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Abstract  

The negative correlation between speed and accuracy in perceptual decision making is often 

explained as a tradeoff, where lowered decision boundaries under time pressure result in faster but 

more error-prone responses. Corresponding implementations in sequential sampling models 

confirmed the success of this account, which has led to the prevalent assumption that a second 

component of decision making, the efficiency of perceptual processing, is largely independent from 

temporal demands. To test the generality of this claim, we examined time pressure effects on 

decisions under conflict. Data from a flanker task were fit with a sequential sampling model that 

incorporates two successive phases of response selection, driven by the output of an early and late 

stage of stimulus selection, respectively. The fits revealed the canonical decrease of response 

boundaries with increasing time pressure. In addition, time pressure reduced the duration of non-

decisional processes and impaired the early stage of stimulus selection, together with the 

subsequent first phase of response selection. The results show that the relation between speed and 

accuracy not only relies on the strategic adjustment of response boundaries but involves variations of 

processing efficiency. The findings support recent evidence of drift rate modulations in response to 

time pressure in simple perceptual decisions and confirm their validity in the context of more 

complex tasks.  
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Introduction  

A fundamental characteristic of human decision making is that its speed can be deliberately 

increased, but usually at the cost of precision. The generality of this relation – a joint increase of 

response times and accuracy – has been demonstrated across various domains, such as perceptual 

decisions (Miller, Sproesser, & Ulrich, 2008; Palmer, Huk, & Shadlen, 2005), visual search (Carrasco & 

McElree, 2001; McElree & Carrasco, 1999), memory retrieval (Dosher, 1976; Reed, 1973), or motor 

planning (Fitts, 1954; Harris & Wolpert, 1998). Accordingly, research on corresponding speed-

accuracy functions (SAFs) has greatly contributed to our understanding of mental information 

processing and decision making (Garrett, 1922; Wickelgren, 1977). A particularly relevant finding is 

that speed can be traded for accuracy simply by changing the decision criterion.  

This speed-accuracy tradeoff can be straightforwardly implemented in sequential sampling 

models, which not only account for performance in a wide range of perceptual tasks (Brown & 

Heathcote, 2005; Ratcliff & McKoon, 2008) but can also be plausibly linked to neurophysiological 

correlates of decision making (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Forstmann 

et al., 2008, 2010, 2011; Ho et al., 2012; Ivanoff, Branning, & Marois, 2008; Philiastides, Ratcliff, & 

Sajda, 2006; van Veen, Krug, & Carter, 2008). In general, decision making in sequential sampling 

models is based on the accumulation of evidence over time until a boundary (or criterion) is reached 

and an associated response is initiated (Brown & Heathcote, 2005, 2008; Busemeyer & Townsend, 

1993; Diederich & Busemeyer, 2006; Hübner, Steinhauser, & Lehle, 2010; Ratcliff & Smith, 2004; 

Ratcliff, 1978; Usher & McClelland, 2001; White, Ratcliff, & Starns, 2011). The negative relation 

between decision speed and accuracy results from the lowering of decision boundaries when time 

pressure increases. Under high speed stress relatively little evidence suffices to cross a boundary, so 

that decision time is reduced. At the same time, though, the error rate increases because the wrong 

boundary is reached more frequently due to the generally noisy samples of evidence. Thus, adjusting 

the decision boundaries can increase speed at the cost of reduced accuracy, and vice versa. In fact, 

this mechanism has often been sufficient to simulate empirical SAFs, while other model components, 

such as the rate of evidence accumulation, were kept constant. This has led to the prevalent 

assumption that the joint increase of error rates and response speed in decision making only reflects 

a strategic tradeoff, whereas the efficiency of perceptual processing is unaffected by temporal 

demands (e.g., Ratcliff & McKoon, 2008; Ratcliff, Thapar, & McKoon, 2003). 

Recent reports, however, suggest that the tradeoff account does not generally hold but that 

time pressure also affects the efficiency of evidence accumulation (cf., Heathcote & Love, 2012; Heitz 

& Schall, 2012; Starns, Ratcliff, & McKoon, 2012; Vandekerckhove, Tuerlinckx, & Lee, 2008). Indeed, a 

recent modeling  study on several data sets revealed that an emphasis of speed over accuracy not 

only lowers response criteria but also comes with a reduction in the quality of perceptual processing 
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(Rae, Heathcote, Donkin, Averell, & Brown, in press). Further, an fMRI study indicated that the rate of 

evidence accumulation in an orientation discrimination task increased when the instruction 

emphasized accuracy and therefore reduced time pressure. The sensory processing rate under 

accuracy stress could be even linked to the optimality of orientation-selective activation patterns in 

V1 (Ho et al., 2012).  

Evidence independent from model assumptions also indicates that speeding up responses 

does not necessarily come with a tradeoff in accuracy. Motivating factors, such as the prospect of 

incentives, can mobilize additional resources (e.g., effort) that speed up responding without a drop in 

performance. For instance, in a simple letter categorization task, response times were shorter on 

trials that held out a bonus for fast and correct responses, while error rates did not change. This 

effect was already present in the fastest responses, pointing to an overall increase of processing 

efficiency (Kleinsorge, 2001). Similarly, shifts of entire SAFs towards better performance in response 

to monetary (compared to symbolic) incentives demonstrated that it is possible to speed up 

responding without costs in accuracy (Dambacher, Hübner, & Schlösser, 2011; Dambacher & Hübner, 

2013). The consideration of model-based theoretical SAFs suggests that this speed-up is indeed 

driven by an improved quality of perceptual processing rather than a change of non-decisional 

operations, such as the acceleration of motor execution (Hübner & Schlösser, 2010).  

Yet, there is also evidence that speed pressure affects late motoric stages of the decision 

process. In several studies on lateralized readiness potentials (LRPs), the time from LRP onset to 

response execution (LRP-RT interval) was shorter under high than under low time pressure (Osman 

et al., 2000; Rinkenauer, Osman, Ulrich, Müller-Gethmann, & Mattes, 2004; van der Lubbe, 

Jaśkowski, Wauschkuhn, & Verleger, 2001). Since LRP-RT intervals are largely associated with 

operations following the selection of a particular response, these results indicate that also post-

decisional processes, such as motor commands, are sensitive to temporal demands and hence 

contribute to the shape of SAFs. In contrast, sequential sampling accounts often do not pose time 

pressure effects on non-decisional components (e.g., Ratcliff & McKoon, 2008; Ratcliff, Thapar, & 

McKoon, 2003). 

In sum, there is reason to believe that time pressure effects on response speed and accuracy 

do not generally result from shifts of decision boundaries alone but may involve changes in the 

efficiency of perceptual processing as well as in non-decisional operations. So far, however, model-

based evidence comes mainly from studies on simple perceptual decisions (Ho et al., 2012; Rae et al., 

in press). More complex tasks involving, for instance, response conflicts (e.g., Eriksen & Eriksen, 

1974; Simon, 1990; Stroop, 1935) were hardly considered because the applicability of standard 

sequential models to such data is limited (Hübner et al., 2010; White et al., 2011). Thus, although 

there is ample evidence that also higher perceptual decisions follow the typical function of speed and 
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accuracy, the exact underlying mechanisms are insufficiently understood. Conceptually, it appears 

possible that enhanced task complexity results in an augmented involvement of response strategies. 

Accordingly, corresponding SAFs may be largely based on strategic shifts of response criteria, 

compatible with the classic assumption of the speed-accuracy tradeoff. In fact, results from recent 

simulations of data from a flanker task support this view (White et al., 2011). Yet, it is also possible 

that time pressure in complex decisions affects other processes, such as the efficiency of perceptual 

processing. In line with recent reports from simple tasks (e.g., Ho et al., 2012; Rae et al., 2012), one 

may then expect a modulation of drift rates as a function of time pressure. Likewise, also non-

decisional operations may play a role for the shape of SAFs. 

Fortunately, recent developments brought forth computational models that are able to 

delineate the processes of complex perceptual decisions (Hübner et al., 2010; White et al., 2011). 

While these accounts make some additional assumptions relative to simple decisions, models from 

the sequential sampling family generally permit comparable conclusions since they share basic 

components and mechanisms. The present study therefore aimed at broadening the current 

perspective on the relation of speed and accuracy and examined the nature of SAFs in more complex 

decisions.   

We used a flanker task (Eriksen & Eriksen, 1974), which is susceptible to speed and accuracy 

demands as are simple perceptual decisions: response times as well as accuracies decrease with 

increasing time pressure. Compared to simple decisions, though, the flanker task involves the 

resolution of response conflicts, providing additional potential targets for time pressure effects. In 

particular, participants have to categorize a central target stimulus in the presence of task-irrelevant 

flankers. These flankers modulate the overall item difficulty as they can be incongruent (i.e. response 

incompatible) or congruent (i.e. response compatible). A standard finding is a robust congruency or 

flanker effect, i.e., slower and more error prone responses for incongruent than for congruent 

stimuli. The flanker effect often shows a characteristic course over SAFs: under high time pressure, 

reduced performance for incongruent compared to congruent (or neutral) stimuli is predominantly 

expressed in accuracy differences, which successively turn into response time effects as time 

pressure is relaxed (Dambacher & Hübner, 2013). The source of the flanker effect lies in the co-

processing of irrelevant flankers that – together with the target – fall into the initial spatial focus of 

attention. Co-processing of congruent flankers increases evidence in favor of the correct response, 

whereas co-processing of incongruent flankers produces evidence for the incorrect response. 

Importantly, the presence of incongruent flankers requires advanced mechanisms of selective 

attention. Conditional accuracy functions (CAFs), that are also considered in the present study (see 

below), demonstrate that accuracy for incongruent stimuli improves with response time. It is 

therefore possible that stimulus selectivity (i.e., the ability to restrict perceptual processing to the 
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response-relevant item) is relatively low after stimulus onset, but advances with processing duration 

(cf., Gratton, Coles, & Donchin, 1992). The first sequential sampling model that was able to account 

for this increase in accuracy is the Dual-Stage Two-Phase (DSTP) model (Hübner et al., 2010). 

 

--- Figure 1 about here --- 

 

Comparable to other sequential sampling models for binary choices, the DSTP model 

implements response selection as a diffusion process, which accumulates evidence until one of two 

response boundaries are reached (see Fig. 1). The first phase of response selection is based on 

sensory information from an early stimulus selection stage (e.g., sensory filtering) that provides initial 

perceptual evidence as input for the diffusion process. Because the quality of early stimulus selection 

is often relatively poor, a late stimulus selection stage – also implemented as diffusion process – runs 

in parallel with response selection and has the function to categorize the response-relevant stimulus 

component, i.e., the central target among the irrelevant flankers. Once the late stimulus selection 

process has finished, and given that no response has been selected yet, response selection enters the 

second phase, in which only the selected stimulus component (either the target or a flanker) drives 

response selection. As a consequence, response selection changes its processing rate: if the late 

stage of stimulus selection has chosen the target, the rate of evidence in favor of the correct 

response increases relative to Phase 1. This efficiency enhancement of response selection in Phase 2 

usually occurs on a substantial proportion of trials and explains why accuracy is higher for slow than 

for fast responses. Finally, pre- and post-decisional processes like stimulus encoding and response 

execution, respectively, are jointly captured as non-decisional component. A more formal description 

of the DSTP parameters is given below (see also Hübner et al., 2010).  

 

Present Study 

We used the DSTP model to identify processes that modulate response speed as a function of 

time pressure in the flanker task. Participants had to indicate the parity of a central target digit 

before a given deadline (450, 550, or 650 ms) exceeded. In line with previous studies on simple 

perceptual decisions, we expected a decrease of response selection criteria with increasing time 

pressure. Further, and more critically, a modulation of drift rates would indicate that time pressure 

also affects evidence accumulation (Heitz & Schall, 2012; Ho et al., 2012; Rae et al., in press). 

Specifically, it is conceivable that the quality of sensory filtering (i.e., early stage of stimulus selection, 

captured as non-decision parameter in the DSTP model) suffers from high time pressure. A short 

deadline may therefore result in reduced non-decision time as well as in a lower drift rate in the first 
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phase of response selection. In addition, impaired early stimulus selection may also translate in a 

reduced rate of the late stage of stimulus selection (cf. Fig. 1).  

 

Methods 

Participants 

Data were recorded from 16 students (13 female; mean age: 21.6 y, SD: 3.6 y) at the 

Universität Konstanz. All had normal or corrected-to-normal vision. The experiment was performed 

in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later 

amendments. In agreement with the ethics and safety guidelines at the Universität Konstanz, we 

obtained a verbal informed consent statement from all individuals prior to their participation in the 

study. Potential participants were informed of their right to abstain from participation in the study or 

to withdraw consent to participate at any time without reprisal. 

 

Stimuli 

Numerals from 2 to 9 served as target items in a parity-judgment task. On either horizontal 

side of the target, two flankers, that were identical to each other, set up stimulus congruency. For 

incongruent stimuli, flankers consisted of response-incompatible numerals, i.e., flankers and targets 

differed in parity. Congruent stimuli were composed of a target and flankers of the same parity. The 

target was always presented at screen center. Each character extended a visual angle of 

approximately 0.9° horizontally and 1.27° vertically and the spacing between characters (center to 

center) was 1.27° of visual angle. Stimuli were congruent on half of the trials and incongruent on the 

other half. They were presented in white on a black background on a 19” color-monitor with a 

resolution of 1280 x 1024 pixels and a refresh rate of 60 Hz. A USB computer mouse registered the 

responses.  

 

Procedure 

Participants were seated at a distance of approximately 50 cm from the monitor and 

received written instruction. Prior to each block of trials, one of three deadlines (i.e., 450, 550, and 

650 ms) indicated the level of time pressure in the block. Every trial started with a central fixation 

cross (400 ms plus 600 ms blank), followed by a stimulus array for 165 ms and a blank screen until 

participants’ response. The task was to signal the parity of the target numeral by pressing the 

corresponding mouse button with the index or middle finger of the right hand prior to deadline 

expiration. After each trial, feedback signaled whether the response was correct (“Korrekt”, green 

color), incorrect (“Fehler!”, red color), too slow (“Schneller antworten!”, red color), or too fast, i.e., 

before stimulus onset (“Zu früh!”, red color). At the end of a block, participants indicated the level of 
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effort they sensed during the block on a five point scale (not reported here). Then, they had the 

opportunity to take a short break while the mean response time and the proportion of errors of the 

previous block were presented together with the balance of earned points (see below). The 

experiment comprised three practice blocks and twelve main blocks of 64 trials, and it took 

approximately 1 hour.  

 

Performance-contingent payment 

Participants received a base payment of 6 EUR and, depending on their performance, earned 

an additional amount of up to 8 EUR. For performance-contingent payment, each trial was rewarded 

with 10 points for a correct response before the deadline, while errors, too fast, or too slow 

responses were not incentivized. In addition, participants received a bonus of 500 points after each 

block if they reached a pre-specified accuracy level (i.e., 70%, 80%, and 90% for the deadlines of 450, 

550, and 650 ms, respectively). Points were converted into money after the experiment. Written 

instructions explained that accuracy, and hence the overall profit, increases with the time spent for 

stimulus processing. Participants were therefore advised to exploit the available interval for accurate 

decisions, but at the same time to put effort in meeting time demands.  

 

Behavioral results and discussion 

Responses faster than 100 ms or slower than 1200 ms were excluded from data analysis 

(<0.5% of all data). SAFs are shown in Figure 2. 

 

Mean response times and error rates 

Latencies of correct responses were analyzed in a two-way repeated measures ANOVA on 

the factors deadline (450, 550, 650), and congruency (congruent, incongruent). The results revealed 

significant main effects of deadline, F(2, 30) = 48.1, p < 0.001, ηp
2 = .762, and congruency, F(1, 15) = 

36.4, p < 0.001, ηp
2 = .708. Response times decreased with shorter deadlines (458, 431, 389 ms), and 

they were faster for congruent than for incongruent stimuli (420 ms vs. 432 ms). In addition, the 

interaction between the two factors, F(2, 30) = 5.30, p < 0.01, ηp
2 = .272, indicated that the 

congruency effect in response times increased with deadline. 

An analogous ANOVA on accuracies revealed significant main effects of deadline, F(2, 30) = 

44.0, p < 0.001, ηp
2 = .746, and congruency, F(1, 15) = 80.0, p < 0.001, ηp

2 = .842. Error rates increased 

with decreasing deadlines (8.28%, 13.4%, 22.5%), and they were lower for congruent than for 

incongruent stimuli (11.2% vs. 18.2%). Further, the interaction of deadline x congruency, F(2, 30) = 

4.60, p < 0.05, ηp
2 = .235, attested that the congruency effect in error rates decreased with increasing 

deadline.  
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In summary, the data showed the expected SAF, i.e., a drop in accuracy as response speed 

increased with time pressure. Further, the results confirmed the common pattern of a progressive 

shift of the congruency effect from accuracies to response times as responses became slower (see 

also Fig. 2) (cf., Dambacher & Hübner, 2013).  

 

--- Figure 2 about here --- 

 

Distributional data 

Cumulative distribution functions (CDFs) for correct responses were computed from 

quantile-based (.1, .3, .5, .7, and .9) averages of response times. That is, correct responses from each 

participant, congruency condition (congruent, incongruent), and deadline (450, 550, 650 ms) were 

sorted into six bins comprising 10%, 20%, 20%, 20%, 20%, and 10% of the data, respectively (Ratcliff 

& McKoon, 2008; Ratcliff, 1979). The resulting empirical CDFs are represented as points in Figure 3. 

Except for the first quantile under the shortest deadline, they consistently show a right shift of the 

response time distribution for incongruent compared to congruent items. 

 

--- Figure 3 about here --- 

 

Because several participants made fewer than five errors in at least one condition, analogous 

CDFs for error response times could not be computed. Instead of excluding these data sets, we 

considered error data by means of CAFs (conditional accuracy functions) that can be calculated even 

for conditions with few or no errors. We therefore were able to take into account data from all 

participants for the model fits (see below). Beyond that, CAFs are more informative for our objective 

than error CDFs because they directly reflect the increase of accuracy (and hence selectivity) with 

response time (cf., Gratton et al., 1992). We calculated CAFs as mean response time and proportion 

of correct answers in each of five 20% bins of the entire response time distribution (correct and error 

responses) from each participant, congruency condition, and deadline. Empirical CAFs are shown as 

points in Figure 4. The figure illustrates characteristic courses of the functions across all deadlines. 

The overall level of accuracies gradually increases as deadlines become longer (cf., also Fig. 2). 

Further, within each deadline, accuracies are low for the fastest responses and approach an 

asymptote as responses become slower. The fastest responses show a large congruency effect in 

accuracy that diminishes with increasing response times. This attenuation of the flanker effect is in 

accordance with the view that stimulus selectivity improved over time. Besides these visual 

similarities of the overall pattern the model fits revealed also differences between the deadline 

conditions.  
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--- Figure 4 about here --- 

 
Modeling 

The DSTP (Dual-Stage Two-Phase; Hübner et al., 2010) model was used to fit the empirical 

data. As briefly outlined in the introduction, the core of the model is response selection, which is 

divided into a first and a second phase (Phase 1 and Phase 2), each represented by a diffusion 

process (Ratcliff, 1978; Voss, Nagler, & Lerche, 2013), RS1 and RS2, respectively (see Figure 1). 

Basically, a diffusion process is characterized by a drift rate parameter reflecting the evidence 

available for responses A and B, and by two corresponding boundary parameters A and –B. Noisy 

samples of evidence are accumulated over time, beginning at state X0 until boundary A or –B is 

reached, which then triggers the corresponding response. Here, we assume that X0 = 0, and that A 

and B represent the correct and incorrect button press, respectively. 

In the first phase of response selection, perceptual evidence (for RS1) is provided by an early 

stage of stimulus selection, which filters the sensory input and weights task-relevant stimulus 

components (Hübner et al., 2010; Logan & Gordon, 2001). For instance, in our flanker task, the 

central stimulus component was always the target. The attentional weights for the central position 

are therefore higher than those for the other locations. This translates into distinct component rates 

µta and µfl for the relevant and irrelevant stimulus components, respectively, which result from the 

product of bottom-up sensory input and attentional weights. The parameter µta represents the rate 

of evidence provided by the target in favor of the correct response, whereas µfl stands for the 

evidence contributed by information from the flankers. Both rates sum up to the total rate µRS1 for 

Phase 1 of response selection (process RS1), i.e. µRS1 = µta + µfl. The value of µfl is positive if the 

stimulus is congruent, and negative if it is incongruent. Thus, the overall rate for RS1 is reduced for 

incongruent compared to congruent stimuli, and can even be negative. 

If response selection relied on process RS1 alone there would be no qualitative improvement 

over time, and accuracy for incongruent stimuli would remain at a relatively low level. It has been 

shown that such a mechanism is too simple and insufficient to account for distributional data in the 

flanker task (Hübner et al., 2010). Instead, a more sophisticated stimulus selection process SS, also 

implemented as diffusion process in the DSTP model, is assumed to run in parallel with RS1. When 

this stimulus selection with rate µSS hits one of its boundaries C or –D, the target C or a flanker D, 

respectively, is selected for further processing, whereas unselected stimulus components are 

henceforth ignored. From that point onwards, response selection enters Phase 2 and continues as 

process RS2 (see Fig. 1). There are two possible scenarios for Phase 2 in the flanker task: The first is 

that the target was selected by SS. In that case, the rate µRS2 is usually higher than µRS1 in Phase 1, 

especially for incongruent stimuli. As a second scenario, the flanker was selected by SS. If the flanker 
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is incongruent to the target, µRS2 is negative and leads with high probability to an error. For 

congruent stimuli, the selection of a flanker results in a positive µRS2. Of course, response selection 

can also complete in Phase 1, i.e., when RS1 hits one of its boundaries earlier than process SS 

finishes. In this case, the selected response is initiated without entering Phase 2. 

Finally, while Phases 1 and 2 of response selection reflect the duration of the central decision 

process, non-decisional operations are represented by parameter ter. This parameter captures the 

duration of pre-decisional processes, such as stimulus encoding or sensory filtering (i.e., the early 

stage of stimulus selection), as well as of post-decisional processes, such as motor planning or 

response execution. 

 
Fit procedure 

A computer version of the DSTP model was fit to the distributional data (cf., Hübner et al., 

2010). Specifically, the PRAXIS algorithm (Brent, 1973; Gegenfurtner, 1992) was applied to find 

parameter values that minimized the G2 statistics (Wilks likelihood ratio chi-square; cf., Ratcliff & 

Smith, 2004):  

 

    ∑     (
  
  
)

 

   

  

 

where N is the number of observations, J is the number of bins, pi is the proportion of 

observations in the ith bin, and πi is the proportion in this bin predicted by the model. For N, we used 

the average number of valid trials per person in the corresponding fit condition. This was uncritical, 

because G2 was inappropriate for significance testing and merely served as goodness-of-fit measure 

(cf., Ratcliff & Smith, 2004). 

The DSTP model was fit to the proportions of correct responses in the CDF bins, and to the 

error proportions in the CAF bins. Because the congruent and incongruent condition were fit 

simultaneously for each deadline, we had J=22 for each fit (6 bins for correct responses in the 

congruent condition, 5 bins for errors in the congruent condition, 6 bins for correct responses in the 

incongruent condition, and 5 bins for errors in the incongruent conditions). The degrees of freedom 

(df) of the goodness-of-fit statistics were computed as  

 

df =(Jc – 1) + (Ji –1) – M, 

 

with Jc and Ji reflecting the number of bins for the congruent and incongruent condition, 

respectively, and M representing the number of model parameters.  
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The following assumptions were made to restrict the number of parameters in the model. 

First, we assumed symmetric boundaries for both response and stimulus selection. Second, the value 

of parameter µRS2, reflecting the rate of response selection in Phase 2 after stimulus selection, has 

the same magnitude irrespective of whether the target or a flanker was selected. However, if a 

flanker was selected, its sign depends on stimulus congruency: the rate is µRS2 for congruent, but ˗µRS2 

for incongruent stimuli.  

The resulting DSTP model has 7 parameters: boundaries A=B for response selection; 

component rates for target and flanker, µta and µfl; rate µRS2 for response selection in Phase 2; rate µSS 

for late stimulus selection; boundaries C=D for late stimulus selection; and finally, a non-decision 

parameter ter. Accordingly, for this model df = (11 – 1) + (11– 1) – 7 = 13.  

Because the signal-to-noise ratio in single participants is very low, fitting the model to 

individual data is rather difficult. We therefore performed global fits to quantile averages across all 

participants. Using different sets of parameter start values to avoid local minima, every fit ran until 

G2 was minimized. Each of the required several hundred cycles comprised the simulation of 8·105 

trials.  

In order to estimate the variability of these global parameters, we applied a jackknife 

procedure (e.g., Gray & Schucany, 1972; Jackson, 1986; Mosteller & Tukey, 1977), where a set of 

parameter values Pi is computed for each participant i (i=1…n) by temporarily omitting participant i 

and fitting the model to the quantile-averaged data from the remaining n-1 participants; the global 

parameters thereby served as start values for the individual jackknife fits. Hence, we obtained one 

parameter set for each participant, providing a basis for statistical tests of time pressure effects.  

Specifically, the jackknifed values were used to compute standard errors for parameter 

difference scores between the longest (650 ms) and the shortest deadline (450 ms) (Abdi & Williams, 

2010). The corresponding confidence intervals (CIs) provided a test criterion for time pressure effects 

in the global parameters. That is, if increasing time pressure from the long to the short deadline 

reliably affected a particular model parameter, the associated difference score between the long and 

short deadline would lie outside the confidence band (95% CI as one-sided test, 97.5% CI as two-

sided test).  

For comparison, we also submitted the jackknifed parameters to ANOVAs on the within-

subject factor deadline including all three levels of time pressure (450, 550, 650 ms); the artificially 

large F-values due to the reduction of error variance of the jackknifing procedure were corrected as 

Fc = F/(n - 1)2. To our knowledge, the validity of ANOVAs on jackknifed data has yet only been 

confirmed in the context of onset latencies of lateralized readiness potentials (Ulrich & Miller, 2001). 

It was therefore interesting to test whether its application to model parameters produces similar 

results as the jackknife-based confidence intervals.  
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Fit results and discussion 

Figures 3 and 4 illustrate that the DSTP model (lines) fit the data (symbols) rather well. Table 

1 shows the DSTP parameters from fits to averaged data from all participants. Table 2 lists the 

parameter difference scores together with the jackknife-based confidence intervals as well as the p-

values of the ANOVAs.  

As expected, the parameters for response boundaries A and B decreased as deadlines were 

reduced. The effect was significant on the level of the 95% CI as well as in the ANOVA [Fc(2, 30) = 

5.24, p = 0.011]. This result reflects the canonical speed-accuracy tradeoff as it is described in 

numerous SAF simulations (Ratcliff & McKoon, 2008).  

 

--- Table 1 about here --- 

 

Critically, deadlines also affected the drift rate µta for the target, which gradually decreased 

with increasing time pressure [97.5% CI; Fc(2, 30) = 28.59, p < 0.001]. In contrast, the component rate 

µfl for flankers was not significant. Overall, the summed rate µRS1 (i.e., µta + µfl) dropped substantially: 

with decreasing deadline, respectively, µRS1 amounted to 0.2070, 0.1632, and 0.0983 for congruent 

stimuli (i.e., µfl > 0) and to 0.1297, 0.0756, and 0.0361 for incongruent stimuli (i.e., µfl < 0). Thus, 

compatible with recent evidence that the rate of perceptual processing is sensitive to time pressure 

(Ho et al., 2012; Rae et al., in press), early stimulus selection in the flanker task is less efficient under 

speed stress and hence results in an attenuated response selection RS1.  

Furthermore, the rate for late stimulus selection µss decreased with time pressure [97.5% CI; 

Fc(2, 30) = 22.27, p < 0.001], whereas the threshold parameter C/D was not reliably affected. As a 

consequence, the mean duration of Phase 1 became longer under shorter deadlines, which in turn 

increased the probability that response selection completed already in this first phase. In fact, our 

simulations revealed that for decreasing deadlines the proportion of terminated decisions in Phase 1 

were 0.54, 0.55, and 0.57 for congruent, and 0.47, 0.49, and 0.55 for incongruent stimuli, 

respectively. Thus, besides lower rates of response selection in Phase 1, also the decreasing number 

of decisions entering the more reliable Phase 2 contributed to impaired performance under time 

pressure. 

The rate µRS2 for Phase 2 of response selection yielded no reliable deadline effect. Yet, in 

contrast to the other parameters, µRS2 numerically increased with time pressure. This illustrates that 

the efficiency of response selection in Phase 2 is not necessarily directly proportional to Phase 1. 

Instead, once the late stage of stimulus selection has chosen an item (i.e., target or flanker), evidence 

accumulation for response selection enters Phase 2 and proceeds on the basis of this categorical 
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stimulus representation. This is even the case when the efficiency of preceding processes was low, 

for instance, due to poor sensory filtering.  

 

--- Table 2 about here --- 

 

Finally, shorter deadlines also caused a decrease in parameter ter [97.5% CI; Fc(2, 30) = 24.42, 

p < 0.001], which reflects non-decisional portions of response times, such as stimulus encoding and 

the early stage of stimulus selection. A shortening of ter can therefore result in a low quality of 

sensory filtering, which is in line with the smaller rates in the subsequent Phase 1 of response 

selection and the late stage of stimulus selection (see above). In addition, ter comprises the time from 

response selection to execution; hence its shortening may also point to the acceleration of motor 

programs. This is compatible with a time pressure-induced reduction of post-decision motor intervals 

as revealed by LRPs  (e.g., Rinkenauer et al., 2004). Note that different temporal effects of ter (e.g., 

sensory filtering, motor commands) are neither mutually exclusive nor exhaustive, since processes 

underlying ter are generally underspecified in current implementations of sequential sampling 

models.  

 

General Discussion 

 The assumption that the inverse relation between speed and accuracy reflects a tradeoff 

resulting from (strategic) adjustments of response criteria is widely accepted. Recent studies on 

simple perceptual decisions, though, suggest that, in addition to response criteria, the rate of 

evidence accumulation is also affected by time pressure (Heathcote & Love, 2012; Heitz & Schall, 

2012; Ho et al., 2012; Rae et al., in press; Vandekerckhove et al., 2008). The present results of a more 

complex flanker task support this view as they demonstrate that modulations of drift rates and the 

duration of non-decision processes co-determine SAFs. In particular, fits of the DSTP model revealed 

that sensory filtering, and therefore the efficiency of early response selection suffered from time 

pressure. We discuss the implications of these findings in the following.  

As expected, time pressure generated a speed-accuracy function (SAF): response times as 

well as accuracy decreased with shorter deadlines. The data also showed a pronounced flanker effect 

with better performance for congruent than for incongruent items across all deadlines, an effect that 

progressively moved from accuracy to response times. Overall, the data pattern is consistent with 

results from previous flanker tasks (e.g., Dambacher et al., 2011; Dambacher & Hübner, 2013; 

Hübner & Schlösser, 2010).  

The data were fit with the DSTP model that is able to decompose processes of perceptual 

decisions under conflict. Similar to other dual-process accounts (Evans & Stanovich, 2013), the DSTP 
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model permits the separation of an early stage of attentional stimulus selection from a later stage of 

high selectivity (Hübner et al., 2010; Hübner & Töbel, 2012). For the present data, this account 

provided decent fits across all levels of time pressure. The observed decrease of decision boundaries 

with deadlines is in line with numerous previous studies fitting single-stage sequential sampling 

models to data from simple perceptual decisions (e.g., Ratcliff & McKoon, 2008; Ratcliff & Rouder, 

1998; Ratcliff & Smith, 2004). Accordingly, time pressure engages a tradeoff of speed against 

accuracy that permits faster responses via the reduction of the required evidence for response 

selection.  

Importantly, we also found modulations of the rate of evidence accumulation. As time 

pressure increased, the component rate for target processing µta decreased by around 60% from the 

longest to the shortest deadline. Also the drift component for flanker processing µfl, although not 

significant, was numerically lowest under the shortest deadline. The consequence of this inferior 

output of early stimulus selection is a substantial drop in the overall drift rate µRS1 (i.e., µta + µfl) in 

Phase 1 of response selection. These results corroborate findings on simple decisions showing that 

the integration of perceptual evidence is reduced under time pressure (Ho et al., 2012; Rae et al., in 

press). They therefore suggest that SAFs in complex tasks are not solely based on strategic shifts of 

response criteria.  

Interestingly, the finding is at odds with another recent modeling study of data from a flanker 

task, in which participants were instructed to emphasize speed or accuracy in different blocks of 

trials (White et al., 2011). Fits of several models confirmed the typical decrease of response criteria 

in speed vs. accuracy blocks, but against the authors’ expectations, modulations of drift rates did not 

appreciably improve the fits. One possible reason is that the effects escaped observation because the 

speed instruction did not impose an explicit deadline, which may have resulted in a relatively low 

level of time pressure. Likewise, the accuracy instruction presumably posed a moderate challenge as 

it simply asked participants to avoid errors even if this is at the cost of speed. White et al. suggested 

that this task description was well compliable with capacity-saving criterion shifts, without an effort-

demanding increase of attentional resources. In contrast, the present deadlines set up clear temporal 

limits that entailed error feedback for too late responses. Arguably, this encouraged participants to 

meet temporal demands. At the same time, they were motivated to exploit the available time under 

long deadlines in order to increase accuracy and therefore to maximize their profit. Indeed, our 

performance-contingent payment reflects another difference to White et al.’s method and may have 

additionally motivated the investment of attentional effort in order to optimize performance. Other 

reports of improved efficiency in response to performance-contingent compared to flat payments in 

flanker tasks support this conclusion (Dambacher et al., 2011; Hübner & Schlösser, 2010). Together, 
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the data suggest that changes of perceptual processing rates rely on clear, priorly known levels of 

time pressure and high commitment of participants to the task. 

In addition to the rate of response selection in Phase 1, the rate µSS of the late stage of 

stimulus selection decreased with time pressure. Consequently, the mean duration of Phase 1 

increased with shorter deadlines, leading to a higher proportion of responses that were already 

triggered in Phase 1 and, accordingly, had a lower accuracy. 

A plausible reason for the drift rate modulations in Phase 1 of response selection and late 

stimulus selection is expressed in parameter ter. Its decrease with time pressure indicates that less 

time was allocated to non-decision processes, such as stimulus encoding and sensory filtering. As a 

result of impaired filtering, we would expect a decrease of the drift rate for targets relative to that 

for flankers. In fact, we observed a drop of the ratio of target vs. flanker rate from a value of around 

4:1 (i.e., 0.1683 vs. 0.0386) under the long to around 2:1 (i.e., 0.0672 vs. 0.0311) under the short 

deadline (see Table 1). This indicates that the quality of sensory filtering under higher time pressure 

was indeed reduced.  

Variations of ter may also point to deadline effects on other non-decisional components. Yet, 

current sequential sampling accounts (including the DSTP model) conflate different pre- and post-

decisional components in one parameter, so that their unique contribution remains covert. One of 

the contemporary challenges is therefore to refine the models in order to disentangle non-decisional 

processes that have been shown to play a role for the time course of decision making. For instance, 

LRP studies attested the speed-up of post-decisional processes in response to time pressure (Osman 

et al., 2000; Rinkenauer et al., 2004; van der Lubbe et al., 2001). These results suggest that temporal 

demands can also affect the duration of motor operations, a finding that broadens the traditional 

view of threshold modulations as determinant of SAFs. Further, empirical evidence suggests that 

advanced temporal preparation for the occurrence of an imperative stimulus affects the onset rather 

than the rate of evidence accumulation (Bausenhart, Rolke, Seibold, & Ulrich, 2010; Seibold, 

Bausenhart, Rolke, & Ulrich, 2011). Sequential sampling models uniquely capturing the duration of 

pre-decisional operations could further delineate distinctive effects of decision onset and 

accumulation rate. Thus, the decomposition of non-decisional components would foster a more fine-

grained view on the dynamics of decision making.  

 As a note on statistical analyses, we took advantage of the jackknifing procedure to draw 

inferences about parameter variability between different levels of time pressure. While resampling 

techniques such as jackknifing or bootstrapping are well established as powerful analysis tools (Efron, 

1979, 1982), they have hardly been considered for the evaluation of model parameters. As shown in 

this study, though, resampling can be useful to determine the reliability of effects on one or more 

free parameters. This is especially helpful when single-participant data are too noisy for individual 
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fits. Moreover, resampling statistics enrich commonly reported goodness of fit measures (e.g., G2, 

AIC, BIC), which do not provide significance tests of model results. We demonstrated the feasibility of 

the jackknife approach by computing confidence intervals (CIs) for simple effects between the two 

extreme deadlines as well as ANOVAs including all three deadline levels. Notably, the pattern of 

results was the same in both analyses. We stress, however, that a formal generalization from CIs to 

ANOVAs has yet been described for LRPs (Miller, Patterson, & Ulrich, 1998; Ulrich & Miller, 2001) but 

is missing in the domain of model parameters. Future applications and simulations may hence 

disclose further advantages and limits of resampling techniques for statistics on model parameters.  

 In conclusion, the present flanker task provides evidence that adjustments of response 

criteria are not sufficient to account for speed-accuracy functions in decisions under conflict. Instead, 

formal modeling shows that time pressure reduces the duration of non-decisional processes and 

impairs early sensory filtering, which lowers processing efficiency in decision making. Our results add 

to recent reports of speed-induced modulations of processing rates (e.g., Ho et al., 2012; Rae et al., 

in press) and expand their validity from simple to more complex perceptual decisions involving 

selective attention and response conflict.  
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Tables 

Tab. 1  Parameter estimates from DSTP model fits to distributional data of the three deadlines 

(DL of 450, 550, and 650 ms). µta = drift rates for the target in Phase 1; µfl = drift rates 

for flankers in Phase 1; A/B = response selection boundaries; µSS = drift rates for the 

late stage of stimulus selection; C/D = boundaries for the late stage of stimulus 

selection; µRS2 = drift rates for response selection in Phase 2; ter = mean non-decision 

time (in seconds);  G2 = Wilks likelihood ratio chi-square; df = degrees of freedom.  

 

  Parameters  

DL µta µfl A/B µSS C/D µRS2 ter G2 df 

450 0.0672 0.0311 0.0459 0.3523 0.0768 0.0982 0.2360 0.3128 13 

550 0.1194 0.0438 0.0481 0.3846 0.0770 0.0933 0.2740 1.6806 13 

650 0.1683 0.0386 0.0510 0.4211 0.0813 0.0891 0.2989 2.1891 13 

Note: drift rates reflect the increase of accumulated evidence per second. 
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Tab. 2  Jackknife and ANOVA results. ΔDL650-DL450 = difference scores between global DSTP 

parameters of the longest (650 ms) and the shortest (450 ms) deadline (cf. Tab. 1); CI.95 

and CI.975 = jackknife-based 95% and 97.5% confidence intervals of the DSTP difference 

scores, respectively; |ΔDL650-DL450| > CI = DSTP difference score is outside the 95% (*, 

one-sided test) or the 97.5% (**, two-sided test) confidence interval; pANOVA = 

corrected p-values of one-way repeated measures ANOVAs on jackknife-based 

parameters for the three deadlines (450, 550, 650 ms). 

  ΔDL650-DL450 CI.95 CI.975 |ΔDL650-DL450| > CI pANOVA 

µta 0.1011 0 ± 0.0263 0 ± 0.0320 ** < .001 

µfl 0.0075 0 ± 0.0184 0 ± 0.0224 
 

.399 

A/B 0.0051 0 ± 0.0046 0 ± 0.0056 * .011 

µSS 0.0688 0 ± 0.0213 0 ± 0.0259 ** < .001 

C/D 0.0045 0 ± 0.0100 0 ± 0.0121 
 

.528 

µRS2 -0.0091 0 ± 0.0183 0 ± 0.0222 
 

.500 

ter 0.0629 0 ± 0.0187 0 ± 0.0228 ** < .001 
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Figures 

 

 
 

Fig. 1 The Dual-Stage Two-Phase (DSTP) model. An early stage of stimulus selection (i.e., sensory 

filtering/weighting) provides parameters for target (µta) and flanker (µfl) processing. They 

sum up to the drift rate µRS1 in Phase 1 of response selection. In parallel, a late stage of 

stimulus selection (SS) runs with rate µSS until it reaches one of two boundaries C and –D 

that reflect the selection of either the target or a flanker for selective processing. On 

completion of the late stimulus selection SS, response selection enters Phase 2, which is 

characterized by a transition of the drift rate from µRS1 to µRS2. A decision is completed as 

soon as the response selection process (either during Phase 1 or Phase 2) hits one of two 

response boundaries A and –B reflecting the choice alternatives. The duration of the non-

decision time (e.g., sensory encoding and filtering, motor commands) is captured in 

parameter ter. 
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Fig. 2  Speed-accuracy function (SAF) for congruent (filled symbols) and incongruent (open 

symbols) stimuli. The three data points in each congruency condition reflect mean response 

times and accuracies that gradually increase with the three deadlines of 450, 550, and 650 

ms, respectively.  
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Fig. 3 Cumulative density functions (CDFs). Panels illustrate correct empirical responses (symbols) 

and model fits (lines) for congruent (filled, solid) and incongruent (open, dashed) stimuli 

across three deadlines of 450, 550, and 650 ms.  
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Fig. 4  Conditional accuracy functions (CAFs). Panels illustrate empirical quantile means of the 

response time distributions (symbols) and model fits (lines) for congruent (filled, solid) and 

incongruent (open, dashed) stimuli across three deadlines of 450, 550, and 650 ms.  

 
 


