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Abstract

The flux switching (FS) motor is a new class of reluctance machine that has 

demonstrated potential as a possible replacement for brushed-dc motor in many 

applications. However the design and optimisation of the motor and its drive system are 

rather complicated and not much past knowledge and guidelines are available to aid the 

engineer(s) in the design of the machine.

The development of flexible and versatile design optimisation software to facilitate the 

design and optimisation of FS motor and drive is presented. The design optimisation 

software incorporates a genetic algorithm optimisation tool and dynamic simulation 

model with third party finite element analysis software.

The developed genetic algorithm optimisation program integrated with finite element 

analysis (FEA) software provides the engineer with the necessary optimisation tools 

capable of interfacing with the FEA software. This has allowed many FS motor 

lamination designs to be created without any requirement of user feedback once the 

program is initialised. In addition the application of the developed design tool can also 

be extended to other electromagnetic devices.

A dynamic simulation model of the FS motor drive system has been developed. The 

model can either be used as a standalone program or be integrated into the optimisation 

software. The dynamic simulation model consisted of a simple time-stepping electrical 

equivalent circuit coupled with a switch control algorithm, a winding optimisation 

model and an iron loss model. When interfaced with the FEA software it can support 

rapid estimation of the motor dynamic performance.

The developed optimisation software has been used to design and optimise FS motors 

and the results have demonstrated the potential of genetic algorithms in design 

optimisation of the machine.
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Chapter 1 Introduction

1 Introduction

1.1 Background
Living in modem days, electric motor has unwittingly integrated into a feature of daily 

life, it is no longer the large “stand-lone” device that we have used to know. It has 

become literally invisible, embedded inside thousands of everyday products. They can 

be found inside washing machines, vacuum cleaners, refrigerators, and disc drives etc. 

However, we may often fail to notice such numerous motors by our own eyes. Whatever 

the size, electric motors have grown to be of common use in our society. While there are 

so many different classes of electric motor, the type of electric motor that would be 

discussed within the context of this thesis is the new flux switching motor (FSM) [1]. 

The flux switching motor is a new class of reluctance machine; experiments of early 

prototype have offered performance advantages over brushed motor in many 

applications.

The design optimisation of a reluctance machine and drive system for a given 

specification is a multi-dimensional problem. Achieving the design objectives often 

requires tens or even hundreds of mechanical and electrical parameters to be tuned. 

Within the motor, the size, aspect ratio, lamination shape, number of poles, air-gap 

radius and thickness, lamination steel choice are all variables which have a dramatic 

impact on the motor performance. The design of the windings, connection methods and 

slot areas is very dependent on the power converter topology, operating voltage, value 

of dc link capacitance and switching angles. The complete system performance is 

therefore dependent on all of these factors and design optimisation process must take 

account of all the variables in the system. The interdependent design variables make the 

design space multi-dimensional and virtually unsolvable by analytical techniques.

The traditional analytical method is used to design electric motor before the Finite 

Element Method analysis (FEA) was adapted. Using circuit theory, phasor diagrams, 

and equivalent circuit techniques to represent the operation of an electric motor under 

specific conditions. Although these techniques have been refined over time, they are 

still suited to relatively simple electromagnetic circuits. Considerable experience is 

required because of the need to include correction factors, which must be introduced to 

minimise the difference between measured and predicted performance. Over the 

decades, with advances in FEA and computer hardware, FEA has become an integral

1



Chapter 1 Introduction

part of the electric motor design process. FEA has contributed to cut electric motor 

design cost and timescales by reducing the number of tests and prototyping. However, it 

is still just a tool for estimating electromagnetic performance of the electric motor for a 

given configuration. On the whole, the designer still have to use his existing or real-time 

learnt knowledge to modify and adjust the design parameters to derive a satisfactory 

final design. Such design process could be tediously long and, in the end, the design 

may not be the optimal one.

Based on past experiences [2-7], it is understood that a multi-dimensional type of 

engineering design problem such as the optimisation of an electric motor and drive 

system can be solved more effectively by implementing evolutionary computing. 

Genetic Algorithms (GAs) are one such evolutionary computational technique which 

tend to search the design space intelligently and not exhaustively. One key feature of 

GAs is that they search from multiple points in the design space, instead of moving 

from a single point like gradient-based methods, nor like the enumerative methods that 

looked at every point of the design space one at a time. Genetic algorithm is proven to 

be more efficient (with higher probability of converging to an optimal solution in lesser 

time) in solving discontinuous, multimodal, and noisy problem compared with other 

deterministic search techniques [8].

The much reduced search time makes design automation possible within a realistic 

timescale and the multiple solutions make the designs reliable and suitable for multiple 

objectives. Furthermore, ever-advancing computer processor speed will further reduce 

the search time. Powerful and versatile enabling technology based on evolutionary 

computing has an unmatched potential in modelling and design automation of electrical 

machines, drives and control systems. The underlying aim of this research is to develop 

such methodology to extend the present bounds of performance and to materialise a 

rapid transfer of the new flux switching motor and drives technology to commercial 

products by reducing the design cycle and development gearing. Since the success of 

any commercial products depends on the cost and timeliness as well as quality. As a 

consequence, the design process is being reengineered to save cost and timescales.

The FS motor drive technology has been used in several applications traditionally 

served by other drive types. As the FS technology is drawing attention of a growing list 

of manufacturers, some comparisons of the characteristics of FS and other motors seem 

appropriated.

2



Chapter 1 Introduction

In domestic appliance, FS motor vs. Universal motor

■ The life of a universal motor is usually limited by the wear of the commutator and 

carbon brushes, which can be further reduced by working environment. While the 

brushless FS motor has no such worries, and due to the simple and rugged motor 

construction, the FS motor can operate in environment of high temperature and 

vibration.

■ The speed of the universal motor decreases as load increases, this inherent 

characteristic of the universal motor become critical, when application (such as 

sawing) requires the motor to deliver flatter output power over a wider speed range. In 

comparison a FS motor of similar frame size can deliver a flatter, more constant speed 

load profile [19].

In automotive sub-system, FS motor vs. other drive types

■ PM brushed motors are commonly employed in automotive sub-system although it 

provides the low cost option but there is concern over the lifetime of the brushes.

■ Brushless dc motors and drives offer very high performance but they are still 

relatively expensive to manufacture.

■ Switched reluctance (SR) motors have rugged construction but the cost of its drive 

is still considered as too expensive for the very cost competitive applications.

1.2 Thesis objectives
The objective of this research is to develop a versatile and efficient computer-automated 

design method in design and optimisation of the flux switching motor and drive such 

that the technology can be rapidly transferred to commercial products. To achieve this 

goal, the following would be investigated.

Stage 1: Integrate the FEA with genetic algorithms

Central to this task is the development of a general-purpose genetic algorithm, which 

offers versatility and flexibility to its user, as well as its capability to interface with 

finite element analysis software. The integration of the genetic algorithms with a FEA 

software package liked OPERA-2D, allows multiple design variables of an electrical 

machine to be tuned simultaneously, and produces a wide range of machine laminations. 

The integrated software would ideally displace or reduce any requirements of expert 

feedback during the design loop, such that the automated design cycle would free up 

designer time for conceptual design.

3



Chapter 1 Introduction

Stage 2: Develop an accurate and versatile FSM and drive simulation system 

Before a genetic algorithm can be used to optimise a motor and drive system an 

accurate and very versatile simulation system must be developed. The simulation model 

should be capable of modelling the interaction between the motor, the drive circuit and 

the power switch control algorithm, in order to predict the electromechanical 

performances under a range of operating speeds and voltages. Nonetheless, the 

simulation should be rapid enough to be of practicable use within an iterative design 

process. With the completion of both stages a computer-automated design process in 

design optimisation of flux switching motor and drive is realisable.

Stage 3: Design and optimisation of the flux switching motor and drive based on GAs 

To confirm the ability of the genetic algorithms in electrical machine design 

optimisation, the design optimisation of flux switching motor and drive system for two 

different applications will be demonstrated in chapter 6 and 7. What an optimal design 

is will be very dependent on the application, but inevitably reduced cost, both initial 

manufacturing cost and running cost, will be design targets.

1.3 Genetic Algorithms

1.3.1 What are genetic algorithms?
Genetic Algorithms are a class of evolutionary algorithms first proposed by John 

Holland in the 1970s. They were search algorithms invented to mimic the processes 

observed in the biological evolution [9]. Holland was inspired by the Darwinian notion 

of evolution in which only the fittest survive. He believed that appropriately 

incorporated in a computer algorithm, the GAs might yield a technique for solving 

difficult problems in the way that nature has done through evolution. There are three 

features which distinguish GAs as first proposed by Holland from other evolutionary 

algorithms; i) binary numbers are used as representation, ii) the proportional selection, 

and iii) crossover as the primary method of producing variations.

Many subsequent GA implementations [8,10] have adopted alternative methods of 

selection, and many have abandoned binary representations for other representations 

depending on the problems. Also many alternative methods of crossover have been 

proposed, but a simple GA that produces good results in problems normally comprised 

three important operators: Selection, Crossover and Mutation.
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The GA begins its search for optimum from a randomly created initial population of N  

individuals, each of them characterised by a string of binary numbers, Is and Os. The 

string is composed of some concatenated sub-strings, where each sub-string describes a 

design variable. The design variables encoded into finite length binary strings, are often 

referred to as chromosomes where a single design variable corresponds to one gene. 

They are the genotypes that are manipulated by the GA. The evaluation routine decodes 

these structures into some phenotypical structure and assigns a fitness value. Each 

individual represents a search point in the space of potential solution to a problem at 

hand. The idea of survival of the fittest is of great importance to genetic algorithms. GA 

uses fitness function to evaluate the “fitness” of each individual and assigns a fitness 

value to each individual. According to the fitness measure, the selection process favours 

better individuals to reproduce more often than those that are relatively worse. Thus the 

better individuals has a higher chance of forming the new population, some individuals 

of the new population will undergo transformation by means of genetic operators to 

form new solutions. So in each generation, the GA creates a set of strings from parts of 

the previous strings, occasionally adding random new data to keep the population from 

stagnating. All these operations are merely a copying strings and exchanging partial 

strings. On average, the individuals of genetically evolved new population represent 

improved points in the solution space. The search continues until a stopping criterion is 

reached. Despite the simplicity of the operation, GAs have vast and proven potential for 

solving difficult optimisation problems [8-10].

1.3.2 Representation of individuals
In most applications of GAs, decision variables are coded in binary strings of Is and Os. 

The variables can be integer or real numbers, they are represented by binary numbers of 

a specific length depending on the required accuracy in the solution. For example, a real 

number R bounded in the range {a, b) can be coded in a five-bit string with the strings 

00000 and 11111 representing the real numbers a and b respectively. With any of the 

other 30 strings represents a solution in the range {a, b), and the maximum attainable 

accuracy is (b-a)/(25-l). The resolution of representation increases with the number of 

bits in the strings, but too fine a resolution might result in excessive hair splitting in the 

search for an optima. Too coarse a resolution might result in the optima never being 

found simply because the string cannot express a value close enough.
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Although binary coding has been most popular in GAs, a number of researchers prefer 

to use Gray coding to eliminate the hamming cliff problem associated with the binary 

coding [11]. In Gray coding, the number of bit differences between any two consecutive 

strings is one, whereas in binary strings this is not always true. As an example, consider 

a five-bit parameter with a range from 0 to 31. If it is encoded using the standard binary 

coding, then 15 is encoded as 01111, whereas 16 is encoded as 10000. In order to move 

from 15 to 16 all five bits need to be changed. On the other hand, using Gray coding, 15 

is encoded as 01000 and 16 as 11000, differing only by one bit. This will be a problem 

if two points close to each other in the representation space might be far in the binary 

represented problem space. As a consequence, GAs using the binary representation is 

unable to focus the search effort in a close vicinity of the current population. However, 

as in the binary strings even in Gray coded strings a bit change in any arbitrary location 

may cause a large change in the decoded integer value.

Although typical, GAs are not restricted to bit-string representation, there are also cases 

of GAs using other representations [12], such as real valued vectors, permutations and 

treelike hierarchies. It is clear that choice of representation is inherent to the underlying 

problem at hand, and a difficult problem can be made simpler by suitably choosing a 

representation that work efficiently. While there are several options available for 

representation in the GAs, only the binary string representation will be used throughout 

the course of this research project.

1.3.3 Mechanics of Genetic Algorithms
In spite of the diversity in GAs, they have common components: selection biased by 

fitness, crossover, and mutation. Selection is a process in which individuals are selected 

for mating based on their fitness values. Then new individuals are created by crossover 

and mutation operations to form the new generation. Each item listed below in the 

outline of a simple genetic algorithm will be presented in the following subsections.

A simple genetic algorithm would have the following outline:

i) Initialise a population of designs.

ii) Evaluate fitness of each design in a population.

iii) Select designs for “breeding” and designs to be eliminated.

iv) Apply genetic operation, crossover and mutation to create new designs.

v) Replace the eliminated designs with new designs.

vi) Check if stop criteria is met, if not return to step 2 and restart the process.
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1.3.3.1 Initialisation
An initial population of designs is generated and this often is accomplished by random 

sampling from the design space. However, it is also possible for proven designs to be 

inserted deliberately into the population to avoid possibility of all randomly generated 

designs being impractical, especially when the initial population of designs is small.

1.3.3.2 Evaluation
The fitness of all individuals is evaluated by the fitness function(s), thus to achieve a 

successful search result the function should have the capability to identify between 

better and worse solutions. While what the fitness function would be very much 

depends on the underlying problem. Within the scope of the thesis, the fitness of all 

individuals would be measured and ranked based on the results of either FEA or 

dynamic drive system simulation. Noticeably, this step also consumes the most 

computational time within the optimisation cycle.

1.3.3.3 Selection
The primary objective of the selection operator is to emphasize better solutions in a 

population. This operator does not create any new solution, instead it selects relatively 

good solutions from a population and deletes the remaining not so good ones. In nature, 

an individual undergoes two different selection pressures before producing its offspring, 

survival to adult state and finding its mates. Selection operator in GAs models these 

processes and several different types of selection operator will be discussed.

Fit-Fit selection pairs an individual with the next fittest individual in the population by 

stepping through the ordered list of individuals. This method of selection ensured that 

every individual would get an opportunity to breed, not just between the fit so this 

method could not strictly be said to favour the strong in selection. However, the results 

of crossover between strong individuals are more likely to be fit than crossover between 

weak individuals. The weak individuals and their children will probably be replaced 

quickly from the population. The population does not remain static for the entire cycle 

through the list, meaning that individuals and their positions in the ordered list are being 

constantly replaced. Fit-fit selection is highly conservative of genetic information and 

tends to converge rapidly to one solution.

Random selection, this technique randomly selects two parents from the population for 

crossover. In terms of disruption of genetic codes, random selection is a little more
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disruptive, on average, than roulette selection. A slight modification had been made to 

this technique, making it suitable for implementing it in the program in this thesis. The 

modification ensured that every individual would get an equal opportunity to breed.

Fitness-proportional selection - In this method, the selection probability of each 

individual is calculated by dividing its fitness by the sum of the fitness of all 

individuals. The roulette wheel selection and the Stochastic Universal Sampling (SUS) 

are two methods of this class. Figure 1.1 shows the operation of the roulette wheel 

selection that assigns a portion of the wheel proportional to the selection probability and 

starts spinning the roulette wheel; each time a single individual is selected. The most 

important concern in a stochastic selection is to prevent loss of population diversity also 

known as genetic drift. For instance, in the roulette wheel selection, it is possible that 

only the individuals A and B are selected to produce all the offsprings. The basic 

consideration of the SUS is to prevent genetic drift by selecting several parents for each 

wheel spin. Figure 1.2 shows an example where four parents are selected at a single 

wheel spin.

Individual fitness Selection
probability

A 40 0.4

B 30 0.3

C 20 0.2

D 10 0.1

Fig. 1.1 Roulette wheel selection

Individual fitness Selection
probability

Fig. 1.2 Stochastic universal sampling
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Although there are many selection methods being implemented in GAs, the appropriate 

level of selection pressure is the key to a successful evolution. An evolution under too 

strong selective pressure leads to premature loss of diversity and results in premature 

convergence of the GA. It is also known that the used of roulette-selection, could lead to 

diversity in a population to be lost in early generations due to domination of the entire 

population by a few “super” individuals that are much better than the average fitness 

[7,9]. On the contrary, low selective pressure can make the search ineffective. Thus, it is 

important to find a proper balance between the two.

1.3.3.4 Crossover
In nature, crossover occurs when two parents exchange parts of their corresponding 

chromosomes. In a genetic algorithm, crossover recombines the genetic material in two 

parents’ chromosomes to make two children. The intuitive idea behind crossover is easy 

to state: given two highly fit individuals, but for different reasons, ideally what we 

would like to do is create a new individual that combines the best features from each. Of 

course, the difficulty is in what physical trait displays that underlying genetic quality, so 

the best we can do is to recombine features at random. This is how crossover operates.

Single-point crossover, two selected strings from the parent population are lined up, and 

then creating two new individuals by swapping the bits after a random or predetermined 

point. By keeping the head sub-string the same and exchanging the tail sub-strings, two 

children strings, each made up of “genetic information” from both parents are 

generated. Then these two entirely new strings move on to the new generation. As an 

example, say that the strings ‘10000’ and ‘01110’ are selected for crossover and the GA 

decides to mate them. If the GA selects a splicing point of 3. The following then occurs:

Fig. 1.3 An example on single-point crossover 

The newly created strings are ‘10010’ and ‘01100’.

Two-point crossover as the name suggests, they are random or predetermined selected 

crossover sites. Only the “genetic information” that lay between the two sites is

100 00 
Oil  10

100 10 
Oil  00
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exchanged. As an example, supposed that ‘10011001’ and ‘01100100’ are selected for 

crossover and GA selects two splicing points of 3 and 5.

100
Oil

11
00

001
100

_  100 00 001 
Oil  11 100

Fig. 1.4 An example of two-point crossover 

Then offspring of this crossover are ‘ 10000001’ and ‘01111100’

Uniform crossover eliminates the positional bias inherent in single and two-point 

crossover method. There are two main steps to perform a uniform crossover, first step is 

to randomly determine n bits to be exchanged where n must be smaller than the string 

length, /. In the second step, nth location of the string is determined, and the bits after 

the location are exchanged.

1.3.3.5 Mutation
Selection and crossover alone can obviously generate a staggering amount of differing 

strings. However, depending on the initial population chosen, there may not be enough 

variety of strings to ensure the GA sees the entire problem space. Or the GA may find 

itself converging on strings that are not quite close to the optimum it seeks due to a bad 

initial population. Mutation is the best-known mechanism for producing variations in 

the population. It can be performed either during selection or crossover (though 

crossover is more usual). It is the occasional random alteration of bits within the new 

strings, based on a mutation probability value, which dictates the frequency at which 

mutation occurs. In binary coding, this simply means changing a ‘0 ’to ‘1’ or vice versa. 

A commonly used rate of mutation is one over the string length as shown in Fig. 1.5.

10000 M ' t“ ’  10010

Fig. 1.5. An example on mutation

1.3.3.6 Replacement and Elitist Strategy
Replacement, the idea is simply to remove the weakest individuals in the population 

with new randomly generated individuals. This technique works well when there are a
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high percentage of very unfit individuals in a large population, if they are not 

deliberately removed they may pass on their “weak” genetic traits for many generations.

Elitist Strategy ensures that the maximum fitness value within a population can never 

reduce from one generation to the next. This can be assured by simply copying the best 

individual of a population to the next generation, if none of the individual in the next 

generation constitutes an improvement of the best value. Such idea is deemed necessary 

when GAs are used as function optimisers and the goal is to find a global optimal 

solution. But the elitist strategy tends to make the search more exploitative rather than 

explorative and may not work for problems in which one is required to find multiple 

optimal solutions.

1.3.3.7 Termination Criteria
It is important to point out the significance of the termination condition used in the GA. 

The simplest termination condition would be to check the current generation number; 

the search is terminated if the total number of generations exceeds a predefined 

constant. This method of termination limits the amount of computational effort used to a 

predetermined maximum, assuming user’s knowledge on the characteristic of the 

function. However, in many instances it is quite difficult to justify that enough 

generations (or function evaluations) have been done in the effort to find the global 

optimal. It would be much better if the GA terminates the search when the chance for a 

significant improvement is relatively slim. Therefore, a second termination condition 

would be to terminate the search if improvement over each generation does not exceed 

some specified threshold.

1.4 Multi-objective GAs
Many engineering problems require a simultaneous optimisation of multiple objectives; 

it is often difficult to compute a solution with global accuracy for such complex 

problem. The difficulty stems from the multiple objectivity of the fitness function, 

which often comes only at the cost of significant knowledge about the search space. 

However, finding a solution for multiple objectives is not always possible as some of 

the objectives may be conflicting. Performance, reliability, and cost are typical 

examples of conflicting, and incomparable objectives. Improvement in any combination 

of these objectives will result in a better overall solution, but only as long as no 

degradation occurs in the remaining objectives. If this is not possible, then the solution
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is said to be optimal in the Pareto sense, Pareto optimal or non-dominated. In such a 

problem, the quality of the solution is better described not by a scalar but by a vector 

quantity.

Despite that multi-objective optimisation with GAs must ultimately be based on a scalar 

measure of the objectives, though it need not be a function of the objectives. But it 

should at least indicate an improvement in the fitness of the solution than those that it 

dominates in the Pareto sense, whilst taking into account of human preferences in the 

rating of the solutions. Once a scalar measure of the quality has been derived, the GA 

may proceed with fitness assignment and selection. Listed below are some of the 

common approaches of multi-objective optimisation [13].

1) Weighting approaches. Objectives are numerically combined into a single objective 

function to be optimised.

2) Pareto based approaches. The population is ranked making direct use of the 

definition of the Pareto dominance.

3) Constraint approaches. Objective function is evaluated to see if any constraints are 

violated. If not, solution is assigned the fitness value corresponding to the objective 

function evaluation. If the constraints are violated, the solution is infeasible and has 

no fitness.

1.4.1 Weighting sum method
The method of objective weighting [7], where n objective functions f \ ,  ..., / n are 

weighted by user defined positive coefficients w\, ..., wn such that Lwj = 1 and added 

together to obtain a scalar measure of the fitness, F  for each individual. This measure 

can then be used as the basic for fitness-based selection. This approach is widely 

known, intuitive and simple to implement which can be used with virtually any 

optimisation problem.

F(x) = f i w,f,(x) (1.1)
1=1

The setting of the weighting coefficients wt is generally dependent on the problem at 

hand and not just on the problem class. Thus the initial combination of weights usually 

needs to be fine tuned in order to lead to satisfactory compromise solutions. This 

usually implies rerunning the GA, although it may also be possible to modify the 

weights as the GA runs.
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1.4.2 Pareto based method
The concept of ranking individuals in a population on the basis of Pareto dominance 

was first suggested by Goldberg [8]. Fig. 1.6 shows an example of Pareto dominance 

method the objective is to minimize two conflicting objects. As shown on the figure 

there is no single perfect solution that minimizes both/} an d /2 . Instead there are three 

compromised optimal solutions A, B and C; solution A has the smallest value of f i  

compared to the rest, solution C has the smallest value o f /2  compared to the rest, while 

solution B has smaller value off j  compared to C and smaller value of /2  compared to A. 

All these solutions are Pareto optimal because there is no better solution on both 

objectives. On the other hand, one can say that solution D is inferior to B because it has 

larger values than B in both objectives (/} and /^). The ranking of the solutions is based 

on the tradeoff information among the different objectives.

As a result all non-dominated solutions (A, B and C) are assigned rank one and 

temporarily removed from the population. Then the next individuals (D, E and F) are 

assigned rank two and so forth. Finally, the rank of an individual determines its fitness 

value.

feasible region

Ad

F(2) —

Fig. 1.6 Fitness ranking based on Pareto dominance for a minimization problem 

1.4.3 Constraint approach -  Penalty method
In a penalty method [10], a constrained problem in optimisation is transformed to an 

unconstrained problem by associating a cost or penalty with all constraint violations. 

This penalty is included in the objective function evaluation. For example, a constrained 

problem in minimisation:

minimise fix)

subject to hi(x) > 0  i = 1, 2, ..., n
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f p(x) = f ( x )  + r 2 m i(x)] (1.2)
i =1

where O is the penalty function and r  is the penalty coefficient. There are a number of 

representations for the penalty function O, it can be o f the form 0[hj(x)] = h?(x) which

means to square the violation of the constraint. While the penalty coefficient r are sized 

depending on the severity of the violation of the constraints. The penalty function would 

have a negative sign when applied to a constrained problem in maximization.

1.5 Thesis Organization
The remainder of this thesis is organized as follows. Chapter 2 introduces the concepts 

on the operation and design of the flux switching motor, as well as the implementation 

of the flux switching motor into a finite element (FE) model. The modelling of flux 

switching motor drive system in Excel spreadsheet, as a time-stepping circuit along with 

its switch control algorithms, and the winding optimisation tools is the subject of 

Chapter 3. Chapter 4 highlights the nature of various electrical and mechanical losses in 

the flux switching motor. The methods for modelling the various losses will be 

discussed in brief, while detailed attention is given to the iron loss model. Chapter 5 

addresses the breakdown of the coding structure of the design optimisation software 

written for the purpose of this research. Chapter 6 demonstrates the design and 

optimisation of flux switching motors for high-speed application using the developed 

software. For the second application of the GA design optimisation, Chapter 7 

introduces a flux switching motor designed using a different fitness function. Lastly 

Chapter 8 summarises the results of this thesis and suggests future work.
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2 Construction, operation & design  of the Flux 
Switching motor

2.1 Introduction
The flux switching motor is a two-phase reluctance machine with the coils pitched over 

two stator poles. The windings are spread in such way that they cover the same number 

of stator poles as there are phases; all windings are on the stator, and most commonly 

the rotor has half the number of poles as the stator. The flux switching motor operates 

with continuous dc current in one winding, the field winding, and the second winding 

referred to as the armature winding carries an electronically controlled alternating 

current, the direction of which is reversed each time a rotor pole passes over a stator 

pole. This creates the required resultant flux orientation for rotor rotation. The idea of 

fully pitched windings is originally conceived for use in three-phase switched reluctance 

motors, and several benefits of using fully pitched windings relative to short pitched 

windings have been described [14]. Like all switched reluctance motors wound with 

fully pitched windings, the flux switching motor derives virtually all its torque from a 

changing mutual inductance between the phases (field and armature) but the method of 

controlling the magnetic fields is different in that only the armature is controlled. In the 

lowest cost implementation of the electronic controller the armature winding comprises 

two closely coupled windings connected to a half bridge inverter with only two power 

switches.

Fig. 2.1 Construction of a 4/2 Flux switching motor

Fig. 2.1 shows an illustration of a 4/2 flux switching motor; it has four stator poles and 

two rotor poles. For this particular motor construction, a fully pitched winding spreads 

the whole width of the stator, so that the main active part of the winding is situated in
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opposite stator slots. The fully pitched windings are labelled ‘F ’ and ‘A ’ for field and 

armature windings respectively.

2.2 Operation of the flux switching motor
The principle of operation of the flux switching motor is illustrated with the aid of Figs.

2.2 and 2.3. The ‘o’ and V  used in the diagrams show the direction of current flow in 

the windings, while the dashed lines show the magnetic flux path. As with all reluctance 

machines, the torque of flux switching motor is developed by the tendency of the rotor 

to align itself into a position of minimum reluctance with the stator, when the phase 

windings are energised. The interaction between the two magnetic fields produced by 

the currents in each of the two-phase windings creates a combined resultant flux. The 

resultant flux is then oriented into one of the two axes formed by alternate sets of stator 

poles. The axis selected is dependent upon the direction of the current in the armature 

winding, which is labelled as ‘A’ in Figs. 2.2 and 2.3. As mentioned earlier, the current 

in the field winding labelled as ‘F ’ in the diagrams, remains unidirectional.

Fig. 2.2 Diagram on the rotor alignment Fig. 2.3 Diagram of the rotor alignment 

with Field -i-ve & Armature +ve with Field +ve & Armature -ve

Figs. 2.2 and 2.3 show the two possible views of the rotor alignment to the stator. In 

Fig. 2.2, the field winding creates a flux vector in a north-westly direction. The armature 

winding excited with a positive current creates a flux vector in the north-eastly 

direction. As a result the combined resultant flux travels in a northerly vertical direction. 

In Fig. 2.3, the field winding remains excited in the same direction, meaning that the 

associated flux vector is still in the same direction. But the current in the armature
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winding is reversed, so as a result the associated flux vector is in a south-westly 

direction (it is 180° changed in direction). The combined resultant flux travels in a 

westerly horizontal direction. Therefore, the reversal of the current in the armature 

winding can be thought of as switching the orientation of the flux from one set of stator 

poles (every alternate stator pole) to the other set of stator poles, hence the name flux 

switching motor. While rotor rotation at required speed can be realised by sequential 

commutation of the armature at the correct time with respect to the position of the rotor.

2.3 Design of the flux switching motor
In the past, lamination design was primarily an electro-mechanical consideration. 

Today, improved performance and efficiency is increasingly important; however, so is 

reliable, minimal cost stator assembly. Design of the flux switching motor is a process 

of making choices, which matches the specifications, subject to a series of constraints, 

imposed by laws of physics, manufacturing processes, economics, end application of the 

design etc. The most basic requirements in a motor specification would usually include 

the overall motor dimension, its motoring torque, operational speed, and supply voltage. 

While the design process aiming to achieve the specifications consists of defining the 

design parameters of the motor and its drive system, which then include the 

specification of the materials and manufacturing processes.

2.3.1 Size of the motor
The size of the motor is usually included as one of the constraints in the design 

specifications. However, if it is not specified, an initial estimate of it can be made using 

the traditional sizing equation, in terms of the torque [15]

Tem= C 0D % t (2.1)

where C0 is the output coefficient, Dg is the airgap diameter and Lstk is the stack length. 

As the flux switching motor technology is still a considerably new concept, the values 

of C0 could perhaps be referenced from the more established technologies liked the 

switched reluctance motor and the induction motor. The typical values of C0, used in 

small totally enclosed motors are 1.96 -  5.5 kNm/m3, and 5.5-23.5 kNm/m3 for integral- 

hp industrial motors, where experiments conducted to verify the value of CQ showed that 

the winding temperature rise is higher in the switched reluctance motor, 90°C and 68°C 

in the high-efficiency induction motor [15].
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2.3.1.1 Ratio of the rotor to stator diameter
Using constructed flux switching motors [1,16-19] as a reference, the typical ratio of the 

rotor to stator diameter used in the lamination designs are about 0.5 - 0.6. The ratio 

depends on several factors, the number of the stator and rotor poles, the stack length, the 

motor frame size and also on the requirements of the operating speed and torque. The 

torque that can be produced for a given motor design is proportional to the tangential 

portion of the magnetic flux flowing across the motor airgap, and to the radius at which 

forces due to this flux are produced. While the flux that can flow across the airgap is 

ultimately limited by the cross section area of rotor pole which is proportional to the 

rotor radius, and saturation flux density of the lamination steel used. In order to develop 

higher torque, either the radius or axial length of the airgap must be increased. 

However, large rotor radius restricts the space available for windings, also its size is 

limited by the motor frame size. Increased motor length requires extra number of 

laminations, maximum stack length can be limited by capacity of the presses used in 

motor manufacture, or by rigidity of the rotor and stator assemblies between which tight 

tolerances on radial clearance must be maintained.

2.3.2 Pole configuration of flux switching motor
A regular flux switching motor is one in which rotor has half the number of poles as the 

stator, and is a two-phase motor. With the regular flux switching motor the choice of 

pole configuration is always in the arrangement of 4/2 multiplied by n, where n is an 

integer (1, 2, 3... n), this leads to several possible pole arrangements 4/2, 8/4, 12/6, 16/8 

etc. The appropriate pole configuration for a specified motor frame size can be decided 

by analysing the torque equations of the flux switching motor and conventional dc 

motor. The electromagnetic torque of the flux switching motor [1] can be express as:

2 N  k
(2-2)

where Nr is the number of rotor poles, k is the fraction of field flux linking the armature 

winding, Si is the reluctance of the magnetic circuit, Nf is the number of field turns, Na 

is the number of armature turns, if and ia is field current and armature current 

respectively.
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The general torque equation for a dc motor, for each phase is

Tem = —  = e i | t -  = (2.3)em (o de de de

where Pem is the phase power, co is the mechanical angular speed, e is the back EMF, i 

is the operating current, A is the flux linkage per pole pair, (j) is the flux, and N  is the 

equivalent number of turns.

The advantage of having larger number of stator poles and rotor poles, Nr is a smaller 

stroke angle 6, producing a higher torque. Though the stator pole arc as well as rotor 

pole arc has to be reduced, meaning a reduction of field flux linking the armature. 

Nonetheless, reduced pole arc could increase the total slot areas which can then be 

utilised for reducing copper losses. An 8/4 FSM has twice as many poles as the 4/2 but 

a high fraction of field flux linking the armature winding can be maintained with proper 

pole design, and the end winding are also shorter as it pitched over a shorter distance, 

which is beneficial for reducing copper losses. It has shorter flux paths in the stator back 

iron when compared to the 4/2 motor, short flux paths suggest the magnetic circuit has 

lower reluctance.

Disadvantages of having too many rotor and stator poles is that the motor structure can 

become mechanically weak and reduction of coupling coefficient between armature and 

field because of increase in fringing flux and leakage flux. While to maintain similar 

operation speed of a motor with more rotor and stator poles would require a higher 

switching frequency, this higher switching frequency would result in higher iron loss in 

the motor. Thus it is not worth considering large number of poles unless the motor’s 

radial dimension is increased significantly.

2.3.3 Internal design parameters of flux switching motor
In the flux switching motor, the changing of mutual inductance between the two phases 

in the stator creates a combined resultant flux, the resultant flux tends to pull the rotor 

poles toward an aligned position with the energised set of stator poles, thereby applying 

a torque to the rotor whose profile is itself dependent upon several factors, including the 

airgap length, the number of the stator poles, the geometry of the stator pole, and the 

manner in which the stator phases are energised.
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2.3.3.1 Airgap length
In the flux switching motor, the radial length of the airgap between stator and rotor is 

usually made as small as possible. The overall size of the motor, the manufacturing 

process, the tolerance on the assembly, and the motor operating speed determine what 

the smallest length can be to ensure that the rotor does not rub against the stator. The 

advantage for smaller airgap is a lower reluctance in the magnetic circuit as it 

contributes to the largest portion of the total circuit reluctance, also higher torque could 

be achieved with the same amount of mmf in the field winding, however building a 

motor with smaller airgap inevitably increases the manufacturing cost.

The typical airgap length used in construction of flux switching motor ranges from 

0.3mm to 0.6mm. Though there is not any established rule of thumb to guide the 

selection of airgap length but one could use finite element analysis to derive the flux- 

linkage characteristics of the motor and estimated performances of the motor can be 

predicted using electromechanical torque equations of a dc motor.

The operation of the flux switching motor is less dependent on airgap length than the 

switched reluctance machine [19]. The motor is not operating on a change in self 

inductance but on the switching of dc flux between two sets of stator teeth. As a result 

an increase in airgap length causes an increase in the mmf required in the field winding 

to produce a given airgap flux. This is relatively linear as opposed to the more rapid de­

rating of a switched reluctance motor as the airgap increases.

2.3.3.2 Pole to slot geometry
The shape of the stator pole and its slot are a compromise between several conflicting 

requirements. Fig. 2.4(a) illustrates a basic concept of the pole to slot construction of an 

8/4 FSM, the problem with the simple design is that as the stator pole arc increases the 

slot area reduces, this conflicted with the need to maximise the slot area to decrease the 

copper losses. The concept of the sizing of pole arcs would be discussed on the next 

section. However, several improvements have been suggested in a reference on the 

design of the pole to slot geometry of the switched reluctance motor [15]. The 

improvements to the simple design of pole to slot layout can be illustrated using fig. 

2.4(a) & (b). Referring to fig. 2.4(b), the first improvement can be made by filleting the 

comers and edges in the lamination construction, especially the joints between the poles 

and the stator back iron; this stiffens the pole against lateral deflection which reduces 

the mechanical vibration.
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Next is the inclusion of the shoulders or overhangs at the pole tips, physically to provide 

a register for slot wedges. The inclusion of pole shoulders had benefiting effects on 

softening the torque impulse that may occur at the start of the overlap and also to reduce 

saturation at the pole tips. Saturation in the pole tips can make the slot opening 

effectively larger than the physical opening; this reduces the effective area of the stator 

and rotor poles facing each other, with the reduced area the reluctance of the magnetic 

path increases, thus resulting in a drop in airgap flux. Another benefit of including the 

pole shoulder is by undercutting the stator pole the slot area is slightly increased while 

still maintaining a wide stator pole arc. However, this design will not be suitable if pre­

wound windings are to be inserted after the laminations have been stacked.

(a) A simple concept of the construction (b) The improvements made to design (a) 

of an 8/4 FSM

Fig. 2.4 (a) & (b) Examples of pole to slot construction of an 8/4 FSM

The pole to slot geometry has a strong influence on the overall stiffness of the 

mechanical structure of the stator. The choice of having a construction with thick stator 

back iron and stator pole illustrated in fig. 2.4(a), helps to strengthen the stator structure 

which is necessary in reducing mechanical vibration, but it compromises on the slot 

area. However, if slot area is made larger by reducing the thickness of the stator back 

iron and stator pole; the result is an increase of peak flux density value in the stator 

leading to higher iron losses.

The flux switching motor is a two-phase reluctance machine with the coils pitched over 

two stator poles; with the field winding operates with continuous dc current, and the 

armature winding comprises two closely coupled windings and operates with an 

electronically controlled alternating current. As the two windings are excited in a 

different manner, perhaps the slot area need not be of similar shape. In the earlier 

section 2.2, fig. 2.2 and fig.2.3 are used to illustrate the orientation of the flux paths,
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Chapter 2 Construction, operation & design of the Flux Switching motor

apparently the flux travelling in the field back iron is unidirectional while bi-directional 

flux travels in the armature back iron. Research on the iron losses in the different parts 

of FSM have shown that armature back iron generates more losses than the field back 

iron. The details of the findings are presented in Chapter 4. Thus to expand the slot area 

it would be more sensible to exploit the depth of the field slot, and undercut into the 

stator poles to increase the armature slot area without over-compromising on the stator 

pole thickness. A hybrid design illustrated as fig. 2.5 [19], combining each half of 

designs featured in fig. 2.4 (a) & (b), could perhaps be a good starting point of a 

compromised solution. As a matter of fact, the layout between the stator pole shape, the 

slot area and the thickness of the back iron is a compromise solution, depending on the 

entire torque/speed range and the number of poles.

Fig. 2.5 A hybrid design, combining the features from two different stator laminations 

2.3.3.3 Ratio between stator and rotor pole arc
In flux switching motor, the optimum pole arcs should be as large as possible to 

maximise aligned inductance and flux linkage without resulting in the increase of 

leakage and fringing flux, which causes field flux linking the armature winding to drop 

thus affecting the development of torque. Torque begins to be developed just when rotor 

pole comer is about to meet the next stator pole comer, and continues until the poles are 

fully aligned.

Fig. 2.6(a-c) are used as a guidance on the design of the pole arcs. Fig. 2.6(a) illustrates 

an 8/4 FSM with its rotor in the aligned position relative to the stator pole, at this point 

direction of the current is reversed so that the next set of stator poles would become 

energised and pull the rotor poles toward the newly energised set of stator poles. 

Noticeably there is still some distance between the rotor pole comer and the next stator 

pole comer as the current is about to change its direction, at such rotor position the 

motor would normally produce zero torque. Though the problem could be alleviated by 

slightly increasing the rotor poles arc, as shown in fig. 2.6 (b-c). However, the example 

shown below may not be appropriate for all applications, the choices on the poles arc
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Chapter 2 Construction, operation & design of the Flux Switching motor

depend on the entire torque-speed range, the pole configuration and the switching time 

during armature current reversal.

(a) an 8/4 FSM in aligned 

position
(b) the lamination design of (c) a improved rotor design 

the original rotor used in fig. 0f FSM with a wider rotor arc 

2.6 (a)

Fig. 2.6 (a-c) Example of an 8/4 FSM on the optimum ratio between the pole arcs

2.3.3.4 Rotor profiling + Asymmetry rotor
The main idea of employing an asymmetrical rotor in the flux switching motor is to 

overcome the starting problem where there are positions of zero torque which is a 

typical problem for the flux switching motor. Fig. 2.7 illustrates an irregular rotor 

construction, the rotor poles are asymmetric about their centre-line. With the 

asymmetric design, the rotor has the advantage of starting assist because of the 

unbalanced magnetic pull acting on the overlapping comer with a graded airgap on the 

leading edge of the rotor, the unbalanced magnetic force is a result of the uneven airgap.

While the other advantage of having an asymmetrical rotor in the motor is to simplify 

the implementation of sensorless commutation control of the FSM. In a FSM with 

symmetrical rotor, it is very difficult to determine the true rotor displacement, as there 

are two possible rotor positions (it maybe clockwise or anticlockwise) that shared the 

same electromagnetic characteristics (like inductances). The introduction of asymmetry 

rotor in the FSM allows the sensorless control technique to accurately measure the 

differences in the waveforms generated and thus determine between two potentially 

ambiguous positions, however the degree of asymmetry must be significant to ensure 

that the accuracy of the deduction of the rotor position can be achieved.
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Fig. 2.7 An 8/4 FSM with an asymmetric rotor

Other key features of rotor profiling include varying of the depth of the rotor slot, 

varying thickness of the rotor core and determining the shaft diameter. These features 

are similar to the “sizing” process of the switched reluctance motor as both have salient 

poles on the rotor. The rotor featured in fig. 2.7 is profiled to rotate in the counter­

clockwise direction. The rotor slot has deep and steep undercut at the trailing side, this 

is to reduce fringing flux from unaligned stator pole to enter the rotor pole thus reducing 

the magnetic pull against the rotating direction. While the overlapping comer at the 

rotor leading edge with a graded airgap creates unbalanced forces acting on rotor which 

is useful for starting the motor.

The value for thickness of the rotor core should be a balance between the shaft diameter 

and rotor slot depth, it needs to be sufficiently thick to carry the rotor flux without 

saturating. The thickness also needs to be varied relative to the number of rotor poles 

and rotor diameter, because as the number of rotor poles increases the rotor core surface 

area decreases leading to an increase in rotor core reluctance, which may result in core 

saturation. The rotor core thickness should be at least half the thickness of the rotor 

pole.

In design of the rotor shaft, large shaft diameter is desirable to maximise its radial 

stiffness, and also minimise acoustic noise. However, having too large a shaft diameter 

may compromise on the thickness of the rotor core, resulting in core saturation. Thus, it 

is sufficient just to have shaft diameter large enough to withstand the radial and axial 

force acting on the rotor at the operating speed. The minimum required shaft diameter 

could be calculated using the equation of the first critical speed [15]

»2
«c =203.078x103—= =  [rpm] (2.4)
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where d is the shaft diameter in mm, I is the length between the bearing in mm, and Wr 

is the rotor weight in kg.

2.3.4 Lamination steel
The choice of the lamination steel used in a flux switching motor depends on its 

switching frequency. For high-speed applications low loss steel would be required to 

achieve high efficiency, while for low speed high power density applications a highly 

permeable steel is better. The choice of the steel determines the amount of iron losses 

expected in the motor, though if the problem is carefully addressed in the design of the 

motor lamination the iron losses can be reduced. A more complete discussion on choice 

of lamination steel and estimation of its losses is found in Chapter 4.

2.3.5 Winding design
The selection of the winding configuration, e.g. number of turns per coil, series or 

parallel connection between coils, wire diameter, is based on several factors; the size of 

the slot and the packing factor determines the amount of copper that can be packed in 

the slot. While the load torque, voltage and speed control requirement would determine 

the number of winding turns and how it should be connected. Like dc machines the field 

of the flux switching motor can be wound in either shunt or series to the armature 

circuit. Regardless of the winding configuration used inside the FSM, the winding 

terminals must be brought out and be connected to the drive electronics.

2.3.5.1 Shunt wound or series wound?
The Flux switching motor field winding can be connected in series or in shunt with the 

electronically controlled armature windings. The studies on the comparison of the 

results of an identical motor lamination stack, one with a shunt winding and one with a 

series field winding were made in reference [19], where identical mechanical 

arrangements were used for the shunt and series stators so that comparisons could be 

made between both the motors in the same type of housing. In both series and shunt 

configurations, the armature windings comprise a set of closely coupled bifilar coils that 

are simply connected to two ground referenced electronic switches. However, in shunt 

configuration the field winding requires a higher number of turns and an extra ground 

referenced power mosfet for the control of the field current. The mosfet provides the 

flexibility for field weakening and also allows the field current to be reduced at light 

loads to reduce the field losses. The number of turns for the armature windings were
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kept the same for both configurations. The results from the experiment in reference [19] 

demonstrated that using either series or shunt configuration in the flux switching motor 

could produce identical performance.

2.3.5.2 Winding techniques
Two winding patterns for flux switching motor are illustrated in fig. 2.8 (a) & (b), 

Option 1 uses multiple coils which requires internal connection to form the complete 

winding, while option 2 uses two single large coils to form the winding. This method of 

winding has the advantage of using an external wound coil which is later inserted into 

the slots.

(a) Option 1, multiple coils to be internally (b) Option 2, two single coils forming a 

connected in series/parallel complete winding

Fig. 2.8 (a) & (b) Winding patterns for one winding of the flux switching motor

2.4 Finite element method in modelling the FSM
Electromagnetic modelling using finite element methods is well established for solving 

problems beyond the scope of analytical methods. By using the finite element method, 

the FSM with complicated geometries incorporating non-linear magnetic properties of 

the materials, and arbitrary shaped excitation waveforms can be modelled with good 

accuracy. Such methods can be used in conjunction with an analytical design process. 

Electric circuit and design equations could be used to produce the initial design, while 

the predicted performance could be used to further improve design development. 

However, there are numerous finite element analysis (FEA) packages available in the 

market, in which they mainly differ in the complication of constructing the model, the 

reusability of the constructed model, and the speed at which results can be obtained.

26



Chapter 2 Construction, operation & design of the Flux Switching motor

2.4.1 Parameterised finite element analysis of the FSM
Electromagnetic finite element modelling software can simulate the performance of an 

electromagnetic device, given a full geometric specification and data on materials and 

excitation. The entry of such data can be greatly simplified through the creation of a 

parameterised finite element system or “Design Environment” [20]. The complete finite 

element model is then created though algebraic equations that establish the structure of 

the whole mesh from the design parameters; the key dimensions and normalized ratios. 

This parameterised FEA offers significant benefits over a manual design process, but 

more importantly creates the opportunity for optimisation software to vary the 

parameters in a structured way to deliver improved performance.

Fig. 2.9 illustrates the design parameters that can be modified on a reluctance machine 

rotor in addition to the number of poles themselves. Providing the variables VI-V7 are 

expressed as a percentage of the pole pitches or outer radii as appropriate, the design 

can be changed to any size and any pole number and the same design proportions will 

be retained.

Fig. 2.10 illustrates the design parameters that define the shape of the stator lamination 

and the slots containing the armature and field windings. Note that since the 

electromagnetic purpose of the field and armature windings are quite different it is 

beneficial for the field and armature slots to have different shapes. As with the rotor, 

the design parameters, P1-P8 are expressed as percentage of the pole pitches or outer 

stator radial depth as appropriate.

This parameterised design entry allows a genetic algorithm control program to have 

normalized ranges for each parameter. Furthermore, this approach makes the whole

Fig. 2.9 Design parameters controlling the 

rotor shape

Fig. 2.10 The design variables in the 

FSM stator
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design process very rugged as combinations of inappropriate dimensions are prevented 

at the outset. The extraction of results from the parameterised finite element model is 

also controlled by the same parameters. For example if the number of poles or the 

radial position of the air-gap are altered, the position of any integrals taking place in the 

air-gap over a pole pitch is altered automatically.
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3 Dynamic drive system simulation

3.1 Introduction
When optimising designs of electric machines, tools that enable one to calculate the 

magnetic field distribution are especially important, providing reliable information 

about the machine saturation subjected to changes made to its design parameters. The 

static finite element analysis (FEA) is one of the tools that can accurately calculate the 

time invariant electromagnetic field solutions of any given lamination geometry. 

However, it does not perform dynamic analysis of the FS motor. In order to perform 

dynamic time domain simulations, a time stepping finite element analysis coupled with 

an electric circuit and mechanical system model would be required. Although the time 

stepping FEA is capable of accounting for eddy currents and dynamic effects of the 

motor, and the results would be highly accurate the length of computation time was 

considered unacceptable, especially for the numerous and varied cases to be considered 

when incorporated with the genetic algorithms.

As a result, an alternative modelling approach is devised to simulate the dynamic 

motoring performance of the flux switching motor. The proposed dynamic drive system 

model is integrated with an electromagnetic finite element modelling software 

(OPERA-2d). The system model uses initially the static FEA calculated results of 

winding flux linkages to predict the motor armature back-emf, the variation in the 

armature back-emf with rotor position was then used in an electrical equivalent circuit 

model [18] to estimate the field and armature current from a given voltage excitation 

waveform. The results of the estimated field and armature current relative to rotor 

position were then fed back to the static FEA to obtain the data of localised flux density 

distribution in the lamination. The results were then returned to an iron loss model 

(more details in chapter 4) built within the dynamic system model to predict total iron 

losses in the motor. In addition the system model incorporated also models to optimise 

the firing angle which allows advanced, retard and time-delay to be introduced in the 

control of the power switches, and optimise windings design to meet user-defined 

motoring specifications. Using the consolidated data from various models, the 

performance of the motor can thus be estimated, and the developed drive system model 

is a promising method providing short simulation time and adequate accuracy during 

initial design stages. The drive system model presented in this chapter describes the 

drive system for the FSM with field winding connected in series with the armature
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circuit, as this has been found to be the better configuration in terms of the power output 

capability and drive cost [1,19].

3.2 A time-stepping electrical equivalent circuit model
A time-stepping electrical equivalent circuit model [18] has been developed based on

circuit diagram shown in fig. 3.1 for a Flux Switching motor. The field winding is 

shown in series with the incoming supply current with a diode to allow a path for the 

field current to freewheel while the armature switching occurs. The bi-directional 

current in the armature slots is achieved by alternate energisation of the two mosfets 

connected to two oppositely connected, closely coupled, armature windings.
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Speed
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S2
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Fig. 3.1 The drive electronics for the flux switching motor used in the simulation and

optimization loop

The dynamic drive system model receives the results of winding flux linkages 

calculated by the FEA software while only the field winding is energised at a range of 

rotor positions. Examples of the variation in the flux linkage associated with the field 

and armature windings are shown in Fig. 3.2 and 3.3 over a complete electrical cycle of 

rotor rotation. Whilst the field flux linkage does not vary substantially with rotor 

position (Fig. 3.2), the armature flux linkage varies strongly with position. It is the 

variation in armature flux linkage with rotor position that produces the armature back- 

emf. The illustrated flux linkage plots represent the electromagnetic characteristics of a 

prototype flux switching motor (chapter 6). The flux linkage waveforms at other field 

current levels can either be calculated by either FEA or can be extrapolated along a 

known non-linear function to represent the machine saturation. It is the later method that 

has been employed in the drive system model that facilitated the calculation of the 

armature back-emf and details of the method will be discussed in the following section.

30



Chapter 3 Dynamic drive system simulation

0 025
15 A.

0 02£aI ,10 A.
0 015

0 01

0 005

270 9 18 36 45 54 63 72 81

Ro t o r  Orientatio n (d egrees)

Fig. 3.2 Variation of field flux with rotor position at different field current levels.
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Fig. 3.3 Variation of armature flux with rotor position at different field current levels.

The variation in the armature back emf with rotor position was used with winding 

inductances and resistances to estimate the field and armature current from one time- 

step to the next. Equations (3.1-3.5) are the general electrical circuit modelling 

equations which are solved simultaneously at each time step.
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V„ =i ^ R ^
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f
f  f  f  f  dt

(3.1)
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dt
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Where Vs is the supply voltage, Rf is the field resistance, Ra is the armature resistance, Nf 

is the number of field turns, Na is the number of armature turns, ^  is field flux, is 

armature flux, and 6  is the rotor angle, if is the field current, and ia is the armature 

current. The sign in equation (3.4) is derived from the state of the switches in the 

inverter.

During normal operation of the flux switching motor drive system, switch SI is turned 

on when field current, if is non zero. The current flows from the supply to the armature 

via the series field winding. The current into the inverter is initially less than the field 

current (Fig. 3.4a). The excess field current flows in the diode and the diode clamps the 

voltage across the field. In order to allow faster simulation in the early stages of a 

design process the field winding internal emf can be ignored and the field current during 

the free-wheel time is simply represented by equation (3.6). As ia increases to become 

equal to if there is no current flowing through the field diode (Fig. 3.4b). As a result, the 

field voltage, Vf is no longer clamped and if is then equal to ia as given by equation

where n denotes the present state, n-1 the previous state, and L is the armature 

inductance. Winding resistances and inductances are calculated within the circuit model 

from the specified number of turns and slot sizes obtained from the lamination as drawn 

in the FEA.

As the point for armature current reversal approaches S 1 must be turned off prior to, or 

at the same time as the second switch S2 is turn on. The smaller the torque load, the 

earlier SI is turned off prior to turn on of S2. When SI is turned off the stored magnetic 

energy transfers to the second armature winding (Fig. 3.4c), the current now flowing in 

the second winding is negative as it is wound in the opposite direction to the first 

armature winding. This current reduces to zero as it flows in the diode parallel to power 

switch S2 and returned to the supply via the field diode, Df. When S2 is on, ia is 

negative so is the voltage across armature. The reversed in current provide the reverse 

mmf allowing the rotor to switch to the next pole. Similarly as magnitude of -ia

(3.7),

(3.6)

(3.7)
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increases to become equal to the field current (Fig. 3.4d), there is no current in the diode 

parallel to the field and the process repeats to allow the motor to continue to rotate. 

Thus, the polarity of the armature current flowing in the bifilar winding in the circuit 

depends on both the state of the switches at that time, and the micro controller controls 

the state of the switches where at no instances are two switches allowed to be turned on 

at the same time.

v« S2 V* S2

(a) Switch SI on, positive ia is less than if (b) Switch SI on, positive ia is equal to
field current

Vs S2 Vs

(c) Switch SI off, ia transferred to next (d) Switch S2 on, negative ia is less than /> 
winding and returned to supply

U - l  c

Vs 81 S2

> 3  -H 3

-Kh

Vs S1 — I 552 “ I

m  - I t ?

(e) Switch S2 on, negative ia is equal to (f) Switch S2 off, ia transferred to next 
field current winding and returned to supply

Fig. 3.4(a-f) Operation of flux switching motor drive system in normal operation
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3.3 Modelling of the flux-mmf curve
The proposed drive system model uses winding flux linkages vs rotor position 

waveforms at different field current levels to predict the armature back-emf and other 

related quantities to estimate the dynamic performances of the FSM. However, this 

would require multiple solutions to be calculated using FEA and the process requires 

long computational time yet not all the generated solutions would be used. In the light 

of the problem, the prospect of using equations to represent the flux-mmf characteristics 

of a lamination shape in simple terms would be more computationally economical and 

effective so only minimal FEA computed solutions are required to accurately 

extrapolate the required data.

3.3.1 Implementation of a piecewise linear function to model flux-mmf curve
In order to model the flux-mmf curve, it is necessary to separate the curve into

piecewise-linear parts such that each piecewise part can be represented by a linear 

function. To simplify the calculations the flux-mmf curve function is divided into two 

parts, each represented by a linear model and a non-linear model (as illustrated in Fig. 

3.5).
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Fig. 3.5 Illustration on the modelling of the flux-mmf curve

In the linear model, the flux-mmf expression can simply be represented as a straight line 

as in the form of equation (3.8), where (franuai is the actual field or armature flux linking 

its respective windings, mmfac{uai is the actual field mmf applied during operation, (p u n ea r

Starting o f  
saturation, wra/j
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is the (1st set of) FEA pre-calculated field or armature winding flux linkages in the 

linear field mmf limit, mmfnnear is the field mmf applied in the FEA calculation (set at 

IA x N  number of winding turns), and the exponent, kj has the value of 1 for most 

grades of lamination steel. In the non-linear model, the flux-mmf curve can be 

represented using equation (3.9) for the region above the dashed line as illustrated in 

Fig. 3.5. Noticeably in the non-linear model an mmf dependent exponent was 

introduced, the exponent, x takes the expression of equation (3.10). The exponent 

describes the saturation of the machine as the field mmf increases and the rate of 

saturation is being defined by two terms; in the first term, mmfsat means the starting of 

the saturation where the (field and armature) flux does not increase in equal proportion 

to the increase of the field mmf (this is also the starting point of the non-linear model). 

The second term, & 2 describes the level of the saturation. Both the terms can be 

determined by curve fitting equations (3.8 & 3.9) against the flux-mmf curve (fig. 3.6).

Linear model,

Non-linear model,

actu a l lin ear

mmf(a ctu a l

mmfllin ea r

mmL
mmfrn o n - lin e a r

(3.8)

(3.9)

[ l  + {k2(mmfa<tual

Normalisation of non-linear flux,

^ n o rm a lise  ^ n o n - l in e a r

r  ,  Y
mnlf um-n o n - lin e a r

m m fl,n e a

(3.10)

(3.11)

Equation (3.11) describes the normalisation of FEA calculated flux linking either the 

field or armature winding, (fin o n -iin ea r  is the (2nd set of) FEA pre-calculated field or 

armature winding flux linkage where the applied field mmf exceeds the linear model 

limit (presented by the dashed line in fig. 3.5). The mmfnon.unear is the field mmf applied

in the FEA for calculating (/)n 0 n - iin e a r ,  the value of the field mmf has to be in the outside 

linear model limit (where the limit is determined by machine size, shape and material
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used), in this case the value is set at 2600A.turns. To derive the actual (winding) flux 

linkages when the machine is saturated the non-linear model (eq. 3.9) would be used, it

is described as a function of the normalised non-linear flux-linkage, (/>,WnmUse multiplied 

by a non-linear gain factor.

3.3.2 Determining the constants of the non-linear model
To determine the two saturation constants used in equation (3.10), firstly one have to get 

a peak-to-peak flux linkage against field mmf plot of a machine lamination. The plot 

can quickly be obtained using FEA, as only two aligned rotor positions (eg. in a 8/4 

configuration, at 45° and 90°) for each chosen mmf range need to be calculated. After 

the obtaining the flux-mmf plot, the first saturation constant, mmfsat can be determined 

by curve fitting equation (3.8) against the FEA generated data, and the value of the 

mmfsat is confirmed at the point when the solution calculated by the linear model starts 

to diverge from the (FEA) simulated data (where the winding flux linkages do not 

increase linearly anymore). While the second constant, &2 can be derived using a least 

squares fit function, where the non-linear model (with the substituted mmfsat value) is 

fitted against the FEA simulated data. An example of determination of the two non­

linear model constants, and mmfsat is shown in fig. 3.6, and the determined values of 

the two constants for this particular example are 1.61xl0'4and 1568 respectively.
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Fig. 3.6 Determination of the non-linear function constants, &2 and mmfsat
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The proposed model of defining the machine flux-mmf characteristics then requires two 

complete sets of flux linkage vs rotor position waveforms (each represented with 20 

discrete points) to be calculated by the FEA; the first one is calculated with “linear” 

field mmf and the second is calculated with “non-linear” field mmf. While the other 

waveforms can be extrapolated using the linear and non-linear model and the results of 

extrapolated waveforms tied up very well with the FEA calculated waveforms (fig. 3.7 

& fig. 3.8).
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Fig. 3.7 Comparison of extrapolated results using linear section of the model and FEA
calculated results.
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Fig. 3.8 Comparison of extrapolated results using non-linear section of the model and
FEA calculated results.
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3.3.3 Interpolation of flux-linkage vs. rotor angle
As the number of FEA solutions generated is kept to the minimum to allow fast 

computation, the number of available data points of flux-linkage vs rotor position is 

relatively limited (fig. 3.9a). The armature back-emf derived by differentiation of a 

waveform with only 20 data points could result in numerical error. In order to minimise 

the numerical error associated with differentiation more data points are required and this 

can be achieved by taking interpolation between the 20 available data points. Linear 

interpolation is employed in the model, as it is the simplest type and computationally 

the least demanding. Fig. 3.9b shows the flux-linkage vs rotor position waveform which 

has been interpolated onto a finer resolution with 0.9° interval between rotor 

displacements. Using the interpolated flux linkage-rotor position curve, information 

liked the windings inductances and current waveforms can be calculated very rapidly.

Field and armature flux per unit length (wb/m) Field and armature flux per unit length (wb/m)
u.ia0.03

0.0250.025
0.02 -0.02

0.0150.015
0.010.01

0.005 ■0.005

-0.005-0.005
Field flux 

Armature flux
-0.01

-0.01
-0.015

-0.02
-0.015

-0.02
Rotor orientaton (angle)Rotor orientaton (angle)

(a) Original FEA data, with 20 data points (b) Interpolated FEA data, with 100 data
points

Fig. 3.9 (a) & (b) Example on the increased in number of FEA data point by
interpolation

3.4 Switch control model
The decision of when the control switches must be turned on or off to achieve optimal 

firing position within the electrical cycle for optimum motoring performance is 

dependent on the speed and load conditions. In practice, the common method to 

determine optimum firing angles for different operating conditions would involve 

performing a series of dynamometer tests.

The torque of flux switching motor is mainly produced as a result of the change in 

(mutual) inductance between field and armature windings as the rotor turns which has a
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maximum value when the rotor and stator poles are fully aligned. At this point, the rate 

of change of the mutual inductance is zero and for this reason the armature back-emf 

and hence torque passes through zero near the pole alignment positions. As the speed of 

the FS motor increases the increasing armature back-emf inhibits the fast rise in current 

for a given supply voltage. Therefore, the commutation of the armature current must 

occur in advance of the reversal of the armature back-emf (pole alignment) to allow 

current to build up.
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(a) Reduced pulse width, operating on partial (b) Advanced commutation angle, operating 

load on full load

 Field current Armature current Armature 1 switch — -Armature 2 switch

Fig. 3.10 (a) & (b) The current waveforms simulated by the drive system model for
different speed-load requirements

Efficient operation of the FS motor is determined by the control of the firing angles. 

During light or no load operation the reduced current input (fig. 3.10a) is introduced to 

reduce power losses, this was achieved by reducing the turn-on time (and introducing 

time-delay between turn-off and next turn-on) to the power switches. The time-delay 

function in the switch control model monitors the state of the armature current (eq. 3.7) 

as it decays to zero after a power switch is turn-off, and at zero crossing of the armature 

current hold the current at zero until the next (specified) tum-on of the other power 

switch.

At high speed conditions, advanced commutation (-9° mechanical) of the armature 

current as depicted in fig. 3.10b is required to allow current in the (armature) winding to 

build up to a required level, before the back emf starts rising as the poles starts to align.

The developed switch control model enables advanced, retard and time-delay to be
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introduced into the control of the power switches (illustrated by fig. 3.10a&b). Thus 

allowing the drive system model to simulate arbitrary current waveforms that are 

relatively close to real operational ones. The GA driven optimisation software uses the 

user specified requirements on the motor’s intended speed and load in conjunction with 

the switch control model (which is integrated to the electrical equivalent circuit model) 

to seek the optimum firing angle of the motor. The optimum firing angles are sought 

using a “ranged enumerative” method (to be explained in next section) employing the 

switch control model, which is linked to the winding optimisation model. This allowed 

the optimisation algorithm to change the control strategy and winding to find the most 

efficient solution to deliver the required motor performance.

3.5 Winding Optimisation model
A winding optimisation module had been developed in the GA software. This module 

designs the motor winding configuration by means of adjusting winding turns and wire 

size (selected from a table of standard wire gauges), and number of strands to meet 

design requirements (eg. average torque at specified operational speed), with 

considerations of maximum packing factor (copper volume allowed in slot, where the 

size of the slots of different lamination designs are obtained from FEA) and best 

motoring efficiency. The motor specification is usually based on the full-load and 

required operational speed. The winding optimisation routine is summarized by fig. 

3.11. The optimisation of winding configuration starts with a predetermined firing 

angle. However, to determine if the designed winding configuration for required torque 

at operational speed has the best motoring efficiency, a set of solutions of different 

firing angles would be simulated, and the search range of the optimal firing angles is 

fixed at ±5° of the predetermined firing angle with 1° step (referred to as “ranged 

enumerative” method). The results are then compared to give the solution with the best 

efficiency which conforms to motoring requirements.
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No

Yes

Optimised design for 
lamination winding for 
specified power converter

Stopping Criteria:
1) field mmf to armature mmf 
ratio equal unity and power 
produced > Pout

Is power produced >> Pout ?
Yes, 4 no. of turns in field winding
Aim decrease field mmf & Pout 
(at smaller scale)_______________

Is field m m f/ armature mmf >1.5? 
Yes, X no. of turns in field winding

Aim: reduce field mmf to armature 
mmf ratio dosed to unity

Is power produced < Pout and 
Is field mmf / armature mmf >1.3? 
Yes, X no. of turns in armature winding

Aim: increase Pout (at moderate scale)

Initialise windings 
optimisation settings, load
1)wire size (library)
2)slots area + maximum 
packing factor information
3)data of minimum required 
output power (Pout)
4)defoiit windings 
configuration____________

Aim increase power produced to 
required Pout levd

Is 1< mmf ratio <1.5 and
Is power produced-Pout < -5 but >-20 ?
Yes, T no. of turns in field winding

Is power produced «  Pout?
Y es, X no. of turns in armature 
winding — T wire size of slot 
Is power produced still «  Pout? 
Yes, T no. of turns in field 
winding = -I wire size of slot

Aim increase Pout of motor (at 
larger scale) _____________

Is field mmf / armature mmf <1.5 and 
Is power produced »  Pout ?
Y es,t no. of turns in armature 
windings = X armature current 
Is power produced still >> Pout?
Yes, X no. of turns in field winding

Aim: decrease Pout of motor (at larger 
scale)__________________________

2) Maximum iterations have been 
made.

Fig.3.11 The procedure developed for optimising lamination winding for a specified
power converter

3.6 Comparison of experimental and simulated results
The accuracy of the predicted motoring performances by the drive system model

depends on how closely it can predict the armature back-emfs and the winding current 

compared to experimental results. Fig. 3.13 shows a comparison of simulated and 

measured armature back-emf waveforms. The line labeled as experimental, shows the 

armature back-emf measured on a prototype 8/4 flux switching motor (design details 

given later and shown in Appendix) while spinning the shaft at a speed of 600r/min. The 

field winding was excited from a separate dc supply at a current level of 6A. In the 

experiment, the field winding was connected in series with an external lOmH 

inductance to minimize the modulation in the field current. This was to ensure that the
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measured experimental field current (fig. 3.12) resembled as closely as possible to the 

constant field current used in the FEA calculations. The other trace labeled as FE 

simulated is the simulated back emf waveform and comparison between the two are 

considered to be in good agreement.
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Fig. 3.12The measured current flowing through the field winding
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Fig. 3.13 Comparison of measured and predicted armature back emf waveforms at 
600r/min with 6A flowing in the field winding

The slight differences between FEA simulated waveform and experimental result is due 

to the field winding internal emf not being modelled in the equivalent circuit model. 

The calculation of field winding induced emf in the equivalent circuit is ignored
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because of the following reasons: 1) Referring to Fig. 3.2 the field flux linkage does not 

vary substantially with rotor position, as a result the induced emf in the field winding is 

almost negligible. 2) The generated flux linkage data are only based on field excitation 

while the armature is unexcited to facilitate rapid calculation of lamination performance.

The drive system model provides rapid estimation of flux switching motor performance 

facilitating the simulation and comparison of a wide range of the machine lamination 

shapes. When interfaced to the GAs driven optimisation software and the FEA solver it 

can adjust and improve the performance of the flux switching motor. However because 

of certain assumptions the model does have some drawbacks: 1) modulation of the field 

current due to the mutual coupling of the armature excitation is ignored; 2) the flux 

linking the armature winding for the simplification of the back-emf calculation is 

assumed to be independent of the armature current thus armature reaction is not model.

The simplified dynamic model of a FS motor has allowed fast simulation of different 

laminations using a partial flux-mmf data. The verification of predicted results to 

experimental results can be referenced to Fig. 6.8 & 6.9 of chapter 6 (on page 109), 

where underestimation of the simulated field winding current to experimental waveform 

is as much as 20%.
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4 Losses in a flux switching motor

4.1 Introduction
The design of high-efficiency flux switching motor requires a loss model that can 

accurately predict the different losses occurring at any motor operating point. In general, 

the losses appearing in the motor are divided into mechanical and electrical losses. The 

electrical losses consist mainly the copper losses and the iron losses, while the 

mechanical losses combine both frictional and windage losses. The loss modelling of 

the flux switching motor becomes complex when accounting for the iron losses. The 

chapter focuses mainly on the prediction of the iron losses in the flux switching motor.

The iron losses of the flux switching motor are difficult to estimate and to measure with 

good accuracy. Most analytical models used to calculate iron losses require detailed 

information on the machine’s geometry and the loss constants of the lamination steel. 

The models may have to take account of saturation and harmonics, which can both vary 

substantially in different sections of the machine. The iron losses incurred during 

operation cannot be measured directly, but have to be determined indirectly by some 

form of power flow measurement and by separation of the electrical and mechanical 

losses. However minor errors in the power flow measurement can propagate into large 

errors on the loss calculation. Electrical and mechanical losses are very dependent on 

temperature and speed, respectively. Erroneous measurements of these quantities further 

corrupt the iron loss prediction. In the following section, the magnetic characteristic of 

the lamination steel is examined and an iron loss model based on the loss separation 

method is introduced. The iron losses in different sections of a flux switching motor are 

estimated and compared to measurements. Possible sources of errors and the accuracy 

of both the estimation and the measurement are discussed.

4.2 Magnetic characteristic of lamination steels
For the Flux Switching Motor, the magnetic properties of lamination steel have a strong 

influence on its motor performance. In order to accurately estimate the motor 

performance, the information on the variety of lamination steels and the mechanisms 

determining the quality of soft magnetic material need to be investigated. Determination 

of the size and distribution of the iron losses is one of the most important fields in the 

optimisation of an electric motor, as knowledge of the iron losses is essential to the 

estimation of efficiency and other motor performances. Thus, it is useful to give a
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general overview on the different steel types, describe the properties of lamination steel, 

and those phenomena that determine the steel quality. Some relevant properties of 

lamination steel are explained, and the section concludes on which electrical steel 

properties may be used to model the iron loss.

4.2.1 Electrical sheet steel in general
Lamination steels may be defined as magnetically soft, thin, steel sheets, generally in 

the range 0.15 to 1 mm thick. There are two major types of electrical sheet steel, grain- 

oriented and non-oriented steels.

Grain-oriented steel is magnetically anisotropic, and has superior magnetic properties in 

the direction of rolling. These special qualities are due to a combination of a certain 

chemical composition, rolling and heat treatment [21]. A number of post manufacturing 

treatments are also applied to enhance certain desirable properties. These include 

annealing under the influence of applied magnetic field, laser scratching, etc. Grain- 

oriented steels are more expensive than non-oriented steels and are primarily used in 

distribution and power transformers, and very large rotating electrical machines.

Non-oriented steel is generally isotropic, having the same mechanical and magnetic 

properties in all directions. These steels are often used in small electric motors. Non- 

oriented steel can be supplied fully processed or semi processed. Semi processed steel 

may be supplied in unalloyed (silicon free) or alloyed (containing low percentages of 

silicon) form. Alloyed steel sheets with high silicon content (up to 6.5 %) are very hard 

and brittle, and conventional manufacturing techniques cannot be applied. The steel 

sheets of motor cores of alloyed steel are produced by the wire cut or laser cut methods 

that are very expensive. Semi-processed steel is easier to punch, but requires annealing 

or decarburising, and steam blueing after punching in order that the material may attain 

its guaranteed magnetic properties. Annealing affects the internal structure and 

composition of the steel, while steam blueing adds a surface of iron oxide, which serves 

as an insulation layer between laminations [22].

The main issue affecting motor efficiency is the losses. Reduction of losses will increase 

the efficiency for given load conditions. Iron losses components of lamination steels can 

generally be reduced by:

- Reduction in sheet steel thickness. (Eddy current)
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- Increasing resistivity of the core material by increasing the silicon content. (Eddy 

current)

- Reduction in grain size. (Eddy current)

- Increasing the purity of the material. (Hysteresis)

- Reduction in internal and surface strain. (Hysteresis and Eddy current)

Non-oriented steel has been used for constructing the several prototype machines that 

have been investigated in the work related to this thesis. To illustrate the variety in 

quality of non- oriented steel fig. 4.1 shows the magnetic properties of different steel 

grades available from European Electrical Steels.

Grade Specific tota l loss Anisotropy Magnetic polarization Coercivity Relative
EN 10106 A a t 50 Hz of loss A at 50 Hz (DC) permeability

J -  1,5 T 1,0 T H = 2500 5000 10000 A /m at 1,5 T
W /kg W /kg % T T A/m :

M235-35A 2.25 0.92 10 1,53 1,64 1.76 35 660
M250-35A 2,35 0,98 10 1.53 1,64 1.76 40 630
M270-35A 2.47 1.01 10 1,54 1,65 1,77 40 730
M300-35A 2.62 1.10 10 1.55 1,65 1,78 45 810
M33Q-35A 2.93 1.18 10 1,56 1.66 1,78 45 830

M25G-50A 2,38 1,02 10 1,56 1.65 1,78 30 800
M270-50A 2.52 1.07 10 1.56 1,65 1.78 30 830
M290-50A 2,62 1.14 10 1,56 1.65 1,78 35 800
M310-50A 2.83 1.23 10 1,57 1,66 1.79 40 930
M33Q-50A 3.03 129 10 1,57 1.66 1,79 40 950
M350-50A 3.14 1,33 9 1.58 1.67 1,79 45 960
M400-50A 3,58 1.54 9 1.58 1.67 1.79 50 1020
M470-50A 4,05 1,79 6 1,59 1.68 1.80 60 1120
M53Q-50A 4,42 1,96 6 1.59 1.68 1,80 70 1150
M600-50A 5,30 2.39 6 1,63 1.72 1.83 85 1620
M700-50A 6,00 2,72 5 1.64 1.72 1,84 100 1680
M800-50A 7,10 3,22 5 1,65 1.73 1.85 100 1680

Fig. 4.1 Typical magnetic properties of non-oriented electrical steels of different steel
grade

From fig.4.1 it may be seen that the specific iron losses vary from 2.25 W/kg to 7.1 

W/kg. This means that the choice of steel type will be an important factor affecting the 

efficiency of any electric motor, if iron losses comprise a significant part of the total 

losses. In general, a complete view must be taken when selecting a material, as 

materials exhibiting low iron losses sometimes exhibit lower permeability, causing 

increased magnetising current with associated increased copper losses.

4.2.2 Steel properties suitable for use in modelling iron loss
Steel manufacturers generally supply standard data relevant for modeling of the 

magnetic behaviour of electrical steel.
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• Graph showing the BH Curve of normal magnetization; the BH-characteristic is 

important to determine the total flux in the motor and the relationship between 

current and voltage.

• Loss data at different frequencies; loss data at 50Hz or 60Hz for different values 

of peak magnetic induction in graph or tabular form is data commonly supplied 

by the manufacturer. The loss vs peak magnetic induction curves of different 

frequencies are used to determine the constants used in equations for modeling 

the iron loss.

• Mass density, 5; the mass density of the steel is used to calculate the actual loss 

in the motor when the specific loss (per volume or per kg) is known.

• Resistivity, p; the resistivity of the sheet steel is used in the estimation of eddy 

current losses.

• Thickness, d\ the lamination thickness is a parameter used in defining the nature 

of the eddy current losses.

In addition stacking factor, hardness, tensile strength, and tolerances etc. are specified 

by electrical steel manufacturers, but are not used in deriving the total iron losses.

4.3 Iron loss
Before any attempt to analyze the different methods of interpreting the enigmatic iron 

loss in electrical machines, it would be useful to have a brief overview over the theory 

of magnetization and the iron losses. The term iron losses genetically refer to the 

various energy dissipation mechanisms taking place when a magnetic material is subject 

to time-varying external field. As a consequence of the inherent irreversible nature of 

magnetization process, part of the energy injected into the system by the external field is 

irrevocably transformed into heat [23]. Serious discussions of magnetization theory and 

the reasons for iron losses can be found in work of Bertotti [23,24].

The internal structure of lamination steel consists of many magnetic domains which 

differ from each other by the orientation of their magnetization vectors, and the 

magnetic domains are separated from each other by the domain walls. During the 

magnetization process, the large-scale nucleation of magnetic domains, which are 

reinforced by the external field and annihilation of magnetic domains of opposing 

magnetization vector (fig. 4.2) result in the damping of domain wall movement by eddy
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currents and spin-relaxation and these are the physical origins of the iron losses [23-25]. 

Impurities and imperfections inside the material hinder the domain wall motion and 

causes irregularities (like sudden rapid movement or jump) in the motion of domain 

wall. Therefore, the movement of the domain walls is not regular and the local velocity 

of the walls is not equal to the change of the rate of the external field.
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Fig. 4.2 Change in domain structure due to motion of domain walls

4.3.1 Different methods of quantifying iron loss
Given the complexity of the problem, it would be useful to apply simple equations in an 

iron loss model, and preferably obtained a direct calculation of iron losses as a function 

of peak induction, magnetization frequency, and the core material characteristics as 

described in manufacturers core loss data. This would provide a direct means of 

quantifying the iron losses. Several different methods for determining the size and 

distribution of iron losses in electric machines already exist. They can generally be 

classified as the hysteresis models, the empirical equations and the loss separation 

methods.

4.3.1.1 Hysteresis models
The vast number of hysteresis models can be separated into two branches. One is based 

on the Jiles-Atherton model and the other on the Preisach model.

The Jiles-Atherton model is based on a physical model of energy calculation. It consists 

of a differential equation that describes the static behaviour of ferro- and ferromagnetic 

material using four parameters [26]. An iterative procedure has to be used to estimate 

the parameters of the model where the initial parameters have to be determined from the
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graphic derivation of parts of a reference hysteresis loop. The model can be extended to 

a dynamic calculation but the number of required parameters has to be increased, the 

extra parameters describe the temperature behaviour and calculate minor hysteresis 

loops [27].

The Preisach model introduces a statistical approach for the description of the time-and 

space distribution of the domain wall movement. However the classical Preisach model 

exhibits an essential drawback for being only a static model. In order to extend the use 

of the model to be applicable to higher frequencies a weight function needs to be 

included but the identification of the constants of the weight function requires a 

tremendous experimental effort [28].

Although the methods mentioned above attempted to model the physical behaviour of 

the magnetization process, they are of limited practical use. As the suppliers of the 

magnetic materials do not provide the parameters used in the models, furthermore the 

temperature dependence of the hysteresis loop is difficult to be accounted for.

4.3.1.2 Empirical equations
Many empirical equations are based on the Steinmetz equation (eqn. 4.1) [29] for direct 

calculation of the core losses without using the intermediate step of a hysteresis loop 

description. The equation uses the manufacturers core loss data, based on sinusoidal 

excitation to calculate the iron loss per volume, Pv as a function of magnetization 

frequency,/and peak induction level, B. The method seems to be the most practical and 

direct way to calculate the losses, however the equation is only valid for accounting of 

iron loss due to sinusoidal excitation. The equation uses three empirical parameters Cm, 

a, p. Both exponents are non-integer numbers, 1 < a  <3 and 2< P  <3. However, in 

modem day technology non-sinusoidal voltages and currents at different switching 

frequencies are usually used to drive the various electromagnetic devices, for these 

reasons it made the previous assumptions invalid. In order to estimate the iron loss due 

to non-sinusoidal excitation, a modified Steinmetz equation (MSE) was developed 

[25](eqn. 4.2).

Pv = C J aB p [lW l m 3]  (4.1)

[W /m 3]  (4.2)
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where f eq is the equivalent frequency of the non-sinusoidal induction waveform, f r is the 

repeated frequency. With the introduction of an equivalent frequency, MSE provides a 

good fit to experimental measurements of iron loss in a ferrite core under triangular 

induction waveform [25].

4.3.1.3 Loss separation methods
The concept of loss separation is based on the phenomena of magnetization and uses 

simple terms to state experimental observations related to the losses. In equation (4.3) 

describes the existence of three components that contributed to the total iron loss. They 

are separated into the classical loss, Pci related to the material geometry, the hysteresis 

loss, Ph as a result of the structural inhomogeneity and domain wall pinning, and the 

excess loss, Pexc due to size of the magnetic domains.

P  = P > + P « + P -  (4-3)

The hysteresis loss is related to the physical phenomenon of the domain wall movement 

in response to an external field. At very low external fields, domain walls move slightly 

and remain pinned to defects within the magnetic structure. As the external field 

increases, the domain walls through sudden jum p become unpinned from the defects. 

Physically the hysteresis loss is caused by very localised irreversible changes during the 

magnetization process, which make it dependent only on the peak induction, B  when no 

minor hysteresis loops appear in the induction waveform [30]. The loss can be 

expressed in the form of equation (4.4) where / i s  the magnetization frequency, kh is the 

hysteresis loss constant and the exponent a  is a non-integer number which has a range 

between 1.6 to 3 [31].

Ph =khB af  [W/kg]  (4.4)

The classical loss (due to eddy currents) is the loss calculated from Maxwell equations 

based on a perfectly homogeneous conducting medium, that is the conducting medium 

has no structural inhomogeneity and no magnetic domains [31]. The scale of the 

classical loss is determined by the material geometry, for example thickness of a 

lamination, d. The geometry controls the boundary conditions of Maxwell equations, 

which in turn determine the distribution of the eddy currents in the lamination cross- 

section and the resulting losses due to the Joule effect. The classical loss acts as a sort of 

background loss present under all conditions, while other losses are added when
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including structural inhomogeneity and magnetic domains into the model. By solving 

Maxwell equations, the classical loss under sinusoidal induction can be represented with 

equation (4.5), where d  is the lamination thickness in m, p  is resistivity of the material

magnetization frequency. To extend the used of equation to accounted for the loss due 

to non-sinusoidal induction equation (4.6) is introduced [30].

The eddy currents tend to concentrate around the moving domain walls, leading to 

losses which are higher compared to classical loss model which assumed a 

homogeneous conducting medium and the difference between them is known as the 

excess loss [24]. The excess loss arises from the smooth, large-scale motion of domain 

walls across the material cross-section, when sudden jump of domain walls responsible 

for the hysteresis loss are disregarded [23]. In references [23, 30], the excess loss is 

represented by equation (4.7) for sinusoidal induction and equation (4.8) for non- 

sinusoidal induction, where ke is the constant related to the excess loss.

4.3.1.4 Comparison between Steinmetz equation and loss separation method
After much effort in examining the different methods of calculating the iron loss, two

methods appeared to take the practical and direct approach in estimating the iron loss.

They are the Steinmetz equations (as in eqns. 4.1 & 4.2) and the loss separation method

(eqns 4.3 to 4.8). Both methods have three coefficients that are required to be extracted

using loss data provided by manufacturer. Both methods used rate of magnetization

when deriving iron loss under non-sinusoidal excitation which does not require the flux

density waveforms to be decomposed into their time harmonic components. Such rate of

magnetisation methods are particularly well-suited to time-stepped field solutions,

in Qm, S  is mass density in kg/m3, B is the peak induction in Tesla, and /  is the

[Wlkg]  (4.5)

dt [W/kg]  (4.6)

W/kg]  (4.7)

dt [W/kg]  (4.8)
1.5
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because the rate of magnetization can be integrated as the time-stepping solution 

proceeds. A simple analysis was carried out to verify the most suitable method to be 

employed in calculating the iron loss of the flux switching machine.

In the simple analysis, the unknown coefficients in both iron loss models (Steinmetz, 

and loss separation) are determined by curve-fitting equation 4.1 for Steinmetz, and 

equations 4.4, 4.5 & 4.7 for loss separation, these equations are used to calculate the 

iron loss based on sinusoidal excitation against a typical loss data of a lamination steel 

(M660-50) under sinusoidal excitation, this is shown in fig. 4.3. The typical loss data at 

50Hz and 60Hz used for extracting the unknown coefficients are data commonly 

provided by the manufacturer. M660-50, non-oriented semi-processed electrical steel is 

0.5mm in thickness and has the following properties, resistivity of 17pQ cm, and mass 

density of 7850kg/m3. The determined values for a  , kh , and ke used in the loss 

separation method are 2, 15.3xl0'3, 8.4xl0'7 respectively. The determined values for 

coefficients, Cm, a, and |3 of the Steinmetz equations are 89, 1.3, and 2.

Curve fit of 50Hz loss data
7

 50Hz Loss data

x  loss_separation 

o  Steinmetz

6

_  5*3
I  4 
(/></>
°  32oI- 2

1

0
0 0.5 1.5 2

Peak induction. B (T)

Fig. 4.3 Illustration of using Steinmetz equation and loss separation method to curve-fit 
the typical loss data of M660-50 at 50 Hz

The typical loss curves of both models are then extrapolated using their respectively 

equations with the coefficients derived earlier on, the two loss curves are plotted against 

another set of typical loss data obtained using sinusoidal peak induction of 1.6T at a 

range of different frequencies (fig 4.4). However, it has to be mentioned that the typical 

loss data shown in fig. 4.4 cannot usually be obtainable from the manufacturer material 

data book (data provided by courtesy of Prof. C. Pollock, University of Leicester). The 

accuracy of the two methods, Steinmetz equation and loss separation method can be
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shown using fig. 4.4. The results show that the Steinmetz equation underestimated the 

total loss by >50% for most cases while the loss separation method understated the total 

loss by ~10%. A few observations are made from this simple experiment. Firstly the 50- 

60Hz loss data commonly provided by a manufacturer’s material data sheet may not be 

sufficient to accurately extract the coefficients used in the equations (particularly for the 

Steinmetz equation). Secondly the Steinmetz equation may require different sets of 

coefficients to cover a wider range of frequencies. The loss separation method seems to 

be a more suitable method for calculating the iron losses, as the method is less sensitive 

to the possible error made in the derived coefficients from curve fitting. Hence, within 

the context of this thesis all iron loss calculated would be based on the loss separation 

method.

Typical loss data at 1,6T peak induction
160

—  Loss data 
(Experimental)

x  loss separation 

□ Steinmetz

140 -

120  -

100  -

60-

40-

2 0 -

50 100 150 200 250 300 350 4000
Frequency (Hz)

Fig. 4.4 Comparison of iron loss at a range of frequencies calculated using Steinmetz 
equation and loss separation method to the experimental loss data of material, M660-50

with peak induction of 1.6T

4.3.2 Modelling of iron losses in the FSM
In optimisation of the flux switching motor, the optimum lamination shape of the motor 

is a compromise between the copper volume and steel volume and this is strongly 

dependent on the motor specification based on the torque/speed range. In order for the 

automatic optimisation to perform correctly an accurate model of the iron losses in each 

design under dynamic conditions is required. The machine iron loss depends on 

numerous design and fabrication factors, such as the grade of lamination material and 

the heat treatment used for relieving stress in the material after fabrication, the method
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of stacking the laminations, the speed and number of poles etc. However, the procedure 

described here (summarized in fig. 4.5) applied to flux switching motor, enables the iron 

loss to be predicted accounting for design and operational factors only, and assumes 

fabricated lamination stacks have retained pre-fabrication magnetic properties.

Determining die 
vector of the local 
flux density

Calculation of total 
iron loss (2 of local 
iron loss)

Extr act waveform s 
of local flux density 
(Bmod)

FEA solutions for 
each r otor position 
to current (field & 
arm.) combination

Drive simulation or 
experimental current 
waveforms of one 
complete electrical 
cycle

Fig.4.5 Flow chart of the procedure developed for iron loss prediction

The developed iron loss model could be used in two ways: 1) as a standalone model to 

predict FSM iron loss in which case experimental field and armature current of one 

complete electrical cycle and die machine winding turns would be used for setting up 

the FEA model to calculate the local flux density and other data, these data would be 

used in the iron loss model to calculate the machine total iron losses. 2) The model 

could be used in conjunction with the dynamic drive system model, and uses the 

dynamic simulation model calculated instantaneous winding currents (an example of 

simulated current waveforms is illustrated in fig. 4.6) and winding turns to setup the 

FEA software and results obtained would be used to derive the FS motor total iron 

losses. In both cases, the field and armature winding currents corresponding to 20 

discrete rotor positions equally spaced over a full rotor pole pitch (full electrical cycle) 

are sampled and fed into FEA to obtain the data of local flux density (Bmod, the 

modulus of flux density) in each polygon of the machine model. The machine 

lamination is formed by a series of smaller polygons (fig. 4.7). The data of FEA 

calculated local flux densities and areas are then fed into the iron loss model for further 

processing to derive the machine iron loss. Firstly, the vectors of local flux density in 

different polygons of the machine are to be determined, and this is done using a simple 

technique (refer to section 4.3.2.1). An example of the determined solutions of localised 

flux density waveforms in different sections of the machine under motoring conditions
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Stator pole 1 
Stator pole 2• Field core

• Armature core

(a) In the stator back iron (b) In stator teeth

Rotor core

140 160 180

Rotor pole

140 160 181

Rotor angle Rotor angle

Field and total effective armature current

Field current 
Armature current

Rotor angle

are shown in fig. 4.8 (a-d). The localized iron loss in each polygon of the model is 

consequently calculated using the loss separation equations throughout the magnetic 

circuit. Lastly summation of all the local losses gives the solution to total iron losses in 

the machine.

Fig. 4.6 An example of simulated field and Fig. 4.7 A FS machine model built-
armature current waveforms. up of small polygons.

(c) In rotor yoke (d) In rotor pole

Fig. 4.8 (a-d) Flux density waveforms in sections of a flux switching motor

0 10 20 30 40 50 60 70 80 90
Rotor angleRotor angle
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4.3.2.1 Technique for determining the vector of the flux density
When the FEA calculates local flux density in each polygon of the machine lamination, 

the output solution is in the form of an absolute value, which means only the magnitude 

of the flux density is given and not the direction, thus it is necessary to derive the 

vectors of the calculated values to model the rate of change of the flux density. The 

process involves extracting area integral component of the Bmod (the modulus of flux 

density) in each of the polygon for a complete electrical cycle and adds a relevant sign 

to each value. A simple and practical method has been developed to obtain the sign of 

Bmod; by using the vector of flux linking the armature winding (as in fig. 4.9) to 

indicate when the flux in different part of the lamination would change its direction of 

flow.

Armature flux linkage per unit length (wb/m)
0.025

0.02

0.015

0.01

0.005

40-0.005

- 0.01

-0.015

- 0.02

-0.025
Rotor angle

Fig.4.9 Illustration of the flux linking the armature winding at different rotor position
over a full electrical cycle.

In a section of the field back iron the orientation of the flux is always unidirectional 

(either clockwise or counter-clockwise) (fig. 4.8a) thus the FEA calculated flux density 

data in the field back iron section could be applied straight without the need to include 

vectors of the components. Whereas the vector of the flux flowing in the back of the 

armature slot changes in accordance to the sign of the armature flux linkage (fig. 4.8a), 

as a result the sign of the flux density components is tied to the vector of armature flux 

linkage. While in the stator tooth section, the direction of flux is mostly unidirectional 

with some rotational flux at the root of the tooth (fig.4.8b), the FEA calculated flux 

density would apply straight in this case. The flux flowing in the rotor is bi-directional 

but its vector only changes at half the rate that of the armature flux linkage (fig. 4.8 c & 

d), thus the vector of flux density in the rotor would change its sign at the first armature

56



Chapter 4_______________Losses in a flux switching motor

flux linkage zero crossing (fig. 4.9) and maintain the same direction for a period of a 

full electrical cycle, and this process is repeated with the next change of flux direction.

(a) Orientation of flux at 0° rotor position (b) Orientation of flux at 22.5° rotor
position

(c) Orientation of flux at 45° rotor position (d) Orientation of flux at 67.5° rotor
position

Fig. 4.10 (a-d) Illustration on the orientation of the flux in the motor lamination at 
different rotor positions over a full electrical cycle

4.4 Stages in verification of the iron loss model
Up to this stage, the development of an iron loss model had been completed, while the 

accuracy of the iron loss model would be verified against experimental results of a 

prototype flux switching motor constructed with Scotsil 800.5 lamination steel. The 

following sections describe the procedures used in verifying the accuracy of the 

developed iron loss model.

4.4.1 Curve fit method to determine the loss coefficients
Based on experiences in the earlier section, we learned that the coefficients determined 

would be more accurate when curve fitted against a wider frequency range of loss data
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(data used is provided by courtesy of Mr. R.T Walter, Black and Decker Inc.). The sets 

of loss data at various frequencies are collected based on a Ring test (stack of stamped 

out rings). In a typical Epstein test, the flux density is controlled to vary sinusoidally 

and the peak value of the flux density wave shape is taken as the reference condition. It 

is assumed that the flux density wave shape used in the Ring Test is sinusoidal as well.

The motor used in this experiment was constructed using Scotsil 800.5, a non-oriented 

fully-processed electrical steel. The lamination sheet is 0.5mm in thickness and has the 

following properties, resistivity of 25 pQ cm, and mass density of 7800kg/m . By 

substituting these values into the sinusoidal loss equations (refer to table 4.1), the 

equations are only left with three unknown coefficients. To calculate the iron loss in the 

flux switching motor, the values of unknown coefficients used in the iron loss model 

needs to be determined. The coefficients a , kh , and ke can be determined by curve 

fitting the (sinusoidal) loss equations against the experimental loss data curves at 

different peak induction level over a range of frequencies (from 50-540Hz). Illustrations 

on determining the other three unknown coefficients of the (sinusoidal) loss separation 

equations are shown in fig. 4.11 (a-e), the extracted values of the coefficients are 

determined by the best-fitted curves for a range of magnetization levels and frequencies. 

The determined values for a  , fa , and ke are 1.65, 0.046, lxlO'7 respectively, these 

values would be applicable for both sinusoidal and non-sinusoidal equations.

Sinusoidal Non-sinusoidal

Hysteresis loss p > = h F f P„=KBaf

Classical loss CM

<N

IIa? , U B (,)V dt 
12p8 j!|. dt J

Excess loss Pm = k J V p ( B f f
C « = * .> /W P /J |^ P  dt

Table 4.1 Sinusoidal and non-sinusoidal equations of the loss separation method
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(a) Curve fit of sinusoidal equations to the 50Hz loss data of material, Scotsil 800.5
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(b) Curve fit of sinusoidal equations to the 60Hz loss data of material, Scotsil 800.5

Curve fitting 360Hz
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(c) Curve fit of sinusoidal equations to the 360Hz loss data of material, Scotsil 800.5
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Curve fitting 480Hz
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(d) Curve fit of sinusoidal equations to the 480Hz loss data of material, Scotsil 800.5

Curve fitting 540Hz
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(e) Curve fit of sinusoidal equations to the 540Hz loss data of material, Scotsil 800.5

Fig. 4.11 (a-e) Extracting of loss data curve to determine the coefficients from 
sinusoidal loss separation equations using curve fit method.

4.4.2 Determining the experimental iron loss in the FS motor
Full experimental testing of the motor (rated at 2kW) will now be presented for 

comparison with the iron loss model. In the experiment, the flux switching motor is 

mounted onto a dynamometer test rig, and connected to its power electronic circuit. The 

resistances of both field and armature windings were measured at ambient temperature 

before the start of the test. The temperature of each winding was also measured 

immediately after each test using thermocouples embedded in the coils to allow 

correction of winding resistances for running conditions. DC link voltage, current, 

speed, power input and mechanical output power are also recorded using a power 

analyser connected to the drive circuit and the dynamometer while winding current 

waveforms and shaft mounted optical sensor signal are recorded using a oscilloscope.
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During each test, the motor is loaded by the dynamometer at different load conditions at 

no load, 0.5Nm, and 1.2Nm respectively while a constant speed of 15,000rev/min is 

maintained by adjusting the supply voltage. If running speed remains constant between 

tests then the mechanical losses such as frictional and windage losses, may reasonably 

be assumed constant. The iron losses incurred during the different tests cannot be 

measured directly, but they were determined indirectly by separation of the copper 

losses and mechanical losses (data provided by Black and Decker Inc.) from the power 

flow measurements.

Real values of current waveforms recorded from the experiments (fig. 4.12 a-c) are used 

in the FEA to obtain the instantaneous flux density distribution in various sections of 

the motor under different load conditions. The simulated results from the FEA are then 

used to calculate the localized iron loss in different sections of the motor as described in 

the previous section. The calculated total iron losses in the flux switching motor at the 

different load-speed conditions were then compared to the experimental results.

In figs. 4.12(a) and (b), the yellow trace on the experimental plot is the position sensor 

signal where the rising edge and falling edge of each square pulse represented the 

aligned rotor poles to stator poles positions, the distance between the two edges is 

equivalent to 45° mechanical. The blue trace is the field current measured at 5A/div, 

and the red trace is the effective armature current measured at 5A/div. In fig. 4.12(c), 

the yellow trace on the experimental plot is the position sensor signal, the blue trace is 

the field current measured at lOA/div, and the green trace is the effective armature 

current at lOA/div. Beside each experimental waveforms plot is an illustration of the 

extracted current waveforms corresponding to 20 discrete rotor positions of a full 

electrical cycle. This information is fed back to the FEA to calculate the localised flux 

density in the motor lamination at different load conditions.

The experimental power flow measurements at different load conditions measured by 

the power analyser and the digital oscilloscope are also shown in the fig 4.12 (a-c). 

Noticeably, when the dynamometer was set to zero load the power analyser still records 

a small reading for the output power this is due to zero offset error in the load cell. The 

measured iron loss at each load condition was derived when the measured windings 

copper losses, the mechanical loss and output power are separated from the input power. 

Thus, within this context the measured iron loss could also mean other losses including 

the iron losses.
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Fig. 4.12(a) Experimental measurements for the 8/4 FS motor running at 15,000rev/min 
with no external load and the extracted current waveforms to be used in FEA
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Fig. 4.12(b) Experimental measurements for the 8/4 FS motor running at 15,000rev/min 
with 0.5Nm externally applied load and the extracted current waveforms to be used in

FEA
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Field & armature current at 1,2Nm
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1.2 3152.7 1862.7 236 78.26 108 867.77

Fig. 4.12(c) Experimental measurements for the 8/4 FS motor running at 15,000rev/min 
with 1.2Nm externally applied load and the extracted current waveforms to be used in

FEA

4.43 Winding losses (copper losses)
The copper losses in a flux switching motor can be calculated from the I2R products for 

the field and armature current, 7a,rms, /a>nm flowing through their respective windings, 

where Rf and Ra is the effective resistance of the field and armature windings 

respectively (eq. 4.9). The value of R is generally greater than the DC resistance if 

components of skin effect or proximity effect exist during motor operation, and 

naturally R increases with the temperature at a rate stated by equation (4.10) R0 is the 

winding resistance at room temperature, the value of Ku , the temperature coefficient of 

copper is 0.0039, and AT is the temperature rise above the room temperature. Skin 

effect is likely to be a problem in very high speed motors wound with small numbers of 

turns (as bigger wire size is likely to be used to reduced copper losses). A rough 

estimation on the significance of the AC resistance due to skin effect can be made using 

equation (4.11).

P„ = 1 1 ^ + 1 } , ^ , (4-9)

R = K (i + ̂ A T )  (4.10)

Ch1 200V 
Ch3 100r#V

Ch2 10.04 Q 
CM fOJknV

M 200*  2 SMS* U t ta p
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(4-n >

where dskm is the nominal skin depth, p is the resistivity of the copper wire, co is the 

angular frequency of applied voltage, and \i0 is free-space permeability. However, in 

flux switching motor skin effect is usually not significant because switching frequency 

do not normally exceed 2kHz, and the maximum single wire size found in constructed 

FS motors [1,18,19] is 1mm, which is lesser than the critical skin depth. As a result skin 

effect is not necessary to be accounted for in the loss model.

Proximity effect is the tendency for current to flow in undesirable patterns due to the 

presence of magnetic fields generated by nearby conductors. In reference [33], the 

proximity effect losses of a cylindrical conductor in a magnetic field is calculated with 

the following expression,

n • f 2 - \b (  l - d 2 
Pn = — -— U   (4.12)

pe 128-p

where /  is the frequency of the magnetic field, / is the length of the conductor, d is the

diameter of the conductor, p is the resistivity of the conductor, and |i?| is the average

value of the flux density over the region of winding (this value could be obtained using 

the static FEA). The calculated proximity effect losses of the test FS motor (mentioned 

in the previous section) at various load conditions are negligible, and the calculated 

results are shown in table 4.2.

Load condition Loss due to proximity 
effect (W)

No load 0.179

0.5Nm 0.665

1.2Nm 0.932

Table 4.2 Calculated losses due to proximity effects in the FS motor at different load
conditions
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4.4.4 Dynamic losses
The frictional and windage losses are independent of the load of the machine. Frictional 

loss is the term used to represent the losses that occur in the machine bearings. The 

frictional loss can be very small if the bearings are anti-friction bearings. Windage loss 

is the term used to represent the power dissipated in the machine by friction with air. 

This loss is speed dependent as well as on the length of air gap, geometry of the rotor, 

and geometry of the stator bore [34]. The windage loss can be expressed as a function of 

rotational speed, co, in the form of,

P ^ = K o f  [W /m] (4.13)

where kw is the windage coefficient, a  is the curve fitting parameter experimental results 

of the mechanical losses are required to determine the value of the parameter. The test 

for the determination of the mechanical losses consists of measuring the motor 

deceleration rate as it stops to rest following the disconnection of the excitation source. 

The motor inertia needs to be determined when using this method. As the mechanical 

(or dynamic) losses cannot be easily determined by any analytical method thus it is not 

being modelled in the drive system. However the magnitude of the loss can be 

considered as a constant when the running speed is kept the same.

4.4.5 Comparison of iron loss between measured and calculated
Using the developed iron loss model, the iron losses in different sections of the motor

model (fig. 4.7) running at 15,000rev/min under different load conditions were 

calculated. In Table 4.3 the iron losses of the motor under different load conditions were 

calculated using the “non-sinusoidal” equations (4.4, 4.6 & 4.8) and the calculated 

results were compared with the experimental ones. The results in Table 4.4 were 

computed using the “sinusoidal” equations (4.4, 4.5 & 4.7). Both sinusoidal and non- 

sinusoidal equations used the same set of values for the determined coefficients in the 

earlier section (4.4.1). The motor iron loss at 1.2Nm calculated using the “non- 

sinusoidal” equations was able to agree with measured results, however the iron losses 

at other loads were overestimated by as much as 55%. While motor iron losses at no 

load and 0.5Nm calculated using the “sinusoidal” equations shows good agreement with 

the test results but underestimate the loss at 1.2Nm by nearly 30%.
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Field back Armature
back

Stator
pole

Rotor
yoke

Rotor
poles

Total
loss
(W)

Measured 
iron loss1 

(W)

%of
deviation

No load 74 123 110.2 54.86 61.36 423.42 271.64 +55.87

0.5Nm 123.32 259.36 204.04 100.06 141.5 828.28 536 +54.5

1.2Nm 108.54 275.06 208.71 109.88 174.9 877.09 867.77 +1.07

Table 4.3 A breakdown of calculated iron loss using “non-sinusoidal” equations in 
different sections of the motor at 15,000rev/min with different externally applied load.

Field back Armature
back

Stator
pole

Rotor
yoke

Rotor
poles

Total
loss
(W)

Measured 
iron loss1 

(W)

% o f
deviation

No load 31.46 89.2 66.5 47.1 46.3 280.56 271.64 +3.28

0.5Nm 58.5 178.1 129.9 91.9 92.6 551 536 +2.79

1.2Nm 58.3 201.4 140.5 100.5 99.3 660 867.77 -30.8

Table 4.4 A breakdown of calculated iron loss using “sinusoidal” equations in different 
sections of the motor at 15,000rev/min with different externally applied load.

Stator pole 
mid fid 
arc fid 
mid arm 
arc arm

Armature back- 
inner layer 1 
Inner layer 3 
Outer layer 1 
Outer layer 4

Field back- 
inner layer 1 
Inner layer 3 
Outer layer 1 
Outer layer 3

Fig. 4.13 Illustration on the polygon locations in the machine lamination where the 
various flux densities shown in figs. 4.14, 4.15 & 4.16 are found
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(d)
14 (a-d) The calculated flux densities at different sections of the flux switching 

motor at 15,000rpm and no external load.

The discrepancies in the calculated results can be explained with the aid of figs. 4.13, 

4.14, 4.15 & 4.16, the figures show the flux density waveforms at different sections of 

the motor when operating at 15,000rpm with no external load applied, with 0.5Nm load 

and 1.2Nm load respectively.

Firstly, a comparison between figs 4.14 & 4.15 the shape of the flux density waveforms 

in different parts of the motor between the two figures are almost similar while there are 

significant differences in their magnitudes. Therefore, the iron losses calculated using 

either sinusoidal or non-sinusoidal equations with their respective local flux densities 

could demonstrate the difference. In the other comparison was between figs. 4.15 &
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4.16 the flux density waveforms in different parts of the motor between the two figures 

are almost identical in terms of wave shapes and magnitudes. Most methods of 

quantifying iron loss are based on the rate of magnetization or the peak induction value, 

as a result when using the almost identical flux density waveforms at 0.5Nm load and 

1.2Nm load to calculate iron loss would lead to an almost identical solution.
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Fig. 4.15 (a-d) The calculated flux densities at different sections of the flux switching 

motor at 15,000rpm and a 0.5Nm externally applied load.
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Fig. 4.16 (a-d) The calculated flux densities at different sections of the flux switching 
motor at 15,000rpm and a 1.2Nm externally applied load.

The detailed knowledge about the origin of iron losses does not provide a practical 

means of calculating it. Given the complex strongly non-linear character of the 

magnetization process, there is no obvious reason why the superposition law expressed 

by the loss separation equations should hold true under broad conditions. In fact, the 

equations are only statistical methods to the analysis of the stochastic magnetization 

process that one is able to show that the three scales (classical, hysteresis, and excess) 

affect the loss in an approximately statistically independent way. However, the
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equations enabled a fast and direct approach of estimating the iron losses, which is 

necessary in a design optimisation cycle.

In conclusion, the non-sinusoidal loss separation method was the selected method for 

calculating the iron losses of FS motor, as the method has shown good accuracy in 

estimating the iron loss at full load condition which is the most important as that is 

where most motors are designed to operate at. Also the simulated flux density 

waveforms in the various sections of the FS motor lamination at different magnetization 

level have demonstrated to be non-sinusoidal, as a result it would be more appropriate 

to used the non-sinusoidal method.
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5 Planning and development of the optimisation 
software

5.1 Introduction

This chapter describes the outline of the software development for the GA optimization 

software. The optimisation software is planned and developed using a commonly 

employed software development method, the method can be classified into six stages as 

illustrated in fig. 5.1, starting with project planning and ends with (final) installation. 

However, only the first three stages of the method are described in this chapter. The 

relationship of each stage to the others can be roughly described as waterfall, where the 

output from a specific stage serves as the initial inputs for the following stage. During 

each stage, additional information is gathered or developed, combined with the inputs, 

and used to produce the stage deliverables. The development of software projects using 

such method allowed the software to be built more systematically, and also enabled 

timescale involved within each stage to be more manageable.

Installation 
& Acceptance

Development

Integration 
& Test

Requirements
Definition

Design

Fig. 5.1 The six stages involved in software projects development

5.2 Project planning of the GA optimisation software

In the planning stage, it was identified that the FEA program (OPERA-2D) could be run 

offline without user interaction by executing a readily prepared command, referred to as 

a control script. The control script contains details the type of analysis to be carried out 

for a particular model and the changes to be made to the configuration for each case, for
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example different excitation, geometric modifications etc. Furthermore standard 

executable files (with extension liked .exe, .bat, and .com) could also be executed in 

OPERA-2D design environment if required. The openness of the OPERA-2D program 

allowed the software to more easily incorporate other design tools or analyses that are 

separately developed using other development programs.

User input design 
ai ms/speci fic ati ons

G enetic Algorithm
creates a “population” 
of designs within given 
constraints

FEA
Each lamination 
analyzed in a range 
of rotor position

Data for each 
lamination passed to 
dynamic simulation

Dynam ic simulation
predicts instantaneous 
phase current + 
w indings optimisation
(more detail in fig. 3.11)

FEA
Each lamination analyzed 
with predicted 
instantaneous phase 
current and designed no. 
of turns in a range of 
rotor position

Optimized design of 
the motor drive system

Is stopping
criteria met?No, continue 

search

Fitness function
will rate the performance 
of each design based on user 
design aims/specification

Local flux density data 
for each lamination 
are passed to dynamic 
simulation

Dynamic simulation
calculates the total iron 
loss

Iron loss prediction
(refer to fig.4.5 for detail)

Fig. 5.2 The outline of the functional requirements of the optimization program for flux
switching motor and drive.

As mentioned in the first chapter of the thesis, the FEA program is only a design tool for 

estimating electromagnetic performance of flux switching motor for a given 

configuration. On the whole, the improvement to the design was still dependent on the 

designer feedback to the program and such reliance of the designer interactions with the
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software could be substituted with the Genetic Algorithm. This would require the 

development of a general-purpose genetic algorithm, which offers versatility and 

flexibility to its user, as well as its capability to interface with the FEA software. The 

interface of the genetic algorithms with OPERA-2D, allows multiple design variables of 

the flux switching motor to be tuned simultaneously, and produces a wide range of 

motor laminations. However, it is understood that the genetic algorithms used fitness 

value to guide the search for the optimal (lamination) solution [2-9], thus before a 

genetic algorithm can be used to optimise a flux switching motor and drive, an accurate 

and versatile simulation system must be developed.

The dynamic drive system simulation model is used as an auxiliary design tool 

incorporating the FEA program to predict the dynamic performances of the flux 

switching motor under a range of operating speeds and loads. The predicted motoring 

performance of each lamination design is used as an indication of fitness against a given 

specification or target (the fitness function). The final integration of all the design tools, 

involves incorporating the genetic algorithms, the FEA software, and the dynamic drive 

system model into one complete program (fig. 5.2).

5.2.1 Modular program
The biggest challenge in the development of the proposed optimization program is to 

reduce the complexity of the program structure. Therefore, it is necessary to break down 

the project into smaller and more manageable components by modularising the 

functional requirements of the software. The ability to modularise is central to 

successfully developing any complex application. With modularization, the program 

becomes:

• More reusable. By carefully breaking up a large program or entire application 

into smaller components which link together, allowed many modules to be used 

in more than one other program in the application.

• More manageable. This allowed the program to be tested and debugged on a

smaller scale (unit test) before individual modules are combined for a more

complicated system test.

• More readable. It is always easier to work with a smaller scale program, where

each module is named and has its functions properly described. Thus making it

easier it to read and understand what that program is doing.
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• More reliable. The code produced will have fewer errors, also if errors are found 

it will be easier to fix because they will be isolated within a module. In addition, 

the code will be easier to maintain since there is less of it and it is more readable.

5.2.2 Problems in interfacing design tools built in different development 
environments
During the process of identifying the software functional requirements, it was 

established that the least technical demanding method of developing the optimization 

software would be program modularisation, by incorporating the OPERA-2D software 

with externally developed design tools. However, to integrate design tools developed 

using external development environments with the OPERA-2D software were not as 

simple as first thought. The incompatibility of source and target languages and the 

requirement for automatic file naming conventions were the problems identified that 

hindered a smooth integration of the optimization program. The possibilities of 

successfully integrating the individually developed design tools into a complete 

optimization program were largely dependent on resolving the two problems mentioned 

above. The structured information generated by each design tool need to be transferred 

in the correct format from one tool to another while a unique name has to be assigned 

for each data transfer. The uniqueness of the object names (used in every structural 

information transfer) was necessary to avoid unexpected effects such as replacing a 

previous object by a new one, and also in this way information generated by each design 

tool pertaining electromagnetic characteristic of a (lamination) design could be retained 

as a form of record. Therefore, information transfer would require the development of 

ad hoc transformations to interface the different design tools within the optimization 

program. In this case information transfer means transformation of the output of one 

design tool into the input of another design tool. These ad hoc transformations were 

built in the form of permanent interfacing mechanisms (executable files) between the 

different design tools.

5.3 Defining the program requirements of each modular program

This section defines how the software was developed from analysing the general 

requirements (or goals) of the program (fig. 5.2) to the identification of individual 

component programs (or modules as in fig. 5.3).
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GENxxx.chr

GEN xxx. fit
Gxxxlxxx.ind

LGxxxIxxxxsr

Gxxxlxxxxsr Gxxxlxxx.bmd

FEA 
Each lamination 
analyzed for its winding 
flux linkages in a range 
of rotor position

Genetic ope rators- 
GAengine.exe 
creates population of 
designs encoded as 
binary chromosomes 
within given constraints

Data transformations- 
Decode.exe
convert binary 
chromosomes into FEA 
control scripts detailing 
the designs geometries

FEA 
Each lamination 
analyzed with predicted 
instantaneous phase 
current and designed 
winding turns in a range 
of rotor position.

Dynamic simulation  
model — C urrentexe

extract data to predict 
instantaneous phase 
currents + determining 
optimal winding config. 
& optimal firing angle 
based on required 
torque-speed condition.

FEA, Control script
Operation sequence;
1)GAengine.exe
2)Check for stop criteria
3)Decode.exe
4)FEA analysis- windings 
flux linkage
5)Currentexe
6)FEA analysis- localized 
flux density
7)F itness.exe
8)Return to step 1

Dynamic simulation 
model -  Fit ness.exe
1) extract data of local 
flux densities & areas for 
each lamination, to 
calculate total iron 
losses, 2)use predicted 
motor performance of 
each lamination to 
calculate individual 
fitness using a predefined 
fitness function

Fig. 5.3 Modularisation of the optimization program into five program modules

As shown in figure 5.3 the structural breakdown of the optimization software consists of 

five separate program modules, with the communication between them by means of 

formatted text files. The order of running the external program modules is managed by a 

Control script (written in OPERA scripting language) which can be loaded in the 

OPERA-2D Design Environment [20]. The script also details the operations in the FEA 

program, like simulating the rotation of the rotor; invoking the pre-processor to read the 

.ind files which contain the data of different motor lamination shapes (in the form of 

OPERA script language); calling the solver and post-processor to create the .csr files 

which contain the electromagnetic characteristics of the analysed lamination designs, 

etc. The external program modules are the genetic operators module which creates the 

population of designs by means of genetic operations, the decode module which 

converts binary chromosomes (encoded designs created by Gaengine.exe) into OPERA 

script for the input of the FEA program, the instantaneous current module for 

determining the required phase currents and number of windings turns to deliver the 

user specified torque for each lamination design (output in script language format), and 

the fitness module calculates the overall motor performance (including total iron losses)
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of each lamination design these information were then used in a predefined fitness 

function to determine the fitness of each design.

The identified general requirements in each program module are refined into a set of 

more detailed requirements. These detailed requirements define the major functions of 

the intended application(s), operational data areas and reference data areas, and the 

initial data entities. Each detailed requirement contains a requirement title and is further 

elaborated in the form of textual and graphical descriptions. The following sub-sections 

would refine the set of more detailed requirements for each of the identified program 

module.

5.3.1 Defining program functionalities -  Genetic operators module

Ref# Function Category
R l.l Customising of the GA engine. Evident
R1.2 Stored customised GA engine into a setup file. Hidden
R1.3 Read customised GA engine from setup file. Hidden
R1.4 Checked if number of generations has 

exceeded (only if selected by user).
Hidden

R1.5 Find most recent generation of system and the 
length of a chromosome.

Hidden

R1.6 Copy and ranked the latest generation of 
chromosomes based on their fitness.

Hidden

R1.7 Checked if convergence in the fitness has 
occurred (only if selected by user)

Hidden

R1.8 Selection by user choice Hidden
R1.9 Crossover by user choice Hidden
R1.10 Mutation by user choice Hidden
R l.l 1 Replacement of weaker chromosome Hidden
R1.12 Create new generation. Hidden

Fig. 5.4 Table on functional specifications of GA operators module

R l.l  Customising o f the GA engine

The function checks whether the genetic operators have been defined, the function 

would return a ‘1’ or ‘0’ to indicate if the parameters are already set. If the function 

returns ‘O’, a set of questions would be asked, providing the user with choices of GA 

tools to be selected from. The user-selected genetic operators form the GA engine, and 

this customised GA engine is used to perform future GA operations, until the 

terminating criteria are met.
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Here are the set of questions:

• Size of the population.

• Percentage of replacement for weak chromosomes.

• Type of optimization problem 1) Maximization, 2) Minimization.

• Method of selection 1) Rank order (Fit-fit), 2) Random order, 3) SUS.

• Method of crossover 1) Single-point, 2) Two-point.

• Method of mutation 1) Flip-bit, 2) Random.

• Method of termination 1) Fixed number generation, 2) Convergence.

• Defining of convergence criteria 1) the number of past generations to be 

compared with the current one, 2) the value of fitness threshold.

R1.2 Stored customised GA engine into a setup file

This function is only executed when the GA engine has not been setup previously. The 

function would compile all GA operators selected by user into a setup file. After this 

function is executed, the GA module terminates its operation.

R1.3 Read customised GA engine from setup file

This function would only be executed, if function R l.l found that GA operators have 

already been defined and stored in a setup file. R1.3 would then read the stored 

information from the setup file and initialise the setup.

R1.4 Checked i f  number o f generations has exceeded

This function is only activated when a fixed number of generation termination method 

was selected. The function would determine whether maximum generations have been 

reached, if so, the function would write a termination file. The termination file would 

give an indication to the system (control script) to stop all its operation. Thus the whole 

iteration ends.

R1.5 Find most recent generation o f system and the length o f a chromosome 

This function would search for the latest generation in this iteration, and stores that 

information. The search starts from generation 1 until it finds the latest generation. A 

subsequent task is to verify the length of a chromosome in that generation. To find the 

length of the chromosome, a chromosome is copied, then the number of ‘1’ and ‘O’ 

within the chromosome is counted, and the information is stored.
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R1.6 Copy and rank the latest generation o f chromosomes based on their fitness 

This function would copy all the strings of ‘1’ and ‘O’ with their assigned fitness value 

into an array, and sort the strings based on their fitness in descending order. The 

assigned fitness value of each individual gives an indication of how the strings should 

be sorted. For example in a maximization problem, individual A with fitness value 0.75 

would be ranked below individual B with fitness value 0.99, and vice versa if the 

optimization problem is to minimise the fitness function.

R1.7 Checked i f  convergence in the fitness has occurred

Convergence function would check the maximum fitness value of current generation 

and do a comparison with maximum fitness value of previous generations. If this 

comparison shows that the maximum fitness value had not improved for a certain (user- 

defined) generations, the function should write a termination file. The termination file 

would give an indication to the system (control script) to stop all its operation. Thus the 

whole iteration ends.

R1.8 Selection by user choice

The method of selection is determined in function R l.l when the user customised the 

choices of genetic operators. Only the chosen selection function would be activated. 

Here are the possibilities of selection:

• Rank-order (fit-fit) selection, the function would pair an individual with the next 

fittest individual in the population by stepping through the order of the list, and 

the process should stop when it reached the last pair of strings. The percentage 

of replacement set in function R1.1 would determine whether the selection has 

reached its last pair of individuals.

• The random selection, as suggested the function randomly selects any pair 

within a mating pool, where the size of the mating pool is determined by 

percentage of replacement and size of population. However to maintain the idea 

of population diversity, each individual (string) can only be picked once. Thus, a 

shuffling method was implemented to rearrange the order of the individuals. The 

process involved the random selection of two strings within the sorted 

population (according to their fitness values) and swapping their positions. This 

iterative process of strings swapping their positions is completed in 200 

iterations and the process would disarrange the order of the fitness in the
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population. After the shuffling process, the function would pair the first two 

strings in the mating pool, followed by the next two and so forth until the last of 

them.

• Stochastic Universal Sampling (SUS), the function would firstly calculate the 

sum of all individuals’ fitness in the population, S and this step is similar to the 

roulette wheel selection (refer chapter 1, section 1.3.3.3). However, unlike the 

roulette wheel selection the SUS selects multiple individuals per spin, N  (this 

value is preset in function R l.l)  to prevent loss of population diversity. To 

determine the positions of the N  pointers, a random number first has to be 

generated between the range of 0 and S/N. This randomly generated value would 

be the first pointer or the firstly selected individual while the subsequently 

selected individuals would all happen at an interval of S/N  until the last 

individual is selected. Figure 5.5 shows an example of the SUS, where 6 

individuals were being selected for the mating pool. After the placing all 

selected individuals into the mating pool, the function would pair the first two 

strings in the mating pool, followed by the next two and so forth until the last of 

them.

R1.9 Crossover by user choice

The method of crossover is determined in function R l.l when the user customised the 

choices of genetic operators. Only the chosen crossover function would be activated.

• Single-point crossover, the function begins by splicing two selected individuals 

at a random point. The splice-point is chosen randomly using a random number 

generator within the range of 1 to maximum string length-1. By keeping the 

head sub-string the same and exchanging the tail sub-strings, two new strings, 

each made up of “genetic information” from previous pair are generated. The 

iteration of swapping tail sub-string of two chromosomes ends when the last pair 

of individuals in the mating pool exchanged their “genetic information”.

pointer 1 pointer 2 pointer 3 pointer 4 p o in te rs  pointer 6

individual

0.0 0.34 0.49 0.62 0.73 0.82 0.95 1.0

random number

Fig. 5.5 An example of Stochastic Universal Sampling
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• Two-point crossover, the function firstly chooses two random number within the 

range of 1 to maximum string length-1, with the condition that value of first 

random number has to be less than that of the second one. These two randomly 

selected (integer) numbers then becomes the splicing points, where only 

“genetic information” that lay between them is exchanged. The iteration of 

swapping the middle section of two chromosomes ends when the last pair of 

individuals in the mating pool exchange their “genetic information”.

R1.10 Mutation by user choice

The method of mutation is determined in function R1.1 when the user customised the 

choices of genetic operators. Only the chosen mutation function would be activated.

• Flip-bit mutation, the function randomly altered bits within the new strings, 

based on a mutation probability value, which dictates the frequency at which 

mutation occurs. For example if the mutation probability is set by the user to be 

0.004, string length of each individual is make-up of 20 bits, and there are 100 

individuals in a population. Based on the selected parameters, the function 

would randomly select eight bits out of the possible 2000 bits in each 

generation, and changed a ‘O’ to ‘ 1’ or vice versa of the selected bits.

• Random mutation, the function would randomly alteration of bits within the new 

strings, based on a mutation probability value. But this time the selected bit(s) 

should have a chance to remain unaltered or be inverted.

R l.l  1 Replacement o f the weaker chromosomes

The function randomly generates a predetermined number of strings, containing ‘ 1 ’ and 

‘O’ of a specific length to replace the strings, which didn’t qualify for selection. The 

number of strings to be created would be determined by the value of “percentage of 

replacement”, and length of the string is found in function R1.5.

R l . l2 Create new generation

This function creates two files, first a file that contains all the new strings reproduced 

from the process of GA. Then followed by a file that held the information indicating to 

the system (control script) to continue the iteration.
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5.3.2 Defining program functionalities- Decode module

Ref# Function Category
R2.1 Set design variables, constraints, etc. Evident
R2.2 Stored design variables, constraints, etc into a 

setup file.
Hidden

R2.3 Read design variables, constraints, etc from setup 
file.

Hidden

R2.4 Create initial population. Hidden
R2.5 Find most recent generation of system. Hidden
R2.6 Conversion of binary coding into design 

variables.
Hidden

R2.7 Write design variables into OPERA script format 
for design analysis.

Hidden

Fig. 5.6 Table on functional specifications of the Decode module

R2.1 Set design variables, constraints, etc

This function checks whether the design variables, constraints, etc. have been defined 

by the user, if it does, it ends the function. Otherwise, a set of questions regarding the 

design would be asked, prompting the user to update the necessary data for design.

The set of questions is shown:

• Number of variables the user wants for the design.

• Number of bits in each variable.

• The upper and lower limit (constraints) for each variable.

• To label or name each variable.

• Assigned an expression code to each variable.

• Give a description to each variable.

• If user wants any additional information for each variable.

• Assigned an expression code to the additional information.

R2.2 Stored design variables, constraints, etc into a setup file

Function R2.2 is only executed, if the design variables, constraints, etc. had not 

previously been stored. The function would store all information entered by the user 

into a setup file.
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R2.3 Read design variables, constraints, etc from setup file

This function would be executed, if function R2.1 found that design variables, 

constraints, etc. had already been defined and stored in a setup file. R2.3 would read the 

information from a setup file and store them in the memory.

R2.4 Create initial population

First the function would check for any existing generation in the system, if a previous 

generation existed the function ends. Else the function should randomly generate a 

predetermined number of strings containing ‘1’ and ‘O’ of a specific length. Information 

on number of strings to create and length of each string should be gathered from the 

setup files of Genetic operators module R.l and Decode module R.2 respectively.

R2.5 Find most recent generation o f system

The function would search for the latest generation in iteration, and stored that 

information. The search would start from generation 1 and increase to the next 

generation until it finds the latest generation.

R2.6 Conversion o f binary coding into design variables

This function would open the latest generation of .chr file, reads in the first chromosome 

(string of binary numbers) in that generation, and then starts to decode each gene in the 

chromosome with the specified data (liked number of bits, upper limit, lower limit of 

each variable). The chromosome has now been converted into solution set, and this 

process starts with reading in chromosome (string) again. But this time, it would read 

the second string and decodes it, the iteration continues until the last string of the 

generation is decoded. In Fig.5.7 shows that each variable in the solution set 

corresponds to a gene in the chromosome.

P heno type / Solution Set
V ariab le  1 V ariab le  2 V ariab le  3

1 I 1
G ene 1 G en e2 G ene 3

C hrom osom e

Fig.5.7 Diagram on relation between solution set and chromosome.
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A gene is defined as a string of N  bits. It is a binary representation of the number of 

intervals from lower limit. The design constraints set an upper and lower limit, without 

setting this constraint, searching the range from -oo to oo would be impossible. This 

range between the upper and lower limit is divided into the number of intervals, as 

defined by the length of gene. A simple expression of the bit string of A length is (2N-1), 

and the size of an interval would be (upper limit -  lower limit)/ (2N-1). Fig. 5.8 

illustrates how the conversion from chromosome to solution set is being done.

- 0 . 1 - 40.1 0 .0-+ 0 .5 + 1 .0- +2.0
Variable 1 V ariable2 Variables

0.0677 0.429 1j667

Design Constraints 

Decoded solution

11010 1101101 1010
Gemel Gene 2 Gene 3
5 bite 7 bits 4 bits

Binary representation 
of variable

— Bit-string 
length

Fig.5.8 Illustration of conversion from chromosome to solution set.

For example:

Variable 1 has a design constraint of -0.1 to +0.1.

The bit string (gene) is 5 bits long.

The interval is 6.45 x 10'3

The binary number ‘11010’ is 26 in decimal.

While bit string is ‘ 11010’, the value is [{(0.1+0.1) / (25-l)}* 26] -  0.1 = 0.0677 

Therefore, general equation for converting chromosome to solution set is,

[{(upper limit -  lower limit)/ (2N-1)}* gene] + lower limit

R2.7 Write design variables into OPERA script format for design analysis 

The function would transform the decoded design variables into corresponding OPERA 

script format. The format is similar to figure 5.9 with a description of the variable, an 

address of the variable, a value to which the variable is to be set, and finished with an 

indicator, ‘| \  This function allowed as many design variables as there are in a particular 

design model to be written in the configuration script.
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/Armature slot + Descriptor
RUNP slot_2 + V ariable name
RUNP PA01=0 .56 <---------.Expression
I End indicator

RUNP slot_2 
RUNP PA02=0.56

Fig.5.9 An example of input script format of the OPERA-2D software

5.3.3 Defining program functionalities -  Instantaneous current module

Ref# Function Category
R3.1 Find the most recent generation of the system. Hidden
R3.2 Determine the number of designs in the current 

generation.
Hidden

R3.3 Extract flux linkage information from .csr file of 
each analysed lamination design.

Hidden

R3.4 Start the dynamic simulation model... Evident/
Hidden

R3.5 Activate the winding optimisation model ... Evident/
Hidden

R3.6 Write instantaneous phase current data and 
optimal winding configuration into OPERA script 
format for design analysis.

Hidden

Fig. 5.10 Table on functional specifications of the instantaneous current module

R3.1 Find most recent generation o f system

The function would search for the latest generation of design in the design cycle, and 

stored that information. The search would start from generation 1 and increase to the 

next generation until it finds the latest generation.

R3.2 Determine the number o f designs in the current generation

The function would check the total number of result files created by OPERA-2D in the 

current generation, and store that information. Each result file contains the windings 

flux linkage information of a lamination design.

R3.3 Extract flux linkage information from .csr file o f each analysed lamination design
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The function would open the .csr file of the most recent generation extracts all the 

meaningful numerical data and store them in an array. The function reads only one .csr 

file at each time, starting with LGxxxIOOl.csr (the first lamination design file of most 

recent generation), and the process finishes when all necessary data in each design file 

within the generation are extracted.

R3.4 Start the dynamic simulation model...

The function would first input the extracted flux linkage data into the dynamic drive 

system model then manipulate the model to calculate the instantaneous phase current 

and other related motor performance without considering the iron loss using the default 

winding and firing angle settings.

R3.5 Activate the winding optimisation model...

The function manipulates the winding optimisation model built within the dynamic 

simulation model to achieve required speed-torque specification with best possible 

efficiency (refer to section 3.5 for details).

R3.6 Write instantaneous phase current data and optimal winding configuration into 

OPERA script format fo r  design analysis

The function would transform the simulation data of instantaneous phase currents and 

optimal winding configuration into corresponding OPERA script format. The format is 

similar to figure 5.11, where the (FEA pre-processor) instructions of the motor 

instantaneous phase currents and winding turns at 20 discrete equally spaced rotor 

positions are logged in .bmd file. Useful information of selected wire sizes and firing 

angle but had no meanings in the FEA environment are included as comments.
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/field wire size:0.65 
/armature wire size:0.53 
/field turns :49 
/armature turns :54
/firing angle.-9 jngt current jnst armature current

/coil config 
RUNP co i l f p
RUNP PAO 1=5.91905 PA02=49 PA03=54 PA04=-3.472973

, X
Number o f turns Number o f  turns

/rotor angle per coil (field) per coil (armature)
RUNP rotation
RUNP PAO 1=0 FILE='IRONl' +STOR

1 X Rotor angle

Fig.5.11 Another example of input script format of the OPERA-2D software

5.3.4 Defining program functionalities -  Fitness module

Ref# Function Category
R4.1 Find the most recent generation of the system. Hidden
R4.2 Determine the number of designs in the current 

generation.
Hidden

R4.3 Extract flux linkage information from. csr file of 
each analysed lamination design.

Hidden

R4.4 Extract local flux densities and areas data from 
.csr file of each analysed lamination design.

Hidden

R4.5 Extract optimal windings configuration and firing 
angle information from each .bmd file.

Hidden

R4.6 Start the dynamic simulation model, input all 
extracted data and calculate motor performance 
of each lamination design, derive the fitness value 
of each design using the predefined fitness 
function.

Evident/
Hidden

R4.7 Write individual designs in the form of binary 
chromosomes and their assigned fitness values 
into a f i t  file.

Hidden

Fig. 5.12 Table on functional specifications of the fitness module 

R4.1 Find most recent generation o f system

The function would search for the latest generation of design in the design cycle, and 

stored that information. The search would start from generation 1 and increase to the 

next generation until it finds the latest generation.
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R4.2 Determine the number o f designs in the current generation

The function would check the total number of result files created by OPERA-2D in 

current generation, and stored that information. Each result file contains the windings 

flux linkage information of a lamination design.

R4.3 Extract flux linkage information from .csr file o f  each analysed lamination design 

The function would open the .csr file of the most recent generation extracts the flux 

linkage vs. rotor position data and store them in an array. While only one .csr file is 

opened each time starting from the first file of most recent generation, LGxxxIOOl.csr 

and until the last file of the generation.

R4.4 Extract local flux densities and areas data from .csr file o f each analysed 

lamination design

The function would open the .csr file of the most recent generation pertaining the 

information of local flux densities and areas extracts the data and store them in an array. 

Only one .csr file is opened each time starting from the first file of most recent 

generation, GxxxIOOl.csr and until the last file of the generation.

R4.5 Extract optimal windings configuration and firing angle information from each 

.bmd file

The function would open the .bmd files of the most recent generation (but one at each 

time), extracts the data pertaining the information of the optimal windings 

configurations and firing angles. Each .bmd file contains information of the optimal 

windings configuration and firing angle of a particular lamination designed to best 

achieve design objective(s).

R4.6 Start the dynamic simulation m odel... derive the fitness value o f each design using 

the predefined fitness function

The function would first input the all extracted data from functions R4.4 to R4.6 into the 

dynamic drive system model then manipulates the model to calculate individual 

lamination design motoring performances like efficiency, total copper and iron losses, 

average torque etc. The function would then use the information to derive the fitness of 

each individual design using the preset fitness function.
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R4.7 Write individual designs in the form o f binary chromosomes and their assigned 

fitness values into a f i t  file

The function would append a fitness value to each lamination design determined in 

function R4.6 while each lamination design would be represented in the form of a 

binary chromosome. For example, lamination design 1 of generation 1, GOO 11001 

before it is being decoded into OPERA scripting language takes the form of string 

‘100101111’ and has a fitness value of 0.987. So the appended string would look like 

100101111, 0.987. All the appended strings would then be written into a GENxxxfit file 

(fitness file), the fitness file should have all the strings with assigned fitness value of 

that generation.

5.3.5 Defining program functionalities -  Control script module

Ref# Function Category
R5.1 Determine the most recent generation of the 

system and introduce an appropriate start-up 
strategy.

Hidden

R5.2 Determine the number of designs in the current 
generation.

Hidden

R5.3 Execute the genetic operators module- 
GAengine.exe

Hidden

R5.4 Interpret instruction from GAengine.exe to 
determine if stopping criteria has been met

Hidden

R5.5 Execute the data transformation module- 
Decode.exe

Hidden

R5.6 Analyse each lamination design for winding flux 
linkages in a range of rotor positions.

Evident

R5.7 Execute Current.exe to activate the dynamic 
simulation model and winding optimisation 
model.

Evident/
Hidden

R5.8 Analyse each lamination design with predicted 
instantaneous phase current and designed winding 
turns in a range of rotor positions.

Evident

R5.9 Execute Fitness.exe to activate the dynamic 
simulation model, iron loss model and fitness 
function.

Evident/
Hidden

Fig. 5.13 Table on functional specifications of the control script module
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R5.1 Determine the most recent generation o f the system and introduce an appropriate 

start-up strategy

The function would search for the latest generation of design in the design cycle, and 

store that information. The search would start from generation 1 until it finds the latest 

generation. This information would be used as a form of guidance to allow system to 

operate in the correct sequence; as the design process can either start afresh or restart 

ffom where it last left off, the different scenarios would require a slightly different 

operation, like the sequences of calling up the various program modules.

R5.2 Determine the number o f designs in the current generation

The function would determine the total number of .ind files created by decode.exe in 

current generation, and stored that information. This information would provide the 

system the knowledge of the numbers of design laminations that required to be analysed 

in the current generation.

R5.3 Execute the genetic operators module- GAengine.exe

The function passes two instructions one to execute GAengine.exe file and the other to 

the OPERA-2D Design Environment to hold all proceedings till GAengine.exe finishes 

its operation.

R5.4 Interpret instruction from GAengine.exe to determine i f  stopping criteria has been 

met

The function would read a text file named, finished where the context of the file would 

determine if the system would continue its search for better design solutions or 

terminate the design cycle. The context can be simply in the terms of a ‘O’ or a ‘1’, 

where ‘O’ means to continue search and ‘1’ to end the search. The decision of 

continuing or ending the design and optimisation cycle is made by the genetic operators 

module- GAengine.exe.

R5.5 Execute the data transformation module- Decode.exe

The function passes two instructions one to execute Decode.exe file and the other to the 

OPERA-2D Design Environment to hold all proceedings till Decode.exe finishes its 

operation.
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R5.6 Analyse each lamination design for winding flux linkages in a range o f rotor 

positions

The function would load an And file to obtain the motor lamination shape, and then 

stores the data of the lamination at a range of rotor positions with prefixed field winding 

excitation. The FEA post processor then calculates and writes the results of the winding 

flux linkages at each rotor position into a .csr file, this process would repeat till all 

design laminations have been analysed. The post processing commands of the 

parameterised model would determine what information is written to the .csr format 

files and they have to be predetermined in the model.

R5.7 Execute Current.exe

The function passes two instructions one to execute Current.exe file and the other to the 

OPERA-2D Design Environment to hold all proceedings till Current.exe finishes its 

operation.

R5.8 Analyse each lamination design with predicted instantaneous phase current and 

designed winding turns in a range o f  rotor position

The function would load an And file to obtain the motor lamination shape, and then 

update the parameterised model with motor instantaneous phase current relative to a 

rotor position and its winding turns from a .bmd file. All information is stored for 

further analyses using the FEA post processor, the post-processing results of the 

localised flux densities and areas are then logged on a .csr format file with its unique 

name, this process would repeat till all design laminations have been analysed.

R5.9 Execute Fitness.exe

The function passes two instructions one to execute Fitness.exe file and the other to the 

OPERA-2D Design Environment to hold all proceedings till Fitness.exe finishes its 

operation.

5.4 Designing the optimization software

This section presents the design structure of the optimization software using several 

sequential flow charts, where each flow chart describes the sequential and logical 

appearance of a program module. The flow charts are used as pre-coding tools to help
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the visualisation of the logical structure of each modular program and its required 

program functionalities; it gives a clear map out of how the program should be coded.

5.4.1 Designing of genetic operators module
C  S to p

Fmd if  
GA engine

is*?

R l . l  Custom ise a GA engine______
1 ih  spl ay ttie set of quertion 

formulated in section 5.3 1. but prompt 
one question each time to the user 
► Store key-in design van able s in

H U  Read CIA@ngme.ini

• Open GAei
* Read the si 
variables fro 
store them it
♦ Close GAe

!igine ini file, 
it of GA engine 
m the file, and 
i memety 
ngine.mi file.

R1.2 W rite C A en gbe.in i
■ Create a fife called, GAengine.sm 

* Write GA engine variables into the 
rated file.

R1.4 Find if  number of generation 
has exceeded

lose GAengtne.ini file

R1.5 Find current generation
• Create a file name. GEN_G01iit
• Check if the file exist ? Yes, 
create next name, GENJ502.ftt.
• Check again If file still exist, 
create next name, this should last 
till the check is negative
• If  check is negative, stored the 
generation number of previous file.

* Create a file call. GENjcxx. chr (xxx 
is defined by value of generation to 
terminated, defined in R l.l)
* Check if the file exist, if  check is 
positive, create a file call Finished, 
and write a T  in the file. Then 
terminate die program

D idn’t exceed Yes, exceeded

R1.7 Check fur convergence

Rl.S Copy & rank the chromosomes
• Qpen the current .fit file, read-in all 
ihe chromosome with ihetr fitness value 
and write them into an array
* Close the .fit file.

Test the length of a chromosome.
Use a qsortQ function to rank the 

chromosomesindescendmg order.

If user chose 
convergence 
method.

Else

* Copy die largest fitness value from the 
array, write it m a file call converge fact, 
only if  this value is greater than die 
previous fittest value
* Check sf current value is greater than 
previous value, i f  yet wnte '0* & fitness 
value to the converge txt. IF no. 
increm ent' 0’ by 1. leaving the previous 
fitness as it is. Next time the incremented 
value woul d be T  and so on

Convergence check should last until die 
?alue '0* increases to a value greater 
than or equal to the user define 
convergence; upon this create a file call 
Finished, and write a 4 V in  the file. Then 
erminate the program.  j

D idn 't converged Yes, converged
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R1.8 
Selection 

ho

D R ank selection
Determine size of 

mating pool 
Pair fittest string with 

the next fittest string, 3d 
to 4th and so on until all 
strings in the pool are 
paired

2)Randnm  selection

* Determine size of 
mating pool 

Disarrange the ordered 
list of strings by 
shuffling their positions. 
In their new order, pair 
the 1st string to 21*1 string 
3*1 to 4&, until all are 
paired up

3)SUS
• Determine size of mating pool.
* Sum all individuals' fitness. 
Randomly select I*1 of the N  
strings and select the rest with 
equally spaced fitness interval, do 
this till mating pool is filled  
♦In the mating pool, pair the 
strings in order o f 1st to 21*1 , 3** to 
4th ..etc fall all are paired up

R1.9 
Crossover 

ho1) Single point 2) Two-point

* Select a random splicing 
point, from 1 to max. string 
length-1, exchange die tail sub­
strings o f selected pair.
♦ Do this hll all strings in the 
mating pool have swapped their 
tail sub-strings

1) Flip-bit

♦Work out number of bits to 
change.
* Randomly select n bits to 
alter within the new strings.

Select two random splicing points, 
from 1 to max. string length-1, where 
l rt splicing point is < 21*1, swap data 
between the splicing points.

Dothi 3 hll all strings in the mating 
pool have swapped their genetic 
information,

2) Random
Work out number of bits to change
■ Randomly select n bits to alter

within the new strings, but allow the
selected bit(s) to remam unaltered or 
be inverted

R l . l  1 Replacement R1.12 Create new generation
• Create N numbers of 
strings o f *1’ & *0' with K  
length
• Replace die strings not 
selected for m atrng with 
newly created strings

* Create GBN^xj.chr File, where 
xxx is the current generation value 
+1.
♦Write all newly created strings 
(from m atmg and replacem ent) 
into the GEN xxx.chr file.

K End )

Fig. 5.14 Sequential flow chart of the genetic operators module
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5.4.2 Designing of decode module

Y esNo

Find i f  
G EN 001.chr
file exist I s 0**

NoY es

'Find i f  ^  
D ecode int 

.exist ? .X'

• Display the set o f question 
formulated in section 5 3.2, 
but one question each time. 
•Store key-in design 
variab! es in memory

R 2.1  Set D esign V ariables. R 2 .3  R ea d  D e c o d e .in i

• Qoen Decode.ini file
• Read the set o f design  
variables from the file , and 
store them in memory.
• Close Decode.ini file

• Create a file  called  
D ecode ini
• W rite design variables into 
the created file.
• Close D ecode.ini file.

R 2.2 W rite D ecod ein i

• Read GAengine ini to find  
die (K) number o f strings to 
be created.
• U se a random number 
generator to create *1' & * O'.
• Create N-length string for K  
number o f time(s).

R 2.4 C reate in itial populationR 2.5  F ind current p opulation
• Create a file  name, GEN_001.chr.
• Check i f  the file exist ? Y es, 
create next name, GEN_002.chr.
• Check again, If file still exist, 
create next name, this should last 
till the check is  negative.
« If check is negative, stored the 
generation number of previous file.

• Create GxxxIOOl.indfile.
• Write design information liked those 
described in fig  5 8, into the file
• Close the file.
• Create the next file, GxxxI002.ind. 
This process should continue till the 
last ,ind file o f current generation is 
.iaraate** .......

R 2.7  C reate set o f G xxxlxxx.ind file s

• <^>en current generation .chr file
• Read in the string, then break up 
the string according to design 
variables. Decode each gene with 
its variable constraint. The result 
would be its design solution, store 
die result in memory,
• Read the next string, and do the 
same procedure, the procedure will 
last until the last string is read and 
decoded.

R 2.6  Conversion

Fig. 5.15 Sequential flow chart of the decode module
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5.4.3 Designing of instantaneous current module

The functions enclosed within the dotted lines 
represents a FOR loop, the loop  finishes when ail 
designs in the current generation are analysed.

* Open LGxxxlOQLcsr file (value 
o f xxx provided by R 3 .1).
* Scan and extract all windings X 
vs 0 data from the .csr file
* Scan and extract other lamination  
dimensional data like winding slot 
areas, mid slots radii etc.

R3.1 Find current generation
• Create a file name, GOOtlOOl.csr
• Check i f  the file exist ? I f  yes, 
create next name. G 002I001.csr
• Check again. If file still exist, 
create next name, G 00310fil.csf, 
this should 1 ast till die check is 
negative.
• I f  check is negative, stored the 
generation number o f previous file.

• Start the dynamt c simul ati on 
m odel, input all extracted data into  
the model
♦Manipulate the model to calculate 
the lamination instantaneous phase 
currents, average torque and other 
motor performances using the 
default settings.

R3.2 Find number of designs 
in th e  current generation_______

* Create a file name, GxxxIOOl.csr 
(xxx- information from R 3 .1).
* Check i f  the file exist ? If yes, 
create next name, GxxxI002.csr.
♦ Check again I f  file still exist, 
create next name, GxxxI003.csr, this 
should last till the ' 1
• I f  check is negative, stored the 
generation number of previous file.

• Convert simulation data o f 
instantaneous phase currents and 
optimal winding turns into  
OPERA senpt format.
•Log the converted data into a 
bmd file
•Useful information of optimal 
windings configuration and firing 
angle are also logged in the .bmd 
file but only as a form o f c omment 
for further references

JR3.6 C rea te  th e  .bmd files

• Start the winding optimisation 
model. (Refer to Chap. 3, sect.3.5) 
•Winding optimisation com pleted, 
find best possible efficiency o f  the 
laminati on by adjusting the firing  
angle within ±5® mechanical.
• Compare the results o f motoring 
performance using different firing 
angles, determine the optimal 
firing angle.

Fig. 5.16 Sequential flow chart of the instantaneous current module
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5.4.4 Designing of fitness module

Start

R 4.1 F in d  cu rren t gen eration
Create a file  nam e, GOOlIOOl.csr 
C heck i f  the file  exist ? If yes, 

create next name. G 002I001.csr.
• C heck again. I f  file  still exist, 
create next name, GOOSIOOl.csr, 

till the ch eck  is

R 4.2 F ind  n u m b er o f design s  
in th e  cu rren t generation______

• Create a f ile  nam e, GxxxIQOl.csr 
(x x x - inform ation from F,4 1).
• C heck i f  the file  exist ? I f  yes,

negative, stored the

e.
e check  is 

gah ve

R 4.4  E x tra c t lo ca l f lu x  d en sities  
& a reas data_____________________

• Open OxxxIOOLcsr file  (value o f  
xxx provide d by R 4 .1).
♦ Scan and extract all local flux  
densities and areas data from the

e.

R 4.5  E x tr a c t optim al w in d in g s  
con figu ra tion  & f ir in g  a n g le  data
• Qpen GxxxlOOLbmd file.
•Scan and extract the optimal 
w indings configuration and firing  
angle data_________________________

R 4 .7  C rea te  GEN xxx. fit  file
Create GBN_xxx.jit file  
Open GEN_xxx.chr fil e

• Copy the all strings containing ' 1 * 
& '0 ’ from .c&rfile.

Write the strings with their assigned  
fitness values into the fit file.

G o se  GEN xxx.jit & GEN xxx.chr
t a t

C E nd )

R 4 3  E x tra c t w in d in g  flu x  lin k a g e  
v  rotor  p osition  data_______________
• Open LGxxxIOOi.csr file  (value o f  
xxx provided by M 1)
• Scan and extract all w indings X v s  6 
data from the .csr file.
• Scan Mid extract other lam ination  

ional data like winding slot
lots radii etc.___________

R 4.6 S ta rt th e  dynam ic sim ulation

.amic simulation  
m odel, input all extracted data into 
the m odel.
•M anipulate the m odel to calculate  
the lam ination m otor performance 
(losses, e ffic ien cy , av. torque etc). 
•Calculate fitness value o f  the

T he functions enclosed  within the 
dotted lines represents a FOR loop, 
the loop  fin ishes when ail designs in 
die current generation are analysed.

Fig. 5.17 Sequential flow chart of the fitness module
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5.4.5 Designing of control script module

/""Is t h e r e \  
previous 

generation o f

No

 -------- < Eftd )
The functions enclosed within the 
dotted lm es represents a FOR loop, 
the loop finishes when all designs in 
the current generation are analysed

• Execute Filness.exe.
•H o ld  all proceedings till die call 
up file finishes its operation.

R5.9 Execute Fitrtess.exe

R5.3 Execute GAengine.exe
• Execute GAengine.exe.
• Hold all proceedings till the call 
up file  finishes its operation.

R5.5 Execute Decode.exe
♦ Execute Decode.exe.
♦ Hold all proceedings till the call 
up file finishes its operation

RS.4 Check stopping criteria
• Read finished file to make 
stopping decision, *0’=  continue, 
and 4V =  stop, _______________

R5.7 Execute Currentexe
Current.exe.

* H oldall proceedings till the call 
up file finishes Its operation

R5.1 Find current generation
♦ Create a file name, GOO 11001.csr..
* Check if  die file exist? I f  yes, 
create next name, Q002I001.c$r
♦ Repeat the same procedure till the 
check is  negative.
• Store generation number o f m ost 
recent file________________________

H5.2 Find number of designs 
in the current generation______

• Create a file name, GxxxIOOiJnd 
(xxx-information from R 5 .1).
♦ Check i f  the file exist? IF yes, 
create next name, Gxxxl002.ind. 
•Repeat the procedure bll the check  
is negative.
•Store informabon on number o f  
designs in the most recent 
generation. _________________

• Load .tnd file and update the 
geometric modifications o f the 
parameter! sed FEA m odel
• Simulate rotation o f rotor with 
field winding excitation, stored the 
data for further analysis
• Call solver and post-processor to 
analysed and output required 
information into LGxxxlxxx.csr file.

R5.6 Analyze lamination i 
for Jtvs 9  characteristics

• Load.ind  file and update the 
geometric modifications o f the 
param eteri sed FEA m odel
• Load .bmd file and update the 
instantaneous phase current and 
winding turns i s  FEA model
• Simulate rotation of rotor, stored 
file data for further analysis.
• Call solver and post-processor to 
analysed and output required 
information into Gxxxixxx.csr file.

R5.8 Analyze lamination designs 
for local flux densities & areas

Fig. 5.18 Sequential flow chart of the control script module
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A significant amount of decision making and creative work were accomplished during 

the analysis and design phases. From here onwards generation of the code was a 

relatively straightforward translation process. However, the implemented codes for the 

optimization program had some minor changes and deviations from the initial design. 

The implemented codes can be found in the Appendices. The completed modules were 

reviewed and tested to ensure that they provide the necessary functions and 

characteristics.

The implemented optimization software for a flux switching motor and drive had 

significantly reduced the requirements of user interaction with the different design tools, 

at the various stages of the design cycle commonly associated with manual design 

process using computer aided design tools, to merely pre processing setup of design 

aims and specifications. The approach of combining genetic algorithms with the 

dynamic drive system integrated with static FEA software is the proposed solution for 

unmanned computer-automated optimization of the flux switching motor and drive.
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6 FSM drive system optimisation for high speed 
application using a genetic algorithm

6.1 Introduction
The design optimisation of a flux switching motor and drive system for a given 

specification is a multi-dimensional problem. Achieving the design objectives often 

requires tens or even hundreds of mechanical and electrical parameters to be tuned, and 

the strong interdependencies of the various parameters on each other and on 

performance made the optimisation problem virtually unsolvable by analytical 

techniques. Furthermore, the flux switching motor technology is still a considerably 

new concept, where there is not a large body of design experience to guide the designer. 

Therefore, the proposed design and optimisation software for the flux switching motor 

has been used to design a flux switching motor for high speed application without 

human intervention. The capability of accurately predicting dynamic performances of 

the full system (motor and drive) allows the genetic algorithms to confidently adjust the 

design within reasonable boundaries while steadily improving the fitness of the designs. 

The motor and drive has been constructed and test results have verified the accuracy of 

the simulation.

6.2 Defining the optimisation problem of an 8/4 FSM drive system
Traditionally, the design process commonly employed by engineers on electric machine

design involved the procedures shown in figure 6.1. Starting with defining the design 

aims and specifications, while several possible solutions will be identified by the 

engineer(s) to achieve the design aims. During the implementation stage the best 

available design tools are used firstly to gain a thorough understanding of the design 

problem and then manually optimise the design. Usually, several software tools will be 

used at this stage, ranging from simple spreadsheet programs to sophisticated analytical 

and numerical CAD packages.

The same initial design procedures of defining the design aims/specifications and 

identification of possible solutions would apply when designing a flux switching motor 

using the proposed software, while the manual design process during the 

implementation stage is being automated with the optimisation program. With a clear 

definition of the design aims and specifications with possible design solutions allowed
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the optimisation problem to be mapped out as a multi-dimensional problem space in 

which the genetic algorithms thrive in finding the optimal solution.

Possible Solutions

Design Aims/ 
specifications

Prototypes & Tests

Andytical Design
Spreadsheet, Specialist 
motor CAD package

Numeric^ Design
FEA package

Fig. 6.1 Flow diagram of electric machine design process commonly used by engineers

6.2.1 Design aims and specifications
The design aims and specifications in this optimization problem of an 8/4 Flux 

Switching motor for high speed application are:

1) To deliver output power of 400W at 8000rpm, using 220-240V ac supply.

2) To maximize the efficiency of the FS motor while still achieving specification 1.

3) All specified motor dimensions are to be complied with; stator outside diameter 

of 87.5mm, with 35mm stack length and the air-gap length is 0.5mm.

6.2.2 Identification of the motor parameters to be varied
The identification of possible solutions is an important part of the design process. The 

number of suitable solutions identified depends largely upon the ingenuity and 

experience of the design engineer(s). As the FS motor is a new class of electric motor, 

which has not been widely documented there is little background material for this 

design problem. For the design aims described above the following possible design 

variations have been identified, and they are shown in Table 6.1 the parameters 

variation are illustrated in figs. 6.2 & 6.3.
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P8

P 5

PI

V I V  6

V  4

V 7 V5, V  2

V 3

Fig. 6.2 Design parameters controlling the Fig. 6.3 The design variables in the FSM 
rotor shape stator

Design Parameter Mapping range
Lower limit Upper limit Encoded bits

Width at bottom of armature 
slot (PI)

0.75 0.5625 4

Width at middle of armature 
slot (P3)

0.7 0.5125 4

Width at armature slot entry
(P2)

0.4 0.1 4

Armature slot gap (P4) 0.4 0.1 4
Field slot gap (P5) 0.4 0.1 4
Width at middle of field slot 
(P6)

0.5 0.3125 4

Width at field slot entry (P7) 0.4 0.1 4
Width at bottom of field slot
(P8)

0.55 0.3625 4

Rotor arc, as a fraction of slot 
pitch of 90° (VI)

0.5 0.35 4

Rotor outer diameter (V2) 57 50 3
Rotor inner diameter (V3), as 
a fraction to rotor OD

0.7 0.625 2

Table 6.1 Design variables with their given dimensional limits and resolutions 

6.2.3 Selection of genetic operators
Finding a good combinational of genetic operators that enable a successful evolution 

(eventually leading to locating the global optima) is not a trivial task. Robust GA 

(operators) settings had to be found for population size, number of generations, 

selection method, crossover method, frequency of mutation, while all these are done to 

ensure a good balance between quality of search results and convergence time.

• The size of the population is one of the keys that governs the quality of the 

evolution, and this is dependent on the bit string length used to represent the 

given problem, the number of generations to run the simulation and ultimately
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the available computer resources. Normally GA with small populations tends to 

converge to a local optima solution, while GA with large populations would 

required a long time (many generations) to converge to a region of search space 

with significant improvement (not necessarily global optima).

• The appropriate level of selection pressure would also ensure a successful 

evolution, the key is to maintain a proper balance between the selection pressure 

and population diversity. However, level of selection pressure to apply is also 

subjected to the population size.

• In artificial system, crossover is the primary tool for the search and 

recombination of extant notions, however, occasionally this may become 

overzealous and lose some potentially useful genetic material (‘l ’s or ‘0’s at 

particular locations). The mutation operator is used to protect against such 

irrecoverable loss. When used sparingly with crossover it is an insurance policy 

against premature loss of important notions. In empirical genetic algorithm 

studies, the frequency of mutation that obtained good results is on the order of 

one mutation per thousand bits [8,10].

In reference [3], a genetic algorithm is employed to optimise of an induction machine 

and it has demonstrated good results. The genetic algorithm initially creates 200 

machine designs in an initial population and the design iteration is terminated after 20 

generations. A large population size is used to ensure possible design solutions are 

distributed over the large design problem space represented by 220 bits. The algorithm 

uses roulette wheel selection, single point crossover, mutation rate of 0.005 and elitism. 

The simulation was run on eight separate occasions using the same setting, and the 

results all demonstrated very similar and consistent outcome.

In this optimisation problem, a desktop computer with Pentium 700MHz processor was 

used to run the developed optimisation software, and the FEM analyses constitute up to 

95% of the total computation time. Each lamination design takes roughly 45 minutes to 

be completely analysed at all positions for its motor performance and be appraised for 

its fitness. The long computational time required for each lamination and winding 

evaluation has posed a problem for using a large population GA (over 50 lamination 

design for each generation). As it has been acknowledged that traditionally genetic 

algorithms worked best using large population. Thus, the knowledge of selecting an
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appropriate genetic algorithm that manipulates small population size and still yields 

good results has to be drawn from past experiences.

In reference [2] optimisation of a PM brushless DC motor using genetic algorithms has 

been reported. The algorithms were examined with different population size (at 25, 50 

& 100 individuals), and mutation rate (0.01, 0.05) in the experiments. For all the 

simulations, the algorithm uses 60 bits to represent the problem space, stochastic 

sampling (aka roulette wheel selection), single point crossover, bit mutation and the 

design iteration terminates after 50 generations. The optimal solution is found using an 

algorithm that has the followings: 1) population size of 100, and 2) mutation rate of 

0.05. However, it is worth to mention that the solution found using a smaller population 

size of 25 individuals, and mutation rate of 0.01 yields also a good result compared to 

the optimal solution.

Also in the same reference, a genetic algorithm that uses small population size of 25 

individuals with mutation rate of 0.01 has been used in a simple problem with only two 

motor design variables. This experiment is used to observe the nature operation of a 

genetic algorithm. The 25 individual designs in the initial population are randomly 

chosen, and they are distributed over a given design problem space (in feasible region 

and also impractical one) specified by the two design variables (while others are set to 

be constants). It was reported that the individuals gradually moved away from the 

impractical region as the generation progresses. After 20 generations 80% of the 

population is in the feasible region, and a few of the individuals actually have the (two) 

design variables very close to the optimal design found earlier on. At 50 generation, 

about 75% of the population has converged to results very close to the optimal one.

Using the information in references [2,3], a more unconventional GA with small 

populations and moderate number of generations was implemented, and as much effort 

was taken to balance between the selection pressure and population diversity. The 

following shows the genetic algorithm that has been implemented for the problem 

mentioned above.

• Population size of 20 individuals.

• Seeded initial population (refer to section 6.3).

• 20% replacement rate (replacing 4 least fit individuals within the generation 

with 4 new randomly generated individuals).
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• Rank (Fit-fit) selection

• Uniform single point crossover

• Flip-bit mutation with frequency of mutation set at 0.004 (four mutations per 

thousand bits).

• Termination after 20 generations.

6.2.4 Defining the fitness function
The fitness function should express how good a design lamination is from the point of 

view of satisfying all the defined design aims and specifications. In this optimisation 

problem the fitness function is the motor efficiency at 8,000rpm producing 0.5Nm.

6.3 Optimisation of the 8/4 FSM drive system using the GAs driven 
optimisation software
The execution of the program starts with the specification of 1) the population size, 2) 

the GA operators (eg. replacement, method of crossover, rate of mutation and method of 

selection, choices of termination), 3) the constraints of the design limits, and 4) the 

objective function. In this experiment, the initial population consists of 20 (individuals) 

lamination designs. The algorithm uses binary representation, each (chromosome) 

design consists of 11 genes representing randomly selected values for the 11 design 

variables (refer to Table 6.1), with each gene is made up of two to four bits. The 

genetic algorithm is formed with the following genetic operators, rank (fit-fit) selection, 

uniform single-point crossover, flip-bit mutation, replacement, and predefined 

generation termination. Each set of design variables is passed to the Design 

Environment to create the finite element model and the design is first evaluated for its 

electromagnetic performance under static conditions. The static electromagnetic 

solutions of each design are used to obtain an initial dynamic performance (unaccounted 

for the core loss), these initial evaluated results are then used as a guide for the design of 

the winding configuration, with the optimised winding configuration determined. The 

core loss is then estimated for every individual of the population at the target operating 

point. At this point, the fitness value of each design will be calculated based on the user 

defined objective function. In this design exercise, the motor efficiency at 8,000rpm 

producing 0.5Nm was selected as the fitness function, the optimization problem is to 

maximise the motor efficiency while constrained by the specified speed-load
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requirement. The calculated fitness values would be assigned to the corresponding 

designs, and based on the fitness information of each design, the genetic algorithm can 

perform its genetic operation to produce a new and improved generation of designs. The 

algorithm terminates after 20 generations. At this point, the designer can view the 

performance characteristics of the proposed solutions. Values for the eleven design 

variables and values of winding configuration chosen for each design can be found in 

case files with their unique names, for example, the design variables of design 1 of 

generation 1 are stored in GOO 1100l.ind, and the values of the winding configuration are 

in GOO 11001.bmd. The naming convention can be interpreted as such, the number after 

the letter ‘G’ presents the generation in which the file is created, the number after letter 

T  is the design number with the total number of designs in a generation being 

determined by the population size, and the extension of the file details what information 

it contains.

6.3.1 Simulation results
The evolution of the designs is being illustrated in fig. 6.4 and fig. 6.5 demonstrating 

how the genetic algorithm starts its search for better designs from a feasible region as 

well as from the impractical ones. In generation 15, the genetic algorithm found the 

solution with the highest fitness value assigned amongst all other designs in the 

generations, noticed that most of the design structure of the best solution in generation 1 

has been retained in generation 15, while some features have been modified. It is 

important to highlight that the best solution in generation 1 is not a randomly generated 

design, it is purposely inserted (as a seed) to the other randomly generated designs to 

avoid the possibility of all solutions starting in the impractical region, as there is only a 

small initial population of 20 individuals. As the designs evolved through the 

generations, transformation in the seed design had occurred through changes in 

lamination shape as illustrated in fig. 6.4 while the specific change in the design 

variables in term of their dimensional limits are shown in Table 6.2. The optimised 

design (as shown in fig. 6.4b) had the following changes compared to the initial one 

(fig 6.4a):

Stator pole width and pole arc of the optimised design are wider.

The field and armature slot opening of the optimal design are reduced.

The rotor outer diameter has reduced.
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■ The optimal design had wider rotor pole arc with a reduced graded air-gap at 

leading edge.

Fig. 6.4(a) Seed design inserted in generation 1 - illustration of zoom in view of the
rotor and stator lamination design

Fig. 6.4 (b) Design with highest fitness value (found in generation 15) - illustration of 
zoom in view of the rotor and stator lamination design
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Design parameters Seed Optimised
(G15H) |

Width at bottom of armature slot 
(PI)

0.75 0.7

Width at middle of armature slot
(P3)

0.7 0.65

Width at armature slot entry (P2) 0.34 0.2

Armature slot gap (P4) 0.34 0.2

Field slot gap (P5) 0.34 0.2

Width at field slot entry (P7) 0.34 0.2

Rotor arc, as a fraction of slot pitch 
of 90° (VI)

0.4 0.44

Rotor outer diameter (V2) 53 51

Table 6.2 List of specific change in the design variables of the seed design and
optimised design

Av. & best "fitness" of designs over 20 
generations

70

^ 6 0
o
cd)
0 50
1
I  40o
E

>
8  20<DC

LL
Best

Average

1 3 5 7 9 11 13 15 17 19
Generations

Fig. 6.5 The trend of design fitness over the 20 design generations

106



Chapter 6 FSM drive system optimisation for high speed application using a ga

Fig. 6.6

Component BMOD
0.0 1.0 2.0

The flux densities distribution in various sections of the seeded design
lamination

Component BMOD
0.0 1.0______________________ 2X)

I - -  —  - -  -

Fig. 6.7 The flux densities distribution in various sections of the fittest design
lamination (G15H)
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Seed Optimised

(G15il)

Voltage 240 240
Supply current 2.94 2.93
Rotor speed 8000 8000
Av. Torque 0.52 0.55
Input Power 705 704.2
Copper loss 156.5 140.6
Iron losses 116.2 103.5
Output Power 432.3 460.1
Efficiency 61.3 65.3

6.3 Predicted results of seeded and optimised lamination designs

dynamic performance of both seeded and optimised lamination designs 

in table 6.3, the data shows that the optimised design can produce a 

higher output power compared to the seeded design with a reduction in power losses 

(copper and iron) by 10.5%. Figs. 6.6 and 6.7 illustrate the spatial distribution of flux 

density in the seed and optimised design laminations. A colour scale has been used to 

represent the magnitude of the flux density component ranging from 0 to 2 Tesla in the 

different sections of the lamination. Using the colour scale as a reference to the 

magnitude of the flux density component, it became obvious that the optimised design 

has lower flux density in the stator pole section when compared to the seeded design, 

and this would mean lower iron losses in the pole sections.

6.3.2 Comparison of the simulated performances of the optimised design with 
experimental results of the prototype motor
The motor based on optimised design (G15H) has been constructed and tested. The 

comparison between the test results (fig.6.8) and the dynamic model simulated results 

(fig.6.9) is given in table 6.4. Refering to fig. 6.8, the purple trace (ch3) on experimental 

waveform plot is the field current measured at 2A/div, the green trace (ch4) is the 

armature current measured at 2A/10mV div, and brown trace (chi) is the opto signal the 

starting edge represents the 0 degree of the rotor orientation. The measured armature 

current waveform from the prototype motor appeared to tie up quite well with the one 

estimated by the dynamic simulation model (fig. 6.10). However, there still exists 

difficulty in simulating the experimental field current waveform, as the modulation of 

field current due to the mutual coupling of the armature excitation is not included in the

Table

The predicted 

are illustrated
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model. The dynamic simulation model represented here is used in conjunction with a 

genetic algorithm. Thus, the model complexity must be a counterbalance with the 

program execution time, as a result the electromagnetic interactions of the flux 

switching motor drive system are substantially simplified and idealised.

0  0 s

(-H-+++

O h l 10.0V M W0)1S 1.2SM S* S O O rs/p
CK3 2.0A 0  G M  lO O raV  A CM  r  0.0V

Fig. 6.8 Experimental waveforms for the constructed 8/4 FS motor running at 7840rpm
with 0.5Nm externally applied load.

Field and armature current
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Fig. 6.9 Simulated current waveforms for the constructed 8/4 FS motor running at
7840rpm, 0.5Nm.
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Armature current comparison for 0.5Nm external load 7840rpm
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Fig. 6.10 Comparison of simulated and experimental armature current waveforms for
the constructed 8/4 FS motor

Measured Predicted

Voltage 200 200
Supply current 3.51 3.03
Rotor speed 7840 7840
Av. Torque 0.5 0.5
Input Power 719.32 607.3
Copper loss 142.11 108.9
Other losses 163.75* 91*
Output Power 413.46 407.4
Efficiency 57.5 67.1

* In measured result the other losses meant all other losses excluding copper 
loss.
# In predicted result the other losses meant only the calculated iron loss.

Table 6.4 Results from constructed motor and predicted performance from software

Referring to table 6.4, the differences between predicted and actual motor efficiency can 

be explained as such, the predicted results of the optimised motor do not include any 

mechanical losses, while the iron loss is simulated with the instantaneous current 

waveforms shown in fig. 6.9 in which the modulating field current is not included. This
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extra modulation in the field mmf would result in additional iron losses in the motor. 

Nonetheless, the results have demonstrated the potential of the software to design the 

motor and its windings configuration and reasonably predict its performance with 

modest computational effort. Furthermore, the design process is fully automated and do 

not require any further of human interaction once the program is set up. The proposed 

method for the design and optimisation of the FS motor is best applied as an initial 

design tool to gain a thorough understanding of the design problem and be used 

alongside with more sophisticated and complete FS motor model that supports full 

dynamic simulation of the FS motor at various operating conditions.
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7 Design optimisation of FS motor for improved 
starting capability using a genetic algorithm

7.1 Introduction
This chapter describes a second application of the GA design optimisation, in which a 

FS motor is designed using a different fitness function. The design objective in this 

particular optimisation problem is to improve the starting capability of an existing Flux 

switching motor (fig. 7.1), while complying with some of its existing motor dimensions. 

The task involves redesigning the lamination over the existing motor to increase the 

torque available in the overlap region between positive and negative armature currents 

(fig. 7.2) using GA design optimisation. The method o f starting a flux switching motor 

involves pulling the rotor into a stable equilibrium position of zero torque for one 

polarity o f armature current. At that position the other armature current polarity must be 

capable o f producing enough torque to start the rotation. Thus, a lamination design that 

produces high torque in the overlap region between the two polarities o f currents would 

guarantee the motor a good starting capability.

+2400A!

•2400A1

40.0 

30 0

20.0 

10.0

0.0

■100

•20.0

30.0

Fig. 7.1 The lamination design of the 
existing motor

Torque angle curve -  Existing design

MMFa =+/- 2400At; MMF,=2400At 6 -------------------------------------------

Rotor position angle 

Fig. 7.2 The simulated torque angle curve of 
the existing design for a given winding mmfs
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7.2 Development of a different fitness function program
For the design aims described above the genetic algorithm optimisation program would

require a different fitness function as compared to the one used in the earlier chapter to 

appraise the “quality” of the new designs. For this design problem, the fitness function 

for each lamination design needs to obtain the instantaneous torque waveform (at the 

overlap regions between positive and negative armature currents), and use the 

information as an indication of each design’s fitness. The instantaneous torque of the 

lamination designs at given field and armature current excitations were calculated using 

the Maxwell Stress method within the FEA software [20], and the calculated data is 

evaluated directly by the fitness function. A different fitness function program for 

evaluating the instantaneous torque has been developed and integrated with the genetic 

algorithms and the FEA software to facilitate the design optimisation. The functional 

outline of the design optimisation program for improving a FS motor starting torque is 

illustrated in fig. 7.3. Noticeably, the use of modular program structure in the GA driven 

design optimisation software has enabled one to easily integrate the new fitness function 

program into the optimisation system, this further demonstrated the versatility and 

flexibility of the developed (GAs) software to incorporate other program module(s) to 

form the optimisation system.

Optimized design for 
good starting torque

Is stopping^ 
criteria met?

No, continue 
search

Yes

User input design 
aims/specifications

G enetic A lgorithm
creates a “population” 
of designs within given 
constraints

(New) F itness function
will rate the performance 
of each design based on 
FEA generated data

FEA
Each lamination analyzed 
for inst. torque with a 
given current excitation in 
a range o f rotor positions

Data for each 
lamination passed to 
Fitness function

Fig. 7.3 The program outline of the design optimisation program for improving a FS
motor starting torque
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7.3 Defining the optimisation problem
The same initial design procedures (as described in chapter 6) were used in defining the 

design aims /specifications and in identifying the possible solutions for this particular 

optimisation problem.

7.3.1 Design aims and specifications
The design aims and specifications in this optimisation problem are:

1) To maximise the torque available in the overlap regions between positive and 

negative armature currents for a given field and armature mmfs where in the 

parameterised FE model total field mmf is set at 2400At and total armature mmf 

is set at either 2400At or -2400At. These values were used as they reflect the 

actual operating current level and the number of winding turns of the existing 

motor.

2) To achieve the above while complying with the following motor dimensions- 

number of stator poles: 8, number of rotor poles: 4, stator outer diameter: 95mm, 

airgap length: 0.6mm, rotor outer diameter 52.6mm, shaft diameter: 17.45mm, 

and motor stack length: 40mm.

7.3.2 Identification of the motor parameters to be varied
For the design aims described above the following possible design variations have been 

identified and they are shown in Table 7.1 the parameters variation are illustrated in 

figs. 7.4 and 7.5. There are 12 design variables that would be altered, six representing 

the rotor variations and the other six design variables are found on the stator.

PA04

PA05

PI

Fig. 7.4 Design variables of the rotor Fig. 7.5 The design variables of the
stator
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Design Parameter Mapping range

Lower
limit

Upper
limit

Encoded
bits

No. of 
possible 
values

Rotor arc, as a fraction of slot 
pitch of 90° (PA04)

0.3 0.45 4 16

Graded air-gap at leading 
edge of rotor pole (PA05)

0.3 0.4 3 8

R1 radius at leading edge of 
rotor pole (PA06)

0.85 0.96 4 16

Pole width at leading edge 
(PA07)

0.5 0.65 4 16

Pole width at trailing edge of 
R1 (PA09)

0.18 0.28 3 8

Pole width at trailing edge of 
R2 (PA 10)

0.18 0.35 4 16

Armature slot opening (P4) 0.2 0.62 4 16
Field slot opening (P5) 0.1 0.45 4 16
Armature slot, width of tooth 
tip (P2)

0.2 0.62 4 16

Armature slot, thickness of 
tooth tip (P2)

5 15 3 8

Field slot, width of tooth tip
(P7)

0.1 0.45 4 16

Field slot, thickness of tooth 
tip (P7)

5 15 3 8

Table 7.1 Design variables with their given dimensional limits

7.3.3 Genetic operators
In this optimisation problem, the same computer (with Pentium III 700Mhz processor) 

has been used to run the design optimisation. The computation time required for each 

solution to be completely simulated and analysed is about 50 minutes. As a result, a 

small population of designs for each generation is employed for the optimisation 

problem. However, in this design problem a more random genetic algorithm is used in 

the optimisation. The selected settings for the genetic algorithm are:

• Population size of 20 individuals.

• 30% replacement rate (meaning 6 least fit individual would be replaced in each 

generation).

• Random selection
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• Uniform single point crossover

• Random mutation with the mutation frequency set at 0.002 (two mutations per

thousand bits).

• Termination after 20 generation.

7.3.4 Defining the fitness function
The fitness function set for the initial design and optimisation process would be aiming 

at increasing the torque available in the overlap region between positive and negative 

armature currents. The fitness function program would interpret the static torque-angle 

curves generated by FE model and gives an indication of the fitness of each lamination 

design. The algebraic expression of the fitness function is given as:

= fi(x) + f i  O) -  X  hi M
(=i

where F(x) is the fitness value assigned to a lamination design, f\{x) is the motor torque 

at the 1st intersection between positive armature mmf and negative armature mmf torque 

curves, fi(x) is the motor torque at the 2nd intersection between positive armature mmf 

and negative armature mmf torque curves. hi(x) is a penalty function used for penalizing 

designs that have a large difference between f \  and^. The fitness function is defined by 

the sum of two torque curves intersections between the positive armature mmf torque 

curve and the negative armature mmf torque curve. Further penalties were included in 

the fitness function when design violates certain criteria. Penalties or negative values 

are added to the assigned fitness value for each design, if the following are violated,

1) when a lamination design has a torque curves intersection of zero or less;

2) when the difference between the first and second torque curves intersections 

are more than a user-defined value (eg. 0.3Nm);

3) heavier penalty if both conditions are violated.
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7.4 Results from the GA design optimisation for improving motor 
starting torque
The procedures of starting the optimisation program are similar to those described 

earlier in chapter 6. From specifying the population size, the genetic operators, the 

design variables with their dimensional limits (for details of the various specification 

refer to earlier sections). The initial population consists of 20 randomly generated 

lamination designs by the genetic algorithm, where the geometry of each design is 

defined by a set of design constants (non-variants pre-specified in the parameterised 

FEA model) and a set o f design variables, and it is by changing the design variables 

which allows the different lamination shapes to be generated. Each set of design 

variables is passed to the Design Environment to create the finite element model and the 

design is analysed for its torque producing capability for a given winding mmfs. The 

instantaneous torque solutions of each design are then used in calculating the fitness 

value of each design, and based on the fitness information of each design, the genetic 

algorithm then performs its genetic operation to produced new and improved generation 

of designs. The GA design optimisation process is terminated after 14 generations 6 

generations before target, as the possibility of finding the “global optimal” design 

cannot be guaranteed.

best
average

iM
<A

I

0.4 -

0.2 -

1 2 3 4  5 6 7 8 9  10 11 12 13 14

Generations

Fig. 7.6 Average fitness and best fitness trend during the optimisation process

Fig. 7.6 illustrates the search results o f the design optimisation the blue trend line shows 

the fitness value of the best lamination design in each generation and the pink line 

represents the average fitness value of the lamination designs in each generation. It has
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been observed that the blue trend line (representing the best fitness in each generation) 

exhibits a large fluctuation in generation 5. The huge dip in the fitness of the best 

individual in generation 5 is due to a combination of two factors; firstly the average 

fitness in the preceding population of designs, generation 4 is low and also in the same 

population existed a “super” fit individual design (with the highest fitness value 

amongst all designs). However, this would mean that the fitness for the most of the 

designs in that generation were lower than average fitness. Secondly, random selection 

is the chosen method for selecting pair of designs to exchange their genetic information, 

under the circumstances stated earlier it would mean that the “super” fit design has a 

very high probability of being paired with a highly unfit design thus resulting in the 

deterioration of the fitness. As the design optimisation progressed the fitness of the 

overall population starts to improve as more fit individuals were reproduced while the 

unfit ones were being replaced.
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Fig.7.7 The design lamination that is 
predicted with the best fitness value

Fig. 7.8 The simulated torque angle curve of the 
“best” design for a given winding mmfs

Torque anefe curve of G4i5,
MMFa=+/- 240QAt; MMFT=240QAt

Rotor position angle

The lamination design with the best fitness value is selected as the optimal design (fig. 

7.7), and this design was generated in generation 4 of the optimisation. The static 

torque-rotor position waveforms for this particular design are shown in figs. 7.8, 7.9 and 

7.10, where fig 7.8 illustrates the full scope of the torque- rotor position waveform and 

the figs 7.9 & 7.10 show the zoom in of the overlap regions between positive and 

negative armature mmfs. The fitness value of the design of 1.83 is calculated by
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summing the values of both intersections between the two armature mmfs. The penalty 

function in this case is zero as none of the given constraints are violated.

1st intersection of torque curve of design G4iS
4

3

2
1

0

1

2
+2400At

-2400At
3

4
Rotor position

Fig. 7.9 The zoom in view of the first overlap region between positive and negative
armature mmfs

2nd intersection of torque curve of design G4i5

0) IJ
oI-

+2400At

-2400At

Rotor position

Fig. 7.10 The zoom in view of the second overlap region between positive and negative
armature mmfs

Figure 7.11 illustrates an interesting lamination design in the population that has been 

evaluated as highly unfit by the fitness function. The design has a negative and positive 

intersection of the torque curves (fig. 7.12), the design is considered by the fitness 

function to be highly unfit because it has violated all the three constraints of the penalty 

function (refer to section 7.3.4). In general, the results from the design optimisation for 

improved starting torque had demonstrated a wide range of fitness for the different 

lamination designs generated. The outcome of the results is due to the fact that a more
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random and less deterministic genetic algorithm has been employed, the wider scope of 

designs with varying fitness values generated by the genetic algorithm would allow one 

to better understand or perhaps be mapped out as functions on how the design variations 

can affect the fitness of a lamination design.

Torque angle curve -  G3i15,
MMFa=+/-240QAt; MMFf=2400At;

Fig.7.11 The design lamination that is 
predicted with a “highly unfit” fitness 

value
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-2400A1
-5
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Rotor position angle

Fig. 7.12 The torque angle curve of the 
‘highly unfit” design for a given winding 

mmfs

7.5 Analysis of the motor parameters and fitness function
This section describes an analysis of the correlation between motor parameters and the 

fitness function achieved. From this data some conclusions about the most critical motor 

parameters can be drawn. The following illustrates how five motor parameters have 

been identified to have the most influence on the fitness of a design.

Rotor Pole Arc as a fraction of Rotor Pole Pitch (PA04)

Y[mnH Y[mro)

low limit =0.3 upplimit =0.45

Fig. 7.13 Illustration of the upper and lower limits of design parameter PA04
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Fig. 7.14 The mapping of the critical motor parameter, PA04 against fitness

Observation 1: It is identified that smaller rotor pole arc that is proportional stator pole 

arc would led to higher fitness.

Angle from Centre of Rotor Pole to tip of graded rotor on leading edge as a fraction 

of rotor pole pitch (PA05)
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Fig. 7.15 Illustration of the upper and lower limits of design parameter PA05
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Gratfng of Leading Edge at R1

Fig. 7.16 The mapping of the critical motor parameter, PA05 against fitness

Observation 2: Designs with wider graded pole on leading edge generally led to higher 

fitness.

Radius of leading edge of graded rotor as a fraction of rotor radius (R1), PA06

-3 0 .0

Y [mm] Y [mm]

low limit =0.85
 L
50.C
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Fig. 7.17 Illustration of the upper and lower limits of design parameter PA06
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Fig. 7.18 The mapping of the critical motor parameter, PA06 against fitness

Observation 3: Designs with radial position of tip of graded leading edge was optimal 

at 0.94 of rotor radius.

Slotl (Field) opening as a fraction of stator pole pitch
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Fig. 7.19 Illustration of the upper and lower limits of design parameter P5
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Fig. 7.20 The mapping of the critical motor parameter, P5 against fitness 

Observation 4: Slot 1 (field) opening produced better designs in the range 0.2 to 0.36.

Slot2 (Armature) opening as a fraction of stator pole pitch, P4
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Fig. 7.21 Illustration of the upper and lower limits of design parameter P4
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Fig. 7.22 The mapping of the critical motor parameter, P4 against fitness

Observation 5: Slot 2 (armature) opening produced better designs in the range 0.3 to 

0.4.

This simple exercise of mapping out individual motor parameter (within a given range) 

against the design fitness function has allowed the identification of the critical design 

parameters that has strong influence in the fitness of the design to become more 

intuitive.

7.6 Comparison of the simulated dynamic performance of the existing 
motor with the GA optimised motor
In this section, the predicted dynamic performance of the optimised FS motor for 

improved starting performance is given. The prediction of the optimised FS motor 

dynamic performance is made separately using the developed dynamic drive system 

model in conjunction with the FEA software. The dynamic drive system model is first 

used to predict the dynamic performance of the existing design and followed by fine- 

tuning the model. The predicted results of the existing motor are illustrated in figs. 7.23- 

7.25 and in table 7.2. In the experimental plot (fig. 7.23) the blue trace is the armature 

current (ch2) measured at lOA/lOmvdiv and the yellow trace is the opto signal where 

the starting edge represents the rotor to stator pole alignment position. The dynamic 

simulation model was fine-tuned to get result as close as possible to match the actual
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experimental results (flg.7.23 and table 7.2), with some of the unknown experimental 

settings being assumed, the experimental results were provided by Prof. C. Pollock.

Armature current 
(lOA/div)

Digital control 
signals

Fig. 7.23 Experimental waveforms for the 
existing motor running at 13krev/min with 

a external load of 2.35Nm

40

30

10

3 10 20
-10

-20

-30 — - Field current 
 Armature current

-40
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Fig.7.24 Simulated current waveforms for 
the existing motor with similar voltage 

and speed settings.

Measured Predicted

Voltage 240.49 240
Rotor
speed

13333 13333

Av. Torque 2.35 2.21
Input
power

4630.7 4155.7

Copper loss - 886.9
Iron loss - 187.5
Output
power

3281 3081.3

Efficiency 70.85 74.1

Instantaneous torque -  existing motor

Table 7.2 Comparison of measured and 
predicted results of the existing motor.
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Fig. 7.25 Simulated instantaneous torque of 
existing motor using current waveforms 

shown in fig. 7.14, with an average torque 
2.22Nm

The predicted dynamic performances of both the optimised and existing designs are 

compared (in table 7.3), with these results and the static torque data the two designs can 

be more realistically compared. The optimised design is predicted to have almost 

similar torque output compared to the existing motor but have the advantage of better 

starting capability. A new design based on the results of this simulation is now being
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constructed. The improved starting torque has been achieved without any noticeable 

deterioration in the running performance.

Simulated field and armature current
40
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20  -

10  ■
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-10  -

-20  -

 Field current
 Armature current

-30 ■

-40
Rotor angle

Fig.7.26 Simulated current waveforms for the optimised design operating at 240V and
13krev/min

Optimised Existing

Voltage 240 240
Rotor
speed

13333 13333

Av. Torque 2.17 2.21
Input
power

3987.2 4155.7

Copper
loss

752.9 886.9

Iron loss 202.6 187.5
Output
Power

3031.8 3081.3

Efficiency 76 74.1

Table 7.3 Comparison of predicted 
results of the optimized design and the 

existing design.

Instantaneousjorque - G4i5
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Fig. 7.27 Simulated instantaneous torque of 
optimised design using current waveforms 
shown in fig. 7.16, with an average torque 

2.22Nm
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8 Conclusions and further work

8.1 Conclusions
The flux switching motor is a new class of reluctance machine in which experiments of 

the early prototype have offered performance advantages over brushed motors in many 

applications. However, the design and optimisation of the FS motor is a complicated 

process, achieving the design objectives often requires many mechanical and electrical 

parameters to be tuned simultaneously due to the strong interdependencies between 

most design variables. Furthermore, the limited design knowledge for this newly 

developed technology made the task of optimisation even more difficult. From past 

experiences [2-7], it is understood that the design optimisation of several electrical 

machine types with multi-dimensional problem have be solved effectively with genetic 

algorithms. Thus, to facilitate the design optimisation of the FS motor a genetic 

algorithm based optimisation tool is developed.

The construction, operation and design of the FS motor are described in chapter 2, and 

design parameters that would possibly affect the overall performance of the motor are 

highlighted. The data of the highlighted design parameters of the FS motor are 

consolidated and developed into a parameterised finite element model, where 

geometrical dimensions of the FS motor are being defined and controlled with algebraic 

equations. The introduction of such methodology provides the opportunity for the 

optimisation software to vary the design parameters of the FS motor to create new and 

improved lamination design.

Chapter 3 describes the development of a dynamic simulation model of a FS motor 

dynamic drive system that is coupled with a FEA program. The system model uses 

minimal static FEA calculated results of winding flux linkages and further extrapolate 

the rest of the required winding flux linkages at other field mmf levels using simple 

algebraic equations. The developed method consists a linear model and a non-linear 

model in which the two models defined the flux-mmf characteristic of a given FS motor 

geometry. The complete winding flux linkages variation results are used in the system 

model to predict the motor armature back-emf, the variation in the armature back-emf 

relative to rotor position is then used to calculate the dynamic performance of the FS 

motor with simple time-stepping electric equivalent circuit equations and 

electromechanical torque equations. Also within the system model is a switch control
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module that is linked with the time-stepping circuit equations and a new winding 

optimisation module. The winding optimisation module first chooses the best possible 

winding configuration for a given slot area by adjusting the winding turns and wire size 

to meet user specified requirements on the motor’s intended speed and load. While the 

switch control module is employed after to find the most efficient firing angle to deliver 

the required motor performance. The developed system model in conjunction with a 

separately developed iron loss model provides rapid estimation of FS motor 

performance, thus facilitating the simulation and comparison of a wide range of the 

motor lamination shapes. The developed model can be used either as a standalone 

dynamic simulation model or be integrated into the optimisation software as a design 

tool.

Chapter 4 examines methods of quantifying both the electrical and mechanical losses 

that occur when operating a FS motor, with the focus mainly on the prediction of the 

iron loss. The natural phenomenon of the iron loss and other related issues were studied 

and different methods of quantifying the iron loss were analysed. A simple comparison 

between the two different iron loss calculation methods is made. Both methods 

(Steinmetz equation and loss separation method) use a direct approach to quantify iron 

loss based on experimental results (loss data curves) as a function of magnetization 

frequency and peak induction level, however it was the latter method that was found to 

be more reliable as it is found to be more accurate on a wider frequency range. The 

developed iron loss model (based on loss separation method) has been used to estimate 

iron losses in a prototype 8/4 FS motor under different operating conditions while 

accuracy of the estimations and experimental results have been compared. Accuracy of 

the model varied from the different test ranges, the possibilities of discrepancies in the 

loss estimations are discussed. The developed method for predicting iron loss is thought 

to be the best available solution at the time, as it enables a fast and direct approach of 

estimating the iron losses, which is necessary in a design optimisation cycle.

The design and development of the optimisation software was described in chapter 5. 

The design of the software uses an object-oriented analysis method, from identifying 

every required functions (objects) and defining their associations with other (objects) 

functions. The identified objects were assembled into smaller and more manageable 

projects (modular programs) based on their relationships with each other through 

modularisation. All objects functionalities in each program module were further defined
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into detailed statements in terms of what are the tasks and responsibilities of the each 

object, and a program structure further mapped out as a flow chart for each module. 

Using the defined program structure, each program module was developed as a separate 

project, and upon completion of all projects the separately developed program modules 

were then integrated into the optimisation software.

Chapter 6 described the design optimisation of an 8/4 flux switching motor to improve 

motor efficiency with specified design constraints using the developed optimisation 

software. The procedures of defining the optimisation problem (the problem space, the 

objectives) were detailed and suggestions for the selection of the appropriate genetic 

operators to achieve a successful evolution were given. The optimisation software was 

firstly setup with user input of required design aims and specifications, then the program 

was executed to design and optimised the flux switching motor without any further 

requirements of human interaction, the entire design optimisation process was directed 

by a genetic algorithm. After several iteration of the design cycle, a new improved 

lamination design and optimal winding configuration for a FS motor emerged. The new 

design of flux switching motor created by the optimisation software demonstrated a 

better dynamic performance compared to an initial (seed) design. The new lamination 

design with its winding configuration had been constructed and comparisons between 

the software predicted and actual measured motor performance were made. The 

comparison results confirmed the limitations of the dynamic drive simulation model to 

accurately predict the actual operating performance, as the modulation of the field 

current due to strong mutual coupling of the armature excitation is not included in the 

model. Nonetheless, the results have demonstrated the potential of the software to 

design the FS motor and its winding configuration, while quite accurately predicting its 

performance. A further significant aspect of the software is that of the minimal need for 

interactive design input.

Chapter 7 described design optimisation of a flux switching motor of another 

application for improving the starting capability. A different fitness function program 

module has been developed and integrated with both the genetic algorithm optimisation 

tool and the FEA software. The interface of the new fitness function with the main 

optimisation software has been simplified as a result of the “plug and play” nature of the 

modular program structure. The new fitness function used static FEA calculated torque 

-  angle curves of both the positive and negative armature mmfs for a given field mmf to
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derive the fitness of each lamination design, the overlap regions between positive and 

negative mmfs torque curves indicated the fitness of the design where design with two 

high torque intersections between the curves was rewarded with a high fitness. In this 

optimisation problem a genetic algorithm with a more random nature has been used to 

improve an existing design. The solutions generated during the design cycle as a result 

have also demonstrated a wide (random) range of fitness for the different lamination 

designs created. The lamination design with the best fitness value has shown improved 

starting capability compared to existing design. A separate comparison of dynamic 

simulation of the existing design and the optimised design has been made, and the 

results of the comparison showed that the existing motor is producing slightly more 

torque than the optimised design but the optimised design has a slightly better 

efficiency. The newly developed fitness function enables the user to improve the 

starting capability of a flux switching motor. However, further investigation on the 

dynamic performance of the optimised design should be conducted to ensure that the 

dynamic performance of the optimised design does not deteriorate as a result of 

improving the starting capability of the motor.

The fully integrated genetic algorithm optimisation software has facilitated its user to 

design and optimise flux switching motor and the windings configuration with minimal 

input to the design process. In addition, the software could rapidly search through many 

potential solutions to find the best possible solution for a given set of constraints and 

specifications within a reasonable timescale. This rapid design process is made possible 

by a simplified dynamic simulation model, which can rapidly calculate the dynamic 

performance of a FS motor with reasonable accuracy. Within the dynamic simulation 

model consisted several losses determination methods which are extendable to 

application of other types of electrical machine. The developed method for design and 

optimisation of flux switching motor and drive is suitable for implementation by 

research groups or bodies interested in developing such technologies but have limited 

resources in term of sophisticated analytical software, high performance computers and 

laboratory equipments.

Furthermore, the developed optimisation software for flux switching motor and drive 

has significantly reduced the requirements of user interaction with the different design 

tools. At the various stages of the design cycle commonly associated with manual 

design process using computer aided design tools, the user input is limited to merely pre
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processing setup of design aims and specifications. This would allow the engineer to 

have more time on conceptual machine design, while the genetic algorithm would 

search through the possible permutation of the lamination designs. The results gathered 

from the search could be further processed with statistical software or method to 

identify the related design parameters that governed the motor performance. The 

process of mapping out the search results would allow the engineer to study and better 

understand how design could be improved by varying the design parameters. The 

developed software provides the user with a different and possibly more efficient 

method to the design optimisation of a flux switching motor and drive. The developed 

software has been used to design FS motors without any human intervention once the 

program has been initialised. However the results show that at this stage it is best to 

apply the optimisation software only as an initial design tool to gain a thorough 

understanding of the design problem. While a more sophisticated FS motor model that 

supports full dynamic simulation should be used as a followed up to verify those 

designs that have been assigned with high fitness values.

The development and integration of the general-purpose genetic algorithm optimisation 

tool with the 2-D FEA software is one of the highlights of the developed software. The 

application of the developed GA optimisation software is not only limited to design 

optimisation of the FS motor and drive. It may be applied to the design and optimisation 

of other types of electromagnetic device, which may be modelled using 2-dimensional 

finite element analysis. The extended application of the optimisation software is made 

possible, as reusability and versatility of the modularised program had allowed other 

parameterised finite element model of any electromagnetic devices and the related 

performance evaluation (fitness function) program to be easily integrated with the 

developed software. The generic characteristic of the GA optimisation program would 

prove to be very useful when employed in design optimisation of electromagnetic 

devices.

8.2 Areas for further work
The drive system model developed for rapid estimation of the FS motor dynamic 

performance does not account for the windings mutual coupling effect and the armature 

reaction effect. The model offers a rapid solution for determining the fitness of a 

lamination design to facilitate the purpose of GA design optimisation process, it does 

not model the field current as accurately as required. When it comes to verifying the
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actual dynamic performance of the designs that have been assigned with high fitness 

values, a more reliable FS motor model that supports full dynamic simulation should be 

used. A more sophisticated and accurate dynamic simulation model for the FS motor 

could be developed in either a Pspice circuit analysis or a Matlab simulink program, and 

the accuracy of the dynamic model would be largely dependent on the quality of the 

generated flux map [35], a complete flux map with every possible combinations of field 

and armature winding mmfs representing the electromagnetic characteristic of a given 

FS motor geometry usually takes several days to be completely generated, as a result is 

not suitable for the proposed design optimisation process and is recommended to be 

used only when an accurate dynamic simulation of the FS motor and drive performance 

is required.

The results obtained for design optimisation of the two flux switching motors presented 

in this thesis substantiate the usefulness of the genetic algorithms based optimisation 

method in FS motor design (and motor design in general). The algorithm is capable of 

finding improved lamination design with a considerable level of confidence as long as 

the numerical measures of motor and the fitness function is correctly formulated. 

However, the developed method has never been able to be tested for its true potential of 

finding the near global optimal solution (due to limitation of computer resources and 

restricted timescales), as it has been widely documented that the best performance of the 

genetic algorithms method is obtained by a large size population (>100) and a 

reasonable of selection pressure and small rate of mutation [2-3,8-10]. Hence, it would 

be useful in the future to run large population size genetic algorithm to verify the result. 

In the near future minor improvements to the GAs optimisation tool may include the use 

of real value representation of individuals, other selection methods like tournament 

selection etc. In the longer term and for significant improvement to the software one 

would consider hybridisation of the GAs with other more deterministic gradient method 

such as the sequential quadratic programming for quick and accurate convergence [36].
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Appendices
Appendix A- Lamination design of G15il (in chapter 6)
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Appendix B - Implemented C code of Gaengine module

//Computer Optimization of electrical machine, program written by Kao Siang,Chai.. 
//GAengine module, last modification on 02/04/2002.

#include<iostream.h>
#include<fstream.h>
#include<string.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>

char strs[200][l 10]; 
char file_ptr[ 12]; 
char* ge[]= {}; 
int shuffle []= {};

int pos = 0; 
char tempi [110]; 
char temp2[ 110];
int Compare 1 (const void*, const void*); 
int Compare2(const void*, const void*); 
void single_splice(int, int, int, int); 
void dble_splice(int, int, int, int);

int main()
{
int

popnsize, replace, cross_order,cross_method,mut_method,ter_method,ter_gen,n_conv,d 
fitness;

float mutrate; 
char input[10];

ifstream fin("GAengine.ini"); /*Consolidating data for GA operation*/ 
if(!fin)
{
cout«"\tProgram of Genetic Algorithms"«endl;
cout«"\t------------------------------ "«end l;
cout«"\nPlease enter the population size of a generation "; 
cin»popn_size;
if((popn_size%2))popn_size=popn_size-l;/*To ensure that population is an even 

integer.*/

cout«"\nPlease enter the percentage of individuals to be replaced"
« " \n o f  each generation (must be an integer from 0 to 20,exc. the %)"; 

cin»replace;
replace=(popn_size*replace/100);/*Convert the percentage to actual no.of 

replacement.*/
if ((replace%2))replace=replace+l;/*To ensure that replacement is an even integer.*/

138



cout«"\nChoose the order of crossover operation: 1 )Rank order, 2)Random order , 
3)SUS"; 

cin»cross_order;
cout«"\nChoose the method of crossover operation: l)single point,"

«"\n2)tw o points 
cin»cross_method;
cout«"\nEnter the rate of mutation(eg. 1 bit of every thousand bits = 0.001) 
cin»mut_rate;
cout«"\nChoose a method of mutation: l)Flip-bit, 2)Random(flip or remain) 
cin»mut_method;
cout«"\nChoose a method to rank fitness: l)Maximising , 2)Minimising 
cin»d_fitness;
cout«"\nChoose a method of termination: l)maximum generation, 2)convergence
cin»ter_method;
if(ter_method == 1)
{
cout«"\nAfter how many generation would you like to terminate the process? 
cin»ter_gen;
}

if(ter_method =  2)
{
cout«"\nW hat is the tolerance for convergence(eg. Stop!! if fitness doesn't 

improve"
« "\n fo r 5 consecutive generations : enter 5)7 

cin»n_conv;
cout«"\nW hat is the max. generation to terminate the process,"

« " \n if  it doesn't converge? 
cin»ter_gen;
}

//Creating GAengine.ini file, 
ofstream fout("GAengine.ini"); 
fout«popn_size«endl; 
fout«replace«endl; 
fout«cross_order«endl; 
fout«cross_method«endl; 
fout«m ut_rate«endl; 
fout«m ut_method«endl; 
fout«d_fitness«endl; 
fout«ter_m ethod«endl; 
if(ter_method == 1)
{
fout«ter_gen«endl;
}
if(ter_method == 2)
{
fout«n_conv«endl; 
fout«ter_gen«endl;
}
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fout.close();
}

else
{
//Initialisation...
fin.getline(input,sizeof(input));
popn_size=atoi(input);
fin.getline(input,sizeof(input));
replace=atoi(input);
fin.getline(input,sizeof(input));
cross_order=atoi(input);
fin. getline(input, sizeof(input));
cross_method=atoi(input);
fin.getline(input,sizeof(input));
mut_rate=atof(input);
fin.getline(input,sizeof(input));
mut_method=atoi(input);
fin.getline(input,sizeof(input));
d_fitness=atoi(input);
fin.getline(input,sizeof(input));
ter_method=atoi(input);
if(ter_method ==1)
{
fin.getline(input,sizeof(input)); 
ter_gen=atoi(input);
}
if(ter_method =  2)
{
fin. getline(input, sizeof(input)); 
n_conv=atoi(input); 
fin. getline(input, sizeof(input)); 
ter_gen=atoi(input);
}

fin.close();

//Check if the last generation is reached. 
strcpy(filejptr,"GEN_"); 
strcat(file_ptr,ge[ter_gen-1 ]); 
strcat(file_ptr," .chr");

ifstream end(filejptr,ios: .nocreate); 
if(end)
{
cout«"The last generation has been reached, 
ofstream gameoverl ("Finished"); 
gameover 1 « "  1 "«endl; 
gameoverl ,close(); 
return 1;
}

end.closeQ;



//detect for the latest generation of .fit file, 
int aa=0; 
check:

strcpy(file_ptr,"GEN_"); 
strcat(file_ptr,ge[aa]); 
strcat(fi le_ptr,". fit"); 

ifstream detect(file_ptr,ios: :nocreate); 
if(! detect)
{
aa—;
goto check 1;
}

else
{
aa++;
goto check;
}

check 1:
detect.close();

//Open the most current .fit file.. 
strcpy(filejptr,"GEN_"); 
strcat(file_ptr,ge [aa]); 
strcat(file_ptr,".fit");

ifstream in(file_ptr); 
if(!in)
{
cout«"Can't open "<<file_ptr«"."«endl;
}

for(int bb=0; bb<popn_size; bb++)
{
in. getline(strs[bb], sizeof(strs));
}

in.close();
//To test the length of each individual chromosome, 
do
{
pos++;
}while(strs[0][pos] !=','); 
if(d_fitness==l)
{
qsort(strs, popn_size, 110, Compare 1); /* Sorting function*/
}

if(d_fitness=2)
{
qsort(strs, popn_size, 110, Compare2); /*Sorting function*/
}

/* Convergence function */
if(ter_method == 2)/*If user choose to have convergence termination.*/
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{
char con_line[10]={0}; 
float current=0; 
float fittest=0; 
int e_time=0;

stmcpy(con_line,strs[0]+pos+l ,9); 
current=atof(con_line);
ifstream contrast("converge.txt");/*Read previous fittest value, if exist*/ 
if(! contrast)
{
goto destination;
}

else
{
contrast. getline(con_line,sizeof(con_line)); 
e_time=atoi(con_line); 
contrast.getline(con_line,sizeof(con_line)); 
fittest=atof(con_line);
}

destination:
ofstream converge("converge.txt");/*Store present fittest value for convergence 

test.*/
if(current > fittest)
{
converge«"0"«endl; 
converge«current«endl;
}

if(current <= fittest)
{
converge«e_time+1 « en d l; 
converge«fittest«endl;
}

converge.close(); 
contrast.close(); 
if(current > fittest)
{
e_time=0;
}

if(current <= fittest)
{
e_time=e_time+l;
}

if(e_time >= n conv) /* Will converge if fitness doesn't increase after # generation
*/

{
cout«"Convergence in the fitness value... stagnant!!!"; 
ofstream gameover("Finished"); 
gameover«" 1 "«endl; 
gameover.closeQ;
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return 1;
}/* Convergence function ends*/

}
//Remove fitness value & from chromosome, 

for (int cc = 0; cc < popn size; cc++)
{
strcpy(templ ,strs[cc]); 
for(int dd=0; dd<l 10; dd++)

{
strs[cc][dd]=0;
}

stmcpy(strs[cc],tempi ,pos);
}

srand((unsigned)time(NULL)); /*Seed for the random numbers generator.*/

if(cross_order=l)/*Cross-over in rank order,fittest pair..next fittest pair...*/
{
int c_pt,stop; 
int ee=0;
for(int a=0; a<l 10; a++)

{
tempi [a]=0; 
temp2[a]=0;
}

c_pt=l+(int)((pos-1.0)*rand()/(RAND_MAX+1.0));/*Generate a random crossover 
point.*/

stop=popn_size-replace;/*No. of individuals to be crossover*/

if(cross_method= 1)
{
single_splice(c_pt, stop, pos, ee);/*single splice.*/
}

if(cross_method==2)
{
int sc_pt; 
norpt:

sc_pt=l+(int)((pos-1.0)*rand()/(RAND_MAX+1.0));/*Generate a 2nd 
random crossover point.*/

if((sc_pt=c_pt)|i(sc_pt<c_pt))
{
goto norpt;
}

dble_splice(c_pt, scjpt, stop, ee);/*double splice*/
}

}/*Ranked cross-over ends.*/

if(cross_order==2)/*Cross-over in random order. */
{
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int c_ptl ,stopl ,swapl ,swap2,t_swl ,t_sw2; 
int ff=0;
for(int d=0; d<l 10; d++)

{
tempi [d]=0; 
temp2[d]=0;
}

c_ptl=l+(int)((pos-1.0)*rand()/(RAND_MAX+1.0));/* Generate a random 
crossover point.*/

stopl=popn_size-replace;/*No. of individuals to be crossover*/

for(int sw=0; sw<800; sw-H-)/*shuffle 400 times*/
{
redo:

swapl=(int)((popn_size-(replace+l .0))*rand()/(RAND_MAX+l .0)); 
swap2=(int)((popn_size-(replace+l .0))*rand()/(RAND_MAX+l .0)); 

if(swapl==swap2)goto redo; 
t_swl=shuffle[swapl];/*Ready for the swap sequence.*/ 
t_sw2=shuffle[swap2]; 
shuffle[swap 1 ]=t_sw2;
shuffle[swap2]=t_swl;/*Swapping had taken place.*/

}/*Shuffling ended*/

if(cross_method =  1)
{
single_splice(c_ptl, stopl, pos, ff);/*single splice*/
}

if(cross_method == 2)
{
int sc_ptl; 
norpt 1:

sc_ptl=l+(int)((pos-1.0)*rand()/(RAND_MAX+1.0));/*Generate a 2nd 
random crossover point.*/

if((sc_pt 1 = c _ p t 1) 11 (sc_pt 1 <c_pt 1))
{
goto norpt 1;
}

dble_splice(c_ptl, sc_ptl, stopl, ff);/*double splice*/
}

}/*Random cross-over ends*/
/*Mutation*/
int total_bits,bit_change;
total_bits=popn_size*pos;
bit_change=mut_rate*(float)total_bits;
for(int gg=0; gg<bit_change; gg++)

{
int mut_bit,row,col;
mut_bit =(int)((total_bits-1.0)*rand()/(RAND_MAX+1.0));/*Generate a no. 

within range.*/
row=mut_bit/pos;
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col=mut_bit%pos;
if(mut_method==l)/*flip bit begins*/
{
if(strs[row] [col]==' 1')
{
strs[row][col]-0';
}

if(strs[row] [col]=='0')
{
strs[row][col]- 1';
}

}/*flip bit ends*/
if(mut_method==2)/*Random method, flip or unchanged*/ 
{
int decide;
decide=(int)(l .0*rand()/(RAND_MAX+l .0)); 
if(decide==l)

{
strs[row][col]='1';
}

if(decide==0)
{
strs[row][col]-0';
}

}/*Random method ends.*/

}/*Mutation ends*/
//Replacement of weak individuals with new individuals, 
int getrid;
get_rid=popn_size-replace;
for(int hh=get_rid; hh<popn_size; hh++)

{
for(int f=0; f<l 10; f++)//Clear memory in tem pi.

{
strs[hh][f]=0;
}

for(int ii=0; ii<pos; ii++)
{
char rp;
if((rand()%2)) rp=T; 
else rp-O'; 
strs[hh][ii]=rp;
}

}

//Create .chr file.. 
strcpy(filejptr,"GEN_"); 
strcat(file_ptr,ge[aa+l ]); 
strcat(file_ptr,". chr");
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ofstream print(flle_ptr); 
for(int kk=0; kk<popn_size; kk++)

{
prin t«strs [kk] « e n d l;
}

print.close();
cou t« file_p tr«" is created.";

}ofstream gameover2("Finished"); /*Create indicator file for controller. 
gameover2«" 0" « en d l; 
gameover2. close();

return 0;
}

//function to rank the chromosome...greater is better, 
int Compare 1 (const void* a_PTR, const void* b_PTR)
{
int nums;
float num 1 ,num2;
char temp3 [ 10],temp4[ 10];
intposl=pos+l;
strcpy(temp 1 ,((char*)(a_PTR))); 
stmcpy(temp3 ,temp 1 +pos 1,9); 
strcpy(templ ,((char*)(b_PTR))); 
stmcpy(temp4,temp 1 +pos 1,9);

num 1 =atof(temp3); 
num2=atof(temp4);

if(num2 < numl) nums=-l; 
if(num2 == numl) nums=0; 
if(num2 > numl) nums=l;

return nums;
}

//function to rank the chromosome...lesser is better, 
int Compare2 (const void* a_PTR, const void* b_PTR)
{
int nums; 
float numl,num2; 
char temp3[10],temp4[10]; 
int posl=pos+l;
strcpy(temp 1 ,((char*)(a_PTR))); 
stmcpy(temp3 ,temp 1+pos 1,9); 
strcpy(temp 1 ,((char*)(b_PTR))); 
stmcpy(temp4,temp 1 +pos 1,9);



num 1 =atof(temp3); 
num2=atof(temp4);

if(num2 > numl) nums=-l; 
if(num2 == numl) nums=0; 
if(num2 < numl) nums=l;

return nums;
}

void single_splice(int cut_pt, int stp, int pos, int count)
{
do
{
stmcpy(templ, strs[count]+cut_pt, pos - cut_pt);/*store exchange part of Parentl*/ 
stmcpy(temp2, strs[count+l]+cut_pt, pos - cut_pt);/* store exchange part of Parent2*/ 
for(int b=cut_pt; b<l 10; b++)
{
strs[count][b]=0;/*Clear bits of Parentl to be exchanged.*/ 
strs[count+l][b]=0;/*Clear bits of Parent2 to be exchanged .*/
}

strcat(strs[count],temp2);/*Childl formed*/ 
strcat(strs[count+l ],templ);/*Child2 formed*/ 
count++; 
count++;

}while(count != stp);

}
void dble_splice(int cut_pt, int cut_ptl, int stp, int count)
{
do
{
int temp_count=0;
stmcpy(templ, strs[count]+cut_pt, cut_ptl - cut_pt);/*store exchange part of 

Parentl*/
stmcpy(temp2, strs[count+l]+cut_pt, cut_ptl - cut_pt);/*store exchange part of 

Parent2*/
for(int b=cut_pt; b<cut_ptl; b++)
{
strs[count] [b]=temp2[temp_count]; 
strs[count+1 ] [b]=temp 1 [tempcount]; 
temp_count++;
}

count++;
count++;

}while(count != stp);

}
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Appendix C - Implemented C code of decode module

//Computer Optimization of electrical machine, program written by Kao Siang,Chai. 
//Decode module, last modification on 02/04/2002.

#include<iostream>
#include<fstream>
#include<string>
#include<stdlib>
#include<math>
#include<ctype>
#include<time>

char input[31];
char inputl[31];
char init_chromosome[102];
char flle_ptr[31 ];
char ch_file_ptr[31 ];
char* gno[]= { };

int convert_b_d(char* ,int); 
float sum(float, float, int, int);

int main()
{
int chroline =0;
int pos=0;
int c_len=0;
int var,val,no,g_size,sh;
int extra[50];
int bits[50];
float upp_limit[50];
float low_limit[50];
char runp[50][31];
char runpl[150][31];
char pa[50][5];
char pal [150][5];
char description[50][81];
float total[50];
char temp_bits[ 101 ]= {"0"};
char single[100]={0};

//initializing of program..checked if .ini file exist, if not... 
ifstream in(" decode, ini");

if(!in)
{

cout«"Program for decoding the chromosome\n"; 
do{
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cout«"Please enter the amount of variables you want:"; 
cin.getline(input, sizeof(input)); 
var = atoi(input);
} while((var< 1) | |(var>3 0)); 

int vd=0; 
int vdl=0;

//Requesting for the design parameters. 
for(int i=0; i<var; i++)

{
do{

cout«"\nHow many bits are there in variable " « i+ l« "  : 
cin.getline(input, sizeof(input)); 
bits[i] = atoi(input);
} while((bits [i] < 1) 11 (bits [i]>20));

cout«"\nW hat is the upper limit of the variable 
cin. getline(input, sizeof(input)); 
upp_limit[i] = atof(input);

cout«"\nW hat is the lower limit of the variable 
cin.getline(input, sizeof(input)); 
low_limit[i] = atof(input);

cout«"\nPlease name your variable (max 30 letters) 
cin. getline(runp [i], sizeof(runp)); 
cout«"\nNow enter a number for the PA 
cin.getline(pa[i], sizeof(pa));
cout«"\nGive a brief description for your variable\n"; 
cin.getline(description[i], sizeof(description));
cout«"\nDo you want any extra part(s) to be included in variable " « i+ l  

«"\n(m ax. 3 extra parts or enter 0 if you don't need any.)"«endl; 
cin.getline(input, sizeof(input)); 
extra[i] = atoi(input); 
vdl +=extra[i]; 
sh=0;
for(int ex=vd; ex<vdl; ex++)

{
cout«"\nPlease name your extra part n o ." « s h + l« "  for variable"«i+l 

«"\n(m ax 30 letters) 
cin.getline(runpl [ex], sizeof(runpl)); 
cout«"\nNow enter a number for the PA 
cin.getline(pal [ex], sizeof(pal)); 
vd++; 
sh++;
}

//Create .ini file, if it does not exist.
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ofstream fout("decode.ini"); 
int zt=0; 
int ztl=0; 
if(!fout)
{
cout«"Can't created .ini file.\n"; 
return 1;
}

fo u t«  var«endl;

for(int z=0; z<var; z++)
{
fout«"bits - '«b its[z]«end l; 
fout«"upp_limit ="«upp_lim it[z]«endl; 
fout«"low_limit ="«low_lim it[z]«endl; 
fout«"runp ="«runp[z]«endl; 
fout«"pa = "«pa[z]«endl; 
fo u t« "  description ="«description[z]«endl; 
fout«"extra ="«extra[z]«endl; 
ztl +=extra[z]; 
for(int et=zt; et<ztl; et++)

{
fout«"additional = "«runp l [et]«endl; 
fout«"m ore = "« pal[e t]«end l; 
zt++;
}

}
fout.close();

}
//if .ini file already exist., open it and proceed setup with original setting, 

else 
{
in. getline(input, sizeof(input)); 
var = atoi(input); 
int y=0; 
int yy=0; 
do 
{
in.getline(input, sizeof(input)); 
if(strstr(input,"bits"))
{
strcpy(inputl, input+6); 
bits[y]=atoi(inputl);

}
if(strstr(input,"upp_limit"))
{
strcpy(inputl, input+11); 
upp_limit[y]=at°f(inputl);

}



if(strstr(input," lo w_limit''))
{
strcpy(input 1, input+11); 
low_limit[y]=atof(inputl);

}
if(strstr(input, "runp"))
{
strcpy(inputl, input+6); 
strcpy (runp [y], input 1);

}
if(strstr(input,"pa"))
{
strcpy(inputl, input+4); 
strcpy(pa[y], inputl);

}
if(strstr(input,"description"))
{
strcpy (inputl, input+13); 
strcpy(description[y], inputl);

}
if(strstr(input,"extra"))
{
strcpy(inputl, input+7); 
extra[y]=atoi(input 1); 
y++;

}
if(strstr(input, "additional"))
{
strcpy(input 1, input+12); 
strcpy (runp l[yy], inputl);

}
if(strstr(input, "more"))
{
strcpy(inputl, input+6); 
strcpy(pal[yy], inputl);
yy++;

}
}while(!in.eof());

}
in.close();/*Initialisation completed. */

/*Create GEN001 .chr if it doesn't exist.*/ 
ofstream start("GEN_001.chr", ios::noreplace); 
if(! start)
{
goto quick;/*Jump to 'quick' if GENOOl.chr already exist.*/ 
}

else/*Start creation of GENOOl.chr file.*/
{
ifstream take("GAengine.ini");



take.getline(input,sizeof(input));//Read in info, on size of a generation.
g_size=atoi(input);
take.close();
for(int nn=0; nn<var; nn++)
{
c_len+=bits[nn];//determine the length of an individual.
}
srand((unsigned)time(NULL));//Seed for random generator. 
for(int bb=0; bb<g_size; bb++)
{
for(int cc=0; cc<c_len; cc++)

{
char p;
if((rand()%2)) p=T; 
else p-O'; 
single[cc]=p;
}

start«single«endl; 
for(int ee=0; ee<100; ee++)

{
single[ee]=0;

}
}

}
start. close();

//Detecting the latest chromosome file available...

quick: 
no = 0; 
create:

strcpy(ch_file_ptr,"GEN"); 
strcat(ch_file_ptr,"_"); 
strcat(ch_file_ptr,gno [no]); 
strcat(ch_file_ptr," .chr");

ifstream test(ch_file_ptr, ios::nocreate); 
if(!test)
{
no—;
goto create 1;
}
else
{
no++; 
goto create;
}

//Latest chromosome file found... 
create 1:

strcpy(ch_file_ptr, "GEN");



strcat(ch_file_ptr,"_"); 
strcat(ch_file_ptr,gno[no]); 
strcat(ch_file_ptr," .chr"); 

test.close();

//Test for the no. of individuals in the current generation, 
ifstream testl(ch_file_ptr);

if(!testl)
{
cout«"Can't open output file.\n"; 
return 1;
}
do
{
testl.getline(init_chromosome,sizeof(init_chromosome));
chro_line++;
}while(!testl.eof());
testl.close();

//latest generation of chromosome file opened, 
ifstream fin(ch_file_ptr);

if(!fin)
{
cout«"Can't open output file.\n"; 
return 1;
}

//Process 'raw' data of chromosome file. 
for(int ra=0; ra<chro_line-l; ra++)
{
fin.getline(init_chromosome,sizeof(init_chromosome)); 
pos = 0;

for(int f=0; f<var; f++)
{
stmcpy(temp_bits, init_chromosome+pos, bits[f]); 
pos +=bits[f];
for(int w=bits[f]; w<101; w++)
{
temp_bits[w] = 0;
}

//Conversion of 'raw' data into 'meaningful' data to simulator, 
val = convert_b_d(temp_bits, bits[f]); 
total[f] = sum(upp_limit[f], low_limit[f], bits[f], val);
}

//Creating .comi file. 
strcpy(file_ptr,"G"); 
strcat(file_ptr,gno[no]);



strcat(file_ptr," I"); 
strcat(file_ptr,gno[ra]); 
strcat(file_ptr," .ind");

ofstream fout(file_ptr); 
int st=0; 
int stl=0;
for(intj=0;j<var;j++)
{
fout«"/" «description[j ] « e n d l ;
fout«"RUNP "« runp[j]«end l;
fout«"RUNP P A "«pa[j]« "= "« to ta l[j]« en d l;
fo u t« " |"« en d l;
fout«"\n";
stl +=extra[j];
for(int er=st; er<stl; er++)
{
fout«"RUNP "« runp l[e r]«end l;
fout«"RUNP P A "«pal [e r]«"= "« to ta l[j]«end l;
fou t« " |"« en d l;
fout«"\n";
st++;
}

}
fout.close();

}
fin.close();
cou t«chro_ line-l«" files created for generation "« n o + l« e n d l; 

return 0;

}

//function for conversion of 'raw* data to 'meaningful' data, 
float sum(float a, float b, int c, int d)
{
return (((a-b)/(float)(pow(2,c)-l))*(float)d)+b;
}
int convert_b_d(char* temp bits, int bits)
{ int temp_dec=0; 

intnbits = bits-1; 
for(int i=0; i<bits; i++)
{

temp_dec += ((temp_bits[i]-48)*(pow(2, nbits))); 
nbits—;

}
return temp dec;

}



Appendix D - Implemented code (in Visual Basic) -  instantaneous 
current module

'Computer Optimization of electrical machine, program written by Kao Siang,Chai.. 
'Current module, last modification on 26/07/2002.

Option Explicit
Dim xl As New Excel. Application 
Dim wb As Excel.Workbook 
Dim ws As Excel.Worksheet 
Dim fld_curr(l To 20) As Single 
Dim arm_curr(l To 20) As Single 
Dim rot_angle(l To 20) As Single 
Dim fld tum s As Integer 
Dim arm tums As Integer 
Dim fld_dia As String 
Dim arm dia As String
Dim gArray(l To 250) As String 'Array for storing .csr data
Dim Gen$ 'String indicating generation
Dim gen count As Integer 'Generation number
Dim Ind$ 'String indicating individual design
Dim ind count As Integer 'States the number of designs in current generation
Dim error As String 'error flag

Private Sub Form_Initialize()

Generation search 'Call generation_search function 
Nos lndividual 'Call nos individual function

O penfile 'Call Openfile function
Set wb = xl.Workbooks.Open(App.Path & "\fitness.xls")
Set ws = wb.Sheets("IM-testl")
xl.Visible = True 'Make fitness.xls visible to user

Dim cCol 'Column Counter 1 = A, 2 = B.. so on
Dim cRow 'Row Counter
Dim cCount 'For retrieving Array content
cCol = 2 'Start at Column B
cCount = 3
'Write data to cells
Do
For cRow = 1 To 11
ws.Cells(cRow, cCol).Value = gArray(cCount)
cCount = cCount + 1
Next
cCol = cCol + 1
Loop While cCol <13 'End at column L
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error = "0"
If ws.Range("B4").Value = 0 Then 
Dim fname As String 
Dim fname 1 As String 
Dim fhame2 As String 
error = " 1"

fname = App.Path 'Current directory
If Right$(fhame, 1) o  "\" Then fname = fname & "\"

fname 1 = fname & "error.csr"
fhame2 = fname & "LG" & Gen$ & "i" & Ind$ & ".csr"

FileCopy fname 1, fname2 
GoTo Nottrap:

End If

ws. Calculate

Dim trial As Integer 
Dim sgvalue As Integer 
Dim arm value As Integer 
trial = 0

If ws.Range("B88").Value / ws.Range("C88").Value > 2.5 Then 
In c f ld d ia  'Increase field wire size function 
Inc fld dia 
ws. Calculate
sgvalue = ws.Range("B88").Value 
ws.Range("B71") = sgvalue 
ws. Calculate 
End If

ws.Range("B71") = ws.Range("B88").Value 'Adjustment before commencing 
optimizing the wire configuration 
ws.Range("C71") = ws.Range("C88"). Value

Do
If ws.Range("I72").Value - ws.Range("I94").Value < -100 Then 
In c f ld d ia  'Increase field wire size function 
ws. Calculate
sgvalue = ws.Range("B88").Value 
ws.Range("B71") = sg_value 
ws.Calculate 
Delay 1
If ws.Range("I72").Value - ws.Range("I94").Value < -50 Then 
Inc arm dia 'Increase armature wire size function 
ws.Calculate
sgvalue = ws.Range("C88").Value 
ws.Range("C71") = sgvalue



ws.Calculate 
End If 
End If

If ws.Range("I72").Value - ws.Range("I94").Value > 80 Then 
dec arm dia 'decrease armature wire size function 
ws.Calculate
sgvalue = ws.Range("C88").Value 
ws.Range("C71") = sgvalue 
ws.Calculate 
Delay 1
If ws.Range("I72").Value - ws.Range('T94").Value > 50 Then 
dec fld dia 'decrease field wire size function 
ws.Calculate
sgvalue = ws.Range("B88").Value
ws.Range("B71") = sgvalue
ws.Calculate
End If
End If

If ws.Range("B88").Value / ws.Range("C88").Value <= 2.5 Then
If ws.Range("I72").Value - ws.Range("I94").Value < -65 And ws.Range("I72").Value -
ws.Range("I94").Value >= -100 Then
Inc arm dia 'Increase arm wire size function
ws.Calculate
sgvalue = ws.Range("C88").Value
ws.Range("C71") = sgvalue
ws.Calculate
End If
End If

If ws.Range("I72").Value - ws.Range("I94").Value < -30 And ws.Range("I72").Value -
ws.Range("I94").Value >= -65 Then
Inc fld dia 'Increase field wire size function
ws.Calculate
sgvalue = ws.Range("B88").Value 
ws.Range("B71") = sgvalue 
ws.Calculate 
End If

If ws.Range("I72").Value - ws.Range("I94").Value < 0 And ws.Range("I72").Value -
ws.Range("I94").Value >= -30 Then
arm_value = ws.Range("C88").Value - 2
ws.Range("C71") = arm_value
ws.Calculate
End If

If ws.Range("B88").Value / ws.Range("C88").Value >2.5 Then
Inc fld dia 'Increase field wire size function
ws.Calculate
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sg_value = ws.Range("B88"). Value 
ws.Range("B71") = sgvalue 
ws.Calculate 
End If

trial = trial + 1
Loop While trial < 4 'Try different combination for n times

If ws.Range("B 17").Value * ws.Range("I93").Value <= 200 Then 'Improving losses 
(only when ffeq of armature back iron flux density is less than 200hz)
Dim E f f l  As Single 
Dim Eff_2 As Single

sgvalue = ws.Range("C88").Value 
ws.Range("C71") = sgvalue 
Eff_2 = ws.Range("I82").Value

Do
In c f ld d ia
ws.Calculate
sgvalue = ws.Range("B88").Value 
ws.Range("B71"). Value = sg_value 
ws.Calculate 
E f f l  = Eff_2
Eff_2 = ws.Range('T82"). Value
Loop While ws.Range("I72").Value - ws.Range("I94").Value >= 0 And Eff_2 > Eff l

If Eff_2 < Eff l Or ws.Range("I72").Value - ws.Range("I94").Value < 0 Then
d e c f ld d ia
ws.Calculate
sgvalue = ws.Range("B88"). Value 
ws.Range("B71"). Value = sgvalue 
ws.Calculate 
End If

End If 'End of improving losses condition

Dim Col 
Dim a

fldtum s = ws.Range("B71") 
arm tum s = ws.Range("C71") 
fldd ia  = ws.Range("B79") 
arm_dia = ws.Range("C79")

Col = 2
For a = 1 To 20
fld curr(a) = ws.Cells(37, Col).Value 
arm curr(a) = ws.Cells(62, Col).Value 
rot_angle(a) = ws.Cells(54, Col).Value
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Col = Col + 5 
Next

writecurrent 'write .bmd file 
Nottrap:
Avoiderror

wb.Close SaveChanges:=False 
xl.Quit
Set xl = Nothing 

End
End Sub

Public Sub Open_file()
Dim fnum As Integer 'for assigning file number 
Dim one line As String 
Dim counter As Integer 'Counter for array 
Dim fname As String

fname = App.Path 'Current directory 
If Right$(fhame, 1) o  "\" Then fname = fname & "\"

If indcount <10 Then
Ind$ = "00" + CStr(ind count) 'Don't use Str(), as it'll create a blank space 
Elself ind count > 9 Then 
IndS = "0" + CStr(ind_count)
Elself ind count > 99 Then 
IndS = CStr(indcount)
End If

fname = fname & "G" & Gen$ & "i" & Ind$ & ".csr" 'Formed the file name

fnum = FreeFile 'Assign a file number 
Open fname For Input As fnum 'Open .csr file 
counter = 1
Do While Not EOF(fnum)

' Read a line.
Line Input #fnum, one_line

If Left$(one_line, 1) o  " " Then 
gArray(counter) = Mid$(one_line, 41) 
counter = counter + 1 
End If

If Left$(one_line, 7) = "Area of' Then 
counter = counter - 1 
End If

Loop
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Close fhum 'return assigned number after used 
End Sub

Public Sub Generation_search()
Dim a$

gencount = 1

Check:
If gen count <10 Then
Gen$ = "00" + CStr(gen count) 'Don't use Str(), as it'll create a blank space 
Elself gen count > 9 Then 
Gen$ = "0" + CStr(gen_count)
Elself gen count > 99 Then 
Gen$ = CStr(gencount)
End If

a$ = "G" & Gen & "iOOl.csr"

On Error GoTo FileDoesntExist:
If FileLen(a$) > 0 Then 
gencount = gencount + 1 
GoTo Check:
End If
FileDoesntExist:
gen count = gen count -1
If gen count <10 Then
Gen$ = "00" + CStr(gen count) 'Don't use Str(), as it'll create a blank space 
Elself gen count > 9 Then 
Gen$ = "0" + CStr(gencount)
Elself gen count > 99 Then 
Gen$ = CStr(gencount)
End If 
Exit Sub

End Sub

Public Sub Nos_Individual()
Dim a$

indcount = 1

Check:
If ind count <10 Then
Ind$ = "00" + CStr(ind_count) 'Don't use Str(), as it'll create a blank space 
Elself ind count > 9 Then 
Ind$ = "0" + CStr(ind_count)
Elself ind count > 99 Then 
Ind$ = CStr(indcount)
End If



a$ = "G" & GenS & "i" & Ind$ & ".csr"

On Error GoTo FileDoesntExist:
If FileLen(aS) > 0 Then 
indcount = indcount + 1 
GoTo Check:
End If
FileDoesntExist: 
ind count = ind count - 1 
Exit Sub 
End Sub

Public Sub write_current()
Dim fhum As Integer 
Dim fhame As String

fhame = App.Path 'Current directory 
If Right$(fhame, 1) <> "\" Then fhame = fhame & "\" 
fhame = fhame & "G" & Gen$ & "I" & Ind$ & ".bmd"

fhum = FreeFile
Open fhame For Output As fhum 
Dim j
Print #fnum, "/field wire size:" & fld dia 
Print #fnum, "/armature wire size:" & arm dia 
Print #fnum, "/field turns:" & fld_tums 
Print #fnum, "/armature turns:" & arm_tums 
For j = 1 To 20 
Print #fhum, "/coil config"
Print #fnum, "RUNP coilfp"
Print #fhum, "RUNP PA01=" & fld_curr(j) & " PA02=" & fld_tums & " PA03=" & 
arm tums & " PA04=" & arm_curr(j)
Print #fhum, "|"
Print #fnum," "
Print #fnum, "/rotor angle"
Print #fnum, "RUNP rotation"
Print #fnum, "RUNP PA01=" & rot_angle(j) & " FILE='IRON" & j & "'" & " +STOR" 
Print #fhum, "|"
Print #fnum, " "
Next

Close fhum 
End Sub

Public Sub Avoid_error()
Dim fnum As Integer 
Dim fhame As String

fname = App.Path 'Current directory
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If Right$(fhame, 1) <> "\" Then fhame = fhame & "\" 
fhame = fhame & "YNerror"

fhum = FreeFile
Open fhame For Output As fhum 
Print #fnum, error 
Close fhum

End Sub

Public Sub Inc_arm_dia()
Dim wiredia
Dim wiretype As Integer

wiredia = ws.Range("C79")

If wire dia = 0.2 Then 'Determining wire size 
wiretype = 91 
End If

If wire dia = 2 Then 
wiretype = 104 
End If

wire type = wire type + 1 'Increasing wire size 
ws.Range("C79") = ws.Cells(wire_type, 1). Value

End Sub

Public Sub Inc_fld_dia()
Dim wire dia
Dim wire type As Integer

wire_dia = ws.Range("B79")
If wire dia = 0.2 Then 'Determining wire size 
wiretype = 91 
End If

If wire dia = 2 Then 
wire_type = 104 
End If

wire_type = wire type + 1 'Increasing wire size 
ws.Range("B79") = ws.Cells(wire_type, 1). Value 
End Sub
Public Sub dec_arm_dia()
Dim wire dia
Dim wire_type As Integer



wiredia = ws.Range("C79")
If wire dia = 0.2 Then ’Determining wire size 
wiretype = 91 
End If

If wire dia = 2 Then 
wiretype =104 
End If

wire_type = wire type - 1 'Increasing wire size 
ws.Range("C79’’) = ws.Cells(wire_type, 1). Value

End Sub
Public Sub dec fld_dia()
Dim wire dia
Dim wire type As Integer

wiredia = ws.Range("B79")
If wire dia = 0.2 Then 'Determining wire size 
wiretype = 91 
End If

If wire dia = 2 Then 
wire_type = 104 
End If

wire type = wire type -1 'Increasing wire size 
ws.Range("B79") = ws.Cells(wire_type, 1).Value

End Sub
Public Sub Delay(HowLong As Date)
Dim TempTime As Date
TempTime = DateAdd("s", HowLong, Now)
While TempTime > Now
DoEvents
Wend
End Sub



Appendix E - Implemented code (in Visual Basic) for fitness module

'Computer Optimization of electrical machine, program written by Kao Siang,Chai.. 
'Fitness module, last modification on 31/07/2002.

Option Explicit
Dim xl As New Excel.Application 
Dim wb As Excel.Workbook 
Dim ws As Excel.Worksheet
Dim gArray(l To 1663) As String 'Array for storing .csr data
Dim Gen$ 'String indicating generation
Dim gen count As Integer 'Generation number
Dim Ind$ 'String indicating individual design
Dim ind count As Integer 'States the number of designs in current generation
Dim fitness() As Single
Dim i As Integer

Private Sub Form_Initialize()

Generationsearch 'Call generationsearch function 
Nos lndividual 'Call nos individual function

ReDim fitness(l To ind_count) As Single 'Will clear memory if declared within for loop 

For i = 1 To ind count

Openfluxlinkage 'Call Open flux linkage function 
Set wb = xl.Workbooks.Open(App.Path & "\fitness2.xls")
Set ws = wb.Sheets("IM-testl")
xl.Visible = True 'Make fitness.xls visible to user

Dim fRow 
Dim fCol 
Dim fCount 
fCount = 3 
fCol = 2 
Do
For fRow = 1 To 7
ws.Cells(fRow, fCol).Value = gArray(fCount)
fCount = fCount + 1
Next
fCol = fCol + 1 
Loop While fCol <13

Lamination dimension 'Get info on area of polygons 
Dim cRow 'Row Counter 
Dim cCount 'For retrieving Array content 
cCount = 10
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'Write data to cells
For cRow = 142 To 184
ws.Cells(cRow, 2).Value = gArray(cCount)
cCount = cCount + 1
Next

Openironlosses 'Call Openironlosses function

Dim Col 'Column Counter 1 = A, 2 = B.. so on
Dim Row 'Row Counter
Dim nCount 'For retrieving Array content
Col = 2 'Start at Column B
nCount = 3
'Write data to cells
Do
For Row = 186 To 268
ws.Cells(Row, Col).Value = gArray(nCount)
nCount = nCount + 1
Next
Col = Col + 1
Loop While Col < 22 'End at column U

If ws.Range("B4").Value = 0 Then 
fitness(i) = 1 
GoTo Nottrap:
End If

Wireconfig 'Retrieve wire info 
Dim wRow 
Dim wCount 
wCount = 1

For wRow = 165 To 168
ws.Cells(wRow, 10). Value = gArray( wCount)
wCount = wCount + 1
Next

ws.Calculate 'Calculate fitness 
fitness(i) = ws.Range("I108")

Nottrap:
wb.Close SaveChanges:=False 
xl.Quit
Set xl = Nothing 
Next

write_fitness 'write .fit file 
End
End Sub
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Public Sub Open_flux_linkage()
Dim fhum As Integer 'for assigning file number 
Dim oneline As String 
Dim counter As Integer 'Counter for array 
Dim fname As String

fhame = App.Path 'Current directory 
If Right$(fhame, 1) o  "\" Then fhame = fname & "\"

If i < 10 Then
Ind$ = "00" + CStr(i) 'Don't use Str(), as it'll create a blank space 
Elself i > 9 Then 
Ind$ = "0" + CStr(i)
Elself i > 99 Then 
Ind$ = CStr(i)
End If

fname = fhame & "G" & GenS & "i" & Ind$ & ".csr" 'Formed the file name

fhum = FreeFile 'Assign a file number 
Open fhame For Input As fhum 'Open .csr file 
counter = 1
Do While Not EOF(fnum)

' Read a line.
Line Input #fhum, one line

If Left$(one_line, 1) o  " " Then 
gArray(counter) = Mid$(one_line, 41) 
counter = counter + 1

End If 

Loop

Close fhum 'return assigned number after used 
End Sub

Public Sub Generation_search()
Dim a$

gencount = 1

Check:
If gen count < 10 Then
Gen$ = "00" + CStr(gen_count) 'Don't use Str(), as it'll create a blank space 
Elself gen count > 9 Then 
Gen$ = "0" + CStr(gencount)



Elself gen count > 99 Then 
Gen$ = CStr(gencount)
End If

a$ = "G" & Gen & "iOOl.csr"

On Error GoTo FileDoesntExist:
If FileLen(a$) > 0 Then 
gencount = gencount + 1 
GoTo Check:
End If
FileDoesntExist:
gen count = gen count -1
If gen count <10 Then
Gen$ = "00" + CStr(gen count) 'Don't use Str(), as it'll create a blank space 
Elself gen count > 9 Then 
Gen$ = "0" + CStr(gencount)
Elself gen count > 99 Then 
Gen$ = CStr(gencount)
End If 
Exit Sub

End Sub

Public Sub Nos_Individual()
Dim a$

indcount = 1

Check:
If ind count <10 Then
Ind$ = "00" + CStr(ind count) 'Don't use Str(), as it'll create a blank space 
Elself ind count > 9 Then 
Ind$ = "0" + CStr(indcount)
Elself ind count > 99 Then 
Ind$ = CStr(indcount)
End If

a$ = "G" & Gen$ & "i" & Ind$ & ".csr"

On Error GoTo FileDoesntExist:
If FileLen(aS) > 0 Then 
indcount = indcount + 1 
GoTo Check:
End If
FileDoesntExist:
ind count = ind count - 1
Exit Sub

End Sub
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Public Sub write _fltness()
Dim chromosome() As String 
Dim chcount As Integer 
Dim fhum As Integer 
Dim line As String 
Dim fhame 1 As String 
Dim fhame2 As String

fhame 1 = App.Path 'Current directory
If Right$ (fhame 1, 1 ) 0  "V Then fhame 1 = fhame 1 & "\"
fhame 1 = fhame 1 & "GEN" & "_" & Gen$ & ".chr"

fhum = FreeFile

Open fhame 1 For Input As fnum
ReDim chromosome(l To ind count + 1) As String 'last string is eof 
chcount = 1

Do While Not EOF(fnum)
Line Input #fnum, line 
chromosome(chcount) = line 
If ch count <= ind count Then 
chcount = chcount + 1 
End If 
Loop
Close fhum

fname2 = App.Path 'Current directory 
If Right$(fhame2, 1) <> "\" Then fname2 = fname2 & "\" 
fname2 = fname2 & "GEN" & & Gen$ & ".fit"

fhum = FreeFile
Open fname2 For Output As fhum 
Dim j
For j = 1 To ind count
Print #fnum, chromosome(j) & & fitness(j)
Next
Close fhum 
End Sub

Public Sub Open_iron_losses()
Dim fhum As Integer 'for assigning file number 
Dim one line As String 
Dim counter As Integer 'Counter for array 
Dim fhame As String

fname = App.Path 'Current directory 
If Right$(fhame, 1) <> "\" Then fname = fname & "\"
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If i < 10 Then
Ind$ = "00" + CStr(i) 'Don't use Str(), as it'll create a blank space 
Elself i > 9 Then 
Ind$ = "0" + CStr(i)
Elself i > 99 Then 
Ind$ = CStr(i)
End If

fhame = fhame & "LG" & Gen$ & "i" & IndS & ".csr" 'Formed the file name

fhum = FreeFile 'Assign a file number 
Open fhame For Input As fhum 'Open .csr file 
counter = 1
Do While Not EOF(fnum)

' Read a line.
Line Input #fnum, one line

If Left$(one_line, 1) o  " " Then 
gArray(counter) = Mid$(one_line, 41) 
counter = counter + 1 
End If

Loop
Close fhum 'return assigned number after used 

End Sub

Public Sub Wire_config()
Dim fhum As Integer 'for assigning file number
Dim one line As String
Dim counter As Integer 'Counter for array
Dim fhame As String
Dim pos As Integer

fname = App.Path 'Current directory 
If Right$(fhame, 1) o  "\" Then fhame = fhame & "\"

If i < 10 Then
Ind$ = "00" + CStr(i) 'Don't use Str(), as it'll create a blank space 
Elself i > 9 Then 
Ind$ = "0" + CStr(i)
Elself i > 99 Then 
Ind$ = CStr(i)
End If

fhame = fhame & "G" & Gen$ & "i" & Ind$ & ".bmd" 'Formed the file name

fnum = FreeFile 'Assign a file number 
Open fhame For Input As fnum 'Open .csr file 
counter = 1 
Do



' Read a line.
Line Input #fhum, one line 
pos = InStr(one_line,
gArray(counter) = Mid$(one_line, pos +1) 
counter = counter + 1

Loop While counter < 5

Close fhum 'return assigned number after used 
End Sub

Public Sub Lamination_dimension()
Dim fhum As Integer 'for assigning file number 
Dim one line As String 
Dim counter As Integer 'Counter for array 
Dim fhame As String

fhame = App.Path 'Current directory 
If Right$(fhame, 1) o  "\" Then fhame = fhame & "\"

If i < 10 Then 

End If

fhame = fhame & "G" & Gen$ & "i" & Ind$ & ".csr" 'Formed the file name

fnum = FreeFile 'Assign a file number 
Open fhame For Input As fhum 'Open .csr file 
counter = 1 
Do

' Read a line.
Line Input #fhum, one line

If Left$(one_line, 1) <> " " Then 
gArray(counter) = Mid$(one_line, 41) 
counter = counter + 1 
End If 

Loop While counter < 54

Close fhum 'return assigned number after used 
End Sub
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Appendix F - Implemented code for control module

j 'k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/* * SCRIPT TO CONTROL EXECUTION OF GENETIC ALGORITHM * 
/* **** MODULES AND SOLVE FINITE ELEMENT MODEL FOR **** 
/* ****************** EACH INDIVIDUAL *****************
j -k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
j * ********************* PC-OPERA ********************* 
j * ******************* VERSION 3 **********************
j *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/* *************** CREATED BY K.S. CHAI *************** 
j * * * * * * * * * * * * * * * * * * * * *  J u l y  2 0 0 2  * * * * * * * * * * * * * * * * * * * * *
J*  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/* **************** WINDOWS NT4 VERSION ***************

/ REQUIRES ...
/ Current.exe
/ fitness.exe
/ GAengine.exe
/ decode.exe
/ ppstrt95.bat
/ ... IN WORKING DIRECTORY TO FUNCTION

/ NEED TO UPDATE GAENGINE.INI MANUALLY

/ INITIALISE ALL VARIABLES
$CONST # 1 0  
$CONST #J 0 
$CONST #K 0 
$CONST #R 0 
$CONST #S 0 
$CONST #T 0 
$CONST #GN 0 
$CONST #GP1 0
/ INITIALISING #EXIS,#FIN ETC TO TRY TO AVOID ERROR MESSAGES
$CONST #EXIS 2
$CONST #FIN 1
$CONST #DON 1
$CONST #RUN 1
$CONST #ERR 1

/ INITIALISING FILE finished TO VALUE 0 
/ NO EFFECT IF NEW RUN, FORCES RESTART BUT WILL STOP 
/ AGAIN IF GAENGINE.INI NOT UPDATED

$OS del finished
$OPEN 6 FILE=finished AUTH=WRITE 
$WRITE 6 0 
$CLOSE 6

/ LOOP FOR EACH GENERATION (0 00 TO 199)

/ $DO # 1 0  1 1  
$DO #J 0 9 1 
$CONST #1 0 
$DO #K 0 9 1



/ SETTING STRING GEN TO MATCH GENERATION

$STRING G1 %INT(#I)%INT(#J)
$STRING GEN &G1&%INT(#K)

/ (CONSTANT TO BE USED LATER TO DECIDE IF FIRST RUN 
/ FOR INITIALISATION)
$CONST #G2 %I N T (#I)%INT(#J )
$CONST #GN %INT(#G2)%INT(#K)

/ (DOES NOT RUN INDIVIDUAL LOOP FOR GENERATION 0)
/B1 loop STARTS 
$IF %INT(#GN) GE 1

/ DOES NOT RUN LOOP IF finished CONTAINS 1 
/ IE #FIN=1

$CONST #FIN 1
$OPEN 6 FILE=finished AUTH=READ 
$READ 6 #FIN 
$CLOSE 6

/B2 loop STARTS 
$IF %INT(#FIN) EQ 0

/ WILL NOT RUN INDIVIDUAL LOOP IF FIRST SOLUTION FILE EXISTS
/ IE ALLOWS GA TO BE RESTARTED AFTER CLEAN STOP BY
/ GAENGINE AND UPDATING GAENGINE.INI FOR MORE GENERATIONS

$STRING GFIL G&GEN&I001.csr

$STRING CA 'cmd /c "if exist'
$STRING CB 'echo 1 >> ran"'
$STRING CC 'cmd /c "if not exist'
$STRING CD 'echo 0 >> ran"'

$CONST #RUN 1

$OS 'del ran'
$STRING XA ' ScCASc &GFIL& '
$STRING XB '&XA& &CB&'
$OS '&XB&'
$STRING XC '&CC& &GFIL&'
$STRING XD '&XC& &CD&'
$OS '&XD&'

$OPEN 5 ran AUTH=READ 
$READ 5 #RUN 
$CLOSE 5 
$OS 'del ran'
/ NOW #RUN =1 IF GENERATION PREVIOUSLY RUN (FIRST CSR EXISTS) =0 IF 
NOT

/B3 loop STARTS 
$IF %INT(#RUN) EQ 0

/ LOOP FOR EACH INDIVIDUAL (000 TO 199)

/ $DO #R 0 1 1 
$DO #S 0 9 1 
$CONST #R 0
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$D0 #T 0 9 1

/ SETTING NUMBER FOR INDIVIDUAL

$STRING II %INT(#R)%INT(#S)
$STRING IND &I1&%INT(#T)

/ TO STOP OPERA RE-RUNNING SOLVER 
/ IF CORRESPONDING CSR FILE ALREADY EXISTS

$STRING FCSR 'G&GEN&I&IND&.c s r '
$STRING CA 'cmd /c "if exist'
$STRING CB 'echo 1 >> done"'
$STRING CC 'cmd /c "if not exist'
$STRING CD 'echo 0 >> done"'

$CONST #DON 1

$OS 'del done'
$STRING XA '&CA& &FCSR&'
$STRING XB '&XA& &CB&'
$0S '&XB&'
$STRING XC '&CC& &FCSR&'
$STRING XD '&XC& &CD&'
$OS '&XD&'

$OPEN 5 done AUTH=READ 
$READ 5 #DON 
$CLOSE 5
/ NOW #DON =1 IF PREVIOUSLY SOLVED (CSR EXISTS) =0 IF NOT

/B4 loop STARTS 
$IF %INT(#DON) EQ 0

/ TESTING FOR EXISTENCE OF INDIVIDUALS BEFORE CALLING 
/ FILE NAME FORMAT Gxxxlyyy.ind

$STRING FILE 'G&GEN&I&IND&.ind'
$STRING CA 'cmd /c "if exist'
$STRING CB 'echo 1 >> exist"'
$STRING CC 'cmd /c "if not exist'
$STRING CD 'echo 0 >> exist"'

$CONST #EXIS 2

$OS 'del exist'
$STRING XA '&CA& &FILE&'
$STRING XB '&XA& &CB&'
$OS '&XB&'
$STRING XC ' ScCCSc &FILE&'
$STRING XD ' ScXCSc &CD& '
$OS '&XD&'

$OPEN 5 exist AUTH=READ 
$READ 5 #EXIS 
$CLOSE 5

/ NOW #EXIS =1 IF FILE EXISTS, =0 IF NOT EXIST

/ SET CONTROL NAME TO GIVE MATCHING CSR
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/ B5 loop STARTS 
$IF %INT(#EXIS) EQ 1

LOAD FILE=1VF8_7_Bnsq.dem', APPE=NO
ZOOM
B O O

CONTROL OPTI=INIT
CONTROL FILE=1G&GEN&I&IND&' OPTI=SET

$COMI FILE=1G&GEN&i&IND&.ind1 MODE=CONT

/ COMMANDS TO ROTATE AND STORE FOR 0-15DEG 
/ IN 1.5DEG STEPS

RUNP rotation
RUNP PA01=* FILE='G&GEN&I&IND&1 MIN=0 MAX=15 INCR=1.5 +STOR

/ COMMANDS TO CALL SOLVER AND PP FROM WITHIN DE 
/ PREPARE CONTROL SET THEN CALL COMI FILE SPEARATELY 
/ TO AVOID DE RUNNING AHEAD OF SOLUTIONS

/ PREPARING COMI FILE
CONTROL OPTI=PREP
$STRING CFIL 1G&GEN&I&IND&.comi'

/ CREATING OPERA2.COMI TO RUN THIS WHEN PP INVOKED 
$OS 'del opera2.comi'
$STRING CMD1 'cmd /c "echo $COMI FILE=&CFIL& MODE=CONT >> 
opera2.comi"'
$STRING CMD2 'cmd /c "echo END >> opera2.comi"'
$STRING CMD3 'cmd /c "echo YES >> opera2.comi"'
$OS '&CMD1&'
$OS '&CMD2&'
$OS '&CMD3 &'

/ INVOKING PP SO WILL WAIT FOR IT TO FINISH BEFORE CONTINUING 

$OS 'ppstart.bat'

$OS 'del opera2.comi'

/ REMOVING LARGE FILES WHICH ARE NO LONGER NECESSARY
$os 'del * .mesh'
$os 'del * . s t '
$os 'del *.o p 2 '
$os ' del *.re s '
$os ' del *.o l d '
$os 'del *.v a r '
$os ' del &CFIL&'
$os 'del Opera2d
$os ' del Opera2d

/ NEW ADDITION OF IRONLOSS CALCULATION 
$PAUSE 2
$OS 'current.ex e '
$PAUSE 2

/B6 loop STARTS 
$CONST #ERR 1
$OPEN 5 YN_error AUTH=READ



$READ 5 #ERR 
$CLOSE 5

$IF %INT(#ERR) EQ 0
LOAD FILE='VF8_7_Bnsq2.d e m ', APPE=NO
ZOOM
B O O

CONTROL OPTI=INIT
CONTROL FILE=1LG&GEN&I&IND&1 OPTI=SET

$COMI FILE='G&GEN&I&IND&.in d ' MODE=CONT 
$COMI FILE='G&GEN&I&IND&.bmd' MODE=CONT 
CONTROL OPTI=PREP
$STRING DFIL 1LG&GEN&I&IND&.comi1

/ CREATING OPERA2.COMI TO RUN THIS WHEN PP INVOKED 
$OS 'del opera2.comi1
$STRING CMD4 1cmd /c "echo $COMI FILE=&DFIL& MODE=CONT >> 
opera2.comi" 1
$STRING CMD5 'cmd /c "echo END >> opera2.comi"'
$STRING CMD6 'cmd /c "echo YES >> opera2.comi"'
$OS '&CMD4&'
$OS '&CMD5&'
$OS '&CMD6&'

/ INVOKING PP SO WILL WAIT FOR IT TO FINISH BEFORE CONTINUING

$OS 'ppstart.bat'
$OS 'del opera2.comi'

/ REMOVING LARGE FILES WHICH ARE NO LONGER NECESSARY
$os del * .mesh'
$os del *. s t '
$os del *.op2'
$os del *.r e s '
$os del *.ol d '
$os del *.v a r '
$os del &DFIL&'
$os del Opera2d_PP_?.I p '
$os del Opera2d PP ?.log
$END IF
/ B6 IF loop ENDS

$END IF
/ B5 IF loop ENDS

$END IF
/ B4 IF Loop ENDS

$OS del done'
$OS del exist'
$OS del YN_error'

/ $END DO 
$END DO 
$END DO

$END IF
/ B3 IF loop ENDS



$ E N D IF
/ B2 IF loop ENDS 

$END IF
/ B1 IF loop ENDS

/ CALL GA MODULES IN SEQUENCE MISSING OUT FITNESS 
/ IF IS INITIALISING (IE GEN=000)
/ CHECKING FIRST IF finished IS SET TO 1

$CONST #FIN 1
$OPEN 6 FILE=finished AUTH=READ 
$READ 6 #FIN 
$CLOSE 6

/ Cl loop STARTS 
$IF %INT(#FIN) EQ 0

/ WILL NOT RUN PROGRAMMES IF (#GN+1).CHR FILE EXISTS 
/ IE ALLOWS GA TO BE RESTARTED AFTER CLEAN STOP BY 
/ GAENGINE AND UPDATING GAENGINE.INI FOR MORE GENERATIONS

$CONST #GP1 #GN+1

/ SETTING NAME FOR NEXT GENERATION .CHR FILE

/ C2 loop STARTS
$IF %INT(#GP1) GE 100
$STRING GFIL GEN_%INT(#GP1).chr
$ELIF %INT(#GP1) LE 9
$STRING GFIL GEN_00%INT(#GP1).chr
$ELIF %INT(#GP1) LE 99
$STRING GFIL GEN_0%INT(#GP1) .chr
$END IF
/C2 IF loop ENDS

$STRING CA 'cmd /c "if exist'
$STRING CB 'echo 1 >> ran"'
$STRING CC 'cmd /c "if not exist'
$STRING CD 'echo 0 >> ran"'

$CONST #RUN 1

$OS 'del ran'
$STRING XA '&CA& &GFIL&1 
$STRING XB '&XA& &CB&' 
$OS '&XB&'
$STRING XC '&CC& &GFIL&1 
$STRING XD '&XC& &CD&' 
$OS '&XD&'

$OPEN 5 ran AUTH=READ 
$READ 5 #RUN 
$CLOSE 5 
$OS 'del ran'
/ NOW #RUN =1 IF GENERATION PREVIOUSLY RUN (NEXT .CHR EXISTS) =0 IF 
NOT

/ C3 loop STARTS 
$IF %INT(#RUN) EQ 0
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/ C4 loop STARTS 
$IF %INT(#GN) EQ 0 
$0S 1GAengine.e x e '
$PAUSE 2
$0S 1 decode.ex e '
$STRING STAT FIRST 
$PAUSE 5 
$END IF
/ C4 IF loop ENDS

/ C5 loop STARTS 
$IF %INT(#GN) GE 1 
$PAUSE 2
$0S 'fitness.exe'
$PAUSE 2
$0S 'GAengine.exe1 
$CONST #FIN 1
$OPEN 6 FILE=finished AUTH=READ 
$READ 6 #FIN 
$CLOSE 6

/ C6 loop STARTS 
$IF %INT(#FIN) EQ 0 
$PAUSE 2 
$0S 'decode.exe'
$STRING STAT NORMAL
$PAUSE 5
$ELSE
$STRING STAT FINISHED 
$PAUSE 5 
$END IF
/ C6 IF loop ENDS 

$END IF
/ C5 IF loop ENDS 

$END IF
/ C3 IF loop ENDS 

$END IF
/ Cl IF loop ENDS

/ $END DO 
$END DO 
$END DO
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Appendix G- Implemented code for new fitness function module (used 
in chapter 7)

//Computer Optimization of electrical machine, program written by Kao Siang,Chai.. 
//GAengine module, last modification on 20/12/2003.

#include<iostream.h>
#include<fstream.h>
#include<string.h>
#include<stdio.h>
#include<stdlib.h>
#include<math. h>

const double Resolution=0.01;
const int i_rel=20;
const unsigned int MS=42;
void get_pmmf(char*, double[2][MS]);
void get_nmmf(char*, double[2][MS]);

char* ge[]= { };

char file_ptr[31]; 
char c_file_ptr[31 ];

int main ()
{
char str[l 10];
double fitness[200]={0};
double P_data[2][MS];
double N_data[2][MS];
double diff[21]= {0};
double Int_ps[20]={0};
double Int_ns[20]={0};
double bench mark;
double inc_p,inc_n, dec_p, dec n;
double F torque, S torque;
int zero, compare, found, convert f;

//detect for the latest generation of .csr file, 
int ul=0; 
check:

strcpy(file_ptr, "PG"); 
strcat(file_ptr,ge[ul]); 
strcat(file_ptr,"I"); 
strcat(file_ptr,"001"); 
strcat(file_ptr,". csr"); 

ifstream detect(filejptr,ios: :nocreate);
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if(! detect)
{
ul~;
goto check 1;
}

else
{
ul++;
goto check;
}
check1:

detect.close(); /*Detection for latest generation completed.*/

//check for the number of individual from current generation, 
int mo=0; 
find:

strcpy(file_ptr,"PG"); 
strcat(file_ptr,ge [ul]); 
strcat(file_ptr,'T'); 
strcat(file_ptr,ge[mo]); 
strcat(file_ptr," .csr");

ifstream search(file_ptr,ios::nocreate); 
if(! search)
{
goto findl;
}

else
{
mo++; 
goto find;
}
findl:

search.close(); //Finished searching for the number of individual.

//Calculating fitness value. 
for(int file count =0; file_count<mo; file_count-H-)

{
strcpy(file_ptr,"PG"); 
strcat(file_ptr,ge[ul]); 
strcat(file_ptr,"I"); 
strcat(file_ptr,ge[file_count]); 
strcat(filejptr," .csr");

get_pmmf(file_ptr, P data); //Retrieving info of positive current torque

strcpy(file_ptr,"NG");
strcat(file_ptr,ge[ul]);
strcat(file_ptr,"I");
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strcat(file_ptr,ge[file_count]); 
strcat(file_ptr," .csr");

get_nmmf(file_ptr, N data); //Retrieving info of negative current torque

//Look for torque dip in first area of interest
for (int f_t_d=0; f_t_d<21; f_t_d++)
{
if((P_data[ 1 ] [f_t_d]==N_data[ 1 ] [f_t_d])|| (fabs(P_data[ 1 ][f_t_d]- 

N_data[l][f_t_d])<= Resolution))
{
F_torque=P_data[ 1 ] [f_t_d]; 

goto no interpolatel;
}

}

//Can't find the first torque dip with existing data, interpolation of data pts required

for (zero=0; zero<21; zero-H-)
{
diff[zero]=fabs(P_data[ 1 ] [zero] - N_data[ 1 ][zero]);

}
bench_mark=diff[0];
for (compare=l; compare<21; compare++)

{
if(diff[compare] <bench_mark)
{
bench_mark=diff[compare]; //Record data closes to intersection

}
}

//Extract interpolation data points 
found=0;

while(diff[found] != benchmark)
{
found++;
}

// Linear Interpolation begins

if((P_data[l][found]-N_data[l][found])>0) //intersection happened after 
closest difference pt.

{
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inc_n=fabs(N_data [ 1 ] [ found] - 
N_data[ 1 ] [found+1 ])/fabs(N_data[0] [found]-N_data[0] [found+1 ]);

dec_p=fabs(P_data[l ][found]-P_data[l ][found+l ])/fabs(P_data[0][found]- 
P_data[0] [found+1 ]);

for(zero=0; zero<=i_rel; zero++)
{
Int_ps[zero]=P_data[ 1 ][found]-((zero*(fabs(P_data[0][found]- 

P_data[0] [found+1 ])/i_rel))*dec_p);
Int_ns[zero]=N_data[ 1 ] [found]+((zero*(fabs(N_data[0] [found]- 

N_data[0] [found+1 ])/i_rel))*inc_n);
}

for(zero=0; zero<=i_rel; zero++)
{
if((Int_ps[zero]==Int_ns[zero])|| (fabs(Int_ps[zero]-Int_ns[zero])<=

Resolution))
{

F_torque=Int_ps [zero]; 
goto no interpolatel;

}
else

{
F_torque=0;

}
}

}//end of if

if((P_data[l][found]-N_data[l][found])<0) //intersection happened 
before closest difference pt.

{
inc_n=fabs(N_data[ 1 ] [found]-N_data[ 1 ] [found- 

1 ])/fabs(N_data[0][found]-N_data[0][found-l ]);
dec_p=fabs(P_data[ 1 ] [found]-P_data[ 1 ] [found-1 ])/fabs(P_data[0] [found]- 

P_data[0] [found-1 ]);

for(zero=0; zero<=i_rel; zero++)
{
Int_ps[zero]=P_data[ 1 ] [found-1 ]-((zero*(fabs(N_data[0] [found]- 

N_data[0] [found-1 ])/i_rel))*dec_p);
Int_ns[zero]=N_data[ 1 ] [found-1 ]+((zero*(fabs(N_data[0] [found]- 

N_data[0] [found-1 ])/i_rel))*inc_n);
}

for(zero=0; zero<=i_rel; zero++)
{
if((Int_ps[zero]==Int_ns[zero])|| (fabs(Int_ps[zero]-Int_ns[zero])<=

Resolution))
{

F_torque=Int_ps [zero];
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goto nointerpolatel;
}

else
{

F_torque=0;
}

}
}//end of if 

nointerpolatel:

//Look for torque dip in second area of interest
for (int s_t_d=21; s_t_d<42; s_t_d++)
{
if((P_data[ 1 ][s_t_d]==N_data[ 1 ][s_t_d])|| (fabs(P_data[ 1 ][s_t_d]- 

N_data[l][s_t_d])<= Resolution))
{
S_torque=P_data [ 1 ] [s_t_d]; 

goto no_interpolate2;
}

}

//Can't find the secong torque dip with existing data, interpolation of data pts required 
for (zero=0; zero<21; zero++)
{
diff[zero]=fabs(N_data[l][zero+21] - P_data[l][zero+21]);

}

bench_mark=diff[0]; 
for (compare=l; compare<21; compare++)

{
if(diff[compare] <bench_mark)
{
bench_mark=diff[compare]; //Record data closes to intersection

}
}
//Extract interpolation data points 
found=0;

while(diff[found] != benchmark)
{
found++;
}
convert_f=found+21;

// Linear Interpolation begins

if((N_data[ 1 ][convert_f]-P_data[ 1 ][convert_f])>0) //intersection happens 
after closest difference pt.

{
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inc_p=fabs(P_data[ 1 ] [convertf]- 
P_data[ 1 ] [convert_f+1 ])/(P_data[0] [convert_f+1 ] -P_data[0] [convertf]);

dec_n=fabs(N_data [ 1 ] [convertf] - 
N_data[ 1 ] [convert_f+1 ])/(N_data[0] [convert_f+1 ]-N_data[0] [convertf]);

for(zero=0; zero<=i_rel; zero++)
{
Int_ps[zero]=P_data[l ] [convert_f]+((zero*((P_data[0][convert_f+l ]- 

P_data[0][convert_f])/i_rel))*inc_p);
Int_ns[zero]=N_data[ 1 ] [convert_f]-((zero*((N_data[0] [convert_f+l ]- 

N_data[0] [convert_f])/i_rel)) * dec_n);
}

for(zero=0; zero<=i_rel; zero++)
{
if((Int_ps[zero]==Int_ns[zero])|| (fabs(Int_ps[zero]-Int_ns[zero])<=

Resolution))
{

S_torque=Int_ps[zero]; 
goto no_interpolate2;

}
else

{
S_torque=0;

}
}

} //end of if

if((N_data[ 1 ][convert_f]-P_data[ 1 ][convert_f])<0) //intersection happens 
before closest difference pt.

{
inc_p=fabs(P_data[ 1 ] [convert_f]-P_data[ 1 ] [convertf- 

1 ])/(P_data[0] [convert_f]-P_data[0] [convertf-1 ]);
dec_n=fabs(N_data[ 1 ] [convert_f]-N_data[ 1 ] [convertf- 

1 ])/(N_data[0][convert_f]-N_data[0] [convertf-1 ]);

for(zero=0; zero<=i_rel; zero++)
{
Int_ps[zero]=P_data[ 1 ] [convertf-1 ]+((zero*((P_data[0] [convertf]- 

P_data[0] [convert_f-1 ])/i_rel))*inc_p);
Int_ns[zero]=N_data[ 1 ] [convertf-1 ]-((zero*((N_data[0] [convertf]- 

N_data[0] [convertf-1 ])/i_rel))*dec_n);
}

for(zero=0; zero<=i_rel; zero++)
{
if((Int_ps[zero]==Int_ns[zero])|| (fabs(Int_ps[zero]-Int_ns[zero])<=

Resolution))
{

S_torque=Int_ps[zero];
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goto no_interpolate2;
}

else
{

S_torque=0;
}

}
}//end of if 

no_interpolate2:

fitness[file_count]=F_torque+S_torque;

if(F_torque<=0||S_torque<=0) //1st penalty fin introduces to penalise on
zero torque.

{
fitness[file_count]-=0.3;

}
if(fabs(F_torque-S_torque)>=0.3) //2nd penalty fh for unbalance torque 
{
fitness[flle_count]-=0.3;

}
if((F_torque<=:0||S_torque<=0)&&(fabs(F_torque-S_torque)>=0.3)) //3rd 

penalty fh if both the conditions above are violated.
{
fitness [filecount]-=0.3;

}

}//End of calulating fitness.

//matching the fitness value to its chromosome, 
strcpy (cfile jptr,'' GEN"); 
strcat(c _file_ptr,"_"); 
strcat(c_file_ptr,ge [ul]); 
strcat(c_file_ptr," .chr");

ifstream match(c_file_ptr);

strcpy(file_ptr," GEN"); 
strcat(file_ptr,"_"); 
strcat(file__ptr, ge [ul]); 
strcat(file_ptr,". fit");

ofstream fout(file_ptr);

for(int qe=0; qe<mo; qe++)
{
match.getline(str,sizeof(str)); 
fout«str«" ,"«fitness[qe]«endl;
}
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match.close(); 
fout.close(); 

cout«file_ptr«" is created.";

return 0;
}

void get_pmmf(char* file_ptr, double P_data[2][MS]) 
{

int next=0;
float value; 
char str[110];

ifstream capture (file_ptr);
do{

capture. getline(str, 110); 
if(strstr(str, "Rotor angle "))
{

sscanf(str+40, "%f&value); 
P_data[0] [next]=value;

}

} while(! capture. eof()); 
capture.close();

}

void get_nmmf(char* file_ptr, double N_data[2][MS]) 
{

int next=0;
float value; 
char str[ 110];

ifstream capture (file_ptr);
do{

capture. getline(str,l 10); 
if(strstr(str, "Rotor angle "))
{

sscanf(str+40, "%f', &value); 
N_data[0] [next]=value;

}

} while(! capture.eof()); 
capture. close();

}


