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Abstract 

 

The problem of approximating multidimensional data with objects of lower dimension is a 

classical problem in complexity reduction. It is important that data approximation capture the 

structure(s) and dynamics of the data, however distortion to data by many methods during 

approximation implies that some geometric structure(s) of the data may not be preserved 

during data approximation. For methods that model the manifold of the data, the quality of 

approximation depends crucially on the initialization of the method. The first part of this thesis 

investigates the effect of initialization on manifold modelling methods. Using Self Organising 

Maps (SOM) as a case study, we compared the quality of learning of manifold methods for two 

popular initialization methods; random initialization and principal component initialization. To 

further understand the dynamics of manifold learning, datasets were further classified into 

linear, quasilinear and nonlinear.  

The second part of this thesis focuses on revealing geometric structure(s) in high 

dimension data using an extension of Principal Component Analysis (PCA). Feature extraction 

using (PCA) favours direction with large variance which could obfuscate other interesting 

geometric structure(s) that could be present in the data. To reveal these intrinsic structures, we 

analysed the local PCA structures of the dataset. An equivalent definition of PCA is that it seeks 

subspaces that maximize the sum of pairwise distances of data projection; extending this 

definition we define localization in term of scale as maximizing the sum of weighted squared 

pairwise distances between data projections for various distributions of weights (scales). Since 

for complex data various regions of the dataspace could have different PCA structures, we also 

define localization with regards to dataspace. The resulting local PCA structures were 

represented by the projection matrix corresponding to the subspaces and analysed to reveal 

some structures in the data at various localizations.    

 

 

 

 

 



 

2 
 

Acknowledgment 

I will like to appreciate my supervisor and scientific father Professor Alexander Gorban, for his 

invaluable support and encouragement throughout my study.  He is indeed a rare gem and 

perhaps the best scientist I have ever met. I hope that some day I will make you really proud. 

I will also like to thank Professor O.K. Koriko for being an inspiration to me as an undergraduate 

student in mathematics, and also Dr O.A Fasoranbaku for encouraging me to further my studies.  

My special thanks to Dr Evgeny Mirkes for providing the software and support for the early part 

of my thesis and to the Department of Mathematics, University of Leicester for providing funds 

for my study.  

Also my appreciation goes to my mother (Victoria Akinduko), late father (Ven. Moses A. 

Akinduko) and my siblings (Bayo, Akin, Yemi, and Doyin) for their numerous supports. Special 

thanks to my parents in law (Oluwasanya). To my most wonderful wife (Remi) and adorable son 

(Ayomide), words are insufficient to express my sincere appreciation. Finally my special thanks 

to my Lord and Saviour Jesus Christ for everything.  

 

 

 

 

 

 

 

 

  

 

 

 

 



 

3 
 

 

Table of Contents 
Abstract ............................................................................................................................................................................... 1 

Acknowledgment ........................................................................................................................................................... 2 

1  Introduction ................................................................................................................................................................. 6 

1.1  A brief History ...................................................................................................................................................... 6 

1.2  Definition of PCA.................................................................................................................................................. 7 

            1.2.1  Definitions of PCA .................................................................................................................................... 7 

1.3  Some Assumptions and Limitations of PCA............................................................................................ 16 

1.4  Properties of PCA .............................................................................................................................................. 17 

1.5  Some Applications of Principal Component Analysis......................................................................... 19 

1.6  Principal Component Analysis and Singular Value Decomposition ............................................. 23 

1.7  Iterative Algorithm for Calculating Principal Components ............................................................. 25 

1.8  PCA, k-means and Principal Objects .......................................................................................................... 26 

1.9  PCA and Predictive Modelling ...................................................................................................................... 27 

1.10  Big Data ............................................................................................................................................................... 32 

1.11  Problem Statement and Structure of the Thesis ................................................................................ 33 

 

2  Generalization and Extension of PCA ......................................................................................................... 39 

2.1  Introduction ......................................................................................................................................................... 39 

2.2  Weighted PCA ..................................................................................................................................................... 39 

2.3  Nonlinear Generalization of PCA ................................................................................................................ 42 

            2.3.1  Principal Curves and Manifolds ....................................................................................................... 44 

            2.3.2  Self-Organising Maps (SOM) ............................................................................................................. 47 

            2.3.3  Kernel PCA (KPCA) ................................................................................................................................ 49 

            2.3.4  Elastic Nets and Maps .......................................................................................................................... 51 

            2.3.5  Local PCA ................................................................................................................................................... 54 

            2.3.6  Branching Principal Components ................................................................................................... 57 

2.4  Tensor PCA   ......................................................................................................................................................... 58 

2.5  Projection Methods versus Manifold Modelling Methods  ............................................................... 60 

2.6  Initial Approximation for manifold learning Methods – A case study   ...................................... 62 

            2.6.1  SOM-Background and Algorithm .................................................................................................... 62 

            2.6.2  Fraction of Variance Unexplained................................................................................................... 65 

            2.6.3  Initialization Methods .......................................................................................................................... 66 



 

4 
 

            2.6.4  Linear, Quasilinear and Nonlinear Data models ....................................................................... 67 

            2.6.5  Experiments and Analyses ................................................................................................................. 69 

2.7  Conclusion ............................................................................................................................................................ 75 

 

3  Multiscale Principal Component Analysis ............................................................................................... 77 

3.1  Introduction ......................................................................................................................................................... 77 

3.2  Mathematical Background ............................................................................................................................. 79 

            3.2.1  Weighted PCA - Revisited ................................................................................................................... 82 

3.3  Multiscale PCA (MPCA) ................................................................................................................................... 84 

            3.3.1  The MPCA Algorithm ............................................................................................................................ 85 

3.4  Representation of PCA Structures .............................................................................................................. 88 

            3.4.1  Space of Lines and Linear Subspaces ............................................................................................ 90 

            3.4.2  Projection Matrix ................................................................................................................................... 93 

            3.4.3  Properties of Projection Matrix Representation....................................................................... 94 

3.5  Analysis of PCA Structure – Clustering of Scales .................................................................................. 97 

3.6  Choice of Metric in the Space of Data ........................................................................................................ 99 

3.7  Examples ............................................................................................................................................................ 102 

3.8  Ratio of Distortion .......................................................................................................................................... 104 

3.9  Discussion and Conclusion ......................................................................................................................... 105 

            3.9.1  Discussion .............................................................................................................................................. 105 

            3.9.1  Conclusion ............................................................................................................................................. 106 

 

4  PCA and Localization in Space ..................................................................................................................... 107 

4.1  Introduction ...................................................................................................................................................... 109 

4.2  Localization in the Data Space .................................................................................................................. 109 

4.3  Selection of Target Points ........................................................................................................................... 111 

4.4  Representation of PCA Structures in Space ......................................................................................... 115 

4.5  Localization in scale and Space................................................................................................................. 118 

4.6  Conclusion ......................................................................................................................................................... 121 

 

5  Data Exploration Using localized PCA ..................................................................................................... 122 

5.1  Introduction ...................................................................................................................................................... 122 

5.2  Datasets Used ................................................................................................................................................... 122 

5.3  Pre-processing Data for MPCA .................................................................................................................. 123 



 

5 
 

5.4  Multiscale Principal Component Analysis of Datasets  ................................................................... 124 

5.5  Overfitting in MPCA ....................................................................................................................................... 129 

5.6  Data Distortion ................................................................................................................................................ 130 

5.7  Preservation of Local Structures.............................................................................................................. 133 

5.8  Class Compactness ......................................................................................................................................... 134 

5.9  Preservation of Global Structure ............................................................................................................. 136 

5.10  Data Exploration Using Local PCA in dataspace  ............................................................................ 137 

5.11  Discussion and Conclusion ...................................................................................................................... 140 

 

6  Conclusion............................................................................................................................................................... 142 

 

Appendix ....................................................................................................................................................................... 149 

 

Bibliography ............................................................................................................................................................... 156 

 

             

 

 

 

 

 

 

 

 

 

 

 



 

6 
 

Chapter 1 

Introduction 

 

1.1 A brief History 

In an effort to study, understand and improve the various systems we interact 

with as human, we often generate huge data which we need to extract knowledge from. 

These data are usually multivariate (multidimensional) distribution of vectors which 

represent certain observed attributes of the system we seek to understand.  We now 

live in a data driven world and with increasing advances in technology comes increasing 

complexity in the nature of data collected.   

Multi-dimensional data are usually difficult to visualize, analyse and model. 

Mathematical models which depend on high-dimensional data usually suffer from what 

Bellman (1961) termed as the curse of dimensionality [10]. Therefore there is a need 

for approximating high-dimensional vector distributions by lower dimensional objects 

in such a way that relevant structures and dynamics are preserved. The choice of 

relevant structures and dynamics which are to be preserved by the data approximation 

is subjective and this subjectivity has led to the development of various methods for 

approximating high dimensional data. 

 In 1901, using a geometric approach, Karl Pearson proposed approximating high 

dimensional data with lines and planes which ‘best fit’ the data and thus invented the 

Principal Component Analysis (PCA) [85]. Another approach to data approximation is to 

represent complex multidimensional data by a smaller set of finite points, leading to 

methods like k-means which approximate data with several ‘mean’ points.  In the last 

few decades there have been considerable developments in these two major directions. 

Though it could be said that Karl Pearson invented PCA in his paper [85], Harold 

Hotelling (1933) also independently derived the PCA in his paper [54]. It should be 

mentioned however that the fundamental ideas of PCA have been developed by 

mathematicians much earlier. While Hotelling started from the idea of factor analysis 

and choose factors (which he called components) that successively maximize their 
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contribution to the variance of the original data, his derivation was PCA and not factor 

analysis as generally agreed these days. Due to the lack of computational resources, PCA 

was not of much use in its early years after development. However, the advent of 

computers and advancement in technology has made such computational resources 

readily available, making the application of PCA to increase exponentially over the last 

two decades.  

Further development of PCA was done by Girshick (1936) in his papers [37], 

[38]; He gave an alternative derivation of PCA and discussed the asymptotic sampling 

distribution of the coefficients and variances of sample principal components.  Further 

theoretical development on asymptotic sampling distribution of the coefficients and 

variances of the sample principal components was done by Anderson (1963) in his 

paper [5], building on the earlier work by Girshick. Also of importance is the paper by 

Rao (1964), which discussed several ideas concerning applications, interpretations and 

extensions of PCA [90].  

PCA has been re-invented in other fields with different names. Some examples of 

such are Karhunen-Loève decomposition in signal processing [61], [75], Hotelling 

transform based on [54], Proper Orthogonal Decomposition in the field of mechanics 

[77], Spectral decomposition in noise and vibration and others.  

   

1.2 Definition and Derivation of PCA 

In this section we consider four classical approaches to PCA which are equivalent as 

given by [40] and we also give the necessary mathematical background that will be 

needed for this thesis. 

1.2.1 Definitions of PCA 

Let kL  be a linear manifold of dimension k  given in the parametric form as  

 kkk aaaL vvvv  ...22110 , where 𝑎𝑖 ∈ ℝ, 𝐯0 ∈ ℝ𝑚 and  kvvv ,...,, 21  is a set of 

orthonormal vectors in ℝ𝑚.  

Let 𝐱𝑖 ∈ ℝ𝑚 be data elements, we will let ix represent the value of the th variable 

for the thi observation, where ni ,...,2,1  and m,...,2,1 . For this thesis, the coordinates 
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will be represented by Greek indices while the observations will be represented by 

Latin indices. We let X denote an mn matrix whose th),( i element is ix . That is 

 

























nmnn

m

m

X

xxx

xxx

xxx

21

22221

11211







. 

 

 

 For all computations, we assume that the data is centered; this can be achieved by 

simple translation of the data.  

For any pair of vectors x and y, we define the distance function 𝑑𝑖𝑠𝑡(𝐱, 𝐲) such that 

the following axioms are satisfied: 

i. 0),( yxdist  and 0),( yxdist if and only if yx   (nonnegative) 

ii. ),(),( xyyx distdist   (symmetry property)  

iii. ),dist(+),dist(),dist( zyyxzx   (triangle inequality) 

 

The orthogonal projection denoted by )(xYP  is defined for an object x and a set of 

vectors Y as a vector in Y which minimizes Ydist yyx ),,( . That is  ).,(minarg)( yxx
y

distP
Y

Y


  

When ),( yxdist is the Euclidean distance, it can be shown that the the orthogonal 

porojection of data nii ,...,2,1, x  to the plane kL  denoted by ∑
1

,)(

k

LP







 xvvx . Where 

the inner product between any pair of vectors 𝐚 and 𝐛 ∈ ℝ𝑚  is given as  .,
1





m

i

iibaba  

In his paper “On Lines and Planes of Closest Fit to Systems of Points in Space”,  

Karl Pearson (1901) introduced the first approach to PCA . He proposed approximating 

multidimensional data by line or plane of ‘best fit’. He argues that a good fit will be line 

or plane that minimizes the sum of the squares distance of the dataset to its orthogonal 

projection onto the line or plane. This led to definition 1. 

Definition 1 (Data approximation by lines and planes).  

Given a dataset X, PCA computes the sequences of linear manifolds )1,...,2,1(,  mkLk  

embedded in ℝ𝑚  such that the sum of squared distances from data points in X, to their 

orthogonal projections on kL is minimal over all linear manifolds of dimension k .  
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In other words PCA solves the problem given below as  

    )1,...,2,1(min,  mk LXMSD k ,  

where ),( YXMSD denotes the mean squared distance between the dataset X and the set 

Y and defined as   XPdist
n

YXMSD i

n

i

iYi  


xxx ,)(,
1

),(
1

2 . 

Using the Euclidean distance, this can be stated as minimize 

 
∑

1

2

2
)(- 

1
n

i

iLiX P
n

D


 xx , (1.1) 

where ∑
1

,)(

k

LP







 xvvx  , mk   and  vv ,  ( is Kronecker delta).   

 
∑ ∑

1

2

21

,- 
1

n

i

k

iiX
n

D







 vvxx  (1.2) 

 
∑ ∑

1

2

1

,- ,
1 n

i

k

iii
n  


















vxxx . (1.3) 

The cross terms are zero since 0,  vv for  . Since ∑
1=

,

n

i

ii xx is the sum of the 

length of the data elements which is positive, minimizing (1.3) reduces to maximizing  

 
 
 

 











n

i

k

i
n 1

2

1

,
1

vx  (1.4) 

 
∑∑

1 1

1 n

i

k
T

ii

T

n  




 vxxv  (1.5) 

 




 vxxv∑ ∑
1 1

1
k n

i

T

ii

T

n  

  (1.6) 

 




 vv∑
1

)cov(
k

T
X



 . (1.7) 

 

Where 



n

i

T

ii
n

X
1

1
)cov( xx is the empirical covariance matrix of the data matrix X  which 

is a symmetric positive semi definite matrix. Therefore finding the lines and planes of 

best fit (in the sense of equation 1.1) to a system of data points reduces to finding the 

vector that maximizes the quadratic form (1.7). This is maximized by choosing the 
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vectors k,...,1=α,αv   to be the k eigenvectors corresponding to the largest k eigenvalues 

of the covariance matrix of X  (see Theorem 1.1). 

   

Theorem 1.1: Let A  be an mm  symmetric matrix with real entries and let the sorted 

eigenvalues be given by m  ...., 21 with mee ,...,1  being the corresponding 

eigenvectors. Then ,,...,2,1,,...,1 mkk ee  is a maximizer of the constrained maximization 

problem 

 
∑

1
,...,1

k
T Amax

k


 uu
uu

 

Subject to: .,...2,1=β,α,δ=, αββα kuu  

(1.8a) 

  

If we arrange the vectors k,...,1, u , as the columns of a matrix ]...[ 21 kB uuu , the 

optimization problem (1.8a) can be reformulated as  

   ABBtracemax T

B
 

Subject to: .IBBT    

 

(1.8b) 

where I is the kk   identity matrix.  

The proof of (1.8b) is available in [58] and also presented below. 

 

Proof: 

The eigenvectors mee ,...,1  of A  form a basis for the m-dimensional space, therefore we 

can write u as a linear combination of mee ,...,1 . That is k
m

i

ii ,...,1,
1




  eu , where 

i  are appropriately defined coefficients. Let E  be the matrix whose k-th column is the 

k-th eigenvector of matrix A  such that the k-th  eigenvector corresponds to the k-th 

largest eigenvalue. Then we can write ECB  , where C is the km matrix with thi ),(   

element iC .  

Since A  is a symmetric matrix with real entries, the matrix of its eigenvectors E

diagonalizes it. That is AEET , where  is a diagonal matrix. Therefore we have that

CCAECECABB TTTT  . Let iC  be the ith row vector of the matrix C , then the 

objective function in (1.8b) can be written as  
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   CCtraceABBtrace TT    


 


m

i

k

iiC
1 1

2



 . (1.81) 

Now since B is orthogonal and the columns of E are orthonormal, we have that BEC T  

and IBBBEEBCC TTTT  . Therefore the columns of C are also orthonormal and 

.
1 1

2 kC
m

i

k

i 
 

  (1.82) 

Let D  be an mm  orthogonal matrix such that C is the first k columns of D .  Now the 

rows of D are orthonormal and satisfy miDD T
ii ,...,1,1  , where iD is the ith row vector 

of matrix D . Since the rows of matrix C consist of the first k elements of the rows of D , it 

follows that kiCC T
ii ,...,1,1  , that is  

1
1

2 


k

iC


 . (1.83) 

Now 


k

iC
1

2



  is the coefficient of i in equation (1.81). From equation (1.82) we have that 

the sum of these coefficients is k, and from equation (1.83) none of the coefficient can 

exceed 1. Since we have that k  ...., 21 , then  
 













m

i

i

k

iC
1 1

2 


 will be maximized if we 

can find a set of iC for which  











.,...,1,0

,,...,1,1

1

2

mki

ki
C

k

i



  (1.84) 

If we choose kiC ii ,...,1,     where  i  is Kronecker delta, the condition given in 

(1.84) will be satisfied and B will be the first k columns of E . 

Therefore  ABBtrace T
 achieves it maximum value if B   is chosen as the first k 

column of the matrix E whose columns are the eigenvectors corresponding to the k 

largest eigenvalue of matrix A . In other words ,,...,1 kee  is a maximizer of the 

constrained maximization problem (1.8a). 

 

Now we present the second approach to PCA. In approximating 

multidimensional data with objects of lower dimension, it is often desirable to retain as 

much variation of the data as possible. Line and plane such that the variance of data 
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projection is large compared to the variation in the data is usually considered to be 

informative direction.   

 

Definition 2 (Variance maximization).  

For a dataset X and for a given vector 
v , Let us construct a one-dimensional 

distribution }∈,,:{ XxvxB    . If we define the empirical variance of X  along 

v  as )( BVar , where ()Var  is the standard empirical variance,  then PCA seeks to find 

such 
kL  that the sum of empirical variances of X  along { }

kvvv ,...,, 21  would be maximal 

over all linear manifolds of dimension k  embedded in .mR     

The problem PCA solves is given as maximize 

 ∑
,...,1

)(
k

Var


B  (1.9) 

 
∑∑

1 1

2
,

1
k n

i

i
n

 





vx  (1.10) 

 

We observe that equation 1.10 is the same as equation 1.4, therefore this reduces to 

equation 1.7 as given below: 

 
maxX

k
T





 vv
1

)cov(   

under the condition that αββα δ=, vv . From theorem 1.1, this is maximized by choosing 

the vectors k,...,1=α,αv   to be the k eigenvectors corresponding to the largest k 

eigenvalues of the covariance matrix of X . In addition to this, the variance k,...,1=α,αB

is given by the eigenvalue of the covariance matrix with respect to eigenvector αv . 

 

When analyzing a high dimensional data, usually some or even a large number of 

the variables under study are interrelated, leading to redundancy in the data. 

Sometimes it becomes desirable to re-express the data such that the transformed data 

eliminates redundancy. The solution to this problem using linear transformation is the 

third classical approach that leads to PCA.  
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Definition 3 (correlation cancellation):  

Given a dataset X, PCA seeks such an orthonormal basis { }
kvvv ,...,, 21  in which the 

covariance matrix for the projection of X  is diagonal.  

Evidently, in this basis the distributions xv ,  and xv ,β , for  , have zero 

correlation where the correlation here is the Pearson product–moment correlation 

coefficient defined as 
 

0
,

,,

,,



xvxv

xvxv




E
, E  is the expected value operator and  a  is 

the standard deviation of variable a.  

 

Given a mn  data matrix X , let the matrix P be a mm×  transformation matrix. We 

seek a new matrix XPY   such that covariance matrix of Y  is diagonal,  

PXCovPXPXP
n

YY
n

YCov TTTT )(
11

)(   (1.11) 

We know that the covariance matrix is a symmetric positive definite matrix which is 

orthogonally diagonalizable and it is diagonalized by the matrix of its orthonormal 

eigenvectors E  (i.e E is the matrix whose columns are the eigenvectors of covariance 

matrix). Therefore  

PDEEPPXCovPYCov TTT )()()(  , (1.12) 

where D  is a diagonal matrix consisting of the eigenvalues corresponding to the 

eigenvectors. Since the objective is to diagonalize ,)()( PDEEPYCov TT then choosing 

TEP  gives 

.)()( DEEDEEPDEEP TTTT   (1.13) 

This satisfies the objective.  

This result is the same as previous definitions. This implies that the dataset is de-

correlated by projecting it to the direction of the eigenvectors of its covariance matrix, 

which is equivalent to finding the principal component of the data matrix X . We note 

the following: 

1) the notion of correlation is basis-dependent (i.e. data can be correlated in one 

basis and uncorrelated in another), 

2)  PCA de-correlate the dataset irrespective of the underlying distribution. 
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3) The diagonalization )()cov( DEEX T is not unique, as one can have different 

choices of orthonormal bases for those eigenspaces with dimension (geometric 

multiplicity) greater than one.  

 

From linear algebra we know that orthogonal projections onto lower-dimensional 

space lead to contraction of all point-to-point distances (except for some that do not 

change).  The fourth approach is the problem of approximating our data by projection 

onto lower dimensional subspace with the objective of maximizing the mean point-to-

point squared distances of data projection. 

  

Definition 4 (mean point-to-point squared distance maximisation)  

Therefore, PCA seeks to find such sequence )1,...,2,1(,  mkLk
 such that the mean point-

to-point squared distances between the orthogonal projections of data points on 
kL  is 

maximal over all linear manifolds of dimension k  embedded in ℝ𝑚. That is we seek to 

maximize 

 
),(

1∑
1=,

2
jL

n

ji

iL PPdist
n

xx .  

The distance function  𝑑𝑖𝑠𝑡(𝐱, 𝐲) is taking to be the Euclidean distance, therefore the 

problem can be stated as 

 ∑ max→||)-(|| 2

2

ji

jiLX PD


 xx , (1.14) 

Where (1.14) can be re-expressed as 

 
 
 











ji

k

jiXD
1

2

)(,


 xxv  (1.15) 

 
 
 











k

ji

ji

1

2

)(,

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The expression in the bracket given as  
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where 
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  



ji

jijiS )()(
~

xxxx , 
 

and each element of S
~ is given as 

  



ji

jijiS ))((
~

 xxxx . 
(1.18) 

The matrix ijS
~

 is symmetric positive semi-definite, because for every y , yy   is positive 

semi-definite. 

Therefore the problem given by 1.14 can be stated as   

 
∑

1
,...,

~
max
1

k
T

vv
S

k


 vv . 

Subject to  ),( vv  k,..,2,1,  . 

(1.19) 

where the constraint is from the orthonormality condition on LP . Now it is left to show 

that the solution to the problem 1.19 is actually the principal components. To show this, 

we introduce lemma 1.1 

 

Lemma 1.1: The matrix S
~

 and )cov(X are identical up to a positive multiplicative factor, 

)cov(=
~ 2 XnS  

 

Proof: 

 Let us examine the matrix 
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where       
 


n
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n
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i

iji

11, 1

xxxx  and 



n

i

i
n 1

1
xμ , 

Therefore 
 




n

i

iinS
1

~
xx . (1.21) 

The remaining terms are zero because the data has been centered. We can write 

equation 1.21 as  
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 )cov(
~ 2 XnS  . (1.22) 

Based on lemma 1.1, the optimization problem 1.19 is the same as 1.7 with the 

)cov(X replaced by )cov(
~ 2 XnS   which is maximized by choosing the vectors 

k,...,1=α,αv   to be the k eigenvectors corresponding to the largest k eigenvalues of the 

matrix covariance matrix of )cov(.=
~ 2 XnS  (see theorem 1.1). Since the multiplication of 

a matrix by a positive constant does not change the eigenvectors or their order, the 

eigenvectors of )cov(X  is also the eigenvectors of .
~
S  Therefore the solution to 1.19 is 

the principal component. 

 

Let us define the distance distortion of the data arising from data approximation 

as )],(),([ 2

1,

2

jLiLj

n

ji

i PPdistdist xxxx 


. Definition 4 can also be formulated in terms of the 

distance distortion, that is, PCA seeks the sequence 
kL  such that the distance distortion 

in the data is minimized. 

 
minPPdistdist jLiLj

n

ji

i 


)],(),([ 2

1,

2
xxxx . (1.23) 

 

1.3 Some Assumptions and Limitations of PCA 

We briefly discuss some underlying assumptions and some limitations of PCA. This will 

help us to understand the performance of PCA in application to data and how PCA can 

be extended or adapted for various situations. See [89]. 

1. Linearity – PCA find the basis that “best” re-expresses the data. It also restricts 

the set of basis that is considered since the basis must be orthonormal.  The 

principal components are linear combination of the original variables. The 

development of nonlinear techniques has been based on the motivation that PCA 

may be inadequate for data in which nonlinearity is involved. For example, in 

engineering where most problems are nonlinear [111]. 

2. Directions with large variance are informative - from definition 2, the basis of the 

principal components is found using sample covariance matrix. However sample 

covariance matrix suffers the drawback of not being robust to outliers [56], 

[103].  The presence of outliers in data influences the result of the analysis as the 
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principal components align with the direction of large variance which in this case 

will be the direction of the outliers. Since the directions with large variance are 

assumed to be informative, for data with outliers, the result can be misleading. 

3. Principal Components are orthogonal- From definition 3, the objective of PCA is 

to de-correlate the data (i.e. to remove second-order dependencies). This was 

achieved by constraining the principal component to be orthogonal. Even though 

the assumption of orthogonal principal components makes finding principal 

component easy by using techniques from linear algebra however for data with 

higher order dependencies, PCA may not reveal all structures in the data. Second 

order dependencies are only sufficient to reveal dependencies in data for which 

the first and second order are sufficient statistic [89]. An example of such is data 

with non-orthogonal axis. 

4. Non parametric- PCA is a non-parametric analysis and hence does not 

incorporate any priori knowledge available. It is independent of any hypothesis 

about data distribution.  

 

1.4 Properties of PCA 

In this section we consider some important optimal algebraic properties of PCA which 

have statistical implications. 

Property 1: For any integer mk 1 , consider the orthonormal linear transformation 

 xy
TB  (1.24) 

Where y is a k-element vector and B is a m×k matrix, and let yS  be the covariance 

matrix for y, SBBS Ty , where S  is the sample covariance matrix of x  . Then the trace of

yS  denoted )( yStrace is maximized by taking kEB  where kE consists of the first k 

columns of matrix E and the matrix E is the matrix of eigenvectors (i.e. the columns of E 

are the eigenvectors of  S  which we otherwise call the loading vectors). 

The statistical implication of this property is that of all k-dimensional subspace 

projection of x , the variance of the projection of x  is maximized by the subspace 

spanned by the loading vector.  The proof of this property is available in [58]. This is the 

same as definition 2. 
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Property 2: Consider the orthonormal linear transformation as defined in property 1 

 xy
TB  (1.25) 

Then )( yStrace is minimized by taking *
kEB  where *

kE  consist of the last k columns of 

the matrix of eigenvectors E. Similar to property 1, the statistical implication of this 

property is that of all k-dimensional subspace projection of X , the variance of the 

projection of X  is minimized by the subspace spanned by the eigenvectors which 

correspond to the k-smallest eigenvalues of yS .  Similar proof to property 1 can be 

adapted to proof this. The axes along which data projections have minimal variance can 

be useful in detecting near linear relationship in the data which can be helpful in 

identifying outliers in the data. This is further discussed in section 1.5. 

 

Property 3:  (The spectral decomposition of S) 

The sample covariance matrix S can be decomposed as follows: 

 T
mmm

TTS eeeeee   ...222111 , (1.26) 

where αe  is the eigenvector of S. 

The statistical implication of this property is that in addition to being able to 

decompose the combined variances of all the elements of X into decreasing 

contributions of the principal components, we can also decompose the covariance 

matrix into the contribution from each principal component even though this is not 

strictly decreasing.  

 

Property 4: PCA maximizes Mutual Information on Gaussian Data. 

Let ),(~ SN 0x  and let xy
TB be as previously defined, since s'y  are linear combinations 

of the columns of X then they are normally distributed with zero mean and covariance

SBBS Ty .  Since B is deterministic, the conditional entropy )/( xyH  vanishes. 

Therefore mutual information  

 )()/()(),( yxyyyx HHHI  , (1.27) 

can be approximated with differential entropy, 
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.))(det(log
2

1
))2((log

2

1
)(log)()( 222 yyyyy SedppH k     (1.28) 

To maximize equation 1.28, it is sufficient to maximize )det( yS  over all choices of B .  This 

attain its maximal value when kEB  .  For further reading see [16], [8] and [22]. 

 

1.5 Some Applications of Principal Component Analysis 

PCA is a non-parametric eigenvector-based multivariate analysis and it is regarded as 

one of the most important results from linear algebra. Often used in the data pre-

processing step of data analysis or modelling, PCA has been successfully applied to data 

from numerous fields of human endeavours. PCA is usually performed on dataset in 

order to achieve various objectives, and in this section, we will look at a broad 

classification of these objectives. 

 

Feature Extraction:   

Let us consider the problem of finding a one dimension representation of a set of 

datapoints  𝐱𝑖 ∈ ℝ𝑚, 𝑖 = 1, … , 𝑛  in which the datapoints is actually distributed along a 

line 𝑙 spanned by the unit vector 𝐮 and embedded in ℝ𝑚 . Therefore 𝐱𝑖 =  µ + 𝑎𝑖𝐮  for 

some 𝑎𝑖 ∈ ℝ, where µ is the sample mean, and 𝐮 ∈ ℝ𝑚.  The variance of the data 

projection along any vector 𝐯 ∈ ℝ𝑚 of unit length is given as  
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1
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(1.29) 

We have that 〈𝐮, 𝐯〉2 = 𝑐𝑜𝑠2θ,  where θ is the angle between u and v and equation 1.29 

is maximized when 𝐯 = ±𝐮, provided that the data has finite variance. In this example, 

PCA has been used as a tool for feature extraction. We also note that variance along 

orthogonal direction will be zero.  Feature extraction is often used to pre-process a 

dataset in order to enhance the performance of other analysis and statistical methods.  

An example of the use of PCA for feature extraction is in neuroscience where a variant of 

PCA is used to identify features of a stimulus that increase the probability of a neuron to 

generate potential actions. This technique is called spike-triggered covariance analysis.  
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Dimension Reduction 

One of the main objectives of developing PCA is as a dimension reduction technique. 

That is given  𝐱𝑖 ∈ ℝ𝑚, 𝑖 = 1, … , 𝑛 . We want to find sequences of ,kL  usually with 

)( mk   that best approximate the data in the sense that it retains as much variability in 

the data as possible while eliminating redundancy in the data. For multivariate data 

with large number of variables, high correlation or collinearity usually exists (i.e. one 

variable can be linearly predicted from the others with a good degree of freedom). This 

phenomenom implies that there is redundancy among some of the variables which can 

lead to poor performance of some traditional statistical methods [109]. An example of 

such is the problem of multicollinearity in linear regression [108] which will be 

discussed later in section 1.9.   

Also, in modelling a dataset, usually data samples sparsely populate the 

dataspace in very high dimension; the sampling density is proportional to mn
1

where n is 

the sample size and m is the dimension of the dataspace. This is a consequence of the 

curse of dimesionality [10].  It is sometimes desirable to reduce the dimension of the 

data in order to deal with this problem and also to avoid a situation where the model 

overfits. 

Therefore, PCA is used for dimension reduction to enhance the performance of 

traditional statistical methods such as regression analysis, discriminant analysis, cluster 

analysis and canonical correlation analysis. In addition to this, due to the huge data 

generated by some systems, data storage has become a big challenge and dimension 

reduction techniques are employed to reduce the size of data to a manageable size for 

storage while preserving as much information of the data as possible.   

 

De-noising Data 

We define noise as unexplained variation or randomness in a dataset. The presence of 

noise in data further obfuscates the underlying structure(s) of the data. One application 

of PCA is to remove these distracting variances.  Since PCA rotates the coordinate axes 
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of the data such that much of the variance is concentrated in the first few coordinate 

axes, the remaining axes are usually dominated by noise. Discarding the axes with very 

low variance helps to eliminate or reduce the effect of noise.  This is the same as using 

PCA for dimension reduction purposes in which we select mk   such that principal 

components with large variances are retained while the remaining km  principal 

components with very low variances are discarded.  

Even though there is no absolute scale for noise, according to [89] a common measure is 

the signal-to-noise ratio (SNR) given as  

𝑆𝑁𝑅 =  
𝜎𝑠𝑖𝑔𝑛𝑎𝑙

2

𝜎𝑛𝑜𝑖𝑠𝑒
2  . 

Where 𝜎𝑎
2 denotes the variance of is variance of 𝑎.  We should however mention that 

axes with small variance (which could be classified as noise) sometimes could be useful 

for some analysis and in addition, the last few principal components can help detect 

near constant linear relationship in the data. This can be useful in identifying outliers 

that are not apparent with respect to the original variable. A strong correlation between 

the variables implies that there are linear functions of the variables with smaller 

variance than the original variable; such linear functions with small variance help detect 

outliers which may not be easily detected in the original variable. The situation where 

the variance along an axis is 0 signifies a constant relationship among the variables 

which should be removed. Identifying such constant relationship in the data may be 

difficult, however this is revealed by PCA as axis with zero variance. For further reading 

on this see section 10.1 of [58].  

 

Data Visualization in Low Dimension 

One important step in exploratory data analysis is data visualization, because it 

helps to interact better with the data. Data visualization becomes difficult when the 

dimension of the data is more than three, however such data can be approximated with 

objects of dimension two or three which capture the important structure(s) in the data 

(for PCA, this is retaining as much variance in the data as possible)  and we can visualize 

this lower dimension approximations of the data.  



 

22 
 

For example we consider visualizing the Iris flower dataset using PCA. This is a 

multivariate dataset with and 4 variables and 150 samples (consisting of 50 samples of 

each of the three species of the Iris flower) and was collected by Sir Ronald Fisher 

(1936) as an example for discriminant analysis [4]. To visualize this data we project the 

data onto the loading vectors of the principal components and visualize various 2 and 3 

dimensional approximations of the data (See figure 1).  

 

 

 

a)   b) 

 

 

 

c)  d) 

Figure 1: Scatter plot of Iris dataset projected onto various principal axes. Datapoints 

belonging to the same class are shown using the same colour. 

 

Other uses of PCA include assigning weight to the variables in a dataset. Sometimes 

in data analysis there is a need to attach importance to certain variables, this is usually 

achieved by multiplying the variables with numbers (weights) which help to emphasize 

its importance in the analysis. The choice of weights is based on the problem being 
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solved, however for some analysis; these weights can be chosen as the loading vector of 

the first principal component. This is because the first principal component is the 

direction of maximum spread of the data and its loading vector is the coefficient of the 

linear combination of the original variables that achieve this.  One application of this is 

in equity market where traders sometimes use PCA to weight a portfolio [110] 

 

1.6 Principal Component Analysis and Singular Value Decomposition 

Sylvester (1889) in his paper [95] showed that any real matrix M with rank k can be 

factorized into the form  

 TUDVM   (1.30) 

Called Singular Value Decomposition (SVD) of the Matrix M, where U  is an nn  

orthogonal matrix, V is an mm  orthogonal matrix (i.e.
n

T IUU  ,
m

T IVV  ) and D is an 

mn  diagonal matrix with non-zero diagonal entries id , ( ),...,2,1 ki  called singular 

values. The non-zero columns U of U are called the right singulars vector while the 

non-zero columns V of V are called the left singular vectors. SVD is a general method 

for understanding change of basis and it provides an algebraic solution to PCA. 

Given that X is a data matrix which is already centered (this can be accomplish by a 

simple translation of the data); we can define a new matrix X
n

Z
1

1


 and let ZZS T . 

We note that XX
n

S T

1

1


  is the sample covariance matrix of X . The principal 

components of X  are computed using eigenvectors decomposition of ,S   

TVVS  , 

where the columns V  of V are eigenvectors of S arranged in order of the magnitude of 

their corresponding eigenvalue.  

It turns out that SVD represent a solid mathematical foundation for PCA (Strang 

1993). Consider the SVD of  X, 

 TUDVZ   (1.31) 

The covariance matrix of X  is 



 

24 
 

 TTTT UDVUVD
n

XX
n

S
1

1

1

1





  (1.32) 

 TVVD
n

S 2

1

1


  (1.33) 

We remark that S  and 2D  are similar matrices and therefore V is the matrix whose 

columns are the eigenvectors of S  and the singular values id  of D  are the root of i

the eigenvalues of S . Also from equation 1.31,  

 1 ZVDU  (1.34) 

Where we note that ZV  are the principal components of X and since D is diagonal 

then 1 ZVDU  is the scaled version of the principal components where each principal 

component has been scaled by the singular value id .  

One interesting result of SVD is given by the Eckart-Young theorem which gives a 

solution to the problem of approximating a matrix A of rank m with another matrix B of 

rank k, mk  .  

Theorem 1.2 Eckart-Young theorem 

The approximating matrix B of rank k, mk   to a matrix A of rank m which has an error 

matrix with the lowest Frobenius norm is formed by taking the matrix B to be the SVD 

of A under the constraint that the lowest 1 km  singular values are set to zero. That is 

if SVD of TUDVA , then 

 TVUDB *= , (1.35) 

where *D is the diagonal matrix with the diagonal elements id , such that  

 0==...==>≥...≥≥ 2`+1̀+21 mkkk dddddd . (1.36) 

Another way to express this is if ija , ijb  and ijc are the elements of A and B (as defined 

above) respectively, and C is any rank k matrix,  then Eckart-Young theorem states that 

the solution to the problem  

 minca
i j

ijij  2)( , (1.37) 

is given by  
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  
i j

ijij ba 2)( . (1.38) 

See [115, 116] for therorem and proof 

 

1.7 Iterative Algorithm for calculating Principal Components 

The naïve computation of PCA requires the covariance matrix. Computing the 

covariance matrix requires )( 2nmO operations and when n, m are large this could be 

computationally expensive. Roweis (1998) developed a method that avoids computing 

the covariance matrix explicitly [91]. This algorithm was based on the classical 

expectation/maximization iterative algorithm which was first introduced by [21] and it 

is of order )(nmkO (where mk   is the number of principal component of interest). The 

algorithm is presented below (also see [40], [91]): 

1. )(0 XM Fv . (i.e. the zero order principal component is the mean point of X). For 

centered data we set 00 v . 

2. Choose randomly 01 v  

3. Iterate the following steps: 

4. Calculate 
2

1

10

||||

,

v

vvx 


i

ia ,  i=1,…,n; 

5. Given ia , find new 1v , such that min)(
11

2
10

v
vvx 



n

i

ii a  

i.e.  












n

i

i

n

i

i

n

i

ii

a

aa

1

2

1

0

1
1

vx

v ; 

6. Re-normalize |||| 111 vvv  . 

7. If the direction of angle 1v  changes by less or equal to some small angle   then 

stop else go to step 3 

To calculate the second principal components, a deflation approach is applied: after 

finding 1v , we deflate the data and calculate new 
110 , vxvv  XX new and the 

algorithm is applied to find the PCA on newX . This procedure is repeated for further 

principal components. 
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As can be noted (see [21], [40]), this iterative algorithm indeed performs singular value 

decomposition of the data and finds the right and left singular vectors one after the 

other.   

The standard convergence proof of [21] applies to this algorithm; therefore it 

always reaches a local maximum of likelihood. Also, [101] [102] have shown that the 

only stable local extremum is the global maximum at which the true principal subspace 

is found. Therefore, the algorithm converges to the result. 

 

Remark: As observed by Gorban et al (2015) [112], any point in high dimension are 

almost orthogonal to other points and therefore the algorithm above may suffer in high 

dimension especially at the projection steps. 

 

1.8 PCA, K-means and Principal Objects. 

In PCA, data approximation is achieved by the projection of data of high dimension to 

linear manifold of lower dimension such that ∑
1

2

2
-

1
),(

N

i

ii P
n

XMSD



 xxy y
  is minimized 

as given in definition 1. Another approach is to approximate a dataset by a finite set of 

points },...,{= 1 kY yy with nk  where each Xi∈x  is approximated by the closest Yi∈y

this leads to the popular k-mean clustering method. This idea date back to Hugo 

Steinhaus (1957) and was developed further by James Macqueen (1967), Stuart Lloyd 

(1957) and many extension and adaptation over the years. 

Theoretically, PCA and k-mean clustering are linked [41].  First we consider the 

generalization of the notion of mean value as given by Fréchet (1948) [28], as a set 

which minimizes the mean square distance to the set of data samples.   

  ∑ 2

∈

),(minarg)(

i

i
D

F distM xyx
y

 . (1.39) 

Using the definition above, we can find a mean or a set of means from a space D (which 

does not necessarily coincide with the space of the dataset) provided distance between 

D∈d  and Xi∈x can be measured. This mean point or set of means are called principal 
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objects. We should mentioned that it is not guaranteed that the mean point(s) will be 

unique. 

For example, if we chose D to be the space of k-element sets of vectors in mR (k-tuple) and 

distance between D∈d and a point Xi∈x defined as  

2
,..,1

||-||min),( ji
kj

idist dxyx


 , (1.40) 

where jd is the jth element of the tuple, then the Fréchet mean corresponds to the 

optimal position of centroids in the k-mean clustering method. 

From the definition of Fréchet mean, PCA can be seen as the case where D is 

chosen as the space of linear manifold embedded in mR and the distance between a point 

Xi∈x and D is defined as the distance between ix  and its orthogonal projection Dd , 

using the Euclidean distance. Hence, PCA and k-means clustering can be seen as two 

extreme cases of principal objects where k-means is unstructured and PCA has a rigid 

linear structure. 

 

1.9 PCA and Predictive Modelling  

PCA is often used in the pre-process stage of data analysis before further 

predictive modelling is performed. As mentioned earlier, one of the applications of PCA 

is to remove variance that is considered distracting (noise) from the data. Removing 

distracting variance is a problem in dimension reduction which helps to reduce the 

number of parameters in the predictive model and to overcome problems such as multi 

co-linearity and overfitting. 

Given a set of independent variables (predictors) mXXX ,...,, 21  and a dependent 

variableY , regression analysis seeks to estimate the relationship between the 

independent variables and the dependent variables.  That is to model  

),...,,( 21 mXXXfY  . (1.41) 

Regression analysis seeks the function f which relates the independent variables with 

the dependent ones.  
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Now let us consider the case of multiple linear regression models. It is assumed 

that the relationship f between the independent variables and dependent variables is 

linear and additive (the additive assumption can be removed by considering the 

interaction of the variables), and the model is given as: 

  mm XXXY ...22110 . (1.42) 

The scalars i are the parameters of the model (regression coefficient) , ),(~ IN 0ε is the 

error term which is assumed to be normally distributed and I is the identity matrix. The 

error term is used to capture all departure from the deterministic relationship between 

the dependent and independent variables which could arise from different sources such 

as measurement error, unmeasured variables that could contribute to the prediction 

etc.  A multiple linear regression can either be used as a predictive model or as a tool for 

inference when the objective is to understand how the independent variables relate 

with the dependent variables. For ease of computation and without loss of generality we 

assumed that all the variables are mean centered. 

The parameters are estimated from the sample dataset.  If we view the 

independent variables mXXX ,...,, 21   as columns of an nm matrix X such that the i-th 

sample observation of ),...,,( 21 mXXX is the i-th row of X , Then we can use matrix 

notation to express (1.42).  Let the dependent variable be given by the vector y  with 

elements 
iy   such that ),( ii yx  form a pair which represents a sample observation of 

independent variables and its corresponding dependent variable, thein in matrix 

notation 

.εy  X  (1.43) 

where  is the m  -dimensional vector with elements mβ ,...,1, 
 and ε is the vector of 

error with elements iε  which orresponds to
iy . It is assumed that the errors have the 

same variance   and are uncorrelated. That is ),(~ ΣN 0ε . The estimate of the 

parameters using least square is given as  

  y
TT XXX

-1ˆ   (1.44) 

One major problem with multiple linear regressions is that of multi co-linearity. 

Typically there exist some forms of correlation between variables in a given dataset, 

however when there is a near constant linear function of two or more independent 
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variables, multi co-linearity is said to occur. A near constant linear function of a subset 

of the independent variables implies that one can be predicted from the others with a 

high degree of accuracy.  This is undesirable in regression analysis as it causes the 

matrix ( )-1T XX  in equation1.44 to be ill-conditioned. The variance of the parameter 

estimate becomes very large thereby affecting the stability of the model which affects 

the result of further predictions based on the model estimator. The variance of the 

estimate is given as: 

1-)()ˆvar( XX T  . (1.45) 

To see the effect of multi co-linearity on the estimate, we substitute the spectra-

decomposition of the covariance matrix XX T  into equation 1.45 to get 

∑
1

12)ˆvar(

m
T







 ee   (1.46) 

Where e is the  -th eigenvector of XX T and  is the corresponding eigenvalue (i.e. the 

variance of the  -th principal component). In the case of multi co-linearity in the data, it 

appears as a principal component (PC) with small variance   with large inverse 1
  

which leads to large variance for the elements of ̂ .   

 However since PCA de-correlate the data set as given in definition 3; regression 

can be done on the principal components of the original data thereby ensuring that 

there is no multi co-linearity in the predictor set; this method is called Principal 

Component Regression (PCR). Let the principal component be XEZ  , where E is the 

matrix whose columns are the eigenvectors of the covariance matrix of X . Then the 

regression problem using the principal components as predictor can be expressed as:  

,εy  Z  (1.47) 

where η  is the vector of regression coefficients.  If XEZ = , then TZEX = and 

substituting this into equation 1.43 gives  

ε.y  TZE  (1.48) 

Comparing equation 1.48 with 1.43 we have  TE  and  E . 
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 It should be noted that if all the PCs are included in the predictor set, then the 

model obtained will be equivalent to that of least square on the original variables and 

hence the problem of large variance is still present. Therefore in order to reduce the 

variance, bias is introduced into the model by not including all the principal 

components in the model. The notion of bias–variance trade-off is popular in data 

modelling in which bias is introduced into a model in order to reduce the variance of the 

model with the aim of improving the stability and performance of the model. Since multi 

co-linearity usually appears as PC with small variance, one attempt to introduce bias is 

to exempts PCs with low variance.  Therefore the biased estimate ̂ of   will be given as  

yee
T

k
T X∑

1

ˆ



  (1.49) 

Equation 1.49 is obtained by using the spectra decomposition of 
1)( XX T
 and setting

0...21   mkk .  

 In addition to (PCR), other methods have been developed which also seek to 

reduce the variance due to multi co-linearity in a regression model by introducing some 

bias into the model. Such methods include the ridge regression and Lasso (see [53], 

[99]). 

However, even though in PCA, principal components with high variance are 

selected based on the rationale that principal components with high variance are most 

informative, it should be noted that PCR does not take into account the dependent 

variable during the pre-processing step using PCA. The objective of PCA is to find the 

principal components that maximize the variance of the explanatory variables only; this 

may not necessarily have a satisfactory predictive performance. In fact [59] corrected 

the misconception that principal components with low variance are not important in 

prediction and show that they could be as important as principal components with large 

variance when it comes to regression analysis.  Therefore, it is important to note that it 

is not the size of the variance of each of the principal components but the correlation 

between the principal components and the dependent variable that is of more 

importance in enhancing the predictive performance of the regression model. However, 

PCR can be made more efficient in predictive modelling by appropriate selection of the 

principal components used as predictors.  
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Other methods have been developed which take into account both the 

independent and the dependent variable during the dimension reduction step. An 

example of such methods is Partial Least Square method (PLS) which generalizes and 

combines features from PCA and multiple regression. Also, if the data is not well 

approximated by PCA (for example, data that are non-linear, disconnected or branched) 

then the performance of the predictive model could suffer if PCA is used for dimension 

reduction in the pre-processing step.  To correct this, in [24], an analogue method to 

PCR but in which the data is projected to the principal curve approximating the data 

(using some tangent approximation to the principal curve or manifolds) was proposed. 

This method was called Projection Based Regression Tree. We remark also that PCA is 

not robust to the influence of outliers which could be present in data and PCR suffers 

from this drawback. One way this has been dealt with was to find a low dimension 

approximation of the data using some robust PCA. This approach was combined with 

robust linear discriminant analysis in [57] to improve the predictive performance of 

models. 

 In addition to the use of PCA in resolving the issue of multi co-linearity in 

datasets, using principal components as the predictor set make the computation of the 

parameters easier due to the orthogonality of the principal components. In a typical 

dataset, even when multi co-linearity is not present in the dataset, there are usually 

some level of correlation between the variables in the predictor set and the inclusion 

(or exclusion) of some variables in the model affects the parameter estimate of other 

variables.  However, this is not the case when the principal components are used as the 

predictor due to the fact that the principal components are de-correlated. 

 In classification problem such as Linear Discriminant Analysis (LDA), PCA is 

employed as a tool for dimension reduction and also for data visualization. Data 

visualization is useful for revealing the structure of the data and the separation between 

the classes that exist in the data.  The application of PCA as a tool for dimension 

reduction and data visualization also extend to clustering methods. However, it should 

be noted that in LDA and clustering problems the principal components with large 

variance do not necessary have to coincide with the direction in which the classes 

(groups) are separated. Therefore in dimension reduction, caution should be made in 

discarding principal components with low variance as it could provide information 
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about the class separation. But, if the inter class variance in the dataset is greater than 

the intra class variance then the direction of the first PC will provide information about 

the class separation since the direction of the first PC will aligned with the direction of 

maximum variance of data projection. 

Finally, we remark that various distortions of the data space are possible during 

dimension reduction.  For data which are labelled into classes, this could affect class 

structure (both inter-class and intra-class structure) of the data. This distortion could 

affect the performance of decision model for separating the classes. See [41] on how to 

analyse this distortion and for some examples. 

1.10 Big Data 

Virtually every field of human endeavour is driven by technology. Innovation in 

technology over the last few decades has led to an explosion in the volume of data 

generated and collected leading to what is now called big data.  According to the reports 

[13], [93] [34] [87] [33] [31] [32] [78] [11], one could establish that there is an 

exponential growth in the volume of data and this has led to new challenges in 

managing and analysing these data. 

Big data can be defined as datasets whose size is beyond the ability of typical 

database software tools to capture, store, manage and analyse [80]. A lot of 

organizations are beginning to pay attention to big data in order to leverage their 

businesses and increase production, competitiveness, reducing waste and to support 

human decision making. This is because it is expected that the more data that is 

available, the more information one can elicit from the data and also the more accurate 

the result of analysis of such data. Thus big data is now a major factor of the economy. 

However, in addition to the volume of data generated, big data also comes with 

varying degrees of complexities; in fact, this century is called the century of complexity 

[48]. One of the complexities that have to be dealt with is the dimensionality of big data.  

We know that many statistical learning methods behave irrationally in high dimensional 

space which is termed the curse of dimensionality [10] as previously discussed. 

Therefore, there is a need to reduce the dimension of the data in order to understand 

the data and to learn from this data.  Reducing the dimension of data is also needed for 

data visualization.   
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Finally, one other reason for dimension reduction is the need to manage the data. 

As mentioned earlier, the growth of data is exponential however the development in the 

infrastructures necessary to manage these data is not commensurate. An example of the 

application of dimension reduction in big data management is in data storage, the data 

can be approximated by an appropriate lower dimension object and stored. 

1.11 Problem Statement and Structure of the Thesis 

The problem of approximating a system of multidimensional points by a linear manifold 

of lower dimension led to the development of PCA [85]. This has been extended to 

approximating data using nonlinear manifolds, finite set of points or other principal 

objects. The success of data approximation is crucial to knowledge discovery and 

modelling as data approximation allows for data visualization and many models 

perform poorly on very high dimensional data.  It is essential that while approximating 

data by objects of lower dimension or complexity, the dynamics and structure of the 

data is preserved. 

However approximating data usually leads    to some form of distortion of the 

data. For example, data points which are far from each other can be closely projected 

when approximated while some datapoints that are close to each other in the original 

dataspace may be projected far from each other when approximated. In the case of PCA, 

it favours directions with large distances (which correspond to direction with large 

variance) which can lead to distortion of other structures in the data which exist at 

smaller distances and sometimes completely obfuscating such structures. Therefore it is 

not just sufficient to approximate data by objects of lower dimension but it is also 

important to evaluate the distortion of the data as such distortion could have an impact 

on further analysis. In particular for PCA, there is the need to reveal the various 

structures that exist at various distances, to analyse the structures and to evaluate the 

distortions to these structures by the approximation.  

The distortion during data approximation can be undesirable as data 

visualization using such approximation could be misleading.  For most manifold 

modelling methods, the quality of approximation depends crucially on the initial 

conditions as most manifold modelling methods adopt the expectation maximization 

approach (or its variant). The first part of this thesis focuses on the effect of 
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initialization on the quality of approximation of manifold modelling methods. Using Self 

Organising Maps (SOM) as a case study of manifold modelling techniques we will 

analyse the effect of two popular initial approximation approaches on the final 

approximation of data using various examples. The two initialization methods 

compared are: initialization from the space of principal component of the data and 

random initialization. To understand the dynamics of manifold modelling methods, the 

dataset will be further classified as linear, quasilinear and nonlinear.   

Also in this thesis, we will address the problem of revealing intrinsic structure(s) 

which PCA may not reveal. Since PCA finds the global structure of data, we will attempt 

to study the PCA of data at various localizations in order to reveal intrinsic structures. 

We will look at localization in two different directions. The first direction is an extention 

of definition 4 in which we will find the subspaces that approximate the data for various 

restricted distributions of pairwise distances. The PCA structures resulting from this 

localization will be embedded into appropriate space and analysed to reveal intrinsic 

structures. For the various stuctures that will be revealed we will further evaluate the 

quality of approximation of such structures in term of preservation of local and global 

structures, distortion of the dataset structures and preservation of class structure for 

labelled data. 

The second direction to localization will be to perform PCA locally in the 

dataspace. PCA is a non parametric analysis; given a dataset, the resulting principal 

components are unique and reflect the global structure of the dataset. However for 

some complex data, there may be different structure(s) locally in the dataspace. We 

analysed the local PCA structures in order to deduce the dynamics and structure of the 

data in the various region of the dataspace.  

Finally, we will combine these two localization approaches to find robust 

approximation of data. 
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Structure of the Thesis 

There are six chapters in this thesis. In chapter 1 we have already given a brief history 

and development of PCA, the various derivation of PCA, some assumptions and 

limitations of PCA, and some properties of PCA. We have looked at some applications of 

PCA and numerical approach to finding principal components. We introduce the use of 

PCA in the pre-processing step of predictive modelling and also the recent challenges 

with big data.  

The remaining part of this thesis is organised as follows: 

Chapter 2: In this chapter we will review two directions in which PCA have been 

generalized and extended especially to cope with complex data. Using definitions 1 and 

4 which derived PCA using distance function, PCA was generalized by assigning weights 

either to the datapoints or to the pairwise distances of datapoints. We review how this 

can be put into a general framework using generalized SVD. The second direction in 

which PCA has been generalized is by replacing the linear function in the approximation 

with a nonlinear function. An example of this is principal curve and manifold which 

analogous to PCA (which seeks hyperplane that passes through the middle of system of 

points) find smooth curves and manifolds which pass through the middle of the system 

of data points, using the notion of self consistency to define the middle of the data cloud. 

Next we review Self Organising Maps (SOM), an artificial neural network which 

approximate a system of points by a finite set of points (neurons) of smaller size 

(usually arranged in rectangular grid of 1 or 2 dimension size)  to form a topological 

mapping of the data. We will also review the kernel PCA which first maps data 

nonlinearly into a reproducing kernel Hilbert space before finding the principal 

component. We will also review another development in nonlinear approximation 

which provides a general framework for constructing principal objects of various 

dimensions and topologies using the metaphor of elastic membrane and plates. These 

are called elastic nets and elastic maps respectively. This was extended using a 

topological grammar to develop principal graphs. This method produces approximators 

of various geometric, structural and construction complexities which can cope with 

branching data. We will also review the development so far in approximating data 

locally in the dataspace using PCA and the application of PCA to tensor objects. For 

tensor objects, the approach of vectorising the tensor objects before finding the 
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principal components does not take into consideration the natural structure of the 

tensor objects approximation which may destroy the important structure of the tensor 

objects hence the need for perfoming PCA directly on the tensor space. We will also 

discuss the advantages and disadvantages of projection methods and manifold 

modelling methods. Finally, we look at a standard problem in manifold learning which is 

the problem of initial approximation as everything depends crucially on the initial 

approximation. In this chapter we investigate the effect of initialization on manifold 

modelling methods using SOM as a case study. We compare the performance of two 

initialization approaches (Random Initialization (RI) and principal component 

initialization (PCI)) which are popularly used for manifold learning methods and SOM in 

particular. To further understand the performances of these initialization methods, the 

data were classified as quasilinear and nonlinear based on the manifold of the data. The 

performance of the initialization methods were compared for the various classifications 

of the data using fraction of variance unexplained as a criterion. The results showed that 

the widely accepted presumption about the advantage of PCI SOM initialization is not 

universal and in the case of SOM this presumption is definitely wrong for essentially 

nonlinear data. 

Chapter 3: The goal of this chapter is to study the structure(s) of data at various 

distances thereby revealing some hidden structure(s) in the data which conventional 

approach may not reveal. Using weighted PCA, we find the sequences of subspaces that 

best approximate the data for various distributions of pairwise distances (scales) which 

we call Multiscale Principal Component Analysis (MPCA). The resulting principal 

components are scale dependent and we will further analyse these principal 

components in order to establish the structures in the data. We show that representing 

principal components using the orthogonal loading vectors (orthonormal k frame) does 

not preserve some important properties of the principal components. It turns out that 

principal components are lines rather than vectors and are thus points in the projective 

space. More generally, when we consider multiple principal components, these are 

points in the Grassmannian space. To study points in the Grassmannian space we 

embed the points into a suitable vector space, in our case the space of orthogonal 

projection matrices. We study some properties of this representation to ensure 

consistency with the properties of principal components. To reveal the structures in the 

data, we analyse the PCA structures at various scales. We defined the distances between 
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two points on the scales as the distance between its PCA structures and by examples we 

show that for data with clear multiscale structure, MPCA reveals the structures. We 

introduce the ratio of distortion as a criterion for measuring the distortion of distance 

structure and we discuss the effect of scaling on MPCA as MPCA is not scale invariant. 

Chapter 4: In this chapter we study the PCA structure of data at various 

localization of the dataspace. For complex data which can be described as nonlinear, 

‘branched’ ‘disconnected’ or generally as complex data, data is best approximated 

locally.  Local PCA can be seen as tangent approximation to nonlinear methods. Using a 

kernel function, we formulate the problem of approximating PCA locally in space as a 

weighted PCA. We also study the PCA structure at various localizations to understand 

the structure of the data using the representation introduced in chapter 3. The quality of 

the analysis depends on the quality of the partition of the data. Partitioning of data is a 

classical problem in clustering therefore we discuss some options for selecting the 

partition and we also discuss the recursive local PCA algorithm. Finally we discussed 

how to combine MPCA and PCA localization in space to provide robust analysis and to 

reveal geometric structures. 

  Chapter 5: In this chapter we analyse both artificial and real data to 

demonstrate how the analysis of the MPCA structures of a dataset (as discussed in 

chapter 3) and local PCA structures in space (as discussed in chapter 4) can be used to 

reveal intrinsic structures in the dataset. We also discuss the issue of overfitting. For 

each cluster (resulting from the clustering of scales), we select representative scales to 

describe the cluster. We further analyse the representative scales to evaluate how each 

cluster preserve local structure at various scale compared to PCA using intersection of 

k-nearest neighbour of the data and the data approximation for selected points. We 

examine how each cluster preserves global structure in the dataset compared to PCA 

using correlation analysis of the distance structure in the original dataspace and the 

subspace of approximation. However due to dependence in the sample of pairwise 

distances, the correlation was performed on selected points which are chosen to be 

independent. This is called NatPCA and introduced by Gorban et al in [41]. For each 

cluster, we also compare the distortion of the data compared to PCA using ratio of 

distortion and for labelled data we compare how each cluster preserves the class 

structure of the data compared to PCA during approximation. Finally we perform local 
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PCA on the Iris dataset to reveal how the PCA structure changes as the radius of 

neighbourhood changes. We also cluster the local PCA structures for the Energy 

efficiency dataset to identify regions in the dataspace with similar PCA structures. 

  Chapter 6: This is the final chapter and it discusses some results obtained from 

the work in this thesis and also provides some critical analysis of the methods 

developed. It also highlights areas of further research. 

The results have been presented at the following conferences and seminars: 

 2nd International Conference on Mathematical Modeling in Physical Sciences 

2013 (IC-MSQUARE 2013). Held in Prague.  

o “Mulitscale Principal Component Analysis” 

 European Conference on Data Analysis (ECDA) 2013.  Held in Luxembourg.  

o “Is PCA good for SOM Initialization?” 

 Workshop in Geometrical Structures in Statistics 2013. Department 

Mathematics, University of Durham.   

o “Multiscale Principal Component Analysis” 

 Midlands Postgraduate Probability workshop 2013. 

o “Revealing Geometric Structures in Data using Multiscale Principal 

Component Analysis” 

 The Internal Applied Seminar in Department of Mathematics in University of 

Leicester 2012.   

o “Initialization of Self-Organizing Maps: Principal Components versus 

Random Initialization. A case study” 

 

And partially published in  

 Journal of Physics Conference Series 07/2013; 490(1).  

DOI:10.1088/1742-6596/490/1/012081 

“Multiscale Principal Component Analysis”. 

 

 Information Sciences (2015) 

DOI: 10.1016/j.ins.2015.10.013 

“SOM:stochastic initialization versus principal components”. 
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Chapter 2 

Generalization and Extension of PCA 

 

2.1 Introduction 

Several approaches have been taken to generalize PCA and to adapt it in different 

contexts. In this chapter, we briefly review some extensions and generalizations of PCA.  

We will concentrate on two popular approaches in which there has been considerable 

development. The first approach is based on methods  that generalize PCA by 

introducing weights on datapoints, variables or distances between datapoints. The 

second approach is based on methods that generalize the functional form of the PCA 

using non-linear curves and manifolds to approximate a system of points.  Finally, in 

this chapter we will consider a standard problem common to most manifold learning 

methods, which is the problem of initial approximation of a method. The quality of 

approximation depends crucially on the initial approximation. See for example [7, 94]. 

 

2.2 Weighted PCA 

Firstly, we note that PCA as introduced in definitions 1 and 4 are defined with the use of 

distance function. This allows for generalization by applying weights to the respective 

distance function. This can be used to incorporate external knowledge into the analysis 

of principal components. Some examples of such external knowledge could be of 

importance of certain data points and similarities or dissimilarities between the data 

points. 

Let us consider the PCA as given in definition 1. Using the Euclidean distance, 

this problem was stated as  
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One way to generalize this is to apply weights to the distances between a data point ix  

and its projection iLP x . Hence we solve the problem given as 
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where 0iw  is the weight applied to the distance between the data point ix  and its 

projection iLP x . We note that the case where iwi 1  is the PCA as seen in definition 1. 

Choosing 0iw  for some i correspond to exempting such data points from the analysis. 

Weighted PCA can be used to exempt certain influential datapoints such as outliers and 

thus improve the robustness of PCA. 

Another direction is to weight the distances between data projections. We recall 

from definition 4 that PCA seeks the set of orthognormal vectors v which maximizes  
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Therefore, PCA can be generalized as follows: 
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That is, we seek to maximize the weighted pairwise distances of the data projection. The 

particular case where jiwij ,1 , leads to PCA as given in definition 4.  

Weights can be used to incorporate external knowledge of similarity or dissimilarity 

into the data analysis. Koren and Carmel (2004) gave some applications of weighted 

PCA as given by equation (2.2) and one of these applications is to enhance the 

robustness of PCA to outliers by underweighting distant datapoints. They proposed 

choosing
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the pairwise distances of the datapoints. Another application of this which applies to 

labelled data is called supervised PCA in which the weights are choosen to emphasize 

the discrimination between clusters [71]. 
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Greenacre (1984) in his paper [49] put this into a general framework in which 

generalized PCA was defined through generalized SVD (note that weighted PCA as 

defined by (2.2) does not fit into this).  As mentioned in section 1.7, Principal 

component analysis is usually done through SVD. The SVD of a matrix TUDVX  where 

k
T IUU =  and k

T IVV   and kI is the identity matrix of rank k . Given positive definite 

matrix   and , the Generalized SVD of a matrix X  is given as  

 TAMBX   (2.3) 

Where A  satisfies the condition k
T IAA  , and k

T IBB  . We observe that when  and 

  are I  (the identity matrix) then we have SVD. 

Analogously, Greencare defined generalized PCA as having the loading vectors given by 

the columns of B, the principal components as the projection of the data onto this 

loading vectors. Similar to Eckart-Young Theorem for SVD, if Ω and Φ  are chosen to be 

diagonal matrix with diagonal elements niwi ,...,1,   and mjj ,...1,   respectively, then 

the solution to the problem of approximating  X with a rank k matrix in the sense of 

minimizing  

 
minxxwD

i

ijij

j

jiX  2)ˆ(  (2.4) 

is given by choosing the approximating matrix X
~ to be the generalized SVD under the 

constraint that the lowest 1 km  singular values are set to zero. That is, if generalized 

SVD of TAMBX  , then 

 TBAMX *
~
 , (2.5) 

where *M is the diagonal matrix with diagonal elements id , such that  

 0...... 2`1̀21   mkkk dddddd . 

 
 

When  and   are diagonal matrices, then we see that the elements of   introduce 

weights to the datapoints and the elements of   introduce weights to the variables. If 

we chose jj  ,1  then (2.4) becomes 
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iX  2)ˆ( . (2.6) 

And if we define the generalized PCA from the generalized SVD, then the optimization 

probem 2.6 leads to 2.1. This is the case where the observations are weighted before 

performing PCA. One example of the application of weighted PCA is in the analysis of 

microarray data [18], where the weights are introduced to the datapoints 

(observations). 

Also if we chose iwi ∀,1= , then (2.4) becomes 

 
minxxD

i

ijij

j

jX  2)ˆ( , (2.7) 

which leads to a weighted PCA in which weights are applied to the variables. PCA 

defined using correlation matrix (rather than covariance matrix) can be seen as a 

special case of Generalized PCA of the form 2.7, where 
jj

j s
1  and jjs is the sample 

variance of the jth variable [58]. The use of a correlation matrix for PCA usually arises 

in the event that the variables have different measurement units. It could become 

appropriate to normalize the variables to ensure that they are dimensionless; 

performing PCA using these normalized variables lead to eigen-decomposition of the 

correlation matrix. 

One example of application of weighted PCA is to wavelength kinetic experiments [17], 

where weights are applied to both the observation and the variables. 

 

2.3 Nonlinear Generalization of PCA 

The need for a non-linear generalization of PCA arises from the fact that PCA is a linear 

multivariate analysis technique and may not be adequate for approximating data with 

non-linear relationships. There has been considerable development of non-linear 

techniques for data approximation over the last two decades. We briefly review in this 

section a few major non-linear approaches which generalize PCA and also some 

extensions of these methods.  
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According to definition 1, PCA seeks the linear function that minimizes the MSD as given 

below 

 
minf
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When )( if x  is chosen to be the projection of ix  onto a subspace of dim mk  of ℝ𝑚,  we 

have PCA and )(xf can be represented as x
TP  where P is the projector matrix which 

has as its columns the eigenvectors of the sample covariance matrix of the dataset.  One 

attempt to generalize PCA non-linearly is to replace )(xf  with a non-linear function of 

x that minimizes the MSD or that optimizes some other objective functions. Non-linear 

extension of PCA has also allowed for the extension of PCA to nominal and ordinal data, 

for example, the Gifi’s method [36]. 

Gnanadesikan (1977) proposed introducing non linearity into PCA by using an 

extended vector +x . Where +x  extends the vector x by including functions of the 

elements of x . For example given ),( 21 xxT x , we can choose ),,,,( 21
2
2

2
221 xxxxxxT x and 

then PCA is performed on  +x  [39].  He focused on using a quadratic form of the 

elements of x . This can be seen as kernel PCA (see section2.3.3) with a quadratic kernel. 

The kernel method was made popular in the 1990s when it was used to extend the 

support vector machine algorithm to have non linear decision boundary. This was based 

on the previous works of   Vladimir N. Vapnik and Alexey Ya. Chervonenkis (1963). 

Other non-linear functions that have been advocated include a logarithmic 

transformation of the elements of ix  [92], powers of the elements of ix  and Splines 

[74]. Principal component analysis using correlation matrix can also be viewed as a 

particular case of non-linear PCA where each variable is transformed by normalizing to 

unit variance of the variables. The choice of non-linear function to use is problem 

specific and consideration should be given to the suitability of such function to the 

analysis.  
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2.3.1 Principal Curves and Manifolds 

In PCA, we seek to approximate a system of points using the best lines and planes 

which passes through the data cloud.  Hastie and Stuelze (1989) proposed 

approximating a system of points using smooth curves and manifolds which pass 

through the data cloud, this was called Principal Curves and Manifolds [51].  We now 

discuss the mathematical background needed to find the principal curves and 

manifolds. 

The derivation of PCA by Pearson (1901) was based on a geometric argument; 

however with the development of probabilistic interpretation of statistic, we have 

another view to the dataset. Let a multidimensional probability distribution )(xF  

define the probability of appearance of a sample in the point 𝐱 ∈ ℝ𝑚, a dataset X can be 

interpreted as one particular independent and identitcally distributed sample from )(xF

, this interpretation allows for the definition of many statistical notions.  One of such 

statistical notions of fundamental importance is the notion of self-consistency [96] [23]. 

 Definition of Self-consistency: Given a probability distribution )(xF  and a set of 

vectors Y , we say that Y  is self-consistent with respect to )(xF  if  ))(/(E yxxy  YP  

for every Yy .  Where )(xYP is the projection of  x  to the set of vectors Y. This means Y

passes through the middle of the data cloud since every Yy is the mean of all vectors 

projected to it.  

Tarpey et al (1995) showed that for elliptical distribution, the self-consistent 

points exist only in the principal component subspaces [98].  In [97] the self-consistency 

of principal component subspaces of a large class of symmetric multivariate 

distributions was examined.  

Hastie and Stuelze (1989) defined a principal curve for a distribution )(xF  as a 

non-intersecting, self-consistent smooth curveY . 

Definition: Let G be the class of differentiable 1-dimensional curves in ℝ𝑚, 

parameterized by 𝜆 ∈ ℝ1 and without self- intersection (i.e. if )()( 2121  GG  . 

The principal curve of the probability distribution  )(xF  is such GY )( that is self-

consistent. Where 
i is the projection index of a point ix to the curve Y which satisfies  



 

45 
 

 






  ||)(-||inf||)(-:||sup 



YY iii xx . (2.9) 

Equation 2.9 implies that i  is the value of   for which )(Y is closest to x , and if there 

are several such values, the largest one is chosen. This definition can be extended to a 2-

dimensional surface in mR , see [40]. 

Usually the distribution )(xF is not known and for a finite dataset in particular, 

given a point Yy , usually few points (typically one) or even no point is projected to it. 

Therefore, it is not feasible to calculate the conditional mean given in the definition. 

Hence the need for the coarse grained self-consistency notion, which is estimating the 

conditional expectation using the local averaging of observations projecting into a 

neighbourhood of the estimate of the curve. The size of this neighbourhood controls the 

complexity of the resulting approximation Y  

Hastie and Stuelze showed connection between principal curves and the first 

principal component. One of such proposition is that if a straight line is self-consistent 

for a probability distribution, then it is a principal component. The proof of this and 

other interesting connections between PCA and principal curves can be found in [51]. 

While PCA seeks the line passing through the middle of a dataset, principal curve 

generalizes this by seeking for the curve passing through the middle of the dataset 

where middle is defined using the notion of self-consistency. For elliptical distributions 

and multivariate normal distributions, the first principal component defines the 

principal curve (though the principal curve is not unique). Hence we can view non-

linear principal curves as a generalization of the first principal component for some 

other probability distribution. 

 

Algorithm for finding a principal curve for a finite dataset. 

This algorithm follows the expectation/maximization algorithm as introduced by [21]. 

1) Initialization Step: an initial smooth curve )(Y is chosen. This is usually set as

1λ+=)λ( uxY , where x  is the mean point and 1u is the loading vector of the first 

principal component. 
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2) Projection Step: project all data points ix onto )(Y : that is for each ix  find 
i  that 

satisfies equation 2.9.  Because )(Y is determined in a finite number of points, 

there is a need to interpolate.  

3) Expectation Step: Calculate new  )()(/)('  YPEY Y  xx . As mentioned earlier, for 

finite dataset, typically zero or one observation is projected onto )( iY  . Therefore 

coarse grained self-consistency is used, that is the local average of points ix  and 

some other points that have close to 
i projection ontoY . 

4) Update Step: Reassign )(')(  YY  

5) Iteration: Repeat step 2-4 until Y  does not change or the change is below some set 

threshold. 

To carry out the projection step given above, we define ikd as the distance between ix

and its closest point on the line segment joining each pair  )(),( 1
j
k

jj
k

j YY   where ()jY  

and j , represent the curve Y and projection index   produced at the j -th iteration. 

Hence corresponding to each ikd  is a value  j
k

j
kik 1,   . Therefore we set *iki   if

ik
k

ik dd
∀

* min .  Corresponding to each 
i  is an interpolated

iY ; using this value to 

represent the curve, we replace 
i  by the arc length from jY1  to j

iY . See [51] for further 

reading on arc length. 

Hastie and Stuelze also found the principal curve to be biased for the functional data 

model.  This means that if a sample is generated from the model   )(Yx , where 

GY   and 0)( E , then the principal curve is not necessarily )(Y . However, there is 

some evidence that the bias is small.  Ways to reduce this bias was discussed in [100]. 

 Also principal curve as define above leads to the following questions: 

1) For what probability distributions does principal curve exist? 

2) How many principal curves exist for a give probability distribution and their 

properties? 

3) How does the algorithm proposed by Hastie and Stuelze perform for distribution 

for which principal curves do not exist? 
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The question about existence makes it difficult to analyse the consistency and 

convergence rates of any estimation scheme for the principal curve [51] [63] [72].  To 

resolve this problem, Kegl et al (2000) proposed a new definition of principal curve by 

incorporating a length constraint, combining vector quantization with principal curves. 

They showed that even though uniqueness was not guaranteed, however principal 

curve of length 0L always exist provided that X has second finite moments (i.e.




n

i

T

ii

1

xx )  [63]. 

Definition: A principal curve )(* LY of length L  is such a curve that the MSD from data 

X to the curve )(LY is minimal over all curves of length less than or equal to L .  

 

LY

n

i

LiiL YPdistY min)),(,(*
1




xx . (2.10) 

Due to the computational complexity of finding the principal curve as defined, Kegl et al 

[63] proposed the polygonal line algorithm which is a sub-optimal method but more 

computationally tractable.  This method uses the first principal component as the 

initialization for the algorithm. It should be noted that for complex data with uneven 

and (or) sparse distributions, initialization plays a role in guaranteeing that the 

algorithm converges to the principal curve. In [72], other problems that can arise from 

this algorithm are highlighted.  

In [51], Principal curves was applied in aligning the magnet of the Stanford linear 

collider and also to study two different assays for gold contents in several samples of 

computer chip waste, revealing a structure which PCA did not reveal. 

 

2.3.2 Self-Organising Maps (SOM) 

Another approach to approximation of data is SOM which can be considered as a non-

linear PCA [107]. Inspired by biological neural networks, Kohonen (1982) [67] 

developed the SOM which is a type of artificial neural network that uses an 

unsupervised learning algorithm with the additional property that it preserves the 

topological mapping from input space to output space making it a great tool for 

visualization of high dimensional data in a lower dimension. Originally developed for 
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visualization of distribution of metric vectors [66], SOM found early applications in 

speech recognition [66]. 

The SOM uses a set of neurons (nodes) with cardinality M , usually in a 1, 2 or 3-

dimensional rectangular or hexagonal planar grid with regular spacing to form a 

discrete topological mapping of a dataset. Training this network utilizes competitive 

learning. For every input pattern, the neurons compete for ownership and the winner is 

adjusted to learn this input pattern. To ensure that the local spatial properties of the 

input data are preserved, in addition to the winning neuron, neurons within a given 

neighbourhood of the winning neuron are also adjusted as necessary.  

 The SOM algorithm 

As proposed by Kohonen, the SOM algorithm can be summarised as follows: 

i) Initialization:  Initial weights )0(jw  are assigned to all the neurons, where jw  is a 

weight vector with same dimension as the dataset. 

ii) Competition: all neurons compete for the ownership of the input pattern. Using the 

Euclidean distance function, the neuron with the minimum-distance wins. 

Mjkj j
k

,...,2,1=||-)(||minarg=*
wx , where )(kx is the input pattern at time k . 

iii) Cooperation: the winning neuron also excites its neighbouring neurons 

(topologically close neurons).  An example of neighbourhood function often used is the 

Gaussian neighbourhood function, 

 












 


)(2

||||
exp)()(

2

2
*

*
k

rr
kk i

i


 , where )(k  is a monotonically decreasing learning factor 

at time k and ir  is the position of neuron i . 

iv) Learning Process (Adaptation): The winning neuron and its neighbours are adjusted 

with the rule given below: 

)].()()[()()()1( * kkkkkk jijj wxww   
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Hence, the weight of the winning neuron and its neighbours are adjusted towards the 

input pattern however the neighbours have their weights adjusted with a value less 

than the winning neuron. This action helps to preserve the topology of the data.   

As   ,k  .0)(*  ki  

The quality of learning of the Self-Organizing Map (SOM) is influenced by initial 

weights of the map. Initial weights are often selected randomly or selected as vectors 

from the space of the principal components of the dataset. In section 2.6, the result of an 

empirical study of the performance of these initialization approaches will be presented. 

Other initial conditions that influence the quality of learning of SOM include: the 

neighbourhood function, the learning rate, sequence of training vectors and number of 

iterations [7] [15] [94].  

Another issue with SOM is determining the number of neurons suitable for 

approximating a dataset. Growing Self Organising Map (GSOM) was developed to 

address this problem. GSOM starts with a minimal number of neurons and grows new 

neurons on the boundary until specified stopping criteria are satisfied. 

SOM was not formulated as an optimization problem; it does not have an exact 

cost function. An attempt to overcome most of the significant limitations of the SOM led 

to the development of a principled alternative to SOM called Generative topographic 

Mapping (GTM) [12]. For convergence property for SOM see [113].   

 

2.3.3 Kernel PCA (KPCA) 

Schölkopf et al. (1998) proposed a non-linear extension of PCA in which the data is first 

mapped nonlinearly to a feature space of dimension higher than the dimension of the 

data (a Reproducing Kernel Hilbert Space) and PCA is performed in this feature space. 

This approach was called Kernel PCA [92]. 

Let )( ix be the mapping of ix  to a feature space - F with considerable higher 

dimension than m .  

Fi →: x  ,  mF )dim(   
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The PCA is perfomed in F by finding eigen-decomposition of the sample covariance 

matrix C in F  

∑
1

)()(
1

1
n

i

T
ii

n
C






 xx . (2.11) 

The kernel method can be applied to algorithms that can be formulated exclusively in 

terms of dot product. The trick is to represent the dot product by a kernel function 

which computes the dot product in some possibly high dimensional feature space 

(derived space).   Linear methods applied in such derived space turn out to be nonlinear 

in the original data space because of the nonlinear mapping from the data space to the 

derived space. An example of such is the support vector machine method. Since the 

computation of PCA in the feature space can be formulated exclusively in terms of a dot 

product, we can apply a kernel function in the feature space and we do not require 

)(Φ ix  in explicit form. Therefore we require the eigenvalue  and eigenvector e  such 

that   

ee C . (2.12) 

Since all solutions e  lie in the span of )(),...,(),( 21 nxxx  ,   coefficients n ,...,1  such 

that  

∑
1

)( 

n

i

ii



 xe  . (2.13) 

Let us consider the equivalent system 

 

exex  )()( kk C  ,     nk ,...,2,1 . (2.14) 

Let the kernel function be defined as  

)(),( jiij xxK  ,      (2.15) 

substituting equations 2.13 and 2.15 into 2.14 give 

αα2 KnK  . 
     

(2.16) 

To find the solution of (2.16), we solve  
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αα nK        (2.17) 

Since (2.16), (2.17) have the same solution. 

We normalize the solutions kα belonging to non-zero eigenvalue by normalizing the 

corresponding vectors in F, 1, kk
ee  

k

j

k

i
kk

j

k

i

ji

ji

k

j

k

i K αααα)(),(αα1 ∑
n

1,





xx .  

The principal component in the feature space of a given test point x is the projection of 

)(x to k
e  

∑
N

1

)(),(α)(,





i

ji

k

ii
k

xxxe , (2.18) 

where the dot product in 2.18 can be computed using the kernel function 2.15. 

The computation complexity of KPCA does not grow with the dimensionality of the 

feature space that we are implicitly working in. KPCA also provides a better 

understanding of what kind of non-linear features are being extracted since the feature 

space is fixed a priori by choosing the kernel function. While PCA depends entirely on 

the first and second moment of the data, KPCA does not [16]. KPCA finds application in 

face recognition, image de-noising and fault detection [72]. 

2.3.4 Elastic Nets and Maps 

Principal Manifolds are lines or surfaces (2-d manifolds) passing through “the middle” 

of the data distribution. When the principal manifold is linear, we have a principal 

component analysis, and when it is a curve with “middle” defined based on the notion of 

self-consistency of the curve with respect to the data distribution we have principal 

curves. 

In a series of papers [42][43][44][45],  a general framework for constructing principal 

objects of various dimension and topology using the metaphor of elastic membrane and 

plates to construct 1,2 and 3 dimensional principal manifold of various topology was 

developed. Elastic nets are systems of springs embedded in data space. This system 

forms a regular grid so that it can serve as approximation of some low dimension 

manifold. The purpose of elastic nets is to introduce point approximation to manifold. In 
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this section, we review the method of elastic nets and elastic maps for approximating 

principal manifolds. 

Let G be a simple undirected graph with set of vertices V and set of edges E . 

Definition: stark  in a graph G is a subgraph with 1k vertices Vv k ,...,1,0 and k edges 

  Ekivv i ∈,...,1),( 0  . A 2-star is called a rib. 

Definition: Suppose that for each 2k , a family kS of stark   in G has been selected. 

An elastic graph is defined as a graph with selected families of  stark   kS and for 

which for all EEi  and k
i
k SS  , the corresponding elasticity moduli 0i  and 0kj

are defined. 

Definition: Let )1(),0( ii EE denote two vertices of the graph edge iE and )(),...,0( kSS j
k

j
k

denote vertices of a stark   (where )0(j
kS is the central vertex to which all other 

vertices are connected). Let us consider a map  𝜙: 𝑉 → ℝ𝑚  which describes an 

embedding of the graph into a multidimensional space. The elastic energy of the graph 

embedding in the Euclidean space is defined as 

)()()( GUGUGU RE
  , (2.19) 
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where i is the coefficient of stretching elasticity of every edge iE  and kj  are the 

coefficient of bending elasticity of every rib 
j

kS . 

 

Figure 2. A node, an edge and a rib (2-star) 
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Definition: Elastic net is a particular case of elastic graph which contains only ribs (2-

stars) and the vertices of this graph form a regular small-dimensional grid 

We want a map 𝜙: 𝑉 → ℝ𝑚 with good approximation to the dataset X and with low 

elastic energy. Good approximation of the data is one with minimum mean square 

distance between the data and its projection to the vertex position.  

Approximation error is given as  

∑∑
∑ V∈ ∈

2

2

∈

)(-)(
)(
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XGU

x
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xx
x

   
(2.22) 

Where 0≥)(xw are weights attached to points, which reflect the importance attached to 

some points in the data and 





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ji
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vvK
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i xx . 

Therefore elastic net seek to the optimal map opt which minimizes the total energy 

function 

)(),( GUXGUU A
   (2.23) 

The elastic net is characterized by internal dimension )dim(G . Every node iv is indexed by 

discrete values of internal coordinates },...,{ )dim(1
i

G
i vv  such that nodes close on the graph 

have similar internal coordinates. 

  The quadratic form of the smoothness penalty given by the elastic energy makes this 

method computationally efficient and the geometric approach to the construction 

allows dealing with missing data. When the elastic coefficient is zero (zero elasticity), 

we have a completely unstructured k-means clustering and for rigid rectangular elastic 

net (i.e. elastic nets with high bending and low stretching energy) we have estimators 

close to PCA. Varying the elastic energy between these two extreme cases produces 

non-linear approximation to the principal curve with varying complexity. 
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Elastic Maps 

In elastic net, data are projected to the closest nodes leading to a grid approximation of 

the data. The grid approximation of data enhances the speed of the projection without 

losing too much information when the grid resolution is good enough. However, this 

leads to estimation bias; elastic map method was developed in order to reduce this bias. 

Definition: Elastic map is a continuous manifold  𝑌 ∈ ℝ𝑚 constructed from the elastic 

net as its grid approximation using some between-node interpolation procedure. For 

example a piecewise linear elastic map can be built by using piecewise linear 

interpolation between nodes. 

Definition: Elastic principal manifold of dimension s for a dataset X is an elastic map, 

constructed from elastic net Y of dimension s embedded in ℝ𝑚 using such an optimal 


𝑜𝑝𝑡

: 𝑌 ∈ ℝ𝑚 that corresponds to minimal value of the functional 

)(+),(=),( φφ GUXYMSDYXU w . (2.24) 

Where the weighted mean squared distance ),( XYMSDw  from the dataset X  to the 

elastic net Y  is calculated as the distance to the finite set of vertices 

 )(),...,( 1
1

k
k vyvy   

Elastic Maps have been applied to visualization of microarray [41] in which it 

outperforms PCA in terms of data approximation, representation of between point 

distance structures, preservation of local point neighbourhood and representing point’s 

class in low- dimension spaces. It has also been applied in visualization of economic and 

sociological tables, natural and genetics text and recovery of missing values in 

geophysical time series. 

2.3.5 Local PCA 

We have seen that certain complex datasets are not well approximated (in terms of 

MSD) by PCA. An example is the case of a dataset in which the covariates have nonlinear 

relationship which led to the need for nonlinear approximation of such dataset as 

previsously discussed.Other complex datasets could be characterized by the term 

‘disconnected’ in space of data or ‘branched’ and PCA may not provide the best 
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approximation to such datasets, leading to the need to approximate the data locally in 

dataspace.  

Even though there are several ways in which the term ‘local’ has been 

interpreted, early approach to local PCA can be traced to [14][29], in which dataset 

were partitioned into clusters and then PCA performed on each cluster. This cluster-

wise PCA was developed as an exploratory data analysis tool to understand the intrinsic 

structure of data. This can be seen as a generalization of the k-means clustering method, 

in the sense that in k-means method, clusters centre on points, but in cluster-wise PCA, 

the cluster is around a hyperplane segment. 

Since cluster-wise PCA require the partitioning of the dataset into clusters 

usually using k-means algorithm, it is also plagued by the problem of initialization.  To 

overcome the problem with initialization, Einbeck et al [24] developed Recursive Local 

PCA in which the partitions are built up from a single partition. This idea is akin to 

classification and regression trees (CARTs). This algorithm yield disconnected lines and 

hyperplane segments and can be seen as finding tangent approximation to principal 

curve. This algorithm can cope with branched datasets and disconnected datasets.  Also 

similar work by Verbeek et al (2002) developed the k-segment algorithm for finding 

principal curves in which lines segment are fitted to the data and connected using 

polygonal lines as an approximation of principal curve [104].  

In [20] a ‘bottom-up’ approach was introduced called principal oriented points 

(POP) based on the variance-maximization definition (definition 2). For a point X∈x  

we find the conditional mean of the hypeplane which minimizes the variance of the 

normal distribution conditioned to belong to that hyperplane. This hyperplane is 

orthogonal to the first principal component and the first principal component passes 

through this conditional mean point.  Repeating this for different X∈x generate 

several conditional means called the principal oriented points (POPs) and the one-

dimensional curve running through this points is called principal curve of oriented 

points (PCOPs). POPs and PCOPs can be seen as an adaptation of localized PCA where 

‘locality’ consists in calculating local mean points and local principal direction and 

locality is defined by using kernel functions to define the effective radius of 
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neighbourhood in the data space. POPs do not use Eigen-decomposition of the data and 

can be computationally expensive due to large number of cluster analysis. 

A simpler approach based on local tracing of principal curve was developed in [24] and 

called Local Principal Curves (LPC). The algorithm is given below 

Algorithm for Local principal curve 

1. Select a starting point 0x randomly and step size 0t . Set 0xx  . 

2. Calculate the local centre of mass x
μ  at 0x  . 

a. ∑ iiw xμ xx     

b. where ∑
1

00 )-()-(
n

i
iHiHi KKw


 xxxx

x , )(HK is a m-dimensional kernel 

function and H is a mm  bandwidth matrix. 

3. Estimate the local covariance matrix )( x
jk

x  at x using 

a. ∑
1

)-)(-(

N

i

x
kik

x
jij

x
i

x
jk w



 μxμx  and compute the Eigen-decomposition.  

b. Let x
v be the loading vector for the first principal component computed 

locally at 0x , 

4. Setting xx
vμx 0: t , one finds the updated value of x . 

5. Repeating steps 2 to 4 until the sequence of x
μ remains approximately constant 

(which implies that the end of the dataset is reached). Then set again 0xx  , set 

xx
vv  and continue step  4 

This algorithm only produces a 1-dimensional curve approximation of the data. To 

generalize this idea, Einbeck suggested using a d-dimensional mesh much like the elastic 

net algorithm of [41] [45] but in a ‘bottom-up’ method thereby requiring no 

initialization. 

Local PCA finds application in image feature extraction and recognition [65]. 
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2.3.6 Branching Principal Component 

For certain complex dataset which can be classified as ‘branched’, linear PCA and 

principal curve do not provide satisfactory approximation since it does not effectively 

approximate the branches. 

Kegl et al (2002) extended the polygonal line algorithm to approximate dataset which 

are ‘branched’. This idea was called Piecewise Linear Skeletonization [64]. It starts with 

an initialization method to capture the approximate topology of the dataset and 

restructuring operations to improve the structural quality of the graph. This method 

was applied to isolated handwritten digits and images of continuous handwriting.  

In series of papers [40] [46][70], Gorban et al extended their previous works on elastic 

nets and maps in order to model branching datasets more effectively using topological 

grammar. Topological grammar is a set of operations which can be applied to modify 

the structure of principal graphs after which the elastic energy (see equations 2.19, 

2.20, 2.21) of the graph is minimized.  Due to the growing nature of the principal graph 

the class of graphs considered in the optimization step is limited to graphs whose 

embedding satisfies certain restriction on the following complexity criteria:  

Geometric complexity- which measure how far a principal object deviates from ‘ideal 

configuration’. This can be seen as a measure of non-linearity.  

Structural complexity–penalizes for structural elements. This is usually a non-decreasing 

function of the number of vertices, edges and k-stars of different orders. 

Construction complexity- defined with respect to graph grammar measures the number 

of elementary transformations needed to construct the graph from the simplest graph 

(one vertex, zero edges) 

They propose a pluriharmonic graph as ‘ideal configuration’ where pluriharmonic graph 

is defined as a map ϕ: 𝑣 → ℝ𝑚defined on vertices of graph G such that for any k-star 

k
j

k SS  with central vertex )0(j
kS and neighbouring vertices kiiS j

k ,...,1),(   the equality 

holds 





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i

j
k

j
k iS

k
S

1

))((
1

)0((  (2.24) 
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The simple case of topological grammar {“add a node”, “bisect an edge”} is equivalent to 

the construction of principal trees which are acyclic primitive elastic principal graphs. 

This work was further generalized to principal cubic complexes. For further reading see 

[40] and [46].  

This method has application in visualization of datasets.  Notable example of this is in 

visualization of gene expression in human tissues and visualization of microarray data 

[47].  

 

2.4 Tensor PCA 

PCA has been extended to deal with dimension reduction problem for tensor objects. A 

tensor is a multidimensional array and an Nth-order tensor can be defined as the 

element of tensor product of N vector spaces; this is a generalization of vectors and 

matrices. In recent years, especially in the field of computer vision and pattern 

recognition, the objects of interest are best described as tensors; examples of such 

tensor objects are 2-D/ 3-D images and video sequences. A colored image for example is 

an object with column, row and colour mode and can be considered as a 3rd order 

tensor. One of the properties of a tensor object is that entries are often highly correlated 

with surrounding entries and the presence of redundancy in the data suggests that we 

can find a suspace of lower dimension which approximates the tensor object while 

retaining most of the information contained and also preserving the underlying 

structure of the system represented by the tensor objects.   

 One approach to dimension reduction for tensor objects is to vectorise the tensor 

objects and then use PCA for dimension reduction. However vectorising tensor objects 

lead to high dimensional vector representation of each tensor object, which can suffer 

from the curse of dimensionality [10] especially since in high dimension all feasible 

training samples sparsely populate the input space. To demonstrate this, let us consider 

tensor objects with dimension )30×50×100(   this will be vectorize to vectors of 

dimension )1×000,150( .  Even more importantly, PCA on vectorised tensor objects does 

not take into account the natural structure of the tensor obects (the fact that the objects 

are tensors) and hence could destroy the important structure(s) of the objects being 

approximated. Therefore there is a need to perform PCA on the tensor space directly. 
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There have been several developments in the approximation of tensor objects; for 

example [105], [52] and [19]. 

Another approach to dimension reduction of tensor objects is to compute PCA 

directly in the tensor space, using multiple orthogonal transformations to transform 

tensor objects to other tensor objects with lower dimension while capturing as much 

variance in the tensorial data as possible. Let us briefly discuss this approach to 

computing PCA for tensor objects as formulated in [76].  Given an Nth- order tensor 

space  𝑇 = ℝ𝐼1 ⊗ ℝ𝐼2 … ⊗ ℝ𝐼𝑁  where ℝ𝐼𝑖  is the ith vector space of dimension iI ; any 

tensor Τ∈A can be decomposed as follows: 
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To reduce the dimension of the tensor object A, for each mode i, we seek ii IP <

orthonormal basis vectors of the ith mode vector space to form a tensor subspace 

NPPP
RRRT ×...×=ˆ 21 ; the tensor object A is then projected to the tensor subspace.  Let )(~ iU  

be the ii PI ×  matrix containing the iP orthonormal i-mode basis vector, the projection of 

A to the subspace T̂ is defined as  

   
TTT N

N UUUAY )()2(
2

)1(
1

~
...

~~
 . (2.27) 

Now given a set of M tensor samples },...,1{ , MiAi  , the total scatter of these set is defined 

as  

  
 

2

1
∑ ||-||

F

M

m
mA AA


 , (2.28) 

where ∑
1

1 M

m
mA

M
A


 is the mean tensor and 

F
 is the Frobenius norm. 
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Therefore the Tensor PCA as formulated in [76] seeks to define a multilinear 

transformation that maps the original tensor space T into a tensor subspace Τ
~

such that 

it captures most of the variation observed in the original tensor objects where the 

variation is measured by the tensor scatter.  That is PCA on tensor seek to determine N 

projection matrices  NiRU ii PIi ,...,1,
~ )( 

 that maximize the scatter A : 

  
   A

UUU

i

N
NiU 

)()2()1( ~
,...,

~
,

~

)( maxarg,...,1,
~

. (2.29) 

In practice, an iterative approach is taken to find the solution to the optimation problem 

2.29. However we remark that while PCA produces uncorrelated features, tensor PCA 

features are not uncorrelated in general (although the transformation in each mode is 

orthogonal). 

 

2.5 Projection Methods versus Manifold Modelling Methods 

Finally we give a comparison between approximation of data using projection methods 

and manifold modelling methods. By projection methods, we mean methods that project 

the data to some linear subspace, which include the classical PCA and also weighted 

PCA. By manifold modelling methods, we mean methods that try to model the topology 

of the data using curves and surfaces such as principal curves, elastic maps, SOM and 

others. It should be noted that PCA can also be said to be a manifold modelling 

technique. 

 

Some advantages of projection methods compared with Manifold modelling 

methods  

1) In projection methods, one can quantify the importance of each of the principal 

directions. For example, with variance maximization as the goal, one can quantify 

the contribution of each principal component to the total variance of the dataset. 

This is not the case in manifold modelling methods especially since the resulting 

nonlinear manifold sometimes can be embedded in all dimensions of the usually 

high–dimensional dataspace. 
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2) In projection methods, it is easier to approximate a dataset with a subspace of 

dimension higher than three. This is usually computationally expensive and 

sometimes not feasible with manifold modelling techniques.   

3) The principal components in projection methods are easier to interpret since 

they are a linear combination of the original data. The principal components of 

manifold modelling methods are sometimes not easy to interpret. See [71]. 

4)  Sometimes the manifold modelling methods can unrecognizably deform the 

topology of the data. A good example is the application of principal curve or SOM 

to data distributed along a spiral. See [24].   

5) Computation complexity of projection methods is usually low compare to 

manifold modelling methods. In fact, the projection matrix in projection methods 

can be stored in memory and can be used when new data undergo the same 

transformation.  

Some advantages of Manifold modelling methods compared with projection 

methods. 

1) As previously mentioned, application of linear method to nonlinear data may be 

inefficient. For example curved dataset can be approximate by manifold methods 

with much lower dimension compared to approximating such dataset with 

projection methods.  Also modelling nonlinear data with linear methods can be 

misleading when nonlinear structure is of interest [84]. 

2) Dimension reduction leads to distortion of data. PCA in particular favours 

direction with large distances since its principal component align along the 

directions with large variance. The implication of this is that the preservation of 

local structures is not guaranteed. However this sometimes can be improved in 

manifold modelling since it models the topology of the dataset. For further 

reading on this see [41]. 

3) Due to the better local neighbourhood preservation that can be achieved for 

certain kind of dataset, for such datasets, manifold method can be a better pre-

processing step to adopt before classification task.  
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2.6 Initial Approximation for Manifold Learning Methods – A case study 

In manifold learning methods, one of the standard problems is determining the initial 

approximation as everything depends crucially on the initial approximation. In this 

section we will investigate the effect of initialization on manifold modelling methods. 

However, because it is impossible to solve this problem for all manifold modelling 

methods, Self-Organising Maps (SOM) has been selected for a case study on 

initialization of manifold learning methods.  

We compared the performance of two initialization methods which are popularly 

used for manifold learning methods and SOM in particular. The two initialization 

methods are Random Initialization (RI) and principal component initialization (PCI). To 

further understand the performance of these initialization methods, the datasets were 

classified as linear, quasilinear or nonlinear based on the topology of the data. The 

performance of the initialization methods were compared for the various classifications 

of the data and we demonstrate in this case study for SOM that the performance of each 

of the initialization methods depends on the class of data and for some class of data RI 

performs better than PCI.  

 

2.6.1 SOM-Background and Algorithm 

As discussed in section 2.3.2, SOM can be considered as a non-linear generalization of 

PCA [106]. It approximates a high dimension data manifold using a regular low 

dimensional grid (called maps) using a neighbourhood function to preserve the 

topological properties of the data. SOM is a type of artificial neural network which uses 

unsupervised learning and was introduced by Kohonen (1982) [67]. 

Like clustering algorithms [86], the quality of learning of SOM is greatly 

influenced by the initial conditions: initial approximation (initial weight of the map), the 

neighbourhood function, the learning rate, sequence of training vector and number of 

iterations.  [7], [94]. Several initialization methods have been developed over the years 

and can be broadly grouped into two classes: random initialization and data analysis 

based initialization [7].  
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For random initialization method, the initial weights are selected randomly from 

the dataspace. Due to many possible initial configurations, several attempts are usually 

made and the best initial configuration is chosen. However, for the data analysis based 

methods, certain statistical data analysis and data classification methods are used to 

determine the initial configuration; a popular method is selecting the initial weights 

from the same space spanned by the linear principal component of the data.  

Modification to this method was done by [7] and over the years other initialization 

methods have been proposed. For example see [26]. 

 We will be comparing the performance of two initialization methods in terms of 

the quality of learning of the SOM that result from using the initialization methods on 

the same dataset. The quality of learning is determined by the fraction of variance 

unexplained (FVU) [83]. To ensure an exhaustive study, synthetic datasets distributed 

along various shapes of only 2-dimensions are considered in this study and the map is 

1-dimensional. 1-dimensional SOMs are very important, for example, for approximation 

of principal curves. The experiments were performed using the PCA, SOM and GSOM 

applet available online [83] and can be reproduced by anybody. 

Since the performance of SOM depends on several factors (as earlier mentioned), 

in order to marginalize the effects of other factors that can influence the result, the 

learning processes have been subjected to the same condions. Based on this, the SOMs 

learning has been done with the same neighbourhood function and learning rate for the 

initialization methods studied. To marginalize the effect of the sequence of training 

vectors, the applet adopts the batch learning SOM algorithm [26] and [79] described in 

the next section. For each dataset and initialization method, the data set was trained 

using three or four different values of neuron k . 

 

Background 

Next we discuss the batch algorithm and the SOM algorithm used for the case study. 

The SOM is an artificial neural network which has a feed-forward structure with 

a single computational layer. See section 2.3.2 for the SOM algorithm as proposed by 

Kohonen. 
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The Batch Algorithm 

In approximating a dataset using SOM, the input vectors are presented sequentially 

during the training step.  The sequence in which the vectors are presented during 

training influences the resulting map. For some sequences the resulting map may not be 

globally optimal. One way to deal with this is using batch algorithm. The batch 

algorithm is a variant of the SOM algorithm in which the whole training set is presented 

to the map and afterwards the weights are adjusted with the net effect over the samples 

[27][82]. The algorithm is given below. 

 

Put the set of data point associated with each neuron equal to empty set: ØiC . 

1. Present an input vector sx  and find the winner neuron, which is the weight 

vector closest to the input data. 

  ,-minarg
1

ti js
kj

wx


   sCC ii  . 

2. Repeat step 1 for all the data points in the training set. 

3. Update all the weights as follows 

     ∑∑ ∑
11 ∈

1

k

j

ij

k

j Cs

siji tttw

j 

  x  (2.30) 

where  tij  is the neighbourhood function between the i-th and j-th neuron at time t , 

and k  is the number of neuron. For this case study the batch algorithm was adopted for 

SOM learning. 

 

SOM learning algorithm used by the applet 

Before learning, all iC  are set to the empty set ( ØiC ), and the steps counter is set to 

zero. 

1. Associate data points with neurons (form the list of indices  

 jiwwlC jlili  xx:  

2. If all sets iC  evaluated at step 1 coincide with sets from the previous step of 

learning, then STOP. 
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3. Calculate the new values of coding vectors (weights) by formula (2.30) 

4. Increment the step counter by 1. 

5. If the step counter is equal to some specified number (for this study 100), then 

STOP. 

6. Return to step 1. 

 

Figure 3:  The B-spline neighbourhood function with hmax=3. 

 

The neighbourhood function used for this applet has the simple B-spline form given as a 

B-spline with 3max h :  11 max  hjiij  if maxhji   and 0ij  if 
maxhji  . 

2.6.2 Fraction of Variance Unexplained 

For this study, data are approximated by broken lines (SOM) [83].  The dimensionless 

least square evaluation of the error is the Fraction of Variance Unexplained (FVU). It is 

defined as the fraction: [The sum of squared distances from data to the approximating 

line / the sum of squared distances from data to the mean point].  

∑∑
1

2

1

2 -)(

n

i

i

n

i

idFVU



 xxx , (2.31) 

where 



n

i

i
n 1

1
xx  is the mean point and the distance 2

id  from data point ix to the 

approximating line is given as the length of ix  to its closest point on the approximating 

line. This definition allows us to evaluate FVU for SOM using PCI and RI as initialization 

methods. 

For the given array of coding vectors ),...,2,1(}{ miyi  , we have to calculate the 

distance from each data point x  to the broken line specified by a sequence of points 
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},...,,{ 21 myyy . For the data point x , its projection onto the broken line is defined, that is, 

the closest point. The square of distance between the coding vector yi and the point x  is

),...,2,1(||-||)( 2 miyp ii  xx . 

Let us calculate the squared distance from the data point x  to the segment

  ),...,2,1(, 1 miyy ii 
. For each i, we calculate projection of a data point onto a segment. 

2

211 ||-||-,-)( iiiiii yyyyyxl  x .  If 1)(0  xli  then the point, nearest to x  on the 

segment  1, ii yy , is the internal point of the segment. Otherwise, this nearest point is 

one of the segment's ends. 

Let 1)(0  xli  and c be a projection of x  onto segment  1, ii yy , then 

2
1

2 ||)||)((|||| iiii yyxlyc    and from Pythagorean Theorem, the squared distance from 

x  to the segment  1, ii yy  is 2
1

2 ||)-||)(( -||-||)( iiiii yyxlyxr  x .   (see figure 4). 

Let  mipp i ,...,2,1|)(min)(  xx  and  milrr ii  0,1)(0|)(min)( xxx , then the 

squared distance from x  to the broken line specified by the sequence of points {y1, y2, ... 

ym} is given as   .)(),(min)( xxx rpd   

 

Figure 4. A distance from a point to a segment: two versions of the projection. 

 

2.6.3 Initialization Methods 

The objective of this case study is to consider the performance of two different 

initialization methods for SOM using the FVU as the criterion for measuring the 

performance or the quality of learning. The two initialization methods compared are: 

 PCA initialization (PCI): The weight vectors are selected from the subspace spanned 

by the first p loading vectors of the principal components. For this study, the weight 

vectors are chosen as a regular grid on the first principal component, with the same 

variance as the whole dataset. Therefore, given the number of weight vectors k, the 

behaviour of SOM using PCA initialization is completely deterministic and results in a 
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single configuration. PCI does not take into account the distribution of the linear 

projection results. It can produce several empty cells and may need a post-processing 

reconstitution algorithm [6]. However, since the PCA initialization is better organized, 

SOM computation can be made order of magnitude faster comparing to random 

initialization [77]. 

 

Random Initialization (RI): k  weight vectors are selected randomly, independently 

and equiprobably from the data points. The size of the set of possible initial 

configurations given a dataset increases with the size n of the dataset. The possible 

choice of initial configuration for a given k  (the number of nodes) can becomes 

enormous ( kn ). However, given an initial configuration, the behaviour of the SOM 

becomes completely deterministic. 

 

2.6.4 Linear, Quasilinear and Nonlinear Data Models 

Datasets can be modelled using linear or nonlinear manifold of lower dimension. 

According to [43] a class of quasilinear model data set was identified. In this study, 

datasets will be classified as linear, quasilinear or nonlinear. The non-linearity test for 

PCA [72] can be used to determine whether a linear or nonlinear model is appropriate 

for modelling a given dataset. 

 Linear Model – A dataset is said to be linear if it can be modelled using a sequence of 

linear manifolds of small dimension (in 1-D case, they can be approximated by a 

straight line with sufficient accuracy). This dataset can be easily approximated by the 

principal components without SOM. We do not consider such data in this study. 

 

 Quasilinear Model – A dataset is called quasilinear [43] if the principal curve 

approximating the dataset can be univalently and linearly projected onto the linear 

principal component. It should be noted that the principal curve is projected to the 

lines and not the nodes. For this study, datasets which fall in the border between 

nonlinear and quasilinear (in which over 50% of the data can be classified as 

quasilinear) will also be classified as quasilinear. See examples in figures 5a and 5b. 
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a) C shaped pattern 

    

b) S shape pattern 

    

c) Circle shaped pattern 

    

d) Horseshoe shaped pattern 

    

e) Spiral shaped pattern 

Figure 5. (a)  Quasilinear data set; (b) a border case between nonlinear and quasilinear 

dataset. (c, d, e) nonlinear data set; The first principal component approximations are shown 

(blue line). The left column contains clear patterns, the second column from the left contains 

scattered patterns, the second column from the right contains clear pattern with added noise 

and the right column contains the scattered patterns with added noise. 

 

Nonlinear Model – In this study, we call the essentially nonlinear datasets which do not 

fall into the class of quasilinear datasets just nonlinear data. See example in figures 5c, 

5d and 5e. 
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Table 1. Classification of patterns models (figure 5). 

Etalon Clear Scattering Noise 

Noise and 

Scattering 

C quasilinear quasilinear nonlinear quasilinear 

S quasilinear quasilinear nonlinear quasilinear 

Circle nonlinear nonlinear nonlinear nonlinear 

Horseshoe nonlinear nonlinear nonlinear nonlinear 

Spiral nonlinear nonlinear nonlinear nonlinear 

 

2.6.5 Experiments and Analyses 

The performance of both initialization methods on datasets with data distributed along 

different shapes (see figure 4) was studied at values of k = 10, 20, 50 (unless otherwise 

stated).  

 

Drawing up the Probability Distribution of FVU 

For the PCI as mentioned earlier, its yield just one initial configuration given K (this is 

because equidistant nodes are selected from the subspace of principal component such 

that the variances are equal).  

In drawing up the probability distributions for the RI method, a sample of 100 

initial configurations from the space of possible initial configurations for each dataset 

and each value of k was taken and the resulting FVU computed. . The probability 

distribution of the FVU was described in terms of mean, median, standard deviation; 

minimum and maximum (see Table A in the Appendix).   
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a b 

  

c d 

Figure 6. A typical example of distribution of RI SOM FVU in percent of PCI FVU. Vertical 

line with arrow above corresponds to PCI SOM FVU. Axis’s x labels are the value which 

corresponds to left boundary of interval. All four histograms are illustrating the 

distribution of RI SOM FVU for the spiral pattern with 20 nodes: (a) clear spiral, (b) 

scattered spiral, (c) noised spiral and (d) scattered and noised spiral 

 

To compare the performance of the two initialization approaches in terms of the FVU, 

for each k we find the number of RI SOM with FVU that is less or equal to PCI SOM (i.e. 

proportion of resulting map for which the RI outperform PCI) since the PCI have just 

one configuration and RI have many configurations. In the tables, results are averaged 
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for various types of pattern smearing (table 2) and for different pattern models (table 

3). 

   Table 2. The results of testing for different kind of patterns 

Pattern 

Average fraction of RI SOM with FVU 

better than for PCI 

Clear 35.00% 

Scattered 44.56% 

Noised 55.52% 

Scattered and noised 64.60% 

 

Table 3. The results of testing for different models 

 

Pattern model 

Average fraction of RI SOM with FVU 

better than for PCI 

Quasilinear 36.62% 

Nonlinear 60.89% 

 

Analysis of Performance and Discussion 

In eight tests (from 100) all RI SOM have FVU that is equal or greater than that of PCI 

SOM: clear C with 10 nodes, scattered C with 10 nodes, clear circle with 10 nodes, 

scattered circle with 10 nodes, scattered S with 20 nodes, scattered and noised spiral 

with 10 nodes, noised circle with 75 nodes and clear spiral with 50 nodes. 

Analysing the performance shows that RI tend to perform quite well for nonlinear 

datasets. An interesting result was obtained for the spiral dataset (figure. 7a, b). For 10 

nodes, 41% of RI realisations give better value of FVU than PCI, for 20 nodes this 
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percent increases to 55% but for 50 nodes PCI gives better result than 99% of RI (figure 

7c).  

  

a1) SOM approximation using 10 Nodes 

 

b1) SOM approximation using 10 Nodes 

 

  

(a2) SOM approximation using 20 Nodes 

 

(b2) SOM approximation using 20 Nodes 

 

  

(a3) SOM approximation using 50 Nodes 

 

(b3) SOM approximation using 50 Nodes 

 

Figure  7(a1-a3).  Spiral Data Set. 

 

Figure 7(b1-b3).  Spiral Data Set With 

Noise. 
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We can conjecture that the SOM learning dynamics has many Stable Steady States SOMs 

(SSSSOMs). Sometimes the PCI can hit into a basin of attraction of a SSSSOM with low 

value of FVU. We have no different possible explanation of the surprising result 

presented in figure 7a3. 

However as can be observed in figure 7b, the presence of noise affects the 

performance of the initialization methods. In particular, the surprisingly good 

performance of PCI seen in figure 7a3 is destroyed by noise (figure 7b3), and with noise 

the relative performance of PCI monotonically decreases with the number of nodes. In 

general, we can conclude that for essentially nonlinear datasets PCI performs not better 

or even worse than the median of RI. The role of noise will be discussed later. However, 

the performance of RI is inconclusive regarding quasilinear datasets. While the 

performance was good for the S shaped dataset the performance for the C shape was 

not as expected. For the approximation of the C shaped dataset by 1D SOM with 10 

nodes all the results of RI were better than PCI. Nevertheless, it should be mentioned 

that the difference between the values of FVU for this case is rather small. It does not 

exceed 4% of the minimal value of FVU. In that sense, we can say that the performance 

of PCI almost coincides with the quality of RI  

Further analysis was performed to determine factors that could influence the 

performance of the initialization methods. By considering the effect of the underlisted 

factors on the proportion of RI that outperforms PCI and using regression analysis the 

following were observed: 

a) Increase in Nodes (k):   there was no relationship that could be established which 

indicates that increase in k significantly influence the performance of RI compared to 

PCI 

b) Number of unique final configurations in sample: Even though the number of unique 

final configurations in the population is not well defined, there is a significant 

correlation between the number of unique final configurations in the sample and the 

performance of RI for quasilinear datasets. This correlation however does not exist for 

nonlinear data. See the result in table 4 below for quasilinear datasets. The data is given 

in table C in the Appendix.  
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c) Increase in the data points (N): increase in the dataset size does not significantly 

influence the performance of RI compared with PCI.  

 

Table 4. The correlation between the number of unique final configurations in the 

sample and the performance of RI for quasi-linear datasets. 

Model 

Unstandardized 

Coefficients 

Standardize

d 

Coefficients 

t Sig. B Std. Error Beta 

1 

 

(Constant) .713 .121  5.911 .000 

Unique -.010 .003 -.749 -3.576 .005 

a. Dependent Variable: Proportion 

 

d) Presence of noise: It was observed that the presences of noise in the spiral dataset 

tend to influence the performance of PCI. Further studies show that the presence of 

noise in quasi-linear data sets affects the performance of PCI. This is because noise can 

affect the principal component and also the principal curve of the dataset, which can 

affect the classification of dataset especially for quasi-linear datasets. An illustration is 

given in figure 8. 

  

Figure 8. S shaped dataset (It is almost quasilinear). S shape dataset with noise (it 
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becomes essentially nonlinear). The straight blue lines are the first principal component 

approximation line. 

The results of tests show that the RI SOM may perform better than PCI SOM for any 

models and any kind of pattern. Nevertheless, there exist a small fraction of patterns for 

which RI SOM does not overperform PCI SOM. Let us estimate the number of RI SOM 

which we can learn to obtain the FVU less than that of PCI with probability 90%. Let us 

have pattern with quasilinear model. In this case we estimate the probability of 

obtaining RI SOM with FVU worse than for PCI SOM is 63.38% (100-36.62). Probability 

of obtaining 5 RI SOM with FVU not less than for PCI SOM is 10.06338.0 5  . Therefore, it 

is sufficient to try 5 RI SOM to obtain FVU less than for PCI SOM with probability %90 .  

All these numbers are valid for our choice of patterns and their smearing (see figure 5). 

We can conclude that the widely accepted presumption about advantages of PCI SOM 

initialization seems not to be universal. The frequency of RI SOM with FVU that is less 

than FVU for PCI SOM is 61% for nonlinear patterns in our case study. This means that 

three random initializations are sufficient to obtain the FVU which is less or equal to PCI 

SOM FVU with probability 95% in these cases. For quasilinear patterns it is sufficient to 

try RI SOM 5 times to obtain FVU less than PCI SOM with probability 90%. The 

computational resource which is necessary to calculate principal components and to 

learn SOM appears to be approximately equal but the quality of the best RI SOM is often, 

after several generations, better than that of PCI SOM.  

2.7 Conclusion 

In this chapter we examined some generalizations and extensions of PCA. In partiticular 

we examine two major approaches in which there has been considerable development. 

The first is the methods that generalize PCA by introducing weights on data points, 

variables in the dataset or distances of data projections.  We noted that the use of 

correlation matrix (rather than covariance matrix) can be framed in this context. We 

also mentioned that the use of weights can be used to incorporate prori knowledge 

available into the analysis of principal components.  An example is using weight to 

preserve class structures for labelled data or to minimize the effect of outliers or some 

other influential data points.  
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 The second approach is methods that generalize PCA by using nonlinear 

functions to approximate the dataset. Such methods tend to model the manifold of the 

dataset. Especially for dataset with nonlinear relationship among the covariates, 

manifold modelling methods generally seek to take advantage of this nonlinear 

relationship in the dataset to produce a more efficient approximation. Examples of such 

methods include principal curves, SOM, elastic nets and maps, kernel methods e.t.c.  We 

also consider methods that can approximate efficiently dataset which are ‘branched’ or 

‘disconnected’. 

Finally we conducted an empirical study on initialization problem of manifold modelling 

techniques using SOM as a case study. We were able to compare the performance of two 

initialization approaches which is common in manifold learning.  The classification of 

dataset into linear, quasilinear or nonlinearclass has been important for understanding 

the dynamics of manifold learning and for selection of initial approximation. We have 

shown that the widely accepted view about advantages of PCI SOM initialization seems 

not to be universal and in case of SOM, we can conclude that the hypothesis about 

advantages of the PCI is definitely wrong for essentially nonlinear datasets. 

 

 

 

 

 

 
 

 



 

77 
 

Chapter 3 

Multiscale Principal Component Analysis (MPCA) 

3.1. Introduction 

Principal component analysis of a dataset reveals the underlying structure of the data. 

However, according to definition 2, PCA favours structures with large variance as 

directions with large variance are assumed to be informative. Equivalently PCA seeks 

subspace of the original data in which the pairwise distance distortion is minimized for 

the data projection to such subspace, which means that PCA seeks to maximized the 

sum of the pairwise distances of data projection (see definition 4). The implication of 

this is that PCA favours structures with large distances. For certain complex data which 

have different structures at different distances, PCA is only able to identify structure 

with large distance and may completely obfuscate other interesting structures 

represented by smaller distances in the data.   

We illustrate this with a simple example of a dataset with different structures at 

different distances. Let us consider a dataset which contains outliers, where outlier is 

defined as a point with large distance to other points in the dataset. As can be observed 

in figure 9a and 9b, if outliers are removed then this data distributed along a line. 

 

 

 

Figure 9a. Scatter plot of a dataset 

distributed along a line with 2 outliers 

(marked with red circle). 

 Figure 9b. Scatter plot of the principal 

components of the data (in blue colour) and 

scatter plot of the principal components of the 

data with outliers removed  (in black colour)  



 

78 
 

The biplot of the example above is given in figure 10. A biplot is useful for visualizing 

the magnitude (represented with the blue lines), and sign of each variables’ 

contribution to the first two or three principal component and how each data point 

(represented as red point) is represented in terms of those components.  

 

 

 

a)   b) 

 

                                           (c) 

Figure 10. (a) is the biplot of the data without outliers, (b) is the biplot of the 

dataset with outliers and (c) is the biplot of the dataset when normalized to unit 

variance. We observe that in figure (a) the dataset is distributed along the first PC 

(1 dimension) whereas this was not captured in figure (b) and (c)  

 

From figure 10 above, we see that the first principal component align in the direction of 

the outliers and in this case at the expense of the more interesting underlying structure 

of the data. Of course if the first principal component does not recognise the more 

interesting structure in the data, other principal components may not be able to detect 
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such structure(s) due to the orthogonality constraint imposed on principal components 

which ensure that all subsequent principal components are selected orthogonally to 

previous ones.  Thus PCA may miss out on trends, patterns and other underlying 

structure(s) of the data which exist at smaller distances. One popular approach 

employed to reduce the effect of outliers on PCA is to normalize the variables to unit 

variance. However we see that this may not necessarily reveal the structure in the data 

as we observe in figure 10c. We should comment that detection of outliers and other 

influential data points in high dimension can be challenging. 

We can therefore say that PCA being a non-parametric statistical tool, focus on 

the global structure of the dataset and to explore for underlying structures there is a 

need to introduce some form of localization into the analysis.   Much work has been 

done in the area of localization of PCA in the space of the data vectors; see [14] [29] [24] 

[104] [20] and also the discussion in section 2.3.5.  In this chapter, using an extension of 

definition 4, we propose a new form of localization called “localization in scale” to study 

the underlying structures of data at various distribution of pairwise distances. 

3.2 Mathematical Background 

As earlier stated, PCA seeks the k-dimensional projection that maximizes 

 ∑
2

2
)()(

1

ji

jLiL PP
n



 xx . (3.1) 

Let nii ,...,1, x  be data points where 𝐱𝑖 ∈ ℝ𝑚and let the data points be arranged as 

the rows of a mn×  matrix X such that the m  coordinates is given by the columns of X . 

As earlier stated, the coordinates will be represented by Greek indices while the 

observations (data points) will be represented by Latin indices (i.e. ix is the th

coordinate of the thi observation). For all computations, we assume that the data is 

centered which can be achieved by simple translation of the data.  

Using the Euclidean distance, the problem 3.1 can be stated as  

 ∑ →||)-(|| 2

2

ji

jiLX maxPD


 xx ,  
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where ,,...,1, nji  ,  


k
vaL

1  , 𝑎𝛼 ∈ ℝ𝑚, k,...,2,1  and mk  . Also 𝐯𝛼 ∈ ℝ𝑚 and 

 vv ,  (  is Kronecker delta). The projection of a vector x  to a plane denoted by





k

LP
1

),()(


 xvvx . 

We have shown in definition 4 that this problem reduces to (1.19) 

 



k
T

vv
S

k 1
,...,

~
max
1 

 vv , 

Subject to  ),( vv  k,..,2,1,  . 

(3.2) 

  

Where S
~

 is a symmetric positive semi-definite matrix given as: 

  



ji

jijiS )()(
~

xxxx , 
 

and each element of S
~ is given as 

  



ji

jijiS ))((
~

 xxxx . 
(3.3) 

We also showed if 
m  ...1

is the sorted eigenvalues of the matrix S
~  and 

mee ,...,1
 is 

the corresponding eigenvectors, from theorem 1.1, a maximizer of the constrained 

maximization problem (1.19) is 
mee ,...,1

. Finally from lemma 1.1, we showed that 

)cov(
~ 2 XnS   and since the eigenvectors of a matrix does not change when multiplied by 

a positive constant then 
mee ,...,1

 is also the eigenvectors of the covariance matrix of the 

data )cov(X . 

If there are mq   distinct eigenvalues q  ...1  of the matrix S
~ such that 

i  is 

of multiplicity 
in  and ,

1

mn
q

i

i 


we have a case called eigenvalue degeneracy. For each 

i  with multiplicity ,1in  the eigenvectors lie in a 
in  dimensional subspace orthogonal 

to the subspace spanned by the non-degenerate eigenvalues.  For symmetric matrix, 

these 
in  eigenvectors will be linearly independent and using Gram-Schmidt procedure 

we can find 
in  orthogonal vectors that span this subspace.   
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Proposition 3.1 

The matrix  



ji

jijiS )()(
~

xxxx can be written as LXX T , where ][= ijLL , 

]1-[ ijij nL   and ijδ  is the Kronecker delta. 

Proof: 

From equation (1.18)) we have 
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In matrix notation, the quadratic form (3.4), can be written as  

 )(
~

 LXXS
T

  (3.5) 

 )(
~

LXXS T  (3.6) 

Where ][= ijLL , ]1-[ ijij nL  and ijδ  is the Kronecker delta. L  is an nn×   symmetric 

positive-semi definite matrix with zero column and row sum and this is useful for 

describing the pairwise relationship between data elements see lemma 3.1 and [71].  

 

Lemma 3.1: Let  L  be as defined above and let 𝐱 ∈ ℝ𝑛 then   
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Hence we see that quadratic form associated with the matrix L is the weighted sum of 

all pairwise squared distances. The matrix given by L  is useful for describing the 

pairwise relationship between data elements.  

 

3.2.1 Weighted PCA - Revisited 

Definition 4 allows for some flexibility in the analysis of principal components. Since we 

have control over the pairwise distances of data projection, by assigning weights to 

these pairwise distances, we can manipulate the result of PCA of the data. 

We now consider this generalization of PCA using weighted pairwise distances of 

data projection.  

 )],([ 2
jLiL

ji

ij PPdistw xx


.  

Using the Euclidean distance function, the problem can be stated as: 

 ∑ max→||)-(|| 2
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                       Subject to:  ),( vv  

(3.7) 

Where jiij ww   is the non-negative weight assigned to the distance between elements i

and j and ,0ijw  for ji  . The equation (3.7) reduces to maximizing the equation 

below:  
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This is the same as 
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The expression in the bracket given as  
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Where M
~

is a symmetric positive semi-definite matrix given as 
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Proposition 3.2: The matrix  ∑ )-)(-(
~
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
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Each element is given as  
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Therefore we can write equation (3.15) as 
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Where ,0=ijw  for ji  . 

In matrix notation, the quadratic form (3.16), can be written as  
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 )(
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Therefore the problem given by (3.7) is reduced to 
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(3.18) 

Where M
~  is a symmetric positive semi-definite matrix, and from theorem 1.1, the 

eigenvectors corresponding to the sorted eigenvalues of the matrix M
~ is a maximizer of 

the constrained maximization problem 3.18. In the case of degenerated eigenvalues, the 

set 
mee ,...,1

 is not uniquely defined. 

 

3.3 Multiscale PCA (MPCA) 

In this section, we introduce the Multiscale PCA (MPCA) algorithm to enhance the 

robustness of PCA and to study the structures of data at various distances thereby 

revealing some hidden structure(s) in the data which conventional PCA might not 

reveal. MPCA compute principal components by maximizing the sum of pairwise 

distances between data projection for only pairs of datapoints for which the distance is 

within a chosen scales.  This is achieved by assigning a weight of 1 to the pairwise 

distance of projections of any pair of data points with distance within the chosen scale 

and a weight of 0 otherwise.   
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jiij xx
 (3.19) 

where l  Is the lower limit of the scale and u  is the upper limit. Let mind  be the minimum 

pairwise distance greater than zero and maxd be the maximum pairwise distance in the 

dataset, then we should choose l  and u  such that { }max<≤0:=∈ daaLl  , 

{ }maxmin ≤≤:=∈ dbdbUu  and ul   where ba, are real numbers. 

 

With control over the pairwise distances of data projection, we are able to study 

the structure of data at various localization of distances (scales). Analyzing the changes 

in the principal component decomposition of the data at different levels of localization 
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in scale can reveal interesting underlying structure(s) that may be present in data. For 

example, reducing the upper limit of the scale while keeping the lower limit at 0 

translate to finding the subspace that best approximate the data while preserving the 

smaller distances structure of the dataset. In such scenario, since large distances (larger 

than the scale) have been assigned a weight of 0 (i.e. excluded from the analysis), there 

could be a distortion of the structures represented by such large distances. Given a 

dataset with outliers, this has the effect of minimizing without explicit exclusion the 

contributions of certain influential data elements in the analysis of the principal 

components. 

 

3.3.1 The MPCA Algorithm 

Given a dataset, the Multiscale PCA Algorithm is given below: 

1. Centralize the data by subtracting the mean of the variables from each 

observation. 

2. Find the dissimilarity matrix by computing the Euclidean distance. 

3. Choose an appropriate scale between 0 and the maximum distance. For easy 

analysis, a scale between 0 and 1 could be chosen and then multiplied by the 

maximum distance.  For this thesis when using scale between 0 and 1 we call it 

standard scale. 

4. Calculated the binary weight as given in equation (3.19) 

5. Calculate the matrix wL  as given below 

6. 




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






jiw

jiw
L

ij

n

j

ijw
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7. Calculate the matrix YLYA wT  where Y is the centralized data matrix. 

8. Find the sorted eigenvalues of the matrix A  in descending order of magnitude 

and project the data onto their corresponding eigenvectors. This will be the 

principal components at the selected scale. 
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 Let us consider an example to illustrate this idea. Multiscale PCA on Data with repeated 

patterns. 

Example 1 

Let us consider the data sample with repeated underlying structure as shown in figure 

11a-11e. 

 

Figure 11a. Scatter plot of data with repeated pattern. 

 

 

Figure 11b. The red and the green arrows indicate the direction of the first and second 

principal components respectively, at a scale of [0-1108] equivalent to standard scale 

[0-1]. This is the same as PCA using the sample covariance matrix.  

 

 

Figure 11c. The red and the green arrows indicate the direction of the first and second 

principal components respectively, at a scale of [0-200] equivalent to standard scale [0-.18].   
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Figure 11d. The red and the green arrow indicate the direction of the first and second 

principal components respectively, at a scale of [0-12] equivalent to standard scale [0-

0.01].  

 

From figure 14 we observe that the PCA reveals the inner structure of the data. A 

better view of this inner structure and the PCA is given below in figure 10. 

 

 

Figure 11e. Magnified view of one cluster in the 

dataset with the red and green arrow representing 

the direction of the first and second principal 

components respectively. 

 

As observed from the figures above, the principal axes changed as the scale changed 

and this was able to reveal some underlying structures of the dataset. The changes in 

the first principal axis at various scales have been captured in figure 12. The plot is the 

angle between the first principal axis of PCA and the first principal axis of MPCA at 

various selected scales. 



 

88 
 

 

Figure 12. This diagram illustrate the changes in the angle of the principal components 

as the scale changed. The angles recorded here is the angle (in gradient) between  the 

first principal axis of PCA and the first principal axis of MPCA at selected scale. 

 

3.4 Representation of PCA Structures 

In the previous section we have introduced the MPCA and its algorithm which is the 

analysis of the principal components of a dataset at various localizations of the pairwise 

distances (scale) of the data projection. Now we look at how to represent and analyse 

the loading vectors (corresponding to the principal axes) that are generated from 

multiscale principal component analysis of a given dataset. 

Let us consider the interval of values [ ]ul,  where l lower limit, =u upper limit 

and ul  . The scale ( )ul,  such that { }max<≤0:=∈ daaLl  , { }maxmin ≤≤:=∈ dbdbUu  and 

ul   (as defined earlier) can be represented as point in the plane ℝ2 as shown in figure 

13. The resulting principal component structures in MPCA depend on the points  ul,  on 

the plane.  This implies that for every scale  ul,  there is an associated set of loading 

vectors which maximizes equation 3.18, where weights have been chosen using 3.19. 

This loading vectors represent the PCA structure at the scale  ul, . 
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Figure 13. This diagram 

shows standard scale 

represented as points on the 

plane 2
R . The standard scale 

normalizes the pairwise 

distances of a dataset such 

that the maximum pairwise 

distance equal 1. 

 

To explore the local structure(s) of a given dataset, we would like to analyze the PCA 

structure(s) of the dataset at various scales. For each point  ul,  on the scale, let us 

denote the associated set of loading vectors as  m
ulululul bbb ),(

2
),(

1
),().( ...,,B  where the 

elements k
ulb ),(   is the loading vector for the k-th principal component at the scale  ul, . 

An ordered orthonormal set of k vectors is called a k-frame, thus ).( ulB  is a k-frame since 

its element are the loading vectors which are orthonormal.  Since the objective is to 

explore the local structure(s) of the dataset X at various scales using the MPCA 

structures, then there is a need to analyze the collection of ).( ulB   for all scales  ul, at 

which MPCA has been performed on the dataset. From the definition of the scale, there 

is a continuum of points  ul,  in which the principal components can be computed, 

therefore in application there is a need to sample this space of scales. 

The collection ).( ulB  is a subset of the Stiefel manifold as defined below. We will 

therefore consider some properties of the Stiefel manifold to decide if we can analyze 

).( ulB  as set of points in the Stiefel manifold.  

 

Definition: The Stiefel manifold denoted by )( m
k RV  is the set of all orthonormal k-frame 

in mR . If for each k-frame we arrange the vectors as the column of an km  matrices 

then 𝑉𝑘(ℝ𝑚) = {𝐴 ∈ ℝ𝑚×𝑘: 𝐴𝑇𝐴 = 𝐼𝑘}.Where kI is the identity matrix.  
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Now we consider some properties of the Stiefel manifold. In particular the case k = 1 

is the set 𝑉1(ℝ𝑚) = {𝐯 ∈ ℝ𝑚: 𝐯𝑇𝐯 = 1} which is a unit 1m  sphere. For example let us 

consider two elements 𝐯1, 𝐯2 ∈ 𝑉1(ℝ𝑚) where 12 vv   (the antipodal point on the unit 

sphere). These two vectors represent the same principal component; however the 

average of these two vectors is 0, which implies that the result of the average does not 

take into consideration the structure of the principal components. If we consider a 

scenario in which the first principal component of a dataset has been represented by 

normalized vector v  corresponding to the first loading vector then from the example 

above, it implies that it averages to zero.  Thus we see that in the case of 

equidistribution of a normalized vector v  on 1m  sphere the expectation 0v ][E  due 

to spherical symmetry. The expectation is the vector in the sphere which is rotation 

invariant and that is 0.  From the above, we conclude that the statistics of vector is not 

good and could be counter intuitive to represent the PCA structures of the dataset at 

various scales by the loading vectors. As the property of the Stiefel manifold does not 

capture this important property of the principal component, we seek another 

representation of the MPCA structures in order to further analyse the MPCA structures.  

 

Since a vector 𝐯 ∈ ℝ𝑚 and its antipodal point )( v represent the same principal 

component, a more accurate representation of the loading vectors is as a set of 

orthogonal axial frames [6]. An Orthogonal axial frame is defined as the set of ordered 

orthogonal k-vectors which has the form ),...,,( 21 kvvv  , mk   . In fact it turns out 

that representing the first principal component by a vector is only convenient for 

calculations but strictly speaking the principal component is not a vector.  Geometrically 

we see that the first principal component is a line rather than a vector and hence 

principal components are points in the space of straight lines called projective space. 

We briefly discuss this below. 

 

3.4.1 Space of Lines and Linear Subspaces. 

We know that given a vector space V of dimension m+1 over the real field ℝ  with the 

basis  121 ,...,,  mU uuu , then any point Vv can be represented by the coordinate vector

],...,,[ 121 mvvv  relative to the basis U. This coordinate vector defines an isomorphism 
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between V and ℝ𝑚+1. A line L in the vector space V which is in the direction of a vector 

Vv  is the subspace spanned by the vector v and can be represented as 𝐿 =

{𝜆𝐯, 𝜆 ∈ ℝ  \ {𝟎}}. 

The projective space  𝑃𝑚(ℝ) over a field ℝ is the set of lines in a vector space V of 

dimension m+1.  

 

Definition: More formally we define the real projective space  𝑃𝑚(ℝ) as a set of lines 

through the origin in ℝ𝑚+1. If 𝐱 ∈ ℝ𝑚+1, ),...,,( 10 mxxxx  one can write  

 𝑃𝑚(ℝ) = (ℝ𝑚+1\{𝟎})/~ (3.20) 

Where ‘~’ is the equivalence relation defined by:  (x0,... xm) ~  (v0, ..., vm) if there is a non-

zero real number λ (i.e. 𝜆 ∈ ℝ, 𝜆 ≠ 0) such that (x0, ..., xm) = (λv0, ..., λvm).  

Thus any point 𝐩 ∈ 𝑃𝑚(ℝ) is a line L in the vector space V and 𝐩 can be 

represented by the coordinate ],...,,[ 121 mvvv  of any non-zero point  𝜆𝐯 on the line L 

 (𝜆 ∈ ℝ, 𝜆 ≠ 0). These are called homogenous coordinates of the projection point.  

Slightly more generally, the definition of real projective space could be extended 

for a vector space V (over some field K, or even more generally a module V over some 

division ring). The coordinates (x0,..., xm)  defined up to multiplication by 0  are called 

the homogenous coordinates of 𝑃𝑚(ℝ).  If m= 1, it is called projective line and for m = 2, 

it is called projective plane.  

As mentioned earlier, geometrically the principal component is a line rather than 

a vector due to the fact that a loading vector v and its antipodal point v  represent the 

same principal component. Thus since the first principal component (and by extension 

each principal component) is a line spanned by the loading vector representing it, we 

conclude that each principal component is a point in the projective space. 

 Let us extend our discussion to multiple principal components (i.e. considering 

the first k- principal components of a dataset together).  Just like the k-th principal 

component in the data space is the line spanned by the k-th loading vector, the first k-

principal components considered together is a subspace of the data space spanned by 
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the first k-loading vectors.  This leads us to consider the space of linear subspaces of a 

vector space next. 

Given a vector space V of dimension m, the collection of all k-dimensional linear 

subspaces of the vector space V is called the Grassmannian space denoted by ),( VkG  .  

A point ),( VkGg  correspond to a subspace in the vector space V, thus the 

Grassmannian is the space that parameterizes all linear subspaces of dimension k of a 

vector space V.   

 Definition: The Grassmannian space is the set of k-dimensional subspaces of m-

dimensional space ℝ𝑚 going through the origin. The Grassmannian can also be denoted 

by ),( mkG where m is the dimension of the vector V.  

We observe that ),1( mG = 𝑃1(ℝ) which is the projective line as earlier discussed. Hence 

the Grassmannian space is a generalization of the projective space ),( VkG  where the 

vector space is the data space. 

The first k principal components considered together is a subspace of the data 

space spanned by the first k-loading vectors and this can be considered as a point in the 

Grassmannian space where the vector space V is the data space. By extension, any k- 

principal components considered together can be considered as a point in the 

Grassmannian space.  The projective line and plane can be seen as a particular case of 

the Grassmannian where k =1 and k =2 respectively. Therefore for the purposes of 

representation and analyses, we shall consider the principal components in general (i.e 

of dimension k, k=1, 2…, m) as points in the Grassmannian space ),( VkG .  

Recall that our objective is to represent and analyse the principal component 

structures resulting from the application of multiscale principal component analysis on 

a dataset  X.  This problem can be viewed as representing and analysing points in the 

Grassmannian space ),( VkG . We shall consider the statistics of the multiscale principal 

components as the statistics of points in the Grassmannian space. 

One way to study the points in the Grassmannian space is to embed it in a 

suitable vector space and then analyse in this vector space; this is called the embedding 

approach [6] [81].  In considering a vector space to embed the Grassmannian, We note 
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that the projection operator has a one-to-one correspondence with the projective space 

and by extension in higher dimension; the projection operator has a one-to-one 

correspondence with the Grassmannian space.  The projector operator (Projection 

matrix) is a linear transformation that maps a vector space V with dimension m to a 

subspace W of dimension mkk , .   

 

3.4.2 Projection Matrix 

Given a subspace W of dimension k belonging to a vector space of dimension m, there is 

a unique operator B of orthogonal projection onto W [114].  This operator B (or its 

matrix representation) satisfies the following three conditions 

 B is idempotent: B2 = B.  

 B is symmetric: 〈B𝑢, 𝑣〉 = 〈𝑢, B𝑣〉 for  𝑢, 𝑣 ∈ ℝ𝑚. In order words the matrix 

representation satsifies B𝑇 = B 

 B has trace k: trace(B) = k. 

Also, let 𝑀{𝑚, ℝ} denote the space of real m × m matrices (matrix space).The set of 

matrices A(k, m) ⊂ M(m, ℝ) defined  by B ∈ A(k, m) if and only if B satisfy the three 

condition given above is the operator of orthogonal projection to some k-dimensional 

subspace in ℝ𝑚.  

Let Gr(k, ℝ𝑚) denote the Grassmannian of k-dimensional subspaces of ℝ𝑚 and 

let A(k, m) be the set of operator of orthogonal projections as defined above, then Gr(k, 

ℝ𝑚) and A(k, m) are homeomorphic, with the homeomorphism defined by the 

Φ: 𝐆𝐫(𝑘, ℝ𝑚) → 𝐴(𝑘, 𝑚).  From the stand point of topology, homeomorphic spaces are 

essentially identical, sharing the same topological properties like connectedness, 

compactness and variable separation axioms. Therefore we can embed the 

Grassmannian manifold  Φ: 𝐆𝐫(𝑘, ℝ𝑚) into the space 𝐴(𝑘, 𝑚) of the orthogonal 

projection for further analysis. 

Since the principal components can be viewed as points in the Grassmannian of 

k-dimensional subspaces of ℝ𝑚 and since there exist and homoemorphism beween 
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Gr(k, ℝ𝑚 )  and the projection matrix A(k, m), we therefore propose to represent the 

MPCA structures of a dataset as the sequence of projection matrices ),(∈ mkAPk

corresponding to the sequences of subspace 𝑊𝑘 ∈ 𝐆𝐫(𝑘, ℝ𝑚) , mk1   spanned by the 

loading vectors of the principal components at the scale ( )ul, . We should mention that 

statistics is more convenient in this space.  

 

3.4.3 Properties of Projection Matrix Representation 

 

Having proposed representing the MPCA structures of a dataset by the orthogonal 

projection matrix corresponding to the subspace, we will like to examine some 

properties of the orthogonal projection matrix representation of the PCA structure. This 

is to ensure that this representation have properties that are consistent with the 

properties of principal component and also desirable for analysis. 

The matrix representation kP  of the k-th principal component which is the the 

orthogonal projection matrix to the k-th principal component subspace is the tensor 

product of the loading vectors ie .  iiiP ee   , This product is bilinear and we can 

confirm that   

 iiii eeee  . (3.21) 

If we recall that the principal component given by 
ie is the same as the antipodal point 

ie  (orthogonal axial frames), then we confirm from (3.21) that this property of the 

representation is consistent with the property of principal components. 

  

   XXXP iiiii eeee  ,  is the projection of data X to vectors ie  and  

 



k

i

ii

k

i

i XXP
11

,ee  is the data X projected onto the first k - principal components.  

For any m orthonormal vectors mee ,...,1 , 1
1




m

i

ii ee . If e  is one of ie with probability
m

1
, 

then  
m

E
1

 ee . The rotation invariance gives the same result if e  is equidistributed 

on unit 1m  sphere. 
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Figure 14. This diagram illustrates how the projection of vector y changes (given by the 

red sphere) as ie moves along the blue solid 1-sphere. 

 

It follows that the average projection of X
m

k
XPE

k

i

i 


][
1

. 

The properties of the projection matrix considered capture the desired 

properties of PCA Structure and therefore we shall consider the statistics of PCA frames 

as the statistics of cortege of projection matrices. This implies that we shall represent 

the PCA structure of the data at any localization given by the scale  ul,   by the cortege of 

projection matrix corresponding to MPCA at that point.   

 

There are two ways to represent the MPCA structures using the cortege of 

projection matrix. The first approach will be to represent each principal component 

given by mii ,...,2,1, e  by the rank one projector matrix iiiP ee  . Using this 

representation, the full description of the PCA frame of a dataset X at a given scale  ul,  

will be given by the cortege of projectors mPPP ,...,, 21 . Where the projection matrix iP  

projects X to the 1-dimensional subspace spanned by ie  . 

 The second approach is to represent the PCA frame using the cortege of 

projectors  
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



k

i

iik

1

ee , 1,...,2,1  mk .  Where k  is a matrix of dimension k. The full description 

of the PCA frame of a dataset X at a given scale  ul,  will be given by the cortege of 

projectors mm  ,,...,, 121  . Using this representation, the matrix k projects the dataset 

X to the k-dimensional subspace spanned by the vectors kii ,...,2,1, e . 

Now If we arrange the kii ,...,2,1, e as columns of matrix E , then 

XEEX T
k   and T

k EE . (3.22) 

In particular when mk  , Im  the identity matrix. 

In this thesis we shall adopt the second approach based on the following 

motivation:  

 

1) The first approach is not able to handle the situation where two or more 

principal components can interchange; a situation which arises in real application. Such 

situation can arise when there is eigenvalue degeneracy of the matrix )(
~

XLXM wT . As 

mentioned earlier, eigenvalue degeneracy is when there are mq    distinct eigenvalues 

q  ...1  of the matrix M
~

such that i  is of multiplicity 
in and mn

q

i

i 
1

. For each i  

with multiplicity ,1in  the eigenvectors lie in a in dimensional subspace orthogonal to 

the subspace spanned by the non-degenerate eigenvalues. The implication of this is that 

such eigenvectors are not stable since there is an additional freedom of rotation. This 

freedom of rotation could cause the loading vectors of the principal components to 

change thereby choosing any orthonormal basis of the eigenspace. In case of an 

interchange of principal components, since iP  are ordered then the representation 

using the first approach sees this as different object in the space of matrices. However 

since the second approach is the sum of the projection matrix 


k

i

kP
1

 then the 

representation in such cases of interchange are the same. 

2) Another motivation for choosing the second approach is that calculation and 

analysis is more tractable in the second approach. For example, analyzing PCA structure 

of X in a k-dimension subspace require one matrix ( 



k

i

kk P
1

 ) which is the projection 
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matrix to the subspace, whereas in the first approach one require k-matrices (

kiPi ,...,1,  ) with each  iP  being the projection matrix to each basis in the subspace. 

 

MPCA leads to scale dependent PCA structures and with the MPCA structures 

represented as the cortege of the projection matrix as proposed, we can study the 

structures in our data further by analyzing these projection matrices and considering 

various sub manifolds of the matrix space of orthogonal projection which represent the 

PCA structures at the various scales. For example, even though the full representation of 

a PCA structure of a dataset X at a given scale  ul,  is given by the cortege of projection 

matrices as mentioned earlier, we can decide for a case study to consider the k-

dimensional sub manifolds and discarding the minor subspaces with small eigenvalue. 

This translates to studying k which could be analyzed over all scales  ul, . Another case 

study could be to analyse the k-dimension sub manifolds with smallest eigenvalues 

which translate to studying kk   I*  .  To understand the structure of the dataset X, 

we can study various sub manifolds of the space of projection matrix. 

 

However it should be noted that while in PCA, the order of variance contribution of 

the principal components of a dataset X is based on the order of the corresponding 

eigenvalues, this is not the case for MPCA. Rather the eigenvalues in MPCA gives the 

order of minimal distortion of the dataset under the restriction of localization given by 

the scale  ul,  placed on the pairwise distances. 

 

3.5 Analysis of PCA Structures - Clustering of Scales. 

Each MPCA scale (l,u) defines a localization of PCA on a given dataset X. Our interest is 

to analyze the PCA structures at various scales for the dataset X with the intention of 

understanding the local structure(s) of the data and to reveal some hidden geometric 

structures of the data. This is a problem in unsupervised learning, in which we will like 

to identify patterns in the distribution of scales. This means that we will like to identify 

scales that have similar PCA structures which we can further cluster together leading to 

the notion of clustering of scales (see figure 14). To identify similar (dissimilar) scales, 

there is a need to define some kind of similarity function 𝑠: [𝑙, 𝑢] × [𝑙, 𝑢] → ℝ, which 

measures the similarity between two scales.  In our case we want to measure similarity 
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between two PCA structures which are associated with two points ],[, ulba  in the 

interval of scale.   

  We shall define the similarity function 𝑠: [𝑙, 𝑢] × [𝑙, 𝑢] → ℝ of two scales as the 

distance between their corresponding PCA representations. This means that the 

measure of similarity between two scales is taken to be the distance between the 

orthogonal matrices of projection k  corresponding to the PCA structures of the scales. 

Clustering analysis of scales group together scales with similar PCA structures. The 

clusters correspond to some structures in the data. One way to describe each structure 

given by a cluster is to use the projection matrix corresponding to the medoid point of 

the cluster. The medoid point is proposed since the mean point cannot be guaranteed to 

belong to the space of orthogonal projection matrix and for finite set the medoid point 

can be seen as a point in the set which minimizes the Fréchet means as given in 

equation 1.39. However in section 3.8, we will introduce Ratio of Distortion which is 

another criterion that can be used to select cluster representative that describes the 

cluster. 

For example, clustering analyses of scales for 2  corresponds to cluster analysis of 

the PCA structures when the dataset is projected onto the loading vectors of the first 2- 

principal components at various scales. Another example can be to study the clusters 

for all scales for 



m

ki

iik ee1  which corresponds to the PCA structures of the data 

when projected to the m-k principal components with smallest eigenvalues.  

Now let each point  ul,  in the interval of scale [l,u] be represented by p , where

),( ulp  , Ll , Uu such that  ul  . We denote the projection matrix k at a point p

by
p

 . For any pair of points qp  ,  in the space of scales we can compute the distance 

between the associated projectors 
qp   , for a given k using invariant norm. We recall 

that the Frobenius norm of a real matrix B denoted by  BBtraceB T

F |||| , therefore 

distance between projectors of any pair of points in the space of scale   

      
qpqpqp

T
tracedist    - -,  . 

Any standard clustering algorithm can be used to cluster the scale in order to reveal 

the PCA structures in the data. In this thesis, agglomerative hierarchical clustering was 

used. Deciding on the number of true clusters in clustering analysis is a classical 
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problem and one may want to compare various indices. A typical example of such is the 

2tpseudo  statistic.  

  
 

ba

babat

SSESSE

nnSSESSESSE
tpseudo






)2()(2  .  

Where aSSE is the sum of square of cluster a , bSSE  is the sum of square of cluster b , tSSE  

is the sum of square of cluster formed by joining clusters a  and b , 
an and 

bn  are the 

number of elements in clusters a  and b respectively.  If a small value of the 2tpseudo

statistic at a step i  of the hierarchical clustering is followed by a distinct large value at 

the step 1i  , the cluster form at the step i   is chosen as the optimal cluster.  It is 

assume that the mean vector of the two clusters being merged at the step 1i  can be 

regarded as different and should probably not be merged.  

 

3.6 Choice of Metric in the Space of Data 

From (3.7) we recall that MPCA solves the optimization giving below 

  





ji

jiLijX PwD max||)(|| 2
2xx ,  

where the weights ijw  are chosen as  











,0

||||1 2

2

otherwisew

uxxlw

ij

jiij   

with points (l,u) chosen from the interval of scales [l,u] as defined in section 3.3.  These 

weights were chosen such that only pairwise distances within certain range of values 

(given by the scale) were preserved in the computation of PCA. In this case the distance 

function between pairs of points was chosen as Euclidean distance.  

2
-),( jijidist xxxx    

However we can use other distance functions. The flexibility in the choice of 

distance functions or weights in general allows us to incorporate priori knowledge of 

similarity into the analysis of the principal components. For example, given a dataset X, 

if certain pairs of points in this dataset share some interesting characteristic which may 

or may not be measured on a continuous scale, we may wish to find an optimal 
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subspace such that the projection of the dataset to this subspace preserves this 

characteristic.  In this situation we find the weighted PCA using the priori knowledge to 

decide the weight to be assigned to each pair of distances. 

Often in application of PCA to real life data, variables of the dataset often have 

different unit of measurement and it becomes desirable to normalize the variable to 

unit variance for the purposes of comparison before performing PCA. Using the 

Euclidean distance as a measure of pairwise distances of points, then we can view the 

PCA on normalized data as weighted PCA on the un-normalized data where the distance 

metric between two datapoints is chosen as: 

2
2

** ||-||),( jijidist xxxx   (3.23) 

where 









m

imii
i

xxx

 ˆ
,...,

ˆ
,

ˆ
2

2

1

1*
x  is  the vector 

ix  normalized to unit variance, and 
i̂ is the 

sample variance of variable i. and the weight chosen as: 











.0

||||1 2**

otherwisew

ulw

ij

jiij xx
 (3.24) 

This is the same as computing PCA using the correlation matrix of the dataset X 

(rather than the covariance matrix). Other normalization of the dataset can be used; an 

example of such is to normalize to unit mean.  

The choice of normalization should be problem dependent and carefully chosen. 

However, we should point out that the topology of dataset is not invariant to scaling, so 

also the result of the MPCA of a dataset is not invariant to normalization especially 

when the choice of pairwise distance function is the Euclidean distance measure. A good 

example to illustrate this is to note that PCA result covariance matrix is different from 

PCA result using correlation matrix (where correlation matrix results from normalizing 

the variables in the dataset to unit variance). 

 

Example 2 

Let us consider the result of the cluster analysis of the data in example 1 for 
1 (i.e. 

projection onto first principal component).  For illustration purpose, points from the 

subset of L and U have been selected.   ]95.0,1.0[],4.0,0[l  and 

 ]1,2.0[],19.0,11.0[],01.0,005.0[u . We visualize this cluster in figure 15 below. 
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Figure 15. This diagram 

shows cluster of scales on the 

plane. Scales belonging to the 

same cluster are represented 

by the same colour. 

 

The pseudo
2t statistic indicates three meaningful clusters. This reaffirms the result 

displayed in figure 12.  

We represent each of these structures by the eigenvector of the medoid point of the 

cluster representing it. The result is given in the table below. 

 

Table 5. This table shows the description of each cluster. Each cluster has been 

described by the eigenvector of the projection matrix corresponding to the 

medoid point of the cluster. 

Cluster Colour 

Interval corresponding 

to Medoid point 

(Projector) 

Eigenvector 

1 Blue (0.1,0.19) ]0000.1,0019.0[1 e  

2 Red (0,0.01) ]7071.0,7071.0[1 e  

3 Black (0.3,0.8) ]0000.0,0000.1[1 e  
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3.7 Examples 

Example 3 - Multiscale PCA on Data with Outliers  

The presence of outliers in our data serves to obfuscate the underlying structure of the 

data in PCA. MPCA can be used to reveal the underlying structure of data with outliers. 

By reducing the upper limit of the scale appropriately, we can effectively mitigate the 

effect of outliers in the analysis of the principal components without explicit exclusion 

of these outliers. To test the performance of MPCA on data with outliers, data were 

simulated along known plane and some outliers were added to this data. This data was 

embedded into a higher dimensional space and we seek to recover the original plane 

from the data by using PCA and MPCA (at various scales). 

We consider a 3-dimensional data sample in which the elements are distributed 

uniformly on a plane (2-d) with the directional vectors given as; 

]000004472089440[= .,.-,.u  

];0.9129-0.3651,, 0.1826[v  
 

with few outliers as can be seen in figure 16a.  The result of the projection of the data to 

the first 2 principal components is shown in figure 16b. Figure 16c shows the result of 

MPCA at a scale of (0.0 - 0.8). This is found to have captured the data quite well.  

 

 

 

Figure 16a. Scatter plot of data in 3-dimension 

with a few outlying points. 

 Figure 16b. The first 2 principal components 

using PCA. It can be observed that the outliers 

have influenced the result of the PCA. 
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See table D in the appendix for the difference in angle between the original directional 

vector and the loading vector of the first principal component of the Multiscale PCA at 

various scales. Clustering analysis suggest 2 cluster which we visualize in figure 16d. 

 

 

 

Figure 16c. Scatter plot of the first 2 

principal components computed from MPCA 

at standard scale of (0, 0.8). The effects of the 

outliers have been mitigated and another 

structure of our data is seen here. 

 Figure 16d. This diagram shows the scales 

as points on the plane. Scales belonging to 

the same cluster are represented by the 

same colour.  

 

The structure revealed by PCA has been influenced by the outliers, obfuscating 

the intrinsic structure revealed by the MPCA at scales ),( ul , 8.0≤≤0 l , 9.00  u , ul  . 

See figure 16b and 16c. MPCA given by cluster 1 (see blue cluster in figure 16d) 

mitigates the effect of the outliers and revealed a more interesting structure of the 

dataset as seen in figure 16d. The result of the cluster analysis is consistent with the 

difference in angle between the original plane and the first principal component 

computed using MPCA as given in table D in the appendix.  

We represent each of these structures by the eigenvector of the medoid point of 

the cluster representing it. The result is given in table 6 below. 

The table below is the result of the cluster analysis for 2  . 
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Table 6. This table shows the description of each cluster. Each cluster has been 

described by the eigenvectors of the projector corresponding to the medoid point of the 

cluster. 

Cluster Colour 

Interval corresponding to 

Medoid point (Projector) Eigenvector 

1 Blue (0,0.1) 
]0.23490.3382,-0.9113,[1 e  

0.8821]0.4679,-0.0538,[2 e  

2 Red (0.4,1) 
0.3704]-0.8579,-,3561.0[1 e  

0.2261]-0.4551,,8613.0[2 e  

 

3.8 Ratio of Distortion 

We have proposed describing each cluster of scales by the medoid projection 

matrix where distance between two scales is measured by the distance between their 

projection matrix.  However, since one of the objectives of PCA is to approximate the 

dataset  using a subspace of the dataspace, it becomes desirable to represent and 

describe each cluster by the projection matrix that ‘best’ approximate the data in some 

sense. Representing a cluster by the medoid projection matrix do not take into account 

how well the subspace represented by the medoid point approximate the dataset 

because the medoid is just the projection matrix with minimal average distance to all 

other projection matrices in the set under consideration. 

Therefore we need a criterion for evaluating the projection matrix in a cluster in 

order to decide on which projection matrix is to be selected to represent and describe 

the cluster. If we recall that finding the principal components using definition 4 is 

equivalent to minimization of mean squared distance distortion: 
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where the dimension k  of L  is strictly less than the dimension of the data. We define 

the ratio of distortion as 
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For all ji xx ,  such that ul ji  2|||| xx  where l  is the lower limit of the scale and u  is the 

upper limit.   

Therefore we propose that that the criterion for choosing a representative 

projection matrix for a cluster should be the projection matrix with maximum ratio of 

distortion. If there are multiple projection matrices with maximum ratio of distortion, 

then one should be chosen at randomly. This criterion ensure that the matrix chosen to 

represent a cluster correspond to the subspace approximation with minimum 

distortion. 

 We remark that due to the restriction on pairwise distances which limit the 

pairwise distances included in the computation of  R  to those which fall within the 

interval represented by the scale  ul, , some pairwise distances are exempted. If the 

proportion of the exempted pairwise distances is large then MPCA could overfit the data 

and so also the ratio of distortion could be misleading. Therefore there is a need to put 

into consideration the number of pairwise distances exempted when deciding on ratio 

of distortion. 

 

3.9 Discussion and Conclusion 

3.9.1 Discussion 

Reducing the upper limit to a very small number may cause MPCA to fit noise while 

increasing the lower limit only may cause MPCA to fit outliers if such is present in the 

data. It is important to note that by using MPCA, some pairwise distances are exempted 

in the analysis of principal component and the percentage of such exempted pairwise 

distance should be kept to a reasonable number. In order words, choosing too small a 

scale may result in low numbers of pairwise distances considered which may lead to 

loss of “information”.  

In example 3, we observed (see appendix E and F) that as the lower limit increased, 

the ratio of distortion appear to improve (even though the difference in angle is quite 
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large for some scales) but only because MPCA is fitting outliers. Therefore, in addition to 

the result of the ratio of distortion, the percentage of total pairwise distances exempted 

in the computation of the MPCA at different scales (especially when 0l ) should be 

considered in choosing an appropriate scale.  A good scale for MPCA should be one with 

maximum ratio of distortion and least number of exempted pairwise distances.  

Appendix G shows the percentage of pairwise distances of data points exempted in 

the computation of MPCA at various scales. It can be concluded that while reducing the 

upper limit is good for this data, increasing the lower limit while keeping the upper limit 

at 1 makes MPCA to fit outliers.  

 

3.9.2 Conclusion  

The result of MPCA of a dataset is a set of subspaces approximating the datasets 

depending on the scale chosen. For data with multiscale structures, clustering analysis 

of the MPCA structures at various scales reveal some interesting structures in our data 

which conventional PCA may not reveal due to the fact that such structures are 

obfuscated by other structures of higher variance.  Each cluster corresponds to a 

structure and each structure is described by the medoid point of the cluster. Ratio of 

Distortion was also introduced. This can be used to select a scale for approximating a 

dataset and especially as a criterion for choosing the PCA structure to describe each 

cluster in the clustering analysis of scales. MPCA was tested on various data and for data 

with multi-scale structures, the method was able to reveal some underlying structure in 

data and also mitigate the influence of outliers on the analysis of principal component 

without having to exclude such outliers explicitly.    
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Chapter 4 

PCA and Localization in Space 

4.1 Introduction 

A dataset X for which different structure exist at various localizations of the 

dataset will be referred to as a multi-structure dataset.  Our objective in this thesis is to 

reveal some of these structures by studying the PCA structure(s) of the dataset at 

various localizations.  However, localization of a dataset can be interpreted in many 

senses. In chapter 3, we considered localization in scale which was called multiscale 

principal component analysis (MPCA). In MPCA, we introduced localization by 

introducing weight to the pairwise distances of data projection and we then cluster the 

PCA structures of the dataset at various scales. We demonstrated using examples that 

for datasets with clear multiscale structure, MPCA helps reveal some structures in the 

datasets. However another interpretation of localization of PCA has been in the 

dataspace as discussed in section 2.3.5, where the dataset is partitioned in the data 

space before performing PCA for example [14][29][24].  

 Usually in PCA, directions with low variance are regarded as noise and therefore 

considered distracting. When this assumption is correct, excluding such directions is 

useful in revealing the intrinsic structure in a dataset. However in a big dataset, it is 

expected that different regions of the data space may have different structures. In a 

multi-structure dataset, it may even be that the dataset have certain regions that have 

similar intrinsic structures or dissimilar intrinsic structures and it may become 

desirable to approximating such data locally in the dataspace. With proper partitioning 

of the dataspace and representation of the PCA structure for each partition, it may be 

possible to identify regions of the data space with similar structures and others with 

dissimilar structures.  

For datasets such that the relationship between the covariates can be described 

as “non-linear”, “branched”, “disconnected” or generally as “complex”, usually it implies 

that different regions of the dataspace have different intrinsic structures. PCA being an 

unsupervised and non-parametric analysis will only give the global structure of the 
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dataset which may not efficiently approximate such datasets. Approximating complex 

data has led to the development of non-linear techniques and extension of PCA in order 

to deal with such complexities. For such complex datasets, it is expected that manifold 

modelling techniques like principal curves, SOM, elastic maps and others, should 

approximate the structure of this data at the various regions better. However, most 

manifold modelling techniques approximate data using objects of lower dimension k 

usually for 2k , thus placing some restrictions on the approximation in a given region. 

An attempt to approximate a dataset with lower dimensional object of dimension 3k  

often increases the difficulty of manifold modelling methods.  

To further explore the structures of a dataset, in this chapter, we will examine 

and analyse the PCA structure(s) at locally at various spatial locations in the data space.  

By localization in the data space, I mean that if we consider a target data point 
ox in the 

dataset ,X  we will analyse the PCA locally around ox by performing PCA only on the 

data within a given neighbourhood of the target data point. This localized PCA can be 

performed on several selected distinct target data points in the dataset and the localized 

PCA structures corresponding to these selected target points can be further analysed.  

The analysis of the local PCA structures may be able to reveal how the structure of the 

data changes and possibly help to identify spatial regions of the dataspace with similar 

intrinsic structures.   

While we can see localized PCA as an approximation to manifold modelling in a 

neighbourhood of a data point ox , it is able to handle branched data and disconnected 

data better than many manifold modelling methods. This may not include methods 

designed for branched data as discussed in section 2.3.6) see [24].  In addition to this, 

localized PCA enjoys the advantages of PCA which includes being easy in terms of 

interpretation, computation (even when you approximate the data at various region of 

the data space using hyperplane of dimension up to  mk   where m is the dimension of 

the data space) and inference. 

In this chapter, we will consider how to find localized PCA about various data 

points in the dataset and using the representation discussed in the previous chapter we 

will analyse this localized PCA structures to reveal some intrinsic structures in the 
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dataset, we will also look at how we can combine localization of dataset both in scale 

and space to further explore a given dataset and finally, we will discuss some examples. 

 

4.2 Localization in the Data Space  

Given a target data point ox in the dataset X , to find the principal components of 

the dataset locally around the point ox require that we perform PCA for observation 

close to the point ox . This localization is achieved by using a kernel function ),( ior xx  to 

assign weight to observation ix  based on its distance from the target point ox .  The 

kernel function is usually parameterized by r which dictates the radius of the 

neighbourhood.  There are several kernel functions that can be used, for example; the 

(117) Gaussian kernel, Nadaraya-Watson kernel, Epanechnikov quadratic kernel and 

others. However, for this thesis, we chose the Euclidean metric to measure distance 

between vectors and we will define the kernel function as 
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Where maxmin

oo
drd xx  , min

o
dx is the minimum pairwise distance (greater than zero) between 

ox and any point ix  and max

o
dx  is the maximum pairwise distance between the target point 

ox  and any point ix in the dataset. The kernel ),( oi xx  as defined in (4.1) assigns the 

value 1 to the pairwise distance of any data point ix within r neighborhood of ox  and it 

assigns the value 0 to any pairwise distance that is not within r neighborhood of ox .  

Therefore PCA seeks the set of orthonormal vectors  mvvv ,..., 21 which maximize 
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Proposition 4.1: The local PCA of dataset { ix } within r neighborhood of a target point ox

is obtained by finding for each dimension 1≤k≤m a k-dimensional subspace L of the 

dataspace, which maximizes 

 



ji

jiLijX PD 2
2||)(|| xx  (4.2) 

where ),(),( ojoiij xxxx   and ),( oi xx is as defined in (4.1). 

 

Proof 

From definition 4, subspace of k first principal components is found by maximizing 

njiP
ji

jiL ,...2,1,,||)(|| 2
2 



xx  on the manifold of k-dimensional subspaces. For local PCA, 

only points within r neighborhood of ox are considered. The constraint imposed by 

localization implies that )( jiLP xx  is retained in the computation if r
xji 0

, xx where 

 rii
r  ||||: 00

xxxx  and )( jiLP xx  is excluded whenever r
xji 0

, xx . To satisfy 

localization constraint, we introduce weight ),(),( ojoiij xxxx  . Therefore local PCA 

about target point ox  is weighted PCA that seeks to maximize (4.2).  

The weight ij  ensures that all pairwise distance considered in the optimization 

problem (4.2) are local to ox .  For ease of computation, we will like to translate the data 

points within an r-radius neighborhood of ox  to have mean 0; therefore we compute the 

local mean at point ox  as  
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(4.3) 

 

The dataset X can therefore be centralized by subtracting 
ox from the observations in X. 

Henceforth for any analysis or computation that entails localizing about a target point, 

we shall assume that the datasets have been centered about
ox . 
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Proposition 4.2: The k-dimension projection that maximizes 



ji

jiLij P 2
2||)(|| xx is 

obtained by taking the direction vectors to be the p highest eigenvectors of the matrix 

XLX T  where  
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proof 

Since maximizing  
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problem for weighted PCA, as discussed in 3.2.1, the problem can be stated as maximize 
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(4.5) 

where the weight ijw  here is given as ij . From proposition 3.2 we have that 

 



ji

jijiijM )()(
~

xxxx  can be written as XLX T 
 and from theorem 1.1 we have 

that the p-dimension projection that maximizes (4.5) is given by the the eigenvectors 

corresponding to the sorted eigenvalues of the matrix XLXM T 


~
. 

 

Propositions 4.1 and 4.2 allow us to treat PCA localization in dataspace as an extension 

of MPCA and therefore we can adapt the the methods and analysis developed in chapter 

three to PCA localization in dataspace. 

 

4.3 Selection of Target Points 

The principal components of local PCA depend on the target point ox and the radius 

of neighbourhood r. If we want to explore the structure of a dataset for better 
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understanding, then it is important to select the target points carefully. Given a dataset 

X with n datapoints, one can consider the localized PCA of X  for a given r 

neighborhood at every data point, however this can become cumbersome for large n. 

Since the objective of localized PCA is to understand the intrinsic structure(s) of the 

dataset using localized PCA, we propose some ways to do this based on heuristics.  

The first approach proposed is to randomly select a subset   ntT t  ,,...,, 21 xxx  of 

the dataset X  under the condition that for each point Ti x , a corresponding set 

tir
i ,...,1,  , which is the set of datapoints in the r neighborhood of target point 

ix  is 

defined and the union of all the set r
i  (i.e. n

t

i

r
i R




1

) cover all the data points of the 

dataset or cover the datapoints up to some small exclusion. The localized PCA for each 

Ti x  is performed as discussed in section 4.2. 

 

The second approach is to first partition the dataset into clusters using any standard 

clustering algorithm (such as k-means algorithm for sufficiently large k) and then 

perform a cluster wise PCA analysis using the center of mass of each cluster as the 

target point rather than datapoints (i.e. the elements in the set  ,,...,, 21 kT uuu  is the 

center of mass for the cluster nkCk , .  This approach was proposed as a tool for 

exploratory data analysis in [14] [29] and can be seen as a generalization of the k-mean 

algorithm in the sense that while k-mean is clustered around a point, now it is clustered 

around a hyperplane. Consequent upon the so called “curse of dimensionality”, we 

should mention that clustering algorithm may not perform well for very high 

dimensional data.  

It should be noted that for this approach, the radius of neighborhood may be 

different for each cluster and if we retain the kernel function as defined in (4.1), then in 

the situation in which a cluster kC is bigger than r
k  then we are using a subset of the 

cluster ,kC  and the case where cluster kC is smaller than r
k  then elements of other 

clusters which are within the r neighborhood of target point ku of kC will be included in 

computing the localized PCA at ku .  
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However we can redefine the kernel function ),( oi xx  such that only the elements 

of the same cluster are included in the localized PCA analysis of a cluster with target 

point
ku . 
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In the situation that some clusters have more datapoints than other clusters, we can 

adjust the sample size for each cluster so that there is a balance by taking a sample of 

the larger clusters before performing localized PCA. 

For the second approach, it should be noted that since the localized PCA are 

performed cluster wise, then the quality of the cluster affects the result of the localized 

PCA. We remind ourself that the quality of clustering algorithm is usually influenced by 

the initial condition such as the initialization of the cluster centre; if not well selected 

the algorithm could be trapped in local minima. The quality of the clustering algorithm 

is also influenced by the the number k of clusters as this as to be determined apriori. 

To overcome this, Einbeck et al, [24] proposed the recursive local PCA. Starting from 

a single partition of the dataset, each partition is recursively split up into two partitions 

if the dataset can be more effectively approximated by two hyperplanes instead of one. 

Also any two neighbouring partitions can be joined together if it can be effectively 

approximated with a single hyperplane thus allowing the algorithm to get around some 

suboptimal local extrema. In order to test if a partition )(qR  can be better approximated 

using two hyperplanes rather than one, Einbeck et al proposed that we find the 

eigenvalues )()(
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m
qq   of the covariance matrix of the partition )(qR arranged in 

descending order, split the partition )(qR  from the mean point orthogonally to the first 

principal component of the partition into two partitions )(lR and )(rR .  And the split is 

retained if  
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(4.7) 

Where )(qn is the number of observation in partition q  and C is a constant usually 

chosen as 1. If any two neighboring partition does not satisfy the condition (4.7), then 

we join them together. Two partitions )(lR and )(rR are defined to be neighbors if for at 
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least one observation ix , the partitions )(lR and )(rR are amongst the  2s  “closest” 

partitions. The recursive local PCA algorithm is discussed below.  

 

 

 

 

Recursive local PCA algorithm 

1) Start with a single partition )1(R containing all the data. 

2) Iterate… 

a) Test each partition )(qR  and split  if criterion (4.10) is satisfied,  

Iterate  

i. For each partition ),...,2,1()( QqR q  , compute the “local” PCA and obtain 

the corresponding eigenvalues )()(
2

)(
1 ... q

k
qq    

ii. Update the partitioning ),...,1(,)( QiR i  by allocating each observation ix to 

the nearest partition, i.e. the partition whose hyperplane segment is 

closest to ix .  

b) For each pair of partition )(lR and )(rR that are “neighbors”, test whether it should 

be joined together. A pair of partition is joined if it does not satisfy the criterion 

(4.7) 

c)  Stop when there is no change in the allocation of observation to partitions. 

 

This algorithm yields disconnected hyperplane segments and can be seen as finding 

tangent approximations to the principal curve or manifold. However this algorithm 

could also suffer for data in very high dimension as distances are not local in high 

dimension [10]. 

In [60], Kambhatla et al, using empirical evidence showed that dimension reduction 

using local PCA performs better than PCA and even nonlinear model built by five–layer 

autoassociative neural network. In addition the training time for local PCA was 

significantly faster than the neural network.  
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4.4 Representation of PCA Structures in Space 

As mentioned earlier, we need to select several distinct data points and find the 

localized PCA structure at this point. We note that the localized PCA structure at a given 

target point ox  depends on the point 
ox  and the radius of neighbourhood r.  This 

implies that for a given pair ),( rix there is an associated PCA structure given by the 

eigenvectors of the matrix M
~

as given in (4.7).  

  Based on PCA representation proposed in chapter 3, the PCA structure for a 

given pair ),( rix will be represented by the projector matrix 



k

i

iik

1

ee , 

1,...,2,1  mk .  Where k is a matrix of rank k.  Therefore the full description of the PCA 

structure of a dataset X for a given pair ),( rix is given by the cortege of projectors

mm  ,,...,, 121   where the matrix k  is the projection matrix to the k-dimensional 

subspace spanned by the vectors kii ,...,2,1, e . 

 With the local PCA structures for each target point represented as discussed 

above ( see section 3.4.3), we can further analyse these PCA structures in order to 

explore and understand the intrinsic structure(s) of the dataset. Of interest could be to 

identify certain regions in the data space with similar PCA structures or dissimilar PCA 

structures. To identify similar structure in the data space, we will cluster the PCA 

structures of the data space localization at the target points. 

 Let   ntT t  ,,...,, 21 xxx  be the set of target points for dataset X, we define the 

similarity between any two points Tji xx ,  for a fixed r, as the distance between the 

orthogonal projection matrices representing the PCA structure of the localized PCA at 

the target points using an invariant norm such as the frobenius norm ( see section 3.5).  

Therefore the result of the clustering algorithm on the data space groups together target 

points ix with similar PCA structures. This can be interpreted as finding regions in the 

data space with similar PCA structures. For datasets with noise (with low variance), 

clustering of the PCA structure of targets points using k where k has been chosen to 

exclude directions with low variance can be interpreted as finding the regions in the 

data with similar intrinsic structures since the distracting variance have been 

eliminated by the choice of k . 
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 Due to the presence of noise either in the data or the neighbourhood of some 

target points, two different regions of the dataset with the same PCA structure may not 

necessarily have the same projection matrix. That is the subspace spanned by the 

loading vectors are not necessarily parallel, however clustering algorithm should be 

able to identify such regions and group them in the same cluster as it will be expected 

that the PCA subspaces of such regions will not vary by a significant amount and hence 

the distances between the orthogonal projection representing such subspaces will be 

small compare to subspaces with different PCA structures.  

We demonstrate localization in space with the example given in figure 17.  Figure 

(a) show a 2 dimensional dataset with four well separated clusters. Using k-means 

algorithm to cluster the dataset, PCA was performed on each cluster. The PCA structure 

of each cluster kC with mean point 4,...,1, kuk  is represented by the projection matrix

1 . We cluster the projector matrix to reveal clusters with similar PCA structures. The 

dendrogram, figure (b), clearly suggest two distinct PCA clusters. Clusters with similar 

PCA structures have been assigned the same colour in figure (a)  

 

 

 

 

a) Scatter plot of simulated 2-d data. 

Clusters with similar PCA 

structures have the same colour 

 b) Dendrogram of Hierarchical 

clustering algorithm.   

Figure 17  
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 Also few data points (including the mean point) of the dataset have been selected 

for analysis. For each target point, we consider the local PCA at various scales of regular 

interval from 0 to 1. The scale 0 to 1 has been chosen such that the maximum pairwise 

distance  max

0xr  between target point 0x  and other point in the dataset has been scaled to 

1. Therefore a given scale s corresponds to max

0xrs   radius of neighbourhood. The points 

selected are given in table 7 

Table 7. 

Target points 

A  [26.20,  9.56] 

B  [-25.10,  16.43] 

C (mean Point) [0.80,  13.33] 

D [-13.8,  9.56] 

E [4.68,  8.06] 

The target point A and B have been selected because it represent the pair of 

points with largest distance which can be viewed as the end points of the dataset. The 

target point C is the mean point while points D and E have been chosen randomly. For 

each target point ix , the PCA structure was clustered over the scale s and the result is 

shown in figure 18. For each target point, the inconsistency coefficients indicate 2 

natural clusters of the PCA structures. 

 

 

Figure 18. Cluster of local PCA structure 

of the data shown in figure 17 for the 

target points in table 7. 

Note: scales with fewer than 5 data points have been exempted. Also clusters of different 

target points with similar colour do not imply that the PCA structures are the same. The 
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colours are specific to each target point and only show the natural clusters as we increase 

the range for the specific target point. 

Looking at cluster analysis at target points A and B, we can observe the change in the 

PCA structure as we navigate from one end of the dataspace to the other end. Also the 

cluster analysis at the mean point of the dataset reveals how the PCA structure changes 

as the radius of neighbourhood increases (i.e. as we move from the center of the dataset 

towards the end of the dataset).  

4.5 Localization in Scale and Space 

  We have introduced PCA localization in scale in chapter 3 and PCA localization in 

the dataspace in this chapter. These two approaches to localization can be combined for 

a robust exploration and modelling of the data. Combining these two approaches will 

result in PCA structure(s) that can be represented and analysed to further explore the 

dataset. We recall that the MPCA structure of a dataset X depends on the scale (l, u), (see 

section 3.4), whereas local PCA structure at a target point ox  depends on ),( rox where r 

is the radius of neighbourhood 

In this section we shall combine the two localizations to analyse a dataset (i.e. we 

analyse the dataset both locally in space and in scale simultaneously) and we will 

demonstrate with an example how we can make localized PCA in space more robust by 

combining with localization in scale. The problem can be stated as find the local PCA of a 

dataset X at a given target point ox  and at a given scale (l,u).  

Proposition 4.3: The local PCA of data point ix  within r neighbourhood of a target 

point
ox and at a given scale (l,u) is obtained by finding for each dimension  1≤k≤m a k-

dimensional subspace L of the dataspace, which maximizes: 

  
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Where ijw  is defined as: 
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(l,u) is as defined in section 3.4 and ij  is defined as  
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 ),(),( ojoiij xxxx    

and ),( oi xx  is given by (4.1) or (4.6) .  

Proof 

From proposition 4.2 we have that local PCA about a target point ox maximizes 





ji

jiLij P 2
2||)(|| xx . In addition we seek a subspace that maximizes pairwise distance 

for datapoints ji xx ,  such that ],[||)|| 2
2 ulji  xx as introduced in section 3.3. Proposition 

4.3 follows from introducing weight ijw  as given in (4.9) in order to enforce the 

constraint introduced by scale (l,u) on local PCA about target point.  

Let ijijij w   , then 

 








.0

1,11

otherwise

wif

ij

ijijij
 (4.10) 

then we can rewrite (4.8) as maximize 

 



ji

jiLijX PD 2
2||)(|| xx  (4.11) 

This is a weighted PCA problem as discussed in section 3.2.1. From The problem can be 

stated as maximize 

 



k
T

vv
M

k 1
,...,

~
max
1 

 vv  

 Subject to  ),( vv  k,..,2,1,    

(4.12) 

Where  



ji

jijiijM )()(
~

xxxx  and can be written as XLX T  (proposition 3.2). 

Finally from theorem 1.1 we have that the p-dimension projection that maximizes (4.12) 

is given by the eigenvectors corresponding to the sorted eigenvalues of the matrix 

XLXM T 
~

. 

From (4.10) we remark that the weight of 1 is assigned to a pair of data 

projection provided the assigned  1ijw  and 1ij ; 0 otherwise. The weight 1ijw  

ensures that only pairwise distances of datapoints within a given scale (l,u) are included 

in the analysis of principal component and that the weight 1ij  constraint the 

pairwise distances to only pairwise distances of datapoints within the r-neighborhood 

of a given target point ox . For ease of computation, we translate the data points within 
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an r-radius neighborhood of ox  to have mean 0 (where 0 is the zero vector) by 

subtracting 
ox  as earlier given in equation (4.3).  

Therefore the PCA structure depends on the point in the 4-space defined by 

),,,( ulrox  where ox is the target point, r is the radius of neighbourhood, l is the lower 

limit of scale and u is the upper limit of scale.  

To demonstrate how dataset approximation can benefit from the combination of 

localization in scale and space, let us consider the horseshoe data shown in figure 19 

and a target point shown by the red point.The radius of neighbourhood have been 

depicted by the blue circle with the target point at the center. In figure (a), we see that 

local PCA (with the radius of neighbourhood) captures the structure of the data quite 

well (as shown by the red arrow). In figure (b) we observe that when the radius of 

neighbourhood is increased, due to the presence of some influential datapoints, the first 

principal component given by local PCA seems to have distorted the data badly. 

However by combining PCA localization in space and scale, we have been able to 

recover the structure of the data local to the target point as shown in figure (c).  

 

 

 

 

a)  b)  

 

c) 

Figure 19. (a) and (b) are PCA localization in space with the radius of neighbourhood 

depicted by the blue circle. The red arrow shows the direction of the first principal 

component. (c) is the PCA localization in both data space and scale using standard scale 

of  (0,0.5).  
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4.6 Conclusion 

In this chapter we looked at localization of PCA in the dataspace. The local PCA about a 

target point is obtained by computing PCA on data within a neighbourhood of the target 

point. The neighbourhood is specified using a kernel function. We represented the 

resulting PCA structure using the orthogonal projection matrix associated with the 

subspace of the principal components. The local PCA structures of selected target points 

were further analysed to reveal intrinsic structure(s) in the dataset. Local PCA can be 

seen as a tangent approximation to nonlinear PCA methods and it provides easy 

computation, exploration and analysis alternative to nonlinear PCA methods especially 

in dealing with complex data. We also combine localization in dataspace and scale. 

Using an example, we demonstrate how data exploration and modelling could benefit 

from the combination of these two localization approaches.  We should remark that 

computing ‘local PCA’  in step 2 of the recursive local PCA algorithm discussed in this 

chapter can be replaced with localized PCA in scale or the combination of localized PCA 

in scale and space. 

 We can extend the idea of clustering of scales and localization in space and scale 

to other projection methods. By projection methods we mean approximation methods 

that project data to a linear manifold (see section 2.5) such as PCA, weighted PCA, 

reduced-rank linear discrimant analysis, partial least square e.t.c. For a given dataset X, 

the dataspace can be partitioned and such methods applied locally on a region of the 

dataspace. We can then derive a set of orthogonal basis for the subspaces resulting from 

applying these methods on the dataset and these set of basis can be represented using 

the orthogonal projection matrix which can be further analysed to provide insight to the 

structure of the dataset.   
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Chapter 5 

Data Exploration Using Localized PCA 

5.1 Introduction 

In the previous two chapters, we considered PCA and its localization in two different 

directions; localization in scale and localization in dataspace. PCA being a non-

parametric analysis leads to a solution which favours large distances in the data which 

could obfuscate other interesting structures in the dataset that may exist at smaller 

distances. In chapter 3, we proposed studying MPCA structures of a dataset as a tool to 

explore the intrinsic structure(s) of the data. The MPCA structure(s) are the subspaces 

of the dataspace which maximize the sum of the projection of weighted pairwise 

distances of the dataset, where the weights have been chosen to impose the constraint 

that only pairwise distances of datapoints within a given scale are maximized. Also, in 

chapter 4 we considered localization of the PCA in the dataspace and also the 

combination of both localization approaches. Using the representation discussed in 

chapter 3 and with further analysis, we demonstrated that analysis of the result of local 

PCA can reveal some hidden structures of datasets (especially for datasets with clear 

multiscale structures) and to identify regions with similar PCA structures. In this 

chapter we will use these methods as a tool for data exploration and also for data 

approximation on some simulated and real data.   

 

5.2 Datasets used 

Dataset I: Artificial dataset as given in example 3 of chapter 3. The data points are 

distributed on a plane with some outlying points and embedded into 3-space. See figure 

16a. 

Dataset II: Vertebral column dataset. This dataset, available online on the UCI machine 

learning repository [73] contains 310 samples, and each sample is represented by 6 

biochemical features derived from the shape and orientation of the pelvis and lumbar 

spine. Therefore each sample can be viewed as a point in ℝ𝑚. This dataset was used in 

two related classification tasks; the first one was to classify the orthopaedic patients 
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into three classes (Hernia, Spondylolisthesis, Normal) and the second task was to classify 

the patients into two classes (normal or abnormal).  

Dataset III. Breast tissue dataset. This dataset also available online on the UCI machine 

learning repository [73] contains 106 samples, with each sample represented by nine 

features computed from the impedance spectrum of freshly excised breast tissue.  This 

data was used in two related classification tasks. The samples contain six classes 

namely: carcinoma, fibro-adenoma, mastopathy, glandular, connective, and adipose. 

Dataset IV. Iris Dataset. This dataset contains 50 samples each of 3 species of the iris 

plant. Each sample is represented by 4 features and the dataset was used to train a 

classifier to predict the specie of iris plant. The data is available online on the UCI 

machine learning repository [73].   

Dataset V. Energy Efficiency Dataset available online at the UCI machine Learning 

Repository [73].  This dataset contains 768 samples and 8 features and used to predict 2 

different outputs (Heating Load and Cooling Load).  The features are from energy 

analysis using 12 building shapes simulated in Ecotect. 

Dataset I-III were analysed for localization in scale while dataset IV and V were analysed 

for localization in space. 

 

5.3 Pre-Processing Data for MPCA 

Since the features are measured in different units, it becomes desirable to make the 

features dimensionless for the purpose of comparison and analysis; therefore each 

variable in the dataset have been normalized. Different normalizations of the dataset 

are possible such as: normalization to unit variance or to unit mean; normalization with 

respect to the range or normalization to unit length. For the dataset analysed in this 

chapter (except for dataset I), the data have been normalized to unit variance. As earlier 

mentioned in section 3.6, MPCA is not invariant to normalization.  Normalization 

changes the topology of the data and this in turn changes the PCA and MPCA structures 

of the data. The choice of normalization should be problem dependent and carefully 

chosen. 
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As discussed in section 3.4, there is a continuum of scales  ul,  in which MPCA 

can be computed, hence in application there is a need to sample the space of scales.  We 

have standardized the set of scale such that maximum distance equals one (as described 

in section 3.3) and sampled the space of scale uniformly from 0 to 1. 

 

5.4 Multiscale Principal Component Analysis of Datasets 

Here, we used the MPCA algorithm as given in section 3.3.1 with the following 

additions: 

 

Step 2: In addition to centralizing the dataset by subtracting the mean, the variables are 

also normalized to unit variance as previously mentioned. Hence we use the z-score of 

the variables. 

 

Step 4: Finite points on some regular grid of the interval of scale was selected (see 

figure 20) such that adjacent points are of distance 0.1. These points correspond to 

various scales (localization) at which MPCA will be computed. 

 

 

Figure 20: The sample of the 

standard scale selected for 

analysis.  

 

Find below the distribution of the pairwise distance of the datapoints for dataset I-III 
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Dataset 1 :   Dataset 1 

 

 

 

 

Dataset 2  Dataset 2 

 

 

 

Dataset 3  Dataset 3 

Figure 21. Histogram showing the distribution of pairwise distances and cumulative 

frequency of the datasets  
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For each point (l,u) in the space of scale, the PCA structure is scale dependent and 

represented by the projector matrix 



k

i

iik

1

ee  corresponding to the subspace of the 

principal component where ie is the eigenvector which spans the i-th principal 

component.  

For the artificial data, the PCA structure for each scale of the MPCA has been 

represented by 2 , for vertebral column dataset, 4 and for the breast tissue dataset 3 . 

The choice of k in k is based on the result of the inconsistency coefficient, cophenetic 

correlation coefficient and visual inspection of the dendrogram when the dimension of 

subspace chosen to approximate the data is k. These criteria used will be discussed next.   

To further explore the data, we clustered the interval of scale as described in 

section 3.5, using agglomerative hierarchical clustering. Since in hierarchical clustering, 

eventually all links are joined together at some level, there is a need to decide the 

natural cluster division of the scales. Deciding the natural cluster division of a data is a 

classical problem in clustering and many methods have been proposed to solve this 

problem. However we will be using the inconsistency coefficient. The inconsistency 

coefficient seeks to separate natural cluster in a given multi-level agglomerative 

hierarchical clustering by comparing the distance between two objects which is to be 

joined together with the distance of existing objects in the cluster. This can be viewed 

on a dendrogram as comparing the height of a link in a cluster tree with the heights of 

neighbouring links below it in the tree. A link is said to be consistent if the distance 

between the objects being joined is approximately the same as the distances between 

the objects they contain. In such case, the inconsistency coefficient will be close to zero. 

Whereas a high value of inconsistency coefficient implies that the objects being joined 

together is farther apart from each other than their components were when they were 

joined, and this suggests that the object probably belongs to a different cluster and 

hence indicate a border of natural division of the dataset. 

It is important that the cluster tree generated by the hierarchical clustering 

method reflect the dissimilarity in the dataset. One way to measure this is using the 

cophenetic correlation coefficient. First we define the cophenetic distance between two 

objects as the distance between the two clusters that contain the objects. The distance 

between clusters is measured using linkage function. If the clustering method reflects 

the data well, then there should be a strong correlation between the cophenetic distance 
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and the pairwise distances of the original data. The cophenetic correlation coefficient is 

the correlation between the pairwise and the cophenetic distances of the data. We 

remark that the linkage function used can affect the quality of cluster and hence the 

cophenetic correlation coefficient. 

  To decide the number of clusters, we will be using the inconsistency coefficient, 

taking into consideration the cophenetic correlation coefficient (to ensure that the 

cluster distances represent the data distance efficiently) and also visual inspection of 

the dendrogram. See figure 22 for the dendrogram and table 1 for the inconsistency 

coefficient and cophenetic correlation coefficients of the datasets I-III. 

 

 

 

Dataset 1  Dataset 2 

 

                                               Dataset 3   

Figure 22. Dendrogram of hierarchical clustering of scales. 

 

Based on the inconsistency coefficients of the datasets supported by cophenetic 

correlation coefficient and visual inspection of the dendrograms, we have selected 4 
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clusters for the artificial dataset, 3 Clusters for the Vertebral column dataset and 4 

clusters for the Breast Tissue dataset. 

Table 8 

Dataset Cophenetic Inconsistency 

Artificial data (dataset I) 0.9979 
1.1540   (4 clusters) 

1.1547   (3 clusters) 

Vertebral Column Dataset 

(dataset II) 
0.9694 

1.1384   (3 clusters) 

1.1531   (2 clusters) 

Breast Tissue (dataset III) 0.9120 
1.0848   (5 clusters) 

1.1543   (4 clusters) 

 

For each cluster, some scales were selected to represent the cluster and these 

representative scales were further analysed. The scales selected for each cluster include 

the medoid point, scale with maximum ratio of distortion (see section 3.8), scale with 

minimum ratio of distortion and some other random scales from each cluster. The 

clusters of scales for all the example datasets is visualized in figure 23.  

 

  

Dataset 1 Dataset 2 
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                                                       Dataset 3  

Figure 23. Visualization of the cluster analysis of the interval of scales for the three 

datasets 

 

5.5 Overfitting in MPCA 

The number of pairwise distances of a given dataset with n  samples is 2)1( nn . 

Performing MPCA leads to the exclusion of some pairwise distances of datapoints which 

do not fall within the scale and for some scales, quite a large fraction of the number of 

pairwise distances may be excluded. In the situation where the result of MPCA is used to 

decide the best approximation of a dataset, selecting such scale could lead to overfitting 

in the sense that even though MPCA identifies the structure at such scales. However the 

structure represented at those scales may not be the best to represent the data. In this 

thesis, scales for which the excluded pairwise distances exceed 90% (i.e. scales for 

which the pairwise distances which fall within the scale is less than %10  of the total 

pairwise distances) have been exempted. Let n be the number of sample points, the total 

number of pairwise distances is 2)1( nn and for 19≥n ,  %10  of nnn  2)1( . 

However, it should be noted that a given scale ),( ul  does not correspond to a 

spatial location in the dataspace; it is pairwise distance across the dataspace with length 

within the interval ),( ul . I demonstrate this with the example below. Consider a dataset 

located on the vertices of an hexagon (blue dots) with equal sides such that the 

Euclidean distance between any adjacent pairs of point is a  (see figure 16a) then the 

red lines represent the pairwise distances between the datapoints. 
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Figure 24a Figure 24b 

However given a scale ),0( a then figure (b) shows the pairwise distances that are 

included in the analysis of MPCA. For this dataset, we can observe that the pairwise 

distances within the given scale is distributed across the data space but not restricted to 

a spatial location in the dataset. 

 

5.6 Data distortion 

Given a data point 𝐱 ∈ ℝ𝑚, and let xLP  be its projection onto a linear manifold of 

dimension mk  , then for any pair of points ix  and jx , 

 22 |||||||| jijLiL PP xxxx  .  

i.e. there is a contraction of distances when a data is projected to a subspace, with 

equality holding if the original data lies in a subspace of the dataspace. 

In addition to the contraction, there is also a distortion of data during dimension 

reduction. For example, distant points in the data space can be closely projected and 

close points can be projected far from each other. For labelled data (i.e. dataset for 

which each datapoint has been allocated into a class), this could distort the picture of 

inter and intra-class distances that exist in the original datset. Distortion of data during 

dimension reduction implies the distortion of the distance structure of the data. 

In dimension reduction, PCA relatively preserves large pairwise distances, which 

sometimes lead to the distance structure for smaller distances being badly distorted. We 

will like to investigate the distortion of PCA at various selected scales with MPCA at the 
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same scale.  To investigate this we use the ratio of distortion as introduced in section 

3.8. 
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Where ijw  is a binary weight based on the scale ),( ul as given in (3.19). This weight is 

introduced to restrict the pairwise distances to be consistent with the scale. The result 

is shown in tables 9, 10 and 11. 

Table 9. Ratio of Distortion for dataset 1. 

Scale Cluster 

Ratio of Distortion 

PCA 

Ratio of Distortion 

MPCA 

(0.4 , 1) 1 1 1 

(0 , 1) 2 0.90 0.90 

(0.3 , 1) 2 0.99 0.99 

(0.1 , 1) 2 0.92 0.92 

(0 , 0.1 4 0.67 1 

(0 , 0.2) 4 0.74 1 

(0 , 0.3) 4 0.82 1 

(0 , 0.9) 4 0.83 1 

(0.1 , 0.9) 4 0.85 1 

Note that cluster 3 is missing. It has been omitted because it was classified as 

overfitting. 

 

 

 

 

 

 



 

132 
 

Table 10. Ratio of Distortion for dataset 2. 

Scale Cluster 

Ratio of 

Distortion 

PCA 

Ratio of Distortion 

MPCA 

(0,0.2) 1 0.94 0.96 

(0.2,0.6) 1 0.97 0.98 

(0.1,0.7) 1 0.97 0.98 

(0,0.1) 2 0.92 0.95 

(0.3,0.6) 2 0.98 0.99 

(0.2,1) 3 0.97 0.97 

(0,0.9) 3 0.96 0.96 

(0,1) 3 0.96 0.96 

 

Table 11. Ratio of Distortion for dataset 3. 

Scale Cluster 

Ratio of 

Distortion 

PCA 

Ratio of Distortion 

MPCA 

(0.3 ,1) 1 0.96 0.95 

(0.4,1) 1 0.97 0.99 

(0,1) 2 0.93 0.93 

(0,0.5) 2 0.92 0.94 

(0.2,1) 2 0.95 0.94 

(0.1,0.8) 2 0.93 0.94 

(0.1,0.2) 3 0.88 0.93 

(0,0.2) 3 0.87 0.93 

(0,0.1) 3 0.83 0.94 

Note that cluster 4 is missing. It has been omitted because it was classified as 

overfitting. 

  

For the artificial dataset, we observe that the PCA distorts the data for scales in cluster 4 

(which represent distant structure for distances less than 0.9.) compared to MPCA at 

the same scale. We also observe that the distortion for clusters 1 and 2 (representing 
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large distances) is quite large. This supports the fact that PCA preserves large distances 

more efficiently sometimes to the detriment of small distances. See table 9. 

For the vertebral column dataset (dataset 2), there is no much difference 

observed in the distortion due to PCA compared to MPCA. See table 10. For the Breast 

Tissue dataset (dataset 3), we observe an improvement in distortion for cluster 3 which 

correspond to scales with upper limit .2.0≤u  

 

5.7 Preservation of local structures 

For further analysis we will like to measure how well the subspaces resulting from 

MPCA and PCA preserves the small distances across the various scales and perhaps find 

the scale at which small distance are best preserved. To measure this, we will use a test 

proposed in [41], which calculate the k nearest neighbours in the projected space for 

every point and count how many of them are also point neighbour in the original data 

space. This test returns the average ratio of the intersection size of these two sets (k 

nearest neighbours in the projected space and the original dataspace) over k. A value 

close to 1 indicates a good neighbourhood preservation of the data in the projected 

space and a value close to 0 indicate a serious distortion in the projected space or a 

situation where many distant datapoints are projected close to each other in the 

projected space. See table 12, 13 and 14 for result. 

 

Table 12. Average intersection of k-nn in the original space and projected space for dataset 1. 

 PCA Cluster 1 Cluster 2 Cluster 4 

            Scale 

knn  (0,1) (0.4,1) (0.3,1) (0.1,1) (0,0.1) (0,0.2) (0,0.3) (0,0.9) (0.1,0.9) 

k = 3 0.56 0.55 0.56 0.56 0.93 0.93 0.93 0.93 0.93 

k  = 5 0.54 0.50 0.55 0.54 0.92 0.92 0.92 0.92 0.92 

k  = 10 0.58 0.55 0.58 0.58 0.94 0.94 0.94 0.94 0.94 
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Table 13. Average intersection of k-nn in the original space and projected space for dataset 2. 

 PCA Cluster 1 Cluster 2 Cluster 3 

            Scale 

knn (0,1) (0,0.2) (0.2,0.6)) (0.1,0.7) (0,0.1) (0.3,0.6) (0.2,1) (0,0.9) 

k = 3 0.74 0.80 0.82 0.80 0.83 0.82 0.75 0.74 

k  = 5 0.73 0.81 0.81 0.80 0.82 0.80 0.74 0.73 

k  = 10 0.77 0.84 0.83 0.83 0.84 0.82 0.77 0.78 

 

 

Table 14. Average intersection of k-nn in the original space and projected space for dataset 3. 

 PCA Cluster 1 Cluster 2 Cluster 3 

       Scale 

knn  (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

k = 3 0.78 0.77 0.74 0.78 0.76 0.77 0.79 0.80 0.80 

k  = 5 0.78 0.77 0.75 0.75 0.77 0.75 0.81 0.81 0.82 

k  = 10 0.85 0.83 0.81 0.84 0.84 0.84 0.87 0.87 0.86 

 

For dataset 1, we observe that cluster 4 performs better in preserving local structure 

than cluster 1 and 2.  For the dataset 2 (vertebral column dataset), cluster 1 and 2 

performs better than cluster 3 (PCA belong to cluster 3). However there is not much 

difference for all clusters in dataset 3. 

 

5.8 Class compactness 

In the case where data is labelled and thereby partitioned into classes, we will 

like to also investigate how the various subspaces generated by various scales of MPCA 

preserve class distance structure in comparison to PCA using the class compactness test 

proposed in [41].  

For a class ,C  Let ‘class compactness’ be defined as the average of a proportion of 

the points of class C among k nearest neighbours of the data point, calculated over the 

points from class .C  We will expect that minimizing the distortion of local distance 

structure of the datasets in the projected space will help improve the cluster structure 

of the data approximation which can improve the class compactness of the data 
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especially for classes that can be identified by clustering the dataspace. See table 15 and 

16. See also Appendix H to O for the remaining results. 

Table 15. Class compactment result for dataset 2 (Class “Abnormal”) 

 PCA Cluster 1 Cluster 2 Cluster 3 

           Scale  

knn (0,1) (0,0.2) (0.2,0.6)) (0.1,0.7) (0,0.1) (0.3,0.6) (0.2,1) (0,0.9) 

k = 3 0.74 0.79 0.80 0.79 0.84 0.83 0.74 0.75 

k  = 5 0.77 0.81 0.82 0.81 0.84 0.81 0.78 0.77 

k  = 10 0.81 0.84 0.84 0.84 0.85 0.84 0.81 0.81 

 

 

Table 16. Class compactment result for dataset 2 (Class “Normal”) 

 PCA Cluster 1 Cluster 2 Cluster 3 

            Scale 

knn (0,1) (0,0.2) (0.2,0.6)) (0.1,0.7) (0,0.1) (0.3,0.6) (0.2,1) (0,0.9) 

k = 3 0.77 0.91 0.92 0.89 0.97 0.96 0.78 0.76 

k  = 5 0.77 0.89 0.89 0.88 0.95 0.90 0.77 0.75 

k  = 10 0.83 0.92 0.92 0.90 0.96 0.94 0.85 0.83 

 

The result of class compactment for dataset 2 is shown in table 15 and 16. The result 

shown is for the 2 class (“Normal” and “abnormal”) classification problem.  We remark 

that cluster 1 and 2 consistently outperform cluster 3 for the classification problems for 

both classes, in particular the best class compactment is achieved at MPCA with scale (0, 

0.1).  The same applies to the result of the three class (“Hernia”,” Spondylolisthesis”, 

“normal”) classification problem. See table H, I and J in the appendix for the result. 

 For the breast tissue dataset (dataset 3), we observe slightly better class 

compactment for cluster 3 compared to cluster 1 and 2 for some classes (e.g. carcinoma, 

fibro-adenoma, mastopathy and glandular) and no difference in class compactment for 

some classes (e.g. connective and Adipose).  See tables J to O in the appendix for the 

result. 
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5.9 Preservation of Global Structure  

To measure how well the subspaces generated by MPCA and PCA approximate 

the global structure of the dataset, a possible indicator is the correlation coefficient 

between the pairwise distances of the data in the original dataspace and the projected 

data space. Let ijd and ijd̂ represent the distance between data points ix  and jx  in the 

original dataspace and projected data space respectively. Due to the dependencies 

which exist in the ijd , the estimation of the correlation coefficient is biased and thus a 

method which select a representative independent pairwise distances from the set of 

pairwise distances was proposed in [41] to reduce this bias. This method was called 

Natural PCA (NatPCA) and briefly described below. 

Let M  be a finite set of points and MS  be a subset. The distance between a point 

Mi to the set S  is defined as  

 }.∈,min{=),( SjdSidist ij .  

If there are several closest points in S to a point i then one is selected randomly. The 

NatPCA is the 1m (where m is the sample size) pairs of points MMji },{ selected by 

the following algorithm: 

1) Let S be an empty set. 

2) The first component is a pair of the most distant points ijijmm dji suparg=},{ . We 

put 
mi and 

mj in S. 

3) Among all the points which are not in S we select a point 
mk  which is the most 

distant to :S  

 )},({suparg Sjdistk
j

m  . (18) 

4) We define next the ‘natural’ component as a pair },{ mm pk where Spm  is the 

point in S closest to
mk . We add 

mk to S.  

5) We repeat steps 3-4 until all points are in S.  

The distances selected by NatPCA algorithm are independent and represent all 

scales in the distribution of data. This can be sensitive to the presence of outliers in 

the data and an attempt to resolve this problem was proposed in [41]. To measure 
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the adequacy of both PCA and MPCA in representing the global structure, we 

compute the correlation coefficient 

.},{),ˆ,( NatPCAjiddcorrr ijij   (18) 

See table 17 - 19 for the result. 

 

Table 17. Global structure preservation using NatPCA for dataset 1. 

 PCA Cluster 1 Cluster 2 Cluster 3 

Scale (0,1) (0.4,1) (0.3,1) (0.1,1) (0,0.1) (0,0.2) (0,0.3) (0,0.9) (0.1,0.9) 

2 PC 0.99 0.98 0.98 0.99 0.89 0.89 0.89 0.89 0.89 

 

Table 18. Global structure preservation using NatPCA for dataset 2. 

 PCA Cluster 1 Cluster 2 Cluster 3 

Scale (0,1) (0,0.2) (0.2,0.6)) (0.1,0.7) (0,0.1) (0.3,0.6) (0.2,1) (0,0.9) 

4 PC 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 

 

Table 19. Global structure preservation using NatPCA for dataset 3. 

 PCA Cluster 1 Cluster 2 Cluster 3 

Scale (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

4 PC 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 0.99 

 

For the artificial dataset, PCA and in general cluster 1 and 2 perform better in terms of 

global structure preservation. The result is not distinguishable for the vertebral column 

dataset (dataset 2) and the breast tissue dataset (dataset 3).  

5.10 Data exploration using Local PCA in Dataspace 

Approximating a dataset locally using PCA is done by partitioning the dataset such that 

points in each partition are more homogenous (provided the dataset is well 

partitioned).  Representing the PCA structures of each partition and analysing them give 

insight into the structure of the dataset. This knowledge can be incorporated into for 

further analysis of the dataset.  
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Next, we will analyse the structure of the Iris dataset (see figure 1 for data 

visualization via PCA) using local PCA. In particular we will look at the local PCA of few 

data points (including the mean point) of the dataset at various radii of neighbourhood 

to see how the PCA structure changes. For each target point, we consider the local PCA 

at various scales of regular interval from 0 to 1. The scale 0 to 1 has been chosen such 

that the maximum pairwise distance  max

0xr  between target point 0x  and other points in 

the dataset has been scaled to 1. Therefore a given scale s corresponds to max

0xrs   radius 

of neighbourhood. The points selected are given in table 20. 

Table 20      

Target points Variable 1 Variable 2 Variable 3 Variable 4 

A  -1.6223 -1.739 -1.3935 -1.1776 

B  2.2422 1.7205 1.667 1.3121 

C (mean Point) 0 0 0 0 

D  -0.8977 1.7205 -1.2801 -1.1776 

E 0.3100 -0.5858 0.1368 0.1328 

The target point A and B have been selected because they represent the pair of 

points with largest distance which can be viewed as the end points of the dataset. The 

target point C represent the mean point (data have been normalized to have mean 0 and 

unit variance). Points D and E have been chosen randomly. For all target points and 

corresponding scales ),( six the PCA structures were clustered and the result is shown 

in figure 18. For each target point, the inconsistency coefficients indicate 2 natural 

clusters of the PCA structures and therefore we show the result of 2 clusters for each 

target point. 

 

 

Figure 25. Cluster of local PCA structure of the 

Iris dataset for the target points in table 20 
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Note: scales with fewer than 5 data points have been exempted. Also clusters of different target 

points with similar colour do not imply that the PCA structures are the same. The colours are 

specific to each target point and only show the natural clusters as we increase the range for the 

specific target point. 

Looking at cluster analysis at target point A and B, we can observe the change in the 

PCA structure as we navigate from one end of the dataspace to the other end. Also the 

cluster analysis of at the mean point of the dataset reveals how the PCA structure 

changes as the radius of neighbourhood increases (i.e. as we move from the center of 

the dataset towards the end of the dataset).  

Finally, we will like to analyse the local PCA structures of the Energy efficiency 

dataset. We partition the dataset using the recursive local PCA algorithm as discussed in 

section 4.3. Recall that the algorithm partition a region if it is better approximated by 

two hyperplanes instead of one based on the criterion given in 4.10. The result of 

recursive local PCA on the dataset using hyperplane of dimension 3 suggest 6 partitions 

of the dataspace. The PCA of each partition was computed and represented by
3 . We 

cluster the partition by clustering the PCA structure of each of the regions and the result 

is given in table 

Table 21 

Dataset Cophenetic Inconsistency 

Energy Efficient Dataset 1.0000 

0.7071   (4 clusters) 

0.7071   (3 clusters) 

1.1527   (2 clusters) 

The cophenetic coefficient is 1, which indicates that the cluster tree generated by 

the hierarchical clustering reflects the dissimilarity in the data.  The inconsistent 

coefficient clearly suggests 2 clusters which is supported by the dendrogram. See figure 

26. 
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Figure 26. Cluster of local PCA 

structure of the Energy Efficiency 

Dataset partitioned using 

recursive local PCA. 

 

We therefore see that even though the dataset is better approximated by six 

hyperplanes rather than one, two of the regions share similar PCA structure and the 

remaining four also share similar PCA structure and the two PCA are quite dissimilar. 

5.11 Discussion and Conclusion 

In this chapter we explore the datasets using various localizations. The first three 

datasets were analysed using MPCA, and the remaining two datasets were analysed 

using local PCA in space.  We further clustered the local PCA structures using 

agglomerative hierarchical clustering. Cluster selection was made based on the 

Inconsistency coefficient taking into consideration the cophenetic coefficient (which 

indicates how well the cluster tree generated by the hierarchical clustering reflects the 

dissimilarity in the data) and the visual inspection of the dendrogram. For each cluster 

analysed using MPCA we selected representative scales based on the ratio of distortion 

and also the medoid point for further analysis.  For each representative scale we further 

analysed the data to understand the distortion in the dataset, how well the 

approximating subspace preserves both local and global structures and how efficient 

the approximating subspace preserves class structures of the dataset.  

For dataset with clear multiscale structure like dataset 1, MPCA analysis revealed 

the structures of the data, in addition we found a PCA structure ( cluster 4) with better 

approximating subspace than PCA in terms of ratio of distortion and preservation of 

local structure. We particularly remark that for the vertebrae column dataset (dataset 

2) the approximating suspace given by MPCA at scale (0,0.1) have a better result than 

PCA and any other scale in terms of preservation of local structure and class 
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compactment. Though the result of hierarchical clustering of the MPCA structures of the 

breast tissue dataset (dataset 3) does not indicate clear clusters in the PCA (see figure 

22), cluster 3 has minimal ratio of distortion and better class compactment for some 

classes (see appendix J-O). 

Finally we analysed 2 dataset using localization in space. For the Iris dataset 

(dataset 4), we analysed the local PCA structures at varying radius of neighbourhood for 

a given target point. We studied the PCA structures of the dataset as we move from the 

mean point to the end of the dataset in the dataspace; this particularly revealed that 

there are two distinct PCA structures in the dataset. Also we analysed the energy 

efficiency dataset using the recursive local PCA algorithm, this revealed that the dataset 

is better approximated by six hyperplanes rather than a single hyperplane (PCA). We 

also clustered the local PCA structures of the six partitions which revealed two distinct 

clusters of the local PCA structures. This implies that certain partitions of the dataspace 

have similar PCA. 
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Chapter 6 

Conclusion 

The first part of this thesis is an empirical study to investigate the effect of initialization 

on manifold modelling methods for two popular initialization methods using SOM as a 

case study. The two initialization methods studied were random initialization (in which 

the initial weights are selected randomly from the dataspace) and principal component 

initialization (in which the initial weights are selected from the space of the principal 

components of the data).  To ensure an exhaustive study, synthethic data sets 

distributed along various shapes of only 2-dimensions were considered and the map 

was 1-dimensional. 1-dimensional SOM is important, for example, for approximation of 

principal curves. To marginalise other factors that could influence the result, SOM 

learnings were subject to the same initial conditions such as neighbourhood function 

and learning rate. To marginalize the effect which the sequence of training vectors could 

have on the study, the batch algorithm was adopted.  

To further understand the dynamics of manifold learning, we propose a 

classification of the dataset into linear, quasilinear and nonlinear classes. Quasilinearity 

was defined using the principal curve. The fraction of variance unexplained (FVU) was 

used as the criterion to evaluate the quality of learning of the final map for the two 

initialization methods. For random initialization (RI) methods, a sample of 100 initial 

configurations from the space of possible initial configurations was selected for each 

dataset. The probability distribution of the FVU were drawn and analysed for each 

dataset studied. 

 The results of our case study show that RI tends to perform quite well for 

nonlinear datasets. In general, we can conclude from the study that PCI performs not 

better or even worse than the median of RI for the datasets that we studied. The 

performance of RI remains inconclusive for quasilinear datasets. Furthermore, the 

result shows that the presence of noise has significant influence on the performance of 

PCI SOM, for example, the good performance of PCI for spiral dataset at node 50 was 

destroyed by noise. 
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 The result from this case study demonstrates that the widely accepted 

presumption about advantages of PCI SOM is not universal. We showed that statistically 

three random initializations are sufficient to obtain SOM with FVU less or equal to PCI 

with probability 0.95, and for quasilinear dataset, five RI SOM is sufficient to obtain SOM 

with FVU less than or equal to PCI with probability 0.90 for the datasets we studied.  

In addition, the classification of data into quasilinear and nonlinear classes has 

been important for understanding the dynamics of manifold learning and selection of 

initial approximation. The results based on our classification of datasets show that the 

optimal choice of initial weights for SOM depends on the geometry of the dataset and in 

particular, randomisation of initial weights can help in manifold learning. 

Further areas of research will be to extend this study to data with higher 

dimension than two (this has been done but not included in this thesis) and also SOM 

with dimension higher than one.  Since SOM is often considered as an approximation of 

the principal manifold, it is desirable to consider the quasilinearity of datasets without 

the concept of principal manifold. Developing such will provide apriori knowledge that 

can guide in the choice of initial approximation for manifold modelling methods. 

The second part of this thesis sets out to develop a method to investigate and 

reveal intrinsic structure(s) in data and to identify regions within a given data space 

that have similar intrinsic structure thereby providing additional tool for data 

exploration and understanding.  

To achieve this, we developed the multiscale principal component analysis 

(MPCA) algorithm. This algorithm is based on weighted PCA and a generalization of the 

classical PCA as stated in definition four. Though similar to [71], however, the weights in 

MPCA are chosen from the distribution of the pairwise distances of datapoints. This 

choice of weights restricts the analysis to include only pairwise distances of interest, 

allowing us to study the changes in PCA structures of the data for the various 

distributions of pairwise distances of the dataset and therefore help us to understand 

the pairwise distance structure of the dataset at various scales.  In order words we can 

study the changes in the subspaces that approximate the data for various restricted 

pairwise distance structures of the dataset. To reveal the intrinsic structure(s) that may 
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be present in a dataset, we analyse the resulting PCA structures resulting from the 

MPCA of the dataset. 

 MPCA structures are scale dependent and to analyse the MPCA structures of the 

data, we studied the principal components as points in the real projective space or in 

general, the Grassmanian space.  To fully understand this, we embedded points in the 

Grassmanian space (our principal component in this case) in a suitable vector space 

with similar topological properties. We chose the space of orthogonal projection matrix 

because it is homeomorphic to the Grassmannian space and also meaningful to principal 

components. The projection matrix corresponding to a point (principal component) can 

be seen as the projector matrix which maps the data from the dataspace to the subspace 

of the principal components. The properties of principal components were compared 

with the properties of orthogonal projection matrix for consistency and to ensure that 

desired properties are preserved. Therefore for a given scale, we represented the PCA 

structure by a sequence of projector matrices which maps the data to the corresponding 

sequence of subspaces. Cluster analysis of the MPCA structures (represented by the 

corresponding orthogonal projection matrices) group together scales in the data with 

similar structures and separate scales with dissimilar structures thereby revealing the 

various classes of structures in the dataset. Each cluster is taken to represent a 

structure in the dataset. 

We evaluated the quality of approximation of MPCA and PCA in terms of data 

distortion using the ratio of distortion which we defined in chapter three.  Other 

measures include: preservation of local distance structure, preservation of global 

distance structure and preservation of class compactness. 

MPCA reveals some intrinsic structures of the data which the classical PCA might 

not reveal because classical PCA gives the global structure of the data. In particular for 

data with clear multiscale structures, MPCA was able to reveal such structures.  We 

remark here that even for dataset without clear multiscale structure(s), we still found 

approximations from MPCA which have lower data distortion compared to PCA for all 

the datasets we analysed. Being able to identify the intrinsic structures of a data is 

useful for taking decision about the choice of subspace to approximate the data in order 

to preserve certain properties of the data which can help improve the performance of 
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subsequent analyses.  For example, an intrinsic structure which preserves the local 

pairwise distance of the data projection may be preferable if we intend to run a nearest 

neighbour algorithm on the data approximation or if we want to mitigate against the 

effect of outliers. 

The results of application of MPCA to various artificial and real datasets were 

also presented. This revealed various structures of the datasets.  We discover that for 

some datasets, approximation using PCA distort the structure of data that exist at 

smaller scales (pairwise distances) while MPCA preserves the local structure of the data 

better than PCA.  

In addition to the above, this thesis also extended the representation of local PCA 

structures in scale (discussed in chapter three)   to local PCA in dataspace (based on 

local PCA definition as used in [14, 29]). In order to use the MPCA algorithm developed 

in chapter three for local PCA, we formulated the local PCA problem based on definition 

four and solved as a weighted PCA as shown in chapter four, and we were able to 

introduce localization using kernel function.  

One of the reasons for the development of nonlinear PCA and other nonlinear 

data approximation techniques is the fact that PCA does not “efficiently” approximate 

complex datasets (for example, data that can be termed as curved, disconnected, or  

branched) as such complex datasets are often characterised by different structures at 

various region of the dataspace. Partitioning the dataspace into regions and performing 

PCA on each region can be seen as approximation of nonlinear technique using 

hyperplanes. The local PCA around a given target point in a dataset is the PCA of the set 

of datapoints within a given radius of the target point.  

We study the intrinsic structures of a dataset in the dataspace by selecting 

various target points from the data and analysing the local PCA structures for each of 

these target points. The resulting local PCA structures depend on the target points and 

radius of neighbourhood. We represented these local PCA structures using orthogonal 

projection matrix as discussed in chapter three and cluster analysis of the local PCA 

structure separate dissimilar structures and groups together similar structures thereby 

revealing the various classes of structures in the dataset. Each cluster represents a 

structure in the dataset. 
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Our proposed analysis of the local PCA structure of data in the dataspace 

provides useful insight to the geometry of the data as we can study the changes in the 

local PCA structures over the data space and relate this with the global PCA structure. 

Also we can identify regions in the dataspace with similar PCA structure providing 

useful insight for data exploration. Examples of applications of local PCA (localization in 

the dataspace) were given in chapter five.  

Sometimes it is desirable to approximate data locally using a linear method such 

as PCA. However the result of PCA localization in dataspace is distorted by a few 

influential datapoints (see figure 19). We proposed and demonstrated that the two 

localization approaches (see section 4.5) can be combined to improve the robustness of 

the linear method for approximating data locally. 

We must however state that the result of MPCA and local PCA analysis of a 

dataset is not invariant to data scaling; different results will be obtained for various 

normalizations of the datset. This applies generally to all methods that model the 

topology of dataset.  We should also state that the quality of local PCA depends on the 

quality of cluster analysis or partitioning of the dataset.  

PCA localization either in scale or space involves the exclusion of either some 

datapoints (as in the case of local PCA) or exclusion of some pairwise distances of data 

projection (as in the case of MPCA). There is a risk of overfitting the data; especially in 

the case where we seek an approximation to a dataset that preserves certain internal 

structure(s) using MPCA. The exclusion of large datapoints (or pairwise distances) may 

lead to the loss of “information” similar to the idea of “uncertainty principle”. Therefore 

an area for further research is that of developing criteria to limit the percentage of 

datapoints (or pairwise distances) that can be exempted in the analysis of principal 

component without losing relevant information.  

It should be mentioned that in predictive modelling, it is possible that structures 

whose approximation is considered to result in overfitting of the dataset (or which we 

classify as noise) sometimes can have better predictive performance. This research can 

be further extended by developing methods which seeks intrinsic structure(s) (which 

could be present in a dataset) with better predictive performance than PCA. One 

suggestion to developing such method will be to find intrinsic structure, taken into 
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consideration the feature we want to predict. This will be a “partial least square” like 

method. 

Most statistical methods which involve the use of distances of datapoints suffer 

terribly in high dimension; therefore we propose that MPCA should only be applied to 

data for which PCA can be applied without suffering from the “curse of dimensionality”. 

Also, as functional principal component analysis is becoming popular, another 

area for further research will be to extend the idea of multiscale PCA and clustering of 

scale to functional principal component analysis.  

In conclusion, the first part of this thesis addressed the problem of initialization 

of manifold modelling methods for two initialization methods. Using various examples, 

we demonstrated that the widely accepted assumption of the advantages of PCI SOM 

over RI is not universal and for SOM this assumption is essentially wrong for nonlinear 

datasets. We also showed that data classification is important for understanding the 

dynamics of manifold learning.  

In the second part of this thesis, we demonstrated that analysing local PCA 

structures of a dataset can be used to reveal some intrinsic structure(s) that PCA might 

not reveal. This provides useful insight into the structure(s) of the dataset and also 

provides robust linear approximations of the data. We analysed the local PCA structures 

of data for various distributions of weight which we called Multiscale PCA. Cluster 

analysis of these local PCA structures reveals some intrinsic structures of the data. From 

the result of various examples, we found that we can sometimes find subspaces which 

approximate data better than PCA in terms of minimal data distortion, local structure 

preservation, class structure preservation and minimizing the effect of some influential 

data points. 

Finally, we also analysed the local PCA structure of various partitions of data in 

the dataspace.   Analysing the local PCA structures identifies the various regions with 

similar structures and also reveals the changes in the structure of the data as we move 

along the dataspace. Local PCA in dataspace provides a linear approximation for non 

linear methods and in particular it is able to efficiently approximate data with 

disconnected regions. We demonstrated that the combination of the two localization 
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methods discussed in this thesis provides a more robust linear method for 

approximation of data.  
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Appendix 

 

Table A. The distribution of FVU for RI. (The last column is FVU for PCI) 

Dataset k Mean Standard 

Deviation 

Minimum Maximum PCI 

Spiral  10 13.81 2.117 11.38 20.37 11.43 

 

20 3.31 0.93 1.98 6.25 3.26 

 

50 0.44 0.19 0.12 6.25 0.13 

       Spiral With Noise 10 19.24 1.84 7.47 24.74 18.52 

 

20 6.92 0.93 5.95 11.01 8.65 

 

50 2.4 0.22 1.81 2.87 2.61 

       Horse shoeshoe 10 16.51 2.86 12.03 26.43 17.12 

 

20 3.55 1.33 1.81 7.23 5.99 

 

50 0.35 0.16 0.11 0.993 1.32 

       Horse shoe with 

scatter 

10 16.52 2.45 12.76 23.23 18.27 

 

20 4.6 1.09 2.93 7.32 6.15 

 

50 1.31 0.15 0.59 1.73 1.91 

 

100 0.72 0.06 0.57 0.88 0.86 

       S Shape 10 12.89 0.54 12.73 15.38 12.76 

 

20 3.96 0.84 2.34 6.42 2.37 

 

50 0.73 0.25 0.19 1.41 0.35 

       S Shape with Noi 10 13.04 0.01 13.03 13.05 13.03 

 

20 3.91 0.87 2.51 5.99 2.52 

 

50 0.78 0.24 0.41 1.35 0.46 

       C Shape 10 4.28 0.07 4.22 4.35 4.35 

 

20 1.19 0.48 0.75 2.9 0.88 

 

30 0.53 0.19 0.21 1.24 0.31 

       C shape with 

scatter 

10 11.41 3.05 9.7 21.94 9.78 

 

20 4.04 0.67 3.08 6.56 3.13 

 

30 2.02 0.15 1.66 2.4 2.07 
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Table B. The proportion estimate of RI which performs better than PCI for various datasets and 

number of nodes 

Dataset k 

% better 

than PCI 

Confidence Interval (%) at 

confidence level of 95% Classification 

Spiral  10 41%  31.86 - 50.80 Nonlinear 

  20 55%  45.24 - 64.39 Nonlinear 

  50 1%  0 - 1.96 Nonlinear 

          

Spiral  With Noise 10 49%  39.42 - 58.65 Nonlinear 

  20 95%  88.54 - 98.13 Nonlinear 

  50 84%  75.47 - 90.01 Nonlinear 

          

          

Horse shoe 10 73%  65.53 - 80.77 Nonlinear 

  20 95%  88.54 - 98.13 Nonlinear 

  50 100%  99.02 - 100 Nonlinear 

          

Horse shoe with 

scatter 

10 74% 64.58 -  81.64 Nonlinear 

  20 89%  81.21 - 93.91 Nonlinear 

  50 100%  99.02 - 100 Nonlinear 

  100 99%   Nonlinear 

          

S Shape 10 36%  27.26 - 45.78 Quasi-linear 

  20 7%  3.20 - 13.98 Quasi-linear 

  50 7%  3.20 - 13.98 Quasi-linear 

          

S Shape with 

scatter 

10 48%  38.46 – 57.68 Quasilinear 

  20 9%  4.62 – 16.42 Quasilinear 

  50 11%  6.09 - 18.79 Quasilinear 

          

C Shape 10 100%  99.02-100 Quasilinear 

  20 33%  24.54 - 42.72 Quasilinear 

  30 13%  7.62 -  21.12 Quasilinear 

          

C shape with 

scatter 

10 73%   65.53 - 80.77 Quasilinear 

  20 8%  3.90 – 15.21 Quasilinear 

  30 72%  62.48 – 79.90 Quasilinear 
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Table C. Number of unique final configurations in the datasets and the relative performance of 

RI versus PCI for quasi-linear datasets. 

% of PCI greater than 

RI 

Unique final  

configuration 100.00% 2 

33.00% 34 

13.00% 47 

73.00% 11 

8.00% 50 

72.00% 47 

36.00% 11 

7.00% 67 

7.00% 65 

48.00% 2 

9.00% 49 

11.00% 58 

 

 

Table D.  The angles between original vector and 1st principal axis at different scales for 

example 3. 

Scale Upper Limit 

L
o

w
er

 L
im

it
 

  1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.0 85.25 6.65 6.65 6.65 6.65 6.65 6.65 6.45 8.77 14.92 

0.1 85.29 6.59 6.59 6.59 6.59 6.59 6.59 6.37 8.54 0.00 

0.2 85.62 6.12 6.12 6.12 6.12 6.12 6.12 5.61 0.00 0.00 

0.3 86.09 7.20 7.20 7.20 7.20 7.20 7.20 0.00 0.00 0.00 

0.4 86.27 90.00 90.00 90.00 90.00 90.00 0.00 0.00 0.00 0.00 

0.5 86.27 90.00 90.00 90.00 90.00 0.00 0.00 0.00 0.00 0.00 

0.6 86.27 90.00 90.00 90.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.7 86.27 90.00 90.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.8 86.27 90.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 

0.9 86.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note:  The MPCA at scale 0-1 is the same as PCA. The cell for PCA as being marked with a grey-

scale background 
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Table E. The ratio of distortion on example 3 data at different scales for k = 2.  

Scale Upper Limit 

L
o

w
er

 L
im

it
 

  1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.0 0.903 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.920 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

0.2 0.973 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 

0.3 0.991 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 

0.4 0.997 NaN NaN NaN NaN NaN 0.000 0.000 0.000 0.000 

0.5 0.997 NaN NaN NaN NaN 0.000 0.000 0.000 0.000 0.000 

0.6 0.997 NaN NaN NaN 0.000 0.000 0.000 0.000 0.000 0.000 

0.7 0.997 NaN NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.8 0.997 NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.9 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The MPCA at scale 0-1 is the same as PCA. The cell for PCA as being marked with a grey-

scale background 

 

Table F. The ratio of distortion on example 3 data at different scale for k = 1  

SCALE Upper Limit 

L
o

w
er

 L
im

it
 

  1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.0 0.470 0.830 0.830 0.830 0.830 0.830 0.830 0.814 0.743 0.675 

0.1 0.498 0.851 0.851 0.851 0.851 0.851 0.851 0.836 0.763 0.000 

0.2 0.646 0.934 0.934 0.934 0.934 0.934 0.934 0.928 0.000 0.000 

0.3 0.867 0.953 0.953 0.953 0.953 0.953 0.953 0.000 0.000 0.000 

0.4 0.985 NaN NaN NaN NaN NaN 0.000 0.000 0.000 0.000 

0.5 0.985 NaN NaN NaN NaN 0.000 0.000 0.000 0.000 0.000 

0.6 0.985 NaN NaN NaN 0.000 0.000 0.000 0.000 0.000 0.000 

0.7 0.985 NaN NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.8 0.985 NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.9 0.985 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The MPCA at scale 0-1 is the same as PCA. The cell for PCA as being marked with a grey-

scale background 
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Table G. The percentage of pairwise distances exempted in computing MPCA at various scales 

for example 3 data. 

SCALE Upper Limit 

L
o

w
er

 L
im

it
 

  1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0 0% 11% 11% 11% 11% 11% 11% 16% 35% 74% 

0.1 26% 38% 38% 38% 38% 38% 38% 42% 61% 0% 

0.2 65% 77% 77% 77% 77% 77% 77% 81% 0% 0% 

0.3 84% 95% 95% 95% 95% 95% 95% 0% 0% 0% 

0.4 89% 100% 100% 100% 100% 100% 0% 0% 0% 0% 

0.5 89% 100% 100% 100% 100% 0% 0% 0% 0% 0% 

0.6 89% 100% 100% 100% 0% 0% 0% 0% 0% 0% 

0.7 89% 100% 100% 0% 0% 0% 0% 0% 0% 0% 

0.8 89% 100% 0% 0% 0% 0% 0% 0% 0% 0% 

0.9 89% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Note:  The MPCA at scale 0-1 is the same as PCA.  

 

Table H.  Result for Vertebral Column with data labelled to 3 Classes. Class compactment 

result for class “Hernia” 

 PCA Cluster 1 Cluster 2 Cluster 3 

       Scale 

knn (0,1) (0,0.2) (0.2,0.6)) (0.1,0.7) (0,0.1) (0.3,0.6) (0.2,1) (0,0.9) 

k = 3 0.79 0.89 0.90 0.88 0.94 0.91 0.80 0.79 

k  = 5 0.84 0.90 0.92 0.90 0.93 0.90 0.85 0.84 

k  = 10 0.90 0.94 0.93 0.93 0.97 0.93 0.89 0.90 

 

 

Table I.  Result for Vertebral Column with data labelled to 3 Classes. Class compactment result 

for class “Spondylolisthesis” 

 PCA Cluster 1 Cluster 2 Cluster 3 

       Scale 

knn (0,1) (0,0.2) (0.2,0.6) (0.1,0.7) (0,0.1) (0.3,0.6) (0.2,1) (0,0.9) 

k = 3 0.74 0.77 0.79 0.77 0.82 0.81 0.73 0.73 

k  = 5 0.76 0.80 0.82 0.80 0.83 0.82 0.77 0.75 

k  = 10 0.78 0.81 0.83 0.82 0.84 0.85 0.79 0.78 
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Table J.  Result for Breast tissue dataset. Class compactment result for class “Carcinoma” 

 PCA Cluster 1 Cluster 2 Cluster 3 

       Scale 

knn (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

k = 3 0.79 0.79 0.75 0.83 0.78 0.81 0.81 0.83 0.79 

k  = 5 0.81 0.81 0.78 0.77 0.80 0.77 0.90 0.90 0.90 

k  = 10 0.90 0.89 0.87 0.90 0.90 0.90 0.98 0.97 0.97 

 

 

 

Table K.  Result for Breast tissue dataset. Class compactment result for class “Fibro-                  

adenoma”. 

 PCA Cluster 1 Cluster 2 Cluster 3 

    Scale 

knn (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

k = 3 0.89 0.87 0.84 0.82 0.84 0.80 0.98 0.98 0.98 

k  = 5 0.88 0.83 0.83 0.81 0.83 0.80 1.00 1.00 1.00 

k  = 10 0.91 0.89 0.88 0.91 0.91 0.90 0.99 0.99 0.99 

 

 

 

Table L.  Result for Breast tissue dataset. Class compactment result for class “Mastopathy”. 

 PCA Cluster 1 Cluster 2 Cluster 3 

      Scale 

knn (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

k = 3 0.83 0.89 0.89 0.81 0.83 0.81 0.91 0.91 0.89 

k  = 5 0.90 0.87 0.84 0.84 0.87 0.83 0.96 0.96 0.98 

k  = 10 0.95 0.94 0.94 0.95 0.94 0.95 1.00 1.00 0.99 
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Table M.  Result for Breast tissue dataset. Class compactment result for class “Glandular”. 

 PCA Cluster 1 Cluster 2 Cluster 3 

      Scale 

knn (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

k = 3 0.89 0.87 0.77 0.89 0.89 0.89 0.94 0.94 0.96 

k  = 5 0.88 0.90 0.91 0.88 0.88 0.88 0.94 0.94 0.93 

k  = 10 0.99 0.98 0.96 0.99 0.99 0.99 0.99 0.99 1.00 

 

 

Table N.  Result for Breast tissue dataset. Class compactment result for class “Connective”. 

 PCA Cluster 1 Cluster 2 Cluster 3 

    Scale 

knn (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

k = 3 0.81 0.79 0.74 0.86 0.81 0.86 0.83 0.86 0.86 

k  = 5 0.91 0.90 0.87 0.96 0.81 0.86 0.83 0.86 0.86 

k  = 10 0.93 0.91 0.91 0.94 0.93 0.96 0.86 0.87 0.89 

 

 

Table O.  Result for Breast tissue dataset. Class compactment result for class “Adipose”. 

 PCA Cluster 1 Cluster 2 Cluster 3 

    Scale 

knn (0,1) (0.3,1) (0.4,1) (0,0.5) (0.2,1) (0.1,0.8) (0.1,0.2) (0,0.2) (0,0.1) 

k = 3 0.80 0.80 0.82 0.80 0.79 0.80 0.86 0.86 0.83 

k  = 5 0.86 0.86 0.88 0.85 0.85 0.85 0.85 0.85 0.81 

k  = 10 0.92 0.93 0.92 0.93 0.92 0.93 0.88 0.88 0.87 
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