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Abstract—Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream
mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This
paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based
ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base
learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also
proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate
the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods.
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1 INTRODUCTION

W ITH the rapid development of incremental learn-
ing and online learning, mining tasks in the con-

text of data stream have been widely studied [1] [2].
Generally, data stream mining refers to the mining tasks
that are conducted on a (possibly infinite) sequence
of rapidly arriving data records. As the environment
where the data are collected may change dynamically,
the data distribution may also change accordingly. This
phenomenon, referred to as concept drift [3] [4], is one
of the most important challenges in data stream mining.
A data stream mining technique should be capable of
constructing and dynamically updating a model in order
to learn dynamic changes of data distributions, i.e., to
track the concept drift.

For classification problems, concept drift is formally
defined as the change of joint distribution of data, i.e.,
p(x, y), where x is the feature vector and y is the class
label. Over the past few decades, concept drift has been
widely studied [5] [6] [7]. The majority of the previous
works focus on the concept drift caused by the change
in class-conditional probability distribution, i.e., p(x|y).
In comparison, class evolution, which is another factor
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that induces concept drift, has attracted relatively less
attention. Briefly speaking, class evolution is concerned
with certain types of change in the prior probability
distribution of classes, i.e., p(y), and usually corresponds
to the emergence of a novel class and the disappearance
of an outdated class. Class evolution occurs frequently
in practice. For example, new topics frequently appear
on Twitter and outdated topics are forgotten with time.
Besides, old topics, e.g., topics on festivals, may also
become popular again. Such phenomena can also be
observed from other types of data streams, such as
the click-through data of news or advertisements since
the interests of clients may change over time. In some
literature, class evolution is also called class-incremental
learning [8] or concept evolution [9] [10] [11]. More
formally, let Ct denote the set of classes whose prior
probability is positive at time stamp t. Class evolution
involves the following forms:

• Class emergence represents an example of an un-
known class is received at the current time. That is,
class c emerges at time t if c /∈ C1 ∪ C2 ∪ · · · ∪ Ct−1
and c ∈ Ct. Such a class is called a novel class.

• Class disappearance describes the situation in which
the example of an existing class would not be re-
ceived in the next time stamp. That is, if class c
disappeared at time t, then c ∈ Ct−1 and c /∈ Ct.

• Class reoccurrence defines the point where a disap-
peared class recurs later in the data stream. Class c
is a recurring class at time t, if c ∈ C1 ∪ · · · ∪ Cd−1,
c /∈ Cd ∪ · · · ∪ Ct−1, and c ∈ Ct.

Since the number of classes may change when class
evolution happens, the model needs to be adapted not
only to capture the distribution of existing classes, but
also to identify that of the novel classes. At the same
time, the effects of disappeared classes need to be re-
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moved from the model. Hence, in comparison to the
change of class-conditional probability, class evolution
brings additional challenges to data stream mining.

In literature, a few approaches have been proposed
to address class evolution problems, e.g., Learn++.NC
[12], ECSMiner [13] and CLAM [14]. Although they have
shown promising performance, they implicitly assume
that classes emerge or disappear in a transient manner.
In other words, the example generation rate (EGR, i.e.,
the number of examples generated per-unit time) of a
class switches between two states, i.e., a constant positive
value and zero. However, in a real-world scenario, it is
more likely that classes evolve in a gradual manner. For
example, in an early stage, an event may be discussed
by a few participants on Twitter; the topic grows in pop-
ularity over a period of time and then eventually fade
away from attention. Motivated by this consideration,
this work investigates the class evolution problem with
gradually evolved classes. Gradual evolution of classes
refers to the case that classes appear or disappear in
a gradual rather than transient manner, i.e., the EGR
changes more smoothly. A novel class-based ensemble
approach, namely Class-Based ensemble for Class Evo-
lution (CBCE), is proposed. In contrast to the above-
mentioned existing approaches, which process a data
stream in a chunk-by-chunk manner and build a base
learner for each chunk, CBCE maintains a base learner
for every class that has ever appeared and updates the
base learners whenever a new example arrives (i.e., in a
one-pass manner). Furthermore, a novel under-sampling
method is also designed to cope with the dynamic class-
imbalance problem induced by gradual class evolution.

The remainder of this paper is organized as follows:
Section II presents the problem description and discusses
related work. Section III presents our adaptation ap-
proach. Empirical studies on the proposed as well as the
existing approaches are reported in Section IV. Section V
concludes the paper with directions for future work.

2 PROBLEM DESCRIPTION AND RELATED
WORK

2.1 Problem Description
Let {(x1, y1), (x2, y2), · · · , (xt, yt), · · · } denote a data
stream, where xt and yt are the example received at time
stamp t and its corresponding class label, respectively.
Each xt is regarded as being generated from the data
source of class yt. By these definitions, class evolution is
just the evolution of the data sources, i.e., a data source
starts or suspends generating example. In gradual class
evolution, the example generation rate (EGR) of a data
source changes gradually. That is, the EGR of an evolved
class gradually increases from 0 in class emergence
(reoccurrence), and decreases from a positive value to
0 in class disappearance. We denote Ct = ∪i{ci} as the
set of classes with positive EGR at time t. Furthermore,
let Cnovel

t , Crecurring
t be the set of novel and recurring

classes at time t (i.e., their EGRs are 0 at time t− 1 and

positive at time t), respectively. Let Cdisappeared
t denote

the set of the disappeared classes at time t (i.e., their
EGRs are positive at time t − 1 and 0 at time t). We
have Ct = Ct−1 ∪ Cnovel

t ∪ Crecurring
t − Cdisappeared

t . The
novel (recurring) classes grow and the outdated classes
fade away gradually. Therefore, this leads the underlying
class set to be unfixed in the mining process.

2.2 Related Work

Since class evolution concerns a special case of concept
drift, we will first briefly review the typical strategies
for dealing with concept drift [3]. Then, we will proceed
with the previous works dedicated to class evolution.

A sliding window method stores in memory a number
of the most recent examples; the window size can be
fixed [15] or variable [16]. The model is updated based
on new data, which are stored in the window. Old data,
which tend to be affected by concept drift, are forgotten.
In the presence of class evolution, although this method
is able to adapt a model to class evolution by dropping
previous data, it also forgets potentially useful informa-
tion of the non-evolved classes, inevitably resulting in a
negative impact on the mining performance.

Ensemble methods mainly include chunk-based en-
sembles, on-line ensembles, and hybrid ones [17]. A
chunk-based ensemble constructs each base learner by
training it with a different chunk of data [18] [19]. A
weighted combination of the base learners is applied to
handle the concept drift. In the chunk-based ensemble
strategy, class evolution would cause the base learners to
have different sets of classes. Taking class emergence as
an example, this would cause the collective votes of the
earlier base learners to outweigh the correct votes for the
novel class [12]. On-line ensembles, e.g., on-line bagging
and boosting [20], update each base learner in an on-line
manner. This scheme would take a long time for class
evolution adaptation. Hybrid ensemble methods aim to
combine chunk-based ensembles and on-line ensembles,
so as to have the advantages of both in a single frame-
work. For example, the recently proposed AUE2 [21]
algorithm employs each chunk of data to initialize a new
base learner and to update all existing ones. Then, base
learners are weighted according to their accuracies to
adapt to the concept drift. Considering class emergence,
since the base learner is mainly trained by the non-
evolved class, the novel class is highly imbalanced in the
existing base learners. Moreover, the examples from the
novel classes are not enough in the early stage of gradual
class evolution. Hence, it is still difficult to recognize
novel class efficiently when class evolution occurs.

Apart from the previous strategies, drift detection
methods explicitly determine the drift of concept and up-
date the model accordingly [5] [22] [23]. In order to adapt
to the new concept, most of these approaches [22] [23]
forget any information learnt before the detected drift.
Similarly to the sliding window strategy, for class evolu-
tion, this means that useful information will be forgotten.
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DDD [5] is a special type of drift detection method that
keeps old ensembles while they are useful. However,
DDD can only keep old ensembles corresponding to one
of the previous concepts. Therefore, in the case of class
evolution, DDD will also forget information when more
than one class evolution behavior happens over time.

Class reoccurrence in class evolution is relevant to
recurrent concept drift, which represents the case where
a past concept reoccurs again in the data stream [24] [25]
[26]. However, the two cases are substantially different.
Recurrent concept means a reoccurred joint distribution
for all data, and thus the whole class set involved in
the concept also reoccurs. On the other hand, when
class reoccurrence happens, the current concept may
not be identical to any previous concept since some
other classes might have disappeared. Hence, class re-
occurrence may not lead to a recurrent concept, and
thus might not be handled effectively with existing
algorithms for recurrent concept drift.

To summarize, although the research progress on gen-
eral concept drift provides inspirations for tackling class
evolution, few approaches proposed therein are directly
applicable in this particular case. Hence, it is unsurpris-
ing that the dedicated research on class evolution can be
dated back to more than one decade ago, when Zhou
et al. [8] put forward the concept of class-incremental
learning (C-IL). Since then, two major families of meth-
ods have been developed for class evolution.

The first family of algorithms includes MineClass [9],
ECSMiner (ECSM, [13]), CLAM [14], MCM [10] [27]
and SCANR [11]. All of them process data streams
chunk by chunk. They consider class evolution from
two perspectives, i.e., novel class detection and class
evolution adaptation. The former task is to detect a
potentially unknown class and assist human experts in
data labeling. The second one, which is the focus of this
work, aims to effectively maintain the model to adapt
to class evolution. For class evolution adaptation, MCM
and SCANR simply employ the chunk-based ensemble
approach for concept drift. MineClass and ECSM extend
this to a new model selection method to select related
learners for voting and drop outdated ones. CLAM
develops a class-based structure, where the examples
for each class are trained separately. The model selec-
tion method and class-based structure are specifically
designed for the main characteristic of class evolution,
i.e., an unfixed class set in the learning process. However,
the above strategies still have their drawbacks: (1) For
class emergence, ECSM ignores the unconfident votes of
aged models trained without the novel class. However,
the judgment on the confidence of a vote, which relies
on the outlier detection, is nontrivial. Since the example
size of the novel class in each chunk increases in the
class emergence stage, the base learners tend to mark
the examples of novel classes in the later chunks as
outliers. This will cause ECSM to misjudge the votes
from the early base learners as being unconfident. For
class disappearance, it removes the outdated models

from the ensemble. However, if the class reoccurs later,
the model needs a re-training of this class, and this
makes the model inefficient. (2) In CLAM, when learning
each chunk, the examples of each class are grouped into
k clusters to make decision. CLAM uses k-means [28] to
generate the decision boundary, but it is difficult to set a
generally suitable k value for each chunk, especially for
the gradual class evolution. In particular, in the early
stage of emergence (reoccurrence) and the late stage of
disappearance, the examples of the evolved class may
be too few to be clustered. A large k value is unsuitable
when a class emerges or disappears, and a small one may
lead to an unsatisfactory performance when its example
size becomes large enough.

The other family of algorithms related to class
evolution are the variants of the Learn++ [29], i.e.,
Learn++.NC (LNC, [12]), Learn++.UDNC (LUDNC, [30])
and Learn++.NCS (LNCS, [31]). They are inspired by
AdaBoost [32], and construct a set of base learners for
each chunk. In traditional chunk-based ensembles, when
a novel class emerges, the former base learners that
have been trained without this class will outvote the
most recent ones. In order to overcome this problem, a
novel weight assignment mechanism, called a dynami-
cally weighted consult-and-vote (DW-CAV), is presented
in LNC. In order to learn imbalanced data, LUDNC
and its more general version, LNCS, are proposed. The
SMOTE [33] oversampling strategy acts as a wrapper
to preprocess the training data in LNCS. Shortcomings
for these algorithms are discussed: (1) The weights for
base learners are difficult to tune, especially in compli-
cated evolution scenarios. For example, a novel class
emerges with another class disappearing. In classifying
the example of the novel class, the weight for the later
base learner may still be pulled down, if the earlier
learners classify it as the disappeared class. (2) In the
learning process of these algorithms, each base learner
should guarantee that the cumulative weight for the
misclassified examples in its chunk is below 0.5; if this is
the case, a new one should be trained instead. However,
this requirement is hard to meet for the dynamically
imbalanced data, especially when the data is compli-
cated and multiple classes exist in the data stream. In
this situation, the algorithm may never end. (3) Due to
the dynamic class-imbalance problem in gradual class
evolution, the example size may be large enough in
some chunks while very limited in others. Although the
minority class is considered in LNCS, the chunk-based
learning method cannot effectively make use of the data.
Furthermore, since all base classifiers are maintained, it
is considerably time-consuming to dynamically calculate
the weights of these classifiers for each test example.

3 THE PROPOSED APPROACH
In this section, the problem of class evolution adaptation
is analyzed first. Then, the new approach as well as the
details of each component will be described. Finally, the
approach is analyzed and summarized.
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3.1 Problem Analysis
To further clarify the problem of class evolution adap-
tation, the risk of misclassification is evaluated for the
case of 0-1 loss. Gradual class evolution leads the data
stream to be dynamically imbalanced; in addition, the
prior probability of each class may even fluctuate dra-
matically. In this situation, examples tend to be classified
as majority classes, and the examples of minority classes
are hard to identify. To eliminate this influence, a weight
eit at time t for misclassifying the example of class ci is
set, as eit = 1/Pt(ci), where Pt(ci) is the prior probability
of class ci at time t. For class ci at time t, the risk for
classifying xt as class ci is

Rt(ci|xt) =
∑
j 6=i

(ejt · Pt(cj |xt)) (1)

where Pt(cj |xt) is the posterior probability of class cj
given example xt.

To maximize the learning performance, the classifica-
tion risk (i.e., Eq. (1)) at each time step t needs to be
minimized. Since eit is set as 1/Pt(ci), the minimization
problem turns to be

min
i

∑
j 6=i

(
1

Pt(cj)
· Pt(cj |xt)) (2)

Since Pt(xt) is the same for all classes, Eq. (2) is equiv-
alent to

min
i

∑
j 6=i

(
1

Pt(cj)
· Pt(cj |xt) · Pt(xt)) (3)

which is equivalent to

min
i

∑
j 6=i

Pt(xt|cj) (4)

By dividing each item in Eq. (4) by
∑

j Pt(xt|cj), the
problem is transformed into

min
i

(1− Pt(xt|ci)∑
j
Pt(xt|cj)

) (5)

In other words, the original problem of minimizing mis-
classification risk transforms into the problem of finding
the maximal likelihood, which is

max
i
Pt(xt|ci) (6)

3.2 Class-based Ensemble for Class Evolution
Eq. (6) suggests that the optimal classification strategy is
to assign an example according to the likelihood that it
belongs to a class. Therefore, a natural approach to this
problem is to maintain a model for each class so that the
likelihood can be explicitly estimated. For this reason,
the CBCE approach is proposed. Each class-based model
(CB model) is maintained for a certain class ci and an
example x is classified according to

argmax
i

CBMClassify(x, CBMi) (7)

where the function CBMClassify returns the likelihood
P (x|ci) or scores that can be used to estimate P (x|ci).

Depending on the current class evolution state, the CBCE
algorithm manages the CB models in mining tasks.

Specifically, it may create a new CB model for a novel
class, inactivate an outdated CB model for a disappeared
class and re-activate the CB model when the class re-
occurs again. Since the class conditional probability is
also likely to change in a real-world data stream, the
previously built model for a class could become invalid
later. Hence, CBCE also involves a scheme to detect and
handle the invalid CB model.

3.2.1 Class-based Model
A class-based (CB) model is one that is specifically
constructed for a certain class to get the likelihood (or
related score) of a test example. A variety of models
are possible candidates for a CB model, e.g., one-class
classifier and clustering model.

In this work, the CB model is implemented as a binary
classifier that is able to output its classification posterior
probability. In each CB model, with the one-versus-all
strategy, the represented class is the positive class (+1)
and the others are the negative one (-1) as a whole.
According to Bayesian theory, the posterior probability
Pt(+1|xt) for the positive class at time t is

Pt(+1|xt) =
Pt(+1)

Pt(xt)
· Pt(xt|+ 1) (8)

where Pt(xt) is the same for all classes. If the training
data are balanced in CB models, Pt(+1) is a constant 1/2.
In this condition, the posterior probability for positive
class is proportional to the likelihood of the positive
class, i.e., the specific class the CB model is maintained
for. In other words, the probability can be used as the
score to represent the likelihood for making decisions.

The positive and negative classes are likely to be
imbalanced in a CB model. Although class-imbalanced
problem has been intensively investigated, most previ-
ous studies [31] [34] focus on static class-imbalanced
problems. In our case, the prior distribution may change
over time, leading to a dynamic class-imbalanced prob-
lem. To address this issue, an under-sampling strategy is
embedded in each CB model. The sampling probabilities
for the positive and negative classes are different. As
each CB model acts as an “expert” for its corresponding
class, all of the examples received from this positive
class are selected. The data size of the negative classes
is usually larger than the positive one. Furthermore,
the size of each class dynamically changes due to the
gradual class evolution. These negative examples are
sampled by under-sampling with a dynamic probability,
which aims to select the negative data with the same size
as the positive ones. Denoting wi

t as the prior probability
of class ci at time t, the probability of sampling the
negative examples for ci is calculated as

pi = min(wi
t/(1− wi

t), 1) (9)

In on-line learning, the underlying prior probability wi
t is

hard to be observed. To quickly and accurately estimate
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Algorithm 1 UpdateCBModel
Input: (xt, yt), the example at time t; CBMi, the CB model

of class ci; and wi
t−1, the prior probability of ci at time t−1

Output: CBMi, the updated CB model
1: if CBMi is the corresponding CB Model for yt then
2: wi

t = βwi
t−1 + (1− β)

3: update CBMi with (xt,+1)
4: else
5: wi

t = βwi
t−1

6: pi = wi
t/(1− wi

t)
7: update CBMi with (xt,−1) under probability pi
8: end if

wi
t, it is tracked by the time decay method [35] [36] as:

wi
t = βwi

t−1 + (1− β)1[yt = ci] (10)

where β (0 < β < 1) denotes the decay factor, and
1[yt = ci] = 1 if yt, the true class label of xt, is ci,
otherwise 0. To conveniently apply CBCE in practice, a
constant decay factor is used for the prior probabilities
of all classes. Since the estimated prior probability will
be updated exponentially, it will quickly achieve its un-
derlying value. The appropriate value for β is 0.9, which
has been determined after comprehensive experiments.

The learning procedure is summarized in Algorithm
1. When a new example is received, every CB model
will update the estimation of prior probability of its
class (lines 2 and 5). For the class that the currently
received example belongs to, its CB model uses it for
updating directly (line 3). For the other CB models, the
example is first sampled with the dynamic sampling
probability, and then used to update the models as a
negative training example (lines 6 and 7).

In the CBCE framework, a CB model is required to
provide its output in the form of score and can be
updated on-the-fly. Quite a few classical base leaners sat-
isfy the first requirement, and logistic regression might
be the model that has been mostly investigated with
regard to the second issue. Hence, the online Kernelized
Logistic Regression (KLR, [37]) is employed in this work
as the base learner. It should be noted that CBCE does
not necessarily require to establish only one CB model
for each class, and in some cases an ensemble model
might be more suitable than a single model for a class.
For example, if the minority class may comprise small
disjuncts of data, a possibly better option for the CB
model is to employ cluster over-sampling techniques [38]
[39] and build a model for each disjunct of data.

The KLR adopted in this work takes the form as:

f i
t (x) =

ni∑
j=1

αi
jk(xj ,x) (11)

where t is the time stamp, ni is the number of examples
trained in CBMi, αi

j is the coefficient for the j-th term
in CBMi, and k(·, ·) is the kernel function. The posterior
probability for the i-th CB model is

P i
t (+1|xt) = 1/(1 + exp(−f i

t (xt))) (12)

After being fed with each training example, the on-
line KLR algorithm updates the current classifier by
stochastic gradient descent with model truncation [37].
With this implementation, the CB model can predict the
probability of the classification and learn the data stream
with linear time complexity.

3.2.2 Class Evolution Adaptation
Class evolution has three basic elements, i.e., the emer-
gence of novel classes, the disappearance of outdated
classes, and the reoccurrence of disappeared classes.

When a novel class ci emerges at time stamp t, CBCE
first estimates its prior probability wi

t, and then initializes
a new CB model CBMi for it. The prior probability is
initially estimated after receiving the first two examples
of this class. Denoting ExampleSize as the example size
of the negative classes between these two examples, the
prior probability is estimated as follows:

wi
t = 1/(ExampleSize+ 1) (13)

Based on the two examples of novel class and the
negative examples between them, the CB model is ini-
tialized. Next, the CB model participates in classifying
the subsequent data stream.

For class disappearance, the approach has to de-
termine the disappearance when a class is shrinking;
following this, its CB model should be managed to
ensure not to affect the recognition of other classes.
Since the evolution state is tracked in CB models, a
sufficiently small prior probability threshold, e.g., β1000

(β is the decay factor in Section 3.3), can be used for
disappearance confirmation. That is, if the class has
been absent for 1000 consecutive time stamps, it is thus
considered to have disappeared. The decision boundary
of the CB model, as implemented by binary classifier,
merely separates one class from another. In this case, if
the class-conditional probability distribution changes or
a novel class emerges on the boundary, the original CB
model for the disappeared class would be inaccurate and
also influence the novel class. Therefore, the CB model
of the disappeared class is inactivated in classification.
Besides, when a class is considered to have disappeared,
its estimated prior probability is set to be 0, which also
means its CB model is suspended for updating.

Class reoccurrence means that an example with the
label of a disappeared class is received again. Effective
handling of class reoccurrence could make use of past
training efforts. For the inactivated CB model of a disap-
peared class, it can be used again for classification when
an example with an old label arrives, which makes CBCE
efficient. Once class reoccurrence happens, the model re-
estimates the prior probability in the same way as class
emergence, and activates the CB model in classification.

This mechanism to deal with the three key compo-
nents of class evolution is wrapped around each CB
model, which equips CBCE to track gradually evolved
classes effectively. The procedure of class evolution
adaptation is summarized in Algorithm 2. Depending on
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Algorithm 2 ClassEvolutionAdaptation
Input: (xt, yt), the example at time t; CBMi, the obtained

CB models at t − 1, i = 1, 2, · · · , |CBM |; Ct, the class set
at t; and wi

t, the prior probability of ci at time t
Output: CBM , the class-based ensemble
1: Ct ← Ct−1

2: if no CBMi is available for yt then
3: // class emergence
4: Ct ← Ct ∪ {yt}
5: if xt is the 1st example of class yt then
6: buffer the incoming examples for class yt
7: else if xt is the 2ed example of class yt then
8: initialize the wy

t of yt
9: initialize a CB model for class yt

10: end if
11: else if CBMy is a CB model for yt and wy

t = 0 then
12: // class reoccurrence
13: Ct ← Ct ∪ {yt}
14: if xt is the 1st (recurring) example of class yt then
15: activate CBMy for classification
16: buffer the incoming examples for class yt
17: else if xt is the 2ed (recurring) example of yt then
18: initialize the wy

t of yt
19: end if
20: end if
21: for each ci in Ct do
22: // class disappearance
23: if wi

t < disappearance threshold then
24: Ct ← Ct − {yt}
25: wi

t ← 0
26: inactivate CBMi for classification
27: end if
28: end for
29: UpdateCBModel(xt, yt, CBM) for each active CB model

the change of prior probability, class evolution behavior
can be determined. The active CB models are updated
by the sampled data, and the inactive ones are stored
additionally in case of class reoccurrence.

3.2.3 Class-conditional Probability Change Adaptation

Although CBCE focuses on class evolution adaptation
in data stream mining, it is also very likely that class
conditional probability distribution changes over time.

In CBCE, the change of class-conditional probability
distribution means that the CB model is no longer able
to correctly identify its corresponding positive examples.
To handle this problem, a simple and yet effective drift
detection method, DDM [22], is applied to check a CB
model’s validity. If a CB model was significantly affected
by this type of change, it would be re-initialized. Each
example used for training the CB model is incorporated
for the detection of the change. If the warning level is
reached, the CB model is likely to be outdated and the
following sampled examples are stored. If DDM detects
a drift in a CB model, the model is re-initialized by these
examples. Through this method, the likelihood value
obtained with each CB model is avoided to be affected by
the change of class-conditional probability distribution.

3.3 Summary and Analysis

In CBCE, when a new example is received, the ensemble
model first predicts its label for practical use. After
obtaining the true label of this example, each CB model is
updated to track the up-to-date concept. If a novel class
emerges, a new CB model corresponding to this class
is initialized. A sufficiently small prior probability of a
class implies its disappearance. In this case, the corre-
sponding CB model is inactivated but still conserved. If a
disappeared class reoccurs, the corresponding CB model
will be re-activated with the prior probability of the class
being re-estimated from the current data. In order to
handle the dynamic class-imbalance problem caused by
the gradual process of class evolution, CB models use
under-sampling with a dynamic probability to sample
the examples to balance the training data. It is noted that
all active CB models are used for classification, with de-
cision determined by choosing a class whose CB model
outputs the highest score. A change detection method is
used to monitor changes in the class-conditional proba-
bility distributions corresponding to each CB model. If a
change is detected, the corresponding CB model is reset.

As mentioned before, most existing approaches for
class evolution, such as LNCS and ECSM, process a
data stream chunk by chunk. The class-based framework
adopted by CBCE has a number of advantages in com-
parison to the existing methods. First, since a CB model
is specifically maintained for a certain class, it is flexible
to be created or removed to adapt to class evolution. This
also decouples the whole model, and makes each CB
model simple and concentrate on a single class. Second,
by using the CB model, only a few of base learners need
to be maintained, equal to the number of classes. Third,
for massive-volume data streams, the master-slave struc-
ture (CB model – ensemble strategy) of the learning
system is also very convenient for parallelization and
distributed implementation.

The loss of the classification result for each example is
bound by the online learning approach. Scaled in [0, 1],
the output score of a CB model is ideally 1 for the correct
class and 0 for others. In the case of binary classifiers,
the expected score can be viewed as the posterior prob-
ability that an example belongs to the positive class, i.e.,
P (+1|xt, CBMi). For testing example xt from class ci,
the weighted 0-1 loss is eit for incorrect classification and
0 for the correct one. It can be found that the loss L(xt)
is bounded as follow

L(xt) ≤ eit · ((1− P (+1|xt, CBMi)) +
∑
j 6=i

P (+1|xt, CBMj))

(14)
where (1−P (+1|xt, CBMi)) represents the gap of CBMi

to the optimum, and
∑

j 6=i P (+1|xt, CBMj) is the sum
of values from all other CBMs. Then,

L(xt) ≤ eit ·((1−P (+1|xt, CBMi))+
∑
j 6=i

(1−P (−|xt, CBMj)))

(15)
For class ci, P (+1|xt, CBMi) is the posterior probability
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Fig. 1. (a) Data distribution and (b) class evolution behav-
ior of the 2-D data stream used in Section 4.1.

for correct classification by CBMi, and P (−|xt, CBMi)
is the posterior probability for correct classification in
other CB models. If P correct

i (xt) is used instead as the
probability of correct classification for any CB model,
then the loss is bounded as follow

L(xt) ≤ eit · (|Ct| −
∑
i

P correct
i (xt)) (16)

where |Ct| is the number of classes at t. The values of
eit and |Ct| are the same for each class. For each CB
model, with more training data, the confidence of correct
classification (P correct

i (xt)), is expected to be increased.
From the above analysis, it can be found that the loss

is bounded based on the performance of each CB model.
With more training data for each CB model, the models
would be more accurate, with each CB model having
a higher confidence in its prediction. The bound would
gradually get tighter and the performance better.

4 EXPERIMENTAL STUDIES

The properties and performance of CBCE were observed
through two types of experiments, i.e., the visualization
experiment and the comparative experiment.

4.1 Visualization Experiment of CBCE
This experiment aims to visualize the learning process
of CBCE to gain a deeper understanding of its behavior.
For this purpose, a 2-dimensional synthetic data stream
is generated, which involves 10000 examples from 4
classes. The data distribution and the class evolution be-
haviors of the four classes are shown in Fig. 1. Different
types of class evolution behaviors are designed for the
four classes. Class 1 is a stable class without evolution.
Class 2 firstly disappears and then reoccurs. Class 3 is
a novel class that gradually emerges. Class 4 represents
a sudden event in which a class emergence is closely
followed by a disappearance. Assume the EGR is 1 when
in a stable condition for each class. Part of the Gaussian
bell curve is employed to simulate the gradual increase
or decrease of the EGR in Fig. 1 (b). The peak position of a
Gaussian curve represents EGR = 1. The 3-sigma position
approximately represents EGR = 0, which corresponds to
the beginning of class emergence (reoccurrence) or the
end of the disappearance process.

Gaussian Kernel is chosen as the kernel function in the
online KLR of a CB model, and the kernel width σ is set

as the 5-th percentile of the pairwise distances between
all pairs of examples [40]. As the class-conditional prob-
ability distribution is stable in the synthetic data stream,
CBCE, without the detector for the change of class-
conditional probability, is applied in this experiment. To
tune the parameters in KLR, an initial fraction of the
synthetic data stream is utilized with a variant of 5-
fold cross validation, i.e., leaving out an example from
every 5 examples to construct the training stream. By
this method, the parameters are set as η = 0.01, λ = 0.1,
and σ = 0.1.

The decision boundaries corresponding to the 4 CB
models are plotted in Fig. 2. Specifically, after the first
1000 examples have been processed, the CB models
for class 1 (red) and 2 (blue) are constructed. When
2000 and 3000 examples have been processed, it can
be found that the CB models for class 3 (green) and
class 4 (orange) have been initialized. Meanwhile, the
CB models for classes 1 and 2 are updated. After the
4000-th example is processed, class 2 disappears (no
new example belongs to class 2 in diagram) and the
corresponding CB model remains unchanged until class
2 reoccurs again after the 6000-th example. The final
CB models obtained after processing the entire data
stream are shown in the last diagram of Fig. 2. It can
be observed that the four CB models effectively separate
the examples of different classes. Besides, it can also be
found that CBCE incrementally adjusts each CB model
to be a good local “expert” and is capable of adapting
itself to the evolution of classes.

4.2 Comparative Experiment
To verify the performance of CBCE, a comprehensive
comparison between CBCE and other approaches is
carried out in the comparative experiment.

4.2.1 Data Set
Two sets of synthetic data streams and one set of real-
world data streams are used in the experiment.

Synthetic data: Letter recognition data set (16 numeric
attributes) and Statlog (landsat satellite) data set (36
numeric attributes) from the UCI Machine Learning
Repository [41] are modified to compose the synthetic
data streams. They are generated by re-arranging the
examples to fit the class evolution setting. For both
data sets, examples of 4 classes are extracted as the
source of the data streams. In the Letter recognition set,
letters “a”, “b”, “c” and “d” represent these four classes,
respectively. In the Statlog set, “red soil” is used as class
1, “grey soil” as class 2, “cotton crop” as class 3, and
class 4 is represented by “damp grey soil”.

Three fundamental class evolution scenarios (Fig. 3)
are considered, i.e., class emergence, class disappearance
and reoccurrence, and multiple class evolution. Almost
all complicated class evolution scenarios can be decom-
posed into the three basic ones. Furthermore, the use of
the three basic scenarios also allows a close observation
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Fig. 2. Visualization of the classification behavior of CBCE on 2-D synthetic data stream. The diagrams show the
decision boundaries and the processed data points at different time steps.
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Fig. 3. Three class evolution scenarios in synthetic data of comparative experiment.

of the performance of each approach. Class 1 to 3 from
the synthetic data sets are used in scenarios a and b, and
all the four classes are used in scenario c. As shown in
Fig. 3, class 3 (green) is designed as an evolved class with
class emergence in scenario a, and class disappearance
and reoccurrence in scenario b. In scenario c, class 3 and
class 4 (orange) successively emerge and then disappear,
as a more complex situation. As the description in the
previous experiment, 1650 examples are extracted from
each Letter recognition data stream, and 2750 examples
from each Statlog data stream.

Real-world data: UDI TwitterCrawl Dataset [42], in-
cluding 50 million tweets posted mainly from 2008 to
2011, is involved. Each record in this data set has its
own time stamp and the order of examples in the data
stream is completely genuine, without any modification.
Since the hashtag roughly describes the tweet’s topic, it
was used as the class for each tweet record. If more than
one hashtags exist in a tweet, one of them is selected
randomly as its label.

Four tweet stream fragments from the whole tweet set
are captured by selecting different topics as the classes
of interest, i.e., tweet stream a, b, c, and tweet stream-20
classes. The first three tweet streams correspond to the
three basic class evolution scenarios a, b and c described
in the synthetic data, for further observation. Specifically,
tweet stream a, involving 39600 tweets, represents the
class emergence scenario. It has the topic of “royal
wedding” (class 3, between Prince William and Kate
Middleton) acting as the novel class. Corresponding to
the class disappearance and reoccurrence scenario, tweet
stream b takes a fragment of 15004 tweets, with the
topic of “Christmas” (class 3) as the evolved class. Tweet
stream c (the multiple novel classes scenario) covers
68750 tweets, where the topics of “royal wedding” and
“bin Laden” (class 4, the news about the hunt for Osama
Bin Laden) are the novel classes. In the three streams, the
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Fig. 6. An illustration of the change of class-conditional
probability in tweet stream-c. The left and right figures
illustrate the examples (after dimensionality reduction) of
the same classes at different time points in the stream.

topics of “job” (class 1) and “music” (class 2) act as the
“stable” classes. To obtain a high fidelity simulation of
real class evolution scenarios, tweet stream - 20 classes
is generated. It involves 143381 tweets with 20 classes,
including 9 “stable” classes and 11 evolved classes. Since
the class evolution state along the tweet streams is
implicit, the prior probabilities of classes through the
tweet streams is estimated by Eq. (10) (β = 0.99 to make
the line smooth) and visualized in Fig. 4 and Fig. 5.

After getting the tweet streams, the text of each tweet
is transferred into the TF-IDF vectors. 242, 247, 242 and
524 numerical features are generated, respectively, for
the tweet streams a, b, c and the tweet stream - 20 classes.
From Fig. 5, it can be seen that class evolution may occur
frequently in tweet stream. Besides, according to the
visualization of tweet stream in Fig. 6, it can be observed
that the class-conditional probability distribution also
changes over time in tweet stream.

4.2.2 Compared Approaches

The synthetic data streams are constructed from data sets
with fixed distribution. For these streams, CBCE without
class-conditional probability change adaptation is tested.
Since the class-conditional probability changes in tweet
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Fig. 4. Three class evolution scenarios of the comparative study on tweet data.
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Fig. 5. Class evolution behaviors of the 20 classes in tweet stream-20 classes. The grey lines represent non-evolved
classes, and the others represent evolved classes.

data, CBCE with the distribution change adaptation
(named as CBCEd) is tested as well on tweet streams.

To the best of our knowledge, none of the existing
approach for class evolution is designed to process data
streams in an online manner. Hence, 4 state-of-the-art
approaches for class evolution, including ECSM [13],
CLAM [14], LNCS [31] and AUE2 [21], are employed
in our comparative studies. These approaches all mine
data streams in a chunk-by-chunk manner. In the ex-
periment, they were given the advantage of collecting
the examples first, i.e., they update the corresponding
models when a chunk of examples have been collected.
It is noteworthy that CLAM trains a model using the k-
means clustering method, and implicitly presumes that
each class comprises at least k examples. Thus, if a class
comprises less than k examples in a chunk, the class will
be regarded as a single cluster directly.

To verify how much better the sophisticated methods
perform, kNN over a sliding window of a fixed size
(SKNN), is also tested as a baseline. Considering the
feature of the sliding window strategy, SKNN would
work nicely for the concept drift with abrupt changes,
because the change of data distribution is fast and will
not cause lasting impacts on model construction.

4.2.3 Parameter Settings
The parameters for CBCE and CBCEd are set according
to the parameter setting description in the previous ex-
periment. For the synthetic data streams, the parameters
are set η = 0.01, λ = 1 and σ = 1 and 14, respectively, for
the Letter recognition streams and the Statlog streams.
For the tweet data streams, η = 0.3, λ = 0.0005 and
σ = 0.13. To speed up KLR, in formula (5), the term
whose coefficient is small enough (i.e., 10−5) will be
dropped by the truncation operation [37]. For the tweet
streams, 5000 examples would be stored at most, and the
exceeding examples would also be truncated.

All parameters of other compared approaches are
set either according to the default setting or by trial-
and-error to get an overall satisfactory performance.
Specifically, for each algorithm, the default values for
its parameters (as suggested in the original publication)
were adopted as the initial choices. Then, a grid search
was applied to the values around the default settings.
SKNN is online trained with a sliding window, and all
other compared approaches process data streams chunk-
by-chunk. The same chunk and window sizes are tested
for all algorithms for the sake of fairness. The setting
details of these approaches are described as follows.

In LNCS, the number of base learners for each chunk
of data is set as 10 according to [12] [31]. For the synthetic
data streams, 10 Multi-layer Perceptrons (MLP, 1 hidden
layer with 20 neurons, 0.05 error goal) are trained for
each chunk as the suggested default setting [12] [31]. Due
to the complexity of tweet data streams, the base learner
may not meet the requirements of LNCS, thus causing
the algorithm never to end. After testing MLP, KLR and
decision tree, we chose decision tree as the based learner
in tweet streams, as it is most likely to finish the mining
of the tweet streams. The k value (number of the nearest
neighbors) for SMOTE wrapper in LNCS is set as 3.

Other chunk-based ensemble methods, i.e., CLAM and
ECSM, and the hybrid one, i.e., AUE2, all involve the
ensemble size, k, as a parameter. The above-mentioned
grid search procedure confirmed that a relatively small
value of k (e.g., around 3–5) as suggested in the original
publications generally performs well. Hence, k was set to
3 (default setting in [14]), 3, and 5 for CLAM, ECSM, and
AUE2, respectively. The other parameters of CLAM and
ECSM were also fine-tuned by grid search. Specifically,
the cluster number of CLAM was set to 5, the number
of pseudo-points in ECSM was set to 10 and 100 for the
synthetic and twitter data streams, respectively. Besides,
the number of nearest neighbors was set to 3 according
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Fig. 7. F1 scores on the synthetic streams.

to a line search from 1 to 10.

4.2.4 Evaluation
The comparative studies are conducted mainly from two
perspectives. First, to provide a detailed analysis on the
performance in different types of class evolution, a fixed
chunk/window size (i.e., one eleventh of the stream size)
is applied. The a, b and c scenarios of synthetic streams
and tweet streams were used for this purpose. We apply
F1 score on the evolved class to check the approaches’
ability in adapting to class evolution, and use the G-
mean for multiple classes [43] to measure the overall
mining performance, i.e., G-mean = (

∏k
i=1Ri)

1/k, where
Ri is the recall for class ci. The G-mean is a better overall
performance measure than accuracy for imbalanced data
and is insensitive to the degree of imbalance.

Second, to investigate the impact of chunk size (or
window size) on the compared algorithms, experiments
have also been conducted with different sizes for all
algorithms. The average G-mean for multiple classes is
used to measure the performance of each approach. To
be fair, the first chunk (chunk 0) is just used for model
initialization. Except for the evaluation of classification
ability, the time efficiency is also compared as a metric.

The detailed performance of the approaches under
basic scenarios in synthetic data streams is shown in
Fig. 7 and 8. Fig. 7 shows the F1 score of the evolved
classes. In the class emergence scenario (Fig. 7 (a) and
(b)), it can be observed that CBCE is able to adapt to the
novel class rapidly, even in the early stage of emergence.
CBCE also shows a high F1 score in the disappearance
and reoccurrence scenario (Fig. 7 (c) and (d)). Since
ECSM drops the outdated base learners when a class
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Fig. 8. G-means on the synthetic streams.
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Fig. 9. F1 scores on the tweet streams.

disappears, it cannot identify the examples of that class
effectively when it reoccurs again. The multiple novel
classes scenario (Fig. 7 (e) and (f )) demonstrates the F1
scores of two evolved classes. The left part of the two
figures represents the first novel class (class 3), and the
right part shows the F1 scores of the second one (class 4).
In classifying the examples of class 3, CBCE stays ahead
in the same way as scenario a. For the second novel
class, CBCE still works well, while the performance of
the compared approaches obviously decreases. Fig. 8
shows the results of G-mean for each approach. It can
be observed that CBCE performs the best among all
the approaches, and the class evolution makes minimal
impact on the CBCE. For the other approaches, the
second evolved class in scenario c is not only hard to be
identified but also deteriorates their overall performance.
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Fig. 10. G-means on the tweet streams.

The F1 score and G-mean results achieved on tweet
streams is shown in Fig. 9 and 10. In addition to CBCE,
CBCEd is also tested in the tweet streams. The results
of CBCE and CBCEd are similar, and CBCEd improves
slightly in general. The result of CBCE is roughly consis-
tent with that in the synthetic streams. For the F1 result
in the multiple novel class scenario, the first novel class
(Fig. 10 (c)) still performs the best among all compared
approaches. However, the F1 scores on the second novel
class (Fig. 10 (d)) of CBCE are not as good as the
previous results. It might be the reason that class 4
emerges suddenly and almost all the tweets at that time
belong to this topic and then the prior probability of
class 4 drops down quickly. Interestingly, the suddenly
emerged topic exposes the shortcoming of chunk-based
approaches, which detect the new class only when it is
fading away. Comparing the G-mean result with that of
synthetic data streams, the performance of CBCE drops
slightly. The reason might be the specificity of tweet data.
For example, the tweet and re-tweet share the same topic
and are always posted at very close times. Besides, using
“job” topic as an example, many job recruitment tweets
are posted all at once. The characteristic of tweet data
leads to a wild fluctuation of prior probability, and the
imbalance problem turns out to be extremely dynamic,
instead of evolving smoothly. However, this problem is
relieved in the compared approaches, which process the
examples in a chunk as a whole. Even so, CBCE and
CBCEd still generally perform better.

To compare the algorithms with different settings of
chunk size, the average G-mean [44] over each chunk is
adopted to evaluate the approaches for the whole data
stream. Tables 1 and 2 summarize the average G-mean
result of all approaches under different chunk (or win-
dow) sizes. For the synthetic data streams (Table 1), the
result clearly shows that CBCE is significantly better than
the other compared methods. Although the data sets for
synthetic streams are not complicated, some compared
approaches still perform similar to and even worse than
the simple baseline approach SKNN. A similar result can

Fig. 11. Runtime of the compared approaches.

be obtained from the tweet streams. For tweet stream a-
c, CBCE and CBCEd are significantly better than other
approaches. For tweet stream - 20 classes, the evolution
behaviors are more complicated. Thus the performance
of all the compared algorithms deteriorate significantly
on this data stream. However, it can be still observed that
CBCE and CBCEd outperform the other algorithms when
the chunk size is relatively small. Since a chunk size of
30000 might be sufficiently large for building an accurate
model based on a single chunk, such a setting favors
chunk-based ensembles. As a result, LNCS and CLAM
perform better in this case. Furthermore, since tweet
stream b was collected from two separate time spans, it is
more likely to involve significant concept drift in terms
class-conditional distribution. Thus, the clear advantages
of CBCEd over CBCE on this stream demonstrates the
effectiveness of the DDM component. On the other hand,
tweet streams a and c were collected within a much
shorter period (about 2 or 3 months) and the concept
might only drift slightly between two consecutive data
chunks. Hence, the difference between CBCEd and CBCE
is not significant in these cases. The effectiveness of DDM
also deteriorate on tweet stream - 20 classes due to the
complexity of this stream. Furthermore, Friedman tests
have been conducted to analyze the empirical results, as
shown in Table 3. It can be observed that CBCE and
CBCEd are significantly better than all the compared
algorithms.

The runtime of the approaches are compared under
the same computing environment (2 CPUs of 2.4 GHz
Intel Core i5, 8GB main memory), as shown in Fig.
11. The chunk size is selected as one eleventh of the
stream size for scenarios a to c and 10000 for the tweet
stream-20 classes. The letter streams and stalog streams
share the same data size for different scenarios, and the
time is averaged and presented as a whole. CBCE is
competitive in terms of runtime in the experiment with
synthetic data streams but a little worse in the tweet
streams. Due to the chunk-based mining manner and
the simple example process method, AUE2, CLAM and
ECSM generally perform best in both the synthetic data
steams and the tweet data streams.

From the comparison of the mining results, CBCE
is shown to outperform other algorithms in adapting
different types of class evolutions for both the evolved
classes and the whole data streams. The empirical study
also confirms that CBCE has a satisfactory time efficiency
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TABLE 1
G-mean Results of Class Evolution Scenarios with Different Chunk Sizes on the Synthetic Data Streams

Letter Stream - A Letter Stream - B Letter Stream - C
Learner 100 150 200 300 500 100 150 200 300 500 100 150 200 300 500
CBCE .9089† .9622† .9595† .9445† .9795† .9899† .9911† .9911† .9929† .9946† .9293† .9189† .9255† .9543† .9432†
SKNN .8577 .9096 .9183 .8928 .9643 .9485 .9497 .9584 .9537 .9812 .6509 .7562 .6589 .9061 .6013
LNCS .8640 .8663 .8377 .7654 .9176 .9698 .9720 .9723 .9623 .9682 .7035 .7081 .6769 .7661 .5983
CLAM .8081 .8484 .8207 .7071 .6580 .9634 .9588 .9757 .9820 .9829 .7056 .6924 .5854 .6337 .3193
ECSM .8251 .8347 .8101 .7471 .7702 .8626 .8397 .8102 .7427 .6435 .7757 .7220 .6860 .6504 .5847
AUE2 .8149 .8331 .8177 .7374 .6331 .8774 .8418 .9341 .9380 .7878 .7270 .7067 .5495 .5615 .5431

Statlog Stream - A Statlog Stream - B Statlog Stream - C
Learner 100 250 300 500 1000 100 250 300 500 1000 100 250 300 500 1000
CBCE .9535† .9763† .9829† .9833† .9943† .9911† .9907† .9913† .9889† .9857† .8858† .9495 .9446† .9695† .9392†

SKNN .9178 .9458 .9689 .9664 .9882 .9334 .9860 .8759 .9790 .9791 .8032 .9514† .9351 .9593 .9038
LNCS .8512 .8332 .7893 .7177 .9386 .9648 .9520 .9689 .9383 .8672 .7394 .6153 .7417 .7323 .3522
CLAM .7589 .7782 .8626 .7728 .9597 .9758 .9738 .9724 .9709 .9773 .7685 .7363 .7129 .7553 .4253
ECSM .7589 .8438 .8626 .7728 .9597 .9758 .8598 .9724 .9709 .9773 .7685 .6912 .7129 .7553 .4253
AUE2 .8455 .7742 .8327 .7404 .8681 .8821 .8437 .7304 .9231 .8770 .7505 .7250 .6827 .7241 .3787

The best result is in boldface. If it is significantly better than others (Wilcoxon rank sum test at 95% confidence level), it is marked with †.

TABLE 2
G-mean Results of Class Evolution Scenarios with Different Chunk Sizes on the Tweet Data Streams

Tweet Stream - A Tweet Stream - B
Learner 300 1000 3000 3600 10000 300 1000 1364 3000 5000
CBCEd .5449 .5190 .6053 .5950 .6073‡ .6818‡ .6574† .6277‡ .7265‡ .7858‡

CBCE .5470‡ .5248‡ .6066‡ .5972‡ .6067 .6811 .6566 .6272 .7262 .7856
SKNN .3391 .3504 .5459 .4975 .5729 .5262 .5337 .5185 .6910 .7513
LNCS .2791 .2709 .4664 .4376 .5540 .5480 .4255 .4330 .6532 .7516
CLAM .3802 .3721 .3962 .3429 .3780 .6085 .5720 .5583 .6255 .7620
ECSM .3696 .3907 .4698 .4457 .5277 .5749 .4791 .4589 .4685 .7660
AUE2 .0908 .0932 .0646 .0000 .0000 .2139 .2236 .2283 .2829 .4082

Tweet Stream - C Tweet Stream - 20 Classes
Learner 300 1000 3000 6250 10000 300 1000 3000 10000 30000
CBCEd .4916 .4904 .5557 .5696‡ .5962‡ .0536† .0260 .0183 .0000 .0000
CBCE .5089† .5154† .5647† .5691 .5944 .0524 .0266‡ .0253† .0000 .0000
SKNN .2629 .2786 .3663 .5024 .5599 .0000 .0000 .0000 .0000 .0000
LNCS .1334 .2985 .4425 .4128 .4203 – .0000 .0000 .0000 .0565†
CLAM .4145 .4373 .4371 .3820 .3250 .0001 .0020 .0074 .0000 .0529
ECSM .3214 .3499 .4465 .4223 .4310 .0000 .0000 .0000 .0000 .0000
AUE2 .1466 .1460 .2550 .0271 .0188 .0000 .0000 .0000 .0000 .0000

1. The best result is in boldface. If it is significantly better than others (Wilcoxon rank sum test at 95% confidence level), it is marked with †.
For the situation that the best result is from CBCE and CBCEd,if they are not significantly different from each other but significantly better
than other results, it is marked with ‡. 2. “–” means LNCS processes a chunk of data over 105 seconds and may never end in experiment.

TABLE 3
Friedman Test (Nemenyi test at α = 0.05) Result Considering the G-mean Values in Synthetic & Tweet Streams

CBCEd CBCE SKNN LNCS CLAM ECSM AUE2 critical difference
Synthetic Streams – 1.0333 2.7000 3.9667 3.9000 4.1333 5.2667 1.3765

Tweet Streams 1.8000 1.8000 4.5250 4.9750 4.0500 4.3750 6.4750 2.0141

in mining data streams. Generally speaking, CBCE is
able to construct a satisfactory model for handling grad-
ual class evolution. However, the results on tweet stream
- 20 classes also show that data stream mining with
multiple and complex evolved classes is still a tough
problem. To further investigate CBCE, the influence of
decay factor and disappearance threshold is studied, as
shown in Fig. 12. It can be found that a decay factor of
0.9 allows CBCE to achieve a good result in all the data
streams. Considering the tracking of prior probability of
classes as well, 0.9 is recommended as the default setting
of decay factor. Disappearance threshold is a parameter
specific to each application. From the result, a small
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Fig. 12. Influence of (a) decay factor β and (b) disappear-
ance threshold.

value (e.g., less than 2−16) is a good initial setting.
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5 CONCLUSION
Previous investigations on data stream mining assume
class evolution to be the transient changes of classes,
which does not hold for many real-world scenarios. In
this work, class evolution is modeled as a gradual pro-
cess, i.e., the sizes of classes increase or shrink gradually.
A new data stream mining approach, CBCE, is proposed
to tackle the class evolution problem in this scenario.
CBCE is developed based on the idea of a class-based
ensemble. Specifically, CBCE maintains a base learner
for each class and updates the base learners whenever
a new example arrives. Furthermore, a novel under-
sampling method is designed for handling the dynamic
class-imbalance problem caused by gradually evolved
classes.

In comparison to existing methods, CBCE can adapt
well to all three cases of class evolution (i.e., emergence,
disappearance and reoccurrence of classes). Since CBCE
mines a data stream in an on-line manner, it is capable
of rapidly keeping up with the gradual evolution of
the data stream. Moreover, CBCE avoids maintaining
a large size of base learners and makes it flexible to
class evolution. Empirical studies verify the reliability
of CBCE and show that it outperforms other state-of-
the-art class evolution adaptation algorithms, not only
in terms of the adaptation ability of various evolution
scenarios but also the overall classification performance.
However, CBCE still suffers from some drawbacks. For
example, a disappearing class might be of less impor-
tance than non-evolved or emerging classes in some real-
world applications. In such cases, since CBCE put more
emphasis on evolved classes, its performance may decay
on non-evolved classes. Besides, mining task for massive
and complex evolved classes (e.g., minority classes with
sub-concepts) is still difficult in data stream mining.
A potential future work would be to expand CBCE to
overcome these difficulties.
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R. Gavaldà, and R. Morales-Bueno, “Early drift detection
method,” in Proceedings of the 4th ECML PKDD International
Workshop on Knowledge Discovery From Data Streams (IWKDDS’06),
2006, pp. 77–86.

[24] S. Ramamurthy and R. Bhatnagar, “Tracking recurrent concept
drift in streaming data using ensemble classifiers,” in Machine
Learning and Applications, 2007. ICMLA 2007. Sixth International
Conference on, Dec 2007, pp. 404–409.

[25] J. Gama and P. Kosina, “Recurrent concepts in data streams
classification,” Knowledge and Information Systems, vol. 40, no. 3,
pp. 489–507, 2014.

[26] S. Sripirakas and R. Pears, “Mining recurrent concepts in data
streams using the discrete fourier transform,” in Data Warehousing



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

and Knowledge Discovery, ser. Lecture Notes in Computer Science.
Springer International Publishing, 2014, vol. 8646, pp. 439–451.

[27] M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han,
A. Srivastava, and N. Oza, “Classification and adaptive novel
class detection of feature-evolving data streams,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 25, no. 7, pp. 1484–
1497, July 2013.

[28] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[29] R. Polikar, L. Upda, S. Upda, and V. Honavar, “Learn++: an
incremental learning algorithm for supervised neural networks,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. 31, no. 4, pp. 497–508, Nov 2001.

[30] G. Ditzler, M. Muhlbaier, and R. Polikar, “Incremental learning of
new classes in unbalanced datasets: Learn++.UDNC,” in Multiple
Classifier Systems. Springer, 2010, vol. 5997, pp. 33–42.

[31] G. Ditzler, G. Rosen, and R. Polikar, “Incremental learning of new
classes from unbalanced data,” in Neural Networks (IJCNN), The
2013 International Joint Conference on, Aug 2013, pp. 1–8.

[32] Y. Freund and R. Schapire, “A desicion-theoretic generalization of
on-line learning and an application to boosting,” in Computational
Learning Theory, 1995, vol. 904, pp. 23–37.

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[34] J. Gao, B. Ding, W. Fan, J. Han, and P. Yu, “Classifying data
streams with skewed class distributions and concept drifts,”
Internet Computing, IEEE, vol. 12, no. 6, pp. 37–49, Nov 2008.

[35] S. Wang, L. Minku, and X. Yao, “A learning framework for online
class imbalance learning,” in IEEE Symposium on Computational
Intelligence and Ensemble Learning, April 2013, pp. 36–45.

[36] S. Wang, L. L. Minku, and X. Yao, “Online class imbalance learn-
ing and its applications in fault detection,” International Journal of
Computational Intelligence and Applications, vol. 12, no. 04, 2013.

[37] J. Kivinen, A. Smola, and R. Williamson, “Online learning with
kernels,” Signal Processing, IEEE Transactions on, vol. 52, no. 8, pp.
2165–2176, Aug 2004.

[38] N. Japkowicz, “Concept-learning in the presence of between-class
and within-class imbalances,” in Advances in Artificial Intelligence.
Springer Berlin Heidelberg, 2001, vol. 2056, pp. 67–77.

[39] T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts,”
SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 40–49, Jun. 2004.

[40] P. Mallapragada, R. Jin, and A. Jain, “Non-parametric mixture
models for clustering,” in Structural, Syntactic, and Statistical Pat-
tern Recognition. Springer, 2010, vol. 6218, pp. 334–343.

[41] K. Bache and M. Lichman, “UCI machine learning repository,”
2013. [Online]. Available: http://archive.ics.uci.edu/ml

[42] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang, “Towards
social user profiling: Unified and discriminative influence model
for inferring home locations,” in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’12. NY, USA: ACM, 2012, pp. 1023–1031.

[43] H. He and E. Garcia, “Learning from imbalanced data,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 21, no. 9, pp. 1263–
1284, Sept 2009.

[44] S. Wang, L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 27, no. 5, pp. 1356–1368,
May 2015.

Yu Sun received the B.Eng. degree in Software
Engineering from Dalian University of Technol-
ogy (DLUT), Dalian, Liaoning, China, in 2010,
and M.Eng. degree in Software Engineering
from University of Science and Technology of
China (USTC), Hefei, Anhui, China, in 2013. He
is currently working towards the Ph.D. degree in
Computer Science with the USTC-Birmingham
Joint Research Institute in Intelligent Compu-
tation and Its Applications (UBRI), School of
Computer Science and Technology, USTC. His

current research concerns incremental learning and data stream mining.

Ke Tang received the B.Eng. degree from
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2002, and the Ph.D.
degree from Nanyang Technological University,
Singapore, in 2007, respectively.

Since 2007, he has been with the School of
Computer Science and Technology, University
of Science and Technology of China, where he
is currently a Professor. He has authored/co-
authored more than 100 refereed publications.
His major research interests include evolution-

ary computation, machine learning, and their real-world applications.
Dr. Tang is an Associate Editor of the IEEE Transactions on Evolu-

tionary Computation, IEEE Computational Intelligence Magazine and
Computational Optimization and Applications (Springer), and served as
a member of Editorial Boards for a few other journals. He is a member of
the IEEE Computational Intelligence Society (CIS) Evolutionary Compu-
tation Technical Committee and the IEEE CIS Emergent Technologies
Technical Committee. He is the recipient of the Royal Society Newton
Advanced Fellowship.

Leandro L. Minku is a Lecturer (Assistant Pro-
fessor) at the Department of Computer Science,
University of Leicester (UK). Prior to that, he was
a research fellow at the University of Birming-
ham (UK). He received the PhD degree in Com-
puter Science from the University of Birmingham
(UK) in 2010. During his PhD, he was the recip-
ient of the Overseas Research Students Award
(ORSAS) from the British government. He was
also invited to a 6-month internship at Google in
2009/2010. Dr. Minku’s main research interests

are machine learning in non-stationary environments / data stream
mining, ensembles of learning machines and computational intelligence
for software engineering. His work has been published in internationally
renowned venues such as IEEE Transactions on Knowledge and Data
Engineering, IEEE Transactions on Software Engineering, and ACM
Transactions on Software Engineering and Methodology.

Shuo Wang is a Research Fellow at the Centre
of Excellence for Research in Computational
Intelligence and Applications (CERCIA) in the
School of Computer Science, the University of
Birmingham (UK). She received the B.Sc. de-
gree in Computer Science from the Beijing Uni-
versity of Technology (BJUT), China, in 2006,
and was a member of Embedded Software and
System Institute in BJUT in 2007. She received
the Ph.D. degree in Computer Science from the
University of Birmingham, U.K., in 2011, spon-

sored by the Overseas Research Students Award (ORSAS) from the
British Government (2007). Dr. Wang’s research interests include class
imbalance learning, ensemble learning, online learning and machine
learning in software engineering. Her work has been published in
internationally renowned journals and conferences.

Xin Yao is a Professor of Computer Science
and the Director of CERCIA (the Centre of Ex-
cellence for Research in Computational Intel-
ligence and Applications) at the University of
Birmingham, UK. He is an IEEE Fellow and a
Distinguished Lecturer of IEEE Computational
Intelligence Society (CIS). He was the Presi-
dent (2014-15) of IEEE CIS. His major research
interests include evolutionary computation and
ensemble learning, especially online learning
and class imbalance learning. His work won the

2001 IEEE Donald G. Fink Prize Paper Award, 2010 and 2015 IEEE
Transactions on Evolutionary Computation Outstanding Paper Awards,
2010 BT Gordon Radley Award for Best Author of Innovation (Finalist),
2011 IEEE Transactions on Neural Networks Outstanding Paper Award,
and many other best paper awards. He received the prestigious Royal
Society Wolfson Research Merit Award in 2012 and the IEEE CIS
Evolutionary Computation Pioneer Award in 2013. He was the Editor-
in-Chief (2003-08) of IEEE Transactions on Evolutionary Computation.


