and author of a previous meta-analysis,1 
was contacted to enquire of any additional trials, of which he knew none. It is 
acknowledged this is a rather non-standard approach to literature identification, 
however, with over 40 meta-analyses carried out previously (see section 4.4), it would 
appear that cholesterol lowering RCTs is an exceptionally well documented area of 
medical research, and hence for the purposes of this thesis such practice could be 
justified.

Scoping searches were carried out to assess the breadth of the potentially relevant non- 
RCT evidence. Figure 4.1 documents the different types of evidence found. These range 
from non-randomised trials, through aetiological observational studies, to experimental 
studies on animals.

These scoping searches identified a particular paper including a meta-analysis of 
cholesterol lowering RCTs and aetiological observational studies relating to cholesterol 
levels and rates of CHD (Law et al. 1994a) The paper did not qualitatively combine 
observational with randomised studies, however it did compare the meta-analyses of 
each type of evidence. This paper stated that over 60 cohort studies investigating the 
relationship between cholesterol level and adverse outcomes existed (in 1994), however, 
it only considered, and referenced, the ten largest.

For the generalised synthesis described in this chapter, it was decided to restrict 
attention to these 10 aetiological observational studies and any reported more recently 
than 1994 that were of comparable magnitude to these 10. Although this ignores many 
of the potentially relevant sources of evidence as identified in Figure 4.1, such 
restriction was necessary to make the analysis feasible.

1 Fujian Song, Centre for Reviews and Dissemination, University o f York
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Fig 4.1 Summary of all the evidence for potential use in generalised synthesis of evidence of cholesterol lowering
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4.3 Overview of literature/studies identified

The literature search located 43 previous meta-analyses of the RCTs (up to 1997) and 
a list of these is given in the meta-analysis study reference list in Appendix A.I. From 
these and additional searches 64 distinct RCTs assessing a variety of cholesterol 
lowering interventions were identified up to September 2001, references to which are 
given in Appendix A.II. In addition, a cluster dynamic cohort cross-over study was 
also identified (see Appendix A.II.)

No aetiological observational studies larger than the 10 identified by Law et al. (Law 
et al. 1994a) were identified, however one update report from one of the original 10 
was located. Citations to these 10 observational studies are provided in Appendix 
A.III.

I

To make referencing of the different sources of evidence clear, the following 
convention is adopted. Because several types of study are used, some of which 
include many individual studies, and often multiple references are associated with 
each of these, separate reference lists are given for each study type in Appendix A. A 
letter prefixes the study number; this represents the type of study. Hence, all RCTs are 
prefixed with an R, crossover studies with an X, cohort studies with a C, and previous 
meta-analyses with an M. In order to distinguish an individual paper describing a 
study, a small case letter is added when referring to an individual paper. For example 
R31 reefers to RCT number 31, and R31b refers to the second paper on the list that 
describes trial R31.

4.4 Critical review of the previous meta-analyses of the randomised 
evidence

At least 43 previous meta-analyses have been carried out on the cholesterol lowering 
intervention trials. All of these trials are randomised except for one cluster crossover 
dynamic cohort designed study (XI) which was sometimes included (see Appendix 
A.I). Very few of these have used the same set of trials in their analyses. The date
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each analysis was carried out can partly explain the differences in trial selection (i.e. 
the more recent meta-analyses include more recently published studies). Additionally, 
many variations in hypotheses being tested and the inclusion criteria, have led to what 
would initially appear similar meta-analyses combining different studies, assessing 
different endpoints, examining different covariates, and using different models to 
combine the data.

Before going on to conduct any further meta-analyses on the RCTs, it is constructive 
to review previous attempts, and to assess the methods used critically. Examining 
these papers assisted in the identification of potential differences in study design, and 
patient characteristics, which are investigated further by including them as covariates 
in meta-regression models (see section 4.9). A number of narrative reviews were also 
identified at the literature-searching phase. The description of the RCTs provided in 
these is often more detailed than those of the meta-analyses. These were helpful in 
ascertaining the qualitative differences between the RCTs. Where these have been 
used they are cited in the text.

It was also possible to extract data on a number of the RCTs from the meta-analyses 
directly, though differences in variables considered between the meta-analyses, and 
inconsistencies in the data used between meta-analyses, meant the original reports 
often needed to be consulted also. Additionally, some of the meta-analyses used data 
updated since the primary study reports were published; this was extracted from the 
meta-analyses where possible.

A brief synopsis of some of the most influential meta-analyses is given below. One of 
the first published reviews of cholesterol-lowering trials was by Peto, Yusuf, and 
Collins [M2] in 1985 which was largely inconclusive due to the modest amount of 
evidence available at that time. In 1990 Muldoon et al. [Mil] carried out a meta
analysis containing six RCT’s. This review found no conclusive evidence that overall 
survival rates were reduced through cholesterol lowering, but further investigation 
was warranted. This analysis was later criticised for improper data extraction 
(Oglesby and Hennekens, 1992), and for including trials that were not analysed by the 
intention to treat method. (Oglesby and Hennekens, 1992) It was updated in 1992 by 
Davey-Smith and Pekkanen. [Ml7] The same year Ravnskov produced a meta
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analysis incorporating 22 trials. Antman and Lau in their influential paper (Antman et 
al. 1992) used cholesterol lowering as one of their examples to demonstrate, using 
cumulative meta-analysis, how slowly treatments are implemented in routine practice, 
after they are shown to be effective. In 1994 Davey Smith et al [M25] analysed 35 
RCTs in their meta-analysis finding associations between effectiveness and baseline 
risk. Shortly afterwards, Law, Wald and Thompson [M28 & M29] produced meta
analyses which compared RCT results with other types of studies, finding they largely 
agreed. This is the only meta-analysis to consider non-randomised evidence 
(although, as mentioned previously, it did not pool the randomised and non- 
randomised together). Recently, meta-analyses considering specific interventions, 
such as diet [M38], or statin drugs [M43] have been carried out.

Ten of these previous meta-analyses carried out between 1990 and 1997 were 
examined in detail. The selection of these ten was somewhat arbitrary, however, 
criteria considered during selection included: a) being substantially different from 
previous analyses; b) being thorough and of good quality; c) using sophisticated 
analysis methods such as meta-regression. Table 4.1 describes which RCTs were 
included in each of these 10 meta-analyses. In this table both trials and meta-analyses 
are ordered by publication year; this makes it possible to distinguish between trials 
that were deliberately excluded (or missed by each meta-analyst), and those trials for 
which the results would not have been available. Clearly, the exact times the trial 
results become available, and the precise times the meta-analyses were carried out 
would be very difficult ascertain, but the shaded part of Table 4.1 suggests results that 
clearly were published after the meta-analysis and hence the results of these RCTs 
would not have been available. In the meta-analysis by Pekkanen and Davey-Smith 
[Ml7] results from trial R27 must have been accessed from researchers prior to them 
being formally published. It can be seen that even after taking publication date into 
account, there is still considerable variation in the trials included in each of the 10 
meta-analyses. It should be noted that Holme [M40] explicitly stated that he included 
exactly the same trials as Davey-Smith et al. [M25]. Table 4.2 summarises other 
important characteristics of these ten meta-analyses.
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Table 4.1 Summary of RCTs included in 10 meta-analysis from 1990 to 1997

Study Number

MuldocNi

M i l  ( 1990)

D jvcv  Sm ill)  Si 

Pckkaucn 

M I7 < 1992)

Ravnskov 

M IS  ( 1992)

Davcv Smith a  

a l

M 25 ( 1993)

Law  d a ) . 

M 28  ( 1994)

Gould

M 3 6 ( I 995)

Holme 

M40  1990

Rem bold 

M 4 I ( 1996)

M arc liio li 

M 42 ( 1996)

Hebert a  al. 

M 43 ( 1997)

R 12 ( 1961) X X x
R2 ( 1962) X X X

R3 ( 19* 3 > * X X

R22  0 9 6 5 ) * X * X X X

R8 ( 1965» * X x X ' X

R7 ( 1966) X X *

R I7 M 96SI X X X X x , X x
R IO ( I 96S) X * X X X

RIO 11969) X * X X X X X X

R5 ( 1969) X X

R4 I ( 1970) * X

R3 6 ( 1971) X

R l 1 ( I 9 7 H X X X X x x X

R I3 ( 1972) X X x X

R3 5 ( I 973> X X x

R I5 ( I 975» X X X X x X X

R6 I I 977 ) X X * X * x x

R2 0 ( 1978) * X X X X X x
R21 ( 1978) * X X X X X

R31 ( 1978) * * * X * X x
R4 3 ( I 97S) X X x
R6 0 ( 1979)

R4 ( 1981 i X X X X

R3 7 ( 1982) X X

R3 9 ( 1983) X

R2 3 ( 1984) X X X x x x

R28 ( 1984) * X * X * X x X

R3 8 ( 1985) X

R40 ( 1986 ) X

R2 6 ( 19S7 ) X X X X X X

R29  i 1987) * X X * X x x
R2 4 ( 1989) * * X X X X

R9 <1989) X * X x x

R3 2 ( 1990) X x X x

R3 3 ( 1990) X X X X

R3 4 ( 1990) X * X x X x

R2$ i l 990) X X X X X X

R5 7 ( 1991) x
R3 0 ( 1991) X X X X X

R I9 H 9 9 I) X x X x x x X

R l ( 1992) X x X *

R5 I ( 1992) X

R I4 <19921 X X X x x x

R2 7 H  993) * X x X x

R5 2 I I 993 ) X X X

R4 2 119931 x x X

R55 ( 1993) x X

R4 4 ( 1993) x X

R4 6 11994) x x

R47 ( 19941 X

R4 8 i 1994) X X X

R49  ( 1994) X x

R5 3 ( 1994) x

R54 ( 1994) x X

R4 5 ( 1995) X X

R5 0 ( 1995) x * X

R5 6 ( 1995)

R5 8 ( 1995) x
R5 9 ( 1996) x
R0 K I 997)

R6 2 «1998)

R6 3 l 199K)

R64 ( 1999)

X I

Alex Sutton Ph.D. Thesis. December 2001 8 4



SPECIAL NOTE

THIS ITEM IS BOUND IN SUCH A 

MANNER AND WHILE EVERY 

EFFORT HAS BEEN MADE TO 

REPRODUCE THE CENTRES, FORCE 

WOULD RESULT IN DAMAGE



Chapter 4 Synthesis o f cholesterol lowering interventions

Table 4.2 Summary of meta-analyses of cholesterol lowering treatments

M eta

A nalysis

Y ear

P u b lished

S tu d ies

in c lu d ed

Q u estio n  n ic ta -an a ly s is  

w as try in g  to  a n sw e r / 

en d p o in t(s)

D escrip tio n  o f  inclusion  c r ite r ia T y p e  o f  analysis Pooled  

e stim a te (s) 

(9 5 %  C l)

C o n c lu s io n s/

re co m m e n d a tio n s

M uldoon

M il

1990 6 RCTs To determ ine the effects o f  

lowering cholesterol 

concentrations on total and 

cause specific m ortality  in 

random ised prim ary 

prevention trials

C riteria: 1) random ised clinical prim ary 

prevention trial o f  serum  cholesterol 

reduction. 2) it included a treatm ent group 

that received instructions for a d iet or was 

given drugs, or both, to  reduce cholesterol, 

and had a control group: all these studies had 

intended to  test the hypothesis that low ering 

cholesterol prevents coronary  heart disease. 

3) it resulted in a low ering o f  serum  

cholestero l in the intervention group, relative 

to  the control group. 4) It reported both total 

m ortality  and cause specific m ortality. 

(C um m ings (C um m ings and Psaty, 1994) 

com m ents lim ited to m en and only)

Peto m ethod (fixed 

effect)

Total m ortality  

1 .07 (0 .94 -1 .21 )

C H D  m ortality  0.85 

(0 .69-1 .05)

C ancer m ortality  

1 .43(1.08-1.90) 

M ortality  no t related to 

illness

1 .76 (1 .19 -2 .58 )

Choi reduction fails to  improve 

total m ortality. A ssociation 

between reduction  o f  cholesterol 

and deaths not related to illness 

w arrants further investigation.

Davey 

Sm ith & 

Pekkanen

M I7

1992 7 RCTs 

1 C luster 

C ross- 

O ver

Does low ering cholesterol 

reduce m ortality  (from  all 

causes and specific causes) 

Drug and d iet trials 

analysed separately.

P rim ary intervention studies o f  the prim ary 

prevention o f  heart disease

Fixed effect? Total m ortality  

D iet 0.95 (0.82-1.09) 

D rug 1 .1 6 (0 .9 8 -1 .3 8 ) 

C H D  m ortality  

D iet 0.71 (0.55-0.90) 

D rug 0 .72 (0.55-0.94) 

(cancer,in ju ry  and other

(General discussion only given)
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non C H D  given)

Ravnskov

M IS

1992 22 RCTs To see if  the claim  that 

low ering cholesterol levels 

prevents coronary  heart 

disease is true o r i f  it is 

based on citation o f  

supportive trials only

Criteria: designed and successful low ering o f  

cholesterol concentrations aim ed at 

preventing coronary heart disease, and total 

m ortality  or incidence o f  coronary heart 

disease reported as end points, (open and 

blind trials both included)

Trials using  angiography w ere excluded.

Peto m ethod (fixed 

effects)

Total m ortality  1.02 (0.97 

-1.07)

C H D  m ortality  

0.94(0 .88-1 .00) 

non-fatal CH D  

0.90(0 .84-0 .96)

Low ering serum  cholesterol 

concentrations docs not reduce 

m ortality and is unlikely to 

prevent CHD.

Davey 

Sm ith et al.

M25

1993 35 RCTs To investigate the level o f  

risk o f  death from  coronary  

heart disease above w hich 

cholesterol low ering 

treatm ent produces net 

benefits

All random ised controlled single factor trials 

o f  cholesterol low ering treatm ent w ith at least 

six m onths o f  follow  up in w hich at least one 

death occurred. O ne study (r 18) proved 

im possible to ascertain in w hich arm  o f  the 

study the so litary  death occurred. (Published 

and unpublished RCTs)

R andom  effects, m eta

regression and subgroup 

analyses

Total m ortality, CH D  

m ortality , and other cause 

m ortality  given stratified 

by  risk o f  death (&  

regression line), and also 

for d iet and drug trials 

separately

C holesterol low ering drugs seem  

to produce m ortality  benefits in 

only  a  sm all proportion o f  

patients at very high risk o f  death 

from  CH D

Law et al. 

M28

1994 28 RCTs 

10 Cohort 

studies 

3

Internatio

nal

surveys 

(only  the 

RCTs 

were 

pooled)

T o estim ate by how  much 

and how  quickly  a given 

reduction in serum  

cholesterol concentration 

will reduce the risk o f  

ischaem ic heart disease

C ohort studies o f  serum  cholesterol 

concentration and ischaem ic heart disease (10 

biggest; all > 350 ischaem ic heart disease 

events)

International studies (not really stated)

R C Ts - intervention drug, d iet o r ileal bypass 

su rg e ry ; outcom e ischaem ic heart disease 

events (deaths and non-fatal infarcts). 

Recorded at least one death and docum ented 

a reduction in serum  cholesterol 

concentration o f  at least 1%.

?? (not specified) R esults given for trials o f  

drug, diet, m en w ithout 

ischaem ic heart disease, 

and w ith IHD. All these 

are stratified by follow - 

up

R esults from  cohort studies, 

international studies and RCTs 

are consistent. T here is a benefit 

from  having low cholesterol in 

relation to IHD.
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Gould

M 36

1995 35 RCTs 1) what is the relation o f  

cholesterol lowering to 

benefit (or harm)

2) what are the effects o f  

specific types o f  lipid- 

low ering regim ens on 

clinical outcom es?(C H D  

m ortality, non-C H D  

m ortality, total m ortality)

All published RCTs relating cholesterol 

reduction to changes in m ortality or coronary 

m orbidity  and had a duration o f  £  2 years. 

(Included angiographic trials, horm ones, 

surgery or m ultifactorial interventions.

Regression - m odelling 

degree o f  cholesterol 

low ering achieved, and 

effects o f  type o f  

intervention

Slope predicts 13-14% 

reduction in CH D  

m ortality  for every  10%- 

point reduction in scrum 

cholesterol. N on-C H D  

m ortality  not 

significantly  related to 

cholesterol reduction. But 

total m ortality  is (results 

g iven)

Results suggest chol low ering is 

beneficial but specific adverse 

effects o f  Fibrates and horm ones 

increase the risk o f  C H D  

(horm ones only), non-C H D , and 

tot m ortality.

H olm e

M 40

1996 35 RCTs 

(sam e as 

D avey 

Sm ith et 

al. (Sm ith 

et al. 

1993))

Review  relationship 

betw een log odds ratio o f  

total m ortality in active vs. 

control group and degree 

o f  cholesterol reduction, 

adjusting for appropriate 

covariates such as type o f  

trial (single o f  

m ultifactorial), risk level in 

the control group, and type 

o f  treatm ent.

See D avey Sm ith et al. (Sm ith et al. 1993) O dds rations calculated 

by Peto m ethod. Fixed 

effect regression, using 

absolu te cholesterol 

reduction as predictor.

Regression m odels given 

for total m ortality.

Cholesterol reduction w as o f  

borderline significance.

R em bold

M 4I

1996 33 RCTs “N N T o f  the prevention o f  

MI and death by 

antidyslipidem ic therapy” . 

O utcom es - Relative risk 

reduction, N N T

Random ised and involved standard 

antidyslipidem ic therapy (diet, 

pharm aceuticals, and surgery). For d ietary 

trials (r42-r45) w ere excluded because 

reduction in total cholesterol w as sm all( 

<4% ). (prim ary, secondary and tertiary risk

C um ulative m eta-analysis 

(by publication date), 

fixed and random  effects. 

Subgroup analysis on 

H M G -C oA  reductase 

inhibitors or niacin)

R esults for all m ajor 

outcom es reported 

separately  o f  prim ary and 

secondary  trials. Further 

subgroup results are also 

given

R esults support clinical benefit 

o f  treating  dyslipidem ia, both in 

persons w ith and w ithout known 

atherosclerosis
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included). N on-standard treatm ents 

(triiodothyronine, garlic, or w alnuts) were 

excluded

(“studies with treatm ents 

typically  em ployed by 

physicians in the 1990s”)

M archioli 

et al.

M42

1996 37 RCTs 

(34 plus 3 

had

m ultiple

arm s)

“Nonfatal events were not 

easily  available from all 

published articles, so they 

were not assessed” (all 

cause m ortality)

(odds ratios)

1) designed low ering o f  blood cholesterol 

concentrations in the seco n d ary  p rev en tio n  

o f  cardiovascular disease (C V D ); 2) 

random ised design; 3) recorded incidence o f  

total m ortality;

4) at least 6 m onths follow up (open and blind 

trials w ere accepted) (m ultifactorial trials and 

studies that reported data  that w ere gathered 

beyond planned trial duration w ere excluded)

Fixed effects, random  

effects?,

regrcssion(fixcd) (level 

o fC H D  risk, baseline 

blood total cholesterol 

level, percentage o f  

achieved reduction o f  the 

cholesterol concentration, 

CH F, Previous MI, 

interactions)

M any outcom es, and 

subgroups exam ined - too 

num erous to describe.

The effect o f  cholesterol- 

lowering interventions at least in 

the secondary prevention o f  

coronary heart disease can be 

considered as established, but the 

transferability  o f  such results to 

patients rem ains an unansw ered 

question.

Hebert et 

al.

M43

1997 16 RCTs T o exam ine w hether 

cholesterol low ering with 

statin drugs reduces the 

risks o f  stroke and total 

m ortality

1) Published E nglish-language articles;

2) Statin drugs alone were used to reduce 

lipid levels rather than m ultifactorial 

interventions including another type o f  

cholesterol-low ering  drugs 3) inclusion o f  

data on deaths and/or strokes

Fixed effect, Peto, (odds 

ratios)

R isk o f  stroke reduced by 

29% ( 14-41% ) in statin 

group and 22% ( 12-31 % ) 

for total m ortality, (non 

significant increases in 

non C V D  and cancer 

outcom es)

C lear benefit from  using statins 

on stroke and total m ortality  

outcom es
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Further to Table 4.2, differences in the type of analyses undertaken are a key issue 
here, and so considered in more detail. Until relatively recently the only method used 
to pool the cholesterol RCTs was simple fixed effects analyses. The first random 
effect model was used in 1993. [M25] This was also the first of the meta-analyses that 
used regression methods to explore study level covariates. Death rates from coronary 
heart disease per 1000 person years observed in the control group of each study were 
examined. The analysis was stratified by this variable, as well as including it as a 
covariate in a regression model. Unfortunately, the later analysis is flawed (see 
section 2.4.5 where this is discussed and recently developed valid analyses methods 
are described) (Senn, 1994). Despite this, the subgroup analysis carried out is valid, 
and a genuine strong relationship between baseline risk and treatment effect was 
observed.

In addition to the meta-analysis of Law et al., [M28] Thompson produced and 
discussed further the analyses based on the same data in a separate paper.(Thompson, 
1993) A regression model was used to look at the effect of absolute cholesterol 
reduction on outcome. Using logistic regression with a log odds ratio outcome 
alleviates the need to make assumption about normality of the data. (Thompson and 
Sharp, 1999) A strong negative association was found between ischaemic events and 
degree of cholesterol reduction. An odds ratio of 0.82 (0.78-0.87) per 0.6 mmol/1 
decrease in cholesterol was reported, where 0.6mmol/l was the average reduction 
observed in the trials being combined. Thompson comments that a linear relationship 
between log odds ratios and absolute reduction in cholesterol, constrained to go 
through the origin, is assumed. He goes on to say the rationale for this choice of scales 
comes from large observational prospective studies where it is much clearer that 
absolute differences in serum cholesterol correspond to proportionate changes in the 
risk of ischaemic heart disease. (Thompson, 1993) So, in an informal way, 
information from non-randomised studies was included in this analysis to inform 
scale choice and the specification of the model.

The effect of treatment duration was also investigated. If treatment duration was 
simply included as a covariate, the longer trials would include information on events 
both soon after and a long time after randomisation and so any true effect of duration
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would be diluted. The studies were thus subdivided by time periods since 
randomisation commenced using supplementary information provided by the original 
trialists. The results form this suggested that there is an increasing benefit of reducing 
cholesterol with increasing duration of treatment, and that after this and the extent of 
cholesterol lowering are taken into account there are no obvious systematic 
differences between drug and dietary trials, or between primary and secondary trials.

Gould et al [M36] also addressed the issue of whether the risk reduction for specified 
outcomes is related to the actual degree of cholesterol reduction, or the particular 
means of reducing cholesterol. A regression analysis was implemented including a 
term for the degree of cholesterol reduction achieved, as well a terms for specific 
types of intervention (diet, fibrates, hormones and other) in a similar manner to 
Thompson’s analysis described above. An association between cholesterol reduction 
and CHD and mortality outcomes was observed. In addition, differential effects of 
fibrates and hormonal therapies was observed.

Holme [M40] investigates: 1) the relationship between total mortality and cholesterol 
reduction, adjusted for single/multifactor trials; 2) the impact of control of risk level 
in the control group on this relationship; 3) whether fibrate trials have experienced 
excess risk as compared to other drug intervention trials. The method of analysis used 
was (unconditional) logistic regression (compared to Gould who used conditional 
logistic regression). Holme comments that the initial cholesterol level was not used in 
adjustments because it did not correlate with the log odds ratio in the data. Single and 
multifactor trials were split by a dummy variable. Baseline risk was calculated using 
total number of deaths, as opposed to deaths from CHD used by Davey Smith et al. 
[M25]

Rembold’s analysis [M41] is noteworthy because it uses an expanded set of trials, 
when compared to the previous studies. Another note of interest is that the number 
needed to treat scale is used to report outcomes, rather than the odds ratio commonly 
used. The actual statistical model used is elementary however, with no exploration of 
covariates.
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Marchioli et al [M42] investigated several covariates using logistic regression, 
namely: 1) level of CHD risk; 2) baseline total cholesterol level; 3) percentage 
reduction in cholesterol concentration; 4) congestive heart failure; 5) previous MI; 
and 6) intervention type. This analysis used the majority of the known RCTs and was 
lengthy and thorough.

Finally, Herbert et al. [M43] produced a meta-analysis combining the statin trials 
only. Simple fixed effect analyses were carried out on a number of endpoints. This 
analysis suggests that statins are effective at reducing overall mortality.

Having considered these previous meta-analyses (and others), it would seem that 
although many are thorough, the analyses carried out are not as sophisticated as is 
possible currently due to development of meta-analysis methods. For instance, 
although a number carried out regression analyses to explore covariates, none of them 
used a mixed effect model, despite it being clear that residual heterogeneity existed. 
Including baseline risk as a covariate using a standard model is flawed, and although 
methods are now available to produce a valid analysis this has not been done. A re
analysis using all these RCTs but alleviating the shortcomings identified above is 
presented in Section 4.9.

Further practical problems identified through examination of the previous analyses are 
outlined below.

Trials with multiple treatment arms

There seems little consensus on how studies with multiple treatment arms should be 
included in a meta-analysis. In the previous analyses, various schemes were used, 
including pooling all treatment arms together, excluding certain arms, and including 
different arms as separate trials. This latter approach is problematic as estimates from 
different arms of the same trial are not independent (as they incorporate the same 
control group). Pooling treatment arms is also problematic for obvious reasons. The 
RCTs with multiple treatment arms are RIO, R14, R15, R38, and R58. Consideration 
is given to this issue in Chapter 5.
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Multi-factor intervention regimes

A problem similar to that of multiple treatment arms arises in multi-factor 
intervention trials, especially if the effect of individual intervention types is being 
investigated. Some trials used combinations of interventions to reduce the risk of 
CHD, while, more specifically, others used multiple interventions to lower cholesterol 
levels. A related problem is that some trials used drugs only if response to dietary 
intervention was not satisfactory. These factors make the strict categorisation of 
studies impossible. For this reason an indicator variable for single- and multi-factor 
trials is explored (see Section 4.5).

Non-standard designs

Trial XI used a very unusual design. It is unclear if this study merits the same 
weighting as a standard RCT.

4.4.1 Meta-meta-analysis?

After this review of meta-analyses was written, an analysis of cholesterol reduction 
meta-analyses was published. (Katemdahl and Lawler, 1999) In this curious paper, 
the authors, acknowledging that previous meta-analyses had produced conflicting 
results, produced a meta-meta-analysis. This analysis took the results of previous 
meta-analyses and pooled them in a further meta-analysis, including covariates 
relating to methodological aspects of the previous meta-analyses.

Although this may sound appealing, it is seriously flawed for a number of reasons. 
Firstly, since all the meta-analyses are based on the same finite source of data -  the 
cholesterol RCTs - they are clearly not independent. Essentially studies are being 
included multiple times; the actual number depending on how many of the meta
analyses included them initially. Since the earlier trials have potential to be included 
in more meta-analyses than the more recent ones, then they have the potential to me 
more influential in the analysis because of this. It would appear that the results of such 
an approach are unreliable due to this problem.
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Although these criticisms were acknowledged by the first author of the paper2, this 
highlights the problems which exist in trying to reconcile a divergent secondary 
evaluation literature.

4.5 The (completed) randomised trials

For the meta-analyses and generalised syntheses described in this chapter and Chapter 
5, 64 completed randomised trials for which cholesterol lowering was at least part of 
the total intervention were identified as described above. Trials had to report clinical 
endpoints to be included. Other trials which reported only angiographic endpoints are 
known to exist. It is acknowledged that such studies reporting angiographic endpoints 
do add to the total evidence; for example Rubins (Rubins, 1995) describes the effect 
of lowering cholesterol in people with already low cholesterol (such data are not 
found in any of the other RCTs). (However, restrictions needed to be made to keep 
the size of this investigation manageable.) Several important qualitative differences 
exist between the trials. Perhaps most significantly, different interventions, singularly 
and in combination, were administered. Drug, diet and surgery interventions were all 
used to lower cholesterol levels. Even within these three broad categories, 
interventions varied considerably; for instance, the natures of diets administered, or 
advised, varied. Similarly, many different drugs have been used; generally the more 
recent trials used drugs which lower cholesterol levels by greater amounts than was 
possible using older drugs. Table 4.3 displays the interventions used in the 
experimental and control groups in all the RCTs.

As well as the interventions administered to the treatment groups, it is worth 
examining those given to the control groups, as this was very often more than a 
simple placebo, primarily due to ethical reasons. For example, in several of the

2 Personal communication
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Table 4.3 Interventions used in the 60 RCTs cholesterol lowering RCTs

Drugs Diets
Surgery C o n t r o l

g r o u p

Fibrates Statins

Nicotinic

Acid

Estrogen Probucol Dextroth

-yroxinc

Gemfib

-rozil

Clofibrate Lovastatin Simvistatin Pravastatin Fluvastatin Diet -not 

specified

Low-fat

diet

Specific

Trial Number

R1 Strict diet

R2 X placebo

R3 X placebo

R4 X placebo

R5 X placebo

R6 X usual

R7 X usual

R8 X usual

R9 X no low fat diet

RIO X X X placebo

RH X placebo

RI2 X lactose

R13 X placebo

R14 (2 active groups: diet and 

cholestyramine)

X X usual

R15 X placebo

R16 X x(vegetaria

n)

usual

R17 Soya 

bean oil

usual

R18 X placebo
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R19 x usual

R20 placebo

R2I X usual

R22 Olive+ 

Com oil

usual

R23 X placebo

R24 X usual

R25 X control

R26 X placebo

R27 X placebo

R28 placebo

R29 X placebo

R30 X placebo

R31 X olive oil

R32 - usual

R33 (drugs given varied) X X diet

R34 (2 active groups Nacin- 

Colest &

Lova- Colesr

X X diet

R35 placebo

R36 X placebo

R37 X usual

R38(drugs only added if  

necessary)

X X X usual

R39 X usual

R40 x (if  

necessary 

)

X

(advice)

usual

R41 X usual

R42 X X diet

R43 X X diet

R44 X X placebo

R45 X X placebo

R46 (Drugs added only if X X X X diet
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necessary)

R47

(Interventins individualised 

drugs given only if necessary)

X X X X low 

chlesterol 

+ high 

carbohyd 

rate

usual care

R48 X X diet

R49 X X diet

R50 X X diet

R5I X usual

R52 X X diet

R53 alpha-

linolenic

acid-rich

usual

R54 X placebo

R55 X X diet

R56 (3 groups diet(control), 

lova+cholesty,lova+probucol

X X diet

R57 x (4 active 

arms got 

different 

doses)

placebo

R58 X placebo

R59 X placebo

R60 X

(advice)

usual

R61 X X diet

R62 X X diet

R63 X X diet

R64 X placebo
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“statin” trials dietary interventions have also been administered to both treatment and 
control groups.

4.5.1 Outcome variables

Prior to the synthesis of studies, it is also necessary to decide on definitions for 
outcome variables. The extraction of a common outcome variable proved to be a non
trivial exercise. This was largely due to several different outcomes having been 
reported for the RCTs and requirement that compatibility with outcomes from other 
study designs to be maintained. Considering previous meta-analyses of the RCTs 
alone, potential candidates for outcome variables were those based on all cause 
mortality, coronary heart disease mortality, coronary heart disease events (fatal or 
non-fatal episodes), ischaemic heart disease mortality, and ischaemic heart disease 
events. After examination of the cohort study reports (see Section 4.6) it appeared that 
the outcome most often reported was coronary heart disease mortality, and this 
appeared to be the most compatible outcome for generalised synthesis. In addition, 
total mortality endpoints were extracted for the RCTs.

For the RCTs, extracting the specific numbers for both arms of the trials was 
sufficient to enable the calculation of an odds ratio (see Appendix A.V. for the 
extracted outcome data).

4.5.2 Covariates considered here

Characteristics by which the RCTs could potentially differ are discussed below. Data 
was extracted from all the trials on these characteristics and used in the analyses 
which follow. See Appendix A.V. for the data for these characteristics.

Intervention type

As previously mentioned, there are three distinct cholesterol reduction intervention 
types, namely, diet, drug, and surgery. Previously the drug trials have been broken 
down into smaller subgroups, since different types of drugs lower cholesterol levels 
by considerably different amounts, and have potentially different side effects. A
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sensible dissection of this group is into fibrates, hormones, statins, and other. 
Additionally, it should be pointed out that different dose levels are used in different 
trials, but the data are insufficient to allow investigation of dose levels within drug 
types.

Population type /Baseline risk of CHD in the control group

Reports indicate whether the majority of the subjects had pre-existing CHD. 
Additionally, some trials’ subjects were all diabetic. Hence a three level variable 
identifying primary, secondary, or diabetic subjects was created.

Although many reports state clearly whether they are investigating treatments for 
primary or secondary prevention, i.e. whether the predominant patient group have 
previous history of heart disease, Davey Smith et al. [M25] demonstrated, for 35 of 
the RCTs considered here (R1-R35), the event rate in the control arms varied greatly, 
with some primary intervention trials reporting greater levels of risk than secondary 
prevention trials. For this reason the control group event rate has been reported as 
CHD deaths per 1000 person years. This was calculated using the same formula as 
Davey Smith et al., [M25] reproduced below.

CHD death s p er  1000 person  yea rs in  con trol g ro u p s=
C oronary h eart d isease death

yea rs o f  fo llo w  up x
f  num ber a live  a t en d  < f tr ia l+  \  
V0.5( num ber dyin g during stu dy))

x  1000

(4.1)
Duration of study

Clearly, trial follow up is potentially an important factor, and one in which the trials 
vary quite considerably (Thompson (Thompson, 1993) noted a dilution effect over 
time). Hence, the comparative estimate of treatment effect could be time dependent. 
Although this is not directly estimable, creating a covariate for duration of study does 
allow some exploration of its impact.
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Cholesterol levels/changes in levels

For the majority of RCTs baseline and intervention altered cholesterol levels are 
given. There are potentially several possible measures of cholesterol level including 
total serum blood, low density lipid (LDL), and high density lipid (HDL) cholesterol 
levels. Previous meta-analyses appear to have concentrated on total cholesterol 
exclusively as is done here. Baseline cholesterol measurements are reported for the 
vast majority of the trials, with some reports of measurement at the end of the trial, 
and often at intervals during the trial as well. Several analyses have looked at change 
in total cholesterol level over the duration of the trial, in both absolute and percentage 
terms. Investigating absolute change is preferred here because modelling produces 
more clinically meaningful measurement, and also it makes later comparison with the 
observation studies possible.

Percentage female patients

If males and females respond differently to the intervention the relative composition 
of the trial population could have an effect on the trial outcome, and the percentage 

female patients is thus extracted.

Age o f patients

Age may affect the effectiveness of cholesterol lowering interventions. Unfortunately, 
data on patient age appears limited in many trial reports. There are also different 
reporting methods; some reports record the mean age at entry, while others only give 
the age range. Hence, the decision was taken not to investigate this potential effect 
modifier.
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The cohort studies generally assess serum cholesterol levels in individuals and then 
follow them up over a period of time. Outcomes such as CHD events, CHD deaths, 
and all causes of mortality are generally reported in various combinations for each 
study. Results are commonly expressed as incidence per 100 000 person year 
observations for quintiles of the population defined by cholesterol levels recorded at 
the onset of the study, although other divisions of the cohort are used in some 
instances. The incidence estimates for each group are often adjusted for confounding 
risk factors, such as smoking and age, although there is little uniformity between 
studies in the way this is done.

As mentioned previously, many cohort studies of this type are known to exist, but 
here attention is restricted to the ten largest as reported by Law et al. (Law et al. 
1994a) (with the data for study C2 updated to include longer follow up [C2b]). The 
citations for these studies are given in Appendix A.III.

Table 4.4 provides descriptive data for each of these ten studies. Only studies C5 and 
C8 included women, and these results are reported separately. CHD mortality is used 
as the main outcome as this appears to maximise the potential use of the data 
available from both the RCTs and cohort studies. Two covariates, the age range and 
follow-up lengths of the studies are also reported in the table. It should be noted that 
there are tens of thousands of patients and several thousand deaths in the largest of 
these studies, making them considerably larger than the largest RCTs, although the 
largest RCT [R39] did randomise over 50,000 subjects.

4.7 The relationship between the RCTs and the cohort studies

Clearly a fundamental issue regarding the combination of the RCTs and the cohort 
studies is the compatibility of the data. The RCTs produce a comparative measure of 
effect between groups that are administered a cholesterol lowering intervention and 
those that are not. The cohort data, as it is usually presented, gives incidence rates for
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persons grouped into quintiles for cholesterol levels for that particular cohort with no 
intervention having been given to them.

In order to make the two sorts of data combinable, some reconfiguration of reported 
results for at least one type of study is necessary. A sensible procedure was adopted 
by

Table 4.4 Descriptive statistics for the 10 Cohort studies considered

Study Number
of

subjects

Deaths
from
IHD

Deaths
from
CHD

Total
deaths

Age 
range 

(at start 
of 

study)

Average 
follow up

Cl 21515 538 1543 35-64 13

C2 7735 640 1257 40-59 14.8

C3 6897 ** 495 51-59 7(7.1)
C4 361 662 6327 35-57 12

C5 7000 878 45-64 15

C6 17718 1676 4155 40-69 18

Cl 7961 371 2072 46-65 19

C8 46140 6626 15744 17-74 21(18-20)

C9 9902 1098 3473 40-65 23

CIO 8274 40-59 9

Women

C5 8262 490 45-64 15

C8 46570 3607 11348 21

Note:
'*Study 3 reported the following outcomes: non fatal MI - 234; coronary death 171; 
and total cardiovascular deaths 204;

Law et al., [M28] when informally comparing the randomised and observational 
evidence. Here a log-linear model was fitted to the incidence rate/average cholesterol
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level (quintile) data. Law et al. report that this model fitted the data well, and was not 
significantly improved upon by more complex models (such as including a quadratic 
term). [M28] Interpretation of such a model is straightforward: a constant absolute 
difference in serum cholesterol concentration, from any point on the cholesterol 
distribution, is associated with a constant percentage difference in the incidence of 
ischaemic heart disease (the outcome they considered). Hence, a change in risk for 
any given change in cholesterol level can be calculated. In this way changes in risk 
associated with decreases in cholesterol observed in the trials can yield comparable 
estimates.

Law et al.’s original analysis was actually more sophisticated than this because it 
adjusted the results for age at death, and for two forms of bias incurred in 
observational studies, namely regression dilution bias and surrogate dilution effect. 
(Law et al. 1994b) Unfortunately, the results of these original analyses cannot be 
used here as their outcome of interest was ischaemic heart disease events, but, their 
basic approach is repeated for CHD mortality, but due to time restrictions, 
adjustments for the two forms of bias were not made.

4.7.1 Achieving compatible incidence data from the cohort studies and the RCTs

Of the ten cohort studies considered, only seven had data on CHD mortality (Table 
4.5), so it was necessary to exclude the others (studies Cl, C3, and CIO) from the 
analysis. For these remaining seven, information was available to various degrees of 
completeness. For C2a, death rates had to be read off a graph with a fairly crude scale 
(C2a p.410). For study four, the required data were available in tabular form (C4a 
Table 2) allowing accurate extraction. For study C5, figures had to be read off a very 
crude graph (C5a Fig.3) to get adjusted mortality rates, and similarly the quintile 
figures were hard to establish accurately, though attempts were made at dividing 
histograms of cholesterol distributions (C5a Fig.l) into quintiles as a cross-check. It 
was impossible to extract the required data for study C6 because results were 
presented for different age ranges, rather than different cholesterol levels (C6a). Two 
reports were available for study seven, the first (C7a) provided the information 
required in tabular form (C7a Table 1); an updated report describing an increased 
length of follow up (C7b) could not be used as it did not provide the required data.
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Study C8 reported results in a different way from the rest, reporting relative risks of 
death from CHD for quintiles (for total population and for males and females 
separately), relative to the first (lowest cholesterol) quintile, and reported a relative 
risk per 0.4 mmol/1 increment in cholesterol. Unfortunately it was not possible to 
convert this data into a form compatible with the remaining studies. Data for study C9 
had to be read off a crude graph (C9a Fig. 1) to get incidence rates for deciles of 
cholesterol, adding measurement error.

Hence, to summarise, from the initial ten studies, three had no information on deaths 
from CHD, and two did not provide detailed enough data, or data in a form that was 
comparable with the other studies. This left five studies (numbers C2, C4, C5, C7, and 
C9) from which data was extracted, for inclusion in the analysis. The decision to use 
data on males only was taken to keep the analysis simple, however, the possibility of 
including data on female patients is noted.

4.7.2 Calculating a (pseudo) effect size for each cohort study compatible with 
those from the RCTs

The method Law et al. [R28] used previously to informally compare the results of the 
observational studies and RCTs has been briefly described above; this was essentially 
replicated below, but using CHD mortality as the endpoint variable. Incidence rates 
for CHD mortality for quintiles (or other proportions) of cholesterol for the five 
studies are plotted on individual graphs in Figure 4.2.

It is important to note that in some study reports data were adjusted for age, but not in 
others. By necessity, this implies that results for studies C2 and C4 are based on raw 
incidence rates, while studies C5, C7, and C9 are age-adjusted estimates.

Weighted regression was used to fit a linear relationship for each of these plots, 
weighting being based on the inverse of the standard error of the incidence rate for 
each cholesterol group. [M28] All slope coefficients were clearly positive (See Table 
4.5 for parameter estimates). The magnitude of such a log-linear relationship 
provides, for a constant absolute difference in serum cholesterol concentration, a 
constant percentage difference in the incidence of CHD mortality. Law et al. (M28)
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Figure 4.2 Incidence of CHD mortality per 1000 person years, with 95% confidence intervals, for fifths (or other given fraction) of
distribution of serum cholesterol concentration
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described the estimated percentage decrease in ischaemic heart disease per 0.6 mmol/l 
decrease in serum cholesterol, as the average reduction in serum cholesterol in the RCTs 
they considered was 0.6 mmol/l. In the set of RCTs considered here, for those studies 
for which the average reduction in serum cholesterol level is known, the (weighted) 
average reduction of serum cholesterol between the control and treatment group was 
0.87 mmol/l. Hence, in our set of trials the average cholesterol reduction is nearly 50% 
larger than that observed in the trials examined by Law et al. (M28). This can be 
explained due to the current set of trials including more recent studies, in particular 
those which use “statins”, which are known to reduce cholesterol levels by amounts 
greater than was previously possible.

The percentage decrease in incidence of CHD mortality related to a 0.87 mmol/l 
decrease in serum cholesterol, using the regression equations, is calculated for each 
study (Table 4.6). These estimates are then converted into relative risks by the formula:

Relative risk for 0.87 decrease = 1- (% decrease in CHD mortality per (4.2)
in cholesterol 0.87 mmol/l decrease in cholesterol)/100

For example, in study C2 the percentage decrease in CHD mortality per 0.87 mmol/l 
decrease in cholesterol is 0.193 leading to a relative risk of 1-0.193 = 0.81.
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Table 4.5 Coefficients for the weighted regression line:

ln(incidence rate) = a + ^(cholesterol level)

Study a  (S.E.) P (S.E.)
C2 0.255(0.327) 0.247(0.052)

C4 -2.507(0.084) 0.535(0.014)
C5 males 0.592(0.334) 0.274(0.057)

C7 -1.177(0.360) 0.378(0.060)
C9 1.946(0.170) 0.163(0.030)

Table 4.6 Calculation of outcomes for 5 cohort studies

Study
% decrease in 
CHD mortality 
per 0.87 mmol/l 

decrease in 
cholesterol

Relative Risk 
(95% confidence 

interval)

C2 19.3 0.81 (0.74-0.88)
C4 37.2 0.63 (0.61-0.64)

C5 males 21.2 0.79 (0.71-0.87)

Cl 28.0 0.72 (0.65 - 0.80)

C9 13.2 0.87 (0.82- 0.91)

Relative risks for the RCTs can be calculated directly and so in principle, the RCTs and 
the cohort studies can be combined, using the relative risk scale. Indeed, on first 
inspection it would seem sensible to base analysis on this outcome scale. Unfortunately, 
there is a drawback with this. It was noted earlier that baseline risk in the control group 
was one of the potential covariates which would require examination in the RCT model.
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The method described by Thompson et al. (Thompson et al. 1997) for doing so is, 
however, only possible in practice if one is combining studies using the odds ratio scale.

The calculation of odds ratios for the RCTs is direct. Sinclair and Bracken (Sinclair and 
Bracken, 1994) report how to convert the estimates from the cohort studies into odds 
ratios this can be done, for comparative studies, using the formula below:

RR =------— ------ , (4.3)

where Ic is usually the incidence (i.e. number of deaths from CHD/ total number of 
people) of events in the base comparison group. Rearranging (4.3) gives:

R R (\-IC)
OR = — (4.4)

Hence, the conversion is dependent on knowing the incidence rate in the base 
comparison group. Unfortunately, since the relative risks used here were derived from 
regression slopes and not a direct comparison between two groups there is no base 
comparison/control group as such. To get round this issue, the average incidence within 
each cohort study was calculated and used in equation (4.3).This assumes that the 
average incidence in the cohort studies is comparable with the incidence rate in the 
control arms of the RCTs. Each study’s estimate is displayed in Table 4.7. It is 
interesting to note that the incidence rates in the cohort studies are much lower than for 
the vast majority of trials. Odds ratios based on these incidence rates are also provided 
in Table 4.8. It can be seen that the odds ratios and their confidence intervals differ only 
very slightly from the corresponding relative risks. This is to be expected because the 
incidence rates are relatively low, and for “rare” diseases the relative risk approximates 
the odds ratio. (Greenland, 1987)
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Table 4.7 Calculations required to derive odds ratios for the cohort studies

Study Number Average 
incidence rate

% decrease in 
CHD mortality 
per 0.6 mmol/l 

decrease in 
cholesterol

Relative Risk 
(95% 

confidence 
interval)

Odds Ratio 
(converted 

using average 
incidence rate) 

(95% 
confidence 
interval)

C2 640/7735 = 
0.083

14(8-19) 0.81(0.74-
0.88)

0.80(0.72-
0.87)

C4 6327/316099 = 
0.020

27 (26-29) 0.63(0.61-
0.64)

0.63(0.61-
0.64)

C5 -  males 878/7137 = 
0.123

15 (9-21) 0.79(0.71-
0.87)

0.77(0.68-
0.85)

C7 371/7961 = 
0.047

20 (14-26) 0.72(0.65-
0.80)

0.71(0.64-
0.79)

C9 1098/10059 = 
0.109

9 (6-12) 0.87(0.82-
0.91)

0.86(0.80-
0.90)

4.7.3 Issues related to the comparison of the RCT results with the cohort studies

The previous section demonstrated a way of producing results on comparable scales for 
the cohort and randomised studies. A strong assumption made in combining this data is 
that the risk reduction associated with reducing cholesterol using an intervention to a 
particular level is equivalent to the odds ratio between persons having naturally 
occurring cholesterol levels which differ by the amount reduced in the RCT. Hence, it 
assumes the beneficial effect, when lowering cholesterol levels, occurs quickly 
(theoretically instantaneously). (It also assumes no detrimental risks occur when 
administering interventions, such as adverse events due to drug side effects.) These 
issues need careful consideration, although Law et al. [R28] did note that the results 
from the cohort studies, RCTs and the international studies agreed remarkably well. It is
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also worth noting that such assumptions are only required when aetiological studies are 
combined with intervention studies. In the more common scenario of combining 
randomised and non-randomised studies, such as the electronic fetal monitoring 
example considered in Chapter 6, no such concerns exist.

4.8 Combining the cohort studies separately

Before proceeding to the synthesis of the randomised and non-randomised evidence, 
data from each study type is explored and pooled separately. Concentrating initially on 
the cohort studies, the dataset used for the analysis is provided in Appendix A. VI. Odds 
ratios from the five cohort studies, are combined using fixed and random effect 
(classical) models. The female data for study C5 is omitted, because it did not seem 
sensible to combine it with data on males only from the other studies. The pooled result 
for the fixed effect model is OR = 0.68 (0.66 to 0.69), and random effects OR = 
0.75(0.64 to 0.88) for the reduction in odds of CHD mortality for an absolute difference 
of 0.87 mmol/l in serum cholesterol level. Hence, there is considerable difference 
between the point estimates and corresponding 95% confidence intervals. A forest plot 
of the studies, together with the results from the random effect analysis is shown in 
Figures 4.3.
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Figure 4.3 Forest plot of random effects meta-analysis combining the 5 cohort
studies
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Clearly study C4, is by far the biggest and as it has an extreme result, it has a large 
influence on the analyses. The test for heterogeneity is highly significant (Q=l 16.6 
p<0.001). Table 4.8 provides the weightings for each of the studies in each analysis.

Table 4.8 Weightings given to each study in the fixed and random effect analysis

Study Weights (%) Study Estimate - 
OR (95% Cl)

Fixed Random

C2 434.0 (5.3) 30.4(19.8) 0.86 (0.81-0.92)
C4 5917.2 (72.3) 32.5(21.1) 0.73 (0.72-0.73)
C5 307.8 (3.8) 29.5 (19.2) 0.85 (0.79-0.91)
C7 330.6 (4.0) 29.7(19.3) 0.80 (0.74-0.85)
C9 1189.1 (14.5) 31.8 (20.7) 0.91 (0.88-0.94)
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It is very instructive to see how the relative weightings differ between the two analyses. 
The between study variance in the random effect analysis is estimated to be 0.031, and 
in this analysis the studies are given almost equal weighting. This contrasts starkly with 
the fixed effects analysis, where study C4 gets 72% of the weight.

If study C4 is removed from the analysis, the point estimates for the fixed effects model 
is 0.81 (0.78,0.85), and random effect model 0.79 (0.73,0.86). Hence, the point 
estimates then both suggest a diminished effect, and are in broader agreement. It is 
interesting to note that all odds ratios are in the range 0.73 to 0.91, and what may appear 
from a clinical perspective are similar results, due to the large size of many of the 
studies, are deemed to be statistically heterogeneous.

It is difficult to say why the result for study C4 (MRFIT screenees) is lower than others. 
Possible explanations are that it had the shortest follow up time, and the youngest 
patients of the five studies examined. Interestingly, the unadjusted and adjusted 
estimates produced by Law et al. (M28) for the outcome ischaemic heart disease events 
for this study were not as extreme as the unadjusted CHD mortality one derived here.

Although exploring between study heterogeneity is difficult here, due to the small 
number of studies, the effect of length of study follow-up was explored using a mixed- 
effect regression model. (Thompson et al. 1997) The resulting regression line is 
provided in Figure 4.4. The size of the plotting symbol is proportional to the precision 
of the study estimate.

The equation of the line on figure 4.4 is: ln(OR) = -0.60 + 0.02(follow-up years). The 
covariate is highly statistically significant (<0.01), and hence the possibility of an 
association cannot be ruled out. However, due to the small number of data points, this 
result should be treated with extreme caution.
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Figure 4.4 Plot of five studies together with regression line suggesting an 
association between outcome and length of follow-up
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4.8.1 Summary of the cohort study meta-analysis

There is heterogeneity between the five studies included in this analysis. All studies 
suggest low cholesterol levels are associated with lower death rates from CHD. The 
difference between the combined results obtained with fixed and random effect models 
is quite large. A mixed regression model suggests the possibility of an association 
between outcome and follow-up, with studies with shorter follow-up producing greater 
effect sizes.
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4.9 Combining the RCTs separately

Previous meta-analyses of the cholesterol lowering RCTs (only) are updated here, 
including more recent studies and using more sophisticated statistical methodology than 
used previously.

Of the 64 RCTs initially identified, 60 reported CHD mortality (the outcome chosen for 
compatibility with the cohort studies) and were included in the analysis (studies R32, 
R46, R54, and R56 are excluded). Although CHD mortality is the primary outcome of 
interest, data were also available on all cause mortality for all 60 studies (plus an 
additional study (R54)), and analyses on both endpoints were carried out. Only the CHD 
mortality analysis is presented below because in most instances both analyses produced 
similar findings. This is to be expected as CHD mortality makes up a large component 
(approximately 50% for the control groups) of all cause mortality in the trials. However, 
where differences between results of the CHD and total mortality analyses were 
considerable this was noted in the text and results from both analyses displayed. 
Consideration is given to a model which can include both outcomes in Section 5.2. 
Although not a primary aim of the analysis, examining both endpoints may provide 
insight into why previous meta-analyses have found significant beneficial treatment 
effects when considering CHD mortality, but no such effect for all cause mortality.

The trials varied in size very considerably, from trial R35 with 52 patients to trial R39 
with 57,460 patients. Section 4.5.2 described potential covariates which may explain 
heterogeneity between trials; data on all of these could be extracted for the majority of 
trials, but inevitably there are missing values. These are clearly noted in the analyses 
which follow (and in the dataset in Appendix A.V).
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Figure 4.5 Random effect analysis of 60 RCTs estimating the effect of cholesterol reduction on CHD mortality
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4.9.1 Overall pooled results

Synthesis o f  cholesterol lowering interventions

Treatment effects from each trial were calculated on the (log) odds ratio scale, and 
this scale is used for synthesis throughout the analysis. As a starting point, analyses 
using fixed and random effects models were carried out. The fixed effect (Mantel- 
Haenszel -  see section 2.2.3) pooled estimate is 0.80 (0.76 to 0.84) and the random 
effect estimate is 0.81 (0.73 to 0.90). A forest plot for the random effect analysis is 
provided in Figure 4.5.

The two analyses produce similar pooled point estimates, suggesting a moderate 
beneficial treatment effect. Although both estimates are formally statistically 
significant at the 5% level, the random effect confidence interval is considerably 
wider than the fixed effect one. Considerable heterogeneity between studies exists (Q 
= 124.21 on 59 degrees of freedom, p < 0.001). This is not surprising, as visual 
inspection of the above figures indicates that estimates from the individual primary 
studies do differ quite dramatically, including statistically significant effects in both 
directions. The between study variance estimate from the random effect model is 
0.048.

4.9.2 Assessment of publication bias

An assessment of evidence for the presence of publication bias was carried out using a 
funnel plot (Figure 4.6) in combination with Begg’s and Egger’s tests described in 
Section 2.6.1. Visual inspection of the funnel plot would suggest little evidence of 
bias. Begg’s test produces ap-value of 0.88, and Egger’s test 0.91. This suggests there 
is little evidence of funnel asymmetry, and hence publication bias. (For further 
consideration of the problem of publication bias in the generalised synthesis of 
evidence see Chapter 6.)
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Figure 4.6 Funnel plot of CHD mortality odds ratio estimates from the 56 RCTs
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4.9.3 Subgroup analyses

The RCTs can be partitioned and combined in several “natural” subgroups; the results 
of which are displayed below. If results differ between subgroups, this could suggest 
factors which have an influence on the treatment effect and explain heterogeneity 
between trials. Random effects estimates are presented on all plots since residual 
heterogeneity exists within subgroups in many instances.
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Baseline Risk

The first subgroups considered are defined on the average baseline risk of patients in 
the control group - as defined by equation 4.1. The RCTs have been split into three 
groups: group l(high risk) consists of trials in which there were greater than 50 CHD 
deaths per 1000 person-years in the control group; group 2 (medium risk) between 50 
and 10 CHD deaths per 1000 p-y; and group 3 (low risk), less than 10 CHD deaths per 
1000 p-y. These were the group definitions originally used by Sheldon et al. [M25] 
The result obtained here is similar to that found previously, [M25] with apparently 
different effects in the three groups (Figure 4.7). For high risk patients, the pooled 
odds ratio suggests a (clear) benefit of cholesterol lowering (OR = 0.72(0.59 to 0.87)). 
For patients at moderate risk, the benefit is still substantial and statistically significant, 
but only marginally so (0.78(0.67 to 0.92)). Interestingly, in patients defined as at low 
risk, there would seem to be little or no beneficial intervention effect (0.96(0.88 to 
1.04)), and the possibility that the treatment may actually be detrimental cannot be 
ruled out. The heterogeneity test produces p-values of 0.17, <0.001, and 0.45, for 
high, medium, and low groups respectively - implying that heterogeneity still exists 
between studies and baseline risk does not account for all between study variation, 
though this analysis would suggest it did account for a proportion of it.
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Figure 4.7 Subgroup analyses of CHD mortality endpoint by baseline risk of CHD mortality in the control group
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Intervention type

Trials are now categorised according to type of intervention used, initially as trials 
which investigated a) drugs, b) diets, and c) surgery. A problem arises when trying to 
classify trials in this way, because several trials administered more than one 
intervention type to all or a proportion of patients in the treatment group. When this 
was the case a trial was categorised by the potentially most invasive treatment, 
provided it was given to the majority of patients in the active group. For example, if 
both dietary advice and a drug were given to patients in the treatment arm, then the 
trial was classified as a drug trial. (A further analysis investigating if there are 
systematic differences between trials administering single or multiple interventions is 
reported later in this section) Only the drug trials produced a “significant” treatment 
effect (0.79(0.70 to 0.90)) (see Figure 4.8), although the diet trial result was marginal 
(0.85(0.72 to 1.01), and the surgery trials result is much less clear due to the small 
number of trials. The drug trials are subdivided further, as the drugs used varied 
widely in their composition and degree to which they lower cholesterol levels. Figure 
4.9 displays the results of subdividing the drug studies into fibrates, hormones, statins, 
and other. Unfortunately, this does not provide any further insight - as the pooled 
estimate for each type of drug is similar, ranging between OR=0.74 to 0.86, and only 
the statin trials are statistically “significant”.

One possibility for this surprising lack of difference in effect size between different 
treatment regimes is that the effect of baseline risk, which is clearly large, is masking 
differences in effects of the different interventions. Figures 4.10 and 4.11 display a 
further partitioning of trials by both baseline risk and treatment type, for drug and diet 
interventions respectively. These plots suggest that drugs are effective for high and 
medium risk patients, but possibly not for low risk. Diets are effective for high risk, 
but non-significant effects are observed for medium and low risk patients; not 
surprisingly reduced power in much subdivided groups is impeding clear conclusions. 
Investigating the statin and fibrate trials separately in Figures 4.12 and 4.13 
respectively is illuminating. There are no statin trials with patients in the high risk 
group, for the medium and low risk groups the analysis suggests statins are beneficial. 
The fibrate trials, suggest a beneficial effect for the high-risk patients, a non
significant benefit for medium risk, and a non-significant harmful effect for low risk.
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These are very interesting findings but potentially open to familiar problems of 
interpretation of subgroup analyses stemming from multiple estimates/testing and lack 
of power. This analysis is extended via regression analysis, where baseline risk is also 
modelled as a continuous covariate in Sections 4.9.4 and 4.9.5.
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Figure 4.8 Subgroup analysis partitioning the trials by type of intervention administered
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Figure 4.9 Subgroup analysis partitioning the drug trials further, by type of drug 
administered
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Figure 4.10 Subgroup analysis of CHD mortality endpoint partitioning the d r u g  (any) intervention trials by baseline risk of CHD
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Figure 4.11 Subgroup analysis of CHD mortality endpoint partitioning the d i e t  intervention trials by baseline risk of CHD mortality
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Figure 4.12 Subgroup analysis of CHI) mortality endpoint partitioning t h e  S t a t i n  ( d r u g )  intervention trials by baseline risk of CHD
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Figure 4.13 Subgroup analysis partitioning the F ib r a t e  ( d r u g )  intervention trials into primary and secondary prevention studies
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Multiple/single intervention

As a sensitivity analysis of the initial categorisation of trials by intervention type, 
trials were segregated into those which applied a single intervention in the treatment 
group, and those which administered multiple, for example several trials give dietary 
advice to the treatment arm, and then, if this was not effective, drugs were 
administered. Some difference in the pooled estimates and confidence intervals were 
observed (0.85 (0.74-0.97) for single intervention group compared with 0.75 (0.64 to 
0.89) for multiple intervention group). Since the most common combination of 
treatment in the trials is statin drug and dietary advice, the apparent benefit of 
multiple intervention could be confounded by statin treatment.

4.9.4 Univariate meta-regression analysis

In the previous section subgroup analysis was used to examine discrete factors which 
may explain differences in the results between studies. The effect of several 
continuous study level covariates is examined using meta-regression in this section. 
Year of publication, baseline risk of CHD in the control group, length of trial follow 
up, percentage cholesterol reduction between groups achieved on average, baseline 
serum cholesterol, and percentage female enrolled -  are examined using mixed meta
regression models (see Section 2.4.2). Follow-up ranged from ten weeks to ten years, 
with a mean of 3.7 years. Cholesterol reduction ranged from 0.03% to 32.2%, with a 
mean of 14.0%. (Data were not available from trials R2, R5 or R39 on cholesterol 
reduction.) Cholesterol at baseline ranged from 5.4mmol/l to 9.6mmol/l, with a mean 
of 6.6. (Data was not available for trials R2 and R5 on baseline cholesterol.) The 
percentage of patients who are female ranges from 0 to 71%, with a mean of 14.1% 
(26.5% female for those 32 trials that included some female subjects). Twenty-eight 
of the trials included no females, while data were not available on gender composition 
from trials R22 and R36. The covariate values for each RCT are provided in 
Appendix A.V. The Stata macro metareg (Sharp, 1998) using restricted maximum 
likelihood (REML) fitting procedures was used together with the SAS PROC MIXED 
procedure for the analysis. The problems of modelling baseline risk (see Section
2.4.5) are ignored in this section, but the Bayesian analysis that follows (Section
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4.9.6) rectifies this shortcoming. Table 4.9 provides the results of including each of 
these covariates individually in the meta-regression model.

Table 4.9 Results of univariate meta-regression analyses (on log odds ratio scale)

Covariate I n t e r c e p t  

( 9 5 %  C l )

S l o p e  

( 9 5 %  C l )

P - v a l u e  

f o r  s l o p e  

c o e f f i c i e n t

T a u -

s q u a r e d

Y e a r  o f  

p u b l i c a t i o n

5.51 (-13.0 to 
24.0)

0.003 (-0.01 to 
0.01)

0.55 0.041

L e n g th  o f  

f o l l o w - u p

-0.22 (-0.46 
to 0.17)

0.002 (-0.04 to 
0.04)

0.94 0.041

%  r e d u c t io n  in  

c h o l e s t e r o l

-0.18 (-0.37 
to 0.01)

0.004 (-0.10 to 
0.02)

0.60 0.042

B a s e l i n e

c h o l e s t e r o l

-0.24 (-1.28 
to 0.80)

0.004 (-0.16 to 
0.17)

0.96 0.043

%  F e m a le -0.20 (-0.32 
to -0.09)

-0.001 (-0.008 
to 0.006)

0.83 0.040

B a s e l i n e  r i s k  

in  c o n t r o l  

g r o u p

-0.11 (-0.23 
to 0.01)

-0.004 (-0.007 
to -0.001)

0.01 0.027

Little evidence of linear variations existed with any of the continuous covariates 
except baseline risk (p= 0.01). Its effect was consistent with that observed in the 
subgroup analyses described previously, cholesterol lowering being more effective at 
preventing CHD mortality in higher risk groups. Figure 4.14 displays a regression plot 
of the studies by baseline risk, the size of the plotting circle being proportional to the 
precision of the study effect estimate. The regression line resulting from fitting 
baseline risk (centred at 24.3 - the mean value of the 61 studies used in the model) is 
plotted on this graph, and suggests, for people at lowest risk of CHD mortality, little 
benefit is to be gained from lowering cholesterol levels, however the populations at
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greatest risk suggest a reduction in odds to nearly 0.5 by lowering cholesterol levels. 

The value for the between study variance, having adjusted for baseline risk is 0.027, 

which can be compared to the value obtained from the random effects model (0.048) 

at the beginning o f the analysis. Including this covariate has reduced the between 

study variance by around 44 percent.

Figure 4.14 Scatter plot of studies by baseline risk in the control group, and 
mixed (weighted) regression model fitted to the data

ln(OR)=-0.198-0.0038(baseline risk)
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4.9.5 Multivariate meta-regression analysis

In order to explore the combined effect of covariates, examined using subgroup 

analyses and regression above, a multivariate mixed model was employed. 

Specifically, it is of interest whether different interventions have different effects at 

different baseline risk levels, and hence interactions between baseline risk and 

intervention type were explored. Using both the broad categorisation of interventions
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into drug, diet and surgery, and the more detailed categorisation subdividing the drug 
trials further into statins, fibrates, hormones and others, little evidence of baseline risk 

x intervention interactions existed. However, since such analysis will have very low 
power for detecting such interactions, (Lambert et al. 2001a) such findings should not 
be over interpreted.

4.9.6 Drawback of above regression modelling

It has been mentioned previously that this analysis on baseline susceptible to 
regression to the mean, which has the potential to make the model over estimate the 
effect of baseline risk. In the next section, parts of the RCT analysis are implemented 
using Bayesian methods. This includes the implementation of the method of 
Thompson et al., (Thompson et al. '1997) which overcomes the problem of regression 
to the mean. Bayesian methods are also used to combine the observational and the 
randomised evidence in the next chapter.

4.9.7 Bayesian meta-analysis of the RCT data

This section, essentially replicates as a Bayesian the analysis previously carried out 
from a classical perspective, and compares the results obtained. It concludes with a 
full Bayesian MCMC model using WinBUGS in which baseline risk is correctly 
modelled. Vague priors were fitted to all parameters of interest. Various convergence 
diagnostic tests and plots available in the CODA software (Cowles et al. 1994) were 
used to assist with the decision of when convergence has been reached.

Random effects model

Initially, a model of the form outlined by equation 2.18, implemented in BUGS as 
described by Smith et al. (Smith et al. 1995) is fitted to the data. This models the 
events “directly” using a binomial distributions. Vague priors were placed on all
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required parameters. A Normal (0,106) distribution was placed on the pooled log odds 
ratio; a Normal (0,105) distribution on each study’s individual log odds ratio; and an 
Inverse-Gamma(0.001,0.001) distribution on the between study heterogeneity 
parameter. A run of 40000 iterations was carried out; the first 10000 were designated 
as bum in and discarded; leaving the remaining 30000 to be used for estimating 
parameters. Examining the diagnostic output provided by CODA, it would appear that 
convergence was achieved, and the chain had been mn long enough to provide 
accurate estimates.

The median estimate of the odds ratio was 0.81, with 95% Credible Interval (CrI)
(0.72 to 0.89), and between study variance of 0.047 with 95% Crl(0.016 to 0.130). 
Thus the pooled estimate is very similar to that obtained from the classical random 
effects model (OR = 0.81 (0.73 to 0.91)). The slight discrepancy observed could be 
due to the need to use continuity correction factors for the Classical model, in addition 
to the different model specifications and method used to evaluate the model.

Including baseline risk

The random effects model described above forms the basis to which the extension of 
including a covariate for baseline risk can be added. As previously mentioned, the 
method of Thompson et al. (Thompson et al. 1997) is used to circumvent the problem 
of regression to the mean. The model used is outlined in equation 2.21. In order to use 
this method, a modification in definition of baseline risk is necessary. This has the 
drawback over the previous definition is that it does not take into account the length 
of follow up in each study.

In order to estimate the effect of regression to the mean in this example, a mixed 
effect model including a baseline risk covariate as described in equation 4.2 was also 
fitted using the standard Bayesian mixed regression model (equation 2.20).

In both models the covariate for baseline risk (p) is centred, i.e. its mean value across 
trials (-2.6) is taken away from each trial’s value. This is done to reduce correlation
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between parameters in the simulation procedure. The same priors as used above were 
used for this analysis, with the addition of a Normal (0,106) prior distribution placed 
on the regression slope parameter in both models.

For both models, a bum in of 10000 iterations was used, with results being derived 
from a run of a further 20000 iterations. Parameter estimates from these two models, 
accounting and not accounting for regression to the mean, are displayed in Table 4.10.

Table 4.10 Parameter estimates for models adjusting and not adjusting for 
regression to the mean

Model parameter estimate Model not accounting for Model accounting for
(95% CrI) regression to the mean regression to the mean

(equation 2.20) (equation 2.21)

Baseline risk (centred at - -0.102 (-0.170 to -0.026) -0.103 (-0.170 to -0.030)
2.612)
Log(OR) -0.150 (-0.253 to -0.049) -0.149 (-0.253 to -0.050)
Between study variance 0.024 (0.004 to 0.092) 0.024 (0.004 to 0.091)
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From these estimates two regression models (removing centring) can be derived:

Not accounting for regression to the mean

Log(OR) = -0.418 - 0.102 x Log(Baseline risk) (4.4)

Accounting for regression to the mean

Log(OR) = -0.418 - 0.103 x Log(Baseline risk) (4.5)

The results from the two models are almost identical suggesting that regression to the 
mean does not pose a serious problem in this analysis. The adjusted regression line 
together with the 60 RCTs is plotted in Figure 4.15. Note this figure has a different x- 
axis scale than 4.18 which reported the classical analysis, this is due to the different 
definitions of baseline risk used. It can be seen that, after adjusting the coefficients 
accordingly, a strong relationship still exists between outcome and baseline risk. The 
appearance of Figure 4.15 is quite different from the classical equivalent (Figure 
4.14), which can be explained by the fact that 4.15 is on a log scale and the definition 
does not take length of follow-up into account. However, it would appear that the 
results are qualitatively robust to baseline risk definition.

Alex Sul ion Ph.D. Thesis. December 2001 133



Chapter 4 Synthesis o f  cholesterol lowering interventions

Figure 4.15 Baseline risk regression line for 60 RCTs adjusting for regression to
the mean
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4.10 Summary/discussion

This chapter has considered the topic of cholesterol reduction and its impact on CHD 
and overall mortality. Over forty meta-analyses have been carried out on the RCTs in 
this area previously, and have produced contradictory results. Only one of these 
previous meta-analyses considered relevant observational evidence but did not combine 
it with the RCTs. The issue of expressing the results of observational studies in a 
compatible form with the trials is considered and a solution described in detail. A meta
analysis of the observational evidence is then reported which indicates a strong 
association between cholesterol levels and incidence of CHD mortality. Then an 
updated meta-analysis of the RCTs using more sophisticated regression methods than 
has been done previously is described which accounts for regression to the mean when 
including patient baseline risk as a covariate in a meta-regression model. There is some 
difficulty comparing the results of the classical and Bayesian regression analysis since, 
by necessity, a simpler definition of baseline risk, not taking into account length of
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study follow-up is used in the Bayesian analysis, but a comparison between Bayesian 
models suggests regression to the mean was not great in this example. Development of a 
Bayesian method that does allow length of follow-up to be included in the baseline risk 
definition while avoiding regression to the mean would be desirable.

Although different combinations of the RCTs had been meta-analysed before, this was 
perhaps the most all-encompassing analysis as it attempted including trials using all 
evaluated modes of reducing cholesterol. This analysis suggested that treatment 
effectiveness is related to patients’ risk of disease. The findings of the Bayesian analysis 
are similar to those from the classical model, since the adjustment due to regression to 
the mean was small.

Although these are important findings, it has been noted previously that it is difficult to 
define an individuals’ baseline risk, and hence the model is limited in its application to 
individuals. (Sharp et al. 1996) Thompson et al. (Thompson et al. 1997) have 
suggested that one could develop a prognostic score based on patient covariates from 
related cohort studies and relate treatment effects to this score for individual patients. 
(Senn et al. 1996) Such an analysis would remove the need for considering ‘underlying 
risk’ directly. They suggest the prognostic score would best be based on data other than 
that from the trials which form the meta-analysis for treatment effects. Another 
possibility, if individual patient data are available, is to include them in a hierarchical 
model with an extra level added, that of individual patents. This is theoretically a simple 
extension of the models presented here. (Higgins et al. 2001) Chapter 8 considers a 
model which uses prognostic information provided by related cohort studies to estimate 
individual patient benefit from treatment. Chapter 5 considers how the data from the 
RCTs and the cohort studies can be combined while preserving the necessary 
complexities of this model for the RCTs.

A further drawback of the analysis is that the comparison group in the RCTs changes in 
the trials. For example may of the early trials had a comparison group given only 
placebo, while many of the later trials comparison group was given dietary advice, 
which itself was administered as the experimental treatment in a proportion of the early 
trials. This issue is not properly addressed here, and would appear to have been glossed 
over in previous analyses also. A method, which models the intervention given to the
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control group, is described in Section 5.2. Additionally, the indirect comparisons model 
described in Section 5.4 could potentially address this issue.
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Chapter 5 Generalised synthesis methods including further 
analysis of the cholesterol lowering evidence

5.1 Combining the observational and randomised evidence using 
Bayesian hierarchical modelling

In Chapter 4, meta-analyses of cohort studies reporting levels of CHD for different 
serum cholesterol values, and RCTs of cholesterol lowering interventions were 
performed. In this section, a three level hierarchical model, implemented using Bayesian 
MCMC methods, is used to combine the results from both study types. The first model 
used is of the form described in Section 3.8.1, where between study within study type 
and between study type heterogeneity is accounted for. An extension of this model is 
also fitted which includes the study level covariate baseline risk discussed at length in 
the previous chapter.

5.1.1 Pooling the RCTs and Cohort studies ignoring covariates

This model could be viewed as a natural extension of the standard meta-analysis 
random effect model used for combining studies of a single type. (Dersimonian and 
Laird, 1986) Of course, without this extension, all studies could be pooled as a simple 
set using the standard random effect model, and ignoring the type of study involved. 
That would, however, assume all studies to be exchangeable, an assumption which is 
unrealistic if different study designs have been used. Another possibility would be to 
include study type as a fixed covariate. This allows the different types of studies to have 
a different mean effect sizes, but the corresponding variance term would be assumed the 
same for all study types. The proposed model allows study types to have distinct effect 
sizes and corresponding variance terms.

The model was fitted to the 60 RCTs and the 5 cohort studies for which the relevant 
data could be extracted. The code used to fit the model, in WinBUGS is given in 
Appendix A. VII and the model is expressed algebraically below including the priors 
specified.
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RCT “exact” binomial model

rcj ~  Bin[Pcj>ncj} rt  -  Bin[pf , n ^  7  =  1........... 60

log = log it(pe) = fij+dj

4~N [0/.r,2]

Hj -  JV(0,105) x\ -70(0.001,0.001)

Cohort study model

Tk~N[>Fb ff2] k = l . . . . 5

%~N[e2, t22]

(5.1)

t \  -70(0.001,0.001)

Pooling both study types

0„~N(t ,v2) m —1,2

<p -  N^.IO6) v 2 -  7G(0.001,0.001),

where ncj and ntj are the total number of persons, rcj and rtj are the number of CHD 
deaths, and pCj and ptj are the estimated probabilities of events in the treatment and 

control arms of the y'th RCT. p.  is the estimated ln(odds) of an event in the control

group, and dj is the estimated ln(odds ratio) in they'th group. 0X is the estimated pooled 

odds ratio and r,2 is the between study variance term for the RCTs. Tk is the estimated
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ln(odds ratio) and a\  the estimated variance for the Ath cohort study. Wk is the model

shrunken ln(odds ratio) from the Ath cohort study. 02 is the estimated pooled odds ratio

and t\ is the between study variance term for the cohort studies. <j> is the overall mean

effect of the two populations of studies and represents the between study type 
variance.

This model deviates from the model specified in equation 3.8.1 in that different models 
are used to combine the RCTs and the cohort studies. The RCTs are pooled using the 
“exact” model given by equation 2.18, while it is necessary to pool the cohort studies 
using the simpler model expressed in equation 2.17since odds ratios were derived from 
regression coefficients for these studies as opposed to estimated directly from 
comparative group data. Such flexibility is one of the appeals of the MCMC approach.

When this model was originally implemented in 1997, many problems were 
experienced getting it to run in BUGS. Fortunately, due to improvements in the 
WinBUGS program these problems were all alleviated when updating the analysis in 
2001. Increased computer power allowed long runs of 10,000 bum in followed by
20,000 iterations to be completed relatively quickly. Two such runs using the two sets 
of staring values for the parameters of interest given below in Figure 5.1 were carried 
out.

Figure 5.1 Initial values assigned to the MCMC chains used

Chain 1

list(prec.theta=c(0.5,0.5), theta=c(0,0), phi=0, prec.phi=l)

Chain 2

list(prec.theta=c(0.1,0.1), theta=c(5,5), mean=5, prec.mean=0.1)
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Figure 5.2 Gelman-Rubin convergence plots
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The modified Gelman-Rubin convergence statistic (Brooks and Gelman, 1998) is used 
to assess convergence of the chains. Figure 5.2 displays the associated plots for the 
Gelman-Rubin statistic for the two chains. The width of the central 80% interval of the 
pooled runs is green, the average width of the 80% intervals within the individual runs 
is blue, and their ratio R is red. In the figure both the ratio and the within individual run 
interval are normalised to have an overall maximum of one.

The convergence of the ratio to 1 and the pooled within interval widths to stability is of 
interest. In all six parameters displayed in Figure 5.2 it would appear that a convergence 
of the red line to 1 and stability of the blue line are achieved quickly (confirmed by 
examining the underlying statistics the plots are based on), suggesting that a bum-in of
10,000 iterations is adequate to be confidence of convergence.
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Figure 5.3 Displays plots of the chain histories for the parameters of interest based on 
the 20,000 iterations used to calculate parameter estimates and make inferences.

Figure 5.3 Plots of the chain histories for parameters of interest
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Figure 5.3 (Continued)
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The plots in Figure 5.3 are highly “spiky” suggesting that the sampler is moving around 
the sample space quickly. This is confirmed by examining the autocorrelation plots in 
Figure 5.4 which informs that the correlations between successive iterations of the 
sampler are small. The lack of any apparent drift in the history plots also confirms it 
would appear convergence has been achieved.

Figure 5.4 Autocorrelation plots for parameters of interest

phi chain 1

0.5
0.0

-0.5
- 1.0

200 40
lag

prec.phi chain  1

prec.theta[1] chain  1
1.0 -

0 .5 -
0.0

-0.5
- 1.0

k h

20 -I—
40

lag

theta[1] chain 1

-0.5 -

prec.theta[2] chain 1

theta[2] chain  1

Smoothed posterior kernel densities for the parameters of interest are displayed in 
Figure 5.5 and summary statistics for these parameter estimates are given in Table 5.1.
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Figure 5.5 smoother posterior kernel densities for the parameters of interest
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Table 5.1 Transformed estimates and interpretation

Parameter Interpretation Median estimate 
(2.5 & 97.5 
percentiles)

$ Overall pooled OR (pooling the RCT and 
Cohort study population results)

0.78 (0.40 to 1.53)

e  1
OR pooled estimate for RCTs (comparison of 

treatment and control groups)
0.80 (0.72 to 0.88)

o 2 
e  2

OR pooled estimate for Cohort studies 
(corresponding to a 0.87mm/l difference in 

cholesterol)

0.76 (0.67 to 0.87)

v 2
Between study population type variance 0.010 (0.0006 to 5.57)

? !

Between study variance within RCTs 0.048 (0.017 to 0.128)

Between study variance within Cohort studies 0.018 (0.005 to 0.111)

These results are presented graphically in the form of a Forrest plot in Figure 5.6. In 
addition to the pooled estimates for each study type and the overall result, shrunken 
estimates for each of the individual studies, generated by the model, are plotted. To 
make a comparison with earlier results, a further plot (Figure 5.7) displaying the results 
of combining RCTs and Cohort studies individually, combining all the studies using a 
standard random effect model ignoring study type, together with the results from the 
hierarchical model on a magnified scale, for closer inspection.

The pooled point estimates for the RCTs, cohort studies and combined analyses from 
the three-level model differ only very slightly from the results obtained using a standard 
random effects model. The credibility intervals for the RCTs and cohort studies are 
fractionally narrower using the hierarchical model, but a much wider interval is 
obtained for the overall pooled result. This transpires because heterogeneity at the study 
type level is being accounted for in the general synthesis model which is ignored when
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using a simple random effects model on all studies. Not only is this credibility interval 
wider (and non-significant), it is wider than either of those produced when considering 
the RCT and cohort studies individually. This may seem counter intuitive because the 
hierarchical model is using much more information when combining than the individual 
study types separately, which would normally lead to a narrowing of confidence 
intervals - rather than a widening. However, the overall pooled estimate represents the 
mean of the population of study type effects, rather than the mean of the population of 
study effects in the standard random effects model. As only two study types are 
included in this example there is a lot of uncertainty in the estimation of the between 
study type random effect (0.01 (0.001 to 5.57)), this in turn leads to the uncertainty 
observed in the overall mean effect (0.78 (0.40 to 1.53))

The effect of ‘borrowing strength’ can be observed at two levels. Individual studies 
results are shrunk towards the pooled estimate for that study type (this is shown by the 
dashed lines in Figure 5.6), and pooled results for study types are shrunk towards the 
overall pooled estimate (this can be observed by comparing the study level results using 
model 1 and using a simple random effects model - plotted in Figure 5.7).

5.1.2 Sensitivity analysis to estimation of the between study type variance

In the previous section the initially counter-intuitive result that the credible interval for 
the overall mean effect size combining all the evidence using the generalised synthesis 
model was wider than that estimated for either study type individually was considered.
It was noted that this was largely due to the poor estimation of the between study type 
variance parameter since only two study types are included in the model. This is despite 
the fact that the estimates for the RCTs and the Cohort studies were in quite close 
agreement. In such circumstances the prior distribution placed on this parameter may be 
influential since there is little data available. It has been noted previously that specifying 
truly ‘vague’ parameters for variance components in hierarchical models is non-trivial. 
In the model presented above a InverseGamma(0.001,0.001) was used. In this section 
other prior distributions are used to assess the influence of prior choice on the overall 
results.
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Several different distributional forms for priors for variance components are reasonable. 
The influence of several of these are explored in depth elsewhere, (Lambert et al. 
2001b) and in Chapter 7, but for this analysis focus is restricted to the InverseGamma 
distribution. Less “vague” distributions of InverseGamma(0.01,0.01),
InverseGamma(0.1,0.1) and InverseGamma(l,l) were used. The parameter estimates 
produced are given in Table 5.2

Table 5.2 Results of sensitivity analysis to the prior distribution placed on the 
between study type variance parameter

Prior distribution for the 
between study type

2variance (V )

v 2

Between study 
type variance 
(95% CrI)

e*

Overall 
pooled OR 
estimate 
(95% CrI)

InverseGamma(0.001,0.001) 0.010
(0.001 to 5.57)

0.78
(0.40 to 1.53)

InverseGamma(0.01,0.01) 0.051
(0.005 to 19.57)

0.79
(0.22 to 2.54)

InverseGamma(0.1,0.1) 0.336
(0.038 to 68.92)

0.78
(0.06 to 12.35)

InverseGamma( 1,1) 0.849
(0.213 to 9.44)

0.77
(0.12 to 5.09)

The table shows that while the point estimate for the overall pooled estimate appears 
robust over the range of priors specified, the corresponding confidence interval varies 
greatly, as does the estimate and credible interval for the between study type variance 
parameter, indicating the lack of the robustness of the latter to the choice of prior 
distribution. This is an important issue when fitting such models as this will always be a 
problem when the number of study types is small, which will usually be the case. Three 
potential approaches are suggested which may address this problem. Firstly, data- 
inflation methods are discussed later in this thesis (section 7.4). These are used to 
remove the undesired influence of prior distributions and may be able to be utilised
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here. Secondly, it may be possible to increase the number of study types, and hence the 
number of units in the top level of the hierarchy. For instance, in the cholesterol 
example, trials using different interventions could be included as different study types. 
Increasing the number of units in this way will improve estimation of the between study 
type variance, but it may also have other effects on parameter estimation. Finally, 
instead of trying to specify a vague prior distribution for the between study type 
variance, it may be desirable to derive an informative empirical prior. Higgins and 
Whitehead (Higgins and Whitehead, 1996) derive empirical priors for the between study 
heterogeneity parameter in a random effects meta-analysis model by examining the 
estimates of this parameter from previous related meta-analyses. In a similar fashion it 
could be possible in the generalised synthesis context to examine the variability that 
exists between study types in syntheses where more than one study type has been 
examined. A recent investigation by et al. (Ioannidis et al. 2001) may provide data for 
such an exercise.
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Figure 5.6 Forrest plot displaying results of combining RCTs and Cohort studies
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Figure 5.7 Pooled estimates derived from combining study types individually and
together
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5.1.3 Inclusion of covariates

Using the above model as a basis, it is possible to adjust the RCT results for baseline 
risk. An amalgamation of the hierarchical model of equation (5.1) and the meta- 
regression model (2.21) adjusting for regression to the mean is constructed.

RCT “exact” binomial model

rcj ~ Bin[pCJ, ncj ] rt ~ ] 7 = 1......... 60

l°g HPcj) = Mj log it{pf ) = ft j+delta j

Hj ~ iV(0,l 05) r 2 ~ 7G(0.001,0.001)

P ~N[0,106]

Cohort study model

Tk~ N [n< r2t ] *=1 . . . . 5

%~N[02, t\]

(5.2)

t\ ~ 70(0.001,0.001)

Pooling both study types

em~ N ^ y )  m = 1,2

^~N(0,106) v~ ~ 70(0.001,0.001)
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The only changes in equation 5.2 from 5.1 are in the RCT part of the model where the 

regression coefficient for baseline risk (centred), p, is included with a vague prior 

placed on it. Hence, now 0X has the interpretation of the pooled odds ratio estimate for 

the RCTs adjusted for the average baseline risk observed in the trials. In 2001 this 
model ran with no problems and in a reasonable amount of time, unlike in 1998 when it 
was infeasible to fit, due to slower computing/memory constraints, and an earlier, 
inferior, version of BUGS.

The model was run using a bum in of 10000 iterations followed by a sample of 40000 
iterations to base estimation and inferences on. Informal assessment of convergence 
indicated there was no reason to believe there were any problems with convergence. 
The parameter estimates are provided in Table 5.3.

Adjusting for baseline risk has increased the pooled odds ratio for the RCTs from 0.80 
to 0.85. This result is consistent with the analysis of the RCTs described in section 
4.9.7. This increases the discrepancy between RCT and cohort results, which in turn 
inflates the between study type variance estimate, which in turn inflates the credible
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Table 5.3 Transformed estimates and interpretation

Parameter Interpretation Median estimate 
(2.5 & 97.5 
percentiles)

e v
Overall pooled OR (pooling the RCT and Cohort 

study population results)
0.81 (0.35 to 

1.87)

A
OR pooled estimate for RCTs (comparison of 0.85 (0.76 to

treatment and control groups) 0.94)

e 6 '
OR pooled estimate for Cohort studies 

(corresponding to a 0.87mm/l difference in 
cholesterol)

0.76 (0.67 to 
0.89)

P
RCT baseline risk regression coefficient -0.098 (-0.164 to

-0.022)

v 2
Between study population type variance 0.018 (0.001 to 

8.84)

A

Between study variance within RCTs 0.024 (0.004 to 
0.091)

r 2 Between study variance within Cohort studies 0.018 (0.005 to
2 0.119)

interval for the overall pooled odds ratio, while increasing its point estimate slightly 
also.

5.1.4 Discussion of the use of hierarchical modelling for combining the cholesterol 
data

Section 5.1 has illustrated how hierarchical modelling can be used to synthesise 
evidence from different sources while explicitly allowing for heterogeneity in effects 
from the different sources. With current software such modelling is very feasible, but 
issues of problems with the estimation of the between study type population effects due 
to small numbers of study types has been noted. The feasibility of using different
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statistical models to combine different study types, and the adjustment of results for 
study level covariates has been demonstrated.

The hierarchical approach taken here is appealing as it provides a transparent model for 
evidence synthesis, and hence a framework in which to explore the impact of different 
sources of evidence. For example, an extension could be to downweight the 
observational evidence if it was thought to be potentially more biased. This idea is 
explored further in section 7.8.

A general criticism that could be laid at this hierarchical modelling approach to 
evidence synthesis, is that the emphasis is on producing an overall pooled effect size 
and does not address the wish, as described fully in section 2.9 to estimate treatment 
effects for individuals or groups of patients. For example, it may be more desirable to 
use the observational evidence to inform treatment and policy decisions in patients 
under-represented, or not represented at all in the RCTs, and in a sense extrapolate the 
results to contexts not addressed by trials. In a cholesterol lowering context, this could 
mean using observational evidence to inform about the very elderly, or patients with 
very low risks of CHD (NB. this was one of the initial aims of cross design synthesis).

A different approach to modelling the cholesterol data is described in the next section. 
Further consideration of the hierarchical model is provided in section 5.3 later in this 
chapter.

5.2 Combining the observational and randomised evidence using a 
variance components model

The standard meta-analysis models for combining comparative studies utilise a 
comparative measure of effect, such as the odds ratio or relative risk for binary 
outcomes, or the standardised mean difference for continuous outcomes. Typically the 
comparison is made between two groups of patients in each study. In situations where 
all studies to be combined are simple 2-arm single period RCTs comparing comparative 
treatments, where exchangeability can be assumed between studies, and only one 
outcome is of interest, this model is entirely appropriate. However, where the types of
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studies to be combined are more heterogeneous in design, and outcome measures 
reported, the use of a more sophisticated model may be advantageous. Possible benefits 
of adopting such an approach include the incorporation of more evidence, and more 
exact specification of the data included in the model.

DuMuchel (DuMouchel, 1998) describes a model which allows many extensions to the 
standard meta-analysis model (see also section 3.5). Firstly, it has the capacity to model 
multiple outcomes from studies, provided they are all reported on the same scale, using 
variance component modelling. In addition, it is possible to specify more than two 
treatment or intervention states being compared by the studies in the analysis. Different 
study designs are accounted for, as different treatment groups can consist of results from 
separate groups of subjects, or from groups that cross-over and are subject to multiple 
treatments.

A key feature which distinguishes this model from previous ones is that each group of 
patients are modelled separately. So, for example, if one is considering a binary 
outcome, the log odds in each group is considered, rather than a comparative measure 
such as the log odds ratio. The most general form of the model is given below:

yybm =  Vm + Pk +  Y + a, +  K  +  c *  +  dm  + e:(i) + e iJkM, (5.3)

where y  is the observed outcome, i indexes the N  studies in the analysis, m indexes the 
M  different outcomes considered, j  indexes the Ji cohorts of patients in the zth study, k 
indexes the K treatments being compared in the analysis, and t indexes the 7/ time 
periods or cross-over states in the zth study. A variance component model is used to 
model the expected correlations among reported results from the same study and cohorts 
of subjects. Outcome and treatment are considered fixed, while study, cohort and period 

are considered random effects. Hence, /z, /?, and T'denote fixed effects due to outcome, 

treatment and their interaction, and a, b, c, d, and e are random effects due to study, 
study*outcome, study*treatment, cohort within study, and period within study, 

respectively, and £ denotes pure error. Simple extensions of this model allow study or 
cohort level covariates to be included. (DuMouchel, 1998)
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DuMouchel notes that it is assumed that each study reports results for two or more of 
the treatments under investigation. This, however, is not a restriction of the model 
because it is possible to include single arm studies without modification, but rather 
reflects a concern about including uncontrolled evidence1. A further issue not 
highlighted in the original paper is that because individual arms of studies are modelled 
separately the benefits of randomisation are largely lost because direct comparison 
between arms o f the same studies are not made. This essentially has the effect of turning 
the meta-analysis into a synthesis of uncontrolled data, which clearly has serious 
implications.

Details have been given (DuMouchel, 1998) on how to implement this model using 
PROC MIXED in SAS. (SAS Institute Inc., 1992) Here maximum likelihood or 
restricted maximum likelihood is used to estimate the random effects and then weighted 
least squares is used to estimate the fixed effects. At the time the method was described 
(1997) it was necessary to perform a grid search to identify the variance components, 
and it usually required several runs to narrow the search down. Fortunately, 
improvements to PROC MIXED have been made since then and in SAS V6.12 this grid 
search is no longer required. Instead, a more efficient Newton-Raphson search can be 
applied to estimate the unknown random effects, while using the known values of the 
standard deviations of the response data. Additionally, a simplification of the code is 
also now possible.2 The original code, published by DuMuchel and the improved 
version which will run on SAS v6.12 are both given in Figure 5.8 (Note: the original 
code does not run on SAS v6.12).

1 Personal communication with William DuMouchel
2 These modifications were identified through e-mail discussions with both William DuMuchel and 
Russel Wolfinger at the SAS institute
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Figure 5.8 Original and improved SAS PROC MIXED code to implement the 
variance component model of DuMuchel

Original code

proc mixed data ■ d a ta se t  sigiter;
class outcome trea tm en t s tu d y  cohort period ;
weight w; /* define w ■ l/s**2 */
model y * outcome trea tm en t outcom e*treatm ent /  noint solution; 
random in te r c e p t outcome trea tm en t cohort p e r io d  /  subject = study 
solution;
repeated / local localw;
parms ( ta u s q -a lis t )  ( ta u s q - b l is t )  ( ta u s q - c l is t )  ( ta u s q -d lis t )  (tausq-
e l i s t )  (l)/noiter;
run;

(Where (tausq-alist) is a set of values for which the REML likelihood is calculated etc.) 

Improved code

proc mixed data « d a ta se t  noprofile;
class outcome treatm ent s tu d y  cohort p erio d ;
weight w; /* define w = l/s**2 */
model y * outcome treatm en t outcom e*treatm ent /  noint solution; 
random in te rc e p t outcome trea tm en t cohort p e r io d  /  subject ■ study 
solution;
parms (0.5)  (0.5)  (0.5)  (0 .5)  (0 .5) (1)/eqcons=6; 
run;
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5.2.1 Applying DuMouchel’s model to the cholesterol RCTs

This section considers how the method described by DuMouchel and outlined above can 
be applied to the cholesterol RCT dataset. There are several theoretical benefits of using 
this model in this instance, and it circumvents several shortcomings of previous 
analyses. These benefits are discussed below.

Note: This analysis was not updated in 2001, and hence uses slightly fewer trials than 
all previous examples, explicitly trials R61 through to R64 are not included in the 
analysis. Since no direct quantitative comparisons with previous model estimates are 
made it is perceived that this loss of continuity will have minimum impact.

Examining several outcomes simultaneously
t

In the review of previous meta-analyses on the cholesterol lowering RCTs (Section 4.4) 
it was noted that several different outcomes had been examined, most commonly total 
mortality, CHD mortality, CHD events, and also non-CHD mortality. However, no one 
meta-analysis considered more than one outcome, and this was one reason different 
meta-analyses came to different conclusions. Although it is always possible to carry out 
individual meta-analyses for different outcomes, this model combines all available data 
in one analysis, making comparison between outcomes clear, and makes the exploration 
of covariates over different outcomes easy (note: in doing so it assumes that the same 
model structure is appropriate for all outcomes and “borrows strength” across them). In 
the analysis which follows, total mortality, CHD mortality and total CHD events 
outcomes are all examined.

Including trials with more than two arms

In section 4.5 it was noted that several of the trials had more than two randomised arms. 
Previous meta-analysis had dealt with these differently, usually either excluding certain 
arms or merging certain ones in order to reduce the data to a two-arm comparison. 
Neither of these approaches is ideal, and a third alternative of including the comparative 
effect of each experimental arm with the standard/placebo as a separate estimate results 
in the standard/placebo arm data being included in the analysis multiple times. The
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model described above allows each individual arm to be modelled separately and hence 
no excluding or merging of arms is required.

Modelling the intervention given in the control arm(s) o f the trials

The intervention administered to the control arm(s) of the trials varied considerably. 
Early trials typically gave no treatment, or a placebo, while in the later drug trials strict 
diets were often given. These diets often reduced cholesterol levels more than diets 
given in the experimental arms of the earlier trials! Such heterogeneity of study design 
brings into question the assumption that comparative measures of treatment effect are 
exchangeable across studies. Using the model above, the intervention given in the 
control arm of the trial can be explicitly modelled.

Including arm level covariates

In section 4.9.4 it was found that the baseline risk in the control group was highly 
correlated with outcome i.e. the higher the risk of the patients the greater the treatment 
effect. The model of DuMouchel also allows the inclusion of study level covariates, 
however it also allows covariates to be included at the cohort, or study aim level.
Hence, one could explore the effect on absolute level of cholesterol reduction in each 
arm opposed to the difference between (two) arms. When a study has more than two 
arms, a different intervention is administered to each, and cholesterol is reduced by 
different amounts in each arm, then this extra information can be included in the 
analysis (an example of the data that are included in the model is given in section 5.2.2). 
Note that using the current formulation of the model no adjustment is made for 
regression to the mean when including baseline risk as a covariate. In the cholesterol 
dataset this was not found to be a large problem, however development of a method to 
compensate for the problem in a variance components model would be desirable, but is 

not pursued here.
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Including observational evidence

Modelling the event rate in each arm of each study, allows for a natural extension to 
included data from single arm or non-comparative studies. Hence this model provides 
the opportunity to include observational data in a different way from that of section 5.1. 
This possibility is explored in section 5.2.11.

5.2.2 Illustration of the data included in the model

In order to clarify the information being included, and to further illustrate the benefits of 
this model, an individual trial (RIO) is examined and the data included from it in the 
synthesis described. (The complete datasest used for all RCTs is given in Appendix 
A.Vm.). Data available for trial RIO is given in Table 5.4.

Table 5.4 Illustration of the potential extra data included in model from a 6 arm
RCT (RIO)

Arm Number
patients

Total
mortality

CHD
mortality

Total
CHD
events

Baseline 
risk (event 
rate in the 
control 
group)

% decrease in 
cholesterol 
level from 
baseline

Placebo 143 27 23 42 50.3 -0.2
Estrogen 141 27 25 51 50.3 -0.8

Dextrothyroxine 74 10 8 20 50.3 -4.4
Nicotinic acid 77 15 13 25 50.3 -7.9

Est. + Dex. 67 13 10 21 50.3 -12.3
Est. + Nicot. 68 16 15 24 50.3 -11.5

This trial has six arms, each with data on the three outcomes under investigation. Both a 
study level covariate (baseline risk) and an arm level covariate (% decrease in serum 
cholesterol) are shown. For analysis in SAS a separate line of data is required for every
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arm/outcome combination. Figure 5.9 presents the raw data corresponding to this trial. 
(Note that it was necessary to merge the last 4 arms of Table 5.4 because they all have 
the same treatment code (6 = other drug) and there were problems fitting the nested 
cohort random effect (see below). The average cholesterol reduction over these four 
arms was calculated for the cholpc variable.)

Figure 5.9 Illustration of data used model when fitting the model of DuMuchel

study outcome treat y  w br cholpc

10 1 7 -1.44 22.23 50.3 -0.2
10 1 2 -1.42 22.16 50.3 -0.8
10 1 6 -1.45 44.13 50.3 -9.0
10 2 7 -1.63 19.65 50.3 -0.2
10 2 2 -1.51 20.90 50.3 -0.8
10 2 6 -1.64 38.95 50.3 -9.0
10 3 7 -0.87 29.91 50.3 -0.2
10 3 2 -0.56 32.76 50.3 -0.8
10 3 6 -0.77 61.91 50.3 -9.0

study - trial number
outcome -1 - total mortality, 2 - CHD mortality, 3 - coronary events
treat 1 - fibrate class drug, 2 - hormonal class drug, 3 - statin class drug, 4 - diet/diet
advice, 5 - surgery, 6 - other drugs, 7 - placebo/nothing/usual care
y  - log odds (ln(number of patients having event/number of patients not having event))
w - weighting = l/var(ln(odds))
br- baseline risk - (as described in section 4.9.4)
cholpc - percentage decrease in total serum cholesterol during trial for that group
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5.2.3 Model & code used

The cholesterol studies did not require the full general model (equation 5.3) because no 
patients were given a series of treatments (i.e. no cross-overs) which meant that the 
period term was obsolete and hence not fitted. In addition, after some preliminary 
modelling, it appeared that including a study*cohort interaction was problematic. The 
reason for this is that there are few studies which administer the same treatment to 
different cohorts of people, so there is very little data available to distinguish between a 
study*treatment and a study*cohort interaction. Hence, a compromise was necessary; 
the study*cohort interaction was dropped and arms of trials which administered the 
same treatment (or more exactly, had the same treatment code) were merged. Trials 
which included different arms with treatments categorised by the same code were Rl, 
RIO, R15, R22, R38, R40, R56 and R57. Exploratory analysis suggested that the 
changes in the final estimates produced by the model after doing this were minimal. 
Additionally, due to some combinations of outcome and treatment having few data 
points, there were problems estimating all the outcome*treatment interaction 
coefficients (the effects of statins were particularly problematic) in the model. 
DuMuchel noted this problem also in the application the model was developed for (see 
below) (DuMouchel, 1998) and suggested fitting the interaction as a random effect, 
which assumes the interactions are distributed normally, with mean 0 and variance to be 
estimated. This allows the interaction estimates to “borrow strength” from each other.

The respective modifications required to the model code are relatively straightforward. 
The code used which incorporates the necessary modifications, and also includes the 
single covariate baseline risk is presented in Figure 5.10.
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Figure 5.10 SAS code used to fit model to cholesterol data
proc mixed data « chollj noprofile;

class outcome treat study;/* removed period & cohort*/ 
weight w;
model y = outcome treat br br*treat/ noint solution;
random outcome*treat study study*outcome study*treat/solution;
parms (0.05) (0.5) (0.5) (0.5)(1)/eqcons=5;

run;

5.2.4 Results

It appears that percentage decrease in cholesterol did not explain heterogeneity between 
estimates, however baseline risk was highly statistically significant (p = 0.004), as was 
its interaction with treatment (p = 0.005)). The fixed effect term for outcome was also 
highly significant (p = <0.001), suggesting differences in effect for different outcomes. 
The overall treatment (type) variable was not formally significant (p = 0.08) however 
individual indicator variables for some treatment indicators were small. The parameter 
estimates from this model are given in Table 5.5.
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Table 5.5 Parameter estimates fitting model with baseline risk covariate

Parameter Estimate/
Standard
error

P-value

Random effects
Outcome*Treatment 0.016
Study 0.596
Outcome* Study 0.310
Treatment*Study 0.074

Fixed effects

Outcome
Total mortality -2.57 (0.16) <0.0001
CHD mortality -2.99 (0.16) <0.0001
Coronary events -2.03 (0.17) <0.0001
Treatment
Fibrates -0.054 (0.18) 0.77
Hormones -0.849 (0.32) 0.02
Statins -0.670 (0.29) 0.04
Diets -0.159 (0.14) 0.27
Surgery -0.840 (0.43) 0.07
Other drug -0.115(0.174) 0.52

Covariate
Baseline risk 0.029 (0.005) <0.0001

Br*fibrate -0.008 (0.007) 0.23

Br*hormone 0.023 (0.006) <0.001
Br*statins -0.014 (0.016) 0.39
Br*diets -0.003 (0.003) 0.33
Br* surgery -0.044 (0.034) 0.20
Br*other drug -0.013 (0.006) 0.05
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Of the four estimable random effect parameters study and outcome*study are the largest. 
This suggests that there is considerable variability between studies, both generally and 
across outcome measures. It is interesting to note that these components were also 
largest in the meta-analysis of clinical reminder systems, for which this methodology 
was originally developed (DuMouchel, 1998). Smaller in magnitude are the variability 
parameters corresponding to study*treatment, indicating the variation in intervention 
effects from study to study, and the interaction between treatment and outcome measure 
(outcome *treatment).

Focusing on the fixed effects, inteipretation is non-trivial, but clearly different effects 
from different forms of treatment are estimated for different baseline risks. Although 
these coefficients are in themselves informative, more directly relevant are comparative 
effects and confidence intervals calculated using linear combinations of the fixed and 
random effects. In this way log odds ratios comparing different treatments can be 
produced. For example, if the comparative effects of statins v diet interventions, for 
each of the three outcomes, for various specified levels of baseline risk is of interest, 
comparative estimates can easily be derived from the above model. Importantly, in these 
estimates all studies which included a diet or a statin arm or both are included “directly” 
in the analysis, while strength is being borrowed from all studies via the random effect 
terms. Hence, more information is being included than if just studies comparing statins 
with diets directly had been combined.

A similar approach to estimation is possible when estimating direct comparisons using 
models such as that described by Higgins and Whitehead (Higgins and Whitehead,
1996) (See equation 3.2). The differences between models are that, while the model of 
Higgins is more restrictive regarding the types of studies it can synthesise, it does have 
the advantage that randomisation is not ‘broken’ during the analysis. Further 
consideration is given to such models that ‘maintain’ randomisation in the analysis in 
Section 5.4.

Sample code to work out the estimates and 95% confidence intervals for the example 
comparisons suggested above is given in Figure 5.6. Three baseline risk levels were 
examined, a typically low risk (3 CHD deaths per 1000 person years, the average risk
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across trials (un-weighted average = 25 CHD deaths per 1000 person years), and a 
typically high risk (80 CHD deaths per 1000 person years). Results from these contrasts 
are provided in Table 5.11.

Figure 5.11 Code to calculate estimates & 95% confidence intervals for treatment 
comparisons taking into account baseline risk

This comparison is for statins v diet intervention for the outcome total mortality for 
patients at a typically high risk. Here, treatment 3 (statins) is contrasted with treatment 4 
(diet) and the effect of a baseline risk of 80 CHD deaths is contrasted for these 
interventions. The random effects for the 1st outcome (total mortality) for the 3rd and 
4th interventions are also included in the contrast.

estimate 'st v di CHDm hBR' 
treat 0 0 1 - 1 0  0 0 
br*treat 0 0 80 -80 0 0 0 | 
treat *outcome 0 0 0  0 0 0  1 0 0  - 1 0 0

0 0 0  0 0 0  0 0 0  /cl;
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Table 5.6 Comparison of statin v diet treatments for total mortality, CHD 
mortality and CHD events over three levels of baseline risk

Outcome Baseline risk 
(CHD deaths per 
1000 person years)

OR (95%CI)

Total mortality 80 0.33 (0.03-3.57)
CHD mortality 80 0.29 (0.03-3.03)
CHD events 80 0.32 (0.03-3.44)
Total mortality 25 0.60 (0.29-1.22)
CHD mortality 25 0.52 (0.27-0.99)
CHD events 25 0.58 (0.29-1.17)
Total mortality 3 0.76 (0.46-1.24)
CHD mortality 3 0.66 (0.45-0.96)

CHD events 3 0.73 (0.46-1.18)

These results suggest that statin intervention is preferable to diet for all three of the 
baseline risk levels explored. Although no result is statistically significant, a clear trend 
of increasing benefit of the use of statins over dietary interventions as baseline risk 
increases is evident. At the high baseline risk level the benefit of statins is four fold, 
while it reduces to around two fold at average risk in the trials and reduces to about 20% 
benefit at low levels of baseline risk. It is also worth noting the change in width of 
confidence intervals over different baseline risks this is primarily due to the data 
available (i.e. there were no statin trials done on patients at high baseline risks). 
Interestingly, the comparative effects for each outcome appear to be almost identical at 
a given baseline risk.
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5.2.5 Summary

Generalised synthesis o f cholesterol evidence

A novel meta-analysis model has been applied to the cholesterol randomised trials with 
considerable success and benefits. Several of the shortcomings of previous modelling 
approaches have been so alleviated. These include modelling of treatment in the control 
arm of the trial, inclusion of data from studies with more than two arms and the 
exploration of study arm level covariates.

However, the problem of regression to the mean when modelling baseline risk, for 
which there are methods of adjusting for using the standard meta-analysis model, are 
not available using this approach. This is a potentially serious issue. In addition, all the 
usual advantages of using a Bayesian approach to meta-analysis, including the proper 
accounting of uncertainty due to estimating the random effect parameters are not present 
in the empirical Bayes approach employed above. A variance component model is 
implemented from a Bayesian perspective in the next section.

5.2.6 Implementing DuMouchel’s variance components model using a Bayesian 
framework

This section describes a Bayesian implementation of the most general model described 
by DuMouchel (DuMouchel, 1998) using WinBUGS. In order to assess the plausibility 
of implementing the full model, the dataset of RCTs to evaluate computer-based 
clinical reminder systems for preventive care in the ambulatory setting, (Shea et al.
1996) for which this model was originally developed, is examined in section 5.2.7. The 
model is then fitted to the cholesterol lowering dataset in section 5.2.8.

5.2.7 Application to the computer-based reminder systems meta-analysis

This dataset consisted of data from 16 primary studies investigating the effects of 
computer-based clinical reminder systems on rates of recommended preventive care 
practices for outpatient visits. (Shea et al. 1996) Six preventative practice groups are 
examined; vaccinations, breast cancer screening, cervical cancer screening, colorectal 
cancer screening, cardiovascular risk reduction, and other preventative services. Four
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treatments were reported: computer reminders (to the physician), manual reminders, 
both computer and manual reminders, and control. The studies included cross-sectional 
and multi-period designs, and all were randomised at the patient or physician level. The 
response of interest are the logits of the proportion of eligible patients for which the 
various preventative practices were carried out.

The structure of the model is the same as that defined by equation 5.3 (with the 
exception that the outcome*treatment variable was specified as random rather than 
fixed). Prior distributions are required for the model parameters to be estimated. For all 
parameters, vague priors were used; Inverse-Gamma(0.001,0.001) for the variance 
components; and Normal(0,1000) for the fixed effects. Annotated WinBUGS code to 
implement the model, including the dataset, is given in Appendix A.VHI.

The modelling aspect of the code is relatively straightforward, but the way data is 
indexed needs some explanation. The main loop of the program iterates around all lines 
of the data. Each response is then uniquely identified in a six dimensional matrix. The 
dimensions of this matrix represent study, treatment, outcome, group, time, and the 
replication number. This last dimension is required because some lines of data in the 
dataset are not uniquely identified by the first five dimensions (usually because different 
doses of the same drug have been given and the model is not detailed enough to 
examine different dose levels per se). The specification of the regression equation, 
although lengthy, is straightforward and equivalent to the SAS code. Next, the nature of 
the random effects are specified. The variables tau[l] through to tau[6] specify the 
random effects for the treatment*outcome, study, treatment within study, outcomes 
within studies, cohorts o f patients within studies, and time periods within studies, in that 
order. Note how the highest level of the treatment variable is set to zero. This is required 
for a unique solution, allowing full-rank constraints to hold (i.e. one level of the 
categorical variable is not estimated). Nodes representing the comparative estimates are 
defined. Here, each treatment is compared to placebo for each outcome. Conveniently, 
data can be entered in exactly the same format as that required for the SAS 
implementation. In this example, the 16 studies provide 330 separate outcome responses 
and hence 330 lines of data are included.
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Following preliminary examination, a 5000 iteration burn-in followed by a run of25000 
further iterations was considered adequate. This took under two and a half minutes on a 
pentium II 450Mhz (which is computationally quicker than using PROC MIXED!). 
Examination of the MCMC chains indicated that autocorrelation between successive 
iterations was considerable, but not impractical to work with (hence the relatively long 
chain required). The estimates from this model are compared to the classical approach 
in SAS in the next section.

5.2.8 Comparison of classically and Bayesian derived estimates for the computer- 
based reminder systems meta-analysis

Estimates of the odds ratios comparing the three interventions to placebo for each of the 
six outcomes generated using PROC MIXED, as reported by DuMouchel, (DuMouchel, 
1998) and obtained usin WinBUGS are reproduced in Table 5.7 The random effect 
estimates for the same model are provided in Table 5.8.
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Table 5.7 Odds ratios and 95% confidence intervals for the effect of three 
interventions versus control on six classes of outcomes using PROC MIXED 
(Reproduced from DuMuchel (DuMouchel, 1998)) and from the WinBUGS

implementation

Intervention & Analysis Computer Remind. Manual Reminder 
OR (95% Cl/Crl) OR (95% Cl/Crl)

Both
OR (95% Cl/Crl)

Vaccinations Classical 3.09 (2.39 to 4.00) 2.46 (1.86 to 3.25) 3.06 (2.25 to 4.16)
Bayesian 3.07 (2.43 to 3.87) 2.45 (1.90 to 3.17) 2.58 (1.97 to 3.37)

Screen Classical 1.88 (1.44 to 2.45) 1.63 (1.21 to 2.18) 1.88 (1.44 to 2.45)
Breast Bayesian 1.83 (1.44 to 2.31) 1.60 (1.22 to 2.09) 1.80 (1.37 to 2.37)
Screen Classical 1.15 (0.89 to 1.49) 1.10 (0.82 to 1.46) 1.12 (0.82 to 1.51)
Cervical Bayesian 1.25 (0.99 to 1.57) 1.17 (0.90 to 1.52) 1.47 (1.12 to 1.92)
Screen Classical 2.25 (1.74 to 2.91) 1.85 (1.39 to 2.47) 2.71 (2.01 to 3.66)
Colon Bayesian 2.20 (1.75 to 2.78) 1.79 (1.38 to 2.33) 2.15 (1.64 to 2.82)
Screen Classical 2.01 (1.55 to 2.61) 1.86 (1.41 to 2.47) 2.51 (1.89 to 3.51)
CV risk Bayesian 2.05 (1.62 to 2.60) 1.90 (1.47 to 2.46) 2.48 (1.89 to 3.25)
Other Classical 1.02 (0.79 to 1.32) 0.99 (0.71 to 1.37) 2.59 (1.73 to 3.86)
Preventatives Bayesian 1.05 (0.83 to 1.33) 1.04 (0.76 to 1.40) 2.28 (1.55 to 3.37)

Table 5.8 Random effect variance estimates for model using PROC MIXED as 
reported by DuMuchel (DuMouchel, 1998) and by MCMC implementation in

WinBUGS

Classical Bayesian
■ ■ ■ B B B B B n B B a a a M a B n H B m B B a B a m B

Random effect Estimate Estimate (95% CrI)
Treatment*outcome interaction 0.24 0.21 (0.15 to 0.32)
Study 0.38 0.12 (0.03 to 0.46)
Study*treatment interaction 0.25 0.24 (0.17 to 0.35)
Study*outcome interaction 0.78 0.84 (0.69 to 1.05)
cohort within study 0.14 0.16 (0.11 to 0.26)
period within study 0.16 0.17 (0.07 to 0.45)
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It can be seen that the odds ratios agree very closely between models, with the exception 
of slight disagreement for the both intervention effect for vaccination reminder, where 
the benefit is a little lower for the Bayesian model. Surprising, however, is the fact that 
generally the Bayesian credibility intervals are fractionally narrower than the classical 
confidence intervals. This is unexpected because the uncertainty in estimating the 
random effect terms is accounted for only in the Bayesian model and hence wider 
intervals would be expected there. The random effect estimates are all comparable 
except the between study term which is estimated to be a lot smaller in the Bayesian 
model. This could well account for the narrower confidence intervals, but, the reason for 
this occurrence is not clear.

In summary, it would appear that fitting a variance component model of this type in 
WinBUGS is very feasible. Although the results of the two models agree closely, some 
concerns remain why the Bayesian credibility intervals are estimated as being narrower 
than the classical confidence intervals, and why there is discrepancy in the estimate of 
between study variability. It has not been possible to establish a reason for this, largely 
because of inaccessibility of PROC MIXED preventing a deeper understanding of the 
mechanisms of the program. A further problem is that the original published code will 
not run on the latest version of SAS, (v6.12) and although steps were made to establish 
equivalent code that would run slight discrepancies remain between the two versions 
(and WinBUGS) for which no explanation is available. It may be argued that the 
WinBUGS implementation should be favoured because the model specification method 
is much more transparent, but, this issue does require further investigation. In the next 
section a Bayesian variance components model is applied to the cholesterol RCT meta- 
analysis dataset.

5.2.9 Applying the fully Bayesian random components model to the cholesterol 
RCT data

The code required to fit the Bayesian version of the model fitted using the SAS code of 
Figure 4.25 only requires minor modifications from the more general model described
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Table 5.9 Parameter estimates fitting model with baseline risk covariate

Classical
estimate/ Bayesian
Standard error estimate/

Parameter (reproduced from Standard
Table 53) error

Random effects
Outcome*Treatment 0.016 0.133 (0.035)
Study 0.596 0.760(0.102)
Outcome* Study 0.310 0.558(0.047)
Treatment*Study 0.074 0.280(0.045)
Fixed effects

Outcome
Total mortality -2.57 (0.16) -.2.57(0.16)
CHD mortality -2.99 (0.16) -3.00(0.17)
Coronary events -2.03 (0.17) -2.05 (0.17)
Treatment
Fibrates -0.054 (0.18) -0.043 (0.20)
Hormones -0.849 (0.32) -0.822 (0.33)
Statins -0.670 (0.29) -0.649 (0.30)
Diets -0.159(0.14) -0.163 (0.14)
Surgery -0.840 (0.43) -0.851 (0.44)
Other drug -0.115(0.174) -0.117(0.18)
Covariate
Baseline risk 0.029 (0.005) 0.030(0.005)
Br*fibrate -0.008 (0.007) -0.008 (0.008)
Br*hormone 0.023 (0.006) 0.023 (0.007)
Br*statins -0.014 (0.016) -0.012 (0.017)
Br*diets -0.003 (0.003) -0.003 (0.004)
Br* surgery -0.044 (0.034) -0.044 (0.034)
Br*other drug -0.013 (0.006) -0.013 (0.007)
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above. This includes the covariate baseline risk, but does not adjust for regression to the 
mean; this problem is considered in Section 5.2.10. The estimates of the model 
parameters from WinBUGS are presented in Table 5.9.

If the Bayesian results in Table 5.9 are compared with the classical results (also 
reproduced from Table 5.5 in Table 5.9) it can be seen that the fixed effects are in very 
close agreement. However, there is considerable discrepancy between the random 
effects estimates. The classical model estimates are lower than the Bayesian ones, in 
some instances, to such an extent that the Bayesian 95% credibility interval does not 
include the classical estimate. These findings are qualitatively similar, but more 
extreme, than those observed for the computer based reminder system meta-analysis 
(i.e. the random effect variance estimates were all lower in the classical model). These 
differences suggest that the PROC MIXED code is not fitting exactly the model 
intended. As noted previously, it is difficult to examine what PROC MIXED is doing 
due to the nature of the program. However, it should not be ignored that there may be 
convergence issues regarding the random effects in the Bayesian model. Figure 5.12 
displays the plots associated with the Gelman-Rubin convergence criteria (briefly 
described in Section 5.1.1) for the random effects. From these it can be seen there is 
some suggestion that stability of the lines, and hence convergence is not achieved.
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Figure 5.12 Gelman-Rubin convergence plots for the variance-component
parameters in the model
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Importantly, these apparent differences in the random effect component of the model 
specification have substantial effects on estimated treatment contrasts that can be seen 
by comparing the examples in Table 5.10 (Classical results reported previously in 
Table 5.6 are reproduced). As before, the unexpected result that the Bayesian credible 
intervals are often narrower than the corresponding Classical confidence intervals is 
observed.
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Table 5.10 Comparison of statin v diet treatments for total mortality, CHD 
mortality and CHD events over three levels of baseline risk - Classical and

Bayesian estimates

Outcome Baseline risk 
(CHD deaths per 
1000 person years)

Classical estimates 
OR (95% Cl) 
(Reproduced from 
Table 5.3)

Bayesian estimates 
OR (95% CrI)

Total mortally 80 0.33 (0.03-3.57) 0.40 (0.04 to 4.48)
CHD mortality 80 0.29 (0.03-3.03) 0.36 (0.03 to 4.01)
CHD events 80 0.32 (0.03-3.44) 0.35 (0.03 to 3.97)
Total mortality 25 0.60 (0.29-1.22) 0.65 (0.35 to 1.21)
CHD mortality 25 0.52 (0.27-0.99) 0.59 (0.32 to 1.09)
CHD events 25 0.58 (0.29-1.17) 0.58 (0.31 to 1.06)
Total mortality 3 0.76 (0.46-1.24) 0.80 (0.55 to 1.16)
CHD mortality 3 0.66 (0.45-0.96) 0.73 (0.50to 1.06)
CHD events 3 0.73 (0.46-1.18) 0.71 (0.50 to 1.01)

5.2.10 Extensions to the Bayesian variance component model

Missing/uncertain covariate data

For four groups of patients the baseline risk was unknown because the number of CHD 
deaths was not available. In a classical model these patients are excluded, however 
WinBUGS can deal with the missing data, for example, by placing vague priors, centred 
at mean baseline risk across studies, on the relevant nodes. A further refinement would 
be to build a model to predict the number of CHD deaths based on the total mortality 
figures from the trials where both were available, however this was not pursued here. A 
third approach is possible in this instance. The study for which there are no CHD 
mortality figures is number R54. However, since, there was only one death in total in 
the control group of this trial, only two values are possible for the CHD mortality
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deaths: 0 or 1. The two baseline risk values corresponding to 0 and 1 deaths (after 
centring) are -13 or -23. It would be sensible to randomly impute one of these two 
values into the model on every iteration. This can be achieved in WinBUGS, by 
generating a random number from a Uniform(-l,l) distribution, then using the step 
function to generate a variable (inf) which takes the value 0 if the random number is <0 
and 1 if it is >0. The baseline risk for study R54 can then be defined as: wf*(-10)-13. 
Although in this instance, the amount of missing data is so small that such methods have 
only a minute effect on the parameter estimation, there is potential for their use in 
instances where larger amounts of data are missing. See Section 7.7 for a more detailed 
example illustrating how the impact on the uncertainty in meta-analysis data can be 
explored.

Allowing original binary data to be used

An extension to the model, easily implemented in WinBUGS, allows modelling of 
binary outcomes using the original aggregated outcome data opposed to a summary 
effect size and corresponding standard error. Such a specification has several 
advantages which include: 1) the assumption that that each outcome is normally 
distributed is no longer required; and 2) no continuity correction is required for groups 
of patients which have zero events. Hence, such an extension would be particularly 
valuable for meta-analyses of rare events; this issue is considered in Chapter 7. This 
extension borrows directly from the standard Bayesian meta-analysis model for binary 
outcomes described by Smith et al. (Smith et al. 1995b) which models the events in 
each group using Binomial distributions (see Section 2.3.3) and is similar in spirit to the 
extension of the generalised synthesis model in Section 5.1 which also modelled the 
binary data directly.

Specifying the model in this way for the cholesterol example produced similar results to 
previously. The largest differences were for parameters where little data were available. 
Autocorrelation was similar to previously. The theoretical advantages make this model 
more desirable if data are available since assumption of normality of effects from 
individual patient groups is no longer required (see Chapter 7).
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5.2.11 Incorporating the non-randomised studies into the variance components 
model

One of the motivations for exploring this model was the potential to include non
randomised evidence. Since this approach models each group of patients of a study 
separately, it provides a natural framework for including non-comparative single arm 
studies. If this is done the model can be viewed as a generalisation of the model of Begg 
and Pilote (Begg and Pilote, 1991), which allowed the inclusion of single arm studies 
which used historical controls (see Section 3.4).

Uncontrolled studies investigating a single treatment of interest could be included in a 
straightforward manner. For example, in the computer-based reminder system meta
analysis, a hospital audit of the use of a single reminder method could be included 
directly. Unfortunately, the inclusion of the non-randomised evidence for the cholesterol 
lowering meta-analysis is less straightforward because no intervention was administered 
in these studies; rather, mortality rates in groups with different cholesterol levels were 
reported. Perhaps the simplest way of including them is to use the number of events for 
each outcome over the whole cohort population in each study and to give the 
observational studies the same treatment code as that for the placebo arms in the trials. 
The covariate baseline risk can be calculated for these studies and included in the 
model. This is important because the large cohort studies included generally healthy 
individuals and hence levels of baseline risk will generally be lower than those in many 

of the trials.

This analysis was carried out, incorporating evidence from the ten largest non- 
randomised studies described in Chapter 4. Table 5.11 reports the odds ratios for 
receiving diet versus statins (reported previously) and statins versus placebo for high, 
medium and low levels of baseline risk for models including the RCTs only and RCTs 
and non-randomised studies. For contrasts both directly including the non-randomised 
evidence (statins v placebo) and those not including it (statins v diet) there was little 
change in the estimated odds ratios and credible intervals in this example.
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Table 5.11 Comparison of model estimates including and excluding the non-randomised evidence

Outcome Baseline 
risk (CHD 
deaths per 

1000 person 

years)

Statin versus diet - OR (95% Cl) Statin versus placebo - OR (95% CrI)

Randomised 

evidence only

Randomised and 

Non-randomised 

evidence
Randomised 
evidence only

Randomised and 

Non-randomised 
evidence

Total mortally 80 0.40 (0.04 to 4.48) 0.44 (0.05 to 5.25) 0.28 (0.03 to 3.06) 0.31 (0.03 to 3.75)
CHD mortality 80 0.36 (0.03 to 4.01) 0.39 (0.04 to 4.75) 0.25 (0.03 to 2.72) 0.27 (0.03 to 3.32)

CHD events 80 0.35 (0.03 to 3.97) 0.39 (0.04 to 4.66) 0.26 (0.03 to 2.79) 0.28 (0.03 to 3.4-0)

Total mortality 25 0.65 (0.35 to 1.21) 0.66 (0.37 to 1.26) 0.55 (0.30 to 1.01) 0.54 (0.30 to 1.03)
CHD mortality 25 0.59 (0.32 to 1.09) 0.60 (0.34 to 1.14) 0.49 (0.26 to 0.90) 0.48 (0.27 to 0.91)

CHD events 25 0.58 (0.31 to 1.06) 0.59 (0.33 to 1.11) 0.50 (0.27 to 0.92) 0.49 (0.28 to 0.93)
Total mortality 3 0.80 (0.55 to 1.16) 0.80 (0.55 to 1.13) 0.73 (0.50 to 1.05) 0.70 (0.47 to 0.98)
CHD mortality 3 0.73 (0.50 to 1.06) 0.72 (0.49 to 1.03) 0.65 (0.44 to 0.95) 0.62 (0.42 to 0.89)

CHD events 3 0.71 (0.50 to 1.01) 0.70 (0.50 to 0.98) 0.66 (0.46 to 0.94) 0.63 (0.44 to 0.88)
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Including the observational evidence in this way is conceptually very different from the 
three level hierarchical modelling approach of Section 4.10. There, a measure of relative 
benefit was derived from the observational studies using regression methods. The 
influence the observational evidence has on the outcomes is also considerable. In the 
hierarchical model, the observational studies were highly influential due to their relative 
magnitude, though less influential than if they had been incorporated directly into a 
standard random effect model. Here, because they only provide information on one 
group, the placebo or control group, they have much less influence, and only marginally 
change the parameter estimates in the model despite their relative size.

Further approaches to including the non-randomised evidence using a single arm 
modelling approach are conceptually possible. One possibility would be to model total 
serum cholesterol level as an intermediate outcome. If this were done, then the 
observational studies could be used to provide information on the mortality and CHD 
event rates for different levels of blood serum cholesterol. The RCTs, and other studies 
could be used to model the typical degree of cholesterol lowering achieved by the 
different interventions. Linking these two pieces of information could allow inferences 
to be made about the effect of lowering cholesterol levels on the mortality and CHD 
event rate outcomes. Models using intermediate outcomes are described in the context 
of the confidence profile method, (Eddy et al. 1992) are not pursued but fit naturally 
into the way models are specified in WinBUGS; a synthesis which does included 
intermediate outcomes is described in Chapter 8.

5.2.12 Further consideration of different multiple outcome meta-analysis models

The model of DuMouchel allows the modelling of multiple outcomes simultaneously, 
and allows the modelling of binary, or continuous outcomes, provided they are all the 
same in any one particular model. For continuous outcomes, other models allowing the 
simultaneous modelling of outcomes have been suggested. Perhaps the most general and 
flexible of these is the multiple outcome random effect meta-regression model of 
Berkey et al. (Berkey et al. 1998) (see Section 5.3). A major way this model differs 
from that of DuMouchel is that the correlations between outcomes are explicitly
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modelled, hence the model can be considered as truly multivariate. The model of 
DuMouchel assumes that variances for each outcome are equal, and that all covariances 
are equal, hence only two parameters have to be estimated. DuMouchel notes (personal 
communication) that for the computer based reminder system meta-analysis where there 
are 6 outcomes, a fully multivariate model would require the calculation of a 21- 
parameter covariance matrix. Unless there was information from external sources as to 
the nature of this matrix it would be hard to estimate with the data available. However it 
would be possible to try and fit intermediate models with between 2 and 21 parameters 
in the covariance matrix.

A multivariate model for binary data has never been developed for meta-analysis. In 
many instances it makes little sense because binary events are commonly competing 
alternatives, e.g. death from cardiovascular disease, non-cardiovascular death or 
survival. Occasionally, however, where responses are not competing, it would be 
possible. For example, a pain relief treatment for rheumatoid arthritis could be assessed 
to examine effectiveness (pain relief/no pain relief) at different sites of the body, each of 
which would be correlated. Additionally, no meta-analysis model, truly multivariate or 
not, has been developed which allows the combination of binary and continuous 
outcomes simultaneously. Such a model would clearly have uses since outcomes are 
rarely all measured on the same scale. Recent developments in the cost-effectiveness 
literature have begun to address a similar problem, where clinical outcomes are binary 
and costs are, obviously, continuous and the correlation between both needs to be taken 
into account. (O'Hagan and Stevens, 2001)

A Bayesian implementation of a multivariate model for continuous outcomes is 
described in section 5.3.

5.2.13 Summary/discussion of the cholesterol synthesis and the approaches 
explored

Two different statistical models were used to combine the randomised and observational 
evidence. The first was a three level hierarchical model, which accounts for 
heterogeneity between study types, as well as within studies of the same type. The
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second model used a variance components model that reduced all studies to individual 
study arms for the purposes of modelling. This framework is very flexible in the study 
designs it can synthesise, but it should not be forgotten that the benefits of 
randomisation are largely lost when the model is used. An advantage of the variance 
component approach is that it allows comparison of different treatment options at levels 
of baseline risk, even if such comparisons were not made directly in the trials.

In summary, it was possible to synthesise the data using both modelling approaches, and 
both produced sensible answers, nonetheless, it is difficult to see how such models 
could be validated empirically. It is important to note that the two types of studies being 
combined in this synthesis are perhaps more dissimilar than in many other areas. Here, 
the observational evidence was not based on patients given interventions (whereas 
elsewhere such before and after studies or audits as will often exist -  see Chapter 6), but 
based on aetiological data. In areas where single arm studies are being compared with 
comparative studies the variance components model offers an appealing amount of 
flexibility.

An important assumption that has been made in this analysis should not be overlooked 
that the cohort studies and RCTs are estimating comparable phenomena. The RCTs 
investigate the effect of ‘artificially’ lowering cholesterol levels, while the cohort 
studies observe the incidence of CHD for people with different cholesterol levels. 
Clearly these are not the same, although, if the reduction in risk from lowering 
cholesterol levels is present immediately after the reduction then they could be 
considered as broadly equivalent. Care is needed however, in interpreting the evidence 
of efficacy if life-threatening side effects are associated with the interventions.

Any systematic review/meta-analysis is a lengthy process. If a broader range of 
evidence is considered in that review than normally, then naturally it will take longer 
still. The literature on cholesterol and its effect on CHD is very large indeed. In this 
example only ten extra non-randomised studies were considered in addition to the 
randomised evidence. This was done largely due to practical time constraints, although 
it should be appreciated that there are no theoretical limitations on the amount of 
evidence combined in the modelling approaches used.
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Another interesting issue is the effect of including other sources of evidence. For 
example, the estimates from the international survey studies identified by Law et al. 
[R28] could have been included (assuming CHD mortality estimates are available).
For the three-level hierarchical model, the uncertainty at the between study type level is 
heavily influenced by the number of sources of evidence considered.

Another issue, related to the inclusion of more evidence, is the specification of prior 
distributions for model parameters. All the priors used in the two synthesis models were 
intended to be non-informative, and hence, influenced the analysis very little. However, 
this need not be the case. The previous implementation of the three level model (Prevost 
et al. 2000) showed how constraints could be placed on the model through the 
specification of the priors. In this previous implementation the constraint that the 
randomised studies are less biased than the non-randomised was enforced. These had 
the effect of the pooled result being closer to that for the RCTs with a tighter confidence 
interval. Possibly this method could be used in this example as a way of avoiding the 
somewhat arbitrary relationship between the number of types of evidence and the width 
of the confidence interval for the pooled estimate, and as a way of restricting the 
influence on evidence from, possibly, weaker designs.

A further consideration is the aim of the cross design synthesis analysis. It has been 
stated that there are two kinds of meta-analyses, those which are confirmatory and those 
which are exploratory. The intention of the first is to produce an effect estimate that is 
more accurate than those from any individual study. The latter’s aim is to explore why 
results from different studies differ, possibly with the intention of generating hypotheses 
to test with new studies. Below consideration is given these two distinct types of 
analysis with respect to cross design synthesis. In the introduction it was mentioned 
that, in certain situations, the randomised evidence may be insubstantial, and in such 
circumstances it may be beneficial to consider other sources of evidence also, so that the 
role of such an analysis would be confirmatory. On the other hand, a further use for 
cross design synthesis could be in an exploratory role. Here, rather than trying to obtain 
one overall pooled result, more emphasis is placed on the exploration of variation 
between studies. The aim of a particular analysis may influence which studies are to be 
included. Perhaps in an exploratory example, including a broader selection of evidence 
is more appropriate. For example, considering the cholesterol example, the effect of
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cholesterol reduction could be extrapolated beyond patient types included in trials by 
including data from observational studies of patient groups atypical in the RCTs. Thus, 
although it has been established that cholesterol lowering is an effective treatment for 
high risk patients with high levels of cholesterol, it is currently undecided whether there 
are benefits from reducing cholesterol levels in patients with already low cholesterol 
levels. (Rubins, 1995) Perhaps, by including data from cohorts with low cholesterol 
levels, an estimate of the likely effect of reduction in such patients could be possible. 
Similarly, no RCTs included solely women, so, it was hard it ascertain if there was a 
gender effect. Several observational studies included data individually on women, and 
hence could assist in ascertaining if there is a gender effect, and if there is, producing an 
effect estimate for women.

The issue of publication bias was discussed in the introduction and was touched upon 
briefly in analysis of the RCTs separately. Chapter 6 considers publication bias in a 
cross-design synthesis framework, where the possibility that different study types are 
subject to different publication bias mechanisms is explored.

It is worth considering in what ways an analysis such as this could be expanded further. 
An appealing use of cross-design synthesis is the idea of explaining the science 
underlying the trials and observational studies. (Rubin, 1992) It seems logical that 
information pertaining to the biological mechanisms at work are relevant to an 
investigation such as this. How such evidence should be included is difficult to imagine, 
although, evidence from related observational experiments offer an increase in 
knowledge and hence must also provide some knowledge gain if it can be utilised. For 
example, many other studies have been carried out examining the degree to which 
different diets lower cholesterol levels (e.g. see Tang et al.(Tang et al. 1998)). These 
studies often do not consider event outcomes and hence cannot be included directly in a 
model investigating mortality, but, they do provide possibly more accurate information 
on the effect particular interventions have on the reduction of cholesterol levels than the 
RCTs which were included. Using information such as this, it can be perceived that a 
more complex multi-stage model could be devised, where different studies provided 
evidence for different parts of the process in question. In this way different aspects of 
the cholesterol reduction/CHD process could be modelled, which may provide deeper 
insight into the underlying science.
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Finally, it is worth considering an incident which occurred during the final stages of this 
theses completion. On the 8th August 2001 Cerivastatin was withdrawn by the 
manufacturer. The reason for this was that there had been 31 deaths in the US from 
severe rhabdomyolysis, an adverse event, in patients taking the drug. The issue of 
adverse events was not dealt with explicitly in the analyses described in this and the 
previous chapter, but consideration to this topic is given in other settings later in 
Chapters seven and eight where it is acknowledged that observational evidence may be 
particularly valuable in establishing risks of adverse events since trial data will usually 
be inadequate.

5.3 Further modelling of multiple continuous outcome measures

This section briefly considers further modelling issues regarding the synthesis of 
evidence. Although the majority of these have been implemented in a meta-analysis 
context, they are just as relevant in a generalised synthesis framework. During the past 
decade many extensions to the basic fixed or random effect models for meta-analysis 
have been developed. (Sutton et al. 2000a) Many such developments allow more data to 
be included in a meta-analysis and allow more appropriate analysis of such data. This 
section discusses an extension to the basic random effects meta-analysis model, and is 
implemented using Bayesian methods.

A classical literature exists on methods to combine multiple outcome measures 
simultaneously. When multiple outcomes have been reported for all or a proportion of 
the relevant studies, it is common practice to conduct separate meta-analyses for each 
outcome measure, or ignore all but one outcome. (Hedges and 01kinl985)
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However, such analyses make questions such as “Does a treatment have larger effects 
on some outcomes than on others?” and “Does the duration of treatment affect different 
outcomes differently?” hard to answer. (Raudenbush et al. 1988) Further, these 
approaches are not optimally efficient as they do not use statistical information about 
the euors of estimation contained in the other estimated effect sizes. (Gleser and Olkin, 
1994) The approach allows multiple continuous outcome measures to be combined 
using a single model in an alternative way to that described by DuMouchel 
(DuMouchel, 1998) and considered in detail in section 5.2. Related work has also been 
carried out combining outcomes measured on different scales, (Whitehead et al. 1999) 
but this is not considered further in this thesis.

A series of models of increasing sophistication have been described which combine 
multiple outcomes in a single model. The initial work on this was done by Hedges and 
Olkin. (Hedges and Olkin1985) Their model assumes the same outcomes are measured 
on all studies to be combined, and it was superseded by a more general model which 
allows different outcomes (and different numbers of outcomes) to be measured across 
studies. (Raudenbush et al. 1988) It also allows different covariates to be included to 
explain variation in effect sizes for each outcome. An alternative formulation of this 
model has been given by Glesser and Olkin (Gleser and Olkin, 1994) which corrects a 
mistake in the previous two approaches. (Hedges and Olkin 1985; Raudenbush et al. 
1988) These approaches have several drawbacks, namely, not incorporating any random 
effects, and only allowing outcomes to be reported as standardized or scale-free 
differences. Berkey et al. (Beikey et al. 1995; Berkey et al. 1996) provide a 
generalisation which keeps the measured outcomes in their original units. Recently, 
Beikey et al. (Berkey et al. 1998) provide a further enhancement by developing models 
which incorporate random effects. All these models require the correlations between 
outcomes to be known or estimable, a potential limitation which is discussed below.

We consider a Bayesian formulation of the most general of these models, that of Berkey 
et al., (Berkey et al. 1998) of which all the previous models can be viewed as simpler 
sub-models. We apply this to the data used by Berkey, (Berkey et al. 1998) originally 
reported by Antczak-Bouckoms et al. (Antczak-Bouckoms et al. 1993) from five 
published trials comparing outcomes of surgical and non-surgical treatments for 
medium-severity periodontal disease, one year after treatment. Two outcomes are
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considered, probing depth (PD) and attachment level (AL), both measured in mm. The 
mean difference between the two groups, surgical (S) and non-surgical (NS) is the 
outcome of interest. The covariate year of publication (centred at 1983) is included. For 
each trial, the within-trial covariance matrix (5,-) of the two outcomes (means) is also 
required. The data used are reproduced in Table 5.12.

Table 5.12 Results from 5 trials comparing surgical and non surgical treatments 
for medium-severity periodontal disease, one year after treatment (reproduced

from (Berkey et aL 1998))

Trial Publication
Year

Number of 
patients

Improvement in Si

Probing depth 
(S-N S)

Attachme 
nt level (S 

-NS)

PD AL

1 1983 14 +0.47 -0.32 '0.0075
0.0030

0.0030'
0.0077

2 1982 15 +0.20 -0.60 '0.0057
0.0009

0.0009'
0.0008

3 1979 78 +0.40 -0.12 '0.0021
0.0007

0.0007'
0.0014

4 1987 89 +0.26 -0.31 '0.0029
0.0009

0.0009'
0.0015

5 1988 16 +0.56 -0.39 0.0148
0.0072

0.0072'
0.0304

The general form of the model used is (Berkey et al. 1998):

y, = * ,£ + * ,+e„ (5.4)

where: y, is a vector of p outcomes (p = 2 in the example) reported by trial i; Xi is a 
matrix containing the observed trial-level covariates for trial i (year of publication in the 

example); p  is the vector of regression coefficients to estimate; is a vector of p 

random effects associated with trial i. The cov(<$) = D needs to be estimated, and it is
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assumed that the $  arise from a multivariate Normal distribution (MVN (Ô D)); and et is 

the vector of random sampling errors within trial z, having p x p  covariance matrix 

which is assumed known (but is usually estimated/reported by the individual trials and 
is included in the example dataset in Table 5.12). If each zz, is sufficiently large, then the 
vector e( is approximately MVN (0 JSi). This leads to

cov(y.) = D + St and yt ~ MVN(Xfi,D + S;).

In the example both outcomes are available from all five studies, but with a slight 
modification, trials can be included if they report only a subset of outcomes. 
Additionally, the same covariate is used for both outcome measures, but again this need 
not be the case.

5.3.1 Bayesian specification in WinBUGS

Model 8.1 can be specified using a Bayesian formulation in WinBUGS with the 
addition of prior distributions. Since WinBUGS works with precisions, the covariate 
matrices need to be inverted. Vague priors are specified throughout. Normal(0,1000) 
distributions are specified for the pooled estimates of both outcomes (notated out] and

0.02 0
out2 below); a Wishart ,2 prior distribution is placed on the random effect

0 0.2

precision matrix. The degrees of freedom of this distribution (in this case 2) need to be 
at least as large as the rank of the covariance matrix on which it is being placed, but the 
smaller the number given, the less informative the distribution. (Speigelhalter et al. 
2000a) The associated prior matrix suggests the magnitude of the variance terms, but 
makes no assumptions about the covariances. Finally, Normal(0,1000) prior 
distributions are placed on the regression coefficients for publication year for both 

outcomes (notated Pi and p2 below). A bum in of 1000 iterations followed by a run of a 

further 100,000 iterations was carried out. Table 5.11 displays the results of this model, 
together with the results from the equivalent classical model and from combining each 
outcome separately.

Alex Sutton Ph.D. Thesis, December 2001 188



Chapters Generalised synthesis o f cholesterol evidence

Point estimates for the four model parameters, outj, out2, pi and P2 are approximately 

the same for all five models. However, the standard errors of all parameters in the 
Bayesian model were consistently larger than those of their classical counterparts. This 
can be explained by the incorporation of the uncertainty in estimating the random effect 
covariance matrix in the Bayesian model. Beikey et al. compared the random effect 
models in Table 5.13 with fixed effect estimates (not shown) and found the standard 
errors of the fixed effects ones to be considerably smaller than those for the random 
effects. This lead the authors to state that the choice between fixed and random effect 
models was more crucial than the consideration of both outcomes simultaneously. In a 
similar vein, since the standard errors of the coefficients from both Bayesian models are 
larger than any of the classical ones, the choice between using a Bayesian or a Classical 
approach has more influence on the results, in this example, than the choice between 
modelling outcomes individually or simultaneously. However, there clearly are gains in 
efficiency using a (Bayesian) multiple outcome model.
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Table 5.13 Results of classical random effects and Bayesian meta-analysis modelling including regression terms. 
Estimates reported for outcomes combined individually and in a multivariate model

Bayesian model

Separate outcomes Multiple outcomes

Classical random effects model (as reported by Berkey et al. 
1998))

Separate Multiple outcome Multiple outcomes 
outcomes GLS* MML**

D matrix (SE for Bayesian models) 

P£> [0.052(0.442) 0
AL [  0 0.133(0.962)

Outcome PD models

Y = outx + Pxx
(SE(OUtx)) (SE(/?,))

0.360 + 0.003X 

(0.112) (0.033)

Outcome AL models

Y = out2 + p 2x
(SE( OUt2)) SE (P2))

-0.342 - 0 .013x 

(0.172) (0.050)

] [0.038(0.042) 0.021(0.040)] [0.020 0 ]J |_0.021(0.040) 0.070(0.069)] [  0 0.036J

0.356 + 0.004x 

(0.097) (0.028)

-0.341 - 0 .013x 

(0.129) (0.038)

0.363 + 0.005x 

(0.073) (0.022)

-0.340 - 0 .014x 

(0.092) (0.028)

[0.022 0.013] 
[0.013 0.028]

0.359 + 0.005x 

(0.075) (0.022)

-0.336 - 0 .011x 

(0.083) (0.026)

[0.008 0.009 
[0.009 0.025

0.348 + 0.001x 

(0.052) (0.015)

-0.335 - 0 .011x 

(0.079) (0.024)

* Generalised least squares method
“  Multivariate maximum likelihood method
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5.3.2 Comparison of Berkey and DuMouchel models

The modelling approaches of Berkey and DuMouchel are both possible for datasets 
such as the dental data originally described by Antczak-Bouckoms et al. (Antczak- 
Bouckoms et al. 1993) and reanalysed above. Major distinctions between the two 
approaches are that 1) randomisation is not maintained with the DuMouchel 
approach; and 2) the correlations between outcomes are not required when using the 
model of DuMouchel, instead, the correlations are assumed to be the same between 
outcomes and are estimated using a variance component model.

In order to compare the two approaches the dental data is re-analysed using a variance 
components model. In order to use DuMouchel’s model, the outcomes from both arms 
of the trial are required, and fortunately were available,(Antczak-Bouckoms et al.
1993) compared to the difference between arms used in the model of Berkey et al.
The specific model fitted is given below which is a modification of equation (5.3).

yikm = outcomem + treatmentk + year. +{year x treatment)
+ (r.outcome x treatment)^ + r studyt + (r study x outcome)im + (r study x treatment) % +

(5.5)

where y  is the observed outcome, i indexes the /.. 5 studies in the analysis, m indexes 
the 2 different outcomes considered, and k indexes the 2 treatments being compared in 
the analysis. Terms starting ‘r.’ are fitted as random effects, while the others are 
treated as fixed. Although this model may appear overtly complex for modelling only 
five studies, a sensitivity analysis removing interaction terms was carried out and the 
fixed effect estimation remained robust over several related models.

The parameter estimates that result from fitting this model are presented in Table 
5.14.
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Table 5.14 Parameter estimates fitting variance component model to the dental
meta-analysis data

Parameter Estimate/ P-value
Standard
error

Random effects

r. outcome x treatment 0.105

r.study <0.001

r.study x outcome 0.036

r.study x treatment 0.015

Fixed effects

Outcome

Probing depth 1.515 (0.302) 0.13
Attachment level 0.334 (0.302) 0.47
Treatment
Surgical -0.004 (0.337) 0.99
Covariate
Year (centred) -0.055 (0.026) 0.10

Yearxsurgical -0.004 (0.027) 0.88

To allow comparison with the result of the multivariate model reported in Table 5.13 
treatment contrasts are constructed for the variance component model; these are 
reported in Table 5.15.
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Table 5.15 Treatment contrasts for variance component model applied to dental
meta-analysis data

Contrast Estimate (s.e )

Variance component model (Classical)
Surgery v no surgery for probing depth in 1984 0.318 (0.099)

Surgery v no surgery for attachment level in 1984 -0.327 (0.095)

Independent outcomes (Clasical REML)
Surgery v no surgery for probing depth in 1984 0.363 (0.073)

Surgery v no surgery for attachment level in 1984 -0.340 (0.092)

Multivariate model (Classical MML)
Surgery v no surgery for probing depth in 1984 0.348 (0.052)

Surgery v no surgery for attachment level in 1984 -0.335 (0.079)

In Table 5.15 contrasts are calculated for the year 1984. This year was chosen because 
the covariate for publication date was centred on 1984 allowing treatment effects to 
be estimated directly without having to take covariate effects into consideration. 
Hence, the intercept terms for the independent and multivariate models from Table
5.13 (reproduced in Table 5.15) can be compared with the contrasts from the variance 
components model as reported in Table 5.15. It can be seen that the treatment effects 
for both outcomes are quite similar from the variance component model when 
compared to the independent and multivariate model, however the standard errors of 
the variance components model estimates are larger than even the standard 
independent outcome analysis confirming that while such a model may allow 
flexibility in modelling, no efficiency is gained directly by modelling multiple 
outcomes simultaneously. This is in contrast to the truly multivariate model in which 
moderate gains in efficiency can be gained when correlations between outcomes are 
known. However, the variance component model does allow more flexibility in the 
designs of the study it can synthesise, and it was this increase in flexibility not 
efficiency which motivated its initial development.
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The above has been only a very brief comparison of two competing modelling 
strategies. Further exploration may be valuable particularly with regard to the degree 
of bias associated with estimation of treatment effects from each model.

5.3.3 Discussion including extensions/modifications to the mode!

In the above example all studies included had reported both outcomes of interest, but 
this may not always be the case. Where studies report one, or a subset of a larger 
number of outcomes, it will often be desirable to include them in the analysis. 
Conceptually this is simple to do in WinBUGS, whereas it would be less trivial from a 
classical standpoint.

Wishart priors are notoriously tricky to comprehend and use (see section 7.5.2). An 
alternative formulation using the product of normal distributions could be used. This 
idea is discussed in more detail later in this thesis (section 7.5), however the 
possibility for its use here is noted. This approach allows univariate normal prior 
distributions to be placed on the random effect covariance terms. Implementing this 
modification produced similar, but not identical, estimates when compared with the 
original formulation. A disadvantage of this method is that it is not possible to 
produce an estimate of the random effect covariance matrix.

The model above assumed that the correlation, and hence the covariances between 
outcomes were known. In many situations this will not be the case. Often, only a 
proportion of studies will report the correlation necessary to calculate the covariance 
of outcomes. In other instances, estimates of the correlation may not be available for 
any of the studies, but evidence from external sources may be available from which it 
can be estimated. (Strube, 1985) Obviously, if little is known about any of the 
correlations there is little to be gained efficiency-wise from including multiple 
outcomes in a model, however it may still be useful to do so for other reasons, such as 
the exploration of covatiates.

In a Bayesian analysis, for studies in which the correlation between outcomes is 
unknown, it would be possible to i) include the results ignoring the correlations (as
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discussed above), ii) specify the correlation parameters, assign no data to them but 
derive prior distributions for them, possibly based on the studies in the analysis for 
which there is full covariance information. In the latter option, the modelling will 
provide an estimate of the unknown correlation.

This section has described how multivariate meta-analysis models for continuous 
outcomes can be modelled from a Bayesian perspective. Such an approach is 
relatively straightforward, except perhaps for the specification of a prior distribution 
for the parameters distributed multivariate normally. In certain situations a Bayesian 
formulation may be preferable over a classical approach if prior information is 
available, especially for the correlation between outcomes.

5.4 Estimating indirect comparisons

This section considers a random effect model for synthesising data from RCTs which 
have made different treatment comparisons. Such models may be of interest if there is 
little direct randomised evidence for the particular comparison of interest. For 
example, consider a scenario where there are trials of treatment A v treatment C, and 
trials of treatment B v treatment C, but few or no trials of treatment A v treatment B, 
the comparison of interest. In such a situation, estimates of the effect of A v B could 
be derived by simply constructing an odds ratio using the results from the A arm of 
the A v C trials and the B arm of the B v C trials, but the benefit of randomisation is 
lost if this is done, and biased results could result due to differences in the 
characteristics of patients enrolled into the different trials. (Song et al. 2000a)

More sophisticated is the approach of Bucher et al. (Bucher et al. 1997) where the 
indirect comparison of A v B is adjusted by results of their direct comparisons with a 
common intervention C, i.e.

In OR'm = In ORac -  In ORBC, (5.5)
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where \nOR AB is the indirect comparison of interest, and In ORAC and \nORBC are 

the direct comparisons available. The variance of this estimate is

VarQnOR'u) = VarQnORAC) + VarQnORBC) . (5.6)

While this model relaxes the assumption that the patients have the same distributions 
of characteristics (i.e. different studies sampled patients from the same population), it 
still assumes that the true underlying odds ratio is the same across trials, so while the 
absolute efficacy can differ the relative efficacy is constant (i.e. the assumption of the 
standard fixed effect model). Hence, a limitation of such a model is that it assumes 
that there is no between study heterogeneity in either of the indirect comparisons. 
Higgins and Whitehead (Higgins and Whitehead, 1996) describe a Bayesian model 
which allows the inclusion of a third treatment and heterogeneity parameters in a 
meta-analysis model. This leads to the estimation of all three treatment effects using 
both direct and indirect comparisons. The increased flexibility of allowing the 
inclusion of trials with three arms does come with the drawback that it is necessary to 
assume the magnitude of the between subject heterogeneity is assumed equal for each 
of the three comparisons being estimated.

If none of the studies have the three treatment arms of interest, the model can be 
simplified, and the equality assumption of the between study variances relaxed for the 
different comparisons. It is this specific model which is considered below.

5.4.1 Example: meta-analysis of RCTs for prevention of Pneumocystis carinii 
pneumonia in HIV infection

In order to illustrate the Bayesian model described below, the meta-analysis, 
originally used by Bucher et al. (Bucher et al. 1997) to illustrate their method of 
combining indirect comparisons, is described. This dataset consists of twenty-two 
RCTs investigating agents for the prevention of Pneumocystis carinii pneumonia in 
HIV infection. The comparison of interest is Trimethoprim-sulfamethoxazole (TMP- 
SMX) vs. dapsone/pyrimethamine (D/P) for which eight of the trials provide direct
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comparisons. The remaining fourteen trials provide information for indirect 
comparisons since they compared one of the two treatments of primary interest with a 
third -  aerosolised pentamidine (AP) (nine compared this to TMP-SMX and five to 
D/P). The results for these trials are provided in Table 5.14.
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Table 5.14 RCTs providing direct or indirect evidence concerning the 
comparative effect of Trimethoprim-sulfamethoxazole (TMP-SMX) vs 
dapsone/pyrimethamine (D/P) (compared against each other or against 

aerosolised pentamidine (AP)) for the prevention of Pneumocystis carionii 
pneumonia in HIV-infected subjects 

(The reference list for the original studies is available elsewhere (Bucher et al.
1997)).

(Treatment A) (Treatment B) (Treatment C)
Trial

TMP-SMX AP D/P
(events / total (events / total (events / total

number of number of number of
subjects) subjects) subjects)

Rozenbaum 1991 0/29 1/27

Hardy 1992 14/154 36/156

Schneider 1992 0/142 6/71

Smith 1992 3/27 6/26

Michelet 1993 1/53 4/55

May 1994 2/108 5/106

Stellini 1994 0/26 2/23

Nielsen 1995 1/47 8/48

Rizzardi 1995 5/95 6/101

Slavin 1992 8/46 9/50

Girard 1993 10/176 10/173

Torres 1993 15/152 15/126

Opravil 1995 13/242 12/291

Salmon 1995 12/102 5/92

Antinori 1992 1/66 9/63

Mallolas 1992 3/107 8/116

Tocchetti 1994 0/15 1/15

Bozzette 1995 42/276 41/288

Blum 1992 1/39 1/47

Podzamcer 1993 3/81 13/85

Podzamczer 1995 0/104 6/96

Sirera 1995 6/115 9/105
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5.4.2 Bayesian random effect model for estimating indirect comparisons

Initially, a model to combine only the indirect evidence is described. This is 
conceptually simple since a standard random effects estimates of the treatment effect 
for A v B and B v C are sought using model (2.18). The difference between these 
pooled log odds ratios is the estimate for the log odds ratio of treatment comparison A 
v C. The model is given algebraically below for clarity.

re.ah,- ~ Bin[pcxibi, ncxibi ] rtxibi ~ Bin[pt.abi, ntxibi ] / = 1......... 9

logi^pcdib;) = pxibi -dxib{ /2 logit(ptMbi) = pxibi + dxibi / 2

d.abi ~ N[$ah, f.ab] puabi ~ Norma\0,105 ]

<p. ab ~ NormalfOjlO6] 

rcbcj ~ Bin[pcbCj, ncJbCj ]

f.ab  ~ InverseGamma[0.001,0.001]
(5.7)

rtJbCj ~ Bin[ptJbCj, ntJbCj ] j  = 1.........5

logit(pcjbCj) = pJbCj -dJbCj /2 logrt(/?fi>cy) = pbc} + dbc} /2

d.bcj ~ N[̂ > he, 1?. be] pbc} ~ Abrma/[0,105 ]

tp.be ~ Normal[0,106] he ~ 7/iver5eGa/wma[0.001,0.001]

lnor.ac = <f>.ab - tp.be

Extensions ah and he and ac represent treatment comparisons A v B, B v C and A v C 
respectably, rc and rt indicate the number of events in the treatment and control 
groups and nt and nc the total number of patients in the treatment and control groups. 
All priors are intended to be vague.
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The results of fitting this model are given in Table 5.15 together with the results of 
combining the direct comparisons using the Bayesian meta-analysis model for binary 
data outlined in equation 2.11. Additionally, the fixed effect results reported by 
Bucher et al (Bucher et al. 1997) are included for comparison.

Table 5.15 Results of direct and indirect comparisons for prevention of 
Pneumocystis carinii pneumonia in persons with HIV

Odds ratio
(95%
Cl/Crl)

x2

TMP-SMX 
vs D/P (95% 
Cl/Crl)

x2

TMP-SMX 
vs AP (95% 
Cl/Crl)

x2

D/P vs AP 
(95% Cl/Crl)

Direct comparison TMP-SMX vs D/P

Fixed effect model 0.64
(0.45 to 0.90)

Bayesian random 
effect model

0.35
(0.09 to 0.80)

0.75
(0.03 to 6.88)

Indirect comparison TMP-SMX vs D/P

Fixed effect model 0.37
(0.21 to 0.65)

Bayesian random 
effect model

0.23
(0.08 to 0.49)

0.07 (0.001 
to 3.31)

0.02 (0.001 to 
0.67)

The Bayesian random effect indirect comparisons model produces a smaller odds 
ratio than the fixed effect indirect estimate (0.23 compared to 0.37). The differences 
in these estimates can largely be explained by the different weightings given to the 
studies using fixed and random effect models. More surprising is the width of the 
confidence/credible intervals for these two estimates, as the Bayesian one is slightly 
narrower than the fixed effect one, despite including heterogeneity parameters of both 
indirect comparisons. If a Bayesian MCMC approach (based on equation (2.12)) is 
used then the pooled odds ratio is 0.26 (0.14 to 0.48), which is quite different from the 
classical fixed effect model. These differences can be partially attributed to the need 
for the use of continuity correction factors (adding 0.5 to data when there are 0 events
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in a study) in the classical approach. The use of continuity correction factors are 
considered further in Chapter 7.

5.4.3 Extension: Including the direct comparison evidence

If direct evidence does exist, as is the case in the example discussed above, several 
possibilities exist for combining it with the indirect comparison evidence. In a 
classical framework, an estimate from a meta-analysis of the direct comparisons 
(using a standard meta-analysis model such as equation (2.18)) can be combined with 
the meta-analysis results of the indirect comparisons (using equation (8.4) described 
above) using a standard meta-analysis model (i.e. treating the two sources of evidence 
as two independent studies). Alternatively, a Bayesian model could be constructed 
which achieves essentially the same aim only in one step (this is discussed further 
below). Another option is to use a three-level hierarchical model such as those 
described in Section 5.1 to combine both sources of evidence. This approach is 
appealing since, discrepancy (or heterogeneity) between the comparison type 
estimates is accounted for in the estimation of an overall pooled treatment effect. The 
specification of a three level hierarchical model is outlined in equation (5.8) below.

Combining the direct evidence: RCT “exact” binomial model

rcxick ~ Bin[pcxick,ncjack] rtjack ~ Bin[ptxic9-,ntjack] k = \ .........8

log it (pc.ack) = fi.ack logit {pt.ack) = pxick + dxick

d.ack ~ Noimal[0/, t m c 2 ] 

pjack ~ Normal(0,10s) r 2 jac ~ InverseGamma(fi.§0\,Q OQX)

Combining the indirect evidence: Indirect comparisons model
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rcxibi ~ Bir^pcjabi, nc.abi ] rtxibi ~ Bin[ptMbt, nt.abi ] i = 1.......9

log il(pc.abi) = pxibt -  d.abt / 2 log it(pt.abi) = puabi + d.ab( / 2

d.a6, ~ N[<frab, T?.ab] pxtb( ~ Normal[0,105 ]

^.a6 ~ InverseGaxnma[0.001,0.001] (5.8)

rcJbCj ~ Bin[pcJbCj, ncbcj ] rtJbCj ~ Bin[ptbCj, ] 7  = 1.....5

logif(/?ci>c; ) = fibcj - dbcj /2 logit(ptbcj) = pbcj + dbcj /2

dbcj ~ N[^i6c, ̂ .6c ] fibCj ~ jVbrma/[0,105 ]

^ 6c ~ M?rma/[0,106] 6c ~ //iverseGtfmmn [0.001,0.001]

<frab= fa + (fr.bc 

Pooling both direct and indirect estimates

em~ N { $ y )  m = 1 ,2

N(0,10*) v2 ~ /G(0.001,0.001)

The parameters of the indirect estimation part of equation (5.8) are the same as 
equation (5.7) and the parameters for pooling both direct and indirect estimates are 
defined in equation (5.1) when the basic form of this model was introduced. 
Parameters for combining the direct evidence part of the model should be self 
explanatory since this is the standard “exact” random effect meta-analysis model for 
binary data outlined in equation (2.12). If the assumption is made that both the direct 
and indirect comparisons are estimating exactly the same treatment effect then the
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between study type variance parameter (v2) can be set to 0. Hence, a fixed effect 
model is used to combine the evidence from each study type having used a random 
effect model to combine studies of the same study type.

The results of combining the direct and indirect estimates using equation (5.8) are 
presented in Table 5.16. These results fall into a similar pattern to those observed 
when fitting the related model to the cholesterol data in Section 5.1. The indirect and 
direct pooled estimates are in broad agreement and shrunk towards each other. Since 
the number of studies of each comparison is relatively small there is considerable 
uncertainty in all between study within type variance components. With only two 
study type estimates (i.e. direct and indirect) there is a large degree of uncertainty in 
the between study type variance component. This uncertainty propagates across into 
the overall pooled estimate which has a very large credible interval. Although not 
shown, as for the cholesterol example the width of this credible interval is highly 
sensitive to the choice of prior, and all comments made regarding this in section 5.12 
are pertinent here also.
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Table 5.16 Transformed estimates and interpretation from hierarchical model 
combining direct and indirect evidence from HIV infection treatment data

Parameter Interpretation Median estimate 
(2.5 & 97.5 percentiles)

e * . a b OR AB direct comparison 0.28 (0.15 to 0.49)

e * bc
OR BC direct comparison 1.12 (0.69 to 1.77)

e $2
OR AC indirect comparison (shrunken) 0.26 (0.11 to 0.49)

e 6'
OR AC direct comparison (shrunken) 0.29 (0.12 to 0.60)

e*
OR AC overall (using indirect and direct 

evidence)
0.27 (0.04 to 2.39)

x 1 .a b Between study variance for AB 
comparison

0.043 (0.001 to 1.89)

x 1 b e Between study variance for BC 
comparison

0.020 (0.001 to 0.71)

2 ^  r  .a c Between study variance for AC 
comparison (direct)

0.803 (0.103 to 5.67)

v 2 Between study type (direct and indirect) 
variance

0.048 (0.001 to 53.4)

Figure 5.13 displays graphically several of the different estimates derived from the 
different models discussed in combining the HTV infection treatment data. The first 
estimate is derived from a fixed effect model and the second a Bayesian random effect 
model combining just the direct evidence as reported in Table 5.15. The third and 
fourth estimates are derived from a fixed effect model and the Bayesian random effect 
model combining just the indirect comparison data respectively, also reported in 
Table 5.15. The fifth estimate is from combining all the evidence using a three level 
hierarchical model, as described above. Finally, the sixth estimate has not been
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reported previously, and is the result of combining all the evidence assuming no 
variation between study types, i.e. assuming both direct and indirect studies are 
estimating exactly the same treatment effect. Perhaps the most striking aspect of these 
results is the difference in the width of the credibility intervals between estimates five 
and six. Much has been said regarding the appropriateness and relative benefits of 
fixed and random effect models for meta-analysis generally, however it has been 
observed that often they will produce very similar results. (Sutton et al. 1998) As this 
example highlights, despite the evidence being in qualitatively broad agreement, (i.e. 
a considerable benefit is observed for TMP-SMX over the alternatives) if more 
complex synthesis models are constructed results may differ radically depending 
whether fixed or random effects are assumed between model parameters.

A natural extension of the woik presented here would be developing a way of placing 
a constraint on the modelling restricting the influence the indirect comparisons, under 
the assumption that the direct evidence is less biased than the indirect estimate. 
Although such a constraint has been discussed previously for a three level hierarchical 
model, (Prevost et al. 2000) due to the added complexity of including the indirect 
evidence model such an extension is non-trivial, although the author suspects it would 
be eminently possible.
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Figure 5.13 Comparison of estimates of treatment effect for HIV treatment 
derived using direct and indirect data and different model specifications

TMP-SMX Beneficial D/P Beneficial

Direct Evidence Fixed Effect h # H OR=0.64 Cl(0.45 to 0.90)

Direct Evidence Random Effect I-------------- ♦ — I OR=0.35 Crl(0.09 to 0.80)

Indirect Fixed Effect h H OR=0.37 Cl(0.21 to 0.65)

Indirect Random Effect I---------- ♦ — I OR=0.23 Crl(0.08 to 0.49)

All Evidence 3-level model i ▲ 1 A n  A  A  a iA  A  4 i  A  A A \

(all random effects) I V j OR=0.27 Crl(0.04 to 2.39)

All Evidence: 
between study type effect fixed

i " .I"' 'I'” 'l

OR=0.28 Crl(0.15to0.51)

I ” I
0.05 0.10 0.20 0.50 1.00 2.00 5.00

Odds Ratio (Log scale)
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5.5 Summary/discussion of sections 53 and 5.4

Sections 5.3.and 5.4 have outlined different models for combining studies where data 
is available on different outcomes or different comparisons have been made in the 
studies of interest leading to the possibility of estimating indirect comparison effects. 
Although neither of these models are directly applicable for combining the cholesterol 
data, considered in the first half of this chapter, they are very relevant to a generalised 
synthesis framework and illustrate alternative methods for synthesising data. Deriving 
Bayesian formulations for these models means that prior information could be 
included in such syntheses. A further advantage of the MCMC formulations discussed 
is that these models can be incorporated as components of more complex models as 
illustrated in section 5.4.3 without the need for specialist software. In section 5.4 the 
issue of the increased importance of random effect specification was highlighted in 
generalised synthesis models over standard meta-analysis models. Further work is 
required both from theoretical and empirical standpoints to establish robust 
specification and estimation procedures in such contexts. Due to these problems, 
sensitivity analysis is particularly important in generalised synthesis contexts, and it is 
sensible to consider estimates from fixed effect models, simpler meta-analysis models 
and using different prior distributions for the variance components as part of this.
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Chapter 6 Generalised synthesis of evidence and the threat of 

dissemination bias: electronic fetal heart rate monitoring
(EFM)

6.1 Introduction

This chapter considers the problem of publication bias, in an evidence base that includes 
studies of more than one design. There is a general belief that publication bias exists 
because research with statistically significant, or interesting, results is potentially more 

likely to be submitted and published than work with null or non-significant, or 
uninteresting results. Many specific biases sometimes collected under the broad 

umbrella term publication bias exist, including pipeline bias, language bias, selective 
outcome reporting, duplicate publication, grey literature bias, citation bias, database 

bias, retrieval bias and media attention bias. Song et al. describe these biases in 
detail.(Song et al. 2000b) It has been suggested that the whole collection of publication 

and related biases be described by the term dissemination bias.(Song et al. 2000b) This 

follows from the observation that publication is not a dichotomous event: rather it is a 

continuum.(Smith, 1999) The dissemination profile of research can range from the 

completely inaccessible to the easily accessible, according to whether, when, where and 

how research is published.(Song et al. 2000b) Hence, for the meta-analyst the concern 
that a complete, or at least an unbiased, body of evidence has been identified goes 
beyond concerns relating to the identification of all known studies, but concerns specific 

outcomes, groups of patients and analyses.

An array of methods to help deal with the problem of publication bias has been 
developed; some of these are described in section 2.6 and a fuller treatment is given 
elsewhere. (Sutton et al. 2000b; Macaskill et al. 2001) These methods are all broadly 
based on the symmetry of a funnel plot, and although difficult to validate, provide a 

framework for carrying out a sensitivity analysis regarding the likely impact of 
publication bias. It should not be forgotten, however, that factors other than publication 

bias, that are related to both study size and study outcome can cause funnel plot
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asymmetry. An example is variable study quality. If generally the larger studies are of 

better quality, and the better quality studies produce smaller effect sizes than poorer 

quality studies, due to less bias being present in them, then this will give the appearance 

of asymmetry in the funnel. (Sterne et al. 2000b) Assessments of the likely impact of 
publication bias on meta-analyses of RCTs (Sutton et al. 2000a) and studies of 
diagnostic studies (Song et al. 2002) have been carried out using the Beggs’ and Egger’s 

tests for publication bias (Section 2.6.1) and the method of Trim and Fill (2.6.2). 

However, little empirical work has been carried out in other types of observational 

study, although publication bias in observational studies on particular topics have been 
well documented.(Copas and Shi, 2000; Givens et al. 1997)

It may be a reasonable conjecture that the degree to which dissemination bias distorts an 
evidence base depends to some degree on the type of study designs being considered. 

For example, concern has been raised that publication bias may be an even greater 
problem among observational studies results than it is among RCTs.(Givens et al.

1997) Although this has not been investigated empirically, there are sound arguments in 
its favour. Begg has pointed out (Givens et al. 1997) that when case-control studies are 

conducted, detailed information will usually be collected on a broad range of potential 
risk factors. Once completed, investigators will typically publish results in a series of 
articles, each dealing with a different risk factor or group of factors. There is a danger 

that only the most interesting associations will be published, some of which may have 

been data-driven and not the result of examining pre-specified hypotheses. The potential 

to report only partially on multiple hypotheses examined is also very high in other 
classic observational designs including cohort and cross-sectional studies. Further, as 
medical databases and record linkage improve, analysis of routine data becomes more 
frequent. Such analyses may not even be considered for publication unless ‘interesting’ 
results are found.

The focus of this chapter is the consideration of the impact of dissemination bias on a 

generalised synthesis of evidence using the evidence relating the use of electronic fetal 
heart rate monitoring (EFM) and its effect on preventing perinatal mortality. Data from 
three study types are considered. Section 6.2 describes the EFM studies, and briefly 

summarises previous assessments of this body of evidence. It will be seen that events
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are rare in all three study designs. Specific issues related to generalised synthesis of rare 
events are considered in Chapter 7, and many of those issues are pertinent here. In 

Section 6.3, an assessment of the presence of publication bias is carried out on the EFM 
data using the tests available. Section 6.4 reports on the use of the method of ‘Trim and 

Fill’ to adjust the study results for publication bias as part of a sensitivity analysis. 

Section 6.5 reports on an updated generalised synthesis of this evidence taking into 
account the result of the publication bias sensitivity assessment. Section 6.6 reports on 

further sensitivity analyses of the EFM literature regarding publication bias, and 
describes limitations of the methods used and some possible modifications to avoid 
them. Although this may appear to be an ambitiously wide range of issues to consider, 
there are clearly interactions between them which will become apparent. Section 6.7, the 
discussion, concludes the chapter.

6.2 The evidence relating to Electronic fetal heart rate monitoring 

(EFM) for reducing perinatal mortality

A recent meta-analysis (Hombuckle et al. 2000) identified the data re-analysed here. 

Over the years, there has been much debate over the effectiveness of EFM in reducing 

perinatal mortality. While doctors argue such equipment should assist with timely 
delivery, hence reducing the chance of a stillbirth, EFM has not been shown to reduce 
perinatal mortality in the nine RCTs that have been identified (Table 6.1). However, 
since perinatal mortality is rare (only 85 deaths were reported in the 18695 births 

randomised in the nine trials) a lack of statistical power is a possible explanation for the 

lack of clear results from a meta-analysis of such studies.

In addition to these RCTs, 17 comparative observational studies have also been 
reported, comprising 7 comparative cohort studies, and 10 before-and-after studies. In 

the cohort studies, women who received EFM were compared to others who were not. 
The before-and-after studies report on practice in two time periods where the use of 
EFM increased in the second period (Table 6.2). These studies include data on many 

more subjects than the RCTs (across all 17 observational studies, 377 deaths were
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reported in the 284,878 births observed). Generally, as will be seen, these studies are 
also much more supportive of the effectiveness of EFM on perinatal mortality than the 
trials.

The results of using standard fixed and random effect inverse variance models (Sutton et 

al. 2000a) to meta-analyse the data separately for the three study types, and for all the 

evidence combined, are presented in Table 6.3. While the point estimates from all 
models suggest EFM is beneficial, the effect size gains statistical significance and is 

much larger in the observational studies compared to the RCTs. Note that the fixed and 
random effect pooled point estimates are fairly similar for the RCTs and the 
comparative cohort studies, while they disagree considerably (-0.72 compared to -1.86) 
for the before-and-after studies.
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Table 6.1 Data from 9 RCTs examining the effect of EFM on perinatal mortality

Study

ID

Year of 

publication

Number of 

subjects 

given EFM

Number of 

subjects not 

given EFM

Number of 

perinatal deaths 

in treatment 
arm

Number of 

perinatal 
deaths in 

control arm

Risk 

Difference 
per 1000 

births

Standard Error of 
Risk Difference

95% Cl for Risk Difference

R1 1976 175 175 1 1 0.00 8.06 (-15.79 to 15.79)

R2 1976 242 241 2 1 4.12 7.14 (-9.88 to 18.11)

R3 1978 253 251 0 1 -3.98 5.59 (-14.93 to 6.97)

R4 1979 463 232 3 0 6.48 5.03 (-3.38 to 16.34)

R5 1981 445 482 1 0 2.25 3.11 (-3.84 to 8.34)

R6 1985 485 493 0 1 -2.03 2.87 (-7.66 to 3.60)

R7 1985 6530 6554 14 14 0.001 0.81 (-1.58 to 1.59)

R8 1987 122 124 17 18 -5.82 44.54 (-93.11 to 81.48)

R9 1993 746 682 2 9 -10.52 4.76 (-19.85 to -1.18)

212



Chapter 6 Generalised synthesis & dissem ination bias

Table 6.2 Data from 7 comparative cohort studies and 10 before-and-after studies examining the effect of EFM on perinatal mortality

Study ID Year o f  
publication

Number o f  
subjects 

given EFM

Number o f  
subjects 

not given 
EFM

Number o f  
perinatal 
deaths in 

EFM 
group

Number o f  
perinatal 
deaths in 
non EFM 

.... group......

Risk 
Difference 
per 1000 

births

Standard 
Errors of 

Risk 
Difference

95% Cl for Risk 
Difference

Comparative Cohort Studies

C l 1973 5427 1162 17 2 -1.41 1.43 (-4.22 to 1.40)

C 2 1973 6836 150 15 0 -2.19 4.71 (-11.43 to 7.04)

C3 1975 6179 608 37 1 -4.34 1.91 (-8.10 to -0.59)

C 4 1977 2923 4210 9 1 -2.84 1.05 (-4.90 to -0.78)

CS 1978 692 554 3 1 -2.53 3.08 (-8.57 to 3.51)

C6 1979 8634 4978 2 0 -0.23 0.23 (-0.69 to 0.22)

C 7 1982 66208 45880 45 10 -0.46 0.12 (-0.70 to -0.22)

Before-and-After Studies

B1 1975 1024 991 0 4 -4.04 2.24 (-8.43 to 0.35)

B2 1975 1080 1161 9 7 2.30 3.58 (-4.71 to 9.32)

B3 1975 1950 11599 1 14 -0.69 0.61 (-1.88 to 0.49)

B4 1976 3529 4323 1 15 -3.19 0.94 (-5.03 to -1.35)

B5 1977 3852 4114 21 53 -7.43 2.12 (-11.59 to -3.27)

B6 1978 7312 15357 6 35 -1.46 0.51 (-2.46 to -0.46)

B7 1980 4503 4240 2 19 -4.04 1.07 (-6.14 to -1.93)

B8 1980 8174 6740 5 15 -1.61 0.64 (-2.86 to -0.37)

B9 1984 7911 7582 2 13 -1.46 0.51 (-2.46 to -0.47)

BIO 1986 17586 17409 5 7 -0.12 0.20 (-0.51 to 0.27)
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Table 6.3 Results of meta-analysing the EFM evidence individually by study design and combining all the evidence on the risk difference
scale

Studies included Meta-analysis

model

Risk difference per 

1000 births 

(95% Confidence 

interval)

Between

study

variance

estimate

Test for

heterogeneity

p-value

RCTs Fixed -0.14 (-1.56 to 1.28) NA 0.40

Random -0.22 (-2.03 to 1.58) 0.57

Comparative cohort studies Fixed -0.46 (-0.67 to-0.25) NA 0.08

Random -0.68 (-1.25 to-0.11) 0.16

Before-and-After studies Fixed -0.72 (-1.03 to-0.42) NA <0.001

Random -1.86 (-2.84 to-0.89) 1.50

All three study designs Fixed -0.54 (-0.71 to-0.37) NA <0.001

combined Random -1.24 (-1.74 to-0.74) 0.48
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More sophisticated methods have been used to synthesise the evidence from these EFM 
studies. A recent review (Hombuckle et al. 2000) considered a Bayesian analysis of this 

evidence, using the observational evidence to derive a prior for the effectiveness 
parameter in a meta-analysis of the RCTs (see Section 7.8.2). A direct synthesis of all 
the data using the Bayesian hierarchical model used to combine the cholesterol data in 
Chapter 5, has been described by Sutton and Abrams (Sutton and Abrams, 2001) 

elsewhere. In this previous analysis (using model (3.3)) a pooled risk difference estimate 
per 1000 births o f-1.35 (95% Credible Interval -3.22 to 0.33) was produced. Although 
the potential for publication bias within this evidence has been acknowledged 

(Hombuckle et al. 2000) no formal assessment has been carried out before. A re- 
evaluation using analytical methods to deal with publication bias is reported in the next 
section.

6.3. An assessment of dissemination bias in the EFM literature
There is broad consensus that an assessment to potential publication bias should be 
made as part of a sensitivity analysis when carrying out a meta-analysis. In the 

assessment that follows, funnel plots are examined, Egger’s test for bias is applied, 
(Egger et al. 1997) and the method of Trim and Fill (Duval and Tweedie, 2000a; Duval 
and Tweedie, 1998c) used to investigate the potential impact of missing studies on the 

analysis. These methods were described in Section 2.6.

6.3.1 Funnel plots

Funnel plots for each of the three types of studies are presented in Figure 6.1. Included 
on these plots are the fixed and random effect pooled estimates. The studies requiring a 
continuity correction factor due to zero event rates (see Section 6.5) are displayed using 

a different plotting symbol as noted in the key to Figure 6.1.
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Figure 6.1 Funnel plots for three study types used to evaluate the effect EFM on perinatal mortality on the risk difference scale
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An initial inspection of these funnels would suggest that the RCT funnel is reasonably 
symmetric, thus suggesting publication bias is not a problem in the set of RCTs. 
However, the before-and-after and comparative cohort study funnels are both rather 
asymmetric, suggesting ‘classic’, and rather severe, dissemination bias taking the form 
of the omission of small studies with relatively small beneficial, or even harmful effects 

of EFM. The strength of the asymmetry of these plots it tested formally in the next 

section.

6.3.2 Egger’s statistical test for the presence of dissemination bias

The linear regression test for publication bias (Egger et al. 1997) was outlined in 

section 2.6.1. When the test is applied to the EFM evidence p-values of 0.76, <0.01 and 
0.07 are obtained for the RCTs, before-and-after studies and comparative cohorts 

respectively. Hence, if we take a liberal level of significance often used in these contexts 

(p<0.1) then both types of observational study have a ‘significant’ p- value for Egger’s 
test, while the test on the RCTs is non-significant. This is consistent with the visual 

impact of the funnel plots.

6.3.3 Assessing the likely impact of dissemination bias using Trim and Fill

The method of Trim and Fill is described in Section 2.6.2. Table 6.4 presents the results 
of using Trim and Fill on the EFM studies, for each of the study types separately. (Three 

competing estimators for the number of missing studies have been described for Trim 
and Fill; the one previously described as Lo is used here since this was found to have 
favourable performance over the range of conditions investigated in simulation studies 
(Duval and Tweedie, 2000a)). Results of using both a fixed effect and random effect 

meta-analysis model are reported. The ‘adjusted’ funnels for both models are provided 

in Figure 6.2.
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Table 6.4 Results of Trim and Fill analysis for the EFM studies on the risk
difference scale

Number

of

studies

Meta

analysis
model

Original estimate - 
Risk difference per 

1000 births 
(95% Cl)

Number
of

studies
estimated
missing

Adjusted estimate 
using Trim and Fill -  

Risk difference per 

1000 births (95%CI)

RCTs 9 Fixed -0.14 (-1.56 to 1.28) 0 -
Random -0.22 (-2.02 to 1.59) 0 -

Before-and-After 10 Fixed -0.72 (-1.03 to -0.42) 4 -0.52 (-0.82 to -0.22)
Random -1.86 (-2.84 to-0.89) 1 -1.63 (-2.63 to-0.64)

Comparative 7 Fixed -0.46 (-0.67 to-0.25) 4 -0.42 (-0.63 to -0.21)
Cohort Random -0.68 (-1.25 to-0.11) 4 -0.43 (-1.12 to 0.27)
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6 Generalised synthesis & dissemination bias

Figure 6.2 “Filled” funnels from the Trim and Fill analysis of the observational EFM studies on the risk difference scale
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Chapter 6 Generalised synthesis & dissemination bias

No studies were estimated as missing for the RCTs using either the fixed or the random 
effect model, but studies are estimated missing for both sorts of observational studies, 
suggesting funnel asymmetry and hence potentially dissemination bias. Already noted is 
the considerable difference between fixed and random effect model estimates for the 
before-and-after studies. This difference leads to four studies being estimated as missing 
for the fixed effect analysis, while only one estimated missing for the random effects 
analysis. This results in considerably different point estimates from the two models (- 

1.63 for the fixed effect model compared to -0.52 for the random effects model); this 
issue is discussed further in Section 6.4. Nonetheless, although diminished, the 

treatment benefit of EFM remains statistically significant in both instances. Four studies 
are estimated missing for the comparative cohort studies using both models. The 
adjusted effect sizes are similar for both models, suggesting the conclusion regarding 

such studies is not robust to potential dissemination biases.

It would appear that visual assessment, Egger’s test and the Trim and Fill method all 
come to very similar conclusions, namely that there is funnel asymmetry, and hence 
potentially serious dissemination bias in the observational evidence. These findings are 

used in the next section to revise the generalised synthesis analysis of all the studies.

6.4. Revised generalised synthesis of the EFM studies

The motivation for this section is to assess the potential overall impact of publication 

bias on the EFM evidence as a whole. Using the ‘adjusted’ estimates produced by Trim 

and Fill, an overall pooled estimate using both a random effects model and the extended 

generalised synthesis model described in section 3.8.1 and used previously in the 

cholesterol lowering analysis. Figure 6.3 displays the results of these adjusted analyses 

and of several other analyses described in Section 6.2 for comparison.
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Figure 6.3 Pooled results from using different models to combine the EFM data on the risk difference scale
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The first pooled estimate on Figure 6.3 is that obtained combining only the RCTs using 
a random effect model (see Table 6.3). While the point estimate suggests a slight benefit 
of EFM, the confidence interval is very wide due to the limited number of randomised 
patients available.

The second estimate is derived from a random effect model directly combining all the 
studies (see Table 6.3). In contrast to the RCT result the benefit of using EFM is much 
larger, and the confidence interval much narrower. This is due to the observational 

evidence generally being more supportive of EFM than the randomised evidence, and 

since many of the observational studies are much larger than the RCTs, the RCTs have 
relatively little weight in this analysis.

The third estimate is derived from the three level hierarchical model. The treatment 
difference is similar to that obtained using a standard random effect model, but the 

confidence interval is wider. Here, between-study-type heterogeneity is permitted. This 
increases the width of the confidence interval, as there clearly is between-study-type 

heterogeneity with the observational studies generally having more favourable results 
than the RCTs. Additionally, such an analysis gives each study type a more equal 
weighting just as individual studies are given a more equal weighting in a random than a 
fixed effect model when between-study heterogeneity is present.

The fourth estimate is a new result derived from a random effect meta-analysis of all the 

evidence having ‘adjusted’ for dissemination bias using Trim and Fill individually in 
each study type first. As illustrated in Section 6.3, adjusting for funnel asymmetry has 
reduced the treatment effect in the observational studies, which is reflected in the shift 
of the estimate towards no treatment effect compared with estimate 2.

Finally, estimate 5 uses the three level model after augmenting the dataset using Trim 

and Fill in the same manner as estimate four. This model thus accounts for between 
study type heterogeneity and potential dissemination bias. Using this final model, the 
most likely treatment benefit is a reduction of around 0.8 deaths per 1000 births, but 
there is a large degree of uncertainty in the estimation and the data is compatible with
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both much larger, and much smaller (even harmful) effects (95% CrI -3.37 to 1.95). 
Hence, this point estimate suggests a larger effect than the RCTs alone, but smaller than 

the benefit suggested by the observational studies at face value. The wide credible 
interval is a consequence of some discrepancy between the estimates from the three 
study types even after adjustment for funnel asymmetry, which is formally incorporated 
in the model as between study type heterogeneity. Such residual discrepancies in the 
effects suggested by the different study types may be the result of other types of biases 
affecting the studies’ results.

6.5 Further dissemination-bias-related sensitivity analyses of the EFM 
data

In addition to the sensitivity analysis assessing the potential impact of publication bias 

on the EFM evidence base reported above, further factors related to the assessment of 
publication bias in the EFM evidence base are considered below.

6.5.1 Change of outcome scale

The choice of outcome scale on which to combine binary outcome data on in a meta
analysis is not straightforward, (Deeks and Altman, 2001) with three mainstream 

competing choices being the odds ratio, the relative risk and the risk difference. 
Although similar conclusions will often be drawn whichever of the outcome measures is 
used, occasionally important discrepancies are found (Deeks and Altman, 2001). 
Importantly, changing the outcome scale can also change the appearance of the funnel 

plot and any inferences or adjustments based on it. (Tang and Liu, 2000). Tang and Liu 

suggest that a ratio measure may be the most desirable measure because the control 

group event rate is more likely to be associated with treatment effect expressed as risk 

difference, and size of studies is often associated with event rates, which may cause 

asymmetry in funnel plots of the risk difference. (Tang and Liu, 2000) Earlier meta
analyses of EFM (Hombuckle et al. 2000) studies used the risk difference scale, 
probably because such a measure is more clinically interpretable when considering such
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rare events. There has been considerable debate recently in the choice of scale for binary 
outcomes, generally (Walter, 2000), and specifically in the meta-analysis 
literature.(Deeks and Altman, 2001; Engles, et al. 2001; Tang, 2000) No one scale can 

be considered superior, and it has been suggested that the one which fits the data best (in 
a meta-analysis context this could be considered as the one on which there is least 
heterogeneity) should be used. However problems with data driven, post hoc 

assessments are acknowledged and a sensitivity analysis re-analysing on multiple scale 
may be the most sensible approach.(Deeks and Altman, 2001; Walter, 2000)

Table 6.5 P-values for the heterogeneity test for the EFM evidence using the risk 

difference and odds ratio outcome scales

Study Type P-value for the 

Risk Difference

leterogeneity test 

Odds Ratio
RCT 0.40 0.61

Comparative Cohort 0.08 0.74

Before-and-After <0.001 0.07

Table 6.5 displays the p-value results for the standard heterogeneity test in meta-analysis 
(equation (2.14)). It can be seen the significance of the test is lower on the odds ratio 
scale compared with the risk difference for all three types of evidence, and only retains 
statistical significance at the 10% level for the before-and-after studies. In light of this, 

the assessment in Section 6.4 was replicated using the odds ratio scale. The 
corresponding funnel plots are presented in Figure 6.4.

Figure 6.5 explores the relationship between odds ratio and risk difference further. In the 

left hand panels of the figure a scatter plot of risk difference versus odds ratio is shown. 
This highlights the fact that the relationship between the two measures is not linear, 

especially for the comparative cohort studies. The right hand panel of Figure 6.5 

displays the same scatter plot as the left hand side, but in addition, rectangles indicating
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the confidence intervals for studies on both scales are included. Although these plots are 
rather ‘busy’, they do give an indication of how the standard errors for both measures 
also vary, by considering the shape of each rectangle. However, no pattern in the 
relationship between each scale, and the studies standard errors on each is discemable.
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Figure 6.4 Funnel plots for three study types used to evaluate the effect EFM on perinatal mortality on the odds ratio scale
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Figure 6.5 Scatter plots of odds ratios versus risk differences for the EFM studies (the right-hand side column including rectangles 
__________________________ representing the 95% confidence intervals on both scales_________ ______
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Figure 6.5 Continued
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The odds ratio funnel plot for the RCTs (Figure 6.4) is similar to that for the risk 
difference in Figure 6.1. However those for both the before-and-after and the 
comparative cohort studies have changed somewhat. Asymmetry is less extreme in the 
odds ratio plot, compared to the plot on the risk difference scale, for the before-and-after 

studies, while no asymmetry is now discernible in the funnel plot for the odds ratio for 
comparative cohort studies. Applying Egger’s test to the three sources of evidence on an 

odds ratio scale produces a p-value of 0.96 for the RCTs, 0.19 for the before-and-after 
studies, and 0.21 for the comparative cohort studies. A Trim and Fill analysis on the 
odds ratio scale (Table 6.6) estimates zero studies are missing for the RCTs and the 
comparative cohort studies (fixed and random effect models). Three studies are 
estimated missing for the before-and-after studies leading to a slightly diminished effect 
of EFM, but one which is still statistically significant using both fixed and random 
effect models.

Table 6.6 Results of Trim and Fill analysis for the EFM studies on the (log) odds
ratio scale

Number

of
studies

Meta

analysis
model

Original estimate - 

Odds ratio (95% Cl)

Number

of

studies
estimated
missing

Adjusted estimate 

using Trim and Fill -  
Risk difference per 
1000 births (95%CI)

RCTs 9 Fixed 0.88 (0.57 to 1.36) 0 -
Random 0.88 (0.57 to 1.36) 0 -

Before-and-After 10 Fixed 0.38 (0.28 to 0.52) 3 0.43 (0.33 to 0.60)
Random 0.33 (0.20 to 0.55) 3 0.44 (0.26 to 0.75)

Comparative 7 Fixed 0.32 (0.20 to 0.53) 0 -
Cohort Random 0.32 (0.20 to 0.53) 0 -

Hence, all three methods of assessment consistently indicate that funnel plot asymmetry, 
and hence the potential impact of dissemination bias, is lower when the study results are 

analysed using the odds ratio measure. Although the results on the risk difference scale
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on their own in isolation are persuasive, this lack of robustness in findings to outcome 
measure choice makes interpretation of the assessment of publication bias problematic, 
and the possibility that the asymmetry observed on the risk difference scale is due 
solely, or largely, to the choice of outcome measure cannot be ruled out. Together, with 
previous findings (Tang and Liu, 2000) this highlights the need for a publication bias 

assessment measure which is robust to scale choice, if possible.

Figure 6.3 displayed the results for different methods of combining the EFM evidence 
on the risk difference scale; the equivalent plot for the odds ratio scale is provided in 
Figure 6.6. Although direct comparison is not possible between results on different 
metrics, the plots have a qualitatively similar appearance, with wider confidence 
intervals being produced for the three level model compared to the standard random 

effects model. One point to note is that for the odds ratio scale, although the pooled 
estimate changes very little after the adjustment for dissemination bias, the credible 
interval for the three level model is narrower than that that from the unadjusted data, 
suggesting that between study type heterogeneity has been reduced by the dissemination 

bias adjustment.
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Figure 6.6 Pooled results from using different models to combine the EFM data on the odds ratio scale
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Further comparisons between the meta-analysis on the risk difference and odds ratio 
scale are fruitful. Table 6.7 provides the relative weights given to the individual studies 

for the two outcome measures using a fixed effect model. As can be seen, the percentage 
of the total weight given to each study in the analysis can change dramatically 
depending on the outcome scale chosen. Extreme examples are R8 which is given least 
weight on the risk difference scale (<0.1 %) but most weight on the odds ratio scale 
(39.8%), and B5 which again gets very little weight on the risk difference scale (0.5%) 

but by far the greatest weight on the odds ratio scale (40.9%). As can be seen, many 

other sizable differences in weighting between outcome scales exist. Such differences 
can be explained by considering the event rates in the studies (also shown in Table 6.7). 
The risk difference metric is known to give large weight to trials with small event rates 
and the odds ratio metric gives larger weight to trials as they approach an event rate of 
0.5.(Engles, et al. 2001; Tang, 2000) For example, since R8 has event rates in both 

arms that are an order of magnitude greater than all the other trials, it is given very little 
weight relative to the other studies on the risk difference metric, but much more weight 

on the odds ratio scale.

Having examined Table 6.7 it is not surprising that funnel plots on the different scales 
can look so different. Together, with previous findings (Tang and Liu, 2000) this 
highlights the need for a dissemination bias assessment measure which is robust to scale 

choice. While the lower heterogeneity found on the odds ratio scale may add credence to 

this analysis, problems such as the construction of numbers needed to treat exist with 

this scale.
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Table 6.7 Relative weighting given to the EFM studies using fixed effect analyses 
on the risk difference and odds ratio scales

Study ID
% o f weight given to study 

in fixed effect analysis
Event rate in 

non-EFM group
Event rate in 
EFM group

Risk
Difference

Odds Ratio

RCTs

R1 0.8 2.6 0.0057 0.0057

R2 1.0 3.5 0.0083 0.0041

R3 1.7 2.0 0.0000 0.0040

R4 2.1 2.3 0.0065 0.0000
R5 5.4 2.0 0.0022 0.0000
R6 6.4 2.0 0.0000 0.0020

R7 80.3 37.1 0.0021 0.0021

R8 0.0 39.8 0.1393 0.1452

R9 2.3 8.6 0.0027 0.0132

Comparative Cohort Studies

Cl 0.6 13.2 0.0017 0.0031

C2 0.1 3.6 0.0000 0.0022

C3 0.3 7.2 0.0016 0.0060

C4 1.0 6.7 0.0002 0.0031

C5 0.1 5.5 0.0018 0.0043

C6 21.4 3.1 0.0000 0.0002

C7 76.5 60.7 0.0002 0.0007

Before-and-After Studies

B1 0.5 1.2 0.0000 0.0000
B2 0.2 10.7 0.0083 0.0083

B3 6.7 2.6 0.0005 0.0005

B4 2.8 2.6 0.0003 0.0003

B5 0.5 40.9 0.0055 0.0055

B6 9.4 14.0 0.0008 0.0008

B7 2.1 5.0 0.0004 0.0004

B8 6.0 10.3 0.0006 0.0006

B9 9.5 4.7 0.0003 0.0003

BIO 62.3 8.0 0.0003 0.0003
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6.5.2 Sparse data

As mentioned previously, the event of interest in the EFM analysis, perinatal mortality, 
is relatively rare. Indeed there are four RCTs, one before-and-after, and two comparative 
cohort studies in which there were zero events in one study group, and many more 
where the number in each group was very small.. When calculating effect sizes from 
studies with zero events in one arm, it is necessary to add a continuity correction factor 
for the estimation of an odds ratio and its standard error, while it is only necessary to 
include a continuity correction factor for the standard error of the risk difference. 

Usually the correction factor of one half is added to each cell of the 2x2 table from 
which the effect size and standard error are calculated, as done previously in this paper, 
although it is not clear that this is always optimal, particularly when the number of 
subjects in each study arm is not balanced, as is the case for many of the EFM 
observational studies. (Sankey et al. 1996) While certain meta-analysis methods 
circumvent the need to calculate effect sizes directly for each study, and hence the need 

to use correction factors, (Sutton et al. 2000a) these factors are necessary for the 

construction of a funnel plot, Egger’s test and Trim and Fill.

The issue of sparse data in meta-analysis datasets is considered in depth in Chapter 7. 

However the impact sparse data has on the assessment of dissemination bias is 

considered in this section. In the funnel plots presented in Figures 6.1 and 6.4, studies in 

which a continuity correction factor are used are plotted using a distinguishing symbol 
(as indicated in the key). While the use of such corrections may have little impact on the 
pooled estimate in most meta-analyses, they would appear potentially to have more 
impact on the appearance of a funnel plot, and hence any statistical methods based on it 
(such as Egger’s test and Trim and Fill). The funnels from Figures 6.1 and 6.4 are 
redrawn in Figure 6.7, but to illustrate the impact a continuity correction factor could 
have on the appearance of a funnel, estimates were calculated using continuity 
correction factors between 0.2 to 0.8, at steps of 0.01 for studies in which 0 events 
occurred in one group. This produces 61 individual estimates which are plotted in a 

‘sweep’ in the Figure.
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Figure 6.7 Funnel plots for EFM studies using (log) odds ratio and risk difference scales, showing effect of using continuity factors 
_________________________  ranging from 0.2 to 0.8 for studies with 0 events in one group _________ _____________
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(Figure 6.7 continued)
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The impact of the correction factor on the funnels for the odds ratios is clearly larger 

than for the risk difference. This is because the estimate as well as the standard error 
varies on the odds ratio plot. Since one is concerned largely with asymmetry, 
fluctuations horizontally (along the x-axis) have more impact than vertical movement 
(along the y-axis), suggesting funnels plotted using the risk difference scale are more 
stable with regard to continuity corrections, and hence sparse data. In this example, the 

appearance of the funnel on an odds ratio scale for the comparative cohort studies is 
heavily influenced by the exact nature of the continuity correction factor used. Hence, 

the nature of any continuity correction factor used could potentially lead to different 
qualitative and quantitative conclusions regarding the degree of funnel plot asymmetry 

present.

6.5.3 Funnel plots of shrunken estimates

The previous section has highlighted why caution is needed in the interpretation of 
funnel plots and methods associated with them when data are sparse. In other areas of 
medical statistics, such as the analysis of league tables, (Marshall and Spiegelhalter, 
1998) the over interpretation of data based on small numbers of events has been 
highlighted, since misleading results can often be obtained when not considering the 

uncertainty which surrounds each individual estimate. Although a measure of 

uncertainty is plotted along the y-axis of a funnel, it is difficult to appreciate how much 
the appearance of a funnel plot is affected by random error. Random fluctuations will 
“average out” for plots with many studies, however asymmetry will be more likely to 
occur by chance in smaller meta-analysis datasets. For this reason, funnel plots may 
appear asymmetric to some degree purely due to chance alone. (Steichen et al. 1998) 
This problem is amplified in meta-analyses of rare outcomes due to the large influence 

random error has on the estimates from individual studies. Hence, it should not be 
forgotten that the influence of chance on the appearance of the funnel plots in Figure 6.1 

could be considerable.

One way of removing some of the chance random variation between studies is to plot 
the shrunken study estimates from a random-effect meta-analysis model, rather than the
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original point estimates. A further advantage of looking at funnel plots of the shrunken 
estimates is that for the odds ratio scale an “exact” Bayesian model can be used which 
allows the plot to be constructed without the need for a continuity correction factor 
(such as that of equation 2.18). These plots of shrunken estimates are compared with the 
original funnels in Figure 6.8 for the odds ratio scale, and Figure 6.9 for the risk 

difference scale. Note that both the point estimates and the standard errors are “shrunk” 
towards the pooled effect. The visual impression of the RCT funnel for the odds ratio 
scale has not really changed, while the plot for the Before and After studies has, if 
anything, improved funnel symmetry. The comparative cohort study shrunken plot, 
however looks more asymmetric, largely due to the large shrinkage observed in the two 
studies in which there were zero events in one group of subjects. This highlights the 
issue of continuity correction factors distorting the appearance of a funnel plot.

The changes between funnel plots of the original and the shrunken estimates on the risk 
difference scale are perhaps less striking than for the odds ratio scale. This can largely 
be attributed to the greater stability of the studies with a zero cell. Visually, publication 
bias would appear to be a concern for both the before & after and the comparative 

cohort studies.

Although there would appear to be advantages to considering funnel plots of shrunken 

rather than the original estimates (especially when data is sparse), there is a potential 
drawback. If publication bias is present, then the individual study estimates will be 
shrunken about a biased pooled estimate. In extreme situations this could potentially 
distort the appearance of the plot. Examination of both funnel plots of direct and 

shrunken estimates may safeguard against over interpretation. A further idea currently 

being pursued is to use shrunken funnels in combination with the Trim and Fill 
algorithm, so studies are shrunken around the pooled effect after Trimming.
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Figure 6.8 Funnel plots of original and shrunken estimates on the odds ratio scale
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Figure 6.9 Funnel plots of original and shrunken estimates on the risk difference
scale
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6.5.4 The impact of model choice on the assessment of dissemination bias

The debate has run for many years regarding the superiority and suitability of fixed and 
random effect models for meta-analysis, although much of the time both models lead to 
substantially the same conclusions. Less prominent, although it has been mentioned 
previously (Givens et al. 1997; Greenland, 1994), is the concern that random effect 

models may be more seriously influenced by funnel plot asymmetry (and hence 
publication bias) than fixed effect ones because smaller studies are given relatively 
greater weighting in the meta-analysis. Despite that, although fixed effect results are 
included above, prominence are given to the random effect results, due to the fact that 
there is evidence of between study heterogeneity, and the author’s belief that random 
effect models are generally more appropriate under such conditions.

While Egger’s test for heterogeneity essentially uses regression based on a fixed effect 

model, the Trim and Fill method can be implemented using either model, and as Table
6.4 indicates for the before-and-after studies ‘adjusted’ results, differing by more than 

those from a standard analysis are obtained. The impact of model choice on the method 

of Trim and Fill is examined in the next section.

6.6 Limitations of the method of Trim and Fill

In this section the method of Trim and Fill, as it was implemented on the EFM studies, 
is brought under inspection. Two separate issues relating to the use of the method are 

discussed below.

6.6.1 The impact of model choice on the Trim and Fill method - fixed versus 

random effect models

The previous section noted the problem of different pooled estimates being produced 
with fixed and random effect estimates when funnel plot asymmetry is present since 

these differences can be propagated and amplified when using Trim and Fill. For 

example, the number of studies estimated as being missing for the Before & After
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studies is four for the fixed effect model and one for the random effect model. A closer 
examination of the funnel and the pooled estimates reveals the reason for this 

discrepancy. Firstly, the fixed and random effect pooled estimates differ considerably; 
hence the ‘centre’ of the funnel is quite different for both models (Figure 6.1). This 
means that different points of symmetry are used by Trim and Fill which leads to 
different numbers of studies being estimated as missing.

The authors of Trim and Fill have given no guidance as to whether fixed or random 
effect estimation methods are superior when this method is applied. Indeed, in the 
original implementation of the method (although not used here) a random effect 

estimate was used to estimate the number of missing studies, and hence find the centre 
of the trimmed funnel, irrespective of whether a fixed or a random effect models was 
used to produce the final ‘adjusted’ estimate.1

I

An extreme example of dependence on fixed or random effect models on the 
conclusions is presented in Figure 6.10. This is a funnel plot of a diagnostic test meta
analysis detaset by Huicho et al, 1996 (Huicho et al. 1996) including 19 studies of Fecal 

leukocytes vs. Stool culture as screening tests for infectious diarrhea, using the 

diagnostic d measure as outcome. (Hasselblad and Hedges, 1995) Here the funnel is 
highly asymmetric, and clearly there are issues about whether publication bias 
mechanisms are likely to have caused this appearance. However it would appear that 
Trim and Fill is not robust to such irregular funnels. In this example, the pooled value 
for d is 0.71 (0.63 to 0.79) and 1.44 (1.05 to 1.83) for fixed and random effect models 
respectively. When trim and fill is applied to this meta analysis zero studies are 
estimated missing under a random effects model, while ten are estimated missing under 
a fixed effect model, and the outcome is adjusted to 0.41 (0.34 to 0.48). These are 
clearly wildly different answers, and it shows that choice between random and fixed 
effect often appears more critical when used in conjunction with trim and fill than it 
does in the main decision about assumption for pooling model.

1 Personal communication with Sue Duval
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Trim and fill only assesses the equality of ranks of studies either side of the pooled 

estimate and does not consider their size. For this reason, the funnel considered around 
the random effect estimate has a balance in the location of the studies with respect to the 
x-axis, but not the y-axis. This potential weekness of trim and fill requires further 
consideration, perhaps a modification of the method to include consideration of the 
appearance of the funnel with respect to the precision (y) as well as the effect size (x) 

axis.

Another possibility which is intuitively appealing, and conceptually easy to justify, is the 
use of fixed and random effect models in combination. Since the fixed effect estimate is 
less influenced by asymmetry of a funnel than the random effect estimate, this could be 
used to estimate the number of studies “missing” and hence the centre of the funnel. 
When these missing studies are imputed, the new pooled estimate could be calculated 
using the random effect model. In this way, the pooled estimate is not as influenced by 

publication bias as the random effect one, however the heterogeneity in the studies can 

still be accounted for in the filled dataset.

If this procedure is used for the Before & After studies in the EFM example, the 
adjusted risk difference becomes -0.43 (-2.12 to 1.64), which halves the intervention 
benefit from the random effect estimate. The validity of such an approach is the subject 
of ongoing research, and simulation studies (similar to those used to validate trim and 
fill originally (Duval and Tweedie, 2000c, Duval and Tweedie, 2000b)) are required to 

examine the properties of this modified estimator. Further, the relationship between 
statistical heterogeneity and publication bias needs further exploration generally.

243



Chapter 6 Generalised synthesis & dissemination bias

Figure 6.10 Trim and fill analysis of test of Fecal leukocytes vs. Stool culture
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6.6.2 Artificially narrow confidence intervals? Bootstrapped confidence intervals 
for Trim and Fill

A further criticism which could be levelled at the Trim and Fill method is that the 
adjusted confidence interval is too narrow because precision in the pooled estimate is 
increased due to information included in the filled studies (which ajre only speculated 

and not known to exist). It would be desirable for the confidence interval not to reduce 
in magnitude due to the inclusion of these “fictional” studies. Clearly achieving this is 
not straightforward as one would want to include the filled studies, to properly estimate 
the standard error of the pooled estimate and the between study variance in a random 
effects model. Interestingly, this problem is also related to the heterogeneity and 
publication bias relationship issue. Since the filled studies are the mirror image of the 

most extreme ones on the unbiased side of the funnel, heterogeneity will increase in the 
filled dataset which works ‘against’ the reduction in confidence interval width induced 

by including the imputed studies.

One possible solution to this problem is to construct a bootstrap type confidence interval 

for the pooled estimate (bootstrapped confidence intervals for meta-analysis are 
considered further in Section 7.6 for use with sparse data). The proposal here is to 
sample the number of studies in the original dataset from the dataset including the filled 
studies (with replication). Hence, this is a slightly modified bootstrap procedure because 
usually samples of the size of the original dataset are used. In this way it is possible to 

consider the full set of studies (including the filled ones), and incorporating the 
heterogeneity associated with these, while basing precision on the fact that only the 
number in the original dataset are known about. This solution is not perfect as each of 
the studies has a different weight associated with it, and hence the actual ‘quantity’ of 
evidence included in each bootstrap sample will vary and not be exactly equal to that 
included in the original -  non-‘filled’ dataset.

This procedure is carried out for the observational studies in the EFM dataset, and the 

results presented in Table 6.9. In all cases 2000 bootstrap samples were taken to 

construct confidence intervals, and the bias corrected estimates are reported. Both
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bootstrapped results sampling the original number of studies and the original plus the 
filled number of studies is included for comparison.

Table 6.9 Results of using Bootstrapping to generate confidence intervals for trim
and fill estimates

Before & After Comparative Cohort
Fixed Effect
Dataset
asymptotic 95% Cl

-0.72 (-1.03 to-0.42) 

Width: 0.61

-0.46 (-0.67 to-0.25) 

Width: 0.42
Dataset bootstrapped 
95% Cl

(-2.15 to-0.29) 

Width: 1.86

(-2.86 to-0.27) 

Width: 2.59
Trim and Filled 
asymptotic 95% Cl

-0.52 (-0.82 to -0.22) 

Width: 0.60

-0.42 (-0.63 to -0.21) 

Width: 0.42
Trim and Filled 
Bootstrapped 95% Cl 
(sample number: original 
+ filled studies)

(-1.60 to-0.06) 

Width: 1.54

(-1.45 to 0.42) 

Width: 1.87

Trim and Filled 
Bootstrapped 95% Cl 
(sample number: original 
studies)

(-1.78 to 0.07) 

Width: 1.85

(-2.21 to 1.16) 

Width: 3.37

Random Effect
Dataset asymptotic 95% 
Cl

-1.86 (-2.84 to-0.89) 

Width: 1.95

-0.68 (-1.25 to-0.11) 

Width: 1.14
Dataset bootstrapped 
95% Cl

(-3.36 to-0.92) 

Width: 2.44

(-3.00 to-0.29) 

Width: 2.71
Trim and Filled 
asymptotic 95% Cl

-1.63 (-2.63 to -0.64) 

Width: 1.99

-0.43 (-1.12 to 0.27) 

Width: 1.39
Trim and Filled 
Bootstrapped 95% Cl 
(sample number original 
+ filled studies)

(-3.22 to-0.75) 

Width: 2.47

(-1.75 to 0.71) 

Width: 2.46

Trim and Filled 
Bootstrapped 95% Cl 
(sample number original 
studies)

(-3.06 to -0.66) 

Width: 2.40

(-2.31 to 1.28) 

Width: 3.59
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This table is rather difficult to interpret since all the bootstrapped confidence intervals 
appear to have very different coverage from the corresponding asymptotic ones. This 
echoes the problems of applying the bootstrap to the meta-analysis datasets of rare 
outcomes in Chapter 7. Secondly, although the widths of each interval are given, the 
unadjusted and the publication bias ‘adjusted’ interval widths would not be expected to 
be the same for the random effect model due to the differences in the estimation of the 
between study variability parameter and its influence on the pooled estimate. It would 
appear that the use of the bootstrap method for meta-analysis is rather unpredictable, 
and before it can be applied in combination with Trim and Fill, further investigation into 
its performance is required. This approach is not pursued further here, due to the 
improvements offered by the use of the Bayesian bootstrap approach described in the 
next section.

6.6.3 Adapted Bayesian bootstrapped confidence intervals for Trim and Fill

Rubin (Rubin, 1981) first described the Bayesian bootstrap, and since it is not widely 

used a non-technical summary of the procedure follows. In the normal bootstrap each of 

the original observations is sampled with a weight/frequency. This is 0 or 1 or 2 . . . .  or 
n, where n is the original sample size. The Bayesian bootstrap does the same except that 
the weight is not an integer but may take any value between 0 and n.

Use of such fractional weights results in a smoother distribution (now a posterior 
distribution) for the statistic of interest, especially when the sample size is small.
(Rubin, 1981) However, the main appeal for using this method in combination with trim 
and fill is that the total study weighting pertaining to the original set of studies, rather 
than the ‘filled’ dataset, can be sampled over the studies in the ‘filled’ dataset. In this 
sense the Bayesian bootstrap method is modified (in the same way as the standard 
bootstrap above) because normally sampling equal to the total weight of the dataset is 
used. Hence, unlike the classical bootstrap approach, exactly the desired total study 

weight is sampled at every iteration.

This approach is illustrated using the Before and After EFM studies. Considering the 
concerns raised in Section 6.6.1, the number of studies estimated as missing by the fixed
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effect approach (four) is used in combination with a random effect estimate. Since the 

adapted Bayesian bootstrap is used, a Bayesian meta-analysis model is also employed 

where all prior distributions are specified as vague. The results of this together with the 
Classical results for completeness are reported in Table 6.10

Table 6.10 Results of using adapted Bayesian Bootstrapping to generate estimate 
for Trim and Fill augmented before & after study dataset

Model Used Estimate (95% Cl/Crl)
Classical Random Effect

Original dataset asymptotic 95% Cl -1.86 (-2.84 to-0.89) 
Width: 1.95

Original dataset bootstrapped 95% Cl -1.86 (-3.36 to-0.92) 
Width: 2.44

Trim and Filled asymptotic 95% Cl -0.74 (-1.76 to 0.28) 

Width: 2.04

Trim and Filled Bootstrapped 95% Cl (sample number 
original + filled studies)

-0.74 (-1.93 to 0.80) 
Width: 2.73

Trim and Filled Bootstrapped 95% Cl 
(sample number original studies only)

-0.74 (-2.33 to 1.07) 
Width: 3.40

Bayesian Random Effect

Original dataset MCMC -1.83 (-3.26 to-0.74) 
Width: 2.53

Original dataset Bayesian bootstrapped MCMC -1.48 (-3.03 to-0.46) 
Width: 2.57

Trim and Filled MCMC -0.65 (-2.39 to 1.19) 
Width: 3.58

Trim and Filled Bayesian bootstrapped MCMC (weight 

of original + filled studies)

-0.71 (-2.22 to 0.76) 
Width: 2.97

Trim and Filled Bayesian bootstrapped MCMC (weight 

of original studies only)

-0.73 (-2.21 to 0.82) 
Width: 3.03
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This table (like Table 6.9) is difficult to fully interpret. There are certain inconsistencies, 
for example, the wide credible interval from the Trim and Filled MCMC approach, 

which is wider than either of the Bayesian bootstrapped estimates on the filled studies. 
As with the first modification in the previous section, research is being carried out to 
assess the performance of the Bayesian bootstrapped Trim and Fill estimate, but it does 
present potential advantages. A further modification that is also being considered is that 
it would be no longer necessary to round the number of studies estimated as missing (by 
Trim and Fill) up to a round number (as done currently) if a Bayesian bootstrap 
confidence interval is being constructed.

It should be noted that although the fractional weighting idea described above is phrased 
in terms of the Bayesian bootstrap, the same method could be considered from a 
classical perspective also.

i

6.7 Discussion

This chapter has considered the possibility of dissemination bias, in particular bias 
causing funnel plot asymmetry in studies with differing designs. In the introduction, 

reasons were given why different types of studies may be susceptible to differing 
dissemination biases. The EFM example, where evidence is available from different 
sources, was examined, and on the risk difference scale at least there was strong 
evidence of more extreme funnel plot asymmetry for the observational studies, which 
could partly explain the more favourable results observed in the observational studies.

Clearly, other reasons exist why asymmetry of the funnels is observed. Study quality 
(Petticrew et al. 1999), systematic heterogeneity of effects between small and large 
studies (Sterne et al. 2000b) and chance may be explanations. In addition, reasons 
associated with outcome scale choice would appear to be an issue here and the use of 
continuity correction factors, necessary when outcome data are sparse, has also been 
demonstrated as having an effect. Both these factors need further investigation in 
relation to the assessment of dissemination bias in meta-analysis.
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Concerns are often expressed about basing treatment efficacy decisions on non
randomised evidence, largely being due fear of bias in estimated inherent in 

observational study designs. The concern with the EFM studies, and similar datasets is 
that even if the observational studies individually are unbiased, a meta-analysis of such 
evidence may be biased due to large levels of dissemination bias. If dissemination bias 
is generally a bigger (or indeed just as importantly a different) problem in the non
randomised study literature, this has important implications for meta-analysis and 
research synthesis more generally, including the use of observational studies in 
economic evaluation (Freemantle and Mason, 1997).

For RCTs long term measures are being put in place to try and alleviate the problem of 
dissemination bias. Steps are also being made to encourage the prospective registration 
of trials via trial registries.(Simes, 1986) Such alleviative measures are not in place, or 
even in prospect, for observational studies. It is difficult to envisage what measures 
could be taken to reduce the problem of dissemination bias in observational studies, 

where, as discussed above, the definition of the primary analysis of a study may be ill- 

defined, making prospective registration an impossibility. Additionally, some types of 

observational study do not require ethical approval, further reducing the feasibility of 
tracing them. It would appear that dissemination bias in observational studies will not 
diminish in either the short or the medium term.

Some technical issues with the analysis require comment. Firstly, as for the cholesterol 

analysis in Chapter 5, it may appear counter intuitive that uncertainty in results 
increased when the observational evidence was included in the three level synthesis 
model. Although this is due to heterogeneity between the results of the different study 
types and is considered desirable, since often evidence will be available from a limited 
number of sources, the between study heterogeneity term will often be estimated with 

considerable uncertainty which is reflected in the pooled result. The degree to which the 

number of sources of evidence influences the results requires further investigation, 

together with the robustness of the results to the assumption of Normality at the top 

level of the model.
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In the process of carrying out this assessment potential problems with the method of 
Trim and Fill were identified. These are due to the influence of dissemination bias on 
the random effect estimate, and a too precise confidence interval due to the added 

information included from the ‘filled’ studies. The possibility of estimating the number 
of missing studies using a fixed effect model, and then producing the ‘adjusted’ estimate 
using a random effect model when heterogeneity is present (and in may only become 
apparent when the ‘filled’ studies are included) would seem entirely sensible, but a 
further simulation study to assess its performance is required. The second modification 
explored is the use of bootstrap methods to reduce the total weighting in the meta
analysis to that of the original studies. The Bayesian bootstrap would appear most suited 
for this, although discrepancies between bootstrapped confidence intervals from those 
derived by more traditional methods, indicates that the properties of bootstrapped 
confidence intervals for meta-analysis require further investigation before such a method 
can be recommended. Further, the Bayesian evidence synthesis framework is 

conditioned on the results of the Trim and Fill method. Hence, the uncertainty in the 
Trim and Fill analysis is not reflected in the final synthesis results. More desirable 

would be an approach which replaced Trim and Fill with a Bayesian approach to dealing 
with dissemination bias that could be implemented simultaneously with the evidence 
synthesis. This is the also the subject of ongoing research.

There are sections of the ‘meta-analysis community’ who are generally opposed to 
combining RCT and non-RCT evidence. I believe that this work goes some way to 

demonstrate that, with proper adjustment, use of observation studies and combination of 
observational and RCT evidence can at least in principle be sound. Researchers should 
be aware that different sources of evidence may be affected by differential levels of 
dissemination bias. This chapter has explored how to incorporate an assessment of 
dissemination bias into a generalised synthesis context using pre-existing methods 
which are relatively simple to implement in practice. While assessments such as those 
described in this thesis are recommended, awareness to their lack of robustness to 

outcome scale, model choice and correction factors is necessary. Sparse outcome data, 
such as that present in the EFM dataset, would appear to amplify this lack of robustness. 
Further research into methods to assess dissemination bias - ideally, methods that are 

invariant to the factors identified above - are needed. Some of these problems will be
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apparent in meta-analyses restricted just to RCT evidence as well as in generalised 

synthesis of evidence.



Chapter 7 Synthesis o f rare outcomes

Chapter 7 Synthesis of studies reporting rare outcomes 
incorporating the case studies of adverse effect of hormone 

replacement therapy and breast implants

7.1 Introduction

It has frequently been stated that one of the benefits of meta-analysis is that through the 
combination of multiple studies, it is capable of yielding statistically significant effects 
not possible in individual studies due to their limited power. This is particularly true in 

instances where the event of interest is rare such as side effects of new interventions or 
epidemiology of rare diseases. Further, RCTs are usually not powered to examine any 
but the most common of side effects, and often valuable information is collected in post 
marketing surveillance schemes outside a trial setting. In such situations data from 
different studies exist making pharmaco-epidemiology a very relevant topic to address 
using cross-design synthesis, and one in which general synthesis of evidence models can 
make a valuable contribution. The EFM data synthesised in the previous chapter 

provides an example of sparse outcome data where the RCT evidence is inconclusive.

Specific problems are encountered when synthesising sparse outcome data, not least that 
some traditional meta-analysis methods fall down altogether; these are described in the 
next section. Following this, a large proportion of this chapter explores the limitations of 

current meta-analysis methods for sparse data, both classical and Bayesian; these are 

outlined in Section 7.2.6. Although these explorations are not strictly in a generalised 
synthesis framework, such research was felt necessary as a foundation before synthesis 
of different study types was attempted, and hence is directly relevant to the main topic 
of this thesis. In the latter sections of this chapter, two examples of the generalised 
synthesis of rare events are considered.
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7.2 Problems encountered when pooling rare outcomes

There are a number of related statistical problems encountered when attempting to pool 
studies with rare outcomes, in particular when there are zero events in one or more arms 
of a study. Some of these are general, while others are specific to certain outcome 
measures; these are considered below.

7.2.1 General problems - validity of methods based on normal assumptions

The assumption that effect sizes from each study are normally distributed is frequently 
made in a meta-analysis model. This assumption is questionable if studies have small 
numbers of events. (Carlin, 2000) Additionally, the overall pooled estimate is also 
usually assumed to be normally distributed, and confidence intervals for the pooled 
estimate are constructed on the basis of this assumption. (Adams et al. 1997) These 
normal approximations are likely to be less accurate when sample sizes are small, when 
there are large differences in sample size between the experimental and control groups, 
and with very large effect sizes. (Hedges and Olkin 1985)

7.2.2 Issues with the odds ratio

Several methods are available for combining studies using the odds ratio scale as 

described in Section 2.2. (Fleiss, 1993) An odds ratio cannot be calculated directly if 

there are zero events in either group being compared using the Mantel Haenszel, 
inverse-variance weighted method, or a classical random effect model without 
modification. The method of Peto, can however, produce pooled odds ratios from the 
original 2x2  table without the need to calculate odds ratios for individual studies. A 

continuity correction factor, usually adding a half to each cell of the 2 by 2 table from 

which the odds ratio is being calculated, is usually applied.

In instances where there are severe imbalances between the numbers in each group, such 
a procedure can produce misleading results. For example, consider the comparative
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cohort studies of EFM presented in Table 6.2. In the second study in this table (C2) 
there are 15 deaths out of 6836 births on the group not given EFM, while there were no 

deaths out of the 150 births for which EFM was used. Adding 0.5 to each cell of the 2 x 
2 table for this study produces odds of death not on EFM of 0.0023 (15.5/6836.5), 
compared to 0.0033 (0.5/150.5) for those not on EFM. This produces an odds ratio of 
1.4, suggesting a harmful effect of EFM - even though there were no deaths observed in 
the EFM group.

Such a distortion can happen when there are differing numbers of persons in each arm of 
the study, but even if both arms contain similar numbers of persons, a distortion in 

comparative effect occurs if the number of events in the non-zero arm is small. The 
Mantel-Haenszel method has better frequentist properties than the inverse-variance 
weighted estimates, especially when data are sparse in some of the studies being 
combined, because the inverse variance method relies on approximations to the 
binomial likelihood. (Carlin, 2000) It is also possible to combine odds ratios using more 
complex methods including exact methods, (Fleiss, 1993) Bayesian methods utilising 

MCMC simulation, and logistic/Poisson regression. Some of these are explored below.

7.2.3 Issues with the relative risk

No special methods exist for calculating relative risks, so the standard inverse-variance 

weighted method is often used for a fixed effect model, and the standard extension for 
incorporating a random effect. As noted in the odds ratio section above, a continuity 

correction is required if there are zero (or all) events in either arm, which can produce 
the same problems highlighted there. Less attention has been given to applying more 
complex methods such as exact estimation, or MCMC simulation to the relative risk 
scale, compared with the odds ratio.
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7.2.4 Issues with the risk difference

Synthesis o f rare outcomes

The risk difference is used less frequently for meta-analyses than either the odds ratio or 

relative risk scale. It has come under criticism due to statistical constraints - the range of 
variation is limited by the magnitudes of the rates in each group being compared.
(Fleiss, 1994) The practical implications of this for meta-analysis are that artificial 
heterogeneity may be introduced if the rates in the control groups in the studies 
combined varies. The risk difference does have benefits when dealing with rare 
outcomes, however. Unlike an odds ratio or relative risk, a risk difference can still be 
calculated if there are zero events in either group, and hence no correction factor is 

required. However, a correction factor is still necessary to calculate the standard error of 
a risk difference. Additionally, if there are no events in either group, information is still 
included in a meta-analysis using the risk difference scale even without the use of a 
continuity correction factor (this is not the case for the odds ratio or the relative risk 

where studies with zero events in both arms are usually excluded). This issue was 
considered further in Section 6.5.2 where the effect of continuity correction factors on 
the appearance of funnel plots is considered. On a practical level, the risk difference 
scale is easier to interpret to consumers of meta-analysis than a relative scale such as the 
odds ratio, especially when rare events are being considered. For example, a trial which 
randomises 1000 patients to each of two arms and observes two adverse event in one 
group, and one in another would have an odds ratio of approximately 2, which is 

difficult to interpret without knowing the low absolute rate of adverse events in the two 

groups. In such a situation reporting a risk difference of 0.001 is more useful.

7.2.5 Previous work on methods for combining rare outcomes

Several investigations into the best ways of pooling studies with rare events have been 

carried out. (Sankey et al. 1996; Mengersen et al. 1995; Deeks et al. 1999; Adams et 
al. 1997; Carlin, 2000) Sankey etal. (Sankey et al. 1996) examined the effect of using 
the continuity correction factor of 0.5 on the Mantel-Haenszel odds ratio, the 
DerSimonian and Laird (random effect) odds ratio and the rate difference. They found 
that the uncorrected method performed better only when using the Mantel-Haenszel
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odds ratio with very little heterogeneity present, and in all other situations the corrected 
methods performed better and were recommended. These simulations were limited to a 

ratio of sample sizes in of the control and treatment arms of between 1:1 to 2:1, and 
hence the effect of a continuity correction factor on severe group imbalance was not 

examined.

Deeks et al. (Deeks et al. 1999) examined a much wider group of methods for 
combining studies with rare events. Methods examined include Mantel-Haenszel odds 
ratio, Peto odds ratio, inverse variance weighted method, DerSimonian and Laird 

random effect odds ratio, and the MH and D&L risk difference methods. In addition, 
non-standard methods including fixed and random effect Poisson regression and exact 
methods were also examined. No detailed account of this work is currently available, 
however preliminary reports suggest that the Peto method provided the least biased and 
most powerful method of pooling study results with rare events among the commonly 
used methods except when trial group sizes are severely imbalanced.

Adams et al. (Adams et al. 1997) discuss the use of re-sampling methods for meta
analysis. Confidence intervals based on bootstrapping methods are described for both 
fixed and random effect models, which present a non-parametric alternative to the 
standard ones based on normal approximations. These were developed for combining 
ecological data, and have not been used in the combination of medical data. 
Investigations have found that such confidence intervals are sometimes more 
conservative than those based on normality assumptions, but these were based on meta
analyses of continuous outcomes only. The application of bootstrap methods to meta

analysis datasets with sparse binary outcomes has never been reported and is considered 
below.

Carlin (Carlin, 2000) recently considered the use of MCMC methods implemented using 

BUGS to fit an ‘exact’ Bayesian model which does not require the binomial likelihood 

to be approximated by a Normal distribution for the risk difference scale. This approach 

is also considered in more detail below.
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7.2.6 Further work addressed here

Pervious research has begun to tackle the problem of sparse data in meta-analysis. From 

the work of Deeks et al. (Deeks et al. 1999) it would appear that the Peto method is the 
method of choice for carrying out a fixed effect model, where there are no imbalances 
between groups being compared. However no comparison with bootstrap or Bayesian 
simulation methods has been carried out, and less is known concerning the use of 
random effect models.

Several issues related to meta-analysis of rare events are thus explored further in the 
remainder of this chapter:

1) The use of continuity correction factors. These are generally used to allow 
studies to be included in a meta-analysis that would otherwise be excluded. 

Although several authors have advocated their use, (Sutton et al. 1998) their 

specific form is rarely discussed. For instance, usually 0.5 is added to all cells of 
a studies 2 by 2 table. Other possibilities exist, including adding a smaller 
correction fraction, a correction factor proportional to the size of the study arm, 
or a correction factor corresponding to no effect (e.g. an odds ratio of one etc).

2) The use of Bayesian methods to overcome the problems traditional methods 
encounter with sparse binary data, such as the need for a continuity correction 
factor, or normality assumptions discussed above. This work builds on that 
published previously (Smith et al. 1995b; Carlin, 2000) utilising the use of 

MCMC ‘exact’ sampling methods. The use of data inflation methods in this 
context is also explored. Data inflation is a currently un-documented technique 
yet to be validated and is described in detail later in the chapter.

3) The use of re-sampling bootstrap methods to overcome the need to make 
distributional assumptions about outcomes which may not hold for sparse binary 

data when using frequentist methods.

4) Combining sparse data from studies with different designs.

In addition, this chapter considers two examples in which outcomes are rare and 
considers how the studies should be combined. In the first example, a re-analysis of a
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meta-analysis dataset consisting exclusively of data from RCTs, investigating the risk of 
breast cancer and cardiovascular events following hormone replacement therapy, is 
presented. This analysis is extended to include data from a large case-control study.

The second example examines the association between breast implants and risk of 
connective tissue disease. This adverse event is very rare, and data are combined from 
observational studies with different designs, where the data are reported in different 
formats.

7.3 Example 1: RCT evidence on the impact of postmenopausal 
hormone therapy on cardiovascular events and cancer

The first example is a meta-analysis, published previously, (Hemminki and McPherson, 
1997) which considers the impact of postmenopausal hormone therapy on 

cardiovascular events and cancer. This meta-analysis included only data from clinical 
trials, and was designed to explore further findings in surveys which suggested that such 

hormone therapy may decrease the incidence of cardiovascular diseases and increase the 

incidence of hormone dependent cancers. In light of such findings, RCTs have been 
undertaken to verify the findings, but results of these will not be available for some 
years. Evidence is currently available from 23 trials designed to examine other, short 
term, aspects of postmenopausal hormone therapy. Data from these trials are presented 

in Table 7.1 (Hemminki and McPherson, 1997). Note that several of the trials had more 
than one active treatment arm in which different regimens and doses were administered; 
these have been merged for the purposes of this analysis. There are a number of features 
which are striking about this table. Firstly, the sparseness of the outcome reporting. A 
dash in the table indicates no information was given for that outcome in the primary trial 
report. In the original analysis this was assumed to mean no events actually happened 

(i.e. the dashes were turned into zeros). Secondly, there are many “true” zeros in the 

events, indicating extremely sparse data, which presents problems described above. 
There are 16 studies with 0 or unreported cardiovascular events, and similarly 14 studies 
for breast cancer; these studies will only be included in a meta-analysis if the risk
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difference scale is used. Of the remaining studies, five have zero events in one arm for 
both outcomes. Thirdly, largely due to certain studies having multiple treatment arms 
which have been merged, there are large imbalances in the groups being compared, e.g. 
study number two has approximately four times as many women in the active treatment 
arm. Hence, this dataset has both problems of great data sparcity and imbalance in the 
study groups (as analysed here).
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Table 7.1 Data from 23 trials of postmenopausal hormone therapy and 
cardiovascular events and breast cancer

Study
number

women allocated cardiovascular
disease

breast cancer

Control treatment events in 

control
events in 
treatment

events in 
control

events in 
treatment

1 137 1128 - - 0 6
2 174 701 0 5 1 7
3 78 39 - - 1 0
4 42 40 0 0 - -

5 32 46 - - - -

6 14 15 1 0 - -

7 51 100 - - 0 2
8 39 36 - - 1 1

9 25 50 0 0 - -

10 19 41 - - 1 0

11 40 116 - - 1 1

12 16 15 0 1 - -

13 19 21 - - - -

14 20 20 1 1 - -

15 39 61 - - - -

16 54 60 - - - -

17 24 76 - - - -

18 48 44 - - - -

19 26 29 0 1 - -

20 121 56 - - 1 2

21 84 84 3 1 4 0

22 30 120 0 0 - -

23 66 68 0 3 -
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The analysis carried out by the original investigators uses a “non-standard” meta
analysis technique. A simple marginal analysis was carried out summing totals across all 
individual trial 2 by 2 tables to produce one large one. For example there are a total of 5 
cardiovascular disease events out of 1041 women in the control group, and 12 such 
events out of 1818 women in the treatment group. Calculating the odds ratio for this 

single table produces an odds ratio of 1.38 ( (12 x 1036)/(5 x 1806)). Calculating a 95%

confidence interval by standard methods produces an interval of 0.48 to 3.92 (which 
differs fractionally from that calculated in the original paper, due to discrepancies in 
data between sections of the original report (Various authors 1997)). In a similar 
manner, the odds ratio calculated for breast cancer events is 1.09 (0.50 to 2.35) (Note 
this is based on 10 breast cancer events in the control groups, as suggested by the data 
table, rather than 9 used in the calculation in the original paper (Various authors 1997)). 
Although, such a method of pooling data may seem appealing, there are severe problems 
with it, especially when event rates are heterogeneous across groups. This issue has been 
well documented (Simpson, 1951) and is often referred to as Simpson’s or Yule’s 
paradox. It does however allow data from all studies to be included in an analysis on an 

odds ratio scale.

When the meta-analysis investigating the impact of postmenopausal hormone therapy on 
cardiovascular events and cancer using data from clinical trials was originally published 
in 1997, (Hemminki and McPherson, 1997) it generated a lot of correspondence to the 
British Medical Journal. The meta-analysis was criticised for a number of reasons 

including:

1) Omission of epidemiological and other direct intervention studies
2) Drawing of strong conclusions despite being based on small numbers of women 
(4000), who had very few events.
3) Concern that the reporting of adverse events could have been biased.
4) Consideration of generally only the short term effect of HRT

5) Use of flawed marginal method of analysis
6) Lack of accounting for dosing regimes and duration of follow-up
7) The strong influence of one trial (number two in Table 7.1)
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8) Inclusion of one trial (number 23) in which there were 3 events in the treatment group 
related to a high dose of the oestrogen mestranol, which has not been used for over 20 
years. Removing this study changes the pooled estimate considerably.

Several of these shortcomings are addressed in the sections which follow. The 

fundamental issue of the method of analysis (point five) is considered first. This is 

followed by sections addressing the concern of biased reporting (point 3) through the 
use of sensitivity analysis, and combining further sources of evidence (point 1).

7.3.1 Comparison of classical methods to pool odds ratios

Their published results are compared with results obtained with a range of other 
classical statistical methods available to pool odds ratios. In all these analyses it is 
assumed that all the dashes in Table 7.1 are zeros (which was also assumed by the 
original authors in the marginal analysis summarised above). The fixed effect methods 
used are the Mantel-Haenszel, Peto, and inverse-variance weighted methods. The 

standard DerSimonian and Laird estimator was used as the random effect estimator. 
Continuity correction factors of 0.1,0.5 and 0.5 split over the two arms, the split being 

proportional to the size of the arm were all applied to the inverse-variance weighted 
method and the random effect model. The latter correction factor corresponds to an odds 
ratio of one (before any events are taken into consideration). These corrections were 
applied using two strategies: 1) only when absolutely necessary (i.e. when there are zero 

events in one arm); and 2) to all studies in the dataset. The effect of excluding all studies 

with zero events in both arms, and zero events in either arm was also investigated. The 

results of applying these different pooling approaches are presented in Table 7.2.
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Table 7.2 Results of pooling odds ratios for Cardiovascular and Breast cancer risk 

using a range of simple classical approaches

Cardiovascular risk Breasl cancer risk

Odds ratio combine method
Number

of
studies

included

Pooled estimate 
(95% Cl)

Number 
of studies 
included

Pooled estimate 
(95% Cl)

FIXED EFFECT ANALYSES
Marginal analysis (1 summary 
table)

23 1.377
(0.484 to 3.919)

23 1.089
(0.504 to 2.351)

Inverse variance (no continuity 
correction)

2 0.505
(0.085 to 2.998)

4 1.473
(0.427 to 5.085)

Inverse variance (including 
studies with at least one event & 
0.5 continuity correction when 
necessary)

7 1.309
(0.436 to 3.929)

9 0.942
(0.376 to 2.360)

Inverse variance (including 
studies with at least one event & 
0.5 continuity correction to all 
these studies)

7 1.239
(0.446 to 3.438)

9 0.916
(0.402 to 2.087)

Inverse variance (0.5 continuity 
correction to all studies)

23 0.881
(0.433 to 1.789)

23 0.845
(0.441 to 1.617)

Inverse variance (including 
studies with at least one event & 
0.1 continuity correction when 
necessary)

7 0.980
(0.216 to 4.450)

9 1.215
(0.390 to 3.783)

Inverse variance (including 
studies with at least one event & 
0.1 continuity correction to all 
these studies)

7 0.972
(0.224 to 4.218)

9 1.185
(0.396 to 3.543)

Inverse variance (0.1 continuity 
correction to all studies)

23 0.854
(0.252 to 2.891)

23 1.089
(0.403 to 2.937)

Inverse variance (including 
studies with at least one event & 
proportional continuity 
correction when necessary)

7 1.157
(0.304 to 4.407)

9 1.010
(0.346 to 2.946)

Inverse variance (including 
studies with at least one event & 
proportional continuity 
correction to all these studies)

7 1.131
(0.320 to 3.998)

9 1.019
(0.374 to 2.778)

Inverse variance (proportional 
continuity correction to all 
studies)

23 1.075
(0.410 to 2.819)

23 1.014
(0.438 to 2.346)

Mantel-Haenszel (including 
studies with at least 1 event & 
0.5 continuity correction where 
necessary)

7 1.423
(0.559 to 3.619)

9 0.846
(0.388 to 1.841)

Peto 7 1.679
(0.610 to 4.621)

9 0.909
(0.386 to 2.144)

Only the fixed effect estimates are shown in Table 7.2 because in all instances the 
between study variation was estimated to be zero, so all random effect results were
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exactly as the corresponding fixed effect ones presented. Although none of the odds 
ratios come close to statistical significance, there is considerable variation between the 

point estimates and 95% confidence intervals obtained with the various methods. For 
both outcomes, estimates both larger and smaller than unity occur.

In section 6.5.2 it was noted that trials in which no events are observed do not contribute 

to a meta-analysis on a relative scale such as the odds ratio. They can only be included if 
a continuity correction factor is applied, and the inverse-variance weighted method is 
used. If a constant correction factor is used, such as 0.5 then the odds ratio produced is 
determined simply by the relative size of the two treatment groups. This is the reason a 
proportional continuity correction was used -  this ensures an odds ratio of 1 is produced 
for every trial with 0 events, irrespective of the size of the two patient groups. A 
problem with adding continuity correction factors to such a sparse dataset is that they 

actually add a substantial amount of information, resulting in a narrowing of confidence 

intervals, which can be observed in Table 7.2.

In summary, Table 7.2 demonstrates that the particular method used, and the nature of 
any continuity correction used can make substantial differences to the overall effect size 
and corresponding confidence interval. In the following sections more advanced pooling 
methods are applied to the dataset and the results of these are compared to these simple 

approaches.

7.3.2 The use of Bayesian MCMC methods to pool odds ratios from sparse data

Bayesian models estimated using MCMC methods implemented in WinBUGS are 
considered in this section. Focus is restricted to the cardiovascular endpoint to keep the 

number of analyses to a manageable size. Fixed and random effect models are both 
implemented using both exact methods (making no distributional assumptions about the 

outcome from each study), and methods where the log odds ratios are assumed to be 
normally distributed. In all these models the intention is to use non-informative priors, 
as interest is focused on the different model specifications. However, after fitting a few 

preliminary models, it became apparent that the pooled estimate was often dependent on
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the prior placed on the between study variance. Because of this, several models using 

the same formulation were fitted using a range of priors to investigate the robustness of 

each to their specifications.

Hence, convergence was assessed informally using graphical techniques such as 
examining long chains. The MCMC simulations from the posterior distributions of all 
these models were computed very quickly so several tens of thousands of iterations were 
used for both the bum in and the run on which parameters were estimated. 
Autocorrelation was minimal in all models. A brief exposition of the different models 
used follows.

The fixed normal model - The simplest model fixed effect (analogous to the inverse- 
variance weighted method) applying a continuity correction of 0.5 to all studies. This 
model is given by equation (2.5) and reproduced below.

Tt ~N[6,<T2i] i= 1 k

(2.5)

0 ~ N [ - - ] ,

where 0is the estimate for the underling effect size, and [-,-] indicates a prior 

distribution to be specified.

The fixed logit model - A modification to the fixed normal model, which removes the 
requirement that the log odds ratio from each study is normally distributed, is to model 
the proportions of persons who have events in both arms of each study directly using a 

binomial distribution and models the logits of these proportions. No continuity 
corrections factors are required when using these models. This model is given in 

equation (2.12) and reproduced below.

a, ~ Bin[pu,(ai + £>,.)] c, ~Sm[p2l.,(c, +<*,)] i '= l  k
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log'KPi,) = Mi log it(p2l) = fi,+ d  (2.12)

d

OR = exp(d),

The fixed proportions model - A further variation models the proportions directly and 

constructing an odds ratio using the posterior distributions for the proportions. The 
model is given in (2.13) and is reproduced below.

Where p n  and p 2i are the probabilities of events in the two groups being compared for 

the rth study. p i is the estimated ln(odds) of an event in group one, and d is the ln(odds

ratio) between groups; priors are required for these parameters. This model makes the 
added assumption that the odds in the treatment and control arms are identical to each 

other across studies; rather than their ratio. This assumption may not be justified if the 
baseline risk varies between studies. This model also allows all 23 studies to be included 
without the need for continuity correction factors.

The fixed Poisson model -  This model is similar to the fixed logit model, but it assumes 

events within the trial arms are distributed according to a Poisson rather than binomial 
distribution. This may be more appropriate when events are rare. This model estimates 

the relative risk rather than the odds ratio.

(2.13)

OR = (/>, x (l - p 2 ))/(p2 x (l - Pl))

ai ~ Poisson(rateu x (a. + bt)) c{ ~ Poisson(rate2i x (ci + dt))

Alex Sutton Ph.D. Thesis, December 2001 267



Chapter 7 Synthesis o f rare outcomes

log(ratev) =  fi, log(rate2l) = fi,+d  i =  1..........* (7.1)

Mi ~  [ - - ]  d  ~

RR = exp(d)

The random normal model -  This model extends the fixed normal model by introducing 
a random effect for the between study variance and is described by equation (2.17) in 
Section 2.33 and reproduced below.

fl-NLn*2] (2.17)

M~[-r] t  ~ [-,-]•

The random logit model (priors on between study precision parameter) -  This extends 
the fixed effect logit model, in much the same way as the normal model. This is exactly 
the same model as that used by Smith et al. (Smith et al. 1995b) described by equation
(2.18) and reproduced below

a, ~ Bin[pu,(a, +6,.)] c, ~ filn[j92/,(c,.+<!,.)] 1=1.........*

log it(pu) = Mi logit(p2i) = Mi + delta,

(2.18)

delta, ~ N[$r*]

M , </>- [-,-]

where ^represents the overall pooled effect, on a log odds ratio scale, and ?  is a 

measure of the between-study heterogeneity. A similar extension of (2.13) has also been 
implemented, (Byar, 1980) however this is not pursued here.
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The random logit model (prior on between study standard deviation parameter) -  This 
model is the same as above except for the prior placed on the between study variance 
term. Here it is placed on the standard error rather than the precision. This formulation 
was used previously by Thompson et al. (Thompson et al. 1997)

The random Poisson model -  Another straightforward extension of the related fixed 
effect model into hierarchical model with a normally distributed random effect.

at ~ Poisson(rateu x (a. + b{)) ct ~ Poisspn(rate2i x (ci + d.))

lo g(rateu) = fit log(rate2i) = p. + delta. i = 1 k (7.2)

//,. ~ deltat ~ Normally, t2 )

The random proportions model -  Although a random effect extension to the fixed effect 
proportions model is possible it is not considered in Table 7.3. The extension is less 
straightforward than the others presented here because hyper-parameters are required for 
the two parameters of a beta distribution. Specifying priors for such parameters is not 

intuitive. It should be noted however that such a model does have similarities with the 
exact bivariate approach to meta-analysis described by VanHowleingen et al. (Van 
Houwelingen et al. 1993) A more natural bivariate random effect meta-analysis model 

is considered under the risk difference section below.

The results of using these models to combine the cardiovascular endpoint are presented 

in Table 7.3
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Table 7.3 Bayesian MCMC meta-analysis models for cardiovascular endpoint using odds ratio
scale

Numof
studies

included

Prior for 
baseline rates

Prior for 
(ln(OR)) pooled

Prior for 1/t2 Estimate for OR 
(95% CrI)

Estimate for x2 
(95% CrI)

Fixed normal 
model (CC = 
0.5 all studies
)

7 NA NCO.O.IO5) NA 1.236
(0.441 to 3.443)

NA

23 NA NCO.O.IO5) NA 0.878
(0.430 to 1.789)

NA

Fixed exact 
Logit model

Priorfor 
baseline logit 
odds

Prior for pooled 
ln(OR)

7 NCO.O.IO3) N(0.0,10*) NA 1.828
(0.6265 to 6.093)

NA

23 NCO.O.IO5) NCO.O.IO5) NA 1.809
(0.6116 to 6.039)

NA

Fixed
proportions

model

Prior for 
proportion of 
controls

Prior for 
proportion on 
treatment

7 Beta(l,l) Beta(l,l)
t

NA 0.962
(0.372 to 2.810)

NA

23 Beta(l,l) Beta(l,l) NA 0.904
(0.350 to 2.625)

NA

7 Beta(0.5,0.5) Beta(0.5,0.5) NA 1.011
(0.381 to 3.104)

NA

23 Beta(0.5,0.5) Beta(0.5,0.5) NA 0.952
(0.360 to 2.91)

NA

7 Beta(0.01) Beta(0.01) NA 1.071
(0.391 to 3.481)

NA

23 Beta(0.01) Beta(0.01) NA 1.008
(0.369 to 3.258)

NA

Fixed
poisson
model
(estimating
RR)

Prior for logit 
baseline rates

Prior for pooled 
ln(OR)

7 NCO.0,105) NCO.O.IO6) NA 1.777
(0.631 to 5.893)

NA

23 N(0.0,105) NCO.O.IO6) NA 1.800
(0.628 to 5.972)

NA

Random 
normal 
model (CC — 
0.5 to all 
studies)

7 NA NCO.O.IO6) G(0.001,0.001) 1.258
(0.415 to 3.872)

0.0453
(0.0008 to 2.684)

23 NA N(0.0,10^) G(0.001,0.001) 0.876
(0.414 to 1.832)

0.0206
(0.0008 to 0.643)
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Random 
Logit model 
(prior on 
precision)

Prior ybr /ogif 
baseline rates

7 N(0.0,105) NCO.0,106) Gam(0.001,0.001) 2.596
(0.281 to 5802.2)

2.713
(0.002 to 300.329)

7 NCO.O.l.O2) NCO.O.IO2) Gam(0.01,0.01) 2.132
(0.331 to 44.124)

1.580
(0.014 to 45.846)

7 N(0.0,10) N(0.0,10) Gam(0.1,0.1) 1.121
(0.299 to 4.39)

0.564
(0.052 to 8.283)

7 NCO.O.IO5) NCO.O.IO6) Gam(l,l) 2.770
(0.428 to 68.306)

2.039
(0.312 to 29.59)

7 N(0.0,105) N(0.0,10*) Gam(3,l) 1.964
(0.544 to 8.602)

0.410
(0.145 to 1.869)

7 NCO.OjlO5) NCO.O.IO6) Par(l,0.01) 17.94 
(0.073 to 
37049.1)

46.14
(3.95 to 97.08)

7 N(0.0,10*) N(0.0,10*) Par( 1,0.2) 2.779
(0.417 to 24.953)

2.911
(0.311 to 4.899)

7 NCO.O.IO5) N(0.0,10®) Par(0.5,0.1) 5.812 
(0.125 to 
22247.84)

18.26
(0.281 to 93.65)

7 N(0.0,105) NCO.0,106) N(0,0.001)1(0,) 1.736
(0.572 to 8.602)

0.055
(0.014 to 4.143)

7 N(0.0,105) N(0.0,106) N(0,0.1)1(0,) 2.167
(0.505 to 19.240)

0.589
(0.149 to 11.97)

23 NCO.OJO5) N(0.0,105) Gam(0.01,0.01) 3.246 
(0.2258 to 
666700)

0.0473
(0.000004 to 4975.9)

23 N(0.0,10*) N(0.0,105) Gam(0.1,0.1) 3.224 
(0.233 to 
13220.0)

4.787
(0.095 to 292.07)

23 N(0.0,100) N(0.0,100) Gam(0.1,0.1) 1.805
(0.421 to 10.44)

0.958
(0.063 to 11.587)

23 N(0.0,10) N(0.0,10) Gam(0.1,0.1) 1.139
(0.462 to 2.894)

0.319
(0.045 to 2.450)

Random 
Logit model 
(Prior on 
standard 
deviation)

Priorybr /ogil 
baseline rates

Prior for pooled 
ln(OR)

Prior for T

7 N(0.0,105) NCO.O.IO5) N(0,10)1(0,) 4.016
(0.301 to 666.0)

6.88
(0.051 to 48.4)

7 NCO.0,105) N(0.0,105) N(0,1)1(0,) 2.259
(0.516 to 17.81)

0.855
(0.0026 to 6.119)

7 N(0.0,10*) NCO.O.IO5) N(0,0.1)1(0,) 1.884
(0.622 to 6.747)

0.055
(0.0001 to 0.567)

23 NCO.O.IO5) NCO.O.IO5) N(0,10)1(0,) 3.117
(0.311 to 220.4)

4.913
(0.03 to 38.13)

23 N(0.0,10*) NCO.O.IO3) N(0,1)1(0,) 2.167
(0.500 to 15.65)

0.830
(0.002 to 6.172)

23 NCO.OjlO5) NCO.O.IO5) N(0,0.1)1(0,) 1.834
(0.603 to 6.355)

0.056
(0.00012 to 0.583)

Random
Poisson
model

Prior for 1/r

7 N(0.0,105) N(0.0,106) Gam(0.001,0.001) 3.007 
(0.310 to 
2676445.055)

3.010
(0.002 to 499.076)

7 1^0.0,10*) N(0.0,102) Gam(0.01,0.01) 3.084 
(0.319 to 
3442.661)

3.298
(0.013 to 189.063)

7 N(0.0,10) N(0.0,10) Gam(0.1,0.1) 3.053
(0.618 to 43.164)

1.414
(0.068 to 38.950)
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In a similar manner to the Classical methods, while statistical ‘significance’ conclusions 

have not changed depending on which model is used, the parameter estimates and 

confidence intervals vary considerably. The simple fixed effect model which assumes 
normality of the log odds ratios from each study and adds a continuity correction factor 
of 0.5 produces very different results from the fixed exact logit model, which highlights 
the need for exact calculations in instances such as these. These differences appear to 
propagate over into the random effect versions of these models. Since no exact random 

effect models exist for classical methods, the Bayesian derived MCMC models may 
have a distinct advantage in situations such as these.

One interesting aspect of this investigation is the fact that the posterior distributions for 
the pooled log odds ratio appear to be skewed for the random effect models. Figures 
7.la and b show two typical posterior distributions for the log odds ratios from a logit 

fixed effect and random effect model respectively, indicating the skewness in the 

random effect model is extreme. This asymmetry implies very high odds ratios are being 
sampled, and credible intervals calculated using asymptotic methods assuming 
normality may be erroneous (centiles of the samples from the posterior distribution are 
used to construct the credible intervals for each model in Table 7.3). This finding has 
important implications for the classical methods, since these confidence intervals are 
always based on asymptotic normality assumptions.

Table 7.2 indicates that these models are all sensitive to the prior distributions specified. 
Most critical appears to be the prior distribution for the between study variance 

parameter, r 2, in the random effect models. It would appear that it is very difficult to 
specify a completely non-informative prior. Indeed, often when a prior with very small 

precision is specified, this places some probability mass on extremely high values of r 2, 

in turn allowing extreme odds ratios to be sampled. Because there is very little 

information in the data to estimate r 2, the mass on these extreme values is non- 

negligible, allowing the distributions for the log(OR) and r2 to be skewed by extreme 
values, and explaining the large right hand tail to the posterior odds ratio distribution. 
This phenomenon would appear to hold over several distributional forms when the prior 

is placed on 1/ r 2, or when a truncated normal is used for r . When a more informative
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prior is placed on r 2, the OR estimate reduces, as the extreme values are sampled much 

less frequently. The problem is that it is difficult to specify a prior that does not allow 

sampling of extreme results, but is still reasonably non-informative. In the analysis of 
this dataset this issue appears particularly critical. Obviously, the priors specified do not 
need to be non-informative, for example Higgins and Whitehead (Higgins and 

Whitehead, 1996) consider empirical prior distributions for r 2 using information from 

historical meta-analyses. Such an approach may be particularly valuable in situations 
such as this.
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Figure 7.1a Histogram of sample from the posterior distribution of the pooled log 
odds ratio for the fixed effect logit model

h(OR)

Figure 7.1b Histogram of sample from the posterior distribution of the pooled log 
odds ratio for the random effect logit model

<s

ln(OR)
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7.3.3 Discussion of combining odds ratios for sparse data

The purpose of the above work was not to ascertain the “best” method of combining 

sparse data, but rather, as a first step towards this, to outline the different models which 
are theoretically possible and to demonstrate that the pooled result can differ quite 
dramatically depending on the model, any continuity correction factor used, and the 
prior distributions specified. In order to assess the relative performance of these 
methods, simulation studies are required.

It would appear, however, that methods which require a continuity correction factor are 

not suitable for data as sparse as those considered here, since using a correction factor 
greatly reduces the width of the confidence intervals (by adding too much artificial 
information).

Several further Classical models have been developed which are not covered here; these 

include methods for incorporating uncertainty in estimating r 2 into the model, (Hardy 

and Thompson, 1996; Biggerstaff and Tweedie, 1997) and a bivariate random effect 
model (see Section 2.3.2). (Van Houwelingen et al. 1993) While these models are 
arguably superior to the simpler models fitted here, since they more comprehensively 
model the between study variability, they all require the use of a continuity correction 
factor. Additionally, a method for computing an exact confidence interval for a classical 
fixed effect odds ratio model does exist. (Mehta et al. 1997) A further possibility is the 

use of a random effect logistic regression model. While software for fitting such a model 
does exist, it has been reported to be unstable in practice. (Smith et al. 1995b)

From a Bayesian standpoint, a recently developed method combines studies using 
conditional likelihoods using a Bayesian model.(Liao, 1999) The motivation for this 
model was to remove the necessity of placing prior distributions on the nuisance 

parameters in the model; unfortunately a prior distribution for the between study 
variance is still required, and hence it is doubtful if it would perform any better than the 

Bayesian models described above.
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An interesting point regarding studies with no events in either arm is that results are 
affected slightly by their inclusion in the Bayesian model. This appears to be in contrast 
to classical analyses where it has been stated that such trials add no information when 
combination takes place on the odds ratio scale. (Liao, 1999)

To overcome some of the problems encountered above, some novel methods are 
discussed below. Firstly, the use of data inflation to stabilise the Bayesian methods, by 
reducing the influence of prior distributions are examined. This is followed by sections 
exploring the effect of combining on the alternative risk difference scale, and the use of 
re-sampling methods to combine studies.

7.4 Data inflation methods

The previous section showed how sensitive the pooled estimate was to the prior 
distributions for the parameters, and particularly to that placed on the between study 

variance term. It thus appeared to be impossible to produce a consistent pooled estimate 
across any range of priors. A novel method which aims to overcome problems with prior 
distributions unintentionally influencing the estimation of variance parameters for 
hierarchical models estimated using MCMC methods, is known as data inflation. 
(Scurrah et al., 2000, Burton et al., 1999) The concept behind such a method is simple. 
The likelihood generated by the data is made n times as large, thus making the prior 

distribution less informative by a factor of n. Sampling then can proceed as normal, but 
the posterior parameters will be too precise due to the inflated amount of data fitted in 
the model. An adjustment is required to compensate for this. If distributions are 
symmetric, then inflating the standard deviations of parameters so obtained by a factor 

of 4n will provide correct 95% credible intervals. Alternatively, if inferences are being 

based on posterior distribution percentiles, and the posterior is symmetric, then the 

distance from the median to each centle can be multiplied by Vn . A slightly more 

sophisticated approach is required if posterior distributions are not symmetric, and no 
transformations will make them symmetric. Under these circumstances the posterior 
distribution has to be raised to the power of 1 In and then made proper again (i.e.
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dividing by a constant so it sums to one). This allows an approximate 95% credible 
interval to be estimated by examining the cumulative distribution function of this new 
density.

7.4.1 Initial application to meta-analysis of the effects of diuretics on pre-eclampsia

Since the application of data inflation in a meta-analysis setting is novel, it is first 
applied to a less extreme dataset, to illustrate how it works and examine its applicability 
for meta-analysis. The dataset chosen is a meta-analysis of nine trials of effects of 
diuretics on pre-eclampsia; (Collins et al. 1985) the data are provided in Table 7.4. This 
dataset is chosen for a number of reasons. Firstly, since it contains only nine trials, there 
will be considerable uncertainty in the estimation of the between study variance term in 

the meta-analysis model, and hence the prior placed on this parameter will be 
particularly influential. Secondly, this dataset has been used to illustrate classical 
methodology for incorporating the uncertainty in the estimation of the between study 
heterogeneity in the meta-analysis model, (Hardy and Thompson, 1996; Biggerstaff and 
Tweedie, 1997) and hence results for this dataset are available for comparison from 

several sophisticated methods.

Table 7.4 Meta-analysis of nine trials of effects of diuretics on pre-eclampsia
Study Number Cases of pre-eclampsia/total 

number of patients
Odds ratio 
(95% Cl)

Treated Control

1 14/131 14/136 1.04 (0.48,2.28)

2 21/385 17/134 0.40 (0.20, 0.78)

3 14/57 24/48 0.33 (0.14, 0.74)

4 6/38 18/40 0.23 (0.08, 0.67)

5 12/1011 35/760 0.25 (0.13, 0.48)

6 138/1370 175/1336 0.74 (0.59, 0.94)

7 15/506 20/524 0.77 (0.39,1.52)

8 6/108 2/103 2.97 (0.59,15.07)

9 65/153 40/102 1.14(0.69,1.91)
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A random effect logit model, with the prior for the between study heterogeneity placed 

on the precision parameter (equation (2.18)) was fitted to this dataset. Normal(0,105) 
priors are placed on both individual trial baseline rates, and the pooled log odds ratio. A 
gamma prior was placed on the between study precision, and the effect of changing 
values given to its two parameters from 0.0001 to 1 was explored. Data were inflated by 
factors of three and ten.

Problems were encountered with the estimation of credible intervals when inflating the 
data by a factor of 10. The problem is illustrated diagrammatically in Figure 7.2. This 
figure displays the sampled posterior distribution (the circles) for the pooled log odds 
ratio, and the corrected distribution (line), using 8000 samples. The problem which this 
plot clearly shows is the poor estimation of the tails of the corrected distribution. This 
problem occurs because the tails of the corrected distribution correspond to the very 
extremes of the inflated distribution. Because these extremes are rarely sampled from, 
the tails of the corrected distribution are very poorly estimated. In this case, the poor 

estimation encroaches well into the central 0.95 probability mass, and since it is the 2.5 
and 97.5 centiles of the distribution which we are trying to estimate, this creates 

problems. Several measures can be taken to improve this situation. Firstly, a larger 
sample will improve the evenness of coverage at the extremes of the distribution. 
However there are limits to the number of iterations which are feasible to work with, 
and how well the very extremes of the distribution are sampled from will depend on 

accuracy of the algorithm within WinBUGS, and the number of decimal places it uses in 
the internal calculations. In this instance, using a thinning factor of 5 (i.e. only keeping 
every 5th value of the MCMC chain generated to maximise the information obtained 
since the number of iterations used is limited by computer memory since this removes 
autocorrelation -  the correlation between successive values sampled) 
and increasing the number of used iterations to 36,000 did not greatly improve the 

situation.
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Figure 7.2 Original sample distribution and distribution raised to the power 1/10 
for log odds ratio, (data inflation factor 10 -  sampled iterations 8000)
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Figure 7.3 presents the same posterior plot as Figure 7.2, but based on data inflation 

factor of 3, and 36 000 iterations with a thinning factor of 25. It can be clearly seen that 
the 2.5 and 97.5 centiles of the distribution are estimated more satisfactorily here.
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Figure 7.3 Original sample distribution and distribution raised to the power 1/3 for 
log odds ratio, (data inflation factor 3 -  using 36000 iterations after thinning by a

factor of 25)
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If a larger inflation factors than this are required, and the number of iterations used has 

reached practical limits, but the tail areas of interests are still poorly estimated, 
approaches such as applying a smoothing algorithm to the distribution, or fitting 
parametric distributions to the data may help the estimation, but these are not pursued 
here. Results of these investigations using runs with bum in of 2000 and a further 36000 

iterations, thinned by a factor of 5 from 180 000 iterations to calculate confidence 
intervals for each combination of prior distributions for an inflation factors of 3 and 10 

(asymptotic only), are presented in Table 7.5.
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Table 7.5 Results of data inflation on the posterior parameters for the meta-analysis of effects of diuretics on pre-eclampsia

Prior for logit 

baseline rates

Prior for 

(ln(OR)) 

pooled

Prior for 1/t2 Median estimate 

for OR 

(95% Crl)

Median estimate 

fori2 

(95% Crl)

Mean estimate for 

OR 

(95% Crl)

Mean estimate for

T2

(95% Crl)

No Inflation -  Crl’s based on centiles 

of the posterior distribution

Inflation x 10 -  Crl estimation by 

multiplying estimated standard errors

by VlO

N(0,105) N(0,105) Gam(0.0001,0.0001) 0.601

(0.360 to 1.005)

0.316

(0.012 to 1.721)

0.595

(0.389 to 0.907)

0.274

(0.056 to 1.257)

N(0,105) N(0,105) Gam(0.001,0.001) 0.599

(0.360 to 1.014)

0.320

(0.027 to 1.751)

0.595

(0.389 to 0.907)

0.274

(0.056 to 1.258)

N(0,105) N(0,105) Gam(0.01,0.01) 0.599

(0.355 to 1.010)

0.336

(0.044 to 1.778)

0.595

(0.389 to 0.908)

0.274

(-0.056 to 1.270)

N(0,105) N(0,105) Gam(0.1,0.1) 0.598

(0.353 to 1.022)

0.381

(0.087 to 1.718)

0.596

(0.390 to 0.914)

0.276

(0.060 to 1.291)

N(0,10*) N(0,105) Gam(l,l) 0.596

(0.327 to 1.107)

0.583

(0.219 to 1.890)

0.596

(0.377 to 0.937)

0.315

(0.076 to 1.299)
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Prior for logit 

baseline rates

Prior for 

(ln(OR)) 

pooled

Prior for 1/x2 Mean estimate for 

OR 

(95% Crl)

Mean estimate 

fori2 

(95% Crl)

Estimate for OR 

(95% Crl)

Estimate for x2 

(95% Crl)

Inflation x 3 -  Crl estimation by 

multiplying estimated standard errors

by ->/3

Inflationx3- Crl estimation by 

raising posterior to power of 1/3

N(0,10*) N(0,105) Gam(0.0001,0.0001) 0.597

(0.379 to 0.938)

0.285

(0.053 to 1.403)

0.597

(0.38 to 0.94)

0.285

(0.04 to 1.15)

N(0,105) N(0,105) Gam(0.001,0.001) 0.597

(0.381 to 0.943)

0.283

(0.053 to 1.406)

0.597

(0.38 to 0.95)

0.283

(0.04 to 1.22)

>1(0,10*) N(0,105) Gam(0.01,0.01) 0.596

(0.380 to 0.940)

0.290

(0.056 to 1.391)

0.596

(0.38 to 0.94)

0.290

(0.04 to 1.21)

N(0,105) N(0,105) Gam(0.1,0.1) 0.596

(0.374 to 0.937)

0.306

(0.067 to 1.329)

0.596

(0.38 to 0.93)

0.306

(0.06 to 1.17)

N(0,10S) N(0,105) Gam(l,l) 0.595

(0.363 to 0.998)

0.400

(0.122 to 1.435)

0.595

(0.36 to 0.97)

0.400

(0.14 to 1.39)
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Now it would appear for the random effect logit model that the data inflation method 
has succeed in making the pooled estimates robust to prior specifications. Table 7.6 
compares the results obtained using the Bayesian random logit model, with and without 
using data inflation, and other classical methods of combining the data reported 
previously.

Table 7.6 Comparison of methods for combining trials of diuretics on pre
eclampsia

Method Odds ratio 
(95% CVCrl)

x2

(95% Cl/Crl)

Fixed -  inverse variance 0.67

(0.56 to 0.80)

Random -  DerSimonian & 

Laird
0.60
(0.40 to 0.89)

0.23

Random -  Hardy & 
Thompson (Hardy and 
Thompson, 1996)

0.60
(0.37 to 0.95)

0.24

(0.03 to 1.13)

Random -  Biggerstaff & 
Tweedie (Biggerstaff and 

Tweedie, 1997)

0.62
(0.41 to 0.96)

0.23
(0.04 to 2.35)* 
(0.03 to 1.13)** 
[0 to 0.57)***

Random Bayesian**** -  

logit model

0.60
(0.36 to 1.01)

0.32

(0.03 to 1.75)

Random Bayesian**** -  
logit model data inflation

0.60
(0.38 to 0.95)

0.28
(0.04 to 1.22)

* Method of moments based confidence interval 

** Approximate likelihood ratio based confidence interval 

*** Approximate maximum likelihood based confidence interval

**** priojg used N(0.0,105) for Prior for logit baseline rates & pooled (ln(OR)). Prior for 1/t2 - 

Gam(0.001,0.001).

***** Credible intervals calculated by raising the posterior to power 1/3
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All the methods broadly agree, but there are some interesting similarities and 
differences. Firstly, only the non-inflated Bayesian credible interval contains the value 
one. This slight increase in width over comparable classical methods could be due to the 
influence of informative prior distributions, because the data inflated credible interval 
falls back in line exactly with the classical methods which take the uncertainty in 

estimating t2 into account. Hence, it would appear that data inflation has removed the 

unintentional influence of the prior distribution placed on 1/t2. It should be stressed that 
the use of data inflation needs careful fuller validation in other meta-analysis context. 
For illustration, the method is applied to the oestrogen replacement therapy trials in the 
next section.

7.4.2 Applying data inflation to the oestrogen replacement therapy trials

Data inflation is now applied to the cardiovascular endpoint of the oestrogen 
replacement trials in an effort to see if improvements in the stability of the estimates 
over various intended vague prior distributions for the between study variance parameter 
can be achieved. The random effect logit model (equation 2.18), placing the prior on the 

precision was used.

Histograms of the samples from the posterior distributions for a preliminary run of 
20000 iterations, using a data inflation factor of 10 are presented in Figure 7.4a and 
7.4b. It can clearly be seen that both the posterior distributions for the log odds ratio and 

the log of the between study variance are considerably skewed. This implies that it will 
be necessary to raise the posterior distributions to a power of 1 In, rather than inflating 
the estimated standard error to provide credible intervals. Having observed the problems 
with using large inflation factors when using this method, an inflation factor of three is 
used. Runs using an over-relaxed sampler, (Neal, 1998) taking a bum in o f4000, 
followed by a further 36 000 samples, thinned to 18 000 were used to produced the 

results in Table 7.7.
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Figure 7.4a Histogram for samples from the posterior density for the pooled log 
odds ratio for the cardiovascular event endpoint for the oestrogen replacement

studies

Figure 7.4b Histogram for samples from the posterior density for the log of the 
between study variance, for the cardiovascular event endpoint for the oestrogen

replacement studies
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Table 7.7 Bayesian MCMC random effect meta-analysis using a data inflation 
factor of 3 for cardiovascular endpoint using odds ratio scale -  random effect logit

model

Number 

o f studies 

included 

(x3)

Priorfor 

logit 

baseline 

rates

Priorfor 

(ln(OR)) 

pooled

Prior for 1 / t Estimate fo r OR 

(95% Crl)

Estimate for C 

(95% Crl)

23 N(0,105) N(0,105) Gam(0.001,0.001) 2.37 (0.47 to 154.2) 1.70 (0.00 to 33.95)

23 N(0,105) N(0,105) Gam(0.01,0.01) 2.42 (0.44 to 576.51) 1.81 (0.01 to 53.68)

23 N(0,10*) N(0,105) Gam(0.1,0.1) 2.56 (0.45 to 435.28) 2.03 (0.03 to 66.02)

23 14(0,10*) N(0,10*) G am (l,l) 2.48 (0.48 to 62.74) 1.60 (0.19 to 26.74)

Table 7.7 indicates although there is still considerable variation between estimates when 

different priors are specified for l/'f, the estimates are more stable than those using no 

data inflation factor, reported in Table 7.3. Although there is a lot of variation in the 
upper limit of the credible interval for the pooled odds ratio, all results consistently 
suggest that the risk of cardiovascular events could be very high indeed. These 
confidence intervals are much wider than any produced by classical methods, suggesting 

such methods may seriously underestimate the uncertainty in the data.

Again, it would appear that data inflation is a potentially useful tool for removing the 
influence of priors, and in particular the prior placed on the between study variance in 
random effects meta-analysis model. This will be particularly valuable when there is 

very little information in the meta-analysis, for example when events are rare and/or 

there are very few studies.

A final point of interest is that in their original paper (Hemminki and McPherson, 1997) 
Hemminki and McPherson calculated the probability of obtaining their pooled odds 
ratio for cardiovascular events, when the true odds ratio is 0.7 or 0.5. This is another 

way of asking, ‘what is the probability that oestrogen replacement therapy has moderate 

to large protective effects given the data?’, which is necessarily cumbersome to enable it 
to be formulated using classical statistics. Such questions are much more natural to 
formulate under a Bayesian framework. The equivalent question, framed from a
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Bayesian standpoint is, ‘what is the probability the true odds ratio is less than 0.7 or 
0.5’, and this can be answered directly from the posterior distribution for the pooled 
effect size. Using the results from Table 7.7 above, where the prior on l/x2 is 

Gamma(0.001,0.001), the probability that the odds ratio is less than 0.7 is 0.05, and the 
probability the odds ratio is less than 0.5 is 0.02. These are broadly comparable to the 
classical estimates in the paper of a probability of 0.10, and 0.03.

7.5 Combining postmenopausal hormone therapy adverse event data 

on the risk difference scale

7.5.1 Results using classical meta-analysis methods

The choice of methods to combine binary data using the risk difference scale is 
somewhat more limited than the array of methods for combining odds ratios because no 
methods specific to this scale have been developed. Results of using standard meta

analysis methods, using the various continuity correction factors described in Section 

7.3.1, are reported in Table 7.8.
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Table 7.8 Results of pooling risk differences (per 1000 women) for Cardiovascular and Breast cancer risk using classical approaches
Cardiovascular risk Breast cancer risk

Risk Difference (per 

1000 women) pool 

method

Number o f  

studies 

included

Pooled estimate 

(95% confidence 

or credibility 

interval)

Between 

study 

variance 

(95% 

confidence 

or credibility 

interval)

Number 

o f studies 

included

Pooled estimate 

(95% confidence 

or credibility 

interval)

Between study 

variance (95% 

confidence or 

credibility 

interval)

FIXED EFFECT ANALYSES

Inverse variance 

(continuity correction 

0.5 when required for 

s.e.)

23 2.441

(-4.452 to 9.334)

NA 23 2.537

(-4.182 to 9.257)

NA

Mantel-Haenszel 

(continuity correction 

0.5 when required for 

s.e.)

23 6.919

(-2.307 to 16.146)

NA 23 -0.691

(-9.261 to 7.878)

NA

RANDOM EFFECT ANALYSIS

Inverse variance or 

M-H estimate o f Q

23 2.441

(-4.452 to 9.334)

0(N A ) 23 2.537

(-4.182 to 9.257)

0 (NA)
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Heterogeneity was not statistically significant for either outcome, and hence the 
between study variance was estimated as zero in both instances, which means the 
random effect and the inverse variance weighted estimates are identical. Although 
confidence intervals all include zero, there are quite large discrepancies between the 
two methods of estimation. These results are compared to those derived using 
Bayesian methods below.

7.5.2 Results using Bayesian meta-analysis methods

As for the odds ratio models, all methods were implemented in WinBUGS with the 
intention of using non-informative priors. Focus was restricted to the breast cancer 
endpoint in this section. Again, the priors placed on the between study heterogeneity 
term is given considerable attention. Generation of the MCMC chains was very quick 
for all models considered, so several tens of thousands of iterations were used for both 
the bum in and the run on which parameters were estimated. Autocorrelation was also 

minimal in all models. A brief exposition of the different models used follows.

The fixed normal model -  This model is given in equation (2.5). Continuity 

corrections are applied to calculate standard errors, where required.

The fixed proportions model -  This model is essentially the same as that of equation 
(2.12), the only difference is that the risk different (pi -  P2) is constructed on the last 

line instead of the odds ratio.

The random normal model -  This model is given in equation (2.17). Versions putting 
the prior on the precision and on the standard deviation of the between study variance 

term are both explored.

The random logit bivariate exact model -  This model differs from the random logit 
model because dependent random effects are specified for both the baseline and the 
treatment effects. Such a model has been suggested previously by VanHowleingen et
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al. (Van Houwelingen et al. 1993); a recently described Bayesian formulation using 
WinBUGS removes the need for a continuity correction. (Carlin, 2000) This model is 
somewhat more complex than those previously described because a multivariate 
distribution is specified for the random effects. A prior with a Wishart distribution is a 
natural choice for such random effects. Such priors are not intuitive to work with, 
however, and two variants removing the requirement of a Wishart prior, by allowing 
priors to be placed on the precision and standard deviation parameters respectively 
were also investigated. The model using the Wishart prior is set out below.

ai ~ Bin[pu, (a. + bt)] ct ~ Bin[p2i,(c,. + d .)] i = l  k j=l,2

log it(pu ) = //,.-  delta. / 2 log it(p2i ) = //, + delta t / 2

Mt ~ Multi variateNormal
/

1 1

A

i
M

V
9

i G ) ^ y
(7.3)

fij) _  e (e,+«2/2) +  e(e,*e2n)\ e(e-e2n) ^  +  e («,-«2/2)^

"*>n *>12 ' ~ Wishart
—  -

.*>21 *>22. — —

Re-parameterising the model using a product normal formulation to remove the need 

for a Wishart prior is described elsewhere (http://www.mrc- 
bsu. cam. ac. uk/bugs/faqs/modelling.shtml).

It is not possible to construct models analogous to the fixed or random logit models 
for the risk difference outcome. Poisson, and random proportions models are possible, 

but are not pursued here.

The results of fitting these models with various prior distribution combinations are 

presented in Table 7.9
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Table 7.9 Results of pooling risk differences (per 1000 women) for Breast cancer risk using
Bayesian methods

Number 
o f  studies 
included

Prior for (RD) Prior for 1 / r Estimate for RD 
(per 1000 
women) 

(95% Crl)

Estimate for r  
(95% Crl)

Fixed Normal 
Model
(CC*for SE where 
required)

23 N(0,0.1) NA 2.525
(-4.19 to 9.25)

NA

Fixed Proportions 
Model

Prior for
control/trt
proportion

23 Beta(0.01,0.01) NA -1.763 
(-8.333 to 
3.474)

NA

Random Normal 
model prior on 
precision (CC*for 
SE where 
required) t

23 N(0,1) Gam m a(l,l) -3.372 
(-128.7 to 
121.5)

0.087
(0.052 to 0.164)

23 N(0,0.1) Gam m a(l,l) -3.383 
(-129.0 to 
121.7)

0.087
(0.052 to 0.164)

23 N(0,0.01) Gamma(l,l) -3.385 
(-129.1 to 
121.7)

0.087
(0.052 to 0.164)

23 N(0,0.1) Gamma(10'6,10^) 2.023 
(-5.608 to 
9.495)

6.97X10"6
(5.8xl0"7to 1.18x10' 
4)

23 N(0,0.1) Gamma(10"5,10"5) 1.664 
(-6.758 to 
9.714)

2.41 xlO*5 
(4.22x1 O'6 to 
1.82X10-4)

23 N(0,0.1) Gamma(10‘4,10'4) 0.763 
(-9.164 to 
10.38)

8.65xl0'5
(2.63xl0'5to
3.43X10-4)

23 N(0,0.1) Gamma(0.001,0.001) -0.466
(-13.51 to 12.3)

3.42x1c4
(1.5X10-4 to 8.72x10' 
4)

23 N(0,0.1) Gamma(0.01,0.01) -1.622 
(-22.34 to 
18.92)

0.00160
(8.60X10-4 to 0.0033)

23 N(0,0.1) Gamma(0.1,0.1) -2.502 
(-47.97 to 
43.33)

0.010
(0.0060 to 0.0204)

23 N(0,0.1) Gamm a(l,l) -2.63 
(-127.5 to 
123.9)

0.087
(0.051 to 0.164)
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Random Normal 
m odel—prior on 

s.d.
(CC* fo r  SE where 

required)

Prior for T

23 N(0,1) N (0,1)1(0,) 1.912 
(-6.627 to 
9.625)

1.32xl0'5 
(2.62x1 O’8 to 
2.04x1 O'4)

23 N(0,0.1) N (0,1)1(0,) 1.912 
(-6.627 to 
9.626)

1.32xl0'5 
(2.62x1c8 to 
2.04x1 O'4)

23 N(0,0.001) N (0,1)1(0,) 1.912 
(-6.627 to 
9.626)

1.32xl0*5 
(2.62x1c8 to 

2.04x1 O'4)
23 N(0,1) N(0,0.001)1(0,) 1.912 

(-6.627 to 
9.626)

1.32xl0'5 
(2.62x1c8 to 
2.04x1 O'4)

23 N(0,1) N(0,0.01)1(0,) 1.912 
(-6.627 to 
9.626)

1.32x10'5 
(2.62x1 O'8 to 

2.04x1 O'4)
23 N(0,1) N(0,0.1)1(0,) 1.912) 

(-6.627 to 
9.626)

1.32x10'5 
(2.62x1 O'8 to 
2.04x1 O'4)

23 N(0,1) N (0,10)1(0,) 1.915 
(-6.616 to 
9.613)

1.32xl0*5 
(2.59xl0's to 

2.02x1 O'4)
23 N(0,1) N (0,100)1(0,) 1.919 

(-6.617 to 
9.605)

1.32xl0'5 
(2.59x1 O'8 to 

2.01X10-4)
Bivariate logit 

(Wishart prior)
Priors fo r log 
odds in the trt 
and contrl 
groups

Multivariate prior for  
between study 
variation (1/t*) in trt 
and contrl groups

Covariance matrix 
for f

23 NCOjlO6) Wishart
\

fO.l 0 '
(o 0.1/

>
2
j

1.050 
(-4.604 to 
7.123)

' 0.125 0 . 0 2 5  ) 
( 0 . 0 1 8 - 1 . 1 6 7 )  ( - 0 3 8 3  -  0 . 8 7 0 )  

0 . 1 7 2

( 0 . 0 1 9 - 2 3 2 2 )  J

23 N(0,104)
Wishart f f 1 ° h l11° » /  J

0.261 
(-5.217 to 
7.000)

r0 3 3 8  0 . 1 2 5  

( 0 . 1 4 0 - 2 3 8 1 )  ( - 0 . 9 3 3 - 1 . 9 7 3 )  
0 . 8 4 2

( 0 .1 6 8  - 4 . 8 4 0 )

23 N(0,102)
Wishari

V

"10 (A "

,0 . o h
0.260 
(-4.239 to 
6.056)

' 2.369 0 . 1 6 0  ' j  

( 0 .9 1 1  -  8 . 6 0 8 )  ( - 3 . 7 2 1  -  4 . 0 9 6 )  
3 . 6 4 0

( 1 . 1 9 8 - 1 3 . 3 5 )

23 N(0,102) Wishar
Yo.i o '

! °  o-i

\
a

0.779 
(-4.433 to 
7.622)

0.121 0.026 ' j  

( 0 . 0 1 8 - 1 . 1 0 2 )  ( - 0 . 3 7 5  -  0 .7 6 4 )  
0 . 1 6 0

^ ( 0 . 0 1 9 - 2 . 1 3 6 )  J

Bivariate logit 
(Priors placed on 

precisions)

Prior placed on 
3 parameters 
relating to log 
odds

Prior for between 
study variation in 
treatment and control 
groups (placed on 
precision)

23 NCO.IO6) Gamma(0.0001,0.000 
1)

2.038 
(-4.091 to 
9.257)

' 0 . 0 0 1  0 .0 1 2  'j  

( 0 .0 0 0  -  0 .1 3 8  ( - 0 . 0 8 0  -  0 . 2 9 1 )  
0 . 6 5 8
( 0 . 0 1 5 - 4 . 3 6 7 )  J
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23 N(0,104) Gamma(0.001,0.001) 1.794 
(-4.003 to 
8.747)

0 . 0 0 9  -  0 . 0 1 3  'J 

( 0 .0 0 1  -  0 . 3 1 0  ( - 0 . 3 8 2  -  0 . 3 3 5 )  
1 . 0 3 4

( 0 .0 2 2  -  6 . 2 7 3 )

23 >1(0,10*) Gamma(0.01,0.01) 0.716 
(-5.656 to 
8.709)

'0 . 1 8 7  0 . 1 4 7  'I  

( 0 . 0 3 6 - 1 . 8 0 1 )  ( - 0 . 8 7 2 - 1 . 5 0 6 )  
1 .7 7 1

( 0 . 1 9 2  -  7 . 8 3 2 )  J

23 N(0,10) Gamma(0.1,0.1) 0.233 
(-5.584 to 
8.224)

' 0 . 6 1 7  0 . 2 1 1  )  

( 0 .2 0 1  - 2 3 8 2 )  ( - 1 . 1 5 5 - 1 . 7 5 1 )  
1 .6 3 1

( 0 .3 8 7  -  6 3 6 9 )  J

Bivariate logit 
(Priors placed on 

standard 
deviations)

Prior fo r between 
study variation in 
treatment and control 
groups (placed on 
standard deviation)

23 N(0,10*) N(0,0.0001)1(0,) 1.908 
(-4.338 to 
9.557)

'0 . 0 0 5  - 0 . 0 0 3  )  
( 0 . 0 0 0 - 1 . 0 0 3 )  ( - 0 . 6 4 3  -  0 .6 7 3 )  2.02

( 0 . 1 0 7 - 0 . 2 3 3 )  J

23 N(0,104) N(0,0.001)1(0,) 1.376 
(-4.986 to 
9.050)

'0 . 0 2 6  0 . 0 1 8  

( 0 . 0 0 0 - 1 . 6 4 6 )  ( - 0 . 6 0 7 - 1 . 3 4 4 )  
1 .9 5 8

(0.102 -  9 . 9 4 8 )  J

23 N(0,10*) N (0,0.1)1(0,) 1.180 
(-5.150 to 
9.048)

' 0 . 1 0 3  0 .0 1 1  'J 

( 0 . 0 0 0 -  2 . 2 7 )  ( - 0 . 9 2 1 - 1 . 5 1 7 )  
1 . 5 4 2

^ ( 0 . 0 5 8 - 8 . 1 1 8 )  J

23 N(0,10) N(0,1.0)1(0,) 1.100 
(-5.209 to 
8.682)

'0 . 1 5 3  0 . 0 1 2  'j  

( 0 . 0 0 0 - 1 . 4 7 6 )  ( - 0 . 5 0 6 - 1 . 0 2 7 )  
0 .7 1 0

( 0 . 0 1 8 - 3 . 8 3 8 )  J

* CC -  Continuity correction factor
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There is a lot of variation between the results in the table. The first striking feature is the 
gross difference in the results from the two fixed effect methods. Great variation is also 
observed in the random effect models, but there is less variation in pooled estimates to 
the specification of the prior for the fixed normal model which placed a prior over the 
standard deviation scale for the between study variance term. These results appear much 
more stable than those which placed Gamma priors on the variance scale. Although the 
more complex bivariate models fitted and could be updated in WinBUGS without 
problem, results were not stable. Interestingly, reducing the bivariate variance model to 
a function of two univariate parameters, and placing priors on the standard deviation 
scale did appear to improve the stability considerably.

7.5.3 Discussion of combining sparse data on the risk difference scale

Great variation between estimators is evident for both classical and Bayesian methods. 

In a similar fashion to that observed for the odds ratio scale, Bayesian methods are 
hampered by the difficulty of placing non-informative priors, particularly on the 
variance parameters. Unlike the odds ratio scale, no classical exact methods exist for 
either fixed or random effect methods. The Bayesian bivariate random effect model 
described by Carlin does use “exact” simulation methods, and has the added advantage 
that one can perform the modelling on the most appropriate scale from a statistical point 
of view, and then generate inferences for whatever derived parameters might be desired, 
by simulation. (Carlin, 2000) This does remove the objections from a statistical point of 

view of using the risk difference scale for meta-analysis. Unfortunately, due to the 
stability problems above it cannot be recommended for routine use with datasets 
containing sparse data. It would be possible to use data inflation in conjunction with 
these models for estimating the risk difference. This is not pursued here; problems with 

tail area estimation might still remain. Another potentially promising approach is the use 
of re-sampling methods for estimating the pooled treatment effect on the risk difference 

scale. This is considered in the next section.
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7.6 Application of re-sampling methods to sparse event meta-analysis

Assumptions made by many of the methods of combining studies have been considered 
throughout this chapter. It has been stressed that part of the theoretical appeal of 
Bayesian methods is that they require fewer modelling assumptions. However, it has 
been shown in Sections 7.3.2 and 7.5.2 that there are sometimes problems with the 
stability of these models, particularly those incorporating one or more random effect 
term. This section considers the use of re-sampling methods in a Classical framework as 
an alternative method for constructing confidence intervals for the pooled effect size 
which requires fewer assumptions than more standard approaches.

7.6.1 Applying Bootstrap methods to meta-analysis

An alternative Classical approach which avoids the need for the assumption that the 
pooled effect size is normally distributed is the use of the Bootstrap re-sampling 
method. (Efron and Tibshirani 1993) To the author’s knowledge such a technique has 
only been used twice before in a meta-analysis context. The only application to a 
medical meta-analysis dataset was described by Smith et al (Smith et al. 1995a), where 
it had been used to estimate the standard errors of a regression slope coefficient from 
individual studies to be combined in a meta-analysis (coincidentally) investigating the 
risk of breast cancer risk and duration of oestrogen use. (Steinberg et al. 1994) The 
method was compared to standard parametric estimates, and results obtained were very 
similar. Smith et al. (Smith et al. 1995a) comment that bootstrap methods are an 

attractive alternative to parametric methods, especially in evaluating heterogeneity by 
examining the histogram of sampled means, but they need further investigation for 

application in meta-analysis.

Adams et al. (Adams et al. 1997) use re-sampling methods on ecological datasets 
combining standardised mean differences. Bootstrapped estimates for fixed and random 

effect models were compared to standard methods. In addition, re-sampling methods 
were used to obtain significance levels for a randomisation test, which is analogous to 
the standard heterogeneity test. The results of this previous work (Adams et al. 1997)
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indicated that, in the examples examined, the bootstrap confidence intervals were 
generally wider for the fixed effect model, but in broader agreement under the random 
effect model. Tests for heterogeneity were in broad agreement, but the bootstrap result 
was more conservative in a small proportion of cases. The motivation for the use of 
these methods by Adams et al. (Adams et al. 1997) was a concern that distributional 
assumptions of standard meta-analysis methods were not valid for sparse data. It should 
be noted, however, that the datasets they examined considered continuous outcomes 
only, and hence the issue of sparse binary data was not addressed.

7.6.2 Pooled estimates, confidence intervals, and heterogeneity statistics using the 
Bootstrap

The premise behind the Bootstrapped confidence intervals is simple, but quite computer 

intensive; (Efron and Tibshirani 1993) it is outlined here as it is applied to the 
postmenopausal hormone therapy trials. The 23 studies to be meta-analysed are sampled 
with replacement to produce a new dataset including 23 studies (i.e. each original study 
may appear once, multiple times, or not at all). The statistics of interest - the fixed and 
random effect pooled estimates and the Q statistic - are calculated from this new dataset. 
This procedure is replicated several thousand times, and the results from each 

replication are combined to form a dataset from which inferences about the statistics of 
interest can be made. For instance, calculating the proportion of times the Q statistic was 
more extreme than the one calculated for the original dataset produces a /?-value which 
is not dependent on the test statistic being approximately chi-square distributed. 
Confidence interval estimates for the pooled estimates can also be constructed using the 
distribution of effect sizes from the sampled data. Three different estimates are often 
calculated, namely: 1) those based on normality assumptions but using the bootstrap 

estimate of standard error, 2) the percentile confidence interval, where the a/2 and 100- 

a/2 centiles of the sampled distribution are calculated; and 3) the bias-corrected 

confidence interval - a modification on 2) which adjusts for the fact that the bootstrap 
distribution may not be centered around the observed estimate. The latter has been 

recommended for general use. (Efron and Tibshirani 1993)

Alex Sutton Ph.D. Thesis, December 2001 296



Chapter 7 Synthesis o f  rare outcomes

Bootstrap homogeneity statistics for the postmenopausal hormone therapy trial meta
analysis based on risk differences

Classical estimates of Q for cardiovascular and breast cancer mortality on the risk 
difference scale (inverse variance method) are 10.85 (p=0.977) and 7.67 (p=0.998) 
respectively. When 2000 bootstrap replications of these test statistics were calculated, a 

more extreme result was observed 738 times for cardiovascular mortality and 833 times 
for breast cancer mortality. Hence p-values for these re-sampling tests are 0.37 (p -  
738/2000) and 0.42 (p -  833/2000) for cardiovascular mortality and breast cancer 
mortality respectively. Although still non-significant, these are considerably lower than 
the standard estimates. Histograms of the distributions of the samples for the values of 
Q for CHD and breast cancer mortality are displayed in Figures 7.5 and 7.6 respectively. 
Certainly the distribution of Q for the breast cancer example looks unusual, and it is bi- 

modal. Chi-squared distributions on 22 degrees of freedom are superimposed over the 
histograms, clearly indicating the sample distributions are shifted along the x-axes from 
the theoretical test statistic distributions, although the distributional shapes are quite 

similar.
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Figure 7.5 Distribution of the Q statistic from 2000 bootstrap samples for coronary
heart disease outcome
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Figure 7.6 Distribution of the Q statistic from 2000 bootstrap samples for breast
cancer outcome
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Calculating bootstrap confidence intervals for the risk difference outcome measure

Longer bootstrap runs of 5000 samples were used to estimate confidence intervals for 
the pooled treatment difference, established from repeated runs using increasing 

numbers of samples until the estimates stabilised. Since z2 was estimated to be zero for 

both outcomes, the fixed and random estimates are identical. The confidence intervals 
produced by the three bootstrap methods are displayed in Table 7.10, where the classical 
fixed effect and a Bayesian random effect model are also included for comparison.

Table 7.10 95% Confidence/credible intervals for the pooled risk difference per 
1000 women using different methods of estimation

Method CHDmoi
Interval

rtality 
Interval width

Breast cance 
Interval

r mortality 
Interval width

Classical Mantel- 
Haenszel

(-2.307 to 16.146) 18.453 (-9.261 to 7.878) 17.139

Classical inverse 
variance

(-4.452 to 9.334) 13.786 (-4.182 to 9.257) 13.439

Bayesian (Stable 
logit formulation)

(-6.876 to 8.948) 15.824 (-6.627 to 9.626) 16.253

Bootstrap normal (-3.195 to 8.078) 11.273 (-1.916 to 6.991) 8.952

Bootstrap percentile (-1.065 to 10.096) 11.161 (-4.172 to 4.899) 9.071

Bootstrap adjusted (-0.832 to 10.830) 11.662 (-3.985 to 4.946) 8.931

Histograms and normal plots of the sample distribution of the effect size estimates the 
bootstrap confidence intervals are based on are provided in Figure 7.7. The distributions 
are highly skewed for both outcomes, although their skewness is in opposite directions. 
There are clearly big differences in both the width and location of the confidence 
intervals between the methods for both outcomes. In both instances the Mantel-Haenszel 
is the widest, followed next by the Bayesian interval, then the classical inverse variance 
interval, with the bootstrap based estimates being the narrowest. These results contradict 
those found using previous datasets, where Bootstrap confidence intervals were found to
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be wider than those of standard methods. (Adams et al. 1997) Just as dramatic as the 
difference in the width of the intervals is the variability in their location. While no 
treatment difference is significant at the 5% level, the proportion of the interval either 
side of zero varies greatly, especially for the CHD mortality outcome.
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Figure 7.7 Histogram and normal plots for sampling distribution of the pooled 
estimate of the risk difference per 1000 women
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It is interesting to compare the Bootstrap distributions of the risk difference, with the 

posterior distributions obtained from a bivariate random effect Bayesian analysis. In the 

latter, the posterior looked symmetrical for the risk difference parameter (Figure 7.8). 

Hence, the Bootstrap sample, and the Bayesian posterior distributions appear to conflict.

Figure 7.8 Example histogram posterior distribution for the risk difference for
breast cancer data

i ---------------- 1--------------------------------- 1----------------1----------------1----------------1----------------1----------------1
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Risk Difference Per 1000 Women

.05  -

Using the bootstrap to inform about the random effect distribution

Figures 7.9 and 7.10 plot histograms of the risk difference for breast cancer and 

cardiovascular mortality risk from the postmenopausal hormone therapy trials. There is 

a suggestion that the distribution of effect sizes are non-normal in both instances. This 

can be largely attributed to the sparse event data in the studies in this extreme dataset. 

The appearance of these plots raises concerns about the appropriateness of a normally 

distributed random effect parameter.
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Figure 7.9 Histogram of breast cancer mortality risk difference estimates
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Figure 7.10 Histogram of cardiovascular mortality risk difference estimates
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It is very difficult to consider the distribution o f random effects for this dataset, due to 

the apparent lack o f heterogeneity reported by the Q statistic, leading to a value for the
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between study variance o f zero for classical analyses. However, these histograms 

suggest that the specification of Normally distributed random effects may not be 

appropriate. The highly irregular shape seen in figure 7.10 can largely be attributed to 

the fact that the outcome is so rare not one event is seen in many studies, hence the spike 

at 0. Placing a mis-specified distribution on the random effects may lead to over

shrinkage o f individual studies. Alternative specifications, such as using a t-distribution, 

which would have heavier tails and therefore accommodate outliers better may be a 

more suitable choice. Other options include using non-parametric models or mixture 

distributions. Such a specifications would all be possible using software such as 

WinBUGS. A further idea, using bootstrap methods, would be to produce a 

bootstrapped distribution for the between study variance. This could be plotted as a 

histogram, similar to those above, then and a “well” fitting parametric distributions) 

could be established, which could inform the distributional form to be specified in the 

meta-analysis model.

Discussion o f the use o f the Bootstrap

It is difficult to draw many firm conclusions from the application of the bootstrap to a 

single sparse meta-analysis dataset. The homogeneity re-sampling test results are very 

different from /7-values derived from the appropriate chi-squared tables. It is unclear 

whether these are to be trusted, or whether they are an artefact of the extreme dataset 

under consideration. The bootstrap confidence intervals were the narrowest of all the 

methods observed. Like the other novel methods examined in this chapter, the 

performance o f bootstrapped confidence intervals needs further examination using 

simulation methods.

7.7 Sensitivity analysis for the postmenopausal hormone therapy trial 

meta-analysis

Perhaps the strongest assumption made in the postmenopausal hormone therapy trial 

meta-analysis concerns not explicitly reported data. From Table 7.1 it can be seen that
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outcomes were not explicitly mentioned for 13 and 14 o f the trials for cardiovascular 

and breast cancer events respectively. In the original analysis, and in analyses in this 

chapter up to this point, it has been assumed that when no outcomes were reported then 

none occurred. This is a large assumption, and uncertainty concerning the data from 

over half the trials included has a potentially serious impact on the meta-analysis results.

Sensitivity analyses are underused in meta-analysis, though they are explicitly 

recommended in guidelines. (Sutton et al. 2000a) An approach which could be taken is 

to exclude trials for which there is doubt about the outcome data. However, since this 

would exclude more than half of the trials, this is not ideal, especially as there may be a 

relationship between outcomes and the probability of them being reported. Basing a 

meta-analysis only on studies where there is certainty under this scenario would produce 

a biased result, as this is a type of publication bias. A further approach would be to 

impute extreme values for the uncertain outcomes to assess the extent to which the 

pooled estimate is influenced. However, with so many uncertain data points, it is 

difficult to define what values could be considered extreme but still feasible.

Recently, a sensitivity analysis method to assess the impact o f bias in reporting of 

outcome variables within studies on meta-analyses was described. (Hutton and 

Williamson, 2000) This method addressed the impact o f the situation where outcomes 

with significant results are more likely to be reported, and hence can be considered a 

type of publication bias. Values were imputed for outcomes not reported in trials known 

to exist in the topic o f interest.

Although a similar approach could be adopted here, due to the large number of studies 

which did not report explicitly the outcomes of interest, many permutations of possible 

true reporting patterns exist, which would require an extremely large number of 

analyses. A more general simulation approach is described and applied here. Because so 

many studies have uncertainty regarding outcomes it would be a very laborious task to 

re-run the meta-analysis with different values for the uncertain values individually, so 

the approach taken here is to generate simulated values for the uncertain values under 

different broad scenarios and examine the variability and range of the pooled estimates 

produced by these datasets.
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7.7.1 Simulation sensitivity analysis investigating potential impact of unreported 
outcomes

Although conceptually simple, the author is unaware o f any previous attempts at a 

sensitivity analysis like the one described below. The process is illustrated using the 

cardiovascular outcome measure, about which there was uncertainty in 13 studies. For 

illustration, a fixed effect Bayesian exact model is used to combine studies, although the 

methods can be applied to any model. A fixed effect model was used because the 

computation time is reduced considerably, and since heterogeneity was estimated to be 

small from this dataset, a random effect model would give very similar answers.

It was decided to use a two stage random process to simulate data from the studies 

where there was uncertainty; the data in the other studies was always fixed at the 

observed values reported in the original meta-analysis. For each study where no 

outcomes were reported, it was assumed that outcomes would have been reported if they 

had occurred (i.e. there truly were no events) with probability,/?, also there was a (1-/?) 

probability that outcomes may have occurred but not been reported. For the studies 

where it was deemed outcomes could have occurred, each individual in each arm of 

each study had a fixed probability o f having the outcome in question, although the 

probability could be fixed at different values for treatment and control arms. Hence, the 

number of events in each arm were assumed to be drawn from a binomial distribution, 

with n equal to the number of people randomised to the arm, and probability of event 

equal to p treat or p COn tro i, depending on the arm.

Ideally, a new replicate o f the simulated dataset could be made at every iteration of the 

Gibbs sampler within WinBUGS, but when a model requires the iterative results of a 

simulation solution (which the meta-analysis model does) this is not possible. Slightly 

more cumbersome, but still feasible, is to simulate the data using one WinBUGS 

program (although any other program which is able to simulate the data could be used), 

and then feed this simulated data into a meta-analysis routine in WinBUGS. These
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Figure 7.11 Schematic representation of the simulation/analysis process

2. For every study for which the 
outcomes are uncertain simulate data 

using the following procedure:

For a specified p

\  o-p)

potentially data 
not reported

Outcome is 
truly zero

generate events in treatment and control 
groups from binomial distributions for 

specified p tr e a t  and p c o n tr o l

Bui(«coatool. Pcontrol) ^ ^ (P treat,Ptreat)

Number of 
events in 
treatment group

Number of 
events in control 
group

1. Start with the original dataset

4. Meta-analyse the n datasets and 
summarise the range of inferences 
obtained

3. Repeat step 2. many times (say 
h >100) to generate n datasets with 
imputed data for the uncertain 
outcomes.
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multiple simulated datasets can then be meta-analysed in one sampler run by setting the 

WinBUGS meta-analysis model code to loop over all datasets, thus greatly reducing the 

human time needed to carry out such an exercise. The whole simulation/analysis process 

is illustrated schematically in Figure 7.11.

Several sets of conditions for the simulated data are considered. The probability that a 

study would have reported the adverse outcomes had they occurred, p, is set to 0.7,0.5 

and 0.3. Two different values for the combination ofp trea t and p control are explored. Both 

parameters’ values are first set to 0.01, the approximate event rate in both arms for 

studies that reported outcomes explicitly. Then, while keeping pcontrol fixed at 0.01,/?/rea, 

is set at 0. These second set o f  values were defined to explore the scenario where studies 

were more likely to report adverse events if  they occurred in (at least) the treatment arm. 

This is a reasonable concern because original study investigators may have felt events 

observed in the control group may have been less cause for concern, because there is no 

possibility they could be due to the new treatment (This point was raised in the original 

correspondence to the BMJ following the original publication o f the meta-analysis 

(Hemminki and McPherson, 1997)). Examining every combination of p, ptreat and 

Pcontrol') specified above, resulted in the six simulations reported in Table 7.11.
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Table 7.11 Results of simulation studies, for cardiovascular endpoint & odds ratio scale

p Ptreat pcontrol

Total

number of 

simulations

Mean

median

OR

(s.d.)

Mean

lower

2.5%

(s.d.)

Mean

upper

97.5%

(s.d.)

Range

lower

2.5%

Range

upper

97.5%

Number of 

simulations 

95% CrI 

included only 

values <1

Number of 

simulations 

95% CrI 

included only 

values >1

0.7 0.01 0.01 100 1.59

(0.41)

0.63

(0.15)

4.51

(1.58)

0.29-1.16 1.70-9.82 0 2

0.7 0.00 0.01 100 1.30

(0.36)

0.48

(0.11)

3.88

(1.43)

0.19-0.66 1.14-6.78 0 0

0.5 0.01 0.01 100 1.50

(0.43)

0.64

(0.16)

3.94

(1.54)

0.32-1.11 1.41-9.14 0 2

0.5 0.00 0.01 100 1.05

(0.30)

0.41

(0.10)

2.91

(1.10)

0.19-0.64 1.03-6.64 0 0

0.3 0.01 0.01 100 1.47

(0.45)

0.66

(0.18)

3.58

(1.52)

0.30-1.11 1.24-10.54 0 5

0.3 0.00 0.01 100 0.89

(0.27)

0.35

(0.09)

2.33

(0.90)

0.16-0.61 0.82-5.64 1 0
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It can be seen from Table 5.11 that 100 datasets were simulated for each of the six 

scenarios. The choice was largely arbitrary: the distribution of the odds ratios appeared 

reasonably smooth when histograms for each o f the 100 simulations were constructed, 

and using 100 simulated datasets also meant the amount of computer processing time 

was reasonable. A bum in o f 1000 followed by 4000 iterations was used to produce 

posterior distributions for each o f the 100 simulated meta-analyses within each scenario.

The mean values over all the simulations for the pooled odds ratio and its 95% 

confidence are provided in the table for each scenario. These figures could be 

considered the sample mean parameter values given the conditions placed on the 

uncertain values. Table 7.11 would suggest that the original pooled estimate (1.81(0.61 

to 6.04) using the same meta-analysis assuming all uncertain values are zeros) is 

reasonably robust over the conditions explored in the simulations. When p trea t and p control 

were both set to 0.01, two o f the 100 simulations produced credible intervals for the 

treatment effect that included only values greater than 1 for postmenopausal hormone 

therapy for bothp  — 0.7 andp  = 0.5.This increased to five whenp  — 0.3. Only one CrI 

that did not contain 1 was produced when p trea t was fixed at 0; this occurred when p  = 

0.3. Hence, since inferences changed in no more than 5% o f simulations over the six 

scenarios explored, if  it is believed that these scenarios cover the range o f possibilities 

which could have actually occurred, then it can be concluded with a reasonable amount 

of certainty that inferences are robust to the uncertainty inherent in the data. However, it 

should be noted that there is considerable variation in the parameter estimates, and 

hence are not robust.

7.7.2 Extension to simulation sensitivity analysis

The previous section outlined a conceptually simple and powerful method of checking 

the robustness o f a meta-analysis to uncertainty in outcome data from multiple studies. 

Such an approach reduced the dimensionality of the problem by eliminating the need to 

consider ranges o f data for studies individually, by generating simulated data from
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specified distributions. The approach can be made more general still, reducing the need 

to simulate multiple scenarios.

Consider again the cardiovascular endpoint. Table 7.11 provides results of simulations 

where p  is the probability a study would publish the endpoint, if  any events had 

occurred. In reality, it is difficult to know the likely range of values for p. In such a 

situation, a uniform distribution from 0 to 1 can be placed on p  allowing p  to vary 

between individual simulated datasets. In this way the sensitivity analysis considers all 

possible values for p, and considers them on an equal weighting. If prior information 

were available, perhaps from external sources such as an empirical investigation into the 

fullness of reporting o f adverse events in trials, a different distribution could be placed, 

perhaps on a limited range o f values, or giving more weight to values believed to be 

more likely.
i

Further, the probability o f an event for any patient in any trial was assumed to be 

constant in the previous example, but this restriction can also be lifted by placing 

distributions on the probabilities of events in both arms. For example, below a 

N(0.01,0.0026) distribution is placed on bothp trea t  and pco n tro l-  This is derived by 

assuming the probability o f an event for an individual in either group has mean 0.01, 

and lies between the range 0.005 and 0.015 95% of the time. In this example, 300 

datasets were simulated, and the results provided in Table 7.12.

There is now a considerable increase in the numbers of simulated datasets that produced 

a significant odds ratio with a CrI that does not include 1. This is not surprising 

considering that a wider range of values for p  were chosen, and that the rates in the two 

arms of a single trial were allowed to vary. Datasets leading to both harmful, and 

protective pooled odds ratios were generated. If the distributions placed on the 

simulation parameters are considered to yield only realistically possible values, then the 

conclusions o f this meta-analysis are brought into doubt.
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Table 7.12 Results of simulation studies, for cardiovascular endpoint & odds ratio scale placing distributions on data simulation

parameters

p Ptreat Pcontrol

Number

of

simulat

ions

Mean

median

OR

(s.d.)

Mean

lower

2.5%

(s.d.)

Mean

upper

97.5%

(s.d.)

Range

lower

2.5%

Range

upper

97.5%

No.

simulations 

OR sig <1

No.

simulations 

OR sig > 1

U(0,1) N(0.01,

0.0026)

N(0.01,

0.0026)

300 1.45

(0.65)

0.72

(0.31)

3.30

(2.11)

0 .1 6 -

2.54

0 .4 4 -

19.94

9(3%) 37 (12.3%)

Alex Sutton Ph.D. Thesis, December 2001



Chapter 7 Synthesis o f rare outcomes

7.7.3 Discussion of simulation sensitivity analysis

The previous sections have discussed a computer-intensive simulation approach to 

sensitivity analysis. Although the approach was developed here on an individual meta

analysis dataset, there is no reason why a similar approach could not be used in other 

applications where there is concern regarding biased reporting of outcomes.

Additionally, there is often uncertainty in data extracted from study reports, and 

differences in reporting practices mean data often have to be transformed often 

requiring assumptions before it is combinable, mean uncertainty regarding the data in 

a meta-analysis dataset will often exist. It may be desirable to include this uncertainty 

directly into the meta-analysis model, eliminating the need for a sensitivity analysis. 

Incorporating all uncertainty in a single stochastic model was one of the aims of the 

Confidence Profile method (Eddy et al. 1992) (Section 3.6). However, in examples 

such as the oestrogen replacement therapy one considered here, it is not obvious how 

this could be done satisfactorily. Re-running the meta-analysis many times imputing 

plausible/possible values for parameters for which data is uncertain, provides an 

appealing alternative. It should be noted that in principle a Bayesian model is not 

required to use this method, and indeed the use of Classical methods may make the 

process quicker. Nonetheless, in this particular example the problems associated with 

the sparse data make the Bayesian approach appealing. Spreadsheet programs 

allowing Monte Carlo type sampling could be used for this purpose.

Many extensions to the approach outlined above are possible, and can be tailored to 

the specific example in hand. For instance, the code generating the simulated data 

could be made more complex as required, so that multiple sources o f uncertainty 

could be explored in a single simulation exercise. A further issue which needs 

clarification is the form the distributions for the parameters generating the simulated 

data should take. Two distinct approaches are possible. The first is to place uniform 

distributions over all theoretically possible values, and the second is to place 

essentially an informative prior distribution over the possible values.

314



Chapter 7 Synthesis of rare outcomes

The usefulness o f such an approach largely depends on how reasonable and realistic 

the simulated data are, so careful thought should be given to the simulation structure 

and parameter values used.

7.8 Considering non-randomised evidence of adverse events 

associated with postmenopausal hormone therapy

One of the criticisms o f the original analysis o f the postmenopausal hormone therapy 

adverse event meta-analysis was that there was much observational evidence available 

which had not been considered. For example, the nurses* health study alone has 

(Grodstein et al. 1997; Colditz et al. 1995) followed over 120 000 women since 

1976, in which over 3600 women died, and each o f whom was matched with 10 

controls. Interestingly, this observational evidence is considered as being superior to 

the randomised evidence by several o f the authors o f letters responding to the original 

RCT meta-analysis.

In this instance, there would be little point in performing a conventional meta-analysis 

which combined the observational evidence with the randomised evidence with the 

studies on an “equal footing” because the estimates from the observational evidence 

would completely “swamp” the evidence from the randomised studies. It would be 

possible to use a hierarchical model, as used in Chapter 5 to combine the cholesterol 

studies, putting a constraint on the weight given to the observational evidence, but 

since the observational evidence is questionably superior in this instance, it is 

questionable to whether this would be sensible.

For the purposes o f illustration of how to proceed with including non-randomised 

evidence in the synthesis, attention is restricted to breast cancer evidence in the 23 

RCTs trials described above, and the nurses’ health study. (Colditz et al. 1995) The 

Nurses health study reported 923 cases of breast cancer over 344,942 person years of 

follow-up in those subjects who did not take hormone therapy. In the group which 

took conjugated estrogens alone, 270 cases of breast cancer were observed in 89,427
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years o f follow-up. This produces a relative risk, adjusted for many potential 

confounders, o f  1.32 (1.14 -1.54). The data being combined are summarised in Table 

7.13. The RCT estimate used is the one produced by the exact logit fixed effect 

Bayesian model, pooling data from all 23 trials. The weights given in the last column 

of Table 7.13 correspond to those that would be allocated if  a fixed effect inverse 

variance weighted model were applied to both sources of evidence. The RCTs are 

given 3% o f the weight. Pooling these results “at face value” produces odds ratio of 

1.31(1.13 to 1.52) (both fixed and random effect estimates are the same). Not 

surprisingly, the pooled estimate is very close to that from the Nurses Study.

Table 7.13 Summary data from 23 RCTs and Nurses’ Study on risk of breast
cancer and oestrogen therapy

Source OR/RR (95% ln(OR/RR) var(ln(OR/RR)) Fixed effect 

Cl/Crl) weight (%)

23 RCTs 0.91

(0.39 to 2.20)

-0.089 0.197 5.08 (3)

Nurses’ Study

(Prospective

Cohort)

1.32

(1.14 to 1.54)

0.278 0.006 166.7 (97)

The relative weighting given to the types of evidence is only based on the precision of 

the estimates, and does not take into account many other relevant factors, many of 

which have been considered above and in previous chapters, including the uncertainty 

in the trial outcome data and bias due to confounding in the observational study. The 

next section considers simple plots which may aid the interpretation of the data, and 

any conclusions drawn from it.
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7.8.1 Sensitivity plot to weighting of different sources of evidence

In the absence o f any quantitative guidance on how much more/less reliable, or 

less/more biased the RCT evidence is compared to a large cohort study like the 

Nurses’ study, it may be instructive to examine the effect of discounting the weight 

given to each source o f evidence. A graphical plot which does this is presented in 

Figure 7.12. Here the pooled estimate and 95% confidence interval for the RCTs is 

displayed on the left hand side on the figure, and that for the Nurses’ study on the 

right hand side. The pooled estimate produced by combining both sources using the 

standard fixed effect models is given in the middle. The solid line connects the point 

estimates for the different pooled estimates if  each source of evidence was down 

weighted by a percentage o f the original fixed effect weight, as indicated on the x- 

axis with down-weighting o f the Nurses’ study to the left, and the RCTs to the right, 

and the dotted lines connect the 95% confidence intervals for each of these estimates.

Using this plot, the effect o f discounting sources of evidence can be assessed. If 

inferences remain constant over values one considers reasonable then the evidence is 

robust. For example, an extreme viewpoint would be to consider only RCT evidence 

as being at all reliable, and hence only the result considered would be that at the left 

hand side of the plot; conversely if the RCT evidence is considered totally unreliable, 

then the only result would be that on the right hand side of the plot. In general it is 

necessary to consider the robustness to inferences over some portion of the graph. 

Alternatively, the plot tells us under what weighting conditions inferences would 

change. A plot such as this may be particularly relevant when it is not clear if  evidence 

from one source is superior to the other (such as for the oestrogen therapy data) and 

the effect of down weighting both sources may be of interest. Such an approach has a 

lot in common with the inverse inference approach considered by Glasziou et al. 

(Glasziou et al. 1990) In this example inferences change at the point where the cohort 

studies are given 35% of their original weight, down weighting them further produces 

a pooled estimate which is non-significant.
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Figure 7.12 Sensitivity plot exploring the influence of down weighting sources of
evidence

Pooled RCTs
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This plot is conceptually similar to the sensitivity plot advocated by Thompson 

(Thompson, 1993) for assessing the effect of weighing individual trials in a meta

analysis by varying the value o f the between study variation. A further sensitivity 

analysis plot for meta-analysis which has been advocated, illustrates the impact on the 

pooled estimate o f individual studies.(Tobias, 1999) The above plot extends this type 

of sensitivity analysis to a cross-design situation. In combination these plots provide a 

powerful way o f exploring the robustness of the synthesis findings.

The idea o f exploring the effect o f discounting the weight given to sources of evidence 

based on the precision o f the estimate alone is not new, and several schemes have 

been proposed for changing the weighting in a meta-analysis based on a quality 

assessment of the primary studies. (Tritchler, 1999; Berard and Bravo, 1998) The 

issue of study quality and its impact on a cross design synthesis is given further 

consideration in the discussion (Chapter 9).
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7.8.2 A Bayesian approach to assessing the sensitivity of the weighting of 
different sources of evidence

The previous section described a plot to assess the robustness to a pooled result by 

discounting or down weighting sources of evidence. A fixed effect model was used to 

combine the results o f an RCT meta-analysis with those o f the largest observational 

study.

A natural Bayesian approach to this sort of sensitivity analysis is to derive a prior for 

the effect size in the RCT meta-analysis using the observational studies. For example, 

the estimate o f the effect for the observational study (or pooled effect size if  more than 

one observational study is been considered) could be specified as the mean for a 

normally distributed prior. By varying the variance specified for this normally 

distributed prior, the influence o f down weighting the observational evidence can be 

ascertained. This has been illustrated recently for a synthesis of studies o f electronic 

fetal heart rate monitoring (see Chapter 6) where the observational evidence was used 

to derive a prior distribution for a meta-analysis of the randomised evidence. (Sutton 

and Abrams, 2001) Three different standard errors were used; namely i) the ‘naive’ 

one using the variance resulting directly from a meta-analysis o f the observational 

evidence, ii) an ‘equal’ one using a prior with equal variance to the RCT meta

analysis and hence weighting each source o f evidence equally, and iii) a ‘sceptical’ 

one where the variance o f the observational studies is one quarter o f the randomised 

evidence. Clearly, if  once considered the observational evidence to be less susceptible 

to bias than the RCTs, (which although uncommon, may be the case for the HRT 

adverse outcome synthesis) then a further option would be to use the RCT evidence to 

derive a prior for the observational studies, allowing it to be down weighted by a 

degree.
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7.9 Example 2: Breast implant side effects: Meta-analysis of sparse 

outcomes from observational studies with different designs

Epidemiological studies often examine the risks related to rare outcomes. If cohort 

studies are used to examine rare outcomes then they have to be large even to observe a 

small number o f events. Case-control studies are often used in such situations due to 

greater ease o f implementation.

As previous sections o f this chapter have demonstrated, meta-analysis is a potentially 

valuable tool for examining risks associated with rare events because of the increase 

in statistical power gained from combining different studies’ results. It has been 

shown that many o f the traditional methods of meta-analysis produce questionable 

results, or break down altogether, when combining data from 2 by 2 tables with sparse 

events. Bayesian alternatives which use more exact methodology were also discussed, 

although problems with placing priors on the between study variance parameters) in 

random effect models were noted.

Further complications exist if  not all the studies data can be represented in a 2 by 2 

table. For example, a recent meta-analysis of breast implants and connective tissue 

disease (Perkins et al. 1995) included case-control studies, cohort studies with 

internal comparison groups, and a cohort study using an external comparison group. 

Due to the fact that data from different study designs is being combined and that the 

data cannot be represented in the same 2 by 2 table for all studies exact synthesis 

methods for 2 by 2 tables were not possible. The data available from each study is 

provided in Table 7.14.
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Table 7.14 Epidemiological studies of breast implants and connective tissue 
diseases (reproduced from (Austin et al. 1997))

Case-control studies

Study

Number

Cases Controls Relative risk 

(95% Cl)

Exposed Unexposed Exposed Unexposed

1 1 299 12 1,444 0.40 (0.01,2,74)

2 12 857 23 2,038 1.24 (0.56,2.61)

3 4 247 5 284 0.92 (0.18,4.43)

4 2 272 14 1,170 0.61 (0.07,2.70)

5 1 132 0 100 oo (0.2, oo )

Follow-up studies (internal comparison)

Study Cases Woman-years Relative risk

Number (95% Cl)

1 1 1 616 663 1.08 (0.01, 84.5)

2 5 10 5,847 12,361 1.05 (0.28, 3.39)

3 3 513 11,170 1,170,074 0.61 (0.31,1.80)

Follow-up studies (external comparison)

1 Observed =3 Expected = 1.47 2.04 (0.42, 5.98)

For this meta-analysis Austin et al. (Austin et al. 1997) developed new methodology 

to combine these results across different study designs using ‘exact* methods. 

Essentially, their method manipulates the cohort studies data into the 2 by 2 table 

format used to report the case-control studies, and then uses Mantel-Haenszel type 

formula to combine them. This is achieved by multiplying the denominators in the 

cohort studies by very large numbers. For example, in the first internal comparison 

study above there was 1 exposed and 1 unexposed case with person-time 

denominators o f 616 and 663 woman-years, respectively. In the original analysis, the 

person-time denominators were multiplied by 104; converting the data to 1 exposed
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and 1 unexposed case and 6,160,000 exposed and 6,630,000 unexposed controls. 

While this ingenious approach appears completely satisfactory for a fixed effect 

analysis, no random effect model is developed.

A random-effects model is possible, taking a Bayesian approach, with solutions 

derived using MCMC via the software package WinBUGS. This model, which uses 

the same assumptions about the data as the original fixed effect approach (Austin et 

al. 1997) (other than the implications due to the inclusion of a random effect between 

studies), is described below.

Each of the three types o f studies is modelled distinctly. Firstly, the case-control 

studies are considered. It is assumed that the events in the diseased and non-diseased 

groups are derived from underlying binomial distributions. The difference between the 

logit proportions o f events in the two groups provides an estimate of the log odds 

ratio. This part o f the model is exactly the same as the standard random effects model 

for meta-analysis (equation 2.18). Arranging the data as in Figure 2.1b, the model 

specification is given below for completeness.

a, ~ Bin[pu, (a, + bt)] ct ~ Bin[p2i ,(cf + </.)] i= 1......... 5

log it(pu ) = //, -  d.cci /  2 log it(p2i ) = Mi + d.cct / 2

Mi ~ N[0,105 ] d.cd ~ N[$ S ] ,

where d.cct indicates the treatment effect in the ith case control study.

The cohort studies using an internal comparison group are considered next. The 

expected number o f events in each group, in this example cases of connective tissue 

disease, is calculated as the underlying rate o f disease multiplied by the number of 

person (woman) years observed. Hence,
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expectedij= Xicxj x pyxj j = 1 , . . ,  3

expected2j  = Xic2j x py2J

The observed numbers o f events in each group are assumed to be distributed Poisson 

with rate parameters defined by the expected number of cases,

events Xj ~ Poisson {expected, icij)

events2j ~ Poisson (expected.ic2j)

The difference in the logs o f these rates provide an estimate of the relative risk of 

having connective tissue disease, for those having breast implants against women who 

have not. These again are assumed distributed in an identical manner to the estimates 

from the case control studies.

log (A.Jcv  ) = fij lo g ^ ic ,, ) = M j -  d ie}

/u, ~ JV[0,105] d.ic,~N [(412]

In important point is that the case-control studies estimate an odds ratio, while the 

cohort studies estimate a relative risk. In this model both of these are equated to one 

another, and assumed to be the same quantity. Since the outcome of interest is so rare 

this should be a reasonable assumption.

Now for the cohort study which use an external comparison group. The observed 

number of cases is assumed to be distributed Poisson. There is no need to include a 

woman-year follow-up time term in the model as the expected number in an 

unexposed population assumes equal number of years follow-up, hence,

323



Chapter 7 Synthesis o f rare outcomes

events.eck ~ Poisson(Z.eck) k= 1

An estimate of the log relative risk, d.ec is obtained by specifying the log of the rate in 

the exposed group is the sum o f the baseline rate plus the excess

lo g(d.eck ) = lo g(expected.eck)+d.eck 

d.eci ~ N[$ / ]

Finally, non-informative prior distributions are placed on the parameters o f interest, <j) 

and

(f> ~ Normal^0,106) 

r 2 ~ InverseGamma(0-0§\,Q).00\)

The pooled estimate o f the relative risk for the breast implants and connective tissue 

disease using this model is 0.96 (95% CrI 0.59 to 1.49). This can be compared to the 

fixed effect estimate reported previously (Austin et al. 1997) of 0.98 (0.63 to 1.48). 

Although very similar, the random effect estimate has a slightly wider confidence 

interval which takes into account between study heterogeneity, and the uncertainty in 

its estimation. This example provides an excellent example of the power of 

WinBUGS for fitting flexible example specific models, here where the data of interest 

are in different formats, and is easier to program and more ‘natural’ than the classical 

solution suggested previously.

Several straightforward extensions to this model would be to add uncertainty via 

specification of a distribution for the external risk parameter (it is assumed known in 

the example), and to consider a three level model of the form considered in Chapter 5 

allowing for heterogeneity between types of study.
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7.10 Summary

This chapter has given attention to synthesis of evidence pertaining to rare outcomes. 

A generalised synthesis in areas such as adverse reactions to drugs, which are often 

rare, is appealing since evidence from trials alone is often underpowered. Hence, 

while parts of this chapter concentrate on a meta-analysis situation concerning 

evidence from one study type, much o f the work is relevant to a generalised synthesis 

context and its potential application there is highlighted throughout the chapter.

There are issues specifically relating to meta-analysis of rare outcomes that have been 

considered in this Chapter including the impact of continuity correction factors, 

choice of outcome scale, use o f exact methods, influence of prior distributions and the 

use of non-parametric confidence intervals. This chapter has outlined existing and 

several novel methods o f estimating effect sizes when data are sparse. The novel 

methods include the use o f bootstrap methodology and the use of data inflation in a 

binary meta-analysis context. It has been demonstrated that different conclusions can 

be obtained depending on the method used. Further, rigorous research (that was 

beyond the scope o f this thesis) is required to study the performance of these methods 

before advice can be given on which are recommended. Specifically, simulation work 

i) investigating the performance o f different continuity correction factors on different 

meta-analysis methods, ii) validating the use of data inflation in a meta-analysis 

context, and iii) investigating the performance of bootstrap methods for sparse meta

analysis data is required.

A novel simulation method to assess the potential impact o f missing outcomes 

(potentially non-randomly) is described which could be adapted as a form of 

sensitivity analysis in other meta-analyses where there is uncertainty in the reported 

data. A further sensitivity analysis plot is described which can be used to assess the 

robustness to a synthesis to the relative weights given to the different sources of 

evidence. Finally, a Bayesian model for a synthesis of evidence from observational 

studies with different designs, using exact methods, is described which illustrates the 

flexibility of the Bayesian approach in specifying ‘non standard* models.
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Chapter 8 Meta-analysis of composite measures of benefit and 
harm: a Bayesian exposition of the Net Benefit model

8.1 Introduction

Chapters four and five considered a generalised synthesis of evidence which combined 

information from different study types in a single model. This chapter also considers 

how to combine data from studies with different designs; previously, however, all 

studies were essentially providing estimates of the same quantity, but here different 

study types provide estimates for different parameters in the net-benefit model 

described below. Section 3.11 outlined an approach to generalising RCT results using 

additional information called net benefit which can be summarised by equation 3.5 

repeated below.(Glasziou and Irwig, 1995)

Net Benefit = (Risk Level x Risk Reduction) -  Harm.

In this chapter, the example originally used to illustrate the method - assessing whether 

low-dose warfarin should be given to patients with non-rheumatic atrial fibrillation - is 

implemented using a Bayesian model which attempts to take into account all sources of 

uncertainty. The analysis combines data from several sources relating to different 

quantities required by the model, including several different outcomes. The term net 

benefit as used here should not be confused with the recent usage of the term in the 

health economics literature. (Stinnett and Mulahy, 1998) Although there are some 

similarities in the modelling, economists equate effectiveness to costs to evaluate cost 

effectiveness in contrast with the different clinical outcomes equated here to evaluate 

solely clinical benefit. However, consideration of how costs could be included in the 

modelling presented here is discussed in Section 8.6.

Specifically, this approach utilises separate assessments of the benefit and the harm of 

treatments, and is based on the premise that patient benefit increases with absolute risk 

from the disease. This is not to be confused with the situation considered in Chapter 4, 

where the relative as well as the absolute treatment effect of cholesterol reduction 

increased with risk. (Thompson et al. 1997) Here we are assuming, what is perhaps the
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more common situation, where the relative risk is constant across levels of absolute risk. 

The method further assumes that the harm caused by the new treatment, through 

patients experiencing adverse events, is constant across levels of patient risk. Hence, for 

some treatments a threshold value of patient risk may exist where the risk of an adverse 

event outweighs the benefit o f the treatment, even when the treatment may have been 

shown to be effective, on average in clinical trials but in high risk patients the benefit of 

risk reduction will be sufficient to outweigh harm. This is illustrated graphically in 

Figure 8.1

Figure 8.1 Graphical representation of the net-benefit model (Based on Figure 1 of 
Glasziou and Irwig (Glasziou and Irwig, 1995)). Benefit increases with risk, while 
harm is assumed constant. Net benefit occurs only when risk is above threshold.

Benefit

Threshold

Hence, the model aims to establish the net benefit of treatment for given levels of 

patient risk, opposed to producing a single pooled treatment effect. Although it is 

assumed here that harm is constant across levels of risk, it would be possible for it to 

take any functional form desired if this was thought to be too simplistic.
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8.2 Method outline

Glasziou and Irwig (Glasziou and Irwig, 1995) outline the steps required to apply this 

model. Firstly, they state that an RCT, or a meta-analysis of RCTs, is the most 

appropriate method to estimate the relative risk for the benefit of the intervention. It is 

necessary to check that the assumption that the relative risk does not vary with patient 

risk is reasonable; this will not be the case if the intervention has both positive and 

negative effects on one outcome (e.g. this was potentially true when total mortality was 

considered for cholesterol lowering treatments in Chapter 4 since it has been suggested 

that lowering cholesterol increases rates of accidents/suicides due to drugs changing 

behaviour). Note, it would be possible to model outcome as a function of patient risk, 

using meta-regression models such as those applied to the cholesterol analysis in 

Chapter 4 if  this were appropriate, however this is not pursued here. Further, the meta

analysis data can be used to check that absolute harm is independent of risk. Further 

data on side effects may be available from sources other than RCTs. If these two 

assumptions are satisfied, then the predicted benefit needs to be weighed up against the 

potential harm. In order to do this, both the benefit and harm outcome need placing on 

the same scale. This could be achieved by assessments of quality of life following 

different events. Finally, in order to apply the model usefully, and identify patients who 

should expect benefit to be greater than harm, we need to predict each patient’s risk. In 

order to do this, the major risk factors need identifying and multivariate risk prediction 

equations constructing. This information may come from cohort studies or from RCTs; 

because eligibility criteria for trials are often narrow, population based cohorts studies 

are preferable.
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8.3 Example: Re-analysis of anticoagulants and non-rheumatic atrial 

fibrillation

A re-analysis o f the original example examining the use of anticoagulants for non

rheumatic atrial fibrillation is presented. This analysis uses essentially the same data 

used by Glaziou and Irwig, for reasons of clarity, and to enable comparisons with that 

paper. (Glasziou and Irwig, 1995) It is acknowledged that the analysis is not using the 

most up-to date evidence, and hence should not be considered as definitive.

Data on six trials comparing low dose warfarin for patients with non-rheumatic atrial 

fibrillation to placebo are presented in Table 8.1; references to the original RCTs are 

available elsewhere (Glasziou and Irwig, 1995)
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Table 8.1 Randomised Trial outcome data for low dose warfarin RCTs

Warfarin Group Control group

Trial No. of 

patients

No. of 

strokes

Annual 

rate of 

stroke 

(%)

No. of 

fatal 

haemo

rrhages 

(%)

No. of 

patients

No. of 

strokes

Annual 

rate of 

stroke 

(%)

No. of 

fatal 

haemo

rrhages

% reduction 

in relative 

risk (95% 

Cl)

Boston 212 2 0.41 1 (0.21) 208 13 3.0 0 86 (51 to 96)

Veterans

Affairs

260 4 0.88 1 (0.22) 265 19 4.3 0 79 (52 to 90)

Canadian 187 5 2.5 2 (0.50) 191 11 5.2 0 52 (-36 to 

87)

Atrial Fib, 

aspirin

335 4 1.6 1 (0.40) 336 21 5.6 0 71 (23 to 90)

Stroke

prevention

210 6 2.3 0(0) 211 18 7.4 0 69 (27 to 85)

European 225 20 4.0 0(0) 214 50 12.0 0 66 (43 to 80)
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The final column of Table 8.1 provides the % reduction in relative risk (i.e. (1-RR)%) 

of having an embolic stroke. From these studies, at least, there is little evidence to 

suggest the relative risk is not constant. Using the data in Table 8.1 Figure 8.2 can be 

constructed. This displays the absolute risk difference for strokes and the adverse event 

haemorrhage. This suggests that the reduction in absolute risk of thromboembolic 

strokes (annual % in the control group -  annual % in the treatment group) rises linearly 

with the risk of stroke, while the rate of intacranial haemorrhage seems to be stable 

across varying risks of strokes. Hence both of the required assumptions appear to hold.

Figure 8.2 (Based on Figure 2 of Glasziou and Irwig (Glasziou and Irwig, 1995)) 

Trials of w arfarin in atria l fibrillation showing that benefit (reduction in absolute 

risk of stroke) increases with increasing risk of stroke but that harm  (intracranial

haem orrhage) seems to be constant
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The net benefit equation can now be derived. In the original analysis, a meta-analysis of 

five of six of the trials reported in Table 8.1 (the European trial had not been published 

in time for inclusion in the meta-analysis report used in the original analysis (Singer,

1993)), was used to calculate the reduction in relative risk of a stroke by taking 

warfarin. An odds ratio of 0.73 (0.57 to 0.83) was calculated using the Mantel-Haenszel 

technique in this meta-analysis. For the net benefit equation, it appears that this OR was 

assumed to be equivalent to the RR since 1 -  0.73 = 0.27 was used as the estimated 

reduction in RR in the net benefit equation (3.5).

For this parameter estimate, and the estimates for all the other quantities required for the 

model, the estimated values are assumed to be known, when in fact they were estimated 

from previous studies, and hence the uncertainty inherent in the estimates was not 

accounted for. A natural way to incorporate such uncertainty, which, among other 

advantages, allows confidence intervals for net benefit to be constructed, is through the 

use of simulation methods.

If the distribution of each input parameter required for the model were known then, 

evaluation would be straightforward using Monte Carlo simulation. However, MCMC 

methods (within WinBUGS) are adopted here, as this approach has several theoretical 

advantages over the simpler Monte Carlo simulation approach, which are outlined 

below.

8.3.1 Evaluating the efficacy of w arfarin for preventing strokes

The original analysis result (OR/RR = 0.73 (0.57 to 0.83)) translates to a normal 

distribution on the log scale of

InRR ~ Normal(-0.315,0.0092), 

from which a relative risk reduction can be derived using the equation
(8.1)

RRR = 1 -  exp(lnRR).
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Although such a specification could be included in the net benefit model, since this 

would appear to accurately represents the findings of the original meta-analysis, a better 

approach is to incorporate all the data and repeat the meta-analysis within the model 

specification. This has several advantages. Firstly, a fixed effect analysis was utilised by 

Glasziou and Irwig, and a Bayesian random effect analysis is preferred for advantages 

outlined in previous sections of this thesis and elsewhere (Sutton and Abrams, 2001). 

Secondly, in instances when the ln(OR) is not (approximately) normally distributed (for 

instances when the distribution for the pooled effect size is not symmetric see Chapter 

7) the correct (posterior) distribution for the pooled effect will be used. Third, in 

instances when data from the studies in this evaluation are included in other parts of the 

model (which is the case here), estimates will be correlated and no longer independent. 

The effects of doing so will automatically be accounted for in all parameter estimation.

Hence, an exact binomial random effect meta-analysis model is specified as described 

in equation (2.18), and the second line of equation (8.1) is included in order to calculate 

the reduction in the relative risk. Vague prior distributions are placed on the pooled log 

odds ratio (Normal(0,106)), and the between study variance 

(InverseGamma(0.001,0.001)).

8.3.2 Evaluating the risk of an intercranial haemorrhage (fatal bleed)

For the original analysis, a previously published meta-analysis specifically examining 

the risk for fatal haemorrhage following treatment by warfarin (Landefeld and Beyth, 

1993) was used to derive an estimate of harm. This meta-analysis included data from 

both randomised trials and longitudinal studies of inception cohorts of patients followed 

from the start of warfarin therapy. Three of the RCTs used to evaluate the RRR for 

warfarin were included in this meta-analysis. Also included were trials and cohort 

studies of conditions other than atrial fibrillation where warfarin is used as an 

intervention; these included including cerebrovascular disease, prosthetic valve, 

myocardial infarction and deep vein thrombosis. The results of 21 RCTs and 4 cohort 

studies included are reproduced in Table 8.2. Note, the numbers in the first column 

indicate the reference number in the original meta-analysis, (Landerfeld and Beyth,

1993) although the three trials also included in Table 8.1 have been named for easy 

identification.
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Table 8.2 Data for studies estimating the risk of fatal bleeding following treatm ent

with warfarin

Indication for 
Warfarin

No o f  patients Total length of 
treatment (y)

Fatal bleeds 
(No. (%))

Fatal bleeds
(%/y)

Experimental
studies
Cerebrovascular

disease
21 78 45.3 4(5 ) 8.8
22 52 96.8 3(6) 3.1
23 95 93.4 2(2) 2.1

Prosthetic valve
24 65 121.8 1(2) 0.8
25 210 52.5 0 (0) 0.0
26 247 857.0 2 (1) 0.2

Myocardial
Infarction

19 145 362.5 1 (0.7) 0.2
27 119 418.3 4 (3 ) 1.0
20 128 168.0 0(0) 0.0
28 68 109.8 0(0) 0.0
5 607 1,872.0 3 (0.5) 0.2

Atrial
fibrillation

S tr o k e
p r e v e n t io n

212 444.0 1 (0.5) 0.2

B o s to n 210 260.0 1 (0.5) 0.4
C a n a d ia n 187 236.9 2 (1) 0.8

Miscellaneous
indications

29 50 8.3 0(0) 0.0
30 156 139.0 0(0) 0.0

Deep vein 
thrombosis

31 24 6.0 0(0) 0.0
32 33 8.3 0(0 ) 0.0
33 53 113.3 0(0 ) 0.0
34 96 24.0 0(0 ) 0.0
35 198 49.0 0 (0) 0.0

Observational
studies
Prosthetic valve

38 183 506.0 3(2) 0.6
39 415 726.2 5(1) 0.7
40 122 365.7 2 (2) 0.5

Miscellaneous
indications

41 565 904.0 10(2) 1.1
Total 4,318 7,988.1 44(1) 0.6
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The figure in the bottom right hand comer of Table 8.2, 0.6% risk of a fatal bleed per 

year, was originally used in the harm model. Note, this is obtained by taking a simple 

un-weighted average of the rates in each of the studies. In the analysis here a more 

sophisticated random effects meta-analysis model, which assumes the events follow a 

Poisson distribution, is adopted

b l e e d s ) ~ Poisson(ratej)

ln(ratej) <- beta^  + \n ( f o l lo w u p j)

b e t a } ~ Normal(/«.h a r m ,  t a u - s q )  (8.2)

In. h a r m  ~ Normal(0,106)

t a u - s q  ~ Inverse-Gamma(0.001,0.001),

where b l e e d s j is given in column four of Table 8.2, and f o l l o w u p j  in column three for all 

studies except the three RCTs also included in the meta-analysis for treatment benefit as 

described above. Although the total follow-up time could be imputed directly into the 

model for these three RCTs, as for the remaining studies it is calculated as the number 

of persons in the treatment group ( n t  -  as given in columns 2 of both Tables 8.1 and 8.2) 

multiplied by the average patient follow-up time (estimated here has total length of 

treatment/total number of patients, or column three divided by column two of Table 

8.2). Specification in this format indicates that the assessments of benefit and harm are 

not independent since the same data (i.e. n t )  is used in both treatment and harm models.

8.3.3 Evaluating the trade-off between a stroke and a haemorrhage event in terms 

of quality of life

Since only the benefit of reduction in non-fatal strokes is being considered, and being 

compared to the harm of fatal haemorrhages, it is necessary to equate how many strokes 

are equivalent to one fatal haemorrhage, or more precisely putting the two outcomes 

onto a single scale. In the original analysis a study of quality of life assessments of
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patients following a thromboembolic stroke were used for this purpose. (Glasziou et al.

1994) They concluded that the average quality of life after thromboembolic stroke is 

between 0.7 and 0.8, on a scale of 0 (death) to 1 (normal good health), and hence a ratio 

of about 4 strokes to one haemorrhage is suggested (i.e. reduction of quality of life per 

stroke is 0.25 therefore four strokes is equivalent to a change from one to zero on the 

scale, or a death). Clearly, such reasoning assumes that measurements on the QoL scale 

are additive.(Drummond et al. 1997) Incorporating QoL in the model in this way does 

not account for uncertainty in the quantitative equating of strokes to haemorrhages, but 

more importantly it makes a fundamentally flawed assumption that

l/Expectancy(QoL reduction) = Expectancy(l/QoL reduction). (8.3)

This does not hold true for a skewed distribution, and since the QoL data is highly 

skewed this produces a very large error as is illustrated below. (This same mistake is 

often encountered in the analysis of cost data where, due to the fact that the distribution 

of costs is highly skewed, a transformation is often used before the data is analysed. 

Unfortunately, biased results are obtained if this is not accounted for when back 

transforming. (Thompson and Barber, 2000))

In this analysis, data from a time trade-off survey is used. (Glasziou et al. 1994) 

Persons having experienced a myocardial infarction were asked six months after the 

event how many years they would be willing to give up in exchange for returning to full 

health. A time trade-off index for life expectancy of 15 years was calculated as follows

QoL time trade off index (8.4>

Although data for individuals were not tabulated a graph was included in the original 

paper. (Glasziou et al. 1994) From this it appeared that people generally responded in 

whole years, implying only a maximum of 15 different values were actually given for 

the index, the exception to that being for responses under a year where it would appear 

fractions were reported. Unfortunately, the graph was not detailed enough to accurately 

distinguish these fractions of one year, and hence Table 8.3 represents the most accurate 

data extraction possible for the empirical distribution function for the quality of life
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time-trade off index. (The author did request the individual patient data from the 

original study investigators, but unfortunately they were no longer available.)

Table 8.3 Em pirical distribution for the Quality of Life time trade off index

following stroke

QOL time 

trade off index

Proportion of 

patients

Cumulative 

proportion 

of patients

0 0.00 0.00

0.07 0.12 0.12

0.13 0.00 0.12

0.20 0.00 0.12

0.27 0.00 0.12

0.33 0.10 0.22

0.40 0.00 0.22

0.47 0.00 0.22

0.53 0.00 0.22

0.60 0.00 0.22

0.67 0.13 0.35

0.73 0.10 0.45

0.80 0.00 0.45

0.87 0.00 0.45

0.98 0.54 0.99

0.99 0.01 1.00

In order to take into account the distributional shape and the uncertainty in the 

parameter estimates, the full data in Table 8.3 are included in the net-benefit model. The 

probability that an individual responds to each of the 16 index states is modelled using a 

multinomial distribution, and hence

Alex Sutton
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where r c a t i  represents the number of persons in each of the i = 16 categories, p t the 

probability of being in the zth category, and N  the total number of people who 

responded in the survey. Vague priors (Beta(l,l)) are placed on each of the p \ s ,  for i = 1 

to 15, andp \ ^  is defined as 1 -  sum(pi . . . .  p i s ) .  An alternative approach would be to 

fit a skewed continuous distribution to the data, however this is not pursued here.

Unfortunately, the total number of persons who experienced a stroke is not provided in 

the original report, hence an estimate was made. It is known that a total of 647 

individuals responded to the question in the study and they were categorized into stroke, 

re-infarction or neither. For purposes of modeling, after considering the event rates in 

the control arms of the six warfarin RCTs, it was assumed that around 15%, or N -  100 

of those individuals had had a stroke within six months of experiencing a myocardial 

infarction. Note, in the modeling it would be possible to place a distribution on the 

number N  to represent our uncertainty about it.

The 16 index scores were assigned to the 16 categories of the model, and the 

distribution of index scores evaluated. From this the sample posterior of QoL reduction 

(defined as 1-index score) was calculated allowing the distribution for the ratio of the 

two outcomes (1/QoL reduction) to be derived. Using this function, the mean QoL score 

is 0.74, but because of the skewed nature of this distribution, the median and 2.5 and 

97.5 centiles are (0.07 to 0.98).

A potentially important limitation of using these data is that those persons who had a 

fatal stroke are not been included in the calculation of the outcome ratio, since only 

patients surviving to six months were interviewed. This potentially makes the stroke 

outcome less ‘serious’ than it is as only the non-fatal ones have been considered, and 

hence warfarin less beneficial than it truly is. This is a limitation of the data available 

rather than of the modelling framework. Since this chapters’ primary aim is to 

demonstrate the potential of Bayesian methods to implement models such as the one 

described here, rather than to be a definitive assessment of the warfarin for atrial 

fibrillation literature, this limitation is noted but not resolved.
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8.3.4 Evaluation of an individual’s risk of a stroke

The combined effect of the factors which influence the risk of stroke in atrial fibrillation 

were examined by the Stroke Prevention in Atrial Fibrillation Investigators in a 

multivariate risk model. (Glasziou et al. 1994; Thacker et al. 1997) This study 

suggested that three clinical features -  hypertension, recent congestive cardiac failure, 

and previous thromboembolism — and two echocardiographic features — left ventricular 

dysfunction and atrial size — are important. Table 8.4 summarises the risks and 

prevalence associated with these characteristics as found in the study cohort.

Table 8.4 Risk factors for stroke derived from a cohort study

N o .  o f  

p a t i e n t s

P e r c e n t a g e  

o f  C o h o r t

T h r o m b o e m b o l i s m  

r a t e  ( %  p e r  y e a r  

( 9 5 %  C l ) )

L o g

T h r o m b o e m b o l i s m  

r a t e  ( s t a n d a r d  

e r r o r )

N o .  C l i n i c a l  r i s k  

f a c t o r s

0 241 42 2.5 (1.3 to 5.0) -3.69 (0.34)

1 259 46 7.2 (4.8 to 10.8) -2.63 (0.21)

2  o r  3 68 12 17.6 (10.5 to 29.9) -1.74 (0.27)

N o . C l i n i c a l  r i s k  

f a c t o r s  + 

e c h o c a r d i o g r a p h i c  

f e a t u r e s

0 147 26 1.0 (0.2 to 4.0) -4.61 (0.76)

1 o r  2 336 60 6.0 (4.1 to 8.8) -2.81 (0.19)

>3 78 14 18.6 (11.6 to 30.1) -1.68 (0.24)

The net benefit for these risk levels, expressed as percentage per year can be evaluated, 

including the uncertainty in the levels of risk. These rates were estimated using Poisson 

regression; hence the log risks should be normally distributed, with the appropriate 

standard errors derived from the log risk confidence intervals. (Greenland, 1987) Note,
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unlike the meta-analyses, which were re-analysed in the model specification from a 

Bayesian standpoint, the results of the original classical Poisson regression model are 

used directly in the net-benefit model. Although, theoretically the Poisson regression 

model could be included as part of the net benefit model, this was not possible here as 

individual patient level data are required, and they were not easily available.

8.3.5 Specifying the net benefit equation

The previous sections have described how each segment of the analysis necessary to 

estimate all parameters in the net benefit equation (3.5) can be specified from a 

Bayesian standpoint using WinBUGS. This approach is very ‘neat’ since all the analysis 

required is contained in one single integrated concise program. Additionally, it also 

(automatically) includes the uncertainty associated with estimating each parameter of 

interest, which propagates across into the estimation of net benefit itself. Hence, all that 

remains is to create a node in WinBUGS to estimate the net-benefit for the risk level(s) 

of interest. The generic equation is

Net benefit = (risk x relative reduction in risk of stroke) -  (risk of fatal bleed x outcome 

ratio).

An absolute theoretical level of risk, or a level estimated with uncertainty such as those 

described above for clinical and echocardiographic risk factors can be specified. In this 

example the net benefit is evaluated on a stroke equivalent scale. The annotated 

WinBUGS code used for the whole analysis is provided in Appendix B.

S.4 Results

A burn-in of 5,000 iterations followed by a further monitored 15,000 produced the 

following results.
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8.4.1 Effectiveness of w arfarin  for preventing strokes

Net benefit

As to be expected, the synthesis of the warfarin v placebo trials for preventing strokes 

produced similar results to the previous meta-analysis. In this analysis the pooled 

estimate and confidence interval for the odds ratio are 0.77 (0.59 to 0.87) compared to 

0.73 (0.57 to 0.85) reported previously. (Singer, 1993) (Note: the European trial was 

excluded from this analysis to allow direct comparison with the results of Glasziou and 

Irwig.) This leads to a relative risk reduction of 0.23 (0.13 to 0.41). A small amount of 

between study heterogeneity was estimated by the model (median for the between study 

variance is 0.02). The simulated posterior distributions for these parameters are 
provided in Figure 8.3.

8.4.2 Risk of a fatal haem orrhage when taking warfarin

The posterior distributions for the meta-analysis estimating the risk of a fatal 

hemorrhage including both the observational studies and the RCTs are described above. 

The analysis performed here is somewhat more sophisticated than the original, where a 

simple un-weighted average was computed, but the results are in broad agreement with 

the risk of a fatal bleed in one year being 0.52% (0.27% to 0.84%) from this model 

compared with 0.6%. There is considerable heterogeneity between the study results. 

Further details of these parameters are provided in Figure 8.4.

8.4.3 The trade-off between a stroke and a haemorrhage

Figure 8.5 displays the posterior probabilities of being in the 16 quality of life states 

after suffering a stroke. The small distributions indicate the posterior distributions for 

each of the 16 probabilities. This distribution is highly irregular with a large proportion 

of persons in good health (state 2), however quality of life is much reduced for 

considerable numbers of patients.

Figure 8.6 summarises the posterior distributions for the intermediate parameters 

required to estimate the ratio between outcomes. The proportions in each of the QoL 

states are translated into QoL scores from which the reduction in QoL distribution can
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be estimated. From this the number of strokes equivalent to one fatal bleed can be 

evaluated. This distribution is clearly bi-modal with a large spike at around fifty and the 

body of the distribution much closer to zero. The large spike results from the large 

proportion of persons making an almost full recovery after stroke, and hence for whom 

the ratio is high. For persons who make poorer recoveries the ratio is much lower, hence 

the mass near zero.
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Figure 8.3 Posterior densities for the effectiveness of warfarin for preventing strokes

Parameter Mean (s.e.) Median (95% CrI) Simulated PDF
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Figure 8.3 Continued
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Figure 8.4 Posterior densities for the risk of a fatal haemorrhage when taking warfarin

Parameter Mean (s.e.) Median (95% CrI) Simulated PDF

Log risk of fatal 

bleed per year
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Figure 8.5 Posterior multinomial distribution for proportion of patients in each of the 16 quality of life states
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Table 8.6 Posterior distributions for quality of life variables

P a r a m e t e r M e a n  ( s .e . ) M e d i a n  ( 9 5 %  C r I ) S im u la te d  P D F

Q o L  c a t e g o r y 5.75 (4.67) 5.0 (2.0 to 15.0)

.  .  . 1  1 . I . . . 1 .

Q o L  s c o r e 0.70 (0.33) 0.73 (0.07 to 0.98)

% - 

g -

« -

s

. 1  . . .  I . . .  1 I . . .

Q o L  r e d u c t io n 0.30 (0.33) 0.27 (0.02 to 0.93)

g •

.  . .  i 1 . . . . i . . .  1 .

O u tc o m e  r a t i o 26.14(25.40) 3.75 (1.07 to 50) L
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Figure 8.7 Net benefit for different levels of risk of stroke
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Figure 8.7 Continued
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8.4.4 Estimation of net-benefit

Figure 8.7 describes the posterior distributions of net-benefit for different risks based on 

clinical and clinical and echocardiographic risk factors. The bi-modality of the outcome 

ratio distribution propagates over into these net-benefit distributions making them 

highly irregular. This highlights the point that if other computational methods, which 

assumed more regular distributions for model parameters, had been used potentially 

misleading results could be obtained. Spiegelhalter et al. (Spiegelhalter et al. 2000) 

when revisiting the confidence profile method using WinBUGS have demonstrated this 

issue recently.

For the clinical risk factors, the surprising result is obtained that even if  2 or 3 factors 

are present the mean net benefit is negative. However, when at least one clinical risk 

factor is present, the model estimates that the majority (i.e. >50%) of the population will 

benefit from warfarin treatment. This can be explained as follows. For the proportion of 

persons who would have a bad outcome after stroke (i.e. much reduced QoL), the 

potential benefit o f taking warfarin outweighs the risks (leading to the right bell of the 

distribution), but for the large proportion who would make a nearly full recovery after 

stroke, taking warfarin, on average, does more harm than good (leading to the left bell 

of the distribution). Since around 50% of persons have very high QoL after a stroke and 

50% have a lower QoL, the overall net benefit is critically dependent on the empirical 

magnitude in stroke equivalents assigned through the outcome ratio distribution. In this 

situation, since the aim is to maximise QoL collectively, warfarin should not be given 

because the mean net-benefit is negative. If data were available that could help identify 

patients likely to make a good recovery from a stroke, if  they were to have one, this 

would be clinically valuable.

Similar findings are observed for the clinical and echocardiographic risk factors. If zero 

risk factors are present, the model clearly indicates a negative net benefit. For one or 

two risk factors, the majority of persons (51.3%) would have a positive benefit, while 

the mean net-benefit is negative. For three or more risk factors both the majority of 

patients benefit, and the mean benefit is positive suggesting that for these persons 

warfarin should be given. However, the 95% credible interval for this and the other
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estimates all contain the value zero, so in fact the benefit of warfarin is inconclusive for 

all risk factors.

In Figure 8.8 the mean and median net benefit line together with accompanying 95% 

credible intervals are plotted for hypothetical values of risk. As the risk increases the 

mean and median converge as an increasing majority of patients move into the right- 

hand bell o f the bimodal distribution. The credible intervals for the different risk factor 

groups are included on this graph; these are fractionally wider than the intervals plotted 

for the theoretical levels o f risk. This is because the absolute levels of risk 

corresponding to these risk factors are estimated with uncertainty and this uncertainty is 

reflected in the length o f the intervals. The point where the probability of net benefit 

being positive is greater than 95% is around a risk of stroke of 58% a year, a much 

higher risk than the cut off for the highest risk groups considered.

Figure 8.8 Net Benefit fully modelling QOL data
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8.5 Sensitivity analysis - considering other values for the outcome ratio

Clearly the results of this model are highly dependent on the distribution or value 

assigned to the outcome ratio. In the original analysis the mean QoL for persons after 

stroke was reported as being between 0.7 and 0.8 leading to a reduction in QoL of 

approximately 0.25, and so to an outcome ratio of four. Although it is explained above 

why such reasoning is flawed, this value maybe used instead of the distribution 

specified for the outcome ratio to assess its influence on the results.

Figure 8.9 provides the posterior net-benefit distributions for each of the risk factors 

groups described previously. The first point to note is that since the outcome ratio is 

specified as a single known number, the posterior distributions are uni-modal (although 

not symmetric). The results are very different from those calculated previously. For the 

clinical risk factors, when zero factors are present the mean net benefit is negative, 

although the credible interval contains zero. When one or more clinical risk factor is 

present however, net benefit is positive and the credible interval does not include zero, 

suggesting a clear benefit of warfarin. Similar findings exist for the clinical and 

echocardiographic risk factors, where the presence of one or more factors leads to a 

positive net benefit with a 95% credible interval that does not contain zero.

Figure 8.10 plots the mean net benefit and corresponding 95% credible interval over 

theoretical values of the risk of stroke. When comparing Figures 8.7 and 8.9 the most 

striking difference is the width of the credibility intervals. Not accounting for the 

estimation error in the outcome ratio has greatly (and artificially) reduced the 

uncertainty in the net-benefit estimate. When this is coupled with the incorrectly low 

value for the mean outcome ratio, very misleading results that are at odds with the 

analysis above have been produced.
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Figure 8.9 Net benefit for different levels of risk of stroke -  specifying outcome ratio to be known as four
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Figure 8.9 Continued
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Figure 8.10 Net Benefit fixing the outcome ratio at four
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Finally, the single value 26.14 is used for the outcome ratio. This is the mean value of 

the outcome ratio distribution used in the primary analysis. By including this, the degree 

by which the results change due to not including the distribution of the outcome ratio 

can be assessed. The summaries of the posterior distributions for each of the risk factor 

groups are given in Table 8.4 Interestingly these results are quite different from those of 

Figure 8.6. Here, only when three or more clinical or echocardiographic risk factors are 

present is the mean and median net benefit positive, although the credibility interval still 

includes zero. However unlike any o f the previous models, in the two lowest risk groups 

for clinical and clinical and echocardiographic risk factors, the net benefit is actually 

statistically significantly harmful (i.e. the 95% Credible interval does not contain zero). 

Figure 8.11 plots the mean net-benefit and corresponding 95% credible interval over 

theoretical values of the risk o f stroke.
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Table 8.4 Net benefit for different levels of risk of stroke -  specifying outcome ratio
to be known as 26.14

M e a n  ( s .e . ) M e d i a n  ( 9 5 %  C r I ) P r o b a b i l i t y  o f  

B e n e f i t  >  0

N o .  C l i n i c a l  r i s k  

f a c t o r s

0 -0.12 (0.04) -0.12 (-0.21 to-0.05) 0.007%

1 -0.09 (0.04) -0.08 (-0.17 to-0.01) 0.99%

2 or 3 -0.003 (0.06) -0.005 (-0.11 to 0.11) 46.7%

N o . C l i n i c a l  r i s k  

f a c t o r s  +  

e c h o c a r d i o g r a p h i c  

f e a t u r e s

0 -0.13 (0.04) -0.13 (-0.22 to -0.06) 0.04%

1 or 2 -0.10 (0.04) -0.09 (-0.18 to-0.02) 0.41%

>3 0.004 (0.06) 0.003 (-0.10 to 0.12) 52.5%
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These results illustrate that the estimation of net benefit is very sensitive to the QoL 

values placed on the stroke event, and hence on the distribution or value placed on the 

outcome ratio. Using a single value rather than the distribution including measurement 

error changed the conclusions of the analysis, as did using alternative values for the 

outcome ratio. Thus, if  this type of analysis is to be used to inform clinical practice, then 

great caution is required when specifying the outcome ratio. This issue of the validity of 

QoL measures such as the one used here, and their critical importance in the net benefit 

calculation is considered further in Section 8.6.

8.6 Discussion/ further work

In this chapter, a fully stochastic statistical approach to the net benefit model has been 

outlined in general terms, and applied to the issue o f the benefit of giving atrial 

fibrillation patients warfarin to prevent stroke. In order to make this possible, 

quantification of the evidence regarding a) the efficacy of warfarin, b) risk of a fatal 

bleed due to warfarin use, c) the relative reduction in QoL for the competing outcomes, 

and d) the risk of a stroke in various definable patient subgroups, was necessary. This 

type of model should not be confused with the net-benefit model recently described in 

health economics literature (Stinnet and Mullahy, 1998) to evaluate whether an 

intervention represents good value for money, although the two have similarities, and 

the possibility of including cost data in the model described here is discussed below.

In applying the model an unjustified assumption in the reasoning regarding the 

quantification of quality of life decrease after stroke in the original application of this 

method was identified. (Glasziou and Irwig, 1995) This leads to a serious 

overestimation in terms of the mean reduction in QoL following a stroke. Sensitivity 

analyses demonstrated that the results of the model are highly sensitive to the 

quantification of this parameter. Indeed, the equating of how many strokes are 

‘equivalent’ to a fatal bleed is probably the most contentious part of the model, and 

open to most criticism. Nonetheless, it can be argued that, whether done through a 

statistical model, or in a less quantitative or formal way, the potential benefits and harm

Alex Sutton Ph.D. Thesis, December 2001 357



Chapter 8 Net benefit

need “weighing-up” if  a rational decision is to be made. However, it would seem 

appropriate to recommend that further work be required to establish how different 

outcomes can most reliably be equated on the same scale (if at all).

It is important to note that only (an estimated) one hundred patients were used to assess 

the quality o f life following a stroke, this is many fewer patients than were used in 

either the assessment o f the efficacy of warfarin at preventing strokes, or the risk of a 

fatal bleed due to taking warfarin. Probably the most effective way of reducing the 

uncertainty in the model parameters of interest would be to include more QoL data in 

the model. The prospect of prospectively planning a net-benefit analysis raises some 

interesting methodological issues regarding optimal research resource allocation. In this 

analysis, data from four different types of studies were used -  those estimating a) the 

efficacy of the intervention, b) the rate of side effects, c) the relative reduction in QoL 

for the competing outcomes, and d) the levels of risk for different subgroups of the 

population potentially eligible for treatment. Designing and allocating resources 

optimally to these four study types would be a complex problem, well beyond the issues 

considered currently when designing a single study, or even a prospective series of 

similar studies to be combined using meta-analysis. (Margitic et al. 1995) A decision 

theoretic approach utilising assessments such as the value of perfect information and 

value o f partial information could be very valuable in prospectively planning analyses 

such as this and informing the most efficient way of allocating future resources. 

(Claxton, 1999)

Although a complete analysis using the data considered in the original application is 

presented here, several extensions maybe desirable. Firstly a sixth trial of warfarin for 

atrial fibrillation that was not included in the original meta-analysis has now been 

published (EAFT (European Atrial Fibrillation Trial) Study Group, 1993) and should be 

included in the meta-analysis. Secondly, the quality of life assessment reported on those 

persons following stroke ignores those persons who die due to their stroke. Clearly this 

means the quality o f life results will look too optimistic. Two potential solutions to this 

problem are i) add complexity to the model to allow for this group of patients; or b) 

include an estimate o f the six month mortality from stroke in the quality of life analysis
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by including a proportion (approximately lO^o1) with a quality of life of 0. Thirdly, the 

five trials included were all stopped early due to a clear benefit in the treatment arms in 

all cases, and there is a potential for the treatment effect to be overestimated because of 

this. (Green et al. 1987; Hughes et al. 1992) Further, adverse event data were only 

included from three o f the six RCTs, the model could easily be extended to include 

adverse event data from all these trials. The model has been somewhat simplified to 

consider only the two most serious o f a number of outcomes. Serious (but non fatal) and 

more minor bleeds are relatively frequent outcomes for those taking warfarin, and 

perhaps would have sufficient impact on quality of life measures to have an impact on 

net-benefit; hence these further adverse events should be considered. The problems of 

measuring QoL and the questionable validity of the approach used has already been 

commented on. There is no one standard way of measuring QoL. For this analysis the 

results of a time trade-off analysis were used, although the York Health Measurement 

Questionnaire was also used in the original assessment. (Glasziou et al. 1994) Clearly, 

different results would be obtained if  these results were also included or used instead of 

the time trade-off data.

Another area where there are potential improvements to be made to the model is the 

meta-analysis estimating the risk of having a fatal bleed. Included in this analysis were 

both observational and randomised studies in different patient groups, only a proportion 

of which had atrial fibrillation. No allowances were made for such heterogeneous study 

designs and populations beyond the inclusion of a random effect. It would be possible to 

use a hierarchical model to stratify studies by design and medical condition, using a 

similar approach to the combination of the Cholesterol studies in Chapter 5. If this were 

done, perhaps the most realistic estimate of the risk of harm would be gained from the 

shrunken estimate o f the observational atrial fibrillation studies, having borrowed 

strength from the other subgroups.

Bayesian methods have been used to implement the analysis presented here using 

MCMC methods. Such an approach offers the flexibility required to fit all the 

components o f this non-standard model, and with the exception of a simplified model 

being possible using Monte Carlo methods, it is difficult to see how such an analysis

1 Personal communication with Paul Glasziou
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could be possible using Classical methods. All priors were specified as non-informative, 

although the possibility to incorporate further evidence, especially regarding the quality 

of life issues, via these distributions should not be ignored. However the elicitation and 

construction of meaningful priors is a difficult area that requires further research. A 

further issue regarding the Bayesian methodology used is that the credible intervals 

were constructed using the 2.5 and 97.5 centiles of the distribution. More appropriate 

would be to define the region o f highest posterior density. Usually there is little 

difference between these two measures, but with the distinct bi-modality of many of the 

posteriors considered here differences will exist.

Evaluations o f the use o f warfarin for atrial fibrillation have recently been carried out by 

others using distinctly different methodology. (Li et al. 1998; Thompson et al. 2000)

Li et al. (Li et al. 1998) describe a method to estimate the absolute estimated benefit for 

individual patients. This approach uses a database of 35 000 individuals to which a 

treatment-stratified Cox model is fitted including the principal risk factors and treatment 

interaction terms. New statistical methodology is proposed to produce a prediction 

interval for individual patients using a combination of Monte Carlo and Bootstrap 

methodologies. Their model only considers overall survival rates, and hence does not 

attempt to equate or model the different outcomes. A further difference between their 

model and the net benefit one is that the risk of harm (a fatal bleed) for individuals is 

not assumed to be constant, but rather dependent on patient characteristics. Further, 

while this method examines a very large database, information from other sources, such 

as RCTs etc is not considered. Perhaps there is scope for an amalgamation of this and 

the net benefit methodology allowing a more detailed classification of risk factors for 

individuals, rather than the classification of individuals into one of the six groups 

considered above, and allowing the risk of fatal bleeds to also vary between individuals. 

Further, the implementation of this method in a Bayesian framework would allow the 

construction of prediction intervals for individuals, and perhaps be simpler to 

implement than the Monte Carlo and Bootstrap methodologies they propose.

Thompson et al. (Thompson et al. 2000) implemented a full decision analysis model to 

the same problem, and are similar in spirit to the net benefit model, but going one stage 

further by incorporating cost data. Very similar information is included in the model, 

namely a) the RCT data on the efficacy of warfarin to prevent stroke, b) studies
Alex Sutton Ph.D. Thesis. December 2001 3 60



Chapter 8 Net benefit

reporting the absolute risk of stroke for different risk factors, c) studies assessing the 

risk of adverse events in atrial fibrillation patients treated with warfarin, d) QoL data 

relating to the various possible outcomes, including that from their own study, and e) 

cost data relating to the various outcomes, including that from their own study. A 

Markov model is developed and evaluated by simulating a cohort of patients and 

recording their passage through the model, and hence is different conceptually to the 

approach taken by the net benefit model. Since their results report more specific patient 

groups than the net benefit model above, it is difficult to compare the results. However, 

it would be very interesting to extend the net-benefit model to include cost data, and 

then use the same data in both models to compare the results obtained from the two 

methodologies. It is not obvious what the relationship between estimates from the two 

models would be, but the Markov model is clearly more complex. Such an assessment 

may help inform if the complexity of such methodology is necessary in clinical 

decision-making areas such as this, or simpler methods such as net benefit are adequate.

Finally, the application o f the model is not restricted to drug treatments. In many public 

health interventions there are benefits and drawbacks of a new policy. For example, the 

debate has run for many years concerning the pros and cons of artificially fluoridating 

drinking water. While there is evidence that doing so prevents tooth decay, adverse side 

effects such as the increase in prevalence of fluorosis exist. (McDonagh et al. 2000) A 

modification of the net benefit model to estimate the optimal level o f fluoride that 

should be added to drinking water to maximise benefit and minimise harm would be a 

valuable exercise. In order to do this the quantification of the relative harm of tooth 

decay and fluorosis would be required. A further potential example is the enforced use 

of bicycle helmets. This is another debate which has been running for many years, and 

while there is evidence o f protection in terms of head injuries, negative effects such as 

strangulation risk and increased prevalence of heart disease due to lower uptake of 

cycling are evident. (Thompson et al. 1999; Robinson, 1996)

In conclusion, an integrated approach to evaluating net benefit has been described using 

Bayesian MCMC methodology. This allows distributions representing the uncertainty in 

all the parameters required for the model to be estimated and utilised. Such a framework 

allows the synthesis of information from different studies with different designs 

reporting different but related information, permitting a very broad generalised
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quantitative synthesis o f evidence. Such a model is particularly appealing since it 

potentially aids in making the correct treatment decisions for individual patients; 

perhaps the ultimate goal o f any modelling exercise such as this. However, there are a 

number of unresolved issues which remain and require further research before such a 

methodology can be recommended. Perhaps the most critical of these is the use of QoL 

data, as the method has been shown to be highly critical to the data used, and questions 

regarding the validity o f such data, and the most appropriate way to model it, remain.
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Chapter 9 Discussion, including lines of further work

9.1 Summary

This thesis comprises an investigation into methods for and the feasibility o f combining 

information from different sources, with emphasis on the assessment o f the 

effectiveness o f an intervention in a health context. Bayesian modelling employing 

MCMC methods is found to be an appealing and powerful approach for achieving this 

as it allows complex models to be constructed with relative ease compared to the 

classical alternative. Such models allow more sources of data to be included in an 

analysis, hopefully modelled in a more appropriate way than a standard meta-analysis 

allows. However, married with these benefits and added flexibility is the need to think 

carefully about the specific model structure for a particular application, as often models 

will need to be custom built. Further, issues related to publication bias and differential 

quality o f the primary studies remain, and, as discussed in Chapter 6 and below, may be 

an even larger problem in the synthesis of data from multiple study designs than the 

single design usually considered in a ‘traditional’ meta-analysis o f data from a single 

type of study. Hence, although there are clear benefits of generalised syntheses of 

evidence, they are not automatic. The difficulty of sensibly combining sources of 

information from disparate sources should not be underestimated, and great care is 

needed when carrying out such analyses.

9.2 Application of Bayesian MCMC methods to the generalised 

synthesis of evidence

Bayesian MCMC methods have been used extensively in this thesis. This is because 

their implementation in the WinBUGS program creates an environment which reduces 

the restrictions on the structures of the models that can be fitted, compared with all 

classical alternatives.

Often when Bayesian methods are discussed, it is the necessity to place prior 

distributions on all unknown parameters enabling subjective beliefs it be incorporated
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into the analysis that receives most attention. This aspect of the analysis was not the 

focus o f the work in this thesis and “off the shelf* vague priors were used most of the 

time. However, when there is little data it has been shown (see Sections 5.2 and 7.4 and 

(Lambert et al. 2001b)) that commonly conceived ‘vague* priors may actually be 

overtly informative. This is particularly true for variance components when the number 

of units in the analysis was small, or event data was very sparse. The author is currently 

involved with further research to address this issue.

This is not to say that informative priors do not have a role in the generalised synthesis 

of evidence. On the contrary, carefully constructing informative priors may expand the 

breadth o f relevant evidence that can be synthesised. Examples of additional 

information that may exist and may be able to be formulated in terms o f priors for a 

general synthesis application include: a) expert opinion on one or more parameters in 

the model; b) empirical data o f  relevance but not included ‘directly’ in the model 

(examples include empirical estimates o f between study variance parameters derived 

from previous meta-analyses (Higgins and Whitehead, 1996) or the likely effects of the 

magnitude o f an intervention derived from studies of the intervention in a different 

disease or patient group); and c) information from studies generating only qualitative 

evidence. (Dixon-Woods et al. 2001) The generation of such informative priors is far 

from automatic, and more work is certainly needed in this area generally, (Chaloner 

and Rhame, 2001; O'Hagan, 1998) as well as specifically in a generalised synthesis 

context.

The benefits o f the flexibility o f Bayesian MCMC methods is less well publicised and 

appreciated by those not working directly in the field than issues relating to prior 

distributions. The ‘LEGO brick’ or ‘Meccano’ type construction offered by WinBUGS 

allows not only models not available in classical statistical packages to be constructed 

but also multiple sub-models to be ‘bolted’ together to form one comprehensive overall 

‘meta’-model to be constructed in which parameter uncertainty is correctly propagated 

and correlations between parameters accounted for. This is particularly striking in 

Chapter 8 where several analyses contribute to constructing a node for the net-benefit 

expression. This idea has been appreciated by others, possibly the first o f whom is Eddy 

et al., (Eddy et al. 1992) who used similar ideas in the construction of the confidence 

profile method in the early 1990s.
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As mention above, a generalised model will often have to be custom built for a 

particular application. Perhaps the way to start generating a coherent and cohesive 

strategy for building a generalised synthesis analysis framework is to identify and 

document commonly used ‘building blocks’ in the analysis. For example, a standard 

random effects meta-analysis on the odds ratio scale (Section 2.3.1), the three level 

hierarchical model used to combine multiple study designs (Section 3.8.1) and 

additional code required to include indirect comparisons of treatment effect (Section 

5.4.2) could all be thought o f as sub-models that could be ‘bolted together’ as required 

to build up the complete full model. In a sense Eddy in his book (Eddy et al. 1992) 

began to do this, but uptake was minimal for reasons discussed in Section 3.6. However 

with the advent o f the WinBUGS software, the climate may now be more amenable. An 

indicator o f this is the success o f a recent book by Congdon (Congdon 2001) 

documenting how common (and not so common!), originally classically derived, 

statistical models can be fitted in WinBUGS. Perhaps a similar more focused volume, 

describing ‘building blocks’ for generalised synthesis of evidence together with 

examples o f how they can be ‘bolted’ together to form complete analysis would be a 

good way o f raising the profile o f generalised synthesis. However, I believe before this 

could be achieved successfully, more applications, like those described in this thesis, 

need to be worked through as such methods are still in their infancy.

9.3 Hierarchical models

Hierarchical modelling is now an established method of analysis when observations are 

clustered into larger units within a dataset. A standard random-effect meta-analysis 

model is a simple hierarchical model with two levels. The extension of this model to a 

third level to incorporate study type, originally described by Prevost et al. (Prevost et al. 

2000) is used extensively in this thesis (with discussion of its application to the 

cholesterol lowering data provided in section 5.2.13), with modifications to include 

adjustment for patients underlying risk and the synthesis of direct and indirect evidence.

This approach to synthesising evidence is appealing because it accounts for between 

study type heterogeneity as well as between study within study type heterogeneity. 

However, it would appear this approach has one major setback when the number of
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different study types is small. This is that the between study type variance parameter is 

so poorly estimated, due the lack o f data, that its value is heavily influenced by the prior 

placed on it, and the uncertainty associated with it so high that, even if  study types are 

in broad agreement, uncertainty in the overall pooled estimate will inevitably be very 

high. This means that including increased numbers of sources o f evidence is desirable, 

either by adding different study designs or perhaps by subdividing existing study 

designs to create more study level units o f analysis is desirable, if  a precise estimate is 

required. Alternatively, an informative prior distribution could deliberately be placed on 

the between study type variance parameter. Further research is clearly required on these 

issues.

Finally, only aggregated study level data has been considered in this thesis. Individual 

patient data (IPD) meta-analyses are carried out, although there is some debate at to 

whether the extra effort required is justified. Recently it has been shown that IPD 

regression on patient level covariates is much more powerful than the aggregated meta

regression equivalent. (Lambert et al. 2001a) Methods are becoming available to 

synthesise IPD and summary level data (Turner et al. 2000; Whitehead et al. 2001; 

Higgins et al. 2001). Clearly carrying out a generalised synthesis of evidence using IPD 

is possible, and such extensions o f meta-analysis models potentially have a very 

valuable role to play in a generalised synthesis framework. Research into methods for 

doing so, and into when the extra effort is worthwhile, are required.

9.4 Sparse data/rare events

When work that has formed this thesis was commenced in 1996, any emphasis in it on 

rare events, or sparse event data was not perceived. However, as more examples were 

considered it became clear that quantifying important, but rare, events was an area 

where generalised synthesis o f evidence had a lot to offer. The three data sets 

considered in Chapters 6 and 7 all include sparse event data. It was not clear what the 

best method of meta-analysing such data was and Chapter 7 illustrates that results can 

differ considerably depending on the analysis method used. Although Chapter 7 poses 

more questions than it answers, it has formed the basis for further work to ascertain the 

relative merits o f competing meta-analysis methods. The first stage o f this work is now
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complete (Sweeting, 2001) and it would seem MCMC methods offer several advantages 

over classical methods for combining such data.

There is a lot o f  scope for further applications o f generalised synthesis to rare events, 

particularly in the analysis and monitoring of adverse events related to drugs.

9.5 Threats to the validity/feasibility of generalised synthesis

The subsections below consider what are perceived as the main validity/feasibility 

threats to the application o f generalised synthesis.

9.5.1 Procedural issues

The procedural methodological aspects of carrying out a generalised synthesis of 

evidence have not been a focus o f this thesis. Nonetheless, issues relating to literature 

search strategies, data extraction protocols and so on, require as careful consideration in 

a generalised synthesis framework as they do for a meta-analysis. However, such 

methods are nowhere near as well developed for generalised synthesis as they are for 

standard meta-analyses/systematic reviews.

From carrying out the analysis o f the cholesterol data described in Chapters 4 and 5 it 

became clear how difficult it was to define, and locate all the evidence o f interest. 

Indeed, to make the analysis feasible in the time available only a fraction o f the total 

observational evidence was considered. It is well known that carrying out a meta

analysis is a time consuming task, increasing the remit of a review by including the 

observational evidence could make this job much longer still.

As noted above, currently there is considerable discussion in the meta-analysis literature 

of when the analysis o f  individual patient data is desirable and justified in relation to the 

extra time and cost required. Similarly, in which instances the extra effort in including 

extra sources o f data in a generalised synthesis framework is worthwhile needs 

clarification. Although a difficult question to answer, further consideration o f this issue 

may help develop guidelines for good generalised synthesis practice.
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9.5.2 Publication bias

Discussion

Chapter 6 highlighted the potential problem of publication bias in a generalised 

synthesis framework and the fact that the degree o f bias may be different for different 

study types. To further inform how large a problem this is, it would be valuable to carry 

out assessments o f publication bias in subject areas where both RCTs and observational 

evidence existed to assess whether differential levels of bias existed between study 

types.

Chapter 6 also considered methods o f dealing with publication bias in a generalised 

synthesis framework. It would appear that methods for dealing with publication bias in 

meta-analysis o f a single type o f study can be transferred relatively easily into a 

generalised synthesis framework. Since different sources of evidence may be 

susceptible to differing degrees o f bias an assessment o f publication bias would always 

seem desirable where possible.

A drawback o f the methods used in this thesis to deal with publication bias is that they 

use classical statistical methods. It would be highly desirable for 'adjustment* methods 

that could be implemented in a Bayesian framework within WinBUGS to be developed. 

This would allow all analyses to be carried out in one coherent model. Although 

Bayesian methods to deal with publication bias have been developed (Givens et al. 

1997), no one has yet worked out how to implement them within the WinBUGS 

program.

9.5.3 Study quality

It has often been said that a meta-analysis is only as good as the quality of data going 

into it. Exactly the same sentiments apply to the generalised synthesis o f evidence. The 

importance of addressing the variable quality of studies included in a synthesis was 

flagged as early as the introduction to this thesis. It was also acknowledged there that 

this important issue would not form a focus o f this thesis due to the enormity of the 

problem.
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There is currently still dispute as to how to deal with variable quality of evidence within 

a single study design (see section 2.7). The problem is further compounded when 

multiple sources o f evidence are being considered. This problem does not have an ideal 

statistical solution; rather actions can probably best be informed horn empirical 

investigations into the reliability o f estimates from different study designs, some of 

which were reviewed in Chapter 1. However, currently we do not have enough evidence 

to accurately inform which studies are likely to be reliable and which are not.

Taking a Bayesian approach to synthesis does allow a down-weighting o f different 

sources o f evidence through the use o f informative prior distributions. Also, a 

sensitivity analysis plot was constructed in Chapter 7, which allowed the effect of 

down-weighting different sources o f evidence to be shown graphically. An alternative 

approach to down weighting evidence suspected o f being biased, is empirical 

adjustment for the likely effect o f  the bias. This was attempted in the Confidence Profile 

approach. However it has been shown, for RCTs at least, that even the direction, let 

alone the magnitude, o f  bias relating to certain study deficiencies may be difficult to 

predict. (Schulz et al. 1995)

Clearly more work is required in this area, but perhaps not from an essentially statistical 

viewpoint. Until (if ever) a clearer picture emerges, making assessments of quality and 

using them as the basis o f a sensitivity analysis is perhaps the best approach that can be 

taken.

9.6 Generalised synthesis and beyond

No comprehensive definition o f generalised synthesis has been offered in this thesis, 

only examples of it. This is deliberate as I am unsure of its boundaries and my 

perception o f these has certainly changed over the duration o f writing this thesis. 

Initially I came from a perspective of thinking about how to extend meta-analysis to 

incorporate multiple sources of evidence. I think of these as one-parameter primary 

interest models, as their aim is to estimate some quantity, often effectiveness of 

interventions, using multiple data sources. An example of this is the cholesterol analysis
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in Chapter 5. Then, my focus widened to a broader range of models where data from 

multiple sources relating to multiple parameters was synthesised as an intermediate step 

to producing an estimate of the primary parameter of interest. An example of this in this 

thesis o f this is the net-benefit model described in Chapter 8, although economic 

evaluations and other decision type models often used in healthcare would also come 

under this category.

Further, work I have been involved with outside this thesis has demonstrated how 

complex decision models, such as those with a Markov structure, can be constructed 

using WinBUGS, with meta-analysis sub-models included where evidence is available 

from more than one study to inform particular parameters required for the model. 

(Cooper et al. 2001 ) I find it hard to make distinction between such models and those 

described in this thesis. Hence, if  I now had to define generalised synthesis of evidence,

I would first paraphrase Glass (Glass, 1976) and define meta-analysis as the synthesis of 

information from multiple studies, then go on to define the generalised synthesis of 

evidence as the synthesis o f information from multiple studies, including multiple 

designs which in some way model the different sources distinctly.

9.7 Conclusions

With the increase in computer power and development of software to fit complex 

models using Bayesian MCMC methodology, it is now possible to think beyond the 

models currently used to synthesise medical data. This thesis has presented examples 

illustrating how information from different sources can be combined together, while 

taking into account the level of uncertainty associated with the estimates. These 

methods do not take a radically different approach from or supersede previous 

methodology for synthesising data; rather they form a natural extension to more 

standard meta-analysis methods. I hope such efforts will be seen as first steps in a more 

widely evidence-based future where quantitative models are created routinely to 

summarise the totality o f evidence, and to inform models used to help make decisions 

for future patients.
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A.V. Dataset for the 60 Cholesterol RCTs
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R39 1 9 8 6 2 . 5 3 1 2 4 6 . 0 3 0 4 8 9 2 6 9 7 1 1 3 2 5 1 1 86 4 2 8 398 9 9 . 9 9 9 . 9 5 . 9 1 0 1 R39
R40 1 98 6 4 . 8 3 1 1 1 1 0 . 0 1 0 0 0 4 1 0 0 1 1 1 29 3 1 30 4 46 2 453 6 . 5 0 . 0 6 . 5 1 0 1 R40
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i d y e a r b r ( c h d ) b r ( g r p ) p t - g r p  i n t v _ g l  i n t v g _ 2  f _ u p n t n c t o t m _ t t o t m

R41 1 9 7 0 4 .5 3 1 2 4 5 . 0 604 62 8 16 24
R42 1 994 3 . 0 3 2 1 3 2 . 0 1 65 166 2 2
R43 1994 8 . 2 3 2 1 3 4 . 0 193 1 88 4 11
R44 1 99 3 1 1 . 3 2 1 1 3 0 . 5 53 0 532 0 3
R45 1 99 5 4 . 6 3 1 1 3 4 . 9 3 30 5 3 2 9 3 106 135
R46 1 99 4 9 . 1 3 2 1 3 2 . 5 40 39 9 9 . 9 9 9 . 9
R4 7 1 994 4 . 9 3 2 1 3 4 . 0 145 155 3 3
R48 1 99 3 1 8 . 3 2 2 1 3 5 . 4 2 2 2 1 2 2 2 3 182 2 56
R49 1 99 4 4 . 4 3 2 1 3 3 . 0 4 6 0 4 5 9 1 8
R50 1 9 9 5 5 . 8 3 2 1 3 2 . 0 45 0 4 3 4 5 7
R51 1 9 9 2 0 . 0 3 2 2 4 1 . 0 56 57 2 1
R52 1 9 9 3 4 . 0 3 2 1 3 2 . 0 123 124 2 1
R53 1 9 9 4 24 .3 2 2 2 4 2 . 3 302 30 3 8 20
R54 1 994 9 9 .  9 9 9 . 9 2 1 3 0 . 5 203 20 1 3 1
R55 1 9 9 5 5 . 0 3 2 1 3 3 . 0 206 202 4 6
R57 1 9 9 1 0 . 0 3 2 1 3 0 . 2 83 42 1 0
R58 1 9 9 5 4 . 5 3 1 1 3 3 . 0 224 2 2 3 3 4
R59 1 9 9 6 13 . 1 2 2 1 3 5 . 0 2 0 8 1 2 0 7 8 18 0 196
R60 1 9 7 9 1 1 5 . 3 1 2 2 4 3 . 0 188 18 7 41 56
R61 1 9 9 7 7 . 0 3 2 1 3 2 . 3 1 2 9 1 2 5 1 4
R62 1 9 9 8 14 . 7 2 2 1 3 6 . 1 4 5 1 2 4 5 2 0 49 8 63 3
R63 1 9 9 8 0 . 8 8 3 1 1 3 5 . 2 3 304 3 3 0 1 80 77
R64 1 9 9 9 2 2 . 7 2 2 2 1 3 1 . 0 1 8 7 17 8 2 4

A lax Sutton Ph.D. Thesis, December 2001

c h d _ t c h d _ c %chol c o l _ a b s  c o l _ b s e s e x female% m u l t i f  i d

6 14 12 1 . 1 7 . 7 1 0 1 R41
2 1 20 1 . 3 6 . 5 2 18 1 R42
4 6 2 2 . 7 1 . 4 6 . 4 2 12 1 R43
0 3 1 8 . 5 1 . 3 6 . 8 2 24 1 R44
50 73 20 1 . 4 7 . 0 1 0 1 R45
1 1 2 5 . 7 1 . 5 5 . 5 2 11 1 R46
2 3 1 6 . 4 0 . 9 6 . 0 2 14 1 R47
136 207 25 1 . 6 6 . 8 2 19 1 R48
0 6 27 1 . 5 6 . 1 2 48 1 R49
3 5 19 1 . 2 6 . 0 1 0 1 R50
2 0 1 0 . 1 0 . 3 6 . 1 1 0 1 R51
1 1 3 2 . 2 1 . 8 6 . 0 2 9 1 R52
3 16 0 . 0 3 0 . 0 6 . 5 2 9 0 R53
9 9 . 9 9 9 . 9 9 9 . 9 9 9 . 9 5 . 3 2 28 0 R54
3 3 2 1 . 6 1 . 3 5 . 9 2 22 5 1 R55
1 0 1 7 . 5 1 . 3 7 . 7 2 50 0 R57
2 3 2 1 . 0 1 . 5 6 . 0 1 0 0 R58
112 130 2 0 . 0 1 . 1 5 . 4 2 14 0 R59
35 55 + 8 . 3 0 6 . 0 2 20 0 R60
1 2 0 . 8 0 . 0 5 6 . 3 1 0 1 R61
28 7 373 1 8 . 0 1 . 0 5 . 6 2 17 0 R62
11 15 1 8 . 4 1 . 1 5 5 . 7 1 2 15 1 R63
2 4 1 2 . 5 1 . 0 7 . 4 5 2 38 4 0 R64
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id - Identification number for each RCT. This number corresponds to the reference given in 
the bibliography, i.e. 1 above refers to R1 in the bibliography

year - The date toe firs trial report was published

br(chd) - The baseline risk of CHD mortality in the control group - see details in body of 
report for how this was calculated.

br(grp) - This is a categorical variable based on br(chd) above. Baseline risk is categorised 
into high = 1, medium =2, and low = 3 risk. High risk corresponds to > 50, medium risk 
between 50 and 10, and low risk <10 CHD deaths per 1000 person years.

pt-grp - Predominant patient group: 1 = primary prevention (no pre-existing CHD), 2 = 
secondary prevention (pre-existing CHD), and 3 = diabetic.

intv_gl - Intervention type variable 1. Categorises the trials by the most aggressive treatment 
given to the treatment group: 1 = drug, 2 = diet and 3 = surgery. Note: on if drugs were used 
when diet produced an un-satisfactory response, it is coded as a drug trial.

intvg_2 - Intervention type variable 2. More detailed categorisation than above: 1 = fibrate 
drugs, 2 = hormones, 3 = statins, 4 = diet, 5 = surgery, 6 = other drugs. Again, trial was 
defined by the most aggressive treatment given, if more than one was given

f_up - Follow-up - the duration of the trial in years

nt - the number of patients in the treatment arm of the trial

nc - the number of patients in the control arm of the trial

totm_t - the number of deaths (total mortality) in the treatment arm of the trial

totm_c- the number of deaths (total mortality) in the control arm of the trial

chd_t - number of deaths from CHD in the treatment arm of the trial

chd_c - number of deaths from CHD in the control arm of the trial

%chol - The percentage reduction in serum cholesterol between the treatment and control 
arms of the trial

col_abs - the absolute reduction in serum cholesterol between the treatment and control arms 
of the trial (in mmol/1)

col_bse - baseline level of cholesterol in patients (average between the 2 arms in mmol/1)
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sex - indicates the sex of patients in the trial: 1 = all male; 2 = mixed (there are no all female 
trials)

female% - The percentage patient composition which is female (0 corresponds to all male 
trials)

multi_t - Indicator of number of treatments administered. 0 = single intervention, 1= multiple 
treatment regime

Missing values - 9.9 or 99.9 corresponds to missing values in any variable.
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A.VI. Cohort study dataset

ID OR SE_OR l n _ O R s e _ l n _ o r F o l l o w u p

C2 0 . 80 0 . 0 3 8 - 0 . 2 2 3 0 . 0 4 8 1 4 . 8
C4 0 . 6 3 0 . 0 0 8 - 0 . 4 6 2 0 . 0 1 3 7 . 1
C5 0 . 7 7 0 . 0 4 4 - 0 . 2 6 1 0 . 0 5 7 1 5
C7 0 . 7 1 0 . 0 3 9 - 0 . 3 4 2 0 . 0 5 5 1 9
C9 0 . 8 6 0 . 0 2 5 - 0 . 1 5 1 0 . 0 2 9 23

Variable descriptions and details

ID - study id - note C5 is date from the males in the study only

OR - Odds ratio derived

SE_OR - standard error of the odds ratio

ln_OR - log of the OR

se_ln_or - standard error of the log odds ratio 

Followup - Length of study
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A.VII. WinBUGS code for fitting 3-level hierarchical 
model to the cholesterol data (no covariates)

m odel
{
#  R andom ised  controlled trials 
# = = = = = = = = = = = = = = = = = = = = = = =

for (i in 1:R) {

chdt[i] -  dbin(pt[i],nt(i])
chdc[i] -  dbin(pcp],ncp])
logit(pcp]) <- mu[i] 
logit(ptp)) <- mu[i] + deltap]

mup] -  dnorm (0.0 ,1 .0E -5) 
deltap] -  dnorm (theta[1],tau.theta[1])

}

#  Cohort s tud ies m odel 
# = = = = = = = = = = = = = = = = =
for (i in 1 :C) {

coh.precp] <- 1/(coh.se.lnorp]*coh.se.lnorp])

coh.lnorp] -  dnorm (coh.psip],coh.precp])

coh.psip] -  dnorm (theta[2], tau.theta[2])
}

#  Combining both so u rc e s  
# = = = = = = = = = = = = = = = = = = =
for(i in 1:T) {

thetap] -d n o rm (m ean .tau .m ean ) 
tau.thetap] ~ d g am m a(0 .0 0 1 ,0.001) 
var.thetap] <- 1/tau.thetap] 

or[i] <- exp(thetap])
}

m ean ~ dnorm (0,1.0E-6) 
or.overall <- exp(m ean) 
tau .m ean -  d g am m a(0 .0 0 1 ,0.001) 
var.m ean<-1/tau.m ean
>

Data

list(coh.lnor=c(-0.223,-0.462,-0.261 ,-0.342,-0.151), 
coh.se.lnor=c(0.048 ,0 .013 ,0 .057,0 .055,0 .029),

R=60,C=5,T=2)

ntQ ncQ chdtQ chdcQ
204 202 25 45
285 147 62 35
156 119 34 39
88 30 2 2
30 33 0 2
279 276 47 73
206 206 37 50
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123 129 17 20
1018 1015 97 97
427 143 71 23
244 253 25 44
50 50 13 10
47 48 13 5
30 60 0 4
5552 2789 826 632
424 422 41 50
199 194 25 25
350 367 34 35
79 78 2 4
1149 1129 19 31
221 237 35 26
54 26 8 1
71 72 5 6
4541 4516 61 54
421 417 32 44
94 94 0 1
311 317 17 8
1906 1900 32 44
2051 2030 14 19
6582 1663 28 3
5331 5296 91 77
94 52 1 0
23 29 1 0
76 79 4 9
6428 6438 115 124
612 610 4 1
30489 26971 428 398
10004 10011 462 453
604 628 6 14
165 166 2 1
193 188 4 6
530 532 0 3
3305 3293 50 73
40 39 1 1
145 155 2 3
2221 2223 136 207
460 459 0 6
450 434 3 5
56 57 2 0
123 124 1 1
302 303 3 16
206 202 3 3
83 42 1 0
224 223 2 3
2081 2078 112 130
188 187 35 55
129 125 1 2
4512 4520 287 373
3304 3301 11 15
187 178 2 4

Initial values

list(tau.theta=c(0.5,0.5), theta=c(0 ,0), m ean= 0 , tau .m ean=1,
delta=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0),
mu=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
)
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A.VIII. WinBUGS code to fit general model of 
DuMouchel for application to the computer-based 

reminder systems meta-analysis

model

for(i in 1 :lines){ # loops round all lines of data

y[i] ~  dnorm(eq[study[i], treatmentfi], outcome[i], group[i], time[i],repeat[i]], w[i]) 

eq[study[i], treatment[i], outcome[i], group[i],time[i], repeat[i]] <-

# fixed effects
out[outcome[i]] + trt[treatment[i]] +

# random effects
z.trt.out[treatment[i], outcomefi]] + z.study[study[i]] + 
z.study.trt[study[i], treatment[i]] + z.study.out[study[i], outcome[i]] + 
z.study.group[study[i], group[i]] + z.study.time[study[i],time[i]]

for(x in 1 treatments) { 
for(m in 1 :outcomes) { 
z.trt.out[x, m] ~  dnorm(0,tau[l]);

for(m in 1 :studies) J 
z.study[m] ~  dnorm(0,tau[2]);

for(m in 1 :studies) | 
for(x in 1 :treatments) J 
z.study.trt[m, x] ~  dnorm(0,tau[3]);

for(m in 1 .studies) { 
for(x in 1 :outcomes) J 
z.study.out[m, x] ~  dnorm(0,tau[4]);

for(m in 1 :studies) \ 
for(x in 1 :groups) |
z.study.group[m, x] ~  dnorm(0,tau[5]);

for(m in 1 :studies) 1 
for(x in htimes) |
z.study.time[m, x] ~ dnorm(0,tau[6]);

for(x in 1:6) i
tau[x] ~dgamma(0.001,0.001) 
sigma[x] <- 1.0 / sqrt(tau[x])

for(m in l :outcomes) !
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out[m] ~ dnorm(0,0.001);

trt[treatments] <-0 # This is required for a unique solution - comer centring
for(m in 1 .‘treatments-1) { 
trt[m] ~dnorm (0,0.001);

# Computing parameters o f  interest #

#one outcome - compare each treatment to placebo for each outcome 
for (m in 1 :outcomes) j # loops for each outcome 
for (k in 1 :treatments-l) {
lnor[k,m] <- trt[k] - trt[treatments] + z.trt.out[k,m] - z.trt.out[treatments,m] 
or[k,m]<- exp(lnor[k,m])

Data

list(lines=330, outcomes=6, treatments=4, groups= 5, times=3, studies=19,

stu d y = c(l,1 3 ,2 ,3 ,3 3 3 3 ,3 3 3 3 3 3 3 3 3 3 3 3 3 ,3 ,3 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 3 ,5 3 ,  
5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,53 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,8 ,8 ,8 ,8 ,8 ,8 ,9 ,9 ,9  
,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,11 ,11 ,11 ,11 ,11 ,11 ,11 ,11 ,11 ,11 ,11 ,
1 1 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .12 .12 .12 .12 .13 .13 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .1  
4 ,14 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,15 ,16  
,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 ,16 , 
1 6 ,1 7 ,1 7 ,17 ,17 ,17 ,17 ,17 ,17 ,17 ,17 ,18 ,18 ,18 ,19 ,19 ,19 ),

rep ea t= c(l,1 ,1 ,1 ,1 ,1 ,1 ,2 ,1 ,3 ,4 ,1 ,2 ,5 ,1 ) ,1 3 ,1 ,3 ,4 ,1 3 ,5 ,1 ,1 ,2 3 ,1 ,1 ,1 ,1 3 3 ,1 ,1 3 ,2 ,1 ,1 ,1 ,1 3 3 ,1 ,1 3 3 ,1 ,1 ,1 ,1 3 ,2 ,1 ,1 3 ,1 ,1 3 ,1 ,1 ,1 ,1 3 ,1
,1,2,1,1,1,13,1,1,2,1,1,1,1,2,1,13 ,1,1,1,13 ,1,13,1,1,13 ,3,1,2,13,13,13,13,3,13,13,1,2,13,1,1,13,1,2,1,1,13,13,1,1,1,1,1,1,1,1,
1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 3 .3 .1 3 .1 3 .1 3 .3 .1 3 .1 .2 .1 3 .3 .1 3 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 3 .2 .2 .2 3 3 .2 3 .2 .1 .1 .1 .1 .1 .1 .1  
,2 ,1 ,1 3 ,3 ,1 ,1 ,1 3 ,1 ,1 ,2 ,3 ,1 ,1 ,1 3 ,1 ,1 3 ,3 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,2 ,2 3 ,
2.1.1.1.1.1.1.1.1.1.1.1.1.2333.1.1.1.1.1.1.1.1333.2.33.3.3.3.3.3.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1),

group=c(13,13,1 ,M ,1,1,1,1,1,1,13333333333,1,1,1,1,1,1,1,1,1,1,2,23,2,23,23,233,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,2,23,2 
3 3 3 3 3 3 ,3 3 3 3 3 3 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 3 3 3 3 ,5 ,5 3 ,5 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 3 3 3 3 3 3 3 3 3 3 3 ,1 ,1 ,1 ,1 ,1 ,1 3 3 3 3 3 3 ,1 ,1 ,1 3 3 3 ,1 3 ,
3 .4 .1 3 .3 .4 .1 3 3 .4 .4 .3 3 .1 .4 .3 3 .1 .1 .1 .1 .1 .1 .1 .1 3 3 3 3 .2 3 3 3 .3 .3 .3 .3 .3 .3 .1 3 .3 .4 .5 .1 .2 .3 .4 .5 .1 3 .3 .4 .5 .1 3 .3 .4 .5 .1 3 .3 .4 .5 .1 3 .3 .4 .1 3 .1,1,1,1,1,1,1,1 3 3 3 3 3 3 ,2 3 3 3 3 ,3 3 ,3,3 3 ,1,1 3 3 3 3 ,4,4,1,1 3 3 3 3 ,4,4,1,1 3 3 3 3 ,4,4,1,1,2 3 3 3 ,4,4,1,1 3 3 3 3 ,4,4,1,13 3 ,1,13,
2,1,1 33,1,1,2 3 ,1,1,2 3 ,1,1 3 3 ,1,1 3 3 ,1,1 3 3 ,1,1 3 3 ,1,1 3 3 ,1,1,2 3 ,1,1,1,1,1,1,1,1,1,1,133 ,133
),

tim e= c (l,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,U , 1 ,1 ,2 ,1 ,2 ,1 3 ,1 3 ,1 3 ,1 ,2 ,1 3 ,1 ,2 ,1 3 ,1 3 ,1 ,2 ,1 3 ,1 3 ,1 3 ,1 3 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,2 3 3 3 3  
3 3 ,2 ,2 ,2 3 ,2 3 3 3 3 ,3 3 ,3 ,3 ,3 3 ,3 ,3 ,3 ,3 3 ,3 ,3 ,3 ,3 ,3 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,
1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 . 1  
, 1, 1, 1,1,1,1,1, 1, 1, 1, 1,1,1, 1, 1, 1, 1,1, 1,1,1,1,1 3 , 1 3 ,1 3 ,1 3 ,1,2 ,1 3 ,1,2 ,1 3 , 1,2 ,1 3 ,1,2 ,1 3 ,13 ,1 3 ,1 3 ,13 , 1 3 ,1,2 ,1,2 ,1 3 , 13 ,1 3 ,1,2,1,2 ,
13.1.2.13.1.2.13.13.13.1.2.13.1.2.13.13.1.2.13.13.13.13.13.13.13.13.1.2.13.1.1.1.1.1.1),
outcome=c(l,1 ,3 ,3 ,4 ,5 ,2 ,2 ,6 ,2 3 3 ,6 3 ,4 ,5 ,2 3 ,6 3 3 3 ,6 3 3 ,3 3 ,3 3 3 ,4 ,4 ,4 ,4 3 ,3 ,3 3 ,5 ,5 ,4 ,4 ,4 ,4 ,3 3 3 3 ,5 ,5 ,4 ,4 ,4 ,4 ,6 ,2 ,6 ,5 ,3 ,3 ,4 ,1 ,6 3 ,
6.5.3.3.4.1.63.6.53.3.4.1.63.6.5.3.3.4.1.63.6.5.3.3.4.1.4.4.4.5.5.3.3.1.1.2.2.4.4.4.5.5.33.1.1.23.43.5.4.6.6.43.5.4.6.6.4.3.5.4.3.5.4 
,4 ,4,4,6,6,6,63333,5,5,5,5,3,333,4,4,4,5,5,3,3,4,4,43,5,33,4,4,433,33,1,1,1,1,1,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,1,1,1,1,133,3,3,3, 
333,4,6,6,6,3333,4,6,6,6,3,5,23,4,6,6,63,5,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,23,2,2,2,2 
,23333,3,6,6,6,6,4,4,4,4,3,333,5,5,5,5,1,1,1,1,1,1,1,13333,1,1,1,1,1,1,6,6,4,4,3,333,6,6,6,6,6,6),

treatment=c(4,2,43,4,4,4,4,4,4,4,4,4,4 3 ,2 3 3 ,2 3 3 3 ,2 3 ,4 ,2,4,2,43,4,2,43,4,3,4,3,4,3,4,3,43,4,1,4,1,4,1,4,1,4,1,4,4,4,4,4,4,4,4,4,4,
4.4.4.4.4.4333.3333.4.4.4.4.4.4.4.4.4.2333333.4.4.4.4.4.4.4.4.4.4.4.4.1.1.1.1.1.1.1.1.1.1.1.4.4.4.4.4.4333333333.1.1.1.4  
3,2,1,4,3,2,1,4,33,1.4,3,2,1,4,3,2,1,4,4,4,4,4,4,4,3,333,3,3,3333,2,2,2,2,433,3,4,43,3,3,4,433,3,4,4,2,3,3,4,4,233,4,4,3,2,1,4,
1.4,4,4,4,4,4,4,433,2,23,2,2,2,1,1,1,1,1,1,1,1,4,4,4,2,4,3,4,1,4,4,43,4,3,4,1,4,4,4,2,4,3,4,1,4 ,4,4,2,4,3,4,1,4,4,4,2,43,4,1,4,3,4,2,4,3 
,4.2.4,3.4,2,4,3,4,2,43,4,2,4,3,4,2,4,3,4,2,4,3,4,2,43,43,4,3,4,2,43,43,4,1,4,1,4,1,4,1,4,1,4,33,4,3,3 
),
y=c(“vector of 330 responses omitted for confidentiality reasons”),

w=c(“vector of 330 weights omitted for confidentiality reasons”)
)

Initial values
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list(out=c(-l ,-1 ,-1 ,-1 ,-1 ,-1), trt=c(0.5,0.5,0.5,NA), tau=c(5,5,5,5,5,5))
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Appendix B WinBUGS net benefit code

m odel
{#

## Meta-analysis for OR of reduction in stroke by using warfrin

for( i in 1 : Num.benefit) {# 
rc[i] -  dbin(pc[i], nc[i]) 
rt[i] ~ dbin(pt[i], nt[i]) 
logit(pc[i]) <- mu[i] 
logit(pt[i]) <- mu[i] + delta[i] 
mu[i] ~ dnorm(0.0,1.0E-5) 
delta[i] ~ dnorm(d, tau)

}
d -  dnorm(0.0,1.0E-6) 
tau -  dgamma(0.001,0.001) 
var <-1 / tau

or<- exp(d) 
rrr <-1 - or

### Meta-analysis for the estimate of harm

### Non rets ###

for(j in 1 : Num.harm) {#

bleeds[j] ~ dpois(expectedO]) 
log(expected[j]) <- beta[j] + log(fupDJ) 
beta[jj~ dnorm(h,tau.h)

}

### RCTs ###

for(j in 1 : ret.harm) {#

bleeds.rO] ~ dpois(expected.rOl) 
log(expected.rOl) <- beta.r[j] + log(ntD]*ave.fup[j]) 
beta.rQ]- dnorm(h.tau.h)

}

h -  dnorm(0,1.0E-6) 
harm <- exp(h)
tau.h ~ dgamma(0.001,0.001) 
var.h <-1 / tau.h

#### Quality of life following stroke ####

r.qolcat[1:16] ~ dmulti(p[1:16], N.qol)

N.qol <- sum(r.qolcat[1:16]) 
for (i in 2:16) {# 
p[i] -  dbeta(1,1)

}
p[1] <-1- sum(p[2:16])
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qol.cat ~ dcat(pQ) 
qol.score <-score[qol.cat] 
qol.reduction <-1- qol.score 
outcome.ratio <-1/(qol.reduction)

#### Specifying risks estimated by clinical and echocardiographic predictors ####

clin.risk[1] -  dnorm(-3.68888,8.468168) 
clin.risk[2] -  dnorm(-2.63109,23.36712) 
clin.risk[3] ~ dnorm(-1.73727,14.03161) 
clin.echo.risk[1] ~ dnorm(-4.60517,1.712246) 
clin.echo.risk[2] -  dnorm(-2.81341, 26.34225) 
clin.echo.risk[3] ~ dnorm(-1.68201, 16.90100)

#### Estimation of net-benefit for levels of risks due to predictors //#//////////// 

for (i in 1:3) {#
nb.clin.risk[i] <-(exp(clin.risk[i])*rrr)-(harm*outcome.ratio) 

nb.clin.echo.risk[i] <-(exp(clin.echo.risk[i])*rrr)-(harm*outcome.ratio)
}

### Estimation of net-benefit for range of theoretical absolute levels of risk ### 

for (i in 1:50) {#
nb.risk[i] <-(risk[i]*rrr)-(harm*outcome.ratio)
}

}
Data

list(nt=c(212,210,187,335,260), nc=c(208,211,191,336,265), Num.benefit=5, 
rt=c(2,6,5,4,4),rc=c(13,18,11,21,19),

Num.harm=22, bleeds=c(4,3,2,1,0,2,1,4,0,0,3,0,0,0,0,0,0,0,3,5,2,10),
fup=c(45.3,96.8,93.4,121.8,52.5,857.0,362.5,418.3,168.0,109.8,1872.0,8.3,139.0,6.0,8.3,113.3,
24.0.49.0.506.0.726.2.365.7.904.0),
rct.harm=3, ave.fup = c(2.094339623,1.238095238,1.26684492), bleeds.r=c(1,1,2), 
r.qolcat=c( 1,54,0,0,10,13,0,0,0,0,10,0,0,0,12,0),

score=c(0.99,0.98,0.866666667,0.8,0.733333333,0.666666667,0.6,0.533333333,0.466666667, 
0.4,0.333333333,0.266666667,0.2,0.133333333,0.066666667,0),

risk=c(0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19,0.21,0.23,0.25,0.27,0.29,0.31,0.33,0.35,0.37,0.3
9.0.41.0.43.0.45.0.47.0.49.0.51.0.53.0.55.0.57.0.59.0.61.0.63.0.65.0.67.0.69.0.71.0.73.0.75.0.77.0.79.0.81 
,0.83,0.85,0.87,0.89,0.91,0.93,0.95,0.97,0.99))

Alex Sutton Ph.D. Thesis. December 2001 416



Appendix B WinBUGS net benefit code

Inits

list(tau=0.5, d=0, mu=c(0,0,0,0,0), h=0.1, tau.h = 0.1, 
beta=c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1 ,i 
beta.r=c(0.1,0.1,0.1),

p= c(NA,0.05,0.05,0.05,0.05,0.05,0.05,0.05, C
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