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Abstract An understanding of where and how strongly the surface energy budget is constrained by soil
moisture is hindered by a lack of large-scale observations, and this contributes to uncertainty in climate
models. Here we present a new approach combining satellite observations of land surface temperature and
rainfall. We derive a Relative Warming Rate (RWR) diagnostic, which is a measure of how rapidly the land warms
relative to the overlying atmosphere during 10 day dry spells. In our dry spell composites, 73% of the land
surface between 60°S and 60°N warms faster than the atmosphere, indicating water-stressed conditions, and
increases in sensible heat. Higher RWRs are found for shorter vegetation and bare soil than for tall, deep-rooted
vegetation, due to differences in aerodynamic and hydrological properties. We show how the variation of RWR
with antecedent rainfall helps to identify different evaporative regimes in the major nonpolar climate zones.

1. Introduction

Soil moisture (SM) plays a central role in the partition of available energy at the land surface. As the soil dries
out, during extended periods without rain, land evapotranspiration (ET) changes from an energy-limited to a
water-limited regime [Seneviratne et al., 2010]. The characteristics of this transition toward greater sensible
heat (H) as ET diminishes determine the influence of SM on air temperature and precipitation. Precipitation
deficits have been linked to hot extremes [Hirschi et al., 2011; Mueller and Seneviratne, 2012; Vautard et al.,
20071, with established SM deficits interacting with the large-scale circulation to amplify summertime tem-
perature variability [Haarsma et al., 2009; Miralles et al., 2014; Quesada et al., 2012]. This atmospheric warming
can in turn affect SM through changes in humidity deficit, cloud cover, and precipitation [Fischer et al., 2007;
Taylor et al., 2012]. Such soil moisture-atmosphere interactions are projected to strengthen under future cli-
mate change [Dirmeyer et al., 2013].

Systematic land hydrological and climate biases have been identified in state-of-the-art global climate model
(GCM) simulations, particularly in water-limited ET regimes [Mueller and Seneviratne, 2014], which have been
related to model SM dynamics [Cheruy et al., 2013]. Models with biases in historical climate simulations often
have stronger warming projections [Cheruy et al., 2014; Christensen and Boberg, 2012]. International modeling
efforts like the Global Soil Wetness Project [Dirmeyer, 2011] and the Global Land-Atmosphere Coupling
Experiment [Guo et al, 2006] have made important contributions to our understanding of land surface
hydrology and its relation to surface fluxes. However, evaluating how SM controls the energy budget within
GCMs globally is still a major challenge, owing to the scarcity and uncertainty of observational data sets of
land surface fluxes and SM at the appropriate scale [Badgley et al., 2015; Dirmeyer et al., 2006; Mueller
etal, 2011].

In this paper, we present a unique global observationally based diagnostic to evaluate SM effects on fluxes at
scales relevant for GCM evaluation. We follow the approach of Teuling et al. [2006] in assessing land surface
behavior during rain-free periods or dry downs. However, rather than focus on a limited number of sites for
which flux measurements are available, we use satellite data to quantify dry spell behavior at large spatial
scales. We consider the evolution of remotely sensed land surface temperature (LST) with respect to near-
surface air temperature (T,) as an indirect measure of surface energy partition. Expanding on a recent study
that applied this approach in Europe [Folwell et al., 2015] (hereafter F15), we assess the utility of our method
globally. We examine the dry spell temperature dynamics for the major nonpolar climate zones. In particular,
we analyze the sensitivity of the surface warming to land cover and antecedent rainfall and compare the
observations with a simple land surface model.
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2. Methods and Data

We use satellite and reanalysis data to quantify the dry spell evolution of LST relative to T, globally. To char-
acterize the evaporative behavior of the surface, we compute the mean rate of surface warming relative to
the atmosphere during dry spells, hereafter referred to as RWR (relative warming rate, Kd ™).

We have analyzed clear-sky daytime LST from the Moderate Resolution Imaging Spectroradiometer (MODIS)
on board Terra and Aqua satellites available since 2000 and 2002, respectively. The daytime equatorial cross-
ing time is approximately 1030 LT for Terra and 1330LT for Aqua. Levels 1 and 2 swath data were acquired
from the NASA Land Processes Distributed Active Archive Center [LPDAAC, 2001]. Daytime acquisitions were
regridded to a 0.01° equal-angle LST product; where multiple observations exists on any given day and grid
box, only the observation with the lowest satellite viewing angle was used. Only cloud- and aerosol-free
observations with view angles of less than +40° were retained [Trigo et al., 2008].

From the 0.01° data set, we computed daily mean LST anomalies at the 0.5° scale. Using anomalies reduces
spatial sampling errors when regions are partially cloud-free and allowed us to combine data from Aqua and
Terra. The anomalies were calculated relative to LST climatologies on the 0.01° grid, which were constructed
separately for Aqua and Terra. The climatological value for each day of the year was computed from linear
interpolation between adjacent monthly climatological means. Mean LST anomalies were calculated for four
general cover classes provided there were at least 500 0.01° observations per 0.5° grid box. A land cover class
was assigned to each 0.01° grid box by grouping the following classes of European Space Agency GlobCover
map [Arino et al., 2008]; all classes, bare: 200, grassland: 14, 20, 30, 120, and 140, and forest: 40-100.

Global subdaily T, is needed to derive RWR. We used 3-hourly T, from European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim reanalysis [Dee et al., 2011]. The data were regridded (bilinear interpola-
tion) to a regular 0.5° grid and linearly interpolated to the average satellite scan time of each 0.5° grid box. In the
same way as for LST, a clear-sky (i.e,, days with 0.5° LST observations) climatology was constructed for the period
2000-2014 from which daily T, anomalies were computed. Recognizing there are uncertainties in this data set,
we repeated the analysis with three other reanalyses: Japanese 55-year Reanalysis (JRA-55) [Kobayashi et al.,
2015], Modern Era Retrospective-Analysis for Research and Applications (MERRA) [Rienecker et al.,, 2011], and
National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR) [Saha et al., 2010].

To identify dry spells, we used three satellite precipitation data sets: Tropical Rainfall Measuring Mission
(TRMM) [Huffman et al., 2007], Climate prediction center MORPHing product (CMORPH) [Joyce et al., 2004],
and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN) [Hsu and Sorooshian, 2008], available at 0.25° spatial and 3-hourly temporal resolution. We define
a dry day when the mean daily rainfall of the data sets is below 0.5 mm at 0.5° resolution and we define a dry
spell as a period of at least 10 consecutive dry days. The choice of 10 days reflects the trade-off between hav-
ing a long enough period to observe LST changes and maintaining a sufficient quantity of dry spells to enable
the analysis globally. The combination of three data sets provides a more conservative identification of dry
days, reflected by a less noisy evolution of LST during dry spells and higher RWRs. Finally, in the absence
of a globally consistent SM data set, we used antecedent rainfall accumulations as a proxy for SM. Our results
are based on 30 day accumulations, though periods from 10 to 90 days produced qualitatively similar results.

To derive RWR, we first calculated the composite mean difference between LST and T, anomalies for each dry
spell day (LSTanom — Ta,amon: €quation (1)).

ST wi | (15T = 157g) = (Tay = To )|
n bl
Zi:1wij

where j is the dry spell day, n is the number of dry spell events, i a single event with a valid LST observation,
LST® and T§ are the climatological LST and T, and w is the number of 0.01° observations used to construct the
0.5° LST. Values of T, are only selected on days with a valid 0.5° LST value, so LST and T¢ represent clear-sky
climatologies. We removed dry spell events with days in which T, was below 10°C at satellite overpass time to
avoid artifacts from soil freezing. Then RWR was computed by linear regression of LST,om — Tg,amon ON days
2 to 10. The first day of each dry spell was discarded because of the possible low numbers of LST observations
and precipitation errors [F15].

I—STanom - TaA anom — (1)
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Figure 1. Simulated variation of 10 day dry spell surface warming rate relative to overlying air (RWR) with initial soil moist-
ure across the drying stages I-Ill (as in Teuling et al. [2010]) and soil moisture and evapotranspiration regimes (as in
Seneviratne et al. [2010]).

Each 0.5° grid box was assigned to one of six climatic zones based on the Kdppen-Geiger classification [Kottek
et al., 2006]: equatorial (As, Aw, and Cw), arid cold (Bk) and hot (Bh), temperate humid (Cf) and dry (Cs), and
continental hot/warm summer (Dfa and Dfb; hereafter continental). Mean RWRs for each zone were derived
using data from all dry spells in their respective climatic class. For these classes, we verified that composite
daily values of incoming solar radiation, wind speed, and specific humidity were approximately constant
on days 2-10 according to ERA-Interim.

3. Theoretical Illlustration

To frame our observational analysis, we present a simple model of how SM influences LST during a rain-free
period [F15]. In the transition from wet to dry soil, three drying stages can be distinguished. Stage | drying
occurs when SM levels are above some critical value (Scgit) and ET is independent of SM. During stage I,
SM constrains ET, while in stage lll, SM is unavailable and ET becomes negligible [Teuling et al., 2010].

Fluxes computed with a Penman-Monteith approach [Monteith, 1965] are coupled to a simple soil water bud-
get model to simulate LST evolution during dry downs, as a function of initial SM. The Penman-Monteith
equation can be rearranged to solve for LST as a function of evaporative resistance [F15]:

(1= @)Sa + Lo — 6+ 300T3 +2% Ty — 22 [q,0(Ta) — A(To)To — ]
4807-‘31 + P A(Tq) + ’%

ra+rs

LST =

) )

where a is albedo, S, and L, are downwelling shortwave and longwave radiation, G is ground heat flux, ¢ is emis-
sivity, o is the Stefan-Boltzmann constant, p, and ¢, are, respectively, density and heat capacity of air, r, is an
aerodynamic resistance, A is the latent heat of vaporization, g.: and g, are saturated and specific humidity,
and A(T,) is the slope of the temperature-vapor saturation curve. SM acts on ET through the surface resistance
term, r,. We assume a linear reduction in surface conductance (1/r,) for SM below Scgit (see equation (7) in F15).
Constant values of a=0.25, S;=450 Wm ™2, Ly=300Wm ™2 G=10Wm~2 ¢=0.97, and g,=0.0078 kg kg~ are
assumed for a 10 day dry spell. Drainage is considered to be zero. While F15 assumed a fixed T,, we prescribe
here a constant rate of atmospheric warming over the dry spell of 0.25Kday™". We treat T, as a boundary
condition to avoid the complexities of the coupled land-atmosphere system.
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Figure 2. Observed 2000-2014 mean (at 1° resolution) (a) number of dry spell days per year; (b-e) rate of surface warming relative to overlying air during dry spells
(RWR, qu) for (b) all land cover types and those classified as (c) grassland, (d) forest, and (e) bare soil. Grey denotes cells with less than one event per year with

available observations.

The RWR is calculated here as the slope of the linear regression of the daily values of LST-T,. Assuming that r,
remains constant, RWR is proportional to changes in H during the dry spell. The modeled sensitivity of RWR
to initial SM is illustrated in Figure 1, taking parameter values for short, shallow-rooted vegetation
(ra=40sm~", Scrr=30mm).

Evaporative fraction (EF) ranges from 1 to 0, from critical soil moisture (Scgyt) to wilting point (Syy.1). The dry-
ing stages and evaporation regimes correspond to the short vegetation (green line). The shaded areas repre-
sent the sensitivity of RWR to +0.1 Kday ' variation of atmospheric warming.

In the wet, energy-limited regime (initial SM > Scgit), negative RWRs prevail. Under these circumstances, the
imposed atmospheric warming exceeds the increases in LST, indicating very effective surface cooling by eva-
poration. With decreasing initial SM (stages | to ll), there is an increase of RWR, as ET becomes water stressed
during the dry spell. In the transitional regime, positive RWRs prevail, indicating a gradual increase of H during
dry downs. In this regime, the value of RWR increases with decreasing initial SM due to the nonlinearity of the
coupled energy and water balance—small changes in SM force relatively large changes in LST when the soil is
drier. However, the maximum RWR occurs for an initial SM above zero, because for very dry initial conditions,
the accumulated evaporative losses over the first days of the dry spell take the soil into stage Il drying. In fact,
under the driest initial conditions RWR values are negative. In these circumstances, LST cannot keep up with
the warming of the atmosphere, and SM-driven changes in surface fluxes are dominated by longwave emis-
sion. The sensitivity of RWR to the choice of atmospheric warming rate is shown in Figure 1; more rapid atmo-
spheric warming, depicted by the lower edge of the shaded area, decreases values of RWR and vice versa.

The sensitivity of the relationship between RWR and initial SM to other key surface properties is also depicted
in Figure 1. Two additional idealized surfaces are considered: bare soil (r,=80s m~", Scrr=20 mm) and tall
deep-rooted vegetation (r,=20s m~", Scrir =40 mm). The lower aerodynamic resistance of tall, forest-like
vegetation produces smaller RWRs. This simulation also includes a larger SM reservoir, consistent with deep
roots. This produces weaker stage Il variations of RWR with initial SM, as relative SM depletion is slower.
Conversely, a smooth surface with shallow reservoir (bare soil) produces large values of RWR and a strong
sensitivity to initial SM.

4, Results

Globally, there are large variations in the number of dry spell days and events according to our definition, due
to the diversity of regional hydroclimates (Figure 2a). During dry spells, positive mean LST and ERA-Interim T,
warming rates (not shown) were found for 97 and 93% of the sampled surface, respectively, of which 81 and
76% were significantly different from zero (p < 0.1). These high percentages demonstrate the reliability of the
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Figure 3. (a) Evolution of LST, T,, and LST-T, composite anomalies from days 2 to 10 (solid lines) of all observed dry spells (2000-2014) and the corresponding rate of
surface warming relative to overlying air (RWR, slope of (dashed line) the linear fit to LST-T,) in six climatic zones; (b) RWRs per land cover type, stratified by 30 day
antecedent precipitation in decile bins; circles are placed at the median precipitation of each bin; filled symbols denote significant differences (t test) between cover
types; (c) Geographical distribution of K6ppen-Geiger based climatic zones and dominant cover types (black denotes that other than bare, grass or forest is the
dominant type) and (inset bar) number of observations per antecedent precipitation bin for each cover type.

observations for characterizing dry spell behavior. The observed RWRs are presented at 1° resolution in
Figure 2b. Positive RWRs were found for 73% of the grid boxes (of which 51% were significantly different from
zero, p < 0.1). Since daily variations in solar radiation and wind speed are minimal during our dry spells, the
observed surface warming can be associated with water stress; positive RWRs indicate an increase of H during
dry spells. To test how robust these results are to our choice of T, data, we compared them with those derived
from three alternative reanalyses. Each yielded very similar spatial structure, with spatial correlations (r?)
between ERA-Interim and JRA-55, MERRA, and CFSR of 0.71, 0.79, and 0.77, respectively.
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Higher positive RWRs were observed for short vegetation (Figure 2c) compared to forest (Figure 2d), reflecting
differences in aerodynamic properties and hydrological dry spell behavior. This is consistent with higher theo-
retical RWRs for short vegetation in the transitional regime (Figure 1) and greater SM sensitivity for shallow-
rooted vegetation. Negative RWRs (where the surface warms up more slowly than the air) are evident in
Figure 2b for two contrasting SM conditions: wet with a predominantly energy-limited regime and dry reaching
stage lll drying (see negative RWRs at the wet and dry end in Figure 1). On the wet side, negative RWRs corre-
spond to areas with abundant water during rain-free periods. Clear examples (Figure 2b) are found in the exten-
sively irrigated Indo-Gangetic plains, wetlands in northern Argentina and eastern China, and forest areas of the
Amazon and Congo basins (Figure 2d). On the dry side (ET~0), the arid cold deserts of Central Asia present
extensive negative RWRs. The model predicts this outcome for smooth, dry surfaces when synoptic warming
is strong, and LST is high (summertime LST values around midday exceed 330K in these regions). According
to ERA-Interim, Saharan and Arabian dry spell atmospheric warming (~0.15Kd™") is notably weaker than over
the midlatitude deserts (~0.4Kd™"), and thus, RWRs are more positive. Additionally, if there are substantial dry
spell increases in ground heat flux, RWR will be further decreased.

Figure 3a shows the evolution of LST and T, composite anomalies from days 2 to 10 of all observed dry spells
and their corresponding RWRs for the six climatic zones. Each zone displays a consistent increase of both T, and
LST as the dry spell develops. The higher day-on-day increase of LST relative to T, results in positive RWRs, ran-
ging from 0.01 Kd~" (arid cold) to 0.08 Kd™" (arid hot). For the arid cold zone, the negative signals observed in
Central Asia deserts (Figures 2b and 2e) partially offset positive RWR in the western United States and elsewhere.

According to our simple model, the clear-sky surface warming signal during dry downs mainly depends on
initial SM and surface properties. The model (Figure 1) shows low values of RWR for very wet and very dry
conditions that can become negative when the air is warming rapidly. For transitional conditions, RWR
increases as initial SM decreases in stage Il drying and a maximum value is reached when the initial SM
approaches stage lll. To investigate the sensitivity of our observations to initial SM and land cover type, we
stratified dry spells into deciles of 30 day antecedent rainfall and into three broad cover types for each cli-
matic zone (Figure 3b). In principle, the sensitivity of RWR to antecedent rainfall (proxy for SM) can provide
unique large-scale observational information about the dominant ET regime.

Considering all land covers first (Figure 3b, blue lines), a range of sensitivities of RWR to initial SM is apparent for
all climatic zones. The full variation of RWR across all drying stages (theoretical “bell-shaped” curve, Figure 1) is
only observed for continental and temperate humid zones. For these zones, RWRs increase as initial SM rises, up
to intermediate conditions (deciles 5 and 6), before falling back with further increases in SM. In these zones,
roughly half of the events fall within stages Il to lll drying. Values for the wetter deciles decrease but remain
above zero, indicative of stage Il drying. In the case of the drier climate zones (arid hot, arid cold, and temperate
dry), only stage Il to lll drying (i.e,, the dry part of the theoretical curve) is evident. In the arid hot and temperate
dry zones there is a progressive increase of positive RWRs with wetness. This implies a stronger rate of change of
H for higher levels of initial SM. In the driest cases, H reaches a maximum at some point during the dry spell
(typically after 3-4 days, not shown), after which there is no further increase. In the arid cold zone, negative
RWRs appear in the driest deciles, due to the negative values in central Asia (Figure 2e), and reflect faster warm-
ing of the air relative to surface. Finally, in contrast with the rest of the climatic zones, RWR in the equatorial
domain showed little sensitivity to antecedent rainfall. This fact is likely linked to high SM availability and a deep
root zone, although cloud contamination in the LST observations should be accounted for in tropical forest
areas as a possible contributing factor.

The variation of RWR with antecedent rainfall for different land cover types is also shown in Figure 3b. RWRs per
cover type were only computed if there were at least 1000 0.5° LST observations per day of dry spell per preci-
pitation decile (inset plot in Figure 3c). Differences between land covers are the result of a combination of aero-
dynamic effects and hydrological dry spell behavior. Consistent with theory (Figure 1), grasslands (higher r,)
exhibit overall higher RWRs than forests (lower r,) (Figures 2c-2e). Interestingly, the shape of the RWR curve with
antecedent rainfall varies between cover types (Figure 3b), suggesting differences in drying stage for similar SM
levels at the onset of dry spells. For example, continental forests exhibit negative RWRs for the two wettest dec-
iles after reaching maximum values for deciles 4 to 7; this suggests that forest areas which have received at least
~90 mm rain in the previous month will be in stage | (unstressed) drying. On the other hand for grasslands in
this climate zone, values of RWR are positive for even the wettest decile, implying stage Il drying and modest
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water stress. This difference in evaporative regime between forest and grassland is to be expected given the
access of trees to a larger root zone soil reservoir [Teuling et al., 2010]. Similar, though weaker, forest-grassland
differences can be detected for the temperate humid domain. For the remaining climate zones, Figure 3b pro-
vides only hints of expected forest-grassland differences in water stress.

Bare soil composites were examined for the two arid zones. We would expect bare soils to exhibit a stronger
signal than vegetation, due to both aerodynamic and hydrological effects. Indeed, bare soil RWRs in the arid
hot domain exhibit a steep increase with antecedent rainfall (Figure 3b). However, in the arid cold domain, while
the bare soil and grassland curves are roughly parallel, the bare soil values are substantially lower, and mostly
negative. While most bare soil observations in this climate zone originate in Central Asia, it is North America
which contributes almost all of the forest observations. Comparison between cover types for the arid cold class
should therefore be undertaken with care. Here we simply note that this is the only climate zone where values
of RWR for forest exceed grassland (apart from the wettest decile). It should also be noted that grid boxes in dry
areas classified as grassland or forest may have a substantial bare soil component.

5. Summary and Discussion

We have developed a unique observation-based diagnosis of SM control on land surface flux partition glob-
ally. To derive our diagnostic RWR, we compared how rapidly the land warms relative to the overlying atmo-
sphere during dry spells of at least 10 days. Under clear skies, this is a proxy for the change in H as the soll
dries out. We applied the method at 0.5° globally (excluding high latitudes). The sensitivity of RWR to initial
SM content and surface properties was investigated for all the major nonpolar climate zones.

In our observed dry spell composites, we found that the land warms up in 97% of the grid boxes, and that in
73%, the land warms faster than the atmosphere. This positive RWR indicates water-stressed conditions and
increasing H, at least during some of the dry spells. Theory indicates low values of RWR for the wettest and driest
conditions, which can become negative when the atmosphere warms rapidly at the synoptic scale. Qualitatively
consistent with this, we found the lowest RWRs for midlatitude deserts (at the dry end) and for tropical forests,
irrigated land, and wetlands (at the wet end). Land cover is an important factor in the observed values of RWR.
As expected, higher RWRs are found for shorter vegetation and bare soil compared to tall deep-rooted vegeta-
tion, due to differences in aerodynamic properties and hydrological dry spell behavior. Furthermore, the varia-
tion of RWR with antecedent rainfall provides information on which evaporation regime a particular region lies
in climatologically. Consistent with expectations, ET in arid and dry climates remains strongly SM-constrained
even following the wettest months. Temperate humid and continental zones on the other hand indicate
decreasing SM stress with increasing antecedent rainfall roughly 50% of the time. Indeed for these two climatic
zones, different drying stages can be observed depending on land cover type for a given value of antecedent
rainfall. For instance, in our results forests in the continental climatic zone appear unstressed by SM during a
10 day dry spell provided the previous month saw at least ~90 mm of rain. Conversely, RWR values indicate that
grassland remains in a SM limited regime even with monthly antecedent rainfall of ~150 mm.

Several sources of uncertainty and limitations for this observation-derived diagnostic should be noted. First,
the reanalysis air temperate is not a purely observational product and relatively weak observational con-
straints in some regions (e.g., deserts) mean that model biases there may become important. Nevertheless,
we found overall results robust to the choice of four independent reanalysis products. Second, this approach
requires high-quality rainfall data sets to detect dry spells. We found systematic improvements (in terms of
stronger warming rates) when using remotely sensed rather than reanalysis rainfall, particularly away from
regions where precipitation is predominantly synoptically controlled. Moreover, RWR increased with the
addition of a second and third observational data set. Third, to achieve global cover, the analysis was con-
strained to relatively short dry spells; longer dry spells would provide stronger SM forcing at the expense
of poorer spatial coverage. Finally, we recognize that for partially vegetated surfaces, our LST-derived signal
is affected by a combination of transpiration and soil evaporation. These processes operate on different time
scales and cannot be disentangled here.

Noting these potential shortcomings, we highlight how well the observations, when averaged over enough
cases, produce signals consistent with expectations. Given the importance of dry spells for heat waves, this
approach should provide a valuable tool for assessing the role of SM in climate models. Other vegetation-
based indices [Zscheischler et al., 2015] also help to distinguish different evaporative regimes and could

GALLEGO-ELVIRA ET AL.

SOIL MOISTURE CONTROL ON ENERGY BALANCE 7



@AG U Geophysical Research Letters

10.1002/2016GL068178

Acknowledgments

This research was funded under the e-
stress project (NE/I006729/1). Additional
support was provided by the European
Commission under grant agreement
282672 (EMBRACE). The authors thank
Emanuel Dutra (ECMWF, UK) for helpful
comments on the study. Observational
data used in the study are freely avail-
able from http://reverb.echo.nasa.gov/
(MODIS), http://due.esrin.esa.int/
(GlobCover), https://wci.earth2observe.
eu/ (ERA-Interim), http://disc.sci.gsfc.
nasa.gov/ (MERRA), http://rda.ucar.edu/
(JRA-55 and CFSR), http://mirador.gsfc.
nasa.gov/ (TRMM), http://www.cpc.
ncep.noaa.gov/ (CMORPH), and http://
chrs.web.uci.edu/ (PERSIANN).

complement our analysis. An advantage of our method is its ability to be repeated with GCM simulations.
Model RWR can be derived by carefully processing output to replicate the clear-sky sampling of LST during
dry spells. This analysis could also potentially help to constrain future climate projections where change is
linked to soil hydrology [Stegehuis et al., 2013].
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